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Résumé : La théorie des bandes des solides est une
pierre angulaire de la physique de la matière condensée
depuis près d'un siècle. Au cours des dernières décen-
nies, elle a été étendue pour inclure systématiquement
les e�ets provenant des propriétés géométriques et to-
pologiques des fonctions d'onde électroniques. Cette
approche a été appliquée avec succès pour expliquer
une pléthore de phénomènes observés dans une variété
de matériaux cristallins, ainsi que dans des réseaux pé-
riodiques arti�ciels. Alors qu'une description e�ective
impliquant seulement deux bandes (N = 2) autour de
l'énergie de Fermi est souvent employée dans des mo-
dèles simples, ces dernières années, de nombreux sys-
tèmes physiques qui nécessitent intrinsèquement une
description multibande (N > 2) ont été mis en évi-
dence. Il s'agit notamment des systèmes 2D et quasi-
2D à bande plate ainsi que des semi-métaux topolo-
giques 3D. Inspiré par ces développements, le présent
travail étudie théoriquement plusieurs aspects fonda-
mentaux des systèmes multibandes. Premièrement, une
nouvelle approche des observables dans les systèmes
multibandes est développée. Elle est basée sur les pro-
jecteurs propres et les vecteurs de Bloch correspon-
dants, et peut aider à surmonter les problèmes prove-
nant de la dépendance de jauge et des singularités in-

contrôlées des états propres d'énergie. Deuxièmement,
en exploitant le concept d'un état localisé compact �
une fonction d'onde avec une amplitude strictement
nulle en dehors d'une petite région du réseau �, une
méthode simple et intuitive pour construire un nombre
arbitraire de modèles de liaisons fortes à bande plate est
présentée. La méthode permet également de concevoir
la présence de croisements de bandes multiples à l'éner-
gie de la bande plate d'une manière contrôlée. De plus,
elle peut être considérée comme un schéma de classi�-
cation des bandes plates basé sur la relation entre le ha-
miltonien de Bloch et l'état localisé compact. Troisiè-
mement, une nouvelle classe de semi-métaux 3D avec
des croisements de bandes d'énergie linéaires multiples
est proposée. Cette classe présente des excitations à
basse énergie fondamentalement di�érentes des fer-
mions chiraux multiples des semi-métaux topologiques
connus : chaque point de croisement agit comme un
dipôle de Berry au lieu d'un monopôle de Berry, avec
des signatures claires dans les niveaux de Landau et le
transport semiclassique. Cette phase semi-métallique
est également étroitement liée au concept récemment
proposé d'un isolant de Hopf multibande topologique,
ouvrant plusieurs perspectives intéressantes.
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Abstract : The band theory of solids has been a cor-
nerstone of condensed matter physics for almost a cen-
tury. In recent decades it has been extended to sys-
tematically include e�ects originating from geometric
and topological properties of electronic wave functions.
This has been successfully applied to explain a plethora
of phenomena observed in a variety of crystalline ma-
terials, as well as in arti�cial periodic lattices. While an
e�ective description involving only two bands (N = 2)
around the Fermi energy is often employed in simple
models, in recent years many physical systems that in-
trinsically necessitate a multiband description (N > 2)
have come into focus. These include, notably, 2D and
quasi-2D �at-band systems as well as 3D topological
semimetals. Inspired by such developments, the present
work theoretically investigates several fundamental as-
pects of multiband systems. First, a new approach to
observables in multiband systems is developed. It is
based on eigenprojectors and the corresponding Bloch
vectors, and helps to overcome issues originating from
the gauge dependency and uncontrolled singularities

of energy eigenstates. Second, exploiting the concept
of a compact localized state � a wave function with
strictly zero amplitude outside a small region of the
lattice �, a simple and intuitive method to construct
arbitrarily many �at-band tight-binding models is pre-
sented. The method also allows to design the presence
of multifold band crossings at the �at-band energy in
a controlled way. Moreover, it can be viewed as a �at-
band classi�cation scheme based on the relation bet-
ween the Bloch Hamiltonian and the compact localized
state. Third, a new class of 3D semimetals with multi-
fold linear energy band crossings is proposed. This class
features low-energy excitations fundamentally di�erent
from the chiral multifold fermions of known topological
semimetals : each crossing point acts as a Berry dipole
instead of a Berry monopole, with clear signatures in
Landau levels and semiclassical transport. As discussed
in detail, this semimetallic phase is also closely rela-
ted to the recently proposed concept of a topological
multiband Hopf insulator, opening several interesting
perspectives.
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Preface

Crystalline solids played a major role in the scientific and industrial revolutions of
the 19th century. Substantial knowledge about their properties was accumulated
by physicists, chemists and engineers, mainly concerning macroscopically observable
properties such as electrical and thermal conductance, flexibility, melting tempera-
ture, et cetera. Despite being invaluable for technological applications, much of this
knowledge was of a rather empirical nature, and many fundamental questions about
the microscopic structure of crystals remained unanswered. To mention a well-known
example, the observed electrical conductance and heat capacity of metals could not
be explained satisfactorily using phenomenological models based on classical physics
such as that of Drude (1900).

Establishing more reliable explanations for the behavior of solids only became
possible after the emergence of the theory of quantum mechanics in the early 20th
century. Two notions following from the quantum theory proved of particular im-
portance: First, the realization that electrons can be viewed as waves, and therefore
that the wave equation found by Schrödinger (1926) should be solved for electrons
moving in the presence of the periodic potential landscape created by the atoms in
a crystal. Second, the fact that electrons exhibit Fermi-Dirac statistics (Fermi 1926;
Dirac 1926) and carry a spin degree of freedom (Pauli 1925). After decisive contri-
butions by the likes of Sommerfeld (1928), Bloch (1929), Brillouin (1930) and others,
who implemented these fundamental ideas quantitatively, a very mature sub-field of
physics quickly arose; it has come to be known as solid-state physics (Ashcroft and
Mermin 1976).

At first glance, describing the physics of solids quantitatively is a very complicated
many-body problem. However, history has taught us that

“it is [...] possible to view much of solid-state physics in terms of cer-
tain elementary excitations which interact only weakly with one another”
(Pines 1963).

Such elementary excitations serve to effectively decompose the inner workings of a
solid into several parts. They can be associated to the motion of nuclei vibrating
around their equilibrium positions (phonons); to the motion of non-interacting con-
duction electrons forming a Fermi gas (single-particle excitations); to the motion
of interacting electrons forming a Fermi liquid (quasi-particle excitations); to the
collective motion of spins (magnons), and many more. Depending on the physical
circumstances of interest, describing a solid theoretically then boils down to focusing
on a certain elementary excitation.

This thesis mainly follows the standard approach that approximates a solid as be-
ing a Fermi gas in the presence of a periodic lattice potential. Within this framework,
one is interested in single-particle excitations that are described by the well-known
band theory of solids (Singleton 2001). Exploiting the lattice periodicity, this theory
formulates the problem in Fourier (or reciprocal) space, and encodes the properties of

i
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the single-particle excitations in the so-called Bloch Hamiltonian H(k). The param-
eter k is known as the wave vector (or crystal momentum). From H(k), one obtains
the energy band structure ϵα(k), where α is the band index. At zero temperature,
the bands are filled up to the Fermi energy EF by electrons, defining a Fermi surface
as the subspace of reciprocal space that satisfies ϵα(k) = EF .

During the second half of the 20th century, the band theory of solids was suc-
cessfully used to construct the band structures (and Fermi surfaces) of insulators,
semiconductors and metals, an essential achievement that provided the basis for the
modern electronics industry. However, beyond the band structure, there exists im-
portant information encoded in the quantum mechanical eigenstates |ψα(k)⟩ of the
Bloch Hamiltonian. This gives rise to interband effects on observable properties of
crystals, as was quite explicitly pointed out in certain works1 from the 1940s to the
1970s. However, those theories were perhaps not formulated in a sufficiently general
and accessible way, such that the universal nature of interband effects, which are also
known as quantum geometrical, band geometrical, or simply geometrical effects, was
not adequately appreciated. Most importantly, it remained unknown that they can
give rise to topological physics under the right circumstances.

Today, it is well known that the standard band theory of solids has to be aug-
mented by geometrical and topological concepts. This extended band theory is known
as topological band theory (Hasan and Kane 2010; Qi and Zhang 2011; Bansil et al.
2016; Cayssol and Fuchs 2021). Materials described by topological band theory are
currently a major focus of solid-state research laboratories all over the globe. This is
because they host a variety of unconventional phenomena when it comes to conduct-
ing electricity, responding to magnetic fields, pressure, light beams, et cetera, which
holds promise for future technological applications.

Perhaps the most crucial breakthrough responsible for the ultimate success of
modern topological band theory consisted in the exfoliation of single graphene layers
by Novoselov et al. (2004) [see also the review article by Castro Neto et al. (2009)].
Especially after Kane and Mele (2005) predicted the existence of a quantum spin
Hall effect in graphene, a veritable “gold rush” on condensed matter systems with
non-trivial geometry and topology began. As a consequence, many topological mate-
rials were discovered in the following decade, among which the most important ones
are three-dimensional (3D) topological insulators (Hasan and Moore 2011) and 3D
topological semimetals (Armitage et al. 2018).

This development benefitted greatly from the fact that numerous scientific con-
tributions that had previously implicitly or explicitly addressed quantum geometric
and topological effects, as well as their physical consequences, could now be under-
stood from a new perspective and treated in a unified way. Here are some prominent
examples for this:

1.) It was realized that the quantum Hall effect (Klitzing et al. 1980), whose quan-
tized conductance plateaus were explained by topological arguments early on
(Thouless et al. 1982; Avron et al. 1983), is only one particular example out
of a whole family of topological quantum matter. Indeed, the quantum Hall

1See Appendix I.B for more details and references.
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effect is now viewed as a 2D topological insulator in class A of the tenfold way
symmetry classification (Ryu et al. 2010).

2.) Berry’s geometrical phase (Simon 1983; Berry 1984), acquired by a quantum
system upon traversing a closed loop in parameter space, has found countless
applications in various branches of physics. Its extremely universal character
and the ensuing physical consequences are now fully appreciated (Wilczek and
Shapere 1989; Resta 2000; Xiao et al. 2010).

3.) Haldane’s proposal for a quantum Hall effect without net magnetic field (Hal-
dane 1988), at the time considered to be purely a toy model, is now viewed as
the first genuine topological insulator (based on standard non-magnetic Bloch
states, in contrast to the quantum Hall effect) and is called Chern insulator (or
quantum anomalous Hall effect).

4.) Dirac (1928) and Weyl (1929) fermions, historically introduced in a high-energy
context and later proposed to exist in condensed matter (Nielsen and Ninomiya
1983; Volovik 1987; Fang et al. 2003), are now known to be crucial for under-
standing the exotic physics of topological semimetals (Armitage et al. 2018).

5.) Parameter-dependent quantum systems – and thus solids with a Bloch Hamil-
tonian H(k) – are equipped with a rich geometric structure, encoded not only
by Berry’s phase, but also by the quantum metric (Provost and Vallee 1980),
reminiscent of the metric structure used to describe the geometry of spacetime
in general relativity. This quantum metric is now known to play a fundamental
role in the response of crystals to external perturbations.

From a theoretical physicist’s point of view, it has to be noted that a big portion of
progress made in topological band theory may be ascribed to effective models:

“Looking back at how this new field of topological quantum matter has
developed since the initial discoveries in about 1980, I am struck by how
important the use of stripped-down toy models has been in discovering new
physics” (Haldane 2017).

In particular, the kind of effective models we have in mind are those based on
the tight-binding approximation (Simon 2013) or on low-energy continuum theories.
Both tight-binding and continuum Hamiltonians are frequently used to model single-
particle excitations in a small energy window around the Fermi energy, which quali-
tatively captures much of the essential low-energy physics. Also in this thesis, we will
extensively employ such effective models.

In the simplest case, tight-binding or continuum models used in topological band
theory are two-band models, because one is often predominantly interested in the
physics of the conduction and valence band edges (in the case of insulators) or of the
two bands crossing near the Fermi energy (in the case of semimetals). Such two-band
models have simple and well-known properties. Famous examples include the models
that have been developed for graphene (Wallace 1947), Weyl semimetals (Nielsen and
Ninomiya 1983), Chern insulators (Haldane 1988), or Hopf insulators (Moore et al.
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2008). However, in recent years, an increasing number of systems that necessitate
going beyond a two-band description have come into focus. Here we mention some
important examples:

1.) Many lattices with flat energy bands are described by models involving more
than two bands (Leykam et al. 2018). These systems are of interest because
electrons in the flat band have quenched kinetic energy and are susceptible to
Coulomb interaction effects, providing an interesting avenue to strongly corre-
lated quantum phases. Experimentally accessible systems exhibiting flat-band
physics were recently found, such as twisted bilayer materials (Cheng et al. 2019;
Andrei and MacDonald 2020; Mogera and Kulkarni 2020) and Kagome metals
(Lin et al. 2018; Kang et al. 2020; Liu et al. 2020).

2.) Topological semimetals with multiple energy bands that simultaneously cross
at certain points in the first Brillouin zone have been discovered (Bradlyn et al.
2016; Lv et al. 2021). Such multifold crossing points, which generalize Weyl
semimetals and cannot be captured by two-band models, give rise to unique
transport and optical properties.

3.) Three-level and more generally multilevel quantum systems (dubbed qutrits and
qudits, respectively) are emerging as alternative platforms to build quantum
computers, presenting several advantages over qubit-based approaches, see for
example Wang et al. (2020) or Blok et al. (2021).

Motivated by these developments, this thesis is devoted to delving into the physics of
multiband systems, that is, systems that involve N > 2 energy bands. In particular,
we will focus on three aspects that were already mentioned above: the quantum geom-
etry of multiband systems, flat-band physics in multiband systems, and the properties
of multifold band crossings. Those are a priori distinct topics but they are also in-
tricately linked: quantum geometry is strongly enhanced in the vicinity of multifold
crossings, multifold crossings are often accompanied by flat bands, and flat bands
have very peculiar quantum geometric properties. To describe multiband systems
quantitatively, we typically employ tight-binding or continuum models described by
N ×N Bloch Hamiltonian matrices. The phenomenology contained in such Hamilto-
nians is much richer than in the two-band case, hence the existence of many physical
phenomena that cannot exist in a two-band system is to be expected. The goal of
this thesis is to study in depth a certain number of these phenomena. In order to do
so, we will proceed as summarized in the following.
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Chapters 1 and 2 give an introduction to topics of relevance for this thesis that are
essentially known in the literature, as well as a motivation for the work conducted in
this thesis:

Chapter 1 – To begin with, we recall basic aspects of band theory, such as
the Bloch Hamiltonian and the tight-binding approach (Section 1.1). We then
introduce the guiding theme of this thesis, that is, the concept of quantum
geometry, along with the main geometric objects of interest, namely quantum
metric and Berry curvature (Section 1.2). Afterwards, we deal with the con-
nection between quantum geometry and topology, and mention a number of
topological invariants which will be of importance later on (Section 1.3). These
concepts are illustrated by a discussion of 2D systems ranging from graphene
to Chern insulators (Section 1.4). To close the chapter, we aim to illustrate
that quantum geometry and topology are ubiquitous in the physical response
of crystalline systems, and present a number of relevant examples ranging from
topological edge states to the role of quantum geometry in transport (Section
1.5).

Chapter 2 – This chapter is devoted to motivating the study of multiband
systems, that is, systems with more than two bands. We first give a physical
motivation based on a selection of multiband systems that have been widely
studied recently, namely flat-band lattices in 2D (Section 2.1) and multifold
band crossings in 3D (Section 2.2). We discuss both types of systems at the
level of simple models and underline their importance to experiments. This is
followed by a more mathematical motivation. It is inspired by the rich math-
ematical structure of the su(N) algebra underlying multiband Hamiltonians
(Section 2.3), and by the corresponding complexity of the internal parameter
space (Section 2.4).

After this preparation, we present original material that constitutes the core of this
thesis. We arrange the material in three chapters, each of which focuses on a different
aspect of multiband systems and each of which is based on a published article or
preprint (see below). While there are many links between these three chapters, they
can essentially be read independently from one another:

Chapter 3 – In this short chapter, we develop a rather general formalism that
expresses observables in multiband systems in terms of Bloch vectors; these
are a vectorial representation of the Hamiltonian’s eigenprojectors. After a
short introduction (Section 3.1) we argue that such Bloch vectors present sev-
eral advantages over the conventional eigenstate-based approach to observables
(Section 3.2). We then explain how to write any observable in a multiband sys-
tem in terms of Bloch vectors, and illustrate these ideas via simple examples,
notably the quantum geometric tensor and orbital magnetization (Section 3.3).

v
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Next, we discuss how the eigenprojectors and Bloch vectors can be related in
a unique way to the Hamiltonian, which allows (at least in principle) to com-
pute any observable without the need for the construction of energy eigenstates
(Section 3.4). In particular, we thus arrive at a multiband generalization of the
well-known “skyrmion density” formula for the Berry curvature of a two-band
system. To close the chapter, we apply the formalism to a pedagogical example
(Section 3.5) and provide a brief summary (Section 3.6).

Chapter 4 – In this chapter we turn to the realm of flat bands. After an
introduction providing an overview of related previous work (Section 4.1), we
summarize some basics of flat-band physics, in particular the important notion
of a compact localized state (Section 4.2). Based on the knowledge about such
states, we proceed to develop a powerful method to construct flat-band tight-
binding models (Section 4.3). This method provides (infinitely many) flat-band
models on any periodic lattice, in any spatial dimension and with any number
of bands. Moreover, as detailed in Sections 4.4 and 4.5, the method provides
considerable control over the existence and character of multifold band crossings
at the flat band energy, and can be viewed as a new flat-band classification
scheme. After some additional remarks on peculiarities of the flat-band systems
thus obtained (Section 4.6), and after highlighting some interesting perspectives
such as the quantum geometry of the multifold crossings or the construction of
magnetic flat bands (Section 4.7), the chapter concludes with a summary in
Section 4.8.

Chapter 5 – This final chapter focuses on 3D (topological) semimetals with
multifold band crossings. While widely known topological semimetals are based
on momentum space singularities with Berry monopole structure, multiband
crossings in 3D can also exhibit more exotic quantum geometric properties, as
explained in Sections 5.1 and 5.2. To showcase this, we introduce a class of
semimetals with the peculiar property that each crossing point carries a Berry
dipole. We call thesemultifold Hopf semimetals, and study their physical proper-
ties both at the level of continuum (Section 5.3) and tight-binding Hamiltonians
(Section 5.4). In particular, we unveil clear signatures of the Berry dipole in
Landau levels, anomalous Hall effect and magnetoconductivity, which are simi-
lar to but also fundamentally different from what happens in Weyl semimetals.
We then provide a link between multifold Hopf semimetals and a particular
class of topological insulators known as Hopf insulators (Section 5.5). In the
course of this, we also introduce the first known lattice models for multiband
Hopf insulators. After mentioning some perspectives in Section 5.6 (such as
close connections to Haldane’s model and 4D tensor monopoles), the chapter
again closes with a brief summary (Section 5.7).

As mentioned above, each of these three chapters has emerged from a published
article or preprint: Chapter 3 is based on Graf and Piéchon (2021a), but also goes
beyond in that it adopts a more general point of view that includes quantities beyond
the quantum geometric tensor. Chapter 4 is mostly based on Graf and Piéchon
(2021b), but also goes beyond; in particular, it provides a more detailed introduction,
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presents an improved method for constructing linear flat-band models, and offers
several interesting perspectives including magnetic flat bands. Finally, Chapter 5 is
essentially based on a recent preprint by Graf and Piéchon (2022), but again goes
beyond in that it presents a more thorough discussion of multiband Hopf insulators
and much more detailed perspectives.

To conclude the manuscript, a summary of the main results established in this
thesis is given, along with an outlook regarding future perspectives. Finally, we note
that two other scientific articles involving the author have appeared during the three
years of preparing this thesis (Kozlovsky et al. 2020; Graf et al. 2020); they deal with
topological insulator nanowires and are not relevant to the material presented here.





Chapter 1

Quantum geometry and topology
in solid-state physics

This chapter first contains a brief summary of the standard band theory for non-
interacting crystals, which forms the main framework for the entire thesis. This
is followed by a detailed introduction to the notion of quantum geometry, which is
fundamental to all further chapters. We then briefly introduce topological concepts in
solid-state physics and their connection to quantum geometry. The chapter concludes
with an extensive discussion of the influence of quantum geometry and topology on
the physics of crystalline solids, illustrating the ubiquity of such effects.

1.1 | Basic band theory

Band theory describes a crystalline solid as a Fermi gas in the presence of a peri-
odic electrostatic potential created by the lattice of atomic ions. The corresponding
stationary Schrödinger equation (in an arbitrary representation) is given by

H |Ψ⟩ = ϵ |Ψ⟩ , (1.1)

where the Hamiltonian H = p2/(2m)+V describes single-particle excitations and the
lattice potential has the property V (r+Ri) = V (r) for any Bravais vectorRi. In other
words, H commutes with the translation operator TRi . Assuming an (infinite) crystal
with periodic boundary conditions, Bloch (1929) showed that the eigenfunctions of
H can be written in the form

|Ψα(k)⟩ = eik·r|ψα(k)⟩, (1.2)

where in coordinate representation the identity ψα,k(r + Ri) = ψα,k(r) holds. In
Bloch’s theorem (1.2) two quantum numbers appear: α is a band index and k is the
crystal momentum lying in the first Brillouin zone. Inserting into Eq. (1.1), one can
write the lattice Schrödinger equation as

H(k) |ψα(k)⟩ = ϵα(k) |ψα(k)⟩ , (1.3)

where the Bloch Hamiltonian is defined as H(k) ≡ e−ik·rHeik·r.
Below, we will often adopt a tight-binding approximation and work in the Bloch

basis, see Appendix I.A for a detailed recap on this. Then Eq. (1.3) simply becomes
a linear algebra problem: H(k) is an N × N Hermitian Bloch Hamiltonian matrix,
whose size is determined by the number N of tight-binding orbitals a = A,B, ... per

1
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unit cell. Its real eigenvalues ϵα(k) (with α = 1, ..., N) form a band structure in the
Brillouin zone, and its eigenstates

|ψα(k)⟩ = (cα,A(k), cα,B(k), ...)
T (1.4)

are complex orthonormal vectors1 in band space, ⟨ψα(k)|ψβ(k)⟩ = δαβ. Quite often,
one is particularly interested in the continuum limit of Eq. (1.3) around some point
k0 in the Brillouin zone, described by a corresponding local continuum Schrödinger
equation

H(q) |ψα(q)⟩ = ϵα(q) |ψα(q)⟩ , (1.5)

where q = k−k0. We will frequently use both the lattice (tight-binding) and contin-
uum (low-energy) approach.

1.2 | Introduction to quantum geometry

In this section, we explain that quantum geometric effects are in general encoun-
tered for any parameter-dependent quantum system. Further, we introduce the main
objects required to study quantum geometry in practice, in particular the quantum
geometric tensor.

1.2.1 | General setup

Consider a generic parameter-dependent quantum system described by a Hamiltonian
H(x) and Schrödinger equation

H(x) |ψα(x)⟩ = ϵα(x) |ψα(x)⟩ , (1.6)

with eigenvalues ϵα(x) that form a band structure in parameter space, and corre-
sponding eigenstates |ψα(x)⟩. While we usually have in mind the case of band theory
considered above (x = k), it will prove convenient to keep x general.

In many physical situations the parameters x of the Hamiltonian are varied,
x → x + ∆x, for example when a crystal is subject to an external magnetic field,
a bias voltage, a light pulse, an applied strain, and so on. Many features of the
response of the system to such external perturbations can be rephrased in terms
of information already encoded in the unperturbed Hamiltonian H(x). An impor-
tant part of such information is contained in the energy levels ϵα(x) and band ve-
locities vα(x) = ∇xϵα(x). Another part, however, is encoded in the eigenstates
|ψα(x)⟩ of the unperturbed system, and in particular their parametric derivatives
|∂jψα(x)⟩, where ∂j ≡ ∂/∂xj . For example, physical quantities χ such as electrical
conductivity tensors or magnetic susceptibilities of a crystal are in general functions
χ = f(ϵα,∇ϵα, |ψα⟩ ,∇ |ψα⟩) of all those four objects. While the role of the energy
bands and band velocities in such quantities is for the most part well known, consid-
erable attention has in recent decades shifted to the eigenstates |ψα(x)⟩. To put it

1This is because of the normalization ⟨Ψα(k)|Ψβ(k)⟩ = δαβ . However, note that, since more
generally ⟨Ψα(k)|Ψβ(k

′)⟩ = δαβδkk′ , one has ⟨ψα(k)|ψα(k
′)⟩ ≠ δkk′ according to Eq. (1.2), which is

crucial for the existence of quantum geometry, as we will see in Eq. (1.15) below.
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Fig. 1.1 – (a) The unperturbed system H has an intrinsic parameter dependence. (b) This depen-
dence is unveiled or “explored” by the physical response of the system to a perturbation. The part of
the physical response determined by the eigenstates and their parametric derivatives is the quantum
geometric one.

simply, the subject of quantum geometry is to provide a quantitative theory of the
information encoded in the geometry, that is, the x-dependence, of the eigenstates,
and to describe how this geometry is unveiled in the physical properties of the system
of interest. A rough visual summary of these ideas is given in Fig. 1.1.

Historically, the first theories that contain quantum geometrical notions appeared
in the work of experts on band theory in the 1940s-1970s. Such theories addressed
interband effects in crystalline solids, and while the term “quantum geometry” was
not used at the time, most aspects of quantum geometry were already known. An
impressive summary of such approaches was given by Blount (1962b). In particular,
he explicitly introduced the most fundamental quantum geometric quantities, now
known as Berry connection and Berry curvature, 22 years before Berry’s seminal
paper (Berry 1984). Nevertheless, Blount’s work did not receive a lot of attention,
perhaps because it is rather formal and tailor-made for the specific language of band
theory (x = k), instead of adopting a general point of view independent of the
particular parameter space. Most importantly, at the time there was a lack of simple
models to illustrate quantum geometric effects, and no link to topological concepts
was established.

In contrast, the modern theory of quantum geometry, mainly established by Berry
(1984), describes quantum geometry as a universal phenomenon applying to any
parameter-dependent system H(x), and provides direct links to topology. In par-
ticular, Berry’s theory was greatly popularized by the concurrent discovery of the
quantum Hall effect (Klitzing et al. 1980). Indeed, there is a deep connection be-
tween the topological interpretation of the quantum Hall effect (Thouless et al. 1982)
and Berry’s phase, as first pointed out by Simon (1983).

1.2.2 | Main objects of quantum geometry

Berry connection, curvature, and phase

The most important quantum geometric quantities known today are listed in the fol-
lowing. In accordance with the fundamental idea of quantum geometry formulated
above, they are all computed from the eigenstates |ψα(x)⟩ and their parametric deriva-
tives. The first quantity that should be mentioned is the Berry connection (Simon
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1983; Berry 1984)

Aα,j(x) ≡ − Im ⟨ψα(x)|∂jψα(x)⟩ = i⟨ψα(x)|∂jψα(x)⟩, (1.7)

a gauge field that plays a role analogous to an electromagnetic vector potential. It
can also conveniently be written in the vectorial form Aα = (Aα,1,Aα,2, ...). A second
important object is the Berry curvature

Ωα,ij(x) = ∂iAα,j(x)− ∂jAα,i(x) = −2 Im⟨∂iψα(x)|∂jψα(x)⟩, (1.8)

which is the corresponding antisymmetric gauge-invariant tensor and plays a role
analogous to a magnetic field. In a 3D parameter space, which will be the most
important scenario during this thesis, it can be written in the form of a pseudovector
as

Ωα(x) = ∇x ×Aα(x) = (Ωα,23(x),Ωα,31(x),Ωα,12(x)). (1.9)

Finally, the Berry phase

γα =

∮
Aα(x) · dx (1.10)

is accumulated when the Hamiltonian traverses a closed loop in parameter space.
While the Berry connection is gauge-dependent, the Berry phase of a closed loop is
gauge-invariant (modulo 2π). It can be viewed as being analogous to a magnetic flux.

The importance of Berry connection, curvature and phase for contemporary quan-
tum theory, and particularly for condensed matter physics, cannot be overstated. The
perhaps most simple and pedagogical example illustrating their role is the Aharonov-
Bohm effect, which can be viewed as a Berry phase effect (Berry 1984). Later in this
chapter, we will mention in more detail some additional physical situations where the
Berry quantities appear.

