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Resumé 
 

Les sources d’information basées sur la télédétection présentent des caractéristiques 

particulièrement intéressantes pour le suivi dynamique des cultures, de l’échelle de la parcelle 

à l’échelle régionale. L’imagerie provenant de plateformes de télédétection est capable d’être 

utilisée pour l’aide à la décision opérationnelle (pour l’expertise ou comme entrée de modèle) 

pour le suivi des cultures à différentes échelles. Malgré la démonstration de cette capacité dans 

des études précédentes, le développement de ces nouvelles sources d’information (plateformes 

et capteurs) progresse plus rapidement que le développement de nouvelles technologies de 

l’information adaptées à la gestion de cette grande quantité de données. En effet, les 

informations qui caractérisent ce type de données sont non seulement volumineuses 

(multidimensionnelles), mais aussi très hétérogènes, ce qui reste un défi pour le traitement des 

données et les interprétations agronomiques.  

Afin de contextualiser cette recherche, ce projet de recherche doctorale s’est concentré 

sur le potentiel d’une série temporelle d’images satellitaires Sentinel-2 pour le suivi des 

vignobles à l’échelle régionale dans la région Occitanie (France). Ce jeu de données spatio-

temporel Sentinel-2 présente des caractéristiques uniques en termes de temps de revisite, de 

résolution spatiale, d’informations attributaires fournies et de coût. De plus, le choix de la 

couverture spatiale est intéressant en soi, car la région viticole de Languedoc-Roussillon 

représente une grande diversité de conditions agro-environnementales qui se traduit par un 

grand nombre de cépages différents cultivés ainsi qu’une grande diversité dans les pratiques de 

gestion des viticulteurs. L’ensemble de ces facteurs introduit des niveaux supplémentaires de 

variabilité dans l’analyse des données viticoles à l’échelle régionale. Ce travail de thèse est basé 

sur l’hypothèse que l’évaluation de la variabilité temporelle de l’imagerie satellitaire, en plus 

des variations spectrales, permettrait une analyse plus complète pour dériver des informations 

nouvelles et pertinentes sur la variabilité de la production des vignobles individuels à l’échelle 

régionale. Dans cette optique, l’objectif principal de cette thèse a été d’intégrer des analyses 

temporelles, en tant que descripteur supplémentaire de la variabilité des vignobles, afin de 

prendre en compte, d’une manière plus holistique, toutes les dimensions spécifiques des 

données de télédétection (spectrales, temporelles et spatiales). Différentes méthodes d’analyse 

multivoie supervisées et non supervisées, dérivées du domaine de la chimiométrie, ont été 

utilisées, capables de générer des informations à l’échelle régionale à partir de séries 

temporelles d’images multi-spectrales. Les approches non supervisées ont démontré la 

possibilité d’extraire des connaissances agronomiques dans le temps (par exemple, différentes 

dynamiques végétatives) sans prérequis préalables. Les méthodes supervisées ont permis, d’une 

part, l’évaluation spectrale, temporelle et spatiale d’un événement climatique extrême (par 

exemple une vague de chaleur) et, d’autre part, la sélection de variables multidimensionnelles 
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(spectrales-temporelles) pour approfondir la compréhension agronomique de l’impact d’un 

événement climatique extrême sur la vigne à une échelle régionale. 

 Ce travail démontre que les méthodes d’analyse exploitant les signatures temporelles et 

spectrales pour extraire des informations sur les variations de la croissance végétative à 

l’échelle régionale offrent des informations précieuses pour évaluer la performance des cultures 

individuelles. En tenant compte de la haute dimensionnalité des données, qui inclut la 

dimension temporelle, les besoins ainsi que les limites de l’analyse des séries temporelles sont 

explorés dans le contexte de la fourniture d’informations pertinentes pour aider à la 

connaissance à grande échelle d’une culture, telle que la vigne. 
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Abstract 
 

Information sources based on remote sensing have particularly interesting 

characteristics for dynamic crop monitoring, from the plot scale to the regional scale. Imagery 

from sensing platforms is capable of being used for operational decision support (for expertise 

or as model input) for crop monitoring at different scales. Despite the demonstration of this 

capability in previous studies, the development of these new sources of information (platforms 

and sensors) is progressing more rapidly than the development of new information technologies 

adapted to the management of this vast quantity of data. Indeed, the information that 

characterises this type of data is not only large (multidimensional), but also very heterogeneous, 

which remains a challenge for data processing and agronomic interpretations.  

In order to contextualise this research, this doctoral research project has focused on the 

potential of a time-series of Sentinel-2 satellite images for monitoring vineyards at the regional 

scale across the Occitanie region (France). This spatio-temporal Sentinel-2 dataset presents 

unique characteristics in terms of revisit time, spatial resolution, attribute information provided 

and cost. Moreover, the choice of spatial coverage is interesting in itself, as the Languedoc-

Roussillon wine region represents a great diversity of agri-environmental conditions resulting 

in a large number of different grape varieties being cultivated as well as a large diversity in the 

management practices of the wine growers. Collectively these factors introduce additional 

levels of variability into the analysis of regional-scale viticulture data. This PhD work is based 

on the assumption that assessing the temporal variability in the satellite imagery, in addition to 

spectral variations, would allow a more complete analysis to derive new and relevant 

information about production variability of individual vineyards at the regional scale. With this 

in mind, the principal objective of this thesis is to integrate temporal analyses, as an additional 

descriptor of vineyard variability, in order to take into account, in a better and more holistic 

way, all the specific dimensions of remote sensing data (spectral, temporal and spatial). 

Different supervised and unsupervised multi-way analysis methods, derived from the field of 

chemometrics, were used, capable of generating information at the regional scale from time 

series of multispectral images. Unsupervised approaches demonstrated the possibility of 

extracting agronomic knowledge over time (e.g. different vegetative dynamics) without a priori 

knowledge. The supervised methods allowed, firstly, the spectral, temporal and spatial 

assessment of an extreme climatic event (e.g. a heat wave) and, secondly, the selection of 

multidimensional (spectral-temporal) variables to deepen the agronomic understanding of the 

impact of an extreme climatic event on grapevines at a regional scale. 

 This work demonstrates that analysis methods exploiting temporal and spectral 

signatures to extract information on regional-scale variations in vegetative growth offer 

valuable information for assessing individual crop performance. Taking into account the high 

dimensionality of the data, which includes the temporal dimension, the needs as well as the 
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limitations of time series analysis are explored in the context of providing relevant information 

to aid large-scale knowledge of a crop, such as grapevines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 
 

Foreword 

 

Successive advances in remote sensing platforms, sensors and computing techniques are 

leading to a significant growth in remotely sensed data and applications. Many projects 

dedicated to environmental and crops monitoring are exploiting multi-temporal and multi-

sensor remote sensing data at different spatial scales for processing high-dimensional data. 

Indeed, large-scale remote sensing applications, i.e. covering large geographical areas being 

dominated by massive remotely sensed data, are considered as data-intensive problems. In 

agriculture, the potential of remotely sensed time series to support management practices has 

never been greater; however, the complexity of the remote sensing data as well as the large 

datasets involved often limits this potential. How plants interact with sunlight is fundamental 

to the existence of life, it also provides a window into the functioning of agricultural 

ecosystems. The basic properties of vegetation spectra have been known for decades, but 

interpretation of the spectra remains difficult because, in agriculture, canopy response 

(reflectance) is affected by multiple factors that can range from spatial variability of soil-climate 

conditions to agricultural practices. Based on the assumption that the spectral response of the 

crop makes it possible to detect the onset of processes, such as the beginning of crop growth, 

as well as the occurrence of incidents (e.g. extreme weather events, diseases, etc.), remote 

sensing is a way to design effective and objective methods for assessing crop characteristics. 

Furthermore, crops have a temporal and seasonal behaviour, i.e. their phenology, which makes 

phenological diversity a factor related to the diversity of spectral responses. Therefore, temporal 

variations can be used in addition to spectral variations through time series of satellite images 

to monitor agriculture production over large areas. In this context, the Sentinel-2 satellite 

mission, which provides free multispectral time series for continuous vegetation monitoring, 

offers great promises. 

Time series analysis of imagery is becoming increasingly important for agricultural 

monitoring. Increasing the use and usefulness of time series data is in the interest of 

understanding agricultural crop dynamics and factors that may affect this dynamic. 

Understanding the latter in relation to the changes taking place on our planet could generate 

value-added products relevant for informed decision-making by stakeholders, for example, by 

providing interpretative insights into the effects of climate on annual and perennial crops. 

Therefore, the importance of properly considering the temporal dimension in the analysis of 

remote sensing data is of paramount importance. In this thesis, the proposition is made to study 

the construction of high-dimensional spaces using all values of the time series, together with 

advanced multidirectional chemometric methods, as a robust and efficient approach for crop 

monitoring. Considering a regional decision scale, the object of this thesis will be to propose a 

methodological framework to assess the relevance of using the temporal information provided 
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from satellite image time series to identify, describe and predict patterns with specific spectro-

temporal signatures that contribute to improve crop knowledge at large scales. Integration of 

the time dimension should be seen as a key step in facilitating the progress of the research and 

potential future services for the agriculture sector. 

In order to answer these questions, this manuscript is divided into six chapters. After a 

first chapter specifying the general context and the scientific question to address, there are four 

chapters detailing the research undertaken in the thesis. Each of these four chapters consists of 

one or two scientific articles (4 published and 1 submitted). Each article (or pair of articles) is 

preceded by an introduction and followed by a conclusion that summarises its position in the 

proposed scientific approach. The last chapter is a general synthesis proposing different 

perspectives arising from this research work. 
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1.1 How to monitor crops with remote sensing: state 

of the art  
 

1.1.1 Generalities: remote sensing development for agriculture 

In the last decades, remote sensing (RS) techniques have provided valuable insights into 

agriculture management by determining physiological and phenological status of the crops 

(Thenkabail et al., 2011). Beginning with Gates et al. (1965), Allen et al. (1969), Gausman et 

al. (1969) and Woolley (1971), who pioneered the fundamentals of how optical properties 

change as a function of plant morphological characteristics (e.g. canopy architecture, leaf 

thickness or water status). Research followed in the 1970s, particularly linked to the first Earth 

Observation satellite systems, with Tucker (1979) demonstrating that vegetation can be 

monitored from spectral properties of reflectance. The exponential growth of RS studies applied 

to agriculture between 2000 and 2019 suggests progress in the technologies used, including 

(Khanal et al., 2020):  

- unprecedented combinations of spatial, temporal and spectral capacities depending on 

the platform or type of sensor used;  

- advent of new platforms such as Unnamed Aerial Vehicles (UAV) in addition to 

satellites or aircraft; 

- the development of cloud computing and data storage techniques (Khanal et al., 2020). 

In particular, the increase in agricultural application studies had an important focus on 

Unnamed Aircraft Vehicle (UAV) as well as satellite/airborne-based RS studies. Increase in RS 

studies is mainly explained by the free access to a large amount of historical satellite imagery, 

such as Landsat, and more recently the Sentinel constellations as well as by the accessibility of 

powerful data platforms and services, such as Google Earth Engine (GEE) (Bégué et al., 2018). 

Khanal et al. (2020) identified that the number of RS-related studies for agriculture is now 20 

times higher than it was in the early 2000s, with the majority of studies related to multispectral 

and hyperspectral applications, especially since 2017. Thus, in view of the trends in RS 

research, the main historical limitations associated with the inadequate availability of time 

series that offer sufficient temporal and spectral resolution as well as data storage, distribution 

and computing issues, seems to be gradually fading away, meeting the long-lasting expectations 

of RS applied to agriculture.  

As RS allows the acquisition of information on objects or phenomena from a distance 

and in a non-destructive way (Gitelson et al., 2001), it is considered as an essential tool for 

agriculture that permits the deepening of knowledge on crops and their temporal evolution. 

However, its application is related to several specificities that involve different spatial scales 

(e.g. local, plot or regional), different temporal scales from real-time acquisitions to decades 
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later, as well as the different levels of spectral accuracy required for a proper knowledge of crop 

status (Weiss et al., 2020). Therefore, monitoring of agriculture using RS is a broad topic that 

has been widely approached from multiple perspectives. RS is discussed, for example, for 

specific agricultural applications (e.g. yield prediction, irrigation monitoring, etc.), on specific 

RS platforms (e.g. satellites, UAV), sensors (e.g. active or passive sensing systems) or specific 

locations and climatic contexts (e.g. intra-plot, or region, wetlands or drylands) (Weiss et al., 

2020). 

1.1.2 Remote sensing for agriculture applications 
 

1.1.2.1 Specific agriculture applications 

Remote sensing, together with other advanced techniques, such as global navigation 

satellite systems and geographic information systems, is playing an important role in the 

assessment and management of agricultural activities (Shanmugapriya et al., 2019). The 

number of applications of RS in agriculture is vast, as it can serve multiple purposes: making 

agricultural activities economically viable, securing agricultural production to feed a growing 

population, reducing negative environmental impacts by minimising resource depletion and 

contributing to climate mitigation at a local and global scale. Weiss et al. (2020) highlighted a 

number of general current trends that address the multiple objectives outlined above. The 

applicability of RS ranges from selecting varieties better adapted to challenging contexts (e.g. 

climate change), to monitoring land use or crop growth, forecasting in-season crop yields, 

optimising short-term production and providing ecosystem services related to soil or water 

resources, as well as monitoring biodiversity. In recent years, work in RS for agriculture has 

increasingly focused more on characterising the biophysical properties of plants to provide 

valuable information on various agronomic parameters, such as crop phenology stages, and on 

the detection of stress situations and other disturbances (Atzberger, 2013). 

Remote sensing relies on how radiation reflectances are affected by the properties of 

observed surfaces to extract information of different kinds (Soudani, 2005). The information of 

interest is based on traits or features of the crops or agricultural systems and, above all, how 

these later vary in space and time. Weiss et al. (2020) established six categories of agronomic 

features that can be studied with RS: chemical (e.g. leaf nitrogen content), physical (e.g. soil 

moisture), typological (e.g.; crop type and variety), biological (e.g. phenological stages and 

growth), structural (e.g. leaf inclination and position) and geometrical (e.g. leaf density and 

shape). The relationship between what is directly measured by RS instruments and the 

agronomic features themselves needs to be modelled in some way (more or less substantially) 

to infer the latter from the former (Weiss et al., 2020). This definition of the relationship 

involves at first, the choice of an instrument or a sensor mounted on a distal platform, such as 

a satellite, an aircraft, an UAV/Unnamed Ground Vehicle (UGV) or a mobile or static terrestrial 
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platform or a probe (located on the plant or on the soil). It should be noted that although all of 

the above platforms could be labelled as remote sensing, the UGV/terrestrial platforms and the 

probe are considered as proximal detection sensors, and not as sensor-based remote sensing. As 

a result, although some strong similarities may be found, terrestrial and probe platforms will 

not be considered as RS in the following discussion.  

Since the sensor measures electromagnetic radiation that is reflected or emitted by the 

target, the type of information that can be accessed depends on the specific properties of the 

instrument and the specific properties of the target (Navalgund et al., 2007). Thus, from Weiss 

et al. (2020), spectral, directional and polarization capabilities, spatial resolution, revisit 

frequencies (temporal resolution), as well as signal-to-noise ratios are defined according to the 

sensor/platform properties. 

The understanding of how to relate an agronomic trait to a signal response, has been 

used to quantify various agronomic parameters. Thus, it is also important to know what 

information one wants to obtain from reflectance measurements in order to know the type of 

possible instruments to use (Thenkabail et al., 2011). Bridging the gap between the physical RS 

measurement and agronomic variables, Baret et al. (2007) determined that depending on the 

spectral domain under consideration, different physical processes may be involved in: 

- the visible to shortwave infrared domains, the physical quantity considered is the 

reflectance, meaning the fraction of radiation reflected by the surface that relates to 

canopy structure variables;  

- the thermal infrared, the canopy is characterised by its brightness temperature according 

to the emitted radiation flux and reflects leaf surface temperature;  

- the active microwave, the backscatter coefficient from the canopy is measured by radar 

systems and relates to physical conditions such as water content);  

- passive microwaves, the canopy is characterised (similarly to the thermal infrared 

domain) by its brightness temperature, but here, emissivity plays a significant 

contribution and can be related to physical-chemical properties such as soil organic 

carbon. 

Once an appropriate instrument (platform and sensor) for agricultural data has been 

defined by the nature of the problem to be studied (what to measure, why, how and where) 

(Khanal et al., 2020), the second step concerns deciding on the type of approach to be used to 

model the relationship between RS instruments and the agronomic features. There are many 

approaches to retrieve agricultural variables from remotely sensed data but they basically fall 

into three categories (Weiss et al., 2020): 

- purely empirical methods, which entails directly calibrating a numerical relationship 

between the measured signal and one or several variables of interests. Basic examples 

would be linear and non-linear regressions with either classical statistical approaches or 

machine learning algorithms; 
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- mechanistic methods consisting of the inversion of models based on radiative transfer 

theory, Maxwell's equations or optical and projective geometry. The application 

domains are solar energy and microwaves, radar interferometry and polarimetry, and 

LIDAR and photogrammetry;  

- ‘contextual methods’ that exploit the spatial and/or temporal contrasts over thermal and 

solar spectral domains of images, mainly to assess plant water status with regard to the 

evapotranspiration process (Stefan et al., 2015). 

  

1.1.2.2 Specific platform and sensor types  

Although a large number of RS instruments are already now available, new sensors are 

still being developed to provide greater spectral resolution with more targeted information that 

is compatible with the essential requirements for agricultural applications. Improvements deal 

with the revisit time of less than one week and the spatial resolution of less than 10 metres (Qiu 

et al., 2019). For a proper monitoring of agricultural systems, and considering crop evolution 

and changes over time, it is important to take into account the different instruments, as well as 

their measurement conditions and possible disturbances, in order to properly characterise the 

signal provided by the target (Khanal et al., 2020). Broadly, RS platforms are divided into 

satellite, aerial and Unnamed Aerial Vehicle (UAV), and RS sensors into visual, thermal, 

multispectral, hyperspectral and microwaves (radar). The first four of these fall into the 

category of passive sensors and microwave radar into the category of active sensors. Thermal 

sensors have proved to detect soil moisture and plant water stress (Hassan-Esfahani et al., 

2017). Multispectral and hyperspectral optical (visible and near infrared) sensors are mainly 

used to detect crop health patterns beyond the visible spectral domain using several narrow 

spectral bands, thus improving the characterisation of crop growth (Yao et al., 2017). It should 

be noted that hyperspectral sensors have a greater number of spectral bands in close vicinity to 

each other compared to multispectral sensors. Finally, microwave sensors have the advantage 

of being independent from atmospheric conditions. They allow the biophysical characteristics 

of the crop to be determined both day and night (Valcarce-Diñeiro et al., 2019).  

Currently, multispectral, hyperspectral and visual sensors are the most common form of 

sensor available from satellites used for agricultural applications (Khanal et al., 2020). 

Compared to satellite platforms, UAVs remain less widely used but are gaining popularity due 

to their flexibility in terms of revisit frequency. However, their use presents some drawbacks, 

such as their dependence on weather conditions and their operational limits related to their 

autonomy (e.g. battery power) (Herrero-Huerta et al., 2014). Moreover, as the optical domain 

is already considerably exploited, new research with other types of sensors such as thermal 

infrared is starting to gain popularity especially for water resources management (Lagouarde et 

al., 2019).  
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Operational constraints  

Currently, the vast majority of RS technologies, i.e. platforms and sensors, are 

accessible and relatively affordable for the agricultural sector. However, technological 

advances are not keeping pace with the development of the sector concerned, so it has not yet 

been possible to fully adapt these useful technologies for the following three reasons (Khanal 

et al., 2020): 

- Efficacy: the choice of the instrument to be used is crucial in order to adequately address 

the nature of the problem. As Srivastava et al. (2020) showed, the use of hyperspectral 

sensors has made it possible to determine and discriminate specific features using 

hundreds of narrow spectral bands. However, the increase in spectral resolution (bands) 

has caused an increase in the size of the dataset, leading to a higher level of complexity 

related to data storage and subsequent pre- and post-processing. In addition, 

hyperspectral sensors are still considered expensive compared to other sensors on the 

market. Thus, their efficiency for the characterisation of agronomical variables in a 

commercial context may not compensate for the difficulty of data management as well 

as their price.  

- Economics: There are different platforms for RS data collection and each has arguments 

for and against. In agriculture, the two most common platforms are satellites and UAV. 

Regarding satellites, there are a considerable number of open-access satellite data 

streams with medium resolution (i.e. ≥ 10 m pixel size), such as Landsat and Shuttle 

Radar Topography (SRTM) among others. These types of satellites are used to cover 

large areas for free but, as the spatial resolution increases, so does the cost; for instance, 

imagery with higher resolution (5 m pixels) from the RapidEye satellite costs 1.28 

USD/km². Regarding UAVs, they offer high-frequency data at a much smaller scale, 

allowing the monitoring of crop growth with a high spatial resolution at plant level. 

However, in addition to the limitations already mentioned, their average price has been 

estimated to be around 7.4 to 12.4 USD/ha (Khanal et al., 2020), which implies that if 

the study area is large, the cost can be a major constraint to their use. Therefore, the 

majority of studies related to RS applications in agriculture continue to be limited to a 

low or medium spatial/temporal scale. 

- Availability of RS data, cloud computing and processing: the amount of data available 

today is greater than ever before. Although having large amounts of data can only be 

seen as a positive factor, there are several challenges associated with the limits of 

computer storage and computation as well as different resolutions (spectral-spatial-

temporal resolutions), which have to be taken into account to study underlying processes 

of dynamic phenomenon like crops. For these reasons, the exploitation of remotely 

sensed data is still a challenge to reach its full potential for applications in agriculture. 
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Data acquisition and methods: the impact of data resolution 

The main sensor/target characteristics, which facilitate sensor/target discrimination, are 

spectral, spatial, temporal, and polarisation signatures. While polarisation is a specificity of the 

radar sensors, with sensitivity to identified variables such as cloud particle size distribution, soil 

texture, agricultural crops (Egan, 1992), the other characteristics are common for most of the 

other sensors. The spectral resolution determines the amount and size of spectral sampling 

intervals provided from the electromagnetic region. Spatial resolution refers to the pixel size of 

an image that conditions the ability of the sensor to detect the target, while temporal resolution 

is defined by the revisiting time between two successive acquisitions (Navalgund et al., 2007). 

Depending on the resolution of sensor properties, exploration and knowledge creation 

using search, mining and modelling techniques will be adapted to different volumes and 

dimensions of data, hence the importance of prior knowledge of the phenomena to be 

investigated. When using high-resolution images, either spectral (e.g. hyperspectral), spatial 

(e.g. 50 cm for GeoEye-1 satellite platform) or temporal (e.g. UAV) resolution, it has been 

shown that studies tend to focus on a local context, i.e. small areas, due to the large processing 

needs in terms of time, cost and skills (Khanal et al., 2020). However, while the adaptation of 

some agricultural practices for sustainable development requires working at a spatial resolution 

of at least the decimetre, other variables of interest, such as yield estimation, can be done at 

larger scales (e.g. hectometre or kilometre). Similar reasoning also applies to the temporal and 

spectral resolution scale. Regarding temporal resolution, an example of monitoring that requires 

specific (but weather-dependent) revisit times to obtain reliable predictions is that of nitrogen 

fertilisation, as imaging needs to be performed at specific growth stages (Verrelst et al., 2015). 

In terms of spectral resolution, a sensor that only provides information in the visible spectrum 

is limited to applications such as crop emergence detection and crop classification. However, if 

the sensor is also capable of capturing spectral regions such as the Near-InfraRed (NIR) and/or 

thermal bands, it is useful for other applications, such as detecting crop stresses that are invisible 

to the human eye. Furthermore, as the spatial scale increases (e.g. from local to regional to 

global), the link between the measured variables and the agronomic information of interest 

becomes more complex to establish. This is explained because the factors linking the spatial, 

temporal and spectral dimensions are variable and dependent on the environment (e.g. soil type 

and climate), the cropping system (e.g. field size, variety and planting pattern) and the 

conditions during image acquisition (e.g. shade/sunlight), which implies that RS data for large-

scale agricultural monitoring needs to overcome these issues when the goal is to provide wide-

scale timely information on crop production, health or nutrient status and yield prediction. 

1.1.2.3 Specificities related to location and climatic context  

Experiences acquired from monitoring specific crops in specific locations and climatic 

conditions can be very informative to assist in adapting cultural practices in the same locations 
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under different climatic conditions or in other locations with comparable climatic conditions 

(Weiss et al., 2020). As an example, monitoring the phenological development of crops not 

only helps to identify different types of land cover and crops (and crop growing conditions), 

but also provides evidence of ongoing global/climate change (Atzberger 2013). According to 

Atzberger (2013), the variables of interest where RS can be relevant to respond to the above-

mentioned insight at regional scale are: biomass and yield, vegetation vigour and drought (stress 

monitoring), crop phenological development, crop area estimation and cropland mapping and 

disturbances and land use/land cover changes. To obtain this information, a large number of 

methods and tools have been developed, first focusing on spectral analysis but later evolving to 

obtain useful: 

- information by analysing the temporal signature (Wardlow et al., 2007); 

- knowledge of the directional reflectance properties of vegetation (Clevers et al., 1994); 

- information from the spatial arrangement of pixels (e.g. image texture) (Irons and 

Petersen, 1981). 

The FAO (2010) reports that agricultural production follows strong seasonal trends linked 

to the biological life cycle of crops, the field environment (e.g. soil type), climatic variables and 

agricultural management practices. Moreover, as productivity can change over short periods of 

time, due to unfavourable growing conditions, the location and climatic context are of utmost 

importance for relevant crop monitoring.  

 

1.1.3 Remote sensing for agriculture: challenges and opportunities 

Agriculture is currently in a challenging context given the strong need to monitor crop 

growth and conditions in various locations and environmental contexts, with various temporal 

resolutions for different purposes (Bégué et al., 2018). As the number of satellite instruments 

and the quality and scope of information collected keeps on increasing, providing greater crop 

coverage with shorter revisit times and with the availability of archival data, the need for 

efficient algorithms able to cope with such an amount of data will increasingly require new 

methodological approaches to be used in agricultural monitoring (Dalla Mura et al., 2015). 

There are several common challenges in RS related to the increasing degree of diversity and 

complexity of RS data. Non-exhaustively, the three main challenges that the literature raises 

are (Ma et al., 2015): 

- the large volume and rate of RS data; 

- the diversity of RS data; 

- the complexity of RS data, especially when considering high dimensionality (either 

spectral, temporal or spatial).  

Regarding the first challenge, although the interest of applying remote sensing 

techniques in agriculture has been demonstrated since the 1970s, the operational use of remote 
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sensing data in this field has recently intensified with the collection of higher resolution data 

that are able to perceive a scene with more precision (i.e. provide more detail), thus considerably 

increasing the amount of information to be collected. Furthermore, the inherent high 

dimensionality of satellite data implies more complex data processing algorithms to use these 

information sources to their full potential (e.g. deep learning methodologies) (Defourny et al., 

2019). 

Regarding the second challenge, one of the main issues is to take advantage of all 

available information by combining remote sensing observations of different natures in terms 

of temporal, spatial and spectral dimensions, as well as ancillary data from other sources (e.g. 

other sensors or ground measurements), in order to be able to better monitor and characterise 

crops (Huang et al., 2018). However, combing remote sensing observations of different natures 

gives rise to new problems in high-dimensional data processing. The main question is how to 

organise multidimensional remote sensing data in a 1-D, 2-D or 3-D array to best 

process/analyse the data. In particular, the organisational structure of the data has to be chosen 

in such a way as to improve its availability and the consequent extraction of useful information.  

The third challenge is to preserve the semantics, character and shape of the original RS 

time series when considering high dimensionality. To address this challenge and thus exploit 

all dimensions of remote sensing imagery in a meaningful way, dimensionality reduction is one 

of the main approaches to process RS data (Liu, 2015). By reducing the dimensions and size of 

the data, it is possible to extract the core of the dataset. In an example applied in agriculture, it 

was shown that the semantics, character and shape of the data can be lost if the appropriate 

sampling time window was not precisely specified (Schneider and Xhafa, 2022). This example 

of an appropriate time window for a specific agricultural application also highlights the need 

for the correct use of technical knowledge (e.g. crop types and crop calendars) to support the 

choices between the wide range of RS data sources and data processing methods. This would 

reduce processing time, while producing relevant results (Weiss et al., 2020). 

These three main challenges highlight some of the limitations of current processing and 

analysis methods (outlined above). Nevertheless, opportunities are emerging for future 

technological development in remote sensing.  

Firstly, the increase in the spatial and temporal coverage and resolution of satellite 

observations through regular acquisitions has made data fusion a very active research area. 

Zhang (2010) defined the data fusion approach as combining data from multiple sources to: (i) 

improve the potential value and interpretation performance of the data sources, and (ii) produce 

a high quality visible representation of the data. For example, to improve the spatial and 

temporal resolution of multispectral imagery, Wu et al. (2018) proposed a data fusion approach 

that combined 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized 

Difference Vegetation Index (NDVI) and 10 m Sentinel-2 NDVI data to generate a synthetic 

Sentinel-2 NDVI time series for monitoring disease in cotton crops. Data fusion practices are 

now widely used in many applied remote sensing tasks, such as estimating physiological stress 
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(Sagan et al., 2019) or monitoring site-specific crop parameters, such as nitrogen, chlorophyll, 

leaf area index and aboveground biomass, either from space (e.g. satellite) or from aerial (e.g. 

UAV) platforms (Ahmad et al., 2022). These types of techniques have shown the potential to 

automatically extract spatio-temporal relationships to obtain more useful information to 

improve the prediction of observed physical phenomena at multiple spatial and temporal scales. 

These methods are very attractive for satellite data analysis, especially if the versatility of data-

driven machine learning methods are combined with physical process models (Reichstein et al., 

2019). However, the evaluation of these advanced models for crop monitoring is still in the 

development phase, as accurate inter-calibration between instruments is an ongoing challenge 

for the RS community (Dubovik et al., 2021).  

Secondly, although there has been progress in addressing the increasing degree of 

diversity and complexity of data over the last decade, studies have mainly focused on 

demonstrating the feasibility and operability of techniques and methods that had previously 

been developed for near-real time and operational needs (Weiss et al., 2020). The development 

of a near real-time decision process is the main opportunity from a near-future perspective for 

operational demands. This will require the implementation of sufficient temporal coverage 

(revisit time) and rapid data processing to reduce the time between acquisition and the output 

of the results necessary for the decision maker (farmer) to make decisions at the field scale. In 

this way, it would be possible to take full advantage of the characteristic properties of RS 

sensors to provide a comprehensive understanding of the factors affecting agricultural crops 

(Hatfield et al., 2019). Consequently, a lot of effort has been devoted to machine learning and 

deep learning approaches that address operational and near real-time needs, either to solve 

classification problems (Ray, 2019) or to establish complex empirical relationships to estimate 

crop variables using RS data (Terliksiz and Altýlar, 2019). However, exploiting the full 

potential of the high dimensionality of RS data with ML or DL approaches for agricultural 

applications is still in its infancy (Khanal et al., 2020).  

Thirdly, according to Liu (2015), the high dimensionality of remote sensing data for 

agriculture is mainly reflected in the spectral and temporal dimensions. Therefore, integrating 

the spectral and temporal component into the analysis is a challenge both to generate new 

knowledge and to identify the potential of RS for crop monitoring. Nowadays, the short revisit 

time of new satellite systems offers a new potential for the use of multispectral and multi-

temporal data in crop monitoring. Thus, given these short temporal revisit times, multi-temporal 

and multi-spectral satellite data can offer additional opportunities for crop monitoring. 

In conclusion, the development of massive data storage and the generalisation and the 

standardisation of remote sensing data is the inevitable trend in the future technological 

development of remote sensing. 
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1.1.4 Multitemporal multispectral data 

As a consequence of the increased amount of data available, particularly from satellite 

platforms, methodological approaches have shifted towards a greater consideration of the 

temporal and spectral dimensions. Concerning the temporal dimension, initial remote sensing 

approaches only considered a single date (Woodcock et al., 2020), i.e. using single date images 

that record certain phenological events in a period that is empirically considered to be the best 

time for identification. However, it has been shown that this type of single-date approach does 

not guarantee having the ‘best’ possible images (e.g. cloud cover is likely to prevent or delay 

image acquisition in many locations) and, additionally, single date imagery is often 

uninformative for capturing crop dynamics (e.g. phenology). Adding to these limitations is the 

fact that in recent decades the cost of storing RS data has decreased dramatically, resulting in 

an overwhelming increase in computing power, which explains the growing importance of time 

series analysis for crop monitoring (Zhu, 2017). Currently, the focus has shifted to multi-date 

image analysis instead of single-day image analysis (Ma et al., 2019). This transition started 

with the realisation that the use of satellite images collected by the same sensor on different 

dates, but covering the same geographical area, is advantageous for finding either natural (e.g. 

growth rate variation) or human-induced (e.g. crop management) changes related to the crop 

(Woodcock et al., 2020). Therefore, change detection analysis was the first methodological 

approach applied to exploit multi-temporal imagery. In the late 1980s, Singh (1989) defined the 

concept of change detection as the process of identifying differences between images at 

different points in time (Jianya et al., 2008). However, according to Woodcock et al. (2020) 

there is currently a transition from change detection to remote sensing monitoring. As the time 

interval between observations used in the time series becomes smaller (e.g. theoretical Sentinel-

2 satellites have a revisit time of 5 days), data processing approaches have begun to move from 

simple change detection to more continuous monitoring (Yang et al., 2019). At present, most 

change detection methods correspond to the bi-temporal approach, i.e. the comparison between 

two dates (Woodcock et al. 2020). In contrast, time series analysis is based on a ‘continuous’ 

time scale, i.e. the focus of the analysis is not only on what has changed between dates, but also 

on the progress of change over a considered period (Jianya et al., 2008). Since time series 

analysis emphasises the uncovering of the trend of change by constructing multi-temporal data 

‘profiles’, this shift in temporal focus has several implications: (i) it allows for a more accurate 

characterisation of the timing of change; (ii) it provides a better determination of the drivers of 

change since the characterisation of the timing of change is improved; and (iii) it opens the way 

to enable near real-time monitoring, i.e. changes can be detected quickly after new satellite 

imagery becomes available (Jianya et al., 2008). These aforementioned functionalities, which 

are addressed by time series analysis, are essential for accurate crop monitoring, as each crop 

type has a well-defined crop calendar with specific crop operation times and unique seasonal 

growth patterns (Loew et al., 2013). Consequently, there is a strong need for a global 
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understanding of the optimal temporal windows and the impact of the quality and quantity of 

temporal features on crop monitoring (Hu et al., 2017), for example to improve estimates of 

crop state variables (Roznik et al., 2022) or to improve modelling of vegetation functioning 

(Zhang et al., 2003). 

Concerning the spectral dimension, it is the main factor that needs to be thoroughly 

considered for crop monitoring. It has been demonstrated that the spectral reflectance of crops 

is highly related to leaf pigment, leaf water and canopy structure, and varies with the growing 

season (Hu et al., 2017) and can exhibit different biochemical and structural properties at each 

growth stage. Moreover, it can undergo different cultural operations (e.g. soil preparation, 

weeding, pruning or trimming), which may be very different from one crop to another, and 

sometimes from one pedo-climatic context to another for the same crop throughout the growing 

season. Therefore, it is essential to assess the usefulness of spectral features for crop monitoring 

and to understand which spectral features are or are not important over time. Early remote 

sensing time series studies have used a limited number of variables or Vegetation Indices (VIs). 

Given their ability to estimate vegetation cover, vigour and growth, more than 40 VIs have been 

developed and used in a wide range of studies over the past 50+ years (Xue and Su, 2017). As 

the analysis of the spectral dimension has become a fundamental scientific tool in many 

subfields that use time series data, the use of multiple indices for a more holistic understanding 

or the modelling of spectral RS data to develop time series of vegetation-related variables has 

been a critical subject of study (Southworth & Muir, 2021). However, although the use of VIs 

is widespread due to the simplicity of their applications, it has been shown that relying on VIs, 

rather than on ‘continuous’ spectra, can lead to a potential misidentification of multiple and 

crucial characteristics when dealing with crop monitoring (Hu et al., 2017). There are several 

types of approaches that allow for a consideration of the whole spectral resolution of a 

multispectral sensor, such as multivariate regression methods based on chemometric techniques 

that extract information from chemical systems (Li et al., 2020) or physics-based reflectance 

methods (Jacquemoud et al., 2009). The latter methods are used to study possible changes in 

the ecophysiological and biophysical state of crops, for example with the PROSAIL model, 

which simulates the reflectance of the canopy as a function of various ecophysiological 

variables (Berger et al., 2018). 

Having seen the potential of multi-temporal and multi-spectral data, it is important to 

reposition this potential in the face of the limitations related to high dimensionality data. The 

complexity of the vast majority of existing algorithms for time series analysis is exponential 

with respect to the number of dimensions, i.e. as dimensionality increases, these algorithms 

soon become computationally more difficult and, hence, inapplicable in many real applications 

(Zhou et al., 2017). Furthermore, as noted by Woodcock et al. 2020, the context is important in 

assessing the relevance or significance of any particular change, which means that the number 

of spectral channels and the lengthening of the data time series does not necessarily mean that 

the amount of effective information for crop monitoring increases proportionally. The 
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information gain depends on the mutual independence of co-occurring measurements (Carrão 

et al., 2008). These drawbacks explain why some authors still focus on both temporal and 

spectral low-dimensional feature space studies using, for example, bi-temporal change methods 

to analyse crop changes (Hussain et al., 2013) or a single vegetation index to characterise the 

whole crop dynamics in the growing season (Tian et al., 2015).  

1.1.5 Time series analysis: remote sensing methods for crop 

monitoring 

Time series data from remotely sensed imagery with high temporal and medium or low 

spatial resolution can assist crop monitoring by providing key information on crop development 

during a growing season over large areas (Rembold et al., 2015). Remote sensing time series 

studies for crop monitoring mainly concern the study of VIs (e.g. Enhanced Vegetation Index, 

EVI) and biophysical variables (e.g. Leaf Area Index, LAI) (Zeng et al., 2020) enabled by gap-

filling, cloud removal and shadow algorithms (Liu, 2015). Data models have also been used to 

develop time series of vegetation-related variables, such as the reconstruction of LAI time series 

by data fusion (Zhou et al., 2020). However, due to the increased availability of temporal data 

from satellites, greater emphasis has been placed on the development of new approaches, which 

allow researchers to examine temporal trends (Southworth & Muir, 2021). There are several 

types of time domain methods used for understanding the relationship between remotely sensed 

time series and agronomic variables, including parametric and non-parametric methods, which 

can be linear or non-linear and these in turn can be univariate and multivariate (Mishra et al., 

2016). Furthermore, the introduction of Artificial Intelligence (AI) has accelerated the progress 

in time series processing. AI advances have taken time series research in two main directions: 

(i) new methods for constructing time series datasets and, consequently, (ii) new methods for 

the data mining of these time series (Southworth & Muir, 2021). The construction of new time 

series refers to the fact that AI has provided better data fusion and integration and analysis of 

data from multiple sources and dimensions (Liu et al., 2019; Peng et al., 2020; Chen et al., 

2021). This is exemplified by methods such as the multi-temporal fusion approach applied to 

time series collected from ENVISAT/MERIS and Landsat/TM instruments that obtained 

coherent time series at high spatial resolution for crop monitoring (Amorós-López et al., 2013), 

as well as the spatio-temporal fusion of Sentinel-2 and Sentinel-3 satellites images to create 

daily pseudo-Sentinel-2 imagery to obtain the desired spatial and temporal resolution needed 

for local monitoring (Wang and Atkinson, 2018). Moreover, new data mining techniques have 

arisen from the need to better organise the initially fragmented information of the original high-

dimensional data. This started with Machine Learning (ML) methods, such as Support Vector 

Machines (Wu et al., 2011), and the possibilities continued to expand through Deep Learning 

(DL) methods, characterised by Neural Networks (NN) which usually involved data with two 

or more layers (Southworth & Muir, 2021). However, such analyses with ML or DL methods 
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have typically addressed issues associated with the increased temporal resolution (and 

associated high dimensionality) but have not addressed the increased spectral resolution for 

classification or transformation of reflectance into variables of interest (selection/extraction). 

In fact, the vast majority of ML/DL approaches that manage the high dimensionality of data for 

crop monitoring using time series usually refer to spatio-temporal characteristics use a VI, 

rather than the actual spectra, to represent crop phenology dynamics (Zheng et al., 2016; Wu et 

al., 2018; Sisheber et al., 2022). This could be explained by the fact that sensors with higher 

temporal resolution acquire data with low-medium spatial resolution and often also lack 

spectral bands in essential wavelength domains (e.g. shortwave infrared). Therefore, multi-

temporal information extraction methodologies associated with the dynamics of measured 

variables (e.g. reflectance) linked to changes between successive acquisitions, such as multi-

temporal classification and trend analyses of data time series (forecasting/prediction), either 

with: i) the same sensor; ii) different sensors with similar properties and iii) different sensors 

with different properties, are still mainly part of the land cover monitoring domain at present 

(Bovolo and Bruzzone, 2015).  

However, as the spectral dimension of modern satellites are expanding, the integration 

of multi-spectral features in multi-temporal analysis has the potential to provide new insights 

in crop monitoring for applications such as crop yield estimation, crop conditions assessment 

and crops stress detection. Therefore, there is a gap in information and the development of new 

techniques for these temporal dimensions in relation to crop monitoring applications in order 

to perceive and detect dynamic phenomena of crop function, evolution and change, as well as 

on the adaptation of models to these new data sources.  

In order to integrate the use of these new mutli-temporal, multi-spectral data sources in 

agriculture, one of the interesting approaches to explore is the use of chemometric methods. 

