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Chapter 1

Introduction

Arti cial intelligence takes its earliest origins at the Dartmouth conference in 1956. It has evolved
throughout time while incorporating other research domains, such as cognitive theories, neuroscience,
psychology, and philosophy. It has been applied in many disciplines: i.e. automatic diagnostics of cancer
in the medical research domain, fraud detection in thenancial eld, etc.. The elds of application might
vary, but building an autonomous agent seems to be one of the essential problems in Al research. In
Al, one of the agent's most essential properties is autonomy, which is deed as the ability to learn or
make decisions in an unknown and unconstrained environment. While learning with autonomy can be
challenging, since the agent may have to adapt to changes in a dynamic environment.

Al also faces challenges related to the explainability and interpretability of models. The historical
arti cial intelligence models derived a part of their origins from biology, but many of them are still black
box-like even if Al makes progress. Consequently, they have a limited explanation for the decisions they
make. Besides the explainability problem, the model has another limitation: its generalization.

The development of a model is usually spea to a problem or use case, and it is dependent on both
data and context. It is crucial for the model to have the ability to generalize so that it can be eective
on unseen but similar data points.

Although many issues remain open, machine learning has advanced with satisfying performance in
various tasks, in particular classication or clustering approaches using statistics or similarities to dis-
tinguish di erent objects. But they are often o ine. The problem of unsupervised continual learning is
particularly interesting and fundamental. It raises questions both theoretical (what is the purpose for
such a learning approach? What are the cognitive properties supporting it?) and applicative (How to
provide concrete implementations for Al?).

Continual learning, or life-long learning as a synonym, is to learn continually and incrementally from
the input data stream. In contrast to common o ine deep learning scenarios, the unsupervised continual
learning problem targets a higher level of autonomy for the agent, which can be seen as thest step
towards Al applied to more general cases.

In this thesis, we will target this problem while considering the notion of continuity presented by the
notion of class-incremental, which indicates that an object will be visible for at least a certain duration of
time. This continuity hypothesis can be found in many elds, with slightly adapted or modi ed de nitions
depending on the context to which it is applied: in robotics, for example, it is called spatio-temporal
continuity; or from a more general standpoint, works in the literature taking videos as input. In this
thesis, this continuity takes place in the way we present the objects to the system. Objects of the same
class category are shown consecutively, while increasing the class introduced to the system inedent
ways. As a rst step, this hypothesis of continuity can simplify the problem to which our proposal
contributes and will be further studied in more complicated scenarios.

In this chapter, we take the initiative to introduce some notions in cognition theory that are tightly
related to our targeted problem. Although some works in Al (those that are bio plausible, for example)
draw inspiration from cognitive theories, proposals in the eld of machine learning do not often emphasize
the implications for Al. This can guide our work through the combination of principles from a di erent
discipline, cognitive development. From an Al positioning, it helps justify choices for concrete implemen-
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18 Chapter 1. Introduction

tations. In this way, we can identify the required properties for an Al and match them with the proposals
in the machine learning eld, which allows us to de ne and motivate our contribution in the dedicated
areas. Our objective is to construct an autonomous agent that is capable of learning the representation
of the unknown environment through the sources of information that are made available to him.

In this chapter, we rst conceptualize our work in section 1.1 from the perspective of cognitive devel-
opment. This section introduces the notion of autonomy for representation acquiring, and discusses the
role of perception in this process. The role of continuity is studied, and the continuity-based scenarios we
simulate are presented. Then, we present an overview of machine learning methods advances related to
cognitive development. From this positioning, we describe our contributions in section 1.2, and we will
give a brief outline of this thesis in section 1.3.

1.1 Learning and cognitive development

For an autonomous agent, autonomy is essential and requires the agent to learn to construct the
representation of the environment, as we will show in section 1.1.1. In this section, we will start with the
notion of ontology, which is part of the cognitive development. For an autonomous agent, we highlight
several frequently targeted properties. In section 1.1.2, we will start by showing derent sources of
information that are accessible to agents. The agent can learn to construct a representation of the
environment by exploiting these sources. Spedially, the actions and interactions are supported by
cognition theories, thereby demonstrating the originality of this work. Among all the possible sources,
perception is a key point for machine learning. Throughout this study we choose to focus exclusively on
passive perception as a crucial component of the cognition theories and as a means to acquire knowledge.
Meanwhile, on the contrary, sensorimotor theories treat perception and action as inseparable.

Nevertheless, the perception remains an important process to integrate sensory inputs, in the continual
learning context, just as in many other machine learning or computer vision problems, as it is the
rst step towards a more complicated cognitive model. The chosen approach to categorize objects for
object recognition is a purely statistical one. We will discuss the advantages of using such an approach,
meanwhile its limitation regarding the separation of easily confused objects by shape in the absence of
possible interactions with the objects that can provide additional information about them, such as object
utility. We will elaborate on our objective of continual learning and the potential intrinsic limitation of
purely statistical criteria in this rst phase of learning from perceptual information in section 1.1.3, which
will be shown with a concrete example for illustration.

1.1.1 Autonomy and representation acquiring

When an agent learns to gradually acquire an ontology, the cognitive theory of learning provides
theoretical support for how the representation is built and emphasizes the role that action and interaction
play in learning. We will start by presenting the notion of ontology and some cognitive theories that
explain learning from a cognitive development aspect. Then we show how it is related to dierent
properties of Al and the sources of information and interaction available to autonomous agents.

1.1.1.1 Ontology : creation, recognition

The word ontology take its origin from philosophy. It refers to the notion of what objects are and
their associated relationship. Ontology is a common concept that people use for an object. The notion
of ontology is essential in cognitive development. According to the similarity of an external source of
information and the agent’'s experience or acquired knowledge, the ontology needs to be created in the
case of a novel concept, or on the contrary, what the agent perceived can be recognized and associated to
an existing one. This comes to the notion of classtation, but its di erence with the notion of ontology
is that the ontology presents concepts by following certain hierarchies. According to certain criteria, the
ontology denes subdivisions between concepts and things. When one develops cognitive skills, one can
then perform categorization that tells an object is distinct from another object, which is an important
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cognitive activity. One must group the same object and separa¢ di erent objects in order to categorize
them accordingly. This is a cognitive process that needs ontology and at the same time classi cation.

1.1.1.2 Al and classi cation

Construction of the ontology and representation of the environment remained a challenging problem,
which was partly adjacent to the de nition of classes. One needs a general understanding of what is the
same and what is dierent for the construction of ontology.

The notion of objects and classes or categories can therefore be ded. As we illustrate in gure 1.1,
data points can be partitioned according to their ontology de nitions. A class or a category gather all
the di erent objects that are similar to each other. If two objects belong to distinct classes, then they
are dierent objects. On the contrary, objects can belong to the same category. In this case, they can
be visually distinguished from each other, for example through size, color, or shape. For example, a "red
cup" and a "white cup” both belong to the class/category "cup" but are nevertheless dierent. Besides,
the ontology often presents hierarchical properties. For example, "cups" and "bowls" both belong to
"containers". This notion of hierarchies models more rened relationships between classes in the learning
theory and cognition. In humans’ ontology, similar objects will be categorized and a ected the same class.
For example, "cup” will give similar responses in our eyes. Therefore, a cup can be distinguished from a
pencil (which has a thoroughly dierent appearance). This raises the notion of classtcation. Ontology
construction itself remains challenging and contains other issues in addition to classiation. But in
this thesis, we will mainly focus on the creation and recognition aspects of ontology, or the ability of a
model to distinguish between dierent classes. Therefore, it is possible to assimilate it to a classi cation
problem.

In Al and in machine learning, classication is a common task. In classi cation, the model needs
to predict the category of input as close as possible to its ground truth label. We expect the agent to
correctly a ect the images it receives with a cluster. The predictions should not be arbitrary, but rather
be based on underlying similarities or statistics.

Classes
Recognition
Data
Learned classes
Recoghnition i
————
R "y,
New classes v b Creation
Qagnt

Figure 1.1: Ontology creation and cognitive development: forthe construction of ontology, a class

is either recognized (learned classes A and B encercled in red and green) or rejected to create a
new class (the class C encercled in blue). The notion of ontology is tightly related to the notion of
categorization or classication in the eld of Al.

Therefore, we will dene several terminologies in Al concerning learning. Approaches that learn with
supervision or need the ground truth label to train the models are referred to assupervised learning
On the contrary, when annotated examples are inaccessible or learning is without supervision or ground
truth labels, unsupervised learningis used to refer to these approaches without external information of
the ground truth label. Many of these approaches in the machine learning or deep learningeld have
supposed i.i.d. (independent and identically distributed) data when the entire dataset is accessible to the
model and the input data is stationary. Images inside the dataset are shed and presented randomly
to the model, and this learning scenario is also referred to as ime. In the following sections, we give
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20 Chapter 1. Introduction

examples of supervised and unsupervised approaches in adiial intelligence.

1.1.1.3 Autonomy and underlying required properties

In arti cial intelligence, the targeted autonomy of the agent often requires several properties, for
example, a memory to enhance performances of continual learning. In this section, we will show some of
the most important properties of autonomous agents.

Autonomy, for an arti cial agent, refers to the ability to learn in an open and unconstrained envi-
ronment, where the changes in the environment and its dynamic is unrevealed to the agent and requires
the agent to learn and adapt by itself. For example, an autonomous vehicle has to recognize and avoid
obstacles on roads in the city or muddy roads in the countryside with hollows or with stones. Although
it may not be trained to avoid all kinds of obstacles in every context, we will still expect it to adapt to
possible new contexts never seen before and avoid obstacles to drive safely. This is related to another
notion of the capacity to generalize of an arti cial intelligence system. That is, during learning, the model
has access to a certain amount of data, and it is important that the model extracts information that can
be extrapolated onto unseen data, or synthesized. Another common property required for autonomy
is plasticity, which refers to the ability to adapt to changes or to integrate new concepts. In addition
to plasticity, there is also stability, which is the ability to maintain previously acquired information.
Both plasticity and stability can nd their origin in neuroscience from the human brain, which forms
the well-known stability-plasticity dilemma [113], that the system should be stable enough not to lose
previously acquired knowledge meanwhile being plastic to acquire new ones. A common alilty that
many systems face is catastrophic forgetting, which is closely related to the stability-plasticity dilemma.
The catastrophic forgetting itself is a barrier for common o ine approaches due to parameter sharing
between new/old classes or tasks. For this reason, they have usually a quite weak performance in the
online and continual learning scenario. The "optimal" agent for continual learning would be a memory
system, as [82] mentioned.

Memory is an important notion, both in cognitive models and in arti cial intelligence. A simple way
to de ne memory is a component used to store useful information that are crucial or necessary parts
to construct representation of the environment. The stored information can be further integrated into
training data to enhance the learning on certain tasks, which data are no more accessible to the agent. The
human brain is accompanied by dual memory systems [88]: short-term memory (hippocampus) and long-
term memory (episodic memory, neocortex, consolidates short-term memories). The memory allows the
capacity of human learning in a one-shot manner [108] while associating with another related mechanism
such as replaying certain sequences or episodes of memory. The implication of memory is often studied,
as it is an important aspect of both understanding human learning and its possible implications within
deep learning. Besides, humans can manipulate information stored in the memory, referred to as the
mechanism of working memory, which has inspired various arttial intelligence works. For example, the
model of Di erentiable Neural Computer (DNC) [59] from which information is read, written, retrieved,
and copied. This can be seen as a way to battle the model forgetting previously acquired knowledge.

The capacity to generalize is indispensable in common approaches in machine learning and deep
learning that use images as input, should the model be properly trained to avoid ovetting. But also
they often operate under the i.i.d. data assumption for which the dataset is stationary, and images in the
dataset are shued and presented randomly to the model. The autonomy can not be fully guaranteed in
an open environment since the dynamic of such machine learning models is not ensured to adapt to these
environments. Moreover, when the input is not i.i.d., o ine models will have poor performance, being
plastic enough to acquire new classes or tasks, but their optimization will also degrade those of the old
ones. Therefore, o ine approaches are not suited for an online or incremental learning scenario. Later,
in section 1.1.4, we will briey introduce existing machine learning and deep learning approaches to show
their advantages and drawbacks concerning these required properties.

1.1.2 Perception as a keypoint of cognition

In this section, we will introduce the main source of information in the context of arti cial intelligence.
We will present the rst and the major process of learning, which is the perception, that agent perceives
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images of objects and the environment. Other sources includene action, which indicates that the agent
can take action inside the environment and will get feedback. Besides, the agent can interact with the
environment or interact with other agents.

We will equally introduce cognition theories that are tightly related to arti cial intelligence. We will
highlight theories of cognition development and their relationship to di erent arti cial intelligence works.

1.1.2.1 Available interactions for an agent

In arti cial intelligence, autonomous agents can have several sources of information to learn from. We
illustrate these sources in gure 1.2, with a dedicated illustration for each one of the possible sources.

Environment
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Figure 1.2: Sources of information accessible for an agent: thpassive perception as source 1 (for
humans, through eyes and sensors, for example, for autonomous agents) ; source 2 action illustrated
by a hand) and source 3 interactions that can take place between several agents that communicate
with each other or transfer knowledge through other forms of social activities.

The most basic source of information is perception which refers to the agent acquiring information
about the environment, for example, objects in 3D. On the right hand of gure 1.2, we present the
perception through the data that are received by the agent, source 1, through its sensors (eyes in humans’
cases, but in the context of an autonomous agent, it will be, for example, a camera or other types of
sensors or modalities). In the domain of computer vision and machine learning, usually, the agent receives
images from sensors like the camera in 2D or in video streams or directly uses a public dataset of images
as input of the agent. From the perception, the agent builds a visual representation of the environment.

Apart from the perception, the agent can take action and learn from the feedback of the environment,
thanks to a reward for example. In gure 1.2, this is represented by source 2, marked as a hand that can
take actions. A simple example is that an agent can learn the representation of an object by interacting
with the object. Additionally, in sensorimotor activities, perceptual activities and other interactions are
tightly coupled or cannot be clearly separated.

Besides the interaction with the environment, there are also other possible interactions, for example,
social interaction. In gure 1.2, the interaction is represented by the source 3. The agent can further
have social interactions to transfer acquired knowledge from one agent to another, illustrated ingure 1.2
(with encircled agent 1, agent 2, agent 3). Possible interaction includes interaction with human [35] (or
social interactions) to complete perception and to guide learning. To learn the identity of an object, the
agent can learn from social activities or a human teacher. Or social interaction, for example, if an agent
does not know what a "cup" is, it can learn from another agent who has already constructed the ontology
enriched enough to include the notion of a "cup”. Through social interaction, the ontology of one agent
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can be transferred to another agent so that they share the same tion of ontology.

Recent advances in reinforcement learning show more integration of the cognitive theory and di erent
mechanisms inspired by neuroscience. In reinforcement learning, agents learn to perform tasks and
take actions to maximize the reward. Compared to the common computer visioneld, the action and
interaction can enrich its constructed representation

1.1.2.2 Some cognition theories encourage interaction

As we have mentioned, some cognitive theories from psychology and neuroscience have inspired arti-
cial intelligence, leading to its success today, as reviewed in [64, 21]. For this reason, we give a detailed
focus on the cognition theory related to the learning of an agent.

We hereby show the essential problems and deition of cognitive development, its construction from
a psychological or neuronal point of view, and its applications. We also include the constraints that we
consider in this study.

Cognition can be seen as among theast steps toward the de nition of intelligence. Cognition theo-
ries explain how the mind works, including dierent mechanisms such as perception, action, reasoning,
or in problems solving and, decision-making, and planning. It has thus inspired the advances of Al.
The cognition theories show how the agent understands and adapts to a dynamic environment [90]; or
how the agent constructs representation and reasons based on them. This can also be extended to the
understanding of the phenomena of conscience, that will not be addressed in this thesis.

An essential problem in cognition is to build symbols that are not arbitrary but meaningful. In the
literature, this is also referred to as the symbol grounding problem. A famous example is in the "Chinese
Room Argument" [148]. In the "Chinese Room Argument”, a man is isolated in a room, without truly
knowing how to speak Chinese, but a dictionary is given to him with answers to di erent questions. With
the dictionary, the isolated man can somehow answer all the questions that were given to him in Chinese
from outside the room. But he does not truly know how to speak Chinese. Similarly, an autonomous
agent can build a representation of the environment from its perception or other sources of information,
but will it be able to understand the representation it builds, or are they merely symbols that the program
manipulates? Notably, it is di cult for the agent to understand the meaning of these symbols.

In the literature, for example, the sensorimotor theory of cognition development considers interaction
as the core of cognition. The agent learns based on information received from the sensors, by interacting
with the environment, it will learn the existence of an object and the associated perceptual invariance of
the object. It can thus construct the representation of the environment and use this invariance to actively
explore and compose its perception.

Di erent points of view in cognition theory can be divided into several categories: for example, the
relativism believes that the truth is relative, the reasoning is relative to some standpoint which can be the
observer, the place, or the cultural context. Forconstructivism, learning is considered a dynamic process
of adaptation and construction in order to understand the meaning of di erent situations. Learning is
a gradual and developmentally constructed process and can be without prior knowledge. Learning can
be active when an agent gets the feed-back of its actions from the environment. Piaget [128], considers
that learning occurs in several stages: therst stage is the sensorimotor stage that occurs before 2 years
old. In this stage, infants discover and explore the environment via actions and senses. As infants begin
to construct their mental representation of the environment, they are developing a notion of ontology.
The concept of symbols and languages igst learned and understood by infants between the ages of
2 and 7, but they do not have the capacity to abstract. As they reach the age of 6 and 12, they
begin understanding mathematical operations, developing logic and reasoning skills. Their capacity for
abstraction is developed between the ages of 11 and 15. In addition, in the theory of Piaget, intelligence
is considered as the autonomy to adapt to the environment and consists of botlaccommodation and
assimilation. Assimilation refers to expanding previously acquired knowledge with new concepts, whereas
accommodation refers to the adjustment of old knowledge to accommodate new ones.

From a more general point of view, the notion of cognition is related to actions and interactions
(possibly with humans or objects). From a sensorimotor point of view, perception (source 1) and action
(source 2) are coupled, as shown ingure 1.2. The motor can guide the sensor, as in the case of young
babies, they explore what an object is by taking actions and exploring. Interaction with the object
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enriches the notion of ontology by object aor dance, that is, the possible actions related to an object:
the notions of a ordance related to the object, for example, a "cup" is related to "drink", as to a "chair"
is related to "sit". This notion of a ordance can be integrated into the learned representation.