Quantum metric and quantum geometric tensor

Besides the Berry quantities, there are other important and closely related quantum
geometric objects, most prominently the quantum metric (Provost and Vallee 1980)

gα,ij(x) = Re ⟨∂iψα(x)|∂jψα(x)⟩ − Aα,i(x)Aα,j(x). (1.11)

It is a metric tensor of Riemannian kind, familiar from differential geometry and
general relativity, and moreover it can be viewed as the symmetric counterpart of
the Berry curvature. A convenient way to illustrate this consists in introducing the
quantum geometric tensor (QGT) (Berry 1989; Resta 2011; Kolodrubetz et al. 2017):

Tα,ij(x) = ReTα,ij(x) + i ImTα,ij(x) = gα,ij(x)−
i

2
Ωα,ij(x). (1.12)

The QGT unifies quantum metric (real part) and Berry curvature (imaginary part)
in a single complex gauge-invariant tensor field. An explicit expression for the QGT,
summarizing Eqs. (1.8) and (1.11), is

Tα,ij(x) = ⟨∂iψα(x)| [1N − Pα(x)] |∂jψα(x)⟩ , (1.13)
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where we have introduced the eigenprojector Pα(x) = |ψα(x)⟩ ⟨ψα(x)| for the band α.
The influence of the quantum metric on physical effects is more subtle than that of
Berry connection, curvature and phase, but it has started to attract growing attention
in recent years, as we discuss in more detail later in this chapter.

1.2.3 | Origin of quantum geometry

Let us elucidate the origin of the main quantum geometric quantities listed above.
Suppose again that we have a quantum system (1.6). Upon a variation of parameters,
the Hamiltonian changes as

H(x+∆x) ≈ H(x) +∇xH ·∆x. (1.14)

It is now important to realize that the latter term is not diagonal in the eigenbasis of
the unperturbed Hamiltonian, since in general ⟨ψα|∇xH ·∆x|ψβ⟩ ̸= 0 for β ̸= α. In
other words, when the parameters are varied, any state |ψα⟩ feels the presence of the
other states |ψβ⟩ of the system via interband coupling mediated by the gradients of
the Hamiltonian. Roughly speaking, this is how interband (geometric) effects come
about when an external perturbation is applied to a crystal (compare also Fig. 1.1).

To make this idea more quantitative, it is instructive to study the evolution of
a single eigenstate when the parameters are varied.2 Namely, consider the overlap
(Provost and Vallee 1980)

⟨ψα(x)|ψα(x+∆x)⟩ = Fαe
−i∆φα , (1.15)

where Fα = | ⟨ψα(x)|ψα(x+∆x)⟩ |. Such an overlap is non-zero whenever the states
do not form an orthonormal basis in x-space, as is the case, for example, for the
lattice-periodic part |ψα(k)⟩ of the Bloch states (1.2). Let us expand the overlap
(1.15) in a Taylor series as

⟨ψα(x)|ψα(x+∆x)⟩ = 1 +
∑
i

⟨ψα(x)|∂iψα(x)⟩∆xi

+
1

2

∑
ij

⟨ψα(x)|∂ijψα(x)⟩∆xi∆xj +O(|∆x|3).
(1.16)

Separating into real and imaginary parts, one then has

Fα cos∆φα = 1− 1

2

∑
ij

Re⟨∂iψα(x)|∂jψα(x)⟩∆xi∆xj ,

Fα sin∆φα =
∑
i

Aα,i(x)∆xi −
1

2

∑
ij

Im⟨ψα(x)|∂ijψα(x)⟩∆xi∆xj
(1.17)

2Such an ansatz assumes the eigenstates to be non-degenerate, and implicitly separates the in-
traband coupling ⟨ψα(x)|ψα(x

′)⟩ (slow dynamics) from the interband coupling ⟨ψα(x)|ψα′(x)⟩ (fast
dynamics). More precisely, by projecting to a single eigenstate, one effectively integrates out the
fast (interband) dynamics, but with a memory encoded in the quantum geometric structure (Berry
1989; Cayssol and Fuchs 2021). Accordingly, all quantum geometric quantities that we consider are
associated to a single eigenstate labeled by α.
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to quadratic order in |∆x|, where we used Re ⟨ψα|∂ijψα⟩ = −Re ⟨∂iψα|∂jψα⟩, and
where the Berry connection defined in Eq. (1.7) already pops up.

Consider now the limit of states infinitesimally close in parameter space, which
will give rise to the Berry quantities and the quantum metric in a natural way. From
Eq. (1.17) we can immediately write down the infinitesimal phase difference of the
overlap as

dφα =
∑
i

Aα,i(x)dxi +O(|dx|2), (1.18)

which is just the infinitesimal Berry phase according to Eq. (1.10). Moreover, the
modulus Fα allows to define the quantum metric via the relation (Provost and Vallee
1980; Berry 1989)

ds2 =
∑
ij

gα,ij(x)dxidxj ≡ 1− | ⟨ψα(x)|ψα(x+ dx)⟩ |2. (1.19)

This is known as the Hilbert-Schmidt quantum distance. Note that is reasonable that
the line element ds2 should vanish if the neighboring states |ψα(x)⟩ and |ψα(x+ dx)⟩
have an inner product of modulus one, while it should be maximal (ds2 = 1) if the
states are orthogonal. Computing F2

α to second order in |∆x| from Eq. (1.17) and
taking the continuum limit, one readily finds that the quantum metric defined by Eq.
(1.19) takes the explicit form (1.11) in terms of eigenstates.

There is an alternative expression for the QGT, which explicitly emphasizes the
interband nature of the phenomenon, and the fact that quantum geometry cannot
exist in a single-band system. Namely, rewrite the QGT of Eq. (1.13) as Tα,ij =∑

β ̸=α⟨∂iψα|Pβ|∂jψα⟩ and use the identity

⟨ψβ(x)|∂iH(x)|ψα(x)⟩ = (ϵα(x)− ϵβ(x))⟨ψβ(x)|∂iψα(x)⟩, (1.20)

which is valid for β ̸= α, as can be easily seen by differentiating the Schrödinger
equation (1.6). Then one has

Tα,ij(x) =
∑
β ̸=α

⟨ψα(x)| ∂iH(x) |ψβ(x)⟩ ⟨ψβ(x)| ∂jH(x) |ψα(x)⟩
[ϵα(x)− ϵβ(x)]2

. (1.21)

At a conceptual level, Eq. (1.21) clearly shows that the QGT of a given band α can
be viewed as being due to virtual interband transitions between α and all other bands
β ̸= α. At a practical level, it involves the parametric velocity operators ∂iH instead
of derivatives of eigenstates, which is convenient for computation. Therefore, it is the
most common formula used for computing the QGT.

Here we have presented the essence of quantum geometry from a modern and
practical point of view. However, one should be aware that there is much early work
that adopts somewhat different perspectives on quantum geometry. For example, as
already mentioned, a very mature theory of interband effects was developed in the
1940s-1970s in the solid-state physics community. In Appendix I.B we present some
key ideas of this theory, based on the review of Blount (1962b). A second perspective
that we have mentioned views quantum geometry as arising from the variation of a
given eigenstate in parameter space. A popular and rather visual way to formulate
this consists in a parallel transport approach, see for example Berry (1989).
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1.3 | Topology in band theory

Topology, as a branch of mathematics, historically arose from the classification of
shapes of 3D objects such as spheres, tori, et cetera. Its general purpose is to describe
properties of sets (topological spaces) that are unchanged when certain continuous
deformations are applied. Topology crucially relies on topological invariants, that is,
integer numbers that cannot change smoothly during any deformation, but only in
jumps. The classic example is that of a donut and a coffee mug, which are topologically
equivalent because they can be smoothly deformed into each other without changing
the topological invariant g = 1 that counts the number of holes.

In condensed matter physics, topological notions are associated to the (electronic)
ground state of the system. In particular, if one manages to create a ground state
labeled by some topological invariant, one can expect it to be robust to certain lo-
cal deformations, such as impurities and disorder, until, upon applying too strong a
deformation or upon breaking an important symmetry, the topological invariant is
changed abruptly. If observable properties of the system can be linked to the topo-
logical invariant, one can expect them to not change at all as long as the topological
invariant remains unchanged. This kind of exceptional robustness afforded by topo-
logical protection cannot be reached by any other means, and one hopes to put it to
use in future electronic devices, explaining the current burst of interest in topological
matter.

The quantum Hall effect (Klitzing et al. 1980) constitutes a prime example for such
physics, where the relevant topological number is the Thouless-Kohmoto-Nightingale-
den Nijs invariant (Thouless et al. 1982; Avron et al. 1983), an example of a Chern
number. The relevant observable linked to this number is the Hall conductivity. As
a consequence of the topological protection, there is an extraordinary precision of the
Hall conductivity quantization.

In the following, we first give a brief overview of the vast number of topological
systems in condensed matter known today, and then provide a link to the main
topic of interest in this thesis, namely quantum geometry. More details on physical
consequences of topology will be given in Section 1.5 below.

1.3.1 | Zoo of topological matter

The quantum Hall effect is one of the earliest and most striking manifestations of
topological quantum physics, but it requires rather extreme conditions, in particular
a very strong external magnetic field. During the last two decades, however, it has
become clear that topological effects in condensed matter are actually rather ubiqui-
tous and do not necessarily require extreme conditions. A vast amount of topological
phases has been identified.

First, and foremost, insulating phases. This class includes quantum Hall systems
and their cousins, most notably 2D quantum spin Hall insulators (Maciejko et al.
2011) and quantum anomalous Hall insulators (Weng et al. 2015), as well as spin-
orbit induced 3D topological insulators (Hasan and Moore 2011). All these systems
are characterized by a stable topology and classified by the tenfold way scheme (Ryu et
al. 2010). The tenfold way symmetry class they belong to predicts what perturbations



8 1 |Quantum geometry and topology in solid-state physics

the topological phases are robust to. For example, the quantum Hall state belongs
to symmetry class A, where all relevant symmetries (time-reversal, particle-hole and
chiral symmetries) are broken, such that it is robust to both magnetic and non-
magnetic disorder. In contrast, the quantum spin Hall and 3D topological insulators
belong to symmetry class AII, which requires time-reversal symmetry, thus they are
not robust to magnetic disorder. Indeed, the observed conductance plateaus in the
quantum spin Hall effect (König et al. 2007) are less perfect than those of the quantum
Hall effect.

Since the tenfold way classification is based only on non-spatial symmetries, it is
not sufficient to describe all topological phases that are possible in crystalline insu-
lators. In particular, the tenfold way can be extended to include spatial symmetries
(Shiozaki and Sato 2014; Ando and Fu 2015), such as reflections, rotations and trans-
lations. Moreover, recently, subtle types of topology were found, which evade the
tenfold way and its extensions altogether. Those include fragile topological (Po et al.
2018) and delicate topological (Nelson et al. 2021) insulators. Delicate topological
insulators are of relevance to Chapter 5.

A second main class of topological phases consists of semimetals, most notably
the widely studied Dirac and Weyl semimetals (Armitage et al. 2018) as well as un-
conventional multifold semimetals (Lv et al. 2021). The latter will play an important
role in Chapter 5. For semimetals, the topological classification applies to the Fermi
surface instead of the ground state. The classification can again be carried out con-
sidering only non-spatial symmetries (Matsuura et al. 2013), and can be enriched by
adding spatial symmetries (Chiu et al. 2016).

While the topologically non-trivial insulators and semimetals mentioned above
arise from single-particle physics, topological phases can also exist in the presence of
interactions. The simplest case, namely topological superconductors treated at the
mean-field level (Sato and Ando 2017), can be viewed as an effective single-particle
problem and thus fits into the framework of the standard tenfold way. However gen-
uinely interacting phases do not. For example, interactions may alter the symmetry
classification or induce completely new topological phases, but this is a wide field
in itself (Rachel 2018), which we will not delve into any further. Finally, beyond
electronic systems, the same ideas can be applied to cold atoms (Cooper et al. 2019),
light (Ozawa et al. 2019), metamaterials (Xin et al. 2020), and so on.

1.3.2 | Topology versus quantum geometry

While at first glance only concerned with global properties of a system, topology
is actually closely linked to geometry. For example, the Euler characteristic NEuler

classifying the shape of a Riemannian manifold M can be linked to the Gaussian
curvature of M and the geodesic curvature of its boundary ∂M through the theorem
of Gauss-Bonnet (Carmo 2016). For a two-sphere S2 of radius R, it follows

NEuler =
1

2π

∫
S2
dA

1

R2
= 2, (1.22)

and the same Euler characteristic is associated to any surface homeomorphic to a
sphere.
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Fig. 1.2 – (a) Toroidal Brillouin zone for a 2D crystal. (b) In a topological semimetal (in particular
a Weyl semimetal), the integration domain for the local Chern number is a 2D surface enclosing a
given energy crossing point. (c) The Brillouin zone for a 3D crystal is a three-torus, which can be
formed from a cube by connecting the faces that have matching arrows.

In a similar way, the topology of a quantum system is intricately linked to quantum
geometry. Roughly speaking, while quantum geometry concerns local (x-dependent)
properties, recall the discussion of Section 1.2, topology describes global features
of the parameter-dependent Hamiltonian H(x). This link explicitly appears when
computing topological invariants for most of the systems belonging to the zoo of
topological phases outlined above. More precisely, while there is a huge number of
different topological invariants specifying those phases, and while the precise way
how to compute those invariants depends on the dimension and symmetries of the
phase of interest, they are typically obtained by integrating k-dependent quantum
geometric densities over the Brillouin zone. Mathematically speaking, this is because
the invariants classify the topological properties of the Bloch fiber bundle: the base
space of this fiber bundle is the Brillouin zone (a torus TD for spatial dimension
D) containing k, and the fibers are complex vector spaces containing the eigenstates
|ψα(k)⟩.

Out of the zoo of known topological numbers, we here present only a selection
of three examples that will be of relevance later on (mostly in Chapter 5), namely
the Chern number of a 2D insulator and of a 3D semimetal (a stable topological
invariant), and the Hopf number of a 3D insulator (a delicate topological invariant).

The Chern number is the most famous topological number in solid-state physics,
since it is the relevant invariant for the quantum Hall effect (Thouless et al. 1982;
Avron et al. 1983). For a non-degenerate band α of an infinite 2D crystal, the corre-
sponding Chern number is just the integral of the Berry curvature over the Brillouin
zone [cf. Fig. 1.2(a)]:

NChern
α =

1

2π

∫
BZ
d2kΩα,xy(k). (1.23)

The total Chern number of the ground state is then obtained by summing over all
occupied bands: NChern =

∑
α∈occNChern

α . If this integer is non-zero, it implies that
the Chern class of the corresponding Bloch bundle is non-trivial, meaning that the
Bloch bundle is topologically inequivalent (“twisted”) to a trivial (“untwisted”) Bloch
bundle.

To characterize 3D topological semimetals (Lv et al. 2021), one also frequently
employs the concept of a Chern number. In accordance with the above discussion,



10 1 |Quantum geometry and topology in solid-state physics

the topology of interest is not that of the ground state, but that of the Fermi surface.
In such semimetals, there are usually several Fermi surface pockets such that the
topology can be defined only locally for each pocket. In particular, in the standard
case of a conical band crossing, see Fig. 1.2(b), and for a Fermi level close to the
crossing, the Fermi surface is a sphere, and the Chern number measures the flux of
Berry curvature (1.9) through that sphere:

Cα =
1

2π

∫
S2
dSq ·Ωα(q). (1.24)

Here the momentum q = (qx, qy, qz) is measured from the crossing point, around
which a low-energy theory (1.5) can be constructed.

Finally, let us mention the Hopf number. As we will describe in more detail
in Chapter 5, it was originally only defined for 3D two-band insulators (Moore et
al. 2008), but was very recently generalized to 3D multiband systems (Lapierre et
al. 2021). Being based on a multigap topological classification, the Hopf number
cannot be associated to an individual band or an occupied subspace. In contrast, it
is associated to the whole band structure. Nevertheless, the general expression can
again be written as an integral of a geometric k-space density over the Brillouin zone
[cf. Fig. 1.2(c)],

NHopf =
1

24π2

∫
BZ
d3k χ(k), χ(k) ≡ ϵijk Tr[ui(k)uj(k)uk(k)]. (1.25)

Here we have introduced the Hopf density χ(k), with ui(k) ≡ U †(k)∂iU(k), and
where U(k) is an N×N unitary matrix diagonalizing the N -band Bloch Hamiltonian
H(k). Repeated lower indices imply summation (Einstein convention) and ϵijk is the
Levi-Civita antisymmetric tensor.

1.4 | Example: From graphene to Chern insulators

An instructive way to illustrate quantum geometry, topology, and their interplay in
a bit more detail consists in studying simple toy models. In particular, here we will
discuss a minimal tight-binding model for graphene first introduced byWallace (1947),
as well as some extensions of it: Semenoff’s model for graphene with a sublattice
imbalance (Semenoff 1984), and Haldane’s model for a Chern (or quantum anomalous
Hall) insulator (Haldane 1988). Note that these models are not only instructive but
also experimentally realized: Semenoff insulators can describe hexagonal boron nitride
(hBN) monolayers or lattice-matched graphene/hBN heterostructures (Giovannetti et
al. 2007; Xiao et al. 2007), and quantum anomalous Hall insulators can be observed
in magnetic topological insulators or optical lattices (Chang et al. 2013; Jotzu et al.
2014).

The Wallace, Semenoff and Haldane models are ideal to address basic notions of
topological band theory in order of increasing complexity: a 2D Dirac semimetal like
graphene has a non-zero quantum metric but the Berry curvature vanishes (except
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Fig. 1.3 – Sketch of the tight-binding models for (a) graphene. (b) Semenoff’s trivial insulator. (c)
Haldane’s Chern insulator.

at singular points), and moreover there is no topology;3 a Semenoff insulator has
a quantum metric and a finite Berry curvature, but no topology; finally, Haldane’s
model has both non-vanishing quantum metric and Berry curvature, and moreover it
is topologically non-trivial, as measured by the Chern invariant (1.23).

A further reason why we consider these 2D two-band models is that, in Chapter 5,
we will introduce a class of 3D multiband systems (Hopf semimetals and insulators)
that are quite analogous in a sense to be made more precise.

1.4.1 | Dirac semimetal: Graphene

Graphene is a monolayer of carbon atoms arrayed in a 2D honeycomb structure,
characterized by a triangular Bravais lattice with two atoms A and B per unit cell,
and with Bravais vectors a1 =

√
3x̂ and a2 = 1

2(
√
3x̂ + 3ŷ) in units of the carbon-

carbon bond length a0 = 1, cf. Fig. 1.3(a). The carbon atoms form covalent sp2 bonds
in the plane, leaving one valence electron per atom in a pz orbital. The two energy
bands formed from those orbitals are described within a tight-binding approach by
the Bloch Hamiltonian (Cayssol and Fuchs 2021)

H(k) = h1(k)σ1 + h2(k)σ2,

h1(k) = t[cos(k · δ1) + cos(k · δ2) + cos(k · δ3)],
h2(k) = t[sin(k · δ1) + sin(k · δ2) + sin(k · δ3)].

(1.26)

Here, σi are Pauli matrices, t is the hopping amplitude between two adjacent carbon
atoms (in the following t = 1) and the vectors δ1,2 =

1
2(±

√
3, 1), δ3 = (0,−1) connect

a given B site to its three neighbors. The famous band structure associated to this
Bloch Hamiltonian reads

ϵα(k) = α

√
3 + 2 cos

(√
3kx

)
+ 4 cos

(√
3kx/2

)
cos(3ky/2), (1.27)

3By the absence of topology we mean the absence of a tenfold way bulk invariant. However, there
are certain topological numbers that can be defined in graphene, for example to predict termination-
dependent edge states of graphene ribbons (Delplace et al. 2011).
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Fig. 1.4 – (a) Off-diagonal element of the quantum metric for graphene. It is the same for both
bands. (b) Berry curvature for the valence band of the Semenoff insulator, and corresponding off-
diagonal quantum metric. In the plot ∆ = 1/2.

where α = ±1. Near the K (ξ = +) and K’ (ξ = −) valleys of the Brillouin zone,
located at

Kξ = −ξ 4π

3
√
3
(1, 0), (1.28)

the low-energy expansion of H(k) is given by

Hξ(q) = ξqxσ1 + qyσ2, (1.29)

with a low-energy dispersion ϵα(q) = α|q| that is dubbed “Dirac cone”. This name
stems from the fact that the 4×4 matrix HD(q) = antidiag(H+(q), H−(q)) capturing
both valleys is nothing else than a massless Dirac Hamiltonian. Hence, graphene is
called a 2D Dirac semimetal.

Due to the presence of the Dirac cones, indicating strong coupling between the
two bands, one expects interesting quantum geometric properties. While the Berry
curvature vanishes everywhere in the Brillouin zone (except at the band crossing
points where it is ill-defined) due to the simultaneous presence of time-reversal and
inversion symmetry, the quantum metric is non-zero and strongly enhanced in the
vicinity of the crossing points. For example, the off-diagonal element reads4

gα,xy(k) =

√
3

4ϵ4α(k)
sin

(√
3kx
2

)
sin

(
3ky
2

)

×

[
cos
(√

3kx

)
− cos

(√
3kx
2

)
cos

(
3ky
2

)]
,

(1.30)

which is plotted in Fig. 1.4(a). This quantum geometry hidden in the crossing points
remains however rather obscure in the semimetallic case. It emerges more clearly
upon gapping out the system, and indeed graphene can be viewed as a precursor for
non-trivial insulators, as discussed in the following.

4The explicit expressions for quantum metric and Berry curvature presented in this section can
in principle be obtained from Eqs. (1.13) or (1.21), but it is much more practical to use Eq. (2.41)
introduced below.
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1.4.2 | Semenoff insulator

Suppose the carbon atom on one of the graphene sublattices is exchanged by some
other kind of atom. More generally, suppose a 2D hexagonal layer with two different
kinds of atoms, for example boron nitride. A minimal model to describe such a layer
consists in adding a staggered onsite potential to the Hamiltonian (1.26), such that

H(k) = h1(k)σ1 + h2(k)σ2 +∆σ3, (1.31)

see Fig. 1.3(b). Again we focus on the quantum geometry. Since inversion symmetry
is broken, the Berry curvature of the two bands is now allowed to be non-zero, and
given by

Ωα,xy(k) = −
√
3∆

ϵ3α(k)
w∆(k), w∆(k) ≡ sin(k12/2) sin(k23/2) sin(k31/2), (1.32)

where ϵα(k) are the eigenvalues of the Hamiltonian (1.31) and kij = k · δij with
δij ≡ (δi − δj). This Berry curvature field is plotted in Fig. 1.4(b). Clearly, it is
peaked at the K and K’ points and becomes singular in the limit ∆ → 0. From Fig.
1.4(b), it can also be seen that the quantum metric is weakened as compared to the
semimetallic case, as expected: In the limit ∆ → ∞ the bands are decoupled and no
interband effects can exist. Note further that while the Berry curvature map has the
threefold rotation symmetry of the staggered graphene lattice, each component of the
quantum metric does not.

Although the Berry curvature is non-zero and quite interesting, the Chern number
(1.23) vanishes for the Semenoff insulator. This is because the time-reversal symmetry
of the system imposes that the Berry curvature must be odd in k. Hence, the Semenoff
model describes an insulator that is topologically trivial.

1.4.3 | Chern insulator: Haldane’s model

The tight-binding model presented in the following was not directly motivated by
an experimentally accessible system. It was devised by Haldane (1988) as a proof
of principle, demonstrating that the existence of conductance plateaus of the kind
encountered in the quantum Hall effect does not necessarily require the presence of an
external magnetic field; instead, the general condition is to obtain a non-zero Chern
number by breaking time-reversal symmetry. In Haldane’s model, this is achieved
by adding certain complex second-neighbor hoppings t′eiϕ to the Semenoff insulator,
see Fig. 1.3(c). They are designed such that a pattern of local magnetic fluxes
of opposite signs emerges, which breaks time-reversal symmetry but corresponds to
a vanishing net magnetic field. Accordingly, the quantum states giving rise to the
Chern number (1.23) are simply standard Bloch states, unlike in the treatment of the
quantum Hall effect where they are magnetic Bloch states (Thouless et al. 1982). For
this reason, Haldane’s model can be viewed as reproducing quantum Hall physics in
a strongly simplified setup, and also as the first example of an intrinsic topological
band insulator.

The Bloch Hamiltonian of Haldane’s model is given by

H(k) = h0(k)12 + h1(k)σ1 + h2(k)σ2 + h3(k)σ3, (1.33)
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Fig. 1.5 – (a) Topological phase diagram for Haldane’s model. The Berry curvature for the valence
band at point (i), ϕ = 0, is essentially as in Fig. 1.4(b). At point (ii), ϕ = π/10, it takes the
form shown in panel (b), and at point (iii), ϕ = π/2, it takes the form shown in (c). In both plots
t′ = ∆ = 1/2.

where h1,2(k) are the same as before, and additionally

h0(k) = 2t′ cosϕ (cos k12 + cos k23 + cos k31),

h3(k) = ∆− 2t′ sinϕ (sin k12 + sin k23 + sin k31).
(1.34)

The important term here is h3(k), which breaks inversion symmetry if ∆ ̸= 0 and
time-reversal symmetry if t′ ̸= 0, sinϕ ̸= 0. The Berry curvature reads

Ωα,xy(k) = −
√
3

ϵ3α(k)
[∆w∆(k)− t′ sinϕwϕ(k)],

wϕ(k) = cos k12 + cos k23 + cos k31

− 1

2

(
3 + cos2 k12 + cos2 k23 + cos2 k31

)
,

(1.35)

where ϵα(k) are the eigenvalues of the Hamiltonian (1.33). The first term is essentially
the same as for the Semenoff insulator, while the second term, which is even in k, is
a signature of broken time-reversal symmetry. Computing the Chern number (1.23),
one obtains a phase diagram as shown in Fig. 1.5(a). The system is an insulator
for all parameter values except if ∆ = ±3

√
3t′ sinϕ. This critical line separates

topologically trivial from non-trivial regions. The non-trivial regions have a Berry
curvature distribution in the Brillouin zone that does not integrate to zero, see Fig.
1.5(b) and (c).

1.5 | Influence of geometry and topology on physics

Having outlined the basic aspects of quantum geometry and topology, we now want
to illustrate that both play a crucial role for physical observables. Roughly speaking,
one can say that (i) quantum geometric effects are much more ubiquitous than topo-
logical ones, but that (ii) topological effects are more striking. The former statement
(i) is explained by the fact that quantum geometric densities are often non-trivial
even if the associated topological number vanishes (as for the Semenoff insulator).



1.5 | Influence of geometry and topology on physics 15

As a consequence, quantum geometric (interband) contributions to observables are
ubiquitous even in the absence of topology. The latter statement (ii) is quite ob-
vious from the fact that non-trivial topological numbers are intrinsically associated
to quantization of some physical phenomenon, and thus to very clear experimental
signatures (as for the quantum Hall effect). In contrast, non-topological quantum
geometric contributions compete with conventional (single-band) contributions, and
are not necessarily sizeable or easily distinguishable.

We start by discussing the edge states of topological systems and some of their
physical consequences. We then shift attention to systems that are in general topo-
logically trivial but still exhibit important physical signatures caused by quantum
geometric effects. As examples we choose the orbital magnetism of crystals, the
superfluid weight of superconductors, and magnetotransport (as described by semi-
classical Boltzmann theory). We hope to convey how ubiquitous quantum geometric
effects are, motivating the in-depth study of quantum geometry conducted later in
this thesis.

1.5.1 | Topological edge states

In general, one considers the most relevant signature of a topologically non-trivial
solid to be the existence of edge states. The particularity of such edge states consists
in the topological protection, the details of which are determined by the symmetry
class, recall the discussion in Section 1.3.1.

