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Résume

Résume

Le probleme de la surchauffe intérieure des batiments devient de plus en plus un sujet d'intérét
pour la communauté scientifique ainsi que les décideurs politiques en matiére d'urbanisme en
raison de l'augmentation de la température moyenne de la Terre, de l'augmentation de la
fréquence des événements météorologiques extrémes, de I'effet d'flot de chaleur urbain, et du
fait que de nos jours la plupart des gens passent la majorité de leur temps a l'intérieur des
batiments.

Le présent travail de recherche porte sur le développement d’une méthodologie pour
I’évaluation de la vulnérabilité des villes a la surchauffe intérieure, visant a soutenir la prise de
décision stratégique dans la planification urbaine pour les interventions politiques d'adaptation
au changement climatique.

Compte tenu de la nature interconnectée des questions a traiter, ce manuscrit commence par un
chapitre d'introduction détaillé présentant les concepts clés, les énoncés du probléme, I'objectif
de la thése et la méthodologie globale employée.

Chaque chapitre suivant est consacré a une partie spécifique du travail de these. Ainsi, le
deuxiéme chapitre de ce manuscrit porte sur la définition des typologies des batiments et
I'identification des batiments représentatifs utilisés. Le troisiéme chapitre porte sur la prise en
compte du changement climatique et les données sur les Tlots de chaleur urbains dans les fichiers
météo utilisés dans les simulations. Le quatriéme chapitre présente les parametres du batiment
influencant sa performance thermique ainsi que les indices de mesure de la surchauffe
intérieure. Le cinquiéme chapitre présente les modeles réduits ou métamodeéles développés et
la maniére d’extrapolation des resultats de simulations des batiments représentatifs au reste du
parc bati a I’échelle de la ville.

Enfin, la conclusion retrace les principaux travaux et résultats développés au cours de la thése.
Elle pose ensuite les limites de ce travail de these dans chacun des domaines abordés et propose
quelques pistes complémentaires de réflexion dans les perspectives de ce travail.
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Abstract

Abstract

The problem of indoor overheating is increasingly becoming a subject of interest to the
scientific community as well as the policy makers in urban planning due to the rise in global
average temperature, increase in the frequency of extreme weather events, urban heat island
effect, and the fact that nowadays most of people spend the majority of their time indoors.

The present research demonstrates a methodology for an urban-scale indoor overheating
vulnerability assessment, aimed to support strategic decision making in urban planning for
climate-change adaptation policy interventions.

Given the inter-connected nature of questions needed to be handled, this manuscript starts with
a detailed introduction chapter outlining the key concepts, presenting problem statements,
research objective, and overall method employed.

Each subsequent chapter is dedicated to a specific part of the research effort. The second chapter
of this manuscript is about building typologies definition and identification of representative
buildings to be used. Third chapter is concerned with climate change and urban heat island data.
Fourth chapter presents indoor overheating measurement indices and attempts to identify the
most influential building parameters through a literature review. Fifth chapter covers surrogate
models and how to extrapolate the simulations results of representative buildings to the rest of
build stock.

Finally, the conclusion traces the main ideas developed during the thesis. It then sets out the
limits of the study in each of the areas covered and develops some additional avenues for
reflection in the perspectives of this work.
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Preface

Preface

Increase in global average temperature and in the frequency of extreme weather events, coupled
with urban heat island effect and the fact the people spend majority of their time indoors, make
the problem of indoor overheating a subject of interest to the scientific community as well to
the policy makers in urban planning. In the latter, policy choices and decisions are aimed to
foster benefits for all, which in turn requires an understanding of the degree of exposure and
vulnerability to hazards at scales significantly larger than building. One way to provide this
type of support for decision making at city scale is through development of rapid assessment
tools that could link climate change data, urban heat island effect and individual performance
of buildings.

With that in mind, the aim of this manuscript is to pave the way for the development of a
comprehensive methodology for practitioners and policy makers in urban planning to take into
account climate change scenarios, urban climate, energy transition and health in urban
development policies.

Given the interdisciplinary nature of the problem tackled in this thesis, a process approach was
adopted to accomplish all necessary tasks. Each chapter of the manuscript, here, is dedicated to
the description of a major step of the research.

Chapter 1 sets out the manuscript by providing the context, principle elements involved in this
study, objective, method of research, and a summary. The second chapter, after a critical
literature review of building typologies construction methods, describes a data-driven method
to aggregates residential buildings into clusters of buildings with similar characteristics,
identifies one representative building from each cluster that undergoes a characterization step.

The third chapter starts with a state of the art on the following issues: global and regional climate
models, future climate scenarios, climate downscaling approaches, weather processing tools,
UHI calculation methods. Then it describes a workflow to generate future typical weather files
from EUROCORDEX climate portal and compares them with 2003 heatwave weather data.

The fourth chapter of manuscript is divided into two parts. First part presents a literature review
on the results of sensitivity analysis studies to identify what are the most influential building
parameters for summer overheating and energy consumption. The second part of chapter four
demonstrates various indices used in indoor overheating assessment and attempts to compare
the performance with one another, where possible.

The fifth chapter aggregates three previous chapters and describes a rapid assessment tool based
on surrogate modelling to extend the indoor overheating assessment study on reference
buildings to the rest of build stock.

Finally, the conclusion traces the main ideas developed during the thesis. It then sets out the
limits of the study in each of the areas covered and develops some additional avenues for
reflection in the perspectives of this work.
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Chapter 1 :Introduction, context, key concepts, and methodology

Chapter 1 : Introduction, context, key concepts, and
methodology

This chapter sets out the manuscript by introducing the context, principle elements involved in
this work, objective, method of research, and a summary at the end. Following is the list of
main elements covered in the chapter:

- Introduction to the subject: definition of key concepts, literature review
- Problem statements and objective
- Methodology and a summary

1.1 Background/Context

1.1.1 Climate change and heatwaves

The Intergovernmental Panel on Climate Change (IPCC) of United Nations defines climate
change as “A change in the state of the climate that can be identified (e.g., by using statistical
tests) by changes in the mean and/or the variability of its properties and that persists for an
extended period, typically decades or longer. Climate change may be due to natural internal
processes or external forcings, or to persistent anthropogenic changes in the composition of
the atmosphere or in land use” (IPCC 2018).

Heavy downpours causing record floods, major hurricanes, unprecedented heatwaves: climate
change manifests itself in a variety of ways. What differentiates climate change from natural
weather variability is the long-term trends. Earth orbiting satellites, ocean buoys, and remote
meteorological weather stations are the most commonly used instruments to monitor our current
weather and climate information, but data collected from natural ice cores, corals, tree rings,
and sediments from oceans and lakes enable scientists to extend the world’s climatic records
thousands of years back. Comparison of current climate data and past climatic conditions allow
scientists to see long-term variations in earth’s atmosphere, oceans, dry land, and glaciers.

Multiple factors, both anthropogenic and natural, influence earth’s climate system. Natural
factors affecting climate systems include sun’s cyclical radiation intensity variations, volcanic
eruptions, and variations in the concentration of naturally occurring greenhouse gases.
However, recent past climate records indicate that our current climate warming, particularly the
changes that have been happening since mid-20" century are much faster than ever before, and
therefore cannot be explained by natural factors.

Anthropogenic causes, specifically the greenhouse gas (GHG) emissions generated from human
activity are the main cause of the earth’s rapidly changing climate today. Due to these activities,
concentration of CO2, methane, and nitrous oxide in the atmosphere are unprecedented in the
past 800°000 years. CO2 concentration alone has risen by 46% since preindustrial times
(Rosbakh, Auerswald, and Poschlod 2021).

It is important mentioning that while climate change and global warming are frequently used
interchangeably, global warming is just one aspect of climate change and it refers to the average
global temperature rise near the surface of the earth.
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In 2020, the global average temperature was approximately 14.9 ° C, which is 1.2 ° C higher
than the pre-industrial (1850-1900) level (see Figure 1-1). According to World Meteorological
Organization (WMO) the six years period since 2015 has also been the warmest on record for
the most part of Europe, Middle East, and northern parts of Asia (WMO 2020) .
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Figure 1-1: Global temperatures — change from pre-industrial. (Source: WMO)

All the key indicators and associated impact information presented in the report of WMO point
to unrelenting global warming. Unfortunately, the negative trend will continue to worsen in the
coming decades regardless of how successful we are in reduction of anthropogenic sources.

Looking at the current global average temperature and data of the past decades raises the
question of how is the climate going to change in the coming century? The answer to this
question depends entirely on how human societies develop in terms of demographics,
economics, technologies, demand and supply of energy, and land usage.

To give a more accurate answer to this question, IPCC has released special report on greenhouse
gas (GHG) emission level that presents a set of scenarios taking into account various driving
forces and emissions in scenario literature. In this report, it has defined four reference scenarios,
the RCP (representative concentration pathway), each illustrating one possible evolution profile
of GHG concentrations as a function of socio-economic development scenarios, technological
changes, and various climate adaption and mitigation strategies (see Figure 1-2). Scenarios
presented in this report do not include probabilities of occurrence; therefore, preference for
scenarios in the research or any other sector is subjective and can vary among users.
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Figure 1-2 : Global average temperature projection scenarios. (source:KNMI)

Disaster and surprise events are also not included in these scenarios but previous studies have
shown that rise in global average surface temperatures due to climate change is accompanied
by an increase in frequency and intensity of extreme weather events such as heatwaves
(Lorenzo, Diaz-Poso, and Royé 2021).

National Climate Assessment report finds that the number and the strength of heatwaves, heavy
downpours, and major hurricanes have significantly increased over the last decades. These
extreme changes in temperature and precipitation can disrupt and damage critical
infrastructures and vitality of communities. It increases health risks associated with air quality,
heatwaves, floods, wildfires and ground-level ozone pollution (Doherty et al. 2018).

Europe in particular is more affected by heatwaves and cold snaps compared to other extreme
weather events like hurricanes that form in tropical and subtropical latitudes.

An example is the exceptional heatwave in summer of 2003 that resulted in at least 30,000
excess deaths in Europe, of which nearly 15,000 where in France, between August 1 and 20,
2003 (Wagner 2018).

(R. Zhang et al. 2020) presented evidence obtained through observational analyses and
numerical studies, which illustrated that the rise in frequency of European heatwaves is linked
to decrease of Arctic sea ice concentration and Eurasian snow cover fraction. Future projection
analysis of numerical simulations by the same authors also suggests that Europe may experience
more hot summers as both Arctic sea ice concentration and Eurasian snow cover fraction
continue to decline.

(Ouzeau et al. 2016) simulated heatwaves using EURO-CORDEX regional multi-model and
concluded that under future climate conditions, no matter what scenario considered, the
frequency, duration and intensity of heatwaves increase across France and other parts of
Europe.
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Authors state, heatwave events could occur during a larger span of summer time and the 2003
event would be a typical event by the end of the century. Authors also state that the duration
and intensity of 2003 event would be much lower than the strongest heatwaves that will occur
during the last 30 years of 21st century (Ouzeau et al. 2016). Figure 1-3, below, demonstrates
the historical heatwave data and projected heatwaves assuming the high-emission scenario
(representative concentration pathway (RCP) 8.5) from Meteo France.

Observations 1947-2016 A Projections 2017-2100 - Aladin RCP 8.5
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Figure 1-3: Heatwaves in France, historical records and future projection under climate
scenario RCP8.5 (Source:MeteoFrance)

(14CE 2019)

As can be seen in Figure 1-3 the intensity and duration of heatwave in 2003 is significantly
smaller than what is expected to happen in the second half of this century with business as usual
emission-scenario.

Report from JRC PESETA IV project that studies the biophysical and economic consequences
of climate change states that since 1980, heat and cold waves have claimed the lives of nearly
90’000 individuals in Europe. If global average temperature stabilizes at 1.5 °C by 2100, each
year more than 100 million Europeans will be exposed to heatwaves that is considered “intense”
in our today’s definition of it. With unmitigated climate change (3°C by 2100), this number
rises to 300 million each year. This number stands to 10 million per year in our current climate
conditions (1981-2010).

Report also outlines that yearly fatalities caused from extreme temperatures could rise from
current 2’700 deaths to around 30°000 in 2100 with a 1.5 °C global average temperature
increase. This could reach to 50’000 with 2 °C and around 90’000 with 3 °C. As can be seen in
Figure 1-4, this raise in the number of fatalities is most pronounced in southern Europe (France,
Spain, Greece, and Italy) due to increased exposure rate and extreme heat (European
Commission. Joint Research Centre. 2020). The most vulnerable group of people are those who
have reduced physiological and behavioural capacity to regulate thermal conditions and those
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who do not have access to technological means (e.g. air conditioning) due to financial
constraints (European Commission. Joint Research Centre. 2020).
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Figure 1-4: a) Number of people annually exposed to a present 50-year heatwave. b) Projected
changes in human exposure to these events for 1.5°C, 2°C, and 3°C global warming (Source:JRC
PESETA IV)

Extreme heat also raises the occurrence risk of other types of climate related disasters. It can
exacerbate intensity and frequency of droughts, or cause wildfires. Droughts and wildfires in
turn create a web of impact that span across a wide range of economic and social sector such as
crop failure, power supply disruption, variation in composition and structure of vegetation, etc.

Climate change will affect food production beyond just crop production; it affects livestock,
fisheries, and aquaculture. Effects of climate change on human health are not limited to
mortality from exposure to extreme heat, but also include effects on human mortality and
morbidity from less extreme sub-optimal temperatures, air quality, and water and vector borne
diseases.