These methods offer the possibility of being able to provide a quantitative description of 

agricultural measurements, while also having the capacity to reveal previously overlooked 

trends in high dimension datasets. Applying chemometrics to agricultural data allows the 

identification and description of the inter-relationship of environmental drivers, and their 

potential impact upon crops. The following part (1.2) is intended to justify and explain the 

methodological approach that has been used in this research. However, it should be noted that, 

as noted above, in terms of crop monitoring analysis through time series, the current dominant 

high-dimensional paradigms are related to spatio-temporal modelling and spatio-temporal 

decision-making (Ge et al., 2022). Therefore, the possibility of integrating the spatial 

dimension, usually a posterior to the main spectral-temporal analysis, is shown through 

geostatistical solutions in a punctual way, throughout the manuscript. 
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1.2 Multispectral time series coupled with 

chemometric methods for crop monitoring 
 

1.2.1 Definition – generalities of chemometrics 

Chemometrics, first introduced by Swedish scientist Svante Wold in 1971, is simply the 

application of mathematical and statistical techniques to derive more information from 

multivariate chemical data (Sarker and Nahar, 2015). It is generally applied for one or more of 

these three purposes: 

- Explore the associative patterns in the data. 

- Track the properties of elements on a continuous basis. 

- Prepare and use multivariate classification models. 

Although chemometrics is widely used in spectrometry and chromatography, it has the 

ability to analyse and model a wide variety of data types for an even more diverse set of 

applications, such as hyperspectral imagery (Amigo et al., 2013) 

As described by Héberger (2008), the chemometric approach uses multivariate methods, 

i.e. all variables are considered simultaneously. In this way, the model is fitted to the data in 

such a way that the conclusions must be in harmony with the information present in the data. 

This is very different from a classical approach where the model is derived from theory and 

data is sought to prove the validity of the model. As a result, the classical approach determines 

new (causal) relationships and discovers new natural laws, while the chemometric approach 

usually finds a formal relationship, which has the elements of causality. The advantage of the 

chemometric approach is that correlations between variables can be considered as informative 

to identify new knowledge, but the disadvantage is that the resulting models do not necessarily 

have physical relevance (Héberger, 2008). This sometimes leads to difficulties in interpreting 

the output of the models. Although chemometrics seems to be completely outside the trend of 

crop monitoring methodologies, the methods used in chemometrics often also fall into the 

categories of data mining and machine learning. Chemometric methods are generally classified 

as either supervised or unsupervised (Zielinski et al., 2014). In supervised methods, both the 

input (X) and output (Y) are known, and the goal is therefore to determine the function that best 

approximates the relationship between X and Y. Typically, supervised learning is used to define 

a relationship based on data where both X and Y are known (test data). The resulting 

relationship can then be applied to new data X to determine the output Y, e.g. for classification 

problems when an object is assigned to a discrete category, or for regression problems when 

the input is assigned to a continuous output. Some of the most common supervised learning 

techniques are: regression methods (e.g. Partial Least Squares, PLS) and Discriminant Analysis 
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(e.g. Linear Discriminant Analysis, LDA) (Messai et al., 2016). In unsupervised learning, no 

prior knowledge of the data is required as the aim is to identify the underlying structure of the 

data without the user having to intervene. Unsupervised methods are typically used for 

exploratory data analysis and dimensionality reduction, i.e. to represent a dataset using fewer 

features than the original data. Among the most common unsupervised methods are clustering 

and principal component analysis (PCA) to analyse unlabelled datasets (Rácz et al., 2018). 

In addition to the above techniques, there are a wide range of chemometric methods that 

can be applied to complex datasets (e.g. high dimensional) beyond traditional univariate 

approaches. The suitability of a method for analysing a given data set will depend on a wide 

range of factors and it is important to consider the limitations of a method when applying it 

(Héberger, 2008). For instance, highly accurate methods that are often computationally 

expensive (e.g. SVM) may not be suitable for a given analysis if a simpler model achieves 

similar accuracy. Furthermore, if the aim of the analysis is to understand the underlying 

relationships between variables, ‘black box’ methods (e.g. ANN) may not be as useful as those 

where relationships between variables can be interpreted, such as decision trees or multi-linear 

regression. It is important to note that the structure of the dataset to be analysed also determines 

the best methods of analysis; hyperspectral images typically contain tens to hundreds of 

contiguous narrow bands (Padoan et al., 2008). A hyperspectral image could be expressed as a 

hypercube in which each pixel contains dozens to hundreds of spectral bands, so that for any 

pixel in the hypercube, a full spectral reflectance curve is approximated. In several situations, 

it is necessary to extend these methods to account for the multi-way nature of the data. Thus, 

one can analyse data by methods such as N-way Partial Least Squares (supervised method) or 

PARAllel FACtor analysis (unsupervised method) that allow for the processing of high-

dimensional data. An understanding of the strengths and limitations of each method, as well as 

the structure and properties of the dataset, is necessary to obtain the most accurate and relevant 

results from any chemometric analysis (Héberger, 2008). 

 

1.2.2 Chemometrics for agricultural monitoring: beyond 

univariate analysis for multispectral time series data 

Crops monitoring is complex and involves a multitude of processes arising from both 

natural and human-induced sources (Gremillion and Piperno, 2009). For example, the 

complexity of the response of the vegetation spectrum may be due to a complex mix of 

vegetation, soil brightness and environmental effects, among other factors (Bannari et al., 

1995). Consequently, crop data obtained by RS are often multivariate due to the relationships 

between these multiple factors, which makes accurate monitoring difficult. To search for 

statistical relationships between biochemical characteristics of crop properties and vegetation 

reflectance, from the visible to the shortwave infrared region (not just a specific part, as is the 
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case with VIs), without being hampered by conventional univariate methodologies that may 

mask the underlying information within a high-dimensional space, an interesting option to 

consider is the use of multivariate chemometrics regression models.  

 The chemometric tools typically used in the high-dimensional domain to process 

hyperspectral imagery are based on 4 steps (Amigo et al., 2013):  

- the reduction of data dimensions; 

- the selection of the most significant spectral features; 

- the extraction of spectral key features;  

- the development of classification and prediction models.  

The lack of knowledge of chemometric methods and their applications often prevents 

their dissemination in the scientific community and beyond (Héberger, 2008). However, in the 

context of multispectral time series, these methods may provide unique insights by the 

quantitative retrieval of the chemical composition of crop vegetation (Xue and Baofeng, 2017), 

as well as being able to adapt to the high-dimensional requirements of the spectral-temporal 

characteristics of the data. Therefore, these techniques have the potential to be applied in crop 

monitoring to mine crop knowledge through high-dimensionality analysis. 

 

1.3 Research positioning 
 

1.3.1 Research aims 
 

1.3.1.1 General research problem 

There are now technological developments in the field of remote sensing applied to 

agriculture in line with the development of platforms and sensors that characterise vegetation 

at multiple spectral, temporal and spatial resolution. As an example, the recent launch of optical 

remote sensing (RS) satellites, such as the Sentinel 2 constellation, guarantees there is a constant 

monitoring the Earth’s surface at a high temporal resolution. Monitoring for agriculture can be 

considered at different spatial and temporal scales of decision by the farmer or the advisor, e.g. 

from a plot to a region, from one sole date to a complete cropping season. Among the avenues 

regularly evoked to deal with these possible different resolutions are new methodologies that 

provide multi-dimensional and efficient data retrieval capabilities. The main assumption of 

these methodologies is that when the multi-dimensional attributes of the RS database, such as 

the spectro-temporal responses, are lost, it is difficult to satisfy the needs of applications other 

than data visualisation (Zhu et al., 2021). Based on this assumption, it has been shown in the 

agricultural domain that the temporal dynamics of crop surface reflectance is a key factor in 

crop monitoring (Soudani et al., 2012). However, analysing the large amount of available 
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satellite data in terms of time series observations is often a difficult task, which leads to the 

formulation of the general research problem of the thesis: 

 

Does time series information from multispectral remote sensing imagery offer new 

potentially valuable knowledge for agriculture? 

 

1.3.1.2 Scientific objectives and questions 

In view of the general question posed above, the application of more advanced methods 

than those currently proposed in the literature was considered necessary. In particular, because 

this hypothesis is predicated on the assumption that if the spectral and temporal dimensions are 

simultaneously taken into account in the analysis methods and, above all, if these dimensions 

are preserved in the results produced, the results themselves can be 

interpreted/analysed/correlated with respect to these two dimensions. Consequently, these new 

results will more completely take into account the data characteristics from the sensors currently 

available.  

Following this reasoning, the specific scientific questions become: 

- How to better integrate and consider the temporal dimension, together with 

spectral and spatial dimensions, in the analysis of multispectral time series 

images for crop monitoring in agriculture? 

- Does the simultaneous consideration of the spectral and temporal dimension in 

the analysis of time series provide a more relevant and detailed way of capturing 

crop changes?   

The decisions taken in advance of this thesis to address these issues have been: 

Firstly, that chemometric methods can be used for the treatments and evaluation of 

RS data, for the extraction of useful information, and for decision-making in crop 

monitoring. These chemometric methods allow for the analysis of the high-dimensional, 

complex datasets obtained from RS data sources. The adaptation of these chemometric 

methods to the field of agriculture will allow the integration of spectral and temporal 

information to identify and describe the interrelationship of environmental and/or human 

factors on crop production and thus their potential impact on agriculture. 

Secondly, the crop research undertaken will focus on viticulture systems on a 

regional scale by considering the situation of vineyards in Occitanie (South of France). The 

Occitanie region is known for having the largest area of vineyards in France (Filippi, 2012), 

with approximately 250 000 ha of vineyards in the target area (Languedoc-Roussillon) for 

this work, but these vineyards are located across a great diversity of landscapes and 

contrasting pedo-climatic conditions. The topography of this wine-growing region mixes 
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mountains and plateaus, foothills and intermediate plateaus and the coastal plain, which 

determines a multitude of different soil types for cultivation. The climate is Mediterranean, 

with Atlantic influences in the west and continental influences in the east. Such regional 

diversity of conditions results in a large number of different grape varieties and a large 

difference in management practices by the winegrowers across Occitanie. This regional 

diversity is what makes it an interesting case study. 

Thirdly, taking into account the large spatial scale of the study, the Sentinel-2 

satellites (A/B) were identified as the preferred RS data source because of their interesting 

and representative features in terms of temporal (global revisit frequency of 5 days), 

spectral (13 spectral bands from the visible to the shortwave infrared) and spatial (4 spectral 

bands at 10 m, 6 bands at 20 m and 3 bands at 60 m) resolution. The European Space 

Agency (ESA) also provides free and open data from the Sentinel-2A (launched in 2015) 

and Sentinel-2B (launched in 2017) satellites, which carry exactly the same multispectral 

instrument (MSI) on board and that were specifically designed to obtain spatially extended 

multispectral and multitemporal data to assist international agricultural development 

(Segarra et al., 2020). Quality spectral resolution is the main element for determining the 

physiological properties of plants, and the improvement of this dimension in Sentinel-2, 

compared to Landsat, is a leap towards a more accurate and reliable characterisation of 

crops. In situations where crops interact with any aspect of their environment (seasonal 

climate variations, extreme weather events, soil properties, etc.) or as crops grow and go 

through different phenological stages, interactions between plants and light reflectance will 

lead to changes in plant signalling patterns that can be monitored and interpreted using 

these Sentinel-2 satellite time series data (Segarra et al., 2020). 

 

1.3.2 Organisation of the manuscript 

After this first chapter, which presents the general context and the scientific question of the 

thesis, the manuscript is organised in five distinct chapters:  

- The second chapter (Chapter 2) is devoted to a discussion on the limits of classical 

approaches to spectral analysis (i.e. based on vegetation indices) to be able to fully 

exploit the potential of time series for agricultural monitoring. To this end, an article 

(Article 1) is presented detailing the potential of time series for assessing water stress 

at the regional scale, without neglecting the limitations of using VIs.   

- The third chapter (Chapter 3) is dedicated to the exploration of multispectral time 

series images at a regional scale for the extraction of agronomic knowledge by 

taking into account simultaneously the spectral and temporal dimensionality of the 

data. This chapter is divided into two parts presenting two different unsupervised 

approaches. The first part (3.1) highlights how exploratory studies can be enriched 

by the inclusion of the temporal dimension for an improved understanding of crop 
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monitoring (Article 2), while the second part (3.2) presents a second, alternative, 

unsupervised, exploratory approach (compared to 3.1) with a high potential to fit the 

temporal characteristics of the RS dataset. 

- The fourth chapter (Chapter 4) focuses on the implementation of a supervised 

approach to predict the effect of a disruptive weather event (heatwave) on individual 

vineyards at the regional scale. This chapter is again divided into two parts. The first 

part (4.1) presents a scientific article (Article 3) that shows the potential of a multi-

way supervised approach to remote sensing time series management. The second 

part (4.2), contains an article (Article 4) that assess the impact of an extreme weather 

episode with spectro-temporal and spatial information from the multi-way approach 

presented in the previous part (4.1). 

- The fifth chapter (Chapter 5) is based on the last article (Article 5) published within 

this thesis and is dedicated to the selection of multidimensional variables to identify 

the most discriminating spectral domains, as well as the most discriminating time 

periods, to characterise the effect of heat wave event on vineyards in the Occitanie 

region.  

- The sixth and final chapter (Chapter 6) consists of a summary of the conclusions of 

the various outcomes and issues of the chapters in the thesis and provides a 

perspective for future and on-going work in this area of multi-temporal, multi-

spectral analysis of RS data for agriculture. 

This manuscript is therefore structured in 6 chapters, 4 of which are in the form of 

articles (Chapter 2, 3, 4, and 5). The articles in Chapters 2, 4, 5 have already been published, 

while the article in the first part of Chapter 3 is currently under review. Each of these chapters 

has an introduction and a conclusion section to set the scene for the published articles and to 

provide a positioning for the articles within the overall scientific framework of the thesis. 
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Introduction to Chapter 2 
 

Remote sensing from space satellites plays a key role in understanding the dynamics of 

the vegetated land surface. Satellite remote sensing of vegetation is mainly performed by 

obtaining the electromagnetic reflectance information at different wavebands from the 

vegetation canopy, in the knowledge that the reflectance of light spectra from plants is affected 

by various distinct elements, such as chlorophyll levels in the vegetation, tissue water content, 

phenological stage, as well as plant species and other intrinsic factors (Chang et al., 2016). 

These different wavebands can then be combined in various ways to construct Vegetative 

Indices (VIs), with the type and number of indices possible dependent on the wavebands 

collected by the sensor. Such an approach has been the background of investigations in 

vegetation remote sensing research over the past four decades (Xue & Baofeng, 2017). Much 

of this research has attempted to formulate specific VIs that can be related to percent vegetation 

cover, biomass, leaf area index (LAI) and the fraction of photosynthetically active radiation 

absorbed by the canopy (Silleos et al., 2006). Therefore, spectral indices of vegetation have 

been proposed, designed and used as indicators of temporal and spatial variations in vegetation 

structure, biophysical properties and vegetation density (Xue & Baofeng, 2017), thereby 

presenting themselves as a means to study and monitor vegetation and its dynamics (Silleos et 

al., 2006). Although a large number of indices have been proposed over time1, one of the most 

commonly used and widely implemented index calculated from multispectral information is the 

Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1973). It is calculated as the 

normalized ratio between the red (600 – 700 nm) and near infrared (700 – 1200 nm) bands 

(Rouse et al., 1973). A direct use of NDVI is to characterise canopy size (growth or vigour), 

enabling the assessment and the monitoring of changes in canopy biophysical properties 

(Junges et al., 2017). Considerable success has been achieved with the use of VIs, such as 

NDVI, as they are simple and effective tools that have been designed to find a functional 

relationship between crop characteristics and remote spatial observation (Basso et al., 2004). 

Therefore, it is understandable that vegetation indices have been recurrently used in agriculture 

to qualitatively and quantitatively assess the vegetation cover of different crops, such as wheat 

(Aparicio et al., 2000), corn and soybeans (Chen et al., 2005) olives (Solano et al., 2019) and 

grapevines (Brunori et al., 2020) among others. One of the key factors to consider for a 

successful application of remotely-sensed imagery to cropping systems is the final choice of 

the specific VI to use. Different VIs have different sensitivities to various factors, hence the 

choice of VIs needs to be made with caution by comprehensively considering and analysing the 

advantages and limitations of each existing VI that could be applied in a specific environment 

(Xue & Baofeng, 2017).  

 

1. https://www.indexdatabase.de/ 
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Given this context, it is natural that time series analysis has focused on the analysis of 

the evolution of VIs over time (Hatfield et al., 2019; Li et al., 2021). In the light of this, the 

objective of this section is to implement a classical approach based on the analysis of a 

vegetation index over time in viticulture and on a regional scale, with the purpose of evaluating 

its potential uses but also its limitations. 

This chapter examines the potential of temporal series of remotely sensed data for the 

assessment of vine water restriction using a conventional approach such as VIs, particularly the 

NDVI. Due to the temporal and spatial variability of the vine water status, the classical sampling 

procedures based on reference methods currently used are not suited for large scale (regional) 

monitoring (Ojeda et al., 2002). To overcome the aforementioned limitations, the assessment 

of grapevine water status with NDVI time series during the vegetative period is proposed. 

Although Laroche-Pinel et al. (2021b) recently demonstrated that other indices such as Red-

Edge Position (REP), Normalized Difference Red-Edge (NDRE2), Red-Edge Chlorophyll 

Absorption Index (RECAI), Normalized difference Infrared Index (NDII) and Moisture Stress 

Index (MSI) are more effective (than NDVI) in monitoring water status specifically for 

vineyards. Other studies have highlighted the potential of NDVI to characterise the spatial 

variability of vine water status in non-irrigated conditions (Acevedo-Opazo et al., 2007). 

 In the conditions of Southern French wine-growing region, water availability is the 

main factor, which limits plant growth. Therefore vigour is considered as strongly related to 

soil water availability, which implies that NDVI can provide relevant information to zone the 

vineyard according to water restriction (Acevedo-Opazo et al., 2007). Moreover, since water 

stress conditions are very different depending on the time of occurrence, NDVI time series may 

provide an added value to properly analyse the relevance of the temporal variability of the 

phenomenon. It is worth noting that most studies, such as Acevedo-Opazo et al. 2008, 

demonstrate the usefulness of NDVI for characterising vigour differences exclusively at field 

level. The field level corresponds to a production unit that has the same characteristics such as 

age, variety and rootstock, and is usually managed uniformly in terms of weeding, fertilization, 

pruning, irrigation, etc. (Santesteban et al., 2013). However, as scale resolution considered 

increases, new sources of variability are likely to emerge and affect NDVI values, making this 

approach more difficult at larger scales.  

Moreover, as Lawrence and Ripple (1998) stated at the time, several problems have 

continued to plague remote sensing scientists concerning NDVI. Three problems that continue 

to be present and are also relevant to the article that follows in this second chapter are that (i) 

for sparse canopy, vegetation reflectance signals become increasingly contaminated by soil 

reflectance signature; (ii) soil heterogeneity can therefore influence spectral responses; (iii) 
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atmospheric conditions and sun-sensor-surface can impact Satellite-derived NDVI time series 

(Maynard et al., 2007; Hird & Mcdermid, 2009). Notwithstanding these limitations that can be 

applicable to a large part of VIs, the NDVI and its functional equivalents continue to be widely 

applied in remote sensing studies of vegetation attributes (Yengoh et al., 2015).  

In this following chapter, there is no intention to evaluate the usefulness of the different 

VIs, but the basic limitations of such approaches linked to the visualisation and compression of 

data for dissemination and analysis using the most commonly used vegetation index as a 

reference; it is a first step to understanding the current restrictions (spatial and temporal) of such 

approaches and why there is a demand for a change of paradigm in vegetation monitoring using 

time series. 
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Article 1: Potential of temporal series of Sentinel-2 images 

to define zones of vine water restriction 

Published in the Special issue of Precision Agriculture: In Precision agriculture’21 (pp. 77-

88). Wageningen Academic Publishers, 202. DOI: 10.3920/978-90-8686-916-9_65 

 

E. Fornieles-Lopez1, G. Brunel1, N. Devaux2, F. Rancon1, L. Pichon1 and B. Tisseyre1 

1ITAP, Univ. Montpellier, INRAE, Institut Agro, Montpellier, France,  

2LISAH, Univ. Montpellier, INRAE, Institut Agro, Montpellier, France 

 

Abstract: This paper investigates the potential of time series of Sentinel-2 satellite 

images and derived NDVI index to characterise vine water status. It assumes that in non-

irrigated conditions, growth is the main factor affected by water restriction. Therefore, NDVI 

time series may be relevant to identify sites presenting differences in vine water restriction. The 

study was carried out on 7 plots and 2 reference plots across the Mediterranean rim. It shows 

that raw NDVI temporal series present some limitations. Therefore, proposes an original 

methodology based on Empirical Cumulative Distribution Function of NDVI values observed 

over the whole season to account for the whole temporal dynamics of NDVI. Results showed 

that an approach based on cumulative distribution of NDVI values is relevant to classify plots 

in relation to their water restriction. 

Keywords: water restriction; time series Sentinel-2 images; vine growth; ECDF 
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2.1 Introduction 
 

Many authors have shown that grapevine water status has a direct effect on grape quality 

through its influence on vegetative and fruit growth (Dry & Loveys, 1998; Ojeda et al., 2002). 

Viticulture in the southern region of France is mainly carried out using non-irrigated practices, 

which adds to the challenges faced by wine producers when trying to maintain the high quality 

requirements in wine production and highlights the necessity to develop tools and methods to 

better characterise spatial and temporal changes in vine water status (Ojeda et al., 2005). 

Different approaches and tools have been proposed in the literature to enable the water status 

of the vine to be characterised and monitored (Rienth & Scholasch, 2019). Among these 

solutions, remote sensing is an interesting sensor because the resolution and the spatial footprint 

of the data collected is likely to meet the challenges of monitoring and characterising the vine 

water status at different spatial scales, from the field to the region scale. Until now, remote 

sensing has mainly been dedicated to defining zones of vine water status in order, for example, 

to consider differential harvest of different potential quality grapes (Acevedo-Opazo et al., 

2008). At larger scales (territory), remote sensing has also been proposed as a decision support 

tool to highlight large zones of water availability (Montero et al., 1999). 

In the south of France, and to a lesser extent in other Mediterranean vineyards, it has 

been shown that estimating biomass through a conventional index such as the NDVI was a 

particularly simple and relevant approach to characterise zones of vine water status (Acevedo-

Opazo et al., 2008, Montero et al., 1999). Indeed, as the vineyard is mostly non-irrigated, access 

to water is the main factor affecting vine vegetative growth (Pellegrino et al., 2005). As a result, 

one NDVI map at the end of the growth cycle (at veraison) makes it possible to highlight zones 

of differentiated growth corresponding to zones with differentiated water restriction. Moreover, 

recent work has shown the relevance of time series of sentinel-2 images for characterising vine 

growth dynamics (Devaux et al., 2019). This new source of observation is therefore an 

opportunity to investigate the interest of NDVI in identifying zones of different water status in 

viticulture by considering the whole dynamics of vine growth. Such an approach could make it 

possible to characterise in greater detail how vine growth dynamic is affected by the occurrence 

of a water stress. It could therefore be a relevant tool for highlighting zones whose growth is 

likely to be affected by access to water. To our knowledge such an approach was never tested 

in the literature. 

The objectives of this work are therefore to investigate the potential of time series of 

free Sentinel-2 satellite images to define vine water status zones. As a first approach, it will 

investigate the potential and the limitations of raw NDVI time series and then propose an 

original methodology to account for the whole temporal dynamics of NDVI while limiting 

drawbacks of raw data. 
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2.2 Materials and Methods 
 

2.2.1 Description of the study area 

The study was carried out in 7 plots and 2 reference plots across the Mediterranean rim 

in northern Spain and southern France (Figure 2.1). All these plots are commercial productive 

vineyards with characteristic representative of Mediterranean vineyards in terms of density and 

management practices. The vineyard plots’ areas were ranging from 0.1 to 1 ha. They were 

trained in a vertical shoot positioning system with 2.5 m inter-row. All plots were non-irrigated. 

The climate was Mediterranean with hot and dry summer leading to high evaporative demand 

and to significant water restrictions during summer (Fernandes-Silva et al., 2019). 

The reference plots Ref1 and Ref2 were chosen for their extreme pedo-climatic 

conditions leading to high and low water restrictions respectively. The 7 study plots were 

chosen because they were representative of the range of pedo-climatic conditions for vineyards 

in a Mediterranean context. 

FIGURE 2. 1 - Location of the study area for the 7 vineyards of interest and the 2 reference 

plots Ref1 and Ref2, with respectively high and low water restriction. 
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2.2.2 Acquisition of images 

Images were selected via Google Earth Engine (GEE) web portal providing Sentinel- 2 

L2A (Sentinel-2A and Sentinel-2B). As suggested by Devaux et al. (2019), time series with 

dates ranging from May 16th to September 3rd were considered for being the most relevant 

period to monitor vine growth vegetation in the considered region. Only images containing the 

study plots were selected, and to avoid mixed pixels with no relevant information, a 10 m buffer 

was designed over the border of each plot. As the revisit period of the Sentinel-2 (A/B) satellite 

is 5 days, 30 images should have been potentially available over each plot for the chosen time 

period. However, following the methodology proposed by Hollstein et al. (2016) images 

containing clouds or shadows were removed from the time series. Table 2.1 presents the 

resulting available images for each plot showing that filtering out images possibly affected by 

climatic conditions, leads to more appropriate information but also to a great heterogeneity in 

terms of images availability for each plot. The number of images availability over the growing 

season ranged from 9 to 27 depending on the considered plot. This result was considered.  

Red band (640 nm - 690 nm) and NIR band (780 nm - 910 nm) were used to compute 

the Normalised Difference Vegetation Index (NDVI) (Rouse et al., 1973) at 10m resolution.  

TABLE 2. 1 - Number of images available to compute the NDVI temporal spectrum, area and 

the spatial coordinates of each of the 7 vine plots of interest and the 2 reference plots Ref1 and 

Ref2. 

 

ID Plot Images Sentinel-2  Area (ha)          Coordinates (WGS84) 

 Latitude (degree)    Longitude (degree) 

Ref1 23 0.56      42.365             2.952 

Ref2 9 0.12      42.996                  2.958  

Plot_1 23 0.62      42.364             2.947 

Plot_2 9 0.35      42.998             2.965 

Plot_3 9 0.35      42.997             2.960 

Plot_4 27 0.32      43.859            4.466 

Plot_5 27 0.30      43.955            4.643 

Plot_6 26 0.33      44.032            4.706 

Plot_7 27 0.43      44.107            4.817 
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2.2.3 Ground truth observations 

Water restriction was estimated by measuring the vine shoot growth as proposed by 

Martinez de Toda et al. (2010). According to Lovelle et al. (2009), vine shoot growth was 

measured by observing the apexes of 50 branches spread over 10 different vines and classified 

into 3 categories: full growth apex, moderate growth apex or stopped growth apex. These 50 

observations were summarised by an index of Growing Apex (iG-Apex) ranging from 0 to 1. 

An iG-Apex equal to 1 was corresponding to a high vine shoot growth with all apexes growing. 

An iG-Apex equal to 0 was corresponding to a field where all apexes have stopped growing, 

which indicates an appearance of water stress. Values ranging from 0 to 1 thus represented a 

gradation between full growth and complete cessation of growth. 

Observations were collected using the Apex-Vigne application (Brunel et al., 2019) by 

the manager of each vineyard. Between 6 and 8 observations were made on each plot during 

the season. The observations’ dates were adapted to local operational constraints. 

 

2.2.4 Data analysis 

Hird and Mcdermid (2009) have demonstrated the impact of varying atmospheric 

conditions and sun-sensor-surface viewing geometries on Satellite-derived NDVI time series. 

In order to partially avoid these effects, this study proposes to study plots by calculating the 

distribution of all NDVI values observed during the season. As a first approach, this study 

proposes to use the Empirical Cumulative Distribution Function (ECDF) (Dowd, 2020) of the 

NDVI values (Equation 2.1). 

                                                           ECDF(x) = P (X ≤ x)                                            (EQ. 2.1) 

 

ECDF stands for Empirical Cumulative Distribution Function, x corresponds to an 

observed NDVI value and X is a sample of normally distributed random variables. For a given 

NDVI value, ECDF is the frequency of observed NDVI values falling below that value. It is 

thus a step function jumping at the end of each data point, converging with the frequency 1. 

This transformation was chosen for its ability to account for the dispersion, shift and tails of 

empirical datasets that can’t be modelled with a classical statistical model. Moreover, the 

“standardisation” made it possible to better consider field temporal data comparison.  

In a first step, in order to verify the ability of the method to arrange the plots according 

to their level of water restriction, a comparison between the observed ECDFs with those of 

reference plots was carried out. The Wasserstein statistic (Dowd, 2020) was used to assess how 

similar an observed ECDF was from the ones of the reference plots by a pairwise comparison. 

The interest of this statistic was to consider the whole curves to perform this comparison. The 

assumptions of the statistic followed: H0 if the data follows a specified distribution (one of the 
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reference plots) or H1 if the data do not follow a specified distribution. The null hypothesis was 

rejected for p-values of 0.1 (p < 0.1). In a second step, ground truth data (iG-Apex) were used 

to validate the classification as an indicator of the level of water restriction experienced by plant 

vines.  

 

2.3 Results and Discussion 
 

Figure 2.2 show changes in NDVI values observed for the nine fields under study, over 

the vine vegetative season. NDVI values of both reference fields, Ref1 and Ref2, that 

respectively experienced a high and a low water restriction are plotted as a thick solid line in 

red and blue, respectively. Focusing first on reference fields, Ref2 shows expected evolution of 

vine canopy change in NDVI as described by Devaux et al. (2019). The dynamics of NDVI 

during the growing season is divided into two phases with first an increase in NDVI values 

corresponding to the growth of vegetation (April-June) and second, a plateau over July-

September corresponding to the growth stop and fruits maturation. Regarding the Ref1 field, 

this expected trend is not observed. NDVI values of Ref1 field remained very low over the 

season highlighting a very low growth of the vegetation. This result confirms the relevance of 

NDVI temporal series to assess how vine growth is affected by water restriction in non-irrigated 

conditions. Regarding the NDVI temporal series of other fields, Figure 2.2 also highlights the 

difficulty to directly use this information to assess how water restriction impacts vine growth.  

Two plots (Plot_1 and Plot_5) have NDVI temporal dynamics similar to Ref1 (Figure 

2.2). The other plots (Plot_2, Plot_3, Plot_4, Plot_6 and Plot_7 to a lesser extent) present 

dynamics similar to Ref2 (Figure 2.2). However, the temporal evolution of NDVI remains 

locally disturbed, probably due to cultivation operations such as weeding at the beginning of 

the season or to conventional canopy management operations that cause sudden variations in 

NDVI values. Note also that curves may be affected by missing images due to local climatic 

conditions during acquisition or even climatic conditions when images are not filtered out 

properly by the cloud detection algorithm.  
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FIGURE 2. 2 - NDVI temporal dynamics for the nine fields under study over the vegetative 

season (from May 16th to September 3rd) for the 2019 season.  

Figure 2.2 shows the potential interest of NDVI time series to identify plots with 

different growth dynamics possibly to differences in water restriction experienced by plots over 

the season. However, it also shows the difficulty to define an objective index to classify plots 

according to a level of water restriction. These results highlight the necessity to propose a more 

comprehensive data transformation to simultaneously account for the whole NDVI time series, 

noise reduction and standardisation. As a first approach, this study proposes to investigate the 

potentiality of a cumulative function (ECDF) to answer these issues. 

When analysing the NDVI time series with ECDF curves (Figure 2.3), the range of 

NDVI values over the season offers the explanation of the particular growth conditions of each 

plot. The slope of each plot gives information on the variance of NDVI during the season, which 

provides information on vine growth dynamics. On the one side, the Ref2 curve has a steep 

slope starting at 0.2 and ending at 0.3. This stagnation of NDVI can be related to the appearance 

of a significant water restriction since 100 % of NDVI values do not exceed 0.3 for this field. 

On the other side, the curve of the Ref1 has a gentle slope indicating high variance in NDVI 

values. This high variance is understood as a good development of the vegetation which is not 

constrained by water restriction. As already seen in Figure 2.2, the NDVI dynamics of Ref1 

during the growing season is divided into two phases: one of growth and one of standstill. 
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FIGURE 2. 3 - ECDF curves derived from NDVI time series for the nine plots under study 

from May 16th to September 3rd for the 2019 season.  

Like Ref1 plot, Plot_1 and Plot_5 present a very strong slope as Ref1. Although some 

variability appears for NDVI values lower than 0.3, the rest of the plots present gentle slopes 

similar to that of Ref2 plot. Figure 2.3 shows that ECDF better summarises the global behaviour 

of plots over the growing season and f permits a better distinction between the dynamics 

observed on the different plots. After having defined two reference plots (Ref1 and Ref2), it 

allows to visually define two groups of plots that can be distinguished by their water status. 

To validate the possibility to classify the plot according to ECDF, the Wassertein 

Statistic has been used to analyse whether plot behaviour was more similar to a water stressed 

plot (Ref1) or to a low water restriction plot (Ref2). Table 2.2 presents the results of the analysis. 
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TABLE 2. 2 -Values of Wassertein Statistic Distance between empirical cumulative 

distribution function of NDVI time series of plots and plot of reference Ref1 and Ref2 

corresponding respectively to a high water restriction and low restriction, and ground truth 

reference – iG-Apex observed on 30th July). Significance threshold, p-values <0.1*. 

 

According to the Wasserstein test, Plot_1 and Plot_5 are closer to the Ref1 plot (Table 

2.1.2). This can be interpreted by the fact that these plots have experienced strong water 

restriction during the season. Plot_2, Plot_3, Plot_4 and Plot_7 are closer to the Ref2 reference 

plot (Table 2.2) meaning that they may have experienced low water restriction. Plot_6 does not 

seem to be closer to Ref1 neither to Ref2 with p-value < 0.1. This may be interpreted by the 

fact that this plot has experienced an intermediate situation regarding water restriction.  

The ground truth iG-Apex observed on 30 July 2019 is consistent with these results. 

Plot_1 and Plot_5 have lower iG-Apex than the other plots and Plot_8 presents intermediate 

values. In a Mediterranean context, low values of vegetative growth at the end of July are 

related to high levels of water restriction. These results show that the proposed approach is a 

relevant tool to classify plots regarding their experienced water restriction during the season. 

NDVI ECDF shows to be a relevant approach to differentiate vine plot populations in 

terms of experienced water restriction account for the whole NDVI time series. This evidence 

is confirmed by ground truth iG-Apex. Transformation NDVI time series into NDVI ECDF an 

interesting approach to account for plot vine growth in relation to water. Note that this approach 

could also be applied at the within field level considering the limitation of sentinel-2 image 

resolution (10 m size pixels). By increasing the density of iG-Apex measurements, it will be 

possible to retrieve in-situ data more representative of the diversity of viticulture conditions in 

the Mediterranean basin. The coupling of this iG-Apex index data with the possibility of 

Wasserstein Statistic Classification  

between ECDF of NDVI 

Reference iG-Apex 

ID_Plot Ref1 Ref2 Vine water restriction Value at 2019-07-30 

Plot_1 0.046 0.250* High 0.11 

Plot_5 0.063 0.230* High 0.26 

Plot_6 0.160* 0.120* Not Classified 0.33 

Plot_7 0.230* 0.060 Low 0.42 

Plot_4 0.320* 0.040 Low 0.45 

Plot_3 0.208* 0.098 Low 0.55 

Plot_2 0.240* 0.052 Low 0.86 
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generating temporal profiles of NDVI offers the opportunity to characterise growth dynamics 

to better anticipate water needs in viticulture. 

 

2.4 Conclusion 
 

This paper highlighted the potential of NDVI time series of Sentinel-2 for identifying 

zones with different water restrictions dynamics. These results showed that an approach based 

on empirical cumulative distribution function of NDVI values is relevant to classify plots in 

relation to their water restriction. These results open up further investigation, especially 

regarding the identification of which part of the spectrum is the most discriminating in the 

classification process in order to determine how many images are needed to identify the water 

constraint trends. This method would permit the development of a decision support tool 

allowing identification of zones with different water restrictions dynamics to refine strategies 

for monitoring water status providing inputs to early warning systems. 
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Conclusion of Chapter 2  

 

            The objective of this second chapter was to verify the potential of multispectral satellite 

imagery while presenting at the same time its limitations in terms of temporal analysis and 

interpretation for crop monitoring through vegetation indices, such as NDVI. The latter 

considerations demonstrated that the quantitative and qualitative interpretation of remote 

sensing information from VIs is a complex task. Article 1 intended to test an original but simple 

approach with NDVI time series from Sentinel-2 satellites to first identify the shortcomings and 

then overcome the difficulties of interpreting the raw data of a case study linked to the dynamics 

of vine water status. Although using NDVI data for water restrictions dynamics as shown in 

Article 1 might be possible and, in fact, there are already fully operational systems for other 

crops for drought monitoring using NDVI (Yengoh et al., 2015); Maynard et al. (2007) defined 

three major issues when only using one sole information source:  

(i) when using a single or limited group of bands to compute the indices (usually in 

the red and near infrared domains) there is no consideration of whether other 

bands might add and improve the interpretation;  

(ii) it restricts the ability to model the effects of different interactions between 

vegetation and energy in different portions of the spectrum;  

(iii) the spectral responses may potentially be strongly affected by soil heterogeneity.  

These limitations are especially evident when it comes to applying different VIs to 

discontinuous canopy structures, such as grapevines, over time. In such situations, canopy 

closure is never achieved and imagery always contains a combination of spectral information 

from the target plants that is mixed with the spectral information from soil, weeds and cover 

crops in the inter-row. The presence of mixed pixels makes discrimination of regions of interest 

and the extraction of a simple VI challenging when operating at the regional scale (Xue & 

Baofeng, 2017). These issues have significant implications for identifying changes and 

monitoring the dynamics of vegetated surfaces. Since the early days of satellite remote sensing, 

researchers have sought to use multispectral imagery and derived VIs to measure assorted 

variables related to vegetative biomass (Lawrence & Ripple, 1998). On the basis that a change 

from the VI approach is necessary to correctly assimilate all the spectral information that 

multispectral imagery offers, an approach using non-indexed spectral data should be considered 

as an interesting alternative to using VIs and to avoid the issues defined above. It is important 

to contextualise the rapid change in the amount and variety of spectral data that have been 

become available through recent evolution in remote sensing systems. In addition to providing 

higher resolution in the spectral dimension, new satellites offer increasingly better temporal and 

spatial resolution information within the imagery. As data structures change, it is important to 

also adapt and change of methodological approaches to extract and process all relevant 
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information that may be present within the large data flow originating from modern earth 

observation satellite systems. Throughout this manuscript, the aim is to highlight the potential 

of more holistic approaches to processing multispectral image time series following the 

hypothesis that crops differ in their phenology. The analysis of temporal variations, in addition 

to spectral variations, will provide a more complete analysis of the information within the 

imagery, compared to a classical VI approach, and will result in improved knowledge of crop 

performance.  
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Chapter 3.  Potential of non-supervised multi-way 

methods for regional crop data exploration from 

multispectral time series data 
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Introduction of Chapter 3  
 

Chapter 2 has shown a case study representative of the relevance of considering the 

temporal dimension of satellite images to understand a dynamic phenomenon such as the 

occurrence of water restriction in vine fields at the regional scale. By showing some limits of 

common approaches that only account for changes in vegetation indexes (VIs) over time, it 

highlighted the necessity to use more complete approaches aiming to consider both spectral and 

temporal dimensions simultaneously to account for all the potential information provided by 

time series of multispectral images. When considering only changes in VIs over the time, the 

knowledge that remote sensing images can provide is thus diminished from its full potential. 

The temporal ordering of remotely sensed data to provide another dimension to the data space 

creates not only a challenge in terms of mining and analysis, but also in terms of structuring 

these high-dimensional data sets (Chi et al., 2016). In the following, it was hypothesised that 

organising data from multispectral instruments (MSI) as multidimensional data cubes was a 

relevant proposal to extract the best potential of time series of multispectral images. This 

proposal follows domain-based examples in the field of Earth Observation (EO) (Ferreira et al., 

2020) or in the field of hyperspectral data processing (Shaw and Manolakis, 2002). This original 

way of structuring data allows the temporal dimension to be considered as an inherent factor in 

the analysis (Ferreira et al., 2020). The relevance of including temporal analysis from crop 

monitoring can be approached in several ways, e.g. depending on the information available to 

achieve this objective. To this end, two different strategies, unsupervised and supervised are 

respectively proposed in Chapter 3 and Chapter 4 of this manuscript. 

The main objective of the Chapter 3 is to explore the potential of multispectral time 

series imagery for crop monitoring at a regional scale. This means dealing with the 

simultaneous consideration of the temporal and spectral dimensions in data processing. At this 

spatial scale, different climatic and soil conditions may lead to different crop management 

practices or differences in crop canopy responses. Therefore, the variability at this spatial scale 

may reveal very useful information for crop monitoring. However, although the study of the 

regional scale is interesting because of its diversity of information, it is very difficult to have a 

complete ground truth data set representative of all the factors affecting and/or explaining 

observed heterogeneity. This scarcity of available samples (in small numbers) is often not 

sufficient to allow a sensible and adequate learning from ground data. In this context, 

unsupervised methods were considered as a first attempt to data exploration as they only involve 

the intrinsic properties of the time series collected in the multispectral images. Therefore, taking 

into account the variability observed at the regional based on RS information captured 

simultaneously in the temporal and spectral dimensions, this Chapter 3 proposes a new 

approach to deal with the large volumes of information we are facing.   
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Concerning this Chapter 3, the exploration of temporal analysis to denote phenological 

variability induced by climatic (e.g. seasonality, weather variability, extreme weather events) 

or non-climatic (e.g. human cultivation and soil variability) factors is addressed with two of the 

most representative unsupervised methods in the field of chemometrics. It is approached with 

two groups of methods, depending on whether they assume a trilinear structure in the data set 

or not (de Juan and Tauler, 2001). Assuming a trilinear structure requires that the matrices 

composing the data set can be arranged as a cube, i.e. the matrices forming the cube must have 

the same size and their rows and columns must represent the same type (nature) of variable, 

which provides a powerful and robust model (Blanchet, 2008). Alternatively, in order not to 

restrict the model to the natural structure of the data, it is possible to use data that share certain 

commonalities, where the resulting data matrices can be assembled in different ways, e.g. in 

so-called multi-set structures. In other words, multiset analysis does not require trilinearity, but 

only bilinearity of the data which implies that these different matrix arrangements are more 

flexible than the construction of a cube because they allow the simultaneous analysis of matrices 

that do not have the same structure (Blanchet, 2008).  