Topological edge states in insulators

The standard argument for the existence of topological edge states in band insulators5

is the following. By the rules of the tenfold way classification, any two insulating bulk
Hamiltonians H and H ′ are topologically equivalent if there exists a continuous path
H(λ) = λH + (1 − λ)H ′ connecting them such that the band gap (at the Fermi
level) stays open and the same relevant symmetries are present for any λ. This
equivalence is expressed in the existence of a topological number that is independent
of λ. Conversely, if we start out with two bulk Hamiltonians H and H ′ with different
topological numbers and interpolate between them, then the band gap necessarily
has to close at some critical value λ = λ0. For example, in agreement with this fact,
the Haldane model (1.33) is a semimetal along the transition line in Fig. 1.5(a), as
discussed in more detail by Thonhauser and Vanderbilt (2006).

Now, if we imagine a finite sample of a topological insulator embedded in a trivial
insulator (say surrounded by the ambient atmosphere or vacuum), the real-space
coordinate perpendicular to the edge/surface plays a role similar to λ, and the critical
region where the topological character of the system changes is just the edge of the
sample. Hence one expects the gap to close there, forming a (semi)metallic edge state.

5We here only address the well-established case of stable topological insulators. For very recent
work on the bulk-boundary correspondence of fragile topological insulators, see Hwang et al. (2019)
and Song et al. (2020). Similarly, for the bulk-boundary correspondence of delicate topological
insulators, see the work of Alexandradinata et al. (2021), Lapierre et al. (2021), as well as Nelson
et al. (2022).
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Fig. 1.6 – (a) Ribbon of a Haldane model in the NChern = 1 phase, with zigzag edges. Colored
arrows indicate propagation of the topological edge states. (b) Sketch of the corresponding energy
spectrum, with helical topological in-gap modes. Such a spectrum can be easily obtained numerically,
see Hao et al. (2008) for details.

This simple and general argument is known as bulk-boundary correspondence.
However, while it tells us that something should happen at the edges of topolog-
ical insulators, it does not immediately tell us any details about the number and
properties of the boundary states. Therefore, the determination of the precise na-
ture of the bulk-boundary correspondence has mostly been done in a case-by-case
way, for example for quantum Hall insulators (Rammal et al. 1983; Niu and Thouless
1987; Hatsugai 1997), topological superconductors (Ryu and Hatsugai 2002), Chern
insulators (Hao et al. 2008), quantum spin Hall insulators (Zhou et al. 2008), and
3D topological insulators (Isaev et al. 2011). Indeed, it is difficult to formulate a
universal and precise bulk-boundary correspondence that works for any dimension
and symmetries, but some efforts towards more universal definitions exist (Mong and
Shivamoggi 2011; Essin and Gurarie 2011; Rhim et al. 2018).

As a concrete example, let us consider the consequences of the bulk-boundary
correspondence for a Haldane insulator. Suppose we take a ribbon of the Haldane
model which is infinite in the x̂-direction, but finite in the ŷ-direction and terminated
by an armchair edge, see Fig. 1.6(a). If the parameters are chosen such that the
bulk Haldane model is in the NChern = 1 phase, one can view the situation as a
junction between a Chern insulator and a trivial insulator, such that the difference in
the Chern number across the interface is ∆NChern = 1 (∆NChern = −1) for the lower
(upper) interface. One can show that this number is equal to the difference nR − nL
in the number of right- and left-moving topological edge states (Kane 2013). Indeed,
this is confirmed by a numerical calculation of the ribbon energy spectrum (Hao et al.
2008), which exhibits one right-mover (left-mover) localized at the lower (upper) edge
within the bulk gap, see Fig. 1.6(b).

Topological edge states in semimetals

In semimetals, one also encounters a close link between topological invariants and
the presence of edge state (Matsuura et al. 2013). Here we content ourselves with
giving an example that will be important to Chapter 5, namely 3D Weyl semimetals
(Armitage et al. 2018). They exhibit pairs of band crossing points near the Fermi
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Fig. 1.7 – (a) A pair of Weyl points acts as a monopole/anti-monopole pair of Berry curvature.
Parameters are taken as ti = 1, m = 2 and k0 = π/2. (b) Topological Fermi arc states connecting
the Weyl node projection appear in the surface Brillouin zone.

level, where the low-energy theory for each crossing point can be written as

Hγ
W(q) = γ q · σ = γ(qxσ1 + qyσ2 + qzσ3), (1.36)

which is known as a Weyl Hamiltonian (Weyl 1929) of chirality γ = ±. The energy
dispersion is conical [cf. Fig. 1.2(b)], dubbed “Weyl cone”, and the crossing points
act as monopole sources or sinks of Berry curvature (Berry 1984; Berry 1985; Volovik
1987; Fang et al. 2003). Indeed, the Berry curvature pseudovector (1.9) around each
crossing, computed in the parameter space x = q, is given by

Ωα(q) = Cα
q

2|q|3
, (1.37)

where α = ± and where Cα = −γα is a Chern number in the sense of Eq. (1.24). To
explain the occurrence of topological edge states, let us consider the simplest possible
model6 of a Weyl semimetal, introduced by Yang et al. (2011), which breaks time-
reversal symmetry and features a single pair of Weyl nodes at k0 = ±(0, 0, k0), where
k0 > 0. The model is given by

H(k) = h1(k)σ1 + h2(k)σ2 + h3(k)σ3,

h1(k) = [m(2− cos kx − cos ky)− 2tz(cos kz + cos k0)],

h2(k) = 2tx sin kx,

h3(k) = 2ty sin ky.

(1.38)

The Berry curvature pseudovector field Ω+(k) of the conduction band is plotted in
Fig. 1.7(a). Clearly, the lower Weyl point acts as a source, while the upper Weyl
point acts as a sink of Berry curvature flux.

6It is not possible to have a single unpaired Weyl point, which can be viewed as a manifestation
of a theorem by Nielsen and Ninomiya (1981).
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Therefore, for any fixed kz = ∆ such that |∆| < k0, the effective 2D Hamiltonian
H(kx, ky,∆) is a Chern insulator, while it is a trivial insulator if k0 < |∆| ≤ π. This
is easily confirmed by computing the Chern number (1.23) of the model (1.38) for
some arbitrary values of k0, ti and m. For example, taking the parameters used for
the plot in Fig. 1.7(a), we have NChern

α = α, and thus the occupied subspace has
|NChern| = 1 whenever |∆| < k0 and the Fermi level is not too far away from half
filling. Recall now from Fig. 1.6 that, for a given Fermi level in the gap of a finite
Chern insulator with |NChern| = 1, there is a single edge state which corresponds to a
point in the 1D surface Brillouin zone. Thus, for a finite sample of a Weyl semimetal,
any surface that is not perpendicular to the direction connecting the Weyl points will
exhibit topological surface states which form a 1D line connecting the projection of
the Weyl points into the 2D surface Brillouin zone, cf. Fig. 1.7(b). These states are
known as Fermi arcs, see Armitage et al. (2018) for more details.

1.5.2 | Physical consequences of topological edge states

One evident method to probe topological edge states consists in direct observation, for
example using angle-resolved photoemission spectroscopy (Xia et al. 2009). However,
here we want to focus on the perhaps most useful type of probe, namely electronic
transport. It reveals striking signatures of the protected edge states. We restrict our
attention to the (anomalous) Hall conductivity, which we will come back to later in
this thesis.

Thouless et al. (1982) were the first to draw attention to the topological character
of the quantum Hall phase, by computing the Hall conductivity of an infinite 2D
electron gas subject to a magnetic field and a periodic potential from linear response
theory. They found that the Hall conductivity at zero temperature can be written as
(Kohmoto 1985)

σHxy = −e2
∑

α∈occ.

∫
MBZ

d2k̃

(2π)2
Ωα,xy(k̃), (1.39)

where the Fermi level is assumed to lie within a gap and the sum runs over occupied
bands. The quantum numbers k̃ live in an effective Brillouin zone determined by the
number of magnetic flux quanta per unit cell, and integration is over this magnetic
Brillouin zone. Accordingly, the Berry curvature is defined from magnetic Bloch
states. One easily recognizes the formal agreement with the Chern number (1.23),
such that the Hall conductivity is expected to be quantized in units7 of e2/(2π), and
this is indeed observed experimentally (Klitzing et al. 1980).

At first glance, the excellent agreement of Eq. (1.39) with the experimental re-
sults is somewhat surprising for two reasons. First, in the experiments on 2D electron
gases, there is typically no periodic potential. Second, the fact that any quantum
Hall sample is necessarily finite is completely neglected in Eq. (1.39). The first issue
may be resolved by arguing that one can take the magnitude of the periodic poten-
tial small while keeping the periodicity constant, which should essentially reproduce
the 2D electron gas scenario. The second issue is resolved by the bulk-boundary
correspondence.

7We use ℏ = 1 throughout the thesis, such that h = 2π.
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Halperin (1982) first pointed out that edge currents should play a crucial role in a
finite quantum Hall sample. More precisely, he argued that the number of filled Lan-
dau levels, determining the Hall plateaus, is equal to the number of edge channels, and
that the latter carry the Hall current. Important improvements of Halperin’s theory
(Niu and Thouless 1987; Büttiker 1988) take into account realistic device geometries
and emphasize several characteristic length scales at play (magnetic length, elastic
and inelastic scattering lengths, sample dimensions, etc.). This Halperin-Büttiker
theory of edge channels has been qualitatively confirmed by many experiments. In
its simplest form, the bulk-boundary correspondence implied by this theory can be
written as

# of filled bulk Landau levels = # of edge channels = NChern. (1.40)

For more details on the bulk-boundary correspondence of quantum Hall systems, see
the review article by Hatsugai (1997).

In the absence of an external magnetic field, the standard Hall effect and also the
quantum Hall effect described above do not exist. However, if time-reversal symme-
try is broken by some other means, for example, by magnetic textures, by magnetic
impurities, or by the complex hoppings in Haldane’s model, a Hall effect can still
occur. This is known as anomalous Hall effect (Nagaosa et al. 2010). The anomalous
Hall effect has several contributions, which can be separated into intrinsic and ex-
trinsic. The former are determined only by the band geometry of the perfect crystal,
while the latter, known as skew-scattering and side-jump contributions, are disorder-
related. At low temperature, intrinsic, skew-scattering and side-jump contributions
are of comparable magnitude, while the intrinsic contribution tends to dominate at
higher temperatures (Yue and Jin 2017).

In this thesis, we exclusively focus on the intrinsic contribution to the anomalous
Hall (AH) conductivity, which in two dimensions and at zero temperature takes the
simple form (Nagaosa et al. 2010)

σAH
xy = −e2

∑
α∈occ.

∫
BZ

d2k

(2π)2
Ωα,xy(k) = − e2

2π
NChern. (1.41)

Here, k is just the regular crystal momentum, the Berry curvature is constructed
from standard Bloch states and integration is over the standard Brillouin zone. If
NChern ̸= 0, the conductivity (1.41) clearly reproduces quantum Hall physics in the
framework of a standard band insulator, explaining the equivalence of the terms
“Chern insulator” and “quantum anomalous Hall insulator”. For realizations of such
systems beyond Haldane’s model, see Weng et al. (2015) and He et al. (2018).

Importantly for our later purposes, the anomalous Hall effect also exists in 3D,
where the anomalous Hall conductivity at zero temperature takes the tensorial form

σAH
ij = −e2

∑
α∈occ.

∫
BZ

d3k

(2π)3
Ωα,ij(k), (1.42)

with i and j representing any of the three spatial coordinates. Since integration is
now over the 3D Brillouin zone, the integral does not represent a Chern number and
is not quantized in general.
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1.5.3 | Quantum geometry in orbital magnetism

We now turn our attention away from topology, and focus on physical phenomena
caused by quantum geometry alone. As a first example, we here discuss the orbital
magnetism of 2D crystals.

Orbital magnetism measures the response of a (spinless) electronic systems to an
external magnetic field B. For free electrons, one obtains the familiar cyclotron orbits,
but for a crystalline system the collective response of the electron gas to the magnetic
field is much more complicated to predict. While orbital magnetism is quite negligible
in standard magnetic materials such as Fe, Co and Ni (Meyer and Asch 1961), this is
not the case for all materials and a satisfying theory of magnetism obviously requires
a thorough understanding of the orbital part (Thonhauser 2011).

A first important step to tackle the orbital magnetic response of crystals was
taken by Peierls (1933), who generalized the work of Landau (1930) on the orbital
susceptibility of free electrons to the case of electrons in a single Bloch band with
dispersion ϵ(k). After many more efforts to generalize this, the orbital magnetization
(Xiao et al. 2005; Thonhauser et al. 2005) and orbital susceptibility (Gómez-Santos
and Stauber 2011; Raoux et al. 2015) of multiband systems are now rather well
understood. Here we present the main results in the form obtained by Raoux et al.
(2015).

Consider a 2D crystal in the presence of a perpendicular magnetic field B. The
relevant thermodynamic state function of the (spinless) electron gas is the grand
canonical potential

Ξ = −kBT
∫ ∞

−∞
dE ρ(E,B) ln

(
1 + e

−E−µ
kBT

)
, (1.43)

where kB is the Boltzmann constant, T absolute temperature, µ the chemical potential
and ρ the density of states. The orbital magnetic responses are derivatives of the grand
potential with respect to the magnetic field,

M = − 1

A

∂Ξ

∂B

∣∣∣∣
B→0

, χ = −µ0
A

∂2Ξ

∂B2

∣∣∣∣
B→0

, (1.44)

where M and χ denote the orbital magnetization and orbital magnetic susceptibility
of the system, respectively, A is the sample area, and µ0 is the vacuum permeability.
Since the density of states can be written as ρ = − 1

π ImTrG in terms of the system’s
retarded Green’s function G, one can develop a perturbation theory for M and χ by
expanding G, and thus the density of states, in powers of B. More precisely, in the
case of an N -band system, G is an N × N matrix whose diagonal elements can be
written as

Gii = G(0)
ii + G(1)

ii B + G(2)
ii B

2 + ... , (1.45)

where G(0) = G is the Green’s function without magnetic field that is determined by
the eigenvalues and eigenprojectors of the Bloch Hamiltonian:

G =
∑
α

Dα(k)Pα(k), Dα(k) ≡
1

E − ϵα(k) + iη
. (1.46)
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With this approach, one can show that the orbital magnetization is given by

M = −ekBT
π

∫
dE

∫
BZ

d2k

(2π)2
ln

(
1 + e

−E−µ
kBT

)
ImTr

(
G2HxGHy

)
, (1.47)

where the shorthand notation H i ≡ ∂iH(k) is used. This can be rewritten as

M =
∑
α

∫
BZ

d2k

(2π)2

[
f(ϵα(k))mα(k) + ekBT ln

(
1 + e

− ϵα(k)−µ
kBT

)
Ωα(k)

]
, (1.48)

where f(E) is the Fermi-Dirac distribution. Importantly, Eq. (1.48) allows one to
realize that M is purely quantum geometrical, that is, it vanishes in a single-band
system. Indeed, the Berry curvature Ωα ≡ Ωα,xy appears explicitly, and moreover
there is another geometric quantity, the orbital magnetic moment mα ≡ mα,xy, which
can be computed using matrix elements of the velocity operator by a formula very
similar to Eq. (1.21):

mα,ij(k) = e Im⟨∂iψα(k)| [H(k)− ϵα(k)] |∂jψα(k)⟩

= −e Im
∑
β ̸=α

⟨ψα(k)|∂iH(k)|ψβ(k)⟩⟨ψβ(k)|∂jH(k)|ψα(k)⟩
ϵα(k)− ϵβ(k)

.
(1.49)

Note that from a semiclassical point of view, the first term of the magnetization (1.48)
represents the rotation of the wave packet around its center of mass, while the second
term stems from the movement of the center of mass.

Similarly, one can compute the orbital magnetic susceptibility from this perturba-
tive approach. Let us first recall that, for a single-band system, the exact susceptibility
is obtained from the Landau-Peierls formula (Peierls 1933)

χLP =
µ0e

2

12

∫
BZ

d2k

(2π)2
f ′(ϵ(k))

[(
∂2xϵ(k)

) (
∂2yϵ(k)

)
− (∂x∂yϵ(k))

2
]
, (1.50)

which is completely determined by the band dispersion. The appropriate generaliza-
tion of the susceptibility to the multiband case is given by

χ = −µ0e
2

12π

∫
BZ

d2k

(2π)2

∫ ∞

−∞
dEf(E) ImTr(X ),

X = GHxxGHyy − (GHxy)2 + 4(GHxGHy)2 − 4(GHx)2(GHy)2.

(1.51)

Indeed, one recovers the Landau-Peierls formula when taking the one-band limit
H → ϵ and G → 1/(E − ϵ + iη). While the decomposition of the susceptibility
into geometrical quantities is much more involved than for the magnetization, one
can derive, at least for the two-band case, an explicit decomposition of the suscepti-
bility into contributions caused by quantum metric and Berry curvature (Raoux et al.
2015; Piéchon et al. 2016). This result, together with Eq. (1.48), shows the key role
played by quantum geometry in orbital magnetism.
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1.5.4 | Quantum geometry in the superfluid weight

The Meißner-Ochsenfeld effect describes the expulsion of an external magnetic field
by a standard superconductor, corresponding to ideal diamagnetism. A first qualita-
tive explanation of this phenomenon was given by London and London (1935), who
formulated the equation

js = −DsA (1.52)

for the current density of a superconductor. Here, the proportionality constant Ds is
known as the superfluid weight, which is related to the inverse square of the London
penetration depth, and A is the magnetic vector potential in the London gauge.

In a simplistic free electron theory, the superfluid weight is given by Ds = nse
2/m,

where ns is the density of superfluid electrons and m the electron mass.8 In a more
realistic approach, however, Ds is a material-dependent tensor to be determined from
microscopic considerations and experiments. In particular, for a quantum mechanical
description taking into account the periodic lattice potential of the superconducting
crystal, one expects a situation rather analogous to the orbital magnetism discussed
above: the external field induces a response whose characteristics (here Ds) are deter-
mined by the zero-field properties of the Bloch Hamiltonian, and in particular there
should be quantum geometric contributions caused by the Bloch states.

Indeed, discussing multiband superconductors within the standard framework of
Bardeen-Cooper-Schrieffer (BCS) theory and a mean-field approximation, Peotta and
Törmä (2015) and especially Liang et al. (2017) recently emphasized the importance
of such quantum geometric contributions to Ds. We here state some of their key
results to illustrate that the QGT encoded in the Bloch states is ubiquitous not only
in single-particle physics but also in many-body quantum phases.9

Consider a tight-binding Hamiltonian H = Hkin+HHub+Hchem on a lattice with
N inequivalent orbitals per unit cell, where the first term denotes the kinetic energy
corresponding to hopping between orbitals, the second term covers on-site Hubbard
interaction of strength U , and the last term is determined by the chemical potential µ.
Applying a mean-field approximation to the Hubbard term, the Hamiltonian can be
rewritten as H =

∑
kΨ

†(k)H(k)Ψ(k), with a Nambu spinor Ψ(k) and a Bogoliubov-
de Gennes (BdG) Hamiltonian

H(k) =

H↑(k)− µ1N M∆

M †
∆ −H∗

↓ (−k) + µ1N

 , (1.53)

which is a 2N × 2N matrix. Here, Hσ(k) is the Bloch Hamiltonian for spin σ =↑, ↓
and the order parameters in M∆ = diag(∆1, ...,∆N ) are proportional to U .

The superfluid weight can be derived either from the thermodynamic grand poten-
tial (similar in spirit to the orbital magnetism above) or from linear response theory.

8Note the analogy to Ohm’s law j = σE where the conductivity takes the form σ = ne2τ/m in a
simplistic Drude approach.

9Of course, since the mean-field approach essentially reduces the many-body problem to an ef-
fective single-particle problem, it is not surprising that interband effects appear in the same way as
in a non-superconducting crystal. Nevertheless, the effects captured by the mean-field approach are
expected to persist to some degree in an exact treatment.
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One finds the elements of the superfluid weight tensor to be given by (Liang et al.
2017)

Ds,ij =
∑
k

∑
αβγδ

Cαβγδ(k)[vi↑(k)]αβ[vj↓(−k)]γδ, (1.54)

where [viσ(k)]αβ = ⟨ψασ(k)|∂iHσ(k)|ψβσ(k)⟩ are matrix elements of the velocity op-
erator for a given spin sector. The coefficients Cαβγδ(k) depend on the Fermi-Dirac
distribution, the eigenenergies of the BdG Hamiltonian, and the expansion coefficients
of the BdG eigenstates into Bloch eigenstates. The conventional (intraband) contri-
bution to the superfluid weight, which is the only one that survives in a single-band
system, is given by all terms such that α = β and γ = δ. Note that, in the limit of
a flat band, the intraband contribution vanishes. This is similar to the orbital mag-
netic susceptibility, whose intraband (Landau-Peierls) part is zero for a flat band. All
terms with α ̸= β or γ ̸= δ are quantum geometric contributions, as can be easily
realized by recalling the identity (1.20), which relates off-diagonal elements of the
velocity operator to a non-Abelian Berry connection. One can make the dependence
of the superfluight weight on geometrical quantities even more explicit in certain spe-
cial cases. For example in the two-band case, the superfluid weight can be explicitly
related to the quantum metric (Liang et al. 2017).

1.5.5 | Quantum geometry in magnetotransport

We have seen that the quantized Hall effects are determined by (topologically non-
trivial) band geometry, but more generally transport phenomena contain quantum
geometric contributions also in the absence of topology. This is especially relevant
to 3D systems with strong interband coupling, such as Weyl and Dirac semimetals
(Armitage et al. 2018).

Consider a multiband system (1.3). Our goal is to obtain the linear response
electrical current ji =

∑
j σijEj in the presence of a magnetic field. A quantum

mechanical treatment of the magnetoconductivity σij is quite involved and no com-
plete theory clearly illustrating the role of band geometry exists. Therefore, it is very
popular to adopt a semiclassical approach, which indeed often yields very valuable
insights. The approach is based on the Boltzmann equation in the relaxation time
approximation (Ziman 1960):(

∂t + ṙ ·∇r + k̇ ·∇k

)
fα(k, r, t) = −1

τ
[fα(k, r, t)− f eqα (k, r, t)]. (1.55)

Here, r and k are the position and crystal momentum of a semiclassical wave packet
in the band α, fα(k, r, t) is the distribution function and f eqα (k, r, t) its equilibrium
part in the absence of an electric field. The second and third terms on the left-hand
side of Eq. (1.55) describe diffusion and drift of the wave packet, respectively, while
the right-hand side takes account of scattering with a phenomenological scattering
rate 1/τ .

To take account of geometrical effects, it is well known (Xiao et al. 2010; Cor-
tijo 2016) that the semiclassical equations of motion entering the Boltzmann equa-
tion (1.55) should be extended by terms due to the Berry curvature Ωα(k) and
the orbital magnetic moment mα(k). Here we assume a 3D system with Ωα(k) =
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(Ωα,yz,Ωα,zx,Ωα,xy), and with an orbital magnetic moment pseudovector mα(k) =
(mα,yz,mα,zx,mα,xy) whose components are given by Eq. (1.49). The semiclassical
equations of motion augmented by these quantities take the form

ṙ = wα(k)− k̇×Ωα(k), k̇ = −e(E+ ṙ×B), (1.56)

where e is the electron charge, wα(k) = vα(k)−∇k(mα(k) ·B) is the band velocity
in the presence of a Zeeman-like energy shift ϵα(k) → ϵ̃α(k) = ϵα(k)−mα(k) ·B, and
vα = ∇kϵα is the band velocity of the zero-field spectrum.

Upon inserting the equations of motion into the Boltzmann equation (1.55) and
solving for the distribution function, one can find several contributions to the electrical
conductivity tensor. In Appendix I.C, we conduct this procedure for a homogeneous
system and to first order in B. Under these conditions, one finds six contributions to
the electrical conductivity:

(i) The Drude conductivity (independent of B), which depends only on the band
velocity and is linear in the scattering time τ .

(ii) The standard Hall conductivity created by the Lorentz force (linear in B), which
also depends only on the zero-field spectrum and scales as τ2.

(iii) The anomalous Hall conductivity (independent of B), which is a pure quantum
geometric effect due to the Berry curvature and independent of the scattering
time.

(iv) A correction to the anomalous Hall effect which depends on both Berry curva-
ture and orbital magnetic moment and is linear in B.

(v) A magnetoconductivity (linear in B) induced by the Berry curvature, which
scales as τ .

(vi) Another magnetoconductivity (linear in B), induced by the orbital magnetic
moment, which also scales as τ .

All of these contributions except for the anomalous Hall conductivity are Fermi surface
effects, that is, they vanish if the Fermi level resides in a band gap.

In particular, we highlight three contributions [(iii), (v), and (vi)] that clearly
show the importance of quantum geometry in transport:

σAH
ij = −e2

∑
α

∫
d3k

(2π)3
f(ϵα)ϵijk(Ωα)k, (1.57a)

σBerry
ij (B) = −e3τ

∑
α

∫
d3k

(2π)3
f ′(ϵα) {−(Ωα ·B)(vα)i(vα)j (1.57b)

+(Ωα · vα) [(vα)iBj + (vα)jBi]} ,

σOMM
ij (B) = e2τ

∑
α

∫
d3k

(2π)3
f ′(ϵα) {−(mα ·B)∂j(vα)i (1.57c)

+ [(vα)i∂j(mα ·B) + (vα)j∂i(mα ·B)] /2} .
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Note that the anomalous Hall conductivity (1.57a) represents a finite-temperature
generalization of Eq. (1.42) mentioned above. Note also that, interestingly, it ap-
pears that the exact same contributions can be found from a microscopic quantum
mechanical approach (Könye and Ogata 2021), demonstrating the validity of the semi-
classical formalism (at least for linear response and small B). In Chapter 5, we will
make explicit use of Eq. (1.57) to compute the magnetoconductivity of a class of
multifold semimetals.

To close the chapter, we note that the quantum metric can also play a role in
transport, but its effects are less striking than those caused by the Berry curvature.
In a semiclassical treatment, the appearance of quantum metric effects requires an
appropriate ad-hoc modification of the semiclassical equations of motion in addition
to the modifications leading to Eq. (1.56). By a quantum mechanical derivation of the
(linear response) electrical conductivity, it was recently shown that a dissipative cor-
rection to the longitudinal intraband (Drude-like) contribution is directly determined
by the quantum metric (Mitscherling and Holder 2022). However this contribution
is expected to be sizeable only if the Fermi level is close to a Dirac point or inside a
very flat band. It is expected that the quantum metric will pop up in several other
contributions when such theories of the electrical conductivity are generalized to the
situation where a magnetic field is present.





Chapter 2

From two-band to multiband sys-
tems

Two-band models described by two-component equations of the form (1.3) or (1.5)
have proved invaluable for illustrating key aspects of geometrically or topologically
non-trivial semimetals and insulators. This is mostly because they are obviously the
simplest systems that can capture interband effects, but also when confronted with the
complicated band structure of a real crystal, it may be sufficient for certain purposes
to consider only an effective two-band model formed from the highest valence band
and lowest conduction band.

However, in many situations, it is required to go beyond the two-band scenario
and consider multiband models for which Eqs. (1.3) and (1.5) become N -component
linear algebra problems. This chapter motivates an in-depth study of such multiband
(N > 2) systems, with special attention to flat bands, multifold band crossings, and
their quantum geometry. This sets the stage for the original work on these topics
presented in Chapters 3–5.

Our motivation is primarily a physical one, inspired by two main classes of sys-
tems that will be described in the following. Namely, first, we discuss paradigmatic
flat-band systems such as Lieb, kagome, and pyrochlore lattices. They are relevant
to many experiments on both artificial systems and real crystals, as we will detail
further below. Second, we describe multifold band crossings characterized by an ef-
fective pseudospin Hamiltonian. They form the theoretical basis for understanding
the behavior of a large number of crystals belonging to the family of 3D topological
semimetals.

On the other hand, we also present a motivation from a more mathematical per-
spective by explaining why it is natural to expect rich and unconventional physics in
multiband (N > 2) systems. Namely, we provide some insight into the complicated
intrinsic structure of N -band systems encoded in the su(N) algebra underlying the
Hamiltonian, or alternatively in the Bloch spheres characterizing the internal param-
eter space. The mathematical insights and tools gained from this discussion will be
put to use frequently in later chapters.

2.1 | Physical motivation (I) – Flat bands

Flat bands are completely dispersionless energy bands. They have long been known to
develop in a two-dimensional electron gas in the presence of a magnetic field (Landau
1930), but can also occur in certain lattice systems, in which case there is at least

27
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one band with ϵα(k) = constant. While the first works on flat-band lattices were
mostly interested in ferromagnetism induced by the Hubbard interaction, as reviewed
by Tasaki (1998) and more recently by Derzhko et al. (2015), flat-band lattices are
now being widely studied in many electronic and artificial systems (Liu et al. 2014;
Leykam et al. 2018).

