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1. Background and challenges 

Nowadays, the way consumers choose to buy and eat (Corollaro et al., 2013; 

Harker, Gunson, & Jaeger, 2003) has put much stress on agronomical (production 

system, genetic resources, climate change, etc.) (Davis, Downs, & Gephart, 2021; 

Piñeiro et al., 2020) and processing (environmentally friendly, clean label, etc.) systems 

(Knorr & Augustin, 2021; Knorr, Augustin, & Tiwari, 2020; Tiwari, Norton, & Holden, 

2013). The food security for current consumers and future generations relies on to 

understand how to maintain food stability and guidance for producers and processors. 

Whichever the agro-resources, especially fruit and vegetables (F&V), the varietal 

diversity (Doerflinger et al., 2015; Le Bourvellec et al., 2015) coupled with the origin 

and location, the agronomical practices (levels of fruit thinning and irrigation etc.) 

(Mills, Behboudian, & Clothier, 1996; Saei et al., 2011), the maturity stage before and 

after harvest (Nyasordzi et al., 2013) and the specific storage conditions of each fruit 

induce a large variability. The latter can be considered at two levels: among different 

lots (inter-variability) and between individual fruits (intra-variability). It is even more 

complex due to the heterogeneity inside each fruit defined as the gradients from stem 

to calyx part (Qiao et al., 2019), from periphery to center area (Rahman et al., 2017), 

and from top to bottom (Zhang, at al., 2018). Both, variability and heterogeneity 

introduce highly diverse appearances (color, shape and size, etc.), physical (firmness, 

crunchiness etc.), structural (cell size and shape, cell wall content and composition, etc.) 

and biochemical (sugars, acids and nutrients, etc.) characteristics of raw material, that 

enter the processing systems. The current processing systems are not always adapted 

and optimized to the raw material, but meet the required microbiological safety 

standards, involving high energy-cost unit operations (high temperature, pressure, 

vacuum, long-periods, etc.) (Masanet, 2008). Besides, the increasing concerns of 

natural products without artificial food additives (food colors, sweeteners etc.) force the 

food system revolution (Bearth, Cousin, & Siegrist, 2014). Therefore, it would be 

highly beneficial to develop innovative fruit processing systems, which can consider a 
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large diversity of raw materials, apply efficient processing conditions, and provide new 

solutions to develop natural fruit products. 

In the case of F&V, according to a FAO study (FAO, 2015; Rezaei & Liu, 2017), 

over 20% of losses at harvest, during sorting and grading in European and American 

countries are due to the quality standards set by retailers. About 14-21% of losses in 

developing regions occur during processing techniques for safe products (Fig. 1). Fruit 

producers and manufacturers encounter difficulties to decide what and how to produce 

the expected and constant quality level of final products. Up to now, fruit industrial 

manufacturers deal with the variability and heterogeneity before and after food 

processing mainly based on their experiences or some quantitative quality traits such as 

consistency, SSC, color, pH, etc. However, they often do not have the good choices to 

know how to fractionate and process the raw materials and then formulate the food by 

often adding additives (Bearth et al., 2014). However, this rough and intensive-labor 

strategy causes losses of energy and waste of food resources, which are not 

environment-friendly and not sustainable. 

 

Fig. 1. Losses and wastes at different stages of the F&V supply chain in different 

countries. 

(Figure adapted from FAO, 2015). 

Apple accounts for the second largest market of fruit puree, after banana puree and 

followed by strawberry puree, with a global market value of about 2,000 million USD 

annually (Market Research Future, 2019). Apart from the specific apples dedicated to 

cider, nearly 20% of the French harvested apples are processed into puree (72%) and 

juice (17%) (FranceAgriMer, 2017). Apple puree is used as-is or as the basic ingredient 



34 

of jams, preserves or compotes (Defernez, Kemsley, & Wilson, 1995), which are 

popular among people of all ages, especially for babies and elders. Besides its economic 

importance and high consumption, apple puree is a processed product of primary 

interest, particularly suitable to introduce controlled variability coming from either raw 

material or processing conditions (Buergy, 2021b; Szczesniak & Kahn, 1971).  

The quantification of quality traits is mandatory to understand and anticipate fruit 

selection and processing, and to do that, specific tools have been used over the past 

decades. They are intensively applied in fields or orchards, food processing industries 

and/or analysis laboratories (Table 1). Conventional chromatography such as high-

performance liquid chromatography (HPLC) or gas chromatography (GC) coupled to 

mass spectrometry (MS) gives a precise determination of food quality. However, these 

equipments are almost always used at the laboratory scale, with limitations of 

cumbersome, time-consuming, laboriousness, complex sample preparation and 

analysis protocols using chemicals. Several handheld digital analyzers, such as digital 

refractometer to determine soluble solids content (SSC in °Brix), chromameter for color, 

pH-meter and penetrometer for texture, which are cost-effective, rapid, easy to perform 

both at field and industrial conditions. However, each of these techniques just gives 

specific information of quality, sometimes based on empirical calculations. Compared 

to them, visible (VIS), near (NIR) and mid (MIR) infrared techniques have several 

advantages of i) rapid and non-destructive (VIS and NIR) spectrum acquisition; ii) 

limited or no sample preparation, no chemical waste; iii) available for a wide range of 

samples (solids, powders, liquids, gels, pellets and pastes) and iv) suitable in field, 

industrial and laboratorial conditions. Moreover, several parameters are possibly 

evaluated from a single spectrum, with varying precision, but a calibration step is 

needed. Further, the development of new optical sensors and data treatment capacity, 

make possible to combine conventional imaging and spectroscopy to simultaneously 

explore spatial and spectral information, and then evaluate and predict the quality of 

fruit and processed products (Gowen, et al., 2007). 
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Till now, most of infrared applications have been dedicated to the detection of 

variability (variety, location, maturation, etc.) in raw or processed apples (Table 13, 

Table 15). However, there is limited knowledge on the use of such techniques to 

identify and analyze such variability on the same apples before and after processing. 

Indeed, a possible link between fresh and processed apples could allow the assessment 

of puree quality from a simple, rapid and non-destructive infrared scanning of raw 

apples.  
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Table 1. An overview of common and infrared spectroscopic techniques to detect food variability and heterogeneity at field, industrial and laboratorial scales. 

Quality traits Techniques Available conditions Advantages Disadvantages 

Size and shape 

(apples) 

Electronic sorting and grading 

machine 
⚫ Industry 

⚫ Relatively cheap 

⚫ Automatic  
⚫ Sorting based only on apple size 

Machine vision ⚫ Industry 
⚫ More precise than electronic sorting 

⚫ Integrated color and size information 

⚫ More expensive than electronic sorting 

⚫ Mathematical data analyses 

Spectroscopic imaging 

(VIS-HSI, NIR-HSI, MRI, XRI) 
⚫ Lab 

⚫ High sensitivity 

⚫ More precise and informative 

⚫ Expensive 

⚫ Cumbersome (MRI, XRI) 

Color 

(apples and purees) 

Color charts 

⚫ Field/orchard 

⚫ Industry 

⚫ Lab 

⚫ Simple 

⚫ Economic 

⚫ Subjective 

⚫ Laborious  

Handheld colorimeters 

(CIE L*a*b*; CIE L*c*h) 

⚫ Field/orchard 

⚫ Industry 

⚫ Lab 

⚫ Rapid and simple  

⚫ Non-destructive  

⚫ Both liquid and solid maters 

⚫ Need standard calibration 

⚫ Limited detection area 

Machine vision and VIS- 

spectroscopy and imaging 

⚫ Field/orchard 

⚫ Industry 

⚫ Lab 

⚫ Rapid and simple  

⚫ Affordable costs 

⚫ Non-destructive or destructive measure 

⚫ Mathematical data analyses 

⚫ Impact of environment on spectral and 

imaging quality 

Apple texture and firmness 

Penetrometer 

⚫ Field/orchard 

⚫ Industry 

⚫ Lab 

⚫ Rapid and simple  

⚫ Affordable costs 

⚫ Rough determination 

⚫ Destructive  

⚫ Laborious 

Texture analyzer 
⚫ Industry 

⚫ Lab 

⚫ Multiple textural assessments (firmness, 

crunchiness, consistency etc.) 

⚫ Precise detection 

⚫ Destructive  

⚫ Cumbersome 

⚫ High costs 

VIS and NIR 

Spectroscopy and imaging 

⚫ Field/orchard 

⚫ Industry 

⚫ Lab 

⚫ Rapid and simple  

⚫ Non-destructive  

⚫ Affordable costs 

⚫ Need modeling 

⚫ Effect of environments and sample 

properties on spectral and imaging quality 

Magnetic resonance imaging (MRI) ⚫ Lab 
⚫ Nondestructive 

⚫ High contrast and resolution 

⚫ High costs 

⚫ Cumbersome 

⚫ Special skills for equipment 

⚫ Use of radiations 

X-ray imaging ⚫ Lab 

⚫ Nondestructive 

⚫ Sensitive and precise 

⚫ High contrast and resolution 

⚫ High costs 

⚫ Cumbersome 

⚫ Special skills for equipment 

⚫ Use of radiations 

Puree rheological properties 

Bostwick consistometer ⚫ Industry 
⚫ Rapid and simple  

⚫ Low costs 

⚫ Rough detection 

⚫ Limited precision and stability 

⚫ Only for puree consistency 

Industrial viscometer 
⚫ Industry 

⚫ Lab 

⚫ Potable and waterproof 

⚫ For liquids 

⚫ Relatively precise detection 

⚫ only for viscosity 

Rheometer ⚫ Lab 

⚫ Multiple probes and cells 

⚫ Informative rheological assessments 

(viscosity, viscoelasticity, consistency etc.) 

⚫ Precise detection 

⚫ Complex operations 

⚫ Long time testing 

⚫ Cumbersome 

⚫ High costs 



37 

Dry matter 

(apples and purees) 

Ventilated thermal oven 
⚫ Industry 

⚫ Lab 

⚫ Cheap 

⚫ Simple 

⚫ Long-time 

⚫ Need sample pre-treatment 

⚫ Destructive  

Freeze dryer ⚫ Lab 
⚫ Necessary to stabilize samples (polyphenols 

etc.) 

⚫ Expensive 

⚫ Long-time and destructive 

⚫ Need sample pre-treatment 

NIR spectroscopy 

(Hand-held) 

⚫ Field/orchard 

⚫ Industry 

⚫ Lab 

⚫ Non-destructive  

⚫ Portable 

⚫ Rapid and simple 

⚫ Relatively expensive, cheaper than freeze 

dryer 

⚫ Need modeling 

SSC 

(apples and purees) 

Digital SSC refractometer 

⚫ Field/orchard 

⚫ Industry 

⚫ Lab 

⚫ Rapid and simple detections 

⚫ Stable at different temperatures (5-70°C). 

⚫ Destructive 

⚫ Very common and widespread 

VIS, NIR, and FT-IR 

⚫ Field/orchard 

⚫ Industry 

⚫ Lab 

⚫ Rapid and simple 

⚫ Non-destructive (VIS, NIR) 

⚫ On a wide range of sample statues 

⚫ Continuous and numerous measurements 

⚫ Need modeling 

⚫ High-cost of some FT-IR 

Acidity 

(apples and purees) 

Digital pH meter 

⚫ Field/orchard 

⚫ Industry 

⚫ Lab 

⚫ Rapid and simple detections 

⚫ Low costs 

⚫ Destructive 

⚫ Chemical standard calibration 

Automatic titrator ⚫ Lab 

⚫ Automatic titration and calculation 

⚫ Reducing labor work 

⚫ High sensitivity 

⚫ Destructive 

⚫ Cumbersome 

⚫ Need sample preparation 

⚫ Need chemical standard calibration 

NIR and FT-IR spectroscopy 

⚫ Field/orchard 

⚫ Industry 

⚫ Lab 

⚫ Rapid and simple  

⚫ Non-destructive (NIR) or destructive  

⚫ Sensitive detection by FT-IR 

⚫ Need modeling 

⚫ High-cost of FT-IR 

Biochemical composition 

(individual sugars and acids, 

polyphenols, polysaccharides etc.) 

Enzymatic reactions coupled with 

spectrofluorometer 
⚫ Lab ⚫ Accurate detection 

⚫ Chemical wastes 

⚫ Complex sample preparation 

⚫ Cumbersome 

Chromatographic techniques 

(HPLC and/or LC-MS coupled with 

MS) 

⚫ Lab 
⚫ High sensitivity 

⚫ Stable detection 

⚫ Complex sample preparations 

⚫ Chemical wastes 

⚫ High costs 

⚫ Cumbersome 

VIS and NIR spectroscopy 

⚫ Field/orchard 

⚫ Industry 

⚫ Lab 

⚫ Rapid and simple  

⚫ Limited sample preparation 

⚫ Continuous and numerous measurements 

⚫ Need modeling 

⚫ Limited precisions 

⚫ Only available for major components 

FT-IR and Raman spectroscopy ⚫ Lab 
⚫ Rapid and simple  

⚫ Sensitive detection 

⚫ Need modeling 

⚫ Cumbersome 

⚫ High costs 
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2. ‘Interfaces’ Project 

This work was realized in an Agropolis Foundation Flagship project funded by 

ANR (the French National Research Agency) within the framework of the 

"Investissements d´avenir" program (ANR-10-LABX-001-01, Labex Agro, 

coordinated by Agropolis Fondation (https://www.agropolis-fondation.fr/The-

foundation) (ID 1603-001) (Fig. 2). The project is titled “The interfaces between 

agricultural raw material and processing, a key point for bridging variability of raw 

materials and versatility of processing for innovative food systems” (“Interfaces”, 

https://www6.paca.inrae.fr/sqpov/Projets-Partenariats/Projets/Projets-nationaux-

institutionnels/Interfaces-2017-2020), is coordinated by Dr. Véronique Broussolle 

(INRAE) and Dr. Dominique Pallet (CIRAD), and involves multiple French research 

units: UMR SQPOV, UMR QualiSud, UR PSH, and UMR MoiSA. The interfaces 

between production and processing domains are identified as key points to make food 

supply chain more durable and notably reduce losses and wastes by sorting raw 

materials for optimal use and adapting processes to variability of raw material. This 

project aims to better understand the variability and heterogeneity between fruit 

production and processing and their impact on microbiological and nutritional safety, 

organoleptic quality, and socio-economical sustainability. The questions of how fruits 

respond to processing, how they can be characterized with efficient tools, and how to 

manage them for sustainable and precise fruit processing are thus investigated. 

 

Fig. 2. Sponsors, partners and research units involved in the “Interfaces” project. 

https://www.agropolis-fondation.fr/The-foundation
https://www.agropolis-fondation.fr/The-foundation
https://www6.paca.inrae.fr/sqpov/Projets-Partenariats/Projets/Projets-nationaux-institutionnels/Interfaces-2017-2020
https://www6.paca.inrae.fr/sqpov/Projets-Partenariats/Projets/Projets-nationaux-institutionnels/Interfaces-2017-2020
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 This project is structured into 5 work packages (WPs) (Fig. 3), including the 

investigation of indicators and tools to better characterize the heterogeneity and 

variability of fresh and processed fruits (WP1), the interaction between raw material 

and processing (WP2), the fruit microbiota along the processing chain (WP3) and the 

relationship between different models of physiological and biochemical changes during 

fruit development and maturation in orchards, during postharvest storage and during 

processing (WP4). WP5 aims to better understand how knowledge of processability can 

impact relationships between the different actors of the food chain. 

 

Fig. 3. The frame of “Interfaces’ project. 

 The project is dedicated to three fruit – food systems: apple and apple puree, mango 

and mango dry slices, grape and grape wine. My PhD project belongs to the WP1 of 

the “Interfaces’ project and performed in the UMR SQPOV. It is focused on apple 

(Malus x domestica Borkh.) and aims at investigating and determining relevant 

indicators and methods to evaluate the variability and heterogeneity of both, apples and 

processed purees. To reach this aim, the studied apples are issued from different 

varieties, agricultural practices, postharvest storage times and processing conditions.  
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3. Objectives of the thesis  

The interfaces between production and processing domains are key points to 

make food supply chain more durable. In this context, the objective is to improve the 

quality of processed products and to reduce losses and wastes. The challenges are: 

- How to face the variability and heterogeneity of agricultural raw materials, and 

how to manage and optimize their processing into food products to meet the 

consumers expectations or at least to reach constant and controlled product quality? 

- How to make tools efficient enough and reliable to detect the variability and 

heterogeneity of raw materials, in order to predict the characteristics of processed 

products and to possibly adapt the processing conditions.  

 - And what strategy can facilitate and optimize the use of variable and heterogeneous 

raw materials to produce final processed products meeting consumers demands and 

habits? 

This thesis presents a proof-of-concept of using infrared spectroscopy and 

chemometric -based methods to answer these challenges. In the future, the idea is to 

integrate them at key steps of the processing chain to better control the apple product 

quality. 

4. Manuscript structure 

 After the ‘Introduction’ above presenting briefly the context, I give further details 

in a ‘literature review’ part, concerning: 
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i. The variability and heterogeneity of apples and purees due to production 

(variety, fruit thinning), postharvest storage (storage times) and processing 

conditions (temperature, grinding speed and refining levels) on the quality 

characteristics;  

ii. Recent progress of infrared techniques to detect variability and heterogeneity 

of fresh and processed apples, and potential solutions to predict the properties 

of processed purees based on the spectral information of raw apples; 

iii. Multivariate statistical and mathematical data analysis and advanced 

chemometric strategies to discriminate, link and explore spectra and 

reference data. 

 This review points out the current difficulties to determine apple heterogeneity and 

variability, identify the knowledge gaps to link them between apples and purees, and 

evaluate the use of infrared techniques to valorize and optimize processed products 

from the data of raw apples, leading to the ‘Objective and strategy’ part.  

 The ‘Results and discussion’ part is divided into three sections to answer our 

research questions: 

i. How to identify the variability and heterogeneity of raw apples and processed 

purees using different spectroscopic and imaging techniques (Papers I and II) 

and taking into account the balance between data intensity and required sample 

preparation (Paper III); 

ii. How is the variability of apples linked to the quality of processed purees and 

is it possible to predict the quality of processed purees using VIS-NIR, NIR 

and MIR spectral signals of raw apples before processing (Papers IV, V and 

VI); 

iii. How to improve the puree formulation by infrared spectroscopy as an 

innovative solution to manage apple puree variability (Paper VII). 

 The final chapter is the ‘Conclusions and Perspectives’ to synthetize the highlights 

of my works and present some promising research subjects that I have identified. 
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5. Publications and presentations 

Five papers of my work were published: 

Lan, W., Renard, C. M. G. C., Jaillais, B., Leca, A., & Bureau, S. (2020). Fresh, freeze-dried or 

cell wall samples: Which is the most appropriate to determine chemical, structural and 

rheological variations during apple processing using ATR-FTIR spectroscopy? Food 

Chemistry, 330, 127357 (Paper II). 

Lan, W., Jaillais, B., Renard, C. M. G. C., Leca, A., Chen, S., Le Bourvellec, C., & Bureau, S. 

(2021). A method using near infrared hyperspectral imaging to highlight the internal quality 

of apple fruit slices. Postharvest Biology and Technology, 175, 111497 (Paper III). 

Lan, W., Jaillais, B., Leca, A., Renard, C. M. G. C., & Bureau, S. (2020). A new application of 

NIR spectroscopy to describe and predict purees quality from the non-destructive apple 

measurements. Food Chemistry, 310, 125944 (Paper IV).  

Lan, W., M.G.C. Renard, C., Jaillais, B., Buergy, A., Leca, A., Chen, S., & Bureau, S. (2021). Mid-

infrared technique to forecast cooked puree properties from raw apples: a potential strategy 

towards sustainability and precision processing. Food Chemistry, 129636 (Paper VI). 

Lan, W., Bureau, S., Chen, S., Leca, A., Renard, C. M. G. C., & Jaillais, B. (2021). Visible, near- 

and mid-infrared spectroscopy coupled with an innovative chemometric strategy to control 

apple puree quality. Food Control, 120, 107546 (Paper VII). 

Two papers and two literature reviews are in preparation: 

Lan, W., et al. NIR, MIR, Raman and Hyperspectral imaging techniques: Which is the best way 

to determine chemical, structural and rheological properties of apple purees? (Preparing for 

submission) (Paper I) 

Lan, W., et al. Fruit variability impacts puree quality: assessment of individually processed apples 

using the visible and near infrared spectroscopy. (Preparing for submission) (Paper V). 

Lan, W., et al. How to decipher the structural and chemical heterogeinity in fruits and vegetables: 

a review of advanced spectroscopic and imaging methods. (Preparing for submission) 
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Lan, W. et al. Contribution of near and mid infrared spectroscopy as a key point for detecting and 

bridging variability and heterogeneity of fresh and processed apples: a review. (Preparing for 

submission) 

Three deliverables prepared for ‘Interfaces’ project: 

Deliverable 1.1 – Report on ‘Develop methods and identify relevant indicators to qualify the 

variability and heterogeneity of fresh apples and processed apple purees’ (2018). 

Deliverable 1.2 – Report on ‘Recent advances of infrared spectroscopy for evaluating variability 

and heterogeneity of fresh apples and processed purees’ (2019). 

Deliverable 1.3 – ‘Advanced infrared strategies to detect fruit variability and heterogeneity and 

bridge them between fresh and processed apples’ (2020). 

I have presented four oral conferences in national and international congresses:  

Lan et al., Contribution of infrared spectroscopy to characterize the fresh and processed apples, 

International Plant Spectroscopy Conference (IPSC), International Plant Spectroscopy 

Conference (IPSC) in Berlin, Germany, March 24-28th, 2019.  

Lan et al., Infrared spectroscopy: a potential tool to manage apple puree processing, 3rd 

Symposium on Fruit and Vegetable Processing conference, Avignon, France, November 24-

25th, 2020.  

Lan et al., Infrared‐guided formulation: an innovative concept applied to apple puree, 21st 

HélioSPIR Meeting of Near Infrared Spectroscopy, Nantes, France, June 29th , 2021. 

Lan et al., ATR-FTIR, an integrated tool to evaluate rheological, structural and biochemical 

variations during purees processing, Yong Rheologists Days, Giron, France, July 7-9th, 2021. 

One abstract was submitted for a conference to the ICNIRS 2021: 

Lan et al., Infrared guided processing: a potential strategy to predict processed purees properties 

from spectra of intact apples, 20th biennial meeting of the International Council for NIR 

Spectroscopy (ICNIRS), Beijing, China, October 18-21st, 2021. Submission. 

An outcome named “les faits marquants” has been selected and recorded in 2021 for 
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the annual report of the department ‘TRANSFORM’ of INRAE. 
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1. Products and their source of variability and heterogeneity 

1.1. Apple and puree 

1.1.1. Apple definition 

 Cultivated apple (Malus x domestica Borkh.), a member of the Rosaceae family, is 

one of the most emblematic and widespread fruit crops in temperate region (Cornille et 

al., 2012; Juniper & Mabberley, 2006). Genetic studies revealed the evolutionary 

history of apple fruits (Fig. 4) firstly domesticated from M. sieversii in the Tian Shan 

Mountains for 4000–10,000 years, and dispersed from Central Asia to West Europe 

along the Silk Road, allowing hybridization and introgression of wild crabapples from 

Siberia (M. baccata (L.) Borkh.), Caucasus (M. orientalis Uglitz.), and Europe (M. 

sylvestris Mill.) (Cornille et al., 2012, 2014). After the interspecific hybridization, the 

scientific name Malus × domestica Borkh. of the modern cultivated apple is generally 

accepted and replaces the previous name of Malus pumila (Korban & Skirvin, 1984). 

 

Fig. 4. Apple evolutionary map. 

(Figure adapted from Duan et al., 2017) 



47 

1.1.2 Apple production and consumption  

1.1.2.1 Apple production 

Apple is one of the most widely cultivated fruits around the world, with a global 

production of 75.8 million tons in the 2019/2020 crop year (USDA, 2020), ranking it 

third in worldwide fruit production, following banana and watermelon. In the same year 

(Fig. 5), China was the world's largest producer of apples, with a production amount 

around 41 million metric tons. The European Union came in second place with about 

11.48 million metric tons of apples (Statista, 2020). In Europe, France is the third apple 

producer with nearly 1.7 million metric tons in 2018, after Poland (around 4 million 

metric tons) and Italy (2.4 million metric tons) (FAO, 2018).  

 

Fig. 5. Global leading countries of apple production in 2019-2020. 

(Data adapted from Statista, 2020) 

The success of apple fruit is undisputed, because today there are more than 20,000 

varieties of apples of which 7,000 are regularly cultivated across the globe (Elzebroek, 

2008). Particularly, there are mainly around 100 commercial apple cultivars, such as 

Fuji, Red Delicious, Golden Delicious, Gala, Granny Smith, Idared, Jonagold, 

Braeburn, Cripps Pink, Jonathan, Elstar and McIntosh (Bhushan, Kalia, Sharma, Singh, 

& Ahuja, 2008; Root & Barrett, 2005). In China, Fuji accounts for over 65% of the total 

apple production followed by Golden Delicious and Red Delicious (BEEDATA, 2020). 
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In France, Golden Delicious (29%), Gala (20%), Granny Smith (10%), Fuji (4%) and 

Braeburn (4%) are the most produced cultivars (ANPP, 2020). The leading regions in 

French apple production are Provence-Alpes-Côte d'Azur (25%), Midi-Pyrénées (16%) 

and Pays de la Loire (16%) where the climate conditions are especially favorable 

(FranceAgriMer, 2015).  

Globally, around two thirds of total apples are marketed for fresh consumption, and 

the rest is mainly processed to juices, canned sauces, purees, dried and frozen products 

(Bhushan et al., 2008; Root et al., 2005). China is the largest consumer, absorbing over 

48% of the global apple consumption in 2018 (BEEDATA, 2020). In China, around 90% 

of apples are dedicated for fresh consumption, whereas the rest is processed into apple 

products (BEEDATA, 2020). In France, apple is the most consumed fruit, with around 

50% of the apple production designated for fresh consumption, whereas 19% are 

processed (ANPP, 2020).  

1.1.2.1 Apple composition 

Apple is one of the most interesting food in a healthy diet for its content in water 

(> 80%), sugars (fructose > glucose > sucrose), organic acids (0.2-0.8%, mainly malic 

acid), polyphenols, vitamins (mainly vitamin C), minerals (0.34% - 1.23%), dietary 

fibers (around 2% - 3%) and starch (Anses, 2020; Kiczorowska & Kiczorowski, 2005; 

Musacchi & Serra, 2018), varying according to cultivar, environment, ripening stage 

and post-harvest conditions (Downing, 2012) (Table 2). Besides, the soluble pectins 

and insoluble cellulose and hemicellulose in apple dietary fibers can give different 

flowing behavior, fermentation rate or binding potential of the final processed products 

(Gidley & Yakubov, 2019). Moreover, apple is one of the best resources of polyphenols 

for human health (Boyer & Liu, 2004a). 

Table 2. The basic apple composition with skin 

Compositions 
Amount 

(per 100 g of fresh apple) 
Unit Ranges 

water 85.6 g 82.4-87.5 

energy 52 kcal / 

protein 0.26 g 0.17-0.57 
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total lipid (fat) 0.17 g 0.05-0.31 

ash 0.19 g 0.07-0.48 

carbohydrates 13.8 g / 

total fibers 2.4 g 1.4-3.5 

sugars 10.4 g 8.77-12.0 

glucose 2.43 g 1.45-3.66 

sucrose 2.07 g 0.78-3.53 

fructose 5.9 g 4.63-6.63 

starch 0.05 g / 

Vitamin C (total ascorbic acid) 4.6 mg 4.0-5.5 

Vitamin E 0.18 mg 0.08-0.38 

Iron Fe 0.12 mg 0.09-0.18 

Sodium, Na 1.0 mg 1.0-2.0 

Potassium, K 107 mg 88-136 

Calcium, Ca 6.0 mg 4.0-9.0 

Notes: Recalculated based on (USDA, 2019) from ‘Red delicious’, ‘Golden Delicious’, 

‘Royal Gala’, ‘Granny Smith’, and ‘Fuji’ apple varieties.  

1.1.3 Apple quality determination 

Comprehensive quality assessments of apples need to take into account evaluation 

of both, appearance and intrinsic physical and chemical characteristics (Pu, Feng, & 

Sun, 2015; Zhang et al, 2018). The external quality attributes of fruits, such as color, 

size, shape etc., are some of the most important sensory indexes. They significantly 

affect the marketing prices and the purchase behavior of consumers (Harker et al., 2003). 

Besides, the invisible and internal quality characteristics of fruits, such as firmness, 

crispness, soluble solids, total sugars, dry matter, organic acids, micronutrients etc., 

mainly impact their taste and nutritional values (Bondonno et al., 2017; Boyer et al., 

2004b). The different techniques to determine apple quality at different scales, in 

industry and laboratory scales, are summarized (Table 1) and discussed in detail in the 

following parts: 
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1.1.3.1 Size 

Apple size is a function of cell number, cell volume and cell density (Bain & 

Robertson, 1951; Coombe, 1976). Apple size is mainly related to: i) cell division 

occurring during the first period of fruit growth and ceases within three weeks after 

pollination; and ii) cell enlargement after division phrase until the final stages of fruit 

growth (Batjer & Westwood, 1958; Westwood, Batjer, & Billingsley, 1967).  

Apple size plays a role in the consumer’s purchase decisions. Large apples are 

preferred by consumers for fresh consumption (Iwanami, 2011; Kim, Lee, Kim, & Cho, 

2009), but they cannot last as long in storage compared to smaller fruits (Bain et al., 

1951; Kays, 1999). In industry, apple grading machines in sorting lines are commonly 

applied to classify apples in different size classes, which determine the marketing prices. 

Currently, automatic apple sorting systems using machine vision could be a potential 

solution to divide apples, rapidly and more accurately, based on their integrated 

information of color, size and weight properties (Sofu, Er, Kayacan, & Cetişli, 2016). 

1.1.3.2 Color  

A large diversity of apple colors exists, such as red, yellow, and green etc., but most 

are variegated or bicolor (red overcolor on yellow background). This should be an 

important parameter for variety and quality identification. Consumer color preference 

varies in the global market, according to countries and habits. Generally, bright red 

apples are usually catching the consumer’s attention, whereas the dark red apples are 

less and less popular (Telias et al, 2011). However, the increase of red color, such as 

‘Red Delicious’ which appears very early during fruit development, makes difficult to 

use this quality trait to determine the optimal date of harvest. The practicians need 

therefore to have new reliable quality indexes based on internal quality (Krishnaprakash 

et al., 1983). For some varieties, like ‘Granny Smith’, the red overcolor is a negative 

trait for the market and the blushed apples are downgraded (Hirst, Tustin, & Warrington, 

1990). The different colors on apple fruit surface result from the combination of 
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pigments which are anthocyanins for red-violet, chlorophylls for green and carotenoids 

for yellow and orange (Lancaster, Grant, Lister, & Taylor, 1994).  

 The skin color is an important and fundamental parameter in apple industry to 

discriminate apple varieties. In sorting house, the grading machines sort apples based 

on the percentage of overcolor area on apple surface (Hamadziripi et al., 2014; Telias 

et al., 2011). Some classes are then defined, for example the ‘Modi’ with over 70% of 

red color, ‘Demi Rouge TM’ ranging from 40% to 70%, ‘Pink Lady’ with more than 40% 

of blush color, and ‘Crispy Pink’ with 10%-40% of blush color (Hirst et al., 1990).  

 Currently, there are mainly three kinds of methods to detect apple color: 
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- The color charts: a quite simple and economic method, but only provide the 

basic overview of color information based on the standard color references 

(Nickerson, 1957; Wilson, 1941). Besides, this method is very subjective and 

not suited for numerous determinations.  

- The digital tri-stimulus colorimeter or Chroma meter (Konica Minolta 

Holdings, INC., Japan): it is the widely adopted instrument in fruit research 

and industry, because of easy to use, rapid, portable, and able to provide 

numerous and repetitive characterizations (J. Ahmed & Ramaswamy, 2006). 

It provides the color expression using the specific color space of CIE 

L*a*b*(1976), with three coordinates L* (lightness, black (0) and white 

100)), a*(color between green (-60) and red (+60)), and b* (a color between 

blue (-60) and yellow (+60)). However, such equipment just evaluates the 

color in a limited 8 mm size area of the skin per measure (K. León, Mery, 

Pedreschi, & León, 2006).  

- The digital imaging analysis: these techniques overcome the critical aspect of 

the limited measuring areas by colorimeters, and assess the color of whole 

apples while they pass through high-speed sorting grading machines (Zou & 

Zhao, 2015). Besides, both the visible spectroscopy and imaging techniques 

can be applied to evaluate the apple color variations in labs.  

1.1.3.3 Texture and firmness 

Apple textural properties refer to the firmness, crispness, mealiness and juiciness, 

which are usually evaluated with a combination of both, specific trained sensory panels 

and instrumental measurements (Brookfield et al., 2011). Fruit firmness is estimated by 

a puncture or compression test/measure of the force expressed in kilogram-force, 

pound-force, kg/cm2 or Newton (N) (Lehman-Salada, 1996). This is linked to 

consumer’s perception of apple texture (Harker et al., 2002). According to consumer’s 

preferences, apple firmness below 45 N is too soft for ‘Royal Gala’ and ‘Elstar’, while 

60 N is appropriate for ‘Golden Delicious’ and ‘McIntosh’ (Hoehn et al., 2003). Apple 

firmness varies according to variety, maturation stages, storage conditions, etc. This 
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parameter is usually used to determine the optimal harvest time (Harker, Maindonald, 

& Jackson, 1996; Kingston, 1992). During maturation, the advancing of the softening 

process and the decline of cell adhesion result in a decrease of apple firmness (DeEll, 

et al., 2001; Johnston, Hewett, & Hertog, 2002; Kingston, 1992).  

There are several types of penetrometers to determine apple firmness. The most 

used are portable hand-penetrometers (Magness & Taylor, 1925) and electronic 

pressure testers (EPT) (Lehman-Salada, 1996). They can be used in orchards to quickly 

test apple firmness, and they are also available for scientific and industrial works. 

Besides, some advanced textural analyzers provide multiparameter and fine evaluation 

of apple texture, including crunchiness, mealiness, firmness, etc., but they are 

cumbersome and expensive (Liu, Cao, & Liu, 2019). However, these aforementioned 

methods usually suffer from drawbacks: i) destructive measurement on apple surface 

or peeled flesh for a metal probe penetration with a depth around 8 mm depending on 

the apple size (Johnston et al., 2002); ii) only available to estimate limited areas (mainly 

the outer region of apple flesh). However, the computerized penetrometer Mohr ® Digi-

Test (Mohr and Associates, Richland, WA) can assess firmness throughout three regions 

in the apple from the outer to the middle region of the flesh (around 0.8–1.5 cm from 

the outer apple surface) (Mohr & Mohr, 2000); iii) the measured firmness is not always 

in agreement with the sensory analysis (Harker, et al., 2002). 

More recently, the use of infrared spectroscopy and imaging techniques (mainly 

visible and near infrared) have been introduced to provide an integrated evaluation of 

apple texture, such as firmness (Park et al., 2003), roughness, crunchiness and 

mealiness (Mehinagic et al., 2003). They have the great advantage of non-destructive 

and rapid measurements which allow numerous fruit characterizations.  

1.1.3.4 Dry matter content 

 Dry matter content (DMC) in apples presents the whole composition after 

removing water, mainly including sugars, starch, cell walls, organic acids and minerals. 

It is an important indicator to assess apple quality during both, development/ripening 
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and post-harvest storage (McGlone et al., 2003; Palmer et al., 2010). Apple are shown 

to be better accepted by consumers when DMC is higher (Palmer et al., 2010). Apple 

with a higher DMC (> 16%) at harvest might have a relatively slower starch degradation 

during post-harvest storage than those with lower DMC (< 13%) (Palmer et al., 2013). 

Besides, there is a positive correlation between DMC and firmness in apples at harvest 

and during post-harvest, independently of the fruit size (Palmer, 2014; Saei et al., 2011). 

The range of DMC is quite broad in apples and varies according to cultivar, rootstock, 

crop load, year, origin, storage conditions etc. (described in Part 3). 

 The conventional method to determine DMC in apples is time-consuming and 

destructive needing to grind apple in powder, weigh the samples before (for the fresh 

weight (FW)) and after (for the dry weight (DW)) drying in a ventilated oven at 60-

65°C for 3 days until stable weight. Currently, DMC is also rapidly and non-

destructively determined using NIR with for example the portable FELIX F-750 NIRS 

meter, with good predictions in apple (Kaur, Künnemeyer, & McGlone, 2017), sweet 

cherry (Escribano et al., 2017), mango (Anderson, Subedi, & Walsh, 2017) and 

kiwifruit (Shafie et al., 2015) etc., giving a possible integration of this measure into in-

line sorting system. 

1.1.3.5 Sugars 

 Determining the concentrations of total and individual sugars in the apple is crucial 

to understand the consumers’ acceptance (Harker et al., 2002; Magwaza & Opara, 2015). 

Sugars in apples are mainly composed of fructose, glucose and sucrose. Their contents 

vary depending on apple cultivar, years, growing orchards and agricultural practices, 

ripening stages and storage conditions (Iwanami, 2011). They also increase during the 

post-harvest period, due to the starch hydrolysis (Visser et al., 1968). Generally, the 

individual sugars in apples are quantified by chemical methods, such as colorimetric 

assay, GC, HPLC etc., which are highly sensitive but limited to the laboratory work.  

 The most widely applied method used to measure total sugars in apples is the digital 

refractometer, which is rapid, simple and available at field, industry and laboratory 
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scales. It gives an overview of soluble solids content (SSC) in apples, presenting mainly 

the total soluble sugars (fructose, sucrose and glucose) (Bartolozzi et al., 1997; 

Kingston, 1992). SSC are expressed in degree Brix (°Brix), where 1 °Brix represents 1 

g of sucrose in 100 g of aqueous solution at 17.5 °C (Bartolozzi et al., 1997; Kingston, 

1992). The °Brix unit is applied in the case of fresh and processed apple products, such 

as purees, juices, jams etc. SSC has been shown to be the best indicator of apple 

sweetness perceived by sensory panelists, and is better than the results of 

chromatographic methods (Harker, Marsh, Young, Murray, Gunson, & Walker, 2002). 

In addition, consumers detect differences of apple sweetness with the SSC variations 

higher than 1°Brix (Harker, Marsh, et al., 2002).  

 In the last decades, the VIS-NIR and NIR spectroscopic techniques have become 

popular alternative methods to determine SSC in apples. Compared to digital 

refractometer, the major advantages are i) rapid and non-destructive; ii) simple and 

portable (F-750 FELEX USA, H-100F Sunforest Koera, etc.) with e.g. the apple SSC 

prediction from 5 to 25 °Brix with a standard error less than 0.5 °Brix 

(http://www.sunforest.kr/category_main.php?sm_idx=169), iii) possibility to be 

applied from field to on-line in industry.  

1.1.3.6 Acidity 

 Apple acidity is a fundamental trait for determining cultivar and harvest dates, and 

provides information about flavor and taste due to a strong correlation between them 

(Hulme, Jones, & Wooltorton, 1963). The total organic acids contents in apples are 

mainly composed of malic acid with up to 90% of the whole, followed by citric, tartaric, 

lactic and oxalic acids (Kader, 2008). In Europe, the acid content in apples has been 

shown to strongly affect consumer preferences, with values ranging from 3.0 to 10.0 

g/L (Bai et al., 2015; Iwanami, 2011). During apple ripening, the total acid content 

increases during the cell expansion phase, then decreases during ripening on trees and 

further decreases during post-harvest storage (Ali, Raza, Khan, & Hussain, 2004; 

Nybom, 1959).  

http://www.sunforest.kr/category_main.php?sm_idx=169)
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 Apple acidity is usually evaluated by measuring titratable acidity (TA) and pH. TA 

is measured by titration with a sodium hydroxide (NaOH) solution at a pH of 8.1. TA 

corresponds to the “potential acidity” meaning the total quantity of acids present both, 

in the acid form but also in the form dissociated and salified by mineral elements (citrate 

or malate of potassium, calcium or magnesium). It’s generally expressed in g/L of the 

major malic acid or in %, being 1% TA equal to 10 g/L of malic acid (Musacchi & Serra, 

2018). The hydrogen potential, noted pH, measures the chemical activity of hydronium 

ions in aqueous solution and represents the “real acidity”, which in apple ranges is from 

3.4 to 4.2 with an average around 3.7 (Eisele & Drake, 2005).  

 TA measurement is carried out using an automatic digital titrator (e.g. from the 

Mettler Toledo, Thermo Fisher companies etc.), and is designed to improve the 

efficiency of the measurement. There are currently pH meters that can be used in the 

field (mini pH meter) as well as in industry or in the laboratory. But these measurements 

are made on homogenized samples, and are therefore destructive.  

 In recent years, mid infrared spectroscopy has been reported as a sensitive tool for 

determining both TA, pH and malic acid in apples (Bureau, Ścibisz, Le Bourvellec, & 

Renard, 2012; Irudayaraj & Tewari, 2003) and apple juices (Kelly & Downey, 2005; 

Reid, et al., 2005). Current advances in mid-infrared sensors are geared towards micro-

engineering and miniaturization, such as the Handheld MID IR Spectrometer (company 

ALLIED), but cost around 15,000 USD. 

1.1.3.7 Cell wall 

Cell walls and their constituent polysaccharides play an important role to forms a 

strong network, supporting the plasma membrane and preventing it from bursting under 

the turgor pressure contained osmotically in the cell (Cosgrove, 2005; Fricke, Jarvis, & 

Brett, 2000). Plant cell wall is primarily composed of cellulose (15–40% of cell wall 

dry weight), hemicelluloses (20–30%) and pectins (30– 50%) (Cosgrove & Jarvis, 2012; 

Fischer & Bennett, 1991; Jarvis, 2011; Renard & Thibault, 1993).  

Traditional chemical methods are usually applied to extract cell wall materials and 

purify their polysaccharides. Renard (2005b) summarized and evaluated the existing 
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methods. The most common one is based on the cell wall extraction with ethanol and 

acetone to obtain the ‘Alcohol Insoluble Solids’ (AIS). This method is very simple but 

extracting AIS requires a large consumption of chemical solvents if starting from fresh 

samples (up to 1 L ethanol and 0.4 L acetone/ 1.0 - 1.5 g cell wall). Accelerated or 

pressurized solvent extractors (ASE, PSE) can allow multiplexing and thus faster and 

less solvent-consuming for cell wall preparation, but only from already freeze-dried 

(lyophilized) samples. Kurz et al., (2010) reported the potential of the NIR technique 

to assess the AIS contents of fruits.  

After extraction of AIS, several specific cell wall polysaccharides, such as pectins, 

cellulose and hemicelluloses can be accurately determined by GC-MS or HPLC, but 

still suffer from the drawbacks of complex sample pre-treatments and several chemical 

wastes. MIR technique has been applied on the AIS samples from a large panel of F&V 

to rapidly evaluate their cell wall polysaccharides (Canteri et al., 2019). 

1.1.3.8 Polyphenols 

 Apples are known to be a good source of polyphenols, which are very beneficial 

for health (Sun, Chu, Wu, & Liu, 2002). The main class of polyphenols in apples are 

flavan-3-ols, which include the monomeric (+)-catechin and (-)-epicatechin as well as 

their oligo-and polymers, the procyanidins (Vrhovsek, Rigo, Tonon, & Mattivi, 2004). 

Procyanidins account for more than 80% of the total polyphenol content ( Le Bourvellec, 

Bouzerzour, Ginies, Regis, Plé, & Renard, 2011; Oszmiański, Wolniak, Wojdyło, & 

Wawer, 2008). Most apple polyphenols are concentrated on the fruit surface but are also 

present in the flesh (Le Bourvellec et al., 2011; Oszmiański et al., 2008). In red apples, 

in addition anthocyanins (1%), the glycosides of anthocyanidins are found.  

 Generally, freeze-dried apple samples were used to determine polyphenols by 

HPLC-DAD after thioacidolysis (Le Bourvellec et al., 2011). It can provide the 

individual polyphenols including procyanidins and monomeric flavanols, phenolic 

acids, dihydrochalcones and flavonols etc., but needs a long time sample preparation 

and HPLC analysis. Some previous studies reported the use of NIR and MIR techniques 

to determine the total and individual polyphenols in apples (Giovanelli et al., 2014; 

Pissard et al., 2013; Pissard et al., 2018; Bureau et al, 2012). 
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1.1.4 Puree definition 

Fruit purees are defined as ‘the fermentable but unfermented product obtained by 

suitable physical processes such as sieving, grinding, milling the edible part of whole 

or peeled fruit without removing the juice’, based on the European Legislation 

(Directive 2012/127EU). Although plant-based purees with a large variety of fruits are 

available, all can be described as suspensions of soft particles in a viscous serum or gel 

(Colin-Henrion, Cuvelier, & Renard, 2007). Generally, the industrial production of 

apple purees consists typically in cooking at 93 - 98℃ for about 4 - 5 min, refining to 

remove seeds and skin pieces and then pasteurizing at 90℃ for around 20 min to obtain 

a shelf life of 6 months at room temperature (Oszmiański et al., 2008). Several 

additional ingredients can be added to the purees during processing, such as ascorbic 

acid, spices, sugars, honey or water etc. Sweetened apple puree should contain not less 

than 16.5° Brix and unsweetened apple puree not less than 9.0° Brix. 

1.1.5 Puree production and consumption 

Apple puree accounts for the second largest market of fruit puree, after banana 

puree and followed by strawberry puree, with a global market value of about 2,000 

million USD annually (Future, 2019). Apart from cider production, nearly 20% of the 

French harvested apples are processed into purees (72%) and juices (17%) 

(FrenceAgriMer, 2017). Apple purees can be used as the basic ingredient of jams., 

preserves or compotes (Defernez et al., 1995). The products of apple purees are popular 

from all ages of people, giving apple purees (46%) and mixed purees with other fruits 

(54%) are steadily increasing over the last years (FranceAgriMer, 2017) (Fig. 6). 
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Fig. 6. French industrial production of apple purees during 2005-2015. 

(Figure adapted from FranceAgriMer, 2017) 

1.1.6 Puree composition, rheology and structure  

1.1.6.1 Puree composition 

 The basic nutrients of an apple puree product are displayed in Table 3. Compared 

to the apple nutrients in Table 2, there is a clear loss of calories, protein, dietary fibers, 

carbohydrates, and total sugars after processing, due to heating and refining procedures. 

However, a higher concentration of Vitamin C was detected in the processed purees 

dataset, most likely due to its use as additive in the grinding step. Until now, there was 

no complete reference data regarding the biochemical compositions of both raw apple 

materials and corresponding processed purees.  

Table 3. The basic nutrients of a commercial apple puree product. 

Nutrient (per 100 g) Amount 

Calories 56.4 Kcal 

water 85.1 g 

Protein 1.13 g 

Carbohydrates 11.7 g 

Dietary fiber 1.7 g 

Sugars 11.7 g 

Total fat < 0.3 g 

Cholesterol 0.00 mg 

fructose 7.24 
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galactose < 0.1 

glucose 2.79 

sucrose 1.69 

Beta-carotene 19,9 ug 

Vitamin C 9.86 mg 

Calcium 4.3 mg 

Chloride < 20 mg 

Iron 0.10 mg 

Sodium < 5 mg 

Notes: data adapted from USDA, https://ciqual.anses.fr/#/aliments/13187/puree-de-

pommes-type-%22compote-sans-sucres-ajoutes%22. 

1.1.2.1 Puree rheology 

 Rheological tests provide a meaningful insight on the structural organization of 

apple purees, and explain their sensory perception (Jasim Ahmed & Ramaswamy, 2007). 

Apple puree is a viscoelastic fluid, which can present both, viscous properties as liquid 

matter and elastic properties of solid matter (Buergy et al., 2021b). It is similar to most 

of plant-based purees, and behaves as a non-Newtonian fluid, more precisely shear 

thinning fluid, presenting a yield stress (Rao, Thomas, & Javalgi, 1992). Plant-based 

purees are usually described by a power law model and also by different models that 

include the yield stress as a fitting parameter, such as the Herschel–Bulkley and Casson 

models (Colin-Henrion, Cuvelier, & Renard, 2007; Rao, Thomas, & Javalgi, 1992). 

According to previous works, the rheological properties of apple purees are mainly 

attributed to the soluble solids in the serum phase, the insoluble solids (cell wall) and 

the particle features of insoluble solids (Espinosa-Muñoz et al. 2013). Generally, apple 

purees show dominant elastic properties with higher storage modulus (G’) than loss 

modulus (G"), because of the elastic network of weak attractive or repulsive forces 

between cell wall particles (Espinosa-Muñoz et al., 2011). However, strong 

homogenization and intensive refining of apple purees can result in smaller and less 

structured particles in puree suspensions, consequently leading to dominant viscous 

behaviors (G’’> G’) (Kunzek, Opel, & Senge, 1997).  

1.1.2.2 Puree structure 

 Structurally, apple puree can be divided into pulp and serum (Rao, Thomas, & 

https://ciqual.anses.fr/#/aliments/13187/puree-de-pommes-type-%22compote-sans-sucres-ajoutes%22
https://ciqual.anses.fr/#/aliments/13187/puree-de-pommes-type-%22compote-sans-sucres-ajoutes%22
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Javalgi, 1992) (Fig. 7). Puree pulp is a complex matrix with clusters of cells, individual 

cells or cell fragments of the apple parenchyma. The variation in particle size in pulp 

ranges from hundreds of μm to mm, and significantly affects the rheological properties 

and sensory perception of apple puree (Espinosa-Muñoz et al., 2013; Espinosa-Muñoz 

et al., 2011; Leverrier et al., 2016). Puree serum contains mainly water (85%), soluble 

sugars (12%), and some minor chemical compounds (polyphenols, pectins etc.), while 

pulp contains the same elements plus insoluble dietary fiber. (Ebermann & Elmadfa, 

2008). 

 

Fig. 7. A schematic representation of the composition of plant-based purees. 

(Figure adapted from Buergy, 2021). 

1.1.7 Puree quality determination 

 The rheological and textural properties of apple purees, such as consistency, 

viscosity, viscoelasticity, particle size and volume etc. are determined using several 

specific equipments: 
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⚫ Bostwick consistometer, the simple and cheap method to determine the 

consistency of apple purees (expressed as ‘Bostwick units’) is widely applied 

in the fruit puree industry. The puree consistency is evaluated by the flowing 

distance in cm forced by gravity along the equipment over a 30 s interval. 

However, the measurement is highly subjective and just provides a limited 

overview of puree yield stress and viscosity (Cullen, Duffy, & O'Donnell, 

2001). 

⚫ Rheometer is a specific instrument to provide a precise determination of 

puree flow behavior and deformation properties by measuring the stress-

strain relationship. It gives information of puree viscosity and viscoelastic 

properties corresponding to the moment when puree starts to flow (yield 

point), etc., at different temperatures or shear stresses/rates. The explanations 

of these rheological parameters have been described by Rao (2010), and the 

specific operations on apple purees by Buergy (2021b).  

⚫ Laser diffraction granulometry uses a laser beam which passes through the 

dispersed particles of purees coupled with the Mie or Fraunhofer theory of 

light scattering (Mastersizer, 2007), in order to accurately determine the 

particle size distributions of apple purees. Results are expressed as the 

diameter of every theoretical sphere of irregular particles and the distribution 

of puree particles.  

 Besides the puree particle size changes, cell wall contents (alcohol insoluble 

contents, AIS) have been linked to the rheological properties of apple purees, such as 

apparent viscosity, yield stress and elastic modulus etc. (Espinosa-Muñoz, Renard, 

Symoneaux, Biau, & Cuvelier, 2013). Extracting the cell wall requires times and a large 

consumption of chemical solvents to remove all soluble components (mainly sugars 

and acids), up to 1 L ethanol and 0.4 L acetone to prepare 1.0 - 1.5 g of dry cell wall 

from fresh matrices. Accelerated or pressurized solvent extractors (ASE, PSE) can 

allow multiplexing and thus a faster and less solvent-consuming cell wall preparation, 

but only from already freeze-dried matrices.  
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 Therefore, in order to have an accurate and complete assessment of puree texture, 

these aforementioned methods must be adapted with complex sample preparation, time-

consuming and expensive determination. A recent research highlighted the potential of 

determining the consistency of tomato juice using portable mid-infrared spectroscopy 

(Ayvaz et al., 2016). However, there was no other report on the determination of 

rheological and textural properties such as specific viscosity, viscoelastic properties and 

particle size variations.  

 Other common methods, especially chromatographic techniques (HPLC-MS, GC-

MS, etc.) and colorimetric assay are also applied to characterize the biochemical 

composition (sugars, acids, polyphenols, etc.) in apples and purees (Table 1). Exploring 

the possibility of using infrared spectroscopy has been reported on mango (Labaky et 

al., 2021), tomato (Bureau, Page, Bogé, & Renard, 2015; Szuvandzsiev et al., 2014) 

and raspberry (Andrianjaka-Camps et al. 2015). However, there was no report on apple 

puree quality. 

1.2 Heterogeneity 

1.2.1 Definition of heterogeneity 

The word ‘heterogeneity’ refers to any kind of variation of appearance, 

composition and/or properties in an individual fruit. Based on that, three spatial scales 

(macroscale, mesoscale and microscale) of fruit heterogeneity need to be considered:  
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⚫ At the macroscopic scale, studies focus on the whole fruit. At this scale, 

individual fruit is considered as a whole, a continuum constituted of different 

connecting tissues (Ho et al., 2006; Mebatsion et al., 2008). At this scale, 

spatial studies of heterogeneity are mainly dedicated to the different parts of 

individual fruits, with gradients from stem to calyx part (Qiao et al., 2019) 

(Fig. 8a), along equatorial direction (Zhang et al., 2018) (Fig. 8b), and from 

periphery to center area (Fig. 8c) (Rahman et al., 2017) etc. At the macroscale, 

heterogeneity can be non-destructively viewed in an individual fruit (surface 

color, shape and size etc.) or analyzed using conventional and destructive 

methods on different parts of samples (Menesatti et al., 2009; Mo et al., 2017; 

Peiris et al., 1999; Pissard et al., 2012). 

 

Fig. 8. The apple heterogeneity at macroscale. 
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⚫ At the mesoscopic scale, the actual topology of the individual fruit tissue is 

considered, by visualizing the arrangement of the intercellular spaces, cell 

walls and individual cells as building blocks (Bondonno et al., 2017). At this 

scale, fruit tissues have the possible to show considerable heterogeneity 

between the different parts (Fig. 9), such as endocarp, exocarp and mesocarp 

tissues etc., which are tortuously or randomly connected with several scales in 

play (Mendoza et al., 2007; Sen, 2004). The biochemical and structural 

properties have been increasingly investigated in different fruit tissues in the 

past few years (Aregawi et al., 2013; Bassan et al., 2013; Qi & Shih, 2014; 

Stewart, 1996; Türker-Kaya & Huck, 2017). The characterization of 

heterogeneity of fruit tissues is destructive and usually uses both, the optical 

imaging and/or conventional chromatographical and/or mass spectrometric 

technologies after sample preparation.  

 

Fig. 9. The different apple tissues subdivided into endocarp, mesocarp, exocarp, 

cortex and skin regions. 

(Figure adapted from Franceschi et al., 2012) 
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⚫ At the microscopic scale, single cells are distinguished or separated from fruit 

tissues. The heterogeneity of cell walls and cell membranes can thus be 

addressed (Fig. 10). Specific functional and structural variations of cell walls 

(Barron et al, 2005; McCann et al., 1997; Szymańska-Chargot et al., 2016; 

Xiao et al., 2020) and cell membranes and their components were studied 

(Bassan et al., 2013; Chylińska, Szymańska-Chargot, & Zdunek, 2014; 

Guendel, Rolletschek, Wagner, Muszynska, & Borisjuk, 2018a; Murata et al., 

2000; Pan, Pu, & Sun, 2017). Several advanced phenotypic analyses using 

imaging techniques allow to study the heterogeneity of single cells, even of 

single live cells (Evers et al., 2019). 

 

Fig. 10. Raman maps of the cell wall of apple parenchyma at different development 

stages T1, T2 and T3 and during 3 months storage M1, M2 and M3. 

(Figure adapted from Szymańska-Chargot et al., 2016). 

1.2.2 Apple heterogeneity 

In the past few years, high heterogeneity has been identified for physical, 

biochemical and structural properties in individual apples at the macro, meso and micro 

levels (Table 4). 

At the macroscopic scale, high heterogeneity of SSC (Fan et al., 2016; Ma et al., 
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2018; Mo et al., 2017; Peiris et al., 1999), starch content (Menesatti et al., 2009; Peirs 

et al., 2003a), total polyphenols and vitamin C (Pissard, et al., 2013) was demonstrated 

based on the destructive chemical characterizations in the different pieces of apples. 

Briefly, some interesting results were concluded: 

i) The heterogeneity of SSC in apples has been proven to truly exit from 

proximal to distal direction (Fig. 8a), along equatorial direction (Fig. 8b) 

and in radial direction from inside to outside (Fig. 8c).  

ii) The heterogeneity of SSC, polyphenols and vitamin C varies with different 

trends among apple varieties (Pissard et al., 2013). For example, SSC 

gradually increases from the top to the bottom in ‘Fuji’ (Mo et al., 2017) 

and ‘Red Delicious’ (Peiris et al., 1999) apples, whereas it decreases in 

‘Hidala’ apples (Pissard et al., 2012).  

iii) The level of heterogeneity depends on the quality parameters with for 

example a significant variation of total polyphenols from the proximal to 

the distal direction, but not for vitamin C in the same apples (Pissard et al., 

2013).  

At the mesoscopic scale, the heterogeneity concerns several biochemical 

components (sucrose, sorbitol, malic acid, metal irons, polyphenols, etc.) and structural 

features (pore size and space, intercellular spaces etc.) in different tissues (Table 4). 

These studies provide specific insights to: 
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i) A significant heterogeneity is observed for malic acid, sucrose and 

flavanols in apple endocarp tissue (Zhang, Cha, & Yeung, 2007) and 

different levels for pore intensity in apple cortex tissue (Janssen et al., 

2020a; Nugraha et al., 2019).  

ii) The heterogeneity in apple of metal irons between cuticle and inner tissues 

(Vidot et al., 2020), or flavanols and hydroxycinnamic acids between 

cuticle and outer cortex tissues (Vidot et al., 2019).  

At the microscopic scale, the heterogeneity concerns apple cell structure (cell size, 

cell volume, cell networks etc.), cell wall composition, water hydrogen bonding status 

(Table 4). For example, the pectin accumulation changes in apple during ripening 

between cell wall corners and along the cell wall (Szymańska-Chargot et al., 2016) (Fig. 

10). The conventional chemical analyses do not work at this scale. Some imaging 

techniques with high sensitivity and resolution are good candidates, such as confocal 

Raman imaging, X-ray micro-CT imaging and MRI etc. 
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Table 4. Overview of the reported physical, structural and biochemical apple heterogeneity at the macro-, meso- or micro-scales. 

Scales Parameters Methods Variety Conclusions Ref. 

Macro 

 

SSC 
CA, NIRS, 

VISNIR-HSI 
Fuji Higher SSC (1°Brix) in the calyx part than the stem part 

(Fan et al., 2016; Mo et 

al., 2017) 

SSC 
CA, NIRS, 

NIR-HSI 
Red Delicious 

Increase of SSC along the proximal-distal axis, and 

from inner towards outer surface 

(Mo et al., 2017; Peiris et 

al., 1999) 

SSC CA, NIR-HSI Fuji Higher SSC near peels than in the center (T. Ma et al., 2018) 

SSC CA, NIRS Hidala, Pilot 
Higher SSC near the stem part than the calyx one in 

‘Hidala’; homogeneous SSC in ‘Pilot’ 
(Pissard et al., 2013) 

Starch CA, NIR-HSI Jonagold, Boskoop Different levels in apples (Peirs et al., 2003a) 

Starch CA, NIR-HSI Golden Delicious Higher concentration in the outer cortex than in the core (Menesatti et al., 2009) 

Total polyphenols CA, NIRS Hidala and Pilot 
Significant higher polyphenol contents in the calyx part 

than in the stem and equator ones 
(Pissard et al., 2013) 

Vitamin C CA, NIRS Hidala and Pilot No significant difference in the vertical direction. (Pissard et al., 2013) 

Meso 

Sucrose, sorbitol 
MALID-TOF 

and MSI 
Fuji 

Sorbitol accumulation in the center; higher sucrose 

content in the cortex side than in the center  
(Horikawa et al., 2019) 

Flavanols, 

dihydrochalcones 

MALID-TOF 

and MSI 
Golden Delicious 

Different distribution of flavanols in endocarp, 

mesocarp and exocarp in apples 
(Franceschi et al., 2012) 

Organic acids and 

flavonoids 

MALID-TOF 

and MSI 
/ 

Heterogeneity of malic acid, quinic acid, sucrose and 

flavonoids contents in apple endocarp region 
(Zhang et al., 2007) 

Metal iron S-cryo-XRF 
Douce Moen, 

Guillevic 

Variation of K, Ca, Fe, Mn from the cuticle to the inner 

tissue  
(Vidot et al., 2020) 

Polyphenol 

compositions 

M-DUV-cryo-

imaging 

Gala, Douce Moen, 

Guillevic 

Differences in Flavanols, hydroxycinnamic acids 

between cuticle and outer cortex region  
(Vidot et al., 2019) 

Pore size XRI 
Jonagold, Greenstar, 

Kanzi 

Roughly spherical pores near the skin and elongated 

spores close to the core 
(Mendoza et al., 2010) 

Intercellular spaces XRI Braeburn, Fuji, Large differences of intercellular spaces in apple tissues  (Ting et al., 2013) 
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Golden Delicious, 

Jazz 

Pore structure and 

density 
XRI Braeburn Both, low and high porous regions in the cortex tissue 

(Janssen et al., 2020a; 

Nugraha et al., 2019) 

Micro 

Pore space XRI 
Jonagold and 

Braeburn 
Complex and variable pore space networks  (Mendoza et al., 2007) 

Moisture and void 

networks XRI Jonagold 

Heterogeneous void networks in skin, cortex and 

vascular tissues and moisture around individual cells 

and in cell walls 

(Verboven et al., 2008) 

Cell size, volume XRI Kanzi 
Large heterogeneity of cell size and volume in different 

flesh and mesocarp tissues 
(Wang et al., 2017) 

Cell networks XRI Jonagold Significant differences of cell networks in tissues (Herremans et al., 2015) 

Cell wall 

polysaccharides 

Raman 

imaging 
Golden Delicious 

Heterogeneity of pectin distribution in cell walls  (Szymańska-Chargot et 

al., 2016) 

Water hydrogen 

bonding status 

Raman 

imaging 
Fuji 

The strongest hydrogen bonds in cell wall and the 

weakest in the intercellular regions 

(Li et al., 2020) 
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1.2.3 Factors impacting apple heterogeneity 

Some previous works have addressed the apple heterogeneity caused by various 

factors such as genetic (variety), microclimate with the sunlight exposure, ripening, 

storage and processing conditions, inducing macro and micro changes in morphology, 

physiology and biological components (Table 5). However, there is much less 

information regarding several important factors, such as the effect of:  

i) Agricultural practice, such as fruit thinning and/or water stress on apple 

heterogeneity at macro to micro scales. 

ii) Processing conditions (heating, grinding, refining etc.) on the different 

tissues of an individual apple fruit. 

Table 5. An overview of the possible factors affecting apple heterogeneity 

Factors Impacts References 

Variety 

Heterogeneity of flavanols and phenolic acids 

according to different apple tissues  
(Vidot et al., 2019) 

Heterogeneity of SSC, polyphenols and Vitamin 

C in different apple varieties 
(Pissard et al., 2012) 

Microclimate 
Higher redness and more anthocyanin in apple 

peel on the sunlight exposed side 

(Matsuoka, 2019; 

Proctor, 1974) 

Ripening 

Different levels of starch concentrations in apples (Peirs et al., 2003a) 

Change of pectin distribution in apple cell walls 
(Szymańska-Chargot et 

al., 2016) 

Storage 

large effect on firmness of apple tissues (Aregawi et al., 2013) 

Dispersion of pectin in cell walls  
(Szymańska-Chargot et 

al., 2016) 

No impact on phenolic distribution (Vidot et al., 2019) 

Drying 

process 

Migration of water between intracellular and 

intercellular spaces 
(Khan et al., 2018) 

1.2.4 Challenges to characterize apple heterogeneity 

 The heterogeneity met in each apple depending on the different parts, tissues and 

individual cells is difficult to assess and study due to the balance between the limitations 

of characterizing techniques and the complexity of sample preparation. 

At the macroscopic scale, conventional chromatographic or mass spectrometric 

technologies face difficulties to have a holistic understanding of apple heterogeneity, 

because of i) long-time and intensive labor operations, ii) a large amount of targeted 
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components, iii) impossibility to use one method for analyzing multiple quality 

attributes. 

At the mesoscopic and microscopic scales, several advanced imaging techniques 

have been successfully applied to study the heterogeneity of apple tissues and cell walls. 

However, most of them have drawbacks such as arduousness and high-cost, and some 

difficulties to provide comprehensive insights of the factors involved during fruit 

production or processing. Moreover, complex sample pre-treatments and initial 

calibration steps have to be performed to prevent the oxidization of the highly hydrated 

samples and to increase the signal-to-noise ratio (SNR) of the acquired images (the 

detailed discussion in II-Part 6).  

 These current problems prevent highly effective investigations of apple 

heterogeneity, which arise from several combined factors: genetic, agricultural 

practices, storage and processing. Therefore, developing a relatively simple, rapid, 

stable analyzing method for more numerous and synergistic studies of apple 

heterogeneity would be a great contribution in future projects.  
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1.3 Variability 

1.3.1 Definition of apple variability 

Apple variability is observable by differences in both, appearance and internal 

physical and chemical characteristics, which can be approached at two different levels:  

⚫ The ‘inter-variability’ between apple varieties: intensive researches have been 

performed to estimate the complex impact of genetics.  

⚫ The ‘intra-variability’ within a variety, between apple batches or individual apples: 

the quality of apple lots is affected by natural environment conditions (seasons and 

geographical locations), agricultural practices (production systems, harvesting 

dates) and post-harvest fruit management conditions (storage durations, 

temperature, humidity, atmosphere etc.). In addition, individual apples are also 

affected by micro-environmental conditions such as position in tree during growth 

and ripening changing for example the sunlight exposure and subsequently 

temperature. At this scale, each apple would need to be targeted and studied, which 

is difficult or even impossible due to a large number of conditions and a very small 

volume of apples for each.  

The ‘inter- and intra-variability’ impact physical and biochemical properties of apples. 

1.3.2 Factors impacting of apple variability 

 The possible factors impacting apple variability before harvesting can be grouped 

into three major sub-sources which are genetic materials (varieties, rootstocks), 

environmental conditions (light, temperature, humidity, soil, wind etc.) and agronomic 

practices (orchard design, row orientation, pruning, crop load/fruit thinning, pollination, 

irrigation etc.) (Fig. 11) (Musacchi et al., 2018). 
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Fig. 11. Genetic, environmental, and agronomic sources affecting apple quality during 

pre-harvest. 

(Figure adapted from Musacchi et al., 2018) 

 The genetic diversity mainly includes different apple varieties and rootstocks. 

Obviously, apple varieties give a large variation of external traits (fruit size, color etc.) 

(Kouassi et al., 2009), sensory traits (firmness, crispness, juiciness, flavor) (Cevik et al., 

2010; King et al., 2000; Kouassi et al., 2009), and biochemical parameters (sugar, 

acidity, polyphenols etc.) (Hoehn et al., 2003; Volz & McGhie, 2011). Rootstocks 

control wood production in the tree, directing its energy into fruit production. Rootstock 

mechanisms have been reported to influence apple fruit size, firmness, color, SSC, 

carbohydrates and mineral concentration, ripening and respiration rates at harvest and 

during storage (Barritt et al., 1997; Kviklys et al., 2012; Musacchi et al., 2018; Tomala 

et al., 2008).  

 The complex environmental conditions affect apple growth and quality, especially 

light availability and temperature (Corelli-Grappadelli et al., 2004). Particularly, low 

temperatures during the first 40 days after full bloom can significantly reduce the apple 

fruit size (Stanley et al., 2000). The apple cell expansion rates at 20 °C can be 10 times 
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higher than at 6°C (Warrington et al., 1999). Apple grown at temperature between 12 

and 16 °C have relatively higher SSC than in warmer conditions (Stanley et al., 2000). 

Light intensity is strongly correlated to apple quality, especially concerning the 

synthesis of secondary metabolites such as anthocyanins and carotenoids, as well as the 

degradation of chlorophyll (Matsuoka, 2019). Besides, a higher light exposition in 

apple planting systems provides higher fruit DMC (Wünsche et al., 1996).  

 In terms of agronomic practices, different orchard designs (location, altitude, 

planning density etc.) strongly affect apple quality due to a complex interaction of 

specific temperature, humidity, and light (Musacchi et al., 2018). Pollination is a key 

event to maintain or improve apple quality (Latimer, 1931, 1933, 1937). Agricultural 

practice such as apple thinning to remove excess fruits from trees, alters the crop load 

but improves fruit quality at harvest (Dennis, 2000; Yuan, 2007). Similarly, irrigation 

impacts apple quality and for example, deficit irrigation is a technique of applying less 

water to the tree than the evapo-transpiration demand at selected times during fruit 

growth (Musacchi et al., 2018). The deficit irrigated apples are generally smaller, but 

with higher SSC and lower acidity than standard fruits (Ebel, Proebsting, & Patterson, 

1993), althrough this is not always an effective solution to improve fruit quality 

(Centofanti, Bañuelos, & Ayars, 2019).  

1.3.2.1 Variety 

 There are more than ten thousand apple varieties listed in the European Apple 

Inventory (Watkins, 1985). This large number gives a wide range of inter-variability in 

fruit quality traits (Way et al., 1990). In America, just 16 varieties account for 90 % of 

the domestic apple production and particularly Golden Delicious, Granny Smith, 

Jonathan, McIntosh, Red Delicious, Rome Beauty, Stayman, and York make up 80% of 

the continent production (Wellness, 2021). In France, Golden Delicious, Granny Smith, 

Reine des Reinettes (Queen of the Pippin), Pink Lady and Royal Gala are the most 

favorite apple varieties (Statista, 2021). Apart from their strong appearance differences, 

a large diversity of sensory properties (texture and taste) and eating habits guide the 

choice for each apple varieties (in Table 6). The varieties of Golden Delicious, Granny 
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Smith, Gala, Fuji, Honeycrisp, Braeburn and Jonagold are widely applied for fresh 

consumption and/or sauce processing. 