Two different three-way resolution methods (one from each family mentioned) are 

applied to address the possibility of showing time-sensitive approaches by considering different 

sequential relationships of multi-temporal observation. Hence, Part 3.1 presents the PARAllel 

FACtor analysis (PARAFAC) that handles a folded cube, i.e. it assumes a trilinear structure in 

the data by imposing a restriction to the temporal dimension. It should be noted that the spatial 

dimension is not taken into account in this analysis but that a geostatistical analysis of the data 

is produced for validation purposes. Part 3.2 presents the Multivariate Curve-Resolution 

Alternated Least Squares method (MCR-ALS) to propose an alternative time perspective to the 

above by non-assuming a trilinear structure in the data set.  

To explore the potential of time series for crop monitoring at regional level, a case study 

focusing on Sentinel-2 satellite time series and a grapevine crop is presented. Given its 

characteristics with respect to its: (i) high temporal resolution of the satellite images (5 days), 

(ii) medium spectral resolution (13 spectral bands) and medium spatial resolution (10 m, 20 m 

and 60 m), it allows an almost continuous monitoring of crops. As for grapevine cultivation, 

this is an interesting case as the vegetation cover of the grapevine is not continuous (plants are 

mainly organised in rows and soil is more or less visible depending on the phenological stages) 

and requires cultivation operations (e.g. chemical or mechanical weeding or canopy thinning). 

This soil-vegetation interaction, peculiar to vine cultivation, is very complex, as it includes a 

more or less important edaphic component depending on the phenological stage and on weeding 

and canopy management. This complex interaction starts at small spatial scales (plot level) and 

evolves as the spatial scale increases. The interesting complexity and variability inherent to 

vineyards in the Occitanie region was seen as a challenge but also as an opportunity to access 

new knowledge on crop monitoring through unsupervised approaches since the above 
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characteristics are likely to provide intelligible evidence linking environmental factors and 

cropping operations to RS data. 
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3.1 Application of Parallel Factor Analysis (PARAFAC) to 

the regional characterisation of vineyard blocks using 

remote sensing time series 

 

Article 2: Application of Parallel Factor Analysis 

(PARAFAC) to the regional characterisation of vineyard 

blocks using remote sensing time series 
Submitted to the “Use of Satellite Imagery in Agriculture” special issue in Agronomy. 

 

E. Fornieles-Lopez1, G. Brunel1, N. Devaux2, J.M. Roger1, J. Taylor1 and B. Tisseyre1 
1ITAP, Univ. Montpellier, INRAE, Institut Agro, Montpellier, France,  
2LISAH, Univ. Montpellier, INRAE, Institut Agro, Montpellier, France 

 

Abstract: Monitoring wine-growing regions and maximising the value of production 

based on their region/local specificities requires accurate spatial and temporal monitoring. The 

increasing amount and variability of information from remote sensing data is a potential tool to 

assess this challenge for the grape and wine industry. This article provides a first insight into 

the capacity of a multiway analysis method applied to Sentinel-2 time-series to assess the value 

of simultaneously considering spectral and temporal information to highlight site specific 

canopy evolution in relation to environmental factors and management practices which present 

a large diversity at this regional scale. PARAllel FACtor analysis (PARAFAC) was used as an 

unsupervised technique to recover pure spectra and temporal signatures from multi-way 

spectral imagery of vineyards in the Languedoc-Roussillon region in the south of France. The 

model was developed using a time series of Sentinel-2 satellite imagery collected over 4978 

vineyard blocks between May 2019 and August 2020. From the Sentinel-2 (spectral and 

temporal) signal, the PARAFAC analysis allows the identification of spectral and temporal 

profiles in the form of pure components, which corresponded to vegetation and soil. The 

PARAFAC analysis also identified that two of the pure spectra are strongly related to 

characteristics and dynamics of vineyard cultivation at a regional scale. A conceptual 

framework was proposed in order to simultaneous consider both vegetation and soil profile and 

to summarise the mass of data accordingly. This methodology allowed to compute a 

concentration index that characterises how close is a field to a vegetation or a soil profile over 

the season. The concentration indices were validated for the vegetation and the soil over two 

growing seasons (2019 and 2020) first with a geostatistical analysis. Indeed, a non-random 

distribution of concentration index at the regional scale was assumed to highlight strongly 

spatially organised phenomenon related to spatially organised factors of environment (soil, 
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climate, training system, etc.). In a second step, spatial patterns of indices were subjected to the 

expertise of a panel of advisors of the wine industry in order to validate them in relation to vine 

growing conditions. Results show that the introduction of PARAFAC method opens up the 

possibility to identify spectro-temporal profiles of vineyard blocks relevant for understanding 

and characterising them on a regional scale. 

Keywords: time-series; multispectral imagery; remote sensing; folded methods, 

unsupervised methods; expertise gathering 
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3.1.1 Introduction 
 

The ability to use Remote Sensing (RS) time series information for landscape 

monitoring allows the study of large-scale evolutionary phenomena to be considered (Griffiths 

and Lee, 2000). It opens up the possibility to improve the understanding of dynamic processes, 

such as changes in forests, agricultural crops, land use, etc. Of all the fields of application, 

agriculture is of primary interest. In particular, crop monitoring may show temporal variability 

(different phenological growth patterns) due to either natural development variation or diverse 

crop-management decisions made by farmers (Gilbertson and van Niekerk, 2017). Recent 

relevant technologies that have emerged are compatible with the requirements of agricultural 

applications (spatial resolution should at least be decametric and revisit frequency lower than a 

week) (Weiss et al., 2020). There are various specific remote sensing platforms (e.g. satellites, 

Unnamed Aerial Vehicles, UAVs) that offer interesting options in terms of image resolution 

and flight agility for crop monitoring. In the case of agriculture-focused studies using RS, 

satellites remained dominant in agriculture in recent years (Weiss et al., 2020). This could be 

explained by the presence of cost-free satellites such as Sentinel-2 that are able to measure a 

sample (e.g. a crop field), under various information sources (i.e. a combination of 13 spectral 

bands) with a temporal repetition of the measurement (i.e. every 5 days) that allow obtaining 

information of interest of the field and its temporal evolution (e.g. physiological, structural and 

phenological traits) and how these latter vary in space (Weiss et al., 2020).  

However, all these technological developments also entail the need to develop 

methodologies to deal with the large volume and complexity of data (Huang et al., 2018). More 

specifically, the assumption behind crop monitoring is that remotely sensed data represent the 

seasonal vegetation signal in a meaningful way, and that the underlying vegetation variation 

comprehensively explores the relationship of spatio-temporal-spectral dimensions. According 

to Kroonenberg et al. (2009), the data resulting from this high-dimensional approach, e.g. 

considering spatial, temporal and spectral information, has a three-way structure. In previous 

work, the common approach was to analyse three-way data after aggregating them one after the 

other or to handle them as only a two-way data set (Kiers and Mechelen, 2001). For example, 

a widely used approach to mitigate high dimensionality is to carry out feature extraction and/or 

feature selection (Gilbertson and van Niekerk, 2017), such as vegetation indices (VIs) (e.g. 

normalised difference vegetation index, NDVI or enhanced vegetation index, EVI). In fact, in 

this example and in the vast majority of studies that reduce the high dimensionality of RS data 

for agricultural applications, the analysis of dynamic phenomena such as vegetation 

development is limited to the study of the evolution of an index over time. However, going 

beyond this kind of classical approach can be interesting, not only from a temporal point of 

view to identify temporal variations that may indicate seasonal changes in reflectance, but also 

to explore spectral richness through changes in reflectance as a function of wavelength. The 



CHAPTER 3. POTENTIAL OF NON-SUPERVISED MULTI-WAY  

METHODS FOR REGIONAL CROP DATA EXPLORATION   

FROM MULTISPECTRAL TIME SERIES DATA 

66 

 

risk of using only vegetation indices to define the spectral characteristics of crops is that other 

wavelengths provided by the sensor that could lead directly to the identification of an object 

and/or its status in a more complete way are ignored. Moreover, this type of feature extraction 

methods are typically calibrated over experimental observations and thus are constrained by the 

representativeness of the calibration dataset (Khanal et al., 2020). Having complete ground truth 

data sets that are representative of the large number of agronomic variables that need to be taken 

into account to validate the relevance and interest of these new sources of information for 

agriculture are rarely available due to the complexity of their acquisition. In light of this, 

Esbensen and Geladi (1989) determined that unsupervised, i.e. exploratory, data analysis 

methods are very useful in situations characterised by little or no domain-specific knowledge, 

e.g. when analysing a scene without any prior knowledge of the ‘ground truth’.  

Within the current alternatives proposed in the literature to address this challenge for 

high-dimensional data, factorisation techniques are an important class (Verbeeck et al., 2020). 

One of several decomposition methods for multi-way data known to be the simplest and most 

restricted unsupervised model available for higher order arrays is Parallel Factor Analysis 

(PARAFAC) (Harshman, 1970). Although PARAFAC is referred to as a generalisation of the 

classical Principal Component Analysis (PCA), in the former, there is no rotation problem, i.e. 

pure spectra can be recovered from multi-way spectral data (Bro, 1997). In practice, such 

methods take a high‐dimensional dataset, and decompose it into a (typically reduced) number 

of underlying trends in the observed data (Verbeeck et al., 2020). As this reduced dimension 

representation allows for the visualisation of temporal and spectral signatures, which opens up 

the possibility to discover the underlying principles that guided the sample’s (crops) responses 

over time (Kroonenberg et al., 2009).  

It is important to note that this type of unsupervised approach has certain limitations. 

Assuming that there is no access to a large number of agronomic variables to explain the 

observed phenomena appropriately, it is important to contextualise the application of the 

PARAFAC method on a sufficiently large spatial scale, such as a regional scale. The wide 

heterogeneity of the environments that constitute the region, e.g. different soils, different 

climates and different cropping practices, can help to provide large variations either spatially 

and temporally in relation to agronomic traits. In addition, given the scarcity of ground truth 

data, it is necessary to proceed by other means to validate the relevance and potential of the 

information extracted. To this end, as shown by Pichon et al. (2019), the evaluation of results 

through expert observations, as a different alternative to what is normally considered in 

scientific literature, allows for a more integrative and systemic validation approach by taking 

into account crop characteristics, climatic and meteorological conditions of the year, local 

specificities, etc. 
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Given that it is a new paradigm for agricultural monitoring to have so much data and in 

near real time, it is important to explore, as comprehensively as possible, all the information 

that RS can provide in terms of spectral, temporal and spatial dimensions. To answer this 

question, a holistic exploratory analysis has been carried out using the PARAFAC methodology 

applied to a time series of Sentinel-2 data concerning viticulture in Southern France. To our 

knowledge, this is the first time that this type of method from the field of chemometrics is 

applied to remote sensing multispectral images. The specific objectives of this study are:  

i) to propose a multi-way approach aiming to identify spectro-temporal profiles from 

a time-series of images, to assess the value of the approach for its potential to 

generate knowledge in a viticulture case study, to determine whether the spatial 

patterns highlighted can be considered relevant with regard to the experts' 

observations and; 

ii) to address the possible limitations of the approach when dealing with large-scale 

time series of multispectral images without ground truth data. 

 

3.1.2 Materials and Methods 

 

3.1.2.1 Notations 

For N-way arrays, capitalised bold and underlined characters will be used, e.g. X(I,J,K) 

indicates a 3-way array with I samples at J times described by K wavelengths. For matrices, 

bold and capitalised characters will be used, e.g. X, and for vectors, a lower case bold character 

will be used, e.g. a. Upper case and italics characters will be used for scalars, e.g. the number 

of wavelengths, K and lower case characters will be used for running indexes, e.g. ai is the ith 

element of the vector a. 

 

3.1.2.2 PARAFAC method 

PARAFAC is a decomposition method used to decompose N-way arrays into distinct 

components. It is based on an alternating least square (ALS) algorithm where the data signal is 

decomposed into a set of trilinear terms and a residual array (Yang et al., 2018). Following 

Ouertani (2014), the PARAFAC decomposition of a three-way array X is the decomposition in 

the form of the sum of a minimum number of three-way arrays of rank one (Equation 3.1): 

                  Xijk = ∑ 𝐚𝑖𝑓𝐛𝑗𝑓𝐜𝑘𝑓 + 
𝐹

𝑓=1
Eijk i = 1 ,…, I; j = 1 ,…, J; k = 1, …, K; f = 1 ,…, F            (EQ.3.1) 
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where Xijk is the reflectance value of the ith sample at the jth variable (temporal mode) 

and at the kth variable (spectral mode). Each F corresponds to a PARAFAC component and 

each such component has I 𝐚-values (scores); one for each sample. Each component also has J 

𝐛-values as well as K 𝐜-values; one for each loading. The Eijk parameter is the residual noise, 

representing the variability not accounted for by the model. In addition, a valid PARAFAC 

model will provide an estimate of the pure spectra of the constituents of the sample under study. 

It will also provide an information of the concentration of the constituents along the time, i.e. 

the components resulting from a valid PARAFAC model will allow a direct interpretation of 

spectral dynamics. For example, the PARAFAC method is widely used today in the analysis of 

multivariate data (structured in a three-dimensional excitation emission matrix, EEM) to 

quantitatively compare the content of fluorescent organic compounds in samples (Xu et al., 

2021). The EMM-PARAFAC combination allows dividing fluorescent organic compounds into 

several independent components according to their unique properties and structures, which 

provides a basis for better understanding the dynamic changes of fluorescent compounds (Xu 

et al., 2021).  

A schema of the PARAFAC decomposition of a three-way array is given in Figure 3.1. 

 

The PARAFAC model was run and validated following Andersson and Bro (2000) 

using the N-way Toolbox in Matlab version R2015a. 

FIGURE 3. 1 - Schema of the PARAFAC decomposition of a three-way array (Ouertani, 2014). 

3.1.2.3 Case-study 

Remote sensing data are characterised by several sets of information that are collected 

as a time-series. This type of multi-way data could provide valuable spectral-temporal-spatial 

information to characterise crops. In order to have a large variability of conditions, which will 

be favourable to highlight the traits of a particular crop, it has been chosen to focus on the study 

at a regional scale. Research at the regional scale allows, among other issues, the monitoring of 

how different environmental and management conditions affect vegetation development 

(Giovos et al., 2021). It also may provide insights on how an extreme climate event may affect 

the vegetation activity (Zhou et al., 2019). Moreover, the crop selected for the study-case is 
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grapevine, as it is a major crop in the South of France at this scale (see the following section, 

study area). 

For remote sensing applications in agriculture at regional scale, recent studies have 

demonstrated the potential of no-cost satellite imagery, such as Sentinel-2 satellites (Sozzi et 

al., 2020). In terms of revisiting time and spatial and temporal resolution, Sentinel-2 satellite 

imagery is well suited to the requirements of monitoring agricultural fields, with a high potential 

to extract relevant agronomic information.  

In this study, the decomposition PARAFAC method was therefore applied to vine 

cultivation at a regional scale using multispectral times series from the Sentinel- 2 satellites.  

Study area 

The study area corresponded to 4978 samples (vineyard blocks) extracted from the 

graphical parcel register of France (RPG) from a large wine-growing region located in the south 

of France, the Languedoc-Roussillon (LR). The LR vineyards extend over approximately 27 

400 km², covering four French administrative sectors: Gard (A), Hérault (B), Aude (C) and 

Pyrénées-Orientales (D) (Figure 3.2). The study area encompasses a great variability of pedo-

climatic conditions and a great diversity of varieties, training systems, etc. (Fernández-Mena et 

al., 2021). It is assumed the changes over time of the reflectance values from Sentinel-2 

satellites over 4978 vineyard block samples will provide agronomic insights of interest. 

Assuming that a unique solution can be expected if the Sentinel-2 data are trilinear, i.e. that 

there is a relationship between the three-way structure of these data (samples × times × 

wavelengths) this would imply that the true pure spectra could be found if the correct number 

of components is used and the signal-to-noise ratio is appropriate (Bro, 1997).  
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FIGURE 3. 2 - Location of the 4978 vineyard blocks within the study area in Southern France 

for the four administrative sectors: Gard (A), Hérault (B), Aude (C) and Pyrénées-Orientales 

(D). 

Remote sensing data 

The Sentinel-2 (A/B) satellites provide 13 spectral bands from the Visible (Vis) and 

Near InfraRed (NIR) to the shortwave infrared (SWIR). They provide coverage of land surfaces 

on a global scale with a revisit frequency of 5 days in cloud-free conditions with a spatial 

resolution of 10 m, 20 m and 60 m depending on the spectral band (Devaux et al., 2019).  

Sentinel-2 L2A data containing the study vineyards (Figure 3.2) were selected and 

processed via the Google Earth Engine (GEE) platform. Prior to the calculation of the average 

pixel values for each block, each date and each waveband, a 10 m inner-buffer was imposed 

over each vineyard block boundary extracted from the graphical parcel register of France 

(RPG). This 10 m inner-buffer was used to prevent information outside the block from being 

integrated into the analysis (Lopez-Fornieles et al., 2022). Images from the years 2019 and 2020 

from 1st May to 31st August were selected. The time period considered (from May to August) 

for both years of the study was considered as being the most relevant for monitoring vine 

vegetation in the study region (Devaux et al., 2019). Images containing clouds or shadows 

altering the visibility of the blocks were removed from the database. For this purpose, the 

spectral band 10 at 1380 nm was used for the detection of visible and sub-visible cirrus clouds 

(Hollstein et al., 2016). About 25 images should have been potentially available on each 

vineyard block, however, the local atmospheric conditions over each block for each acquisition 

date altered the number of images available (Lopez-Fornieles et al., 2022). The final Sentinel-
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2 database consisted of 4978 vineyard blocks containing 12 spectral bands and an average of 

11 images (dates) per block. 

 

3.1.2.4 Modelling 

Data array construction 

Two PARAFAC models were derived from the data set of 4978 samples (vineyard 

blocks), one for each year of the study, 2019 and 2020. To overcome the challenge of 

heterogeneity in the number of images per block, an interpolation was performed to obtain two 

continuous data cubes; X19 and X20. Interpolation using the Gaussian filter by Alam et al. (2008) 

was applied in order to have a consistent time step dimension (J) between the 1st May and 31st 

August for both years. The parameters involved in the interpolation setting were fixed to the 

Gaussian filter width (P) = 30 days and date interval (N) = 5 days to simulate the revisit time 

of the Sentinel-2 satellites (Lopez-Fornieles et al., 2022). At the end of the interpolation step, 

the data set was meaningfully arranged in two three-way arrays X (X19 and X20) of 

dimensionality 4978 (samples, I) × 25 (times, J) × 12 (wavelengths, K). 

 

PARAFAC model 

A separate decomposition of the two arrays; X19 and X20 into trilinear components (F) 

were performed by PARAFAC method. The trilinear model is found to minimize the sum of 

squares of the residuals, Eijk in the model. Each component consisted of one score vector and 

two loading vectors, i.e. temporal and spectral loadings. A PARAFAC model of a three-way 

array, e.g. X19, was given by one score matrix A and two loading matrices, B and C, with its 

respective 𝐚𝑖𝑓, 𝐛𝑗𝑓and 𝐜𝑘𝑓 (Figure 3.3). The parameter 𝐚𝑖𝑓 is the score of the ith sample of the 

fth component; 𝐛𝑗𝑓 is the loading specific to reflectance intensity at the time j of the fth 

component; 𝐜𝑘𝑓 is the loading estimate of the reflectance spectrum k of the fth component. 

Essentially, the PARAFAC model provides an estimation of the relative concentration, i.e. the 

relative amount of the fth component in each sample (matrix A) and temporal and spectral 

properties of the components loadings matrices (B and C respectively), which can be used to 

interpret the spectral dynamics of the constituents of the samples. For 2020 (X20), the same 

PARAFAC decomposition scheme was used as for 2019. 
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 FIGURE 3. 3 - Schema of the PARAFAC decomposition model of three-way array for the year 

2019 (X19). For the record, E corresponds to the residuals. 

 

Component selection  

The PARAFAC models with two to five components were fitted to the data in order to 

determine the correct number of components. A F-component model was validated following 

the CORe CONsistency DIAgnostic (CORCONDIA) of Bro (1997). The PARAFAC model is 

considered to be valid if the value of the CORCONDIA is close to 100%. If the CORCONDIA 

value is around 50%, the model is considered unstable and if the value is close to 0 (even 

negative), then it is considered that the data cannot be described by a tri-linear model (Ouertani, 

2014). The CORCONDIA value will mostly decrease with the number of components. It 

decreases very sharply after the correct number of components is exceeded. Therefore, the 

appropriate number of components is the model with the highest number of components and a 

valid CORCONDIA value. 

3.1.2.5 Validation of the model 

The PARAFAC models for both the years 2019 and 2020 were validated in two steps: 

1. A geostatistical analysis (see next section) to test whether the score values were 

spatially autocorrelated. The underlying hypothesis is that the environmental 

variables (soil, climate and associated training practices, etc.) likely to explain 

the differences between blocks at the regional scale are spatially organised (not 

random). Consequently, if score values resulting from the PARAFAC models 

are not randomly distributed at the regional level, they were assumed to be 

related to environmental variables.   

2. An expert judgement to interpret the relevance of the values of the scores in 

relation to their knowledge of the diversity of soil, climate and practices in the 
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region. The objective of this second step was to identify the relevance of the 

relationship between the score and the agronomic information. In order to do so, 

an original approach based on placing the human, i.e. domain experts, at the 

centre of the study was conducted. Following Pichon et al. (2019) 

methodological framework, a global approach, so-called ‘scenario simulation‘ 

(Wacheux, 1996), was used. Thus, external reliability can be considered valid if 

the conclusions reached by different experts (at least two experts) coincide 

(Shadish et al., 2002; Drost, 2011). In order to facilitate the expert’s 

interpretation, maps of score values were produced at the regional level. These 

maps were created by interpolating (see next section) the scores observed on the 

4978 vineyard blocks for each year (2019 and 2020) and for each component (F) 

when spatial autocorrelation was observed.  

 

3.1.2.6 Spatial analysis and mapping 

The spatial analysis was based on the modelling of semivariograms from which the 

following featured parameters were derived: C0 (nugget effect), C1 (sill) and A1 (range). The 

modelling of the semivariograms and the calculation of their parameters was used for (i) the 

calculation of the Cambardella Index to determine the spatial dependence and (ii) kriging to 

obtain the score maps. The characterisation of the spatial structure via semivariograms, as well 

as the realisation of the score maps were performed using GeoFis 1.0 software (Leroux et al., 

2018).  

Spatial auto-correlation of the score values of each component was assessed with 

Cambardella Index (Ic) (Cambardella et al., 1994) (Equation 3.2): 

                                                     Ic =
C0

C0+C1
                                                  (EQ. 3.2)  

where C0 is the nugget effect and C1 is the sill of the semivariogram model. According 

to Martínez and Gomez-Miguel (2017) the following thresholds were used:  

1. if Ic is less than or equal to 25%, the distribution is considered strongly spatially 

organised (high auto correlation), 

2. if Ic is between 25 and 75%, the distribution is considered moderately spatially 

organised and, 

3. if Ic is higher than 75%, the distribution is considered weakly spatially organised. 

Score maps were obtained using point kriging interpolation (Oliver and Webster, 

2014). The latter was performed on a grid of points regularly spaced 1000 m apart within 

the geographical boundary of the LR region (Lopez-Fornieles et al., 2022a). 
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3.1.2.7 Experts evaluation  

Following Pichon et al. (2019), 6 experts were selected. These 6 experts were chosen in 

order to benefit from an integrated assessment of the results obtained over the whole region, 

taking into account simultaneously their knowledge of plant development, the cultural practices 

of the winegrowers in each part of the region, the soil and its variability, etc. 

In order to validate the experts' consistency, they conducted a self-assessment on the 

criteria considered important by the authors' perspective for the study (Table 3.1). This self-

assessment consisted of asking the experts about their level of knowledge in each of the 

domains, as well as their knowledge of the sectors within the LR region. This information was 

also used to analyse the opinions expressed by the experts during the working session. 

TABLE 3. 1 - Description of the interviewed domain experts. Rating range from 0 to 5, with 0 

being the minimum and 5 of the maximum knowledge/expertise. The term Vegetation Indexes 

is abbreviated as VIs.  

 Experience grapevine cultivation 
Knowledge of viticulture of the 

LR region 

Knowledge of 

pedo-climatic 

characteristics 

of the LR 

region 

Expertise with remote sensing 

images 

Expert 
Vine 

Physiology 
Irrigation 

Technical 

itineraries 

Climate 

impact 

Aude 

(A) 

Gard 

(B)  

Hérault 

(C) 

Pyrénées-

Orientales 

(D) 

Soil 

type 

Micro-

climate 

Data 

processing 
VIs 

Resolution 

scale 

A1 5 5 4 4 4 2 4 3 2 2 3 4 3 

A2 4 3 3 3 3 3 4 4 3 3 4 4 4 

A3 4 4 4 4 1 3 2 1 3 3 1 2 1 

A4 4 5 4 4 4 4 4 4 4 4 4 4 1 

A5 2 1 3 2 3 1 5 1 5 5 1 1 3 

A6 4 5 5 4 4 4 4 3 4 3 3 5 4 

 

A ‘scenario simulation’ session was conducted with experts on 31st May 2022. The 

general workflow of the session is presented in Table 3.2 following Pichon et al. (2019) 

methodological framework. During the session, the score maps were hand-delivered to each 

expert and projected on a screen managed by an animator (zoom in and out) according to 

requests from the experts. These score maps were previously elaborated by adding 
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characteristic elements (cities, watercourses, roads, etc.) that would allow the experts to 

orientate themselves on the maps. It should be noted that an explanation session of the scores 

values meaning was necessary so that the experts could understand the maps and interpret them 

in the best possible way using a colour coding defined by the authors. Maps were displayed in 

QGIS 3.2.3 (Open Source Geospatial Foundation, http://qgis.osgeo.org). Experts were asked to 

first write down their opinions before oral group discussions. In the oral group discussion, the 

animator wrote down the experts' comments and reactions.  

 

TABLE 3. 2 - Description of the general workflow of the ‘scenario simulation’ session. 

 Step 1 Step 2 Step 3 Step 4 Step 5 

Duration 40 minutes 20 minutes 40 minutes 20 minutes 40 minutes 

Type of session Individual (written) 
Individual 

(written) 
Collective (oral) Collective (oral) Collective (oral) 

Presentation of maps 
Once at time for the 

year 2020 

All together for 

the 2020 year 

Once at time for the 

year 2020 

All together for 

the 2020 year 

All together for 

the years 2019 

and 2020 

 

It was agreed that the experts would react mainly to score maps derived from the 2020 

years, because it was considered to be most representative of common crop-soil-climate 

interactions in the region. Indeed, the year 2019 was assumed to present specific behaviour 

(although interesting) as a heatwave which strongly affected vine growth hit the region at the 

end of June. Score maps of 2019 were then presented in a second step as a particular case-study. 

3.1.3 Results 
 

3.1.3.1 Component selection 

PARAFAC modelling was done by fitting a series of models, i.e. increasing the number 

of components from two to five to look for the correct number of components that fit the data. 

Table 3.3 presents the results obtained for X19 and X20. With two components, the observed 

CORCONDIA and explained variance values were 100 % - 99.62 % and 100 % - 99.57 %) for 

the years 2019 and 2020 respectively. For a high number of components, the CORCONDIA 

values drop significantly, showing that the two-component model is the best for both years. 

Since a 2-component model was validated according to CORCONDIA, the results in Table 3.3 

also justified the suitability of applying the PARAFAC methodology assuming a trilinear 

structure in the presented dataset. 
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TABLE 3. 3 - CORe CONsistency DIAgnostic (CORCONDIA) by fitting a series of models 

using two to five components for X19 and X20 databases. 

 

 

 

 

 

 

 

 

 

3.1.3.2 Data signal decomposition 

A two-component PARAFAC corresponds to two pure spectra of constituents. For both 

PARAFAC models (years 2019 and 2020), the score in the matrix A (4978 × 2) contains 

estimated relative concentrations of the two components in the 4978 samples. The matrix B (25 

× 2) estimates temporal loadings and the matrix C (12 × 2) estimates spectral loadings.  

The spectral loadings (C) and the temporal loadings (B) for the two components selected 

(Co1 and Co2) from the PARAFAC model of the years 2019 and 2020 are presented in Figure 

3.4 and Figure 3.5 respectively. 

Year 
Number of 

components (F) 
CORCONDIA (%)  

Variance 

explained 

(%) 

 

2019 1 100  99.25  

2019 2 100   99.62  

2019 3 15.65   99.74  

2019 4 -6.34   99.82  

2029 5 -0.72   99.88  

2020 1 100   99.20  

2020 2  100   99.57  

2020 3 11.15   99.68  

2020 4 -0.23  99.79  

2020 5 -0.44  99.85  
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FIGURE 3. 4 - Two-component PARAFAC models for 2019 and 2020 years including spectral 

loadings (matrix C) for both components (Co1 and Co2). 

Regarding Co1 for both years, it can be observed that the loading intensity is 

characterised by an increase from the Visible (Vis) to the Near InfraRed region (NIR). It should 

be noted, though, that in the year 2019, there is a slight drop in intensity between the 

wavelengths ranging from 700 nm to 1000 nm. Concerning Co2 for both years, the spectral 

loading is characterised by: i) low intensity in red wavelengths (650 - 680 nm), ii) the highest 

intensity in the NIR range (785 - 875 nm) and iii) a decrease in intensity in the short-wave 

infrared region (1360 - 2200 nm). Taking into account that matrix C represents the pure spectra 

and considering the study case, the components were identified as soil (Co1) and vegetation 

(Co2). Indeed, typically, soil spectral reflectance is characterised by a steady increase with 

wavelengths from the Visible (Vis) to the Near InfraRed region (NIR), except at 950 nm, 1200 

nm and also in 1350 nm, where reflectance decreases (Khadse, 2012). As for the typical 

vegetation spectral reflectance, it exhibits the following characteristics: i) low reflection in the 

blue (458 - 523 nm) and red wavelengths (650 - 680 nm), ii) relatively more reflection in green 

wavelengths (543 - 578 nm), iii) reflectance in the NIR range (785 - 875 nm) is the highest and 

iv) the short-wave infrared region (1360 - 2200 nm) is mainly determined by less reflectance 

(Roman and Ursu, 2016). Given that grapevine cultivation is seasonal and is a row crop, the 

PARAFAC model clearly identifies the mixture of these two components. In fact, for both 

years, the Co2 spectral loadings represent a ‘reference’ vegetation profile (which refers to the 

notion of the pure spectra in chemometrics) that probably includes vines and grass reflecting 

the typical signature of healthy vegetation while the Co1 spectral loadings represent a 

‘reference’ soil profile at the region level. It actually summarises different soil types of the 

region, probably with different spectral characteristics. This could explain why the spectral 

loading identified as soil followed a slightly different general trend than that described as a 

typical soil profile by Khadse (2012).  
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Figure 3.5 presents the temporal loadings (B) for both years 2019 and 2020 and both 

components (Co1 and Co2). It was observed that the two components showed large differences 

between them in their temporal loadings in the two consecutive years. Regarding Co1, in the 

year 2019 its intensity in its time profile decreased over time, while in the year 2020 it remained 

more stable. Regarding Co2, its spectral profile in 2019 peaked between 17 and 27 July with a 

slow decrease afterward, while for 2020, Co2 shows a maximum around 11 and 26 June 

followed by a very steep decline later on in the season. Indeed, the temporal loadings of both 

years seem to show that Co2 intensity (vegetation) increases with the vegetative development 

of the vine (June-July) and, conversely, Co1 intensity (soil) decreases with the growth of the 

vine. In fact, the decreasing temporal profile of Co1 observed throughout 2019 reaffirms the 

hypothesis that it may be a compensatory profile of the vegetation at certain times during the 

time period considered. For the record, 2019 was marked by a heatwave late June which 

affected a significant part of the region which may explain a compensatory effect afterwards in 

the season. With regard to Co2, the maximum peak of intensity shifted between 2019 and 2020, 

moving forward by almost one month in 2020. This could be explained if the time of vegetative 

development of the vineyards had been different between the two years studied.  

FIGURE 3. 5 - Two-component PARAFAC models for 2019 and 2020 years including 

temporal loadings (matrix B) for both components (Co1 and Co2). 

Given that the samples studied were blocks of vineyards, the spectral and temporal 

profiles indicate ‘reference’ behaviour for each component (soil and vegetation) at the regional 

scale, but each block may differ more or less from this ‘reference’ behaviour. Thus, once the 

models have been validated, the data can be examined with respect to the variability of each 

component found, i.e. with respect to the values of the score matrix (A) for both years. 
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3.1.3.3 Spatial analysis and characterisation 

The score value maps (Figure 3.6) represent the spectro-temporal profiles of each block 

in relation to each component and its corresponding year, e.g. for Figure 3.6.a, the estimated 

concentration value of the Co1 (soil) component of each block is plotted in relation to its 

spectro-temporal profile in 2019 at the regional LR level. Therefore, the score map for Co1 was 

supposed to highlight blocks that were directly related (or counter -related) to the identified 

spectro-temporal signature for the soil in 2019.  

The spatial organisation of the score maps for all the years and all the selected 

components is confirmed by the semivariogram model (Table 3.4), which showed that at least 

40 - 50 % of the variability is explained by a spatial phenomenon. The year and component 

assessed with the strongest spatial structure were the soil component (Co1) for the year 2019 

with an Ic of 45 %. These results support the assumption that scores values are not randomly 

organised, but spatially structured and likely to vary according to environmental variables.  

The score maps obtained after kriging (Figure 3.6) show the spatial organisation of the 

blocks that have: i) similar spectro-temporal profile (high scores) and ii) different spectro-

temporal profile (low scores) to the ‘reference’ spectral profile for each component and year. 

Therefore, the more different the time spectral profiles are, the lower the scores will be, 

becoming negative if they are opposite to the ‘reference’ spectro-temporal profile. The spatial 

patterns for soil (Co1) between the two years are very similar, showing that the same vineyard 

blocks had both high (light colour) and low (dark colour) score values in the same areas for 

both years. Regarding the spatial patterns of vegetation (Co2) for both years, a general trend of 

higher values (light colour) of the scores in the northern part of the region was highlighted. For 

other sectors, the spatial patterns are less similar between both years. It should be noted that for 

the Co2, the spectral loadings (Figure 3.4) followed the same profile in both years but, in 

contrast, the temporal loadings (Figure 3.5) showed a significant temporal shift. This implies 

that the temporal dimension may have a major role in the difference in score values for each 

vineyard block for both years, i.e. in the differences in spatial patterns for each year represented. 
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FIGURE 3. 6 - Kriged maps of the score values of each vineyard blocks at the regional scale 

for a) component 1 (Co1) identified as the soil spectro-temporal profile in the years 2019 and 

b) 2020 and component 2 (Co2) identified as the vegetation spectro-temporal profile in the 

years c) 2019 and d) 2020. Light colours represent high score values and dark colours represent 

low score values for both components. 
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TABLE 3. 4 - Semivariogram parameters and spatial variability index for score values. A1 

(Range), C0 (Nugget), C1 (Sill) and Ic (Cambardella Index). 

 

3.1.3.4 Comparison of cross-observations by experts 

As the spatial patterns for Co1 between 2019 and 2020 were almost identical (Figure 

3.6.a and 3.6.b), it was considered that the score map of the Co1 for the year 2019 would not 

provide any relevant information to the study for the experts. Therefore, the workflow of cross-

validation by experts focused first on the two 2020 components (Co1 and Co2) and then the 

vegetation component (Co2) of the year 2019 was presented only for comparison with 2020. 

Table 3.5 presents the extent to which each type of observation was made by the expert group 

for the 2020 year.  

TABLE 3. 5 - Number of experts who have made similar observation in each sector of the LR 

region for the Co1 and Co2 score maps for the year 2020.  

Component 
Figure 

Number 
Observations on 

Sector 

A  

Sector 

B 

Sector 

C 

Sector 

D 

Co1 (Soil) 
3.6.a Variation of pedological units 5 5 2 1 

3.6.b Variation of geological units 5 4 4 0 

Co2 

(Vegetation) 

3.7.a Difference in grape varieties (phenology, yield, etc.) 4 2 3 1 

3.7.b Variation of vigour 2 1 3 1 

3.7.c Presence/absence of irrigation 4 4 1 1 

 

It clearly appears that a significant number of experts made similar observations on 

Sectors A and B of LR region. Moreover, more expert observations were related to Co1 

compared to those of Co2. This result can be explained by the scale of the study where 

vegetation heterogeneity may be more difficult to analyse properly by the experts given the 

large diversity of situations. Experts were obviously more comfortable with identifying and 

explaining differences in spatial patterns within sectors that they were familiar with. Figure 3.7 

shows a summary map of each type of observation for the year 2020 made by the group of 

experts related to Co1 for each sector. 

Year Components 
Semivariogram 

model 
A1 (Km) C₀ C₁ Ic ( %) 

2019 
Co1 Exponential 6 0.067 0.079 45 

Co2 Exponential 6 0.026 0.022 53 

2020 
Co1 Exponential 5 0.205 0.113 64 

Co2 Exponential 5 0.145 0.086 62 
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FIGURE 3. 7 - Summary map of each type of Co1 observation being: a) the variation of the 

pedological units and b) the variation of the geological units for the year 2020 made by the 

group of experts for each sector. Light colours represent high score values and dark colours 

represent low score values for Co1. Areas of the experts' observations are highlighted in red 

squares. 

The observations made by individual experts coincide in its vast majority with at least 

one other expert. Therefore, if at least two experts are in agreement, the relevance of the 

identified area is valid according Wacheux (1996). Concerning the soil units (Figure 3.7.a), 

experts identified that spatial patterns are related to the depth of the soil. In terms of colour 

range, it was perceived that the darker areas could represent valley and coastal soils, e.g. 

fluviosols, as well as calcareous soils. The former are soils containing mostly coarse elements 

(gravel, pebbles, stones…) with a thickness greater than 50 cm and the latter are defined as 

medium to thick soils (over 35 cm thick), developed from calcareous materials. On the other 

hand, the lighter zones (less distinct from a visual point of view) could represent mineral soils, 

e.g. rankosols or lithosols, which are characterised by a thickness of less than 30 cm. It should 

be noted that this spatialisation of the different geological units was directly related to the 

information on the soil available water capacity provided by 4 experts. Regarding Figure 3.7.b, 

some major geological formations from LR region were largely commented on by 5 of the 

experts. Three clear boundaries between the two colours were observed and outlined in sectors 

A-B-C of the map. 

Regarding Co2 (vegetative factor), it should be noted that the colour coding does not 

always represent the same phenomenon but rather differences when compared to the ‘reference’ 

spectro-temporal profile for the 2020 year. That is, the yellow vineyard blocks represent a 

spectro-temporal profile very similar to the ‘reference’ vegetation profile extracted by the 
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PARAFAC method. In contrast, the blue vineyard blocks represent plots that differ from the 

‘reference’ spectro-temporal profile of the vegetation. Therefore, as these colour variations may 

be due to differences in the spectral and/or temporal profiles in relation to the ‘reference’ 

profile, there were some inconsistencies in the experts' interpretation of the meaning of the 

colour codes. A clear example was the comments on the phenological state of the vineyards by 

sectors in Figure 3.8.a. Each of the areas highlighted in Figure 3.8.a were selected by the experts 

as characteristic of late growth vineyard development but the colours are different in each area. 

These inconsistencies could be explained not by the late phenological stage but by the different 

grape varieties selected and adapted to this late growth in each sector, e.g. a predominant 

presence of Chardonnay variety in sector A and a predominance presence of Mourvèdre variety 

in sector C. Since the grape varieties are different, different management practices, different 

training systems, etc., could be involved and thus explain why on some maps the observed 

trends and the resulting agronomic interpretations are difficult to interpret. 

Concerning Figure 3.8.b, certain spatial structures which are characterised by high/low 

vigour were commented on by a minority of the experts. A possible explanation given by one 

of the experts focusing on sector A was the presence of the distinct denominations areas that 

characterise the different vineyards. In particular, the yellow area corresponds to the Protected 

Geographical Indication (PGI) label and the blue area to the Protected Designation of Origin 

(PDO) label. Two different identification implies e.g. different yield objectives, different soil 

cultivation, grape varieties and management practices. The latest observations made by the 

experts are shown in Figure 3.8.c concerning zones where irrigation is available through 

regional facilities. The experts largely addressed these observations for sectors A and B. 
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FIGURE 3. 8 - Summary map of each type of Co2 observation being: a) the different grape 

variety (phenology, yield, etc.), b) the variation of vigour and c) the presence/absence of 

irrigation for the year 2020 made by the group of experts for each sector. Light colours represent 

high score values and dark colours represent low score values for Co2. Areas of the experts' 

observations are highlighted in red squares. 

For the final step of the workflow (Table 3.2) it was decided to present only the score 

map of the year 2019 for the vegetation component (Co2) as the score map of the Co1 confirms 

the stability of this component from one year to another and the temporal stable factors (mainly 

related to soil) that it is related to. Therefore, when comparing the two years for the Co2 

component, the experts observed the same spatial patterns but less pronounced for the year 2019 

(Figure 3.9.a). This attenuation of the yellow colour related to higher score values could be 

justified by the heatwave episode from the 23rd of June to the 8th of July of 2019 experienced 
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by the LR wine-growing region. The heatwave would have homogenised the differences 

between vineyards and therefore the corresponding spectro-temporal profiles. 

FIGURE 3. 9 - Visual comparison of the main spatial structures of the Co2 score maps for a) 

the year 2019 and b) the year 2020. Light colours represent high score values and dark colours 

represent low score values for Co2. Observations made by experts in 2020 that these same 

experts found in 2019 are highlighted in red squares. 

 

3.1.4 Discussion 

A remote sensing time series study for the regional characterisation of vineyard blocks 

was provided by the application of the PARAFAC algorithm. Results showed the potential as 

well as the limitations provided by the application of an unsupervised complex data analysis 

method focusing on grapevine production at the regional scale. The validated application with 

a practical framework of expert winegrowers’ opinions demonstrated the complexity as well as 

the added value of considering the feature approach in the temporal and spectral dimensions for 

interpretation purposes to identify relevant region/local specificities in a grapevine context. 

