
HAL Id: tel-04047032
https://theses.hal.science/tel-04047032v1

Submitted on 27 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variable-length similarity search for very large data
series : subsequence matching, motif and discord

detection
Michele Linardi

To cite this version:
Michele Linardi. Variable-length similarity search for very large data series : subsequence matching,
motif and discord detection. Databases [cs.DB]. Université Sorbonne Paris Cité, 2019. English. �NNT :
2019USPCB056�. �tel-04047032�

https://theses.hal.science/tel-04047032v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS DESCARTES

École doctorale EDITE de Paris ED130

Laboratoire/équipe de recherche: LIPADE

Variable-Length Similarity Search for Very Large
Data Series

Subsequence Matching, Motif and Discord Detection

Par Michele LINARDI

Thèse de doctorat de Informatique

Dirigée par Themis PALPANAS

Présentée et soutenue publiquement le 21 août 2019

Devant un jury composé de :
Themis PALPANAS [Directeur de thèse - Professeur] - Université Paris Descartes
Johann GAMPER [Rapporteur - Professeur] - Université de Bolzano (Italie)
Panagiotis PAPAPETROU [Rapporteur - Professeur] - Université de Stockholm (Suède)
Elisa FROMONT [Examinateur - Professeur] - Université Rennes 1
Ioana ILEANA [Examinateur - Maître de conférences] - Université Paris Descartes

Titre: Recherche de similarité de longueur variable pour l’analyse de
grands séries temporelles: Appariement de séquences, Recherche de
Motifs et Anomalies

Résumé (français) :

Les séries de données ou série chronologique (suite de valeurs numériques représen-
tant l’évolution d’une quantité) sont devenues l’un des types de données les plus
importants et les plus populaires, omniprésents dans presque tous les domaines
scientifiques. Au cours des deux dernières décennies, mais de manière encore plus
évidente au cours de cette dernière période, l’intérêt porté à ce type de données
s’accroît rapidement. La raison en est principalement due aux récents progrès
des technologies de détection, de mise en réseau, de traitement de données et de
stockage, qui ont considérablement aidé le processus de génération et de collecte
de grandes quantités de séries de données.

La recherche de similarité de séries de données est devenue une opération fon-
damentale au cœur de plusieurs algorithmes d’analyse et applications liées aux
collections de séries de données. De nombreuses solutions à différents problèmes
d’exploration de données, telles que le regroupement (clustering), la mise en cor-
respondance des sous-séquences (subsequence matching), l’imputation des valeurs
manquantes (imputation of missing values), la découverte de motifs (motif discov-
ery) et la détection d’anomalies (discord discovery) sont basés sur l’utilisation de
la recherche de similarité.

À cet égard, toutes les solutions sur mesure pour les problèmes susmentionnés
nécessitent la connaissance préalable de la longueur de la série, sur laquelle une
recherche de similarité est effectuée. Dans ce scénario, l’utilisateur doit connaître
la longueur des résultats attendus, ce qui est souvent une hypothèse irréaliste. Cet
aspect est donc très important. Dans plusieurs cas, la longueur est un paramètre
critique qui influence sensiblement la qualité du résultat final.

En détail, nous avons noté que les index de séries de données permettent d’effectuer
une recherche de similarité rapide. Néanmoins, tous les index existants ne peu-
vent répondre qu’aux requêtes d’une seule longueur (fixées au moment de la con-
struction de l’index), ce qui constitue une limite sévère. Dans cette thèse, nous
proposons d’abord ULISSE, la première index de série de données conçue pour
répondre aux requêtes de recherche de similarité de longueur variable. Notre con-

tribution est double. Premièrement, nous introduisons une nouvelle technique de
représentation, qui résume efficacement et succinctement plusieurs séquences de
différentes longueurs. Sur la base de l’index proposé, nous décrivons des algo-
rithmes efficaces pour la recherche de similarité approximative et exacte, combi-
nant des visites d’index sur disque et des analyses séquentielles en mémoire. Notre
approche prend en charge les séquences non normalisées et normalisées, et peut
être utilisée sans modification avec la distance Euclidienne et le déformation tem-
porelle dynamique (DTW), pour répondre aux requêtes de type: k-NN et ǫ-range.
Nous évaluons notre approche de manière expérimentale en utilisant plusieurs jeux
de données synthétiques et réels. Les résultats montrent que ULISSE s’est révélé
de nombreuses fois plus efficace en terme de coût d’espace et de temps, par rapport
aux approches concurrentes.

Par la suite, nous introduisons un nouveau framework, qui fournit un algorithme
de recherche exacte de motifs (séquences fréquentes) et d’anomalies, qui trouve
efficacement tous les motifs et les anomalies de tailles différentes. L’évaluation
expérimentale que nous avons effectuée sur plusieurs ensembles de données réelles
montre que nos approches sont jusqu’à des ordres de grandeur plus rapides que
les alternatives. Nous démontrons en outre que nous pouvons supprimer la con-
trainte irréaliste d’effectuer des analyses en utilisant une longueur prédéfinie, ce
qui conduit à des résultats plus intuitifs et exploitables, qui auraient autrement
été manqués.

Mots-clés (français): Série de données, Recherche de Similarité,
Longueur Variable, Lower-bounding, Subsequence Matching, Récherche
de Motifs, Récherche d’Anomalies

Abstract:

Data series (ordered sequences of real valued points, a.k.a. time series) has become
one of the most important and popular data-type, which is present in almost all
scientific fields. For the last two decades, but more evidently in this last period
the interest in this data-type is growing at a fast pace. The reason behind this
is mainly due to the recent advances in sensing, networking, data processing and
storage technologies, which have significantly assisted the process of generating
and collecting large amounts of data series.

Data series similarity search has emerged as a fundamental operation at the core of
several analysis tasks and applications related to data series collections. Many so-
lutions to different data mining problems, such as Clustering, Subsequence Match-
ing, Imputation of Missing Values, Motif Discovery, and Anomaly detection work
by means of similarity search.

Data series indexes have been proposed for fast similarity search. Nevertheless
all existing indexes can only answer queries of a single length (fixed at index
construction time), which is a severe limitation. In this regard, all solutions for
the aforementioned problems require the prior knowledge of the series length, on
which similarity search is performed. Consequently, the user must know the length
of the expected results, which is often an unrealistic assumption. This aspect is
thus of paramount importance. In several cases, the length is a critical parameter
that heavily influences the quality of the final outcome.

In this thesis, we propose scalable solutions that enable variable-length analysis
of very large data series collections. We propose ULISSE, the first data series
index structure designed for answering similarity search queries of variable length.
Our contribution is two-fold. First, we introduce a novel representation technique,
which effectively and succinctly summarizes multiple sequences of different length.
Based on the proposed index, we describe efficient algorithms for approximate and
exact similarity search, combining disk based index visits and in-memory sequential
scans. Our approach supports non Z-normalized and Z-normalized sequences,
and can be used with no changes with both Euclidean Distance and Dynamic
Time Warping, for answering both k-NN and ǫ-range queries. We experimentally
evaluate our approach using several synthetic and real datasets. The results show
that ULISSE is several times, and up to orders of magnitude more efficient in
terms of both space and time cost, when compared to competing approaches.

Subsequently, we introduce a new framework, which provides an exact and scalable

motif and discord discovery algorithm that efficiently finds all motifs and discords
in a given range of lengths. The experimental evaluation we conducted over several
diverse real datasets show that our approaches are up to orders of magnitude
faster than the alternatives. We moreover demonstrate that we can remove the
unrealistic constraint of performing analytics using a predefined length, leading to
more intuitive and actionable results, which would have otherwise been missed.

Keywords : Data Series, Similarity Search, Variable Length, Lower-
bounding, Subsequence Matching, Motif Discovery, Discord Discovery

Vita brevis, ars longa, occasio praeceps, experimentum periculosum, iudicium dif-
ficile (Hipócrates)

Life is short, and art long, opportunity fleeting, experimentations perilous, and
judgment difficult. (Hippocrates)

Art long, vitalité brève, occasion précipitée, expérimentation périlleuse, jugement
difficile (Hippocrate)

Acknowledgment

The last drop of this delicious Japanese whiskey, which my friend Federico offered
me is gone. The retailers have already pulled the shutters down, and the bars are
full of people talking. Tonight Marine is not here with me, but soon she will be
back home. Many other things are far away, and perhaps too far.

Once again, another Parisian night is going to start; I can feel it. I can only hear
a few cars on the street, and my living room is quiet. My cigarette is still smoking
in the ashtray, and in a while it will be off. Now, my thoughts are running fast:
Verba volant, Scripta manent.

During my entire life, many wise people have been telling me that achieving impor-
tant goals requires a lot of "good" work and "luck" as well. At this point, looking
back a bit and considering my personal story, I can surely say that back in 2011,
I have been lucky the day I met Themis. He has been not only a great academic
supervisor, a mentor full of wisdom, savoir-faire, and a big dose of savoir-être.
Themis has been somebody beyond that. He is the person who taught me a lot
through his actions and his suggestions, both in my academic career and more
generally in my life. Many scientists might agree that good work is the result
of excellence, diligence, and perseverance. I found all of these principles in the
guidance of Themis.

I cannot see anybody helping me better than Themis, when I was not able to set
my milestones, in the jungle of my discoveries. I cannot see anybody better than
Themis, pushing me that right when motivation was low. I cannot see anybody else
like Themis, explaining me with endless patience an ocean of details that make the
difference. I cannot justify better a few regrets of mine today. If I had listened to
you more, I could have done doubtlessly more. I am sure that this will help me to
improve in the future. Each moment we spent working together was full of insights
and great take away messages. It was an honor to be, and I will always be your
student. Thank you Themi!

Going at the other side of the ocean, and deep in the south-west, I cannot forget
to mention Eamonn Keogh and his former P.h.D. student Yan Zhu. I spent three
great months at U.C. Riverside in Keogh’s lab. There, I had the possibility to
work in a magic environment: the home of the time series mining research. Thank
you guys!

Among the faculty members of Paris Descartes, I cannot forget to cite and thank (a
lot) Pavlos Moraitis, and Salima Benbernou. First of all, for their warm welcome
on my first day, which helped me to feel very fast a member of the LIPADE family.
Second, for their essential support and help during these last years.

Last but not least (yet among faculties), I would like to thank my advisors and
colleagues at I.U.T. Paris Descartes: The director Xavier Sense, Mourad Ouziri,
Pascal Poullard, Veronique Heiwy, Hassine Moungla, Jerome Fessy, and Denis
Poitrenaud. Thank you for your help, support, time, and trust in me. I enjoyed
this last year I spent with you as a teaching assistant. It was a very enriching and
challenging experience!

I would also like to thank a lot the reviewers of my dissertation: Johann Gamper
and Panagiotis Papapetrou, who accepted to review this manuscript respecting a
very tight (prohibitive) deadline for the submission of the final report.

I guess that these last four years were the most emotional ones of my life. For some
unexplainable reasons, they coincide with the period, where I was a Ph.D. student,
and for the first time quite far from home. Since the beginning of this journey, I
rapidly understood that a Ph.D. student is not only a Ph.D. student when he/she
is in the corner of a big and dusty open space of the lab. A Ph.D. student is a Ph.D.
student 24 hours per day, and a person who needs to think a lot. In this sense,
critical reading and thinking are the keys to acquiring knowledge and looking for
improvements. The more we do it, the better we can hope to perform. Given
these premises, it is clear that the environment where I lived and the people who
surrounded me have played a fundamental role for me. For this reason, I want to
lovely thank everyone supported me, while I was working at my research. Hence, I
would like to mention all my colleagues at Paris Descartes: Fedrico, Paul, Botao,
Sabiha, Wissam, Anna, Cherifa, Heloise, Mohamed, and Khodor. It has been a
pleasure to share with you guys the same roof, door, open-space, and interesting
discussions at the lab.

The second half of the day for a Ph.D. student starts when he/she goes back home.
This last year was the most important and full of work for me and I could not
be luckier than I was once back home, where I had a lot of wonderful time with
Marine. Her support, help, suggestions, love, and patient have been among the
most beautiful gifts I could ever ask. I love you ma cocotte!

I would finally reserve a special thank to my family and friends that have been far,
while I was doing my Ph.D. I am immensely grateful for your support, encourage-

ment, love, and constant presence. Even though we cannot see each other as we
would, there is always a space in my thoughts for you. I never dared to tell you
that I miss you all!

Paris, August 2019

Michele Linardi

Remerciements

Je viens de terminer mon verre de ce délicieux whisky japonais que mon pote
Federico m’a offert. Les commerçants ont déjà baissé leur stores et les cafés sont
pleins de gens qui bavardent. Ce soir, Marine n’est pas là avec moi, mais elle
sera bientôt de retour. Beaucoup d’autres choses sont loin et peut-être trop loin.
Une autre nuit parisienne commence; Je peux le sentir. Je n’entends que quelques
voitures dans la rue et mon salon est calme. Ma cigarette fume encore dans le
cendrier et dans un moment elle sera éteinte. Maintenant, mes pensées vont vites:
Verba volant, Scripta manent.

Tout au long de ma vie, de nombreuses personnes m’ont dit que pour atteindre
des objectifs importants, il faut beaucoup de "bon" travail et de la "chance" aussi.
En regardant un peu en arrière, je peux sûrement dire qu’en 2011, j’ai eu de la
chance le jour où j’ai rencontré Themis. Il a été un excellent encadrant plein
de sagesse, de savoir-faire, et une bonne dose de savoir-être. Il m’a également
beaucoup appris tant dans ma carrière universitaire que plus généralement dans
ma vie. De nombreux scientifiques conviendront peut-être qu’un travail de qualité
est le résultat de l’excellence, de la diligence et de la persévérance. J’ai trouvé tous
ces principes dans les conseils de Thémis.

Personne ne m’a aidé mieux que Themis dans la jungle de mes découvertes. Per-
sonne ne m’a poussé comme il l’a fait lorsque ma motivation était faible. Personne
comme Themis ne m’a expliqué avec une patience infinie, un océan de détails qui
font vraiment la différence. Je ne peux pas mieux justifier quelques-uns de mes
regrets aujourd’hui. Si je t’avais écouté en peux plus, j’aurais sans doute pu faire
plus. Je suis sûr que cela m’aidera à m’améliorer à l’avenir. Chaque moment
de travail meme les plus difficiles ont été vraiment formateurs. C’était un plaisir
d’être ton étudiant et je le serai toujours. Merci Themi!

En allant de l’autre côté de l’océan dans le profond sud-ouest, je ne peux pas
oublier de mentionner Eamonn Keogh et son ancienne doctorante Yan Zhu. J’ai
passé trois mois formidables à l’Université de Riverside chez le labo de Eamonn
Keogh. Ici, j’ai eu la possibilité de travailler dans un environnement magique: le
temple de la recherche sur l’exploration de séries temporelles. Merci les gars!

Parmi les professeurs de Paris Descartes, je ne peux pas oublier de citer et remercier
(beaucoup) Pavlos Moraitis et Salima Benbernou. Tout d’abord, pour leur accueil
chaleureux à mon arrivée dans le labo, ce qui m’a permis de me sentir très vite
membre de la famille LIPADE. Deuxièmement, pour leur soutien essentiel et leur
aide durant ces dernières années.

Je voudrais aussi remercier mes collègues et encadrants de l’IUT Paris Descartes: le
directeur Xavier Sense, Mourad Ouziri, Pascal Poullard, Véronique Heiwy, Hassine
Moungla, Jérôme Fessy et Denis Poitrenaud. Merci pour votre aide, votre soutien,
votre temps et votre confiance en moi. J’ai énormément apprécié cette année
passée avec vous en tant qu’assistant d’enseignement. C’etait une expérience très
enrichissante et stimulante!

Je tiens à remercier également les rapporteurs de ma thèse: Johann Gamper et
Panagiotis Papapetrou, qui ont accepté de réviser ce manuscrit en respectant un
délai très serré pour la présentation du rapport final.

Je suis sûr que ces quatre dernières années ont été les plus émotionnelles prenantes
de ma vie. Pour plusieurs raisons inexplicables, elles coïncident avec la période
où j’étais doctorant et pour la première fois assez loin de chez moi. Depuis le
début de ce voyage, j’ai tout de suite compris qu’un doctorant n’est pas seulement
un doctorant quand il/elle est dans son bureau à la fac. Un doctorant reste un
doctorant 24 heures sur 24 car il/elle est une personne qui a besoin de réfléchir
énormément. En ce sens, la lecture critique et la réflexion sont les clés pour
acquérir des connaissances et rechercher des améliorations. Plus nous le faisons,
mieux nous pouvons espérer de réussir dans notre intention. Il est donc clair que
l’environnement dans lequel j’ai vécu et mon entourage ont été fondamentaux pour
moi. Pour cette raison, je voudrais mentionner et remercier d’abord mes collègues
de Paris Descartes: Fedrico, Paul, Botao, Sabiha, Wissam, Anna, Cherifa, Héloïse,
Mohamed et Khodor. C’était un plaisir de partager avec vous beaucoup de temps
et des discussions très intéressantes au labo.

La seconde moitié de la journée pour un doctorant commence lorsqu’il rentre chez
lui. Cette dernière année a été la plus importante et la plus riche en travail pour

moi. Cependant je ne pouvais pas être plus chanceux que je ne l’étais une fois à
la maison, où j’ai passé beaucoup de temps merveilleux avec Marine. Son soutien,
son aide, ses suggestions, son amour et sa patience ont été parmi les plus beaux
cadeaux que j’ai jamais pu demander. Je t’aime ma cocotte!

Je voudrais enfin réserver un remerciement particulier à ma famille et à mes amis
qui ont été loin pendant ces dernières années. Je vous suis extrêmement recon-
naissant pour votre soutien, vos encouragements, votre amour et votre présence
constante. Même si nous ne pouvons pas nous voir comme nous le voudrions, il y
a toujours une place pour vous dans mes pensées . Je n’ai jamais osé vous le dire
mais vous me manquez énormément !

Paris, Août 2019

Michele Linardi

Contents

Contents 1

List of Figures 7

1 Introduction 13

1.1 Sequence Similarity Search (or Sequence Matching) 14

1.2 Data Series Motif . 17

1.3 Data Series Discord . 20

1.4 Contributions . 21

1.5 Thesis Outline and Publications . 23

2 Related work 25

2.1 Data series Indexes and Summarization 25

2.1.1 Piecewise Aggregate Approximation 27

2.1.2 Symbolic Representation . 28

2.1.3 Indexing Techniques for Variable Length Similarity Search . 30

1

2 CONTENTS

2.1.4 Sequential Scan techniques for Similarity Search 31

2.1.5 Summary . 32

2.2 Motif and Discord Discovery . 33

2.2.1 Motif Discovery Techniques 33

2.2.2 Discord Discovery Techniques 34

3 Scalable Data Series Subsequence Matching 37

3.1 Chapter Organization . 38

3.2 Preliminaries and Problem Formulation 38

3.3 The ULISSE framework . 42

3.3.1 Representing Multiple Subsequences 42

3.3.2 PAA Envelope for Non-Z-Normalized Subseqeunces 44

3.3.3 PAA Envelope for Z-Normalized Subsequences 44

3.3.4 Indexing the Envelopes . 46

3.4 Indexing Algorithm . 47

3.4.1 Indexing Non-Z-Normalized Subsequences 47

3.4.2 Indexing Z-Normalized Subsequences 48

3.4.3 Building the index . 51

3.5 Similarity Search with ULISSE . 53

3.5.1 Lower Bounding Euclidean Distance 54

3.5.2 Lower Bounding Dynamic Time Warping 56

CONTENTS 3

3.5.3 Approximate search . 59

3.5.4 Exact search . 60

3.5.5 Complexity of query answering 62

3.6 Experimental Evaluation . 63

3.6.1 Envelope Building . 65

3.6.2 Exact Search Similarity Queries with Euclidean Distance . . 66

3.6.3 Query Answering Varying γ 66

3.6.4 Comparison to Serial Scan Algorithms using Euclidean Dis-
tance . 69

3.6.5 Approximate Search Similarity Queries with Euclidean Dis-
tance . 72

3.6.6 Approximate Search Similarity Queries with Euclidean Dis-
tance and DTW . 73

3.6.7 Experiments with Real Datasets 75

3.6.8 ǫ-Range Queries . 82

3.7 Conclusions . 85

4 Scalable VAriable-Length Similarity Search Suite 87

4.1 The VALS System . 87

4.2 Prototype Functionality . 89

4.3 Conclusion . 92

5 Motif and Discord Discovery 95

4 CONTENTS

5.1 Chapter Organization . 96

5.2 Problem Definition . 96

5.2.1 Motif Discovery . 96

5.2.2 Discord Discovery . 99

5.3 Comparing Motifs of Different Lengths 101

5.4 Proposed Approach for Motif Discovery 102

5.4.1 The Lower Bound Distance Profile 103

5.4.2 The VALMOD Algorithm 107

5.4.3 Computing The Matrix Profile 108

5.4.4 Matrix Profile for Subsequent Lengths 112

5.5 Finding Motif Sets . 115

5.6 Discord Discovery . 118

5.6.1 Comparing Discords of Different Lengths 118

5.6.2 Discord Discovery Algorithm 119

5.7 Experimental Evaluation . 124

5.7.1 Setup . 124

5.7.2 Motif Discovery Results . 125

5.7.3 Motif Sets . 134

5.7.4 Discord Discovery . 135

5.7.5 Exploratory Analysis: Motif and Discord Length Selection . 141

CONTENTS 5

5.8 Conclusions . 145

6 Motif Discovery Suite 147

6.1 Motif discovery of different lengths. 148

6.2 VALMAP data structure. 149

6.3 System Description . 151

6.4 Prototype System . 151

6.5 Conclusions . 154

7 Conclusions and Future Work 155

7.1 Subsequence Matching . 155

7.1.1 Open Research Problems . 156

7.2 Motif and Discord Discovery . 156

7.2.1 Open Research Problems . 157

Bibliography 159

6 CONTENTS

List of Figures

1.1 Indexing for supporting queries of 2 different lengths. 16

1.2 Search space evolution of variable length sequence matching. Each
dataset contains series of length 256 16

1.3 Electrocardiogram recording (ECG), with highlighted heartbeat
waveforms motifs (in red) . 18

1.4 Demonstration of semantically different motifs, of slightly different
lengths, extracted from a single dataset. 19

1.5 NASA Shuttle Valve data series. The discord, which represents a
failure is highlighted in red. 20

2.1 Indexing of series D (and an inner node split). 28

2.2 Summary of current state of the art solutions for answering similar-
ity search query in data series collections. 33

3.1 (a) Euclidean and Warping alignment in a squared matrix. (b) Valid
index steps in a warping alignment. 39

3.2 (a) Euclidean distance alignment between the data series D and D′.
(b) DTW Alignment between D and D′. 41

3.3 a) master series of D in the length interval ℓmin, ℓmax. b) Zero-
aligned master series. c) Envelope built over the master series. . . . 43

7

8 LIST OF FIGURES

3.4 Master series D1,256 with marked PAA coefficients. 45

3.5 PAA∗(D)1 computation. Three PAA coefficients are computed with
the different normalizations. 46

3.6 uENV building, with input: data series D of length 60, PAA seg-
ment size = 20, γ = 20, ℓmin = 40 and ℓmax = 60. 47

3.7 Running example of Algorithm 2. Left column) Points iteration.
Right column) Statistics update at each step. 50

3.8 Envelope insertion in an ULISSE index. iSAX(L) is chosen to
accommodate the Envelopes inside the nodes. 53

3.9 Given the PAA representation of a query Q (a) and
uENVpaaENV

[D,ℓmin,ℓmax,a,γ,s]
(b) we compute their mindistULiSSE. . . 55

3.10 (a) DTW Envelope (LDT W , UDT W) of a series D. (b) LBKeogh

distance between DTW Envelope and D′. (c) LBP aL between the
DTW Envelope of Q (prefix of D) and the ULISSE Envelope of D′. 56

3.11 (a) Construction and bulk Loading time (log scale) of Envelopes
varying γ. (b) Construction and Bulk Loading time (log scale) of
Envelopes varying lengths range. 65

3.12 Query answering time performance and pruning power varying γ on
non Z-normalized data series. 67

3.13 Query answering time performance and pruning power varying γ on
Z-normalized data series. 69

3.14 Query answering time performance of ULISSE and UCR Suite, vary-
ing the data seres size. 70

3.15 Query answering time, varying the range of query length on Z-
normalized data series. 71

3.16 Query answering time, varying the range of query length on Z-
normalized data series. 72

LIST OF FIGURES 9

3.17 Approximate query answering on non Z-normalized data series. . . 73

3.18 Average query answering and approximate quality varying query
length. 74

3.19 Indexing time of five real datasets (ASTRO, EMG, EEG, ECG,
GAP) varying the number of master series in the Envelope (γ). . . 75

3.20 Exact (Z-normalized) query answering and pruning power, with Eu-
clidean distance on real datasets. 77

3.21 Exact (Non Z-normalized) query answering and pruning power, with
Euclidean distance on real datasets. 78

3.22 Exact (Z-normalized) query answering and pruning power using
DTW measure on real datasets. 80

3.23 Exact (Non Z-normalized) query answering and pruning power us-
ing DTW measure on real datasets. 81

3.24 Exact and Approximate similarity search on Z-normalized synthetic
and real datasets. 82

3.25 Average exact query time with DTW distance (CPU + disk I/O)
on real and synthetic datasets. 83

3.26 Results of ǫ-range search on non Z-normalized real datasets. 84

4.1 (left) VALS architecture. (right) A screen-shot of the VALS GUI
during a ULISSE K-NN search. 88

4.2 VALS indexing parameters settings. 89

4.3 VALS indexes properties comparison. 90

4.4 VALS query loading and performance visualization. 91

4.5 VALS query answering progression. 92

4.6 VALS K-NN exact results. 93

10 LIST OF FIGURES

5.1 A dataset with 12 subsequences (of the same length ℓ) depicted as
points in 2-dimensional space. We report the Top-k mth discords. . . 100

5.2 (left) Two series from the TRACE dataset at various speeds. (cen-
ter) Euclidean distance. (right) Max normalized Euclidean distance. 101

5.3 (top) The top motifs of length 9 and 8 in an example data series.
(bottom) The sorted distance profiles of T33,8 and T33,9. 103

5.4 (top distance profiles) Ranking by true distances leads to changes in
the order of the pairs. (bottom distance profiles) Ranking by lower
bound distances maintains the same order of pairs over increasing
lengths. 104

5.5 Increasing the subsequence length from ℓ to ℓ + k. 105

5.6 (a) Input time series, (b) Compute matrix profile snapshot: (on the
left) distance profile of the subsequence T160,600 which is part of the
motif. 113

5.7 Compute Sub Matrix profile: the partial distance profile of T160,601

contains the motif’s subsequences distance. 114

5.8 Scalability for various motif length ranges. 126

5.9 The difference between the max lower bounding distance (maxLB)
and the min Euclidean distance of partial distance profiles in all the
datasets. Subsequence lengths: 356/4196. 128

5.10 Average of the tightness of the lower bounding (TLB) for every
Distance profile of all the datasets for subsequence lengths: 356/4196.129

5.11 Distribution of Euclidean distance of pairwise subsequences in all
the datasets. Subsequence lengths: 356/4196. 130

5.12 Scalability with increasing motif range. 131

5.13 Scalability of VALMOD and QUICKMOTIF using large datasets
(2M of points) and large length ranges. 132

LIST OF FIGURES 11

5.14 Scalability with increasing data series size. 133

5.15 Partial distance profile repartition (valid, non-valid, recomputed), in
the motif discovery task on the five considered datasets. 134

5.16 (a) Number of recomputed distance profiles in the EMG and ASTRO
datasets. (b) Offset of the first subsequence for each motif in the
EMG and ASTRO datasets. 135

5.17 Scalability with increasing parameter p. 136

5.18 Time performance of variable length motif sets discovery. (a) Vary-
ing K (default D=4). (b) Varying radius factor D (default K=40). . 137

5.19 (a),(b) DAD (one length) and MAD (100 lengths) Top-k mth dis-
cords discovery time. (c) Percentage of non-valid partial distance
profiles recomputed. 138

5.20 (a),(b) GrammarViz and MAD (100 lengths) Top-k 1st discords
discovery time. (c) Percentage of non-valid partial distance profiles
recomputed. 139

5.21 (a) MAD (100 lengths)Top-k mth discords discovery time on the
five datasets. (b) Percentage of non-valid partial distance profiles
recomputed. 140

5.22 (a) Number of taxi passengers over 75 days in New York City. (b)
Top− 1 1st discord of length 32. (c) Top− 1 1st discord of length 33.140

5.23 Top-1 motif (of length 256) in the EEG data set. The subsequences
pairs composing this motif have the smallest distance in both the
Euclidean distance and length normalized ranking. 142

5.24 (a) Top-1000 motifs according the length normalized distance (top),
and the Euclidean Distance (bottom). (b) Motif pair of the largest
length (656) in the length normalized ranking (top) and motif
pair of the largest length (536) in the Euclidean distance ranking
(red/bottom). 143

12 LIST OF FIGURES

5.25 Four discords of different length in the GAP dataset. Each dis-
cord (red subsequence) is coupled with its nearest neighbor (green
subsequence). (a) The discord, with the highest length-normalized
distance to its nearest neighbor has length 274. (b) Discord with the
second highest length-normalized distance. (c),(d) discords with a
smaller length-normalized distance to their nearest neighbor. 144

6.1 Left) (a) Snippet of ECG recording with highlighted motifs of length
50, (b) Matrix profile computed with subsequence length 50. (c)
Index profile, reporting the offsets of the best match. Right) (d)
Snippet of ECG recording with highlighted motifs of length 400,
(e) VALMAP MP n, (f) VALMAP Length profile. 148

6.2 Architecture of VALMOD system. 150

6.3 GUI interface of the prototype, which implements VALMOD 152

6.4 GUI interface of the prototype, VALMAP and Length profile struc-
ture panels. 152

6.5 GUI interface of the prototype, mining motifs of variable length. . . 153

6.6 GUI interface of the prototype, Top− k motifs iteration. (a) Top-1
motif of length 256. (b) Top-1 motif of length 490. 154

6.7 GUI interface of the prototype, state-of-the-art motif mining (Ma-
trix profile). 154

Chapter 1

Introduction

Data series (i.e., ordered sequences of points) are one of the most common data
types, present in almost every scientific and social domain (such as meteorology,
astronomy, chemistry, medicine, neuroscience, finance, agriculture, entomology, so-
ciology, smart cities, marketing, operation health monitoring, human action recog-
nition and others) [39, 79, 87, 32, 72]. If the dimension that imposes the ordering
of the sequences is time then we talk about time series. Though, a series can also
be defined over other measures (e.g., angle in radial profiles in astronomy, mass
in mass spectroscopy in physics, position in genome sequences in biology, etc.).
In the rest of this these, we use the terms data series, time series, and sequence
interchangeably.

Once the data series have been collected, the domain experts face the arduous
tasks of processing and analyzing them [116] in order to gain insights, e.g., by
identifying similar patterns, and performing classification, or clustering. A core
operation that is part of all these analysis tasks is similarity search, which has
attracted lots of attention because of its importance [44, 3, 90, 8, 97, 113, 114,
102, 75, 48, 29, 28, 111, 63]. Nevertheless, all existing and efficient (mostly index-
based) similarity search techniques are restricted in that they only support queries
of a fixed length, and they require that this length is chosen at index construction.
The same observation holds for techniques proposed to discover motifs [52, 21] and
discords (i.e., anomalous subsequences) [21, 106]: they all assume a fixed sequence
length, which has to be predefined.

Evidently, this is a constraint that penalizes the flexibility needed by analysts, who
often times need to analyze patterns of slightly different lengths (within a given

13

14 CHAPTER 1. INTRODUCTION

data series collection) [35, 37, 20, 56, 57]. To that extent, we can report several
examples (from real user studies), which benefit of multi-length search:

• In the SENTINEL-2 mission data, oceanographers are interested in searching
for similar coral bleaching patterns1 of different lengths;

• At Airbus2 engineers need to perform similarity search queries for patterns
of variable length when studying aircraft takeoffs and landings [71];

• In neuroscience, analysts need to search in Electroencephalogram (EEG)
recordings for Cyclic Alternating Patterns (CAP) of different lengths (dura-
tion), in order to get insights about brain activity during sleep [81].

• Entomologists want to study insects that feed by ingesting plant fluids, and
cause devastating damage to agriculture worldwide [70]. This feeding pro-
cesses can be recorded and analyzed in order to find repeated patterns that
permit to understands and ultimately controlling the pests. It turns out
that several interesting behaviors in these data occur along different time
windows. Here, extracting variable length patterns becomes an essential
operation.

In this thesis, we focus on three core problems that are based on similarity search,
i.e., sequence matching, motif and discord discovery, and for which we remove
the constraint of having to operate with a pre-determined sequence length. Our
work is the first that proposes efficient and effective solutions for the above three
problems when considering sequences of variable-length.

In the following, we provide an overview of these three problems, and the corre-
sponding challenges.

1.1 Sequence Similarity Search (or Sequence
Matching)

A sequence similarity search query is the operation that takes as input a data
series Q (query) and a parameter k ∈ N finding the k most similar3 series to Q

1http://www.esa.int/Our_Activities/Observing_the_Earth
2http://www.airbus.com/
3We provide a formal description of similarity measures in Chapter 3

http://www.esa.int/Our_Activities/Observing_the_Earth
http://www.airbus.com/

1.1. SEQUENCE SIMILARITY SEARCH (OR SEQUENCE MATCHING) 15

in a data series collection C. This operation in very large data series collections
is notoriously challenging [98, 112, 73, 74, 15], due to the high dimensionality
(length) of the data series.

The vast majority of sequence matching solutions (including the state-of-the-art)
relies on data summarization and indexing, which permit to perform fast and
scalable similarity search [22, 77, 45, 3, 90, 36, 98, 16, 14, 113, 114, 103, 49].

Despite the effectiveness and benefits of the proposed indexing techniques, which
have enabled and powered many applications over the years, they are restricted
in different ways: either they only support queries of a fixed size, or they do
not offer a scalable solution. The solutions working for a fixed length, require
that this length is chosen at index construction time (it should be the same as
the length of the series in the index). Given these premises, it is clear that a
straightforward solution for answering sequence matching queries would be to use
one of the available indexing techniques. However, in order to support (exact)
results for variable-length sequence matching, we would need to:

• create several distinct indexes, one for each possible query length;

• for each one of these indexes, index all overlapping subsequences (using a
sliding window).

We illustrate this fact in Figure 1.1, where we depict two queries of different lengths
(ℓ1 and ℓ2).

Given a data series (from a collection C), we denote as D (shown in black), we
draw in red the subsequences that we need to compare to each query in order
to compute the exact answer. Using an indexing technique implies inserting all
the subsequences in the index: since we want to answer queries of two different
lengths, we are obliged to use two distinct indexes.

Nevertheless, this solution is prohibitively expensive, in both space and time.
Space complexity is increased, since we need to index a large number of subse-
quences for each one of the supported query lengths: given a data series collection
C = D1, ..., D|C| and a query length range [ℓmin, ℓmax], the number of subsequences
we would normally have to examine (and index) is:

16 CHAPTER 1. INTRODUCTION

Best match

1
2

3 4
5

QUERY 1:

D

QUERY 2:

D

Subsequences of
length l2 < l1

INDEX INDEX

Best match

1
2

3
4 5

6 7

lenght l2

Subsequences
of length l1

lenght l1

Figure 1.1: Indexing for supporting queries of 2 different lengths.

0

1E+11

2E+11

3E+11

1GB 2,5GB 5GB 10GB 20GB

Nu
m

be
r o

f
su

bs
eq

ue
nc

es

Dataset size

S96,256 S128,256
S160,256 S192,256
S224,256

S96_256
S160_256
S224_256

S128_256
S192_256

Figure 1.2: Search space evolution of variable length sequence matching. Each
dataset contains series of length 256

Sℓmin,ℓmax
=

(ℓmax−ℓmin)+1
∑

ℓ=1

|C|
∑

i=1

(|Di| − (ℓ− 1)). (1.1)

Figure 1.2 shows how quickly this number explodes as the dataset size and the
query length range increase: considering the largest query length range (S96−256)
in the 20GB dataset, we end up with a collection of subsequences (that need to
be indexed) more than 2 orders of magnitude larger than the original dataset.
Computational time is significantly increased as well, since we have to construct
different indexes for each query length we wish to support.

In the current literature, a technique based on multi-resolution indexes [38, 36]
has been proposed in order to mitigate this explosion in size, by creating a smaller
number of distinct indexes and performing more post-processing. Nonetheless,

1.2. DATA SERIES MOTIF 17

this solution works exclusively for non Z-normalized series4 (which means that it
cannot return results with similar trends, but different absolute values), and thus,
renders the solution useless for a wide spectrum of applications. Besides, it only
mitigates the problem, since it still leads to a space explosion (albeit, at a lower
rate), and therefore, it is not scalable, either.

We note that the technique discussed above (despite its limitations) is indeed
the current state of the art, and no other technique has been proposed since,
even though during the same period of time we have witnessed lots of activity
and a steady stream of proposals on the single-length similarity search problem
(e.g., [45, 3, 90, 7, 98, 114, 114, 103, 49]). This attests to the challenging nature
of the first problem we are tackling in this thesis.

To tame the search space explosion, and to propose a new effective solution we
follow a key idea: a data structure that indexes data series of length ℓ, already
contains all the information necessary for reasoning about any subsequence of
length ℓ

′ < ℓ of these series. Therefore, the problem of enabling a data series index
to answer queries of variable-length, becomes a problem of how to reorganize this
information that already exists in the index. To this effect, we want to propose a
new summarization technique that is able to represent contiguous and overlapping
subsequences, leading to succinct, yet powerful summaries. It has to combine the
representation of several subsequences within a single summary, and enable fast
(approximate and exact) answers for variable-length sequence matching queries.

1.2 Data Series Motif

Over the last decade, data series motif discovery has emerged as one of the most
used primitive for data series mining. Informally, we can describe motifs, as the
most significant patterns that occur in a data series, i.e., subsequences that repeat
themselves approximatively in the same manner. We report in Figure 1.3 a snippet
of an Electrocardiogram recording (ECG), which records the electrical activity of
the heart. This data series contains a series of repeated patterns highlighted in
red, which represents heartbeat waveforms generated by ventricular contractions.
These subsequences naturally represent a group of motifs over these data.

4Z-normalization transforms a series so that it has a mean value of zero, and a standard
deviation of one. This allows the search to be effective, irrespective of shifting (i.e., offset
translation) and scaling [43].

18 CHAPTER 1. INTRODUCTION

Figure 1.3: Electrocardiogram recording (ECG), with highlighted heartbeat wave-
forms motifs (in red)

Motif discovery has many applications to a wide variety of domains [100, 104],
including classification, clustering, and rule discovery. More recently, there has
been substantial progress on the scalability of motif discovery, and now massive
datasets can be routinely searched on conventional hardware [100].