Flat bands are interesting because, on the one hand, band flatness signifies the
absence of an intrinsic energy scale (a bandwidth), and on the other hand it implies the
existence of macroscopically degenerate eigenstates. These two properties combined
ensure that any perturbation may act non-perturbatively and profoundly modify the
physics of the flat band. As an emblematic example, if Coulomb interactions are
added to a Landau-quantized two-dimensional electron gas, the effect is known to be
strongly non-perturbative, and the possibility for the existence of strongly correlated
quantum phases arises, including fractional quantum Hall states (Girvin 2005) and
Wigner crystals (Monarkha and Syvokon 2012).

Another important aspect of flat bands, which we will however not focus on during
this thesis, concerns their topological character. For example, in the case of Landau
quantization, the flat bands carry a non-zero first Chern number, as is evident in
the quantum Hall effect. In contrast, in the scenario that we will mostly focus on
(especially in Chapter 4), namely lattice models with finite-range hoppings, it is
known that an exactly flat band cannot carry a finite Chern number (Green et al.
2010; Chen et al. 2014). Nevertheless, almost-flat bands obtained from finite-range
hoppings may be topologically non-trivial, and so may exactly flat bands if one allows
for infinite-range hoppings (Bergholtz and Liu 2013; Parameswaran et al. 2013).

We now proceed to introduce well-known flat-band models. An important message
that we want to convey is that the simplest flat-band systems are multiband (N > 2)
systems, indicating that a good understanding of the multiband scenario is essential
for an appropriate analysis of flat-band physics. After discussing the simple models,
we point out their relevance to experiments.

2.1.1 | Flat bands in simple lattice models

The simplest way to describe flat-band lattices consists in a tight-binding approach,
which is the framework adopted in this thesis. The most well-known examples for flat-
band lattices are two-dimensional and are visualized in Fig. 2.1: the Lieb lattice (Lieb
1989; Shen et al. 2010), the kagome lattice (Syôzi 1951; Guo and Franz 2009b), and
the dice lattice (Horiguchi and Chen 1974; Sutherland 1986). The nearest-neighbor
tight-binding models on these lattices are captured by Bloch Hamiltonians

HLieb(k) = 2 cos kxλ1 + 2 cos kyλ4,

Hkagome(k) = 2 cos kxλ1 + 2 cos(k · δ1)λ4 + 2 cos(k · δ2)λ6,

Hdice(k) =
∑
i

cos(k · δi)(λ1 + λ6) +
∑
i

sin(k · δi)(λ2 + λ7),
(2.1)

respectively, where we have taken the hopping amplitude t = 1 and the nearest-
neighbor distance a0 = 1. The λi designate N = 3 Gell-Mann matrices (Gell-Mann
1962), which are provided explicitly in Appendix II.A for the reader’s convenience.
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Fig. 2.1 – Paradigmatic flat-band systems. (a) Lieb lattice. (b) Kagome lattice. (c) Dice lattice.
Nearest-neighbor tight-binding models on these lattices yield a perfectly flat band in the energy
spectrum.

The vectors δi are given1 by δ1,2 = 1
2(1,±

√
3), δ3 = (−1, 0). The energy spectra of

the Hamiltonians (2.1) are readily obtained as

ϵLiebα (k) = α
√
2
√

2 + cos(2kx) + cos(2ky),

ϵkagome
α (k) = 3α2 − 2 + α

√
3 + 2 cos(2kx) + 4 cos kx cos

(√
3ky

)
,

ϵdiceα (k) = α
√
2

√
3 + 2 cos

(√
3ky

)
+ 4 cos(3kx/2) cos

(√
3ky/2

)
,

(2.2)

respectively, where α = 0,±, and the existence of a flat band of energy ϵ0 is evident.
Since the corresponding band velocity v0 = ∇kϵ0 vanishes, it is natural to think of a
flat band as being linked to some kind of non-propagating state. Indeed, as we will
discuss in detail in Chapter 4, the presence of a flat band implies the existence of an
infinite number of degenerate, strictly localized eigenstates of the real-space lattice
Hamiltonian H.

Note that, while we have restricted our attention to 2D systems for simplicity,
flat bands of course also exists in 3D. Well-known examples are the perovskite lattice
(Weeks and Franz 2010) and the pyrochlore lattice (Reimers et al. 1991; Bergman
et al. 2008; Guo and Franz 2009a). The former can be viewed as a 3D generalization
of the Lieb lattice, while the latter is a generalization of the kagome lattice. In the
simplest nearest-neighbor tight-binding description, both lattices feature four bands
out of which two are degenerate flat bands.

We should like to stress again that all of the flat-band lattices mentioned here have
N > 2 bands, suggesting that multiband systems provide a natural setup for realizing
flat bands. Indeed, one of the most typical scenarios leading to the presence of flat
bands is impossible to realize in a crystal with just two orbitals per unit cell. Namely,
chiral flat bands arise from bipartite lattices with a different number of atoms in the
two sublattices (Lieb 1989; Ramachandran et al. 2017), which clearly requires N ≥ 3.

1We have rotated these vectors as compared to the graphene case considered in Section 1.4.
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For such bipartite systems, the Hamiltonian has a chiral symmetry (Ryu et al. 2010)

S−1H(x)S = −H(x), (2.3)

where x = k or x = q for the lattice or continuum models, respectively. Actually, the
flat bands of the Lieb, dice, and perovskite lattices are of this chiral type. Similarly,
it is impossible to realize flat bands arising from frustration (as in the kagome or
pyrochlore case) in an N = 2 lattice. Nevertheless, flat bands do exist in two-band
systems, but this is only possible in the presence of second-neighbor hoppings, see
Chapter 4 for more details.

2.1.2 | Flat bands in experiments

From an experimental point of view, the flat-band lattices mentioned above have
attracted a lot of attention. While not known to exist in solids, Lieb lattices can
be realized in photonic lattices, as has been demonstrated in several research groups
(Guzmán-Silva et al. 2014; Vicencio et al. 2015; Mukherjee et al. 2015). Further,
the Lieb geometry can be designed in artificial lattices, created by depositing carbon
monoxide molecules onto a metal surface, as was suggested theoretically by Qiu et al.
(2016) and shown experimentally by Slot et al. (2017).

The dice lattice has been of experimental relevance already two decades ago in
the context of Aharonov-Bohm caging (Abilio et al. 1999; Naud et al. 2001), where
three flat bands are induced by applying an appropriate magnetic flux. However, this
situation is more complicated than and quite different from the simple hopping model
(2.1). More recent experimental proposals to realize the standard dice lattice model
involve ultracold atoms (Bercioux et al. 2009) or certain trilayer heterostructures
(Wang and Ran 2011). Also, a cousin of the dice lattice, which interpolates between
dice and honeycomb geometry (Raoux et al. 2014), might exist in Hg0.83Cd0.17Te
compounds for special parameter values (Malcolm and Nicol 2015).

The kagome lattice is by far the most pertinent to experiments, since, in contrast
to the Lieb and dice lattices, it is known to exist in many crystals. For example,
materials such as herbertsmithite, which exhibits a kagome layer of copper atoms,
have been intensely investigated for quite some time. They are very relevant to
quantum spin liquid research (Norman 2016; Zhou et al. 2017), because the kagome
lattice affords strong magnetic frustration in the presence of an antiferromagnetic
exchange coupling. Moreover, in magnetic Weyl semimetals such as Mn3Sn (Yang et
al. 2017) or Co3Sn2S2 (Liu et al. 2018), which are of interest for their large anomalous
Hall effects, the kagome layers formed from the manganese or cobalt atoms play a
crucial role. Additionally, several materials with flat bands close to the Fermi level
have been discovered (Lin et al. 2018; Kang et al. 2020; Liu et al. 2020), which contain
kagome layers formed from iron or cobalt atoms. In such crystals, of course, a flat
band is never perfectly flat, however for exotic physics to emerge it suffices if the
band width of the quasi-flat band is a small energy scale compared to the relevant
perturbation of interest. Yet more recently, a novel class of materials with kagome
layers formed from vanadium atoms was discovered (Ortiz et al. 2019; Neupert et al.
2022), showing signatures of superconductivity and exotic charge density waves.
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Concerning the 3D flat-band models, it should be mentioned that the pyrochlore
lattice model is relevant, for example, to the description of pyrochlore oxides, where
very flat bands near the Fermi level are predicted to exist via first-principles calcula-
tions (Hase et al. 2018; Hase et al. 2019).

Finally, beyond systems based on the lattices presented here, another field of enor-
mous activity regarding flat bands has emerged in recent years. It concerns twisted
bilayers and multilayers of graphene as well as other quasi-2D crystals, in particular
transition metal dichalcogenides (Cheng et al. 2019; Andrei and MacDonald 2020).
In this class of materials, an astonishing variety of different regimes emerges from the
nearly flat bands, ranging from quantum Hall to Mott insulating and superconducting
phases.

2.2 | Physical motivation (II) – multifold band crossings

A band crossing point is a point in the Brillouin zone where two or more energy bands
meet. In the vicinity of the crossing point, the energy dispersion can take various
forms, in particular it can be quadratic (parabolic) or linear (conical). The latter
scenario is especially interesting since the crossing points act as defects that generically
entail very peculiar geometrical and topological structures with a measurable impact
on physical observables. For a general perspective on such defects, illustrating that
they have been playing an important role in many domains of physics for decades,
see for example the books by Volovik (2003) and Larson et al. (2020).

In the solid-state scenario, examples of such defects are encountered in graphene
(Castro Neto et al. 2009) and Weyl semimetals (Armitage et al. 2018). They simulate
concepts familiar from high-energy physics in a solid-state setup, and thus lead to a
host of unconventional phenomena. In the case of graphene, the peculiar Dirac nature
of the 2D crossings [recall Eq. (1.29)] allows for unconventional Landau levels, Klein
tunneling through electrostatic barriers, and strongly termination-dependent edge
physics, to name only a few interesting possibilities. In the case of Weyl semimetals,
the Weyl character of the 3D crossings [recall Eq. (1.36)] allows to observe effects
such as topological Fermi arc surface states, an anomalous Hall effect, as well as
unconventional magnetotransport and optical responses.

So far, attention has mostly focused on crossings of two bands because they are
easily accessible experimentally in graphene and Weyl semimetals. However, in recent
years, crossings formed by N > 2 bands have come increasingly into focus, and
this is the scenario we are interested in. We proceed as in the previous section,
namely we first describe multiband crossings at the level of very simple models, before
commenting on how they appear in experiments.

2.2.1 | Multifold crossings in simple models

Multifold crossings can exist in both 2D and 3D crystals. In the literature such
crossings have been studied mainly in the spirit of generalizing 2D Dirac cones or
3D Weyl cones to N > 2. In both cases, the multiband crossings describe effective
pseudospin-s fermions, where s can take both half-integer and integer values, and the



32 2 |From two-band to multiband systems

Fig. 2.2 – Energy spectrum for a pseudospin-1 (left), pseudospin-3/2 (middle), and pseudospin-2
system (right).

number N of bands is related to the spin quantum number as N = 2s + 1. In the
present discussion of multifold crossings, we restrict our attention to this pseudospin
case exclusively. It will be the purpose of Chapter 5 to show that not all linear
multiband crossings are of the pseudospin type.

In the 2D case, the low-energy Hamiltonian describing a linear pseudospin-s cross-
ing is given by (Lan et al. 2011; Dóra et al. 2011)

H(q) = γ q · S = γ(qxSx + qySy), (2.4)

where q = (qx, qy, 0) is the momentum as measured from the crossing point, γ = ±
is the chirality (handedness), and S = (Sx, Sy, Sz) is the matrix representation of an
arbitrary spin s. To qualify as spin matrices, the Si need to satisfy a spin algebra

[Si, Sj ] = iϵijkSk, (2.5)

as well as S2 = s(s+ 1)1N . In the simplest case s = 1/2, one recovers from Eq. (2.4)
the graphene Hamiltonian (1.29), since S = σ/2. For s > 1/2, one obtains multiband
generalizations of graphene’s low-energy model. For example, for s = 1 and s = 3/2,
explicit expressions of the spin matrices in a standard representation are provided in
Appendix II.A.

The energy spectrum of the pseudospin Hamiltonian (2.4) is easily obtained. It
takes the form ϵα(q) = cα|q| = cα(q

2
x + q2y)

1/2, where the band velocity cα is simply
given by the magnetic spin quantum number, cα = ms = −s, ..., s. This spectrum
consists of a series of cones and flat bands, as visualized in Fig. 2.2 for s = 1 to s = 2.
The fact that a zero-energy flat band occurs in the pseudospin model whenever s is
an integer illustrates that flat bands and multifold crossings often accompany each
other. Indeed, the Lieb and dice flat-band models discussed in Section 2.1.1 feature
2D pseudospin-1 crossing points.

Similarly, in 3D, the Hamiltonian describing a linear pseudospin-s crossing takes
the form (Mañes 2012; Liang and Yu 2016; Bradlyn et al. 2016; Ezawa 2017)

H(q) = γ q · S = γ(qxSx + qySy + qzSz), (2.6)

where now q = (qx, qy, qz). In the simplest case s = 1/2, one recovers the Weyl
Hamiltonian (1.36). For s > 1/2, one obtains multiband generalizations of Weyl
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s = 1/2 s = 1 s = 3/2 s = 2

cα −1/2, 1/2 −1, 0, 1 −3/2,−1/2, 1/2, 3/2 −2,−1, 0, 1, 2

Cα 1,−1 2, 0,−2 3, 1,−1,−3 4, 2, 0,−2,−4

ωα 1, 1 2, 4, 2 3, 7, 7, 3 4, 10, 12, 10, 4

Table 2.1 – Coefficients cα, Cα and ωα determining the energy spectrum, Berry curvature and
orbital magnetic moment of the pseudospin-s continuum models (2.6), respectively (with γ = +).
Each coefficient is listed from the lowest to the highest band.

fermions, often called chiral multifold fermions. The energy spectrum of the 3D
pseudospin Hamiltonian is given by

ϵα(q) = cα|q| = cα

√
q2x + q2y + q2z , (2.7)

where again cα = ms, constituting a simple 3D generalization of the spectra plotted
in Fig. 2.2. The band velocities cα are explicitly listed in Table 2.1.

Pseudospin-like crossings are interesting mainly for their peculiar quantum geome-
try and topology. Indeed, the existence of an N -fold crossing implies strong interband
coupling. In the 2D case (2.4), the quantum geometry can be unveiled by gapping out
the crossing, similar to the discussion of graphene and Semenoff insulators in Section
1.4. Instead, here we are mostly interested in the 3D case. A crossing of the form
(2.6) acts as a monopole source or sink of Berry curvature, with a Berry curvature
pseudovector

Ωα(q) = Cα
q

2|q|3
, (2.8)

which generalizes the Berry curvature (1.37) of a Weyl fermion to arbitrary s. Thus,
recalling Eq. (1.24), the crossing point clearly represents a topological defect, a Berry
monopole, with a topological charge measured by the Chern number Cα = −2γcα =
−2γms. This Chern number is explicitly listed in Table 2.1. For later purposes,
we also state another geometric quantity of interest, namely the orbital magnetic
moment. Summarizing its components in a pseudovector, we have

mα = −e
2
ωα

q

2|q|2
, ωα = 2s(s+ 1)− C2

α

2
= 2[s(s+ 1)− c2α]. (2.9)

Interestingly, note that the coefficient ωα is closely linked to the quantum metric (Lin
and Hsiao 2021): ωα = 2|q|2Tr gα(q). It is equally listed in Table 2.1.

From the symmetry point of view, the particle-hole symmetry of the spectrum
(2.7) is due to a charge-conjugation parity (CP) symmetry

C†H(x)C = −H∗(x). (2.10)

The CP symmetry is a combined symmetry of charge conjugation (C), defined by
V†H(x)V = −H∗(−x), and inversion [or parity (P)], defined by P†H(x)P = H(−x)
(Ryu et al. 2010); the CP symmetry operator is a unitary matrix C = PV. For the
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pseudospin systems, we have x = q and C = exp(iπSy). Additionally, the isotropy of
both spectrum (2.7) and Berry curvature (2.8) is caused by a full rotation symmetry

[L+ S, H(q)] = 0, (2.11)

where L = −i(q×∇q)1N is the orbital angular momentum operator.
We should further emphasize that, just like in the Weyl case, it is not possible to

have a single unpaired pseudospin-s crossing (2.6) on a lattice (Nielsen and Ninomiya
1981). Therefore a minimal lattice model for a pseudospin-s semimetal must exhibit
at least one pair of crossings of opposite chirality. We can easily construct such a
model by writing

H(k) = h(k) · S = h1(k)Sx + h2(k)Sy + h3(k)Sz, (2.12)

where the functions hi(k) are the same as in Eq. (1.38). Indeed, we have simply
replaced the Pauli matrices by general spin matrices. This model has an energy
spectrum

ϵα(k) = cα

√
h21(k) + h22(k) + h23(k), (2.13)

thus it is a semimetal with multifold crossings formed from N = 2s + 1 bands and
located at k0 = ±(0, 0, k0).

As in Fig. 1.7(a), we expect that one of the two crossing points acts as a source
and the other as a sink of Berry curvature. This can be confirmed by computing the
lattice Berry curvature for the model (2.12). As in Fig. 1.7(a), we want to measure
the Berry flux between the crossing points by taking 2D slices for fixed kz, and thus
we only care about Ωα,xy(k), which takes the form

Ωα,xy(k) = − cα
|h(k)|3

[4txtycxcy h1(k)− 2mtysxcy h2(k)− 2mtxcxsy h3(k)], (2.14)

where we use shorthand notations ci = cos ki and si = sin ki. Taking the same
parameters as in Fig. 1.7(a) for concreteness, this yields a Chern number NChern

α =
2cα for any 2D slice such that |kz| < k0, while NChern

α = 0 otherwise. The total
Chern number NChern at any fixed kz is given by a sum over the Chern numbers
of the occupied bands. For a pseudospin-1 semimetal at half filling, we thus have
|NChern| = 2, and for a pseudospin-3/2 semimetal |NChern| = 4; there are thus two
and four Fermi arcs connecting the projections of the multifold crossing points in the
surface Brillouin zone, respectively. As we will see in the following, this has indeed
been confirmed experimentally.

2.2.2 | Multifold crossings in experiments

The pseudospin fermions described above can be realized in many experimental se-
tups. Early proposals for realizing the 2D Hamiltonian (2.4) suggest ultracold atoms
in optical lattices (Bercioux et al. 2009; Shen et al. 2010; Lan et al. 2011). Later
proposals also address electronic materials such as graphene antidot lattices (Ouyang
et al. 2011), square graphene (Wang et al. 2013), an MoS2 allotrope forming an
octagon-square lattice (Li et al. 2014), or graphene on In2Te2 (Giovannetti et al.
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2015). Successful experimental implementations of 2D pseudospin-1 fermions have
been achieved recently in the experiments on artificial Lieb lattices already mentioned
in Section 2.1.2.

The 3D case has attracted yet much more attention, since it is encountered in
crystalline solids. Already shortly after the first prediction of a concrete material
candidate for a Weyl semimetal (Wan et al. 2011), the possibility for multifold cross-
ings in the band structure of certain crystals was pointed out by Mañes (2012). Since
then, a huge field of research investigating a large number of topological semimetals
has formed, mostly focussing on Weyl and Dirac semimetals (Armitage et al. 2018),
but also increasingly investigating semimetals with multifold crossings (Lv et al. 2021).
The latter are known under various names, such as chiral topological semimetals, chiral
multifold semimetals, generalized Weyl semimetals, or just topological semimetals. As
we have already mentioned, both Weyl semimetals and chiral topological semimetals
are of great interest to a wide community, not only due to their topological Fermi arc
surface states but also due to many other physical phenomena induced by the Berry
monopoles. Most notably, they cause an anomalous Hall effect, peculiar behavior of
the magnetoresistance, and unconventional optical responses.

Threefold fermions are known to exist in two types of crystals. One scenario in-
volves a crossing of a non-degenerate band and a twofold degenerate band, which
has been theoretically predicted for materials such as tantalum nitride and tungsten
carbide (Weng et al. 2016b; Zhu et al. 2016; Weng et al. 2016a; Chang et al. 2017a),
and experimentally observed shortly after (Lv et al. 2017; Ma et al. 2018). The other
scenario involves a crossing of three fully nondegenerate bands, which corresponds to
the pseudospin-1 scenario discussed above, with monopole charge |C| = 2 and, accord-
ingly, two Fermi arcs. This behavior has been predicted for crystals like Pd3Bi2S2
and Ag3Se2Au (Bradlyn et al. 2016), followed by experimental realizations in cobalt
silicide and rhodium silicide (Takane et al. 2019; Rao et al. 2019; Sanchez et al. 2019).

Band degeneracies of higher degree are also known to exist in crystals. In par-
ticular, materials for which four-, six- or eightfold degenerate crossings have been
predicted include Bi2AuO5 (Wieder et al. 2016), CoSi and RhSi (Chang et al. 2017b;
Tang et al. 2017), and many more (Bradlyn et al. 2016; Cano et al. 2019). Some of
those crystals exhibit fourfold nodal points of pseudospin-3/2 type, where |C| = 4,
leading to four Fermi arcs; or fourfold crossings of double Weyl type with |C| = 2;
or sixfold (double pseudospin-1) fermions, where also |C| = 4; or eightfold (double
Dirac) nodes. We wish to stress in particular that pseudospin-3/2 crossings and their
associated Fermi arcs have been observed in several crystals, including PdBiSe (Lv
et al. 2019), AlPt (Schröter et al. 2019), PtGa (Yao et al. 2020) and PdGa (Schröter
et al. 2020).

2.3 | Mathematical motivation (I) – Hamiltonian and su(N)
algebra

We now proceed to describe the rich mathematical structure of N -band systems.
In Chapters 4 and 5 we will explore some of that structure to design new kinds
of flat-band lattices and multifold semimetals. We here consider first the su(N)
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algebra underlying any N -band system, and then (in Section 2.4) the properties of
the corresponding internal parameter space. In both cases, the complexity grows
enormously for N > 2.

2.3.1 | Two-band systems

Let us start by reviewing the simple, familiar case of a two-band system (N = 2), for
which the Hamiltonian of Eq. (1.6) can be written as

H(x) = h0(x)12 + h(x) · σ =

h0(x) + h3(x) h1(x)− ih2(x)

h1(x) + ih2(x) h0(x)− h3(x)

 . (2.15)

Here, 12 is the identity and h0 is a real scalar function. The real vector h = (h1, h2, h3)
will be called Hamiltonian vector and σ is a vector formed from Pauli matrices. The
eigenvalues of Eq. (2.15) are

ϵα(x) = h0(x) + α|h(x)|, (2.16)

forming a band structure with two bands α = ±. Since the identity part of the Hamil-
tonian does not affect the eigenstates and hence quantum geometry and topology, we
will often employ the rescaled energy

εα(x) ≡ ϵα(x)− h0(x) = α|h(x)|. (2.17)

Two-band systems admit a rather straightforward mathematical description, governed
by the Lie algebra su(2) (Pfeifer 2003). Indeed, the Pauli matrices σi form a basis for
su(2), and due to this fact we synonymously call Eq. (2.15) a two-band Hamiltonian,
an su(2) Hamiltonian, or an SU(2) Hamiltonian, where SU(2) is the corresponding Lie
group. The simple structure of the su(2) algebra is expressed in the product relations

σiσj = δij12 + iϵijkσk, (m · σ)(n · σ) = m · n 12 + i(m× n) · σ. (2.18)

One also immediately obtains the (anti)commutation relations

[σi, σj ] = 2iϵijkσk, {σi, σj} = 2δij12. (2.19)

According to the first and second identity of Eq. (2.19), the Pauli matrices are said to
satisfy a spin algebra and a Clifford algebra, respectively. Such convenient properties
will in general be absent in a multiband system.

2.3.2 | Multiband systems

Simple multiband systems: Dirac and pseudospin Hamiltonian

Moving beyond two-band systems, the simplest possible case is that of a Dirac Hamil-
tonian, given by

HD(x) = d(x) · Γ, (2.20)
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where Γ = (Γ1, ...,ΓD) is a vector formed from N ×N “gamma” matrices that satisfy
a Clifford algebra:

{Γi,Γj} = 2δij1N . (2.21)

This is the same anticommutation relation as for the two-band case, cf. Eq. (2.19),
explaining the simplicity of the Dirac Hamiltonian. A Dirac Hamiltonian can only
exist for N even (with D = N or D = N + 1) and has an energy spectrum

ε±(x) = ±|d(x)|, (2.22)

where each band is N/2-fold degenerate. Note that Eq. (2.20) is a generalization
of Dirac’s Hamiltonian that describes relativistic electrons (and positrons) in empty
space (Dirac 1928). In this paradigmatic case one has N = D = 4, with three of
the four gamma matrices coupled to the three momentum coordinates, and the last
gamma matrix coupled to the electron/positron mass.

Another simple type of multiband system, which we have already encountered in
Section 2.2, is a system for which the Hamiltonian can be written as

H(x) = h(x) · S, (2.23)

where the three matrices Si fulfill a spin algebra (2.5). In other words, they maintain
the same commutation relation as in the two-band case, explaining the simplicity of
the pseudospin system.

Generic multiband systems: SU(N) Hamiltonian

Our main focus in this thesis will be on completely generic multiband systems, for
which the Hamiltonian matrix can be written as

H(x) = h0(x)1N + h(x) · λ, (2.24)

with a real scalar function h0 and a real Hamiltonian vector h = (h1, ..., hN2−1).
Here, we have introduced a vector λ = (λ1, ..., λN2−1) composed of the N2 − 1 ele-
mentary generator matrices λi of the Lie group SU(N), which consitute a basis for
the Lie algebra su(N) (Pfeifer 2003). Throughout this thesis, we will choose the λi as
(generalized) Gell-Mann matrices. For the reader’s convenience, they are explicitly
listed for N = 3 and N = 4 in Appendix II.A. For example, it then follows that the
three-band generalization of the Hamiltonian (2.15) takes the form

H(x) =


h0 + h3 +

1√
3
h8 h1 − ih2 h4 − ih5

h1 + ih2 h0 − h3 +
1√
3
h8 h6 − ih7

h4 + ih5 h6 + ih7 h0 − 2√
3
h8

 . (2.25)

The eigenvalues of Eq. (2.24) cannot in general be written as a simple function of the
Hamiltonian vector. Nevertheless, it again proves convenient to redefine the origin
of energy to be h0, such that the identity part in the Hamiltonian vanishes and the
eigenvalues are

εα(x) ≡ ϵα(x)− h0(x). (2.26)
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We synonymously call Eq. (2.24) a multiband Hamiltonian, an N -band Hamilto-
nian, an su(N) Hamiltonian or an SU(N) Hamiltonian. Its mathematical structure
is expressed in the product identity (Kaplan and Resnikoff 1967)

λiλj =
2

N
δij1N + (dijk + ifijk)λk, (2.27)

as well as the (anti)commutation relations

[λi, λj ] = 2ifijkλk, {λi, λj} =
4

N
δij1N + 2dijkλk. (2.28)

Since all generators λi are traceless, the convenient trace orthogonality

Tr(λiλj) = 2δij (2.29)

holds. The (anti)commutation relations define totally antisymmetric and totally sym-
metric structure constants of su(N), respectively:

fijk ≡ − i

4
Tr ([λi, λj ]λk) , dijk ≡ 1

4
Tr ({λi, λj}λk) . (2.30)

These are a known set of real numbers once a matrix representation is chosen for
the generators. Indeed, for N = 2, where λ = σ, the dijk vanish identically and
fijk = ϵijk, such that Eq. (2.19) is recovered. For the explicit numerical values of
dijk and fijk in the N = 3 case, see Table 2.2. Clearly, the complexity of the algebra
is enormously increased as compared to the su(2) case, indicating that multiband
systems with N ≥ 3 generally present a challenging mathematical problem.