Climate change could cause more population displacement, increase the risk of conflicts over
water or other natural resources. Most of these impacts listed above and those that have not
been mentioned are beyond the scope of this study, which primarily focuses on over-
temperature, and vulnerability of people to it.

Influences of changing frequencies and intensities of extreme heat and global warming are
believed to be exacerbated in the urban areas by a distinct urban microclimate feature known
as urban heat island (UH]I) effect.
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1.1.2 Urban heat island

As urban areas grow in size and density, significant changes take place in their landscape.
Buildings, bridges, roads, parking lots, and other infrastructures built from dense materials
replace open land and green areas. Surfaces that were once covered with greenery and
permeable natural soils turn into impermeable and dry high-density surfaces. These changes
make urban regions warmer than their peripheries, forming an “island” shape of higher
temperature in the urban landscape.

During a hot summer, day surface temperature of buildings, roads, infrastructures (bridges,
pedestrians, etc.) can become 10 to 30 °C hotter than the near surface air temperature, causing
them to alter heat exchanges in urban settings between surface and near surface temperatures.

Urban surface materials, due to their thermal characteristics (specific heat, mass, conductivity,
diffusivity and emissivity) store 15 to 30% more heat than natural materials during the day. In
turn, these surfaces radiate additional heat into the atmosphere, causing a similar but not so
extreme, increase in air temperature.

The difference in air temperature between rural and urban area becomes more pronounced after
sunset, as urban surfaces continue to radiate heat into the surrounding environment, preventing
the air temperature of the urban area from dropping during the night. Lack or reduced presence
of evapotranspiration (e.g. through lack of vegetation, water surfaces) in urban areas is another
major set of factors that causes an increase in the intensity of UHI. Third set of factors
influencing UHI effect, which is intertwined with the previous two, is urban morphology
(geometric form of structures) (Oke et al. 2017).
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Figure 1-5 : Left, urban heat island explained by (Jolma architects, 2018); Right, Nantes Urban heat
Island nocturnal intensity map produced by (Bernard, 2017) for a clear day of summer

A considerable body of research has been carried out on how to quantify intensity, extent and
scale of UHI as well as main factors influencing the intensity of UHI effect. Literature review
carried out by (Tzavali, Paravantis, and Mihalakakou 2015) concluded that the intensity of UHI
effect varies depending on city size, land use, topographic factors, vegetation ratio,
urbanization, industrialization, time of the day, season of the year, and prevailing
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meteorological condition. On scale and type of UHI in the literature, (S. W. Kim and Brown
2021) analysed 51 case studies of UHI across the globe and classified them on conventional
UHI classification types, horizontal ranges and vertical positions. A summary of literature
review on UHI scale and types is presented in Table 1-1, below (S. W. Kim and Brown 2021).

Table 1-1: Scale and types of UHI studied in literature

Type of heat  Horizontal Vertical Urban unit Data time Data collection methods
islands ranges layers scale
Boundary Macro (100 Urban Urban region ~ Hours-days Historical weather data,
layer sKm<) boundary remote sensing
Heat Island layer (UBL)
(UHlusL) Meso (10s — (2502500 m) A city Hours- 1
100 s km) day
Canopy layer  Local (0,5  Urban canopy A Minutes— Stationary weather
Heat Island 10s km) layer (UCL)  neighbourhood, hours stations, temporarily fixed
(UHlucy) (25-250 m) blocks weather stations,
mobile measurements
with weather station
mounted on mobile
platforms
Micro (100s Building Buildings, Seconds—  Temporarily fixed weather
M-0.5 canopy layer street canyon minutes stations,
KM) (BCL) mobile measurements
(10S M - with weather station
100 S M) mounted on mobile
platforms, thermal
imaging camera, remote
Surface Heat Land surface sensing
Island layer (LSL)
(UHIlsurr) (<10S M)

(Oke et al. 2017) in their book on urban climates, in addition to the three types mentioned in
Table 1-1 have included a Subsurface Heat island (UHIsu) as well, depicted in Figure 1-6.
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Figure 1-6 : Illustration of temperature differences in four types of UHI (source:Oke et al. 2017)
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Intensity of UHI is an important indicator often used to measure severity/magnitude of UHI
effect in urbanized areas. This indicator is dependent on the type and scale of UHI.

One way to estimate/calculate UHI intensity is to compare maximum and/or average air
temperature of an urban area with its surrounding (rural area) as shown in Equation 1-1.

UHI intensity = AT,_, =T, — T, Equation 1-1

Where: ATy Difference between urban and rural air temperatures

Tu (Average/maximum) air temperature in urban area
T (Average/maximum) air temperature in rural area

Another approach to measure UHI intensity is with the concept of energy balance. In contrast
to the first approach which is entirely based on temperature difference, the energy balance
concepts calculates and analyses sizes and types of various heat fluxes generated within the
studied spatial unit (Oke et al. 2017).

In simple terms, energy balance is the statement of energy conservation applicable to volumes
and surfaces at all temporal and spatial dimensions. In urban heat island intensity calculation,
this concept is used to assess the transfer and storage of energy within urban systems and in
between atmosphere and urban system. Its applicability to all spatial scales allows it to be
written for individual facets (roofs, walls, streets, green surfaces, etc.), for urban units with the
urban climate (people, buildings), for a whole atmosphere-surface interface, or for specific
layers of atmosphere.

In order to interpret observations accurately, communicate with unambiguity and compare
outcomes, it is critical to conduct a more detailed investigation on the four types of UHI, their
causation, spatial and temporal variations, as well as what are the impacts at any given situation.

The four types of UHI effect are as follows:

The Surface Urban Heat Island effect (UHIsurt or SUHI) is mostly determined by the
geometrical, thermal, and radiative properties of the surface facets. Satellite sensors are usually
used to measure temperatures and they show that its magnitude reaches to its peak in clear
daytime conditions mostly in the parts of city that have no or little vegetation, or where large
portion of the urban surface area is made up of roof facets. In addition, its magnitude is sensitive
to green surface coverage ratio of rural areas surrounding the urban agglomeration.

A more accurate assessment of the spatial variation of urban reference temperature (Tu), that
could be used in Equation 1-1, from satellite sensors, requires corrections for atmospheric and
surface emissivity effects, and preferably for thermal anisotropy for a 3D-surface city, which
seen from a satellite sensor platform, depends on both the viewing angle and the solar geometry.

Rural reference temperature (Ty) can also be difficult to define because it is quite common to
find that non-urban areas exhibit similar, if not greater, spatial variability than that of urban
areas. It requires consideration for surface types, moisture level in the soil, shadows and
topographic variations such as elevation, slope, proximately to water bodies (Oke et al. 2017).
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Of the four, the most studied type is Urban Canopy Layer Heat Island (UHlucL). The
magnitude of UHIuc rises and falls in response to temporal variations (time of day or season
of the year) and meteorological conditions (wind speed and direction, clouds). UHlucL is
observed/measured by thermometers (thermocouples) installed near surface to measure
temperature (To) in urban and rural areas, which are then used as input to Equation 1-1. Near
surface air temperature data can be collected in a weather screen or ventilated radiation shield
at one or more sites that are considered to represent urban and rural climates (Stewart and Oke
2012a). This stationary approach is also called “fixed”. If a fixed station has capacity to
continuously monitor climate conditions, then it can capture temporal variations too. An
alternative approach is to mount a thermometer on a vehicle and transverse it across a settlement
and then to its non-urbanized surroundings. This approach is called “transverse”. The latter
allows studying both temporal and spatial variation of UHIycL.

As can be seen in Figure 1-6, UHIuycv is the difference between the air temperature of near
surface, below roof level, in the city and the temperature of near-surface air over its non-
urbanized surroundings. Its magnitude reaches its peak after sunset when air above the urban
areas cools more slowly than air above rural landscapes. Because the rate of night-time cooling,
is inversely linked to the sky view factor (SVF), the magnitude of the UHIlucL is greatest when
buildings are tall and streets are narrow (i.e. city centre locations with limited greenery). During
the day, UHIucc is frequently low or even negative (Oke et al. 2017).

Boundary layer UHI (UHIusL) is closely coupled with UHIycy, but it is above roof-level, has
different magnitude, and is generated through a different process (Oke 1995). As can be seen
in Figure 1-7, UHIygL forms a massive urban plume both by day and night (Junyan Yang et al.
2020).
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Figure 1-7: Urban climate scales and potential temperature profiles due to various UHI effects
(source: Junyan Yang et al. 2020)

This giant plume is maintained by an enhanced sensible heat flux from urban area. In reality, it
is a mixture of various internal boundary layers, which develop downstream from various land-
uses plus the plumes of heat, water vapour, and pollutants from different sources.

The UHIusL is much less frequently monitored, as it requires very tall observation towers,
aircrafts or balloons. Nowadays, UHIygL can be inferred utilizing ground-based remote sensing
with profiling radiometers. Due to advection of warmer urban air downwind over rural surfaces,
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it is important to consider the wind direction when finding suitable rural reference temperatures
(Oke et al. 2017).

Subsurface UHI (UHIsub) is defined as the difference in ground temperature of urban area
above that found at the same depth in surrounding no-urban area. It is formed because of
sensible heat migration from the urban surface and urban infrastructure into the ground over an
extended period. Its evidence are often obtained from thermometers mounted inside water wells
or boreholes that run from a few 10s to 100 m in depth (Oke et al. 2017).

On the question of factors causing UHI. In 1973, a link was first proposed between
urbanization-induced warming and the size of the city, as measured by the population, based
on night-time air temperature (Oke 1973). With the proliferation of remote sensing
measurement technologies of earth’s surface temperature, similar relationships have been
proposed on a global scale. Given the complexity of urban systems, it remains difficult to
identify and isolate all the causes of UHI and the factors contributing to the observed differences
in AT in the cities (Manoli et al. 2019). Nonetheless, a brief study of literature on the main
causes of UHI revealed that the underlying factors influencing intensity of UHI differ by the
type of UHI studied. According to (Oke et al. 2017) the main causes of UHI are presented in
Table 1-2.

Table 1-2 : Potential causes of UHI

Cause Description of the cause

Canopy layer heat Island (UHlucL)

Surface geometry (@) Increased surface area (4c=1)
(b) Closely-distanced buildings

- Greater shortwave irradiance absorption due to
multiples reflections of building surfaces (lower
system albedo)

- Small sky view factor (¥sy<1) that reduces net
longwave heat loss, particularly at night

- Wind shelter in UCL reduces heat losses by
convection and advection.

Thermal properties  Artificial materials used in construction have a greater heat storage
of surfaces capacity that later release larger sensible heat

Anthropogenic heat ~ The amount of anthropogenic heat released in cities because of fuel
(human activity) combustion and electricity consumption is substantially higher (AC,
vehicles, machineries, etc.).

Urban ‘greenhouse More downward longwave radiation is emitted to UCL by a

effect’ warmer, more polluted, and frequently moister urban atmosphere.

Decreased Construction materials increase imperviousness of urban surfaces.

evapotranspiration Water remained on the surfaces after a rain evaporates faster than
rural areas
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Boundary layer UHI (UHIlusL)

Polluted boundary Aerosol and gaseous pollutants in urban atmosphere change

layer radiation transmission causing a greater absorption and scattering of
shortwave and a larger absorption and emission of longwave
radiations.

Sensible heat flux Larger turbulent sensible heat flux from rougher, warmer city

surface. Upward mixing of warmer canopy layer air (i.e. UHlucL).
Anthropogenic heat ~ Heat sent upward into UBL from chimneys and factory stacks.

Entrainment Stronger convection causes greater injection of warmer, drier air
from above capping inversion, down into UBL.

Ac = Complete, or three dimensional aspect ratio (Ac = Ac/Ar), where Ac= Complete

surface area and Ar= Plan area of total surface ; ¥sy= Sky view factor

Overall, factors affecting UHI can be summarized as follows: increased imperviousness,
modified urban geometry, low albedo of urban surface materials, increased population density,
greater anthropogenic heat release, and reduced presence or absence of vegetation (Mohajerani,
Bakaric, and Jeffrey-Bailey 2017; Oke et al. 2017; Vujovic et al. 2021).

UHI effect has various direct and indirect impacts on the well-being of urban inhabitants,
their sleep quality (Y. Li et al. 2020), as well as on attractiveness of public spaces in city centres,
energy consumption (air conditioning), resilience of infrastructures and urban networks,
preservation of flora and fauna biodiversity. In a detailed study on the perceived impact of UHI,
(Aghamohammadi et al. 2022) categorized impacts of UHI in five themes: (1) public health
deterioration, (2) acceleration of urban migration patterns to spend more time in cooler areas,
(3) productivity reduction, (4) increase in household energy consumption, (5) and deterioration
of environmental quality and natural resources.

Increased temperature in urban areas often exerts greater pressure on urban microclimate
consequently causing variations in precipitation pattern, natural air circulation, water quality,
and air pollution. (Wang, Guo, and Han 2021) studied the relationship between UHI intensity
and found a statistically significant correlation between daytime UHI intensity and increased
concentration of ground-level ozone (Oz).

Additionally, elevated urban temperature acts as a precursor for the photochemical reactions in
the atmosphere enhancing urban smog (H. Li et al. 2018). Urban smog in turn triggers a wide
range of medical complications such as respiratory problems, and even cardiovascular failures
(Tan et al. 2010).