Another critical improvement in motif discovery, is the reduction in the num-
ber of parameters requiring specification. The first motif discovery algorithm,
PROJECTION [12], required the user to set seven parameters, and it still only
produces answers that are approximately correct. Researchers and practitioners
have "chipped" away at this over the years [69, 84], and the current state-of-the-art
algorithms only require the user to set a single parameter, which is the desired
length of the motifs. Surprisingly, the ease with which we can now perform motif
discovery has revealed that even this single burden on the user’s experience or
intuition can be arduous along the analysis task pipeline. The issue of being re-
stricted to specify length as an input parameter, has been noted in domains that
use motif discovery, such as cardiology [92] and speech therapy [95].

On the other hand, we can still consider the case, in which the user has good
knowledge of the data domain. Also here, searching with one single motif length
can be penalizing, especially when the data can contain motifs of various lengths.

To that extent, we show an example in Figure 1.4, where we report the 10-second
and 12-second motifs discovered in the Electrical Penetration Graph (EPG) of
an insect called Asian citrus psyllid. The first motif denotes the insect’s highly
technical probing skill as it searches for a rich leaf vein (stylet passage), whereas the
second motif is just a simple repetitive “sucking” behavior (xylem ingestion). This
example shows the utility of variable length motif discovery. An entomologist using

1.2. DATA SERIES MOTIF 19

0 10 seconds 12 seconds

0 100,000 200,000

Xylem Ingestion

Stylet passage through plant cells

Voltage Source

Asian citrus psyllid

Stylet passage
Xylem Ingestion

Figure 1.4: Demonstration of semantically different motifs, of slightly different
lengths, extracted from a single dataset.

classic motif search, for instance at the length of 12 seconds, might have plausibly
believed that this insect only engaged in xylem ingestion during this time period,
and not realized the insect had found it necessary to reposition itself at least twice.
The two motif pairs are radically different, reflecting two different types of insect
activities. In order to capture all useful activity information within the data, a
fast search of motifs over all lengths is necessary.

The obvious variable-length motif search is to make the state-of-the-art algorithm
search over all lengths in a given range and rank the various length motifs discov-
ered. We noticed that this strategy poses two challenges:

20 CHAPTER 1. INTRODUCTION

Figure 1.5: NASA Shuttle Valve data series. The discord, which represents a
failure is highlighted in red.

• As in the case of the sequence matching task, the problem of searching over
a much larger solution space in an efficient way is crucial for motif discovery
as well.

• Once we enumerate motifs of several different lengths, we need to dispose of
a strategy that permits to rank them.

1.3 Data Series Discord

Symmetrically to data series motif, another popular and well studied data series
primitive, the discord [107, 40, 109, 86, 60], has been proposed to discover subse-
quences that represent outliers. Hence, with discords, we want to represent rare
and abnormal patterns that occur in a Data Series datasets.

We depict an example in Figure 1.5, where a NASA Shuttle Valve data series
is reported. Specifically, these data are recorded, while conducting cyclic condi-
tions test in laboratory 5. In the picture, the series contains measurements of
the solenoid, which exhibit a cyclic phase. We know (from experts annotations)
that the last cycle reports a failure (highlighted in red). As we note, the shape of
this pattern clearly deviates from the previous cyclic patterns. In this case this
subsequence is identified as a discord.

In the literature, the discord discovery solutions that have been proposed are not
as effective and scalable as practice requires. The reasons are twofold:

5https://cs.fit.edu/∼pkc/nasa/data/

1.4. CONTRIBUTIONS 21

• First, they only support fixed-length discord discovery. This rigidity with
the subsequence length restricts the search space, and consequently, also the
produced solutions and the effectiveness of the algorithm.

• Second, the existing techniques provide poor support for enumerating mul-
tiple discords, namely, for the identification of multiple anomalous subse-
quences. These works have considered only cases with up to 3 anomalous
subsequences.

1.4 Contributions

Here, we provide the outline of our main contributions.

[Variable-Length Similarity Search] We first study the variable-length se-
quence matching query. We focus on efficiency improvement of similarity search,
which is the operation at the core of the solution to this problem. In that re-
gard, we propose ULISSE (ULtra compact Index for variable-length Similarity
SEarch in data series), which is the first single-index solution that supports fast
answering of variable-length similarity search queries for both non Z-normalized
and Z-normalized data series collections. ULISSE produces exact (i.e., correct)
results, and is based on the following key idea: a data structure that indexes
data series of length ℓ, already contains all the information necessary for reasoning
about any subsequence of length ℓ

′ < ℓ of these series. Therefore, the problem
of enabling a data series index to answer queries of variable-length, becomes a
problem of how to reorganize this information that already exists in the index.
To this effect, ULISSE proposes a new summarization technique that is able to
represent contiguous and overlapping subsequences, leading to succinct, yet pow-
erful summaries: it combines the representation of several subsequences within a
single summary, and enables fast (approximate and exact) similarity search for
variable-length queries.

The contributions of this part of the thesis can be summarized as follows:

• We introduce the problem of Variable-Length Subsequences Indexing, which
calls for a single index that can inherently answer queries of different lengths.

• We provide a new data series summarization technique, able to represent
several contiguous series of different lengths.

22 CHAPTER 1. INTRODUCTION

• The technique we propose produces succinct, discretized envelopes for the
summarized series, and can be applied to both non Z-normalized and Z-
normalized data series.

• Based on this summarization technique, we develop an indexing algorithm,
which organizes the series and their discretized summaries in a hierarchical
tree structure, namely, the ULISSE index.

• We propose efficient exact and approximate K-NN algorithms, suitable for
the ULISSE index, which can compute the similarity using either Euclidean
Distance or Dynamic Time Warping measure.

• We perform an experimental evaluation with several synthetic and real
datasets. The results demonstrate the effectiveness and scalability of ULISSE
to dataset sizes that competing approaches cannot handle.

• Finally, we describe a prototype system we developed to support similarity
search queries of variable length. It employs the ULISSE index in order
to allow users to interactively run and explore the results of approximate
and exact subsequence similarity search in both non Z-normalized and Z-
normalized large data series collections.

[Variable-Length Motif and Discord Discovery] Furthermore, we consider
the motif and discord discovery problems in conjunction. Our work wants to
improve the efficiency of motif and discord search, we thus propose a solution that
significantly extend the state-of-the-art algorithms.

In fact, the actual solution for fixed length motif and discord discovery [21] re-
quires the user to define the length of the desired motif or discord. This mining
operation is supported by computation of the Matrix profile, which is a meta data
series storing the z-normalized Euclidean distance between each subsequence and
its nearest neighbor. The Matrix profile does not only derive motifs and discords,
but also ranks the other subsequences, giving a convenient and graphical repre-
sentation of their occurrences and proximity. Unfortunately, this technique comes
with an important shortcoming: it does not provide an effective solution for trying
several different motif/discord lengths. Therefore, the analyst is forced to run the
algorithm using all possible lengths in a range of interest, and rank the various
motifs discovered, picking eventually the patterns that contain the desired insight.

To that extent, we firstly define the problems of variable-length motif and discord
discovery, which significantly extend the usability of the motif and discord discov-
ery operations, respectively. This premises allow us to build and propose a new

1.5. THESIS OUTLINE AND PUBLICATIONS 23

data series motif and discord framework. The contributions of this part of the
thesis can be summarized as follows:

• A Variable Length Motif Discovery algorithm (VALMOD), which takes as
input a data series T , and finds the subsequence pairs with the smallest
Euclidean distance of each length in the (user-defined) range [ℓmin, ℓmax].
VALMOD is based on a novel lower bounding technique, which is specifically
designed for the motif discovery problem.

• Furthermore, we extend VALMOD to the discord discovery problem. We
propose a new exact variable-length discord discovery, which aims at finding
the subsequence pairs with the largest Euclidean distances of each length in
the (user-defined) range [ℓmin, ℓmax].

• We evaluate our techniques using five diverse real datasets, and demonstrate
the scalability of our approach. The results show that our solution is up to
20x faster than the state-of-the-art techniques.

• Furthermore, we present real case studies with datasets from entomology,
seismology, and traffic data analysis, which demonstrate the usefulness of
our approach in real world user studies.

• Finally, we present a motif discovery prototype system, which implements the
scalable motif discovery algorithm (VALMOD), and uses a newly proposed
meta-data structure that helps the user to select the most promising pattern
length. We demonstrate how the proposed system efficiently finds all motifs
in a given range of lengths, and outputs a length-invariant ranking of motifs.

1.5 Thesis Outline and Publications

In this thesis, it is important to note that we present the contributions that we
can find in a collection of articles (both accepted for publication and under peer
review). These papers are first-authored by the thesis writer. The manuscript is
thus organized in chapters as follows:

In Chapter 2, we propose the revision of the state-of-the-art methods for
the problems we treat in this thesis.

24 CHAPTER 1. INTRODUCTION

In Chapter 3, we introduce all the details and reports our scalable solution
for variable-length sequence matching query. This work is published in:

– Scalable, Variable-Length Similarity Search in Data Series: The
ULISSE Approach. (Michele Linardi, Themis Palpanas) PVLDB
11(13), 2018

– ULISSE: ULtra Compact Index for Variable-Length Similarity Search
in Data Series (Michele Linardi, Themis Palpanas) ICDE, 2018

Moreover, one further article is under review:

– Scalable Data Series Subsequence Matching with ULISSE (Michele
Linardi, Themis Palpanas) 2019

In Chapter 4, we propose the demonstration of VALS (Scalable VAriable-
Length Similarity Search Suite), which is a system that permits to utilize
and compare the state-of-the arts solutions for subsequence matching in data
series. This work is under review:

– VALS with ULISSE: Variable-Length Similarity Search in Large Data
Series Collections (Michele Linardi, Themis Palpanas), 2019

In Chapter 5, we propose our solution to data series motif and discord
discovery. This work is published in

– Matrix Profile X: VALMOD - Scalable Discovery of Variable-Length
Motifs in Data Series (Michele Linardi, Yan Zhu, Themis Palpanas,
Eamonn Keogh) SIGMOD Conference, 2018

Morever, the following article is under review:

– Matrix Profile Goes MAD: Variable-Length Motif And Discord Dis-
covery in Data Series (Michele Linardi, Yan Zhu, Themis Palpanas,
Eamonn Keogh), 2019

In Chapter 6, we describe the demonstration of the motif discovery system
we implemented. This work is published in:

– VALMOD: A Suite for Easy and Exact Detection of Variable Length
Motifs in Data Series (Michele Linardi, Yan Zhu, Themis Palpanas,
Eamonn Keogh) SIGMOD Conference, 2018

In Chapter 7, we conclude and we propose promising research directions
for future work.

Chapter 2

Related work

2.1 Data series Indexes and Summarization

Several different kind of methods tackle the sequence matching problem (a.k.a
similarity search). In this regard, one of the most considered techniques turns out
to be data series indexing.

The literature includes several approaches, which are all based on the same prin-
ciple: they first reduce the dimensionality of the data series by applying a sum-
marization technique, which provides a compact form of the data (e.g., an index)
that permits to prune the raw data space at search time.

Beyond the low representation error, a crucial and desirable property of a sum-
marization is the lower bounding condition. Given two (real valued) data series,
namely X, Y , the lower bound condition is formulated as:

Dreduced(Summ(X), Summ(Y)) ≤ Draw(X, Y) (2.1)

We denote, with Dreduced the distance between the summaries of X and Y (given
by the function Summ()). On the other hand, Draw is the distance computed
in the real space of the series values. In general this latter distance is a met-
ric. In this work we consider the case of Euclidean distance lower bounding
[22, 77, 90, 6, 3, 98], which obeys to the triangular inequality condition[90]. Fur-

25

26 CHAPTER 2. RELATED WORK

thermore, we consider also the case, where Draw is not a metric, e.g., Dynamic
Time Warping [46]. The Equation 2.1 serves the pruning strategy that is used in
the proposed solutions to perform efficient subsequence matching.

The summarization techniques proposed in previous works are divided in two
groups. The first one includes those that perform a spectral decomposition of
the series. The most recent and popular methods are:

• Discrete Fourier Transform (DFT) [2], which consists into the extraction of
the first c DFT coefficients (frequencies) of a data series.

• Singular Value Decomposition (SVD) [101] compresses data series based on
the SVD theorem, which states that a real valued matrix can be decomposed
in a spectral form. Only the k first components are used to represent the
matrix, following the Principal Component Analysis (PCA).

• Discrete Wavelet Transform (DWT) [47, 76] was introduced to overcome the
limitation of previous approaches, such as the Fourier transform. Specifically,
DWT can use an infinite family of basis functions as opposed to DFT, which
utilizes only the exponential function. Moreover, DWT transformation is
performed in linear time, whereas the fast Fourier transformation has an
additional logarithmic factor.

We note that, all the aforementioned dimensionality reduction technique have laid
the foundation for several state-of-the-art similarity search systems, at least for
a decade. More recently a suite of techniques based on piecewise approximation
have been considered and evaluated:

• Piecewise Flat Approximation (PFA) [66].

• Piecewise Linear Approximation (PLA) [11].

• Adaptive Piecewise Linear Approximation (APLA) [10].

• Piecewise Aggregate Approximation (PAA) [41].

• Adaptive Piecewise Constant Approximation (APCA) [10].

2.1. DATA SERIES INDEXES AND SUMMARIZATION 27

All these works show that simple piecewise-based approximation outperform previ-
ous spectral decomposition based techniques by being easy to compute and index,
and they moreover satisfy the lower bound condition.

Several index structure have been adapted, or specifically conceived to perform
similarity search such as:

• R∗-tree [5], which is a height-balanced spatial access method that partitions
the data space into a hierarchy of nested overlapping rectangles.

• M-tree [13], which is a multidimensional, metric-space access method that
uses hyper-spheres to divide the data entries according to their relative dis-
tances.

• SFA trie [85], which first summarizes the series using DFT, and it organizes
them in a trie structure.

• DSTree [99], the DSTree is a binary tree that is built upon a data series
summarization, which extends the APCA capability providing dynamic seg-
mentation of the data series.

• iSAX (indexable Symbolic ApproXimation) [89, 8, 16, 113, 48] is a symbolic
data series summarization built upon PAA. The summarization are stored
in a hierarchical binary tree structure.

We revise here the Piecewise Aggregate Approximation (PAA) and the SAX ap-
proximation, which are the building block of the iSAX, the state-of-the-art index-
ing technique for similarity search in data series, and which we also use in our
work.

2.1.1 Piecewise Aggregate Approximation

The Piecewise Aggregate Approximation (PAA) of a data series D, PAA(D) =
{p1, ..., pw}, represents D in a w-dimensional space by means of w real-valued
segments of length s, where the value of each segment is the mean of the corre-
sponding values of D. We denote the first k dimensions of PAA(D), (k ≤ w), as
PAA(D)1,..,k.

28 CHAPTER 2. RELATED WORK

........
ROOT NODE

1 - 1 - 0 - 0
node split on
2nd segment

Indexing D

iSAX(D): {1,11,0,0}

SAX(D,4,2): {1,1,0,0}
data series D

1 - 11 - 0 - 0
increased cardinality

by adding 0

refine representation
of 2nd segment of D

increased cardinality
by adding 1

Insert in
the correct
leaf node

1 - 01 - 0 - 0

SAX(D,4,4): {11,11,01,00}

Figure 2.1: Indexing of series D (and an inner node split).

2.1.2 Symbolic Representation

We introduce here the iSAX representation of a data series D, which stands
for indexable Symbolic Approximation. The symbolic approximation is denoted
by SAX(D, w, |alphabet|), which is the representation of PAA(D) by w discrete
coefficients, drawn from an alphabet of cardinality |alphabet| [90].

The main idea of the iSAX representation (see Figure 2.1, top), is that the real-
values space may be segmented by |alphabet| − 1 breakpoints in |alphabet| regions
that are labeled by distinct symbols: binary values (e.g., with |alphabet| = 4 the
available labels are {00, 01, 10, 11}). iSAX assigns symbols to the PAA coeffi-
cients, depending in which region they are located.

The iSAX data series index is a tree data structure [90, 16], which hierarchically
organizes the iSAX representations of a data series collection. It is composed by

2.1. DATA SERIES INDEXES AND SUMMARIZATION 29

three types of nodes (refer to Figure 2.1):

i The root node points to n children nodes (in the worst case n = 2w, when
the series in the collection cover all possible iSAX representations).

ii Each inner node contains the iSAX representation of all the series below it.

iii Each leaf node contains both the iSAX representation and the raw data of all
the series inside it (in order to be able to prune false positives and produce
exact, correct answers).

When the number of series in a leaf node becomes greater than the maximum leaf
capacity, the leaf splits: it becomes an inner node and creates two new leaves, by
increasing the cardinality of one of the segments of its iSAX representation. The
two refined iSAX representations (new bit set to 0 and 1) are assigned to the two
new leaves.

The similarity search algorithm, which is built upon the iSAX index have state-
of-the-art performance in solving the similarity search problem. It provides ultra
fast approximate search, since the structure of the index permits to visit first the
most promising node (the one with the same iSAX representation of the query).
Based on the same principle, the index permits to perform exact search. To that
extent, the search algorithm visits in order the leaf nodes, which contain the most
similar representation to the query. In the case of K − NN query answering,
since the iSAX representation respects the lower bounding condition (both for
Euclidean and Dynamic Time Warping distance), the search is over when the
best-so-far distance is smaller than the actual lower bounding distance (computed
by Equation (2.1)). The pruned candidates (those that are not considered) are
guaranteed to contain no false negatives.

In general, we note that the iSAX technique, but also all the approaches mentioned
above share a common limitation: they can only work for a fixed, predetermined
data series length, which has to be decided before the index creation.

Specifically, we know that Equation (2.1) holds iff the summarized series are of
the same length. Hence, in this setting, the content of the query must be of fixed
(predefined) length.

This limitation has been already studied. In the next part we present the details
of the available solutions that we have been proposed so far. In the next part, we

30 CHAPTER 2. RELATED WORK

denote the query-by-content problem, where the query can be of arbitrary length
as Variable Length Similarity Search.

2.1.3 Indexing Techniques for Variable Length Similarity
Search

At first, we note that Variable Length Similarity Search has been proposed only in
the ǫ-range search variant, where the search outcome contains all the subsequence
that have distance smaller or equal to ǫ. This means that to the best of our
knowledge no indexing techniques for exact K − NN search of variable length is
available in the literature.

Faloustos et.al [22] proposed an indexing technique for variable length similarity
search query called I-adaptive index, which is the first (seminal) approach that
treats this problem.

In details, the I-adaptive index is built extracting the subsequences of a fixed
length, which are grouped in MBRs (Minimum Bounding Rectangles) that form
the building blocks of a R-tree. The authors presented two search methods, Prefix
Search and Multiple Search, which work for arbitrary length queries. The first
uses an index search using a fixed prefix of the query sequence. On the other
hand, Multiple Search splits the query sequence in non-overlapping subsequences
of fixed length and performs queries for each of these subsequences.

In a later work, Kahveci and Singh [38], proposed MRI (Multi Resolution Index),
which is the first technique based on the construction of multiple indexes for vari-
able length similarity search query. In this work, the authors clearly shown the
limitation of Prefix Search and Multiple Search. The main disadvantage of these
two approaches turns out to be the poor exploitation of the whole query sequence,
since in the first, only the prefix subpart is used to perform a range query. If
the prefix length sensibly differs from the entire query sequence length, the search
space we need to consider can explode exponentially. The Multiple Search instead,
segments the query in equal length parts, and perform a separate search with each
segment, refining the search range at the end of each query. In practice, each
query has a similar probability to prune the search space, with no real benefit
deriving from the range refinement. To that extent, storing subsequences at dif-
ferent resolution (building indexes for different series lengths) provides an effective
improvement of Multiple Search, since a greater part of a single query is used to

2.1. DATA SERIES INDEXES AND SUMMARIZATION 31

answer the query, considering furthermore multiple windows at different length.
This provides more elasticity over the query length variability, improving search
efficiency.

Kadiyala and Shiri in their work [36] have redesigned the MRI construction, ex-
ploiting the overlapping of the subsequences at different resolutions. This avoids
to consider unnecessary subsequences, at the index building stage, drastically de-
creasing the indexing size and construction time. This new indexing technique,
called Compact Multi Resolution Index (CMRI), has a space requirement, which is
99% smaller the one of MRI. The authors moreover, redefined the Multiple Search
in order to access the disk only at the end of the multiple queries performed,
optimizing also the range search proposed in MRI.

As a matter of fact, CMRI is the state-of-the-art Multi Resolution indexing tech-
nique for answering similarity search query of variable length. This solution is
shown to be a strong and incremental contribution over the previous works.

More recently, Wu et al. [18] have proposed the KV-Match index, which supports
ǫ-range similarity search queries of variable length, using both Z-normalized Eu-
clidean and DTW distances. The idea of this technique is similar to the CMRI
one, since many indexes are built for different subsequence window lengths, which
are considered at query time using multiple query segments. We note that for
Z-normalized sequences, this method provides exact answers only for constrained
ǫ-range search. To this effect, two new parameters that constrain the mean and
the standard deviation of a valid result are considered at query answering time.

2.1.4 Sequential Scan techniques for Similarity Search

Recent works have shown that similarity search based on sequential scans can
be performed efficiently [78, 1]. These techniques aim to prune the search space
exploiting the overlapping of the query candidates (subsequences). To that extent,
two different methods have been proposed:

• UCR Suite (Rakthanmanon et al. [78]), which is an optimized serial scan
algorithm for subsequence similarity search on a single long series. UCR
Suite applies the following optimizations: (a) early-abandoning consists into
stopping (abandon) the distance computations as soon as the partially calcu-
lated distance is greater than the best-so-far distance in K−NN search; (b)

32 CHAPTER 2. RELATED WORK

query points-reordering, which consists into sorting in descending order the
points of the query according their absolute values. Specifically, the authors
note that, when the data series are Z-normalized (mean of each series equal
to zero and standard deviation equal to one), the points that are the farthest
away from zero are likely to contribute the most to the final distance quan-
tity. This heuristic allows to abandon earlier the distance computations (c)
lower bound of DTW distance, here the author propose a multi-step lower
bounding computation, which takes linear time, and permits to prune DTW
distance calculations.

• MASS algorithm [68], which performs distance calculation in Frequency do-
main, namely on the Fourier transformation of the data series. This permits
to compute the distance between a data series query Q and all the subse-
quences of length |Q| in a series D in O(|D|log(D)) time. The complexity of
the proposed algorithm does not depend to the length of Q.

The sequential scan techniques are mostly beneficial when the dataset consists of
a single, very long data series, and queries are looking for potential matches in
small subsequences of this long data series. Such approaches, in general, do not
provide a large benefit when the dataset is composed of a large number of small
data series, namely when the candidates do not overlap (have points in common).

2.1.5 Summary

In Figure 2.2, we report a summary of the current state of the art solutions for
answering similarity search query in data series collections. For each line in the
table, we report the type of index and the summarization technique applied to
reduce the data series dimensionality, along with the kind of search (approximate
and exact), the considered distance measures, the support of Z-Normalized query,
and the possibility to issue queries of variable-length. We note that no indexing
solution supports Z-Normalized similarity search queries of variable length. To that
extent, UCR Suite represents a complete solution, which is based on sequential raw
data scan and distances computation pruning. In this work, we want to propose
a solution that can also draw the benefit from data series summarization and
indexing.

2.2. MOTIF AND DISCORD DISCOVERY 33

Index Summarization
Type of Similarity

Search query
supported

Distance
Measure Z-normalization

Support
Query of
variable
length

APPROXIMATE EXACT
R*-tree [22,47,76] DWT, DFT, PAA YES YES Euclidean, DTW NO YES
M-tree [13] - NO YES Metric YES NO
SFA-trie [85] Symbolic DFT YES YES Euclidean YES NO
DS-tree [99] APCA YES YES Euclidean YES NO
iSAX index [8,16,48,89,113] iSAX YES YES Euclidean YES NO
CMRI (R*-tree) [36] APCA YES YES Euclidean NO YES
UCR Suites (No Index) [78] - NO YES Euclidean, DTW YES YES
OUR INDEX [Chapter 3] iSAX YES YES Euclidean, DTW YES YES

Figure 2.2: Summary of current state of the art solutions for answering similarity
search query in data series collections.

2.2 Motif and Discord Discovery

While research on data series similarity measures and data series query-by-content
date back to the early 1990s [73], data series motifs and data series discords were
both introduced just fifteen and twelve years ago, respectively [12, 23]. Follow-
ing their definition, there was an explosion of interest in their use for diverse
applications. There exist analogies between data series motifs and sequence mo-
tifs (in DNA), which have been exploited. For example, discriminative motifs
in bioinformatics [91] inspired discriminative data series motifs (i.e., data series
shapelets) [70]. Likewise, the work of Grabocka et al. [30] on generating ideal-
ized motifs, is similar to the idea of consensus sequence (or canonical sequence)
in molecular biology. The literature on the general data series motif and discord
search has been recently studied and referenced in several different recent stud-
ies [21, 109]. In the next parts we present the relevant techniques, reporting their
characteristics and their modus-operandi as well.

2.2.1 Motif Discovery Techniques

The QUICK MOTIF [51] and STOMP [21] algorithms represent the state of the
art for fixed-length motif discovery. QUICK MOTIF works building a summarized
representation of the data using Piecewise Aggregate Approximation (PAA), and

34 CHAPTER 2. RELATED WORK

arranges these summaries in Minimum Bounding Rectangles (MBRs) in a Hilbert
R-Tree index. The algorithm then prunes the search space based on the MBRs. On
the other hand, STOMP is based on the computation of the matrix profile, in order
to discover the best matches for each subsequence. The smallest of these matches
is called the motif pair. In general, we observe that both the above approaches
solve a restricted version of the problem: they discover motif sets of cardinality
two (i.e., motif pairs) of a fixed, predefined length.

The main idea of our work is to remove these limitations proposing a general and
efficient solution, which can evaluate more candidates of various lengths. To that
extent, we note that there are only three studies that deal with issues of variable
length motifs, and attempt to address them [62, 25, 110, 24]. While these studies
are pioneers in demonstrating the utility of variable length motifs, they cannot
serve as practical solutions to the task at hand for two reasons: (i) they are all
approximate, while we need to produce exact results; and (ii) they require setting
many parameters (most of which are unintuitive). Approximate algorithms can be
very useful in many contexts, if the amount of error can be bounded, or at least
known. In certain cases, such as when analyzing seismological data, the threat of
litigation, or even criminal proceedings [9], would make any analyst reluctant to
use an approximate algorithm.

The other work to explicitly consider variable length motifs is MOEN [67]. Its op-
eration is based on the distance computation of subsequences of increasing length,
and a corresponding pruning strategy based on upper and lower bounds of the
distance computed for the smaller length subsequences. Unlike the algorithms dis-
cussed above, MOEN is exact and requires few parameters. However, it has been
tuned for producing only a single motif pair for each length in the range.

2.2.2 Discord Discovery Techniques

Exact discord discovery is a problem that has attracted lots of attention. The
approaches that have been proposed in the literature can be divided in the following
two different categories. First, the index-based solutions, i.e., Haar wavelets [23, 6]
and SAX [40, 42, 86], where series are first discretized and then inserted in an
index structure that supports fast similarity search. Second, the sequential scan
solutions [109, 58, 23, 59, 105, 21], which consider the direct subsequence pairwise
distance computations, and the corresponding search space optimization.

2.2. MOTIF AND DISCORD DISCOVERY 35

Indexing techniques are based on the discretization of the real valued data series,
with several user defined parameters required for this operation. In general, select-
ing and tuning these parameters is not trivial, and the choices made may influence
the behavior of the discord discovery algorithm, since it is strictly dependent on
the quality of the data representation. In this regard, the most recent work in this
category, GrammarViz [86], proposes a method of Top-k 1st discord search based
on grammar compression of data series represented by discrete SAX coefficients.
These representations are then inserted in a hierarchical structure, which permits
to prune unpromising candidates subsequences. The intuition is that rare patterns
are assigned to representations that have high Kolmogorov complexity. This means
that a rare SAX string is not compressible, due to the lack of repeated terms.

The state of the art for the sequential scan methods is represented by STOMP,
since computing the matrix profile permits to discover, in the same fashion as mo-
tifs, the Top-k 1st discords. Surprisingly, there exists just one work that addresses
the problem of mth discord discovery [105]. The authors of this work, proposed
the Disk Aware discords Discovery algorithm (DAD), which is based on a smart
sequential scan performed on disk resident data. This algorithm is divided in two
parts. The first is discord candidate selection, where it identifies the sequences,
whose nearest neighbor distance is less than a predefined range. The second part,
which is called refinement, is applied in order to find the exact discords among the
candidates. Despite the good performance that this algorithm exhibits in finding
the first discord, when m is greater than one, it becomes hard to estimate an ef-
fective range. In turn, this leads to scalability problems, due to the explosion of
the number of distances to compute.

In summary, while there exists a large and growing body of work on the motif
and discord discovery problems, the idea, which motivates this work is to offer the
first scalable, parameter-light, exact variable-length algorithm in the literature for
solving both these problems.

36 CHAPTER 2. RELATED WORK

Chapter 3

Scalable Data Series Subsequence
Matching

Data series similarity search is an important operation and at the core of several
analysis tasks and applications related to data series collections. Despite the fact
that data series indexes enable fast similarity search, all existing indexes can only
answer queries of a single length (fixed at index construction time), which is a
severe limitation. In this chapter, we propose ULISSE, the first data series index
structure designed for answering similarity search queries of variable length. Our
contribution is two-fold. First, we introduce a novel representation technique,
which effectively and succinctly summarizes multiple sequences of different length.
Based on the proposed index, we describe efficient algorithms for approximate and
exact similarity search, combining disk based index visits and in-memory sequential
scans. Our approach supports non Z-normalized and Z-normalized sequences,
and can be used with no changes with both Euclidean Distance and Dynamic
Time Warping, for answering both k-NN and ǫ-range queries. We experimentally
evaluate our approach using several synthetic and real datasets. The results show
that ULISSE is several times, and up to orders of magnitude more efficient in
terms of both space and time cost, when compared to competing approaches.

37

38 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

3.1 Chapter Organization

The rest of this chapter is organized as follows. In Section 3.2 we introduce the
notation, and we formulate the problem. In Section 3.3, we describe the ULISSE
summarization techniques, and in Sections 3.4 and 3.5 we explain our indexing and
query answering algorithms. Section 3.6 describes the experimental evaluation,
and we conclude in Section 3.7.

3.2 Preliminaries and Problem Formulation

Let a data series D = d1,...,d|D| be a sequence of numbers di ∈ R, where i ∈ N
represents the position in D. We denote the length, or size of the data series D
with |D|. The subsequence D

o,ℓ=do,...,do+ℓ−1
of length ℓ, is a contiguous subset

of ℓ points of D starting at offset o, where 1 ≤ o ≤ |D| and 1 ≤ ℓ ≤ |D| − o + 1.
A subsequence is itself a data series. A data series collection, C, is a set of data
series.

We say that a data series D is Z-normalized, denoted Dn, when its mean µ is
0 and its standard deviation σ is 1. The normalized version of D = d1, ..., d|D|

is computed as follows: Dn = {d1−µ
σ

, ...,
d|D|−µ

σ
}. Z-normalization is an essential

operation in several applications, because it allows similarity search irrespective of
shifting and scaling [43, 78].

Euclidean Distance. Given two data series D = d1, ..., d|D| and D′ = d′1, ..., d′|D′|

of the same length (i.e., |D| = |D′|), we can calculate their Euclidean Distance as

follows: ED(D, D′) =
√

∑|D|
i d(di, d′i), where the distance function d is applied to

two real values, namely A and B, as follows: d(A, B) = (A−B)2.

Dynamic Time Warping. The Euclidean distance is a lock-step measure, which
is computed by summing up the distances between pairs of points that have the
same positions in their respective series. Dynamic Time Warping (DTW) [50]
represents a more elastic measure, allowing for small mis-alignments of the matched
points on the x-axis.

Given two data series d and d′, the DTW distance is computed by considering
the differences between pairs of points (d(di, d′j)), where the indexes i, j might be

3.2. PRELIMINARIES AND PROBLEM FORMULATION 39

(1,2)

(1,3)

(1,4)

(2,2)

(2,3)

(2,4)

(3,2)

(3,3)

(3,4)

(4,2)

(4,3)

(4,4)

(1,1) (2,1) (3,1) (4,1)

(i,j+1) (i+1,j+1)

(i,j) (i+1,j)

(i,j+1) (i+1,j+1)

(i,j) (i+1,j)

(i,j+1) (i+1,j+1)

(i,j) (i+1,j)

Euclidean alignement Warping alignement

(a)

(b)

Figure 3.1: (a) Euclidean and Warping alignment in a squared matrix. (b) Valid
index steps in a warping alignment.

different. In this manner, a particular alignment of d and d′ is performed before
to compute the distance. We define a sequence alignment as a vector of index
pairs A ∈ Rℓ×2, where (i, j) ∈ A ⇐⇒ 1 ≤ i, j ≤ ℓ, and ℓ is the length of
the two series. The alignment of the Euclidean Distance is a special case, where
the indexes are equal to their position in A. In the case of two series of length
ℓ, the space of the possible alignments spans the paths that join two cells in a
squared matrix composed by ℓ

2 cells. In Figure 3.1(a), we depict a Euclidean
distance alignment of two series of length 4, which exactly crosses the diagonal
of the matrix, joining the cells (1,1) and (4,4). On the other hand, in the same
figure we report another possible alignment that we call warping alignment, which
deviates from the diagonal. We use the terms warping path and warping alignment
interchangeably.

In order to restrict the allowed paths, we can apply the following local constraints
on the index pairs:

• We require that the first and last pairs of A correspond to the first and last

40 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

pairs of points in d and d′, respectively. If |d| = |d′| = ℓ, we have A[1] = (1, 1)
and A[ℓ] = (ℓ, ℓ). Furthermore, for any (a, b), (c, d) ∈ A ⇐⇒ (a 6= c)∨ (b 6=
d). This latter, avoids to consider the same index pair twice in a single path.

• Given k ∈ N (1 < k ≤ ℓ), we require that A[k][0] − A[k − 1][0] ≤ 1 and
A[k][1]−A[k − 1][1] ≤ 1 always holds. This restricts each index to move by
at most 1 unit to its next alignment position.

• Moreover, we always require that A[k][0]−A[k−1][0] ≥ 0 and A[k][1]−A[k−
1][1] ≥ 0. This guarantees a monotonic movement of the path, towards the
last index pair. In Figure 3.1(b), we depict the three possible steps that each
index pair can perform in a valid alignment.

These constraints permit to bound the length of an alignment between two series
of length ℓ, between ℓ and 2 × ℓ − 1. Typically, warping paths are also subject
to global constraints. We can thus set their maximum deviation from the matrix
diagonal. In that regard, Sakoe and Chiba [83] and Itakura [34] proposed different
warping path constraints, which restrict the matrix positions that a valid path can
visit. The Sakoe-Chiba band [83] constraint allows each index of a warping path
to be at most r points far from the diagonal (Euclidean Distance alignment). On
the other hand, the Itakura-parallelogram [34] constraint allows to choose different
r values depending on the index position i. In general, r is called the warping
window.

Given a valid warping path, A∗, that satisfies the previously introduced constraints,
we can formally define the DTW distance between two series d and d′ of the same
length ℓ, as:

DTW (d, d′) = argmin
A∗

(

√

√

√

√

√

|A∗|
∑

i

d(dA∗[i][0], d′A∗[i][1])).

We note that computing the DTW distance corresponds to finding the valid align-
ment that minimizes the sum of the distances.

In Figure 3.2, we consider two series (d and d′), which are extracted from two
offsets that are 5 points away, in the same long sequence. In this manner, the
prefix of d is equal to the suffix of d′, which starts at position 6. In the plots,
the values of d span the right vertical axis, whereas those of d′ the left one. If we
compute the Euclidean distance, as depicted in Figure 3.2(a), the fixed alignment
of points does not capture the similarity of the two series. On the other hand, when
computing the DTW distance, the warping path aligns the two similar parts, as

3.2. PRELIMINARIES AND PROBLEM FORMULATION 41

EUCLIDEAN DISTANCE POINTS ALIGNMENT

DTW ALIGNMENT

WARPING PATH

ED = 4.92

DTW = 0.33

(a)

(b)

Sakoe-Chiba
band

D’

D

D’

D

D

D’

Figure 3.2: (a) Euclidean distance alignment between the data series D and D′.
(b) DTW Alignment between D and D′.

reported in Figure 3.2(b). At the bottom of the figure, we also report the warping
path, which is constrained by a Sakoe-Chiba band.

Problem Definition. The problem we wish to solve in this work is the following:

Problem 1 (Variable-Length Subsequences Indexing) Given a data series
collection C, and a series length range [ℓmin, ℓmax], we want to build an index that
supports exact similarity search, under the Euclidean and Dynamic Time Warping
(DTW) measures, for queries of any length within the range [ℓmin, ℓmax].

In our case similarity search is formally defined as follows:

42 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

Definition 1 (Similarity search) Given a data series collection C =
{D1, ..., DC}, a series length range [ℓmin, ℓmax], a query data series Q, where
ℓmin ≤ |Q| ≤ ℓmax, and k ∈ N, we want to find the set R = {Di

o,ℓ
|Di ∈ C ∧ ℓ =

|Q| ∧ (ℓ + o − 1) ≤ |Di|}, where |R| = k. We require that ∀Di
o,ℓ
∈ R ∄Di′

o′,ℓ
′ s.t.

dist(Di′

o′,ℓ
′ , Q) < dist(Di

o,ℓ
, Q), where ℓ

′ = |Q|, (ℓ′ + o′ − 1) ≤ |Di′| and Di′ ∈ C.

We informally call R, the k nearest neighbors set of Q.

In this work, we perform Similarity Search using either Euclidean Distance (ED)
or Dynamic Time Warping (DTW), as the dist function.

3.3 The ULISSE framework

The key idea of the ULISSE approach is the succinct summarization of sets of
series, namely, overlapping subsequences. In this section, we present this summa-
rization method.

3.3.1 Representing Multiple Subsequences

When we consider contiguous and overlapping subsequences of different lengths
within the range [ℓmin, ℓmax] (Figure 3.3.a), we expect the outcome as a bunch of
similar series, whose differences are affected by the misalignment and the different
number of points. We conduct a simple experiment in Figure 3.3.b, where we
zero-align all the series shown in Figure 3.3.a; we call those master series.

Definition 2 (Master Series) Given a data series D, and a subsequence
length range [ℓmin, ℓmax], the master series are subsequences of the form
D

i,min(|D|−i+1,ℓmax)
, for each i such that 1 ≤ i ≤ |D| − (ℓmin − 1), where

1 ≤ ℓmin ≤ ℓmax ≤ |D|.

We observe that the following property holds for the master series.

3.3. THE ULISSE FRAMEWORK 43

…
Di, lmin

(a)
DMaster series

Aligned Master Series

lmax
lmin

(b)

(c)

D

Containment area
Envelope extremes

D

Figure 3.3: a) master series of D in the length interval ℓmin, ℓmax. b) Zero-aligned
master series. c) Envelope built over the master series.

Lemma 1 For any master series of the form D
i,ℓ

′, we have that PAA(D
i,ℓ

′)1,..,k =
PAA(D

i,ℓ
′′)1,..,k holds for each ℓ

′′ such that ℓ
′′ ≥ ℓmin, ℓ

′′ ≤ ℓ
′ ≤ ℓmax and

ℓ
′, ℓ′′%k = 0.