Later on, we will also require dot, star and cross products of vectors defined from
the structure constants:

m · n ≡ mini, (m ⋆ n)i ≡ dijkmjnk, (m× n)i ≡ fijkmjnk, (2.31)

where m and n are real and (N2 − 1)-dimensional. The star product is unfamiliar
because it does not play any role in N = 2 situations (where dijk = 0), but it is crucial
for N > 2 systems. Using Eq. (2.31), one can rewrite Eq. (2.27) in a vectorial form:

(m · λ)(n · λ) = 2

N
m · n 1N + (m ⋆ n+ im× n) · λ, (2.32)

which constitutes a multiband generalization of Eq. (2.18).

Finally, it will also prove useful to introduce the following notation for repeated
star products of a vector with itself:

m
(k)
⋆ = m ⋆m

(k−1)
⋆ ≡ m⋆ ⋆ ...︸ ︷︷ ︸

k times

, (2.33)

where k ≥ 1 and m
(0)
⋆ = m. Thus m⋆ = m ⋆m, m⋆⋆ = m ⋆m⋆, and so on.
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(i, j, k) dijk (i, j, k) dijk (i, j, k) fijk

su(2) − − − − (1, 2, 3) 1

su(3) (1, 1, 8) 1/
√
3 (3, 5, 5) 1/2 (1, 2, 3) 1

(1, 4, 6) 1/2 (3, 6, 6) −1/2 (1, 4, 7) 1/2

(1, 5, 7) 1/2 (3, 7, 7) −1/2 (1, 5, 6) −1/2

(2, 2, 8) 1/
√
3 (4, 4, 8) −1/(2

√
3) (2, 4, 6) 1/2

(2, 4, 7) −1/2 (5, 5, 8) −1/(2
√
3) (2, 5, 7) 1/2

(2, 5, 6) 1/2 (6, 6, 8) −1/(2
√
3) (3, 4, 5) 1/2

(3, 3, 8) 1/
√
3 (7, 7, 8) −1/(2

√
3) (3, 6, 7) −1/2

(3, 4, 4) 1/2 (8, 8, 8) −1/
√
3 (4, 5, 8)

√
3/2

− − − − (6, 7, 8)
√
3/2

Table 2.2 – Comparison of inequivalent non-zero structure constants of the su(2) and su(3) algebra,
as taken from Goyal et al. (2016).

2.4 | Mathematical motivation (II) – Internal parameters
and Bloch spheres

A second way to become aware of the complexity of multiband (N > 2) systems con-
sists in studying what we will call the internal parameter space. This is the space of
parameters which are solely determined by the general mathematical structure of the
SU(N) Hamiltonian, independently of the physical realization. We distinguish such
internal parameters from external parameters, which are the parameters of physi-
cal significance, such as k or q in band theory. We also relate internal to external
parameters through the concept of Bloch spheres.

2.4.1 | Two-band systems

Internal parameter space

Different types of internal parameters are possible, arising from different ways to
parametrize the eigenstates of the two-band Hamiltonian (2.15). Namely, first, we
may consider the formal parametrization of a two-component complex vector, given
by2

|ψα⟩ =

 cos θα

sin θαe
iϕα

 , (2.34)

2The state can always be brought to this form by fixing the global phase appropriately. For a
completely general parametrization, one could leave the global phase arbitrary.
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with two eigenstate’s angles θα and ϕα. Second, it is straightforward to verify that
the eigenstates can also be written as

|ψα⟩ =
1√

2
(
1 + α h3

|h|

)
α+ h3

|h|
h1+ih2

|h|

 (2.35)

in terms of the components hi of the Hamiltonian vector. There is also a third possible
parametrization. Namely, one can express the unit Hamiltonian vector u in spherical
coordinates,

u ≡ h/|h| = (sin θh cosϕh, sin θh sinϕh, cos θh), (2.36)

where we will call θh and ϕh the Hamiltonian’s angles. Upon rewriting Eq. (2.35) in
terms of those angles, one has

|ψ+⟩ =

 cos θh
2

sin θh
2 e

iϕh

 , |ψ−⟩ =

 − sin θh
2

cos θh
2 e

iϕh

 . (2.37)

This implies that the eigenstate’s angles can be expressed in terms of the Hamilto-
nian’s angles, for example as θ+ = θh/2, θ− = (θh + π)/2, ϕ+ = ϕ− = ϕh. As we
will see, such a simple relation between the different types of internal angles is only
possible due to the extremely simple properties of two-band systems.

To get some insight into the structure of the different parameter spaces, it is
instructive to consider the geometry of the quantum states with respect to the internal
parameters. First, let us choose the parameter space of interest as x = (h1, h2, h3).
The corresponding quantum metric and Berry curvature tensors are 3 × 3 matrices
with matrix elements3

gα,ij =
1

4|h|2

(
δij −

hihj
|h|2

)
, Ωα,ij = − α

2|h|3
ϵijkhk. (2.38)

This result means that any SU(2) Hamiltonian can be viewed as a monopole in the
space of components hi. More precisely, forming a 3D Berry curvature pseudovector,
one has Ωα(h) = −αh/(2|h|3), which represents a Berry monopole. According to
Eq. (1.24) we can thus associate a Chern number Cα = −α to any two-band system,
measuring the flux of Berry curvature through a surface enclosing the point h = 0 (a
degeneracy of the two levels). This Berry monopole scenario does not in general hold
true for a multiband system, except in the special case of a pseudospin system (2.23).

Second, let us choose the parameters of interest as x = (θh, ϕh). The corresponding
QGT is a 2× 2 matrix given by

gα =
1

4

1 0

0 sin2 θh

 , Ωα = −α
2

 0 sin θh

− sin θh 0

 . (2.39)

3This can be computed by inserting the eigenstates (2.35) into Eqs. (1.13) or (1.21), but it is
more direct to employ Eq. (2.41) introduced below.
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This is a well-known result (Kolodrubetz et al. 2017) and implies that any two-band
system can be viewed as having the geometry of a unit two-sphere S2. Indeed, the
quantum metric is completely analogous to the Riemannian metric ds2 = dθ2 +
sin2 θ dϕ2 of a standard two-sphere.

External parameter space

In cases of physical relevance, one typically does not care too much about the space
of internal parameters of the two-band system (2.15), but rather about the explicit
dependency of the Hamiltonian vector h(x) on some vector of external parameters
x. In contrast to the internal parameters, which describe the abstract mathematical
properties of the Hamiltonian, the external parameters have some specific physical
meaning and describe the concrete physical realization of the two-band system. In
particular, this scenario includes the case x = k relevant to (topological) band theory.

The geometry of the quantum states in the space of external parameters strongly
depends on the precise form of the Hamiltonian of interest. In general, the QGT
Tα,ij(x) computed with respect to the external parameters can be obtained from the
intrinsic geometric tensors by a simple composition rule:

Tα,ij(x) =
∑
k,l

JikJjlTα,kl(y). (2.40)

Here, i, j ∈ {external parameters} and k, l ∈ {internal parameters}, with Jacobians
Jik ≡ ∂iyk that encode the dependence of the internal parameters y on the external
parameters x. As a very important application, we emphasize that Eq. (2.40) becomes
especially useful when taking y = h. Namely, using the explicit expressions given in
Eq. (2.38), one immediately has

gα,ij(x) =
1

4

[
∂ih(x) · ∂jh(x)

|h(x)|2
− (h(x) · ∂ih(x)) (h(x) · ∂jh(x))

|h(x)|4

]
,

Ωα,ij(x) = − α

2|h(x)|3
h(x) · [∂ih(x)× ∂jh(x)].

(2.41)

This provides the most general and the most straightforward way to compute the
QGT for any two-band system (2.15); this QGT is a dim(x) × dim(x) matrix. The
simplicity and popularity of this QGT formula stems from the fact that it only involves
the Hamiltonian vector h, making it obsolete to explicitly construct eigenstates. This
is in stark contrast to the standard formulas (1.13) and (1.21), which are based on
eigenstates. It will be a major contribution of Chapter 3 to clarify and quantify the
generalization of the convenient expressions (2.41) to arbitrary N .

Bloch spheres

For any given Hamiltonian, there is a particular dependency y(x) of internal on ex-
ternal parameters. This dependency can be visualized using a Bloch sphere. Here we
consider three different Bloch spheres that can be associated to a two-band Hamil-
tonian. They are not always precisely distinguished because they happen to have
the same shape, namely that of a unit two-sphere. However, we will see below that
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Fig. 2.3 – Schematic visualization of Bloch spheres appearing in the treatment of two-band [SU(2),
first row] and multiband [SU(N), second row] Hamiltonians. The eigenstate’s Bloch sphere B(N)

α is a
unit sphere for all N , but of different dimension than the Hamiltonian’s Bloch sphere if N > 2. The
Hamiltonian’s Bloch sphere B(N)

h corresponds to a unit sphere for any N . The eigenprojector’s Bloch
sphere B(N)

Pα
is a proper sphere for N = 2 only; for N > 2 it is of complicated shape.

when dealing with N -band Hamiltonians, the three Bloch spheres are in general very
different, such that a precise distinction is necessary.

First, consider the eigenstates in the form (2.34), parametrized by the eigenstate’s
angles θα(x) and ϕα(x). These angles define a map

|ψα⟩ : X → B(2)
α , x 7→ |ψα(x)⟩ (2.42)

from the (external) parameter space X to a space that may be called the eigenstate’s
Bloch sphere B(2)

α . Since θα(x) and ϕα(x) can be interpreted as spherical coordinates,
B(2)
α is a unit two-sphere S2, see Fig. 2.3(a). Second, consider the unit Hamiltonian

vector (2.36), parametrized by the Hamiltonian’s angles θh(x) and ϕh(x). The unit
vector defines a map

u : X → B(2)
h , x 7→ u(x) (2.43)

from X to a space that may be called the Hamiltonian’s Bloch sphere B(2)
h . It is a

unit two-sphere, too, see Fig. 2.3(b).
Finally, a third kind of Bloch sphere arises from the eigenprojectors Pα of the

Hamiltonian (2.15). Namely, writing the projectors as

Pα(x) = |ψα(x)⟩⟨ψα(x)| =
1

2
12 +

1

2
bα(x) · σ, (2.44)

we can introduce a Bloch vector bα(x). It defines a map

bα : X → B(2)
Pα
, x 7→ bα(x) (2.45)

from parameter space to a space that may be called the eigenprojector’s Bloch sphere
B(2)
Pα

. The peculiarity and simplicity of two-band systems, as compared to the more
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general N -band case, consists in the fact that the eigenprojector’s Bloch sphere is
the same as the Hamiltonian’s Bloch sphere, namely it is a unit two-sphere as well
[see Fig. 2.3(c)]. This originates from the fact that the Bloch vector is parallel
to the Hamiltonian vector, or equivalently that the eigenprojector is linear in the
Hamiltonian matrix:

bα(x) = αu(x) =
h(x)

εα(x)
, Pα(x) =

1

2

[
12 +

1

εα(x)
h(x) · σ

]
. (2.46)

Such a simple relation does not hold for a multiband system, and it will be undertaken
in Chapter 3 to generalize Eq. (2.46) to any N .

The discussion of the Bloch spheres conducted here may seem somewhat superflu-
ous in light of the fact that they all turn out to be simply unit two-spheres. However,
we should like to stress again that the three Bloch spheres are a priori distinct spaces,
which coincidentally all take the same shape for N = 2. Being aware of this distinc-
tion is necessary to avoid considerable confusion in the SU(N > 2) case, where the
three Bloch spheres are completely different from one another, see Fig. 2.3(d)–(f)
and the discussion below.

2.4.2 | Multiband systems

We now briefly generalize the notions of internal parameter space and Bloch spheres
to arbitrary N , which demonstrates the difficulty and complexity of the mathematical
structure of multiband systems.

Internal parameter space

The formal parametrization of each eigenstate of an N -band system (2.24), gen-

eralizing Eq. (2.34), requires N − 1 pairs of eigenstate’s angles (θ
(i)
α , ϕ

(i)
α ), with

i = 1, ..., N−1. This is because there are a priori N complex components, correspond-
ing to 2N real parameters, of which two can be eliminated using the normalization
condition and fixing the global phase. For example, for a three-band system, one can
write4

|ψα⟩ =


cos θ

(1)
α

sin θ
(1)
α cos θ

(2)
α eiϕ

(1)
α

sin θ
(1)
α sin θ

(2)
α eiϕ

(2)
α

 (2.47)

in terms of four eigenstate’s angles. Thus, the complexity of the parameter space
associated to the eigenstate’s angles increases linearly in N .

Another possibility is to try to parametrize the eigenstates in terms of the Hamil-
tonian vector h. This vector has N2 − 1 real-valued components, and accordingly
there are N2 − 2 Hamiltonian’s angles θ

(i)
h necessary to parametrize the unit vector

u ≡ h/|h|. For a three-band system, there are thus already seven Hamiltonian’s an-
gles. Clearly, the complexity of the parameter space associated to the Hamiltonian’s

4Again one could add a global phase Γα(x) to have a completely general parametrization with an
arbitrary gauge choice.
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angles increases as N2. Moreover, unfortunately, already for N = 3 there is no simple
generalization of Eqs. (2.35) or (2.37): the eigenvalues and eigenstates of the three-
band Hamiltonian (2.25) in general involve cube roots and cannot easily be expressed
in terms of the components hi or the Hamiltonian’s angles θ

(i)
h .

As a consequence of these difficulties, the geometry of the internal parameter space
is extremely complicated and opaque. This becomes evident, for example, when trying
to compute the QGT in any of the parameter spaces

x = h, x =
(
θ
(1)
h , ..., θ

(N2−2)
h

)
, x =

(
θ(1)α , ϕ(1)α , ..., θ(N−1)

α , ϕ(N−1)
α

)
.

Thus, no simple generalizations of Eqs. (2.38) or (2.39) exist. Also, the composition
rule (2.40), while valid for any N , does not lead to a useful generalization of the
powerful relation (2.41), due to the cumbersome form of the internal QGT Tα,kl(h).
In fact, generalizing Eq. (2.41) to the multiband case is non-trivial, and part of
Chapter 3 will be devoted to solving this problem with the help of eigenprojectors.

Bloch spheres

We now comment on different SU(N) Bloch spheres that can be associated to a
multiband system. First, the 2(N − 1) eigenstate’s angles define a map

|ψα⟩ : X → B(N)
α , x 7→ |ψα(x)⟩ (2.48)

from external parameter space X to an eigenstate’s Bloch sphere B(N)
α , which is a

unit sphere S2(N−1), as sketched in Fig. 2.3(d).
Second, the unit vector u defines a map

u : X → B(N)
h , x 7→ u(x) (2.49)

from X to a Hamiltonian’s Bloch sphere B(N)
h , which is a unit sphere SN2−2, as

depicted in Fig. 2.3(e).
Again, the third Bloch sphere stems from the eigenprojectors. Upon using the

same matrix basis as for the Hamiltonian (2.24), each eigenprojector can be written
as (Hioe and Eberly 1981)

Pα(x) = |ψα(x)⟩⟨ψα(x)| =
1

N
1N +

1

2
bα(x) · λ, (2.50)

where bα is a (generalized) Bloch vector or coherence vector, which is in one-to-one
correspondence to the associated eigenprojector. We stress that the Bloch vector is
a key quantity for the theory developed in Chapter 3.

Let us study the properties of the Bloch vector more closely. First we note that
we have adopted the convention of a prefactor 1

2 in front of bα, although various
choices of this factor exist in the literature (Kimura 2003; Byrd and Khaneja 2003;
Bertlmann and Krammer 2008). Note also that, since the SU(N) generators λ are
Hermitian, each Bloch vector is real. Now, since bα, just like the Hamiltonian vector,
has N2−1 real-valued components, the map bα(x) (for given α) would at first glance
seem to define an (N2 − 2)-sphere, but in fact this is prevented by constraints on
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the Bloch vectors. In particular, the orthogonality relation Pα(x)Pβ(x) = δαβPα(x)
translates to the Bloch vector picture as5

bα(x) · bβ(x) = 2 (δαβ − 1/N) ,

bα(x) ⋆ bβ(x) = (δαβ − 2/N) (bα(x) + bβ(x)),

bα(x)× bβ(x) = 0,

(2.51)

where dot, star, and cross products are to be understood in the sense of Eq. (2.31).
While the first and last line in Eq. (2.51) are present for any N , the second line
constitutes a constraint that is absent for N = 2. This star product constraint is
mainly responsible for the complicated behavior of the vector bα(x), which defines a
map

bα : X → B(N)
Pα

, x 7→ bα(x) (2.52)

from parameter space not to an (N2−2)-sphere, but to a certain 2(N−1)-dimensional
subset thereof, which we may choose to call the eigenprojector’s Bloch sphere B(N)

Pα
,

or equivalently the generalized Bloch sphere, see Fig. 2.3(f). This implies that, in
stark contrast to the N = 2 case, u(x) and bα(x) are completely distinct maps, and
in particular u(x) ∦ bα(x) for N > 2 [see also Eq. (3.32) derived below].

An intuitive understanding of the geometrical structure of the generalized Bloch
sphere is not at all easy to acquire. Many efforts have been undertaken to figure out its
properties forN > 2, which is a highly non-trivial issue. To mention only a few articles
on the matter, we recommend to consult the work of Harriman (1978), Jakóbczyk and
Siennicki (2001), Kimura (2003), Zyczkowski and Sommers (2003), Byrd and Khaneja
(2003), Kimura and Kossakowski (2005), Mendaš (2006) and Goyal et al. (2016). For
the interested reader, we outline some of the main results that have been established
in Appendix II.B.

In summary, the Hamiltonian’s, the eigenprojector’s and the eigenstate’s Bloch
sphere are all isomorphic spaces for N = 2, but all different spaces for N > 2,
illustrating the additional complexities that arise when passing from N = 2 to a
higher number of bands.

5It is a simple exercise to verify this using the product identity (2.32).





Chapter 3

Bloch vector approach to observ-
ables

3.1 | Introduction

In quantum mechanics, it is common to construct measurable quantities by taking
the matrix representation of the observables O of interest in the eigenbasis of H, with
matrix elements Oαβ = ⟨ψα|O|ψβ⟩. For instance, the QGT (1.21), orbital magneti-
zation (1.48) and superfluid weight (1.54) are constructed from matrix elements of
the velocity operator vi = ∂iH in the eigenbasis of H. However, especially when
dealing with parameter-dependent systems, the energy eigenstates which are used to
compute matrix elements Oαβ prove rather cumbersome. Indeed, the following three
issues present themselves.

(i) The gauge dependency of the global phase of each eigenstate is unwieldy.

(ii) Singularities of the wave function may occur in parameter space, and the loca-
tion of the singularity points may be unpredictable.

(iii) Even for a given gauge choice, there are many different ways to express an
eigenstate, involving inconvenient trigonometric functions and phase angles with
an intransparent parameter dependence. In other words, there is no unique
closed-form expression of an eigenstate as a function of the Hamiltonian.

These issues are already annoying but tractable in the two-band case, however they
become extremely hard to handle if not intractable when moving from two-band to
multiband systems. In the multiband case, it is thus common to resort to (not always
well-controlled) numerical construction of eigenstates and numerical computation of
observables.

In this chapter, we formulate an alternative approach to observables. It is based
on eigenprojectors Pα = |ψα⟩ ⟨ψα|, or, more precisely, on the corresponding Bloch
vectors bα introduced in Eq. (2.50). Note that the Bloch vectors are just a vectorial
representation of the projectors, in exactly the same way as the vector h is a vectorial
representation of the Hamiltonian H. This alternative approach has two advantages.
First, at a practical level, it helps to avoid the issues associated with eigenstates in
explicit computations and provides more analytical insight. Second, at a conceptual
level, it offers a general strategy to decompose physical quantities into intraband and
geometric contributions.

47
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In the following, we first illustrate in more detail the three issues of eigenstates
listed above. We hope to convince the reader that it may be useful for certain purposes
to give up the eigenstates in favor of eigenprojectors, or, equivalently, Bloch vectors.
We then write a number of well-known physical quantities in terms of Bloch vectors,
in particular the quantum metric, Berry curvature and orbital magnetization. We
proceed to explain how similar expressions can be obtained for any quantity of interest.
Finally, we show how to obtain the Bloch vectors directly from the Hamiltonian and
its eigenvalues. This provides a convenient means to explicitly compute physical
quantities (especially simple ones such as the QGT and orbital magnetization) without
constructing energy eigenstates. The exposition given here makes much use of the
results of Graf and Piéchon (2021a), but also goes beyond. A related discussion can
be found in the work of Pozo and Juan (2020).

3.2 | Motivation: Eigenstates versus eigenprojectors and
Bloch vectors

The issues of gauge ambiguity, singularities in parameter space, and the difficulty
to parametrize the eigenstates appear pretty clearly already in the two-band case.
Namely, first, consider the formal parametrization (2.34) of a complex two-component
unit vector. In fact, to be complete, one has to multiply it by a global phase factor
exp[iΓα(x)]. In other words, the first evident problem of eigenstates is that they are
gauge-dependent. Moreover, the global phase is parameter-dependent, which proves
problematic when derivatives with respect to the parameters x are to be carried out,
for example when computing the QGT from Eq. (1.13).

Second, the expression for two-band eigenstates given in Eq. (2.35) illustrates the
possible singular behavior of eigenstates in parameter space. A singularity is evidently
to be expected when h3(x0)/|h(x0)| = −α for some point x = x0. Similarly, if the
eigenstate components are written in terms of the Hamiltonian’s angles as in Eq.
(2.37), then the relations tan θh =

√
h21 + h22/h3 and tanϕh = h2/h1 point towards

further possible singular behavior when h3(x0) = 0 or h1(x0) = 0.

Third, there are at least three different ways to parametrize the eigenstates even
for a given gauge choice, see Eqs. (2.34)–(2.37). It is not clear which one to use to
construct matrix elements Oαβ, as one or the other may be advantageous depending
on the particular circumstances. The closed-form expression (2.35) in terms of the
Hamiltonian vector is perhaps the most transparent, but it does not appear very
handy if one is dealing with classes of Hamiltonians beyond a specific Hamiltonian of
interest.

While inconvenient, these issues are still tractable for a two-band system due to the
inherent simplicity of its mathematical structure. However, in a multiband system,
the issues get much worse and much more difficult to handle. To see this, recall, first,
that the Hamiltonian vector h has N2 − 1 components. Thus, already for N = 3,
a possible closed-form expression of the eigenstates in terms of those components,
generalizing Eq. (2.35), would involve complicated functions of the eight parameter-
dependent functions hi, which makes such an expression essentially useless. This
also implies that, unlike in the two-band case, we cannot even predict under which
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Gauge-dependency Singularities Unique parametrization

|ψα⟩ yes yes no

Pα no no yes

bα no no yes

Table 3.1 – Advantages of eigenprojectors and Bloch vectors as compared to eigenstates.

conditions singularities will occur in parameter space. Similarly, as mentioned earlier,
the generalization of the widely used parametrization (2.37) to higher N must involve
N2 − 2 Hamiltonian’s angles whose singularities are completely unclear. Of course,
the additional problem of the gauge ambiguity remains as well.

All these issues of eigenstates are eliminated by eigenprojectors, and equivalently
by Bloch vectors, as summarized in Table 3.1. Namely, first, Pα and bα are evidently
explicitly gauge-independent quantities. Second, they are well-behaved in parameter
space, as singularities can only appear at band degeneracy points. In other words,
for a multiband Hamiltonian of any size N , all singularities of the eigenprojectors
and Bloch vectors can be predicted from the knowledge of the band structure alone.
Third, we will see in Section 3.4 that, for any N , unique closed-form expressions
Pα(H) of eigenprojectors in terms of the Hamiltonian matrix are easily obtained
from the Cayley-Hamilton theorem (Cayley 1858; Horn and Johnson 2013). This also
leads to closed-form expressions bα(h) of Bloch vectors in terms of the Hamiltonian
vector. Eigenprojectors and Bloch vectors thus have a unique parametrization, in-
volving only the parameters already present in the Hamiltonian. Unlike when dealing
with eigenstates, there is no need to introduce new degrees of freedom with unclear
interrelations. As a simple example, it is clear that the two-band projector (2.46)
exhibits all of the convenient features advertised here.

3.3 | Writing observables in terms of Bloch vectors

Consider a multiband system described by a Hamiltonian (2.24). Our goal here is to
show that any physical quantity constructed from operators O in the Hilbert space
of H can be expressed in terms of Bloch vectors, and to illustrate the utility of such
a procedure via simple examples. Note that throughout this chapter we will assume
TrH = h0 = 0, such that H has eigenvalues εα as given by Eq. (2.26).

3.3.1 | First examples

As a first simple example, it is clear from Eq. (2.50) that the Hamiltonian itself can
be written in terms of Bloch vectors as

H =
∑
α

εαPα =
1

2

∑
α

εαbα · λ, h =
1

2

∑
α

εαbα. (3.1)
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In other words, the Hamiltonian vector can be viewed geometrically as being com-
posed of Bloch vectors pointing in different directions and weighted by the respective
energy eigenvalues. This is of course completely equivalent to the spectral decom-
position in terms of eigenprojectors. It immediately follows that we can view each
energy eigenvalue geometrically as the component of h along the corresponding Bloch
vector:

εα = bα · h. (3.2)

More generally, any function of the Hamiltonian can be written as

f(H) =
1

N

∑
α

f(εα) +
1

2

∑
α

f(εα)bα · λ. (3.3)

Next, it is clear that an arbitrary operator in the Hilbert space of H can be written
as

O = o01N + o · λ (3.4)

in terms of Gell-Mann matrices, where o is an (N2 − 1)-dimensional vector (from
now on we will assume o0 = 0 for simplicity). Several important aspects of such
operators can be expressed geometrically in terms of Bloch vectors. For example, the
time evolution is encoded in the cross product of the vector o and the Bloch vectors:

Ȯ = i[H,O] =
∑
α

εα(o× bα) · λ, ȯ =
∑
α

εα(o× bα). (3.5)

3.3.2 | Berry curvature, quantum metric and orbital magnetization

Let us now consider some more interesting cases, which are less trivial than the
examples above and where the Bloch vector approach provides a real advantage. In
particular, let us consider expectation values of operators that one often encounters
in solid-state physics, and which are of the form

Tα ≡ Tr(PαO), Tαβ ≡ Tr
(
PαOPβO

′), Tαβγ ≡ Tr
(
PαOPβO

′PγO
′′), (3.6)

et cetera. For example, Tα with O = H is just the energy eigenvalue (3.2). More
interestingly, Tαβ with O = ∂iH and O′ = ∂jH appears in the quantum metric, Berry
curvature and orbital magnetization; indeed, Eq. (1.21) for the quantum geometric
tensor can be written as

Tα,ij(x) =
∑
β ̸=α

Tr
(
PαH

iPβH
j
)

(εα − εβ)
2 , (3.7)

and similarly Eq. (1.49) for the orbital magnetic moment can be written as

mα,ij(x) = −e Im
∑
β ̸=α

Tr
(
PαH

iPβH
j
)

εα − εβ
. (3.8)

Here the superscript denotes a parametric derivative, H i ≡ ∂iH. Similar traces Tαβ
appear in the anomalous Hall conductivity, spin Hall conductivity, or magnetocon-
ductivities. Higher-order traces Tαβγ or Tαβγδ appear for example in the electrical
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polarizability (Chen and Lee 2011) or orbital magnetic susceptibility (Raoux et al.
2015).

To illustrate the utility of the Bloch vector approach, we now present Bloch vector
based expressions for the quantum metric, Berry curvature and orbital magnetization
of an arbitrary multiband system. We also comment on how to derive similar ex-
pressions for more complicated quantities such as the orbital magnetic susceptibility,
although this is not carried out in detail and left for future work.

Quantum metric and Berry curvature

Consider the quantum geometric tensor as given by Eq. (3.7). Inserting the Hamil-
tonian’s spectral decomposition H =

∑
α εαPα leads to the intermediate result

Tα,ij(x) = Tr
[
P i
α (1N − Pα)P

j
α

]
. (3.9)

Then, by inserting Eq. (2.50) for the eigenprojectors, one obtains the quantum metric
and Berry curvature in terms of Bloch vectors as

gα,ij(x) =
1

4
bi
α · bj

α, Ωα,ij(x) = −1

2
bα ·

(
bi
α × bj

α

)
, (3.10)

for arbitrary values of N . Be aware that the Bloch vectors are (N2 − 1)-dimensional
and the dot and cross products have to be interpreted in the SU(N) sense of Eq.
(2.31). For N = 1, one has bα = 0 and of course no quantum metric or Berry
curvature exists. For N = 2, it is straightforward to verify that the well-known
expressions (2.41) are recovered upon inserting Eq. (2.46) for the Bloch vector. For
N = 3, a similar way of writing the Berry curvature was already encountered by
Barnett et al. (2012) and Lee et al. (2015), and for the quantum metric by Bauer
et al. (2016). For general N , Eq. (3.10) is a new result, although Pozo and Juan
(2020) recently found an equivalent formula in terms of so-called 1-generators.

