Enfin, la conclusion retrace les principaux travaux et résultats développés au cours de la thèse. Elle pose ensuite les limites de ce travail de thèse dans chacun des domaines abordés et propose quelques pistes complémentaires de réflexion dans les perspectives de ce travail.
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Résume

Le problème de la surchauffe intérieure des bâtiments devient de plus en plus un sujet d'intérêt pour la communauté scientifique ainsi que les décideurs politiques en matière d'urbanisme en raison de l'augmentation de la température moyenne de la Terre, de l'augmentation de la fréquence des événements météorologiques extrêmes, de l'effet d'îlot de chaleur urbain, et du fait que de nos jours la plupart des gens passent la majorité de leur temps à l'intérieur des bâtiments.

Le présent travail de recherche porte sur le développement d'une méthodologie pour l'évaluation de la vulnérabilité des villes à la surchauffe intérieure, visant à soutenir la prise de décision stratégique dans la planification urbaine pour les interventions politiques d'adaptation au changement climatique.

Compte tenu de la nature interconnectée des questions à traiter, ce manuscrit commence par un chapitre d'introduction détaillé présentant les concepts clés, les énoncés du problème, l'objectif de la thèse et la méthodologie globale employée.

Chaque chapitre suivant est consacré à une partie spécifique du travail de thèse. Ainsi, le deuxième chapitre de ce manuscrit porte sur la définition des typologies des bâtiments et l'identification des bâtiments représentatifs utilisés. Le troisième chapitre porte sur la prise en compte du changement climatique et les données sur les îlots de chaleur urbains dans les fichiers météo utilisés dans les simulations. Le quatrième chapitre présente les paramètres du bâtiment influençant sa performance thermique ainsi que les indices de mesure de la surchauffe intérieure. Le cinquième chapitre présente les modèles réduits ou métamodèles développés et la manière d'extrapolation des résultats de simulations des bâtiments représentatifs au reste du parc bâti à l'échelle de la ville.

Each subsequent chapter is dedicated to a specific part of the research effort. The second chapter of this manuscript is about building typologies definition and identification of representative buildings to be used. Third chapter is concerned with climate change and urban heat island data. Fourth chapter presents indoor overheating measurement indices and attempts to identify the most influential building parameters through a literature review. Fifth chapter covers surrogate models and how to extrapolate the simulations results of representative buildings to the rest of build stock.

Finally, the conclusion traces the main ideas developed during the thesis. It then sets out the limits of the study in each of the areas covered and develops some additional avenues for reflection in the perspectives of this work.
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Preface

Increase in global average temperature and in the frequency of extreme weather events, coupled with urban heat island effect and the fact the people spend majority of their time indoors, make the problem of indoor overheating a subject of interest to the scientific community as well to the policy makers in urban planning. In the latter, policy choices and decisions are aimed to foster benefits for all, which in turn requires an understanding of the degree of exposure and vulnerability to hazards at scales significantly larger than building. One way to provide this type of support for decision making at city scale is through development of rapid assessment tools that could link climate change data, urban heat island effect and individual performance of buildings.

With that in mind, the aim of this manuscript is to pave the way for the development of a comprehensive methodology for practitioners and policy makers in urban planning to take into account climate change scenarios, urban climate, energy transition and health in urban development policies.

Given the interdisciplinary nature of the problem tackled in this thesis, a process approach was adopted to accomplish all necessary tasks. Each chapter of the manuscript, here, is dedicated to the description of a major step of the research.

Chapter 1 sets out the manuscript by providing the context, principle elements involved in this study, objective, method of research, and a summary. The second chapter, after a critical literature review of building typologies construction methods, describes a data-driven method to aggregates residential buildings into clusters of buildings with similar characteristics, identifies one representative building from each cluster that undergoes a characterization step.

The third chapter starts with a state of the art on the following issues: global and regional climate models, future climate scenarios, climate downscaling approaches, weather processing tools, UHI calculation methods. Then it describes a workflow to generate future typical weather files from EUROCORDEX climate portal and compares them with 2003 heatwave weather data.

The fourth chapter of manuscript is divided into two parts. First part presents a literature review on the results of sensitivity analysis studies to identify what are the most influential building parameters for summer overheating and energy consumption. The second part of chapter four demonstrates various indices used in indoor overheating assessment and attempts to compare the performance with one another, where possible.

The fifth chapter aggregates three previous chapters and describes a rapid assessment tool based on surrogate modelling to extend the indoor overheating assessment study on reference buildings to the rest of build stock.

Finally, the conclusion traces the main ideas developed during the thesis. It then sets out the limits of the study in each of the areas covered and develops some additional avenues for reflection in the perspectives of this work.
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Chapter 1 : Introduction, context, key concepts, and methodology

This chapter sets out the manuscript by introducing the context, principle elements involved in this work, objective, method of research, and a summary at the end. Following is the list of main elements covered in the chapter:

- 

Climate change and heatwaves

The Intergovernmental Panel on Climate Change (IPCC) of United Nations defines climate change as "A change in the state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties and that persists for an extended period, typically decades or longer. Climate change may be due to natural internal processes or external forcings, or to persistent anthropogenic changes in the composition of the atmosphere or in land use" (IPCC 2018).

Heavy downpours causing record floods, major hurricanes, unprecedented heatwaves: climate change manifests itself in a variety of ways. What differentiates climate change from natural weather variability is the long-term trends. Earth orbiting satellites, ocean buoys, and remote meteorological weather stations are the most commonly used instruments to monitor our current weather and climate information, but data collected from natural ice cores, corals, tree rings, and sediments from oceans and lakes enable scientists to extend the world's climatic records thousands of years back. Comparison of current climate data and past climatic conditions allow scientists to see long-term variations in earth's atmosphere, oceans, dry land, and glaciers.

Multiple factors, both anthropogenic and natural, influence earth's climate system. Natural factors affecting climate systems include sun's cyclical radiation intensity variations, volcanic eruptions, and variations in the concentration of naturally occurring greenhouse gases. However, recent past climate records indicate that our current climate warming, particularly the changes that have been happening since mid-20 th century are much faster than ever before, and therefore cannot be explained by natural factors.

Anthropogenic causes, specifically the greenhouse gas (GHG) emissions generated from human activity are the main cause of the earth's rapidly changing climate today. Due to these activities, concentration of CO2, methane, and nitrous oxide in the atmosphere are unprecedented in the past 800`000 years. CO2 concentration alone has risen by 46% since preindustrial times [START_REF] Rosbakh | Rising CO2 Concentrations Reduce Nitrogen Availability in Alpine Grasslands[END_REF].

It is important mentioning that while climate change and global warming are frequently used interchangeably, global warming is just one aspect of climate change and it refers to the average global temperature rise near the surface of the earth.

In 2020, the global average temperature was approximately 14.9 ° C, which is 1.2 ° C higher than the pre-industrial (1850-1900) level (see Figure 1-1). According to World Meteorological Organization (WMO) the six years period since 2015 has also been the warmest on record for the most part of Europe, Middle East, and northern parts of Asia (WMO 2020) .

All the key indicators and associated impact information presented in the report of WMO point to unrelenting global warming. Unfortunately, the negative trend will continue to worsen in the coming decades regardless of how successful we are in reduction of anthropogenic sources.

Looking at the current global average temperature and data of the past decades raises the question of how is the climate going to change in the coming century? The answer to this question depends entirely on how human societies develop in terms of demographics, economics, technologies, demand and supply of energy, and land usage.

To give a more accurate answer to this question, IPCC has released special report on greenhouse gas (GHG) emission level that presents a set of scenarios taking into account various driving forces and emissions in scenario literature. In this report, it has defined four reference scenarios, the RCP (representative concentration pathway), each illustrating one possible evolution profile of GHG concentrations as a function of socio-economic development scenarios, technological changes, and various climate adaption and mitigation strategies (see Figure 12). Scenarios presented in this report do not include probabilities of occurrence; therefore, preference for scenarios in the research or any other sector is subjective and can vary among users. Disaster and surprise events are also not included in these scenarios but previous studies have shown that rise in global average surface temperatures due to climate change is accompanied by an increase in frequency and intensity of extreme weather events such as heatwaves [START_REF] Lorenzo | Heatwave Intensity on the Iberian Peninsula: Future Climate Projections[END_REF].

National Climate Assessment report finds that the number and the strength of heatwaves, heavy downpours, and major hurricanes have significantly increased over the last decades. These extreme changes in temperature and precipitation can disrupt and damage critical infrastructures and vitality of communities. It increases health risks associated with air quality, heatwaves, floods, wildfires and ground-level ozone pollution [START_REF] Doherty | National Climate Assessment Report. Chapter 2: Our Changing Climate[END_REF].

Europe in particular is more affected by heatwaves and cold snaps compared to other extreme weather events like hurricanes that form in tropical and subtropical latitudes.

An example is the exceptional heatwave in summer of 2003 that resulted in at least 30,000 excess deaths in Europe, of which nearly 15,000 where in France, between August 1 and 20, 2003 [START_REF] Wagner | Evolution of heatwaves and associated mortality in France, 2004-2014/Évolution des vagues de chaleur et de la mortalité associée en France[END_REF]).

(R. [START_REF] Zhang | Increased European Heat Waves in Recent Decades in Response to Shrinking Arctic Sea Ice and Eurasian Snow Cover[END_REF]) presented evidence obtained through observational analyses and numerical studies, which illustrated that the rise in frequency of European heatwaves is linked to decrease of Arctic sea ice concentration and Eurasian snow cover fraction. Future projection analysis of numerical simulations by the same authors also suggests that Europe may experience more hot summers as both Arctic sea ice concentration and Eurasian snow cover fraction continue to decline. [START_REF] Ouzeau | Heat Waves Analysis over France in Present and Future Climate: Application of a New Method on the EURO-CORDEX Ensemble[END_REF]) simulated heatwaves using EURO-CORDEX regional multi-model and concluded that under future climate conditions, no matter what scenario considered, the frequency, duration and intensity of heatwaves increase across France and other parts of Europe. Authors state, heatwave events could occur during a larger span of summer time and the 2003 event would be a typical event by the end of the century. Authors also state that the duration and intensity of 2003 event would be much lower than the strongest heatwaves that will occur during the last 30 years of 21st century [START_REF] Ouzeau | Heat Waves Analysis over France in Present and Future Climate: Application of a New Method on the EURO-CORDEX Ensemble[END_REF]. Figure 1-3, below, demonstrates the historical heatwave data and projected heatwaves assuming the high-emission scenario (representative concentration pathway (RCP) 8.5) from Meteo France.

(I4CE 2019)

As can be seen in Figure 1-3 the intensity and duration of heatwave in 2003 is significantly smaller than what is expected to happen in the second half of this century with business as usual emission-scenario.

Report from JRC PESETA IV project that studies the biophysical and economic consequences of climate change states that since 1980, heat and cold waves have claimed the lives of nearly 90'000 individuals in Europe. If global average temperature stabilizes at 1.5 °C by 2100, each year more than 100 million Europeans will be exposed to heatwaves that is considered "intense" in our today's definition of it. With unmitigated climate change (3°C by 2100), this number rises to 300 million each year. This number stands to 10 million per year in our current climate conditions .

Report also outlines that yearly fatalities caused from extreme temperatures could rise from current 2'700 deaths to around 30'000 in 2100 with a 1.5 °C global average temperature increase. This could reach to 50'000 with 2 °C and around 90'000 with 3 °C. As can be seen in Figure 1-4, this raise in the number of fatalities is most pronounced in southern Europe (France, Spain, Greece, and Italy) due to increased exposure rate and extreme heat (European Commission. Joint Research Centre. 2020). The most vulnerable group of people are those who have reduced physiological and behavioural capacity to regulate thermal conditions and those Extreme heat also raises the occurrence risk of other types of climate related disasters. It can exacerbate intensity and frequency of droughts, or cause wildfires. Droughts and wildfires in turn create a web of impact that span across a wide range of economic and social sector such as crop failure, power supply disruption, variation in composition and structure of vegetation, etc.

Climate change will affect food production beyond just crop production; it affects livestock, fisheries, and aquaculture. Effects of climate change on human health are not limited to mortality from exposure to extreme heat, but also include effects on human mortality and morbidity from less extreme sub-optimal temperatures, air quality, and water and vector borne diseases.

Climate change could cause more population displacement, increase the risk of conflicts over water or other natural resources. Most of these impacts listed above and those that have not been mentioned are beyond the scope of this study, which primarily focuses on overtemperature, and vulnerability of people to it.

Influences of changing frequencies and intensities of extreme heat and global warming are believed to be exacerbated in the urban areas by a distinct urban microclimate feature known as urban heat island (UHI) effect. 

Urban heat island

As urban areas grow in size and density, significant changes take place in their landscape. Buildings, bridges, roads, parking lots, and other infrastructures built from dense materials replace open land and green areas. Surfaces that were once covered with greenery and permeable natural soils turn into impermeable and dry high-density surfaces. These changes make urban regions warmer than their peripheries, forming an "island" shape of higher temperature in the urban landscape.

During a hot summer, day surface temperature of buildings, roads, infrastructures (bridges, pedestrians, etc.) can become 10 to 30 °C hotter than the near surface air temperature, causing them to alter heat exchanges in urban settings between surface and near surface temperatures.

Urban surface materials, due to their thermal characteristics (specific heat, mass, conductivity, diffusivity and emissivity) store 15 to 30% more heat than natural materials during the day. In turn, these surfaces radiate additional heat into the atmosphere, causing a similar but not so extreme, increase in air temperature.

The difference in air temperature between rural and urban area becomes more pronounced after sunset, as urban surfaces continue to radiate heat into the surrounding environment, preventing the air temperature of the urban area from dropping during the night. Lack or reduced presence of evapotranspiration (e.g. through lack of vegetation, water surfaces) in urban areas is another major set of factors that causes an increase in the intensity of UHI. Third set of factors influencing UHI effect, which is intertwined with the previous two, is urban morphology (geometric form of structures) [START_REF] Oke | Urban Climates[END_REF].

A considerable body of research has been carried out on how to quantify intensity, extent and scale of UHI as well as main factors influencing the intensity of UHI effect. Literature review carried out by [START_REF] Tzavali | URBAN HEAT ISLAND INTENSITY: A LITERATURE REVIEW[END_REF] concluded that the intensity of UHI effect varies depending on city size, land use, topographic factors, vegetation ratio, urbanization, industrialization, time of the day, season of the year, and prevailing [START_REF] Bernard | Geographic and meterological maps of spatial and temporal variation of air temperature in urban zones[END_REF] [START_REF] Oke | Urban Climates[END_REF] in their book on urban climates, in addition to the three types mentioned in Table 1-1 have included a Subsurface Heat island (UHIsub) as well, depicted in Figure 123456. Intensity of UHI is an important indicator often used to measure severity/magnitude of UHI effect in urbanized areas. This indicator is dependent on the type and scale of UHI.

One way to estimate/calculate UHI intensity is to compare maximum and/or average air temperature of an urban area with its surrounding (rural area) as shown in Equation 1 Another approach to measure UHI intensity is with the concept of energy balance. In contrast to the first approach which is entirely based on temperature difference, the energy balance concepts calculates and analyses sizes and types of various heat fluxes generated within the studied spatial unit [START_REF] Oke | Urban Climates[END_REF].

In simple terms, energy balance is the statement of energy conservation applicable to volumes and surfaces at all temporal and spatial dimensions. In urban heat island intensity calculation, this concept is used to assess the transfer and storage of energy within urban systems and in between atmosphere and urban system. Its applicability to all spatial scales allows it to be written for individual facets (roofs, walls, streets, green surfaces, etc.), for urban units with the urban climate (people, buildings), for a whole atmosphere-surface interface, or for specific layers of atmosphere.

In order to interpret observations accurately, communicate with unambiguity and compare outcomes, it is critical to conduct a more detailed investigation on the four types of UHI, their causation, spatial and temporal variations, as well as what are the impacts at any given situation.

The four types of UHI effect are as follows:

The Surface Urban Heat Island effect (UHISurf or SUHI) is mostly determined by the geometrical, thermal, and radiative properties of the surface facets. Satellite sensors are usually used to measure temperatures and they show that its magnitude reaches to its peak in clear daytime conditions mostly in the parts of city that have no or little vegetation, or where large portion of the urban surface area is made up of roof facets. In addition, its magnitude is sensitive to green surface coverage ratio of rural areas surrounding the urban agglomeration.

A more accurate assessment of the spatial variation of urban reference temperature (TU), that could be used in Equation 1-1, from satellite sensors, requires corrections for atmospheric and surface emissivity effects, and preferably for thermal anisotropy for a 3D-surface city, which seen from a satellite sensor platform, depends on both the viewing angle and the solar geometry.

Rural reference temperature (Tr) can also be difficult to define because it is quite common to find that non-urban areas exhibit similar, if not greater, spatial variability than that of urban areas. It requires consideration for surface types, moisture level in the soil, shadows and topographic variations such as elevation, slope, proximately to water bodies [START_REF] Oke | Urban Climates[END_REF].

Of the four, the most studied type is Urban Canopy Layer Heat Island (UHIUCL). The magnitude of UHIUCL rises and falls in response to temporal variations (time of day or season of the year) and meteorological conditions (wind speed and direction, clouds). UHIUCL is observed/measured by thermometers (thermocouples) installed near surface to measure temperature (To) in urban and rural areas, which are then used as input to Equation 1-1. Near surface air temperature data can be collected in a weather screen or ventilated radiation shield at one or more sites that are considered to represent urban and rural climates (Stewart and Oke 2012a). This stationary approach is also called "fixed". If a fixed station has capacity to continuously monitor climate conditions, then it can capture temporal variations too. An alternative approach is to mount a thermometer on a vehicle and transverse it across a settlement and then to its non-urbanized surroundings. This approach is called "transverse". The latter allows studying both temporal and spatial variation of UHIUCL.

As can be seen in Figure 1-6, UHIUCL is the difference between the air temperature of near surface, below roof level, in the city and the temperature of near-surface air over its nonurbanized surroundings. Its magnitude reaches its peak after sunset when air above the urban areas cools more slowly than air above rural landscapes. Because the rate of night-time cooling, is inversely linked to the sky view factor (SVF), the magnitude of the UHIUCL is greatest when buildings are tall and streets are narrow (i.e. city centre locations with limited greenery). During the day, UHIUCL is frequently low or even negative [START_REF] Oke | Urban Climates[END_REF].

Boundary layer UHI (UHIUBL) is closely coupled with UHIUCL, but it is above roof-level, has different magnitude, and is generated through a different process [START_REF] Oke | The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects[END_REF]. As can be seen in Figure 1-7, UHIUBL forms a massive urban plume both by day and night (Junyan [START_REF] Yang | Impacts of Urban Form on Thermal Environment Near the Surface Region at Pedestrian Height: A Case Study Based on High-Density Built-Up Areas of Nanjing City in China[END_REF].

This giant plume is maintained by an enhanced sensible heat flux from urban area. In reality, it is a mixture of various internal boundary layers, which develop downstream from various landuses plus the plumes of heat, water vapour, and pollutants from different sources.

The UHIUBL is much less frequently monitored, as it requires very tall observation towers, aircrafts or balloons. Nowadays, UHIUBL can be inferred utilizing ground-based remote sensing with profiling radiometers. Due to advection of warmer urban air downwind over rural surfaces, it is important to consider the wind direction when finding suitable rural reference temperatures [START_REF] Oke | Urban Climates[END_REF].

Subsurface UHI (UHISub) is defined as the difference in ground temperature of urban area above that found at the same depth in surrounding no-urban area. It is formed because of sensible heat migration from the urban surface and urban infrastructure into the ground over an extended period. Its evidence are often obtained from thermometers mounted inside water wells or boreholes that run from a few 10s to 100 m in depth [START_REF] Oke | Urban Climates[END_REF].

On the question of factors causing UHI. In 1973, a link was first proposed between urbanization-induced warming and the size of the city, as measured by the population, based on night-time air temperature [START_REF] Oke | City Size and the Urban Heat Island[END_REF]. With the proliferation of remote sensing measurement technologies of earth's surface temperature, similar relationships have been proposed on a global scale. Given the complexity of urban systems, it remains difficult to identify and isolate all the causes of UHI and the factors contributing to the observed differences in ΔT in the cities [START_REF] Manoli | Magnitude of Urban Heat Islands Largely Explained by Climate and Population[END_REF]. Nonetheless, a brief study of literature on the main causes of UHI revealed that the underlying factors influencing intensity of UHI differ by the type of UHI studied. According to [START_REF] Oke | Urban Climates[END_REF] the main causes of UHI are presented in Table 1-2. The amount of anthropogenic heat released in cities because of fuel combustion and electricity consumption is substantially higher (AC, vehicles, machineries, etc.).

Urban 'greenhouse effect'

More downward longwave radiation is emitted to UCL by a warmer, more polluted, and frequently moister urban atmosphere.

Decreased evapotranspiration

Construction materials increase imperviousness of urban surfaces. Water remained on the surfaces after a rain evaporates faster than rural areas

Boundary layer UHI (UHIUBL)

Polluted boundary layer

Aerosol and gaseous pollutants in urban atmosphere change radiation transmission causing a greater absorption and scattering of shortwave and a larger absorption and emission of longwave radiations.

Sensible heat flux

Larger turbulent sensible heat flux from rougher, warmer city surface. Upward mixing of warmer canopy layer air (i.e. UHIUCL).

Anthropogenic heat

Heat sent upward into UBL from chimneys and factory stacks.

Entrainment

Stronger convection causes greater injection of warmer, drier air from above capping inversion, down into UBL. λc = Complete, or three dimensional aspect ratio (λc = AC/AT), where AC = Complete surface area and AT = Plan area of total surface ; Ψsky= Sky view factor Overall, factors affecting UHI can be summarized as follows: increased imperviousness, modified urban geometry, low albedo of urban surface materials, increased population density, greater anthropogenic heat release, and reduced presence or absence of vegetation [START_REF] Mohajerani | The Urban Heat Island Effect, Its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete[END_REF][START_REF] Oke | Urban Climates[END_REF][START_REF] Vujovic | Urban Heat Island: Causes, Consequences, and Mitigation Measures with Emphasis on Reflective and Permeable Pavements[END_REF].

UHI effect has various direct and indirect impacts on the well-being of urban inhabitants, their sleep quality (Y. [START_REF] Li | On the Influence of Density and Morphology on the Urban Heat Island Intensity[END_REF], as well as on attractiveness of public spaces in city centres, energy consumption (air conditioning), resilience of infrastructures and urban networks, preservation of flora and fauna biodiversity. In a detailed study on the perceived impact of UHI, [START_REF] Aghamohammadi | Perceived Impacts of Urban Heat Island Phenomenon in a Tropical Metropolitan City: Perspectives from Stakeholder Dialogue Sessions[END_REF]) categorized impacts of UHI in five themes: (1) public health deterioration, (2) acceleration of urban migration patterns to spend more time in cooler areas, (3) productivity reduction, (4) increase in household energy consumption, (5) and deterioration of environmental quality and natural resources.

Increased temperature in urban areas often exerts greater pressure on urban microclimate consequently causing variations in precipitation pattern, natural air circulation, water quality, and air pollution. [START_REF] Wang | The Relationship between Urban Heat Island and Air Pollutants and Them with Influencing Factors in the Yangtze River Delta, China[END_REF] studied the relationship between UHI intensity and found a statistically significant correlation between daytime UHI intensity and increased concentration of ground-level ozone (O3).

Additionally, elevated urban temperature acts as a precursor for the photochemical reactions in the atmosphere enhancing urban smog (H. Li et al. 2018). Urban smog in turn triggers a wide range of medical complications such as respiratory problems, and even cardiovascular failures [START_REF] Tan | The Urban Heat Island and Its Impact on Heat Waves and Human Health in Shanghai[END_REF].

This phenomenon poses a threat to human health more than ever because the majority of the world's population now live in densely built cities, and warming of these areas can significantly increase morbidity and mortality, particularly during heat waves [START_REF] Manoli | Magnitude of Urban Heat Islands Largely Explained by Climate and Population[END_REF].

Interaction of global climate change with UHI effect is an open question for researchers now. [START_REF] Wilby | Constructing Climate Change Scenarios of Urban Heat Island Intensity and Air Quality[END_REF]) investigated urban impact on climate and vice versa. The results of their study, under high emission climate scenario showed further intensification of nocturnal heat island and greater concentration of ground-level ozone, which are both most pronounced in summer.

Chapter 1 :Introduction, context, key concepts, and methodology 29 [START_REF] Sachindra | Impact of Climate Change on Urban Heat Island Effect and Extreme Temperatures: A Case-study[END_REF]) in a similar study concluded that the presence of urban structures can magnify the effects of global warming on cities more than less urbanized areas. [START_REF] Oke | Urban Climates[END_REF]) argue that we cannot simply assume that global temperature increase will raise the background temperature and its impact on UHI effect is additive. Because the definition of UHI effect is based on difference between urban and adjacent rural temperatures and the intensity of both can be modulated by environmental conditions and background temperatures. There is high degree of uncertainty here, because in the future both environmental conditions and background temperatures are expected to change. [START_REF] Mccarthy | Climate Change in Cities Due to Global Warming and Urban Effects: CLIMATE CHANGE IN CITIES[END_REF] used a global climate model, across multiple regions around the globe that could account for varied land cover fractions, as well as an urban land-surface scheme to account for the physical presence of cities and associated expected heat flow from human activities. Their results demonstrate that climate change has the ability to affect the climate potential of urban heat islands, with an increase of up to 30% in some places but a worldwide average reduction of 6%. Meaning that the impact of global climate change on UHI will differ from region to region. Their findings also revealed that raising global CO2 concentrations from 323 to 645 ppm increased UHI by less than 0.5 °C, far less than the heat associated with global driving, which is 3 °C for the same level of CO2 concentration increase. The authors also state that climate change will further increase the disparity in extreme nocturnal temperature between rural and urban areas. [START_REF] Lemonsu | Evolution of the Parisian Urban Climate under a Global Changing Climate[END_REF] studied Parisian urban climate under changing global climate conditions, following two emission scenarios, aiming to quantify the impact of global warming on urban and surrounding urban areas. Contrary to expected outcome, their results showed that during summer, under future climate scenario, the warming trend is more pronounced in adjacent rural areas than urban neighbourhoods in Paris due to soil dryness. For that reason, a significant decrease in nocturnal UHIUCL (greater than 2°C) is noted. They emphasize that the extremes in temperature are more significant in suburban areas as the effects from partial urbanization accumulates with dryness of the soil. On the flip side, urban geometry is less dense than in the city centre, reducing shadow effects and promoting air warming in the street-canyon. Furthermore, natural soils' dryness considerably reduces evaporation, which then boosts sensible heat release. That is why, in cities surrounded by dry regions, this phenomenon frequently results in the formation of "cool island" during the day [START_REF] Lemonsu | Evolution of the Parisian Urban Climate under a Global Changing Climate[END_REF].

On the interactions of global climate change and UHI, it can be concluded that global climate change will enhance the effects of UHI, although it might not influence its magnitude considerably. Nonetheless, local mitigation and adaptation strategies of UHI will still be needed to offset the impacts of global warming on urban areas.

Buildings and summer heat

Comprehensive time-activity studies in Europe and US have shown that people on average spend 16 hours/day indoors. This number increases to approximately 20 hours/day for those above 64 years old [START_REF] Brasche | Daily Time Spent Indoors in German Homes -Baseline Data for the Assessment of Indoor Exposure of German Occupants[END_REF], asserting the importance of indoor air quality and indoor thermal comfort. Average lifetime service of buildings in France are estimated at 60 years [START_REF] Mauro | Value of Land and Dwellings : Treatment in French National Accounts[END_REF]. Reinforced concrete buildings in particular could render services for more than 100 years. Service quality of buildings decline as they age due to failure of building systems, appearance of cracks in the outside walls, weathering, opening of joints, moisture accumulation in the insulation layer, etc. 75% of buildings in Europe were constructed before 1990. It indicates that some of them have already completed their lifetime service and need continuous maintenance and retrofits to function [START_REF] Park | Impact of a Passive Retrofit Shading System on Educational Building to Improve Thermal Comfort and Energy Consumption[END_REF].

Projected variations in extreme weather events and global temperature increase will further increase pressure on buildings, making them uncomfortable or even potentially dangerous to occupants' wellbeing [START_REF] Green | Mortality during the 2013 Heatwave in England -How Did It Compare to Previous Heatwaves? A Retrospective Observational Study[END_REF]Hamdy et al. 2017a;[START_REF] Yang | Heatwave and Mortality in 31 Major Chinese Cities: Definition, Vulnerability and Implications[END_REF]. Heatwaves in particular can cause severe overheating in buildings that are not equipped to cope with it. It could lead to several problems ranging from thermal discomfort and productivity reduction to illnesses and even death of occupants (Hamdy et al. 2017a). This concern is particularly relevant for buildings that are also subject to UHI effect. Cooccurrence of heatwave and UHI will further aggravate the pressure on buildings and as a consequence, the risk of indoor overheating in buildings is expected to rise.

Overheating in residential buildings already in Europe and North America has been reported by [START_REF] Baborska-Narożny | Overheating in Retrofitted Flats: Occupant Practices, Learning and Interventions[END_REF][START_REF] Lane | Extreme Heat Awareness and Protective Behaviors in New York City[END_REF][START_REF] Lee | Heat-Coping Strategies and Bedroom Thermal Satisfaction in New York City[END_REF], indicating rising concerns about overheating in temperate climate regions.

The magnitude of occupant vulnerability inside the building due to overheating depends on several parameters such as duration and intensity of exposure to heat, as well as, on personal adaptation capacity of the occupant. Installation of cooling systems on already energy intensive building sector could mitigate associated risks. However, the resulting energy demand would affect global climate change. Moreover, if installed in every household these systems would dramatically increase the electricity demand for cooling at peak time and at the same time discharge hot air that will further intensify urban warming. Another phenomena that affects occupants' vulnerability to future climate conditions and heatwaves is summer energy precariousness [START_REF] Battersby | Clay's Handbook of Environmental Health[END_REF] which is especially true for naturally ventilated , and poorly insulated buildings that have traditionally not relied on mechanical systems to keep occupants safe from overheating during summer. Installation of a new cooling mechanism on such buildings will put a huge financial burden on households that are already in difficulty paying for heating needs.

French law recognizes energy precariousness as the inability or difficulty of people to have access to the required energy for basic needs due to lack of financial resources or poor housing conditions. Low-income households are considered to be more vulnerable to climate variations, in large due to this issue. As the average global temperature increases and energy precariousness remains common, adaptation to higher indoor air temperature while minimizing energy needs for mechanical cooling becomes more important than ever.

On the question of exposure to summer over-temperature, the building itself plays an important role. [START_REF] Petrou | The Summer Indoor Temperatures of the English Housing Stock: Exploring the Influence of Dwelling and Household Characteristics[END_REF]) performed a statistical study of building stock in UK to analyse indoor temperature in different types of dwellings in an effort to identify the links between factors that increase or decrease the risk of over-temperature in the buildings. They found out a considerable correlation between the size of the building and vulnerability of occupants in it. The latter decreases with the size increasing. They also showed that buildings built before 1900 were cooler than those built after. The study also revealed multiple correlations between household indoor overheating problem and dwelling characteristics, highlighting the complex nature of it.

Another new trend in energy efficiency design is Passivehause, which is promoting continuous high insulation of the entire envelope and good standard of airtightness. Is this type of construction perceived to be more prone to over-temperature compared to "draughty" homes?

To answer this question, (R. Mitchell and Natarajan 2019) investigated 82 buildings in UK constructed based on Passivehause principles. According to the authors, most of the buildings as a whole passed the overheating design criteria, however a notable number of individual bedrooms experienced high temperature during the night. The degree of discomfort in their paper was analysed with chartered Institution of Building Service Engineers TM59 criteria (Chartered Institution of Building Services Engineers 2013). The authors suggested a more indepth, room-by-room approach in assessment of over temperature for building designers. A major limitation of their study was that they used historical weather data from 2011 to 2017 that were mostly mild and cool years.

Zero Energy Hub (NZH) conducted a survey and in their report in 2015, stated that 70% of housing providers reported overheating within their wider build stock. In their survey the highest risk was identified in single-aspect-high-rise apartments (apartments that have three closed sides) facing south, located in dense urban areas.

According to NZH, there are a number of factors causing overheating in buildings, and it often arises when these factors and processes act together (see Figure 12345678).

Figure 1-8 : Illustration of three main causes of overheating in buildings (Source: NZH) [START_REF] Fosas | Mitigation versus Adaptation: Does Insulating Dwellings Increase Overheating Risk?[END_REF]) through building simulation studies showed that improving insulation does not cause an increase in overheating risk, if the building is designed well with good solar shading and ventilation, particularly during the night.

On the contrary, some studies such as by [START_REF] Beizaee | National Survey of Summertime Temperatures and Overheating Risk in English Homes[END_REF][START_REF] Kotol | Indoor Environment in Bedrooms in 79 Greenlandic Households[END_REF] have suggested that overheating risk is amplified by an increase in insulation of envelope and improvement of airtightness. They also stated that buildings constructed after 1990 performed worse than those built before.

Examples of opposite conclusion also exists in the literature. [START_REF] Salagnac | Lessons from the 2003 Heat Wave: A French Perspective[END_REF] has recommended improving insulation to better prepare buildings for future heatwaves and reducing overheating risk.

Studies that monitored indoor thermal condition in the house have shown that some houses overheat with increased insulation but because the evidence points in both directions, it has been difficult to establish a solid causality between overheating and envelope's thermal capacitance (R. [START_REF] Mitchell | Overheating Risk in Passivhaus Dwellings[END_REF]. Factors causing overheating/discomfort in buildings are further studied in chapter 4 of this manuscript, through case studies.

In addition to energy demand and thermal performance variations, some studies have suggested that over temperature also impacts structural integrity of buildings. [START_REF] Salagnac | Lessons from the 2003 Heat Wave: A French Perspective[END_REF] points out to the clay soil subsidence and swelling triggered by dryness and rehydration of the environment, which then affects the foundation of concerned buildings. The author states that this phenomenon affects individual houses more than large multi-storey buildings that have deep foundations. Author suggests preparation of Cadastral plans showing location of clay soil areas as a preventative measure to reduce risks associated with this phenomenon.

Risk, vulnerability, hazard and exposure concepts

Before delving deeper onto the study of objective and methodology in the manuscript, it is worthwhile distinguishing different terminologies frequently encountered in impact assessment of climate change.

Risk

Risk is the possibility/potential for adverse consequences where something of value is threatened and the occurrence and degree of outcome is not certain. Risk results from the interaction of vulnerability, its exposure over time as well as to the hazard and likelihood of its occurrence (IPCC 2018), illustrated in Figure 123456789.

Climate risk is the possibility of specific climate-related impacts (climate impacts) that can affect assets, people, ecosystems, culture, etc. Examples of risks include risk of water scarcity for smallholder farmers (water scarcity as a potential consequence of climate change), the risk of food insecurity in the rural population; the risk of extinction of biodiversity species; risk of damage to transport infrastructure because of erosion, landslides, etc. In short, risk is the possibility of consequences in which the result is uncertain.

Risk assessment can address this uncertainty in a variety of ways. In disaster risk assessment, one of the approaches is probabilistic assessment, in which risk is presented as the likelihood of occurrence of hazardous event multiplied by the impact of it.

In the context of climate change, this probabilistic approach is often not applicable because most of the hazards and consequences associated with climate change, cannot be described as standard events, which is one of the requirements of the probabilistic approach. In addition, the consequences of climate change alone cannot be assessed using a probabilistic approach, as future pathways of socio-economic development, levels of greenhouse gas emissions and climate impacts remain uncertain. Instead of that, scenario approach is proposed by IPCC (IPCC 2018). For example, different climatic consequences for different scenarios of greenhouse gas emissions; different scenarios of vulnerability under different paths of socioeconomic development.

Danger "hazard"

The possible occurrence of a natural or human-induced physical phenomenon or trend or physical impact that can cause death, injury and other health consequences, material and property losses, as well as damage to infrastructure, livelihoods, supply systems services, ecosystems and ecological resources (IPCC 2018). In this manuscript, we will use the term "hazard" and "danger" interchangeably to refer to climate-related physical phenomena, trends or their physical effects.

The hazard can be a phenomenon (for example, heavy rain), or direct physical impact (such as a climate induced heatwave). It does not have to be extreme weather; slowly ongoing phenomena can also be dangerous. It is also important to take into account the likelihood of a particular hazard by setting thresholds to help determine the frequency of it (for instance, number of consecutive hours indoor temperature in a room is above 27 degrees). In here, 27 is a threshold and number of consecutive hours is the frequency of that event (hazard) taking place.

Exposure

Presence of people, livelihoods, species or ecosystems, ecological functions, services and resources, infrastructures or economic, social and cultural assets in places and conditions that could be adversely affected (IPCC 2018).

"Exposure" refers to the relevant elements of the socio-ecological system (e.g. people, livelihoods, as well as species, ecosystems, etc.) that may be adversely affected by hazards. Exposure can be expressed as absolute values, densities, percentages, etc. (e.g., population density in an area affected by a heatwave; percentage of wetlands in an area affected by pollution, etc.).

Changes in exposure over time (e.g., changes in the number of people living in drought prone areas) can significantly increase or decrease the risk.

Vulnerability

It is referred to propensity or predisposition to adverse effects. The term vulnerability covers a variety of concepts and elements, including sensitivity or susceptibility to harm and lack of ability to cope and adapt (IPCC 2018).

Vulnerability refers to those characteristics of socio-ecological system's elements that can increase or decrease the potential impacts of a specific climatic hazard. It includes two relevant concepts: sensitivity and adaptive capacity.

Sensitivity is determined by those factors that directly affect the consequences of the hazard. Sensitivity can include the ecological or physical characteristics of the system (e.g. soil type in agricultural fields, water retention capacity, building material for residential buildings), as well as social, economic and cultural characteristics (e.g. age, income).

Adaptive capacity in the context of climate risk assessment refers to the ability of communities to cope with current or future climate impacts. This does not mean the ability of ecosystems to respond to impacts, but rather the ability of society to manage ecosystems. Adaptive capacity has two key components: first, the ability to overcome problems (the ability of the population, institutions, organizations and systems to deal with the problem of unfavourable conditions, cope with them and overcome them in the short and medium term, using available professional skills, material values, beliefs, resources and opportunities. For example, existing early warning systems for a heatwave. Second, the ability of systems, institutions, people and other organisms to adapt to the potential hazard, seize opportunities, or respond to consequences. For example, the potential for introducing new agricultural practices in cities. Lack of this ability can significantly increase the vulnerability of the system and by extension, risk.

Impacts (Consequences, Outcomes)

Effects on natural and anthropogenic systems. In this manuscript, the term "impact" is used primarily to refer to the effects of extreme weather and climate events and climate change on natural and human systems. Impacts generally refer to effects that affect people's lives, livelihoods and health, ecosystems, economy, society, culture, services and infrastructure due to the interaction of climate change or climate hazards occurring over time and the vulnerability of the affected society or system (IPCC 2018).

"Impact" is the general term for describing consequences, ranging from direct physical impacts of a hazard to indirect consequences on society, also called social impacts. Impacts are the basic building blocks of chains of causation.

Climate extreme (extreme weather event)

A value of a meteorological or climatic variable that is above (or below) a threshold value towards the higher (or lower) ends of the variable's range of observed historical values.

Mitigation

Climate mitigation measures in general consist of a set of activities that are aimed to limit the rate of greenhouse gas emissions into the atmosphere, by better controlling energy usage (energy efficiency), by substituting fossil fuels with renewable energies and by storing carbon (carbon capture). In other words, mitigation consists of putting in place sustainable development programs. In urban context, mitigation means taking steps/actions to reduce air pollution, and greenhouse gas emission rates from urban areas. Currently the most popular mitigation strategies are focused on improvement of technologies, and switching fuels. [START_REF] Oke | Urban Climates[END_REF] argues that a more efficient urban form, transport and land-use mix also have a notable potential to moderate city contributions.

Adaptation

Adaptation to global climate change and global warming is the adaptability of natural or anthropogenic systems in response to real or expected climatic changes aimed at reducing vulnerability or/and use of favourable conditions.

The word adaptation itself evokes an ability of a functioning society to adjust. Adaptation strategies complement mitigation measures, which aim to emit less greenhouse gases and restore or protect the carbon sink capacities of ecosystems. Even if all emissions of carbon cease today, the climate inertia generated by heavy anthropogenic activities so far will continue to cause climate's disturbance in the future. This indicates that adaptation is an essential strategy to reduce vulnerability and improve resilience.

Adaptation can be individual (changes in individual behaviour) and collective (changes in communities, companies, governments, etc.).

It is important to emphasize that the more we manage to mitigate, the less we have to adapt and vice versa.

In the context of this manuscript, adaption consists of making systems or territories less vulnerable to climate change, through actions reducing the effective impacts of climate change, or improving the response capacities of societies and the environment. For instance, installation of a heatwave alarm system and diffusing information and guidelines to people on how to protect themselves during one. Other examples of adaption to higher temperature in the cities are, installation of misting system or planting more trees in the city to reduce temperature.

Adaption must also be seen as permanent strategies and be implemented over a long period.

As the ecosystem degrades, it could exacerbate the possible social, economic or geopolitical crises to a degree that sometimes becomes too costly to maintain the same level of services, which will consequently increase vulnerability.

In general, adaptive capacity and vulnerability are inversely proportional, a low vulnerability score implies a good adaptive capacity and vice versa. Therefore, as mentioned in section 1.1.4.4, vulnerability is both the result of exposure rate to natural hazard and its adaptive capacity.

In France, The Economic Council for Sustainable Development report has defined adaptation as "All the changes in organization, location and techniques that societies will have to make to limit the negative impacts of climate change and maximize its beneficial effects [START_REF] Hallegatte | Economy of adaptation to climate change / Economie de l'adaptation au changement climatique[END_REF]."

An important part of adaption is the issue of anticipating the effects of climate change (intensity/duration) on environment and by extension on the economy, society, health and life. Because it is easier for communities to adapt to an anticipated change than to an unexpected one.

Integrated solutions to urban climate

Increased population density and economic activities on cities over the last few decades, combined with the challenges that global warming will undoubtedly bring, has prompted a noticeable push by civil society and governments at different levels to develop activities, innovative initiatives, and transformative actions to assist cities in dealing with the effects of climate change. Most of these initiatives have proved insufficient so far, and there is a clear need to assist decision-makers to think strategically on how to layer adaption interventions in the cities in a way that could lead to better resilience for different potential future scenarios [START_REF] Lin | Integrating Solutions to Adapt Cities for Climate Change[END_REF]. Indeed, diverse adaptation (technological, nature-based, and societal) and mitigation (cool roofs, building greenery, retro-reflective materials, urban green infrastructure) measures need to be implemented to bring about the transformation required to build resilience to overheating and its impacts in the cities [START_REF] Costanzo | Urban Heat Stress and Mitigation Solutions: An Engineering Perspective[END_REF].