This phenomenon poses a threat to human health more than ever because the majority of the
world's population now live in densely built cities, and warming of these areas can significantly
increase morbidity and mortality, particularly during heat waves (Manoli et al. 2019).

Interaction of global climate change with UHI effect is an open question for researchers now.
(Wilby 2008) investigated urban impact on climate and vice versa. The results of their study,
under high emission climate scenario showed further intensification of nocturnal heat island
and greater concentration of ground-level ozone, which are both most pronounced in summer.
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(Sachindra et al. 2016) in a similar study concluded that the presence of urban structures can
magnify the effects of global warming on cities more than less urbanized areas.

(Oke et al. 2017) argue that we cannot simply assume that global temperature increase will raise
the background temperature and its impact on UHI effect is additive. Because the definition of
UHI effect is based on difference between urban and adjacent rural temperatures and the
intensity of both can be modulated by environmental conditions and background temperatures.
There is high degree of uncertainty here, because in the future both environmental conditions
and background temperatures are expected to change.

(MccCarthy, Best, and Betts 2010) used a global climate model, across multiple regions around
the globe that could account for varied land cover fractions, as well as an urban land-surface
scheme to account for the physical presence of cities and associated expected heat flow from
human activities. Their results demonstrate that climate change has the ability to affect the
climate potential of urban heat islands, with an increase of up to 30% in some places but a
worldwide average reduction of 6%. Meaning that the impact of global climate change on UHI
will differ from region to region. Their findings also revealed that raising global CO>
concentrations from 323 to 645 ppm increased UHI by less than 0.5 °C, far less than the heat
associated with global driving, which is 3 °C for the same level of CO2 concentration increase.
The authors also state that climate change will further increase the disparity in extreme
nocturnal temperature between rural and urban areas.

(Lemonsu et al. 2013) studied Parisian urban climate under changing global climate conditions,
following two emission scenarios, aiming to quantify the impact of global warming on urban
and surrounding urban areas. Contrary to expected outcome, their results showed that during
summer, under future climate scenario, the warming trend is more pronounced in adjacent rural
areas than urban neighbourhoods in Paris due to soil dryness. For that reason, a significant
decrease in nocturnal UHIucL (greater than 2°C) is noted. They emphasize that the extremes in
temperature are more significant in suburban areas as the effects from partial urbanization
accumulates with dryness of the soil. On the flip side, urban geometry is less dense than in the
city centre, reducing shadow effects and promoting air warming in the street-canyon.
Furthermore, natural soils' dryness considerably reduces evaporation, which then boosts
sensible heat release. That is why, in cities surrounded by dry regions, this phenomenon
frequently results in the formation of “cool island” during the day (Lemonsu et al. 2013).

On the interactions of global climate change and UHI, it can be concluded that global climate
change will enhance the effects of UHI, although it might not influence its magnitude
considerably. Nonetheless, local mitigation and adaptation strategies of UHI will still be needed
to offset the impacts of global warming on urban areas.

1.1.3 Buildings and summer heat

Comprehensive time-activity studies in Europe and US have shown that people on average
spend 16 hours/day indoors. This number increases to approximately 20 hours/day for those
above 64 years old (Brasche and Bischof 2005), asserting the importance of indoor air quality
and indoor thermal comfort.
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Average lifetime service of buildings in France are estimated at 60 years (Mauro 2013).
Reinforced concrete buildings in particular could render services for more than 100 years.
Service quality of buildings decline as they age due to failure of building systems, appearance
of cracks in the outside walls, weathering, opening of joints, moisture accumulation in the
insulation layer, etc. 75% of buildings in Europe were constructed before 1990. It indicates that
some of them have already completed their lifetime service and need continuous maintenance
and retrofits to function (Park et al. 2020).

Projected variations in extreme weather events and global temperature increase will further
increase pressure on buildings, making them uncomfortable or even potentially dangerous to
occupants’ wellbeing (Green et al. 2016; Hamdy et al. 2017a; Jun Yang et al. 2019). Heatwaves
in particular can cause severe overheating in buildings that are not equipped to cope with it. It
could lead to several problems ranging from thermal discomfort and productivity reduction to
ilinesses and even death of occupants (Hamdy et al. 2017a).

This concern is particularly relevant for buildings that are also subject to UHI effect. Co-
occurrence of heatwave and UHI will further aggravate the pressure on buildings and as a
consequence, the risk of indoor overheating in buildings is expected to rise.

Overheating in residential buildings already in Europe and North America has been reported by
(Baborska-Narozny, Stevenson, and Grudzinska 2017; Lane et al. 2014; Lee and Shaman 2017),
indicating rising concerns about overheating in temperate climate regions.

The magnitude of occupant vulnerability inside the building due to overheating depends on
several parameters such as duration and intensity of exposure to heat, as well as, on personal
adaptation capacity of the occupant. Installation of cooling systems on already energy intensive
building sector could mitigate associated risks. However, the resulting energy demand would
affect global climate change. Moreover, if installed in every household these systems would
dramatically increase the electricity demand for cooling at peak time and at the same time
discharge hot air that will further intensify urban warming. Another phenomena that affects
occupants’ vulnerability to future climate conditions and heatwaves is summer energy
precariousness (Battersby 2016) which is especially true for naturally ventilated , and poorly
insulated buildings that have traditionally not relied on mechanical systems to keep occupants
safe from overheating during summer. Installation of a new cooling mechanism on such
buildings will put a huge financial burden on households that are already in difficulty paying
for heating needs.

French law recognizes energy precariousness as the inability or difficulty of people to have
access to the required energy for basic needs due to lack of financial resources or poor housing
conditions. Low-income households are considered to be more vulnerable to climate variations,
in large due to this issue. As the average global temperature increases and energy precariousness
remains common, adaptation to higher indoor air temperature while minimizing energy needs
for mechanical cooling becomes more important than ever.

On the question of exposure to summer over-temperature, the building itself plays an important
role. (Petrou et al. 2019) performed a statistical study of building stock in UK to analyse indoor
temperature in different types of dwellings in an effort to identify the links between factors that
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increase or decrease the risk of over-temperature in the buildings. They found out a considerable
correlation between the size of the building and vulnerability of occupants in it. The latter
decreases with the size increasing. They also showed that buildings built before 1900 were
cooler than those built after. The study also revealed multiple correlations between household
indoor overheating problem and dwelling characteristics, highlighting the complex nature of it.

Another new trend in energy efficiency design is Passivehause, which is promoting continuous
high insulation of the entire envelope and good standard of airtightness. Is this type of
construction perceived to be more prone to over-temperature compared to “draughty’” homes?

To answer this question, (R. Mitchell and Natarajan 2019) investigated 82 buildings in UK
constructed based on Passivehause principles. According to the authors, most of the buildings
as a whole passed the overheating design criteria, however a notable number of individual
bedrooms experienced high temperature during the night. The degree of discomfort in their
paper was analysed with chartered Institution of Building Service Engineers TM59 criteria
(Chartered Institution of Building Services Engineers 2013). The authors suggested a more in-
depth, room-by-room approach in assessment of over temperature for building designers. A
major limitation of their study was that they used historical weather data from 2011 to 2017
that were mostly mild and cool years.

Zero Energy Hub (NZH) conducted a survey and in their report in 2015, stated that 70% of
housing providers reported overheating within their wider build stock. In their survey the
highest risk was identified in single-aspect-high-rise apartments (apartments that have three
closed sides) facing south, located in dense urban areas.

According to NZH, there are a number of factors causing overheating in buildings, and it often
arises when these factors and processes act together (see Figure 1-8).

EXTERMNAL INTERNAL
HEAT GAINS HEAT GAINS

LOCATIOM-RELATED
FACTORS

Figure 1-8 : Illustration of three main causes of overheating in buildings (Source: NZH)
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(Fosas et al. 2018) through building simulation studies showed that improving insulation does
not cause an increase in overheating risk, if the building is designed well with good solar
shading and ventilation, particularly during the night.

On the contrary, some studies such as by (Beizaee, Lomas, and Firth 2013; Kotol et al. 2014)
have suggested that overheating risk is amplified by an increase in insulation of envelope and
improvement of airtightness. They also stated that buildings constructed after 1990 performed
worse than those built before.

Examples of opposite conclusion also exists in the literature. (Salagnac 2007) has recommended
improving insulation to better prepare buildings for future heatwaves and reducing overheating
risk.

Studies that monitored indoor thermal condition in the house have shown that some houses
overheat with increased insulation but because the evidence points in both directions, it has
been difficult to establish a solid causality between overheating and envelope’s thermal
capacitance (R. Mitchell and Natarajan 2019). Factors causing overheating/discomfort in
buildings are further studied in chapter 4 of this manuscript, through case studies.

In addition to energy demand and thermal performance variations, some studies have suggested
that over temperature also impacts structural integrity of buildings. (Salagnac 2007) points out
to the clay soil subsidence and swelling triggered by dryness and rehydration of the
environment, which then affects the foundation of concerned buildings. The author states that
this phenomenon affects individual houses more than large multi-storey buildings that have
deep foundations. Author suggests preparation of Cadastral plans showing location of clay soil
areas as a preventative measure to reduce risks associated with this phenomenon.

1.1.4 Risk, vulnerability, hazard and exposure concepts

Before delving deeper onto the study of objective and methodology in the manuscript, it is
worthwhile distinguishing different terminologies frequently encountered in impact assessment
of climate change.

1.1.4.1 Risk

Risk is the possibility/potential for adverse consequences where something of value is
threatened and the occurrence and degree of outcome is not certain. Risk results from the
interaction of vulnerability, its exposure over time as well as to the hazard and likelihood of its
occurrence (IPCC 2018), illustrated in Figure 1-9.

Climate risk is the possibility of specific climate-related impacts (climate impacts) that can
affect assets, people, ecosystems, culture, etc. Examples of risks include risk of water scarcity
for smallholder farmers (water scarcity as a potential consequence of climate change), the risk
of food insecurity in the rural population; the risk of extinction of biodiversity species; risk of
damage to transport infrastructure because of erosion, landslides, etc. In short, risk is the
possibility of consequences in which the result is uncertain.
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Risk assessment can address this uncertainty in a variety of ways. In disaster risk assessment,
one of the approaches is probabilistic assessment, in which risk is presented as the likelihood
of occurrence of hazardous event multiplied by the impact of it.

In the context of climate change, this probabilistic approach is often not applicable because
most of the hazards and consequences associated with climate change, cannot be described as
standard events, which is one of the requirements of the probabilistic approach. In addition, the
consequences of climate change alone cannot be assessed using a probabilistic approach, as
future pathways of socio-economic development, levels of greenhouse gas emissions and
climate impacts remain uncertain. Instead of that, scenario approach is proposed by IPCC
(IPCC 2018). For example, different climatic consequences for different scenarios of
greenhouse gas emissions; different scenarios of vulnerability under different paths of socio-
economic development.
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Figure 1-9 : Contributing factors of risk (Adapted from IPCC 2014 report)
1.1.4.2 Danger “hazard”

The possible occurrence of a natural or human-induced physical phenomenon or trend or
physical impact that can cause death, injury and other health consequences, material and
property losses, as well as damage to infrastructure, livelihoods, supply systems services,
ecosystems and ecological resources (IPCC 2018). In this manuscript, we will use the term
“hazard” and “danger” interchangeably to refer to climate-related physical phenomena, trends
or their physical effects.

The hazard can be a phenomenon (for example, heavy rain), or direct physical impact (such as
a climate induced heatwave). It does not have to be extreme weather; slowly ongoing
phenomena can also be dangerous. It is also important to take into account the likelihood of a
particular hazard by setting thresholds to help determine the frequency of it (for instance,
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number of consecutive hours indoor temperature in a room is above 27 degrees). In here, 27 is
a threshold and number of consecutive hours is the frequency of that event (hazard) taking
place.

1.1.4.3 Exposure

Presence of people, livelihoods, species or ecosystems, ecological functions, services and
resources, infrastructures or economic, social and cultural assets in places and conditions that
could be adversely affected (IPCC 2018).

“Exposure” refers to the relevant elements of the socio-ecological system (e.g. people,
livelihoods, as well as species, ecosystems, etc.) that may be adversely affected by hazards.
Exposure can be expressed as absolute values, densities, percentages, etc. (e.g., population
density in an area affected by a heatwave; percentage of wetlands in an area affected by
pollution, etc.).

Changes in exposure over time (e.g., changes in the number of people living in drought prone
areas) can significantly increase or decrease the risk.

1.1.4.4 Vulnerability

It is referred to propensity or predisposition to adverse effects. The term vulnerability covers a
variety of concepts and elements, including sensitivity or susceptibility to harm and lack of
ability to cope and adapt (IPCC 2018).

Vulnerability refers to those characteristics of socio-ecological system’s elements that can
increase or decrease the potential impacts of a specific climatic hazard. It includes two relevant
concepts: sensitivity and adaptive capacity.

Sensitivity is determined by those factors that directly affect the consequences of the hazard.
Sensitivity can include the ecological or physical characteristics of the system (e.g. soil type in
agricultural fields, water retention capacity, building material for residential buildings), as well
as social, economic and cultural characteristics (e.g. age, income).