Proof 1 It trivially follows from the fact that, each non master series is always
entirely overlapped by a master series. Since the subsequences are not subject to
any scale normalization, their prefix coincides to the prefix of the equi-offset master
series. �

Intuitively, the above lemma says that by computing only the PAA of the master
series in D, we are able to represent the PAA prefix of any subsequence of D.

When we zero-align the PAA summaries of the master series, we compute the
minimum and maximum PAA values (over all the subsequences) for each segment:
this forms what we call an Envelope (refer to Figure 3.3.c). (When the length of
a master series is not a multiple of the PAA segment length, we compute the
PAA coefficients of the longest prefix, which is multiple of a segment.) We call
containment area the space in between the segments that define the Envelope.

44 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

3.3.2 PAA Envelope for Non-Z-Normalized Subseqeunces

We denote by L and U the PAA coefficients, which delimit the lower and upper
parts, respectively, of a containment area (see Figure 3.3.c). Furthermore, we
introduce a parameter γ, which corresponds to the number of master series we
represent by the Envelope. This allows to tune the number of subsequences of
length in the range [ℓmin, ℓmax], that a single Envelope represents, influencing both
the tightness of a containment area and the size of the Index (number of computed
Envelopes). We will show the effect of the relative tradeoff i.e., Tightness/Index
size in the Experimental evaluation. Given a, the point from where we start to
consider the subsequences in D, and s, the chosen length of the PAA segment, we
refer to an Envelope using the following signature:

paaENV
[D,ℓmin,ℓmax,a,γ,s]

= [L, U] (3.1)

3.3.3 PAA Envelope for Z-Normalized Subsequences

So far we have considered that each subsequence in the input series D is not
subject of any scale normalization, i.e., is not Z-normalized. We introduce here a
negative result, concerning the unsuitability of a generic paaENV

[D,ℓmin,ℓmax,a,γ,s]

to describe subsequences that are Z-normalized.

Intuitively, we argue that the PAA coefficients of a single master series Di,a, gener-
ate a containment area, which may not embed the coefficients of the Z-normalized
subsequence in the form D′i,a′ , for a′ < a. This happens, because Z-normalization
causes the subsequences of different lengths to change their shape, and even shift
on the y-axis. Figure 3.4 depicts such an example.

We can now formalize this negative result.

Lemma 2 A paaENV
[D,ℓmin,ℓmax,a,γ,s]

is not guaranteed to contain all the PAA

coefficients of the Z-normalized subsequences of lengths [ℓmin, ℓmax], of D.

Proof 2 To prove the correctness of the lemma, it suffices to pick such a case
where a subsequence of D, namely D

a,ℓ
′, with ℓmin ≤ ℓ

′ ≤ ℓmax, is not en-

coded by paaENV
[D,ℓmin,ℓmax,a,γ,s]

. Formally, we should consider the case where

3.3. THE ULISSE FRAMEWORK 45

0 50 100 150 200 250

D1,256 (Z-normalized master series)

D1,128 (Z-normalized)

D1,64 (Z-normalized)

Figure 3.4: Master series D1,256 with marked PAA coefficients.

∃k such that PAA(D
i,ℓ

′)k > Uk or PAA(D
i,ℓ

′)k < Lk. We may pick a Z-

normalized series D choosing ℓmax = |D| = ℓmin + 1 and γ = 0. The result-
ing paaENV

[D,ℓmin=ℓmax−1,ℓmax=|D|,i=1,γ=0,s]
obtains equal bounds, namely L = U .

Let consider the z-normalized subsequence D
1,ℓmin

. Its PAA coefficients must be

in the envelope. This implies that, PAA(D
1,ℓmin

)1 = L1 = U1 must hold. If

s is the PAA segment length, in the case of Z-normalization, PAA(D
1,ℓmin

)1 =
(((

∑s
i=1 di)− (µD

1,ℓmin
× s))/σD

1,ℓmin
)/s and U1 = (((

∑s
i=1 di)− (µD × s))/σD)/s.

Therefore, the following equation: (µD
1,ℓmin

× s)/σD
1,ℓmin

= (µD × s)/σD holds,

which is equivalent to µD
1,ℓmin

/σD
1,ℓmin

= µD/σD. At this point we may have that

µD = µD
1,ℓmin

, when Dℓmax,1
= µD

1,ℓmin
. This clearly leads to have a smaller dis-

persion on D than D
1,ℓmin

and thus σD < σD
1,ℓmin

=⇒ PAA(D
1,ℓmin

)1 6= L1 6= U1.

�

If we want to build an Envelope, containing all the Z-normalized sequences, we
need to take into account the shifted coefficients of the Z-normalized subsequences,
which are not master series. Hence, each PAA segment coefficient (in a master
series) will be represented by the set of values resulting from the Z-normalizations
of all the subsequences of length in [ℓmin, ℓmax] that are not master series and
contain that segment.

Given a generic master series D
i,ℓ = {di, ..d

i+ℓ−1
}, and s the length of

the segment, its kth PAA coefficient set is computed by: PAA∗(D
i,ℓ)k =

{(
(
∑s(k−1)+s

p=s(k−1)+1
dp)−(µD

i,ℓ
′×s)

σD
i,ℓ

′
)/s|ℓmin ≤ ℓ

′ ≤ ℓmax, ℓ′ ≥ (s(k − 1) + s− (i− 1))}.

46 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

D (Master Series) ={d1,..,d|D|}D1,|D-1|
D1,|D-2|

PAA(D)1

lmin= |D1,(|D|-2)|

lmax= |D|

PAA*(D)1 = {
(∑ ௗ)ି (µD× ௦)ೞసభ D

/s,
(∑ ௗ)ି(µವభ, ವ షభ× ௦)ೞసభ ವభ, ವ షభ /�, (∑ ௗ)ି(µವభ, ವ షమ× ௦)ೞసభ ವభ, ವ షమ /�}

s := segment length

Figure 3.5: PAA∗(D)1 computation. Three PAA coefficients are computed with
the different normalizations.

In Figure 3.5, we depict an example of PAA∗ computation for the first segment of
the master series D.

We can then follow the same procedure as before (in the case of non Z-normalized
sequences), computing the minimum and maximum PAA coefficients for each
segment given by the above formula, in order to get the Envelope for the Z-
normalized sequences (which we also denote with paaENV).

3.3.4 Indexing the Envelopes

Here, we define the procedure used to index the Envelopes. In that regard, we aim
to adapt the iSAX indexing mechanism (depicted in Figure 2.1).

Given a paaENV , we can translate its PAA extremes into the relative iSAX repre-
sentation: uENVpaaENV

[D,ℓmin,ℓmax,a,γ,s]
= [iSAX(L), iSAX(U)], where iSAX(L)

(iSAX(U)) is the vector of the minimum (maximum) PAA coefficients of all the
segments corresponding to the subsequences of D.

The ULISSE Envelope, uENV , represents the principal building block of the
ULISSE index. Note that, we might remove for brevity the subscript containing
the parameters from the uENV notation, when they are explicit.

In Figure 3.6, we show a small example of envelope building, given an input series
D. The picture shows the PAA coefficients computation of the master series.
They are calculated by using a sliding window starting at point a = 1, which stops
after γ steps. Note that the Envelope generates a containment area, which embeds

3.4. INDEXING ALGORITHM 47

21 :PAA(D2,60)2

D

1:PAA(D1,60)1

not enough
points for the
3rd segments

paaENV[D, lmin=40, lmax=60, a=1, γ=20, s=20 pts] =
U = [Max(1,…, 1γ)] , Max(2,…, 2γ)], ..., Max(3)]
L = [Min(1,…, 1γ)] , Min(2,…, 2γ)], ..., Min(3)]

2:PAA(D1,60)2 3:PAA(D1,60)3

11 :PAA(D2,60)1

2γ :PAA(D41,60)21γ :PAA(D21,60)1

... … …

0 60

1:PAA*(D1,60)1 2:PAA*(D1,60)2 3:PAA*(D1,60)3 Z-norm.

Non Z-norm.

21 :PAA*(D2,60)211 :PAA*(D2,60)1

2γ :PAA*(D41,60)21γ :PAA*(D21,60)1

Z-norm.

Non Z-norm.

Z-norm.

Non Z-norm.

Figure 3.6: uENV building, with input: data series D of length 60, PAA segment
size = 20, γ = 20, ℓmin = 40 and ℓmax = 60.

all the subsequences of D of all lengths in the range [ℓmin, ℓmax].

3.4 Indexing Algorithm

3.4.1 Indexing Non-Z-Normalized Subsequences

We are now ready to introduce the algorithms for building an uENV . Algorithm 1
describes the procedure for non-Z-normalized subsequences. As we noticed, main-
taining the running sum of the last s points, i.e., the length of a PAA segment
(refer to Line 7), allows us to compute all the PAA values of the expected envelope
in O(w(ℓmax + γ)) time in the worst case, where ℓmax + γ is the points window we
need to take into account for processing each master series, and w is the number
of PAA segments in the maximum subsequence length ℓmax. Since w, is usually a
very small number (ranging between 8-16), it essentially plays the role of a con-
stant factor. In order to consider not more than γ steps for each segment position,
we store how many times we use it, to update the final envelope in the vector, in

48 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

Algorithm 1: uENV computation

Input: float[] D, int s, int ℓmin, int ℓmax, int γ, int a
Output: uENV[iSAXmin, iSAXmax]

1 int w ← ⌊ℓmax/s⌋ ;
2 int segUpdateList[S] ← {0,...,0};
3 float U [w]← {−∞, ...,−∞}, L[w]← {∞, ...,∞};
4 if |D| − (i− 1) ≥ ℓmin then
5 float paaRSum ← 0;

// iterate the master series.

6 for i ← a to min(|D|,a + ℓmax + γ) do
// running sum of paa segment

7 paaRSum ← paaRSum + D[i];
8 if (j-a) > s then
9 paaRSum ← paaRSum - D[i-s];

10 for z ← 1 to min(⌊[i-(a-1)] / s⌋,w) do
11 if segUpdatedList[z] ≤ γ then
12 segUpdateList[z] ++;
13 float paa ← (paaRSum / s);
14 L[z] ← min(paa, L[z]);
15 U [z] ← max(paa, U [z]);

16 uENV ← [iSAX(L),iSAX(U)];

17 else
18 uENV ← ∅;

Line 2.

3.4.2 Indexing Z-Normalized Subsequences

In Algorithm 2, we show the procedure that computes an indexable Envelope for
Z-normalized sequences, which we denote as uENVnorm. This routine iterates
over the points of the overlapping subsequences of variable length (First loop in
Line 7), and performs the computation in two parts. The first operation consists of
computing the sum of each PAA segment we keep in the vector PAAs defined in
Line 2. When we encounter a new point, we update the sum of all the segments that
contain that point (Lines 8- 11). The second part, starting in Line 16 (Second loop),
performs the segment normalizations, which depend on the statistics (mean and
std.deviation) of all the subsequences of different length (master and non-master
series), in which they appear. During this step, we keep the sum and the squared

3.4. INDEXING ALGORITHM 49

Algorithm 2: uENVnorm computation
Input: float[] D, int s, int ℓmin, int ℓmax, int γ, int a
Output: uENVnorm[iSAXmin, iSAXmax]

1 int w ← ⌊ℓmax/s⌋ ;
// sum of PAA segments values

2 float PAAs [ℓmax + γ − (s− 1)] ← {0,...,0};
3 float U [w]← {−∞, ...,−∞}, L[w]← {∞, ...,∞};
4 if |D| − (a− 1) ≥ ℓmin then
5 int nSeg← 1;
6 float accSum, accSqSum ← 0;

// First loop: Iterate the points.

7 for i ← a to min(|D|,(a+ℓmax+γ)) do
// update sum of PAA segments values

8 if i− a > s then
9 nSeg++;

10 PAAs[nSeg] ← PAAs[nSeg-1] - D[i-s];

11 PAAs[nSeg] += D[i];
// keep sum and squared sum.

12 accSum += D[i], accSqSum += (D[i])2;
// the window contains enough points.

13 if i-(a-1) ≥ ℓmin then
14 acSAc ← accSum, acSqSAc ← accSqSum;
15 int nMse ← min(γ+1,(i-(a-1)-ℓmin) + 1);

// Second loop: Normalizations of PAA coefficients.

16 for j ← 1 to nMse do
17 int wSubSeq ← i-(a-1)-(j-1) ;
18 if wSubSeq ≤ ℓmax then
19 float µ ←acSAc/wSubSeq;

20 float σ ←
√

(acSqSAc
wSubSeq − µ2);

21 int nSeg ← ⌊wSubSeq÷s⌋;
22 for z ← 1 to nSeg do
23 float a ← PAAs[j+[(z-1)×s]];
24 float b ← s×µ;

25 float paaNorm ← ((a−b)/σ)
s ;

26 L[z] ← min(paaNorm, L[z]);
27 U [z] ← max(paaNorm, U [z]);

28 acSAc -= D[j], acSqSAc -= (D[j])2;

29 uENVnorm ← [iSAX(L),iSAX(U)];

30 else
31 uENVnorm ← ∅;

sum of the window, which permits us to compute the mean and the standard
deviation in constant time (Lines 19,20). We then compute the Z-normalizations
of all the PAA coefficients in Line 25, by using Equation 3.3.3.

50 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

acSAc = ∑(), acSqSAc = ∑(2)
wSubSeq = i−(a−1)−(j−1)=8

σ = acSqSAc
wSubSeq − µଶµ = acSAc

wSubSeq

1 DPAAs[1]

i-(a-1)=8 j=1

PAAs[5]

for loop (line 17)
normalization window paaNorm = (PAAs[x] − s∗µ)/

s

Loops iterations Z-normalization statistics update

s := PAA segment
length

uENVnormpaaENV[D, lmin=8, lmax=12, a=1, γ=4, s=4 pts]:

acSAc= acSAc + , acSqSAc = acSqSAc+ 2
wSubSeq = 9 2 DPAAs[1] PAAs[5]

acSAc = acSAc - , acSqSAc = acSqSAc- 2

wSubSeq = 8 3 DPAAs[2] PAAs[6]

11 PAAs[1] PAAs[5]

… …

PAAs[9]
… …

acSAc = acSAc - , acSqSAc = acSqSAc- 2

wSubSeq = 8 15 PAAs[5] PAAs[9]

acSAc = ∑() , acSqSAc = ∑() 2
wSubSeq = 12

Figure 3.7: Running example of Algorithm 2. Left column) Points iteration. Right
column) Statistics update at each step.

In Figure 3.7, we show an example that illustrates the operation of the algorithm.
In 1, the First loop has iterated over 8 points (marked with the dashed square).
Since they form a subsequence of length ℓmin, the Second Loop starts to compute
the Z-normalized PAA coefficients of the two segments, computing the mean and
the standard deviation using the sum (acSAc) and squared sum (acSqAc) of the
points considered by the First loop (gray circles). The second step takes place
after that the First Loop has considered the 9th point (black circle) of the series.
Here, the Second Loop updates the sum and the squared sum, with the new point,
calculating then the corresponding new Z-normalized PAA coefficients. At step 3,
the algorithm considers the second subsequence of length ℓmin, which is contained
in the nine points window. The Second Loop considers in order all the overlapping
subsequences, with different prefixes and length. This permits to update the statis-
tics (and all possible normalizations) in constant time. The algorithm terminates,
when all the points are considered by the First loop, and the Second Loop either
encounters a subsequence of length ℓmin (as depicted in the step 15), or performs
at most γ iterations, since all the subsequences starting at position a + γ + 1 or
later (if any) will be represented by other Envelopes.

3.4. INDEXING ALGORITHM 51

Algorithm 3: ULISSE index computation
Input: Collection C, int s, int ℓmin, int ℓmax, int γ, bool bNorm
Output: ULISSE index I

1 foreach D in C do
2 inta′ ← ∅;
3 uENV E ← ∅;
4 while true do
5 if bNorm then
6 E ← uENVnorm(D, s, ℓmin, ℓmax, γ, a′);
7 else
8 E ← uENV (D, s, ℓmin, ℓmax, γ, a′);
9 a′ ← a′ + γ + 1 ;

10 if E == ∅ then
11 break;
12 bulkLoadingIndexing(I, E);
13 I.inMemoryList.add(maxCardinality(E));

Complexity Analysis

Given w, the number of PAA segments in the window of length ℓmax, and
M = ℓmax − ℓmin + γ, the number of master series we need to consider, building a
normalized Envelope, uENVnorm, takes O(Mγw) time.

3.4.3 Building the index

We now introduce the algorithm, which builds a ULISSE index upon a data series
collection. We maintain the structure of the iSAX index [16], introduced in the
preliminaries.

Each ULISSE internal node stores the Envelope uENV that represents all the
sequences in the subtree rooted at that node. Leaf nodes contain several En-
velopes, which by construction have the same iSAX(L). On the contrary, their
iSAX(U) varies, since it get updated with every new insertion in the node. (Note
that, inserting by keeping the same iSAX(U) and updating iSAX(L) represents
a symmetric and equivalent choice.)

52 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

In Figure 3.8, we show the structure of the ULISSE index during the insertion
of an Envelope (rectangular/yellow box). Note that insertions are performed
based on iSAX(L) (underlined in the figure). Once we find a node with the same
iSAX(L) = (1−0−0−0) (Figure 3.8, 1ststep) if this is an inner node, we descend
its subtree (always following the iSAX(L) representations) until we encounter a
leaf. During this path traversal, we also update the iSAX representation of the
Envelope we are inserting, by increasing the number of bits of the segments, as
necessary. In our example, when the Envelope arrives at the leaf, it has increased
the cardinality of the second segment to two bits: iSAX(L) = (1−10−0− 0), and
similarly for iSAX(U) (Figure 3.8, 2ndstep). Along with the Envelope, we store
in the leaf a pointer to the location on disk for the corresponding raw data series.
We note that, during this operation, we do not move any raw data into the index.

To conclude the insertion operation, we also update the iSAX(U) of the nodes
visited along the path to the leaf, where the insertion took place. In our example,
we update the upper part of the leaf Envelope to iSAX(U) = (1−11−0−0), as well
as the upper part of the Envelope of the leaf’s parent to iSAX(U) = (1−1−0− 0)
(Figure 3.8, 3rdstep). This brings the ULISSE index to a consistent state after the
insertion of the Envelope.

Algorithm 3 describes the procedure, which iterates over the series of the input col-
lection C, and inserts them in the index. Note that function bulkLoadingIndexing
in Line 12 may use different bulk loading techniques. In our experiments, we used
the iSAX 2.0 bulk loading algorithm [7]. Alongside the index, we also keep in
memory (using the raw data order) all the Envelopes, represented by the sym-
bols of the highest iSAX cardinality available (Line 13). This information is used
during query answering.

Space complexity analysis

The index space complexity is equivalent for the case of Z-normalized and non
Z-normalized sequences. The choice of γ determines the number of Envelopes
generated and thus the index size. Hence, given a data series collection C =
{D1, ..., D|C|} the number of extracted Envelopes is given by N = (

∑|C|
i ⌊ |Di|

ℓmin+γ
⌋).

If w PAA segments are used to discretize the series, each iSAX symbol is rep-
resented by a single byte (binary label) and the disk pointer in each Envelope
occupies b bytes (in general 8 bytes are used). The final space complexity is
O((2w)bN).

3.5. SIMILARITY SEARCH WITH ULISSE 53

2nd step:
Insert the uENV
in the leaf with the
same iSax(L),
computing the new representation
for the split symbols

..... ROOT

uENV = iSax(U) = 1 - 1 - 1 - 0
iSax(L) = 1 - 0 - 0 - 0

iSax(U): 1 - 0 - 0 - 0
iSax(L): 1 - 0 - 0 - 0

.....

INDEX

1st step:
Find leaf node with the representative iSax(L)

Internal node: split
on a segment of
representative word

3rd step: Update iSax(U) in the
updated leaf path nodes, updating
the highest symbol values.

Each envelope in a leaf points to
the subsequence starting point in

the disk

iSax(U) : 1 - 01 - 0 - 0

iSax(U) 1 - 11 - 1 - 0
iSax(L) 1 - 10 - 0 - 0
… …

iSax(L) : 1 - 10 - 0 - 0
iSax(U) : 1 - 11 - 0 - 0

… … …
iSax(L) : 1 - 00 - 0 - 0

… … …
… … …

ROOT

iSax(U): 1 - 1 - 0 - 0
iSax(L): 1 - 0 - 0 - 0

.....

.....iSax(U) : 1 - 11 - 0 - 0

iSax(U) 1 - 11 - 1 - 0
iSax(L) 1 - 10 - 0 - 0
… …

iSax(L) : 1 - 10 - 0 - 0

Figure 3.8: Envelope insertion in an ULISSE index. iSAX(L) is chosen to accom-
modate the Envelopes inside the nodes.

3.5 Similarity Search with ULISSE

In this section, we present the building blocks of the similarity search algorithms we
developed for the ULISSE index, for both the Euclidean and the DTW distances,
and both k-NN and ǫ-range queries.

We note that the same index structure supports both distance measures. When
the query arrives, and depending on the distance measure we have chosen, we use
the corresponding lower bounding and real distance formulas. We elaborate on
these procedures in the following sections.

54 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

3.5.1 Lower Bounding Euclidean Distance

The iSAX representation allows the definition of a distance function, which lower
bounds the true Euclidean [90]. This function compares the PAA coefficients of
the first data series, against the iSAX breakpoints (values) that delimit the symbol
regions of the second data series.

Let βu(S) and βl(S) be the breakpoints of the iSAX symbol S. We can compute
the distance between a PAA coefficient and an iSAX region using:

distLB(PAA(D)i, iSAX(D′)i) =

(βu(iSAX(D′)i)−P AA(D)i)
2 ifβu(iSAX(D′)i)<P AA(D)i

(βl(iSAX(D′)i)−P AA(D)i)
2 ifβl(iSAX(D′)i)>P AA(D)i

0 otherwise.

(3.2)

In turn, the lower bounding distance between two equi-length series D,D′, repre-
sented by w PAA segments and w iSAX symbols, respectively, is defined as:

mindistP AA_iSAX(PAA(D), iSAX(D′)) =

√

|D|
w

√

√

√

√

w
∑

i=1

distLB(PAA(D)i, iSAX(D′)i).

(3.3)

We rely on the following proposition [54]:

Proposition 1 Given two data series D, D′, where |D| = |D′|,
mindistP AA_iSAX(PAA(D), iSAX(D′)) ≤ ED(D, D′).

Since our index contains Envelope representations, we need to adapt Equation 3.3,
in order to lower bound the distances between a data series Q, which we call query,
and a set of subsequences, whose iSAX symbols are described by the Envelope
uENVpaaENV

[D,ℓmin,ℓmax,a,γ,s]
= [iSAX(L), iSAX(U)].

Therefore, given w, the number of PAA coefficients of Q, that are computed using
the Envelope PAA segment length s on the longest multiple prefix, we define the
following function:

3.5. SIMILARITY SEARCH WITH ULISSE 55

PAA(Q)1 PAA(Q)2

Q:

(a) (b)

� x (0 + (PAA(Q)2−β1)ଶ)mindistULISSE(PAA(Q) , uENVpaaENV[D,lmin,lmax,a,γ,s]) =

β3

β2

β100

01

10

11

Figure 3.9: Given the PAA representation of a query Q (a) and
uENVpaaENV

[D,ℓmin,ℓmax,a,γ,s]
(b) we compute their mindistULiSSE.

mindistULiSSE(PAA(Q), uENVpaaENV...) =
√

s

√

√

√

√

√

√

√

w
∑

i=1

(P AA(Q)i−βu(iSAX(U)i))
2, if(∗)

(P AA(Q)i−βu(iSAX(L)i))
2, if(∗∗)

0 otherwise.

(∗)βu(iSAX(U)i)<P AA(Q)i

(∗∗)βl(iSAX(L)i)>P AA(Q)i

(3.4)

In Figure 3.9, we report an example of mindistULiSSE computation between a
query Q, represented by its PAA coefficients, and an Envelope in the iSAX space,
which is delimited with dashed lines and the relative breakpoints βi.

Proposition 2 Given two data series Q,D,

mindistULiSSE(PAA(Q), uENVpaaENV
[D,ℓmin,ℓmax,a,γ,s]

) ≤ ED(Q, Di,|Q|), for each i

such that a ≤ i ≤ a + γ + 1 and |D| − (i− 1) ≥ ℓmin .

Proof 3 (sketch) We may have two cases, when mindistULiSSE is equal to zero,
the proposition clearly holds, since Euclidean distance is non negative. On the other
hand, the function yields values greater than zero, if one of the first two branches
is true. Let consider the first (the second is symmetric). If we denote with D′′

the subsequence in D, such that βl(iSAX(U)i) ≤ PAA(D′′)i ≤ βu(iSAX(U)i), we
know that the upper breakpoint of the ith iSAX symbol, of each subsequence in D,
which is represented by the Envelope, must be less or equal than βu(iSAX(U)i). It
follows that, for this case, Equation 3.4 is equivalent to
distLB(PAA(Q)i, iSAX(D′′)i), which yields the shortest lower bounding distance
between the ith segment of points in D and Q.

56 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

LDTW

UDTW

D’

(a)

UDTW

LDTW

D

LB_Keogh(dtwENVr(D),D’)

dtwENVr(D)= (LDTW,UDTW)

PAA(UDTW)

PAA(LDTW) β5

LBPaL(PAA(dtwENVr(Q)) , uENVpaaENV[D’,lmin,lmax,a,γ,s](D’)) =

β4

β3

β2

uENVpaaENV[D’,lmin,lmax,a,γ,s]

(c)

= (��� �்ௐ ଵ − βସ)ଶ +0 + (βଵ − ��� �்ௐ ଷ)ଶ
β1

β0

(b)

r =7

Q = D1,153

Figure 3.10: (a) DTW Envelope (LDT W , UDT W) of a series D. (b) LBKeogh dis-
tance between DTW Envelope and D′. (c) LBP aL between the DTW Envelope of
Q (prefix of D) and the ULISSE Envelope of D′.

3.5.2 Lower Bounding Dynamic Time Warping

We present here a lower bound for the true DTW distance between two data series.
Keogh et al. [46] introduced the LBKeogh function, which provides a measure that
is always smaller or equal than the true DTW, between two equi-length series. To
compute this measure, we need to account for the valid warping alignments of two
data series. Recall that the indexes of a valid path are confined by the Sakoa-Chiba
band, where they are at most r points far from the diagonal (Euclidean Distance
alignment). Given a data series D, we can build an envelope, dtwENVr(D), com-
posed by two data series: LDT W and UUDT W , which delimit the space generated
by the points of D that have indexes in the valid warping paths, constrained by

3.5. SIMILARITY SEARCH WITH ULISSE 57

the window r. Therefore, the ith point of the two envelope sequences are computed
as follows: LDT W

i = min(D(i−r,2r+1)) and UDT W
i = max(D(i−r,2r+1)). Intuitively,

each ith value of LDT W and UDT W represent the minimum and the maximum val-
ues, respectively, of the points in D that can be aligned with the ith position of
a matching series. In Figure 3.10(a), we report a data series D (plotted using a
dashed line), contoured by its dtwENVr(D) envelope (r = 7).

Lower bounding DTW. We can thus define the LBKeogh distance [46], which
is computed between a DTW envelope of a series D and a data series D′, where
|D| = |D′| and the warping window is r:

LBKeogh(dtwENVr(D), D′) =

√

√

√

√

√

√

√

|D|
∑

i=1

(D′i − UDT W
i)2, ifD′i > UDT W

i

(D′i − LDT W
i)2, ifD′i < LDT W

i

s0 otherwise.

(3.5)

The LBKeogh distance between dtwENVr(D) and D′ is guaranteed to be always
smaller than, or equal to DTW (D, D′), computed with warping window r. In
Figure 3.10(b), we depict the LBKeogh distance between dtwENVr(D) (from Fig-
ure 3.10(a)), and a new series D′. The vertical (blue) lines represent the positive
differences between D′ and the DTW envelope of D, in Equation 3.5. Note that
the computation of LBKeogh takes O(ℓ) time (linear), whereas the true DTW com-
putation runs in O(ℓr) time using dynamic programming [46, 78].

Lower bounding DTW in ULISSE. We now propose a new lower bounding
measure for the true DTW distance between a data series and all the sequences
(of the same length) represented by an ULISSE Envelope. To that extent, we first
introduce a measure based on LBKeogh distance, which is computed between the
PAA representation of dtwENVr(D) and the iSAX representation of D′. Given
w, the number of PAA coefficients of each dtw envelope series (UDT W ,LDT W) that
is equivalent to the number of iSAX coefficients of D′, we have:

LBKeoghP AA_iSAX
(PAA(dtwENVr(D)), iSAX(D′)) =

√

|D|
w

√

√

√

√

√

√

√

√

w
∑

i=1

(β
ℓ

(iSAX(D′)i)−P AA(UDT W)i)
2, if β

ℓ
(iSAX(D′)i)>P AA(UDT W)i)

(P AA(LDT W)i−βu(iSAX(D′)i))
2, if P AA(LDT W)i>βu(iSAX(D′)i)

0 otherwise.

(3.6)

58 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

We know that LBKeoghP AA_iSAX
(PAA(dtwENVr(D)),

iSAX(D′)) ≤ LBKeogh(dtwENVr(D), D′) as proven by Keogh et al. [46]. Given
the PAA representation of dtwENVr(D) (of w coefficients), and an ULISSE En-
velope built on D′: uENVpaaENV

[D′,ℓmin,ℓmax,a,γ,s]
) = [L, U], we define:

LBP aL(PAA(dtwENVr(D)), uENVpaaENV [D′,...]) =

√
s

√

√

√

√

√

√

√

√

w
∑

i=1

(β
ℓ

(iSAX(L)i)−P AA(UDT W)i)
2, if β

ℓ
(iSAX(L)i)>P AA(UDT W)i)

(P AA(LDT W)i−βu(iSAX(L)i))
2, if P AA(LDT W)i>βu(iSAX(U)i)

0 otherwise.

(3.7)

Lemma 3 Given two data series D and D′, where ℓmin ≤ |D| ≤ ℓmax,
the distance LBP aL(PAA(dtwENVr(D)), uENV

paaENV [D′,ℓmin,ℓmax,a,γ,s]
) is always

smaller or equal to DTW (D, D′i,|D|), for each i such that a ≤ i ≤ a + γ + 1 and
|D′| − (i− 1) ≥ ℓmin.

Intuitively, the lemma states that the LBP aL function always provides a measure
that is smaller than the true DTW distance between D and each subsequence in
D′ of the same length, represented by uENV

paaENV [D′,ℓmin,ℓmax,a,γ,s]
).

Proof 4 (sketch): We want to prove that

LBP aL(PAA(dtwENVr(D)), uENVpaaENV [D′,ℓmin,ℓmax,a,γ,s])

is equal to

argmin
i
{LBKeoghP AA_iSAX

(PAA(dtwENVr(D)), iSAX(D′i,|D|))},

where D′i,|D| is a subsequence of D′ represented by uENV
paaENV [D′,ℓmin,ℓmax,a,γ,s]

).
The lemma clearly holds if LBP aL yields zero, since the DTW distance between two
series is always positive, or equal to zero. We thus test the case, where Equation 3.7
provides a strictly positive value. In the first case, the ith lower iSAX breakpoint
of L in the ULISSE Envelope (βℓ(iSAX(L)i)) is greater than the ith PAA coef-
ficient of the UDT W , namely PAA(UDT W)i. This implies that any other ith iSAX
coefficient, which is contained in the ULISSE Envelope is necessarily greater than
βℓ(iSAX(L)i) and PAA(UDT W)i. Hence, the Equation 3.7 is equivalent to the
smallest value we can obtain from the first branch of LBKeoghP AA_iSAX

computed

3.5. SIMILARITY SEARCH WITH ULISSE 59

between each ith iSAX coefficient of the subsequences in D′ (represented in the
ULISSE Envelope) to the ith PAA coefficient of PAA(UDT W). LBKeoghP AA_iSAX

always yields a value that is smaller or equal to the true DTW distance, with
warping window r.

The second case is symmetric. Here, the βu(iSAX(L)i) coefficient is the closest
to PAA(LDT W)i, and greater than any other ith iSAX coefficient of the ULISSE
Envelope. Therefore, Equation 3.7 is equivalent to the smallest value we can obtain
on the second branch of LBKeoghP AA_iSAX

computed between each ith iSAX coeffi-
cient of the subsequences in D′ (represented in the ULISSE Envelope) to the ith

coefficient of PAA(LDT W). �

In Figure 3.10(c), we depict an example that shows the computation of LBP aL

between the DTW Envelope that is built around the prefix of D (153 points) and
the ULISSE Envelope of the series D′. For this latter, the settings are: a = 1,
ℓmin = 153, ℓmax = 255, γ = 0 and s = 51. In the figure, we represent the
iSAX coefficients of the ULISSE Envelope, with (gray) rectangles delimited by
their breakpoints (dashed horizontal lines). The coefficients of PAA(UDT W) and
PAA(LDT W) are represented by red and green solid segments.

3.5.3 Approximate search

Similarity search performed on ULISSE index relies on Equation 3.4 (Euclidean
distance) and Equation 3.7 (DTW distance) to prune the search space. This allows
to navigate the tree, visiting the most promising nodes first. We thus provide a
fast approximate search procedure we report in Algorithm 4. In Line 7 (or Line 9 if
DTW distance is used), we start to push the internal nodes of the index in a priority
queue, where the nodes are sorted according to their lower bounding distance to
the query. Note that in the comparison, we use the largest prefix of the query,
which is a multiple of the PAA segment length, used at the index building stage
(Line 1). Recall that when the search is performed using the DTW measure, the
PAA representation of the query is computed on the DTW envelope (dtwENVr)
of the segment-length multiple that completely contains the query (Line 2). This
envelope is composed by two series, which encode the possible warping alignment
according the warping window r. Therefore, the PAA representation is composed
by two sets of coefficients, e.g., PAA(LDT W) and PAA(UDT W), as we depict in
Figure 3.10.(c). Then, the algorithm pops the ordered nodes from the queue,

60 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

visiting their children in the loop of Line 10. In this part, we still maintain the
internal nodes ordered (Lines 34-35).

As soon as a leaf node is discovered (Line 12), we check if its lower bound distance
to the query is shorter than the bsf. If this is verified, the dataset does not contain
any data series that are closer than those already compared with the query. In
this case, the approximate search result coincides with that of the exact search.
Otherwise, we can load the raw data series pointed by the Envelopes in the leaf,
which are in turn sorted according to their position, to avoid random disk reads.
We visit a leaf only if it contains Envelopes that represent sequences of the same
length as the query. Each time we compute either the true Euclidean distance
(Line 19) or the true DTW distance ((Line 21)), the best-so-far distance (bsf) is
updated, along with the Ra vector. Since priority is given to the most promising
nodes, we can terminate our visit, when at the end of a leaf visit the k bsf ’s have
not improved (Line 22). Hence, the vector Ra contains the k approximate query
answers.

3.5.4 Exact search

Note that the approximate search described above may not visit leaves that contain
answers better than the approximate answers already identified, and therefore, it
will fail to produce exact, correct results. We now describe an exact nearest
neighbor search algorithm, which finds the k sequences with the absolute smallest
distances to the query.

In the context of exact search, accessing disk-resident data following the lower
bounding distances order may result in several leaf visits: this process can only
stop after finding a node, whose lower bounding distance is greater than the bsf,
guaranteeing the correctness of the results. This would penalize computational
time, since performing many random disk I/O might unpredictably degenerate.

We may avoid such a bottleneck by sorting the Envelopes, and in turn the disk ac-
cesses. Moreover, we can exploit the bsf provided by approximate search, in order
to perform a sequential search with pruning over the sorted Envelopes list (this
list is stored across the ULISSE index). Intuitively, we rely on two aspects. First,
the bsf, which can translate into a tight-enough bound for pruning the candidate
answers. Second, since the list has no hierarchy structure, any Envelope is stored
with the highest cardinality available, which guarantees a fine representation of

3.5. SIMILARITY SEARCH WITH ULISSE 61

Algorithm 4: ULISSE K-nn-Approx

Input: int k, float [] Q, ULISSE index I, int r // warping window

Output: float [k][|Q|] Ra, float [] bsf
1 float [] Q∗ ← P AA(Q1,..,⌊|Q|/I.s⌋);

2 float [][] Q∗dtw ← P AA(dtwENVr(Q1,..,⌊|Q|/I.s⌋));

3 float[k] bsf ← {∞, ...,∞} ;
4 PriorityQueue nodes;
5 foreach node in I.root.children() do
6 if Euclidean distance search then
7 nodes.push(node, mindistULiSSE(Q∗, node));
8 else if DTW search then
9 nodes.push(node, LBP aL(Q∗dtw, node));

10 while n = nodes.pop() do
11 if n.isLeaf() and n.containsSize(|Q|) then
12 if n.lowerBound < bsf[k] then

// sort according disk pos.

13 uENV [] Envelopes = sort(n.Envelopes);
// iterate the Env. and compute true ED

14 oldBSF ← bsf [k];
15 foreach E in Envelopes do
16 float [] D ← readSeriesFromDisk(E);
17 for i ← E.a to min(E.a+E.γ+1,|D| − (|Q| − 1)) do
18 if Euclidean distance search then
19 EDupdateBSF (Q, E.Di,|Q|, k,bsf , Ra);

20 else if DTW search then
21 DT WupdateBSF (Q, E.Di,|Q|, k,bsf , Ra,r);

// if bsf has not improved end visit.

22 if oldBSF == bsf[k] then
23 break;

24 else
25 break; // Approximate search is exact.

26 else
27 LBleft ← 0, LBright ← 0;
28 if Euclidean distance search then
29 LBleft ←mindistULISSE(Q∗, n.left);
30 LBright ←mindistULISSE(Q∗, n.right);

31 else if DTW search then
32 LBleft←LBP aL(Q∗dtw, n.left);

33 LBright←LBP aL(Q∗dtw, n.right);

34 nodes.push(n.left, LBleft);
35 nodes.push(n.right, LBright);

the series, and can contribute to the pruning process.

Algorithm 5 describes the exact search procedure. In the case of Euclidean distance
search, in Line 8 we compute the lower bound distance between the Envelope and
the query. On the other hand, when DTW distance is used, we compute the lower
bound distance in Line 10. If it is not smaller than the kth bsf, we do not access
the disk, pruning Euclidean Distance computations as well. Note that while we
are computing the true distances, we can speed-up computations using the Early
Abandoning technique [78], which works both for Euclidean and DTW distances.
In the case of DTW distance, prior to computing the raw distance, we have a

62 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

Algorithm 5: ULISSE K-nn-Exact

Input: int k, float [] Q, ULISSE index I, int r // warping window

Output: float [k][|Q|] R
1 float [] Q∗ ← P AA(Q1,..,⌊|Q|/I.s⌋);

2 float [][] Q∗dtw ← P AA(dtwENVr(Q1,..,⌊|Q|/I.s⌋));

3 float [] bsf, float [k][|Q|] R ← K-nn-Approx(k, Q, I) ;
4 if bsf is not exact then
5 foreach E in I.inMemoryList do
6 LBDist← 0;
7 if Euclidean distance search then
8 LBDist←mindistULiSSE(Q∗, E);
9 else if DTW search then

10 LBDist←LBP aL(Q∗dtw, E);
11 if LBDist< bsf[k] then
12 float [] D ← readSeriesFromDisk(E);
13 for i ← E.a to min(E.a+E.γ+1,|D| − (|Q| − 1)) do
14 if Euclidean distance search then
15 EDupdateBSF (Q, Di,|Q|, k,bsf , R);

16 else if DTW search then
17 l← LBKeogh(dtwENVr(Q), Di,|Q|);

18 if l <bsf[k] then
19 DT WupdateBSF (Q, Di,|Q|, k,bsf , R);

further possibility to prune computations using the LBKeogh (Equation 3.5) in
Line 17. This permits to obtain a lower bounding measure in linear time, avoiding
the full DTW calculation.