Naturally, the first step in implementation of adaptation or/and mitigation solutions is to identify the most vulnerable points/regions to urban overheating to maximize the benefit on the city and people living in the cities. The term "vulnerable" was used here, because the motivation is to not only monitor and characterize exposure rate of urban environment but also to know when and where it leads negative impact on human life.

Limiting the vulnerability of people to climate change, extreme weather events, and UHI requires us to take collective actions at different scales to build resilience for multiple potential future scenarios: global scale, urban scale, and building scale.

It is encouraging to highlight that urban planning has the potential to play a vital role in the development and implementation of collective actions in urban systems. Main advantages of urban planning are the universality of the profession and the instruments available in it. Tools such as plan-making, stakeholders involvement, design standards, and development management are crucial to deliver urban adaptation/mitigation solutions at different scales [START_REF] Shalaby | Climate Change Impacts on Urban Planning in the Cities[END_REF]. Furthermore, cities often have stronger management mechanisms that allows all involved stakeholders to devise and apply policies and collective actions more effectively than those at national or super-national scales.

Decision making in urban planning

Decision-making in general is a cognitive process where a practitioner/decision-maker selects a type of action among different alternatives. This process is theoretically based on specific set of criteria, and on analysis of options and data obtained from various sources.

In urban planning, local urban plans, which are drawn by local authorities based on their expertise considering a wide range of criteria (social, economic, environmental), establish guidelines for spatial and physical organization of municipality and overall vision on its territory's development. They contain recommendations and town planning policies adopted by the city council/local authorities, which serve as guides in the decision-making process for the present and future development choices.

In other words, local urban plans are the principle decision-support tools aiming to ensure consistency between intervention choices in various sectoral issues (e.g. housing, commerce, transport, environmental protection, recreation, public facilities, energy) considering development potential and constraints of natural and build environment as well as expectations and concerns of citizens. This decision-making support tool is an important element for a better management of the municipal territory. This is why we must ensure that the plan is focused on the implementation of practical solutions that takes into account the financial reality, local management resources and more importantly, in this period, potential climate variation scenarios. The consideration of climate and energy issues is integrated into the OAP part of PLUs, which mostly give recommendations. However, the impact of these recommendations is not assessed, either because of the absence of a standard workflow to do it or because of large scales that imply a huge work to check each application. Assessing the impact of these recommendations would require the implementation of a rapid assessment tool that would help decision makers to take into account climate change and energy issues at city scale efficiently.

In addition, vulnerability of urban dwellers to heatwaves and urban heat island effect considering future climate change scenarios are not given adequate attention in the risk prevention plans section of PLUs. Consideration of these phenomena warrants the need for creation/addition of vulnerability maps to extreme temperature under current and future climate scenarios.

Another similar instrument frequently used in urban planning is cadastral maps. An equivalent term also used interchangeably with cadastral maps is land registry. In France, the term "cadaster" is seen more in the literature and it referred to a plan covering entire French territory, delimiting the geographical limits of land holdings in the form of plots (parcels).

Cadastral maps are mostly managed and administered by the state (ministry of finance and public accounts) and are used as a base for determining certain taxes, particularly property taxes.

Cadastral maps have not been used extensively in urban climate engineering so far for two main reasons: inaccessibility of cadastral maps to public, and unavailability of urban climate data (land coverage details) at cadastral scale.

In this manuscript, an alternative approach is proposed that allows practitioners in urban climate engineering perform urban climate analysis to create heat exposure/vulnerability maps at cadastral scale relying only on publicly available (open source) data, thereby reducing the probability of exposing private and confidential data.

Vulnerability and Exposure Maps

Publicly accounting of climate hazard losses and understanding their economic, social, and environmental implications requires practitioners to systematically evaluate, record, and share, as appropriate, exposure and vulnerability information.

Distribution and dispersion of exposure and vulnerability information in the form of vulnerability and risk maps, freely available and accessible, are considered one of the best approaches that could lead to the reduction in climate and weather-related hazard losses.

Climate hazard on maps could be represented by past, present and future climate variabilities, extremes, and in some cases the hazard could also be a function of climate extremes in combination with other factors such as urban heat island that increases the intensity of heatwaves or land use change that raises the susceptibility to, landslides, flooding, crop failures and draught.

Today, maps that show synthetized climate data have become part of a standard package of tools to communicate climate-related risks and hazards. Vulnerability maps are frequently utilized to direct the attention of users to the geographic locations where impacts on communities are expected to be the highest and therefore an adaptive intervention is required [START_REF] De Sherbinin | Climate Vulnerability Mapping: A Systematic Review and Future Prospects[END_REF].

Vulnerability maps could be used by practitioners for planning (prioritization and targeting) of adaptation interventions, in understanding underlying factors of vulnerability, in planning of emergency response actions, and in communication of risks. These maps are made across a range of scales, territories, climate hazards, and for various thematic focus. [START_REF] De Sherbinin | Climate Vulnerability Mapping: A Systematic Review and Future Prospects[END_REF] in an interdisciplinary research project, performed a comprehensive review on mapping strategies of social vulnerabilities due to climate change. Their main finding in the review was that most maps in this context are academic in nature, and therefore not geared toward decision/policy makers. They also state that some maps that claim relevance to the policies also frequently fall short of best practice. They argue that vaguely defined maps (lack specificity on the target attribute or climate hazard focus) showing "vulnerable population" are unlikely to lead to any changes in policies or implementation responses.

They suggest vulnerability maps should not be an end goal but rather an entry point for discussions by policy makers. To ensure maps meet such criteria, they suggest mappers to consider a number of issues. These include, increasing end-user collaboration (taking into account the opinion of decision/policy makers and other stakeholders before building a map); pay greater attention to map communication beyond mapping as a final product; validate the data in the map if possible; and evaluate the value of information presented in the map.

As discussed earlier, social vulnerability to climate change is a function of (1) exposure rate to temperature, precipitation changes, and increase in the intensity and frequency of extreme weather events; and (2) sensitivity and adaptive capacity of population to these changes.

All factors influencing vulnerability, e.g. exposure rate to extreme weather events, land cover and usage, population density, socio-economic status of people, and effectiveness of public/private institutions in charge, are dynamic and can vary spatially and temporally. This means that the relative contribution of each factor to vulnerability is different from one place to another and from one time to another.

In this manuscript where the focus is on vulnerability of people to over-temperature, we refer to "vulnerability map" when both the exposure rate and all factors influencing adaptive capacity/sensitivity of target social group to overheating is taken into consideration. If factors affecting adaptive capacity/sensitivity of population are assumed static or absent from the map then we refer to it as an "over-temperature exposure map".

Problem Statements

The following statements summarize the problems and issues discussed in previous sections and will be dealt in the subsequent chapters to various extents:

(1) Proven global climate change, urban heat island, urban microclimate and heatwaves have already brought significant shifts in the pattern of human activity and will continue doing so in the future. Movement of climate zones is one of the impacts of these variations. Some regions may gain from these shifts and some may lose. However, one thing is clear; we all have to adapt to these inevitable changes. This means there is a need to map out indoor vulnerable regions in PLUs and layer adaptive and mitigation interventions accordingly.

(2) Typical weather data used by practitioners in thermal evaluation of buildings that are generated from historical records collected from rural weather stations do not contain future climate change scenarios and UHI effect for urban areas, while they are critical for better description of vulnerability to both indoor and outdoor over-temperature.

(3) There is a lack of standard definition for overheating vulnerability in indoor environment of buildings. Indoor overheating and thermal comfort are spatially and temporally variable. This requires practitioners/researcher to use multiple indices and dimensions of study to address relevant questions.

(4) There is a lack of knowledge on buildings sensitivity to over-temperature due global warming or heatwaves.

(5) No process is available for the integration of climate change data, and UHI effect in thermal simulation of buildings at city scale.

Objective

For business, industry, legislative and government agencies, regardless of the sphere of their activities, it is the same problem: the need to take into account climate change in current and future decisions. Some sectors are expecting to benefit from climate change, but many will have to deal with increased vulnerability induced by it.

Building sector, in particular is going to be significantly affected by these variations, because they are where majority of people spend most of their time. This gives buildings and their surrounding the potential to put occupants in danger or protect them during a major external climate event, depending on how they are built and operated.

Reducing vulnerability and adaptation to future changes require an understanding of the level, timing and potential impact of climatic risks. In the last decade, access to reliable climatic data and forecasts has noticeably expanded. Thanks to this and efforts made by scientists across the world to adapt information to the needs of various sectors, it is now possible to make more efficient climate data-informed decisions at various spatial and temporal scales.

Considering the stated challenges and opportunities, this thesis positions itself, within a broader context, to develop a methodology for integration of climate change and UHI data into decision support tools in urban planning to evaluate indoor overheating risk in residential buildings at city scale.

In other words, the objective of this thesis is to pave the way for the development of a comprehensive methodology for practitioners and policy makers in Urban Planning to take into account climate change scenarios, urban climate, energy transition and health in urban development policies.

For policy makers this methodology will be used in assessment of local urban plans (PLUs) and climate change in terms of UHI and vulnerability of population to heatwaves. This objective could be achieved with creation of indoor heat exposure vulnerability maps that could be used as an input for local adaptation solutions such as reintegration of nature to the city, installation of misting systems or for mitigation measures such as buildings' refurbishment programs.

This means the output of this thesis will be in the form of an indoor overheating vulnerability map or/and in the form a rapid assessment tool (web-based application running on an API generated using this methodology). In case the data on adaptive capacity and sensitivity of occupants to overheating are not available, then the map would be called an indoor overheating exposure map (Figure 1-10).

General Methodology

Creation of indoor overheating exposure map of buildings at city scale, in the context of climate change heatwaves, and UHI requires consideration of at least the following crucial aspects:

-Appropriate method to select reference buildings and perform energy and thermal comfort assessment simulations on the reference buildings.

-Good quality data that represent climate change scenarios, heatwaves and urban heat island.

-Development of an approach to extend the application of given climate scenarios on reference buildings to the rest of buildings stock in the city.

Having the given aspects in mind, we have organized the thesis work steps as well as individual sections of this manuscript. An outline of the general workflow in generation of vulnerability/exposure map of indoor thermal conditions in residential buildings is presented in Figure 1-10.

The methodology here was derived to enable decision-makers rapidly assess indoor thermal conditions of different neighbourhoods in the city. The complexity of questions tackled in this research project required involvement and interaction of many disciplines: meteorology, building thermal and energy studies, urban planning, statistics, data science, geography, geospatial mapping/modelling. For this reason, at the start of this thesis it was decided to carry out this research on a process approach. In this approach the main objective is at the centre and it is leading for all decisions in the research [START_REF] Tobi | Research Design: The Methodology for Interdisciplinary Research Framework[END_REF].

Success of this approach relies on strict follow up of an agenda/a conceptual framework throughout the research period. In this research project, every step of the way first the "why" and "what" of the step are answered and then the "how" of the research work. That is why, data collection, analysis and presentation may considerably be different in each chapter of this manuscript.

Nevertheless, to maintain the consistency, similar to overall process approach, we built a data analysis plan before starting to achieve certain tasks. That way, we knew that the output of data analysis files are exactly the kind of data that can be used in other steps.

Following up this approach allowed us to build and formalize the different sections of this research work in the integration stage. The four boxes of the workflow demonstrate the main four chapters of this manuscript each describing a major step in preparation of indoor over-heating map of residential buildings.

A major challenge in indoor overheating assessment at city scale is the efficient representation of urban build stock in such a way that takes into consideration UHI effect as well as the buildings' characteristics relevant to the problem. Chapter 2 of this manuscript is dedicated to dealing with this challenge using the existing literature and modern data-driven tools. It starts with a critical literature review on buildings typology construction methods, it then choses cluster analysis machine learning technique to aggregate residential buildings into clusters of buildings with similar characteristics, and then identifies one representative building from each cluster, which further undergoes a characterization step.

Chapter 3 of the manuscript is devoted to the description of a workflow that could be used by building practitioners and researcher to access and use data from multiple climate models for building performance evaluation studies taking into consideration UHI effect.

Another challenge in the preparation of indoor overheating map pertains to measurement indices and identification of key building parameters influencing thermal comfort and indoor overheating in summer. Chapter 4 of the manuscript attempts to deal with this challenge by a review of literature on sensitivity analysis studies of buildings' thermal performances, and through a detailed comparative analysis of indoor overheating measurement indices.

The third major aspect of this research is the application of simulation results on identified representative buildings to the rest of buildings through an extrapolative process. As the objective of this research is to demonstrate the methodology that could be used as support in the strategic decision for climate change policy intervention, it is necessary to make sure it is efficient and can rapidly provide an initial approximation of building performance or buildings' performances, it was decided to use surrogate modelling as a way to extend the application of reference buildings to the rest of buildings. Chapter 5 of this manuscript is devoted to the description of input data, methods and techniques for surrogate model development.

In summary, the manuscript systematically illustrates the following issues:

1-It discusses why and how to identify reference buildings? 2-It describes why and how to access and use open source future and historical weather data for building performance simulations (BPS)? 3-It also presents which building parameters influence indoor thermal comfort and which indices could be used to describe summer performance of residential buildings in temperate climate regions. 4-And the last chapter demonstrates how meta-models can be used to extend the outputs of reference building models to the rest of build stock

Summary

The objective of this research is more than just to provide a scientific response in a specific discipline but the transversal study of a methodology allowing various issues to integrate and pave the way for creation of something that would eventually be used to help policymaking and lead to subsequent implementation response. Having this in mind, the organization of first and subsequent chapters follows a process approach. In the first chapter, it starts with an introduction to the main triggers that influence overheating in buildings, and then it proceeds to the explanation of various terminologies frequently encountered in impact assessment.

Following are the summary of key messages presented in this chapter I:

• Average global temperature was 1.2 ° C higher than the pre-industrial (1850-1900) level in 2020, and this global increase is accompanied by extreme events that further put pressure on urban infrastructure and ecosystem.

• The global warming may enhance the negative impacts of UHI effect, but it does not systematically affect its magnitude, because UHI is the difference between rural and urban temperatures and the net global temperature increase influences rural and urban areas of different places differently. Regardless of whether global warming affects UHI effect's magnitude or not; there is still a need for local adaptation and mitigation strategies to offset the impacts of over-temperature in populated areas.

• Limiting the vulnerability of people to climate change, extreme weather events, and UHI requires us to take collective actions at different scales to build resilience for multiple potential future scenarios: global scale, urban scale, and building scale.

• Urban planning, thanks to the instruments available, has the potential to play an important role in implementation of collective actions aimed at reducing the impact of over-temperature.

• Reducing vulnerability to overheating requires an understanding of the level, timing and potential effects of climate risks. Over the last decade, access to reliable climatic data has notably expanded. Thanks to this and efforts made by scientists across the world to adapt information to the needs of various sectors, it is now possible to make more efficient climate data-informed decisions at various spatial and temporal scales.

Chapter 2 : Building typologies

Background/literature review An accurate analysis of building stock during extreme weather events requires simulation and analysis of large number of buildings taking into account geometrical attributes, thermophysical properties and occupants' behaviour. However, in practice, simulations, analyses and calculations of large number of buildings at each individual building is not possible due to large volume of input data for each building, and time limitations (Ali et al,2019.).

A viable solution in such case is to develop a set of archetypal building types that could represent most of the building stock and perform necessary scenario analysis or simulations on them.

To this end, many researchers and authors have proposed methodologies for aggregation of building stock into types, categories, clusters, and archetypes based on multiple criteria for various objectives. For instance, assessing the impact of various potential retrofit interventions in building sector [START_REF] Jorgji | Analysing the Impact of Retrofitting and New Construction through Probabilistic Life Cycle Assessment. A Method Applied to the Environmental-Economic Payoff Value of an Intervention Case in the Albanian Building Sector[END_REF], urban energy simulation (Cerezo et al.,2018), predicting building energy consumption for heating and cooling demand [START_REF] Korolija | UK Office Buildings Archetypal Model as Methodological Approach in Development of Regression Models for Predicting Building Energy Consumption from Heating and Cooling Demands[END_REF]). As a result, the literature sources that explore building stock types vary by a wide range of methods and techniques.

The terms, build stock archetypes, types, samples, prototypes, reference buildings, exemplary buildings etc. are used interchangeably in the literature referring to a category or sample of buildings representing the larger built stock. This process itself called typification of building stock and/or aggregation of build stock to reference buildings.

In this text, build stock aggregation means reducing the number of buildings to be modelled by representing buildings with just one building model. This could mean the build stock is entirely represented with one single building or by a set of buildings each representing a category.

According to Tabula definition, the term "building typology" is referred to a systematic description of the criteria for the definition of typical buildings (archetypes) as well as to a set of exemplary buildings representing the building types (Tabula team, 2012).

To cover most of the build stock aggregation methods, this work focused on both conventional classification methods and data-mining approaches in building stock classification. Build stock aggregation methods rely on different levels of input information granularity, various calculation techniques, scale of building stock, and application objective of archetype.

Development of building stock typology relies on input data on the bases of which to categorize and model each group of reference buildings. The level of detail of the available information can vary significantly, resulting in the selection of different aggregation techniques. Each technique has its own strengths, weaknesses, capacity, and scope of application.

Depending on the chosen aggregation technique, input attributes necessary to develop building stock typology in relation to energy consumption and thermal comfort can include: general information and boundary conditions of building (year of construction, climate zone, density of urban area, etc.), urban morphology (detached, continues, high rise, etc.), engineering systems (HVAC, heating system's efficiency, etc.), occupancy type (residential, educational, etc.), thermo-physical as well as other properties of envelope and systems (U values of walls, roof, openings, infiltration rate, etc.), building geometry (form, compactness, height, window wall ratio (WWR), orientation, number of levels, etc.), operational parameters (temperature setpoint, frequency of use of appliances, etc.), and meteorological data (temperature, humidity, etc.). [START_REF] Ali | A Data-Driven Approach for Multi-Scale Building Archetypes Development[END_REF][START_REF] Cerezo | Comparison of Four Building Archetype Characterization Methods in Urban Building Energy Modeling (UBEM): A Residential Case Study in Kuwait City[END_REF][START_REF] Coma | Comparative Analysis of Energy Demand and CO2 Emissions on Different Typologies of Residential Buildings in Europe[END_REF][START_REF] Dascalaki | Building Typologies as a Tool for Assessing the Energy Performance of Residential Buildings -A Case Study for the Hellenic Building Stock[END_REF]Davila, Reinhart, and Bemis n.d.;[START_REF] Famuyibo | Developing Archetypes for Domestic Dwellings-An Irish Case Study[END_REF][START_REF] Ghiassi | Reductive Bottom-up Urban Energy Computing Supported by Multivariate Cluster Analysis[END_REF]Guillaumet et al. n.d.;Hamdy et al. 2017b;[START_REF] Kristensen | Urban Building Energy Modelling for Retrofit Analysis under Uncertainty[END_REF][START_REF] Hidalgo | Comparison between Local Climate Zones Maps Derived from Administrative Datasets and Satellite Observations[END_REF][START_REF] Korolija | UK Office Buildings Archetypal Model as Methodological Approach in Development of Regression Models for Predicting Building Energy Consumption from Heating and Cooling Demands[END_REF][START_REF] Mata | Building-Stock Aggregation through Archetype Buildings: France, Germany, Spain and the UK[END_REF][START_REF] Monteiro | A METHOD FOR THE GENERATION OF MULTI-DETAIL BUILDING ARCHETYPE DEFINITIONS[END_REF] The available data about building stock also varies from country to country. For instance, Geographic Information System (GIS) data are not publicly available in many countries including China (X. Li et al. 2018). Sometimes regions within a country can also have significant variance in data availability on build stock specifications. E.g., there are more data available about Ile-de-France as compared to other regions in France [START_REF] Tornay | GENIUS: A Methodology to Define a Detailed Description of Buildings for Urban Climate and Building Energy Consumption Simulations[END_REF]. [START_REF] Ghiassi | Reductive Bottom-up Urban Energy Computing Supported by Multivariate Cluster Analysis[END_REF] used official and crowd-sourced GIS database, statistical information and building performance standard data of Vienna city to develop the build stock archetypes. GIS has also been used by many other authors as a platform to collect and organize urban-scale building information as well as a tool to visualize and process the main data [START_REF] Ali | A Data-Driven Approach for Multi-Scale Building Archetypes Development[END_REF][START_REF] Davila | Modeling Boston: A Workflow for the Generation of Complete Urban Building Energy Demand Models from Existing Urban Geospatial Datasets[END_REF][START_REF] Ghiassi | Reductive Bottom-up Urban Energy Computing Supported by Multivariate Cluster Analysis[END_REF][START_REF] Österbring | A Differentiated Description of Building-Stocks for a Georeferenced Urban Bottom-up Building-Stock Model[END_REF][START_REF] Sokol | Validation of a Bayesian-Based Method for Defining Residential Archetypes in Urban Building Energy Models[END_REF] Data from building energy performance certification (EPC) has also been used by authors as an input for classification of buildings into archetypes [START_REF] Ali | A Data-Driven Approach for Multi-Scale Building Archetypes Development[END_REF][START_REF] Famuyibo | Developing Archetypes for Domestic Dwellings-An Irish Case Study[END_REF] or for characterization of archetypes after the segmentation [START_REF] Sokol | Validation of a Bayesian-Based Method for Defining Residential Archetypes in Urban Building Energy Models[END_REF][START_REF] Tornay | GENIUS: A Methodology to Define a Detailed Description of Buildings for Urban Climate and Building Energy Consumption Simulations[END_REF].

At European scale, [START_REF] Coma | Comparative Analysis of Energy Demand and CO2 Emissions on Different Typologies of Residential Buildings in Europe[END_REF] 

Building stock typologies generation techniques

Building stock aggregation methods can be broadly categorized into deterministic and datamining/data-driven approaches (Guillaumet et al., 2018). The terminology is with reference to the role of automatic classifiers and a priori assumptions. In a deterministic approach, buildings are classified according to the existing bibliography and expert opinions. The aim of this approach is usually to develop easily interpretable results with limited available information about the entire building stock.

Data-mining approaches on the other hand are strongly dependent on the data availability and development of information technology that improved the possibilities for information gathering, management and documentation. Such a classification is therefore greatly based on computer programming. Grouping of methods for the development of building stock typologies are shown in Figure 2-1 and are discussed in details in the following sub-headings. In mathematics and computer sciences, deterministic is referred to a system in which no randomness is involved. This segmentation in this approach is highly based on a priori assumptions. In the context of build stock typology, we use it to address a classification approach in which the modeler decides the segmentation criteria primarily relying on their experience, expertise, literature, or for a specific objective. Literature review showed that most observed variables/segmentation criteria in deterministic approach are construction year, building use and in the case of residential buildings single or multiple family houses.

Typological studies that employ the same approach for categorization may use various physical or other predetermined characteristics to categorize the buildings. In general, deterministic build stock aggregation technique involves three steps:

-Classification or segmentation based on initial predetermined characteristics.

-Parametrization or characterization of the archetypes with supplementary details.

-Simulation or modelling of each archetype [START_REF] Monteiro | The Use of Multi-Detail Building Archetypes in Urban Energy Modelling[END_REF] The greatest strength of deterministic approach is that additional input variable-sets can be added to the classification without compromising the typification process. For example, if residential single-family buildings are classified by date of construction into seven archetypes another archetype could be added to the list without any necessity to change the previous archetypes. Another strength is that the archetypes developed in this approach are easily interpretable, although this quality is not exclusive to this approach.

Lack of explicitly stated arguments, or reasons in support of the initial segmentation attributes of building stock classification aimed to model indoor thermal comfort or energy consumption also known as predetermined characteristics is a major limitation of this approach. For instance, categorizing building stock by year of construction even though many of them have been retrofitted over the years. Uncertainties associated with underlying aggregation assumptions about buildings can substantially increase the risks of miscalculation or error in the model. For instance, assuming that all buildings built before 1973 oil shock have lower energy performance without considering other energy related attributes, for instance, thermo-physical properties of materials used in construction or renovations performed on the buildings over the years.

Another downside of this approach is that as the number of segmentation criteria increases, the resulting archetype groups become smaller and numerous. Two types of deterministic techniques are seen more frequently in the literature: fixed matrix and data-tree format.

Fixed matrix

In this research effort, fixed matrix is referred to a firm arrangement of building types (real or virtual) in rows and columns in a grid or table. National building typology (TABULA) elaborated in the framework of Intelligent Energy Europe (IEE) program is a clear example of this approach in which the columns represent different sizes of residential buildings and rows different construction periods. This building typology represents building types with real exemplary buildings [START_REF] Cerezo | Comparison of Four Building Archetype Characterization Methods in Urban Building Energy Modeling (UBEM): A Residential Case Study in Kuwait City[END_REF][START_REF] Monteiro | The Use of Multi-Detail Building Archetypes in Urban Energy Modelling[END_REF]. TABULA building type matrix has led to numerous other European research projects and studies. An example is the comparative study conducted by [START_REF] Loga | TABULA Building Typologies in 20 European Countries-Making Energy-Related Features of Residential Building Stocks Comparable[END_REF] of 20 European countries residential building stocks. TABULA has also been used as a base for various energy efficiency and refurbishment assessment studies over the years [START_REF] Ballarini | Energy Refurbishment of the Italian Residential Building Stock: Energy and Cost Analysis through the Application of the Building Typology[END_REF][START_REF] Coma | Comparative Analysis of Energy Demand and CO2 Emissions on Different Typologies of Residential Buildings in Europe[END_REF][START_REF] Dascalaki | Building Typologies as a Tool for Assessing the Energy Performance of Residential Buildings -A Case Study for the Hellenic Building Stock[END_REF][START_REF] Droutsa | Ranking Cost Effective Energy Conservation Measures for Heating in Hellenic Residential Buildings[END_REF][START_REF] Kragh | Development of Two Danish Building Typologies for Residential Buildings[END_REF][START_REF] Loga | TABULA Building Typologies in 20 European Countries-Making Energy-Related Features of Residential Building Stocks Comparable[END_REF]TABULA Project Team 2012). The number of archetypes in this approach equals to the product of rows and columns of the matrix.

Another example of this classification method is Local Climate Zones (LCZ). Objective of LCZ although is drastically different from Tabula. In Tabula, the focus is on building itself, but in LCZ the main objective of classification is to categorize urban areas based on their microclimatic characteristics. [START_REF] Oke | Urban Climates[END_REF]) has used LCZ to categorize urban landscape types. LCZ is based on the assumption that, four urban climate controls (fabric, land-cover, structure, and metabolism) cluster together in the cities. For instance, core city center parts of urban areas are mostly covered with tall buildings or paved with high-density impervious materials that are often dry and have a high heat storage capacity. There is also a higher concentration of human activity that generate heat, possibly moisture, and air pollutants from air conditioners and vehicles. In the other end of spectrum are low-density houses with relatively light construction, surrounded by a greater percentage of vegetation, open space, and perhaps with less emission of heat, moisture and pollutants. Based on this idea, the author argues that different urban climatic variations can be linked to different urban landscape types. Thus, there is a spatial correlation between urban fabric, land-cover, structure, and urban metabolism [START_REF] Oke | Urban Climates[END_REF].

This idea underlies the notion of LCZ. Application of LCZ on a real case is challenging though.

Because the lines/thresholds that separates one type of LCZ from another are not distinct in the cities. Modeler are obliged to assign each cluster/neighborhood to a specific LCZ category based on their a priori understanding of locality. At small scale, it is feasible to assign a LCZ to a locality. However, manually assigning each neighborhood to a specific LCZ at the scale of a city or multiple cities can be tedious and time consuming as shown by [START_REF] Leconte | Characterization of urban heat island based on climatic zoning and mobile measurements : Case study of Nancy / Caractérisation des îlots de chaleur urbain par zonage climatique et mesures mobiles : cas de Nancy[END_REF] for Nancy.

Data-tree structure

In data-tree structure, the number of attributes (columns) varies unlike fixed matrix. The main segmentation criteria can further undergo division depending on variability of the parameter e.g. representativeness. For instance, residential buildings are divided into multifamily and single family houses. Multifamily houses represent a large portion of houses and can further be divided into houses with flat and slopped roofs [START_REF] Monteiro | A METHOD FOR THE GENERATION OF MULTI-DETAIL BUILDING ARCHETYPE DEFINITIONS[END_REF]. The number of leaves of the tree shape structure in this approach equals to the number of resultant archetypes.

A major shortcoming of deterministic approach is that the classification can be performed only on a limited number of attributes. For example, buildings in TABULA are grouped based on two attributes: type of dwelling and year of construction. Practitioners may find it difficult to build a classification table if/when they are asked to group buildings based on multiple attributes. For instance, 10 attributes. Data-driven solution on the other hand can easily handle high-dimensional data and identify homogenous groups of objects in a large dataset that contains thousands of points and have multiple attributes.

Data-mining/data-driven approaches

Data mining is an essential part of a larger framework called knowledge discovery database (KDD) but some authors do not make a distinction between data mining and KDD. In brief, data mining is the process of search and extraction for potentially valuable information also referred as knowledge in large databases (Bhojani 2016).

( Based on the literature review on building stock typology, data-mining techniques for this purpose could be divided into predictive and descriptive sub-groups [START_REF] Gera | Data Mining -Techniques, Methods and Algorithms: A Review on Tools and Their Validity[END_REF].

The main distinction between the two methods is based on their application; the first method aims to say something about the future results with the help of past and the second method determines what happened in the past by analyzing stored data.

It is important to note that the techniques presented here do not represent all existing data mining techniques, tools, and algorithms that are also widely used in other fields of science.

Predictive algorithms in data mining for building stock typology

Predictive techniques are also known as classification/ regression techniques as well. In classification, each element in the database is assigned to a class according to its similarities [START_REF] Rokach | Data Mining with Decision Trees: Theory and Applications[END_REF]. Predictive algorithm categories are similar to supervised machine learning techniques in which there is a provision of labelled data. This means the training data you feed to the algorithm contains the desired solution. A typical task of this learning technique is classification. For building stock classification, practitioners need to label a significant number of buildings and train the model on those labeled buildings. After, that algorithm should be able to associate new entries to each class based on similarities that it identified from training data in each class.

Machine Learning

Not machine Learning

Another task of this learning technique is prediction, which is also called regression, where the algorithm predicts a numeric value; such is price of house, energy consumption, etc. using the data model it generated/learned from previous observations. As mentioned, application of predictive machine learning in buildings stock classification requires a significant number of labelled data. Manually labeling buildings based on their energy performance and/or thermal comfort performance is, first, tedious and time consuming, and second, prone to human error and biases.

An alternative way is to use unsupervised machine learning that has been extensively used in various fields of studies, including medical sciences and market research, for identification of homogenous objects in data sets. Their potential on building stock classification, however, has not been explored sufficiently.

Descriptive algorithms in data mining for building stock typology.

Descriptive algorithms in general recap and transform the data into presentable information for reporting and extracting meaning [START_REF] Agyapong | An Overview of Data Mining Models (Descriptive and Predictive)[END_REF]. Subcategories of descriptive techniques are presented in Figure 234. Summarization algorithms are not always listed under machine-learning learning algorithms. However, they are an important part of descriptive statistics. They are grouped into univariate and multivariate analysis. Univariate analysis is considered to be simplest form of analysis and its dataset contains one variable. Univariate does not deal with causes, relationships, etc. its major objective is to describe the variable in a simpler format e.g. find the mean, mode, or standard deviation.

Multivariate analysis, on the other hand involves more than one variable. It can contain dependent or/and independent variables in a dataset. It also means that these variables could be analyzed simultaneously or separately. Multivariate analysis is mostly used for the following objectives: (1) data reduction (structural simplification); (2) grouping; (3) dependence evaluation; (4) prediction of one or two variables observing the changes in other variables; (5) statistical hypothesis testing.

Second category of descriptive algorithms is anomaly detection. This category is considered a step in data mining, and its objective is to find points that deviate from normal behavior of observations.

The third category of descriptive techniques, which is the focus of this study, is cluster analysis. The objective of cluster analysis is usually to group a set of objects in such a way that the objects in the cluster are more similar to each other than to objects in other clusters. We, henceforth, use the term clustering when we talk about cluster analysis.

In contrast to predictive learning techniques, for clustering which is also referred to as unsupervised machine learning, there is no need for provision of labelled data. For instance, a building practitioner wants to split a dataset of buildings into multiple homogenous groups of buildings. At no point the practitioner needs to tell the algorithm which cluster or class does this specific building belong. Clustering algorithm associates it automatically.

The buildings in our case study city (Nantes) are not labeled; therefore, our best option with data-driven method is to use Unsupervised Machine Learning (clustering) to group buildings into homogenous clusters.

The final goal is to select one representative building from each cluster as a reference (typical) building of that specific cluster.

In the data and method section, the creation of input database, preparation of input data, performance assessment indicators, clustering techniques, and extraction of reference building for a case study are described with more details. In line with the overall objective of this thesis that focuses on integration of urban heat island effect, climate change and heat waves in indoor thermal comfort and energy consumption assessment of buildings at city scale, the input attributes for clustering were selected.

In machine learning, attribute is referred to the data type, (e.g., building year of construction), while a feature can have several meaning, depending on the context, but here we use it when we talk about the value of attribute (e.g., building year of construction = "1964").

Numerous parameters are seen/used in scientific papers that explain urban climate and heat island effect. Parameters that were selected as attribute for clustering here, meet at least one, two, three, four, or all of the five following criteria:

(1) They have potential effects on urban heat island.

(2) They are the elements that have the potential to indicate the exposure rate of indoor thermal conditions to outdoor climate variables, such as exposure to solar radiation and temperature.

(3) They are relatively easy to calculate.

(4) They are controlled by design of local urban plans.

(5) The input information for calculations can be accessed from open source data.

Raw data used in this study to build attributes for clustering were accessed from the following openly available data sources:

BDTOPO: BDTOPO is a 2D and 3D vector spatial database containing description of landscape elements including but not limited to building footprint, building height, building year of construction, vegetation coverage, water coverage ratio, presence of trees, transportation routes, and etcetera throughout France.

Following parameters were extracted for the whole city: building footprint area, building height, vegetation coverage (NDVI), and water surface coverage.

Land data of CEREMA (données foncier): year of construction of building parcels (buildings).

MAPUCE project: reference spatial unit (RSU) boundary lines. RSU lines divide buildings into blocks/neighborhoods.

RSU lines were computed in the context of MAPUCE project for all French urban territories.

Computation of these lines are based on dual of Delaunay triangulation. Characteristics of Voronoi tessellation are used to calculate new blocks/neighborhoods. Separation lines correspond to the medial axis of negative areas of cadastral parcels [START_REF] Bocher | A Geoprocessing Framework to Compute Urban Indicators: The MApUCE Tools Chain[END_REF]. Each block/neighborhood is called a RSU, as shown in Figure 2345.

Data from year of construction and other building parameters from BDTOPO were joined into one data frame by spatially superimposing one vector map over another.

Superimposing RSU lines and BDTOPO map, also allowed us to calculate building footprint ratio, vegetation and water coverage percentage inside each RSU.

The following parameters that affect variations in urban microclimate and indoor thermal conditions were added or synthetically calculated:

-Building height: the z-value in BDTOPO database

-Building volume: it was calculated using BDTOPO data by multiplying the area of polygon to height of the polygon.

-Free vertical area ratio to total vertical area of building: we used python's GeoPandas package to calculate the length of shared wall between two adjacent buildings and multiply it by the height of shortest building. Since a building can have more than one joint neighbor, we first identified what are the joint neighbors of each polygon, then length of shared wall between each joint neighbor and target building were calculated and multiplied by the height of shortest polygon. At the end, all shared areas were summed and added as an attribute to a database. Shared area of building was then divided to total vertical area of -Buildings' distance from peripheries: this distance is referred to the distance of each building from closest line that separates urban and non-urban areas. The boundary line that delineates urban and non-urban areas were calculated using MorphLim application3 . This application is designed to identify morphological boundary of urban agglomerations. Urban boundary in this application is identified in three steps. First, it surrounds each built polygon with a buffer of increasing width. The width increases to a geometric logic and the number of clusters are counted at each dilation step. It then plots the process on a log-log graph, where the X-axis is the width of dilation and Y-axis is the number of clusters. In the second step, it identifies a distance threshold on dilation curve that shows a major change in its behavior. Among the maximum curvature points, the point of main curvature has the highest absolute value of curvature. From there, the point of main curvature is located on the estimated curve, which gives the distance threshold to plot urban envelope (Diameter). In the final step, the vector file showing urban envelop is exported [START_REF] Tannier | Defining and Characterizing Urban Boundaries: A Fractal Analysis of Theoretical Cities and Belgian Cities[END_REF]. For this case study city (Nantes), diameter threshold (distance) = 130.365m is where the main curvature is located. Therefore, it is calculated to represent critical diameter limit of built cluster in the shape file.

Buffer radius = Diameter threshold/2 = 130.3/2 = 65.15m. -Building footprint density in RSU: total areas of buildings in a RSU/area of RSU -Façade density in RSU:

𝐹𝑎𝑐𝑎𝑑𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑅𝑆𝑈 = 𝐹𝑟𝑒𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑟𝑒𝑎𝑠 𝑜𝑓 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑅𝑆𝑈 (𝐹𝑟𝑒𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑟𝑒𝑎𝑠 + 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑅𝑆𝑈)
The map in Figure 2-8 shows façade density in Nantes.

Building polygons that have the forms of closed polygons were decomposed into a series of data by measuring the distance of each vertex of building from the center of gravity of building. Application of a clustering algorithm that measure the distance between the given series can be effective to identify/cluster buildings that have similar shapes in database.

When buildings have too many vertices or when they are circular, the length of series becomes too long. Many of the unsupervised algorithms do not perform well when the number of attributes is too high. Therefore, we decided to exclude building shape from further processing.

After calculation of the given parameters and their aggregation with BDTOPO parameters and land data, a Pearson Correlation analysis was performed to see if there is a collinearity between the input parameters. The analysis showed a strong correlation between SVF at RSU scale, Building footprint density, and façade density. Therefore, SVF at RSU scale, and Building footprint density were excluded from further processing. There was also a strong correlation between area of buildings and their volume. Of the two, volume was selected for further processing. (Appendix 2-3)

Data preprocessing

Following the creation of input data, a data cleaning procedure was applied to handle missing values, detect and remove outliers.

Missing features of attributes were filled out with nearest neighbor principle or removed from dataset.

Outliers were detected by graphing the data points, and removing those that were drastically different from the bulk of data points.

Data was then normalized, and transformed before being used in data mining algorithms. The objective of data-transformation is to make data normal distribution-like, and stabilize variance.

Data columns used as input for clustering to extract reference buildings are listed below:

1-Building height 2-Building volume 3-Buildings' roofs SVF 4-Buildings' Net_compacity 5-Building year of construction 6-Free vertical area ratio to total vertical area of building 7-Buildings' distance from peripheries 8-Normalized difference vegetation index (NDVI)/vegetation percentage in RSU 9-Water surface percentage in RSU 10-Façade density of RSU

Framing the problem of reference building identification

The objective here is to cluster similar instances of buildings in one cluster and identify the most typical one in each cluster, for the case study city. Another aim is to minimize the influence of a priori assumptions/biases of modeler on what cluster or class does a specific building belong.

With this in mind, as mentioned in section 2.1.1.2, unsupervised clustering techniques was selected to identify cluster of buildings that share similar characteristics. Since the data was already preprocessed and it was not going to change, offline batch learning approach was used to run the clustering algorithms. Alternative way is an online approach, and it is recommended for cases when input data continuously updates or when input data is so large that computer runs out of memory to process them in one batch.

Note: for practitioners that have huge datasets that do not continuously update, they can also split batch-learning work across several servers, using MapReduce techniques.

Performance measurement indicators

There are several techniques to assess how well your machine-learning model works, but the majority of them focus on lowering the error between the actual and predicted values, such as relative means squared error (RMSE) or mean absolute error (MAE). This approach is more suitable to supervised machine learning, but for unsupervised machine learning, like in this study, when the ground truth is unknown, other ways of measuring are used. Quality of clustering is assessed using some similarity or dissimilarity metrics, such as the distance amongst cluster points. If the clustering algorithm successfully identifies dissimilar and similar values, it has done a good job [START_REF] Géron | Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems[END_REF]. The Average Silhouette Score, Calinski-Harabasz indicator, and Davies-Bouldin index are three of the most frequently used metrics for clustering method assessment.

Average Silhouette score:

This indicator is used to compare how similar an object is to its own cluster or in other words, how dissimilar it is to other (neighboring) clusters. Results of this indicator produce a value between -1 and +1, where a score near +1 implies that the item is well matched in its cluster. A value of zero or negative means the object is very badly matched in its cluster [START_REF] Pedregosa | Scikit-Learn: Machine Learning in Python[END_REF][START_REF] Rousseeuw | Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis[END_REF]. Both Euclidean and Manhattan distance metrics can be used to measure the degree of similarity or dissimilarity, but here we used Euclidean distance.

Calinski-Harabasz indicator:

In clustering, Calinski-Harabasz index is used as a measure of the quality of a partitioning in a dataset. This indicator is the ratio of inter-group variance to intra-group variance. Therefore, algorithms attempt to maximize this score. The value of this indicator varies between 0 and +∞ and the value strongly depends on the number of points in the clustering [START_REF] Pedregosa | Scikit-Learn: Machine Learning in Python[END_REF]).

Davies-Bouldin index:

This indicator is used to define the average degree of similarity measure of each individual cluster with its most similar cluster, and the similarity is the ratio of inter-cluster (within-cluster) distances to intra-cluster (between-cluster) distances. This indicator varies between 0 (best separation) and +∞ (worst separation) [START_REF] Davies | A Cluster Separation Measure[END_REF][START_REF] Pedregosa | Scikit-Learn: Machine Learning in Python[END_REF]).

Clustering algorithms

Partitioning algorithms (Centroid-based)

This group of algorithms split the "n" number of data into "k" number of clusters (groups). This separation method is preferred over the hierarchical model in pattern recognition. The following criteria are often established to satisfy the methods:

Each cluster must have at least one object.

Each data object belongs to one cluster.

The most commonly used partitioning methods are K-Means, K-Medoids, Partitioning around Medoids (PAM), and Clustering Large Applications (CLARA) [START_REF] Chitra | A Comparative Study of Various Clustering Algorithms in Data Mining[END_REF].

Here, we only briefly describe K-Means and K-Mediods.