In order to analyse a time series multispectral images to assess the value of 

simultaneously considering spectral and temporal information over the LR wine growing 

region, the PARAFAC method was used to tackle the issue of analysing the three-way Sentinel-

2 datasets (year 2019 and year 2020 dataset). It should be noted that a trilinear structure was 

assumed a priori in the analysis of the datasets. This assumption could be partly accepted 

because the fit of the data obtained was satisfactory according to the CORCONDIA criterion 

(100% for both years) and because the shape of the spectro-temporal profiles obtained was 

coherent from an agronomic point of view. Several authors, including De Juan and Tauler 
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(2001) conclude that methods based on the trilinear structure assumption will always fit the 

data less efficiently than others that do not, such as Tucker3 or Multivariate Curve-Resolution 

Alternative Least Squares (MCR-ALS). However, the PARAFAC decomposition accurately 

modelled soil dynamics and vegetation dynamics for 2019 and 2020 years. The interpretability 

of the spectro-temporal profiles was useful to understand the variation of the spectral response 

of crops (soil-vegetation dynamics) over time.   

Since PARAFAC decomposition allows for unique solutions to be obtained, i.e. pure 

spectra, the modelling was considered relevant for the study of the temporal dynamic of 

vineyard blocks at the scale of the region. However, it is essential to place the results presented 

in this paper within the reality of large-scale unsupervised case study data. It is apparent that 

the study of such variable samples representative of a large geographical area has limitations 

related to the reliability of the validation. To overcome this challenge, Wacheux's (1996) 

‘scenario simulation’ was used, where if at least two experts confirm that there is some logic in 

the observations, then these observations considered valid. The proportion of different experts 

who made the same observation for each score map for the year 2020 can be considered a 

reliable indicator of the representativeness of the findings and may validate the relevance of the 

approach to highlight relevant agronomic information. The observations were not made in the 

same proportion or in the same detail for the different sectors of the LR region. Table 3.5 clearly 

shows that almost all the observations in sector D were made by only one expert. This does not 

question the approach, but given the observations of the selected experts, it is to be expected 

that the conclusions from sectors A, B and C were more consistent than in sector D, where only 

one expert had in-depth knowledge. However, it should be highlighted that the ‘external 

reliability’ of this study refers to the LR region and that the same validation framework would 

have been approached differently, i.e. with experts from other regions or different countries, if 

a different scale of study had been defined. 

It is essential to place the results presented in this paper within the limits of the approach 

used. The main limitation of the PARAFAC methodology in relation to its application with 

Sentinel-2 satellite data at a regional scale is that it requires a temporal interpolation step prior 

to the analysis. This temporal interpolation is required in order to create a continuous data cube. 

However, this step necessarily involves smoothing of the spectral data, which could lead to the 

removal of relevant information for a proper crop monitoring. In addition to the methodological 

limitation mentioned above, there is also an important limitation within the expert’s validation 

framework used. Indeed, the spatial representation of a single score value summarising the 

whole growing season (the same colour code could represent a variety of phenomena), probably 

added complexity to the interpretation by experts to identify relevant areas related to ‘real’ soil 

or vegetation dynamics. However, according to the experts, the PARAFAC analysis highlighted 

different relevant zones according to their knowledge. From the differences in the score value 

maps, different spatial patterns were visually highlighted that could potentially reveal some 
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interpretative clues depending on the situation of the vineyard (geographical area, soil 

characteristics and soil water capacity), the different phenological stages of the vineyards 

(different denominations area, grape variety and management practices) and the impact of the 

use of irrigation in certain areas.  

Results validation focused on the regional scale with a group of experts able to integrate 

a wide range of knowledge (soils, crops, climates) to analyse the relevance of the information 

obtained. It is likely that similar analyses conducted at finer scales will identify new information 

and perhaps even interesting links to new agronomic information. 

 

Concerning the year 2019, the validation by the expert group focused only on the 

vegetation component, highlighting its similarity, i.e. same spatial patterns with the subsequent 

year. The main observation was the attenuation of the high-value zones in the year 2019, which 

raised the hypothesis that the crop-heatwave interaction caused the homogenisation of the 

reflectance signal, creating a less differentiated spatial distribution of vine vigour at the regional 

scale, i.e. fewer strong concentration values (yellow colour). However, no sudden variations of 

the profiles were observed, as would be expected as a consequence of the impact of an extreme 

weather event. This could also be attributed to the fact that the temporal interpolation performed 

may have masked this punctual variability. 

The unsupervised approach (PARAFAC) presented here represents a specific 

application case for the LR wine-growing region in 2019 and 2020. In view of the results, it is 

a type of approach that can be effective to spatialize and characterise phenomena with a 

temporal evolution, e.g. the spectral response of the vine canopy, providing spectro-temporal 

‘fingerprints’ able of highlighting differences in behaviour. However, in this particular case 

study, probably as a consequence of the resolution scale, its application requires a posteriori 

expert knowledge of the observed phenomenon, thus limiting its applicability.  

 

3.1.5 Conclusion 

The work conducted in this study showed the potential of an appropriate three-way data 

resolution methodology such as PARAFAC in the analysis of remote sensing images time 

series. The results obtained from data collected over two cropping years (2019-2020), on 4978 

vineyard blocks showed that the PARAFAC method provided relevant information on temporal 

spectral profiles, which, in turn, allowed the spatial characterisation of the LR wine region. The 

validation of the results was based on expert observations. Although this can be seen as a 

limitation, the study showed that the feasibility that expert knowledge could be useful to 

validate the interest of applying this to explore the data without a priori. 
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The practical approach of experts demonstrated that the application of specific 

methodologies for the resolution of complex three-way data can be optimised at various levels 

and be potentially useful for understanding and characterising viticulture at the regional scale. 

Elements such as e.g. the relationship with the landscape, the irrigation areas in relation to the 

soil characteristics, the spatial footprint of the soil water capacity seen as an indicator of 

biomass production over the season, etc., have given the authors new insights into elements to 

be investigated in more detail. However, the requirement to have a continuous cube can be a 

limiting factor in characterising isolated episodes that affect the crop growth throughout the 

year. 

The proposed methodology is potentially transferable to other LR resolution scales. In 

fact, for the effective characterisation of the specificity of the spectral temporal response of 

agricultural-related factors at other scales, the spatial segmentation elements (different spectral 

time zones) highlighted by the PARAFAC methodology and identified by expert observations 

would be appropriate as a starting point.  
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3.2 Potential of the Multivariate Curve-Resolution 

Alternative Least Squares (MCR-ALS) method to 

identify temporal variations from multispectral data  
 

3.2.1 Introduction  

The practical expert approach presented in Part 3.1 validated the results of the 

PARAFAC method. However, it raised some questions concerning the relevant choice of the 

resolution method of three-way data sets to be adapted to this type of approach. A key factor 

for the proper interpretation of the maps (Figure 3.6) was the understanding of the meaning of 

the score values, i.e. that the score values integrated both spectral and temporal variation over 

the entire growing season for each component (soil and vegetation). The idea that a single value 

could represent all variability was considered for the authors’ opinion to be a challenge for the 

interpretation. Therefore, it was decided to test another method of solving three-way datasets 

that would allow the temporal dimension to be squeezed in a different way. In an attempt to 

address this issue, the Multivariate Curve-Resolution Alternated Least Squares (MCR-ALS) 

was considered as a promising methodology to reconfigure the temporal dimension in the 

analysis. Multi-way analysis based methods such as PARAFAC offer the advantage of single 

solutions, while the MCR-ALS method offers multiple set analysis, i.e. it allows the flexible 

use of many subsets of data containing diverse information in a single dataset structure (de Juan 

and Tauler, 2021). Although this type of analysis still suffers from a certain degree of 

ambiguity, it allows working with more flexible dataset structures (no need to build a 

continuous data cube). Thus, the main differences between multi-way analysis and multiple set 

analysis algorithms are: (i) the requirements of the initial data structure and (ii) the underlying 

model, multilinear in multi-way analysis or bilinear for multiple set analysis. Therefore, unlike 

the previous method presented in Part 3.1, which dealt with folded three-way array, the MCR-

ALS methodology could work with the original time series Sentinel-2 data (without any 

temporal interpolation to compensate loss of information due to acquisition conditions during 

the season). By working with the original temporal data, it opens up the possibility of obtaining 

actual date-by-date information since no interpolation process is necessary. 

The current Part 3.2 focuses on 4978 vineyard blocks in the LR region during the period 

from May to September 2019. The aim of this part is to determine whether the MCR-ALS 

method is a potential alternative to fit the temporal characteristics of the dataset, thus comparing 

and extending the knowledge gained in the previous part. Indeed, the year 2019 was 

characterised by the impact of an extreme weather event (heatwave) that affected the LR wine 

region at the end of June 2019, specifically from the 23rd of June until the 8th of July. The 
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unusual and extremely early summer heat that affected the LR wine region during the growing 

season may result in an alteration of most of the phenological stages of vineyards. Therefore, 

the second purpose of this part was to see if an MCR-ALS model may faithfully represent the 

study-case, i.e. the assessment of the temporal alteration related to a heatwave episode. 

 

 

3.2.2 Materials and Methods 
 

3.2.2.1 MCR-ALS method 

MCR-ALS method (de Juan et al., 2019) has been chosen as the main strategy for a time 

series of multispectral images when no prior information is available (de Juan and Tauler, 

2021). The MCR-ALS method is a resolution method oriented to recover the underlying 

concentration profiles, as well as the pure spectra profiles (signatures) of the constituents of the 

analysed samples and it is based on a simple bilinear model which assumes that the constituents 

of the analysed sample weighted according to their relevance are expressed by a simple matrix 

equation (Zhang and Tauler, 2013). Following de Juan and Tauler (2021) the equation could be 

written down for a mixture with components I = 1, 2, …, n, being n the sources of variation 

coexisting in the analysed samples (system) as (Equation 3.2): 

 

                                            𝐃 = 𝐂𝐒𝐓 + 𝐄 = ∑ 𝐜𝐢𝐬𝐢
𝐓 + 𝐄𝒏

𝐢=𝟏                                                    (EQ 3.2) 

 

where D is the original data set measurements that come from n sources of variation. 

Data matrix C (n columns) contains the related proportion profiles (concentrations) of the 

matrix 𝐒𝐓 (n rows) that contains the qualitative profiles (pure spectra of the constituents) of the 

individual source of variation. E is the matrix associated with noise or experimental error, i.e. 

variation unexplained by the model. The MCR model using a constrained Alternating Least 

Squares algorithm (ALS) is explained by de Juan and Tauler (2021) as a method that works 

with initial estimates of the full matrix C or 𝐒𝐓 and, at each iteration, calculate both matrices of 

the bilinear model under the action of appropriate constraints. When the reproduction of the 

original data set D by the model 𝐂𝐒𝐓 is good enough, the optimisation stops. 

 

3.2.2.2 Case-study and Remote sensing data 

MCR-ALS was applied to a data set of 4978 samples (vineyard blocks) extracted from 

the graphical parcel register of France (RPG) from the large wine-growing region of LR as in 

Section 3.1.2.3 but only for the 2019 year. Sentinel-2 L2A data containing the study vineyards 
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were selected and processed via the Google Earth Engine (GEE) platform from May to August 

(Section 3.1.2.3, remote sensing data). 

 

3.2.2.3 Modelling 

Data construction: multiset structure 

The simultaneous analysis of multiple data sets with information in common is possible 

with MCR-ALS (Tauler et al., 2020). The possibility to simultaneously analyse multiple 

datasets implies that they share at least some parts of their data variance, e.g. some chemical 

components (Tauler et al., 2020). Due to the nature of the Sentinel-2 satellite images, a multiset 

structure that has the spectral dimension (12 wavelengths) as shared information between the 

different time series data has been proposed. Given this multiset structure, the MCR-ALS 

methodology allows handling the temporal information gaps, which implies that the temporal 

interpolation process as in PARAFAC method, is not necessary. This is because by sharing the 

spectral dimension (12 wavelengths), the actual reflectance data can be used for each of the 

individual vine blocks according to their satellite revisit times. Therefore, the measured 

reflectance intensity is not structured as a cube, but as data matrices D (x × y, λ), as a function 

of two variables: pixels position x-y and spectral wavelengths for each revisit time of Sentinel-

2 satellites. As a result, there is a 2-D matrix for each date. In order to adapt the data to the 

application of the method, it has been necessary to implement the following steps:  

- Create a grid of 1000 × 1000 with the boundary of the LR region. This grid allows 

to emulate pixels as in a real ‘image’ containing two spatial dimensions (x and y 

pixel position). The size of the grid was decided in advance by considering the 

optimal size of the kriging interpolation grid (as applied with the PARAFAC 

methodology).  

- For each pixel, link the spectral and temporal data by vineyard blocks for the year 

2019 from their available geographic coordinates with the pixel’s position. The 

number of blocks for each pixel was 2.8 on average, being 1.23 the standard 

deviation of the established values; 

- Calculate the average of the spectral values from vineyard blocks per pixel and per 

date. That is, each pixel contains only the information of several vineyard blocks 

(2.8 block on average). It should be noted that with this third step, it is assumed that 

the information of nearby vine blocks in space will be similar. 

At the end of these steps, the dataset was meaningfully organised into a multiple dataset 

(25 matrices representing satellite revisit date) sharing the spectral dimension (12 wavelengths, 

λ) for 3213 pixels. Therefore, each of these matrices represented the conceptual idea of an image 
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(x-y pixel position) according to the satellite revisit time. Figure 3.10 summarises the workflow 

of the database reconstruction. 

FIGURE 3. 10 - Workflow diagram of data structuring in order to apply the MCR-ALS model 

to deal with temporal information gaps. 

MCR-ALS model 

The MCR-ALS method was used to decompose the time series data of Sentinel-2 image 

into the signatures or pure spectra of the image constituents and into their concentration (relative 

amounts) on the image (distribution map). The first step is to unfold the three-dimensional data 

cubes (x × y × λ) as a 2-D data matrix (x × y) × λ, ready for MCR-ALS multiset analysis (Figure 

3.11). Then, for an accurate reproduction of the original data (D), the C and ST were estimated 

and then optimised iteratively in an Alternative Least Square (ALS) algorithm until 

convergence was reached (Zhang, 2015). The rows of this matrix D ((x × y) × λ) contain the 

original spectral measurements for every pixel and every date. Matrix C ((x × y) × n) contains 

the concentrations or relative amounts of the constituents in the pixels and ST matrix (n × λ) is 

the pure spectra associated with these constituents at λ spectral bands (Figure 3.11). In order to 

have physically meaningful spectral profile shapes, non-negativity constraints in C and 𝐒𝐓 were 

applied. 
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For determining the total number of the component model for adequate resolution of the 

multiset data, the percentage of variance explained (r2) as well as the meaningfulness, in the 

authors' opinion, of the resulting pure spectral profiles were taken into account. 

FIGURE 3. 11 - Multivariate Curve Resolution and alternating Least Squares (MCR-ALS) 

analysis of the multiset data from the Sentinel-2 satellites.  

 

3.2.3.4 Spatial analysis 

Semivariograms were performed using GeoFis 1.0 software (Leroux et al., 2018). This 

software was used to derive semivariogram models and estimate their featured parameters, i.e. 

C0 (nugget effect), C1 (sill) and A1 (range) and the Cambardella Index (Ic) (Cambardella et al., 

1994). The Cambardella index was considered here to demonstrate the interest of quantifying 

how the 2-D image (distribution map) of the concentrations (relative amounts) of every 

component were spatially organised in the LR region for some dates as an illustration of the 

exploratory potential of the MCR-ALS methodology in the context of viticulture at large scales. 

The hypothesis of this part was the same as in Section 3.1.3.3 of the previous part, where it has 

been considered that if spatially structured patterns are revealed, it is assumed they are 

determined by environmental variables (soil, climate, etc.) that are spatially structured. 
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3.2.3 Results  

3.2.3.1 Data signal decomposition 

The purpose of this part was to obtain a model that faithfully represented the problem 

under study, i.e. the assessment of the temporal alteration related to a heatwave episode in the 

samples (3213 pixels) at a regional scale in 2019. For the resolution of this dataset, the two-

component model was considered the most appropriate. Although the percentage of variance 

explained (r2) of the three-component model (r2 = 99.63) was slightly higher than for the two-

component model (r2= 99.53), the profiles of the former one were not interpretable from the 

author's perspective. Therefore, for two-model components, the profiles of the components 

were identified as spectra of the soil (Co1) and of the vegetation (Co2) (Figure 3.12).  

FIGURE 3. 12 - Spectral loading for two-component MCR-ALS model for the year 2019 (Co1 

and Co2).  

 

3.2.3.2 Spatial analysis and characterisation 

Spatial analysis  

The MCR-ALS methodology made it possible to consider each date of the study period 

collected by the Sentinel-2 satellite. Via 2-D reconstructed images of the concentration values 

at a pixel level in the x–y plane, 25 date distribution maps were obtained. However, the 



CHAPTER 3. POTENTIAL OF NON-SUPERVISED MULTI-WAY  

METHODS FOR REGIONAL CROP DATA EXPLORATION   

FROM MULTISPECTRAL TIME SERIES DATA 

95 

 

reconstitution of a nearly complete distribution map containing the information of at least 3/4 

of the LR pixels (≈2500 pixels) was possible on 8 dates over the study period (1st May to 31st 

August).  

Figure 3.13 shows the eight chronologically ordered distribution maps of the year 2019 

relative to the estimated concentration value of the Co1 component (soil) of each pixel in 

relation to its spectral profile in each time slice at the level of the LR vine-growing region. 

Therefore, each distribution map for Co1 highlights the evolution of pixels whose contributions 

were directly related to the profile identified as the soil in 2019. According to Figure 3.13, the 

distribution maps from the 7th July to the 22nd July represent the dates with the higher 

concentration (yellowish colour trend) and from the beginning of August, the dates of lower 

concentration (bluish colour trend). Therefore, the spatial evolution of the Co1 contribution 

over the study period can be observed on a regional scale from the concentration values using 

the distribution maps. The concentration values of the Co1 varied spatially across the eight 

distribution maps from May to August. A peculiar zone is observed in the pixel’s x = [150, 200] 

y= [50, 110] which seemed to follow a different trend than the rest of the region from early 

June until July 7th where the region seems to spatially homogenise the concentration values 

until the end of the study period. 
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FIGURE 3. 13 - Distribution maps of the matrix concentration values for pixels in the vine-

growing region at regional scale for component 1 (Co1) identified as the spectral profile of the 

soil in the year 2019 during the dates covering the vine growing season. Concentration colour 

gradient ranges from the lowest values (0) in dark blue to the highest values (1.2) in red. The 

grey square highlights the peculiar zone observed in the pixel’s x = [150, 200] y= [50, 110].  

Figure 3.14 shows the same eight chronologically ordered distribution maps of the year 

2019 but relative to the estimated concentration value of the Co2 component (vegetation) of 

each pixel in relation to its spectral profile in each time slice at the level of the LR vine-growing 

region. Each map of Co2 highlights pixels whose contributions were directly related to the 

profile identified as that of the vegetation in 2019. The maps from 12 June to 22 July show the 

highest concentration, i.e. the highest presence of vegetation. However, in the case of this 

second component, there appears to be a greater spatial disparity between the distribution maps. 

For example, between the images of June 22 and 7-22 July, the high concentrations (yellowish 

to reddish colours) appear more clearly in the northern part of the region for the first date, 
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whereas for the second and third date, they seem to have migrated towards the southern part of 

the region. This dynamic could be related to the heatwave phenomenon that occurred in the LR 

region at the end of June 2019, specifically from the 23rd of June until the 8th of July 

temperatures of up to 45 °C were recorded. However, it is worth placing these results in line 

with those obtained in the previous part (3.1) of this chapter. In fact, in the previous part it has 

been shown through agronomic knowledge by experts, that other factors such as different 

phenological stages of vineyards (e.g. grape variety), leading to different vigour, management 

practices, etc., are factors that could have an important role in explaining the different spatial 

patterns (concentration differences) on the distribution map over time. 

 

FIGURE 3. 14 - Maps of concentration values for pixels in the vine-growing region at regional 

scale for component 2 (Co2) identified as the spectral profile of the vegetation in the year 2019 

for the 8 dates covering the vine growing season. Concentration colour gradient ranges from 

the lowest (0) in dark blue to the highest values (0.9) in red. 
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Geostatistical characterisation 

The spatial variability of vine growth at the LR scale was shown visually by eight 

distribution maps (Figure 3.13 and Figure 3.14). The distribution maps revealed a high spatial 

and temporal variability at the scale of the study area. Using geostatistical methods, a 

characterisation of this high spatial and temporal heterogeneity was approached. For illustrative 

purposes, to demonstrate the potential of the method to characterise temporal dynamics, the 

spatial variability of Co2 (vegetative component) at regional scale was chosen to be 

characterised in the first (23-May) and last (11-August) maps with the Cambardella index (Ic) 

(Table 3.6). The different spatial organisation of the concentration values over time was 

confirmed by the semivariogram models, which showed that in May, about 50-60% of the 

variability was explained by a spatial phenomenon (Ic = 45%), while in August the variability 

explained by a spatial phenomenon decreased significantly (Ic = 88%). This significant spatio-

temporal heterogeneity could be due to the great impact on the vegetative development of 

certain factors at the beginning of the growing season (May), such as (i) the different vineyard 

management such as the training systems and weeding practices (ii) different vine precocity 

and (iii) topographical characteristics (exposure, slope) but which become less decisive at the 

end of the season, i.e. this spatial variability in vine growth becomes more homogeneous. 

TABLE 3. 6 - Semivariogram parameters and spatial variability index of vegetation component 

(Co2) concentration values for late May and early August. A1 (Range), C0 (Nugget), C1 (Sill) 

and Ic (Cambardella Index). 

Date Components 
Semivariogram 

model 
A1 (km) C₀ C₁ Ic (%) 

23-May Co2 Exponential 4e+06 0.009 0.011 45 

11-August Co2 Exponential 1e+06 0.013 0.001 88 

 

3.2.4 Discussion  

The application of the MCR-ALS algorithm allowed the study of remote sensing time 

series images for the regional characterisation of vineyard blocks. The MCR-ALS methodology 

applied in a non-supervised way at regional level requires a high level of agronomic knowledge 

and expertise able to integrate and interpret (i) local specificities (management, varieties, 

regulatory constraints, production objectives, etc.), (ii) climatic characteristics of the current 

year and (iii) knowledge of the plant, the soil and their interactions. Therefore, this part does 

not go beyond the presentation of an interesting multi-way methodology to take into account a 

different temporal approach than the one shown so far. However, the MCR-ALS approach is 

original from an exploratory point of view because it proposes a model that: 
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 allows to represent the spatial variability of the components (soil-vegetation) for the 

revisit dates of the Sentinel-2 satellites, i.e. no temporal interpolation needed, 

 can be easy to visualise spatially as it deals with two spatial dimensions (x-y pixels), 

creating ‘images’ (distribution maps) directly. Nevertheless, the distribution maps 

shown in the results are difficult to interpret visually due to the spatial resolution at 

which they have been analysed (regional scale). At these larger scales, perhaps a kriging 

process (as in the preceding part, 3.1) could be considered to provide more visibility for 

interpreting the maps obtained. 

In general, the interpretation of the distribution maps is enhanced by the fact that the 

approach gives, at each date, and for each pixel, the concentration of the two components (soil-

vegetation). However, the MCR-ALS approach has operational limitations mainly related to 

the differences in data manipulation between remote sensing and chemometrics domains. The 

process of characterising the LR region as a single image has raised many questions outside the 

research scope presented in this part, e.g. how to create a relevant image for further analysis in 

chemometrics when dealing with large-scale remote sensing images. The proposed study is 

based on a pixel size of 1000 m * 1000 m containing a variable number of vineyard blocks 

depending on their geographical location in the LR region. The size of the pixels, as well as the 

randomness (quantity and qualities) of the type of blocks that can be present in the same pixel 

is clearly a limiting factor for the correct interpretation of the results at a regional scale. 

However, there is still no clear definition of a functional scale for working with satellite images 

at regional scale. Geostatistics could provide interesting methods to optimally define the size 

of the grid in order to minimise random (erratic) variability while maximising the relevant 

information (spatially organised) (Tisseyre et al., 2018). Another complementary approach 

could be to use the same methodology on at different resolution scales, i.e. different sample 

footprints (Sentinel-2 pixel, plot, domain…) to study the sensitivity of the method and thus 

obtain more relevant results from an agronomic point of view. The MCR-ALS approach 

presented here represents a specific application case for the LR wine region in 2019 with 8 

maps showing temporal and spatial dynamics of vegetation and soil profiles from late May to 

early August. In view of the results, this approach should be further investigated, as it is able to 

characterise the variability of phenomena that evolve over time, such as canopy growth. The 

introduction of the spectral-temporal-spatial dimensions in the same methodology is a complex 

issue to address in remote sensing, hence the need to improve the adaptability of this approach 

to other research areas besides chemometrics.   

 

3.2.5 Conclusion 

As a reminder, the objective of this part was to test the MCR-ALS method on our 

temporal series of images in viticulture to verify if some of the limitations identified by the 
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PARAFAC method could be overcome. The work was not as comprehensive as with the 

PARAFAC method in that the validation of the agronomic information highlighted was not 

studied in the same depth. The work demonstrated the potential of a data resolution 

methodology with a suitable temporal approach, as presented with the MCR-ALS methodology, 

for the analysis of remotely sensed images time series. The results obtained from remote sensing 

data collected in 2019 over 4978 vineyard blocks showed that the MCR-ALS method has a 

potential to provide information on temporal variability coupled with spatial variability for the 

characterisation of the LR wine region. In fact, showing the possibility of working with real 

data without the need to interpolate (temporally) the spectral data present a great advantage in 

processing time series of multispectral images at the regional scale. However, due to its large-

scale geographical area of application, its validation requires expertise and experience that is 

not currently available at this scale. As it was not intended to go beyond the presentation of the 

methodology as an alternative temporal approach to PARAFAC method, validation through the 

spatial index (Ic) showing that there is a change in the spatial structure of vegetation over the 

year 2019 was considered more than relevant to demonstrate the potential for applications. 
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Conclusion of Chapter 3 

At the regional scale, time series of multispectral images can be very useful because of 

their high spatial and temporal resolution (Lobo et al., 2004). The objective of this third part 

was to establish the importance of accounting simultaneously for the temporal and the spectral 

dimensions to provide information for crop monitoring at a regional scale. To do this, the 

potential of multidirectional unsupervised methodologies capable of considering time as an 

additional variable in the analysis was presented. For the application of this temporal approach, 

a cube-shaped data structure was determined to allow the integration of the time series in its 

wholeness. Two different three-way resolution approaches were used to integrate the temporal 

dimension in the characterisation of the variability of vine phenology at a regional scale. 

Tisseyre (2012) determines that characterisation is the stage that allows the elaboration of 

agronomic information from one or several data obtained during observation. Thus, 

unsupervised characterisation using time series of multispectral data is considered a relevant 

exploratory approach due to the difficulty of obtaining complete ground truth data at the 

regional scale.   

The Part 3.1 aims to highlight the interest of a multi-way approach such as the 

PARAFAC method in order to simultaneously account for spectral and temporal information 

from remote sensing data in agriculture assuming trilinearity of the data. The results 

demonstrated the interest of this type of approach to provide insight and knowledge that can be 

taken into account in subsequent analyses. The intention was to highlight how enriching, 

exploratory studies considering the inclusion of the temporal dimension, without neglecting the 

clear limits they entail, such as the scarce knowledge of large-scale interpretative specificities. 

Thus, the spatial patterns observed could represent relationships between spectral and temporal 

information that were relevant to the profession, which made clear the need for external 

validation by experts to demonstrate the interest of this type of methodology at large scales. 

Having addressed the possible limitations of the PARAFAC approach when dealing with large-

scale image time series without a complete ground truth data set to validate all the potential 

relevant information provided, another multidirectional approach called MCR-ALS is 

presented in Part 3.2. The MCR-ALS method allows to consider simultaneously spatial (x-y 

pixel) and spectral dimensions with a multiset data and a non-continuous temporal approach. 

The aim of this Part 3.2 did not go beyond determining whether the MCR-ALS method is a 

potential alternative to fit the temporal characteristics of the dataset. The results of these two 

parts clearly show the importance of accounting for the temporal dimension along with the 

spectral dimension in crop monitoring because of its impact on the possible information 

obtained. Finally, the proposed approaches are sufficiently generic to consider their application 

(transfer) to other spatial scales and resolutions, noting that there is still work to be done in 
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adapting data management between the domains of remote sensing and chemometrics to exploit 

their full potential. 

The difficulty of having a complete ground truth data set able to validate the potential 

information provided by the analysis of time series of multispectral images is a real issue. 

Indeed, to would require to have all the agronomic information on the crop and its evolution, 

soil, management practices, biotic and abiotic stresses, etc. This type of information may be 

available at the vineyard scale for research issues. However, at this scale, the variability of 

agronomic information is limited compared to the regional scale. This limits the interest to 

explore the potential of agronomic information that can be extracted from temporal image 

series. This issue is important because it will repeat with the development of new remote 

sensing acquisition platforms. In this context, it is necessary to develop new approaches, the 

use of non-supervised methods validated by experts capable of integrating a systemic vision of 

the crop at the regional scale, as proposed in this study, seems a relevant possibility.  

When some agronomic observations are available at the regional scale, depending on 

the size of the data set and its spatial resolution another possible approach is to propose 

supervised methods. The next chapter (Chapter 4) relies on demonstrating the potential of a 

supervised multiway regression method using multispectral time series data applied to regional 

crop monitoring. 
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Chapter 4.  Potential for regional crop monitoring 

with a supervised multiway regression method using 

multispectral time series data. 
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Introduction of Chapter 4 
 

The previous chapter (Chapter 3) focused on the exploration of remotely sensed time 

series data from two different unsupervised multi-way chemometric methods: PARAFAC and 

MCR-ALS. Both have proven to be a convenient approach to improve the large-scale 

understanding of different patterns of vineyard cropping behaviour by integrating their temporal 

dynamics. Moreover, the relevance of integrating temporal dynamics of crop surface 

reflectance into the analysis was validated at a regional scale from a framework of expert 

observations.  

This chapter moves from an exploratory analysis to an analysis with a well-defined 

target variable. As shown above, at large study scales, it is often difficult to measure all the data 

needed to apply a descriptive model. However, when it is possible to measure some variables, 

the characterisation of an agronomic phenomenon from these measured data can take different 

forms. In this context, one possible framework is to propose a supervised approach, such as a 

predictive model, to estimate agronomic information from one or several measured data types. 

Here, a supervised method is used to consider the question of the possible multivariate response 

of individual vineyards to an extreme weather (stress) event at the regional scale, based on 

satellite time series. To assess the impact of stress factors, capturing the anomaly state of 

vegetation is of great significance (Hua et al., 2019). Therefore, many studies have used VIs to 

monitor vegetation conditions because of their simplicity and reasonable predictive efficiency 

(Cogato et al., 2019b). However, as demonstrated so far, there is an interest in integrating the 

temporal factor to provide more detailed information on vegetation response in order to obtain 

a more accurate cause-effect response relationship. Since remote sensing data can be 

meaningfully organised into a multidimensional structure (e.g. a cube), the hypothesis is that 

monitoring the evolution of certain phenomena, such as vegetative growth, and considering 

simultaneously the spectral and temporal dimension, could have the potential to reveal a stress 

situation over time scales, as the stress trigger and its effect will vary considerably over time. 

Cube data structures require multi-way chemometrics analyses that are capable of 

handling the trilinear structure in the data (fold method) to perform the supervised analysis on 

remotely sensed data. An extension of the ordinary regression model PLS, the N-way Partial 

Least Squares regression (N-PLS) (Bro, 1996) is described and applied to effectively capture 

the causal relationships between a crop-specific driver response, i.e. a heatwave (driver) and 

estimated loss of vineyard yield (response). To illustrate the importance of understanding the 

temporal dynamics of a crop's spectral response to underlying variations, such as environmental 

factors, an analysis that: (i) deals with high-dimensional data, taking advantage of any multi-

way structure in the data (Smilde, 1997); (ii) uses all temporal data and (iii) avoids 

multicollinearity issues that are inherent to multiple linear regressions (Inoue et al., 2012) is 

needed. The overall objective of this chapter is to develop a trilinear model to characterise the 
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temporal dynamics of the vegetation response to a heatwave at large scales. Therefore, based 

on a case study of the impact of a heatwave at the end of June 2019 on vineyard yields in the 

Languedoc-Roussillon region (south of France), the first part of the chapter (4.1) presents the 

potential of the N-PLS methodology as a useful modelling technique for the analysis of 

multispectral image time series and the second part of the chapter (4.2) shows the possible 

application of the model developed in the previous chapter to spectrally, temporally and 

spatially assess the impact of an extreme weather event on yield, as spatial and temporal 

dynamics are interdependent with regard to disruptive and extreme climate conditions at large 

scales (Neethling et al., 2019). 
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4.1 Potential of Multiway PLS (N-PLS) Regression Method 

to Analyse Time Series of Multispectral Images: A Case 

Study in Agriculture 
 

Article 3: Potential of Multiway PLS (N-PLS) Regression 

Method to Analyse Time-Series of Multispectral Images: A 

Case Study in Agriculture 
Published in Remote Sensing, 2022, 14 (1), pp.216. DOI: 10.3390/rs14010216 

 

E. Fornieles-Lopez1,2, G. Brunel1, R. Florian3, B. Gaci1,2, M. Metz1,2, N. Devaux4, J. 

Taylor1 B. Tisseyre1 and J.M. Roger1,2 
1ITAP, Univ. Montpellier, INRAE, Institut Agro, Montpellier, France 

2Chemhouse Research Group, 34000, Montpellier, France 
3CNRS, IMS, nº 5218, Groupe Signal et Image, Univ. Bordeaux, F-33405 Talence, France 
4LISAH, Univ. Montpellier, INRAE, Institut Agro, Montpellier, France 

Abstract: Recent literature reflects the substantial progress in combining spatial, 

temporal and spectral capacities for remote sensing applications. As a result, new issues are 

arising, such as the need for methodologies that can process simultaneously the different 

dimensions of satellite information. This paper presents PLS regression extended to three-way 

data in order to integrate multi-wavelengths as variables measured at several dates (time-series) 

and locations with Sentinel-2 at a regional scale. Considering that the multi-collinearity 

problem is present in remote sensing time-series to estimate one response variable and that the 

dataset is multidimensional, a N-way Partial Least Squares (N-PLS) regression approach may 

be relevant to relate image information to ground variables of interest. N-PLS is an extension 

of the ordinary PLS regression algorithm where the bilinear model of predictors is replaced by 

a multilinear model. This paper presents a case study within the context of agriculture, 

conducted on a time-series of Sentinel-2 images covering regional scale scenes of southern 

France impacted by the heatwave episode that occurred on 28th June, 2019. The model has been 

developed based on available heatwave impact data for 107 vineyard blocks in the Languedoc-

Roussillon region and multispectral time-series predictor data for the period from May to 

August 2019. The results validated the effectiveness of the proposed N-PLS method in 

estimating yield loss from spectral and temporal attributes. The performance of the model was 

evaluated by the R2 obtained on the prediction set (0.661), and the Root Mean Square of Error 

(RMSE), which was 10.7 %. Limitations of the approach when dealing with time-series of 

large-scale images which represent a source of challenges are discussed; however, the N–PLS 
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regression seems to be a suitable choice for analysing complex multispectral imagery data with 

different spectral domains and with a clear temporal evolution, such as an extreme weather 

event.  

Keywords: fold methods; chemometrics; Sentinel-2; multispectral remote sensing 
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4.1.1 Introduction 

Benefiting from the large number of high-quality spectral-temporal images captured 

from Earth observation satellites, remote-sensing based on multitemporal and multispectral 

imagery has a great potential to provide timely and comprehensive agricultural and 

environmental information. With the availability of more and more remote sensing platforms, 

massive amounts of remotely sensed data are produced (Albanwan & Qin, 2018); for example, 

every 5 days, the Sentinel-2 multispectral satellite constellation can provide a global coverage 

of Earth’s land surface. According to Bovolo and Bruzzone, (2015), new policies for the free 

distribution of satellites data, the distribution of archive data that makes large-scale 

retrospective analysis possible, and the increasing number of satellites with higher revisit 

frequency, are the main reasons for the growing importance of a need for methodological 

research on multitemporal data analysis. 

These large amounts of available remote sensing data have largely been applied to 

hazard assessment, coastal applications, agricultural applications, natural resource 

management, etc. (Mishra et al., 2021). In the field of agriculture, repetitive information on 

crop status throughout the season at different scales and for different actors, provides the 

capacity to assist the adaptive evolution of agricultural practices (Weiss et al., 2020). Chen et 

al. (2008) summarised six main applications of remote sensing in agriculture management and 

monitoring. For all of these applications, the information of interest consists of traits or features 

of the agricultural systems, and especially how these vary in space and time. Since plant growth 

and plant developmental processes are strongly influenced by fluctuations in environmental 

conditions, and especially ambient temperature (Venios et al., 2020), capturing the dynamics 

of crop growth over time, especially at critical growth stages is crucial. Physiological and 

physical properties of the production system, and consequently the reflectance spectrum, 

change according to growth conditions, and time of measurement (Filella et al., 1995). 

Consequently, remotely sensed data, obtained by satellites over the time, can provide a set of 

detailed data on plant growth and development (Plant et al., 2000). 

Regardless of the applications, different approaches to deal with the increasing volumes 

of data and variables of interest can be found in the remote sensing literature. As Dorigo et al. 

(2007) state in their review, regression methods constitute a widely used tool for explanatory 

and prediction purposes. When it comes to producing estimates, a popular method to implement 

this prediction, is the Partial Least Squares method (PLS) (Dorigo et al., 2007). Numerous 

papers have previously discussed this method from a geometrical, mathematical and statistical 

point of view (Dayal & MacGregor, 1997; Phatak & Jong, 1997). PLS methods have been 

extensively used (Arenas-Garcia & Camps-Valls, 2007) as they are well suited to deal with 

multivariate data structures with high covariance and redundancy (Abdi & Williams, 2013), 

such as are found in remote sensing datasets. 
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However, challenges remain with respect to addressing these increased data volumes 

and increased data variability (Bishop, 2013). Exploiting multispectral image time-series is a 

promising but still relatively underexplored research direction due to the complexity of jointly 

analysing spatial, spectral and temporal information (Mou et al., 2019). The increasing 

complexity of information leads to a natural generalization of the concept of the ‘dataset’ from 

conventional tables to higher-dimensional arrays (Henrion, 1994). As Bro (1996) specified, 

when including time as an additional dimension, the dataset becomes three-way, which cannot 

be handled by commonly used conventional prediction models. 

Among the alternatives proposed in the literature for modelling multi-way data, deep 

learning has the potential to outperform traditional classification and regression techniques (Li 

et al., 2019). However, deep-learning approaches often requires a large dataset to perform the 

learning and do not provide immediate access to intermediate steps to analyse and understand 

the agronomic processes that impact production. An interesting alternative to modelling 

multiway data has been proposed in the chemometrics literature, the N-way Partial Least 

Squares regression (N-PLS). This is a modelling strategy introduced by Bro (1996) and further 

advanced by Smilde (1997). N-PLS aims at building a model between a high-order array X of 

independent variables and a response array y (Hanafi et al., 2015). In this paper, PLS regression 

is extended to multiway data (N-PLS), with the main emphasis on three-way data, by including 

time as a dimension. It is important to note that N-PLS imposes a trilinear structure on the data 

(Sena & Poppi, 2004) and when introducing time into the analysis, this implies that the 

emphasis is exclusively on the development of a correlational structure over time (Coppi, 1994), 

i.e. time will determine both the variability between individuals and the variability between 

variables (wavelengths). The N-PLS methodology allows a joint evaluation of time and 

variables, in order to determine the interaction between them, to know if and how the variables 

modify their ‘behaviour’ at different occasions. To the authors’ knowledge, such an approach 

has not been proposed in the analysis of remotely sensed satellite imagery. 

Therefore, the objectives of this study are (i) to propose a formalism to apply the N-PLS 

approach to a time-series of images at the regional scale in order to predict a variable of interest 

with a small ground truth dataset (ii) to show the value of the approach for its potential to 

generate knowledge in an agricultural case study, and (iii) to identify the possible limitations 

of the approach when dealing with image time-series on large scales with series that may be 

incomplete for certain areas. 

The work is organised as follows: Section 4.1.2 introduces the proposed N-PLS method 

and the development of the model as well as the description of the case study that the 

methodology is applied to. The results are presented in Section 4.1.3, with the discussion in 

Section 4.1.4. 
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4.1.2 Materials and Methods 
 

4.1.2.1 Type of problem the N-Way Partial Least Squares aim to address in 

remote sensing 

 

The type of problem that the proposed methodology of this study addresses is the 

detection of a rapid extreme climate event (frost, hail, heatwave, etc.) that may affect production 

over a large area (e.g. a regional scale). It is assumed that the extreme climate event has an 

effect on production by affecting either the pigment content of the leaves, the biomass itself 

(growth limitation) or the physical architecture of the plants (Cogato et al., 2019b). Therefore, 

a time-series of multispectral satellite image should provide relevant information to detect the 

date of occurrence, the severity and also the spatial footprint of the extreme event under study. 

However, monitoring only a single variable, or only a few variables, is problematic as many 

variables are correlated and interrelated and have an effect on one another. Consequently, the 

use of a multidirectional (spectral and temporal) unfolding method (N-PLS) for a given extreme 

weather event (heatwave) that simultaneously examines all spectral information at different 

points in time should be well adapted to the challenge of anomaly and event detection in 

temporal data. 

Considering imagery time-series, a fixed classical object/variable scenario, i.e. an 

agricultural field, can be observed several times under different conditions, yielding a separate 

data table for each condition (Henrion, 1994). Another option would be to group all the 

objects/variable conditions together taking into account the time-series of images, which leads 

to a consideration of a cubic or a three-dimensional data array as shown in Figure 4.1 Such an 

array has N images containing the corresponding objects (O) at Tn different dates, with each 

image being constituted of Mm spectral bands or wavelengths (variables). Given the data 

dimensionality, multiway arrays have been proven to be a natural and efficient representation 

of the data, in particular, tensor subspace learning methods have been shown to outperform 

their corresponding vector subspace methods, especially for small sample size problems (Zhao 

et al., 2011). Therefore, the N-PLS algorithm should constitute a relevant approach to retrieve 

the information contained in the spectral bands of satellite imagery to highlight the target 

phenomenon taking into account its effect on the temporal evolution of the imagery.  
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FIGURE 4. 1 - Production of three-dimensional array from satellite imagery time-series data. 