1.1.2.3 Passive perception to support cognition

In this thesis, we choose to focus on the perception of the autonomous agent and take it as the only
input information as a rst and necessary step toward a more inclusive interaction. Indeed, even if a more
active strategy seems advantageous, this one has to be supported by perception, the subject on which we
focus our study. Public datasets are frequently used as inputs by machine learning approaches because
they contain perceptual information of images. Meanwhile, in some more complicated arti cial intelligence
models based on the cognition theory, interactions are often applied to obtain extra feedbacks. For this
reason, perception, even if passive, is a central way to acquire information and thest step towards
a complete cognition model enabling the agent with all the possible sources of information. For young
infants, they are often attracted by visually salient objects, perceive and eventually take actions such
as touching to interact with the objects. For a task like object recognition, the agent needs to separate
di erent objects and recognize those that are similar. Through perception, perceptual invariance, such
as the invariance in the perception when it is originated from dierent views for the same object can
be built, which is crucial for the separation between dierent objects. For the same object, although
the perception might vary from time to time (for example, due to a change of illumination), there is
invariance for the same object. Recognizing dérent objects is nevertheless a dicult task, requiring
the agent to learn perceptual invariance. Furthermore, this variation in the same object has to present
a certain temporal consistency [37], as an object will exist for a certain period, without any acute drift
into another object. Therefore, the perception is crucial for the agent to learn dierent objects and the
associated invariances.

1.1.3 Continuity hypothesis for discrimination

As previously introduced, the source of information for the agent to construct its representation of the
world is based on perception. Thus in this section, we introduce the dedicated criteria for the separation of
di erent classes, which is a purely statistical one in section 1.1.3.1. In addition, another notion, temporal
consistency, will be introduced as a part of our hypothesis. Temporal consistency is an important aspect
of perception from which humans form object hypotheses and tell if the objects presented to them are
the same. With this regard, we will partially integrate the temporal consistency in this work as a rst
step to guide continual learning.

1.1.3.1  Pure statistics complemented by a temporal continuity

In this thesis, in our proposed approach, we consider that the agent builds representations only from
passive perception. While the agent builds its clusters, it relies only on the internal representation learned
automatically to separate an object from another when learning is unsupervised. As with ontologies that
we have previously introduced in the section 1.1.1.1, the agent will need to either create the notion of
a class or recognize an existing one. Therefore, it should be able to distinguish and separate dissimilar
classes from those that are similar. But in our case, the separation criteria will be purely based on statistics
of the representation it builds. Ideally, it will work well in many cases, but some classes are statistically
close and dicult for the agent to separate without any extra sources of information that will come from
action or interaction in other more complex models based on the cognition theories. Without action or
interaction, in some cases the separation of these classes is hard if it is only based on representation built
purely from passive perception since the learning capacity of agents is limited in these cases. Indeed,
separation between classes of objects is somehow arbitrary when uncorrelated with the meaning of objects
for the activity of the agent. To alleviate this problem, one possible solution is to apply the bootstrapping
strategy, which is to use the learned knowledge (for example, the constructed representation) to guide
learning in the future. But still, it will depend entirely on the self-constructed internal representation
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by the agent. Furthermore, humans are very adept at learning baed upon experiences or transferring
knowledge, but this is usually not the case for agents that require much training.

As a purely statistical approach may su er from intrinsic limitations, to alleviate this problem, we
propose to make use of the spatio-temporal consistency. It refers to the fact that in a certain space or
time, an object will not make a swift shift into a di erent place (or time) but instead stay visible for a
certain time.

We will target the problem of continual learning, and this hypothesis of temporal continuity makes
sense in this context, because our "sampling rate" of observations is high enough compared to the physical
changes of the observed objects. This is a common assumption for many approaches modelling the
dynamics of physical systems, e.g. Markov models, Bayesialters or more recent methods for (visual)
tracking. In addition, this hypothesis is reasonable in particular in the perception of an autonomous agent,
which perceives sequences not in a chaotic order but with certain temporal continuity. For example, the
agent will rst learn the category "cup”, followed by other categories, instead of seeing all the images of
all the categories at a time. To simplify the conception, in this thesis, we will not take into account the
classi cation of di erent objects within a category. This relationship is not always clearly de ned and may
depend on the context. Thus, the notion of object, object category and class are used interchangeably
here. The denition of temporal continuity is implemented in the class-by-class sequential order in our
scenario, which is rened to a class-incremental one, in order to evaluate and to study thoroughly the
implications for our proposed model (Chapter 3). This simplied scenario will further be achieved by
integrating the case where the same object can reappear multiple times (Chapter 4).

1.1.3.2 A dedicated testbed

Our objective is to build an autonomous agent that can learn in an unsupervised and continuous way.
Presenting instances of objects in a random order to the system in machine learning is common to most
machine learning algorithms, but is not realistic for an agent evolving sequentially in its environment.
Thus, we suppose that objects will not appear in a completely chaotic order as opposed to i.i.d. and
randomly shu ed image sequences. But an autonomous agent will perceive objects with some consistency
in space and time. Continuity in perceived objects is consistent with the fact that the position of an
object in a space will not change drastically over a short period of time [19], and that their motion, if
there exists any, should be continuous and relatively slow. In practice, babies learn from fewer images of
cats and dogs than all that are presented in datasets used for machine learning algorithms to distinguish
cats and dogs.

Presented to the model are therefore class-by-class image sequences afrdnt categories. We there-
fore rst show the agent images of the same class before moving on to images of the next class based
on a public dataset. The identities of these classes are, however, not revealed to the agent and are
learned automatically through recognition or detection of a novel class. Ingure 1.3, we give a simple
illustration of how the testbed is created and deployed in our learning scenarios. We took the example
of Fashion-MNIST, a common public dataset that contains images of di erent categories of clothes. The
input images sequence is constructed with temporal continuity by showing the images from class to class.
That is, the agent will rst perceive images of T-shirts, of trousers, of shoes etc.. Each of the categories
be visible for at least a certain duration of time, i.e. a certain number of images. By introducing objects
this way, we aim to get close to a realistic video stream. We have to admit that the so deed scenarios
are far simpler than taking a video stream as input (this will add di culties such as noise, background
environment, object following etc..), but the problem of unsupervised cognitive development still remains
very challenging which motivates us to develop our approach in a simpli ed and controlled environment,
in order to bring the results of the study to more immersive environments as a second step. One has to
note that in a more immersive environment, a robot can decide to change the object it observes, which
can in some way provide additional information for cognitive development (see next section).

The change in input and the arrival of new categories needs to be detected automatically and on-line
if we want a system that continuously learns a representation that is pertinent at each point in time
during the training. Our proposed system exploits this information to learn in an autonomous and self-
supervised manner using self-determined internal labels. The creation of internal labels depends on how
the clusters were created and the task itself (i.e., the order it sees objects), it will indicate what are same
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Figure 1.3: Model simulating the temporal continuity of perception: the agent perceives in a class-by-
class order instead of completely randomized sequences. This continuity is inspired by the spatial-
temporal consistency that at a given point in the space in a very short period of time, there is
no shift between objects. This helps the model determine its object hypothesis (that babies can
understand starting from a very young age, an object will exist for a certain time), from which the
model determines object identities by distinguishing unknown objects from learned ones.

or di erent entities, but not be uni ed from a common de nition of ontology and classes since ground
truth supervision is not used. For this reason, an internal label is a form of "pseudo label". Consequently,

it is necessary to assign each cluster created by the agent to a corresponding category via a post-labeling
process. In our approach, this is not part of the training process and is only applied during the evaluation
of a model’s prediction of clusters.

1.1.3.3 The integration of cognitive development

While we have taken direct perception as the only input, other sources can be considered based on a
more general view of cognitive development. The action and interaction can be used to generate pseudo-
labels that can guide learning. In other words, the agent can utilize object a ordance to di erentiate
between a "cup" and a "light bulb”, for example, even though they share some similarities in shape since
they may be both cylindrical, the action associated with them is dierent. Other individuals or agents in
the environment may have also constructed pseudo-labels of object identity. As a result, the agent can
complete or adjust its ontology assumptions.

A more general example of the integration of action and interaction can be a model that interacts
with an object pursuing a goal at the same time (goal-directed) or motivated by curiosity (intrinsic
motivation) [56, 125], this allows to further incorporate speci ¢ mechanisms such as attention. The agent
can therefore actively choose what to learn [144] or what to attend or formulate its own curriculum of
learning. In this way, extra feedback is allowed, as well as the integration of action and interaction to
form a model that incorporates all three sources of information mentioned earlier.

Previously, we have introduced, from a general point of view, the implications of cognitive theory
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and di erent related targeted properties in di erent Al approaches. Among all the properties, autonomy
is an essential part and is ensured by dérent sources of information; perception is a key point that is
accompanied by action and interaction that allows a full cognitive architecture.

In the next section, we will brie y review some of the approaches and advances in thesld of machine
learning and arti cial intelligence. We give an overview that is centered on brie y introducing the general
ideas of these approaches and a particular focus on how they allow the ful Iment of the targeted properties
of arti cial intelligence.

1.1.4 Machine learning advances: achievements and drawbacks

In this section, we will outline some of the achievements in computer vision and machine learning.
Moreover, we will briey resume the achievements and drawbacks of these approaches regarding the
targeted properties in Al.

We have previously reviewed several properties commonly required in artiial intelligence systems in
section 1.1.1.3: the autonomy is the capacity for an agent to learn, take actions, and make the decision in
an open and unconstrained environment; the capacity to generalize, which is to extrapolate the acquired
knowledge onto unseen data; plasticity and stability refer to the capacity to acquire new knowledge and
not to lose completely what was acquired in the past.

Computer vision focuses mainly on the perceptual and, notably, visual information as input, from
which the model often needs to extract features to solve derent tasks. SIFT and SURF are examples of
classical feature extraction approaches in computer vision. However, these features remain handcrafted.
From a cognitive theory point of view, this feature extraction is similar to humans’ abstraction ability.
Compared to handcrafted features extracted by classical computer vision approaches, deep learning learns
more e ective representation by applying deep neural networks. Deep learning has shown state-of-the-art
performance but requires a large amount of data for training using deep structures to guarantee the model
can generalize well and to avoid over- tting.

In general, learning can be supervised or unsupervised. As introduced previouslsupervised learning
is to learn with some type of supervision, or ground truth labels to train, thus is of less autonomy in an
unknown environment when access to annotated data is limited.Unsupervised learningis independent
from the ground truth labels. Taking clustering as an example, the underlying criterion for grouping
examples is mostly a purely statistical one taking extracted features as input. However, disentangling
statistically ne-grained examples without other sources of feedback like actions and interactions may
be dicult in these cases. Although there have been some recent progress with deep learning-based
approaches, other challenges can come from the dulty of probability and uncertainty estimation of
these models.

In addition, deep learning models often require an i.i.d. dataset with randomly shued images. On the
contrary, in a dynamic environment, agents receive non-stationary data streams. Thus these models often
cannot guarantee the autonomy of an agent in an open and unknown environment. In such a scenario,
the dynamics of its perception often engage the agent to self-adapt to changes inside the environment,
and o ine approaches are little applicable in an online learning scenario. Approaches in the few-shot
learning and continual learning domain partially respond to these limitations. In few-shot learning, the
models target the capacity to be able to generalize even if only a few data points are accessible. But
it is challenging due to the fact that common deep learning approaches usually demand large amount
of data to be able to generalise and to avoid overtting. In continual learning, the agent continuously
learns from a non-stationary data stream and constructs knowledge of new tasks or objects based on the
previously learned ones without innitely memorizing past observations in its memory. In particular,
when it comes to learning the best strategies for derent tasks, the continual reinforcement learning
approaches are often applied in this scenario. Like in common reinforcement learning approaches, agents
are required to learn to take actions in a certain state to optimize the expected overall reward they can
get overtime, but learning is continuous and based on the knowledge accumulated during previous tasks.
The autonomy required in this context is to learn in a continuous manner while adapting to the dynamics
of the environment the agent is exposed.

Meanwhile, when the agent needs to learn continuously, it can also su er from other problems like
catastrophic forgetting, related to the stability-plasticity dilemma as introduced in section 1.1.1.3. In
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oine deep learning approaches, this problem is not a constraint on its performance. The entire dataset
is at the agent’s disposal with all the classes or tasks it needs to learn from. However, in continual learning,
while learning incrementally new tasks or classes, it will potentially change the learned representation of
the past due to the optimization of new tasks or categories. The learned representation can be evolving all
the time. Meanwhile, the agent should not forget or destroy the performance of past tasks and categories
completely. Although the problem of catastrophic forgetting is not studied explicitly in this thesis, it

is still a crucial aspect that impacts the performance of dierent continual learning approaches. But
in the targeted continual learning scenario, the catastrophic forgetting problem needs to be alleviated
for the reason that the model can not retain each one of its past observations in the memory, while
the data points on new classes or tasks arrive in an online manner. The catastrophic forgetting will
principally in uence the performance of old tasks while optimizing new ones. In the literature, to alleviate
catastrophic forgetting, the model is often paired with a memory system that (selectively) stores some
of the real training examples or uses generated examples for the rehearsal of learned categories. While
using replay memory for real examples might be harming the capacity of generalization of model [170],
for the capacity of storage is limited, but the model relies completely on them to recover the performance
on past categories.

But among unsupervised continual learning approaches, the agent will have no access to the ground
truth labels. However, as the environment is dynamic, changes can occur during learning while the agent
will have to detect them on its own. Therefore, drift detection is important for both the autonomy and
the adaptability of the agent to decide if the object is known/unknown when a new category appears.
This is also part of the construction of the ontology, as we have previously explained in section 1.1.1.1.
It is a challenging problem, as, in some cases, the model can erroneouslget arbitrary high con dence
with irrelevant images or an unknown category. And the drift detection needs to be performed online,
which implies that the model should estimate statistics in an online manner without having the entire
dataset at a time. In this context, the online learning scenario itself can be causing additional problems,
such as evolving representation of learned categories while optimizing new tasks or categories. Although
usually not applied in machine learning or computer vision approaches, drift detection can come from
the feedback of an action that is related, for example, to object aordance. Another possibility is to get
additional feedback from the interaction with other agents but these topics go beyond the scope of this
thesis.

1.2 Contributions

Previously in this chapter, we have briey introduced some notions in cognitive theory that are in
favor of learning through perception and through other sources involving action and interactions that
provide additional feedback to the agent. Several properties are targeted to elaborate such an agent,
such as autonomy towards the adaptation in an environment of uncertainty or being able to explore and
generalize to unseen but similar data or task structures. From a more general point of view, we have
shown how the integration of cognitive theory and models may be a pertinent approach of satisfying these
required properties.

We will hereby address the contribution of this thesis with regard to these required properties. We
target the context of unsupervised continual learning for object recognition. As we have mentioned,
continual learning itself remains a challenging issue. It raises problems that commonioe deep learning
or machine learning approaches do not need to target due to the non-stationary and non-i.i.d. nature of
the input data stream that is contradictory to that of o ine learning. In this work, we apply a hypothesis
on temporal consistency through the class-by-class order in the objects’ presence. Although this class-
incremental learning seems to be a simpltcation of the problem de nition, in practice, it is plausible from
a cognition point of view regarding how humans can make object hypotheses and how humans distinguish
an object from another.

We propose an approach of self-supervision to guide continual representation learning. The core
of our contribution lies in the determination of self-supervision through the internal label determined
autonomously through novelty detection and recognition, integrated into an existing model in the lit-
erature originally targeting unsupervised continual object representation learning. In this regard, our
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model is able to detect and adapt to the category changes exposdd it and optimize the model under
self-supervision training on both real batches of images corresponding to the current category and the
generated ones for generative replay to alleviate catastrophic forgetting.

We have considered two dierent scenarios. Each is accompanied by a dedicated model. Thest
is to consider the problem without object review and the second with the review of objects. Although,
at rst sight, they may seem to di er little, the fact that objects may reappear or not, changes the way
how the agent is able to learn without supervision, as we will see later. In both cases, we introduce a
self-de ned label to guide learning, i.e. the training of our proposed models is self-supervised. To build a
proper internal label, the review of objects requires a learned object to be recognized and to distinguish
the unknown objects from learned ones, but in the other case (without review), the agent needs only
to detect the unknown objects. The model should neither assign too high con dence to an unknown
object which leads to false recognition and results in the failure in learning new objects, nor should
the agent constantly treat learned objects as new ones. Technically, it may seem a simmd solution
for the model to always expand for every object it encounters. But it will tend to overt and create
separate representations for a single object (what we call "over-segmentation") and ultimately fail to
generalise over possible appearance variations. Besides, this is actually against what happens in humans’
construction of cognition.

In the rst scenario, we have proposed a mechanism allowing the detection of unknown objects using
the Page-Hinckley test and use novelty detection as a process to create an internal label to guide the
model in learning new objects. In this way, the model can automatically detect the number of clusters
and discriminate di erent objects without over-segmentation of clusters. In the second scenario, we have
proposed an approach to both detect unknown objects and recognize and distinguish learned ones. It is
based on the statistical hypothesis test called Hotelling t-squared test that we have moded and adapted
for online operation by estimating rst and second-order statistics of learned representation for dierent
categories during learning.

Our model responses to the previously mentioned requirements, typically. For theautonomy, learn-
ing is self-supervised by the novelty detection in our model and learning remains independent of label
information. This also ensuresplasticity in the way that the model adapts to changes in the distribu-
tion of input objects accordingly. Overall, the clustering produced by our model allows to more easily
separate the real (ground-truth) classes in the dataset, i.e. corresponds to a better representation of real
object categories. The Hotelling t-squared test adapted online allows us to both recognize categories and
introduce new ones. This demonstrates the capacity ofjeneralization of our model.

1.3 OQutline

Here is the outline of dierent chapters in the manuscript. In Chapter 2, we will rst give an insight
into the general introduction of di erent approaches and frameworks in the eld of machine learning and
deep learning. We will rst start by reviewing the most frequently used neural network architectures that
will include discriminative models and generative models. Afterwards, we will show some advances in
deep learning and the application of these deep neural networks in supervised tasks like classi cation and
unsupervised learning tasks that are tightly related to our context of object recognition. We will expose
their advantages and limitations as oine learning approaches and how they were or were not able to
respond to the requirements of learning with autonomy in a continual and unsupervised scenario. We
will introduce the literature on continual learning, which is contrary to the common o ine approaches
and corresponds the most to our context of an autonomous agent that continuously learns for object
recognition. A special focus will be given to the model of CURL, as itts most of our objectives of
unsupervised continual learning. We will introduce its architecture and how it is able to learn object
representations in such a non-stationary context. We will also outline the state of the art in novelty
detection that is adapted for oine learning and concept drift detection for data streams and positioning
our work for comparison since we consider that without supervision, novelty detection or change detection
is an important point to ensure the agents’ autonomy in a dynamic environment, it is the key for it to
detect changes andrst step towards better adaptability.