Table 6. The sensory properties and consuming advantages of the most popular apple 

varieties. 

Varieties Sensory properties Consuming advantages 

Golden Delicious sweet, mild 
snacking, salad, baking, beverage, pie, 

sauce 

Granny Smith tart, super crunchy 
snacking, salad, baking, beverage, pie, 

sauce 

Pink Lady sweet-tart, crunchy snacking, pie, sauce 

Gala very sweet 
snacking, salad, baking, beverage, pie, 

sauce 

Red Delicious 
mildly sweet, 

crunchy 
snacking, salad 

Fuji 
super sweet, 

crunchy 

snacking, salad, baking, beverage, pie, 

sauce 

Honeycrisp 
distinctly sweet, 

crunchy 
snacking, salad 

Braeburn sweet-tart, crunchy snacking, salad, baking, sauce, pie 

Jonagold sweet-tart, crunchy 
snacking, salad, baking, beverage, pie, 

sauce 

(Data adapted from Washington State Apple Association 

https://bestapples.com/varieties-information/varieties/) 

 Two popular apple cultivars, ‘Golden Delicious’ and ‘Granny Smith’ have a 

relatively homogeneous color distribution of their skin, mainly yellow and green 

respectively. However, several previous studies demonstrated a large inter-variability 

of their biochemical and structural properties (Table 7). The cellular architecture, cell 

walls stiffness and crystallinity index of the cellulose fibers were significantly different 

between Golden Delicious and Granny Smith, explaining the inter-variability of their 

firmness (Rojas-Candelas et al., 2021). There were also significant differences of 

biochemical compositions, such as sugars, vitamin C, total phenolic contents etc., and 

antioxidant ability between these two varieties (Asale et al., 2021).  

  

https://bestapples.com/varieties-information/varieties/
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Table 7. A brief comparison of physicochemical, structural and biochemical properties 

of Golden Delicious and Granny Smith.  

Properties Golden Delicious Granny Smith 

firmness (N) 20.24 ± 1.23 24.61 ± 1.79 

cellular density (cells/mm2) 21.48 ± 0.34 13.5± 3.10 

number of pores pore/mm2) 7.30 ± 0.63 4.12 ± 0.38 

Young’s Modulus (MPa) 1.06 ± 1.20 1.76 ± 1.03 

fiber diameters of cellulose (nm) 27.85 ± 6.90 31.85± 10.03 

total sugars (g/100 g) 17.32 ± 0.40 15.54 ± 0.27 

sucrose (g/100 g) 6.76 ± 0.16 6.14 ± 0.10 

Vitamin C (mg/100g) 31.48 ± 2.18 14.97 ± 1.28 

total phenolic contents (mg/g) 66.94 ± 1.62 71.88 ± 2.30 

total flavonoid content (mg/g) 15.59 ± 0.23 21.78 ± 1.87 

DPPH scavenging (ug/mL) 122.53 ± 3.48 93.25 ± 2.88 

Note: Data adapted from Asale et al., 2021; Rojas-Candelas et al., 2021. 

 Apart from ‘Golden Delicious’ and ‘Granny Smith’, many varieties are bi-colored, 

with variable ranges of intensity and distribution of red skin color, especially for Gala, 

Braeburn and Fuji etc. (Trong et al. 2014; Iglesias, Echeverría, & Lopez, 2012; Iglesias, 

Echeverría, & Soria, 2008; Iglesias, Graell, Echeverría, & Vendrell, 1999). The intra-

variability of red pigmentation is controlled by the relative concentration of 

anthocyanins in different apples of each variety (Matsuoka, 2019). A large diversity of 

red of apples skin might be also associated with a large variability of textural and 

structural properties (Defraeye et al., 2013; Janssen et al., 2020b; Van Beers et al., 2015).  

1.3.2.2 Agricultural practice 

 Apple grows in two phases: an early exponential cell division phase that occurs 

between 1 and 4 weeks after full bloom, followed by a cell expansion phase during the 

rest part of the season (Bollard, 1970). Fruit thinning (hand thinning, mechanical 

thinning, chemical thinning etc.) at the apple early growing stages has been proven as 

an efficient method to significantly increase the cell numbers during the cell division 

phrase (Fig. 12) (Bergh, 1990; Milić et al., 2017; Wismer, Proctor, & Elfving, 1995).  
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Fig. 12. Impact of fruit thinning at early stages during apple growth and maturation. 

 The size of apple fruit is mainly due to the variation in the number of cells and in 

a lesser extent to the average cell size. (Bain & Robertson, 1951). The averaged fruit 

size of Golden Delicious and Granny Smith is increased after fruit thinning (Bergh, 

1992). Besides, adjusting the crop load by thinning practice can increase the SSC, DMC 

and TA and possibly decrease the firmness and Calcium in apples at harvest (Table 8) 

and during postharvest storage (Fadanelli et al., 2004; Saei et al., 2011). Although 

studies dealt with the effect of fruit thinning directly on the quality of crops, there is no 

information of its impact on i) the processed apple products, and ii) the heterogeneity 

of individual fruits (see the part of apple heterogeneity). Besides, there is a limited 

knowledge of using infrared techniques to investigate the possibility of evaluating the 

effect of thinning practices on harvested apples and even on their processed purees (see 

the part of infrared techniques).   
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Table 8. Effects of fruit thinning on apple physical, structural and biochemical 

properties. 

Features Fruit thinning / Non-fruit thinning References 

cell number 

(cells/fruit) 

Boskoop: 8.6% ↗ 

Cox: 23.3% ↗ 

Golden Delicious: 3.0% ↗ 

(Link, 2000) 

Cell size 

Boskoop: 7.2% ↗ 

Cox: 4.4% ↗ 

Golden Delicious: 9.9% ↗ 

(Link, 2000) 

Fruit size 

Gala: 16% ↗ 

Golden Delicious:14% ↗ 

Braeburn:13% ↗ 

(Bergh, 1990, 1992; 

Mpelasoka et al., 2001; 

Solomakhin et al., 2010) 

Firmness 

Gala: 9.2-11.8% ↗ 

Golden Delicious: 2.7-12.5% ↘ 

Braeburn: 1.8% ↗ 

(Mpelasoka et al., 2001; Saei 

et al., 2011; Solomakhin et al., 

2010) 

Weight 

Gala: 20% ↗ 

Elstar: 31.7% ↗ 

Braeburn: 8% ↗ 

Golden Delicious: 36.7% ↗ 

(Link, 2000; Meland, 2009; 

Mpelasoka et al., 2001; 

Solomakhin et al., 2010) 

TA 

Gala: 17.6% ↗ 

Golden Delicious: 3% ↗ 

Scifresh: 14.8% ↗ 

(Hehnen et al., 2012; Meland, 

2009; Solomakhin et al., 

2010); 

SSC 

Gala: 6.9% ↗ 

Golden Delicious: 5%↗ 

Elstar: 2.4% ↗ 

Braeburn: 2.5% ↗ 

(Meland, 2009; Mpelasoka et 

al., 2001; Solomakhin et al., 

2010) 

DMC Gala: 15.7-29.5 ↗ (Saei et al., 2011) 

Starch 
Gala: 2.4-11.1% ↘ 

Golden Delicious: 25-36.6% ↗ 
(Solomakhin et al., 2010) 

Polyphenols Jonagold: 19% -178% ↗ (Stopar, et al., 2002) 

Ca 

Boskoop: 7.6% ↘ 

Cox: 31.2% ↘ 

Golden Delicious: 28.7% ↘ 

(Link, 2000) 

K 

Boskoop: 27.7% ↗ 

Cox: 25.7 ↗ 

Golden Delicious: 15.3 % ↗ 

(Link, 2000) 
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1.3.2.3 Storage conditions 

 The main postharvest factors that influence apple physical, structural and 

biochemical properties are temperature, storage time, relative humidity and storage 

atmosphere (O2/CO2 rates, ethylene concentration etc.) (DeEll et al., 2001). The most 

conventional storage temperature for apples has been reported to be between 0 °C and 

3 °C, but it varies according to the variety (Johnston et al., 2002a; 2002b). The 

temperature strongly influences the postharvest life of apple fruit (Table 9). However, 

apples are often under non-optimal temperatures during grading, packing, distribution, 

loading and unloading, and at retail outlets during display (Musacchi et al., 2018). 

 Moreover, as apple is a living organism, long storage leads to loss of water, 

firmness, carbohydrates, organic acids etc. (Thompson, 2008). Intensive research have 

been dedicated to limit the loss of apple quality by adjusting and optimizing the storage 

environments, such as atmosphere and humidity (Mditshwa, Fawole, & Opara, 2018).  

 There are only few research studies on the effect of storage conditions applied on 

apples on the quality of their processed products. There was no report concerning how 

much variability caused by storage impacts both, apples and their corresponding purees, 

or if the processing reduces or enhances the variability of raw apples. 
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Table 9. Overview of factors affecting apple physical, structural, and biochemical properties during storage. 

Factors Properties Conclusions Ref. 

Temperature 

Firmness 
Firmness decreases with rising temperature, 

depending on cultivars 
(DeEll et al., 2001; Johnston et al., 

2001, 2002a; 2002b) 

Mealiness 
Higher temperature increasing the speed of 

apple mealiness 
(Huang & Lu, 2010; Varela et al., 2005) 

SSC 
Higher temperature increasing SSC in apples 

at the initial storage stages 
(Prasanna et al., 2000) 

TA 
Lower titratable acidity with higher storage 

temperature 
(Kweon et al., 2013) 

polyphenols 
Higher temperature leading to a decrease of 

total polyphenols and proanthocyanins 
(Queiroz et al., 2011) 

storage time 

Firmness 
Decrease of apple firmness during long 

storage  
(Billy et al., 2008; Belie et al., 2000; Tu 

et al., 2000) 

Mealiness 
Storage time promoting mealiness, depending 

on cultivars 
(Billy et al., 2008; Huang et al., 2010; 

Varela et al., 2005) 

SSC 
SSC increasing during short storage, but 

decreasing after long storage 
(Jha et al., 2012; Tu et al., 2000; 

Veberic et al., 2010) 

DMC DMC decreasing during apple storage (Perring, 1989) 

Acidity Acidity decreasing during storage 
(Jha et al., 2012; Tu et al., 2000; 

Veberic et al., 2010) 

polyphenols 
Limited effect on flavonoid or antioxidant 

activity during long cold storage 
(Sluis et al., 2001; Veberic et al., 2010) 

humidity 

Firmness 
Apple firmness decreasing more slowly at 

higher humidity 
(Paull, 1999; Tu et al., 2000) 

Mealiness 
Higher humidity promoting development of 

mealy texture 
(Tu et al., 2000) 

Weight  Higher humidity reducing apple weight loss (Lee, et al., 2019; Tu et al., 2000) 

SSC No significant effect on SSC (Tu et al., 2000) 

DMC No significant effect on DMC (Tu et al., 2000) 

Acidity 
Limited effect on acidity, titratable acidity 

decreasing slower at low humidity 
(Prange, et al., 2001; Tu et al., 2000) 

controlled 

atmosphere 

Firmness 
Highly acceptable firmness than in normal 

atmosphere 
(Konopacka & Plocharski, 2004; 

Siddiqui et al., 1996; Wang et al., 2020) 

Weight  
Significant decay of weight loss during 

storage 
(Wang et al., 2020) 

SSC No significant effect on SSC (Wang et al., 2020) 

Acidity No significant effect on acidity (Wang et al., 2020) 

Ethylene Firmness 
Ethylene accelerating softening depending on 

cultivars 
(Johnston et al., 2002) 



82 

1.3.3 Factors impacting puree variability 

 According to the previous reports, there are several resources contributing to a large 

diversity of chemical, textural and rheological properties of apple purees (Table 10), 

which can be mainly addressed to: 1) apple material, 2) thermal processing, and 3) 

mechanical treatment. The specific impacts of these four resources are described in the 

following parts.  

1.3.3.1 Raw apple materials 

 A large diversity of raw apples, including different cultivars, harvesting (thinning 

practices, organic or conventional etc.) and postharvest storage conditions, have been 

reported to introduce strong chemical and textural variation on the processed purees.  

 Oszmianski et al. (2008) found that Idared and Shampion apples generated a 

significantly different concentration of total polyphenols and procyanidin B2 in their 

cooked purees. Calligaris et al. (2006) compared and explored the processing suitability 

of six Italian apple cultivars and finally obtained sensorial characteristics equal to the 

Golden Delicious purees. Besides, the texture of apple purees can be affected by 

cultivars, because of their different pulp contents, chemical composition and particle 

size (Le Bourvellec et al., 2011; Schijvens, Van Vliet, & Van Dijk, 1998). Buergy et al. 

(2021a) demonstrated the viscosity of apple puree strongly varied among Braeburn, 

Gala, Golden Delicious, Granny Smith apples from 562 to 1368 mPa s.  

 Even for the same apple cultivar, different agricultural practice during apple 

cultivation can result in a large diversity of puree quality. Rembialkowska et al. (2007) 

demonstrated that purees cooked with organic apples contained higher levels of 

flavonoids, polyphenols and vitamin C than conventional ones. Besides, the thinned 

Golden Delicious apples, with large particles, resulted in significantly higher puree 

viscosity than the non-thinned apples (Buergy et al., 2020).  

 Moreover, puree prepared from apples at unripe, ripe and overripe maturing stages 

had clearly different viscosity and yield stress (Schijvens et al., 1998). The post-harvest 

stored apples (storage periods at 4°C) can generate a wide range of different puree 
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textures, because of the decrease in particle size during prolonged apple post-harvest 

storage (Buergy et al., 2020).  

1.3.3.2 Thermal processing 

 Thermal processing is a common step in apple puree preparation. The first heat 

treatment or ‘break’ plays a major role of inactivating polyphenol oxidases and 

pectolytic enzymes such as polygalacturonase [PG] or pectin methylesterase [PME], 

while softening the tissue. The conventional indirect heating treatments can be adapted 

with two strategies:  

i. “Hot-break” products are sufficiently heated to inactivate enzymes with a 

heating temperature over 75°C;  

ii. or 2) “cold-break” is performed at a temperature under 66 °C, allowing 

pectolytic enzyme action and leading to lower consistency and texture 

stability (Colin-Henrion et al., 2007).  

 Generally, thermal processing always results in the degradation of organic acids, 

tissue softening and textural loss on apples, whereas the sugars, cellulose and 

hemicellulose are stable and less influenced (Buergy, 2021a; Opatová et al., 1992). 

 Besides the indirect thermal process, apple puree can be produced by several 

techniques, such as microwave, ohmic heating and high-pressure processing. 

Microwave processing technique has the advantages of heating solids or liquids rapidly 

and uniformly, thus inactivating the enzymes more quickly and minimizing phenolic 

oxidation during fruit processing (Guo, Sun, Cheng, & Han, 2017). The microwave 

processed apple purees had higher phenolic compounds (like chlorogenic acid, 

polymeric procyanidin, phloretin-2’-glucoside and quercetin glycosides) than typical 

industrial processes (Oszmiański et al., 2008). Moreover, the viscosity of microwave 

heated apple purees remained stable during storage (Picouet et al., 2009). Microwave 

technique has been reported as a mini-processing strategy for an apple to purees 

(Picouet et al., 2009). Ohmic heating is a rapid and uniform thermal processing 
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technique based on the passage of an alternating current through a sample which 

responds by generating heat internally due to its inherent resistance (Kaur, Gul, & Singh, 

2016). Rinaldi et al. (2021) demonstrated the ohmic cooked apple purees presented a 

lower reduction of ascorbic acid than conventional thermal processing. High-pressure 

processing is reported to be very effective in retaining quality traits in fruit products 

such as purees. The high-pressure processed apple puree showed the higher 

concentrations of ascorbic acid, but a significant decrease of viscosity due to β-

eliminative degradation and the very fast acid hydrolysis of water-soluble pectins 

facilitated by the low pH (Diaz, Anthon, & Barrett, 2007; Krall & McFeeters, 1998; 

Rinaldi et al., 2021).  

1.3.3.3 Mechanical treatments 

 Mechanical treatment plays a major role to disrupt the apple tissue structure into 

smaller cell fragments, mainly with grinding and refining.  

 Particularly, grinding treatment only modifies puree particle size and shape (an 

increase of grinding speed causes a decrease of particle size and apparent viscosity), 

but not the chemical compositions and cell wall contents (Espinosa-Muñoz et al., 2012; 

Espinosa et al., 2011).  

 The different levels of puree refining are known to be a determinant of particle size 

and of cell wall content (Colin-Henrion et al., 2007). After puree refining, a large part 

of cell wall in apple peels can be removed, thus resulting in a decrease of dry matter 

content (Colin-Henrion et al., 2007). However, there are few reports providing specific 

insight into chemical, structural and rheological properties of purees at different levels 

of refining (Table 10). 
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Table 10. Previous reports of the possible factors affecting the physical, biochemical, and textural properties of apple purees 

Variety Variable factors Quality traits Ref. 

Unknown storage temperature, periods sugars and acids, sensory properties (Opatová et al., 1992) 

French market products 32 commercial purees graininess, viscosity, moisture and grittiness (Tarea et al., 2007) 

Idared, Shampion microwave and ascorbic acid addition color, phenolics compositions and antioxidant activity (Oszmiański et al., 2008) 

Golden Delicious grinding speed, time rheological, structural and sensory properties (Espinosa et al., 2011) 

Idared and Fuji storage time phenolics compositions and antioxidant activity (Loncaric et al., 2014) 

Bramley high hydrostatic pressure, temperature polyphenolic stability and physico-chemical properties (Keenan et al., 2011) 

Idared admixture to apricot jams phloretin 2’-glucoside as marker compound by HPLC (Dragovic-Uzelac et al., 2005) 

Golden Delicious the stages of processing patulin content (Janotová et al., 2011) 

Granny Smith microwave heating vitamin C, viscosity, color, polyphenols, titratable acid (Picouet et al., 2009) 

Golden Delicious 
particle content and size, serum 

viscosity 
rheological properties (Espinosa-Muñoz et al., 2013) 

Unknown purees and concentrates polyphenol compounds (Bengoechea et al., 1997) 

French market products purees and juices total polyphenols and vitamin C (Georgé et al., 2005) 

Lobo, Boskoop, Cortland 
organic and conventional apples, 

pasteurize 
flavonoids, polyphenols, vitamin C (Rembiałkowska et al.,2007) 

Golden Delicious 
pulp content, particle size, serum 

viscosity 
texture and sensory perception (Espinosa-Muñoz et al., 2012) 

Braeburn, Gala, Golden 

Delicious, Granny Smith 
mealiness and firmness of raw apples puree particles and viscosity (Buergy et al., 2021) 

Golden Delicious heating technology vitamin C, color, furfural contents (Pelacci et al., 2021) 

Fuji vacuum and oxygen-free 
phenolic compounds, ascorbic acid, antioxidant 

activities, color, and enzyme activities 
(Kim et al., 2021) 

Golden Delicious 
thermal, ohmic heating, high-pressure 

processing 

color, viscosity, particle size distribution, total phenol 

content, ascorbic acid content and sensorial quality 
(Rinaldi et al., 2021) 

Golden Delicious, Granny 

Smith 
fruit load, post-harvest storage puree particles and viscosity (Buergy et al.,2020) 

17 varieties apple flesh and purees polysaccharides and polyphenols (Le Bourvellec et al., 2011) 

Idared, Rome blanch temperature/time rheological properties (Godfrey Usiak et al., 1995) 

R.I. Greening, Rome apple firmness, finisher speed and size particle size distributions (Nogueira, et al., 1985) 

Golden Delicious, 

Boskoop, Cox’s Orange 

apple ripeness, finisher size, cooking 

time 
rheological properties (Schijvens et al., 1998) 
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1.3.4 Challenges to manage processed food from raw materials 

 So far, some previous researches have investigated the possible relationship 

between raw and cooked apples by taking into account specific quality traits such as 

the polyphenolic compound and the degree of browning during apple juice processing 

(Song et al., 2007), the total antioxidant capacity during cider production (Khanizadeh 

et al., 2008), the texture of apples and purees (Buergy, Rolland-Sabaté, Leca, & Renard, 

2021), and the cell wall polysaccharides before and after apple sauce processing (Le 

Bourvellec et al., 2011) etc.  

 These observed correlations of pre- and post-cooking physical, textural and 

biochemical properties could open the possibility of managing the quality of processed 

foods based on their highly correlated information from raw materials. Previous studies 

have reported the potential of using the NIR or MIR spectra of harvested apple and 

mango fruits to forecast their SSC, TA, DMC etc. during post-harvest storage, using the 

strong chemical internal relationships (Ignat et al., 2014; Nordey, Davrieux, & 

Léchaudel, 2019) (Table 11). For processed food, this strategy can be used to assess the 

texture of cooked meat and rice from the NIR spectra of raw materials (Meullenet, 

Jonville, Grezes, & Owens, 2004; Windham et al., 1997). However, this strategy failed 

at predicting butter quality from NIR spectra of milk (Lefébure et al., 2021). To our 

knowledge, there is no report on the use of spectroscopic information on raw fruit to 

predict their processed fruit products.  

Table 11. Applications of infrared spectroscopy to forecast some quality traits of fruit 

and food. 

Applications Conclusions Ref. 

Apple ripening 

Optimal harvesting time from 

initial apple ripening stages 

by MIRS 

(Hazarika, Hebb, & 

Rizvi, 2018) 

Apple storage 

Apple internal composition 

during storage based on VIS-

NIR spectra at harvest. 

(Ignat et al., 2014) 

Mango storage 

Mango shelf-life and quality 

traits based on NIR spectra at 

harvest 

(Nordey et al., 2019) 

Form milk to butter 
Butter characteristics from 

NIR spectra of milk 
(Lefébure et al., 2021) 
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From raw to cooked 

meat 
Texture of meat after cooking (Meullenet et al., 2004) 

From raw to cooked 

grain 

Texture of cooked rice from 

raw grain by NIRS  
(Windham et al., 1997) 

2. Spectroscopic and imaging techniques 

2.1. Spectroscopic techniques 

 For many years, several vibrational spectroscopy techniques have been considered 

as rapid, non-destructive, and inexpensive tools to estimate molecular structure and 

organic matter in food products (Abbas, Pissard, & Baeten, 2020; Nicolai et al., 2007). 

The development of instrumentation makes them applicable both in laboratory research 

(Dupuy, Duponchel, Huvenne, Sombret, & Legrand, 1996; Dupuy, Galtier, Ollivier, 

Vanloot, & Artaud, 2010; Galtier et al., 2011) and online or at-line food industrial 

production and process (De Beer et al., 2009; Picouet, Gou, Hyypiö, & Castellari, 2018; 

Porep, Kammerer, & Carle, 2015). In this section, we introduce the basic knowledge of 

visible (VIS), infrared (NIR and MIR) and Raman spectroscopic techniques, as well as 

their recent applications on the detection of variability of apple and their processed 

products.  

 The infrared spectral regions, with the NIR immediately following the visible (VIS) 

spectra, and then moving to the longer wavelength region of MIRS (Fig. 13). When a 

sample matrix is illuminated by the infrared light, molecular vibrations are measured 

by absorbances at each wavelength associated with different vibrations of specific 

chemical bonds. The absorption frequencies are usually presented as wavelengths (λ) 

with the unit of nm. The relationship between the attenuation of light through a 

substance and the properties of that substance can be described by the Beer-Lambert 

Law (Swinehart, 1962).  
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Fig. 13. Spectral range for near infrared (NIR) and mid-infrared (MIR) showing as 

wavelengths (nm) and wavenumbers (cm-1). 

(Figure adapted from Fox, 2020) 

 The interaction between infrared source and characterized samples can be analyzed 

through the transmittance, diffuse reflectance and transflectance modes: 

⚫ The transmission mode is mainly adapted to the transparent materials with 

constant sample thickness, placed in a quartz cuvette or a flow cell. In these 

conditions, the absorption depends solely on the concentration of the absorbing 

component. 

⚫ The diffuse reflection mode is suitable for the opaque liquids, solid and granular 

samples, in this case part of light is scattered. The diffuse reflectance 

measurements can be adapted both on apples and cooked purees.  

⚫ The transflection mode, with the combination of reflection and transmission, is 

suitable for characterizing turbid or clear liquids.  

2.1.1. Visible (VIS) spectroscopy 

2.1.1.1. Introduction 

 Visible spectroscopy presents the electronic transitions of molecules with the 

absorption of light from 400 to 780 nm. The absorption peaks are very stable under 

variable temperature conditions and often presented the typical full width half 

maximum of approximately 20 nm (Zude, Truppel, & Herold, 2002). VIS spectroscopy 

is one of the most economic and stable methods to assess color scale values correlated 

to fruit pigment levels. It can be acquired non-destructively and rapidly on fruit surface, 



89 

giving the estimations of chlorophylls, carotenes, xanthophylls, anthocyanins and other 

phenols in the pigments (De Jager & Roelofs, 1996; Walsh et al., 2020).  

2.1.1.2 Application on apples and puree 

 Several specific VIS fingerprints have been pointed out corresponding to the 

variability of specific biochemical compositions in fruit pigments (Table 12). 

Particularly, the major absorbers at around 550 nm, 652 nm and 677 nm, associated 

with anthocyanins, chlorophyll a and b responsible for the changes in apple skin, are 

discriminative markers for apple ripening stages (Giusti & Wrolstad, 2001; Pourdarbani 

et al., 2020b; Zude et al., 2006). However, the chemical attributes of apple flesh are not 

always corelated to their skin color changes (Ignat et al., 2014). The VIS spectra of 

apples are limited to assess the soluble solids, titratable acidity, and firmness in fruits. 

Therefore, the combination of VIS and NIR wavelengths are generally considered to 

determine the quality of apple and their processed products (see summary in part II 

5.2).  

Table 12. The specific VIS spectra (400-780 nm) of biochemical compositions in fruit 

pigments. 

Wavelength (nm) Compositions Ref. 

420-503 
Carotenes and 

xanthophylls 
(Walsh et al., 2020) 

475 beta-carotene (Walsh et al., 2020) 

~ 435, 350-500 
xanthophylls, lutein, 

violaxanthin 
(Walsh et al., 2020) 

530-550 anthocyanin 

(Iglesias & Alegre, 2009; Iglesias et al., 

2012; Merzlyak et al., 2003; Toledo-Martín 

et al., 2016) 

~ 650, ~ 680, ~ 720 chlorophyll (Zude, Herold, & Geyer, 2000) 

2.1.2 Near infrared (NIR) spectroscopy 

2.1.1.1 Introduction 

 NIR spectroscopy, based on the electromagnetic radiation, covers the range from 

780-2500 nm. NIR spectra are composed of the signals of almost all major structures 
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and functional groups of organic compounds existing in food (Osborne, 2006). In the 

assessment of intact fruits and their processed products, the broad NIR bands arising 

from overlapping absorption are mainly related to the overtones and combinations of 

vibrational C–H and O–H chemical bonds, primarily associated with water and storage 

reserves (the dominant macroconstituents of fruit) (Golic, Walsh, & Lawson, 2003; 

Kawano, 1994). 

 NIRS has several advantages such as rapid spectrum acquisition, limited sample 

preparation, absence of chemical waste and simultaneous multianalytes detection. 

Besides, NIR spectrometers have the potential to characterize a great variety of samples 

in various forms, including all kinds of solids, liquids, purees, powders, etc. For 

example, the Fig. 14 displays the NIR detections on apple (Fig. 14a) and purees (Fig. 

14b) in our work. However, when spectra are used to predict quality traits, they require 

an initial calibration step, which is time consuming. Indeed, for a set of samples, 

representative of the expected variability, both NIRS spectra and their corresponding 

reference data are required to established predictive models using multivariate 

statistical and mathematical data analyses. Several parameters can be evaluated from a 

single spectrum, with varying precision. 

 

Fig. 14. An example of the measurements on (a) apple and (b) purees using the NIR 

spectrometer. 
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2.1.1.2 Applications on apples and purees 

 Since K.H Norris firstly applied NIR spectroscopy to measure moisture of grains 

in 1964 (Panford, 1987), it has been widely used for quality and safety inspection, 

classification and sorting of apple industry at-line, on-line or in-line (Huang, Yu, Xu, & 

Ying, 2008; Walsh et al., 2020; Walsh, McGlone, & Han, 2020; Wang et al., 2015; Xie 

et al., 2016). Biological characteristics of different apples, which are subject to the 

variety, harvesting season, geographical origin, maturity level, storage conditions and 

periods etc., can result in a large variability of NIR spectrum dataset and play an 

important role in the robustness of developed models (Zhang et al., 2018). Therefore, 

NIR technique coupled with advanced chemometrics has been applied on raw and 

processed apples, in order to 1) identify the pre-harvest, post-harvest and processing 

variability (Table 13); and 2) predict their quality attributes (Table 14).  

Detection of apple and puree variability 

 For raw apples, both VIS-NIR and NIR techniques have a good ability to 

discriminate different apple varieties, harvesting from same or different countries (in 

Table 13). Generally, discrimination models based on the VIS-NIR spectra of apples 

have higher correct classification rates than NIR spectra, taking into account the 

information of color features. Eisenstecken et al (2019) demonstrated the possibility of 

NIR to classify apples from three different orchard elevation levels (225, 650, and 1000 

m above sea level), with correct classification rates of 93.6% and 77.9% for ‘Golden 

Delicious’ grown 1000 and 225 m high, respectively. Schmutzler et al. (2014) perfectly 

discriminated the Golden Delicious apples harvested in Italy from over 20 varieties. 

Besides, different storage conditions (regular air or controlled atmosphere, low or warm 

temperature etc.) (Buccheri et al., 2019; Camps et al., 2007) and storing periods (Beghi 

et al., 2014) on apples can be successfully identified by NIR. However, there is no 

report concerning the use of NIR spectroscopy to investigate and discriminate the 

effects of fruit thinning on apples, as well as their processed product.  

 For apple products (Table 15), VIS-NIR spectroscopy has been successfully 
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applied to discriminate the adulterated apple juice with an accuracy of 91-100%, and to 

detect adulterating sucrose and fructose with a limit of 18.5% (León, Kelly, & Downey, 

2005). Besides, Reid et al. identified apple juices under heated and non-heated 

conditions (discrimination accuracy of 77.2%), and the variability of four variety 

(discrimination accuracy of 82.4-100%) (Reid, Woodcock, O'Donnell, Kelly, & 

Downey, 2005). For fruit purees, a few studies have mainly aimed at detecting 

adulterations in mixed purees of different fruit species (Contal, León, & Downey, 2002; 

Downey & Kelly, 2004). However, we know no report concerning the uses of VIS-

NIRS or NIRS techniques to detect the variability in apple purees, such as variety, fruit 

thinning, and storage periods, which have been highlighted to strongly affect the quality 

of apple puree.  
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Table 13. Applications of VIS and NIRS techniques to determine and discriminate the possible factors impacting apple variability. 

Variable factors Technique 
Wavelength 

(nm) 
Apples Origin 

Chemometric 

method 

No. 

apples 
Accuracy Ref. 

variety 

VIS 380-700 
Gala, Braeburn, Pink 

Lady 

Australia, U.K., 

France, Germany, 

Italy 

PLS-DA 132 94% 
(Vincent et al., 

2018) 

VIS-NIRS 400-2500 
Gala, Elstar, 

Smoothee 
France FDA 450 > 95% (Camps et al., 2007) 

VIS-NIRS 600-1200 
Golden Delicious, 

Red Delicious 
Italy LDA 280 100% (Beghi et al., 2014) 

VIS-NIRS 325-1075 
Fuji, Red Delicious, 

Royal Gala 
China PCA, WT + ANN 90 100% 

(He et al., 2005, 

2007) 

VIS-NIRS 
600-1000, 

900-1700 
5 varieties France, Spain, Italy PCA, LDA, QDA 500 

85%, 

98% 
(Cortés et al., 2019) 

VIS-NIRS 400-1021 Fuji, Red star, Gala China SPA+ELM 300 > 96.7% (Li et al., 2018) 

NIRS 1000-2500 
Fuji, Huaniu, Gala, 

Huangjiao 
China LDA + FAFCM 200 100% (Wu et al., 2015) 

NIRS 1000-2500 
Fuji, New Jonagold, 

Red Start, Ralls Janet 
- MW-PLSDA 200 98.1% (Luo et al., 2011) 

NIRS 1000-2500 
Fuji, Huaniu, Gala, 

Huangjiao 
China 

Gath-Geva 

clustering 
/ 96.5% (Wu et al., 2020) 

NIRS 1000-2500 9 varieties Italy PCA, QDA / > 86.3% 
(Eisenstecken et al., 

2019) 

elevation levels 

VIS-NIRS 380-1030 Fuji China VISSA-SR 276 > 97.1% (Tian et al., 2020) 

FT-NIRS 1000-2500 Golden Delicious Italy PCA, QDA / > 87.5% 
(Eisenstecken et al., 

2019) 

organic or non-organic 
VIS 380-700 

Gala, Braeburn, Pink 

Lady 

Australia, U.K., 

France, Germany, 

Italy 

PLS-DA 132 66% 
(Vincent et al., 

2018) 

FT-NIRS 900-1720 Gala U.K. PLS-DA 60 >96% (Song et al., 2016) 

maturation stages VIS-NIRS 450-1000 Fuji Iran ANN 172 > 99.37 
(Pourdarbani et al., 

2020a, 2020b) 

geographical origins 

VIS-NIRS 590-1250 Fuji China KNN 600 > 92.3% (Ma et al., 2020) 

FT-NIRS 1000-2500 Fuji Japan, China MW-PLSDA 200 98.6% (Luo et al., 2011) 

NIRS 1000-2500 Golden Delicious 20 countries PCA 235 100% 
(Schmutzler et al., 

2014) 

NIRS 1000-2500 Fuji China CARS+PLSDA 208 98.1% (Li et al., 2018) 

marketing grades NIRS 1000-2500 New Jonagold China MW-PLSDA 200 96.0% (Luo et al., 2011) 
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storage periods 

NIRS 800-2700 Golden Delicious Italy LDA 280 > 93.7% 
(Giovanelli et al., 

2014) 

VIS-NIRS 600-1200 
Golden Delicious, 

Red Delicious 
Italy LDA 280 100% (Beghi et al., 2014) 

stored in air or controlled 

atmosphere 
NIRS 950-1650 Annurca Italy PLS-DA 240 93.3% 

(Buccheri et al., 

2019) 

reddened treatments at post-

harvest 
NIRS 950-1650 Annurca Italy PLS-DA 240 96.6% 

(Buccheri et al., 

2019) 

shelf life and cold storage VIS-NIRS 400-2500 
Gala, Elstar, 

Smoothee 
France FDA 450 > 75% (Camps et al., 2007) 
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Prediction of apple and puree quality 

 Intensive investigations using NIRS have been reported regarding the measurement 

of apple internal attributes in the past decades (Nicolai et al., 2007). According to 

previous works (Table 14), NIRS has the possibility to evaluate SSC, DMC, TA, starch 

index, firmness, individual sugars, polypenols, and antioxidant capacity.  

Table 14. Some applications of NIR technique to determine apple quality traits. 

Apple quality Ref. 

SSC 

(Lammertyn et al., 1998; McGlone, et al., 2002; 

Bosoon Park et al., 2003; Peirs et al., 2003b; Zou et al., 

2007; Zude et al., 2006) 

DMC 
(Kaur et al., 2017; McGlone et al., 2003; Travers et 

al., 2014; Walsh et al., 2004; Zhang et al., 2019) 

TA 
(Ignat et al., 2014; Liu et al., 2006; McGlone et al., 

2002; Peirs et al., 2002; Pissard et al., 2021) 

starch index 
(Ignat et al., 2014; Menesatti et al., 2009; Peirs et al., 

2001; Peirs et al., 2003a) 

firmness 

(Fan et al., 2009; Lu, 2004; Lu et al., 2000; McGlone 

et al., 2002; Mendoza et al., 2012, 2014; Park, et al., 2003; 

Peng et al., 2005) 

individual sugars 
(Cho et al., 1998; Costa et al., 2003; Eisenstecken et 

al., 2015; Liu, et al., 2006) 

polyphenols 
(Pissard et al., 2018; Pissard et al., 2013; Schmutzler 

et al., 2014) 

antioxidant 

capacity 

(Schmutzler & Huck, 2016) 

 VIS-NIR and NIR spectroscopy have been applied for the quality analysis of apple 

based-products, for example, determining the sugars and acids in juices (Chang, Chen, 

& Tsai, 1998; Sinnaeve et al., 1997; Temma, Hanamatsu, & Shinoki, 2002) and 

predicting the total ester and volatile compounds in apple cider (Peng, Ge, Cui, & Zhao, 

2016; Ye, Gao, Li, Yuan, & Yue, 2016; Ye, Yue, Yuan, & Li, 2014) (Table 15). However, 

so far, there has been no attempt to use such approaches for the quality assessments of 

apple purees.  



96 

Table 15. Applications of Vis-NIR and/or NIR techniques to determine the quality of apple products. 

Apple products Techniques 
Wavelengths 

(nm) 
Results Ref. 

apples juice 

 

VIS-NIRS 400-2500 
good predictions of total sugars, malic acid, sucrose, fructose and 

glucose with RPD >4.2 
(Sinnaeve et al., 1997) 

VIS-NIRS 680-1235 
Absorbance at 912 nm was an important wavelength to estimate SSC 

in apple juice 
(Temma et al., 2002) 

VIS-NIRS 400-2500 detect adulterant apple juice with an accuracy of 91-100% (León et al., 2005) 

VIS-NIRS 400-2500 discriminate the different heating (77.2%) and variety (82.4-100%) (Reid et al., 2005) 

NIRS 1000-2500 
Absorbance at 2270 nm was a dominant factor to estimate SSC in fruit 

juices. 
(Chang et al., 1998) 

NIRS 1000-2500 detect bacterial contamination in juice 
(Rodriguez-Saona et 

al., 2004) 

NIRS 800-2500 a RMSEP of 0.6 °Brix and R2 of 0.99 for SSC in juice (Lu et al., 2007) 

NIRS 900-1350 
NIR spectra were sensitive to predict SSC, but not for color 

deterioration 
(Zhu et al., 2011) 

NIRS 800-2500 
Good prediction of SSC (R2 = 0.88, RMSE = 0.28 °Brix,) and TA (R2 

= 0.76, RMSE = 0.24 g/L) 

(Włodarska et al., 

2018) 

apple vinegar NIRS 1280-2500 discriminate the varieties of fruit vinegars (Liu et al., 2008) 

apple cider 

NIRS 850-2500 
successfully and simultaneously predict SSC, pH, total acidity, and 

total ester content in wine 
(Ye et al., 2014) 

NIRS 
1340-1850;  

800-1350 
Good predictions of the alcohol strength and for the titratable acidity (Peng et al., 2016) 

NIRS 800-2500 determine the volatile compounds in apple wines with RPD > 2.9 (Ye et al., 2016) 

strawberry, raspberry and apple 

mixed purees 
VIS-NIRS 400-2500 over 10% of apple puree can be detected in the mixed purees (Contal et al., 2002) 

mixed strawberry, apple, and 

raspberry purees 
VIS-NIRS 400-2500 

minimum detection levels of apple about 25% and 20% w/w for 

raspberry and strawberry, respectively. 
(Downey et al., 2004) 
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2.1.3 MIR infrared (MIR) spectroscopy 

2.1.3.2 Introduction 

 Mid-infrared spectroscopy is a powerful tool to elucidate sample structure and 

identify their chemical compounds, based on the functional groups absorb photons at 

characteristic frequencies of MIR radiation. The MIR region is between 4000 and 400 

cm −1. Typical bands observed by MIR spectroscopy correspond to the fundamental 

vibrations of the chemical bonds of molecules, which are described by the X-H 

stretching region (4000-2500 cm-1), the triple-bond region (2500-2000 cm-1), the 

double-bond region (2000-1500 cm-1) and the fingerprint region (1500-600 cm-1) 

(Türker-Kaya et al., 2017). MIR spectra have been comprehensively studied in F&V as 

fresh and processed materials (Bureau, Cozzolino, & Clark, 2019), freeze-dried 

powders (Bureau et al., 2012) and cell wall purified extracts (McCann et al. 1992; 

Canteri, Renard, Le Bourvellec, & Bureau, 2019; Kačuráková et al., 1999; 

Kyomugasho et al., 2015; Szymanska-Chargot et al., 2015). Generally, the fingerprint 

region and a part of the double-bond region contain complex molecular structure 

information of components constitutive of F&V. However, identifying or assigning the 

IR bands in these regions may be difficult because of the band overlapping.  

 Compared to the low structural selectivity in the broad bands of NIR spectra, more 

resolved fundamentals of MIR spectra allow to better elucidate the chemical and 

structural information of samples. However, the lower energy of MIR radiations and 

the strong water interactions in fruit suspensions prevent the sensitive evaluation of 

chemical compositions and structural properties (Abbas et al., 2020).  

2.1.3.3 Applications on apples and purees 

Detection of apple and puree variability 

 MIR spectroscopy provides rapid and accurate evaluations of raw and processed 

apple products’ quality (Table 16). But it is a destructive characterizing method for raw 

apples, requiring sample pre-treatments to generate homogenates, freeze-dried powders 

or their extracts (alcohol insoluble solids, cell wall materials etc.). For apple purees, 
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existing studies were mainly aimed at detecting adulterations in mixed purees of 

different fruit species (Contal et al., 2002; Defernez et al., 1995; Kemsley, Holland, 

Defernez, & Wilson, 1996). Particularly, MIR technique combined with partial least 

squares discrimination analysis (PLS-DA) was able to detect admixture of apple in 

raspberry puree at the minimum level of 20% (Kemsley et al., 1996); similar detection 

limits of apple-strawberry mixed purees were obtained using VIS-NIR coupled with 

PCA and linear discriminate analysis (LDA) (Contal et al., 2002). To date, knowledge 

is still limited on the use of MIR technique to identify variability in apple puree from 

raw materials and cooking conditions is limited. 
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Table 16. Applications of MIR technique to analyze the quality of raw and processed apples. 

Apple samples Applications 
Wavenumbers 

(cm-1) 
Reference 

parenchyma cell wall material classification of cell wall 1800-900 (Belton et al., 1995) 

puree detect adulteration 1802-899 (Kemsley et al., 1996) 

puree detect adulteration 1802-899 (Holland, Kemsley, & Wilson, 1998) 

juice estimation of total sugar, glucose, fructose, sucrose 1250-900 (Rambla et al., 1998) 

Juice estimation of sucrose, glucose, fructose, citric acid 1250-900 (Tewari et al., 1999) 

diluted juice and standard mixtures estimation of malic acid, tartaric acid, citric acid 1400-1180 (Ayora-Cañada & Lendl, 2000) 

juice 
estimation of sucrose, glucose, fructose, sorbitol, citric acid, malic 

acid 
1500-950 (Irudayaraj et al., 2003) 

centrifuged juice classification 1250-900 (Gestal et al., 2004) 

juice detect adulteration 1850-880 (Kelly et al., 2005) 

juice detect adulteration 1200-900 (Dhaulaniya et al., 2020) 

Juice, phenol fraction detect authentication 1800-750 (He et al., 2007) 

pomace perdition of sucrose, fructose, glucose, malic acid, total phenolic 4000-500 (Queji et al., 2010) 

juice and jam detect adulteration 4000-500 (Mohamed et al., 2011) 

homogenate 
estimation of DMC, SSC, TA, sucrose, glucose, fructose, citric acid, 

malic acid 1700-1010 (Bureau et al., 2012) 

freeze-dried powder 
estimation of flavan-3-ols, procyanidins, dihydrochalcones, 

hydrocinnamic acids 
1568-1010 (Bureau et al., 2012) 

cell wall materials 
estimation of galacturonic acid, hemicellulose, cellulose 

1500-800 (Szymanska-Chargot et al., 2015) 

Alcohol Insoluble Solids estimation of the degree of methylesterification of pectins 1800-1600 (Kyomugasho et al., 2015) 

cell wall materials estimation cell wall polysaccharides 1800-800 (Liu et al., 2021) 
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Prediction of apple and puree quality 

 MIR spectroscopy has been widely applied for the quality analysis of apple based-

products, such as fresh homogenates (Bureau et al., 2012), juices (Kelly et al., 2005; 

León, Kelly, & Downey, 2005; Reid et al., 2005) and purees (Holland et al., 1998) 

(Table 16). 

 Particularly, direct MIR estimations on fresh apple homogenates performed well in 

predicting SSC, DMC, TA, some individual sugars and organic acids (Bureau et al., 

2012). As infrared spectroscopy is extremely sensitive to changes of hydrogen bonding 

(Jackson & Mantsch, 1995), the main drawback of spectral measurements is the low 

sensitivity and limited specific signals of chemical compositions under strong water 

interactions in fresh apples. To overcome these limitations observed on highly hydrated 

apples, drying methods with as limited as possible alteration of composition and 

structure are needed (Fig. 15). But sample drying is an expensive and time-consuming 

operation. Specific MIR fingerprints of individual sugars and organic acids have been 

comprehensively summarized in a recent review (Bureau et al., 2019). However, these 

MIR signals come from the direct spectrum on fresh and processed fruits. No work 

compared the differences and limitations of MIR fingerprint regions on fresh and 

corresponding freeze-dried apples, as well as their processed purees.  

Besides, MIR applications to assess fruit textural properties (mainly focus on cell 

wall compositions) are always performed on their cell wall materials (AIS) (Fig. 15) 

(Canteri, Renard, Le Bourvellec, & Bureau, 2019; Szymanska-Chargot, Chylinska, 

Kruk, & Zdunek, 2015). Although some cell wall modifications in plants (Femenia, 

Garcı́a-Pascual, Simal, & Rosselló, 2003) and fruits (Cardoso et al., 2009) under 

heating and dehydration have been investigated by MIR, there is no report concerning 

MIR spectroscopy to detect cell wall change during fruit puree processing and to 

monitor rheological and mechanical properties. 
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Fig. 15. MIR sensors to characterize (a) fresh, and (b) freeze-dried and cell wall 

samples. 

2.1.4 Raman spectroscopy 

2.1.4.2 Introduction 

 Raman is a light scattering technique, whereby a molecule scatters incident light 

from a high intensity laser light source. Generally, most of the scattered light is at the 

same wavelength (or color) as the laser source and does not provide useful information, 

which is called Rayleigh Scatter. However, a small amount of light (usually 

0.0000001%) is scattered at different wavelengths (or colors), which depend on the 

chemical structure of the analyte. This is called Raman Scattering. The different peaks 

in a Raman spectrum show the intensity and wavelength position of the scattered light. 

 Raman technique is a powerful analytical tool in food quality and safety inspection, 

such as detection of mycotoxin and common harmful chemical residues in agri-food 

products (Huang, Cheng, & Lai, 2020; Jiang, Sun, Pu, & Wei, 2018; Wu, Pu, & Sun, 

2021; Zhang, Pu, Huang, & Sun, 2021), microbiota evaluation between raw and 

processed food (He & Sun, 2015). Both Raman and MIR techniques have the potential 

to study the vibrations of molecular bonds, but these two spectroscopies are 

complementary in the fact that: i) the phenomenon observed in Raman is the elastic and 
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inelastic scattering of light (see detailed descriptions from Smith & Dent (2005)), while 

infrared spectroscopy relies on absorption of infrared light in different amounts and at 

distinct wavenumbers corresponding to different bond vibrations; ii) Raman spectra 

usually featured a series of much narrow and sharper spectral peaks than IR spectra. 

The intensity of these Raman peaks is linearly proportional to the concentration of the 

molecules, which is an advantage to quantify chemical compositions or identify 

structural changes in samples (Pelletier, 2003; Qin et al., 2014). iii) Raman is sensitive 

to homo-nuclear bonds (C-C, C=C and C≡C bonds etc.), whereas infrared spectroscopy 

is sensitive to hetero-nuclear functional group variations and polar bonds (C-O and C 

= O), especially OH stretching in water (Griffiths & Miseo, 2014; Pistorius, 1996). 

2.1.4.3 Applications on apples and purees 

 Unlike IR spectroscopy, Raman spectroscopy has little applications for in-line 

quality evaluation in food industry. Most of the reported Raman works focused mainly 

on the detection of the pesticide residues on apple surfaces or their processed products 

(Xu, Gao, Han, & Zhao, 2017; Yang & Ying, 2011). It has been successfully applied to 

determine several nutrients, such as lycopene and β-carotene in tomato (Baranska, 

Schütze, & Schulz, 2006), the fructose in apple juice (Moreira, Buffon, de Sá, & 

Stradiotto, 2021). This technique has some limitations, especially the low ratio of signal 

to noise (SNR). If the sample contains a fluorescent compound, it becomes difficult to 

obtain Raman spectra. The disadvantage in this case is that a sample could be heated 

during measurement due to the high energy of laser light, which might alter or destroy 

it. It is then important to explore and optimize the balancing operation between the laser 

power and the time of measurement in order to obtain a spectrum with a high SNR 

without heating the sample. 

 To date, no detailed study has compared the differences and limitations of Raman 

and infrared spectroscopy (NIR and MIR) to determine the structural and rheological 

properties of fruit purees. 
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2.2 Spectroscopic imaging techniques 

With the development of optical sensing and imaging techniques, it has become 

possible to combine conventional imaging and spectroscopy to simultaneous obtain 

spatial and spectral information within individual F&V (Gowen et al., 2007), for non-

destructive defect detection (Lu & Lu, 2017) or the destructive quality inspection of 

individual fruits (Su & Sun, 2018). The purpose of this part is to give a detailed 

overview of spectroscopic imaging applications, mainly including VIS and NIR 

imaging, FT-IR imaging, Raman imaging, for detecting the heterogeneity of F&V. The 

advantages and disadvantages of these techniques are compared and discussed. 

2.2.1 VISNIR and NIR imaging 

2.2.1.2 Introduction 

Since the term ‘hyperspectral imaging’ (HSI) was firstly mentioned for works on 

remote sensing (Goetz, Vane, Solomon, & Rock, 1985), it has emerged as an efficient 

scientific tool to inspect and assess the quality of F&V (Du et al., 2020; Hussain, Pu, & 

Sun, 2018; Lu, Saeys, Kim, Peng, & Lu, 2020; Pathmanaban, Gnanavel, & Anandan, 

2019; Zhang et al., 2018). It opens the possibility to target, visualize and even qualify 

the chemical and physical heterogeneity within an individual F&V, using the 

informative spectrum acquired at each pixel of each image in visible (VIS) (380-780 

nm) and/or near infrared (NIR) (780- 2500 nm) ranges (Table 16).  

The VISNIR-HSI technique gives a relatively higher radiation penetration rate in 

samples with a lower cost of machines (McGlone, Clark, & Jordan, 2007; McGlone & 

Kawano, 1998), whereas the NIR-HSI technique is less influenced by light scattering 

(Boldrini, Kessler, Rebner, & Kessler, 2012) and is better correlated to chemical 

components (Baeten & Dardenne, 2005). A typical HSI system generally consists in 

five major modules (Fig. 16): i) a light source for the illumination; ii) a wavelength 

dispersion device for spectrograph; iii) a camera for two-dimensions geographic space, 

iv) a sample platform and v) a computer (Gowen et al., 2007; Li et al., 2017).  
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2.2.1.3 Applications of detecting heterogeneity 

Several applications of VISNIR-HSI and NIR-HSI techniques to detect the 

heterogeneity of individual F&V (Table 17) have been reported. VISNIR-HSI (400-

1100 nm) is most commonly used to detect the distribution of moisture content and SSC 

in individually measured apples (Mo et al., 2017), melon (Sugiyama, 1999), kiwifruits 

(Martinsen & Schaare, 1998) and carrots (Liu et al., 2016; Yang et al., 2020). However, 

NIR-HSI (900-2500 nm) also gives a good evaluation of quality parameters, such as 

SSC and starch content in apples (Ignat, et al., 2014; Ma et al., 2018). Moreover, the 

longer wavelengths (> 1100 nm) allow to enhance the sensitivity to detect SSC (Ma et 

al., 2018; Menesatti et al., 2009; Peirs et al., 2003b; Sun et al., 2019; Sun, Zhang, Liu, 

& Wang, 2017) and starch content (Menesatti et al., 2009; Peirs et al., 2003a). NIR-HSI 

is even able to evaluate other quality attributes, such as pH (Ma et al., 2021), and 

firmness (Sun et al., 2017) in individual F&V. Accordingly, both non-destructive and 

destructive HSI scanning provide in a rapid and simple way, an overview of the 

heterogeneity of properties and composition (mainly SSC, pH, DMC, firmness, starch) 

within tissues of individual F&V.
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Table 17. An overview of VISNIR-HSI and NIR-HSI techniques to detect the heterogeneity of individual F&V. 

Techniques 
Wavelength 

(nm) 
Species Parameters 

Sample 

preparation 
Conclusions References 

NIR-HSI 913-2519 apple SSC slices higher SSC near apple peels than the central parts (Ma et al., 2018) 

NIR-HSI 900-1700 apple starch slices 
starch heterogeneity in different apple varieties during 

ripening 
(Peirs et al., 2003a) 

NIR-HSI 1000-1700 apple starch slices higher concentration in the outer cortex than in the core (Menesatti et al., 2009) 

VISNIR-

HSI 
400-1000 apple SSC slices large heterogeneity of SSC from the skin to the core (Mo et al., 2017) 

VISNIR-

HSI 
400-1000 melon SSC destructive 

large heterogeneity of SSC between surface, inner cortex 

and core tissues. 
(Sugiyama, 1999) 

NIR-HSI 900-1700 melon SSC, firmness destructive 
higher SSC close to the fleshy part than in the part near 

peel. 
(Sun et al., 2017) 

VISNIR-

HSI 
400-1000 kiwi 

fructose, glucose, 

sucrose 
slices 

the heterogeneity of sugar contents between inner cortex 

and the core tissues. 
(Hu et al., 2017) 

VISNIR-

HSI 
650-1100 kiwi SSC slices 

quick increase of SSC in the core than in the inner and 

outer pericarp. 
(Martinsen et al., 1998) 

NIR-HSI 1002-2300 kiwi SSC, pH non-destructive 
large heterogeneity of SSC between stem and calyx 

parts. 
(Ma et al., 2021) 

NIR-HSI 1000-1650 kiwi ripeness destructive 
heterogeneity of the core and outer pericarp during 

ripening 
(Serranti et al., 2017) 

VISNIR-

HSI 
380- 1023 kiwi SSC, firmness non-destructive heterogeneous distribution of firmness and SSC (Zhu et al , 2017) 

VISNIR-

HSI 
450-950 blueberry SSC, firmness non-destructive 

heterogeneity of SSC from outer to internal parts, and 

from stem to calyx parts. 
(Qiao et al., 2019) 

VISNIR-

HSI 
500-1000 blueberry SSC, firmness non-destructive heterogeneity of SSC from stem and calyx parts 

(Leiva-Valenzuela et a., 

2013) 

VISNIR-

HSI 
400-1000 pear SSC non-destructive heterogeneity of SSC from the top to the bottom. (Zhang et al., 2018) 

VISNIR-

HSI 

380-1030 

874-1734 
jujube SSC non-destructive heterogeneity of SSC between inner and outer tissues. (Zhao et al., 2020) 

NIR-HSI 900-1700 jujube SSC non-destructive asymmetric and non-uniform distribution of SSC  (Sun et al., 2019) 

VISNIR-

HSI 

400-1000 

880-1720 
mango moisture slices, heterogeneity of moisture loss in mango slices (Pu & Sun, 2015, 2017) 

VISNIR-

HSI 
405-970 carrot moisture slices 

heterogeneity of moisture distribution at boundary, 

middle and center positions 

(Liu et al., 2016; Yang et 

al., 2020) 

VISNIR-

HSI 
400-1000 tomato moisture non-destructive slight change in the spatial distribution of moisture (Mollazade et al., 2012) 
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NIR-HSI 1000-1550 tomato moisture, SSC, pH non-destructive 
large heterogeneity of SSC and pH from peripheries to 

center areas 
(Rahman et al., 2017) 

VISNIR-

HSI 
400-1000 potato moisture slices limited variation of moisture in slices 

(Amjad et al., 2018; Xiao et 

al., 2020) 

VISNIR-

HSI 
400-1000 potato SSC slices 

significant decrease of SSC from center to epidermis 

areas 
(Shao et al., 2020) 
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2.2.1.4 Challenges of detecting heterogeneity 

To investigate the heterogeneity of individual F&V, two specific concerns have 

been addressed in detail: 

⚫ The light source: it plays an important role in reflectance HSI mode to acquire 

images and extract relevant information from them, such as reducing noise and 

shadow or enhancing contrast (Liu, Zeng, & Sun, 2015; Mollazade et al., 2012; 

Zhang et al., 2014). Moreover, the different brightness levels between the 

central parts and borders for spherical fruits significantly influence the 

detection accuracy (Zhao et al., 2020). 

⚫ The sample platform: two efficient sample platforms are usually used for a 

non-destructive global scanning of fruit surfaces and a destructive scanning of 

different shapes of fruit tissues (cylinder, cube, long strip, slice, etc.). 

- The non-destructive HSI scanning of sample surfaces gives an initial 

overview of internal sample heterogeneity, especially for materials with 

thin peels (Qiao et al., 2019; Rahman et al., 2017; Zhang et al., 2018). For 

example, a hyperspectral platform coupled with two motor-driven rollers 

is described to obtain a 360° HSI image of individual fruit and vegetable 

(Fig. 16b) (Ma et al., 2021; Sun et al., 2018). It allows also to have a better 

insight of fruit heterogeneity with a relatively more efficient and easier 

way to generate a 3D plot than the traditional 2D plot scanning on a fruit 

surface portion (Zhang et al., 2018; Zhu et al., 2017). However, the non-

destructive HSI methods always suffer from several drawbacks: i) they 

are suitable for standard or approximately cylindrical fruits, but difficult 

for irregularly shaped fruits; ii) complex chemometrics are needed to 

normalize the influence of pixels in the center and edges of an image and 

iii) visualization of thick peel samples is impossible due to the limited 

radiation penetration. 

- The destructive HSI scanning of F&V gives more detailed insights of the 

heterogeneity among different tissues (Fig. 16a). A first look was then 

done of the starch distribution in apple slices using the first principal 

component scores of HSI imaging at specific wavenumbers (Peirs et al., 

2003a). However, crucial concerns have to be taken into account: i) the 

limited stability of highly hydrated cut pieces of F&V due to their rapid 
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oxidization and ii) heavy workload to characterize all sample areas 

targeted for model calibration (Mo et al., 2017; Shao et al., 2020; Sun et 

al., 2017). 

 

Fig. 16. The destructive (a) and non-destructive (b) HSI scanning methods to detect 

the heterogeneity of F&V. 

2.2.2 FT-IR imaging 

2.2.2.2 Introduction 

FT-IR imaging is one way to create spatially resolved chemical images. Each pixel 

of these images consists of a whole MIR spectrum. A FT-IR imaging spectrometer is 

schematized (Fig. 17a) with the possibility to select among three main sampling modes 

which are transmission, transflection and attenuated total reflection (ATR) (Fig. 17b). 

The FT-IR imaging acquisition could be accomplished by raster-scanning with a point 

illumination or by using wide-field illumination and focal plane array or linear array 

detectors (Bhargava, 2012). These three kinds of acquisition operations are compared 

and further discussed in the Part 6.3 of Raman imaging technique. For FT-IR images, 

the point scanning method is generally applied on F&V samples in order to get a high-

resolution inspection of heterogeneity of tissues and more, between single cells 

(González-Cabrera, Domínguez-Vidal, & Ayora-Cañada, 2018). Particularly, the 

possibility to pretreat the experimental samples as a thin layer allows an accurate 

assessment under transmission and transflection modes (Kazarian & Chan, 2013). 
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Differently, ATR-FTIR mode is directed through an internal reflection element (IRE) 

with a high refractive index (diamond, zinc selenide, germanium or silicon etc.) and the 

samples must be in direct contact with IRE (Baker et al., 2014). The penetration depth 

of FT-IR generally reaches around 1 to 2 µm within the wavenumber regions 1800-900 

cm-1 (Bassan et al., 2013). In most of the cases, it is necessary to prepare microtome 

samples with a thickness over 5 µm for ATR-FTIR imaging analysis, permitting the 

total absorption of the emitted IR radiation (Schulz, Krähmer, Naumann, & Gudi, 2014).  

 

Fig. 17. (a) The schematic of modern FT-IR imaging spectrometer and (b) the three 

main sampling models for FT-IR imaging spectroscopy. 

(Figures adapted from Baker et al., 2014). 

2.2.2.3 Applications of detecting heterogeneity 

The plant physiologists’ community started developing FT-IR imaging in the 1990s, 

to investigate plant tissues (Stewart, 1996) and more specifically the chemical 

constituents of cell walls (McCann et al., 1997). Many reports have successfully 

described FT-IR imaging to gain further insight on the plant physiology related to 

heterogeneity of the structure and composition as it allows a high-resolution of single 

cell analysis (Chan et al., 2020; Vongsvivut et al., 2019). Some applications have been 

done to characterize seeds (Timilsena et al., 2019), cereals (Barron et al., 2005; Guendel 

et al., 2018b) and woods (Cuello et al., 2018). This technique provides important 

information regarding the major cell wall components such as lignin, cellulose and 
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various polysaccharides (Schulz et al., 2014). Coupled with PCA, it also allows to 

follow the biochemical changes during the ripening of olive fruits (Guinda, Rada, 

Delgado, Gutiérrez-Adánez, & Castellano, 2010) and particularly the solubilization and 

depolymerization of cell wall polysaccharides and the heterogeneity of polyphenols 

(carboxylic acids related to phenols) and sugars (galactose, arabinose and glucose etc.) 

in different tissues (González-Cabrera et al., 2018). 

2.2.2.4 Challenges of detecting heterogeneity 

FT-IR imaging technique shows limited applications directly on the surface of 

intact F&V, since the reflection intensity of the samples are relatively low. In order to 

obtain FT-IR images with a high-resolution, a long acquisition time is needed from 

several minutes to few days per sample. It is much slower than using VIS-NIR-HSI and 

NIR-HSI system, and not suitable for numerous analyses. 

 Further, fresh F&V tissues are almost always associated to a large amount of water, 

which strongly disturbs the informative infrared signals of interest, such as cellulose, 

pectins, polyphenols, individual sugars etc. Thus, a careful sample preparation using a 

cryogenic sectioning technique is necessary to obtain dehydrated or freeze-dried objects. 

Util now, this technique has mainly been dedicated to agricultural products with lower 

water contents, such as black peppers (Lafeuille, Frégière-Salomon, Michelet, & Henry, 

2020) or walnut shell (Xiao et al., 2020). Some difficulties are specific to F&V such as 

a rapid oxidization of samples during drying and the fact they are soft tissues. Moreover, 

in such temperature conditions (usually around -18 °C), the vitreous ice formed within 

frozen sample tissues acts as the supporting medium, but the intercellular ice crystals 

can damage the samples (Duncan & Williams, 1983; Schulz et al., 2014). From our 

point of view, the investigations of F&V tissues or cells using FT-IR imaging technique 

would be more suitable for F&V peels, hypodermis and epidermis tissues, with harder 

tissues, a relatively lower moisture content and less sensitive to enzymatic oxidations 

(González-Cabrera et al., 2018). 
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2.2.3 Raman imaging 

2.2.3.2 Introduction 

Raman chemical imaging can combine both images and Raman spectra to detect 

the heterogeneity of biochemical and structural properties in F&V at the level of tissues. 

A Raman chemical imaging system consists of a light source, several optical lenses, a 

wavelength separation device (tunable filter for global imaging devices or diffraction 

grating for dispersive devices and interferometer for Fourier-Transform devices) and 

detectors (Qin, Chao, & Kim, 2010; Schulz, Baranska, & Baranski, 2005; Yaseen, Sun, 

& Cheng, 2017). In practice, specific comparative operations need to be considered for 

Raman imaging detections applied to F&V heterogeneity, especially for the two 

selections:  

⚫ The scanning methods: generally, there are three major methods to collect 

Raman images, including point-scan (PS), line-scan (LS) and area-scan (AS) 

(Qin et al., 2019; Yaseen et al., 2017) (Fig. 18):  

- The PS method (Fig. 18a) uses a specific point to acquire the Raman 

spectrum at each pixel to finally generate an image with similar resolution, 

step size and power density. However, it usually requires long acquisition 

durations from hundreds of milliseconds (at least a laser dwelling time of 

100 ms for each pixel volume of ~1 µm3 (Qi et al., 2014)) up to several 

seconds per point measurements depending on the type of samples and of 

Raman systems. Until now, PS is the most suitable and widely applied 

method to highlight the heterogeneity of minor components (mg.kg-1) 

(lycopene, α- and β-carotene etc.) and the cell wall major ones (pectins, 

cellulose, lignins and various polysaccharides) in F&V tissues (Table 18).  

- The LS method (Fig. 18b) allows a simultaneous acquisition of a given 

line of spatial information instead of single points, and generates a Raman 

imaging hypercube after scanning sample entire surface. The LS method 

has been then considered as a potential high-throughput macro-scale 

Raman chemical imaging to map the carotenoids distribution in tomato 

(Qin, Chao, & Kim, 2011, 2012) and in carrot slices (Qin et al., 2017). 



112 

Indeed, it takes few minutes to scan over the entire surface of a sample, 

which is much faster than PS mapping (eg. 5.5 mins for LS vs 30 mins of 

PS according to Bonvenkamp et al. 2019), but it has the disadvantage of a 

limited power density (eg. 0.31 MW/cm2 for PS vs 0.003 MW/cm2 for LS 

according to Bonvenkamp et al. 2019) and therefore weak signals (Yaseen 

et al., 2017).  

- AS method (Fig. 18c) exists to scan a relatively large area of sample 

surface by a defocused laser spot, but it is not a high-throughput strategy. 

It allows to create Raman images using specific wavenumber ranges.  

⚫ The laser wavelengths: the powerful monochromatic lasers at 448 nm, 532 nm, 

785 nm and 1064 nm have been used as Raman excitation sources to detect the 

heterogeneity of F&V tissues (Table 18). The increase of excitation intensity 

or reduction of laser wavelength can enhance the Raman signals, but often 

introduces a strong fluorescence resulting in sample degradation or even 

burning. The lasers in the visible region, 488 nm and 532 nm, are not often 

used to visualize chlorophylls, carotenoids and anthocyanins in horticultural 

crops because of the strong fluorescence signals (Qin et al., 2019). However, 

they are used to evaluate the distribution and accumulation of cell wall 

polysaccharides (eg. cellulose and pectins) (Pan et al., 2017; Szymańska-

Chargot et al., 2016) and the hydrogen bonding status of water in tissues (Li et 

al., 2020). The diode laser at 785 nm and Nd:YAG (neodymium-doped yttrium 

aluminum garnet) laser at 1064 nm minimize fluorescence interferences, and 

have been successfully applied to assess the distribution of carotenoids in 

carrot (Baranska, Baranski, Schulz, & Nothnagel, 2006; Qin et al., 2017), 

lycopene in tomato (Qin et al., 2011, 2012), as well as components (e.g. 

cellulose, lignins and pectins etc.) of F&V cell walls (Baranska & Schulz, 2005; 

Baranska et al., 2005). 
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Fig. 18. Three different scanning methods of the Raman spectroscopic imaging 

acquisition: (a) point-scanning (PS); (b) line-scanning; (c) area-scanning (AS). 

2.2.3.3 Applications of detecting heterogeneity 

Raman imaging has been applied mainly for the study of carotenoids and cell-wall 

components in F&V (Table 18). Several applications aim to visualize the aggregation 

of lycopene in locular tissues and outer pericarp of individual tomato fruit (Ishigaki et 

al., 2017; Qin et al., 2011, 2012); the carotenoids in parenchymatic center, phloem, and 

peripheral parenchyma of carrots (Baranska & Schulz, 2005; Baranska et al., 2005; 

Gonzalvez et al., 2014) and some specific crystals of different carotenoids in carrot cells 

(Roman et al., 2015). Studies on cell wall concern the distribution of pectins in apple 

during maturation and storage (Szymańska-Chargot et al., 2016), the variations of 

cellulose and pectins in pear (Pan et al., 2017) and the specific accumulation of lignins 

in mature carrot cells (Roman, Dobrowolski, Baranska, & Baranski, 2011). Moreover, 

the water properties are evaluated in apple tissues by the study of hydrogen bond status 

(Li et al., 2020). These studies demonstrate the high potential of the macro or high-

spatial-resolution Raman imaging for visualizing macro and micro chemical and 

structural composition, spatial distribution and morphological features in F&V at tissue 

and cellular levels.  

2.2.3.4 Challenges of detecting heterogeneity 

Compared to FT-IR imaging, Raman imaging technique requires little to no sample 

preparation and is not sensitive to water interferences, while the FT-IR method has 
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constraints on the thickness, uniformity and freeze-drying operations on samples. 

Raman spectroscopic information can be directly acquired on fresh F&V tissues with a 

thickness from tens or hundreds micrometers to few millimeters (Table 18). However, 

this technique is not suitable to give a rapid overview of heterogeneity in numerous 

fruits, because of the long acquisition and limited scanning area. 
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Table 18. Overview of Raman imaging applications to detect heterogeneity of individual F&V. 