K-Means:

In this algorithm, a cluster of data points is represented by its centroid, which is obtained from the average of points in that particular cluster. The average point is therefore a fictive point and does not correspond to a real data point in the cluster.

It is also the most commonly used algorithm in scientific and industrial application.

Advantages:

-Effective in dealing with large data sets (computationally not expensive).

-Generalizes to clusters of different shapes and sizes, such as elliptical clusters.

-Frequently terminates at local optimum.

-Works only with numerical values.

Disadvantages:

-Does not perform well with noisy data or when number of attributes is more than 20.

-Requires specifying the number of "k" clusters at the beginning.

A way to overcome this latter limitation is to use Elbow technique, as in Figure 2-12, to determine the optimal number of clusters in K-Means. In this technique, K-Means clustering is run on a range of values of K (say 2 to 15), and then for each value of K the average distortion score is calculated. Distortion score is referred to the sum of the squares of the distance from each point to its specified center.

Application of elbow technique is possible for K-Means, mainly because this algorithm is not computationally expensive.

K-Medoids: this algorithm uses an actual point in the cluster to represent the cluster. The partitioning is based on minimizing the sum of dissimilarities between objects and the representative of cluster.

Advantages:

-Identifies a real data point in each cluster to represent cluster.

Disadvantages:

-Requires specifying the number of "k" clusters at the beginning.

-Computationally expensive.

The main advantage of partitioning algorithms over other types of algorithms is that it is simple to implement, and understand them. It takes significantly less time to execute them. Main drawback is that practitioners need to specify the number of clusters in advance and they generate only spherical shaped clusters.

Hierarchical clustering

This method creates a cluster from top to bottom (divisive) and/or bottom to top (agglomerative). In both of these approaches, it first requires creation of a dendrogram to visualize the suggested number of clusters. A dendrogram is a tree-like format that stores a sequence of clustered clusters. The typical of way selecting number of clusters is by drawing horizontal lines that pass through the longest arms of dendrogram. As can be seen in Figure 2-13, we can split the data into 3, 5, Key advantage of hierarchical clustering is the flexibility of level of granularity and its ability to handle any type of data (attribute type). One drawback of hierarchical clustering is that Agglomerative nesting technique is computationally more expensive than K-Means but less expensive than K-Mediods. Birch, on the other hand, is efficient at processing large volumes of data. Another major limitation of hierarchical clustering is that it is sensitive to noise and it breaks large clusters even if they are similar (Chitra and Maheswari 2017).

Density-based algorithms

In this model, clusters are defined by placing areas of higher density in the cluster. Some of density-based algorithms are Density Based Spatial Clustering of Applications with Noise (DBSCAN), Generalized-DBSCAN (GDBSCAN), Ordering Points to Identify the Clustering Structure (OPTICS), and DBCLASD.

We used DBSCAN in this study. The density based algorithm DBSCAN is the commonly known algorithm of this group of algorithms. In execution of this algorithm, the basic principle is to concentrate on two parameters: the maximum radius of the neighborhood (Eps) and the minimum number of points in a cluster (Min pts). DBSCAN model identifies clusters of varying Main advantage of DBSCAN algorithm is that practitioners are not required to specify number of clusters and that it is able to handle noisy data. It does not perform well with high dimensional data (Chitra and Maheswari 2017).

Distribution-based clustering algorithms

Distribution-based also known as model-based relies on the assumption that data is made up of probability distributions. Unlike k-means, which is a hard clustering and captures the mean of spherical-shaped clusters. Gaussian mixture distribution can capture the means and variances of different elliptical-shaped clusters as well. If the variance is encoded as a matrix instead of just a number, this allows the distribution to be spread out more in one direction than another does. This method yields optimal number of partitions. As such, the modeler does not need to enter the initial number of partitions before analysis. In this approach of clustering, as the distance of point increases from the center, the probability of it to belong to the distribution decreases.

Appendix 2-4 presents python script used for data pre-processing, normalization, transformation and application of clustering algorithms using Scikit learning [START_REF] Pedregosa | Scikit-Learn: Machine Learning in Python[END_REF].

Results of clustering 2.3.1 Comparison of clustering techniques

The objective is to split residential buildings of our case study city (Nantes) into homogenous clusters and select one representative building from each cluster. To achieve this objective, input parameters described in section 2.2.1 (input data for clustering) that show UHI effect and exposure of building to external environmental conditions are assembled in a databases. Input data was then pre-processed and made ready for cluster analysis. For the same reason, it was decided to use K-Means when number of clusters is equal to 7 as the final technique to split residential building data into clusters. As discussed, with K-Means, the centroid is the average of all entries in that cluster. The average, obviously, is not a real entry point, so there is a need to select a real building from each cluster to represent that cluster.

Identification of reference buildings

To do so, using Euclidean Distance, the distance of each entry point to the cluster centroid was measured and the real entry point closest to the centroid was selected as the reference building in each cluster. Appendix 2-5 shows the position of closest building to/from the centroid of clusters.

The index of closest building to the centroid of each cluster was then exported and the building was identified on the map (see Appendix 2-4 for python script). Figure 2-15 shows the position of seven reference buildings identified through the methodology described in methods section, for the case study city, Nantes.

As mentioned, the relative scores of indicators for K-Means when number of clusters are 5, 6, or 7 were pretty close. Same methodology could have applied on those as well. However, selection of 7 instead 5 or 6 gives the practitioners/researchers the possibility to include a wider range of variations.

Clustering here split buildings with consideration of their surrounding parameters that influence UHI effect in each (RSU). Consideration of UHI parameters for each cluster then allowed to project the influence of UHI effect on the reference building of each cluster and by extension to all buildings in that cluster. The workflow, tool and approach used to project UHI effect on typical weather data is illustrated in chapter 3 of this manuscript. Map below, shows the parts of city where there is concentration of different buildings. RSUs in this map are assigned to the cluster that accounts for the majority of buildings inside it. 

Characterization of reference buildings

After identification of reference buildings using K-Means clustering. The buildings were located on Google Maps (Figure 2-17) and additional details were added to prepare them for further processing.

Characterization of reference of buildings were carried out carefully considering all other buildings in the cluster. Year of construction was selected as a primary parameter to enrich the identified reference buildings. It was selected because majority of the data about thermophysical properties of buildings are available as a function of year of construction.

Year of construction for selected closest building to centroid of cluster is not exactly the same as the year of construction in the whole cluster. Therefore, we analyzed the distribution of year In Figure 2-18, it is noticeable that clusters KM7_3, KM7_6 and KM7_4 are composed of buildings constructed in recent years and are mostly located in outskirts of the city as shown in Figure 2-16. Clusters KM7_5, KM7_1, KM7_2, and KM7_0 are composed of older buildings, which are concentrated in city center areas.

In Table 2-2, the year of construction of selected reference building is compared to the median year of construction of other buildings within the same cluster. In clusters KM7_1 and KM7_5, there is approximately 20 years difference between the year of construction of the building closest to the centroid (selected representative building) and the median building of the cluster, but as the construction techniques remain substantially the same and that in typologies such as Tabula or others these buildings are classified in the same category, year of construction was selected as a primary parameter.

Estimating window wall ratio (WWR) of reference building

Window size for each reference buildings with reference to year of construction was estimated from DPE data collected by ADEME 5 . First data for Nantes was filtered out and then using the following expression estimated the ratio of window openings in percentage.

WWR=(['surface_baies_orientees_nord

']+['surface_baies_orientees_est_ouest']+ ['surface_baies_orientees_sud']) / (['surface_parois_verticales_opaques_deperditives'] +['surface_baies_orientees_nord'] + ['surface_baies_orientees_est_ouest'] + ['surface_baies_orientees_sud'])
After calculations, the WWR of buildings were plotted against the ranges of year of construction for Tabula, as depicted in Figure 2-19. From this figure, it is clear that WWR is mostly hovering between 5 and 20% for all buildings. For better representation and characterization of window size and location, all identified reference buildings, shown in Figure 2-17, were either visited on site or visualized through Google Street view.

Estimating U-value of envelop elements

A preliminary estimation of envelope's thermo-physical properties for each cluster as a function of year of construction was performed based on data presented by [START_REF] Civel | Energy Efficiency in French Homes : How Much Does It Cost ?[END_REF].

The authors performed a description of residential buildings across France to determine their average U-value measure in [W.m -2 .K -1 ]). A summary of their findings is presented in Table 2-3. 

Dividing buildings into zones

A review by [START_REF] Shin | Thermal Zoning for Building HVAC Design and Energy Simulation: A Literature Review[END_REF], concludes that thermal zoning has a considerable impact on accuracy of thermal and energetic assessment of buildings at design phase or/and evaluation phases. The authors in their review of thermal zoning methods, discuss three major ways of dividing a buildings into zones: (1) zoning of building based on guidelines, such as ASHRAE Standard 90.1-2016, and CIBSE Applications Manual AM11, IBPSA guidelines on zoning; (2) automatic zoning system of buildings with the help of software, such as Autodesk, which uses the method proposed by [START_REF] Smith | Automated Energy Model Creation for Conceptual Design[END_REF], or EASL optimizer proposed by [START_REF] Yi | User-Driven Automation for Optimal Thermal-Zone Layout during Space Programming Phases[END_REF]); (3) thermal zoning based on designer's subjective judgement.

Most of the main strategies of zoning analyzed in the review by [START_REF] Shin | Thermal Zoning for Building HVAC Design and Energy Simulation: A Literature Review[END_REF] are based on conventional zoning strategy of one core zone and perimeter thermal zoning. [START_REF] Garreau | Development of a parsimony analysis methodology for urban energy simulation/Développement d'une méthodologie d'analyse de la parcimonie pour la simulation énergétique urbaine[END_REF][START_REF] Garreau | Development of a parsimony analysis methodology for urban energy simulation/Développement d'une méthodologie d'analyse de la parcimonie pour la simulation énergétique urbaine[END_REF]) also use this conventional strategy in her thesis and research article to create building zones.

In this study however, selection and identification of reference buildings using unsupervised machine learning allowed us to find them on the site and determine thermal zones based on the position of windows in each building. The approach we have adopted is more realistic and based on the actual layout of each reference building.

Occupancy

Density of occupants was set according to EN 16798-1 to 42.5 m 2 /person and 28.3 m 2 /person in single-family houses and multi-family houses respectively. Occupancy usage schedule for all reference buildings were assumed the same, and is presented in Figure 2-20.

External shading

Windows of reference buildings are equipped with external manual blinders/shutters allowing occupants to control direct solar radiation intake into the zones. In summer months, during the day, occupants are expected to frequently use external shadings as a passive approach to control solar gains. We did not find a concrete source in literature to show when and how occupants operate window shutters in Nantes, our case study city. Therefore, after a discussion it was In summer months, the decisions on how to use windows are assumed to be driven, in addition to those mentioned above, by solar protection. Orientation of window plays an important role on how a user would operate/control external shading. Typically, a user would keep the external shading of a window oriented east during the night and early morning to limit direct solar irradiance into building before they wake up. Similarly, a user would keep external shading of a window oriented west in the afternoon and evening. Windows oriented south are exposed to direct solar irradiance in the middle of day; therefore, users would probably use external shading to limit exposure to direct sunlight at that time of the day. Figure 2-22 shows how an occupant would operate the external shading of windows. The values plotted in this graph are based on the experience and discussion of the author with other experts in this field. No reliable data to prove this assumption has been found by the author.

Air inflow rate

Occupants are assumed to be conscious of the local environment and would open and close windows as can be seen in Figure 2-23.The figure presents an estimation of air inflow volume into the building zones as a function of season, number and status of windows. Air inflow into a naturally ventilated building is highly correlated to the status and openness ratio of windows.

As can be seen in Figure 2-23, when there is no opening in the zone or when windows are closed like in winter, a minimum of 0.7 [ACH] which is approximately 0.4 [m 3 h -1 m -2 ] enters to the zone but when there is one window and two windows in a zone the average air change rate increases to 1.3[ACH] and 1.9 [ACH], respectively. Both, external shading and window operation for air inflow are passive strategies that are proved to have considerable impact on indoor overheating control. They are usually controlled by the decision and ability of users to operate them. Therefore, the author thinks it is more realistic and practical to model these two parameters as a function of occupant profiles. To do so, three types of occupant profiles are described that could represent behavior of user across the city:

1-Highly conscious of external environment 2-Medium conscious user 3-Poor conscious user

An adaptive user is an occupant who is considered to be highly conscious of his/her environment and he/she operates windows and external shading when there is not direct solar radiation into the zone to improve comfort. A medium conscious user is referred to an occupant that operates windows for air inflow but does not use external shading to regulate solar intake into the zone, due to absence of external shading equipment or some other reasons.

A poor conscious user is referred to someone who operates neither windows nor external shading to regulate air inflow and/or solar intake, due to absence of necessary tools, health conditions or external constraints, such as noise. Separate profiles were created for each user type and were used in building simulations.

3D models of buildings and thermal assessment

After characterization, a 3D model of each building was created and imported to TRNYS v.17 for thermal and energetic evaluations. Models of identified reference buildings are presented in Figure 2-24. Perhaps a better way to present reference buildings identified with this method is like in Figure 2-15, because these buildings were selected based on their UHI effect parameters as well as their individual characteristics.

KM7_0 KM7_1 KM7_2 KM7_3 KM7_4 KM7_5 KM7_6

Summary

As was stated in chapter 1, the objective of this research work is to pave the way for the development of methodology that would allow practitioners to build indoor overheating vulnerability map at the city scale. However, in practice, simulations or any sort of study at such a scale requires analysis of large number of buildings taking into consideration many characteristics. Detailed dynamic simulations tools are expensive to be used at city scale for indoor overheating evaluation tasks. A viable solution in such case is to develop a set of archetypal building types that could represent most of the building stock and perform necessary scenario analysis or simulations on them. This chapter of the manuscript is dedicated to literature review and description of cluster analysis to identify clusters of buildings and represent each one with one real building.

Following is a summary of the tasks and results covered in this chapter:

Main issues covered:

• A detailed literature review on building archetypes development methods was carried out and their advantages, disadvantages were discussed. • To minimize the biases and a priori assumptions of the modeler, it was decided to use cluster analysis (unsupervised machine learning) to group residential buildings in the case study city, Nantes, into different groups.

• Input parameters for cluster analysis were chosen in line with objective of the research thesis in such a way that takes also into consideration the urban environment (possible UHI effect). • Additional information necessary for characterization of reference buildings were investigated.

Results:

• There is no better or worse way to group buildings into clusters or groups, it depends on the objective and available input information. Practitioners/researchers need to test multiple methods for each case to identify which one suits their case better. • K-Means clustering technique was chosen, after a comparative analysis of various methods for cluster analysis. • Centroid of K-Means is calculated from the average parameters of all elements in the cluster and it is a fictive point. Therefore, the closest real entry (building) to the fictive centroid was identified and selected as the representative building of the cluster.

Overall, this chapter described the workflow for identification of representative buildings, discussed the characterization stage and made the representative buildings ready for parametric simulations. The next step is to prepare future weather files, and project the influence of UHI effect on the weather file of each representative building. The effects of climate change are already noticeable and it requires addressing thermal discomfort of buildings associated with it in a way that meets current and future scenario needs.

In addition, currently, buildings are designed with typical climate conditions that are based on historical climate records. They naturally do not perform well under extreme weather conditions. This point highlights the need to direct the research towards creation of future and extreme weather files to help practitioners to design buildings that not only meet typical heating demand requirements, but also are able to perform well under extreme conditions, including heatwaves [START_REF] Hosseini | Generating Future Weather Files under Climate Change Scenarios to Support Building Energy Simulation -A Machine Learning Approach[END_REF]. One of the best ways to make sure buildings meet such requirements is to use building performance simulation (BPS) tools at different stages of development.

BPS is also called as building simulation or building energy and thermal modelling in the literature. It refers to the use of computer software, mainly to predict/evaluate the energy demand/consumption of buildings. Many of these simulation tools are now capable of modelling thermal comfort, daylight performance, indoor air quality, environmental footprint, and many more of building indicators [START_REF] Altan | Building Performance and Simulation[END_REF]. These tools are able to simulate buildings at different stages of development: concept design, schematic design, design development, construction documents. They can also help practitioner to evaluate building performance of existing buildings.

Three methods of thermal and energetic simulations are commonly used nowadays for building performance evaluations: static BPS, semi-dynamic BPS, and dynamic BPS.

Static BPS: this method is used in simplified programs to evaluate how buildings perform in a stationary regime using a limited number of building factors. This method only partially simulates building performance. Mainly because it does not consider periodic changes of temperature. Accuracy of input data has a fundamental importance to obtain results. This approach is popular in building energy certification. An example of static thermal simulation tool is DOCETpro 2010, and CadSoft Thermix for Energy performance certificate (DPE) calculations.

Semi-dynamic: this method of BPS employs dynamic simulation to account for thermal inertia but it requires simplified input data to represent climatic conditions and building description. An example of Semi-dynamic simulation tool is Sketch Design Software.

Dynamic BPS: this method analyses in details thermo-physical properties of envelop, thermal inertia, periodic variability of outside weather conditions, solar radiation, natural ventilation, heat gains from occupants, etc. An example of dynamic BPS is Trnsys type 56.

Of the three, dynamic method is considered more appropriate in building thermal comfort and energy demand assessment. This method requires at least hourly weather data that contains temperature, humidity, radiation, wind, atmospheric pressure, etc. Depending on the objective of dynamic BPS, two distinctive weather data types could be used: synthetized and observed data. The latter is often used in performance monitoring phase and is collected from weather stations or by in-situ measurements. The former is more frequently used in the design phase, and is synthetically generated from climate normals. WMO defines climate normals as a period that covers at least 30 years of data.

For evaluation of buildings' climate resilience, future weather data are required. These data are based on future emission scenarios and projections produced using climate models.

Emission scenarios are used as input for General Circulations Models that also referred as Global Climate Models (GCMs). Researchers have utilized GCMs to examine the impact of climate change in a variety of sectors. For future climate scenarios, GCMs mathematically simulate atmospheric, oceanic, and biotic interactions and integrate them with radiative forcing scenarios. The models are made up of grid cells created by latitude and longitudinal lines, which are used to generate meteorological data. Although these models aid in the consideration of climate change, their output data cannot be utilized directly for building energy modelling [START_REF] Hosseini | Generating Future Weather Files under Climate Change Scenarios to Support Building Energy Simulation -A Machine Learning Approach[END_REF].

GCMs cover entire surface of the globe and their spatial resolution is coarse, typically between 150 to 600 km (P. Tootkaboni et al. 2021). Application of given GCMs for build thermal evaluation requires downscaling to a finer spatial and temporal resolution to consider regional and local scale estimates of climate variability and change. As can be seen in Figure 3-1, there are two main approaches to downscale GCMs: Dynamical downscaling (DDS) and empiricalstatistical downscaling (ESD).

DDS and ESD stand on two distinctive philosophies: DDS relies on climate data that are based on our knowledge of physical processes (solving equations for humidity, temperature, local wind, etc.) and ESD makes use of information obtained from the statistical analysis (e.g. regression relationships) of previous observed climate data. [START_REF] Erlandsen | A Hybrid Downscaling Approach for Future Temperature and Precipitation Change[END_REF][START_REF] Moazami | Impacts of Future Weather Data Typology on Building Energy Performance -Investigating Long-Term Patterns of Climate Change and Extreme Weather Conditions[END_REF] in their studies have also discussed a hybrid approach in which the results of dynamically downscaled GCMs, also referred to as Regional climate model (RCM), stored at a coarse resolution undergo further downscaling using statistical approach.

A) B) As can be seen in this figure, GCMs do not capture variations in vegetation, complex topographies and littoral zones that are located inside the rectangles, which are important aspects of the physical response that governs the signal of regional/local climate change.

In contrast to GCMs, RCMs account for vegetation, complex topographies, and littoral zone pretty well. RCMs are also able to provide a detailed description of extreme weather conditions, including statistical data on extreme weather events [START_REF] Rummukainen | State-of-the-art with Regional Climate Models[END_REF].

Of course, the DDS has certain drawbacks too: it is computationally expensive, and highly sensitive to boundary conditions. Boundary conditions of RCMs are provided by the GCM that they downscale from. This means if the GCM contains errors, RCM will contain them too.

Furthermore, RCMs (like GCMs) contain semi-empirical settings like for convection: the assumption here is that these semi-empirical settings will be valid for future climate scenarios as well. Another constraint of RCM is the spatial resolution of models. For current generation of RCMs, it is around 1 km and this resolution requires phenomenal processing power for calculations.

RCMs generally need to be validated against observational datasets to assess the ability of the model to reproduce current climatic conditions. This then makes it possible to define its deficiencies, resulting from the various modelling assumptions and their related uncertainties.

One of the major sources of uncertainty in RCMs comes from the large number of physical processes parameterized in the climate model and many of these parameters are uncertain. Since uncertain parameters are responsible for a large part of the modelling errors, the parameter uncertainty is usually contained by calibration or tuning methods (bias correction). This tuning process is one of the aspects of work that requires highly specialized technical skills to be able to ensure efficient implementation and operation of the RCMs.

Theory of bias correction for DDS method (Figure 3 It is also important to note that Bias function (difference between present modelled and observed climate data) can be a linear function or a scale transfer function that has mean, variance and shape [START_REF] Dierickx | Copernicus Climate Change Programme: User LearningService Content[END_REF].

For practitioners, if the objective of use of weather data is the relative change in the future compared to present, bias is not a big problem. It is however important, if practitioners are dealing with water availability in the future. Bias in relative humidity level can also have a huge impact in future climate information prediction.

In this work however, we did not bias adjust our climate models because in the literature review, we came across arguments that showed that local bias correction is still an open question for researchers.

Two articles by Machard, Anaïs et al. [START_REF] Machard | A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data[END_REF] , and Maraun, Douglas. on 'Bias Correcting Climate Change Simulationscritical review [START_REF] Maraun | Bias Correcting Climate Change Simulationsa Critical Review[END_REF] argue that current local bias correction techniques are resource intensive (require weather data collection over an extended period) and they rely on the assumption that bias correction factors (relative or absolute value) will remain the same in the future for all climate variables (temperature, humidity ratio, GHI, wind speed, etc.). However, there is no evidence to support this assumption, and it only adds a supplementary uncertainty in the climate model. First step is to derive statistical relationship between observed small-scale variables and greater global climate model scale variables. The second step applies the derived statistical relationships to estimate future climate at the smaller scale based on larger variables from future climate GCMs. Unlike DDS that downscales all climate parameters, ESD only downscales primary climate variables and that is one of the reasons why it is computationally not as expensive.

There are two major downscaling approaches in ESD: Stochastic downscaling and morphing method (P. Tootkaboni et al. 2021).

A well-known tool that uses stochastic ESD approach is Meteonorm. In this approach, synthetic weather time series data is created using empirically derived statistics. It is computationally cheap, but it requires large amount of "training" datasets to give the model proper statistics and handle unknown coefficients of the model. [START_REF] Belcher | Constructing Design Weather Data for Future Climates[END_REF] argue that the weather series it generates may not be always consistent meteorologically.

Major tools using morphing ESD approach are CCWorldWeatherGen and WeatherShift. In this approach, the key assumption is that present weather data is a reliable baseline. It then adjusts present design weather data by the changes to climate forecasts of GCMs and RCMs. This adjustment is done in three ways: shifting, scaling, or combination of both [START_REF] Machard | A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data[END_REF].

Several studies have been conducted on the relative difference of DDS and ESD on climate impact assessments of buildings. (P. Tootkaboni et al. 2021) in their paper on comparative analysis of different future weather data for building energy simulations, compared weather files from three tools that are based on ESD (WeatherShift, Meteonorm, and CCWorldWeatherGen) with one DDS future typical meteorological year. Their results shows that all ESD weather files have relatively similar operation in predicting thermal comfort and energy consumption in buildings in comparison to DDS weather file. Their paper also states that ESD method, regardless of how it is used can provide sufficient information to perform comparative analysis on long-term variations in energy consumption of buildings, but existing inconsistency within the method can lead to significant prediction error. Under such conditions, they found DDS method more reliable when the objective of the study is to investigate and communicate resilience of buildings to future climate conditions. [START_REF] Ramon | Future Weather Data for Dynamic Building Energy Simulations: Overview of Available Data and Presentation of Newly Derived Data for Belgium[END_REF] in their paper state that ESD method is more suited to investigate average energy performance in future climate realization but less suited to assess extreme conditions. DDS, on the other hand, can be used for both average and extreme assessment purposes. [START_REF] Moazami | Impacts of Future Weather Data Typology on Building Energy Performance -Investigating Long-Term Patterns of Climate Change and Extreme Weather Conditions[END_REF]) in their study on the impact of future weather data types on building energy performance concluded that weather files generated using DDS that take into account both typical and extreme climatic conditions are most reliable to evaluate energy robustness in the context of future climate uncertainties.

Heatwave weather data

One of the modern trends in climate research is the study of abnormal (extremely hot or extremely cold) weather events. Such extreme surface temperature variations are formed fairly in short time intervals that are in the form of waves. It increases, reaches to a peak and then starts to descend creating the shape of a wave. These heat or cold waves are characterized by a peak temperature, duration, intensity, and spatial dimension. All these characteristics listed above play an important role in vulnerability of people exposed to heatwave.

Integration of heatwave weather data in BPS is not usual among practitioners so far. This is mainly because of two reasons:

First, absence of sufficient data from historical heatwaves in many locations across the world.

Second, absence of one globally accepted definition for heatwave or in other words, presence of multiple definitions for it (M. [START_REF] Zhang | Heat Wave Tracker: A Multi-Method, Multi-Source Heat Wave Measurement Toolkit Based on Google Earth Engine[END_REF].

This is due to the fact that the impact of a heat wave is influenced by a variety of factors in different regions: environment, socio-demographic features of community, and population

Chapter 3 :Climate change data, heatwave, urban heat island weather data 90 adaptation capacity. A reasonable definition of heatwave at either local or regional level is essential for analysing its health implications and implementing effective heat warning systems at various levels.

Classical definition of it, however, states that a heat wave is commonly assessed in comparison to a specific location's average weather and normal temperature ranges of a season. The problem with this classical definition is that the baseline is not specified. As the global temperature increases, the baseline also shifts and the intensity of past extreme weather events would seem smaller over time.

There is also no consent on the type of heatwave data that BPS practitioners need to use: some suggest using historical measured heatwaves, others prefer modelled heatwave data from various climate models, but majority do not use it at all [START_REF] Machard | A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data[END_REF]).

Heatwave tools and indices

Based on classical definition, an R package developed by (W. Schlegel and J. Smit 2018) provides a comprehensive analysis that detects, and visualizes marine heatwaves. (M. [START_REF] Zhang | Heat Wave Tracker: A Multi-Method, Multi-Source Heat Wave Measurement Toolkit Based on Google Earth Engine[END_REF]) argue that the R package is not efficient when applied to large gridded data.

Another tool that allows extracting and processing heatwaves data of any location efficiently is Global Heat Wave and Warm-spell Data Record and Analysis (GHWR) MATLAB toolbox. This tool contains various definitions for heatwaves, and is also capable of detecting/extracting multiple characteristics of heatwave [START_REF] Raei | GHWR, a Multi-Method Global Heatwave and Warm-Spell Record and Toolbox[END_REF]).

(M. [START_REF] Zhang | Heat Wave Tracker: A Multi-Method, Multi-Source Heat Wave Measurement Toolkit Based on Google Earth Engine[END_REF] in their paper presented a Google Earth Engine-based toolkit named heat wave tracker (HWT). This tool is based on cloud computation engine, and it can be used to dynamically visualize, extract, and process complex heatwave from multi-climate datasets. This tool has been used to exploit climate datasets and develop nine heatwave datasets across Australia. The tool works well at continental scale and according to the authors, it is applicable anywhere in the world.

According to the (M. [START_REF] Zhang | Heat Wave Tracker: A Multi-Method, Multi-Source Heat Wave Measurement Toolkit Based on Google Earth Engine[END_REF]), outputs of these tools are extremely sensitive to the initial definition of heatwave index adopted. In the following, a brief list of definitions/indices for heatwaves is illustrated.

Constant temperature threshold approach

A heatwave, according to this definition, occurs when temperatures consistently remains above a certain threshold for a specific period of time [START_REF] Hertel | Quantification of the Heat Wave Effect on Cause-Specific Mortality in Essen, Germany[END_REF][START_REF] Wagner | Evolution of heatwaves and associated mortality in France, 2004-2014/Évolution des vagues de chaleur et de la mortalité associée en France[END_REF]. Extended period of time is referred to 2, 3, or more, consecutive days when maximum, minimum or average temperature is above a specific threshold.

Probability distribution function (PDF)-derived temperature threshold

Temperature thresholds of heatwaves with this approach are set in accordance to local climate conditions. For instance, temperature events during which the observations exceed the 90 th or 95 th percentile threshold for multiple consecutive days is defined as heatwave threshold temperature [START_REF] Raei | GHWR, a Multi-Method Global Heatwave and Warm-Spell Record and Toolbox[END_REF]. As the name suggests, this approach is based on spatially localized temperature threshold that separates heatwave days from typical ones. It only considers long-term average daily temperature to define threshold. In other words, it is when temperature is +5 degrees above the long-term average. [START_REF] Raei | GHWR, a Multi-Method Global Heatwave and Warm-Spell Record and Toolbox[END_REF] argues that this approach is an outdated way of measuring heatwaves.

Upper tail percentile

In this technic, heatwave temperature threshold is both geographically and temporally localized.

Thresholds are defined as an upper tail (85th, 95th) percentile thresholds of PDF generated from long-term daily temperatures over a window of 15 ( 21) days, centered around the calendar day of interest for each calendar day [START_REF] Machard | A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data[END_REF][START_REF] Raei | GHWR, a Multi-Method Global Heatwave and Warm-Spell Record and Toolbox[END_REF]; Stefanon, D'Andrea, and Drobinski 2012).

Summer-derived threshold approach

This approach is theoretically similar to PDF-derived temperature threshold method but in contrast to that uses only long-term summer daily temperatures. According to [START_REF] Raei | GHWR, a Multi-Method Global Heatwave and Warm-Spell Record and Toolbox[END_REF] this definition of heatwave is more appropriate for studies that concentrate on extreme heat and its impact on mortality, morbidity of people or yield level of agricultural products.

Excess heat factor (EHF)

This method uses the "excess heat" and "heat stress" measures to build the index. "Excess heat" is used to characterize the local long-term temperature anomalies in comparison to typical climate of the region, and "heat stress" illustrates the short-term excessive temperature variation to account for thermal acclimation [START_REF] Perkins | Increasing Frequency, Intensity and Duration of Observed Global Heatwaves and Warm Spells[END_REF][START_REF] Raei | GHWR, a Multi-Method Global Heatwave and Warm-Spell Record and Toolbox[END_REF]. This index can effectively describe the impacts of heatwaves on human mortality and morbidity.

Standardized heat index (SHI)

This method was proposed by [START_REF] Raei | GHWR, a Multi-Method Global Heatwave and Warm-Spell Record and Toolbox[END_REF] with the introduction of heatwave detection toolbox, GHWR. This approach is a probabilistic and generalized index that illustrates the heatwaves as a function of their occurrence probability for long-term weather data records. It is both spatially and temporally localized. According to the author, this index can be used to detect cold-spells (cold waves) as well as warm-spells (heatwaves) in the climate datasets. This index also allows practitioners/researchers to select or tune thresholds so that it becomes more suitable for their studies.

In this study, a temperature-based index was selected to measure the characteristics of heatwave in weather files, because it was previously employed by [START_REF] Wagner | Evolution of heatwaves and associated mortality in France, 2004-2014/Évolution des vagues de chaleur et de la mortalité associée en France[END_REF] for France. The details of the index is described in section 3.2.4 of this chapter and a python script was developed to calculate the intensity, duration, and cumulative intensity of heatwave in each weather file.

Integration of UHI effect on weather data

Majority of tools for BPS simulations use weather data in Typical Meteorological Year (TMY2), EnergyPlus weather (EPW), DOE or other common formats. The weather information Chapter 3 :Climate change data, heatwave, urban heat island weather data 92 contained in these weather files can come from various sources: could be synthetically generated for one point using ESD or DDS approaches, or obtained from weather stations.

One common point in these weather files is that they are extracted for a specific location, and under normal conditions, the urban climate condition (UHI effect) is not taken into account.

As discussed on chapter I, urban environmental conditions that influence UHI intensity can have significant impact on summer and winter indoor temperatures of buildings in cities. Therefore, projecting the dynamics of UHI effect on BPS is essential for appropriate indoor vulnerability and thermal comfort assessment. One way to solve this is by chaining an Urban Climate model (UCM) with building simulation tool. Following paragraphs will briefly describe UCMs that can project the UHI effect on weather files efficiently.

Various urban climatic models have been developed by researchers that capture the physical interaction of urban elements (e.g., buildings, trees, vegetation, human activities that generate heat). Each one of these UCMs are designed for a different spatial and temporal scale.

( OpenFOAM), RayMan, SOLWEIG, TownScope, and UMEP that are used to model micro and meso-scale climate conditions. The authors argued that newer models are increasingly focusing on multi-scale models that are also able to bridge the gap between micro-and meso-scale models. These new models have the potential to produce better spatially consistent results.

Current popular examples of these models include UMEP, and Integrated Multi-scale Environmental Urban Model (IMEUM). Another example of integrated multi-scale model is described by [START_REF] Wong | An Integrated Multiscale Urban Microclimate Model for the Urban Thermal Environment[END_REF], where they coupled UCM into WRF model and chained the outputs of WRF to OpenFOAM which was further linked to EnergyPLus.

Among the listed tools and techniques above, The Urban Weather Generator (UWG) parametrically simulates the UHI effect on rural weather station data for a single point [START_REF] Bueno | The Urban Weather Generator[END_REF]. UWG is very helpful to take into consideration boundary conditions of building for BPS, where local/urban air temperature observations are not available.

Preferred technique to project the urban climate condition effect on BPS is highly influenced by the tool at the disposal of modeler, scale of study, temporal resolution, as well as the relevance to policy and decision-making. [START_REF] Allacker | Energy Simulation and LCA for Macro-Scale Analysis of Eco-Innovations in the Housing Stock[END_REF]) presents a case on trade-off between data granularity of models and relevance to urban-scale decision/policy-making. According to the authors, data granularity is high at small-scale simulations and low at large scale. Relevance to decision/policy-making at city scale on the other hand, is low at small-scale simulations and high at large-scale simulations (Figure 345).

The knowledge and information coming from dynamic simulation models that are simulated at building scale can be very helpful at making decision at the level of a single building, but more difficult when the scope is larger, as it happens in this study that attempts to build a map that shows indoor vulnerability of people to overheating at city-scale.

In addition, urban planning policies and decisions aim to foster benefits for all at mesoscale/urban-scale (e.g., promoting energy consumption, reducing overheating vulnerability of building stock, cutting on GHG emissions), whereas, intervention resulted from those decisions are generally taken at micro-scale (e.g., improving insulation).

Developing an easy to use and interpret method to link urban climate, and BPS can be immensely helpful in such a context [START_REF] Perera | Quantifying the Impact of Urban Climate by Extending the Boundaries of Urban Energy System Modeling[END_REF].

Considering all the issues discussed, in this study, the author decided to use Urban Weather Generator (UWG) method to project the influence of UHI effect on typical future weather data and observed weather data. It was selected because it provides a good balance between the granularity of study and relevance to policy making. It is computationally cheap and does not require extensive data collection from the site. Recent studies by [START_REF] Boccalatte | Microclimate and Urban Morphology Effects on Building Energy Demand in Different European Cities[END_REF]; UWG is a methodology and software tool that estimates hourly urban canopy air temperature and humidity ratio based on urban morphological parameters and urban land use. It can be used alone or in conjunction with other existing programs to account for the impact of UHIs.

UWG model contains four interacting components: Rural Station Model (RSM) which estimates sensible heat fluxes; Vertical Diffusion Model (VDM) that calculates vertical air temperature profiles at a rural weather station; Urban Boundary Layer (UBL) that accounts for vertical histograms of the air temperature above the urban coverage; and Urban Canopy and Building Energy Model (UC-BEM) that allows to take into consideration temperature and humidity ratio of the air in the urban canyon [START_REF] Kamal | Impact of Urban Morphology on Urban Microclimate and Building Energy Loads[END_REF]). UWG has also previously been validated in several studies for Basel, Singapore, Toulouse, Rome, Barcelona, and Abu Dhabi [START_REF] Bande | Validation of UWG and ENVI-Met Models in an Abu Dhabi District, Based on Site Measurements[END_REF]).

Data and Methods

A large number of impact, vulnerability, and adaptation studies are being conducted across the world, and in particular in Europe. Several common data processing tools and procedures are necessary for researchers/practitioners to move from the GCM data to the impact/vulnerability model data. Selection of climate data is one of several inputs necessary for a typical impact/vulnerability assessment, regardless of the industry.

Researchers/practitioners can access climate data, most of the time free, from online platforms where climate science specialists provide the raw data of GCMs and RCMs. Major data providers are as follows: The python scrip used to transform downloaded historical weather data from Meteo France archives into (.epw) weather file format is presented in Appendix 3-1.

Extracting yearly weather data

Coordinated Regional climate Downscaling Experiment CORDEX (www.cordex.org) is an international coordinated effort supported by World Climate Research Programme's Working Group on Regional Climate. As a part of CORDEX, EURO-CORDEX is today the main reference framework for regional downscaling research of climate data. The main goals of this program are: (1) to evaluate and improve different RCMs, [START_REF] Gamero-Salinas | Overheating risk assessment of different dwellings during the hottest season of a warm tropical climate[END_REF] to better understand regional and local climate phenomena through downscaling, (3) to generate coordinated RCM projections at global scale, (4) and to enable users of regional climate data to exchange knowledge [START_REF] Daniela | Regional Climate Downscaling over Europe: Perspectives from the EURO-CORDEX Community[END_REF].

EURO-CORDEX maintains a consistent database of multi-year historical and projected data that can be used for climate adaptation studies in various sectors. The data for Europe is available on a horizontal grid resolution of 0.11° x 0.11°, equivalent of 12.5 km [START_REF] Jacob | EURO-CORDEX: New High-Resolution Climate Change Projections for European Impact Research[END_REF]. All necessary components to generate weather files for building simulations can be downloaded at 3h, 6h, daily, monthly and seasonal temporal resolution. For this study, we downloaded 3h time-step data.

In ). Practitioners are cautioned to check for bias-adjustment of climate data before using them in BPS. In this study, raw data were downloaded from CDS portal and they are not bias adjusted. Raw NetCDF data that contain RCMs in CORDEX domains were projected to a Rotated grid pole coordinate system.

Data of Nantes were extracted using python script that identified the closest point of the data grid in NetCDF file to the assigned latitude and longitude coordinates.

The script first transforms regular latitude and longitude of target location into rotated latitude and longitude then using the new rotated latitude-longitude identifies the closest grid point in NetcDF file. Appendix 3-2 shows the script that transforms lat/lon to rlat/rlon and vice versa. 

1 CNRM CNRM-CERFACS-CM5 (France) CNRM-ALADIN63 (France) CNRM_ALADIN 2 SMHI IPSL-CM5A-MR (France) SMHI-RCA4 (Sweden) ISPL_SMHI 3 GERICS MPI-M-MPI-ESM-LR (Germany) 

GERICS-REMO2015 (Germany) MPI_REMO

The climate models in Table 3-2 were chosen based on the availability of completed simulations with all six climate variables for RCP8.5 scenario experiments at 3h time-step interval. More combination of GCM and RCM are possible in CDS portal but, here, we only used each GCM and RCM once.

Dry-bulb temperature was first converted from Kelvin to Celsius. Polynomial interpolation (n=7) was used to convert 3h time-step data to 1h time-step for dry-bulb temperature and global solar radiation and linear interpolation for the rest of variables.

Dew point temperature (Td) was estimated from dry bulb temperature and relative humidity using August-Roche-Magnus formula for dew point temperature approximation (Thiis et al. 2017). Sunrise and sunset time for the given location was calculated using Python Astral package, which is based on equations from Astronomical Algorithms, by Jean Meeus. Interpolated global solar radiation data that were before sunrise and after sunset were set to zero. Solar zenith angle, direct normal irradiance and diffuse horizontal radiation were calculated following the methodology described by [START_REF] Machard | A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data[END_REF]. Practitioners can also use alternative techniques available in pvlib Python Package such as DISC, and Perez approximation to calculate solar angle, direct and diffuse irradiance from global horizontal irradiance (F. [START_REF] Holmgren | Pvlib Python: A Python Package for Modeling Solar Energy Systems[END_REF][START_REF] Nou | A New Approach to the Real-Time Assessment of the Clear-Sky Direct Normal Irradiance[END_REF]). Following the steps described above, for each year of each climate model, a yearly weather file was generated. In the next step, 30 years of weather data for each climate model were assembled to generate future typical weather file.

𝑇 𝑑 = 𝑏[𝑙𝑛 ( 𝑅𝐻 100 ) + 𝑎 • 𝑇 𝑏 + 𝑇 ] 𝑎 -𝑙𝑛 ( 𝑅𝐻 100 ) - 𝑎 • 𝑇 𝑏 + 𝑇

Assembling typical weather files

We used EN ISO 15927-4_2005 standard created by European Committee for Standardization, proposing a method for constructing reference year of hourly weather data to generate typical future weather file. In this method, dry-bulb temperature, relative humidity, and global horizontal radiation climate variables are the key parameters in selection of "best" months to form reference year, with wind speed as a secondary (ISO 15927-4 2005).

Following the ISO 15927-4 method for each climate model, we first merged 30 years of hourly weather data and calculated daily means. Then for each calendar month, cumulative distribution function (CDF) of daily means of every year and of multiple-year were calculated.

For each calendar month, Finkelstein-Schafer statistic (FS) was calculated and individual months from multiple-year dataset were ranked in ascending order. For each calendar month and each year, separate ranks were added for each of the three key parameters. ISO 15927-4 gives equal weighting to three key climate parameters. Therefore, ranks of key parameters were only added to one another and ranked in ascending order. Of the three months with lowest total ranking for three key parameters, the one with the smallest wind speed deviation was selected as the "best" month to be included in the reference year. The procedure is also presented in Figure 34567.

Appendix 3-4 illustrates the calculation procedure and script used in creation of typical meteorological year from 30 years of data.