In Chapter 3, we rst place ourselves in a simple scenario in which we suppose a class-by-class
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sequential learning order without review of the objects. We will introduce a statistical test, the Page-
Hinckley test, with its common use in novelty detection. We will show why the Page-Hinckley test
is specically adapted in our targeted context. Later, we will explain how the Page-Hinckley test was
adapted and applied to detect the category change during learning. In our model, we use it as an essential
process to create an internal label and to guide learning without using external supervision. Through
di erent experiments, we will be able to compare our method based on the Page-Hinckley test, with other
state-of-the-art models, in a simple and harder scenario to examine their robustness facing categories that
are statistically close and hard to separate. In the meantime, we will also study the factors that may
impact the performance of dierent models, such as the number of components that helps validate and
justify our results.

In Chapter 4, we further suppose a more complicated scenario in which the object can be reviewed.
We give a special focus on this scenario since, compared to thest one, it introduces more di culty
and complexity in self-guided learning. Not only does the model need to detect unknown categories,
but at the same time, it will need to give a proper estimation of the past categories that eventually
allows to recognize learned categories. The model will need to target both the di culties in the detection
of unknown categories and that of recognition while the learned representation of past categories has
evolved. Our second proposal is to use the Hotelling t-squared test, for which we wiltst give a general
introduction on how it is applied to common o ine scenarios. Afterwards, we will show the di erence
between an o ine and an online scenario, for which we need to adapt the test online. We will introduce
the approaches that we have applied for online estimation of the parameters and their integration in the
Hotelling t-squared test, to recognize objects and detect new categories in our model. Finally, our model
can use this process as a self-supervision that replaces the ground-truth label to guide learning.

Finally, in Chapter 5, we will draw our conclusions and present some perspectives of this work.
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Chapter 2

State of the art

Computer vision and deep learning have seen tremendous advances throughout the past decaces.
Promising results have been obtained in various tasks like image classi cation, object detection, image
segmentation and 3D reconstruction just to name a few. Classical feature detectors and descriptors
like Harris corner [63], Scale-invariant feature transform (SIFT) [104, 105], Speeded Up Robust Fea-
tures(SURF) [13], were commonly used in di erent computer vision tasks. The arrival of machine learn-
ing technics in the 1990's and 2000's, led to more ectiveness and better performance in visual tasks
like classication and regression for many applications. But these approaches based on "hand-crafted"
features are outperformed nowadays by deep learning, towards which more and more attention has been
drawn.

Deep learning could be seen as one of the most popular recent approaches. In this chapter, we will
brie y introduce basic notions in deep learning and deep neural network models concentrating on the
computer vision domain. Typically, as mentioned in the previous chapter, in this thesis we focus on the
context of continual learning, its de nition and its main categories of approaches in the literature. We
will also review the state of the art concerning novelty detection, which is important for an agent to
automatically detect the arrival of new categories and adapt to changes in the input data distribution.

2.1 Deep learning

The idea of arti cial neural networks has its origin from the human brain where billions of biological
neurons are connected between each other. As Hebbian theory[69] stated, "cells thae together wire
together”. Neurons spark to transfer information. Due to plasticity, human brains learn and acquire new
knowledge. Inspired from the biological neurons, the "articial neuron" was rst proposed in [111] by
McCulloch and Pitts in 1943. Till today, arti cial neurons have still been the most basic unit of some
neural networks, yet deep learning has witnessed various neural network structures prosper.

As mentioned in Chapter 1, depending on whether learning involves ground-truth labels, machine
learning could be divided into supervised or unsupervised approaches.

De nition 2.1.1 (Supervised learning) Supervised learning approaches require accessible ground truth
label information on training instances. In supervised learning, a model is trained with these annotated
examples to make its prediction from the input data to be as close as possible to the ground truth labels.

De nition 2.1.2 (Unsupervised learning) Unsupervised learning approaches are independent of ground
truth labels, and models are trained on unannotated data.

Besides, in some cases, only a few annotated data or label information is available over the entire
dataset, in this case, we use the term "semi-supervised" ; Another terminology is "weakly supervised"
which refers to the case if the algorithm is under weak supervision or uses self-generated pseudo labels
to learn.

31
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De nition 2.1.3 (Weakly supervised learning) Weakly supervised learning refers to learning with
weak supervision, which refers to supervision that is either incomplete or noisy (inaccurate).

Among numerous tasks, classtation or regression are the earliest tasks researchers have tried to
solve with deep learning.

De nition 2.1.4 (Classi  cation and regression) In classication, the model needs to predict the
class ID of a given instance, i.e. the model prediction is discrete and corresponds to the category identi-
cation. Whereas for regression, the target is real-valued and, in most cases, continuous.

Models for classication or regression can further be divided into discriminative and generative models.
In this section, we will briey review di erent neural network models, their architectures, and recent
applications in deep learning.

2.1.1 Discriminative models

Discriminative models refer to models that explicitly discriminate the input in the target space,
predicting their category in a classication task or their target values in regression.

2.1.1.1 Multilayer perceptrons

Structure of multilayer perceptrons

The multilayer perceptrons (MLP) is a discriminative neural network model used for classication or
regression tasks[119]. As its name suggests, "multilayer" sigrds multiple fully-connected layers that are
composed of neurons (perceptrons): the input layer, hidden layers, and the output layer. An illustration
of the structure of the MLP can be found in gure 2.1. The input layer refers to the images that the
model perceives, and the output layer refers to model output, for example, in classi cation tasks, the
model output is the predicted class. Each hidden layer and the output layer are fully connected to their
respective preceding layer, such that the activation of the preceding layer forms the input of the following
layer. Neurons have weightsW associated to their incoming connections and biasel as parameters of
the model. The model parameters need to be learned through an optimization algorithm during training,
which will be discussed more in detail later.

More specically, for an MLP with n layers, let x be the input vector, hy...h,1 be the activations
of the input and hidden layers, and W; the weight matrix of layer i. Then the output y of the model is
obtained by computing the activations of each neuron, layer by layer with the following equations:

ho= (W] X+ k) (2.1)
hi= (W hi1 +h) (2.2)
y= n(WnT hn1 + bn) (2.3)

In MLP for each layer, there is also an activation function that may add non-linearity to the model.
Common choices for activation functions aretanh, sigmoid or ReLu. with tanh as

es e
N Xt ex (2.4)
with sigmoid as
1
e (2.5)
and RelLu as
n = max(0, x) (2.6)
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When the MLP network is used as a classer, the softmax function is often used after the output layer
of the MLP, with the softmax function de ned a:

softmax = (2.7)

T eyi
Training of multilayer perceptrons

Training of an MLP is composed of two phases that are alternated and repeated several times for each
example: the rst one is the feedforward phase, during which the input is fed to the MLP to compute the
model output. This output is then compared to a target value (in supervised learning), and an objective
function (or loss) measures the error. Depending on the task, the objective function could be for example
the mean squared error (MSE) between the model output prediction and a target value, which can be
used for regression. Assuming thal as target, and § as model prediction, the MSE loss is deed as

1 N
Ly. =5 O vi)? . (2.8)

During the second phase, neural network parameters are then updated through backpropagation.
The loss function is computed considering the derence between model output and the target, and the
model iteratively optimizes this function, e.g. by using gradient descent In the literature, there are many
optimization algorithms, for example Stochastic Gradient Descent (SGD), Adam, Conjugate Gradient
(CG), BFGS. Formally, the equation of gradient descent could be written as:

W= W — LW b) (2.9)

b=b —L(W, b) (2.10)

with  being the learning rate that determines the amount to update the parameters at each iteration.
The learning rate is one of the hyperparameters of the neural network model, that, unlike weightVV and
bias b, is not learned by the model but instead tuned manually, and it is crucial to choose an appropriate
value. A too large value will induce more changes in the network parameters, which might cause learning
to diverge. Another important hyperparameter is the choice of network structure, especially the number
of hidden layers and the number of neurons present in each layer, which is a factor that impacts the
learning performance.

During training one needs to be cautious to avoid ovetting— the neural network model becomes an
expert on training data and generalizes poorly to others, test data for example. To prevent the ect of
over tting, the validation set is used for the application of strategies like early stopping— once the errors
on the validation start to increase, training would be stopped.

2.1.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) [92] are another common type of discriminative models. They
are known for their capacity to cope with structured data with a certain 2D topology and locally correlated
information such as images in computer vision tasks as mentioned in [94], and they also automatically
extract e ective features, as is reviewed in [93].

A de nition of common CNNs can be found in [184]: suppose that the input 2D images are noted as
X, through CNN they are mapped into y, the output layer predicting to which class x belongs to in the
classi cation scenario. CNNs are composed of stacks of layers: alternating convolutional layers of kernels
(Iters) and pooling layers followed by one or several fully connected layers that map feature maps into
an output vector or matrix with the desired dimensions. For classi cation, the output dimension would
be the number of classes with a softmax function as activation function) as shown ingure 2.2.

We will give a more detailed explanation for dierent layers: in CNN, "convolutional" takes its name
from convolutional layers, composed of convolutionallters. Compared to MLPs, in CNN, neurons are
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Input layer x  Hidden layers h Output layery

Figure 2.1: an illustration of MLP architecture: the input lay er x, the hidden layer h and output
layer y, and all the layers are composed of neurons that are fully connected between each other.
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Figure 2.2: an illustration of CNN architecture: CNN are composedof convolutional layers, pooling
layers and fully connected layers.

with one more dimension, the depth, and neurons are of 3D. For a convolution layer, its depth is controlled
by the channel number, referring to the number of Iters implied. The use of multiple kernels enables
the model to extract enriched information. Each convolutional layer will take the feature maps resulting
from the previous layer as input, and perform dot product through each kernel, resulting in a stack of
feature maps with the number of feature maps equal to the channel size. To note that the convolution
operation remains 2D locally within the width and height dimension, but fully throughout the depth
dimension. For example, for a given convolutional layer of channel siz&l, if there are 3 channels in the
previous layer as input, they will be convolved with N lters of kxkx3 resulting in N feature maps as
output. Convolutional Iters could be with di erent sizes in di erent convolution layers, and the kernel
sizek is among the hyperparameters while dening the architecture of CNN. For convolutional layers,
another hyperparameter is the stride, referring to the size skipped while sweeping kernels over the input.
Like in the MLP neural networks, activation functions, like ReLU or sigmoid, are also used in CNNSs.

Pooling layers are also used in CNNs, to sample for the maximum value (max pooling) or the average
value (average pooling) inside a certain local region (inside a kernel). For an illustration of how the
pooling layer works, seegure 2.3. Through the pooling layer, the dimension of the input is reduced by
retaining only the maximum or average value inside a kernel. The use of the pooling layer in the CNN
structure helps strengthen the translation invariance—in case there are locally some inaccurate parts, the
pooling layer will only take into account the largest or the average value inside a window.

In a CNN, more generic features of images could be obtained from thest/second layer of the CNN,
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Figure 2.3: An illustration of the max pooling layer of kernel size 2X2 and stride 2. In each sliding
window, to compute the output of the pooling layer, only the maximum value is preserved. Taking
an example of the rst sliding window, among "3,5,2,1" the maximum value is 5.

and as the structure goes deeper, the features become more and more spgtb0, 181]. As mentioned in
[181], the features obtained by therst layers are general, and could be applied in other tasks, thus giving
the possibility on the widely applied ne-tuning [53] technique in which the model is rst pre-trained on

a large dataset and then with a small learning rate ne-tuned on another dataset. It is benecial for
certain cases where the amount of data are limited, and the model is more robust compared to training
from scratch.

In recent advances, CNNs have an increasing number of layers, for example, VGG[152] proposed by
Karen Simonyan and Andrew Zisserman. In the VGG model targeting classi cation on the ILSVRC 2014
dataset, a deep CNN is constructed by stacking convolutional and pooling layers. VGG takes as input
images of size&224 224. The receptive eld size for convolutional layers are small 3 3), and max pooling
is of size with2 2 with stride 2. In GoogLenet [161], there are 22 layers applying "inception" modules
that are sparse blocks composed ofters (in parallel) of di erent sizes (1x1,3x3,5x5), and are stacked
together.

Though better performance is usually obtained with a deeper network structure, adding layers might
sometimes lead to the vanishing gradient problem, namely the problem that the gradient arriving through
backpropagation at the rst layers becomes very small. To target these problems in [68], ResNet is
proposed which introduces the concept of shortcuts or skip connections.

2.1.2 Generative models

Generative models learn the statistical distribution of input data, from which the model is capable of
sampling and generating new examples. Models like VAE [78] allow learning with variational inference
with deep neural networks and extracting higher-level information, called embedding. This notion of
learning semantic and meaningful representations of objects is also referred to aspresentation learning
or manifold learning.

De nition 2.1.5 (representation learning and manifold learning) In representation learning, the
model extracts semantic features by mapping images into an embedding space of lower dimension yet pre-
serving information related to their similarities.

De nition 2.1.6 (disentangled representation learning) the terminology "disentangled represen-
tation learning" is also mentioned, referring to the capacity of breaking the representation(disentangle)
into disjoint parts, for which a formal de nition could be found in [70].

By extracting deep features that encourage better disentanglement of di erent objects, the model could
construct a more robust estimation of object distribution.

2.1.2.1 Autoencoders

Autoencoders are neural networks that can learn a compact representation of input data by an encod-
ing and decoding process that reconstructs the input (see [165] for a review). The learned representation
is often of lower dimension than the input data. An autoencoder minimizes the reconstruction loss be-
tween the output and the input and uses backpropagation to update the model parameters. Formally,
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X Encoder Decoder
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Figure 2.4: An illustration of VAE architecture: the encoder maps the input into a latent space,
and the decoder reconstructs the input. Latent variables are supposed to follow a standard normal
distribution.

suppose that the input images are denoted ag, the encoderE and the decoderD and the embedding
vector z. Then the reconstruction of the decoderX can be obtained as:

z= EXX) (2.11)

%= D(z) (2.12)

During training, the autoencoder optimizes the reconstruction, i.e. the 12 norm between the output and
the input images.
arg rEnIiDn =|x X2 (2.13)

In the literature, there are also several variants of autoencoders — for example, denoising autoencoders
[173] (DAE). A DAE takes as input corrupted data and is trained to predict the original (uncorrupted)
image in a way that removes the noise, also referred to as "denoising".

2.1.2.2 Variational Autoencoders

VAE [78] is a generative model. Concerning its structure, similar to autoencoders, variational au-
toencoders are composed of an encoder and a decoder. In practice, for encoder and decoder, deep neural
network structures are used for better performances. The encoder maps the input images into a latent
space and the decoder reconstructs the input data from a representation in the latent space, i.e. the out-
put of the encoder, as demonstrated ingure 2.4. Yet its di erence from common autoencoders is that
the latent variables are supposed to follow a standard normal distributionN (0, 1). In this way, the VAE
learns the statistical latent distribution of input data by estimating the mean and the covariance of in the
latent space which allows the easy generation of (realistic) new images, a spe&ily that distinguishes
generative models from discriminative models.

Mathematically, as described in [77], letx be the input image, z the latent variable and the decoder
parameters, the distribution of the marginal likelihood p can be written as follows:

p ()= p(lz)p(z)dz (2.14)

The true posterior p (z|x) is considered intractable. Thus, it is approximated by q (z|x) the distribution
of the latent variable z learned by the encoder (with parameters), and by the distribution learned by
the decoder denotedp (x|z).

A VAE is trained to optimize the variational lower bound of the marginal likelihood or evidence lower
bound (ELBO). That is, VAE models optimize the reconstruction loss and a regularisation term based
on the Kullback-Leibler divergence Dk, between the variational approximation inferred by the model
d(z|x) and the prior distribution, the standard normal distribution p(z) N (0,1).

E(X) = Eq @m [P XI2)] Dk (9 (z[¥)p(2)) (2.15)
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Figure 2.5: An illustration of the classical GAN architecture: the generator takes a noise vector as
input and is trained to generate an image as realistic as possible, while the discriminator is trained to
discriminate these fakes images from real images. In that way, the generator and the discriminator
compete against each other.

The encoderq (z|x) and decoderp (x|z) are implemented as two neural networks similar to a standard
auto-encoder (cf. Fig. 2.4). By regularising the latent space to be close to a standard normal distribution,
the VAE can generate images that have never been seen by the model, In practice, for a given imagez
is sampled fromaphi (z|x) and the so-called re-parametrization trick allows to optimize the loss function
and backpropagate the gradient to update model parameters.

In the literature, several variants of VAEs have been proposed. For instance, the -VAE [71] is
a common approach in representation learning, that uses an additional regularization factor in the
original objective of VAE.

EX = Eq @p P XI2)] Dk (@ @X)llp(2)) (2.16)

This factor allows weighting the KL divergence regularization term such that by increasing the resulting
embedding is more forced to look like a standard normal distribution with diagonal covariance matrix, and
thus the dimensions of the latent space are more independant When = 1, one can nd the formulation
of a common VAE. As argued in [71], the use of factor could improve the "disentanglement” between
representation, which refers to a better separation in representation compared to a common VAE.

2.1.2.3 Generative Adversarial Networks

Compared to VAE, another model, Generative Adversarial Networks (GAN) [55], presents stronger
image generation capacity and can generate images of better quality. For the structure oGAN, see
gure 2.5. There is a generator and a discriminator "competing” against each other; the objective of
the generator is to generate images to be as realistic as possible. The objective of the discriminator, on
the other hand, is to distinguish the generated images from real ones. The generators take as input a
noise vectors from a certain distribution and transforms them into new images, and the discriminator
will estimate the probability of data being generated rather than being real data. Letx be a (real) input
image, andz some noise vectorD the discriminator G the generator. A GAN tries to maximize D (x)
(to obtain a value close to 1) and minimizeD (G(z)) (to be close to 0), resulting in a min-max game as
stated in [55]:

mén mDaxV(D,G) = Exp we o0 [109D(X)]+ E;p ,)[l0g(1 D (G(2)))] (2.17)

Apart from the traditional GAN, in recent advances in state of the art, several variants of GAN have
been proposed. For example, Conditional Generative Adversarial Networks (CGAN) [114] conditions the
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training of the discriminator and the generator on auxiliary i nformation y, guiding data generation with
respect to the introduced information. In CGAN, assuming some extra information asy to be conditioned
on, the loss function has become:

minmaxV(D,G) = Exp o 0 109DXIY)+ Ezp ,2)[log(l  D(G(zly))] (2.18)

Deep Convolutional Generative Adversarial Networks (DCGAN) [132] are another extension of GANSs.
Compared to the original GAN, several improvements in the deep neural network structure have been
made, notably in the use of convolutional layers to replace pooling layers. Batch Normalization is applied
in both the generator and the discriminator. In that way, DCGAN improved the stability of common GAN
structures and can learn robust representations in dierent tasks. Another variant is the CycleGAN [190]
that targets learning for image-to-image translation between two domains. In CycleGAN the input is
mapped from source to target domain, and from the target into source domain (forming a cycle), and
during this process, CycleGan would try to generate images as real as possible with respect to the
discriminator in both the source and the target domain.