Species Scan 
Laser 

(nm) 

Regions 

(cm-1) 
Fresh samples Applications Conclusions Ref. 

apple 
Point- 

scan 
532 

50 - 4000 
slices, thickness 

(180 µm) 

cell wall 

polysaccharides 

a large heterogeneous distribution of pectins in 

cell walls during ripening, then evenly dispersed 

along cell wall during storage 

(Szymańska-Chargot et 

al., 2016) 

2700 - 3800 
slices, thickness 

(1 mm) 

water hydrogen bonding 

status 

the strongest and weakest hydrogen bonds mainly 

in cell wall or intercellular regions 
(Li et al., 2020) 

tomato 
Point-

scan 

532 

50 - 4000 
slices, thickness 

(180 µm) 

cell wall 

polysaccharides 

high concentrations of pectic polysaccharides in 

cell wall corners in mature green parenchyma 
(Chylińska et al., 2017) 

900 - 1700 
tissues, height × area 

(2.21 cm × 3.38 cm2) 
lycopene 

lycopene with different aggregates confirmations 

distributed inhomogeneously in tissues 
(Ishigaki et al., 2017) 

150 - 3500 
slices, thickness 

(~20 µm) 
cellulose, pectins 

middle lamella between primary walls enriched 

in pectins 
(Chylińska et al., 2014) 

785 200 - 2500 
slices 

(5, 10 mm thickness) 
lycopene 

a large difference of lycopene content in locular 

tissues and outer pericarp 
(Qin et al., 2011, 2012) 

carrot 

Line-

scan 
785 100 - 2900 

slices, thickness 

(2, 5, 8 mm) 
carotenoids non-uniform carotenoid concentration in tissues (Qin et al., 2017) 

Point-

scan 

488, 

532 
0 - 3600 slices carotenoids 

various carotenoid molecules distributed 

homogeneously in root cells 
(Roman et al., 2015) 

532 500 - 2500 
slices, thickness 

(500 µm) 
β-carotene 

heterogeneous distribution of β-carotene 

predominantly in the secondary phloem tissue 

and periderm 

(Gonzalvez et al., 2014) 

1064 

100 - 4000 
slices, thickness 

(3 mm) 
carotenoids 

heterogeneous compositions of α-, β-carotene, 

lutein and lycopene 

(Baranska, Baranski, et 

al., 2006) 

100 - 4000 
slices, thickness 

(3 mm) 

polyacetylenes, 

carotenoids, starch, 

pectins 

heterogeneous distribution of carotenoids in 

tissues: parenchymatic center of the root, phloem, 

and peripheral parenchyma 

(Baranska & Schulz, 

2005; Baranska et al., 

2005) 

100 - 4000 slices 
polyacetylenes, lignins, 

pectins, cellulose 

specific tissue of accumulation of starch and cell 

wall components (lignins, pectins and cellulose) 
(Roman et al., 2011) 

mango, 

potato 

Point-

scan 

532, 

1064 
690 - 990 

slices, thickness 

(~400 µm) 
β-carotene, starch high degree of heterogeneity 

(Brackmann et al., 

2011) 

pear 
Point-

scan 
532 300 - 3100 

slices, thickness 

(0.5 mm) 
cellulose, pectins 

different distributions of pectins and cellulose in 

cell walls 
(Pan et al., 2017) 
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2.2.4 Other imaging techniques 

 Other imaging techniques, such as computer/machine vision, thermal imaging, X-

ray imaging (XRI), thermal imaging, Magnetic resonance imaging (MRI) etc., have the 

capability to provide superior spatial information and have been proven to be efficient 

scientific tools to investigate fruit heterogeneity (Mebatsion et al., 2008; Pu, Feng, et 

al., 2015; Zhang et al., 2014).  

Machine vision technology is based on a color camera and produce BW (black and 

write) or RGB (red, green, and blue) images. In the case of color machine vision, three 

filters imitate human vision (Hameed, Chai, & Rassau, 2018). This technique has been 

successfully applied for fruit classification, grading and localization in the tree (Gongal 

et al., 2015; Naik & Patel, 2017). However, the limited information in the visible area 

from machine vision cannot provide the estimation of internal chemical and physical 

properties in fruits.  

 Thermal imaging is a non-destructive technique of monitoring temperature based 

on the infrared radiation emitted by an object (Ali, Hashim, Aziz, & Lasekan, 2020). It 

can provide the key facts of heat distribution and basic dimension, as well as structural 

analysis on fruit surface. However, most chemical and physical heterogeneity in 

individual fruits can not be detected based only on the thermal imaging system.  

 MRI can map the density of proton molecules to obtain 2D and 3D imaging of 

individual fruits, with the advantages of high abundance and activeness (Clark et al., 

1997; Pathmanaban et al., 2019). It has been used to detect the heterogeneity of water 

content and structure in apples (Defraeye et al., 2013; Herremans et al., 2014). However, 

the high-cost and long-time imaging acquisition limit its applications. 

 XRI can provide physical heterogeneity analysis in fruits based on the differences 

of X-ray attenuation in different kinds of tissues (Nugraha et al., 2019). Besides, the X-

ray computed tomography images, taking from multiple angles, can generate 3D images 

of individual fruits using mathematical algorithm. This technique can be used to analyze 

the tissue density, pore structure, moisture and void networks in apples (Janssen et al., 

2020a; Mendoza et al., 2007; Nugraha et al., 2019). In practice, the acquisition of high-
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quality X-ray images needs a relatively long-time, and the reconstruction of the 3D X-

ray images is difficult to achieve, as it requires powerful computational hardware and 

is time-consuming. 

3. Chemometrics 

 The application of spectroscopic techniques has been greatly reinforced by the 

development of chemometrics methods and the calculation speed of computers in 

parallel. The chemometrics field is very large and some of the most common 

mathematical and statistical methods have been detailed in reviews (Mishra et al., 2021; 

Oliveri, Malegori, & Casale, 2020; Roger & Boulet, 2018). The applications of 

chemometrics tools to detect food quality can be mainly divided into two groups, 

including: i) classification modelling to discriminate the sample variability (Part II, 

7.2), and ii) regression modelling to predict quantitative variables (Part II, 7.3).  

3.1 Spectral data pre-processing 

 Spectral data acquired on fruit samples with infrared spectrometer are associated 

with background information and noises. Before using chemometric tools, it is often 

necessary to apply a pre-treatment on spectral dataset. There are some common pre-

processing methods, such as baseline correction, smoothing, derivatives, standard 

normal variate transformation (SNV) etc.  

 Baseline correction is an important pre-processing technique used to separate true 

spectroscopic signals from interferences or to remove background effects (Liland, 

Rukke, Olsen, & Isaksson, 2011). It has been reported to improve the VIS-NIR 

prediction of SSC in apples (Vincent et al., 2018; Xia, Fan, Li, Tian, Huang, & Chen, 

2020), and the MIR evaluation of the sweetener in apple juices (Dhaulaniya, Balan, 

Sodhi, Kelly, Cannavan, & Singh, 2020).  

 Spectral smoothing, mainly includes moving smoothing and, Savitzky-Golay 

smoothing is one of the methods used to eliminate noises (Gorry, 1990). Optimizing the 
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smoothing window width of spectral matrix is crucial to increase the Signal-to-Noise 

Ratio (SNR). It has been widely applied to the NIR prediction of SSC in apples (Sun, 

Zhang, Pan, & Liu, 2009; Tian, Fan, Li, Xia, Huang, & Zhao, 2019) and the detection 

of harvesting optimal picking dates (Peirs et al., 2001). Moreover, it is often combined 

with several other pre-processing methods, such as SNV, multiplicative scatter 

correction (MSC) etc.  

 Regarding the elimination or minimization of unwanted systematic effects (the 

multiplicative interferences of scatter, particle size, and the change of light distance etc.) 

(Barnes, Dhanoa, & Lister, 1989), SNV as a typical mathematical method is useful to 

correct both, baseline shifts and global intensity variations (Barnes et al., 1989). The 

SNV pre-treated NIR (Dong & Guo, 2015; Qing, Ji, & Zude, 2007) and MIR spectra 

(Bureau et al., 2009; Labaky et al., 2021) give good a prediction accuracy of fruit 

quality traits.  

 Derivatives including first and second derivatives are used to remove background 

and increase spectral resolution. There are two algorithms, direct differentiation and 

Savitzky-Golay. The most used method is the Savitzky-Golay, where the data within a 

moving window are fitted by a polynomial of a given degree to generate a differential 

of a chosen degree (Gorry, 1990). The selection of the proper width of the moving 

window is very important in this function. Many calibration models using derivatives 

of NIR spectra, give good prediction of apple quality traits (Beghi, Giovenzana, Civelli, 

& Guidetti, 2016; Giovanelli et al., 2014; Lammertyn, Nicolai, Ooms, De Smedt, & De 

Baerdemaeker, 1998).  

 Recently, Mishra et al. (2020) demonstrated the benefits of using the multi-block 

approach for spectral data preprocessing, where several pre-treatments were combined 

using sequential and orthogonalized partial least squares (SO-PLS), thus leading to a 

boosting procedure. They purposed a chemometric strategy named ‘SPORT’, both 

allowing both the fusion of multiple preprocessings and the identification of the best 

preprocessing techniques and their combinations. 
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3.2 Classification modelling 

3.2.1 Principal component analysis (PCA) 

 PCA, which was proposed by K. Pearson (1901), is one of the most widely used 

basic tools for discriminating the samples based on their spectra and/or reference 

dataset. It is a data-reduction technique, which reduces the dimensions of a dataset into 

its principal components (PC) with minimal loss of information. The PCs are 

uncorrelated and the former retain most of the variation in all the original dataset 

(Jolliffe, 2002), indicating the directions where there is the most variance. Although 

some precision is lost, data analysis is facilitated since the number of variables is 

reduced and can be visualized graphically. This is an unsupervised method, which can 

be used to identify informative spectral features and reduce noise.  

 PCA depends on the assumption that a large variability (i.e., a high variance value) 

is synonymous with a high amount of information (Oliveri et al., 2020). For this reason, 

PCA algorithms search for the maximum variance direction, in the multidimensional 

space of the original dataset (Fig. 19). The maximum variance direction represents the 

first principal component (PC1). The second PC (PC2) keeps the maximum variance 

among all directions orthogonal to (= not correlated to) the PC1. These two new 

variables (PC1 and PC2) are thus not intercorrelated (Jolliffe & Cadima, 2016; Oliveri 

et al., 2020). All subsequent principal components are calculated iteratively and are by 

construction not correlated with one another.  
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Fig. 19. A brief graph to explain PCA. 

(Figure adapted from Ghosh, 2019) 

 VIS-NIR or NIR spectroscopic techniques coupled with PCA show a good ability 

to detect a large apple variability due to varieties (Cortés et al., 2019; Daniela 

Eisenstecken et al., 2019; He et al., 2005, 2007) and geographical origins (Daniela 

Eisenstecken et al., 2019; Schmutzler et al., 2014), as well as the concentrations of 

different mixed fruit purees (Contal et al., 2002).  

3.2.2 Discriminant analysis (DA) 

 Discriminant analysis (DA) separates samples into classes, minimizing the 

variance within the class and maximizing the variance between classes, and finding the 

linear combination of the original variables (directions). It is a supervised method 

requiring the knowledge of group memberships for each sample. Thus, it is usually 

applied to the same sample types as PCA, where the latter technique can be used to 

reduce the number of variables in the data set and the resultant principal components 

(PCs) are then used in DA to define and predict classes (Mendlein, Szkudlarek, & 

Goodpaster, 2013). 

 DA is a form of supervised pattern recognition, such as linear discriminant analysis 

(LDA) or factorial discriminant analysis (FDA), well-known as chemometric 

approaches for solving classification problems in chemistry. Different from PCA 

establishing the directions of maximal variance, LDA and FDA aim to separate the 
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known classes by creating a new linear axis and projecting data on that axis (Raschka, 

2014) (Fig. 20). All the variance between classes is calculated and defined as the 

distance between the mean of different classes to maximize the distance between classes. 

Besides, the variances of each class are also calculated and is defined as the distance 

between the mean and the sample of every class. Finally, the Fisher’s criterion tries to 

find the lower-dimensional space that maximizes the variance between classes and 

minimizes the variance within classes. 

 

Fig. 20. The differences of PCA and LDA methods. 

(Figure adapted from Pelliccia, 2018) 

 FDA has been applied on the NIR spectra of apples to successfully discriminate the 

different varieties and post-harvest storage conditions (Camps et al., 2007). Bureau et 

al. demonstrated the potential to apply FDA on MIR information to discriminate the 

variability of tomato purees (Bureau, Vilas Boas, Giovinazzo, Jaillais, & Page, 2020; 

Bureau, Vilas-Boas, Giovinazzo, & Page, 2019). Moreover, MIRS coupled with FDA 

is a useful tool to detect authenticate the food ingredient (Gerard Downey, 1998).  

3.2.3 Multivariate curve resolution-alternating least squares (MCR-ALS) 

 MCR-ALS (multivariate curve resolution-alternative least square) is an effective 

multivariate self-modelling curve resolution method developed by Tauler et al. (1995; 

2005). It is widely used to simultaneously elucidate the pure spectra of different species 
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present in processed products and their concentration profiles, such as edible oils from 

different vegetable sources (Le Dréau, Dupuy, Artaud, Ollivier, & Kister, 2009). The 

detailed mathematical description and some applications have been described in Paper 

VII. 

3.3 Regression modelling 

3.3.1 Partial least square regression (PLS) 

 PLS is one of the most widely used multivariate linear regression methods to 

quantify the quality of F&V. In short, PLS regression combines principal component 

analysis and canonical correlation analysis. PLS models maximize the covariance 

between Y- matrix (references datasets of F&V) and X- matrix (spectral dataset of F&V) 

in a way that it has better prediction for Y- matrix by maximizing the variance of X-

matrix.  

 The latent variables (LVs) of PLS models are directions in the space of the 

predictors. Particularly, the maximum covariance with the selected response variable is 

calculated as the first latent variable, subtracting from both the original predictors and 

the response. The second latent variable is orthogonal to the first one, being the 

direction of maximum covariance between the residuals of the predictors and the 

residuals of the response. This approach continues for the subsequent LVs.  

 The optimal PLS model is chosen according to the most appropriate number of 

latent variables, which are determined by a proper validation strategy, determination 

coefficients and prediction errors. The prediction ability of PLS models is usually 

presented by several parameters have been described (Abdi, 2003; Nicolaï et al., 2007), 

such as: 

- determination coefficient of calibration (Rc
2) and/or validation (Rv

2) models, 

which determines the proportion of variance in the dependent variable that can 

be explained by the independent variable. In other words, the coefficient of 

determination tells one how well the data fits the model. 
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- root mean square error of calibration (RMSEc) and/or validation (RMSEv) sets, 

presents the standard deviation of the residuals (prediction errors). Residuals 

are a measure of how far from the regression line data points are; RMSE is a 

measure of how spread out these residuals are. In other words, it tells you the 

differences between predicted values by developed model and the observed 

values.  

- Residual Predictive Deviation (RPD), which is defined as the standard 

deviation of observed values divided by the Root Mean Square Error (RMSE). 

It indicates the precision behavior of the prediction in comparison with the 

average composition of all the samples. 

3.3.2 Machine learning regression 

 Machine learning (ML) methodologies aim at learning from training data to 

perform a task, including classification, regression, clustering, and dimensionality 

reduction models (Liakos et al., 2018). Usually, each feature of an individual example 

can be nominal (enumeration), binary (i.e., 0 or 1), ordinal (e.g., A+ or B − ), or numeric 

(integer, real number, etc.). The ML regression models maybe linear (Ridge regression, 

Lasso regression etc.) and non-linear (random forest, support vector machine, decision 

tree, K Nearest Neighbors, Cubist etc.).  

- RF is an ensemble learning method for classification, regression and other 

tasks that operates by constructing a multitude of decision trees at training time 

(Ho, 1995). For classification tasks, the output of the RF is the class selected 

by most trees. For regression tasks, the mean or average prediction of the 

individual trees is returned. This method frequently regards as "black-box" 

models, as it generates reasonable predictions across a wide range of data while 

requiring little configuration. 

- SVM has been introduced for predicting numerical property values. SVM 

regression models can resolve nonlinear relationships in original feature 

spaces through dimensionality extension (Noble, 2006). However, it has black 

box characters, meaning that the predictions cannot be directly interpreted in 

chemical terms. Hence, it is generally difficult to rationalize model 

performance. 
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 More specific explanations of different ML regression methods have been 

described in several outstanding publications (Jordan & Mitchell, 2015; Mitchell, 1997; 

Shwartz & David, 2014).  
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III. Objectives and strategy 
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1. Objectives 

The interfaces between production and processing domains are key points to make 

food supply chain more sustainable. In this thesis, our objectives were to explore new 

solutions to manage the variability and heterogeneity during apple processing, to 

improve the quality of processed products and to reduce losses and wastes. Based on 

the literature study, the following challenges were identified: 

- A large variability and heterogeneity of raw fruits and their processed products 

have been pointed out (see II. Literature review, parts 1.1.3). We need to know how to 

deal with variability and heterogeneity in agricultural raw materials, and how to manage 

and optimize their processing into food products to meet consumers expectations or at 

least achieve consistent and controlled product quality? 

- Lots of different techniques and methods were applied to characterize the 

variability and heterogeneity of raw fruit materials (see II. Literature review, parts 1.2 

& 1.3). How to develop sufficiently efficient and reliable approaches to detect the 

variability and heterogeneity of raw materials in order to predict the characteristics of 

processed products and possibly adapt the processing conditions?  

- And which strategy can facilitate and optimize the use of variable and heterogeneous 

raw materials to produce processed end-products that meet consumers demands and 

habits? 

This thesis presents a proof-of-concept for investigating the infrared spectroscopy and 

chemometrics to address these challenges with a process analytical technology (PAT) 

approach in apple processing. 

2. Strategy 

2.1. Experiments 

 A first step was to obtain apples representative of the different possible scales of 

variability and heterogeneity. Therefore, fruits were sourced to take into account both 

“inter-variability” i.e. to introduce pre- and post-harvest differences between apple 



127 

batches (using different varieties, thinning practice and storage) and “intra-variability” 

i.e. between apples from each batch and even within apples (Fig. 21). These fruits were 

subsequently processed into purees using different heating methods and conditions.  

2.1.1. Apples 

 The choice to work on apples responds to specific facts: i) economical interest, 

widely cultivated around the world and particularly in Europe; ii) consumption as both, 

fresh and various processed products (juices, purees, compotes, jams, etc.); iii) a good 

source of nutrients (dietary fibers, polysaccharides, antioxidant compounds, 

polyphenols etc.).  

 Four apple varieties i.e. ‘Golden Delicious’ (GD), ‘Granny Smith’ (GS), ‘Royal 

Gala’ (GA) and ‘Braeburn’ (BR) were selected in our work. They are representative of 

the diversity of commercial apples, showing a high ‘inter’ and ‘intra’ variability in apple 

quality, and are also suitable for puree processing (see Literature Review part 1). 

 Two factors, fruit thinning in the orchard and storage time at 4°C (from 0 to 6 

months) were used to introduce more variability in the apples. The previous literature 

review showed that these factors can generate a large variability in chemical (SSC, TA, 

DMC etc.) and structural (cell numbers, firmness, crunchiness cell etc.) properties of 

apples, but there is no report regarding the use of infrared techniques to detect this 

variability, either in apples or their corresponding purees. 

2.1.2. Processing conditions 

 Several processing conditions, including different thermal and mechanical 

treatments, were studied to generate a large variability in puree quality. Particularly, 

temperature and time of cooking lead to variations in the chemical (mainly acids 

degradations) and textural (mainly tissue softening) properties of the purees, while 

grinding and refining play a major role in breaking up the apple tissue structure into 

smaller cell fragments. However, there is no report providing specific insight of using 

infrared techniques to identify these processing factors on fruit purees.  
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Fig. 21. Experimental factors applied to apples during pre-harvest and post-harvest 

periods and during processing into purees. 
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2.2 Experimental strategy  

 Our experimental strategy included trials during the past five years (Table 19). 

Table 19. A summary of the experimental trials performed from 2016 to 2020. 

Years Experimental factors 

2020 

(Paper V) 

• Variety: Golden Delicious, Granny Smith, Gala, Braeburn  

• Processing: individual apples cooked by microwave heating 

2019 

(Paper VI, VII) 

• Variety: Golden Delicious, Granny Smith, Gala, Braeburn  

• Processing: 9 cooking conditions (3 temperatures x 3 grinding speeds) of 

Golden Delicious 

• Puree formulation by mixing 2 varieties among the 4 chosen ones 

2018 

(Paper I, III) 

• Variety: Golden Delicious, Granny Smith, Gala, Braeburn  

• Maturation: thinning & non-thinning on Golden Delicious 

• Storage: with stress or without stress on Braeburn (for mealy texture) 

• Processing: 2 cooking conditions (3000 rpm at 70°C for 15 min or 400 rpm 

at 95°C for 17 min), 2 refining levels 

2017 

(Paper II, IV) 

• Variety: Golden Delicious, Granny Smith 

• Maturation: thinning or non-thinning on Golden Delicious 

• Storage: 0, 1, 3, 6 months at 4℃ 

• Processing: 1 cooking condition (90℃ at 1500 rpm for 15 min), 2 refining 

levels 

2016 

(Paper IV) 

• Variety: Golden Smoothee 

• Storage: 0, 1, 3, 6 months at 4℃ 

• Processing: 1 cooking condition (1500 rpm at 90℃ for 15 min), 2 refining 

levels 
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 These experiments can be divided into three parts:  

⚫ Part 1 focuses on the use of spectroscopic techniques to identify the variability 

and heterogeneity in raw apples and processed purees and to assess their 

quality properties.  

⚫ Comparison of NIR, MIR, Raman spectroscopies and hyperspectral imaging 

to identify a wide variability of purees from different apples and processing 

conditions (Table 19) and to predict their physical, chemical, and structural 

properties (Paper I). 

⚫ Application of MIR technique on different fresh, freeze-dried (removing water 

interactions) and cell wall (removing soluble chemicals) materials of apples 

and purees to assess all puree quality properties and identify specific signals 

of apple processing variations (Paper II).  

⚫ Development of NIR-HSI technique to reveal the heterogeneity in the contents 

of dry matter, total sugars, individual sugars, malic acid, and polyphenols by 

scanning individual apple slices of four varieties (Table 19), based on a simple 

and efficient calibration method (Paper III). 

⚫ Part 2 intends to analyze the correlations between fresh and processed apples 

and to predict puree quality properties from spectral information of raw 

apples 

⚫ Evaluation of the correlations of quality traits and spectral signatures between 

batches of apples and their corresponding purees presenting a high variability 

(Table 19), in order to predict puree characteristics from the NIR spectral 

information of their corresponding raw and intact apples (Paper IV). 

⚫ Evaluation of the correlation between apple and puree with the absolute 

definition of ‘one apple to one puree’ using microwave oven, to know the 

impact of ‘intra-batch variability’ before and after apple processing. The VIS-

NIR technique was applied to each of the individual apples and their cooked 

purees to analyse spectral relationships before and after cooking, and to 

validate the possibility of predicting the quality traits of cooked purees using 

the VIS-NIR spectra of intact raw individual apples (Paper V). 
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⚫ Evaluation of the correlation between apple homogenates and their processed 

purees using different cooking conditions (9 recipes) by MIR technique in 

order to explore the possibility of using MIR spectroscopy to predict quality 

properties of variable purees based on the prior information of raw apples and 

recipes (Paper VI). 

 For fruit processors, knowing predicted properties of final products after 

processing is not enough to produce the expected and constant final purees. To manage 

the food processing, the processing guidance (temperature, time, grinding speed…) 

must be provided and associated with the prediction models. In addition, this could 

enable the obtention of stable or even new food products using the spectral information 

coupled with advanced models from a large variability of raw materials. To date, there 

is no report on infrared spectroscopy to guide the fruit processing and monitor the 

quality of final products after several processing conditions. 

⚫ Part 3 reports development of an innovative concept using infrared 

spectroscopy to guide puree formulation 

➢ Application of VIS, NIR and MIR techniques on four single-variety purees and 

their formulated purees between two varieties to predict the texture and taste 

(viscosity, color, sugars and acids) of the formulated purees based on the 

spectra of single-variety purees using a multi-parameter optimization method. 

  



132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. Results and discussion 
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Part 1. Using different spectroscopic and imaging techniques 

to detect variability and heterogeneity of apples and purees 

The first chapter aims to answer the following questions:  

⚫ What is the most appropriate method to identify the puree variability and detect 

puree physical, chemical and structural properties by using different vibrational 

spectroscopic techniques?  

⚫ What is the most appropriate sampling method for spectroscopic analyses to 

evaluate efficiently the puree variability and quality?  

⚫ How to efficiently assess apple and puree variability and heterogeneity? 

The results of Part 1 are presented as three papers (Papers I, II and III) 
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Developing highly efficient, economic and reliable process analytical approaches 

is a key point for apple puree quality control in industrial and scientific works. However, 

only few studies (see II. Literature review Part 2.) reported the use of spectroscopic 

techniques to evaluate apple puree quality. The comprehensive comparison of these 

techniques for chemical, structural and rheological determinations of food products 

remains limited. Therefore, identifying the most efficient spectroscopic method to 

assess quality of processed foods is a crucial point to prioritize further developments.  

Vibrational spectroscopic (near-infrared, mid-infrared and Raman) and imaging 

techniques (near-infrared hyperspectral imaging), have been considered (Paper I) as 

candidates to integrate Process Analytical Technology (PAT) for the rapid qualification 

of apple purees. A comprehensive comparison of their capacity was done to:  

i) Identify 72 different apple purees issued from 4 apple varieties with a thinning 

or non-thinning practice, different storage conditions and two different puree 

processing recipes; 

ii) Predict the chemical (SSC, TA, DMC, individual sugars and malic acid), 

structural (particle sizes) and rheological properties (viscosity and 

viscoelasticity) of apple purees using PLS and machine learning (RF and SVM) 

regression models. 
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Paper I (Submitted) 

Vibrational spectroscopy (NIR, MIR, Raman) and NIR hyperspectral imaging 

techniques: Which is the best way to determine chemical, structural and 

rheological properties of apple purees? 

Weijie Lan, Vincent Baeten, Benoit Jaillais, Catherine M.G.C. Renard, Quentin 

Arnould, Songchao Chen, Alexandre Leca, Sylvie Bureau*. 

Paper submitted to Journal of Food Engineering 
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1. Introduction 

Apple puree is the basic ingredient of many fruit-based products, such as jams, 

preserves or compotes, yogurts and pie fillings for food industry (Defernez, Kemsley, 

& Wilson, 1995). Today, apple purees are predominantly analyzed by chromatography 

and specific rheometers to determine their biochemical (Keenan, Brunton, Butler, 

Wouters, & Gormley, 2011) and rheological properties (Buergy, Rolland-Sabaté, Leca, 

& Renard, 2020; Espinosa-Muñoz, Renard, Symoneaux, Biau, & Cuvelier, 2013). 

These methods provide accurate quantifications, but they are time-consuming, 

expensive and not suitable for fast and numerous characterizations. 

 Spectroscopic and imaging techniques have been considered to be some of the 

representative process analytical technologies (PAT) for the rapid qualification of 

agricultural commodities and processed food (Cullen, O’Donnell, & Fagan, 2014). In 

particular, near-infrared (NIR), mid-infrared (MIR), Raman and hyperspectral imaging 

(HSI) offer the advantages of a minimal sample preparation and a rapid data acquisition. 

However, because they are based on differences in the interaction between 

electromagnetic radiation and matters, it seems crucial to know: which is the most 

efficient spectroscopic method to assess quality of processed purees? Which are the 

best analytical methods based on a specific technique to provide an accurate 

determination of the chemical (soluble solids, titratable acidity, dry matter, individual 

sugars and malic acid), structural (particle sizes) and rheological properties (viscosity 

and viscoelasticity) of apple purees? 

 NIR technique has been widely applied for the safety inspection and quality 

assessment of apple fruits at the wavelength range from 780-2500 nm (Nicolai, et al., 

2007; Pissard, et al., 2013). The broad bands of NIR contain the overlapping absorption 

bands corresponding mainly to overtones and combinations of vibrational mode C-H 

and O-H bonds of fruit components (Osborne, 2006). NIR technique can assess a 

diversity of quality traits in raw and processed apple products (in Part II. 5.2). 

 MIR spectroscopy on fresh and processed apples gives a good estimation of SSC, 

DMC, TA, malic acid and some individual sugars (in Part II. 5.3). Compared to the 



137 

 

low structural selectivity in the board bands of NIR spectra, more resolved 

fundamentals of MIR spectra allow to better elucidate the chemical and structural 

information of samples. However, the lower energy of MIR radiations and the strong 

water interactions in fruit suspensions prevent the sensitive evaluation of chemical 

compositions and structural properties. 

 Raman spectroscopy can provide a complementary interpretation of molecule 

vibration changes in polarizability, which is distinct from the vibration used in MIR by 

the changes in dipole moment (Pistorius, 1996). It has been successfully applied to 

determine several micronutrients, such as lycopene and β-carotene in tomato (Baranska, 

Schütze, & Schulz, 2006). For highly hydrated products, such as fresh and processed 

fruits, Raman presents two advantages in comparison with infrared: a weak scattering 

of the polar O-H group and more intense bands of homo-nuclear molecular bonds (C-

C, C=C etc.). To date, no detailed study has compared the differences and limitations 

of Raman and infrared spectroscopy (NIR and MIR) to determine the structural and 

rheological properties of fruit purees. 

 Hyperspectral imaging (HSI) is an emerging platform technique that integrates 

imaging and spectroscopy to provide both spatial and spectral information (Baeten & 

Dardenne, 2005). Several applications of HSI were carried out on fresh fruits to 

estimate their external and internal quality (in Part II. 6.1). For fruit processed purees, 

no work has been done on HSI to detect their chemical and biochemical compositions, 

such as SSC, DMC, malic acid, individual sugars and cell wall composition. In addition, 

one of our interests is to investigate the possibility of using HSI to detect and even 

monitor the structural (particle sizes) and rheological (viscosity and viscoelasticity) 

properties of puree samples. 

 In this work, four different spectroscopic and imaging techniques, namely NIR, 

MIR, Raman and HSI, were applied on the same set of diverse (variety, thinning 

practice, fruit texture, processing) apple puree samples in order to: i) evaluate their 

potential to detect the puree variability; ii) compare their performance to predict 

chemical, structural and rheological characteristics of purees and then iii) identify 
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signals specific of the puree properties. 

2. Materials and methods 

2.1 Apple purees 

2.1.1 Apples 

Apples of four varieties: ‘Golden Delicious’ (GD), ‘Granny Smith’ (GS), ‘Royal 

Gala’ (GA) and ‘Braeburn’ (BR) were harvested at a commercial maturity in 2018 from 

the La Pugère experimental orchard (Chambre d’Agriculture des Bouches du Rhône) 

(Mallemort, Bouches du Rhône, France). GS, GA , BR and half of GD apples was 

grown under a standard chemical fruit thinning practice (Th+) with 50-100 fruits / tree. 

The other half of GD apples was non thinned (Th-) with 150-200 fruits/ tree. 

After harvesting, five apple groups (GD Th+, GD Th-, GS, BR, GA) were stored 

at 4 ℃ in normal atmosphere to ensure starch regression (customised phytotron, Froid 

et Mesures, Beaucouzé, France). Half of the Braeburn apples (BM) were stored for 11 

days at 23 ℃ and around 90% relative humidity. These two different stress treatments 

on Braeburn apples resulted a significant change (p < 0.001) of texture (p < 0.001), 

characterizing by the linear distances of puncture tests (13.96 ± 1.23 of BR crunchy 

apples and 11.69 ± 0.72 of BM mealy apples) based on the same method from Paper 

IV. The BM apples were clearly with a higher mealy texture than the BR apples. Totally, 

six apple groups (GD Th-, GD Th+, GS, GA, BR and BM) were used for puree 

processing (Fig. 22). 

2.1.2 Purees processing 

For all apple groups, three replicates of apples purees were processed from 3 kg of 

apples each. After sorting and washing, apples (3 kg) were cored, and sliced into 12 

portions, then processed under vacuum by a multi-functional processing system 

(RoboQbo Qb8-3, Bentivoglio, Italy), following two different processing recipes: I) 

ground at 3000 rpm for 202 s during the increase of temperature and heated at 70 ℃ 

for 15 min, then pasteurized at 95 ℃ for 2 min; II) ground at 3000 rpm for 360 s during 
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the temperature increase step, followed by 400 rpm at 95 ℃ for 17 min. Afterwards, 

half of each processed puree was refined at 0.5 mm using a Robot Coupe C80 automatic 

refiner (Robot Coupe C80, Robot Coupe SNC, Vincennes, France) and the other was 

not refined. Finally, all processed apple purees were conditioned in hermetically sealed 

cans, then cooled at 23 ℃ before the measurements performed the day after. In total, 

72 puree samples (6 apple groups × 2 processing recipes × 2 refining levels × 3 

processing replicates) were obtained (Fig. 22). 
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Fig. 22. Experimental scheme of apple puree processing, quality characterization and spectral acquisition. 
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2.2 Determination of quality traits 

2.2.1 Rheological and structural analyses 

The puree rheological measurements, consisting in rotational (flow curve) and 

oscillatory (amplitude sweep) tests, were carried out using a Physica MCR-301 

controlled stress rheometer (Anton Paar, Graz, Austria) ) equipped with a vane 

measuring system with a 3.46 mm gap (CC27/S cup and FL100/6W bob, Anton Paar), 

at 22.5 °C. The flow curves were performed after a pre-shearing period of 1 minute at 

50 s-1 followed by 5 minutes at rest. The viscosity was then measured at a controlled 

shear rate range of [10; 250] s-1 on a logarithmic ramp, at a rate of 1 point every 15 

seconds. The complete flow curves were fitted with a power law model, as described 

by Eq. (1). 

𝜂 = 𝐾 �̇�𝑛−1                    (𝐸𝑞1) 

where η is the apparent viscosity (Pa.s), �̇� the shear rate (s-1), K the consistency 

parameter, and n-1 the flow parameter. 

Amplitude sweep tests were performed at an angular frequency of 10 rad.s-1 in the 

deformation range of [0.01; 100] %, in order to determine the linear viscoelastic range 

of the purees and the yield stress, defined as the crossing point between the storage 

modulus (G’) and the loss modulus (G’’) curves. The damping factor tan 𝛿 = 𝐺" 𝐺′⁄  of 

purees was calculated. 

The particle sizes were measured according to our Paper II. Puree samples were 

diluted in distilled water to separate particles and stained with calcofluor white at 0.1 

g/L and highlighted with a 365 nm UV lamp . A high-resolution digital video camera 

(Baumer VCXU31C, Baumer SAS, Fillinges, France) with a macro lens (VSTech 0513, 

VS Technology Corporation, Tokyo, Japan.) was used to visualize the distribution and 

dispersion of puree particles. The particle sizes averaged over volume d(4:3) (de 

Brouckere mean) and over surface area d(3:2) (Sauter mean) were measured with a 

laser granulometer (Mastersizer 2000, Malvern Instruments, Malvern, UK). 

2.2.2 Biochemical analyses 
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SSC was determined with a digital refractometer (PR-101 ATAGO, Norfolk, VA, 

USA) and expressed in °Brix at 23 °C. TA was determined by titration up to pH 8.1 

with 0.1 mol/L NaOH and expressed in mmol H+/kg of fresh weight (FW) using an 

autotitrator (Methrom, Herisau, Switzerland). Individual sugars and malic acid were 

quantified using colorimetric enzymatic kits, according to the manufacturer’s 

instructions (R-biopharm, Darmstadt, Germany). The content of glucose, fructose, 

sucrose and malic acid were expressed in g/kg of FW. These measurements were 

performed with a SAFAS flx-Xenius XM spectrofluorimeter (SAFAS, Monaco) at 570 

nm for sugars and 450 nm for malic acid. DMC was estimated from the weight of 

freeze-dried samples upon reaching a constant weight (freeze-drying for 5 days). Cell 

wall materials (AIS) of purees were isolated using the alcohol insoluble solids method 

proposed by Renard (2005) and the cell wall contents (AIS contents) were expressed in 

FW. 

2.3 Spectral and image data acquisition 

2.3.1 NIR spectroscopy 

NIR spectra were collected with a multi-purpose analyzer (MPA) spectrometer 

(Bruker Optics®, Wissembourg, France) at 23°C. Puree samples were transferred into 

10 mL glass vials (5 cm height x 18 mm diameter) which were placed on the automated 

sample wheel of the spectrophotometer. Logarithmic transformed reflectance spectra 

(log (1/R)) were acquired with a spectral resolution of 8 cm-1 from 12500 to 4000 cm-1 

(corresponding to wavelengths from 800 to 2500 nm). Each spectrum corresponded to 

the average of 32 scans. The spectral acquisition and instrument adjustments were 

controlled by OPUS software Version 5.0 (Bruker Optics®). A reference background 

measurement was automatically acquired before each data set acquisition using an 

internal Spectralon reference. Each puree sample was measured randomly three times 

on different aliquots. The mean of three replicate scans for each sample was used in 

subsequent chemometric analysis. 

2.3.2 MIR spectroscopy 
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MIR spectra of purees were acquired at 23°C using a Tensor 27 FTIR spectrometer 

(Bruker Optics®, Wissembourg, France) equipped with a horizontal attenuated total 

reflectance (ATR) sampling accessory and a deuterated triglycine sulphate (DTGS) 

detector. The purees were placed at the surface of a zinc selenide (ATR-ZnSe) crystal 

with six internal reflections. Spectra with 32 scans each were collected from 4000 cm-

1 to 800 cm-1 with a 4 cm-1 resolution and were corrected against the background 

spectrum of air. Three replications of spectral measurement were performed randomly 

on each puree, and the average for each sample was used for further analysis. 

2.3.3 Raman spectroscopy 

 Raman spectra were acquired on a Confocal Raman Microscope Senterra II 

spectrometer obtained from (Bruker Optics, Ettlingen, Germany) with a 785 nm diode 

laser and a thermoelectrically cooled CCD detector, operating at -65 °C. For spectra 

collection, each puree sample was manually placed and compacted in 36 holes (those 

in the middle) of a 96 well aluminium plate (12 × 8) with an inner diameter of 6 mm 

each. After removing the water of purees by evaporation at the ambient temperature 

(~20 ℃), spectra were accumulated with a bleaching of 20 s, an integration time of 2 s 

and 7 coadditions using a 100 mW laser. Raman intensity were recorded from 50 to 

3650 cm-1 with a spectral resolution of 4 cm-1 intervals. OPUS 7.8 Software (Bruker 

Optics, Ettlingen, Germany) was used for spectral data acquisition. Each sample was 

independently and randomly scanned six times. The main spectrum of 6 replicates for 

each puree sample was used for further analysis. 

2.3.4 HSI acquisition  

The hyperspectral images of apple purees were acquired on a pushbroom (a line-

scanning type) near infrared hyperspectral imaging system (SPECIM, Oulu, Finland), 

which consisted of a SWIR camera (SWIR-CL-400-N25E, SPECIM) covering the 

spectral range of 900-2500 nm with a spectral resolution of about 12 nm, an OLES 56 

camera lens (SPECIM), an illumination source (halogen lamps) and a translating 

scanner. Before measurements, the reflectance calibration was performed as the same 

as Paper III. All the image acquisition parameters (the exposure time of camera, the 
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scanning speed etc.) were controlled by the LUMO® software from SPECIM. Each 

puree sample was placed on a hole (with an inner diameter of 3 cm) of the standard 

white plate (nine holes totally). All images were acquired in the reflectance mode and 

the final image size for each kernel is 387 × 127 × 288, the two first values representing 

pixel dimensions in the x and y directions (field of view of 9.5 × 3.1 cm, with a spatial 

resolution of 245 µm) and the third value accounting for the number of spectral 

channels. As the beginning and ending wavelengths contained noise caused by the 

instrument itself, the 258 bands from 990 to 2450 nm were selected for further spectral 

analysis. The averaged HSI spectrum of each puree sample was calculated for further 

discrimination and regression analyses.  

2.4 Statistical analyses of references data 

After checking for normal distribution with a Shapiro-Wilk test (α=0.05), the 

reference data of processed purees were presented as mean values and the data 

dispersion within our experimental dataset expressed as standard deviation values (SD) 

(Table 20). Analysis of variance (ANOVA) was carried out to determine the significant 

differences due to the different apple varieties, process recipes and mechanical refining 

treatments (Table 20) using XLSTAT (version 2018.5.52037, Addinsoft SARL, Paris, 

France) data analysis toolbox. Principal component analysis (PCA) was carried out on 

all reference data of processed purees to evaluate their discriminant contributions using 

Matlab 7.5 software using the SAISIR package (Cordella & Bertrand, 2014). 

2.5 Chemometric analysis 

NIR, MIR, Raman and HSI spectra were pre-processed with Matlab 7.5 software 

using the SAISIR package (Cordella & Bertrand, 2014). The discriminant analysis and 

multivariate regression were performed with several packages of the R software 

(version 4.0.2) (R Core Team, 2019). After several pretests, the standard normal variate 

(SNV) with smoothing (a window size of 13 variables) transformed NIR data in 800-

2500 nm; the SNV pre-processed MIR spectra in 1800-900 cm-1; the SNV with 

smoothing (a window size of 13 variables) of Raman in 1800-800 cm-1 and the SNV 
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with 3 windows (a window size of 3 variables) smoothed HSI data in 990-2450 nm had 

the best performances to classify and assess the puree quality. 

Partial least square (PLS), support vector machine (SVM) and random forest (RF) 

algorithms were used to discriminate purees (Part 3.2) and predict their quality traits 

(Part 3.3). The 10-fold full cross-validation was applied to all spectral datasets (NIR, 

MIR, Raman and HSI). For discrimination models (PLS-DA, SVM-DA and RF-DA), 

the discrimination accuracy (acc), the optimal numbers of latent variables (LVs) of 

PLS-DA models (Table 21) and the most attributed vibrational bands (Table 22) were 

used to describe the discriminating ability of the different spectroscopic techniques. For 

regression models (PLS-R, SVM-R and RF-R), the prediction performances were 

assessed by the determination coefficient of cross-validation (Rcv
2), the root mean 

square error of cross-validation (RMSEcv) and the residual predictive deviation (RPD) 

value as described by Nicolai (Nicolai, et al., 2007). The most correlated spectral 

signals of the best developed models with RPD values over 2.0, indicating the 

possibility for approximate qualitative predictions (Nicolai, et al., 2007), were 

described in Table 23 and Table 24. 

3. Results and discussion 

3.1 Characteristics of apple purees 

After puree processing, the different apple varieties provided a large variability of 

chemical, textural and rheological properties (Table 20). According to PCA results 

taking into account all the characterized parameters (Fig. 23), ‘Granny Smith’ (GS) 

purees (C) were clearly discriminated from the other puree groups along the first 

principal component (PC1). The GS purees presented a significantly (p < 0.001) higher 

viscosity (K and n) and elasticity (yield stress, G’ and G’’), particle size d(4:3) and 

volume d (3:2), TA, malic acid and AIS content than the others (Fig. 23b and Table 

20). Remarkable higher values (p < 0.001) for SSC and DMC allowed the separation 

of ‘Golden Delicious’ (A and B) and ‘Royal Gala’ purees (D) along the second principal 

component (Fig. 23a, Fig. 23b). Thinning practice (Th+) on GD apples (B) resulted in 

a less viscous purees than non-thinned GD purees (A) (Table 20), which is in line with 
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the results from Paper IV. For all non-refined (NR) purees, ‘Royal Gala’ had the lowest 

viscoelastic moduli (G’ < 934.0 ± 35.4 Pa, G’’< 194.3 ± 7.2 Pa), titratable acidity (TA 

< 3.8 ± 0.2 meq/kg) and cell wall contents (AIS < 128.4 ± 9.5 mg/g). However, the 

overlapping of the two kinds of ‘Braeburn’ purees (E and F) (Fig. 23a) revealed the 

difficulty to produce different purees after processing and refining of both, crunchy (the 

puncture linear distance of 13.96 ± 1.23) and mealy (the puncture linear distance of 

11.69 ± 0.72) apples. 

The two different processing recipes used here (Processes I and II) led to significant 

(p < 0.01) changes of puree rheological behaviors (K, n, G’, G’’, yield stress and tan δ) 

and particle distributions (d4:3 and d3:2), but not for SSC, DMC and AIS (p > 0.05) 

(Table 20). Particularly, purees processed at 95 ℃ and 400 rpm (Process II) had a soft 

solid-like behavior. They were more viscous (K and n) with higher G’ and G’’ and larger 

particles (d4:3 and d3:2) than the purees processed at 70 ℃ and 3000 rpm (Process I).  

Moreover, as expected, the refining treatment generated a significant (p < 0.01) 

decrease of puree viscosity and elasticity (K, n, G’, G’’ and yield point), particle sizes 

(d4:3 and d3:2) and cell wall contents, but did not impact (p > 0.05) chemical attributes. 

 

Fig. 23. Principal component analysis on chemical, structural and rheological 

parameters of six puree groups (A: GD Th-; B: GD Th+; C: GS; D: GA; E: BR; F:BM): 

(a) the scores plot of the two first components (PC1 and PC2); (b) the correlation plot 

of the PC1 and PC2. 
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Table 20. Chemical, structural, and rheological characteristics of studied apple purees. 

Groups Process Refining 
Viscosity G' G'' Yield 

stress 

tan δ d4:3 d3:2 SSC DMC pH TA malic acid fructose sucrose glucose AIS 

K n Pa Pa - - - (°Brix) (g/g)  (meq/kg) (g/kg) (g/kg) (g/kg) (g/kg) mg/g 

GD Th- 

I 
NR 15.4 0.24 1245.9 247.4 12.8 0.20 267.4 174.5 14.4 0.21 3.8 5.4 4.9 67.7 73.3 17.5 138.3 

Ra 14.6 0.24 1158.8 222.5 12.6 0.19 264.5 172.4 14.1 0.20 3.7 5.5 4.6 67.2 66.4 17.1 117.8 

II 
NR 23.1 0.21 1601.3 341.6 20.1 0.21 397.0 230.7 14.4 0.21 3.8 4.9 4.0 60.5 55.2 17.0 141.8 

Ra 20.1 0.21 1351.1 273.9 17.4 0.20 384.0 226.2 14.1 0.20 3.8 5.0 4.6 70.6 65.3 17.5 115.5 

GD Th+ 

I NR 11.4 0.27 984.4 190.7 9.7 0.19 262.9 177.4 15.3 0.22 3.7 5.9 5.5 78.7 73.0 16.3 145.2 

 Ra 10.4 0.27 922.1 172.3 9.4 0.19 256.5 174.4 14.8 0.22 3.7 6.2 5.7 81.9 72.3 16.2 119.4 

II NR 20.0 0.22 1390.7 290.9 16.9 0.21 382.1 228.5 14.7 0.21 3.7 5.5 5.1 76.2 60.8 17.5 141.1 

 Ra 17.8 0.22 1200.4 241.5 15.0 0.20 371.4 223.8 14.5 0.21 3.7 5.7 5.2 71.6 63.1 17.6 118.3 

GS 

I NR 32.0 0.21 1835.5 385.9 25.4 0.21 598.5 314.2 12.3 0.19 3.4 10.7 7.2 44.1 29.7 20.5 182.5 

 Ra 22.3 0.22 1131.7 227.5 15.6 0.20 545.1 287.4 11.7 0.19 3.4 10.6 6.7 41.6 28.9 19.2 147.8 

II NR 44.8 0.20 1794.5 543.2 25.8 0.30 774.4 399.5 12.2 0.19 3.4 10.4 6.4 42.8 25.5 19.9 169.7 

 Ra 23.8 0.22 944.1 280.0 14.4 0.30 488.2 256.4 12.2 0.18 3.4 10.4 4.7 25.9 13.9 13.4 145.5 

GA 

I NR 7.3 0.33 720.2 137.8 7.6 0.19 383.1 226.6 12.6 0.19 4.0 3.8 4.1 60.7 72.3 13.5 128.4 

 Ra 7.1 0.32 675.6 125.6 7.4 0.19 372.6 223.0 12.4 0.19 4.1 3.9 4.2 65.8 71.6 13.6 119.7 

II NR 12.4 0.27 934.0 194.3 10.5 0.21 440.3 261.1 12.5 0.18 4.3 3.7 3.6 53.8 57.0 12.5 124.5 

 Ra 11.3 0.27 810.1 160.6 9.7 0.20 431.2 256.8 12.2 0.18 4.3 3.7 3.5 47.8 50.8 11.7 122.7 

BR 

I NR 11.2 0.28 1080.3 215.7 12.5 0.20 421.7 227.5 12.9 0.19 3.6 6.7 5.6 54.7 43.0 17.1 156.1 

 Ra 9.8 0.29 987.8 192.6 11.6 0.20 412.5 223.8 12.7 0.19 3.6 7.8 5.7 61.4 39.5 18.2 132.8 

II NR 22.6 0.23 1508.8 323.3 19.8 0.21 537.8 283.5 13.3 0.20 3.5 6.7 5.7 61.9 37.4 18.7 154.5 

 Ra 15.9 0.24 1054.8 210.1 13.7 0.20 499.8 267.8 13.1 0.19 3.5 6.9 5.7 61.8 41.2 18.4 122.7 

BM 

I NR 8.0 0.29 965.1 200.2 7.7 0.21 241.7 172.1 12.6 0.19 3.7 5.8 4.1 51.5 36.0 16.5 145.4 

 Ra 8.0 0.28 957.8 195.8 8.0 0.20 240.1 170.7 12.4 0.19 3.7 5.7 4.4 55.6 38.0 17.9 125.7 

II NR 13.9 0.24 1373.1 309.9 12.3 0.23 292.6 212.1 13.2 0.18 3.8 5.5 4.7 59.0 39.4 21.1 142.7 

 Ra 13.7 0.23 1288.3 278.7 12.0 0.22 286.7 199.8 12.7 0.18 3.7 5.5 4.9 69.2 39.8 20.8 117.8 

SD  8.7 0.04 321.7 92.5 5.2 0.03 129.7 53.2 1.1 0.01 0.2 2.2 1.0 13.6 17.8 2.9 18.3 

F-value and significance 

Variety 192.0 120.5 50.9 73.3 74.9 1071.5 394.5 386.2 117.1 58.8 1285.8 215.0 43.4 154.9 218.1 30.4 2.8 

 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** * 

Process 110.1 98.6 13.3 52.1 35.4 1609.1 218.6 303.4 0.02 0.4 47.2 52.6 16.1 21.4 54.9 1.8 1.6 

 
*** *** ** *** *** *** *** *** ns ns *** *** *** *** *** ns ns 



148 

Refining 70.7 4.3 66.8 77.2 54.3 107.3 82.5 114.1 5.8 1.2 5.7 1.7 2.4 2.3 2.5 2.2 120.9 

 *** * *** *** *** *** *** *** ns ns ns ns ns ns ns ns *** 

Note: GD Th-: non-thinned Golden Delicious; GD Th+: thinned Golden Delicious; GS: Granny Smith; GA: Royal Gala; BR: crunchy Braeburn, stored at 4℃; BM: 

mealy Braeburn, stored at 24 ℃. G’, G’’: storage and loss modulus, at an angular frequency of 10 rad/s; AIS: Alcohol insoluble solids. Data expressed in Fresh 

weight (FW) values correspond to the mean of 3 lots x 10 apples. Two processing strategies: Process I of 70 ℃, 3000 rpm and Process II of 95 ℃, 400 rpm. Processed 

purees with non-refining (NR) or refined at 0.5 mm. In grey, ANOVA results of puree variety, process and refining conditions. ns, *, **, ***: Non-significant or 

significant at P < 0.05, 0.01, 0.001 respectively. 
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3.2 Discrimination of variability of apple purees  

The ability of the four different techniques coupled with PLS-DA, SVM-DA and 

RF-DA were compared to classify different factors: (a) varieties (48 purees from (Th+) 

GD, GA, GS and BR apples), (b) process recipes (72 samples of process I and II), (c) 

refining treatments (72 NR and Ra), (d) fruit thinning practices (24 GD purees from 

Th+ and Th-) and (e) fruit stress treatments (24 Braeburn purees with crunchy BR and 

mealy BM) (Table 21). The main vibrational bands observed in NIR, MIR, Raman and 

HSI datasets, which contributed to the best discrimination models are shown on purees 

for all factors (a-e) (Table 22). 

NIR technique coupled with PLS-DA models gave a correct discrimination of the 

four puree varieties (acc = 88.8%, 4 LVs), the two GD fruit thinning purees (acc = 

86.7%, 2 LVs) and the two Braeburn purees (acc = 95.8%, 3 LVs). The specific NIR 

spectral regions at 818-850, 1849, 1880 and 2145-2155 nm mainly contributed to puree 

variety discrimination (Table 22). Particularly, the spectral area at 800-1000 nm, which 

is known as the absorption of apple carbohydrates and water variations (Giovanelli, 

Sinelli, Beghi, Guidetti, & Casiraghi, 2014; Zude, Herold, Roger, Bellon-Maurel, & 

Landahl, 2006), has been used for the apple variety classification (Bobelyn, et al., 2010). 

The absorption bands around 1880 nm are explained by the O-H combinations of water 

contents in apples (Camps, Guillermin, Mauget, & Bertrand, 2017). The broad band at 

2100-2200 nm corresponds to the first combination band of C-H bond of sugars and 

acids, and has also been highlighted in Paper IV. Besides, the wavelengths around 

1400 nm (1345, 1392 and 1379-1384 nm), related to the soluble solids variations in 

apple juices (Kaur, Künnemeyer, & McGlone, 2020), were one of the major 

contributors for the discriminations of apple thinning (Th+ and Th-) and stress 

treatments (crunchy BR and mealy BM). However, NIR technique was not able to well 

classify (acc < 55.6%) the processing recipe and refining, which nevertheless induced 

intensive structural and rheological variations of purees (Table 20 and Table 22). 

MIR technique provided a better discrimination of all studied factors than NIR 

(Table 21). Particularly, three different discrimination models (PLS-DA, SVM-DA, 
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RF-DA) allowed to classify perfectly the four puree varieties. The specific spectral 

wavenumbers at 1723- 1718, 1107, 1061 and 1022 cm-1
 (Table 22), attributed to the 

stretching bonds of C=O of malic acid, and the C-O and C-C of glucose, fructose and 

sucrose (Bureau, Cozzolino, & Clark, 2019), were consistent with the measured 

differences of purees coming from varieties (Fig. 23 and Table 21). Compared to NIR 

results, the satisfactory classifications by MIR of processing recipe (acc = 100 %) and 

refining (acc = 91.7%) were mainly based on the overlapped region between 1750 and 

1650 cm-1 (1749 cm-1, 1730-1715 cm-1 and 1640-1628 cm-1 in Table 22), related to the 

organic acids, soluble polysaccharides, pectins, phenolics and absorbed water in purees 

(described in detailed in Paper II). MIR was able to highlight the physicochemical 

modifications of apple purees generated by different processing strategies (heating 

temperature and grinding speed) and mechanical refining treatments. Besides the 

aforementioned spectral signals, the excellent PLS discriminations of apple thinning 

(acc = 100%) and stress treatments (acc = 100%) were linked to three specific 

wavenumbers at 1084, 1056 and 998 cm-1, corresponding to the variations of glucose 

and sucrose in fruits (Bureau, et al., 2019). 

For Raman spectroscopy, PLS-DA models developed over the range of 800-1800 

cm-1 had a lower discrimination accuracy and more LVs to discriminate puree varieties 

(acc = 81.3%, 7 LVs), thinning practices (acc = 75.0%, 6 LVs) and stress treatments 

(acc = 70.8%, 6 LVs) than the models obtained with NIR and MIR techniques (Table 

22). The main vibrational bands responsible for these discriminations were related to 

the variations of major sugars and acids in apple purees, which have been highlighted 

in honey products (Pompeu, et al., 2018) and soft drinks (Ilaslan, Boyaci, & Topcu, 

2015). In particular, the C-C stretching and C-H deformation vibration of glucose at 

840-842 cm-1 (Özbalci, Boyaci, Topcu, Kadılar, & Tamer, 2013); the stretching of C-

O-C at 872 cm-1 and the deformation of C-OH of fructose at 872, 939, 944 and 1054 

cm-1 (Cerchiaro, Sant’Ana, Temperini, & da Costa Ferreira, 2005; Mathlouthi & Luu, 

1980; Özbalci, et al., 2013); the C-O and C-OH vibration of sucrose at 1126 cm-1 

(Ilaslan, et al., 2015; Pierna, Abbas, Dardenne, & Baeten, 2011) and the C=O stretching 

of malic acid at 1734 cm-1 (Barańska, Kuduk-Jaworska, Szostak, & Romaniewska, 
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2003). Interestingly, Raman technique showed a good discrimination of puree 

processing conditions (acc = 82.3%, 8 LVs). Besides the aforementioned wavenumbers, 

the specific Raman bands at 845 cm-1 and 1433-1436 cm-1 were observed to 

discriminate puree processing changes, presenting the C-O-C and COO- antisymmetric 

stretching of pectins during the clarification of apple juice (Camerlingo, et al., 2007).  

 HSI technique coupled with PLS-DA showed a relatively higher discrimination 

accuracy of puree variety (acc = 100%, 7 LVs), processing recipes (acc = 86.1%, 10 

LVs), fruit thinning (acc = 91.6%, 6 LVs) and stress treatments (acc = 100%, 4 LVs) 

than the conventional NIR spectroscopy, but using a higher number of latent variables 

(LVs). Besides the similar aforementioned wavenumber regions as in NIR around 1400, 

1880 and 2100-2300 nm, the specific spectral areas at 1048-1088 nm and 1106-1145 

nm were observed, corresponding to the SSC and DMC variations in fruits (Wang, Peng, 

Xie, Bao, & He, 2015). Comparing to NIR, PLS-DA on the averaged HSI puree spectra 

gave an impressive improvement of the discrimination of puree process recipes, from 

51.4% to 86.1%. However, both NIR and HSI spectra had a limited ability to 

discriminate the different refining levels (< 58.3% correct identification). These results 

indicated these two techniques had the potential to detect puree variability (varieties, 

fruit thinning, process) involving significant differences in composition (Table 20), but 

not to estimate puree textural changes (refining) (Table 20). 

Generally, PLS-DA models developed using NIR, MIR, Raman and HSI spectra of 

purees had the best performances to discriminate the variability of varieties (a), 

processes (b), fruit thinning (d) and stress treatments (e) (Table 21). However, 

specifically for refined purees, RF-DA gave a better discrimination of purees than 

SVM-DA and PLS-DA. 
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Table 21. Discrimination using 10-fold full cross-validation PLS-DA, SVM-DA and RF-DA models of apple purees according to (a) varieties, (b) processes, (c) 

refining levels, (d) fruit thinning practices of Golden Delicious apples, (e) stress treatments of Braeburn apples, using NIR, MIR, Raman and HSI data. 

Spectral techniques NIR 
 

MIR 
 

Raman 
 

HSI 

Spectral ranges 800- 2500 nm 
 

900- 1800 cm-1 
 

800- 1800 cm-1 
 

990-2450 nm 

Models PLS-DA SVM-DA RF-DA 
 

PLS-DA SVM-DA RF-DA 
 

PLS-DA SVM-DA RF-DA 
 

PLS-DA SVM-DA RF-DA 

(a) Variety (GD/GS/BR/GA) 
             

  

No. of samples 48 48 48 
 

48 48 48 
 

48 48 48 
 

48 48 48 

Correct discrimination rate 88.8 % 81.25 % 84.6 % 
 

100.0 % 100.0 % 100.0 % 
 

81.3 % 50.0 % 60.4 % 
 

100 % 72.9 % 72.9 %. 

LVs 4 - - 
 

3 - - 
 

7 - - 
 

7   

(b) Process (I/ II) 
             

  

No. of samples 72 72 72 
 

72 72 72 
 

72 72 72 
 

72 72 72 

Correct discrimination rate 51.4 % 31.9 % 44.4 % 
 

100 % 97.2 % 93.1 % 
 

82.3 % 67.7 % 67.7 % 
 

86.1 % 41.7 % 47.2 % 

LVs 4 - - 
 

5 - - 
 

8 - - 
 

10   

(c) Refining levels (NR/ Ra) 
             

  

No. of samples 72 72 72 
 

72 72 72 
 

72 72 72 
 

72 72 72 

Correct discrimination rate 51.4 % 38.9 % 55.6 % 
 

84.7 % 90.3 % 91.7 % 
 

56.9 % 40.3 % 45.8 % 
 

55.1 % 51.4 % 58.3 % 

LVs 5 - - 
 

4 - - 
 

7 - - 
 

6   

(d) Fruit thinning (Th+/ Th-) 
            

   

No. of samples 24 24 24 
 

24 24 24 
 

24 24 24 
 

24 24 24 

Correct discrimination rate 86.7 % 53.3 % 82.5 % 
 

100.0 % 100.0 % 100.0 % 
 

75.0 % 16.7 % 45.8 % 
 

91.6 % 79.2 % 87.5 % 

LVs 3  - - 
 

3 - - 
 

6 - - 
 

6   

(e) stress treatments (BR/ BM) 
             

  

No. of samples 24 24 24 
 

24 24 24 
 

24 24 24 
 

24 24 24 

Correct discrimination rate 95.8 % 63.3 % 87.5 % 
 

100.0 % 100.0 % 100.0 % 
 

70.8 % 25.0 % 54.2 % 
 

100.0 % 58.3 % 87.5 % 

LVs 3 - - 
 

3 - - 
 

6 - - 
 

4   

Note: NIR spectra: SNV pre-treated and smoothed (13 windows) at 800-2500 nm; MIR spectra: the SNV pre-treated at 1800-900 cm-1; Raman spectra: the SNV pre-

treated and smoothed (13 windows) at 1800-800 cm-1; HSI spectra: the SNV pre-treated and smoothed (3 windows) at 990-2450 nm. ‘Variety’: (four varieties of 

‘Golden Delicious’, ‘Braeburn’, ‘Granny Smith’ and ‘Royal Gala’); ‘fruit thinning’: different fruit thinning practices for Golden Delicious apples (50 - 100 fruits/ 

tree or 150-200 fruits/ tree); ‘stress’: two different textures of Braeburn apples (11 days at 24 ℃ or 2 months at 4 ℃); ‘processing’: two processing recipes (70 ℃ 

for 15 mins with 3000 rpm grinding or 95 ℃ for 17 mins with 400 rpm grinding); ‘refining’: two refining conditions after puree processing (refined at 0.5 mm or 

not refined).  
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Table 22. The main attributions for vibrational bands of the best overall discrimination models developed for puree samples. 

Spectra Spectral ranges Factors No. samples Model LVs acc (%) 
Key frequencies 

NIR (nm), MIR (cm-1), Raman (cm-1), HSI (nm) 

NIR 800-2500 nm variety 48 PLS-DA 5 88.8 818-850, 1849, 1880, 2145-2155   
process 72 PLS-DA 4 51.4 / 

  refining 72 RF-DA - 55.6 /   
fruit thinning 24 PLS-DA 2 86.7 904, 1392, 1864   

stress  24 PLS-DA 3 95.8 913, 1345, 1379-1384         

MIR 1800- 900 cm-1 variety 48 PLS-DA 4 100.0 1723-1718, 1107, 1061, 1022   
process 72 PLS-DA 5 100.0 1730-1715, 1640-1628, 1138, 1084, 1001-998   
refining 72 RF-DA - 91.7 1749, 1636, 1061, 1018, 995   

fruit thinning 24 PLS-DA 3 100.0 1772, 1593, 1084, 1022, 998   
stress 24 PLS-DA 3 100.0 1658-1608, 1056, 1018, 1001         

Raman 800-1800 cm-1 variety 48 PLS-DA 7 81.3 842, 873, 1064, 1126, 1266, 1433, 1610    
process 72 PLS-DA 8 82..3 816-818, 845, 939, 972, 1362-1367, 1433-1436, 1734   
refining 72 PLS-DA 7 56.9 /   

fruit thinning 24 PLS-DA 6 75.0 842, 1054, 1077, 1427, 1608, 1675   
stress 24 PLS-DA 6 70.8 840, 904, 944, 1059-1063, 1334, 1734         

HSI 990-2450 nm variety 48 PLS-DA 7 100.0 1106-1145, 1259, 1338, 1406, 1869-1874, 1931-1964  

  process 72 PLS-DA 10 86.1 1048-1088, 1191, 1242, 2117, 2274-2387, 2437 

  refining 72 RF-DA / 58.3 /  

  fruit thinning 24 PLS-DA 6 91.6 1065-1088, 1338-1367, 2145, 2331-2342, 2376-2398, 2426 

  stress 24 PLS-DA 4 100.0 1048, 1134, 1389, 1947, 2409 

Note: acc: discrimination accuracy; PLS-DA: partial least square discrimination; RF-DA: random forest discrimination. NIR spectra: SNV pre-treated and smoothed 

(13 windows) at 800-2500 nm; MIR spectra: the SNV pre-treated at 1800-900 cm-1; Raman spectra: the SNV pre-treated and smoothed (13 windows) at 1800-800 

cm-1; HSI spectra: the SNV pre-treated and smoothed (3 windows) at 990-2450 nm. ‘Variety’: four apple varieties of ‘Golden Delicious’, ‘Braeburn’, ‘Granny Smith’ 

and ‘Royal Gala’ ; ‘fruit thinning’: different fruit thinning practices for Golden Delicious apples (50 - 100 fruits/ tree or 150-200 fruits/ tree); ‘stress’: two stress 

treatments of Braeburn apples (11 days at 24 ℃ or 2 months at 4 ℃); ‘processing’: two processing recipes (70 ℃ for 15 mins with 3000 rpm grinding or 95 ℃ for 

17 mins with 400 rpm grinding); ‘refining’: two refining conditions after puree processing (refined at 0.5 mm or not refined). 
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3.3 Prediction of apple puree quality traits 

 Prediction of puree rheological, structural and biochemical properties is compared 

according to the four techniques (NIR, MIR, Raman and HSI) (Table 23, Table 24). 

 NIR showed a poor prediction (Rcv
2 < 0.52, RPD < 1.4) of puree rheological (K, n, 

G’, G’’, yield stress and tan δ) and structural parameters (d4:3 and d3:2). However it 

gave a good prediction of puree composition, such as DMC (Rcv
2 = 0.82, RPD = 2.3), 

SSC (Rcv
2 = 0.83, RPD = 2.5), TA (Rcv

2 = 0.83, RPD = 2.4) and pH (Rcv
2 = 0.85, RPD 

= 2.6). Particularly, the specific wavebands in the intervals 937-1050 nm, 1180-1210 

nm and 1290-1330 nm highly contributed to the DMC and SSC models, corresponding 

to O-H and C-H vibrations of water and carbohydrates (Giovanelli, et al., 2014; Zude, 

et al., 2006). Besides the aforementioned absorbance regions, NIR wavenumbers 

between 2208 and 2254 nm, corresponding to the combination bands of C-H and O-H 

(Wang, et al., 2015), were also considered in the puree DMC prediction. The 

wavelengths located around 1600 nm (1534-1607 nm for TA models) and 1850 nm 

(1835-1873 nm for TA and pH models) were used to estimate puree acidity, already 

described to correspond to the C-O vibration of COOH and O-H combinations (Camps, 

et al., 2017; Wang, et al., 2015). The prediction of puree individual compounds was 

acceptable only for malic acid (Rcv
2 = 0.80, RPD = 2.1). Generally, NIR spectra coupled 

with PLS gave a better estimation of puree quality than SVM and RF regression.  

 MIR technique was potentially able to estimate the rheological parameters (K, n, 

G’, G’’ and tan δ) with acceptable Rcv
2 (> 0.81) and RPD (> 2.0) values (Table 23). 

Particularly, PLS and RF models obtained acceptable predictions of the consistency (K) 

(Rcv
2 > 0.81, RPD > 2.1) and flow (n) (Rcv

2 > 0.80, RPD > 2.0) parameters of the power-

law viscosity model of apple purees. PLS models gave the best predictions (Rcv
2 > 0.82, 

RPD > 2.3) of the viscoelastic parameters G’ and G’’ of purees, but were less accurate 

for the yield stress (Rcv
2 = 0.77, RPD = 1.7). Impressively, MIRS coupled with PLS 

showed an excellent prediction of tan δ (Rcv
2 = 0.96, RPD = 5.1), corresponding to the 

integrative assessment of both elastic and viscous contributions of apple purees 

(Espinosa-Muñoz, et al., 2013). The spectral region at 1500-1750 cm-1 appeared to be 
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highly relevant to estimate puree viscosity and viscoelasticity. It corresponds to the 

C=O and C-O stretching of carboxylic acids at 1745-1740 cm-1 and the C=O vibration 

of pectic methyl ester at 1628-1634 cm-1 (Liu, Renard, Rolland-Sabaté, Bureau, & Le 

Bourvellec, 2020). Concerning the puree structural properties, RF model was the best 

to predict particle sizes over volume d(4:3) (Rcv
2 = 0.88, RPD = 2.9) and over surface 

area d(3:2) (Rcv
2 = 0.82, RPD = 2.2). For composition, acceptable to good PLS 

predictions were obtained for SSC, DMC, TA, pH, malic acid and sucrose, giving RPD 

from 2.2 to 3.9 (Table 24). The specific spectral signals related to the acids at 1736-

1718 cm-1 and to the fructose and sucrose at 1065-1055 cm-1 and 1024-1016 cm-1 

(Bureau, et al., 2019), were the major contributors of SSC and DMC models. The 

excellent predictions of TA and pH, with RPD values of 3.6 and 3.9 respectively, 

depended on the particularly strong absorptions between 1736-1715 cm-1. However, a 

lower RPD (RPD = 2.2) and a higher LVs were obtained for malic acid than for TA. For 

individual sugars, an acceptable PLS prediction was obtained for fructose (Rcv
2 = 0.85, 

RPD = 2.6) based on its typical fingerprints at 1155 cm-1, 1056 cm-1, and 980 cm-1 

(Bureau, et al., 2019), but neither for sucrose (Rcv
2 < 0.78, RPD <1.9) nor for glucose 

(Rcv
2 < 0.49, RPD <1.4). 

Raman spectroscopy showed a limited ability to estimate the rheological and 

structural properties of apple purees with low Rcv
2 (< 0.48) and RPD (< 1.4) values 

(Table 23). These results were in line with the lower ability of the aforementioned 

Raman model to distinguish between non-refined and refined purees (acc = 56.9%) 

(Part 3.2). Moreover, none of the developed Raman models gave acceptable 

predictions of the global (SSC, DMC, TA and pH) and individual biochemical 

compositions (sugars, acids and cell wall contents) of apple purees. The best Raman 

model had a Rcv
2 of 0.71 and a RPD value of 1.8, indicating a possible application just 

to distinguish puree samples presenting a large variation of titratable acidity (TA). 

The models based on HSI data could not predict rheological (K, n , G’, G’’, yield 

stress, tan δ) (Rcv
2 < 0.48, RPD < 1.4) and structural (d4:3 and d3:2) (Rcv

2 < 0.47, RPD 

< 1.4) properties. Acceptable PLS predictions were obtained for SSC (Rcv
2 = 0.86, RPD 

= 2.7), DMC (Rcv
2 = 0.84, RPD = 2.4), TA (Rcv

2 = 0.83, RPD = 2.4) and pH (Rcv
2 = 
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0.85, RPD = 2.6). Particularly, the most contributing wavelengths located at around 

1180-1219 nm, 1282-1327 nm and 2179-2207 nm were the same as described with the 

NIR spectroscopy. However, none of the models could predict individual sugars 

(fructose, glucose and sucrose) (Rcv
2 < 0.74, RPD < 1.8) and AIS contents (Rcv

2 < 0.42, 

RPD < 1.3). 
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Table 23. Prediction of rheological and structural properties of apple purees using the full cross-validation PLS, SVM and RF regression based on their NIR, MIR, 

Raman and HSI spectra. 