 

4.1.2.2 N-Way Partial Least Squares  

In general, the PLS approach is particularly useful when one or a set of dependent 

variables needs to be predicted by a (very) large set of predictor variables (or time-series) that 

are strongly cross-correlated (Abdi, 2010). The strength of N-PLS is that it summarises all latent 

information from a large 3-way dataset of object variables (X) and relates it to a dependent 

variable (y) using a relatively low number of parameters, which makes the prediction more 

robust (Hansen et al., 2002). This situation leads to an analysis that is able to extract the 

maximum information possible from samples measured at different times based on cubic 

structure.  

For these remote sensing data, the 3-PLS1 method (Bro, 1996) was considered here to 

generate a three-way array X = Xi,j,k . The first of the three dimensions of cube X corresponds 

to the objects (I), the second to time (J) and the third to spectral bands (K). Thus, the data were 

organised in a three-way array of independent variables X (I × J × K) and a response vector y 

of size (I × 1) that is defined by the objects dimensions (Figure 4.2). 
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FIGURE 4. 2 - (a) Representation of three-way array (X) and (b) response vector y to 

compute a tri-linear PLS1 procedure. 

The N–PLS regression was used to relate the three-way array X (remote sensing data) 

to the response vector y (ground truth data). As Abdi & Williams (2013) specified, PLS 

regression performs a simultaneous decomposition of X and y by means of a set of latent 

variables that explain as much as possible of the covariance between X and y. As Bergant and 

Kajfež-Bogataj (2005) detailed, if X (I × JK) is a properly unfolded two-way form of a three-

way array X (I × J × K), the 3-PLS1 method can be written in mathematical form (Equation 

4.1), where X and y are cantered along the first dimension, I. 

 

                       S = XW     𝒚 = Sb + r. (EQ. 4.1) 

 

Estimating the weight array W, allowing for the scores in S to be expressed directly in 

terms of the X-columns, is the essential part of the method (Jong, 1998). The regression 

coefficients b (Equation 4.1) can be estimated afterwards by a least square approach (Bergant 

& Kajfež-Bogataj, 2005). The vector r in Equation 4.1 presents the part of y not explained by 

the model. For the estimation of W, the algorithm for three-way X and a single response y 

proposed by Jong (1998) was considered. If the initial values of 𝒚𝒂 (a is the latent variable 

counter) are set to the original values 𝒚 (a = 0 and 𝒚𝟎 = 𝒚), the algorithm can be summarised as 

follows (Bergant & Kajfež-Bogataj, 2005): 

 

1. Compute the reshaped covariance matrix Ž =𝑦𝑎
𝑇 X(1 × JK). 

2. Define the first singular weight vectors 𝒘𝑎
𝐽
 and 𝒘𝑎

𝐾 from 𝒁: [𝒘𝑎
𝐽
, 𝒘𝑎

𝐾] = svd(𝒁,1). 

From hence, store them as additional columns in separate weight arrays WJ = 

[𝒘1
𝐽
…𝒘𝑎

𝐽
 ] and WK [𝒘1

𝐾…𝒘𝑎
𝐾 ].  

3. Compute the weight array by a Khatri-Rao product (Bro et al., 2001; Bergant & 

Kajfež-Bogataj, 2005) so that W = WK WJ. The Khatri-Rao product defined 

as a column-wise Kronecker product of the two matrices (Bergant & Kajfež-
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Bogataj, 2005) was used to overcome constraints related to multiway arrays 

decomposition. 

4. Calculate S = XW.  

5. Calculate the regression coefficients regressing 𝒚 on S as b = (STS)−1 ST𝒚.  

6. Calculate the residual r = 𝒚 − Sb. 

7. Increase a to a + 1 and continue from step 1 to the appropriate description of 𝒚. 

The inclusion of an additional latent variable (a + 1) in the model is terminated 

when the joint analysis of RMSEC (Root Mean Square Error of Calibration) and 

RMSECV (Root Mean Square Error of Cross-Validation) (Goodarzi & Freitas, 

2009) indicates overfitting due to sampling variability.  

 

This brief description of the method highlights its interest for the case described in this 

article. It allows to a simultaneous consideration of the temporal (J) and spectral (K) 

components while keeping the information carried by these two components in the analysis. 

 

4.1.2.3 Model description  

Structuration of time-series data 

In order to build a cubic data structure (objects × time × spectral bands), all spectral 

bands were re-interpolated on a date grid, regularly spaced over the period of interest, i.e. the 

period that the extreme climatic event may have impacted crops. The objective was to ensure 

that the cubic X, had the same number of steps (N days of measurements) to prevent temporal 

data gaps due to clouds and inconsistent numbers of available satellite images. The interpolation 

at a date t was performed band-by-band, by a convolution of the chronology measured with a 

Gaussian filter (Alam et al., 2008) centred on t and with full width at half maximum (P). 

Temporally sparse satellite observations, especially for areas that can be affected by 

cloudy conditions, may not be sufficient for monitoring rapid changes such as some 

phenological crop stages (Wang et al., 2018). Moreover, Hird & Mcdermid (2009) have 

demonstrated that there is an impact of varying atmospheric conditions and sun-sensor-surface 

viewing geometries on satellite-derived time-series. A preliminary sensitivity analysis with a 

noise reduction approach and given time steps provided information on the sensitivity of the 

variation of the P and N parameters to interpolation. The parameters P and N involved in the 

interpolation setting were optimised by cross validation of 2 blocks repeated 5 times of a N-

PLS between cube X and vector y using the calibration dataset (see following section). For this 

analysis, values of P and N ranged from 10 to 50 and 5 to 30, respectively. 
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Calibration and validation of the model 

Calibration and validation subsets were created for model assessment. Considering the 

size and the potential non-regularity of the distribution of the samples from the dependent 

variable, a calibration set (3/4) and a validation set (1/4) were defined by the distribution of y, 

as follows: 

 

1. The vector y was sorted in ascending order. 

2. After sorting, every fourth individual was placed in the validation set, the others 

retained in the calibration set. 

 

The optimal number of latent variables was selected using a cross-validation of 2 blocks 

repeated 10 times of an N-PLS between the X cube and the y from calibration set. As proposed 

by Bergant and Kajfež-Bogataj (2005), the final calibration fit can be written as in Equation 

4.2. 

 

 

 

where ŷ is the vector of estimated responses and b0 the intercept of the linear regression 

model. The matrix of regression coefficients BNPLS = Wb (Equation 4.2) can be used on new 

data for the estimation of unknown response values. The prediction performance of the 

empirical model was quantified by the standard coefficient of determination (R2), the bias and 

the standard error parameters (Ahmad Fadzillah et al., 2013; Malegori et al., 2017) 

 

4.1.2.4 Case-Study  

According to Cogato et al. (2019a), the increasing frequency of heatwave events 

represents a severe threat to viticulture because periods of extreme heat may affect grape yields 

and quality. Thus, the detection of the impact of heatwaves on perennial crops from dynamic 

spectral-temporal features using medium-resolution data, could provide valuable information 

to identify the possible effects of heatwaves on production and the spatial footprint of the 

phenomena at the regional/national scale. A preliminary study of eight heatwaves during the 

2016–2017 and 2017–2018 growing seasons, showed that medium-resolution spectral data 

from Sentinel-2 time-series can provide valuable information on the possible effects of 

heatwaves on grapevines (Cogato et al., 2019b). The N-PLS algorithm should therefore 

constitute a relevant approach to retrieve the information contained in the spectral bands of the 

time-series that relates the target phenomenon (heatwave in this case).  

 

                ŷ= Sb = XWb = XBNPLS + b0 (EQ. 4.2) 
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Study area 

The study area corresponded to a large wine-growing region, the Languedoc-Roussillon, 

located in the south of France (Figure 4.3). It extends over approximately 27,400 km2, from the 

Spanish border to the delta of the Rhône. 

FIGURE 4. 3 - Location of the study area in Southern France (a) and the location of the 

vineyards that contained the 107 blocks of interest for the study (b). 

On Friday 28th June, 2019, a part of this wine territory experienced an extreme climatic 

event with a heatwave that reached 45 °C in some places (Figure 4.4). This heatwave occurred 

mid-season, that is to say at a critical stage in terms of vine growth.  
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FIGURE 4. 4 - Mean monthly temperature (a) and maximum monthly temperature records (b) 

from 2009 to 2019 across the Languedoc-Roussillon region, France, highlighting a peak in the 

maximum monthly temperature corresponding to the extreme weather event that occurred in 

June 2019, while the mean monthly temperature for this month was not extreme. The vertical 

black dashed line highlights the month of the heatwave. Source: Historique de Météo-France. 

 

It should also be noted that this extreme heatwave did not affect the entire region but 

only a part of it, as shown in Figure 4.5. In addition, the incidence of the heatwave may present 

a significant spatial variability according to the local elevation, aspect and slope of the 

individual blocks. The presence of natural features, such as forests or hedges, in the vicinity of 

the vineyards was also likely to mitigate the effects of the heatwave. This contributed to an 

observed local variability in the incidence of this climatic event on the vineyard blocks. 
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FIGURE 4. 5 - (a) Maximum temperature record map 28th June 2019 France. (b) Maximum 

temperature record map 28th June 2019 Languedoc-Roussillon. Temperatures ≥ 40 °C are 

shown in red, temperatures < 40 °C and ≥ 30 °C are shown in orange and temperatures < 30 °C 

are shown in yellow. Source: Météo-France. 

Remote sensing data 

Data acquisition and pre-processing 

 

The Sentinel-2 Multispectral Imager is a European Space Agency (ESA) satellite for 

Earth observation that provides imagery with 13 spectral bands from the near-infrared (NIR) to 

short-wave infrared (SWIR). The radiometric images are provided with a range of spatial 

resolutions of 10 m, 20 m and 60 m (Table 4.1). Each Sentinel-2A or -2B satellite revisits the 

same area every 10 days (5 days with the twin satellites together).  

 

Images containing the study vineyard blocks (see Section 4.1.2.4) were selected and 

processed via the Google Earth Engine (GEE) platform that enables large-scale processing of 

Sentinel-2 L2A (Sentinel-2A and Sentinel-2B) products. The time period considered for the 

study was from 13th May to 20th August 2019, which is the most relevant period to monitor 

vine growth vegetation in this region (Devaux et al., 2019). Following Hollstein et al. (2016) 

decision trees and Bayesian models for cloud detection were applied to the Sentinel-2 images 

via GEE Javascript API to leave them in ready-to-use formats. Considering the revisit period 

of the Sentinel-2 (A/B) satellites, 25 images should have been potentially available over each 

block for the chosen time period. However, after cloud detection, the number of available 

images for each vineyard was 11 on average, with a range from 7 to 16 images depending on 
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the location of the various vineyards. By using the GEE cloud-based platform to select Sentinel-

2 images and pre-process them, the output was a file containing the spectral band values for 

each date (available images) and for each vineyard block.  

 

Spectral bands 

There were 12 spectral bands (among the 13 available from Sentinel-2 satellites) used 

in the model (Table 4.1). Spectral band 10 at 1380 nm was not used as it corresponds to a high 

atmospheric absorption band dedicated to visible and sub-visible cirrus cloud detection 

(Hollstein et al., 2016). To avoid mixed pixels, a 10 m inner buffer was imposed at the border 

of each block to ensure only pure vine pixels were considered. Pure pixels within each block 

were then averaged for each spectral band at each individual date, i.e. regardless of vineyard 

block size, each block had one value for each spectral band at a given date. 

 

TABLE 4. 1 - Spectral bands for the Sentinel-2 satellite considered by the analysis. 

Sentinel-2 Band Central 

Wavelength 

(nm) 

Bandwidth       

(nm) 

Spatial Resolution (m) 

Band 1–Aerosol 442.7 21 60 

Band 2–Blue 492.4 66 10 

Band 3–Green 559.8 36 10 

Band 4–Red 664.6 31 10 

Band 5–Vegetation Red Edge 704.1 15 20 

Band 6–Vegetation Red Edge 740.5 15 20 

Band 7–Vegetation Red Edge 782.8 20 20 

Band 8–NIR 832.8 106 10 

Band 8A–Vegetation Red Edge 864.1 21 20 

Band 9 –VNIR 945.1 20 60 

Band 11–SWIR 1613.1 91 20 

Band 12–SWIR 2202.4 175 20 

 

Ground-truth data 

The ground-truth data were obtained from 107 vineyard blocks in the Languedoc-

Roussillon region (Figure 4.3). These were all blocks with characteristics representative of the 

Languedoc-Roussillon wine region in terms of plantation density, management practices and 

diversity of varieties. All blocks were non-irrigated. These blocks were selected because they 

all showed some effect related to the heatwave, such as stalled development, leaf burn and leaf 

drop.  



CHAPTER 4. POTENTIAL FOR REGIONAL CROP MONITORING WITH  

A SUPERVISED MULTIWAY REGRESSION METHOD  

USING MULTISPECTRAL TIME SERIES DATA  

120 
 

The severity of this effect on each of the 107 vineyard blocks was assessed locally by 

the winegrowers and advisors. Severity was evaluated several weeks after by an estimation of 

percentage yield loss (Figure 4.6). There was an acknowledgement that it was sometimes 

difficult to attribute the losses to the heat alone. Figure 4.6 summarises the distribution of the 

107 blocks in relation to estimated yield loss.  

FIGURE 4. 6 - Percentage of yield losses observed by winegrowers on 107 blocks in southern 

France. 

Modelling 

Model construction 

The final data set was characterised by the repeated observation of 12 spectral bands 

(variables) averaged for each of the 107 different vine blocks (objects) at 25 potentially 

available dates over four months (13th May to 20th August), in 2019. This data set was 

meaningfully arranged in a three-way array X (I × J × K).  

As discussed previously, the number of images per block varied according to each 

block’s geographical location and possible cloud (or other) effects. Thus, X was incomplete 

and there was a need for interpolation to obtain a continuous data cube. J, defined as the number 

of dates selected to represent the time-series, can be determined by optimising the parameters 

N and P. For this model, J was determined by using ranges of N and P described in Section 

4.1.2.3. Once J was determined, interpolation was performed (again following the method in 

Section 4.1.2.3) to have a consistent time step. At the end of the image-processing step, the data 

were presented as:  
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 a cube X (107, J, 12) where the first dimension corresponds to the vineyard 

blocks (I), the second dimension corresponds to time (J), which is optimised 

during modelling, and the third dimension of the three-way array X corresponds 

to spectral bands (K) averaged for each field, 

 a vector y (107), corresponding to the estimated percentage yield loss by the 

winegrowers from the 107 blocks. 

 

Model validation 

The calibration and validation subsets were generated using the method outlined in 

Section 4.1.2.3. The joint analysis of RMSEC (calibration set) and RMSECV (cross-validation) 

as proposed by Goodarzi & Freitas (2009) was used to determine the optimal number of latent 

variables in the regression model.  

 

Model evaluation 

The N-PLS was applied as an approach to detect and characterise the vineyard response 

(estimated by the percentage of losses) to extreme heat stress by using 12 available reflectance 

spectral bands from a time-series of Sentinel-2 imagery. As defined in Section 4.1.2.3, the 

prediction performance of the N-PLS model was quantified by the standard determination 

coefficient R2, the bias and the standard error parameters. The regression b-coefficients 

resulting from the application of the methodology were plotted (i) against time as a function of 

wavelengths and (ii) against spectral bands as a function of time identify the time and the 

wavelengths that best highlighted this phenomenon. To further illustrate this, a 3D view of the 

b-coefficients vs. time vs. spectral bands was also generated. Figure 4.7 summarises the 

implementation and the workflow scheme of the N-PLS adapted to the case study.  
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FIGURE 4. 7 - Workflow scheme of N-PLS application to the case study. 

 

4.1.3 Results 
 

4.1.3.1 Optimisation of model parameters over the study site 

Figure 4.8 shows the evolution of the RMSECV for a cross-validation of 2 blocks 

repeated 5 times with a N-PLS performed with the X cube and the y losses from the calibration 

set when varying the Gaussian filter width (P) and interval between dates (N). This procedure 

led to an observation of the lowest error of cross-validation (RMSECV) at P = 30 and N = 15. 

N = 15 equates to J = 7, i.e. 7 dates over the study period, and resulted in a cube X of dimensions 

(107, 7, 12). Figure 4.8 highlights three situations in which the cross-validation error 

(RMSECV) increased when applied to these data, as follows: (i) when the Gaussian filter is too 

weak (P > 25); (ii) when the time step is short (N < 10 days); (iii) when the time step is long (N 

> 20 days). 
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FIGURE 4. 8 - Evolution of RMSECV as a function of varying intervals between dates (N) and 

Gaussian filter width (P) obtained for 2 blocks repeated 5 times with a N-PLS performed with 

a X cube and the y yield losses. Parameter optimisation was achieved at, P = 30 and N = 15 as 

indicated by the white dash circle. 

 

Using the optimised N and P values, Figure 4.9 presents the evolution of the cross-

validation RMSEC and RMSECV against the number of latent variables used in the model. 

This figure highlighted the following classical phenomenon: a phase of a decrease in the 

RMSEC, which corresponded to an improvement of the explanatory value of the latent 

variables, then a phase of increase of the RMSECV (while the RMSEC continued to decrease), 

which corresponded to the overlearning phase. On the basis of this joint analysis, 5 latent 

variables were retained for the rest of the study. 
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FIGURE 4. 9 - Evolution of the RMSEC and the RMSECV for a cross-validation of 2 blocks 

repeated 10 times of a N-PLS between the X cube and the y losses. The black frame indicates 

the optimal number of latent variables (5 LV). 

 

4.1.3.2 Quality of the N-PLS model 

The quality and performance of the N-PLS model with 5 latent variables are presented 

in terms of R2, the bias and the standard error of prediction of yield losses in the calibration 

(Figure 4.10.a) and validation (Figure 4.10.b) analyses. The N-PLS model showed a 

performance accuracy (R2) of 0.56 in the calibration set and 0.66 in the validation set, with a 

standard error of cross-validation in the calibration set of 12.4 % and a standard error of 

prediction of losses in validation set of 10.7 %.  

A standard error of prediction over the prediction set of 10.7 % (Figure 4.10.b) was 

consistent with the initial variability of the ground truth data and also with the information 

needed by the growers to characterise the level of yield loss in a block that was caused by the 

heatwave. These results demonstrated the relevance of the approach to detect incidences of 

heatwaves in viticulture and in particular to estimate the yield loss based on spectral and 

temporal attributes of the images. The results were further validated by the calibration data. 
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FIGURE 4. 10 - Results of the N-PLS prediction of losses on individuals in the calibration set 

(a), with 80 vineyard blocks and in the validation test (b), with 27 vineyard blocks. The standard 

error of cross-validation in the calibration set was 12.4 % and the standard error of prediction 

of yield losses in validation set was 10.7 %. 

Figures 4.11 and 4.12 show plots of the coefficients BNPLS corresponding to the 5 latent 

variables selected for the model. The N-PLS model estimated yield loss for each block by 

making the inner product of b-coefficients with a spectral-temporal profile (7 × 12) contained 

in the cube X (107,7,12). Thus, the b-coefficients had the same dimension as the spectral-

temporal profile and could be analysed to identify how specific parts or periods of the spectral-

temporal profile were more or less related to yield losses. 

Figure 4.11 shows the spectral profiles for each spectral band (Figure 4.11.a) and the 

temporal profiles by date (Figure 4.11.b) of the b-coefficients. Regarding the spectral profile 

(Figure 4.11.a), the spectral bands were clearly organised into the following three groups: (i) 

bands B1 and B2 (442.7 and 492.4 nm), which presented no variations throughout the study 

period (ii) bands B3, B9 and B12 (559.8, 945.1 and 2202.4 nm), which showed a slight decrease 

by the end of June and (iii) the remaining bands B4, B5, B6, B7, B8, B8A and B11 (663.5, 

704.1, 740.5, 782.8, 832.8, 864.1 and 1613.1 nm), which presented a very pronounced V-shaped 

profile with a minimum b-coefficient observed on the 20th of June, identifying these spectral 

bands as significant in order to identify and characterise the heat stress.  

Regarding the temporal profiles (Figure 4.11.b), they were very similar in shape and 

mainly differed in translation. The higher coefficients were observed for the dates at the 

beginning and at the end of the study period while the lowest b-coefficients were observed for 

20th June, followed by the intermediate dates (5th June and 5th July). The spectral profiles 

highlighted the end of June as the period that affected on yield loss. Given the interpolation 
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performed, the date of 20th June was the closest to the date of the onset of the heatwave and 

this date should be considered as the best indicator. 

When looking at the b-coefficients, independently from the time dimension, it can be 

seen that the heat sensitivity was related to a specific spectral shape, with two absorption zones 

at 700 and 1600 nm (Figure 4.11.b). This spectral shape was close to the typical spectrum of 

vegetation. It has already been demonstrated that the red edge band has a good potential for 

estimating plant stress (Cogato et al., 2019b). These results suggested that spectral bands can 

provide useful information about heat stress in vineyards. By integrating the temporal 

dimension, it was noticed that the vineyards that suffered most yield losses from the heatwave 

not only presented a specific spectral shape, but that this spectrum deepened close to the 

moment of the heatwave (Figures 4.11.a and 4.12). Figure 4.12 combines Figure 4.11 to shows 

the 3D shape of the b-coefficients accounting for the spectral and temporal dimension 

simultaneously.  

FIGURE 4. 11 - N-PLS b-coefficients corresponding to 5 latent variables and the following two 

different dimensions: (a) plotted according to the spectral dimension and (b) plotted according 

to the temporal dimension. Black dot-dash line highlights the most relevant date of the 

heatwave. 
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FIGURE 4. 12 - Combined representation of the temporal and spectral profiles as a 3D view 

of N-PLS b-coefficients corresponding to 5 latent variables. Black dot-dash line to highlight 

the most relevant date of the heatwave. 

 

4.1.4 Discussion 
 

A generic example of the application of N-PLS algorithm to time-series of multispectral 

images was provided in the form of an agricultural study. This paper showed the potential for 

methods originally developed in the spectrometry/chemometrics domains to be applied to a 

time-series of Sentinel-2 data. The application showed the value of considering simultaneously 

the temporal and spectral dimensions with a sensor whose band repartition was partly optimised 

for vegetation monitoring.  

The application of N-PLS to characterise and estimate the impact of an extreme event, 

such as a heatwave on grapevines, showed that it was possible to predict yield losses with a 

performance (R2) of 0.66 and a RMSE of approximately 10 %. The theory for the use of remote 

sensing instruments to monitor electromagnetic radiation reflectance changes in crops is well 

demonstrated in the scientific literature (Knipling, 1970). In situations where crops interact with 

any given aspect of their environment, such as seasonal climatic variations or meteorological 

extreme events, the interactions between plants and light reflectance translates into changes in 

plant signal patterns that can be interpreted using satellite data (Segarra et al., 2020). Besides 

the model of yield loss estimation, the N-PLS analysis showed the interest of adopting a 

systemic analysis which accounts simultaneously for the spectral and temporal characteristics 

of the considered data. The approach allowed the identification of the spectral bands that 
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responded most strongly to the phenomenon of interest while keeping the information of the 

period of influence.  

Previous studies have reached similar accuracies to assess the effects of heat stress on 

grapevines (Cogato et al., 2019b). However, notably, the linear nature of the dimensionality 

reduction in the method presented here allowed for a simple interpretation using the computed 

b-coefficients, which are directly related to the importance of the explanatory variables, i.e. to 

the best spectral signature related to the event under study. Since b-coefficients have the same 

dimension as the spectral-temporal profile, spectral bands around Red Edge (700 nm) and the 

SWIR region (1600 nm) in late June and early July, were considered relevant to quantify the 

effect of a heatwave that occurred in late June. It has already been demonstrated that the Red 

Edge band has a good potential for estimating plant stress, either due to water loss or to leaf 

pigment modifications (Seelig et al., 2009; Cogato et al., 2019b; Laroche-Pinel et al., 2021a). 

In particular, this band has been useful for studying how experimental water deficits change the 

characteristics of plant physiology (e.g. chlorophyll a/b ratio), as plants experiencing a water 

deficit change their foliar chlorophyll composition, resulting in a shift of red-edge reflectance 

towards shorter wavelengths (Easterday et al., 2019). Regarding the shortwave infrared region 

(SWIR), from approximately 1300 nm to 2500 nm, the absorption of radiation is largely 

dominated by water (Segarra et al., 2020). These results generally supported the prediction that 

wavelengths, where the water absorption coefficient is weak, will penetrate further into 

canopies and thus will be best for estimations of water content, as is the case in the 1600 nm 

region (Sims & Gamon, 2003). This implied that the SWIR region of the spectrum may 

potentially be efficient for drought stress detection and resulting changes in canopy tissues 

(Cogato et al., 2019b). The results of the current analysis confirmed, with a data-driven 

approach, that a combination of Red Edge and SWIR regions was a valuable indicator in 

identifying grapevine heat stress on a regional scale. 

It is essential to place the results presented in this paper within the reality of 

multitemporal satellite data. Satellite observations are heavily conditioned by cloud coverage 

over the acquisition period. Despite this, this method was able to manage a time-series dataset 

with different sets of missing values by means of an interpolation on a date grid that was 

regularly spaced and optimised over the period of interest. The N-PLS methodology does not 

handle a high percentage of missing values within its cubic data structure and, it is expected 

that this approach would be affected in cases where cloud conditions during the target period 

significantly limit the number of available images. Another constraint that the model was able 

to deal with was the low number of ground truth samples (in this case, yield loss observations 

for grape fields). Note that ground truthing remains cumbersome and difficult to manage for 

many environmental and agricultural studies. Such limitations can influence the values of 

model outputs, resulting in a lower reliability of the supervised approach. However, this work 

showed that N-PLS gave relevant prediction results for a complex phenomenon with a very 

limited number of data (n = 80) in the calibration data set. 
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These results indicated that the algorithm may be suited to other similar satellite 

systems, such as the Landsat products. However, it is important to keep in mind that while the 

spectral band specifications are similar between the Sentinel and Landsat systems (cross-

calibration was actually performed between the two sensors (Claverie et al., 2018), the Landsat 

constellation provides imagery with a lower spatial resolution (30 m for most of the spectral 

bands) which may be a problem for some applications (e.g. intra-field variability in vineyards) 

but is not crucial for others. The combination of both Landsat and Sentinel-2 products remains 

a research question (Quintano et al., 2018). However, such an image combination may be 

interesting to explore with the N-PLS method in order to foster some limit when working at the 

regional scale, i.e. missing values due to weather conditions that prevent a full time-series of 

the objects being studied to be obtained.  

While this paper has focused on the monitoring of grapevine heat stress, the 

identification of the spectral bands that best explain the impact on plant canopy and the 

development of a local model, which can be applied to predict the spatial extent of the 

phenomenon, can be transferred to other agricultural applications related to climatic phenomena 

(e.g. hail or frost). Because of the type of approach, the model should only be valid for the year 

and the region considered. The resulting model remains specific to the learning base used for 

the calibration and its generalisation to other vintages and/or other agricultural regions is 

somewhat limited, especially when dealing with extreme climatic events. However, the results 

obtained can help facilitate the development of empirical models to be applied to other 

situations and other vintages. 

The type of multi-spectral and multi-temporal method presented in this work is expected 

to be relevant for any application that relies on different spectral domains with a clear temporal 

evolution. However, its application to more gradual phenomena, such as progressive changes 

in plant water status over the summer period, would require further testing, as it may be less 

relevant because changes in plant characteristics may be less obvious.  

In general, the methodology presented here can be effective for any environmental and 

agricultural application of Sentinel-2 that involves the monitoring of a sharp temporal evolution 

and where all spectral information may be useful. 

 

 

4.1.5 Conclusions 
 

This study demonstrated how, with a dimensionality reduction algorithm, it is possible 

to describe the underlying phenomena by highlighting spectral bands and relevant time periods 

within a time-series of imagery. 

This was demonstrated by analysing the footprint of an extreme climatic event and 

predicting yield losses from a heatwave in 2019 in vineyards in the Languedoc-Roussillon 

region. In this case, spectral bands around the Red Edge (700 nm) and the SWIR region (1600 
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nm) were found relevant, as their spectral profile showed a deepening of the time profile during 

the period of the heat stress, which permitted the band information to be related to reported 

yield losses. 

The proposed method cannot handle temporal data gaps due to clouds and inconsistent 

availability of satellite images during the acquisition period. Interpolation of the data to achieve 

a three-way data structure was mandatory for the development of the methodology. By doing 

this, the method was able to deal with a time-series data set with different sets of missing values 

and to identify a noise reduction approach with a 15-day time step, which led to a consideration 

of only seven dates over the study period. 

Further investigation is needed to (i) complete the results of this study, expanding the 

analysis to the spatial distribution of the phenomenon in order to determine its regional 

dynamics and thus the reasons for its main effects, and to (ii) confirm the applicability of the 

N-PLS method to different time-evolving phenomena. 
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4.2 Is it Possible to Assess Heatwave Impact on 

Grapevines at the Regional Level with Time Series of 

Satellite Images? 

 

Article 4: Is It Possible to Assess Heatwave Impact on 

Grapevines at the Regional Level with Time Series of 

Satellite Images? 
Published in Agronomy, 2022, 12 (3), pp.563. DOI: 10.3390/agronomy12030563 

 

E. Fornieles-Lopez1,2, G. Brunel1, N. Devaux3, J.M. Roger1,2 and B. Tisseyre1 
1ITAP, Univ. Montpellier, INRAE, Institut Agro, Montpellier, France 

2Chemhouse Research Group, 34000, Montpellier, France 
3LISAH, Univ. Montpellier, INRAE, Institut Agro, Montpellier, France 

Abstract: Unexpected climatic conditions or extreme climatic events in vineyards are a 

worldwide problem that requires accurate spatial and temporal monitoring. Satellite-based 

remote sensing is an important source of data to assess this challenge in a climate-change 

context. This paper provides a first insight into the capacity of a multiway analysis method 

applied to Sentinel-2 time series to assess heatwave impacts in vineyards at a regional scale. N-

way Partial Least Squares (N-PLS) regression was used as a supervised technique to predict the 

intensity of damage caused to vineyards by the heatwave phenomenon that impacted the 

vineyards in the south of France in 2019. The model was developed based on available ground 

truth data of yield losses for 107 vineyard blocks in the Languedoc-Roussillon region and 

multispectral time-series predictor data for the period from May to August 2019. The model 

showed a performance accuracy (R2) of 0.56 in the calibration set and of 0.66 in the validation 

set, with a standard error of cross-validation in the calibration set of 12.4 % and a standard error 

of the prediction of yield losses in the validation set of 10.7 %. The model was applied at a 

regional scale on 4978 vineyard blocks to predict yield losses using spectral and temporal 

attributes. The prediction of the yield loss due to heat stress at a regional scale was related to 

the spatial pattern of maximum temperatures recorded during the extreme weather event. This 

relation was confirmed by a chi-square test (p < 5 %). The introduction of N-PLS insights into 

the analysis enables the characterisation of heat stress responses in vineyards and the 

identification of spectro-temporal profiles relevant for understanding the effects of heatwaves 

on vine blocks at a regional scale. 

Keywords: unfold methods; N-PLS; heat stress-2; water relations; remote sensing 
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4.2.1 Introduction 

Grapevine (Vitis vinifera L.) is widely recognised as one of the most important crops in 

Europe (Droulia & Charalampopoulos, 2021). Growing evidence of the significant impact of 

climate change on viticulture is driving new and underexplored research aiming at monitoring 

and understanding its incidence on vine cultivation. The two factors most frequently addressed 

in reflections on the possible effects of climate change (CC) on viticulture are thermal and 

hydrological conditions (Droulia & Charalampopoulos, 2021). Both of these effects have an 

impact on vine development and fruit composition, determining yields and the quality of grapes, 

and thus of the wine produced (Pinel et al., 2021). The most measurable effect of CC is that the 

steady increase in temperature leads to a rise in radiation and in the frequency and severity of 

more extreme weather events, such as heatwaves (Droulia & Charalampopoulos, 2021). 

According to Pinel et al. (2021), the climate of the Mediterranean region until the end 

of the 1990s was defined by wet winters and warm summers, with balanced rainfall. However, 

since 2000, low rainfall and increased evapotranspiration have defined the growing period of 

the vineyards (April–June), intensified by the increasing occurrence of heatwaves at key 

phenological stages of the vine. Prolonged periods of unusually high temperatures are likely to 

affect the yield and quality of the vines (Cogato et al., 2019b). In June 2019, an exceptional 

heatwave episode hit the south of France, causing severe and irreversible damage in vineyards. 

Persistent temperatures above 35 °C during the growing season drastically affect the plant 

response and heat acclimatisation mechanisms are activated (Venios et al., 2020). By affecting 

the photosynthesis rate (Carvalho et al., 2016; Cogato et al., 2019b) and intensifying drought 

stress (Nicholas and Durham, 2012), heat stress has a considerable influence on the physiology 

and yield of grapevines (Fraga et al., 2020). Since fluctuations in environmental conditions, and 

especially ambient temperature (Venios et al., 2020), strongly influence plant growth and plant 

developmental processes, it is crucial to capture the dynamics of vine growth over time, 

especially at critical growth stages. Therefore, time series of multispectral images may 

constitute a relevant tool to assess the incidence and the spatial footprint of a heatwave at a 

large scale (e.g. the scale of a production basin, region, etc.). 

Remote sensing techniques are largely used in agriculture, focusing on traits or features 

of the agricultural systems that vary in space and time. Based on high-quality multi-temporal 

and multi-spectral images captured by Earth observation satellites, satellite remote sensing has 

a great potential to address the challenges of CC due to its ability to provide timely and 

comprehensive information at different scales and for different actors (Weiss et al., 2020). Due 

to the increasing availability of remotely sensed data, e.g. the multispectral Sentinel-2 satellites 

provide revisits every 5 days, global coverage of Earth’s land surface makes large-scale analysis 

possible (Bovolo & Bruzzone, 2015). Benefiting from convenient spatial resolutions at different 

scales (plot, production basin, appellation, region, etc.), satellite data allows the development 

of tools and methods that account both for the continuous spatio-temporal reality of a 
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phenomenon, such as a heatwave, and the spectro-temporal dynamics of the development of a 

specific crop, such as vines. In the field of viticulture, information from 13 spectral bands (from 

visible to shortwave infrared), on vine conditions obtained by Sentinel-2 over time provides a 

detailed time series of data on the physiological and physical properties of the vine (Plant et al., 

2000). According to Filella et al. (1995), the reflectance spectrum changes depending on 

growing conditions and the time of measurement relative to the stage of crop development. 

Therefore, remotely sensed multispectral images have a particularly important potential to 

quantify the effects of extreme events in the context of global climate change, at different spatial 

scales (e.g. plot and region), on grapevine yield. 

Different approaches to assess the impact of extreme weather events on major crops can 

be found in the remote sensing literature (Cogato et al., 2019a). However, the publications 

dealing with heatwaves in viticulture with remote sensing are sparse (Cogato et al., 2019b). 

Stress conditions due to fluctuations in ambient temperature certainly affect the physiological 

behaviour of the grapevine, and thus the spectral response of the canopy at various wavelengths 

(Cogato et al., 2021). Although the current knowledge on the physiological dynamics regulating 

the responses of grapevines to heatwaves appears to be well established (Webb et al., 2010; 

Fraga et al., 2020; Venios et al., 2020), large research gaps still exist in the assessment of the 

effects of heat stress using spectral features and environmental parameters. Cogato et al. 

(2019b) proposed a relevant approach based on Sentinel-2 time-series data that highlights the 

most suitable spectral regions and VIs for heat stress detection. However, such an approach 

does not take into account the spatio-temporal extent of the phenomenon or the spectral-

temporal extent of the cultivation, as is the case with multivariate methods. Moreover, such an 

approach presents the risk of creating uncertainty about the possible effects of the heatwave 

timing and limiting knowledge about the phenomenon in question. Furthermore, challenges 

remain for modelling the effects of extreme weather events in agriculture without overlearning. 

Regarding the assessment of CC at different scales, quality field data are scarce and difficult to 

homogenise, so the number of samples available to study the phenomenon is often limited. This 

is a paradoxical phenomenon, considering that observational data from remote sensing have 

never been so numerous (increased data volume and high data variability) (Bishop, 2013), while 

ground reference data, particularly in operational contexts, remain sparse. 

 

The research presented here aimed to evaluate the incidence of a climate event, such as 

a heatwave, on vine cultivation at the plot level and its extent at the regional scale. The specific 

objectives of this work were to: (i) propose an adaptable systemic multidimensional 

methodology able to consider the spectral and temporal dimensions intrinsic to cultivation; (ii) 

design, calibrate and validate a model to predict yield losses based on spectral-temporal 

information derived from time series of remote sensing images; and (iii) study and assess the 

quality and uncertainty of this predictive model when used at the regional scale. 
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4.2.2 Materials and Methods 
 

4.2.2.1 Study area 

 

The study area corresponded to a large wine-growing region, the Languedoc-Roussillon 

(LR), extending over almost 27,400 km2 in the south of France (Figure 4.13). The LR 

vineyards, united under the same administrative label but with their own characteristics, cover 

four French administrative sectors: Gard (A), Hérault (B), Aude (C) and Pyrénées-Orientales 

(D) (Figure 4.13). It encompasses a large diversity of varieties, training systems, etc. 

(Fernández-Mena et al., 2021). 

FIGURE 4. 13 - Location of the study area in Southern France for the four administrative 

sectors: Gard (A), Hérault (B), Aude (C) and Pyrénées-Orientales (D). 

 

The climate, typically Mediterranean, is characterised by hot and dry summers, with 

sparse summer rainfall and mild winters. The regional level presents a large variability in pedo-

climatic conditions (Fernández-Mena et al., 2021); however, soils typically share common 

characteristics: low fertility, high stoniness, good drainage, absence of a limiting horizon to 

ensure deep rooting and limited water holding capacity. 
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Heatwave stress characteristics 

 

In June 2019, the LR wine-growing area experienced a heatwave characterised by a hot 

wind, blowing from the north-east to the south-west, with temperatures reaching 45 °C (Figure 

4.14). The extreme weather episode occurred between 25th June and 8th July 2019, of which 

28th June was the most critical day. Given that vine growth in Mediterranean conditions is still 

occurring, although slowing, in the middle of the season, extreme environmental fluctuations 

that occur during this period at very rapid time scales will limit the evaporative cooling of the 

leaves and induce symptoms that can even lead to wilting of the leaves (Schymanski et al., 

2013). Extremely high-temperature regimes, characteristic of a heatwave, affect the 

biochemical and physiological processes necessary for the optimal development of the vine, 

especially for early ripening varieties (Droulia & Charalampopoulos, 2021). 

FIGURE 4. 14 - Maximum monthly temperatures recorded from 2009 to 2019 over the 

Languedoc-Roussillon region, France, highlighting a peak corresponding to the extreme 

weather event that occurred in June 2019. The vertical black dashed line highlights the month 

of the heatwave. Source: Historique de Météo-France. 

 

It should be noted that the heatwave did not affect the whole region equally, as shown 

in Figure 4.15. The northern part of the region (sectors A and B) was the most strongly affected. 

Indeed, sector B presented the temperature (>44 °C), with a strong spatial variability, since 

these high temperatures did not affect the eastern part. Sector D was only severely impacted on 

the western part, and sector C was almost unaffected by high temperatures. Note that Figure 

4.15 only presents the main trend of the heatwave. It may hide some local (short range) 

phenomena due to factors that may locally mitigate or amplify the temperature effect 
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experienced by vineyard blocks, such as elevation, the presence of forest and the aspect of the 

topography. 

 

FIGURE 4. 15 - Map of maximum temperature recorded for 28th June 2019 in the Languedoc-

Roussillon region. Source: SAFRAN grid, Météo-France. 

Ground truth data 

The ground truth data were selected from 107 non-irrigated vineyard blocks in the 

northern part of the LR region (Figure 4.16.a). They all showed some effects related to the 

heatwave, such as stalled development, leaf burn and leaf drop (Lopez-Fornieles et al., 2022). 

The severity of this effect was assessed by winegrowers and advisors on each of the 107 

vineyard blocks several weeks after the event through an estimation of the percentage of yield 

loss. Figure 4.16.b summarises the distribution of the 107 blocks in relation to yield loss. Note 

that the ground truth data concerned only sectors A and B, which were the most impacted by 

high temperatures during the heatwave. No vineyard blocks were sampled over sectors C and 

D, despite the potential impact of the heatwave on both of these sectors. However, this 

unbalanced spatial distribution of the blocks leads to a representative dataset with a large 

diversity of observed yield loss values (Figure 4.16.b). 
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FIGURE 4. 16 - (a) Map of the 107-ground truth blocks with a known estimated percentage 

of yield loss after the heatwave; and (b) percentage of yield losses observed by winegrowers 

and advisors on 107 vine blocks in southern France (Lopez-Fornieles et al., 2022). 

4.2.2.2 Remote sensing data 

 

Data Acquisition and processing 

Satellite images were selected via the Google Earth Engine (GEE) platform, which 

provides Sentinel-2 L2A (Sentinel-2A and Sentinel-2B) products. Sentinel-2 satellites, with a 

revisit frequency of 10 days (5 days with the twin satellites (A/B) together), provide 13 spectral 

bands from visible (Vis) and near-infrared (NIR) to shortwave infrared (SWIR) regions of the 

spectrum, with a spatial resolution of 10, 20 and 60 m (Table 4.2) (Lopez-Fornieles et al., 2022). 

Twelve spectral bands (among the 13 available from Sentinel-2 satellites) were used in this 

study (Table 4.2). Spectral band 10 at 1380 nm was not used as it was designed for the detection 

of visible and sub-visible cirrus clouds and corresponds to a band of high atmospheric 

absorption (Hollstein et al., 2016). 
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TABLE 4. 2 - Spectral bands for the Sentinel-2 satellite considered by the analysis. 