As an example, Figure 3-8 shows cumulative distribution function plots of dry-bulb temperature, relative humidity, global horizontal irradiance and mean wind speed deviation plot for the calendar month of July in IPSL-SMHI model. In this example, from the three key parameters, July of 2050, July of 2060 and July of 2061 were candidates of best month for reference year. Among them July of 2061 had the smallest wind speed deviation from July in multiyear dataset. Therefore, it was selected as the "best" month for reference year. For comparative analysis presented below, observed weather data of 2003, and one ESD future weather scenario (meteonorm RCP 8.5 2050) was also downloaded from MeteoFrance archives and Meteonorm v.8 software respectively, for our case study city, Nantes.
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Projecting UHI effect using UWG

As mentioned earlier, we used spatially broad modelling approach using UWG to project the influence of UHI effect on weather files. For this, to maintain consitency with our previous works, we used python to read epw file, project the effect of UHI and export a modified version of weather file.

In the proposed methodology in this manuscript, we first mapped building clusters with building and urban morphological parameters. They were also used as input for UWG numerical model.

The input parameters of UWG model were taken from the cluster of buildings that are decribed in chapter 2 of this manuscript. Appendix 3-5 demonstrates the brief procedure to modify weather files with UWG in python.

Comparative analysis of weather files

Statistical distribution of monthly dry bulb temperature, relative humidity, and global horizontal irradiance of each DDS climate model, as well as Meteonorm RCP 8.5 2050, and measured weather data of 2003 were compared. Additionally, heating degree-days (HDD) and cooling degree-days (CDD) indices in each weather file were calculated using the methodology and base temperatures recommended by EUROSTAT to form a common and comparable basis in comparison. These two indicators are commonly used to give a rough estimation of heating and cooling energy demand. Calculation of HDD and CDD both rely on base temperature, which depends in principle on various factors related to building and surrounding. In this study, base temperature in HDD calculation was set to constant value of 15°C and in CDD calculation to a 24°C [START_REF] Bhatnagar | Determining Base Temperature for Heating and Cooling Degree-Days for India[END_REF].

In HDD calculation:

If Tm ≤ 15°C then HDD = ∑i(18°C -T i m), Else HDD = 0,
Where T i m is the mean air temperature of day i.

Similarly in calculation of CDD,

If Tm ≥ 24°C then CDD = ∑iT i m -21°C), else CDD = 0,
Weather files were also investigated with a temperature-based index to check the frequency and intensity of heatwaves in them. This temperature-based heatwave index was developed for France after the exceptional heatwave in summer of 2003. This index relies on the heatwave and health alert system (Sacs) piloted by Santé Publique France. Its objective is to anticipate heat waves that are likely to have a major health impact. Every day, in each metropolitan department, the level of risk is assessed by MeteoFrance comparing forecasts of meteorological indicators with departmental alert thresholds. Thresholds are shown in Figure 3-9, below.

These thresholds are defined on the bases of a historical analysis and with aim to anticipate heat waves that are likely to be associated with excess mortality of at least 50% in 4 major cities and 100% in smaller cities. In this method, "A heat wave is defined as a period when the minimum and maximum temperatures, averaged over three days, simultaneously reach or exceed departmental alert thresholds". The onset of a heat wave corresponds on the first day on which the meteorological indicators of Sacs (average over three consecutive days of minimum and maximum temperatures) reaches or exceeded alert thresholds (Figure 3456789). The end of a heatwave is the last day of meeting or exceeding these thresholds (Wagner, 2006). The Sacs thresholds have seen certain evolutions over the years and the threshold presented in Figure 3-9 are those of 2016.

Selected weather files for the case study city were measured against the heatwave meteorological thresholds of case study city department. To do so, maximum daily temperatures (day_max) and minimum daily temperature (day_min) of weather files were extracted from hourly data. A python script was written to detect and measure the heatwaves parameters such as start date, duration, peak temperature, intensity of maximum temperatures, and intensity of minimum temperatures.

Appendix 3-6 illustrates calculation of heatwave presence in .epw weather files with a python script using this temperature-based index. The script to calculate HDD and CDD is in Appendix 3-6.

Case study department Sn Sx

S Sx

Results and discussions

Comparative analysis of weather files

The objective of this sub-section is to analyse the differences in Variations in weather files are also reflected on the number of HDD and CDD, presented in Table 3-3. The main purpose of HDD and CDD is to demonstrate heating or cooling energy demand of buildings. The spike in CDD for observed weather data of 2003 is most likely due to heatwave data for the month of August in the weather file. Spike in HDD in CNRM-ALADIN, on the other hand, is probably due to a cold snap in March and April, shown in (Figure 3-10,a). Application of heatwave presence assessment index, described in section 2.3, also detects heatwave that will likely to have major health impact only in CNRM-ALADIN typical future weather data and measured weather file of 2003 (see . Duration of heatwave detected in CNRM-ALADIN weather file is 3 days and peak temperature is 39.9 degrees. In 2003 measured weather data, the duration of heatwave is 9 days and peak temperature reaches up to 39.1 degrees.

Among the selected weather files, for our case study city, measured weather data of 2003 and CNRM-ALADIN can both be used in the study of heatwave impact on indoor thermal comfort during summer months. However, if the study period also includes winter months, the 2003 measured weather file may not be suitable. That is mainly because it underestimates temperature increase due to climate change compared to other weather files in winter months. Due to the absence of a concrete reference for future weather conditions, it is difficult to declare one climate model is better than others; nonetheless, considering monthly statistical dispersion and presence of anomalies it is better, under current conditions, to use measured weather data, such as weather data of 2003 for indoor thermal comfort evaluation buildings during heatwaves.

For typical future weather scenarios, weather data generated from ESD and DDS could both be used. In this study, due to time limitations we decided to evaluate the performance of our selected reference buildings with only IPSL-SMHI typical future weather file of 2040 to 2070.
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Urban heat island effect on weather data

IPSL-SMHI FTWY was chosen for further evaluation of this methodology. This weather file and 2003 measured weather file were modified for urban heat island effect, individually for each representative building, using UWG model before being used in Trnsys v.17 for multizone dynamic building simulations. Input of UWG model were urban morphological parameters of each building cluster.

Output of UWG model were new weather files for each building cluster containing urban microclimate data in terms of temperature and relative humidity. The output files were then compared to the baseline weather file to evaluate the efficacy of UWG methodology for each cluster of buildings. In this comparison, mean monthly temperature of baseline weather file was subtracted from mean monthly temperature of modified weather file. Results of this comparison are presented in . Differences between baseline and modified weather files show the intensity of UHI effect projected by UWG model for each cluster of building as a function of their urban morphological characteristics on two weather files. As can be seen in Table 3-4, temperature difference between modified and baseline weather files for all buildings is consistently higher in summer compared to winter months. UHI effect projected on KM7_0, KM7_1, and KM7_5 is higher than on KM7_6, and KM7_4 throughout the year, mostly likely because they are located in more densely built areas and has lower ratio of vegetation and greenery. Additionally, UHI effect projected on two weather files by UWG for the same urban morphological parameters varies considerably. To investigate this variation, we compared climate variables of the two weather files and the difference in the magnitude of UHI effect between the two but did not notice any clear correlation between model performance and climate variables. However, temperature, relative humidity, wind speed, global horizontal irradiance, etc. in the two weather files were not identical and the difference between UHI effect projected on two weather files for the same urban morphological parameters indicates that the magnitude of UHI effect projected also depends on the choice of weather station. This is in line with findings reported by [START_REF] Bueno | Urban Weather Generator: A Method to Predict Neighborhood-Specific Urban Temperatures for Use in Building Energy Simulations[END_REF].

Conclusions

We generated three FTWYs using this methodology, compared them with future weather file of Meteonorm 2050, and measured weather data of 2003. Comparative analysis of future weather files showed a difference not only between the weather files that were generated by DDS or ESD approaches but also between different DDS files themselves. This difference was demonstrated by statistical distribution plots of monthly air temperature, relative humidity and global horizontal irradiance in each weather file. The objective of comparison between future weather files and 2003 observed weather data was to check if given future files may or may not include heatwaves that would be reliable enough for BPS assessment. It was concluded that the heatwaves included in future typical weather files do not represent the intensity, duration and severity of heatwave that has already happened in 2003, let alone heatwaves that could happen in the future.

Another aim of this study was to provide insights for practitioners in BPS on how to generate future and present ready-to-use weather files using open source RCMs and, second, through a comparative analysis show their potential in evaluation of building's resilience to heatwaves and climate change, considering urban heat island effect. The method described here does not illustrate in details the uncertainties associated with emission scenarios, climate projections, climate models, and bias adjustment of climate models as they were addressed previously by [START_REF] Hosseini | Generating Future Weather Files under Climate Change Scenarios to Support Building Energy Simulation -A Machine Learning Approach[END_REF][START_REF] Machard | A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data[END_REF].

One major limitation of this work is that bias adjustment was not implemented in the script through which the yearly weather files were generated.

Another limitation of this study was that we used urban morphological parameters of closest building to cluster centroid to project the influence of UHI effect on that cluster. An alternative approach could have been using the urban morphological parameters of cluster centroid itself.

In this study, vegetation ratio as one of the necessary inputs to project the UHI effect using UWG was calculated from BDTOPO data. In the future studies, other sources of data, such as satellite images could be used to generate higher resolution data of the urban vegetation coverage ratio.

Summary

Climate data plays an important role in proper impact assessment of climate change on all sectors. For BPS, access to reliable and precise climate data describing outdoor conditions is an essential element. The objective of this chapter was to present a workflow for BPS practitioners to access and process open source future climate data.

To achieve the objective, this chapter investigates the following elements:

-It presents a detailed literature review on downscaling of climate data from GCMs to RCMs.

-It describes tools and indices used in heatwave presence evaluation from weather data.

-It illustrates the trade-off between data granularity and relevance to the policy at the city scale, which in turn affects the choice of tools and methods for weather data and BPS.

-In the data and methods section, it provides a list of climate data providers.

-Among the data providers, this chapter uses high-resolution RCM data from EUROCORDEX to generate typical future weather data for BPS practitioners. The workflow described in this section allows practitioners/researchers to access open source climate data of various climate models across Europe, and North Africa.

-Medium future typical weather data (2040-2070) of three climate models are compared to 2003 heatwave weather data for the case study city, Nantes, and the presence of heatwave in the weather files is investigated, employing a temperature-based index.

-The influence of UHI effect for each representative building (identified in chapter 2) is projected on the typical future weather file, using UWG tool.

In line with the overall objective of this thesis, which is to evaluate indoor performance of buildings at city scale taking into consideration future climate and UHI effect, this chapter presented a workflow to help researchers/practitioners access and use future and historical climate data, measure the intensity of heatwaves in them, and project the influence of UHI effect using UWG.

The next chapter illustrates what thermo-physical parameters of building influences its thermal and energetic performance the most, and what indices are available and suitable for indoor overheating measurement.

Chapter 4 : Building performance parameters and measurement indices

Part One: Factors of overheating and energy demand in buildings: a literature review

With climate change, extreme weather events and the amount of time spent indoors, the need for comprehensive building performance analysis, in thermal comfort as well as in energy consumption, has never been as strong as today [START_REF] Pang | The Role of Sensitivity Analysis in the Building Performance Analysis: A Critical Review[END_REF]. Building system and subsystems responsible for energy consumption and thermal comfort are highly non-linear and include different parameters. Sensitivity analysis as a powerful approach in identification of influencing parameters has been receiving significant attention in the last decades. A recently published literature review on the role of sensitivity analysis on building performance was done by [START_REF] Pang | The Role of Sensitivity Analysis in the Building Performance Analysis: A Critical Review[END_REF]. This work provides a comprehensive review on application of sensitivity analysis on a wide spectrum of building related topics. The emphasis is on the case studies where they rigorously investigate methods for sensitivity analysis, uncertainty and sampling analysis. It also includes the tools used for sensitivity analysis, building simulations; and categorization of input and output parameters of sensitivity analysis. However, this paper does not demonstrate the results of sensitivity analyses from the case studies. To tackle this question, we decided to conduct a literature review of papers that presented sensitivity analyses results for energy consumption and indoor thermal comfort in residential buildings. Figure 4-1, below shows the overall objective of this section of the thesis. Before moving forwards with that, a differentiation between sensitivity analysis and uncertainty analysis must be made. In uncertainty analysis, the objective is to discover variation of an output depending on the uncertainty of input parameter or parameters. In sensitivity analysis, the objective is to measure the effect of individual independent variables on a particular dependent variable given a set of assumptions [START_REF] Ray | Modelling Nitrogen and Carbon Cycles in Hooghly Estuary along with Adjacent Mangrove Ecosystem[END_REF].

𝑆 = 𝑑𝑥 𝑥 ⁄ 𝑑𝑝 𝑝 ⁄

Equation 4-1

Where: S Sensitivity X State P Parameter dx and dp Change of values of state variables, parameters.

Having said that, the goal of this part is to identify, through aggregation of sensitivity analysis studies, which input parameters contribute the most to variability of outputs in buildings (heating energy consumption, cooling energy consumption, thermal comfort, etc.) and rank their relevance and relative importance based on what is found in the literature. Review on the results of sensitivity analysis is therefore both qualitative and quantitative.

Key words used in search of papers were "sensitivity analysis", "buildings", "energy consumption/thermal comfort". Only papers published after 2009 and those that had clearly ranked the relative influence of independent variables on dependent were included in the study. At the end, results of sensitivity analysis from 72 papers were included for further processing.

Sensitivity analysis results in the selected papers were presented in many formats such as scatter plot, Tornado plot, bar plot, box plot, pie chart, spider plot, and numerical value. All the given formats allowed identifying the rank (relative importance) and total number of input parameters in relation to output as can be seen in Figure 4-1.

Papers included in this study employed different methods to conduct sensitivity analysis and some of them used more than one method for that purpose, as shown in Figure 4-2. In Figure 4-2, horizontal axis indicates the frequency of times a specific method was observed in a paper and vertical axis shows sensitivity analysis method.

Papers that illustrated building energy and thermal comfort sensitivity analysis varied extensively in terms of number of initial parameters taken into account, building size and use, location, final ranking of parameters in terms of importance, and objective of sensitivity analysis. This extensive variation on a wide spectrum of elements rendered the process of cross comparison between the papers complex. Nonetheless, we decided to use an average method to consider frequency of times a parameter was listed in the papers, rank of parameter and total of number of parameters in each paper. the paper, parameters studied, and rank of each parameter in the results for all papers selected in the study. In this method, rank of each parameter in a paper is divided to the product of total number of parameters to the number of times same parameter has been observed in all papers. Parameters that rank higher (1st, 2nd, 3rd... etc.) when divided to the product generate smaller numbers so the smaller the number the higher the impact. To create a general impact factor inverse average of number was calculated, as also presented in Figure 4-3 and in the equation below. Where: R rank of a specific parameter in each paper P number of paper studying the parameter T total number of parameter in that paper

Method

Results

Aggregated results from literature review were analysed separately for thermal comfort/indoor overheating, heating energy consumption, cooling energy consumption and energy consumption (heating + cooling) in four levels of detail. An example of the level of details is given in Figure 4-4. The window wall ratio (WWR) in each orientation is at the level of detail 4. The average WWR of the building is at the level of detail 3 while window characteristics is at level of detail 2 and finally, envelope properties at level of detail 1. Considering the context of the thesis and the scale of study, results from third level of details are for the moment deemed best in characterization of reference buildings. These results are briefly presented in the following paragraphs.
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In thermal comfort assessment, solar heat gains through the windows (SHGs) also referred as g-value in some papers, was identified as the most influential parameter and was closely followed by WWR. The next five influential parameters were roof U-value, lighting power density, U-value of exterior wall, infiltration rate (airtightness), and heat transfer through the window. These parameters are also shown in Figure 4-6, below. It is also important to mention that in thermal comfort case studies various indices were used as an indicator of comfort (PMV, SET, indoor operative temperature).

In Figure 4-6, the small circle in the middle shows parameters with level of detail one, and subsequent donut shape graphs show levels of details two, three, and four. Colour shows the number of papers that studied the parameter and the width of the segment indicates the relative influence of the parameter.

In energy consumption for heating purpose, WWR was identified as the most influential parameter, followed by solar heat gains (SHGs) (Figure 4567). The next five influential parameters were building infiltration rate (airtightness), exterior wall U-value, roof U-value, heat transfer through the window and set point temperature in order of influence (Figure 4567).

Figure 4-6 : Rank, and levels of detail of parameters influencing comfort and overheating in buildings

Most influential parameters identified in cooling energy consumption was WWR and was closely followed by SHGs. Exterior wall U-value, roof U-value, building size/scale, lighting power density, and efficiency of heat recovery unit were the next five influential parameters listed in order of rank.

Appendix 4-3, visualizes the results obtained from this literature review in more details.

Discussion points

Method employed in aggregation of parameters from different sources is not a standard method and was devised to answer the needs for this specific case. Alternative approaches may also exist that could possibly change the outcomes.

Selected papers only focused on building parameters. Urban morphological and microclimate parameters that also influence energy consumption and thermal comfort were not taken into consideration.

Sensitivity analysis results collected in these papers were conducted in multiple geographical locations with a wide range of climatic conditions, which in turn can also introduce inaccuracy in the study. Some papers ranked the importance of parameter by giving it an index (percentage/ratio), some just presented ranks on a histogram and some named them in order of importance. In this brief review, only the order of influence/affect (first, second, third, etc.) of results and total number of parameters were taken into account.

The main gaol of this qualitative and quantitative literature review on sensitivity analysis case studies was to identify which building parameters contribute the most to variability of thermal indicator (heating energy consumption, cooling energy consumption, comfort). The results of this literature on building parameters influencing indoor comfort and overheating are used as a source in the selection of inputs for parametric simulations of selected representative buildings.

Based on the literature review in this section, input parameters deemed important to be considered for parametric simulations of free-floating residential buildings are as follows:

-Window size: this parameter varies for buildings that are in the same cluster and literature review showed it is very influential on both summer performance and energy consumption.

-Solar gains through the window: this parameter is closely related to widow size but unlike window size, it can be regulated by the status of external shading (window shutter) operated by occupants. Therefore, for parametric simulations the status of external window shutter and status of window for natural air inflow rate are modelled as a function of occupant type.

-Thermo-physical properties of envelop elements (external wall, external roof, adjacent walls, and type of window glazing)

-General characteristics of building: building size/scale.

Part Two: Overheating indices 4.2.1 Indoor overheating assessment indices

Researchers from different fields of science, including but not limited to agronomists, physiologists, epidemiologists, bio-meteorologists, over the years have proposed numerous methods to describe heat stress and overheating, but still there is no consensus on how to evaluate it through simulation or measurement [START_REF] Lomas | Overheating in Buildings: Lessons from Research[END_REF]. Therefore, there is a need to specify what we mean by overheating or heat stress in buildings. Moreover, indoor overheating is dynamic and can vary spatially and temporally, meaning that indoor overheating can be different from one zone to another zone in a building and, from one time to another. Similar to thermal comfort, indoor overheating is subjective and perceived differently in various climates and with various adaptive measures.

A literature review on indoor overheating indices by [START_REF] Epstein | Thermal Comfort and the Heat Stress Indices[END_REF] collected and analysed more than 40 different heat stress indices. Authors argue that too much emphasis has been placed on academic accuracy of many of these indices at the expense of practicality. They recommend using simple and easy to use indices, which although may lack the integration of many environmental variables, together with appropriate regulations that take into account the influences of clothing, indoor wind speed, and acclimation.

A summary of indices collected by Epstein and Moran in their review is in Appendix 4-1 of this manuscript.

Most of those were designed for specific purposes, but among them, the following direct indices that rely on measurement of environmental factors gained, were discussed in more details by the authors and concluded to be more practical. This index was proposed by International Society of Biometeorology (ISB) Commission. -Heat stress index derived from temperature and humidity ratio.

In the present manuscript, having the main objective of the thesis in mind, from the list of indices in Appendix 4-1 and those presented above, one widely used thermal comfort index and five common indoor overheating indices were chosen to describe how buildings perform in summer. In the following sections, first, each index is briefly described and then through a case study, indices are compared to each other.

1-PMV/PPD index

Predicted Mean Score (PMV)an indicator that predicts the average value of temperature sensitivity of a large group of people based on the balance of human body temperature on a seven-points scale.

The PPD is a measure that sets the predicted percentage of people who are dissatisfied with the ambient environment, who are too warm or too cold. People who are dissatisfied with the temperature of the environment are those people who will evaluate the environment as "hot", "warm", "cool" or "cold" on a seven-point scale of temperature sensitivity as presented in Table 4-1. Chapter 4 :Building performance parameters and measurement indices 120 Using indoor air temperature, indoor humidity ratio and the rest of parameters mentioned above, hourly PMV value in each thermal zone of buildings can be calculated within the Trnsys v.17 simulation environment.

2-EN 16798-1 adaptive index

Adaptive comfort index is based on the idea that connection and control over the immediate environment allow occupants to adapt to a wider range of thermal conditions. With reference to this principle, EN 16798-1 norm for adaptive comfort is related to exponentially decaying weighted mean outdoor temperature (TRM).

TRM = (1-α) [TN-1 + α TN-2 + α 2 TN-3 + α 3 TN-4 + α 4 TN-5 +…] (°C) In calculation of comfort and overheating with this adaptive index, degree-hours and/or percentage-of-hours indoor operative temperature inside each thermal zone of building exceeding the upper/lower boundary limits in category I, II, and III could be calculated.

Figure 4-8 shows the relative position of temperature thresholds calculated with EN16798-1 equations.

3-Givoni Bioclimatic index

Adoption of adaptive index was a major shift in the way thermal comfort and overheating was measured. A major element of concern with adaptive comfort has been the lack of relative humidity signal, and indoor air speed in preparation of the comfort range.

Givoni diagram could potentially address this major concern as it assess summer thermal comfort of occupants subjected to various indoor air velocities with consideration of humidity.

Another reason this index is selected, is that installation of a ceiling or a portable fan is the first response of occupants to extreme temperature in naturally ventilated houses when passive strategies fail to provide expected comfort.

Temperature, humidity ratio and indoor air velocity are the main parameters involved in comfort evaluation with this index. Ideal comfort region with this index is the polygon blue, where air temperature is between 20 to 27°C, relative humidity is between 20 to 80%, and indoor air velocity is 0 m/s. Second polygon (green) is called natural ventilation comfort zone, where indoor air temperature is between 20 to 30°C, relative humidity is between 20 to 90%, and air velocity is up to 0.5 m/s. Air velocity in the third polygon (orange) is 1m/s and it is induced both by natural ventilation and ceiling fans. Indoor air temperature in the third polygon is between 20 to 32°C and relative humidity is between 20 to 94%. We added the fourth polygon (red), where air speed is 1.5 m/s, for extreme cases, because it has been used and considered acceptable in some hot and warm countries [START_REF] Nicol | An Analysis of Some Observations of Thermal Comfort in Roorkee, India and Baghdad, Iraq[END_REF]. [START_REF] Kumar | Comparative Study of Thermal Comfort and Adaptive Actions for Modern and Traditional Multi-Storey Naturally Ventilated Hostel Buildings during Monsoon Season in India[END_REF] in their paper argue that marginal temperature gain of air velocity increase from 1 m/s to 1.5m/s is less than 1 °C, therefore, maximum temperature of polygon four is 1 degree higher than polygon three. (Appendix 4-2 presents the Python script to plot or modify polygon boundaries of Givoni index) Fixed temperature thresholds are probably the simplest way to measure indoor or even outdoor overheating, especially when reporting the indoor/outdoor thermal conditions in a specific time. For example, using statements such as, temperature is over 28 °C in the living room or it was above 29 °C in the living yesterday afternoon. Even when time duration is longer than an hour or day, practitioners need to specify time for this index to convey a meaning about the temperature condition in a specific location. In comparative cases, measures such as number of hours or percentage of hours temperature, in a specific location, is/was over 28 °C, during the 5 summer months, could also be used. In here, 28 °C is used as an example; any constant temperature could be used. Building KM7_5 was simulated in TRNSYS and indoor overheating performance of building, as measured by the number of hours above various fixed temperature thresholds, was evaluated. Figure 4-10 shows number of hours above the selected thresholds.

The Figure 4-10 shows the number of hours temperature is above the specified threshold in each storey of KM7_5 building. According to the graph above, if a practitioner decides to use fixed temperature of 27°C as a measure of discomfort/overheating threshold then Attic has performed better than middle floor and ground floor, over the five summer months. Higher number of hours when temperature is above 26 °C and 27 °C shows that ground floor and middle floor have larger potential to store heat, therefore, keeping temperature stable.

Significant difference on the performance of attic, middle floor and ground floor also points out to the problem of using the fixed temperature as an index for overheating.

Another way to use fixed temperature threshold is by calculating maximum number of consecutive hours it is above a specific threshold. The idea of using consecutive hours above a threshold was also analysed and discussed in the thesis of Nicolas Lauzet [START_REF] Lauzet | How Building Energy Models Take the Local Climate into Account in an Urban Context -A Review[END_REF]. In this study, the constant temperature of 27 °C as an index of indoor over-temperature was chosen. It was selected with reference to the night-time temperature threshold of 26 °C proposed by Chartered Institution of Building Services Engineers (CIBSE). According to CIBSE, nighttime indoor temperature should not exceed 26 °C more than 1% of annual hours for occupants to sleep well. Considering the adaptive capacity of occupants, difference between the climate of UK and France, mild relative humidity of our case study city, and the fact that in this study it is used both during day and night, it was decided to use 27 °C instead of 26°C as the threshold value to measure comfort along with other indices.

Using maximum consecutive hours above a threshold allows depicting cumulative intensity of overheating. However, showing intense temperature increase over a short span of time requires consideration for peak indoor operative temperature as well. Having said that, the following graph, Figure 4-11, shows maximum consecutive hours operative temperature is above 27°C and peak indoor operative temperature.

The Figure 4-10 and Figure 4-11 show drastic difference on the way indoor temperature of the same building is explained. It is clear from Figure 4-11 that peak temperature is considerably higher in attic compared to the peak temperature in the thermal zones of other stories. Additionally, maximum consecutive hours show a considerable difference with regard to the orientation of the zone. (Orientation here means the orientation of main façade of the zone).

Absence of indoor air speed and relative humidity are probably the main shortcoming of performance analysis using this index.

5-Heat stress index

Heat stress index (HI), first proposed by [START_REF] Steadman | The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science[END_REF], is also called as apparent thermal comfort temperature, and is used as an index to predict the risk of physiological heat stress in an individual taking into account temperature, relative humidity and type of activity. The main objective of this index is to explain how an individual would feel under certain environmental conditions. This index, assumes that relative humidity has a considerable impact on how an individual would feel because it influences the capacity of human body to regulate internal heat through perspiration (sweating). Body feels hotter when relative humidity is high and perspiration evaporates slower. Therefore, HI is high where relative humidity is high. At low relative humidity, HI is less or equal to air temperature.

This index is measured in the shade, and assumes a wind speed of 2.5 m/s and normal atmospheric pressure.

The equation below has been derived from multiple regression analysis performed by [START_REF] Steadman | The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science[END_REF] Various weighting factor of Tw in Equation 4-9 has been used by authors, from 0.5 to 0.85. Literature review by [START_REF] Epstein | Thermal Comfort and the Heat Stress Indices[END_REF] states the coefficient of determination (R 2 ) of DI with WBGT is above 0.95 for all weighting factors. This index assumes occupants are wearing light summer clothing.

Similar to HI, specific thresholds are proposed for DI to describe possible physiological effects of over temperature on human body. 

How related indices are to each other?

In order to show the correlation between illustrated indices, indoor thermal condition in the attic of KM7_5 was calculated for all indices over a period of 5 months including summer, and the outcomes are plotted against each other.

In PMV calculation, indoor air speed was assumed 0.1 m/s, occupant performing a light physical activity like sitting, and clothing level was assigned to the simulation according to the Figure 4-12, below. Assigning clothing level in this manner enables to take into account the influence of blanket that occupants use at night.

Figure 4-13 shows the sensation of occupants according to PMV, Givoni Bioclimatic, HI, and DI for attic of KM7_5 for the 5 summer months of the year. These indices were selected for comparison because they have defined thresholds that categorize sensation of occupants unlike EN16798-1 or consecutive hours above a specific temperature, which are continuous measures of thermal sensation.

The graph shows that the hours in "Hot [2.5-3)" sensation scale are listed as "thermally stressful" region in Bioclimatic Index, "Extreme caution" region in HI, and "Most population suffer" range in DI. The graph shows that the last sensation range with PMV and GIVONI index correspond to third sensation range with HI and DI. This could mean that DI, and HI have more divisions (categories) for temperatures that are extremely high. Meaning, DI and HI could better quantify the sensation of people under extreme conditions compared to GIVONI and PMV.

To better demonstrate this difference, the hourly values of PMV and GIVONI are plotted against the DI and HI indices in the following figures: quickly a zone gets heated up and consecutive hours above shows how long does this specific zone hold the heat. Givoni index on the other hand, takes into consideration the effect of relative humidity and indoor air speed to create a picture of discomfort.

How to know/define if a building is vulnerable to overheating?

The indices presented in section 4.2.1 provide valuable information on how to describe the occupants' perception of indoor thermal condition, but the question of vulnerability to overheating also depends on factors such as adaptive capacity of occupants, their health conditions, and many more that were discussed in details in chapter one of this manuscript.

Here the focus is on the status of indoor environmental conditions, assuming a standard occupant. On this premise, one can infer that the degree of vulnerability is influenced only by environmental conditions and the measurement index.

Some standards have defined thresholds, above which they categorize a building (a thermal zone) to be overheated. In the following, some of the most relevant ones for free-floating buildings are briefly described.

1-CIBSE

CIBSE TM59 uses a pass/fail approach to test if a building (or a thermal zone of building) meets the criteria or not. Requirements are different for bedrooms, kitchen, and living room for naturally ventilated buildings. With TM59, the condition of approval is fulfilled when a building passes both (A, and B) of the following criteria. Number of hours that operative temperature is greater than maximum allowable operative temperature according to adaptive comfort index (category II for normal expectations), shall not be more than 3% of occupied hours during the period of May to September (5 summer months).

B

Only bedrooms Operative temperature in a bedroom between 22:00 and 7:00 [10 pm to 7 am] should not be above 26°C more than 1% of annual hours (1% of annual hours equals to 32.85 hours).

CIBSE TM52 also has a third criteria that deals with the severity of overheating within any one day, but is not present in TM59 C Living rooms, kitchen and bedroom Indoor operative temperature shall not be greater than 6°C from maximum allowable operative temperature within any given day.

It is also important to mention that the passing condition with TM52 is, if a room (thermal zone) meets at least two of the three criteria, it passes. (Tm59 design methodology for the assessment of overheating risk in homes. 2017), (Chartered Institution of Building Services Engineers 2013). According to RT2012 (French building thermal regulation for new buildings until 2022), the indoor temperature in summer, called TIC, for five consecutive days must be lower than conventional reference temperature. This reference temperature is most of the time 26 °C.

3-RE2020

''Réglementation Environnementale"2020 (RE2020) came into effect on 1 st January 2022 in France for some of the new buildings and will gradually come into effect for all buildings on a timeline, replacing RT2012. With RE2020 government attempts to follow the following three key objectives: (1) prioritize energy sobriety; (2) reduce carbon impact of the construction; (3) guarantee comfort during extremely hot summer temperatures (under climate change and/or heatwaves).

Two principle elements in RE2020 for summer are: (1) it takes into account typical climate (année classique) and heatwave (année caniculaire) weather data in building design simulation, and ( 2) it encourages the usage of passive strategies relying on bioclimatic design of buildings, to avoid or delay the installation of mechanical cooling system. RE2020 uses Degree-Hour index to evaluate discomfort in new buildings. The reference temperature for it is the maximum allowable operative temperature in category II of EN 15251 adaptive comfort, which is to be calculated based on a conventional heatwave scenario. Adaptive limit is only applicable during the day [7h-22h] and not at night-time.

RE 2020 defines 2 thresholds that the temperature inside the building must not exceed to avoid any discomfort: (1) at night, the temperature threshold of 26°C; (2) during the day, an adaptive temperature threshold between 26° and 28°C. Beyond these thresholds, each degree of the building is considered uncomfortable for the occupant. During the day, this threshold is constant but it is not necessarily identical to that of the previous day. It varies from day to day to take into account the capacity of the human body to adapt to high temperatures after a succession of hot days, within the limit of + 2°C compared to the consensual threshold of 26 °C. RE2020 characterizes buildings in three situations: situation "confortable", situation "risque d'inconfort", and situation "non réglementaire". To define these situations, it presents two thresholds based on degree-hours [hour-°C]:

(1) A lower boundary threshold of 350 degree-hour [hour-°C], below which a building is regulatory.

(2) An upper boundary threshold that can vary depending on the category and exterior constraints.

Exterior constraint could be something like the presence of noise in the area that prevent cooling by window or extremely hot climate.

Category 2 (RE2020 definition): Air-conditioned building + Residential use + BR2 or BR3 7 + H2d or H3 (hot climate regions as depicted in Figure 4-20) + Altitude [0; 800m] Category 1 = no external constraint, i.e., whatever is not in Category 2 according to the definition of RE2020

Upper boundary threshold is also different for collective and individual house as presented in Table 4-5 andTable 4-6. 7 BR3, BR2, and BR1 are levels of noise: BR1 is a weak exposure to noise, BR2 is a medium exposure that prevents users to open windows in summer, and BR3 is a level of noise for which it is obligatory to install acoustic insulation. If degree-hour is in between the lower and upper boundary comfort thresholds, the building still complies with the regulatory requirement of RT2020, but it is encouraged to use passive and/or bioclimatic solutions in the summer period. Source: (Publications of CEREMA)

The 3 to 6% range in percentage of hours operative temperature is above maximum allowable operative in EN 16798-1 threshold correspond to 200 to 400 degree-hours of RE2020 in different zones of building. This shows underlying similarity between RE2020 350 degreehours threshold and 3% threshold of TM59. A major shortcoming of TM59 and RE2020, is that they both only concentrate on temperature.

Relative humidity and indoor air speed are not being considered in overheating assessment.

HI and DI, indices were designed for extremely hot climate regions, they may not be able to describe the building in oceanic climate region.

Vast amount of indices, standards, and data from building simulations can be overwhelming for decision-makers and other stakeholders, especially if it is implemented at the scale of city. Therefore, there is a clear need to list critical attributes of an index or indices that could describe indoor thermal conditions of a thermal zone and the whole building.

Based on comparative analysis of indices, their individual behaviour, it is noticeable that many of the indices provide complementary results and some of them describe certain aspects of building that are ignored of given less attention in other indices.

This means, practitioners in BPS could create a better picture of indoor performance of buildings at city scale if they use more than one index to describe it.

Given the influence of multiple factors on vulnerability of occupants, a suggestion of this manuscript is that the indices should be able to describe the following characteristics indoor conditions to present a realistic picture of indoor thermal conditions:

-Intensity of indoor operative temperature (maximum operative temperature); -Duration of over temperature (maximum consecutive hours/days over a threshold); -Adaptive capacity of occupants including their absence and/or presence; -Take into account the influence of indoor air speed, and relative humidity;

Having the global objective of this manuscript in mind, 6 indoor overheating indices, described below, were selected to be used in estimation of the degree of discomfort in residential buildings at city scale.

-Percentage of hours indoor thermal condition of a zone is outside the Givoni index's red polygon (v=1.5 m/s) to depict scenarios where having a simple fan or relying on passive strategies are not sufficient. -Peak indoor operative temperature to show the intensity of overheating -Percentage of hours above Category ii of EN 16798-1 to take into consideration adaptive capacity of occupants -Maximum number of consecutive hours temperature is above 27 degrees to show duration of over temperature -Degree-hours according to RE2020 to take into account adaptive capacity of occupants and time of exposure.

-RE2020 situation categorical outcomes (comfortable, at risk, non-regulatory) to give categorical label to each thermal zone with regard to their summer performance.

Summary

This chapter is divided into two parts. The goal of first part is to identify, through aggregation of sensitivity analysis studies, which input parameters contribute the most to variability of outputs in buildings (energy consumption and summer performance) and rank their relevance and relative importance based on what is found in the literature.

For that, specific keywords were used to identify the papers and from those articles, a table containing the required information was built. After that, aggregation was carried out through a simple method that takes into consideration the individual rank of parameter, total number of parameters in each sensitivity analysis, and the number of papers studying the parameter. Using the illustrated method an aggregated list of parameters for energy consumption and indoor thermal conditions at different levels of details were prepared and described in the results.

The goal of the second part of this chapter is to specify what is indoor overheating and how to measure it. This part starts with a literature review and then describes in details a few indices frequently used in assessment of indoor thermal conditions.

As an example, indoor thermal conditions of attic of cluster KM7_5 was calculated, for 5 summer months, with all those indices and the outputs are compared to one another to observe how each index describes indoor thermal conditions of the same thermal zone and which one provides what type of information for practitioners.

At the end, it was decided to use 6 indices that provide complementary results, to approximate indoor thermal conditions of buildings at city scale.

Overall, the objective of this thesis is to create indoor overheating map at city scale, taking into consideration climate change data and UHI effect. To that end, the second chapter of this manuscript, illustrated the preparation of a build stock database and from it, identified 7 representative buildings. Third chapter provided a workflow to access climate data, create future typical weather files, and project the UHI effect on the weather file of each representative building. This chapter, through a literature review helped identify what other building parameters need to be considered for summer performance evaluation of buildings and what indices do practitioners/researchers can use to better describe indoor thermal conditions.

The next chapter will describe the method to extend the application of dynamic thermal building simulations on typical/reference residential buildings to the rest of build stock for the case study city, Nantes, and will prepare a citywide urban heat exposure/vulnerability map. For that, it performs a parametric simulation on each representative building (by varying building parameters identified in the first part of this chapter) and calculating overheating indices (identified in the second part of this chapter) in each simulation. From parametric simulations, it creates a new database for each cluster of buildings and then trains a multi-output surrogate model capable of rapidly approximating indoor thermal conditions of other buildings within the same cluster.

Chapter 5 : Heat vulnerability maps

The principal objectives of this chapter is to describe the method to extend the application of dynamic thermal building simulations on typical/reference residential buildings to the rest of build stock for the case study city, Nantes, and prepare a citywide urban heat exposure/vulnerability map.

The problem from a first look seems straightforward that should be generalized well; however, it raises multiple practical difficulties due to missing building parameters belonging to the same cluster but significantly different from selected centroid, expected degree of accuracy, and applicability.

As discussed in chapter 2, the clusters were built on building and urban heat island effect parameters. Input parameters of clustering did not take into account thermo-physical characteristics of buildings, as were illustrated in chapter 4part-I that influence indoor overheating.

In the characterization stage of chapter 2, after identification of cluster centroids, a number of missing input parameters for building were attributed to cluster centroid as a function of year of construction, and assumptions were made on the behaviour of occupants. However, within each cluster, these inputs could vary considerably. Therefore, it is necessary to know how the centroid building is going to perform with varying range of input parameters that are used in characterization stage in order to extrapolate the results from cluster centroid to the rest of buildings within the same cluster. The term centroid of cluster is used interchangeably with representative or typical building referring to the closest real building to fictive centroid of each cluster, identified in chapter 2 of this manuscript.

In this study, as described in chapter 2, the individual performance of centroid buildings alone may not tell us much about the rest of the built stock, they become more useful if we build a number of assumptions into the surrogate, based on our expertise and experiences. In this problem, the primary task is to convey the behaviour of the modelled centroid building as accurately as possible to the rest of buildings within the same cluster, while remaining computationally effective.

Surrogate models, also referred to as "meta-models", "emulators", and/or "approximation models" in the literature provide an appealing data-driven approach that would allow solving this problem in an efficient manner. In the building sector, these meta-models are argued to be effective low-cost tools as a replacement of the computationally expensive models for building performance assessment.

Surrogate models are divided into three groups: data-fit models, reduced-order models, and hierarchical models [START_REF] Allaire | Surrogate Modeling for Uncertainty Assessment with Application to Aviation Environmental System Models[END_REF][START_REF] Eldred | Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies[END_REF]. Data-fit models are created from the relationships of input and output simulation data of high-fidelity models using regression, interpolation, or machine learning techniques. The key limitation of data-fit models is the "curse of dimensionality", requiring practitioners to carefully implement a design of experiment to balance the cost of computation and model performance. Reducedorder models are commonly used for systems, which are based on partial differential equations or large number of ordinary differential equations. They are not suited for systems where governing equations are unknown or are empirically based, as their derivation relies on the knowledge of governing equations [START_REF] Allaire | Surrogate Modeling for Uncertainty Assessment with Application to Aviation Environmental System Models[END_REF][START_REF] Berger | Review of Reduced Order Models for Heat and Moisture Transfer in Building Physics with Emphasis in PGD Approaches[END_REF]. Hierarchical surrogate models, also referred to as variable-fidelity models, use simplified mathematical models and models with simplified physics [START_REF] Allaire | Surrogate Modeling for Uncertainty Assessment with Application to Aviation Environmental System Models[END_REF]. In this thesis work, the relationships between selected input parameters and simulations outputs are unknown; therefore, the surrogate modelling strategies that perform better in black-box situations, such as data-fit methods will be used. In the following, the terms surrogate modelling or metamodelling are used interchangeably referring to the data-fit group of surrogate models.

A huge number of methods for constructing such models have been developed; a detailed review of the most significant of them is illustrated in the book of [START_REF] Forrester | Engineering Design via Surrogate Modelling: A Practical Guide[END_REF].

Engineering problems of this nature that require the construction of a black-box-type metamodel to emulate the response of an expensive simulation tool in an efficient way come in various formats. According to [START_REF] Forrester | Engineering Design via Surrogate Modelling: A Practical Guide[END_REF]) they all can be distilled down to following structure:

Given an expensive simulation/experiment function y=f(x) and a set of data samples with relevant input and outputs within the design domain(𝑥 ∈ 𝐷), we seek to build an approximation function ŷ=f(x̂).

In this formulation, an important aspect of a surrogate/meta-model is to be accurate. The objective is to build the model process with the minimum number of expensive simulations. The degree of accuracy can be measured through absolute terms such as Relative Mean Squared Error (RMSE), Mean Squared Error (MSE) and/or in percentage terms such as R 2 . In this study, in the following, both R 2 and MSE will be used. The specific threshold of acceptable degree of error is different from one problem to another. The process is also presented in the Figure 5-1.

As can be seen in Figure 5 Identifying the minimum number of samples requires the discovery of promising regions and exploitation of those regions to build the surrogate model. The choice of samples is referred to as the experimental design by [START_REF] Herten | Surrogate Modelling with Sequential Design for Expensive Simulation Applications[END_REF]. The choice of samples to be evaluated in construction of a surrogate model are affected by the goal of the process and model requirements.

In the following section of this chapter, first input and output data of surrogate model are illustrated then some of the common techniques for experiment design are described. Following that, surrogate model is selected through a comparative analysis, which is then used for approximation of other buildings within the same cluster.

