
HAL Id: tel-04047037
https://theses.hal.science/tel-04047037v1

Submitted on 27 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Verification of Communicating Automata
Amrita Suresh

To cite this version:
Amrita Suresh. Formal Verification of Communicating Automata. Logic in Computer Science [cs.LO].
Université Paris-Saclay, 2022. English. �NNT : 2022UPASG092�. �tel-04047037�

https://theses.hal.science/tel-04047037v1
https://hal.archives-ouvertes.fr

TH
ES

E
D

E
D

O
CT

O
RA

T

N
N

T
:�

��
�U

PA
SG

��
�

Formal Verification of Communicating
Automata

Vérification formelle des automates communicants

Thèse de doctorat de l’université Paris-Saclay

École doctorale n� 580, STIC - Sciences et technologies de l’information
et de la communication

Spécialité de doctorat : Informatique
Graduate School : Informatique et sciences du numérique

Référent : ENS Paris-Saclay

Thèse préparée dans l’unité de recherche Laboratoire Méthodes Formelles
(Université Paris-Saclay, CNRS, ENS Paris-Saclay),

sous la direction de Alain FINKEL, Professeur
et le co-encadrement de Benedikt BOLLIG, Directeur de recherche

Thèse soutenue à Paris-Saclay, le 12 decembre 2022, par

Amrita SURESH

Composition du jury
Membres du jury avec voix délibérative

Mihaela SIGHIREANU Présidente
Professeure, ENS Paris-Saclay
Ahmed BOUAJJANI Rapporteur & Examinateur
Professeur, Univ. Paris Diderot
Rupak MAJUMDAR Rapporteur & Examinateur
Directeur de recherche, Max Planck Institute for
Software Systems
Thierry JÉRON Examinateur
Directeur de recherche, IRISA / INRIA Rennes
Nobuko YOSHIDA Examinatrice
Professeure, University of Oxford

Titre : Vérification formelle des automates communicants
Mots clés : systèmes distribués, vérification formelle, automates, systèmes infinis, logic

Résumé :Les systèmes distribués concernent des
processus qui s’exécutent indépendamment et
communiquent de manière asynchrone. Bien qu’ils
couvrent un large éventail de cas d’utilisation et
soient donc omniprésents dans notre monde, il est
particulièrement difficile de garantir leur exacti-
tude. Dans cette thèse, nous modélisons de tels
systèmes en utilisant une formulation mathéma-
tique et logique, et nousles vérifions algorithmi-
quement. En particulier, nous nous concentrons
sur les automates FIFO (First In First Out), et
plus précisément sur des systèmes à un ou plu-
sieurs automates finis qui communiquent via des
canaux FIFO fiables pouvant contenir des mots de
longueur arbitrairement grande. Comme la plupart
des problèmes de vérification sont connus pour être
indécidables pour les automates FIFO, nous nous
concentrons sur diverses sous-classes et approxi-
mations du modèle.

Le premier modèle que nous considérons est
celui des systèmes de transition bien structurés sur
les branches d’états accessibles (branch-WSTS),
une classe qui inclut strictement la classe des
WSTS. Nous étudions les problèmes de finitude des
canaux et de terminaison pour de tels systèmes,
et nous en montrons quelques exemples. Nous dé-
finissons également une autre classe de systèmes
où la condition de monotonie est relâchée et nous

montrons qu’une variante du problème de couer-
ture est décidable sous des conditions naturelles
d’effectivité.

Nous étudions ensuite la restriction de la li-
mitation de l’entrée (input-boundedness) sur les
canaux FIFO et nous montrons que l’accessibilité
rationnelle et diverses autres propriétés sont déci-
dables pour les automates FIFO. Ce faisant, nous
répondons à une question ouverte concernant l’ac-
cessibilité des automates FIFO limités en entrée.
Nous dérivons également certaines bornes de com-
plexité en considérant le cas le plus simple, un au-
tomate FIFO avec un seul canal.

Une autre restriction que nous étudions est la
synchronisabilité dans les systèmes communicants.
En particulier, nous étudions cette notion pour les
MSCs (Message Sequence Charts), qui est un mo-
dèle pour représenter les exécutions d’un système
communicant. Nous montrons que si un ensemble
quelconque de MSC satisfait les deux propriétés
suivantes, à savoir la définissabilité MSO (Monadic

Second-order Logic) et la (spécial) largeur d’arbre
(tree-width) bornée, alors la synchronisabilité est
décidable. De plus, l’accessibilité et le model che-
cking sont également décidables dans ce cadre.
Nous unifions alors certaines classes de la littéra-
ture à l’aide de ce cadre, et pour certaines autres
classes, nous montrons leur indécidabilité.

Title : Formal Verification of Communicating Automata
Keywords : distributed systems, formal verification, infinite-state systems, automata, logic

Abstract : Distributed systems involve processes
that run independently and communicate asyn-
chronously. While they capture a wide range of use
cases and are hence, ubiquitous in our world, it is
also particularly difficult to ensure their correct-
ness. In this thesis, we model such systems using
mathematical and logical formulation, and try to
verify them algorithmically. In particular, we focus
on FIFO (First-In First-Out) machines, with one
or more finite-state machines communicating via
unbounded reliable FIFO buffers.

As most verification problems are known to
be undecidable for FIFO machines, we focus on
various subclasses and approximations of the mo-
del. The first model we consider is branch-well-
structured transition systems (branch-WSTS), a
class which strictly includes the well-known class
of WSTS. We study the problems of boundedness
and termination for such systems, and demonstrate
some examples of them. We also define another
class of systems where the monotony condition is
relaxed and show that a variant of the coverability
problem is decidable under effectivity conditions.

We then study the restriction of input-
boundedness on FIFO machines, and show that
rational reachability and various other properties
are decidable for FIFO machines under the input-
bounded restriction. In doing so, we answer a long-
standing open question regarding the reachability
of input-bounded FIFO machines. We also derive
some complexity bounds by considering the sim-
plest case, a FIFO machine with a single channel.

Another restriction that we study is synchro-
nizability in communicating systems. In particu-
lar, we explore this notion for MSCs (Message Se-
quence Charts), which is a model to represent exe-
cutions of a communicating system. We show that
if any set of MSCs can satisfy two properties, na-
mely MSO (Monadic Second-order Logic) defina-
bility and bounded (special-)tree width, then syn-
chronizability is decidable. Moreover, reachability
and model checking are also decidable within this
framework. We also unify some classes from the li-
terature using this framework, and for some other
classes, show their undecidability.

Acknowledgements

Anyone who knows me well would know that I had started my acknowledgements long
before I started the first draft of my thesis. I have been extremely fortunate to have
come across many people who have made the journey so much more wonderful.

First and foremost, I thank my advisors, Benedikt Bollig and Alain Finkel. Benedikt,
thank you for your patience, encouragement, and all the help with the various drafts
along the way. I would consider it an immense blessing if I go on to become half as good
a researcher as you. Alain, thank you for your honesty, support, and feedback - I have
learned a lot about clarity, precision and perfection from you. This thesis could not
happen without the support of both of you.

I would like to thank Ahmed Bouajjani and Rupak Majumdar for taking the time
to review this thesis, and for their feedback. I extend my gratitude to all the members
of the jury, including Mihaela Sighireanu, Thierry Jéron, and Nobuko Yoshida. The
thought-provoking questions during the defense have paved the way for the direction of
my future research.

I thank my co-authors, Cinzia Di Giusto, Etienne Lozes, and Laetitia Laversa, for
the collaboration, and the many interesting discussions that followed it. Much gratitude
is also owed to Krishna S for a very pleasant stay at IIT Bombay, and very insightful
and inspiring discussions. I hope we continue to collaborate in the future.

I was fortunate to spend the duration of my thesis at LMF, a great environment
with the most supportive colleagues one could ask for. I would especially like to thank
my o�ce-mates and colleagues Igor, Olivier, Fabricio, Anirban, and Gayathri for all the
banter, and the support when I needed it. I also want to thank the regulars at the LMF
café - Dietmar, Phillippe, Matthias, Stéphane, for the crosswords and chats. For all the
administrative e↵orts for the various conferences and travels, thank you to Marie-France,
Eugenie and Imane. Thank you, Patricia, for ensuring the spirit of the lab is always
high. And I would also like to thank my teachers, Nutan Limaye, Akshay S, Paul Gastin,
Philippe Schnoebelen, Stefan Schwoon, and Sylvain Schmitz, among many others, for
inspiring me to pursue this thesis.

I would also like to thank my friends - Moira, Sakshi, Harsha, Marie-Claude, Bernard,
Ravi, Abhishek, Akshay, Tanmay, Advait, and Kriti - for all the pep talks along the way.
Your presence, especially during the pandemic, helped me more than I can express.

v

vi

Last but not least, I could not have completed this thesis without the help of all my
family. To Ettan, thanks for helping me find discipline when I needed it the most. To
my parents, Acha, thank you for motivating me and inspiring me, and more often, just
calming me down, and Amma, thank you for all the love and support along the way.
You believed in me when I didn’t believe in myself. Thank you, Nanju, for all the love
and laughter (and the fantastic food).

I dedicate this thesis to my grandmother. Bigamma, everything I am, and everything
I will be, is because of you. Thank you for it all.

Synthèse

Ces dernières années, en raison des progrès technologiques, les systèmes sont devenus
de plus en plus complexes. Cela conduit à la question naturelle de déterminer si un
système donné est correct. La vérification formelle est l’un des outils utilisés pour
vérifier si un système fonctionne selon les propriétés souhaitées. Il s’agit de vérifier
si un modèle d’un tel système satisfait certaines spécifications mathématiques.

Dans le cadre de cette thèse, nous modélisons les systèmes en utilisant une
formulation mathématique et logique, et essayons de les vérifier algorithmiquement.
En particulier, nous nous concentrons sur les automates FIFO (First-In First-Out),
qui sont des machines à états finis communiquant via des canaux FIFO fiables
pouvant contenir des mots de longueur arbitrairement grande. Comme la plupart
des problèmes de vérification sont connus pour être indécidables pour les automates
FIFO, nous nous concentrons sur diverses sous-classes et approximations de ce
modèle.

Nous proposons et étudions une généralisation des systèmes de transition bien
structurés (WSTS) tout en conservant la décidabilité de finitude des états accessibles
et de terminaison. Dans notre classe des branch-WSTS, nous généralisons la
définition de beau-quasi-ordre (wqo) pour qu’elle soit applicable seulement sur les
branches d’états accessibles à partir de l’état initial. De plus, nous généralisons
également la condition de monotonie de la même manière. Bien que les branch-
WSTS conservent la décidabilité de la terminaison et de la finitude des états
accessibles, il apparâıt que le problème de couverture est indécidable. Nous
définissons une nouvelle notion de monotonie, appelée cover-monotony, qui est
strictement plus générale que la monotonie habituelle et permet, malgré tout, de
décider une forme restreinte du problème de couverture, que nous appelons le
problème de couverture initiale. Nous montrons également quelques exemples de
systèmes dans la littérature qui ne sont pas des WSTS mais sont des branch-WSTS.

Ensuite, nous étudions la restriction de la limitation de l’entrée (input-boundedness)
sur les canaux FIFO (c’est-à-dire que la séquence de messages envoyés via un canal
particulier appartient à un langage borné donné). Nous prouvons, en réduisant ce
modèle à une machine à compteurs avec des tests à zéro restreints, que le problème
d’accessibilité rationnelle (et par extension, l’accessibilité de l’état de contrôle, la

vii

viii

terminaison, les blocages, etc.) est décidable. Cette classe de machines englobe
les machines où le langage entrant est borné sur des lettres (letter-bounded), les
machines plates (flat FIFO), les réseaux FIFO linéaires et les machines monogènes,
pour lesquelles certains de ces problèmes se sont déjà avérés décidables. Ces résultats
théoriques peuvent constituer les bases pour construire un outil de vérification
des machines FIFO générales basé sur l’analyse des machines à langages bornés
en entrée. De plus, nous étudions également le dual naturel de la restriction de
la limitation de l’entrée, en considérant des exécutions bornées en sortie. Nous
montrons que de nombreuses propriétés entre ces restrictions sont inter-réductibles,
tout en soulignant leurs di↵érences. Enfin, nous montrons également des bornes
inférieures pour le problème d’accessibilité bornée par les entrées.

Enfin, nous étudions la classe des systèmes synchronisables, qui est une sous-
classe stricte des machines à états finis communicantes générales (CFSM). Plusieurs
notions de synchronisabilité d’un système distribué communicant ont été introduites
dans la littérature. Essentiellement, un système est dit synchronisable si chaque
exécution peut être réordonnée afin qu’elle satisfasse à certains critères, par exemple,
qu’elle maintient un canal borné. Nous considérons l’ensemble des MSC (Message
Sequence Charts), qui représentent graphiquement les exécutions du système. Pour
cet ensemble, nous créons un cadre basé sur la logique monadique du second ordre
(MSO) et la largeur des graphes, qui unifie la majorité des définitions existantes,
explique leurs bonnes propriétés et permet de déduire facilement d’autres définitions
plus générales et des résultats de décidabilité pour la synchronisabilité. Nous four-
nissons également de meilleures bornes inférieures en utilisant la logique dynamique
propositionnelle (PDL) pour certains cas. Notre cadre capture également à la fois
le modèle de communication peer-to-peer, ainsi que le modèle de communication de
bôıte aux lettres (mailbox). De plus, pour la notion de synchronisabilité en envoi,
qui ne satisfait pas les propriétés de notre framework, nous prouvons également
l’indécidabilité des problèmes d’accessibilité (et d’autres problème associés).

Contents

1 Introduction 1
1.1 Systems communicating via FIFO channels 2
1.2 Well-structured transition systems 6
1.3 Contributions of the thesis . 7

1.3.1 Branch-WSTS . 7
1.3.2 Bounded reachability . 8
1.3.3 Synchronizability . 8

1.4 Organization of the thesis . 9

2 Transition Systems 11
2.1 Verification problems for transition systems 13
2.2 FIFO machines . 15

2.2.1 Communicating finite-state machines 16
2.2.2 Message sequence charts . 17
2.2.3 Mailbox semantics . 20

2.3 Counter machines . 21
2.4 Finite-state automata . 22

3 Branch-Well-Structured Transition Systems 25
3.1 Orderings . 26

3.1.1 Well-orderings . 26
3.1.2 Default orderings . 27

3.2 Well-structured transition systems 27
3.3 Branch-WSTS . 28
3.4 Termination and Boundedness for Branch-WSTS 31
3.5 Classes of branch-WSTS . 34

3.5.1 Counter machine with restricted zero tests 34
3.5.2 Input-bounded FIFO machines 36

3.6 Coverability . 41
3.7 Cover-WSTS . 45

4 Input-Boundedness 49
4.1 Bounded reachability . 50
4.2 The IB rational-reachability problem. 55
4.3 Reachability and deadlock . 69

ix

x CONTENTS

4.4 Unboundedness and termination . 71
4.5 Output-bounded problems . 78
4.6 FIFO machines with a single channel 80
4.7 Towards a theory of boundable FIFO machines. 84

5 Framework for Synchronizability 87
5.1 Logical background . 87
5.2 Tree-width and conflict graph . 91
5.3 Model checking and synchronizability 94
5.4 Application to concrete classes of synchronizability 97

5.4.1 A new general class: Weakly synchronous MSCs 97
5.4.2 Weakly k-synchronous MSCs 104
5.4.3 Strongly k-synchronous MSCs and other classes 107
5.4.4 Existentially k-p2p-bounded MSCs 112
5.4.5 Existentially k-bounded MSCs 112

5.5 Discussion . 115

6 Send-Synchronizability 117
6.1 I and J -synchronizability . 117
6.2 Reachability for send-synchronizable systems 119
6.3 Stable reachability . 129
6.4 Some decidable notions . 131
6.5 Discussion . 132

7 Conclusion 135
7.1 Relaxations of well-structured transition systems 136
7.2 Input-bounded FIFO machines . 137
7.3 Unifying notions of synchronizability 138
7.4 Verifying send-synchronizable systems 139
7.5 Other subclasses . 140

Bibliography 143

Index 153

Chapter 1

Introduction

Over the years, due to the advance in technology, systems have been getting in-
creasingly complex. From mobile telephones to automatic doors, we are surrounded
by hardware, software, and their interactions. This leads to the natural question
of investigating the correctness of a given system. Formal verification is one of the
tools used to verify if a system works according to its properties.

Let us be more precise. What do we mean by a system? In the context of this
thesis, a (distributed) system is a set of autonomous processes which communicate
(asynchronously) with one another and accomplish tasks. The problem of formal
verification deals with checking if a model of such a system behaves as desired,
according to some mathematical specifications.

The objective of this thesis is not to prove that a system performs the function it
is intended to do, but rather to verify specific properties for any systems, regardless
of their function. This helps detect a large number of common design errors across
various systems. For example, one of the problems we consider is the deadlock
problem. This occurs when a process reaches a state but cannot progress any
further, either by sending any messages to other processes, receiving any messages,
or performing any local actions. Deadlocks are common design errors that can be
seen in nearly every kind of distributed system.

Let us consider a basic scenario as follows: A user wishes to connect to a server.
To this end, they send a request (which we refer to as REQ) to the server, and
wait. The server reads the request, provides the service, and sends a message
when it is done (which is denoted by DONE). The user can read this message and
restart the exchange again. When the server is not processing a request, it can
self-inspect and might detect a fault in itself. In this case, it sends an alarm to the
user (which we denote by ALARM) and moves to a repair state. The user can read
this alarm, register it, and direct the server back to the idle state by sending an
acknowledgment (ACK). This protocol was introduced in [BZ83].

We model this scenario using a finite-state machine each for the user and

1

2 1. Introduction

the server, and a (potentially unbounded FIFO) communication bu↵er for each
direction, as shown in Figure 1.1. The notation for expressing sends and receptions
is illustrated in the figure. Both the user and the server start at state 0, indicated
by an incoming arrow with no source. An exclamation sign (!m) identifies the
sending of a message m, and a question mark (?m) signals the reception of the
message m. For example, by taking an arc marked with, say !ACK, the user changes
their state, and the message ACK is sent to the channel from which the server
reads.

0 2

1

0 2

1

?ALARM

!ACK

!REQ ?DONE

!ALARM

?ACK

?REQ !DONE

User Server

Figure 1.1: The model of the protocol from [BZ83]

Returning to the deadlock problem, we can see that the model above can lead
the processes to a deadlock. For example, if the user sends a request REQ to the
client, but the client detects a fault before it receives the request and instead sends
an alarm ALARM to the user. Then, at states 1 and 2, respectively, the user and
the server are both in a state where they cannot send any more messages, or receive
the message in their channels.

Some of the central verification problems we study are the non-termination,
reachability, and model checking problems. Non-termination amounts to checking
whether or not every run of the system is terminating. Reachability asks if a
specific state is reachable in any run of the system. And finally, the model checking
problem asks for an algorithm that decides, given a property (expressed as a
formula � of a suitable logic), whether every behavior of the system satisfies it.

We shall now look more closely at the models we study in this thesis, and
survey some of the related results from the literature.

1.1 Systems communicating via FIFO channels

The primary model studied in this thesis is one where the communication between
processes is via (potentially unbounded) First-In First-Out (FIFO) channels, as

1.1. Systems communicating via FIFO channels 3

seen in the example above. Furthermore, we abstract the processes as finite-state
automata, which can send and receive messages from the channels, apart from per-
forming local actions. However, since systems of processes communicating through
(at least two) one-directional FIFO channels, or, equivalently, a single process with
one FIFO channel, simulate Turing machines, most properties, including deadlock
detection and the other problems we mentioned earlier, are undecidable for such
systems [BZ83].

A natural restriction to retain decidability for such systems is weakening the
nature of the channels. In [AJ93, Fin94], the authors showed that if the underlying
channels are lossy, then the state reachability problem becomes decidable (but
non-elementary). For a survey of the plethora of results in the study of lossy
channel systems, see [AČJT00, FS01].

If one restricts to runs with B-bounded channels (the number of messages in
every channel does not exceed B 2 N), then reachability becomes decidable for
universally-bounded FIFO systems [GKM07]. In fact, the model checking problem
also becomes decidable for various logics [Pel00, MM01, GMK04]. Moreover, in
[LM04], the authors introduced existentially k-bounded systems (see also [LM02,
GMK04, GKM07]) where all accepting executions leading to a stable (with empty
channels) final states can be re-ordered into a k-bounded execution. For this
model as well, the reachability problem becomes decidable. However, checking if
a system is existentially k-bounded is undecidable, even if k is part of the input
[GKM07]. A more general definition, still called existentially bounded, is given in
[KM21], where the considered executions are not supposed to be final or stable. In
[HMK+05, LM04], the notion of universally k-bounded is also discussed, and the
authors show that the property is undecidable in general.

In [LTMP08], the authors propose a “context-bounded” analysis of systems
communicating with message channels. According to this approach, one “context”
involves a single process reading from its channel, and posting to the channel
of other processes, and the number of contexts per execution is bounded. The
context-bounded reachability problem is in 2-EXPTIME, even for recursive FIFO
systems [LTMP08, HLMS10]. For “non-confluent topology”, where every channel
has restrictions either at the source or destination, the reachability problem is in
EXPTIME for recursive FIFO systems with 1-bounded channels [HLMS10].

Reachability is in PTIME in half-duplex systems [CF05] with two processes. In
fact, for two process, the reachability set is recognizable and e↵ectively computable.
However, in the same paper, the natural extension to three processes was shown
to be undecidable. More recently, in [DGGL21], the authors introduce “greedy
systems” or RSC (realizable with synchronous communications) systems, as a
possible generalization of half-duplex systems for more than two processes.

In [MP11a, AGK14], uniform criteria for decidability of reachability and model

4 1. Introduction

checking questions are established for communicating recursive systems whose
restricted architecture or communication mechanism gives rise to behaviors of
bounded tree-width.

Input-bounded FIFO machines. Instead of fixing the size of a channel, an-
other approach that has been investigated over the years involves restricting the
input-language of a channel. Roughly, the input-language of a channel refers to
the set of words that record the messages entering a channel. Notably, there have
been various papers studying FIFO machines where the input-language is included
in the set Pref (w⇤

1w
⇤
2 . . . w

⇤
n) of prefixes of a bounded language w

⇤
1w

⇤
2 . . . w

⇤
n. This

class of FIFO machines are called input-bounded. In this thesis, if all w1, . . . , wn

are single letters, then the language is called input-letter-bounded.

Note that if the set of letters that may enter a channel c is reduced to a unique
letter ac, then the input-language of c is included in a

⇤
c , and this subclass trivially

reduces to VASS and Petri nets [YG83]. Also note that, in general, the behavior
of input-bounded FIFO machines does not have bounded tree-width.

Monogeneous FIFO nets [Fin82, MF85, FS01] are defined as FIFO nets such
that the input-languages of channels c are included in Pref (uc ·v⇤c), where uc, vc are
two words associated with c. Furthermore, linear FIFO nets [CF87] refer to FIFO
systems such that the input-languages are included in Pref (m⇤

1m
⇤
2 . . .m

⇤
n) where

each mi is a letter and mi 6= mj if i 6= j. Both monogeneous and linear FIFO nets
generalize Petri nets, and still have decidable reachability. The deadlock problem,
which is, in fact, a variant of the reachability problem, is shown as decidable for
input-letter-bounded FIFO systems in [GGLR87] by reducing to reachability for
VASS. However, the extension to general input-bounded machines was left open.

Flat machines are another subclass of input-bounded machines in which the
language of their control-graph, considered a finite automaton, is a bounded lan-
guage. For flat FIFO machines, control-state reachability is NP-complete [EGM12];
this result has recently been extended to reachability, channel unboundedness, and
other classical properties [FP19].

Flat, input-letter-bounded, linear (which we also refer to as distinct-letter
bounded), and monogeneous FIFO machines (the last three types contain VASS,
and are all incomparable) are all included in the more general input-bounded FIFO
machines. The unboundedness problem of input-bounded FIFO machines was
shown to be decidable in [JJ93] by using the well-structured concepts but with no
extension to decidability of reachability.

Synchronizability. There have been various notions of synchronizability of a
communicating system that have been introduced in the literature. Broadly, a

1.1. Systems communicating via FIFO channels 5

system is called synchronizable if every execution can be rescheduled to meet
certain criteria, for example, a channel bound.

We focus on the boundedness problem, which we know to be undecidable. We
could limit our analysis to decide whether, for a given integer k � 0, known in
advance, the FIFO channels are k-bounded, and this property is generally decidable
in PSPACE. Unfortunately, the k-boundedness property is too binding since it
excludes even a basic two-process unbounded system where one process only sends
messages, and the other process is always able to receive. Hence, to cope with
this limitation, one can find variants of the boundedness property that essentially
reduce to say that every unbounded execution of a system (i.e., where one or more
channels are unbounded along the execution) is equivalent (say, causally equivalent)
to another bounded execution.

In [BB11], the authors introduced synchronizable systems, for which every
execution is equivalent (for the projection on sending messages) to an execution of
the same system, but communicating by rendezvous. To avoid ambiguity, we call
such systems send-synchronizable. However, for peer-to-peer systems, this property
was shown to be undecidable in [FL17]. In [SAB20], the authors show that the
class of synchronizable peer-to-peer systems is exactly the same as the ones which
are ”choreography realizable”, a property that now precisely characterizes the class
of peer-to-peer systems which are synchronizable.

In [BEJQ18], the authors called a system k-synchronizable (to avoid confusion,
we call such systems weakly k-synchronizable in the remainder of this thesis) if
every message sequence chart (MSC) of the system admits a linearization (which is
not necessarily an execution) that can be divided into blocks of at most k messages.
After each block, a message is either read, or will never be read. This constraint
seems to imply that bu↵ers are bounded to k messages. However, as the linearization
need not be an execution, this implies that a weakly k-synchronizable execution,
even with the more e�cient reschedule, can need unbounded channels to be run by
the system. Reachability under this restriction and checking k-synchronizability
are both PSPACE-complete [DGLL20].

A short note on communication architectures. A key di↵erence between
these works is that they consider di↵erent communication architectures. Exis-
tentially bounded systems have been studied for peer-to-peer systems (with one
channel per pair of processes). On the other hand, k-synchronizability has been
studied for mailbox communication, for which each process merges all its incoming
messages in a unique channel. The decidability results for k-synchronizability
have been extended to peer-to-peer communications [DGLL20], but it is unknown
whether the decidability results for existentially bounded systems extend to mailbox
communication. Moreover, variants of those definitions can be obtained depending
on if we consider messages that are sent but never read, called unmatched messages.

6 1. Introduction

Indeed the challenges that arise in [BEJQ18] are due to mailbox communication
and unmatched messages blocking a channel so that all messages sent afterward
will never be read.

1.2 Well-structured transition systems

Transition systems, including FIFO systems, broadly refer to any systems that
take transitions to move from state to state. Well-structured transition systems
(WSTS) (initially called structured transition systems in [Fin90]) are a notable
subclass of transition systems. They have decidable termination and boundedness
problems. They capture properties common to a wide range of systems, and are
used in model checking, system verification, and concurrent programming [FS01].

A WSTS is an infinite set X (of states) with a transition relation ! ✓ X ⇥X.
The set X is quasi-ordered by , and ! fulfills one of the various possible
monotonies with respect to . The quasi-ordering of X is further assumed to be
well, i.e., well-founded and with no infinite antichains. These two properties form
a framework that helps to algorithmically decide verification problems such as
boundedness, termination, and coverability. Some important classes of infinite-state
systems are straightforwardly WSTS, and some others can be analyzed using WSTS
as approximations of their behavior. Petri Nets (or, equivalently, vector addition
systems (with states) VASS), and many of their extensions are WSTS. Even Lossy
Channel Systems, which we introduced earlier, are WSTS. More recently, the
theory of WSTS has been applied to study computational models resulting from
a combination of di↵erent types of systems like asynchronous systems defined
by extending pushdown systems with an external memory [CV09], cryptographic
protocols [DS20], and others.

While some systems may not have the required monotonicity, they can be over-
approximated in order to be a WSTS. Hence, in the over-approximated system, any
negative answer for control-state reachability (or positive answer for termination
or boundedness) will still be valid for the original system. This is an approach
used, for example, in [ABC+08, ADR09, ACV11].

Many safety properties of real-world systems reduce to the coverability problem,
which asks: Given a WSTS S = (X,!,) and two states x, y 2 X, does there
exist a sequence of transitions leading from x to a state y0 � y? For this verification
problem, there are two main classes of algorithms on WSTS, both relying heavily
on the monotony condition. Firstly, we have the backward algorithms, which start
from a final state, and then progressively compute an over-approximation of the
predecessor states. Such algorithms work well on WSTS as their properties result in
a simple representation of the approximation of predecessor states. Such algorithms
generally allow for deciding safety properties like control-state reachability. On

1.3. Contributions of the thesis 7

the other hand, forward algorithms that start from an initial state, progressively
compute an over-approximation of the reachable states. These algorithms generally
allow for deciding liveness properties like termination or properties related to
the complete set of reachable states like boundedness. Over the years, a number
of strengthenings and weakenings of the notion of monotony (of ! w.r.t.)
were introduced, with the goal of allowing WSTS to capture ever more models
[AČJT00, FS01]. However, the representation of the approximation of reachable
states is not immediate, making verifying properties that are more precise than
boundedness di�cult. Recently, a procedure to decide such properties has been
proposed in [BFM17], but its termination was not guaranteed.

1.3 Contributions of the thesis

This thesis aims to study a number of under-approximations of general transition
systems. Firstly, we look at branch-well-structured transition systems, which we
shall henceforth refer to as branch-WSTS. This model tries to relax the afore-
mentioned well-quasi-order condition to elements along an execution. Moreover,
we similarly try to relax the monotony condition as well. Secondly, for FIFO
machines, we restrict the reachability set to runs where the language that enters a
channel is bounded. Finally, we survey various notions of synchronizability from
the literature, provide a framework that consolidates many of these classes, and
give properties to decide inclusion into the class. We summarize here the main
contributions of this thesis.

1.3.1 Branch-WSTS

As mentioned previously, WSTS captures various classes of transition systems, and
lets one algorithmically verify properties about them. Our main contribution is to
prove that the monotony and well-quasi-order (wqo) assumptions can further be
weakened while some problems remain decidable. More precisely, we introduce a
notion of WSTS, called branch-well-structured transition systems (branch-WSTS),
where the monotony only applies to states reachable one from another. Furthermore,
we also relax the wqo condition to such states. Retaining the decidability of
termination and boundedness is still possible with this relaxation. Moreover, we
show some classes of systems that have been studied in the literature that are
branch-WSTS.

However, we show that the coverability problem is undecidable for general
branch-WSTS. Hence, for the coverability problem, we introduce a notion of
monotony, called cover-monotony, which still allows deciding the coverability prob-
lem, even in the absence of strong (or strict or transitive or reflexive) monotony. In-

8 1. Introduction

deed, while the usual backward algorithm for coverability relies on well-foundedness,
the forward algorithm described in [BFM17] does not require that property. Hence,
we show that, for a given initial state, we can decide the coverability problem for
such systems.

1.3.2 Bounded reachability

Secondly, we solve a problem that was left open in [GGLR87], namely the decid-
ability of the reachability problem for input-bounded FIFO machines. We present
a simulation of input-bounded FIFO machines by counter machines with restricted
zero tests, for which we show that reachability is decidable. The main idea is to
associate a counter with each word in the bounded language, and to ensure that the
counters are incremented and decremented in a way that corresponds to the FIFO
order. Since we can have repeated letters, and ambiguities in the FIFO machine,
we first need to construct a normal form of the FIFO machine. Furthermore, we
ensure that for every run in the FIFO machine, we can construct an equivalent
run in the counter machine and vice-versa.

As we actually solve the general rational-reachability problem, we can deduce the
decidability of other verification properties like control-state reachability, deadlock,
unboundedness, and termination.

We study the natural dual of the input-bounded reachability problem, which
are systems of output-bounded languages in which the set of words received
by each channel is constrained to be bounded, and can deduce the reachability,
unboundedness, termination, and control-state reachability for the same.

We obtain better upper bounds for the input-bounded reachability of FIFO
machines with a single channel (reachability is still undecidable for FIFO machines
with a single channel). This is done by reducing it to reachability in unary ordered
multi-pushdown systems (a class that was previously analyzed in [ABH17]). It is,
hence, solvable in EXPTIME.

Following the bounded verification paradigm, applied to FIFO machines (for
instance, in [EGM12, FP19]), we open the way to a methodology that would apply
existing results on input-bounded FIFO machines to general FIFO machines.

1.3.3 Synchronizability

As we saw earlier, there are a number of di↵erent notions of synchronizability in the
literature. In order to unify these notions, we introduce a general framework based
on monadic second-order (MSO) logic and (special) tree-width that captures most

1.4. Organization of the thesis 9

existing definitions of systems that may work with bounded channels. Moreover,
reachability and model checking are shown to be decidable in this framework.

We show that existentially bounded systems can be expressed in our framework
and, consequently, the existentially k-bounded property is decidable by using the
generic proof. We generalize the existing notion of (weak) k-synchronizability in,
and we introduce three new classes of synchronizable systems: weakly synchroniz-
able (which are more general than weakly k-synchronizable [BEJQ18]), strongly
synchronizable and strongly k-synchronizable (which are particular cases of weakly
synchronizable). We then prove that most of these properties fit in our framework
and are all shown to be decidable using the generic proof. We also show some
undecidability results for classes that do not fit in the framework.

We then deduce that reachability and model checking are decidable for these
classes. Previously, only control-state reachability was shown to be decidable for
weakly k-synchronizable [BEJQ18], and it is clearly also decidable for existen-
tially/universally bounded systems, but reachability properties are generally not
studied for these classes of systems.

In order to obtain better complexity results for some classes (strongly and
weakly synchronizable systems), we also use the fragment of propositional dynamic
logic with loop and converse (LCPDL) instead of MSO logic in our framework.

Finally, we also look closely at the notion of send-synchronizability, a notion
that was shown undecidable for peer-to-peer systems in [FL17]. For this model,
we go on to show that reachability and control-state reachability are also not
decidable, and investigate whether there is a class of properties that are decidable
for send-synchronizable systems.

1.4 Organization of the thesis

Chapter 2 introduces the various types of models we study in the remainder of
the thesis. It starts with the most general transition system, and goes on to define
the more specific models of FIFO machines, communicating systems, and counter
machines. For communicating systems, we also define the graphical representation
and give some information on the communication architecture. We also define the
notion of finite automata and some conditions on them.

Chapter 3 delves into the first subclass of transition systems that we study in
this thesis: branch-well-structured transition systems, or branch-WSTS.

We first introduce terminology and some well-known results concerning well-
quasi-orderings and well-structured transition systems. Then we introduce branch-

10 1. Introduction

WSTS, and show that termination and boundedness are decidable for a class of
e↵ective branch-WSTS. Then, we look at some examples of classes of branch-WSTS.
Finally, we investigate the coverability problem for WSTS with relaxed conditions.

Chapter 4 investigates the second restriction we study on transition systems.
In this chapter, we study the bounded reachability problem for FIFO machines.

We introduce the notion of bounded reachability, and then go on to prove the
main result, which is the input-bounded rational-reachability problem. Then, we
extend the result to other problems, such as reachability, deadlock, and boundedness.
This is followed by the study of the natural dual of input-bounded reachability,
which we refer to as output-bounded reachability. We then study the single-channel
case, and obtain some lower bounds and elementary upper bounds. Finally, we
conclude with a theory to use these results as an under-approximation for general
FIFO machines.

Chapter 5 provides a framework, based on MSO (and LCPDL) logic and
special tree-width, in order to unify the various definitions of synchronizability in
literature.

It starts with providing a logical background for the rest of the chapter, and
some of the graphical notions related to the executions of communicating systems,
such as tree-width and the conflict graph. Then, we present the unifying MSO
(and LCPDL) framework and two general theorems on k-synchronizability and
model checking. Finally, we apply the framework to various subclasses, including
k-synchronous MSCs and existentially-bounded MSCs. We conclude with a brief
account of some recent developments in the field.

Chapter 6 focuses on the send-synchronizability problem for peer-to-peer
systems. We study some of the verification problems for send-synchronizable
systems.

We introduce the two notions of send-synchronizable systems, and some of the
problems that we investigate for these classes. Then, we show that reachability
and some variants are undecidable for both these classes. Then, we study a series
of problems for which we can have decidable properties, and conclude with some
final remarks.

Most of the results presented in this thesis appear in [BFS20, BDGF+21,
BFS22a, BFS22b].

Chapter 2

Transition Systems

Transition systems are an abstraction used in the study of computation, to describe
the potential behavior of discrete and continuous systems. A transition system
consists of a set of states, and a collection of transitions between states. We study
a variety of transition systems in this work, and this chapter will be their overview.

As a concrete example, consider an elevator. Here, the states are the various
positions of the elevator cabin, and the transitions describe the movement of the
cabin. It can be viewed as a dynamic process with the users pressing buttons,
thereby changing the state of the elevator. Similarly, programs, networks, com-
munication systems, etc., can be seen as transition systems. Moreover, the notion
of transition systems not only helps in modeling such behaviors but also helps to
develop tools for verifying the modeled system.

Hence, the goal is to develop general mathematical structures that could serve
as su�cient conditions for achieving decidability. Over the last few decades,
there has been a concerted e↵ort toward defining classes of models and finding
appropriate algorithms to automatically verify them. Notable examples include
timed automata [ACD90, AH94], hybrid automata [Hen95], Petri nets [Jan90,
JM95], well-structured transition systems [AČJT00, FS01], etc.

Preliminaries. Before we start with the formal representation of transition
systems, let us recall some basic definitions of words and languages.

Let A be a finite alphabet. As usual, A⇤ is the set of finite words over A, and
A

+ the set of non-empty finite words. We let |w| denote the length of w 2 A
⇤.

For the empty word ", we have |"| = 0. Given a 2 A, let |w|a denote the number
of occurrences of a in w. With this, we let Alph(w) = {a 2 A | |w|a � 1} . The
concatenation of two words u, v 2 A

⇤ is denoted by u · v or u.v or simply uv.

u 2 A
⇤ is a prefix (resp. su�x) of w if w = u · v (resp. w = v · u) for v 2 A

⇤.
Similarly, u 2 A

⇤ is an infix of w if w = v1 · u · v2 for v1, v2 2 A
⇤. The sets of

11

12 2. Transition Systems

prefixes, su�xes, and infixes of w 2 A
⇤ are denoted by Pref (w), Suf (w), and

Inf (w), respectively.prefix, su�x,
infix

Note that {", w} ✓ Pref (w) \ Suf (w) \ Inf (w). For a set
X, any mapping f : A⇤ ! 2X can be extended to f : 2A

⇤ ! 2X letting, for
L ✓ A

⇤, f(L) =
S

w2L f(w). In particular, Alph(L), Pref (L), Suf (L), and Inf (L)
are extended in that way.

Now, we shall begin to define transition systems. At its core, the most general
representation of a transition system is the following.

Definition 2.1. A transition systemtransition
system

is a pair S = (X,!) where X is a (potentially
infinite) set of states and ! ✓ X ⇥X is the transition relation.

We write x ! y for (x, y) 2 !. Transition systems may have additional
structures like initial and final states, labels for transitions, causal independence
relations, etc.

Example 1. A simplified model of a server is described as follows (see Figure 2.1):
The server has three states, a waiting state, a state upon receiving a request, and
a state upon completing a request. If the server is in the idle state, it continues to
wait until it receives a request. Upon receiving a request, it moves to xreq. It then
processes the request and goes to xdone upon completing the request, and then goes
back to the waiting state. Hence,

X = {xwait, xreq, xdone}
! = {(xwait, xwait), (xwait, xreq), (xreq, xdone), (xdone, xwait)}

xwait xreq xdone

Figure 2.1: Transition system as described in Example 1

We denote by
⇤�! the reflexive, transitive closure of !, and

+�! denotes the
transitive closure of !. For every x 2 X, the sets of immediate successors and
immediate predecessors are defined by:

PreS(x) = {y 2 X | y ! x}
PostS(x) = {y 2 X | x ! y}

For every x 2 X, Post
⇤
S(x) = {y 2 X | x ⇤�! y} and Pre

⇤
S(x) = {y 2 X | y ⇤�! x}

denote respectively the sets of successors and predecessors of x.Pre⇤, Post⇤ Post
⇤
S(x) is also

2.1. Verification problems for transition systems 13

referred to as the reachability set of x reachability
set

. We say that a state y is reachable from a
state x if y 2 Post

⇤
S(x). We drop the subscript S when it is clear from the context.

A transition system S is finitely branching if for every x 2 X, Post(x) is finite. It
is infinitely branching otherwise. We naturally extend Post, Pre, Post

⇤ and Pre
⇤

to subsets of states, e.g., for D ✓ X we have Pre
⇤(D) =

S
x2D Pre

⇤(x).

Often, to be more specific while describing transition systems, we label the
transitions with actions, which are elements from a finite alphabet. This aids
in answering questions about the occurrence of specific transitions. We formally
define labeled transition systems (LTS).

Definition 2.2. A labeled transition system (with an initial state) labeled
transition
system

is a quadruple
S = (X,A,!, init) where X is the set of states, A is a finite alphabet, init 2 X is
the initial state, and ! ✓ X ⇥ A⇥X is the transition relation.

In the case of a labeled transition system, we write x
a�! x

0 instead of (x, a, x0) 2
!. For x, x

0 2 X, let x ! x
0 if x

a�! x
0 for some a 2 A. For w 2 A

⇤, we write
x

w�! x
0 if there is a w-labeled path from x to x

0. Formally, x
"�! x

0, where " is the
empty word, if x = x

0. And x
aw�! x

0 if there is y 2 X such that x
a�! y and y

w�! x
0.

We let Traces(S) = {w 2 A
⇤ | init w�! x for some x 2 X} be the set of traces.

Given w 2 A
⇤, we let TracereachS(w) = {x 2 X | init w�! x}. Moreover,

for L ✓ A
⇤, TracereachS(L) =

S
w2L TracereachS(w) is the set of states that

are reachable via a word from L. Finally, for a labeled transition system reachability
set for LTS

, the
reachability set of S is defined as ReachsetS = Post

⇤
S(init) = TracereachS(A⇤).

We call S finite if ReachsetS is finite (and this is the case if X is finite). Otherwise,
S is called infinite.

When we work on purely state problems (hence, labels are meaningless), we
will allow ourselves to use an infinite set of actions in order to provide the reader
with information about what transitions are used. However, most of this work
relies on using labels, hence, we only use a finite set of actions.

2.1 Verification problems for transition systems

We formally define some of the verification problems commonly studied for tran-
sition systems. It is important to note that in order to be able to decide these
problems for transition systems, at the minimum, we require that the transition
relations have some e↵ectiveness properties. The most basic condition is that
! is decidable. This is the classic definition of e↵ectivity for a finite-branching
transition system, so if ! is decidable, we say that the finitely branching transition
system S is e↵ective. However, this is only a necessary condition, not a su�cient
one. In this thesis, we refer to this notion as weakly e↵ective to avoid confusion,

14 2. Transition Systems

as we shall see in future chapters stronger e↵ectivity conditions for subclasses of
transition systems.