Sentinel-2 Band Central 

Wavelength 

(nm) 

Bandwidth       

(nm) 

Spatial Resolution (m) 

Band 1–Aerosol 442.7 21 60 

Band 2–Blue 492.4 66 10 

Band 3–Green 559.8 36 10 

Band 4–Red 664.6 31 10 

Band 5–Vegetation Red Edge 704.1 15 20 

Band 6–Vegetation Red Edge 740.5 15 20 

Band 7–Vegetation Red Edge 782.8 20 20 

Band 8–NIR 832.8 106 10 

Band 8A–Vegetation Red Edge 864.1 21 20 

Band 9 –VNIR 945.1 20 60 

Band 11–SWIR 1613.1 91 20 

Band 12–SWIR 2202.4 175 20 

 

The time period considered for the study was from May to August 2019, which was the 

most relevant period to monitor vine growth vegetation in this region (Devaux et al., 2019). 

Only images containing the study vineyards (Section 4.1.2.4) from 13th May to 20 August 2019 

were selected and processed via Google Earth Engine (GEE) (Lopez-Fornieles et al., 2022). 

Blocks’ boundaries were extracted from the graphical parcel register of France (RPG). 

According to the highest spatial resolution of Sentinel-2, to avoid mixed pixels, a 10 m inner 

buffer was imposed over the boundary of each block before average pixel values were computed 

within the inner boundary for each block, each date and each wave band (Lopez-Fornieles et 

al., 2022). For the chosen period, 25 images should have been potentially available over each 

block, but following the cloud detection algorithm for Sentinel-2 imagery proposed by Hollstein 

et al. (2016), the number of available images was 11 on average, with a range from 7 to 16 

images depending on the location of the different blocks (Lopez-Fornieles et al., 2022). 

 

4.2.2.3 Modelling 

 

N-way Partial Least Squares 

In this work, data corresponded to a three-way array X = Xi,j,k  whose dimensions 

involved the individuals (I), i.e. the vine blocks, as a first dimension, the second dimension 

corresponded to time (J) and the third dimension corresponded to mean reflectance at each 

wavelength (K). Therefore, as shown in Figure 4.17, data were organised in a three-way array 

of independent variables X (I × J × K) derived from the remotely sensed data (Section 4.1.2.4) 

and a response vector y of size (I × 1) corresponding to the ground truth data (Figure 4.16.a). 
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N-PLS regression, as an extension of the classical Partial Least Squares (PLS) method, 

was chosen to analyse the data. As proposed by Hansen et al. (2002), it is an interesting method 

to relate a N-way array to a dependent variable. It identifies all latent information from (X), 

which maximises the covariance between X and y while keeping information provided by each 

dimension of X (Abdi, 2010). In this study, the 3-PLS1 regression method (Bro, 1996) was 

used to best relate X with y while keeping information provided by the spectral and the temporal 

dimensions. 

 

FIGURE 4. 17 - (a) Representation of the three-way array (X); and (b) response vector y 

(Lopez-Fornieles et al., 2022). 

Data array construction 

The dataset was characterised by the observations of the 12 spectral bands averaged 

over each of the 107 blocks for all available satellite images, between 13th May and 20th 

August, in 2019 (Lopez-Fornieles et al., 2022). However, the number of images per block 

varied according to the local atmospheric conditions over each block for each acquisition date. 

As a result, all potential Sentinel-2 images were not necessarily available at each date. To 

overcome this issue, an interpolation was performed to obtain a continuous data cube. The 

interpolation at a date t was done wavelength by wavelength, by a convolution of the 

chronology measured with a Gaussian filter (Alam et al., 2008) in order to have a consistent 

time step dimension (J) (Lopez-Fornieles et al., 2022). The parameters involved in the 

interpolation setting were optimised by cross-validation of 2 blocks repeated 5 times of a N-

PLS between cube X and vector y. Parameter optimisation was achieved with a Gaussian filter 

having width (P) = 30 and date interval (N) = 15 (Lopez-Fornieles et al., 2022). 

 

At the end of the interpolation step, the dataset was meaningfully arranged in a three-

way array X of dimensionality 107 (samples, I) × 7 (times, J) × 12 (wavelengths, K) and a 

vector y (107), corresponding to the yield loss rates from 107 blocks estimated by the 

winegrowers and advisors. 
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Model calibration and prediction 

Calibration and validation subsets were created to build and evaluate the model. 

Considering the distribution of the samples from the dependent variable (Figure 4.16.b), a 

calibration set (3/4) and a validation set (1/4) were defined as follows to ensure that the two 

sets had the same final distribution (Lopez-Fornieles et al., 2022): 

 

1. The vector y was sorted in ascending order. 

2. After sorting, every fourth individual was placed in the validation set and the 

others were kept in the calibration set. 

 

A cross-validation of 2 blocks repeated 10 times of a N-PLS between the X cube and 

the y vector from the calibration set was performed. The joint analysis of the Root Mean Square 

Error of Calibration (RMSEC) and the Root Mean Square Error of Cross-Validation 

(RMSECV), as proposed by Goodarzi et al. (2009), was used to determine the optimal number 

of latent variables (LVs) in the regression model. On the basis of this joint analysis, 5 

meaningful latent variables were kept for the model (Lopez-Fornieles et al., 2022).  

 

The prediction performance of the model was quantified on the validation subset (data 

not used for the model calibration) by the standard determination coefficient R2, the bias and 

the standard errors. 
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Model application at regional scale 

In order to assess the potential of the approach in identifying the spatial footprint of the 

heatwave phenomenon at the regional scale, the calibrated N-PLS model was applied to 4978 

vineyard blocks spread over the whole LR region (Figure 4.18). These vineyard blocks 

corresponded to all data available from the RPG. 

FIGURE 4. 18 - Location of vineyard blocks (4978) of interest in Southern France. 

For the implementation of the N-PLS model, the same steps were followed as for X data 

array construction. The model with the 5 latent variables was therefore applied to a significant 

three-way array X₂ of dimensionality 4978 (samples, I) × 7 (times, J) × 12 (wavelengths, K). 

The model application provided an estimation of the yield loss over the 4978 vineyard blocks. 

Figure 4.19 summarises the implementation and the workflow scheme of the N-PLS model 

calibration, in addition to its validation and its application at the regional scale. 
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FIGURE 4. 19 - Workflow scheme of the calibration of the N-PLS model, the prediction 

evaluation and its application to 4978 vineyard blocks at the regional scale. 

 

Validation at regional scale 

 

Yield loss estimations at the regional scale were interpolated following a classical 

kriging process (see Section 4.2.2.4). Estimations were analysed both qualitatively from visual 

comparison with the maximum temperature record map of the 28th of June 2019 (Figure 4.15), 

and quantitatively, based on the occurrence of predicted yield loss values with respect to the 

maximum temperature recorded over the block. As validation, a chi-square test of independence 

(Greenwood and Nikulin, 1996) was used to verify the dependency between both information 

sources at the regional scale. The H₀ hypothesis was that yield loss estimation was independent 

of maximal temperature recorded during the heatwave event. H₀ was rejected for p-values of 

0.05 (p < 0.05). 

 

Both estimated yield loss and temperature values are continuous variables. In order to 

account for inaccuracy and short-range variability, both variables were converted into classes 

to carry out the test. For yield loss estimations, the width of the classes was defined from the 

data distribution at the regional scale, i.e. it was based on the distribution of predicted values 

(Scott, 2015). For the temperature values, a theoretical criterion was applied. Fraga et al. (2020) 

stated that during critical periods of vine development, e.g. in the growth period, if the air 
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temperature reaches a threshold above 35 °C, a limitation of photosynthesis is to be expected, 

leading to a decrease in productivity. Therefore, it was decided to set a threshold temperature 

at 35 °C and to establish two classes above and two classes below this threshold. The widths of 

the 4 classes were determined by (1) the temperature threshold and (2) the minimum and 

maximum temperature recorded on the 28th of June 2019. 

 

Model interpretation 

As for the classical Partial Least Squares (PLS) method, the three-way PLS model aims 

at finding new components called latent variables (LVs), which best relates data X (samples × 

time × wavelengths) to y (ground truth data) (Abdi, 2010). Compared to classical PLS, the 

three-way PLS allows the information supported either by the time dimension or the spectral 

dimension to be kept and analysed properly. The weight vectors of each LV correspond to a 

spectral and temporal profile, providing evidence on the spectral bands and their dynamics over 

time that may best explain the yield losses. The most relevant LVs (i.e. those that best explained 

yield loss) were then selected and analysed to identify known information supporting the model 

performance, in addition to new complementary knowledge provided by the time series of 

images to characterise the heatwave. The standard error of prediction (SEP) (Keller et al., 1994) 

was used to determine the LVs to be analysed. 

 

In addition to the LV weight vectors, the score of each of the 4978 blocks was calculated 

for each LV. The score value of a block shows its relation to the spectro-temporal profile 

defined by the LV. Then, 3 cases were considered: 

 

 if the temporal-spectral profile of a block followed the same signature as the one 

created from the weight vectors (temporal and spectral bands) of a LV, the score 

value was positive; 

 if the temporal-spectral profile of the sample (vineyard block) followed the 

inverse signature to the one created from the weight vectors (temporal and 

spectral bands) of the LV, the score value was negative; 

 if the temporal-spectral profile of the sample (vineyard block) followed a 

different signature to the one created from the weight vectors (temporal and 

spectral bands) of the LV, the score value was close to zero. 

 

4.2.2.4 Mapping and spatial analysis 

 

Maps were obtained using point kriging interpolation. Kriging was performed with the 

GeoFis 1.0 software (Leroux et al., 2018), which was used for: (1) the modelling of 

semivariograms and calculations of their featured parameters, C0 (nugget effect), C1 (sill) and 
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r (range), and (2) the kriging interpolation. The latter was performed on a grid of regularly 

spaced points 1000 m apart within the geographical boundary of the LR region. 

 

Semivariogram features were also used to compute the Cambardella Index (Ic) 

(Cambardella et al., 1994) (Equation 4.2): 

 

 

 

where C0 is the nugget effect and C1 is the sill of the semivariogram model. The 

Cambardella Index was considered here to quantify how the data were organised spatially over 

the LR region. The common following thresholds were then used: (1) Ic less than or equal to 

25 %, the distribution is considered strongly spatially organised; (2) for Ic between 25 and 75 

%, the distribution is considered moderately spatially organised and; (3) if Ic is higher than 75 

%, the distribution is considered weakly spatially organised (Cambardella et al., 1994; Martínez 

& Gomez-Miguel, 2017). 

 

4.2.3 Results 
 

4.2.3.1 Quality of the N-PLS model 

 

The performance and quality of the N-PLS model with five latent variables are presented 

for the calibration set (Figure 4.20.a) and validation set (Figure 4.20.b) in terms of R2, bias and 

standard error of prediction of yield losses. The N-PLS model showed a performance accuracy 

(R2) of 0.56 in the calibration set and of 0.66 in the validation set, with a standard error of cross-

validation in the calibration set of 12.3 % and a standard error of prediction of losses in the 

validation set of 10.7 % (Lopez-Fornieles et al., 2022). A standard error of 10.7 % over the 

prediction set (Figure 4.20.b) was consistent with the accuracy level of the ground truth data, 

which gave the yield loss in 25 % classes (Section 4.2.2.1). 

 

These results prove the relevance of multispectral satellite time series to assess the 

incidence of a heatwave on grape vine loss when combined with the N-PLS. However, this 

model was only validated on a small number of vineyard blocks spread over a small 

representative part of the region. The next sections aim to verify whether the model derived 

from this small dataset could be applied to the whole regional level in order to verify its ability 

to highlight heatwave footprints at this scale. 

 

 

                𝐈𝐜 =
𝐂𝟎

𝐂𝟎+𝐂𝟏
                                                       (EQ. 4.2) (   
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FIGURE 4. 20 - Results of the N-PLS prediction yield losses on individuals in the calibration 

set (a), with 80 vineyard blocks and in the validation test (b), with 27 vineyard blocks (Lopez-

Fornieles et al., 2022).  

 

4.2.3.2 Yield loss prediction at the regional level 

 

Figure 4.21 shows the distribution of the yield loss prediction when the N-PLS model 

calibrated with the 107 vineyard blocks is applied to 4978 vineyard blocks of the region. From 

the mean (μ) and the standard deviation (σ) values of the distribution, four classes of yield loss 

were defined as follows: predictions between 0 and 15 % yield loss represented a low impact 

(a), predictions between 15 and 27 % of losses represented a moderate impact (b), predictions 

between 27 and 40 % of losses represented a high impact (c), and predictions > 40 % 

represented a severe impact of heat stress (d). 
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FIGURE 4. 21 - Histogram of the prediction of yield loss for the 4978 vineyard blocks. The 

vertical orange dashed lines highlight the mean (μ) and the thresholds corresponding to μ +/− 

σ (σ standing for the standard deviation). The 4 classes from a to d defined on these thresholds 

were linked to the degree of the impact of the heatwave, with a being the class with the lowest 

impact and d the class with the highest impact. 

 

Figure 4.22 shows the kriged map of the yield loss prediction at the regional scale. The 

kriging was performed with a Gaussian semivariogram model, with a nugget effect (C0) of 122, 

a sill (C1) of 175 and a range of 140 km. The Cambardella index (Ic) resulting from this 

semivariogram was 41 %, which highlighted a (moderate) spatial organisation of yield loss 

predictions, i.e. 41 % of the variability exhibited a spatial structure while the remaining 

variability (59 %) was stochastic in nature. 
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FIGURE 4. 22 - Kriged map of yield loss predictions at a regional scale derived from the N-

PLS model. 

The kriged map (Figure 4.22) shows large spatial patterns that are more or less related 

to patterns observed on the maximal temperature map (Figure 4.15). Indeed, it highlights two 

main zones, one in the northern part (A and B) corresponding to a high yield loss in the majority 

of the area, and the second in the southern part (C and D), with a lower yield loss. This main 

trend was clearly in relation with the maximal temperature map (Figure 4.15), which exhibited 

the same patterns. The kriged map also exhibited local patterns showing some local variations 

in yield loss. This was clear for sectors B and C, where smaller zones of yield loss were clearly 

highlighted. 

 

In order to validate the qualitative observations made from the kriged map, a 

quantitative analysis of the results was proposed. Given the difficulty of obtaining reliable 

ground truth data at this scale, the proposed validation was based on the analysis of a 

contingency table between the yield loss classes with the maximum temperature observed on 

the day of the heatwave (Table 4.3). The same classes of yield losses were considered as for the 

kriged map. 
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TABLE 4. 3 - Contingency table cross-referencing the yield loss prediction classes with the 

maximum temperature classes recorded on 28th June 2019. 

 (30–32.5 °C) (32.5–35 °C) (35–40 °C) (40–45 °C) 

Low impact: (0–15 %) 333 0 0 0 

Moderate impact: (15–27 %) 417 552 0 0 

High impact: (27–40 %) 0 1289 704 0 

Severe Impact: (40–80 %) 0 0 749 934 

 

Table 4.3 shows a clear relationship between the variables, and this relationship was 

clearly positive, i.e. the number of blocks impacted by the heatwave increased with the maximal 

temperature at the regional scale. The H0 hypothesis (independence of data distribution within 

the contingency table) tested with a classical chi-square test was rejected (p-value < 0.01). 

Therefore, classes of estimated yield losses were significantly related to the heatwave at the 

regional scale. 

 

Note that the results obtained are very specific. The model did not estimate a significant 

loss of yield when the recorded maximum temperatures were relatively low (<32.5 °C). On the 

contrary, when the recorded maximum temperatures were very high (>40 °C) the model 

estimated very high yield losses. Table 4.3 also highlights some inaccuracy between yield loss 

classes; for example, the 32.5–35 °C temperature class can lead to moderate and large predicted 

yield losses. This observation should be considered in the light of the definition of the classes, 

which were only roughly defined on the basis of the overall distribution of the data and which 

would certainly merit from adjustment according to the zone of the region, or according to the 

grape varieties, training systems, management practices, etc. It should certainly be considered 

in the light of the important nugget effect, which may be explained by a high inter-block 

variability (grape variety, block aspect, micro-topography, etc.) when working at this scale. 

 

These results demonstrated the relevance of the model (derived from N-PLS) when 

applied at the regional level to predict yield losses associated with the heatwave of 28th June 

2019. Based on these insights, the kriged map presented in Figure 4.22 may represent a relevant 

spatial footprint of the heatwave impact of grape yield losses at the regional level. 

 

4.2.3.3 Insights of time series and spectral analysis of the N-PLS model 

 

Table 4.4 shows the standard error of prediction (SEP) of yield loss for each LV derived 

from the N-PLS (Davies and Fearn, 2006). LV3 and LV4 were the LVs that best predicted the 

yield loss (lowest SEPs). Therefore, the next section focuses on studying, first, the LV4 that 

presented the lowest SEP (−0.04), and, in a second step, the LV3 that showed the second-lowest 
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SEP (−1.06). The LV4 and LV3 were analysed thereafter regarding their relevance towards the 

yield loss estimation. 

 

 

 

 

TABLE 4. 4 - Standard error of prediction (SEP) for each of the five latent variables derived 

from the N-PLS model on the calibration set. 

LV1 LV2 LV3 LV4 LV5 

1.52  1.20           −1.06 −0.04 −1.81 

 

Figure 4.23.a presents the weight vectors of LV4 as a spectro-temporal profile, i.e. for 

each date. The weight vectors can be viewed as the bands that most impact the vine response 

in relation to the heatwave. It showed several interesting patterns: (1) for reflectance between 

800 and 1000 nm, high weights were observed at the beginning of the season (May), whereas 

low (negative) weights were observed right after the heatwave (5th of July), and the weights 

decreased again until the end of July and then increased until the end of August; (2) for the 

reflectance between 1600 and 2200 nm, the opposite trend was observed, with low weights 

(negative) at the beginning of the season and high weights after the heatwave (5th of July), and 

the highest weights were observed in a few weeks (20th July) after the heatwave. Reflectances 

between 750 and 1350 nm are known to be strongly related to leaf structure (Laroche-Pinel et 

al., 2021a), whereas reflectances between 1350 and 2200 nm are strongly linked to water 

absorption (Chen et al., 2005). Both of these ranges of reflectance were strongly impacted from 

immediately after until three weeks after, the heatwave. Therefore, the spectro-temporal profile 

of LV4 summarised the dynamic of the incidence of the heatwave on the vineyards’ canopy. 

The LV4 weights showed that this may result in a drastic change in canopy structure partly due 

to a change in water content a few weeks after the event. Note that LV4 weights also highlighted 

the slow recovery of the canopy after 20th July for these wavebands. 
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FIGURE 4. 23 - (a) LV4 weight vectors from N-PLS applied to the calibration set (75 % of the 

107 vineyard blocks) for each date; (b) kriged map of the LV4 score values for blocks at the 

regional scale. The most negative score values of the blocks on LV4 (b) are shown in blue, and 

the most positive score values in yellow. 

The score values (Figure 4.23.b), represented the agreement between the LV4 weights 

and the spectro-temporal profiles of each block. The score map obtained after kriging describes 

the spatial organisation of the blocks that present: (i) similar spectro-temporal profile (score > 

0); (ii) opposite spectro-temporal profile (score < 0); and (iii) no related spectral-profile (score 

~0). The score map for LV4 was supposed to highlight blocks that were directly impacted (or 

not) by the heatwave. The spatial organisation of the scores was confirmed by the 

semivariogram model, which showed (Table 4.5) that around 50 % of the variability was 

explained by a spatial phenomenon (Ic = 48 %). The spatial patterns were strongly related to 

the maximal temperature recorded on 28th June, showing that the blocks of the northern part of 

the region were in agreement with the LV4 spectro-temporal profile. Note also that, for other 

sectors, patterns were less related to the main trend of the heatwave. Blocks with a score > 0 

underwent a drastic change in canopy structure, partly due to change in water content a few 

weeks after the heatwave. Patterns of strongly impacted blocks can also be seen in sectors B 

and C. Note, however, that for sectors other than sector A, the patterns were less related to the 

main trend of the heatwave. 

 

TABLE 4. 5 - Semivariogram parameter descriptors and spatial variability index for score 

values 𝐴1 (Range), 𝐶0 (Nugget), 𝐶1 (Sill) and 𝐼𝑐: Cambardella Index. 

Latent Variables Semivariogram Model     Range (km) C₀ C₁       Ic (%) 

Scores LV3 Spherical 17 0.011 0.019 29 

Scores LV4 Gaussian 27 0.003 0.004 48 
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LV3 showed an unusual trend with regard to the common evolution of the vine canopy 

over the season (Figure 4.24.a). It had the highest weights (positive or negative) at the end of 

the season, from the July, and especially in August, when growth has usually stopped and 

canopy reflectance should be relatively stable (until senescence onset). These high weights 

corresponded to (1) the 664 nm reflectance (negative weights), (2) reflectances between 800 

and 1000 nm (positive weights), and (3) to a lesser extent, reflectances between 1600 and 2200 

nm (negative weights). They corresponded respectively to (i) the visible spectrum (400–700 

nm), which is affected mostly by photosynthetic pigments content (chlorophyll and 

carotenoids) (ii) leaf and canopy structure (750–1350 nm) and (iii) water content (1350–2200 

nm) (Gates et al., 1965). The highest ranges of reflectance (positive or negative) reached their 

maximum long after the heatwave episode (between 20th July and 19th August). Thus, LV3 

weights may represent vines that were strongly affected by the extreme weather episode and 

that recovered their photosynthetic capacity of part of their leaf canopy later in the season 

(Teskey et al., 2015). 

 

FIGURE 4. 24 - (a) Representation of LV3 weight vectors from N-PLS applied to the 

calibration set (75 % of the 107 vineyard blocks) for each date; (b) kriged map of the LV3 score 

values for blocks at the regional scale. The most negative score values of the blocks on LV3 (b) 

are shown in blue, and the most positive score values in yellow. 

The score map for LV3 (Figure 4.24.b) was expected to highlight, on the one hand, 

blocks showing biomass growth after the heatwave (score > 0) and, on the other hand, blocks 

showing the opposite phenomenon (score < 0), i.e. an increase in photosynthetically active 

biomass in spring (before the heatwave) and a stabilisation or even a decrease in August (which 

should correspond to the expected behaviour of vines in normal conditions). The spatial 

organisation of the scores was confirmed by the semivariogram model used to krige the scores 

(Table 4.5), with around 70 % of the variability explained by a spatial phenomenon (Ic = 29 %). 

The spatial patterns showed a distinct north–south difference in the LR region, which again 
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corresponded to the maximum temperature patterns recorded on 28th June 2019, and thus to the 

vineyard blocks most affected by the extreme event. 

 

4.2.4 Discussion 
 

This study demonstrated the potential of temporal series of multispectral remote sensing 

images to discriminate and characterise the impact of a heatwave on vineyards at a regional 

scale. It also demonstrated that the high dimensionality (temporal and spectral) of the data 

required adopting a systemic methodology that accounted simultaneously for the spectral and 

temporal characteristics of the considered data. The N-PLS (3-PLS1 in our case) may be 

considered as a relevant approach to handle such problems. It allowed the spectral and temporal 

dimension of the data to be considered simultaneously in order: (i) to calibrate a model of 

prediction and (ii) to keep information captured by the spectral and the temporal dimensions 

through latent variables, which provided insights into the changes undergone by vine canopy. 

The approach, although calibrated on a few fields, was successfully applied at the 

regional level, showing the robustness of the methodology and its ability to map the spatial 

footprint of the heatwave that affected the south of France in 2019. 

 

It is essential to place the results presented in this paper within the reality for many 

environmental and agricultural studies where the ground truthing remains weak and hard to 

manage. The N-PLS model shows the interest in successfully dealing with a low number of 

ground truth samples (in this case, 107 yield loss observations for grape fields). Nevertheless, 

it should be noted that the N-PLS model here was still specific to the learning base used for the 

calibration. Specifically, the model accounted for the timing of the heatwave that the dataset, 

used for the calibration, had undergone. The direct application of the model to other vintages 

or to other regions should then not be considered. Despite this limitation, the approach allowed 

the identification of spectral changes in canopy reflectance that may be the signature of an early 

summer heatwave. This signature can be applied, with experts set up, to other case studies in 

order to identify potential heatwave effects when no ground truth data are available. Another 

limitation is that the model integrated the whole season dynamic (from May to August). As a 

result, it is not suitable to be used as a monitoring model to identify and spatialise the heatwave 

effects in real time or even a few days after the event. 

 

Although this study focused on the assessment of grapevine heat stress at the regional 

level, the generation of potential knowledge from a multispectral time series with the intention 

of understanding the phenomenon in question (i.e. a heatwave), was achieved through the N-

PLS approach. Previous studies have shown significant abilities to assess the effects of 

heatwaves (Webb et al., 2010; Cogato et al., 2019b) by evaluating the physiological and spectral 

responses of grapevines. Notwithstanding this, the adoption of a PLS-multiway analysis 
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presents the advantage of accounting for changes in the spectral responses over time. Indeed, 

the two latent variables most representative of yield loss in the model (SEP values of −1.06 for 

LV3 and −0.04 for LV4) provided knowledge regarding heat stress in vineyards by means of 

weight and score values. LV4 defined the spectral response of the vineyards to thermal stress, 

marking a clear temporal evolution where all the spectral information was affected, thus 

reversing the ‘theoretical’ vegetation profile. LV3 reported on the period after the heatwave. In 

this case, the spectro-temporal profile of LV3 generated insights related to the unusual 

vegetation growth observed in mid-August. A possible explanation for the late recovery of 

greenness could be the experience of the vineyards after the heatwave, as the north was the area 

most affected by the extreme climatic episode. However, the interpretation of the other LVs in 

relation to the heatwave remains more challenging. Indeed, the N-PLS aimed to extract LVs 

that best explained the output variable. For that purpose, it may generate LVs that first model 

general trends to better extract specific phenomena. As a result, the first LVs may be more 

related to the evolution of a ‘standard’ vegetation canopy signature in viticulture. The analysis 

of LVs as proposed in this study remains difficult and requires further understanding of both 

the N-PLS approach and the phenomena under study. 

 

The validation of the model at the regional scale was performed based on the maximal 

temperature observed on 28th of June 2019. The use of only maximum temperature is a relatively 

simple approach for a very complex phenomenon. There is still some debate about how the 

impact of a heatwave on vineyards should be assessed and which factors need to be taken into 

account, such as the onset dates, the duration of the heatwaves (Fraga et al., 2020), and humidity 

and the resulting vapour pressure deficits (De Boeck et al., 2010). Similarly, summarising the 

effect of a heatwave to a yield loss, as was done in this study, is certainly reductive. Other 

response variables (vigour, chlorophyll content, etc.) would certainly have been interesting to 

consider and more directly related to remote sensing variables. However, from an operational 

point of view, yield loss was an integrative response of the vine plant and, moreover, important 

for the wine industry. Nonetheless, the statistical analysis of the relationship between the 

maximum temperature recorded on 28th June 2019 and yield loss predictions (p-value ≤ 0.001) 

showed that the model may have captured the main trend of the heatwave impact on yield at 

the regional scale. 

At this regional level of analysis, it is unclear whether the small spatial patterns observed 

in Figure 4.22, on sectors B and C, are indeed local variations of the impact of the heatwave on 

the vine. Given the strong spatial structure observed, the results may support this hypothesis. 

Indeed, spatially structured environmental factors, such as soil type, elevation, aspect, etc. can 

explain local variations in heatwave characteristics (duration, maximum temperature, etc.), 

which would explain the local variations observed in predicted yield losses. It would be 

interesting to validate this hypothesis because, if it proves to be correct, the use of image time 
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series associated with a fine mapping of meteorological conditions may be a powerful tool to 

better characterise the effect of meteorological conditions during a heatwave. 

At the regional scale, a high nugget effect was observed, indicating that a significant 

proportion of the variance remained independent of spatially organised factors or was explained 

by very short-range phenomena. Other factors undoubtedly affected the change in spectral 

response of the vine canopy, such as the variety, the training systems and the management 

practices. For the record, the LR region presents a wide variety of rootstocks, cultivars and 

clones, in addition to different soil characteristics and training systems. Since the model was 

applied without considering these factors, they may explain the strong variability that was 

observed at very short ranges from one field to another. It is difficult to know if these factors 

affected the spectral response of the canopy or if they locally mitigated/amplified the effect of 

the heatwave as it was observed from remote sensing or both. This interrogation promotes 

interesting questions to study the potential of the temporal series of multispectral images to 

better study how field characteristics may drive the response to heatwaves (Schaffer & 

Andersen, 2018; Venios et al., 2020). 

 

The applied multidirectional approach (N-PLS) presented here represents a specific case 

of viticulture for the heatwave of 28th June 2019 in LR. In general, though, it is a type of 

approach that can be effective in characterising and assessing the impact of extreme weather 

events that suddenly affect the spectral response of the vine canopy, e.g. hail and frost, with a 

distinct, disrupted temporal evolution. However, its application to more gradual phenomena, 

such as progressive changes in water status or nutritional problems, may be less adapted as 

changes in plant characteristics may be less obvious. 

 

4.2.5 Conclusions 

This study demonstrated how, with a proper dimensionality reduction algorithm such as 

the N-PLS, a time series of multispectral images can provide an estimation of the impact of a 

heatwave on vineyard blocks at a regional level. The methodology proved to be relevant to 

provide the spatial footprint of the heatwave through its evolution over time by means of the 

observed response of spectral information. 

The relationship between the percentage yield losses and the maximal temperature 

recorded on 28th of June 2019 at the regional scale was shown. Insights into the phenomena 

explaining canopy responses were provided from the spectro-temporal signatures of the latent 

variables, showing the potential of the approach to provide knowledge on canopy changes 

during such an event. The main limitation of the proposed methodology was its necessary 

calibration on the spectral temporal signature of the event under study. This prevented any 

application of the calibrated model to other heatwaves whose timing would be different. 
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The proposed methodology is potentially transferable to other phenomena that evolve 

over time and, in particular, to any sudden climatic event that may affect the growth dynamics 

and leaf composition of the vine canopy (frost, hail, plagues to some extent, etc.). However, the 

approach seems less suitable for more gradual phenomena, such as plant water status, as the 

temporal evolution is less evident. 

 

Further research is needed to identify and characterise the effects of factors affecting the 

specificity of the spectral temporal response of vine canopy towards a heatwave. This should 

provide a new methodology to better analyse incidences of heatwaves on canopy responses at 

a large scale, and the potential mitigating or amplifying effects, such as microclimate, 

topography, training systems and variety. 
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Conclusion of Chapter 4  
 

Multispectral time series images are multidimensional massive datasets that have shown 

a great potential for different kinds of applications, including vegetation and crop monitoring 

(Lee et al., 2020). However, due to its high-dimensional nature and the high variability of the 

spectral information over time, the challenge remains to extract meaningful information from 

these data. The objective of this Chapter 4 was to test whether the N-PLS method and the 

subsequent model developed can be suitable for the handling of multispectral time series 

images. The N-PLS method was derived from a classical statistical method (PLS) adapted to 

multi-way data that explicitly considered the geometric structure of these data via a 

dimensionality reduction process. 

 

This approach has two main assumptions (multicollinearity and linear relationships 

between the independent variables) that should be mentioned since in recent years, machine 

learning techniques have proposed alternative methods to avoid being affected by these two 

assumptions. However, a main problem with machine learning models, such as deep learning, 

is limited model interpretability and the necessity to have large data base to perform properly 

the learning step (Mishra et al., 2021). 

 

The first part of the chapter (4.1) aimed to show the potential of the N-PLS multi-way 

approach for the analysis of Sentinel-2 time series for the detection, characterisation and 

prediction of the effect of extreme weather events on an agricultural attribute of interest, in this 

case the impact of a heatwave on vineyard yield at the regional scale. A latent variable model, 

such as the one obtained by N-PLS, provided: (i) a low-dimensional model for high-

dimensional data to better understand an evolving phenomenon over time and (ii) an 

interpretable and causal model through the b-coefficients. Through the b-coefficient, it was 

possible to identify that the spectral bands around the red edge (700 nm) and the SWIR region 

(1600 nm) were relevant for characterising the heat stress period in relation to reported yield 

losses. The case study presented, using 107 selected vineyard blocks, showed the importance 

of taking into account both spectral and temporal information collected by remote sensing data, 

while demonstrating the validity of the N-PLS model because of its ability to provide 

knowledge beyond just its predictive accuracy. 

 

As the multi-way N-PLS approach has proven to be of interest when dealing with 

phenomena with a clear temporal evolution, such as the dynamics of regional vegetation 

growth, phenological identification of crops or the impact of crop stress, the next step shown in 

the second part of the chapter (4.2) was its application to characterise spectrally, temporally and 

spatially the impact of the heatwave at the regional scale (4978 vineyard blocks). This is 

reasoned by the fact that the multidirectional N-PLS approach has also proven to be able to 
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generate an interpretable and applicable model at a large scale (regional scale) with a very 

limited learning base, which makes it a particularly effective approach for this type of 

application. First, vine heat stress was assessed at the regional level, with a validation of the 

model at the regional scale based on the maximum temperature observed on the 28 June 2019. 

Although the validation was rather limited in view of the limited ground truth data at this 

particular spatial scale, its value and interest for this type of application was demonstrated. 

Secondly, the scores (spatially mapped with geostatistics) and loadings (representing spectro-

temporal signatures) generated as model outputs for LV3 and LV4 (lowest SEPs) were used as 

key parts of the chemometric modelling, as they facilitated the interpretation of the N-PLS 

method by providing information on the spectral-spatial relationships of the vine canopy over 

time. 

 

Some of the concluding perspectives of both articles revealed the interest of further 

investigating the specificity of the temporal spectral response of the grapevine canopy to a 

heatwave. The next chapter of the manuscript continues this line of research on the specificity 

of the spectral-temporal response based on a multi-way variable selection approach. 
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Introduction of Chapter 5 
 

The previous chapter (Chapter 4) has shown the interest of the application of a 

supervised chemometric method that considered the spectral and temporal dimensions of 

remotely sensed imagery simultaneously. By integrating the temporal dimension into the multi-

way N-PLS model, it was possible to explain the relationship between the different spectral 

domains (Red-Edge and SWIR) and the impact of the heatwave on the canopy, as well as to 

determine certain spectral-temporal signatures that explain heat stress and its spatial footprint. 

Thus, it was possible to determine that an event occurred and also when it happened. However, 

it was not possible to determine the possibility of identifying other factors over time that could 

have enhanced (or not) the impact of the heatwave on yield loss. At a more operational level, it 

is important to specify in more detail which spectral and temporal domains were affected by 

changes in vegetation growth during this period of stress. In a broader sense, it is necessary to 

know the impact of an extreme weather event on spectral signatures and their temporal 

response, in order to identify key risk factors for future monitoring. Although the direct impact 

of a heatwave on vineyard vegetation is already well studied in the literature (Fraga et al., 2020), 

the reason for its variable repercussions on a large scale, i.e. the reason for the different % yield 

loss depending on the vineyard block, is still a field to be explored. To this end, in this chapter 

it is proposed to deepen the spectral and temporal domains using a multi-way variable selection 

method, the N-way Covariance Selection (N-CovSel) (Biancolillo et al., 2022). The study uses 

this supervised chemometric approach to implement multispectral satellite feature extraction in 

order to characterise the spectral bands or spectral domains, as well as the determining dates or 

periods to understand and identify differences in yield loss within 107 vineyard blocks affected 

by the heatwave that occurred between the 23rd of June and the 8th of July 2019 in the LR 

region. It is assumed that the spectral, temporal or spectro-temporal variables selected by the 

N-CovSel methodology may characterise the disparity in yield losses on a regional scale that 

can result from an extreme weather event in early summer. 

A variable selection method to reduce the size of the dataset is an interesting approach 

as in certain cases, such as remote sensing time series, data can quickly reach a large size due 

to their high spectral and temporal resolution. With this kind of approach, it is possible to 

determine and set aside variables that lack relevant information in order to process the database 

more efficiently. Furthermore, the proposed N-CovSel methodology is able to manage variable 

selection, taking into account the inherent relationship between reflectance variations and the 

time windows in which they occur.  

 

 

 

 



CHAPTER 5. DETERMINATION FROM MULTISPECTRAL TIME SERIES DATA  

OF THE MOST DISCRIMINANT SPECTRAL AND TEMPORAL DOMAINS 

FOR GRAPEVINE VEGETATIVE GROWTH’S CHARACTERISATION  

 IN RELATION TO AN EXTREME WEATHER EVENT 

 

162 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5. DETERMINATION FROM MULTISPECTRAL TIME SERIES DATA  

OF THE MOST DISCRIMINANT SPECTRAL AND TEMPORAL DOMAINS 

FOR GRAPEVINE VEGETATIVE GROWTH’S CHARACTERISATION  

 IN RELATION TO AN EXTREME WEATHER EVENT 

 

163 
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Abstract: Multispectral image time-series have been promising for some years; yet, the 

substantial advance of the technology involved, with unprecedented combinations of spatial, 

temporal, and spectral capabilities for remote sensing applications, raises new challenges, in 

particular, the need for methodologies that can process the different dimensions of satellite 

information. Considering that the multi-collinearity problem is present in remote sensing time-

series, regression models are widespread tools to model multi-way data. This paper presents the 

results of the analysis of a high order data of Sentinel-2-time series, conducted in the framework 

of extreme weather events. A feature extraction method for multi-way data, N-CovSel was used 

to identify the most relevant features explaining the loss of yield in Mediterranean vineyards 

during the 2019 heatwave. Different regression models (uni-way and multi-way) from features 

extracted from the N-CovSel algorithm were calibrated based on available heatwave impact 

data for 107 vineyard blocks in the Languedoc-Roussillon region and multispectral time-series 

predictor data for the period from May to August. The performance of the models was evaluated 

by the R² and the Standard Error of Prediction (SEP) as follows: for the temporal N-PLS model 

(R² = 0.62 - SEP= 11.4 %), for the spectral N-PLS model (R² = 0.61 - SEP = 13 %) and the 

temporal-spectral PLS model (R² = 0.63 - SEP= 11.7 %). The results validated the effectiveness 

of the proposed N-CovSel algorithm in order to reduce the number of total variables and 

restricting it to the most significant ones. The N-CovSel algorithm seems to be a suitable choice 

to interpret complex multispectral imagery by temporally discriminating the most appropriate 

spectral information.  

Keywords: Multi-way, Feature extraction, Covariance Selection, Remote Sensing, 

Time-series, Grapevines. 
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5.1 Introduction 

From the point of view of data visualisation and interpretation, multi-way analysis 

allows simplification of the results, providing more adequate and robust models using relatively 

few parameters (Salvatore et al., 2013). According to Henrion (1994), as information becomes 

more complex i.e. extremely diverse in terms of information, size and behaviour, the concept 

of a ‘dataset’ naturally expands from traditional tables, such as matrices, to higher-dimensional 

arrays. In fact, the use of multi-way analysis allows connected pieces of information to reflect 

variation spread across components, events or sources that are represented differently and, yet, 

complement each other in the simultaneously analysed data (de Juan & Tauler, 2019). 

Multispectral imaging (MSI) is a well-known imaging technique that has its origins in remote 

sensing. In practice, regardless of the applications, different approaches to deal with the 

increasing data volumes and variability of the data from satellite-based time-series imaging, 

such as Sentinel-2 (A/B), can be found in the remote sensing literature (Picoli et al., 2020). In 

recent years, spatial-spectral feature extraction has been a developing field of research 

managing high-dimensional data (Hong et al., 2020). However, in addition to spatial 

information, the Sentinel-2 satellites contain spectral information with 5-day revisit time, which 

provides a detailed overview of land and vegetation.  

Multispectral imaging techniques applied to temporal series represent an important 

research tool to assess the impacts of Climate Change (CC) on agricultural systems as it allows 

spatially and temporally continuous phenomena to be monitored. The main abiotic factors in 

the life cycle of crops, especially during the growing period, are weather conditions, which 

determine the quantity and quality of agricultural production (Raza et al., 2019). One of the 

most measurable effects of CC is the gradual rise in temperature, which leads to an increase in 

the frequency and severity of extreme weather events (Droulia & Charalampopoulos, 2021). 

According to Venios et al. (2020) fluctuations in environmental conditions, particularly ambient 

temperature, strongly influence plant growth and development processes. As a result, remote 

sensing has the potential ability to assess the impact of an extreme weather effect, e.g. a 

heatwave, as the reflectance spectrum changes depending on growth circumstances and the time 

of measurement relative to the stage of crop development (Filella et al., 1995; Cogato et al., 

2019b). However due to the complexity of combining spatial, spectral, and temporal 

information derived from remote sensing, there are still challenges in dealing with increased 

data volumes and variability of these data (Bishop, 2013). Making the most of multispectral 

image time-series is a promising but still relatively underexplored research direction in the 

context of life sciences.  

The use of multi-way analysis in remote sensing, such as N-way Partial Least Squares 

(N-PLS) regression, shares all the advantages of latent-based regression and discrimination 

methods, i.e. data visualization and interpretation (Favilla et al., 2013; Lopez-Fornieles et al., 



CHAPTER 5. DETERMINATION FROM MULTISPECTRAL TIME SERIES DATA  

OF THE MOST DISCRIMINANT SPECTRAL AND TEMPORAL DOMAINS 

FOR GRAPEVINE VEGETATIVE GROWTH’S CHARACTERISATION  

 IN RELATION TO AN EXTREME WEATHER EVENT 

 

165 
 

2021). In addition, it allows the representation of data patterns, feature correlation and 

covariance structure characteristic over time-series images (Coppi, 1994; Favilla et al., 2013). 

When a two-dimensional signal characterises each sample, as generated by MSI, such as the 

wavelength/time information, it is often needed to define which are the most relevant features 

to predict the studied dependent properties. When it comes to deal with complex datasets, a 

generalised option is the selection of variables (or feature extraction) (Trevino & Falciani, 2006) 

as these methods allow to: i) select a relatively small number of total variables and restrict it to 

the most significant ones, i.e. for subsequent applications in regression/classification models 

and ii) to understand which variable contributes the most to the investigated system, i.e. 

interpretative purposes (Biancolillo et al., 2021). Several variable selection methodologies have 

been proposed in the literature (Mehmood et al., 2012), and yet most of variable selection 

methods refer to contexts in which data is collected in a matrix rather than a in higher-order 

structure, thus losing the multi-way analysis advantage (Favilla et al., 2013). However, 

Biancolillo et al. (2022) proposed an alternative variable selection approach for multi-way data, 

N-way Covariance Selection (N-CovSel). The N-CovSel algorithm is based on the same main 

principle as the covariance selection algorithm (CovSel) introduced by Roger et al. (2011) for 

data collected in data matrices. The latter approach is designed to select variables in regression 

and discrimination contexts, and to assess the relevance of variables based on their covariance 

with the response(s). Iteratively, the predictor with the highest covariance is selected and the 

data matrix (X) and the variable of interest to predict (y) are orthogonalised with respect to this 

variable (Biancolillo et al., 2022). By providing filter selection based on model parameters and 

integrating them into the model construction, the N-CovSel algorithm opens the possibility to 

select information in a complex dataset as a multi-directional structure. 