Parameter Spectra Ranges SD 
PLS-R  SVM-R  RF-R Key frequencies  

NIR (nm), MIR (cm-1), Raman (cm-1), HSI (nm) Rcv
2 RMSECV RPD LVs  Rcv

2 RMSECV RPD  Rcv
2 RMSECV RPD 

Viscosity- K NIR 

6.6 - 46.8 8.7 

0.41 6.8 1.3 6  0.31 8.2 1.1  0.32 7.7 1.1 / 

 MIR 0.81 4.1 2.1 7  0.71 5.5 1.6  0.81 4.1 2.1 1712, 1682 - 1668, 1539, 1152, 1094, 1061, 998 

 Raman 0.37 6.95 1.3 6  0.31 7.4 1.3  0.31 7.2 1.2 / 

 HSI 0.54 6.1 1.4 10  0.27 7.5 1.2  0.36 6.6 1.3 / 

Viscosity- n NIR 

0.19 - 0.34 0.04 

0.52 0.03 1.4 6  0.30 0.04 1.0  0.35 0.03 1.2 / 

 MIR 0.81 0.02 2.2 8  0.80 0.02 2.1  0.80 0.02 2.1 1745 - 1740, 1712 - 1710, 1539, 1140, 1081, 1065-1059,1036, 980 

 Raman 0.48 0.03 1.4 8  0.36 0.03 1.4  0.44 0.03 1.3 / 

 HSI 0.42 0.03 1.3 7  0.25 0.03 1.1  0.33 0.03 1.2 / 

G' (Pa) NIR 

617 - 1962 322 

0.32 270 1.2 6  0.11 320 1.0  0.27 282 1.1 / 

 MIR 0.82 140 2.3 8  0.80 156 2.1  0.83 139 2.3 1745-1740, 1707, 1634, 1558 - 1537, 1140, 1078, 1063, 1036, 980 

 Raman 0.10 326 1.0 6  0.11 303 1.0  0.25 276 1.2 / 

 HSI 0.38 263 1.2 9  0.21 298 1.1  0.26 273 1.2 / 

G'' (Pa) NIR 

114 - 593 92 

0.36 77 1.2 6  0.21 92 1.0  0.26 84 1.1 / 

 MIR 0.84 36 2.5 6  0.77 62 1.5  0.81 42 2.2 1745-1740, 1709, 1634-1628, 1558 - 1537, 1139, 1065, 1034, 980 

 Raman 0.12 100 0.9 6  0.22 82 0.9  0.20 82 1.1 / 

 HSI 0.41 74 1.3 10  0.16 84 1.1  0.19 85 1.1 / 

yield stress NIR 

6.4 - 27.7 5.2 

0.36 4.2 1.2 6  0.21 5.2 1.0  0.34 4.5 1.2 / 

 MIR 0.77 3.0 1.7 7  0.73 2.8 1.8  0.67 3.0 1.8 / 

 Raman 0.33 4.3 1.2 8  0.26 4.5 1.2  0.27 4.4 1.2 / 

 HSI 0.47 4.0 1.3 11  0.27 4.4 1.2  0.36 4.3 1.2 / 

tan δ NIR 

0.18 - 0.30 0.03 

0.22 0.03 1.1 5  0.16 0.03 1.0  0.15 0.03 1.0 / 

 MIR 0.96 0.01 5.1 7  0.95 0.01 3.7  0.96 0.01 4.5 1749, 1537, 1109 - 1105, 1040 - 1038, 1018 - 1016, 980 

 Raman 0.44 0.02 1.3 5  0.45 0.02 1.3  0.42 0.02 1.3 / 

 HSI 0.24 0.03 1.1 6  0.14 0.03 1.1  0.15 0.03 1.1 / 

d4:3 NIR 

239 - 777 130 

0.47 95 1.4 6  0.21 130 1.0  0.32 106 1.2 / 

 MIR 0.85 50 2.6 8  0.81 60 2.2  0.88 45 2.9 1745, 1626 - 1620, 1539- 1510, 1151, 1099 - 1092, 1061, 1001, 922 

 Raman 0.47 93 1.4 6  0.17 117 1.4  0.19 117 1.1 / 

 HSI 0.59 85 1.5 9  0.22 114 1.1  0.30 107 1.2 / 

d3:2 NIR 

170 - 402 53 

0.42 41 1.3 6  0.22 53 1.0  0.29 47 1.1 / 

 MIR 0.66 31 1.7 8  0.70 30 1.8  0.81 24 2.2 1745, 1699, 1626-1620, 1151, 1099 - 1092, 1061, 1001, 975, 922 

 Raman 0.43 41 1.3 6  0.14 49 1.3  0.14 50 1.1 / 

 HSI 0.50 40 1.3 9  0.26 46 1.2  0.29 44 1.2 / 

Notes: Puree spectra and reference data from four varieties (‘Golden Delicious’, ‘Braeburn’, ‘Granny Smith’ and ‘Royal Gala’) with different fruit thinning practices 

for Golden Delicious apples (50 - 100 fruits/ tree or 150-200 fruits/ tree), stress treatments for Braeburn apples (11 days at 24 ℃ or 2 months at 4 ℃), two processing 
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recipes (70 ℃ for 15 mins with 3000 rpm grinding or 95 ℃ for 17 mins with 400 rpm grinding) and two refining conditions (refined at 0.5 mm or not refined). NIR 

spectra: SNV pre-treated and smoothed (13 windows) at 800-2500 nm; MIR spectra: the SNV pre-treated at 1800-900 cm-1; Raman spectra: the SNV pre-treated and 

smoothed (13 windows) at 1800-800 cm-1; HSI spectra: the SNV pre-treated and smoothed (3 windows) at 990-2450 nm. All results corresponded to 10-fold full-

crossed validation tests. Rcv
2: determination coefficient of the full-crossed validation test; RMSEcv: root mean square error of full-cross validation test; RPD: the 

residual predictive deviation of full-crossed validation test, LVs: the optimal numbers of latent variables. PLS-R: partial least square regression; RF-R: random forest 

regression; SVM-R: support vector machine regression. 
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Table 24. Prediction of biochemical properties of apple purees using the full cross-validation PLS, SVM and RF regression based on their NIR, MIR, Raman and 

HSI spectra. 

Parameter Spectra Ranges SD 
PLS-R  SVM-R  RF-R 

Key frequencies 
NIR (nm), MIR (cm-1), Raman (cm-1), HSI (nm) Rcv

2 RMSECV RPD LVs  Rcv
2 RMSECV RPD  Rcv

2 RMSECV RPD 

DMC (g/g) NIR 

0.16 - 0.23 0.01 

0.82 0.01 2.3 7  0.73 0.01 1.9  0.78 0.01 2.1 937, 946, 1139, 1180 - 1210, 1307 - 1330, 2208 - 2254 

 MIR 0.85 0.01 2.7 5  0.76 0.01 1.8  0.78 0.01 1.9 1734 - 1718, 1655 - 1637, 1084, 1061, 1024 – 1016 

 Raman 0.20 0.01 1.0 8  0.02 0.01 1.0  0.01 0.01 1.0 / 

 HSI 0.84 0.01 2.4 7  0.70 0.01 1.6  0.79 0.01 2.1 1037-1065, 1145, 1180-1219,1305-1338, 2286, 2421 

SSC (°Brix) NIR 

11.6 - 15.8 1.1 

0.83 0.4 2.5 6  0.50 0.8 1.4  0.57 0.7 1.5 944 - 946, 992, 1180- 1210, 1239, 1290 - 1330 

 MIR 0.88 0.4 2.9 3  0.78 0.5 2.2  0.82 0.4 2.4 1736 - 1718, 1065 – 1055, 1022 - 1016 

 Raman 0.39 0.9 1.2 9  0.18 1.0 1.2  0.15 1.0 1.1 / 

 HSI 0.86 0.4 2.7 8  0.66 0.7 1.5  0.76 0.6 1.9 1048-1071, 1140-1151, 1180-1219,1290-1338  

TA (meq/kg) NIR 

3.5 - 11.1 2.2 

0.83 0.9 2.4 7  0.43 1.7 1.3  0.72 1.2 1.8 1017, 1049, 1167, 1374, 1534 - 1607, 1835 - 1873 

 MIR 0.92 0.6 3.6 5  0.92 0.6 3.6  0.91 0.6 3.4 1736 - 1718, 1605 - 1601, 1042 - 1030, 1001 - 995 

 Raman 0.71 1.2 1.8 9  0.58 1.6 1.8  0.58 1.4 1.6 / 

 HSI 0.83 0.9 2.4 7  0.66 1.3 1.7  0.76 1.1 2.0 1054-1071, 1085-1214, 1293-1316, 2179-2207 

pH NIR 

3.4 - 4.3 0.2 

0.85 0.09 2.6 7  0.71 0.13 1.8  0.73 0.13 1.9 912, 1018, 1178, 1280 - 1305, 1835 - 1875 

 MIR 0.93 0.06 3.9 5  0.91 0.07 3.6  0.91 0.07 3.6 1718 - 1715, 1094, 1065, 1034, 998, 968 

 Raman 0.59 0.2 1.5 9  0.43 0.2 1.5  0.37 0.2 1.3 / 

 HSI 0.85 0.1 2.6 7  0.66 0.1 1.7  0.73 0.1 1.9 1054-1065, 1185-1280,1282-1327, 2179-2207 

malic (g/kg) NIR 

3.0 - 7.5 1.0 

0.80 0.5 2.1 8  0.61 0.7 1.4  0.66 0.7 1.5 912, 1018, 1178, 1365, 1384, 1843 - 1860, 1908 

 MIR 0.81 0.5 2.2 6  0.79 0.6 1.6  0.78 0.6 1.8 1730 - 1715, 1095 - 1082, 1001 - 995, 968 - 962 

 Raman 0.27 0.9 1.2 9  0.15 0.9 1.2  0.13 1.0 1.1 / 

 HSI 0.80 0.5 2.0 7  0.65 0.7 1.5  0.70 0.6 1.7 1134, 1185-1280, 1338-1367, 1843-1860, 2196-2246 

fructose (g/kg) NIR 

18.7 - 84.4 13.6 

0.73 7.2 1.9 8  0.51 9.7 1.4  0.52 9.8 1.4 / 

 MIR 0.85 5.2 2.6 6  0.79 7.2 1.9  0.84 5.4 2.5 1155, 1094, 1065, 1056, 1034, 980 

 Raman 0.66 8.5 1.6 7  0.25 8.5 1.6  0.39 10.5 1.3 / 

 HSI 0.74 7.1 1.9 7  0.43 9.6 1.4  0.57 9.2 1.5 / 

sucrose (g/kg) NIR 

11.0 - 81.9 17.8 

0.53 11.9 1.5 7  0.40 12.3 1.4  0.41 10 1.3 / 

 MIR 0.78 9.4 1.9 8  0.76 8.9 1.7  0.75 9.8 1.8 / 

 Raman 0.47 12.7 1.4 5  0.33 15.5 1.1  0.35 14.8 1.3 / 
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 HSI 0.61 11.1 1.6 7  0.15 16.3 1.1  0.27 15.1 1.2 / 

glucose (g/kg) NIR 

10.0 - 22.5 2.9 

0.35 2.3 1.2 4  0.31 2.6 1.1  0.39 2.2 1.3 / 

 MIR 0.44 2.2 1.3 7  0.43 2.2 1.3  0.49 2.0 1.4 / 

 Raman 0.11 2.9 1.0 8  0.03 2.8 1.0  0.09 2.8 1.0 / 

 HSI 0.41 2.2 1.3 4  0.27 2.4 1.2  0.37 2.3 1.3 / 

AIS (FW) NIR 

16.0 - 26.7 2.7 

0.34 2.3 1.2 5  0.36 2.2 1.3  0.31 2.5 1.1 / 

 MIR 0.42 2.2 1.2 10  0.57 1.8 1.5  0.51 1.9 1.4 / 

 Raman 0.10 2.9 1.0 6  0.10 2.7 1.0  0.11 2.90 0.9 / 

 HSI 0.35 2.3 1.2 6  0.21 2.5 1.1  0.30 2.4 1.1 / 

Notes: Puree spectra and reference data from four varieties (‘Golden Delicious’, ‘Braeburn’, ‘Granny Smith’ and ‘Royal Gala’) with different fruit thinning practices 

for Golden Delicious apples (50 - 100 fruits/ tree or 150-200 fruits/ tree), stress treatments for Braeburn apples (11 days at 24 ℃ or 2 months at 4 ℃), two processing 

recipes (70 ℃ for 15 mins with 3000 rpm grinding or 95 ℃ for 17 mins with 400 rpm grinding) and two refining conditions (refined at 0.5 mm or not refined). NIR 

spectra: SNV pre-treated and smoothed (13 windows) at 800-2500 nm; MIR spectra: the SNV pre-treated at 1800-900 cm-1; Raman spectra: the SNV pre-treated 

and smoothed (13 windows) at 1800-800 cm-1; HSI spectra: the SNV pre-treated and smoothed (3 windows) at 990-2450 nm. All results corresponded to 10-fold 

full-crossed validation tests. Rcv
2: determination coefficient of the full-crossed validation test; RMSEcv: root mean square error of full-cross validation test; RPD: the 

residual predictive deviation of full-crossed validation test, LVs: the optimal numbers of latent variables. PLS-R: partial least square regression; RF-R: random forest 

regression; SVM-R: support vector machine regression. 
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3.4 Comparison of NIR, MIR, Raman and HSI performances 

NIR spectroscopy, the easiest to apply and the most affordable spectroscopic 

technique in this work, showed an acceptable ability (2.3 < RPD < 2.6) to predict puree 

major chemical composition, including SSC, DMC, TA and pH. Such good NIR 

predictions will probably contribute to the development of the rapid routine evaluation 

of the composition of fruit-based products. For individual components, a good 

estimation was only obtained for malic acid, depending on its positive correlation with 

TA (R2 = 0.78) and pH (R2 = 0.76). However, this technique can not provide acceptable 

estimations of puree textural changes, in line with our conclusions in Paper IV. 

Compared to NIR, MIR technique had the potential to assess puree rheological 

properties, including both, viscosity and viscoelasticity. However, the predictions 

shown in paper I were less accurate (RPD > 2.0) than our works in paper II (RPD > 

2.4), which concerned purees presenting a larger range of rheological behaviors. 

Interestingly, among puree viscoelastic parameters, tan δ was the best estimated by MIR 

(RPD = 5.1). Compared to machine learning models (SVM and RF), PLS regressions 

generally showed a better ability to predict puree rheological and biochemical 

properties. However, for the puree particle structure (sizes and volume), random forest 

regression provided better predictions. The informative wavenumber regions at 1500-

1750 cm-1 and 900-1200 cm-1 should be considered for rheological and structural 

assessments of apple purees, which was in line with a previous work (Ayvaz, et al., 

2016) and the results of paper II. For biochemical composition, MIR coupled with PLS 

regression provided the best prediction of puree global quality traits (SSC, DMC, TA 

and pH) with the possibility to evaluate some individual components (malic acid and 

sucrose). The lower prediction of malic acid than of TA was probably due to its 

relatively low concentration (3.0 - 7.5 g/kg of malic acid and 3.5 – 11.1 g/kg of TA) and 

limited variations (SD = 1.0 g/kg of malic acid, SD = 2.2 g/kg of TA). For puree 

individual sugars, the higher internal correlations between fructose and SSC (R2 = 0. 

78) than between sucrose and SSC (R2 = 0. 51) probably explained the better prediction 

of fructose than of sucrose. 
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In this study, Raman technique showed a potential to discriminate different purees, 

according to variety and processing recipes (acc > 81.3%), but it was not able to predict 

puree rheological, structural and chemical parameters. However, Raman gives excellent 

biochemical predictions on homogeneous samples, such as commercial tomato purees 

(Baranska, et al., 2006) and honey products (Özbalci, et al., 2013; Pierna, et al., 2011), 

which contain high concentrations of the predicted components (lycopene in tomato 

and sugars in honey). It has also been used to detect the rheological changes of 

monotonous mixed food matrices (Nawrocka, Miś, & Szymańska-Chargot, 2016; 

Ngarize, Adams, & Howell, 2004). In this work, the unsatisfactory predictions using 

Raman spectroscopy could be due to i) the very weak spectral signals corresponding to 

the biochemical variations in apple purees (even after water evaporation before 

spectrum acquisition) and ii) the variable heterogeneity according to the puree refining 

and grinding, which make a barrier against an efficient light diffusion.  

The models based on the averaged NIR-HSI spectra of apple purees provided a 

significant improvement of puree discrimination and a slight increase in quality 

prediction in comparison with the results issued from a measurement of a limited 

sample area (~2 cm2) by NIR spectroscopy. The averaged NIR-HSI spectra, which 

contained a richer spectral information of puree heterogeneity than the local NIR 

spectra, could explain the better model performance (Cheng & Sun, 2017). However, 

both NIR spectroscopy and HSI technique had a limited ability to detect puree 

differences after refining and to predict their rheological and structural properties. 

Strangely, the PLS-DA models using the full number of HSI spectra of each puree had 

a relatively lower discriminating accuracy than their corresponding averaged spectra. 

Previous works noticed the heterogeinity of tested samples usually affected the NIR 

and HSI determination precisions (Prieto, Roehe, Lavín, Batten, & Andrés, 2009). The 

large heterogeneity, including irregular particle size and shape and their large water 

content on puree surface, could introduce a strong diffuse reflection and spectral noise 

during the HSI image acquisition. Although NIR-HSI on purees slightly improved the 

prediction of SSC and DMC than NIR results, the much larger volume of dataset and 
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the longer time needed for image pre-processing limited its use in comparison with NIR 

local measurements. 

Further, the AIS, which contributes to the rheological properties of processed puree 

products, was not well evaluated in this study whatever the technique used directly on 

puree samples. 

4. Conclusion 

 This study provided a first comprehensive assessment to choose the best techniques 

among NIR, MIR, Raman spectroscopy and HSI for evacuating apple puree variability 

and quality. MIR technique had the best performance to provide an accurate 

identification of puree properties due to apple variability (variety, fruit thinning and 

stress treatments) and processing conditions (heating, grinding and refining). It gave 

also a reliable evaluation of puree rheological and structural characteristics and 

composition (RPD values from 2.1 to 5.1). NIR and HSI techniques can be easier 

adapted to routine characterization of puree global parameters (soluble solids, titratable 

acidity and dry matter), but not of their textural changes. Raman spectroscopy offered 

an insufficient information to evaluate apple puree variability and quality. Clearly, 

Raman spectroscopy should not be prioritized in further studies on the determination 

of the properties of apple purees. 

 The current study also makes possible to consider future applications with NIR, 

NIR-HSI and MIR according to the industrial or research needs (speed of data 

acquisition and presentation of the sample). These techniques are very suitable for the 

development of Process Analytical Technology in order to trace samples and optimize 

conditions during processing. 
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Highlights of Paper I 

This study answered our first question in Part 1: 

What is the most appropriate method to identify the puree variability and 

detect puree physical, chemical and structural properties by using different 

vibrational spectroscopic techniques?  

⚫ MIR was the best tool to identify puree variability (> 91.7 % of correct 

classification) and to potentially predict average particle size (RPD = 2.9), 

viscosity (RPD ≥ 2.1) and viscoelastic properties (RPD > 2.3) of puree, 

⚫ NIR, MIR and HSI techniques had a good ability to estimate puree 

composition such as soluble solids (RPD > 2.5), titratable acidity (RPD > 2.4) 

and dry matter (RPD > 2.3). 

⚫ Raman spectroscopy could not provide sufficient assessment of puree quality. 

Consequently, NIR, MIR and HSI should be prioritized as process analytical 

technologies to detect the variability of purees and assess their texture and 

taste. 
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Paper II (Published) 

 According to our Paper I, MIR (or FTIR) technique has been proven as the best 

method to identify puree variability and satisfactorily predict their quality. It also gave 

an acceptable assessment of rheological properties. However, it stayed limited to 

predict cell wall (AIS) contents, while they are major determinants of texture. That 

could be due to the low sensitivity (cell wall contents are typically below 20 g/kg) and 

limited specific signals for cell walls, probably due to some strong interactions with 

water in fresh purees and signal similarity to soluble sugars. To overcome this 

limitation, sample preparation was investigated as a key point for MIR (FT-IR) 

spectral analysis to improve analytical results. Specifically, freeze-drying to reduce 

the water interferences or extracting cell wall materials to remove major soluble 

chemicals were prioritized. 

 Therefore, the possibility of MIR technique to obtain sufficient information for 

chemical, textural and rheological properties based on fresh, freeze-dried (removing 

water interactions) and cell wall materials (removing soluble chemicals) of raw apples 

and their corresponding purees was studied in paper II. The MIR spectra of 36 apple 

sets and the corresponding 72 purees, issued from different varieties, agricultural 

practices, storage periods and processing conditions were treated in order to: 

i) Evaluate how much sample preparation has improved the prediction of 

chemical, textural and rheological properties of purees (number of quality 

traits and the precision of prediction)  

ii) Identify signals that are specific of the changes related to apple 

processing. 
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1. Introduction 

Sample preparation is a key point for quality of analytical data. Infrared 

spectroscopy (near or mid-infrared), because of its integrative nature, is one of the main 

candidates for a rapid qualification of agricultural commodities and processed food, 

especially in the view of process analytical technology (PAT). Advanced techniques 

based on infrared spectroscopy offer the advantages of a minimal sample preparation 

and a rapid data acquisition. However, this questions the balance between data intensity 

and required sample preparation hence man-power: are the data acquired on “raw” 

samples sufficient for process monitoring, quality control or process comprehension? 

A specific point is also that foods are frequently highly hydrated and not stable, so that 

appropriate steps must be taken to preserve samples for later quality control. As the 

time consumption and cost of sample preparation are generally barriers to a rapid and 

precise determination by spectroscopy, knowing the most efficient sample 

pretreatments could contribute to improve analytical results as well as to provide 

informative options at both, laboratory and industrial scales. 

Different methods for the reference data acquisition such as HPLC, GC-MS or 

NMR (Bureau et al., 2013), types of spectroscopy or related hyperspectral images (NIR, 

MIR, Raman) (Baranska, Schütze, & Schulz, 2006) and modeling algorithms (Van 

Boekel, 2008) have been intensively compared on fruits. It seems also crucial to 

compare and determine the optimal sample form (fresh, freeze-dried or cell wall 

extracts) and the associated changes occurring during fruit processing, notably using 
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infrared spectroscopy which has the potential to be applied both, on-line and off-line.  

Direct ATR-FTIR estimations on fruit fresh homogenates have obtained good 

results to predict soluble solids content, dry matter content, titratable acidity, some 

individual sugars and organic acids (Bureau, Ścibisz, Le Bourvellec, & Renard, 2012; 

Ayvaz et al., 2016). As infrared spectroscopy is extremely sensitive to changes of 

hydrogen bonding (Jackson & Mantsch, 1995), the main drawback of spectral 

measurements is the low sensitivity and limited specific signals of chemical 

compositions under strong water interactions in fresh fruit suspensions, such as citric 

acid in apples (Bureau, Ścibisz, Le Bourvellec, & Renard, 2012), lycopene and β-

carotene in tomato (Baranska, Schütze, & Schulz, 2006). Moreover, classical 

measurements of rheological properties and particle size distribution of fruit products 

require costly rheometer, particle sizing equipment and experienced staffs. Therefore, 

one of the challenging works is to investigate the possibility of ATR-FTIR to estimate 

the specific rheological modifications (viscosity and viscoelastic parameters) and then 

to monitor textural changes (particle size and volume) for both, accurate determinations 

in scientific research or rapid and direct assessment in industrial processing. 

Much more information can be extracted from dry food commodities, such as the 

structural changes of cereals (Georget & Belton, 2006), micronutrients in fruits (Lu et 

al., 2011) and even cell wall content variations (Canteri, Renard, Le Bourvellec, & 

Bureau, 2019). To overcome the limitations observed on highly hydrated products, such 

as fruits, drying methods with as limited as possible alteration of composition and 

structure are needed. Thus, freeze-drying prevents evolution of samples under the 

action of endogenous enzymes (notably oxidation and hydrolysis). It also carries out a 

concentration due to water elimination, so that specific components present in low 

concentrations can have significant spectral absorptions. But freeze-drying is expensive 

and time-consuming, needing at least 24-48 hours. It allowed to obtain similar 

predictions of chemical compositions than those in fresh samples (de Oliveira, de 

Castilhos, Renard, & Bureau, 2014; Oliveira-Folador et al., 2018). Few detailed studies 

compared the differences and limitations of ATR-FTIR fingerprint regions on fresh and 

corresponding freeze-dried plant leaves (Durak & Depciuch, 2020). 
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ATR-FTIR applications to assess fruit textural properties (mainly focus on cell wall 

compositions) are always performed on their cell wall materials (AIS) (Canteri, Renard, 

Le Bourvellec, & Bureau, 2019; Szymanska-Chargot, Chylinska, Kruk, & Zdunek, 

2015). However, extracting the cell wall requires a large consumption of chemical 

solvents if starting from fresh samples (up to 1 L ethanol and 0.4 L acetone/ 1.0 - 1.5 g 

cell wall). The accelerated or pressurized solvent extractors (ASE, PSE) can allow 

multiplexing and thus a faster and less solvent-consuming cell wall preparation, but 

only from already freeze-dried samples. After removing all soluble components (mainly 

sugars and acids), specific signals related to pectins, cellulose and hemicelluloses have 

proven to be useful for the fast evaluation of cell wall polysaccharides during fruit 

growth and subsequent storage (Szymanska-Chargot, Chylinska, Kruk, & Zdunek, 

2015). Although some cell wall modifications in plants (Femenia, Garcı́a-Pascual, 

Simal, & Rosselló, 2003) and fruits (Cardoso et al., 2009) under heating and 

dehydration have been investigated by ATR-FTIR. However, for fruit processed purees, 

little work has been done on ATR-FTIR to detect their cell wall changes during 

processing and monitor rheological and mechanical properties (Ferreira, Barros, 

Coimbra, & Delgadillo, 2001). 

In this study, ATR-FTIR spectroscopy was applied on the corresponding raw apples 

and processed purees. Spectra were acquired on different kinds of homogeneous 

samples such as fresh (NF for non-freeze-dried), freeze-dried (FD) and cell wall 

extracts (AIS for alcohol insoluble solids) in order to: i) evaluate how much sample 

preparation improved the prediction of chemical, textural and rheological 

characteristics of purees (number of quality traits and their precision) and ii) identify 

signals specific of the variations which occur during apple processing. 

2. Materials and methods  

2.1 Plant Material 

Apples of two varieties: ‘Golden Delicious’ (GD) and ‘Granny Smith’ (GS) were 

harvested at commercial maturity in 2017 in an experimental orchard named La Pugère 

(Mallemort, Bouches-du-Rhône, France). Standard commercial fruit thinning practices 
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(Th+ to 50 to 100 fruits/tree) and no thinning (Th- to 150-200 fruits/tree) were 

compared during the ripening of ‘Golden Delicious’. The three obtained apple groups 

(Th+ GD, Th- GD and GS) were stored in a cold chamber at 4°C and at around 90% of 

humidity during one, three and six months (respectively T1, T3 and T6), except the first 

batch (T0) were analyzed and processed the day after harvest without any storage time. 

Each apple batch (T0, T1, T3 and T6) was divided into two subsets (Fig. 24):  

i) the first subset was dedicated to apples characterization: 3 replicates of 10 apples 

were selected and separated into two aggregate samples as described by Bureau (Bureau, 

Ścibisz, Le Bourvellec, & Renard, 2012). One sample corresponding to the NF sample 

was stored at -80°C and then homogenized at 11000 rpm with an Ultraturrax T-25 (IKA, 

Labortechnik, GmbH, Staufen, Germany) after 1.5 h of thawing at 22.5 °C for 

biochemical and spectral characterizations. The other sample corresponding to the 

freeze-dried (FD) was used to extract cell wall materials (AIS). Finally, 36 NF, FD and 

AIS samples (3 apple groups × 4 storage times × 3 biological replicates) of raw apple 

fruits were obtained.  

ii) the second sub-set was dedicated to puree processing: 3 replicates of apples (4 

kg each) were used to produce three puree lots. After sorting and washing, apples were 

cored and cut in 8 portions, then processed in a multi-functional processing system 

(Roboqbo, Qb8-3, Bentivoglio, Italy). Half of the each puree (2 kg) was refined with a 

0.5 mm (Ra) sieve (Robot Coupe C80 automatic refiner, Robot Coupe SNC, Vincennes, 

France) whereas the other half was not refined (NR). Finally, fresh puree samples (NF) 

were conditioned in two hermetically sealing cans: one was cooled at room temperature 

(22.5 °C) before the next-day measurements of rheological, textual and some chemical 

(soluble solids and titratable acidity) properties, while the other was freeze-dried (FD) 

and stored at -20 °C for AIS extraction. Thus, in total 72 NF, FD and AIS samples of 

purees were prepared and characterized, corresponding to 3 apple groups × 4 storage 

times × 2 refining levels × 3 biological replicates. 
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Fig. 24. Experimental scheme for apple and puree samples preparation, characterization 

using ATR-FTIR and reference analyses. 

2.2 Biochemical Analyses 

SSC, TA, DMC, individual sugars (glucose, fructose and sucrose) and malic acid 

were quantified based on the same method described in Paper I. Freeze-dried (FD) 

samples were acquired based on a freeze-dryer of 5 days upon reaching a constant 

weight. Cell wall materials (AIS) were isolated using the method proposed by Renard 

(Renard, 2005). and the cell wall contents (AIS contents) were expressed in both, fresh 

weight (FW) and dry matter weight (DW). Three biological replicates were 

characterized for each biochemical trait and each sample. 

2.3 Rheological Analyses 

The puree rheological measurements consisted in one rotational (flow curve) and 
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two oscillatory (amplitude and frequency sweeps) tests, carried out using a Physica 

MCR-301 controlled stress rheometer (Anton Paar, Graz, Austria) at 22.5 °C. 50 mL of 

each puree sample was placed in a C-CC27 with an inner radius of 14.46 mm measuring 

cup (Anton Paar, Graz, Austria). All tests were performed by a six blade vane geometry 

FL 100/6W with a radius of 11 mm (Anton Paar, Graz, Austria). The flow curves were 

performed after a pre-shearing period of 1 minute at 50/s followed by 5 minutes at rest. 

The viscosity was then measured at a controlled shear rate range of [10; 250]/s on a 

logarithmic ramp, at a rate of 1 point every 15 seconds. The values of the viscosity at 

50/s and 100/s (η50 and η100 respectively) were kept as indicators of the sensorial puree 

texture (Engelen & de Wijk, 2012; Espinosa-Muñoz et al. 2012) during consumption. 

Amplitude Sweep (AS) tests were performed at an angular frequency of 10 rad./s in the 

deformation range of [0.01; 100] %, in order to determine the linear viscoelastic range 

of the purees and the yield stress, defined as the crossing point between the storage 

modulus (AS-G’) and the loss modulus (AS-G’’) curves. Frequency Sweep (FS) 

measurements were operated within the linear viscoelastic region as determined by the 

AS test (0.05%) in the angular frequency range of [0.1; 100] rad./s. For means of 

comparison the storage and loss moduli (FS-G’ and FS-G’’) were taken at 1 rad./s to 

evaluate the viscoelastic properties of the studied purees. Puree samples were diluted 

in distilled water to separate particles and stained with calcofluor white at 0.1 g/L and 

highlighted with a 365 nm UV lamp (Soukup, 2014). A high-resolution digital video 

camera (Baumer VCXU31C, Baumer SAS, France) with a macro lens (VSTech 0513, 

VS Technology Corporation, Japan.) was used to visualize the distribution and 

dispersion of puree particles. The particle sizes averaged over volume d(4:3) (de 

Brouckere mean) and over surface area d(3:2) (Sauter mean) were measured with a 

laser granulometer (Rawle, 2003) (Mastersizer 2000, Malvern Instruments, Malvern, 

UK).  

2.4 ATR-FTIR spectrum acquisition 

ATR-FTIR spectra were collected at room temperature using a Tensor 27 FTIR 

spectrometer (Bruker Optics, Wissembourg, France) equipped with a horizontal 

attenuated total reflectance (ATR) sampling accessory and a deuterated triglycine 
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sulphate (DTGS) detector. Three replications of spectral measurement were performed 

on all raw and processed apples for fresh (NF for non freeze-dried), freeze-dried (FD) 

and cell wall (AIS) samples. The spectra of all samples were acquired in random order. 

The instrument adjustment and spectral acquisition were controlled by OPUS software 

Version 5.0 (Bruker Optics®). The spectra of raw and processed apples were acquired 

using two different crystals. A big zinc selenide (ATR-ZnSe) crystal with dimensions 

of 6 cm x 1 cm and six internal reflections was used for fresh samples (apple 

homogenates and purees) containing water. For the freeze-dried and cell wall samples, 

a small crystal was used characterized by a single-reflectance horizontal ATR-Diamond 

Cell (Golden Gate Bruker Optics) equipped with a press tip flap system to press sample 

on the crystal always in the same way. Spectra (32 scans for ATR-ZnSe and 16 scans 

for ATR-Diamond) were collected from 4000 cm-1 to 650 cm-1 and were corrected 

against the background spectrum of air.  

2.5 Statistical Analyses and Chemometrics 

After ensuring normal distribution with a Shapiro-Wilk test (α=0.05), the reference 

data were presented as mean values and the data dispersion within our experimental 

dataset expressed as standard deviation values (SD). Analysis of variance (ANOVA) 

was carried out to determine the significant differences due to the controlled factors 

(thinning, storage and puree mechanical refining) on both apples (Table 25) and purees 

of each variety (Table 26 and Table 27) using XLSTAT (version 2018.5.52037, 

Addtionsoft SARL, Paris, France) data analysis toolbox. 

Spectral pre-processing and multivariate data analysis were performed with Matlab 

7.5 (Mathworks Inc. Natick, MA) software using the SAISIR package (Bertrand & 

Cordella, 2008). The absorption band between 2400-2300 cm-1, due to carbon dioxide, 

was discarded prior to the calculation. All FT-IR data were pre-processed with baseline 

correction, standard normal variate (SNV) and a derivative transform calculation 

Savitzky–Golay method, gap size = 11, 21, 31) of first or second order. After pretests 

of these pre-processing treatments applied on several different spectral regions, the best 

results of prediction and discrimination were obtained on the range 1800-900 cm-1, 

which has been already highlighted (Bureau et al., 2009). Particularly, Principal 
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Component Analysis (PCA) and Factorial Discriminant Analysis (FDA) were applied 

on SNV pre-treated spectra (in Part 3.1 and Part 3.2). The specificity and sensitivity 

values of FDA discriminations were calculated by the already reported method of 

Nargis (Nargis et al., 2019), in order to better evaluate sample differentation. For PLS 

(Partial least square) modelling (in Part 3.3), the baseline correction coupled with SNV 

pre-processing had the best performances to correct multiplicative interferences and 

variations in baseline shift, and reached the best prediction results. 

Leave-one-out PLS models were developed using spectra of fresh (NF), freeze-

dried (FD) and AIS of puree samples, for which the three spectral matrices (NF, FD and 

AIS) corresponded to the same reference dataset. A total number of 72 averaged spectra 

for each puree form (NF, FD and AIS) corresponding to 3 apple groups (GS, GD Th+ 

and GD Th-) × 4 storage times × 2 puree refining modalities × 3 biological replicates 

was used as modelling dataset. PLS model performance was assessed using the 

determination coefficient of cross-validation (Rcv
2), the root-mean-square error of 

cross-validation (RMSECv), the number of latent variables (LVs), the ratio of the 

standard deviation values (RPD) and the linkable spectral regions (Table 28 and Table 

29). 

3. Results and discussion 

3.1 Spectral characterization of NF (non-freeze-dried) apple purees  

PCA and FDA applied on the spectra of NF puree samples successfully allowed to 

detect puree differences coming from the raw apple variabilities (variety, fruit thinning 

and storage period) (Fig. 25). They also highlighted the modifications of puree structure 

by the mechanical refining over several months of apple storage (Fig. 26).  

In Fig. 25, the first principal component (PC1) clearly discriminated the two 

varieties (‘Golden Delicious’ and ‘Granny Smith’) and thinning practices for Golden 

delicious (Th- and Th+), in relation with the fructose variation followed at 1061 cm-1 

(Bureau, Cozzolino, & Clark, 2019). Moreover, the peak at 1022 cm-1, reported as a 

peak specific to sucrose in apple juices (Leopold, Leopold, Diehl, & Socaciu, 2011), 
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appeared to be the main contributor of the second principal component (PC2), which 

distinguished the storage times. Along the PC2 axis, the discrimination of storage 

durations from T0 at the top to T6 at the bottom was in relation with the decrease of 

sucrose (1022 cm-1) and the increase of fructose (1065 cm-1) in purees, in accordance 

with the reference chemical dataset (Table 26). Consequently, factors such as variety, 

thinning practice and storage duration affecting raw apple characteristics induced 

changes in the corresponding purees after processing. ATR-FTIR applied directly on 

processed purees could then be useful for traceability of these effects impacting raw 

fruits based on the specific C-C and C-O-C bonds of carbohydrates, such as 1022 cm-1, 

1061 cm-1, 1065 cm-1. 

 

Fig. 25. PCA on the SNV pre-treated ATR-FTIR spectra (900-1800 cm-1)of purees (NF 
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samples) prepared with normal thinned ‘Granny Smith’ apples (GS marked with △), 

thinned (Th+) ‘Golden Delicious’ apples (GD Th+ marked with ○) and non-thinned 

‘Golden Delicious’ apples (GD Th- marked with □) stored in cold storage room (4°C) 

during 0, 1, 3 and 6 months (T0, T1, T3 and T6): (a) the scores plot of the two first 

components (PC1 and PC2); (b) the loading plot of PC1; (c) the loading plot of PC2. 

According to the reference data (Table 26) and their PCA results (Fig. 27) the 

mechanical refining resulted a clear reduction of cell wall contents (AIS in DW and 

FW), viscosity (η50 and η100), viscoelasticity (yield stress, G’ and G’’ in both oscillatory 

tests), particle size (d(4:3) and d(3:2)) in T0 purees prepared with apples at harvest (T0). 

However, gradually over apple storage, less differences were detected between the non-

refined (NR) and refined (Ra) purees. The non-refined (NR) 'Golden Delicious' and

‘Granny Smith’purees were characterized by large apple particles and only few small 

separated cells at the beginning of cold storage (T0) (Fig. 26). The refining treatments 

mainly led to lower particle size by removing the big puree particles (Fig. 26a). 

However, at the end of storage (T6), both non-refined (NR) and refined (Ra) purees 

were mostly composed of single cells and no clear difference was observed between 

them (Fig. 26d). This similar structure of NR and Ra purees at T6 could be due to an 

increase in cell separability linked to a decrease of the intermolecular bonding between 

cell wall polymers and a notable increase of pectin solubility during apple storage 

(Varela, Salvador, & Fiszman, 2007). 

FDA performed on the spectra of all NR and Ra purees (NF samples) at each apple 

storage time gave highly consistent observations with the reference data and 

macroscopic images showed above (Fig. 26). According to the third factorial 

components (F3) (F1 and F2 for variety and thinning discriminations, Fig. 28), the two 

puree refining levels were well separated at T0, then appeared progressively overlapped 

at T3 and T6 (Fig. 26). Especially along the F3 axis, at T0, intensive spectral variations 

were related to the decrease of soluble organic acids (1718 cm-1 and 1709 cm-1), soluble 

polysaccharides, pectins and absorbed water (1740 cm-1, 1695 cm-1, 1682 cm-1, 1668 

cm-1, 1655 cm-1 and 1468 cm-1) between the two refining conditions (Fig. 29). Although 
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the peaks of carbohydrates at 1019 cm-1 and 1049 cm-1 (glucose/fructose) and 1155 cm-

1 (the glycosidic linkage) are known to successfully monitor the consistency of tomato 

juice (Ayvaz et al., 2016), the region between 1750 and 1450 cm-1 highly contributed 

to the discrimination of apple purees according to their particle size and their 

rheological behavior after mechanical refining treatments. These differences between 

tomato and apple might be due to the nature of the datasets and in particular the impact 

of post-harvest storage on chemical compositions (sugars and acids) and textural 

properties (pectins degradations) as confounding factors in this apple processing 

experiment.  

 

Fig. 26. FDA on the SNV pre-treated ATR-FTIR spectra (900-1800 cm-1) of non-refined 

(* with 95% confidence ellipse circles) and refined (△ with 95% confidence ellipse 
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circles) ‘Golden Delicious’ and ‘Granny Smith’ purees at harvest (T0), after one-month 

(T1), three months (T3) and six months (T6) of storage at 4°C. Macroscopic laser 

scanning images of puree particle distributions at harvest (T0) and after six-month 

storage (T6). 
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Fig. 27. (a) PCA on the reference data of purees prepared with apples (Golden Delicious and Granny Smith) stored in a cold storage room until 

six months (T0, T1, T3 and T6) and submitted to two refining levels (‘Non-refined’ and ‘Refined’) after cooking; (b) the first two PCs loading plot 

of references data.
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Fig. 28. Map of the first two discriminant factors (F1 and F2) of FDA results on the 

SNV pre-treated ATR-FTIR spectra (900-1800 cm-1) of non-thinned and thinned 

‘Golden Delicious’ (GD) and ‘Granny Smith’ (GS) purees at harvest (T0), after one-

month (T1), three months (T3) and six months (T6) of storage at 4°C. 
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Fig. 29. The third factorial loadings (F3) of the FDA discriminating the non-refined (NR) and Refined (Ra) ‘Golden Delicious’ and ‘Granny Smith’ 

purees between 1800 and 900 cm-1 at: (a) harvest (T0); (b) after six month cold storage (T6). 
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3.2 Spectral evaluation of the link between fresh and processed apples 

FDA results showed a good ability to discriminate puree processing changes (Fig. 

30) and variety differences (Fig. 31), according to the first two discriminant factors (F1 

and F2). Whatever the sample preparation (NF, FD and AIS), a clear separation was 

observed between raw apples (homogenates) and processed purees (Fig. 30 a, c, e). The 

changes occurring during processing between raw (homogenates) and processed 

(purees) products were illustrated on the first factorial axis (F1) for the NF samples 

(with 97.2% specificity and 98.6% sensitivity) and AIS materials (100% specificity and 

sensitivity), and on the second factorial axis (F2) for FD samples (100% specificity and 

sensitivity).  

Combining the main discriminant coefficients of the FDA models separating raw 

and processed materials (F2 for NF and FD samples, F1 for AIS samples) (Fig. 30 b, d, 

f) and using the absorption band assignments described in literature, allowed to identify 

phenomena occurring during apple processing. In both NF and FD samples, highly 

consistent variations of spectral intensity were commonly found between 1800 and 

1500 cm-1, this region giving overlapped information related to pectins, proteins, 

phenolics and absorbed water (Kačuráková et al., 1999), detailed in the following 

section: 

- The increase of the bands at 1750 cm-1 in NF (Fig. 30b), 1788 cm-1 and 949 cm-1 

in FD (Fig. 30d) were specific of C=O, C-O and C-C stretching vibrations of carboxylic 

acids and polysaccharides (Canteri, Renard, Le Bourvellec, & Bureau, 2019; 

Kyomugasho et al., 2015). These observations were in accordance with the increase of 

soluble fiber fractions and total polysaccharide contents after apple cooking (Colin-

Henrion, Mehinagic, Renard, Richomme, & Jourjon, 2009). 

- The bands at 1610-1620 cm-1 (1614 cm-1 in NF; 1618 cm-1 in FD) have been 

reported to correspond to the vibration of C=O from protein or pectic acid ester (Abidi, 

Cabrales, & Haigler, 2014). These peaks were consistent with the aforementioned 

pectic absorption peaks (1750 cm-1 and 1788 cm-1), in accordance with the increase of 

pectin content in purees. In the same way, this absorbance displays the same variations 
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in a simplified experiment of apple cell wall (mainly soluble pectins) submitted to 

similar puree processing conditions (100°C for 20 min at pH 3.0) (Liu, 2019). In 

addition, the negligible concentration of proteins in fresh and processed apples (0.17-

0.57 g/100 g FW) limited the hypothesis concerning the protein change during apple 

processing (U.S. Department of Agriculture, Agricultural Research Service , 2019). 

- the strong decrease of bands near 1630 cm-1 and 1560 cm-1 could be attributed to 

the degradation of phenolic compounds during processing. These bands have been 

already identified to quantify the polyphenol contents in freeze-dried apples (Bureau, 

Ścibisz, Le Bourvellec, & Renard, 2012).  

- the specific bands of soluble acids (1712 cm-1 in NF, 1718 cm-1 in FD) (Clark, 

2016) and of sugars (fructose at 1084 cm-1 and 1061 cm-1; sucrose at 1113 cm-1) (Bureau, 

Cozzolino, & Clark, 2019), which have been validated with standard chemicals in ATR-

FTIR, could partially contribute to the dynamics of puree changes. These spectral 

variations relating the decreases of acid contents and increases of fructose at 1712 cm-

1 were also in line with the results of chemical measurements (Table 25 and Table 26).  

In cell wall materials (AIS), two negative peaks at 1100 cm-1 and 984 cm-1 (Fig. 

30f), could be attributed to the solubilization of the cell wall pectins after thermal 

processing (Coimbra, Barros, Barros, Rutledge, & Delgadillo, 1998; Kacurakova, 

Capek, Sasinkova, Wellner, & Ebringerova, 2000), consistent with the acid hydrolysis 

and β-elimination of pectins depolymerization while apple processing (Le Bourvellec 

et al., 2011). Conversely, two positive peaks at 1595 cm-1 and 1030 cm-1 could be linked 

to the increase of lignin (Garside & Wyeth, 2003) and cellulose contents (Fasoli, et al., 

2016; Schulz & Baranska, 2007) in cell wall materials. A possible explanation is the 

depolymerization of cell wall polysaccharides (mainly pectins) during maturation 

resulting in a relative enrichment of lignin and cellulose in comparison with pectins 

after apple processing. 

ATR-FTIR detected the processing changes from raw apples to purees by scanning 

fresh, freeze-dried and cell wall samples. Particularly, spectra of fresh and freeze-dried 

samples, i.e. with or without water, provided highly consistent information on internal 

soluble matters (sugars, acids, pectins and phenolics). Concerning the cell wall 
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depolymerization (mainly pectin solubilization and galactose loss), these changes could 

be detected only by scanning the cell wall materials (AIS), thus highlighting the 

solubilization of pectins diffusing from pulp to serum (Burgy et al., 2018; Sila et al., 

2009). 

 

Fig. 30. Maps of Factorial Discriminant Analysis (FDA) performed on the SNV-pre-

treated ATR-FTIR spectra (900-1800 cm-1) of all fresh apple homogenates (named 

‘Ho’) and the corresponding processed purees (named ‘Pu’) with: (a) fresh samples 
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(‘NF’), (c) freeze-dried samples (‘FD’), (e) cell wall samples (‘AIS’); (b) the second 

factorial score (‘F2’) of fresh samples, (d) the second factorial score (‘F2’) of freeze-

dried samples (‘FD’); (f) the first factorial score (‘F1’) of cell wall samples. 

 

 

Fig. 31. Maps of Factorial Discriminant Analysis (FDA) performed on the SNV-pre-

treated ATR-FTIR spectra (900-1800 cm-1) of all homogenates and purees of Golden 

Delicious (‘GD’) and Granny Smith (‘GS’) with: (a) fresh samples (‘NF’), (b) freeze-

dried samples (‘FD’), (c) cell wall samples (‘AIS’). 

3.3 Prediction of quality traits: comparison according to sample forms 

Acceptable to good predictions of SSC, TA. DMC, fructose and malic acid could 

be obtained on fresh (NF) and/or freeze-dried (FD) purees by ATR-FTIR, giving RPD 

from 3.1 to 5.2 (NF) and from 3.6 to 7.6 (FD) (Table 28).  

The prediction of global fruit quality traits, such as SSC and DMC, depended on 

two major spectral peaks, respectively, related to the sugars in NF (1061 cm-1) (Bureau, 
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Cozzolino, & Clark, 2019) and to the acids in FD (1724 cm-1) (Clark, 2016). In purees, 

the prediction accuracy of these two quality traits was similar in NF and FD samples 

with a Rcv
2 higher than 0.94 for SSC and higher than 0.89 for DMC. A good correlation 

between SSC and DMC in purees (R2=0.78) and the similar related spectral signals used 

in models (mainly 1724 cm-1 and 1061 cm-1) explained the good prediction of both SSC 

and DMC in NF and FD samples. For the third global quality trait, TA, its prediction 

was excellent with RPD higher than 6 in NF and FD samples. A particularly strong 

absorption at 1718 cm-1 was used in the TA models in both NF and FD samples. 

Concerning the main individual sugars and acids (sucrose, fructose and malic acid), 

ATR-FTIR on FD samples provided more accurate prediction results (Rcv
2>0.87 and 

RPD>3.2) than on NF samples (Rcv
2>0.79 and RPD>2.3). For fructose and sucrose, the 

regression coefficients of the models showed numerous characteristic peaks in the 

region 1150-900 cm-1 in FD samples. But, despite the similar typical peaks, specific 

peaks such as 1034 cm-1 for sucrose and 1084 cm-1 for fructose were detected and used 

in their respective models. The lower RPD and the higher RMSECv in NF than in FD 

samples were due to the presence of water leading to a lower concentration of 

components and then a lower sensitivity to their variations. Moreover, to obtain the best 

prediction of sugars in fresh samples, the spectral region 1700-1550 cm-1 specific to 

soluble substances, was useful. In fresh samples, the linear models for TA, SSC, DMC 

and malic acid prediction depended foremost on the sugar absorption (fructose and 

sucrose), because of their relatively higher total concentrations (99.4-228.9 g/kg FW) 

than those of acids (TA: 25-109.1 meq H+/kg FW). After freeze-drying, the specific 

spectral area (1725-1710 cm-1) corresponding to acidity (Clark, 2016) became the main 

area of PLS models, due to their larger variations during storage than those of individual 

sugars.  

Another quality trait of interest is the AIS contents, which contributes to the 

rheological properties of the processed apple purees products (Espinosa-Muñoz et al. 

2012). The prediction of AIS contents is acceptable with RPD of 3.3 on FD purees, 

when expressed in dry matter (DW). Its prediction was not possible directly on NF 

purees. The significant signals at 985 cm-1 corresponding to CH stretching of cellulose 
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(Fahey, Nieuwoudt, & Harris, 2017) and at 1147 cm-1 for C-O-C vibration of glycosidic 

bound between uronic acids (Coimbra, Barros, Barros, Rutledge, & Delgadillo, 1998) 

were in line with the previous PLS models built to predict AIS yield in freeze-dried 

fruit and vegetables (Canteri, Renard, Le Bourvellec, & Bureau, 2019).  

Briefly, ATR-FTIR technique worked well to evaluate global quality traits of 

interest in apple purees: SSC, TA and DMC. The prediction of cell wall contents (AIS) 

was possibility only on freeze-dried apple purees. Concerning the detailed composition 

including the individual components, the prediction was possible directly on fresh puree 

for malic acid whereas the prediction of the main individual sugars (fructose and 

sucrose) required the puree freeze-drying. The prediction of glucose was not acceptable 

in apple purees whatever the tested conditions. 

Surprisingly, prediction was acceptable (Rcv
2 >0.87, RPD >3.1) for rheological 

parameters such as puree viscosity (η50 or η100) and visco-elasticity (G’, G’’ in both 

amplitude and frequency sweep tests and yield stress) on FD samples with less than 10 

LVs and was better than on NF and AIS samples (Table 29). The single shear rate value 

at 50/s (η50) has been described to be the best correlated with the in-mouth texture 

perception of fluid foods (Chen & Engelen, 2012). For the two parameters measured at 

η50 and η100, predictions were better in FD samples than in NF and AIS samples. 

Particularly, two main spectral areas (1718 cm-1 and 1620-1595 cm-1) in NF and FD 

samples appeared to be highly relevant to predict the puree viscosity. Differently, in 

AIS samples, the two major peaks (1018 cm-1 and 1110 cm-1) linked to the viscosity 

prediction have been conventionally attributed to the pectin changes in fruit cell walls 

(Coimbra, Barros, Barros, Rutledge, & Delgadillo, 1998). For the specific viscoelastic 

parameters of purees (AS-G’, AS-G’’ and yield stress) by amplitude sweep tests, their 

prediction by ATR-FTIR was excellent in FD samples with RPD values higher than 3.4. 

The yield stress, corresponding to the moment when the puree starts to flow at the 

macroscopic level, could be predicted directly on NF purees with the better RPD and 

RMSECv than on FD samples. From frequency sweep tests (FS), the gel-like behaviors 

(FS-G’ > FS-G’’) of all purees could be well estimated in FD samples (Rcv
2> 0.90), even 

with a large variation of FS-G’ and FS-G’’ (Table 27). Surprisingly, fresh NF samples 
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were the suitable sample type to evaluate the particle size, both d(4:3) and d(3:2), with 

a good performance of the PLS models (RPD>3.0).  

Although acceptable results of PLS regression were obtained on the three sample 

types for the prediction of puree rheological properties (viscosity and viscoelasticity) 

and particle information (sizes and volume), it is worth signaling the differences of their 

fingerprint peaks: i) for fresh NF samples, the major region between 1750 and 1500 cm-

1 was attributed to the absorbed water and complex soluble substances (pectins, 

polyphenols and proteins); ii) for cell wall AIS extracts, the typical peaks (1018 cm-1, 

1083 cm-1) were mainly related to their pectic and phenolic variations; iii) for freeze-

dried FD samples, the specific peaks, 1500-1750 cm-1 and 1200-900 cm-1, combining 

with those observed separately in NF and AIS samples were used. The limited spectral 

sensitivity for the fresh suspensions (NF) and the restricted variations for the cell wall 

extracts (AIS) resulted in a less accurate prediction of the rheological behaviors than 

for freeze-dried FD samples. These results demonstrated the possibility of ATR-FTIR 

technique to accurately estimate viscosity, elasticity and the particle distributions 

directly on freeze-dried purees (FD). However, ATR-FTIR on fresh purees (FD) had a 

good ability to directly evaluate the particle size and properties (RPD>3.0), and also 

can probably to be used to evaluate the rheological behaviors (viscosity and 

viscoelasticity) according the results of RPD values over 2.5 (Nicolai et al., 2007). 

4. Conclusion 

As far as we know, this is the first report concerning the assessment of quality 

variations in fruit products during processing depending on ATR-FTIR spectral 

information of the same samples but characterized as fresh, freeze-dried and cell wall 

extracts. Direct spectral measurements on fresh samples could provide a reliable 

assessment of texture and major composition characteristics of purees. Thus, ATR-

FTIR technique can be adapted to routine analysis in fruit industries, a simple method, 

using few steps for manufacturers. Long-time freeze-drying preparations still keep the 

stability and consistency of the ATR-FTIR signals in comparison with those of fresh 

samples, and provided more detailed assessments of rheological properties and cell wall 
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contents. ATR-FTIR on cell wall materials was the only way to identify the variations 

of cell wall compositions, but not enough to overview the changes during fruit 

processing. 

Briefly, ATR-FTIR associated with suitable sample pre-treatments in fruit 

processing could offer sufficient information for the industrial and research demands. 

Balancing the pre-treated methods to stabilize samples and knowing the potential 

ability of infrared spectroscopy are both crucial for rapid and accurate analyses in fruit 

processing. Based on our results, future works could be extended to a wide span of 

complex processing strategies (drying, juicing, fermentation etc.) and/or operational 

units.
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Table 25. Reference data of fresh apples including different varieties, agronomic conditions and times of a cold storage. 

Variety 

Y
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 AIS content AIS content DMC SSC TA glucose  fructose  sucrose malic acid 

mg/g FW mg/g DW g/g FW °Brix meq/kg FW g/kg FW g/kg FW g/kg FW g/kg FW 

Granny Smith 2017 

T0 Th - 38.49  256.57  0.151  11.10  97.83  21.35  43.56  34.45  6.04  

T1 Th - 26.73  182.19  0.149  11.80  103.43  21.59  26.11  40.51  6.09  

T3 Th - 24.30  169.68  0.145  11.57  85.97  23.15  29.19  36.41  4.60  

T6 Th - 23.02  161.21  0.143  10.77  60.90  21.64  50.41  30.06  3.47  

SD     6.5 39.8 0.004 0.5 17.3 1.48 11.3 6.1 1.2 

F-value and significance Storage periods 
136.52  142.52  3.47  4.40  115.27  0.91  3.16  1.88  63.30  

*** *** ns * *** ns ns ns *** 

Golden Delicious 2017 

T0 Th - 26.82  154.66  0.174  13.53  64.93  24.08  67.47  59.19  4.38  

T1 Th - 23.18  136.38  0.174  14.43  55.90  21.72  65.57  65.26  3.41  

T3 Th - 24.37  137.98  0.175  14.53  50.40  20.97  58.67  59.29  2.38  

T6 Th - 19.94  121.41  0.164  12.80  26.50  22.04  76.36  46.01  2.58  

T0 Th + 49.41  218.02  0.225  17.37  84.00  20.93  96.27  86.28  6.50  

T1 Th + 32.24  153.48  0.209  15.87  68.40  17.07  67.82  80.51  5.03  

T3 Th + 28.14  145.54  0.194  16.40  61.23  15.66  65.62  82.76  3.49  

T6 Th + 27.25  133.39  0.204  16.93  34.50  23.73  89.27  57.17  2.27  

SD     8.7 28.7 0.021 1.6 17.9 3.1 13.4 14.2 1.4 

F-value and significance 

Storage periods 
117.99  100.28  21.19  4.41  315.68  14.07  19.20  45.97  227.70  

*** *** *** ns *** *** *** *** *** 

Fruit thinning 
332.73  97.66  535.29  432.74  146.14  22.40  28.10  159.05  160.52  

*** *** *** *** *** *** *** *** *** 

Data expressed in Fresh weight (FW) or Dry matter weight (DW); values correspond to the mean of 3x10 apples. Four storage periods at 4°C: from harvest (T0), one (T1), three 

(T3) and six months (T6). Two conditions of fruit load: non-thinning with 100% number of apples (Th-) and thinning with 50% number of apples (Th+) per tree. Two refining 

conditions of purees with 0.5 mm (Ra) and non-refining (NR). In grey, one way- ANOVA results of Granny Smith apples and two-way ANOVA results of Golden Delicious apples. 

ns, *, **, ***: Non significant or significant at P < 0.05, 0.01, 0.001 respectively. 
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Table 26. Chemical and biochemical data of processed purees including different varieties, agronomic conditions and times of a cold storage.  

Variety 
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AIS content AIS content DMC SSC TA glucose  fructose  sucrose malic acid 

mg/g FW mg/g DW g/g FW °Brix meq/kg FW g/kg FW g/kg FW g/kg FW g/kg FW 

Granny Smith 2017 

T0 Th - NR 45.2  267.6  0.169  10.5  101.5  20.3  50.7  58.0  8.5  

T1 Th - NR 31.5  185.3  0.170  11.5  98.1  18.5  51.0  60.6  7.5  

T3 Th - NR 24.2  147.1  0.164  11.3  86.5  23.0  47.3  46.6  6.1  

T6 Th - NR 29.3  177.4  0.165  10.6  63.6  21.4  43.0  35.7  5.2  

T0 Th - Ra 20.5  126.1  0.164  10.4  107.8  19.8  54.7  55.1  7.9  

T1 Th - Ra 17.6  108.0  0.163  11.5  100.7  19.4  49.8  61.9  7.4  

T3 Th - Ra 23.2  142.9  0.162  11.6  88.0  22.9  51.2  51.9  6.3  

T6 Th - Ra 24.7  152.2  0.162  11.2  64.3  22.6  53.4  34.6  5.2  

SD       47.7 8.4 0.005 0.51 16.2 2 4.1 11 1.2 

F-value and significance 

storage times 
20.4  27.6  0.6  28.5  619.5  13.4  3.4  34.1  163.6  

*** *** ns *** *** *** * *** *** 

refining levels 
146.8  183.2  3.8  5.2  14.2  0.7  16.5  0.1  1.1  

*** *** ns * ** ns *** ns ns 

Golden Delicious 2017 

T0 Th - NR 31.6  164.5  0.192  13.4  58.1  18.9  50.5  66.7  4.5  

T1 Th - NR 27.6  147.2  0.188  15.0  54.4  15.4  49.4  59.1  2.8  

T3 Th - NR 27.3  140.0  0.195  14.1  46.7  18.6  84.1  84.8  3.6  

T6 Th - NR 27.6  145.7  0.189  13.8  26.8  23.0  85.1  77.3  2.7  

T0 Th - Ra 18.3  126.6  0.197  12.6  59.0  24.5  45.2  43.5  3.2  

T1 Th - Ra 20.8  113.8  0.183  14.5  48.6  17.4  57.4  67.3  3.3  

T3 Th - Ra 22.3  116.0  0.192  14.1  48.5  19.1  79.0  88.5  3.6  

T6 Th - Ra 21.3  118.7  0.179  13.8  27.0  22.1  82.9  65.3  2.7  

T0 Th + NR 41.1  193.6  0.206  15.5  70.9  23.5  85.3  64.4  5.5  

T1 Th + NR 31.9  150.8  0.213  17.6  69.3  16.8  80.3  115.9  5.6  

T3 Th + NR 31.6  143.3  0.221  16.9  59.9  13.8  88.0  102.5  4.9  

T6 Th + NR 34.8  150.3  0.231  17.5  34.7  23.8  95.7  44.0  3.6  

T0 Th + Ra 24.8  117.3  0.208  16.5  70.6  14.8  82.3  65.3  5.8  

T1 Th + Ra 25.4  121.8  0.208  16.5  71.4  17.8  81.3  118.6  5.9  

T3 Th + Ra 25.9  118.1  0.219  16.8  60.1  14.4  88.5  108.6  5.2  

T6 Th + Ra 29.5  124.0  0.238  17.4  36.0  24.5  97.0  57.3  3.7  

SD       18.5 5 0.019 1.7 15 3.8 16.6 24.1 1.2 

F-value and significance storage times 
1.9  5.7  21.4  20.0  415.9  28.9  57.6  64.4  28.5  

ns ** *** *** *** *** *** *** *** 
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refining levels 
140.9  170.1  8.6  3.0  0.0  0.0  1.5  1.9  0.1  

*** *** ** ns ns ns ns ns ns 

fruit thinning 
68.3  0.7  432.5  331.0  308.3  3.9  41.7  19.3  191.4  

*** ns *** *** *** ns *** *** *** 

Data expressed in Fresh weight (FW) or Dry matter weight (DW), values correspond to the mean of 3 puree lots (4kg of each). Four storage periods at 4°C: from harvest (T0), 

one (T1), three (T3) and six months (T6); two conditions of fruit load: non-thinning with 100% number of apples (Th-) and thinning with 50% number of apples (Th+) per tree; 

ns, *, **, ***: In grey, standard derivation (SD) of two puree varieties, two way- ANOVA results of Granny Smith purees and three-way ANOVA results of Golden Delicious 

purees. ns, *, **, ***: Non-significant or significant at P < 0.05, 0.01, 0.001 respectively. Cell wall content: ‘AY’; dry matter contents: ‘DMC’, Soluble solid contents: ‘SSC’; 

titratable acidity: ‘TA’.  
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Table 27. Rheological and textural of processed purees from different varieties, agronomic conditions and times of a cold storage. 

Variety 
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CSR (η50) CSR (η100) AS-G' AS-G'' Yield point FS-G' FS-G'' d 4:3 d 3:2 

Pa.s Pa.s (Pa) (Pa) (Pa) (Pa) (Pa) - - 

Granny Smith 2017 

T0 Th - NR 1.52 0.91  2980.6 786.1 31.0 2211.4 509.6 779.7 402.1 

T1 Th - NR 1.29 0.84  2626.6 683.6 30.1 2021.2 467.2 814.2 416.7 

T3 Th - NR 1.17 0.72  2160.5 540.1 14.2 1585.0 361.5 412.2 272.6 

T6 Th - NR 1.05 0.66  2356.0 583.1 15.0 1873.2 446.6 347.8 246.3 

T0 Th - Ra 0.53 0.35  156.0 62.0 10.5 58.7 15.3 593.3 301.7 

T1 Th - Ra 0.34 0.26  108.6 35.7 5.6 102.7 25.7 604.7 294.9 

T3 Th - Ra 0.79 0.48  1341.9 324.0 9.2 1036.7 213.2 359.7 252.4 

T6 Th - Ra 0.79 0.48  1729.1 394.7 11.4 1431.5 309.9 309.3 231.6 

SD       0.38 0.23  1039.4 264.3 9.2 795.7 185.3 190.7 67.4 

F-value and significance 

storage times 
24.54 14.01  26.9 16.5 28.2 67.3 46.8 955.7 579.9 

*** *** *** *** *** *** *** *** *** 

refining levels 
1242.57 1746.73  941.7 1161.7 290.7 1556.0 1257.1 360.1 658.3 

*** *** *** *** *** *** *** *** *** 

Golden Delicious 2017 

T0 Th - NR 1.28 0.77  3127.8 626.7 47.5 2754.5 388.2 909.9 251.5 

T1 Th - NR 1.13 0.70  1960.2 466.7 21.9 1631.3 310.8 694.0 351.9 

T3 Th - NR 0.87 0.55  1849.0 453.0 13.9 1360.7 311.7 339.8 205.9 

T6 Th - NR 0.92 0.50  1816.0 427.0 14.0 1506.3 330.5 316.1 223.6 

T0 Th - Ra 0.08 0.32  10.5 5.0 0.7 3.1 1.1 709.9 151.5 

T1 Th - Ra 0.71 0.42  1241.5 274.6 13.5 938.5 189.9 539.9 272.5 

T3 Th - Ra 0.66 0.40  1376.6 308.1 10.9 1059.9 218.9 299.5 191.6 

T6 Th - Ra 0.75 0.39  1608.0 361.4 14.5 1192.1 256.7 284.4 210.0 

T0 Th + NR 1.75 0.97  3375.1 816.4 52.1 2759.3 475.9 831.6 231.6 

T1 Th + NR 1.54 0.94  2783.7 639.5 25.2 2102.3 432.9 489.0 261.8 

T3 Th + NR 1.25 0.70  2517.6 609.0 22.3 1794.1 401.2 405.1 228.3 

T6 Th + NR 1.60 0.88  3168.2 751.7 33.9 2372.8 522.7 393.5 255.1 

T0 Th + Ra 0.09 0.44  10.5 5.0 0.7 3.1 1.1 681.6 171.6 

T1 Th + Ra 0.99 0.51  1852.7 406.8 17.7 1433.8 278.1 416.9 236.1 

T3 Th + Ra 0.90 0.51  1978.3 445.8 17.9 1382.6 280.9 339.1 209.7 

T6 Th + Ra 1.15 0.71  2497.0 532.2 28.8 1997.0 394.9 353.8 239.1 

SD       0.47 0.21  981.0 226.0 14.2 796.4 145.7 198.3 46.3 

F-value and significance storage times 
13.33 12.25  4.84  5.48  4.48  11.17  7.71  142.98  18.53  

** *** ** ** * *** *** *** *** 
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refining levels 
20.04 44.40  11.26  15.83  5.74  6.65  17.19  1.70  0.15  

*** *** *** *** * * *** ns ns 

fruit thinning 
60.10 93.17  41.93  57.71  24.00  39.40  68.09  28.92  24.43  

*** *** *** *** *** *** *** *** *** 

Data expressed in Fresh weight (FW) or Dry matter weight (DW), values correspond to the mean of 3 puree lots (4kg of each). Four storage periods at 4°C: from harvest (T0), 

one (T1), three (T3) and six months (T6); two conditions of fruit load: non-thinning with 100% number of apples (Th-) and thinning with 50% number of apples (Th+) per tree; 

ns, *, **, ***: In grey, standard derivation (SD) of two puree varieties, two way- ANOVA results of Granny Smith purees and three-way ANOVA results of Golden Delicious 

purees. ns, *, **, ***: Non-significant or significant at P < 0.05, 0.01, 0.001 respectively.  
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Table 28. Prediction of apple processed purees composition using the leave-one-out PLS regression based on the fresh (‘NF’) and freeze-dried (‘FD’) ATR-FTIR 

spectra and reference data. 

        Leave-one-out PLS (n=72)   

Parameter Sample Range SD Rcv
2 RMSECv LVs RPD Linkable regions (cm-1) 

SSC (°Brix) 
NF 

10.3-18.6 2.4 
0.94 0.6 4 4.1 1055-1065, 1028-1030, 1558-1562, 1649-1653 

FD 0.95 0.5 3 4.9 1058-1065, 1724-1735, 998-1001 

Sucrose (g/kg FW) 
NF 

32.2-123.1 24.2 
0.79 10.5 8 2.3 1084-1095, 1030-1034, 1574- 1583, 1225-1229, 916-920, 998-1102 

FD 0.87 7.8 7 3.2 998-1001, 1080-1084, 1030-1034, 1124-1137, 998-1102 

Glucose (g/kg FW) 
NF 

13.5-25.7 3.4 
0.65 2.0 9 1.7 1720-1715, 1656-1645, 1539-1562, 1886-1753, 1163, 1067, 1015 

FD 0.70 1.8 6 1.9 1028-1034, 1578-1570, 1010-1015, 1420- 1397, 1079, 985-998 

Fructose (g/kg FW) 
NF 

40.0-99.9 18.9 
0.88 6.0 8 3.1 1635-1655, 1078-1086, 1028-1034, 987-998, 1137-1142 

FD 0.90 5.3 6 3.6 1082-1090, 1030-1034, 987-989, 926-928, 1061-1665, 1035-1046 

TA (meq/kg FW) 
NF 

25.0-109.1 22.8 
0.97 3.8 4 6.0 985-998, 1084-1095, 1715-1730, 1695-1701 

FD 0.98 3.0 3 7.6 1716-1724, 987-989, 962-968 

Malic acid (g/kg FW) 
NF 

2.35-8.97 1.63 
0.91 0.5 4 3.3 1082-1095, 995-1001, 1715-1730, 1539 

FD 0.94 0.4 5 4.3 1716-1733, 1541-1558, 1695-1705, 1022-1024 

DMC (g/g FW) 
NF 

0.16-0.24 0.03 
0.89 0.01 6 3.1 1055-1068, 1443-1430, 1113-1135, 965-978, 1741-1730 

FD 0.92 0.01 5 3.6 1710-1728, 1541-1558, 1514-1507 

AIS content (mg/g DW) 
NF 

100.4-271.7 33.3 
0.75 16.9 10 1.9 1665-1685, 1701-1718, 1113-1128, 962-968, 1548-1560, 1605-1620 

FD 0.88 10.1 7 3.3 1142-1150, 985-995, 1058-1065, 1058, 995-1005, 1650-1665 

AIS content (mg/g FW) 
NF 

16.5-48.9 6.1 
0.76 3.5 9 2.0 1655-1685, 1605-1620, 1665-1685, 1700-1722, 965-985, 1094-1105 

FD 0.83 2.3 8 2.7 1055-1065, 985-995, 1030-1035, 1142-1150, 1165-1193, 1096-1101 

Puree spectra and reference data from two varieties (‘Granny Smith’, ‘Golden Delicious’) with different thinning conditions, a cold storage (during 0, 1, 3 and 6 months) and two 

puree refining conditions. Spectral area: 1800-900 cm-1 and spectrum pre-processing: baseline-correction and SNV. They are same in Table 29. 
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Table 29. Prediction of apple processed purees rheological parameters and textural properties using the leave-one-out PLS regression based on the fresh (NF), freeze-

dried (FD) and cell wall (AIS) ATR-FTIR spectra and reference data. 