In InfoGan [30], compared to the conventional VAE, apart from the "incompressible noise" noted a%,
InfoGAN has an additional input corresponding to the "latent code" denoted asc. The author proposed
a modi cation that concerns an information theory-related objective to be optimized. Concretely, the
model learns representations by constructing latent variables that maximize the mutual information
between the latent ¢ and the observations. With G(z, ¢) being the output of the generator, | (c; G(z, c))
the mutual information between the generator output and the latent code c, the loss to be optimized is:

mGin mE;a\xV| (D,G)= V(D,G) 1 (c;G(z,c)) (2.19)

with  being a regularization factor controlling the amount of mutual information. Again, similar to
-VAE, the proposal of InfoGan aims to target better disentanglement of learned representations.
In this section, we have briey seen di erent deep neural network structures in deep learning, including
discriminative models like MLP, CNN and generative models like VAE and GAN. In the following section,
we will focus on applications of these models in the domain of object recognition.

2.2 Object recognition

As mentioned previously in section 2.1.1, in object recognition, the model needs to classify a given
(image) input, i.e. determine its category. In the next few sections, we will briey review di erent
techniques that are used for supervised learning and unsupervised or weakly supervised learning for
object recognition.

2.2.1 Supervised approaches

Classical object recognition approaches are based on specvisual feature extractors, e.g. local his-
tograms of colour, shape or texture, or dictionaries of local patches like in Bag-of-Words representations,
followed by a classi cation method. In the simplest case, this is a k-Nearest Neighbor (kNN) [44] or a
naive Bayes classi er. But these techniques are limited by the expressiveness of the hand-crafted features
and their low dimensionality. Therefore, more advanced machine learning techniques based on Support
Vector Machines (SVM) [34] have become very popular and led to state-of-the-art results in the 2000’s.
SVM-based methods learn a hyperplane (possibly in a non-linear projection space) that corresponds to
the optimum separation of di erent classes and maximizes the margin. Although these methods allow the
learning of e ective models for classi cation and regression with larger amounts of training data, there are
still mostly based on hand-crafted features. Thus, with the growth of the complexity of tasks, the amount
of available training data especially image data and computational power, deep learning techniques based
on CNN have superseded these methods and led to state-of-the-art performance in object recognition.

Deep learning techniques haverst demonstrated their robustness in o ine supervised learning prob-
lems by using deeper neural network structures trained on a large amount of data. Starting with AlexNet
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(ILSVRC 2012) [87], deeper network structures of CNN could be found,followed by VGG [152] and
GoogleLeNet [161] with some later extensions and improvements, Inception-v3 [162] and Inception-
v4 [160], and then ResNet (ILSVRC 2015) [68]. For a more detailed description on the architecture
of these models, please refer to 2.1.1.2.

Most of these approaches rely on the assumption that the data are independently and identically
distributed, and need to be trained on large annotated datasets, and the more there are annotated data,
the better performance can usually be expected provided that the model has enough parameters.

2.2.1.1 Detection and segmentation

Classically, object detection approaches detect and localise objects of a given category (e.g. faces) in
an image. With the advent of deep learning, object detection [192] could be implicitly related to object
classi cation and object recognition, since, in the multi-object cases, the model indicates to which object
category it belongs to. Therefore, we would also like to introduce several object detection models and
give a brief review on the use of deep neural network structures in these models.

De nition 2.2.1 (object detection) In object detection, the model needs to detect object candidates
and corresponding regions. There are mainly two groups of object detection approaches: "two-stage"
approaches treat this issue in a "coarse-tone" manner starting with region proposals in form of bounding
boxes, and use them for training, which implies they only use part of the input images. On the other hand,
"one-stage" approaches use the full image to train the model end-to-end.

Two-stage "coarse-to- ne" approaches demonstrate higher accuracy in general, but one-stage ap-
proaches often provide faster solutions for object detection. An example of &vo-stage "coarse-to-ne”
model is the method based on "Regions with Convolutional Neural Network" (R-CNN) [53]. In R-CNN,
the authors rst use selective search to generate region proposals, that are regions containing possible
candidates of objects, and then train a CNN from region proposals for the feature extraction ofxed
length, and nally t (category-specic) SVM models for the classi cation for each category. The use of
a CNN in R-CNN allows to extract features from the region proposals, but the selective search in R-CNN
is relatively time-consuming, which is one of its limitations. Compared to the two-stage R-CNN [53]
approach, the Fast R-CNN[52] is of higher speed. The entire images are mapped through convolutional
layers. Then for regions of interest (object proposals), the resulting feature map from the convolutional
layer is passed through a region of interest (Rol) pooling layer, which is a pooling layer that maps regions
of interest on feature maps through max pooling. This allows the extraction of features ofxed size
regardless of the Rol size. Finally, the Fast R-CNN uses fully-connected layers for softmax probability
estimation and the regression of bounding box coordinators to r@e the initial region proposals.

The related approach Faster R-CNN [52] can be seen as a one-stage approach, as it uses an integrated
region proposal network for region proposals. Other recenbne-stageobject detection advances include
"You only look once" (YOLO) [135]. estimating the probability of an object appearing in an image
region. YOLO builds a regression model by taking the entire image as input and dividing it into a
grid, and using a CNN learning generalizable features for both the prediction of bounding boxes and
class probabilities. Yet as mentioned in [135], the limitation of YOLO lies in the detection of groups
of small objects. Later other approaches that are related to YOLO have been proposed, for example,
YOLO9000 [136] and YOLOv3 [137]. SSD[101] is another one-stage object detection approach. SSD
uses a CNN to map the input images into feature maps of derent scales and predict the bounding box
and con dence for dierent object classes with convolutional Iters. DEtection TRansformer(DETR)[23]
adopts transformer-based encoder-decoder architecture for object detection, combined with a bipartite
matching loss for prediction. Like other transformer models, the use of transformer based architectures
has allowed a self-attention mechanism to aggregate information from a sequence, could help in tasks like
removing duplicate predictions.

Extensions of existing object detection approaches could be found in other similar tasks, for example,
object segmentation. Here, apart from detecting the object detection, the model also needs to segment the
instances. Mask-R-CNN [67], is an extension of Faster R-CNN [52], that for each region of interest (Rol)
additionally predicts a binary mask. The Mask-R-CNN also allows pixel-to-pixel alignment of features
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with RolAlign, a pooling layer improving Rol pooling layer which w as originally applied in Fast R-CNN
as a layer for feature map extraction. By avoiding harsh quantization applied by Rol pooling, RolAlign
improves the alignment of features and avoids misalignment that could be caused by the quantization of
Rol boundaries.

Object detection addresses the problem of detecting and localizing objects within images, feature
extraction is mainly performed with di erent CNN-based network structures. Two-stage object detection
approaches are generally of higher accuracy, while one-stage object detection approaches are often faster.
Most of the approaches that we have reviewed until now are supervised. However, this supervision
is costly, and is not given in our studied setting. On the contrary, unsupervised object recognition
together with representation learning approaches may allow to extract features that are more relevant
to an unknown context and thus provide more autonomy in cases with unannotated data. Therefore, in
the following section, we will describe the main unsupervised and weakly supervised approaches in the
literature.

2.2.2 Unsupervised and weakly supervised approaches

Unsupervised and weakly supervised approaches are ded as approaches independent or, respec-
tively, little dependent on data annotation, a detailed de nition can be found in section 2.1. This signi es
that learning is more autonomous, referring to the fact that little or no external information, such as class
labels, are given or when the annotation is noisy. From this point of view, unsupervised or weakly super-
vised approaches are appliable in more general use cases since they have mex#ility and adaptability
even in unknown environments. In the following sections, we will rst take an insight into semantic
SLAM, an approach that is often used in robotics, and we will show the use of object detection and
recognition in semantic SLAM and their role in semantic information extraction. We will then outline
some unsupervised and weakly supervised approaches using machine learning and deep learning. We also
consider that for unsupervised object recognition, their performance is related to the model’'s capacity in
e ective representation learning; the relationship between object recognition and representation learning
will be discussed more in detail later.

2.2.2.1 Semantic SLAM

De nition 2.2.2 (Simultaneous Localization and Mapping) Simultaneous Localization and Map-
ping (SLAM) [39] solves a mapping of the environment and simultaneous localization of a robot or dirent
objects on the map based on its observations.

SLAM is widely used in the robotic eld for nding a semantic mapping for its environment and to
nd its location inside the environment, its application includes the navigation and path planning for
robots [120]. In SLAM, as [39] mentioned, probabilistic ltering algorithms are applied by traditional
SLAM approaches, such as the Extended Kalman Filter (EFK) in EKF-SLAM, a common Itering
approach based on Kalman Filter and estimation theory that is usually used to estimate states in a
dynamic system. The extended Kalman Iter in SLAM is often applied as an estimator for localization
on the map [39]. A concept related to SLAM, issemantic SLAM, which uses high-level semantic features
to attribute di erent categories of room or object identities to information perceived from sensors, which
works even without supplementary kinetic or angle position information which are required in traditional
SLAM. A review of this eld can be found in [62].

Semantic information extraction is also called anchoring in the literature [62]. Some existing methods
use traditional computer vision approaches with feature extraction based on SIFT [105] and SURF [13]
descriptors, for example. In [27], a SIFT detector and descriptor are used for object detection. Concretely,
SIFT [104, 105] extracts scale-invariant features, it rst detects the location of keypoints by nding
minima or maxima of the di erence of Gaussian that approximates Laplacian of Gaussian (LoG), and
uses orientation histogram for gradients in the neighborhood of detected keypoint to compute descriptors.
Di erent from SIFT, SURF [13] detectors using determinant of Hessian matrix for the detection of
keypoints, box lters are used in SURF approximating LoG. In SURF descriptors, the sum of Haar
wavelet responses is used to extract descriptors around the keypoint. The use of SURF in semantic
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SLAM can be found in [41]. An object detection module was integated for semantic segmentation and
object recognition, which allow the model to perform a semantic mapping of the environment. RGBD
(red, green, blue, depth) images are perceived from the sensor (a Microsoft Kinect camera) and converted
to a 3D point cloud. The authors rst remove oor-related information, and segment objects by creating
object clusters from 3D point clouds regarding the color information. For object recognition, 3 types
of features are combined: local color histograms, SURF, and 3D suats, with a bag of visual words
approach, to compute histograms for compares the similarity with all learned objects in each feature
space. Then, the authors train a feedforward neural network with the similarity score for an overall
similarity regression. SIFT and SURF extract useful information from the input images that are more
e ective and robust than raw pixels, however, they remain handcrafted Other examples of the use of
feature extraction in semantic SLAM in the literature can be found in [24, 25]. Here, instance recognition
and scene segmentation were considered for semantic information extraction, in the context of a robot that
learns di erent objects to construct its representation of the environment. The authors consider instance
recognition and scene segmentation problems by using color or depth information from an RGBD camera
in the context of mobile robots. For scene segmentation, the approach relies only on depth information,
and creates clusters of objects with regard to a distance metric.For object recognition, similar to [41], the
authors use 3 features of SIFT, color histograms (RGB) and point feature histograms (distances between
randomly selected points), to train a 3-layer feed-forward network that calculates a con dence metric of
similarity to training instances.

Recent advances in object detection and segmentation using deep neural networks have led to new
semantic SLAM approaches with increased robustness. Usingestive object detection models allows to
detect "object" candidates. Thus, compared to other feature detection and extraction approaches that
detect "generic" keypoints and require noise-sensitive matching, object detection gives more object-level
information that can be further re ned, for example using a Mask-R-CNN [67], an object segmentation
model as explained in section 2.2.1.1. Its application can be found in [141], where the author proposes
MaskFusion that tracks multiple objects, building 3D models for each object and background consisting of
surfels. For multiple objects, to associate each object with its model in the correspondence, the algorithm
applies Mask-RCNN for semantic object segmentation in combination with geometric segmentation. In
this way, MaskFusion enables real-time object-level RGBD-SLAM. [156] apply AlexNet to extract features
for place recognition. In [155] a CNN is used as a classi er and the model further uses a Bayesidter
to take into account the temporal consistency, for the semantic mapping of a robot.

The use of object detection and object recognition in semantic SLAM allows the model to incorporate
high-level semantic features. However, most approaches are not completely online or in real-time— they
need to rst extract features on the entire database for post-processing. In the state of the art, other
approaches often use machine learning or deep learning for object recognition.

2.2.2.2 Approaches using machine learning and deep learning

Deep learning has demonstrated its capacity to extract semantic representations. As mentioned in [30],
unsupervised learning is an ill-posed problem, for this reason, the capacity of the model to learnextive
representations is crucial for an unknown task since the "disentanglement” of the representation allows
"explicit separation of di erent attributes". Although "representation learning”, as de ned in section
2.1.2, is not necessarily "designed" for object recognition, we argue that a good representation learning
approach implicitly leads to better performance in object recognition. As remarked in [30], generative
models are among the solutions to learn such ective representation by creating or generating synthetic
data, a review can be found in [131]. In the next sections, we will outline several state-of-the-art models of
unsupervised representation learning with generative and weakly supervised neural network approaches.

Unsupervised generative approaches

Generative models like VAE are often used for representation learning, and are able to learn semantic
higher-level representations by means of a multi-layer encoder-decoder structure with a "bottleneck” in
the middle. In section 2.1.2.2, we described the architecture of Variational Autoencoder and several of
its variants. These models are capable of learning the distribution of objects of the training set and to
generate new examples. Here we would like to focus on the application of VAE in representation learning.
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In the literature, while using VAE to learn representations, reseachers often combined common VAE
with other statistical approaches or statistical-related loss functions to improve the disentanglement
of learned representation. For example, in [57], for representation learning, a VAE is combined with
a stochastic process — the Chinese Restaurant Process (nCRP) to learn a hierarchical representation
model. Total Correlation VAE [48] aims to learn "disentangled and interpretable representations" by
applying an information-theoretic representation learning approach. The proposal of [48] optimizes an
objective based on the Total Correlation [177] (a variant of the multivariate mutual information), as
an alternative to the traditional VAE ELBO objective function (refer to section 2.1.2.2) encouraging
disentangled representations.

Apart from its application in representation learning, [169] use a VAE to generate synthetic exemplars
during learning for object recognition, and synthetic exemplars motivate a feedback mechanism through
self-supervised learning using network prediction to further improve the learning of the model.

Though often used for representation learning, compared to other generative models such as GAN,
the capacity of generating synthetic data of VAE is limited. In addition, during training of the variational
autoencoder, it often needs to explore the trade-o between reconstruction accuracy of input data and the
disentanglement of learned representation. Apart from unsupervised approaches that are independent of
ground-truth labels, other approaches use weak supervision. In the next section, we are going to introduce
some of these weakly supervised approaches.

Weakly supervised approaches

In weakly supervised approaches, the models need to learn under weak supervision —supervision is
incomplete and could be noisy, but compared to unsupervised approaches that use unannotated data,
the weakly supervised approaches are often with some supplementary information in supervision. In the
literature, the Siamese Neural Network [22] is one of the solutions in weakly supervised learning, because
the ground-truth labels are not directly exploited in the training, but instead similarities from pairs of
input examples are learnt by indirectly using the labels. Concretely for its structure, siamese neural
networks project the input data into a lower-dimensional output space (embedding). They are composed
of two input and two branches of neural networks that share network parameters between them, during
training the model needs to learn from positive and negative pairs and is optimized with respect to the
similarities of their embeddings, i.e. attracting those that are similar and pushing far away from each other
those that are dissimilar, a principle that has been eectivly adopted later on by contrastive learning.

An example could be found in [83], where a siamese convolutional neural network is trained on
image pairs to learn their similarities of handwritten digits and letters from datatsets like omniglot.
Another example of visual representation learning of objects is [112], where a convolutional Siamese
Neural Network has been used for unsupervised representation learning in videos for an autonomous
agent. To this end, the proposed approach detects proto-object proposals based on object saliency, and
form similar and dissimilar pairs to train the Siamese neural networks. The Siamese neural network
models similarities between objects, via its optimization — similar objects become closer, and dissimilar
objects become far away from each other. A recent example of using the siamese neural network for
representation learning is SimSiam [31], but compared to the conventional training of the siamese network,
SimSiam uses no negative pairs. For a pair of inputs, their method applies a siamese neural network with
a shared-weight encoder, followed by an MLP projection layer. Then, a symmetrized loss is optimized
based on the negative cosine similarity between two model branch outputs.

2.3  Continual and incremental learning

As mentioned previously, in common oine deep learning approaches, during training the model
sees the entire dataset with numerous examples, and each example is seen multiple times. In scenarios
where the entire dataset is not available all the time during learning, common o ine approaches are not
appropriate anymore and not functioning well.

In that case, "continual learning" , sometimes also referred to as "lifelong learning" or "online learning"
in the literature, is a more suitable approach, since it studies the case of learning with non-stationary
distributions and sequentially arriving data, i.e. the model does not have the entire dataset at hand.
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There are also incremental learning approaches, and in the litature, these di erent terms do not always
have the same interpretation and are sometimes confused. Therefore, we will here give our de nitions of
them which will be used in this thesis.

De nition 2.3.1 (Continual learning) Continual learning is de ned as learning and adapting a model
such that training examples are presented by following a certain continuity in the data, e.g. dirent
learning tasks following one after the other. Previous examples cannot be presented again or only to a
limited extent, and the input data stream can be non-stationary.

De nition 2.3.2 (Incremental learning) In incremental learning, data samples are presented in a
sequential order to the model but are usually i.i.d., and the number of classes may be known in advance.
The learning algorithm needs to continuously update the model without forgetting the knowledge acquired
in the past.

And another notion related to continual learning is few-shot learning In both learning scenarios, the
model should not retain training examples innitely.