We should like to emphasize the conceptual importance of Eq. (3.9) and especially
of Eq. (3.10). These expressions show very clearly that the conventional eigenstate-
based point of view on quantum geometry, as expressed in Chapter 1, can be replaced
by viewing quantum geometry as encoded in the eigenprojectors or Bloch vectors. In
particular, the QGT for a system with an arbitrary number of bands is fully encoded
in very simple symmetric (quantum metric) and antisymmetric (Berry curvature)
products of Bloch vectors. From a practical point of view, we shall see that Eq.
(3.10) provides a very convenient means to explicitly compute the QGT for any given
N -band Hamiltonian. This only requires to express the Bloch vectors in terms of h,
see Section 3.4.

Orbital magnetization

Next, consider the orbital magnetization. An expression in terms of Bloch vectors can
be easily derived from the formula (1.48) that is already explicitly written in terms
of geometric quantities. Since we already know the Berry curvature in terms of Bloch
vectors, we simply have to find a Bloch vector expression for the orbital magnetic
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moment. Inserting the Hamiltonian’s spectral decomposition into Eq. (3.8) we arrive
at the intermediate result

mα,ij(x) = −e ImTr
[
P i
α(εα1N −H)P j

α

]
(3.11)

for the orbital magnetic moment in terms of eigenprojectors. Substituting the eigen-
projectors (2.50) leads to the desired result

mα,ij(x) = −e
2
h ·
(
bi
α × bj

α

)
(3.12)

in terms of Bloch vectors. Note the close formal similarity to the Berry curvature
(3.10). In particular, for N = 2, one has h = εαbα for both α = ±, such that the
orbital magnetic moment is proportional to the Berry curvature, mα,ij = eεαΩα,ij , as
is well known. In contrast, for N > 2, Eq. (3.12) indicates that this proportionality
is not in general maintained.

In summary, substituting Berry curvature and orbital magnetic moment into Eq.
(1.48), one may write the full orbital magnetization for a 2D system with an arbitrary
number N of bands in Bloch vector form as

M =

∫
α
(f(εα)h+ g(εα)bα) · (bx

α × by
α), (3.13)

where we use shorthand notations∫
α
≡ −e

2

∫
BZ

d2k

(2π)2

∑
α

, g(εα) ≡ kBT ln

(
1 + e

− εα−µ
kBT

)
. (3.14)

The expression (3.13), which can be viewed as an integral over a kind of “skyrmion
density”, neatly illustrates the geometrical origin of the orbital magnetization. It is
also very useful in practice, since the Bloch vectors can be related in a unique way to
the Hamiltonian vector (Section 3.4).

Orbital magnetic susceptibility

Physical quantities more complicated than the simple ones considered above are often
formulated in terms of kernels such as

Kijk = Tr
(
GH iGHjGHk

)
, Kijkl = Tr

(
GH iGHjGHkGH l

)
, (3.15)

see for example Chen and Lee (2011) or Raoux et al. (2015). More generally, the
relevant kernels involve any combination of the Hamiltonian H, the corresponding
Green’s function G, and their parametric derivatives H i = ∂iH and Gi = ∂iG. For
all such quantities, one can insert the Green’s function (1.46) and aim for a maximally
compact formula in terms of Bloch vectors, much in the same way as we have done
to obtain the QGT (3.10) and the orbital magnetic moment (3.12). A general recipe
for this is provided in Appendix III.A.

A quantity of immediate interest in this context is the orbital magnetic suscepti-
bility (1.51). An expression of it in terms of Bloch vectors – and hence in terms of



3.3 |Writing observables in terms of Bloch vectors 53

geometrical quantities such as Berry curvature, quantum metric and orbital magnetic
moment – is unknown, except for the two-band case (Raoux et al. 2015; Piéchon et al.
2016). Although we do not carry this out here, it is clear that a general Bloch vector
expression for any N can be obtained by applying the general procedure of Appendix

III.A to the relevant kernel KS = Tr(X ) = K
(1)
S − 4K

(2)
S , where

K
(1)
S ≡ Kxxyy −Kxyxy, Kijkl = Tr

(
GH ijGHkl

)
,

K
(2)
S ≡ Kxxyy −Kxyxy, Kijkl = Tr

(
GH iGHjGHkGH l

)
.

(3.16)

This should enable one to clearly separate intraband from interband contributions
to the orbital susceptibility, which allows in particular to compare the importance of
geometric contributions and the (intraband) Landau-Peierls contribution.

3.3.3 | General observables

We now point out that it is in fact easy to see that a Bloch vector expression must
exist for any observable quantity of interest. Let us assume we are interested in
some quantity χ constructed from matrix elements of a certain set of operators in the
eigenbasis of H:

χ = f(Oαβ, O
′
αβ, ...). (3.17)

Here an important constraint has to be respected: Oαβ is not gauge-invariant, thus
for χ to be observable it can only depend on diagonal matrix elements Oαα, as well as
higher-order gauge-invariant products such as OαβO

′
βα, OαβO

′
βγO

′′
γα, and so on [Pozo

and Juan (2020) provide a similar reasoning in terms of what they call R-generators].
It is thus more precise to write Eq. (3.17) as

χ = f(Oαα, OαβO
′
βα, ...). (3.18)

It is now easy to realize that all gauge-invariant combinations of matrix elements of
O are functions of the Bloch vectors. Indeed, by definition of an expectation value we
have Oαα = Tr(PαO) as well as OαβO

′
βα = Tr(PαOPβO

′), and so on. Note that these
are exactly the kinds of traces mentioned above in Eq. (3.6). By substituting Eq.
(2.50) for the eigenprojectors and Eq. (3.4) for the (traceless) operators, we arrive at
the desired expression

χ = f(o,o′, ... ;bα,bβ, ...), (3.19)

which states that any observable quantity can be written in terms of Bloch vectors.
As we have mentioned, the interest of such an expression is twofold. First, it al-
lows to decompose χ into intraband and interband contributions; second, once the
Bloch vectors are related to the Hamiltonian (Section 3.4), it can be used for explicit
computations without worrying about the annoying features of energy eigenstates.

The explicit expressions of Oαα, OαβO
′
βα and so on in terms of Bloch vectors are

established by using Eq. (2.50) and simplifying the trace using the identity (2.32).
First, it is trivial to find

Oαα = Tr(PαO) = bα · o. (3.20)
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Next, we obtain

OαβO
′
βα = Tr

(
PαOPβO

′) = (Rαβ +Rβα) + i(Iαβ − Iβα), (3.21)

where

Rαβ =
1

N

(
2

N
− δαβ

)
(o · o′) + 1

N
(bα · o)(bβ · o′)

+
1

2
(bα ⋆ o) · (bβ ⋆ o

′) +
(

2

N
− 1

2
δαβ

)
bα · (o ⋆ o′),

Iαβ =
1

N
bα · (o× o′) +

1

4
[(bα ⋆ o) · (bβ × o′) + (bα × o) · (bβ ⋆ o

′)].

(3.22)

Establishing this expression requires a bit of algebra using the SU(N) Jacobi identities
that we provide in Appendix III.B. In the same way, one can proceed to obtain higher-
order gauge-invariant combinations of matrix elements of the operators of interest,
which will be increasingly complicated functions of the Bloch vectors.

To close this section, it should be noted that by applying Eq. (3.21) to the QGT
(3.7), such that o = hi and o′ = hj , one finds an expression for the QGT in terms
of Bloch vectors which is different from Eq. (3.10). This formula is provided in
Appendix III.C, and its advantage consists in the absence of parametric derivatives of
the Bloch vectors. A similar formula for the orbital magnetization could be derived
by applying Eq. (3.21) to the expression (3.8).

3.4 | Eigenprojectors and Bloch vectors from the Hamil-
tonian

The Bloch vector expressions obtained above are conceptually interesting, but to
make them useful in practice we need to connect the eigenprojectors Pα and Bloch
vectors bα to the Hamiltonian. More precisely, the goal is to obtain a generalization
of Eq. (2.46) to arbitrary N .

3.4.1 | Eigenprojectors as a function of the Hamiltonian matrix

The Cayley-Hamilton theorem (Cayley 1858; Horn and Johnson 2013) states that any
square matrix satisfies its own characteristic equation. In particular, this holds for
the N×N Hamiltonian matrix H. For example, for N = 2 the characteristic equation
is

ϵ2 − (ε+ + ε−)ϵ+ ε+ε− = 0, (3.23)

and thus the Hamiltonian satisfies the matrix identity

H2 − (ε+ + ε−)H + ε+ε−12 = 0 (3.24)

according to the Cayley-Hamilton theorem. This is an extremely powerful statement,
because it means that H2 and all higher powers can be written as linear functions of
H. More generally, it is clear from the Cayley-Hamilton theorem that any analytic
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k 0 1 2 3 4 5

ck 1 0 −C2/2 −C3/3 C2
2/8− C4/4 C2C3/6− C5/5

Table 3.2 – Coefficients ck determining the polynomial qn(z).

function of the Hamiltonian, which is a priori an infinite-order polynomial f(H) =∑∞
n=0 anH

n, can be rewritten as a polynomial of degree N − 1 in H:

f(H) =

N−1∑
n=0

ãnH
n. (3.25)

The main idea here is to apply this principle to the eigenprojector. As demonstrated
in detail in Appendix III.D, each eigenprojector can indeed be written in the form

Pα =

∑N−1
n=0 qN−1−n(εα)H

n∑N−1
n=0 qN−1−n(εα)εnα

=

∑N−1
n=0 qN−1−n(εα)H

n∑N−1
n=0 qN−1−n(εα)Cn

, (3.26)

where the polynomials

qn(z) ≡
n∑

k=0

ckz
n−k (3.27)

are closely related to the Hamiltonian’s characteristic polynomial and the coefficients
ck are determined by exponential Bell polynomials (Bell 1934; Comtet 1974). For our
purposes here, it suffices to list these coefficients for k ≤ 5, see Table 3.2. We have
also introduced (classical) Casimir invariants (Kusnezov 1995)

Cn ≡ Tr(Hn) =

N∑
α=1

εnα. (3.28)

The utility of Eq. (3.26) becomes apparent if we write down the explicit eigenprojec-
tors for N = 2 to N = 5, respectively:

Pα =
1

2εα
(εα12 +H),

Pα =
1

3ε2α − C2
2

[(
ε2α − C2

2

)
13 + εαH +H2

]
,

Pα =
1

4ε3α − C2εα − C3
3

×
[(
ε3α − C2

2
εα − C3

3

)
14 +

(
ε2α − C2

2

)
H + εαH

2 +H3

]
,

Pα =
1

5ε4α − 3C2
2 ε2α − 2C3

3 εα +
C2

2−2C4

8

×
[(
ε4α − C2

2
ε2α − C3

3
εα +

C2
2 − 2C4

8

)
15

+

(
ε3α − C2

2
εα − C3

3

)
H +

(
ε2α − C2

2

)
H2 + εαH

3 +H4

]
.

(3.29)
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This represents the N -band generalization of the two-band projectors (2.46). Given
the Hamiltonian, the only ingredient required for explicitly computing the eigenpro-
jector Pα is the corresponding eigenenergy εα. Note that, in this context, one can
make a certain distinction between N < 5 and N ≥ 5. In the former case, it is in
principle always possible to find the eigenvalues, since closed-form solutions for the
characteristic polynomial exist, see Appendix III.E. In the latter case (N ≥ 5), there
are no closed-form solutions in general, but Eq. (3.26) loses none of its convenience
as long as the eigenvalues εα are known.

Beyond the computation of eigenprojectors, Eq. (3.26) has two interesting ap-
plications. First, we can explicitly write down the coefficients of the polynomial
expansion (3.25) of any function f(H), yielding an alternative version of Sylvester’s
formula (Horn and Johnson 2013):

ãn =
N∑

α=1

f(εα)
qN−1−n(εα)∑N−1

n=0 qN−1−n(εα)εnα
. (3.30)

Second, the eigenprojector is in some sense a more fundamental object than the
eigenstate, namely Eq. (3.26) may be employed for constructing energy eigenstates
as

|ψα⟩ =
1√

⟨ψg|Pα |ψg⟩
Pα |ψg⟩ , (3.31)

by projecting onto a gauge freedom state |ψg⟩ that can be chosen arbitrarily (for
more details, see Appendix III.F). The eigenstates (3.31) can then be used further as
desired.

3.4.2 | Bloch vectors as a function of the Hamiltonian vector

The above key results (3.26) and (3.29) on the eigenprojectors can equivalently be
formulated in the language of Bloch vectors. In particular, by inserting Eqs. (2.24)
and (2.50) into Eq. (3.26), one obtains the analog of the function Pα(εα, H) in the
vectorial language, namely bα(εα,h), as demonstrated in detail in Appendix III.G.
The usefulness of this procedure is most apparent when considering the explicit Bloch
vector expressions resulting from it, provided here for N = 2 to N = 5:

bα =
1

εα
h,

bα =
2

3ε2α − C2
2

(εαh+ h⋆) ,

bα =
2

4ε3α − C2εα − C3
3

[(
ε2α − C2

4

)
h+ εαh⋆ + h⋆⋆

]
,

bα =
2

5ε4α − 3C2
2 ε2α − 2C3

3 εα +
C2

2−2C4

8

×
[(
ε3α − 3C2

10
εα − 2C3

15

)
h+

(
ε2α − 3C2

10

)
h⋆ + εαh⋆⋆ + h⋆⋆⋆

]
.

(3.32)
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This is the N -band generalization of the two-band Bloch vectors (2.46), and contains
exactly the same information as Eq. (3.29).

The peculiar vectors h⋆, h⋆⋆, et cetera appearing here are star products of the
Hamiltonian vector with itself, where we use the notation introduced in Eq. (2.33).
Such vectors appear because, for given N , each Bloch vector (3.32) is a kind of “vector
polynomial” in h, just like each eigenprojector is a matrix polynomial in H. Note also
that, since the Casimir invariants are traces of powers of the Hamiltonian matrix, cf.
Eq. (3.28), they can be directly expressed as

C2 = 2|h|2, C3 = 2h · h⋆, C4 =
4

N
|h|4 + 2|h⋆|2 (3.33)

in terms of the Hamiltonian vector.

3.4.3 | Observables in terms of the Hamiltonian

As we have seen, the Bloch vectors are uniquely determined in terms of the Hamil-
tonian and its eigenvalues. Using this result, all physical quantities (3.19) expressed
in terms of Bloch vectors can be explicitly evaluated for any given Hamiltonian with-
out resorting to eigenstates. This is illustrated here for the QGT and the orbital
magnetization.

Quantum geometric tensor

Consider the general expression (3.10) valid for arbitrary values of N , where we now
substitute the explicit formula (3.32) for the Bloch vector. Let us first focus on the
Berry curvature, for which we obtain a closed-form expression for arbitrary N (see
Appendix III.H for a detailed discussion). We illustrate it here for N = 3, 4, 5, for
comparison with the simple N = 2 expression (2.41). We find that, in the N = 3
case, the Berry curvature tensor is given by

Ωα,ij = − 4

(3ε2α − |h|2)3
να ·

(
ν(i)
α × ν(j)

α

)
,

να = εαh+ h⋆,

ν(i)
α = εαh

i + hi
⋆,

(3.34)

where againmi ≡ ∂im for any vectorm. Note that if one inserts the particular energy
parametrization (III.28), one recovers the SU(3) Berry curvature formula found by
Barnett et al. (2012). Similarly, for arbitrary N = 4 systems, we have

Ωα,ij = − 4

(4εαqα − 2
3h · h⋆)3

να ·
(
ν(i)
α × ν(j)

α

)
,

να = qαh+ εαh⋆ + h⋆⋆,

ν(i)
α = qαh

i + εαh
i
⋆ + hi

⋆⋆,

(3.35)



58 3 |Bloch vector approach to observables

with qα ≡ ε2α − 1
2 |h|

2. For arbitrary N = 5 systems, the Berry curvature is given by

Ωα,ij = − 4(
5εαrα + 3

10 |h|4 −
1
2 |h⋆|2

)3να ·
(
ν(i)
α × ν(j)

α

)
,

να = rαh+ q̃αh⋆ + εαh⋆⋆ + h⋆⋆⋆,

ν(i)
α = rαh

i + q̃αh
i
⋆ + εαh

i
⋆⋆ + hi

⋆⋆⋆,

(3.36)

where rα ≡ εαq̃α − 4
15h · h⋆ and q̃α ≡ ε2α − 3

5 |h|
2. In the same way, one may obtain

expressions for N > 5.
For the quantum metric, writing down explicit formulas in terms of h and εα

proves problematic for N > 2, since cumbersome formulas follow from the chain rule
when differentiating the Bloch vectors (3.32). For the Berry curvature above, this
issue is circumvented by appropriate orthogonality relations (see Appendix III.H).
Nevertheless, there are two simple ways to compute the quantum metric without
using eigenstates. One can use either the formula provided in Appendix III.C, or, for
any given Hamiltonian, one can simply calculate the Bloch vectors (3.32) explicitly,
and then substitute the result into Eq. (3.10).

Orbital magnetization

We now conduct the same procedure for the orbital magnetization, by inserting Eq.
(3.32) into Eq. (3.13). For the simplest case, N = 2, it follows

M =

∫
α

(
f(εα)

ε2α
+
g(εα)

ε3α

)
h · (hx × hy). (3.37)

For N = 3, it follows

M =

∫
α

[
4f(εα)

(3ε2α − |h|2)2
h+

8g(εα)

(3ε2α − |h|2)3
να

]
·
(
ν(x)
α × ν(y)

α

)
, (3.38)

where να and ν
(i)
α are the same as in Eq. (3.34). Similar results are obtained for

any desired N , allowing to compute the orbital magnetization without the need for
energy eigenstates.

3.5 | Example: Pseudospin-s fermions

In this last section, we present a simple pedagogical example of how the formalism
developed above, especially with regard to computing quantum metric and Berry
curvature from Bloch vectors, can be applied to concrete Hamiltonians of interest.
For simplicity, we consider continuum models (2.6) of pseudospin-s type, with γ = 1.
Later, in Chapter 5, we will frequently make use of Eq. (3.10) to compute the quantum
geometric structure of multiband systems beyond the pseudospin scenario.

Pseudospin-1 fermions. The spin Hamiltonian (2.6) can be easily rewritten
in the general form of Eq. (2.24) by using the relation between spin matrices and
Gell-Mann matrices (Appendix II.A). Thus, for s = 1, the Hamiltonian vector reads

h(q) =
1

2
(
√
2qx,

√
2qy, qz, 0, 0,

√
2qx,

√
2qy,

√
3qz).
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Upon using the spectrum (2.7) with band velocity cα = ms and C2 = 2|q|2, the
eigenprojectors for a pseudospin-1 fermion are obtained from Eq. (3.29) as

Pα(q) =
1

3c2α − 1

[
(c2α − 1)13 +

cα
|q|

(h · λ) + 1

|q|2
(h · λ)2

]
.

It is readily verified that all expected properties of eigenprojectors are satisfied. Sim-
ilarly, the Bloch vectors follow from Eq. (3.32) as

bα(q) =
2

3c2α − 1

(
cα

h

|q|
+

h⋆

|q|2

)
,

where

h⋆(q) =

(
qxqz√

2
,
qyqz√

2
,
3q2z − |q|2

4
,
q2x − q2y

2
, qxqy,−

qxqz√
2
,−qyqz√

2
,
|q|2 − 3q2z

4
√
3

)
.

The Berry curvature may now be obtained from Eq. (3.10) [or from Eq. (3.34)], and
one recovers Eq. (2.8) as expected. Similarly, the quantum metric follows from Eq.
(3.10) [or from Eq. (III.15)] as

gα,ij(q) =
2− c2α
2|q|2

(
δij −

qiqj
|q|2

)
,

in agreement with the results of Lin and Hsiao (2021).

Pseudospin-3/2 fermions. Exploiting the relation between spin matrices and
Gell-Mann matrices (Appendix II.A), the Hamiltonian vector for s = 3/2 reads

h(q) =
1

2
(
√
3qx,

√
3qy, qz, 0, 0, 2qx, 2qy,

√
3qz, 0, 0, 0, 0,

√
3qx,

√
3qy,

√
6qz).

The star product vectors h⋆ and h⋆⋆ can then be computed from Eq. (2.33). Using
the spectrum (2.7) as well as C2 = 5|q|2 and C3 = 0, the eigenprojectors for a spin-3/2
fermion are obtained as

Pα(q) =
1

4cα
(
c2α − 5

4

)
×

[
cα

(
c2α − 5

2

)
14 +

c2α − 5
2

|q|
(h · λ) + cα

|q|2
(h · λ)2 + 1

|q|3
(h · λ)3

]
.

Similarly, the Bloch vectors are given by

bα(q) =
1

2cα
(
c2α − 5

4

) [(c2α − 5

4

)
h

|q|
+ cα

h⋆

|q|2
+

h⋆⋆

|q|3

]
.

Note that the coefficient of the linear term (in H) of the eigenprojector is in general
not the same as the coefficient of the linear term (in h) of the Bloch vector, and
similarly for the higher-order terms. This is due to the fact that Hn+1 ̸= h

(n)
⋆ · λ for
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n ≥ 0. The Berry curvature follows from Eq. (3.10) [or from Eq. (3.35)], and again
takes the expected form (2.8). The quantum metric reads

gα,ij(q) =
15/4− c2α

2|q|2

(
δij −

qiqj
|q|2

)
,

again in agreement with Lin and Hsiao (2021). Indeed, we can write the general
quantum metric for an arbitrary pseudospin-s as

gα,ij(q) =
ωα

4|q|2

(
δij −

qiqj
|q|2

)
, (3.39)

where ωα is the coefficient of the orbital magnetic moment given in Eq. (2.9).

3.6 | Conclusions

For a quantum system described by a parametric Hamiltonian matrix (2.24), observ-
ables are conventionally constructed from matrix elements Oαβ that require explicit
knowledge of energy eigenstates. Here we have argued that it can prove rewarding to
get rid of the eigenstates and aim for a reformulation (3.19) in terms of Bloch vectors.
Such a Bloch vector approach is motivated by the fact that Bloch vectors (like the
corresponding eigenprojectors) offer several advantages over eigenstates, namely they
are gauge-invariant, non-singular and possess a unique parametrization, see Table 3.1.
A Bloch vector formulation can be done for any observable, and the present chapter
illustrated how it works using simple examples such as the quantum geometric tensor
and orbital magnetization, see in particular Eqs. (3.10) and (3.13).

At a conceptual level, the Bloch vector form (3.19) of a given quantity makes
explicit the intraband or interband character of individual contributions, since Bloch
vectors are identically zero in a single-band system (or in a multiband system with
trivially decoupled bands). Moreover, one can draw the interesting conclusion that
any observable can (at least in principle) be computed using only the Hamiltonian
vector and the energy eigenvalues, in agreement with recent results of Pozo and Juan
(2020). This becomes evident when combining Eqs. (3.19) and (3.32). The resulting
expressions χ = f(εα,h) are extremely convenient for explicit computation of Berry
curvature and orbital magnetic moment, and indeed in the following Chapters 4 and
5 we will frequently make use of this fact. In particular, we emphasize that we
have generalized the well-known Berry curvature expression (2.41) to arbitrary N ,
see Section 3.4.3. It is desirable to extend the ideas exposed here to quantities more
complicated than the QGT and orbital magnetization, and to obtain Bloch vector
based expressions e.g. for magnetoconductivities [beyond the Boltzmann result (1.57)]
or the orbital magnetic susceptibility.

To close this chapter, we note that the validity of the formalism developed here
goes beyond the case of Hermitian Hamiltonian matrices. In particular, the key
expressions Eq. (3.29) for the eigenprojector and Eq. (3.32) for the Bloch vector stay
valid for systems where the Hermiticity condition is relaxed (Bender 2007; Brody
2013).



Chapter 4

Designing flat-band models with
multifold band crossings

4.1 | Introduction

In Chapter 2 we have pointed out the interest of flat bands as a basis for creating
strongly correlated quantum phases. Additionally, we have emphasized the interest
of (pseudospin-s) multifold band crossings in 3D, which lie at the heart of topological
semimetals. Interestingly, as we have seen, both the paradigmatic flat-band models
(such as the Lieb or dice lattice) and the pseudospin-s systems frequently exhibit a
band crossing and a flat band simultaneously.

Motivated by this curious fact, in the present chapter we develop a systematic
method to design tight-binding models that exhibit both a flat band and one or
several multifold band touching points1 residing at the flat-band energy. The flat-
band systems obtained in this way are expected to exhibit very interesting quantum
geometric properties, as we will indeed confirm later on.

The procedure is based on the notion of a compact localized state (CLS) (Aoki et
al. 1996) – that is, a wave function strictly localized to some finite region of the lattice
– and has several very convenient features. First, it allows to obtain (in principle
infinitely many) novel flat-band tight-binding models on any periodic lattice, thus
vastly extending the family of known flat-band systems. Second, the method offers
extensive control over the number, location, degeneracy, and low-energy dispersion of
multifold band touching points. Moreover, it is intuitive, fully analytic, and provides
short-range hopping models that do not require any fine-tuning. Finally, the method
can be viewed as a new classification scheme for flat-band networks, providing a
common framework for known models (Mielke, Tasaki, Lieb, dice, breathing Kagome,
and so on) and the additional models introduced here.

Previously, many different schemes to generate flat-band models have been devel-
oped, but they mostly do not pay special attention to band crossings. For example,
Miyahara et al. (2005), Röntgen et al. (2018), or Morfonios et al. (2021) recently
suggested flat-band construction procedures based on graph theory, an approach that
has a long history (Mielke 1991a; Mielke 1991b). Various other approaches include
Origami rules (Dias and Gouveia 2015), repeated miniarrays (Morales-Inostroza and
Vicencio 2016), or generic existence conditions (Toikka and Andreanov 2018). An im-

1Note that we employ the terms band crossing and band touching synonymously whenever the
nature of the low-energy dispersion is not specified. However, when the low-energy dispersion is linear
(quadratic), we usually employ the term band crossing (band touching).
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portant class of flat bands is obtained in the presence of a bipartite lattice structure
(Ramachandran et al. 2017; Călugăru et al. 2021), and also the direct extension of
known flat-band lattices may lead to new flat-band models, see for example Mizoguchi
and Hatsugai (2019), Lee et al. (2019), or Ogata et al. (2021).

Moreover, over the last years, the close relation between flat bands and CLSs,
which we will equally make use of, has been increasingly exploited. For example,
Nishino et al. (2003) and Nishino and Goda (2005) have discussed CLSs for tight-
binding models on hexagonal, cubic or diamond lattices. Flach et al. (2014) have pro-
posed to classify flat bands by the number of unit cells occupied by the corresponding
CLS, which is also the strategy used by a series of follow-up articles (Maimaiti et al.
2017; Maimaiti et al. 2019; Maimaiti et al. 2021). Additionally, Sathe et al. (2021)
have analyzed general conditions necessary to construct CLSs.

Apart from an early article by Bergman et al. (2008), work on flat-band systems
that also focuses more specifically on the role of band crossings has emerged only
quite recently, see for example Rhim and Yang (2019) or Mizoguchi and Hatsugai
(2019). In particular, Rhim and Yang (2019) introduced a flat-band classification
scheme based on singularity properties of the flat-band eigenstate at band crossing
points. An extension of these ideas has led the same authors to propose a flat-band
construction scheme starting from CLSs (Hwang et al. 2021), which is similar to the
method described in this chapter.

We begin this chapter by reminding some known facts about flat-band systems
(Section 4.2), in particular the important notion of a CLS. In Section 4.3, we turn to
the description of our flat-band construction method, where the exposition is mostly
based on Graf and Piéchon (2021b). We describe how flat-band Hamiltonians can be
engineered from any given CLS, and this idea is developed in detail in Sections 4.4
and 4.5. After some further remarks regarding our flat-band design principle (Section
4.6) we highlight some interesting perspectives opened by our results (Section 4.7).
This includes, in particular, the quantum geometry of the multifold touching points,
which will naturally guide us to the concept of a Berry dipole, essential for Chapter 5.
We further briefly address magnetic flat bands and multiple flat bands, all of which
appear as promising topics for future work. Conclusions are given in Section 4.8.