Data and Methods

Input and output data of surrogate model

The goal of the process in this problem is to predict the performance of buildings that are in the same cluster using a surrogate model. The latter is built on the basis of simulations performed on the representative building by varying its input data to take into account the variance in the cluster. Input parameters of model were selected on the bases of study in the first-section of chapter 4 and characterization section of chapter 2. Table 5-1 illustrates the input parameters of cluster that could vary significantly for each building of the cluster. 

Design of Experiment (DoE)

The DoE method makes it possible to develop prediction models for a given system by establishing a polynomial-type relationship between the input and output variables with the fewest possible combinations. Several types of experimental designs have been proposed in the literature. In the following, some of the key types of DoE are described. The choice of an experiment matrix is the fundamental problem of the design of experiments in order to obtain the best precision with a minimum number of combinations. The number of combinations is calculated based on the number of factors, levels, and type of data. In this case, in Table 5-1 of input parameters, number of factors equal to 8, 4 of which are continuous factors that have three levels, 1 is a categorical factor that has 3 levels, and 2 other categorical factors have 2 levels.

Types of DoE a. Full factorial experiment design

This is probably the easiest type of DoE to build. In this case, the matrix of experiments contain all the possible combinations of the factors. If we consider m number of factors at n levels, the size of the matrix is therefore n m . In the case of multiple factors at different levels, the

combination number is 𝑛 1 𝑚 1 * 𝑛 2 𝑚 2 * … * 𝑛 𝑘 𝑚 𝑘 .
In this study the total number of runs for the parameters of each cluster in Table 5-1 equals to 3 5 * 2 3 = 1944. In this combination, continuous variables have 3 levels of variations and categorical variables have 3 and 2 levels of variations.

b. Fractional factorial design

In this DoE approach, as its name suggests, only a fraction of full factorial design is used. In other words, it is a reduced version of full factorial design.

In this approach all the interactions of order three and higher are taken into consideration. [START_REF] Montgomery | Design and Analysis of Experiments[END_REF]) also argues that a system often times is dominated by effect of parameters themselves and two-factor interactions. Knowing this factor we can choose to ignore the importance of three-factor or higher order interactions.

In the literature, several types of fractional factorial plans have been developed. For instance, Taguchi tables are fractional plans based on orthogonal Hadamard matrices (Dean et al. 2015).

Fractional factorial designs allow practitioners to reduce the number of runs without sacrificing significant loss of information. They are, however, not recommended in places where input factors have more than two levels, or when test spaces are constrained with unusual run size or restrictions. A computer-generated optimal design is considered more effective in handling such types of scenarios.

c. Response Surface method (RSM)

The previous two methods are more suited for first and second order models. For scenarios where a higher order of interaction is expected, RSM plans are used. Three most widely used techniques within RSM are: composite plans, Box-Behnken and Doehlert plans (Dean et al. 2015).

d. D-optimal DoE

D-optimal designs were developed to address constrained problems. They are also used to reduce the number of combinations as much as possible in the case of an unconstrained problem [START_REF] Goupy | Introduction aux plans d'expériences: avec applications[END_REF]. D-optimal selects the best points to run the experiment. This is done by maximizing the determinant of the matrix [𝑋][𝑋] or minimizing [𝑋][𝑋] -1 and hence satisfying the D-optimality criterion. D-optimal is generated by iterative search algorithms, and most of state-of-the art generators are part of commercial software such as Minitab8 or JMP (SAS)9 . Doptimal is flexible and can be applied to cases where conventional DOE protocols do not apply.

The D-optimal algorithms generated in computers works in the following manner. First, the user determines the response (Y) and independent variables (input factors) of an approximate mathematical model (in this case building simulation in Trnsys). Then, computer generates a set of possible candidate points based on the level and number of factors. From these candidate set of points, a subset is selected that maximizes the determinant of [𝑋][𝑋] matrix. In computer, the D-optimal experiment design starts with the selection of a random set of points. Points inside and out of the randomly selected design are exchanged iteratively until no exchange can be found that would increase the determinant of [𝑋][𝑋] matrix.

Selected method for DoE

Taking into consideration the description presented in the previous section and the detailed comparative analysis presented by [START_REF] Romani | Metamodeling and Multicriteria Analysis for Sustainable and Passive Residential Building Refurbishment: A Case Study of French Housing Stock[END_REF], D-optimal was recommended to be more suited for the problem dealt in this chapter. The specific reasons substantiating this choice are listed as follows:

a. A significant number of input parameters are more than two levels, as presented in Table 5-1. b. The design space for the input parameters are constrained. Meaning the values in the table show the maximum, minimum and median values of the building feature. c. Some of the input parameters are categorical values.

Given the stated restrictions, a full factorial experiment design would naturally give the best results, but it requires too many runs. Therefore, the alternative is D-optimal method in DoE. In full factorial the number of simulations for each representative building was 1944 but using D-optimal it dropped to 72 runs.

Function approximation models

In this problem, where the goal is to train a surrogate model to approximate the indoor thermal performance of other buildings within the same cluster, the nature of function is not known a priori and the problem requires us to have multiple outputs. Therefore, there is no solid information to tell us which surrogate model would work better. Having said this, several possible surrogate model types can be considered: Decision Trees, Random Forests, polynomial regression, multi-variate adaptive regression splines (MARS), kriging, RBFs, support vector machines (SVMs), among others. Choosing the right approximation function requires consideration for many factors such as level of practicality, interpretability, degree of accuracy, replicability and logic that inspired the development and deployment of the technique. In the following, practical and technical details of some of the approximation techniques, which are seen to be used in the literature, are presented. Fundamental equations and theories upon which these approximation techniques are built are not discussed in this manuscript, but references are provided for further research.

Polynomial and simple functions for approximation

(S. H. Kim and Fani 2019) called the polynomial and simple functions as non-interpolating models and according to the authors this category include functions such as linear models, quadratic, polynomial, and generalized regression. The models listed above minimize the sum of errors between sampled data points and predetermined functional form. The authors argue that the non-interpolating models lead to construction of simple and easily interpretable functions, but they may not be flexible to capture highly nonlinear correlations between input variables and target variable. The widely used technique in this category is probably the secondorder polynomial regression. When least square method is used to measure the uncertainty, then the training sample size must be greater than the number of coefficients.

N>(n+1) (n+2)/2

Equation 5-1

Where: N Is the number of runs (samples) n Number of factors Higher order polynomial regression are rarely used in surrogate model building for the following three reasons:

-The proper polynomial order is difficult to determine for problems where the nature of underlying function is not known a priori. -Number of coefficients increases dramatically for high dimensional problems -Higher order polynomials could also cause over-fitting. [START_REF] Cheng | Surrogate-Assisted Global Sensitivity Analysis: An Overview[END_REF] The mathematical forms of main polynomial equations to build surrogate models are as follows:

-Linear model 

𝑌 = 𝑎 0 + ∑ 𝑎 𝑖 • 𝑋 𝑖 𝑛 𝑖=1 Equation 5-2 -Quadratic 𝑌 = 𝑎 0 + ∑ 𝑎 𝑖𝑖 • 𝑋 𝑖

SVM Machine learning technique for approximation/prediction

SVM stands for Support Vector Machine and it is a predictive analysis data-classification algorithm. Means its primary use is for classification but it has been used in regression tasks as well. SVM works by first mapping the data into a high dimensional feature space so that data points could be categorized. The mapping is called kernelling and the mathematical function used to transform is known as kernel function. Following is four types of kernel functions:

-Linear -Polynomial -Radial basis function (RBF) -Sigmoid

The SVM algorithm is designed in such a way that it looks for points on the graph that are closest to the split line. These points are called support vectors. Then, the algorithm calculates the distance between the support vectors and the separating plane. This distance is called the gap. The main goal of the algorithm is to maximize the gap distance. The best hyperplane is the hyperplane for which this gap is as large as possible.

Decision Tree

A decision tree (also called a classification tree or regression tree) is a decision support tool used in machine learning, data analysis, and statistics. The structure of a tree is "leaves" and "branches". On the edges ("branches") of the decision tree, the features on which the objective function depends are written. The values of the objective function are written in the "leaves", and the other nodes are the features by which the cases differ. To classify a new case, one must go down the tree to a leaf and return the corresponding value.

Random Forest

Random forest (RF) is a machine learning algorithm which consists of (ensemble) of trees. It is applied for classification, regression and clustering. The main idea of RF is to use a large ensemble of decision trees, each of which by itself generates a very low quality classification, but due to their large number, the quality of overall classification improves significantly.

In a RF algorithm, the more trees, the better the quality of the regression/classification, but RF setup and operation times also increase proportionately with it. It is also important to note that often with an increase in the n_estimators (number of trees for RF), the quality on the training set increases (it can even reach 100%), and the quality on the test does not change anymore. That is the point where a practitioner decides the number of trees [START_REF] Pedregosa | Scikit-Learn: Machine Learning in Python[END_REF].

Gradient Boosting Regression

Boosting is an ensemble technique, similar to Random Forest, in which the predictors are built sequentially rather than independently. This technique uses the idea that the next model will learn from the mistakes of the previous one.

Gradient boosting is used for classification and regression problems it builds a prediction model in the form of an ensemble of weak predictive models, usually decision trees.

The goal of this supervised learning algorithm is to determine the loss function and minimize it. Let us look into the math behind gradient boosting. Let, for example, take the mean square error (MSE) as the loss function:

𝐿(𝑌 𝑖 , 𝑌 𝑖 𝑝 ) = 𝑀𝑆𝐸 = ∑(𝑌 𝑖 -𝑌 𝑖 𝑝 ) 2
Equation 5-7

Where 𝑌 𝑖 is the i-th target value, 𝑌 𝑖 𝑝 is the i-th predicted value and 𝐿(𝑌 𝑖 , 𝑌 𝑖 𝑝 ) is the loss function.

The goal is to plot the predictions in such a way that the MSE is minimal. Using gradient descent and updating predictions based on (learning rate,𝛼), we look for values where the MSE is minimum.

𝑌 𝑖 𝑝 = 𝑌 𝑖 𝑝 + 𝛼 * 𝛿 ∑(𝑌 𝑖 -𝑌 𝑖 𝑝 ) 2 /𝛿𝑌 𝑖 𝑝 Equation 5-8
This equation becomes (derivative of loss with respect to predicted),

𝑌 𝑖 𝑝 = 𝑌 𝑖 𝑝 -𝛼 * 2 * ∑(𝑌 𝑖 -𝑌 𝑖 𝑝 ) Equation 5-9
Where α is learning rate and ∑(𝑌 𝑖 -𝑌 𝑖 𝑝 ) is the sum of residuals.

Therefore, the predictions are updated so that the sum of the residuals tends to zero and the predicted values are close to the real ones.

Multinomial Logistic regression

Logistic regression is one of the statistical classification methods using Fisher's linear discriminant. Unlike conventional regression, the logistic regression method does not predict the value of a numeric variable based on a sample of initial values. Instead, the value of the function is the probability that the given original value belongs to a particular class. For example, in this study, instead of predicting the numeric value of RE2020 for each zone or cluster, the categories of RE2020, as described in section 2 of chapter 4, is predicted. The logistic regression predicts the probability of a certain floor in the building belonging to a class. The response of logistic regression is always between the interval [0,1].

In RE2020 situations, there are three possible situation types: comfortable, at risk, and nonregulatory. Then the result of regression is the probabilities of each building floor/thermal zone for the i instance illustrated as, P(Yi=comfortable), P(Yi=at risk), and P(Yi=non-regulatory).

So, as mentioned, in a logit regression model, the predicted values of the dependent variable or response variable cannot be less than (or equal to) 0, or greater than (or equal to) 1, regardless of the values of the independent variables; therefore, this model is often used to analyse binary dependent or response variables.

Berkson, 1944, first used the term logit and the logistic function showing the probability of outcome is defined as follows:

y = exp (𝛽 0𝑘 + 𝛽 1𝑘 𝑥 1 + ⋯ + 𝛽 𝑝𝑘 𝑥 𝑝 ) 1 + exp (𝛽 0𝑘 + 𝛽 1𝑘 𝑥 1 + ⋯ + 𝛽 𝑝𝑘 𝑥 𝑝 ) Equation 5-10
The term logit comes from the fact that this model can be easily linearized using a logit transformation. Assuming that the binary dependent variable y is a continuous probability p ranging from 0 to 1, then we can transform this probability p as follows:

p' = log {p/(1-p)}
This transformation is called the logit or logistic transformation.

Multinomial logistic regression is an extension of binary logistic regression and both operate on the assumption that there is no correlation between independent variables.

Framework in the construction of surrogate model

The goal of this chapter is to illustrate the method to predict the performance of buildings that are in the same cluster using surrogate modelling. In this section, input and output data, DOE construction techniques, and various surrogate models were described. In the following paragraphs, the process of surrogate model construction is demonstrated.

After selection of input and output data of surrogate model, a set of samples using D-optimal was selected and parametric simulations on the representative buildings were carried out. Results of parametric simulations for each cluster were collected to create a new database, which was then used as training and testing data to select appropriate surrogate modelling technique. For that, data for KM7_5, as also shown in Figure 5-2, was split into 70% training and 30% test data and were used to train and test all of the candidate surrogate models. In the following, the results and procedure of how they were obtained are illustrated in more details.

After completion of simulations, to measure if input parameters are inter-correlated, a Pearson correlation analysis was performed on the input parameters of each cluster and results showed relatively weak inter-correlation between a small number of input parameters, meaning that they can be used for regression analysis and construction of surrogate model.

After that, a feature importance analysis was carried on the results of parametric simulations for each cluster centroid, where the vertical position of zone was also included as a variable. Results of feature importance analysis for KM7_5 is presented in Figure 5-4.

Results in Figure 5-4 show that regardless of how different other features are in a building, indoor thermal conditions during summer inside a building is highly influenced by the location of thermal zone within a building. In the overall variations of output parameters for the whole building, attic accounts for more than 50% of those variations.

This simply means that for indoor overheating analysis and construction of a surrogate model, it is necessary to study attic separately from other floors. In other words, even if other parameters remain the same, attic would on average be warmer than other floors. Having this in mind, in the following influence of parameters, tuning, training and validation of surrogate models are carried out separately for attic and other floors of the building (ground floor and middle floor). 

Feature importance analysis for ground and middle floors

Input data from attic was filtered out from data and simulation results. Then a new feature importance analysis was carried out on the input parameters assuming their influence does not change when they interact with each other. Results are presented in Figure 5-5.

For KM7_5 in the ground and middle floors, U-value of exterior wall, vertical window to wall ratio, occupant type (occupant behavior), net area of windows, and type of window glazing play the most significant role. For KM7_6, size of window, type of occupant, u-value of exterior wall, principal orientation, and area are among the most influential parameters, as presented in Figure 56. In both buildings the first 5 parameters are almost the same but their order is different. This means that type of building can change the importance of one building parameter over another for its summer performance. For instance in this case, indoor summer performance of building located in densely built areas due to their limited exposure to solar irradiance, are more influenced by the thermo-physical properties of envelope elements, while building that are more exposed to external environment (sparsely built areas) are more influenced by the size of window and orientation. Occupant behavior, on the other hand, has a strong influence in both of them.

Results of Figure 5-5, and Figure 5-6 showed the results of feature importance analysis of individual parameters; however, there is no indication of how their importance would change on the output parameters if they combine and act together. To measure that, a new feature matrix consisting of all polynomial combinations of input features with degree one was created. Number of input parameters increased to 55 parameters and a feature importance analysis was carried out on them.

Bar charts in Figure 5-7 show the top 10 important parameters after combination of input parameters for KM7_5, and KM7_6. In this graph, the top 8 parameters of Figure 5-5 and their combinations make up the top 10 parameters in Figure 5-7. The result shows that combination of input parameters did not dramatically change the order of influence in parameters for summer discomfort.

The combination of parameters as mentioned earlier, are only for degree one non-linear transformation. For instance, parameters X1, and X2, were used to generate parameter X1X2 and were added to original features. Higher degree such as X1 2 and X2•X1 2 were not generated because they dramatically increase the number of attributes and coefficients. It has been also argued that higher degrees of feature transformation lead to overfitting of the model.

Additionally, feature transformation by combination is often used only for multinomial regression analysis or in creation of surrogate models that are based on linear with interaction or/and full quadratic polynomial equations, described in section 5.1.3.1. Many other machinelearning techniques do not require the features to be combined in order to capture non-linear correlations between dependent and independent variables.

Surrogate Model Selection for ground and middle floors

In the problem of surrogate model development, the key requirements are to maximize model accuracy and minimize its complexity. For multinomial regression, a superset of features was created by combining the input parameters of Table 5-1. For the rest of machine-learning techniques, only the input parameters were used to train and test their performance. As shown in Figure 5-2 the process of surrogate model has an important stage that deals with model selection. The selection of surrogate model requires consideration for physics-based relationships between dependent and independent parameters, and the expectation of practitioners from the underlying response. In this case, there are two underlying expected response types: (1) a multi-output regression-type surrogate model that generates five continuous dependent variables described in Table 5-2, and (2) a classification-type surrogate model that predicts the RE2020 situation type categorical dependent variable. Since insights into the physics that describe the correlation between dependent and independent variables are not obvious due to complex dynamic simulations and post processing of data. It is necessary to find a balance between model complexity and performance accuracy.

For performance accuracy measurement, input data was split into 0.7 and 0.3 ratios, where 0.7 was used for training and 0.3 to test the performance of models. In the measurement of accuracy, for multi-output regression-type surrogate model mean squared error (MSE) was calculated to measure the difference between simulated and predicted values as demonstrated in Table 5-3. Additionally, average MSE and average RMSE for all five indices were also calculated. As can be seen in Table 5-3, Surrogate model based on Ensemble Gradient Boosting Regressor performs better than other techniques at predicting indoor characteristics of middle and ground floor. MSE and RMSE are both relative terms and do not always provide all the information need. That is why the strength of relationship between simulated and predicted values of test data for each dependent variable was also calculated with R 2 score for the best performing regressor. In classification of categorical variables, multinomial logistic regression performed better for this problem. It is however, important to mention that Gradient Boosting Classifier due to its ability to be tuned more and more, has the potential to outperform Multinomial Logistic Regression if the practitioners gives enough time to tune all hyper-parameters. Finally, Multinomial Logistic Regression was selected for surrogate model construction when the expected output is a categorical variable.

Surrogate model's performance with a new building from the same cluster

The next step after selection and training of the surrogate model is validation. For that, a random building from the same cluster was selected and simulated using TRNSYS v17. Trained surrogate model was then used to approximate the performance of this new building.

Results of simulations, predictions and ranges of answers for ground floor, and middle floors of KM7_5 cluster are presented in Figure 5-11, Figure 5-12 and Table 5-5 below.

In In Table 5-5 the term predicted is referring to value that surrogate model predicted for the floor. Comparison in the simulated and approximated values shown in Table 5-5 and Figure 5-11, 5-12 indicate a small difference between predicted and simulated values of the new building for ground floor and middle floor of the building. The results of surrogate model validation for KM7_6 is presented in appendix 5-2 of this manuscript. Outputs of surrogate model for ground floor and middle floor were similar to what was observed for ground and middle floor of KM7_5.

Surrogate model for attic

As illustrated in data selection of this chapter, attic of centroid for cluster KM7-5 showed significantly different behaviour, and influence of parameters varied considerably compared to ground and middle floors. Therefore, a separate analysis was carried out for it.

In the meta-model parameters related to orientation (north, south, east, and west) are absent from attic. This is because in parametric simulations attic was considered as a single zone and simulations were performed for two major orientations: North-South and East-West. U-value of interior is also absent because attic was considered as one thermal zone.

Surrogate model selection for Attics

Results of parametric simulations for attic, similar to ground and middle floor was split into training and testing set. Various surrogate model construction functions were trained and tested on the selected data. Comparative results of their performance are presented in Figure 5-14 and Table 5-6. Application of trained surrogate model to predict indoor thermal indices in the attic of the validation building that was selected from the same cluster further demonstrates that input parameters that allowed surrogate model to predict indoor thermal indices of ground floor and middle floors do not produce satisfactory results for attic. This could be because the indoor thermal conditions of attic vary extensively with outdoor environmental conditions. Meaning, an increase in outdoor temperature can rapidly change indoor temperature of attics. Insulation, thermal inertia, and type of ventilation are also factors that could be affecting this rapid change.

In addition, unlike the KM7_6 cluster, there is a significant difference in the shape of attic as well in the number and types of openings between the cluster centroid KM7_5 and the validation building in the same cluster, as presented in Figure 5-17, below.

Figure 5-15 shows that surrogate model for attic of KM7_6, which is able to approximate the indoor performance of attic for that specific cluster because the shape and type of windows for centroid building and validation building are similar.

The difference in shape and properties of attic is pervasive within the buildings of the same cluster, making it complicated for the surrogate model, described earlier, to correctly predict indoor thermal conditions of attics of the rest of buildings based on those parameters. 

Implementation of surrogate model on the rest of buildings in cluster KM7-5

Satisfactory performance of surrogate model to predict indoor overheating indices of validation building using the Gradient Boosting Regression for the ground and middle floors of validation buildings indicates that surrogate model could be deployed to estimate indoor thermal condition of the rest of buildings in the clusters to approximate the performances' of ground and middle floors of buildings.

Technical implementation process

Implementation of trained surrogate model is closely linked to the database used for cluster analysis, presented in chapter 2, because the database contains "building year of construction", and a cluster number that had been assigned to each building during cluster analysis.

Building year of construction was used as a primary feature linking most of the assumptions and buildings in the database. A python script was developed to implement the trained surrogate model for each building using the assumptions, and that way approximate 6 outputs indicators for each building. The process is also shown in the Figure 5-18, below.

Numerical implementation

Scikit-learn [START_REF] Pedregosa | Scikit-Learn: Machine Learning in Python[END_REF]), a free Python library dedicated to machine learning, is employed for data preprocessing, cluster analysis, training and testing of machine-learning based surrogate models. Python Geopandas package [START_REF] Jordahl | Geopandas/Geopandas: V0.8.1. Zenodo[END_REF]) is another free library widely used in this thesis to read, and write vector-based spatial data format including ESRI shapefile, GeoJSON files and more. The library enables users to transform geospatial data into matrices and tables. This library also provides a high-level interface with matplotlib for making maps, in this case indoor overheating maps, shown below.

The Python library Numpy, and pandas have also been used extensively to manipulate matrices and to build numerical algorithm. Matplotlib, Seaborn, and Plotly libraries have been coupled with the Numpy arrays for the visualization of many parts of the data.

In addition to technical and numerical implementation, the application of surrogate model from cluster centroid to the rest of buildings is conditioned on the assumptions described in the characterization section of chapter 2.

Here is a brief list of those assumptions:

-The variance and range of training data used in the training section is applicable to all buildings within the cluster. -U-values of exterior wall and U-value of roof for buildings in the cluster can be described as a function of year of construction, presented in Table 2-5. -Window size for each building is estimated as a function of year of construction based on the data depicted in Figure 2-19. -Occupants control natural air inflow rate and external shading of windows and according to the assumption presented in Chapter 2; there are three types of occupants: good user, intermediate user, and poor user. -The performance of the floor is the sum of the performance of all thermal zones that are in the same floor. Because in a floor zones can be oriented in multiple directions at the same time, in the feature importance analysis for the floor the importance of orientation is significantly smaller compared to a number of other features, as shown in Figure 5-5. -Type of window glazing and U-value of envelope elements can also be different whether a building is retrofitted or not retrofitted.

Following this process and assumptions, indoor performance of buildings for KM7_5, and KM7_6 were calculated and visualized on maps, presented below.

The assumptions illustrated earlier, can vary from building to building and from user to user, because so, the indoor overheating exposure map can also be different in accordance to the assumptions. Indoor overheating exposure map is then visualized for each index and each floor. Maps, below, show buildings of cluster KM7_5 that are concentrated in Nantes, city center. Changing the type of user from type 1 (poor user/not adaptive) to type 3 (adaptive user) for middle floor, changes the indoor thermal conditions to as follows.

Significant change in the RE2020 situation, just by changes in the occupant type indicates that in order to draw an accurate picture of indoor overheating exposure of residential buildings it is essential to collect not only thermo-physical characteristic data of buildings but also gather more information about occupants and their capacity to adapt to extreme weather scenarios.

It is also important to note that indoor overheating exposure maps presented in this chapter are based on RCP 8.5 climate scenario, medium future (2040-2070) typical weather file from IPSL-SMHI climate model.

Conclusion

Indoor vulnerability assessment of buildings at city scale requires to identify efficient and easily interpretable method that could link a set of reference buildings (archetypes) to the rest of built stock in the city.

The research in the second chapter of this manuscript proposed an approach to identify and characterize residential reference buildings and this chapter suggested the application of surrogate modelling as an approach to extend the behavior simulated in each reference buildings to the rest of built stock that are within the same cluster.

To do so, first an experimental design based on D-optimal was constructed and parameters of building centroid (representative building) were simulated in accordance to D-optimal table. Results of simulations for each reference building were collected and used to create a new database. Various surrogate modelling techniques based on regression and supervised machine learning were trained and tested on the database and the best performing one was identified.

When output of surrogate model is one or multiple continuous variables, ensemble gradient boosting regression technique performs significantly better than other techniques and when the output of surrogate model is a categorical variable (RE2020 situation), both multinomial logistic regression and ensemble gradient boosting classifier generate satisfactory results. However, to move forward with the process, multinomial logistic regression was selected.

Based on previous literature on indoor overheating and thermal comfort assessment that recommended studying building at zone scale, in this study parametric simulation and characterization of reference of building was carried out at scale of a thermal zone and performance of all zones within each floor was averaged, considering the area of zone, to the whole floor.

The result further indicate that with input parameters described in previous sections of this chapter, indoor thermal condition of ground floor and middle floor of the build stock can be estimated using a surrogate model, but assessing of attics' of building stock requires further research on parameters that were not taken into consideration in this study.

For ground and middle floors of buildings in summer overheating assessment, window wall ratio, U-value of exterior wall, occupant type (occupant behavior) and its vertical position (ground floor or middle floor), size of window, and type of glazing are the most important parameters. These parameters, however, are not sufficient to estimate summer overheating of the attic.

For attic, considering the difference that was noticed between reference building and other buildings within the same cluster, type of roof itself, number and type attic windows (inclined, vertical) also have significant influence but due to absence of data on these parameters they were not considered neither in the initial clustering of buildings and nor in the characterization stage.

As described in chapter 2 of this manuscript, occupants influence summer indoor conditions by manually opening and closing of external shadings, and window openings. These two passive strategies have been proven to significantly influence indoor comfort (our research article presented at IBPSA 2021 conference and a copy it is added in appendix 2-7) and are a major source of uncertainty in summer performance modelling of buildings.

The uncertainty with occupant behavior can drastically alter the way indoor heat exposure map is built, and what buildings are vulnerable and what are not to overheating. In addition, there is no reliable data on how occupants inside a building act during summer. Therefor a suggestion of this manuscript is to present vulnerability map in a scenario approach. In one scenario, an indoor overheating exposure map is presented for occupants that are unable or unwilling to manually operate external shades and windows. In another scenario, occupants are assumed to be well aware of the external environmental conditions and operate windows and external shades accordingly. This scenario-based approach could also be used to determine what buildings are vulnerable under what assumption.

Conclusions, Limitations and Prospects

The objective of this PhD thesis was to develop a methodology for integration of climate change and urban heat island data into decision support tools in urban planning to evaluate indoor overheating risk in residential buildings at city scale. For policy makers and other stakeholders this methodology would be used in assessment of local urban plans (PLUs) and climate change in terms of UHI and vulnerability of population to heatwaves.

This objective was partially achieved with creation of indoor heat exposure maps (ground floors and middle floors) that could be used as an input for local adaptation solutions such as reintegration of nature to the city, installation of misting systems or for mitigation measures such as buildings' refurbishment programs.

The developed methodology is based on the typological approach, dynamic thermal simulation of buildings and surrogate modelling to estimate the overheating of buildings at the city scale. Key novelty and strength of this methodology is its flexibility and interpretability. Thus, its could be used easily by practitioners. In other words, practitioners, depending on their needs, could modify, add, or remove one or more step to create a vulnerability map. Generated maps can then be used as an entry point for discussions in policymaking on how to layer adaptive responses to climate change and urban warming.

Synthesis of the results obtained

The first chapter of the manuscript is dedicated to the literature review of issues related to climate change, heatwaves, urban heat island and key concepts frequently encountered in climate impact studies. The literature review allowed to identify the problems with integration of global warming and other related challenges in decision support tools for urban planning. It was noted that almost all private and public sector organizations as well individuals need to be able to adapt to overheating due to climate change. Adaptation and implementation of policies that are aimed to reduce climate induced risk first require the development of a method that would enable practitioners to identify most vulnerable locations in a city and then layer the adaptive policy responses accordingly. To that end, the objective as stated earlier is the creation of indoor overheating exposure map.

Creation of indoor overheating exposure map at city scale, taking into consideration global warming, heatwaves and UHI requires consideration for the following crucial aspects:

-Good quality data that represent climate change scenarios, heatwaves and urban heat island;

The problem of access and processing of future climate data for building performance was studied and discussed in chapter 3 of this manuscript. A workflow was illustrated to generate typical future weather data for building simulations from high resolution dynamically downscaled regional climate models of EURO-CORDEX. Dynamically downscaled future typical weather data from Euro-Cordex were then compared with statistically downscaled weather data of meteonorm and historical heatwave data of Nantes. A simplified procedure to access and use historical weather from MeteoFrance was also presented. The chapter also contains the process to project the influence of urban heat island on the weather data that are then used for building performance simulations.

-Appropriate method to select reference buildings and perform energy and thermal comfort assessment simulations on the reference buildings;

Identification and characterization of reference buildings were described in chapter 2 of the manuscript. First, the procedure to access, pre-process and calculate new parameters that allow practitioners to include the influence of urban heat island as well as building parameters were described. The raw data to build initial database was accessed from BD-TOPO Données foncières of CEREMA and DPE. Parameters such, façade density, sky-view factor, distance from peripheries and building shape elements were calculated for our case study city, Nantes.

After creation of building stock data, an unsupervised machine learning was chosen to divide residential building into clusters that share similar characteristics. Multiple clustering techniques were deployed and the quality of clustering was measured. Among the techniques, K-means clustering was identified as the one performing better than other techniques. Within each cluster, the real building closest to the fictive centroid of K-Means was chosen as the reference building of the cluster. Reference buildings were then characterized and additional parameters were added to it for parametric simulations.

-Indices to measure overheating;

The literature review on indoor overheating indices showed that researchers have developed numerous indices to describe overheating, but still there is no consensus on which one to use in the evaluation of indoor thermal conditions. Results of study on indices revealed that HI and DI indices were designed for extremely hot climate regions and may not be able to describe overheating of the buildings that are located in oceanic climate region.

Some indices such as those used by TM59 and RE2020 only concentrate on temperature and do not consider relative humidity and indoor air speed in the assessment.

Based on comparative analysis of indices, their individual behaviour, it is noticeable that many of the indices provide complementary results and some of them describe certain aspects of building that are ignored of given less attention in other indices.

Practitioners in BPS could create a better picture of indoor thermal performance of buildings at city scale if they use more than one index to describe it.

Given the influence of multiple factors on thermal vulnerability of occupants, a suggestion of this manuscript was that the indices should be able to describe the following characteristics of indoor conditions to present a realistic picture of indoor thermal conditions:

-Intensity of indoor operative temperature (maximum operative temperature); -Duration of over temperature (maximum consecutive hours over a threshold); -Adaptive capacity of occupants, considering their absence and/or presence (RE2020); -Take into account the influence of indoor air speed, and relative humidity;

-Development of an approach to extend the application of parametric simulation results on representative buildings to the rest of the built stock in the city.

Chapter 5 of this manuscript is dedicated to the illustration of surrogate model development.

The aim was to develop a surrogate model for each cluster of buildings stock of Nantes city. Thus, following the identification and characterization of reference buildings, a parametric simulation was carried out on centroid (representative building) of KM7-5 and KM7_6 clusters and surrogate models for these two clusters were developed.

In the city-scale energy and thermal performance studies of buildings practitioners/researchers often use a simplified thermal zoning configurations (one zone per floor or the whole building as a zone), but in this study a more complex zoning configuration was used, based on the characteristics of identified representative building. Ground floor and middle floor were divided into multiple zones and attic was assumed as a single zone.

This decision to divide floor into zones were made because indoor overheating, similar to thermal comfort, is spatially as well temporally variable and multiple zones in each floor are better able to describe indoor thermal conditions than taking the whole floor or the whole building as a single zone.

The results of simulations from zones were then averaged to calculate indoor thermal indices of the floor.

D-optimal design of experiment was used to optimize the number of variations for parametric simulations. In each run of simulation, input parameter variations and corresponding calculated output parameters of simulations were collected to build a new database for each cluster of buildings. These database or matrices are used to construct the surrogate models.

The first step in the development of surrogate model is the selection of the method.

For the selection of surrogate models for clusters KM7-5 and KM7-6, data of attic were filtered out from middle and ground floors and then the data was split into training (0.7) and test (0. Using the techniques described above, indoor thermal indices for a new building randomly selected from cluster KM7_5 and KM7_6 were estimated. The results of estimation with BES and surrogate modelling simulations were then compared. Surrogate models estimated all indices for ground floor and middle floor with a good degree of accuracy. However, the surrogate model did not estimate all indoor summer indices for attic of new building satisfactorily due to one or both of the following reasons:

1-Input parameters that influence indoor overheating are different for attic from ground and middle floors, therefore it is necessary to collect more data on attic and its properties, in order to construct a surrogate model capable of predicting overheating in attics; 2-Attic is more exposed to outdoor environment, and its indoor thermal conditions are more influenced by the surrounding environment than by thermo-physical properties used as input for surrogate model.

Limitations and Prospects

This thesis attempted to path the way for researcher and practitioners to develop a robust methodology to integrate data from climate change, heatwaves and urban heat island in decision support tools for urban planning, by creation of indoor overheating exposure map.

Nantes city was used as a case study city and using available open-source data on climate, buildings, and urban parameters, an indoor overheating exposure map was created.

Some of the data, techniques and methods applied in this manuscript, looked from a critical point of view, deserve deeper research. In the following, major limitations of each step taken in the creation of overheating exposure map are discussed.

Chapter 1:

Scope and method of the study

In this thesis, a process-based approach was used to organize tasks and achieve the final objective. Main advantages of process-based approach is that it is scalable (can be implemented by a team of practitioners simultaneously) and over time the process can evolve and be improved. However, application of this approach on a research problem can be time consuming, especially when it involves dealing with various subjects. Researcher/practitioner has to find a balance between relevance to the question and level of detail in each step of the way, which is not always clear. For instance, in the third chapter of this manuscript we used one fixed threshold approach to measure heatwaves; however, there are multiple other approaches that could have been used.

In the future studies, depending on the availability of resources a more detailed study could be carried on these steps, to see if other approaches better describe the problem.

Absence of data on social vulnerability at city scale at a fine resolution

At the beginning of research effort, the objective was to build a vulnerability map taking into consideration both exposure rate to overheating and adaptive capacity of occupants, but absence of data on socio-economic status of city-habitants at a fine resolution, which play a significant role on the degree of vulnerability according to the literature review, led us to build a heat exposure map. In the future, following this methodology, socio-economic data could be collected to build a social vulnerability map, then after determining the relative influence of social vulnerability and exposure rate they could be superposed one over another to create an overheating vulnerability map.

Chapter 2:

Identification of representative buildings

In the second chapter of this manuscript, a method was proposed to identify representative buildings and then each identified representative building was characterized.

The chapter starts by a literature review of approaches to divide buildings into groups. In this chapter it was decided to use unsupervised machine learning to divide buildings into clusters and from each cluster, select one representative building. This approach was chosen to minimize the familiarity and experience bias of practitioners and compare all buildings to one another. The latter is an advantage of machine learning techniques because a human observer can compare a limited number of objects to one another, but machines can compare thousands and even more objects to one another. The quality of representative buildings identified with this approach, on the other hand, is highly influenced by the type and properties of input data.

In this manuscript, input parameters were selected in such a way to include the influence of UHI effect, year of construction and building morphological parameters. UHI effect parameters for each cluster were averaged in each cluster and the weather file for the cluster was modified using UWG to project the influence UHI.

Combination of UHI and building parameters in this study increased the level of variations and therefore, the degree of dissimilarity between clusters. The values of three indices, which are used to measure the quality of clusters, are relatively low as compared to studies in other domains.

In the future studies, UHI parameters could be used alone to identify clusters of RSUs (neighborhoods) that are similar to one another and within each cluster of neighborhoods a new building typology could be constructed, using only building parameters.

Another issue that needs to be taken into consideration in future building typology construction is urban expansion and/or increase in the density of buildings in urban areas.

Smaller number of representative buildings

Clustering was carried out on a various number of clusters. The degree of dissimilarity, as measured by three indices, was slightly larger when number of clusters was 7 compared to number of clusters equal to 6 and 5. Selecting number of clusters to 5 or 6 could reduce the number of representative buildings but still represent residential buildings. In the future, a smaller number of representative buildings could be selected for the sake practicality; if/when, the degree of dissimilarity between them is not significant.

Quality of data

The quality of some of the data used as input for clustering could be improved. That green coverage ratio of city data of BD-Topo was used, but some research has shown that the resolution of the parameters could be improved if more up-to-date satellite images are used.

Characterization assumptions

Some of the assumptions on occupant behavior and building thermo-physicals as a function of year of construction can evolve over time. Some buildings that were not retrofitted are now retrofitted. The assumptions about schedules on windows status that influence natural airinflow rate and external shading were based on limited literature sources and on our study on one building. This is a small sample, and in the future further research is required to ensure the assumptions are in line with reality

Chapter 3:

The third chapter of this manuscript is about climate data for future, historical weather data, heatwaves, and projection of UHI influence on weather data. The focus was more on practicality and how to make them accessible to Building Performance Evaluation (BPE) practitioners. The steps and details described in this chapter have some limitations, which are listed briefly in the following:

-The raw data of all necessary climate variables used to construct typical weather data for the future are not bias-adjusted, therefore only a comparative assessment can be done with them; -The thresholds used in heatwave detection, are fixed absolute thresholds for maximum and minimum daily temperatures and are based on the worst historical heatwave event. In future studies, for France or any other locations around the world, other methods of heatwaves measurement could also be used; -Comparative analysis of weather files in this study was focused on medium future and on typical weather files. Further study is suitable to perform a comparative analysis of observed heatwave weather data of 2003 with near, and far future weather files, and with artificially generated extreme hot years; -Further research is suggested in the creation of Extreme Hot Year weather files from EURO-CORDEX to be compared with historical extreme weather years; -In this study, future typical weather files of three climate models were compared to one another and historical weather data of 2003 for our case study, Nantes. Multiple other combination of GCMs and RCMs are possible on the EUROCORDEX platform and practitioners/researchers could further explore their potential for BPS evaluation.

Chapter 4:

The chapter of manuscript has two parts. First part summarizes a literature of review of cases studies that performed sensitivity analysis on thermal comfort and energy consumption of buildings. An study was carried out to summarize and aggregate the results of sensitivity analyses in various papers and to identify the most influential parameters. A few limitation of method used in aggregation of results are presented as follows:

-Method employed in aggregation of parameters from different sources is not a standard method and was devised to answer the needs for this specific case. Alternative approaches may also exist that could possibly change the outcomes;

-Selected papers only focused on building parameters. Urban morphological and microclimate parameters that also influence energy consumption and thermal comfort were not taken into consideration; -Sensitivity analysis results collected in these papers were conducted in multiple geographical locations with a wide range of climatic conditions, which in turn can also introduce inconsistency in the study; -Some papers ranked the importance of parameter by giving it an index (percentage/ratio), some just presented ranks on a histogram and some named them in order of importance. In this brief review only the order of influence/affect (first, second, third, etc.) of results and total number of parameters were taken into account.

-Some important parameters were not studied in any paper and therefore they were not considered in parametric simulations. It is the case, for instance, most of the attic characteristics such as horizontal glazing, shape of the roof, that were at the end of this work, underlined as critical factors influencing heat exposure in this part of the buildings.

The second part of this chapter is performs a detailed study of indices used in indoor overheating. It starts with a literature review and by explanation of major techniques to used by researcher and other building actors.

Due to time limitations and the fact that comparing indices was not the core objective of this manuscript, a small number of indices were compared to one another. Further research on the combination of different indices to describe indoor overheating could be conducted.

Additionally, some of the indices that were employed in this study did not have standard thresholds, above or below which a building or thermal zone could be declared as "overheated" or comfortable. For instance, maximum consecutive hours about 27 °C. In this index, the duration of exposure to over-temperature is expressed in hours, but no reliable information was found to indicate above what number of hours a person with feel thermally distressed. Without thresholds, only a comparative analysis of thermal zones could be done, using this index.

Determining the threshold of thermal distress due to long term exposure to over-temperature could be an area of future research.

Chapter 5:

The main objective of the research effort was to develop a new fast and efficient method to estimate how residential buildings perform under climate change and heatwaves taking into consideration urban heat island.

In this manuscript, it was decided to build surrogate model to extend the results obtained from cluster centroid (representative building) to the rest of built stock. The decision was made with three factors in mind: practicality, accuracy and interpretability of the results.

Assessed from a practicality point of view, the method proposed here, as shown in chapter 5, can estimate overheating for ground and middle floors at city scale. However, number of parametric simulations increases with number of clusters and parameters such as area and window size that requires changing the geometrical model can make the simulation process tedious. In the future research, a suggestion of this manuscript is to find ways to streamline the parametric simulations of areas and window sizes and other parameters.

A major of limitation/shortcoming of this research effort was that the surrogate model did not perform as well as it was expected for attic. A suggestion to overcome this shortcoming is to perform a detailed sensitivity analysis on attic (last floor) of residential buildings to identify what parameters influence overheating and how they could be added to the parameters that impact overheating of other floors in a building.

An important area of further research within this methodology is the introduction of renewable energy production and passive cooling techniques as a way to offset the risk associated with overheating in residential buildings at city-scale.