De nition 2.3.3 (Few shot learning) Few-shot learning refers to learning in the case where there are
only a few examples in training classes, which implies that the model needs to generalize on a new data
distribution using a very small data sample.

In this section, we would like to focus on continual and incremented learning approaches, where
the model needs to be built continuously or incrementally. Starting with few-shot learning, a rst step
approaching continual learning, we will show di erent few-shot learning models, followed by use cases
and approaches in continual and incremental learning.

2.3.1 Non-neural network incremental and continual learning approaches

Previously, we have seen some continual learning approaches using neural networks. In state of the
art, some approaches use other technics such as reinforcement learning and incremental learning. In the
following section, we will present reinforcement learning and its use in continual learning, followed by
other incremental approaches targeting incremental learning.

2.3.1.1 Incremental approaches

In the following sections, we will focus on the last scenario mentioned in section 2.3, the incremental
learning scenario in general. Facing the limitations of dne learning approaches based on incremental
learning [103] partially improves the application in the case where learning needs to be dynamic and
adapted to the arrival of new data. Refer to section 2.3 for a de nition of incremental learning. Their
application could be found in many elds. One common application is the online object tracking for
which the model needs to classify online the object and separate it from the background, please refer to
[1] for a review.

Here we present several approaches based on incremental learning of several traditional machine
learning techniques. We will show di erent incremental or online learning approaches and their limitation.
Incremental SVM[159] extends common SVM approaches as incremental by learning incrementally new
data and recursively constructing previous solutions for previous observations. The algorithm dynamically
updates support vectors for training. LWPR [172, 171] incrementally learn a nonlinear regression model
as a sum of the projection of local linear univariate regression models in several directions, and the model
uses Gaussian kernels [81] for the region of validity for each local linear model (receptiveld). But
like many other approaches in this domain, LWPR remains a regression method and provides no explicit
feature extraction.

Apart from incremental SVM and regression, other incremental learning approaches use clustering.
Clustering refers to the creation of a data partition that separates dierent categories and regroups the
same categories.Classical clustering approaches[180] include: K-means[130], DBSCAN [151]. Similar to
clustering, Self-organizing maps(SOM)[84, 153] allow learning the topology of the data structure based
on their similarity. SOM is trained using a competitive learning rule that creates a map on which grid of
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neighborhood nodes are similar and close to each other. From thipoint of view, it is di erent from other
deep learning approaches, which optimize a cost function to minimize the model prediction or estimation
errors. Input data are mapped into nodes that are associated with the weights vector. During training,
the model selects the most representative node with its weight vector for input and adjusts similar nodes
(usually its neighborhood) in correspondence[9]. However, there are several limitations of traditional
clustering approaches. Clustering remains limited in terms of feature extraction. In general, no explicit
feature extraction is included in clustering models, so it might be necessary to train a supplementary
network or use pre-trained models to extract features. In addition, as pointed out in [180], classical
clustering approaches usually face several limitations. They su er from problems of scalability and often
lack explicit feature extractions. They are constrained with large-scale or high-dimensional data and
sensitive to the increase in scale, and some clustering approaches might classify outliers within a cluster
of known classes. But to some extent, they are less sensitive to noise present in the data.

Facing the limitations of traditional clustering and SOM, which tend to target static datasets, advances
in incremental clustering allow creating subdivisions without seeing the entire dataset at a time. This
allows the processing the input data in an online manner. For a given input sample, the model needs
to either categorize it into an existing cluster or initiate a new cluster[29]. Mini-batch Kmeans [147]
The traditional K-means clustering approach needs to pre-dene the K, the number of clusters before
clustering. During clustering, the algorithm assigns each data point to the nearest cluster with respect
to the distance metric, euclidean distance, to optimize the within-cluster sum-of-squares criterion until
convergence. BIRCH[189] allows online and incremental clustering on a large amount of data, and each
data point can be seen once. BIRCH builds a Clustering Feature tree (CF tree) that groups sets of
(CF) subclusters and form dierent levels of CF nodes. During clustering, BIRCH could incrementally
incorporate new arriving data points into the CF tree. BIRCH is memory e cient and doesn’t need the
entire dataset to be available at a time. Mini-batch Kmeans improved the traditional Kmeans approach
by applying the mini-batch optimization, allowing tting Kmeans incrementally with randomly chosen
mini-batches. In Incremental K-means[127], unlike traditional K-means that need to predetermine the
number of clusters (the value of K), in incremental clustering, a maximumK is xed, and starting from
k = 1 and the algorithm cluster data points and incrementally increase the value ofk, to insert new
clusters. StreamKM++[2] targets clustering of data streams. The algorithm constructs coreset trees
and incrementally sample coresets that are composed of a small set of weighted examples. The Kmeans
algorithm is then applied to the coreset. Recent advances in clustering combine clustering with techniques
of deep learning. An example is in DeepCluster[26], an unsupervised approach using deep CNN to learn
to cluster.

Other online approaches concern boosting[45] is often used to train an ensemble of classs. It
enforces the learning capacity of weak learners through aggregation. Staring with weak classis or
base learners, boosting groups gradually multiple classrs and weighting them with regard to their
learning capacity or performance, and dynamically adding them into a strong learner. Researchers have
integrated online learning into boosting approaches, referred to as online boosting in the literature,
targeting problems like binary decision [143, 6] for example, online AdaBoost is a common approach
and widely applied in problems like object detectionand online tracking[10]. Online AdaBoost[123] is an
extension of the AdaBoost algorithm and permits incrementally dealing with new examples through a
weighting strategy on misclassied examples that is adapted in the online scenario.

We have previously mentioned some incremental learning approaches, such as incremental SVM, online
boosting, and incremental clustering. In general, the learning scenario of “incremental learning" could
not be considered identical to continual learning since, for continual learning, the classes should be seen
sequentially (there is no Spatio-temporal consistency in data presence).

2.3.1.2 CL with reinforcement learning

De nition 2.3.4 (Reinforcement learning) Reinforcement learning [158] refers to the learning pro-
cess that which the agent needs to take actions in the environment according to its state. During learning,
the agent needs to learn the optimum polity of taking actions from a certain state of the environment
that gives the maximum overall reward, as illustrated ingure 2.6.
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As a review in [8], deep reinforcement learning has incorpor&d deep learning models into reinforcement
learning. In reinforcement learning, the problem could be modeled as a Markov decision process(MDP),
as the Markov decision process is memoryless. This implies that the current state and transition are
independent of historical states before the previous one.

Although not directly related to continual learning, in approaches like Neural Turing machine [58]
(NTM) or di erentiable neural computer (DNC)[59], the use of memory coupled with neural networks
could be seen as therst step towards the solution of continual learning. In NTM, the memory is accessible
through selectively reading and writing using an attention mechanism. The use of NTM or DNC would
enable the model to select and encode the information and retrieve and modify the contents of the
memory through a module called a controller. This avoids storing in nitely or entirely past information.
The use of NTM is further found in Evolving Neural Turing Machine(ENTM) [106], a variant of NTM
targeting one-shot learning. Similar to NTM, ENTM also implies an external memory system, but its
di erence from common NTM is that ENTM is trained by using a neuroevolutionary approach, the
Neuroevolution of Augmenting Topologies (NEAT) approach, instead of gradient descent. This allows
learning the evolving topology of the neural network in the controller. Further mentioned in [60], ENTM
permits to read, write copy and shift within the memory while considering the evolution of the model to
adapt to changes online.

Other use of memory or buer mechanism could be found in approaches with"rehearsal" or "experi-
ence replay'[99]. Namely, this implies that the model store some data that it receives, repeatedly showing
the model with these examples. An example is shown in [3] where the author combine ER with dirent
RL techniques like Q learning and SARSA and shows its eiency. In the model, ER is applied by
keeping a sample set storing transitions, and the model uses data from the stored sample set for further
training and parameter updates. Other examples could be found in HER[7], which stores transitions
into a bu er and considers multiple goals(additional goals) for replay. However, the nature of tasks that
reinforcement learning tries to solve is usually di erent from that of computer vision.

Another most widely recognized use of experience replay is probably in Deep Q-Network(DQN)[115].
As pointed out in [116], from a sliding window involving the last experience, the model stores the ex-
perience that it receives, including states, actions, and transitions. During training, the stored data is
selected at random and replayed to the model, and the model uses q learning or mini-batches based on
a greedy policy to train the model. Apart from the random selection strategy, some other sampling
strategies for replay exist in state of the art.

Environment
5 AN
5 s||®
< 3
4[ Agent J::

Figure 2.6: RL — the basic principle of reinforcement learningis that in the environment agent
perceives the state, by taking actions, it receives the award from the environment. The goal is to
choose proper actions that an agent could get maximum reward.
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Furthermore, in recent advances in reinforcement learning, einforcement learning is further combined
with meta-learning as a proposal to target model adaptivity in unknown situations or awareness of the
context changes in the environments due to the capacity of generalization in meta-learning approaches.
A typical example is in Context Adaptation via Meta-Learning(CAVIA)[191] which extends the meta-
learning MAML[42] in the reinforcement learning to learn dierent tasks. In CAVIA, the model is
augmented with context Parameters as additional input and learning is divided into two steps— the
learning of context parameters and meta-update of other network parameters. Further, in [15], CAVIA
is combined with the model structural modi cation that introduces a supplementary neuron component
called "neuromodulators” that help to adapt the plasticity or changing neuron activation of the model
through the gating mechanism. [15] thus shows its adaptivity and the capacity to dynamically learn
representation in di erent tasks.

Note that approaches with reinforcement learning often target tasks that involve taking actions to
maximize the reward. Though, in recent advances in deep learning, for example, in tracking, some models
have coupled RL with visual attention mechanism [157, 186]. The problem that RL targets is usually
di erent from object recognition since in object recognition and more generally in deep learning, instead
of the reward, the model needs to minimize the cost function, which was daed as the error in the
prediction of the model, for example, loss in reconstructing the input image. However, the experience
replay strategy originally applied in RL has inspired many advances in continual learning. A review that
investigates the replay strategy in both domains, the reinforcement learning, and the continual learning
could be found in [66], where the authors give a detailed survey on the application of the replay strategy
and its advances in recent years, and in addition an insight from a biological aspect.

2.3.2 Continual Learning with Neural Networks

2.3.2.1 Few-shot learning approaches

Although few-shot learning is not specically applied to learn continuously it is somehow related
because it performs an adaptation of a trained model to new data. Thus, few-shot learning could be
considered as a starting point towards continual learning. Here we list several categories of approaches
that are often used in few-shot learning problems [96, 12].

Meta-learning based approaches are sometimes also called learning to learn in the literature, referring
to learning while based on previously acquired experience. A simple way to de ne meta-learning, is to
make an analogy with humans — knowledge isn’'t learned from scratch. From previously learned tasks, the
model should adapt or learn faster on new tasks that it has never seen, the model could be generalized
to new tasks using only a few data points.

There are two phases in meta-learning, meta-training and meta-testing. In each phase, there is a
support set that contains data sampled from dierent tasks, on which the model will be trained composed
of n classes and k examples, called "n way k shot", and a query set which contains unseen data from
the same tasks where the model need to be evaluated on. In general, the modedt endures a phase
called meta-training during which the model is trained on several tasks with a few batches of examples.
Afterward, during the second phase, meta-testing, the model will see new tasks that it has never learned
during meta-training. The model needs to nd parameters that could optimize loss on new tasks[43].
Its di erence with transfer learning, however, is that in transfer learning the model usually needs to be
trained on a task in the target domain that is di erent from the source domain, and meta-learning targets
fast adaptation on new tasks. The optimization of meta-learning is divided into inner loop and outer
loops: in the inner loop, the model is trained on the support set while in the outer loop, the model needs
to be optimized with respect to a meta-objective.

In approaches of meta-learning for few-shot learning, some suggest learning to learn a better initial-
ization on new tasks, combined with techniques such ase-tuning. For example, in Model-Agnostic
Meta-Learning (MAML) [42], meta-learning for few-shot learning, the model targets fast adaption to a
new task, while only using a few data points or iterations. The model should learn parameters that could
be easily generalized as initialization for new tasks, and sensitive to changes on new tasks while learning
parameters by using gradient descent rules. Concretely, In MAML, iteratively, a few batches of examples
are sampled (also called episodes) over drent tasks, and the model is trained on these episodes from a
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certain network initialization. By optimizing a meta-object ive (computed on data from the same tasks
but containing data that the model has never seen), the modelnally ne-tunes its parameters by mini-
mizing the meta-objective that sums the loss over derent tasks. During meta-testing, the performance
of MAML is evaluated on new tasks excluded from meta-training. Reptile [122] is another similar work in
few-shot meta-learning. Like MAML, Reptile uses meta-learning to learn an initialization for new tasks
on only a few data points, that optimize the model's performances and the capacity of generalization.
The di erence with MAML is that Reptile has changed the gradient update rules of the meta-objective
compared to MAML. Reptile performs the nal updates of model parameters as a function of the dif-
ference between initial model parameters and the model parameters after episodes of meta-training on
di erent tasks (the di erence itself could be considered as a gradient in Reptile). In [54], the authors
further shed light on features extracted during meta-learning by studying the variance of inter-class and
intra-class features and by dening a regularizer showing that it is important to minimize the within-class
variation for the robustness of meta-learning extracted features.

In few-shot learning, apart from the meta-learning approaches mentioned above, some methods use
metric learning techniques, to learn a metric that projects data to an embedding space such that derent
classes are separated and instances of the same class are close. In Repmet [76], the model allows few-shot
detection by solving an open set recognition problem. Spedaially, the model performs distance metric
learning in an embedding space, with a few fully-connected layers, jointly with the learning of a mixture
model for the class posterior distribution. For a given embedding vector, the model computes a distance
matrix between class representatives it holds. By assuming a Gaussian distribution of di erent classes,
the model computes the probability of given images belonging to a certain class based on the computed
distances. Repmet combines a cross-entropy loss for the prediction of the right class, with respect to the
ground truth label, and a distance metric modeling the inter-class and intra-class margin. In Matching
Networks [174], the model adapted a spedi training strategy: training is performed over the support set
sampled from the task distribution where there are multiple (episodes of) batches of examples. The model
classi es a given example through probability estimation by using an attention mechanism (a softmax
on cosine similarities of embedding vectors) to point to spect entries stored in the external memory
system.

Another approach for adapting a neural network model is transfer learning [18]. Transfer learning
implies data from two di erent domains: the source domain where a basic model is trained on, and a
target domain where the model needs to transfer its knowledge to by using information extracted from
the source domain. For a detailed literature review see [178]. Transfer learning enables solving tasks using
information from other domains or elds, this bene ts the case where not enough data is accessible for
certain tasks since on the source domain models can learn general and robust deep features. A common
approach is to rst train the model on the source domain, and "freeze" the parameters for certain layers,
and ne-tune the model by adding some new layers while training in the target domain. The use of transfer
learning can also be found in approaches targetting few-shot learning. For example, in TransMatch [183]
the pretraining- netuning mechanism is used for transfer learning to target few-shot learning. The model
rst pretrains a feature extractor for initialization, and further use a semi-supervised approach for model
updates on "N way K shot" examples from the new classes. Compared to meta-learning approaches,
in transfer learning, there is no concept as inner/outer loop or meta-training/meta-testing, but as in
other applications, the use of transfer learning enables to extract robust features and initializes better
the model.

In general, few-shot learning targets the generalization capacity when there are only a few training
examples available. As mentioned in [166], few-shot learning methods improve the capacity of the model to
generalize to unseen situations, which is crucial for its robustness and safety in domains like autonomous
driving where the model needs to be aware of the changes and safely adapt to them. However, the
spatio-temporal consistency is not considered in the setting of few-shot learning, although it uses only
few training examples, there is no constraint on the class order of these examples. The limitation of
few-shot learning approaches has been partially addressed by dient continual learning approaches.

In the next few sections, we will present the common use cases and learning scenarios of continual
learning, and then categorize the dierent approaches in the literature.

&HWWH WKgVH HVW DFFHVVLEOH j O DGUHVVH KWWSV WKHVHV LQVD O\RQ IU SXEOLFD\
«>5 'DL@ > @ ,16% /\RQ WRXV GURLWV UpVHUYpV



48 Chapter 2. State of the art

Class 0 H Class 1 ] ...0» Class 9

Class-incremental

ﬂ»(_\ (et |

Task O Task1l |...¢ P Task 4
Class 0 Class 2 Class 8
Class 1 Class 3 Class 9

Task-incremental

Figure 2.7: Use cases of CL: illustration of how the data sequemrds presented in the class-incremental
scenario and the task-incremental scenario. As an example in [167] with the MNIST dataset, in the
class-incremental scenario, the model sees one digit class after the other: 0, 1 9. In the task-
incremental scenario, a typical example is the splitMNIST dataset where, for each task, the model
needs to learn the blend of two classes, i.e. for task 0: 0 and 1, for task 1: 2 and 3, until task 5: 8
and 9.

2.3.2.2 Use cases of continual learning

In continual learning, several use cases can be considered where the input data is not i.i.d. and non-
stationary, The works in the literature can be divided into 4 scenarios explained in the following (a review
could be found in [167]).

Single-task class-incremental scenario

In the single-task class-incremental scenario, the model learns incrementally the representation of
di erent classes, the input data are from the same domain but concerning di erent classes of objects.
The evaluation would be at the end of training and the performance metric is calculated on all the
categories of objects (since there is only one single task). During the evaluation, the model should
predict which classes the test data belong to.

Task-incremental scenario

Here the model needs to learn multiple tasks consecutively, thus multiple tasks are presented during
training. An example is to separate the dataset into several groups of classes, and one group corresponds
to one task during training. Further, in a task, there could be multiple tasks. Taking the splitMNIST as
an example, if each task contains two classes, the task-incremental learning scenario would be presenting
classes, 0/1 as task 0, 2/3 as task 1 ... , and 8/9 as task 5. Thus its main di erence with therst
scenario is that in the class-incremental scenario, the model perceives the classes one by one. During the
evaluation phase, the performance metric is computed task-wise, and the task identity is provided. An
illustration of the di erence between the class-incremental scenario and the task-incremental scenario is
illustrated in gure 2.7.