3.5.5 Complexity of query answering

We provide now the time complexity analysis of query answering with ULISSE.
Both the approximate and exact query answering time strictly depend on data dis-
tribution as shown in [115]. We focus on exact query answering, since approximate
is part of it.

Best Case. In the best case, an exact query will visit one leaf at the stage of
the approximate search (Algorithm 4), and during the second leaf visit will fulfill
the stopping criterion (i.e., the bsf distance is smaller than the lower bounding
distance between the second leaf and the query). Given the number of the first
layer nodes (root nodes) N , the length of the first leaf path L, and its size S, the
best case complexity is given by the cost to iterate the first layer node and descend
to the leaf keeping the nodes sorted in the heap: O(w(N + LlogL)), where w is
the number of symbols checked at each lower bounding distance computation. We
recall that computing the lower bound of Euclidean or DTW distance has equal

3.6. EXPERIMENTAL EVALUATION 63

time complexity. Moreover we need to take into account the additional cost of
sorting the disk accesses and computing the true distances in the leaf, which is
O(S(logS + ℓmax)) in the case of Euclidean distance, and O(SlogS + Srℓmax) for
DTW distance, where r is the warping window length.

Worst Case. The worst case for exact search takes place when at the approximate
search stage, the complete set of leaves that we denote with T , need to be visited.
This has a cost of O(w(N +TLlogL)) plus the cost of computing the true distances,
which takes either O(T (S(logS + ℓmax))) (Euclidean distance), or O(T (SlogS +
Srℓmax)) (DTW distance). Note though that this worst case is pathological: for
example, when all the series in the dataset are the same straight lines (only sligthly
perturbed). Evidently, the very notion of indexing does not make sense in this case,
where all the data series look the same. As we show in our experiments on several
datasets, in practice, the approximate algorithm always visits a very small number
of leaves.

ULISSE K-nn Exact complexity. So far we have considered the exact K-nn
search with regards to Algorithm 4 (approximate search). When this algorithm
produces approximate answers, providing just an upper bound bsf, in order to
compute exact answers we must run Algorithm 5 (exact search). The complexity
of this procedure is given by the cost of iterating over the Envelopes and computing
the mindist, which takes O(Mw) time, where M is the total number of Envelopes.
Let’s denote with V the number of Envelopes, for which the raw data are retrieved
from disk and checked. Then, the algorithm takes an additional O(V ℓmax) time to
compute the true Euclidean distances, or O(V rℓmax) to compute the true DTW
distances.

3.6 Experimental Evaluation

Setup. All the experiments presented in this section are completely reproducible:
the code and datasets we used are available online [94]. We implemented all
algorithms (indexing and query answering) in C (compiled with gcc 4.8.2). We
ran experiments on an Intel Xeon E5-2403 (4 cores @ 1.9GHz), using the x86_64
GNU/Linux OS environment.

Algorithms. We compare ULISSE to Compact Multi-Resolution Index
(CMRI) [36], which is the current state-of-the-art index for similarity search with
varying-length queries (recall that CMRI constructs a limited number of distinct

64 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

indexes for series of different lengths). We note though, that in contrast to our
approach, CMRI can only support non Z-normalized sequences. Furthermore, we
compare ULISSE to KV-Match [18], which is the state-of-the-art indexing tech-
nique for ǫ-range queries that support the Euclidean and DTW measures over non
Z-normalized sequences (remember that, as we discussed in Section 2.1, for Z-
normalized data KV-Match only supports exact search for the constrained ǫ-range
queries).

In addition, we compare to the current state-of-the-art algorithms for subsequence
similarity search, the UCR suite [78], and MASS [68]. Note that only UCR suite
works with the Euclidean and DTW measures, whereas MASS supports only sim-
ilarity search using Euclidean distance. These algorithms do not use an index, but
are based on optimized serial scans, and are natural competitors, since they can
process overlapping subsequences very fast.

Datasets. For the experiments, we used both synthetic and real data. We pro-
duced the synthetic datasets with a generator, where a random number is drawn
from a Gaussian distribution N(0, 1), then at each time point a new number is
drawn from this distribution and added to the value of the last number. This kind
of data generation has been extensively used in the past [115], and has been shown
to effectively model real-world financial data [22].

The real datasets we used are:

• (GAP), which contains the recording of the global active electric power in
France for the period 2006-2008. This dataset is provided by EDF (main
electricity supplier in France) [53];

• (CAP), the Cyclic Alternating Pattern dataset, which contains the EEG
activity occurring during NREM sleep phase [93];

• (ECG) and (EMG) signals from Stress Recognition in Automobile
Drivers [31];

• (ASTRO), which contains data series representing celestial objects [19];

• (SEISMIC), which contains seismic data series, collected from the IRIS Seis-
mic Data Access repository [33].

In our experiments, we test queries of lengths 160-4096 points, since these cover
at least 90% of the ranges explored in works about data series indexing in the last
two decades [43, 4, 96].

3.6. EXPERIMENTAL EVALUATION 65

1
10

100
1000

10000
100000

tim
e

(s
ec

on
ds

)

γ = (% of (lmax - lmin))

BulkLoading Algorithm
Envelopes construction

1
10

100
1000

10000

tim
e

(s
ec

on
ds

)

Query length range (lmax - lmin)

Envelopes construction

BulkLoading Algorithm

(a) (b)

Figure 3.11: (a) Construction and bulk Loading time (log scale) of Envelopes
varying γ. (b) Construction and Bulk Loading time (log scale) of Envelopes varying
lengths range.

3.6.1 Envelope Building

In the first set of experiments, we analyze the performance of the ULISSE indexing
algorithm. Note that the indexing algorithm is oblivious to the distance measure
used at query time.

In Figure 3.11(a) we report the indexing time (Envelope Building and Bulk loading
operations) when varying γ. We use a dataset containing 5M series of length 256,
fixing ℓmin = 160 and ℓmax = 256. Observe that, when γ = 0, the algorithm needs
to extract as many Envelopes as the number of master series of length ℓmin. This
generates a significant overhead for the index building process (due to the maximal
Envelopes generation), but also does not take into account the contiguous series
of same length, in order to compute the statistics needed for Z-normalization. A
larger γ speeds-up the Envelope building operation by several orders of magnitude,
and this is true for a very wide range of γ values (Figure 3.11(a)). These results
mean that the uENVnorm building algorithm can achieve good performance in
practice, despite its complexity that is quadratic on γ.

In Figure 3.11(b) we report an experiment, where γ is fixed, and the query length
range (ℓmax − ℓmin) varies. We use a dataset, with the same size of the previous
one, which contains 2.5M series of length 512. The results show that increasing
the range has a linear impact on the final running time.

66 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

3.6.2 Exact Search Similarity Queries with Euclidean Dis-
tance

We now test ULISSE on exact 1-Nearest Neighbor queries using Eu-
clidean distance. We have repeated this experiment varying the ULISSE
parameters along predefined ranges, which are (default in bold) γ :
[0%, 20%, 40%, 60%, 80%, 100%], where the percentage is referring to its maxi-
mum value, ℓmin : [96, 128, 160, 192, 224, 256], ℓmax : [256], dataset series length
(ℓS): [256, 512, 1024, 1536, 2048, 2560] and dataset size of 5GB. Here, we use syn-
thetic datasets containing random walk data in binary format, where a single
point occupies 4 bytes. Hence, in each dataset C, where |C|Bytes denotes the cor-
responding size in bytes, we have a number of subsequences of length ℓ given by
N seq = (ℓS− ℓ+ 1)× ((|C|Bytes/4)/ℓS). For instance, in a 5GB dataset, containing
series of length 256, we have ∼500 Million subsequences of length 160.

We record the average CPU time, query disk I/O time (time to fetch data from disk:
Total time - CPU time), and pruning power (percentage of the total number of
Envelopes in the index that do not need to be read), of 100 queries, extracted from
the datasets with the addition of Gaussian noise. For each index used, the building
time and the relative size are reported. Note that we clear the main memory
cache before answering each set of queries. We have conducted our experiments
using datasets that are both smaller and larger than the main memory. In all
experiments, we report the cumulative running time of 1000 random queries for
each query length.

3.6.3 Query Answering Varying γ

We first present results for similarity search queries on ULISSE when we vary γ,
ranging from 0 to its maximum value, i.e., ℓmax−ℓmin. In Figure 3.12, we report the
results concerning non Z-normalized series (for which we can compare to CMRI).
We observe that grouping contiguous and overlapping subsequences under the same
summarization (Envelope) by increasing γ, affects positively the performance of
index construction, as well as query answering (Figures 3.12(a) and (d)). The
latter may seem counterintuitive, since γ influences in a negative way pruning
power, as depicted in Figure 3.12(c). Indeed, inserting more master series into
a single Envelope is likely to generate large containment areas, which are not
tight representations of the data series. On the other hand, it leads to an overall
number of Envelopes that is several orders of magnitude smaller than the one for

3.6. EXPERIMENTAL EVALUATION 67

0

50

100

150

200

160 192 224 256Av
g

Ex
ac

t Q
ue

ry
Ti

m
e

CP
U

+
di

sk
I/O

 (S
ec

s)

Query length

0% 20%
40% 60%
80% 100%

0
1
2
3
4
5
6
7
8

160 192 224 256

Av
g

Ex
ac

t
Q

ue
ry

Ti
m

e
di

sk
I/O

 (S
ec

s)

Query length

0% 20% 40%
60% 80% 100%

80
85
90
95

100

160 192 224 256

Av
er

ag
e

Pr
un

in
g

Po
w

er
 %

Query length

0% 20% 40%
60% 80% 100%

Method γ
Indexing time

(h)
Indexing size

(GB)
No. of Records/

Envelopes
No. of

indexes
Cmri - 7 90 2B 4

Ulisse 0% 6 58 485M 1
Ulisse 20% 0.2 3 25M 1
Ulisse 40% 0.11 1.7 15M 1
Ulisse 60% 0.08 1 10M 1
Ulisse 80% 0.08 1 10M 1
Ulisse 100% 0.04 0.5 5M 1

(a)

(c)

(b)

(d)

(e)

γ

γ

γ

0
20
40
60
80

100
120
140

Cu
m

ul
at

ive
 Q

ue
ry

Ti

m
e

(h
ou

rs
)

γ = (% of (lmax - lmin))

query answering disk I/O
query answering cpu
Indexing (disk I/O + CPU)

Figure 3.12: Query answering time performance and pruning power varying γ on
non Z-normalized data series.

γ = 0%. In this last case, when γ = 0, the algorithm inserts in the index as many
records as the number of master series present in the dataset (485M), as reported
in (Figure 3.12(e)).

We note that the disk I/O time on compact indexes is not negatively affected at the
same ratio of pruning power. On the contrary, in certain cases it becomes faster.
For example, the results in Figure 3.12(b) show that for query length 160, the
γ = 100% index is more than 2x faster in disk I/O than the γ = 0% index, despite
the fact that the latter index has an average pruning power that is 14% higher
(Figure 3.12(c)). This behavior is favored by disk caching, which translates to a
higher hit ratio for queries with slightly larger disk load. We note that we repeated
this experiment several times, with different sets of queries that hit different disk
locations, in order to verify this specific behavior. The results showed that this
disk I/O trend always holds.

68 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

While disk I/O represents on average the 3−4% of the total query cost, computa-
tional time significantly affects the query performance. Hence, a compact index,
containing a smaller number of Envelopes, permits a fast in memory sequential
scan, performed by Algorithm 5.

In Figure 3.12(d) we show the cumulative time performance (i.e., 4, 000 queries in
total), comparing ULISSE, CMRI, and UCR Suite. Note that in this experiment,
ULISSE indexing time is negligible w.r.t. the query answering time. ULISSE,
outperforms both UCR Suite and CMRI, achieving a speed-up of up to 12x.

Further analyzing the performance of CMRI, we observe that it constructs four
indexes (for four different lengths), generating more than 2B index records. Con-
sequently, it is clear that the size of these indexes will negatively affect the perfor-
mance of CMRI, even if it achieves reasonable pruning ratios.

These results suggest that the idea of generating multiple copies of an index for
different lengths, is not a scalable solution.

In Figure 3.13, we show the results of the previous experiment, when using Z-
normalization. We note that in this case the query answering time has an overhead
generated by the Z-normalization that is performed on-the-fly, during the similarity
search stage. Overall, we observe exactly the same trend as in non Z-normalized
query answering. ULISSE is still 2x faster than the state-of-the-art, namely UCR
Suite.

Varying Length of Data Series. In this part, we present the results concerning
the query answering performance of ULISSE and UCR Suite, as we vary the length
of the sequences in the indexed datasets, as well as the query length (refer to
Figure 3.14). In this case, varying the data series length in the collection, leads
to a search space growth, in terms of overlapping subsequences, as reported in
Figure 3.14(e). This certainly penalizes index creation, due to the inflated number
of Envelopes that need to be generated. On the other hand, UCR Suite takes
advantage of the high overlapping of the subsequences during the in-memory scan.
Note that we do not report the results for CMRI in this experiment, since its
index building time would take up to 1 day. In the same amount of time, ULISSE
answers more than 1, 000 queries.

Observe that in Figures 3.14(a) and (c), ULISSE shows better query performance
than the UCR suite, growing linearly as the search space gets exponentially larger.
This demonstrates that ULISSE offers a competitive advantage in terms of pruning

3.6. EXPERIMENTAL EVALUATION 69

0
20
40
60
80

100

160 192 224 256

Av
er

ag
e

Pr
un

in
gP

ow
er

 %

Query length

0% 20% 40% 60% 80% 100%

0
10
20
30
40
50
60

160 192 224 256

Av
g

Ex
ac

t Q
ue

ry
Ti

m
e

di
sk

I/O
 (S

ec
s)

Query length

0% 20% 40%
60% 80% 100%

0
200
400
600
800

1000

160 192 224 256

Av
g

Ex
ac

t Q
ue

ry
Ti

m
e

CP
U

+
di

sk
I/O

 (S
ec

s)

Query length

0% 20% 40%
60% 80% 100%

γ Indexing time
(hours)

Indexing
size (GB)

Number of
Envelopes

0% 8,05 83,00 485M

20% 0,20 3,70 25M

40% 0,16 2,10 15M

60% 0,14 1,00 10M

80% 0,14 1,00 10M

100% 0,13 0,50 5M

(a)

(c)

(b)

(d)

(e)

γγ

γ

0
100
200
300
400
500
600

Cu
m

ul
at

ive
 Q

ue
ry

Ti
m

e
(h

ou
rs

)

γ = (% of (lmax - lmin))

query answering disk i/o
query answering cpu
Indexing (CPU + disk i/o time)

Figure 3.13: Query answering time performance and pruning power varying γ on
Z-normalized data series.

the search space that eclipses the pruning techniques UCR Suite. The aggregated
time for answering 4, 000 queries (1, 000 for each query length) is 2x for ULISSE
when compared to UCR Suite (Figures 3.14(b) and (d)).

3.6.4 Comparison to Serial Scan Algorithms using Eu-
clidean Distance

We now perform further comparisons to serial scan algorithms, namely, MASS and
UCR Suite, with varying query lengths.

MASS [68] is a recent data series similarity search algorithm that computes the
distances between a Z-normalized query of length l and all the Z-normalized over-
lapping subsequences of a single sequence of length n ≥ l. MASS works by cal-

70 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

0
20
40
60
80

100
120
140

2560 2048 1536 1024 512se
co

nd
s p

er
 q

ue
ry

Length of sequences

0
50

100
150
200

2560 2048 1536 1024 512
Length of sequences

Non Z-Normalized Data

0
40
80

120
160

In
d.

 +
 q

ue
ry

an
s.

tim
e

(h
ou

rs
)

Subsequences length
UCR ULISSE

subsequences in 5GB Indexing Ulisse

Length 160 256
Non Z-norm.
time (secs)

Z-norm. time
(secs) #Envelopes

2560 1,200M 1,152M 377 2273 13,5M
2048 1,180M 1,120M 382 2187 13,75M
1536 1,147M 1,067M 392 2106 13,3M
1024 1,081M 961M 355 1977 13,75M
512 882M 642M 307 1445 12.5M

0
40
80

120
160

Subsequences length
UCR ULISSE

Z-Normalized Data

(a) (c) (e)

(f)
(d)(b)

query answering disk I/Oquery answering cpu Indexing (disk I/O + cpu)

0
100
200
300
400
500
600
700

256 512 1024 2048 4096

Av
g

Ex
ac

t Q
ue

ry
tim

e
CP

U
+

di
sk

I/O
 (S

ec
s)

Query length

MASS UCR Suite ULISSE

UCR q. length 256 ULISSE q. length 160 ULISSE q. length 256UCR q. length 160

Figure 3.14: Query answering time performance of ULISSE and UCR Suite, vary-
ing the data seres size.

culating the dot products between the query and n overlapping subsequences in
frequency domain, in logn time, which then permits to compute each Euclidean
distance in constant time. Hence, the time complexity of MASS is O(nlogn), and
is independent of the data characteristics and the length of the query (l). In con-
trast, the UCR Suite effectiveness of pruning computations may be significantly
affected by the data characteristics.

We compared ULISSE (using the default parameters), MASS and UCR Suite on
a dataset containing 5M data series of length 4096. In Figure 3.14(f), we report
the average query time (CPU + disk/io) of the three algorithms.

We note that MASS, which in some cases is outperformed by UCR Suite and
ULISSE, is strongly penalized, when ran over a high number of non overlapping
series. The reason is that, although MASS has a low time complexity of O(nlogn),
the Fourier transformations (computed on each subsequence) have a non negligible
constant time factor that render the algorithm suitable for computations on very
long series.

Varying Range of Query Lengths. In the last experiment of this subsection,
we investigate how varying the length range [ℓmin; ℓmax] affects query answering
performance.

In Figure 3.15, we depict the results for Z-normalized sequences. We observe that
enlarging the range of query length, influences the number of Envelopes we need to

3.6. EXPERIMENTAL EVALUATION 71

0
40
80

120
160
200

Cu
m

ul
at

ive
 q

ue
ry

Ti
m

e
(h

ou
rs

)

[lmin- lmax]

Indexing (disk I/O + cpu) ULISSE
query answering disk I/O
query answering cpu ULISSE
query answering cpu UCR suite

0
20
40
60
80

100

96 128 160 192 224 256

Av
er

ag
e

Pr
un

in
g

Po
w

er
 %

Query length

96-256 128-256
160-256 192-256
224-256

0

5

10

15

20

25

96 128 160 192 224 256

Av
g

Ex
ac

t
Q

ue
ry

Ti
m

e
di

sk
I/O

 (S
ec

s)

Query length

96-256 128-256
160-256 192-256
224-256

(a)

(c)

(b)

(d)

0
20
40
60
80

100
120
140

96 128 160 192 224 256

Av
g

Ex
ac

t Q
ue

ry
Ti

m
e

CP
U

+
di

sk
I/O

 (S
ec

s)

Query length

96-256 128-256
160-256 192-256
224-256

[96-256]
[128-256]

[160-256]
[192-256]

[224-256]

Figure 3.15: Query answering time, varying the range of query length on Z-
normalized data series.

accommodate in our index. Moreover, a larger query length range corresponds to
a higher number of Series (different normalizations), which the algorithms needs to
consider for building a single Envelope (loop of line 16 of Algorithm 2). This leads
to large containment areas and in turn, coarse data summarizations. In contrast,
Figure 3.15(c) indicates that pruning power slightly improves as query length range
increases. This is justified by the higher number of Envelopes generated, when the
query length range gets larger. Hence, there is an increased probability to save disk
accesses. In Figure 3.15(a) we show the average query time (CPU + disk I/O) on
each index, observing that this latter is not significantly affected by the variations
in the length range. The same is true when considering only the average query
disk I/O time (Figure 3.15(b)), which accounts for 3− 4% of the total query cost.
We note that the cost remains stable as the query range increases, when the query
length varies between 96 -192. For queries of length 224 and 256, when the range
is the smallest possible the disk I/O time increases. This is due to the high pruning
power, which translates into a higher rate of cache misses. In Figure 3.15(d), the
aggregated time comparison shows ULISSE achieving an up to 2x speed-up over
UCR Suite.

In Figure 3.16 we present the results for non Z-normalized sequences, where
the same observations hold. Moreover, as we previously mentioned, when Z-

72 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

0
20
40
60
80

100
120
140
160

Cu
m

ul
at

ive
 Q

ue
ry

Ti
m

e
(h

ou
rs

)

[lmin- lmax]

Indexing (disk i/o + cpu) ULISSE
query answering disk i/o
query answering cpu ULISSE
query answering cpu UCR suite

0
20
40
60
80

100

96 128 160 192 224 256

Pr
un

in
gP

ow
er

 %

Query length

96-256 128-256 160-256
192-256 224-256

0
10
20
30
40
50
60
70

96 128 160 192 224 256

Av
g

Ex
ac

t Q
ue

ry
Ti

m
e

CP
U

+
di

sk
I/O

 (S
ec

s)

Query length

96-256 128-256 160-256
192-256 224-256

a)

c)

b)

d)

0
1
2
3
4
5
6

96 128 160 192 224 256

Av
g

Ex
ac

t
Q

ue
ry

Ti
m

e
di

sk
I/O

 (S
ec

s)

Query length

96-256 128-256 160-256
192-256 224-256

Figure 3.16: Query answering time, varying the range of query length on Z-
normalized data series.

normalization is not applied the pruning power slightly increases. This leads
ULISSE to a performance up to 3x faster than UCR Suite.

3.6.5 Approximate Search Similarity Queries with Eu-
clidean Distance

In this subsection, we evaluate ULISSE approximate search. Since we compare
our approach to CMRI, Z-normalization is not applied. Figure 3.17(a) depicts the
cumulative query answering time for 4, 000 queries. As previously, we note that
the indexing time for ULISSE is relatively very small. On the other hand, the time
that CMRI needs for indexing is 2x more than the time during which ULISSEs
has finished indexing and answering 4, 000 queries.

In Figure 3.17(b), we measure the quality of the Approximate search. In order to
do this, we consider the exact query results ranking, showing how the approximate
answers are distributed along this rank, which represents the ground truth. We
note that CMRI answers have slightly better positions than the ULISSE ones. This
happens thanks to the tighter representation generated by the complete sliding

3.6. EXPERIMENTAL EVALUATION 73

0

5

10

15

20

In
d.

+c
um

ul
. q

ue
ry

tim
e

(h
ou

rs
)

Indexing time
Disk I/O
CPU time

(a) (b)

Query length 160 192 224 256

Ra
nk

in
g

po
sit

io
n

Ulisse
1-25 92% 90% 92% 100%

26-50 8% 10% 8% 0%
Cmri

1-25 100% 100% 100% 100%

Figure 3.17: Approximate query answering on non Z-normalized data series.

window extraction of each subsequence, employed by CMRI. Nevertheless, this
small penalty in precision is balanced out by the considerable time performance
gains: ULISSE is up to 15x faster than CMRI. When we use a smaller γ, (e.g.,
20), ULISSE shows its best time performance. This is due to tighter Envelopes
containment area, which permits to find a better best-so-far with a shorter tree
index visit.

3.6.6 Approximate Search Similarity Queries with Eu-
clidean Distance and DTW

Here we evaluate, the time performance of query answering, along with the quality
of approximate search. We test the search using both the Euclidean and DTW
measures, on a synthetic series composed of 100M points. We test a query length
range between ℓmin = 1024 and ℓmax = 4096. The other parameters are set to
their default value.

In Figures 3.18(a) and (b), we report the average query answering time for the
Z-normalized and non Z-normalized cases, respectively. The results show that
ULISSE answers queries up to one order of magnitude faster than UCR Suite.
Furthermore, we note that ULISSE scales better as the query length increases.
This shows that our pruning strategy over summarized data, as well as having
a good bsf approximate answer early on, represent a concrete advantage when
pruning the search space.

In Figures 3.18(c) and (d), we report the time performance of query answering with
the DTW measure, considering both Z-normalized and non Z-normalized search.

74 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

0

500

1000

1500

1024 2048 3072 4096

Q
ue

ry
 a

ns
w

er
in

g
tim

e
(s

ec
on

ds
)

Query length

ULISSE Z-norm Approx
ULISSE Z-norm Exact
UCR Suite Z-norm

0

200

400

600

1024 2048 3072 4096

Q
ue

ry
 a

ns
w

er
in

g
tim

e
(s

ec
on

ds
)

Query length

ULISSE non Z-norm Approx
ULISSE non Z-norm Exact
UCR Suite non Z-norm

1-NN Search (Euclidean Distance)

ULISSE Approximate Search
(Euclidean Distance - Non Z-Normalized series)

Query length 1024 2048 3072 4096

Ra
nk

in
g

po
sit

io
n 1-25 90% 60% 90% 80%

26-50 10% 30% 0% 10%
51-75 0% 0% 0% 0%

76-100 0% 0% 10% 10%

0

500

1000

1500

1024 2048 3072 4096Q
ue

ry
 a

ns
w

er
in

g

tim
e

(s
ec

on
ds

)

Query length

ULISSE Z-norm Approx
ULISSE Z-norm Exact
UCR Suite Z-norm

1-NN Search (DTW Distance)

ULISSE Approximate Search
(Euclidean Distance - Z-Normalized series)

Query length 1024 2048 3072 4096

Ra
nk

in
g

po
sit

io
n 1-10 20% 40% 60% 70%

26-50 50% 40% 0% 20%
51-75 30% 20% 30% 10%

76-100 0% 0% 10% 0%

ULISSE Approximate Search
(DTW - Z-Normalized series)

Query length 1024 2048 3072 4096

Ra
nk

in
g

po
sit

io
n 1-10 90% 60% 90% 90%

11-25 10% 40% 10% 10%

ULISSE Approximate Search
(DTW - Non Z-Normalized series)

Query length 1024 2048 3072 4096

Ra
nk

in
g

po
sit

io
n

1-25 10% 10% 40% 60%
26-50 40% 50% 20% 10%
51-75 40% 0% 20% 10%

76-100 10% 0% 10% 10%
100-125 0% 30% 10% 10%

(a) (b)

(c) (d)
0

500
1000
1500

1024 2048 3072 4096

Q
ue

ry
 a

ns
w

er
in

g

tim
e

(s
ec

on
ds

)

Query length

ULISSE non Z-norm Approx
ULISSE non Z-norm Exact
UCR Suite non Z-norm

Figure 3.18: Average query answering and approximate quality varying query
length.

In Figure 3.18(c), we observe that ULISSE answers queries slightly slower than
UCR Suite, for three of the query lengths. This behavior is explained by the fact
that the (overlapping) subsequences represented by the Envelopes have a total size
∼ 43x bigger than the original data points. In this case, the pruning power does
not mitigate this disadvantage.

Overall, the results show that ULISSE is a scalable solution. Moreover, the ap-
proximate search, which in this experiment does not visit more than 5 leaves in the
tree, represents a very fast solution, approximating well the exact answer (refer to
the tables below each plot of Figure 3.18).

3.6. EXPERIMENTAL EVALUATION 75

0
50

100
150
200
250
300
350

5 10 20 40 60 80 10
0

In
de

xin
g T

im
e

w
ith

 Z
-N

or
m

al
iza

tio
n

γ = (% of (lmax - lmin))

ASTRO
EMG
EEG
ECG
GAP

0
50

100
150
200
250
300

5 10 20 40 60 80 10
0

In
de

xin
g T

im
e

w
ith

ou
t

Z-
No

rm
al

iza
tio

n

γ = (% of (lmax - lmin))

ASTRO
EMG
EEG
ECG
GAP

(a) (b)

γ(%)
Number of Envelopes

Generated
5 9,600,000

10 4,800,000
20 2,400,000
40 1,200,000
60 800,000
80 600,000

100 500,000

(c)

Figure 3.19: Indexing time of five real datasets (ASTRO, EMG, EEG, ECG, GAP)
varying the number of master series in the Envelope (γ).

3.6.7 Experiments with Real Datasets

In this part, we discuss the results of indexing and query answering performed
on real datasets. Here, we also consider the use of the Dynamic Time Warping
(DTW) distance measure, along with Euclidean distance.

We start the evaluation by considering five different real datasets that fit the
main memory. In the next sections, we will additionally consider real data series
collections that do not fit in the available main memory. The objective of this
experiment is to firstly assess the benefit of maximizing the number of subsequences
represented by a ULISSE Envelope on query answering time. Moreover, we want
to analyze the impact of the DTW measure on query time performance.

Indexing. For this experiment, we used five real datasets, where each one contains
500K data series of length 256 (ASTRO, EMG, EEG, ECG, GAP). We show
in Figure 3.19.(a,b) the indexing time performance, varying γ for both non Z-
Normalized and Normalized sequences. Recall that γ is expressed as the percentage
of the maximum number of master series that is ℓmax − ℓmin. The results confirm
the trend depicted in Figure 3.11, where the time of building ULISSE Envelopes
that contain all the master series of each series is one order of magnitude smaller
than the time of building the most compact Envelopes, obtained with γ = 5%. We
also note that the overhead generated by the Z-normalization operations, which
have an additional γ factor in the time complexity of the indexing algorithm, is
amortized by the generation of ∼ 20x less Envelopes in the index, as depicted in
Figure 3.19(c).

Query Answering with Euclidean Distance. We report in Figure 3.20 the

76 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

results obtained for 1-NN search over Z-normalized sequences, with Euclidean
distance. All parameters are set to their default values. Therefore, in these exper-
iments we used queries of length between ℓmin = 160 and ℓmax = 256; the series
in the datasets have length 256. In Figure 3.20(a), we report the query pruning
power as the number of master series (γ) in each Envelope varies. As expected, we
can prune less candidates when the Envelopes contain more sequences. Recall that
when a candidate (subsequence) is pruned, the search does not consider its raw
values, thus avoiding both Z-normalization and Euclidean distance computations.
If a candidate is not pruned, the search can abandon the computations earlier,
when the running Euclidean Distance is greater than the kth bsf distance.

In Figure 3.20(b), we report the average abandoning power, which measures the
percentage of the total number of real Euclidean distance computations that are
not performed. When the search processes an increased number of overlapping
subsequences, we expect a decrease in the number of computations performed.
We note that the search avoids computations when the Envelopes contain a large
number of subsequences, namely, as γ increases.

In Figure 3.20(c), we report the average query time varying γ. We obtain the high-
est speed-up, with the most compact index (largest γ value), which is more that
2x faster than the state-of-the-art (UCR Suite algorithm). This confirms the trend
we observed in the previous results conducted over synthetic data. We report the
average query time for each dataset in Figure 3.20(d), and for each query length
in Figure 3.20(e). In Figure 3.20(f), we show the average number of Euclidean
distance and lower bound computations performed by ULISSE (γ = 100%) and
UCR Suite, as the query length varies (this corresponds to the average number of
points on which the distance to the query is computed), as well as the number of
points that are loaded from disk and Z-normalized (this corresponds to the over-
head generated by the Z-normalization operations). The goal of this experiment is
to quantify the overall benefit of ULISSE pruning and abandoning power. (Recall
that UCR Suite does not perform any lower bound distance computations when
using the Euclidean distance.)

First, we observe that ULISSE performs half of the Euclidean distance com-
putations of UCR Suite, and considers up to seven time less points for the Z-
normalization phase. Furthermore, we note that the computation of lower bound
distances has a negligible impact on the query workload, especially when the query
length is smaller than the length of the series in the dataset (256), in which case
the number of candidate subsequences can be orders of magnitude more.

3.6. EXPERIMENTAL EVALUATION 77

65

70

75

80

85

5% 10% 20% 40% 60% 80% 100%

AV
G

ab
an

do
ni

ng

po
w

er
 %

ULISSE γ (% of max)

0E+00

5E+08

1E+09

160 192 224 256 160 192 224 256

Nu
m

be
r o

f p
oi

nt
s

Query length

Z-Normalization
Lower bound distance
Euclidean distance

0

5

10

15

20

AV
G

qu
er

y
tim

e
(S

ec
on

ds
)

0

5

10

15

20

25

ULISSE
(γ=40%)

ULISSE
(γ=60%)

ULISSE
(γ=80%)

ULISSE
(γ=100%)

UCR
Suite

AV
G

qu
er

y
tim

e
(s

ec
on

ds
) 160 192 224 256

Z-Normalized data series

0
20
40
60
80

100

5% 10% 20% 40% 60% 80% 100%

AV
G

pr
un

in
g

po
w

er
 %

γ (% of max)(a) (b)

(c) (d)

(e)

Query length:

(f) ULISSE UCR Suite

0

10

20

30

ASTRO ECG EMG EEG GAP

AV
G

qu
er

y
tim

e
(S

ec
on

ds
)

UCR Suite ULISSE (40%)
ULISSE (60%) ULISSE (80%)
ULISSE (100%)

Figure 3.20: Exact (Z-normalized) query answering and pruning power, with Eu-
clidean distance on real datasets.

In Figure 3.21, we depict the results of query answering, without the use of Z-
normalization. In this case, the results exhibit a small difference in terms of
absolute pruning power values, which is higher when the search is performed on
absolute series values. The average query answering time maintains the same
trend we observe in Z-normalized query answering. On average, ULISSE has a 3x
speed-up factor when compared to UCR Suite.

Query Answering with DTW Distance. We now report the results of query
answering using the DTW measure (Figure 3.22). For this experiment, we used the
default parameter settings, and the same real datasets considered in the previous
two experiments. We study the efficiency of query answering (1-NN query), which
uses the DTW lower bounding measures to prune the search space.

In Figure 3.22(a) we report the average pruning power, when varying the DTW
warping windows from 5% to 15% of the subsequence length. (These values for
the warping window have commonly been used in the literature [46].) We vary γ

78 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

0

5

10

15

20

ULISSE
(γ=40%)

ULISSE
(γ=60%)

ULISSE
(γ=80%)

ULISSE
(γ=100%)

UCR
Suite

AV
G

qu
er

y
tim

e
(s

ec
on

ds
) 160 192 224 256

0E+00
2E+08
4E+08
6E+08
8E+08
1E+09

160192224256160192224256

Nu
m

be
r o

f p
oi

nt
s

Query length

Lower bound distance
Euclidean distance

0
2
4
6
8

10
12
14

AV
G

qu
er

y
tim

e
(S

ec
on

ds
)

0

20

40

60

80

100

5% 10% 20% 40% 60% 80% 100%

AV
G

pr
un

in
g

po
w

er
 %

γ (% of max)

0

10

20

ASTRO ECG EMG EEG GAP

AV
G

qu
er

y
tim

e
(S

ec
on

ds
)

UCR Suite ULISSE (40%)
ULISSE (60%) ULISSE (80%)
ULISSE (100%)

Non Z-Normalized data series

(a) (b)

(c) (d)

(e)

Query length:

(f) ULISSE UCR Suite

ULISSE γ (% of max)

0

50

100

5% 10% 20% 40% 60% 80% 100%

AV
G

ab
an

do
ni

ng

po
w

er
 %

Figure 3.21: Exact (Non Z-normalized) query answering and pruning power, with
Euclidean distance on real datasets.

between 60% and 100% of its maximum value, which give the best running time in
this experiment. To avoid an unnecessary overload in the plot, we omit the results
for γ smaller than 60%.

Once again, we note that the pruning power is negatively affected by the size of
the Envelope (γ), and under DTW search the abandoning power slightly decreases
as the gamma and the warping window get larger (see Figure 3.22(b)). This
suggests that the DTW lower bound measure we propose is more sensitive than
the one used for Euclidean Distance. Nevertheless, in the worst case ULISSE is
still able to prune 20% of the candidates, and to abandon more than 80% of the
DTW computations on raw values.

In Figure 3.22(c) we report the average query answering time varying γ, and in
Figures 3.22(d) and (e) the average time for each dataset and for different query
lengths, respectively, for γ = 100%. For these last two experiments, we observe no
significant difference for the other values of γ we tested.

3.6. EXPERIMENTAL EVALUATION 79

We first note that, despite the loss of pruning power of ULISSE when increasing
γ, the query answering time is not significantly affected (refer to Figures 3.22(c)
and (e)). As in the case of Euclidean distance search, the compactness of the
ULISSE index plays a fundamental role in determining the query time perfor-
mance, along with the pruning and abandoning power.

In Figure 3.22(d), we note that only in the ECG and GAP datasets, enlarging
the warping window has a substantial negative effect on query time (2x slower),
whereas in the other datasets, and in the worst case the time loss is equivalent to
10%.

In Figure 3.22(e), we report the average query workload of ULISSE and UCR Suite.
In contrast to Euclidean distance queries, we notice that the largest amount of work
corresponds to lower bounding distance computations. Recall that ULISSE prunes
the search space in two stages: first comparing the query and the data in their
summarized versions using LBP aL (Equation 3.7), and then computing in linear
time the LBKeogh between the query and the non pruned candidates. In the worst
case, the DTW distance point-wise computation are 10% of those performed for
calculating the Lower Bound (query length 160). In general, the total number of
points considered for the whole workload is up to 5x smaller than for UCR Suite.
We note that the pruning strategy of UCR Suite is still very competitive, since
it avoids a high number of true distance computations using the LBKeogh lower
bound. Nonetheless, it has to compute the lower bound distance on the entire set
of candidates. The pruning strategy implemented in ULISSE permits to achieve
up to 10x speedup over UCR Suite.

In Figure 3.23, we report the results of DTW search, without the application of
Z-Normalization. Also in this case, we note that the average pruning power of
ULISSE is higher than the one we previously observed in the Z-normalized search
(Figure 3.23(a)). On the other hand, the average abandoning power is less effec-
tive, as shown in Figure 3.23(b). As a consequence, we can see that the ULISSE
search performs more DTW distance computations (refer to Figure 3.23(c)). Nev-
ertheless, Figure 3.23(e) shows that on average ULISSE is up to 10x faster than
UCR Suite, for all query lengths we tested.