4.2 | Basics of flat-band physics

4.2.1 | Compact localized states and associated Bloch states

Definition of a compact localized state

Consider a periodic lattice treated in the tight-binding approximation, withN (atomic)
orbitals per unit cell, that is, with N sublattices labeled by a = A,B,C, ... . On such
a lattice, a compact localized state (CLS) centered at some localization center RC can
be formed as a linear combination

|ΨRC
CLS⟩ =

∑
ai∈CLS

wai |ai⟩ (4.1)
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Fig. 4.1 – Example for a CLS (a) on a square lattice (N = 2) and (b) on a Kagome lattice (N = 3).
The orbitals included in the CLS are colored and labeled. The CLS wave function is represented by
the light red region.

of orbitals |ai⟩, where the complex number wai – the CLS amplitude on the respective
orbital – takes a non-zero value only for a finite number of lattice sites around RC.
The subindex i takes account of the fact that more than one orbital of a given type
a will in general appear in the CLS (orbitals ai and aj ̸=i are in different unit cells).
Since only a finite number of orbitals contributes to the CLS, the CLS wave function

ΨRC
CLS(r) ∝ ⟨r|ΨRC

CLS⟩ (4.2)

is restricted to a finite region of the lattice, with strictly zero probability amplitude
outside this region.

As an example, consider the CLS built on the square lattice (N = 2) shown in
Fig. 4.1(a). It involves four orbitals labeled by a = A,B and i = 1, 2, that is,

|ΨRC
CLS⟩ = wA1 |A1⟩+ wA2 |A2⟩+ wB1 |B1⟩+ wB2 |B2⟩ . (4.3)

Similarly, the CLS on the Kagome lattice (N = 3) shown in Fig. 4.1(b) involves six
orbitals, namely

|ΨRC
CLS⟩ = wA1 |A1⟩+ wA2 |A2⟩+ wB1 |B1⟩+ wB2 |B2⟩+ wC1 |C1⟩+ wC2 |C2⟩ . (4.4)

The orbitals with non-zero amplitude (wai ̸= 0) are located at positions δai as mea-
sured from RC. For the CLS of Fig. 4.1(a), we have δA1,2 = ∓1

2(1,−1) as well as
δB1,2 = ∓1

2(1, 1). For the CLS of Fig. 4.1(b), the positions are δA1,2 = ∓1
2(1,−

√
3),

δB1,2 = ±1
2(1,

√
3), and δC1,2 = ±(1, 0). Note that the nearest-neighbor distance is

taken as a0 = 1 here and throughout.

Bloch state of a compact localized state

For any CLS (4.1) centered at some RC, there exists a macroscopic number of equiv-
alent copies translated by some Bravais vector. Thus, for any given CLS, we can
introduce a Bloch state of the CLS (BCLS) |f(k)⟩, which is obtained as an unnor-
malized superposition of the CLS and all its translated copies:

|f(k)⟩ =
∑
RC

e−ik·RC |ΨRC
CLS⟩. (4.5)
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Note that this (reciprocal-space) BCLS is simply the Fourier transform of the (real-
space) CLS.

To work with Eq. (4.5), it is further useful to adopt the Bloch basis. In particular,
we can expand the BCLS as

|f(k)⟩ =
∑
a

fa(k) |a,k⟩ , (4.6)

where the kets |a,k⟩ denote Bloch basis states (they are discussed in more detail in
Appendix I.A). The coefficients of the BCLS take the form

fa(k) ≡
∑

i∈CLS

waie
ik·δai , (4.7)

meaning that they are completely specified by the positions and amplitudes of the
orbitals contained in the real-space CLS.2

In the Bloch basis, which we adopt hereafter, the BCLS takes the form of a column
vector:

|f(k)⟩ = (fA(k), fB(k), ...)
T . (4.8)

For example, the CLS of Fig. 4.1(a) gives rise to a BCLS

|f(k)⟩ =

wA1e
− i

2
(kx−ky) + wA2e

i
2
(kx−ky)

wB1e
− i

2
(kx+ky) + wB2e

i
2
(kx+ky)

 , (4.9)

and the CLS of Fig. 4.1(b) corresponds to a BCLS

|f(k)⟩ =


wA1e

−ik− + wA2e
ik−

wB1e
ik+ + wB2e

−ik+

wC1e
ikx + wC2e

−ikx

 , (4.10)

where k± ≡ 1
2(kx ±

√
3ky). In the same way, each arbitrarily designed CLS on any

lattice uniquely corresponds to some BCLS |f(k)⟩.

4.2.2 | Link between compact localized states and flat bands

Here we discuss the well-known fact that, whenever there is a flat band in some band
structure, it implies the existence of highly degenerate CLSs in real space.

2The BCLS was introduced in a similar way by Rhim and Yang (2019), however these authors
work in the ”tight-binding basis I”, where the Bloch Hamiltonian has the periodicity of the first
Brillouin zone. In contrast, here and throughout this thesis we work in the ”tight-binding basis II”
(Bena and Montambaux 2009). The functional form of the coefficients fa(k) depends on this choice
of basis.
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Fig. 4.2 – (a) A compact localized state which is a zero-energy eigenstate of the (real-space) Lieb
Hamiltonian. (b) The CLS is not orthogonal to its neighbors.

Example: Lieb lattice

As a simple example illustrating this, let us consider the Lieb model (2.1) discussed
previously. Writing its Bloch Hamiltonian explicitly in matrix form, we have

HLieb(k) = 2


0 cos kx cos ky

cos kx 0 0

cos ky 0 0

 . (4.11)

This Hamiltonian clearly has an eigenstate

|ψ0(k)⟩ =
1

(c2x + c2y)
1/2

(0, cy,−cx)T (4.12)

of strictly zero energy, where we use shorthand notations ci = cos ki. Let us now
consider a CLS on the Lieb lattice as shown in Fig. 4.2(a), with amplitudes wBi = 1/2
and wCi = −1/2, such that

|ΨRC
CLS⟩ =

1

2
(|B1⟩+ |B2⟩ − |C1⟩ − |C2⟩). (4.13)

From Eq. (4.7) it is evident that the BCLS associated to this CLS is exactly given
by |f(k)⟩ = (c2x + c2y)

1/2|ψ0(k)⟩. Since this BCLS is a flat-band eigenstate of the
Bloch Hamiltonian (4.11), it is clear that the CLS (4.13) is an eigenstate of the (real-
space) Hamiltonian H. This can be straightforwardly verified by writing the explicit
real-space tight-binding Schrödinger equation for the Lieb lattice.3 It is now crucial
to realize that not only the particular CLS shown in Fig. 4.2(a), but also all its
copies translated by some Bravais vector are eigenstates of the Lieb Hamiltonian,
with the same zero-energy eigenvalue. Clearly, the system permits a highly (indeed
macroscopically) degenerate set of eigenstates.

3For a similar discussion concerning the CLS associated to the flat band of the dice lattice model
(2.1), see for example the beautiful article by Sutherland (1986).
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General method to obtain compact localized states

For flat-band Hamiltonians more complicated than the Lieb lattice, it is not necessar-
ily trivial to directly deduce the form of the corresponding CLSs. However there is a
systematic way to find the CLSs given the knowledge of the Bloch wave functions. In
particular, assume we are given any tight-binding model with a flat band, with known
Bloch eigenstates |Ψ0(k)⟩. Then it is clear that these eigenstates are degenerate for all
k and thus they can be freely mixed to construct another eigenstate of the real-space
Hamiltonian as

|ξ(RC)⟩ = c0
∑
k

cke
ik·RC |Ψ0(k)⟩. (4.14)

This state is centered at RC; ck is an arbitrary function and c0 a normalization
constant. Upon expanding the Bloch state |Ψ0(k)⟩ using Eq. (I.1), one obtains

|ξ(RC)⟩ =
∑
i,a

ARCRai
|a, i⟩, ARCRai

=
c0√
N

∑
k

ckc0,a(k)e
ik·(RC−Rai ), (4.15)

where Rai ≡ Ri + ra; Ri is the position of unit cell i and ra the position of orbital
a relative to that unit cell, N is the total number of unit cells (see Appendix I.A).
In other words, the flat-band eigenstate |ξ(RC)⟩ occupies the orbitals |a, i⟩ with am-
plitudes ARCRai

. These amplitudes depend on the components c0,a(k) of the state

|ψ0(k)⟩ = (c0,A(k), c0,B(k), ...)
T , which is simply the flat-band eigenstate of the Bloch

Hamiltonian matrix H(k). They further depend on the choice of the arbitrary func-
tion ck.

From a physical point of view, we can now make an important distinction (Rhim
and Yang 2019). Since |ψ0(k)⟩ is normalized, its components are necessarily of the
form c0,a = c̃0,a/⟨ψ̃0|ψ̃0⟩1/2, where the normalization factor in the denominator is
typically a square root of a k-dependent function. For example, for the flat-band
eigenstate (4.12) of the Lieb model we have c̃0,A = 0, c̃0,B = cy, c̃0,C = −cx and
⟨ψ̃0|ψ̃0⟩ = c2x + c2y. Thus, if ck is chosen such as to cancel the normalization factor,
then the coefficients ARCRai

become simple sums of Bloch phases, which is an essential
requirement for compact localization. Indeed, such a choice guarantees that ARCRai

̸=
0 only for a finite number of orbitals |a, i⟩, such that |ξ(RC)⟩ becomes a compact
localized state (4.1). By shifting RC, we thus obtain a set of N different CLSs, all of
which are flat-band eigenstates by design.

If instead ck is chosen such that the denominator is not canceled, one obtains a
state infinitely extended in real space, which is not what we are looking for. Indeed,
if we were to take ck = 1 in Eq. (4.14), then |ξ(RC)⟩ would become equivalent to the
Wannier state |Φ0(RC)⟩ of the flat band [see Eq. (4.16) below]. Such Wannier states
typically exhibit an exponential decay away from their center (He and Vanderbilt
2001) but are not compactly localized.

As an example, we now show that this general method allows to recover the
CLS (4.13), which we obtained earlier “by inspection”. Starting from the flat-band
eigenstate (4.12) of the Lieb model, we may use Eq. (4.15) to construct a state
|ξ(RC = 0)⟩. Clearly, the sublattice A is unoccupied, and the B and C sites are
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occupied as

A0,RBi
=

c0√
N

∑
k

ck
cy√
c2x + c2y

e−ik·RBi , A0,RCi
=

c0√
N

∑
k

ck
−cx√
c2x + c2y

e−ik·RCi .

To get a CLS, we now cancel the denominator by choosing ck = (c2x + c2y)
1/2. Taking

the normalization constant as c0 = N−1/2, we then indeed find non-zero amplitudes
ARB1

= ARB2
= 1/2 and ARC1

= ARC2
= −1/2 for the four labeled sites in Fig.

4.2(a), while the amplitudes vanish on all other lattice sites. Thus we recover the
CLS (4.13). For more examples, we recommend to consult Rhim and Yang (2019).

4.2.3 | Wannier states versus compact localized states

Here we briefly comment on the relation betwen CLSs and Wannier states, since the
latter may be more familiar to the reader. Wannier states are a set of mutually
orthogonal states that can be used as a complete basis to express electronic states in
a crystal (Wannier 1937). They can be defined as a Fourier transform of the Bloch
states (1.2), namely

|Φα(R)⟩ = 1√
N

∑
k

eik·R|Ψα(k)⟩. (4.16)

Here R denotes the position of the unit cell where the Wannier state is centered,
and α is the sublattice index. Using the orthonormality ⟨Ψα(k)|Ψβ(k

′)⟩ = δαβδkk′

of the Bloch states one readily verifies that ⟨Φα(R)|Φβ(R
′)⟩ = δαβδRR′ . For any

dispersive band in a crystal, one can choose to work with the Bloch or Wannier states
as appropriate. While the Bloch states are eigenstates of the lattice Hamiltonian
(1.1), the Wannier states are in general not.

For a flat band, however, it is clear from the definition (4.16) that both Bloch
and Wannier states are eigenstates of H. Moreover, as we have seen, any flat band
implies the existence of N different CLSs. Thus, for a flat band the set of CLSs can
be viewed as a third possible type of basis, in addition to the Bloch and Wannier
bases. However, the N different CLSs do not in general form an orthogonal set. For
example, it is clear from Fig. 4.2(a) that in the Lieb model the most compactly
localized flat-band eigenstate possible occupies two unit cells. This state overlaps
with all four copies translated by one unit cell in the x̂ or ŷ direction, see Fig. 4.2(b),
and the overlap is such that the CLSs are not mutually orthogonal.

At the same time, the N different CLSs also do not necessarily form a complete
set. That is, they are not necessarily linearly independent, in which case they cannot
span the flat band completely. Rhim and Yang (2019) recently made use of this fact
to separate flat bands into two very general classes:

(i) Flat bands for which a complete set of CLSs cannot be found; these are called
singular flat bands, and they exhibit a singular band touching with a dispersive
band. Technically, this is the case whenever ck – which needs to be chosen
such that compact localization is achieved – has a root ck0 = 0 for at least
one k0 in the Brillouin zone. Equivalently, this happens whenever the BCLS
associated to the flat band vanishes for some k0, that is |f(k0)⟩ = 0. For such
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systems, additional states (known as non-contractible loop states) are necessary
to complement the basis of CLSs.

(ii) Flat bands that can be spanned by a complete set of CLSs; these are the non-
singular flat bands, including in particular flat bands that are gapped away from
all other bands, or flat bands touching a dispersive band in a non-singular way.
In this case there does not exist a point k0 such that ck0 = 0 or |f(k0)⟩ = 0.

For example, for the case of the Lieb lattice considered above, the function ck = (c2x+
c2y)

1/2 and the BCLS |f(k)⟩ = ck|ψ0(k)⟩ clearly vanish for kx = ±π/2, ky = ±π/2.
Thus the crossing point between the two dispersive bands and the flat band is singular.

These two classes of flat bands are also topologically distinct: when a non-singular
touching is lifted, the flat band remains exactly flat and thus carries no Chern number
(Chen et al. 2014); however when a singular touching is lifted, the flat band gets
distorted and is allowed to acquire a Chern number.

In summary, CLSs can be used as a basis for flat bands (with some restrictions if
the flat band is singular), but represent a class of eigenstates fundamentally different
from Wannier states, which are always linearly idependent and mutually orthogonal.

4.3 | Building flat-band models from compact localized
states

Drawing on the knowledge about CLSs summarized above, we are now in the position
to develop a powerful construction scheme for flat-band models. The main idea is to
invert the line of reasoning used above. More precisely, we have illustrated that
whenever there is a flat band in a given tight-binding model, then there is a set of N
degenerate CLSs; we have also described how to find those CLSs. In contrast, in the
following we will start out from the CLS and are looking for flat-band models.

Assume we are given any arbitrarily shaped CLS |ΨCLS⟩ on any periodic lattice
of choice, which we shall call an input CLS, see Fig. 4.3(a). We are now going to
show that it is always possible to construct families of tight-binding Hamiltonians H
such that this input CLS and all its translated copies constitute a macroscopically
degenerate set of eigenstates:

H|ΨRC
CLS⟩ = ϵ0|ΨRC

CLS⟩, ∀RC. (4.17)

In order to find these tight-binding Hamiltonians H, we first construct the BCLS
|f(k)⟩ associated to the input CLS. In a second step, see Fig. 4.3(b), we impose Bloch
Hamiltonians H(k) for which |f(k)⟩ automatically represents a flat-band eigenstate:

H(k) |f(k)⟩ = ϵ0 |f(k)⟩ . (4.18)

In particular, as explained below, H(k) is chosen as a function of |f(k)⟩, and can
exhibit a quadratic or linear dependency on |f(k)⟩. This generically leads to models
with quadratic or linear band touchings, respectively. Finally, once appropriate ma-
trices H(k) are found, it is straightforward to obtain the real-space models H from
them, see Fig. 4.3(c), which will be flat-band models by construction. We should
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Fig. 4.3 – Basics of our method to build flat-band lattice models. In (a), the CLS wave function
in real space is illustrated by the red shading. In (b), ϵ0 denotes the energy of the flat band. An
example for a band structure with a quadratic (linear) band touching is sketched on the left (right).
In (c), a schematic visualization of the final flat-band hopping model is shown.

like to emphasize again that this strategy is opposite to basically all known methods
to create flat bands, which usually attempt to design appropriate hoppings of the
real-space Hamiltonian. Note also that hereafter ϵ0 = 0 without loss of generality.

To see how the Bloch Hamiltonian design [Fig. 4.3(b)] can be done, let us write
Eq. (4.18) explicitly in matrix form:

HAA(k) HAB(k) ...

HBA(k) HBB(k) ...

... ... ...



fA(k)

fB(k)

...

 = 0. (4.19)

Evidently, a flat band will automatically exist if the Bloch Hamiltonian is imposed
to be an appropriate function H(k) = H(|f(k)⟩) of the BCLS. More concretely, the
matrix elements Hab(k) should depend on the components fa(k) in such a way that∑

bHab(k)fb(k) = 0 is fulfilled for every a, independently of the detailed functional
form of the components fa(k). Thus, the task at hand consists in finding matrices
H(|f(k)⟩) that fulfill Eq. (4.19).

As will become clear throughout this chapter, in addition to the mathematical
constraint (4.19) we have to be aware of an additional physical constraint:

H(k) must be a reasonable Bloch Hamiltonian. (4.20)

This means that H(|f(k)⟩) has to be chosen such that the real-space tight-binding
Hamiltonian H constructed from it makes sense on a lattice. The latter property is
not automatically guaranteed for all matrices H(|f(k)⟩) that fulfill Eq. (4.19). More
concretely, for H(k) to be reasonable, the matrix elements Hab(k) should be made of
finite sums of Bloch phases that are compatible with the underlying lattice geometry
(see Appendix IV.A for more details).

As it turns out, there are two different simple choices for matrices that fulfill
condition (4.19):

H(k) is a quadratic function of the fa(k)

→ flat-band models with quadratic band touching points, Section 4.4.

H(k) is a linear function of the fa(k)

→ flat-band models with linear band crossing points, Section 4.5.
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Designing quadratic flat-band Hamiltonians is possible for N ≥ 2 bands and, con-
veniently, condition (4.20) is automatically fulfilled for any input CLS. In contrast,
designing linear Hamiltonians requires N ≥ 3 and the condition (4.20) is only fulfilled
for special input CLSs. For this reason, the quadratic case may be regarded as simpler
and will be treated first.

4.4 | Flat-band models with quadratic band touching

The simplest scenario for a quadratic flat-band model is encountered in two-band
(N = 2) systems. The procedure can then straightforwardly be generalized to N = 3,
and finally to any N .

4.4.1 | Two-band models

Consider some CLS built on a lattice with two orbitals per unit cell:

|ΨRC
CLS⟩ =

∑
i∈CLS

(wAi |Ai⟩+ wBi |Bi⟩). (4.21)

The corresponding BCLS has two components,

|f(k)⟩ = (fA, fB)
T , (4.22)

where hereafter fa ≡ fa(k) for brevity. We now want to construct a matrix H(k)
that vanishes on |f(k)⟩, that is, H(k)|f(k)⟩ = 0. The only generic way to do this
consists in introducing a state

|fAB⟩ ≡ (−f∗B, f∗A)T (4.23)

orthogonal to |f(k)⟩, as well as the corresponding matrix

FAB
k ≡

∣∣fAB
〉 〈
fAB

∣∣ . (4.24)

Then a Bloch Hamiltonian defined as

H(k) ≡ λAB
k FAB

k = λAB
k

 |fB|2 −fAf∗B
−f∗AfB |fA|2

 (4.25)

will obviously have |f(k)⟩ as an eigenstate of zero energy; in other words, Eq. (4.19)
is fulfilled for any |f(k)⟩. The band structure associated to Eq. (4.25) reads

ϵ0(k) = 0, ϵ1(k) = λAB
k (|fA|2 + |fB|2). (4.26)

Here, λAB
k is an arbitrary real function with the periodicity of the Brillouin zone. If

it is taken positive (or negative) throughout, the flat band is gapped away from the
dispersive band at all k-points where |f(k)⟩ does not vanish. In this case, a band
touching at k0 can only occur if |f(k0)⟩ = 0, that is, all band touchings are singular.
In contrast, if λAB

k changes sign in the Brillouin zone, non-singular band touchings
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Fig. 4.4 – (a) CLS on the square lattice. (b) Flat-band tight-binding model built from it. Hopping
parameters are in general complex, as indicated by the arrows. (c) The hopping directions are
determined by the CLS shape. (d) Band structure for wAi = −wBi = 1. (e) Band structure for the
same amplitudes except wB2 = −1−∆.

are possible. Since we are predominantly interested in non-trivial touching points
created by the singularity of the flat-band eigenstate, we will take λAB

k = 1 from now
on.

Let us now see how flat-band tight-binding models can be designed from Eq.
(4.25). As a first example, consider the CLS (4.3) used previously, which is again
visualized in Fig. 4.4(a) for convenience. We now simply insert the corresponding
BCLS (4.9) into Eq. (4.25), to obtain a Bloch Hamiltonian of the form

H(k) =

HAA(k) HAB(k)

H∗
AB(k) HBB(k)

 , (4.27)

where
HAA(k) = VA + tBB

12 e
−i(kx+ky) + tBB

21 e
i(kx+ky),

HBB(k) = VB + tAA
12 e

−i(kx−ky) + tAA
21 e

i(kx−ky),

HAB(k) = tAB
11 e

iky + tAB
12 e

−ikx + tAB
21 e

ikx + tAB
22 e

−iky .

(4.28)

The hopping directions present in the real-space tight-binding model H described by
this Bloch Hamiltonian are depicted in Fig. 4.4(b). They can be directly understood
from the shape of the CLS, as illustrated in Fig. 4.4(c): hoppings from site A to site
B (B to A) are determined by all vectors that connect orbitals A to orbitals B (B to
A) within the CLS. Similarly, hoppings from site A to site A (B to B) are determined
by all vectors that connect orbitals B to orbitals B (A to A) within the CLS. See also
Appendix IV.A for more details on the origin of this behavior.

The onsite energies of the Hamiltonian (4.27) take the values VA ≡ |wB1 |2+ |wB2 |2
and VB ≡ |wA1 |2 + |wA2 |2. The inter-sublattice hopping parameters are given by
tabij ≡ −waiw

∗
bj
, and the intra-sublattice hopping parameters are taaij ≡ waiw

∗
aj . All of

these parameters strongly depend on the amplitudes of the input CLS. As a conse-
quence, the band structure can be engineered by the choice of the CLS amplitudes.
In particular, the existence of a (singular) band touching can be ensured by choosing
|f(k)⟩ singular. For example, if the CLS amplitudes are such that |f(kX)⟩ = 0, a
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band touching at the X point of the Brillouin zone appears, see Fig. 4.4(d). Simi-
larly, there would be a band touching at the Γ point if wa1 = −wa2 ∈ R. In contrast,
if |f(k)⟩ is chosen non-singular, the bands are gapped away from each other, see Fig.
4.4(e).

As a second example, consider the CLS on the honeycomb lattice shown in Fig.
4.5(a). It is straightforward to obtain the BCLS

|f(k)⟩ =

wA1e
−ik+ + wA2e

ikx

wB1e
ik+ + wB2e

ik−

 , (4.29)

where again k± ≡ 1
2(kx±

√
3ky). Inserting into Eq. (4.25), one obtains a tight-binding

model of the form (4.27), where now

HAA(k) = VA + tBB
12 e

i
√
3ky + tBB

21 e
−i

√
3ky ,

HBB(k) = VB + tAA
12 e

−i(kx+k+) + tAA
21 e

i(kx+k+),

HAB(k) = tAB
11 e

−2ik+ + tAB
12 e

−ikx + tAB
21 e

ik− + tAB
22 e

ik+ ,

(4.30)

with onsite energies and hoppings as defined above. This model is shown in Fig.
4.5(b). Due to the asymmetric shape of the input CLS, the hoppings are also dis-
tributed asymmetrically, as illustrated in Fig. 4.5(c). By an appropriate choice of the
CLS amplitudes, the band structure can be freely designed to exhibit a band touching
at the Γ point or at the K points, see Fig. 4.5(d) and (e), or to be gapped by taking
|f(k)⟩ non-singular.

Proceeding in the same way, infinitely many different N = 2 flat-band models and
their band structures can be designed. For any imaginable CLS of the form (4.21),
if one inserts the corresponding BCLS (4.22) into Eq. (4.25), one obtains a flat-band
tight-binding model. Its hopping directions are determined by the shape of the input
CLS (that is, the set of all vectors δai), and hopping parameters as well as onsite
energies that are determined by the amplitudes wai of the input CLS.

To illustrate that the procedure outlined above indeed works for arbitrary input
CLSs, we may consider the (absurdly complicated) snowflake-shaped CLS displayed
in Fig. 4.5(f). Of course, for such an extended input CLS, the real-space model that
one obtains involves many further-neighbor hoppings and it is not useful to draw
it explicitly. However, conveniently, the band structure (4.26) can be analyzed and
designed without considering the real-space model. For example, taking wai = 1 for
all 42 orbitals involved in the CLS, the dispersive band ϵ1(k) strongly oscillates and
exhibits a large peak at the Γ point (not shown). If the amplitudes are flipped to
wai = −1 on three out of the six branches of the snowflake, see Fig. 4.5(g), then ϵ1(k)
exhibits six peaks arrayed hexagonally in the Brillouin zone.

We emphasize that the Bloch Hamiltonian (4.25) is indeed always reasonable [cf.
condition (4.20)] due to its quadratic character, as explained in more detail in Ap-
pendix IV.A. In fact, it is not only a reasonable flat-band Hamiltonian, but the only
possible form for the Bloch Hamiltonian of any N = 2 flat-band model. This can be
easily understood from the spectral theorem, see Appendix IV.B.
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Fig. 4.5 – (a) CLS on the honeycomb lattice. (b) Flat-band model built from it. (c) The hopping
directions are determined by the CLS shape. (d) Band structure for wa1 = −wa2 = 1. (e) Band
structure for wa1 = 1, wa2 = −e2πi/3. (f) Snowflake-shaped CLS. (g) Band structure of the cor-
responding flat-band model (left), with amplitudes as shown in the right inset: wai = 1 inside the
dark-shaded branches, and wai = −1 outside.

As we will show below, an analogous procedure of flat-band model and band
structure design is possible for N > 2. Additionally, the tunability turns out to be
considerably increased.

4.4.2 | Three-band models

Consider now a CLS built on a lattice with three orbitals per unit cell:

|ΨRC
CLS⟩ =

∑
i∈CLS

(wAi |Ai⟩+ wBi |Bi⟩+ wCi |Ci⟩). (4.31)

The corresponding BCLS has three components,

|f(k)⟩ = (fA, fB, fC)
T . (4.32)

We can now introduce three different states orthogonal to |f⟩, namely∣∣fAB
〉
= (−f∗B, f∗A, 0)T ,∣∣fAC
〉
= (−f∗C , 0, f∗A)T ,∣∣fBC
〉
= (0,−f∗C , f∗B)T ,

(4.33)
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with corresponding matrices F ab
k ≡ |fab⟩⟨fab|, where

FAB
k =


|fB|2 −fAf∗B 0

−f∗AfB |fA|2 0

0 0 0

 , FAC
k =


|fC |2 0 −fAf∗C
0 0 0

−f∗AfC 0 |fA|2

 ,

FBC
k =


0 0 0

0 |fC |2 −fBf∗C
0 −f∗BfC |fB|2

 .

(4.34)

A class of flat-band Bloch Hamiltonians is then obtained as a linear combination:

H(k) = λAB
k FAB

k + λAC
k FAC

k + λBC
k FBC

k , (4.35)

where λAB
k , λAC

k , λBC
k are arbitrary real functions with the periodicity of the Brillouin

zone. It will suffice to choose them as constants, λabk = λab. The Hamiltonian (4.35) is
analogous to Eq. (4.25) in that it automatically verifies the desired conditions (4.19)
and (4.20) for any conceivable input CLS, that is, for any |f(k)⟩. Therefore, infinitely
many flat-band models on any N = 3 lattice can be obtained from Eq. (4.35).