The central problem for the verification of transition systems is reachability,
which simply asks whether a state (say, an error state) is reachable from another
state (say, an initial state).

Decision Problem: REACHABILITY

Input: a TS S = (X,!),

x, y 2 X

Question: is y 2 Post
⇤
S(x)?

Reachability is a safety problem, i.e., it only looks at finite transition sequences.
We also look at liveness problems. One of these is non-termination, which looks
for an infinitely long execution in the system.

Decision Problem: NON-TERMINATION

Input: a TS S = (X,!),

x0 2 X

Question: is there x1, x2, . . . 2 X such that:

for all i � 0, xi �! xi+1?

Decision Problem: BOUNDEDNESS

Input: a TS S = (X,!),

x 2 X

Question: is ReachS(x) finite?

Note that a finitely branching system can be unbounded only if it does not
terminate. Moreover, in many cases, termination reduces to boundedness. However,
the converse is not true, as we can find transition systems where termination is
decidable, but boundedness is not.

2.2. FIFO machines 15

2.2 FIFO machines

We now look at some subclasses of transition systems. A FIFO machine M can
be seen as a finite-state automaton equipped with a collection of FIFO (First-In
First-Out) channels c1, c2, . . . In this section, we consider FIFO machines having a
sequential control graph rather than systems of communicating processes that are
distributed systems. We study the latter in Section 2.2.1. It is clear that, given
a distributed system, one may compute the Cartesian product of all processes to
obtain a FIFO machine (the converse is not always true).

Definition 2.3. A FIFO machine FIFO
machine

is a tuple M = (Q,Ch,⌃, T, q0) where Q is a
finite set of control-states, q0 2 Q is an initial control-state, and Ch is a finite
set of channels. Moreover, ⌃ is a finite message alphabet. It is partitioned into
⌃ =

U
c2Ch ⌃c where ⌃c contains the messages that can be sent through channel c.

Finally, T ✓ Q⇥ActM⇥Q is a transition relation where actions
hc!mi, hc?mi

ActM = {hc!mi | c 2 Ch
and m 2 ⌃c}[{hc?mi | c 2 Ch and m 2 ⌃c} is the set of send and receive actions.

A trace trace⌧ 2 Act⇤M is a finite (possibly empty) sequence of actions. We write " for
the empty trace. For a channel c, we let proj c! : Act

⇤
M ! ⌃⇤

c be the homomorphism
defined by proj c!(hc!mi) = m for all m 2 ⌃c, and proj c!(↵) = " if ↵ 2 ActM is not
of the form hc!mi for some m 2 ⌃c. Moreover, proj c!(⌧1 · ⌧2) = proj c!(⌧1) · proj c!(⌧2).

Furthermore, we let proj ! : Act
⇤
M ! ⌃⇤ be the homomorphism defined by

proj !(hc!mi) = m for all m 2 ⌃ and c 2 Ch, and proj !(↵) = " if ↵ 2 ActM is not
of the form hc!mi for some m 2 ⌃ and c 2 Ch. We define proj c? : Act

⇤
M ! ⌃⇤

c and
proj ? : Act

⇤
M ! ⌃⇤ similarly.

Let ⌃!? = {#m | m 2 ⌃ and # 2 {!, ?}}. For ⌧ 2 Act⇤M and channels c 2 Ch,
we write:

• ⌧c 2 Act⇤M for the sub-trace of actions � = �1 · · ·�k in ⌧ such that �i = hc#mi
for all 1 i k and # = {!, ?} and m 2 ⌃c.

• bu↵erc(⌧) for the word w 2 ⌃⇤, if it exists, such that proj c!(⌧) = proj c?(⌧) ·w.

• proj !? : Act
⇤
M ! ⌃⇤

!? for the homomorphism defined by proj !?(hc!mi) = !m
and proj !?(hc?mi) = ?m for all m 2 ⌃.

A FIFO machine M = (Q,Ch,⌃, T, q0) induces a (potentially infinite) labeled
transition system transition

system
induced by
FIFO
machine

SM = (XM,ActM,!M, initM). Its set of states is XM =
Q⇥

Q
c2Ch ⌃⇤

c . In (q,w) 2 XM, the first component q denotes the current control-
state and w = (wc)c2Ch determines the contents wc 2 ⌃⇤

c for every channel c 2 Ch.
The initial state is initM = (q0, ") where " = (", . . . , "), i.e., every channel is empty.
The transitions are given as follows:

16 2. Transition Systems

• (q,w)
hc!ai��!M (q0,w0) if (q, hc!ai, q0) 2 T , w0

c = wc · a, and w0
d = wd for all

d 2 Ch \ {c};

• (q,w)
hc?ai���!M (q0,w0) if (q, hc?ai, q0) 2 T , wc = a ·w0

c, and w0
d = wd for all

d 2 Ch \ {c}.

We say a state is stablestable state if wc = " for all c 2 Ch. The initial state initM
of S is a stable state. The reachability set of M is defined as the reachability
set of SM, i.e., ReachsetM = ReachsetSM . As in the case of transition systems,
Traces(M) = Traces(SM) = {� 2 Act⇤M | initM

��! x for some x 2 XM}.

A trace ⌧ isFIFO trace FIFO (resp. k-bounded FIFO, for k � 1) if for all c 2 Ch, for
all prefixes ⌧ 0 of ⌧ , bu↵erc(⌧ 0) is defined (resp. defined and of length at most k);
in other words, ⌧ is FIFO if for every prefix ⌧

0 of ⌧ , for c 2 Ch, the sequence
of messages received by c in ⌧ 0 is a prefix of the sequence of messages sent to c.
Intuitively, a trace is FIFO if it is an execution of a machine that manipulates
FIFO channels. A tracestable trace ⌧ is stable if bu↵erc(⌧) = " for all c 2 Ch.

A trace issynchronous
trace

synchronous if proj !?(⌧) is of the form !m1·?m1·!m2·?m2 · · ·!mk·?mk

for some k � 0 and m1, . . . ,mk 2 ⌃. In particular, a synchronous trace is a
1-bounded FIFO trace. The converse is not necessarily true. For example, we could
have a 1-bounded FIFO trace hc1!m1i · hc2!m2i · hc1?m1i · hc2?m2i for processes
c1, c2 2 Ch and m1,m2 2 ⌃. Since proj !?(⌧) = !m1·!m2·?m1·?m2, the trace is not
synchronous.

For k � 1, we write Tracesk (S) for the set of k-bounded traces of S. Moreover,
Traces0 (S) is the set of synchronous traces of S.

2.2.1 Communicating finite-state machines

This section provides preliminaries on communicating finite-state machines (CFMs).
In a CFM, a fixed number of finite-state processes communicate by exchanging
messages through unbounded FIFO channels. Each process is encoded by an au-
tomaton, and by abuse of notation, we say that a system is the parallel composition
of such processes. In this section, we are looking at peer-to-peer (p2p) systems,
where each pair of machines exchange messages via two channels, one per direction
of communication. We also look at mailbox, or ⇤�1, communication, where each
process is limited to a single FIFO channel that it receives from. We will define
the model precisely in Section 2.2.3.

Let Pset of
processes P

be a finite set of processes. The set of (p2p) channels is Ch = {(p, q) 2 P⇥
P | p 6= q}. Let ⌃ =

U
c2Ch ⌃c be a set of messages. For (p, q) 2 Ch, let Send(p, q) =

{h(p, q)!mi | m 2 ⌃} and Rec(p, q) = {h(p, q)?mi | m 2 ⌃(p,q)}. For p 2 P, we

2.2. FIFO machines 17

set Send(p,) = {h(p, q)!mi | q 2 P \ {p} and m 2 ⌃}. Similarly, for m 2 ⌃,
Send(m) = {h(p, q)!mi | (p, q) 2 Ch}. Moreover, Actp = Send(p,)[Rec(, p) will
denote the set of all actions that are executed by p. Finally, Act =

S
p2P Actp is the

set of all the actions. For every process p 2 P, we let ⌃p =
S

q2P ⌃(p,q) [
S

q2P ⌃(q,p).
Note that these sets are not disjoint, i.e., ⌃p \ ⌃q = ; for p 6= q.

Definition 2.4. A communicating system
communicating

finite-state

machine

(CFM)

over P is a tuple A = ((Pp)p2P,⌃). For
each p 2 P, Pp = (Qp,⌃p, �p, `0p) is a finite labeled transition system where Qp is a
finite set of local (control) states, �p ✓ Qp ⇥ Actp ⇥Qp is the transition relation,
and `0p 2 Qp is the initial state. Moreover, ⌃ =

S
p2P ⌃p.

Given p 2 P and a transition t = (`,↵, `0) 2 �p, we let source(t) = `, target(t) =
`
0, action(t) = ↵, and msg(t) = m if ↵ 2 Send(m) [Rec(m).

We now define the operational semantics of a communicating system A as the
transition system of the FIFO machine MA = (QA,Ch,⌃, TA, `0A). We define
MA as follows. The set of control-states is the Cartesian product of the sets
of local states of each process, QA =

Q
p2P Qp. Moreover, `0A = (`0p)p2P and

TA ✓ QA ⇥ Act ⇥QA. The set of transitions can be described as follows: there is
a transition ((`p)p2P,↵, (`0p)p2P) 2 TA if (`p,↵, `0p) 2 �p for some p 2 P and for all
q 6= p, `q = `

0
q.

Example 2 (Connection-Deconnection Protocol). A model for the (simplified)
connection-deconnection protocol, CDP, between two processes is described as
follows (see Figure 2.2): We model the protocol with two processes and two
(unbounded) channels. The first process (on the left) can open a session (this
is denoted by sending the message “a” through channel c1 to the other process).
Once a session is open, the first process can close it (by sending message “b” to the
other process), or upon demand of the second process (if it receives the message
“e”). This protocol has been studied in [JR67, Jer91].

In the example, it is natural to consider a system of two processes p, q. However,
we formalize this in terms of the associated FIFO machine. That is, the CDP is
modeled as the FIFO machine MA = (QA,Ch,⌃, TA, `0A) where QA = {0, 1} ⇥
{0, 1} (the Cartesian product of the local states) with initial state `0A = (0, 0), Ch =
{(p, q), (q, p)}, ⌃ = ⌃(p,q)] ⌃(q,p) with ⌃(p,q) = {a, b} and ⌃(q,p) = {e}. Moreover,
the transition relation T contains, amongst others, ((0, 0), h(p, q)!ai, (1, 0)) and
((1, 0), h(p, q)?ai, (1, 1)).

2.2.2 Message sequence charts

Another (equivalent) way to define the semantics of a communicating system is to
consider the interactions between processes graphically. A CFM accepts/generates

18 2. Transition Systems

0 1

(p, q)

(q, p)

0 1

h(p, q)!ai

h(p, q)!bi

h(q, p)?ei

h(p, q)?ai

h(p, q)?bi

h(q, p)!ei

Figure 2.2: The model of the connection-deconnection protocol

message-sequence charts (MSCs), which are similar to UML’s sequence diagrams
[LR11]. MSCs are equipped with Lamport’s happened-before relation: we say that
an event e happens before an event f if there is a ”path” from e to f [Lam78].
Additional binary predicates connect the emission of a message with its reception,
and successive events executed by the same process. We shall first define the notion
of MSCs more formally.

A p2p MSC (or simply MSC)message
sequence

chart (MSC)

over a set of processes P and message set ⌃ is
a tuple M = (E ,!,C,�) where E is a finite (possibly empty) set of events and
� : E ! Act is a labeling function. For p 2 P, let Ep = {e 2 E | �(e) 2 Actp} be
the set of events that are executed by p. We require that ! (the process relation)
is the disjoint unionrelation !p

S
p2P !p of relations !p ✓ Ep ⇥ Ep such that !p is the direct

successor relation of a total order on Ep. For an event e 2 E , a set of actions A 2 Act ,
and a relation R ✓ E ⇥ E , let #A(R, e) = |{f 2 E | (f, e) 2 R and �(f) 2 A}|.
We require that C ⇢ E ⇥ E (the message relation)relation C satisfies the following:

(1)FIFO
condition

for every pair (e, f) 2 C, there is a send action h(p, q)!mi such that �(e) =
h(p, q)!mi, �(f) = h(p, q)?mi, and #Send(p, q)(!+

, e) = #Rec(p, q)(!+
, f),

(2) for all f 2 E such that �(f) is a receive action, there is e 2 E such that eC f .

Finally,relation M letting M = (![C)⇤, we require that M is a partial order.

Condition (1) above ensures that every (p2p) channel (p, q) behaves in a
FIFO manner. By Condition (2), every receive event has a matching send event.
Note that, however, there may be unmatched send events in an MSC. We let
SendEv(M) = {e 2 E | �(e) is a send action}, RecEv(M) = {e 2 E | �(e) is a
receive action}, Matched(M) = {e 2 E | there is f 2 EMatched(M) such that e C f}, and

Unm(M) Unm(M) = {e 2 E | �(e) is a send action and there is no f 2 E such that eC f}.
We do not distinguish isomorphic MSCs and let MSC be the set of all MSCs over
the given sets P and ⌃.

Example 3. For a set of processes P = {p, q, r} and a set of messages ⌃ =
{m1,m2,m3,m4}, M1 = (E ,!,C,�) is an MSC where, for example, e2 C e

0
2 and

2.2. FIFO machines 19

e
0
3 ! e4 (See Figure 2.3). The dashed arrow means that the send event e1 does not
have a matching receive, so e1 2 Unm(M1). Moreover, e2 M1 e4, but e1 6M1 e4.
We can find a total order ◆ M1

such that e1 e2 e
0
2 e3 e

0
3 e4 e

0
4.

We call a linearization, which is formally defined below.

e1

e2e02

e3 e03
e4e04

p q r
m1

m2

m3

m4

Figure 2.3: MSC M1

Consider M = (E ,!,C,�) 2 MSC. A p2p linearization (or simply lineariza-
tion) linearizationof M is a (reflexive) total order ✓ E ⇥ E such that M ✓ .

Let M = (E ,!,C,�) 2 MSC and consider E ✓ E such that E is M -downward-
closed, i.e, for all (e, f) 2 M such that f 2 E, we also have e 2 E. Then, the
MSC (E,!\ (E ⇥ E),C \ (E ⇥ E),�0), where �0 is the restriction of E to E, is
called a prefix of M . In particular, the empty MSC is a prefix of M . We denote the
set of prefixes of M by Pref (M). This is extended to sets L ✓ MSC as expected,
letting Pref (L) =

S
M2L Pref (M).

Let M1 = (E1,!1,C1,�1) and M2 = (E2,!2,C2,�2) be two MSCs. Their
concatenation M1 · M2 = (E ,!,C,�) is defined if, for all (p, q) 2 Ch, e1 2
Unm(M1), and e2 2 E2 such that �(e1) 2 Send(p, q) and �(e2) 2 Send(p, q), we
have e2 2 Unm(M2). As expected, E is the disjoint union of E1 and E2, C = C1[C2,
� is the “union” of �1 and �2, and ! = !1 [!2 [R. Here, R contains, for all
p 2 P such that (E1)p and (E2)p are non-empty, the pair (e1, e2) where e1 is the
maximal p-event in M1 and e2 is the minimal p-event in M2. Note that M1 ·M2 is
indeed an MSC and that concatenation is associative.

Now, given a communicating system S, we will define the language of S directly
as a set of MSCs. This semantic view is essentially equivalent to the transition
system view we defined earlier, but they have di↵erent advantages depending on
the context.

Let M = (E ,!,C,�) be an MSC. A run of S on M is a mapping run on MSC⇢ : E !S
p2P �p that assigns to every event e the transition ⇢(e) that is executed at e. Thus,

we require that

(i) for all e 2 E , we have action(⇢(e)) = �(e),

(ii) for all (e, f) 2 !, target(⇢(e)) = source(⇢(f)),

20 2. Transition Systems

(iii) for all (e, f) 2 C, msg(⇢(e)) = msg(⇢(f)), and

(iv) for all p 2 P and e 2 Ep such that there is no f 2 E with f ! e, we have
source(⇢(e)) = `0p .

TheLp2p(S) (p2p) language of S is Lp2p(S) = {M 2 MSC | there is a run of S on M}.
Note that, as in [BEJQ18, DGLL20], we do not consider final states, as our purpose
is to reason about all possible traces that can be generated by S. Moreover, we
see that Lp2p(S) is prefix-closed, i.e., Pref (Lp2p(S)) ✓ Lp2p(S).

2.2.3 Mailbox semantics

A di↵erent model of communication is with the mailbox semantics, also known as
⇤ � 1 mailbox, where every process receives from a single channel. The notions
we had for the peer-to-peer case can be directly extended for the mailbox case as
well. However, we need to add constraints to the MSC representation in order to
accommodate for this change.

Definition 2.5. Letmailbox
semantics

@M ✓ E ⇥ E be defined by: e1 @M e2 if there is q 2 P such
that �(e1) 2 Send(, q), �(e2) 2 Send(, q), and one of the following holds:

• e1 2 Matched(M) and e2 2 Unm(M), or

• e1 C f1 and e2 C f2 for some f1, f2 2 Eq such that f1 !+
f2.

We letrelation �M �M = (! [C [@M)⇤. Note that M ✓ �M . We call M 2 MSC

a mailbox MSC if �M is a partial order. Intuitively, this means that events can
be scheduled in a way that corresponds to the mailbox semantics, i.e., with one
incoming channel per process. Following the terminology in [BEJQ18], we also say
that a mailbox MSC satisfies causal delivery. The set of mailbox MSCs M 2 MSC

is denoted by MSCmb.

Example 4. MSC M1 is a mailbox MSC. Indeed, even though the order defined
in Example 3 does not respect all mailbox constraints, particularly the fact that
e4 @M1 e1, there is a total order ◆ �M1 such that e2 e3 e

0
3 e4 e1

e
0
2 e

0
4. We call a mailbox linearization, which is formally defined below.

Similar to the notion of a p2p linearization, a mailbox linearization of M is a
total order ✓ E ⇥ E such that �M ✓ . That is, every mailbox linearization
is a p2p linearization, but the converse is not necessarily true (Example 4). Note
that an MSC is a mailbox MSC i↵ it has at least one mailbox linearization.

Lemma 2.6. Every prefix of a mailbox MSC is a mailbox MSC.

2.3. Counter machines 21

Proof. Let M = (E ,!,C,�) 2 MSCmb and M0 = (E0,!0,C0,�0) be a prefix of
M , i.e., E0 ✓ E . By contradiction, suppose that M0 is not a mailbox MSC. Then,
there are distinct e, f 2 E0 such that e �M0 f �M0 e with �M0 = (!0[C0[@M0)

⇤.
As E0 ✓ E , we have that !0 ✓ !, C0 ✓ C, and @M0 ✓ @M . Finally, �M0 ✓ �M

and M is not a mailbox MSC, which is a contradiction.

We concatenate mailbox MSCs in the same way as their p2p counterparts.
Moreover, concatenation is associative for mailbox MSCs as well.

Similar to the notion of the p2p language of a communicating system S, we
define the mailbox language Lmb(S)as follows. The mailbox language of S is Lmb(S) =
{M 2 MSCmb | there is a run of S on M}.

And finally, from Lemma 2.6, we obtain prefix closure for mailbox systems as
well.

Lemma 2.7. For all com 2 {p2p,mb}, Lcom(S) is prefix-closed: Pref (Lcom(S)) ✓
Lcom(S).

Example 5. Fig. 2.4 depicts A1 = (Ap, Aq, Ar) such that MSC M1 in Fig. 2.3
belongs to Lp2p(A1) and to Lmb(A1). There is a unique run ⇢ of A1 on M1. We
can see that (e03, e4) 2 ! and target(⇢(e03)) = source(⇢(e4)) = `

1
r, (e2, e

0
2) 2 CM1 ,

and msg(⇢(e2)) = msg(⇢(e02)) = m2.

`0p `1p `2p

h(p, q)!m1i h(q, p)?m2i
Ap `0q `1q

`2q`3q

h(q, p)!m2i

h(q, r)!m3i
h(r, q)?m4i

Aq

`0r `1r `2r

h(q, r)?m3i h(r, q)!m4i
Ar

Figure 2.4: System A1

2.3 Counter machines

Counter machines, also known as Minsky machines, are finite-state machines
that manipulate counters, which are variables that store non-negative integers.
Transitions of a counter machine, besides changing control-states, perform a
specified operation on a counter: increment by one, decrement by one, along with a
set of counters to be tested for zero. We formally define a counter machine below.

Definition 2.8. A counter machine (with zero tests) is a tuple counter
machine

C = (Q, V, T, q0).
Here, Q is the finite set of control-states and q0 2 Q is the initial control-state.
Moreover, V is a finite set of counters and T ✓ Q ⇥ ActC ⇥ Q is the transition

22 2. Transition Systems

relation where ActC = {inc(v), dec(v), noop | v 2 V }⇥ 2V (an element of 2V will
indicate the set of counters to be tested to 0).

The counter machine C induces an LTStransition
system

induced by
counter
machine

SC = (XC,ActC,!C, init) with set
of states XC = Q ⇥ NV . In (q, `) 2 XC, the first component q is the current
control-state and ` = (`v)v2V represents the counter values. The initial state is
then init = (q0, `0) with all `0 = (0, 0, . . . , 0).For op 2 {inc, dec}, v 2 V , and

Z ✓ V (the counters tested for zero), there is a transition (q, `)
op(v),Z����!C (q0,m) if

(q, (op(v), Z), q0) 2 T , `v0 = 0 for all v0 2 Z (applies the zero tests), mv = `v + 1 if
op = inc and mv = `v � 1 if op = dec, and mv0 = `v0 for all v0 2 V \ {v}.

For op = noop, and Z ✓ V , there is a transition (q, `)
op,Z��!C (q0,m) if

(q, (op, Z), q0) 2 T , `v0 = 0 for all v0 2 Z (applies the zero tests), and mv = `v for
all v 2 V . We sometimes omit writing noop and label the transition with only the
set of counters to be tested to zero, or we write zero(Z). Similarly, we omit Z if
Z = ;.

The model of (deterministic) counter machines is Turing-complete, and therefore
all the verification problem we looked at in Section 2.1 is undecidable (even for
machines with 2 counters). Hence, in this thesis, we look at a weakening of this
model, which we refer to as counter machines with restricted zero tests.

Counter machines with restricted zero tests. We define counter machines
with restricted zero tests (CMRZ)counter

machine with
restricted zero
tests (CMRZ)

imposing the following requirement: Once a
counter has been tested for zero, it cannot be incremented or decremented any
more. Formally, we say that C is a counter machine with restricted zero tests if

for all transition sequences of the form q0
op(v1),Z1�����! q1

op(v2),Z2�����! . . .
op(vn�1,Zn�1)��������!

qn�1
op(vn),Zn�����! qn, for every two positions 1 i j n, we have vj 62 Zi.

2.4 Finite-state automata

We now formally recall the notion of a finite-state automaton (also known as finite-
state machine or FSM in the literature). Afinite-state

automaton
(deterministic) finite-state automaton

(DFA) is a tuple A = (Q,⌃, �, q0,F), where Q is the set of control-states, ⌃ is
the input alphabet, q0 2 Q is the initial state, and F ✓ Q is the set of final (or
accepting) states. We define the transition relation as � : Q⇥ ⌃ ! Q.

A non-deterministic finite-state automaton (NFA) is the same as a DFA, except
that the transition relation is � : Q⇥ ⌃ ! P(Q), where P(Q) is the power set of
Q. We say that a word w is accepted by a DFA A if and only if starting from q0,

2.4. Finite-state automata 23

it can read w (according to the transition function) and reach a state q 2 F . By
abuse of notation, we denote this as �⇤(q0, w) = q. The language of an automaton
A, denoted by L(A) is the set of all accepted words.

We call a DFA A complete complete DFAif for every q 2 Q and for every m 2 ⌃, �(q,m) is
defined. Moreover, we call a DFA trimmed trimmed DFAif for every state q 2 Q, there exists a
word w 2 ⌃⇤ such that �⇤(q, w) = qf where qf 2 F , i.e., from every state of the
DFA, we can reach a final state. Note that given an untrimmed DFA A, we can
construct a trimmed DFA A0 such that L(A) = L(A0). We do this by removing all
the states (and associated transitions) that do not reach a final state, and doing
this does not alter the language of the automaton.

Chapter 3

Branch-Well-Structured
Transition Systems

Let us recall that a well-structured transition system (WSTS) is an ordered
transition system S = (X,!,) such that the set X is quasi-ordered by , and !
fulfills one of various possible monotonies with respect to . The quasi-ordering of
X is further assumed to be well, i.e., well-founded and with no infinite antichains.

In this chapter, we introduce branch-well-structured transition systems (branch-
WSTS). Branch-WSTS is a relaxation of general WSTSs. In the case of branch-
WSTS, the set of states in the same branch of the reachability tree forms a
well-quasi-ordered set, and monotony is enforced only between states reachable
one from another.

As boundedness and termination are decidable for WSTS with some e↵ectivity
conditions, it is a model that has been studied since its inception in [Fin90]. We
show that the branch relaxation still preserves the decidability of boundedness and
termination if the underlying system is e↵ective.

We show that for branch-WSTS, the coverability problem is undecidable, which
leads to another definition of monotony, the so-called cover-monotony, which is
still a relaxation of the monotony condition. We call the class of ordered transition
systems cover-WSTS if the ordering is a wqo and the monotony enforced is the
cover-monotony. For e↵ective cover-WSTS S = (X,!,), i.e., systems such that
X is a well-quasi-ordered set over , and ! is cover-monotone with respect to ,
the decidability of coverability from the initial state is still decidable, using the
forward algorithm from [BFM17].

We also explore the systems which fall into these two WSTS classes, including
(normalized) input-bounded FIFO systems and counter machines with restricted
zero tests [BFS20], which are branch-WSTS, and a class of counter systems which
are cover-WSTS.

25

26 3. Branch-Well-Structured Transition Systems

3.1 Orderings

Let X be a set and ✓ X ⇥X a binary relation over X, which we also write as
(X,). We call aquasi, partial,

and total
ordering

quasi-ordering if it is reflexive and transitive. When a set X is
equipped with a quasi-ordering , we refer to it as a qo (X,). A partial ordering
is a quasi-ordering that is also anti-symmetric (if x y and y x, then x = y.)
Furthermore, it is a total ordering (sometimes also known as a linear ordering) if
for any x, y 2 X, we either have x y or y x. We write x < y if x y and
y ⇥ x. If is a partial ordering, x < y is then equivalent to x y and x 6= y.
Anantichain antichain of (X,) is a subset Y ✓ X such that elements of Y are pairwise
incomparable (i.e., for all y, y0 2 Y, y 6= y

0 =) y ⇥ y
0).

Given (X,) a (quasi-)ordered set, theupward,
downward

closure

upward closure (in X) of a set E ✓ X

is "E = {y 2 X | 9x 2 E, x y} and conversely, the downward closure of E is
#E = {y 2 X | 9x 2 E, y x}. E is upward-closed (resp. downward-closed) if
E = "E (resp. E = #E). A downward-closed (resp. upward-closed) set E has a

basis basis B if E = #B (resp. E = "B). E has a finite basis if B can be chosen finite.
For example, let X ✓ N2 such that X = {(x, y) | x+ y � 1}. X can be expressed
as the upward closure of the finite basis B = {(0, 1), (1, 0)}, and

X = "{(0, 1), (1, 0)}.

An upper bound of E ✓ X, if it exists, is an element x 2 X such that y x for
every y 2 E. The least upper bound of a set E, if it exists, is written lub(E).

3.1.1 Well-orderings

A quasi-ordered set (X,) is well founded if there is no infinite strictly decreasing
sequence x1 > x2 > . . . of elements of X. It iswell-quasi-

ordered set
(wqo)

well if there is also no infinite
antichain. There are equivalent formulations for the definition of well-quasi-ordered
set (wqo for short), as given by the following proposition:

Proposition 3.1. [Kru72] Given a quasi-ordered set (X,), the following proper-
ties are equivalent:

• (X,) is well-quasi-ordered.

• (X,) is well founded, and there is no infinite antichain in (X,).

• From any infinite sequence x0, x1, x2 . . . one can find i < j such that xi xj.

• From any infinite sequence x0, x1, x2 . . . one can extract an infinite increasing
subsequence.

• Any non-empty upward closed subset of X admits a finite basis.

3.2. Well-structured transition systems 27

3.1.2 Default orderings

Some common sets and the associated orderings that we study are listed below.

• The set of natural numbers N and integers Z are ordered by their canonical
ordering . Moreover, (N,) is a wqo. On the other hand, (Z,) is not a
wqo as we can have an infinite decreasing sequence, e.g., 0 > �1 > �2 > . . .

• (Nk
,), i.e., the set of vectors of k � 1 natural numbers with component-wise

ordering, is a wqo [Dic13]. More generally, if (X,) is wqo, then the set of
vectors of k elements of X with the component-wise ordering, (Xk

,), is
also a wqo.

• The set of finite words over a finite alphabet ⌃, i.e., ⌃⇤, along with the prefix
ordering prefix

ordering �
, which we denote by �, where u � w i↵ w = u · v for u, v, w 2 ⌃⇤.

(⌃⇤
,�) is not a wqo if |⌃| � 2 as we can find an infinite antichain. For

example, let ⌃ = {a, b}. Then, a � ba � bba � . . . is an infinite sequence of
incomparable elements.

• We can also define the subword ordering subword
ordering sw

on the set of finite words over a
finite alphabet ⌃, which we will denote by sw. (⌃⇤

,sw) is a wqo, as in
[Hig52].

• We sometimes use the extended ordering, when talking about states which
are, in fact, tuples, with the first component being the control-state and the
other component(s) being integers, words, etc. In this case, the ordering is
equality on the control-states, and the (component-wise) canonical ordering
on the other components. For example, the extended prefix ordering extended

prefix
ordering p

p is
defined on Q⇥ (⌃⇤)k by (q,w) p (q0,w0) if q = q

0 and for all 1 i k, one
have wi � w0

i, where w = (wi)1ik, w0 = (w0
i)1ik.

3.2 Well-structured transition systems

An important class of transition systems that we will consider are well-structured
transition systems, or WSTS for short, for which many properties are known to be
decidable.

A (well-)ordered transition system is a tuple S = (X,!,) consisting of a
transition system S = (X,!), equipped with a (well) qo (X,). ordered

labeled
transition
system
(OLTS)

We extend these
definitions for labeled transition systems: An ordered labeled transition system
(OLTS) is a tuple S = (X,A,!, init ,) consisting of a labeled transition system
S = (X,A,!, init), equipped with a qo (X,).

28 3. Branch-Well-Structured Transition Systems

There are di↵erent monotony properties that the transition relation can fulfill.
We define here the most important ones.

Definition 3.2. [FS01]well-
structured
transition

system
(WSTS)

A well-structured transition system (WSTS) is a well-
ordered transition system S = (X,!,) that satisfies monotony: for all x, x0

, y 2
X, we have: x y ^ x �! x

0 =) 9y0 2 X: x
0 y

0 ^ y
⇤�! y

0.

We define a labeled WSTS as an OLTS such that the ordering is well and
it satisfies the monotony condition: for all x, x0

, y 2 X and a 2 A, we have:
x y ^ x

a�! x
0 =) 9y0 2 X and w 2 A

⇤: x0 y
0 ^ y

w�! y
0.

Let us define the other types of monotony. We say that a well-ordered transition
system S = (X,!,) satisfiesother

monotonies
strong monotony (resp., transitive monotony) if,

for all x, y, x0 2 X such that x y and x �! x
0, there is y0 2 X such that x0 y

0

and y �! y
0 (resp., y

+�! y
0). The transition system S satisfies strict monotony if, for

all x, y, x0 2 X such that x < y and x �! x
0, there is y0 2 X such that x0

< y
0 and

y
⇤�! y

0. We can similarly define these monotonies for ordered labeled transition
systems.

Decidability of verification problems for WSTS. In order to be able to
decide the problems defined in Section 2.1 for WSTS, we need to require that
the transition systems have some e↵ectiveness properties. Throughout this work,
WSTS will be assumed e↵ective in the following sense:

1. the set of states X is recursively enumerable (which su�ces to compute
PostS(x) when |PostS(x)| is known and finite)e↵ectivity

conditions for
WSTS

,

2. the transition relation is decidable, i.e., the WSTS comes equipped with an
algorithm that can decide, given x, y 2 X, whether x ! y or, equivalently,
whether y 2 PostS(x),

3. the quasi-ordering is decidable, i.e., the WSTS also comes equipped with
an algorithm that can decide, given x, y 2 X, whether x y.

3.3 Branch-WSTS

As we saw in Section 2.1, boundedness and termination are important problems
in the study of transition systems, and they are decidable for a large class of
systems. In this section, we propose a relaxation to the definition of well-structured
transition systems (WSTS), and still retain the decidability of boundedness and
termination. Let us define the model formally.

3.3. Branch-WSTS 29

0 1 2

!a

!b ?b

(0, ")

(1, b)(0, a)

(0, aa) (1, ab)

...
(1, aab)

Figure 3.1: The FIFO machine M1 (left), and its corresponding (incomplete)
infinite reachability tree (right).

Let S = (X,A,!, init ,) be an ordered labeled transition system. A run, or
a branch branch, of S is a finite or infinite sequence ⇢ = (x0 �! x1)(x1 �! x2) . . ., simply
written x0 �! x1 �! x2

Branch-wqo

Consider an ordered labeled transition system, S = (X,A,!, init ,). We say
that ⇢ is branch-wqo if the set of states {x0, x1, x2, . . .} visited along ⇢ is wqo with
respect to .

Definition 3.3. An ordered labeled transition system S = (X,A,!, init ,) is
branch-wqo branch-wqoif every run of S starting from init is branch-wqo.

Example 6. Consider the FIFO machine M1 in Figure 3.1 with one FIFO channel
c. In control-state 0, it makes a loop by sending the letter a to the channel. Then,
we may go, non-deterministically, to control-state 1 by sending the letter b once,
and then we either stop or consume a b and go to 2 if possible. Let us consider the
set of states X1 = {0, 1}⇥ {a, b}⇤ together with the extended prefix ordering p.
The reachability set of M1 from (0, ") is equal to {(0, w), (1, w0) | w 2 a

⇤
, w

0 2 a
⇤
b}.

Note that p is not a wqo since elements of the set {(1, w) | w 2 a
⇤
b} form an

infinite antichain for p. However, every branch in the reachability tree of M1

is branch-wqo for the initial state (0, "). Hence, there exist branch-wqo ordered
labeled transition systems S = (X,A,!, init ,) such that (X,) is not a wqo.

Note that the property of branch-wqo for a given system depends on the initial
state. There could be a system S = (X,A,!, init ,) and init 0 2 X such that S
is branch-wqo but S = (X,A,!, init 0,) is not branch-wqo (cf. Figure 3.2).

30 3. Branch-Well-Structured Transition Systems

0 1 2

!a

!b
?e

!b

?b

?e !e

Figure 3.2: The transition system associated to the FIFO machine M2 (with a
single channel) is branch-wqo if the initial control-state is 0. If the initial control-
state is 2, then it is not branch-wqo as the states in the set {(1, w) | w 2 e

+
b},

which form an infinite antichain, are reachable from (2, ").

Branch-monotony

We now define a generalization of strong monotony, which we refer to as branch-
monotony.

Definition 3.4. An ordered labeled transition system S = (X,A,!, init ,) is
branch-

monotony
branch-monotone if, for all x, x0 2 X, � 2 A

⇤ such that init
⇤�! x

��! x
0 and x x

0,

there exists a state y such that x0 ��! y and x
0 y.

Let us remark that branch-monotone systems have strong (hence, transitive)
monotony. As in the case of general monotony, strict branch-monotony is defined
using strict inequalities in both cases: An OLTS S = (X,A,!, init ,) is strictly
branch-monotone if, for all x, x0 2 X, � 2 A

⇤ such that init
⇤�! x

��! x
0 and x < x

0,
there exists a state y such that x0 ��! y and x

0
< y.

Example 7. ConsiderM1 from Figure 3.1 once again. M1 along with the extended
prefix ordering p induces an ordered labeled transition system by considering
the actions on the edges to be the labels. Let us show that it is branch-monotone.
Let us consider two states x, x

0 2 X such that init
⇤�! x

��! x
0 and x x

0. By
the definition of the extended prefix ordering, we know that the control-state of
x and x

0 need to be the same. Moreover, when we look at the FIFO machine,
we see that the only possibility for x0 to be reachable from x and x x

0 is if the
control-state for both x and x

0 is 0. Furthermore, the only option is x = (0, an)
and x

0 = (0, an+k) for n, k 2 N. Once again, from the figure, we see that there
exists a transition sequence � such that (0, an)

��! (0, an+k), where � = (hc!ai)k.
Finally, we can see that x0 ��! y such that y = (0, an+k+k) and hence, x0 y. We
deduce that M1 is branch-monotone.

Note that if we consider the extended subword ordering for the FIFO system in

Figure 3.1, the resulting OLTS is not monotone as (1, b) sw (1, ab) but (1, b)
hc?bi��!

(2, "). However, this transition is not possible from (1, ab). Nevertheless, by
the same argument as above, M1 is branch-monotone for the extended subword
ordering.

3.4. Termination and Boundedness for Branch-WSTS 31

Branch-WSTS

We are now ready to extend the definition of WSTS.

Definition 3.5. A branch-WSTS is an OLTS S = (X,A, !,, init)
branch-WSTS

that is
finitely branching, branch-monotone, and branch-wqo.

When we say, without ambiguity, that a machine M is branch-wqo, WSTS, or
branch-WSTS, we mean that the ordered transition system SM, associated with
machine M, is branch-wqo, WSTS, or branch-WSTS, respectively.

Branch-WSTS is a strict superclass of labeled WSTS. For example, machine
M1 in Figure 3.1 is branch-WSTS for the ordering � but it is not WSTS for �
since � is not a wqo on {q0, q1}⇥ {a, b}⇤ or on the subset {(q1, w) | w 2 a

⇤
b}.

3.4 Termination and Boundedness for Branch-
WSTS

In this section, we will examine the two verification problems of termination and
boundedness for branch-WSTS.

Let us recall the Reduced Reachability Tree (RRT) Reduced
Reachability
Tree (RRT)

, which was defined as Finite
Reachability Tree in [FS01]. Suppose that S = (X,A,!,, init) is an OLTS.
Then, the Reduced Reachability Tree from init , denoted by RRT (S, init), is a tree
where nodes are labeled by states of X, and n(x) denotes that node n is labeled
by state x. Nodes are either dead or live. The root node n0(init) is live. A dead
node has no child node. A live node n(y) has one child n

0(y0) for each successor

y
0 2 PostS(y). If there is a path in the tree n0(init)

⇤�! n
0(y0)

+�! n(y) such that
n
0 6= n and y

0 y, we say that n0 subsumes n, and then n is dead. Otherwise, n is
live.

(q0, ")

(q1, b)(q0, a)

dead

Figure 3.3: The Reduced Reachability Tree of M1 (from Figure 3.1) starting from
(q0, "). Note that (q0, a) is dead because it is subsumed by state (q0, "). As a matter
of fact, we have (q0, ")

⇤�! (q0, a) and (q0, ") p (q0, a). State (q1, b) is also dead but
it is not subsumed.

32 3. Branch-Well-Structured Transition Systems

Proposition 3.6. Let S = (X,A,!,, init) be an OLTS that is finitely branching
and branch-wqo. Then, RRT (S, init) is finite.

Proof. Let us assume that the RRT (S, init) is infinite. Since (S, init) is finitely
branching and branch-wqo, there is an infinite branch, in the reachability tree, begin-

ning with the finite prefix n0(init)
⇤�! n1(x1)

+�! n2(x2)
+�! n3(x3), in RRT (S, init),

such that nodes n0, n1, n2, n3 are all di↵erent and x1 x2 x3. Hence, the node
n2(x2) has been marked as dead, and the tree has not been explored any further.
Thus, there is a contradiction. Hence, RRT (S, init) is finite.

Proposition 3.7. Let S = (X,A, !,, init) be a branch-WSTS, equipped with
strict branch-monotony and such that is a partial ordering. The reachability

set Post
⇤
S(init) is infinite i↵ there exists a branch n0(init)

⇤�! n1(x1)
+�! n2(x2) in

RRT (S, init) such that x1 < x2.

Proof. The following proof is an adaptation of the proof of boundedness for
WSTS in [FS01] to branch-WSTS. Let us assume (S, init) is unbounded, i.e.,
Post

⇤
S(init) is infinite. Then, there are an infinite number of distinct states which

are reachable from init . We first show that there exists a computation starting
from init without any loop, where all states are distinct. We consider the finitely
branching tree of all prefixes of computations, and prune this tree by removing
prefixes that contain a loop. Because any reachable state can be reached without
a loop, the pruned tree still contains an infinite number of prefixes. By König’s
lemma, there exists an infinite computation with no loop. Any computation
starting from init has a finite prefix labeling a maximal path in RRT (S, init). To
simplify the notations, we use nodes and states synonymously without ambiguity.
Hence, there must be a node x2 which is subsumed by a node x1 such that x1 6= x2.
Since we assumed to be a partial ordering, we deduce from x1 6= x2, and x1 x2

that x1 < x2.

Conversely, let us assume that there exist two states x1, x2 in RRT (S, init)
such that x1

��! x2 and x1 < x2.

Since the system is strictly branch-monotone, there exists a state x3 such that
x2

��! x3 and x2 < x3. By iterating this process, we construct an infinite sequence
of states (xk)k�0 such that for all k � 1, one has xk

��! xk+1 and xk < xk+1. Since
 is a partial ordering, we deduce that all xk are di↵erent. Hence, Post

⇤
S(init) is

infinite, and S is unbounded.

We now need a notion of e↵ectivity adapted to branch-WSTS.

Definition 3.8.branch-
e↵ective

A branch-WSTS S = (X,A, !,, init) is branch-e↵ective if S
is e↵ective, and PostS(x) is a (finite) computable set, for all x 2 X.

3.4. Termination and Boundedness for Branch-WSTS 33

Theorem 3.9. Boundedness is decidable for branch-e↵ective branch-WSTS S =
(X,A, !,, init) with strict branch-monotony such that is a partial ordering.

Proof. Suppose S = (X,A, !,, init) satisfies the above conditions. From Propo-
sition 3.6, we obtain that RRT (S, init) is finite. By hypothesis, S is finitely branch-
ing and branch-e↵ective. In particular, for all x, PostS(x) is a finite computable
set. As is decidable, we deduce that RRT (S, init) is e↵ectively computable.
From Proposition 3.7, we know that Post

⇤
S(init) is infinite i↵ there exists a finite

branch n0(init)
⇤�! n1(x1)

+�! n2(x2) such that x1 < x2. This last property can
be decided on RRT (S, init), and so the boundedness property can be decided,
too.

We also generalize the decidability of termination for WSTS [FS01] to branch-
WSTS.

Proposition 3.10. A branch-WSTS S = (X,A, !,, init) does not terminate
from state init i↵ there exists a subsumed node in RRT (S, init).