Query over Large datasets with Euclidean Distance. Here, we test ULISSE
on three large synthetic datasets of sizes 100GB, 500GB, and 750GB, as well as
on two real series collections, i.e., ASTRO and SEISMIC (described earlier). The
other parameters are the default ones. For each generated index and for the UCR
Suite, we ran a set of 100 queries, for which we report the average exact search

80 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

10

15

20

25

30

ASTRO ECG EMG EEG GAP

Av
er

ag
e

qu
er

y
tim

e
(s

ec
on

ds
)

wrp:5% wrp:10% wrp:15%

0

20

40

60

Warping
Window: 5%

Warping
Window: 10%

Warping
Window: 15%

Pr
un

in
g p

ow
er

 %

ULISSE γ=60% ULISSE γ=80% ULISSE γ=100%

0

100

200

300

400

ULISSE
war:5%

ULISSE
war:10%

ULISSE
war:15%

UCR
Suite

war:5%

UCR
Suite

war:10%

UCR
Suite

war:15%

AV
G

qu
er

y
tim

e
(s

ec
on

ds
) 160 192 224 256

0E+00

1E+10

2E+10

3E+10

160 192 224 256 160 192 224 256

Nu
m

be
r o

f p
oi

nt
s

Query length

DTW distance
Lower bound distance
Z-Normalization

0

50

100

150

200

Warping
Window:

5%

Warping
Window:

10%

Warping
Window:

15%

Av
er

ag
e

qu
er

y
tim

e
(s

ec
on

ds
)

ULISSE γ=60% ULISSE γ=80%
ULISSE γ=100% UCR Suite

78
80
82
84
86

Warping
Window: 5%

Warping
Window: 10%

Warping
Window: 15%

Ab
an

do
ni

ng
po

w
er

 %

ULISSE γ=60% ULISSE γ=80% ULISSE γ=100%

(a) (b)

(d)(c)

Query length:

ULISSE UCR Suite(e) (f)

Z-Normalized data series

Figure 3.22: Exact (Z-normalized) query answering and pruning power using DTW
measure on real datasets.

time.

In Figure 3.24(a) we report the average query answering time (1-NN) on synthetic
datasets, varying the query length. These results demonstrate that ULISSE scales
better than UCR Suite across all query lengths, being up to 5x faster.

In Figure 3.24(b), we report the k-NN exact search time performance, varying k
and picking the smallest query length, namely 160. Note that, this is the largest
search space we consider in these datasets, since each query has 9.7 billion of
possible candidates (subsequences of length 160). The experimental results on real
datasets confirm the superiority of ULISSE, which scales with stable performance,
also when increasing the number k of nearest neighbors. Once again it is up to 5x
faster than UCR Suite, whose performance deteriorates as k gets larger.

In Figure 3.24(c) we report the number of disk accesses of the queries considered

3.6. EXPERIMENTAL EVALUATION 81

0

50

100

150

ASTRO ECG EMG EEG GAP

AV
G

 q
ue

ry
tim

e
(s

ec
on

ds
)

wrp:5% wrp:10% wrp:15%

0

20

40

60

80

Warping
Window: 5%

Warping
Window: 10%

Warping
Window: 15%

Pr
un

in
g p

ow
er

 %
ULISSE γ=60% ULISSE γ=80% ULISSE γ=100%

0

50

100

150

200

Warping
Window:

5%

Warping
Window:

10%

Warping
Window:

15%

AV
G

 q
ue

ry
tim

e
(s

ec
on

ds
)

ULISSE γ=60% ULISSE γ=80%
ULISSE γ=100% UCR Suite

0

50

100

Warping
Window: 5%

Warping
Window: 10%

Warping
Window: 15%

Ab
an

do
ni

ng

po
w

er
 %

ULISSE γ=60% ULISSE γ=80% ULISSE γ=100%

0E+00

1E+10

2E+10

3E+10

160 192 224 256 160 192 224 256

Nu
m

be
r o

f p
oi

nt
s

Query Length

Lower bound distance
DTW distance

0

100

200

300

ULISSE
war:5%

ULISSE
war:10%

ULISSE
war:15%

UCR
Suite

war:5%

UCR
Suite

war:10%

UCR
Suite

war:15%

AV
G

qu
er

y
tim

e
(s

ec
on

ds
)

160 192 224 256

(a) (b)

(d)(c)

Query length:

(e) (f) ULISSE UCR Suite

Non Z-Normalized data series

Figure 3.23: Exact (Non Z-normalized) query answering and pruning power using
DTW measure on real datasets.

in Figure 3.24(b). Here, we are counting the number of times that we follow
a pointer from an envelope to the raw data on disk, during the sequential scan
in Algorithm 5. Note that the number of disk accesses is bounded by the total
number of Envelopes, which are reported in Figure 3.24(d) (along with the number
of leaves and the building time for each index).

We observe that in the worst case, which takes place for the ASTRO dataset for
k = 100, we retrieve from disk ∼82% of the total number of subsequences. This
still guarantees a remarkable speed-up over UCR Suite, which needs to consider
all the raw series.

Moreover, since ULISSE can use Early Abandoning during exact query answering,
we observe during our empirical evaluation that disposing of the approximate
answer distance prior the start of the exact search, permits to abandon on average
20% of points more than UCR Suite for the same query.

82 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

0,E+00
2,E+07
4,E+07
6,E+07
8,E+07
1,E+08

Av
er

ag
e

Ex
ac

t q
ue

ry
di

sk
ac

ce
ss

es
(M

ill
io

n)

Query length

ULISSE ASTRO data (100 GB)
ULISSE SEISMIC data (100 GB)
ULISSE SYNTHETIC data (100 GB)

0
6000

12000
18000
24000

160 192 224 256

Av
g

Ex
ac

t 1
-N

N
Q

ue
ry

Ti
m

e
CP

U
+

di
sk

I/O
 (S

ec
s)

Query length

UCR Suite 100GB (Synthetic) ULISSE 100GB (Synthetic)
UCR Suite 500GB (Synthetic) ULISSE 500GB (Synthetic)
UCR Suite 750GB (Synthetic) ULISSE 750GB (Synthetic)

0
2000
4000
6000
8000

10000

Av
g

Ex
ac

t Q
ue

ry
 T

im
e

CP
U

+
di

sk
 I/

O
 (S

ec
s)

Query length

UCR Suite ASTRO (100GB) ULISSE ASTRO (100GB)
UCR Suite SEISMIC (100GB) ULISSE SEISMIC (100GB)
UCR Suite Synthetic (100GB) ULISSE Synthetic (100GB)

Synthetic
(100 GB)

Synthetic
(500 GB)

Synthetic
(750 GB)

Seismic
(100 GB)

Astro
(100 GB)

Indexing time
(hours) 2.93 15.00 41.79 2.93 2.83

Leaf nodes in
the ULISSE

index
39,260 36,141 58,108 43,920 44,090

Envelopes in
the ULISSE

index
100M 453M 750M 100M 100M

(a) (b)

(c) (d)

Figure 3.24: Exact and Approximate similarity search on Z-normalized synthetic
and real datasets.

Query over Large datasets with DTW. We conclude this part of the evalu-
ation reporting the results of query answering on large datasets using the DTW
distance.

In Figure 3.25, we report the time performance of (1-NN search) on the ASTRO,
SEISMIC and synthetic datasets, each one containing 100M data series of length
256 (100GB). Also in this case, ULISSE guarantees a consistent speed-up over
UCR Suite, which is at least ∼ 1.5x faster in the worst case (ASTRO dataset,
query length 160), and up to one order of magnitude faster (synthetic dataset,
query length 256).

3.6.8 ǫ-Range Queries

In this last part, we test the ULISSE search algorithm for the ǫ-Range query task.
To that extent we adapted Algorithm 5, so that given as input ǫ ∈ R, it computes
the set of subsequences that have a distance to the query smaller than or equal
to ǫ. Similarly, we also adapted the UCR Suite algorithm to support ǫ-Range

3.6. EXPERIMENTAL EVALUATION 83

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

160 192 224 256 160 192 224 256 160 192 224 256

Av
g

 E
xa

ct
 1

-N
N

Q
ue

ry
 T

im
e

CP
U

+
di

sk
 I/

O
 (s

ec
on

ds
)

Query length
Dataset

ULISSE UCR Suite

ASTRO (100GB) SEISMIC (100GB) Synthetic (100GB)

Figure 3.25: Average exact query time with DTW distance (CPU + disk I/O) on
real and synthetic datasets.

search. As a third competitor, we consider KV-Match, which is the state-of-the
art index-based solution for exact ǫ-Range queries on non Z-normalized data series.

In this experiment, we used five different real datasets, composed by a single data
series of different lengths, as reported in Figure 3.26(a). For each of these datasets,
we can see that ULISSE builds its index 5 times faster than KV-Match. This is
because KV-Match is based on the construction of multiple indexes. Specifically,
it builds different indexes performing a sliding windows extraction at different
lengths. At query answering time, KV-Match performs a recombination of query
answers coming from the different indexes.

For our ǫ-Range queries, we set the ǫ parameter to twice the NN distance of each
query. In this manner, we simulate an exploratory analysis task. We report the
average value of query selectivity in Figure 3.26(b). We note that in the ECG
dataset the selectivity is very high. This is due to the periodic/cyclical nature
of this kind of data, which contain repeating heartbeats subsequences that are
very similar. In the other datasets, we have different values of selectivity ranging
from 0.5% to 15%, when using Euclidean distance. On the other hand, when the
DTW measure is considered, we observe a significant increase of the answer-set
cardinality.

In Figures 3.26(c) and (d), we show the average query answering time for Eu-
clidean distance, when varying the query length and the dataset, respectively.

84 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

0
10
20
30
40
50
60

160
192
224
256
160
192
224
256
160
192
224
256
160
192
224
256

Q
ue

ry
 Se

le
ct

iv
ity

 %

Query Length
Dataset

ED DTW

0
2,5

5
7,5
10

12,5
160
192
224
256

0
5

10
15
20
25

In
de

xi
ng

 T
im

e
(s

ec
on

ds
)

Dataset

ULISSE KV-Match

0

1

2

3

160 192 224 256AV
G

Eu
cli

de
an

 D
ist

an
ce

qu

er
y

tim
e

(s
ec

on
ds

)

Query Length

ULISSE UCR Suite KV-Match

0
20
40
60
80

100

160 192 224 256

AV
G

DT
W

 D
ist

an
ce

qu

er
y

tim
e

(s
ec

on
ds

)

Query Length

ULISSE UCR Suite KV-Match

ASTRO ECG EEGEMG GAP

0

5

10

15

ASTRO EEG GAP

AV
G

DT
W

qu
er

y
tim

e
(s

ec
on

ds
)

Dataset

ULISSE UCR Suite KV-Match

0

100

200

300

ECG EMG

(a) (b)

(c)

(d) (e)

(f)

0
2
4
6
8

10

ASTRO EEG EMG GAP ECGAV
G

Eu
cli

de
an

 D
ist

an
ce

qu

er
y

tim
e

(s
ec

on
ds

)

Dataset

UCR Suite KV-Match
ULISSE

Number
of points

ASTRO 500,000
EMG 500,000
EEG 500,000
GAP 2,000,000
ECG 8,000,000

Figure 3.26: Results of ǫ-range search on non Z-normalized real datasets.

We note that in this case ULISSE and KV-match have no substantial differ-
ence in their time performance. However, when we consider the DTW distance,
ULISSE becomes up to one order of magnitude faster than KV-Match (see Fig-
ures 3.26(e) and (f)). This difference becomes pronounced for the two largest
datasets: ULISSE is 3x faster for ECG, and 10x faster for GAP. It is important
to note that since KV-Match needs to recombine the answers from the different
index structures, its time performance is affected by this refinement phase of query
answering, and is rather sensitive to dataset size and query selectivity.

3.7. CONCLUSIONS 85

3.7 Conclusions

Similarity search is one of the fundamental operations for several data series anal-
ysis tasks. Even though much effort has been dedicated to the development of
indexing techniques that can speed up similarity search, all existing solutions are
limited by the fact that they can only support queries of a fixed length.

In this chapter, we proposed ULISSE, the first index able to answer similarity
search queries of variable-length, over both Z-normalized and non Z-normalized
sequences, supporting the Euclidean and DTW distances, for answering exactly, or
approximately both k-NN and ǫ-range queries. We experimentally evaluated, our
indexing and similarity search algorithms, on synthetic and real datasets, demon-
strating the effectiveness and efficiency (in space and time cost) of the proposed
solution.

86 CHAPTER 3. SCALABLE DATA SERIES SUBSEQUENCE MATCHING

Chapter 4

VALS: Scalable VAriable-Length
Similarity Search Suite

Data series similarity search is an important operation and at the core of several
analysis tasks and applications related to data series collections. In this chapter, we
present VALS, our prototype system designed to support similarity search queries
of variable length. VALS employs the ULISSE index in order to allow users to
interactively run and explore the results of approximate and exact subsequence
similarity search in both non Z-normalized and Z-normalized large data series
collections.

4.1 The VALS System

VALS is the first system that supports scalable VAriable-Length Similarity search
in long data series. In detail, this prototype system implements the ULISSE
indexing and search algorithms, we presented in Chapter 3. We describe here the
architecture and GUI of VALS, shown in Figure 4.1.

[Collections Import and Indexing] VALS permits to easily import the data se-
ries collections to analyze. Users can index a dataset using the ULISSE algorithm.
They can also use the indexing techniques provided by the competitors (CMRI).
On the other hand, if the user does not build an index on top of a dataset, the
system will apply by default the UCR Suite algorithm. We show in Figure 4.2,

87

88CHAPTER 4. SCALABLE VARIABLE-LENGTH SIMILARITY SEARCH SUITE

Storage
layer

GUI (Python)

Fr
on

te
nd

Ba
ck

en
d

ULISSE CMRI

Indexing
ULISSE

Query answering
CMRI

UCR Suite

Statistics
and results

update

request update
Indexing
request

Query
request

Figure 4.1: (left) VALS architecture. (right) A screen-shot of the VALS GUI
during a ULISSE K-NN search.

the indexing parameters setting in the VALS GUI.

Once the indexes are created, our system also permits to compare the different
properties of the generated indexes, such as storage, main memory consumption,
and index building time. In Figure 4.3 we show the indexes comparison performed
on the VALS GUI.

[Query Answering and Evaluation] The users, with the aid of the VALS GUI
can load and issue a k-NN search query. We depict in Figure 4.4 the query loading
box of VALS. Note that, when the query is loaded in the bottom-left area, the
user can visualize the performance of different similarity search approaches priorly
used to answer the same query.

While the search executes using the ULISSE Index, the application shows the
approximate answers results in the central panel. In Figure 4.5 we depict the query
result panel update, during the search operation. Note that, until the search is over
the results shown are guaranteed to be approximate. At the same time, various
performance indicators (i.e., number of disk accesses, pruning power, number of
Euclidean Distance computations, and time) are shown, as well, and are compared
to those of the competitors.

4.2. PROTOTYPE FUNCTIONALITY 89

Indexing parameters:
Load a dataset and select the indexing technique
to apply (ULISSE or CMRI).
Only the ULISSE index permits to represent
Z-Normalized data series and its compactness can
be tuned by the user.
When compactness is set to 100%, each record in
the index contains the highest number of
contiguous subsequences, and the index time
construction is the fastest.

Figure 4.2: VALS indexing parameters settings.

Once the search is terminated, the final (exact) results and the complete statistics
are available on the VALS GUI, as we report in Figure 4.6.

[Implementation] The GUI interface of VALS is implemented in Python, which
disposes of a wrapper that interacts with the Indexing and Query answering algo-
rithms (implemented in C/C++). A separate thread interacts with the algorithms
in order to update all the statistics and the query results in real time.

4.2 Prototype Functionality

The objective of this prototype is twofold: first, to underline the importance of
the variable length similarity search, and second, to reveal to users the details and
features of the VALS engine. We use several real datasets from different domains
(such as Energy Consumption analysis, Healthcare, Astrophysics and Seismology).
Below, we list the scenarios that showcase the functionality of VALS.

90CHAPTER 4. SCALABLE VARIABLE-LENGTH SIMILARITY SEARCH SUITE

Index Properties Comparison:

ULISSE has a smaller memory footprint
and construction time, when compared

with CMRI.

Figure 4.3: VALS indexes properties comparison.

1. Indexing Performance. The users can test the ULISSE and CMRI indexes
construction over different datasets and configurations, and observe the memory
footprint (ratio of raw data and index size) and index construction time. It will
be obvious that ULISSE scales better than CMRI, for various length ranges, while
at the same time occupying less space, which the users control by the γ parameter
(specifying the number of contiguous series (master series) represented by the same
index record, namely the envelope).

2. Variable-Length Query Answering.

With VALS, the users can experience the flexibility of a variable-length index. The
users can issue queries of different lengths, and get richer insights from the data,
obtained from even slight variations in the query length. By executing several
queries on the different real datasets, the participants will realize the limitations
that fixed query length search poses to data exploration, by missing valuable re-
sults.

3. Query Answering Performance. With VALS, the users can also monitor

4.2. PROTOTYPE FUNCTIONALITY 91

Once a query is loaded, we
can launch the K-NN search
on the ULISSE index (using
Euclidean Distance).

Figure 4.4: VALS query loading and performance visualization.

and analyze the performance of query answering. Before issuing a query, users
can select the distance measure, as well as the number of nearest neighbor the
query has to return. The users can then inspect the information and statistics on
the query execution provided by the VALS interface, and they will observe the
influence of the different configuration settings of each index on query answering
performance. Specifically, they can notice that increasing the compression of the
ULISSE index, permits to reduce the disk accesses, thanks to the smaller search
space generated by the index. This in turn has a positive impact on the pruning
capability of the index. Moreover, users can notice the interactive response times
of ULISSE approximate query answering. The VALS interface will also report
the percentage of saved Euclidean and DTW distance computations (marked as
abandoning power), as well as the pruning power of the selected query answering
method, and the number of disk accesses performed for answering the query.

92CHAPTER 4. SCALABLE VARIABLE-LENGTH SIMILARITY SEARCH SUITE

Query statistics: Disk accesses,
Pruning Power, Euclidean
Distance Abandoning Power
and Time are updated.

The ULISSE Approximate
answer (1-NN) is shown
and updated during the

search.

Figure 4.5: VALS query answering progression.

4.3 Conclusion

Similarity search is a fundamental operation for several data series analysis tasks.
Even though much effort has been dedicated to indexing techniques that can speed
up similarity search, all existing solutions are limited to queries of fixed length. In
this chapter, we present VALS, a system based on the ULISSE index, which is the
first system able to answer similarity search queries of variable-length, over both
Z-normalized and non Z-normalized sequences.

4.3. CONCLUSION 93

Once the search
terminates, the ULISSE
Exact answer (1-NN) is

shown.

Ulisse is 1 order of magnitude
faster than CMRI and UCR Suite.

Figure 4.6: VALS K-NN exact results.

94CHAPTER 4. SCALABLE VARIABLE-LENGTH SIMILARITY SEARCH SUITE

Chapter 5

Variable Length Motif and
Discord Discovery

In the last fifteen years, data series motif and discord discovery have emerged as
two useful and well-used primitives for data series mining, with applications to
many domains, including robotics, entomology, seismology, medicine, and clima-
tology. Nevertheless, the state-of-the-art motif and discord discovery tools still
require the user to provide the relative length. Yet, in several cases, the choice of
length is critical and unforgiving. Unfortunately, the obvious brute-force solution,
which tests all lengths within a given range, is computationally untenable. In this
chapter, we propose a new framework, which provides an exact and scalable motif
and discord discovery algorithm that efficiently finds all motifs and discords in a
given range of lengths.We evaluate our techniques using five diverse real datasets,
and demonstrate the scalability of our approach. The results show that VALMOD
is up to 20x faster than the state-of-the-art techniques. Furthermore, we present
real case studies with datasets from entomology, seismology, and traffic data anal-
ysis, which demonstrate the usefulness of our approach. Our results also show that
removing the unrealistic assumption that the user knows the correct length, can
often produce more intuitive and actionable results, which could have otherwise
been missed.

95

96 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

5.1 Chapter Organization

The remainder of this chapter is organized as follows. We introduce the notation
needed for the rest of the chapter and formally define our problem in Section 5.2.
In Section 5.3, we show our approach to rank motifs of different lengths, and in
Sections 5.4 and 5.5, we describe the details of our motif discovery algorithms. In
Section 5.6 we present and discuss our discord discovery solution. In the trailing
part, with Section 5.7 we conclude this chapter showing the results of our extensive
empirical evaluation.

5.2 Problem Definition

We begin by defining the data type of interest, data series:

Definition 3 (Data series) A data series T ∈ Rn is a sequence of real-valued
numbers ti ∈ R [t1, t2, ..., tn], where n is the length of T .

We are typically not interested in the global properties of a data series, but in the
local regions known as subsequences:

Definition 4 (Subsequence) A subsequence T
i,ℓ ∈ Rℓ of a data series T is a

continuous subset of the values from T of length ℓ starting from position i. For-
mally, T

i,ℓ = [ti, ti+1, ..., t
i+ℓ−1

].

5.2.1 Motif Discovery

In this work, a particular local property we are interested in is data series motifs.
A data series motif pair is the pair of the most similar subsequences of a given
length, ℓ, of a data series:

Definition 5 (Data series motif pair) T
a,ℓ and T

b,ℓ is a motif pair iff

dist(T
a,ℓ, T

b,ℓ) ≤ dist(T
i,ℓ, T

j,ℓ) ∀i, j ∈ [1, 2, ..., n − ℓ + 1], where a 6= b and i 6= j,

5.2. PROBLEM DEFINITION 97

and dist is a function that computes the z-normalized Euclidean distance between
the input subsequences [12, 69, 95, 100, 104].

Note, that if we remove the motif pair from the dataset, the pair with the second
smallest distance will become the new motif pair. In this way, we can produce a
ranked list of subsequence pairs, which we call motif pairs of length ℓ.

We store the distance between a subsequence of a data series with all the other
subsequences from the same data series in an ordered array called a distance profile.

Definition 6 (Distance profile) A distance profile D ∈ R(n−ℓ+1) of a data se-
ries T regarding subsequence T

i,ℓ is a vector that stores dist(T
i,ℓ, T

j,ℓ), ∀j ∈
[1, 2, ..., n− ℓ + 1], where i 6= j.

One of the most efficient ways to locate the exact data series motif is to compute
the matrix profile [109, 21], which can be obtained by evaluating the minimum
value of every distance profile in the time series.

Definition 7 (Matrix profile) A matrix profile MP ∈ R(n−ℓ+1) of a data series
T is a meta data series that stores the z-normalized Euclidean distance between
each subsequence and its nearest neighbor, where n is the length of T and ℓ is the
given subsequence length. The data series motif can be found by locating the two
lowest values in MP .

To avoid trivial matches [4], in which a pattern is matched to itself or a pattern
that largely overlaps with itself, the matrix profile incorporates an “exclusion-
zone” concept, which is a region before and after the location of a given query
that should be ignored. The exclusion zone is heuristically set to ℓ/2. The re-
cently introduced STOMP algorithm [21] offers a solution to compute the matrix
profile MP in O(n2) time. This may seem untenable for data series mining, but
several factors mitigate this concern. First, note that the time complexity is inde-
pendent of ℓ, the length of the subsequences. Secondly, the matrix profile can be
computed with an anytime algorithm, and in most domains, in just O(nc) steps
the algorithm converges to what would be the final solution [109] (c is a small con-
stant). Finally, the matrix profile can be computed with GPUs, cloud computing,
and other HPC environments that make scaling to at least tens of millions of data
points trivial [21].

98 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

We can now formally define the problems we solve.

Problem 2 (Variable-Length Motif Pair Discovery) Given a data series T
and a subsequence length-range [ℓmin, ..., ℓmax], we want to find the data series motif
pairs of all lengths in [ℓmin, ..., ℓmax], occurring in T .

One naive solution to this problem is to repeatedly run the state-of-the art motif
discovery algorithms for every length in the range. However, note that the size of
this range can be as large as O(n), which makes the naive solution infeasible for
even middle-size data series. We aim at reducing this O(n) factor to a small value.

Note that the motif pair discovery problem has been extensively studied in the
last decade [109, 21, 67, 51, 69, 65, 64]. The reason is that if we want to find
a collection of recurrent subsequences in T , the most computationally expensive
operation consists of identifying the motif pairs [21], namely, solving Problem 2.
Extending motif pairs to sets incurs a negligible additional cost (as we also show
in our study).

Given a motif pair {T
α,ℓ, T

β,ℓ}, the data series motif set Sℓr , with radius r ∈ R,
is the set of subsequences of length ℓ, which are in distance at most r from either
T

α,ℓ, or T
β,ℓ. More formally:

Definition 8 (Data series motif set) Let {T
α,ℓ, T

β,ℓ} be a motif pair of length

ℓ of data series T . The motif set Sℓr is defined as: Sℓr = {T
i,ℓ|dist(T

i,ℓ, T
α,ℓ)

< r ∨ dist(T
i,ℓ, T

β,ℓ) < r}.

The cardinality of Sℓr , |Sℓr |, is called the frequency of the motif set.

Intuitively, we can build a motif set starting from a motif pair. Then, we iteratively
add into the motif set all subsequences within radius r. We use the above definition
to solve the following problem (optionally including a constraint on the minimum
frequency for motif sets in the final answer).

Problem 3 (Variable-Length Motif Sets Discovery) Given a data series T

and a length range [ℓmin, . . . , ℓmax], we want to find the set S∗ = {Sℓr |Sℓr is a motif

set, ℓmin ≤ ℓ ≤ ℓmax}. In addition, we require that if Sℓr , S ′ℓ
′

r′ ∈ S∗ ⇒ Sℓr ∩S ′ℓ
′

r′ = ∅.

5.2. PROBLEM DEFINITION 99

Thus, the variable-length motif sets discovery problem results in a set, S∗, of
motif sets. The constraint at the end of the problem definition restricts each
subsequence to be included in at most one motif set. Note that in practice we
may not be interested in all the motif sets, but only in those with the k smallest
distances, leading to a top-k version of the problem. In our work, we provide a
solution for the top-k problem (though, setting k to a very large value will produce
all results).

5.2.2 Discord Discovery

In order to introduce the problem of discord discovery, we first define the notion
of best match, or nearest neighbor.

Definition 9 (mth best match) Given a subsequence T
i,ℓ, we say that its mth

best match, or Nearest Neighbor (mth NN) is T
j,ℓ, if T

j,ℓ has the mth shortest
distance to T

i,ℓ, among all the subsequences of length ℓ in T , excluding trivial
matches.

In the distance profile of T
i,ℓ, the mth smallest distance, is the distance of the

mth best match of T
i,ℓ. We are now in the position to formally define the discord

primitives, we use in our work.

Definition 10 (mthdiscord [40]) The subsequence T
i,ℓ is called the mth discord

of length ℓ, if its mth best match is the largest among the best match distances of
all subsequences of length ℓ in T .

Intuitively, discovering the mthdiscord enables us to find an isolated group of m
subsequences, which are far from the rest of the data. Furthermore, we can rank
the mthdiscords, according to their mth best matches. This allows us to define the
Top-k mth discords.

Definition 11 (Top-k mth discords) We call the k subsequences, with the k
largest distances to their mth best matches, the Top-k mth discords.

100 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

Top-1 1st discord

Top-1 2nd discord

1stNN

2nd NN

Top-2 1st discord

1stNN

Figure 5.1: A dataset with 12 subsequences (of the same length ℓ) depicted as
points in 2-dimensional space. We report the Top-k mth discords.

In Figure 5.1, we plot a group of 12 subsequences (represented in a 2-dimensional
space), and we depict three Top-k mth discords (groups of red/dark circles). Re-
member that m represents the number of anomalous subsequences in a discord
group. On the other hand, k ranks the discords and implicitly the groups, accord-
ing to their mth best match distances, in descending order (e.g., Top−1 1st discord
and Top− 1 2nd).

Given these definitions, we can formally introduce the following problem:

Problem 4 (Variable-Length Top-k mth Discord Discovery) Given a data
series T , a subsequence length-range [ℓmin, ..., ℓmax] and the parameters a, b ∈ N+

we want to enumerate the Top-k mth discords for each k ∈ {1, .., a} and each
m ∈ {1, .., b}, and for all lengths in [ℓmin, ..., ℓmax], occurring in T .

Observe that solving the Variable-Length Top-k mth Discord Discovery problem
is relevant to solving the Variable-Length Motif Set Discovery problem: in the
former case we are interested in the subsequences with the most distant neighbors,
while in the latter case we seek the subsequences with the most close neighbors.
Therefore, the Matrix Profile, which contains all this information, can serve as the
basis to solve both problems.

5.3. COMPARING MOTIFS OF DIFFERENT LENGTHS 101

0 50 100 150 200 250

Original Length

Downsampled 1 In 2

Downsampled 1 In 3

Downsampled 1 In 4

Downsampled 1 In 5

Downsampled 1 In 6

0 100 200
0

12
Euclidean Distance

Euclidean Distance * Sqrt(1/l)

Euclidean Distance / l 0

0.5

1

max normalized
Euclidean Distance

max normalized
Euclidean Dist. / l

max normalized
Euclidean Distance * Sqrt(1/l)

0 100 200

Figure 5.2: (left) Two series from the TRACE dataset at various speeds. (center)
Euclidean distance. (right) Max normalized Euclidean distance.

5.3 Comparing Motifs of Different Lengths

Before introducing our solutions to the problems outlined above, we first discuss
the issue of comparing motifs of different lengths. This becomes relevant when we
want to rank motifs of different lengths (within the given range), which is useful
in order to identify the most prominent motifs, irrespective of their length. In
this section, we propose a length-normalized distance measure that the VALMOD
algorithm uses in order to produce such rankings.

The increased expressiveness of VALMOD offers a challenge. Since we can discover
motifs of different lengths, we also need to be able to rank motifs of different
lengths. A similar problem occurs in string processing, and a common solution is
to replace the edit-distance by the length-normalized edit-distance, which is the
classic distance measure divided by the length of the strings in question [61]. This
correction would find the pair {concatenation, concameration} more similar than
{cat, cot}, matching our intuition, since only 15% of the characters are different
in the former pair, as opposed to 33% in the latter.

Researchers have suggested this length-normalized correction for time series, but
as we will show, the correction factor is incorrect. To illustrate this, consider the
following thought experiment. Imagine that some process in the system we are
monitoring occasionally “injects” a pattern into the time series. As a concrete
example, washing machines typically have a prototypic signature (as exhibited in
the TRACE dataset [82]), but the signatures express themselves more slowly on a
cold day, when it takes longer to heat the cooler water supplied from the city [27].
We would like all equal length instances of the signature to have approximately

102 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

the same distance. As a consequence, we factorize the Euclidean distance by the
following quantity: sqrt(1/ℓ), where ℓ is the length of the sequences. This aims
to favor longer and similar sequences in the ranking process of matches that have
different lengths.

In Figure 5.2(left) we show two examples from the TRACE dataset [82], which will
act as proxies for a variable length signature. We produced the variable lengths
by down sampling. In Figure 5.2(center), we show the distances between the
patterns as their length changes. With no correction, the Euclidean distance is
obviously biased to the shortest length. The length-normalized Euclidean distance
looks “flatter” and suggests itself as the proper correction. However, its variation
over the sequence length change is not visible due to the small scale. In Fig-
ure 5.2(right), we show all of the measures after dividing them by their largest
value. Now we can see that the length-normalized Euclidean distance has a strong
bias toward the longest pattern. In contrast to the other two approaches, the
sqrt(1/length) correction factor provides a near perfect invariant distance over
the entire range of values.

5.4 Proposed Approach for Motif Discovery

Our algorithm, VALMOD (Variable Length Motif Discovery), starts by comput-
ing the matrix profile on the smallest subsequence length, namely ℓmin, within a
specified range [ℓmin, ℓmax]. The key idea of our approach is to minimize the work
that needs to be done for subsequent subsequence lengths (ℓmin + 1, ℓmin + 2, . . .,
ℓmax). In Figure 5.3, it can be observed that the motif of length 8 (T33,8 − T97,8)
has the same offsets as the motif of length 9 (T33,9 − T97,9). Can we exploit this
property to accelerate our computation?

It seems that if the nearest neighbor of T
i,ℓmin

is T
j,ℓmin

, then probably the nearest
neighbor of T

i,ℓmin+1
is T

j,ℓmin+1
. For example, as shown in Figure 5.3(bottom), if

we sort the distance profiles of T33,8 and T33,9 in ascending order, we can find that
the nearest neighbor of T33,8 is T97,8, and the nearest neighbor of T33,9 is T97,9.

One can imagine that if the location of the nearest neighbor of T
i,ℓ (i = 1, 2, ..., n−

m + 1) remains the same as we increase ℓ, then we could obtain the matrix profile
of length ℓ+ k in O(n) time (k = 1, 2, . . .). However, this is not always true. The
location of the nearest neighbor of T

i,ℓ may not change as we slightly increase ℓ, if
there is a substantial margin between the first and second entries of Dranked(T

i,ℓ).

5.4. PROPOSED APPROACH FOR MOTIF DISCOVERY 103

0 128

()

…
…

()

…
…

64

Figure 5.3: (top) The top motifs of length 9 and 8 in an example data series.
(bottom) The sorted distance profiles of T33,8 and T33,9.

But, as ℓ gets larger, the nearest neighbor of T
i,ℓ is likely to change. For example,

as shown in Figure 5.4, when the subsequence length grows to 19, the nearest
neighbor of T33,19 is no longer T97,19, but T1,19. We observe that the ranking of
the distance profile values may change, even when the data is relatively smooth.
When the data is noisy and skewed, this ranking can change even more often.
Is there any other rank-preserving measure that we can exploit to accelerate the
computation?

The answer is yes. Instead of sorting the entries of the distance profile, we create
and sort a new vector, called the lower bound distance profile. Figure 5.4(bottom)
previews the rank-preserving property of the lower bound distance profile. As
we will describe later, once we know the distance between T

i,ℓ and T
j,ℓ, we can

evaluate a lower bound distance between T
i,ℓ+k

and T
j,ℓ+k

, ∀k ∈ [1,2,3,. . .]. The
rank-preserving property of the lower bound distance profile can help us prune a
large number of unnecessary computations as we increase the subsequence length.

5.4.1 The Lower Bound Distance Profile

Before introducing the lower bound distance profile, let us first investigate its basic
element: the lower bound Euclidean distance.

Assume that we already know the z-normalized Euclidean distance dℓi,j between
two subsequences of length ℓ: T

i,ℓ and T
j,ℓ, and we are now estimating the distance

104 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

0 128

��,� ��,���,�

64

��,�
��,��

.

.

.

.

.

.

��,��

. . .

������(��,�)��,� ��,�
…
…

������(��,�)��,� ��,�
…
…

������(��,��)������(��,�)
���� ��,� ��,�

…
…

������(��,�)
���� ��,� ��,�

…
…

������(��,��)��,�� �,��
…
…

. . .

���� based on
Lower Bounds
of Euclidean

Distance

���� based
on Euclidean
Distance (ED)

�,��

���� ��,�� ��,��
…
…

Figure 5.4: (top distance profiles) Ranking by true distances leads to changes in
the order of the pairs. (bottom distance profiles) Ranking by lower bound distances
maintains the same order of pairs over increasing lengths.

between two longer subsequences of length ℓ + k: T
i,ℓ+k

and T
j,ℓ+k

. Our problem
can be stated as follows: given T

i,ℓ, T
j,ℓ and T

j,ℓ+k
(but not the last k values

of T
i,ℓ+k

), is it possible to provide a lower bound function LB(dℓ+k
i,j), such that

LB(dℓ+k
i,j) ≤ dℓ+k

i,j ? This problem is visualized in Figure 5.5 .

One may assume that we can simply set LB(dℓ+k
i,j) = dℓi,j by assuming that the last

k values of T
i,ℓ+k

are the same as the last k values of T
j,ℓ+k

. However, this is not an
answer to our problem, as we need to evaluate z-normalized Euclidean distances,
which are not simple Euclidean distances. The mean and standard deviation of a
subsequence can change as we increase its length, so we need to re-normalize both
T

i,ℓ+k
and T

j,ℓ+k
. Assume that the mean and standard deviation of Tx,y are µx,y

and σx,y, respectively (i.e. T
j,ℓ+k

corresponds to µ
j,ℓ+k

and σ
j,ℓ+k

). Since we do
not know the last k values of T

i,ℓ+k
, both µ

i,ℓ+k
and σ

i,ℓ+k
are unknown and can

thus be regarded as variables. We recall that ti denotes the ith point of a generic

5.4. PROPOSED APPROACH FOR MOTIF DISCOVERY 105

Arbitrary data can be
added here

Figure 5.5: Increasing the subsequence length from ℓ to ℓ + k.

sequence T (or a subsequence Ta,b), we thus have the following:

dℓ+k
i,j ≥

min
µ

i,ℓ+k
,σ

i,ℓ+k

√

√

√

√

√

ℓ
∑

p=1

(
ti+p−1 − µ

i,ℓ+k

σ
i,ℓ+k

−
tj+p−1 − µ

j,ℓ+k

σ
j,ℓ+k

)2

=
min

µ
i,ℓ+k

,σ
i,ℓ+k

σ
j,ℓ

σ
j,ℓ+k

√

√

√

√

√

√

ℓ
∑

p=1

(
ti+p−1 − µ

i,ℓ+k
σ

i,ℓ+k
σ

j,ℓ
σ

j,ℓ+k

−
tj+p−1 − µ

j,ℓ+k

σ
j,ℓ

)2

Here, we substitute the variables µ
i,ℓ+k

and σ
i,ℓ+k

, respectively with µ′ and σ′.
Hence, we obtain:

= min
µ′,σ′

σ
j,ℓ

σ
j,ℓ+k

√

√

√

√

√

ℓ
∑

p=1

(
ti+p−1 − µ′

σ′
−

tj+p−1 − µ
j,ℓ

σ
j,ℓ

)2 (5.1)

Clearly, the minimum value shown in Eq. 5.1 can be set as LB(dℓ+k
i,j). We can

obtain LB(dℓ+k
i,j) by solving

∂LB(dℓ+k
i,j)

∂µ′
= 0 and

∂LB(dℓ+k
i,j)

∂σ′
= 0:

LB(dℓ+k
i,j) =

√
ℓ

σ
j,ℓ

σ
j,ℓ+k

if qi,j ≤ 0
√

ℓ(1− q2
i,j)

σ
j,ℓ

σ
j,ℓ+k

otherwise
(5.2)

106 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

where qi,j =

∑ℓ
p=1

(tj+p−1ti+p−1)

ℓ
−µ

i,ℓ
µ

j,ℓ
σ

i,ℓ
σ

j,ℓ
.

LB(dℓ+k
i,j) yields the minimum possible z-normalized Euclidean distance between

T
i,ℓ+k

and T
j,ℓ+k

, given T
i,ℓ, T

j,ℓ and T
j,ℓ+k

(but not the last k values of T
i,ℓ+k

).
Now that we have obtained the lower bound Euclidean distance between two sub-
sequences, we are able to introduce the lower bound distance profile.

Using Eq. 5.2, we can evaluate the lower bound Euclidean distance between T
j,ℓ+k

and every subsequence of length ℓ+ k in T . By putting the results in a vector, we
obtain the lower bound distance profile LB(Dℓ+k

j) corresponding to subsequence

T
j,ℓ+k

: LB(Dℓ+k
j) = LB(dℓ+k

1,j), LB(dℓ+k
2,j), ...,LB(dℓ+k

n−ℓ−k+1,j
). If we sort the com-

ponents of LB(Dℓ+k
j) in an ascending order, we can obtain the ranked lower bound

distance profile: LBranked(Dℓ+k
j) = LB(dℓ+k

r1,j), LB(dℓ+k
r2,j),

..., LB(dℓ+k
r

n−ℓ−k+1
,j), where LB(dℓ+k

r1,j) ≤ LB(dℓ+k
r2,j) ≤ ...

≤ LB(dℓ+k
r

n−ℓ−k+1
,j).