        Samples (n=72)     

Parameter Sample Range SD Rcv
2 RMSECV LVs RPD Linkable regions (cm-1) 

η50 

NF 

0.69-1.94 0.44 

0.84 0.18 8 2.5 1620-1635, 1662-1670, 1718-1726, 1110-1122, 1080-1109, 1450-1456 

FD 0.88 0.14 9 3.1 940-952, 1060-1065, 1455-1471, 925-935, 1078-1084, 1145-1150, 1718-1726 

AIS 0.86 0.16 8 2.8 1018-1023, 1110-1115, 1160-1168, 1057-1083, 925- 935, 1618-1625 

η100 

NF 

0.25-1.06 0.21 

0.83 0.09 8 2.5 1610-1620, 1718-1726, 1560-1584, 1080-1110, 1450-1456 

FD 0.89 0.06 9 3.4 940-952, 1060-1065, 1150-1161, 1455-1471, 1020-1038, 983-995,  

AIS 0.84 0.08 9 2.6 1018-1023, 1092-1110, 924- 935, 1057-1083, 1610-1625, 946-958 

AS-G' (Pa) 

NF 

6-3612 1001 

0.82 425 10 2.4 1645-1665, 1047-1055, 1082-1088, 1450-1456, 1530-1547, 925-932,  

FD 0.88 297 9 3.4 1020-1036, 1618-1635, 1060-1065, 1455-1471, 1084-1090, 983-995 

AIS 0.85 332 9 3.0 1610-1625, 1078-1113, 1018-1023, 924- 935, 1039-1043, 1193-1216 

AS-G'' (Pa) 

NF 

2-860 234 

0.83 98 9 2.5 1530-1547, 1456-1464, 1645-1665, 1080-1088, 1610-1618, 925-932 

FD 0.89 69 10 3.4 1015-1030, 1060-1068, 930-944, 1084-1090, 1465-1482, 1624-1643 

AIS 0.86 72 9 3.1 1018-1023, 1078-1110, 1560-1584, 1610-1625, 924-935, 1193-1216 

yield stress 

NF 

0.6-57.6 12.9 

0.86 4.4 9 2.9 1082-1088, 1530-1547, 1686-1699, 1030-1043, 1610-1618, 1090-1111,  

FD 0.87 4.2 9 3.1 984-992, 1463-1470, 1048-1054, 935-944, 1142-1151, 1465-1482, 1090-1104 

AIS 0.82 4.9 9 2.6 1039-1056, 1018-1023, 1078-1110, 946-958, 924- 935, 1610-1625 

FS-G' (Pa) 

NF 

0.3-3105.6 798.2 

0.84 303.5 8 2.6 1645-1665, 1530-1549, 1456-1464, 1610-1620, 1058-1063 

FD 0.90 217.6 10 3.3 946-955, 1015-1030, 1455-1471, 1090-1104, 1060-1068, 1612-1620 

AIS 0.84 292.4 8 2.5 1018-1023, 1610-1625, 1092- 1110, 912-930, 1039-1056 

FS-G'' (Pa) 

NF 

0.3-511.1 158.7 

0.82 63.3 10 2.5 1645-1665, 1456-1464, 1530-1549, 1685-1695, 1058-1063, 1610-1618,  

FD 0.91 48.1 8 3.3 937-949, 1060-1068, 1455-1471, 1011-1028, 1455-1462, 1092-1104 

AIS 0.87 56.1 10 2.9 1018-1023, 1570-1584, 1528-1542, 1092-1110, 1610-1625, 912-924 

d (4:3) 

NF 

277-920 195 

0.90 59 9 3.3 1701-1710, 1655-1668, 1034-1038, 1718-1726, 986-995, 1534-1541,1145-1152 

FD 0.93 53 9 3.5 934-949, 1464-1482, 1540-1558, 1050-1056, 915-920, 1740-1765 

AIS 0.87 65 8 3.0 1045-1083, 1502-1516, 1059-1067, 956-980, 1605-1615 

d (3:2) 

NF 

132-422 64 

0.86 21 10 3.0 1146-1158, 1034-1038, 1405-1412, 1082-1119, 1560-1597, 986-995, 1730-1742 

FD 0.85 23 10 2.8 1027-1039, 1056-1065, 1110-1124, 915-939, 1008-1015, 1625-1648 

AIS 0.81 26 9 2.3 974-995, 1018-1023, 1235-1256, 1045-1083, 1727-1735, 1605-1615 
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Highlights of Paper II 

This study answered our second question in Part 1: 

What is the most appropriate sampling method for spectroscopic analyses 

to evaluate efficiently the puree variability and quality? 

⚫ Fresh and freeze-dried samples presented similar MIR fingerprint spectral 

variations due to processing. 

⚫ MIR on fresh purees predicted well particle size and volume (RPD > 3.0) 

affecting texture. 

⚫ MIR on freeze-dried purees improved assessment of chemical composition 

(RPD > 3.2). 

⚫ MIR on freeze-dried purees could assess viscosity and viscoelasticity (RPD> 

3.1). 

⚫ MIR on cell wall extract could highlight their evolution during processing. 
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Paper III (Published) 

 A large heterogeneity of apples has been pointed out in relation with genetic, ripening, 

agricultural practice, environment and climate change (see II. Literature review, 

Part 2). This could be a limitation for the use of NIR spectroscopy to predict fruit 

quality. Thus, using efficient and rapid methods to know more about the distribution 

of components in apples could help researchers, field growers or industrial 

manufacturers to determine where and how many infrared measurements are needed 

to optimize the quality prediction and fruit sorting.  

 A rapid and effective method, using NIR-HIS, was tested to explore the internal 

biochemical heterogeneity in single apple fruits of four varieties (Paper III). First, 

NIR-HSI images were acquired on the surface of six transverse slices per apple, 

which were then systematically sampled with 5 or 6 cylinders per slice. PCA carried 

out on the NIR-HSI images allowed to select only 141 representative cylinders from 

the total dataset (1056 samples), in which the DMC, total sugars content (TSC), 

fructose, glucose, sucrose, malic acid and polyphenols were quantified by 

spectrophotometry and chromatography. In a second step, leave-one-out PLS models 

were developed and intended to describe the distribution of these components in 

individual apples.  
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1. Introduction 

An external aesthetic appearance and a sustainable internal quality of fruits are both 

crucial for consumers (Ma et al., 2018; Zhang et al., 2018). However, genetic diversity 

(varieties), pedoclimatic conditions and agricultural practices are known to provide 

variability and heterogeneity of fruits, which limit the precision and prediction of 

quality using infrared methods (Vis-NIR and NIRS) and thus hinders their widespread 

applications for online commercial fruit sorting (Barritt et al., 1991; Xia et al., 2020; 

Zhang et al., 2018). It appears necessary to develop some applications using efficient 

and rapid technologies to phenotype internal heterogeneity of the fruits, in order to help 

field growers and industrial manufacturers to improve quality of fruit products. 

Apple is one of the most consumed agricultural commodities in the global fruit 

market (68.6 million tons at 2018) (USDA, 2018). The high heterogeneity of soluble 

solids content (Fan et al., 2016; Mo et al., 2017; Peiris et al., 1999), starch (Menesatti 

et al., 2009), polyphenols and vitamin C (Pissard et al., 2012) in a single apple fruit has 

been proven to truly exist in different directions, from proximal to distal direction (Fan 

et al., 2016; Peiris et al., 1999), in radial direction from inside to outside (Mo et al., 

2017) and along equatorial direction (Mo et al., 2017; Pissard et al., 2012). 

As known, conventional chemical analyses (HPLC-DAD, GC-MS and ultraviolet/ 

visible spectrometry etc.) are costly and time-consuming to determine the heterogeneity 

occurring at the level of the tissues in a single fruit (Peng et al., 2019; Pissard et al., 

2012). To determine the chemical heterogeneity within a fruit, most previous works 
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encountered difficulties of i) long-periods and intensive labor operations, ii) a large 

amount of targeted fruit samples and the high requirements for characterization, and iii) 

the limited stability of fruit samples (highly hydrated, rapid oxidation). In addition, the 

limited knowledge of apple heterogeneity becomes a barrier to obtain robust predictive 

models by high-throughput techniques (Vis-NIRS, NIRS, MIRS, NMR) (de Oliveira et 

al., 2014; Fan et al., 2016; Pissard et al., 2012). Particularly with the non-destructive 

and localized (around 2 cm2) NIR measurements on apples, it is essential to know more 

about the distribution of components in fruits in order to determine where and how 

many measurements are needed, as well as to access the representative sample portion 

to be characterized using reference methods for calibration dataset. 

Hyperspectral imaging (HSI) is an emerging platform technique that integrates 

imaging and spectroscopy to provide both spatial and spectral information (Gowen et 

al., 2007). It is safer than X-ray imaging, more rapid and affordable than FT-IR imaging 

and Magnetic resonance imaging, and with a better image quality than thermal imaging 

(Fan et al., 2016; Ma et al., 2018). Until now, applications of HSI in the Visible-NIR 

(400-1000 nm) or NIR (1000-2400 nm) ranges were carried out to evaluate the 

variability of apple quality, such as fruit defects (Mehl et al., 2004), firmness (Peng and 

Lu, 2008), mealiness (Huang and Lu, 2010) and soluble solids content (Mendoza et al., 

2011). These studies were applied nondestructively on apple fruits. As the NIRS 

radiation penetration depth is around 0.2 to 0.3 cm in the spectral area between 900 and 

1900 nm (Lammertyn et al., 2000), the non-destructive detection of HSI does not allow 

to evaluate the entire internal heterogeneity of apple fruits. Thus, the HSI is used 

destructively by scanning fruit slices and makes possible to describe the distribution of 

the internal soluble solids content, as shown in apples (Mo et al., 2017) and melons 

(Sun et al., 2017). However, these studies need a large number of reference data 

(numbers of samples and limited samples quantity) on all the targeted areas of single 

fruit, required for model calibration.  

Consequently, the main objective of this work was to provide a simple and efficient 

method to reduce the intensive reference measurements (contents of dry matter, total 

sugars, individual sugars, acids and polyphenols) in order to develop a HSI modelling 
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calibration and to evaluate the apple variability and heterogeneity. 

2. Material and methods 

2.1 Apple fruit 

The experiment was conducted on four different apple varieties: ‘Golden Delicious’ 

(GD), ‘Granny Smith’ (GS), ‘Braeburn’ (BR) and ‘Royal Gala’ (GA). In 2018, all apples 

were harvested in the experimental orchard at La Pugère (Bouches du Rhône, France). 

‘Braeburn’, ‘Granny Smith’ and ‘Royal Gala’ apples were grown under a commercial 

fruit thinning (Th+, 50-100 fruits/ tree). ‘Golden Delicious’ apples were grown under 

two thinning conditions, the commercial fruit thinning (Th+, 50-100 fruits/ tree) and 

without thinning (Th-, 150-200 fruits/ tree). After the commercial harvesting (‘Royal 

Gala’ on August 28th, Golden Delicious on September 19th, ‘Granny Smith’ on 

September 20th, and ‘Braeburn’ on October 3rd), all apples were stored in a cold 

chamber at 4 °C and at around 90 % of humidity until their characterization (November 

2018). 

2.2 Samples preparation 

A calibration dataset corresponded to the data of 30 apples with similar sizes (6 

fruits × 5 apple groups of GD Th-, GD Th+, GS, BR, GA) and scanned using the NIR-

HSI imaging system. Each apple was cut with a slicing tool along horizontal direction 

to produce six apple slices, including five 1.2 cm thick slices (named slices from ‘A’ to 

‘E’ at the stem, equator and calyx directions) and the one residual piece of varying 

thickness (named slice ‘F’ at the calyx positions). Hyperspectral images of 180 apple 

slices (5 apple groups × 6 fruits × 6 slices) were acquired and six cylindrical 1.6 cm 

diameter portions were extracted with a cookie cutter (numbered 1 to 6) from each of 

the apple slices A to E, and five or six cylinders from the residual slice F (Fig. 32). 

The cylinders were put immediately in liquid nitrogen prior to storage at -20 °C, 

giving 35 to 36 cylinders per apple, following the previous works of Mo et al. (2017) 

and Bureau et al. (2013). These cylinders were distributed with a systematic repartition 

for each apple from the top to the bottom and from the sunny to the shady faces. In total 
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1056 cylinders (5 apple groups × 6 fruits × 35-36 cylinders) were numbered and stored 

(Part 2.4.1). After the extraction of all the cylinders, RGB photos were taken on each 

apple slice in order to ensure the correct correspondence between the cylinders and HSI 

images (Fig. 32). 
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Fig. 32. The photographs of Braeburn apple slices and the first principal component (PC1) score plot of all near-infrared hyperspectral pixels (990- 

2450 nm) for each slice (A, B, C, D, E, F). The selected ROIs were labelled with black circles. 
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2.3 Hyperspectral Imaging (HSI) System 

A pushbroom (a line-scanning type) near infrared hyperspectral imaging system 

(SPECIM, Oulu, Finland) was used to acquire the hyperspectral images of apple slices. 

Particularly, this NIR-HSI system consisted of a SWIR camera (SWIR-CL-400-N25E, 

SPECIM) covering the spectral range of 1000-2500 nm with a spectral resolution of 

about 12 nm, an OLES 56 camera lens (SPECIM), an illumination source (halogen 

lamps) and a translating scanner. All the image acquisition parameters (the exposure 

time of camera, the scanning speed etc.) were controlled by the LUMO® software from 

SPECIM. Before measurements, a reflectance calibration was performed by recording 

a dark current image (0 % reflectance) with an internal shutter and a white image using 

a reference standard close to 100 % reflectance (Spectralon® 100 %). To reduce the 

impact of light and noise, the calibrated hyperspectral images could be automatically 

obtained using the dark and white reference images, with the following equation: 

𝑅(𝜆)  =  
𝑅0(𝜆)−𝑅𝑑

𝑅𝑤−𝑅𝑑
× 100 %       (1) 

with R: the calibrated hyperspectral image data, R0: the raw image data, Rd and Rw: 

the dark and white reference images, respectively.  

All images were acquired in the reflectance mode and the final image size for each 

kernel is 387 × xdim × 288, the two first values representing pixel dimensions in the x 

and y directions (field of view of 9.8 × 6.3 cm, with a spatial resolution of 225 µm) and 

the third value accounting for the number of spectral channels. The xdim values varied 

according to the dimensions of apple slices. Each image was acquired in about twenty 

seconds. As the beginning and ending wavelengths contained noise caused by the 

instrument itself (Sun et al., 2017), the 258 bands from 990 to 2450 nm were selected 

for further spectral analysis.  

2.4 Imaging pre-processing 

The pre-processing of the hyperspectral images and the selection of region of 

interest (ROIs) were performed with Matlab 7.5 (Mathworks Inc. Natick, MA) software 

using the SAISIR package (Cordella & Bertrand, 2014). Due to the high volume of data, 
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the processing of all images was not possible using a common computer. In this way, 

10,000 spectra were randomly extracted from the HSI images of each apple slice, 

counting around one third of the total number of spectra in each HSI image. Afterwards, 

all random selected spectra were gathered into a matrix X (5 apple groups × 6 fruits × 

6 slices × 10,000 rows by 258 columns). After pre-tests, matrix X was smoothed by a 

window size of three pixels. A given value x (i) of index i was replaced by the local 

average of x (i - 1) + x (i) + x (i + 1). Then it was pre-processed with standard normal 

variate (SNV) to increase its signal to noise ratio for the selection of ROIs. 

2.5 ROI selection and characterization 

PCA has been commonly applied on the NIR-HSI of agro-food products for safety 

and quality assessments (Dale, et al., 2013). It was performed on the pre-processed 

matrix X to check the major components causing variability in the apples (Fig. 33). 

Afterwards, this model was applied to all pixels of all images, and the major 

components (PCs) were selected as estimators to refold into PCs images to point out 

the heterogeneous areas in each HSI image of apple slice. Finally, the ROIs to be 

analyzed by chemical and biochemical measurements (141 samples) were manually 

selected depending on the results of the major principal components and the same 

location on photographical images (an example of the ROIs marked black circles in Fig. 

32). 

2.6 Chemical and biochemical measurements 

All chemical and biochemical characterizations (contents of dry matter, fructose, 

glucose, sucrose, malic acid and sum of polyphenols) were performed on these ROIs 

(141 samples) and expressed as the ratio on fresh weight. Particularly, individual sugars 

(glucose, fructose, and sucrose) and malic acid were quantified on the half of each 

sample using an enzymatic method with commercial kits for food analysis, following 

the manufacturer’s instructions (R-biopharm, Darmstadt, Germany). The total sugars 

content were computed by the sum of all individual sugars (fructose, glucose and 

sucrose). The dry matter content (DMC) was estimated from the weight of freeze-dried 
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samples upon reaching a constant weight (freeze-drier, 3 days). The freeze-dried 

samples were further used to quantify polyphenols by HPLC-DAD after thioacidolysis 

as described in Le Bourvellec (Le Bourvellec et al., 2011). Particularly, apple 

polyphenols were separated in an Agilent 1050 separation system coupled with a (250 

mm × 4 mm i.d.) Licrospher PR-18 5 µm column (Merck, Darmstadt, Germany) 

operated at 30 ℃. This data was presented as the sum of individual polyphenols 

including procyanidins and monomeric flavanols, phenolic acids, dihydrochalcones and 

flavonols. 

2.7 Modelling 

After smoothing with a 3-point window and the first order derivative with a 11 

point window, the averaged spectra of each ROI (giving 141 spectra) and their related 

reference data were used for modelling (Fig. 33). Leave-one-out partial least squares 

(LOO-PLS) regession was used to build prediction models with Matlab 7.5 (Mathworks 

Inc. Natick, MA) software using the SAISIR package (Cordella & Bertrand, 2014). 

Random forest (RF) regression was also applied to compare the prediction ability of 

developed models, using R software (version 4.0.2) (R Core Team, 2019) coupled with 

several packages including ‘prospectr’ (Stevens and Ramirez-Lopez, 2014), ‘Rmatlab’ 

(Bengtsson et al., 2018), ‘caret’ (Kuhn, 2015) and ‘randomForest’ (Liaw and Wiener, 

2002). 

The developed model performance was assessed using the determination 

coefficient of cross-validation (Rcv
2), the root mean square error of cross-validation 

(RMSEcv), the number of latent variables (LVs), the ratio of the standard deviation 

values (RPD). The interpretations of beta-coefficients were used to determine the 

relevant spectral regions. The spectral bands related to the maximum and minimum of 

beta-coefficient values can present the most important wavelengths (Sun et al., 2017). 
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Fig. 33. Chemometric strategies for apple internal quality modelling and prediction.
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2.8 Prediction maps of apple quality attributes 

After comparison of the modeling results of each apple quality attribute, only the 

models with RPD values higher than 2.0 allowing a coarse quantitative prediction 

(Nicolai et al., 2007), were selected to predict fruit quality attributes of all apple slices 

at the individual pixel level. The prediction values were then visualized under the form 

of prediction maps, which were used to phenotype the internal distributions of the 

predicted quality attributes in apples. 

3 Results and discussion 

3.1 Spectral characteristics 

The initial PCA conducted on the random selected spectra of one out of three pixels 

of all apple slices (matrix X) was able to discriminate the variability and heterogeneity 

of apple fruits between the top (slice A) and the bottom (slice F) (Fig. 34a). The first 

two principal components represented 68.0 % of the total variability, with the first 

component (PC1) of 43.8 % and the second component (PC2) of 24.2 %, respectively. 

For all apple groups, a clear discrimination was shown along the first two principal 

components (PC1 and PC2) between the middle slices (slices C, D) and the others (top 

slices A, B and bottom slices E, F). The most contributing wavelengths of PC1 and PC2 

were (Fig. 34b and c): i) the sharp peak around 1065 nm corresponding to the C-H and 

O-H stretching in second overtone, which is linked to the sugar variations in fruits (Sun 

et al., 2017); ii) the absorption region from 1157-1364 nm which is associated with the 

first overtone of O-H band in water (Ignat et al., 2014); and iii) the broad band at 1400-

1530 nm which corresponds to the combination of second overtone of C-H stretching 

and the first overtone of O-H stretching, already used to determine the soluble solids 

content in apples (Zhang et al., 2019). These fingerprint wavelengths pointed out the 

variations of water and carbohydrate contents in a single apple, which were consistent 

with previous results using chemical measurements (Peiris et al., 1999; Pissard et al., 

2012). 

In a second step, the variability expressed on the dominant PC1 components (43.8 % 

of total variability) was used for phenotyping all apple slices based on a correspondence 
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between the different areas described by a color range, according to their hyperspectral 

spectra. PC1 scores-images have directly pointed out the most variable locations with 

the color range (Fig. 32). ROIs in each apple were targeted at top slice A, middle slice 

C and bottom slice E, with the most different colored areas (such as the area No. 3 of 

slice C and the area No. 3 of slice F in Fig. 32). Besides, the ROIs with clear color 

differences inside the middle slices (area No. 2 and No. 5 of slice D in Fig. 32) were 

also selected. A total of 141 ROIs was manually selected and characterized by reference 

chemical measurements to check if these targeted positions really showed variations 

consistent with the corresponding hyperspectral images, and to identify the chemical 

components responsible for the heterogeneity observed in PC1 scores images.

 

Fig. 34. PCA on the randomly selected HSI spectra acquired on all apple slices (1,0000 

spectra of each apple slice, and totally 36 slices of 6 fruits) in the range from 990 to 

2450 nm of all groups and the loading plots of six different apple slices from the top to 

the bottom (named ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’) on the first (PC1) and the second (PC2) 

principal components. 
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3.2 Chemical characteristics of ROIs 

The boxplot of chemical reference data (Fig. 35) of the 141 selected ROIs showed 

a large variation of contents of dry matter, total sugars, malic acid and polyphenols in 

the different apple varieties. 

Royal Gala apples had the most intensive variations of DMC among the five apple 

groups (Fig. 35a). Conversely, the lowest variations of DMC and of TSC (Fig. 35b) 

were observed in the thinned (GD Th+) and non-thinned Golden Delicious (GD Th-), 

presenting a relatively limited heterogeneity of DMC and TSC in single GD apples. The 

fructose content of Granny Smith (GS) had the lowest variations among the four 

varieties (Fig. 35c). Moreover, the contents of polyphenols varied a lot in each apple 

variety (Fig. 35f). Golden Delicious (thinned and non-thinned) (0.34 ± 0.14 g/kg in 

non-thinned GD and 0.34 ± 0.12 g/kg in thinned GD) and Royal Gala (GA) (0.27 ± 

0.14 g/kg) apples presented a large polyphenolic variation compared to GS apples (0.55 

± 0.14 g/kg). This result was different from a previous work showing a small internal 

heterogeneity of polyphenols in Gala (Vidot et al., 2019). This inconsistent result could 

be due to the difference in the measured targeted areas in apples, only parts close to the 

fruit surface (Vidot et al., 2019) versus parts distributed everywhere inside the entire 

fruits (our experiment).  

Concerning the effect of agricultural practices on Golden apple quality, the average 

contents of total sugars and malic acid were higher in the thinning condition (GD Th+) 

than in the non-thinning one (GD Th-), which was in line with our results observed 

during the 2017 harvested season (Paper IV). Interestingly, the tree thinning treatment, 

by increasing the individual apple growth potential, led to a lower variability of malic 

acid (Fig. 35f) and sucrose (Fig. 35d) contents in Golden Delicious apples, with the 

standard derivation values decreasing from 0.89 to 0.62 g/kg and from 10.9 to 9.3 g/kg, 

respectively. 

Consequently, the most variable regions chosen according to the PC scores-images 

truly exhibited a large heterogeneity, in agreement with the variations of the reference 

values of total sugars, dry matter, malic acid and polyphenols. The apple internal 
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heterogeneity should be then considered as an important factor for apple fruit quality 

characterization and understanding.
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Fig. 35. The boxplots of: (a) dry matter, (b) total sugars, (c) fructose, (d) sucrose, (e) glucose, (f) malic acid, (g) sum of polyphenols of ‘Braeburn’ (BR); ‘Granny 

Smith’ (GS); ‘Royal Gala’ (GA); thinned ‘Golden Delicious’ (GD Th+) and non-thinned ‘Golden Delicious’ (GD Th-) apples. 
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3.3 Prediction of apple quality traits based on averaged spectra of ROIs 

The chemical composition data obtained on the 141 selected ROIs was used to 

build prediction models validated within this selected subset, using the averaged spectra 

of each ROI. Acceptable predictions of DMC (SD = 21.9 mg/g, Rcv
2 = 0.83, RMSEcv = 

9.7 mg/g, RPD = 2.39) and TSC (SD = 18.7 g/kg, Rcv
2 = 0.81, RMSEcv = 8.4 g/kg, RPD 

= 2.20) were obtained by LOO-PLS, respectively (Table 30). According to Nicolai et 

al. (2007), a RPD over 2 indicates the possibility of a coarse qualitative prediction of 

the internal attributes of fruits. The linear models (PLS) were much better than the 

random forest (RF) (Table 30), as described by Sun et al. (2017) to predict soluble 

solids content in melon fruits. The small number of latent variables (LVs) employed in 

PLS models indicated the robust prediction of DMC (LVs = 7) and TSC (LVs = 5), 

based on data including different apple varieties and growing agricultural practices. All 

predicted DMC and TSC on 141 ROIs by LOO-PLS regression were well correlated to 

the measured values, according to their linearity correlation plots (Fig. 36a, b). 

Moreover, the beta-coefficients showed strong positive or negative bands (Fig. 36c, d) 

for both, the PLS regressions of DMC and TSC, including informative spectral regions 

at around 1123 nm, 1208 nm, 1389- 1401 nm, 1474- 1480 nm, 1857- 1863 nm and 

2319- 2336 nm, which have been widely reported to estimate water and sugar contents 

in apple fruits (Giovanelli et al., 2014; Peirs et al., 2003c). Particularly, six sharp peaks 

at 1208 nm, 1123 nm, 1389 nm, 1474 nm, 1857 and 2336 nm were identified as being 

important wavelengths to predict dry matter content in apples. And the specific 

wavelengths at 1123 nm, 1401 nm, 1480 nm, 1863 nm and 2319 nm contributed to the 

determination of total sugars in apple tissues. 
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Fig. 36. Comparison of the measured and the full-cross validated (a) dry matter content 

(DMC) and (b) total sugars content (TSC) of the 141 ROI samples; and the most 

contributing wavelengths for (c) DMC and (d) TSC prediction, using the leave-one-out 

PLS regression on the ROI averaged spectra. 

However, modelling using the averaged spectra of ROIs showed a limited ability 

to predict the individual sugars (fructose, glucose and sucrose), malic acid and sum of 

polyphenols (Table 30). This was expected and in agreement with the previous work 

(Walsh et al., 2020). That could be due to i) their respective lower content in apple 

tissues compared with DMC and TSC and ii) the limited chemical variations in our 

studied apple varieties. Concerning polyphenols, a larger variation is observed in the 

cider apple varieties from 1 to 7 g/kg in apple parenchyma (Sanoner et al., 1999) than 

in the dessert varieties, such as those of this study, from 0.6 to 0.9 g/kg (Guyot et al., 

2002) because of their highest content in procyanidins, the main polyphenols. Thus, a 

better prediction of these compounds might be obtained taking into account the entire 
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variability within apple varieties. 

As mentioned in section 3.1, the fingerprint wavelengths of apple variability and 

heterogeneity were mainly related to water and carbohydrates. Thus, for these five 

apple groups (BR, GA, GS, thinned and non-thinned GD), prediction models based on 

the averaged HSI spectra of ROIs and their reference values were suitable to estimate 

intensive variations of water and the dominated soluble contents in apple fruits, such as 

dry matter and total sugars, but not of individual compounds (fructose, glucose, sucrose 

and malic acid) or microcomponents (sum of polyphenols). 
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Table 30. Leave- one- out partial least square (LOO-PLS) and random forest (RF) results of apple internal quality traits using the averaged spectra 

of ROIs. 

Parameters Measured range SD Models 
Full-crossed validation (n = 141) 

Rcv
2 RMSEcv RPD LVs 

dry matter (mg/g) 86.2- 195.3 21.9 
PLS 0.83 9.7 2.39 7 

RF 0.67 14.8 1.58 7 

total sugars content (g/kg) 58.8- 156.8 18.7 
PLS 0.81 8.4 2.20 5 

RF 0.78 9.2 2.11 4 

fructose (g/kg) 19.8- 91.6 15.4 
PLS 0.38 9.0 1.35 9 

RF 0.32 10.1 1.24 8 

sucrose (g/kg) 9.1- 98.7 8.4 
PLS 0.67 4.9 1.73 8 

RF 0.65 5.8 1.40 6 

glucose (g/kg) 5.7- 21.1 3.0 
PLS 0.29 2.5 1.19 6 

RF 0.27 2.5 1.18 6 

malic acid (g/kg) 2.3- 11.4 2.2 
PLS 0.31 2.1 1.23 7 

RF 0.15 2.3 1.08 8 

Sum of polyphenols (g/kg) 0.13- 0.77 0.16 
PLS 0.14 0.17 1.01 8 

RF 0.13 0.21 0.85 9 
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3.4 Phenotyping apple heterogeneity by HSI 

For a more in-depth assessment of the internal composition of each apple, the best 

PLS models described in the Part 3.2 were applied to predict the quality traits at each 

pixel on all hyperspectral images of apple slices. The resulting images were presented 

as ‘prediction maps’ for DMC (Fig. 37) and TSC (Fig. 38) for each apple slice. In total, 

10 colors were used to fit the different intervals of the predicted values and pixels with 

the similar predicted values appeared in the same color. The prediction results 

demonstrated a large variability and heterogeneity of total sugars and dry matter 

contents i) in different apple varieties; ii) between individual apple fruits and iii) inside 

single fruit. 

For the traditional non-destructive NIR analyses on apples, to obtain a robust 

prediction model, the calibration dataset should be sufficiently rich in variations, 

particularly taking into account the existing variability with the fruit itself (Zhang et al., 

2018). Our prediction results provided advanced knowledge to determine where and 

how many positions are needed with the non-destructively NIRS measurements on 

apple surfaces, as well as to access the sample portion to be analyzed by reference 

methods for the calibration set.  

In the literature, NIR predictions of apple quality traits involve taking 

measurements at up to four points located in the equatorial region (Liu and Ying, 2005; 

Peirs et al., 2003a; Pissard et al., 2012), or along the stem, equator and calyx positions 

of apples (Fan et al., 2016). However, there was a reverse conclusion to reach the 

accurate predictions of developed models following each of these two methods. From 

our results, a specific attention needs to be paid according to the ‘variety’, which is the 

major factor influencing the fruit heterogeneity, and the possible reason to explain the 

aforementioned disagreement. According to the relative standard deviation (RSD) 

values of the predicted DMC and TSC of all pixels in single apples, different levels of 

internal chemical variations were observed in Braeburn (RSD of DMC = 24.6 % and of 

TSC = 22.1 %), Royal Gala (RSD of DMC = 26.5 % and of TSC = 27.1 %), Granny 

Smith (RSD of DMC = 18.9 % and of TSC = 22.0 %) and thinned Golden Delicious 

(RSD of DMC = 13.2 % and of TSC = 15.7 %). These results indicated the same and 
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limited spectral measurement points for all apples could not present such intensive 

internal quality variations of different varieties. From a spectroscopic point of view, an 

increase of measured positions on apple surfaces therefore is particularly important to 

improve accuracy in the calibration steps. 

In all apples, the large DMC and TSC differences among the middle (the average 

predicted DMC of all pixels in slice C and D of all varieties = 136.5 ± 16.2 g/kg and 

TSC = 115.6 ± 14.3 g/kg), top (the average predicted DMC of all pixels in slice A and 

B of all varieties = 117.1 ± 22.4 g/kg and TSC = 79.5 ± 17.1 g/kg) and bottom slices 

(the average predicted DMC of all pixels in slice E and F of all varieties = 124.1 ± 25.2 

g/kg and TSC = 87.3 ± 20.1 g/kg) demonstrated that four points at the equatorial region 

might not be enough to provide the representative spectra of the entire apple fruits. 

NIRS information from top to bottom of apple surfaces therefore needs to be considered 

for all apple varieties. Apple heterogeneity along the direction from top to bottom 

presented the major internal chemical variations for all studied varieties.  

Consequently, strong variability and heterogeneity of apples were highlighted 

using our developed models, and probably constitute the major barrier to an accurate 

NIR modelling. The similar distribution results of TSC (Fig. 38) and DMC (Fig. 37) in 

apple slices were observed in most apple slices of each variety (at least 4 over 6 fruits). 

These results provided an important opportunity to advance our knowledge on the 

quality measurement: where and how many specific positions need to be measured on 

apple surfaces with NIRS, in order to develop accurate and robust prediction models. 

The previous HSI models mainly detected the soluble solids content and firmness 

changes in single fruit (Mo et al., 2017; Sun et al., 2017), because of the quick and easy 

reference data quantification of all targeted samples using digital refractometers and 

hardness detectors. Compared to these studies, our work provided an efficient solution 

for the HSI modelling calibration step, depending on the reference data measured on 

141 representative samples instead of the 1056 prepared samples. Importantly, this 

method offered a new sight on contents of total sugars (sum of the fructose, glucose and 

sucrose) and dry matter in apples, with a limited number of complicated (individual 

sugars measured by spectrometry using enzymatic kits) and time-consuming (at least 
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24 hours for freeze-drying) analyses for HSI modelling. In future, such a rapid and 

efficient approach for HSI modelling calibration would be helpful to detect the 

variations of apple internal quality parameters according to different environmental 

conditions (crop load, irrigation, light penetration and elevations of regions etc.) and 

growing stages, and then contribute to an improvement of apple quality and production. 

The objective at the end could be to have a better knowledge of the apple homogeneity 

in order to manage them better for fresh market and processing taking into account the 

sustainability of practices. 

4. Conclusion 

In this study, the power of chemometric methods was harnessed in a two-steps 

procedure for mapping of apple fruit heterogeneity while minimizing the number of 

chemical analyses. PCA of NIR-HSI data was used to scan the heterogeneity of apple 

slices and to pin-point the best representing areas of the whole spectral variation. A 

limited number of chemical measurements could then be carried out and exploited by 

PLS regression to identify the underlying compositional information present in NIR-

HSI data at individual pixels. NIR-HSI coupled with PLS regression showed a good 

ability to phenotype the distribution of dry matter content and total sugars content in 

apple fruits. The prediction models developed with the reference values of the most 

variable areas identified by PCA on HSI data were enough to assess the variability and 

heterogeneity of apple global parameters, with acceptable precisions (range of values). 

For dry matter and total sugars, the PLS results had a better ability than the random 

forest ones to estimate their distributions in apple slices. With the rapid scanning of 

apple slices and a limited number of chemical measurements, this method showed the 

great advantages of a simple fruit sampling, less experimental deviations caused by 

rapid oxidation of fruit, and a high efficiency of model developments. This method It 

opens the possibility to more systematically evaluate the fruit variability and 

heterogeneity in future projects. 
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Fig. 37. The distribution of dry matter content (DMC) in apple slices predicted by the LOO- PLS models developed based on the ROI averaged spectra. 
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Fig. 38. The distribution of total sugars content (TSC) in apple slices predicted by the LOO- PLS models developed based on the ROI averaged spectra. 
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Highlights of Paper III 

This study introduced a simple and efficient NIR-HSI approach to assess 

the apple heterogeneity. It reduced the need of numerous chemical 

characterizations to describe the distribution of quality traits within and 

between fruits. NIR-HSI could thus contribute to a better management of the 

fruit quality measurement. 

Based on this method: 

⚫ PCA on the NIR-HSI of apple slices allowed to select the regions of interest 

(ROIs), i.e. representative parts for reference analyses, in apples selecting the 

more heterogeneous part regions (ROIs) in apples. 

⚫ A large heterogeneity of DMC, TSC, contents of fructose, glucose, sucrose, 

malic acid and polyphenols were highlighted on ROIs by spectrophotometry 

and chromatography.  

⚫ PLS models based on the selected ROIs from the total dataset successfully 

mapped the distribution of DMC (R2 = 0.83, RPD = 2.39) and TSC (R2 = 0.81, 

RPD =2.20) in each apple slice. The method did not allow to quantify the other 

quality traits: fructose, glucose, sucrose, malic acid and polyphenols. 
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Part 2. Analyzing the correlations between fresh and 

processed apples and predicting puree quality using spectral 

information of apples 

 From the results of Part 1, NIR and MIR techniques can assess a large variability 

of apple fruits or cooked purees, while some of the apple characteristics were directly 

linked to their processed products (see Literature review part). The challenge works 

in Part 2 were to assess the possibility of predicting the properties of processed fruit 

products based on the raw fruit material spectral information, and so, to provide 

practical and suitable strategies to estimate the quality potential of fruits, to monitor 

their processing and to control the quality of fruit products. 

 To develop reliable and relevant models to predict cooked purees from spectra of 

raw apples, the following four questions needed to be answered: 

⚫ What are the internal correlations of physical, biochemical and textural properties 

between apples and purees, taking into account a large variability and 

heterogeneity?  

⚫ What are the spectral correlations between raw and processed apples? 

⚫ To what extent does the fruit variability impact the puree processed quality?  

⚫ Is it possible to predict processed purees’ quality traits from the spectral 

information of corresponding raw apples? 

The results of Part 2 are presented as three papers (Papers IV, V, and VI) 
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Paper IV (Published) 

 Up to now, in apple industry, manufacturers use their own experience and 

knowhow to make blend of apples in order to obtain the same purees over time. In 

Paper IV, an original work was performed on totally 960 apples of three varieties 

(‘Golden Smoothee’, non-thinned and thinned ‘Golden Delicious’, ‘Granny Smith’) 

and their 96 corresponding purees processed at harvest and after one, three and six 

months of cold storage. The potential of NIRS was studied to: 

i) Evaluate the quality variations of both, apples and their corresponding 

purees and the correlations between them. 

ii) Focus on the prediction of puree characteristics from the spectral 

information of raw apples.  

 As far as we know, this is the first report investigating the potential of NIR 

technique to predict the texture and taste of purees from only spectral data of raw apples.  

  



224 

 

1. Introduction 

 Apple is one of the most widely cultivated fruits around the world (totally 68.6 

million tons in 2018 (USDA, 2018)), consumed both as fresh fruits and processed 

products. The fruit could be processed into various products to meet consumers' basic 

nutritious demand. Among them, apple puree has recently been reported to be a good 

source of polysaccharides (Le Bourvellec, Bouzerzour, Ginies, Regis, Plé, & Renard, 

2011) and antioxidant compounds (Loncaric, Dugalic, Mihaljevic, Jakobek, & Pilizota, 

2014; Oszmiański, Wolniak, Wojdyło, & Wawer, 2008). Additionally, apple purees can 

be used in the food industry as the basic ingredient of many fruit-based products such 

as jams, preserves or compotes, yogurts and pie fillings (Defernez, Kemsley, & Wilson, 

1995).  

 However, the modifications of the initial physical structure, color and composition, 

which occur during processing, often make difficult for fruit processors to know and 

predict the quality characteristics of purees according to the raw apples. Qualities of 

apple purees depend on complex interactions between process conditions and raw 

material characteristics. These in turn are determined by the genetic diversity (varieties), 

pedoclimatic conditions, agricultural practices, maturity stages, and storage periods 

(Espinosa-Muñoz, Symoneaux, Renard, Biau, & Cuvelier, 2012; Espinosa-Muñoz, To, 

Symoneaux, Renard, Biau, & Cuvelier, 2011; Keenan, Brunton, Butler, Wouters, & 

Gormley, 2011; Picouet, Landl, Abadias, Castellari, & Viñas, 2009). Apple puree 

manufacturers therefore encounter difficulties to maintain the expected and constant 

quality level of the final apple products. Until now, the research studies regarding the 
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quality assessment of apple purees have been mainly focused on the changes in 

polyphenol contents and total antioxidant activity (Loncaric, Dugalic, Mihaljevic, 

Jakobek, & Pilizota, 2014; Sukhonthara, Kaewka, & Theerakulkait, 2016), color 

(Oszmiański, Wolniak, Wojdyło, & Wawer, 2008), ascorbic acid (Picouet, Landl, 

Abadias, Castellari, & Viñas, 2009), organic acids (Bengoechea et al., 1997), sugars 

(Keenan, Brunton, Butler, Wouters, & Gormley, 2011), polysaccharides (Le Bourvellec, 

Bouzerzour, Ginies, Regis, Plé, & Renard, 2011), rheological properties (Espinosa-

Muñoz, Renard, Symoneaux, Biau, & Cuvelier, 2013; Espinosa-Muñoz, Symoneaux, 

Renard, Biau, & Cuvelier, 2012) and sensory appreciation (Espinosa-Muñoz, To, 

Symoneaux, Renard, Biau, & Cuvelier, 2011). However, almost all of these quality 

parameters have been measured through specific laboratory analyses, such as 

chromatography, which are time-consuming, expensive and not suitable for fast and 

numerous characterizations. Consequently, the development of rapid, accurate and 

reliable methods is required to control the quality of the raw apples and processed 

purees, and meet the ever-increasing demands for consistent and high quality fruit 

products. 

 Near infrared spectroscopy (NIRS) has been increasingly used for the safety 

inspection and quality assessment of agricultural products (Nicolai et al., 2007). It has 

several advantages such as rapid spectrum acquisition, limited preparation requirements 

and no chemical waste, but it requires an initial calibration step, which is time 

consuming. Indeed, on a set of samples, representative of the expected variability, both 

NIRS spectra and their corresponding reference data are needed to establish predictive 

models using multivariate statistical and mathematical data analyses. Several 

parameters can thus be evaluated from a single spectrum, with varying precision. 

Intensive investigations using NIRS have been reported regarding the measurement of 

apple internal attributes in the past decades (Nicolai et al., 2007). Satisfactory 

evaluation results are reported for soluble solids contents (Peirs, Tirry, Verlinden, 

Darius, & Nicolaı̈, 2003b), dry matter (McGlone, Jordan, Seelye, & Clark, 2003), 

titratable acidity (Liu & Ying, 2005), starch index (Menesatti et al., 2009), chlorophyll 

content (Zude, Truppel, & Herold, 2002), firmness (Zude et al., 2006), individual 
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sugars (Liu, Ying, Yu, & Fu, 2006) and antioxidant capacity (Schmutzler & Huck, 2016). 

Further, NIRS spectra are shown to classify apples according to varieties (Luo et al., 

2011), geographical origins (Bobelyn et al., 2010) and postharvest storage periods 

(Camps, Guillermin, Mauget, & Bertrand, 2007; Giovanelli, Sinelli, Beghi, Guidetti, & 

Casiraghi, 2014). 

 Thus, NIRS can assess a diversity of quality traits in raw apples and processed 

products, while some of the puree characteristics are directly linked to those of the raw 

fruit. We therefore can suppose that NIRS spectra of the raw fruits could be used to 

predict the properties of the processed products, here purees, at least given a constant 

process operation. However, as far as we know, there is no literature related to the 

feasibility of using NIRS to evaluate the changes of apple puree properties and to trace 

back to their corresponding raw apple quality. The challenge here was to assess the 

possibility of predicting the properties of processed fruit products based on the raw fruit 

material spectral information, and so, to provide practical and suitable strategies to 

estimate the quality potential of fruits, to monitor their processing, and to control the 

quality of fruit products. 

 The specific objectives of our current work were to assess the potential of NIRS to 

1) detect different factors such as variety, fruit thinning, storage period and mechanical 

puree refining on apples and/or their corresponding purees, 2) evaluate the quality traits 

of interest in both apples and the corresponding purees such as textural/rheological 

properties, soluble solids content, titratable acidity, dry matter content, insoluble solids 

content 3) and then establish the links between fruit materials before and after 

processing.  

2. Materials and methods  

2.1 Fruit materials 

2.1.1 Apples 

 The experiment was conducted on three apple varieties: ‘Golden Smoothee’, 

‘Golden Delicious’, and ‘Granny Smith’ during two subsequent harvesting seasons, 
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2016 and 2017, that are summarized in Fig. 39. In 2016, 240 ‘Golden Smoothee’ apples 

were harvested from the experimental orchard of INRA (Drôme, France). In 2017, 480 

‘Golden Delicious’ and 240 ‘Granny Smith’ apples were obtained from the 

experimental orchard at La Pugère (Bouches du Rhône, France).  

 Two fruit thinning levels were also compared during the ripening of ‘Golden 

Delicious’ apples in 2017. For this, trees were thinned 40 days after flowering (on June 

2nd), and the treatment named Th+ corresponded to 50 to 100 fruits/tree (a standard 

commercial fruit load) and Th- to 150-200 fruits/tree (highly loaded trees). The ‘Golden 

Smoothee’ in 2016 and ‘Granny Smith’ in 2017 grew under regular fruit thinning (Th-). 

After harvesting (Golden Smoothee on September 14th, 2016, ‘Golden Delicious’ on 

September 11th, 2017 and ‘Granny Smith’ on September 25th, 2017), apples were kept 

in a cold storage chamber at 4°C and at around 90% of humidity during one, three and 

six months (respectively T1, T3 and T6), except the first group (T0) for which apples 

were analyzed and processed the day after harvest. These storage durations were chosen 

in order to increase the fruit variability linked to firmness and biochemical changes, 

such as demethylation and depolymerization of pectins (Billy, Mehinagic, Royer, 

Renard, Arvisenet, Prost, et al., 2008). Each set (T0, T1, T3 and T6) was divided into 

two sub-groups. The first one was dedicated for fresh apple characterization and the 

second one for processing. For characterization, three replicates of 10 apples, 

representative of the total apple set, were analyzed after one night temperature 

equilibration at 23°C.  

 First, nondestructive measurements (NIR, color, ethylene releasing rate, fruit 

weight), and then texture tests (puncture mean load and puncture linear distance) were 

performed on each apple. After that, each apple was cored and divided as described by 

Bureau et al. (Bureau, Scibisz, Le Bourvellec, & Renard, 2012) in order to create, for 

each replicate of ten apples, three batches of 40 pieces representative of each apple. The 

pieces were immediately put in liquid nitrogen to avoid any oxidization. Finally, one 

batch was stored at -20 °C and then was subsequently freeze-dried to evaluate the 

alcohol insoluble solids (AIS) contents. The other two batches were stored at -80°C for 

biochemical characterization measurement. 
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Fig. 39. Experimental scheme of sample preparation, spectrum acquisition and quality parameter characterization. 
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2.1.2 Purees 

 For each raw apple condition, three replicates of apple puree were produced with 

4 kg of apples each. After sorting and washing, apples were cored and cut in 8 portions, 

then processed in a multi-functional processing system (Roboqbo, Qb8-3, Bentivoglio, 

Italy) following a Hot Break recipe: cooked at 95°C for 5 min at a 1500 rpm grinding 

speed, then cooled down to 65°C while maintaining the grinding speed. Half of the 

batch was refined at 0.5 mm using a Robot Coupe C80 automatic refiner (Robot Coupe 

SNC, Vincennes, France) in order to study two levels of granularity: non-refined (NR) 

and 0.5 mm refined (Ra). Finally, processed purees were conditioned in hermetically 

sealed cans, then placed and cooled at 23 °C before measurements, which took place 

the next day. 

2.2 Determination of quality traits  

2.2.1 Color 

 The skin color (un-blushed and blushed sides) was determined using a CR-400 

chromameter (Minolta, Osaka, Japan) and expressed in the CIE 1976 L*a*b* color 

space (illuminant D65, 0° view angle, illumination area diameter 8 mm). The puree 

color was measured three times through a dedicated glass cuvette using the same 

method and equipment. 

2.2.2 Ethylene production 

 Each group of ten apples was put in a hermetic jar at 23°C for 1 hour, and ethylene 

production was analyzed by taking 500 μL of the headspace and injecting it in gas 

chromatography (Agilent, California, United States) equipped with a porapak Q column 

and a FID detector and expressed in nmol kg-1 h-1. 

2.2.3 Fruit texture and puree rheology 

 Fresh apple texture was evaluated by a puncture test using a multipurpose texture 

analyzer (TAPlus, Lloyd Instruments, Farenham, UK). The puncture tests were 

operated with a punch probe (diameter 1.2 mm), which could penetrate up to a depth of 
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17 mm into each peeled section of apple. Firmness was then evaluated as the mean load 

value calculated by the division of penetration energy by the height of testing. 

Crunchiness of apple flesh (Gregson & Lee, 2002) was estimated as the linear distance 

values from the area under the force-distance curve in the range of 10 mm at the load 

plateau, consisting in summing the lengths between consecutive points. 

 The puree rheological measurements were carried out using a Physica MCR-301 

controlled stress rheometer (Anton Paar, Graz, Austria) at 22.5 °C. The flow curves 

were performed after a pre-shearing period of 1 minute at 50 s-1 followed by 5 minutes 

at rest. The viscosity was measured at a rate of 1 point every 15 seconds, at a controlled 

shear rate range of [10; 250] s-1 on a logarithmic ramp. The value of the viscosity at 100 

s-1 𝜂100 was kept as an indicator of the puree viscosity. As often used to model fruit 

purees (Colin-Henrion, Cuvelier, & Renard, 2007), the complete flow curves were 

fitted with a power-law viscosity model as described by Eq. 1. 

𝜂 = 𝐾 �̇�𝑛−1                    (𝐸𝑞1) 

where η is the apparent viscosity (Pa.s), �̇� the shear rate (s-1), K the consistency 

parameter, and n-1 the flow parameter. 

2.2.4 Biochemical characterization of apples and purees 

 Biological characterization of apples and purees has been described in Papers I 

and II.  

2.3 FT-NIR spectrum acquisition 

 The spectral data of apples and purees were both acquired with a multi-purpose 

analyzer spectrometer (Bruker Optics®, Wissembourg, France), which provides diffuse 

reflectance measurements with a spectral resolution of 2 nm from 800 to 2500 nm. For 

each spectrum, 32 scans were recorded and averaged. The spectral acquisition and 

instrument adjustments were controlled by OPUS software Version 5.0 (Bruker 

Optics®). The apples were placed on an automated 30-positions sample wheel, each 

position corresponding to a measured area of 18 mm diameter. For each intact apple, 

two spectra were collected (on the blushed and un-blushed sides) though the 18 mm 
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diameter areas at 23°C. Puree were transferred into 10 mL glass vials (5 cm height x 18 

mm diameter) which were placed on the automated sample wheel of the 

spectrophotometer. Each puree sample was measured three times on different aliquots. 

A reference background measurement was automatically activated before each data set 

acquisition using an internal Spectralon reference. 

2.4 Statistical analyses and chemometrics 

 After ensuring the normal distribution of dataset, the results were presented as 

mean values and the data dispersion within our experimental dataset expressed as 

standard deviation values (SD). Analysis of variance (ANOVA) was carried out to 

determine the significant differences due to the tested factors on both apples and purees 

using XLSTAT (version 2018.5.52037, Addionsoft SARL, Paris, France) data analysis 

toolbox. The pairwise comparison between means was performed using Tukey’s test at 

the 95% level of certainty (p < 0.05(*), 0.01 (**) and 0.001 (***)). For apples, a one-

way ANOVA was applied to access the effect of storage period on ‘Golden Smoothee’ 

in 2016 and ‘Granny Smith’ in 2017; a two-way ANOVA concerned the effects of 

storage period and fruit thinning on ‘Golden Delicious’ in 2017. For purees, a two-way 

ANOVA accessed the effects of storage periods and refining treatments on ‘Golden 

Smoothee’ and Granny Smith, and a three- way ANOVA for ‘Golden Delicious’ in terms 

of fruit thinning, storage periods and puree refining levels. Pearson’s determination 

coefficients (R2) were calculated in order to study the significance of the relationship 

between apples and purees and then output as an heat map using R software (version 

3.5.2) (R Core Team, 2018) and the additional package named ‘ComplexHeatmap’ (Gu, 

Eils, & Schlesner, 2016). 

 Spectral pre-processing and multivariate data analysis were performed with Matlab 

7.5 (Mathworks Inc. Natick, MA) software using the SAISIR package (Bertrand & 

Cordella, 2008). All the NIR data were pre-processed with standard normal variate 

(SNV) and a derivative transform calculation (Savitzky–Golay method, gap size = 11, 

21, 31, 41) of first or second order. Each of the preprocessing methods was tested in the 

discrimination models. As SNV pre-processing had the best performances to correct 
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multiplicative interferences and variations in baseline shift, the results shown are those 

obtained with the SNV pretreatment. Principal Component Analysis (PCA) and Factor 

Discriminant Analysis (FDA) were carried out on spectral data to evaluate the 

possibility to discriminate samples according to the tested factors (varieties, thinning 

and storage). The specificity and sensitivity values of FDA discriminations, which help 

for a better evaluation of the rate of sample differentiation, were calculated by the 

already reported method of Nargis (Nargis et al., 2019). The Partial least-square (PLS) 

regression method was used to develop predictive models of the quality traits of interest 

in apples and purees. The whole spectral dataset included 840 spectra of apples and 240 

spectra of purees. The dataset was randomly split, two third of dataset (560 spectra of 

apples and 160 spectra of purees) were used for calibration and one third of dataset (280 

spectra of apples and 80 spectra of purees) for validation. The procedure was repeated 

10 times in order to obtain the suitable dimensions of the PLS models. The latter 

performance was described by the root mean square error of calibration (RMSEC), the 

root mean square error of validation (RMSEV), the number of latent variables (LVs), 

the determination coefficient (R2) between the predicted and measured parameters and 

the RPD (Residual Predictive Deviation) value as described by Nicolai (Nicolai et al., 

2007). 

3. Results and discussion 

3.1 Apple and puree characteristics measured by classical methods 

3.1.1 Fresh apples 

 In this experiment, three varieties, two agricultural conditions and a cold storage 

for up to 6 months provided an interesting apple fruit variability (Fig. 40a, b). Clear 

discriminations were shown between the different storage periods along the first 

principal component, and apple varieties and thinning levels along the second principal 

component (Fig. 40a). ‘Granny Smith’ was clearly differentiated from the two ‘Golden’ 

varieties. Remarkably, the two non-thinned ‘Golden’ samples were close to each other 

(blue in 2016 and red in 2017), in spite of different growing seasons and locations, 
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while the thinned samples were clearly differentiated. The most discriminant quality 

traits were: mean load, linear distance, AIS content (FW and DW), TA, malic acid 

content, ethylene production rate and color changes (L*, a* and b*) on the first principal 

component, and SSC, DMC and sucrose content on the second principal component 

(Fig. 40b). The totality of the acquired data is presented in Table 31. 

 During cold storage, mean load, linear distance and AIS content (FW and DW) 

decreased remarkably (p < 0.001) in all apples, indicating an intensive reduction of 

apple firmness, crunchiness and cell wall material contents (Johnston, Hewett, & 

Hertog, 2002). Good correlations were observed between AIS and mean load (R2 =0.78 

in ‘Golden Smoothee’, R2=0.75 in ‘Granny Smith’, R2 =0.82 in ‘Golden Delicious’). 

The acidity in all apples decreased significantly with storage (p < 0.001) at a large range 

from 103.4 to 26.5 meq/kg FW for TA and 6.5 to 2.3 g/kg FW for malic acid. The 

ethylene production rate increased and then decreased during storage with significant 

changes (p < 0.001). All color parameters (L*, a* and b*) increased clearly for all apples, 

linked to a degreening and a yellowing during the long-term storage. The changes of 

all individual sugar contents were significant in ‘Golden Smoothee’ (p < 0.05) and 

‘Golden Delicious’ (p < 0.001), but not in ‘Granny Smith’ (p > 0.05). For ‘Golden 

Delicious’, SSC and DMC from thinned trees (Th +) appeared to be significantly (p < 

0.001) higher than from non-thinned trees (Th-). 
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Fig. 40. PCA results of physical, physiological and biochemical compositions for: 

apples (a) and processed NR (no refined) purees (c) in three varieties (GO: ‘Golden 

Smoothee’, GD: ‘Golden Delicious’ and GS: Granny Smith) growing under two 

different thinning conditions (Th+ marked with red solid circle and Th- with red dotted 

circle) and stored at 4°C from harvest (T0), 1 (T1), 3 (T3) and 6 (T6) months. 

Correlation plot of the first principal components for apples (b) and NR purees (d). 
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Table 31. Reference data of fresh apples with different varieties and growing conditions at harvest and during cold storage. 

Variety 

Y
ea

r 

S
to

ra
g

e 

p
er

io
d

s 

F
ru

it
  

th
in

n
in

g
 

weight mea

n 

load 

linear 

distanc

e 

colour Ethylen

e 
AIS AIS DMC SSC TA glucos

e 

fructos

e 
sucrose malic 

acid 
g (N) (-) L* a* b* 

nmol/h.

kg 

mg/g 

FW 

mg/g 

DW 

g/g 

FW 

°Bri

x 

meq/kg 

FW 

g/kg 

FW 

g/kg 

FW 

g/kg 

FW 
g/kg FW 

Golden 

Smoothee 
2016 

T0 Th - 144.2 2.71 12.33 70.

2  

-15.6  44.0  2621 19.5  102.5  0.189 15.5 79.5 22.4 81.1 54.4 5.7 

T1 Th - 164.3 1.82 11.30 72.

7  

-11.8  49.0  9223 15.3  86.8  0.173 13.0 74.6 18.3 76.4 49.0 5.3 

T3 Th - 126.0 1.75 10.84 75.

4  

-6.1  54.5  7508 15.5  91.3  0.180 14.2 56.0 19.9 77.6 48.8 3.9 

T6 Th - 121.8 1.48 10.81 75.

6  

-0.8  60.0  6933 14.5  88.5  0.166 13.8 40.4 19.2 85.0 40.4 2.6 

SD  17.8 0.48 0.65 2.4 5.9 6.2 2596 2.0 11.03 0.013 1.2 16.3 1.9 4.0 6.3 1.3 

F-value and 

significance 
Storage periods 

23.0 224.

4 
27.9 78.

7 
334.4 121

7 
60.2 84.3 7.3 2.2 6.1 325 5.7 8.6 5.6 82.0 

*** *** *** **

* 
*** *** *** *** * ns * *** * ** * *** 

Granny Smith 2017 

T0 Th - 196.6 3.09 17.23 63.

2  

-18.8  41.1  2 38.5 256.6 0.151 11.1 97.8 21.4 43.6 34.5 6.0 

T1 Th - 188.9 2.68 15.78 62.

8  

-17.7  40.3  714 26.7 182.2 0.149 11.8 103.4 21.6 26.1 40.5 6.1 

T3 Th - 189.5 1.84 11.40 66.

1  

-16.9  44.1  2147 24.3 169.7 0.145 11.6 86.0 23.2 29.2 36.4 4.6 

T6 Th - 182.0 1.85 11.50 66.

6  

-13.3  45.2  1082 23.0 161.2 0.143 10.8 60.9 21.6 50.4 30.1 3.5 

SD  7.0  0.58  2.70  1.9  2.2  2.2  810  6.5  39.8  0.004  0.5  17.3  1.48  11.3  6.1  1.2  

F-value and 

significance 
Storage periods 

4.1 62.1 383.1 27.

8 
87.4 92.1 889.1 136.5 142.5 3.5 4.4 115.3 0.9 3.2 1.9 63.4 

ns *** *** **

* 
*** *** *** *** *** ns * *** ns ns ns *** 

Golden 

Delicious 
2017 

T0 Th - 176.2 2.71 16.47 70.

2  

-15.7  40.8  322 26.8 154.7 0.174 13.5 64.9 24.1 74.9 59.2 4.4 

T1 Th - 178.8 1.76 11.43 72.

6  

-14.1  43.2  5072 23.2 136.4 0.174 14.4 55.9 21.7 65.6 65.3 3.4 

T3 Th - 189.9 1.50 10.76 75.

6  

-8.5  48.9  6367 24.4 138.0 0.175 14.5 50.4 21.0 58.7 59.3 2.4 

T6 Th - 154.2 1.20 10.49 76.

1  

-3.6  53.3  4393 19.9 121.4 0.164 12.8 26.5 22.0 73.0 46.0 2.6 

T0 Th + 205.4 3.31 17.59 75.

6  

-10.3  43.6  12 49.4 218.0 0.225 17.4 84.0 20.9 96.3 86.3 6.5 

T1 Th + 208.2 2.03 11.84 75.

4  

-8.6  43.7  5268 32.2 153.5 0.209 15.9 68.4 17.1 67.8 80.5 5.0 

T3 Th + 195.5 1.69 11.23 77.

1  

-4.4  47.7  4074 28.1 145.5 0.194 16.4 61.2 15.7 65.6 82.8 3.5 

T6 Th + 192.8 1.56 10.80 76.

2  

1.1  53.0  3718 27.3 133.4 0.204 16.9 34.5 23.7 89.3 57.2 2.3 

SD  17.3 0.67 2.75 2.3 5.4 4.5 2126.0 8.7 28.7 0.021 1.6 17.9 3.1 13.4 14.2 1.4 

F-value and 

significance 

Storage periods 
20.2 788.

6 
92.0 18.

9 

1103.

0 

434.

2 
92.4 118.0 100.3 21.2 4.4 315.7 14.1 19.2 46.0 227.7 

*** *** *** **

* 
*** *** *** *** *** *** Ns *** *** *** *** *** 

Fruit thinning 
148.3 186.

7 
3.4 39.

7 
963.5 3.5 90.9 332.7 97.7 535.3 432.

7 
146.1 22.4 28.1 159.1 160.5 

*** *** ns **

* 
*** ns *** *** *** *** *** *** *** *** *** *** 

Data expressed in Fresh weight (FW) or Dry matter weight (DW), values correspond to the mean of 3x10 apples. Four storage periods at 4°C: from harvest(T0), one (T1), three 

(T3) and six months (T6); two conditions of fruit load: non-thinning with 100% number of apples (Th-) and thinning with 50% number of apples (Th+) per tree; ns, *, **, ***: In 

grey, one way- ANOVA results of Golden Smoothee, Granny Smith apples and two-way ANOVA results of Golden Delicious apples. ns, *, **, ***: Non-significant or significant 

at P < 0.05, 0.01, 0.001 respectively. 
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Table 32. Reference data of purees during a cold storage. 

Variety 

Y
ea

r 

S
to

ra
g

e 

p
er

io
d

s 

F
ru

it
 

th
in

n
in

g
 

R
ef

in
in

g
 𝜂100 

(ƞ100) 

Viscosity colour AIS AIS DMC SSC TA glucos

e 

fructos

e 
sucrose malic 

acid 
Pa.s K n L* a* b* mg/g 

FW 

mg/g 

DW 

g/g 

FW 

°Bri

x 

meq/kg 

FW 

g/kg 

FW 

g/kg 

FW 

g/kg 

FW 
g/kg FW 

Golden 

Smoothee 
2016 

T0 Th - NR 0.93  21.6 0.39 44.8 -5.0 14.9

3 

20.4  114.9  0.177 14.9

3 

66.4 23.4 71.8 56.8 5.2 

T1 Th - NR 0.61  31.3 0.21 45.4 -4.4 15.3

6 

13.8  82.9  0.166 14.1

0 

65.7 18.9 68.7 55.5 4.9 

T3 Th - NR 0.60  21.7 0.25 46.6 -4.3 16.2

1 

14.2  86.7  0.177 13.8

0 

54.4 17.9 73.3 46.3 4.3 

T6 Th - NR 0.59  31.4 0.21 48.7 -4.3 19.6

5 

15.0  96.1  0.159 13.4

3 

43.0 19.0 80.8 39.4 3.8 

   
 

     
  

       

T0 Th - Ra 0.67  39.1 0.20 45.2 -4.4 11.2

8 

14.4  83.0  0.173 14.5

7 

66.9 22.9 70.7 58.8 5.1 

T1 Th - Ra 0.49  27.4 0.20 45.8 -3.8 11.9

1 

9.8  61.7  0.163 14.2

0 

66.9 20.0 70.4 49.2 5.0 

T3 Th - Ra 0.49  27.2 0.20 47.5 -4.3 15.3

4 

9.5  60.1  0.210 14.0

0 

55.3 18.1 73.7 42.7 4.2 

T6 Th - Ra 0.48  26.9 0.21 50.4 -4.6 18.4

0 

12.2  81.1  0.158 13.6

3 

37.8 18.6 78.5 38.2 3.6 

SD  0.21  5.4  0.06  1.9  0.4  2.8  31.1  6.0  0.019  0.55  11.3  2.2  5.01  8.2  0.6  

F-value and significance 

storage periods 
51.2 10.3 72.2 258.2

6 

5.6 66.6

4 

47.6 42.1 10.5 12.6

4 

128.6 47.8 8.7 33.8 32.0 

*** *** *** *** ** *** *** *** *** *** *** *** *** *** *** 

refining levels 
70.0 17.9 159.0

0 

50.1 4.4 48.9

7 

58.6 55.4 1.66 0.1 0.4 0.1 0.04 2.4 0.4 

*** *** *** *** ns *** *** *** ns ns ns ns ns ns ns 

Granny Smith 2017 

T0 Th - NR 0.91 54.6 0.10 44.6 -4.4 13.4

7 

45.2 267.6 0.169 10.5

3 

101.5 20.3 50.7 58.0 8.5 

T1 Th - NR 0.84 49.9 0.09 46.4 -3.8 9.45 31.5 185.3 0.170 11.4

7 

98.1 18.5 51.0 60.6 7.5 

T3 Th - NR 0.72 22.2 0.25 46.2 -4.4 11.2

4 

24.3 147.1 0.164 11.2

7 

86.5 23.0 47.3 46.6 6.1 

T6 Th - NR 0.66 18.8 0.27 46.5 -4.2 12.2

9 

29.3 177.4 0.165 10.6

3 

63.6 21.4 43.1 35.8 5.3 

                  

T0 Th - Ra 0.35 6.9 0.37 47.2 -4.5 13.6

8 

20.5 126.1 0.164 10.3

7 

107.8 19.8 54.7 55.1 7.9 

T1 Th - Ra 0.26 3.2 0.47 48.0 -4.0 11.6

6 

17.6 108.0 0.163 11.5

3 

100.7 19.4 49.8 61.9 7.4 

T3 Th - Ra 0.48 15.4 0.25 46.1 -4.4 11.4

8 

23.2 142.9 0.162 11.6

0 

88.0 22.9 51.2 51.9 6.4 

T6 Th - Ra 0.48 16.5 0.23 46.8 -4.4 13.0

0 

24.7 152.2 0.162 11.2

3 

64.3 22.6 53.4 34.6 5.2 

SD  0.23  18.2  0.12  1.0  0.3  1.5  47.7  8.4  0.005  0.51  16.2  2.0  4.1  11.0  1.2  

F-value and significance 

storage periods 
14.0 29.8 7.4 8.6 11.0

9 

21.8

2 

20.4 27.6 0.6 28.5

5 

619.5 13.4 3.4 34.1 163.6 

*** *** ** ** *** *** *** *** ns *** *** *** * *** *** 

refining levels 
1746.7

3 

507.5

3 

469.5

2 

31.2 3.2 8.6 146.8 183.16 3.8 5.2 14.2 0.7 16.5 0.1 1.1 

*** *** *** *** ns ** *** *** ns * ** ns *** ns ns 
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Table 32 (continued) 

Golden Delicious 2017 

T0 Th - NR 0.77 40.8 0.12 46.7 -4.5 15.0 31.6 164.5 0.192 13.4 58.1 18.9 50.5 66.7 4.5 

T1 Th - NR 0.70 22.7 0.23 47.0 -4.4 17.9 27.6 147.2 0.188 15.0 54.4 15.4 49.4 59.1 2.8 

T3 Th - NR 0.55 17.0 0.25 47.9 -4.6 17.8 27.4 140.0 0.195 14.1 46.7 18.6 84.1 84.8 3.6 

T6 Th - NR 0.50 17.0 0.24 52.9 -4.0 22.2 27.6 145.7 0.189 13.8 26.8 23.0 85.1 77.4 2.7 
                  

T0 Th - Ra 0.32 10.3 0.18 44.3 -4.0 9.0 18.3 126.6 0.197 12.6 59.0 24.5 45.2 43.5 3.2 

T1 Th - Ra 0.42 13.5 0.25 46.6 -4.2 12.2 20.8 113.8 0.183 14.5 48.6 17.4 57.4 67.3 3.3 

T3 Th - Ra 0.40 13.8 0.24 47.8 -4.6 15.5 22.3 116.0 0.192 14.1 48.5 19.1 79.0 88.5 3.6 

T6 Th - Ra 0.39 14.9 0.22 53.3 -4.9 20.1 21.3 118.7 0.179 13.8 27.0 22.1 83.0 65.3 2.7 
                  

T0 Th + NR 0.97 22.1 0.25 46.2 -4.5 15.8 41.1  193.6  0.206 15.5 70.9 23.5 85.4 64.4 5.5 

T1 Th + NR 0.94 33.9 0.21 46.9 -4.0 17.1 31.9 150.9 0.213 17.6 69.3 16.8 80.3 115.9 5.6 

T3 Th + NR 0.70 24.1 0.24 46.9 -4.0 16.5 31.6 143.3 0.221 16.9 59.9 13.8 88.0 102.5 4.9 

T6 Th + NR 0.88 33.8 0.20 48.7 -4.2 22.7 34.8 150.3 0.231 17.5 34.7 23.8 95.7 44.0 3.6 
                  

T0 Th + Ra 0.44 13.0 0.25 45.2 -5.1 14.3 24.8 117.3 0.208 16.5 70.6 14.8 82.3 65.3 5.9 

T1 Th + Ra 0.51 19.7 0.22 46.5 -4.2 15.2 25.4 121.8 0.208 16.5 71.4 17.8 81.3 118.6 5.9 

T3 Th + Ra 0.51 18.8 0.22 46.3 -4.0 15.8 25.9 118.1 0.219 16.8 60.1 14.4 88.5 108.6 5.2 

T6 Th + Ra 0.71 26.0 0.20 48.7 -4.6 22.0 29.5 124.0 0.238 17.4 36.0 24.5 97.0 57.3 3.7 

SD  0.21  8.5  0.03  2.4  0.4  3.6  18.5  5.0  0.019  1.7  15.0  3.8  16.6  24.1  1.2  

F-value and significance 

storage periods 
8.3 3.8 25.4 145.5 3.0 196.0 1.9 5.7 21.4 20.0 415.9 28.9 57.6 64.4 28.6 

*** ** *** *** * *** ns ** *** *** *** *** *** *** *** 

refining levels 
344.0 91.9 4.2 8.7 4.8 109.1 140.9 170.1 8.6 3.0 0.01 0.03 1.5 1.9 0.1 

*** *** * ** * *** *** *** ** ns ns ns ns ns ns 

fruit thinning 
163.9 23.4 6.4 52.6 1.0 23.7 68.3 72.7 432.5 331.0 308.3 3.9 41.7 19.3 191.4 

*** *** * *** ns *** *** *** *** *** *** ns *** *** *** 

Data expressed in Fresh weight (FW) or Dry matter weight (DW); values correspond to the mean of 3x10 apples. Four storage periods at 4°C: from harvest (T0), one (T1), three 

(T3) and six months (T6). Two conditions of fruit load: non-thinning with 100% number of apples (Th-) and thinning with 50% number of apples (Th+) per tree. Two refining 

conditions of purees with 0.5 mm (Ra) and non-refining (NR). In grey, two way- ANOVA results of Golden Smoothee, Granny Smith purees and three-way ANOVA results of 

Golden Delicious purees. ns, *, **, ***: Non significant or significant at P < 0.05, 0.01, 0.001 respectively. 