Adaptive capacity in the context of climate risk assessment refers to the ability of communities
to cope with current or future climate impacts. This does not mean the ability of ecosystems to
respond to impacts, but rather the ability of society to manage ecosystems. Adaptive capacity
has two key components: first, the ability to overcome problems (the ability of the population,
institutions, organizations and systems to deal with the problem of unfavourable conditions,
cope with them and overcome them in the short and medium term, using available professional
skills, material values, beliefs, resources and opportunities. For example, existing early warning
systems for a heatwave. Second, the ability of systems, institutions, people and other organisms
to adapt to the potential hazard, seize opportunities, or respond to consequences. For example,
the potential for introducing new agricultural practices in cities. Lack of this ability can
significantly increase the vulnerability of the system and by extension, risk.

1.1.4.5 Impacts (Consequences, Outcomes)

Effects on natural and anthropogenic systems. In this manuscript, the term “impact” is used
primarily to refer to the effects of extreme weather and climate events and climate change on
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natural and human systems. Impacts generally refer to effects that affect people's lives,
livelihoods and health, ecosystems, economy, society, culture, services and infrastructure due
to the interaction of climate change or climate hazards occurring over time and the vulnerability
of the affected society or system (IPCC 2018).

“Impact” is the general term for describing consequences, ranging from direct physical impacts
of a hazard to indirect consequences on society, also called social impacts. Impacts are the basic
building blocks of chains of causation.

1.1.4.6 Climate extreme (extreme weather event)

A value of a meteorological or climatic variable that is above (or below) a threshold value
towards the higher (or lower) ends of the variable's range of observed historical values.

1.1.4.7 Mitigation

Climate mitigation measures in general consist of a set of activities that are aimed to limit the
rate of greenhouse gas emissions into the atmosphere, by better controlling energy usage
(energy efficiency), by substituting fossil fuels with renewable energies and by storing carbon
(carbon capture). In other words, mitigation consists of putting in place sustainable
development programs. In urban context, mitigation means taking steps/actions to reduce air
pollution, and greenhouse gas emission rates from urban areas. Currently the most popular
mitigation strategies are focused on improvement of technologies, and switching fuels. (Oke et
al. 2017) argues that a more efficient urban form, transport and land-use mix also have a notable
potential to moderate city contributions.

1.1.4.8 Adaptation

Adaptation to global climate change and global warming is the adaptability of natural or
anthropogenic systems in response to real or expected climatic changes aimed at reducing
vulnerability or/and use of favourable conditions.

The word adaptation itself evokes an ability of a functioning society to adjust. Adaptation
strategies complement mitigation measures, which aim to emit less greenhouse gases and
restore or protect the carbon sink capacities of ecosystems. Even if all emissions of carbon cease
today, the climate inertia generated by heavy anthropogenic activities so far will continue to
cause climate’s disturbance in the future. This indicates that adaptation is an essential strategy
to reduce vulnerability and improve resilience.

Adaptation can be individual (changes in individual behaviour) and collective (changes in
communities, companies, governments, etc.).

It is important to emphasize that the more we manage to mitigate, the less we have to adapt and
vice versa.

In the context of this manuscript, adaption consists of making systems or territories less
vulnerable to climate change, through actions reducing the effective impacts of climate change,
or improving the response capacities of societies and the environment. For instance, installation
of a heatwave alarm system and diffusing information and guidelines to people on how to
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protect themselves during one. Other examples of adaption to higher temperature in the cities
are, installation of misting system or planting more trees in the city to reduce temperature.

Adaption must also be seen as permanent strategies and be implemented over a long period.

As the ecosystem degrades, it could exacerbate the possible social, economic or geopolitical
crises to a degree that sometimes becomes too costly to maintain the same level of services,
which will consequently increase vulnerability.

In general, adaptive capacity and vulnerability are inversely proportional, a low vulnerability
score implies a good adaptive capacity and vice versa. Therefore, as mentioned in section
1.1.4.4, vulnerability is both the result of exposure rate to natural hazard and its adaptive
capacity.

In France, The Economic Council for Sustainable Development report has defined adaptation
as “All the changes in organization, location and techniques that societies will have to make to
limit the negative impacts of climate change and maximize its beneficial effects (Hallegatte,
Lecocq, and de Perthuis 2010)."

An important part of adaption is the issue of anticipating the effects of climate change
(intensity/duration) on environment and by extension on the economy, society, health and life.
Because it is easier for communities to adapt to an anticipated change than to an unexpected
one.

1.1.5 Integrated solutions to urban climate

Increased population density and economic activities on cities over the last few decades,
combined with the challenges that global warming will undoubtedly bring, has prompted a
noticeable push by civil society and governments at different levels to develop activities,
innovative initiatives, and transformative actions to assist cities in dealing with the effects of
climate change. Most of these initiatives have proved insufficient so far, and there is a clear
need to assist decision-makers to think strategically on how to layer adaption interventions in
the cities in a way that could lead to better resilience for different potential future scenarios (Lin
et al. 2021).

Indeed, diverse adaptation (technological, nature-based, and societal) and mitigation (cool
roofs, building greenery, retro-reflective materials, urban green infrastructure) measures need
to be implemented to bring about the transformation required to build resilience to overheating
and its impacts in the cities (Costanzo, Evola, and Marletta 2021).

Naturally, the first step in implementation of adaptation or/and mitigation solutions is to identify
the most vulnerable points/regions to urban overheating to maximize the benefit on the city and
people living in the cities. The term “vulnerable” was used here, because the motivation is to
not only monitor and characterize exposure rate of urban environment but also to know when
and where it leads negative impact on human life.

Limiting the vulnerability of people to climate change, extreme weather events, and UHI
requires us to take collective actions at different scales to build resilience for multiple potential
future scenarios: global scale, urban scale, and building scale.
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It is encouraging to highlight that urban planning has the potential to play a vital role in the
development and implementation of collective actions in urban systems. Main advantages of
urban planning are the universality of the profession and the instruments available in it. Tools
such as plan-making, stakeholders involvement, design standards, and development
management are crucial to deliver urban adaptation/mitigation solutions at different scales
(Shalaby and Aboelnaga 2017). Furthermore, cities often have stronger management
mechanisms that allows all involved stakeholders to devise and apply policies and collective
actions more effectively than those at national or super-national scales.

1.1.6 Decision making in urban planning

Decision-making in general is a cognitive process where a practitioner/decision-maker selects
a type of action among different alternatives. This process is theoretically based on specific set
of criteria, and on analysis of options and data obtained from various sources.

In urban planning, local urban plans, which are drawn by local authorities based on their
expertise considering a wide range of criteria (social, economic, environmental), establish
guidelines for spatial and physical organization of municipality and overall vision on its
territory’s development. They contain recommendations and town planning policies adopted by
the city council/local authorities, which serve as guides in the decision-making process for the
present and future development choices.

In other words, local urban plans are the principle decision-support tools aiming to ensure
consistency between intervention choices in various sectoral issues (e.g. housing, commerce,
transport, environmental protection, recreation, public facilities, energy) considering
development potential and constraints of natural and build environment as well as expectations
and concerns of citizens.

This decision-making support tool is an important element for a better management of the
municipal territory. This is why we must ensure that the plan is focused on the implementation
of practical solutions that takes into account the financial reality, local management resources
and more importantly, in this period, potential climate variation scenarios.

In the French context, “Plan Local d’Urbanisme” (PLU) is the equivalent expression referring
to a set of various documents aimed at ensuring the proper urban development of cities. For
France, this document has replaced the old Land Use Plans (POS) and National Urban Planning
Regulations (RNU) documents.

PLUs normally contain the following documents (le Plan Local d’Urbanisme (P.L.U) 2020):

e An introductory report detailing choices made to moderate the use of space and
minimize urban sprawling based on a territorial diagnosis.
e A sustainable planning and development project (PADD) which sets out the urban
planning project and defines:
o General trends and orientations of urban planning policy, town planning,
landscape, protection of natural, agricultural and forest areas, and preservation
or restoration of ecological landscape;
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o General guidelines concerning housing, transport and travel, energy networks,
development of digital communications, commercial equipment, economic
development, and leisure activities.

e Orientations for planning and programming (OAP) guidelines, which, in compliance
with the PADD, include recommendations relating to urban development, housing,
transport, and changes of areas that are to be urbanized.

e Urban regulations (graphical and written) which, in compliance with PADD and OAP,
delimits agricultural areas, natural and forest areas, urban areas, areas to be urbanized,
and sets general rules of urbanization.

e Various annexes (accessibility to public utilities, list of subdivisions, water and

sanitation networks, noise exposure plans for airports, protected areas, concrete covered
zones, etc.).
Annexes also include risk prevention plans of municipalities. These plans regulate the
land use in a municipality stipulating the risk it may be subject to, such as risks
associated with flooding, landslides, wildfires, avalanches, storms, marine submersions,
earthquakes, volcanic eruptions, risks of ground collapse due to underground structures
(catacombs, underground quarries), etc.

e Complementary related studies.

The consideration of climate and energy issues is integrated into the OAP part of PLUs, which
mostly give recommendations. However, the impact of these recommendations is not assessed,
either because of the absence of a standard workflow to do it or because of large scales that
imply a huge work to check each application. Assessing the impact of these recommendations
would require the implementation of a rapid assessment tool that would help decision makers
to take into account climate change and energy issues at city scale efficiently.

In addition, vulnerability of urban dwellers to heatwaves and urban heat island effect
considering future climate change scenarios are not given adequate attention in the risk
prevention plans section of PLUs. Consideration of these phenomena warrants the need for
creation/addition of vulnerability maps to extreme temperature under current and future climate
scenarios.

Another similar instrument frequently used in urban planning is cadastral maps. An equivalent
term also used interchangeably with cadastral maps is land registry. In France, the term
“cadaster” is seen more in the literature and it referred to a plan covering entire French territory,
delimiting the geographical limits of land holdings in the form of plots (parcels).

Cadastral maps are mostly managed and administered by the state (ministry of finance and
public accounts) and are used as a base for determining certain taxes, particularly property
taxes.

Cadastral maps have not been used extensively in urban climate engineering so far for two main
reasons: inaccessibility of cadastral maps to public, and unavailability of urban climate data
(land coverage details) at cadastral scale.

38



Chapter 1 :Introduction, context, key concepts, and methodology

In this manuscript, an alternative approach is proposed that allows practitioners in urban climate
engineering perform urban climate analysis to create heat exposure/vulnerability maps at
cadastral scale relying only on publicly available (open source) data, thereby reducing the
probability of exposing private and confidential data.

1.1.7 Vulnerability and Exposure Maps

Publicly accounting of climate hazard losses and understanding their economic, social, and
environmental implications requires practitioners to systematically evaluate, record, and share,
as appropriate, exposure and vulnerability information.

Distribution and dispersion of exposure and vulnerability information in the form of
vulnerability and risk maps, freely available and accessible, are considered one of the best
approaches that could lead to the reduction in climate and weather-related hazard losses.

Climate hazard on maps could be represented by past, present and future climate variabilities,
extremes, and in some cases the hazard could also be a function of climate extremes in
combination with other factors such as urban heat island that increases the intensity of
heatwaves or land use change that raises the susceptibility to, landslides, flooding, crop failures
and draught.

Today, maps that show synthetized climate data have become part of a standard package of
tools to communicate climate-related risks and hazards. Vulnerability maps are frequently
utilized to direct the attention of users to the geographic locations where impacts on
communities are expected to be the highest and therefore an adaptive intervention is required
(de Sherbinin et al. 2019).

Vulnerability maps could be used by practitioners for planning (prioritization and targeting) of
adaptation interventions, in understanding underlying factors of vulnerability, in planning of
emergency response actions, and in communication of risks. These maps are made across a
range of scales, territories, climate hazards, and for various thematic focus.

(de Sherbinin et al. 2019) in an interdisciplinary research project, performed a comprehensive
review on mapping strategies of social vulnerabilities due to climate change. Their main finding
in the review was that most maps in this context are academic in nature, and therefore not geared
toward decision/policy makers. They also state that some maps that claim relevance to the
policies also frequently fall short of best practice. They argue that vaguely defined maps (lack
specificity on the target attribute or climate hazard focus) showing “vulnerable population” are
unlikely to lead to any changes in policies or implementation responses.

They suggest vulnerability maps should not be an end goal but rather an entry point for
discussions by policy makers. To ensure maps meet such criteria, they suggest mappers to
consider a number of issues. These include, increasing end-user collaboration (taking into
account the opinion of decision/policy makers and other stakeholders before building a map);
pay greater attention to map communication beyond mapping as a final product; validate the
data in the map if possible; and evaluate the value of information presented in the map.
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As discussed earlier, social vulnerability to climate change is a function of (1) exposure rate to
temperature, precipitation changes, and increase in the intensity and frequency of extreme
weather events; and (2) sensitivity and adaptive capacity of population to these changes.

All factors influencing vulnerability, e.g. exposure rate to extreme weather events, land cover
and usage, population density, socio-economic status of people, and effectiveness of
public/private institutions in charge, are dynamic and can vary spatially and temporally. This
means that the relative contribution of each factor to vulnerability is different from one place
to another and from one time to another.

In this manuscript where the focus is on vulnerability of people to over-temperature, we refer
to “vulnerability map” when both the exposure rate and all factors influencing adaptive
capacity/sensitivity of target social group to overheating is taken into consideration. If factors
affecting adaptive capacity/sensitivity of population are assumed static or absent from the map
then we refer to it as an “over-temperature exposure map”.