Proof. Let us assume that S is non-terminating. Then there exists an infinite
branch b : n0(init) �! n1(x1) �! n2(x2) �! n3(x3) �! ... in the reachability tree of
(S, init). Since S is branch-wqo, consider the first index i such that there is an
j > i such that xi xj . Now, we say that the prefix of the branch b containing the

first j + 1 nodes, n0(init)
⇤�! ni(xi)

⇤�! nj(xj), necessarily appears in RRT (S, init).
Node ni subsumes node nj.

Conversely, let us assume that there is a subsumed node in RRT (S, init). Then
there exists a branch in RRT (S, init) of the form

n0(init)
⇤�! n1(x1)

a1�! n2(x2) . . .
ak�! nk+1(xk+1)

such that x1 xk+1.

From the remark following the definition of branch-monotony, we deduce that
one may repeat the sequence � = a1a2 . . . ak with � 6= ", and then there exists an
infinite branch in the reachability tree. Hence, the system does not terminate.

Theorem 3.11. Termination is decidable for branch-e↵ective branch-WSTS.

Proof. Given a branch-WSTS S = (X,A, !,, init), we apply Proposition 3.10
so that it is su�cient to build RRT (S, init) and check if there exists a subsumed
node. Since S is branch-e↵ective, we can e↵ectively construct RRT (S, init) and
verify the existence of a subsumed node.

34 3. Branch-Well-Structured Transition Systems

Note that we can thus solve the termination and boundedness problems for
the example machine M1, and since there exist nodes n0(init) and n1(x1) in the

RRT such that init = (q0, ") and x1 = (q0, a) such that init < x1 and init
+�! x1,

the machine M1 is unbounded. Moreover, since n1(x1) is also a subsumed node, it
is non-terminating. An even simpler argument is that any unbounded system is
non-terminating.

On the other hand, boundedness becomes undecidable if we relax the strict
monotony condition to general monotony (even when we strengthen the order to
be wqo). This is because boundedness is undecidable for Reset Petri nets [DFS98].
Reset Petri nets are e↵ective WSTS S = (X,A, !,, init), hence branch-e↵ective
WSTS, where is the wqo on vectors of integers. Hence, we deduce:

Proposition 3.12. Boundedness is undecidable for branch-e↵ective branch-WSTS.

3.5 Classes of branch-WSTS

We now look at some examples of systems which are branch-WSTS (but not
WSTS).

3.5.1 Counter machine with restricted zero tests

In [BFS20], it was shown that termination and boundedness (and moreover, reach-
ability) are decidable for this class of systems. However, using the alternative
approach of branch-WSTS, we can verify that termination and boundedness are
decidable for this class without reducing these problems to reachability.

Given a CMRZ C = (Q, V, T, q0), we consider the associated transition system
SC = (XC,ActC,!C, init). From this system, we construct an OLTS over the
extended ordering such that (q,v) (q0,v0) i↵ q = q

0 and v v0 (component-
wise). Note that (XC,) is a wqo. Moreover, this ordering is a partial ordering.

We now show that CMRZ are branch-monotone for . We drop the subscript
while denoting XC for the remainder of this section, as it is clear from the context.

Proposition 3.13. CMRZ are branch-monotone and strictly branch-monotone for
the wqo .

Proof. Consider the OLTS S = (X,A, !,, init) associated to a CMRZ with
states x, x0 2 X such that x x

0 (resp. x < x
0) and init

⇤�! x
��! x

0. We need to
show that there exists a state y such that x0 ��! y and x

0 y (resp. x0
< y).

3.5. Classes of branch-WSTS 35

We first prove the following claim:

Claim: For states x, x
0 2 X such that init

⇤�! x
��! x

0 where x x
0 (resp.

x < x
0) and |�| = n, the following property holds: For all ⌫ � �, we have z, z0 2 X

such that x
⌫�! z and x

0 ⌫�! z
0 and z z

0 (resp. z < z
0). We prove this claim by

induction on the length of ⌫.

For the base case, |⌫| = 0. We have from the hypothesis, x x
0, hence the

claim is trivially true.

Let us assume that the claim holds for |⌫| = k. We show that it holds for
|⌫| = k + 1. From the induction hypothesis, we know that for ⌫ = ⌫

0 · a where

a 2 A, there exists z1, z01 such that x
⌫0�! z1 and x

0 ⌫0�! z
0
1 and z1 z

0
1. Since x

��! x
0,

we know that there exists z 2 X such that x
⌫0�! z1

a�! z. We can now be in one of
the following cases:

Case i: If a is of the form noop and Z = ;, then we can trivially execute a from z
0
1

and reach z
0 such that z z

0 (resp. z < z
0).

Case ii: The action a is of the form inc(v) or dec(v), and the set of counters to be
tested for zero Z = ;, i.e., z1

a�! z only increments one counter and leaves
the others unchanged (and no counters are tested to zero). Since z1 z

0
1

(resp. z1 < z
0
1), we know that z1, z01 have the same control-state. Hence, this

action is enabled in z
0
1. Moreover, because of the CMRZ property, we know

that v is not tested to zero even once until the state z
0
1 is reached in this

run. Therefore, we can execute the increment/decrement operation on v.
Furthermore, since z1 z

0
1 (resp. z1 < z

0
1), the value of v in z

0
1 is greater

than or equal to (resp. strictly greater than) the value of v in z1. Hence, we
can execute a from z

0
1 and reach a state z

0 such that z z
0 (resp. z < z

0).

Case iii: Z 6= ; in the transition z1
a�! z. Hence, there are a set of counters Z which

are tested to zero. By the CMRZ property, we know that all counters v 2 Z,
are never incremented or decremented further. Hence, during the execution
z1

a�! z
w�! z

0
1 where w 2 A

⇤, we know that none of these counters are
incremented or decremented. Hence, the value of the counters in z

0
1 is also

equal to zero. Therefore, we can execute a from z
0
1 to reach z

0. Moreover,
since z1 z

0
1 (resp. z1 < z

0
1), and none of these counters change their value,

we can conclude that z z
0 (resp. z < z

0).

Hence, as a special case of the claim where ⌫ = �, we prove that CMRZ are
branch-monotone (resp. strictly branch-monotone).

Proposition 3.14. CMRZs are branch-e↵ective branch-WSTS.

36 3. Branch-Well-Structured Transition Systems

Proof. Given an OLTS S = (X,A, !,, init) associated to a CMRZ, for any two
states x, x

0 2 X, we can decide if x x
0. Furthermore, since we have a finite

automaton, �! is decidable, and PostS(x) is computable for all x 2 X. Hence, it
is branch-e↵ective.

Hence, we deduce:

Theorem 3.15. Termination and boundedness are decidable for counter machines
with restricted zero tests.

3.5.2 Input-bounded FIFO machines

We now study a subclass of FIFO machines, and investigate if they are branch-
WSTS.

Consider a FIFO machine M = (Q,Ch,⌃, T, q0). We define the input-language
of a FIFO channel c as the set of all words that are sent into the channel, i.e.,
proj c!(Traces(M)). We say that the machine is input-bounded if there is a tuple
(Lc)c2Ch of regular bounded languages Lc(i.e., languages of the form w

⇤
1 . . . w

⇤
n) such

that, for all c 2 Ch, proj c!(Traces(M)) ✓ Lc, i.e., every run of the FIFO machine
is input-bounded language. We say that L is distinct-letter if |w1 . . . wn|a = 1 for
all a 2 ⌃.

This class is studied in more depth in Chapter 4. For more precise definitions
of these notions, we refer the reader to Section 4.1.

Proposition 3.16. Input-bounded FIFO machines are branch-wqo for the prefix-
ordering p.

Proof. Let us consider the transition system SM = (XM,ActM,!M, initM) asso-
ciated an input-bounded FIFO machine M with a single channel, and an infinite
run x0 �! x1 �! x2 �! ...xi... with xi = (qi, wi) 2 XM and x0 = initM.

The infinite run is of the form x0
�1�! x1

�2�! x2...xi�1
�i�! xi

�i+1��! . . . and we
denote �[i] = proj !(�1�2 . . . �i). It can be observed that �[i] is a prefix of �[i+1] for
all i 2 N. Since �[i] is of the form v

n1,i

1 ...v
nm,i
m um for um � vm and n1,i..., nm,i � 0

and 1 m k, the infinite sequence (�[i])i2N satisfies two possible exclusive cases:

Case i: There exists an i0 such that 8i � i0, proj !(�i) = ✏ so there exists i1 � i0

such that for all i � i1, wi = wi+1. Hence, because there are finitely many

control-states, we deduce that there exist i2, i3 � i1 such that xi2
+�! xi3 and

xi2 = xi3 , hence, also in particular xi2 p xi3 .

3.5. Classes of branch-WSTS 37

Case ii: There are infinitely many indices i such that proj !(�i) 6= ✏, which means
that the infinite sequence (�[i])i2N is not stationary. This implies that the
set S� = {(n1,i, ..., nk,i) | i 2 N}, associated with �, is infinite. Hence, there
exists a least index p such that the set {np,i}i2N is infinite. Then the set
F = {(n1,i, ..., np�1,i) | i 2 N} is finite.

We claim that for all indices ` � p+ 1, n`,i = 0 for all i. Let us assume to
the contrary that there is some index ` � p + 1 and i0 such that n`,i0 6= 0.
This means that the word v` is in the channel in state xi0 , which means
that the word v` was sent to the channel before (or at) the step i0, i.e,
�[i0] = v

n1,i0
1 ...v

np,i0
p ...v

nm,i0
m um for some um � vm and nl,i0 > 0 and 1 m k.

So, in particular, word vp cannot be sent after i0, hence, np,i = np,i0 8i > i0.

Hence, {np,i}i2N is finite which is a contradiction to our assumption that
{np,i}i2N is infinite.

This means that after some state xt, we only write word vp to the channel.
Since, the set F = {(n1,j, ..., np�1,j) | j 2 N} is finite, we can extract an
infinite subsequence (q, wi)i2K✓N where wi = uv

np,i
p with u 2 F and (np,i)i2K is

non-decreasing. Hence, there exist two indices a, b > 0 such that wa = u.v
np,a
p

and wa+b = u.v
np,a+b
p and np,a np,a+b, hence, wa+b = wa.v

np,a+b�np,a
p , hence,

wa � wa+b. So we have found two states xa, xa+b such that xa p xa+b.
Hence, the machine is branch-wqo for the prefix ordering.

We show that it is branch-wqo for a single channel, but using the same argument
for each channel, we can conclude that input-bounded FIFO machines with multiple
channels are branch-wqo for the prefix-ordering p.

It is clear that M1 belongs to this class of FIFO systems. But, we see below
that the class of input-bounded FIFO machines is not branch-WSTS.

Example 8. Consider the FIFO machine M2 in Figure 3.4 that is input-bounded
for L = (ab)⇤. We have (q0, ✏)

��! (q0, b), where � =!a?a!b. Moreover, (q0, ✏) p

(q0, b). However, we cannot repeat � from (q0, b), as it is not possible to execute

(q1, ba)
?a�!. Hence, the machine is not branch-monotone for the prefix-ordering.

q0 q1 q2
!a

!b

?a

Figure 3.4: The FIFO machine M2

From the above counter-example, we see that the class of distinct-letter input-
bounded FIFO machines are not branch-WSTS. Hence, we impose another restric-
tion on such systems.

38 3. Branch-Well-Structured Transition Systems

Consider an input-bounded FIFO machine M̂ = (Q̂,Ch,⌃, T̂ , q̂0) (with a
single channel) with a distinct-letter bounded input-language L. We first con-
sider a deterministic, trimmed, (not necessarily complete) finite automaton A =
(QA,ActM, TA, q

0
A, FA), with a set of final states FA ✓ QA, whose language is

L(A) = L! \ Pref (L?), where L! = {� | proj !(�) 2 L} and L? = {� | proj ?(�) 2
L}.

With this, we define M = (Q,Ch,⌃, T, q0) as the product of the FIFO machine
M̂ and A in the expected manner. In particular, the set of control-states of M is
Q = Q̂⇥QA, and its initial state is the pair q0 = (q̂0, q0A).

Note that since M̂ is input-bounded, every run in M̂ belongs to L! \Pref (L?).
Therefore, the language of the new FIFO machine M is the same as the language
of the old FIFO machine M̂, and a subset of the trimmed automata.

Proposition 3.17. The machine M, constructed as a product of a distinct-letter
input-bounded FIFO machine M̂ and the deterministic finite automaton of its
input language, is branch-compatible.

Proof. Let L = w
⇤
1 . . . w

⇤
n. Let (q0, ")

⌧�! (q, w)
��! (q, w0) such that w � w

0.
To prove branch-compatibility, we need to show that there exists w

00 such that
(q, w0)

��! (q, w00) and w
0 � w

00.

Firstly, we know that proj !(⌧) = w
n1
1 . . . w

ni
i .ui where ui � wi and 1 i n

and np 2 N for all 1 p i. Moreover, proj !(�) 2 Pref (u0
i · w

n0
i

i . . . w
nj

j) where
ui.u

0
i = wi and 1 i j n. Let us consider the channel content w now. From

the characterization of ⌧ above, we can express w = v` · wn`
` . . . w

ni
i .ui, where

1 ` i and v` 2 Suf (w`). Now, let us analyze the cases based on the value of
proj ?(�):

• proj ?(�) = ". In other words, this means that there are only send actions in
�. Hence, it is possible to take the same sequence of moves once again as we
are in the same control-state q. Therefore, (q, w0)

��! (q, w00) for some value
of w00. Furthermore, since � has only send actions, w0 = w.v for some v 2 ⌃⇤.
Therefore, after we repeat � once again from (q, w0), we reach (q, w00) such
that w00 = w

0
.v = w.v.v. Therefore, (q, w0) p (q, w00) and we are done with

this case.

• For proj ?(�) 6= ", we can be in one of three cases:

– w 6= " and 9p1, p2 such that 1 p1 < p2 i such that w = vp1 .v.up2

where vp1 2 Suf (wp1), up2 2 Pref (wp2), and vp1 , vp2 6= " and v 2 ⌃⇤.
In other words, in this case, there is a non-empty part of at least two
distinct words in the channel contents w. Since the FIFO machine is
input-bounded, we can conclude that proj !(�) does not contain any

3.5. Classes of branch-WSTS 39

occurrences of alphabets from the word wp1 . Therefore, in order for the
condition w � w

0 to be satisfied, it is necessary that proj ?(�) = ", which
is a contradiction to our assumption. Hence, this case is not valid.

– Therefore, if w 6= " and proj ?(�) 6= ", then the only possibility is that
w = vi.w

ni
i .ui such that vi 2 Suf (wi). Therefore, proj ?(�) only consists

of letters from words wj such that j � i. However, since w � w
0, we

can be certain that it only consists of letters from the word wi (if we
start receiving a word wj where j > i then there can be no occurrence
of the word wi in the channel). Therefore, proj ?(�) consists of only
letters belonging to wi. Moreover, since proj !(�) is non-empty, there is
at least one letter that is read from w. Therefore, the first letter that is
sent in the sequence � most certainly belongs to the word wi (to ensure
w � w

0).

Let us consider this subsequence �0 from (q, w) to the first send action.

Let us say we have (q, w)
�0
�! (q0, v0). Now, since the subsequence

�
0 only consists of receptions from (q, w), along with the first send

action, this subsequence is also possible from (q, w.v) for all v 2 ⌃⇤.
Therefore, we can execute the same sequence from (q, w0). Hence,
proj !(⌧.�.�

0) 2 L. Therefore, since Alph(proj !(�
0)) 2 Alph(wi), we can

be sure that Alph(proj !(�)) 2 Alph(wi). Therefore, � only sends and
receives letters from a single word wi.

Moreover, since the system is input-bounded, and the first send action in

�
0 matches the first send action in �, we see that w0 = vi.w

ni
i .ui.(v0i.w

n0
i

i .ui)

= w.(v0i.w
n0
i

i .ui) such that ui.v
0
i = wi. Therefore, we can repeat this se-

quence from (q, w0) and reach a state (q, w00) such that w0 � w
00, and

hence, it is branch-compatible for this case.

– The final case we need to consider is w = ". In this case, it is clear that �
consists of at least one send action before the first reception. Therefore,
because of the input-bounded property and the fact that this action can
be executed at (q, w0), we can once again see that proj !(�) consists only
sending only letters from a single word. Moreover, since the same action
can be executed, once again we see that proj !(�) = vj.w

nj

j .uj such that
uj.vj = wj. Therefore, proj ?(�) 2 Pref (vj.w

nj

j .uj).

Now let us consider the run ⌧.� in the automaton A that we constructed.
Since ⌧.� is a run in M, there is also a run in A such that q0A

⌧�! qs
��! qs.

Moreover, we can also repeat � to obtain q
0
A

⌧�! qs
��! qs

��! qs. Therefore,

⌧.�.� 2 Pref (L?). Moreover, since proj ?(�) 6= ", proj ?(�) = u
0
j.w

n0
j

j .v
0
j

such that v
0
j.u

0
j = wj. Therefore, we can repeat � from (q, w0) in M,

and we reach a state (q, w00) such that w0 � w
00.

Hence, we see that for all cases, if (q0, ")
⌧�! (q, w)

��! (q, w0) such that w � w
0.

then there exists w
00 such that (q, w0)

��! (q, w00) and w
0 � w

00. Hence, M is
branch-compatible.

40 3. Branch-Well-Structured Transition Systems

We can extend the same argument for each channel in case of multiple channels,
and we obtain branch-compatibility for the case of distinct-letter FIFO machines
with multiple channels (intersected with the corresponding finite automata).

Example 9. Consider the FIFO machine M2 as in Figure 3.5 that is input-
bounded for L = (ab)⇤. As we saw in Example 8, it is not branch-monotone.
However, let us consider the product M0

2 of M2 along with the finite automaton
A that recognizes L! \ Pref (L?). Here, we see that the counter-example we had
previously is no longer there. In fact, the loop that could not be realized has now
been opened up and we can see that the FIFO machine M0

2 has only a finite run.
Moreover, we see that it is branch-monotone for the prefix-ordering.

LL LR

RL RR

!a

!b

!a

!b

?a?b ?a?b

A

q0 q1 q2
!a

!b

?a

M2

q0,LL q1,LR q2,RR q0,RL q1,RR
!a ?a !b !a

M0
2

Figure 3.5: The FIFO machine M2 (right) and the automaton A that recognizes
L! \ Pref (L?) (left) intersect to give M0

2(below) which is branch-monotone.

We remark here that in Chapter 4, when we show that input-bounded rational-
reachability is decidable, we construct a “normalized” FIFO machine, from the
given FIFO machine and bounded language. Using the same principles, we can
modify every input-bounded FIFO machine into one that is distinct-letter, and
using the product construction from above, we have the following proposition:

Proposition 3.18. Normalized input-bounded FIFO machines are branch-e↵ective
branch-WSTS (for the prefix ordering).

Proof. Given an input-bounded FIFO machine SM, for any two states x, x0 2 X, we
can decide if x p x

0. Furthermore, since we have a finite automaton, �! is decidable,
and PostS(x) is computable for all x 2 X. Hence, it is branch-e↵ective.

3.6. Coverability 41

Moreover, the extended prefix ordering is a partial ordering. Hence, we deduce:

Theorem 3.19. Termination and boundedness are decidable for input-bounded
FIFO machines.

3.6 Coverability

We look at the notion of coverability now. Let us formally define the problem we
are trying to solve.

Decision Problem: COVERABILITY

Input: a TS S = (X,!),

x, y 2 X

Question: does there exist a y
0 2 Post

⇤
S(x) such that y y

0?

Coverability is decidable for a large class of WSTS:

Theorem 3.20 ([FS01, AČJT00]). The coverability problem is decidable for ef-
fective WSTS S = (X,!,) equipped with an algorithm that, for all finite sets
I ✓ X, computes a finite basis pb(I) of "Pre("I).

Assume S = (X,!,) is a WSTS and x 2 X is a state. The backward
coverability algorithm involves computing (a finite basis of) Pre

⇤("x) as the limit

of the infinite increasing sequence "I0 ✓ "I1 ✓ . . . where I0 = {x} and In+1
def
=

In [pb(In). Since there exists an integer k such that "Ik+1 = "Ik, the finite set Ik
is computable (one may test, for all n, whether "In+1 = "In) and Ik is then a finite
basis of Pre

⇤("x) so one deduces that coverability is decidable.

Coverability can be also decided by using the forward coverability algorithm that
relies on two semi-decision procedures (as described below). It applies to the class
of well-behaved transition systems, which are more general than WSTS. A well-
behaved transition system (WBTS) is an ordered transition system S = (X,!,)
with monotony such that (X,) contains no infinite antichain. We describe
e↵ectiveness hypotheses that allow manipulating downward-closed sets in WBTS.
But first, we introduce some notions.

42 3. Branch-Well-Structured Transition Systems

Procedure 1 : Checks for a coverability certificate of y from x

input: S = (X,!,) and x, y

D := #x
while y /2 D do
D := #(D [PostS(D))

end while
return “y is coverable from x”

Ideals. An ideal is a downward-closed set I ✓ X that is also directed, i.e., it is
non-empty and, for every x, y 2 I, there exists z 2 I such that x z and y z.
The set of ideals is denoted by Ideals(X) = {; ⇢ I ✓ X | I = #I and I is directed}.
A directed complete partial ordering (dcpo) is an ordered set (X,) such that
every directed set D ✓ X has a least upper bound (lub) in X: for instance, (N,),
with the usual notations, is not a dcpo since the directed set N has no lub in N;
if we add the lub ! to N, then (N!,) is a dcpo. There is a way to add all lubs
to any ordered set (X,), that is called the ideal completion. The elements of
the ideal completion of X are its ideals, i.e., its downward-closed directed families,
ordered by inclusion.

Definition 3.21 ([BFM17, Definition 3.4]). A class C of WBTS is ideally e↵ective
ideally
e↵ective

if, given S = (X,! ,) 2 C,

• the set of encodings of Ideals(X) is recursive,

• the function mapping the encoding of a state x 2 X to the encoding of the
ideal #x 2 Ideals(X) is computable;

• inclusion of ideals of X is decidable;

• the downward closure #Post(I) expressed as a finite union of ideals is com-
putable from the ideal I 2 Ideals(X).

Theorem 3.22 ([BFM17]). The coverability problem is decidable for ideally e↵ec-
tive WBTS.

The proof is done by two semi-decision procedures where downward-closed
sets are represented by their finite decomposition in ideals and this is e↵ective.
Procedure 1 checks for coverability of y from x, by recursively computing #x,
#(#x [Post(#x)) and so on. This procedure terminates only if y belongs to one of
these sets, hence it terminates if y is coverable. Hence, we deduce:

Proposition 3.23 ([BFM17]). For an ideally e↵ective WBTS S = (X,!,), an
initial state x, and a state y, Procedure 1 terminates i↵ y is coverable from x.

3.6. Coverability 43

Procedure 2 : Checks for non-coverability
input: S = (X,!,) and x, y

enumerate D1, D2, . . .

i := 1
while ¬(#Post(Di) ✓ Di and x 2 Di and y /2 Di) do
i := i+ 1

end while
return false

Procedure 2 enumerates all downward-closed subsets (by means of their finite
decomposition in ideals) in some fixed order D1, D2, . . . such that for all i, Di ✓ X

and #Post(Di) ✓ Di. We note that this enumeration is e↵ective since S is ideally
e↵ective. If such a set Di contains x, it is an over-approximation of Post

⇤(x).
Hence, if there is such a set Di such that x 2 Di but y /2 Di, it is a certificate of
non-coverability. Moreover, this procedure terminates if y is non-coverable because
#Post

⇤(x) is such a set, and hence, will eventually be found.

Proposition 3.24 ([BFM17]). For a WBTS S = (X,!,), states x and y,
Procedure 2 terminates i↵ y is not coverable from x.

Coverability for branch-WSTS

We show that the two existing coverability algorithms for WSTS do not allow
one to decide coverability for branch-WSTS. We note that, contrary to WSTS,
Pre

⇤("x) is not necessarily upward-closed. In fact, even for a CMRZ with a single
zero-test, this property is not satisfied.

q0 q1
zero(v)

Figure 3.6: System M4 is branch-WSTS.

Example 10. In Figure 3.6, let us consider the counter machine M4 with a single
counter v. Let x = (q1, 0). We see that Pre

⇤("x) = {(q1, n) | n � 0} [{(q0, 0)}.
However, "Pre

⇤("x) = Pre
⇤("x) [{(q0, n) | n � 1}.

Thus, we get:

Proposition 3.25. Given a branch-e↵ective branch-WSTS S = (X,A,!,, init)
and a state x 2 X, the set Pre

⇤("x) is not necessarily upward-closed.

So we deduce that we cannot use the backward algorithm.

44 3. Branch-Well-Structured Transition Systems

Let us consider using the forward algorithm instead. The second procedure
computes all sets X which satisfy the property #Post

⇤(X) ✓ X. This is because
for WSTS, the set #Post

⇤(x) satisfies this property. However, we now show a
counter-example of a branch-WSTS which does not satisfy this property.

q0 q1 q2
inc(v) zero(v)

Figure 3.7: System M5 is branch-WSTS.

Example 11. Consider the counter machine M5 from Figure 3.7, with init =
(q0, 0). We compute #Post

⇤(init). We see that Post
⇤(init) = {(q0, 0), (q1, 1)},

hence, Y = #Post
⇤(init) = {(q0, 0), (q1, 1), (q1, 0)}. However, #Post

⇤(Y) 6✓ Y , as
#Post

⇤(Y) = {(q0, 0), (q1, 1), (q1, 0), (q2, 0)}, which is strictly larger than Y .

This gives us:

Proposition 3.26. For branch-e↵ective, branch-WSTS S = (X,A,!,, init)
such that #Post(#x) is computable for all x 2 X, the set Y = #Post

⇤(init) does
not necessarily satisfy the property #Post

⇤(Y) ✓ Y .

Not only do the two coverability algorithms not terminate but we also show
that coverability is undecidable. To this end, let us define well-structured nets,
which was introduced in [FMP04].

Definition 3.27. A well-structured netwell-
structured

net

is a triple N = (Np
, F,) for some dimen-

sion p where F is a finite set of non-decreasing functions defined on upward-closed
subsets of Np.

Let us denote by TM j the j
th Turing Machine in some enumeration. Consider

the family of functions fj : N2 ! N2 defined by fj(n, k) = (n, 0) if k = 0 and TMj

runs for more than n steps, else fj(n, k) = (n, n + k). Let g : N2 ! N2 be the
function defined by g(n, k) = (n+1, k). Now, consider the strongly monotone WSN
Nj = (N2

, {fj, g},). Since Nj is strongly monotone, it is also branch-monotone.
Moreover, system Nj is branch-e↵ective and we observe that Post is computable
and is wqo. Hence, Nj belongs to a class of branch-e↵ective branch-WSTS.

From [FMP04, Theorem 4.3], we deduce that the state (1, 1) is coverable from
(0, 0) in Nj i↵ TM j halts.

Hence, we obtain the following corollary:

Corollary 3.28. The coverability problem is undecidable for branch-e↵ective
branch-WSTS S = (X,A,!,, init) (even if S is strongly monotone and
is wqo).

3.7. Cover-WSTS 45

3.7 Cover-WSTS

We show that coverability is decidable for a class of WSTS-like systems with a
wqo but with a new notion of monotony, which we refer to as cover-monotony.

We recall the classical definition of the coverability set coverability
set

of x 2 X as CoverS(x) =
#Post

⇤
S(x). Let us consider the following monotony condition.

Definition 3.29. Let S = (X,A,!,, init) be an ordered labeled transition sys-
tem. We say that S is cover-monotone cover-

monotone
(resp. strongly cover-monotone) if, for all

y1 2 CoverS(init) and for all x1, x2 2 X such that x1 y1 and x1 �! x2, there
exists a state y2 2 X such that y1

⇤�! y2 (resp. y1 �! y2) and x2 y2.

q0q1 q2q3
zero(v)

inc(v)

dec(v) inc(v)
inc(v)

Figure 3.8: Machine M6 is cover-monotone if we consider the associated transition
system to have initial state (q0, 0). However, if we consider the initial state as
(q0, 1), then it is not cover-monotone.

Cover-monotony is more general than the usual monotony, i.e., a system can be
cover-monotone but not monotone (as we shall see in this section). However, let us
emphasize that cover-monotony of a system S = (X,A,!,, init) is a property
that depends on the initial state init while the usual monotony does not depend
on any initial state (see Figure 3.8). Hence, the two notions are incomparable.

The strong cover-monotony property is not trivially decidable for general models
while (usual) strong-monotony is decidable for many powerful models like FIFO
machines and counter machines. However, this notion is still of theoretical interest,
as it shows that we can relax the general monotony condition.

However, there is a link between general monotony and cover-monotony.

Proposition 3.30. A system S = (X,A,!,, init) is monotone i↵ for all x 2 X,
(X,A,!,, x) is cover-monotone.

Proof. Every monotone system is trivially cover-monotone for all x 2 X. Con-
versely, consider a system S = (X,A,!,, init) such that (X,A,!,, x) is
cover-monotone for all x 2 X. Let us consider x1, y1, x2 2 X such that x1 y1 and
x1 �! x2. In order to show that S is monotone, we need to prove that there exists
y2 such that y1

⇤�! y2 and x2 y2. Since x1 y1 (by hypothesis), x1 2 CoverS(y1).
By the hypothesis, (X,A,!,, y1) is cover-monotone, hence there exists y2 such
that y1

⇤�! y2 with x2 y2. Hence, S is monotone.

46 3. Branch-Well-Structured Transition Systems

We may now define cover-WSTS as follows.

Definition 3.31. Acover-WSTS cover-WSTS is a finitely branching cover-monotone system
S = (X,A, !,, init) such that (X,) is wqo.

For cover-WSTS, the backward algorithm fails. This is once again because
the presence of a single zero test removes the property of the set Pre

⇤("y) being
upward-closed. But we will now show that the forward coverability approach is
possible.

Proposition 3.32. Given a system S = (X,A,�!,, init) and a downward-closed
set D ✓ X such that #Post(D) ✓ D, then we have the inclusion #Post

⇤(D) ✓ D.

Proof. We first prove the following claim by induction.

Claim: Given a system S = (X,A,�!,, init), for every downward-closed set
D ✓ X such that #Post(D) ✓ D, the following inclusion holds: #Post

k(D) ✓ D,
for all k � 1.

Base case: For k = 1, this is the hypothesis.

The inductive hypothesis asserts that: Given a system S = (X,A,�!,, init),
for every downward-closed set D ✓ X such that #Post(D) ✓ D, the following
inclusion holds: #Post

k(D) ✓ D. We now prove that it is also true for k + 1.

Let Z = Post
k(D). Since Z ✓ #Post

k(D), we know that Z ✓ D (by hypothesis).
Furthermore, for any subset Y ✓ D, #Post(Y) ✓ Y , hence, #Post(Y) is also a
subset of D. Therefore, #Post(Z) ✓ D. Hence, we deduce #Post(Post

k(D)) ✓ D,
i.e., #Post

k+1(D) ✓ D. Hence, we have proved the claim by induction.

From the above claim, we know that #Post
k(D) ✓ D for all D ✓ X.

Note also that Post
⇤(D) = D [

S
k�1

Post
k(D). Therefore, Post

⇤(D) ✓ D, and

finally since D is downward-closed, #Post
⇤(D) ✓ D.

Let us define a particular instance of the coverability problem in which we
verify if a state is coverable from the initial state.

Decision Problem: init-COVERABILITY

Input: an ordered transition system S = (X,A,�!,, init),

a state y 2 X

Question: is y 2 #Post
⇤
S(init)?

3.7. Cover-WSTS 47

We show that init-coverability is decidable for cover-WSTS:

Theorem 3.33. Let S = (X,A,!,, init) be an ideally e↵ective cover-WSTS
such that Post is computable. Then, the init-coverability problem is decidable.

Proof. Consider a system S = (X,A,!,, init) that is cover-WSTS, and let us
consider a state y 2 X. To find a certificate of coverability (if it exists), we
cannot use Procedure 1 since general monotony is not satisfied and then, in general,
#Post

⇤(init) 6= #Post
⇤(#init) but we can use a variation of Procedure 1, where

we iteratively compute init , Post(init), Post(Post(init)), and so on, and at each
step check if y x for some x in the computed set. This can be done because S is
finitely branching and the sets Post

k(init) are computable for all k � 0. Hence,
if there exists a state that can cover y reachable from init , it will eventually be
found.

Now, let us prove that Procedure 2 terminates for input y i↵ y is not coverable
from init .

If Procedure 2 terminates, then at some point, the while condition is not
satisfied and there exists a set D such that y /2 D and init 2 D and #Post(D) ✓ D.
Moreover, #Post

⇤(I) ✓ I for every inductive invariant I (see Proposition 3.32).
Hence, CoverS(init) ✓ D, therefore, since y /2 D, we deduce that y 62 CoverS(init)
and then y is not coverable from init .

Note that every downward-closed subset of X decomposes into finitely many
ideals since (X,) is wqo [FGL09]. Moreover, since init is ideally e↵ective, ideals
of X may be e↵ectively enumerated. By [BFM18] and [BFM17], for ideally e↵ective
systems, testing of inclusion of downward-closed sets, and checking the membership
of a state in a downward-closed set, are both decidable.

To show the opposite direction, let us prove that if y is not coverable from init ,
the procedure terminates. It su�ces to prove that CoverS(init) is an inductive
invariant. Indeed, this implies that CoverS(init) is eventually found by Procedure 2
when y is not coverable from init .

Let us show #Post(CoverS(init)) ✓ CoverS(init). Let y 2 #Post(CoverS(init)).
Then, there exists x, x0

, y
0 such that init

⇤�! x
0, x x

0, x �! y
0 and y y

0. Hence,
x, x

0 2 Cover(init). And by cover-monotony, there exists y
00 � y

0 such that
x
0 ⇤�! y

00. Therefore, init
⇤�! y

00 and y y
0 y

00, hence, y 2 CoverS(init). Hence,
the init-coverability problem is decidable.

48 3. Branch-Well-Structured Transition Systems

However, we see that the general coverability problem is undecidable for cover-
WSTS. We see that as for branch-WSTS, for the class of cover-WSTS the property
of #Post

⇤(Y) ✓ Y does not hold for sets excluding the coverability set from the
initial state.

Theorem 3.34. The coverability problem is undecidable for cover-WSTS.

Proof. Given any counter machine C = (Q, V, T, q0), let SC = (XC,ActC,!C,
, init) be its transition system equipped with the natural order on counters. We can
construct a system S 0

C = (X 0
C,ActC,!0

C,, init 0) such that S 0
C is cover-monotone,

and any state x 2 XC is coverable i↵ it is also coverable in X
0
C. The construction

is as follows. We add a new control-state q from the initial state in the counter
machine (q0) reachable via a noop transition, therefore, X 0

C = XC [{(q, 0) | n 2 N}.
This new control-state is a sink state, i.e., there are no transitions from q to any
other control-state (except itself). Moreover, we let init 0 = (q, 0). Note that
S 0
C is cover-monotone, because there is no state reachable from init 0, hence, the

property is vacuously satisfied. However, for all other states, as we leave the system
unchanged, we see that a state x is coverable in SC by a state y i↵ it is coverable in
S 0
C. Hence, coverability for counter machines reduces to the coverability problem

for cover-WSTS, and coverability is therefore, undecidable for cover-WSTS.

Chapter 4

Input-Boundedness

As we saw in the previous chapters, for general FIFO machines, boundedness,
termination and reachability are all undecidable. Moreover, as FIFO systems are
neither WSTS, nor branch-WSTS, the problem of analyzing an interesting subclass
with decidable properties is still left open.

There have been many works since the 1980s which have studied FIFO machines
in which the input-language of a channel (i.e., the set of words that record the
messages entering a channel) is included in the set Pref (w⇤

1w
⇤
2 . . . w

⇤
n) for words

w1, w2, . . . , wn. We call this class of FIFO machines input-bounded.

In this chapter, we solve a problem that was left open in [GGLR87], the
decidability of the reachability problem for input-bounded FIFO machines. We
present a simulation of input-bounded FIFO machines by counter machines with
restricted zero tests.

In fact, we actually solve the more general problem of rational-reachability,
hence, we can deduce the decidability of other verification properties like control-
state reachability, deadlock, unboundedness, and termination. We also study the
natural dual of the input-bounded reachability problem, which are machines in
which the output-language, or set of words received by each channel, is bounded.
For this class, we are able to deduce the decidability of reachability, unboundedness,
termination and control-state reachability.

We obtain EXPTIME upper bounds and NP lower bounds for the input-bounded
reachability of FIFO machines with a single channel. And finally, following the
bounded verification paradigm like in [EGM12, FP20], we suggest a methodology
that would apply existing results on input-bounded FIFO machines to general
FIFO machines.

49

50 4. Input-Boundedness

4.1 Bounded reachability

We formally define a bounded language first. Let A be an alphabet.

Definition 4.1 ([GS64]).bounded
language

Let w1, . . . , wn 2 A
+ be non-empty words where n � 1.

A bounded language over (w1, . . . , wn) is a language L ✓ w
⇤
1 . . . w

⇤
n.

We always assume that a bounded language L is given together with its tuple
(w1, . . . , wn) and that Alph(L) = Alph(w1 . . . wn). We say L is distinct-letter if
|w1 . . . wn|a 1 for all a 2 A. If |w1| = . . . = |wn| = 1, i.e., w1, . . . , wn 2 A, then
L is a letter-bounded language. Note that the set of bounded languages is closed
under Pref and Suf .

Webounded
reachability

set

say that a FIFO machine M = (Q,Ch,⌃, T, q0) has a bounded reachability
set if there is a tuple (Lc)c2Ch of regular bounded languages Lc ✓ ⌃⇤

c such that,
for all (q,w) 2 ReachsetM, we have w 2

Q
c2Ch Lc. We define the input-language

of a FIFO channel c as the set of all words that are sent into the channel, i.e.,
proj c!(Traces(M)).

input-bounded
FIFO

machine

Moreover, we say that the machine is input-bounded if there
is a tuple (Lc)c2Ch of regular bounded languages Lc ✓ ⌃⇤

c such that, for all c 2 Ch,
proj c!(Traces(M)) ✓ Lc.

Let us also briefly recall a few notions that have been studied in the literature.
Monogeneous FIFO nets [Fin82, MF85, FS01] are machines where input-languages
of channels c are included in Pref (uc · v⇤c) where uc, vc are two words associated
with c. Linear FIFO nets (or as we will refer to them, distinct-letter-bounded
FIFO machines) [CF87] are machines where the input-language is distinct-letter.
Finally, flat machines are a class of FIFO machines such that every control-state is
part of at most one non-elementary loop[FP19]. All these classes are subclasses of
input-bounded FIFO machines.

We show that restricting the reachability set to be bounded is not su�cient to
obtain a decidable reachability problem, by simulating any two counter (Minsky)
machine by a FIFO machine with fixed languages Lc.

Theorem 4.2. The reachability problem is undecidable for FIFO machines (with
a single channel) with a (given) bounded reachability set.

Proof. We prove this by reducing reachability in a two counter machine to reacha-
bility in a FIFO machine that has a single channel and a bounded reachability set.
Intuitively, for every state (q, v1, v2) reachable in the counter machine, where q is
the control-state and v1, v2 are the counter contents, we are able to reach a state
(q, w) in the FIFO machine, where w = #a

v1#b
v2#.

Consider a counter machine C = (QC, V, TC, qinit), where QC is the set of control-
states, V = {x1, x2} is the set of counters, qinit the initial control-state, and

4.1. Bounded reachability 51

T = Q⇥ Act ⇥Q such that Act = {inc(x), dec(x), zero(x) | x 2 V } to denote the
increment, decrement and testing for zero of the counters.

We construct a FIFO machine M = (QM,Ch,⌃, TM, q0) such that QM = QC [
Qmid, where Qmid is a set of intermediate control-states, Ch = {c}, ⌃ = {a, b,#},
and q0 = qinit.

For every transition �C 2 TC:

• If �C = (q, inc(x1), q0): We add the sequence of transitions as shown in
Figure 4.1 to TM. Put simply, if counter x1 is incremented, we increment the
number of a’s in the channel by 1. By rotating the tape contents, we ensure
that the channel contents at q0 are of the form #a

v1#b
v2#.

q q
0

?#!#

?a !a
?# !a !#

?b !b

?#!#

Figure 4.1: Incrementing x1, corresponding to rotating the channel contents and
the addition of the letter a as shown in the red transition.

• If �C = (q, dec(x1), q0): We add the sequence of transitions as shown in
Figure 4.2 to TM. As before, if counter x1 is decremented, we decrement the
number of a’s in the channel by 1. By rotating the tape contents, we ensure
that the channel contents at q0 are of the form #a

v1#b
v2#. Note that, for

the FIFO machine, if there is no a in the channel, then the sequence will not
be completed and q

0 cannot be reached.

q q
0

?#!#

?a
?a !a

?# !#
?b !b

?#!#

Figure 4.2: Decrementing x1, corresponding to rotating the channel contents and
the removal of the letter a as shown in the red transition.

• If �C = (q, zero(x1), q0): In this case, we have the sequence as shown in
Figure 4.3 added to TM. This transition sequence can only be executed if
there is no occurrence of a in the channel.

Similar constructions are made for the transitions involving counter x2. Consider
the transition system associated to M, i.e., SM. Observe that the channel contents

52 4. Input-Boundedness

q q
0

?#!# ?#!#

?b !b

?#!#

Figure 4.3: Testing if x1 = 0?, which corresponds to ensuring there are no
occurrences of a.

always belong to the bounded language #⇤
a
⇤#⇤

b
⇤#⇤

a
⇤#⇤

b
⇤#⇤. Hence, SM has a

bounded reachability set.

Consider the associated transition systems, i.e., SC and SM, we prove the

following claim: There is a transition t of the form (q, v1, v2)
t�! (q0, v01, v

0
2) in SC i↵

there is a transition sequence of the form (q, w)
↵1�! (q1, w1)

↵2�! . . .
↵n�! (q0, w0) in

SM such that w = #a
v1#b

v2#, states q1, . . . , qn�1 2 Qmid and w1, . . . , wn�1 2 ⌃⇤

and w
0 = #a

v01#b
v02#.

Let us first show that for every transition t of the form (q, v1, v2)
t�! (q0, v01, v

0
2)

in SC there is a corresponding sequence in SM as defined above. Without loss
of generality, let us assume that the transition t modifies counter x2. (The same
arguments can be extended in the case of counter x1). By construction, for an
increment, we know that there is a transition sequence that can be executed from
state (q, w) in SM, which leads to (q0, w0). Similarly, if t involves decrement of the
counter x2, then we know that v2 � 1. Hence, there is at least one occurrence of the
letter b in w. Hence, we can successfully execute the transition sequence from (q, w)
to (q0, w0) as per the construction. If t tests x2 to zero, then we know that there is
no occurrence of b in w. Hence, in SM, the transition sequence corresponding to
the zero test can be executed to reach from (q, w) to (q0, w0).

To show the opposite direction, we assume there is a transition sequence of
the form (q, w)

↵1�! (q1, w1)
↵2�! . . .