We would like to use this ranked lower bound distance profile to accelerate our
computation. Assume that we have a best-so-far pair of motifs with a distance
distBSF . If we examine the pth element in the ranked lower bound distance profile
and find that LB(dℓ+k

rp,j) > distBSF , then we do not need to calculate the exact

distance for dℓ+k
rp,j , dℓ+k

rp+1,j, ..., dℓ+k
r

n−ℓ−k+1
,j anymore, as they cannot be smaller than

distBSF . Based on this observation, our strategy is as follows. We set a small, fixed
value for p. Then, for every j, we evaluate whether LB(dℓ+k

rp,j) > distBSF is true: if

it is, we only calculate dℓ+k
r1,j , dℓ+k

r2,j , ..., dℓ+k
rp−1,j. If it is not, we compute all the elements

of Dℓ+k
j . We update distBSF whenever a smaller distance value is observed. In the

best case, we just need to calculate O(np) exact distance values to obtain the motif
of length l + k. Note that the order of the ranked lower bound distance profile is
preserved for every k. That is to say, if LB(dℓ+k

a,j) ≤ LB(dℓ+k
b,j), then LB(dℓ+k+1

a,j) ≤
LB(dℓ+k+1

b,j). This is because the only component in Eq. 5.2 related to k is σ
j,ℓ+k

.
When we increase k by 1, we are just performing a linear transformation for the
lower bound distance: LB(dℓ+k+1

i,j) = LB(dℓ+k
i,j)σ

j,ℓ+k
/σ

j,ℓ+k+1
. Therefore, we have

LB(dℓ+k+1
rp,j) = LB(dℓ+k

rp,j)σ
j,ℓ+k

/σ
j,ℓ+k+1

, and the ranking is preserved for every k.

5.4. PROPOSED APPROACH FOR MOTIF DISCOVERY 107

Algorithm 6: V ALMOD
Input: DataSeries T , int ℓmin int ℓmax, int p
Output: V ALMP

1 int nDP ← |T | − ℓmin + 1 ;
2 V ALMP ← new V ALMP (nDP);
3 V ALMP.MP = {⊥,...,⊥};
4 MaxHeap[] listDP , double [] MP , int [] IP ;
5 listDP , MP , IP ← ComputeMatrixProfile(T , ℓmin, p); // listDP contains p

entries of each distance profile

6 V ALMP ← updateV ALMP (V ALMP ,MP ,IP ,nDP) ;
7 for i ← ℓmin + 1 to ℓmax do
8 nDP ← |T | − i + 1 ;

// compute SubMP and update listDP for the length i

9 bool bBestM, double [] SubMP , IP ← ComputeSubMP (T ,nDP ,listDP ,i,p);
10 if bBestM then

// SubMP surely contains the motif, update VALMP with it

11 updateV ALMP (V ALMP ,SubMP ,IP ,nDP);

12 else
13 listDP ,MP ,IP ← ComputeMatrixProfile(T ,i,p);

// SubMP might not contain the motif, update VALMP computing MP

14 updateV ALMP (V ALMP ,MP ,IP ,nDP);

Algorithm 7: updateV ALMP

Input: V ALMP , double [] MPnew, int [] IP , nDP , ℓ
Output: V ALMP

1 for i ← 1 to nDP do
// length normalize the Euclidean distance

2 double lNormDist ← MPnew[i] ∗
√

1/ℓ;
// if the distance at offset i of VALMP, surely computed with

previous lengths, is larger than the actual, update it

3 if (V ALMP.distances[i] > lNormDist or V ALMP.MP [i] == ⊥) then
4 V ALMP.distances[i] ← MPnew[i];
5 V ALMP.normDistances[i] ← lNormDist;
6 V ALMP.lengths[i] ← ℓ;
7 V ALMP.indices[i] ← IP [i];

5.4.2 The VALMOD Algorithm

We are now able to formally describe the VALMOD algorithm. The pseudocode
for VALMOD is shown in Algorithm 6. With the call of ComputeMatrixProfile()

108 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

in line 5, we build the matrix profile corresponding to ℓmin, and in the meantime
store the smallest p values of each distance profile in the memory. Note that
the matrix profile is stored in the vector MP , which is coupled with the matrix
profile index, IP , which is a structure containing the offsets of the nearest neighbor
subsequences. We can easily find the motif corresponding to ℓmin as the minimum
value of MP . Then, in lines 7-14, we iteratively look for the motif of every length
within ℓmin+1 and ℓmax. The ComputeSubMP function in line 9 attempts to find
the motif of length i only by evaluating a subset of the matrix profile corresponding
to subsequence length i. Note that this strategy, which is based on the lower
bounding technique introduced in Section 5.4.1, might not be able to capture the
global minimum value within the matrix profile. In case that happens (which is
rare), the Boolean flag bBestM is set to false, and we compute the whole matrix
profile with the computeMatrixProfile procedure in line 13.

The final output of V ALMOD is a vector, which is called V ALMP (variable
length matrix profile) in the pseudo-code. If we were interested in only one fixed
subsequence length, VALMP would be the matrix profile normalized by the square
root of the subsequence length. If we are processing various subsequence lengths,
then as we increase the subsequence length, we update VALMP when a smaller
length-normalized Euclidean distance is observed.

Algorithm 7 shows the routine to update the V ALMP structure. The final
V ALMP consists of four parts. The ith entry of the normDistances vector stores
the smallest length-normalized Euclidean distance values between the ith subse-
quence and its nearest neighbor, while the ith place of vector distances stores their
straight Euclidean distance. The location of each subsequence’s nearest neighbor
is stored in the vector indices. The structure lengths contains the length of the
ith subsequences pair.

In the next two subsections, we detail the two sub-routines,
computeMatrixProfile and the ComputeSubMP .

5.4.3 Computing The Matrix Profile

The routine ComputeMatrixProfile (Algorithm 8) computes a matrix profile for
a given subsequence length, ℓ. It essentially follows the STOMP algorithm [21],
except that we also calculate the lower bound distance profiles in line 17. In
line 5, the dot product between the sequence T

1,ℓ and the others in T is computed

5.4. PROPOSED APPROACH FOR MOTIF DISCOVERY 109

Algorithm 8: ComputeMatrixProfile
Input: DataSeries T , int ℓ, int p
Output: MP , listDP

1 int nDP ← |T |-ℓ+1;
2 double [] MP ← double [nDP];
3 int [] IP ← int [nDP];
4 MaxHeap[] listDP= new MaxHeap(p)[nDP];

// compute the dot product vector QT for the first distance profile

5 double [] QT ← SlidingDotProduct(T
1,ℓ, T);

// compute sum and squared sum of the first subsequence of length ℓ

6 s ← sum(T
1,ℓ); ss ← squaredSum(T

1,ℓ);

// compute the first distance profile with distance formula (Eq.(5.3)) and

store the minimum distance in MP and the offset of the nearest neighbor in

IP

7 D(Ti,ℓ) ← CalcDistProfile(QT ,Ti,ℓ, T , s, ss);

8 MP [1], IP [1] ← min(D(T
i,ℓ));

// iterate over the subsequences of T

9 for i ← 2 to nDP do
// update the dot product vector QT for the ith subsequence

10 for j ← nDP down to 2 do
11 QT [j]←QT [j − 1]− T [j − 1]× T [i− 1] + T [j + ℓ− 1]× T [i + ℓ− 1] ;

// update sum and squared sum of the ith subsequence

12 s ← s− T [i− 1] + T [ℓ + i− 2];
13 ss ← ss− T [i− 1]2 + T [ℓ + i− 2]2;
14 D(Ti,ℓ) ← CalcDistProfile(QT ,Ti,ℓ, T , s, ss);

15 MP [i], IP [i] ← min(D(Ti,ℓ));

// Store in listDP[i] the p entries e with smallest lower bounding distance

16 int c ← 0;
17 for each entry e in D(T

i,ℓ) do

// Compute the lower bound for the length ℓ + 1
18 e.LB ← compLB(ℓ, ℓ + 1, QT [c], e.s1, e.s2, e.ss1, e.ss2);

// save the entry only if is smaller than the max lb so far or if

listDP[i] contains fewer than p elements

19 if e.LB < max(listDP [i]) or |listDP [i]| < p then
20 insert(listDP [i], e);
21 c← c + 1;

in frequency domain in O(nlogn) time, where n = |T |. The dot product is com-
puted in constant time in line 11 by using the result of the previous overlapping
subsequences.

In line 7 we measure each z-normalized Euclidean distance, between T
i,ℓ and the

other subsequence of length ℓ in T , avoiding trivial matches. The distance measure
formula used is the following [68, 109, 21]:

110 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

dist(T
i,ℓ, T

j,ℓ) =

√

√

√

√2ℓ(1− QTi,j − ℓµiµj

ℓσiσj

) (5.3)

In Eq. (5.3) QTi,j represents the dot product of the two sub-series with offset i and
j respectively. It is important to note that, we may compute µ and σ in constant
time by using the running plain and squared sum, namely s and ss (initialized in
line 6). It follows that µ = s/ℓ and σ =

√

(ss/ℓ)− µ2.

In lines 8 and 15, we update both the matrix profile and the matrix profile index,
which holds the offset of the closest match for each Ti,l.

Algorithm 8 ends with the loop in line 17, which evaluates the lower bound distance
profile and stores the p smallest lower bound distance values in listDP . In line 18,
the procedure compLB evaluates the lower bound distance profile introduced in
Section 5.4.1 using Eq. (5.2). The structure listDP is a Max Heap with a maximum
capacity of p. Each entry e of the distance profile in line 17 is a tuple containing
the Euclidean distance between a subsequence T

j,ℓ and its nearest neighbor, the
location of that nearest neighbor, the lower bound Euclidean distance of the pair,
the dot product of them, and the plain and squared sum of T

j,ℓ. In Figure 5.6(b),
we show an example of the distance profile in line 17. The distance profile is
sorted according to the lower bound Euclidean distance values (shown as LB in
the figure). The entries corresponding to the p smallest LB values are stored in
memory to be reused for longer motif lengths.

Complexity Analysis. In line 14 of Algorithm 7, the time cost to com-
pute a single distance profile is O(n), where n is the number of subsequences
of length ℓ. Therefore computing the n distance profiles takes O(n2) time.
In line 17, computing the lower bounds of the smallest p entries of each dis-
tance profile takes O(n log(p)) additional time. The overall time complexity of
the ComputeMatrixProfile routine is thus O(n2 log(p)). This routine is called at
least once, for the first subsequence length of the range, namely ℓ = ℓmin. In the
worst case, it is executed for each length in the range (though, this never occurred
in our experiments).

5.4. PROPOSED APPROACH FOR MOTIF DISCOVERY 111

Algorithm 9: ComputeSubMP
Input: DataSeries T , int nDp, MaxHeap[] listDP , int newL, int p
Output: bBestM, SubMP , IP

1 double[] SubMP ← double[nDp];
2 int[] IP ← int[nDp];
3 double minDistAbs ← inf, double minLbAbs ← inf;
4 List 〈 int,double 〉 nonV alidDP ;

// iterate over the partial distance profiles in listDP

5 for i ← 1 to nDp do
6 double minDist ← inf;
7 int ind ← 0;
8 double maxLB ← popMax(listDP [i]);

// update the partial distance profile for the length newL (true Euclidean

and lower bounding distance)

9 for each entry e in listDP [i] do
10 e.dist, e.LB ← updateDistAndLB(e, newL);
11 minDist ← min(minDist,e.dist);
12 if minDist == e.dist then
13 ind = e.offset;

// check if the min (minDist) of this partial distance profile is the min of

the complete distance profile

14 if minDist < maxLB then
// minDist is the real min; valid distance profile

15 minDistABS ← min(minDistAbs,minDist);
16 SubMP [i] = minDist;
17 IP [i] =ind;

18 else
// minDist is not the real min; non-valid distance profile

19 minLbAbs ← min(minLbAbs, maxLB));
20 SubMP [i] = ⊥;
21 nonV alidDP.add(〈i, maxLB〉)
22 bool bBestM ← (minDistABS < minLbAbs) ;

// if SubMP does not contain the motif distance (bBestM = false), compute the

whole non-valid distance profiles, if it is faster then computeMatrixProfile

(nDp / 2 = true)

23 if !bBestM and nonV alidDP.size() < (nDp/p) then
24 for each pair < ind, lbMax > in nonV alidDP do
25 if lbMax < minDistABS then
26 QT ← SlidingDotProduct(Tind,ℓ, T);

27 double s ← sum(Tind,ℓ); double ss ← squaredSum(Tind,ℓ);

28 D(T
ind,ℓ)← CalcDistProf(QT ,T

ind,ℓ, T , s, ss);

29 SubMP [ind], IP [ind] = min(D(Tind,ℓ));

30 insert(listDP [ind], D(T
ind,ℓ));

31 bBestM ← 1;

112 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

5.4.4 Matrix Profile for Subsequent Lengths

We are now ready to describe our ComputeSubMP algorithm, which allows us to
find the motifs for subsequence lengths greater than ℓ in linear time.

The input of ComputeSubMP, whose pseudo-code is shown in Algorithm 9, is the
vector listDp that we built in the previous step. In line 5, we start to iterate over
the p× n elements of listDp in order to find the motif pair of length newL, using
a procedure that is faster than Algorithm 6, leading to a complexity that is now
linear in the best case (as the experiments show, this is often the case). Since
listDP potentially contains enough elements to compute the whole matrix profile,
it can provide more information than just the motif pair.

In the loop of line 9, we update all the entries of listDP [i] by computing the
Euclidean and lower bound distance for the length newL. This operation is valid,
since the ranking of each listDP [i] is maintained as the lower bound gets updated.
Moreover, this latter computation is done in constant time (line 10), since the
entries contain the statistics (i.e. sum, squared sum, dot product) for the length
newL−1. Also note that the routine updateDistAndLB avoids the trivial matches,
which may result from the length increment.

Subsequently, the algorithm checks in line 14 if minDist is smaller than or equal
to maxLB, the largest lower bound distance value in listDP [i]. If this is true,
minDist is the smallest value in the whole distance profile. In lines 15 and 16, we
update the best-so-far distance value and the matrix profile. On the other hand,
we update the smallest max lower bounding distance in line 19, recording also that
we do not have the true min for the distance profile with offset i (line 21). Here,
we may also note that even though the local true min is larger than the max lower
bound (i.e., the condition of line 14 is not true), minDist may still represent an
approximation of the true matrix profile point.

When the iteration of the partial distance profiles ends (end of for loop in line 5),
the algorithm has enough elements to know if the matrix profile computed contains
the real motif pair. In line 22, we verify if the smallest Euclidean distance we
computed (minDistABS) is less than minLbAbs, which is the minimum lower
bound of the non-valid distance profiles. We call non-valid all the partial distance
profiles, for which the maximum lower bound distance (i.e., the p-th largest lower
bound of the distance profile) is smaller than the minimum true distance (line 18);
otherwise, we call them valid (line 14).

5.4. PROPOSED APPROACH FOR MOTIF DISCOVERY 113

T

(a) 1

1800

0
-1
-2
-3
-4
-5

0 600 1200

1

1800

0
-1
-2
-3
-4
-5

0 600 1200

T160,600

T

rank dist offset LB
1 2.34 1136 2.34
2 2.58 1135 2.57
3 2.79 1134 2.79
4 3.00 1133 2.99
5 3.18 1132 3.18

..
738 37.33 1071 24.50
739 37.33 1073 24.50
740 37.34 1072 24.50

T1136,600

(b)

i=1 … 160 … nDP
2.34 distance profiles vectors

(Matrix Profile)
computed in O(n2) time

Offset of subsequence (i) global minimum distance
motif pair: [T160,600 T1136,600]

600 600

Entries stored in memory

Figure 5.6: (a) Input time series, (b) Compute matrix profile snapshot: (on the
left) distance profile of the subsequence T160,600 which is part of the motif.

As a result of the ranking preservation of the lower bounding function, if the
above criterion holds, we know that each true Euclidean distance in the non-valid
distance profiles must be greater than minDistABS. In line 23, the algorithm has
its last opportunity to exploit the lower bound in the distance profiles, in order to
avoid computing the whole matrix profile. If bBestM is false (the motif has not
been found), we start to iterate through the non-valid distances profiles. Note that
we perform this iteration when their number is less than half of the total distance
profiles.

We present here two examples that explain the main procedures of V ALMOD.

Example 1 In Figure 5.6, we show a snapshot of a VALMOD run. In Fig-
ure 5.6(a), VALMOD receives as input a data series of length 1800. In Fig-

114 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

Pruned
calculations

1

1800

0
-1
-2
-3
-4
-5

0

T
T160,601

dist
match
offset LB

1 2.34 1136 2.34
2 2.58 1135 2.57
3 2.79 1134 2.79
4 3.00 1133 2.99
5 3.19 1132 3.18
…
…
…

739 … … …

T1136,601601 601

maxLBminDist

T620,601
dist LB

1 24.07 20.68
2 24.07 20.69
3 24.07 20.69
4 24.08 20.69
5 24.09 20.69
..

739 … …

maxLB and minLbAbs

minDist

(c)

Figure 5.7: Compute Sub Matrix profile: the partial distance profile of T160,601

contains the motif’s subsequences distance.
ure 5.6(b), the matrix profile for subsequence length ℓ = 600 is computed (Al-
gorithm 8). On the left, we depict the distance profile regarding T160,600, and rank
it according to the lower bound (LB) distance values. Although we are computing
the entire distance profile, we store only the first p = 5 entries in memory.

Example 2 Figure 5.7 shows the execution of ComputeSubMP (Algorithm 9),
taking place after the step illustrated in Figure 5.6(b). In this picture, we show
the distance profile of a subsequence belonging to the motif pair, for subsequence
length ℓ = 601. This time it is built by computing p = 5 distances (left side of the
picture). We can now make the following observations:
(a) In the distance profile of the subsequence T160,601 (left array): minDist =
2.34 < maxLB = 3.18 ⇐⇒ the value 2.34 is both a local and a global minimum
(among all the distance profiles).
(b) Considering the partial distance profile of subsequence T620,601 (right array), we
do not know if its minDist is its real global minimum, since 20.69 (maxLB) <
24.07 (minDist).
(c) We know, that 20.69 (maxLB of the distance profile of subsequence T620,601)
is the minLbAbs, or in other words, the smallest maxLB distance among all the
partial distance profiles in which maxLB < minDist holds.
(d) We know that there are no true Euclidean distances (among those computed)
smaller than 2.34. Since minDist = 2.34 < minLbAbs = 20.69 ⇐⇒ 2.34 is the
distance of the motif {T160,601; T1136,601}.

Complexity Analysis. In the best case, ComputeSubMP can find the motif

5.5. FINDING MOTIF SETS 115

pair in O(np) time, where n is the total number of distance profiles. This means
that no distance profile computation takes place, since the condition in line 22
of Algorithm 10 is satisfied. Otherwise, if we need to iterate over the non-valid
distance profiles for finding the answer (which occurs rarely in practice), the time
complexity reaches its worst case, O(nC log(n)), with C = n/p. This is asymp-
totically faster than re-executing ComputeMatrixProfile, which takes O(n2 log(p))
time. Note that, each non-valid distance profile (starting in line 26) is computed
by using the primitives introduced in the ComputeMatrixProfile algorithm, only
if its maximum lower bound is less than the smallest true distance minDistABS.
This indicates that the distance profile for length newL may contain not yet com-
puted distances smaller than minDistABS, which is our best-so-far. Therefore,
the overall complexity of VALMOD is O(n2 log(p) + (ℓmax − ℓmin)np) in the best
case, whereas the worst case time complexity is O((ℓmax−ℓmin)n2 log(p)). Clearly,
the n2 log(p) factor dominates, since (ℓmax−ℓmin) acts as a constant. Nevertheless,
the length range is not negligible, w.r.t the time performance, when we need to
run a quadratic routine over it. If the worst case occurs often, then the perfor-
mance will degrade. However, this is not the case, as we show in the experimental
evaluation.

5.5 Finding Motif Sets

We finally extend our technique in order to find the variable-length motif sets. In
that regard, we start to consider the top-k motif pairs, namely the pairs having
the k smallest length-normalized distances. The idea is to extend each motif pair
to a motif set considering the subsequence’s proximity as a quality measure, thus
favoring the motif sets, which contain the closest subsequence pairs. Moreover, for
each top-K motif pair (T

a,ℓ,Tb,ℓ), we use a radius r = D ∗ dist(T
a,ℓ, T

b,ℓ), when we
extend it to a motif set. We call the real variable D radius factor. This choice
permits us to tune the radius r by the user defined radius factor, considering also
the characteristics of the data. Setting a unique and non data dependent radius
for all motif sets, would penalize the results of exploratory analysis.

First, we introduce Algorithm 10, a slightly modified version of the
updateV almp routine (Algorithm 7). The new algorithm is called
updateV ALMPForMotifSets, and its main goal is to keep track of the best
k subsequence pairs (motif pairs) according to the V ALMP ranking, and the cor-
responding partial distance profiles. The idea is to later exploit the lower bounding
distances for pruning computations, while computing the motif sets.

116 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

Algorithm 10: updateV ALMPForMotifSets

Input: V ALMP , double [] MPnew, int [] IP , nDP , ℓ, MaxHeap[] listDP ,
Output: V ALMP

1 for i ← 1 to nDP do
// length normalize the Euclidean distance

2 double lNormDist ← MPnew[i] ∗
√

1/ℓ;
// if the distance at offset i of VALMP, surely computed with

previous lengths, is larger than the actual, update it

3 if (V ALMP.distances[i] > lNormDist or V ALMP.MP [i] == ⊥) then
4 entry pair;
5 pair.off1 ← i, pair.off2 ← IP [i] ;
6 pair.distance ← MPnew[i], pair.ℓ ← ℓ;
7 pair.partDP1 ← ⊥, pair.partDP2 ← ⊥ ;
8 insert(heapBestKPairs, pair);
9 V ALMP.distances[i] ← MPnew[i];

10 V ALMP.normDistances[i] ← lNormDist;
11 V ALMP.lengths[i] ← ℓ;
12 V ALMP.indices[i] ← IP [i];

13 for each pair in heapBestKPairs do
14 if (pair.partDP1== ⊥) then
15 pair.partDP1 ← listDP [pair.off1];
16 pair.partDP2 ← listDP [pair.off2];

In lines 4 to 7, we build a structure named pair, which carries the information
of the subsequences pairs that appear in the V ALMP structure. During this
iteration, we leave the fields partDP1 and partDP2 empty, since they will be
later initialized with the partial distance profiles, if their pair is in the top k of
V ALMP . In order to enumerate the best k pairs, we use the global maximum
heap heapBestKPairs in line 8. Then, we assign (or update) the corresponding
partial distance profiles (line 13) to each pair.

We are now ready to present the variable length motif sets discovery algorithm
(refer to Algorithm 11). Starting at line 1, the algorithm iterates over the best
pairs. For each one of those, we need to check if the search range is smaller than
the maximum lower bound distances of both partial distance profiles. If this is
true, we are guaranteed to have already computed all the subsequences in the
range. Therefore, in lines 7 and 13 we filter the subsequences in the range, sorting
the partial distance profile according to the offsets. This operation will permit us
to find the trivial matches in linear time.

5.5. FINDING MOTIF SETS 117

Algorithm 11: computeV arLengthMotifSets
Input: DataSeries T , MaxHeap heapBestKPairs, double D
Output: Set S∗

1 for each pair in heapBestKPairs do
2 double r ← pair.distance * D ;
3 double maxLB1 ← popMax(pair.partDP1);
4 double maxLB2 ← popMax(pair.partDP2);
5 D(Tpair.off1,pair.ℓ) ← ∅, D(Tpair.off2,pair.ℓ) ← ∅ ;

6 if maxLB1 > r then
// sort according the offset, the partial distance profile

contains all the elements in the range

7 D(Tpair.off1,pair.ℓ) ← sortAndFilterRange(r,pair.partDP1.toVector());

8 else
// re-compute the mat

9 double s ← sum(Tind,ℓ);

10 double ss ← squaredSum(Tind,ℓ);

11 D(Tpair.off1,pair.ℓ)← CalcDistProfInRange(r,QT ,Tpair.off1,pair.ℓ, T , s, ss);

12 if maxLB2 > r then
13 D(Tpair.off2,ℓ) ← sortAndFilterRange(r,pair.partDP2.toVector());

14 else
15 double s ← sum(Tind,ℓ);

16 double ss ← squaredSum(Tind,ℓ);

17 D(Tpair.off2,pair.ℓ)← CalcDistProfInRange(r,QT ,Tpair.off1,pair.ℓ, T , s, ss);

18 Set Spair.ℓ
r ← mergeRemoveTM(D(Tpair.off1,ℓ), D(Tpair.off2,ℓ));

19 S∗.add(Spair.ℓ
r);

On the other hand, if the search range is larger than the maximum lower bound
distances of both partial distance profiles, we have to re-compute the entire dis-
tance profile (lines 11 and 17), to find all the subsequences in the range. Once
we have the distance profile pairs, we need to merge them and remove the trivial
matches (line 18). Each time we add a subsequence in a motif set, we remove it
from the search space: this guarantees the empty intersection among the sets in
S∗.

Complexity Analysis. The complexity of the updateV ALMPForMotifSets
algorithm is O(n log(k)), where n is the length of the V ALMP structure, which
is linearly scanned and updated. O(log(k)) time is needed to retain the k
best pairs of V ALMP , using the heap structure in line 8. The final algorithm
computeV arLengthMotifSets takes O(k × p × log(p)) time, in the best case.

118 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

This occurs when, after iterating the k pairs in heapBestKPairs, each partial
distance profile of length p, contains all the elements in the range r. In this case,
we just need an extra O(p log(p)) time to sort its elements (line 7 and 13). On the
other hand, the worst case time is bounded by O(k × n× log(n)), where n is the
length of the input data series T . In this case, the algorithm needs to recompute
k times the entire distance profile (line 11 and 17), at a unit cost of O(n log(n))
time.

5.6 Discord Discovery

We now describe our approach to solving the Variable-Length Top-k mth Discord
Discovery problem. First, we explain some useful notions, and we then present
our discord discovery algorithm.

5.6.1 Comparing Discords of Different Lengths

Before introducing the algorithm that identifies discords (from the Top-1 1st to
the Top-k mth one), we define the data structure that allows us to accommodate
them. We can represent this structure as a k×m matrix, which contains the best
match distance and the offset of each discord.

More formally, given a data series T , and a subsequence length ℓ we define: dkmℓ =

〈d, o〉1,1 .. 〈d, o〉1,m

..
〈d, o〉k,1 .. 〈d, o〉k,m

, where a generic pair 〈d, o〉i,j contains the offset o and the

corresponding distance d of the Top-i jth discord of length ℓ (1 ≤ i ≤ k and
1 ≤ j ≤ m). In dkmℓ, rows rank the discords according to their positions (mth

discords), and the columns according to their best match distance (Top-k). For
each pair 〈d, o〉a,b, 〈d′, o′〉a′,b′ ∈ dkmℓ, we require that T

o,ℓ and T
o′,ℓ are not trivial

matches.

Since we want to compute dkmℓ for each length in the range [ℓmin, ℓmax], we also
need to rank discords of different lengths. In that regard, we want to obtain
a unique matrix that we denote by dkmℓmin,ℓmax

. Therefore, we can represent
a discord by the triple 〈d∗, o∗, ℓ∗〉i,j ∈ dkmℓmin,ℓmax

, where d∗ is the ith greatest

5.6. DISCORD DISCOVERY 119

length normalized jth best match distance. More formally: d∗ = max{ d√
ℓmin

: d ∈
dkmℓmin

(i, j), ..., d√
ℓmax

: d ∈ dkmℓmax
(i, j)}. Each triple is also composed by the

offset o∗ and the length ℓ
∗ of the discord, where ℓmin ≤ ℓ

∗ ≤ ℓmax.

By multiplying by the 1/
√
ℓ ratio each distance, we want to favor the selection

of shorter discords. This strategy is based on the following fact: if we compare
two Top-k mth discord subsequences of different lengths, but equal best match
distances, the shorter subsequence is the one with the highest point-to-point dis-
similarity to its best match. Consequently, we promote the shorter subsequence
as the more anomalous one.

5.6.2 Discord Discovery Algorithm

We now describe our algorithm for the Top-k mth discords discovery problem. We
note that we can still use the lower bound distance measure, as in the motif dis-
covery case. This allows us to efficiently build dkmℓ, for each ℓ in the [ℓmin, ℓmax]
range, incrementally reusing the distances computation performed. The final out-
come of this procedure is the dkmℓmin,ℓmax

matrix, which contains the variable
length discord ranking. In this part, we introduce and explain the algorithms,
which permit us to efficiently obtain dkmℓ for each length. We report the whole
procedure in Algorithm 12.

Smallest Length Discords. We start to find discords of length ℓmin, namely the
smallest subsequence length in the range. We can thus run Algorithm 8 in line 1,
which computes the list of partial distance profiles of each subsequence of length
ℓmin (listDP), in the input data series T . Each partial distance profile contains
the p smallest nearest neighbor distances of each subsequence. To that extent, we
set p ≥ m in Algorithm 8 (ComputeMatrixProfile).

We then iterate the subsequences of T in line 6, using the index i. For each
subsequence T

i,ℓmin
that has no trivial matches in dkmℓmin

, we invoke the rou-
tine UpdateF ixedLengthDiscords (line 8), which checks if T

i,ℓmin
can be placed

in dkmℓmin
as a discord. When dkmℓmin

is built, we update the variable
length discords ranking (dkmℓmin,ℓmax

matrix in line 9), using the procedure
UpdateV ariableLengthDiscords.

In the loop of line 10, we iterate the discord lengths greater than ℓmin. Since we

120 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

Algorithm 12: Topkm_DiscordDiscovery (Compute Top-k mth Discords of vari-
able lengths)
Input: DataSeries T , int ℓmin, int ℓmax, int k, int m , int p
Output: Matrix dkmℓmin,ℓmax

1 MaxHeap[] listDP=ComputeMatrixProfile(T, ℓmin, p);
2 int nDp = (|T | − ℓmin) + 1;
3 Matrix dkmℓmin,ℓmax

= {{〈−∞,−∞,−∞〉, ..., 〈−∞,−∞,−∞〉}, ..., {...}};
4 Matrix dkmℓmin

= {{〈−∞,−∞〉, ..., 〈−∞,−∞〉}, ..., {...}};
5 if p >= m then

// iterate the partial distance profiles in listDP

// and compute dkmℓmin

6 for i ← 1 to nDp do
7 if Ti,ℓmin

has no Trivial matches in dkmℓmin
then

8 UpdateF ixedLengthDiscords(dkmℓmin
, listDP [i],i,k,m);

9 UpdateV ariableLengthDiscords(dkmℓmin
, dkmℓmin,ℓmax

,k,m);

// compute dkmℓnextL
for each length, pruning distance computations

10 for nextL ← ℓmin + 1 to ℓmax do
11 Matrix dkmnextL = {{〈−∞,−∞〉, ..., 〈−∞,−∞〉}, ..., {...}};
12 nDp = (|T | − nextL) + 1;
13 dkmℓnextL

=Topkm_nextLength(T ,nDp,listDP ,nextL,k,m);

14 UpdateV ariableLengthDiscords(dkmℓnextL
, dkmℓmin,ℓmax

,k,m);

want to prune the search space, we consider the list of distance profiles in listDP ,
which also contains the lower bound distances of the p (p > m) nearest neighbors
of each subsequence. In that regard, we invoke the routine Topkm_nextLength
(line 13). Before we introduce the details, we describe the two routines we intro-
duced, which allow to rank the discords.

Ranking Fixed Length Discords. In algorithm 13, we report the pseudo-code
of the routine UpdateF ixedLengthDiscords. This algorithm accepts as input the
matrix dkmℓ to update, and a partial distance profile of the subsequence with
offset off . It starts iterating the rows of dkmℓmin

in reverse order (line 1). This
is equivalent to considering the discords from the mth one to the 1st. Hence, at
each iteration we get the jth nearest neighbor of T

off,ℓmin
from its partial distance

profile in line 2. Subsequently, the loop in line 3 checks if the jthdist is among the
k largest ones in the jth column of dkmℓmin

. If it is true, the smallest elements
in the column are shifted (line 6) and T

off,ℓmin
is inserted as the Top-i jth discord

(line 7).

5.6. DISCORD DISCOVERY 121

Algorithm 13: UpdateF ixedLengthDiscords (Update dkmℓ)

Input: Matrix dkmℓ, MaxHeap minMDist, int off , int k, int m
1 for j ← m down to 1 do
2 double jthdist ← minMDist.getMax(j);
3 for i ← 1 to k do
4 < d, o >i,j= dkmnewL[i][j];

5 if jthdist > d then
6 shiftRankingTopK(dkmnewL[i][j]);

// update the ranking with the new Top-i jth discord Toff,ℓ

7 dkmℓ[i][j] ← 〈jthdist, off〉;
8 return;

Algorithm 14: UpdateV ariableLengthDiscords (Update dkmℓmin,ℓmax
)

Input: Matrix dkmℓmin,ℓmax
, Matrix dkmℓ, int k, int m

1 for i ← 1 to k do
2 for j ← 1 to m do
3 < d, o >i,j= dkmnewL[i][j];
4 < d∗, o∗, l∗ >i,j= dkmℓmin,ℓmax

[i][j];

// if length normalized distance is greater or equal for length ℓ,

update the rank.

5 if ((d/
√
ℓ) >= d∗) then

6 dkmℓmin,ℓmax
[i][j] = 〈(d/

√
ℓ), o, ℓ〉

Ranking Variable Length Discords. Once we dispose of the matrix dkmℓ,
we can invoke the procedure UpdateV ariableLengthDiscords for each length ℓ ∈
{ℓmin, ..., ℓmax} (Algorithm 14), in order to incrementally produce the final variable
length discord ranking we store in dkmℓmin,ℓmax

. This algorithm accepts as input
and iterates over the matrix dkmℓmin,ℓmax

. A position (discord) is updated if the
length normalized best match distance of the discord in the same position of dkmℓ
is larger (line 6).

Greater Length Discords. In Algorithm 15, we show the pseudo-code of the
routine Topkm_nextLength. It starts performing the same loop of line 9 in Al-
gorithm 6, iterating over the partial distance profiles (line 3), and updating the
true Euclidean distances for the new length (newL) and the lower bounds (line 9)
for the subsequent length (newL + 1). Since we need to know the distances from
each subsequence to their m nearest neighbors, for each subsequence Ti,newL that
does not have trivial matches in dkmnewL, we check if the mth smallest distance is

122 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

smaller than the maximum lower bound in the partial distance profile (line 13). If
this is true, we have the guarantee that the partial distance profile minMDist con-
tains the exact m nearest neighbor Euclidean distances. Hence, in line 14, we can
update the matrix dkmnewL. On the other hand, if the distances are not verified
to be correct, we keep minMDist in memory, which becomes a non-valid partial
distance profile, along with the offset of the corresponding subsequence (line 16).
Once we have considered all the partial distance profiles, we need to iterate the
non-valid partial distance profiles (line 17).

We therefore recompute those that contain at least one true Euclidean distance
greater than the distances in the last row of dkmnewL. The correctness of this
choice is guaranteed by the fact that the distances of a non-valid partial distance
profile can be only larger than the non-computed ones. Hence, if the condition
of line 21 is not verified, no updates in dkmnewL can take place. Otherwise, we
recompute the non-valid distance profile starting at line 22 from scratch. Note
that when we re-compute a distance profile, we globally update the corresponding
position of the partial distance profiles listDP (line 25) and dkmnewL in the vector
as well (line 26).

Complexity Analysis. The time complexity of Algorithm 12
(Topkm_DiscordDiscovery) mainly depends on the use of
ComputeMatrixProfile algorithm, which always takes O(n2 log(p)) to compute
the partial distance profiles for the n subsequences of length ℓmin in T .

In order to compute the exact Top-k mth discord ranking in dkmℓ, the routine
UpdateF ixedLengthDiscords takesO(km) time in the worst case. Recall that this
latter algorithm is called only for subsequences that do not have trivial matches
in dkmℓ. Checking if two subsequences are trivial matches takes constant time,
if for each dkmℓ update, we store the ℓ trivial match positions. Given a series
T , and the discord (subsequence) length ℓ, we can represent by S = |T |

l/2
, the

number of subsequences that are not trivial matches with one another. Therefore,
updating the discord rank of each length has a worst case time complexity of
O((ℓmax − ℓmin) × S × ℓ × k × m × log(m)), where the log(m) factor represents
the time to get the mth largest distance in the partial distance profile (line 2 of
Algorithm 13). Similarly, the construction of the variable length discord ranking
in dkmℓmin,ℓmax

takes: O((ℓmax − ℓmin)× k ×m).

Observe also that the time performance of the Topkm_nextLength algorithm
depends on the Euclidean distance computations pruning. If all the partial distance
profiles contain the correct nearest neighbor’s distances, computing the discords

5.6. DISCORD DISCOVERY 123

Algorithm 15: Topkm_nextLength (Compute Top-k mth Discords of greater
lengths)
Input: DataSeries T , int nDp, MaxHeap[] listDP , int newL, int k, int m, int p
Output: Matrix dkmnewL

1 Matrix dkmnewL = {{〈−∞,−∞〉, ..., 〈−∞,−∞〉}, ..., {...}};
2 List 〈MaxHeap,int〉 nonV alidMindistList;

// iterate over the partial distance profiles in listDP

3 for i ← 1 to nDp do
4 MaxHeap minMDist ← new MaxHeap(p);
5 double minDist ← inf;
6 int ind ← 0;
7 double maxLB ← popMax(listDP [i]);

/* update the partial distance profile for the length newL (true Euclidean

and lower bounding distance) */

8 for each entry e in listDP [i] do
9 e.dist, e.LB ← updateDistAndLB(e, newL);

// the m shortest neighbor distances are stored in minMDist

10 minMDist.push(e.dist);

// check if the mth shortest distance of this partial distance profile is

the true mth shorthest.

11 mDist = minMDist.getMax(m);
12 if Ti,newL has no Trivial matches in dkmnewL then
13 if mDist < maxLB then

/* the discord ranking can be updated, without computing the whole

distance profile */

14 UpdateF ixedLengthDiscords(dkmnewL, minMDist,i,k,m);

15 else
/* minMDist might not be exact, store the partial distance profile in

memory. */

16 nonV alidMindistList.add(< minMDist,i >);

17 for each < minMDist, i > in nonV alidMindistList do
18 if T

i,ℓ has no Trivial matches in dkmℓ then

19 for j ← m down to 1 do
20 mDist = minMDist.getMax(j);
21 if mDist > dkmnewL[k][j].d then
22 QT ← SlidingDotProduct(Ti,newL, T);
23 double s ← sum(T

ind,ℓ); double ss ← squaredSum(Ti,newL);

24 D(Tind,ℓ)← CalcDistProfAndLB(QT ,Ti,newL, T , s, ss);

25 UpdatePartialDistanceProfile(listDP [i], D(T
ind,ℓ)) ;

26 UpdateF ixedLengthDiscords(dkmnewL, listDP [i],i,k,m);
27 break;

of each length greater than ℓmin takes O(n × p × log(m)) time, with n equal
to the number of subsequences in T . The worst case takes place when for each
subsequence that can update dkmℓ (i.e., S), the complete distance profile is re-

124 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

computed (Algorithm 15, line 22); in this case the algorithm takes O(n2× log(n)×
p×log(m)). In our experimental evaluation, we show that in all the cases we tested,
the percentage of the recomputed distance profiles is indeed very low.