Overall, the methodology and workflow presented in this manuscript laid the path for practitioners and researchers in urban planning to take into account data from climate change, historical heatwaves and urban heat island in decision support tools, applied to map vulnerability of city habitant. In each chapter, the focus was on the practicality and interpretability of the approaches. [10,20,20,30,40,50,60,70,80,90,100,120,140,160,180,200,220,250,280,300,320] plt.hist(df. # histogram to analyse individual building parameters and thier range #numbers = range(0,1.1) bin_list = [0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1.0,1.05,1.1,1.15 
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Site Introduction

Observational study was carried out on a five storey apartment building located in northeast of Nantes (47.2184 °N, 1.5536 °W). Continuous measurement of data from window status, outside air temperature 2018) paper. Specification of data collection equipment for the given items are described in Table 1. In this apartment building, there were two types of windows with manual roller blinds/shutters. Window type 1 was 2.05m 2 and type 2 was 3.01m 2 . Frame, glazing and other properties of the both window types were identical. Both window type 1 and type 2 had 1600mm 2 trickling vent.Both window types were single side hung casement windows with two fully operable windows which opened inside.

Windows were equipped with roller blinds to control solar gains. Discharge coefficient of windows was estimated 0.5. Window sensors recorded the state of window with boolean signal (0,1), where 1 indicates window is open and 0 when it is closed. The sensor did not read any information about the openness ratio and the state of shutters. Figure 1 shows detailed plan of indoor air temperature reading points (1, 2, 5, 6) and windows' sensors (45b, 45a, 47a, 47b, 44a, 44b, 49a, 49b, 50a, 50b, 52a, 48b, 48a, 51b). Indoor temperature sensors were installed in the living room of apartments away from direct exposure to sunlight.

Local authority of housing provided information about the U value of composite exterior wall and double glazing windows, which were 0.380 [W/m 2 K] and 2.89 [W/m 2 K], respectively. Information concerning U value of roof was not available in the local authority for this building. All apartments had mechanical exhaust-only ventilation in the kitchen and bathroom. Quantity of air exhausting via each mechanical fan was given in the range of 40 to 100 m 3 /hour. There were two types of doors in each apartment: bedroom doors were 2 by 0.8 m and discharge coeffi-cient was estimated to approximately 0.75; bathroom doors were 2 by 0.75 m with a similar discharge coefficient. Bedroom doors were assumed to be open during the day from 8h to 22h and closed at night. Under-door crack in bedroom doors' were measured to be 4mm by 0.8m. Bathroom doors were considered to be closed during day and night, but in contrast to bedroom doors, they had a larger under-door orifice of 10mm by 0.75m and an over-door crack of 4mm by 0.75m allowing living room air to be extracted through the extraction vent in the bathroom.

Co-simulation tools

Trnsys package is a combined dynamic modeling software that allows the evaluation and assessment of thermal and electrical energy systems. The package consists of graphical front-end interfaces to intuitively create simulations; for multi-zone buildings it is type56. Trnsys type56 is a non-geometrical balance model with one air node in a zone illustrating thermal capacity of air volume in the zone. This thermal capacity is separate from the volume of zone, which is an additional input. Trnsys type56 automatically generates inputs of multi-zone building such as view factors, sunlit factors and distribution factors from geometric information. Transient heat conduction through envelope elements in type56 are calculated using conductive heat transfer function method developed by Mitalas and Stephenson. Windows thermally in Trnsys are viewed as an external wall with no thermal mass; partially transparent to solar radiation but opaque to long wave heat gains. Longwave heat gains are regarded to only occur at the surfaces. Incident shortwave radiation is calculated by surface modulus using solar absorptance coefficient of material (Type56-Manual (2017); [START_REF] Khalifa | Coupling TRNSYS 17 and CONTAM: simulation of a naturally ventilated double-skin façade[END_REF]). Convective heat fluxes to the air node is calculated as a summation of infiltration gains; ventilation gains;internal convective gains (by equipment, people, lighting, etc); and gains due to convective air flow between air zones' boundary conditions. The user can define manually air mass flow into a zone in type56; but type56 alone does not automatically calculate air mass flow to adjacent zones. Calculation and definition of air mass flow rate exchanges between adjacent zones in type56 can be a tedious task for user if done manually. Contam on the other hand can automatically calculate air mass flow rate between zones, knowing the geometry and status of airflow paths between zones. Contam like Trnsys has been in practical use for many years. It is used in a variety of applications, most notably in assessment of ventilation systems, analyses of smoke management systems, contaminant transport, etc. It allows the user to define various air paths such as, stairwells, ducts, orifices, cracks, doors, windows etc. Airflow calculations in Contam are based on non-linear airflow-vs-pressure relationships. Con- tam assumes all airflow through the building envelope openings and between zones (large, small, intentional or accidental airflow paths) are governed by Bernoulli hydro-static equation.

∆P = P 1 + ρV 2 1 2 -P 2 + ρV 2 2 2 + ρg(z 1 -z 2 ) (1)
Where: ∆P = total pressure drop between points 1 and 2 P 1 , P 2 = entry and exit static pressures V 1 , V 2 = entry and exit velocities ρ = air density g = acceleration of gravity (9.81m/s 2 ) z 1 , z 2 = entry and exit elevations.

Coupling between the heat transfer (type 56) of Trnsys and airflow calculations (type 98) is accomplished via the quasi-dynamic method. In other words, it refers to the coupling between simultaneously running processes where data is exchanged only once within each time-step like in ping-pong. This coupling allows type56 multi-zone building heat transfer model in Trnsys to share input and output with Contam representation of multi-zone building [START_REF] Khalifa | Coupling TRNSYS 17 and CONTAM: simulation of a naturally ventilated double-skin façade[END_REF]; [START_REF] Dols | Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies[END_REF]). The exchange of input and outputs for airflow and temperature data is shown in figure 3. Development of type 98 by National Institute of Standards and Technology (NIST) has facilitated automatic and standardized coupling between Contam and Trnsys. The difficult task of describing the thermal zones of a building, walls, internal gain, orientation for solar radiation, etc. is performed automatically by following detailed cou- pling process described in Contam documentation by Dols and Polidoro (2015). This automatic process helps create building description, minimizing modeler's input error. Building's indoor air temperature color-scaled 3D model in Trnsys3D is shown in figure 2.

Method

As can be seen in the figure 2 the building consists of five storeys connected through a central stairwell. All five storeys have similar floor plans; window sizes; and wall thermo-physical properties. Each piece in the apartment i.e. bedroom, living room, and bathroom was treated as a separate zone in the simulation tool connected to other pieces via doors and airflow paths (cracks) under and over the doors. The time step of the simulation was set to 15 min but the output of simulation was collected at hourly intervals. Temperature and humidity ratio of typical weather data file for the given location was modified with measured ones for July and August and used in simulations. Heat gains from occupancy were calculated by dividing the average load per person to average area per person. Load gains from lighting and equipment were calculated from ASHRAE tables for the number of appliances and light bulbs in the apartments (figure 4). Data collection was carried out in a non-intrusive manner in the occupied apartments of the building. As a result, a limited set of on board measured data was collected. Considering case specific limitations and possibilities, RMSE,and MAE statistical indica- First, roof U value was tuned by comparing the co-simulation temperature with measured one in the stairwell. Mainly because the stairwell is less affected by direct solar radiation and airflow through the windows. After running multiple simulations, the U value of roof equals to 1.563 [W/m 2 K] was found to fit best with observed temperature (figure 5). Second, quantity of air exhausting via each mechanical air extraction fan was tuned by fitting modelled indoor temperature with observed one in apartment 2 during vacation time when windows and doors were closed. Air extraction rate at 60m 3 /h from kitchen air vent and 40m 3 /h from bathroom was found to fit best the observed temperature. Finally, calibration of window openness ratio and shading factor is more complicated as it can vary depending on the behavior of occupants, different sizes of windows, orientation, time of the day and etc.In addition, data collection sensors in windows had re- turned a boolean value that only showed the status of window as opened or closed. In order to calibrate the two parameters, window openness ratio and shading factor were equally changed in all windows and the correlation between goodness of fit to observed data and modelled data was different in each apartment and stairwell as shown in figure 6. The values with smallest RMSE in apartments and stairwell were selected as calibrated values. Moving forwards with the assessment of passive summer strategies on the calibrated co-simulation model. Three widely used comfort indices were employed to measure and compare summer comfort: predicted mean vote (PMV); upper limit values of EN 16798 adaptive thermal comfort; and upper limit values of ASHRAE 55 adaptive thermal comfort. PMV index rate were calculated using pythermalcomf ort package developed by Tartarini and Schiavon (2020). This package calculates clothing level as function of outdoor temperature at 6AM in accordance to ASHRAE 55 2017. Indoor average air speed was assumed 0.1m/s and metabolic rate 1.2 representing a light physical activity and nearly stationary air velocity. In EN 16798 and ASHRAE 55 adaptive thermal comfort measurement approaches, the sum of degree hours (DH) exceeding maximum allowable operative temperature was analyzed. In both EN 16798 and ASHRAE 55 maximum allowable operative temperature (T M AX ) is related to exponentially decaying weighted mean outdoor temperature (T RM ) (ASHRAE (2017); Chirico and Magnavita ( 2019)).

T RM =(1 -α)[T N -1 + αT N -2 + α 2 T N -3 + α 3 T N -4 + α 4 T N -5 + ...]( o C) (2) 
Where:

T N = Mean Daily temperature of previous day α = Constant between 0 and 1. α controls the speed at which running mean outdoor temperature changes. Recommended value for it is between 0.6 and 0.9 corresponding to slow and fast response, respectively. Adaptive comfort theory suggests 0.9 for climates where synopticscale (day to day) temperature variations are minor but SCAT (Smart Controls and Thermal Comfort) project which was undertaken in European Union has recommended 0.8 for the region where this study has been carried out. According to ASHRAE 55 in weighted average calculation, prevailing outdoor mean temperature shall be based no fewer than 7 sequential days prior to the target day. In this study mean temperature of 30 previous sequential days were used to calculate mean weighted running temperature. EN 16798-1:2019 which replaces EN 15251 illustrates indoor thermal comfort at category I, II, III level and sometimes level IV. Compliance to level I upper and lower boundary limit is best, and III and IV is considered worst. In ASHRAE 55, two sets of operative temperature acceptability limits are proposed; 90% acceptability is considered for cases when higher standard of thermal comfort is desired; 80% acceptability limit is for typical situations. In this study we concentrate on upper boundary limits because the focus is on summer comfort. 

Discussions and result analysis

As can be seen in figure 6, openness ratio of windows in the apartments ,when shading factor is in the range of 0 to 20%, does not significantly affect the indoor temperature in the stairwell because the doors that connect apartments to stairwell are most of the time closed. Nonetheless, within this shading range, best fit between observed and modelled temperatures in apartment 1 was achieved when openness ratio was between 10 to 15% and for apartment 2 between 15 to 20%. As for apartment 5, modelled temperature best fits the observed temperatures when the window was fully closed. This could mean that the occupant may have opened the window but closed the shading at the same time reducing the air inflow through the window. It is also important to note that not all occupants behave in a similar pattern. The openness ratio and shading factor can be different for each window in each apartment at different times of the day.

As shown in table 2, MAE and RMSE both in apartment 1, apartment 2, apartment 5 and stairwell are below 1 or just above it indicating a relatively good fit to observed measurements. This goodness of fit is further confirmed in figure 7 where normal frequency distribution of differences between modelled and observed indoor air temperatures are centered around zero, and in figure 8 where time series data of modelled and observed indoor air temperatures in apartment 1 is presented. Returning to the subject of summer passive strategies assessment, the impact of window openness ratio and window shutters were studied. Three theoretical scenarios in addition to base case scenario, which is the calibrated model, were co-simulated and gauged against the described thermal comfort indices.

In scenario I, window shutters were set to cover 90% of total area of window during the day from 09:00 to 21:00 with base case window openness ratio. In scenario II, openness ratio of window was increased to 100% but window shutters were assumed to be fully open during day and night. In scenario III, window openness ratio was set to 100% and window shutters covered 90% during the day. For demonstration, modelled indoor air temperature in base case scenario of apartment 1 is depicted in Figure 9 with upper boundary limits of EN 16798 adaptive thermal comfort indices, which are presented in grey, ASHRAE 55 in red, optimal comfort temperature with dashed line, and one lower boundary limit for category II of EN 16798. Results of analyses in calibrated scenario showed that indoor air temperature did not exceed the maximum allowable operative temperature limit of category III of EN 16798 in any apartment. However, number of hours that indoor temperature exceeded category II of EN 16798 was 3 and 2% of total hours in apartment 1 and 5 respectively. These numbers reached to 9%, 6%, 13% and 11% of total hours in category I of EN 16798 in apartment 1, apartment 2, apartment 5, and stairwell respectively. Similarly, number of hours that indoor operative temperatures exceeded upper limit of 80% acceptability in ASHRAE 55 were 9%, 6%, 12% and 10% of total hours in apartment 1, apartment 2, apartment 5, and stairwell. With 90% acceptability in ASHRAE 55 this number jumped to 22%, 20%, 30% and 44% of total number of hours in the above-mentioned apartments respectively. Number of hours here indicate the frequency of times when operative indoor temperature exceeded the upper limit but does not indicate the intensity of it. To consider both, the exceeding temperature differences between modelled indoor operative temperature and upper limit of thermal comfort index, in every hour was summed up (figure 10a). Further, analysis of calibrated scenario with PMV comfort index demonstrated that occupants felt comfortable less than 50% of the time in apart-ment1, apartment2, and apartment5; except in stairwell where this percentage was approximately 60%. largest percentage of discomfort here was due to temperature drop at night. only 2.3%, 3.5%, 2.8%, and 2.1% of discomfort in apartment1, apartment2, apart-ment5, and stairwell respectively, were due to over temperature in the day. As can be seen in figure 10a all three apartments and stairwell display most im- provement in scenario i and iii if measured by adaptive comfort indices; but if measured with PMV index, scenario i and ii provide better overall comfort to occupants (figure 10b). However, percentage of discomfort due to over temperature in the day increases by approximately 1% in all apartments and stairwell in scenario ii when measured by PMV index compared to base case scenario . This puts scenario ii at a worse position than base case scenario in terms of summer diurnal over temperature performance.

Conclusions

Passive Parameters that can/must be added to the model (0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.7, 0.9, 0.9, 0.6, 0.6, 0.6, 0.6, 0.6, 0.7, 0.8, 0.9, 0.9, 0.8, 0.8, 0.7, 0.3, 0.2, 0.2), # Weekday (0.2, 0.2, 0.2, 0.2, 0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.6, 0.7, 0.7, 0.7, 0.7, 0.5, 0.4, 0.3, 0.2, 0.2), # Saturday (0.2, 0.2, 0.2, 0.2, 0.2, 0.3, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0. 

Analyzing results
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In this table: con. Is short for continuous and cat. Is for categorical data type. Abstract: The problem of indoor overheating is increasingly becoming a subject of interest to the scientific community as well as the policy makers in urban planning due to the rise in global average temperature, increase in the frequency of extreme weather events, urban heat island effect, and the fact that nowadays most of people spend the majority of their time indoors. The present research demonstrates a methodology for an urban-scale indoor overheating vulnerability assessment, aimed to support strategic decision making in urban planning for climate-change adaptation policy interventions. Given the inter-connected nature of questions needed to be handled, this manuscript starts with a detailed introduction chapter outlining the key concepts, presenting problem statements, research objective, and overall method employed.

Each subsequent chapter is dedicated to a specific part of the research effort. The second chapter of this manuscript is about building typologies definition and identification of representative buildings. Third chapter is concerned with climate change and urban heat island data. Fourth chapter presents indoor overheating measurement indices and attempts to identify the most influential building parameters through a literature review. Fifth chapter covers surrogate models and how to extrapolate the simulations results of representative buildings to the rest of build stock. Finally, the conclusion traces the main ideas developed during the thesis. It then sets out the limits of the study in each of the areas covered and develops some additional avenues for reflection in the perspectives.
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 11 Figure 1-1: Global temperatureschange from pre-industrial. (Source: WMO)
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 12 Figure 1-2 : Global average temperature projection scenarios. (source:KNMI)
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 13 Figure 1-3: Heatwaves in France, historical records and future projection under climate scenario RCP8.5 (Source:MeteoFrance)
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 1 Figure 1-4: a) Number of people annually exposed to a present 50-year heatwave. b) Projected changes in human exposure to these events for 1.5°C, 2°C, and 3°C global warming (Source:JRC PESETA IV)

Figure 1

 1 Figure 1-5 : Left, urban heat island explained by (Jolma architects, 2018); Right, Nantes Urban heatIsland nocturnal intensity map produced by[START_REF] Bernard | Geographic and meterological maps of spatial and temporal variation of air temperature in urban zones[END_REF] for a clear day of summer

Figure 1

 1 Figure1-6 : Illustration of temperature differences in four types of UHI (source:[START_REF] Oke | Urban Climates[END_REF] 

  -1. 𝑈𝐻𝐼 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = ∆𝑇 𝑢-𝑟 = 𝑇 𝑢 -𝑇 𝑟 Equation 1-1 Where: △Tu-r Difference between urban and rural air temperatures Tu (Average/maximum) air temperature in urban area Tr (Average/maximum) air temperature in rural area
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 17 Figure 1-7: Urban climate scales and potential temperature profiles due to various UHI effects (source: Junyan Yang et al. 2020)
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 1 Figure 1-9 : Contributing factors of risk (Adapted from IPCC 2014 report)

Figure 1 -

 1 Figure 1-10 : Proposed general process in creation of overheating vulnerability map
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 21 Figure 2-1 : Methods of build stock typology development
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 22 Figure 2-2 : Data-tree structure

-

  2014) has divided the KDD process into seven steps: Data cleaning: resolving inconsistencies such as noisy data, missing values, and detecting outliers. -Data integration: multiple data sources are combined into a common source. -Data selection: determination of relevant data from raw dataset using engineering or statistical feature extraction methods. Engineering techniques employ expert knowledge to distinguish relevant features whereas statistical methods make use of data-mining or statistical techniques such as Analysis of Variance (ANOVA), Chi-squared, or coefficient of correlation statistical technique. -Data transformation: transforming nominal or categorical data to numeric data, standardizing data by converting all the values between 0 and 1 or between -1 and 1, reducing dimensions (attributes) using Principal Component Analysis (PCA) or Singular Value Decomposition (SVD). -Data mining: application of techniques to extract patterns. -Pattern evaluation: identifying pattern representing the target knowledge -Knowledge representation: visual representation of the knowledge. (Ghuman 2014) (Ali et al. 2019) used the term data pre-processing steps referring to the first four steps of KDD.

  Figure 2-3 : Predictive techniques

  Figure 2-4 : Descriptive algorithm categories
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 25 Figure 2-5 : Reference spatial unit (RSU) boundary lines for case study city
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 26 Figure 2-6: Curve fitting of MorphLim for Nantes
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 2 Figure 2-7 shows the position of buildings and urban envelop boundary line in Nantes., The distance of each building from the closest line that separates urban and peripheries was measured and added as a feature (Bernard 2017).
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 27 Figure 2-7 : Urban envelope boundary line of Nantes -Vegetation and water surface percentage in RSU: after superimposing RSU lines and BDTOPO, the percentage of RSU area covered by vegetation and water were calculated.
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 2 Figure 2-12 : Elbow technique to determine number of clusters
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 2 Figure 2-13 : Dendrogram of hierarchical clustering

  Performance of clustering algorithms were assessed with three indicators, average silhouette score, Calinski-Harabasz, Davies-Bouldin index. Overall, five different techniques of clustering, at least one from each category of methods, were used to group the residential buildings into homogenous clusters: KMeans from partitioning algorithms, Birch and Agglomerative Nesting from hierarchical clustering, DBSCAN from Density-based algorithms, and Gaussian Mixture Model from Distributionbased clustering. Because we did not know what is the right number of clusters for the given dataset, we run the algorithms multiple times for each technique to find the number of clusters and technique that generate the best cluster analysis. Results are summarized in Figure 2-14, below. As can be seen in Figure 2-14, K-Means with number of clusters equal to 5, 6, and 7 performs better than other clustering techniques in all indicators. Silhouette score index is highest for DBSCAN when number of clusters are 3, but Calinski-Harabasz index and Davies-Bouldin index show that it performs poorly. Relative difference between the values of indicators with K-Means when number of clusters are 5, 6, and 7 are small, therefore we took into consideration the results obtained from Elbow method, as presented in Figure 2-12.
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 2 Figure 2-14: Comparative results of clustering

Figure 2 -

 2 Figure 2-15 : Reference buildings identified with KMeans when n_clusters =7
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 2 Figure 2-16 : Majority of building clusters in RSUs
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 2 Figure 2-17 : Reference buildings identified with KMeans when n_clusters =7 on Google maps
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 2 Figure 2-19 : WWR of residential buildings as a function of year of construction

  decided to develop theoretical scenarios of how a typical user would use windows during summer and winter months. Decisions to open or close an external window shading in winter months are assumed to be driven by safety concerns and outdoor environmental conditions(temperature, rain, etc.). For that, it was assumed that during the day, in winter months, occupants would fully open external shading and close it during the night (see.
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 2221 Figure 2-20 : Occupancy usage schedule according EN 16798-1
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 2 Figure 2-22 : Daily schedule of external shading operation of windows during summer
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 2 Figure 2-23 : Average air change rate in different thermal zones
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 3 Figure 3-1 : Main GCM to RCM downscaling approaches
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 3 Figure 3-2 : A), IPSL-CM6A-LR at 150 km resolution (elevation); B), SMHI RCM dynamically downscaled from IPSL GCM to a resolution of 12.5 km over Europe in CORDEX.

Figure 3 -

 3 Figure 3-2 shows schematic representation of the DDS technique.As can be seen in this figure, GCMs do not capture variations in vegetation, complex topographies and littoral zones that are located inside the rectangles, which are important aspects of the physical response that governs the signal of regional/local climate change.
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 33 Figure 3-3 : Schematic representation of bias adjustment theory
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 3 Figure 3-4 shows schematic representation of the ESD technique. As can be seen in this figure, ESD is a two-step process.
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 3 Figure 3-4 : Schematic representation of statistical downscaling[START_REF] Dierickx | Copernicus Climate Change Programme: User LearningService Content[END_REF] 
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 3 Climate change data, heatwave, urban heat island weather

Figure 3 -

 3 Figure 3-5 :Trade-off between model granularity and relevance to policy/decision-making
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 3 Figure 3-6 depicts near-surface air temperature of an RCM in EURO-CORDEX region as well as the position of our case study city (Nantes) in a NetCDF file.
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 33 explains the script that identifies the closest point in NectCDF and extracts climate variables of that point for one year. Six climate variables (dry-bulb temperature [K], relative humidity [%], global solar radiation [W/m 2 ], cloud cover [%], atmospheric pressure [Pa], and wind speed [m/s]) as suggested by[START_REF] Machard | A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data[END_REF] were downloaded for thirty years (2040 to 2070) of the following globalregional climate models:

  [°C] a = 17.27, b = 237.7 °C, for T ≤ 60 °C and an error of ±0.4 °C.
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 3 Figure 3-7 : Workflow to assemble typical weather file
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 3 Figure 3-8: CDF plots of three key parameters and plot of wind speed deviation for July calendar month in IPSL_SMHI climate model Using the method described, three future typical weather files (2040 to 2070) for the case study city from dynamically downscaled climate models were assembled.
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 3 Figure 3-9: Heatwave meteorological indicator thresholds, Sn: threshold for the three-day average of minimum temperatures in [°C]. Sx: threshold for the three-day average of maximum temperatures in [°C].

  various climate models at monthly scale with different climate variables. Monthly statistical distribution of dry bulb temperature, global horizontal irradiance, and relative humidity of three DDS models, one ESD (meteonorm 2050), and 2003 observed weather data are shown in Figure 3-10.
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 3 Figure 3-10: Monthly statistical distribution of: a) dry bulb temperature, b) global horizontal irradiance, c) relative humidity
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 3 Figure 3-11: Maximum and minimum daily temperatures of weather files plotted alongside heatwave meteorological indicator thresholds In Figure 3-11, red straight lines show the position of heatwave thresholds, colours represent weather files, solid lines demonstrate maximum daily temperatures, and dashed lines indicate minimum daily temperatures.
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 4 Figure 4-1: Flowchart in aggregation of building sensitivity analyses results
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 42 Figure 4-2: Sensitivity analysis methods seen in the selected papers
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 43 Figure 4-3, demonstrates the method utilized to aggregate the results of sensitivity analysis studies in the literature. It starts with creation of a database containing the information about

Figure 4

 4 Figure 4-4: an example of level of detailsLevel four is the most and level one is the least detailed characterization of building.Aggregated results of sensitivity analysis in various levels of details are shown in Figure4-5. In this figure, vertical axis represents the aggregated rank of parameters and horizontal axis illustrates number of papers for level of detail 4 and average number of papers for the other levels of details.
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 4 Figure 4-5: Relative rank and number of studies of each building parameter with different levels of detail for energy consumption (heating +cooling)

Figure 4

 4 Figure 4-7 : Rank, and levels of detail of parameters influencing energy demand for heating and cooling in buildings
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  Effective temperature (ET) / Corrected Effective temperature (CET) 2-Wet-bulb globe temperature (WBGT) 3-Discomfort Index (DI) Their literature review covered indices that were in use or proposed until 2005. Since then thermal indices have evolved and a number of new indices have been introduced. The most important change in that front is the adoption of adaptive comfort indices by ANSI/ASHRAE Standard 55 and ISSO 74 (Dutch Guidelines) in 2004 and 2005. European standard adopted it in 2007 in EN 15251. Adaptive indices were slightly modified and updated in ANSI/ASHRAE Standard 55 in 2017, and EN 16978-1 was introduced in 2019 to replace EN 15251. In addition to adaptive indices other heat stress indices, which have gained popularity and are not mentioned in the list of indices illustrated in the literature review of Epstein et al., are as follows: -Human temperature regulation two-node model to predict local skin temperatures of individual body parts, which is used as an indicator, by Gagge et al. originally proposed in 1986, and it has been integrated into pythermalcomfort package developed by Tartarini and Schiavan (Tartarini and Schiavon 2020). -Cooling effect index (CE) described in ASHRAE 55 (ASHRAE-55 2017) -Universal thermal comfort index (UTCI) for indoor and outdoor thermal conditions.
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 4 Figure 4-8: EN 16789-1 thresholds with reference to outdoor temperature from IPSL-SMHI (2040-2070) climate model

Figure

  Figure 4-9 : Psychometric chart and Givoni bioclimatic design polygons
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 4 Figure 4-10 : Number of hours indoor operative temperature was above the fixed temperature thresholds
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 4 Figure 4-11 : Peak indoor operative temperature and maximum consecutive hours above 27°C in each floor of building KM7_5
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 4 Figure 4-12 : Clothing level of occupant used in calculation of PMV index
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 4 Figure 4-14 : PMV sensation ranges compared to ranges with DI, and HI
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 4 Figure 4-16 and Figure 4-17 further demonstrate how indices describe the relation between an individual and his/her environment for the Attic of KM7_5.
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 4 Figure 4-17 : HI ranges compared to GIVONI ranges
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 4 Figure 4-18 : Example of degree-hour calculation without consideration for occupied hours (source: modified from CEREMA publications)

Figure

  Figure 4-20: Climate regions in France
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 421 Figure 4-21 : Degree-hour in RE2020 compared to percentage of hours above category II and EN 16798-1 in 5 summer months

  -1, there are three key steps in the surrogate model formulation: (1) selection of input and outputs of surrogate model, identified in chapter 4 of this manuscript, (2) determining the minimum number of samples necessary to train the surrogate model, and (3) surrogate model selection.

Figure 5

 5 Figure 5-1 : Formulation of surrogate models

  Figure below illustrates how surrogates model for this problem are tested and compared to one another. In Figure 5-2, blue lines indicate non-linear transformation/manipulation of input features to include the combined influence of parameters. For instance, parameters X1, and X2, are transformed to X1X2 and are added to original features.
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 52 Figure 5-2 : Schematic description of surrogate model construction and deployment for the studied problem
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 3 Linear with interaction𝑌 = 𝑎 0 + ∑ 𝑎 𝑖 • 𝑋 𝑖 + ∑ ∑ 𝑎 𝑖𝑗 • 𝑋 𝑖 • 𝑋 𝑗 𝑛 0 + ∑ 𝑎 𝑖 • 𝑋 𝑖 + ∑ ∑ 𝑎 𝑖𝑗 • 𝑋 𝑖 •In these equations, Y is the response, 𝑋 𝑖 , 𝑎𝑛𝑑 𝑋 𝑗 are the input parameters 𝑎 0 , 𝑎 𝑖 , 𝑎 𝑖𝑗 are coefficients of the model System of equations for polynomial regression are also written in the form of the following matrix
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 5 Figure 5-4 : Feature importance analysis on the centroid building of KM7_5

Figure 5

 5 Figure 5-5 : Feature importance analysis results on ground and middle floor of KM7_5 assuming input parameters do not interact each other

Figure 5

 5 Figure 5-7 : Feature importance analysis results on combined input parameters for a): KM7_5 and b): KM7_6

Figure 5

 5 Figure 5-8 : Distribution plots showing performance of each regression-type surrogate model for each dependent variable of ground and middle floors for KM7_5 cluster

  Figure 5-11, 5-12 the blue lines indicate simulated values and red line show surrogate model approximation for the same floor of building. The boxplots illustrate the range of variations in the performance of building centroid as input parameters were varied in parametric simulations.
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 5 Figure 5-11: Simulated and predicted values for ground floor of the test randomly selected building in cluster KM7_5
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 5 Figure 5-12 : Simulated and predicted values for middle floor of the test randomly selected building in cluster KM7_5
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 5 Figure 5-13 : Confusion matrix of predicted and simulated RE2020 situation of the validation model
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 516 Figure 5-16 : Simulated and predicted values for Attic of the validation building in cluster KM7_5

Figure 5

 5 Figure 5-17 : a) Left; cluster centroid building used for parametric simulations, right; validation building selected from cluster KM7_5 b) Left; cluster centroid building used for parametric simulations, right; validation building selected from cluster KM7_6
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 5 Figure 5-18 : Implementation of surrogate model process
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 5 Figure 5-19 : Maximum consecutive hours above 27 degrees for the ground floor of KM7-5 cluster
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 521 Figure 5-21 : Maximum consecutive hours above 27 degrees for the middle floor of KM7-5 cluster
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 5 Figure 5-23 : RE2020 situation of middle floor calculated using multinomial logistic regression for occupant type 3

  shared wall between target polygon and joint neighbors UID neighbor1 n_height1 neighbor2 n_height2 neighbor3 n_height3 neighbor4 n_height4 neighbor5 ... <class 'pandas.core.frame.DataFrame'> import geopandas as gpd import numpy as np import pandas as pd from shapely.geometry import polygon from shapely.geometry import MultiLineString import itertools from geopandas import GeoDataFrame, overlay # Read shapefile df=gpd.read_file(r'D:\Donnees Bat. Cerema\BDTOPO_CEREMA_2\BDTOPO\Buildings in BDTOPO.shp') df = df.reset_index() df=df.rename(columns={"index":"UID"}) df.UID = df.UID.astype(str) df["NEIGHBORS"] = None for index, row in df.iterrows(): neighbors = df[~df.geometry.disjoint(row.geometry)].UID.tolist() neighbors = [ X for X in neighbors if row.UID != X ] df.at[index, "NEIGHBORS"] = ", ".join(neighbors) df.head(1) # Save as new shapefile to be openned in QGIS df.to_file(driver = 'ESRI Shapefile', filename= r'D:\Donnees Bat. Cerema\BDTOPO_CEREMA_2\BDTOPO\BDTOPO neighbors.shp' # Saving the file in excel to verify the output and for each joint neighbor add a new column df.to_excel(r'D:\Donnees Bat. Cerema\BDTOPO_CEREMA_2\BDTOPO\BDTOPO neighbors.xlsx', index = 0) # Importing the excel sheet that contains the parsed indix numbers in columns df2=pd.read_excel(r'D:\Donnees Bat. Cerema\BDTOPO_CEREMA_2\BDTOPO\BDTOPO neighbors.xlsx') df2=df2.drop(['HAUTEUR','Unique_ID','area1','T_perimi','Count','geometry','NEIGHBORS'],axis=1) df2.head(1) # Index of each neighbor and corresponding height of it df2float64 dtypes: float64(29), int64(1) memory usage: 18.3 MB ### Reprojected to orginal/french coordinate system to measure distances in meters 49 columns PROJCS["NTF (Paris) / Lambert Centre France",GEOGCS["NTF (Paris)",DATUM["Nouvelle_Triangulation_Francaise_Paris", SPHEROID["Clarke 1880 (IGN)",6378249.2,293.466021293627,AUTHORITY["EPSG","7011"]],AUTHORITY["EPSG","6275"]],PRIME M["Paris",2.10350625299998],UNIT["Grad",0.0157079632679489]],PROJECTION["Lambert_Conformal_Conic_1SP"],PARAMETER[ # df2.to_excel(r'D:\Donnees Bat. Cerema\BDTOPO_CEREMA_2\BDTOPO\BDTOPO neighbors.xlsx', index = 0) # importing shapefile df1=gpd.read_file(r'D:\Donnees Bat. Cerema\BDTOPO_CEREMA_2\BDTOPO\BDTOPO neighbors2.shp') df1.head(1) df1['UID']=df1['UID'].astype(str).astype(float) # merging df1 to df2 df1=pd.merge(df1,df2, on=["UID"], how="right") df1.head(2) print(df1.crs) "latitude_of_origin",52],PARAMETER["central_meridian",0],PARAMETER["scale_factor",0.99987742],PARAMETER["false_ea sting",600000],PARAMETER["false_northing",200000],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],A XIS["Northing",NORTH]] df1['UID']=df1['UID'].astype(np.int64) df1['neighbor1']=df1['neighbor1'].fillna(-1).astype(np.int64) df1['Unique_ID']=df1['Unique_ID'].astype(np.int64) df1['neighbor2']=df1['neighbor2'].fillna(-1).astype(np.int64) df1['neighbor3']=df1['neighbor3'].fillna(-1).astype(np.int64) df1['neighbor4']=df1['neighbor4'].fillna(-1).astype(np.int64) df1['neighbor5']=df1['neighbor5'].fillna(-1).astype(np.int64) df1['neighbor6']=df1['neighbor6'].fillna(-1).astype(np.int64) df1['neighbor7']=df1['neighbor7'].fillna(-1).astype(np.int64) df1['neighbor8']=df1['neighbor8'].fillna(-1).astype(np.int64) df1['neighbor9']=df1['neighbor9'].fillna(-1).astype(np.int64) df1['neighbor10']=df1['neighbor10'].fillna(-1).astype(np.int64) df1['neighbor11']=df1['neighbor11'].fillna(-1).astype(np.int64) df1['neighbor12']=df1['neighbor12'].fillna(-1).astype(np.int64) df1['neighbor13']=df1['neighbor13'].fillna(-1).astype(np.int64) df1['neighbor14']=df1['neighbor14'].fillna(-1).astype(np.int64) df1['neighbor15']=df1['neighbor15'].fillna(-1).astype(np.int64) df1['neighbor16']=df1['neighbor16'].fillna(-1).astype(np.int64) df1['neighbor17']=df1['neighbor17'].fillna(-1).astype(np.int64) df1['neighbor18']=df1['neighbor18'].fillna(-1).astype(np.int64) df1['neighbor19']=df1['neighbor19'].fillna(-1).astype(np.int64) df1['neighbor20']=df1['neighbor20'].fillna(-1).astype(np.int64) df1['neighbor21']=df1['neighbor21'].fillna(-1).astype(np.int64) df1['neighbor22']=df1['neighbor22'].fillna(-1).astype(np.int64) df1['neighbor23']=df1['neighbor23'].fillna(-1).astype(np.int64) [i].intersection(df1.geometry[df1.neighbor1[i]]).length Y=df1.HAUTEUR[df1.neighbor1[i]] Z=X*min(Y,df1.HAUTEUR[i<matplotlib.axes._subplots.AxesSubplot at 0x1d32a04acd0> import geopandas as gpd import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns sns.set() import plotly.express as px import math %config Completer.use_jedi = False df=gpd.read_file(r'D:\Donnees Bat. Cerema\BDTOPO_CEREMA_2\Nantes database\Bld_RSU_combined.shp') df.head(1) # Frequency plot of buildings in BDTOPO database fig, ax = plt.subplots() df['USAGE1'].value_counts().plot(ax=ax, kind='bar') <matplotlib.axes._subplots.AxesSubplot at 0x1d3447499a0> # Frequency plot of buildings in BDTOPO database fig, ax = plt.subplots() df['Cerema_dte'].value_counts().plot(ax=ax, kind='bar') # removing buildings that are NOT residential (RÃAE'à †â€™?ÃAE''©sidentiel) df = df.drop(df[df['USAGE1']!='RÃ?AE?Ã?â???Ã?AE?ââ?¬Å¡Ã?â??Ã?©sidentiel'].index) # # histogram to analyse individual building parameters and thier range bin_list =

  T_perimi, bins=bin_list) #bins_list plt.xlabel('Perimeters of buildings in [m^2]') plt.ylabel('Frequency') plt.rcParams["figure.figsize"]=7,4 plt.rcParams["figure.facecolor"] = 'w' # Drop if any row in the columns Cerema_jan (year of construction) and Cerema_sto (habitable area) are empty df = df.dropna(subset=['Cerema_jan', 'Cerema_sto']) # Transforming Cerema_jan from and object column to int in order to plot frequency plot df['year_con'] = df['Cerema_jan'].astype(str).astype(np.int64) # Remove year of construction of it is less than 1800 df = df.drop(df[df['year_con'] < 1800].index) # df = df.drop(df[df['A_building'] > 500].index) # area larger than 500 m2 is an outlier df = df.drop(df[df['W_f_densit'] < 0].index) # facade density smaller the zero indicates an error df = df.drop(df[df['Net_compac'] > 8].index) # net compacity above 8 and below 1 was determined to be outliers df = df.drop(df[df['FreeAreaRa'] > 1].index) # outliers # histogram to analyse individual building parameters and thier range numbers = range(0,500) bin_list = [number for number in numbers if (number %10 in (1,2)) ] plt.hist(df.A_building, bins=bin_list) #bins_list plt.xlabel('Area of buildings [m^2]') plt.ylabel('Frequency') plt.rcParams["figure.figsize"]=7,4 plt.rcParams["figure.facecolor"] = 'w' # histogram heights numbers = range(0,30) bin_list = [number for number in numbers if (number %2 in (1,2)) ] plt.hist(df.Building_h, bins=bin_list) #bins_list plt.xlabel('Height of buildings [m]') plt.ylabel('Frequency') plt.rcParams["figure.figsize"]=7,4 plt.rcParams["figure.facecolor"] = 'w' # histogram to analyse individual building parameters and thier range bin_list = [1,2,3,4,5,6,7,8] plt.hist(df.Net_compac, bins=bin_list) #bins_list plt.xlabel('Net compacity of builings [free exterior area/volume^2/3]') plt.ylabel('Frequency') plt.rcParams["figure.figsize"]=7,4 plt.rcParams["figure.facecolor"] = 'w' 200 # histogram to analyse individual building parameters and thier range numbers = range(0,30) bin_list = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] plt.hist(df.SVF_mean, bins=bin_list) #bins_list plt.xlabel("Average sky view factor (SVF) of buildings' roofs") plt.ylabel('Frequency') plt.rcParams["figure.figsize"]=7,4 plt.rcParams["figure.facecolor"] = 'w' # Volume numbers = range(0,5000) bin_list = [number for number in numbers if (number %100 in (1,2)) ] plt.hist(df.Volume, bins=bin_list) #bins_list plt.xlabel('Building volume [m^3]') plt.ylabel('Frequency') plt.rcParams["figure.figsize"]=7,4 plt.rcParams["figure.facecolor"] = 'w' (df.W_f_densit, bins=bin_list) #bins_list plt.xlabel("Facade density of RSUs") plt.ylabel('Frequency') plt.rcParams["figure.figsize"]=7,4 plt.rcParams["figure.facecolor"] = 'w'['index', 'UID', 'ID', 'USAGE1', 'Building_h', 'Unique_ID', 'T_perimi', 'NEIGHBORS', 'indices', 'Total_area', 'To tal_free', 'NumNeigh', 'A_building', 'A_free_ver', 'Volume', 'Net_compac', 'SVF_mean', 'SVF_min', 'SVF_max', 'dis tance', 'Cerema_npi', 'Cerema_dte', 'Cerema_jan', 'Cerema_nbe', 'Cerema_sto', 'build_dens', 'RSU_ID','W_A_Buildi ', 'W_A_Buil_1', 'W_Vegetati', 'W_Vegeta_1', 'W_Water_ar', 'W_Water_pc', 'W_A_free_v', 'W_A_free_1', 'W_f_densit' , 'un_SVF_mea', 'un_SVF_min', 'un_SVF_max', 'FreeAreaRa', 'geometry', 'year_con'] 

#

  Checking distribution of parameters on original data data.hist(figsize=(15,8),layout=(2,5),bins=25) pyplot.show() from numpy import exp from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import PowerTransformer data.columns pt = PowerTransformer(method='yeo-johnson',standardize=False) columns = ['Building_h', 'Volume', 'SVF_mean', 'distance', 'W_Vegeta_1', 'W_Water_pc', 'FreeAreaRa'] mat = pt.fit_transform(data[columns]) mat[:5] # Of the given parameters Building heigth, volume, SVF , Water ratio, Vegetation,and distance are T_columns = [f'T_{c}' for c in columns]

#

  Checking distribution of parameters on original data data = pd.concat([data,pd.DataFrame(mat,columns=T_columns)],axis='columns') data.head(4) # Rearranging columns new_columns = ['T_Building_h', 'T_Volume','Net_compac', 'T_SVF_mean', 'T_distance','W_f_densit', 'T_W_Vegeta_1', 'T_W_Water_pc','year_con', 'T_FreeAreaRa'] data = data[new_columns] data.head(2) # Checking distribution of transfomed parameters data.hist(figsize=(15,8),layout=(2,5),bins=25,color='orange') pyplot.show() # Removing indix and name to normalize the numerical values min_max_scaler = MinMaxScaler() data_scaled = min_max_scaler.fit_transform(data) data_temp = pd.DataFrame(data_scaled, index=data.index) data_temp..yaqubi\AppData\Roaming\Python\Python38\site-packages\sklearn\base.py:209: FutureWarning: From version 0.24, get_params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute . Previously it would return None. warnings.warn('From version 0.24, get_params will raise an ' KElbowVisualizer(ax=<matplotlib.axes._subplots.AxesSubplot object at 0x000001D33B970310>, k=None, model=None) # joining normalized data to original dataframe df= df.join(data_temp,rsuffix='N_') # Column names to string df.columns = df.columns.map(str) df = df.rename(columns={"index":"OrigIndex"}) # Export a sample of data to excel to verify joinning has been implemented without error df.to_excel(r'D:\Donnees Bat. Cerema\BDTOPO_CEREMA_2\Nantes database\UrbanParamTransformed.xlsx', index = 0) from yellowbrick.cluster import SilhouetteVisualizer from yellowbrick.cluster.elbow import kelbow_visualizer from yellowbrick.datasets.loaders import load_nfl from yellowbrick.cluster import InterclusterDistance from sklearn.linear_model import Lasso # Filtering out normalized data for clustering = raw expression matrix data with 10 dimensions x = df.iloc[:, 40:50] x.head(2) # K-elbow graph to determine the recommended number of clusters (k): kelbow_visualizer(KMeans(random_state=42), x, k=(3,16))