↵n�! (q0, w0) in SM such that w = #a
v1#b

v2#,
control-states q1, . . . , qn�1 2 Qmid and w1, . . . , wn�1 2 ⌃⇤ and w

0 = #a
v01#b

v02#.
Hence, there is a corresponding transition in SC as all the transition sequences
between states in QC are constructed based on transitions in the counter machine.
Moreover, if the transition system corresponding to a zero test of say, counter x2,
is executed, we can be sure that there is no b in w. Hence, v2 = 0. Hence, from the
state (q, v1, v2) the zero test of x2 can be executed and (q0, v01, v

0
2) can be reached.

The same arguments can be extended for all transition sequences, and we prove
our claim.

We can extend this claim by induction to consider any transition sequences
in SC. Hence, we can derive the following claim: (q, v1, v2) is reachable from
(qinit, 0, 0) i↵ (q, w) is reachable from (q,###), where w = #a

v1#b
v2#. And since

reachability is undecidable for 2-counter machines, we can say it is also undecidable

4.1. Bounded reachability 53

for FIFO machines with a bounded reachability set.

Note that the above result only uses a single channel, and still the reachability
problem is undecidable. Moreover, in the proof above, |⌃| = 3, but we can modify
the construction to use only 2 letters (we represent both counters by the same
letter a). Hence, for a single channel and |⌃| = 2, the reachability problem is still
undecidable for FIFO machines with a bounded reachability set. Furthermore,
if we modify the restriction to consider non-repeating letters (i.e., distinct-letter
bounded), we still obtain undecidability of the reachability problem. We know that
if |⌃| = 1, we can represent the channel by a single counter, for which reachability
is known to be decidable.

We see in the previous proof that if there is a loop in the counter machine, the
input-language of the channel is not bounded: If we have a transition from q in the
original machine of the kind (q, inc(xi), q), there exists a corresponding � 2 Act⇤M
in the FIFO machine such that proj c!(�) = (#a

⇤#a
⇤#)⇤, which is not bounded.

Hence, the input-language need not be a bounded language even if the reachability
set is. Furthermore, if the original counter machine is not flat, the FIFO machine
would not be flat either, since there can be control-states that are in more than
one elementary loop.

We therefore consider a di↵erent restriction to obtain decidability of reachability
for FIFO systems. The reachability problem for FIFO systems can be seen as
follows:

Given a FIFO machine M = (Q,Ch,⌃, T, q0), and a state (q,w) in the set of
states XM of the associated transition system, do we have (q,w) 2 TracereachM(L)
where L = Act⇤M, i.e., is there any path from the initial state to (q,w)? Since
this problem is undecidable, we are looking for language classes C that render the
problem decidable under the restriction that L 2 C.

For a given FIFO machineM = (Q,Ch,⌃, T, q0), we are interested in computing
TracereachM(L) where L ✓ Act⇤M is input-bounded i.e., for every channel c, the
sequence of messages that are sent through channel c is from a given regular
bounded language Lc ✓ ⌃⇤

c .

With this, given a tuple L = (Lc)c2Ch of bounded languages Lc ✓ ⌃⇤
c , we

set L! = {� 2 Act⇤M | proj c!(�) 2 Lc for all c 2 Ch} and L? = {� 2 Act⇤M |
proj c?(�) 2 Lc for all c 2 Ch}. We observe that, if all Lc are regular, then so are
L! and L?.

We now define the input-bounded (IB) reachability problem as follows:

54 4. Input-Boundedness

Decision Problem: INPUT-BOUNDED (IB) REACHABILITY

Input: a FIFO machine M = (Q,Ch,⌃, T, q0)

a tuple of non-empty regular bounded languages L = (Lc)c2Ch

a state (q,w) 2 XM

Question: is (q,w) 2 TracereachM(L!)?

Note that, if (q0, ")
��!M (q,w) and � 2 L!, then because we are consid-

ering FIFO channel, we also have � 2 Pref (L?). Thus, TracereachM(L!) =
TracereachM(L! \ Pref (L?)) so that we can restrict to action sequences from
L! \ Pref (L?). We will call L! \ Pref (L?) the set of valid words.

0 1

3 2 4

Client (c)

h(c, s)!reqi

h(c, s)!datai
h(s, c)?koi

h(s, c)?erri h(s, c)?oki

0 2

1 3 4

Server (s)

h(c, s)?reqi
h(s, c)!koi

h(s, c)!oki

h(c, s)?datai

h(c, s)?datai

h(s, l)!logi

0

Logger (l)

h(s, l)?logi

Figure 4.4: The Client-Server-Logger example from [LY19]

Example 12. Let us consider a simple model of a Client-Server-Logger system
from [LY19], which consists of three processes, a client (denoted by c), server
(s) and logger (l), and channels between them. The client sends to the server a
request, followed by some data in a fire-and-forget fashion, i.e., before receiving
any response from the server. The server either grants the requests and sends a log
message to the logger, or sends a message ko to the client, after which the client
tries again. This system is neither flat nor monogeneous nor linear. However, the
input-languages of the channels are Lcs = (req · data)⇤, Lsc = (ko)⇤ · (ok)⇤ and
Lsl = (log)⇤. Hence, they are all bounded languages. Therefore, computing the
reachability set for the entire system is equivalent to computing reachability over a
set of bounded languages.

4.2. The IB rational-reachability problem. 55

4.2 The IB rational-reachability problem.

Actually, instead of reachability of a single state as stated above, we study a more
general problem, called the input-bounded rational-reachability problem. It asks
whether a state (q,w) is reachable for some channel contents w from a given
rational relation. Let us formally define this notion.

Semi-Linear Sets. Let d � 1 be a positive integer. A subset Y of Nd is a
linear set of dimension d if there linear setexists a basis b 2 Nd and a finite set of periods
{p1, . . . ,pm} ✓ Nd such that

Y = {b+ i1p1 + . . .+ impm | i1, . . . , im 2 N}.

The basis along with the periods are referred to as the generators of the linear
set Y . A finite union of linear sets is called a semi-linear

set
semi-linear set. Every finite subset

of Nd is semi-linear (including the empty set ;) - it can be seen as a finite union of
linear sets with no period.

Example 13. The set Y1 = {(x, y) | x � 1} ✓ N2 is a linear (hence, semi-
linear) set, with b = (1, 0), p1 = (0, 1) and p2 = (1, 0). On the other hand,
Y2 = {(x, y) | y x

2} is not a semi-linear set.

It is well known that the language of a non-deterministic finite-state automaton
(NFA) over a d-letter alphabet ⌃ = {a1, . . . , ad} can be seen as a semi-linear
set [Par66]. Given a word w 2 ⌃⇤, we define the Parikh map Parikh mapof w by �(w) =
(|w|a1 , . . . , |w|ad). By extension, the Parikh map of a language L, is denoted by
�(L) = {�(w) | w 2 L}. Hence, if we are given a semilinear set Y , we can construct
an NFA which accepts a language L such that �(L) = Y .

Rational and Recognizable Relations. We say that a subset Rel ✓
Q

c2Ch ⌃⇤
c

is rational rational setif there is a regular word language R ✓ ⇥⇤ over the alphabet
⇥ =

Q
c2Ch(⌃c [{"}) such that Rel = {(a1

c · . . . · an
c)c2Ch | a1

. . . an 2 R with
n 2 N and ai = (ai

c)c2Ch 2 ⇥ for i 2 {1, . . . , n}}. Here, a1
c · . . . · an

c 2 ⌃⇤
c is

the concatenation of all ai
c 2 ⌃c [{"} while ignoring the neutral element ". For

example, in the presence of two channels, Rel = {(am, bn) | m � n} is a rational
relation, witnessed by R = ((a, b)+(a, "))⇤. In the following, we will always assume
that a rational relation is given in terms of a finite automaton for the underlying
regular language R.

A relation Rel ✓
Q

c2Ch ⌃⇤
c is called recognizable recognizable

relation
if it is the finite union of

relations of the form
Q

c2Ch Rc where all Rc ✓ ⌃⇤
c are regular languages. Note that

every recognizable relation is rational while the converse is, in general, false.

56 4. Input-Boundedness

We define the Parikh imageParikh image
of a relation

of a relation Rel ✓
Q

c2Ch ⌃⇤
c as

Parikh(Rel) = {(⇡a)a2⌃ 2 N⌃ |9w = (wc)c2Ch 2 Rel such that

⇡a = |wc|a for all c 2 Ch and a 2 ⌃c}

It is well known that, if Rel is rational, then Parikh(Rel) is semi-linear.

We are now prepared to define the input-bounded (IB) rational-reachability
problem.

Decision Problem: INPUT-BOUNDED (IB) RATIONAL-REACHABILITY

Input: a FIFO machine M = (Q,Ch,⌃, T, q0)

a tuple L = (Lc)c2Ch of non-empty regular bounded languages

a control-state q 2 Q, and

a rational relation Rel ✓
Y

c2Ch

⌃⇤
c

Question: is (q,w) 2 TracereachM(L!) for some w 2 Rel?

We shall now try to prove that the above problem is decidable for FIFO machines.

Let M = (Q,Ch,⌃, T, q0), and let L = (Lc)c2Ch be a tuple of non-empty regular
bounded languages Lc ✓ ⌃⇤

c over (wc,1, . . . , wc,nc). We proceed by reduction to
counter machines. Intuitively, we represent the contents of channel c in terms of a
set of counters, one for every component wc,i.

However, in order to simulate FIFO machines by counter machines, we require
that the FIFO machine (along with the bounded languages associated to it) be in
a normal form. This can be achieved at the expense of an exponential blow-up of
the FIFO machine.

Definition 4.3. We say that M and L are in normal form if the following hold:normal form

1. For all c 2 Ch, ⌃c ✓ Alph(Lc) and Lc is distinct-letter.

2. We have Traces((Q,ActM, T, q0)) ✓ Pref (V) whereset of valid
words V

V = L!\Pref (L?). Note
that (Q,ActM, T, q0) is the finite transition system induced by the control
graph of M.

Distinct-Letter Property. Let ⌃̂ be an alphabet. Consider the bounded lan-
guage L̂ ✓ ⌃̂⇤ over (ŵ1, . . . , ŵn). For i 2 {1, . . . , n}, let mi = |ŵi| be the length
of the i-th word. Furthermore, let m = m1 + . . .+mn. Let ⌃ denote the alpha-
bet {`1, . . . , `m}. We construct a distinct-letter bounded language L ✓ ⌃⇤ over

4.2. The IB rational-reachability problem. 57

(w1, . . . , wn) such that wi = `j+1 . . . `j+mi , where j =
P

p<i mp, for all 1 i n. In
order to obtain the distinct-letter language L, we first construct the homomorphism
h : ⌃⇤ ! ⌃̂⇤ where h(`i) is the i-th letter of the word ŵ1 . . . ŵn. We obtain L as
h
�1(L̂)\w

⇤
1 . . . w

⇤
n, hence, preserving regularity and boundedness. We then remove

all the words from the bounded language (w1, . . . , wn) (and their letters from ⌃)
whose letters do not occur in L.

Example 14. For example, suppose we have L̂ = (ab)⇤bb⇤ over (ab, b). We
determine the language L over (a1a2 , a3). The homomorphism h : {a1, a2, a3}⇤ !
{a, b}⇤ is given by h(a1) = a and h(a2) = h(a3) = b. We have h

�1(L̂) = (a1(a2 +
a3))⇤(a2+a3)(a2+a3)⇤, which we intersect with (a1a2)⇤a⇤3. We thus get the regular
bounded language L = (a1a2)⇤a3a⇤3 over (a1a2 , a3). All letters from {a1, a2, a3}
occur in L so we are done.

Trace Property. Given a FIFO machine M̂ = (Q̂,Ch, ⌃̂, T̂ , q̂0) and the tuple
L̂ = (L̂c)c2Ch of non-empty regular bounded languages L̂c ✓ ⌃̂⇤

c , we now construct
the FIFO machine M = (Q,Ch,⌃, T, q0) such that Traces((Q,ActM, T, q0)) ✓
Pref (V) with V = L! \ Pref (L?). Let hc : ⌃⇤

c ! ⌃̂⇤
c be the homomorphism

defined earlier for channel c 2 Ch. First, to take care of the homomorphism hc,
we define the transition relation h

�1(T̂) = {(q, hc!ei, q0) | (q, hc!ai, q0) 2 T̂ and
e 2 h

�1
c (a)} [{(q, hc?ei, q0) | (q, hc?ai, q0) 2 T̂ and e 2 h

�1
c (a)}. Thus, the set of

actions of M will be ActM = {hc!ei | c 2 Ch and e 2 ⌃c} [{hc?ei | c 2 Ch and
e 2 ⌃c}.

q0 q1

M̂
L̂c = (ab)⇤bb⇤

Lc = (a1a2)⇤a3a⇤3

!a | !b | ?a

?b

?b

q0 q1

h
�1(M̂)

!a1 | !a2 | !a3 | ?a1

?a2 | ?a3

?a2 | ?a3

Figure 4.5: The FIFO machine M̂ (left) and the modified FIFO machine h
�1(M̂)

with distinct letters

Example 15. Consider a FIFO machine M̂ with one single channel c (which
is therefore omitted) as shown in Figure 4.5 (left) and its bounded language
L̂c = (ab)⇤bb⇤ over (ab, b). Recall from Example 14 that the corresponding
homomorphism hc maps a1 to a and both a2 and a3 to b, and that we obtain
Lc = (a1a2)⇤a3a⇤3. To continue the example, a transition t = (q, hc!bi, q0) would
be replaced by h

�1(t) with the two transitions (q, hc!a2i, q0) and (q, hc!a3i, q0). We
construct h�1(M̂) = (Q̂,Ch,⌃, h

�1(T̂), q̂0) as shown in the Figure 4.5 (right).

58 4. Input-Boundedness

To guarantee trace inclusion in Pref (V), we follow the same idea as in Sec-
tion 3.5.2. To recall, we will consider a deterministic (not necessarily complete)
finite automaton A = (QA,ActM, TA, q

0
A, FA), with set of final states FA ✓ QA,

whose language is L(A) = V and where, from every state, a final state is reachable
in the finite graph (QA, TA). With this, we define M as the product of the FIFO
machine h

�1(M̂) = (Q̂,Ch,⌃, h
�1(T̂), q̂0) and A in the expected manner. In

particular, the set of control-states of M is Q̂⇥QA, and its initial state is the pair
(q̂0, q0A).

q0 q1

h
�1(M̂)

ML R

A for V = L! \ Pref (L?)

ML R

!a1 | !a2 | !a3 | ?a1
?a2 | ?a3

?a2 | ?a3
!a1

!a2

!a3
!a3

?a1

?a2

?a3
?a3

q0
L,M

M

q0
M,M

q0
R,M

q1
R,R

q0
L,L

q0
M,L

q0
R,L

q1
R,M

!a1

!a2

!a1

!a2

?a1

!a3

!a3

?a1 ?a1

!a3

!a3

?a3

?a2

?a3

?a3

Figure 4.6: We construct a FIFO machine M (bottom), together with Lc =
(a1a2)⇤a3a⇤3, in normal form as the product of h�1(M̂) (top left) and an automaton
for V (top right).

Example 16. Figure 4.6 illustrates the completion of the normalization procedure
for the FIFO machine M̂. We see that M (see Figure 4.6 bottom) is the product
of h�1(M̂) (top left) and a finite automaton A for V = L! \ Pref (L?) (obtained
as the shu✏e of the two finite automata on the top right). The state names in
M reflect the states of M̂ and A they originate from. We depict only accessible
states of M from which we can still complete the word read so far to a word in V .
For example, (q1,M,L) and (q1,L,R) would no longer allow us to reach the final
state R of the L!-component, and hence, are not visible in the figure.

Now suppose we are given a reachability query for M̂ in terms of q̂ 2 Q̂ and
a rational relation R̂el ✓

Q
c2Ch ⌃̂⇤

c . The lemma below shows how to reduce it

4.2. The IB rational-reachability problem. 59

to a reachability query in M. Here, for w = (wc)c2Ch 2
Q

c2Ch ⌃⇤
c , we define

h(w) = (hc(wc))c2Ch 2
Q

c2Ch ⌃̂⇤
c . Note that h�1(R̂el) is rational. Furthermore,

h : ⌃⇤ ! ⌃̂⇤ is defined by h(a) = hc(a) for all c 2 Ch and a 2 ⌃c, and we extend
this to h : Act⇤M ! Act⇤M̂ in the expected manner.

Lemma 4.4. We have (q̂, ŵ) 2 TracereachM̂(L̂!) for some ŵ 2 R̂el i↵ ((q̂, qA),w) 2
TracereachM(L!) for some qA 2 QA and w 2 h

�1(R̂el).

Proof. Let us assume we have (q̂, ŵ) 2 TracereachM̂(L̂!) for some ŵ 2 R̂el . Hence,

there exists �̂ 2 L̂! such that (q̂0, ")
�̂�! (q̂, ŵ). For channel c, let ŵc = proj c!(�̂).

Since �̂ 2 L̂!, we have ŵc 2 L̂c for all c 2 Ch. Let wc 2 Lc = h
�1
c (L̂c) \

(wc,1)⇤ . . . (wc,nc)
⇤ such that hc(wc) = ŵc. There is a unique � 2 Act⇤M such that

h(�) = �̂ and proj c!(�) = wc and proj c?(�) 2 Pref (wc) for all c 2 Ch. Here,
h : ⌃⇤ ! ⌃̂⇤ is defined by h(a) = hc(a) for all c 2 Ch and a 2 ⌃c, and we extend
this to h : Act⇤M ! Act⇤M̂ in the expected manner. Note that � 2 L! \ Pref (L?).

Hence, we know that in the FIFO machine h
�1(M̂), one has (q̂0, ")

��! (q̂,w) for
some w (by construction of h�1(T̂)), and that � 2 L(A). Therefore, since M is
a product of the two machines, we can deduce that there is a run in M of the
kind ((q̂0, q0A), ")

��! (q̂, qA),w), for some value of qA. Furthermore, by h(�) = �̂,
we have h(w) = ŵ. Hence, w 2 h

�1(R̂el).

Conversely, let us assume that ((q̂, qA),w) 2 TracereachM(L!) for some qA 2 QA
and channel contents w 2 h

�1(R̂el). Then, we know that there exists � 2 L!

such that ((q̂0, q0A), ")
��! (q̂, qA),w). Let �̂ = h(�). Since � 2 L!, we have

proj c!(�) 2 Lc for all c 2 Ch. In particular, proj c!(�) 2 h
�1
c (L̂c) and, therefore,

hc(proj c!(�)) = proj c!(h(�)) 2 L̂c. We deduce �̂ 2 L̂!. Furthermore, we can execute
�̂ in M̂ (by construction) to reach states (q̂, ŵ) for some ŵ. By �̂ = h(�), we have
ŵ = h(w). Therefore, ŵ 2 R̂el .

Reduction of Normal Form to Counter Machine The next step in our
proof is to construct a counter machine C such that the IB rational-reachability
problem for M can be solved by answering a reachability query in C, However, as
we already know, for general counter machines, reachability is undecidable. Hence,
in order to obtain decidability, we impose a restriction on counter machines.

We modify the syntactic restriction in Section 2.3, where we imposed that once
a counter has been tested for zero, it cannot be incremented any further. We now
impose this notion not syntactically but on the semantics of the counter machine.
To define this, let L

zero
CL

zero
C be the set of words (op1(v1), Z1) . . . (opn(vn), Zn) 2 A

⇤
C

such that, for every two positions 1 i j n, we have vj 62 Zi. As discussed
before, this restriction leads us to an extension of VASS. Hence, the reachability
problem is decidable, which we demonstrate below.

60 4. Input-Boundedness

Theorem 4.5. The following problem is decidable (though inherently non-elementary):
Given a counter machine C = (Q, V, T, q0), a regular language L ✓ A

⇤
C, a control-

state q 2 Q, and a semi-linear set V ✓ NV , do we have (q,v) 2 TracereachC(Lzero
C \

L) for some v 2 V?

Proof sketch. We reduce reachability in counter systems with restricted zero tests
in the presence of a semi-linear target set to state reachability in VASS. The idea
is to have 2|V | many copies of the counter machine, such that instead of testing
for zero, we branch into a copy corresponding to storing the information of the
counter to be tested to zero (and we do not modify the counter further in this
copy). Finally, to check whether a counter valuation belongs to V , we branch when
we are in a control-state q into a component that decrements counters accordingly
and eventually checks whether they are all zero.

Hence, reachability for counter machines with restricted zero tests straightfor-
wardly reduces to state-reachability in VASS, which is decidable [May84], though
inherently non-elementary [CLL+19].

Henceforth, we suppose that M = (Q,Ch,⌃, T, q0) and L = (Lc)c2Ch are in
normal form, where Lc is a bounded language over (wc,1, . . . , wc,nc). In particular,
for every letter a 2 ⌃c, there is a unique index i 2 {1, . . . , nc} such that a 2
Alph(wc,i). We denote this index i by ia.

We build a counter machine C such that the IB rational-reachability problem
for M can be solved by answering a reachability query in C, using Theorem 4.5.
Each run in C will simulate a run in M. However, counter values are just natural
numbers and hence, store less information than channel contents, which could
have a non-unary alphabet. To tackle this, the idea is to represent each word
wc,i of a tuple (wc,1, . . . , wc,nc) as a counter x(c,i). Then, we can replace the send
actions by increments of the corresponding counter, and similarly receive actions
can be replaced by decrements. More precisely, hc!ai becomes (inc(x(c,ia)), ;), thus
incrementing the counter associated with the unique word wc,i in which a occurs.
Similarly, hc?ai translates to (dec(x(c,ia)), Z) (for suitable Z).

This alone does not put us in a position yet where, from a counter valuation,
we can infer unique channel contents, as we only currently have information about
the number of letters of the word in the channel. To overcome this, we additionally
store the last messages that are sent in each channel. Note that since the language
is bounded, if we have the additional information of one terminal letter, we can
reconstruct unique channel contents.

The last detail to note is that in general, a set of counters do not immediately
behave like a channel. More specifically, in case of a channel, the decrements
happen in FIFO order, and hence, there should be an order in decrementing the

4.2. The IB rational-reachability problem. 61

sets of counters. There is one more thing to consider here. Translated to the
counter setting, this means that performing dec(x(c,j)) should require all counters
x(c,i) with i < j to be 0, so this is where the zero tests come into play. As the Lc

are bounded languages and thanks to the normal form, however, a counter that
has been tested for zero does not need to be modified any more.

We can directly implement these ideas formally and define C = (Q, V, T
0
, q0) as

follows (note that Q and q0 remain unchanged):

• The set of counters is V = {x(c,i) | c 2 Ch and i 2 {1, . . . , nc}}.

• For every (q, hc!ai, q0) 2 T , we have (q, (inc(x(c,ia)), ;), q0) 2 T
0.

• For every (q, hc?ai, q0) 2 T , we have (q, (dec(x(c,ia)), Z), q
0) 2 T

0 where the
set of counters to be tested for zero is Z = {x(c,j) | j < ia}.

Let us first observe that it is important for the FIFO machine to satisfy the
trace property. We suppose in the following example that we construct the counter
machine directly from h

�1(M̂) (instead of M in Example 16).

q0 q1

h
�1(M̂)

!a1 | !a2 | !a3 | ?a1

?a2 | ?a3

?a2 | ?a3

q0 q1

inc(x) | inc(y) | dec(x)

dec(x) | dec(y)

dec(x) | dec(y)

C 0 without trace property

Figure 4.7: We see that the counter machine C 0 constructed directly from h
�1(M̂)

does not have a tight correspondence with the FIFO machine.

Example 17. Let us look at the counter machine C 0 constructed from h
�1(M̂)

(cf. Figure 4.7) according to the above construction. Then, state (q1, (1, 0)) would
be reachable in the counter machine via ⌧ = inc(x)inc(x)dec(x). If we look at
the only possible transition sequence corresponding to ⌧ in h

�1(M̂), we obtain
hc!a2ihc!a2ihc?a2i. However the only trace corresponding to ⌧ from Pref (V) is
hc!a1ihc!a2ihc?a1i, which in fact, leads to (q0, a2) in h

�1(M̂). Hence, we do not
have a tight enough correspondence between the transitions in h

�1(M̂) and C 0.

Due to the non-determinism still present in h
�1(M̂), we modify it so as to obey

the trace property and obtain the following construction.

Example 18. Figure 4.8 illustrates the construction of C from a FIFO machine
M in normal form (cf. Example 16). Recall that we have one channel c and the
bounded language Lc = (a1a2)⇤a3a⇤3 over (a1a2 , a3). Thus, C will have two counters,

62 4. Input-Boundedness

q0
L,M

M

q0
M,M

q0
R,M

q1
R,R

q0
L,L

q0
M,L

q0
R,L

q1
R,M

!a1

!a2

!a1

!a2

?a1

!a3

!a3

?a1 ?a1

!a3

!a3

?a3

?a2

?a3

?a3

q0
L,M

C

q0
M,M

q0
R,M

q1
R,R

q0
L,L

q0
M,L

q0
R,L

q1
R,M

inc(x)

inc(x)

inc(x)

inc(x)

dec(x)

inc(y)

inc(y)

dec(x) dec(x)

inc(y)

inc(y)

dec(y)
x = 0

dec(x)

dec(y)
x = 0

dec(y)
x = 0

Figure 4.8: Following Example 16, from the normalized FIFO machine M (left),
we obtain the counter machine C (right) which has a tight correspondence with M.

say x for a1a2 and y for a3. Note that performing dec(y) indeed comes with a test
of x for zero.

So consider M and its counter machine C. A channel contents w 2 ⌃⇤
c (here,

we have one channel) has a natural counter analogue �w� = (|w|a1 + |w|a2 , |w|a3).
In fact, if (q,w) is reachable in M, then following the corresponding transitions
in C will lead us to (q, �w�). For example, ((q0,R,L), a2a3a3) is reachable in M
along the trace hc!a1ihc!a2ihc?a1ihc!a3ihc!a3i, and so is ((q0,R,L), (1, 2)) in C along
the trace inc(x)inc(x)dec(x)inc(y)inc(y) (all zero tests are empty).

But how about the converse? In general, one may associate with a counter
valuation such as (4, 0) several channel contents. Actually, both a1a2a1a2 and
a2a1a2a1 seem suitable. However, if we know the most recent message that has
been sent, say a1, then this leaves only one option, namely a2a1a2a1. In this way,
we can associate with each counter valuation v and message ai 2 ⌃c a unique (if it
exists at all) possible channel contents JvKai . Suppose that ⌧ is a trace in C arising
from a trace � in M whose last sent message is ai. If (q,v) is reachable in C via ⌧ ,
then (q, JvKai) is reachable in M via �. For example, ⌧ = inc(x)inc(x)dec(x) allows
us to go to state ((q0,M,L), (1, 0)). It arises from � = hc!a1ihc!a2ihc?a1i 2 Pref (V),
whose last sent message is a2. We have J(1, 0)Ka2 = a2. Indeed, � leads to
((q0,M,L), a2).

Relation between FIFO Machine and Counter Machine Recall that the
FIFO machine M = (Q,Ch,⌃, T, q0) and L = (Lc)c2Ch are in normal form,
where Lc is a bounded language over (wc,1, . . . , wc,nc). Let C = (Q, V, T

0
, q0) be

the associated counter machine. We will now formalize the tight back-and-forth
correspondence that allows us to solve reachability queries in M in terms of
reachability queries in C.

We start with a simple observation concerning the traces of M and C.

4.2. The IB rational-reachability problem. 63

Lemma 4.6. We have Traces(M) ✓ Pref (V) and Traces(C) ✓ L
zero
C .

Proof. Observe that Traces(M) ✓ Traces((Q,ActM, T, q0)) ✓ Pref (V). Thus, the
first property holds.

For the second statement, consider

(q0,0) = (q0,v0)
↵1�!C (q1,v1)

↵2�!C . . .
↵n�!C (qn,vn)

and let ⌧ = ↵1 . . .↵n. Thus, ⌧ 2 Traces(C). Suppose that we apply a zero test at
position ` 2 {1, . . . , n}, i.e., ↵` = (dec(x(c,j)), Z) for some (c, j), where Z contains
the counters x(c,i) with i < j. Then, there is k < ` such that ↵k = (inc(x(c,j)), ;).
By the construction of C, we have transitions (qk�1, hc!ai, qk) and (q`�1, hc?bi, q`) in
M for some a, b 2 ⌃c,j . By the trace property of M, none of the actions “reachable”
from q` in M employs a message from ⌃c,i, for all i < j. Thus, none of the actions
↵m with ` m modifies a counter from Z. We deduce that ⌧ 2 L

zero
C .

With every channel contents w 2
Q

c2Ch ⌃⇤
c of the FIFO machine M, we

associate a counter valuation �w��w� = v 2 NV where, for each counter x(c,i), we let
vx(c,i)

=
P

a2⌃c,i
|w0

c|a. Furthermore, abusing notation, we define a homomorphism� . � : Act⇤M ! A
⇤
C which maps a sequence of actions of M to a sequence of actions

of C. It is defined by �hc!ai� = (inc(x(c,ia)), ;) and �hc?ai� = (dec(x(c,ia)), Z) where
Z = {x(c,j) | j < ia}.

Conversely, we will associate, with counter values and traces of C the corre-
sponding objects in the FIFO machine. Because of the inherent ambiguity, this is,
however, less straightforward. First, we define a partial mapping JvKJ . K : A⇤

C ! Act⇤M
(that is not a homomorphism). For ⌧ 2 A

⇤
C, we let J⌧K be the unique (if it exists)

word � 2 Pref (V) such that ��� = ⌧ .

Next, we associate with a counter valuation a corresponding channel contents.
As explained above, there is no unique choice unless we make an assumption on
the last messages that have been sent. For c 2 Ch, we set ⌃?

c = ⌃c] {?}. Let
a 2 ⌃?

c and w 2 ⌃⇤
c . We say that a is good goodfor w if w 2 Inf (Lc) and either w = "

or w = u.a for some u 2 ⌃⇤
c . Intuitively, it may be possible to obtain contents w

in channel c when a is the last message sent (no message was sent yet through
c if a = ?). Note that the set of words w 2 ⌃⇤

c such that a is good for w is
a regular language. Moreover, with w 2

Q
c2Ch ⌃⇤

c , we associate the finite set G(w)
G(w) ✓

Q
c2Ch ⌃?

c of tuples a = (ac)c2Ch such that, for all c 2 Ch, ac is good for
wc.

Let v 2 NV and a 2
Q

c2Ch ⌃?
c . Abusing notation, we will associate with v and

a the channel contents JvKa 2
Q

c2Ch ⌃⇤
c (if it exists). We let JvKaJvKa = w if �w� = v

and a 2 G(w). There is at most one such w so that this is well-defined. Note that�JvKa� = v.

64 4. Input-Boundedness

Example 19. If we have one channel c and our bounded language is Lc =
(a1a2a3)⇤(a4)⇤, then J(4, 0)Ka2 = a2a3a1a2 and J(2, 1)Ka4 = a2a3a4, whereas J(3, 1)Ka3
is undefined. Moreover, G(a2a3) = {a3} and G(") = {a1, a2, a3, a4,?}.

Given v and a, we can easily compute JvKa since there are only finitely many
words w for a given v such that �w� = v. Furthermore, we can also compute
G(w) for a given w as we have finitely many possibilities of a.

Finally, for a 2
Q

c2Ch ⌃?
c , we letL

last
a L

last
a ✓ Act⇤M be the set of words � such that,

for all c 2 Ch, ac is the last message sent to c in � (no message was sent if ac = ?).
We are now ready to state that runs in the FIFO machine are faithfully simulated
by runs in the counter machine (the proof is by induction on the length of the
trace):

Proposition 4.7. Let � 2 Act⇤M. For all (q,w) 2 XM and a 2
Q

c2Ch ⌃?
c such

that � 2 L
last
a , we have: (q0, ")

��!M (q,w) =)
�
(q0,0)

�����!C (q, �w�) and a 2
G(w)

�
.

Proof. We will prove the statement by induction on the length of �. In the base
case, |�| = 0. The only value of � such that |�| = 0 is � = ". Furthermore,
" 2 Pref (V) \ L

last
a where a = (?)Ch . The initial state (q0, ") 2 XM is the only

state reachable by ". In SC, the only state reachable via �"� = " is (q0,0) =
(q, �"�), and �"� 2 L

zero
C . Finally, we also see that a 2 G("). Therefore, the base

case is valid.

We suppose that the statement is true for all � 2 Act⇤M such that |�| = n. We
will now show that it is true for �0 2 Act⇤M where |�0| = n+ 1. Let a0 2

Q
c2Ch ⌃?

c

and suppose �0 2 Pref (V) \ L
last
a0 .

We write �0 = �.� such that � 2 Pref (V)\Llast
a for some a 2

Q
c2Ch ⌃?

c , |�| = n,
and � 2 ActM. There exists such a � since the set Pref (V) is prefix-closed.

Let (q0,w0) 2 XM such that (q0, ")
�0
�!M (q0,w0). Then, there is (q,w) 2 XM

such that (q0, ")
��!M (q,w)

��!M (q0,w0). Hence, there exists t = (q, �, q0) 2 T in
the FIFO machine.

Case (1):

Suppose � = hc!ai, for some c 2 Ch and a 2 ⌃c. Hence, we have w00
c = w0

c.a, and
w00

d = w0
d for all d 2 Ch \ {c}. Moreover, since �0 = �.� and � = hc!ai, we can

deduce that a0
c = a and a0

d = ad for all d 6= c. This is because the only change in
the last sent letters between � and �0 is in the channel c.

4.2. The IB rational-reachability problem. 65

By construction of C, we know that there is a transition t
0 = (q, inc(x(c,ia)), ;, q0) 2

T
0 in C, and by the definition of � . �, we also have ��� = (inc(x(c,ia)), ;). By induc-

tion hypothesis, we have (q0,0)
�����! (q,v) where v = �w�. Since ��� increases a

counter, we have (q,v)
�����! (q0,v0) for the counter valuation v0 such that v0

p = vp+1
for p = x(c,ia) and v0

p0 = vp0 for all p0 2 V \ {p}. Hence, �w0� = v0 and we have

(q0,0)
��.�����! (q0, �w0�). Note that, by Lemma 4.6, we have ��.�� 2 L

zero
C .

From the induction hypothesis, we know that a 2 G(w). In order to show that
a0 2 G(w0), we only need to address the case of the channel c, since the values of
ad,wd remain unchanged for all d 6= c. We know that w0

c = wc.a0
c. By induction

hypothesis, wc 2 Inf (Lc). Since �0 2 Pref (L!), we also have wc.a0
c 2 Inf (Lc).

Hence, a0 2 G(w0).

Case (2):

Suppose � = hc?ai, for some c 2 Ch and a 2 ⌃c. We have w0
c = a.w00

c, and
w00

d = w0
d for all d 2 Ch \ {c}. Since �0 = �.� and � = hc?ai, we can deduce that

a0 = a. This is because there is no change in the last letter sent between � and �0.

By construction of C, we know that there is a transition t
0 = (q, dec(x(c,ia)), Z, q

0) 2
T

0 in C where Z = {(x(c,j)) | j < ia}. By the definition of � . �, we also have

��� = (dec(x(c,ia)), Z). By the induction hypothesis, we have (q0,0)
�����! (q, �w�).

Furthermore, recall that w0
c = a.w00

c. This implies that a is at the head of the
channel c in the state (q,w). Hence, all the letters b such that ib < ia are not
present in the channel. Therefore, in the state (q, �w�), all the counters x(c,ib) are
equal to zero for ib < ia. Hence, we can execute the transition t

0 from (q, �w�),
and we have (q0,0)

�����! (q, �w�) �����! (q0,v0) for some counter valuation v0. By
Lemma 4.6, we have ��.�� 2 L

zero
C . We write v = �w�, and from the counter

machine transition relation, we know that v0
p = vp � 1 for p = x(c,ia) and v0

p0 = vp0

for all p0 2 V \ {p}. Hence, �w0� = v0.

From the induction hypothesis, we know that a 2 G(w). In order to show that
a0 2 G(w0), we only need to address the case of the channel c, since the values of
ad,wd remain unchanged for all d 6= c. We know from the induction hypothesis that
wc 2 Inf (Lc). Hence, we can immediately deduce that w0

c 2 Suf (wc) ✓ Inf (Lc).

Furthermore, we know that wc = u.a0
c for some u 2 ⌃⇤

c . If u = ", then we can
deduce that w0

c = ". If u 6= ", then we have w0
c = u

0
.a0

c such that a.u0 = u. Hence,
a0 2 G(w0).

Conversely, we can show that runs of the counter machine can be retrieved in

66 4. Input-Boundedness

the FIFO machine (again, the proof proceeds by induction on the length of the
trace):

Proposition 4.8. Let ⌧ 2 A
⇤
C. For all (q,v) 2 XC and a 2

Q
c2Ch ⌃?

c such that

⌧ 2 �Pref (V) \ L
last
a �, we have: (q0,0)

⌧�!C (q,v) =) (q0, ")
J⌧K�!M (q, JvKa) .

Proof. We proceed by induction on the length of ⌧ . In the base case, |⌧ | = 0. The
only value of ⌧ such that |⌧ | = 0 is ⌧ = ". Furthermore, " 2 �Pref (V) \ L

last
a �

where ac = ? for all c 2 Ch. The only state reachable via " is (q0,0). In the FIFO
machine, the state (q0, ") is the only state reachable via J"K = ". We know that
the initial contents is " = J0Ka. Hence, the base case is valid.

Let us suppose that the statement holds for ⌧ 2 A
⇤
C where |⌧ | = n. We show that

it is true for ⌧ 0 with |⌧ 0| = n+1. Let a0 such that ⌧ 0 2 �Pref (V)\Llast
a0 �. Then we can

write ⌧ 0 = ⌧.↵ for some ⌧ 2 Act⇤C and ↵ 2 ActC. There exists �0 2 Pref (V) \ L
last
a0

such that ��0� = ⌧
0. Furthermore, since � . � is a homomorphism, we can express

�
0 = �.� for some � 2 Act⇤M and � 2 ActM where ��� = ↵ and ��� = ⌧ . Since

Pref (V) is prefix-closed, we have � 2 Pref (V) \ L
last
a for some a 2

Q
c2Ch ⌃?

c .
Therefore, ⌧ 2 �Pref (V) \ L

last
a �.

Let (q0,0)
⌧ 0�!C (q0,v0). Note that, by Lemma 4.6, we have ⌧ 0 2 L

zero
C . We

will prove that (q0, ")
J⌧ 0K��!M (q,w0) where w0 = Jv0Ka0 . Since ⌧ 0 = ⌧.↵, there is

(q,v) 2 XC such that (q0,0)
⌧�! (q,v)

↵�! (q0,v0). Hence, there exists a transition
t = (q,↵, q0) 2 T

0.

By the induction hypothesis, we know that (q0, ")
J⌧K�!M (q,w) where w = JvKa.

Case (1):

Suppose ↵ = (inc(x(c,i)), ;) for c 2 Ch and i 2 {1, . . . , nc}. We have v0
p = vp + 1

for p = x(c,i) and v0
p0 = vp0 and for all p0 2 V \ {p}.

By construction of C, we know that there is a transition t
0 = (q, �, q0) 2 T

in M with � = hc!ai for some a 2 ⌃c such that ia = i. Thanks to the trace
property (Definition 4.3 (2.)), we have � = �. Let w0 be given by w00

c = w0
c.a

and w00
d = w0

d for all d 2 Ch \ {c}. Then, (q,w)
��!M (q0,w0). Furthermore,

since ia = i and �w� = v, we can deduce that �w0� = v0. Moreover, recall that��.�� = ⌧.↵, hence, �0 = �.� = J⌧ 0K.

Since �0 = �.� and � = hc!ai, we can deduce that a0
c = a and a0

d = ad for all
d 6= c. This is because the only change in the last sent letters between � and �0 is
in the channel c.

4.2. The IB rational-reachability problem. 67

We recall that �w0� = v0. From the induction hypothesis, we know that
JvKa = w. Hence, in order to show that Jv0Ka0 = w0, we only need to address the
case of the channel c, since the values of ad,wd remain unchanged for all d 6= c. We
know that w0

c = wc.a0
c. Since �

0 2 Pref (L!), we have wc.a0
c 2 Inf (Lc). Therefore,

w0 = Jv0Ka0 .

Case (2):

Suppose ↵ = (dec(x(c,i)), Z), for c 2 Ch, i 2 {1, . . . , nc} and Z = {x(c,j) | j < i}.
We have v0

p = vp � 1 for p = x(c,i) and v0
p0 = vp0 for all p0 2 V \ {p}.

By construction of C, we know that there is a transition t
0 = (q, �, q0) 2 T in

M with � = hc?ai for some a 2 ⌃c such that ia = i. Again, by the trace property
(Definition 4.3 (2.)), we get � = �. In order to execute t0 from (q,w), it is necessary
that we have wc = a.u for some word u.

Since �.� 2 Pref (L?) and proj c?(�).w
0
c = proj c!(�), we can deduce that

w0
c = a.u for some word u. Hence, the transition t

0 can be executed to reach
a state (q0,w0) such that w0

c = a · w00
c, and w00

d = w0
d for all d 2 Ch \ {c}.

Furthermore, since ia = i and �w� = v, we can deduce that �w0� = v0. Moreover,
recall that ��.�� = ⌧.↵, hence, �0 = �.� = J⌧ 0K.

Since �0 = �.� and � = hc?ai, we can deduce that a0 = a. This is because no
letters are sent between � and �0.

We also know from the induction hypothesis that w = JvKa. Also recall that�w0� = v0. In order to show that w0 = Jv0Ka0 , we only need to address the case of
the channel c, since the values of ad,wd remain unchanged for all d 6= c.

We know from the induction hypothesis that wc is contained in Inf (()Lc) and,
thus, so is w0

c. Furthermore, we know that wc = u.a0
c for some u 2 ⌃⇤

c . If u = ",
then we can deduce that w0

c = ". On the other hand, if u 6= ", then we know
that w0

c = u
0
.a0

c such that a.u
0 = u. We also recall that �w0� = v0. Hence,

w0 = Jv0Ka0 .

From Propositions 4.7 and 4.8 and Lemma 4.6, we obtain the following corollary.

Corollary 4.9. For all (q,w) 2 XM, we have: (q,w) 2 TracereachM(L!) ()
(q, �w�) 2 TracereachC(Lzero

C \ �V \
S

a2G(w) L
last
a �) .

From Theorem 4.5, we know that verifying whether (q, �w�) 2 TracereachC(Lzero
C \

L) where L = �V \
S

a2G(w) L
last
a � is decidable. Hence, we can already deduce

decidability of the (state-)reachability problem. In fact, using Propositions 4.7 and

68 4. Input-Boundedness

4.8, we can solve the more general IB rational-reachability problem. For this, it
is actually enough to check, in the counter machine, the reachability of a counter
value that belongs to a semi-linear set. For a 2

Q
c2Ch ⌃?

c and a rational relation
Rel ✓

Q
c2Ch ⌃⇤

c , let Va(R) = {v 2 NV | JvKa 2 Rel}.

Lemma 4.10. The set Va(R) is e↵ectively semi-linear.