Regarding agricultural systems and CC impact with time-series of multispectral images, 

such as a variable selection approach for high order data arrays, could bring a better 

understanding of how crop growth dynamic is affected by the occurrence of an extreme weather 

event. Therefore, the objectives of this study are to: 

i. propose a formalism to apply the N-CovSel approach to a time-series of images 

at the regional scale in order to predict a small variable of interest, 

ii. show the value of methods originally developed in the analytical chemistry 

domain to be applied to larger scales and life sciences domains and, 

iii. to identify the possible limitations of the approach when dealing with time series 

of satellite images. 

The work is organised as follows: Section 5.2 introduces the proposed N-CovSel 

algorithm and the development of the model as well as the description of the case study that the 

methodology is applied to. The results are shown in Section 5.3, with the discussion in Section 

5.4. 
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5.2 Materials and Methods 
 

5.2.1 Notations 

Upper case bold and underlined characters will be used for N-way arrays, e.g. X (I,J,K) 

indicates a 3-way array with I samples described by J times at K wavelengths. Upper case bold 

characters will be used for matrices; e.g. X and lower case bold characters will be used for 

column vectors, e.g. y. Non-bold italics will be used for scalars. Upper case characters for fixed 

values, e.g. the number of samples I and lower-case characters will be used for running indexes, 

e.g. a slice k from the third mode of X. A column of X will be noted x.jk and a slice of X will be 

noted X.j. or X.k.. 

The N-CovSel method allows the selection of the best set of predictors (features) in an 

N-way array (X) on the basis of its covariance with a response vector (y) or a response matrix 

(Y) (Biancolillo et al., 2022).  

5.2.1.1 Definition of features 

When selecting features in a N-way array, different solutions are possible. In fact, it is 

possible to define different features depending on the number of way arrays of the input data 

structure. As determined by Biancolillo et al. (2022), for a 3-way data, i.e. a cube, two distinct 

options are possible: i) a 2-D feature (Figure 5.1.a and Figure 5.1.b), i.e. a variable in one mode 

without discarding any variable in the other (e.g. a slice 𝐗.𝑗. or a slice 𝐗.𝑘.) and ii) a 1-D feature 

(Figure 5.1.c), i.e. a single variable in each mode (e.g. the column 𝐱.𝑗𝑘). 
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FIGURE 5. 1 - Features in a 3-way array represented in (a) J-axis slice, (b) K-axis slice and 

(c) J,K-column (Biancolillo et al., 2022). 

5.2.1.2 Algorithm 

N-CovSel algorithm is an extension of the above mentioned CovSel feature selection 

approach by Roger et al. (2011) to high-order data. To assess the relevance of features in a 3-

way array (X) context to predict a response vector y relying on covariance, Biancolillo et al. 

(2022) defined the N-CovSel algorithm as follows: 

1) Determine the structure of the features to be selected, i.e. columns or slices. 

2) Define the number of features to be selected. 

3) Select the feature of X with the highest squared covariance with y. 

4) Deflate X of the information present in the selected feature. 

5) Continue from Step 3 until the value defined in step 2 is reached. 

5.2.2 Case-study 

The Languedoc-Roussillon (LR) wine-growing area experienced a heatwave from the 

23rd of June to the 8th July of 2019, with temperatures reaching 45°C on 28th June, 2019. 

Extreme weather events, such as a heatwave, occurring on very rapid time scales during crucial 
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periods of vine plant development (e.g. growing stage) will induce symptoms that may lead to 

stalled development, leaf burn and leaf drop (Schymanski et al., 2013; Lopez-Fornieles et al., 

2022). According to Cogato et al. (2019a), remote sensing data could provide valuable 

information from spectral-temporal dimensions to characterise the impact of heatwaves on 

perennial crops by providing a detailed time series of data on the physiological and physical 

properties changes of the cultivation (Plant et al., 2000).  

The N-CovSel algorithm should therefore constitute a relevant approach to create a 

model on a reduced set of information highlighting the extreme weather phenomenon taking 

into account its spectral-temporal evolution. 

5.2.2.1 Ground truth data 

Ground truth data were selected from 107 non-irrigated vineyard blocks in the northern 

part of the LR region that all showed some effects related to the heatwave (Figure 5.2.a). The 

severity of this effect was assessed by winegrowers and advisors on each of the 107 vineyard 

blocks by estimating the percentage of yield loss several weeks after 28th June 2019 

corresponding to the peak of the extreme weather event. Severity was assessed several weeks 

later by estimating the percentage yield loss based on heatwave-related effects such as stalled 

development, scorching and leaf drop. It was acknowledged that it was sometimes difficult to 

attribute losses exclusively to the heatwave. Figure 5.2.b summarises the distribution of the 107 

blocks according to yield loss.  

FIGURE 5. 2 - (a) Map of the 107-ground truthed blocks with known estimated percentage of 

yield loss after the heatwave and (b), percentage of yield losses observed by winegrowers and 

advisors on 107 vine blocks in southern France (Lopez-Fornieles et al., 2022). 

(a) (b) 
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5.2.2.2 Remote sensing data 

Satellite images were selected via the Google Earth Engine (GEE) platform that 

provides Sentinel-2 L2A products. Sentinel-2 (A/B) satellites, with a revisit frequency of 10 

days (5 days with the twin satellites together), provide 13 spectral bands from visible (Vis) to 

shortwave infrared (SWIR) with a spatial resolution of 10 m, 20 m and 60 m depending on the 

spectral band (Table 5.1) (Lopez-Fornieles et al., 2022). Spectral band 10 at 1380 nm was not 

used in this study as it is designed for the detection of visible and sub-visible cirrus clouds 

(Hollstein et al., 2016).  

TABLE 5. 1 - Spectral bands for the Sentinel-2 satellite considered by the analysis. 

Sentinel-2 Band Central 

Wavelength 

(nm) 

Bandwidth       

(nm) 

Spatial Resolution (m) 

Band 1–Aerosol 442.7 21 60 

Band 2–Blue 492.4 66 10 

Band 3–Green 559.8 36 10 

Band 4–Red 664.6 31 10 

Band 5–Vegetation Red Edge 704.1 15 20 

Band 6–Vegetation Red Edge 740.5 15 20 

Band 7–Vegetation Red Edge 782.8 20 20 

Band 8–NIR 832.8 106 10 

Band 8A–Vegetation Red Edge 864.1 21 20 

Band 9 –VNIR 945.1 20 60 

Band 11–SWIR 1613.1 91 20 

Band 12–SWIR 2202.4 175 20 

 

Images containing the study vineyards were selected and processed via Google Earth 

Engine (GEE) (Lopez-Fornieles et al., 2022). Images were selected over a period encompassing 

the heatwave event; from 13th May to the 20th August 2019. Before calculating the average 

pixel values for each block, each date and each waveband, in order to avoid mixed pixels: i) 

blocks boundary were extracted from the graphical parcel register of France (RPG) and ii) a 10 

m inner-buffer was imposed over the boundary of each block (Lopez-Fornieles et al., 2022). 

For the time period considered for the study (from May to August), defined as the most 

relevant period for monitoring vine growth vegetation in LR region (Devaux et al., 2019), 25 

images should have been potentially available on each block. However, the number of images 

per block varied according to the local atmospheric conditions over each block for each 

acquisition date (Lopez-Fornieles et al., 2022). The number of available images for each block 

was 11 on average, being 8 the standard deviation of the set of values. 
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5.2.2.3 Modelling 

Data array construction 

 

To overcome the challenge of heterogeneity in the number of images per block, an 

interpolation was performed to obtain a continuous data cube X (I × J × K). The interpolation 

at a date t was done wavelength by wavelength, by a convolution of the chronology measured 

with a Gaussian filter (Alam et al., 2008) in order to have a consistent time step dimension (J) 

between the 13th May and 20th August, 2019. The parameters involved in the interpolation 

setting were fixed to the Gaussian filter width (P) = 30 and date interval (N) = 5.  

At the end of the interpolation step, the data set was meaningfully arranged in a three-

way array X of dimensionality 107 (samples, I) × 19 (times, J) × 12 (wavelengths, K) and a 

vector y (107), corresponding to the yield loss rates of the107 blocks. 

 

Model calibration and validation 

 

A calibration and validation subset were created to build and evaluate the model. 

Considering the samples from the variable to be predicted, a calibration set (3/4) and a test set 

(1/4) have been defined by its distribution (Figure 5.2.b), as follows Lopez-Fornieles et al. 

(2022): 

1) The vector y was sorted in ascending order. 

2) After sorting, every fourth individual was placed in the validation set and the others 

were kept in the calibration set. 

 

At the end of this step, the data were therefore: i) a calibration set Xc (I=80, J=19, K=12) 

and ii) a test set Xt (I=27, J=19, K=12). 

Regression model application 

As explained in Section 5.2.1.1, when selecting features in a 3-way array, different 

outcomes of N-CovSel were obtained. Thus, the structure of the initial data was reduced in 

either time or wavelength slices (2-D features) or in columns (1-D features), i.e. date-

wavelength coupling.  

For the structure features (F) in 2-D, the number of best features in the calibration set 

was defined as follows:  

 For the temporal slices (Figure 5.1.a), the number of features defined was F =15. Thus 

the F=15 dates were sorted in decreasing order of interest, providing a list of indices {j1, 

j2, …, jF}. 
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 For the spectral slices (Figure 5.1.b), as the total number of Sentinel-2 satellites 

wavelengths is 12, the number of features defined was F =12. Thus, the F=12 

wavelengths were sorted in decreasing order of interest, providing a list of indices {k1, 

k2, …, kF}. 

 For the structure features in 1-D (Figure 5.1.c), the number of features defined was F= 

15. Thus, the F=15 date-wavelength coupling was sorted in decreasing order of interest, 

providing a list of pairs of indices{(j1,k1), (j2,k2), …, (jF,kF)}. 

Once the N-CovSel algorithm had selected the variables’ relevancy on the basis of their 

covariance with the response(s) (Biancolillo et al., 2022), a regression model adapted to the 

reduced data set was applied. Depending on the structure of the selected features, different data 

analysis strategies can be applied. In the case of 2-D, as the feature selection is of higher order, 

features have been analysed using multi-way approach, whereas in the case of 1-D the most 

intuitive option was to combine them into a matrix, and then applying a traditional chemometric 

approach (Biancolillo et al., 2022), as follows:  

 For the temporal slices, F= 15 N-way Partial Least Squares (N-PLS) models (Bro, 1996) were 

then calculated on the calibration set, using the slices {j1}, {j1, j2}, …, {j1, j2, …, jF}.  

 For the spectral slices, F= 12 N-PLS models (Bro, 1996) were then calculated on the calibration 

set, using the slices {k1}, {k1, k2}, …, {k1, k2, …, kF}.  

 For the columns (date-wavelength), F= 15 Partial Least Squares (PLS) models (Wold et al., 

2001) were then calculated on the calibration set, using the columns {(j1,k1)}, {(j1,k1), (j2,k2)}, …, 

{(j1,k1), (j2,k2),…, (jF,kF)}.  

Figure 5.3 summarises the workflow of the N-CovSel model calibration, and its 

implementation for a regression model according to the structure of its outcomes (slice or 

column). 
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FIGURE 5. 3 - Workflow diagram of the N-CovSel model calibration and the suitable choice 

of the regression method according to the structure of the features selected by the algorithm. 

 

Model evaluation 

For each regression model calculated (N-PLS and PLS), a Standard Error of Calibration 

(SEC) was calculated, using the maximum number of latent variables (LV). In addition, a cross-

validation of 8 random blocks repeated 20 times, provided a Standard Error of Cross-Validation 

(SECV), using the same number of LVs. The joint analysis of SEC and SECV, according to the 

specific features (F) of the models, either according to the number of slices used (2-D) or the 

number of date-wavelength couplings used (1-D) was considered for the selection of optimal 

N-PLS and PLS models, respectively. 

These three different PLS models (two multi-way and one uni-way) were then applied 

to the test set. Bias and Standard Error of Prediction (SEP) were calculated on this prediction. 

Thus, the predictive performance of the regression models was quantified by the standard 
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coefficient of determination R2, the bias and the standard error parameters in the calibration and 

test subsets. 

 

5.3 Results 
 

5.3.1 Three-way data array over the study case 

The remote sensing data were organised in a three-way array (X) without temporal data 

gaps due to clouds and inconsistent number of available satellite images. Figure 5.4 shows the 

interpolated spectra on the J =19 dates, for the I = 107 plots.  

Figure 5.4 shows typical properties of a time series that should not be neglected in 

satellite-based studies and applications. A high correlation between wavelengths was observed 

for nearby dates, which can be explained by the following factors: i) remote sensing datasets 

themselves tend to be data structures with high covariance and redundancy (Lopez-Fornieles et 

al., 2022) and, ii) by interpolating missing data, the correlation within the multivariate data 

structure was increased. Moreover, other potential sources of uncertainties such as 

multiplicative and additive effects may have affected the reflectance measurement values for 

the interpolated spectra (Richter et al., 2012). According to Liu et al. (2006), the combination 

of factors such as varying atmospheric conditions, varying sun-target-satellite geometry and 

sensor degradation could influence the final measurement value on time-series images by 

causing the above-mentioned effects.   
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FIGURE 5. 4 - Interpolated spectra on the J =19 dates, for the I = 107 plots. 

5.3.2 Quality of the regression models 

Figure 5.5 shows the evolution of the SEC and SECV of an N-PLS for a cross-validation 

of 8 blocks repeated 20 times of a N-PLS calibrated on the temporal (Figure 5.5.a) and the 

spectral (Figure 5.5.b) slices selected by N-CovSel algorithm. It should be noted that the 

selected features, either dates or wavelengths, were ordered by the N-CovSel algorithm from 

highest to lowest covariance between the calibration set (Xc) and the y-vector (ground truth 

data).  

This figure highlights a classical phenomenon for both graphs: a phase of decrease of 

the SEC, which corresponds to an improvement of the explanatory value of features, then a 

phase of increase of the SECV (while the SEC keeps on decreasing), which corresponded to 

the overlearning phase. On the basis of this joint analysis, the appropriate number of features 

for the two different N-PLS models were 6 temporal slices (Figure 5.5.a) and 7 spectral slices 

(Figure 5.5.b). 
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FIGURE 5. 5 -. Evolution of the SEC and the SECV criteria for an 8-block, 20-fold cross-

validation of a N-PLS between (a) the temporal features (slices) selected by N-CovSel and the 

y losses and (b) the spectral features (slices) selected by N-CovSel and the y losses. The black 

frame indicates the optimal number of (a) temporal features (F = 6) and (b) spectral features (F 

= 7) selected. 

Figure 5.6 presents the evolution of the SEC and SECV criteria for a cross-validation of 

8 blocks repeated 20 times of a PLS calibrated on the date-wavelength columns selected and 

sorted by N-CovSel algorithm. Based on this joint analysis, the suitable number of features for 

the PLS model w 9 date-wavelength columns. 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
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FIGURE 5.6 - Evolution of the SEC and the SECV criteria for an 8-block, 20-fold cross-

validation of a PLS between the date-wavelength features (columns) selected by N-CovSel 

algorithm and the y losses. The black frame indicates the optimal number of columns (F= 9) 

selected.  

The quality and performance of the temporal and spectral N-PLS models and of the 

date-wavelength-pair PLS model are presented in terms of the standard error of the calibration 

(SEC), the standard error of cross-validation (SECV) in the calibration set, the standard error 

of prediction of losses (SEP) in the test set, R2 and the bias (Table 5.2).   

A SEP over the predictions set between 11 and 13 % (Table 5.2) was consistent with 

the initial variability of the ground truth data (Section 5.2.2.1) due to the information required 

by the winegrowers to correctly characterise the level of the heatwave impact on a vineyard 

block. 
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TABLE 5. 2 - (a) N-PLS yield loss prediction results using the first 6 slices (temporal) selected 

by N-CovSel algorithm on individuals in the calibration set, with 80 vineyard blocks and in the 

test set, with 27 vineyard blocks. (b) N-PLS yield loss prediction results using the first 7 slices 

(spectral) selected by N-CovSel algorithm on individuals in the calibration set, with 80 vineyard 

blocks and in the test set, with 21 vineyard blocks. (c) PLS yield loss prediction results using 

the first 9 pairs (date-wavelength) selected by N-CovSel algorithm on individuals in the 

calibration set, with 80 vineyard blocks and in the test set, with 27 vineyard blocks. 

 

 

5.3.3 Interpretation of the selected features 

5.3.3.1 Extraction of 2-D features 

Temporal slices 

Figure 5.7 illustrates the operation of the N-CovSel algorithm, searching for 2-D 

features along temporal mode. Each sub-figure corresponds to the selection of a 2-D feature, 

i.e. a date. Each subplot represents 𝑐𝑜𝑣2(X.𝒋, 𝐲) as a function of the temporal dimension; the 

maximum of each curve corresponds to the selected features of X in the second dimension with 

Features F optimal SEC (%) SECV (%) R2 (%) Bias (%) SEP (%) 

(a) Temporal slices 6 12.1 14.2 0.62 -1.1 11.4 

(b) Spectral slices 7 11.3 14.2 0.61 -1.4 13.0 

(c) Date-wavelength columns 9 1.3 13.1 0.63 -2.3 11.7 
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the highest squared covariance with y. Each subplot (round) shows clear peaks, allowing the 

identification of dates involved in the prediction of yield losses. It should be noted that, for each 

round, the algorithm highlighted a different date of the time-series. Indeed, each curve showed 

a low value area around the previously selected variable and the overall amplitude of the curves 

for each round decreased as the features were extracted. These two particularities ensured that 

the selected features were at most complementary, i.e. at least correlated. 

FIGURE 5. 7 - Evolution curves of 𝒄𝒐𝒗𝟐(𝑿.𝒋, 𝒚) as the first 6 temporal slices were selected by 

N-CovSel. The selected feature corresponds to the maximum of each curve; the corresponding 

dates are shown in red. 

The first round showed three local peaks (5th June, 30th June and 20th July) which did 

not appear in the subsequent rounds until the fifth one (5th June), meaning that the peaks, as 

well as their information, were correlated with each other. Thus, the information retained for 

the 20th (the global maximum peak) of July translated the information of a continuous spectral 

phenomenon from the beginning of June to the end of July that conditioned the final yield losses 

of the vineyard blocks, i.e. round 1 showed a phenomenon independent of heat stress. The 

second round represented the first available date of the study period and the third round (15th 

June) highlighted a date prior to heat stress. This indicated that the initial conditions of the 

vineyard blocks (before the extreme weather event) were also related to the observed final yield 

losses. The sixth round was the most indicative of the heatwave that occurred between 23rd June 
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and 8th July 2019 in view of their time frame. The fourth round showed two local peaks, on 14th 

August and 5th June and the fifth round showed the global peak on one same date, the 5th of 

June. This implied that as these were two consecutive rounds, the information contained in the 

14th August (round 4) was independent from the 5th June round (round 5) in terms of final yield 

losses, i.e. the two dates were not correlated. 

Spectral slices 

Figure 5.8 illustrates the operation of the N-CovSel algorithm, searching for 2-D 

features along spectral mode. Each sub-plot corresponds to the selection of a 2-D feature, i.e. a 

wavelength. Each subplot represents 𝑐𝑜𝑣2(𝐗.𝑘, 𝐲) as a function of the spectral dimension; the 

maximum of each curve corresponds to the selected features of X in the third dimension with 

the highest squared covariance with y. 

Each subplot (round) showed clear peaks, allowing the identification of wavelengths 

involved in the prediction of yield losses. It should be noted that, for each round, the N-CovSel 

algorithm highlighted a different wavelength of the spectrum. As mentioned for Figure 5.7, the 

particularities also shown in the Figure 5.8 ensure at most complementarity. 
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FIGURE 5. 8 - Evolution curves of 𝒄𝒐𝒗𝟐(𝑿.𝒌, 𝒚) as the first 7 spectral slices were selected by 

N-CovSel algorithm. The selected feature corresponds to the maximum of each curve; the 

corresponding wavelengths are shown in red. 

 

It was noted that in round 1 (945 nm), the spectrum shown was the average spectrum of 

the vegetation. Although Clevers et al. (2008) determined that when looking through the 

atmosphere, the water band absorption in the 940 nm region should be considered to obtain 

information on the canopy water content, the shape of the displayed spectrum suggests that the 

945 nm spectral band represents more of a multiplicative effect in the data. The 945 nm 

wavelength region had the highest covariance, i.e. the highest overall reflectance intensity, and 

this is the reason why the algorithm selected and sorted it in the first round. Regarding the 

spectral slices selected in the second and third rounds, with the range between 1600 nm and 

2500 nm, i.e. in the shortwave infrared (SWIR) domain, it is well-known that the reflectance in 

this region of the spectrum is strongly correlated with vegetation water content (Jopia et al., 

2020; Holzman et al., 2021). However, the second round (2190 nm) showed a baseline additive-

type trend profile that reveals, as the first round, possible effects derived from the remote 
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sensing spectral measurement. It should be noted that these determinations of possible effects 

do not mean that the two rounds cannot provide information that could explain the changes in 

water concentration in the vineyard blocks. The following rounds highlighted spectral slices 

including the red-edge band at 705 nm (round 4) and the near-infrared (NIR) band at 842 nm 

and 865 nm (rounds 5 and 7) with round 6 determining the 490 nm wavelength, known as the 

blue band. Red-Edge region is related to leaf chlorophyll concentration (Laroche-Pinel et al., 

2021b) and the reflectance in the NIR region is mainly affected by leaf and canopy structure 

(Slaton et al., 2001). The higher reflectance at 490 nm may be due to a strong reflection from 

dead biomass (Lorenzen & Jensen, 1988). 

 

5.3.3.2 Extraction of 2-D features 

 

Date-wavelength columns 

 

Figure 5.9 shows the operation of the N-CovSel algorithm searching for 1-D features, 

i.e. pairs of dates-wavelengths. Each sub-plot represents the map of 𝑐𝑜𝑣2(𝐱.𝑗𝑘, 𝒚) as a function 

of the temporal and spectral domains; the global maximum in each sub-map corresponds to the 

selected features of X in the second and third dimension with the highest squared covariance 

with y.  

 

Each subplot (round) highlighted a different region of the temporal-spectral domain, 

allowing the identification of date-wavelength pairs involved in predicting yield losses. As for 

the 2-D extraction, for each round, the information correlated with the previous selected 

variables was removed, thus significantly decreasing the variance of the neighbouring variables 

in the following steps (Biancolillo et al., 2022). 

 

 

 

 



CHAPTER 5. DETERMINATION FROM MULTISPECTRAL TIME SERIES DATA  

OF THE MOST DISCRIMINANT SPECTRAL AND TEMPORAL DOMAINS 

FOR GRAPEVINE VEGETATIVE GROWTH’S CHARACTERISATION  

 IN RELATION TO AN EXTREME WEATHER EVENT 

 

182 
 

FIGURE 5. 9 - Evolution map of 𝒄𝒐𝒗𝟐(𝒙.𝒋𝒌, 𝒚) as the first 9 pairs (date-wavelength) selected 

by N-CovSel. For each of the 9 rounds, the date-wavelength selected columns are highlighted 

by a red square. Dates and wavelengths are texted in pink. The colour gradient represents from 

yellow to blue, the highest and the lowest values of covariance between the date-wavelength 

pair (column) and the y-vector respectively. 

The first round, unlike the others, indicates a spectral region as well as consecutive 

dates, thus determining an overall reflectance effect. It was observed that both the temporal and 

spectral dimensions had a low frequency i.e. the N-CovSel algorithm highlighted the entire 

study period containing the spectral region from 783 nm to 1610 nm (yellow). This result 

indicates that the overall effect of the reflectance, i.e. all-season vegetative profile that was 

related to the estimation of yield losses observed by the wine growers and advisors by means 

of maximum values of covariance. The remaining rounds showed high frequencies but in two 

of the different ways: (i) the second and third rounds showed high frequencies but which were 

prolonged either in the temporal dimension (round 2) or in the spectral dimension (round 3). 

For example, focusing on the second round, it should be noticed that the yellow colour appears 

from the 30th of June, with a maximum peak on the 30th of July but lengthening the high 

frequency until the 9th of August, at the wavelength 2190 nm; (ii) the remaining rounds from 

the fourth to the ninth, showed high local frequencies, i.e. covariance peaks, which highlighted 

more clearly a single date paired to a single wavelength.  
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Regarding the 1-D feature specificity of each round, the second, sixth and eighth rounds 

highlighted the wavelength 2190 nm, but with different dates, 30th July (round 2), 5th June 

(round 6) and 21st May (round 8). Laroche-Pinel et al. (2021a) demonstrated that the wavelength 

2190 nm was one of the most discriminating for vine water status monitoring on a large scale. 

The three widely temporally spaced rounds may have been indicative of different responses of 

the various vine growth stages to water variation. The SWIR region is known to be sensitive to 

cell structure and water vegetation content (Huo et al., 2021). The date of 21st May, which also 

contained the wavelength in the SWIR region, was previously selected by the algorithm in the 

fourth and seventh rounds with the wavelengths 945 nm and 705 nm respectively. From the 

different wavelengths selected for the same date, it was determined that the initial vineyard 

blocks conditions related to the water status (2910 nm) as well as their chlorophyll 

concentration (705 nm) were related to the final yield losses. Besides the above, on this same 

date (21st May) the wavelength of 945 nm was highlighted. As shown in Figure 5.8, this 

wavelength could be representative of a multiplicative effect of the database and not represent 

agronomic information of interest. Just as the initial conditions of the set study period (May) 

were selected by the algorithm, so were the conditions at the end of the study period (August). 

The ninth round highlighted the pair on 19th August and the wavelength 865 nm. Reflectance 

between 685 nm and 700 nm has been established as one of the most sensitive for detecting 

plant stress (Gitelson et al., 1996).The third and fifth rounds were the closest in time to the heat 

episode that occurred between the 23rd June and the 3rd July 2019. The selected date-wavelength 

pairs were as follows: 10th June - 842 nm (round 3) and 10th July - 1610 nm (round 5). 

Reflectance at 842 nm is mainly related to leaf internal structure (Raddi et al., 2021). The high 

reflectance at this wavelength may have indicated a relevant change in morphology and canopy 

structure. As demonstrated by Raddi et al. (2021), the reflectance around 850 nm increases with 

season and severe stress factors. Regarding reflectance at 1610 nm, many studies reported the 

strong correlation of leaf water content with reflectance at wavelengths ranging from 1400 and 

1900 nm (Champagne et al., 2003; Das et al., 2018). Thus, round 3 (10th June - 842 nm) could 

represent the water restriction (in the absence of irrigation) just before the heat stress during a 

period of high plant growth in the LR zone. This indicates that water stress in vineyard blocks 

before an extreme heat episode could have been an aggravating factor for yield loss. Meanwhile, 

round 5 (10th July - 1610 nm) could represent the subsequent effect of a sudden and strong 

heatwave on the water status of the vines. 
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5.4 Discussion 

A generic example of the application of N-CovSel algorithm for variable selection was 

provided in the form of a time-series study in multispectral images. This paper showed the 

potential of methods originally developed in the analytical chemistry domain when applied to 

larger scales, e.g. in the life science domain. The application demonstrated the value of 

considering the feature reduction approach in the temporal and spectral dimensions for 

interpretation purposes in order to understand which variables contributed the most in the life 

science context presented. 

In order to predict and estimate yield losses caused by a heatwave on vineyards fields, 

the N-CovSel algorithm was used. Based on a variable selection procedure according to their 

global covariance, the contributions of the temporal and spectral parts and their joint effect in 

the prediction of yield losses were characterised through three regression models. The 

performance of the models are as follows: for the temporal N-PLS model (R² = 0.62 – SEP = 

11.4 %), for the spectral N-PLS model (R² = 0.61 - SEP = 13 %) and the temporal-spectral PLS 

model (R² = 0.63 - SEP = 11.7 %). From a predictive point of view, Lopez-Fornieles et al. 

(2022) already demonstrated that the application of the multidirectional regression method such 

as the N-PLS algorithm is appropriate to characterise and estimate the impact of an extreme 

event on grapevine. However, the interpretability offered by N-CovSel proved to be a very 

useful tool for understanding the agronomic processes underlying the spectral response of the 

crops over the time. It is well documented in the scientific literature that satellite monitoring of 

interactions between plants and light reflectance, in situations where crops interact with any 

aspect of their environment (e.g. extreme weather events), results in changes in plant signal 

(Knipling, 1970; Segarra et al., 2020). The variable selection approach identified the most 

significant features in a multidirectional environment, i.e. in a 3-way array, by selecting 2-D 

features (temporal and spectral slices) or 1-D features (date-wavelength columns) to be 

implemented within the model construction. Previous studies have shown similar results 

regarding the effects of heat stress from reflectance data in viticulture (Cogato et al., 2019b; 

Lopez-Fornieles et al., 2022), but notably, in the presented approach, the subset of features was 

selected simultaneously in two dimensions of the satellite information, i.e. temporal and 

spectral (Lopez-Fornieles et al., 2022). This selection procedure allows not only to identify the 

most significant wavelengths of the extreme weather episode but also knowledge on its a priori 

and a posteriori impact by integrating the temporal analysis from the N-way feature selection 

algorithm. 

Since N-CovSel algorithm eliminates the correlation between variables by projecting 

the data orthogonally to the selected variable for the neighbouring variables in the following 

steps (Biancolillo et al., 2022), it is ensured that all selected features are at most complementary 

to each other. Furthermore, it is possible to sort the selected variables from the highest to the 
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lowest covariance related to observed yield losses. From the temporal slices (2-D features) 

selected and sorted, three important periods were observed that defined the data to be predicted 

i) the initial dates of the study period, centred on 21 May, ii) the dates close to the heatwave 

that occurred between the 23 June and 8 July and iii) the end of period dates, centred on 14-19 

August. For the spectral slices (2-D features), the most important wavelengths (maximum 

covariance values) that were selected are known to be related to water absorption (Segarra et 

al., 2020) which may be indicative of the water status as the main factor affecting vine 

development. Wavelengths corresponding to the SWIR domain were observed from the date-

wavelength columns (1-D feature) for the following dates ordered from highest to lowest 

covariance: 30th July - 2190 nm, 10th July - 1610 nm, 5th June - 2190 nm, 21th May - 2190 nm.  

As reflectance at 2190 nm is known to be relevant for monitoring vine water status at large 

spatial scale (Laroche-Pinel et al., 2021b), its selection at different dates throughout the study 

period shows the inconsistency of considering that yield loss is only due to heat stress. Indeed, 

the initial conditions (21st May) of water stress (2190 nm) (Laroche-Pinel et al., 2021b) as well 

as the information on the characteristics of the plant physiology in the Red Edge (700 nm) 

(Lopez-Fornieles et al., 2022) were already decisive for the final prediction. Given the 

proximity of the dates to the extreme weather event and that the detection of severe drought 

stress is centred at the wavelength 1610 nm (Cogato et al., 2019b), the date-wavelength pair of 

10th July - 1610 nm was considered by the N-CovSel algorithm concerning the heatwave 

episode. The theory that the spectral response of the canopy representing the physiological 

behaviour of the grapevine, is affected by stress conditions due to fluctuations in ambient 

temperature, is well demonstrated in scientific literature (Cogato et al., 2021). In the final period 

of the study (still in full production), although after the collection of ground truth data on the 

condition of the vineyard blocks after the heatwave, the N-CovSel algorithm emphasised the 

19 August - 865 nm pair. The reflectance in the Vegetation Red-Edge region (865 nm) is known 

in the literature as one of the most discriminating bands for water status (Laroche-Pinel et al., 

2021b). The results of the present analysis confirm, with a variable selection approach, that a 

combination of SWIR (1610-2190 nm) (Das et al., 2018), Red-Edge (705 nm) (Ballester et al., 

2018) and Red-edge Vegetation (865 nm) (Maimaitiyiming et al., 2017), is a valuable indicator 

for monitoring water status (Laroche-Pinel et al., 2021a). 

The main advantage of using the N-CovSel algorithm for the remote sensing images is 

that being a methodology adapted for N-way arrays, the temporality and the spectral 

information are considered simultaneously. In the context of the life science case study, this 

allowed to establish that the heatwave was not the only explanatory factor of the final yield 

losses observed by the winegrowers and advisors. By temporally discriminating the most 

appropriate spectral information to characterise the beginning or end of the development 

season, as well as extreme events, it was observed that these were the integrating result of a 

series of factors that were mainly related to water restriction in key periods for plant 

development. 
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It is essential to place the results presented in this paper within the reality of 

multitemporal satellite data as they are sensors that measure reflected energy within several 

specific bands of the electromagnetic spectrum (Pettorelli et al., 2014). This implies that, as for 

the field of NIR spectroscopy (Isaksson & Næs, 1988), effects related to the reflectance of the 

spectrum are present in the analysis. The N-CovSel algorithm allowed the identification of 

multiplicative and additive effects in the selection of 2-D features. The choice to retain the 

observed effects was taken, as they could be important information in the interpretation of the 

model (e.g. wavelength 2019 nm). However, their removal at an early stage could have 

prevented the occurrence of effects in the covariance-based selection, e.g. wavelength 945 nm, 

mainly dedicated to atmospheric features detection (Verrelst et al., 2012). It should be noted 

that, due to the type of approach, the model should only be suitable for the year (2019) and the 

region (LR) considered. Thus, subsequent models remain specific to the learning base used for 

the calibration and their generalisation to other crops and/or other agricultural regions is rather 

limited. 

Further applications are required before confirming the operational reliability of the N-

CovSel method, in particular to provide spectral-temporal features to identify areas with 

different water restriction dynamics. For this, it will be necessary to complete the results of this 

study by extending the variable selection analysis to other types of phenomena, both those with 

a strong temporal evolution (e.g. extreme weather event such as hail) and those without (e.g. 

water scarcity in summer season), in order to better determine the dynamics of crop 

development and thus the reasons for its main cause-effects. As it appears that N-CovSel could 

be an efficient method addressing multiple response cases, an application study case to be 

studied would be its direct application to multispectral images, thus taking into account the 

spatial dimension. 
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Conclusion of Chapter 5  
 

In this chapter it was decided to deal with complex datasets using a variable selection 

(or feature extraction) method to select a relatively small number of total variables and restrict 

it to the most significant ones for subsequent application in regression modelling. The approach 

selected was N-CovSel, which was designed to assess the relevance of variables in terms of 

their covariance with the response(s). The use of this method needs to be repositioned in the 

context of high-dimensional data as, to the authors' knowledge, there are few variable selection 

methods that account for more than one dimension at the same time, i.e. that consider data 

collected in a higher order structure. Therefore, the main objective of this chapter was to 

propose a formalism to apply the N-CovSel approach to a time-series of images at the regional 

scale in order to predict a variable of interest considering simultaneously the spectral and 

temporal dimension. More specifically, the N-CovSel approach was used to determine the 

spectral domains and time periods that appeared to be most relevant for assessing vine yield 

loss as determined by consultants and grape growers a few weeks after a heatwave event in 

2019. The selected variables were used for subsequent application to a N-PLS or PLS model, 

depending on the structure of the variables selected (slices or columns). The prediction results 

were very similar with respect to those obtained in Chapter 4. Nevertheless, the results obtained 

in terms of information on the involvement of the temporal dimension in the analysis are very 

different, with the N-CovSel method being considerably simpler and easier to interpret. 

The results showed the potential of N-CovSel as the spectro-temporal variables selected 

in the modelling process helped to understand the phenomenon studied. In fact, results related 

to the characterisation of yield losses revealed that although the heatwave had an impact on 

vineyards, its cause-consequence relationship was not direct. Other factors, such as initial crop 

conditions, proved to be important in characterising the significance of the impact suffered by 

the vineyards. The combination of SWIR (1610-2190 nm), Red-Edge (705 nm) and Red-edge 

Vegetation (865 nm) were the spectral domains that best characterised yield losses over time. 

This led to an assumption that water restriction is the main factor which affects plant 

development throughout its vegetative cycle in the LR region. The important contribution of 

this chapter and the method used is to highlight the implication of temporality in the expression 

of vegetative growth is fundamental to characterise yield losses induced by a heatwave.  
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6.1 Conclusions 
 

Independent analysis of the spectral and temporal dimensions of remote sensing data 

does not allow a detailed analysis of crop dynamics at the field level over large scales. Despite 

this, it is hypothesised that high-resolution time series (i.e. less than a week of revisit time) of 

satellite imagery could be a suitable option for large-scale crop monitoring. Nowadays, the 

availability of time series of satellite images acquired from different satellite platforms, such as 

Sentinel-2, allows for near-real time monitoring. Nevertheless, it must be taken into account 

that the exploitation of multitemporal and multispectral remote sensing data for large-scale 

applications generates additional problems due to the large amount of different information that 

is collected. That is to say, when the time dimension is added as an explanatory variable of the 

spectral variation to be characterised, higher-dimensional data management is needed. 

Therefore, the exploitation of image time series in this manner raises methodological problems, 

as it involves a high volume of complex, heterogeneous and generally incomplete data. 

Based on this statement, this thesis focused on the use of chemometrics methods to evaluate the 

integration of multi-spectral remote sensing time series as a potential source of relevant 

information for monitoring crop dynamics at a regional decision scale. To this end, high-

dimensional Sentinel-2 satellite time series data were used to characterise the physiological 

properties of grapevines during their growing season from their spectro-temporal signatures for 

specific years. Two clear scientific issues were identified, which are recalled here:  

- How to integrate/consider the temporal dimensions in the analysis of 

multispectral time series images for crop monitoring in agriculture? 

- Does the simultaneous consideration of the spectral and temporal dimension in 

time series provide more relevant and detailed way of capturing crop changes?   

The answers to these questions are summarised below, before outlining some 

perspectives (6.2). 

In Chapter 2, the potential of remote sensing time series data to assess water restriction 

in vineyards using a conventional approach, such as NDVI was assessed. This first step to verify 

the potential of multispectral satellite imagery showed that an approach based on the empirical 

cumulative distribution function of NDVI values was relevant to classify vineyard blocks 

according to their water restriction. However, it also showed limitations in terms of temporal 

analysis and interpretation for crop monitoring derived from such vegetation indices, especially 

for crops, such as grapevines, where the changing presence/absence of the soil due to different 

management practices has a strong implication for the characterisation of changes in the 

spectral response within the imagery as the season and crop develops. The difficulty of 

visualising and interpreting raw data from vegetation indices was the starting point to expose 
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the current limitations (spectral and temporal) of these approaches and to determine why there 

is a demand for a paradigm shift in time-series vegetation monitoring. 

Based on the assumption that the use of temporal variations in satellite imagery, in 

addition to spectral variations, will allow a more complete analysis and monitoring of the 

dynamics of the spectral response of crops, a move towards the use of chemometric methods 

was chosen in order to address the methodological challenge of managing the high 

dimensionality of these spectro-spatio-temporal data. For this purpose, unsupervised 

approaches (Chapter 3), supervised approaches (Chapter 4) and approaches based on variable 

selection (Chapter 5) were evaluated to determine if they were more holistic for the processing 

of multispectral images time series. 

In Chapter 3, starting from the exploration of the potential of multispectral time series 

imagery for crop monitoring at regional scales with multi-way methodologies that are able to 

handle the high dimensionality of RS data, the objective was to see if the addition of the 

temporal dimension in the analysis facilitated the interpretation of crop dynamics. Within the 

context of a study applied at the field (vineyard block) scale, but representative of large scales, 

it is important to be aware of the operational limitation of the lack of field data (real 

observations) inherent to these decision scales. For this reason, it was considered appropriate to 

use, as a first approach, unsupervised chemometric methods that deal with high dimensionality, 

which in this case involved the temporal dimension, to see if they enhanced the understanding 

gained from crop monitoring. The results obtained with the PARAFAC methodology 

highlighted the interest of the simultaneous integration of the temporal and spectral dimension 

for identifying and interpreting spatial regional/local specificities (e.g. the presence/absence of 

irrigation sectors) in vineyard blocks for the years 2019 and 2020. The spectro-temporal profiles 

obtained were useful to understand the spatial variation of the spectral response of vine 

cultivation (soil-vegetation dynamics) over time through the evaluation of the score maps by 

viticulture experts. Given the context of this large-scale study, the methodology used to explore 

the multitemporal and multispectral data relied on expert knowledge as an alternative validation 

framework. However, although the PARAFAC methodology showed potential for 

characterising large-scale vineyard cultivation, the assumption of the trilinear structure of the 

data forced a temporal interpolation that may eventually mask relevant spectral variations for 

the proper monitoring of the crop evolution. Therefore, as an alternative method to solve the 

multi-way data analysis problem that does not require a continuous cubic structure (i.e. no 

temporal interpolation), the MCR-ALS methodology was proposed. The application of MCR-

ALS did not provide further knowledge related to the characterisation of the grapevine crop, 

but aimed to provide a different approach to the PARAFAC method and the treatment of the 

raw temporal satellite data, opening the possibility of a more robust and interpretable 

characterisation of the evolution of the spectral response of grapevines. Both approaches were 

proven to be convenient methods to improve the large-scale understanding of the different 
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spatial behavioural patterns of grapevine cultivation by integrating their temporal dynamics. In 

addition, both methods showed the potential of including the spatial dimension for a better 

visualisation and interpretation of the results. 

In Chapter 4, in order to investigate the integration of the temporal dynamics of crop 

reflectance, the potential of a supervised approach that could link the high-dimensional 

information of the RS data to the ground truth data of interest was evaluated. The results 

validated the effectiveness of the proposed N-PLS method to analyse complex multispectral 

data with different spectral domains and a clear temporal evolution. In particular, its potential 

to capture more relevant and detailed vineyard dynamics for better crop monitoring at the 

regional scale was shown. By proposing a formalism to apply the N-PLS approach to a time 

series of RS images in order to predict a limited number of ground data, the interest of adopting 

a systemic analysis that simultaneously accounts for the spectral and temporal characteristics 

of the data under consideration was also demonstrated. The application of N-PLS to characterise 

and estimate the impact of an extreme weather event, a heat wave, in 107 vineyards located in 

the Languedoc-Roussillon (LR) wine region, showed that it was possible to predict yield losses 

with a R2 of 0.66 and an RMSE of 10.7 %. In addition to its predictive capability, the increased 

interpretability of the approach allowed the identification of the spectral bands around the red 

edge (700 nm) and the SWIR region (1600 nm) as being the most relevant. This was because 

their spectral profile showed a deepening of the time profile during the heat stress period, 

allowing the band information to be related to the recorded yield losses. 