Figure 1 :

 1 Figure 1: location plan of data collection sensors: circled numbers show indoor air temperature sensors in the living rooms and stairwell

Figure 2 :

 2 Figure 2: Modelled indoor air temperature of whole building during the overheating period on 05 August at 16h00

Figure 3 :

 3 Figure 3: Schematic representation of data exchange between Type 98 (Contam) and Type 56

Figure 4 :

 4 Figure 4: Average calculated internal heat gain profiles for apartments

Figure 6 :

 6 Figure 6: Calibration of window openness ratio for air inflow and external shading factor

  Following equations determine the maximum allowable operative temperatures (T M AX ) for EN 16798 and ASHRAE 55: (Gamero-Salinas et al. (2020); Chirico and Magnavita (2019); ASHRAE (2017)) TMAX (Category I)( o C) III)( o C) = 0.31TRM + 22.8 (5) TCOMF ORT ( o C) = 0.31TRM + 18.8 (6) TMAX (ASHRAE 80%)( o C) = 0.31TRM + 21.3 (7)

Figure 7 :

 7 Figure 7: Frequency distribution of temperature differences between modelled and observed indoor air temperatures after calibration

Figure 8 :

 8 Figure 8: Modelled indoor air temperature calibrated with measured indoor air temperature in apartment 1

Figure 9 :

 9 Figure 9: Calibrated model time series data with adaptive indoor thermal comfort indices in apartment 1

#

  'per', :Période de mesure de la rafale [min] #'etat_sol', :Etat du sol #'ht_neige', :Hauteur totale de la couche de neige, glace, autre au sol [m] #'ssfrai', :Hauteur de la neige fraîche [m] #'perssfrai',:Periode de mesure de la neige fraiche [1/10 hour] #'rr1', :LIQUID PRECIPITATION DEPTH (Précipitations dans les 1 dernières heures [mm]', :Phénomène spécial 1 [code (3778)] #'phenspe2', : = #'phenspe3', : = #'phenspe4', : = #'nnuage1', :Nébulosité cche nuageuse N [octa] #'ctype1', :Type nuage N [code (0500)] #'hnuage1', :Hauteur de base N [mmq to NaN df = df.replace('mq', np.nan, regex=True) df=df.resample('H').last()# resampling doesn't go past the last index. #Parameters of weather file from MeteoFrance archives df['t'] = df.t.astype(float) df['td'] = df.td.astype(float) df['u'] = df.u.astype(float) df['pres'] = df.pres.astype(float) df['n'] = df.n.astype(float) df['dd'] = df.dd.astype(float) df['ff'] = df.ff.astype(float)

  Writing data from dataframe to EPW weather file for 2003 <class 'pandas.core.frame.DataFrame'> RangeIndex: 8760 entries, 0 to 8759 Data columns (total 14 columns): # Column Non-Null Count Dtype ---------------------------columns and selecting only a few that we use in modification of weather file Columns=['Year', 'Month', 'Day', 'Hour','dd', 'ff', 't', 'td','u','n', 'pres','TotalCloudCover', 'OpaqueCloudCover'] df=df[Columns] # year is not a leap year, if you dealing with a leap year, in order to make it fit with typical # weather file, the leap day needs to be removed. (typical weather years are not leap years) # Adding two more hours to the dataframe df.reset_index(inplace=True) df2=pd.DataFrame({'Day':[31.0,31.5], 'Hour':[22.0,23.0], 'Month':[12.0,12.0]}) df=df.append(df2) df.reset_index(drop=True,inplace=True) df.tail() df2=df ## missing data are filled with automatic closest neighbor df2=df2.fillna(method="ffill"'TotalCloudCover'] = df2.TotalCloudCover.astype(int) #df2['OpaqueCloudCover']=df2.OpaqueCloudCover.astype(int) df2[['Day','Hour','Month','Year']] = df2[['Day','Hour','Month','Year']].astype(int) df2['WindDirection']=df2['dd'].astype(int) df2['DryBulbTemp']=df2['t']-273.15 df2['DewPointTemp']=df2['td']-273.15 ## Writing the weather data on epw weather template from ladybug.epw import EPW from pandas import DataFrame from collections import OrderedDict %config Completer.use_jedi = False ## Checking epw weather file data epwFile=EPW(r'D:\Weather_files\Weather data for South of France\Hyeres-interpolated.epw') epwDataList=epwFile.to_dict()['data_collections'] epwDataDict = OrderedDict() for dataColumns in epwDataList: dataName=dataColumns['header']['data_type']['name'] epwDataDict[dataName]=dataColumns['values'] epwDataFrame = DataFrame(epwDataDict) epwDataFrame.head(3) # Name and indices of columns in a typical epw weather file #field_number: index value between

  wind speed changeEPWData(r'D:\Weather_files\ObservedData2003\Temporary\WindDirection.epw', r'D:\Weather_files\Weather data for South of France\Hyeres_2003.epw', dataIndex=21, dataList=df2.ff) # Checking how it looks now epwFile=EPW(r'D:\Weather_files\Weather data for South of France\Hyeres_2003.epw') epwDataList=epwFile.to_dict()['data_collections'] epwDataDict = OrderedDict() for dataColumns in epwDataList: dataName=dataColumns['header']['data_type']['name'] epwDataDict[dataName]=dataColumns['values'] epwDataFrame1 = DataFrame(epwDataDict) epwDataFrame1.head() Loading [MathJax]/extensions/Safe.js## Day of year: ordinal days of the year newDays=[] for i, row in df.iterrows(): DS=df.DateTime[i].tz_localize(None) DS=DS.strftime("%m/%d/%Y, %H:%M:%S") doy= datetime.datetime.strptime(DS, '%m/%d/%Y, %H:%M:%S').timetuple().tm_yday newDays.append(doy) df['OrdinalDay']= newDays #tm_hour import pvlib as pvl import pytz ## a loop to calculate Solar zenith angle ZenAngle=[] for i, row in df.iterrows(): Zt=df.DateTime[i].tz_localize(None) g=pvl.solarposition.get_solarposition(time=Zt, latitude=47.2105,# latitude of Nantes longitude=-1.54628, # Longitude of Nantes altitude=None, pressure=df.AtmosPressure[i], method='nrel_numpy', temperature=df.DB_Temp[i]).zenith.values[0] ZenAngle.append(round(g,2)) df['SolarZenith']= ZenAngle import math # Calculating Direct normal irradiance using zenith angle, ordinal days, atmospheric pressure, and airmass dni=[] for i, row in df.iterrows(): p = pvl.irradiance.disc(ghi=df.GHI[i], solar_zenith=df.SolarZenith[i], datetime_or_doy=df.OrdinalDay[i], pressure=df.AtmosPressure[i], min_cos_zenith=0.065, max_zenith=87, max_airmass=(1/(math.cos(df.SolarZenith[i])+0.50572*(96.07995-df.SolarZenith[i]) **(-1.6364))))['dni'] # Accounting for cloud cover S1=p.tolist()*(1-(df.CloudCover[i])/100) dni.append(round(S1,2)) df['DNI']= dni # Seeing how does the date-time dataframe looks like df.iloc[5000:5004] 308012 21.705515 9.312175 0.225798 10.269585 23.408986 7.342166 0.320906 6.113424 14.323621 ... 10.753382 0.108384 11.365591 2041 11.310094 25.964620 4.329865 0.223447 16.417051 13.667051 9.213134 0.104302 10.490114 15.064516 ... 10.876171 0.210872 25.659140 2 rows × 48 columns Ranking and selecting the best year for each month tempe.append(ts) #### Relative humidity x = df_daily[(df_daily.index.month == Month)].RelativeHumidity.values x = x[~np.isnan(x)] j, a = np.histogram(x, bins=100, density=True) cdfRH = np.cumsum(j*np.diff(a)) # x1 = df_daily[((df_daily.index.month == Month) & (df_daily.index.year == Year))].RelativeHumidity.values x1 = x1[~np.isnan(x1)] j1, a1 = np.histogram(x1, bins=100, density=True) cdfRH1 = np.cumsum(j1*np.diff(a1)) ## Finkelstien-Schafar Statistics rs = np.sum(abs(cdfRH -cdfRH1)) RelHu.append(rs) ####Global horizontal irradiance z = df_daily[(df_daily.index.month == Month)].GHI.values z = z[~np.isnan(z)] k, s = np.histogram(z, bins=100, density=True) cdfGHI = np.cumsum(k*np.diff(s)) # z1 = df_daily[((df_daily.index.month == Month) & (df_daily.index.year == Year))].GHI.values z1 = z1[~np.isnan(z1)] k1, s1 = np.histogram(z1, bins=100, density=True) cdfGHI1 = np.cumsum(k1*np.diff(s1)) ## Finkelstien-Schafar Statistics hs = np.sum(abs(cdfGHI -cdfGHI1)) HGIrr.append(hs)#### Deviation of month's mean wind speed for a year from multiyear mean w = df_daily[(df_daily.index.month == Month)].WindSpeed.values w = w[~np.isnan(w)] WS = sum(w)/len(w) # w1 = df_daily[((df_daily.index.month == Month) & (df_daily.index.year == Year))].WindSpeed.values w1 = w1[~np.isnan(w1)] WS1 = sum(w1)/len(w1) ## Deviation of means ws = abs(WS -WS1) WindS.append(ws) ### All_df['DBT_'+str(monthDict[Month])]=tempe All_df['RH_'+str(monthDict[Month])]=RelHu All_df['GHI_'+str(monthDict[Month])]=HGIrr All_df['WS_'+str(monthDict[Month])]=WindS All_df.head(2) ##Ranking dry bulb temperature All_df['R_DBT_Jan']=All_df['DBT_Jan'].rank(ascending=True) All_df['R_DBT_Feb']=All_df['DBT_Feb'].rank(ascending=True) All_df['R_DBT_Mar']=All_df['DBT_Mar'].rank(ascending=True) All_df['R_DBT_Apr']=All_df['DBT_Apr'].rank(ascending=True) All_df['R_DBT_May']=All_df['DBT_May'].rank(ascending=True) All_df['R_DBT_Jun']=All_df['DBT_Jun'].rank(ascending=True) All_df['R_DBT_Jul']=All_df['DBT_Jul'].rank(ascending=True) All_df['R_DBT_Aug']=All_df['DBT_Aug'].rank(ascending=True) All_df['R_DBT_Sep']=All_df['DBT_Sep'].rank(ascending=True) All_df['R_DBT_Oct']=All_df['DBT_Oct'].rank(ascending=True) All_df['R_DBT_Nov']=All_df['DBT_Nov'].rank(ascending=True) All_df['R_DBT_Dec']=All_df['DBT_Dec'].rank(ascending=True) ##ranking relative humidity All_df['R_RH_Jan']=All_df['RH_Jan'].rank(ascending=True) All_df['R_RH_Feb']=All_df['RH_Feb'].rank(ascending=True) All_df['R_RH_Mar']=All_df['RH_Mar'].rank(ascending=True) All_df['R_RH_Apr']=All_df['RH_Apr'].rank(ascending=True) All_df['R_RH_May']=All_df['RH_May'].rank(ascending=True) 247 All_df['R_RH_Jun']=All_df['RH_Jun'].rank(ascending=True) All_df['R_RH_Jul']=All_df['RH_Jul'].rank(ascending=True) All_df['R_RH_Aug']=All_df['RH_Aug'].rank(ascending=True) All_df['R_RH_Sep']=All_df['RH_Sep'].rank(ascending=True) All_df['R_RH_Oct']=All_df['RH_Oct'].rank(ascending=True) All_df['R_RH_Nov']=All_df['RH_Nov'].rank(ascending=True) All_df['R_RH_Dec']=All_df['RH_Dec'].rank(ascending=True) ##ranking global horizontal irradiance All_df['R_GHI_Jan']=All_df['GHI_Jan'].rank(ascending=True) All_df['R_GHI_Feb']=All_df['GHI_Feb'].rank(ascending=True) All_df['R_GHI_Mar']=All_df['GHI_Mar'].rank(ascending=True) All_df['R_GHI_Apr']=All_df['GHI_Apr'].rank(ascending=True) All_df['R_GHI_May']=All_df['GHI_May'].rank(ascending=True) All_df['R_GHI_Jun']=All_df['GHI_Jun'].rank(ascending=True) All_df['R_GHI_Jul']=All_df['GHI_Jul'].rank(ascending=True) All_df['R_GHI_Aug']=All_df['GHI_Aug'].rank(ascending=True) All_df['R_GHI_Sep']=All_df['GHI_Sep'].rank(ascending=True) All_df['R_GHI_Oct']=All_df['GHI_Oct'].rank(ascending=True) All_df['R_GHI_Nov']=All_df['GHI_Nov'].rank(ascending=True) All_df['R_GHI_Dec']=All_df['GHI_Dec'].rank(ascending=True) ### Sum the FS value of three primary variables (DBT,RH,GHI) for each month to an existing epw file and saving it

#

  Everytime a set of values are overwritten on an epw with this function, it has to be saved then on the saved version the second climate variable needs to be overwritten. For the moment, important points are the first and last file. (when i get time I will improve the function to enable simultaneous overwriting of all varibles).

  def changeEPWData(oldEpwFilePath,newEpwFilePath,dataIndex,dataList): with open(oldEpwFilePath) as oldStream,open(newEpwFilePath,"w") as newStream: numCount=0 for idx,lines in enumerate(oldStream): if lines.strip(): try: lineSplit=lines.strip().split(",") dataTest=float(lineSplit[0]) lineSplit[dataIndex]=str(dataList[numCount]) data=",".join(lineSplit) newStream.write(data+"\n") numCount+=1 except ValueError: newStream.write(lines.strip()+"\n") else: newStream.write(lines) return newEpwFilePath # Writing Dry bulb temperature on epw file. changeEPWData(r'D:\Weather_files\Nantes-RCP8-5_2050.epw', r'D:\Weather_files\CORDEX_weather_data\MPI_REMO\Temporary\CNRM2040_2070T.epw'result as csv #result.to_csv(r'D:\Weather_files\CORDEX_weather_data\CSV_IPSL2040_2070.csv',index = 0) Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js UWG model Simulation Simulating new temperature and humidity values for 2 days from 1/1. Simulating Day 1 Simulating Day 2 New climate file is generated at D:/Weather_files\Observed_Nantes_2003_UWG.epw.

  .groupby(by=["Month","Weather files"]).mean() df_mean=df_mean.reindex() # Set a range to visualise zoomed=epf.loc[4345:5833]# 4344 = begining of July 5089 = Beginign of August, 5833 = beginign of september plt.plot(zoomed.index, '2003 observed rural weather data', data=zoomed, linewidth=1.5,linestyle='-',label='2003 obser plt.plot(zoomed.index, '2003 observed rural weather data modified with UWG', data=zoomed, linewidth=1.5,linestyle # Set the x axis label of the current axis. plt.xlabel('Dry bulb temperatures in July and August') # Set the y axis label of the current axis. plt.ylabel('Temperature [\N{DEGREE SIGN}C]') # Set a title #plt.grid() plt.xticks([]) plt.rcParams['axes.facecolor'] = 'w' plt.rcParams['axes.edgecolor']= 'black' plt.rcParams["figure.figsize"] = (15,5) plt.legend() plt.show() Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js # File path to EPW file epwFile6=EPW(r'D:\Weather_files\IPSL2040_2070.epw') epwDataList=epwFile6.to_dict()['data_collections'] epwDataDict = OrderedDict() for dataColumns in epwDataList: dataName=dataColumns['header']['data_type']['name'] epwDataDict[dataName]=dataColumns['values'] epwDataFrame6 = DataFrame(epwDataDict) epwDataFrame6.head(4) # File path to EPW file epwFile7=EPW(r'D:\Weather_files\MPI_REMO.epw') epwDataList=epwFile7.to_dict()['data_collections'] epwDataDict = OrderedDict() for dataColumns in epwDataList: dataName=dataColumns['header']['data_type']['name'] epwDataDict[dataName]=dataColumns['values'] epwDataFrame7 = DataFrame(epwDataDict) epwDataFrame7.head(4) # PLotting Boxplots of months epwFile0=EPW(r'D:\Weather_files\IPSL_CM5A_SMHI_2003.epw') epwDataList=epwFile0.to_dict()['data_collections'] epwDataDict = OrderedDict() for dataColumns in epwDataList: dataName=dataColumns['header']['data_type']['name'] epwDataDict[dataName]=dataColumns['values'] epwDataFrame0 = DataFrame(epwDataDict) epwDataFrame0.head(3) # File path to EPW file epwFile9=EPW(r'D:\Weather_files\Observed_Nantes_2003.epw') epwDataList=epwFile9.to_dict()['data_collections'] epwDataDict = OrderedDict() for dataColumns in epwDataList: dataName=dataColumns['header']['data_type']['name'] epwDataDict[dataName]=dataColumns['values'] epwDataFrame9 = DataFrame(epwDataDict) epwDataFrame9.head() 265 5 rows × 35 columns # Creating a dataframe where only dry bulb temperature/horizontal irradiance/relative humidity Wdata = pd.DataFrame() Wdata['Measured_weather_data_of_2003'] = epwDataFrame9['Dry Bulb Temperature'] Wdata['Meteonorm_RCP_8-5_2050'] = epwDataFrame['Dry Bulb Temperature'] Wdata['CNRM-ALADIN63_RCP_8-5_2040_2070'] = epwDataFrame5['Dry Bulb Temperature'] Wdata['IPSL_CM5A_SMHI_RCP_8-5_2040_2070'] = epwDataFrame6['Dry Bulb Temperature'] Wdata['MPI_REMO_RCP_8-5_2040_2070'] = epwDataFrame7['Dry Bulb Temperature'] #df_melt.tail() # Set a range to visualise zoomed=Wdata.loc[5097:5457] plt.plot(zoomed.index, 'Measured_weather_data_of_2003', data=zoomed, linewidth=1.5,linestyle='--', label="Measured we plt.plot(zoomed.index, 'Meteonorm_RCP_8-5_2050', data=zoomed, linewidth=1.5,linestyle='--', label="Meteonorm RCP 8.5 plt.plot(zoomed.index, 'CNRM-ALADIN63_RCP_8-5_2040_2070', data=zoomed, linewidth=1.5,linestyle='-', label="CNRM-ALADI plt.plot(zoomed.index, 'IPSL_CM5A_SMHI_RCP_8-5_2040_2070', data=zoomed, linewidth=1.5,linestyle='-', label="IPSL_CM5A plt.plot(zoomed.index, 'MPI_REMO_RCP_8-5_2040_2070', data=zoomed, linewidth=1.5,linestyle='-', label="MPI_REMO RCP 8. # Set the x axis label of the current axis. plt.xlabel('Hourly temperatures of first half of August in the different weather files') # Set the y axis label of the current axis. plt.ylabel('Temperature [\N{DEGREE SIGN}C]')#'Global horizontal Irradiance [$W/m^2$]')#) # Set a title #plt.title('Interpolation of 3hr weather data to hourly') plt.xticks([]) #plt.rcParams['axes.facecolor'] = 'w' plt.rcParams['axes.edgecolor']= 'black' plt.rcParams["figure.figsize"] = (15,5) plt.grid() plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.12),ncol=3) plt.show() # creating a DataFrame of year, month, day and hours def datetime_range(start,end,delta): current=start if not isinstance(delta,timedelta): delta = timedelta(**delta) while current < end: yield current current +=delta # Dataframe of time and dates: each subsequent row difference is 1 hour start = datetime(2003,0o1,0o1) end = datetime(2004,0o1,0o1) df = pd.DataFrame({'DateTime':datetime_range(start,end,{'days':0,'hours':1})}) # Removing leap day data if year is a leap year df = df[~((df['DateTime'].dt.month == 2) & (df['DateTime'].dt.day == 29))] # reindex in place df= df.reset_index() ## Drop index column df=df.drop(['index'], axis=1) # visualize print(df.head(2)) #t ### Moving Average of three consective days (minimums) Aver=[] for i, row in df4.iterrows(): if i ==0: avera=(WeatherMin[i]+WeatherMin[i+1])/2 elif i ==364: avera=(WeatherMin[i-1]+WeatherMin[i])/2 else: avera=(WeatherMin[i-1]+WeatherMin[i]+WeatherMin[i+1])/3 Aver.append(avera) df4['MinAverage']= Aver # #print(df4['DateTime'].loc[((df4['MaxAverage']>=IBMax) & (df4['MinAverage']>=IBMin))]) #print(df4.loc[((df4['MaxAverage']>=IBMax) & (df4['MinAverage']>=IBMin))]) ###Debut (starting dates of heatwaves) Aver=[] for i, row in df4.iterrows(): if i ==364: db=0 elif ((df4['MaxAverage'][i+1]>=IBMax) & (df4['MinAverage'][i+1]>=IBMin)): db=1 else: db=0 Aver.append(db) df4['Debut']= Aver # ###Middle (middle days of heatwaves ) Aver=[] for i, row in df4.iterrows(): if ((df4['MaxAverage'][i]>=IBMax) & (df4['MinAverage'][i]>=IBMin)): db=1 else: db=0 Aver.append(db) df4['mid']= Aver # ###Fin (end dates of heatwaves) Aver=[] for i, row in df4.iterrows(): if i ==0: db=0 elif ((df4['MaxAverage'][i-1]>=IBMax) & (df4['MinAverage'][i-1]>=IBMin)): db=1 else: db=0 Aver.append(db) df4['Fin']= Aver # ###grouped (combined start date, middle dates, and end dates of heatwaves) Aver=[] for i, row in df4.iterrows(): if ((df4['Debut'][i]>0) or (df4['mid'][i]>0) or (df4['Fin'][i]>0)): db=1 else: db=0 Aver.append(db) df4['HW']= Aver # #df4=df4.drop(['Fin'], axis=1) from itertools import groupby, count # Group and count consecutive days that meet IBMax and IBMin criteria , HW>0

#

  file1.to_excel(r'D:\SimulationResultsCollected\Outputs\T'+str(SimulationNumber)+'.xlsx',sheet_name='Sheet1', index = #df=pd.read_excel(r'D:\SimulationResultsCollected\Outputs\T'+str(SimulationNumber)+'.xlsx',sheet_name='Sheet1') # df=file1 # dfMean=df.groupby(['Month','Day'], as_index=False)['TAmb'].mean() dfMean=dfMean.rename(columns={"TAmb": "DailyAverage"}) #Calculating exponentially decaying running mean outdoor temperature (EDRMOT) for the whole year (ref: Yaqubi) ## dfMean has 365 days [0 to 364] alpha=0.8 TRM=[] #df.TAIR_3_1[i] for i, row in dfMean.iterrows(): if i==0: # in the first 7 day of the year 7 days of the end of year will calculated as prior days TY = (1-alpha)*(dfMean.DailyAverage[364]+ alpha*(dfMean.DailyAverage[364-1])+ (alpha**2)*dfMean.DailyAverage[364-2]+ (alpha**3)*dfMean.DailyAverage[364-3]+ (alpha**4)*dfMean.DailyAverage[364-4]+ (alpha**5)*dfMean.DailyAverage[364-5]+ (alpha**6)*dfMean.DailyAverage[364-6]) elif i==1: TY = (1-alpha)*(dfMean.DailyAverage[i-1]+ alpha*(dfMean.DailyAverage[364])+ (alpha**2)*dfMean.DailyAverage[364-1]+ (alpha**3)*dfMean.DailyAverage[364-2]+ (alpha**4)*dfMean.DailyAverage[364-3]+ (alpha**5)*dfMean.DailyAverage[364-4]+ (alpha**6)*dfMean.DailyAverage[364-5]) elif i==2: TY = (1-alpha)*(dfMean.DailyAverage[i-1]+ alpha*(dfMean.DailyAverage[i-2])+ (alpha**2)*dfMean.DailyAverage[364]+ (alpha**3)*dfMean.DailyAverage[364-1]+ (alpha**4)*dfMean.DailyAverage[364-2]+ (alpha**5)*dfMean.DailyAverage[364-3]+ (alpha**6)*dfMean.DailyAverage[364-4]) elif i==3: TY = (1-alpha)*(dfMean.DailyAverage[i-1]+ alpha*(dfMean.DailyAverage[i-2])+ (alpha**2)*dfMean.DailyAverage[i-3]+ (alpha**3)*dfMean.DailyAverage[364]+ 276 (alpha**4)*dfMean.DailyAverage[364-1]+ (alpha**5)*dfMean.DailyAverage[364-2]+ (alpha**6)*dfMean.DailyAverage[364-3]) elif i==4: TY = (1-alpha)*(dfMean.DailyAverage[i-1]+ alpha*(dfMean.DailyAverage[i-2])+ (alpha**2)*dfMean.DailyAverage[i-3]+ (alpha**3)*dfMean.DailyAverage[i-4]+ (alpha**4)*dfMean.DailyAverage[364]+ (alpha**5)*dfMean.DailyAverage[364-1]+ (alpha**6)*dfMean.DailyAverage[364-2]) elif i==5: TY = (1-alpha)*(dfMean.DailyAverage[i-1]+ alpha*(dfMean.DailyAverage[i-2])+ (alpha**2)*dfMean.DailyAverage[i-3]+ (alpha**3)*dfMean.DailyAverage[i-4]+ (alpha**4)*dfMean.DailyAverage[i-5]+ (alpha**5)*dfMean.DailyAverage[364]+ (alpha**6)*dfMean.DailyAverage[364-1]) elif i==6: TY = (1-alpha)*(dfMean.DailyAverage[i-1]+ alpha*(dfMean.DailyAverage[i-2])+ (alpha**2)*dfMean.DailyAverage[i-3]+ (alpha**3)*dfMean.DailyAverage[i-4]+ (alpha**4)*dfMean.DailyAverage[i-5]+ (alpha**5)*dfMean.DailyAverage[i-6]+ (alpha**6)*dfMean.DailyAverage[364]) else: TY = (1-alpha)*(dfMean.DailyAverage[i-1]+ alpha*(dfMean.DailyAverage[i-2])+ (alpha**2)*dfMean.DailyAverage[i-3]+ (alpha**3)*dfMean.DailyAverage[i-4]+ (alpha**4)*dfMean.DailyAverage[i-5]+ (alpha**5)*dfMean.DailyAverage[i-6]+ (alpha**6)*dfMean.DailyAverage[i-7]) TRM.append(TY) dfMean['EDRMOT']= TRM ##Optimal Comfort temperature when ERDMOT is in within (10,30) interval ComT=[] for i, row in dfMean.iterrows(): if dfMean.EDRMOT[i]>30: # in the first 7 day of the year 7 days of the end of year will calculated as prior days TY = (0.31*30)+18.8 elif dfMean.EDRMOT[i]<10: TY = (0.31*10)+18.8 else: TY = 0.31*dfMean.EDRMOT[i]+18.8 ComT.append(TY) dfMean['ComfortTemp']= ComT ### maximum acceptable category 1, 2,3 of EN 16798-1:2015/2019 dfMean['TMaxCat_I']=dfMean['ComfortTemp']+2 dfMean['TMinCat_I']=dfMean['ComfortTemp']-3 dfMean['TMaxCat_II']=dfMean['ComfortTemp']+3 dfMean['TMinCat_II']=dfMean['ComfortTemp']-4 dfMean['TMaxCat_III']=dfMean['ComfortTemp']+4 dfMean['TMinCat_III']=dfMean['ComfortTemp']-5 ##Merging mean and comfort temperature from EN 16978-1:2019 to original database df=pd.merge(df, dfMean, on=['Month', 'Day']) plt.plot(dfMean.index, 'DailyAverage', data=dfMean, color='blue',linewidth=1,linestyle='-',label='Daily average') plt.

  _nolegend_') plt.xlabel('Days of the year') # Set the y axis label of the current axis. plt.ylabel('Temperature [\N{DEGREE SIGN}C]')#'Global horizontal Irradiance [$W/m^2$]')#) # Set a title #plt.title('Interpolation of 3hr weather data to hourly') #plt.xticks([]) #plt.rcParams['axes.facecolor'] = 'w' plt.rcParams['axes.edgecolor']= 'black' plt.rcParams["figure.figsize"] = (10,5) (psychrolib.SI) from shapely.geometry import Point from shapely.geometry.polygon import Polygon ## Altitude in meters to pressure in Pascals ## Reference https://www.engineeringtoolbox.com/air-altitude-pressure-d_462.html ### Altitude of location in Meters import math AltitudeFromSeaLevel = 30 p = (101325)*(1-(2.25577*(10)**(-5))*(AltitudeFromSeaLevel))**5.25588 p ##link to documentation of package: https://psychrometrics.github.io/psychrolib/api_docs.html psychrolib.GetHumRatioFromRelHum(25, 0.5, p) ## Intitial data table to plot Givoni index plot Table=[] for RH in [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]: T1 = [] for i in range(0,60): T1a=psychrolib.GetHumRatioFromRelHum(i, RH, p) T1.append(T1a) df_T=pd.DataFrame(T1,columns=[str(round(100*RH))+' %'])

Titre:

  Contribution au développement d'une méthodologie pour construire des cartes de vulnérabilité à la surchauffe intérieure à l'échelle de la ville intégrant des données sur le changement climatique et l'îlot de chaleur urbain Mots clés : Changement climatique, surchauffe intérieure, échelle de la ville, carte de vulnérabilité, îlot de chaleur urbain. Résumé : Le problème de la surchauffe intérieure des bâtiments devient de plus en plus un sujet d'intérêt pour la communauté scientifique ainsi que les décideurs politiques en matière d'urbanisme en raison de l'augmentation de la température moyenne de la Terre, de l'augmentation de la fréquence des événements météorologiques extrêmes, de l'effet d'îlot de chaleur urbain, et le fait que de nos jours la plupart des gens passent la majorité de leur temps à l'intérieur des bâtiments. Le présent travail de recherche porte sur le développement d'une méthodologie pour l'évaluation de la vulnérabilité à la surchauffe intérieure à l'échelle urbaine, visant à soutenir la prise de décision stratégique dans la planification urbaine. Compte tenu de la nature interconnectée des questions à traiter, ce manuscrit commence par un chapitre d'introduction détaillé présentant les concepts clés, les énoncés du problème, l'objectif de la thèse et la méthodologie globale employée. Chaque chapitre suivant est consacré à une partie spécifique du travail de thèse. Le deuxième chapitre de ce manuscrit porte sur la définition des typologies des bâtiments et l'identification des bâtiments représentatifs utilisés. Le troisième chapitre porte sur la prise en compte du changement climatique et les données sur les îlots de chaleur urbains dans les fichiers météo utilisés dans les simulations. Le quatrième chapitre présente les paramètres du bâtiment qui influencent les performances énergétiques et thermiques ainsi que les indices de mesure de la surchauffe intérieure. Le cinquième chapitre présente les modèles réduits ou métamodèles développés et la manière d'extrapolation des résultats de simulations des bâtiments représentatifs au reste du parc bâti à l'échelle de la ville. Enfin, la conclusion retrace les principales idées développées au cours de la thèse. Elle pose ensuite les limites de ce travail de thèse dans chacun des domaines abordés et propose quelques pistes complémentaires de réflexion dans les perspectives. Title : Contribution to the development of a methodology to build indoor overheating vulnerability maps at the city scale integrating climate change data and urban heat island Keywords: Climate change, indoor overheating, city-scale, vulnerability map, urban heat island.
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  for a clear day of summer meteorological condition. On scale and type of UHI in the literature, (S. W.[START_REF] Kim | Urban Heat Island (UHI) Intensity and Magnitude Estimations: A Systematic Literature Review[END_REF] analysed 51 case studies of UHI across the globe and classified them on conventional UHI classification types, horizontal ranges and vertical positions. A summary of literature review on UHI scale and types is presented in Table1-1, below (S. W.[START_REF] Kim | Urban Heat Island (UHI) Intensity and Magnitude Estimations: A Systematic Literature Review[END_REF].

Table 1 -

 1 1: Scale and types of UHI studied in literature

	Type of heat islands	Horizontal ranges	Vertical layers	Urban unit	Data time scale	Data collection methods
	Boundary	Macro (100	Urban	Urban region	Hours-days	Historical weather data,
	layer	s Km <)	boundary			remote sensing
	Heat Island		layer (UBL)			
	(UHIUBL)	Meso (10s -	(250-2500 m)	A city	Hours-1	
		100 s km)			day	
	Canopy layer	Local (o,5 -	Urban canopy	A	Minutes-	Stationary weather
	Heat Island	10s km)	layer (UCL)	neighbourhood,	hours	stations, temporarily fixed
	(UHIUCL)		(25-250 m)	blocks		weather stations,
						mobile measurements
						with weather station
						mounted on mobile
						platforms
		Micro (100s	Building	Buildings,	Seconds-	Temporarily fixed weather
		M -0.5	canopy layer	street canyon	minutes	stations,
		KM)	(BCL)			mobile measurements
			(10S M -			with weather station
			100 S M)			mounted on mobile
						platforms, thermal
	Surface Heat		Land surface			imaging camera, remote sensing
	Island		layer (LSL)			
	(UHISurf)		(<10S M)			

Table 1 -

 1 

	Surface geometry	(a) Increased surface area (λc=1)
		(b) Closely-distanced buildings
		-	Greater shortwave irradiance absorption due to
			multiples reflections of building surfaces (lower
			system albedo)
		-	Small sky view factor (Ψsky<1) that reduces net
			longwave heat loss, particularly at night
		-	Wind shelter in UCL reduces heat losses by
			convection and advection.
	Thermal properties	Artificial materials used in construction have a greater heat storage
	of surfaces	capacity that later release larger sensible heat
	Anthropogenic heat	
	(human activity)	

2 : Potential causes of UHI Cause Description of the cause Canopy layer heat Island (UHIUCL)

Table 2 -

 2 1 presented below demonstrates the details of closest real building to the fictive centroid of K-Means when number of clusters were 7.

Table 2 -

 2 1 : Identified centroids of residential buildings in Nantes

	Refere nce buildin g	Buildi ng height	Build ing Volu me	Net comp acity	Roof's mean SVF	Distance from peripheri es	Year of constr uction	Vegetat ion percent age in RSU	Water percen tage in RSU	Façade density in RSU	Free vertical area ratio
	KM7_0 6.2	594	4.7	0.96	681.24	1932	9.90	0	0.36	0.80
	KM7_1 7.4	732	4.6	0.89	321.00	1900	7.55	0	0.35	0.80
	KM7_2 6.9	585	3.3	0.95	710.51	1930	5.95	0	0.38	0.55
	KM7_3 4.6	573	4.5	0.96	314.42	1981	5.15	0	0.32	0.86
	KM7_4 6.1	431	3.3	0.92	277.93	1952	6.27	0	0.31	0.57
	KM7_5 10.3	1139 3.3	0.86	319.38	1880	0.00	0	0.51	0.55
	KM7_6 6.5	718	4.4	0.97	176.09	1969	27.20	1.29	0.18	0.87

Table 2 -

 2 2 show statistical distribution of year of construction in each cluster in comparison to the selected closest real building to the centroid.

Table 2 -

 2 2 : Year of construction in the cluster and values of edges

		Year of		Year of construction range in each cluster	
	label	construction of selected reference	Lower whisker	Lower quartile	median	Upper quartile	Upper whisker

Table 2 -

 2 Since the data in Table2-3 are estimated from a small sample and does not give any specific information for building constructed before 1974, it is necessary to find other sources to enrich selected typical buildings.In the Tabula data table for France, the table below shows the percentage of buildings refurbished up until the end of 2013 for two categories of buildings: single-family houses (SFH)

	Construction date	<1974	74-81	82-89	90-2000	2001-2005 2006-2014
	U-walls	2.5	1	0.8	0.5	0.47	0.36
	U-windows	4	3	3	3	2.3	2.1
	U-roof	2.5	0.5	0.32	0.26	0.25	0.2
	U-floor	1.2	1.2	0.74	0.5	0.36	0.27
						(Civel and Elbeze 2016)

3 : Initial thermo-physical properties of residential buildings' envelopes and Multiple-family houses (MFH).

Table 2 -

 2 4 : Percentage of buildings refurbished until the end of 2013

	Percentage of buildings refurbished (with improved thermal protection) [%]	
	Building classes	SFH I	SFH II	MFH I	MFH II
	Construction date	until 1975	1975-2000	until 1975	1975-2000
	walls	37	88	19	52
	roofs / upper floor ceilings	62	90	25	65
	basement / cellar ceiling	12	42	10	30
	windows*	35	75	23	57
	Data from				

Table 2

 2 -4 clearly indicates that when it comes to performance evaluation of buildings, for both historical and new buildings, it is necessary to take into consideration thermo-physical properties for both a retrofitted and non-retrofitted scenario. Table2-5 presents a summary of building thermo-physical properties for France from Tabula detailing the upper and lower limits of U-values for different elements of building envelope.

Table 2 -

 2 

			Roofs/ upper floor ceilings	Exterior walls	windows	Roofs/ upper floor ceilings	Exterior walls	windows
		Up to 1914	1.35/1.11	1.7	4.8	0.2/0.10	0.24
		1915 to 1948 1.35/2.4	1.8	4.8	0.2	0.19
	Single family houses	1949 to 1967 1968 to 1974 1975 to 1981 0.57/0.76 2.42 1.35 1982 to 1989 0.32/1.35 1990 to 1999 0.23 2000 to 2005 0.19/0.26	1.8 2.4 0.61 0.42 0.36 0.33	2.6 2.6 2.8 2.6 2.6 1.8	0.1 0.2 0.1 0.1 0.1 0.14	0.19 0.19 0.19 0.24 0.19 0.19
		2006 to 2012	0.24	0.34	1.6	0.37	0.16
		2013 to 2020	0.17	0.21	1.4	0.13	0.12	0.8
	houses Individual semi-detached	Up to 1914 1915 to 1948 2.42/3.6 1.35/1.11 1949 to 1967 1.45 1968 to 1974 3 1975 to 1981 0.49 1982 to 1989 0.32 1990 to 1999 0.23 2000 to 2005 0.19 2006 to 2012 0.19 2013 to 2020 0.12	1.7 2.1 2.6 2.4 0.61/2.4 0.47 0.36 0.33 0.29 0.25	4.8 4.8 2.6 2.6 1.4 2.6 1.8 1.6 1.6 1.4	0.2/0.1 0.1 0.1 0.23 0.1 0.1 0.1 -0.37 0.1	0.24 0.24 0.19 0.19 0.19 0.19 0.19 0.19 0.15 0.12	0.8

5 : Thermo-physical properties of Tabula buildings in France

Tabula buildings

For France

Initial state U-value [W.m -2 .K -1 ] After high performing renovation [W.m -2 .K -1 ]

  [START_REF] Lauzet | How Building Energy Models Take the Local Climate into Account in an Urban Context -A Review[END_REF]) performed a comprehensive review on techniques and tools that are used by practitioners/researchers to take into account local climate in BPS. The authors classified UCM models with two criteria: spatial scale and horizontal resolution of the mesh elements used in the model.[START_REF] Jänicke | Review of User-Friendly Models to Improve the Urban Micro-Climate[END_REF] listed more models such as ADMS Temperature, Humidity model, advanced SkyHelios model, CFD models (ANSYS FLUENT,

	 City-scale models
	o MESO-NH & Town Energy Balance Model (TEB)
	o Weather Research and Forecast (WRF) model, and Building Effect
	Parametrization (BEP)
	 District-scale models
	o Parametric models
	 Urban Weather Generator (UWG) & Canyon Air Temperature (CAT)
	 Canopy Interface Model (CIM)
	o Explicit models
	 ENVI-met
	 SOLENE-Microclimat
	 Street Models
	o Town Energy Balance (TEB) for (canyon)
	o Zonal models
	In a similar review, (

Table 3 -
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1 : Names and links to climate data providers'

platforms Name and link to data provider platforms Remark

  

		international laboratories such as the Max Planck Institute for	commercial
		Meteorology (MPI-M) German Climate Computing Centre (DKRZ), the	use
		Australian National University (ANU) National Computational	
		Infrastructure (NCI), Institut Pierre-Simon Laplace (IPSL), and the	
		British Atmospheric Data Center (BADC).	
		CMIP5: https://esgf-node.llnl.gov/projects/esgf-llnl/	
	4	HadGHCND -gridded daily temperatures observations : Designed for the analysis of climate extremes and for climate model evaluation https://www.metoffice.gov.uk/hadobs/hadghcnd/	Only climate variable available is temperature
		Climate Data Store (e.g., The Coordinated Regional Downscaling	
		EXperiment (CORDEX)): contains a catalogues and modelled and	
	5	historical GCMs and RCMs.	
		https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cordex-	Freely
		domains-single-levels?tab=form	available
			Historical
		Meteo France Archives	weather
	6	https://donneespubliques.meteofrance.fr/?fond=rubrique&id_rubrique=26 Données Publique -► Observations In situ -► Données SYNOP	data from weather
		essentielles OMM -► Téléchargement de données archivées	stations /
			open source
			Open
		Climate4impact: developed within the European projects IS-ENES, IS-	source /part
	1	ENES2 and CLIPC.	of data is
		https://climate4impact.eu/impactportal/data/esgfsearch.jsp#	bias
			adjusted
		IPCC data :	Open
		http://ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html	source for
	2	Users need to register here before being able to access data :	non-
		DKRZ long term archive : The German Climate Computing Center	commercial
		https://cera-www.dkrz.de/WDCC/ui/cerasearch/	use.
	3	Earth System Grid Federation (ESGF): an international effort led by the Department of Energy (DOE), and co-funded by National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), National Science Foundation (NSF), and	Open source for non-

Table 3 -

 3 1 demonstrates a list of major raw data providers that BPS practitioners can use for impact and vulnerability assessment. Data downloaded from these platforms need to be processed before being ready to be used in BPS studies.Other ways of accessing data for BPS are through software such as Meteonorm, CCWorldWeatherGen, WeatherShift, and EnergyPLus weather file platform.In the present study, availability of open source RCMs (dynamically downscaled GCM) data from EURO-CORDEX presented an opportunity to systematically compare three future DDS climate models and one future ESD model, assuming the high-emission scenario [representative concentration pathway (RCP) 8.5], with observed weather data of 2003. The latter was accessed from Meteo France archives and transformed into EnergyPlus (.epw) file format that can be directly used in BPS.

  this study, EURO-CORDEX regional climate projection data were accessed via Climate Data Store (CDS) portal supported by Copernicus Climate Change Service (C3S) initiative that provides information about past, present, and future climate in Europe and the rest of the world 6 . CDS portal allows to access climate variables of GCMs and RCMs in various combinations and

different horizontal and temporal resolutions. Raw data is available in NetCDF (Network Common Data Form) file format that is commonly used within the climate modelling community to share array-oriented scientific data. Climate data in this format are stored in multi-dimensions and users can view/access geographical coordinates (latitude, longitude), time, level, climate variable (temperature, relative humidity, etc.