1.2 Problem Statements

The following statements summarize the problems and issues discussed in previous sections
and will be dealt in the subsequent chapters to various extents:

(1) Proven global climate change, urban heat island, urban microclimate and heatwaves
have already brought significant shifts in the pattern of human activity and will continue
doing so in the future. Movement of climate zones is one of the impacts of these
variations. Some regions may gain from these shifts and some may lose. However, one
thing is clear; we all have to adapt to these inevitable changes. This means there is a
need to map out indoor vulnerable regions in PLUs and layer adaptive and mitigation
interventions accordingly.

(2) Typical weather data used by practitioners in thermal evaluation of buildings that are
generated from historical records collected from rural weather stations do not contain
future climate change scenarios and UHI effect for urban areas, while they are critical
for better description of vulnerability to both indoor and outdoor over-temperature.

(3) There is a lack of standard definition for overheating vulnerability in indoor
environment of buildings. Indoor overheating and thermal comfort are spatially and
temporally variable. This requires practitioners/researcher to use multiple indices and
dimensions of study to address relevant questions.

(4) There is a lack of knowledge on buildings sensitivity to over-temperature due global
warming or heatwaves.

(5) No process is available for the integration of climate change data, and UHI effect in
thermal simulation of buildings at city scale.
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1.3 Objective

For business, industry, legislative and government agencies, regardless of the sphere of their
activities, it is the same problem: the need to take into account climate change in current and
future decisions. Some sectors are expecting to benefit from climate change, but many will have
to deal with increased vulnerability induced by it.

Building sector, in particular is going to be significantly affected by these variations, because
they are where majority of people spend most of their time. This gives buildings and their
surrounding the potential to put occupants in danger or protect them during a major external
climate event, depending on how they are built and operated.

Reducing vulnerability and adaptation to future changes require an understanding of the level,
timing and potential impact of climatic risks. In the last decade, access to reliable climatic data
and forecasts has noticeably expanded. Thanks to this and efforts made by scientists across the
world to adapt information to the needs of various sectors, it is now possible to make more
efficient climate data-informed decisions at various spatial and temporal scales.

Considering the stated challenges and opportunities, this thesis positions itself, within a broader
context, to develop a methodology for integration of climate change and UHI data into decision
support tools in urban planning to evaluate indoor overheating risk in residential buildings at
city scale.

In other words, the objective of this thesis is to pave the way for the development of a
comprehensive methodology for practitioners and policy makers in Urban Planning to take into
account climate change scenarios, urban climate, energy transition and health in urban
development policies.

For policy makers this methodology will be used in assessment of local urban plans (PLUs) and
climate change in terms of UHI and vulnerability of population to heatwaves. This objective
could be achieved with creation of indoor heat exposure vulnerability maps that could be used
as an input for local adaptation solutions such as reintegration of nature to the city, installation
of misting systems or for mitigation measures such as buildings’ refurbishment programs.

This means the output of this thesis will be in the form of an indoor overheating vulnerability
map or/and in the form a rapid assessment tool (web-based application running on an API
generated using this methodology). In case the data on adaptive capacity and sensitivity of
occupants to overheating are not available, then the map would be called an indoor overheating
exposure map (Figure 1-10).
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1.4 General Methodology

Creation of indoor overheating exposure map of buildings at city scale, in the context of climate
change heatwaves, and UHI requires consideration of at least the following crucial aspects:

- Appropriate method to select reference buildings and perform energy and thermal comfort
assessment simulations on the reference buildings.

- Good quality data that represent climate change scenarios, heatwaves and urban heat
island.

- Development of an approach to extend the application of given climate scenarios on
reference buildings to the rest of buildings stock in the city.

Having the given aspects in mind, we have organized the thesis work steps as well as individual
sections of this manuscript. An outline of the general workflow in generation of
vulnerability/exposure map of indoor thermal conditions in residential buildings is presented in
Figure 1-10.

The methodology here was derived to enable decision-makers rapidly assess indoor thermal
conditions of different neighbourhoods in the city. The complexity of questions tackled in this
research project required involvement and interaction of many disciplines: meteorology,
building thermal and energy studies, urban planning, statistics, data science, geography,
geospatial mapping/modelling. For this reason, at the start of this thesis it was decided to carry
out this research on a process approach. In this approach the main objective is at the centre and
it is leading for all decisions in the research (Tobi and Kampen 2018).

Success of this approach relies on strict follow up of an agenda/a conceptual framework
throughout the research period. In this research project, every step of the way first the “why”
and “what” of the step are answered and then the “how” of the research work. That is why, data
collection, analysis and presentation may considerably be different in each chapter of this
manuscript.

Nevertheless, to maintain the consistency, similar to overall process approach, we built a data
analysis plan before starting to achieve certain tasks. That way, we knew that the output of data
analysis files are exactly the kind of data that can be used in other steps.

Following up this approach allowed us to build and formalize the different sections of this
research work in the integration stage.
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The diagram of Figure 1-10 demonstrates the simulation-based workflow in this thesis that
attempts to address all three crucial aspects mentioned in the first paragraph of general
methodology.

The four boxes of the workflow demonstrate the main four chapters of this manuscript each
describing a major step in preparation of indoor over-heating map of residential buildings.

A major challenge in indoor overheating assessment at city scale is the efficient representation
of urban build stock in such a way that takes into consideration UHI effect as well as the
buildings’ characteristics relevant to the problem. Chapter 2 of this manuscript is dedicated to
dealing with this challenge using the existing literature and modern data-driven tools. It starts
with a critical literature review on buildings typology construction methods, it then choses
cluster analysis machine learning technique to aggregate residential buildings into clusters of
buildings with similar characteristics, and then identifies one representative building from each
cluster, which further undergoes a characterization step.

Chapter 3 of the manuscript is devoted to the description of a workflow that could be used by
building practitioners and researcher to access and use data from multiple climate models for
building performance evaluation studies taking into consideration UHI effect.

Another challenge in the preparation of indoor overheating map pertains to measurement
indices and identification of key building parameters influencing thermal comfort and indoor
overheating in summer. Chapter 4 of the manuscript attempts to deal with this challenge by a
review of literature on sensitivity analysis studies of buildings’ thermal performances, and
through a detailed comparative analysis of indoor overheating measurement indices.

The third major aspect of this research is the application of simulation results on identified
representative buildings to the rest of buildings through an extrapolative process. As the
objective of this research is to demonstrate the methodology that could be used as support in
the strategic decision for climate change policy intervention, it is necessary to make sure it is
efficient and can rapidly provide an initial approximation of building performance or buildings’
performances, it was decided to use surrogate modelling as a way to extend the application of
reference buildings to the rest of buildings. Chapter 5 of this manuscript is devoted to the
description of input data, methods and techniques for surrogate model development.

In summary, the manuscript systematically illustrates the following issues:

1- It discusses why and how to identify reference buildings?

2- It describes why and how to access and use open source future and historical weather
data for building performance simulations (BPS)?

3- It also presents which building parameters influence indoor thermal comfort and which
indices could be used to describe summer performance of residential buildings in
temperate climate regions.

4- And the last chapter demonstrates how meta-models can be used to extend the outputs
of reference building models to the rest of build stock
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1.5 Summary

The objective of this research is more than just to provide a scientific response in a specific
discipline but the transversal study of a methodology allowing various issues to integrate and
pave the way for creation of something that would eventually be used to help policymaking and
lead to subsequent implementation response. Having this in mind, the organization of first and
subsequent chapters follows a process approach. In the first chapter, it starts with an
introduction to the main triggers that influence overheating in buildings, and then it proceeds
to the explanation of various terminologies frequently encountered in impact assessment.

Following are the summary of key messages presented in this chapter I:

Average global temperature was 1.2 ° C higher than the pre-industrial (1850-1900) level
in 2020, and this global increase is accompanied by extreme events that further put
pressure on urban infrastructure and ecosystem.

The global warming may enhance the negative impacts of UHI effect, but it does not
systematically affect its magnitude, because UHI is the difference between rural and
urban temperatures and the net global temperature increase influences rural and urban
areas of different places differently. Regardless of whether global warming affects UHI
effect’s magnitude or not; there is still a need for local adaptation and mitigation
strategies to offset the impacts of over-temperature in populated areas.

Limiting the vulnerability of people to climate change, extreme weather events, and
UHI requires us to take collective actions at different scales to build resilience for
multiple potential future scenarios: global scale, urban scale, and building scale.

Urban planning, thanks to the instruments available, has the potential to play an
important role in implementation of collective actions aimed at reducing the impact of
over-temperature.

Reducing vulnerability to overheating requires an understanding of the level, timing and
potential effects of climate risks. Over the last decade, access to reliable climatic data
has notably expanded. Thanks to this and efforts made by scientists across the world to
adapt information to the needs of various sectors, it is now possible to make more
efficient climate data-informed decisions at various spatial and temporal scales.
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Chapter 2 :Building typologies

Chapter 2 :Building typologies
2.1 Background/literature review

An accurate analysis of building stock during extreme weather events requires simulation and
analysis of large number of buildings taking into account geometrical attributes, thermo-
physical properties and occupants’ behaviour. However, in practice, simulations, analyses and
calculations of large number of buildings at each individual building is not possible due to large
volume of input data for each building, and time limitations (Ali et al,2019.).

A viable solution in such case is to develop a set of archetypal building types that could
represent most of the building stock and perform necessary scenario analysis or simulations on
them.

To this end, many researchers and authors have proposed methodologies for aggregation of
building stock into types, categories, clusters, and archetypes based on multiple criteria for
various objectives. For instance, assessing the impact of various potential retrofit interventions
in building sector (Jorgji et al. 2019), urban energy simulation (Cerezo et al.,2018), predicting
building energy consumption for heating and cooling demand (Korolija et al. 2013). As a result,
the literature sources that explore building stock types vary by a wide range of methods and
techniques.

The terms, build stock archetypes, types, samples, prototypes, reference buildings, exemplary
buildings etc. are used interchangeably in the literature referring to a category or sample of
buildings representing the larger built stock. This process itself called typification of building
stock and/or aggregation of build stock to reference buildings.

In this text, build stock aggregation means reducing the number of buildings to be modelled by
representing buildings with just one building model. This could mean the build stock is entirely
represented with one single building or by a set of buildings each representing a category.

According to Tabula definition, the term “building typology” is referred to a systematic
description of the criteria for the definition of typical buildings (archetypes) as well as to a set
of exemplary buildings representing the building types (Tabula team, 2012).

To cover most of the build stock aggregation methods, this work focused on both conventional
classification methods and data-mining approaches in building stock classification. Build stock
aggregation methods rely on different levels of input information granularity, various
calculation techniques, scale of building stock, and application objective of archetype.

Development of building stock typology relies on input data on the bases of which to categorize
and model each group of reference buildings. The level of detail of the available information
can vary significantly, resulting in the selection of different aggregation techniques. Each
technique has its own strengths, weaknesses, capacity, and scope of application.

Depending on the chosen aggregation technique, input attributes necessary to develop building
stock typology in relation to energy consumption and thermal comfort can include: general
information and boundary conditions of building (year of construction, climate zone, density of
urban area, etc.), urban morphology (detached, continues, high rise, etc.), engineering systems
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(HVAC, heating system’s efficiency, etc.), occupancy type (residential, educational, etc.),
thermo-physical as well as other properties of envelope and systems (U values of walls, roof,
openings, infiltration rate, etc.), building geometry (form, compactness, height, window wall
ratio (WWR), orientation, number of levels, etc.), operational parameters (temperature set-
point, frequency of use of appliances, etc.), and meteorological data (temperature, humidity,
etc.). (Ali et al. 2019; Cerezo et al. 2017; Coma et al. 2019; Dascalaki et al. 2011; Davila,
Reinhart, and Bemis n.d.; Famuyibo, Duffy, and Strachan 2012; Ghiassi and Mahdavi 2017
Guillaumet et al. n.d.; Hamdy et al. 2017b; Heine Kristensen 2018; Hidalgo et al. 2019; Korolija
et al. 2013; Mata, Sasic Kalagasidis, and Johnsson 2014; Monteiro et al. 2015; Pasichnyi,
Wallin, and Kordas 2019; Schoetter et al. 2019; Stewart and Oke 2012b; TABULA Project
Team 2012; Tornay et al. 2017),

Depending on objective and availability of information, the granularity level of input data can
vary substantially as well. For instance, residential buildings in Tabula classification are
subdivided into four groups of single-family house, terraced houses, multiple family houses,
and apartment houses (TABULA Project Team 2012). Hamdy and al, 2017 have gone further
by dividing apartment houses into six flat typologies in relation to their location in the building
(corner/middle and ground/middle/top floor)(Hamdy et al. 2017b).

The available data about building stock also varies from country to country. For instance,
Geographic Information System (GIS) data are not publicly available in many countries
including China (X. Li et al. 2018). Sometimes regions within a country can also have
significant variance in data availability on build stock specifications. E.g., there are more data
available about lle-de-France as compared to other regions in France (Tornay et al. 2017).
(Ghiassi and Mahdavi 2017) used official and crowd-sourced GIS database, statistical
information and building performance standard data of Vienna city to develop the build stock
archetypes. GIS has also been used by many other authors as a platform to collect and organize
urban-scale building information as well as a tool to visualize and process the main data (Ali et
al., 2019; Davila et al.; Ghiassi and Mahdavi, 2017; Osterbring et al., 2016; Sokol et al., 2017)

Data from building energy performance certification (EPC) has also been used by authors as an
input for classification of buildings into archetypes (Ali et al. 2019; Famuyibo, Duffy, and
Strachan 2012) or for characterization of archetypes after the segmentation (Sokol, Cerezo
Davila, and Reinhart 2017; Tornay et al. 2017).