 



238 

3.1.2 Apple purees 

 The fresh apple variability described above affected the characteristics of the 

corresponding non-refined (NR) purees cooked using the same recipe (Fig. 40c, d). The 

NR purees were discriminated according to the apple variety, fruit thinning and storage 

periods (Fig. 40c). The first principal component was positively correlated to TA, 

content of malic acid, AIS (DW and FW) and rheological parameters (𝜂100, K), and 

negatively linked with colors (L*, b*) and fructose content. The storage periods could 

be well-classified with this component. The second principal component was highly 

related to DMC, sucrose content, SSC and AIS content (FW) allowing the separation 

of varieties and fruit thinning conditions. 

 In all NR purees, clear decreases (p < 0.001) of TA, malic acid and AIS (in DW) 

were observed during storage, which were highly consistent with their changes in raw 

apples. At the same time, the rheological properties (𝜂100  and K) decreased, with 

statistically significant differences (p < 0.01) in all NR purees, but not in Ra purees 

(Table 32). A good correlation was found between AIS expressed in fresh weight (FW) 

and the values of 𝜂100 in ‘Golden Smoothee’ (R2=0.77), ‘Granny Smith’ (R2=0.73) and 

non-fruit thinned (Th-) ‘Golden Delicious’ (R2=0.84), meaning there was a good 

relationship between cell wall content and viscosity in NR purees. Visually perceptible 

differences of color with an increase of L* and b* (with ΔE > 2) were detectable only 

after 6 months of storage for ‘Golden Delicious’ and ‘Golden Smoothee’ (Hunter, & 

Harold, 1987). Fructose content, as the major individual sugar, increased significantly 

(p < 0.001) in ‘Golden Smoothee’ and ‘Golden Delicious’ purees during storage, but 

not for ‘Granny Smith’, again in good agreement with the behavior observed in the raw 

fruits.  

 The changes of SSC, sucrose content and DMC in purees were still the major 

discriminative contributors for apple varieties and fruit thinning conditions during 

puree processing. Obvious differentiations were observed for SSC and sucrose content 

between ‘Granny Smith’ purees and the other purees, in accordance with their changes 

in raw apples. In ‘Golden Delicious’, tree thinning (Th+) led to a significant increase 
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(p < 0.001) of DMC both in apples and their corresponding processed purees at each 

storage period (Table 31 and Table 32), in accordance with the fact that the thinned 

apples, in addition to being larger, also accumulates more cell materials per volume unit 

(Palmer, Harker, Tustin, & Johnston, 2010). Additionally, the apples of the tree thinning 

(Th+) gave purees more viscous with significant higher values of 𝜂100 and K (p < 0.001) 

than the non-thinning condition (Th-). The tree thinning treatments, by affecting 

individual apple growth potential, affected physical properties of raw apples and 

processed purees, including their viscosity. Small fruits from non-thinned trees (Th-) 

resulted in less viscous purees than large fruits from thinned trees.  

 Concerning the refined (Ra) purees, an expected clear reduction was obtained for 

both AIS content (in DW) and viscosity (𝜂100) after refining (Table 32). That could be 

due to the loss of insoluble fibers in the removed particle fraction (Colin-Henrion, 

Mehinagic, Renard, Richomme, & Jourjon, 2009) leading to a loss of puree viscosity 

(Espinosa-Muñoz, To, Symoneaux, Renard, Biau, & Cuvelier, 2011; Leverrier, Almeida, 

& Cuvelier, 2016). 

3.1.3 Relationship between the fresh apples and puree characteristics 

 In order to study the link between physical and chemical parameters of raw apples 

and their processed purees, the coefficients of determination (R2) were calculated with 

the dataset including all three varieties under two thinning conditions (Th+ and Th-) 

and two refining levels and are displayed as heat maps for R2 values from red (R2 > 0.8) 

to blue (R2 < 0.2) (Fig. 41). A clear similarity was observed between the two maps (Fig. 

41a, b) with the same blue and red areas. Between all apples and their processed purees, 

high R2 values (0.92 in NR and 0.91 in Ra) were obtained for TA. Acceptable 

correlations were also found for SSC (0.79 in NR and 0.81 in Ra), DMC (0.72 in NR 

and 0.73 in Ra) and malic acid content (0.65 in NR and 0.61 in Ra). For the AIS (DW) 

contents, good correlations (R2) were obtained for each variety between raw apples and 

NR purees (not for Ra purees): 0.76 in ‘Golden Smoothee’, 0.83 in ‘Granny Smith’ and 

0.77 in ‘Golden Delicious’, but lower when using all NR purees (R2= 0.65). Moreover, 

acceptable correlations (R2> 0.71) were obtained between texture characteristics (mean 
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load and linear distances) of all apples and rheological parameters (ƞ100 and K) of their 

corresponding purees, whether non-refined (NR) (Fig. 41a) or refined (Ra) (Fig. 41b). 

The rheological variations in processed purees under the effects of different genotypes, 

storage periods and refining treatments were consistent with the textural changes in 

apples. However, no significant correlations (R2 < 0.44) were found for individual 

sugars (glucose, sucrose and fructose) between all apples and their purees (NR and Ra), 

probably because: i) these concentrations changed less during long-term storage than 

TA and malic acid content, and ii) water content varied during thermal processing and 

refining treatments. 

 The good correlations of acidity (TA and malic acid content), SSC, DMC and 

physical properties (textual and rheological parameters) between apples and their 

purees were in line with PCA results (Fig. 40b, d). The chemical and physical variations 

in purees were shown to be potentially linked to the raw apple properties. 



241 

 

Fig. 41. Determination coefficient (R2) of all physical and biochemical parameters between the ‘Golden Smoothee’, ‘Granny Smith’ and ‘Golden 

Delicious’ apples (titled with “F”) and their processed purees (titled with “P”): (a) raw apples and non-refined (NR) purees; (b) raw apples and 

refined (Ra) purees. 
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3.2 Apple and puree characteristics measured by NIRS 

 ANOVA was performed on the SNV pre-treated NIR spectra of apples and 

processed purees (Fig. 42), in order to point out the wavelengths that varied during 

processing. According to the F-values, the variability was clearly higher for the spectra 

of apples (Fig. 42a, b) than those of purees (Fig. 42c, d), as could be expected given 

that each puree was prepared from 4 kg of fruit. For raw apples, the effect of variety (F-

values of 800) was higher than the effect of storage (F-value of 120) (Fig. 42a, b). 

However, after processing into purees, the opposite conclusion was obtained: the effect 

of storage (F-values of 110) was almost three times higher than the effect of variety (F-

value of 40) (Fig. 42c, 42d). Combine with their averaged spectral results (not shown), 

when apples were processed into puree, the peaks at 1930 nm in apples (Fig. 42a) were 

not variable in purees (Fig. 42c), demonstrating that the water contents had very limited 

variations in the purees. 
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Fig. 42. ANOVA results of the SNV pre-treated NIR spectra between 800 and 2500 nm: 

(a) effect of variety on all apples spectra; (b) effect of storage period on all apples 

spectra; (c) effect of variety on all purees spectra; (d) effect of storage period on all 

purees spectra. 

3.2.1 Discrimination of fresh apples 
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Fig. 43. Factorial maps of the SNV pre-treated NIR spectra of all apples between 1700 

and 2350 nm or all purees between 800 and 2500 nm: (a) Principal Component Analysis 

showing apples varieties; (b) the Factorial Discriminant Analysis of storage periods of 

apples; (c) Factorial Discriminant Analysis of varieties of all purees; (d) Factorial 

Discriminant Analysis of storage periods of all purees. ‘Golden Smoothee’ (GO), 

‘Golden Delicious’ (GD), ‘Granny Smith’ (GS); storage duration at 4°C from harvest 

(T0), 1 (T1), 3 (T3) and 6 (T6) months. 

 The wavelength range with the most variability (between 1700 and 2350 nm), 

identified by the ANOVA (Fig. 42a), was chosen to discriminate the effects of variety 

and storage. This range was used to perform PCA and FDA (Fig. 43a, b). 

 The first PCA displayed the discrimination of apples according to the variety (Fig. 

43a). The first PC-score (PC1) discriminated ‘Granny Smith’ (GS) on the left and 

‘Golden Delicious’ (GD) and ‘Golden Smoothee’ (GO) on the right, and accounted for 

83.5% of the total variability. As observed for the reference data, ‘Golden Smoothee’ 
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spectra were overlapped with those of ‘Golden delicious’. The wavelengths at around 

1880 nm, 1930 nm and 2100-2300 nm were the main contributors of the PC1 (not 

shown).The two bands at 1880 nm and 1930 nm are explained by the O-H combinations, 

which have been reported to characterize the water content in apples (Camps, 

Guillermin, Mauget, & Bertrand, 2007). The broad band at 2100-2300 nm corresponds 

to the first combination band of C-H bond of sugars or organic acids, already used to 

determine the concentration of individual sugars in apple juices (León, Kelly, & 

Downey, 2005; Liu, Ying, Yu, & Fu, 2006). These fingerprint wavelengths are 

consistent with the discrimination of apple varieties harvested in France (Camps, 

Guillermin, Mauget, & Bertrand, 2007).  

 In a second step, the different storage periods of all apples could be separated (100% 

of discrimination sensitivity and specificity between T0 and T1 apples, and 98.5% for 

sensitivity and 99.5% for specificity between T1 and T3 apples) by FDA (Fig. 43b). It 

was observed that T3 and T6 apples were overlapped (Fig. 43b), in line with their 

changes of mean load and linear distance (PCA could not well-classified storage 

periods). However, this result was inconsistent with previous report regarding well 

classification of storage periods of ‘Golden Delicious’ at 2°C by FDA (Giovanelli, 

Sinelli, Beghi, Guidetti, & Casiraghi, 2014). In our experiment, the strong variability 

and heterogeneity from different apple varieties and fruit-thinning treatments could 

provide more variations of water contents and carbohydrates, and thus introduced 

difficulties to well classify the storage stages after 3 months (T3). The use of different 

storage temperatures might also be involved, with a faster evolution at 4°C than at 2°C. 

The relevant wavelengths were mainly located in the ranges from 1700-1900 nm and 

2250 nm (not shown).  

 The wavelengths around 1880 nm, 1930 nm, and 2100-2300 nm could be applied 

to the discrimination of apple varieties, while those at 1700-1900 nm and 2250 nm 

could be used for the classification of apple storage periods. 

3.2.2 Discrimination of apple purees 

 For purees, the ANOVA indicated major variations in the following wavelength 
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ranges: 800-1050 nm, 1550-1730 nm, 1870 nm and 2100-2200 nm (Fig. 43c, d). Thus, 

the whole wavelength range from 800 to 2500 nm was used for FDA on the spectral 

dataset of all purees (not well-classified with PCA). The first two factors of the FDA 

allowed the discrimination of the three varieties, ‘Golden Smoothee’ (GO), ‘Granny 

Smith’ (GS) and ‘Golden Delicious’ (GD), with the discrimination specificity and 

sensitivity values of 86.8% and 84.6% in GD and GO apples; 84.0% and 82.2% in GD 

and GS apples; 88.5% and 91.9% in GD and GS apples (Fig. 43c). The F1 and F2 

coefficients were both highly correlated with the area between 800 and 1000 nm (not 

shown), which is known as the absorption of apple carbohydrates and water (Giovanelli, 

Sinelli, Beghi, Guidetti, & Casiraghi, 2014; Zude, Herold, Roger, Bellon-Maurel, & 

Landahl, 2006), and already used for apple variety classification (Bobelyn et al., 2010). 

Purees could be classified according to the storage periods with a distinct group for T0 

and T1 (91.7% of sensitivity and 95.0% of specificity), but a mixed group for T3 and 

T6 (Fig. 43d). Besides the aforementioned absorbance region between 800 and 1000 

nm, the wavelengths around 1400 nm and between 2100 and 2300 nm were also major 

contributors for discrimination of storage durations. These regions have been shown to 

be related to water loss and SSC variations, and could be regarded as the fingerprint 

wavelengths of apple storage periods (Camps, Guillermin, Mauget, & Bertrand, 2007; 

Giovanelli, Sinelli, Beghi, Guidetti, & Casiraghi, 2014; León, Kelly, & Downey, 2005).  

Other interesting results were obtained with the FDA applied on ‘Granny Smith’ purees 

taking into account the refining levels and the storage durations (not shown). According 

to the F1 and F2 axes, the two refining levels (Na and Ra) were separated both at T0 

and T1, but not at T3 and T6. This result is highly consistent with the rheological 

changes of refined and non-refined purees of ‘Granny Smith’ (Table 32). This refining 

treatment led to stronger losses of viscosity and cell wall (AIS) content before the first 

month of apple storage (T1), compared to purees prepared after three months (T3 and 

T6). 

3.3 Prediction of quality traits by NIRS  

 In this study, we tested the ability of NIR spectra and reference data coupled with 
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PLS to predict the physical and biochemical parameters of: (1) all apples from their 

NIR spectra (Table 33); (2) all processed purees (NR and Ra) from their NIR spectra 

(Table 34); (3) and all purees from the spectral information of apples (Table 35 and 

Table 36). 

3.3.1 Prediction of quality traits by NIRS on fresh apples 

 The prediction models were developed based on the 840 NIR spectra of apples 

combining 3 varieties, 2 years, 2 fruit thinning practices and 4 storage periods (Table 

33). Selected results (R2 > 0.8 obtained for the validation and RPD values > 2) were 

further discussed.  

 The prediction results of AIS content (R2=0.85 expressed in dry weight and 

R2=0.83 in fresh weight) during cold storage stood out in Table 33. The prediction of 

AIS content has already been studied but using the destructive mid-infrared technique 

on freeze-dried apple powder (Canteri, Renard, Le Bourvellec, & Bureau, 2019), and 

using NIRS to predict AIS content on ‘Golden Delicious’ apples during seven months 

storage at 2 ± 0.5°C with a R2 of 0.96 (Lovász, Merész, & Salgó, 1994). The lower R2 

value in our study was probably in relation with the fact that three varieties and fruit 

thinning conditions were introduced in the same models. For the crunchiness (linear 

distance), the prediction result was acceptable (R2=0.82, RPD=2.34), in accordance 

with previous results obtained on ‘Golden Delicious’, ‘Braeburn’ and ‘Fuji’ apples 

during a 7 months cold storage (R2=0.84), but using the crunchiness data from sensory 

evaluation and the averaged NIR spectra of each group (Mehinagic et al., 2003). Good 

predictions were obtained with DMC (R2=0.87, RPD= 2.53) and SSC (R2=0.81, RPD= 

2.21), which were in accordance with previous studies (Giovanelli, Sinelli, Beghi, 

Guidetti, & Casiraghi, 2014; McGlone, Jordan, Seelye, & Clark, 2003). Moreover, 

acceptable correlation coefficients were obtained for TA (R2=0.80, RPD= 2.09) and for 

the main organic malic acid (R2=0.78, RPD=2.03). For the other individual sugar 

compounds, results were acceptable for fructose content (R2=0.81, RPD=1.93) and 

sucrose content (R2=0.81, RPD=2.14).  

 Consequently, in apples, NIR spectroscopy was a powerful tool to qualify the 
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crunchiness (linear distance), SSC, TA, DMC, content of individual sugars (fructose 

and sucrose) and AIS. The benefit of AIS content prediction by NIRS was evident 

because the classical method of extraction and analysis needs a long time and lots of 

chemical solvents. Our models were also robust, given the large fruit variability used, 

with factors such as varieties, thinning practices and cold storage periods. 

3.3.2 Prediction of quality traits of all purees 

 For purees, good predictions were observed for global parameters such as DMC 

(R2=0.85, RPD=2.42) and SSC (R2=0.92, RPD=3.12) (Table 34). The higher R2 

regarding SSC in purees than in apples, could possibly due a better homogeneity of the 

puree samples after processing. Additionally, acceptable results were also be observed 

for TA (R2=0.80, RPD=2.22). For individual compounds, results were acceptable only 

for fructose (R2=0.83, RPD=2.51). For the physical properties, rheological parameters 

(ƞ 100, K and n) and color (L*, a* and b*), only poor results were obtained in all purees 

(R2 < 0.51). However, in ‘Granny Smith’ purees (not shown), good correlations were 

obtained between NIRS and ƞ100 (R2=0.94, RPD=6.53), and K (R2=0.93, RPD=3.52), 

and n (R2=0.87, RPD=2.94). It seemed NIRS provided the possibility to access the 

evolution of rheological parameters in ‘Granny Smith’ purees from different apple 

storage times, but this relationship was not robust if a large variability of genotypes and 

agricultural practices were involved. Moreover, the results were surprising for AIS 

which was well-predicted in the corresponding intact apples (Table 33), but not in all 

processed purees (R2 < 0.69, RPD < 1.59). The acceptable prediction of AIS content in 

apples probably depended on the good correlation between AIS and textural changes 

(firmness and crunchiness). z 

3.3.3 Prediction of puree quality traits from NIR spectra of fresh apples  

 In this part, PLS models were developed by combining spectral data acquired on 

fresh apples and reference data acquired on purees with two approaches: a) use the 48 

averaged apple spectra (means of spectra of 2 faces x 10 apples by set) and the 48 

reference data of their corresponding NR or Ra purees (3 replicates x 4 storage periods 
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x 4 puree groups); b) use the 480 averaged spectra of individual apples (means of faces 

a and b only) and their 48 reference data of corresponding NR or Ra purees. In this case, 

the same values of puree characteristics were linked to the 10 apples of the same set. 

These two methods (a and b) obtained similar prediction results and only results of the 

method b taking into account the apple spectra variability are shown, for both the NR 

purees (Table 35) and Ra purees (Table 36). 

 In NR and Ra purees, good predictions were obtained for rheological parameters 

(𝜂100, K and n). Especially for 𝜂100, impressive R2 and RPD values were observed for 

NR purees (R2=0.88, RPD=2.31) and Ra purees (R2=0.82, RPD=2.44). Good results 

were also obtained for AIS content (expressed in FW and DW) in NR purees (R2=0.81, 

RPD=2.23) and Ra purees (R2=0.84, RPD=2.48). As the AIS content is one of the main 

contributors of puree viscosity (Leverrier, Almeida, & Cuvelier, 2016), these 

concomitant results between AIS content and rheological parameters could probably be 

related to their good correlations in purees. In all studied purees, good correlations were 

obtained between their AIS and viscosity behaviors (𝜂100) (R2 =0.75), but not for the 

AIS and SSC values (R2=0.32). For coloration, acceptable prediction results of b* value 

were obtained both in NR purees (R2=0.81, RPD=2.19) and Ra purees (R2=0.79, 

RPD=2.12). Moreover, considering the DMC, SSC and TA, the PLS regression models 

had a good ability to estimate each characteristic for all purees on the basis of acceptable 

R2 and RPD values (R2 > 0.80, RPD > 2.11). However, the NIR technique cannot be 

used to estimate satisfactorily the content of individual sugars (fructose, sucrose, 

glucose) and of malic acid of purees depending on the spectral information of raw 

apples.  

 What stands out in these results was the better predictions of some quality traits of 

puree from fresh apple spectra (Table 35 and Table 36) than from the puree spectra 

directly (Table 34). It was the case for rheological parameters, R2 =0.82 from apples 

and R2 < 0.44 from purees, possibly owing to the acceptable links (R2 > 0.71) between 

apple texture (mean load and linear distance) and puree rheological properties (Fig. 41). 

In addition, better PLS results to predict AIS content from fresh apple spectra (R2=0.81 

in FW and 0.84 in DW) were obtained than from purees spectra (R2 < 0.69) (Table 34), 
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probably due to good relationships between puree viscosity and AIS content mentioned 

above. Besides, the prediction of DMC, SSC and TA were still acceptable in all cases. 

Therefore, NIR technique showed a potential to directly predict the viscosity properties, 

b*, AIS content, SSC, DMC and TA of processed purees using their corresponding 

apple spectral information directly.  

 Compared with the PLS models used to predict the characteristics of purees based 

on their own spectra (Table 33 and Table 34), more LVs and lower prediction accuracy 

(RPD values) have generally found when models were built using the spectra of the 

intact apples to predict the characteristics of the processed purees. This fact has been 

also observed when other raw materials, e.g. meat (Meullenet, Jonville, Grezes, & 

Owens, 2004) or whole grain (Windham et al., 1997) were used to predict quality traits 

of the final cooked food. Such indirect prediction is a challenge as the spectra were not 

acquired on the material for which prediction was done, and because the chemical and 

textural traits from the material on which the spectra were acquired (the raw apples) are 

modified by processing. However, such predictions, albeit only semi-quantitative, are 

relevant for industrial use. Indeed, these developed models provide a promising 

solution to evaluate puree viscosity, a primary quality trait of this product, and cell wall 

contents (AIS), only based on spectra of fresh apples. A remarkable fact was that these 

predictions could not be done using the NIR spectra of the purees themselves (Table 

34).  
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Table 33. NIR spectra and PLS method for prediction of internal quality traits of apples from three varieties (‘Granny Smith’, ‘Golden Delicious’ and ‘Golden 

Smoothee’), two thinning conditions and two harvest seasons, at 4 cold storage durations (0, 1, 3 and 6 months).  

   Calibration n = 560 Validation n= 280    

Parameter range SD r2 RMSEC R2 RMSEV LVs RPD spectral range(nm) 

weight (g) 65.6-295.2 43.5 0.42 31.5 0.40 32.0 9 1.36 900- 2500 

mean load (N) 0.97-4.81 0.68 0.72 0.36 0.70 0.37 11 1.84 900- 2500 

linear distance (-) 10.44-19.49 2.51 0.84 1.01 0.82 1.07 11 2.34 900- 2500 

L* 56.8-81.4 5.0 0.77 2.7 0.74 2.8 7 1.80 900- 2500 

a* -21.7-1.5 6.5 0.74 3.5 0.73 3.6 9 1.81 900- 2500 

b* 28.9-64.8 5.5 0.62 3.4 0.61 3.5 9 1.60 900- 2500 

Ethylene (nmol/h.kg) 0-11674 2639 0.74 1339 0.71 1403 9 1.88 900- 2500 

AIS（mg/g DW） 69.2-266.7 38.38 0.85 16.1 0.85 17.7 12 2.16 900- 2500 

AIS（mg/g FW） 14.1-51.1 8.02 0.86 3.1 0.83 3.6 12 2.24 900- 2500 

DMC (g/g FW) 0.14-0.23 0.02 0.87 0.01 0.87 0.01 11 2.53 900- 2500 

SSC (°Brix) 10.4-17.5 2.00 0.83 0.9 0.81 0.9 9 2.21 900- 2500 

TA (meq/kg FW) 21.6-105.6 20.75 0.82 9.1 0.80 9.9 10 2.09 900- 2500 

glucose (g/kg FW) 15.2-30.9 2.98 0.47 1.9 0.41 1.9 9 1.54 900- 2500 

fructose (g/kg FW) 24.6-98.8 17.75 0.82 8.6 0.81 9.2 9 1.93 900- 2500 

sucrose (g/kg FW) 28.7-91.1 16.33 0.84 7.2 0.81 7.6 10 2.14 900- 2500 

malic (g/kg FW) 1.7-6.8 1.38 0.78 0.7 0.78 0.7 10 2.03 900- 2500 

  



252 

Table 34. NIR spectra and PLS method for prediction of quality traits of apple purees prepared from three varieties (‘Granny Smith’, ‘Golden Delicious’ and ‘Golden 

Smoothee’), two thinning conditions and two harvest seasons, at 4 cold storage durations (0, 1, 3 and 6 months). 

   Calibration n= 160 Validation n= 80  
 

 

Parameter range  SD r2 RMSEC R2 RMSEV LVs RPD spectral range(nm) 

CSR (𝜂100) 0.25-1.45 0.23  0.61  0.16  0.39  0.18  4 1.33  900- 2500 

viscosity-K 2.8-59.5 11.78  0.59  7.2  0.39  9.7  6 1.22  900- 2500 

viscosity-n value 0.06-0.49 0.16  0.57  0.05  0.44  0.10  6 1.59  900- 2500 

L* 43.9-53.8 2.0  0.56  1.3  0.51  2.4  5 0.88  900- 2500 

a* -(5.2-3.4) 0.4  0.25  0.3  0.20  0.4  4 1.03  900- 2500 

b* 7.8-23.0 3.6  0.55  2.5  0.51  2.7  5 1.33  900- 2500 

AIS（mg/g DW） 90.9-271.7 35.2  0.76  15.2  0.66  32.6  7 1.08  900- 2500 

AIS（mg/g FW） 14.8-48.9 6.2  0.71  3.5  0.69  3.9  7 1.59  900- 2500 

DMC (g/g FW) 0.15-0.24 0.02  0.86  0.01  0.85  0.01  8 2.42  900- 2500 

SSC (°Brix) 10.3-18.6 2.1  0.95  0.5  0.92  0.7  8 3.12  900- 2500 

TA (meq/kg FW) 23.3-109.1 20.2  0.84  8.4  0.80  9.1  7 2.22  900- 2500 

glucose (g/kg FW) 12.0-26.4 3.4  0.32  2.7  0.28  2.8  4 1.23  900- 2500 

fructose (g/kg FW) 40.0-100.0 19.5  0.89  6.0  0.83  7.8  8 2.51  900- 2500 

sucrose (g/kg FW) 24.7-123.1 24.3  0.63  14.4  0.60  16.6  6 1.46  900- 2500 

malic (g/kg FW) 1.8-9.0 1.5  0.75  0.8  0.64  0.8  7 1.99  900- 2500 
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Table 35. Prediction of puree quality traits from spectral data of fresh apples: PLS results using NIR spectra of fresh apples from three varieties (‘Granny Smith’, 

‘Golden Delicious’ and ‘Golden Smoothee’), two thinning conditions and two harvest seasons, at 4 cold storage durations (0, 1, 3 and 6 months) for prediction of 

quality traits of non-refined (NR) purees. 

   Calibration n=320 Validation n=160  
 

 

Parameter range  SD r2 RMSEC R2 RMSEV LVs RPD spectral range(nm) 

CSR (𝜂100) 0.49-1.45 0.19  0.89  0.06  0.88  0.08  10 2.31  900- 2500 

viscosity-K 16.8-59.5 11.24  0.79  5.0  0.79  5.2  12 2.15  900- 2500 

viscosity-n value 0.06-0.39 0.07  0.83  0.03  0.82  0.03  12 2.06  900- 2500 

L* 44.0-53.5 1.9  0.81  0.8  0.81  1.1  10 1.77  900- 2500 

a* -(5.0-3.4) 0.3  0.48  0.3  0.46  0.3  10 1.36  900- 2500 

b* 9.2-23.0 3.5  0.84  1.4  0.81  1.6  12 2.19  900- 2500 

AIS（mg/g DW） 114.0-171.7 32.6  0.82  16.4  0.80  16.3  11 2.00  900- 2500 

AIS（mg/g FW） 19.3-48.9 5.8  0.82  2.5  0.81  2.6  13 2.23  900- 2500 

DMC (g/g FW) 0.16-0.23 0.02  0.84  0.01  0.83  0.01  12 2.11  900- 2500 

SSC (°Brix) 10.5-18.6 2.2  0.85  0.9  0.80  1.0 11 2.25  900- 2500 

TA (meq/kg FW) 25.0-103.9 20.0  0.83  8.3  0.80  9.4  11 2.14  900- 2500 

glucose (g/kg FW) 13.5-25.4 3.1  0.65  1.8  0.60  2.0 10 1.55  900- 2500 

fructose (g/kg FW) 40.0-98.7 17.2  0.80  7.6  0.73  9.1  11 1.90  900- 2500 

sucrose (g/kg FW) 32.2-118.5 22.0  0.80  9.6  0.76  11.1  11 1.98  900- 2500 

malic (g/kg FW) 2.4-9.0 1.5  0.77  0.7  0.76  0.8  10 1.91  900- 2500 
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Table 36. Prediction of puree quality traits from spectral data of fresh apples: PLS (Partial Least Squares) results using NIR spectra of fresh apples from three 

varieties (‘Granny Smith’, ‘Golden Delicious’ and ‘Golden Smoothee’), two thinning conditions and two harvest seasons, at 4 cold storage durations (0, 1, 3 and 6 

months) for prediction of quality traits of refined (Ra) purees. 

   Calibration n=320 Validation n=160  
 

 

Parameter range  SD r2 RMSEC R2 RMSEV LVs RPD spectral range(nm) 

CSR (𝜂100) 0.25-0.99 0.18  0.89  0.06  0.82  0.07  11 2.44  900- 2500 

viscosity-K 2.8-39.1 8.81  0.87  3.0  0.86  3.7  10 2.40  900- 2500 

viscosity-n value 0.17-0.49 0.07  0.85  0.03  0.82  0.03  13 2.11  900- 2500 

L* 43.9-53.8 2.2  0.6  1.3  0.61  1.4  10 1.54  900- 2500 

a* -(5.2-3.6) 0.4  0.5  0.3  0.51  0.4  8 1.04  900- 2500 

b* 7.8-22.9 3.4  0.8  1.6  0.79  1.6 12 2.12  900- 2500 

AIS（mg/g DW） 90.9-189.6 18.3  0.79  8.4  0.76  8.9  12 2.05  900- 2500 

AIS（mg/g FW） 14.8-33.3 4.1  0.85  1.6  0.84  1.6  12 2.48  900- 2500 

DMC (g/g FW) 0.15-0.24 0.02  0.84  0.01  0.84  0.01  12 2.37  900- 2500 

SSC (°Brix) 10.3-17.6 2.0  0.82  0.9  0.80  0.9  11 2.16  900- 2500 

TA (meq/kg FW) 25.2-109.1 21.6  0.83  8.9  0.80  9.6  11 2.26  900- 2500 

glucose (g/kg FW) 13.9-25.7 3.1  0.65  1.8  0.62  2.1  10 1.50  900- 2500 

fructose (g/kg FW) 42.1-99.9 15.6  0.71  9.5  0.70  10.0  10 1.56  900- 2500 

sucrose (g/kg FW) 33.4-123.1 23.5  0.78  11.0  0.76  11.0  11 2.14  900- 2500 

malic (g/kg FW) 2.9-8.3 1.5  0.79  0.7  0.75  0.8  10 1.93  900- 2500 
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4. Conclusion 

As far as we know, this was the first report concerning the assessment of quality 

variation of apple purees depending on NIR spectral information of the corresponding 

raw apples. Up to now, in apple industry, manufacturers use their experience and 

knowhow to make blend of apples in order to obtain always the same puree. From our 

results, NIR had the potential to predict internal quality of apples but also that of their 

processed products: a reliable assessment of texture and taste of the purees could be 

obtained based only on spectral data of fresh apples. This opens the possibility to sort 

or select apples according to the expected purees. By systematically scanning all apples, 

this could provide some objective data to predict the final product characteristics and 

thus reduce waste of materials along the processing chain. Further work will be needed 

to investigate the interaction of the processing conditions (temperature, time, oxygen 

and so on) with raw apples under various growing and storage conditions, so as to 

provide guidance for adapted processing procedures to reach stable final puree qualities. 
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Highlights of Paper IV 

This study provided the answers of the first and the last questions in Part 

2:  

⚫ Strong correlations were shown between apple texture (firmness and 

crunchiness) and puree viscosity (R2 > 0.79), TA (R2 > 0.91), and also for SSC 

(R2 > 0.79) and DMC (R2 > 0.72) between apples and purees. 

⚫ NIRS on apples and purees allowed their good classification at over 82% and 

88% according to varieties and storage times, respectively. 

⚫ NIR coupled with PLS models showed a good ability to estimate puree 

characteristics from spectra acquired on corresponding apples such as viscosity 

(R2 > 0.82), cell wall content (R2 > 0.81) and also dry matter (R2 > 0.83), soluble 

solids content (R2 > 0.80) and titratable acidity (R2 > 0.80). 

These new results open the possibility of using NIR technique to give a 

reliable assessment of texture and taste of the final products based on the 

evaluation of non-destructive raw materials. 
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Paper V (Preparing for submission) 

 Strong correlations of physical and biochemical properties have been identified 

between raw and processed apples (Paper IV). It also opens the possibility to predict 

puree composition (SSC, TA etc.) and viscosity from the NIR spectra on corresponding 

raw apples. However, these relationships between fresh and processed apples were 

obtained on a set of fruits needing at least 2.5 kg (approximately 10-15 apples). This 

means around 15 apples were processed in a single puree, ignoring the ‘intra-batch 

variability’ brought by each individual apple. Knowing the ‘intra-variability’ between 

raw fruits and cooked purees can help field growers and industrial manufacturers to sort 

fruits and produce sustainable final products. 

 Therefore, an experiment was designed to link individual apples to their purees. 

Totally 120 individual apples of 4 varieties (‘Golden Delicious’, ‘Granny Smith’, 

‘Braeburn’ and ‘Royal Gala’) and their corresponding processed purees were used 

(Paper V). Apples were individually processed to puree using a microwave process 

with the strict definition of ‘one apple to one puree’, and the VIS-NIR spectra were 

acquired both, on each couple of individual apple and cooked puree to: 

i) Know how much the inter- (between varieties) and/or intra-variability (between 

individual fruits) of raw apples impacts cooked purees; 

ii) Determine the VIS and NIR spectral variations and relationships between raw and 

processed apples considering the experimental design of ‘one apple to one puree’; 

iii) Further validate the potential of predicting the quality traits of the final cooked 

purees using the VIS-NIR spectra of intact raw apples. 
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Fruit variability impacts puree quality: assessment on individually processed 

apples using the visible and near infrared spectroscopy 

 

Weijie Lan, Benoit Jaillais, Songchao Chen, Catherine M.G.C. Renard, Alexandre Leca, 

Sylvie Bureau* 

(This paper is under preparation for submission) 

1. Introduction 

 Apple puree is one of the most popular fruit processed products (over 0.3 million 

tons consumed per year in France) (FranceAgriMer, 2017) used as a basic ingredient of 

jams, preserves or compotes and fruit-based baby food (Defernez, Kemsley, & Wilson, 

1995). The industrial conditions to process apples are a cooking at 93 – 98 °C for about 

4 - 5 min and a pasteurization at 90 °C for around 20 min to obtain a shelf-life of 6 

months at room temperature (Oszmiański, Wolniak, Wojdyło, & Wawer, 2008). Such 

conventional cooking conditions allow the investigation of the ‘inter-variability’ 

between apple varieties (Buergy, Rolland-Sabaté, Leca, & Renard, 2021; Paper IV). In 

these conditions, the different apple batches of one variety and their cooked purees still 

presented a high variability due to agricultural practices and storage conditions, 

affecting the quality stability of final products (Lan, Jaillais, Leca, Renard, & Bureau, 

2020). However, these experiments did not make possible to address the impact of 

‘intra-variability’ between the individual apples on their corresponding cooked purees. 

Knowing the ‘intra-variability’ between raw fruits and cooked purees can help field 

growers and industrial manufacturers to sort fruits and produce sustainable and 

expected final products.  

 Microwave processing has the advantage of heating solids such as apples, rapidly 

and uniformly, inactivating the enzymes and then preserving quality, such as color, 

texture, polyphenols etc. (Guo, Sun, Cheng, & Han, 2017). It has already been applied 

on apples to produce purees (Oszmiański et al., 2008; Picouet, Landl, Abadias, 

Castellari, & Viñas, 2009) and also reported to be a mini-processing strategy to process 

one apple into one puree (Picouet et al., 2009). With our objective to assess the impact 
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of ‘inter’ and ‘intra’ variability of raw fruits on the processed purees, the microwave 

processing gives the possibility to individually cook apples in order to study the direct 

relationship of quality and properties between one apple and one puree. 

 Visible-near infrared (VIS-NIR) spectroscopy, known as a rapid, relatively cheap, 

easy-to-use and non-destructive technique, has been applied for detecting the different 

fruit species in mixed purees (Contal, León, & Downey, 2002). From our previous work, 

strong correlations of chemical and textural properties have been pointed out between 

raw apples and their corresponding purees (Papers I and II). Based on that, these 

works opened a new possibility to predict the quality of final processed purees from the 

nondestructive spectral information acquired on a batch of raw apples by developing 

regression models associating the infrared spectra of raw apples and the reference data 

of corresponding processed purees (Paper I). However, these relationships between 

fresh and processed apples were obtained using a laboratory-scale cooker-cutter 

processing system (Roboqbo, Qb8-3, Bentivoglio, Italy) needing at least 2.5 kg of raw 

fruits. This means around 15 apples were processed in a single puree, ignoring the 

‘intra-variability’ brought by each individual apple. Indeed, a strong variability and 

heterogeneity due to color, chemical and textural properties of raw apples (Paper III; 

Pissard, Baeten, Romnée, Dupont, Mouteau, & Lateur, 2012) and a large variability of 

puree characteristics (different varieties) have been clearly highlighted (Papers I and 

IV). As far as we know, there has been no attempt to investigate the effect of both ‘inter’ 

and ‘intra’ variability at the level of single fruit (size, appearance and chemical 

properties etc.) on the quality of final processed products. The challenge here was to 

know how much the inter- and/or intra-variability of raw apples impacts cooked purees? 

How VIS-NIR spectral data were affected due to the physical and chemical changes 

considering the experimental design of ‘one apple to one puree’? Besides, the potential 

of predicting the quality traits of the final cooked purees using the VIS-NIR spectra of 

intact raw apples was also investigated. 

 Accordingly, VIS-NIR spectra were acquired on 120 individual apples of 4 

varieties and their corresponding individual processed purees to: i) study the variability 

of both, the individual apples and corresponding purees; ii) explore the spectral 



260 

correlations and variations before and after each apple processing; and iii) predict the 

textural properties and biochemical composition of cooked purees from the VIS-NIR 

spectra of individual raw apples using direct modelling methods.  

2. Material and methods 

2.1 Apple materials 

 Apple of four varieties: ‘Golden Delicious’ (GD), ‘Granny Smith’ (GS), ‘Breaburn’ 

(BR) and ‘Royal Gala’ (GA) were harvested at a commercial maturity from La Pugère 

experimental orchard (Mallemort, Bouches du Rhône, France) (Fig. 44). All apples 

were stored for four months at 4°C before processing. During three successive weeks, 

10 apples of each variety were processed and so were put at room temperature (22.5 °C) 

one day before. In total 120 individual apples (4 varieties × 10 apples × 3 weeks) were 

measured with the non-destructive techniques (color, VIS-NIR spectra). Afterwards, 

they were processed in 120 purees (one apple processed in one puree) and characterized 

for their biochemical composition and rheological properties. 
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Fig. 44. Experimental design of apple processing, spectral acquisition, and quality 

characterization. 

2.2. Non-destructive characterization of individual apples 

 The color of all apple skins (un-blushed and blushed sides) was determined three 

times using a CE-400 chromameter (Minolta, Osaka, Japan) and expressed in the CIE 

1976 L* a* b* color space (illuminant D65, 0° view angle, illumination area diameter 

8 mm). 

 VIS-NIR spectra of raw apples were acquired using two multi-purpose analyzer 

spectrometers (Bruker Optics®, Wissembourg, France) at 23°C, which provide diffuse 

reflectance measurements at wavelength from 500-800 nm (VIS) and 800-2500 nm 

(NIR), with a spectral resolution of 2 nm. For each spectrum, 32 scans were recorded 

and averaged. The spectral acquisition and instrument adjustments were controlled by 
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OPUS software Version 5.0 (Bruker Optics®). For each apple, VIS-NIR spectra were 

collected on the blushed and un-blushed sides through a 18 mm diameter area of 

infrared light. Afterwards, the averaged VIS-NIR spectra, corresponding to the blushed 

and un-blushed sides of each apple were calculated for further analysis. A reference 

background measurement was automatically activated before each data set acquisition 

using an internal Spectralon reference. In total, 120 VIS-NIR spectra of different apples 

(4 varieties × 10 apples × 3 weeks) were treated before cooking. 

2.3 Individual apple processing 

 Individual and intact apples (about 160 g each) were sealed in a domestic 

preserving container and placed at the center of an experimental microwave oven 

(CM1529, Samsung, Korea). Microwave processing was conducted at a power of 1.5 

kW for 3 min, and then at 0.7 kW for 1 min. Afterwards, each apple was immediately 

refined with a 0.5 mm sieve using a manual refiner (A45306, Moulinex, France). Finally, 

each individual processed puree was conditioned in a hermetically sealed can, and then 

placed at 23 °C during one day prior to further analyses. Totally 120 purees (4 varieties 

× 10 purees × 3 weeks) were obtained from a large intra-variability of four apple 

varieties. 

2.4 Determination of quality traits of individual purees 

2.4.1 Physical characteristics 

 The color of processed purees, put in measuring cells, was determined using the 

same method as for apples (described in part 2.2). 

 The puree rheological measurements, and in particular flow curves were carried 

out using a Physica MCR-301 controlled stress rheometer (Anton Paar, Graz, Austria) 

and a 6-vane geometry (FL100/6W) with a gap of 3.46 mm, at 22.5°C. The flow curves 

were performed after a pre-shearing period of 1 min at a shear rate of 50 s-1, followed 

by 3 min at rest. The viscosity was then measured at a controlled shear rate range of 

[10; 250] s-1 on a logarithmic ramp. The values of viscosity at 50 s-1 and 100 s-1 (η50 

and η100 respectively) were took as the final indicators of puree viscosity, which are 
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representative of the mouth sensory characteristics during consumption (Chen & 

Engelen, 2012). 

2.4.2 Biochemical analyses 

 The biochemical analyses of all purees have been described in Papers I and II.  

2.5 Spectrum acquisition on individual purees 

 VIS-NIR spectral data of processed purees were acquired using the same 

conditions than for apples (described in part 2.2). Each sample was transferred into a 

10 mL glass vial (5 cm height × 18 mm diameter) which was placed on the automated 

sample wheel of the spectrophotometers. Each puree sample was randomly measured 

three times on different aliquots and the averaged spectrum was calculated for data 

treatment and chemometrics. The mean spectra of three replicates of each puree were 

used for further analysis. A reference background measurement was automatically 

activated before each data set acquisition using an internal Spectralon reference. Finally, 

the 120 VIS-NIR spectra of processed purees were obtained and correspond one by one 

to the spectra of raw individual apples. 

2.6 Statistical analyses and chemometrics 

 After checking the normal distribution of the reference data, T-test analysis was 

carried out to determine the significant differences between varieties considering them 

two by two (Fig. 45) using R software (version 4.0.2) (R Core Team, 2019) with the 

package of ‘ggpubr’ (Kassambara, 2020). The significant results (p - values) were 

displayed as ‘ns’ (p values > 0.05), ‘*’ (p values ≤ 0.05), ‘**’ (p values ≤ 0.01), ‘***’ 

(p values ≤ 0.001) and ‘****’ (p values ≤ 0.0001), respectively. Pearson correlation 

analysis was performed between the color parameters (L* a* b*) of apples and the 

different quality traits of their corresponding processed purees using XLSTAT (version 

2018.5.52037, Addinsoft SARL, Paris, France) data analysis toolbox. 

 Spectral pre-processing and multivariate data analysis were performed with Matlab 

7.5 (Mathworks Inc. Natick, MA, USA) software using the SAISIR package (Cordella 

& Bertrand, 2014). Particularly, the VIS-NIR spectra of apples and corresponding 



264 

purees from 500-2500 nm were preprocessed with several strategies, including 

smoothing with a window size of 23 variables, standard normal variate (SNV) and the 

first derivative Savitzky–Golay transformation with the 11 gap sizes. Besides, 

multiblock principal component analysis (MB-PCA) was carried out on the VIS-NIR 

spectral matrices of apples and purees to evaluate the impact of fruit variability on 

processed products (Abdi, Williams, & Valentin, 2013). The two-dimensional 

correlation spectroscopy method (2D-COS) was used to investigate the spectral 

correlations between raw apples and purees (Noda, 1993).  

 The partial least square (PLS), support vector machine (SVM) and random forest 

(RF) models were developed using R software (version 4.0.2) (R Core Team, 2019) 

with several packages, including ‘prospectr’ (Stevens & Ramirez-Lopez, 2013), ‘pls’ 

(Mevik, Wehrens, & Liland, 2011), ‘kernlab’ (Karatzoglou, Smola, Hornik, & Zeileis, 

2004), ‘caret’ (Kuhn, 2015) and ‘Boruta’ (Kursa & Rudnicki, 2010). The whole VIS-

NIR spectra dataset included 120 spectra of individual apples (4 varieties × 10 apples 

× 3 weeks) and their 120 corresponding puree spectra. The dataset was randomly split 

as follow: two third of dataset (80 spectrum of apples and their related 80 spectra of 

cooked purees) were used for calibration and one third of dataset (40 spectrum of apples 

and their related 40 spectra of cooked purees) for validation. The procedure was 

repeated 10 times and the developed model performances were described by the 

averaged values of the determination coefficients of validation (Rv
2), of the root mean 

square errors of validation (RMSEV), of the numbers of latent variables (LVs) for PLS 

models and of the residual predictive derivation (RPD) values as described by Nicolai 

(Nicolai et al., 2007). 

3. Results and discussion 

3.1 Comparison of purees cooked by cooker-cutter and microwave ststem 

 In this part, the quality variations of different ‘Golden Delicious’ purees cooked 

from cooker-cutter processing system (Roboqbo, Qb8-3, Bentivoglio, Italy) on apple 

batches (at least 2.5 kg per batch) (Paper IV) or the microwave process on individual 

apples (Paper V) were displayed in Table 37. Both two processing strategies resulted 
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in similar ranges levels of puree chemical and physical quality traits. The microwave 

process can thus be considered as an efficient method to produce apple purees, 

presenting similar quality levels of the conventional cooked purees. Particularly, the 

microwave cooked purees from individual apples generated a more intensive chemical 

and physical variations (SD values) than the conventional purees cooked from apple 

batches. This result indicated the large intra-variability of apples is still present after 

microwave cooking, whereas averaging resulted in loss of intra-variability when apple 

batches were homogenized in one puree in cooker-cutter processing system. 

Table 37. A comparison of puree quality from thinned Golden Delicious apples cooked 

at harvest in 2017 using the cooker-cutter robot (Roboqbo, Qb8-3, Bentivoglio, Italy) 

(Paper IV) and in 2020 using the microwave oven (Paper V).  

Golden 

Delicious 

Cooker-cutter processed 

purees 

(Paper IV) 

Microwave processed 

purees 

(Paper V) 

Ranges SD Ranges SD 

L* 45.89 - 46.48 0.26 46.11-51.33 1.33 

a* -(4.71-4.24) 0.21 -(6.09-5.07) 0.32 

b* 15.39-16.22 0.36 17.61-23.71 1.96 

η100 0.79-1.06 0.13 0.64-1.15 0.13 

DMC (g / g 

FW) 
0.20-0.21 0.01 0.14-0.20 0.02 

SSC 

(°Brix) 
15.2-15.9 0.3 11.8-17.4 1.73 

TA (meq/kg 

FW) 
6.73-7.35 0.28 2.89-5.29 0.73 

pH 3.60-3.63 0.01 3.82-4.44 0.14 

3.2 Effect of the inter- and intra- variability of apples on the corresponding cooked 

purees 
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 In this study, both the inter-variability of apple varieties and the intra-variability of 

individual apples affected the physical (L*, a*, b*), biochemical (SSC, DMC, TA, pH) 

and viscosity (η50 and η100) properties of corresponding purees (Fig. 45 and Fig. 46). 

3.2.1 Color parameters of apples and purees 

 For color parameters, inter-variability was observed according to the four different 

apple varieties on redness (a* values) and yellowness (b* values) of their processed 

purees (Fig. 46). Both, for apples and purees, a significant (p < 0.0001) higher redness 

and a lower yellowness were characterized in GA and BR than in GD and GS. GD 

apples and their cooked purees had the highest (p < 0.0001) yellowness (b* values) 

among the four puree varieties. Moreover, a larger intra-variability of color parameters 

observed in the set of the 30 different BR (a* = 11.2 ± 10.9, b* = 33.1 ± 8.3) and 30 GA 

(a* = 19.6 ± 14.0, b* = 33.7 ± 7.0) apples resulted in a more intensive variation of the 

redness and yellowness in their corresponding purees (in Fig. 45) than in the 30 GD (a* 

= -7.0 ± 3.9, b* = 47.2 ± 2.3) and 30 GS (a* = -15.0 ± 4.6, b* = 43.6 ± 2.5) apples. 

Briefly, the variation of color properties of cooked purees came from both, the inter- 

and intra- variability of individual apples. It can be assessed based on the good 

correlation of redness (a* values) (R2 = 0.70) and yellowness (b* values) (R2 = 0.58) 

between apples and purees. 
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Fig. 45. The boxplots and the T-test results of color, rheological and biochemical properties of four apple puree varieties. (The significances were displayed as ‘ns’ 

(p values > 0.05), ‘*’ (p values ≤ 0.05), ‘**’ (p values ≤ 0.01), ‘***’ (p values ≤ 0.001) and ‘****’ (p values ≤ 0.0001)). 
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3.2.2 Viscosity of purees  

 Concerning the inter-variability due to varieties on puree rheological properties, 

BR and GS purees presented a significant (p < 0.0001) higher viscosity (η50 and η100) 

than GA and GD purees. BR and GS purees were described to have a bigger particle 

size and a promoted cell adhesion with more branched pectins than GA and GD 

involving probably their higher viscosity (Buergy, Rolland-Sabaté, Leca, & Renard, 

2020; Buergy et al., 2021). Moreover, the viscosity at the shear rate of 50 s-1 (η50), which 

is commonly used to describe the in-month texture perceptions of fluid food (Chen et 

al., 2012), was similar (p > 0.05) in GD and GA purees. This result was different from 

our work in Paper VII giving a higher viscosity of GD than of GA purees. This could 

be due to the different levels of enzyme inactivation such as pectin methyl-esterase 

(PME) during apple processing, between microwave processing used in this study and 

the conventional thermal cooking used previously (Arjmandi, Otón, Artés, Artés-

Hernández, Gómez, & Aguayo, 2017). The processing conditions provide indeed 

different kinds of puree viscosity directly in relation to varieties (Dale, Okos, & Nelson, 

1982). 

 The intra-variability of puree viscosity (η50 and η100) in GS and BR apple sets 

presented a larger variation than in GA and GD sets (Fig. 45). This intra-variability of 

puree viscosity was not directly related to the appearance of the raw apples. Indeed, for 

the two kinds of BR apples (the averaged a* values of 10 apples for each sets), the more 

(a* = 12.2 ± 6.2) or less apple redness (a* = 9.6 ± 5.9) gave a different puree viscosity 

(η50 = 2.36 ± 0.12 Pa s-1 and η50 = 1.57 ± 0.18 Pa s-1). However, this was not the case 

for two GA apple sets with different redness (a* = 27.2 ± 5.0 and a* = 14.2 ± 2.3) 

resulted a similar puree viscosity of η50 = 1.26 ± 0.18 Pa s-1 and 1.39 ± 0.30 Pa s-1, 

respectively (Fig. 46). 

 Thus, both, inter-variability of apple varieties (BR and GS > GA and GD) and the 

intra-variability of individual apples (especially for individual GS and BR apples) 

generated a wide range of puree viscosity. The color properties of single apple will not 

allow anticipating the viscosity of cooked purees. 
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Fig. 46. The pictures of individual apples and the corresponding microwave cooked 

purees. 

3.2.3 Biochemical compositions of purees 

 Significant inter-variability (p < 0.05) was observed for SSC between the four 

puree varieties, except for BR and GS purees (p > 0.05) (Fig. 45). Clearly, individual 

GD apples introduced the largest intra-variability of SSC in cooked purees compared 

to the other three varieties. Interestingly, the a* values of fresh GD apples were 

positively correlated to the SSC (R2 = 0.57) of their corresponding purees. In addition, 

the inter-variations of DMC were significant different (p < 0.05) in BR, GA and GD 

purees, but not for GS. This result can be explained by the large intra-variability of 
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DMC in GS purees (Fig. 45). A significant difference (p < 0.001) was observed also for 

TA and pH among the four puree varieties. For TA, the inter-variability was ranked as 

GS > BR > GD > GA and the ranking was reversed for pH, as expected. However, the 

intra-variability of TA was different and in the following order: BR > GS > GD> GA.  

 Consequently, both, inter and intra-variability of apples introduced variations of 

SSC, DMC, TA and pH in the cooked purees. With a first insight of individual apple 

processing, the large intra-variability of GD, GS and BR apples resulted in intensive 

variations of SSC, DMC and TA in cooked purees, respectively. 

3.3 Spectral analysis of apples and purees 

3.3.1 The inter and intra variability of apples and purees measured by VIS-NIRS 

 After the pre-processing, the VIS-NIR spectra of all individual raw apples and their 

related cooked purees with the most variability could be observed at around 500-700 

nm, 1140 nm, 1386-1392 nm, 1880 nm, 1930-2197 nm and 2250-2450 nm (Fig. 47a, 

b, c). Generally, the spectral variability was clearly higher in apples than in their 

corresponding purees, probably because the disappearing of intra-variability while 4 kg 

of apples were homogenized in one puree (Paper IV). Besides the possible effects of 

process, this difference between apples and purees perhaps also due to the sample 

structure (solid fruit and liquid purees), impacting the diffuse reflectance. 

 A Multi Blocks PCA (MB-PCA) was performed on the SNV pretreated VIS-NIR 

spectra to evaluate the distribution of apples and related purees, according to the 

variability brought by varieties and apples (Fig. 48). The four varieties could be 

discriminated based on the first two components (PC1 and PC2) for apples and purees 

with an explanation rate of 65.55% (Fig. 48a). Moreover, these two PCs can be 

explained by a clear higher contribution of apples than their corresponding purees, 

which indicates a reduction of the variability after processing (Fig. 48b). 
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Fig. 47. The pre-processed (smoothing with 13 windows + SNV+ 1st derivation with 11 windows) VIS-NIR spectra of (a) individual apples and (b) their related 

cooked purees, and (c) the averaged pre-processed spectra of all apples (blue line) and cooked purees (red line). 
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Fig. 48. Multiblock principal component analysis (MB-PCA) on two VIS-NIR spectral metrics of all apples and their related cooked purees: (a) the discrimination 

plot of four varieties based on the first two principal components (PC1 and PC2); (b) the contributions of the blocks of variables in apple or puree spectral matrices 

for PC1 and PC2. 
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3.3.2 Correlations between the VIS-NIR spectra of apples and purees 

 2D-COS was performed on all smoothed and SNV pre-treated VIS (500-780 nm) 

(Fig. 49a) and NIR (800-2500 nm) spectra (Fig. 49b) in order to point out the highly 

correlated wavelengths between apples and their processed purees. The correlations 

were much higher in Visible than in NIR ranges. Particularly, in visible (Fig. 49a), a 

clear positive correlation was obtained from 665 nm to 685 nm, that confirming a strong 

color relationship between apples and purees. It was also in line with the colorimetric 

measurements previously described (Part 3.1). In the NIR region, the wavelengths 

around 1125-1400 nm, 1850-2150 nm and 2250-2450 nm in apples were positively 

correlated to the corresponding spectral areas at the same wavelengths of the purees. 

These positive correlations may be due to the SSC in apples and purees, which was 

stable during processing (Paper IV). Reversely, the wavelengths between 1125-1400 

nm in apples were negatively correlated to the spectral regions 1850-2150 nm and 2250-

2450 nm in cooked purees. One possible reason was the loss of water contents 

compared to the limited increases of sugars concentrations during apple thermal 

processing. 

 As mentioned in Paper IV, a strong relationship of physical and biochemical 

properties between fresh and processed apples has been observed and allow to predict 

the puree properties from the spectra information of apples. The observed spectral 

correlations in this study supported these previous results, in the current dataset taking 

into account both the large inter-variability with varieties and their intra-variability with 

apple individually processed.
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Fig. 49. The 2D-COS (two-dimensional correlation spectroscopy) plot between the spectra of all individual apples and their related cooked purees 

in the (a) visual (500-780 nm) and (b) near infrared (800-2500 nm) ranges. 
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3.4 Prediction of puree quality traits 

 PLS, SVM and RF models were built to predict color, viscosity and biochemical 

characteristics of apple purees using VIS-NIR spectra acquired on purees (in Table 38), 

or on the corresponding individual raw apples (in Table 39). 

3.4.1 Prediction using the spectra of purees 

 Both, the linear (PLS) and non-linear (SVM and RF) regressions of puree 

rheological parameters (η50 and η100) did not give satisfactory predictions (Rv
2 < 0.46, 

RPD < 1.4). These results were in agreement with the poor PLS predictions obtained to 

predict puree viscosity at the shear rate of 100 s-1 (η100) using VIS-NIR (500-2500 nm) 

(Rv
2 = 0.35, RPD = 1.2) and NIR (800-2500) techniques (Rv

2 = 0.39, RPD = 1.3) (Paper 

IV). However, they were much lower than the acceptable VIS-NIR predictions obtained 

on a previous experiment consisting in studying the preparation of apple puree mixtures 

with different proportions of variety (Rv2 > 0.73, RPD> 1.9) (Paper VII) presenting 

over half as much variability (the SD of η50 = 0.12 Pa. s) than it was here (the SD of η50 

= 0.36 Pa. s). Thus, the VIS-NIR or NIR techniques cannot provide acceptable 

estimations of the puree viscosity, considering both the large inter- and intra-variability 

of raw apples. 

 For the color parameters, two regression methods, PLS and RF, gave acceptable 

predictions of L*, a* and b* values, with RPD values reaching 2.0, 2.7 and 2.3, 

respectively. PLS slightly improved the a* prediction (Rv
2 = 0.86, RMSEV= 0.46, RPD 

= 2.7) in comparison with RF (Rv
2 = 0.85, RMSEV = 0.49, RPD = 2.6), using 514 nm, 

524 nm and 672 nm as the most contributing wavelengths in the visible range. These 

same wavelengths are also identified in apple purees (Paper VII), corresponding 

probably to the carotenoids (Wang, Wang, Chen, & Han, 2017), anthocyanins (de Brito, 

de Araújo, Lin, & Harnly, 2007) and chlorophylls (Khatiwada, Subedi, Hayes, Carlos, 

& Walsh, 2016) in fruits. The specific peak at 672 nm was the major contributor to 

predict b* values. A relatively large puree variability for yellowness (b*) (SD = 4.1) 

compared to our previous study (SD = 1.7) significantly improved the VIS-NIR 
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prediction results, with the RPD from 1.5 to 2.2 (Paper IV). When variability enough 

large, a possible prediction of color parameters by VIS-NIR. 

 For the biochemical parameters, VIS-NIR coupled with PLS regression provided a 

better prediction of DMC, SSC, TA and pH than the SVM and RF ones (Table 38). 

Particularly, a good prediction of SSC (Rv
2 = 0.80, RMSEV = 0.6, RPD = 2.3) was 

obtained based on the dominant wavelengths corresponding to the absorptions of 

carbohydrates between 1150-1400 nm, as already described in Part 3.2. Although a 

good correlation between SSC and DMC (R2 = 0.65) in apple purees, VIS-NIR coupled 

with PLS models showed a better ability to predict SSC than DMC (Rv
2 = 0.73, RMSEV 

= 0.01, RPD = 1.9), as previously observed (Paper IV). However, these predictions of 

SSC and DMC were relatively lower than our previous prediction by NIR of SSC (Rv
2 

= 0.92, RPD = 3.1) and DMC (Rv
2 = 0.85, RPD = 2.4). The main reason was probably 

related to the lower variations of SSC and DMC in these four purees varieties at one 

date (SD of SSC = 1.4 °Brix and of DMC = 0.01 g/g) in comparison with the previous 

study including two varieties at different dates during a six months cold storage (SD of 

SSC = 2.1 °Brix and DMC = 0.02 g/g) (Paper IV). Considering the different 

expressions of apple puree acidity, TA and pH, VIS-NIR coupled with PLS provided 

their excellent predictions with Rv
2 > 0.89 and RPD > 3.1. Additionally, VIS-NIR gave 

a better prediction of puree acidity (TA) than NIR in apple purees (Paper IV), 

presenting similar ranges of variations with SD values of 21.0 mmol H+/kg and 20.2 

mmol H+/kg, respectively. The specific visible wavelengths at around 672 nm were one 

of the main contributors for the predictions of puree acidity. Consequently, prediction 

of SSC and DMC in purees needs enough intra-variability from individual apples and 

inter-variability from both different fruit varieties and experimental conditions (cold 

storage periods of raw fruits) to be acceptable by VIS-NIR. However, for acidity, VIS-

NIR models developed on the variability of different apples and varieties was enough 

to give an excellent estimation of TA and pH. 

3.4.2 Prediction using the spectra of intact apples 

 Based on the strong internal VIS-NIR spectral correlations between apples and 
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purees (Part 3.2.2), good predictions (Rv
2 > 0.78, RPD > 2.1) of puree viscosity (η50 

and η100), a*, b*, SSC, TA and pH were obtained using the VIS-NIR spectra of their 

corresponding individual apples (Table 39). Particularly, PLS models provided the 

better predictions of η50, η100, b*, SSC and TA than SVM and RF results. Compare to 

the PLS models developed from puree spectra (Table 33), more spectral latent variables 

(LVs from 5-11) were required for their good predictions using the VIS-NIR spectral of 

apples. 

 What stands out in these results was the much better PLS predictions of puree 

rheological parameters (η50 and η100) using the spectra of apples (Rv
2 > 0.81, RPD > 2.3) 

than the spectra of purees directly (Rv
2 < 0.46, RPD < 1.4). Particularly, specific 

wavelengths at around 578 nm, 678 nm, 810-835 nm, 1410-1498 nm, 1880 nm and 

1940 nm highly contributed to the PLS predictions of puree viscosity, which were 

located in spectra regions strongly correlated between apple and puree (Fig. 49). This 

result is in keeping with our previous study, which used the averaged NIR spectra of a 

set of apples to predict the viscosity (η100) of their related one cooked puree (Paper IV). 

A possible explanation might come from the characteristics of purees, resulting from 

soft and deformable insoluble particles (pulp) in an aqueous medium (serum) (Rao, 

Thomas, & Javalgi, 1992), that prevents an efficient light diffusion in comparison with 

the structure of intact apples that favors the light diffusion and a good signal to noise 

ratio. Thus, it is possible to hypothesize that VIS-NIRS on raw apples gave the 

acceptable predictions of the viscosity of their corresponding cooked purees. 

For puree color parameters, VIS-NIR spectra on the individual apples coupled with PLS 

and RF regressions provided an acceptable prediction of redness (a* value) (Rv
2 > 0.77, 

RPD > 2.1) and yellowness (b* values) (Rv
2 = 0.79, RPD > 2.2) in corresponding purees, 

but not of the L* values (Rv
2 < 0.59, RPD < 1.5). The major wavelengths contributing 

to these models were highly consistent with the developed models directly using the 

puree spectra, such as 514-514 nm and 672 nm. Besides, these good predictions were 

also in line with their strong internal correlations between apples and purees (Part 3.1). 

However, these good results need to be interpreted with cautions because they concern 

only microwave cooked apples and not the conventional thermic processing (in the lab) 
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in relation probably with a rapid inactivation of enzymes by microwaves.  

 For puree biochemical parameters, PLS regression models had a good ability to 

estimate SSC, TA and pH of all purees based on the acceptable Rv
2 (> 0.78) and RPD 

(> 2.1), but not DMC (Rv
2 < 0.71, RPD < 1.8). Particularly, the SSC prediction in purees 

was based on the specific wavelengths from corresponding apples at 950 nm, 1150 nm, 

1400 nm and 1880 nm, corresponding to the sugars and water variations (Part 3.2). 

Impressively, the TA and pH of cooked purees can be excellently predicted using the 

VIS-NIR spectra of related apples, giving RPD values of 2.8 and 2.5, respectively. 

These results were better than our previous predictions of puree acidity (TA) using the 

apple NIR spectra and giving RPD around 2.1-2.3 (Paper IV). Indeed, some specific 

peaks in the visible region at 524 nm and 672 nm contributed to the good predictions 

of TA in purees. It can thus be suggested that taking into account the visible range of 

apples can provide a better prediction of puree acidity than just using the NIR range. 

Concerning DMC, the bad predictions might be explained by the lower variations here 

compared to our previous work (Paper IV), and probably not by a limited potential of 

the VIS-NIR range. 

 Accordingly, VIS-NIR spectra acquired on raw apples could give satisfactory 

predictions of color (a* and b* values), viscosity (η50 and η100), SSC, TA and pH of the 

individual cooked purees using both, PLS or RF regressions.
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Table 38. Prediction of puree quality traits from the VIS-NIR spectra of cooked purees. 

   PLS-R  SVM-R  RF-R 

Parameter Range SD Rv
2 RMSEV RPD LVs  Rv

2 RMSEV RPD  Rv
2 RMSEV RPD 

η50 0.87 - 3.07 0.36 0.34 0.30 1.2 5  0.38 0.29 1.2  0.45 0.26 1.4 

η100 0.52 - 1.76 0.20 0.35 0.16 1.2 4  0.36 0.16 1.2  0.46 0.14 1.4 

L* 39.0 - 55.2 3.5 0.75 1.7 2.0 4  0.50 2.5 1.3  0.73 1.7 2.0 

a* (-6.1) - 2.4 1.5 0.86 0.5 2.7 6  0.74 0.8 1.9  0.85 0.5 2.6 

b* 7.4 - 23.7 4.1 0.81 1.8 2.3 5  0.68 2.6 1.6  0.81 1.8 2.3 

DMC (g/g FW) 0.08 - 0.25 0.01 0.73 0.01 1.9 9  0.57 0.01 1.4  0.56 0.01 1.4 

SSC (°Brix) 9.7 - 17.4 1.4 0.80 0.6 2.3 8  0.64 1.0 1.5  0.69 0.9 1.5 

TA (meq/kg FW) 19.8- 119.4 21.0 0.89 0.6 3.1 9  0.65 1.5 1.4  0.80 1.0 2.1 

pH 3.4 - 4.8 0.3 0.90 0.1 3.3 10  0.65 0.2 1.4  0.83 0.1 2.3 

Notes: All regression models based on the smoothed (13 windows) and SNV pre-treated VIS-NIR spectra of purees at 500-2500 nm. PLS-R: partial least square 

regression; SVM-R: support vector machine regression; RF-R: random forest regression. Totally, 120 puree spectra and reference data from four varieties (‘Golden 

Delicious’, ‘Braeburn’, ‘Granny Smith’ and ‘Royal Gala’). The averaged results of 10 times random calibration (80 samples) and validation (40 samples) tests. Rv
2: 

determination coefficient of the validation test; RMSEv: root mean square error of validation test; RPD: the residual predictive deviation of validation test, LVs: the 

optimal numbers of latent variables. 
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Table 39. Prediction of puree quality traits from the VIS-NIR spectra of corresponding raw apples 

   PLS-R   SVM-R   RF-R  

Parameter Range SD Rv
2 RMSEV RPD LVs  Rv

2 RMSEV RPD  Rv
2 RMSEV RPD 

η50 0.87 - 3.07 0.36 0.81 0.15 2.3 8  0.73 0.19 1.9  0.65 0.21 1.7 

η100 0.52 - 1.76 0.20 0.85 0.07 2.6 10  0.75 0.10 2.0  0.68 0.11 1.8 

L* 39.0 - 55.2 3.5 0.59 2.1 1.6 4  0.53 2.3 1.5  0.58 2.2 1.6 

a* (-6.1) - 2.4 1.5 0.84 0.7 2.5 5  0.67 1.0 1.8  0.81 0.8 2.3 

b* 7.4 - 23.7 4.1 0.79 1.9 2.2 7  0.61 2.3 1.8  0.59 1.8 2.3 

DMC (g/g FW) 0.08 - 0.25 0.01 0.71 0.01 1.8 11  0.59 0.01 1.4  0.57 0.01 1.3 

SSC (°Brix) 9.7 - 17.4 1.4 0.78 0.7 2.1 9  0.60 1.2 1.3  0.59 1.2 1.3 

TA (meq/kg FW) 19.8- 119.4 21.0 0.87 0.8 2.8 10  0.78 1.0 2.1  0.83 0.9 2.5 

pH 3.4 - 4.8 0.3 0.84 0.1 2.5 11  0.78 0.2 2.1  0.84 0.1 2.5 

Notes: All regression models based on the smoothed (13 windows) and SNV pre-treated VIS-NIR spectra of apples at 500-2500 nm. PLS-R: partial least square 

regression; SVM-R: support vector machine regression; RF-R: random forest regression. Totally, 120 spectra of raw apples and their reference data of cooked purees 

from four varieties (‘Golden Delicious’, ‘Braeburn’, ‘Granny Smith’ and ‘Royal Gala’). The averaged results of 10 times random calibration (80 samples) and 

validation (40 samples) tests. Rv
2: determination coefficient of the validation test; RMSEv: root mean square error of validation test; RPD: the residual predictive 

deviation of validation test, LVs: the optimal numbers of latent variables. 
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4. Conclusion 

This study was designed based on the absolutely definition of ‘one apple to one puree’, 

which gave a first insight of the impacts of fruit inter- or intra-variability during 

processing, from the spectroscopic point of view. Importantly, the intra-variability in 

fruits can introduce the intensive changes of visual aspects, chemical and textural 

properties of their corresponding microwave-cooked purees. Taking into account the 

variability of fruit varieties and intra-variations of each one, could improve the 

prediction accuracy of regression models. Further, the strong correlations while apple 

processing obtained both from conventional characterizations and spectral analyses 

provided further evidences for such the indirect predictions of puree colors, viscosity 

and global biochemical parameters (SSC, TA and pH) from the non-destructive spectral 

information on raw apples.  
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Highlights of Paper V 

This study gave a first insight into the relative impacts of fruit inter-variability 

(between varieties) and intra-variability (between individual fruits) on the 

quality of processed purees. And it provided further evidences that VIS-NIR 

and NIR techniques should be useful tools for industry in so far as they can give 

a reliable assessment of texture and taste of final puree products, based on non-

destructive evaluations of the raw material. 