Proof. For c 2 Ch, let Gc be the set of words w 2 ⌃⇤
c such that ac is good for w.

Moreover, let G =
Q

c2Ch Gc.

As Gc is regular for every c 2 Ch, the relation G is recognizable. As the
intersection of a rational and a recognizable relation is rational, we have that
Rel \ G is rational. It follows that Parikh(Rel \ G) is semi-linear. From the
definitions, we obtain

JvKa 2 Rel () 9w 2 Rel \ G : 8x(c,i) 2 V : vx(c,i)
=
P

a2⌃c,i
|wc|a

() 9⇡ 2 Parikh(Rel \ G) : 8x(c,i) 2 V : vx(c,i)
=
P

a2⌃c,i
⇡a

Thus,

Va(R) = {v 2 NV | JvKa 2 Rel} =
��P

a2⌃c,i
⇡a

�
x(c,i)2V

| ⇡ 2 Parikh(Rel \ G)

.

Let '((Xa)a2⌃) be a Presburger formula defining Parikh(Rel \ G). Then, by the
above equivalence, the following Presburger formula defines Va(R):

 c((Zy)y2V) = 9(Xa)a2⌃ :
⇣
'((Xa)a2⌃) ^

^

y2V

Zy =
X

a2⌃y

Xa

⌘

where, for y = x(c,i) 2 V , we let ⌃y = ⌃c,i. It follows that Va(R) is e↵ectively
semi-linear.

Using this property, we finally reduce the IB rational-reachability problem to a
reachability problem in counter machines:

Corollary 4.11. For every q 2 Q, we have: (q,w) 2 TracereachM(L!) for some
w 2 Rel () (q,v) 2 TracereachC(Lzero

C \ �V \L
last
a �) for some a 2

Q
c2Ch ⌃?

c and
v 2 Va(R) .

Proof. Suppose (q,w) 2 TracereachM(L!) with w 2 Rel . There are a 2
Q

c2Ch ⌃?
c

and � 2 V \ L
last
a such that (q0, ")

��!M (q,w). By Proposition 4.7 and Lemma 4.6,

we have (q0,0)
�����!C (q, �w�) and ��� 2 L

zero
C and a 2 G(w). By definition, the

latter implies w = J�w�Ka and hence �w� 2 Va(R).

4.3. Reachability and deadlock 69

Conversely, suppose we have (q0,0)
�����!C (q,v) where � 2 V\L

last
a , ��� 2 L

zero
C ,

and v 2 Va(R). By Proposition 4.8, we get (q0, ")
J���K���!M (q, JvKa). Note that

J���K = � 2 L!. Moreover, v 2 Va(R) implies JvKa 2 Rel , which concludes the
proof.

By Theorem 4.5, we can now deduce the following theorem:

Theorem 4.12. IB rational-reachability is decidable for FIFO machines.

4.3 Reachability and deadlock

We now address some other commonly studied reachability problems, which, as it
turns out, can be reduced to the IB rational-reachability problem studied in the
previous section. We first look at the control-state reachability problem.

Decision Problem: IB CONTROL-STATE REACHABILITY

Input: a FIFO machine M = (Q,Ch,⌃, T, q0)

a tuple L = (Lc)c2Ch of non-empty regular bounded languages

a control-state q 2 Q

Question: is (q,w) 2 TracereachM(L!) for some w?

In [FP20], it was shown that reachability reduces to control-state reachability
for flat FIFO machines but the converse is not true. However, using the same
reductions as in [FP20], we obtain the following result:

Proposition 4.13. IB reachability is recursively equivalent to IB control-state
reachability for FIFO machines.

Proof. Let us consider a FIFO machineM = (Q,Ch,⌃, T, q0) with Ch = {1, . . . ,m},
a control-state q, a state (q,w), and a tuple L = (Lc)c2Ch of non-empty regular
bounded languages Lc ✓ ⌃⇤

c . Suppose w = (wc)c2Ch with wc = w1
c . . .w

nc
c .

We first reduce IB reachability to IB control-state reachability. We construct
another machine M(q,w) = (Q0

,Ch,⌃0
, T

0
, q0) as follows. We set Q0 = Q [{qend}

such that qend /2 Q, and ⌃0 = ⌃[{$} such that $ 62 ⌃. Moreover, a “path” q
��! qend

70 4. Input-Boundedness

with � = �1 . . . �m is added from the control-state q as follows. For c 2 Ch, we
have

�c =

(
hc!$ihc?w1

ci . . . hc?wnc
c ihc?$i if |wc| > 0,

hc!$ihc?$i otherwise.

Then, (q,w) 2 TracereachM(L!) i↵ qend is reachable, i.e.,
(qend,w0) 2 TracereachM(q,w)

(L0
!) for some w0, where L

0 = (Lc.wc.$)c2Ch . Further-
more, L0 is bounded if L is bounded, since concatenation of a finite word with a
bounded language results in a bounded language. Therefore, IB reachability in M
reduces to IB control-state reachability in M(q,w).

Conversely, in order to show that IB control-state reachability is reducible to
IB reachability, we construct Mq as follows. To M, we add |⌃| ⇥ m self-loops

around the control-state q as follows: q
c?a��! q for all c 2 Ch and a 2 ⌃c.

The control-state q is reachable in M i↵ there exists w such that (q,w) is
reachable in M i↵ (q, ") is reachable in Mq (as we can read all the channel
contents in q due to the self-loops). Moreover, consider � 2 Pref (L!) such that
(q0, ")

��!M (q,w) for some channel contents w. Let us append to � a sequence of
actions �0 = �1 . . . �m such that �c = hc?wci for all c 2 Ch, where hc?wci is to be
understood as a sequence of transitions whose e↵ect is to consume the string wc

from the channel c. By construction, we have, (q0, ")
�·�0
��!Mq (q, "). Furthermore,

proj c!(�) = proj c!(� · �0) for all c 2 Ch. Hence, � · �0 2 Pref (L!) and we can
conclude that the control-state q is reachable in M i↵ (q, ") 2 TracereachMq(L!).

Therefore, IB control-state reachability reduces to IB reachability for FIFO
machines.

Definition 4.14. We say that a state (q,w) of a FIFO machine M is adeadlock state deadlock if
there is no state reachable from it, i.e., there exists no (q0,w0) such that (q,w) !M
(q0,w0).

Decision Problem: IB DEADLOCK

Input: a FIFO machine M = (Q,Ch,⌃, T, q0)

a tuple L = (Lc)c2Ch of non-empty regular bounded languages

a control-state q 2 Q

Question: does TracereachM(L!) contain a deadlock?

Proposition 4.15. IB reachability is recursively reducible to IB deadlock for FIFO
machines.

4.4. Unboundedness and termination 71

Proof. Given a FIFO machine M = (Q,Ch,⌃, T, q0), a state (q,w), and a tuple
L = (Lc)c2Ch of non-empty regular bounded languages Lc ✓ ⌃⇤

c , we construct
M(q,w) as in the case of reducing reachability to control-state reachability (see
proof of Proposition 4.13). We then modify M(q,w) to M0

(q,w) as follows. We add a

new channel d to the existing set of channels Ch (the set of channels is now Ch 0).
For all q 6= qend, we add the following transition: (q, hd!$i, q). Hence, except for
qend, every control-state has at least one send action. Finally, we also construct a
new tuple L

0 = (L0
c)c2Ch 0 such that L0

c = Lc.$ for all c 2 Ch and L
0
d = $⇤.

We claim that (q,w) 2 TracereachM(L!) i↵ TracereachM0
(q,w)

(L0
!) contains a

deadlock. To see this, first, we observe that, if there is a deadlock in TracereachM0
(q,w)

(L0
!),

then the associated control-state would be qend since from every other state s
0

such that the associated control-state q
0 is not qend, the transition (q0, hd!$i, q0) can

always be taken, and hence, there will never be a deadlock. Moreover, as in the
construction in Proposition 4.13, the control-state qend is reachable i↵ the state
(q,w) is in TracereachM(L!).

Let us now suppose that the state (q,w) is in TracereachM(L!). We can execute
the same set of transitions as in M and reach the control-state q with the channel
contents w via an execution �0 in M0

(q,w). Having done that, we can then execute

the path q
��! qend as described in T

0 in order to reach qend. Also observe that
�
0 · � 2 L

0
!. Since there are no transitions from this control-state, we reach a

deadlock.

Suppose now that (q,w) is not in TracereachM(L!). Hence, we can never reach
(q,w) in M0 and thus, can never execute q

��! qend and reach qend. Furthermore, as
we saw previously, we can never be in a deadlock as we can always send $ to the
channel d.

Corollary 4.16. The problems IB reachability, IB control-state reachability, and
IB deadlock are decidable for FIFO machines.

Since input-bounded FIFO machines subsume VASS (a VASS can be seen as
an input-bounded FIFO machine with an alphabet reduced to a unique letter), the
complexity of IB reachability is not elementary, which is inherited from the lower
bound for VASS [CLL+19].

4.4 Unboundedness and termination

We now introduce two new decision problems, firstly unboundedness, defined as
follows:

72 4. Input-Boundedness

Decision Problem: IB UNBOUNDEDNESS

Input: a FIFO machine M = (Q,Ch,⌃, T, q0)

a tuple L = (Lc)c2Ch of non-empty regular bounded languages

Question: is TracereachM(Pref (L!)) infinite?

IB unboundedness in FIFO machines reduces to an equivalent problem in
counter machines. Given a FIFO machine M̂ and L̂, the associated FIFO machine
M in normal form (with the corresponding tuple L of distinct-letter languages),
as well as the associated counter machine C, the following result can be derived.

Proposition 4.17. TracereachM̂(L̂!) is infinite i↵ TracereachM(L!) is infinite i↵
TracereachC(Lzero

C \ �V�) is infinite.
Proof. We first show that unboundedness is preserved by the normal-form con-
struction. This essentially follows from Lemma 4.4 and the fact that h is length-
preserving.

If (q, ŵ) 2 TracereachM̂(L̂!), then ((q, qA),w) 2 TracereachM(L!) for some
qA and w such that h(w) = ŵ. Thus, if TracereachM̂(L̂!) is infinite, then so is
TracereachM(L!).

Conversely, if ((q, qA),w) 2 TracereachM(L!), then (q, h(w)) 2 TracereachM̂(L̂!).
Thus, if TracereachM(L!) is infinite, then so is TracereachM̂(L̂!).

Now, let us assume that TracereachM(L!) is infinite. Hence, there are in-
finitely many states (q,w) 2 XM which are reachable from (q0, "). From Corol-
lary 4.9, for each of these states, (q, �w�) 2 TracereachC(L), where L = L

zero
C \�L! \ Pref (L?) \

S
a2G(w) L

last
a �. Since L ✓ L

zero
C \ �L! \ Pref (L?)�, we have

(q, �w�) 2 TracereachC(Lzero
C \ �L! \ Pref (L?)�). Furthermore, there are only

finitely many states (q,w) 2 XM that correspond to a state (q, �w�) 2 XC. Hence,
if TracereachM(L!) is infinite, TracereachC(Lzero

C \ �L! \ Pref (L?)�) is infinite.
For the converse direction, let us assume that TracereachC(Lzero

C \�L!\Pref (L?)�)
is infinite. Hence, there are infinitely many states (q,v) reachable from (q0,0)
via some ⌧ such that ⌧ 2 L

zero
C \ �L! \ Pref (L?)�. Let us choose one such (q,v)

and ⌧ . There exists a unique � such that ��� = ⌧ . Consider the vector a
such that � 2 L

last
a and let w = JvKa. Thus, �w� = v. Hence, (q, �w�) 2

TracereachC(Lzero
C \ �L! \ Pref (L?) \

S
a2G(w) L

last
a �). From Corollary 4.9, we can

deduce that (q,w) 2 TracereachM(L!). Therefore, for every v such that (q,v) is
reachable, there is a corresponding state (q,w) reachable in TracereachM(L!).

In particular, this statement applies to prefix-closed languages, i.e., we can
reduce checking whether TracereachM̂(Pref (L̂!)) is infinite to checking whether

4.4. Unboundedness and termination 73

TracereachC(Lzero
C \ �V�) is infinite for some C and prefix-closed language V . The

latter is decidable as we establish in the following. Recall that, by the construction of
C, we then have ReachsetC = TracereachC(Lzero

C \�Pref (V)�) = TracereachC(Lzero
C \�V�).

The main idea that follows is the reduction of unboundedness of the counter
machine to reachability in a modified counter machine. It is not immediate that we
can use the results in the literature (for example [DF97]) which reduce boundedness
to reachability in Petri nets/VASS. This is because the property of monotonicity
does not extend to zero tests; if one can execute a zero test at (q,v), it is not
necessarily the case that it can be executed at (q,v0) with v v0, where we let
v v0 if vx v0

x for all x 2 V . However, we show that, for the counter machine
that we construct from the FIFO machine, this property does hold. If we are able
to show this, the constructions used in the case of VASS can be adapted.

Lemma 4.18. For every execution in C of the form (q0,0)
��! (q,v)

�0
�! (q,v0)

such that v v0, the following holds: The counters that are tested to zero during
�
0 already evaluate to zero at (q,v), and do not change their value throughout the

execution of �0.

Proof. Let us assume to the contrary that there is at least one counter which is
incremented or decremented during �0 and also tested to zero during the execution.
Without loss of generality, let us consider x(c,i) to be the first counter along the
execution �0 that is tested to zero during �0 and also incremented/decremented
before it was tested to zero.

• Case (1): It has a non-zero value at (q,v), and is then either decremented, or
first incremented and then decremented, and finally tested to zero. Since we
know that �.�0 2 L

zero
C , no counter tested to zero can then be incremented.

Hence, its value will remain zero. But this is a contradiction to our assumption
that v v0. Hence, all the counters with non-zero values at (q,v) cannot be
tested to zero during �0.

• Case (2): It has value zero in (q,v), and is incremented, then decremented,
then tested to zero during �0. This implies that it first has to be incremented.

Consider now some sub-execution �
00 2 Pref (�0) where (q,v)

�00
�! (q1,v1)

such that the value of x(c,i) in the state (q1,v1) is non-zero. Since there are no
“new” zero-tests along the execution �00 (by our assumption), we can execute
�
00 from (q,v0) (by the monotonicity and trace property). However, we cannot

increment the counter x(c,i) along �00, because it was tested to zero during
the run (q0,0)

�.�0
��! (q,v0). Hence, we once again have a contradiction.

Now, we can use results from [FS01] to show the following:

74 4. Input-Boundedness

Proposition 4.19. The set ReachsetC is infinite i↵ there exist �, �0 2 Act⇤C, q 2 Q,

and v,v0 2 NV such that (q0,0)
��! (q,v)

�0
�! (q,v0) and v < v0 (i.e., v v0 and

v 6= v0).

Proof. Let us assume that ReachsetC is infinite. As in [FS01], we consider the
tree of all prefixes of computations. We prune this tree by removing all prefixes
where there is at least a loop, i.e., containing two nodes that are labeled by the
same state. Since every reachable state can be reached without a loop, we still
have an infinite number of prefixes in the pruned tree. For every state (q,v) in
the tree, there are finitely many successors (as the transition system is finitely
branching). Hence, in order for the tree to be infinite, there is at least one infinitely
long execution (by König’s lemma). This execution has no loop. Therefore, by
Dickson’s lemma, there is an infinite subsequence of states (q1,v1), (q2,v2), . . . such
that v1 < v2 < Once we extract this sequence, since there are only finitely
many control-states in Q, we know that there is at least one pair (q,v), (q,v0) such

that (q0,0)
��! (q,v)

�0
�! (q,v0) and v < v0.

Conversely, let us assume that there is an execution (q0,0)
��! (q,v)

�0
�! (q,v0)

such that v < v0. We know from Lemma 4.18 that the only counters which may
be tested for zero during �0 already evaluate to zero at (q,v), and do not change
their value throughout the execution of �0. Therefore, all the transitions of the
counter system in �0 can be considered as VASS operations. Hence, the property

of monotonicity holds, i.e., if (q,v)
�0
�! (q,v0) and (q,v) < (q,v0), then we know

there exists an infinite sequence v1 < v2 < . . . reachable from state (q,v0).

Construction of modified counter system. We modify the counter system C
and construct a new counter system C 0 such that ReachsetC is infinite i↵ a specific
state is reachable in C 0. The construction is loosely based on the reduction of
boundedness to reachability for Petri Nets in [DF97].

Proposition 4.20. We can e↵ectively construct a counter machine C 0 (with
bounded zero tests) and a finite set of states R ✓ SC0 such that ReachsetC is
infinite i↵ some state from R is reachable in C 0.

Proof. We modify the counter machine C and construct a new counter machine C 0

such that ReachsetC is infinite i↵ a state belonging to a finite set is reachable in C 0.
The construction is loosely based on the reduction of boundedness to reachability
for Petri Nets in [DF97]. Since we do not know the values of v and v0 a priori,
we will try to characterize the general condition. The di↵erence v0 � v is a non
negative vector, with at least one strictly positive component. We add a duplicate
set of counters for every counter in the system. The intuition is that the counter
machine non-deterministically moves from operating on both sets to a state from

4.4. Unboundedness and termination 75

where it only operates on this second set. The first set will remain unchanged (with
the value v), and the second set will keep track of the values (until it reaches v0).
From this state (which represents (q,v0)), we move to a new control-state, qreach.
Here, we check for the condition v0 � v > 0 by first decrementing each counter in
the first set which has a non-zero value in tandem with the corresponding counter
in the second set. We do this until all the counters in the first set are equal to zero.
If v0 � v > 0, then there is at least one counter in the second set with a non-zero
counter value. We non-deterministically decrement all the counters in the second
set until we reach a state that has some counter c in the second set with a value
of 1, and all other counters evaluate to zero. Since there are finitely many such
states, we can just check every case.

From the above results, we have the following theorem.

Theorem 4.21. The IB unboundedness problem is decidable for FIFO machines.

In [GGLR87], the authors stated that unboundedness is in EXPSPACE for
letter-bounded systems. However, they only give an idea of the proof, stating
that it can be done in a similar fashion as for the deadlock problem. In the
construction for solving the deadlock problem, they reduce the input language to
tally letter-bounded languages (tally means that the input-language is included
in a

⇤ where a is a letter). They add as many channels as letters in the original
letter-bounded-language. Furthermore, in order to ensure that no channel is non-
empty before the next channel is read, they ensure that in all control-states where
a later channel is being read, there are reception transitions of previous channel
contents which lead to a sink state (where there is never a deadlock). Notice that
it is still possible to leave a channel non-empty before the next channel is read.
But one never reaches a deadlock in such an “incorrect” run, since there is always
the option of reading the unread channel contents of the previous channels and
reach the sink state.

However, when we consider this model for unboundedness, there may exist
unbounded “incorrect” runs since we can leave a channel non-empty and proceed
to the next and may have an unbounded run there. Hence, it seems that one still
needs some reachability test to check if the runs are correct because we cannot
ensure that some channels are zero in an unbounded run.

76 4. Input-Boundedness

We now look at the IB termination problem, which we will define below:

Decision Problem: IB TERMINATION

Input: a FIFO machine M = (Q,Ch,⌃, T, q0)

a tuple L = (Lc)c2Ch of non-empty regular bounded languages

a state s 2 XM

Question: is there no infinite execution initM
�1�!M s1

�2�!M s2
�3�!M . . .

such that, for all i 2 N, we have si 2 XM, �i 2 ActM,

and �1 . . . �i 2 Pref (L!)?

For termination, we take a similar approach as for unboundedness. Suppose
again that we are given M̂ and L̂, the associated FIFO machine M in normal form
(with the corresponding tuple L of distinct-letter languages), and the associated
counter machine C. We first show that the normal form preserves the (non-
)termination property. In the following, �i will denote a send or receive action and
↵i will denote an increment or decrement action.

We obtain the following equivalence.

Proposition 4.22. The following statements are equivalent:

• There is an infinite execution of the form initM̂
�1�!M̂ s1

�2�!M̂ s2
�3�!M̂ . . .

such that, for all i 2 N, we have �1 . . . �i 2 Pref (L̂!).

• There is an infinite execution of the form initM
�1�!M s1

�2�!M s2
�3�!M . . .

such that, for all i 2 N, we have �1 . . . �i 2 Pref (L!).

Proof. Assume that there is an infinite execution of the form initM̂
�̂1�!M̂ ŝ1

�̂2�!M̂
ŝ2

�̂3�!M̂ . . . in M̂ such that, for all i 2 N, we have �̂1 . . . �̂i 2 Pref (L̂!). Hence,
there are �1, �2, �3, . . . 2 ActM such that, for all i 2 N, letting �i = �1 . . . �i,
we have h(�i) = �̂1 . . . �̂i and �i 2 Pref (V). Hence, we know that, in the FIFO
machine h�1(M̂), one has (q̂0, ")

�1�! (q̂1,w1)
�2�! (q̂2,w2)

�3�! . . . for suitable (q̂i,wi)
(by construction of h�1(T̂)), and that �i 2 Pref (L(A)). Therefore, since M is a
product of the two machines, we can deduce that there is an infinite execution
initM

�1�!M s1
�2�!M s2

�3�!M . . . as required.

Conversely, assume that there is an infinite execution of the form initM
�1�!M

s1
�2�!M s2

�3�!M . . . such that, for all i 2 N, we have �1 . . . �i 2 Pref (L!). Let
�̂i = h(�1 . . . �i) for all i 2 N. Since �1 . . . �i 2 Pref (L!), we have proj c!(�1 . . . �i) 2
Pref (Lc) for all c 2 Ch. In particular, proj c!(�1 . . . �i) 2 h

�1
c (Pref (L̂c)) and,

4.4. Unboundedness and termination 77

therefore, hc(proj c!(�1 . . . �i)) = proj c!(h(�1 . . . �i)) 2 Pref (L̂c). We deduce �̂i 2
Pref (L̂!). Furthermore, we can execute �̂ in M̂ (by construction) for all i 2 N.
Hence, we can build an infinite execution in M̂ , such that �̂i 2 Pref (L̂!) for all
i 2 N.

The latter property can be reduced to checking a decidable property in the
counter machine as follows:

Proposition 4.23. The following statements are equivalent:

• There is an infinite execution of the form initM
�1�!M s1

�2�!M s2
�3�!M . . .

such that, for all i 2 N, we have �1 . . . �i 2 Pref (L!).

• There is an infinite execution of the form initC
↵1�!C s1

↵2�!C s2
↵3�!C . . . such

that, for all i 2 N, we have ↵1 . . .↵i 2 L
zero
C \ �Pref (V)�.

• There exist � 2 Act⇤C, �
0 2 Act+C , (q,v) 2 XC, and v0 such that (q0,0)

��!C

(q,v)
�0
�!C (q,v0) and v v0.

Proof. The equivalence of the first two items is obtained as a corollary of Proposi-
tions 4.7 and 4.8. So let us show that the latter two are equivalent.

Consider a non-terminating execution as described above. By Dickson’s lemma,
there is an infinite subsequence of states (q1,v1), (q2,v2), . . . such that v1 v2
Once we extract this sequence, since there are only finitely many control-states
in Q, we know that there is at least one pair (q,v), (q,v0) such that (q0,0)

��!
(q,v)

�0
�! (q,v0) and v v0.

Conversely, assume (q0,0)
��! (q,v)

�0
�! (q,v0) and v v0. From the same

argument as for boundedness, we can deduce that no counter is being tested to
zero for the first time in �0 and all the counters previously tested stay unchanged.
Hence, all the transitions of the counter system in �0 can be considered as VASS

operations. Therefore, we know there exists v00 such that (q,v0)
�0
�! (q,v00) and

v0 v00. Repeating this reasoning, we can build an infinite sequence starting from
(q,v0).

Finally, we construct a modified counter machine as in the case for boundedness
(Proposition 4.20) and get the following:

Proposition 4.24. We can e↵ectively construct a counter machine C 00 (with
bounded zero tests) and a state s 2 SC00 such that the following statements are
equivalent:

78 4. Input-Boundedness

• There exist � 2 Act⇤C, �
0 2 Act+C , (q,v) 2 XC, and v0 such that (q0,0)

��!C

(q,v)
�0
�!C (q,v0) and v v0.

• State s is reachable in C 00.

Proof. We can adapt the construction of C 0 for unboundedness. The di↵erence is
that we now allow for v = v0. Hence, there is no need any more to check that,
after decrementing both sets of counters in tandem, there is still a positive counter
left in the second set. We can therefore also empty the second set of counters in a
new control-state q and check whether (q,0) is reachable.

Thus, we have the following theorem.

Theorem 4.25. The IB termination problem is decidable for FIFO machines.

4.5 Output-bounded problems

We consider the dual case of input-bounded languages in which the set of words
that may be received by each channel (the output-language) is constrained to be
bounded. The OB problems are defined as follows:

Definition 4.26.OB decision
problems

Given a FIFO machine M = (Q,Ch,⌃, T, q0), a tuple L =
(Lc)c2Ch of non-empty regular bounded languages Lc ✓ ⌃⇤

c (each given in terms of
a finite automaton), a control-state q 2 Q, a state s 2 XM, and a rational relation
Rel ✓

Q
c2Ch ⌃⇤

c.

• OB rational reachability: Do we have (q,w) 2 TracereachM(L?) for some
w 2 Rel?

• OB reachability: Do we have s 2 TracereachM(L?) ?

• OB control-state reachability: Do we have (q,w) 2 TracereachM(L?) for
some w ?

• OB deadlock: Does TracereachM(L?) contain a deadlock ?

• OB unboundedness: Is TracereachM(Pref (L?)) infinite?

• OB termination: Is there no infinite execution of the form initM
�1�!M

s1
�2�!M s2

�3�!M . . . such that, for all i 2 N, we have si 2 XM, �i 2 ActM,
and �1 . . . �i 2 Pref (L?)?

Theorem 4.27. OB reachability is decidable for FIFO machines.

4.5. Output-bounded problems 79

Proof. Given a state (q,w) in M, and a tuple of bounded languages L, the
output-bounded reachability problem asks if (q,w) 2 TracereachM(L?). Since
the output language is in L?, we know that the contents of the channels which
have already been read is in the corresponding input-language, i.e., L!. Therefore,
(q,w) 2 TracereachM(L?) i↵ (q,w) 2 TracereachM(L!

0) where L
0 = (L0

c)c2Ch

and L
0
c = Lc.wc. Hence, the OB reachability problem is decidable for FIFO

machines.

Theorem 4.28. OB control-state reachability is decidable for FIFO machines.

Proof. In order to show that OB control-state reachability is decidable for FIFO
machines, we first convert it to the normal form. This construction is similar to
that as specified in Section 4.1, however we make a few changes. Firstly, when
we change the alphabet to distinct letter, we add an additional letter, say $, to
represent all the letters which are not present in the bounded language, but are
present in the transitions of the FIFO system. Then, in addition to the transitions
we already add to the new FIFO system as in Section 4.1, for every send action in
the original FIFO system, we add a send action with this new letter $. However,
for the reception, we leave it as before. This new FIFO system can now only read
letters in the output language, however, it can potentially send any letter. Hence,
we have only restricted the output language.

Next, to the automata that is constructed to accept the bounded language for
send actions, we add to all the states a transition that enables the automata to
send $ and go to a sink state which loops with send actions sending $. Hence, once
again, we have ensured that the input language is not restricted. To the reception
automata, we make no such changes. Hence, the reception automata only accept
the bounded language.

In this new machine, we can solve for control-state reachability, over the input-
language L

0 = (L0
c)c2Ch such that L

0
c = Lc.$⇤ (but we let the output-language

remain L when we construct the trimmed automata). If a state (q,w) is reachable
in this new machine, then there exists a path which can be taken in the original
machine to reach control-state q via � 2 L?. Furthermore, if there is a path which
can be taken in the original machine, it can also be taken in the new machine.
Hence, we can decide if there exists a w such that (q,w) is reachable.

Theorem 4.29. OB unboundedness and OB termination problems are decidable
for FIFO machines.

Proof. We can decide the OB unboundedness and termination problems as well.
We can construct a counter system for the normal form described in the proof of
Theorem 4.28. Note that the counter corresponding to $ will only have increments
and no decrements, which is in line with the fact that the contents corresponding
to this counter do not belong to the output-language. The FIFO machine has an

80 4. Input-Boundedness

infinite run i↵ this newly constructed counter machine has also an infinite run. We
then construct the modified counter machine, as is the case for boundedness (see

Section 4.4), and test if there is a run (q0,0)
��! (q,v)

�0
�! (q,v0) such that v < v0.

Since this modified counter system has bounded zero tests (the added counter has
no decrements or zero tests associated to it), we can decide the reachability of the
state, and hence, decide if the FIFO machine is unbounded. A similar explanation
can be made for termination.

The rational reachability problem cannot be directly reduced to the input-
bounded case. For the output bounded case, we do not know precisely the
reachability set, since we only restrict the output-language. Hence, in order to
check if some w 2 Rel is reachable, we need to be able to compute the reachability
set. Similarly, unlike the input-bounded case, we cannot determine the deadlock
problem a priori, since the deadlock problem is reduced to rational reachability for
the input-bounded case. Hence, these two problems have been left open.

4.6 FIFO machines with a single channel

When we restrict the communication to a single channel, we obtain better upper
bound for reachability.

Upper bound for reachability: EXPTIME We consider the model of or-
dered multi-pushdown systems, studied in [ABH17]. We define it using our counter
systems. A counter system can be seen as a multi-pushdown system with a unary al-
phabet. Unary ordered multi-pushdown systems (UOMPDSs)UOMPDS are multi-pushdown
systems which impose a total order on the counters and limit decrements to the
lowest non-empty counter. We use the following result of reachability of UOMPDS.

Theorem 4.30 ([ANKS13], Theorem 13). The reachability problem in UOMPDS
is solvable in EXPTIME.

Consider the counter machine C with the semantic restriction L
zero
C which can

be built from a single channel FIFO machine M. We see that a counter xi can
only be decremented if the previous counters xj such that j < i are equal to zero.
Therefore, the counter system C is a UOMPDS, where the order of the counters is
defined as xi < xj i↵ i < j. Hence, we have the following proposition.

Proposition 4.31. IB reachability in single channel FIFO machines is polynomi-
ally reducible to reachability in UOMPDS.

4.6. FIFO machines with a single channel 81

In [ANKS13], it was also shown that repeated reachability for UOMPDS is
solvable in EXPTIME. We know that a system is non-terminating if and only if
we can reach any control-state infinitely often. Therefore, we can guess a control-
state and verify if it is reachable repeatedly in order to verify if the system is
non-terminating. Furthermore, we see that even for FIFO machines with a single
channel, using the same construction as in Proposition 4.13, reachability and
control-state reachability are recursively equivalent.

We then have the following corollary.

Corollary 4.32. The IB reachability, termination and control-state reachability
problems are in EXPTIME for FIFO machines with a single channel.

However, for the unboundedness result in Section 4.4, we use the reachability
for counter systems with bounded zero tests. Furthermore, the set of all counters in
the modified counter system do not have a total order any more. Hence, following
our constructions, we may only say that the unboundedness problem in FIFO
machines with a single channel (over a bounded language) is solvable by using the
Petri net reachability (which is tower-hard).

In the case of a single channel, we have a total order on the counters, and
therefore we are able to use results from Ordered Multipushdown Systems. However,
even when we consider two channels, we cannot immediately extend these results
since there is no longer a total order in the decrement of counters.

Lower bound for reachability: NP-hard We consider a sub-problem of the
IB reachability, unboundedness, and termination problems as follows. Recall
that, given a bounded language L = w

⇤
1 . . . w

⇤
n, if |w1| = . . . = |wn| = 1, i.e.,

w1, . . . , wn 2 A, then L is called a letter-bounded language.

Definition 4.33. Given a FIFO machine ILB decision
problems

M = (Q,Ch,⌃, T, q0), a control-state
q 2 Q, a state s 2 XM, and a tuple L = (Lc)c2Ch of non-empty regular letter-
bounded languages Lc ✓ ⌃⇤

c.

• ILB-reachability: Do we have s 2 TracereachM(L!) ?

• ILB-unboundedness: Is TracereachM(Pref (L!)) infinite?

• ILB-termination: Is there no infinite execution of the form initM
�1�!M

s1
�2�!M s2

�3�!M . . . such that, for all i 2 N, we have si 2 XM, �i 2 ActM,
and �1 . . . �i 2 Pref (L!)?

We see that most of the properties are NP-hard for FIFO machines with a
single channel over a letter-bounded language. This is proved by simulating 3-CNF

82 4. Input-Boundedness

formula with such machines. Our simulation follows the same ideas as the proof
of NP-hardness for flat FIFO machines with multiple channels [EGM12, FP20],
except that we use a unique channel.

Theorem 4.34. ILB-reachability, ILB-unboundedness, and ILB-non-termination
are NP-hard for machines with a single channel, even when the input language is
letter bounded.

Proof. We reduce from 3SAT. Given a 3-CNF formula C1 ^ . . .^Cm over variables
x1, . . . , xn, we construct a FIFO machine with one channel. The message alphabet
has 2n+1 letters and is as follows ⌃# = ⌃]{#}, where ⌃ = {1, . . . , n}]{1̄, . . . , n̄}.
The FIFO machine consists of the gadgets shown below. The gadget for variable
xk adds either k (in the top transition) or k̄ (in the bottom edge) to the channel.
At the end of this gadget, the channel will have either k or k̄. We will sequentially
compose the gadgets for all variables. Starting from the initial control-state of the
gadget for variable x1, we reach the final control-state of the gadget for variable
xn, such that for every variable xk we either have k or k̄ in the channel - and this
determines the truth valuation.

We then add the gadget that adds the stop symbol to the channel, as shown in
Figure 4.9.

!k

!k̄

!#

(a) Gadget for variable xk (b) Gadget for stop marker

Figure 4.9: Gadget for variables

Next, we add gadgets for the clauses. The gadget for the example clause
C1 = x1 _ ¬x2 _ ¬x3 (gadgets for other clauses follow similar pattern) is shown in
Figure 4.10. The gadget checks that the channel has either 1 (in the top path) or
has 2̄ (in the middle path) or has 3̄ (in the bottom path). We append the clause
gadgets to the end of the variable gadgets one after the other. All clauses are
satisfied by the truth valuation determined by the contents of channels x1, . . . , xn

i↵ we can reach the last control-state of the last clause.

The gadget for cleaning up all the variables is shown below (it receives all the
letters from the channel). We append the clean-up gadget to the end of the clause
gadget for Cm.

Note that in the FIFO machine given above, every gadget can only be visited
once, and the input language of each gadget for a variable xk is equal to {k, k̄}
which is included in the letter-bounded language k⇤k̄⇤. Hence, for every execution �

4.6. FIFO machines with a single channel 83

"

"

"

?a!a
?1!1

?a!a

?#!#

?a!a
?2̄!2̄

?a!a
?#!#

?a!a
?3̄!3̄

?a!a
?#!#

?⌃#

(a) Gadget for clause
C1 = x1 _ ¬x2 _ ¬x3

(b) Gadget for clean-up

Figure 4.10: Gadget for clauses (the loop labeled ?a!a represents loops for all a 2 ⌃)

along the sequence of variable gadgets, we have � 2 L! where L = 1
⇤
1̄
⇤
. . . n

⇤
n̄
⇤#⇤.

For every clause gadget, we have, once again, an execution �0 2 L!. Hence, we see
that the input-language of every run can be restricted to the bounded language
(1⇤1̄⇤ . . . n⇤n̄⇤#⇤)m+1. Furthermore, while there are loops in the FIFO machine, it
can be seen that no loop can be executed infinitely often. We can also see that
along every run, the channel is bounded and the size of the channel does not exceed
n+ 1.

The given 3-CNF formula is satisfiable i↵ the control-state of the clean-up
gadget can be reached with the channel being empty. Hence, this constitutes a
reduction to the reachability problem. Furthermore, if we add a self loop to the
state of the clean-up gadget, such that it sends the letter # to the channel, then
this loop can be iterated infinitely often to add unboundedly many occurrences of
the letter # to the channel. Now, the given 3-CNF formula is satisfiable i↵ the
constructed FIFO machine is unbounded i↵ channel is unbounded i↵ there is a
non-terminating run. Hence reachability, unboundedness and non-termination are
all NP-hard.

We can remove the "-transitions in the above construction by instead non-
deterministically choosing one of the three variables per clause. This would
eliminate all "-transitions, and corresponds to the model we define, which does not
have them.

We can adapt the proof above to the more restrictive case of FIFO machines
whose input language is restricted to a distinct-letter-bounded language, by modi-
fying the transitions in the gadget for clause Ci as follows: For every transition
sequence of the form ?a!a, we replace it by ?ai�1!ai, thereby ensuring that we write
di↵erent letters to the channel in every gadget. The transitions for the gadgets for

84 4. Input-Boundedness

each variable xk (when it is set initially) would be modified by !k0 and ?k̄0.

"

"

"

?1!1 ?2!2

?2̄!2̄

. . .
?n!n

?n̄!n̄ ?#!#

?1!1

?1̄!1̄

?2̄!2̄ . . .
?n!n

?n̄!n̄

?#!#

?1!1

?1̄!1̄

?2!2

?2̄!2̄

?3̄!3̄ . . .
?n!n

?n̄!n̄

?#!#

?1

"

?1̄

"

. . . ?#

(a) Gadget for clause C1 = x1 _¬x2 _¬x3 (b) Gadget for clean-up

Figure 4.11: Showing NP-hardness for flat systems with a single channel

Furthermore, we can modify gadgets for the clauses (see Figure 4.11) in order to
have the following corollary, which improves a similar result for flat FIFO machines
with multiple channels in [FP20].

Corollary 4.35. For flat FIFO machines with a single channel, reachability, un-
boundedness, and non-termination are NP-hard, hence, they are also NP-complete.

4.7 Towards a theory of boundable FIFO ma-
chines.

We conclude by briefly summarizing the results in this chapter in Table 4.1. As
shown, we were able to extend a lot of the decidability results from flat and
letter-bounded systems to the bounded case.

Table 4.1: Summary of key results in this chapter; results for all other extensions
are subsumed by these results (D stands for decidable).

Flat Letter-bounded Bounded
UNBOUND NP-C ([FP20]) D ([GGLR87]) D ([JJ93])

TERM NP-C ([FP20]) D D
REACH NP-C ([FP20]) D D, not ELEM

CS-REACH NP-C ([EGM12, FP20]) D D
DEADLOCK D D ([GGLR87]) D

Let us now look at the implications of bounded verification problems in the
general case.

4.7. Towards a theory of boundable FIFO machines. 85

0 1

(p, q)

(q, p)

0 1

h(p, q)!ai

h(p, q)!bi

h(q, p)?ei

h(p, q)?ai

h(p, q)?bi

h(q, p)!ei

Figure 2.2: The model of the connection-deconnection protocol from Example 2

Example 20. Coming back to the protocol CDPM from Example 2 and Figure 2.2,
we see that it is neither monogeneous nor linear nor flat. Since the input-languages
of the two channels contain {a, ab}⇤ and e

⇤ resp., and since {a, ab}⇤ is not a
bounded language, we have proj c!(Traces(M)) 6✓ Lc! for every pair of bounded
languages (Lc)c2Ch . In other words, M is not input-bounded. However, when we
look at the reachability set obtained by considering the tuple of bounded languages
L = (L(p,q), L(q,p)) where L(p,q) = (ab)⇤(a + ")(ab)⇤ is a bounded language over
(ab, a, ab), and L(q,p) = e

⇤ is a bounded language over (e), we still obtain the entire
reachability set. That is, we have ReachsetM = TracereachM(L!). Hence, even
though the input-languages of the system are not all bounded, we can still compute
the reachability set by restricting our exploration to a tuple of (regular) bounded
languages L.

From the above example, we have seen that all states that are reachable in
the CDP protocol are already reachable in presence of a suitable collection L of
bounded input-languages. Analogous to the well-established theory of flattable
machines [BFLP08, DFGD10, CFS11], we propose the following definition.

Definition 4.36. Let M be a FIFO machine and let L be a tuple of regular bounded
languages. We say that M is boundable

language
L-boundable if ReachsetM = TracereachM(L!). We

say that M is boundable if there exists a tuple L of regular bounded languages
such that M is L-boundable.

Hence, we deduce that reachability is decidable for L-boundable FIFO machines,
which is a strictly larger class than input-bounded machines. CDP is not input-
bounded but it is LCDP -boundable with LCDP = ((ab)⇤(a+ ")(ab)⇤, e⇤). Let us also
remark that CDP is flattable by using the bounded set of runs (!a!b)⇤!a!e?e(!a!b)⇤ +
(!a!b)⇤ (where we omit channel information for readability), because it covers the
reachability set which is equal to (ab)⇤(a + ")(ab)⇤ on control-state (0, 0). It is
not clear whether reachability is decidable for boundable machines. A strategy
that would fairly enumerate all regular bounded families L1, L2, . . . , Ln, . . . will
necessarily find a good one, if M is boundable, but this is not su�cient because we
must be able to recognize ReachsetM. Observe that boundable machines are more
robust than flat machines. Consider a system S = (A1,A2, . . . ,An) of n flat finite

86 4. Input-Boundedness

automata Ai communicating peer to peer (P2P) through one-directional FIFO
channels. Let MS denote FIFO the machine obtained as the Cartesian product of
all automata Ai of S; there is no reason to assume that MS is flattable but it is
input-bounded and thus MS is L-boundable where L is easily computable from S.

Chapter 5

Framework for Synchronizability

In this chapter, we are interested in the notion of bounded FIFO machines. If we
limit our analysis to decide whether for a given integer k � 0, the FIFO channels are
k-bounded, we could verify this property in PSPACE. However, such a boundedness
property is too restricting as we would not be able to design any possibility of
unbounded runs. Hence, in order to overcome this limitation, we try to relax the
boundedness property to instead only require that every unbounded execution
of a system (i.e., channels are unbounded along the execution) is equivalent (for
instance, causally equivalent) to another bounded execution.

This leads us study the notion of synchronizability, which roughly translates to
verifying if every run can be rescheduled to such a “bounded” run. The definition
of such a bounded run varies in the literature - it could mean a channel bound of
size k, a rendezvous run, etc. Moreover, the criteria for rescheduling the run also
varies in the literature.

We study a framework based on monadic second-order (MSO) logic and (special)
tree-width that aims to unify these di↵erent notions of synchronizability. Moreover,
reachability and model checking are shown as decidable in this framework. We
also study the various classes of systems which belong to this class, and briefly
compare them to each other. For a detailed comparison, one can refer to [Lav21].
It should be noted that we study not only the peer-to-peer model, but also the
mailbox model, described in Section 2.2.1.

5.1 Logical background

We first introduce the notions of MSO Logic and PDL.

87

88 5. Framework for Synchronizability

Monadic Second-Order Logic

We first recall the syntax and semantics of Monadic Second-Order Logic (MSO).

Let x, y, . . . be an infinite set of first-order variables ranging over events in an
MSC, and X, Y, . . . second-order variables ranging over sets of events. Then, the
set of MSO formulasmonadic

second-order
logic (MSO)

over MSCs (over P and ⌃) is given by the grammar:

� ::= x ! y | xC y | �(x) = a | x = y | x 2 X | 9x.� | 9X.� | � _ � | ¬�

where a 2 Act , x and y are first-order variables, and X is a second-order variable.
We assume that we have an infinite supply of variables, and we use common
abbreviations such as ^, 8, etc.