5.7 Experimental Evaluation

5.7.1 Setup

We implemented our algorithms in C (compiled with gcc 4.8.4), and we ran them
in a machine with the following hardware: Intel Xeon E3-1241v3 (4 cores - 8MB
cache - 3.50GHz - 32GB of memory). All of the experiments we present in this part
are reproducible. In that regard, we reported the analyzed datasets and source
code on a dedicated web page [55].

Datasets and Benchmarking Details. To benchmark our algorithm, we use
five datasets:

• GAP, which contains the recording of the global active electric power in
France for the period 2006-2008. This dataset is provided by EDF (main
electricity supplier in France) [53];

• CAP, the Cyclic Alternating Pattern dataset, which contains the EEG ac-
tivity occurring during NREM sleep phase [93];

• ECG and EMG signals from stress recognition in automobile drivers [31];

• ASTRO, which contains a data series representing celestial objects [19].

Table 5.1 summarizes the characteristics of the datasets we used in our experimen-
tal evaluation. For each dataset, we report the minimum and maximum values,
the overall mean and standard deviation, and the total number of points.

The (CAP),(ECG) and (EMG) datasets are available in [17]. We use several prefix
snippets of these datasets, ranging from 0.1M to 1M of points.

In order to measure the scalability of our motif discovery approach, we test its
performance along four dimensions, which are depicted in Table 5.2. Each ex-
periment is conducted by varying the parameter of a single column, while for the

5.7. EXPERIMENTAL EVALUATION 125

MIN MAX MEAN STD-DEV
number of

points

ECG -2.182 1.543 0.006 0.24 1M

GAP 0.08 10.67 1.10 1.15 2M

ASTRO -0.00867 0.00447 0.00003 0.00031 2M

EMG -0.694 0.773 -0.005 0.041 1M

EEG -966 920 3.34 41.36 0.5M

Table 5.1: Characteristics of the datasets used in the experimental evaluation.

Motif length
(ℓmin)

Motif range
(ℓmax − ℓmin)

Data series size
(points)

p (elements of
distance profiles

stored)
256 100 0.1 M 5
512 150 0.2 M 10

1024 200 0.5 M 15
2048 400 0.8 M 20
4096 600 1 M 50 , 100 , 150

Table 5.2: Parameters of VALMOD benchmarking (default values shown in bold).

others, the default value (in bold) is selected. In our benchmark, we have two
types of algorithms to compare to VALMOD. The first are two state-of-the-art
motif discovery algorithms, which receive a single subsequence length as input:
QUICKMOTIF [51] and STOMP [109]. In our experiments, they have been run
iteratively to find all the motifs for a given subsequence length range. The other
approach in the comparative analysis is MOEN [67], which accepts a range of
lengths as input, producing the best motif pair for each length.

For VALMOD, we report the total time, including the time to build the matrix
profile (Algorithm 8).

5.7.2 Motif Discovery Results

Scalability over Motif Length. In Figure 5.8, we depict the performance results
of the four motif discovery approaches, when varying the motif length. We note

126 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

ECG EMG

GAP EEG

ASTRO

Time out after 24h

tim
e

(h
ou

rs
)

12

18

6

0

24

tim
e

(h
ou

rs
)

12

18

6

0

24

tim
e

(h
ou

rs
)

12

18

6

0

24

Figure 5.8: Scalability for various motif length ranges.

that the performance of VALMOD remains stable over the five datasets. On the
other hand, we observe that a pruning strategy based on a summarized version of
the data is sensitive to subsequence length variation. This is the case for QUICK
MOTIF, which operates on PAA (Piecewise Aggregate Approximation) discretized
data. Figure 5.8 shows that the performance of QUICK MOTIF varies significantly
as a function of the motif length range, growing rapidly as the range increases,
and failing to finish within a reasonable amount of time in several cases.

Moreover, we argue that our proposed lower bounding measure enables our method
to improve upon MOEN, which clearly does not scale well in this experiment (see
Figure 5.8). The main reason for this behavior is that the effectiveness of the lower
bound of MOEN decreases very quickly as we increase the subsequence length ℓ.
When we increase the subsequence length by 1, MOEN multiplies the lower bound
by a value smaller than 1 ([67], Section IV.B), thus making it less tight. In contrast,
the lower bound of VALMOD does not always decrease (refer to Eq. 5.2): σj,l

σj,l+k

may be larger than 1. Consequently, the lower bound of VALMOD can remain

5.7. EXPERIMENTAL EVALUATION 127

effective (i.e., tight) even after several steps of increasing the subsequence length.

Concerning the VALMOD performance, we note a sole exception that appears for
the noisy EMG data (Figure 5.8), for a relatively high motif length range (4096-
4196). The explanation for this behavior is that the lower bounding distance used
by VALMOD is coarse, or in other words, it is not a good approximation of the
true distance. Figure 5.9 shows the difference between the greater lower bound-
ing distance (maxLB) and the smaller true Euclidean distance for each distance
profile. We use the subsequence lengths 356 and 4196, which are respectively the
range’s smallest and largest extremes in this experiment. In this last plot, each
value greater than 0 corresponds to a valid condition in line 14 of the Compute-
SubMP algorithm. This indicates that we found the smallest value of a distance
profile, while pruning computations over the entire subsequence length range. As
the subsequence length increases, VALMOD’s pruning becomes less effective for
the EMG (observe that there are no, or very few values above zero in the distances
profiles for subsequence length 4196). On the other hand, we observe the presence
of values above zero in the other datasets. This confirms that motifs in those cases
are found, while pruning the search space.

In order to further evaluate the pruning capability of VALMOD, we report the
measurements for the Tightness of the Lower Bound (TLB) [88, 115] performed
during the previous experiment (Figure 5.8). The TLB is a measure of the lower
bounding quality; given two data series t1 and t2, the TLB is computed as follows:
LBdist(t1, t2)/EuclideanDistance(t1, t2). Note that TLB takes values between 0
and 1. A TLB value of 1 means that the lower bound distance is the same as the
Euclidean distance; this corresponds to the optimal case.

In Figure 5.10, we show the average TLB for each (partial) distance profile. In
the EMG dataset, when using the larger subsequence length, we observe a sharp
decrease of the lower bounding quality (small TLB values), explaining the behav-
ior observed for the EMG dataset (refer to Figure 5.9(top-left)). We also note
similar results for the ASTRO dataset. As we have noted for this last case, the
performance is not negatively affected, since we dispose of several partial distance
profiles that provide the correct minimum distances, and thus permit us to find
the motifs, without recomputing all the distance profiles. In contrast, in the other
datasets, we note a smaller negative impact on TLB for the case of subsequence
length 4196.

In Figure 5.11, we also show the distance distribution of the pairwise subsequences,
using the same datasets and subsequences lengths. Here, we plot the distances

128 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

-20

30

Offset Distance Profile0 0.5M

0

EMG (maxLB – minDist)

-20

30

Offset Distance Profile0 0.5M
-20

30

Offset Distance Profile0 0.5M

0 0

-20

30

Offset Distance Profile0 0.5M

0

-20

30

Offset Distance Profile0 0.5M

0

ECG (maxLB – minDist)

ASTRO (maxLB – minDist)

GAP (maxLB – minDist) EEG (maxLB – minDist)

4196 points

356 points

356 points

4196 points

4196 points

356 points

356 points

4196 points

4196 points

356 points

Figure 5.9: The difference between the max lower bounding distance (maxLB)
and the min Euclidean distance of partial distance profiles in all the datasets.
Subsequence lengths: 356/4196.

without length normalization, since the algorithm uses it to rank the motifs in the
trailing part. For the EMG and ASTRO datasets, in the case of length 4196, the
distance distribution includes many small and large values, which does not suggest
the presence of motifs, but affects VALMOD negatively. Observe that in the
other datasets, the values are more uniformly distributed over all the subsequence
lengths. This denotes the presence of subsequence pairs that are substantially
closer than the rest, which typically identifies the occurrence of motifs. In this
case, VALMOD is able to prune more distance profile computations, leading to
better performance.

Scalability Over Motif Range. In Figure 5.12, we depict the performance
results as the motif range increases. VALMOD gracefully scales on this dimension,
whereas the other approaches can seldom complete the task. Not only does our
technique address the intrinsic problem of STOMP and QUICK MOTIF, which
independently process each subsequence length, but it also exhibits a substantial
improvement over MOEN, the existing state-of-the-art approach for the discovery
of variable length motifs.

Scalability Over Data Series Length. In Figure 5.14, we experiment with
different data series sizes. For the EEG dataset we only report three measurements,

5.7. EXPERIMENTAL EVALUATION 129

0

1

Offset Distance Profile0 0.5M

TLB

0

1

Offset Distance Profile0 0.5M

TLB

0

1

Offset Distance Profile0 0.5M

TLB

0

1

Offset Distance Profile0 0.5M

TLB

0

1

Offset Distance Profile0 0.5M

TLB

EMG (TLB) ECG (TLB) ASTRO (TLB)

GAP (TLB) EEG (TLB)

4196 points

356 points

4196 points

356 points
4196 points356 points

4196 points

356 points

4196 points

356 points

Figure 5.10: Average of the tightness of the lower bounding (TLB) for every Dis-
tance profile of all the datasets for subsequence lengths: 356/4196.

since this collection contains no more than 0.5M points. We observe that QUICK
MOTIF exhibits high sensitivity, not only to the various data sizes, but also to the
different datasets (as in the previous case, where we varied the subsequence length).
It is also interesting to note that QUICK MOTIF is slightly faster than VALMOD
on the ECG dataset, which contains regular and similar heartbeat patterns, and is
a relatively easy dataset for motif discovery. Nevertheless, QUICK MOTIF, as well
STOMP and MOEN, fail to terminate within a reasonable amount of time for the
majority of our experiments. On the other hand, VALMOD does not exhibit any
abrupt changes in its performance, scaling gracefully with the size of the dataset,
across all datasets and sizes.

Large Datasets and Length ranges. Here we report here two further exper-
iments that we have conducted on larger snippets of the datasets - namely, 2
million points - and over a larger range of motif lengths. To that extent, we want
to test the scalability of our approach, considering two extreme cases. We compare
VALMOD to QUICKMOTIF, since the latter is the sole approach that can scale
to data series lengths beyond half a million points, and to motif length ranges
larger than 100.

In Figure 5.13.(a), we report the motif discovery time on four datasets that contain
2 million points. We pick the default length boundaries, namely ℓmin = 1024 and
ℓmax = 1124, discovering motifs of each length in between them. The results show

130 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

0

1010

Euclidean distance0 10
0

1010

Euclidean distance0 10
0

1010

Euclidean distance0 10

0

1010

Euclidean distance0 10
0

1010

Euclidean distance0 10

EMG ECG ASTRO

GAP EEG

4196 points356 points 4196 points356 points 4196 points356 points

4196 points356 points
4196 points356 points

Figure 5.11: Distribution of Euclidean distance of pairwise subsequences in all the
datasets. Subsequence lengths: 356/4196.

that VALMOD gracefully scales, and is always one order of magnitude faster than
QUICKMOTIF, which does not reach the timeout only in the case of the ECG
datasets.

The same observations hold for the results of the experiments that vary the motif
length range. Figure 5.13.(b), shows the results for length ranges 2000 and 4000,
on all five datasets in our study (at their default sizes). Once again, QUICKMO-
TIF reaches the timeout state in all datasets, except for ECG, where for the larger
length ranges is two times slower than VALMOD. On the other hand, VALMOD
scales well and remains the method of choice (with the exception of the largest
length ranges for the EMG and ASTRO datasets, where it reaches the timeout).

The above results demonstrate the superiority of VALMOD, but also show its
limits, which open possibilities for future work.

Overall Pruning Power. In order to show the global effect of VALMOD’s prun-
ing power, we conduct an experiment recording the number of distance profile
computations performed by procedure ComputeSubMP, which extracts motifs of
length greater than ℓmin, pruning the unpromising calculations. We recall that this
algorithm computes for each subsequence T

i,ℓ with ℓ > ℓmin a subset of distances

5.7. EXPERIMENTAL EVALUATION 131

100 150 200 400 600

100 150 200 400 600

100 150 200 400 600

100 150 200 400 600

100 150 200 400 600

ECG EMG

GAP EEG

ASTRO

Time out after 24h

tim
e

(h
ou

rs
)

12

18

6

0

24

tim
e

(h
ou

rs
)

12

18

6

0

24

tim
e

(h
ou

rs
)

12

18

6

0

24

Figure 5.12: Scalability with increasing motif range.

(Euclidean and lower bounding), called partial distance profiles. If the smallest
Euclidean distance computed is also smaller than the larger lower bounding dis-
tance, we know it is the true distance of the nearest neighbor of T

i,ℓ. In this case,
we call the partial distance profile valid. Otherwise, we do not know the true
nearest neighbor distance, and we call the partial distance profile non-valid. In
order to identify the correct motifs, the algorithm only needs to recompute the
entire non-valid distance profiles that might contain distances shorter than those
already found in the valid distance profiles.

In Figure 5.15, we depict the difference between the minimum Euclidean distance
and the maximum lower bounding distance of each distance profile computed in the
subsequence length range (1025/1124). In the plots, the values above zero refer
to the valid ones (green points), whereas values under zero are either non-valid
(black points) or recomputed (red/triangular points). We observe that in the first
three datasets, namely EEG, ECG and GAP, there are no distance profiles that
are recomputed, meaning that the motifs are always found in the valid (partial)
distance profiles in the shortest time possible (best case). Concerning the EMG

132 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

0
50

100
150
200
250
300
350
400

VALMOD QUICK MOTIF

M
ot

if
di

sc
ov

er
y

(h
ou

rs
)

GAP (2M) ASTRO (2M)
EMG (2M) ECG (2M)

0
20
40
60
80

100
120

M
ot

if
di

sc
ov

er
y

tim
e

(h
ou

rs
)

Length range lmin/lmax

VALMOD QUICK MOTIF

ECG GAP EEG EMG ASTRO
(a) (b)

Figure 5.13: Scalability of VALMOD and QUICKMOTIF using large datasets (2M
of points) and large length ranges.

and ASTRO datasets, several re-computations take place (red/triangle points). As
we can see from the table in the bottom part of Figure 5.15 though, the computed
distance profiles are not more than the 0.20% of the total. This means that the
algorithm successfully prunes a high percentage of the computations, thanks also
to the effectiveness of the proposed lower bounding measure.

At this point, we can further analyze the reasons behind the pruning capability of
our approach. To that extent, in Figure 5.16.(a) we plot the number of distance
profiles that VALMOD recomputes at each subsequence length for the EMG and
ASTRO datasets. These two datasets both contain noisy data, which influence
re-computations. However, they differ according to the length for which these
re-computations take place.

Figure 5.16.(b) shows the position of the Top − 1 motif along the subsequence
length. Note that the Top−1 motif is always placed around the same offset region
in the ASTRO dataset, suggesting the presence of a few similar data segments,
which is also verified by the high number of non-valid distance profiles we observe in
Figure 5.15(ASTRO). On the other hand, in the EMG dataset, the motif location
changes several times, denoting the presence of different segments, which contain
motifs of different lengths. This is also confirmed by the more prevalent presence
of valid distance profile in the EMG dataset. In this last case, the re-computation
number drops to zero as soon as the motif positions start to change, i.e., at length
1058, maintaining the same trend until the end.

Effect of Changing Parameter p. In Figure 5.17, we study the effect of param-

5.7. EXPERIMENTAL EVALUATION 133

0

10

20

30

0.1M 0.2M 0.5M 0.8M 1M
0

10

20

30

0.1M 0.2M 0.5M 0.8M 1M

0

10

20

30

0.1M 0.2M 0.5M 0.8M 1M

GAP

ECG EMG

ASTRO

tim
e

(h
ou

rs
)

tim
e

(h
ou

rs
)

tim
e

(h
ou

rs
)

tim
e

(h
ou

rs
)

0

10

20

30

0.1M 0.2M 0.5M 0.8M 1M

tim
e

(h
ou

rs
)

Time out after 24h

0

10

20

30

0.1M 0.2M 0.5M

EEG

Figure 5.14: Scalability with increasing data series size.

eter p on VALMOD’s performance. The p value determines how many distance
profile entries we compute and keep in the memory. Increasing p leads to increased
memory consumption, but could also translate to an overall speed-up, since having
more distances may guarantee a larger margin between the greater lower bounding
distance and the minimum true Euclidean distance in a distance profile. As we
can see on the left side of the plot, increasing p does not provide any significant
advantage in terms of time complexity. Moreover, the plots on the right-hand
side of the figure demonstrate that the size of the Matrix profile subset (subMP),
computed by the computeSubMP procedure, decreases in the same manner at each
iteration (i.e., as we increase the length of the subsequences that the algorithm
considers), regardless of the value of p.

It is important to note that irrespective of its size, subMP always contains the
smallest distances of the matrix profile, namely the distances of the motif pair.
Having a larger subMP does not represent an advantage w.r.t. motif discovery, but

134 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

M
in

(E
D)

 –
M

ax
(L

ow
er

bo
un

di
ng

)

Distance profile
GAP

M
in

(E
D)

 –
M

ax
(L

ow
er

bo
un

di
ng

)

Distance profile
EEG

motif length
range:

l_min 1024,
l_max: 1124

Valid
Distance
profiles
(green)

Distance
profiles

recomputed
(red)

Non valid
Distance
profiles
(black)

GAP 14% 0% 86%
EEG 21% 0% 79%
ECG 36% 0% 64%
EMG 3.54% 0.03% 96.43%
ASTRO 0.91% 0.17% 98.92%

0 100,000 200,000 300,000 400,000 500,000

-3
0

-2
0

-1
0

0
10

0 100,000 200,000 300,000 400,000 500,000

-3
0

-2
0

-1
0

0
10

-4
0

M
in

(E
D)

 –
M

ax
(L

ow
er

bo
un

di
ng

)

Distance profile
ECG 0 100,000 200,000 300,000 400,000 500,000

-4
0

-2
0

0

0
-5

M
in

(E
D)

 –
M

ax
(L

ow
er

bo
un

di
ng

)

Distance profileEMG 0 100,000 200,000 300,000 400,000 500,000
-2

0
-1

0
5

-1
5

-3
0

-2
5

M
in

(E
D)

 –
M

ax
(L

ow
er

bo
un

di
ng

)

Distance profile

ASTRO
0 100,000 200,000 300,000 400,000 500,000

-2
0

-1
0

0
-3

0

ASTRO

Figure 5.15: Partial distance profile repartition (valid, non-valid, recomputed), in
the motif discovery task on the five considered datasets.

rather an opportunity to view and analyze the subsequence pairs, whose distances
are close to the motif.

5.7.3 Motif Sets

We now conduct an experiment to show the time performance of identifying the
variable length motif sets. We use the default values of Table 5.2, varying K and

5.7. EXPERIMENTAL EVALUATION 135

0
500

1000
1500
2000
2500
3000

Nu
m

be
ro

f p
ar

ita
ld

ist
an

ce

pr
of

ile
s r

ec
om

pu
te

d

Subsequence length

ASTRO EMG

(a) (b)
0

100000
200000
300000
400000
500000
600000

1s
t s

ub
se

qu
ne

ce
of

To
p-

1
m

ot
if

of
fs

et

Subsequence length

ASTRO EMG ECG
EEG GAP

Figure 5.16: (a) Number of recomputed distance profiles in the EMG and ASTRO
datasets. (b) Offset of the first subsequence for each motif in the EMG and ASTRO
datasets.

the radius factor D for each dataset. In Figure 5.18 we report the results; we also
show the time to compute V ALMP (the output of VALMOD). We note that once
we build the pairs ranking of V ALMP (heapBestKPairs in Algorithm 10), we
can run the procedure that computes the motif sets (Algorithm 11). The results
show that this operation is 3-6 orders of magnitude faster than the computation
of V ALMP . The advantage in time performance is pronounced for the ECG and
EEG datasets, thanks to the pruning we perform with the partial distance profiles.

The fast performance of the proposed approach also allows for a fast exploratory
analysis over the radius factor, which would otherwise (i.e., with previous ap-
proaches) be extremely time-consuming to set for each dataset.

5.7.4 Discord Discovery

In this last part, we conduct the experimental evaluation concerning discord dis-
covery. In the following experiments, we use the same datasets as before.

We identify two state-of-the-art competitors to compare to our approach, the Motif
And Discord (MAD) framework. The first one, DAD (Disk Aware Discord Discov-
ery) [105], implements an algorithm suitable for enumerating the fixed-length mth

discords of a data series collection stored on a disk. We adapted this algorithm, as
suggested by the authors, in order to extract discords from data series loaded in
main memory. The second approach, GrammarViz [86], is the most recent tech-
nique, which discovers Top-k 1st discords. It operates by means of grammar rules

136 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

0

50

100

150

200

5 10 15 20 50 100 150

5 10 15 20 50 100 150

0

50

100

150

200

5 10 15 20 50 100 150

5 10 15 20 50 100 150

GAP

100

106

|s
ub

M
P|

103

11241024 Subsequence length

p

100

106

|s
ub

M
P|

103

11241024 Subsequence length

p

ECG

EEG

100

106

|s
ub

M
P|

103

11241024 Subsequence length

p
Ti

m
e

(m
in

ut
es

)

p (entries of dp in memory)

0

50

100

150

200

5 10 15 20 50 100 150

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

5 10 15 20 50 100 150

5 10 15 20 50 100 150

0

50

100

150

200

5 10 15 20 50 100 150

0

50

100

150

200

5 10 15 20 50 100 150

5 10
15 20
50 100
150

100

106

|s
ub

M
P|

103

11241024 Subsequence length

p

100

106

|s
ub

M
P|

103

11241024 Subsequence length

pEMG

ASTRO

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

Figure 5.17: Scalability with increasing parameter p.

5.7. EXPERIMENTAL EVALUATION 137

K
Top K sets
(seconds) K

Top K sets
(seconds) K

Top K sets
(seconds) K

Top K sets
(seconds) K

Top K sets
(seconds)

10 1.74 10 0.09 10 0.001 10 1.64 10 1.60
20 3.37 20 0.09 20 0.001 20 3.27 20 3.23
40 6.66 40 0.09 40 0.001 40 6.53 40 6.37
60 10 60 0.09 60 0.001 60 9.81 60 9.44
80 13.33 80 0.09 80 0.001 80 13.08 80 12.59

D
Top K sets
(seconds) D

Top K sets
(seconds) D

Top K sets
(seconds) D

Top K sets
(seconds) D

Top K sets
(seconds)

2 0.0015 2 0.001 2 0.001 2 6.52 2 4.45
3 0.0016 3 0.001 3 0.001 3 6.50 3 5.79
4 6.67 4 0.22 4 0.001 4 6.88 4 6.12
5 6.67 5 0.35 5 0.001 5 7.47 5 6.45
6 6.67 6 0.88 6 0.001 6 6.86 6 6.56

a)

b)

GAP EEG ECG EMG ASTRO
VALMP

time
9601

seconds
VALMP

time
9608

seconds
VALMP

time
9653

seconds
VALMP

time
10294

seconds
VALMP

time
9100

seconds

Figure 5.18: Time performance of variable length motif sets discovery. (a) Varying
K (default D=4). (b) Varying radius factor D (default K=40).

compression, which further operate on a summarized data series representation,
in order to find the rare segments of the data (discords) in a reduced search space.
To the best of our knowledge, there exist no techniques capable of finding the
Top-k mth ranked variable-length discords as MAD, using a single execution of an
algorithm.

Mth Discord Discovery. In Figures 5.19(a)-(b), we present the performance
comparison between MAD and DAD for finding the mth discords, when we vary
m, for all datasets. (All other parameters are set to their default values, as listed
in Table 5.2.)

Since DAD discovers fixed-length mth discords, we report its execution time only
for the first length in the range, namely ℓmin. We observe that MAD, which
enumerates the mth discords of 100 lengths (ℓmin = 1024, ℓmax = 1124) is still one
order of magnitude faster than these DAD performance numbers, for all datasets,
when m is larger or equal to 5. Moreover, the performance trend of MAD remains
stable over all datasets, whereas DAD has different execution times. We observe
that the computational time of DAD depends on the subsequence length, since it
computes Euclidean distances in their entirety (only applying early abandoning
based on the best so far distance). How effective this early abandoning mechanism
is, depends on the characteristics of the data. On the other hand, our algorithm
computes all distances for the first subsequence length in constant time, and then

138 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

EMG ASTRO
m th discords

Dataset

0
10
20

30
40
50
60

ECG GAP EEG

Ho
ur

s

m th discords
Dataset

DAD (1 length) MAD (100 lengths)

1 3 5 7 10 1 3 5 7 10

Time out

0,00%
0,02%
0,04%
0,06%
0,08%
0,10%

1 3 5 7 10Pe
rc

en
ta

ge
 o

f r
ec

om
pu

te
d

di
st

an
ce

 p
ro

fil
es

m th discords

ECG GAP EEG EMG ASTRO

(a) (b)

(c)

1 3 5 7 10 1 3 5 7 10 1 3 5 7 10 1 3 5 7 10 1 3 5 7 10 1 3 5 7 10 1 3 5 7 10 1 3 5 7 10

0.10%
0.08%
0.06%
0.04%
0.02%
0.00%

Figure 5.19: (a),(b) DAD (one length) and MAD (100 lengths) Top-k mth discords
discovery time. (c) Percentage of non-valid partial distance profiles recomputed.

prunes entire distance computations for the larger lengths.

In Figure 5.19(c), we report the percentage of non-valid distance profiles that
are recomputed, over the total number of distance profiles considered during the
entire task of variable-length discord discovery. We note that the number of re-
computations is limited to no more than 0.10%, in the worst case. This demon-
strates the high computation pruning rate achieved by our algorithm, justifying
the considerable speed-up achieved.

Top-k 1st Discord Discovery. In Figure 5.20, we depict the performance com-
parison between GrammarViz and MAD. Therefore, we consider Top-k 1st discords
discovery, as previously introduced. (We maintain the same parameters setting in
this experiment.)

First, we note that GrammarViz outperforms MAD in the first three datasets, for
k smaller or equal to 5, as depicted in Figure 5.20(a). Nevertheless, the experiment
shows that MAD scales better over the number of discovered Top-k 1st discords,
as its execution time increases only by a small constant factor. A different trend
is observed for GrammarViz, whose performance significantly deteriorates as k

5.7. EXPERIMENTAL EVALUATION 139

Number of lengths for which discords are found

DATASETS
Top-1

1st
Top-3

1st
Top-5

1st
Top-7

1st
Top-10

1st

MAD

ECG 101 101 101 101 101
GAP 101 101 101 101 101
EEG 101 101 101 101 101
EMG 101 101 101 101 101

ASTRO 101 101 101 101 101

GrammarViz

ECG 1 2 2 2 2
GAP 1 1 1 1 1
EEG 1 1 1 1 1
EMG 1 2 3 0 0

ASTRO 0 0 0 0 0

0,00%
0,01%
0,02%
0,03%
0,04%
0,05%
0,06%

1 3 5 7 10Pe
rc

en
ta

ge
 o

f r
ec

om
pu

te
d

di
st

an
ce

 p
ro

fil
es

Top-k 1st discords

EEG ASTRO ECG
EMG GAP

0
1
2
3
4
5
6
7

ECG GAP EEG

Ho
ur

s

GrammarViz MAD

1 3 5 710

Time out

(a)

(b)

(c)
1 3 5 7 10 1 3 5 710 1 3 5 7 10 1 3 5 710 1 3 5 7 10

0
10
20
30
40
50
60

EMG ASTRO

Ho
ur

s

Top-k 1st discords
Dataset

1 3 5 7 10 1 3 5 7 10 1 3 5 7 10 1 3 5 7 10

(d)

0.06%
0.05%
0.04%
0.03%
0.02%
0.01%
0.00%

Figure 5.20: (a),(b) GrammarViz and MAD (100 lengths) Top-k 1st discords dis-
covery time. (c) Percentage of non-valid partial distance profiles recomputed.

increases from 1 to 6.

Moreover, this technique is highly sensitive to the dataset characteristics, as we
observe in Figure 5.20(b), where the two noisy datasets, i.e., EMG and ASTRO,
are considered. This is a direct consequence of the data summarization sensitivity
to the data characteristics, which then influences the ability to prune distance
computations.

In Figure 5.20(c), we report the percentage of non-valid distance profiles that MAD
needed to recompute. In this case, too, this percentage is very low.

To conclude, since GrammarViz is a variable length approach that selects the most
promising discord lengths according to the distribution of the data summarization
(by picking the lengths of the series, whose discrete versions represent a rare oc-
currence), we report in Figure 5.20(d) the number of lengths, for which discords
are found. We observe that our framework always enumerates and ranks discords
of all lengths in the specified input range, based on the exact Euclidean distances
of the subsequences. On the other hand, GrammarViz selects the most promising
length based on the discrete version of the data, and only identifies the exact Top-k
1st discords for 3 (out of 100) different lengths in the best case.

140 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

0
1
2
3
4
5
6

ECG GAP EEG EMG ASTRO

Ho
ur

s

Top-k mth discords
Dataset

0,00%

0,05%

0,10%

0,15%

2-2 3-3 4-4 5-5 6-6

Pe
rc

en
ta

ge
 o

f
re

co
m

pu
te

d
di

st
an

ce
 p

ro
fil

es

Top-k mth discords

EEG ASTRO ECG
EMG GAP

(a) (b)

0.10%

0.05%

0.00%

0.15%

Figure 5.21: (a) MAD (100 lengths)Top-k mth discords discovery time on the five
datasets. (b) Percentage of non-valid partial distance profiles recomputed.

1 hour with anomalous number of passengers
(due to daylight
saving time)

33 points

Top-1-1st discord = dkm20,40[1,1]
16.5 hours

Top-1-1st discord (1st in)
16 hours

32 points

(a)

(b)

(c)

0 1000 2000 3000

Figure 5.22: (a) Number of taxi passengers over 75 days in New York City. (b)
Top− 1 1st discord of length 32. (c) Top− 1 1st discord of length 33.

Top-k mth Discord Discovery. Figure 5.21 depicts the execution time for the
Top-k mth discord discovery task, and the percentage of recomputed distance pro-
files for MAD, when varying k and m. We observe that the pruning power remains
high: the percentage of distance profile re-computations averages around 0.05%.

Utility of Variable-Length Discord Discovery. We applied MAD on a real
use case, a data series containing the average number of taxi passengers for each
half hour over 75 days at the end of 2014 in New York City [80], depicted in
Figure 5.22(a). We know that this dataset contains an anomaly that occurred
during the daylight savings time end, which took place the 2nd of November 2014
at 2am. At that time, the clock was set back at 1am. Since the recording was not
adjusted, two samples (corresponding to a 1 hour recording) are summed up with
the two subsequent ones.

We ran the variable-length discord discovery task using the length range ℓmin = 20
and ℓmax = 48, in order to cover subsequences that correspond to recordings

5.7. EXPERIMENTAL EVALUATION 141

between 10− and 24 hours. Our algorithm correctly identifies the anomaly for
subsequence length 32, shown in Figure 5.22(b). Changing the window size does
not allow the detection of the anomaly. For example, enlarging the window by
just 1 point, the Top-k 1st discord corresponds to a pattern before the abnormality
(refer to Figure 5.22(c)).

These results showcase the importance of efficient variable-length discord discovery.
It permits us to discover rare, or abnormal events with different durations, which
can be easily missed in the fixed length discord discovery setting, where the analyst
is constrained to examine a single length (or time permitting, a few fixed lengths).

5.7.5 Exploratory Analysis: Motif and Discord Length Se-
lection

In this part, we present the results of an experiment we conducted to test the
capability of MAD to suggest the most promising length/s for motifs and discords.

Given a data series, the user may have no clear idea about the motif/discord length.
Therefore, we present use cases that examine the ability of MAD to perform a wide
length-range search, providing the most promising results at the correct length.

We used MAD for finding motifs and discords in the length range: ℓmin = 256
and ℓmax = 4096. We conducted this experiment in the first 500K points of the
datasets listed in Table 5.1. The considered motif/discord length range covers the
user studies that have been presented so far in the literature (where knowledge of
the exact length was always assumed).

Scalability. The MAD framework completed the motif/discord discovery task
within 2 days (on average), enumerating the motifs and the Top − 1 discords
of each length in the given range. Concerning the competitors, we estimated
that STOMP, which is the state-of-the-art solution for fixed length motif/discord
discovery would take 320 days for the same experiment (a little bit more than
two hours for each of the lengths we tested). QUICK MOTIF, which has data
dependent time performance, takes up to more than 6 days (projection) for all
datasets but ECG (which completes in 38 hours). We note that the variable-
length motif discovery competitor (MOEN) never terminates before 24 hours when
searching motifs of 600 different lengths, while in this experiment, the length range
is composed of 3841 different lengths. Considering discord discovery, we observed

142 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

0

0.5

1

1.5

256 456 656

E
u

cl
id

e
a

n
 d

is
ta

n
ce

Subsequence length

First 1000 Top-k-motifs

(Euclidean distance ranking)

0

0.02

0.04

0.06

0.08

0.1

256 456 656

Le
n

g
th

n
o

rm
a

li
ze

d
d

is
ta

n
ce

Subsequence length

First 1000 Top-k-motifs

(length normalized ranking)

-8
-6

-4
-2

0

0 50 100 150 200 250

-8
-6

-4
-2

0

0 50 100 150 200 250

0 100,000 200,000 500,000300,000 400,000

pos: 341,870 pos: 378,641

A: Top-1-motif (length 256)

A A

Figure 5.23: Top-1 motif (of length 256) in the EEG data set. The subsequences
pairs composing this motif have the smallest distance in both the Euclidean dis-
tance and length normalized ranking.

that GrammarViz does not enumerate all the discords in the given length-range,
since it selects the length according to the data summarizations. Thus, we are
obliged to run this technique independently for each length, which would take at
least 320 hours in the best case (projection based on results of Figure 5.20).

Select the most promising length in Motif Discovery. Once the search is
completed, the MAD framework enumerates the motifs and discords ranking them
in a second step, according to the proposed distance normalization strategy. In
Figure 5.23, we show the results of motif discovery for the EEG dataset.

The objective of this experiment is to evaluate the proposed length-normalized
correction strategy. In this regard, we compare the motifs sorted by using length-

5.7. EXPERIMENTAL EVALUATION 143

0

0.02

0.04

0.06

0.08

0.1

256 456 656

Le
n

g
th

n
o

rm
a

li
ze

d
d

is
ta

n
ce

Subsequence length

First 1000 Top-k-motifs

(length normalized ranking)

B C

C: Motif of length 655

pos : 478,063

0

0.5

1

1.5

256 456 656E
u

cl
id

e
a

n
 d

is
ta

n
ce

Subsequence length

First 1000 Top-k-motifs

(Euclidean distance ranking)

pos: 478,160

pos: 242,918

(b)

0 100,000 200,000 500,000

EEG dataset

B: Motif length 536

(a)

300,000

pos : 486,836

-1
0

1
2

3
4

5
6

0 100 200 300 400 500 600

-1
0

1
2

3
4

5
6

0 100 200 300 400 500 600

-1
0

1
2

3
4

5
6

0 100 200 300 400 500 600

-1
0

1
2

3
4

5
6

0 100 200 300 400 500 600

400,000

B

Figure 5.24: (a) Top-1000 motifs according the length normalized distance (top),
and the Euclidean Distance (bottom). (b) Motif pair of the largest length (656)
in the length normalized ranking (top) and motif pair of the largest length (536)
in the Euclidean distance ranking (red/bottom).

normalization, and by Euclidean distances.

On the top part of Figure 5.23, we report the distance/length values of the Top−
1000 motifs ranked by the length-normalized measure (left), which comprise a
subset of the results we store in the VALMP structure (Algorithm 6). In the right
part of the figure, we report the Top − 1000 motifs ordered by their Euclidean
distances.

We observe that the Top-1 motif, i.e., the subsequence pair with the smallest
distance (marked by the letter A) is the same in both rankings. We report this
motif in the bottom part of Figure 5.23, which is composed of two quasi-identical
patterns in the EEG data series.

We now evaluate motifs of larger lengths in the same dataset, which may reveal
other interesting and similar patterns at different resolutions (lengths). In Fig-
ure 5.24(a), we report again the distance/length values of the Top − 1000 motifs
ranked by their Euclidean distance, which reveal that the longest motif, marked

144 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

MAD Top-2 1st-Discord (length: 294)
Discord: 11th of November 2007 (05:20 am – 11:54 am)

Best match (NN): 8th/9th of February 2007 (09:01 pm – 01:55am)

GAP dataset

MAD Top-1 1st Discord (length: 274)

(∈ dkmlmin,lmax)

Discord: 3rd of November 2007 (4:43 am – 09:17 am)

Best match (NN): 4th of January 2007 (6:57 pm - 11:31 pm)

500,0000 100,000 200,000 300,000 400,000

Top-1 1st Discord of length 305
Discord: 2nd of November 2007 (5:13 am – 10:18 pm)

Best match (NN): 26th of November 2007 (4:56 am - 10:01 am)

Top-1 1st Discord of length 280
Discord: 14th of November 2007 (7:54 am – 12:34 pm)

Best match (NN): 20th of November 2007 (7:11 am - 11:51 am)

(c)

a

b

c
da

d cb

(d)

(a) (b)

Figure 5.25: Four discords of different length in the GAP dataset. Each discord
(red subsequence) is coupled with its nearest neighbor (green subsequence). (a)
The discord, with the highest length-normalized distance to its nearest neighbor
has length 274. (b) Discord with the second highest length-normalized distance.
(c),(d) discords with a smaller length-normalized distance to their nearest neigh-
bor.

as B, has length 536. We observe that this subsequence pair substantially differs
from the Top− 1 motif of Figure 5.23.

Subsequently, in Figure 5.24(b), we report the longest motif (marked as C) of
length 655 that we found in the Top − 1000 motif ranking, based on length-
normalized distances. We note that 6% of the length-normalized motifs are longer
than those in the Top − 1000 of the Euclidean ranking. The example of motif
C, which is a longer version of B, shows that this pattern appears much earlier
in the sequence than B. If we considered just the Top − 1000 motifs ranked by
their Euclidean distance, we would have missed this insight (motif C appears in
the Euclidean distance ranking only in the Top− 4000 motifs).

Select the most promising length in Discord Discovery. In this part, we
show the results of discord discovery performed in the GAP dataset. We recall that

5.8. CONCLUSIONS 145

in this case, the discords ranking performed according to their length normalized
distances aims to favor smaller discords, which have a high point to point distance.

In Figure 5.25, we report some of the discords we found in the length range ℓmin =
256 and ℓmax = 4096. The discord with the highest length-normalized distance,
best Top-1 1st discord, is the one depicted in the top-left part of the figure, and has
length 274. We plot it in red (dark), whereas its nearest neighbor appears in green
(light). We note that this discord drastically differs from its nearest neighbor: it
represents a fluctuating cycle of global power activity, while its nearest neighbor
exhibits the expected behavior of two major peaks, in the morning and around
noon. In Figure 5.25(b) we report the Top-2 1st discord in the length range 256-
4096 identified by MAD, which corresponds to the subsequence in that length
range with the second highest length-normalized distance to its nearest neighbor.
Once again, we observe a high degree of dissimilarity between the pattern of this
discord and its nearest neighbor. On the contrary, Figures 5.25(c) and (d) report
the Top-1 1st discords for two specific lengths (i.e., 280 and 305, respectively).
These discords correspond to patterns that are not significantly different from
their nearest neighbors. Therefore, they represent discords that are less interesting
than the ones reported by MAD in Figures 5.25(a) and (b), which examines a large
range of lengths.