At European scale, (Coma et al. 2019) have performed a comprehensive study about European
projects concerning the residential building stock characterization information; namely,
projects within the Intelligent Energy Europe Program (IEE) (TABULA, EPISCOPE), the new
EU building stock Observatory, and Project Policies to Enforce the Transition to Nearly ZERO
Energy Buildings in the EU (ENTRANZE)(Coma et al. 2019).

In the United states, (Moura, Smith, and Belzer 2015) have developed a long-term residential
floor space time-series spanning 120 years from 1891 to 2010. The authors have collected data
from the U.S. census Bureau, U.S. Department of Housing and Urban Development, and
National Survey data (Moura, Smith, and Belzer 2015). In official report from U.S. Department
of Energy (DOE) on Commercial Reference Building Models of the National stock, the data
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from Commercial Buildings Energy Consumption Survey (CBECS) was used to develop 16
building types in 16 locations across U.S.(Deru et al. 2011).

In French territory, the French Geographical Institute ‘Institut national de l'information
géographique et forestiere’ (IGN) has compiled a 3D shapefile dataset (the IGN-BDTOPO)
containing information about the footprint, use, height, and date of construction of buildings in
Francel. CSTB (Le Centre Scientifique et Technique du Batiment), and its partners have
initialized a first version of the BDTOPO as part of the GO-RENOVE project. The services of
the GO-RENOVE project are the first operational applications of the IGN-BDTOPO, on the
theme of the renovation of the existing housing stock. French Institute on Economics and
Statistics “Institut national de la statistique et des études économiques” (INSEE)? has gathered
construction information of buildings and year of construction. Bonhomme and Tornay, 2017,
have enriched the building stock database information by adding the most prevailing
construction material for their reference buildings as a function of location in France (Tornay
et al. 2017).

2.1.1 Building stock typologies generation techniques

Building stock aggregation methods can be broadly categorized into deterministic and data-
mining/data-driven approaches (Guillaumet et al., 2018). The terminology is with reference to
the role of automatic classifiers and a priori assumptions. In a deterministic approach, buildings
are classified according to the existing bibliography and expert opinions. The aim of this
approach is usually to develop easily interpretable results with limited available information
about the entire building stock.

Data-mining approaches on the other hand are strongly dependent on the data availability and
development of information technology that improved the possibilities for information
gathering, management and documentation. Such a classification is therefore greatly based on
computer programming. Grouping of methods for the development of building stock typologies
are shown in Figure 2-1 and are discussed in details in the following sub-headings.

build stock aggregation methods

Data-mining /Data-driven Deterministic
Predictive Fixed matrix
. Data-tree
Descriptive structure

Figure 2-1 : Methods of build stock typology development

L http://professionnels.ign.fr/bdtopotttab-1
2 https://www.insee.fr/en/accueil
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2.1.1.1 Deterministic approaches

In mathematics and computer sciences, deterministic is referred to a system in which no
randomness is involved. This segmentation in this approach is highly based on a priori
assumptions. In the context of build stock typology, we use it to address a classification
approach in which the modeler decides the segmentation criteria primarily relying on their
experience, expertise, literature, or for a specific objective. Literature review showed that most
observed variables/segmentation criteria in deterministic approach are construction year,
building use and in the case of residential buildings single or multiple family houses.

Typological studies that employ the same approach for categorization may use various physical
or other predetermined characteristics to categorize the buildings. In general, deterministic
build stock aggregation technique involves three steps:

- Classification or segmentation based on initial predetermined characteristics.
- Parametrization or characterization of the archetypes with supplementary details.
- Simulation or modelling of each archetype (Monteiro et al. 2017)

The greatest strength of deterministic approach is that additional input variable-sets can be
added to the classification without compromising the typification process. For example, if
residential single-family buildings are classified by date of construction into seven archetypes
another archetype could be added to the list without any necessity to change the previous
archetypes. Another strength is that the archetypes developed in this approach are easily
interpretable, although this quality is not exclusive to this approach.

Lack of explicitly stated arguments, or reasons in support of the initial segmentation attributes
of building stock classification aimed to model indoor thermal comfort or energy consumption
also known as predetermined characteristics is a major limitation of this approach. For instance,
categorizing building stock by year of construction even though many of them have been
retrofitted over the years. Uncertainties associated with underlying aggregation assumptions
about buildings can substantially increase the risks of miscalculation or error in the model. For
instance, assuming that all buildings built before 1973 oil shock have lower energy performance
without considering other energy related attributes, for instance, thermo-physical properties of
materials used in construction or renovations performed on the buildings over the years.

Another downside of this approach is that as the number of segmentation criteria increases, the
resulting archetype groups become smaller and numerous. Two types of deterministic
techniques are seen more frequently in the literature: fixed matrix and data-tree format.

2.1.1.1.1 Fixed matrix

In this research effort, fixed matrix is referred to a firm arrangement of building types (real or
virtual) in rows and columns in a grid or table. National building typology (TABULA)
elaborated in the framework of Intelligent Energy Europe (IEE) program is a clear example of
this approach in which the columns represent different sizes of residential buildings and rows
different construction periods. This building typology represents building types with real
exemplary buildings (Cerezo et al. 2017; Monteiro et al. 2017). TABULA building type matrix
has led to numerous other European research projects and studies. An example is the
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comparative study conducted by (Loga, Stein, and Diefenbach 2016) of 20 European countries
residential building stocks. TABULA has also been used as a base for various energy efficiency
and refurbishment assessment studies over the years (Ballarini et al. 2017; Coma et al. 2019;
Dascalaki et al. 2011; Droutsa et al. 2014; Kragh and Wittchen 2014; Loga, Stein, and
Diefenbach 2016; TABULA Project Team 2012). The number of archetypes in this approach
equals to the product of rows and columns of the matrix.

Another example of this classification method is Local Climate Zones (LCZ). Objective of LCZ
although is drastically different from Tabula. In Tabula, the focus is on building itself, but in
LCZ the main objective of classification is to categorize urban areas based on their
microclimatic characteristics.

(Oke et al. 2017) has used LCZ to categorize urban landscape types. LCZ is based on the
assumption that, four urban climate controls (fabric, land-cover, structure, and metabolism)
cluster together in the cities. For instance, core city center parts of urban areas are mostly
covered with tall buildings or paved with high-density impervious materials that are often dry
and have a high heat storage capacity. There is also a higher concentration of human activity
that generate heat, possibly moisture, and air pollutants from air conditioners and vehicles. In
the other end of spectrum are low-density houses with relatively light construction, surrounded
by a greater percentage of vegetation, open space, and perhaps with less emission of heat,
moisture and pollutants. Based on this idea, the author argues that different urban climatic
variations can be linked to different urban landscape types. Thus, there is a spatial correlation
between urban fabric, land-cover, structure, and urban metabolism (Oke et al. 2017).

This idea underlies the notion of LCZ. Application of LCZ on a real case is challenging though.
Because the lines/thresholds that separates one type of LCZ from another are not distinct in the
cities. Modeler are obliged to assign each cluster/neighborhood to a specific LCZ category
based on their a priori understanding of locality. At small scale, it is feasible to assign a LCZ
to a locality. However, manually assigning each neighborhood to a specific LCZ at the scale of
a city or multiple cities can be tedious and time consuming as shown by (Leconte 2014) for
Nancy.

2.1.1.1.2 Data-tree structure

In data-tree structure, the number of attributes (columns) varies unlike fixed matrix. The main
segmentation criteria can further undergo division depending on variability of the parameter
e.g. representativeness.
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Archetype
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Building stock _—
Subgroup ]—[ Archetype l
Subgroup _—

Archetype
Subgroup _————

Archetype
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Figure 2-2 : Data-tree structure

For instance, residential buildings are divided into multifamily and single family houses. Multi-
family houses represent a large portion of houses and can further be divided into houses with
flat and slopped roofs (Monteiro et al. 2015). The number of leaves of the tree shape structure
in this approach equals to the number of resultant archetypes.

A major shortcoming of deterministic approach is that the classification can be performed
only on a limited number of attributes. For example, buildings in TABULA are grouped based
on two attributes: type of dwelling and year of construction. Practitioners may find it difficult
to build a classification table if/when they are asked to group buildings based on multiple
attributes. For instance, 10 attributes. Data-driven solution on the other hand can easily handle
high-dimensional data and identify homogenous groups of objects in a large dataset that
contains thousands of points and have multiple attributes.

2.1.1.2 Data-mining/data-driven approaches

Data mining is an essential part of a larger framework called knowledge discovery database
(KDD) but some authors do not make a distinction between data mining and KDD. In brief,
data mining is the process of search and extraction for potentially valuable information also
referred as knowledge in large databases (Bhojani 2016).

(Ghuman 2014) has divided the KDD process into seven steps:

- Data cleaning: resolving inconsistencies such as noisy data, missing values, and detecting
outliers.

- Data integration: multiple data sources are combined into a common source.

- Data selection: determination of relevant data from raw dataset using engineering or
statistical feature extraction methods. Engineering techniques employ expert knowledge to
distinguish relevant features whereas statistical methods make use of data-mining or
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statistical techniques such as Analysis of Variance (ANOVA), Chi-squared, or coefficient
of correlation statistical technique.

- Data transformation: transforming nominal or categorical data to numeric data,
standardizing data by converting all the values between 0 and 1 or between -1 and 1,
reducing dimensions (attributes) using Principal Component Analysis (PCA) or Singular
Value Decomposition (SVD).

- Data mining: application of techniques to extract patterns.

- Pattern evaluation: identifying pattern representing the target knowledge

- Knowledge representation: visual representation of the knowledge. (Ghuman 2014)

(Ali et al. 2019) used the term data pre-processing steps referring to the first four steps of KDD.
Based on the literature review on building stock typology, data-mining techniques for this
purpose could be divided into predictive and descriptive sub-groups (Gera and Goel 2015).

The main distinction between the two methods is based on their application; the first method
aims to say something about the future results with the help of past and the second method
determines what happened in the past by analyzing stored data.

It is important to note that the techniques presented here do not represent all existing data
mining techniques, tools, and algorithms that are also widely used in other fields of science.

2.1.1.2.1 Predictive algorithms in data mining for building stock typology

Predictive techniques are also known as classification/ regression techniques as well. In
classification, each element in the database is assigned to a class according to its similarities
(Rokach and Maimon 2015).

— Instance based (e.g. KNN, CBR)

— Bayesian Networks (e.g. Naive Bayes)

—  Artificial Neural network (e.g. perception)

— Machine Learning
| Kemel-based (6.9, SVM) | prom————

— Decision tree (e.g. random forest)

Predictive (Classification /Regression)
algorithm categories

Figure 2-3 : Predictive techniques
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Predictive algorithm categories are similar to supervised machine learning techniques in which
there is a provision of labelled data. This means the training data you feed to the algorithm
contains the desired solution. A typical task of this learning technique is classification. For
building stock classification, practitioners need to label a significant number of buildings and
train the model on those labeled buildings. After, that algorithm should be able to associate new
entries to each class based on similarities that it identified from training data in each class.

Another task of this learning technique is prediction, which is also called regression, where the
algorithm predicts a numeric value; such is price of house, energy consumption, etc. using the
data model it generated/learned from previous observations.

As mentioned, application of predictive machine learning in buildings stock classification
requires a significant number of labelled data. Manually labeling buildings based on their
energy performance and/or thermal comfort performance is, first, tedious and time consuming,
and second, prone to human error and biases.

An alternative way is to use unsupervised machine learning that has been extensively used in
various fields of studies, including medical sciences and market research, for identification of
homogenous objects in data sets. Their potential on building stock classification, however, has
not been explored sufficiently.

2.1.1.2.2 Descriptive algorithms in data mining for building stock typology.

Descriptive algorithms in general recap and transform the data into presentable information for
reporting and extracting meaning (Agyapong, Hayfron-Acquah, and Michael 2016). Sub-
categories of descriptive techniques are presented in Figure 2-4.

Summarization algorithms are not always listed under machine-learning learning algorithms.
However, they are an important part of descriptive statistics. They are grouped into univariate
and multivariate analysis. Univariate analysis is considered to be simplest form of analysis and
its dataset contains one variable. Univariate does not deal with causes, relationships, etc. its
major objective is to describe the variable in a simpler format e.g. find the mean, mode, or
standard deviation.

Multivariate analysis, on the other hand involves more than one variable. It can contain
dependent or/and independent variables in a dataset. It also means that these variables could be
analyzed simultaneously or separately. Multivariate analysis is mostly used for the following
objectives: (1) data reduction (structural simplification); (2) grouping; (3) dependence
evaluation; (4) prediction of one or two variables observing the changes in other variables; (5)
statistical hypothesis testing.

Second category of descriptive algorithms is anomaly detection. This category is considered a
step in data mining, and its objective is to find points that deviate from normal behavior of
observations.

The third category of descriptive techniques, which is the focus of this study, is cluster analysis.

55



Chapter 2 :Building typologies

Dimensionality reduction (e.g.
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K-means)
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Single-linkage) : Not machine Learning
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| | Density-based (e.g.
DBSCAN)

Distance based (e.g. LOF)

Anomaly _Graphical and statistical (e.g.
detection exponential smoothing)

Model-based (e.g. MMP)

Figure 2-4 : Descriptive algorithm categories

The objective of cluster analysis is usually to group a set of objects in such a way that the objects
in the cluster are more similar to each other than to objects in other clusters. We, henceforth,
use the term clustering when we talk about cluster analysis.