Table 3 -

 3 2 : Dynamically downscaled climate models

	Institution Global climate model (GCM) Regional climate	GCM_RCM
	model (RCM)	names used

Chapter 3 :

 3 Climate change data, heatwave, urban heat island weather data 103 Observed weather of 2003 was selected for comparison because it was the severest heatwave recorded in France up until June 28, 2019 when a temperature of 45.9°C was recorded during another heatwave in a weather station in France, exceeding previous record temperature of 2003 by almost 2°C. In contrast to 2003 heatwave, number of excessive mortality was considerably lower mainly because the duration of 2019 heatwave was shorter and there were better heatresponse plans in place (D.Mitchell et al. 2019).Moving back to comparative analysis, boxplots in Figure3-10 show significant variations in monthly mean values among the selected weather data files. This indicates a great difference in predictions from one climate model to another. All three dynamically downscaled weather files for 2040-2070 and Meteonorm weather file for 2050 show a consistent higher mean monthly value of dry bulb temperature and relative humidity compared to observed weather data of 2003. However, the differences in global horizontal irradiance seems insignificant and does not provide enough evidence to notice an upward or downward trend.Zooming in into summer months we notice that mean monthly dry bulb temperature in July, August, and September of IPSL-SMHI climate model is closest to mean monthly temperature of 2003 measured weather data. For the same summer months, mean relative humidity of Meteonorm 2050 is closest to 2003 measured weather file.Among dynamically downscaled weather files, CNRM-ALADIN and MPI-REMO predict higher relative humidity but lower global horizontal irradiance and dry bulb temperature during summer months. IPSL-SMHI, on the other hand, predicts higher temperature and global horizontal irradiance but lower relative humidity for the same summer months. Comparing the length of whiskers and size of interquartile ranges in boxplots for dry bulb temperature and relative humidity variables show that Meteonorm 2050, MPI-REMO, and IPSL-SMHI weather files have relatively smaller dispersion compared to measured weather data of 2003 and CNRM-ALADIN weather files. This could indicate that measured weather of 2003 and CNRM-ALADIN contain more severe temperature anomalies compared to other climate models investigated here.
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		Observed data	Statistically downscaled	Dynamically downscaled FTWY
				CNRM-ALADIN	IPSL_SMHI	MPI_REMO
		Measured weather data of 2003	Meteonorm RCP 8.5 2050	RCP 8.5	RCP 8.5	RCP 8.5
				2040-2070	2040-2070	2040-2070
	HDD	2106	1741	2365	1873	1595
	CDD	103	86	62	67	

3: Number of Heating Degree Days (HDD) and Cooling Degree Days (CDD) in different climate models for the case study city
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 3 4: Monthly mean UHI effect projected by UWG model on weather file of each cluster (°C)

			IPSL-SMHI future weather file (2040 -2070)		
		KM7_0	KM7_1	KM7_2	KM7_3	KM7_4	KM7_5	KM7_6
	January	0.28	0.34	0.33	0.32	0.25	0.32	0.24
	February	0.26	0.29	0.28	0.27	0.22	0.26	0.20
	March	0.35	0.34	0.34	0.33	0.28	0.32	0.27
	April	0.71	0.66	0.66	0.66	0.60	0.65	0.57
	May	0.92	0.82	0.84	0.82	0.77	0.82	0.75
	June	1.02	0.92	0.94	0.93	0.87	0.91	0.81
	July	0.98	0.88	0.91	0.87	0.81	0.88	0.78
	August	0.97	0.93	0.95	0.91	0.83	0.90	0.79
	September	1.14	1.13	1.13	1.10	1.01	1.06	0.99
	October	1.04	1.05	1.03	1.03	0.94	0.97	0.94
	November	0.32	0.38	0.37	0.36	0.28	0.33	0.28
	December	0.33	0.39	0.38	0.37	0.30	0.36	0.29
				2003 measured weather data			
		KM7_0	KM7_1	KM7_2	KM7_3	KM7_4	KM7_5	KM7_6
	January	0.58	0.56	0.53	0.48	0.43	0.67	0.46
	February	0.72	0.68	0.65	0.60	0.55	0.78	0.58
	March	0.87	0.81	0.79	0.74	0.69	0.84	0.73
	April	1.00	0.90	0.88	0.84	0.79	0.94	0.83
	May	1.09	0.94	0.93	0.88	0.84	1.01	0.89
	June	1.05	0.90	0.89	0.84	0.79	0.97	0.86
	July	1.13	0.97	0.96	0.91	0.86	1.04	0.92
	August	1.88	1.79	1.76	1.68	1.61	1.88	1.67
	September	1.71	1.64	1.61	1.54	1.47	1.64	1.52
	October	0.81	0.73	0.70	0.66	0.60	0.79	0.64
	November	0.42	0.41	0.38	0.33	0.27	0.44	0.30
	December	0.42	0.41	0.38	0.33	0.28	0.48	0.30
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	-1 : 7-Point Temperature Sensitivity	
	Scale score	Human feeling
	+3	Hot
	+2	Warm
	+1	Slightly warm
	0	Neutral
	-1	Slightly cool
	-2	Cool
	-3	Cold
	The relation between PPD and PMV is calculated with the following equation.
	PPD = 100 -95 • 𝐸𝑋𝑃(-0.03353 • 𝑃𝑀𝑉 4 -0.2179 • 𝑃𝑀𝑉 2 )	Equation 4-3
	In accordance with ISO 7730:2005, the environmental condition is considered comfortable
	(neutral) if the PMV value is ±0.5 points, which corresponds to the PPD value ≤ 10%.
	Input parameters in calculation of PMV are the following six factors:
	-Air temperature [°C]	
	-Mean radiant temperature [°C]	
	-Air speed [m/s]	
	-Relative humidity of air [%]	
	-Metabolic rate [BT/m 2 ]	

-Thermal insulation of a set of clothes

[clo] 

  to calculate heat index.

			𝐻𝐼 = -8.784695 + 1.61139411 • 𝑇 + 2.338549 • 𝑅𝐻
			-0.14611605 • 𝑇 • 𝑅𝐻 -1.2308094 • 10 -2
			• 𝑇 2 -1.6424828 • 10 -2 • 𝑅𝐻 2 + 2.211732 • 10 -3 • 𝑇 2 • 𝑅𝐻 + 7.2546 • 10 -4 • 𝑇 • 𝑅𝐻 2	Equation 4-8
			-3.582 • 10 -6 • 𝑇 2 • 𝑅𝐻 2
	Where:	RH Relative humidity [%]
		T	Dry bulb temperature [°C]

HI is designed for temperature above 20°C and they are categorized according to the following table to describe possible physiological effects caused by heat in people.

Table 4 -

 4 Tw is called in some resources as aspirated (psychometric) wet-bulb temperature. This measure is not available from weather station data. Therefore, the equation below, proposed by[START_REF] Stull | Wet-Bulb Temperature from Relative Humidity and Air Temperature[END_REF], is used to estimate it as a function of air temperature (Ta) and relative humidity (RH %).

	Index range	Category	Possible effects for people in high risk
	(HI)		
	≤ 27		No hazard	-
	27-32		Caution	Possible fatigue with prolonged exposure
	32-41		Extreme Caution Sunstroke, muscle cramps, and heat exhaustion
				possible with prolonged exposure
	41-54		Danger	Sunstroke, muscle cramps, and heat exhaustion likely.
				Heatstroke possible with prolonged exposure.
	≥54		Extreme danger	Heat stroke or sunstroke likely
	6-Discomfort index
	Discomfort index has been used, as stated by (Epstein and Moran 2006), as a substitute to Wet
	Bulb Globe Temperature (WBGT). Mainly because, direct onsite measurement of WBGT is
	not practical for buildings. The equation bellow, is used to calculate discomfort index.
			𝐷𝐼 = 0.5 • 𝑇 𝑤 + 0.5 • 𝑇 𝑎	Equation 4-9
	Where:	Tw Wet Bulb Globe Temperature [°C]
		Ta Dry bulb temperature [°C]

2 : Heat index range and possible effect of within each range

Table 4 -
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	Range	Category
	< 21	No discomfort
	21-24	Less than 50% feel discomfort
	24-27	More than 50% feel discomfort
	27-29	Most population feel discomfort
	29-32	Everyone suffer sever discomfort
	> 32	Medical support required

3 : Discomfort index (DI) ranges

Table 4
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		-4 : CIBSE TM59 and TM52 criteria
	Criteria Room (zone)	Compliance condition of criteria
	A	Living rooms,
		kitchen	and
		bedroom

Table 4 -

 4 5: RT2020 summer comfort in Individual houses(attached and detached) 

		Category I		Category II
		(without exterior constraint)	(with exterior constraint)
	Upper boundary threshold [degree hour] [hour -°C]	1250		1850
	Table 4-6 : RT2020 summer comfort in collective houses (attached and detached)
		Upper boundary thresholds degree-hours [hour -°C]
		Category 1, except	Category 1 air-
		parts of air-conditioned buildings	conditioned houses: For zones	Category 2
		in zones H2d and H3	H2d and H3
	Average Area ≤ 20m 2	1250	1600		2600
	20 m² < Average Area ≤ 60 m²	1250	1700-5 * Area	2850 -12.5 * Area
	Average Area > 60 m²	1250	1400		2100
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 5 1: Varying parameters of cluster KM7_5 centroidOutput data of surrogate model were selected based on the study of overheating indices in part two of Chapter 4. The Table5-2 presents the list of output from surrogate model.

							Adaptive capacity		
	Building type: KM7_5	Surface Area of building [m2]	U-value of exterior wall [W/m²K]	U-value of exterior roof [W/m²K]	U-value of intermedia te wall [W/m²K]	Type of window	of user = External shading status & Window status (air inflow= natural infiltration +	Window to wall ratio (window ratio) [%] to area	Principle orientation [degrees]
							ventilation)		
	Type	Continuou s	Continuo us	Continuo us	Continuo us	Categoric al	Categorical	Categoric al	Categoric al
	Level	3	3	3	3	2	3	2	2
	Min [-1]	70	0.24	0.2	0.44	[1] Simple	[1] Not adaptive user	[W1] R<20% Small,	NS [O1]
	mean [0]	95	1.25	0.792	1.158	[2] Double	[2] user Intermediate	[W2] R>20% Large,	EW [O2]
	Max [1]	120	3	2.42	2.081		[3] Highly adaptive		
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	Indicator of performance for five	Percentage of hours above Cat	Percentage of hours in thermally	Peak indoor	Maximum number of consecutive	Degree-hours	RE2020 situation

2 : Outputs of surrogate model

Table 5 -

 5 3 :Mean squared error on test data for middle and ground floor of KM7_5

	Means Squared Error compared to test data (MSE) Index	Simple Multiple Linear Regressio n	Multiple Linear regression with interaction of input parameters	Decisio n Tree	Support Vector Machine (SVM)	Gradient Boosting Regression	Random Forest Regression
	Percentage	of					
	hours above Cat-	15.71	15.85	25.46	17.78	7.63	9.366
	II EN 16798						
	Givoni thermally stressful	0.043	0.037	0.033	0.046	0.01	0.011
	Maximum						
	Consecutive		4475.35	5024.17	7908.8	6472.33	1062.177	1147.20
	hours above 27					
	Peak operative temperature	0.34	0.38	0.549	0.36	0.22	0.261
	RE2020 degree hour	126497.97	123612.7	184443.8 223180.06	62006.5	75723.3
	Average MSE		26197.88	25730.6	38475.74	45934.11	12615.31	15376.03
	RMSE		161.8	160.4	196.152	214	112.3	124

Table 5 -

 5 4 : Coefficients of determination (R^2 score) of multi-output regressor surrogate model.

	Index	R2_score of Gradient Boosting Regressor
	Percentage of hours above Cat-II EN 16798	0.804
	Givoni thermally stressful	0.866
	Maximum Consecutive hours above 27	0.868
	Peak operative temperature	0.764
	RE2020 degree hour	0.790

Figure 5-8 plots the predicted values of surrogate models and test data for each dependent variable of a distribution plot.
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5 : Simulated and predicted values for the validation building in cluster KM7_5

Floor Measurement index Simulated Predicted difference Ground floor

  

		Percentage of hours above Cat-II EN 16798	8.9	17.24	8.3
		Givoni thermally stressful	0.036	0.29	0.25
		Maximum Consecutive hours above 27	177.37	208.8	31.5
		Peak operative temperature	31.36	33.6	2.2
		RE2020 degree hour	691.33	1376.7	685
	Middle floor	Percentage of hours above Cat-II EN 16798 Givoni thermally stressful	10.24 0.036	14.2 0.129	3.96 0.09
		Maximum Consecutive hours above 27	185.15	209.96	24.7
		Peak operative temperature	32.0	32.89	0.89
		RE2020 degree hour	824.43	1232.07	408

Table 5 -

 5 6 : Mean squared error on test data for attic Figure 5-14 and results presented inTable 5-6 demonstrate that gradient boosting performs considerably better than other surrogate model functions in predicting the performance of test data. To measure how close predicted and simulated values are on test data R 2 score for Gradient Boosting Regressor was calculated.

			Multiple				
	Means Squared Error compared to test data (MSE) Index	Simple Multiple Linear Regression	Linear regression with interaction of input	Decision Tree	Support Vector Machine (SVM)	Gradient Boosting Regression	Random Forest Regression
			parameters				
	Percentage of						
	hours above Cat-	2.68	1.3338	4.727	2.666	0.4568	7.47
	II EN 16798						
	Givoni thermally stressful	0.19	0.22	0.29	0.1445	0.061	0.158
	Maximum						
	Consecutive	298.7	437.23	807.8	1068	61.08	825.97
	hours above 27						
	Peak operative temperature	0.268	0.383	0.445	0.408	0.18	0.23
	RE2020 degree hour	97482	73598	128909	526114.4	8504	165847
	Average MSE	19556	14807.46	25944	105437	1713	33336
	RMSE	139	121.7	161.07	324.7	41.39	182.58

Table 5

 5 , and RMSE show a good performance in prediction of indices, using Gradient Boosting regression, on test data except for Peak Indoor Operative Temperature. Inability of surrogate functions to capture variations of peak indoor operative temperature for attic could be because the range of variations in peak indoor temperature of attic in the training data is small compared to other indices (between 37 and 40 °C). Small range in the training data, in turn, means that input parameters that were chosen in parametric simulations do not influence peak indoor operative temperature of the attic significantly and other factors may be influencing it.Simulation and prediction results of meta-model on validation building is presented in Table5 

	-7 : Coefficients of determination (R^2 score) of multi-output regressor surrogate model
	Index	R2_score for Gradient Boosting Regressor
	Percentage of hours above Cat-II EN 16798	0.976
	Givoni thermally stressful	0.92
	Maximum Consecutive hours above 27	0.97
	Peak operative temperature	0.30
	RE2020 degree hour	0.983
	R 2	
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 5 8 : Simulated and predicted values for the attic of validation building in cluster KM7_5

	Floor	Measurement index	Simulated	Predicted difference
	Attic	Percentage of hours above Cat-II EN 16798	13.08	34.496	21.4
		Givoni thermally stressful	0.402	4.34	3.94
		Maximum Consecutive hours above 27	159.98	165.035	5
		Peak operative temperature	34.21	39.33	5.12
		RE2020 degree hour	1055.026	4179	3124

UID ID USAGE1 Unique_ID T_perimi NEIGHBORS indices Total_area Total_free NumNeigh ... Volume

  

			RÃ?AE?Ã?					
			â???Ã?AE?					
	0 51664 BATIMENT0000000302944746	ââ? ¬Å¡Ã?â??	51665	35	51664, 51666	51663, 51665	344.774418 219.099459	2 ... 587.300363
			Ã?					
			©sidentiel					
			RÃ?AE?Ã?					
			â???Ã?AE?					
	11 51621 BATIMENT0000000302926068	ââ? ¬Å¡Ã?â??	51622	39	51557, 51621	51556, 51620	319.118976 232.048138	2 ... 513.017003
			Ã?					
			©sidentiel					
	2 rows × 39 columns						
	<class 'geopandas.geodataframe.GeoDataFrame'>				
	Int64Index: 34053 entries, 0 to 79476					
	Data columns (total 39 columns):						
	UID	34053 non-null int64					
	ID	34053 non-null object					
	USAGE1	34053 non-null object					
	Unique_ID	34053 non-null int64					
	T_perimi	34053 non-null int64					

  ] plt.hist(df.FreeAreaRa, bins=bin_list) #bins_list plt.xlabel('FreeAreaRatio') plt.ylabel('Frequency') plt.rcParams["figure.figsize"]=7,4 plt.rcParams["figure.facecolor"] = 'w'

	NEIGHBORS	non-null object				
	indices		non-null object				
	Total_area	non-null float64				
	Total_free	non-null float64				
	NumNeigh		non-null int64				
	A_building	non-null float64				
	A_free_ver	non-null float64				
	Cerema_npi	non-null float64				
	Cerema_dte	non-null object				
	Cerema_jan	non-null object				
	Cerema_nbe	non-null float64				
	Cerema_sto	non-null float64				
	build_dens	non-null float64				
	RSU_ID		non-null float64				
	W_A_Buildi	non-null float64				
	W_Vegetati	non-null float64				
	W_Water_ar	non-null float64				
	W_A_free_v	non-null float64				
	W_A_free_1	non-null float64				
	un_SVF_min	non-null float64				
	un_SVF_max	non-null float64				
	un_SVF_mea	non-null float64				
	W_A_Buil_1	non-null float64				
	Building_h	non-null float64				
	Volume		non-null float64				
	Net_compac	non-null float64				
	SVF_mean		non-null float64				
	distance		non-null float64				
	year_con		non-null int64				
	W_Vegeta_1	non-null float64				
	W_Water_pc	non-null float64				
	W_f_densit	non-null float64				
	FreeAreaRa # Rearranging columns non-null float64 geometry non-null geometry colmn = df.columns.tolist() dtypes: float64(27), geometry(1), int64(5), object(6) print (colmn) memory usage: 10.4+ MB			
	Transforming data for clustering				
	df = df[new_columns]						
	df.head(2)							
	df.info() Building_h	Volume Net_compac SVF_mean	distance year_con W_Vegeta_1 W_Water_pc W_f_densit FreeAreaRa
	0	7.6 587.300363	3.124169	0.941814 480.307457	1972	0.000000	0.0	0.467	0.533170
	1	5.9 513.017003	3.620959	0.985431 492.025716	1989	9.322614	0.0	0.302	0.630578
	2	5.3 675.622273	4.647524	0.955571 482.764956	1989	9.322614	0.0	0.302	0.804912

# Column names to string df.columns = df.columns.map(str) # Rearranging columns new_columns = ['UID','ID', 'USAGE1','Unique_ID', 'T_perimi', 'NEIGHBORS', 'indices', 'Total_area', 'Total_free', from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score import seaborn as sns sns.set() # Normalizing data from sklearn import preprocessing # Hierarchical clustering from sklearn.cluster import AgglomerativeClustering from sklearn.mixture import GaussianMixture import scipy.cluster.hierarchy as sch from sklearn import metrics from sklearn.metrics import pairwise_distances from sklearn.metrics import davies_bouldin_score from pandas import DataFrame from pandas.plotting import scatter_matrix from matplotlib import pyplot # Reindex data to save the indices and export with same numbers into QGIS and visualize df = df.reset_index() data = df.iloc[:, 29:39] data.head(3)

T_Building_h T_Volume Net_compac T_SVF_mean T_distance W_f_densit T_W_Vegeta_1 T_W_Water_pc year_con T_FreeAreaRa

  

	Building_h	Volume Net_compac SVF_mean	distance year_con W_Vegeta_1 W_Water_pc W_f_densit FreeAreaRa T_Building_h T_Volum
	7.6 587.300363	3.124169		0.941814 480.307457	1972	0.000000	0.0	0.467	0.533170	1.250195	3.44519
	5.9 513.017003	3.620959		0.985431 492.025716	1989	9.322614	0.0	0.302	0.630578	1.179993	3.41107
	5.3 675.622273	4.647524		0.955571 482.764956	1989	9.322614	0.0	0.302	0.804912	1.148370	3.47950
	4.6 248.607793	4.192632		0.933079 499.163087	1936	9.322614	0.0	0.302	0.809574	1.104959	3.21039
	1.250195	3.445192	3.124169 2.012038e+06 10.840317		0.467	0.000000		-0.0	1972	0.759915
	1.179993	3.411073	3.620959 3.651378e+06 10.908262		0.302	2.538529		-0.0	1989	0.951746
	0	1	2	3	4	5	6	7	8	9

Table 1 :

 1 Specification of data collection sensors

Table 2 :

 2 Goodness of fit between modelled and observed temperatures after calibrations

	Modelled and monitored site	MAE [ o C] RMSE [ o C]	Mean indoor temperature [ o C]	CV RMSE	Limit value by ASHRAE Guideline 14-2014
	Apartment 1	0.72	0.91	26.12	3.5%	
	Apartment 2	0.66	0.78	25.99	3%	CV RMSE ≤ 30 %
	Apartment 5	1.06	1.29	27.2	4.75%	
	Stairwell	0.62	0.78	26.91	2.9%	

  With every new climate variable, previously modified file from temporary folder is selected and # further overwritten until all climate variables are overwritten.

	# # Substituting DewPoint 6 Dry Bulb Temperature							
	# changeEPWData(r'D:\Weather_files\ObservedData2003\Temporary\DryBTemp.epw', 7 Dew Point Temperature			
	#	8 Relative Humidity r'D:\Weather_files\ObservedData2003\Temporary\DewPTemp.epw',			
	#	9 Atmospheric Station Pressure dataIndex=7,						
	#	10 Extraterrestrial Horizontal Radiation dataList=df2.DewPointTemp)					
	# #Substitutinh RH 11 Extraterrestrial Direct Normal Radiation					
	# changeEPWData(r'D:\Weather_files\ObservedData2003\Temporary\DewPTemp.epw', 12 Horizontal Infrared Radiation Intensity			
	#	13 Global Horizontal Radiation r'D:\Weather_files\ObservedData2003\Temporary\RH.epw',				
	#	14 Direct Normal Radiation dataIndex=8,							
	#	15 Diffuse Horizontal Radiation dataList=df2.u)						
	# #Substituting Atm pressure 16 Global Horizontal Illuminance						
	# changeEPWData(r'D:\Weather_files\ObservedData2003\Temporary\RH.epw', 17 Direct Normal Illuminance				
	#	18 Diffuse Horizontal Illuminance r'D:\Weather_files\ObservedData2003\Temporary\AtmPressure.epw',			
	#	19 Zenith Luminance dataIndex=9,							
	#	20 Wind Direction dataList=df2.pres)							
	#	21 Wind Speed							
	#	22 Total Sky Cover							
	#	23 Opaque Sky Cover							
	#	24 Visibility							
	#	25 Ceiling Height							
	#	26 Present Weather Observation						
	#	27 Present Weather Codes							
	#	28 Precipitable Water							
	#	29 Aerosol Optical Depth							
	#	30 Snow Depth							
	#	31 Days Since Last Snowfall							
	#	32 Albedo							
	#	33 Liquid Precipitation Depth						
	#	34 Liquid Precipitation Quantity						
	### Replacing year							
	changeEPWData(r'D:\Weather_files\Weather data for South of France\Hyeres-interpolated.epw',		
		r'D:\Weather_files\ObservedData2003\Temporary\year.epw',				
		dataIndex=0,							
		dataList=df2.Year)							
	#changeEPWData(r'D:\Weather_files\ObservedData\Temporary\year.epw',				
	#	r'D:\Weather_files\ObservedData\Temporary\month.epw',				
	#	dataIndex=1,							
	#	dataList=df2.Month)							
	#changeEPWData(r'D:\Weather_files\ObservedData\Temporary\month.epw',				
	#	r'D:\Weather_files\ObservedData\Temporary\day.epw',				
	#	dataIndex=2,							
	#	dataList=df2.Day)	11.400000	3.200000	57	99627	0	0	306
	#	0 Year							
	#	1 Month							
	#	2 Day							
	#	3 Hour							
	#	4 Minute		232					

0 to 34 for different available epw fields. def changeEPWData(oldEpwFilePath,newEpwFilePath,dataIndex,dataList): with open(oldEpwFilePath) as oldStream,open(newEpwFilePath,"w") as newStream: numCount=0 for idx,lines in enumerate(oldStream): if lines.strip(): try: lineSplit=lines.strip().split(",") dataTest=float(lineSplit[0]) lineSplit[dataIndex]=str(dataList[numCount]) data=",".join(lineSplit) newStream.write(data+"\n") numCount+=1 except ValueError: newStream.write(lines.strip()+"\n") else: newStream.write(lines) return newEpwFilePath #Writing column by column of weather file to make sure the structure of EPW file doesn't change #a user can decide to modify one climate variable or multiples climate variables # In this script a temporary folder was created to save modified versions of EPW weather file. # #changeEPWData(r'D:\Weather_files\ObservedData\Temporary\day.epw', # r'D:\Weather_files\ObservedData\Temporary\hour.epw', # dataIndex=3, # dataList=df2.Hour) # Substituting DBT changeEPWData(r'D:\Weather_files\ObservedData2003\Temporary\year.epw', r'D:\Weather_files\ObservedData2003\Temporary\DryBTemp.epw', dataIndex=6, dataList=df2.DryBulbTemp)

  Define the .epw, .uwg paths to create an uwg object. epw_path = "D:/Weather_files/Observed_Nantes_2003.epw" # Initialize the UWG model by passing parameters as arguments, or relying on defaults KM7_3 model = UWG.from_param_args(epw_path=epw_path, bld=[('midriseapartment', 'pre80', 0.2),('custombuilding', 'pre80', 0.8)], # Write the simulation result to a file. Wil be saved in the same directory by adding UWG at the end of file name. model.write_epw()

		bldheight=6.5,
		blddensity=0.6,
		vertohor=0.178,
		grasscover=0.25,
		treecover=0.15,
	''' cls, bld=DEFAULT_BLD, bldheight, model.generate() blddensity, model.simulate() vertohor,	zone='4A', month=1, day=1, nday=365)
	grasscover,	
	treecover,	
	zone,	
	month=1,	
	day=1,	
	nday=31,	
	dtsim=300,	
	dtweather=3600,	
	autosize=False,	
	h_mix=1,	
	sensocc=100,	
	latfocc=0.3,	
	radfocc=0.2,	
	radfequip=0.5,	
	radflight=0.7,	
	charlength=1000,	
	albroad=0.1,	
	droad=0.5,	
	kroad=1,	
	croad=1600000,	
	rurvegcover=0.9,	
	vegstart=4,	
	vegend=10,	
	albveg=0.25,	
	latgrss=0.4,	
	lattree=0.6,	
	sensanth=20,	
	h_ubl1=1000,	
	h_ubl2=80,	
	h_ref=150,	
	h_temp=2,	
	h_wind=10,	
	c_circ=1.2,	
	c_exch=1,	
	maxday=150,	
	maxnight=20,	
	windmin=1,	
	h_obs=0.1,	
	schtraffic=DEFAULT_SCHTRAFFIC,
	epw_path=None,	
	new_epw_dir=None,	
	new_epw_name=None,	
	ref_bem_vector=None,	
	ref_sch_vector=None):	
	DEFAULT_BLD = (('largeoffice', 'pst80', 0.4),
	('midriseapartment', 'pst80', 0.6))
	DEFAULT_SCHTRAFFIC = (	

from uwg import UWG from ladybug.epw import EPW # # UWG object constants * epw_path --Full path of the rural .epw file that will be morphed.

# if there is no default value written in front of it, it means it is obligatory

  Table.append(df_T) PsyDataFrame=pd.concat(Table,axis=1)

	Min [-1]	70 [A-1]	0.24	0.2	0.44	[1] Simple [1] Not adaptive	[W1] Small, R<20%	NS [O1]
	mean [0]	95 [A0]	1.25	0.792	1.158	[2] Double [2] Interm. user	[W2] Large, R>20%	EW [O2]
	Max [1]	120 [A1]	3	2.42	2.081		[3] Highly adaptive	
	A0_W1_O2	0	-1	0	1	2	3	1

https://sourcesup.renater.fr/www/morpholim/

https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cordex-domains-singlelevels?tab=form Case study city Figure 3-6: Near surface air temperature NetCDF data file visualized in Panoply

Minitab is a command-and menu-driven software package for statistical analysis.

JMP is a software program used for statistical analysis.
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Comfort and summer overheating parameters: at various levels of details
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Data and Methods

Input data for clustering

df3 ['WindSpeed'].iloc [:7]=np.nan df3 ['RelativeHumidity'].iloc [:7]=np.nan df3 ['DewPointTemperature'].iloc [:7]=np.nan # last 8 hours of the month df3 ['DB_Temp'].iloc [-7:]=np.nan df3 ['CloudCover'].iloc [-7:]=np.nan df3 ['WindSpeed'].iloc [-7:]=np.nan df3 ['RelativeHumidity'].iloc [-7:]=np.nan df3 ['DewPointTemperature'].iloc [-7:]

8 hours of the month df4['DB_Temp'].iloc[:7]=np.nan df4['CloudCover'].iloc[:7]=np.nan df4['WindSpeed'].iloc[:7]=np.nan df4['RelativeHumidity'].iloc[:7]=np.nan df4['DewPointTemperature'].iloc[:7]=np.nan # last 8 hours of the month df4['DB_Temp'].iloc [-7:]=np.nan df4 ['CloudCover'].iloc [-7:]

8 hours of the month df5['DB_Temp'].iloc[:7]=np.nan df5['CloudCover'].iloc[:7]=np.nan df5['WindSpeed'].iloc[:7]=np.nan df5['RelativeHumidity'].iloc[:7]=np.nan df5['DewPointTemperature'].iloc[:7]=np.nan # last 8 hours of the month df5['DB_Temp'].iloc[-7:]=np.nan df5['CloudCover'].iloc[-7:]=np.nan df5['WindSpeed'].iloc[-7:]=np.nan df5['RelativeHumidity'].iloc[-7:]=np.nan df5['DewPointTemperature'].iloc[-7:]=np.nan ###### df6 = df[((df.index.month == 6) & (df.index.year == June))] # first 8 hours of the month df6['DB_Temp'].iloc[:7]=np.nan df6['CloudCover'].iloc[:7]=np.nan df6['WindSpeed'].iloc[:7]=np.nan df6['RelativeHumidity'].iloc[:7]=np.nan df6['DewPointTemperature'].iloc[:7]=np.nan # last 8 hours of the month df6['DB_Temp'].iloc[-7:]=np.nan df6['CloudCover'].iloc[-7:]=np.nan df6['WindSpeed'].iloc[-7:]=np.nan df6['RelativeHumidity'].iloc[-7:]=np.nan df6['DewPointTemperature'].iloc[-7:]=np.nan ###### df7 = df[((df.index.month == 7) & (df.index.year == July))] # first 8 hours of the month df7['DB_Temp'].iloc[:7]=np.nan df7['CloudCover'].iloc[:7]=np.nan df7['WindSpeed'].iloc[:7]=np.nan df7['RelativeHumidity'].iloc[:7]=np.nan df7['DewPointTemperature'].iloc[:7]=np.nan # last 8 hours of the month df7['DB_Temp'].iloc[-7:]=np.nan df7['CloudCover'].iloc[-7:]=np.nan df7['WindSpeed'].iloc[-7:]=np.nan df7['RelativeHumidity'].iloc[-7:]=np.nan df7['DewPointTemperature'].iloc[-7:]=np.nan ###### df8 = df[((df.index.month == 8) & (df.index.year == August))] # first 8 hours of the month df8['DB_Temp'].iloc[:7]=np.nan df8['CloudCover'].iloc[:7]=np.nan df8['WindSpeed'].iloc[:7]=np.nan df8['RelativeHumidity'].iloc[:7]=np.nan df8['DewPointTemperature'].iloc[:7]=np.nan # last 8 hours of the month df8['DB_Temp'].iloc[-7:]=np.nan df8['CloudCover'].iloc[-7:]=np.nan df8['WindSpeed'].iloc[-7:]=np.nan df8['RelativeHumidity'].iloc[-7:]=np.nan df8['DewPointTemperature'].iloc[-7:]=np.nan ###### df9 = df[((df.index.month == 9) & (df.index.year == September))] # first 8 hours of the month df9['DB_Temp'].iloc[:7]=np.nan

List of figures

-Sky view factor at RSU scale: Sky view factor was calculated using UMEP of QGIS 4 .

4 https://plugins.qgis.org/plugins/UMEP/ and [START_REF] Lindberg | Urban Multi-Scale Environmental Predictor (UMEP): An Integrated Tool for City-Based Climate Services[END_REF]) -Building shape: using building shape for clustering required transformation of closed polygon into a format that can be used in clustering. To do so, as can be seen in Figure 2-11, 

Results and discussions

To simplify the description of methodology and in particular sensitivity analysis results, in the following only the data and procedure implanted the centroids of Cluster KM7_5 (city center) and KM7_6 (peripheries) will be described in more details.

Feature importance analysis

The centroid building of KM7_5 is a multi-family 4-storey building consisting of a ground floor, two middle floors and attic. Building belonging to cluster KM7_5 are concentrated in city center and are located in densely built areas. The centroid of building KM7_6 is a 3-storey single family house consisting of a ground floor, a middle floor and attic. Buildings of cluster km7_6 are located in peripheries of the case study city, as shown in Figure 5-3.

Division of buildings into zones, location, other parameters of base case scenario are presented in chapter 2 of this manuscript. After creation of D-optimal DOE, building parameters demonstrated in Table 5-1 were varied and simulated in TRNSYS V.17.

In each simulation, output parameters illustrated in Table 5-2 and energy consumption information were calculated for each zone of the building. In the following, in line with overall objective of the research, only parameters related to summer overheating were processed.

Appendix 5-1 shows the variations of the KM7_5 cluster centroid resulting from the D-optimal experiment design. -Measuring length of shared wall between two polygons using Geopandas.

-Measuring area of shared wall between two joint buildings.

Appendix 2-4:

-Data pre-treatment for clustering -Cluster analysis with Scikit-learn K-Mean when K=7

<ipython-input-55-9095ebd8a8b6>:4: FutureWarning: Method .as_matrix will be removed in a future version. Use .val ues instead. clustAssign = model.fit_predict(x.as_matrix()) <ipython-input-55-9095ebd8a8b6>:5: FutureWarning: Method .as_matrix will be removed in a future version. Use .val ues instead. min_dist = np.min(cdist(x.as_matrix(), model.cluster_centers_,'euclidean'), axis=1) Most of simulations tools are able to estimate the volume of air that enters or exits a mechanically ventilated building. Calculation of air inflow rate (infiltration rate + air inflow through the window) in naturally ventilated buildings is, however, a more challenging task.

Airtightness of buildings are usually determined with pressure test. Nevertheless, those tests are carried out when windows and doors of buildings are firmly closed. (Moujalled, Leprince, and Melois n.d.) presented a comprehensive study that involved testing airtightness of more than 200 000 buildings in France at 4 Pa. Graph presented below show the results of their study.

Air leakage in the graph is calculated in (m 3 h -1 m -2 ), but many software use Air change per hour (ACH) as an indicator to measure airtightness.

In (m 3 h -1 m -2 ) the volume of air in (m3) per (hour) through the loss surface is calculated.

Air loss surface according to RT2012, is the surface area of a zone (horizontal and vertical) except the basement floor.

Conversion of airtightness values from (m 3 h -1 m -2 ) to (ACH) and vice versa should theoretically be done case by case, because there is not solid relationship between surface area of rooms and their volume. Since we already know that the height of majority of floor height are around 3 meters than it is possible to establish an approximate relationship between the two.

 To test this theory, imagine a building of 3m by 3m by 3m meters.

Volume = 27 m 3

Loss surface = 3m (3m x 4) + 2 x (3m x 3m) = 54 m 2 .

Loss surface (if basement floor) = 3m (3m x 4) + (3m x 3m) = 45 m 2 .

A value of 0.37 m 3 h -1 m -2 equals to 0.37 x 54 = 21 m 3 h -1 . This value is then divided by the volume and equals to 21m 3 h -1 /27m 3 = 0.74 (ACH).

A value of 0.5 m 3 h -1 m -2 for the same cube equals to 1 ACH.

A value of 0.7 m 3 h -1 m -2 for the same cube equals to 1.4 ACH.

A value of 1 m 3 h -1 m -2 for the same cube equals to 2 ACH.

A value of 1.2 m 3 h -1 m -2 for the same cube equals to 2.4 ACH.

 Now imagine a building of 4m by 4m by 3m meters Volume = 48 m 3

Loss surface = 3m (4m x 4) + 2 x (4m x 4m) = 80 m 2 .

Loss surface (if basement floor) = 3m (4m x 4) + (4m x 4m) = 64 m 2 .

A value of 0.37 m 3 h -1 m -2 equals to 0.37 x 80 = 29.6 m 3 h -1 . This value is then divided by the volume and equals to 29.6m 3 h -1 /48m 3 = 0.616 (ACH).

A value of 0.5 m 3 h -1 m -2 for the same cube equals to 0.83 ACH.

A value of 0.7 m 3 h -1 m -2 for the same cube equals to 1.17 ACH.

A value of 1 m 3 h -1 m -2 for the same cube equals to 1.67 ACH.

A value of 1.2 m 3 h -1 m -2 for the same cube equals to 2 ACH.

We notice that shape of air zone makes the comparison between the two units of measurement difficult, but the equation ACH= (surface leakage rate*constant/ (area * height)) should work with constant equal to 58, as a rule of thumb.

Coming back to subject of measuring air inflow rate in naturally ventilated buildings through the windows and other orifices.

A model co-simulated with Contam and Trnsys was calibrated with onsite data to measure the influence of window openness ratio and external shading. (IBPSA conference paper in Appendix 2-7).

After calibration, we measured hourly air inflow rate into different zones of apartments. Results are presented as follows:

Effects of window openning on indoor air change rate calculated using CONTAM-TRNSYS co-simulation tool:

From the graphs, you can notice that average air change rate when window is regularly opened and closed is different with number of individual windows. For one window it is approximately 1. 

Key Innovations

• Contam-Trnsys coupled building model was calibrated with on situ data • Typical Weather file was modified with data collected from the site • Hourly thermal comfort of a real building over two months of summer was gauged with adaptive and static thermal comfort indices • Impact of window openness ratio and window blinders were assessed to see if they can reduce thermal discomfort in overheated periods.

Practical Implications

Practitioners can use the methodology proposed here to measure and optimize the effect of passive strategies in reduction of thermal discomfort due to over temperature. Using multiple indices to measure thermal comfort allows practitioners to take into account cultural norms as well as occupants' thermal expectations and preferences in their decisions.

Appendix 3-1:

-Accessing and post-processing historical weather data from MeteoFrance and transforming it into EPW file format

One year of monthly weather data was downloaded in the folder "ObservedData" for 2003 from Meteo France Archives of in situ observations.

Finding Your Weather staion Appendix 3-2:

-Transforming rlat/rlon to lat/lon and vice versa in python to process netCDF files

Transforming lat/lon to rlat/rlon and vice versa Properties of NetCDF coordinates downloaded from CORDEX domain.

From properties it can be seen that the position of the rotated_pole is given in north_Pole geographic coordinates. We first transform grid_north_pole_latitude/longitude to grid_south_pole_latitude/longitude. 0 2055-01-01 00:00:00 1 2055-01-01 03:00:00 DateTime 2919 2055-12-31 21:00:00 Reading NetCDF files for 6 climate variables of the closest grid point to the assigned location temperature data : dict_keys (['time', 'rlat', 'rlon', 'rotated_latitude_longitude', 'lat', 'lon', 'lat_vertices' , 'lon_vertices', 'height', 'tas']) humidity ratio data : dict_keys (['time', 'rlat', 'rlon', 'rotated_latitude_longitude', 'lat', 'lon', 'lat_vertic es', 'lon_vertices', 'height', ' The precision of sunset/sunrise and global horizontal calculation could be improved if calculations are done at shorter time intervals. Here, time is calculated hourly. -Calculating heatwave presence in weather file : a step-by-step process using a temperature based index [ [214,215,216,217,218,219,220,221,222 Indices = [[214, 215, 216, 217, 218, 219, 220, 221, 222] -Post-processing of TRNSYS simulations to calculate monthly Energy demand, comfort and overheating indices

Reading outputs of TRNSYS simulation array(['1899-12-30 00:00:00', '01:00:00', '02:00:00', '03:00:00', '04:00:00', '05:00:00', '06:00:00', '07:00:00', '08:00:00', '09:00:00', '10:00:00', '11:00:00', '12:00:00', '13:00:00', '14:00:00', '15:00:00', '16:00:00', '17:00:00', '18:00:00', '19:00:00', '20:00:00', '21:00:00', '22:00:00', '23:00:00'], dtype=object) #print(df1['HI_4_1']. loc[df1.index.isin(df1.index[df1['HI_4_1'] loc[df1.index.isin(df1.index[df1['DI_4_1'] loc[df1.index.isin(df1.index[df1['TAIR_4_1'] loc[df1.index.isin(df1.index[df1['TAIR_4_1'] loc[df1.index.isin(df1.index[df1['RELHUM_4_1']

==max(df1['RELHUM_4_1'])].tolist())]) #print(df1['TAIR_4_1'].loc[3535]) # Points above 98th percentile #df1['HI_4_1']

. loc[df1.index.isin(df1.index[df1['HI_4_1'] Givoni index in summer months percentage in each polygon # Months dictionary monthDict = {1:'Jan ',2:'Feb',3:'Mar',4:'Apr',5:'May',6:'Jun',7:'Jul',8:'Aug',9:'Sep',10:'Oct',11:'Nov',12:'Dec'} Thresholds= [26,27,28,32] Appendix 5-2:

Validation data for middle floor of KM7_6:

Validation data for attic of KM7_6:

Appendix 5-3:

-Pre-processing data to train for Gradient Boosting Regression and Multinomial Logistic Regression. -Application of trained Gradient Boosting Regressor and Multinomial Logistic Regression to approximate indoor performance of buildings at cityscale. # classification_kwds=dict(bins=[10,20,30,50,70,100,200]), # ax=ax)

ax.set_xlim(-1.