Let M = (E ,!,C,�) be an MSC. Let Var be a set of variables. An M -
interpretation is a function I that maps every first-order variable x 2 Var to some
element of E and every second-order variable X 2 Var to some subset of E . The
satisfaction relation is defined inductively as follows:

M |=I x ! y if I(x) ! I(y)
M |=I xC y if I(x)C I(y)
M |=I �(x) = a if �(I(x)) = a

M |=I x = y if I(x) = I(y)
M |=I x 2 X if I(x) 2 I(X)

M |=I 9x.� if there is e 2 E such that M |=I[x 7!e] �

M |=I 9X.� if there is E ✓ E such that M |=I[X 7!E] �

M |=I � _ if M |=I � or M |=I

M |=I ¬� if M 6|=I �

Here, I[x 7! e] maps x to e and coincides with I on Var \ {x}. When � is a
sentence (i.e., a formula without free variables), we omit the (redundant) subscript
I, and write M |= � instead.

Example 21. We use the abbreviation matched(x) = 9y.xCy to say that the event
associated to x is a matched send event (i.e., there exists a matching reception).
Then, the formula ¬9x.(

W
a2Send(,) �(x) = a ^ ¬matched(x)) says that there are

no unmatched send events. It is not satisfied by MSC M1 of Fig. 5.1, as message
m1 is not received, but by M4 from Fig. 5.7.

Given a sentence �, we let L(�) denote the set of p2p MSCs that satisfy �.
Note that the (reflexive) transitive closure of a binary relation defined by an MSO
formula with free variables x and y, such as x ! y, is MSO-definable. The logic
can, therefore, freely use formulas of the form x !+

y or x y (where is
interpreted as M for the given MSC M).

5.1. Logical background 89

e1

e2e02

e3 e03
e4e04

p q r
m1

m2

m3

m4

p q

m1

m1

m1

Figure 5.1: MSC M1 (left) does not satisfy the MSO formula in Example 21 while
MSC M2 does.

Hence, the definition of a mailbox MSC can be readily translated into the
formula MSO mailbox

formula'mb = ¬9x.9y.(¬(x = y) ^ x � y ^ y � x)

so that we have L('mb) = MSCmb. Here, x � y is obtained as the MSO-definable
reflexive transitive closure of the union of the MSO-definable relations !, C, and
@. In particular, we may define x @ y by :

x @ y =
_

q2P
a,b2Send(,q)

�(x) = a ^ �(y) = b^

matched(x) ^ ¬matched(y)

_ 9x0
.9y0.(xC x

0 ^ y C y
0 ^ x

0 !+
y
0)

!

Propositional Dynamic Logic

While MSO is a very natural and expressive logic, we also study Propositional
Dynamic Logic (PDL), which is another classical logic (albeit less expressive than
MSO) which has better algorithmic properties. It was introduced to reason about
programs originally in [FL79]. However, since then, PDL and its extensions have
found applications in verification of transition systems, artificial intelligence, etc.
We study an extension of PDL with Loop and Converse, which we call LCPDL (cf.
[BG21, BFG21, Str82] for more details).

PDL consists of two types of formulas: event (or state) formulas which are
evaluated at events in a structure, and path formulas or programs which are
evaluated at pairs of events and allow us to traverse inside the structure. In
addition, we also define sentences to reason about global properties of the model. propositional

dynamic logic
(PDL)

Its syntax is:

� ::= E� | � _ � | ¬� (sentence)

� ::= a | � _ � | ¬� | h⇡i� | Looph⇡i (event formula)

⇡ ::= ! | C | test(�) | jump | ⇡ + ⇡ | ⇡ · ⇡ | ⇡⇤ | ⇡�1 (path formula)

90 5. Framework for Synchronizability

where a 2 Act . We use the symbol > to denote a tautology event formula (such as
a _ ¬a). We describe the semantics for the logic below:

The semantics of an event formula � with respect to M is a set J�KM ✓ E ,
inductively defined below:

JaKM := {e 2 E | �(e) = a}
J�1 _ �2KM := J�1KM [J�2KM
J¬�KM := E \ J�KM
Jh⇡i�KM := {e 2 E | 9f 2 J�KM : (e, f) 2 J⇡KM}
JLooph⇡iKM := {e 2 E | (e, e) 2 J⇡KM}

Intuitively, Jh⇡i�KM holds at e if there exists a path ⇡ which starts at e and ends
in some f such that � holds at f .

The semantics of a path formula ⇡ with respect to M is a set J⇡KM ✓ E ⇥ E ,
inductively defined below:

J!KM := !
JCKM := C
Jtest(�)KM := {(e, e) | e 2 J�KM}
JjumpKM := E ⇥ E
J⇡1 + ⇡2KM := J⇡1KM [J⇡2KM
J⇡1 · ⇡2KM := {(e, f) 2 E ⇥ E | 9g 2 E : (e, g) 2 J⇡1KM and (g, f) 2 J⇡2KM}

J⇡⇤KM :=
[

n2N

J⇡KnM

J⇡�1KM := {(e, f) 2 E ⇥ E | (f, e) 2 J⇡KM}

A sentence � is evaluated wrt. an MSC M = (E ,!,C,�). For sentences, we
write

M |= E� if J�KM 6= ;

Finally, we let L(�) = {M 2 MSC | M |= �}. Note that every LCPDL-
definable property is MSO-definable. However, the converse is not true. For
example, expressing that a graph is connected is possible in MSO, but not possible
in LCPDL.

It can be seen below that the mailbox semantics can be readily translated into
the LCPDL formula:LCPDL

mailbox
formula

�mb = ¬E (Looph(C+!+@)+i) such that L(�mb) = MSCmb.
Hereby, we let

@ = C ·!+ ·C�1 +
X

q2P
a,b2Send(,q)

test(a) ·C · jump · test(b ^ ¬hCi>) .

5.2. Tree-width and conflict graph 91

The first part of the formula checks for the condition that there exists receive
messages in the same order as the sends, and the second part checks the condition
for the unmatched send.

5.2 Tree-width and conflict graph

We now introduce two notions associated to MSCs.

Special Tree-Width

Special tree-width [Cou10], is a graph measure that indicates how close a graph is to
a tree (we may also use classical tree-width instead). This or similar measures are
commonly employed in verification. For instance, tree-width and split-width have
been used in [MP11b] and, respectively, [CGK12, AGK14] to reason about graph
behavior generated by pushdown and channel systems. There are several ways
to define the special tree-width of an MSC. We adopt the following game-based
definition from [BG21]. We refer the reader to [Cou10] for more details on special
tree-width and tree-width.

Definition 5.1. Given an MSC M = (E ,!,C,�), we define an MSC fragment MSC
fragmentM

0 = (E 0
,!0

,C0
,�) such that E 0 ✓ E , !0✓! and C0 ✓ C. Moreover, we define a

marked MSC fragment as a pair (M,U) such that M = (E ,!,C,�) is an MSC
fragment, and U ✓ E is the subset of “marked” events.

Adam and Eve play a two-player turn based “decomposition game” decomposition
game

on an arena
Arena(P,⌃) = (Pos9] Pos8,Moves), whose positions are MSCs with some pebbles
placed on some events. More precisely, Eve’s positions Pos9 are marked MSC
fragments (M,U) and Adam’s set of positions Pos8 consists of pairs of marked
MSC fragments. A move by Eve consists in the following steps:

1. marking some events of the MSC resulting in (M,U
0) with U ✓ U

0 ✓ E ,

2. removing (process and/or message) edges whose endpoints are marked, re-
sulting in (M 0

, U) with M
0 being a fragment of M

3. dividing (M,U) in (M1, U1) and (M2, U2) such that M is the disjoint (uncon-
nected) union of M1 and M2 and marked nodes are inherited.

When it is Adam’s turn, he simply chooses one of the two marked MSC fragments.
The initial position is (M, ;) where M is the (complete) MSC at hand. A terminal

92 5. Framework for Synchronizability

position is any position belonging to Eve such that all events are marked. Neither
player can move from terminal positions which are winning for Eve. For k 2 N,
we say that the game is k-winning for Eve if she has a (positional) strategy that
allows her, starting in the initial position and independently of Adam’s moves, to
reach a terminal position such that, in every single position visited along the play,
there are at most k + 1 marked events.

Theorem 5.2 ([BG21]). The special tree-width of an MSC is the least k such thatspecial
tree-width the associated game is k-winning for Eve.

The set of MSCs whose special tree-width is at most k is denoted by MSC
k-stw.

Conflict Graph

Before we delve into verification problems that we are interested in, we first recall
the notion of a conflict graph associated to an MSC, as defined in [BEJQ18], which
is also referred to as a dependency graph in the literature. This graph is used
to depict the causal dependencies between message exchanges. Each vertex of
the graph represents a message and each edge between two vertices represents
a temporal dependence between two actions of the two messages concerned. A
dependency exists if both messages have a process in common. A dependency
linked to a sending will be represented by an S while a dependency linked to a
reception will be represented by an R.

For instance, an
SS�! dependency between message exchanges v and v

0 expresses
the fact that v0 has been sent after v, by the same process. This model is of interest
because it was seen in [BEJQ18] that the notion of synchronizability in MSCs
(which is studied in this paper) can be graphically characterized by the nature of
the associated conflict graph. It is defined in terms of linearization in [DGLL20],
but we equivalently express it directly in terms of MSCs.

For an MSC M = (E ,!,C,�) and e 2 E , we define the type ⌧(e) 2 {S,R} of
e by ⌧(e) = S if e 2 SendEv(M) and ⌧(e) = R if e 2 RecEv(M). Moreover, for
e 2 Unm(M), we let µ(e) = e, and for (e, e0) 2 C, we let µ(e) = µ(e0) = (e, e0).

Definition 5.3. Theconflict graph conflict graph CG(M) of an MSC M = (E ,!,C,�) is the
labeled graph (Nodes ,Edges), with Edges ✓ Nodes ⇥ {S,R}2 ⇥ Nodes, defined by
Nodes = C [Unm(M) and Edges = {(µ(e), ⌧(e)⌧(f), µ(f)) | (e, f) 2 !+}. In
particular, a node of CG(M) is either a single unmatched send event or a message
pair (e, e0) 2 C.
Example 22. We see in Figure 5.2 the MSC M1 and its associated conflict graph.
Note that since m1 is not received by process q, we do not have any dependencies
between e1 and nodes associated to events in q.

5.2. Tree-width and conflict graph 93

e1

e2e02

e3 e03
e4e04

p q r
m1

m2

m3

m4

e01e1e1 (e2, e02)

(e3, e03)(e4, e04)

SR

SS

RS, SR

e01e1e
0
1 (e2, e02)

(e3, e03)(e4, e04)

SR

SR

SRSR

SS, SR
SS

RS, SR

SS

SS

Figure 5.2: MSC M1 (top left) and its associated conflict graph (top right) and
the extended conflict graph (below)

Extended Conflict Graph

As was shown in [DGLL20], in order to capture the mailbox semantics, we need

extended edges. We recall from [DGLL20] the extended edge relation
XY999K with

X, Y 2 {S,R} in Figure 5.3. extended
conflict graph

We call the conflict graph along with the new
extended edges the extended conflict graph (ECG).

v1
XY��! v2

v1
XY999K v2

(Rule 1) v 2 C
v

SR999K v

(Rule 2)

v1
RR��! v2

v1
SS999K v2

(Rule 3)
v1

XY999K Y Z999K v2

v1
XZ999K v2

(Rule 4)

e1 2 Matched(M) e2 2 Unm(M)
e1 2 Send(, q), e2 2 Send(, q), q 2 P

µ(e1)
SS999K e2

(Rule 5)

Figure 5.3: Additional rules for extended conflict graph;
XY��! refers to an edge in

the conflict graph

94 5. Framework for Synchronizability

Example 23. We see in Figure 5.2 the MSC M1 and its associated extended
conflict graph. Note that there is now a dependence between e1 and (e4, e04) by
Rule 5, since the message m1 is not received by q, it should causally be after m4

which is received by q.

5.3 Model checking and synchronizability

In this section, we introduce two decision problems for communicating systems,
which we have not encountered in the previous chapters.

The first problem is the model checking problem, in which one checks whether
a given system satisfies a given specification. A canonical specification language
for MSCs is monadic second-order (MSO) logic. However, model checking in full
generality is undecidable. A common approach is, therefore, to restrict the behavior
of the given system to MSCs of bounded (special) tree-width.

Model Checking

We have already seen that in the general case, verification problems such as
control-state reachability, are undecidable for communicating systems. However,
they are decidable when we restrict to behavior of bounded special tree-width,
which motivates the following definition of a generic bounded model checking
problem for com 2 {p2p,mb}:

Decision Problem: BOUNDED MODEL CHECKING

Input: Two finite sets P and ⌃,

a communicating system S,
an MSO sentence �, and k 2 N

Question: do we have Lcom(S) \MSC
k-stw ✓ L(�)?

Theorem 5.4 ([BG21]). The bounded model checking problem for com = p2p is
decidable. When the formulas � are from LCPDL, then the problem is solvable in
exponential time.

Note that [BG21] does not employ the LCPDL modality jump, but it can be
integrated easily. Using 'mb or �mb, we obtain the corresponding result for mailbox
systems as a corollary:

5.3. Model checking and synchronizability 95

Theorem 5.5. The bounded model checking problem for com = mb is decidable.
When the formulas � are from LCPDL, then the problem is solvable in exponential
time.

Proof. Using the mailbox semantics and the MSO formula 'mb, we get

Lmb(S) \MSC
k-stw ✓ L(�)

() Lp2p(S) \MSC
k-stw \ L('mb) ✓ L(�)

() Lp2p(S) \MSC
k-stw ✓ L(� _ ¬'mb) .

The latter is decidable due to Theorem 5.4. Similarly, we can use the LCPDL
formula �mb, whose size is polynomial in the number of processes and messages.

Synchronizability

The above model checking approach is incomplete in the sense that a positive
answer does not imply correctness of the whole system. The system may still
produce behavior of special tree-width greater than k that violate the given property.
However, if we know that a system only generates behavior from a class whose
special tree-width is bounded by k, we can still conclude that the system is correct.

This motivates the synchronizability problem. Several notions of synchroniz-
ability have been introduced in the literature. However, they all amount to asking
whether all behaviors generated by a given communicating system have a particular
shape, i.e., whether they are all included in a fixed (or given) set of MSCs C.

Hence, we study the synchronizability problem as an inclusion problem, i.e.,
we check if Lp2p(S) ✓ C or Lmb(S) ✓ C. We show that if C is MSO-definable and
special-tree-width-bounded (STW-bounded), then this inclusion is decidable.

We call C ✓ MSC

(i) MSO-definable if there is an MSO-formula � such that L(�) = C,

(ii) LCPDL-definable if there is an an LCPDL-formula � such that L(�) = C,
and

(iii) STW-bounded if there is k 2 N such that C ✓ MSC
k-stw.

In order to prove decidability of inclusion, we first define and prove the following
lemma, which essentially claims that every MSC which does not belong to C ✓
MSC

k-stw has a minimal violation, i.e., a prefix of special tree-width k + 2 which
also does not belong to C. Note that a similar property was shown in [GKM07,
Proposition 5.4] for the specific class of existentially k-bounded MSCs.

96 5. Framework for Synchronizability

Lemma 5.6. Let k 2 N and C ✓ MSC
k-stw. For all M 2 MSC \ C, we have

(Pref (M) \MSC
(k+2)-stw) \ C 6= ;.

Proof. Let k and C be fixed, and let M 2 MSC\C be an MSC that does not belong
to C. Let M

0 2 Pref (M) \ C be a prefix of M such that, for all M 0-maximal
events e (all events e such that there exists no event f such that e M 0 f) of M 0,
removing e (and its adjacent edge(s)) creates an MSC in C.

We can obtain such an MSC by successively removing maximal events. If M 0

is the empty MSC, we are done, since then M
0 2 (Pref (M) \ MSC

k+2-stw) \ C.
Otherwise, let e be M 0-maximal and let M 00 = M

0 \ {e}.

From our construction, we now know that M
00 2 C. So Eve has a winning

strategy with k + 1 pebbles for M 00. Let us design a winning strategy with k + 3
pebbles for Eve for M 0, which will show the claim.

Observe that the event e occurs at the end of the timeline of a process (say p)
since it is M 0-maximal, and it is part of at most two edges:

• one with the previous p-event (if any)

• one with the corresponding send event (if e is a receive event)

Note that e cannot be a send event with a matching receive in M
0 because then it

would not be M 0-maximal.

Let e1, e2 be the two Neighbors of e (if they exist). The strategy of Eve is the
following: in the first round, mark e, e1, e2, then erase the edges (e1, e) and (e2, e),
then split the remaining graph in two parts: M 00 on the one side, and the single
node graph {e} on the other side. Then Eve applies its winning strategy for M 00,
except that initially the two events e1, e2 are marked (so she may need up to k + 3
pebbles).

Therefore, the MSC M
0 has special tree-width k + 2.

An important component of the decidability of inclusion is the following lemma,
which shows that we can reduce synchronizability to bounded model checking for
an STW-bounded class, which uses the above lemma.

Lemma 5.7. Let S be a communicating system, com 2 {p2p,mb}, k 2 N, and
C ✓ MSC

k-stw. Then, Lcom(S) ✓ C i↵ Lcom(S) \MSC
(k+2)-stw ✓ C.

Proof. It is obvious that if Lcom(S) ✓ C, then every MSC M 2 Lcom(S) has special
tree-width k, and therefore Lcom(S) \MSC

(k+2)-stw = Lcom(S) ✓ C.

5.4. Application to concrete classes of synchronizability 97

For the case when Lcom(S) * C, let us assume there exists an MSC M 2
Lcom(S) \ C. Then, by Lemma 5.6, we know that (Pref (M)\MSC

(k+2)-stw) \ C 6= ;,
and since, Lcom(S) is prefix-closed, Lcom(S) \MSC

(k+2)-stw * C.

We now have all ingredients to state a generic decidability result for the
synchronizability problem for com 2 {p2p,mb}:

Decision Problem: SYNCHRONIZABILITY

Input: Two finite sets P and ⌃,

an MSO-definable and STW-bounded class C ✓ MSC

a communicating system S,
Question: do we have Lcom(S) ✓ C?

Theorem 5.8. The synchronizability problem is decidable.

Proof. Consider the MSO-formula � such that L(�) = C, and let k 2 N such that

C ✓ MSC
k-stw. We have Lcom(S) ✓ C Lemma 5.7() Lcom(S) \ MSC

(k+2)-stw ✓ C ()
Lcom(S) \MSC

(k+2)-stw ✓ L(�). The latter can be solved thanks to Theorem 5.4
and Theorem 5.5.

Note that, in some cases (cf. Section 5.4), P and ⌃ are part of the input and the
concrete class C may be parameterized by a natural number so that it is part of the
input, too. Then, we need to be able to compute the MSO formula characterizing
the class as well as the bound on the special tree-width.

5.4 Application to concrete classes of synchro-
nizability

In this section, we instantiate our general framework by specific classes.

5.4.1 A new general class: Weakly synchronous MSCs

We first introduce the class of weakly synchronous MSCs. This is a generalization
of synchronous MSCs studied earlier, in [BEJQ18, DGLL20], which we shall discuss

98 5. Framework for Synchronizability

in Section 5.4.2. We say an MSC is weakly synchronous if it is breakable into
exchanges where an exchange is an MSC that allows one to schedule all sends
before all receives. Let us define this formally:

Definition 5.9. Let M = (E ,!,C,�) be an MSC.exchange We say that M is an exchange
if SendEv(M) is a M -downward-closed set.

Definition 5.10. We say that M 2 MSC isweakly
synchronous

weakly synchronous if it is of the
form M = M1 · . . . ·Mn such that every Mi is an exchange.

We use the term weakly to distinguish from variants introduced later.

Example 24. Consider the MSC M2 in Fig. 5.4. It is is weakly synchronous.
Indeed, m1, m2, and m5 are independent and can be put alone in an exchange.
Repetitions of m3 and m4 are interlaced, but they constitute an exchange, as we
can do all sends and then all receptions.

q rp
m1

m2
m
3

m
3

m4

m4

m5

Figure 5.4: MSC M2

An easy adaptation of a characterization from [DGLL20] yields the following
result for weakly synchronous MSCs:

Proposition 5.11. Let M be an MSC. Then, M is weakly synchronous i↵ no RS
edge occurs on any cyclic path in the conflict graph CG(M).

Proof. Let us first show that the conflict graph of every weakly synchronous MSC
has no RS edge on any cyclic path. Let M be an MSC. If M is weakly synchronous,
then M = M1 · . . . · Mn such that every Mi is an exchange. Hence, for every
vertex v 2 Nodes of the conflict graph CG(M), the associated send action belongs
to exactly one k-exchange, which we denote byM◆(v). In other words, if v 2 C
(resp. v 2 Unm(M)), then v can be represented by (e`, e0`) (resp. (e`)), and
�
�1(e`) 2 M◆(v). Note that if there is an edge from v to v

0 in the conflict graph,
some action of v must happen before some action of v0, and hence, ◆(v) ◆(v0).

Furthermore, note that if v
RS��! v

0, then ◆(v) < ◆(v0), since SendEv(M◆(v0)) is
downward-closed, i.e., all the send events in an exchange precede all the receive
events. Hence, there can be no edge v

0 �! v in the conflict graph, so there is no
cycle in the conflict graph with an RS edge.

5.4. Application to concrete classes of synchronizability 99

Let M be an MSC. Conversely, we assume now that the conflict graph of M
does not contain a cyclic path with an RS edge. Let V1, . . . , Vn be the set of
maximal SCCs (strongly connected components) of the conflict graph, listed in
some topological order. For a fixed i, let Mi = s1 . . . smr1 . . . rm0 be the enumeration
of the actions of the message exchanges of Vi defined by first taking all send actions
of Vi obeying the relation M , and then all the receive actions of Vi in the same
order as in M . Let M 0 = M1 . . .Mn. Then the conflict graph of M 0 is the same
as that of M , as the permutation of actions we defined could only postpone a

receive after a send of a same SCC, therefore it could only replace some v
RS��! v

0

edge with an v
SR��! v

0 edge between two vertices v, v
0 of a same SCC. However,

since we assumed that the cycles (hence by extensions SCCs) do not contain RS
edges, this cannot happen. Therefore M and M

0 have the same conflict graph, and
correspond to the same MSC. Furthermore, since the sends precede the receives in
each Mi, SendEv(Mi) is a downward-closed set, hence, M 0 is weakly synchronous,
and so is M .

We now show that the characterization from Proposition 5.11 is LCPDL-
definable:

Corollary 5.12. The sets of weakly synchronous MSCs and weakly synchronous
mailbox MSCs are LCPDL-definable. Both formulas have polynomial size.

Proof. LCPDL can be used to express the graphical characterization of weakly
synchronous MSCs. This follows from the formulas below. Here, we let S =W

a2Send(, ,) a and R =
W

a2Rec(, ,) a.

SS�! = test(¬R)· !+ ·test(¬R)
RR��! = test(¬R) ·C· !+ ·C�1 ·test(¬R)
RS��! = test(¬R) ·C· !+ ·test(¬R)
SR��! = test(¬R)· !+ ·C�1 ·test(¬R)
CG��! = (

SS�! +
RR��! +

RS��! +
SR��!)

The absence of RS edges in any cycle in the conflict graph can be expressed by
the following formula:

�wsync = ¬Looph(CG��!)⇤· RS��! ·(CG��!)⇤i

Moreover, under the mailbox semantics, we can show:

Proposition 5.13. The set of weakly synchronous mailbox MSCs is STW-bounded
(in fact, it is included in MSC

4|P|-stw).

100 5. Framework for Synchronizability

Proof. Let M be fixed, and let us sketch Eve’s winning strategy. Let n = |P|.

The first step for Eve is to split M in exchanges. She first disconnects the first
exchange from the rest of the graph (2n pebbles are needed as she can mark the
maximal event of each process of the first exchange and the minimal event of each
process of the following exchange), then she disconnects the second exchange from
the rest of the graph (2n pebbles are needed again, plus the n pebbles we used
from the first round), and so on for each exchange.

Now, given an exchange Mi, we design a winning strategy for Eve with 4n+ 1
pebbles, where initially there are (at most) n pebbles placed on the first event of
each process and also (at most) n pebbles placed on the last event of each process.
Eve also places (at most) n pebbles on the last send event of each process and also
(at most) n pebbles on the first receive event of each process. Eve erases the (at
most) n !-edges between the last send event and the first receive event (as sends
precede the receives in an exchange).

We are now in a configuration that will be our invariant.

Let us fix a mailbox linearization of M0 and let e be the first send event in this
linearization.

• if e is an unmatched send of process p, Eve places her last pebble on the next
send event of p (if it exists), let us call it e0. Then Eve erases the !-edge
(e, e0), and now e is completely disconnected, so it can be removed and the
pebble can be taken back.

• if eCe0, with e
0 a receive event of process q, then due to the mailbox semantics

e
0 is the first receive event of q, so it has a pebble placed on it. Eve removes
the C-edge between e and e

0, then using the extra pebble she disconnects
e and places a pebble on the !-successor of e, then she also disconnects e0

and places a pebble on the !-successor of e0.

After that, we are back to our invariant, so we can repeat the same strategy with
the second send event of the linearization, and so on until all edges have been
erased.

Example 25. Consider the MSC M2 given in Figure 5.5(a). We shall play the
decomposition game on it. First Eve splits M into exchanges. As explained
in Example 24, m1, m2 and m5 can be put alone into an exchange. First, Eve
separates m1 from the rest. To this end, she puts the pebbles at the maximal
event of the first exchange. In this case, that is just the send event of m1, and the
minimal events on all processes after this event. She also removes the associate
edges (see Fig 5.5 (b)).

5.4. Application to concrete classes of synchronizability 101

q rp

m1

m2

m
3

m
3

m4

m4

m5

(a)

q rp

m
3

m
3

m4

m4

m5

(b)

q rp

m
3

m
3

m4

m4

m5

(c)

q rp

m
3

m
3

m4

m4

(d)

q rp

m
3

m
3

m4

m4

(e)

q rp

m
3

(f)

q rp

m
3

(g)

Figure 5.5: Playing the decomposition game on M2.

Now m1 is separated from the rest. For Adam, the best option is to choose
the rest of the MSC. Let us assume he does that. Eve then proceeds to remove
the second exchange. In this case, that is the sole message m2. Eve repeats the
process of separating it from the rest (see Fig 5.5 (c)).

Once again Adam best choice is the larger graph. Eve proceeds to separate the
exchange with m3 and m4 messages from the rest. (see Fig 5.5 (d)).

Now Adam can only choose the exchange with m3 and m4 messages. Eve places
pebbles on the last send and first receive of each process (see Fig 5.5 (e)). We
now see that the sends are separated from the receives along a process. Moreover,
since the MSC is weakly synchronous, we have (at least) one event which we can
separate from the rest. We show the graph after removing the edges in Fig 5.5 (f).
Now, Eve separates the first process from the rest, as shown in Fig 5.5 (g).

In the next step, all events will marked when Eve chooses the next node to
separate from the rest. Hence, Eve wins with less that 13 pebbles. In fact, since
there are no longer any p-events from step (b), we even see that Eve does it with
less than 9 pebbles.

We obtain the following result as a corollary. Note that it assumes the mailbox

102 5. Framework for Synchronizability

semantics.

Theorem 5.14. The following problem is decidable in exponential time: Given
P, ⌃, and a communicating system S (over P and ⌃), is every MSC in Lmb(S)
weakly synchronous?

Proof. According to Corollary 5.12, we determine the LCPDL formula �wsmb

such that L(�wsmb) is the set of weakly synchronous mailbox MSCs. Moreover,
recall from Proposition 5.13 that the special tree-width of all weakly synchronous
mailbox MSCs is bounded by 4|P|. By Lemma 5.7, Lmb(S) ✓ L(�wsmb) i↵ Lmb(S)\
MSC

(4|P|+2)-stw ✓ L(�wsmb). The latter is an instance of the bounded model checking
problem. As the length of �wsmb is polynomial in |P|, we obtain that the original
problem is decidable in exponential time by Theorem 5.5.

For the same reasons, the model checking problem for “weakly synchronous”
systems is decidable. However, a reduction from the Post correspondence problem
(PCP) [Pos46] shows that decidability fails when adopting the p2p semantics:

Theorem 5.15. The following problem is undecidable: Given finite sets P and M
as well as a communicating system S, is every MSC in Lp2p(S) weakly synchronous?

Proof. We show that the control-state reachability problem for p2p weakly synchro-
nizable systems is not decidable. This immediately shows that the model checking
problem for p2p weak synchronizable systems is not decidable. We can also ar-
gue that the membership problem (decide whether a given system is p2p weakly
synchronizable) is undecidable: indeed, it is enough to add behavior that is not
weakly-synchronizable after the control-states for which reachability is undecidable:
the system will be not weakly synchronizable i↵ the control states are reached.

We reduce from Post correspondence problem (PCP). Let us recall the Post
correspondence problem.

Decision Problem: POST CORRESPONDENCE PROBLEM [Pos46]

Input: An alphabet A and,

two finite lists ↵1, . . . ,↵N and �1, . . . , �N of words over A

Question: do we have a sequence (ik)1kK with K � 1 and 1 ik N

such that ↵i1 . . .↵iK = �i1 . . . �iK?

It is well known that this problem is already undecidable for N = 7 and |A| = 2.

We let the set of messages be ⌃ = {1, . . . , N}] A] {]}, and we consider a
system with four machines: Prover1, Prover2, Verifier1, and Verifier2. We can have

5.4. Application to concrete classes of synchronizability 103

a partitioned alphabet to model the definition by adding an indicator of the source
of each message, but for simplicity we omit it and assume a shared alphabet.

Informally, the system works as follows:

• Prover1 guesses a solution i1 . . . iK of the PCP instance, and Prover2 also
guesses a solution i1 . . . iK .

• Prover1 sends ↵i1 . . .↵iK to Verifier1 and sends simultaneously i1 . . . iK to
Verifier2

• Prover2 sends �i1 . . . �iK to Verifier1 and sends simultaneously i1 . . . iK to
Verifier2

• Verifier1 checks that the two words are equal and Verifier2 checks that the
sequences of indices are equal.

Let us now formally define these machines. We will describe them with regular
expressions (that lead them to a specific control-state). For w = a1 · · · an, we
write h(p, q)!wi (respectively h(p, q)?wi) for h(p, q)!a1i . . . h(p, q)!ani (respectively
h(p, q)?a1i . . . h(p, q)?ani).

Furthermore, we denote Proveri as Pi and Verifieri as Vi. The channels between,
say, Prover1 and Verifier1 will be denoted by (P1, V1) (and similarly for the other
channels).

The language of

• Prover1 is

⇣ KX

i=1

h(P1, V1)!↵ii · h(P1, V2)!ii
⌘+

· h(P1, V1)!#i · h(P1, V2)!#i

• Prover2 is

⇣ KX

i=1

h(P2, V1)!�ii · h(P2, V2)!ii
⌘+

· h(P2, V1)!#i · h(P2, V2)!#i

• Verifier1 is
⇣X

a2⌃

h(P1, V1)?ai · h(P2, V1)?ai
⌘⇤

· h(P1, V1)?#i · h(P2, V1)?#i

• Verifier2 is

⇣ KX

i=1

h(P1, V2)?ii · h(P2, V2)?ii
⌘⇤

· h(P1, V2)?#i · h(P2, V2)?#i

104 5. Framework for Synchronizability

As the channels are unidirectional, the system is weakly synchronous by default.
Moreover, it can be seen that all machines reach the specified control-state if and
only if the PCP instance has a solution.

5.4.2 Weakly k-synchronous MSCs

The negative result for the p2p semantics of weakly synchronous MSCs motivates
the study of other classes. We now look at a class from the literature.

Definition 5.16. Let M = (E ,!,C,�) be an MSCk-exchange and k 2 N. We call M a
k-exchange if M is an exchange and |SendEv(M)| k.

Let us now recall the definition from [BEJQ18, DGLL20], but (equivalently)
expressed directly in terms of MSCs rather than via executions. It di↵ers from the
weakly synchronous MSCs in that here, we insist on constraining the number of
messages sent per exchange to be at most k.

Definition 5.17. Let k 2 N. We say that M 2 MSC isweakly k-
synchronous

weakly k-synchronous if it
is of the form M = M1 · . . . ·Mn such that every Mi is a k-exchange.

Example 26. MSCM3 in Fig. 5.6 is weakly 1-synchronous, as it can be decomposed
into three 1-exchanges (the decomposition is depicted by the horizontal dashed
lines). We remark that M3 2 MSCmb. Note that there is a p2p linearization that
respects the decomposition. On the other hand, a mailbox linearization needs to
reorganize actions from di↵erent MSCs: the sending of m3 needs to be done before
the sending of m1. Note that M1 in Fig. 2.3 is also weakly 1-synchronous.

p q r
m1

m2

m3

M3

p q r
m1

m2

m3

m4

M1

Figure 5.6: MSC M3 and MSC M1 (right) are weakly 1-synchronous.

For weakly k-synchronous MSCs, MSO-definability essentially follows from the
following known theorem:

Theorem 5.18 ([DGLL20]). Let M be an MSC. Then, M is weakly k-synchronous
i↵ every SCC in its conflict graph CG(M) is of size at most k and no RS edge
occurs on any cyclic path.

5.4. Application to concrete classes of synchronizability 105

Proposition 5.19. Let k 2 N. The set of weakly k-synchronous p2p (mailbox,
respectively) MSCs is e↵ectively MSO-definable.

Proof. We first denote some relations between events.

rec(x) = 9y.(y C x)

SS(e1, e2) = e1 6= e2 ^ ¬rec(e1) ^ ¬rec(e2) ^ e1 !⇤
e2

RR(e1, e2) = e1 6= e2 ^ ¬rec(e1) ^ ¬rec(e2) ^ 9f1, f2.[e1 C f1 ^ e2 C f2 ^ f1 !⇤
f2]

RS(e1, e2) = e1 6= e2 ^ ¬rec(e1) ^ ¬rec(e2) ^ 9f1.[e1 C f1 ^ f1 !⇤
e2]

SR(e1, e2) = e1 6= e2 ^ ¬rec(e1) ^ ¬rec(e2) ^ 9f2.[e2 C f2 ^ e1 !⇤
f2]

CG(e1, e2) =
_

X,Y 2{R,S}

XY (e1, e2)

The formula for the property that there is no strongly connected component of
size greater than k in the conflict graph can be expressed as follows:

@e1, . . . , ek+1. [
^

i 6=j

CG
⇤(ei, ej)]

And finally, we express the property that there is no RS edge in any cycle of
the conflict graph

@e1, e2.[CG
⇤(e1, e2) ^RS(e2, e1)]

This property is similar to the graphical characterization of weakly synchronous
MSCs, except for the condition that every SCC in the conflict graph is of size at
most k. However, note that the set of weakly k-synchronous MSCs is not directly
expressible in LCPDL (the reason is that LCPDL does not have a built-in counting
mechanism). However, its complement is expressible in the extension of LCPDL
with existentially quantified propositions (we need k + 1 of them). The model
checking problem for this kind of property is still in EXPTIME and, therefore, so
is the problem from Theorem 5.21 when k is given in unary. It is very likely that
our approach can also be used to infer the PSPACE upper bound from [BEJQ18]
by showing bounded path width and using finite word automata instead of tree
automata. Finally, note that the problem to decide whether there exists an integer
k 2 N such that all MSCs in Lcom(S) are weakly k-synchronous has recently been
studied in [GLL21] and requires di↵erent techniques.

Next, we establish a bound on the special tree-width:

106 5. Framework for Synchronizability

Proposition 5.20. Let k 2 N. The set of MSCs that are weakly k-synchronous
have special tree-width bounded by 2k + |P|.

Proof. Let M be a k-synchronous MSC. By definition, we know that M = M1 ·
. . . ·Mn such that every Mi is a k-exchange.

Eve’s strategy is to mark the vertices belonging to the set M1. Hence, she
marks at most 2k vertices. We can remove the edges between these vertices. Let
the new marked MSC fragment be (G,U), where G is the new MSC fragment (with
the edges between marked vertices removed), and U the set of marked vertices.

Notice that |U | 2k. Furthermore, since every vertex corresponding to a send
message in U is either unmatched or matched with a reception in U (by definition),
we can be sure that there are no message edges between vertices of U and any other
vertex. Moreover, we can also be sure that there are at most |P| process edges
between vertices in U and vertices outside this set. Let us mark these |P| vertices.
We call these vertices U

0. Let the new marked MSC fragment be (G0
, U [U

0),
where G

0 is the new MSC fragment (with the edges between all vertices in U [U
0

removed). Now, we see that there are no edges between any of the vertices in U

and any other vertex, i.e., all the vertices in U are isolated. We can divide the
MSC fragment to consist of the vertices U and V \ U and the corresponding edges.

Let the MSC fragment with vertices in U be (G1, U1). It consists of at most 2k
isolated colored vertices. Let the MSC fragment with vertices in V \U be (G2, U2).
We observe that |U2| = n. Adam trivially loses if he chooses (G1, U1), hence, he
has to choose (G2, U2). Now, we mark the vertices corresponding to M2, which
are again, at most 2k. We have two possibilities for each vertex in U2, either they
belong to the set M2 or belong to another set Mp where p > 2. However, if they
belong to Mp, we can be sure that there is no other event on the same process that
belongs to M2 - this is because it was the successor of some event in M1. Hence, we
see once again, that marking all the vertices in M2 and the immediate successors
along each process will result in marked vertices of size at most 2k + |P|. And
once again, we see that we can separate into MSC fragments (G0

1, U
0
1) and (G0

2, U
0
2)

such that every vertex in U
0
1 is isolated, and |U 0

1| 2k. We do this for all i 2 [n],
and hence, we can e↵ectively use 2k + |P| colors. Therefore, set of MSCs over |P|
processes which are k-synchronous have bounded special tree-width.

Hence, we can conclude that the class of weakly k-synchronous MSCs is MSO-
definable and STW-bounded. As a corollary, we get the following (known) decid-
ability result, but via an alternative proof:

Theorem 5.21 ([BEJQ18, DGLL20]). For com 2 {p2p,mb}, the following problem
is decidable: Given finite sets P and M, a communicating system S, and k 2 N, is
every MSC in Lcom(S) weakly k-synchronous?

5.4. Application to concrete classes of synchronizability 107

Proof. We proceed similarly to the proof of Theorem 5.14. For the given P, M, and
k, we first determine the MSO formula �k such that L(�k) is the set of weakly k-
synchronous p2p/mailbox MSCs, from Proposition 5.19. From Proposition 5.20, we
know that the special tree-width of all weakly k-synchronous MSCs is bounded by
2k+ |P|. By Lemma 5.7, we have Lcom(S) ✓ L(�k) i↵ Lcom(S)\MSC

(2k+|P|+2)-stw ✓
L(�k). The latter is an instance of the bounded model checking problem. By
Theorem 5.4 and Theorem 5.5, we obtain decidability.

Observe also that we can remove the constraint of all the sends preceding all
the receives in a k-exchange, and still have decidability. We then have the following
definition.

Definition 5.22. Let M = (E ,!,C,�) be an MSC modified
k-exchange

and k 2 N. We call M a
modified k-exchange if |SendEv(M)| k.

We extend this notion to consider modified weakly k-synchronous executions as
before, and the graphical characterization of this property is that there are at most
k nodes in every SCC of the conflict graph. Hence, this class is also MSO-definable,
and since each modified k-exchange has at most 2k events, it also has bounded
special tree-width.

5.4.3 Strongly k-synchronous MSCs and other classes

Our framework can be applied to a variety of other classes. Here we show how the
decidability results can be shown for a variant of the class of weakly k-synchronous
MSCs.

Definition 5.23. Let M = (E ,!,C,�) 2 MSCmb. We call M strongly k-
synchronous strongly k-

synchronous
if it can be written as M = M1 · . . . · Mn such that every MSC

Mi = (Ei,!i,Ci,�i) is a k-exchange and, for all (e, f) 2 @M , there are 1 i
j n such that e 2 Ei and f 2 Ej.

Example 27. MSC M4 2 MSCmb in Fig. 5.7 is strongly 1-synchronous. Indeed,
we can decompose it into 1-exchanges and this decomposition allows for a total
order compatible with @M4 . Moreover, MSC M3 in Fig. 5.6, which is weakly 1-
synchronous, is strongly 3-synchronous. Indeed, we need to put the three messages
in the same k-exchange to regain our total order. Finally, for all k, MSC M1 in
Fig. 2.3 is not strongly k-synchronous, as we cannot put all messages in the same
k-exchange, where all sends are followed by all receptions. Here, this is not possible
as the reception of m3 has to take place before the sending of m4.

108 5. Framework for Synchronizability

p q r
m1

m2

m3

M4

p q r

m1

m2

m3

M3

p q r
m1

m2

m3

m4

M1

Figure 5.7: MSC M4 is strongly 1-synchronizable, M3 is strongly 3-synchronizable
and M1 is not strongly k-synchronizable for any k.

Similar to Theorem 5.18, we now show the graphical characterization of strong
synchronizability.

Theorem 5.24. Let M 2 MSCmb be an MSC. M is strongly k-synchronous i↵
every SCC in the extended conflict graph ECG(M) is of size at most k and no RS
edge occurs on any cycle in ECG(M).

Proof. Let us assume that we have an MSC M which is strongly k-synchronous.
Hence, M = M1 . . .Mn, where each Mi is a k-exchange. We denote the edges of
the ECG by the dashed arrow (99K).

We prove, by contradiction, that the size of the largest SCC in ECG(M) is at
most k. Let us assume, to the contrary, that there exists an SCC which is of size
k
0
> k. As there at most k messages in each k-exchange, there exists vertices v, v0

which belong to the SCC such that v 2 Mi and v
0 2 Mj, where 1 i < j n.

Since v, v
0 belong to the same SCC, we have v 99K⇤ v

0 99K⇤ v. We prove by
induction on the length of the path between v

0 and v that v0 99K v implies that
j i.

For the base case, we have v
0 XY999K v.

• If XY 6= SS, then there is a path from v
0 to v in the conflict graph (because

all the rules in Figure 5.3 except Rule 5 add edges between vertices which
are already connected in the conflict graph). Therefore, some action of v0

precedes an action of v, and hence, j i.

• On the other hand, if XY = SS and it is built by Rule 5 (all the other
SS dependencies fall into the above case) then v

0 is matched whereas v is
unmatched, and both v, v

0 involve sending messages to the same process.
Hence, to obey mailbox semantics, the send of v0 has to precede the send of
v therefore j i.

5.4. Application to concrete classes of synchronizability 109

By induction hypothesis, we assume that if there is a path of length h from v
0 to v

in the SCC, then j i. Let us now show that it holds true if the length is h+ 1.
Assume that we have v

0 99K ⇤
v
00 99K v, where there is a path of length h between

v
0 and v

00. Moreover, by the induction hypothesis, v00 2 M` where j ` n. Once
again, we can be in one of two cases.

• v
00 XY999K v, XY 6= SS. By the same argument as for the base case, ` i and

therefore, j i.