Domain-incremental scenario

In the domain-incremental scenario, the input distribution changes from task to task. The model
takes as input di erent domains, but the structures of the tasks remain similar, and the model needs to
solve the task with regard to the change of input distribution. A de nition can be found in [167, 73]. The
task identity is not provided at test time, but the model needs to solve the task without knowing which
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Figure 2.8: A categorization of common continual learning appoaches with neural networks: reg-
ularization approaches, structural approaches, and experience replay. A detailed description of the
acronyms and the corresponding models can be found in the text.

task it is facing. This implies no change in the distribution of targets, and the output space is shared
between dierent tasks. An example, as mentioned in [73], is the Permuted MNIST dataset, where the
input is 0/1, or 2/3 and the model needs to output its prediction as 0 or 1, learning new tasks while
preserving its performances on the previous task. This is dérent from the transfer learning models that
need to transfer knowledge from previous tasks onto new ones for domain adaptation [73].

Incremental learning scenario

In this setting, new data or concepts are joined gradually, and the model needs to be built incrementally
without losing information acquired in the past. But unlike other scenarios, there are no constraints on
the sequential arriving order in classes or tasks. The model is updated incrementally, receiving new data,
potentially from all classes which are usually known in advance. Although the distinction to the other
continual learning scenarios is not always made in the literature, incremental learning usually supposes
that the incoming data stream is stationary.

Among state-of-the-art works, many target the task-incremental scenario and the incremental scenario.
In the next section, we will take a deeper look at di erent continual learning approaches which are mostly
supervised.

2.3.2.3 Supervised Continual Learning Approaches

One of the biggest challenges of continual learning is catastrophic forgetting, implying the tendency
that during the learning of new classes or new tasks, the model risks destroying the performance on
old classes or old tasks. The plasticity of articial neural networks makes them capable of acquiring
new knowledge, while not completely losing previously acquired information. Nevertheless, the more the
model adapts to new incoming data the more it risks replacing the previously stored information, which
is commonly referred to as the plasticity-stability dilemma. There are three main categories of continual
learning approaches, adopting derent strategies against catastrophic forgetting (see gure 2.8).

Regularization approaches These approaches regularize the loss function, with respect to the rele-
vance of past tasks or categories. This is similar to the principle of knowledge distillation used in other
works since the regularization term "distills" knowledge from previous experiences. In elastic weight
consolidation (EWC) [79], a regularization term is added to the optimization integrating the importance
of parameters for previous tasks. This ensures that learning will be performed in a way that maintains
the learned network parameters for both the previous tasks and the current one so that the perfor-
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mance on the former will not be destroyed completely by incremetally learning the latter. The authors
propose to use Fisher information as the regularization term. However, the limitation is that it might
constrain too much the learning of new tasks when Fisher Information accumulates, leading to problems
with increasing number of classes; also EWC methods often have poor experimental performances in the
class-incremental scenario. In Synaptic Intelligence (SI) [185], a measure of importance is computed for
each synapse so that the catastrophic forgetting could be decreased by regularizing weight updates while
preserving task-relevant synapses. The importance metric denotes the sensibility of the loss function
to each synapse change, and the importance metric is calculated online considering its evolution during
training. A variant of the Sl approach can be found in [85], where the regularization approach is further
combined with an attention mechanism using Hebbian learning. This mechanism however is mainly in-
volved during the update of the parameters modeling synaptic importance, while using a derent update
rule based on Hebbian learning. The author apply contrastive Excitation Back-Propagation that was rst
proposed in [188], modelling a top-down attention winner takes all (WTA) selective Turing model [36].
The Learning without forgetting (LwF) approach [97] trains and uses (only) data points on new tasks
to learn to add task-speci ¢ parameters to the network in such a way that it allows solving both the
previous tasks and the current task. A regularization term based on knowledge distillation is introduced
in the loss function for previous tasks.

Structural approaches Approaches of this category use derent strategies to manage neuron re-
sources, where training on new tasks updates weights in the network in the direction that optimizes these
tasks but without overwriting weights related to the previous tasks. From a bio-plausible point of view,
these approaches are able to change the modularity of the neural network facing new experiences and
improve the plasticity of the model- in the literature, some models uses the terminology of "neuroge-
nesis" [109] to describe the generation of new neurons, or "neuromodulatory" [40, 14] to describe the
change in connection or neural network modularity or to make gating decisions [5]. To some extent,
structural approaches reduce the redundancy of the use of neuron resources when new tasks arrive, by
partially activating the neural network with respect to the corresponding task or category or reallocating
new neuron resources.

Progressive neural networks (PNN) [142] create and initialize a new branch of neural network resources
for a new task, as well as lateral connections with previously learned branches for the transfer of features
acquired from previous tasks. This allows to alleviate catastrophic forgetting, also compared to the
common pretrain- netuning mechanism, as the authors point out, the structures of PNN does not assume
task relationship, thus could handle cases even if there were few overlaps between tasks. [142] is designed
for the multitasking scenarios, the limitation lies in its scalability. More precisely, as the number of tasks
increases, parameters within the model will also grow. Another structural approach is PackNet [107].
Through pruning, the model selectively changes network connectivity, to obtain sparselters that could
be retrained to maintain its performance when new tasks are added. In this way, the model creates new
neuron resources for new tasks, that can be combined with neurons of the old tasks.

Experience replay. In continual learning, to keep information on previous tasks, some approaches
store a part of the real training examples or generate synthetic examples to alleviate catastrophic forget-
ting. These examples are presented regularly to the model during training so that the previously learnt
knowledge would not be completely forgotten. The experience replay strategy, especially integrated with
a memory system could be viewed as bio-plausible since, in human brains, there are also certain zones
for the storage of memory (hippocampus). The replay does not review the entire past experiences—this
thus raises the question of how to select samples and the choice of what to replay. A review of experience
replay could be found in [66], where the authors summarized several selection criteria, such as the sim-
ilarity between old and new tasks, or the relevance of derent experiences. The Incremental Classier
and Representation Learning (ICARL) method [134] selects exemplars of past observations to construct
the memory that will be replayed to the model to alleviate catastrophic forgetting. It uses the nearest
mean of exemplars (NCM) to classify dierent objects which performs clustering regarding a distance
with the mean of each class. The representation and feature extraction, however, is decoupled [28] from
the classi cation. A knowledge distillation term is applied for feature extraction for previous classes
of objects. Unlike ICARL, which decouples learning of a classér and representation learning, in the
"End-to-End Incremental Learning" (EEIL) approach [28], the classi er and representations of data are
trained jointly and end-to-end with a neural network structure that is composed of a feature extractor
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and a classi cation layer. EEIL also keeps old class examples, a memory that retains the most repre-
sentative subset of a new category (representative memory). The model can bee-tuned with these
examples and also dynamically update the memory to integrate representatives of new arriving categories.
In addition, a distillation term is added in the loss function, to alleviate the catastrophic forgetting of
old tasks. Gradient Episodic Memory (GEM) [102] is another approach using experience replay. GEM
constitute episodes of memory to prevent catastrophic forgetting, and applies gradient regularization on
previous tasks. But as mentioned in [32], the applied restrictions of gradients are also limiting backward
transfer (learning a new task while updating the old ones, but in the direction that might be beneting
the performance of past tasks). Also, in the case of concept con icts where the new tasks contradict the
old ones, GEM might not be applicable.

Many of the mentioned approaches alleviating catastrophic forgetting are supervised and require
information of ground truth labels for data or the identi cation of tasks. Also, the scalability in the
number of tasks/classes and the imbalance of training instances can be an issue. In the next section, we
will focus on unsupervised continual learning approaches providing more autonomy because they do not
require annotated data or tasks which are di cult to obtain.

2.3.3 Unsupervised Continual learning

Among existing continual learning approaches, only very few of them are unsupervised and inde-
pendent from the ground truth labels. In the unsupervised setting, the model should not only prevent
catastrophic forgetting like all the supervised approaches, but also adapt to task or class change in-
dependently and accordingly modify the model structure to acquire new classes. The Self-Organizing
Incremental Neural Network (SOINN) [47], for example, is an unsupervised approach. The model incre-
mentally learns the topology of input data by dynamically adding new nodes to the model. But it suers
from the limitation that it does not provide an explicit feature extraction, as many other clustering ap-
proaches and SOM. The Self-Taught Associative Memory (STAM) [154] is another, more recent, example
of unsupervised continual learning. STAM does not use neural networks, instead, it is an approach based
on hierarchies of clustered image features that are continually learned by selecting centroids based on
distance metrics. However, as opposed to neural network-based models, it is not clear to what extent the
learned representation (for example, hierarchical sets of image patches) can generalize to unseen object
appearances and can be “re-used” for new object categories. Another unsupervised approach with neural
networks is MAS [4] which can be trained in an unsupervised manner or using unlabeled data during
learning. Similar to SI and EWC, MAS computes an importance weight as the sensitivity to the changes
in parameters of model prediction (output) function. This metric is computed online and is updated
when new tasks arrive.

Among unsupervised continual learning approaches, CURL [133}s our objective of unsupervised
continual object recognition. The models that we use in our proposed approaches are all based on
CURL. Therefore, in the following section, we will describe this model in more detail and refer to it in
the following chapters.

2.4 Model of CURL

CURL[133] targets the problem of continual unsupervised representation learning. By default, it
considers a class-incremental scenario, where new objects arrive sequentially during training, one after
the other. Although in this standard setting, hard object boundaries are assumed, the authors also
demonstrated the eectiveness of their model with continuous boundaries ("continuous drift"), i.e. new
object classes are introduced by blending examples from the currently trained class with the new class
and by gradually increasing the proportion of the latter.

CURL [133] is based on a VAE and Mixtures of Gaussians for modelling dérent objects. The encoder
is composed of a shared encoder (i.e. thest layers), and component-specic latent encoder heads (i.e.
one fully-connected layer for each head). The output of these heads represent the multivariate Gaussian
means and variancespi, - - ,Mk 1,' -, Kk, Of the distributions of the K components that constitute
the latent variables z&) and that are used to model the approximate posterior latent variable distribution
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Figure 2.9: The probabilistic graphical model of CURL [133]: x is the input image, y the object
category andz latent variables. The inference of the joint posteriorp(y, z|x) is not tractable, therefore
it is approximated by the variational posterior: q(y,z|X) = q(y|x)a(z|x,y) (marked with dashed
arrows)

d(z|x,y). The variable x represents the input image, andy the category variable. The encoder maps
the input images to a shared representation for all the categories. Its output is used as the input of a
fully-connected softmax layer to estimate the object categoryg(y|x) ; and to update the parameterspy, «
of the corresponding component(s)k during training. Also, the prior p(z]y) of latent variable z follows
a Gaussian distribution. As with conventional VAES, the image X is reconstructed from the resampled2
using the decoder. Due to the intractability of p(y, z|x), it is approximated by the variational posterior
aly, z|x), with g(y, z|x) = q(y|x)q(z|x,y). See [133] for more details.

Since learning occurs dynamically, and the model needs to adapt to d@irent objects that arrive from
time to time, the model creates a hew component each time when a new category is detected. CURL
considers that possible new category candidates are poorly modeled examples (i.e. outliers). The ELBO
objective (see Eq. 2.20 below) re ects the estimation of the likelihood of ankexample being an inlier. By
comparing the ELBO to a threshold, CURL stores those examples for which it is inferior to a threshold,
and allocates a buer to maintain these possible outlier candidates. Once the bu er is full, CURL creates
a new latent encoder layer representing a new component.

...........................................
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Figure 2.10: an illustration of the architecture of CURL

To alleviate catastrophic forgetting, CURL uses a mechanism called mixture generative replay in order
to generate new instances instead of storing real training examples. Concretely, using mixture generative
replay, CURL generates images for all the past categories that the model has already learned, mixes them
with real training images of the current object. The generated images are "replayed" to the model to
preserve knowledge learned in the past.
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2.4.1 Loss function of CURL

Unsupervised ELBO loss of CURL

The model optimizes a modied ELBO (Evidence Lower Bound) objective (maximizing the likelihood
of the data), with input images x, categorical variable y (the index of the Gaussian component), latent
variable z corresponding to the internal representation (formed by the GMM): E(X) =

K

ay = ki) logpx|z"’) KL(@(@zlx.y = K)lip@zly = k) KL(@ (Il p(y)) (2:20)
k=1 component-wise Ku llback-Leibler divergence categorical
reconstruction regularization on z regularization

where gy = K|x) represents the component posterior, computed by a dense layer with softmax, marked
as yellow nodes in Fig. 2.10z%)  g(z|x,y = k) is the latent code sampled from thek-th Gaussian
component, modelled by a dense layer (latent encoder headlpg p(x|z*)) corresponds to the component-
wise reconstruction loss of input images, with reconstructed image at the output, KL((q (z|x,y =
K)||p(zly = k)) is a Kullback-Leibler divergence acting as the component-wise regularizer and encouraging
z for each category to follow a standard normal distribution with diagonal covariance matrix p(zly), and
KL(g (y[¥)]Ip(y)) is the categorical regularizer that ensures that classes are well-balanced and imposes a
uniform prior distribution p(y) over all categories.

By maximizing Eq. 2.20, the model learns to reconstruct the input images and at the same time,
due to the two regularization terms, to cluster objects into dierent classes in the latent spacez by
dynamically assigning them to di erent components.

Supervised ELBO loss of CURL

CURL operates in an unsupervised manner, but the authors also consider aupervised settingthat
allows CURL to learn with ground truth labels. To this end, a slight modi cation of the loss function is
made. In the supervised setting, CURL uses the ground-truth labely; for supervised training for specic
components. The supervised ELBO loss optimizes the prediction of the category (with a cross-entropy
loss) and the reconstruction of input images:

Eswp(X) = log oy = wilx) +log p(x|Z',y = yi) KL @zlx,y = y)llp@zly = w) . (2.21)

2.4.2 Limitation of CURL

In the sequential setting, CURL allows learning the representation of di erent categories in an unsuper-
vised and continual way. However, as CURL is an unsupervised approach, it is di cult to automatically
determine the number of categories. As a result, it tends to separate objects of the same category into
di erent sub-clusters. In addition, as with many other VAE models, the capacity to learn representations
of more complex images is limited compared to GAN models or contrastive learning approaches, which
are however not designed for continual learning. We will expose more of the advances and disadvantages
of CURL in the next section, by comparing experimentally the performance of dierent models.

2.5 Novelty detection

Previously, we have brie y reviewed several continual learning approaches. As we have stated, most
of the state-of-the-art works have addressed the problem in a supervised manner, and only a few works
are unsupervised. One of the requirements of continual unsupervised learning is that the model should
not use ground truth labels. Instead, the algorithm decides by itself if and how the incoming data is
learned and integrated into the model. More spectally, in the class-incremental scenario, for example,
the model needs to determine if the current observation belongs to the same object (i.e. the object that is
currently learnt) or if a new object has arrived. In fact, this can be seen as a novelty detection problem.
For instance, in [95], dierent types of data drift in the continual learning context are reviewed, which
clari es the di erent types of changes in data distribution the model could be facing. This also sheds
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light on the relationship between continual learning and novety detection and, more specically, the data
shift problem that the model could encounter during continual learning.

De nition 2.5.1 (Novelty detection) Considering a stream of data, novelty detection refers to the
process of distinguishing examples coming from a novel or unknown distribution from inliers with respect
to a model that is built using already seen data.

It allows the model to detect changes in the input so that it can be adjusted, which is essential in a
dynamic environment. Besides, this can also be a means to tackle the stability-plasticity problem, by
discerning the way or the amount of updating of the model, e.g. creating a new sub-model vs. adjusting
the existing model. There are various application domains, for example, in economics to detect frauds
or money laundering [49], where the models need tond suspicious transactions; Or in the medical
domain, where the model needs to detect abnormalities in EEG signals [50], just to name a few. Novelty
detection is a topic that researchers have been focused on for decades, andedkint approaches have
been proposed in the literature: from historical statistical hypothesis testing approaches or information-
theoretic techniques based on entropy to approaches using machine learning. We will detail the most
common ones in the following.
In the literature, several concepts are close to novelty detection, but with some subtle derences.

De nition 2.5.2 (Anomaly detection) . In anomaly detection, the model needs tond examples that
are far from normal examples (abnormalities); the abnormality detection is a binary problem, "normality”
or "abnormality".

Note that this does not imply that data is arriving sequentially in a stream. Thus the term "anomaly
detection” is mostly applied "o ine" on a static dataset.

De nition 2.5.3 (OOD detection) . In out-of-distribution detection (OOD), the model needs to detect
and reject outliers or examples that do nott the background inlier distribution.

Again, this term is commonly used in the context of static datasets. Sometimes, the terms "anomaly"
and "outlier" are used interchangebly depending on the application context. However, in theory, outliers
can be considered as normal but are usually rejected in the model construction because they may harm
its convergence or its general performance, whereas anomalies are considered data coming from erent
source or corresponding to some abnormal behavior of the observed phenomenon.

De nition 2.5.4 (Concept drift detection) : Unlike other notions mentioned previously, concept
drift detection is more applied in the scenario with a non-stationary input. Concept drift detection
refers to detecting gradual changes in the data distribution in the input stream; the approach needs to
be incremental.

In the following, we will give a brief and general overview of the state of the art in novelty detection
and related problems mentioned above.

2.5.1 One-class Novelty detection

In the literature, some considered novelty detection as aone-class classtation problem [129]: the
problem of novelty detection, in this context, could be reformulated as the process of distinguishing test
examples that are novel from common examples (inliers) used for training. Thus, the model is constructed
as a binary classier that models the distribution of inliers, and it thus needs to learn a decision boundary
for novel examples.

One class SVM (OCSVM) [146] is among one of the common approaches for one-class novelty detec-
tion, an illustration is made in gure 2.11. It detects new objects with regard to all the training data (this
may include all "known" objects) [163] by nding a hyperplane with a maximum margin from the origin.
Support vector data description (SVDD) [163] is another algorithm for learning the decision boundary.
SVDD solves the minimum hypersphere that encompasses all the inliers and separates outliers.
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Figure 2.11: One-class classiation to detect outliers: typically, the model needs to separate outliers
(illustrated as red dots) from inliers (illustrated as green dots). An example in this problem or
category of approach is the one-class SVM — the model only has training examples from the inlier
class and needs tond the optimum hyperplane to make a binary decision.

A classier with a rejection mechanism is another solution facing unknown objects. Compared to
other classi ers, these classers discard ambiguous examples, i.e. examples that are very close to the
decision boundary and hard to separate [11].

However, as one-class novelty detection needs to separate unknown from known objects, in the case
of multiple classes, one-class SVM raises the problem of scale with respect to the increasing number of
categories; That is, the model needs to consider examples of dient categories as inliers. In addition, the
training of SVM is often o ine, which implies that the model needs to see the entire dataset. Therefore,
one-class classiation approaches for novelty detection are limited with respect to large-scale datasets.