⚫ Both the inter-variability of apple varieties and the intra-variability of single 

apples introduced intensive changes of appearance, chemical and textural 

properties of the cooked purees. 

⚫ The intra-variability of cooked purees was different according to apple varieties. 

⚫ Some strong correlations of visible-near infrared (VIS-NIR) spectra were 

observed between fresh and cooked apples, particularly in the regions 665-685 

nm and 1125-1400 nm, related to chlorophyll and carbohydrate contents. 

⚫ VIS-NIRS allowed to predict puree color (a* and b*, RPD ≧ 2.1), viscosity 

(RPD ≧ 2.3), SSC (RPD = 2.1), TA (RPD = 2.8) and pH (RPD = 2.5) based on 

the spectra of raw individual apples. 
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Paper VI (Published) 

From Papers IV and V, the quality of final processed purees was predicted by the 

VIS-NIR or NIR spectral information acquired on raw apples using PLS regressions. 

However, the main drawback of this strategy is the need, for modelling, to 

systematically acquire the corresponding spectra on both, raw and processed materials 

with a large number of conditions representative of the variability, giving often only 

rough assessments. In addition, the internal correlations of quality traits during puree 

processing were only confirmed under one of the most commonly used processing 

conditions.  

An experiment was then conducted on ‘Golden Delicious’ apples harvested in 2017 

and 2019, with two thinning practices and four storage times (at harvest, 1, 3, 6 months 

of cold storage), then cooked under three heating temperatures (70°C, 83°C and 95°C 

for 30 min) and three grinding speeds (300 rpm, 1000 rpm and 3000 rpm) (Paper VI). 

The aim of this work was to find the MIR spectral relationships between raw apples 

and processed purees at different cooking conditions, and explore the possibility of 

using MIR spectroscopy to predict puree quality obtained in different cooking 

conditions based on the prior information of raw apples and processing recipes. Direct 

standardization method was applied to find the spectral relationships between fresh and 

processed apples in different cooking conditions. 
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1. Introduction 

Apple puree is one of the major industrially processed fruit products (over 0.3 

million tons consumed per year in France and the world market value about 2000 

million USD annually) (FranceAgriMer, 2017; Market Research Future, 2019), and can 

be used as the basic ingredient of jams, preserves or compotes (Defernez, Kemsley, & 

Wilson, 1995). The quality of apple purees is systematically influenced by both raw 

material characteristics (Papers I, II and IV, Buergy, Rolland-Sabaté, Leca, & Renard, 

2020; Rembiałkowska, Hallmann, & Rusaczonek, 2007) and cooking strategies 

(heating, grinding speed and refining levels etc.) (Espinosa, To, Symoneaux, Renard, 

Biau, & Cuvelier, 2011; Oszmiański, Wolniak, Wojdyło, & Wawer, 2008; Picouet, 

Landl, Abadias, Castellari, & Viñas, 2009). In practical apple processing, industrial 

manufactures have to face the variability and heterogeneity of raw apples, optimize 

their processing strategies to maintain the sustainable and expected quality level of final 

puree products. Thus, developing rapid, efficient and integrated methods is needed to 

guide suitable fruit processing procedures, even to design innovative foods by using the 

raw material variability, and to reduce fruit wastes all along the processing chain. 

Mid infrared spectroscopy (MIRS) is one of the main candidates for both the 

quantification and qualification of agricultural commodities and processed food 

(Bureau, Cozzolino, & Clark, 2019; Downey, 1998). Although MIRS presents a 

relatively lower ability for quantification than chromatography or mass spectrometry, 

it has the advantage of a rapid data acquisition and can provide informative fundamental 
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vibrations of molecular bonds (Karoui, Mazerolles, & Dufour, 2003). It does require a 

minimal sample preparation as the measurement must be done on homogeneous 

samples as liquid, puree or powder due to the very low penetration of radiation into the 

samples. Direct MIR characterizations of raw and processed fruits have shown 

considerable aptitudes to evaluate soluble solids content (SSC), dry matter content 

(DMC), titratable acidity (TA), some individual sugars, organic acids, rheological 

(viscosity and viscoelasticity) and structural (particle average size and volume) 

properties (Ayvaz, Sierra-Cadavid, Aykas, Mulqueeney, Sullivan, & Rodriguez-Saona, 

2016; Paper II). These parameters are related to the taste (SSC, DMC, TA, malic acid), 

the texture (viscosity, viscoelasticity, particles and cell wall contents) and the basic 

nutrients (fructose, sucrose and glucose) impacting in a large amount puree quality 

(Bureau, Ścibisz, Le Bourvellec, & Renard, 2012; Espinosa-Muñoz, Renard, 

Symoneaux, Biau, & Cuvelier, 2013; Fügel, Carle, & Schieber, 2005). 

Currently, our interest is to determine the possibility of using this technique to 

anticipate the characteristics of processed materials from the data acquired on 

homogenized raw fruit. According to our previous studies, strong correlations of 

spectral, chemical and textural properties between raw apples and the corresponding 

purees have been pointed out (Papers IV and V). Based on that, the quality of final 

processed purees could be predicted by the infrared spectral information acquired on 

raw apples using partial least square (PLS) regression (Papers IV and V). The main 

drawback of this strategy is the need, for modelling, to systematically acquire the 

corresponding spectra on both raw and processed materials with a large number of 

conditions representative of the variability, giving often only rough assessments. In 

addition, the internal correlations of quality traits during puree processing were only 

confirmed under one of the most commonly used processing conditions (Papers IV 

and V). 

Direct standardization (DS) is a simple and efficient chemometric tool for the 

calibration transfer between spectral measurements or between two different sets of 

conditions, such as the spectral calibration from the off-line to on-line spectra of olive 

fruits (Salguero-Chaparro, Palagos, Peña-Rodríguez, & Roger, 2013). As far as we 
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know, this method has never been considered to bridge the spectral variations along the 

fruit processing chain. Our interest of this method is thus to find the spectra 

relationships of all processed purees and the corresponding spectral information 

acquired on homogenized apples, and to calculate the reconstructed processed puree 

spectra according to their relative spectral information acquired on apples by DS, taking 

into account both the variability of raw materials and of commonly used processing 

conditions. If so, the predictive models of puree quality traits (biochemical and physical) 

using their reconstructed spectra dataset open the possibility to i) predict the properties 

of processed apples based on the prior information of raw materials; ii) provide 

sustainable and precise processing strategies to estimate the quality potential of final 

products, and iii) to compare in silico the prediction results of different processing 

approaches to better control the quality of fruit products. 

Accordingly, this work aimed to assess the potential of MIRS to: i) detect the 

variability of the cooked apple purees according to the pre- and post-harvest conditions 

(fruit thinning and storage periods) and the main processing conditions (heating 

temperature and grinding speed); ii) calculate reconstructed spectra of purees taking 

into account the variability of raw fruits and processing conditions; and iii) characterize 

and anticipate the biochemical (SSC, DMC, TA, individual sugars and malic acid), 

rheological (viscosity and viscoelasticity) and textural (particle size and volume) 

properties of the processed purees.  

2. Materials and methods 

2.1 Apples and purees 

2.1.1 Apples 

The experiment was conducted on the variety ‘Golden Delicious’ in 2017 and 2019. 

All apples were harvested at commercial maturity from La Pugère experimental orchard 

(Mallemort, Bouches du Rhône, France) (Fig. 45).  

- In 2017, half of the ‘Golden Delicious’ apples were subjected to a commercial 

chemical fruit thinning (Th+) with standard fruit load (50-100 fruits/tree), the other 
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half was not thinned (Th-), resulting in a high fruit load (150-200 fruits/tree). After 

harvesting, apples were processed into purees the day after harvest (T0), and after 

one (T1), three (T3) and six months (T6) of cold storage at 4°C.  

- In 2019, the commercially thinned ‘Golden Delicious’ apples (Th+) were stored 

for up to one month (T1) at 4 °C until starch regression, then processed into purees 

under different processing conditions. 

2.1.2 Puree processing  

 

Fig. 50. Experimental scheme for apple production, puree preparation and the sample 

characterization by infrared spectroscopy and reference measurements. 

Before processing, and for each condition, around 2 kg apples were homogenized 

at 11000 rpm with an Ultraturrax T-25 (IKA, Labortechnik, GmbH, Staufen, Germany) 

as raw apple homogenates. Three batches of apples (3 kg each) were used to produce 

three puree lots for each condition. After sorting and washing, Golden Delicious apples 

were cored and cut in 8 portions, then processed in a multi-functional processing system 

(Roboqbo, Qb8-3, Bentivoglio, Italy) by different conditions (Fig. 50): 
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- In 2017, all apple groups (2 thinning practices × 4 storage periods) were 

cooked with a standard Hot Break recipe of 95°C for 5 min at a 1500 rpm grinding 

speed, then cooled down to 65°C while maintaining the grinding speed. Finally, 24 

different cooked purees (2 thinning practices × 4 storage periods × 3 lots) were prepared. 

- In 2019, each apple group was processed with three different heating 

temperatures of 70°C, 83°C and 95°C for 30 min, while ground at three speed levels of 

300 rpm, 1000 rpm and 3000 rpm, respectively. Totally, 27 different cooked purees (3 

heating temperatures × 3 grinding speeds × 3 lots) were prepared.  

Finally, all cooked purees were conditioned in two hermetically sealing plastic bags: 

one was cooled at room temperature (22.5 °C) before the next-day measurements of 

rheological, structural and some biochemical (SSC, TA, fructose, sucrose, glucose and 

malic acid) properties. And the other one was freeze-dried (FD) and stored at -20 °C 

for the determination of the content of cell wall, which are known to be a major 

contributor of rheological properties of apple purees (Espinosa-Muñoz, Renard, 

Symoneaux, Biau, & Cuvelier, 2013). 

2.2 Determination of puree quality traits 

2.2.1 Rheological and structural characterizations on cooked purees 

The cooked puree rheological measurements have been described in detailed in 

Paper II.  

2.2.2 Biochemical analyses on cooked purees 

Biochemical analyses of cooked purees were described in Papers I and II.  

2.3 Spectrum acquisition on raw apple homogenates and cooked purees 

The MIR spectra acquisition has been described in Papers I and II.  

The whole spectral dataset of MIR is described in Fig. 51. It included i) 81 spectra 

of raw apple homogenates, of which 72 spectra acquired in 2017 (3 apple batches × 2 

fruit thinning conditions × 4 storage times × 3 spectral replicates) and 9 spectra acquired 

in 2019 (3 apple batches × 3 spectral replicates); and ii) 153 spectra of cooked apple 
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purees, containing 72 spectra acquired in 2017 (2 fruit thinning conditions × 4 storage 

times × 3 processing lots × 3 spectral replicates) and 81 spectra acquired in 2019 (3 

heating temperatures × 3 grinding levels × 3 processing lots × 3 spectral replicates). 

2.4 Statistical analyses of reference data 

The reference data of cooked purees processed in 2017 and 2019 are presented as 

the mean values and the data dispersion within our experimental dataset expressed as 

standard deviation values (SD). After the Shapiro-Wilk tests, the references data of 

processed purees affected by fruit thinning and storage times were normal distributed 

(α=0.05), but not for the dataset of heating temperature and grinding effects during 

puree processing. Thus, analysis of variance (ANOVA) was carried out to determine 

the significant differences of cooked purees due to fruit thinning and storage times 

applied on raw apples (Table 40) using XLSTAT (version 2018.5.52037, Addinsoft 

SARL, Paris, France) data analysis toolbox. The normal distribution hypothesis was not 

verified for the dataset of heating temperature and grinding effects during puree 

processing Therefore Kruskal-Wallis tests were performed to evaluate the effects of 

heating temperature and grinding levels during puree processing (Table 41). 

2.5 Spectra transferred by direct standardization (DS) 

In this study, DS was used to find the relationship between the spectra matrices of 

all cooked purees (𝑷) and the corresponding spectra of raw apple homogenates (𝑭), 

taking into account the effects of raw material variability and processing conditions. 

The DS transfer works were performed in R software (version 4.0.2) (R Core Team, 

2019) following a previous report (Ji, Viscarra Rossel, & Shi, 2015): 

𝑷 =  𝑭𝑩 +  𝑬                             (1) 

where B is the transfer matrix (λ × λ) presenting the variations in both 𝑭 and  𝑷, E 

is the residual matrix used to correct the baseline difference. 𝑭, 𝑷 and E matrices have 

the same size n × λ, where n presents the numbers of transfer spectra and λ is the number 

of wavenumbers between 1800 and 900 cm-1. 

First, to compute the transfer B and error E matrices, the whole MIR spectral 

dataset (𝑷 and 𝑭) was divided into: the calibration matrices, presenting the first two 

batches of raw apple homogenates (𝑭𝒄) and the first two lots of cooked purees (𝑷𝒄), 
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and the validation matrices with the third batch of raw apple homogenates (𝑭𝒗) and the 

third lot of cooked purees (𝑷𝒗) (Fig. 51). 

In a second step, DS was performed separately on the calibration matrices of raw 

apple homogenates (𝑭𝒄 ) and cooked purees (𝑷𝒄 ) in 2017 (𝑭𝒄2017  and 𝑷𝒄2017 ) and 

2019 (𝑭𝒄2019 and 𝑷𝒄2019) (Fig. 51, Fig. 52): 

- the calibration matrices of apples (𝑭𝒄2017) and purees (𝑷𝒄2017) were processed 

to obtain the 𝑩𝟎 and 𝑬𝟎 related to the effects of raw materials on the processed purees 

as follows: 

𝑷𝒄2017  =  𝑭𝒄2017𝑩𝟎 + 𝑬0                       (2) 

Both (𝑭𝒄2017) and (𝑷𝒄2017) have the same size n × λ , where n = 48; (2 thinning 

practices × 4 storage periods × 2 apple batches/ puree lots × 3 spectral replicates. 

- the calibration matrices of apples (𝑭𝒄2019) and purees (𝑷𝒄2019) were performed 

for each puree processing condition, as follows: 

𝑷𝒄𝟐𝟎𝟏𝟗
(𝒊)

 =  𝑭𝒄2019𝑩𝑖 + 𝑬𝑖                       (3) 

where i from 1 to 9, corresponding to 9 different processing conditions (3 heating 

temperatures × 3 grinding speeds). To each spectral replicate of 𝑭𝒄2019 corresponds 

nine spectra according to each processing condition (𝑷𝒄2019). All the spectra of 𝑷𝒄2019 

matrix corresponding to the same processing conditions were gathered in a specific 

matrix 𝑷𝒄𝟐𝟎𝟏𝟗
(𝒊)

. The size of this matrix (one for each processing condition) is equal to 

that of raw apple homogenates 𝑭𝒄2019   (n = 6 spectra (2 apple batches × 3 spectral 

replicates) × λ). 

Thirdly, once all the transfer B (𝑩0 and 𝑩𝑖) and error E (𝑬0 and 𝑬𝑖) matrices were 

computed, they were used to calculate the cooked puree reconstructed calibration and 

validation spectra matrices, as follows (Fig. 51): 

𝑻𝒄2017  =  𝑭𝒄2017𝑩0 + 𝑬0                       (4) 

𝑻𝒗2017  =  𝑭𝒗2017𝑩0 + 𝑬0                       (5) 

𝑻𝒄2019  =  𝑭𝒄2019𝑩𝑖 + 𝑬𝒊                        (6) 

𝑻𝒗2019  =  𝑭𝒗2019𝑩𝒊 + 𝑬𝒊                        (7) 

Finally, the reconstructed calibration and validation spectral matrices of cooked 
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puree, 𝑻𝒄 (𝑻𝒄2017 +  𝑻𝒄2017) and 𝑻𝒗 (𝑻𝒗2017 +  𝑻𝒗2019) of the two years (2017 and 

2019) were obtained with the same sizes of the real spectral matrices of cooked puree, 

𝑷𝒄 and 𝑷𝒗, for the further multivariate regressions. 

 

Fig. 51. Overview of MIR spectra pre-processing, direct standardization (SD) and 

multivariate regression. 
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Fig. 52. Overview of the applied methodology to exploit reconstructed MIR spectra of purees and multivariate regression. 
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2.6 Multivariate regression 

Spectral pre-processing and multivariate data analysis were performed with Matlab 

7.5 (Mathworks Inc. Natick, MA, USA) software using the SAISIR package (Cordella 

& Bertrand, 2014). After pretests of several pre-processing treatments (baseline 

correction, standard normal variate (SNV) and a derivative transform calculation using 

Savitzky–Golay method (window size = 11, 21, 31) applied on several different spectral 

regions, the best results of prediction and discrimination were obtained on the range 

1800-900 cm-1, which has been already highlighted (Paper II), using SNV pre-

processing. Principal Component Analysis (PCA) and Factorial Discriminant Analysis 

(FDA) were applied on SNV pre-treated spectra of cooked purees to detect their 

differences related to the variability of both, raw apples and processing conditions. The 

specificity and sensitivity values of FDA discriminations were calculated by the already 

reported method of Nargis et al. (2019). 

PLS models were developed using the SNV pre-processed puree spectra (1800-900 

cm-1) of the calibration set 𝑷𝒄   and the DS transferred spectra of purees ( 𝑻𝒄) , 

corresponding to the same reference dataset. The two calibration matrices of cooked 

purees included a total of 102 spectra (48 spectra in 2017: 2 thinning practices × 4 

storage periods × 2 lots × 3 spectral replicates, and 54 spectra in 2019: 3 heating 

temperatures × 3 grinding speeds × 2 lots × 3 spectral replicates). Then, the developed 

PLS models were applied on their corresponding validation spectra sets of 𝑷𝒗  and 𝑻𝒗 , 

with a total of 51 spectra in 2017: 2 thinning practices × 4 storage periods × 1 lot × 3 

spectral replicates and in 2019: 3 heating temperatures × 3 grinding speeds × 1 lot × 3 

spectral replicates. PLS model performance was assessed using the determination 

coefficient of calibration (Rc
2) and validation (Rv

2), the root-mean-square error of 

validation (RMSEV), the number of latent variables for calibration (LVs), the residual 

predictive deviation of validation set (RPD), as described by Nicolai et al. (2007). The 

linkable spectral regions of the acceptable PLS models presenting RPD values higher 

than 2.5 (Nicolai, Beullens, Bobelyn, Peirs, Saeys, Theron, et al., 2007) were displayed 

based on their β- coefficients (Table 43 and Table 44). 
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3. Results and discussion 

3.1 Variability of cooked purees based on their MIR Spectra 

3.1.1 Variability induced by the raw materials 

According to ANOVA (F-values), fruit thinning applied on apples during their 

growth in orchard resulted in a significant variation (p < 0.001) of viscosity (ŋ50 and 

ŋ100), viscoelasticity (G’, G’’, yield stress), particle sizes (d4:3 and d3:2) and 

compositions (DMC, SSC, TA, pH, malic acid, sucrose, fructose and AIS) of the cooked 

purees. Particularly, the impact of thinning on the viscosity, DMC and SSC of purees 

was higher than the effect of post-harvest storage at 4°C (Table 40). Purees processed 

from thinned apples (Th+) had higher viscosity values (η50 and η100) and larger particle 

sizes (d4:3) than those from the non-thinned apples (Th-), observed after three or six 

months of cold storage (T3 and T6) (Buergy, Rolland-Sabaté, Leca, & Renard, 2020). 

Moreover, an intensive decrease of average particle sizes (d4:3) was observed in the 

purees cooked with the apples stored one month at 4°C (T1) for both ‘thinning’ (Th+) 

and ‘non-thinning’ (Th-) treatments. PCA applied on the spectra of cooked purees in 

2017 showed a good ability to detect the effects of treatments applied on raw apples 

(fruit thinning and storage periods) (Fig. 53a, b). The effect of thinning on the first 

principal component (PC1 90.1%) was much higher than that of storage on the second 

principal component (PC2 6.9%), which was in line with our previous results (Paper 

II). In addition, the increase of the band at 1022 cm-1 and the decrease of the bands at 

1061-1065 cm-1, attributed to sucrose and fructose respectively (Bureau, Cozzolino, & 

Clark, 2019), were the major contributors of the observed discriminations on the two 

PCs (Fig. 53c, d). 
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Fig. 53. PCA on the SNV pre-treated MIR spectra (900-1800 cm-1) of purees cooked 

with thinned (Th+) and non-thinned (Th-) ‘Golden Delicious’ apples stored at 4°C 

during 0, 1, 3 and 6 months (T0, T1, T3 and T6): (a) the scores plot of the first two 

components (PC1 and PC2) related to fruit thinning; (b) the scores plot of the first two 

components (PC1 and PC2) related to storage periods; (c) the loading plot of PC1; (d) 

the loading plot of PC2. 

3.1.2 Variability induced by processing conditions 

The different grinding speeds affected significantly (p < 0.05) the viscosity (η50 

and η100), viscoelasticity (G’ and G’’) and particle size (d4:3 and d3:2) of the cooked 

purees (Table 41). Particularly, the increase of grinding speed significantly (p < 0.001) 

decreased viscosity (η50 and η100), viscoelasticity (yield stress, G’ and G’’) and particle 

sizes (d4:3) which was observed at each tested temperature. From macroscopic images 

of purees (data not shown), the larger particles disappeared with increasing grinding 

speeds, which was enough to cause a decrease in the puree viscosity (Espinosa-Muñoz, 
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Renard, Symoneaux, Biau, & Cuvelier, 2013). Inversely, the increasing heating 

temperatures induced no significant (p > 0.05) changes of puree viscosity (η50 and η100) 

and viscoelasticity (yield stress, G’ and G’’). The highest heating temperature (95℃) 

resulted in a significant (p < 0.05) increase of DMC and SSC and a decrease of TA and 

malic acid. Consequently, the changes of grinding speed during the puree processing 

significantly modified the structural properties and viscoelastic behaviors of purees, 

whereas heating temperature affected strongly the biochemical composition of purees. 

FDA performed on the cooked puree spectra in 2019 successfully classified the 

processing changes induced at the different heating temperatures (Fig. 54a) and 

grinding speeds (Fig. 54b). The samples cooked at 95 ℃ were well-separated from the 

other two conditions (4 factors, 100% of sensitivity and specificity in Table 42a), 

according to the first factorial component (F1) (Fig. 54a). The specific bands at 1745 

cm-1 and 1539 cm-1 were attributed to the increase of soluble pectins, probably in 

relationship with their solubilization in puree serum from apple cell walls, enhanced 

with the increasing heating temperature (Liu, Renard, Rolland-Sabaté, Bureau, & Le 

Bourvellec, 2020). Moreover, the negative peaks at 1057 cm-1 and 998 cm-1 could be 

due to the hydrolysis of sucrose during thermal processing, thus resulting in the increase 

of fructose (1022 cm-1) and glucose (1107 cm-1) contents. 

The three different grinding levels could be discriminated according to the first two 

factorial components (F1 and F2) (Fig. 54b), especially for the highest grinding speed 

at 3000 rpm (‘G3’ in Fig. 54b) (4 factors, over 85.19% of specificity and sensitivity in 

Table 42b). The intensive negative spectral peaks at 1558, 1539-1541, 1508 and 1458 

cm-1 along both discriminant factors (F1 and F2 in Fig. 54d and Fig. 54e) were all 

located in the region between 1450 cm-1 and 1600 cm-1, which has been already 

attributed to the changes of particle size and rheological behavior after apple puree 

mechanical refining in a previous experiment (Papers I and II). These peaks indicated 

the decrease of particle size (d4:3 and d3:2) and viscosity of purees with increasing 

grinding speeds, which was in line with our reference measurements (Table 41) and 

Espinosa et al. (2011). 

Briefly, MIR technique could detect several variability sources such as thinning 



297 

practices during fruit cultivation, cold storage and processing conditions (temperature 

and grinding) in the cooked purees. In addition, the spectral region 1450-1750 cm-1 was 

validated as being a reliable analytical signal of processing linked to the textural and 

rheological changes in purees. 

 

Fig. 54. Maps of FDA performed on the SNV pre-treated MIR spectra (900-1800 cm-1) 

of purees cooked with: (a) three different temperatures (70 ℃, 83 ℃ and 95 ℃) and 

(b) three grinding speeds (G0 at 300 rpm, G1 at 1000 rpm and G3 at 3000 rpm); (c) the 

first factorial score (‘F1’) of heating temperature discrimination; (d) the first factorial 
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score (‘F1’) of grinding discrimination; (e) the second factorial score (‘F2’) of grinding 

discrimination.  

3.2 Prediction of quality traits of cooked purees by MIRS 

 For all developed PLS models, as expected the decreases of determination 

coefficients between the calibration set (Rc
2) and the validation set (Rv

2) were observed 

in Table 43. According to RPD values over 2.5 (Nicolai, Beullens, Bobelyn, Peirs, 

Saeys, Theron, et al., 2007), prediction was acceptable to good (RPD from 2.6 to 3.3) 

for viscosity (η50 and η100), average particle sizes (d4:3), SSC, TA, pH values and malic 

acid content in cooked purees by MIRS, taking into account a large variability of raw 

apple materials and processing conditions. 

 Apparent puree viscosity at a shear rate value of 50 s-1 (η50), which has been 

described to be highly correlated with the in-mouth texture perception of fluid food 

(Chen & Engelen, 2012), could be predicted by MIRS with a Rv
2 of 0.87 and a RPD of 

3.2. MIR prediction of apparent puree viscosity at a single shear rate value of 100 s-1 

(η100) (Rv
2 = 0.85, RPD= 3.0) observed here were much better than its prediction by 

NIRS (RPD = 1.3) (Paper IV), These results evidenced the possibility of MIRS to 

estimate puree viscosity. For the two apparent puree viscosity values measured at η50 

and η100, the main wavenumber regions at 1718-1730 cm-1 and 1618-1678 cm-1 were 

still observed in paper II. This could validate the application of MIRS to predict puree 

viscosity by taking into account not only the raw fruit variability but also the complex 

effects of processing conditions. However, the predictions (Rv
2 < 0.81, RPD < 2.1) of 

the viscoelastic parameters of purees (G’, G’’ and yield stress) were not precise enough 

to estimate the viscoelastic behaviors and the moment when puree starts to flow. Indeed, 

heating and grinding affected puree viscoelasticity (SD values of 2362 Pa for G’, 595 

Pa for G’’, 27.1 Pa for yield stress) and resulted in more than twice higher variations of 

these parameters than those induced by thinning and cold storage on raw materials (SD 

values of 1001 Pa for G’, 234 Pa for G’’ and 12.9 Pa for yield stress). These new 

prediction accuracies of the viscoelastic parameters of purees (G’, G’’ and yield stress) 

were not as good as our previous ones by MIRS (Paper II), but could be more robust 
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to be considered for future applications. MIR coupled with the linear regression (PLS) 

showed a good performance (Rv
2= 0.87, RPD= 3.1) to evaluate the volume average 

particle size of purees (d4:3), but not the surface average particle size (d3:2). 

Particularly, the most informative wavenumbers to evaluate puree particle size at 1701-

1713 cm-1, 1655-1668 cm-1 and 1537-1541 cm-1 have been already observed previously 

to predict puree viscosity, to discriminate the purees prepared with different grinding 

speeds (mentioned in part 3.1) and with different refining levels (Paper II). Such good 

prediction of puree average particle size (d4:3) could not come from internal 

correlations with puree composition such as SSC, DMC or AIS contents because of 

their poor correlation (R2 < 0.48), but probably some specific signals needing to be 

identified and confirmed. Moreover, we confirmed here the impossibility to predict the 

cell wall content directly in puree by MIRS, without any preparation such as freeze-

drying (Paper II)  

 A good prediction of global puree quality traits, SSC (RPD= 3.1) and DMC (RPD= 

2.9), was obtained with 5 LVs (Table 43). The variation of SSC and DMC in purees 

were highly correlated (R2 = 0.76), which explained the good estimations of these two 

parameters. The respective fingerprint wavenumbers of SSC and DMC prediction were 

similar and detected at 996-1001 cm-1, 1048-1057 cm-1 and 1109-1112 cm-1, 

corresponding to the variations of sucrose, fructose and glucose in purees (Bureau, 

Cozzolino, & Clark, 2019). Moreover, the prediction of TA was excellent (RPD = 3.2), 

with a limited RMSEV of 7.6 mmol H+/kg FW. The typical wavenumber region at 

1709-1720 cm-1 in TA prediction has already been attributed to the C=O vibration of 

carboxylic acids (Bureau, Quilot-Turion, Signoret, Renaud, Maucourt, Bancel, et al., 

2013; Clark, 2016). Depending on the good correlations between the different 

contributors of apple acidity (R2 = 0.81 between TA and malic acid, R2 = 0.76 between 

TA and pH), MIRS provided an acceptable prediction of pH (Rv
2 = 0.83 and RPD = 2.5) 

and malic acid content (Rv
2 = 0.85 and RPD= 2.7). Despite the similar typical 

fingerprints observed in the β-coefficients of PLS models of malic acid and pH, the 

relative lower RPD values and Rv
2 of pH compared to malic acid were probably due to 

the low pH variation. Concerning the main individual sugars, acceptable prediction was 



300 

obtained only for fructose (RPD = 2.6), but neither for sucrose (RPD= 1.3) nor for 

glucose (RPD = 1.5), which was in line with our previous results (Paper II). The lower 

concentration of glucose (10.4-25.4 g/kg FW) than the other individual sugars (34.9-

98.7 g/kg FW of fructose, 39.1-118.5 g/kg FW of sucrose) led to its worse prediction 

by MIR results. A higher internal biochemical correlation between the major 

compounds (SSC, TA) and fructose (R2 = 0.79 for SSC and fructose, R2 = 0.76 for TA 

and fructose) in apple purees might explain the better prediction of fructose than the 

one of sucrose (R2 = 0.58 for SSC and sucrose, R2 = 0.44 for sucrose and TA). 

 Briefly, MIR technique can provide a simultaneous and robust estimation of 

biochemical compositions (dry matter, soluble solids, titratable acidity, pH, malic acid 

and fructose), rheological behaviors (viscosity at η50 and η100) and particle size (d4:3) 

of apple purees, taking into account the large variability along the apple puree 

production chain (agricultural practices, post-harvest storage and processing 

conditions). 

3.3 Reconstructed spectra for prediction of puree quality traits  

In this part, MIR prediction models were developed using the reconstructed spectra 

of the calibration set of cooked purees (𝑻𝒄), only done for the well-predicted parameters 

mentioned in part 3.2, which were η50 and η100, d4:3, SSC, DMC, TA, pH, malic acid 

and fructose. Then, these models were applied on the validation reconstructed spectra 

of the cooked purees (𝑻𝒗). 

Overall, based on the PLS regression applied on the puree reconstructed spectra, 

acceptable predictions were obtained (RPD > 2.5) for rheological (η50, η100), structural 

(d4:3) and global biochemical (SSC, DMC, TA) parameters (Table 44). In contrast, 

predictions appeared not acceptable for malic acid (RPD = 2.3), fructose (RPD = 1.7) 

and pH (RPD = 2.1). Compared to the previous prediction from the real puree spectra 

(Table 43), lower Rv
2 and higher LVs have been generally obtained for all parameters 

giving some lower prediction performance (Table 44). Particularly, the use of the 

reconstructed spectra showed a good ability to predict puree viscosity parameters (η50 

and η100) with Rv
2 > 0.82, RPD > 2.5 and prediction errors (RMSEV) of 0.21 Pa.s and 
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0.10 Pa.s for η50 and η100, respectively. These results were close to those from the real 

spectra of purees (Table 43). The fingerprint wavenumbers used in the PLS models 

were similar for both reconstructed and real spectra, mainly 1718-1734 cm-1, 1616-

1336 cm-1 and 1547-1553 cm-1 as described in Part 3.2. Although a relative lower Rv
2 

and RPD (Rv
2 = 0.84 and RPD = 2.6) was obtained for particle size (d4:3) compared to 

the results on the real puree spectra (Table 43), the consistent fingerprints were highly 

related to the puree texture such as 1701-1715 cm-1, 1537-1541 cm-1 and 1101-1107 

cm-1. These prediction performances revealed for the first time the possibility to 

evaluate the variation of average particle sizes in the cooked purees based on the MIR 

information of the corresponding raw apple homogenates. Considering the other global 

quality parameters, acceptable predictions were obtained for SSC (Rv
2 = 0.85 and RPD 

= 2.8) and DMC (Rv
2 = 0.84 and RPD = 2.6) contents. The specific wavenumbers in the 

ranges 997-1001 cm-1 and 1048-1057 cm-1 for sucrose and in the ranges 1009-1112 cm-

1 for fructose mainly contributed to the PLS models for both reconstructed and real 

spectra. These ranges have been already mentioned to be linked to these sugars (Bureau, 

Cozzolino, & Clark, 2019), which are the main ones in apples. For acidity, the 

reconstructed spectra gave an excellent prediction of TA (Rv
2 = 0.86 and RPD = 2.9), 

using the spectral regions between 1709-1720 cm-1 of the typical C=O absorption 

(Clark, 2016). Consequently, PLS applied on the reconstructed MIR spectra calculated 

from the spectra of raw apple homogenates showed the possibility to directly predict 

the viscosity, averaged particle sizes, SSC, DMC and TA of cooked purees. 

Several initial attempts have been tested to monitor the quality of cooked food from 

infrared information of their raw materials, with the objectives to predict the texture of 

cooked poultry pectoralis major muscles (Meullenet, Jonville, Grezes, & Owens, 2004), 

of cooked rice (Windham, Lyon, Champagne, Barton, Webb, McClung, et al., 1997) 

and of apple purees (Papers IV, V). In these studies, the spectra matrix of the raw 

materials and the reference data of the corresponding processed materials were used to 

calibrate models. The predictions thus obtained are mainly due to the strong internal 

correlations of quality traits between materials before and after processing, which could 

provide semi-quantitative prediction accuracy for practical uses. However, the internal 
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correlations of quality traits during fruit processing still remain unreliable when using 

a large variability of raw materials and various industrial processing systems (Papers 

IV, V). Further, such a direct modelling method requires a necessary step of acquisition 

of the infrared information on raw material batches for each processing condition, in 

order to obtain the same matrix sizes of spectra and reference data for calibration.  

Here, a potential strategy has been firstly proposed to build reconstructed MIR 

spectra of processed purees from the spectra of raw apple homogenates using a spectral 

transfer method. The high consistency of the specific fingerprints used in the PLS 

models obtained for both the real spectra and the reconstructed spectra, confirmed our 

choice for this modelling strategy. Compared to the direct modelling method, a great 

advantage of using spectral transfer strategy is that the calibration dataset only needs 

the infrared information and reference data of a few processed purees and just a limited 

number of spectra of corresponding raw apples. For example, in our dataset of 2019, 

the reconstructed spectra of 27 different processed purees could be transferred from 

only 3 corresponding spectra of the same apple batches.  

After a simple scanning of raw apple homogenates by MIRS, the models revealed 

the possibility to i) predict the quality of apple purees, such as viscosity, SSC and TA 

using a standard processing recipe (95 ℃ for 5 min and grinding at 1500 rpm), even 

though a large variability of raw apples was used (different fruit thinning and cold 

storage periods); and ii) to monitor and anticipate the organoleptic properties of cooked 

purees under different processing strategies, which is relevant for the processors and 

market. For example, a higher viscosity and acidity in-mouth feeling (predicted η50 = 

1.42 ± 0.09 Pa.s, predicted TA = 65.8 ± 3.5 meq/kg FW) were predicted with the recipe 

at 83 ℃ for 30 min and grinding speed of 1000 rpm than with the recipe at 95 ℃ for 

30 min and grinding speed of 3000 rpm (predicted η50 = 0.98 ± 0.14 Pa.s, predicted TA 

= 56.4 ± 4.5 mmol H+/kg FW).  

4. Conclusion 

 As far as we know, this is the first study that shows the ability of MIRS to estimate 

the quality of processed fruit products taking into account a large variability coming 
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from agricultural practices, post-harvest storage and processing conditions along the 

whole processing chain. MIR technique provided reliable assessment of viscosity, 

averaged particle sizes and major compositions (SSC, DMC, TA and malic acid) of 

apple purees.  

 Further, a simple spectroscopic transfer method (direct standardization) was 

applied for the first time to develop the reconstructed spectra of purees from their 

corresponding spectra of raw apple homogenates. MIRS coupled with PLS regression 

obtained acceptable predictions of TA, DMC, SSC, viscosity (η 50 and η 100) and 

averaged particle sizes of the final puree based on their reconstructed spectra. With a 

simple scanning of raw apple homogenates, MIR technique opens the possibility to i) 

predict the quality of final purees under a standard processing procedure, which is 

beneficial for fruit processing sustainability; and even ii) to monitor the texture and 

tastes of purees under different processing conditions for a better management. 
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Table 40. Biochemical, structural, and rheological data of apple purees and ANOVA results. 

Fruit 

thinning 

Storage 

periods 

η50 η100 G’ G’' Yield stress d 4:3 d 3:2 DMC SSC TA glucose fructose sucrose malic acid pH AIS AIS 

Pa.s Pa.s Pa Pa Pa - - g/g FW °Brix mmol H+/kg FW g/kg FW g/kg FW g/kg FW g/kg FW  mg/g FW mg/g DW 

Th- 

T0 1.28 0.77 3127.8 626.7 47.5 909.9 251.5 0.19 13.4 58.1 18.9 50.5 66.7 4.5 3.7 164.5 31.6 

T1 1.13 0.70 1960.2 466.7 21.9 694 351.9 0.19 15.0 54.4 15.4 49.4 59.1 2.8 3.8 147.2 27.6 

T3 0.87 0.55 1849 453 13.9 339.8 205.9 0.20 14.1 46.7 18.6 84.1 84.8 3.6 4.0 140.0 27.3 

T6 0.92 0.50 1816 427 14 316.1 223.6 0.19 13.8 26.8 23.0 85.1 77.3 2.7 4.4 145.7 27.6 

Th+ 

T0 1.75 0.97 3375.1 816.4 52.1 831.6 231.6 0.21 15.5 70.9 23.5 85.3 64.4 5.5 3.6 163.3 33.9 

T1 1.54 0.94 2783.7 639.5 25.2 489 261.8 0.21 17.6 69.3 16.8 80.3 115.9 5.6 3.8 150.9 31.9 

T3 1.25 0.70 2517.6 609 22.3 405.1 228.3 0.22 16.9 59.9 13.8 88.0 102.5 4.9 3.8 143.3 31.6 

T6 1.60 0.88 3168.2 751.7 33.9 393.5 255.1 0.23 17.5 34.7 23.8 95.7 44.0 3.6 4.3 150.3 34.8 

Storage time significance *** *** *** *** *** *** *** ** ** *** *** *** *** *** *** ns * 

 F-values 20.4 13.6 24.7 15.0 72.8 216.1 41.5 6.6 8.3 279.4 74.7 76.2 38.5 13.8 436.3 1.8 4.3 

Fruit thinning significance *** *** *** *** *** *** * *** *** *** ns *** ** *** *** ** ** 

 F-values 138.2 61.5 67.3 91.5 29.6 47.2 5.5 157.7 115.7 176.9 1.3 187.8 13.8 57.9 48.8 15.9 10.3 

Data expressed in fresh weight (FW) or dry weight (DW); values correspond to the mean of 3 puree replications (3 kg per replication). Raw apples were stored at 4°C: from harvest (T0) 

and during one (T1), three (T3) and six months (T6). Two conditions of fruit load during cultivation: non-thinning with 100% number of apples (Th-) and thinning with 50% number of 

apples (Th+) per tree. In grey, two way- ANOVA results obtained for Golden Delicious purees. ns, *, **, ***: Non significant or significant at P < 0.05, 0.01, 0.001 respectively. 
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Table 41. Biochemical, textural, and rheological data of apple purees and results of Kruskal-Wallis non-parametric test. 

Temperatures Grinding speeds η 50 η 100 G’ G’' Yield stress d 4:3 d 3:2 DMC SSC TA glucose fructose sucrose malic acid pH AIS AIS 

℃ rpm Pa.s Pa.s Pa Pa Pa - - g/g FW °Brix mmol H+/kg FW g/kg FW g/kg FW g/kg FW g/kg FW  mg/g FW mg/g DW 

70 

300 1.27 0.89 9629.8 2389.5 97.7 583.8 103.6 0.17 13.8 63.6 16.1 67.9 70.9 6.3 3.9 26.8 158.0 

1000 1.42 0.91 3295.4 768.8 38.8 633.7 274.8 0.16 13.8 67.8 18.0 66.2 76.6 6.4 3.9 28.0 171.4 

3000 0.64 0.40 1111.3 215.6 10.2 353.5 207.6 0.17 14.4 69.1 17.3 65.5 86.0 6.6 3.9 28.1 165.1 

83 

300 1.23 0.93 8437.5 2078.9 97.9 553.0 212.8 0.18 14.9 59.9 14.6 67.7 70.6 5.8 3.8 29.5 166.7 

1000 1.38 0.87 3036.9 764.4 35.6 647.8 324.8 0.16 13.4 69.8 17.4 71.9 75.2 5.2 3.9 25.6 159.6 

3000 0.91 0.54 1312.2 259.9 11.8 297.4 192.4 0.17 14.8 70.3 16.6 66.8 76.1 5.7 3.9 28.2 162.6 

95 

300 1.93 1.16 3708.2 1101.3 30.0 492.9 262.1 0.17 14.9 60.2 17.0 72.6 66.9 4.8 3.9 27.9 160.8 

1000 1.44 0.84 1955.4 522.2 16.6 332.9 209.8 0.17 14.9 64.1 17.8 71.3 64.5 5.1 3.9 26.2 157.3 

3000 1.07 0.63 1399.4 362.2 14.0 206.4 153.2 0.17 14.8 62.0 18.9 69.2 65.8 5.4 3.8 26.2 154.1 

Temperature significances ns ns ns ns ns * ns * * * * * ** ** ns ns ns 

 F-values 4.1 1.3 0.9 0.4 1.5 7.0 1.2 6.3 6.8 8.4 6.1 8.9 9.1 10.2 2.1 2.3 4.2 

Grinding speeds significances ** *** *** *** *** ** ** ns ns ns ns ns ns ns ns ns ns 

 F-values 10.9 17.2 21.6 22.6 19.4 13.7 9.2 1.1 2.8 1.4 0.4 0.1 1.4 0.2 1.3 0.4 0.2 

Data expressed in fresh weight (FW) or dry weight (DW); values correspond to the mean of 3 puree replications (3 kg per replication). Processing conditions variations were:  three heating 

temperatures at 70°C, 83°C and 95°C for 30 min, and three grinding speeds at 300, 1000 and 3000 rpm at each temperature. In grey, Kruskal-Wallis results obtained on Golden Delicious 

purees. ns, *, **, ***: Non significant or significant at P < 0.05, 0.01, 0.001 respectively.  
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Table 42. The results of sensitivity (in blue cells) and specificity (in yellow cells) from: (a) the FDA discrimination (4 factors) of three different heating temperatures; 

and (b) the FDA discrimination (4 factors) of three different grinding speeds. 

(a) 

Temperatures (℃) 70 83 95 

70 / 76.67% 100% 

83 83.33% / 100% 

95 100% 100% / 

(b) 

Grinding speeds (rpm) 300 1000 3000 

300 / 75.00% 85.19% 

1000 76.92% / 87.10% 

3000 85.19% 100% / 
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Table 43. Prediction of biochemical, structural and rheological properties of apple purees using PLS regression based on their MIR spectra between 900-1800 cm-1. 

Parameter Range SD Rc
2 Rv

2 RMSEV RPD LVs Linkable regions (cm-1) 

η 50 0.57-2.28 0.39 0.91 0.87 0.19 3.2 7 1780-1788, 1718-1734, 1659-1678, 1636-1616, 1549-1558, 1157-1163 

η 100 0.26-1.22 0.27 0.89 0.85 0.07 3.0 8 1780-1788, 1718-1734, 1659-1678, 1636-1616, 1549-1558, 1157-1163 

AS-G' (Pa) 1069-11154 2362 0.85 0.75 854 2.0 12 / 

AS-G'' (Pa) 210-2707 595 0.87 0.73 298 1.9 12 / 

yield stress 8.7-131 27.1 0.86 0.81 12.8 2.1 11 / 

d 4:3 196-920 197 0.90 0.87 65 3.1 8 1780-1788, 1701-1713, 1649-1653, 1537-1541, 1101-1107, 1032-1043 1011-1026 

d 3:2 44-360 60.1 0.76 0.62 41.7 1.4 11 / 

AIS (DM) 133.1-193.6 12.4 0.79 0.50 7.6 1.4 10 / 

AIS (FW) 21.8-14.1 3.4 0.80 0.50 2.2 1.5 6 / 

DMC (g/g FW) 0.15-0.23 0.02 0.87 0.84 0.01 2.9 5 997-1001,1051-1057, 1101-1109 

SSC (°Brix) 12.6-18.6 1.9 0.91 0.86 0.6 3.1 5 997-1001,1051-1057, 1101-1109 

TA (mmol H+/kg FW) 5.1-73.5 25.5 0.89 0.86 7.6 3.2 6 1713-1709, 1105-1109, 1016-1018, 1074-1072, 1038-1042 

pH 3.6-4.4 0.2 0.89 0.83 0.1 2.6 7 1713-1709, 1105-1109, 1016-1018, 1074-1072, 1038-1042 

malic (g/kg FW) 2.4-7.0 1.2 0.88 0.85 0.4 2.7 6 1721-1709, 1105-1109, 1016-1018, 1074-1072 

fructose (g/kg FW) 34.9-98.7 16.0 0.89 0.84 6.1 2.6 9 1709-1713, 1259-1265, 1105-1109, 1074-1080,1038-1042, 1016-1020, 970-974 

sucrose (g/kg FW) 39.1-118.5 18.5 0.79 0.64 14.0 1.3 9 / 

glucose (g/kg FW) 10.4-25.4 3.6 0.74 0.68 2.4 1.5 7 / 

Note: Puree spectra and references data from ‘Golden Delicious’ apples, including variability of two different thinning conditions, cold storage (during 0, 1, 3 and 6 

months), three heating temperatures (70, 83 and 95 ℃) and three grinding levels (300, 1000, 3000 rpm). All results based on the SNV pre-treated MIR spectra at 

900-1800 cm-1. Rc
2: determination coefficient of the calibration set; Rv

2: determination coefficient of the validation set; RPD: the residual predictive deviation of 

validation set; the linkable regions based on the β-coefficients of PLS models with the RPD values higher than 2.5; “/” presented the unacceptable results with the 

RPD values lower than 2.5.  
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Table 44. Prediction of biochemical, structural and rheological properties of apple purees using PLS regression based on their reconstructed MIR spectra of raw 

apple homogenates between 900-1800 cm-1. 

Parameter Range SD Rc
2 Rv

2 RMSEV RPD LVs Linkable regions (cm-1) 

η 50 0.57-2.28 0.39 0.85 0.82 0.21 2.5 8 1720-1734, 1636-1614, 1556-1560, 1547-1533, 1506-1510, 1448-1470, 1157-1169 

η 100 0.26-1.22 0.27 0.86 0.83 0.10 2.6 9 1720-1734, 1661-1675, 1636-1616, 1549-1558, 1507-1512,1445-1468, 1157-1163 

d 4:3 196-920 197 0.89 0.84 76 2.6 9 1740-1745, 1701-1715, 1645-1659, 1583-1587, 1537--1541, 1508-1510, 1452-1470, 1100-1112 

DMC (g/g FW) 0.15-0.23 0.02 0.87 0.84 0.01 2.6 6 1161-1165, 1101-1107, 1084-1090, 1051-1063, 989-1001 

SSC (°Brix) 12.6-18.6 1.9 0.89 0.85 0.7 2.8 5 1101-1112, 1084-1090, 1051-1069, 997-1001 

TA (mmol H+/kg FW) 5.1-73.5 25.5 0.88 0.86 8.9 2.9 7 1715-1710, 1107-1113, 1082-1086, 1059-1063, 1038-1042, 1001-993 

pH 3.6-4.4 0.2 0.84 0.79 0.1 2.1 8 1715-1709, 1105-1110, 1016-1018, 1074-1072, 1038-1042 

malic (g/kg FW) 2.4-7.0 1.2 0.87 0.82 0.6 2.3 9 1713-1709, 1105-1109, 1080-1088, 1058-1064, 1016-1018, 1001-998 

fructose (g/kg FW) 34.9-98.7 15.0 0.82 0.72 8.9 1.7 11 / 

Note: Puree spectra and references data from ‘Golden Delicious’ apples, including variability of two different thinning conditions, cold storage (during 0, 1, 3 and 6 

months), three heating temperatures (70, 83 and 95 ℃) and three grinding levels (300, 1000, 3000 rpm). All results based on the SNV pre-treated MIR spectra at 

900-1800cm-1. Rc
2: determination coefficient of the calibration set; Rv

2: determination coefficient of the validation set; RPD: the residual predictive deviation of 

validation set; the linkable regions based on the β-coefficients of PLS models with the RPD values higher than 2.5; “/” presented the unacceptable results with the 

RPD values lower than 2.5.  
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Highlights of Paper VI 

First, this study provided the answers of the last question in Part 2: 

⚫ The MIR spectra of cooked purees processed under different cooking 

conditions were calculated from the spectra of corresponding homogenized 

raw apples by direct standardization. 

⚫ PLS models using the spectra of homogenized raw apples predicted the 

titratable acidity (RPD = 2.9), soluble solid content (RPD = 2.8), particle 

averaged size (RPD = 2.6) and viscosity (RPD ≥ 2.5) of cooked purees. 

 

MIR technique predicted the quality of cooked purees obtained from different 

cooking conditions and thus could improve the product sustainability or even 

help the development of new products in apple industry. 
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Part 3. Management of apple puree variability: puree 

formulation guided by infrared spectroscopy 

 Part 2 described the possibility to predict quality of cooked purees from the VIR-

NIR and MIR spectral information of raw apples. These works are just the initial step 

in food processing management. For fruit processors, knowing predicted properties of 

final products after processing is not sufficient to produce the expected and constant 

final purees. The processing guidance (temperature, time, grinding speed…) should be 

provided and associated with the prediction models. Moreover, creating stable or even 

new food products from the mixture of a chosen variability of already processed 

materials, using the spectra information coupled with advanced models, should be also 

relevant. Until now, there is no report on infrared spectroscopy to guide the fruit 

processing and monitor the quality of final products after formulation. 

 Part 3 described an innovative concept concerning the feasibility of using infrared 

spectroscopy to: 

i) Trace the composed varieties and compositions of formulated purees 

ii) Develop an innovative chemometric method using infrared data to control the 

quality of final apple purees issued from the mix of single-variety purees using 

spectra reconstruction. 

 Four single-variety purees were prepared and mixed two by two with 9 different 

proportions (by weight) from 5% to 95%. The concentration profiles from multivariate 

curve resolution-alternative least squares (MCR-ALS) were tested to reconstruct 

spectra of formulated purees, thus giving the possibility to optimize admixtures of 

purees from their composed single-variety purees. 

The results of Part 3 are presented as a paper (Paper VII) 
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Paper VII (Published) 

 

1. Introduction 

 Apple puree is an ideal source of healthy constituents such as polyphenols and 

fibers (Le Bourvellec et al., 2011) and can be used as an intermediate for smoothies, 

fruit sauce, pie fillings and fruit-based baby food (Opatová, Voldřich, Dobiáš, & Čurda, 

1992). Puree quality characteristics vary with fruit genetics (Rembiałkowska, Hallmann, 

& Rusaczonek, 2007), storage (Loncaric, Dugalic, Mihaljevic, Jakobek, & Pilizota, 

2014), cooking parameters (Picouet, Landl, Abadias, Castellari, & Viñas, 2009), 

grinding intensity (Espinosa et al., 2011) and refining (Papers I, II and IV). In order 

to reach an apple puree with anticipated and constant taste and texture, a mixture of 

proportions of different apple varieties is generally done, presenting also the most 

economic and efficient strategies for manufacturers (O'sullivan, 2016). Thus, 

developing rapid and reliable approaches to determine the puree formulation, including 

fruit varieties and the proportions of each one, could be highly beneficial for fruit 

processed products and traceability control.  

 Infrared spectroscopy (visible-near and mid infrared), known as a rapid, relatively 

cheap, easy-to-use, non-destructive and automatable technique, has been applied for 

detecting adulterations in mixed purees of different fruit species (Contal, León, & 

Downey, 2002; Defernez, Kemsley, & Wilson, 1995; Kemsley, Holland, Defernez, & 

Wilson, 1996). Particularly, the MIR technique combined with partial least squares 
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discrimination analysis (PLS-DA) detects the presence of apple starting at 20% in 

apple-raspberry mixed purees (Kemsley, Holland, Defernez, & Wilson, 1996). Similar 

detectable limits are obtained using Vis-NIRS coupled with a principal component 

analysis (PCA) and a linear discriminant analysis (LDA) in apple-strawberry mixed 

purees (Contal, León, & Downey, 2002). However, so far, there has been no attempt to 

use such approaches for more advanced works on purees of apples only, but resulting 

from various proportions of different varieties. 

 Further, for fruit processors, the ever-increasing variability of raw fruits may mean 

that their empirical knowhow may not be sufficient to produce expected and constant 

final purees. The challenge is therefore to provide specific guidance for formulation of 

final purees based on information of individual batches of single variety puree. 

Multivariate curve resolution-alternative least square (MCR-ALS) has been widely 

used to simultaneously elucidate the pure spectra of different species present in 

processed products and their concentration profiles (de Juan & Tauler, 2006), such as 

edible oils from different vegetable sources (Le Dréau, Dupuy, Artaud, Ollivier, & 

Kister, 2009) and fruit juices with various organic acids (Silva, Lourenço, & de Araujo, 

2018). The interest of this approach is to reconstruct the spectra of final processed 

products (in our case, formulated purees) according to the relative spectra of individual 

components (here single variety purees) by MCR-ALS. If so, the predictive models of 

processed puree quality traits (physical and chemical) using the reconstructed spectra 

dataset could open the possibility to provide a multicriteria optimization of puree 

formulation based on the prior information of single variety purees. 

 Partial least squares (PLS), a typical linear algorithm, has been used to successfully 

determine the global quality parameters of apple purees using NIRS information, such 

as titratable acidity, dry matter and soluble solids (Papers IV, V). However, the 

overlapping of absorption bands linked to non-linear rheological variations gave poor 

prediction of puree's texture by PLS regression. Machine learning approaches, such as 

random forest (RF) and Cubist, have been specially constructed to address large and 

complex nonlinear systems. Indeed, RF algorithm allows a better detection of 

adulteration in formulated oils than PLS (de Santana, Borges Neto, & Poppi, 2019). 
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Cubist regression working as decision tree models, gives a higher prediction accuracy 

than RF and PLS regression in palm-based cooking oil (Goh et al., 2019). 

 Accordingly, Vis-NIRS, MIRS and the combination of both (CB) infrared spectra 

coupled with machine learning (RF and Cubist) and PLS regressions were applied in 

our work on apples to: i) assess the possibility to detect the proportions of specific 

variety purees in formulated purees and evaluate the limits of the detection; ii) build 

models to evaluate the quality parameters of formulated purees obtained from different 

proportions of single-variety purees; and then iii) use information of single-variety 

purees to reconstruct spectra of formulated purees by MCR-ALS and investigate the 

possibility to develop regression models to guide formulation (admixing of purees from 

different varieties) for specific quality of final purees. 

2. Material and methods 

2.1 Apple purees 

2.1.1 Purees processing 

 Apples of four varieties: ‘Golden Delicious’(GD), ‘Granny Smith’(GS), 

‘Braeburn’(BR) and ‘Royal Gala’(GA) were harvested at a commercial maturity from 

La Pugère experimental orchard (Mallemort, Bouches du Rhône, France) in 2019, and 

stored for up to 2 months at 4 °C and around 90% relative humidity to ensure starch 

regression. After sorting and washing, on three consecutive weeks, a batch of each apple 

variety (2 kg) was processed into purees in a multi-functional processing system 

(Roboqbo, Qb8-3, Bentivoglio, Italy) following a Hot Break recipe: cooked at 95°C for 

5 min at a 1500 rpm grinding speed, then cooled down to 65°C while maintaining the 

grinding speed. Finally, processed purees were conditioned in two hermetically sealed 

cans: one was cooled in a cold room (4°C) before formulation, while the other was 

stored at -20°C for biochemical measurement of individual sugars (fructose, sucrose 

and glucose) and malic acid.  

2.1.2 Puree formulations 

 After processing the single-variety purees, a total of 6 experimental groups (named 
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A to E) were prepared, each, with two apple varieties (Fig. 55). Each group (A-F) 

included 9 samples with different formulated proportions of weight, was divided into 

two subsets: the first including 6 proportions (10%-90%, 25%-75%, 50%-50%, 75%-

25%, 90%-10%, 95%-5%) for the modeling set, while the second with 3 proportions 

(80%-20%, 33%-67%, 14%-86%) for the external prediction set. Finally, spectral 

measurements (Vis-NIR and MIR), chemical (soluble solids, titratable acidity, pH, dry 

matter) and physical (color and rheological tests) characterizations were performed on 

each sample (single and formulated purees). 

 

Fig. 55. Experimental scheme of purees reformation, quality characterizations and 

spectral acquisition. 

2.2 Determination of quality traits 
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2.2.1 Physical characterizations 

 The puree color was determined three times through a dedicated glass cuvette using 

a CR-400 chromameter (Minolta, Osaka, Japan) and expressed in the CIE 1976 L*a*b* 

color space (illuminant D65, 0° view angle, illumination area diameter 8 mm). The 

puree rheological measurements, as flow curves, were carried out using a Physica 

MCR-301 controlled stress rheometer (Anton Paar, Graz, Austria) and a 6-vane 

geometry (FL100/6W) with a gap of 3.46 mm, at 22.5°C. The flow curves were 

performed after a pre-shearing period of 1 minute at a shear rate of 50 s-1, followed by 

5 minutes at rest. The viscosity was then measured at a controlled shear rate range of 

[10; 250] s-1 on a logarithmic ramp. The values of viscosity at 50 s-1 and 100 s-1 (η50 

and η100 respectively) were kept as final indicators of the puree texture linked to sensory 

characteristics during consumption (Chen & Engelen, 2012). 

2.2.2 Biochemical analyses 

 The biochemical analyses of single-varietal purees have been described in Papers 

I and II. The individual sugars (fructose, glucose, sucrose) and malic acid contents of 

formulated puree samples were calculated based on the measured values of processed 

single variety purees. 

2.3 Spectrum acquisition  

 The Vis-NIR spectral data of purees was acquired with a multi-purpose analyzer 

spectrometer (Bruker Optics®, Wissembourg, France) at 23°C, which provides diffuse 

reflectance measurements with a spectral resolution of 8 cm-1 from 25000 to 4000 cm-

1 (wavelength from 400 to 2500 nm). For each spectrum, 32 scans were recorded and 

averaged. The spectral acquisition and instrument adjustments were controlled by 

OPUS software Version 5.0 (Bruker Optics®). Puree were transferred into 10 mL glass 

vials (5 cm height x 18 mm diameter) which were placed on the automated sample 

wheel of the spectrophotometer. Each puree sample was measured three times on 

different aliquots. A reference background measurement was automatically activated 

before each data set acquisition using an internal Spectralon reference. 

 The MIR spectra of purees was collected at 23°C using a Tensor 27 FTIR 
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spectrometer (Bruker Optics®, Wissembourg, France) equipped with a horizontal 

attenuated total reflectance (ATR) sampling accessory and a deuterated triglycine 

sulphate (DTGS) detector. Three replications of spectral measurement were performed 

on different aliquots. The purees were placed at the surface of a zinc selenide (ATR-

ZnSe) crystal with six internal reflections. Spectra with 32 scans for ATR-ZnSe were 

collected from 4000 cm-1 to 650 cm-1 with a 4 cm-1 resolution and were corrected 

against the background spectrum of air. 

 The whole spectral dataset of Vis-NIR or MIR included 36 spectra (3 replicates × 

3 processing weeks × 4 varieties) of single-variety purees, 324 spectra of formulated 

purees spectra for the modelling set (3 replicates × 3 processing weeks × 6 formulated 

puree groups × 6 proportions) and 162 spectra for the external prediction set (3 

replicates × 3 processing weeks × 6 formulated puree groups × 3 proportions) described 

in 2.2.1 and Fig. 55. 

2.4 Statistical analyses of reference data 

 After ensuring normal distribution with a Shapiro-Wilk test (α=0.05), the reference 

data of processed purees were presented as mean values and the data dispersion within 

our experimental dataset expressed as standard deviation values (SD). Analysis of 

variance (ANOVA) was carried out to determine the significant differences due to the 

different single apple varieties (Table 45) or formulated puree groups (Table 46) using 

XLSTAT (version 2018.5.52037, Addinsoft SARL, Paris, France) data analysis toolbox. 

And the pairwise comparison between means was performed using Tukey’s test. 

Principal component analysis (PCA) was carried out on all reference data of single-

variety purees or of formulated purees to evaluate their discriminant contributions using 

Matlab 7.5 (Mathworks Inc. Natick, MA, USA) software. 

2.5 MCR-ALS and spectra reconstruction 

 MCR-ALS (multivariate curve resolution-alternative least square) is an effective 

multivariate self-modelling curve resolution method developed by Tauler (de Juan & 

Tauler, 2006). The relative contributions given by MCR-ALS were obtained for both, 
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the Vis-NIR (400-2500 nm) and MIR (900-1800 cm-1) spectral information, using the 

formulated purees and their corresponding single-variety purees (Fig. 56). For the 

formulated samples, one matrix D (n× λ) was made up with the number of samples (n) 

and the intensity at each wavenumbers or wavelengths (λ). The ST matrix (s× λ) is the 

spectroscopic matrix describing the ‘pure’ infrared spectra (λ) of all single-variety 

purees (s). The D matrix can be mathematically decomposed into the individual 

contributions related to the spectral information of ‘pure’ purees in matrix ST according 

to Eq. (1) and is interactively transformed using an alternative least square (ALS) 

procedure as Eq (2).  

𝐷 = 𝐶𝑆𝑇 + 𝐸       (1) 

𝐶 = 𝑅(𝑆𝑇)+        (2) 

 Matrix C (n× q) is the concentration matrix describing the contribution of every 

single-variety purees (q) in reconstructed purees (n). E is the error matrix that provides 

the data variation not explained by their contributions. The matrix (ST)+ is the pseudo-

inverse matrix of ST. A general constraint used in curve resolution method is the non-

negativity on the concentration profiles. 

 Once the concentration profiles (matrix C) for each single-variety spectrum, 

including Golden Delicious (CGD), Granny Smith (CGS), Braeburn (CBR) and Royal 

Gala (CGA), were obtained, they were used to reconstruct a new spectroscopic matrix R 

(n × k) for monitoring all formulated purees. Each row Ri. (i=1,…n) was made up of a 

reconstructed spectrum. And each column R.j (j=1,…k) gave the reconstructed spectral 

intensity at a wavenumber of MIRS or a wavelength of Vis-NIRS based on the 

corresponding pure puree spectra of Golden Delicious (λGD), Granny Smith (λGS), 

Braeburn (λBR) and Royal Gala (λGA), following Eq (3).  

𝑅 = 𝐶𝐺𝐷𝜆𝐺𝐷 + 𝐶𝐺𝑆𝜆𝐺𝑆 + 𝐶𝐵𝑅𝜆𝐵𝑅 + 𝐶𝐺𝐴𝜆𝐺𝐴        (3) 

2.6 Spectral multivariate regression 

 Spectral pre-processing and multivariate regression were performed with several 

packages (‘prospectr’ (Stevens & Ramirez-Lopez, 2013), ‘pls’ (Mevik, Wehrens, & 

Liland, 2019), ‘Cubist’ (Kuhn, Weston, Keefer, Coulter, & Quinlan, 2014) and ‘caret’ 
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(Kuhn, 2015)) of the R software (version 2.6.2) (R Core Team, 2019). As demonstrated 

in previous works (Bureau et al., 2013; Ncama, Opara, Tesfay, Fawole, & Magwaza, 

2017), the wavelengths from 400 to 2500 nm of Vis-NIR and the wavenumbers from 

900 to 1800 cm-1 in MIR were selected (Fig. 57). For all spectral datasets, standard 

normal variate (SNV), resampling (intervals= 5, 10, 15), and derivative transform 

calculation (Savitzky–Golay method, gap size = 11, 21, 31, 41) of first or second order 

were compared before multivariate regression. SNV pre-processing applied on the Vis-

NIR and MIR data had the best performances to predict puree quality and was then 

systematically used. 

 The partial least square (PLS), Cubist and RF regression models were developed 

to i) detect the proportions of each apple varieties in puree samples (Table 47) and 

predict the quality characteristics of formulated purees based on ii) the acquired Vis-

NIR, MIR and their combined infrared spectra (CB) (Table 48) or iii) the reconstructed 

Vis-NIR, MIR and CB spectra (Table 50). All aforementioned spectral matrices (Vis-

NIRS, MIRS and CB) corresponded to the same reference dataset. The set of all 

modelling spectra (324 spectra) was randomly split, with two-thirds of the dataset (216 

spectra) used for calibration and a third (108 spectra) for internal validation. Then, 

calibrated models were further validated with the external prediction set (162 spectra). 

The procedure was repeated 10 times in order to obtain the dispersion of values giving 

an idea of the model stability and robustness. The developed models performance was 

then described by the 10-times averaged values of the determination coefficients of 

internal validation (Rv
2) and external prediction (Rp

2), root mean square error of 

prediction (RMSEP), RPD (Residual Predictive Deviation) value as described by 

Nicolai (Nicolai et al., 2007). During model training, the variable importance (VIP) for 

each puree characteristics were computed using the ‘varImp’ function by ‘caret’ 

package in R software (Kuhn, 2015), which could be applied both on PLS and machine 

learning regressions (Parmley, Higgins, Ganapathysubramanian, Sarkar, & Singh, 

2019).  
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Fig. 56. Process of VIS-NIRS and MIRS data by multivariate curve resolution- alternative least square (MCR-ALS) and spectral 

reconstruction of reformulates puree samples. 
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Fig. 57. Overview of the applied methodology of VIS-NIR and MIR spectra pre-processing and multivariate regression. 
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3. Results and discussion 

3.1 Characteristics of single-variety purees and formulated purees 

 After puree processing, the four different varieties provided a large variability of 

appearance, in particular color and texture (Fig. 58). According to PCA results taking 

into account their rheological and biochemical characteristics (Fig. 59), ‘Royal Gala’ 

(GA) purees were clearly discriminated from the other purees along the first principal 

component (PC1), with significantly (p <0.001) lower TA, pH, glucose, malic acid and 

viscosity (η50 and η100) (Table 45). Particularly, the values of viscosity at a shear rate 

of 50 s-1 (η50), which is commonly used to describe the in-mouth texture perception of 

fluid foods (Chen & Engelen, 2012), were much more lower in GA purees (547 ± 13 

Pa.s-1) than in ‘Golden Delicious’ (GD) (839 ± 53 Pa.s-1) and ‘Granny Smith’ (GS) (904 

± 31 Pa.s-1) purees (Table 45). As expected, the viscosity and global quality (SSC and 

TA) of the formulated purees were affected when prepared with GA purees (Fig. 60). 

For example, the formulated GA-GD (group C) or GA-GS purees (group E) provided 

a high range of viscosity (Fig. 60c and d) and chemical composition (Fig. 60e and f), 

but with a limited variation of color (a* and b* values) (Fig. 60a and b). 

 

Fig. 58. Pictures of apples and processed purees. 
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Fig. 59. PCA results of four kinds of apple purees during three processing periods. 
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 Remarkable changes (p <0.001) of color parameters (L*, a* and b*) allowed the 

separation of ‘Braeburn’ (BR) purees and the others along the second principal 

component (Fig. 59 and Table 46). Particularly the redness (a* values) of formulated 

puree groups (Fig. 60a), the admixture of BR (groups B, D and F) introduced more 

intensive variations (from -4.33 to 2.35) than the others (groups A, C and E, from -4.77 

to -1.52). The limited variations of yellowness (b* values) in formulated GD-GA purees 

resulted in differences below the visual detection threshold (Fig. 60b). Consequently, 

different strategies of puree formulation, especially the mixtures with ‘Royal Gala’ or 

with ‘Braeburn’ purees, could provide variability in taste, texture and color.  

 

Fig. 60. Boxplot of colors (a* and b*), rheological parameters (ŋ50 and ŋ100), soluble 

solids (SSC) and titratable acidity (TA) of different formulated puree groups. 
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Table 45. Mean values with the characteristics of single-variety purees differed significantly using Tukey’s test. 

Variety Viscosity ƞ50 Viscosity ƞ100 L* a* b* 
SSC 

(°Brix) 

DMC 

(g/g FW) 
pH 

TA 

(meq/kg FW) 

malic acid 

(g/kg FW) 

fructose 

 (g/kg FW) 

sucrose (g/kg 

FW) 

glucose (g/kg 

FW) 

GD 838.6± 69.6 a 1388.5± 138.2 ab 47.0± 0.3 a -4.1± 0.3 c 15.8± 0.5 a 14.5± 0.4 a 0.167± 0.003 a 3.9± 0.1 b 53.9± 0.8 c 6.0± 0.1 b 72.8± 6.2 a 46.7± 6.6 a 18.7± 0.8 b 

GS 904.2± 18.8 a 1501.2± 18.9 a 45.1± 0.8 b -4.3± 0.9 c 14.4± 1.4 a 13.2± 0.3 b 0.152± 0.003 b 3.6± 0.2 c 89.1± 1.3 a 8.1± 0.5 a 58.6± 14.9 ab 37.4± 4.3 b 26.8± 1.3 a 

BR 736.8± 61.1 b 1229.1± 106.2 b 42.2± 0.4 c 1.8± 0.3 a 10.2± 1.2 b 13.1± 0.5 b 0.151± 0.005 b 3.7± 0.2 bc 62.7± 1.5 b 5.9± 0.1 b 59.4± 6.6 ab 50.0± 3.7 a 17.2± 1.5 b 

GA 547.1± 38.0 c 860.9± 59.5 c 45.6± 0.5 b -2.5± 0.2 b 15.0± 0.8 a 12.4± 0.6 b 0.143± 0.008 b 4.3± 0.2 a 29.3± 1.3 d 3.5± 0.7 c 49.3± 4.0 b 36.0± 1.3 b 14.6± 1.3 c 

Note: Data are expressed as puree fresh weight (FW) ± standard deviation. Puree varieties: Golden Delicious (‘GD’); Granny Smith (‘GS’), Braeburn (‘BR’) and Royal Gala (‘GA’). 