The results of this study were complemented by further research, extending the analysis 

to the spatial distribution of the effect of an extreme weather phenomenon to 4978 vineyard 

blocks to determine its regional dynamics on yield loss. To this end, N-PLS was applied to a 

specific viticulture-based case to examine the effect of the heat wave that occurred on the 28th 

of June 2019 in the LR region. Although the validation of the model at the regional scale was 

performed on the basis of the maximum temperature observed on the 28th of June, 2019, which 

is a relatively simple approach to address a very complex phenomenon, the results showed the 

robustness of the methodology and its ability to map the spatial footprint of the heatwave that 

affected the south of France. Thus, it was shown that the high dimensionality of the data could 

be accounted for by using a systemic methodology that simultaneously took into account both 

the spectral and temporal characteristics to discriminate and characterise the impact of a heat 

wave on vineyards at a regional scale. 

Regarding this type of supervised approach, it must be noted that it was not able to 

handle temporal gaps in the data due to cloud/shading effects and/or the irregular availability 

of satellite images during the acquisition period. Temporal interpolation of the data to obtain a 

continuous three-way data structure was mandatory for the development of the method. In fact, 

the application of N-PLS would not be suitable for areas or seasons where image availability is 

strongly affected by cloudiness. 
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In Chapter 5, in order to further explore what complementary insights the temporal 

dimension can provide for the identification of the most discriminating spectral domains in 

relation to the development of a crop, the potential of a multi-way variable extraction/selection 

method was assessed: the N-CovSel method. As with the N-PLS approach, a continuous cube 

was also necessary to apply the methodology. The N-CovSel approach aimed to identify and 

characterise the most significant temporal (dates or periods) and spectral (spectral bands or 

domains) responses of the vine canopy to a stress period. For this purpose, the study aimed at 

identifying and interpreting the different effects caused by the same heat wave in 2019 (between 

23 June and 8 July) on the percentage of yield loss observed on 107 vineyard blocks in the LR 

region. The contributions of the temporal and spectral slices and their joint effect (date-

wavelength columns) in the prediction of yield losses were characterised through three 

regression models. The results of this study showed that the performance of the models defined 

according to a) spectral slices, b) temporal slices and c) spectral-temporal columns, offered 

equivalent quality and robustness of prediction with R² values between 0.62, 0.61 and 0.63 and 

a SEP of 11.4 %, 13 % and 11.7 %., respectively. Moreover, the results demonstrated the value 

of considering the variable selection approach in the temporal and spectral dimensions for 

interpretation purposes, as this allowed the importance of taking into account temporal windows 

to be established. It was determined that the temperature was not the only explanatory factor 

for the observed final yield losses, but rather it was the integrating result of a series of factors, 

including temperature, that were mainly related to water restriction in key periods of plant 

development. 

In conclusion, regarding the methodologies used, the innovative part comes from the 

explicit consideration of the temporal nature of the RS data with multi-way methods. As 

agricultural crops evolve over time within a season, relying on the analysis of the temporal 

dimension seems to be a relevant and interesting idea to better detect spectral variations related 

to crop changes. However, the characterisation of crop behaviour over time for each spectral 

band is meaningless if independently extracted for each image. The overall temporal ‘profile’ 

of the spectral reflectance curve of the crop needs to be taken into account to distinguish 

regional scale variations induced by climate and management practices at certain points in the 

growth cycle. Therefore, methodologies have been proposed and used that can handle high-

dimensional data that simultaneously incorporate spectral-temporal data. Moreover, with these 

chemometric methodologies that provides useful information, such as scores, loadings and 

regression coefficients, the results obtained can facilitate the interpretability of the evolution of 

agronomic traits over time. 

In general, the integration of multi-spectral remote sensing time series proved to be a 

promising way to derive multi-way attributes that offered the possibility to characterise the 

growth dynamics of a crop, such as grapevines, and the impacts on it, linked to climatic 

phenomena that cause extreme stress in the crop. 
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6.2 Perspectives 

Several perspectives can be drawn from this research, which are presented hereafter. 

In this research, the analyses were restricted to an a posteriori integration of the spatial 

dimension by geostatistical methods. The spatial dimension was not integrated into the main 

(spectro-temporal) analysis because the nature of the spatial data did not coincide with the 

nature of the spectral or temporal data, which can be represented as a ‘spectrum’ adapted to 

chemometric analysis. Thus, a next step would be to deal simultaneously with the spectral-

temporal-spatial dimensions of the RS data. In this perspective, two different paths to consider 

have been identified. A first approach could be based on the integration of the spatial dimension 

by means of spatial constraints in the optimisation process of the algorithm to be applied. A 

clear example of this type of procedure is the MCR-ALS methodology, which applies 

appropriate constraints to impose specific spatial characteristics on the data set. The application 

of spatial constraints based on image processing approaches (e.g., segmentation, smoothing or 

spatial filtering), image modelling techniques (e.g. spatial model fitting, super-resolution or 

deconvolution), or spatial attributes (e.g. texture), have great potential for adaptation to the 

domain of time-series analysis of multispectral images. In particular, in the agricultural context, 

this type of approach would make it possible to exploit the spatial variability in the imagery to 

better understand chemical and physical events or phenomena that affect site specifically crops 

over time. However, an adaptation of this kind of methodology would require a redesign of the 

relevant spatial variables to be considered at high spatial resolution scales of multispectral 

imagery. The second possible path to follow would be a paradigm shift in the integration of the 

spatial dimension. In fact, the main challenge of simultaneously considering the spectral, 

temporal and spatial dimension in a single chemometric methodology is the differing nature of 

the data in the spatial dimension relative to the spectral or temporal data dimensions. Therefore, 

this integration should represent the spatial dimension as a continuous ‘spectrum’, rather than 

as a simple discontinuous attribute, i.e. the spatial data state cannot be limited to a specific set 

of values, but needs to vary, in a progressive way, along a continuum. Approaches to 

simultaneously exploit spectral, temporal and spatial dimensions in multispectral remote 

sensing images remain a current issue and a challenge for the coming years.  

Likewise, the spectro-temporal methodological approaches presented throughout the 

manuscript also present potential perspectives per se in different fields of application. Given 

the potential to identify and characterise phenomena with a clear temporal evolution (e.g. a heat 

wave) that represent a rapid change in the spectro-temporal profile of crop vegetation, it would 

be interesting to determine whether other types of phenomena that vary in a less pronounced 

way (e.g. the onset of water stress) could also be assessed. It would also be interesting to further 

investigate and validate the proposed approaches in (i) other wine growing regions (not the 
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Mediterranean arc), (ii) other crops, within and/or outside the domain of arboriculture and (iii) 

other applications of earth observation, other than crop monitoring, as these methods may also 

be adapted to more general domains in agriculture and environmental modelling, for example 

land cover and land use monitoring, or disaster modelling and monitoring. In addition, in this 

research, only time series of Sentinel-2 remote sensing images have been used. However, there 

are many other (and many new) earth observation sources (e.g. other satellite platforms, UAVs, 

etc.) that now present an unprecedented amount of possibilities in terms of data availability as 

well as unique characteristics in terms of revisit time, spatial resolution, diverse information to 

be provided, cost and spatial coverage. Therefore, a next step would be to consider the use of 

these multi-way methodologies with other sources of information to study and characterise in 

more detail the dynamic spatial monitoring from a plot/field to a regional scale to better match 

the specific conditions of all crop types. 

Going a step further, it should be noted that the methods presented are dedicated to a 

single spatial scale. In general, remote sensing algorithms are still dedicated to a single given 

scale, leading to large discrepancies between data sources and models at different scales. 

However, in line with the environmental context in which humans find themselves (e.g. 

recurrent extreme weather events), data processing is crucial, both at the global scale (e.g. food 

security), at the regional scale (e.g. management of terroir specificities) and at the field scale 

(e.g. management practices in agriculture). Thus, there is a need to adapt the algorithms used 

in remote sensing to multiple scales, where the methodologies shown would be interesting for 

their ability to deepen our fundamental understanding of the evolution of the process of crop 

functioning in relation to the effects of different weather conditions. 

These sets of perspectives represent necessary short-term research that is needed in 

order to set up operational tools for diagnosing, monitoring spatial dynamics and steering crops 

at different scales in the face of a changing climate and the expected increased prevalence of 

extreme weather events (heat, hail, etc.). In the long term, this would provide winegrowing (and 

cropping) professionals (producers, advisors, consular bodies, water distributors) with decision 

support tools (for expert appraisal or as a model input variable) to enable them to make 

management decisions and take differential actions. The implementation of such services in 

agriculture, and particularly in the wine industry, seems both plausible and opportune. 

However, it should be noted that in order to work on the proper monitoring of a crop (not only 

grapevines) on a large scale, it is necessary to set up a collective database that must go from the 

small farmer to regional public bodies. New forms of data collection at user level, such as crowd 

sourcing, or via the digitization of agriculture, should be a source of reflection to facilitate and 

open the way to collate all available data types to improve the collective knowledge necessary 

for the proper monitoring of crops. 
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Résumé étendu de la thèse 

 

Chapitre 1. Introduction 
 

Le nombre de satellites en télédétection ainsi que la qualité et la portée des informations 

collectées ne cessent d’augmenter, offrant une plus grande couverture des cultures avec des 

temps de revisite plus courts et avec la disponibilité de données d’archives. Le besoin 

d’algorithmes efficaces capables de traiter une telle quantité de données exigera de plus en plus 

de nouvelles approches méthodologiques à utiliser dans la surveillance agricole (Dalla Mura et 

al., 2015). Le suivi de cultures annuelles ou pérennes à l’aide de technologies de télédétection 

est donc un vaste sujet qui a été largement abordé sous de multiples angles. La télédétection est 

discutée, par exemple, pour des applications agricoles spécifiques (i.e. la prévision du 

rendement, la surveillance de l’irrigation, etc.), sur des plateformes de télédétection spécifiques 

(i.e. des satellites, des drones), des capteurs spécifiques (i.e. des systèmes de détection actifs ou 

passifs) ou des emplacements (i.e. différentes échelles spatiales de résolution, et dans des 

contextes climatiques spécifiques (i.e. biomes) (Weiss et al., 2020). Les informations d’intérêt 

pour le suivi des cultures sont basées sur les caractéristiques des cultures ou des systèmes 

agricoles et, surtout, sur la façon dont ces derniers varient dans l’espace et dans le temps. En 

fait, la relation entre ce qui est directement mesuré par les instruments de télédétection et les 

caractéristiques agronomiques elles-mêmes doit être modélisée d’une manière ou d’une autre 

(plus ou moins substantielle) pour déduire les secondes à partir des premières (Weiss et al., 

2020).  

 

Actuellement, la grande majorité des technologies de télédétection, c’est-à-dire les 

plateformes et les capteurs, sont accessibles et relativement abordables pour le secteur agricole.  

Toutefois, le progrès technologique n’a pas suivi le rythme de développement du secteur 

agricole en question, de sorte qu’il n’a pas encore été possible d’utiliser au maximum de leurs 

potentielles ces technologies. Cela s’explique en raison de contraintes opérationnelles telles que 

l’efficacité à répondre de manière adéquate à la nature du problème agronomique, du coût élevé 

en temps et en moyens nécessaires pour traiter ces données à haute résolution (Khanal et al., 

2020). Cette dernière limitation conduit à des défis méthodologiques, tels que la gestion du 

grand volume, de la diversité et de la complexité des données de télédétection, en particulier 

lorsqu’on considère la haute dimensionnalité (qu’elle soit spectrale, temporelle ou spatiale) (Ma 

et al., 2015). Par exemple, en raison de la disponibilité accrue de données temporelles provenant 

de satellites, une attention particulière dans le domaine du suivi des cultures a été accordée au 

développement de nouvelles approches qui prennent en compte des données à haute dimension, 

permettant aux chercheurs d’examiner les tendances temporelles (Southworth et Muir, 2021).  
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En effet, les séries temporelles mettent en évidence la possibilité de découvrir la tendance du 

changement en construisant des ‘profils’ de données spectro-temporelles, ce qui est essentiel 

pour un suivi précis des cultures, car chaque type de culture a un calendrier bien défini avec des 

périodes d’exploitation spécifiques et des modèles de croissance saisonniers uniques (Loew et 

al., 2013). Ce fait conduit à la formulation du problème de recherche général de la thèse, qui 

est le suivant :  

 

Les informations des séries temporelles issues de l’imagerie de télédétection multi-

spectrale offrent-elles de nouvelles perspectives en agriculture par la proposition de 

descripteurs évaluant la performance des cultures ?  

 

Plus précisément, ce projet vise à déterminer si la prise en compte simultanée de la dimension 

spectrale et temporelle dans les séries temporelles peut fournir une vision plus pertinente et plus 

détaillée des changements dans les cultures. L’hypothèse est que l’intégration de 

caractéristiques multi-spectrales dans une analyse multi-temporelle permettant d’obtenir des 

signatures spectrales-temporelles qui caractérisent la variabilité spatiale peut offrir de nouvelles 

perspectives dans la surveillance des cultures pour des applications telles que l’estimation du 

rendement des cultures, l’évaluation de l’état des cultures et la détection du stress des cultures.  

Cependant, cette hypothèse soulève une question de gestion des données 

multidimensionnelles :  

 

Comment intégrer/considérer pertinemment la dimension temporelle dans 

l’analyse des images multi-spectrales de séries temporelles pour le suivi des cultures en 

agriculture ?  

 

L’une des approches intéressantes pour y répondre semble être l’utilisation de méthodes 

chimiométriques. Ces méthodes permettent d’analyser des ensembles de données complexes et 

hautement dimensionnels obtenus à partir de sources de données RS. L’adaptation de ces 

méthodes chimiométriques au domaine de l’agriculture permet donc d’intégrer des 

informations spectrales et temporelles pour identifier et décrire l’interrelation des facteurs 

environnementaux ou humains et leur impact potentiel sur l’agriculture. 

Outre la décision d’utiliser uniquement des méthodes chimiométriques, deux autres 

décisions ont été prises préalablement afin d’aborder les questions présentées plus en détail. La 

première était de se concentrer sur une culture particulière, la viticulture, et à l’échelle d'une 

région, l’Occitanie. Plus précisément dans la région viticole anciennement connue sous le nom 

de Languedoc-Roussillon. Cette région possède le plus grand vignoble français en surface avec 

2 bassins de production, l’un en zone méditerranéenne et l’autre dans le sud-ouest (Filippi, 

2012) et se caractérise par le caractère mixte de ses vignobles, car ils sont situés dans une grande 
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diversité de paysages et de conditions climatiques contrastés, ce qui la rend intéressante à 

étudier. Compte tenu de l’échelle spatiale choisie dans ces travaux de recherche, seuls les 

satellites Sentinel-2 (A/B) ont été considérés en raison de leurs caractéristiques intéressantes et 

représentatives en termes de résolution temporelle (fréquence de revisite globale de 5 jours), 

spatiale (4 bandes spectrales à 10 m, 6 bandes à 20 m et 3 bandes à 60 m) et spectrale (13 bandes 

spectrales du visible à l’infrarouge à ondes courtes). 

 

 

Chapitre 2. Principales limites de l’utilisation exclusive de 

la dimension spectrale des séries chronologiques multi-

spectrales pour le suivi des cultures 
 

Les indices spectraux de la végétation ont été conçus et utilisés comme indicateurs des 

variations temporelles et spatiales de la structure des propriétés biophysiques et de la vigueur 

de végétation (Xue and Baofeng, 2017). De ce fait, les indices de végétation comme une 

opportunité majeure pour étudier et surveiller la végétation et sa dynamique (Silleos et al., 

2006). Compte tenu de ce contexte, il est naturel que l’analyse des séries temporelles se soit 

concentrée sur l’analyse de l’évolution des indices de végétation dans le temps (Hatfield et al., 

2019 ; Li et al., 2021). Dans cette perspective, l’objectif de ce chapitre est de montrer l’intérêt 

et les limites des approches classiques (c’est-à-dire basées sur les indices de végétation) pour 

exploiter le potentiel des séries temporelles pour le suivi agricole à l’échelle régionale.  

Pour cela, une approche originale permettant de traduire la dynamique temporelle de 

NDVI obtenue par Sentinel-2 sur l’ensemble d’une saison de végétation a été développée. Cette 

approche a été construite en considérant la fonction de distribution cumulative empirique des 

valeurs NDVI observées. Cette approche a été appliquée dans une étude de cas liée à la 

dynamique de l’état hydrique de la vigne. L’approche des séries temporelles NDVI s’est avérée 

capable de classifier les parcelles en fonction de leur restriction hydrique permettant ainsi 

d’identifier la dynamique du stress hydrique à l’échelle régionale. Toutefois à travers ces 

travaux, plusieurs limitations ont été mises en évidence. En effet, Maynard et al. (2007) ont 

résumé trois points problématiques pour une approche qui utilise une seule ou un ensemble 

limité de bandes spectrales pour calculer des indices de végétation : (i) elle ne tient pas compte 

du fait que d’autres bandes spectrales pourraient contribuer et améliorer l’interprétation ; (ii) 

elle limite la capacité à modéliser les effets des différentes interactions végétation-rayonnement 

dans différentes parties du spectre électromagnétique ; et (iii) l’impact de l’hétérogénéité du sol 

sur les réponses spectrales est particulièrement évident, notamment dans les canopées 

hétérogènes comme celles des vignobles. Ces questions ont des implications importantes pour 

l’identification des changements et le suivi de la dynamique des surfaces végétalisées. D’où la 

nécessité d’un changement d’approche pour intégrer correctement toutes les informations 
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spectrales fournies par les images multi-spectrales. Par exemple, une approche utilisant des 

données spectrales non indexées devrait être considérée comme une alternative intéressante aux 

indices de végétation pour éviter les problèmes discutés. 

 En plus de la résolution spectrale, il faut tenir compte du fait que les satellites 

fournissent régulièrement des images avec une résolution temporelle et spatiale différente. 

L’approche dominante du suivi des cultures, basée sur des séries temporelles d’indices de 

végétation, ne prend en compte aucune de ces deux dimensions, c’est-à-dire ni la dimension 

temporelle ni la dimension spatiale dans l’analyse. Par conséquent, ces approches basées sur 

les indices de végétations ne sont pas adaptées et judicieuses pour extraire et traiter toutes les 

informations pertinentes qui peuvent être présentées dans ce flux de données massif. 

Cependant, fusionner ou combiner ces informations pour une interprétation de meilleure qualité 

est un défi qui n’est pour le moment pas toujours bien résolu (Militino et al., 2018). 

 

 

Chapitre 3. Potentiel des méthodes multidimensionnelles 

non supervisées pour l’exploration régionale des données 

sur les cultures à partir de séries temporelles multi-

spectrales 
 

Dans le chapitre précèdent, on a pu mettre en évidence certaines limites de l’approche 

conventionnelle qui reposent uniquement sur les changements des indices de végétation au 

cours du temps pour caractériser la dynamique de croissance d’une culture. Or intrinsèquement, 

les images de télédétection fournissent des informations plus riches sur la variabilité spatio-

temporelle de la signature spectrale du couvert végétal. Par conséquent et dans l’objectif 

d’exploiter toute cette richesse d’information, la nécessité d’utiliser des approches d’analyses 

de données plus complètes permettant de considérer simultanément les dimensions spectrale et 

temporelle pour rendre compte de toutes les informations potentielles fournies par les séries 

temporelles d’images multi-spectrales est un prérequis. Cependant, l’ordonnancement temporel 

des données de télédétection pour fournir une autre dimension à l’espace de données créant 

ainsi non seulement un défi en termes d’extraction et d’analyse, mais aussi en termes de 

structuration de ces ensembles de données à haute dimension (Chi et al., 2016). Dans ce qui 

suit, nous sommes parties du postulat que l’organisation des données issues d’instruments 

multi-spectraux sous la forme d’une structure multidimensionnelle (cube de données) dont les 

constituants principaux sont des dimensions était une proposition pertinente pour extraire le 

meilleur potentiel des séries temporelles d’images multi-spectrales. Cette façon originale de 

structurer les données permet de considérer la dimension temporelle comme un facteur inhérent 

à l’analyse (Ferreira et al., 2020). Ce chapitre vise donc à explorer le potentiel de séries 
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temporelles d’images multi-spectrales à l’échelle régionale pour l’extraction de connaissances 

agronomiques tout en tenant compte simultanément de la dimensionnalité spectrale et 

temporelle des données.  

La variabilité spatio-temporelle de la signature spectrale d’un couvert végétal à l’échelle 

spatiale de résolution d’une région peut révéler des informations très utiles pour le suivi de la 

dynamique croissance des cultures. Cependant, si l’étude de l’échelle régionale est intéressante 

par sa diversité d’informations (conditions pédoclimatiques, cépages, pratiques culturales…), 

il est très difficile de disposer de données auxiliaires de référence provenant du terrain. Dans ce 

contexte, les approches de modélisation multidimensionnelle non supervisées utilisées en 

chimiométrie ont été considérées comme une première tentative d’exploration des données, car 

elles ne font intervenir que les propriétés intrinsèques des séries temporelles recueillies dans les 

images multi-spectrales. Par conséquent, des approches de modélisation multidimensionnelle 

non supervisées sont utilisées pour fournir des informations pertinentes sur une étude de cas 

consacrée aux séries temporelles du satellite Sentinel-2 et à la culture de la vigne à l’échelle 

régionale de la région Languedoc- Roussillon pour fournir plusieurs nouvelles connaissances 

sur le suivi des cultures grâce à l’analyse simultanée de la dimension spectrale et temporelle. 

Deux approches de modélisation multidimensionnelle non supervisée différentes de 

résolution à trois dimensions ont été utilisées pour intégrer la dimension temporelle dans la 

caractérisation de la variabilité de la phénologie de la vigne à l’échelle régionale. La première 

approche utilisant la méthodologie PARAllel FACtor (PARAFAC) a souligné à quel point les 

études exploratoires peuvent être enrichissantes en tenant compte de l’inclusion de la dimension 

temporelle pour une meilleure compréhension du suivi des cultures à l’échelle régionale, sans 

pour autant négliger les limites évidentes qu’elles impliquent, comme la faible connaissance 

des spécificités d’interprétation à grande échelle. La méthode PARAFAC a permis de fournir 

des informations sur les profils spectraux temporels, qui, à leur tour, ont permis la 

caractérisation spatiale au moyen de cartes des scores obtenus à l’échelle de la région viticole 

Languedoc-Roussillon sur les périodes de mai à aout pour les années 2019 et 2020. Ces cartes 

factorielles de scores ont montré des motifs spatiaux qui représentaient les différences et les 

similitudes de la dynamique de composants liés aux signatures spectrales de la végétation et au 

sol. Au vu de ces résultats (Figure R.1), ce type d’approche de modélisation 

multidimensionnelle non supervisée s’est avéré judicieuse pour spatialiser et caractériser des 

phénomènes ayant une évolution temporelle, par exemple la réponse de la signature spectrale 

du couvert végétal de la vigne, en fournissant des  ‘motifs’ spectro-temporelles capables de 

mettre en évidence des différences de comportement induit par des par des facteurs climatiques 

(i.e. la saisonnalité, les événements météorologiques extrêmes) ou non climatiques (i.e. 

pratiques culturales et de récolte). Cependant, dans cette étude de cas, probablement en raison 

de l’échelle de résolution, son application nécessitait une connaissance experte a posteriori du 

phénomène observé, limitant ainsi son applicabilité immédiate. Le cadre conceptuel sur lequel 

la méthodologie PARAFAC a été proposée repose sur une validation basée sur des observations 
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d’experts externes. Selon l’approche proposée par Shadish et al. (2002), la validité externe 

pourrait être obtenue en sélectionnant un petit nombre d’experts délibérément très diversifiés. 

Par conséquent, bien que la limitation majeure de l’approche soit due à la rareté des données 

auxiliaires de référence provenant du terrain, l’application validée avec un cadre pratique 

d’opinions d’experts vignerons a démontré que dans les cartes factorielles de scores, différentes 

structures spatiales étaient visuellement mises en évidence qui pourrait potentiellement révéler 

quelques indices interprétatifs en fonction de la situation du vignoble (zone géographique, 

caractéristiques du sol et capacité hydrique disponible), des différents stades phénologiques des 

vignobles (différents label européen, cépage et itinéraire technico-culturel) et de l’impact du 

recours à l’irrigation dans certaines zones.   

FIGURE R. 1 - Cartes krigées des valeurs de scores obtenus pour les blocs de vignobles à 

l’échelle régionale pour les années 2019 et 2020 en distinguant pour a) la composante 1 

identifiée comme le profil spectro-temporel du sol et b) la composante 2 identifiée comme le 

profil spectro-temporel de la végétation. Les couleurs claires représentent des valeurs de score 

élevées et les couleurs foncées des valeurs de score faibles pour les deux composantes. 
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Dans cette première approche, nous avons émis l’hypothèse que l’organisation des 

données issues d’instruments multi-spectraux sous la forme d’une structure 

multidimensionnelle (cube de données) était une proposition pertinente pour extraire le meilleur 

potentiel des séries temporelles d’images multi-spectrales. Toutefois, l’utilisation de la méthode 

PARAFAC nécessite de réaliser une interpolation temporelle des données pour obtenir une 

structuration multidimensionnelle continue des informations, compte tenu du caractère 

irrégulier temporellement et spatialement des images Sentinel-2 dues à des conditions 

atmosphériques défavorables. Par conséquent, pour la deuxième approche, nous avons proposé 

l’application d’une approche de modélisation multidimensionnelle non supervisée capable de 

gérer la haute dimensionnalité des données, mais sans avoir besoin d’appliquer une 

interpolation temporelle qui pourrait masquer des informations pertinentes pour un bon suivi 

des vignobles à l’échelle régionale. Pour tenter de résoudre ce problème, la méthode 

Multivariate Curve-Resolution Alternated Least Squares (MCR-ALS) a été identifiée comme 

une approche prometteuse pour reconfigurer la dimension temporelle dans l’analyse. En fait, la 

méthodologie MCR-ALS pourrait fonctionner avec les séries temporelles originales des 

données Sentinel-2. En travaillant avec les données temporelles originales, elle permet 

d’obtenir des informations réelles date par date puisqu’aucun processus d’interpolation n’est 

nécessaire. L’application de la méthodologie a été axée sur 4978 blocs de vignes dans la région 

du Languedoc-Roussillon pendant la période de mai à août 2019. D’un point de vue 

exploratoire, cette approche s’est révélée capable de (i) de représenter la variabilité spatiale des 

composantes (sol-végétation) pour les dates de revisite des satellites Sentinel-2, c’est-à-dire 

sans interpolation temporelle et qui (ii) de visualiser dans l’espace puisqu’elle aborde deux 

dimensions spatiales (pixels x-y), en créant directement des ‘images’. Cependant, la méthode 

MCR-ALS n’est pas allée au-delà de la détermination d’une alternative potentielle pour 

s’adapter aux caractéristiques temporelles de l’ensemble de données, car aucune validation 

selon des critères agronomiques n’a été effectuée. 

Par conséquent, le potentiel des approches de modélisation multidimensionnelle non 

supervisées capables de considérer le temps comme une variable supplémentaire dans l’analyse 

a été établi. De plus, la première approche (PARAFAC) a établi l’importance de prendre en 

compte la dimension temporelle afin de fournir des informations pour le suivi des cultures à 

l’échelle régionale. 
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Chapitre 4. Potentiel des méthodes multidimensionnelles 

supervisées pour l’exploration régionale des données sur les 

cultures à partir de séries temporelles multi-spectrales 

 
Aux grandes échelles spatiales d’étude, il est souvent difficile de mesurer toutes les 

données nécessaires et pertinentes pour appliquer des fonctions de modélisation descriptives et 

prédictives. Cependant, lorsqu’il est possible de mesurer certaines variables de référence 

provenant du terrain, la caractérisation d’un phénomène agronomique peut s’avérer être une 

tâche moins complexe. Dans ce contexte, une approche de modélisation multidimensionnelle 

supervisée a été proposée, comme modèle prédictif, pour estimer une information agronomique, 

ici le rendement d’une culture à partir de diverses données mesurées. En particulier, une 

méthode supervisée appelée N-way Partial Least Squares (N-PLS) (Bro, 1996) a été utilisée 

pour aborder la question de la réponse multivariée possible des vignobles à l’échelle régionale 

à une vague de chaleur, sur la base de séries temporelles satellitaires. Plus précisément, l’étude 

de cas s’est basée sur l’impact d’une vague de chaleur à la fin du mois de juin 2019 sur les 

rendements de récolte de la vigne dans la région Languedoc-Roussillon. 

Puisque les données de télédétection peuvent être organisées de manière significative 

dans une structure multidimensionnelle (par exemple un cube, voir chapitre 3), l’hypothèse était 

que le suivi de l’évolution de certains phénomènes, comme la croissance végétative, en 

considérant simultanément la dimension spectrale et temporelle, pourrait avoir le potentiel de 

révéler une situation de stress sur des échelles de temps, car le déclencheur de stress et son effet 

varient considérablement dans le temps. Par conséquent, dans un premier temps, le potentiel de 

la méthodologie N-PLS en tant que technique de modélisation utile pour l’analyse de séries 

temporelles d’images multi-spectrales a été présenté dans le cadre d’une étude de cas portant 

sur 107 parcelles de vignes présentant différents degrés de pertes de rendement (signalées par 

les viticulteurs et les conseillers) dues à l’impact d’une vague de chaleur. La température 

maximale de la canicule a été enregistrée le 28 juin 2019, avec 45°C. Dans un deuxième temps, 

le modèle qui a été calibré à partir des 107 parcelles de vignes a été appliqué pour caractériser 

d’un point spectral, temporel et spatial les effets de cet épisode de canicule sur 4978 autres 

parcelles de vignes dans la région Languedoc-Roussillon en capturant efficacement les relations 

causales entre la réponse à un facteur spécifique à la culture, c’est-à-dire la canicule (facteur) 

et la perte de rendement de la vigne (réponse) à une échelle régionale.  

L’application de la méthode N-PLS pour caractériser et estimer l’impact d’un 

événement extrême, tel qu’une vague de chaleur sur 107 parcelles de vignes, a montré que la 

performance des modèles de calibration, lorsqu’ils ont été appliqués aux données de validation, 

offrait une qualité de prédiction (R²) des pertes de rendement avec une performance de 0,66 et 

une erreur (RMSE= de 10 %. Outre le modèle d’estimation des pertes de rendement, l’analyse 
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N-PLS a montré l’intérêt d’adopter une analyse systémique qui tient compte simultanément des 

caractéristiques spectrales et temporelles des données considérées. Notamment, la nature 

linéaire de la réduction de la dimensionnalité dans la méthode présentée a permis une 

interprétation simple en utilisant les b-coefficients calculés, qui sont directement liés à 

l’importance des variables explicatives, c’est-à-dire à la meilleure signature spectrale liée à 

l’événement étudié. Par l’intermédiaire de l’analyse des b- coefficients, il a été possible de 

déterminer que les bandes spectrales autour du ‘Red-Edge (700 nm) et de la région ‘Short-wave 

InfraRed’ (1600 nm) à la fin du mois de juin et au début du mois de juillet étaient les plus 

pertinentes pour quantifier l’effet d’une vague de chaleur survenue à la fin du mois de juin, car 

leur profil spectral a montré un approfondissement du profil temporel pendant la période de 

stress thermique (Figure R.2). Ces résultats ont démontré la pertinence des séries temporelles 

multi-spectrales par satellite pour évaluer l’impact d’une vague de chaleur sur les pertes de 

vignes lorsqu’elles sont combinées au modèle N-PLS. Cependant, ce modèle a été calibré 

qu’avec un petit nombre de parcelles de vignes réparties sur une petite partie représentative de 

la région. Il a donc été jugé approprié d’étudier si le modèle calibré sur ce petit ensemble de 

données pouvait être appliqué à l’ensemble de la région afin de tester sa capacité à révéler les 

empreintes spatiales des vagues de chaleur à l’échelle régionale (4978 parcelles de vignobles). 

L’application de l’approche N-PLS à l’échelle régionale, bien que calibrée sur quelques 

parcelles, a permis de démontrer la robustesse de la méthodologie et sa capacité à cartographier 

l’empreinte spatiale de la perte de rendement due à la canicule qui a touché le sud de la France 

en 2019 (Figure R.3). En conclusion, l’approche multidirectionnelle N-PLS a montré un grand 

potentiel pour prédire, identifier et caractériser des phénomènes spectraux, temporels et surtout 

dépendants du temps, tels que l’impact du stress sur des parcelles de vignes à une échelle 

régionale. 
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FIGURE R. 2 - Représentation combinée des profils temporels et spectraux sous la forme d’une 

vue 3D des b-coefficients N-PLS correspondants. Ligne pointillée noire représente la date la 

plus pertinente de la canicule. 

FIGURE R. 3 - Carte krigée des prédictions de perte de rendement à une échelle régionale 

dérivée du modèle N-PLS. 
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Chapitre 5. Détermination, à partir de séries temporelles 

multi-spectrales, des domaines spectraux et temporels les 

plus discriminants pour la caractérisation de la croissance 

végétative de la vigne en relation avec un événement 

climatique extrême 
 

Du point de vue de la visualisation et de l’interprétation des données, l’analyse 

multidirectionnelle permet de simplifier les résultats, en fournissant des modèles plus adéquats 

et robustes utilisant relativement peu de paramètres d’entrées (Salvatore et al., 2013). En effet, 

il a été montré qu’à partir d’une approche de modélisation multidimensionnelle supervisée issue 

de la chimiométrie qui considère simultanément la dimension spectrale et temporelle, il est 

possible d’identifier les signatures spectrales-temporelles ainsi que l’empreinte spatiale capable 

d’expliquer un événement météorologique extrême tel qu’une vague de chaleur. Cependant, à 

un niveau plus opérationnel, il est important de spécifier plus en détail quels domaines spectraux 

et temporels sont affectés par les changements de croissance de la végétation pendant une 

période de stress afin d’optimiser le suivi de croissance des cultures. À cette fin, il a été proposé 

d’approfondir les domaines spectral et temporel à l’aide d’une méthode de sélection des 

variables à plusieurs voies, N-way Covariance Selection (N-CovSel), qui a été développé pour 

évaluer la pertinence des variables explicatives en fonction de leur covariance avec la ou les 

réponses, c’est-à-dire la variable d’intérêt à prédire. La méthodologie N-CovSel a été mise en 

œuvre pour l’extraction d’éléments satellitaires multi-spectraux afin de caractériser les bandes 

ou domaines spectraux, ainsi que les dates ou périodes déterminantes pour comprendre et 

identifier les différences d’effets au sein de 107 parcelles de vignes touchés par la canicule 

survenue entre le 23 juin et le 8 juillet 2019 dans la région Languedoc-Roussillon. La 

méthodologie N-CovSel proposée a permis de gérer la sélection de variables hautement 

dimensionnelles, en tenant compte de la relation inhérente entre les variations de réflectance et 

les fenêtres temporelles dans lesquelles elles se sont produites. Il a donc été démontré par une 

modélisation prédictive ultérieure de ces variables (c’est-à-dire un modèle pour chaque type de 

variable) que les variables spectrales, temporelles ou spectro-temporelles sélectionnées par la 

méthodologie N-CovSel étaient pertinentes pour caractériser la disparité des pertes de 

rendement de récolte à une échelle régionale pouvant résulter d’un événement climatique 

extrême parvenu au début de l’été 2019. La performance des modèles a été évaluée par le R² et 

l’erreur standard de prédiction (SEP) comme suit : pour le modèle N-PLS temporel (R² = 0,62 

- SEP= 11,4 %), pour le modèle N-PLS spectral (R² = 0,61 - SEP = 13 %) et le modèle PLS 

temporel-spectral (R² = 0,63 - SEP= 11,7 %). 

En outre, les domaines spectraux les plus liés à la perte de rendement des parcelles de 

vigne (observée par les consultants et les viticulteurs) étaient la combinaison du ‘SWIR’ (1610-
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2190 nm), du ‘Red-Edge’ (705 nm) et du ‘Vegetation Red-Edge’ (865 nm) (Figure R.4). Les 

régions spectrales sélectionnées par la méthodologie sont utiles pour la détection du stress 

hydrique dans les vignobles (Laroche-Pinel et al., 2021b). En effet, la figure R.4 illustre que 

bien que la canicule ait eu un impact sur les vignobles, sa relation de cause à conséquence n’est 

pas directe. D’autres facteurs, tels que l’état initial des cultures, se sont avérés importants pour 

caractériser l’importance de l’impact subi par les vignobles. Par conséquent, il a été conclu que 

l’implication de la saisonnalité dans l’expression de la croissance végétative est fondamentale 

pour caractériser les pertes de rendement.  

 

FIGURE R. 4 - Carte d’évolution du paramètre 𝒄𝒐𝒗𝟐(𝒙.𝒋𝒌, 𝒚) pour les 9 premières paires 

spectro-temporelles (date-longueur d’onde) sélectionnées par N-CovSel. Pour chacune des 9 

paires, les dates et longueurs d’onde sélectionnées sont mises en évidence par un carré rouge. 

Les dates et les longueurs d’onde sont écrites en rose. Le gradient de couleur représente, du 

jaune au bleu, les valeurs de covariance les plus élevées et les plus faibles entre la paire date-

longueur d’onde sélectionnée et le vecteur y, respectivement. 
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Chapitre 6. Conclusion 
  

L’analyse indépendante des dimensions spectrales-temporelles des données de 

télédétection ne permet pas une analyse détaillée de la dynamique de croissance des cultures au 

niveau des parcelles sur de grandes échelles spatiales. L’hypothèse formulée était que les séries 

temporelles à haute résolution (c’est-à-dire moins d’une semaine de temps de revisite) 

pourraient être une option appropriée pour le suivi des cultures. En effet, la disponibilité des 

séries temporelles d’images satellites qui existent aujourd’hui à partir de données acquises par 

différentes plateformes satellitaires, telles que Sentinel-2, permet un suivi en temps quasi réel. 

Néanmoins, il faut tenir compte du fait que l’exploitation de ces données de télédétection multi-

temporelles et multi-spectrales pour des applications à grande échelle soulève des problèmes 

d’intensité de données en raison de la grande quantité d’informations hétérogènes qui sont 

collectées. Cela signifie que si la dimension temporelle est ajoutée comme variable explicative 

de la variation spectrale à caractériser, cela conduit au domaine de la gestion des données à 

haute dimension. De manière globale, les résultats de la thèse ont mis en évidence d’une part, 

la pertinence de l’utilisation d’approche de modélisation issue de la chimiométrie pour analyser 

des ensembles de données de télédétection spatio-temporelles et spectrales et d’autre part 

l’importance de prendre en compte la dimension temporelle de ces données lors de la génération 

d’informations pour le suivi des cultures à l’échelle régionale. Ce travail a démontré que les 

méthodes d’analyse qui exploitent les signatures temporelles et spectrales pour extraire des 

informations sur les variations de la croissance végétative à l’échelle régionale fournissent des 

informations précieuses et pertinentes pour évaluer le rendement de récolte d’une culture, telle 

que la vigne.  

Plusieurs perspectives peuvent être tirées de cette recherche. En tenant compte de la 

possibilité d’identifier et de caractériser des phénomènes avec une évolution temporelle 

évidente (i.e. une vague de chaleur) qui se traduit par un changement dans le profil spectro-

temporel de la végétation des cultures, il serait intéressant de déterminer si d’autres types de 

phénomènes qui varient de manière moins prononcée (i.e. le début d’un stress hydrique) 

peuvent également être évalués. Il serait également intéressant de poursuivre les recherches 

pour valider les approches proposées dans (i) d’autres régions viticoles (ii) d’autres cultures 

agricoles, et (iii) d’autres applications que le suivi de croissance des cultures, car elles peuvent 

également être adaptées à des domaines plus généraux de l’agriculture tels que le suivi de la 

couverture et de l’utilisation des sols. En outre, cette recherche n’a utilisé que des séries 

chronologiques d’images de télédétection Sentinel-2. Par conséquent, une prochaine étape 

serait d’envisager d’autres sources d’information pour étudier et caractériser plus en détail le 

suivi spatial dynamique, de la parcelle à l’échelle régionale, afin de mieux répondre aux 

conditions spécifiques de tous les types de cultures. 
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Par ailleurs, dans cette recherche, l’intégration de la dimension spatiale a été limitée à 

une intégration a posteriori de la dimension par des méthodes géostatistiques. La dimension 

spatiale n’est pas intégrée dans l’analyse principale (spectro-temporelle), car la nature des 

données spatiales ne coïncide pas avec la nature des données spectrales ou temporelles, qui 

peuvent être représentées comme un ‘spectre’, adapté à l’analyse par des approches de 

modélisation multidimensionnelle issues de la chimiométrie. Ainsi, une prochaine étape 

consisterait à traiter simultanément les dimensions spectrale-temporelle-spatiale des données 

de télédétection. Une première voie pourrait être basée sur l’intégration de la dimension spatiale 

au moyen de contraintes spatiales dans le processus d’optimisation de l’algorithme à appliquer. 

Un exemple clair d’une telle procédure est la méthodologie Multivariate Curve-Resolution 

Alternated Least Squares (MCR-ALS), qui applique des contraintes appropriées pour imposer 

des caractéristiques spatiales spécifiques à l’ensemble des données. La deuxième voie possible 

serait un changement de paradigme dans l’intégration de la dimension spatiale. En effet, le 

principal défi de la prise en compte simultanée des dimensions spectrale, temporelle et spatiale 

dans une seule approche de modélisation multidimensionnelle est que la nature des données 

spatiales ne coïncide pas avec la nature des données spectrales ou temporelles. Cette intégration 

doit donc représenter la dimension spatiale non pas comme un simple attribut discontinu, mais 

comme un ‘spectre’ continu, tout comme sont représentées les dimensions spectrale et 

temporelle. 
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