2.5.2 Approaches for multi-class novelty detection/open set recognition

Multi-class novelty detection is also referred to as the open set recognition problem [145] in the
literature. Some applied probabilistic approaches, where the core problem lies in estimating the density
of inliers. A review of these approaches can be found in [129]. Among them, parametric approaches require
prior knowledge of the data distribution to model the probability density distribution. Examples at low
density are considered as outliers. One common approach is the Grubbs’ test [61] (z-test), which assumes
a Gaussian distribution of the data and computes the z-statistics by comparing the example with the
estimated mean and covariance for accept/rejection. For more sophisticated data distributions, Gaussian
Mixture Models (GMM) can be employed, and they are based on the Maximum Likelihood to estimate
the parameters. Others apply Extreme Value Theory (EVT), which models the statistics of extreme
values in the tails of the data distribution, to deal with extreme deviations, an example that applies EVT
is in [17], which will be discussed later. Another statistical hypothesis test is the Kolmogorov-Smirnov
test [110], with the Kolmogorov-Smirnov statistic measuring the upper bound of the distance between the
empirical distribution and the cumulative distribution function. The two-sample Kolmogorov-Smirnov
test can be used to indicate if two samples are from the same distribution, by applying the test on two
empirical distribution functions.

Among various hypothesis tests, we highlight that the Hotelling t squared testallows determining if
two samples of data belong to the same distribution, by calculating the t statistics based on the estimation
of their mean and covariance. The Hotelling t squared test is described in more detail in Section V.

Non-parametric approaches require no prior knowledge for density estimation. In a histogram analysis,
for example, the continuous support of the data distribution is discretized and the proportion of the data
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falling into the dier ent bins is computed. By using histogram analysis, outliers that occur with low
probability can be easily separated from inliers. However, the application of histogram analysis is rather
limited in the case of multivariate and especially high-dimensional data. A more sophisticated non-
parametric approach is the Dirichlet process mixture model [164].1t is also referred to as an inite
mixture model in the literature, modeling a distribution over distributions [164]. One of its applications
can be found, for example, in [187] where a Dirichlet process is used to build an online clustering model.

However, approaches based on the density estimation of the inliers su er from overlaps between
inlier and outlier distributions as shown in [100, 138], and may produce high scores for outliers. In
addition, in an continual learning scenario, in which we do not have in nite access to all the past learning
data, the estimation of the probability density distribution might be biased (since it usually needs to
take into account the entire dataset). With the above mentioned approaches, the probability of an
example belonging to an unknown category is still di cult to model, as the model is often built on the
density distribution estimation of known classes or categories. This is also known as the "closed world
assumption”.

Recent advances in machine learning have allowed handling more complex and high-dimensional data
and building models allowing to better cope with these challenges. In [139], a review of érent state-
of-the-art OOD detection approaches can be found. In common classirs, the softmax layer is often
used for scoring the chance of an example belonging to drent categories. Nevertheless, the softmax
function should not be considered as a real probability estimation. It also sters from the limitation of
the "closed world assumption”, deteriorating its performance under the presence of unknown categories.
Therefore, some recent works propose a recalibration of the softmax output enhancing the estimation of
probability estimation when there are unknown categories. Openmax [17], for exampleyst recognizes
outliers by using the Nearest Class Mean (NCM) concept, which classi es instances with respect to their
distance to the "mean" of each class. The model represents the centroid of each class by the mean
activation vector, averaged on the correct examples, where activation vectors are the outputs of the layer
before softmax. Then the OpenMAX function is computed by tting a Weibull distribution based on
Extreme Value Theory to rescale the activation vectors, and thus the OpenMAX function allows a nal
probability estimation that takes unknown classes into account. A method called "Outlier Detection
In Neural networks" (ODIN) [98] detects OOD by applying small perturbations to the input images as
pre-processing and using the technique of temperature scaling which corresponds to using an additional
hyperparameter in the softmax function, to better recalibrate the softmax function. In this way, outliers
are easier to be distinguished from inliers. However, the model has additional hyperparameters related to
perturbation and thus adds some complexity. Another approach called Energy-based model (EBM) [100]
builds a model of energy score for each input instance to replace the softmax function for the OOD
improving the discrimination from inliers.

To better detect OOD examples, likelihood ratio-based approaches have been proposed in the liter-
ature. With a likelihood ratio, the model can discard the in uence of a background distribution [138],
or the complexity of the input [149]. More specically, the method proposed by [138] considers each
input as the composition of a background model and a semantic model representing inliers. To detect
OOD, and to alleviate the e ect of the background distribution, [138] computes the ratio between inliers
and the background that results in a background contrastive score and highlights the semantic model
(inliers) in comparison with the background. Background statistics are obtained by training the model
while adding perturbations to the inputs. [149] shows the inuence of input complexity in OOD detection
problems and introduced a non-parametric OOD score based on likelihood-ratio test statistics between
the log-likelihood and the complexity estimation.

In the literature, other approaches exist to separate outliers from inliers based on distance metrics,
where outliers are considered as examples that are far away from the distribution of inliers. In Open-
Set Nearest Neighbor (OSNN) [75], for example, the Nearest Neighbor classi er is adapted to open-set
problems. The Nearest Neighbor Distance Ratio, i.e. the ratio of the distance between its two nearest
neighbors originating from two di erent classes, is used to determine whether an instance is unknown.
[16] proposed Nearest Non-Outlier (NNO) that extends the NCM classi er for open set recognition
problems. NNO computes the probability of an example belonging to a class, by de ning a metric with
respect to class mean vectors, which further allows the rejection of an example as an outlier, or marking
it as unknown or novel. Other approaches are based on learning an ensemble of deep neural network
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models. In [89], a deep neural network ensemble is used for the untainty estimation that optimizes

the calibration of uncertainty prediction. Neural networks in the deep ensemble are trained in parallel.
The model predicts a probability that could be either averaged for classi cation or applied directly in
Gaussian mixture regression.

Finally, approaches based on deep learning have been proposed for novelty or outlier detection. For
example, some methods use an auto-encoder trained to reconstruct input images and consider novelty as
examples with high reconstruction error, i.e. the error between the target and network reconstruction.
Other generative models allow generating examples and can be used to target a speaiategory of OOD,
adversarial examples generated by the model that resemble a real image example; This is opposite to the
common use of generative models which learn the input data (i.e. inlier) distribution and not outliers.
They are often used to predict the most probable classes in other learning scenarios. This concept is
also applied in adversarial learning, typically with GANs, where the model learns to generate examples
in order to learn to detect novelties. For example, OSRCI [121, 51] generates counterfactual images that
are close to true image class boundaries by using a GAN with encoder-decoder structure to augment the
training set and learn to categorize known classes from the novel and unknown instances. ASG [182]
generates positive and negative instances and trains an open set classi For negative instances, ASG
considers instances that are close to the boundary of a seen category but separable by the discriminator
as an instance of the unseen class. Positive examples of a seen class (not separable by the discriminator)
are also generated in the case of imbalanced classes, i.e. when a class has only a few training examples.

Although the previously described common novelty detection approaches provide good results in static
and stationary settings, their application to more complicated scenarios is not possible or very limited. For
example, in a dynamic environment, the model receives a stream of data with considerable variations.
To separate inliers from outliers, the model often needs to estimate the statistics of inliers. And this
is mostly done oine on a static dataset, which does not t our targeted continual learning scenario.
Nevertheless, in the literature, some algorithms have been proposed that detect novelty in continuous
data streams. We will outline the principal approaches in the following section.

2.5.3 Novelty detection in data streams

Apart from novelty detection in static datasets, other works in the literature considered data streams
and an online detection. For a more detailed review see [176].Changes in the data stream’s underlying
distribution are also called concept drift in some works. An e ective concept drift detection largely
increases the autonomy of an agent, as the model improves its adaptability w.r.t. a dynamic data
stream and stays consistent with the overall input data distribution. As is mentioned in [95], depending
on whether there is a change in the target distribution, concept drift could be divided into real drift
(with target distribution change) and virtual drift (without target distribution change).Here, we brie y
introduce several categories of approaches to detect concept drift.

Statistical approaches are based on statistics of the input data stream [175]. The cumulative sum
(CUSUM) [124], for example, detects changes by accumulating incrementally the di erence with the
estimation of the parameter of the probability distribution (the mean or z-statistic under Gaussian distri-
bution assumption), which is compared to a threshold with regard to a tolerance value. Another example
is the Page-Hinckley test [124] that is commonly used in the literature for detecting abrupt changes in
the data stream. The detail of this test will be introduced in the next section.

The application of sliding windows to the input data stream could also be found in the literature,
in these approaches, derent structures of sliding windows are used, to replace the instance-by-instance
decision paradigm. A method called "Very Fast Decision Tree" (VFDT) [38], or Hoeding tree, is an
incremental decision tree algorithm based on Hoéling bounds. The "Concept-adapting Very Fast De-
cision Tree" (CVFDT)[74] is an extension of VFDT for time-changing concepts. The model dynamically
maintains a sliding window of examples depending on their relevance and incrementally updates the
statistics of input data to construct a decision tree to detect concept drifts. In ADaptive WINdowing
(ADWIN) [20], the model maintains a sliding window of variable size that is determined automatically
by the algorithm and determines if the distribution of input data has changed by comparing the means
of subdivisions of windows to a threshold.

Other approaches use ensemble-based classs. For instance, Dynamic Weighted Majority (DWM) [86]
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tackles the problem of concept drift by training an ensemble ofonline learners and dynamically adding,
weighting and removing them based on their performance.

Concept drift detection approaches allow detecting the distribution change in the input data stream,
but do not explicitly propose solutions to the recognition/categorization of inliers; For example, when an
object reappears, it might simply be marked as known but not necessarily be explicitly attributed to a
speci ¢ previously seen object.

2.6 Conclusion

In this chapter, we have reviewed dierent approaches in the literature in domains that are closely
related to continual learning and novelty detection.

State-of-the-art methods for incremental and online learning have combined traditional machine learn-
ing approaches like SVM or boosting with online learning techniques, which in the scenario of dynamic
data input, outperform other o ine approaches by allowing to incrementally deal with new arriving data
without completely losing information on the past data. In few-shot learning approaches, the general-
ization capacities of the model have been strengthened by using techniques like meta-learning. However,
neither in incremental learning nor in few-shot learning, the sequential order or spatial-temporal consis-
tency of the arrival of objects is considered.

And among all, the continual learning, especially in a class-incremental scenario with dérent objects,
remains a challenging and delicate issue. In state-of-the-art approaches, the dulties in continual
learning lie in the evolution of the learned representation, for the reason that di erent objects/tasks may
appear subsequently. Learning a new class could be deforming representations constructed from past
observations. And many existing state-of-the-art approaches remain supervised and dependent on class
or task identities. Concerning the more spect topic of OOD and novelty detection with neural networks,
the approaches often need to operate me for the estimation of statistics that do not t in the context
of continual learning. And those algorithms that are designed for data streams are usually not suitable
for neural network models.

Facing these di culties in the state of the art, as mentioned in the introduction, we would like to target
the continual and unsupervised object recognition problem for autonomous agents while maintaining
certain desired properties. Starting with novelty detection in this context as the rst step towards our
goal, we will show how to improve novelty detection while staying independent of ground truth labels.
And at the same time, we show the role of unsupervised novelty detection in the continual learning
problem that we focused on.

In the following chapter, we will introduce our contribution in novelty detection, which allows the
model to better detect the arrival of new classes in unsupervised continual representation learning. Our
model is an extension of CURL, previously mentioned in section 2.4, and we show how our proposed
novelty detection improves the learnt representations and overall performance of the model.
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Chapter 3

Novelty detection in continual learning
of Image sequences

3.1 Introduction

3.1.1 Novelty detection in continual learning

In chapter 1 and chapter 2, we dened the targeted context as unsupervised continual learning, which
requires the agent to continuously learn from the input data that evolve in a non-predictive manner.
From this standpoint, the capacity of an agent to learn, make decisions independently without using
external information, and detect and adapt to the changes in its environment is crucial. The terminology
"autonomy" describes the agent that learns autonomously in an unknown and unconstrained environment.
Autonomy is an essential property of the agent.

New classes, by daition, are those the model is unfamiliar with. For this reason, they should be
considered as outliers compared to the already seen classes (inliers), of the data stream. When the agent
encounters dierent classes in this data stream, the identity of the classes remains unknown to the agent
if learning is unsupervised. The agent has to learn to detect novel classes by itself, adapt to the change
in the input data and build an e ective semantic representation. The term novelty detection has been
introduced in section 2.5 in chapter 2 and refers here to the detection of new classes that the model has
never seen. In the literature, as mentioned in chapter 2, other terminologies such as anomaly detection
or outlier detection can be found. The dierence is that new classes are to be detected as outliers; but
outliers are not always new classes. They can also represent examples from known classes that are poorly
modeled. In addition, the term "anomaly detection” is generally used in the context of a binary decision:
"inlier" vs. "outlier", but novelty detection can be employed in a multi-class problem. As resumed in
chapter 2, novelty detection is a fundamental yet challenging problem. The continual learning scenario
promotes the model's adaptation to dynamic variations in the input sequence each time a new class is
presented and can accommodate the representation of new classes into those learned ones. However, most
existing approaches are constrained in this online learning due to limited capacity to deal with streaming
data. They often rather target the o ine scenario and need to estimate statistics over the entire dataset.
Therefore, they are not directly applicable in the continual learning scenario. In addition, in many state-
of-the-art novelty detection approaches, perception is considered the only source of information provided
to the agent. In the ideal case, the model can properly detect the unknown classes, but in practice, there
can be similar classes in the input data stream for which the model has learned representation that are
statistically close. Thus, they remain di cult to separate for the model. As a result, the model can give
false negative detections by recognizing the new class as a learned one.

In unsupervised continual learning for object recognition, it is important that the agent is able to detect
novelty (e.g. new objects) or, on the contrary, recognize objects that are similar. Object recognition, or
from a more general perspective, object categorization, is tightly related to the notion of ontology. As
mentioned in chapter 1, important steps to building the ontology include its creation and recognition.
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But we will clarify the de nit ion of several similar terms, as mentioned in chapter 1 in section 1.1.1.1:
"object" and "category/class". A category can have several objects. For example, the category or class
"coat" can contain a "white coat" and a "black coat" that are di erent objects.

In the literature, CURL [133] has given an insight into object recognition in unsupervised representa-
tion learning, which we have described in more detail in section 2.4 in chapter 2. With CURL, the model
learns the representation of dierent classes in an unsupervised way through a VAE that models Gaussian
mixtures for the distribution of di erent categories. The model detects novelty in the input data stream
by temporarily storing and grouping poorly modeled examples (outliers) and then dynamically expanding
the VAE with a new mixture component (i.e. a new dense layer). It can thus incrementally adapt to
the possible category changes. In theory, this adaptability can further ensure that the agent learns the
representation of new classes and builds new representations upon old ones without destroying knowledge
gained so far by eectively reusing the existing components. But the representation learned by CURL
regularly evolves, both due to the incremental integration of new classes and the shared generic low-level
representation (i.e. the rst layers) common to all the categories in CURL. Thus, like many other contin-
ual learning approaches, the internal representations of previously seen objects may gradually drift if the
object has not been observed for a long time, which can inence its capacity for the online estimation
of statistics, which in turn may lead to a reduced capacity in novelty detection.

Facing the di culties of unsupervised continual learning that include both evolving representation
and catastrophic forgetting, as a rst step, we suppose that when an autonomous agent learns dérent
categories, it perceives objects with temporal correlation in its perception. This temporal correlation is in
fact similar to the perception of a human in a natural environment where objects are visible and focused
for a certain period of time and undergo some continuous appearance variations. For example, one can
have a strong or weak light exposure that can change in time, or a varying view point. This change
is continuous and in most situations relatively slow compared to acquisition rate of new observations.
Although, in theory, there may be numerous (physical) constraints in a real-world scenario that lead to
some type of spatio-temporal consistency in the sequence of observations, in our work, we ke the above
mentioned temporal correlation as the fact that object classes are presented in an ordered way, i.e. one
after the other and being visible for a certain period of time. Such a partially correlated and continuous
perception clearly accentuates the non-i.i.d (independent and identically distributed) nature of the data
stream which is known to be unsuitable for many machine learning algorithms, especially those based on
neural networks. This reinforces the need for compensation mechanisms to be included in the training
algorithm and the model such that the convergence and performance is not too much ected. Note that,
in this thesis, we study the problem of unsupervised continual object recognition from a purely visual
aspect (direct perception). Although this may seem limited with regard to more advanced sensorimotor
theories that cannot conceive of cognition as a separate model of motion and perception, this can be
viewed as arst step to developing a more complex model involving for example a robot interacting with
actual objects and its environment. We do not make use of actions that can for example be found in
approaches with an active perception of robots [118, 125]. In terms of continual learning, such mechanisms
may give additional information or labels, e.g. the motion to shift the focus of attention to a di erent
object, which facilitate the integration of new knowledge in the representation. Here, we concentrate
on a more general unsupervised context without any action-perception feedback loops in order to be
able to study and evaluate more easily and rigorously the di erent models and algorithms for continual
representation learning. Moreover, a purely statistical approach based on passive perception is thest
step to making e ective use of object consistency. It is a problem that needs to be addressed on its own,
as introduced in chapter 1. Once a model and a clear understanding of the bere and drawbacks of a
purely statistical approach are understood, one can integrate with more con dence the proposal into a
larger active learning strategy, although certain adaptations will de nitely need to be made.

In this chapter, we will focus on the problem of novelty detection which will help us to eectively
exploit the temporal consistency mentioned above. Our model, which is based on CURL, includes the
hypothesis of a class-by-class sequential order as &st step. Our objective is similar to the one of
CURL, targeting unsupervised continual learning for object recognition. We have already explained the
overall model in chapter 2 and will further introduce our method and the adaptations in section 3.2. By
introducing a specic novelty detection algorithm based on the Page-Hinckley test — a classical statistical
test to detect abrupt changes in time series — we are able to guide the learning to either update existing
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class representations or create new ones. This new self-supes®@d way of learning based on novelty
detection represents an original approach in continual learning that has not been studied before. We will
introduce the Page-Hinckley test in section 3.1.2 as an ective approach to detect novelty in a noisy
input data stream. Its adaptation to the continual learning scenario and our representation learning
model will be presented in section 3.2.