 

Table 46. Mean values with the characteristics of formulated puree groups differed significantly using Tukey’s test. 

Groups Viscosity ƞ50 Viscosity ƞ100 L* a* b* 
SSC 

(°Brix) 

DMC 

(g/g FW) 
pH 

TA  

(meq/kg FW) 

malic acid 

(g/kg FW) 

fructose 

(g/kg FW) 

sucrose 

(g/kg FW) 

glucose 

(g/kg FW) 

A: GD×GS 854.1± 70.3 a 1412.8± 124.5 a 46.3± 1.0 a -4.5± 0.2 d 15.0± 1.2 a 13.9± 0.7 a 0.160± 0.007 a 3.7± 0.1 e 70.0± 10.5 b 7.0± 0.8 a 66.1± 6.4 a 42.3± 3.5 b 22.6± 2.8 a 

B: GD×BR 767.2 ± 67.4 b 1278.8± 128.7 b 45.2± 1.6 b -1.3± 1.9 b 13.9± 1.9 b 13.9± 0.5 a 0.160± 0.006 a 3.7± 0.1 d 58.7± 4.3 c 5.9± 0.1 b 66.4± 5.5 a 48.2± 3.1 a 18.0± 0.9 c 

C: GD×GA 684.7± 90.5 c 1127.0± 172.3 cd 46.1± 0.9 a -3.2± 0.7 c 14.7± 0.7 a 13.4± 0.7 b 0.156± 0.008 b 4.1± 0.2 a 42.7± 7.9 e 4.8± 0.8 c 61.6± 11.7 b 41.6± 4.7 b 16.8± 1.6 cd 

D: GS×BR 853.8± 99.2 a 1408.5± 173.0 a 43.6± 1.0 c -1.4± 2.0 b 12.4± 1.4 c 13.2± 0.5 b 0.154± 0.007 d 3.6± 0.1 e 76.6± 7.5 a 7.2± 0.8 a 59.0± 2.9 b 43.4± 5.1 b 22.3± 3.1 ab 

E: GS×GA 743.2± 115.2 b 1209.1± 197.0 bc 45.1± 0.5 b -3.5± 0.8 c 14.4± 1.1 ab 12.9± 0.5 c 0.150± 0.007 c 3.8± 0.2 c 60.5± 17.8 c 5.9± 1.5 b 54.2± 8.7 c 36.7± 2.0 c 21.0± 4.0 b 

F: BR×GA 651.7± 86.2 c 1061.4± 161.1 d 44.1± 1.2 c -0.3± 1.5 a 12.8± 1.7 c 12.8± 0.3 c 0.148± 0.003 c 4.0± 0.2 b 48.7± 10.2 d 4.7± 0.8 c 54.6± 7.2 c 43.3± 5.6 b 16.0± 1.1 d 

Note: Data are expressed as puree fresh weight (FW) ± standard deviation. Puree varieties: Golden Delicious (‘GD’); Granny Smith (‘GS’), Braeburn (‘BR’) and Royal Gala (‘GA’).
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3.2 Characteristics of formulated purees: determination of composed single-

variety puree proportions 

 In this part, the ability of SNV pre-processed Vis-NIR, MIR and CB coupled with 

PLS, Cubist and RF regressions was compared to estimate the proportions of single-

variety in all formulated purees (Table 47). 

 

Fig. 61. PLS variable importance (VIP) of VIS-NIRS (400-2500 nm) prediction models 

for formulated puree proportions of each apple variety. 

 Both, Vis-NIR and MIR techniques were potentially able to estimate the 

proportions of single-variety puree in the formulated purees with good models 

presenting robust determination coefficients for both internal validation (Rv
2) and 

external validation (Rv
2), acceptable RMSEP (<10%) and RPD values at least higher 

than 2.5 (Nicolai et al., 2007). For Vis-NIR technique, two regression methods, PLS 
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and RF, showed an acceptable ability to estimate proportions of GS (RP
2 > 0.92, RPD > 

3.4, RMSEP < 9.2%) and of BR (RP
2 > 0.95, RPD > 4.2, RMSEP < 7.9%) varieties in 

all formulated purees, based on the VIP wavelengths at 412 nm, 524 nm and 672 nm 

(Fig. 61b and c). The predictive errors obtained here for the mixture of two varieties 

of the same species, apple, were lower than those obtained earlier for the mixture of 

two species, namely apple/raspberry (11.3%) (Contal, León, & Downey, 2002). The 

poor Vis-NIRS prediction results for GD (RMSEP > 17.4%, RPD < 1.7) and GA 

(RMSEP > 16.2%, RPD < 2.1) were probably due to their similar color (Fig. 58). As 

the VIP wavelengths of Vis-NIR models were mainly dominated in the visible spectral 

region (412-672 nm), the color variations were not enough to be used for prediction of 

proportions in formulated purees, especially in the group C (GD-GA) (Fig. 60a & b).  

 

Fig. 62. PLS variable importance (VIP) of MIRS (900-1800 cm-1) prediction models 

for formulated puree proportions of each apple variety. 
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 MIR provided a better prediction of the proportions of single-variety purees in the 

formulated purees than Vis-NIR. Moreover, the regression method affected the 

prediction results of MIR. PLS gave better prediction results (RMSEP<8.1%, RPD> 

3.6) than Cubist (RMSEP<15.1%, RPD> 2.3) and RF (RMSEP<10.6%, RPD> 2.7). 

Particularly, MIRS combined with PLS reached the lowest determination error 

(RMSEP=2.7%, RPD=11.4) for GS compared with other varieties (GD, GA, BR). The 

highest VIP values (Fig. 62c) at 1723 cm-1, 1065 cm-1 and 1034 cm-1 attributed 

respectively to malic acid, fructose and glucose (Bureau, Cozzolino, & Clark, 2019; 

Clark, 2016), were consistent with the existence of marked differences in chemical 

composition (SD and significance) between purees containing GS (Table 46). The 

excellent PLS predictions obtained for BR (RMSEP=4.3%, RPD=7.7) were based on 

the VIP wavenumbers at 998 cm-1 and 1084 cm-1 related to sucrose and fructose (Bureau, 

Cozzolino, & Clark, 2019) (Fig. 62b). Besides the aforementioned spectral signal, the 

satisfactory assessments of GD and GA proportions (RMSEP<8.1%, RPD>3.6) were 

linked to the MIRS region between 1750 and 1650 cm-1 related to organic acids, pectins, 

proteins, phenolics and absorbed water (Fig. 62a & d) (Abidi, Cabrales, & Haigler, 

2014; Canteri, Renard, Le Bourvellec, & Bureau, 2019; Kačuráková et al., 1999).  

 The CB spectra, including Vis-NIR and MIR regions, coupled with PLS (RPD>2.8, 

RMSEP<11.5%) and RF (RPD>3.0, RMSEP<9.5%) provided a satisfactory assessment 

of the proportions of single-variety purees (Table 47). However, the results on CB were 

not as good as for MIR only. 

 Consequently, to predict proportions of single-variety purees, Vis-NIR was suitable 

for the formulated samples presenting large diversity in the color range, with the use of 

Braeburn and Granny Smith apples for example, and under vacuum processing 

conditions providing a good puree color preservation. MIRS coupled with PLS was 

evidenced as a powerful tool to provide excellent estimations of puree proportions, 

mainly based on differing concentrations of individual sugars and acid. Combining Vis-

NIR and MIR did not improve prediction. 
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Table 47. Prediction of the proportions (%) of single-variety purees in all formulated purees based on VIS-NIR (400- 2500 nm), MIR (900- 1800 

cm-1) and their combined spectra (CB; VIS-NIR-MIR). Comparison of three regression models (PLS, Cubist and Random forest). 

Single-variety Spectra 
PLSR   Cubist   Random forest 

Rv
2 Rp

2 RMSEP RPD   Rv
2 Rp

2 RMSEP RPD   Rv
2 Rp

2 RMSEP RPD 

  Vis-NIR 0.66 0.60 19.0 1.5   0.82 0.58 19.4 1.5   0.88 0.64 17.4 1.7 

GD MIR 0.94 0.92 8.1 3.6   0.95 0.86 11.3 2.6   0.94 0.87 10.6 2.7 

  CB  0.91 0.88 10.3 2.8   0.93 0.82 12.7 2.3   0.96 0.90 9.5 3.0 

  Vis-NIR 0.97 0.95 7.5 4.4   0.98 0.93 8.7 3.8   0.97 0.95 7.9 4.2 

BR MIR 0.99 0.98 4.3 7.7   0.98 0.97 5.2 6.3   0.98 0.95 7.6 4.3 

  CB  0.99 0.98 5.0 6.6   1.00 0.97 5.6 5.9   0.98 0.97 6.1 5.4 

  Vis-NIR 0.93 0.92 9.2 3.4   0.97 0.89 10.5 3.0   0.97 0.94 8.2 3.8 

GS MIR 0.99 0.99 2.7 11.4   0.99 0.93 8.1 3.8   0.98 0.97 5.3 5.8 

  CB  0.99 0.98 4.3 7.3   0.99 0.98 4.9 6.4   0.98 0.97 5.8 5.4 

  Vis-NIR 0.79 0.65 16.2 2.1   0.67 0.68 20.2 1.7   0.75 0.73 18.5 1.9 

GA MIR 0.96 0.94 7.4 4.7   0.90 0.82 15.1 2.3   0.91 0.90 10.3 3.4 

  CB  0.89 0.83 11.5 3.0   0.88 0.79 16.2 2.2   0.94 0.92 9.4 3.7 

Notes: single-variety purees of Golden Delicious named ‘GD’, Braeburn named ‘BR’, Granny Smith named ‘GS’, Royal Gala named ‘GA’. All results corresponded 

to the averaged values of 10 replicates. Rv
2: determination coefficient of the validation test (internal); Rp

2: determination coefficient of the prediction test (external); 

RMSEP: root mean square error of prediction test (external) expressed as the puree proportions (%); RPD: the residual predictive deviation of prediction test. (external). 
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3.3 Characteristics of formulated purees: prediction of quality traits 

 As previously, the different spectral areas, Vis-NIR, MIR or CB, of all formulated 

purees coupled with the different regression methods, PLS, Cubist and RF, were 

compared for their ability to predict color, rheological and biochemical characteristics 

of formulated purees (Table 48). MIR spectra coupled with PLS obtained the best 

predictions in comparison with Vis-NIR and CB, except for color. Indeed concerning 

the color parameters, a good prediction of a* values was obtained for all spectral areas 

with a RPD decreasing order Vis-NIR (RPD>4.0), CB (RPD>3.6) and MIR (RPD>3.3) 

for both PLS and machine learning regressions (Cubist and Random forest). Particularly, 

the best prediction of a* values was obtained on CB with PLS models (RP
2=0.96, 

RPD=5.0), slightly better than in Vis-NIR (RP
2=0.95, RPD=4.7). 

 MIR spectra coupled with PLS gave the best prediction (RP
2>0.90, RPD>4.1) of 

the rheological parameters (η50 and η100) (Table 48). The identified VIP wavenumbers 

were 1026, 1065, 1113 and 1720 cm-1 (Fig. 58). These dominant carbohydrate bands 

centered at 1000-1200 cm-1, associated with C-OH and C-O-C vibration of glucose and 

fructose (Bureau, Cozzolino, & Clark, 2019), have also been identified to predict 

viscosity of tomato purees (Ayvaz et al., 2016). And an acceptable estimation of DMC 

was observed for all developed MIR models (RMSEP< 0.003, RPD>2.7).  

 For biochemical parameters, MIR coupled with PLS allowed a very good 

prediction of SSC (RMSEP=0.1, RPD=5.1) in accordance with previous results of apple 

and tomato purees (Ayvaz et al., 2016; Papers I, II). In apples, SSC is strongly 

correlated to the presence of sugars, namely fructose, sucrose and glucose. The two 

main sugars, fructose and sucrose, were satisfactorily predicted with PLS (RPD>3.0) 

and the non-linear regressions, Cubist and RF (RPD>2.9). However, MIR could not 

predict the glucose content (RPD<2.4) (Table 48). 

 Considering the different expressions of acidity such as pH, TA and malic acid 

content, MIR coupled with PLS provided their excellent prediction with RP
2>0.92 and 

RPD>4.0. It can be noticed that Vis-NIRS gave also acceptable prediction of TA and 
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malic acid (RP
2>0.87, RPD>2.9), better than our previous results in NIRS on apple 

purees (Lan, Jaillais, Leca, Renard, & Bureau, 2020). 

In comparison with Vis-NIRS and MIRS, the slight improvements of using the 

combined spectra (CB) concerned only the prediction of a* values (Table 48). 

Combining Vis-NIRS and MIRS spectra offered little improvement or even degraded 

the results in comparison with MIRS alone for analyzing puree viscosity and chemical 

variations (Table 48). These conclusions were in accordance with previous works on 

forage (Reeves, 1997) and beers (Iñón, Garrigues, & Guardia, 2006). They can be 

explained by i) the limited ability to balance the important variables after combination 

of two spectral domains with different resolutions (Fig. 63); and ii) the involvement of 

non-relevant or unimportant spectral regions which disturbed the calibration modelling 

by producing more noise.  

 In summary, MIRS coupled with PLS had promising ability to well estimate 

viscosity, a* color parameter, DMC, SSC, pH, TA, malic acid, sucrose and glucose of 

formulated purees, but not for fructose. Acceptable assessments of a*, TA, malic acid 

and glucose were obtained with the Vis-NIR region, in which sensors could be easily 

adapted for fruit processing. 
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Fig. 63. The variable importance (VIP) of the VIS-NIRS, MIRS and CB of PLS 

prediction models for puree viscosity at 50 s-1 in control shear rate test (CSR).
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Table 48. Prediction of chemical and rheological parameters of all formulated purees using Vis-NIR (400-2500 nm), MIR (900-1800 cm-1) or their combined spectra 

(CB) and regression methods, PLS, Cubist or Random forest. 

Parameter Spectra Range SD 
PLSR   Cubist   Random forest 

Rv
2 Rp

2 RMSEP RPD   Rv
2 Rp

2 RMSEP RPD   Rv
2 Rp

2 RMSEP RPD 

L* 

Vis-NIR     0.81 0.70 0.8 1.6   0.87 0.63 0.9 1.4   0.88 0.75 0.6 1.9 

MIR 41.6-48.6 1.5 0.88 0.80 0.6 2.0   0.96 0.83 0.6 2.2   0.94 0.80 0.6 2.2 

CB     0.89 0.79 0.6 2.1   0.95 0.79 0.6 1.9   0.94 0.83 0.5 2.4 

a* 

Vis-NIR     0.97 0.96 0.4 4.7   0.98 0.94 0.5 4.0   0.96 0.94 0.5 4.1 

MIR (-4.8)-2.4 2 0.96 0.94 0.5 4.0   0.98 0.92 0.5 3.6   0.97 0.91 0.6 3.3 

CB     0.98 0.96 0.4 5.0   0.99 0.93 0.5 3.6   0.98 0.94 0.5 4.1 

b* 

Vis-NIR     0.62 0.55 1.2 1.5   0.76 0.46 1.5 1.3   0.72 0.53 1.3 1.4 

MIR 9.6-18.4 1.7 0.67 0.56 1.2 1.5   0.86 0.48 1.4 1.3   0.84 0.62 1.1 1.6 

CB     0.67 0.53 1.3 1.5   0.88 0.46 1.4 1.3   0.81 0.57 1.2 1.5 

Viscosity η50  

Vis-NIR     0.79 0.81 54.6 2.2   0.85 0.85 49.8 2.4   0.82 0.78 57.8 2.1 

MIR 526-1029 119 0.94 0.90 29.8 4.1   0.95 0.89 39.4 3.1   0.9 0.87 43.6 2.8 

CB     0.91 0.87 43.5 2.8   0.93 0.88 43.2 2.8   0.91 0.89 42.8 2.8 

Viscosity η100 

Vis-NIR     0.73 0.74 108.0 2.0   0.87 0.79 98.9 2.2   0.82 0.75 109.3 1.9 

MIR 834-1721 210 0.94 0.91 52.0 4.1   0.96 0.86 81.2 2.6   0.90 0.88 74.4 2.9 

CB     0.88 0.87 79.6 2.7   0.91 0.87 76.5 2.8   0.91 0.88 77.3 2.8 

DMC (g/g FW) 

Vis-NIR     0.85 0.79 0.004 2.1   0.81 0.75 0.004 1.9   0.79 0.77 0.004 2.0 

MIR 0.14-0.17 0.009 0.93 0.89 0.003 3.1   0.91 0.88 0.003 2.7   0.93 0.90 0.003 3.0 

CB     0.85 0.83 0.003 2.5   0.96 0.83 0.003 2.5   0.93 0.87 0.003 2.8 

SSC (°Brix) 

Vis-NIR     0.61 0.53 0.5 1.5   0.79 0.56 0.5 1.3   0.78 0.62 0.5 1.5 

MIR 12.1-15.3 0.7 0.96 0.95 0.1 5.1   0.96 0.93 0.2 3.9   0.94 0.94 0.2 4.1 

CB     0.89 0.94 0.2 4.0   0.95 0.92 0.2 3.4   0.95 0.96 0.1 4.4 

fructose (g/kg FW) 

Vis-NIR     0.37 0.38 7.3 1.2   0.52 0.25 8.4 1.1   0.70 0.50 6.3 1.4 

MIR 40.2-80.3 9.1 0.82 0.78 3.7 2.4   0.93 0.81 4.0 2.2   0.92 0.70 4.8 1.8 

CB     0.67 0.56 5.8 1.5   0.83 0.74 4.4 2.0   0.91 0.76 4.4 2.0 

sucrose (g/kg FW) Vis-NIR     0.54 0.49 3.9 1.4   0.69 0.52 4.3 1.3   0.76 0.46 4.0 1.4 
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MIR 33.2-57.3 5.5 0.89 0.89 1.8 3.0   0.88 0.89 1.8 2.9   0.92 0.92 1.6 3.3 

CB     0.60 0.67 3.1 1.7   0.92 0.87 2.0 2.6   0.87 0.78 2.5 2.1 

glucose (g/kg FW) 

Vis-NIR     0.92 0.93 1.0 3.6   0.96 0.87 1.3 2.6   0.91 0.89 1.2 2.9 

MIR 13.2-28.3 3.7 0.98 0.98 0.5 6.7   0.99 0.97 0.6 5.6   0.97 0.94 0.9 4.1 

CB     0.95 0.93 1.0 3.7   0.98 0.96 0.7 4.9   0.98 0.95 0.8 4.4 

pH 

Vis-NIR     0.84 0.83 0.1 2.4   0.94 0.76 0.1 2.0   0.82 0.76 0.1 2.0 

MIR 3.39-4.47 0.23 0.94 0.92 0.1 4.0   0.89 0.85 0.1 2.5   0.94 0.92 0.1 3.4 

CB     0.83 0.86 0.1 2.7   0.96 0.67 0.1 1.7   0.9 0.85 0.1 2.4 

TA (meq/kg FW) 

Vis-NIR     0.93 0.87 5.0 2.9   0.95 0.90 5.1 3.1   0.96 0.89 5.2 3.0 

MIR 28.0-94.8 16.2 0.99 0.96 3.5 4.3   0.99 0.94 3.9 3.9   0.96 0.91 4.7 3.3 

CB     0.95 0.91 4.9 3.1   0.98 0.95 3.8 4.0   0.96 0.9 4.8 3.2 

malic acid (g/kg FW) 

Vis-NIR     0.90 0.88 0.5 2.9   0.91 0.85 0.5 2.6   0.94 0.87 0.5 2.8 

MIR 3.0-8.8 1.3 0.97 0.97 0.2 5.9   0.95 0.92 0.4 3.7   0.94 0.94 0.3 4.2 

CB     0.92 0.92 0.4 3.4   0.91 0.84 0.5 2.5   0.96 0.93 0.4 3.7 

Notes: all results corresponded to the averaged values of 10 replicates. Rv
2: determination coefficient of the validation test (internal); Rp

2: determination coefficient of the prediction 

test (external); RMSEP: root mean square error of prediction test (external); RPD: the residual predictive deviation of prediction test. (external). 
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3.4 Characteristics of formulated purees: prediction of quality traits based on the 

reconstructed spectra 

 In order to compute the concentration profiles of relevant single-variety puree 

compositions, MCR-ALS was applied on the Vis-NIR and MIR spectra of all 

formulated purees and of the four single-variety purees, using two approaches: the 54 

averaged formulated puree spectra and the 4 averaged single-variety puree spectra of a) 

each week or b) over the three weeks. These two methods (a and b) obtained similar 

concentrations, indicating their robustness over different processing weeks. Results are 

only shown for method b) taking into account different processing periods (Table 50). 

Based on that, in total 486 spectra of formulated purees were reconstructed based on 

their corresponding 36 single-variety spectra (4 varieties x 3 replications x 3 weeks). 

 Accurate predictions of the concentrations were obtained with MIRS. These 

predictions were highly related to the proportions of the single-variety purees (Table 

49). However, the results were not acceptable with Vis-NIRS (Table 49). The limited 

ability of Vis-NIRS was due to the high similarity in color between GA and GD and so 

a poor prediction of the proportions GA/GD in formulated purees (Table 48). The 

concentration profiles of MIRS in each group (A-E) appeared to follow a non-linear 

relationship along the variation of puree proportions. 

 Prediction models were then developed using these reconstructed MIR spectra and 

the reference data characterized on the formulated purees (Table 50). Overall, 

reconstructed MIR spectra with PLS regression better predicted the puree 

characteristics than Cubist and RF regressions. What stands out in these results was the 

highly accurate PLS predictions (Rp
2>0.85, RPD>4.0) of rheological parameters (η50 

and η100) from reconstructed spectra (Table 50), which were close to those obtained 

from the real spectra of formulated purees (Rp
2>0.90, RPD>4.1) (Table 48). Particularly, 

similar MIRS fingerprint wavenumbers were obtained in reconstructed spectra and 

directly on formulated purees described above, mainly 1720, 1113, 1065 and 1026 cm-

1 related to acid and sugars (Bureau, Cozzolino, & Clark, 2019). The prediction of DMC 

was acceptable (RPD>2.5) as mentioned above with real spectra in Table 48. For color, 
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a good prediction of a* value was obtained with both, PLS (Rp
2=0.92, PRD=3.5) and 

machine learning methods (Rp
2>0.89, PRD>3.2) but not for L* and b*. For SSC, 

although the slight lower Rp
2 and RPD values than the best results obtained directly on 

MIR spectra (RMSEP=0.13, RPD=5.1) (Table 48), the PLS and Cubist models had an 

acceptable ability to estimate it for all formulated purees (RMESP<0.20, RPD>4.1) 

(Table 50). Considering the global acidity parameters, acceptable PLS predictions 

(Rp
2>0.88, PRD>3.2) were obtained for pH and TA, with a lower performance than 

directly on real spectra (Rp
2>0.92, PRD>4.0 in Table 48). For individual sugars and 

acids, PLS models showed an excellent prediction of glucose and malic acids (Rp
2>0.94, 

RPD>4.3), and an acceptable prediction of sucrose (Rp
2=0.86, RPD=2.8) but not for 

fructose (RPD<2.5). The specific wavenumbers at 1034 cm-1 for glucose, 1723 cm-1 for 

malic acid and 998 cm-1 for sucrose, mainly contributed to the PLS models both from 

reconstructed spectra and directly on puree spectra. The decrease of prediction accuracy 

was possibly owing to the non-negativity of the concentration profiles which could 

constrain the spectral reconstruction (Le Dréau, Dupuy, Artaud, Ollivier, & Kister, 

2009). Briefly, MIR spectra coupled with the concentration profiles of MCR-ALS 

showed a potential way to directly estimate the viscosity, a* color parameter, SSC, TA, 

malic acid, pH, fructose and glucose for formulated purees depending only on the 

spectral information of the single-variety purees. 

 Compared to the previous prediction models obtained on the real spectra of 

formulated purees (Table 48), highly consistent specific fingerprints and acceptable 

prediction results (Table 50) provided a justifiable explanation to use the spectra 

reconstruction of formulated purees from spectra of single-variety purees. MCR-ALS 

has been used in other ways to identify precisely the chemical species or track their 

evolutions (Garrido, Rius, & Larrechi, 2008; de Juan & Tauler, 2006). Here, it was 

firstly used with the concentration profiles to reconstruct spectra of processed products 

based on the spectra of raw materials.
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Table 49. The VIS-NIR (400-2500 nm) and MIR (900-1800 cm-1) spectral 

concentration profiles of each apple variety in formulated puree obtained from MCR-

ALS. 

Groups Proportions 
MIRS (900-1800 cm-1)   VIS-NIRS (400-2500 nm) 

BR GA GD GS   BR GA GD GS 

A: 

GD×GS 

95%:5% 0.012 0.000 0.925 0.057   0.000 0.162 0.635 0.193 

90%:10% 0.010 0.000 0.911 0.073   0.000 0.275 0.381 0.333 

75%:25% 0.015 0.049 0.790 0.143   0.000 0.000 0.833 0.169 

50%:50% 0.015 0.000 0.566 0.415   0.000 0.000 0.595 0.406 

25%:75% 0.018 0.000 0.328 0.649   0.000 0.000 0.151 0.857 

10%:90% 0.075 0.000 0.100 0.809   0.000 0.000 0.254 0.731 

80%:20% 0.008 0.000 0.772 0.211   0.012 0.231 0.358 0.398 

33%:66% 0.079 0.003 0.337 0.571   0.033 0.061 0.043 0.868 

14%:86% 0.090 0.120 0.179 0.603   0.005 0.010 0.000 0.979 

B: GD:BR 

95%:5% 0.050 0.004 0.942 0.004   0.034 0.243 0.564 0.148 

90%:10% 0.081 0.010 0.897 0.000   0.000 0.250 0.621 0.133 

75%:25% 0.235 0.017 0.738 0.000   0.146 0.017 0.812 0.034 

50%:50% 0.495 0.004 0.492 0.000   0.252 0.000 0.764 0.000 

25%:75% 0.711 0.003 0.279 0.000   0.657 0.159 0.073 0.117 

10%:90% 0.847 0.013 0.135 0.000   0.866 0.079 0.000 0.058 

80%:20% 0.141 0.024 0.826 0.000   0.144 0.000 0.865 0.000 

33%:66% 0.515 0.000 0.425 0.058   0.599 0.164 0.103 0.133 

14%:86% 0.827 0.000 0.171 0.002   0.673 0.000 0.328 0.000 

C: GD:GA 

95%:5% 0.000 0.062 0.933 0.000   0.000 0.078 0.815 0.101 

90%:10% 0.048 0.047 0.897 0.005   0.000 0.000 0.995 0.000 

75%:25% 0.028 0.239 0.728 0.000   0.000 0.407 0.533 0.061 

50%:50% 0.006 0.474 0.500 0.016   0.019 0.584 0.272 0.113 

25%:75% 0.000 0.732 0.263 0.000   0.000 0.601 0.416 0.000 

10%:90% 0.000 0.907 0.087 0.000   0.000 0.521 0.483 0.000 

80%:20% 0.019 0.165 0.807 0.005   0.000 0.528 0.281 0.183 

33%:66% 0.003 0.642 0.352 0.001   0.000 0.367 0.632 0.000 

14%:86% 0.000 0.836 0.142 0.021   0.000 0.549 0.461 0.000 

D: GS:BR 

95%:5% 0.220 0.090 0.002 0.677   0.000 0.000 0.068 0.927 

90%:10% 0.283 0.259 0.000 0.444   0.001 0.000 0.000 0.994 

75%:25% 0.403 0.163 0.013 0.410   0.205 0.000 0.011 0.768 

50%:50% 0.636 0.138 0.000 0.217   0.417 0.000 0.092 0.492 

25%:75% 0.782 0.067 0.037 0.106   0.631 0.000 0.064 0.312 

10%:90% 0.951 0.005 0.000 0.040   0.853 0.000 0.000 0.144 

80%:20% 0.341 0.162 0.000 0.488   0.143 0.000 0.031 0.822 

33%:66% 0.738 0.082 0.000 0.171   0.543 0.000 0.201 0.249 

14%:86% 0.846 0.000 0.000 0.144   0.668 0.000 0.352 0.000 

E: GS:GA 

95%:5% 0.000 0.265 0.000 0.725   0.000 0.000 0.142 0.849 

90%:10% 0.006 0.219 0.000 0.787   0.000 0.000 0.178 0.822 

75%:25% 0.030 0.419 0.000 0.537   0.091 0.071 0.058 0.773 

50%:50% 0.009 0.655 0.000 0.334   0.093 0.000 0.560 0.340 

25%:75% 0.003 0.820 0.000 0.169   0.024 0.436 0.348 0.195 

10%:90% 0.047 0.702 0.238 0.000   0.000 0.068 0.943 0.000 
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80%:20% 0.050 0.365 0.000 0.574   0.000 0.000 0.286 0.721 

33%:66% 0.000 0.799 0.000 0.193   0.000 0.453 0.114 0.431 

14%:86% 0.000 0.991 0.000 0.000   0.000 0.428 0.530 0.046 

F: BR:GA 

95%:5% 0.785 0.209 0.000 0.000   0.706 0.000 0.314 0.000 

90%:10% 0.849 0.149 0.000 0.000   0.737 0.131 0.076 0.058 

75%:25% 0.599 0.398 0.000 0.000   0.513 0.000 0.496 0.000 

50%:50% 0.406 0.593 0.000 0.000   0.292 0.620 0.000 0.097 

25%:75% 0.138 0.857 0.000 0.000   0.000 0.541 0.471 0.000 

10%:90% 0.051 0.946 0.000 0.000   0.000 0.533 0.475 0.000 

80%:20% 0.732 0.263 0.000 0.000   0.649 0.194 0.000 0.162 

33%:66% 0.254 0.745 0.000 0.000   0.176 0.644 0.033 0.136 

14%:86% 0.067 0.932 0.000 0.000   0.804 0.000 0.183 0.014 

Puree varieties: Golden Delicious (‘GD’); Granny Smith (‘GS’), Braeburn (‘BR’) and Royal 

Gala (‘GA’). 
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Table 50. Prediction results of chemical and rheological parameters of all formulated purees from the reconstructed MIR spectra computed by the 

concentrations of MCR-ALS and the spectra of single-variety purees. 

Parameter Range SD 
PLSR   Cubist   Random forest 

Rv
2 Rp

2 RMSEP RPD   Rv
2 Rp

2 RMSEP RPD   Rv
2 Rp

2 RMSEP RPD 

L* 41.6-48.6 1.5 0.91 0.86 0.5 2.4   0.9 0.83 0.6 1.9   0.86 0.78 0.6 2.1 

a* (-4.8)-2.4 2 0.92 0.92 0.5 3.5   0.94 0.89 0.6 3.2   0.93 0.91 0.6 3.4 

b* 9.6-18.4 1.7 0.62 0.59 1.2 1.6   0.56 0.48 1.2 1.5   0.58 0.54 1.2 1.5 

Viscosity ŋ50 526-1029 119 0.93 0.86 32.3 4.0   0.86 0.82 45.6 3.1   0.86 0.79 47.4 2.8 

Viscosity ŋ100 834-1721 210 0.94 0.85 55.5 4.0   0.86 0.83 81 2.8   0.85 0.78 85.3 2.7 

DMC (g/g FW) 0.14-0.17 0.009 0.87 0.85 0.003 2.7   0.85 0.84 0.003 2.6   0.89 0.82 0.004 2.5 

SSC (°Brix) 12.1-15.3 0.7 0.95 0.9 0.2 4.1  0.9 0.85 0.2 4.1   0.79 0.73 0.3 2.3 

fructose (g/kg FW) 40.2-80.3 9.1 0.84 0.79 4.0 2.1   0.88 0.82 3.7 2.5   0.83 0.8 3.7 2.3 

sucrose (g/kg FW) 33.2-57.3 5.5 0.88 0.86 2.0 2.8   0.87 0.85 2.1 2.7   0.88 0.83 2.1 2.7 

glucose (g/kg FW) 13.2-28.3 3.7 0.94 0.94 0.9 4.3   0.97 0.9 1.1 3.2   0.93 0.94 0.9 3.7 

pH 3.39-4.47 0.23 0.89 0.88 0.1 3.2   0.89 0.83 0.1 2.8   0.86 0.79 0.1 2.7 

TA (meq/kg FW) 28.0-94.8 16.2 0.92 0.91 4.4 3.4   0.91 0.88 5.9 2.7   0.92 0.92 4.4 3.4 

malic (g/kg FW) 3.0-8.8 1.3 0.95 0.93 0.3 4.7   0.94 0.87 0.4 3.9   0.95 0.95 0.3 4.3 

Notes: all results corresponded to the averaged values of 10 replicates. Rv
2: determination coefficient of the validation test (internal); Rp

2: determination 

coefficient of the prediction test (external); RMSEP: root mean square error of prediction test (external); RPD: the residual predictive deviation of prediction 

test (external). 
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4. Conclusion 

 This was the first detailed work to show the ability of infrared spectroscopy 

coupled to suitable chemometric methods as a powerful tool to trace different composed 

varieties and estimate their corresponding compositions in apple purees. Moreover, an 

innovative chemometric method based on MCR-ALS was developed to reach 

simultaneous targets in terms of composition (in % of different variety) and physico-

chemical properties (rheology, SSC, TA, DMC) of final puree products. As far as we 

know, this was the first report concerning the control of the final fruit product quality 

variations depending on the spectral information of the initial purees using a spectral 

reconstruction approach. 

 Vis-NIR on formulated purees could detect the composed single varieties purees 

with large color differences, such as ‘Granny Smith’ (RP
2> 0.92, RPD> 3.4, RMSEP< 

9.2%) and ‘Braeburn’ (RP
2> 0.95, RPD> 4.2, RMSEP< 7.9%), but not for ‘Golden 

Delicious’ and ‘Royal Gala’. MIR had the potential to trace the composed apple 

varieties with the excellent evaluations of ‘Granny Smith’ and ‘Braeburn proportions’ 

(RMSEP<4.3%, RPD> 7.7) and the satisfactory assessments of ‘Golden Delicious’ and 

‘Royal Gala’ proportions (RMSEP<8.1%, RPD>3.6). And MIR could also predict the 

internal quality (SSC, TA, DMC, viscosity, pH, fructose, malic acid) of formulated 

purees coupled with PLS and machine learning regressions.  

 Innovatively, MIR technique opens the possibility to control and guidance the final 

puree characteristics by simply scanning the single-variety apple purees, in order to 

maintain the product quality or to drive the development of new products in apple 

industry. For instance, after acquiring MIR spectra of the four single-variety purees, our 

developed PLS models might be used in industry: i) to formulate purees with defined 

SSC and viscosity (e.g. 15.0 ± 0.3 °Brix and 1500 ± 100 Pa.s-1, which might be reached 

with the formulate solutions as 75% GD-25% GS, 80% GD-20% BR and 90% GD-10% 

GA purees); or ii) to compare in silico the results of different puree formulation 

strategies, such as 33.3% GD and 66.6% GS purees (low redness, high acidity and 

viscosity) versus another strategy of 80% BR and 20% GA purees (more redness, low 
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acidity, low viscosity), depending on the market.  

 Further challenging works will be to investigate the possibility to reconstruct 

spectra of final processed purees based on spectra acquired directly on raw apples to 

provide non-destructive information guidance.  

 

Highlights of Paper VII 

This study provided the answers of the last question in Part 3:  

How to manage apple puree variability? 

⚫ MIRS coupled with PLS estimated proportions of each apple variety in puree 

mixtures (RMSEP < 8.1%, RPD > 3.6) 

⚫ The concentration profiles from MCR-ALS made possible to reconstruct 

spectra of purees formulated by blending different single-variety purees. 

⚫ MIRS allowed to predict the final puree quality, such as redness (a values) 

(RPD = 3.5), viscosity (RPD > 4.0), SSC (RPD = 4.1), DMC (RPD = 2.7) and 

malic acid (RPD = 4.7), based only on the spectral data of initial single-variety 

purees. 

 

On the one hand, Mid-infrared spectroscopy has the potential to trace – and 

thus authenticate the varieties in formulated apple purees. On the other hand, 

the spectral data of single-variety purees can also be used to control puree 

formulation, with a multiparameter optimization of texture and taste 

(viscosity, color, sugars and acids) of final blended apple purees. 
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V. Conclusions and perspectives 
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1. Conclusions 

This thesis aimed to highlight the variability and heterogeneity of both apples and 

purees using vibrational spectroscopic methods (NIR, MIR, Raman and NIR-HSI) and 

advanced chemometrics (PCA, FDA, PLS, MCR-ALS and machine learning). The 

experimental trials were designed to obtain variability on apples and on corresponding 

purees by modulating several factors acting during production in the field (varieties, 

agricultural practices with fruit thinning), during post-harvest storage (4°C during 0, 1, 

3 and 6 months) and processing (heating temperatures, grinding speeds and refining 

levels). The apple cooking was performed at a laboratory scale with a cutter-cooker 

robot to deeply study the link between before and after processing. The spectral 

information and reference data were acquired in parallel on raw apples and on 

corresponding purees, in order to explore new solutions to manage variability and 

heterogeneity during apple processing. Consequently, our research works were focused 

on specific questions, which were:  

⚫ How to identify the variability and heterogeneity of raw apples and processed 

purees using different spectroscopic and imaging techniques? 

 NIR-HSI spectrophotometry and chromatography allowed to highlight a large 

heterogeneity of DMC, TSC, contents of individual sugars, malic acid, and polyphenols 

in individual apples of four varieties (Paper III). This variability was observed in all 

directions inside each apple, from proximal to distal, from inside to outside and along 

equator. Compared to literature, our study provided an efficient solution for the HSI 

modelling calibration step, using the reference data measured on 141 representative 

samples instead of the 1056 prepared samples. Importantly, this method offered a new 

sight on TSC and DMC in apples, with a limited number of complex (individual sugars 

measured by spectrophotometry using enzymatic kits) and time-consuming (at least 24 

hours for freeze-drying) analyses for HSI modelling. Based on our predicted results, 

the TSC and DMC in Braeburn and Royal Gala apples varied more intensively than in 

Granny Smith and Golden Delicious. However, this NIR-HSI method was not suitable 

to describe the distribution of the other studied variables in apples (fructose, glucose, 
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sucrose, malic acids and polyphenols). 

 Most previous studies (Table 9) investigating the relation between apple fruit and 

purees either investigated the variability factors (variety, agronomic system, storage 

duration etc.) one by one or separately apples and purees. In most of our experiments 

(Papers I, II, IV, V, VI), a wide range of apple variability was considered, combining 

the different factors, and a total traceability was ensured between apples and purees. 

The introduced variability on raw fruits resulted in significant differences of color (L*, 

a* and b*), texture (viscosity and viscoelasticity), TA, contents of SSC, fructose, 

sucrose, malic acid and AIS in the cooked purees (Papers I, II & IV, Table 28).  

 NIR had the potential to discriminate different raw apples and their corresponding 

cooked purees according to variety and storage duration, with a well-classified rate over 

82% (Paper IV). Besides, it had a good ability to predict the global parameters (SSC, 

DMC, TA) both on raw apples and processed purees (R2 > 0.82, RPD > 2.3) (Papers I 

and IV). However, it did not provide an acceptable estimation of puree viscosity as it 

was limited to discriminate their textural changes from different refining treatments. 

Combining the VIS and NIR spectroscopy allowed to predict the color parameters (L*, 

a* and b*), when the puree variability was large enough (Paper IV, Table 29). 

 VIS-NIR, NIR, MIR, Raman and HSI techniques were compared on purees (Paper 

I). MIR spectroscopy was the best tool to assess puree variability (variety, thinning 

practice and storage) and processing conditions (heating, grinding and refining), with a 

discrimination accuracy over 90.3%. MIRS was able to evaluate the puree’s 

biochemical properties (SSC, TA, DMC, contents of fructose, sucrose and malic acid) 

with a RPD from 2.2 to 6.0 (Papers I & VI). It gave also the possibility to estimate 

puree rheological (viscosity and viscoelastic moduli) and textural (particle size and 

volume) properties, which were not predictable by VIS-NIR and NIR techniques 

(Papers I & II). MIRS also allowed determining cell wall (AIS) content and visualizing 

cell wall depolymerization (mainly pectin solubilization and galactose loss) but only on 

freeze-dried purees and on isolated cell wall materials, respectively. Consequently, MIR 

technique has been proved to be a valid method, using few steps to provide 

simultaneous assessments of biochemical, rheology and textural properties of apple 
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purees. It associated with suitable sample pre-treatments could offer valuable and 

sufficient information on puree quality for industrial and laboratorial demands. 

⚫ How is the variability of apples linked to the quality of processed purees? And, 

is it possible to predict the quality of processed purees from VIS-NIR, NIR 

and MIR spectral signals of raw apples before processing? 

 Two original experiments were conducted to explore how the intra- and the inter-

variability of apple batches affected the properties of cooked purees (Papers IV and 

V): 

 Different purees were cooked, using a cutter-cooker robot, from a set of apples with 

a large inter-variability coming from different varieties, thinning practices and storage 

durations (Paper IV). A PCA performed on reference data of raw and processed apples 

evidenced highly consistent individual clusters, indicating that factors impacting raw 

fruits are retrieved in their corresponding purees (Fig. 40). From the reference data, 

good linear correlations were firstly determined for some characteristics between raw 

apples and cooked purees, for apple texture (firmness and crunchiness) and puree 

viscosity (R2 > 0.79), TA (R2 > 0.91), and for SSC (R2 > 0.79) and DMC (R2 > 0.72) 

(Paper IV, Fig. 41). However, these relationships were obtained on fruit batches 

needing at least 2.5 kg (approximately 10-15 apples sized for the use of our cutter-

cooker robot), ignoring the ‘intra-variability’ brought by each individual apple. 

 An experiment was then designed to meet the absolute definition of ‘one apple to 

one puree’ using a microwave processing, which gave a first insight of the impact of 

intra-variability between individual apples on the quality of processed purees (Paper 

V). The variability coming from varieties, observed earlier, was confirmed here. 

However, a striking fact was that some quality traits were found to be much more 

variable between apples of a given variety. For example, puree color was much more 

variable for Braeburn and Royal Gala, while SSC was particularly variable for Golden 

Delicious and viscosity for Granny Smith. Conversely, some characteristics appeared 

to be quite stable and reliable within a given batch of one variety, like acidity for Royal 

Gala or colour for Golden delicious (Fig. 45). The skin color properties (L*, a* and b*) 
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of single apples were not linked to the viscosity of their cooked purees. A limitation of 

this study was that it was not possible to perform destructive quality measurements of 

individual apples as intact apples were directly cooked. Briefly, we confirmed that both, 

inter- and intra- variability of raw apples impacted the quality of cooked purees.  

 Regarding the relationships of reference quality traits between raw and processed 

apples, the VIS, NIR and MIR spectral information were supposed to be also linked, 

which was explored in papers IV, V & VI.  

 Two-dimensional correlation spectroscopy (2D-COS) was used to investigate VIS 

and NIR spectral correlations between each individual apple and its related puree 

(Paper V). Strong spectral correlations were observed in the VIS and NIR regions, 

particularly at 650-680 nm and 1125-1400 nm (Fig. 49). VIS-NIR gave a reliable 

assessment of cooked puree viscosity (R2 > 0.81), SSC (R2 = 0.78) and TA (R2 = 0.87) 

based on their spectral information of individual raw apples (Paper V, Table 34). 

Similarly, satisfactory predictions of puree viscosity (R2 > 0.82), SSC (R2 > 0.80), TA 

(R2 > 0.80) and even cell wall contents (R2 > 0.81) were also obtained using the 

averaged NIR spectra of apple sets before cutter-cooker robot cooking (Paper IV, 

Tables 31 & 32). Therefore, VIS-NIR and NIR techniques should be useful tools for 

industry to assess the taste and texture of cooked purees based on the non-destructive 

VIS-NIR or NIR scanning of individual raw apples (Fig. 64). However, the main 

drawback of these two experiments was the need, for modelling, to systematically 

acquire the corresponding spectra on both, raw and processed materials with a large 

number of conditions, representative of the variability, giving often only rough 

assessments. In addition, our developed VIS-NIR or NIR models only provided some 

prediction results for only one standard cooking condition due to the involved labour. 
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Fig. 64. A potential strategy to predict processed purees properties from VIS-NIR or 

NIR spectra of raw apples 

 In order to improve the prediction accuracy and explore the possibility to evaluate 

puree quality from multiple cooking conditions, an original experiment was designed 

in which different cooking conditions were compared (heating temperatures, grinding 

levels), and in which the direct standardization method was applied to establish the MIR 

spectral relationships between raw and processed apples (Paper VI). This strategy was 

proposed to build reconstructed MIR spectra of processed purees from the spectra of 

raw apple homogenates using a spectral transfer method. In this way, MIRS coupled 

with PLS models using these reconstructed puree spectra allowed to predict TA (R2 > 

0.86), SSC (R2 > 0.85), DMC (R2 > 0.84), particle averaged size (R2 > 0.84) and 

viscosity (R2 > 0.82) of cooked purees (Paper VI). After a simple scanning of raw apple 

homogenates by MIRS, our models allowed prediction of the quality traits of apple 

purees using nine different processing conditions (3 heating temperatures x 3 grinding 

levels). This approach is relevant for the processors and market to monitor and 

anticipate the organoleptic properties of cooked purees under different processing 

conditions (Fig. 65). However, scaling up tests have to be performed from the 

laboratory scale to reach the processors, especially as the processing units are not 

cooker-cutter robots. 
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Fig. 65. A potential strategy to predict and maintain processed purees properties at 

different cooking conditions from MIR spectra of raw apple homogenates. 

How to improve the puree formulation by infrared spectroscopy as an innovative 

solution to manage apple puree variability? 

 Papers IV, V & VI were mainly dedicated to explore solutions to manage 

variability from raw apples to their processed purees using infrared techniques. In 

paper VII, a focus was done on the development of a simple method to provide 

guidance for puree formulation after initial processing, in order to manage the final 

quality of puree products. To do that, four single-variety purees were mixed 2 by 2 

following a systematic series of proportions (between 5% and 95%) and varieties to 

obtain 54 mixed purees.  

 An innovative chemometric method based on the concentration profiles from 

MCR-ALS was tested to reconstruct spectra of formulated purees, thus making the 

possibility to optimize physico-chemical properties of final puree products. As far as 

we know, this was the first report concerning the control of the quality of final fruit 

products depending on the spectral information of the initial purees using a spectral 

reconstruction approach.  

 MIR has the potential to guide puree formulation: a multi-parameter optimization 

was obtained for texture and taste (mainly viscosity, SSC, TA, malic acid, with RPD 

values > 4.0) of final apple purees using only the spectral data of single-variety purees. 
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After acquiring the MIR spectra on single-variety purees, this new method could 

optimize admixtures of purees and thus control the product quality, or even help the 

development of new products in apple industry (Fig. 66). However, VIS-NIR technique 

was not powerful enough to succeed in this strategy.  

 

Fig. 66. Puree formulation guided by MIRS: a potential strategy to manage apple 

variability during processing. 

 Accordingly, this thesis provided several potential solutions for apple puree 

industry, in order to handle the ever-increasing variability and heterogeneity coming 

from climate change, different systems of production and processing technology. It is a 

first step towards a more sustainable and precise fruit processing by enlarging 

knowledge of how the spectra of raw materials can be used to manage the quality of 

final processed products. Our innovative results open the possibility to know which 

infrared range can be used to integrated analytical techniques in apple puree processing 

(Fig. 67) with for example:  
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i) At apple harvest, NIR-HSI technique can be used to rapidly characterize 

apple heterogeneity and map the sugars and dry matter content in apples, 

thus help researchers, field growers or industrial manufacturers to 

determine where and how many infrared measurements are needed to 

optimize the quality prediction and fruit sorting. 

ii) After apple harvesting, VIS-NIR, NIR or MIR spectroscopy applied on raw 

apples provided an objective determination of quality properties of purees 

according to different processing conditions, and to know how to use apples 

in the best way and thus reduce wastes along the processing chain 

iii) After puree processing, MIR technique applied on single-variety purees 

allows to guide puree formulation to reach stable standard processed 

products or innovate towards personalized purees.  

 

Fig. 67. A summary of our innovative solutions to manage variability and 

heterogeneity along apple puree processing. 

2. Perspectives 

 Based on our results, there are some questions and ideas that need to be explored 

in our future researches, concerning the applications of several advanced chemometrics 

or the use of other methods to improve the detection of variability and heterogeneity 
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and the understanding of mechanisms occurring during apple processing.  

⚫ Improvement of data treatment methods: 

- Use ‘SPORT’ spectral pre-processing method to improve modelling accuracy. 

In our works, several basic pre-processing chemometrics including SNV, 

baseline correction, smoothing and derivatives, have been applied on spectra 

before modelling. It would be interesting to apply a new chemometric strategy 

named ‘SPORT’ (Mishra et al., 2020) allowing the fusion of multiple 

preprocessing methods and identifying the best preprocessing techniques and 

their combinations. 

- Investigate the fusion of NIR, MIR and Raman data to improve the evaluation 

of apple puree quality in a PAT strategy. A further work could be to investigate 

the fusion of these NIR, MIR and Raman data and evaluate the effect on 

prediction ability, such as low-level fusion with the direct combination of NIR, 

MIR and Raman spectra; middle-level fusion with selected bands of the NIRS, 

MIRS and Raman spectra according to evaluate parameters; high-level fusion 

directly conducted by outer-product analysis (OPA) and Grangere Ramanathan 

averaging (GRA).  

⚫ Exploration of possibilities of infrared methods to better know F&V change 

during processing:  

- Predict the diffusion of cell wall pectic content from pulp to serum using MIR 

technique on purees. 

A specific MIR region at 1595-1640 cm-1 was identified in fresh and freeze-

dried samples before and after apple processing to contribute to the prediction 

of puree viscosity and viscoelasticity (Paper II). It is probably related to the 

solubilization of pectins, diffusing from puree's pulp to serum. In the ‘Interfaces’ 

project, pectin content of the raw apples and their corresponding cooked puree 

pulp have been characterized, according to the work of Alexandra Bürgy (2021). 

To go further, it should be interesting to evaluate not only the possibility to 

investigate the cell wall (AIS) content but also the cell wall composition and 

more specifically the pectin content impacting the texture of puree.  
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- Explore the VIS or VISNIR imaging of fruit surface to describe the internal 

quality distribution, and use microscopic MIR imaging to investigate the 

interactions of cell wall and polyphenols in different apple tissues.  

NIR-HSI technique successfully mapped the TSC and DMC in individual 

apples, with a destructive scanning of slices (Paper III). From a functional 

anatomy point of view, some interesting spatial relationships were observed 

between the internal chemical distribution (the highest values) and the fruit 

skin color (red color with the highest anthocyanin content) using our 

developed models (Fig. 68). If a good correlation between skin color and 

internal DMC and TSC was further identified, it would open the possibility to 

assess the chemical heterogeneity in apples based only on the VIS or VIS-

NIR imaging acquired on apple surface, nondestructively. Further, a strong 

heterogeneity of total polyphenol contents was characterized in apples. This is 

one of the future interests in collaboration with INRAE BIA (Unité 

Biopolymères Interactions Assemblages) at Nantes to investigate the 

interaction of cell wall and polyphenols using MIR micro-spectroscopic 

imaging technique.   

 

Fig. 68. A possible relationship between external skin color and internal DMC and 

TSC in Braeburn apples. 

⚫ Integrate explicit PAT by using sensors in situ  

In our study, we have applied two solutions to bridge raw apples and cooked purees. 

The first one was the direct modelling using the reference data of final processed purees 
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and the infrared information of corresponding raw apples (Papers IV and V). The 

second one is to reconstructed puree spectra from their corresponding raw apples 

(Paper VI) or composed single-variety purees based on the spectral relationships 

before and after processing (Paper VII). One of our further interests is to explore the 

new solutions to guide apple processing in real time during the process. For example, a 

current project ‘TransQuaPil’ is on-going at UMR SQPOV concerning the use of a VIS-

NIR sensor to acquire spectral information continuously during processing. Combining 

my results to this project might lead to better follow and control quality changes of fruit 

materials along the entire processing chain.  

 Infrared spectroscopy (near or mid-infrared) is one of the main candidates for a 

rapid qualification of agricultural commodities and processed food, especially in the 

view of PAT. Most of the previous infrared applications have been reported for the real-

time evaluation of food quality and safety traits. However, knowing how to produce 

high-quality food using an efficient and precise strategy is even more crucial for 

industrial manufacturers, especially with continuous or increasing variability and 

heterogeneity along current food processing chain.  

 This thesis is a first step to explore the potential solutions to manage puree 

processing from the infrared information on apple materials. It is a proof-of-concept of 

what can be done and which infrared range can be used to integrate PAT in apple 

processing. With the development of advanced chemometrics and integrated infrared 

sensors, our results might open a new research topic named ‘Smart Food Processing’, 

which can consider a large diversity of raw materials, apply efficient, sustainable and 

precise processing conditions, and provide new solutions to develop natural fruit 

products. With the scaling up and adapting our methods to large scale processing units, 

it could help food processors to reach several meaningful objectives based only on the 

rapid and simple spectral information on raw food materials, such as  

- Rapid sorting or selecting raw fruit materials for suitable uses, including the fresh 

consumption or the consumption of various processed products (puree, juice or 

dried etc.) according to the market demand; 

- Automatic choosing and adjusting of processing conditions (heating time, 
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temperature, pressure, grinding speed, etc.) to produce expected food products 

according to raw materials presenting variable properties and compositions. A 

recent Chinese national research program (Zou et al., 2019) has successfully made 

a first step to control the production of vinegar, based on infrared information 

acquired at several key stages during industrial fermentation. Till now, it has 

brought the incremental benefits over 40 million euros for 15 Chinese vinegar 

companies during 2016-2018.  

- Developing and creating new products with the combination of infrared datasets 

and Artificial Intelligence (AI) powered system. Nowadays, some food and 

beverage companies, such as Coca Cola, use AI-powered tracking systems to 

extrapolate the potential response of their upcoming products. For example, 

Gastrograph AI (https://www.gastrograph.com/) is one such platform which 

provides historical consumer data to various companies. These data could be linked 

to the spectral dataset of ‘Smart Food Processing’ system, in order to further help 

food producers in understanding their consumer’s preferences and provide specific 

processing guidance to reach the expected products for their target audiences. 

  

https://www.gastrograph.com/
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Cette thèse a montré comment la spectroscopie vibrationnelle (NIRS, MIRS, 

Raman et NIRS-HSI) couplée à des méthodes de chimiométrie (PCA, FDA, PLS, 

MCR-ALS et machine learning) permet de mettre en évidence la variabilité et 

l'hétérogénéité des pommes et des purées de pommes. Les essais expérimentaux ont été 

conçus pour obtenir une variabilité importante à la fois dans les pommes et les purées 

en modulant plusieurs facteurs, au verger (variétés, pratiques culturales avec 

l’éclaircissage des fruits), lors du stockage post-récolte (4°C pendant 0, 1, 3 et 6 mois) 

et lors de la transformation (températures de cuisson, vitesses de broyage et niveaux de 

raffinage). La cuisson des pommes a été réalisée à l'échelle du laboratoire avec un robot 

coupeur-cuiseur pour étudier, de façon maitrisée, le lien entre la qualité des pommes 

avant transformation et la qualité des purées après transformation. Les informations 

spectrales et les données de référence ont été systématiquement acquises sur l’ensemble 

des pommes et purées, afin d'explorer de nouvelles solutions pour gérer la variabilité et 

l'hétérogénéité lors de la transformation des pommes.  

 

Nos travaux de recherche ont visé en particulier à répondre aux questions 

suivantes : 

 

Comment identifier la variabilité et l'hétérogénéité des pommes et des purées 

à l'aide de différentes techniques de spectroscopie et d'imagerie ? 

Les images hyperspectrales en proche infrarouge (NIRS-HSI) et les données de 

référence ont permis de mettre en évidence une grande hétérogénéité des teneurs en 

matière sèche (DMC), sucres totaux (TSC), sucres individuels, acide malique et 

polyphénols dans les pommes individuelles de quatre variétés (Article III). Cette 

variabilité a été observée dans toutes les directions à l'intérieur de chaque pomme, du 

proximal vers le distal, de l'intérieur vers l'extérieur et dans le sens équatorial. Par 

rapport à la littérature, notre étude a fourni une solution efficace pour établir les modèles 

de prédiction, en utilisant les données de référence mesurées sur 141 échantillons 

sélectionnés à partir de leurs données NIRS-HSI et représentatifs des 1056 échantillons 

préparés. Notre étude a ainsi permis d’illustrer la répartition des TSC et DMC dans les 

pommes, avec un nombre limité d'analyses complexes (sucres individuels mesurés par 

spectrophotométrie à l'aide de kits enzymatiques) et chronophages (au moins 24 heures 

pour la lyophilisation) nécessaires à la modélisation. Les TSC et DMC ont varié plus 

intensément dans les pommes Braeburn et Royal Gala que dans les pommes Granny 
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Smith et Golden Delicious. Cependant, notre approche n’a pas permis de décrire la 

distribution des autres variables étudiées dans les pommes (acide malique et 

polyphénols). 

Dans la plupart de nos expérimentations (Articles I, II, IV, V et VI), une large 

gamme de variabilité des pommes a été considérée, tout en assurant la traçabilité entre 

les pommes et les purées après cuisson. La variabilité des pommes a entraîné des 

différences significatives de couleur (L*, a* et b*), de texture (viscosité et 

viscoélasticité), d’acidité titrable (TA), des teneurs en solides solubles (SSC), fructose, 

saccharose, acide malique et parois cellulaires (AIS) dans les purées (Articles I, II et 

IV, tableau 28). 

La NIRS a discriminé les lots de pommes et de purées en fonction de la variété et 

de la durée de stockage, avec un niveau de classification supérieur à 82% (Article IV). 

De plus, la NIRS a permis de prédire de façon acceptable les paramètres globaux (SSC, 

DMC, TA) à la fois dans les pommes et les purées (R2 > 0,82, RPD > 2,3) (Articles I 

et IV). Cependant, elle n'a pas permis de prédire la viscosité de la purée. Avec le 

couplage des deux régions spectrales, VIS et NIR, les paramètres de couleur (L*, a* et 

b*) ont été prédits de façon acceptable lorsque la variabilité des purées était 

suffisamment importante (Article IV, Tableau 29). 

Les techniques VIS-NIRS, NIRS, MIRS, Raman et NIRS-HSI ont été comparées 

pour déterminer la qualité des purées (Article I). La MIRS a été la plus performante 

pour évaluer la variabilité des purées (variété, pratique d'éclaircissage et stockage) et 

les conditions de transformation (chauffage, broyage et raffinage), avec une précision 

de discrimination supérieure à 90%. La MIRS a permis d’évaluer les propriétés 

biochimiques de la purée (SSC, TA, DMC, teneurs en fructose, saccharose et acide 

malique) avec un RPD allant de 2,2 à 6,0 (Articles I et VI). Elle a également permis 

d'estimer les propriétés rhéologiques (viscosité et modules viscoélastiques) et texturales 

(taille et volume des particules) des purées (Articles I et II). En lien avec l’évolution 

de la texture au cours de la transformation, la MIRS a également permis de déterminer 

les teneurs en parois cellulaires (AIS) et de visualiser leur évolution (principalement la 

solubilisation des pectines et la perte de galactose) mais uniquement sur les purées 

lyophilisées et sur les extraits purifiés des parois cellulaires, respectivement.  

 

Comment est liée la variabilité des pommes à la qualité des purées 
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transformées ? Et, est-il possible de prédire la qualité des purées transformées 

à partir des spectres VIS-NIR, NIR et MIR des pommes intactes ? 

Deux expérimentations originales ont été menées pour explorer comment les 

variabilités intra-lots et inter-lots de pommes affectaient les propriétés des purées 

(Articles IV et V). Différentes purées ont été cuites, à l'aide d'un robot coupeur-cuiseur, 

à partir de lots de pommes présentant une grande variabilité inter-lots provenant de 

différentes variétés, pratiques d'éclaircissage et durées de conservation (Article IV). 

Une ACP a confirmé un impact similaire de ces facteurs à la fois dans les pommes et 

les purées (Fig. 35). Des corrélations ont ensuite été montrées : entre la texture des 

pommes (fermeté et croquant) et la viscosité des purées (R2 > 0,79), de même qu’entre 

la composition des pommes et des purées pour TA (R2 > 0,91), SSC (R2 > 0,79) et DMC 

(R2 > 0,72) (Articles IV, Fig. 36). Cependant, ces relations ont été obtenues sur des lots 

de pommes (au moins 2,5 kg représentant environ 10 à 15 pommes transformées dans 

le robot coupeur-cuiseur). 

Afin de prendre en compte l’effet de la variabilité intra-lots apportée par chaque 

pomme, un essai a été conçu pour répondre à la définition absolue « d'une pomme pour 

une purée » en utilisant un procédé avec les micro-ondes permettant de cuire les 

pommes individuellement (Article V). La variabilité issue des variétés, observée 

précédemment, a été confirmée ici. De plus, certains critères de qualité se sont révélés 

être très variables entre les pommes et purées d'une même variété. Par exemple, la 

couleur de la purée a été beaucoup plus variable entre les pommes pour Braeburn et 

Royal Gala, de même que la SSC pour Golden Delicious et la viscosité pour Granny 

Smith. A l'inverse, certaines caractéristiques ont été assez stables au sein d'une même 

variété, comme l'acidité pour Royal Gala ou la couleur pour Golden Delicious (Fig. 40 

et 41). La limitation de cette étude est qu’il n'était pas possible d'effectuer des mesures 

destructives de qualité sur les pommes individuelles car celles-ci étaient cuites intactes 

dans le four à micro-ondes. Brièvement, nous avons tout de même confirmé que les 

variabilités inter-lots et intra-lots des pommes impactaient les caractéristiques des 

purées. Les relations entre les spectres VIS, NIR et MIR des pommes et des purées ont 

été explorées en parallèle (Articles IV, V et VI). Concernant la cuisson des pommes 

individuelles à l’aide des micro-ondes, une méthode de corrélation bidimensionnelle 

(2D-COS) a mis en évidence de fortes corrélations dans les régions VIS et NIR, en 

particulier à 650-680 nm et 1125-1400 nm (Article V, Fig. 44). Les spectres VIS-NIR 
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des pommes ont permis une évaluation fiable de la viscosité des purées (R2 > 0,81), de 

leur SSC (R2 = 0,78) et TA (R2 = 0,87) (Tableau 34). Concernant la cuisson des lots de 

pommes avec le robot coupeur-cuiseur, des prédictions satisfaisantes de la viscosité, 

SSC et TA de la purée (R2 > 0,82, > 0,80 et > 0,80 respectivement) et même des teneurs 

en parois cellulaires (R2 > 0,81) ont été obtenues à partir des spectres NIR moyennés 

des pommes (Article IV, Tableaux 31 et 32).  

Ainsi, les techniques VIS-NIRS et NIRS seraient pertinentes pour l'industrie pour 

évaluer le goût et la texture des purées à partir de mesures non-destructives des pommes 

individuelles (Fig. 59). Cependant, la difficulté dans toutes ces expérimentations a été 

d'acquérir systématiquement les spectres et les données de référence sur les pommes 

fraiches et transformées, en prenant en compte une large variabilité et donc en 

caractérisant un nombre conséquent d’échantillons, pour la modélisation. Afin 

d'améliorer notre démarche, une expérimentation a été conçue dans laquelle différentes 

conditions de cuisson ont été comparées (3 températures de chauffage et 3 niveaux de 

broyage), et dans laquelle une méthode de normalisation directe a été appliquée afin 

d’établir les relations entre les spectres MIR des pommes et des purées (Article VI). 

Cette stratégie a permis de construire des spectres MIR de purées à partir des spectres 

MIR des pommes fraiches broyées. De cette façon, la MIRS couplée à des modèles PLS 

utilisant ces spectres reconstruits de purées a permis de prédire les critères suivants : 

TA (R2 > 0,86), SSC (R2 > 0,85), DMC (R2 > 0,84) et taille moyenne des particules (R2 > 

0,84).  

 

Comment améliorer la formulation des purées par spectroscopie infrarouge 

comme solution innovante pour gérer la variabilité des purées de pommes ? 

Les articles IV, V et VI ont été principalement dédiés à l'exploration de solutions 

pour gérer la variabilité des pommes et des purées transformées en utilisant la 

spectroscopie infrarouge. L'accent a été mis sur le développement d'une méthode simple 

pour aider à la formulation de la purée (Article VII). Pour ce faire, quatre purées 

monovariétales ont été préparées puis mélangées deux à deux avec neuf proportions 

différentes variant de 5% à 95%. Une méthode chimiométrique innovante basée sur les 

profils de concentration (MCR-ALS) a été testée pour reconstruire les spectres des 

purées formulées à partir des spectres des purées monovariétales, dans un objectif 

d'optimiser les propriétés physico-chimiques des purées finales. A notre connaissance, 
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il s'agit du premier article concernant la prédiction de la qualité des purées mélangées 

en fonction de l'information spectrale des purées monovariétales en utilisant une 

approche de reconstruction spectrale. Cette approche permet une optimisation multi-

paramètre de la texture et du goût des purées finales (principalement la viscosité, SSC, 

TA, acide malique, avec des valeurs RPD > 4,0) à partir de purées monovariétales 

variables. Il s’agit ici d’optimiser les mélanges de purées et contrôler la qualité du 

produit fini, voire d’aider au développement de nouveaux produits (Fig. 61).  

En conclusion, cette thèse a identifié plusieurs solutions potentielles pour 

l'industrie de la transformation des pommes, afin de gérer la variabilité et l'hétérogénéité, 

qui tendent à augmenter en lien avec le changement climatique, la coexistence de 

différents systèmes de production et les procédés de transformation. C'est un premier 

pas vers une transformation des fruits plus durable et plus précise en utilisant la 

connaissance des matières premières pour prédire la qualité des produits transformés. 

Nos résultats ouvrent la possibilité d’identifier les gammes spectrales pertinentes de la 

région infrarouge qui pourraient être intégrées dans le PAT (Process Analytical 

Technology) de la chaine de transformation de la pomme (Fig. 62) avec notamment : 

i) A la récolte des pommes, utiliser la spectroscopie VIS-NIR, NIR ou MIR sur les 

pommes fraiches pour déterminer objectivement les propriétés qualitatives des purées 

en fonction des propriétés initiales des pommes et des conditions de transformation, 

mieux gérer les pommes et réduire les pertes tout au long de la chaîne de transformation, 

ii) Après la transformation des pommes, utiliser la spectroscopie MIR sur des 

purées monovariétales très variables pour guider la formulation des purées qui 

atteindraient alors la qualité standard, stable, appréciée des consommateurs ou au 

contraire produire des purées personnalisées avec des qualités spécifiques. 
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 Résumé 

Cette thèse visait à montrer comment la spectroscopie vibrationnelle incluant le proche infrarouge (NIR), le 

moyen infrarouge (MIR), le Raman et l'imagerie hyperspectrale (NIR-HSI) couplée à la chimiométrie pouvait 

mettre en évidence la variabilité et l'hétérogénéité des pommes et des purées après transformation. Des essais 

expérimentaux ont été conçus pour moduler plusieurs facteurs, au verger (variétés, pratiques agricoles), 

pendant le stockage post-récolte (4°C) et la transformation (température, broyage et raffinage) afin de faire 

varier les propriétés et la composition des pommes et des purées. Une approche efficace utilisant la NIRS-HSI 

a permis d'illustrer la répartition des sucres totaux et de la matière sèche à l'intérieur des pommes. Les 

variabilités inter-lots et intra-lots des pommes ont profondément modifié les purées. La spectroscopie MIR a 

été le meilleur outil pour détecter la variabilité des purées et évaluer leurs propriétés biochimiques (solides 

solubles, acidité, matière sèche, fructose, saccharose et acide malique), rhéologiques (viscosité et modules 

viscoélastiques) et texturales (taille et volume des particules). Des corrélations linéaires ont été trouvées entre 

la texture de la pomme et la viscosité de la purée, ainsi qu’entre les pommes et les purées pour l'acidité, les 

solides solubles et la matière sèche. Ainsi, les techniques VIS-NIR et NIR ont permis de prédire le goût et la 

texture des purées à partir des spectres acquis sur les pommes intactes. De plus, la spectroscopie MIR a pu 

guider la formulation des purées à partir des spectres des purées monovariétales. Nos approches innovantes 

pourraient fournir des données objectives pour mieux gérer les pommes et adapter les conditions de 

transformation en fonction de leurs propriétés initiales. L'objectif ultime est d'améliorer la qualité des fruits 

frais et transformés tout en réduisant les pertes. 

Mots clés : Malus domestica Borkh., Purée, Variabilité, Hétérogénéité, Spectroscopie infrarouge, Imagerie 

hyperspectrale, Prédiction, Discrimination. 

 Abstract 

This thesis aimed to show how vibrational spectroscopy including near infrared (NIR), mid infrared (MIR), 

Raman and NIR hyperspectral imaging (NIR-HSI) coupled with advanced chemometrics can highlight the 

variability and heterogeneity of both, raw apples and processed purees. Experimental trials were designed to 

modulate several factors in orchard (varieties, agricultural practices), during post-harvest storage (4°C) and 

processing (temperature, grinding and refining) in order to modify properties and composition of apples and 

purees. An efficient approach using NIR-HSI allowed illustrating the distribution of total sugars and dry matter 

inside apples. The inter-batch variability of apples and the intra-batch variability between individual apples 

intensively changed the cooked purees. MIR spectroscopy was the best tool to detect the variability of purees 

and assess their biochemical (soluble solids, acidity, dry matter, fructose, sucrose and malic acid), rheological 

(viscosity and viscoelastic moduli) and textural (particle size and volume) properties. Good linear correlations 

were found between apple texture and puree viscosity, as well as between apple and puree acidity, soluble 

solids and dry matter. Therefore, VIS-NIR and NIR techniques allowed to predict the taste and texture of 

purees from the non-destructive spectra of apples. Besides, MIR spectroscopy can guide puree formulation 

from spectra of single-variety purees. Our innovative approaches could provide objective data to better 

manage apples and to adapt processing conditions according to their initial properties. The ultimate goal is to 

improve the quality of fresh and processed fruits while reducing losses. 

Keywords: Malus domestica Borkh., Puree, Variability, Heterogeneity, Infrared spectroscopy, Hyperspectral 

imaging, Prediction, Discrimination.  

 
 