• v
00 SS999K v. Then, v00 has to be sent before v and once again j ` i.

Therefore, if the size of the SCC is larger than k, then all the vertices need to
belong to the same k-exchange, which is a contradiction.

Next, we show that there is no RS edge in any SCC. If we assume to the

contrary that there is an RS edge, i.e., v
RS999K v

0 99K ⇤
v in ECG(M), then using

the same argument as above, v and v
0 have to belong to the same k-exchange.

Moreover, v
RS999K v

0 implies that the reception associated to v, say f 2 E has to
happen before the send action associated to v

0, say e
0 2 E . However, in a strongly

synchronous k-exchange, all the sends precede the receives and hence, we have a
contradiction.

Conversely, assume that every SCC in ECG(M) is of size at most k and no RS

edge occurs on any cyclic path. Then, we first show that every SCC in the extended
conflict graph is k-synchronous. Let C be an SCC formed from a set of nodes
v1, . . . , vm, for some 1 m k. Let us denote by ei the send actions associated to
vertex vi for all 1 i m. Because the MSC is mailbox, it satisfies causal delivery,
which means that there is no SS cycle in ECG(M) [DGLL20]. Hence, let us assume
an indexing of the vertices consistent with the edges labeled by SS, i.e., for every

1 i1 i2 m, C does not contain an edge vi2

SS999K vi1 . We further index the
nodes in such a way that the sends associated to each process are all consecutive,
i.e., for every 1 i < j < l m, if ei, el 2 Send(p,), then ej 2 Send(p,).

Let i1, . . . , ir be the maximal subsequence of 1, . . . ,m such that f` is the receive
action associated to the send e` for all ` 2 {i1, . . . , ir}. C is therefore the graph
of the execution E = e1 . . . emfi1 . . . fir . The fact that all sends can be executed
before the receives is a consequence of the fact that C does not contain edges
labeled by RS. Then, the order between receives is consistent with the one between
sends because C satisfies causal delivery. Therefore, C is strongly k-synchronous.

Now, let C1, . . . , Cn be the set of maximal SCCs in ECG(M), listed in topological
order. For each i, let Ei refer to the send and receive actions ordered as above.
Let us consider M 0 = E1 . . . En to be the MSC associated with this ordering. We
can see that ECG(M) = ECG(M 0). Now, let us show that M 0 satisfies the mailbox

110 5. Framework for Synchronizability

property. Let us assume to the contrary that M
0 does not satisfy the mailbox

property. Then, there exists indices i < j such that there is an unmatched send ei

in Ei and a matched send ej in Ej such that ei, ej 2 Send(p,) for some p 2 P.
Then, there is an edge vj

SS999K vi, where vi, vj are the vertices associated to ei, ej

respectively. But since i < j, there is already a path v 99K ⇤
v
0 for some vertices

v 2 Ci and v
0 2 Cj . Hence, Ci and Cj are the same SCC, which is a contradiction.

Therefore, M 0 satisfies the mailbox property.

Proposition 5.25. For all k 2 N, the set of strongly k-synchronous mailbox MSCs
is MSO-definable and STW-bounded.

Proof. MSO definability. We first express the extended relations between events
in MSO:

ERR(e1, e2) = RR(e1, e2)

ERS(e1, e2) = RS(e1, e2)

ESR(e1, e2) = SR(e1, e2) _ [matched(e1) ^ (e1 = e2)]

ESS(e1, e2) = SS(e1, e2) _ RR(e1, e2) _
2

664matched(e1) ^ ¬matched(e2) ^
_

q2P
a,b2Send(,q)

�(e1) = a ^ �(e2) = b

3

775

And we define Rule 4 in Figure 5.3 as follows:

EXZclosed(e1, e2) = EXZ(e1, e2) _

2

49e3.
_

Y 2{R,S}

(EXYclosed(e1, e3) ^ EY Zclosed(e3, e2))

3

5

for all X,Z 2 {R, S}. The MSO formula proceeds similarly to what has been
shown in the previous case, but now relies on the extended conflict graph.

ECG(e1, e2) =
_

X,Y 2{R,S}

EXYclosed(e1, e2)

The formula for the property that there is no strongly connected component of
size greater than k in the extended conflict graph can be expressed as follows:

@e1, . . . , ek+1. [
^

i 6=j

ECG
⇤(ei, ej)]

5.4. Application to concrete classes of synchronizability 111

And finally, we express the property that there is no RS edge in any cycle of
the extended conflict graph:

@e1, e2.[ECG
⇤(e1, e2) ^ ERSclosed(e2, e1)]

STW-bound. For the condition of bounded STW, it is su�cient to see
that the set of strongly k-synchronizable MSCs is included in the set of weakly
k-synchronizable MSCs. Hence, Eve can use the same decomposition strategy as
in Proposition 5.13 to obtain a bound on the special tree-width.

As a corollary, we thus obtain:

Theorem 5.26. The following problem is decidable: Given finite sets P and
M, a communicating system S, and k 2 N, is every MSC in Lmb(S) strongly
k-synchronous?

Only mailbox MSCs are considered for the definition of strongly k-synchronous
MSCs for the following reason: A natural p2p analogue of Definition 5.23 would
require from the decomposition that, for all (e, f) 2 M , there are indices 1
i j n such that e 2 Ei and f 2 Ej. But this is always satisfied. So the
natural definition of “strongly k-synchronous MSCs” would coincide with weakly
k-synchronous MSCs.

Proposition 5.27. Consider a p2p MSC M = M1 . . .Mn such that every MSC
Mi = (Ei,!i,Ci,�i) is a k-exchange. Then, for all (e, f) 2 M , there are
1 i j n such that e 2 Ei and f 2 Ej.

Proof. If e M f , then there is a sequence of events e0 ./1 e1 ./2/m em where
e0 = e and em = f and ./i2 {!,C} for all 1 i m. For every 0 ` < m, there
are indices 1 i j n such that e` 2 Ei and e`+1 2 Ej. Hence, by transitivity,
the proposition is proved.

Like the variant for the case of weakly synchronous MSCs, we can also general-
ize strongly k-synchronous MSCs by removing the restriction on the number of
messages per exchange:

Definition 5.28. Let M = (E ,!,C,�) 2 MSCmb. We call M strongly syn-
chronous strongly

synchronous
if it can be written as M = M1 · . . . · Mn such that every MSC

Mi = (Ei,!i,Ci,�i) is an exchange and, for all (e, f) 2 @M , there are indices
1 i j n such that e 2 Ei and f 2 Ej.

Similarly to the constructions for strongly k-synchronous MSCs, we can obtain
a graphical characterization where we only look for the absence of RS-edges in a
cycle. Hence, this class is also MSO-definable (in fact, even LCPDL-definable) and
STW-bounded.

112 5. Framework for Synchronizability

5.4.4 Existentially k-p2p-bounded MSCs

Definition 5.29. Let M = (E ,!,C,�) 2 MSC and k 2 N. A linearization of
M is called k-p2p-bounded if, for all e 2 Matched(M), with �(e) = h(p, q)!mi,
#Send(p,q)(, e)�#Rec(p,q)(, e) k ,

We call M existentially k-p2p-boundedexistentially
k-p2p-

bounded

if it has some p2p linearization that is
k-p2p-bounded.

Proposition 5.30. For all k 2 N, the set of existentially k-p2p-bounded MSCs is
MSO-definable and STW-bounded.

Proof. The set of existentially k-p2p-bounded MSCs was shown to be MSO-
definable (in fact, even FO-definable) in [LM04]. Note that there are minor
di↵erences in the definitions (in particular, the fact that we deal with unmatched
messages), which, however, do not a↵ect FO-definability. In [BG21], it was shown
that their special tree-width is bounded.

Theorem 5.31. For com 2 {p2p,mb}, the following problem is decidable: Given
finite sets P and M, a communicating system S, and k 2 N, is every MSC in
Lcom(S) existentially k-p2p-bounded?

Proof. Again, the proof follows exactly the same lines as that or Theorem 5.21,
now using Proposition 5.30.

Note that this is similar to the problem considered in [GKM07, KM21], though
there is a subtle di↵erence: in [GKM07, KM21], there are a notion of deadlock and
distinguished final states.

5.4.5 Existentially k-bounded MSCs

Now, we turn to existentially k-bounded MSCs [LM02, GMK04, GKM07]. A
linearization of an MSC M = (E ,!,C,�) 2 MSC is called k-mailbox-bounded
if, for all e 2 Matched(M), say with �(e) = h(p, q)!mi, we have #Send(,q)(
, e)�#Rec(,q)(, e) k .

Definition 5.32. Let M = (E ,!,C,�) 2 MSC and k 2 N. We call Mexistentially
k-mailbox-
bounded

existen-
tially k-mailbox-bounded if it has some mailbox linearization that is k-mailbox-
bounded.

Note that every existentially k-mailbox-bounded MSC is a mailbox MSC.

5.4. Application to concrete classes of synchronizability 113

Example 28. MSC M5 in Fig. 5.8 is existentially 1-mailbox-bounded, as witnessed
by the (informally given) linearization h(q, p)!m2i h(p, q)!m1i h(q, r)!m3i
h(q, r)?m3i h(p, q)?m1i h(p, q)!m1i h(q, p)?m2i h(q, r)!m3i . . . Note
that M5 is neither weakly nor strongly synchronous as we cannot divide it into
exchanges.

p q r

m
1

m
1

m
1

m2

m2

m3

m3

m3

Figure 5.8: MSC M5

Let k � 1, and let M be a fixed mailbox MSC. Let
rev�!k

rev�!kbe the binary relation

among events of M defined as follows: f
rev�!k e if

1. f is a receive event of a process p;

2. let f 0 be the k-th receive event of process p after f ; then eC f
0.

Lemma 5.33. M is existentially k-mailbox-bounded if and only if �M [rev�!k is
acyclic.

Proof. Assume that M is existentially k-mailbox-bounded. Let be a mailbox
linearization of M such that for all e 2 Matched(M), with �(e) = h(p, q)!mi,

#Send(,q)(, e)�#Rec(,q)(, e) k .

Then is also a linearization of (�M [rev�!k)⇤. Indeed, if it was not the case,
there would be a pair of events e0, f 0 such that f 0 rev�!k e

0 and e
0 f

0. But then
we would have

#Send(,q)(, e
0)�#Rec(,q)(, e

0) > k ,

which is a contradiction. So is a linearization of (�M [rev�!k)⇤ and �M [rev�!k

is acyclic.

Conversely, assume that �M [rev�!k is acyclic. Let be a linearization of
(�M [rev�!k)⇤. In particular, is a mailbox linearization of M . Let us show that
for all e 2 Matched(M), with �(e) = h(p, q)!mi,

#Send(,q)(, e)�#Rec(,q)(, e) k .

Let e 2 Matched(M) be fixed, and let f 0 be such that eC f
0. There are two cases:

114 5. Framework for Synchronizability

• #Rec(,q)(!, f
0) k. Then

#Send(,q)(, e) k ,

because all sends to the channel of process q before e are matched. So

#Send(,q)(, e)�#Rec(,q)(, e) k ,

• #Rec(,q)(!, f
0) > k. Then there is f on process q such that f

rev�!k e. Since

�M [rev�!k is acyclic, we have f e, and there are at most k messages in
the channel of q at the time of event e, or in other words,

#Send(,q)(, e)�#Rec(,q)(, e) k .

So is a mailbox linearization with k bounded bu↵ers, and M is existential
k-mailbox-bounded.

Proposition 5.34. For all k 2 N, the set of existentially k-mailbox-bounded MSCs
is MSO-definable and STW-bounded.

Proof. Let k � 1 be fixed. Since every existentially k-mailbox-bounded MSCs
is also existentially k-p2p-bounded, and since the class of existentially k-p2p-
bounded MSCs is STW bounded (see Proposition 5.30), the class of existentially
k-mailbox-bounded MSCs is also STW bounded.

Let us show that it is moreover MSO definable.

By Lemma 5.33, it is enough to show that the acyclicity of �M [rev�!k is MSO
definable, and since �M was already shown MSO definable and acyclicity is easily
MSO definable, it is enough to show that

rev�!k is MSO definable. It is indeed the
case, as demonstrated by this formula

�(r, s) = 9r1, r2, . . . , rn.r ! r1 ! r2 ! . . . ! rn ^ sC rn.

Finally, let us show that existentially k-mailbox-bounded is also LCPDL defin-
able. This follows from the following formulas:

�M= (C+ !)+

R = hC�1i>
next R���!= (! ^test(¬R))⇤ · (! ^test(R))
rev�!k= (

next R���!)k.(C)�1
.

�9k mb-bounded = ¬ELooph(�M +
rev�!k)+i

5.5. Discussion 115

5.5 Discussion

This chapter presents a unifying framework in order to decide synchronizability
among other interesting properties. It is based on MSO (and LCPDL) logic, and
the notion of bounded (special) tree-width.

Table 5.1 gives a summary of the results. For a detailed comparison between
these classes, refer to [BDGF+21, Lav21].

Table 5.1: Summary of the decidability of the synchronizability problem in various
classes

Peer-to-Peer Mailbox
Weakly synchronous Undecidable

[Thm. 5.15]
EXPTIME
[Thm. 5.14]

Weakly k-synchronous Decidable [BEJQ18, DGLL20] and [Thm. 5.21]
Strongly k-synchronous — Decidable

[Thm. 5.26]
Existentially k-p2p-
bounded

Decidable [GKM07, BG21]

Existentially k-mailbox-
bounded

— Decidable
[Prop. 5.34]

Let us look at some of the other related problems in this field. This extension
is also valid for the p2p definition of existentially k-bounded MSCs, which were
addressed in [GKM07]. Moreover, our framework can also be adapted to treat uni-
versally bounded systems [HMK+05, LM02]. However, the send-synchronizability
problem from [BB11] does not fit in our framework. This is clear, because the
inclusion question Lp2p(S) ✓ C0 would be decidable, where C0 is the set of send-
synchronizable (p2p) MSCs, but this property is undecidable (as checking whether
a given system S is send-synchronizable is undecidable, from [FL17]).

Note that there is a subtle di↵erence between the notion of existential bounded-
ness as studied in this work, compared to some other works that have been studied,
for example in [GKM07] as we do not take into account the unmatched messages.

Some directions we could explore further would be regarding the decidability of
the question whether there exists a k � 0 such that Lp2p(S) ✓ Ck allows us to build a
bounded model checking strategy by first deciding whether there exists such a k � 0
and then by testing if Lp2p(S) ✓ Ck for k = 0, 1, 2, One may use this strategy for
weakly/strongly synchronizable systems, but not for existentially bounded systems
(except for deadlock-free systems) or for deterministic deadlock-free universally
bounded systems. In [LY19], the authors introduced an asynchronous compatibility
property and it would also be interesting to verify whether this property could
be expressed into our framework. Finally, we could also explore the notion of

116 5. Framework for Synchronizability

synchronizability over other communication architectures, apart from p2p and
mailbox, and see whether the resulting classes could fit into our framework.

Chapter 6

Send-Synchronizability

The results in this chapter are joint work with Benedikt Bollig, Alain Finkel and
S. Krishna, unpublished.

This chapter further investigates the notion of send-synchronizability for peer-
to-peer systems. As we saw earlier, the decidability of send-synchronizability
was shown to be undecidable for peer-to-peer systems in [FL17]. However, apart
from the trivial properties obtained from the definition, the decidability of global
properties such as reachability, boundedness, etc. are not known. With regards to
choreography realizability, it has been shown in [SAB20] that synchronizability is
decidable for choreography-defined peer-to-peer systems.

We recall the two notions of send-synchronizability defined in the literature,
which we shall refer to as I-synchronizability and J -synchronizability (which has
also been referred to as language-synchronizability in the literature). We go on
to investigate the reachability problem, which we show is undecidable for both
classes.

Finally, we propose some variants of problems which are decidable for send-
synchronizable systems, and investigate some subclasses of these systems. We
conclude with some directions of future work.

Note that as we only consider peer-to-peer systems in this chapter, we will
assume that the mode of communication is p2p unless otherwise specified.

6.1 I and J -synchronizability

Let us recall from Section 2.2 that for a communicating system, a trace ⌧ 2 Act⇤

is a finite sequence of actions. Furthermore, we let proj ! : Act
⇤ ! ⌃⇤ be the

homomorphism defined by proj !(hc!mi) = m for all m 2 ⌃ and c 2 Ch, and
proj !(↵) = " if ↵ 6= hc!mi for some m 2 ⌃ and c 2 Ch.

117

118 6. Send-Synchronizability

Let S = (X,Act , !, init) be the transition system associated with a CFM.
Then, for any k � 0, we define:

Jk(S) = {proj !(⌧) | ⌧ 2 Tracesk(S)}
Ik(S) = Jk(S) [{(proj !(⌧), �) | init

⌧�! �, � 2 X and � is stable, ⌧ 2 Tracesk(S)}

Furthermore,J (S), I(S)

J (S) =
[

k�0

Jk(S)

I(S) =
[

k�0

Ik(S)

We remark that Jk ✓ Ik, Ik ✓ Ik+1, and Jk ✓ Jk+1.

Following [BBO12b], we define the observable behavior of a system as its set of
send traces enriched with their final states when they are stable. In [BBO12b], the
authors consider the slack elasticity of a system: the property that the asynchronous
distributed behavior behaves “equivalently” regardless of the slack of the channels.
Hence, synchronizability is defined as the slack elasticity of these observable
behaviors.

Definition 6.1 (Synchronizability [FL17, BBO12b]). We say that a system S issend-
synchronizability

(I and J -
synchronizability)

• J -synchronizable if J (S) = J0(S),

• I-synchronizable if I(S) = I0(S).

Let us remark that S is I-synchronizable (resp. J -synchronizable) if and only
if Ik = I0 (resp. Jk = J0) for all k � 0. Moreover, for all k, ` � 0, we have that
Ik = I` implies Jk = J`. Let us prove this:

Proposition 6.2. If a system is I-synchronizable, then it is J -synchronizable.

Proof. If S is I-synchronizable, then I(S) = I0(S), i.e., I(S) \ I0(S) = ;. Since
J (S) ✓ I(S), we have J (S)\I0(S) = ;. Moreover, I0(S) = J0(S)[{(proj !(⌧), �) |
init

⌧�! �, ⌧ 2 Traces0 (S)}. Hence, J (S) \ I0(S) = J (S) \ J0(S) = ;. Therefore,
J (S) = J0(S), and S is J -synchronizable.

The converse, however, is false in general and there exist J -synchronizable
systems that are not I-synchronizable (see Example 29).

Example 29. Consider the CFM A with two processes as shown in Figure 6.1.
We see that SA is J -synchronizable, because for every trace, there is the equivalent
synchronous trace where both processes loop in the initial control-state. However,

6.2. Reachability for send-synchronizable systems 119

q0,2 q2 qf,2

!b(q,r)

?a(p,q)

!b(q,r) ?a(p,q)Pq

q0,1 q1 qf,1

!a(p,q)

?b(q,r)

?b(q,r)!a(p,q)Pp

Figure 6.1: CFM A = (Pp,Pq,⌃) which is J -synchronizable but not I-
synchronizable.

the state (qf,1, qf,2, ", "), which is reachable via (q0,1, q0,2, ", ")
��! (qf,1, qf,2, ", "),

where � =!a(p,q).!b(q,r).?a(p,q).?b(q,r). However, as we can see, (qf,1, qf,2, ", ") is not
reachable via any synchronous trace. Hence, the system SA is J -synchronizable
but not I-synchronizable.

Also note that for k 2 N, Ik(S) = Ik+1(S) does not imply I(S) = Ik(S)
(respectively for J (S)).

Theorem 6.3 ([FL17]). We have the following decidability results:

• I-synchronizability and J -synchronizability are undecidable for systems of
three p2p.

• I-synchronizability and J -synchronizability are decidable for systems of two
p2p.

However, for such systems, there has been no study on the decidability of
reachability, boundedness, or the other verification problems that we study in this
thesis. This leads us to first study the problem of reachability.

6.2 Reachability for send-synchronizable systems

We first analyze the reachability problem for J -synchronizable systems.

120 6. Send-Synchronizability

Theorem 6.4. The reachability problem is undecidable for J -synchronizable sys-
tems of (two) CFMs.

Proof. We reduce reachability in systems of two CFMs (that is well-known to be
undecidable [BZ83]) to reachability in J -synchronizable systems of two CFMs.

Let us consider any CFM A = (Pp,Pq,⌃) with two peers, where Pi =
(Qi,⌃i, �i, `0i) for i 2 {p, q}. We add a new control-state `i to each Pi with
self loops to send and receive every letter of the message alphabet, such that `i is
only reachable from the initial control-state `0i via every possible transition. Let
us call this modified system A0 = (P 0

p,P 0
q,⌃), and we can see it in Figure 6.2.

The transition system S 0 associated to A0 is J -synchronizable. This is because,
for any trace ⌧ 2 Traces(S 0), there exists ⌫ 2 Traces(S 0) such that (`0p , `0q , ✏, ✏)

✏�!
(`p, `q, ✏, ✏)

⌫�! (`p, `q, ✏, ✏) where proj !(⌧) = proj !(⌫) and ⌫ is of the form !?a1!?a2 . . .
for messages m1,m2, . . . 2 ⌃. Therefore, we can deduce ⌫ 2 J0(S 0) and hence,
⌧ 2 J0(S 0). Note that J (S 0) = Act⇤, hence J (S) ✓ J (S 0) but it is not necessary
that J (S) = J (S 0).

Furthermore, we see that if a state � is reachable in S, then � is reachable in
S 0. And conversely, any state involving a control-state of S (in Qp ⇥Qq), that is
reachable in S 0, is also reachable in S (note that if we reach, in S 0, the control-state
`p or `q, we cannot return to the original state space of S any more).

Thus, if reachability would be decidable for S 0, we could decide reachability for
S, i.e., for any system of communicating machines, and this is not the case. Hence
the reachability problem is undecidable for J -synchronizable systems of (at least
two) CFMs.

Using a similar idea, we can also prove that the control-state reachability
problem is undecidable for J - synchronizable systems. Moreover, reachability is
also undecidable for J - synchronizable counter systems by a similar construction.
However, for boundedness and termination we cannot use the same argument, as
addition of the extra control-state in each peer results in a potentially unbounded
(resp. non-terminating) system.

Reachability for I-synchronizable systems

In order to show that reachability is also undecidable for I-synchronizable systems,
we use the construction from [FL17]. However, since the underlying problem

6.2. Reachability for send-synchronizable systems 121

Original automaton Pp Original automaton Pq

`0p

`p

!⌃(p,q) ?⌃(q,p)

!⌃(p,q)

?⌃(q,p)

`0,q

`q

!⌃(q,p)

?⌃(p,q)

!⌃(q,p) ?⌃(p,q)

Figure 6.2: Construction of the modified system A0, where the send/reception of
every message is abbreviated by the symbol !⌃ and ?⌃

we study is di↵erent, we make modifications on the original construction. The
di↵erences between the two will be discussed below.

The general idea of the construction is to reduce the reachability problem
for I-synchronizable systems to another (well-known) undecidable problem. In
[FL17], the authors reduced the reachability problem to the message reception
problem for a FIFO machine (with a single channel). Since we are studying the
reachability problem for send-synchronizable systems, we instead consider the
well-known undecidable reachability problem for FIFO machines.

First, we recall the notion of “good-for-reduction” FIFO machines from [FL17].

Definition 6.5. A good-for-
reduction

FIFO machine M is good-for-reduction if the only stable trace
of SM is the empty trace.

Now, we adapt the well-known result from [BZ83] to good-for-reduction FIFO
machines.

Theorem 6.6. Reachability is undecidable for good-for-reduction FIFO machines.

Proof sketch. We show that good-for-reduction FIFO machines may simulate the
run of a Turing machine. This simulation is now sketched. Given a Turing machine
TM , there exists a good-for-reduction FIFO machine M (with a single channel)
such that any run of TM of length n can be simulated by a run of M of length
O(n2). Intuitively, this simulation consists simply in having the entire tape of the
simulated Turing machine in the channel with added end markers. To simulate
a run of TM , the contents of the channel can be rotated, i.e., entirely read and
immediately rewritten in the channel, with one exception, the part of the content

122 6. Send-Synchronizability

representing the head of the Turing machine. This is modified to simulate a step
of the Turing machine computation. The resulting FIFO automaton is indeed
good-for-reduction since at all points of the execution, at the very minimum, at
least one of the end markers will be left in the channel.

To now prove the undecidability of reachability of I-synchronizable systems,
we use the construction from [FL17]. Let us recall this construction. Given a
(good-for-reduction) FIFO machine M, the authors first construct a CFM AM that
simulates M. Then, they complete the system in order to make it I-synchronizable.
The system AM consists of three processes p, q and r.

Intuitively, process p imitates the actions ofM, and the channel (p, q) represents
the channel of M. When M enqueues a letter m, process p sends a letter m to
process q. When M dequeues a letter m, process p sends an order to dequeue to
process r, which process r then forwards to process q. Then, process q executes the
dequeueing, and then sends an acknowledgment back to process r, which process r
then forwards to process p. In other words, process r acts as an intermediary for
the dequeueing process.

Formally, let M = (Q,Ch,⌃, T, `0) be a good-for-reduction FIFO machine. As
|Ch| = 1, we will omit specifying the channel henceforth.

For the CFM AM, for each channel (p, q), we define ⌃(p,q) = {m(p,q) | m 2 ⌃}.
Moreover, since the alphabet set is disjoint for each channel, we omit specifying
the channel henceforth. In other words, h(p, q)!mi will now be written as !m(p,q).

The transition system associated to process p which we call Pp is obtained by
replacing every !m-transition of M with !m(p,r), and every ?m-transition with the
sequence of two transitions !m(p,r)?m(r,p). Formally, Pp = (Qp,⌃p,�p, `0p), where

Qp = Q] {`� | � 2 T} and

�p = {(`, !m(p,q)
, `

0) | (`, !m, `
0 2 T)}

[{(`, !m(p,r)
, `�), (`�, ?m

(r,p)
, `

0) | � = (`, ?m, `
0) 2 T}.

Process q receives messages from process r when it is time to dequeue, executes
it and then sends a confirmation back to r. Formally, Pq = (Qq,⌃q,�q, `0q) where

Qq = {`0q , `1q} [{`m,1, `m,2 | m 2 ⌃}
�q = {(`0q , ?m(r,q)

, `m,1), (`1q , ?m
(r,q)

, `m,1),

(`m,1, ?m
(p,q)

, `m,2), (`m,2, !m
(q,r)

, `1q) | m 2 ⌃}

Note that the loop of Pq is unrolled once. This is because we need to ensure that
it never comes back to the initial state (as our final system is the union of two
such processes).

6.2. Reachability for send-synchronizable systems 123

Process r receives a message to dequeue from process p and forwards it to
process q. Once it receives an acknowledgment from process q, it forwards it to
process p. The associated transition system is defined as Pr = (Qr,⌃r,�r, `0r)
where

Qr = {`0r} [{`m,1, `m,2, `m,3 | m 2 ⌃}
�r = {(`0r , ?m(p,r)

, `m,1), (`m,1, !m
(r,q)

, `m,2),

(`m,2, ?m
(q,r)

, `m,3), (`m,3, !m
(r,p)

, `0r) | m 2 ⌃}

Example 30. Consider the following example from [FL17]. We have ⌃ = {a,m}
and the FIFO machine M1 = ({`0, `1},Ch,⌃, T, `0), with transition relation T =
{(`0, !a, `0), (`0, !m, `1), (`1, ?m, `0), (`1, ?a, `0)}. The CFM associated to processes
p, q and r are shown in Figure 6.3.

Let P = {p, q, r}, and ChA = {(p, q) | p, q 2 P}, and ⌃A =
S

c2ChA
⌃c. Then,

AM = (Pp,Pq,Pr,⌃A). It was shown in [FL17] that there is a tight correspondence
between the k-bounded traces of SM for k � 1, and the k-bounded traces of
SAM : every trace ⌧ 2 Tracesk(SM) induces the trace h(⌧) 2 Tracesk(SAM) where
h : ActM ! Act⇤AM

is the homomorphism from the traces of SM to the traces of
SAM , defined by

h(!m) =!m(p,q)

and
h(?m) =!?m(p,r)·!?m(r,q)·?m(p,q)·!?m(q,r)·!?m(r,p)

.

Now, we extend this idea to the sets of reachable states of SM and SAM . Let
us denote a particular state of SAM as (`, w), where w(p,q) denotes the channel
content of (p, q).

Proposition 6.7. For any execution (`0, ✏)
⌧�! (`, w) in SM, there exists an execu-

tion (`0p , `0q , `0r , ")
h(⌧)��! (`, `q, `0r , w) in SAM, where `q 2 {`0q , `1q} and w(p,q) = w

(resp. "(p,q) = ") and wc = " (resp. "c = ") for all c 6= (p, q).

Proof. We prove this by induction on the length of ⌧ . For the base case, |⌧ | = 0,
i.e., ⌧ = ", for which the proposition is trivially true.

Now, by the induction hypothesis, we assume that the proposition holds for
any ⌧ such that |⌧ | = n. We will show that it is also true for n+ 1. Let us assume
that we have an execution of length n + 1, say ⌫. Let ⌫ = ⌧ · �, where ⌧ is an
execution of length n, and � is a single action. Say (`0, ✏)

⌧�! (`, w)
��! (`0, w0).

Firstly, by [FL17, Lemma 6], ⌫ induces a trace h(⌫) = h(⌧) · h(�) from �0 =
(`0p , `0q , `0r , ") in SAM . Moreover, by the induction hypothesis, there is a state

124 6. Send-Synchronizability

!a(p,q) !m(p,q)

!a(p,r)

!m(p,r)

?a(r,p)

?m(r,p)

Pp

!a
!m

?a, ?m

FIFO automaton M1

?m(r,q)

?a(r,q)

?m(r,q)

?a(r,q)

?m(p,q)

!m(q,r)

?a(p,q)

!a(q,r)

Pq

?m(p,r)
!m(r,q)

?m(q,r)
!m(r,p)

?a(p,r) !a(r,q)

?a(q,r)!a(r,p)

Pr

Figure 6.3: The FIFO machine M and CFM AM with Pp, Pq and Pr from
Example 30

6.2. Reachability for send-synchronizable systems 125

(`, `q, `0r , w) reachable from �0 via h(⌧), where `q 2 {`0q , `1q}, w(p,q) = w and

wc = " for all c 6= (p, q). Hence, we only now need to show that (`, `q, `0r , w)
h(�)��!

(`0, `0q, `0r , w
0), for some values of `0q and w0.

• Let us assume � is a write operation, say !m. Then, there exists a transition
from the control-state ` in M to the control-state `0 which sends a letter m.
Therefore, by construction, there exists such a control-state in Pp as well.
Hence, we can execute the same transition in Pp, which sends a letter m to
the channel (p, q), i.e., a transition h(�), and moves to state `0. The other
processes do not make any transitions. Hence, we reach a state (`0, `0q, `0r , w

0)
such that w0

(p,q) = w ·m and w0
c = ✏ for all c 6= (p, q). Moreover, `0q = `q.

Hence, the proposition holds.

• Now, let us assume � is a read operation, say ?m. This implies w = m · w0.
Moreover, there exists a transition � from control-state ` in M to the control-
state `0 which reads a letter m. Therefore, by construction, there exists a
control-state `0 in Pp as well, which is reached from ` via an intermediate

control-state `�. Let us assume Pp executes the transition `
!a(p,r)���! `�. Then,

Pp cannot proceed any further since it needs to receive a response from Pr,
which it does not have yet as the channel (r, p) is empty (by the induction
hypothesis).

Hence, while Pp is blocked, Pr now has a message in the channel (p, r), which
it can read (as it is in the initial state, such a transition is possible). It
moves to an interim control-state `m,1 and then sends to Pq an order m(r,q)

to dequeue m from channel (p, q), and reaches `m,2 where it is blocked.

Now, Pq receives a new message in the channel (r, q), which was empty so
far (by the induction hypothesis). It then consumes this message (again, this
is possible as it is in one of the “initial states” `0q or `1q). It then moves to
`m,1 from where can read the letter m from the channel (p, q). Note that by
the induction hypothesis, the channel contents in (p, q) is w = m · w0, hence,
it can read m, leaving behind w

0. Then, it moves to `m,2, and then sends to
Pr an acknowledgment, and moves to `1q .

Now, Pr can consume the message from (q, r) and send an acknowledgment
back to Pp and reach back to its initial control-state. And finally, Pp is no
more blocked an can reach `0. Hence, we reach a state (`0, `1q , `0r , w0) where
w0

(p,q) = w
0 and w0

c = ✏ for all c 6= (p, q). Hence, the proposition holds.

The proposition holds for n+ 1, and we are done with the proof.

Let us prove the converse direction now.

126 6. Send-Synchronizability

Proposition 6.8. For any execution (`0p , `0q , `0r , ")
⌫�! (`, `q, `0r , w) in SAM such

that `q 2 {`0q , `1q} and w(p,q) = w 2 ⌃⇤ and wc = " for all c 6= (p, q), there exists

an execution (`0, ✏)
h�1(⌫)����! (`, w) in SM.

Proof. From [FL17, Lemma 6], we know that for all k � 0, Tracesk(SAM) =
#{h(⌧) | ⌧ 2 Tracesk(SM)} [#{h(⌧) · !?m(p,q) · !?m(r,q) | ⌧ 2 Tracesk(SM)}.
Hence, for all traces ⌫ 2 #{h(⌧) | ⌧ 2 Tracesk (SM)}, from Proposition 6.2, we can
construct an execution in SM that satisfies the requisite properties.

That leaves us with the set of traces {h(⌧) · !?m(p,r) | ⌧ 2 Tracesk(SM)} and
the set {h(⌧) · !?m(p,r) · !?m(r,q) | ⌧ 2 Tracesk(SM)}. However, for any trace
belonging to either of these sets, it can be seen that the control-state reached in
Pq is not `0q and hence, the traces in these sets do not belong to the set of traces
we consider in the proposition. Hence, the proposition holds true.

While SAM simulates SM, it is not I-synchronizable. Hence, we try to modify
AM so as to make the associated transition system I-synchronizable. We define a
system A0

M = (Pp,P 0
q,Pr,⌃A) where Pp and Pr are the same as in AM but P 0

q is
modified. This system will later be combined with AM and the whole system will
be used in the reduction of the reachability problem in the FIFO automaton to
the reachability in I-synchronizable systems. The main purpose of A0

M is to make
the traces of SAM synchronizable.

A crucial di↵erence between our construction in P 0
q and the construction in

[FL17] is that we do not fix a special message m and exclude the traces containing
m

(q,r) from the synchronous traces. In fact, we want to make the entire system
I-synchronizable, so we do not isolate any letter from the rest. Therefore, this
construction can be seen as a special case of the construction in [FL17] where the
underlying FIFO machine M does not contain the letter m at all in its alphabet.

Intuitively, P 0
q will always be able to receive any message from Pp, in particular,

at the time the message is sent. Furthermore, it is also able to receive orders from
Pr to dequeue; however, instead of actually dequeueing, it ignores the order but
sends an acknowledgment back to Pr. Formally, P 0

q = (Q0
q,⌃q,�0

q, `0q) is defined
as follows:

Qq = {`0q , `01q} [{`0m,1 | m 2 ⌃}
�q = {(`0q , ?m(p,q)

, `
0
1q), (`, ?m

(p,q)
, `) | m 2 ⌃, ` 2 Q

0
q \ {`0q}}

[{(`0q , ?m(r,q)
, `

0
m,1), (`1q , ?m

(r,q)
, `

0
m,1), (`

0
m,1, !m

(q,r)
, `

0
1q) | m 2 ⌃}

Example 31. For ⌃ = {a,m}, and P1 from Figure 6.3, P 0
q is depicted in Figure 6.4.

6.2. Reachability for send-synchronizable systems 127

?m(r,q)

?a(r,q)

?a1!2
, ?m(p,q)

?m(r,q) !m(q,r)

?a(r,q) !a(q,r)

?m1!2
, ?a(p,q)

?m1!2
, ?a(p,q)

?m1!2
, ?a(p,q)

Figure 6.4: P 0
q for the FIFO automata M1

As a direct consequence of [FL17, Lemma 8 and 9], we have the following
proposition:

Proposition 6.9. For all traces ⌧ 2 Traces(SAM), there is a synchronous trace
⌧
0 2 Traces0 (SA0

M
) such that send(⌧) = send(⌧ 0). Furthermore, SA0

M
is I-

synchronizable.

Now, let us consider the system A00
M = (Pp,Pq [P 0

q,Pr), where Pq [P 0
q =

(Qq [Q
0
q,�q [�0

q,⌃q, `0q) is obtained by merging the initial state of Pq and P 0
q.

As a consequence of [FL17, Lemma 10], we have:

Proposition 6.10. The system SA00
M

is J -synchronizable, i.e., J (SA00
M
) = J0(SA00

M
).

From the above results, we deduce:

Proposition 6.11. Assume that M is good-for-reduction. Then, the system SA00
M

is I-synchronizable, i.e., I(SA00
M
) = I0(SA00

M
).

Proof. Since I0(SA00
M
) ✓ Ik(SA00

M
) is true for any system, in order to show that

SA00
M

is I-synchronizable, we only need to prove that Ik(SA00
M
) ✓ I0(SA00

M
) for all

k 2 N. Since Ik(SA00
M
) = Ik(SA0

M
) [Ik(SAM) for all k 2 N, we have to prove that

I(SA0
M
) ✓ I0(SA0

M
) [I0(SAM) and I(SAM) ✓ I0(SA0

M
) [I0(SAM).

From Proposition 6.9, we know that I(SA0
M
) ✓ I0(SA0

M
). Hence, we only need

to show I(SAM) ✓ I0((SA0
M
) [I0S(AM). We know that SA00

M
is J -synchronizable

128 6. Send-Synchronizability

from Proposition 6.10. Hence, J (SA00
M
) ✓ J0(SA0

M
) [J0(SAM). So we only need

to prove that for all stable traces ⌧ of SAM , there is a stable synchronous trace ⌧ 0

of SA00
M

leading to the same state such that proj !(⌧) = proj !(⌧
0).

Let ⌧ 2 Traces(SAM) be a stable trace. By [FL17, Lemma 8], there is a trace ⌧0
such that either ⌧ = h(⌧0), or ⌧ = h(⌧0).!?m(p,r), or ⌧ = h(⌧0)·!?m(p,r)·!?m(r,q). By
the definition of h, if ⌧ is stable, ⌧0 is also stable. Since M is good-for-reduction,
⌧0 must be the empty trace. Hence, in all the above cases, ⌧ is synchronous,
and therefore, all stable traces of SAM are synchronous, which means SA00

M
is

I-synchronous.

Finally, we recall one important aspect of the construction. When defining Pq

and P 0
q, it was enforced that the union of the two automata cannot come back to

the initial state `0q . In doing so, we make sure that any trace of A00
M is either a

trace of AM or A0
M. Moreover, once a control-state in Q

0
q \ {`0q} has been reached,

it is no longer possible to reach a control-state in Qq.

Using the results so far, we can now prove that reachability is undecidable for
I-synchronizable systems.

Theorem 6.12. Reachability is undecidable for I-synchronizable peer-to-peer sys-
tems with at least 3 processes.

Proof. We reduce the reachability of good-for-reduction FIFO machines to reacha-
bility in I-synchronizable peer-to-peer systems. Let M be a good-for-reduction
FIFO machine. We construct a CFM A00

M with three processes as shown in the
above construction. From Proposition 6.11, we know that SA00

M
is I-synchronizable.

From Proposition 6.2, we know that if a state (`, w) is reachable in SM, then
(`, `q, `0r , w) is reachable in SAM . Hence, it is also reachable in SA00

M
.

Conversely, consider a state (`, `q, `0r , w) that is reachable via ⌧ in SA00
M

such
that `q 2 {`0q , `1q}, and w(p,q) = w 2 ⌃⇤ and wc = " for all c 6= (p, q). Since
`q 2 Qq, we know that there cannot be a trace in SA0

M
that satisfies this property.

Hence, ⌧ 2 Traces(SAM). Moreover, by Proposition 6.2, (`, w) is reachable in SM.

Hence, (`, w) is reachable in SM i↵ (`, `q, `0r , w) is reachable in SA00
M

where
`q 2 {`0q , `1q}, and w(p,q) = w 2 ⌃⇤ and wc = " for all c 6= (p, q).

And since reachability is undecidable for general good-for-reduction FIFO
machines by Theorem 6.6, we deduce that reachability is undecidable for I-
synchronizable peer-to-peer systems with at least 3 processes.

Note that the above construction gives us, as a corollary, a result we proved
earlier: reachability is undecidable for J -synchronizable systems. Also note that

6.3. Stable reachability 129

the decidability question of reachability for I-synchronizable peer-to-peer systems
with 2 processes is open.

6.3 Stable reachability

As the notion of I-synchronizability and J -synchronizability di↵er only in the
notion of stable states, we look at a modification of the reachability problem.

Decision Problem: STABLE REACHABILITY

Input: a CFM A = ((Pp)p2P,⌃),

a state � = ((`p)p2P, (")(p,q)) for p, q 2 P and p 6= q

Question: is � 2 Post
⇤
SA

(init)?

Stable state reachability is trivially decidable for I-synchronizable systems since
by definition, every stable state is reachable via a synchronous run. Hence, given a
stable state, we only need to verify if there exists a path to it via a run where each
channel has capacity at most 1. However, we show that this is not decidable for
J -synchronizable systems, which confirms that the restriction in I-synchronizable
systems is indeed non-trivial.

Theorem 6.13. The stable reachability problem is undecidable for J -synchronizable
peer-to-peer systems with 2 processes.

Proof. We reduce reachability in communicating systems with 2 processes (that
is undecidable [BZ83]) to stable reachability in J -synchronizable systems of two
processes.

Let us consider a CFM A = (Pp,Pq,⌃) of two processes p, q such that Pi =
(Qi,⌃i,�i, `0i) for i 2 {p, q}. Our objective is to verify if � = (`f,p, `f,q, wp, wq) is
reachable.

We construct a new CFM A� = (P 0
p,P 0

q,⌃), with all the states and transitions
as in A. Let P 0

i = (Q0
i,⌃i,�0

i, `0i). We add new states to Q
0
i as follows: a state `i,

reachable from the initial state, and which has self loops to send and receive every
letter of the message alphabet, and `wi , which is reachable from `f,i by receiving
the word wi (this can be achieved by adding intermediate states, but we ignore this
detail for brevity). Formally, for i 2 {p, q}, we define P 0

i = (Q0
i,⌃i,�0

i, `0i) where

130 6. Send-Synchronizability

• Q
0
i = Qi [{`i, `wi}

• �0
i = �i [{`0 #m��! `i | m 2 ⌃,# 2 {!, ?}, `0 2 {`i, `0i}} [{`f,i

?wi��! `wi}

A� is shown in Figure 6.5.