In contrast to predictive learning techniques, for clustering which is also referred to as
unsupervised machine learning, there is no need for provision of labelled data. For instance, a
building practitioner wants to split a dataset of buildings into multiple homogenous groups of
buildings. At no point the practitioner needs to tell the algorithm which cluster or class does
this specific building belong. Clustering algorithm associates it automatically.

The buildings in our case study city (Nantes) are not labeled; therefore, our best option with
data-driven method is to use Unsupervised Machine Learning (clustering) to group buildings
into homogenous clusters.

The final goal is to select one representative building from each cluster as a reference (typical)
building of that specific cluster.

In the data and method section, the creation of input database, preparation of input data,
performance assessment indicators, clustering techniques, and extraction of reference building
for a case study are described with more details.
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2.2 Data and Methods
2.2.1 Input data for clustering

In line with the overall objective of this thesis that focuses on integration of urban heat island
effect, climate change and heat waves in indoor thermal comfort and energy consumption
assessment of buildings at city scale, the input attributes for clustering were selected.

In machine learning, attribute is referred to the data type, (e.g., building year of construction),
while a feature can have several meaning, depending on the context, but here we use it when
we talk about the value of attribute (e.g., building year of construction = “1964”).

Numerous parameters are seen/used in scientific papers that explain urban climate and heat
island effect. Parameters that were selected as attribute for clustering here, meet at least one,
two, three, four, or all of the five following criteria:

(1) They have potential effects on urban heat island.

(2) They are the elements that have the potential to indicate the exposure rate of indoor
thermal conditions to outdoor climate variables, such as exposure to solar radiation and
temperature.

(3) They are relatively easy to calculate.
(4) They are controlled by design of local urban plans.
(5) The input information for calculations can be accessed from open source data.

Raw data used in this study to build attributes for clustering were accessed from the following
openly available data sources:

BDTOPO: BDTOPO is a 2D and 3D vector spatial database containing description of
landscape elements including but not limited to building footprint, building height, building
year of construction, vegetation coverage, water coverage ratio, presence of trees, transportation
routes, and etcetera throughout France.

Following parameters were extracted for the whole city: building footprint area, building height,
vegetation coverage (NDVI), and water surface coverage.

Land data of CEREMA (données foncier): year of construction of building parcels
(buildings).

MAPUCE project: reference spatial unit (RSU) boundary lines. RSU lines divide buildings
into blocks/neighborhoods.

RSU lines were computed in the context of MAPUCE project for all French urban territories.
Computation of these lines are based on dual of Delaunay triangulation. Characteristics of
Voronoi tessellation are used to calculate new blocks/neighborhoods. Separation lines
correspond to the medial axis of negative areas of cadastral parcels (Bocher et al. 2018). Each
block/neighborhood is called a RSU, as shown in Figure 2-5.
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[ Building footprint from BDTOPO 4 ; / A o 7%
[ RSU boundary lines . S d i )

Figure 2-5 : Reference spatial unit (RSU) boundary lines for case study city

Data from year of construction and other building parameters from BDTOPO were joined into
one data frame by spatially superimposing one vector map over another.

Superimposing RSU lines and BDTOPO map, also allowed us to calculate building footprint
ratio, vegetation and water coverage percentage inside each RSU.

The following parameters that affect variations in urban microclimate and indoor thermal
conditions were added or synthetically calculated:

- Building height: the z-value in BDTOPO database

- Building volume: it was calculated using BDTOPO data by multiplying the area of polygon
to height of the polygon.

- Free vertical area ratio to total vertical area of building: we used python’s GeoPandas
package to calculate the length of shared wall between two adjacent buildings and multiply
it by the height of shortest building. Since a building can have more than one joint neighbor,
we first identified what are the joint neighbors of each polygon, then length of shared wall
between each joint neighbor and target building were calculated and multiplied by the
height of shortest polygon. At the end, all shared areas were summed and added as an
attribute to a database. Shared area of building was then divided to total vertical area of
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building giving us the ratio of vertical area ratio to total vertical area of building. (Appendix
2-1).
- Building net compacity;
g i+, — Free vertical area
Building Net compacity = /(Building Volume)?/3

- Building year of construction from données foncier of CEREMA

- Buildings’ distance from peripheries: this distance is referred to the distance of each
building from closest line that separates urban and non-urban areas. The boundary line that
delineates urban and non-urban areas were calculated using MorphLim application®. This
application is designed to identify morphological boundary of urban agglomerations. Urban
boundary in this application is identified in three steps. First, it surrounds each built polygon
with a buffer of increasing width. The width increases to a geometric logic and the number
of clusters are counted at each dilation step. It then plots the process on a log-log graph,
where the X-axis is the width of dilation and Y-axis is the number of clusters. In the second
step, it identifies a distance threshold on dilation curve that shows a major change in its
behavior. Among the maximum curvature points, the point of main curvature has the highest
absolute value of curvature. From there, the point of main curvature is located on the
estimated curve, which gives the distance threshold to plot urban envelope (Diameter). In
the final step, the vector file showing urban envelop is exported (Tannier and Thomas 2013).
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Figure 2-6: Curve fitting of MorphLim for Nantes

For this case study city (Nantes), diameter threshold (distance) = 130.365m is where the
main curvature is located. Therefore, it is calculated to represent critical diameter limit of
built cluster in the shape file.

Buffer radius = Diameter threshold/2 = 130.3/2 = 65.15m.

3 https://sourcesup.renater.fr/www/morpholim/
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Figure 2-7 shows the position of buildings and urban envelop boundary line in Nantes., The
distance of each building from the closest line that separates urban and peripheries was
measured and added as a feature (Bernard 2017).

[ Study area

[ Building footprints

[ Urban zone

[] Peripheries (non urban zones)

Figure 2-7 : Urban envelope boundary line of Nantes

- Vegetation and water surface percentage in RSU: after superimposing RSU lines and
BDTOPO, the percentage of RSU area covered by vegetation and water were calculated.

- Building footprint density in RSU: total areas of buildings in a RSU/area of RSU

- Facade density in RSU:
Free vertical areas of buildings in RSU

Facade density in RSU =
acade density m (Free vertical areas + area of RSU)

The map in Figure 2-8 shows facade density in Nantes.
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Figure 2-8 : Facade density of buildings at RSU scale in Nantes

- Sky view factor at RSU scale: Sky view factor was calculated using UMEP of QGIS?.

I Water surfaces
Sky view factor at RSU scale
Il 0.20-0.36
I 0.36 - 0.52
I 0.52-0.68
[ 0.68 - 0.84
[]0.84-1.00

Figure 2-9 : Average sky view at RSU scale

4 https://plugins.qgis.org/plugins/UMEP/ and (Lindberg et al. 2018)
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- Buildings’ roofs Sky view factor (SVF):

[] Administrative boundary ¥

[ RSU lines

[ water surfaces

Sky view factor of buildings' roofs
I 0.06 - 0.25

B 0.25 - 0.44

[ 0.44 - 0.63

[ 0.63 - 0.81

[Jo0.81-1.00

i
oS

Figure 2-10 : Average roofs’ sky view factor (SVF)

Appendix 2-2, shows how the output of UMEP in QGIS in the form of a raster map is
transformed into a vector file, which is then used as input for clustering.

- Building

shape: using building shape for clustering required transformation of closed

polygon into a format that can be used in clustering. To do so, as can be seen in Figure 2-11,

Distance from centroid to contour points

0 and 6 4 3

-
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-

Figure 2-11 : Building polygon to series
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Building polygons that have the forms of closed polygons were decomposed into a series
of data by measuring the distance of each vertex of building from the center of gravity of
building. Application of a clustering algorithm that measure the distance between the given
series can be effective to identify/cluster buildings that have similar shapes in database.
When buildings have too many vertices or when they are circular, the length of series
becomes too long. Many of the unsupervised algorithms do not perform well when the
number of attributes is too high. Therefore, we decided to exclude building shape from
further processing.

After calculation of the given parameters and their aggregation with BDTOPO parameters and
land data, a Pearson Correlation analysis was performed to see if there is a collinearity between
the input parameters. The analysis showed a strong correlation between SVF at RSU scale,
Building footprint density, and facade density. Therefore, SVF at RSU scale, and Building
footprint density were excluded from further processing. There was also a strong correlation
between area of buildings and their volume. Of the two, volume was selected for further
processing. (Appendix 2-3)

2.2.2 Data preprocessing

Following the creation of input data, a data cleaning procedure was applied to handle missing
values, detect and remove outliers.

Missing features of attributes were filled out with nearest neighbor principle or removed from
dataset.

Outliers were detected by graphing the data points, and removing those that were drastically
different from the bulk of data points.

Data was then normalized, and transformed before being used in data mining algorithms. The
objective of data-transformation is to make data normal distribution-like, and stabilize variance.

Data columns used as input for clustering to extract reference buildings are listed below:

1- Building height

2- Building volume

3- Buildings’ roofs SVF

4- Buildings’ Net compacity

5- Building year of construction

6- Free vertical area ratio to total vertical area of building

7- Buildings’ distance from peripheries

8- Normalized difference vegetation index (NDVI)/vegetation percentage in RSU
9- Water surface percentage in RSU

10- Facade density of RSU
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2.2.3 Framing the problem of reference building identification

The objective here is to cluster similar instances of buildings in one cluster and identify the
most typical one in each cluster, for the case study city. Another aim is to minimize the influence
of a priori assumptions/biases of modeler on what cluster or class does a specific building
belong.

With this in mind, as mentioned in section 2.1.1.2, unsupervised clustering techniques was
selected to identify cluster of buildings that share similar characteristics. Since the data was
already preprocessed and it was not going to change, offline batch learning approach was used
to run the clustering algorithms. Alternative way is an online approach, and it is recommended
for cases when input data continuously updates or when input data is so large that computer
runs out of memory to process them in one batch.

Note: for practitioners that have huge datasets that do not continuously update, they can also
split batch-learning work across several servers, using MapReduce techniques.

2.2.4 Performance measurement indicators

There are several techniques to assess how well your machine-learning model works, but the
majority of them focus on lowering the error between the actual and predicted values, such as
relative means squared error (RMSE) or mean absolute error (MAE). This approach is more
suitable to supervised machine learning, but for unsupervised machine learning, like in this
study, when the ground truth is unknown, other ways of measuring are used.

Quality of clustering is assessed using some similarity or dissimilarity metrics, such as the
distance amongst cluster points. If the clustering algorithm successfully identifies dissimilar
and similar values, it has done a good job (Géron 2017). The Average Silhouette Score,
Calinski-Harabasz indicator, and Davies-Bouldin index are three of the most frequently used
metrics for clustering method assessment.

Average Silhouette score:

This indicator is used to compare how similar an object is to its own cluster or in other words,
how dissimilar it is to other (neighboring) clusters. Results of this indicator produce a value
between -1 and +1, where a score near +1 implies that the item is well matched in its cluster. A
value of zero or negative means the object is very badly matched in its cluster (Pedregosa et al.
2011; Rousseeuw 1987). Both Euclidean and Manhattan distance metrics can be used to
measure the degree of similarity or dissimilarity, but here we used Euclidean distance.

Calinski-Harabasz indicator:

In clustering, Calinski-Harabasz index is used as a measure of the quality of a partitioning in a
dataset. This indicator is the ratio of inter-group variance to intra-group variance. Therefore,
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algorithms attempt to maximize this score. The value of this indicator varies between 0 and +oo
and the value strongly depends on the number of points in the clustering (Pedregosa et al. 2011).

Davies-Bouldin index:

This indicator is used to define the average degree of similarity measure of each individual
cluster with its most similar cluster, and the similarity is the ratio of inter-cluster (within-cluster)
distances to intra-cluster (between-cluster) distances. This indicator varies between 0 (best
separation) and +oo (worst separation) (Davies and Bouldin 1979; Pedregosa et al. 2011).

2.2.5 Clustering algorithms
2.2.5.1 Partitioning algorithms (Centroid-based)

This group of algorithms split the “n” number of data into “k” number of clusters (groups). This
separation method is preferred over the hierarchical model in pattern recognition. The following
criteria are often established to satisfy the methods:

Each cluster must have at least one object.
Each data object belongs to one cluster.

The most commonly used partitioning methods are K-Means, K-Medoids, Partitioning around
Medoids (PAM), and Clustering Large Applications (CLARA) (Chitra and Maheswari 2017).
Here, we only briefly describe K-Means and K-Mediods.

K-Means: In this algorithm, a cluster of data points is represented by its centroid, which is
obtained from the average of points in that particular cluster. The average point is therefore a
fictive point and does not correspond to a real data point in the cluster.

It is also the most commonly used algorithm in scientific and industrial application.
Advantages:

- Effective in dealing with large data sets (computationally not expensive).
Generalizes to clusters of different shapes and sizes, such as elliptical clusters.
Frequently terminates at local optimum.

- Works only with numerical values.

Disadvantages:

- Does not perform well with noisy data or when number of attributes is more than 20.
- Requires specifying the number of “k” clusters at the beginning.

A way to overcome this latter limitation is to use Elbow technique, as in Figure 2-12, to
determine the optimal number of clusters in K-Means. In this technique, K-Means clustering is
run on a range of values of K (say 2 to 15), and then for each value of K the average distortion
score is calculated. Distortion score is referred to the sum of the squares of the distance from
each point to its specified center.