This experiment demonstrates that MAD and the proposed discord ranking allows
us to prioritize and select the correct discord length.

5.8 Conclusions

Motif and discord discovery are important problems in data series processing across
several domains, and key operations necessary for several analysis tasks. Even
though much effort has been dedicated to these problems, no solution had been
proposed for discovering motifs and discords of different lengths.

In this chapter, we propose the first framework for variable-length motif and dis-
cord discovery. We describe a new distance normalization method, as well as a
novel distance lower bounding technique, both of which are necessary for the so-
lution to our problem. We experimentally evaluated our algorithm by using five
real datasets from diverse domains. The results demonstrate the efficiency and
scalability of our approach (up to 20x faster than the state of the art), as well as
its usefulness.

146 CHAPTER 5. MOTIF AND DISCORD DISCOVERY

Chapter 6

A Suite for Easy and Exact
Detection of Variable Length
Motifs in Data Series

Data series motif discovery represents one of the most useful primitives for data
series mining, with applications to many domains, such as robotics, entomology,
seismology, medicine, and climatology, and others. The state-of-the-art motif dis-
covery tools still require the user to provide the motif length. Yet, in several cases,
the choice of motif length is critical for their detection. Unfortunately, the obvious
brute-force solution, which tests all lengths within a given range, is computation-
ally untenable, and does not provide any support for ranking motifs at different
resolutions (i.e., lengths).

In this chapter, we present a prototype system, which implements the scalable
motif discovery algorithm (VALMOD) that efficiently finds all motifs in a given
range of lengths, and outputs a length-invariant ranking of motifs. Furthermore,
the prototype supports the analysis process by means of a newly proposed meta-
data structure that helps the user to select the most promising pattern length.
We illustrate in detail the steps of the proposed approach, showcasing how our
algorithm and corresponding graphical interfaces enable users to efficiently identify
the correct motifs.

147

148 CHAPTER 6. MOTIF DISCOVERY SUITE

0 1000 2000 3000 4000 5000

0 10
00

20
00

30
00

40
00

50
00

(a)

(b)

(c)

ECG data

Matrix profile l = 50

Index profile

Heartbeat 1
Heartbeat 2

Heartbeat 3 Heartbeat 4

0 1000 2000 3000 4000 5000

50

10
0

(d)

(e)

(f)

VALMAP (MPn)
lmin = 50, lmax = 400

Length profile

15
0

20
0

25
0

30
0

35
0

40
0

Artia
contract

Ventricles contract

VALMAP updates VALMAP updates

ECG data

Figure 6.1: Left) (a) Snippet of ECG recording with highlighted motifs of length
50, (b) Matrix profile computed with subsequence length 50. (c) Index profile,
reporting the offsets of the best match. Right) (d) Snippet of ECG recording with
highlighted motifs of length 400, (e) VALMAP MP n, (f) VALMAP Length profile.

6.1 Motif discovery of different lengths.

Exact Motif discovery has merely become a single input parameter problem,
namely the length of the patterns we want to mine. Unfortunately, this tech-
nique comes with an important lack. It does not provide an effective solution
for trying several motif length in a range. If one has no cues about an effective
fixed length, the simplest solution would be to run the algorithm over all lengths
in the range and rank the various motifs discovered, picking eventually the pat-
terns, which contain the desired insight. Clearly, this possibility is not optimal
for at least two reasons; the scalability, since finding motif of one fixed length
takes O(n2) time, and also because it does not provide an effective way to com-
pare motifs of different lengths. In Chapter 5 we introduced VALMOD , the first
approach for mining top-k motif pairs of variable length, which is up to orders of
magnitude faster/more scalable than the alternatives that have been proposed in
the literature.

Here, in order to show the superiority of variable-length motif discovery, we con-
sider the following example. In Figure 6.1 (left) we depict a snippet of an Electro-
cardiogram (ECG) recording in (a), paired with its Matrix profile, computed with
fixed subsequence length: ℓ = 50 in (b). Note that each value in the Matrix profile
corresponds to a point in the data, which is the representative starting point of
a subsequence of length ℓ. Hence, given a data series D of length |D|, a Matrix
profile records the |D|− ℓ+ 1 nearest neighbor distances, avoiding trivial matches.
In Figure 6.1.(c) we plot the Index profile, which contains the offsets of the best
matches.

6.2. VALMAP DATA STRUCTURE. 149

Looking at the Matrix profile in this example, we note four deep valleys, which
suggest the presence of very close matches, namely the motifs. Starting from the
Matrix profile, it suffices to follow the dotted lines upwards, in order to detect the
motifs, and downwards for finding the position of each subsequence best match.
Despite the motifs (heartbeats) are easily detectable to the naked eye, since the
snippet is relatively short, the highlighted motifs in Figure 6.1.(a) (red/orange
subsequences), just report the second half of a ventricular contraction, giving thus
a partial and unsatisfactory result.

6.2 VALMAP data structure.

In the previous chapter, we introduced a motif rank that weights the subsequences
importance according to the ratio distance-length. Furthermore, we want to know,
whether and how the motif pairs changes, helping the user to extract the desired
insights at the correct length. To that extent, we introduce a new meta-data,
called Variable Length Matrix Profile (VALMAP), maintaining the same logic
and structure of the Matrix profile depicted in Figure 6.1 (top), with the differ-
ence that this new structure carries length normalized distances and it is coupled
with a new vector called Length profile, which contains the lengths of the sub-
sequences. More formally, given a data series D, and a range of subsequence
lengths, whose extremes are denoted by ℓmin and ℓmax, we define VALMAP as a
triple 〈MP n ∈ R|D|−ℓmin+1, IP ∈ N|D|−ℓmin+1, LP ∈ N|D|−ℓmin+1〉, where MP n is
the Matrix profile containing length normalized distances, whereas IP and LP are
the relative Index and Length Profile. If we consider just a fixed length, VALMAP
will coincide with the length normalized version of the Matrix profile, with a flat
Length profile. This is basically the structure that VALMOD builds, considering
subsequences of length ℓmin. In the second stage, we can update VALMAP using
the top-k motif pairs, computed for each length until ℓmax. We thus consider each
(D

i,ℓmin+1
, D

j,ℓmin+1
) ∈ top-k motif pairs, where i, j are the subsequences offsets,

ℓmin + 1 their lengths and dn
i,j their length normalized Euclidean distance. Note

that in a motif pair the right subsequence is the one with the absolute shortest
distance to the one at the left. Hence, VALMAP, MP n[i] is updated with dn

i,j

if dn
i,j < MP n[i], which was containing the distance between D

i,ℓmin
and its best

match. If this update takes place, the Index and Length profile are respectively
assigned with j, the offset of the new best match, and ℓmin + 1 the new length.
The update operation takes place for each top-k motif pair of any length between
ℓmin and ℓmax. Once the algorithms ends, VALMAP contains a picture of the
motif pairs showing, at which length the last update takes place. If a motif pair

150 CHAPTER 6. MOTIF DISCOVERY SUITE

M
ot

if
Pa

ris

Ite
ra

tio
n

VALMAP analysis
(VALMAP checkpoints)

GUI
(Python implemetation)

M
ot

if
Pa

ris

Ex
pa

ns
io

n
to

 M
ot

if
Se

ts

Set up
parameters

VALMOD
(C implementation)

Compute matrix profile
of length l

Compute lower bounding
distances (LB distances)

Compute top-k motifs of
lengths l+1, …, lmax;
prune calculations
with LB distances

Figure 6.2: Architecture of VALMOD system.

is updated, this implies that a longer pattern represent a better match and thus
it might reveal either a new event or the same event lasting longer.

Example of VALMAP Expressiveness. In order to show the expressiveness
of VALMAP, we ran VALMOD on the ECG data snippet previously considered,
showing the VALMAP structure in Figure 6.1 (right). We use the following input
parameter: ℓmin = 50 and ℓmax = 400. We note that VALMAP reports the
motif with the shortest length normalized distance of length 56, which is the same
partial event detected by the Matrix profile in the fixed length case, at the top of
the picture. If we look at the Length profile in Figure 6.1.(f), we observe that, at
an earlier time than the discovered motifs pair, a sequence of contiguous updates
took place, as we reported. The subsequences concerned have distances almost
as short as the one of the best motifs in VALMAP , thus, remaining longer and
possibly valid matches.

In Figure 6.1.(d) we depict and highlight the motif pair of length 400. Immediately,
we can note that, the subsequences in red, which compose this motif, are a better
representation of a recurrent heartbeat. In fact, the two typical components (Artia
and Ventricles contract) are correctly detected.

6.3. SYSTEM DESCRIPTION 151

6.3 System Description

We now describe the architecture of the prototype we propose, depicted also in
Figure 6.2. The input is represented by a data series of interest. As a starting
point, the user has the possibility to inspect the data and also setting the desired
parameter (lengths range [ℓmin,ℓmax]). Afterwards, she can run the VALMOD
algorithm, which is a part of the system back-end we implemented in C. Once
terminated, VALMOD outputs the VALMAP meta-data. This latter is thus sent
to the front-end, implemented in Python. Here, the user can interact with the
system analyzing the showcased elements, such as:

• the checkpoints of the VALMAP, namely all the updates occurred from the
length ℓmin till the desired length, selected with a dedicated slider.

• all the top-k motifs of variable length, which VALMAP reports.

• expand a selected motif pair to the relative Motif Set, containing all the
similar subsequences of the pair in the data.

6.4 Prototype System

We now present the functionality of our prototype. We depict a screen-shot of
our application in Figure 6.3, where the user imports (top of Figure 6.3) a dataset
containing the recordings of the global active electric power in France for the period
2006-2008 (GAP) [53].

Traditional Motif discovery VS VALMOD. Once the user imports a dataset,
she can opt to find motifs without having any knowledge of their lengths, just by
inspecting the data themselves. Thereafter, the user can experience the VALMOD
support in finding motif pairs that can be of variable length, understanding the
quantity and quality of the insights that are not achievable with a simple raw
data visual analysis. She can thus run our algorithm selecting the desired motif
length range at the top of the interface (Figure 6.3). Our prototype disposes of two
panels, which report the VALMAP structure and the Length Profile respectively,
once the motif discovery terminates, as we depict in Figure 6.4. Here, we run motif
discovery, with range ℓmin = 256 and ℓmin = 1024. We show the first VALMAP
checkpoint, which permits to discover motifs of length 256; the Top− 1 motif pair
is reported in red.

152 CHAPTER 6. MOTIF DISCOVERY SUITE

Figure 6.3: GUI interface of the prototype, which implements VALMOD .

Top-1 Motif pair of length 256

Figure 6.4: GUI interface of the prototype, VALMAP and Length profile structure
panels.

Need for Variable Length Motifs. We tested our prototype, which implements
VALMOD on different real datasets, including ECG and ASTRO (celestial objects
data), GAP (global active power) as well as datasets coming from the domains of
Entomology and Seismology. In these cases, but also in general the user can under-
stand the importance of using variable length motif detection (with the support of
VALMAP), in order to identify patterns of interesting behavior exhibiting them-

6.4. PROTOTYPE SYSTEM 153

Figure 6.5: GUI interface of the prototype, mining motifs of variable length.

selves as sequences of different lengths. We can thus use the checkpoints slider,
as depicted in Figure 6.5, to test the presence of motif pairs that are longer than
ℓmin. We note that at length 490, the length profile contains several updates on
different subsequences offset, which have (globally) small distances at the respec-
tive offsets in VALMAP (circles in Figure 6.5). This suggests the presence of a
motif pair of length 490, which are reported in red. Beyond the best motif pairs
(those with absolute smallest distances), the user can also iterate and visualize (in
order) the rest of the motifs ranked by VALMAP, as we depict in Figure 6.6.

VALMOD VS Competitors. Using our prototype, the user has also the pos-
sibility to compare VALMOD to alternative approaches used for motif discovery.
Specifically, she can note the VALMOD time performance improvement in variable
length motif discovery. Beyond time performance, the user can also observe that
the competitors do not provide an effective solution to compare motifs of different
lengths. We face this limitation when running the state-of-the-art motif discovery
algorithm. We depict the result in Figure 6.7, where the matrix profile is computed
for one fixed length, namely 256 points, leading to discovery of motifs of only this
length.

154 CHAPTER 6. MOTIF DISCOVERY SUITE

(a)

(b)

Figure 6.6: GUI interface of the prototype, Top − k motifs iteration. (a) Top-1
motif of length 256. (b) Top-1 motif of length 490.

Figure 6.7: GUI interface of the prototype, state-of-the-art motif mining (Matrix
profile).

6.5 Conclusions

In this work, we present a motif discovery prototype system based on the VALMOD
algorithm, which efficiently finds data series motif of variable length. As opposed
to the other approaches, our system provides a new meta data-series (VALMAP),
which ranks motif pairs of variable length, using a new length normalized distance.
Our solution provides enriched insights, which help to detect not only the correct
resolution (length) of an interesting event, but also the occurrences of repeated
patterns with different meanings, which are typical in numerous domains.

Chapter 7

Conclusions and Future Work

Similarity search is one of the fundamental operations for several data series anal-
ysis tasks. Even though much effort has been dedicated to the development of
techniques that can speed up similarity search, all existing solutions are limited
by the fact that they can only support fixed length results.

In this thesis we describe exact solutions for three problems that are based on
similarity search, namely subsequence matching, motif and discord discovery. We
extend the state-of-the-art by proposing algorithms that can operate with variable-
length sequences, thus, removing this limitation that existed in all studies in the
literature.

7.1 Subsequence Matching

To perform efficiently subsequence matching in large data collections, we propose
ULISSE, the first index able to answer similarity search queries of variable-length,
over both Z-normalized and non Z-normalized sequences, supporting the use of
Euclidean and Dynamic Time Warping distances. The main ULISSE building
block is new data series summarization (Envelope), which succinctly represents
several contiguous overlapping sequences. We proposed a new search algorithm,
which can answer K−NN queries, and can be easily adapted to the ǫ-range search.
We experimentally evaluated, our indexing and similarity search algorithms, on
synthetic and real datasets, demonstrating that a compact and single structure

155

156 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

enables an efficient (in space and time cost) and scalable solution for subsequence
matching.

7.1.1 Open Research Problems

This work has paved the road towards several extensions. First, we aim to improve
the performance of the ULISSE indexing strategy for datasets that contain very
long data series (where optimized serial scan techniques have an advantage). To
that extent, we envision to further improve the space compression capability of
ULISSE, finding a deterministic trade-off between the Envelopes size and space
pruning capability.

Moreover, we want to explore the possibility to propose new similarity measures,
which consider similar candidates according the subsequence features (possibly of
variable length). A recent work [26] has shown that considering similar data series
according to their subsequences can effectively improve clustering results, which
are performed with Euclidean and DTW distances. We believe that ULISSE can
inherently support this kind of measure, providing a scalable similarity search
solution.

Finally, we also plan to study solutions built on top of ULISSE that can exploit
multi-core and multi-socket architectures, which can significantly improve perfor-
mance [75].

7.2 Motif and Discord Discovery

In the second part of the work, we proposed the first framework (MAD) for
variable-length motif and discord discovery. We described a new distance nor-
malization method, as well as a novel distance lower bounding technique, both of
which are necessary for the solution to our problems. We experimentally evalu-
ated our algorithms by using five real datasets from diverse domains. The results
demonstrate the efficiency and scalability of our approach (up to 20x faster than
the state of the art), as well as its usefulness.

7.2. MOTIF AND DISCORD DISCOVERY 157

7.2.1 Open Research Problems

In terms of future work, we would like to further improve the scalability of the
MAD framework, as well as to extend the support to other data mining primitives.
Our goal would be to support efficiently the computation of the complete matrix
profile for each subsequence length in the input range. This would enable us to
support more diverse applications, such as discovery of shapelets [108] in data series
classification.

Moreover, we observe that motif discovery tools typically work by discovering motif
pairs, which are then expanded to motif sets, just considering a fixed neighborhood
space. Similarly, this is also true in the case of discord (anomalous patterns)
discovery. We note that contrary to the case of motif pairs, there exists no measure
for evaluating the quality of a pattern (motif or discord) set. In this direction,
it seems promising to study new primitives that may describe and rank a set of
interesting patterns. Following this idea, we would like to extend our framework by
proposing a scalable solution for mining and ranking sets of patterns, irrespective
of their cardinality.

In general, we showed that relaxing the fixed length (search) constraint in motif
and discord discovery is a useful feature. In this sense, proposing an effective
solution required us to tackle several non-trivial challenges. We are convinced
that despite the hard nature of this problem, our results will allow us to push the
limits (and our ambitions) even further. Therefore, our research directions point
towards parameter-free solutions for data series analysis.

158 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] Machine Learning in Time Series Databases (and Everything Is a Time
Series !) Outline of Tutorial II. Update, pages 1–31.

[2] Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. Efficient simi-
larity search in sequence databases. In Foundations of Data Organization
and Algorithms, 4th International Conference, FODO’93, Chicago, Illinois,
USA, October 13-15, 1993, Proceedings, 1993.

[3] Ira Assent, Ralph Krieger, Farzad Afschari, and Thomas Seidl. The ts-tree:
Efficient time series search and retrieval. In EDBT, 2008.

[4] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn J.
Keogh. The great time series classification bake off: a review and experi-
mental evaluation of recent algorithmic advances. Data Min. Knowl. Discov.,
2017.

[5] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The r*-tree: An efficient and robust access method for points and
rectangles. SIGMOD, 1990.

[6] Yingyi Bu, Tat wing Leung, Ada Wai chee Fu, Eamonn Keogh, Jian Pei,
and Sam Meshkin. Wat: Finding top-k discords in time series database. In
SDM, 2007.

[7] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn J. Keogh.
isax 2.0: Indexing and mining one billion time series. In ICDM 2010.

[8] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn J. Keogh.
isax 2.0: Indexing and mining one billion time series. In ICDM 2010, 2010.

[9] Edwin Cartlidge. Seven-year legal saga ends as italian official is cleared of
manslaughter in earthquake trial. Science, Oct. 3, 2016.

159

160 BIBLIOGRAPHY

[10] Kaushik Chakrabarti, Eamonn Keogh, and Sharad Mehrotra. Locally adap-
tive dimensionality reduction for indexing large time series databases. 2002.

[11] Qiuxia Chen, Lei Chen, Xiang Lian, Yunhao Liu, and Jeffrey Xu Yu. Index-
able pla for similarity search. VLDB, 2007.

[12] Bill Yuan Chiu, Eamonn J. Keogh, and Stefano Lonardi. Probabilistic dis-
covery of time series motifs. In SIGKDD 2003, pages 493–498, 2003.

[13] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access
method for similarity search in metric spaces. In VLDB, 1997.

[14] Michele Dallachiesa, Themis Palpanas, and Ihab F. Ilyas. Top-k nearest
neighbor search in uncertain data series. PVLDB, 8(1):13–24, 2014.

[15] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Ben-
brahim. The lernaean hydra of data series similarity search: An experimental
evaluation of the state of the art. PVLDB, 12(2), 2018.

[16] Alessandro Camerra et al. Beyond one billion time series: indexing and
mining very large time series collections with isax2+. KAIS, 2014.

[17] Goldberger et al. Physiobank, physiotoolkit, and physionet: Components of
a new research resource for complex physiologic signals., 2000 June 13.

[18] Jiaye Wu et al. Kv-match: A subsequence matching approach supporting
normalization and time warping. ICDE, 2019.

[19] S. Soldi et al. Long-term variability of agn at hard x-rays. Astronomy &
Astrophysics, 2014.

[20] Thanawin Rakthanmanon et al. Searching and mining trillions of time series
subsequences under dynamic time warping. In SIGKDD, 2012.

[21] Yan Zhu et al. Matrix profile II: exploiting a novel algorithm and gpus to
break the one hundred million barrier for time series motifs and joins. In
ICDM 2016.

[22] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast sub-
sequence matching in time-series databases. In SIGMOD, 1994.

[23] Ada Wai-Chee Fu, Oscar Tat-Wing Leung, Eamonn J. Keogh, and Jessica
Lin. Finding time series discords based on haar transform. In ADMA, 2006.

BIBLIOGRAPHY 161

[24] Yifeng Gao and Jessica Lin. Exploring variable-length time series motifs in
one hundred million length scale. Data Min. Knowl. Discov., 32(5):1200–
1228, 2018.

[25] Yifeng Gao, Jessica Lin, and Huzefa Rangwala. Iterative grammar-based
framework for discovering variable-length time series motifs. In ICMLA,
2016.

[26] Shaghayegh Gharghabi, Shima Imani, Anthony J. Bagnall, Amirali
Darvishzadeh, and Eamonn J. Keogh. Matrix profile XII: mpdist: A novel
time series distance measure to allow data mining in more challenging sce-
narios. In IEEE International Conference on Data Mining, ICDM 2018,
Singapore, November 17-20, 2018, 2018.

[27] C. Gisler, A. Ridi, D. Zufferey, O. A. Khaled, and J. Hennebert. Appliance
consumption signature database and recognition test protocols. In 2013
WoSSPA), pages 336–341, 2013.

[28] Anna Gogolou, Theophanis Tsandilas, Themis Palpanas, and Anastasia Bez-
erianos. Progressive similarity search on time series data. In Proceedings of
the Workshops of the EDBT/ICDT 2019 Joint Conference, EDBT/ICDT
2019, Lisbon, Portugal, March 26, 2019.

[29] Anna Gogolou, Theophanis Tsandilas, Themis Palpanas, and Anastasia Bez-
erianos. Comparing similarity perception in time series visualizations. IEEE
Trans. Vis. Comput. Graph., 25(1):523–533, 2019.

[30] Josif Grabocka, Nicolas Schilling, and Lars Schmidt-Thieme. Latent time-
series motifs. TKDD, 11(1):6:1–6:20, 2016.

[31] Picard RW. Healey JA. Detecting stress during real-world driving tasks
using physiological sensors. IEEE Transactions in Intelligent Transportation
Systems 6(2):156-166, June 2016.

[32] Pablo Huijse, Pablo A. Estévez, Pavlos Protopapas, Jose C. Principe, and
Pablo Zegers. Computational intelligence challenges and applications on
large-scale astronomical time series databases. 2014.

[33] IRIS. Seismic Data Access 2016.

[34] F. Itakura. Minimum prediction residual principle applied to speech recogni-
tion. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1975.

[35] Srividya Kadiyala and Nematollaah Shiri. A compact multi-resolution index
for variable length queries in time series databases. KAIS, 2008.

162 BIBLIOGRAPHY

[36] Srividya Kadiyala and Nematollaah Shiri. A compact multi-resolution index
for variable length queries in time series databases. KAIS, 2008.

[37] T. Kahveci and A. Singh. Variable length queries for time series data. In
ICDEF, 2001.

[38] T. Kahveci and A. Singh. Variable length queries for time series data. In
Proceedings 17th International Conference on Data Engineering, 2001.

[39] Kunio Kashino, Gavin Smith, and Hiroshi Murase. Time-series active search
for quick retrieval of audio and video. In ICASSP, 1999.

[40] E. Keogh, J. Lin, and a. Fu. HOT SAX: Efficiently Finding the Most Unusual
Time Series Subsequence. Fifth IEEE International Conference on Data
Mining (ICDM’05), pages 226–233, 2005.

[41] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehro-
tra. Dimensionality reduction for fast similarity search in large time series
databases. KAIS, 3, 2000.

[42] Eamonn Keogh, Stefano Lonardi, Chotirat Ann Ratanamahatana, Li Wei,
Sang-Hee Lee, and John Handley. Compression-based data mining of se-
quential data. Data Mining and Knowledge Discovery, 2007.

[43] Eamonn J. Keogh and Shruti Kasetty. On the need for time series data
mining benchmarks: A survey and empirical demonstration. Data Min.
Knowl. Discov., 2003.

[44] Eamonn J. Keogh, Themis Palpanas, Victor B. Zordan, Dimitrios Gunopu-
los, and Marc Cardle. Indexing large human-motion databases. In VLDB,
2004.

[45] Eamonn J. Keogh, Themis Palpanas, Victor B. Zordan, Dimitrios Gunopu-
los, and Marc Cardle. Indexing large human-motion databases. In VLDB,
2004.

[46] Eamonn J. Keogh and Chotirat (Ann) Ratanamahatana. Exact indexing of
dynamic time warping. Knowl. Inf. Syst., 2005.

[47] Kin-Pong Chan and Ada Wai-Chee Fu. Efficient time series matching by
wavelets. In Proceedings 15th International Conference on Data Engineering
(Cat. No.99CB36337), pages 126–133, March 1999.

BIBLIOGRAPHY 163

[48] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Pal-
panas. Coconut: A scalable bottom-up approach for building data series
indexes. In PVLDB, 2018.

[49] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Pal-
panas. Coconut: A scalable bottom-up approach for building data series
indexes. PVLDB (11)6:677-690, 2018.

[50] JB Kruskal and Mark Liberman. The symmetric time-warping problem:
From continuous to discrete. Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison, 01 1983.

[51] Yuhong Li, Leong Hou U, Man Lung Yiu, and Zhiguo Gong. Quick-motif:
An efficient and scalable framework for exact motif discovery, 2015.

[52] Yuhong Li, Leong Hou U, Man Lung Yiu, and Zhiguo Gong. Quick-motif:
An efficient and scalable framework for exact motif discovery ICDE. 2015.

[53] M. Lichman. UCI machine learning repository, 2013.

[54] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing sax:
a novel symbolic representation of time series. Data Mining and Knowledge
Discovery, 2007.

[55] Michele Linardi. Valmod support web page, 2017.

[56] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J. Keogh.
VALMOD: A suite for easy and exact detection of variable length motifs
in data series. In SIGMOD Conference 2018.

[57] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J. Keogh.
VALMOD: A suite for easy and exact detection of variable length motifs
in data series. In SIGMOD Conference 2018.

[58] Yubao Liu, Xiuwei Chen, and Fei Wang. Efficient Detection of Discords
for Time Series Stream. Advances in Data and Web Management, pages
629–634, 2009.

[59] Wei Luo and Marcus Gallagher. Faster and parameter-free discord search
in quasi-periodic time series. In Joshua Zhexue Huang, Longbing Cao, and
Jaideep Srivastava, editors, Advances in Knowledge Discovery and Data Min-
ing, 2011.

[60] Wei Luo, Marcus Gallagher, and Janet Wiles. Parameter-free search of time-
series discord. Journal of Computer Science and Technology, 2013.

164 BIBLIOGRAPHY

[61] A. Marzal and E. Vidal. Computation of normalized edit distance and ap-
plications. IEEE Trans. Pattern Anal. Mach. Intell., 15(9), September 1993.

[62] David Minnen, Charles Lee Isbell Jr., Irfan A. Essa, and Thad Starner.
Discovering multivariate motifs using subsequence density estimation and
greedy mixture learning. In AAAI Conference on Artificial Intelligence,
2007.

[63] Katsiaryna Mirylenka, Michele Dallachiesa, and Themis Palpanas. Data
series similarity using correlation-aware measures. In Proceedings of the 29th
International Conference on Scientific and Statistical Database Management,
Chicago, IL, USA, June 27-29, 2017, 2017.

[64] Y. Mohammad and T. Nishida. Unsupervised discovery of basic human
actions from activity recording datasets. In 2012 IEEE/SICE International
Symposium on System Integration (SII), 2012.

[65] Yasser F. O. Mohammad and Toyoaki Nishida. Exact discovery of length-
range motifs. In Intelligent Information and Database Systems - 6th Asian
Conference, ACIIDS 2014.

[66] Y Morinaka, Masatoshi Yoshikawa, Toshiyuki Amagasa, and Shunsuke Ue-
mura. The l - index: An indexing structure for efficient subsequence matching
in time sequence databases. 01 2001.

[67] Abdullah Mueen and Nikan Chavoshi. Enumeration of time series motifs of
all lengths. Knowl. Inf. Syst., 2015.

[68] Abdullah Mueen, Hossein Hamooni, and Trilce Estrada. Time series join on
subsequence correlation. In ICDM 2014, 2014.

[69] Abdullah Mueen, Eamonn J. Keogh, Qiang Zhu, Sydney Cash, and M. Bran-
don Westover. Exact discovery of time series motifs. In SDM 2009.

[70] Moss C. B. Neupane, D. and A. H. 2016. van Bruggen. Estimating citrus
production loss due to citrus huanglongbing in florida. Annual Meeting,
Southern Agricultural Economics Association, San Antonio, TX., 2016.

[71] Alleon Guillaume. Head of Operational Intelligence Department Airbus. Per-
sonal communication., 2017.

[72] Themis Palpanas. Data series management: The road to big sequence ana-
lytics. SIGMOD Rec., 2015.

BIBLIOGRAPHY 165

[73] Themis Palpanas. Big sequence management: A glimpse of the past, the
present, and the future. In SOFSEM, 2016.

[74] Themis Palpanas. The parallel and distributed future of data series mining.
In High Performance Computing & Simulation (HPCS), 2017.

[75] Botao Peng, Panagiota Fatourou, and Themis Palpanas. Paris: The next
destination for fast data series indexing and query answering. In IEEE Big
Data, 2018.

[76] Ivan Popivanov and Renée J. Miller. Similarity search over time-series data
using wavelets. In Proceedings of the 18th International Conference on Data
Engineering, San Jose, CA, USA, February 26 - March 1, 2002, 2002.

[77] Davood Rafiei and Alberto Mendelzon. Efficient retrieval of similar time
sequences using dft. In ICDE, 1998.

[78] Thanawin Rakthanmanon, Bilson J. L. Campana, Abdullah Mueen, Gustavo
E. A. P. A. Batista, M. Brandon Westover, Qiang Zhu, Jesin Zakaria, and
Eamonn J. Keogh. Searching and mining trillions of time series subsequences
under dynamic time warping. In SIGKDD, 2012.

[79] Usman Raza, Alessandro Camerra, Amy L. Murphy, Themis Palpanas, and
Gian Pietro Picco. Practical data prediction for real-world wireless sensor
networks. IEEE Trans. Knowl. Data Eng., 2015.

[80] Kexin Rong and Peter Bailis. ASAP: prioritizing attention via time series
smoothing. PVLDB, 10(11):1358–1369, 2017.

[81] A.C. Rosa, L. Parrino, and M.G. Terzano. Automatic detection of cyclic
alternating pattern (cap) sequences in sleep: preliminary results. Clinical
Neurophysiology, 1999.

[82] D. Roverso. Multivariate temporal classification by windowed wavelet de-
composition and recurrent networks. In ANS International Topical Meeting
on Nuclear Plant Instrumentation, Control and Human-Machine Interface,
2000.

[83] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for
spoken word recognition. IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, 1978.

[84] Suchi Saria, Andrew Duchi, and Daphne Koller. Discovering deformable
motifs in continuous time series data. In IJCAI 2011.

166 BIBLIOGRAPHY

[85] Patrick Schäfer and Mikael Högqvist. Sfa: A symbolic fourier approximation
and index for similarity search in high dimensional datasets. In EDBT, 2012.

[86] Pavel Senin, Jessica Lin, Xing Wang, Tim Oates, Sunil Gandhi, Arnold P.
Boedihardjo, Crystal Chen, and Susan Frankenstein. Time series anomaly
discovery with grammar-based compression. In EDBT, 2015.

[87] Dennis Shasha. Tuning time series queries in finance: Case studies and
recommendations. IEEE Data Eng. Bull., 1999.

[88] Jin Shieh and Eamonn Keogh. iSAX: Indexing and Mining Terabyte Sized
Time Series. In SIGKDD, pages 623–631, 2008.

[89] Jin Shieh and Eamonn Keogh. iSAX: disk-aware mining and indexing of
massive time series datasets. DMKD, 19(1):24–57, 2009.

[90] Jin Shieh and Eamonn J. Keogh. isax: indexing and mining terabyte sized
time series. In KDD, 2008.

[91] Saurabh Sinha. Discriminative motifs. In Proceedings of the Sixth Annual
International Conference on Computational Biology, RECOMB 2002, pages
291–298, 2002.

[92] Zeeshan Syed, Collin M. Stultz, Manolis Kellis, Piotr Indyk, and John V.
Guttag. Motif discovery in physiological datasets: A methodology for infer-
ring predictive elements. TKDD, 4(1):2:1–2:23, 2010.

[93] et al. Terzano. Atlas, rules, and recording techniques for the scoring of cyclic
alternating pattern (cap) in human sleep. Sleep Med 2001 Nov, 2(6):537-553.

[94] www.mi.parisdescartes.fr/~mlinardi/ULISSE.html.

[95] J. Wang, A. Balasubramanian, L. Mojica de la Vega, J. Green, A. Samal, and
B. Prabhakaran. Word recognition from continuous articulatory movement
time-series data using symbolic representations. In Workshop on Speech and
Language Processing for Assistive Technologies. (SLPAT).

[96] Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuer-
mann, and Eamonn J. Keogh. Experimental comparison of representation
methods and distance measures for time series data. Data Min. Knowl.
Discov., 2013.

[97] Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. A data-
adaptive and dynamic segmentation index for whole matching on time series.
PVLDB, 2013.

www.mi.parisdescartes.fr/
mlinardi/ULISSE.html

BIBLIOGRAPHY 167

[98] Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. A data-
adaptive and dynamic segmentation index for whole matching on time series.
PVLDB, 6(10):793–804, 2013.

[99] Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. A data-
adaptive and dynamic segmentation index for whole matching on time series.
Proceedings of the VLDB Endowment, 6:793–804, 08 2013.

[100] CW Whitney, DJ Gottlieb, S Redline, RG Norman, RR Dodge, E Shahar,
S Surovec, and FJ Nieto. Reliability of scoring respiratory disturbance in-
dices and sleep staging. Sleep, November 1998.

[101] Daniel Wu, Divyakant Agrawal, Amr El Abbadi, Ambuj K. Singh, and Ter-
ence R. Smith. Efficient retrieval for browsing large image databases. In
CIKM, 1996.

[102] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Pal-
panas. Dpisax: Massively distributed partitioned isax. In ICDM, 2017.

[103] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Pal-
panas. Dpisax: Massively distributed partitioned isax. In ICDM, pages
1135–1140, 2017.

[104] Dragomir Yankov, Eamonn J. Keogh, Jose Medina, Bill Yuan-chi Chiu, and
Victor B. Zordan. Detecting time series motifs under uniform scaling. In
ACM.

[105] Dragomir Yankov, Eamonn J. Keogh, and Umaa Rebbapragada. Disk aware
discord discovery: Finding unusual time series in terabyte sized datasets. In
IEEE (ICDM 2007), 2007.

[106] Dragomir Yankov, Eamonn J. Keogh, and Umaa Rebbapragada. Disk aware
discord discovery: finding unusual time series in terabyte sized datasets.
Knowl. Inf. Syst., 2008.

[107] Dragomir Yankov, Eamonn J. Keogh, and Umaa Rebbapragada. Disk aware
discord discovery: finding unusual time series in terabyte sized datasets.
Knowl. Inf. Syst., 2008.

[108] Lexiang Ye and Eamonn J. Keogh. Time series shapelets: a new primitive
for data mining. In KDD, 2009.

168 BIBLIOGRAPHY

[109] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei
Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Ea-
monn J. Keogh. Matrix profile I: all pairs similarity joins for time series:
A unifying view that includes motifs, discords and shapelets. In IEEE 16th
International Conference on Data Mining, ICDM 2016.

[110] Sorrachai Yingchareonthawornchai, Haemwaan Sivaraks, Thanawin Rak-
thanmanon, and Chotirat Ann Ratanamahatana. Efficient proper length
time series motif discovery. In 2013 IEEE ICDM.

[111] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. T-store: Tun-
able storage for large sequential data. In North East Database Day (NEDB),
Boston, MA, USA, January 2019.

[112] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. Indexing for
interactive exploration of big data series. In SIGMOD, 2014.

[113] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. RINSE: inter-
active data series exploration with ADS+. PVLDB, 2015.

[114] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. ADS: the adap-
tive data series index. VLDB J. 25(6): 843-866, 2016.

[115] Kostas Zoumpatianos, Yin Lou, Themis Palpanas, and Johannes Gehrke.
Query workloads for data series indexes. In KDD, 2015.

[116] Kostas Zoumpatianos and Themis Palpanas. Data series management: Ful-
filling the need for big sequence analytics. In ICDE, 2018.

	Contents
	List of Figures
	Introduction
	Sequence Similarity Search (or Sequence Matching)
	Data Series Motif
	Data Series Discord
	Contributions
	Thesis Outline and Publications

	Related work
	Data series Indexes and Summarization
	Piecewise Aggregate Approximation
	Symbolic Representation
	Indexing Techniques for Variable Length Similarity Search
	Sequential Scan techniques for Similarity Search
	Summary

	Motif and Discord Discovery
	Motif Discovery Techniques
	Discord Discovery Techniques

	Scalable Data Series Subsequence Matching
	Chapter Organization
	Preliminaries and Problem Formulation
	The ULISSE framework
	Representing Multiple Subsequences
	PAA Envelope for Non-Z-Normalized Subseqeunces
	PAA Envelope for Z-Normalized Subsequences
	Indexing the Envelopes

	Indexing Algorithm
	Indexing Non-Z-Normalized Subsequences
	Indexing Z-Normalized Subsequences
	Building the index

	Similarity Search with ULISSE
	Lower Bounding Euclidean Distance
	Lower Bounding Dynamic Time Warping
	Approximate search
	Exact search
	Complexity of query answering

	Experimental Evaluation
	Envelope Building
	Exact Search Similarity Queries with Euclidean Distance
	Query Answering Varying
	Comparison to Serial Scan Algorithms using Euclidean Distance
	Approximate Search Similarity Queries with Euclidean Distance
	Approximate Search Similarity Queries with Euclidean Distance and DTW
	Experiments with Real Datasets
	-Range Queries

	Conclusions

	Scalable VAriable-Length Similarity Search Suite
	The VALS System
	Prototype Functionality
	Conclusion

	Motif and Discord Discovery
	Chapter Organization
	Problem Definition
	Motif Discovery
	Discord Discovery

	Comparing Motifs of Different Lengths
	Proposed Approach for Motif Discovery
	The Lower Bound Distance Profile
	The VALMOD Algorithm
	Computing The Matrix Profile
	Matrix Profile for Subsequent Lengths

	Finding Motif Sets
	Discord Discovery
	Comparing Discords of Different Lengths
	Discord Discovery Algorithm

	Experimental Evaluation
	Setup
	Motif Discovery Results
	Motif Sets
	Discord Discovery
	Exploratory Analysis: Motif and Discord Length Selection

	Conclusions

	Motif Discovery Suite
	Motif discovery of different lengths.
	VALMAP data structure.
	System Description
	Prototype System
	Conclusions

	Conclusions and Future Work
	Subsequence Matching
	Open Research Problems

	Motif and Discord Discovery
	Open Research Problems

	Bibliography