The new system SA� is J -synchronizable, since for any non-empty trace ⌧ =

!m(p,q) · � where m 2 ⌃, � 2 ⌃⇤, there is an execution (`0p , `0q , ✏, ✏)
!?m(p,q)

����!
(`p, `q, ✏, ✏)

⌫�! (`p, `q, ✏, ✏) such that proj !(⌧) = m · proj !(⌫) and ⌫ is of the form
!?m1!?m2 . . . for messages m1,m2, . . . 2 ⌃.

Furthermore, we see that if (`f,p, `f,q, wp, wq) is reachable in SA, then it is
reachable in SA� (by the same trace). Then, we can reach (`wp , `wq , ✏, ✏) in SA� (by
construction). Conversely, if we can reach (`wp , `wq , ✏, ✏) in SA� , then it could only
have been reached from (`f,p, `f,q, wp, wq) (as it is not reachable from any other
state by construction). Hence, the state (`f,p, `f,q, wp, wq) is also reachable in SA
by the same trace.

Thus, if stable reachability would be decidable for SA� , we could decide the
reachability of a (`f,p, `f,q, wp, wq) for SA. Hence, if stable reachability would be
decidable for J -synchronizable systems, then we could decide the reachability of a
state in any system of communicating machines.

Original automaton Pp Original automaton Pq

`0p

`p

`f,p

`wp

!⌃(p,q) ?⌃(q,p) ?w(q,p)
p

!⌃(p,q)

?⌃(q,p)

`0,q

`q

`f,q

`wq

!⌃(q,p)

?w(p,q)
q

?⌃(p,q)

!⌃(q,p) ?⌃(p,q)

Figure 6.5: Construction of the modified system A�, where the send/reception of
every message is abbreviated by the symbol !⌃ and ?⌃

6.4. Some decidable notions 131

6.4 Some decidable notions

Since most verification problems are undecidable for (general) synchronizable peer-
to-peer systems, we study subclasses of CFMs for which some verification problems
may be decidable. Let us look at some of these subclasses.

Input-bounded systems

Let us suppose that a P2P system S over ⌃ is J -synchronizable (I-synchronizable
systems are a subclass of J -synchronizable systems). We have: J (S) = J0(S)
where J0(S) = {send(⌧) | ⌧ 2 Traces0 (S)} and Traces0 (S) is the set of synchronous
traces of S. Since Traces0 (S) is computable (in polynomial time), we may also
compute the language J0(S) ✓ ⌃⇤.

Let us recall that a language L ✓ ⌃⇤ is bounded if there exist an integer k � 1
and k words w1, w2, ..., wk 2 ⌃⇤ such that L ✓ w

⇤
1w

⇤
2...w

⇤
k. The property for a

rational language to be bounded is decidable, see for example [CDV10]. bounded syn-
chronizable
systems

Let us say
that a synchronizable system S is bounded if J0(S) is a bounded language. Then
given a synchronizable system, we may decide whether it is bounded.

Let us recall that a system S is input-bounded [BFS20] if J (S) def
=
S
k�0

Jk(S) is a

bounded language. This class of systems subsumes input-letter-bounded machines,
flat machines, linear FIFO nets, and monogeneous machine. We now observe, just
by definition, that any bounded synchronizable system S is input-bounded (since
J (S) = J0(S)) and from [BFS20], we deduce that many problems like reachability,
control-state reachability, unboundedness, deadlock, etc. are decidable. With
this result, we are able to find a subclass of synchronizable systems for which
reachability is decidable.

Theorem 6.14. Reachability is decidable for bounded J -synchronizable peer-to-
peer systems.

Regular systems

Let us say that a CFM A is e↵ectively J -regular (resp. e↵ectively I-regular) if
J (SA) (resp. I(SA)) is regular and computable.

Let us remark that J (SA) can be regular when Traces(SA) is not regular: sup-
pose that A is a CFM with two processes, and a single unidirectional channel such
that the alphabet contains an unique letter a and Traces(SA) =

S
n�p�0

(!a)n(?a)p is

132 6. Send-Synchronizability

not regular but J (SA) = a
⇤.

Systems with k-bounded FIFO channels (i.e., words in channels are in ⌃k) and
half-duplex systems [CF05] are two examples of e↵ective J -regular and I-regular
systems. Then J -synchronizability (resp. I-synchronizability) reduces to decide
whether J (SA) = J0(SA) (resp. I(SA) = I0(SA)) which is decidable since the
equality of two regular languages is decidable (finite automata that recognize
J0(SA) and I0(SA) are computable from SA). We could extend this decidability
result to classes of systems SA such that J (SA) and I(SA) belong to classes of
languages for which testing equality with a regular language is decidable like
deterministic context-free languages, visibly pushdown systems. But, regularity is
an undecidable property for general FIFO systems.

6.5 Discussion

The main open question in the field remains the question of whether the notions
of send-synchronizability are decidable under the mailbox semantics. As we have
seen in the case of weakly synchronous MSCs (cf. Section 5.4.1), there are notions
which are undecidable for the peer-to-peer semantics but become decidable for the
mailbox case. It would be interesting to see if send-synchronizability could be one
such example.

However, for the undecidability of reachability for J -synchronizable systems,
we have seen that it holds even for 2 processes, and hence, holds trivially for the
mailbox case. This is not the case for I-synchronizable systems. Moreover, the
question of reachability for I-synchronizable systems of 2 processes is also open as
of yet.

As for the interest of the notion of send-synchronizability, the results in this
chapter show that it is not a useful measure to analyze safety questions such as
reachability and variations. However, the question of boundedness remains open.
Moreover, it is likely that a notion based on observable behavior could be a good
choice for model checking, as one could ask the question of whether a certain
message is observed along the trace, and similar questions.

Another interest point of investigate is the relationship between the notions of
send-synchronizability and choreography realizability. In a recent work [SAB20],
the authors have analyzed the notion of choreography realizability, where a system
is called realizable, if the traces of the prescribed communication coincide with
those of the asynchronous system of peers. The notion of synchronizability changes
slightly in the presence of choreographies, i.e., FSMs that prescribe the rendezvous
synchronization. In this case the peers are projections of a choreography, and
synchronizability becomes realizability of the given choreography. The rendez-

6.5. Discussion 133

vous composition of the projected peers coincides with the choreography, whereas
in general projections of a rendez-vous composition of arbitrary peers may not
coincide with the given peers. It would be interesting to see if there is a similar
characterization of synchronizability for the mailbox case.

Chapter 7

Conclusion

In this thesis, we studied various under-approximations of transition systems,
with a particular focus on subclasses of communicating finite-state systems. For
these subclasses, we tried to prove the decidability (or decidability) of various
verification problems, such as reachability and boundedness. Let us recall some of
the significant contributions of the thesis:

E↵ective branch-well-structured transition systems have decidable bound-
edness and termination. In Chapter 3, we introduced branch-WSTS, a class
of systems that strictly includes well-structured transition systems where we re-
lax both the wqo and the monotony conditions. For this class, we show that
boundedness and termination are decidable under e↵ectivity conditions.

However, we show that coverability is undecidable for branch-WSTS. Therefore,
we introduce a class of (well-quasi-ordered) transition systems where the monotony
condition is relaxed, and show that a variation of the coverability problem is
decidable for them.

Input-bounded rational reachability is decidable for FIFO machines. In
Chapter 4, given a rational set, a set of bounded languages, and a FIFO machine,
the problem of checking whether a control-state is reachable along an input-bounded
run, such that the channel contents belong to the rational set, is decidable. This
result leads the way in deriving many other results, such as the decidability of
boundedness, deadlock, reachability and so on, under the input-bounded restriction.

We also study the special case of a FIFO machine with a single channel to
obtain some lower and upper bounds. Moreover, we also looked at the dual of such
systems (where the reception is bounded), and observed some similarities, while
also looking at the di↵erence between the two notions. Finally, we open the way
to introducing a kind of under-approximation for the general reachability (and
other verification problems) of FIFO machines, where we can take larger and larger

135

136 7. Conclusion

bounded languages and verify the reachability of potentially bad states.

The synchronizability problem is decidable for any class of MSCs which
are MSO-definable and have bounded-special tree width. This result
we show in Chapter 5 provides a framework for deciding synchronizability and
reachability for a number of classes studied in the literature. Moreover, this also
paves the way to unify notions of synchronizability.

We also briefly investigate the notion of send-synchronizability for peer-to-peer
systems and show that a number of verification problems remain undecidable for
this notion.

These questions have tried to answer some of the open questions in the literature,
but there are still several unanswered questions and directions for future research.

7.1 Relaxations of well-structured transition sys-
tems

Branch-WSTS and cover-WSTS have given us insight into the fact that the
conditions for WSTS can be relaxed while still keeping some of the interesting
problems decidable. However, there are some open problems that this study has
led to:

• The biggest gap in this study is the question of coverability, and whether
we can find a class of systems for which general coverability is decidable
(without necessarily having to compute the coverability set).

• Another open question is the characterization of FIFO and counter machines
which are branch-WSTS (and cover-WSTS). We were able to find some
subclasses of these systems, but the larger question of whether one could
precisely capture the set of all FIFO (or counter) machines, which are branch-
WSTS for a given ordering, is open. Moreover, for FIFO machines, the
prefix relation introduced in [JJ93] showed boundedness to be decidable for
input-bounded FIFO machines. However, as it is not an ordering, we cannot
use it for branch-WSTS. Strengthening this notion to an ordering would
introduce a new class of FIFO machines with decidable properties.

• More generally, it would be interesting to study other models which are not
WSTS and automatically verify whether boundedness and termination are
decidable for such systems. We can also study other branch-WSTS (resp.
cover-WSTS) and other orderings for which they hold.

7.2. Input-bounded FIFO machines 137

Perspectives. From a theoretical perspective, a significant problem of interest
is to study how much further one can relax the conditions on WSTS in order to
still obtain decidable verification problems. It would also be interesting to see if
this relaxation translates to better hope for the usability of WSTS and relaxations
as a verification technique.

For FIFO machines, an interesting open problem is characterizing the class for
which the prefix ordering behaves like a well-ordering. We saw that for branch-
monotony, input-bounded systems were still too general. Another related problem
would be to modify the prefix-compatible relation to make it an ordering. Since
the overarching objective of the thesis was FIFO machines, a pertinent question is
to see how they can be characterized as well (resp. branch-well, cover-well) under
the various orderings.

7.2 Input-bounded FIFO machines

For the bounded-reachability in FIFO machines, we have a number of immediate
open problems:

• It would be interesting to obtain the precise complexity of input-bounded
reachability (and other verification problems) for FIFO machines with a fixed
number of channels. Moreover, we could also ask what the complexity of
these problems is for general FIFO machines.

• For output-bounded verification, it is interesting to see that most problems
reduce from the input-bounded case. However, in order to complete the
picture, it would be worthwhile to investigate whether rational reachability
(and deadlock detection) are decidable for the output-bounded case. Moreover,
the question of whether restricting the input-bounded language is equivalent
to restricting the output-language is an interesting open question.

• We see that counter machines with restricted zero tests prove to be an
interesting extension of VASS. Since each channel is modeled by more than
one counter, they are not immediately comparable to VAS with hierarchical
zero tests studied in [Rei08, Bon13] (as there is a total order on the counters).
It would be interesting to compare these models and see whether we can
derive some interesting results on CMRZs.

Perspectives. Over the long term, input-bounded reachability could provide
a novel approach to verifying FIFO machines. Much like the notion of flattable
systems, the notion of boundable FIFO machines could prove to be an interesting

138 7. Conclusion

technique to verify FIFO machines. However, it is not yet known whether reacha-
bility is decidable for boundable FIFO machines, as we still would need to find
the right set of bounded languages, and verify if the reachability set of the FIFO
machine is equal to the input-bounded reachability set, which would a priori imply
computing the reachability set.

However, it could also be used in practice as a semi-decidable under-approximate
verification tool. Moreover, the size of the counter machine associated with a FIFO
machine and a tuple of bounded languages is exponential, but it is only polynomial
if the underlying FIFO is in normal form. Hence, it would be interesting to see if
we can use existing tools for counter machines, and whether the construction of
flat machines can be used to aid the verification of boundable FIFO machines.

Finally, we also observe that increments happen in an orderly fashion in the
CMRZs we use for bounded verification. Hence, working backwards from counter
machines to FIFO machines, it would be an interesting question to investigate
whether we can extend the notions of bounded reachability to other FIFO machines
such that verifying the underlying counter machine still remains decidable. This
could, in turn, also be beneficial to the automated verification problems we discussed
earlier.

7.3 Unifying notions of synchronizability

Many questions related to the notion of synchronizability can be studied in the
future:

• We could think about the hypotheses to add to the framework to decidably
answer the problem “does there exist k � 0 such that Lp2p(S) ✓ Ck?”. This
problem is already decidable for weakly and strongly systems [GLL21], but
it remains to be seen if we can obtain these results as an extension of our
framework.

• In [LY19], the authors introduced an asynchronous compatibility property.
It would also be interesting to verify whether this property can be expressed
in the framework.

• Finally, in recent works [Lav21, SZ22], more comparisons have been made
between the classes studied in this thesis and in [BDGF+21]. It would be
interesting to complete this picture for all communication architectures (bags,
mailboxes, peer-to-peer), and verify if we can include subclasses of half-duplex
and reversal-boundedness to our framework.

7.4. Verifying send-synchronizable systems 139

Perspectives. To recap, the decidability of the question whether there exists
a k � 0 such that Lp2p(S) ✓ Ck allows us to build a model checking strategy by
first deciding whether there exists such a k � 0 and testing if Lp2p(S) ✓ Ck for
k = 1, 2, . . . One may use this strategy for weakly/strongly synchronizable systems
but not for general existentially bounded systems or deadlock-free universally
bounded systems [HMK+05, LM04].

We believe that our approach can also be used to infer the PSPACE upper
bound of weakly k-synchronous MSCs from [BEJQ18] by showing bounded path-
width and using finite word automata instead of tree automata. It would be
interesting to also verify this approach for obtaining other upper bounds. More
generally, the question of specific complexity bounds for many of these systems is
also open.

A final long-term perspective would be the study of high-level MSCs within
the framework. From a CFM, one can try to extract an equivalent high-level MSC.
As the language of a k-synchronous CFM is finitely-generated, it may indeed be
possible to extract such a high-level MSC. This would imply summarizing several
asynchronous steps in a CFM into a macro step of a high-level MSC. Therefore,
the question of whether one can compute a high-level MSC from a k-synchronous
systems is a potential future direction to study.

7.4 Verifying send-synchronizable systems

Some immediate open questions in the study of send-synchronizable systems are
as follows:

• The largest missing piece of the puzzle is the question of whether send-
synchronizability is decidable under the mailbox semantics. In [FL17], the
authors have shown that the earlier proof in [BBO12a] for mailbox systems
fails for a counter-example. However, the decidability of this notion is still
open.

• Following the earlier vein, the question of deciding other verification problems
for mailbox systems is open. We know that reachability is undecidable from
the proof of undecidability for the peer-to-peer case, but this does not extend
to the other notions. Moreover, the question of boundedness and termination
is open for both mailbox and peer-to-peer semantics.

• Finally, the question of model checking may prove to be decidable for send-
synchronizable systems, as we find the definition to be conducive to verify
actions along a path of execution. Decidability of model checking could add
interest in this class of systems.

140 7. Conclusion

Perspectives. For the longer term, it appears as if this definition is not well-
suited for the verification problems we are interested in. However, the notion of
synchronizing observable behavior is still an interesting notion in practice. Hence,
it would be worthwhile to redefine this notion such that we keep the spirit of the
existing definition, but modify it to include some information about the path taken
by the system as well. This would also give us some more information on the
reachability of control-states and might lead to decidable results. Moreover, as
the current version of send-synchronizability is undecidable, this notion could be
altered to a decidable one.

Another path of investigation in future could be the notion of choreography
realizability. This involves verifying if a set of traces can be realized in a com-
municating system. For the peer-to-peer case, as we saw earlier, this problem
reduces to synchronizability of the underlying system. However, this notion is not
as explicit for the mailbox case. Moreover, the intertwined relationship between
these notions could lead us to better understand how to study the notion of “slack
elastic observable behavior”.

7.5 Other subclasses

We conclude this thesis with some interesting classes of systems that we believe
will aid in the verification quest, but we did not have the bandwidth to cover them
in this thesis.

Reversal-bounded FIFO machines. Reversal boundedness was introduced
for counter machines in [Iba78] and proved to be an interesting subclass, as various
properties were shown to be decidable for them. Roughly speaking, a system is
k-reversal bounded if, for each run, there are at most k switches between increasing
and decreasing each counter. This notion was extended to k-reversal b-bounded
systems in [FS08], where the authors showed that reversal-boundedness can be
restricted to counters with a value above a certain bound b, and decidability can
still be retained.

For FIFO machines, however, it can be seen that reversal-boundedness is
undecidable. However, for various topologies, this problem can be decidable. An
interesting direction for future work can be investigating the notion of reversal
bounded for FIFO machines.

Half-duplex systems. Half-duplex systems have been introduced and studied
in [CF05]. Such systems add the restriction that at any given instant, only one of

7.5. Other subclasses 141

the unidirectional channels between a pair of processes is not empty. However, for
more than two processes, more verification problems are undecidable.

However, this notion is still interesting as it can e�ciently characterize reliable
channel contracts [LV12]. However, since the notion is undecidable for more than
two processes, it would be interesting to extend a similar notion for multiparty
CFMs, like for example, in the recent work [DGGL21].

Beyond perfect channels. A significant assumption that we made in this
thesis was that the channels of communication were perfect. However, this leads
to ignoring many of the real-world problems in communication, such as lossiness,
duplication, stuttering of messages, etc. A complete conclusion to this work would
be to analyze these problems through the lens of these potential faults.

Bibliography

[ABC+08] Parosh Aziz Abdulla, Ahmed Bouajjani, Jonathan Cederberg, Frédéric
Haziza, and Ahmed Rezine. Monotonic Abstraction for Programs
with Dynamic Memory Heaps. In Aarti Gupta and Sharad Malik,
editors, Computer Aided Verification, Lecture Notes in Computer
Science, pages 341–354, Berlin, Heidelberg, 2008. Springer.

[ABH17] Mohamed Faouzi Atig, Benedikt Bollig, and Peter Habermehl. Empti-
ness of Ordered Multi-Pushdown Automata is 2ETIME-Complete.
International Journal of Foundations of Computer Science, 28(08):945–
975, December 2017. Publisher: World Scientific Publishing Co.

[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time
systems. In [1990] Proceedings. Fifth Annual IEEE Symposium on
Logic in Computer Science, pages 414–425, June 1990.

[AČJT00] Parosh Aziz Abdulla, Kārlis Čerāns, Bengt Jonsson, and Yih-Kuen
Tsay. Algorithmic Analysis of Programs with Well Quasi-ordered
Domains. Information and Computation, 160(1):109–127, July 2000.

[ACV11] Parosh Aziz Abdulla, Jonathan Cederberg, and Tomáš Vojnar. Mono-
tonic Abstraction for Programs with Multiply-Linked Structures. In
Giorgio Delzanno and Igor Potapov, editors, Reachability Problems,
Lecture Notes in Computer Science, pages 125–138, Berlin, Heidelberg,
2011. Springer.

[ADR09] Parosh Aziz Abdulla, Giorgio Delzanno, and Ahmed Rezine. Ap-
proximated parameterized verification of infinite-state processes with
global conditions. Formal Methods in System Design, 34(2):126–156,
April 2009.

[AGK14] C. Aiswarya, Paul Gastin, and K. Narayan Kumar. Verifying Com-
municating Multi-pushdown Systems via Split-Width. In Automated
Technology for Verification and Analysis - 12th International Sympo-
sium, ATVA 2014, volume 8837 of Lecture Notes in Computer Science,
pages 1–17. Springer, 2014.

143

144 BIBLIOGRAPHY

[AH94] Rajeev Alur and Thomas A. Henzinger. A really temporal logic.
Journal of the ACM, 41(1):181–203, January 1994.

[AJ93] P. Abdulla and B. Jonsson. Verifying programs with unreliable chan-
nels. In [1993] Proceedings Eighth Annual IEEE Symposium on Logic
in Computer Science, pages 160–170, June 1993.

[ANKS13] Mohamed Faouzi Atig, K. Narayan Kumar, and Prakash Saivasan.
Adjacent Ordered Multi-Pushdown Systems. In Marie-Pierre Béal and
Olivier Carton, editors, Developments in Language Theory, Lecture
Notes in Computer Science, pages 58–69, Berlin, Heidelberg, 2013.
Springer.

[BB11] Samik Basu and Tevfik Bultan. Choreography conformance via syn-
chronizability. In Proceedings of the 20th international conference on
World wide web, WWW ’11, pages 795–804, New York, NY, USA,
March 2011. Association for Computing Machinery.

[BBO12a] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding choreog-
raphy realizability. In Proceedings of the 39th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’12, pages 191–202, New York, NY, USA, January 2012. Association
for Computing Machinery.

[BBO12b] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Synchronizabil-
ity for Verification of Asynchronously Communicating Systems. In
Viktor Kuncak and Andrey Rybalchenko, editors, Verification, Model
Checking, and Abstract Interpretation, Lecture Notes in Computer
Science, pages 56–71, Berlin, Heidelberg, 2012. Springer.

[BDGF+21] Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa,
Etienne Lozes, and Amrita Suresh. A Unifying Framework for Decid-
ing Synchronizability. In Serge Haddad and Daniele Varacca, editors,
32nd International Conference on Concurrency Theory (CONCUR
2021), volume 203 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 14:1–14:18, Dagstuhl, Germany, 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. ISSN: 1868-8969.

[BEJQ18] Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer.
On the Completeness of Verifying Message Passing Programs Under
Bounded Asynchrony. In Hana Chockler and Georg Weissenbacher,
editors, Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, Lecture
Notes in Computer Science, pages 372–391, Cham, 2018. Springer
International Publishing.

BIBLIOGRAPHY 145

[BFG21] Benedikt Bollig, Marie Fortin, and Paul Gastin. Communicating finite-
state machines, first-order logic, and star-free propositional dynamic
logic. Journal of Computer and System Sciences, 115:22–53, February
2021.

[BFLP08] Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Laure Petrucci.
FAST: acceleration from theory to practice. International Journal on
Software Tools for Technology Transfer, 10(5):401–424, October 2008.

[BFM17] Michael Blondin, Alain Finkel, and Pierre McKenzie. Well Behaved
Transition Systems. Logical Methods in Computer Science, Volume
13, Issue 3, September 2017. Publisher: Episciences.org.

[BFM18] Michael Blondin, Alain Finkel, and Pierre McKenzie. Handling in-
finitely branching well-structured transition systems. Information and
Computation, 258:28–49, February 2018.

[BFS20] Benedikt Bollig, Alain Finkel, and Amrita Suresh. Bounded Reach-
ability Problems Are Decidable in FIFO Machines. In Igor Konnov
and Laura Kovács, editors, 31st International Conference on Concur-
rency Theory (CONCUR 2020), volume 171 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 49:1–49:17, Dagstuhl, Ger-
many, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISSN:
1868-8969.

[BFS22a] Benedikt Bollig, Alain Finkel, and Amrita Suresh. Bounded Reach-
ability Problems are Decidable in FIFO Machines. Logical Methods
in Computer Science, Volume 18, Issue 1, January 2022. Publisher:
Episciences.org.

[BFS22b] Benedikt Bollig, Alain Finkel, and Amrita Suresh. Branch-Well-
Structured Transition Systems and Extensions. In Mohammad Reza
Mousavi and Anna Philippou, editors, Formal Techniques for Dis-
tributed Objects, Components, and Systems, Lecture Notes in Com-
puter Science, pages 50–66, Cham, 2022. Springer International Pub-
lishing.

[BG21] Benedikt Bollig and Paul Gastin. Non-Sequential Theory of Dis-
tributed Systems, October 2021. arXiv:1904.06942 [cs].

[Bon13] Remi Bonnet. Theory of Well-Structured Transition Systems and Ex-
tended Vector-Addition Systems. PhD thesis, Ecole normale supérieure
de Cachan, France, 2013.

[BZ83] Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State
Machines. Journal of the ACM, 30(2):323–342, April 1983.

146 BIBLIOGRAPHY

[CDV10] Christian Cho↵rut, Flavio D’Alessandro, and Stefano Varricchio. On
Bounded Rational Trace Languages. Theory of Computing Systems,
46(2):351–369, February 2010.

[CF87] Annie Choquet and Alain Finkel. Simulation of linear FIFO nets by
Petri nets having a structured set of terminal markings. In Proceedings
of the 8th International Conference on Applications and Theory of
Petri Nets (APN’87), Zaragoza, Spain, June 1987.

[CF05] Gérard Cécé and Alain Finkel. Verification of programs with half-
duplex communication. Information and Computation, 202(2):166–
190, November 2005.

[CFS11] Pierre Chambart, Alain Finkel, and Sylvain Schmitz. Forward Analysis
and Model Checking for Trace Bounded WSTS. In Lars M. Kristensen
and Laure Petrucci, editors, Applications and Theory of Petri Nets,
Lecture Notes in Computer Science, pages 49–68, Berlin, Heidelberg,
2011. Springer.

[CGK12] Aiswarya Cyriac, Paul Gastin, and K. Narayan Kumar. MSO Decid-
ability of Multi-Pushdown Systems via Split-Width. In Maciej Koutny
and Irek Ulidowski, editors, CONCUR 2012 - Concurrency Theory -
23rd International Conference, CONCUR 2012, Newcastle upon Tyne,
UK, September 4-7, 2012. Proceedings, volume 7454 of Lecture Notes
in Computer Science, pages 547–561. Springer, 2012.

[CLL+19] Wojciech Czerwiński, S lawomir Lasota, Ranko Lazić, Jérôme Leroux,
and Filip Mazowiecki. The reachability problem for Petri nets is
not elementary. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, pages 24–33, New
York, NY, USA, June 2019. Association for Computing Machinery.

[Cou10] Bruno Courcelle. Special tree-width and the verification of monadic
second-order graph properties. In FSTTCS, volume 8 of LIPIcs, pages
13–29, 2010.

[CV09] Rohit Chadha and Mahesh Viswanathan. Deciding branching time
properties for asynchronous programs. Theoretical Computer Science,
410(42):4169–4179, September 2009.

[DF97] Catherine Dufourd and Alain Finkel. Polynomial-Time Many-One
reductions for Petri nets. In S. Ramesh and G. Sivakumar, editors,
Foundations of Software Technology and Theoretical Computer Science,
Lecture Notes in Computer Science, pages 312–326, Berlin, Heidelberg,
1997. Springer.

BIBLIOGRAPHY 147

[DFGD10] Stephane Demri, Alain Finkel, Valentin Goranko, and Govert Drim-
melen. Model-Checking CTL* over Flat Presburger Counter Systems.
Journal of Applied Non-Classical Logics, 20:313–344, January 2010.

[DFS98] C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between
decidability and undecidability. In Kim G. Larsen, Sven Skyum,
and Glynn Winskel, editors, Automata, Languages and Programming,
Lecture Notes in Computer Science, pages 103–115, Berlin, Heidelberg,
1998. Springer.

[DGGL21] Cinzia Di Giusto, Löıc Germerie Guizouarn, and Etienne Lozes.
Towards Generalised Half-Duplex Systems. Electronic Proceed-
ings in Theoretical Computer Science, 347:22–37, October 2021.
arXiv:2110.00145 [cs].

[DGLL20] Cinzia Di Giusto, Laetitia Laversa, and Etienne Lozes. On the k-
synchronizability of Systems. In Jean Goubault-Larrecq and Barbara
König, editors, Foundations of Software Science and Computation
Structures - 23rd International Conference, FOSSACS 2020, Proceed-
ings, Lecture Notes in Computer Science, pages 157–176, Cham, 2020.
Springer International Publishing.

[Dic13] Leonard Eugene Dickson. Finiteness of the Odd Perfect and Primitive
Abundant Numbers with n Distinct Prime Factors. American Journal
of Mathematics, 35(4):413–422, 1913. Publisher: Johns Hopkins
University Press.

[DS20] Emanuele D’Osualdo and Felix Stutz. Decidable Inductive Invariants
for Verification of Cryptographic Protocols with Unbounded Sessions.
In Igor Konnov and Laura Kovács, editors, 31st International Con-
ference on Concurrency Theory (CONCUR 2020), volume 171 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–
31:23, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik. ISSN: 1868-8969.

[EGM12] Javier Esparza, Pierre Ganty, and Rupak Majumdar. A Perfect Model
for Bounded Verification. In Proceedings of the 2012 27th Annual
IEEE/ACM Symposium on Logic in Computer Science, LICS ’12,
pages 285–294, USA, June 2012. IEEE Computer Society.

[FGL09] Alain Finkel and Jean Goubault-Larrecq. Forward Analysis for WSTS,
Part I: Completions. In Susanne Albers and Jean-Yves Marion, edi-
tors, 26th International Symposium on Theoretical Aspects of Com-
puter Science, volume 3 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 433–444, Dagstuhl, Germany, 2009. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. ISSN: 1868-8969.

148 BIBLIOGRAPHY

[Fin82] A. Finkel. About monogeneous FIFO Petri Nets. Publications du
Laboratoire Informatique Theorique et Programmation. Laboratoire
Informatique Theorique et Programmation, 1982.

[Fin90] Alain Finkel. Reduction and covering of infinite reachability trees.
Information and Computation, 89(2):144–179, December 1990.

[Fin94] Alain Finkel. Decidability of the termination problem for completely
specified protocols. Distributed Computing, 7(3):129–135, March 1994.

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional dynamic
logic of regular programs. Journal of Computer and System Sciences,
18(2):194–211, April 1979.

[FL17] Alain Finkel and Étienne Lozes. Synchronizability of Communicating
Finite State Machines is not Decidable. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th In-
ternational Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs,
pages 122:1–122:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017.

[FMP04] Alain Finkel, Pierre McKenzie, and Claudine Picaronny. A well-
structured framework for analysing petri net extensions. Information
and Computation, 195(1):1–29, November 2004.

[FP19] Alain Finkel and M. Praveen. Verification of Flat FIFO Systems.
In Wan Fokkink and Rob van Glabbeek, editors, 30th International
Conference on Concurrency Theory (CONCUR 2019), volume 140 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–
12:17, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISSN: 1868-8969.

[FP20] Alain Finkel and M. Praveen. Verification of Flat FIFO Systems.
Logical Methods in Computer Science, Volume 16, Issue 4, October
2020. Publisher: Episciences.org.

[FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition systems
everywhere! Theoretical Computer Science, 256(1):63–92, April 2001.

[FS08] Alain Finkel and Arnaud Sangnier. Reversal-Bounded Counter Ma-
chines Revisited. In Edward Ochmański and Jerzy Tyszkiewicz, edi-
tors, Mathematical Foundations of Computer Science 2008, Lecture
Notes in Computer Science, pages 323–334, Berlin, Heidelberg, 2008.
Springer.

BIBLIOGRAPHY 149

[GGLR87] M. G. Gouda, E. M. Gurari, T. H. Lai, and L. E. Rosier. On dead-
lock detection in systems of communicating finite state machines.
Computers and Artificial Intelligence, 6(3):209–228, July 1987.

[GKM07] Blaise Genest, Dietrich Kuske, and Anca Muscholl. On Communi-
cating Automata with Bounded Channels. Fundam. Informaticae,
80(1-3):147–167, 2007.

[GLL21] Cinzia Di Giusto, Laetitia Laversa, and Étienne Lozes. Guessing
the bu↵er bound for k-synchronizability. In Implementation and
Application of Automata - 25th International Conference, CIAA 2021,
Proceedings, Lecture Notes in Computer Science. Springer, 2021.

[GMK04] Blaise Genest, Anca Muscholl, and Dietrich Kuske. A Kleene Theorem
for a Class of Communicating Automata with E↵ective Algorithms.
In Cristian Calude, Elena Calude, and Michael J. Dinneen, editors,
Developments in Language Theory, 8th International Conference, DLT
2004, Auckland, New Zealand, December 13-17, 2004, Proceedings,
volume 3340 of Lecture Notes in Computer Science, pages 30–48.
Springer, 2004.

[GS64] Seymour Ginsburg and Edwin H. Spanier. Bounded Algol-Like
Languages. Transactions of the American Mathematical Society,
113(2):333–368, 1964. Publisher: American Mathematical Society.

[Hen95] Thomas A. Henzinger. Hybrid automata with finite bisimulations.
In Zoltán Fülöp and Ferenc Gécseg, editors, Automata, Languages
and Programming, Lecture Notes in Computer Science, pages 324–335,
Berlin, Heidelberg, 1995. Springer.

[Hig52] Graham Higman. Ordering by Divisibility in Abstract Algebras.
Proceedings of the London Mathematical Society, s3-2(1):326–336,
January 1952.

[HLMS10] Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire
Sutre. Reachability Analysis of Communicating Pushdown Systems. In
Luke Ong, editor, Foundations of Software Science and Computational
Structures, Lecture Notes in Computer Science, pages 267–281, Berlin,
Heidelberg, 2010. Springer.

[HMK+05] Jesper G. Henriksen, Madhavan Mukund, K. Narayan Kumar, Milind
Sohoni, and P. S. Thiagarajan. A theory of regular MSC languages.
Information and Computation, 202(1):1–38, October 2005.

[Iba78] Oscar H. Ibarra. Reversal-Bounded Multicounter Machines and Their
Decision Problems. Journal of the ACM, 25(1):116–133, January 1978.

150 BIBLIOGRAPHY

[Jan90] Petr Jančar. Decidability of a temporal logic problem for Petri nets.
Theoretical Computer Science, 74(1):71–93, July 1990.

[Jer91] Thierry Jeron. Testing for unboundedness of Fifo channels. In Chris-
tian Cho↵rut and Matthias Jantzen, editors, STACS 91, Lecture
Notes in Computer Science, pages 322–333, Berlin, Heidelberg, 1991.
Springer.

[JJ93] Thierry Jéron and Claude Jard. Testing for unboundedness of fifo
channels. Theoretical Computer Science, 113(1):93–117, May 1993.

[JM95] Petr Jančar and Faron Moller. Checking regular properties of Petri
nets. In Insup Lee and Scott A. Smolka, editors, CONCUR ’95:
Concurrency Theory, Lecture Notes in Computer Science, pages 348–
362, Berlin, Heidelberg, 1995. Springer.

[JR67] Claude Jard and Michel Raynal. Specification of Properties is Required
to Verify Distributed Algorithms. Technical Report 651, INRIA,
Centre IRISA, Rennes, February 1967.

[KM21] Dietrich Kuske and Anca Muscholl. Communicating automata. In
Jean-Éric Pin, editor, Handbook of Automata Theory, pages 1147–1188.
European Mathematical Society Publishing House, Zürich, Switzer-
land, 2021.

[Kru72] Joseph B Kruskal. The theory of well-quasi-ordering: A frequently dis-
covered concept. Journal of Combinatorial Theory, Series A, 13(3):297–
305, November 1972.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558–565, July
1978.

[Lav21] Laetitia Laversa. La synchronisabilité pour les systèmes distribués.
phdthesis, Université Côte d’Azur, December 2021.

[LM02] Markus Lohrey and Anca Muscholl. Bounded MSC Communication.
In Mogens Nielsen and U↵e Engberg, editors, Foundations of Software
Science and Computation Structures, 5th International Conference,
FOSSACS 2002. Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2002 Grenoble, France, April
8-12, 2002, Proceedings, volume 2303 of Lecture Notes in Computer
Science, pages 295–309. Springer, 2002.

[LM04] Markus Lohrey and Anca Muscholl. Bounded MSC Communication.
Information and Computation, 189:160–181, 2004.

BIBLIOGRAPHY 151

[LR11] Ming Li and Yanrui Ruan. Approach to Formalizing UML Sequence
Diagrams. Proc. 3rd International Workshop on Intelligent Systems
and Applications (ISA), May 2011.

[LTMP08] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Context-
Bounded Analysis of Concurrent Queue Systems. In C. R. Ramakrish-
nan and Jakob Rehof, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, Lecture Notes in Computer Science,
pages 299–314, Berlin, Heidelberg, 2008. Springer.

[LV12] Étienne Lozes and Jules Villard. Reliable Contracts for Unreliable
Half-Duplex Communications. In Marco Carbone and Jean-Marc
Petit, editors, Web Services and Formal Methods, Lecture Notes in
Computer Science, pages 2–16, Berlin, Heidelberg, 2012. Springer.

[LY19] Julien Lange and Nobuko Yoshida. Verifying Asynchronous Interac-
tions via Communicating Session Automata. In Isil Dillig and Serdar
Tasiran, editors, Computer Aided Verification, Lecture Notes in Com-
puter Science, pages 97–117, Cham, 2019. Springer International
Publishing.

[May84] Ernst W. Mayr. An Algorithm for the General Petri Net Reachability
Problem. SIAM Journal on Computing, 13(3):441–460, August 1984.
Publisher: Society for Industrial and Applied Mathematics.

[MF85] G. Memmi and A. Finkel. An introduction to FIFO nets— mono-
geneous nets: A subclass of FIFO nets. Theoretical Computer Science,
35:191–214, January 1985.

[MM01] P. Madhusudan and B. Meenakshi. Beyond Message Sequence Graphs.
In Ramesh Hariharan, V. Vinay, and Madhavan Mukund, editors,
FST TCS 2001: Foundations of Software Technology and Theoretical
Computer Science, Lecture Notes in Computer Science, pages 256–267,
Berlin, Heidelberg, 2001. Springer.

[MP11a] P. Madhusudan and Gennaro Parlato. The tree width of auxiliary
storage. In Thomas Ball and Mooly Sagiv, editors, Proceedings of
the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011, pages 283–294. ACM, 2011.

[MP11b] P. Madhusudan and Gennaro Parlato. The tree width of auxiliary
storage. ACM SIGPLAN Notices, 46(1):283–294, January 2011.

[Par66] Rohit J. Parikh. On Context-Free Languages. Journal of the ACM,
13(4):570–581, October 1966.

152 BIBLIOGRAPHY

[Pel00] Doron Peled. Specification and Verification of Message Sequence
Charts. In Tommaso Bolognesi and Diego Latella, editors, Formal
Methods for Distributed System Development: FORTE / PSTV 2000
IFIP TC6 WG6.1 Joint International Conference on Formal Descrip-
tion Techniques for Distributed Systems and Communication Protocols
(FORTE XIII) and Protocol Specification, Testing and Verification
(PSTV XX) October 10–13, 2000, Pisa, Italy, IFIP — The Interna-
tional Federation for Information Processing, pages 139–154. Springer
US, Boston, MA, 2000.

[Pos46] Emil L. Post. A variant of a recursively unsolvable problem. Bulletin
of the American Mathematical Society, 52(4):264–268, 1946.

[Rei08] Klaus Reinhardt. Reachability in Petri Nets with Inhibitor Arcs. Elec-
tronic Notes in Theoretical Computer Science, 223:239–264, December
2008.

[SAB20] Klaus-Dieter Schewe, Yamine Aı̈t Ameur, and Sarah Benyagoub. Re-
alisability of Choreographies. In Andreas Herzig and Juha Kontinen,
editors, Foundations of Information and Knowledge Systems - 11th In-
ternational Symposium, FoIKS 2020, Dortmund, Germany, February
17-21, 2020, Proceedings, volume 12012 of Lecture Notes in Computer
Science, pages 263–280. Springer, 2020.

[Str82] Robert S. Streett. Propositional dynamic logic of looping and converse
is elementarily decidable. Information and Control, 54(1):121–141,
July 1982.

[SZ22] Felix Stutz and Damien Zu↵erey. Comparing Channel Restrictions of
Communicating State Machines, High-level Message Sequence Charts,
and Multiparty Session Types, August 2022. arXiv:2208.05559 [cs].

[YG83] Yao-Tin Yu and Mohamed G. Gouda. Unboundedness detection for a
class of communicating finite-state machines. Information Processing
Letters, 17(5):235–240, December 1983.

Index

A
⇤, 11

A
+, 11

Rec(), 16
Send(), 16
Ch, 15
I-synchronizability, 118
I(S), 118
J -synchronizability, 118
J (S), 118
Matched(M), 18
Tracesk(S), 16
Traces0 (S), 16
Unm(M), 18
V , 56
L
last
a , 64

C, 21�w�, 63
", 11
Act , 15
JvK, 63
JvKa, 63
q0, 15
|w|, 11
|w|a, 11
M , 18
C, 18
Lmb(S), 21
G(w), 63
Lp2p(S), 20
�M , 20
P, 16
proj ?, 15
proj !, 15
hc?mi, 15

rev�!k, 113
!p, 18
hc!mi, 15
L
zero
C , 59

Alph, 11
Inf, 12
Post, 12
Post⇤, 12
Pref, 12
Pre, 12
Pre⇤, 12
Reachset, 13
Suf, 12
Tracereach, 13
init , 13
X, 12
!, 12
⇤�!, 12
+�!, 12
a�!, 13

antichain, 26

basis, 26
boundable language, 85
bounded language, 50

distinct letter, 50
letter-bounded , 50

communicating finite-state machine
(CFM), 17

conflict graph, 92
extended, 93

control-states, 15
counter machine, 21

153

154 INDEX

with restricted zero tests
(CMRZ), 22

deadlock state, 70

e↵ectivity, 28
branch-e↵ective, 32
weak, 13
ideally-e↵ective, 42

exchange, 98
k-, 104
modified k-, 107

extended ordering, 27

FIFO machine, 15
flat, 50
good-for-reduction, 121
input-bounded, 50
linear, 50
monogeneous, 50

finite-state automaton
complete DFA, 23
deterministic (DFA), 22
non-deterministic (NFA), 22
trimmed DFA, 23

infix, 11
input-language, 50

linearization of MSC, 19

message sequence chart (MSC), 18
existentially k-p2p-bounded, 112
existentially k-mailbox-bounded,

112
strongly k-synchronous, 107
strongly synchronous, 111
weakly k-synchronous, 104
weakly synchronous, 98

monadic second-order logic (MSO),
88

monotony, 28
cover, 45
branch, 30
strict, 28
strong, 28

transitive, 28

Parikh map, 55
partial ordering, 26
prefix, 11
prefix ordering for words �, 27
propositional dynamic logic (PDL),

89

quasi-ordering, 26

rational set, 55
reachability set, 13

for LTS, 13
bounded, 50

recognizable set, 55

semi-linear set, 55
special tree-width, 92
stable state, 16
subword ordering sw, 27
su�x, 11

total ordering, 26
trace, 15

k-bounded, 16
FIFO, 16
stable, 16
synchronous, 16

transition system, 12
branch-WSTS, 31
cover-WSTS, 46
ind. by FIFO, 15
labeled (LTS), 13
ordered labeled (OLTS), 27
ind. by counter machine, 22
well-structured (WSTS), 28

verification problem
init-coverability, 46
OB variants, 78
boundedness, 14
IB control-state reachability, 69
IB deadlock, 70
IB termination, 76
IB unboundedness, 71

INDEX 155

non-termination, 14
reachability, 14
synchronizability, 97
coverability, 41
IB rational-reachability, 56
IB reachability, 53

ILB variants, 81
model checking, 94
Post correspondence, 102
stable reachability, 129

well-quasi-ordered set (wqo), 26