Application of elbow technique is possible for K-Means, mainly because this algorithm is not
computationally expensive.
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Distortion Score Elbow for KMeans Clustering
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Figure 2-12 : Elbow technique to determine number of clusters

K-Medoids: this algorithm uses an actual point in the cluster to represent the cluster. The
partitioning is based on minimizing the sum of dissimilarities between objects and the
representative of cluster.

Advantages:
- Identifies a real data point in each cluster to represent cluster.
Disadvantages:

- Requires specifying the number of “k” clusters at the beginning.
- Computationally expensive.

The main advantage of partitioning algorithms over other types of algorithms is that it is simple
to implement, and understand them. It takes significantly less time to execute them. Main
drawback is that practitioners need to specify the number of clusters in advance and they
generate only spherical shaped clusters.

2.2.5.2 Hierarchical clustering

This method creates a cluster from top to bottom (divisive) and/or bottom to top
(agglomerative). In both of these approaches, it first requires creation of a dendrogram to
visualize the suggested number of clusters. A dendrogram is a tree-like format that stores a
sequence of clustered clusters.

The typical of way selecting number of clusters is by drawing horizontal lines that pass through
the longest arms of dendrogram. As can be seen in Figure 2-13, we can split the data into 3, 5,
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and 9 clusters using hierarchical clustering. Performance indicators show that quality of
clustering is highest when number of clusters is 3.

ao0

400

o0

A0

100

Figure 2-13 : Dendrogram of hierarchical clustering

In this study, we used Agglomerative Nesting and Birch clustering techniques of hierarchical
clustering to split the building data into clusters. Other techniques of hierarchical clustering
seen in literature are CHAMELEON and DIANA (Chitra and Maheswari 2017).

Key advantage of hierarchical clustering is the flexibility of level of granularity and its ability
to handle any type of data (attribute type). One drawback of hierarchical clustering is that
Agglomerative nesting technique is computationally more expensive than K-Means but less
expensive than K-Mediods. Birch, on the other hand, is efficient at processing large volumes
of data. Another major limitation of hierarchical clustering is that it is sensitive to noise and it
breaks large clusters even if they are similar (Chitra and Maheswari 2017).

2.2.5.3 Density-based algorithms

In this model, clusters are defined by placing areas of higher density in the cluster. Some of
density-based algorithms are Density Based Spatial Clustering of Applications with Noise
(DBSCAN), Generalized-DBSCAN (GDBSCAN), Ordering Points to Identify the Clustering
Structure (OPTICS), and DBCLASD.

We used DBSCAN in this study. The density based algorithm DBSCAN is the commonly
known algorithm of this group of algorithms. In execution of this algorithm, the basic principle
is to concentrate on two parameters: the maximum radius of the neighborhood (Eps) and the
minimum number of points in a cluster (Min pts). DBSCAN model identifies clusters of varying
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shapes and noise. It works by detecting patterns and estimating the spatial location and distance
to the neighbor.

Main advantage of DBSCAN algorithm is that practitioners are not required to specify number
of clusters and that it is able to handle noisy data. It does not perform well with high dimensional
data (Chitra and Maheswari 2017).

2.2.5.4 Distribution-based clustering algorithms

Distribution-based also known as model-based relies on the assumption that data is made up of
probability distributions. Unlike k-means, which is a hard clustering and captures the mean of
spherical-shaped clusters. Gaussian mixture distribution can capture the means and variances
of different elliptical-shaped clusters as well. If the variance is encoded as a matrix instead of
just a number, this allows the distribution to be spread out more in one direction than another
does. This method yields optimal number of partitions. As such, the modeler does not need to
enter the initial number of partitions before analysis. In this approach of clustering, as the
distance of point increases from the center, the probability of it to belong to the distribution
decreases.

Appendix 2-4 presents python script used for data pre-processing, normalization,
transformation and application of clustering algorithms using Scikit learning (Pedregosa et al.
2011).

2.3 Results of clustering

2.3.1 Comparison of clustering techniques

The objective is to split residential buildings of our case study city (Nantes) into homogenous
clusters and select one representative building from each cluster. To achieve this objective,
input parameters described in section 2.2.1 (input data for clustering) that show UHI effect and
exposure of building to external environmental conditions are assembled in a databases.

Input data was then pre-processed and made ready for cluster analysis. Performance of
clustering algorithms were assessed with three indicators, average silhouette score, Calinski-
Harabasz, Davies-Bouldin index.

Overall, five different techniques of clustering, at least one from each category of methods,
were used to group the residential buildings into homogenous clusters: KMeans from
partitioning algorithms, Birch and Agglomerative Nesting from hierarchical clustering,
DBSCAN from Density-based algorithms, and Gaussian Mixture Model from Distribution-
based clustering. Because we did not know what is the right number of clusters for the given
dataset, we run the algorithms multiple times for each technique to find the number of clusters
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and technique that generate the best cluster analysis. Results are summarized in Figure 2-14,
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Figure 2-14: Comparative results of clustering

As can be seen in Figure 2-14, K-Means with number of clusters equal to 5, 6, and 7 performs
better than other clustering techniques in all indicators. Silhouette score index is highest for
DBSCAN when number of clusters are 3, but Calinski-Harabasz index and Davies-Bouldin
index show that it performs poorly. Relative difference between the values of indicators with
K-Means when number of clusters are 5, 6, and 7 are small, therefore we took into consideration

the results obtained from Elbow method, as presented in Figure 2-12.

For the same reason, it was decided to use K-Means when number of clusters is equal to 7 as
the final technique to split residential building data into clusters. As discussed, with K-Means,
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the centroid is the average of all entries in that cluster. The average, obviously, is not a real
entry point, so there is a need to select a real building from each cluster to represent that cluster.

2.3.2 ldentification of reference buildings

To do so, using Euclidean Distance, the distance of each entry point to the cluster centroid was
measured and the real entry point closest to the centroid was selected as the reference building
in each cluster.

Appendix 2-5 shows the position of closest building to/from the centroid of clusters.

The index of closest building to the centroid of each cluster was then exported and the building
was identified on the map (see Appendix 2-4 for python script).

Figure 2-15 shows the position of seven reference buildings identified through the methodology
described in methods section, for the case study city, Nantes.

B water

[ vegetation
[] RSU lines
Buildings:

[ Residential
Non-residential
[ Selected typical

Figure 2-15 : Reference buildings identified with KMeans when n_clusters =7

As mentioned, the relative scores of indicators for K-Means when number of clusters are 5, 6,
or 7 were pretty close. Same methodology could have applied on those as well. However,
selection of 7 instead 5 or 6 gives the practitioners/researchers the possibility to include a wider
range of variations.

Clustering here split buildings with consideration of their surrounding parameters that influence
UHI effect in each (RSU). Consideration of UHI parameters for each cluster then allowed to
project the influence of UHI effect on the reference building of each cluster and by extension
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to all buildings in that cluster. The workflow, tool and approach used to project UHI effect on
typical weather data is illustrated in chapter 3 of this manuscript.

Table 2-1 presented below demonstrates the details of closest real building to the fictive
centroid of K-Means when number of clusters were 7.

Table 2-1 : Identified centroids of residential buildings in Nantes

Vegetat

Refere Buildi !3und Net Roof's Distance  Year ion Water Facade Freq
nce ing from of percen . vertical
- ng comp mean . . percent - density
buildin . Volu . peripheri  constr - tagein . area
height acity  SVF . agein in RSU .
g me es uction RSU RSU ratio
KM7_0 6.2 594 4.7 0.96 681.24 1932 9.90 0 0.36 0.80
KM7_1 74 732 4.6 0.89 321.00 1900  7.55 0 0.35 0.80
KM7_2 6.9 585 33 0.95 710.51 1930  5.95 0 0.38 0.55
KM7_3 4.6 573 45 0.96 314.42 1981  5.15 0 0.32 0.86
KM7_4 6.1 431 33 0.92 277.93 1952  6.27 0 0.31 0.57
KM7_5 103 1139 3.3 0.86 319.38 1880  0.00 0 0.51 0.55
KM7_6 6.5 718 4.4 0.97 176.09 1969  27.20 1.29 0.18 0.87

Map below, shows the parts of city where there is concentration of different buildings. RSUs
in this map are assigned to the cluster that accounts for the majority of buildings inside it.

I Water surfaces
Majority cluster of buildings in RSU:
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[
N 2
i 3
M 4
Il 5
[Je
[ Non-residential

Figure 2-16 : Majority of building clusters in RSUs
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2.4 Characterization of reference buildings

After identification of reference buildings using K-Means clustering. The buildings were
located on Google Maps (Figure 2-17) and additional details were added to prepare them for
further processing.

Figure 2-17 : Reference buildings identified with KMeans when n_clusters =7 on Google maps

Characterization of reference of buildings were carried out carefully considering all other
buildings in the cluster. Year of construction was selected as a primary parameter to enrich the
identified reference buildings. It was selected because majority of the data about thermo-
physical properties of buildings are available as a function of year of construction.

Year of construction for selected closest building to centroid of cluster is not exactly the same

as the year of construction in the whole cluster. Therefore, we analyzed the distribution of year
KMeans 7 and year of construction

Construction year of T
2000 ®  celected typical buildings
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Figure 2-18 : Boxplots of year of construction for residential building clusters
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of construction in each cluster. Boxplots in Figure 2-18 and Table 2-2 show statistical
distribution of year of construction in each cluster in comparison to the selected closest real
building to the centroid.

Table 2-2 : Year of construction in the cluster and values of edges

Year of Year of construction range in each cluster
label construction of

selected Lower Lower median Upper quartile Upper

reference whisker quartile whisker
KM7_0 1932 1860 1920 1935 1960 2017
KM7_1 1900 1857 1900 1920 1930 1970
KM7_2 1930 1848 1900 1926 1936 1990
KM7_3 1981 1929 1961 1982 1994 2017
KM7_4 1952 1870 1938 1957 1986 2017
KM7_5 1880 1810 1870 1900 1910 1970
KM7_6 1969 1902 1955 1978 1991 2017

In Figure 2-18, it is noticeable that clusters KM7_3, KM7_6 and KM7_4 are composed of
buildings constructed in recent years and are mostly located in outskirts of the city as shown in
Figure 2-16. Clusters KM7_5, KM7_1, KM7_2, and KM7_0 are composed of older buildings,
which are concentrated in city center areas.

In Table 2-2, the year of construction of selected reference building is compared to the median
year of construction of other buildings within the same cluster. In clusters KM7_1 and KM7_5,
there is approximately 20 years difference between the year of construction of the building
closest to the centroid (selected representative building) and the median building of the cluster,
but as the construction techniques remain substantially the same and that in typologies such as
Tabula or others these buildings are classified in the same category, year of construction was
selected as a primary parameter.

2.4.1 Estimating window wall ratio (WWR) of reference building

Window size for each reference buildings with reference to year of construction was estimated
from DPE data collected by ADEME °. First data for Nantes was filtered out and then using
the following expression estimated the ratio of window openings in percentage.

WWR=(['surface_baies_orientees_nord]+['surface_baies_orientees_est _ouest']+
['surface_baies orientees sud']) / (['surface_parois_verticales_opaques_deperditives']
+['surface_baies_orientees_nord'] + ['surface_baies_orientees_est_ouest’] +
['surface_baies_orientees_sud')

After calculations, the WWR of buildings were plotted against the ranges of year of
construction for Tabula, as depicted in Figure 2-19. From this figure, it is clear that WWR is
mostly hovering between 5 and 20% for all buildings. For better representation and
characterization of window size and location, all identified reference buildings, shown in Figure
2-17, were either visited on site or visualized through Google Street view.

> https://data.ademe.fr/datasets/dpe-44
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Figure 2-19 : WWR of residential buildings as a function of year of construction

2.4.2 Estimating U-value of envelop elements

A preliminary estimation of envelope’s thermo-physical properties for each cluster as a function
of year of construction was performed based on data presented by (Civel and Elbeze, 2016).
The authors performed a description of residential buildings across France to determine their
average U-value measure in [W.m2.K™]). A summary of their findings is presented in Table
2-3.

Table 2-3 : Initial thermo-physical properties of residential buildings’ envelopes

Construction date <1974 74-81 82-89 90-2000 2001-2005 2006-2014
U-walls 25 1 0.8 0.5 0.47 0.36
U-windows 4 3 3 3 2.3 2.1
U-roof 25 0.5 0.32 0.26 0.25 0.2
U-floor 1.2 1.2 0.74 0.5 0.36 0.27

(Civel and Elbeze 2016)

Since the data in Table 2-3 are estimated from a small sample and does not give any specific
information for building constructed before 1974, it is necessary to find other sources to enrich
selected typical buildings.

In the Tabula data table for France, the table below shows the percentage of buildings
refurbished up until the end of 2013 for two categories of buildings: single-family houses (SFH)
and Multiple-family houses (MFH).
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Table 2-4 : Percentage of buildings refurbished until the end of 2013

Percentage of buildings refurbished (with improved thermal protection) [%]

Building classes SFH 1 SFH 11 MFH | MFH 1l
Construction date until 1975 1975-2000 until 1975 1975-2000
walls 37 88 19 52
roofs / upper floor ceilings 62 90 25 65
basement / cellar ceiling 12 42 10 30
windows* 35 75 23 57

Data from Table 2-4 clearly indicates that when it comes to performance evaluation of
bu