3.1.2 Page-Hinckley test

3.1.2.1 General introduction

In chapter 2, we have introduced novelty detection approaches in the literature, some of which can
be applied in change detection in data streams (see section 2.5.3). In these approaches, the model
continuously receives observations that are potentially non-stationary. Other OOD and novelty detection
models are often performed dne, but novelty detection in non-stationary data requires the model to
estimate statistics in an online manner, which is more dicult than application scenarios where data are
assumed to be i.i.d. Novelty detection in data streams is of particular interest in our continual learning
scenario since the entire dataset of all objects is not presented randomly, but rather in a sequential order,
class by class, and we want to detect automatically when a new object is observed. Naturally, this
should correspond to abrupt changes in the input signal since, on the contrary, the appearance variations
of the same object are slower and smoother. The Page-Hinckley test [124] has these properties and is
well suited for our non-stationary online scenario. It is a classical approach to change detection in a 1-
dimensional signal or data stream. The test assumes that abrupt variations in the input stream statistics
imply changes that can be attributed for example to outliers, abnormalities or noise. In our case, the
abnormalities are supposed to correspond to the moments when a new object class is observed.

The Page-Hinckley test is a variant of the CUSUM test that we have introduced in section 2.5.3.
CUSUM is also a change detection approach based on the cumulated variations. We will illustrate how
these two tests are related. Both tests are proposed by E. S. Page for detection of change or concept drift
in data streams [124]. The Page-Hinckley test can be used to both detect high abnormal values (i.e. an
increase) or low abnormal values (i.e. a decrease) in the data stream. Similar to CUSUM, Page-Hinckley
maintains an accumulation of variation of values in the data stream that are greater than a tolerated
value and compares the change in accumulation to a threshold. Specally, the Page-Hinckley test is
particularly suitable in our learning scenario since it is able to detect abrupt changes or sudden increases
or decreases compared to the mean of the input data stream which is updated online.

3.1.2.2 Equations of the Page-Hinckley test

With the Page-Hinckley test, two kinds of variation can be detected: either an abnormal low point
that corresponds to a decrease; or an abnormal high point that corresponds to an increase, which is
similar and symmetrical to each other.

Formally, let s(t) S = {s(0),...,s(T)} the input data stream. Let N number of samples since the
last change detection at timet, us(t) the mean of the input data perceived by the model computed online,
and g(t) the decision function. The Page-Hinckley test is initialized as Eq. 3.1 and is performed following
equation Eq. 3.2, To detect a low abnormal point (decrease).

9(0)=0
6(0)= 0 3.1)
ws= TP e g
(3.2)

git) = gt 1)+ s(t) us(t)+
G()= max{G(t 1),gtt 1)}

The decision function g(t) compares the input data to its mean and cumulates the dierence that is
greater than a tolerance , G(t) corresponds to the minimum or the maximum value of all the historical
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62 Chapter 3. Novelty detection in continual learning of image sequences

values ofg from instant O until instant t. An abrupt decrease is detected ifG(t) g(t) is superior to a
threshold.

To give an intuition of how the test works, for decreasing signals(t), s(t) us(t) will be negative as the
change occurs and thes(t) falls inferior to its mean ps. This makesg(t) decrease. Then the Page-Hinckley
test compares the dierence between the decreasingy(t) and its maximum historical value G(t), which
corresponds to a normal point. Finally, the di erence betweeng(t) and G(t) is compared to a threshold
to decide if the test has detected a change in the input data stream. When the Page-Hinckley test detects
a change, it is reinitialized and g(t) and G(t) are set to zero. In practice, to apply the Page-Hinckley
test, one needs to choose two hyperparameters, the toleranceand a threshold for decision. To choose a
proper tolerance value for , one can measure the oscillation of the input signas(t) around its meanus(t),
ass(t) is not smooth, properly xing  helps ignore the little variations that do not correspond to a real
class change.

Similarly, the way to detect a high abnormal point (increase) is shown in equation Eq. 3.3. Reversely,
for an increasing abnormal point, the dierence betweens(t) s will be positive, making g(t) increase.
A historical minimum point G(t) of g(t) will correspond to a normal point. The Page-Hinckley test then
compares the dierence betweeng(t) and G(t) to a threshold to detect the change point.

git)= gt 1)+ s(t) ps(t) (3.3)
G(t) = min{G{t 1),9t 1)} '
Similarly, a high abnormal is detected ifg(t) G(t) is greater than a threshold.

Though the Page-Hinckley test is presented as a two-sided test for detection of both high abnormal
and low abnormal values, in practice, while applying the test to detect a change in the opposite direction
(high/low changes), one can always stick with the one-sided equation by reversing the sign of the input
signal.

Once the change is detected at time¢,, we note the change point as¢, and the variablesg, G and
mus are reinitialized:

g(ten) =0

G(teh) =0
( r\l):l (3.4)

Hs(tch) =0 .

3.1.3 The relationship with the CUSUM test

The Page-Hinckley test can be seen as a variant of the CUSUM test. We demonstrate here how this is
derived from a one-sided Page-Hinckley test, which illustrates the relationship between both tests. The
CUSUM test detects high or low changes. Low abnormal values are detected using the following equation:

P@)= max(P(t 1) s(t)+ ps(t) ,0) (3.5)
Analogously, to detect high abnormal changes:
P®= max(P(t 1)+s) ps() ,0) (3.6)

We demonstrate how Eq. 3.5 and Eq. 3.6 can be deduced from previous equations of the Page-Hinckley
test by a change of variable. As one can remark, the test in Eq. 3.5 is one-sided, so we equally choose the
one-sided Page-Hinckley test for demonstration (Eqg. 3.2) as mathematically their expressions are close.

Eq. 3.2 is used for an abnormal low value detection in the Page-Hinckley test throughG(t)  g(t).

Let us de ne a similar test P(t) = G (t) g(t) with:

G()= max{G (t 1),g(®)} . (3.7)
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Then we have:

Pt = G() g

= max{G (t 1), 09()} 9t

=max(G (t 1) g(t),0)

=max(G (t 1) gt 1+ogt 1) 9, 0)
=max(G (t 1) gt 1) (s(thy us®+ )0
=max(P(t 1) s+ ps®) ). 0),

(3.8)

which corresponds to the CUMSUM test in Eq. 3.5. Thus, the only dierence lies in Eqg. 3.7 usingg(t)
instead ofg(t 1).

For an increasing signals(t) , a signal with reversed signs( t) will be a decreasing one. Thus, detecting
an abnormal high value (increase) ofs(t), is equivalent to detecting an abnormal low value of s( t) with
its mean W s. In this way, one can nd the equation of a CUSUM test as in Eq. 3.6.

PO®=max(G(t 1) ot 1+gt 1) g, 0)
=max(G (t 1) ot 1) (s(®) us@®O+ )0 (3.9
=max(P(t 1)+ s(t) us(®) )0

This shows that the Page-Hinckley test can be seen as a variant of the CUSUM test.

3.1.3.1 Discussion

The Page-Hinckley test detects abrupt changes in data streams. As previously explained, the unsu-
pervised ELBO loss can be used as an indicator of novelty in CURL. When the model has been trained
over a certain time, abrupt changes in the loss indicate that the input example is poorly modeled and
implies the possible arrival of a new object class. The unsupervised ELBO loss is composed of both
the image reconstruction loss of the VAE and the regularization terms based on KL divergence. The
dynamics of training with category change, when an unknown category arrives, can be captured by the
variation of the ELBO objective (Eq. 2.20) as shown previously in section 2.4.1 in chapter 2.

The complete Page-Hinckley test is two-sided, and both Eq. 3.2-Eq. 3.3 and Eq. 3.5-Eq. 3.6 detect
changes on one side. This one-sided test is more suitable in our context of novelty detection in unsu-
pervised continual learning as the indicator of novelty (i.e. new classes) usually only varies in one single
direction, decreasing abruptly when the input is poorly modeled. We will further illustrate the indicator
and will give a detailed explanation in section 3.2.

Here we give an example to show the dynamics of the chosen indicatoE(x)) in gure 3.1 while
training with self-supervision for continual learning. One can remark that with self-supervision, when
the VAE is confronted with examples that it is unfamiliar with, unsupervised ELBO loss varies abruptly.
Details of the loss function and the self-supervision will be explained later in section 3.2.4. Although
eventually, the model can employ some variants of how the actual self-supervision is performed relating to
the details of the application of novelty detection, these dynamics of the model during training suggest that
the indicator is e ective in our learning scenario. Thus, as we will show experimentally, the deployment
of the Page-Hinckley test enables the detection of new categories via abrupt changes of the ELBO loss.

In the following section, we will introduce our model that extends CURL by integrating the Page-
Hinckley test for novelty detection, starting with an overall explanation in section 3.2. We show in
section 3.2.2 that novelty detection can guide the model to identify new classes, and the model can thus
predict the category automatically and use this information to guide training. In section 3.2.4, we show
the loss function applied in our model and how self-supervision guides training.

3.2 A self-supervised continual learning approach

As mentioned in section 3.1 and chapter 2, CURLts our objective of unsupervised continual learning.
Our model uses CURL as a basis, with the same VAE to learn representations of di erent classes and the
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64 Chapter 3. Novelty detection in continual learning of image sequences

Figure 3.1: An example to illustrate the dynamics of the ELBO objective (E (x)) that our proposed
novelty indicator is based on. During training, the unsupervised ELBO loss exhibits abrupt changes
regarding its mean value when new categories arrive. For our approach, we will give a detailed
explanation of how the self-supervision is determined from this signal.

same generative replay strategy. This corresponds to creating a mixture between batches of generated
images of historical learned classes and the real training images of the current object for training. Our
proposal is to introduce a mechanism for novelty detection to guide self-supervised learning. The main
di erence between our model and CURL lies in the automatic detection of new classes, i.e. the arrival of
new categories is detected autonomously. As previously reviewed in section 2.4, CURL uses the ELBO
loss (shown in Eq. 2.20) as an indicator and compares it to a threshold to detect poorly modeled examples
that are new class candidates. But the threshold mechanism applied to the indicator has no control over
the number of components created during learning. In addition, the model does not accurately detect the
number of categories. Therefore, the number of components varies depending on the chosen threshold, and
the clustering performance is highly correlated with the chosen value. This results in over-segmentation of
clusters and requires additional eort for classi cation (i.e. more annotated examples or more supervision)
during post-labelling. Since the number of clusters in model clustering is incoherent with the number of
categories, we will assign each cluster to its corresponding category by majority vote during evaluation.
But when the prediction is separated over more clusters with over-segmentation, the model will also
need more annotated examples to correctly assign each cluster to a class. In section 3.3.6, we will show
experimentally the in uence of the number of components, both on the clustering performance and the
need for annotated examples during post-labelling with varying number of components. For this reason,
we expect to improve the novelty detection process. In the following sections, we will describe our novelty
detection approach based on the Page-Hinckley test. We willrst give a general introduction to our model
and the hypothesis that is applied in section 3.2.1, followed by the presentation of the new-class detection
process in section 3.2.2 and its use in self-supervision in section 3.2.4.

3.2.1 Our Model

In our learning scenario, we suppose that the model perceives the input class by class, and a class
will maintain its visibility during a certain duration. The class-incremental continual learning as we
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have de ned it in section 2.3.2.2 remains the closest to our learning scenario. Likewise, as mast step,
we assume that objects do not reappear for a second time during learning. Such a hypothesis sime$
unsupervised continual learning since known objects that reappear do not explicitly need to be recognized
by the agent, and class changes necessarily correspond to new objects.

Our model uses the same neural network architecture as CURL, i.e. an extended VAE that learns
a latent representation in an unsupervised manner. Previously, in section 3.1 and mostly in chapter 2,
section 2.4, we have presented the model of CURL, its architecture and the loss function that CURL
applies in section 2.4.1. The latent variable learned by VAE follows a single Gaussian distribution for each
component or cluster. Note, however, that in our model for each category, aingle Gaussian component
is used to model the distribution of the latent variables of the given category. This is contrary to CURL,
which assumes a Gaussiamixture learned by multiple components. Although, in theory, a Gaussian
Mixture Model has a higher expressiveness and can represent any arbitrary distribution, there are several
advantages for a single-component model. First, the latent representations of each object are encouraged
to form a unique cluster, and thus the clusters corresponding to derent objects should be more compact
and semantically more consistent at the object-level. Second, a model with fewer components requires
less supervision during post-labelling where each component must be assigned a class label. Hence, the
overall autonomy of the system is increased.

ELBO

’ Model - - — Novelty detection
Self-supervised training

Image batches
[ Internal labels Ym ]

New Not new

New component creation Current Component

Figure 3.2: The proposed self-supervised approach using novgltletection: through the application
of the Page-Hinckley test, the model can detect new object categories and de an internal label for
self-supervision to guide the learning. Under the hypothesis that objects are presented one after the
other (i.e. temporal continuity), our approach determines whether the current observation belongs
to the currently learned object or to a new, unknown one. In the latter case, a new component is
added to the latent representation of the VAE model which becomes the current component.

In the next section, we will provide more details on the new-class detection process in which we have
integrated the Page-Hinckley test as a major contribution to guide the training of our model.

3.2.2 New-class detection

Approach

In section 3.1, we have briey introduced the Page-Hinckley test as a common test to detect changes
in the data stream. In our use cases, formally, letx; X = {Xo,...,X7} be the input training examples
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presented in a sequence. As with CURL, in our model, poorly modeled exnples are considered as new
class candidates, with theunsupervisedELBO objective E(x) (Eq. 2.20) below a threshold . The unsu-
pervised ELBO objective E (x) marginalizes over all the existing categoriey through a weighted sum over
the q(y|x). Therefore, those learned in the past are also taken into account. In cases where the introduced
category is dierent from the current one, it can refer to a past observation. This marginalization helps
partially address this special case, which reduces false-positive detection of new classes that correspond
to past categories instead of new ones.
In our model, we use the Heaviside step functiotd to compare the ELBO objective E (x) to a threshold

to determine if the example is poorly modeled. Its equation is shown in Eq. 3.1 (  E(x:)) will be
equal to 1 if E(x) is smaller than a threshold (implying an outlier); or be equal to 0 otherwise for an
inlier.

1, if E()>0

H E(x¢)) =
( (x0) 0, otherwise.

(3.10)

We adopted the version of Page-Hinckley test as daed in [117] (in Eg. 3.12). In fact, in Eq. 3.8
in section 3.1.2.2, we have explained why Eqg. 3.5 and Eq. 3.6 can be considered as a variant of the
Page-Hinckley test. As previously explained, the Page-Hinckley test is normally two-sided. In contrast,
Eq. 3.12 is one-sided and detects the moments of change Bif( E(x¢)) from O to 1 (i.e. an abrupt
increase in the loss), since many of the examples will have ELBO values that are inferior to, indicating
that they are poorly modeled (ELBO is a log likelihood). For our problem of category change detection,
only one direction of the ELBO objective is of interest, thus the one-sided Page-Hinckley test is more
suitable here. In fact, the meaning of the ELBO objective varying in the opposite direction (i.e. an abrupt
increase), is more di cult to assess. These are well-modeled examples, but it is diult to determine
how "good" they are by simply looking at an indicator value that is above the threshold.

Concretely, we apply the Page-Hinckley test on theH(  E(x:)) function in the following way:

gh () =max(0,g(t 1)+ H( EXi)) uu(®) ) (3.11)

T De HO | (312

HH (B =

with N being the number of samples the agent has seen since the previous category change arigeing
the tolerated change for each step. Ifg(t) is greater than a threshold |, then a new class is detected,
i.e. a Gaussian is added to the GMM in the VAE, and we reinitialize g(t) to 0, and the puy will also be
reinitialized using Eq. 3.4. In the following, we denote this model asours w/o p,, as we also proposed a
variant using a variable p, described below.

One can note that the H( E (X)) function reverses the direction of an ELBO loss change. Its
value will tend to 0 when learning tends to stabilize on some categories; otherwise will change fowhen
there are lots of outliers. The change ofH ( E (x¢)) function corresponds to an abrupt "high" value
when changes occur, which is the opposite to that of the direction of the ELBO objective due to the
log function in Eqg. 2.20. In addition, compared to the ELBO loss, by de nition, the H( E(xy)) is
bounded. This facilitates the setting of hyperparameters in the Page-Hinckley test. However, the ELBO
objective itself is not bounded. For this reason, if one wants to apply Eq. 3.12 directly on the ELBO loss
function, its sign needs to be reversed to apply the Page-Hinckley test on theegative ELBO objective.

Although, this approach gives satisfying results in most cases, in practice during training, there can
be considerable ELBO uctuations due to inter-class variability. When a high variance is present in the
dataset the model might detect false positive object changes when the observations of the instances of
the same object are dierent from previously perceived instances. In gure 3.3, we illustrate this problem
with an example of the dynamics of the ELBO indicator, logged instances by instance, before and after
the category change. Although the Page-Hinckley test partially smooths theseuctuations when it is
applied to the H( E(x¢)) function, becauseH () takes a value betweern0 and 1, there is still a large
within-class variance. Thus, we will apply other statistical smoothing strategies like a running average
to see if this provides a better and clearer internal supervision signal.
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Figure 3.3: An example to illustrate the dynamics of the ELBO objective, logged instance by instance.
(For better readability, we only illustrate around 10 batches before and after the category changes,
each batch containing 100 images.) Since it is pertinent to detect the precise moment of category

change, it makes sense to analyse these dynamics instance by instance.

We further propose to use a running average denoted ap,(t) to smooth the H(

E(xt)). This

model is called "ours with p," in the following, Egs. 3.13 to 3.15 show this variant of our approach to
detect new categories. This helps to smooth potentialuctuations in the ELBO loss and to obtain a

cleaner supervision signal in the presence of outliers.
)= pat D+@ ) H(C EX).
G(t) =max(0,g (t 1)+ pa(t) M, (O )

N 1 1
O P € D+ o)

Hp, (1) =

Model variants for comparison

(3.13)

(3.14)

(3.15)
(3.16)

To illustrate and justify di erent adaptations in our model, we propose several model variants to
compare with. The rst model variant is to directly apply the Page-Hinckley test on the ELBO objective

E(x) denoted as "ours w/o H" in order to study the impact of the function H(
as ELBO gives low abrupt changes with novelty, in the reversed direction as irH (

to apply the one-sided test on thenegative ELBO objective:

ge (M =max(0,9t 1)+(E (Xt)) He oy )
=max(0,9(t 1) EXu)+ Hex,) )

(N 1)
N

HE (Xt) = Me (Xt1 )+ NiE(Xt)
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E(x¢)). Note that,
E (xt)) (whichis 1
for poorly modelled examples, thus gives large, abrupt changes), we reverse the sign of ELBO objective

(3.17)

(3.18)
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