Moreover, there is an additional advantage compared to the N = 2 case, namely
there are now three relative parameters λab, while the single parameter λAB in the
two-band Hamiltonian (4.25) only acts globally. As a consequence, the Hamiltonian
(4.35) can be strongly tuned even if an input CLS completely fixed with regard to both
shape and amplitudes is used. This represents an additional degree of freedom absent
in the two-band case. In this context, it is also crucial to realize that the states (4.33)
are not eigenstates of the Hamiltonian (4.35). In fact, they form an overcomplete
basis of the space orthogonal to |f(k)⟩. This redundancy is at the origin of the
tunability provided by the λab. In contrast to the flat-band eigenstate |f(k)⟩, the
dispersive-band eigenstates of the Hamiltonian (4.35) do depend on the parameters
λab.

The dependency on the choice of the input CLS (that is, of the functions fa) and
the tunability by the λab are clearly reflected in the Hamiltonian’s band structure

ϵ0(k) = 0, ϵ1,2(k) =
1

2

(
C1 ±

√
2C2 − C2

1

)
, (4.36)

where Cn are Casimir invariants (3.28) which in the present case take the form

C1 =
∑
a,b>a

λab(|fa|2 + |fb|2),

C2 =
∑
b

(∑
a̸=b

λab|fa|2
)2

+ 2
∑
a,b>a

λ2ab|fa|2|fb|2.
(4.37)

As an example, consider again the six-site CLS on the Kagome lattice used previously,
shown in Fig. 4.6(a), with corresponding BCLS (4.10). Inserting into Eq. (4.35), one
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Fig. 4.6 – (a) CLS on the Kagome lattice. (b) Hopping directions occurring in the flat-band model
built from it, as determined by the CLS shape. The corresponding band structure is shown for
wa1 = −wa2 = 1 in (c) with λAB = λAC = λBC/2 = 1 and in (d) with λAB = λAC = −λBC/2 = 1;
for wa1 = 1, wA2 = eπi/3, wB2 = e−πi/3, wC2 = −e−2πi/3 in (e) with λAB = λAC = λBC/2 = 1 and
in (f) with λAB = λAC = −λBC/2 = 1.

obtains a flat-band tight-binding model

H(k) =


HAA(k) HAB(k) HAC(k)

H∗
AB(k) HBB(k) HBC(k)

H∗
AC(k) H∗

BC(k) HCC(k)

 , (4.38)

with diagonal matrix elements

HAA = VA + tA,BB
12 e2ik+ + tA,BB

21 e−2ik+ + tA,CC
12 e2ikx + tA,CC

21 e−2ikx ,

HBB = VB + tB,AA
12 e−2ik− + tB,AA

21 e2ik− + tB,CC
12 e2ikx + tB,CC

21 e−2ikx ,

HCC = VC + tC,AA
12 e−2ik− + tC,AA

21 e2ik− + tC,BB
12 e2ik+ + tC,BB

21 e−2ik+ ,

(4.39)

and off-diagonal elements

HAB = tAB
11 e

−ikx + tAB
12 e

i
√
3ky + tAB

21 e
−i

√
3ky + tAB

22 e
ikx ,

HAC = tAC
11 e

−i(kx+k−) + tAC
12 e

ik+ + tAC
21 e

−ik+ + tAC
22 e

i(kx+k−),

HBC = tBC
11 e

−ik− + tBC
12 e

i(kx+k+) + tBC
21 e

−i(kx+k+) + tBC
22 e

ik− .

(4.40)

Again, the hopping directions are determined by the CLS shape, as illustrated in Fig.
4.6(b), and the tight-binding model thus involves at most third-neighbor hoppings.

The onsite energies Va ≡
∑

b ̸=a λab(|wb1 |2 + |wb2 |2) as well as the inter-sublattice
hoppings tabij ≡ −λabwaiw

∗
bj
and intra-sublattice hoppings ta,bbij ≡ λabwbiw

∗
bj
are strongly

tunable by the six CLS amplitudes wai and the three parameters λab. This affords
considerable control over the behavior of the dispersive bands, and in particular over
the occurrence of band touching points. For example, the band structure can be cho-
sen to exhibit a threefold touching at the Γ point, and the position of the flat band
with respect to the dispersive bands can be controlled by the λab, see Fig. 4.6(c) and
(d). Similarly, the touching can be placed at the K points, and again the position of
the flat band can be controlled, see Fig. 4.6(e) and (f). Of course, the flat band can
also be gapped out completely by an imbalance in the CLS amplitudes.
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More generally, for three-band models of the form (4.35), a band touching point
of any degeneracy, and at various positions in the Brillouin zone, can be designed
without destroying the flat band. At k = k0, there will be a twofold touching if
2C2(k0) = C1(k0)[1 + C1(k0)], and a threefold touching if C1(k0) = C2(k0) = 0.
Clearly, this can be achieved in several different ways, with or without fine-tuning of
the λab. All possible scenarios are listed in Appendix IV.C.

4.4.3 | N-band models

The arguments made above can be readily extended to any N . Consider a generic
CLS (4.1) built on a lattice with N orbitals per unit cell, with corresponding BCLS
(4.8). We may now introduce

(
N
2

)
states

|fab⟩ ≡ (0, ..., 0,−f∗b , 0, ..., 0, fa, 0, ..., 0)T (4.41)

orthogonal to |f⟩, and the N ×N matrices

F ab
k ≡ |fab⟩⟨fab| (4.42)

constructed from them. A generic quadratic flat-band Bloch Hamiltonian is then
obtained by forming a linear combination of these

(
N
2

)
matrices:

H(k) =
∑
a,b>a

λabk F
ab
k , (4.43)

where a, b ∈ {A,B,C, ...} and λabk is an arbitrary real function with the periodicity
of the Brillouin zone. We will assume λabk = λab to be constants, such that the off-
diagonal and diagonal matrix elements of the Hamiltonian (4.43) explicitly read

Hab(k) = −λabfaf∗b , Haa(k) =
∑
b ̸=a

λab|fb|2. (4.44)

The Hamiltonian (4.43), which generalizes Eqs. (4.25) and (4.35) to any N , is the
first main result of this chapter. One can insert into it any arbitrary CLS built on
any lattice, for any spatial dimension and any number of sites per unit cell. Since
conditions (4.19) and (4.20) are automatically fulfilled, each such input CLS gives rise
to a reasonable real-space tight-binding model with a flat band. One thus obtains
arbitrarily many flat-band models on any lattice.4

Besides having the property of exhibiting a flat band automatically, the Hamil-
tonian (4.43) has two convenient properties. Namely, first, it is strongly tunable by
two independent knobs: the functions fa and the N(N − 1)/2 parameters λab. The
latter tunability stems from the fact that the states (4.41) are not eigenstates of the
Hamiltonian (4.43) and form an overcomplete basis of the space orthogonal to |f(k)⟩.
Second, it allows to design band touching points of any degeneracy. Although, for
N > 3, there is no elegant closed-form solution for the energy bands, the two most

4Of course, while Eq. (4.43) provides infinitely many flat-band models, it does not capture all
possible flat-band models except in the N = 2 limit. In particular, flat-band models with a linear
function H(|f(k)⟩) exist for N ≥ 3, see Section 4.5.
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Fig. 4.7 – (a) CLS on a bilayer honeycomb lattice. (b)–(e) Band structure (4.47) for the tight-
binding model built from it, for different values of θ and with λAB = 1.

interesting classes of such band touchings (which do not require fine-tuning of the λab)
can be determined as follows. (1) If |f(k0)⟩ = 0 for some k0, there will be an N -fold
(singular) band touching at k0. We have already seen examples for this in the two-
band and three-band case, see Figs. 4.4–4.6. (2) If, at k0, all except one component
of |f(k0)⟩ vanish, say fa0(k0) ̸= 0 and fa̸=a0(k0) = 0, then the Hamiltonian (4.43)
becomes locally diagonal with eigenvalues {0, λa0,a ̸=a0 |fa0(k0)|2}. In other words, a
d-fold band touching at k0, with 1 ≤ d ≤ N − 1, can be created as desired by setting
d− 1 parameters λa0,a̸=a0 to zero.

As an example for the N > 3 case, consider a CLS on an N = 4 bilayer honeycomb
lattice, shown in Fig. 4.7(a). For simplicity, we take all CLS amplitudes to be
identical, wai = 1. The corresponding BCLS is given by

|f(k)⟩ = (gk, g
∗
k, gk, g

∗
k)

T , gk ≡ 2e−
i
2
kx cos

(√
3ky/2

)
+ eikx . (4.45)

Even though the CLS is completely fixed (shape and amplitudes), the flat-band Bloch
Hamiltonian (4.43) built from it is still tunable by six parameters λAB, λAC , λAD,
λBC , λBD, λCD. To reduce the number of parameters, it is reasonable to set λCD =
λAB, λBC = λAD and λBD = λAC for reasons of symmetry [cf. Fig. 4.7(a)]. We may
then further set λAC = − cos2 θ λAB and λAD = − sin2 θ λAB to ensure a tight-binding
model with zero onsite energies and no intra-sublattice hopping:

H(k) = λAB


0 −g2k cos2 θ |gk|2 sin2 θ g2k

−(g∗k)
2 0 sin2 θ (g∗k)

2 cos2 θ |gk|2

cos2 θ |gk|2 sin2 θ g2k 0 −g2k
sin2 θ (g∗k)

2 cos2 θ |gk|2 −(g∗k)
2 0

 . (4.46)

Physically, the parameter θ quantifies the ratio between vertical (AC and BD) and
diagonal (AD and BC) inter-layer hoppings. In addition to a zero-energy flat band
ϵ0 = 0, the band structure of the model (4.46) contains three dispersive bands

ϵ1(k) = −2|gk|2, ϵ2(k) = 2 sin2 θ |gk|2, ϵ3(k) = 2 cos2 θ |gk|2, (4.47)
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in units of λAB. The upper two (lower two) bands are tunable by θ if λAB is taken
to be positive (negative), as shown in Fig. 4.7(b)–(e). Note that the system has a
chiral symmetry (2.3) for θ = nπ/2, n ∈ Z. In this case there is a doubly degenerate
flat band, of which one is essential (ϵ0) while the other one is accidental (ϵ2 or ϵ3).

Finally, to illustrate that our flat-band model construction scheme indeed works
for any dimension, an N = 4 flat-band model built from a CLS on the (3D) cubic
lattice is discussed in Appendix IV.D.

4.5 | Flat-band models with linear band crossing

In the previous section we have seen that appropriate Bloch Hamiltonians which are
purely quadratic functions of the components fa of the flat-band eigenstate give rise
to quadratic band touching points. It is then natural to study Bloch Hamiltonians
that are purely linear functions of the components fa. As might be expected, this
will give rise to models with linear band crossing points.

A generic Bloch Hamiltonian linear in the fa and respecting Hermiticity can be
constructed as5

H(k) =
∑
i

λi,k

(
|ei⟩⟨f⊥i (k)|+ |f⊥i (k)⟩⟨ei|

)
. (4.48)

Here λi,k is any real function with the periodicity of the first Brillouin zone, assumed
to be constant (λi,k = λi) in the following; |ei⟩ are k-independent vectors; |f⊥i (k)⟩ are
vectors perpendicular to the BCLS |f(k)⟩ and, importantly, linear in the components
fa. Note that the number of terms in the sum is equal to the number of different
vectors |f⊥i ⟩.

Several important statements about the Hamiltonian (4.48) can be made.

� A linear flat-band model cannot exist in a two-band system. Intuitively, it is
reasonable that a linearly dispersing band (“half a Dirac cone”) touching a flat
band should be impossible. Recall also that we have proven in Appendix IV.B
that any two-band system with a flat band must be of the quadratic form (4.25).
Thus, the simplest models of the form (4.48) have three bands.

� For the construction of a linear model (4.48), one cannot use a completely
arbitrary input CLS, in contrast to the quadratic scenario. Instead, the input
CLS needs to have special symmetry properties, as we will detail below.

� While the first term of the summand in Eq. (4.48) always vanishes on the BCLS
by definition, there are two possible scenarios for the second term:

(A) All vectors |ei⟩ are individually orthogonal to the BCLS, that is, ⟨ei|f(k)⟩ =
0 for each i.

(B) The vectors |ei⟩ are not individually orthogonal to the BCLS, but the sum
is, namely

∑
i λi|f⊥i ⟩⟨ei|f(k)⟩ = 0.

5Note that the method exposed here is a more comprehensive and more general version of that
previously presented by Graf and Piéchon (2021b).
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As we will see, different input CLSs can be classified according to whether they
give rise to flat-band Hamiltonians of type A or type B.

In the following, the three-band case will be studied in detail (Section 4.5.1) before
generalizing to higher N (Section 4.5.2).

4.5.1 | Three-band models

Consider again some CLS (4.31) built on a lattice with three orbitals per unit cell,
with corresponding BCLS (4.32). Our goal is now to construct N = 3 flat-band
Bloch Hamiltonians of the form (4.48). We can identify four different generic types of
input CLSs that work. They will be called AI -CLS, AII -CLS, BI -CLS and BII -CLS,
respectively, a notation motivated by the scenarios (A) and (B) introduced above, as
will become clear shortly.

These CLSs are also distinguished by important symmetry properties of the flat-
band Bloch Hamiltonians built from them. Namely, starting out from an AI -CLS, one
obtains a flat-band Hamiltonian characterized by a (global) chiral symmetry (2.3),
with x = k and a unitary matrix S that fulfills S2 = 13. Accordingly, the Hamiltonian
has a particle-hole symmetric spectrum. Starting out from an AII -CLS, the spectrum
of the resulting flat-band Hamiltonian is not particle-hole symmetric in general but
a chiral symmetry can be recovered in special cases. In contrast, CLSs of type B
(both BI and BII) give rise to flat-band Bloch Hamiltonians that exhibit a (global)
CP symmetry (2.10) with x = k and C such that C2 = 13. For such CP-symmetric
Hamiltonians, the spectrum is also particle-hole symmetric. The four distinct generic
types of CLSs along with the resulting flat-band models are presented in detail in the
following.

Flat-band models from type-A compact localized states

It is easy to see that for a completely generic BCLS of a three-band system, |f(k)⟩ =
(fA, fB, fC)

T , there is no constant vector |ei⟩ orthogonal to it. However, such an
orthogonal constant vector can exist if either one component of the BCLS vanishes
(type AI) or if two components are proportional to each other (type AII), as discussed
in detail in the following.

Flat-band models from AI-CLSs. The first possibility for building an N = 3
linear flat-band Hamiltonian arises if the input CLS (4.31) occupies two sublattices
in an arbitrary fashion, while vanishing on the third. Let u ∈ {A,B,C} denote the
unoccupied sublattice, then fu = 0, fa̸=u ̸= 0, and fAfBfC = 0. A CLS of this kind
will be called type AI . Any AI -CLS gives rise to a corresponding AI -BCLS

|f(k)⟩ = |mABC
u ⟩,

|mABC
A ⟩ ≡ (0, fB, fC)

T ,

|mABC
B ⟩ ≡ (fA, 0, fC)

T ,

|mABC
C ⟩ ≡ (fA, fB, 0)

T .

(4.49)

According to Eq. (4.48), we now need to write down all vectors linear in the fa that
are orthogonal to the BCLS. For any given unoccupied sublattice u there is only one
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such vector |f⊥1,u⟩, which takes the form

|f⊥1,A⟩ = |fBC⟩, |f⊥1,B⟩ = |fAC⟩, |f⊥1,C⟩ = |fAB⟩, (4.50)

where the |fab⟩ are given by Eq. (4.33). Additionally, there is a constant vector |e1,u⟩
that is also orthogonal to the BCLS, namely |e1,A⟩ = |v1⟩, |e1,B⟩ = |v2⟩, |e1,C⟩ = |v3⟩,
where simply |v1⟩ = (1, 0, 0)T , |v2⟩ = (0, 1, 0)T , and |v3⟩ = (0, 0, 1)T . The existence of
such an orthogonal constant vector characterizes the CLS as type A.

Clearly, a matrix orthogonal to the BCLS |mABC
u ⟩ is then constructed as

MABC
u,k = |e1,u⟩⟨f⊥1,u|+ |f⊥1,u⟩⟨e1,u|, (4.51)

which takes the explicit form

MABC
A,k ≡


0 −fC fB

−f∗C 0 0

f∗B 0 0

 , MABC
B,k ≡


0 −f∗C 0

−fC 0 fA

0 f∗A 0

 ,

MABC
C,k ≡


0 0 −f∗B
0 0 f∗A

−fB fA 0


(4.52)

for u = A,B,C, respectively. Consequently, any AI -CLS can be used to build a linear
flat-band Bloch Hamiltonian

H(k) = λABC
k MABC

u,k , (4.53)

where λABC
k is any function with the periodicity of the first Brillouin zone. This

Hamiltonian has a band structure

ϵ0(k) = 0, ϵ1,2(k) = ±λABC
k

√
⟨mABC

u |mABC
u ⟩. (4.54)

The bands are particle-hole symmetric due to a chiral symmetry (2.3) with S =
diag(τA, τB, τC), where τa̸=u = 1 and τa=u = −1. Note that λABC

k = 1 in the following.
Examples. CLSs of type AI can be easily found on any N = 3 lattice, since

the functions fa̸=u are completely unconstrained. As an example, consider the CLS
on the Kagome lattice shown in Fig. 4.8(a). Evidently, we have u = B, and the
associated BCLS (4.49) is given by

fA = wA1e
−ik− + wA2e

ik− , fC = wC1e
ikx + wC2e

−ikx . (4.55)

Inserting into Eq. (4.53), we obtain a flat-band tight-binding model

H(k) =


0 HAB(k) 0

H∗
AB(k) 0 HBC(k)

0 H∗
BC(k) 0

 , (4.56)



4.5 |Flat-band models with linear band crossing 81

Fig. 4.8 – (a) An AI -CLS on the Kagome lattice. (b) Flat-band tight-binding model built from it.
Hopping directions are determined by the CLS shape as indicated by the colors. The corresponding
band structure is shown in (c) for wa1 = −wa2 = 1 and in (d) for wa1 = 1, wa2 = eiπ/3. (e) A more
complicated AI -CLS on the dice lattice. (f) Tight-binding model built from it. The corresponding
band structure is shown in (g) for wa1 = −wa4 = wA2 = wC2/2 = −wA3 = −wC3/2 = 1 and in (h)
for wa1,2,3 = −wa4 = 1.

where

HAB(k) = tAB
1 e−ikx + tAB

2 eikx , HBC(k) = tBC
1 e−ik− + tBC

2 eik− . (4.57)

This model has the topology of a Lieb lattice [cf. Fig. 2.1(a)] and is depicted in Fig.
4.8(b). The hopping directions are determined by the shape of the input CLS, that
is, by the vectors δai , although in a different fashion than for the quadratic models
(see Appendix IV.A for details). Similarly, the hopping parameters tAB

i ≡ −w∗
Ci

and

tBC
i ≡ wAi again depend on the CLS amplitudes, which allows to design the band
structure. For instance, a (singular) band crossing may be created at the Γ point
[Fig. 4.8(c)] or at the K points [Fig. 4.8(d)].

As a more complicated example, consider the CLS on the dice lattice shown in
Fig. 4.8(e). The corresponding BCLS (4.49) is given by

fA = wA1e
ik+ + wA2e

ik− + wA3e
−ikx + wA4e

−2ik+ ,

fC = wC1e
−ik+ + wC2e

−ik− + wC3e
ikx + wC4e

2ik+ ,
(4.58)

and inserting into Eq. (4.53) leads to a flat-band model of the form (4.56), where now

HAB(k) = tAB
1 eik+ + tAB

2 eik− + tAB
3 e−ikx + tAB

4 e−2ik+ ,

HBC(k) = tBC
1 eik+ + tBC

2 eik− + tBC
3 e−ikx + tBC

4 e−2ik+ ,
(4.59)

with hopping parameters as defined above. This model is depicted in Fig. 4.8(f) and
allows for different kinds of band crossings depending on the CLS amplitudes. For
example, crossings may appear at the Γ and M points [Fig. 4.8(g)], but also away
from high-symmetry points [Fig. 4.8(h)]. Finally, note that a similar construction
works in any spatial dimension, since AI -CLSs can be easily built just by leaving one
sublattice empty.
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Flat-band models from AII-CLSs. The second possibility for building anN =
3 linear flat-band Hamiltonian arises if the input CLS (4.31) occupies all sublattices,
but with the constraint that the orbitals of two sublattices need to be located at
the same positions with respect to the localization center. The orbitals of the third
sublattice (indicated by u) are unconstrained. We will call a CLS of this kind type
AII . Any AII -CLS corresponds to an AII -BCLS of the form

|f(k)⟩ = |nABC
u ⟩,

|nABC
A ⟩ ≡ (fA, γ1fC , γ2fC)

T ,

|nABC
B ⟩ ≡ (γ2fA, fB, γ1fA)

T ,

|nABC
C ⟩ ≡ (γ1fB, γ2fB, fC)

T ,

(4.60)

where γ1,2 are complex numbers determined by the CLS amplitudes. Again, for any
given u, we can construct all vectors orthogonal to the BCLS, of which there are two
(|f⊥1,u⟩ and |f⊥2,u⟩) in the present case:

|f⊥1,A⟩ = (−γ∗1f∗C , f∗A, 0)T , |f⊥2,A⟩ = (γ∗2f
∗
C , 0,−f∗A)T ,

|f⊥1,B⟩ = (0,−γ∗1f∗A, f∗B)T , |f⊥2,B⟩ = (−f∗B, γ∗2f∗A, 0)T ,
|f⊥1,C⟩ = (f∗C , 0,−γ∗1f∗B)T , |f⊥2,C⟩ = (0,−f∗C , γ∗2f∗B)T .

(4.61)

Additionally, there is a constant vector |e1,u⟩ orthogonal to the BCLS, which takes the
form |e1,A⟩ = (0, γ∗2 ,−γ∗1)T , |e1,B⟩ = (−γ∗1 , 0, γ∗2)T , or |e1,C⟩ = (γ∗2 ,−γ∗1 , 0)T . Again,
the existence of such an orthogonal constant vector characterizes the CLS as type A.
Now we can construct a matrix that vanishes on the BCLS as a linear combination

NABC
u,k =

∑
i=1,2

λi

(
|e1,u⟩⟨f⊥i,u|+ |f⊥i,u⟩⟨e1,u|

)
, (4.62)

where more explicitly

NABC
A,k ≡


0 γ2(−λ1γ∗1 + λ2γ

∗
2)f

∗
C γ1(λ1γ

∗
1 − λ2γ

∗
2)f

∗
C

... 2λ1Re(γ
∗
2fA) −λ1γ1f∗A − λ2γ

∗
2fA

... ... 2λ2Re(γ
∗
1fA)

 ,

NABC
B,k ≡


2λ2Re(γ

∗
1fB) γ∗1(λ1γ1 − λ2γ2)fA −λ1γ∗1fB − λ2γ2f

∗
B

... 0 γ2(−λ1γ∗1 + λ2γ
∗
2)f

∗
A

... ... 2λ1Re(γ
∗
2fB)

 ,

NABC
C,k ≡


2λ1Re(γ

∗
2fC) −λ1γ1f∗C − λ2γ

∗
2fC γ∗2(−λ1γ1 + λ2γ2)fB

... 2λ2Re(γ
∗
1fC) γ∗1(λ1γ1 − λ2γ2)fB

... ... 0

 ,

where the dotted elements are obtained by Hermiticity. It is easy to check that indeed
NABC

u,k |nABC
u ⟩ = 0.
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Fig. 4.9 – (a) An AII -CLS on a multiorbital square lattice. (b) Flat-band tight-binding model built
from it. The corresponding band structure with wB1 = 1 is shown in (c) for wA1 = −wA2 = wA3/2 =
−wA4/2 = 1 and in (d) for wA1 = wA2 = −wA3/2 = −wA4/2 = 1. (e) A more complicated AII -CLS
with wA1 = −wA2 = wA3/2 = −wA4/2 = 1 and wBi = ±1 as shown. (f) Band structure for the
tight-binding model built from it.

Consequently, any AII -CLS can be used to build a linear flat-band Bloch Hamil-
tonian

H(k) = λABC
k NABC

u,k , (4.63)

where λABC
k is any function with the periodicity of the Brillouin zone. Again λABC

k = 1
in the following. This Hamiltonian has a band structure of the form (4.36), where
now

C1 = 2Re[(λ1γ
∗
2 + λ2γ

∗
1)fu],

C2 = C2
1 + 2|λ1γ1 − λ2γ2|2⟨nABC

u |nABC
u ⟩.

(4.64)

Clearly, the system is tunable by choice of the CLS amplitudes, but also for fixed CLS
amplitudes via the parameters λ1,2. Note also that if C1 = 0, for example by taking
λ1 = λ2 and γ1 = −γ2, then the bands become particle-hole symmetric due to the
presence of a chiral symmetry (2.3) with diagonal matrix elements Saa = −δau and
off-diagonal elements Sab = 1− δau − δbu.

Examples. CLSs of type AII cannot be found on all N = 3 lattices, due to the
constraints on the CLS mentioned above. However it is easy to devise an arbitrary
number of AII -CLSs for instance on multiorbital lattices. Out of the many possibili-
ties, we here present two examples on a square lattice. For simplicity, we ensure chiral
symmetry by fixing γ2 = −γ1 = 1 and λ1 = λ2 = 1/2, and take the unconstrained
sublattice as u = b.

The first example is obtained from the CLS shown in Fig. 4.9(a). In order for
the CLS to be of AII -type with γi as specified above, we have to take wAi = −wCi .
Further we choose wB1 = −wB2 with wBi real for concreteness. The corresponding
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BCLS, |nABC
B ⟩, cf. Eq. (4.60), is then given by

fA = wA1e
iky + wA2e

ikx + wA3e
−iky + wA4e

−ikx ,

fB = 2iwB1 sin(kx + ky).
(4.65)

Note that by our choice of the CLS amplitudes we have ensured that fB is purely
imaginary, which guarantees the absence of intra-sublattice hopping. Indeed, inserting
the BCLS into Eq. (4.63), we obtain a flat-band tight-binding model

H(k) =


0 HAB(k) HAC(k)

H∗
AB(k) 0 HBC(k)

H∗
AC(k) H∗

BC(k) 0

 , (4.66)

where

HAB(k) = H∗
BC(k) = tAB

1 eiky + tAB
2 eikx + tAB

3 e−iky + tAB
4 e−ikx ,

HAC(k) = tACei(kx+ky) − tACe−i(kx+ky),
(4.67)

with hopping parameters tAB
i ≡ wAi and tAC ≡ wB1 , as shown in Fig. 4.9(b). By

choice of the numerical values of the CLS amplitudes a threefold band crossing may
be created for example at the Γ and M points [Fig. 4.9(c)] or at the X point [Fig.
4.9(d)].

A more complicated example for an AII -CLS, where again wAi = −wCi and
wBi = ±1, is shown in Fig. 4.9(e). Inserting into Eq. (4.63) leads to a flat-band
tight-binding model with linear band crossings at the Γ and M points, as well as
additonal crossings along the (1,1)-direction, as shown in Fig. 4.9(f). Note finally
that AII -CLSs can of course also be constructed in 3D, for example on a multiorbital
cubic lattice.

Flat-band models from type-B compact localized states

As we have seen above, a constant orthogonal vector |ei⟩ exists only if one compo-
nent of the BCLS vanishes (type AI) or if two components are proportional to each
other (type AII). We cannot find any other kind of CLSs that allow for a constant
orthogonal vector (except trivial uninteresting cases where two or all three sublattices
are unoccupied). We thus believe to have described the scenario (A) exhaustively.
However, a flat-band Bloch Hamiltonian can also be constructed if the scenario (B)
applies. Two possible cases are presented here, though it remains unclear if the sce-
nario (B) is exhaustively captured by them.

Flat-band models from BI-CLSs. A third possibility for building an N = 3
linear flat-band Hamiltonian arises if the input CLS (4.31) occupies all sublattices,
but with the following constraints: the orbitals of each given type a ∈ {A,B,C} need
to be arranged pairwise at equal distance from the localization center, and the signs
of the CLS amplitudes wai within each pair have to be identical or opposite. We may
denote such a CLS as type BI . These constraints are formulated more precisely in
terms of the corresponding BI -BCLS, which takes the form

|f(k)⟩ = |oABC⟩ ≡ (fA, fB, fC)
T , f∗a = κafa, κAκBκC = −1, (4.68)
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that is, each component fa is either real (κa = 1) or imaginary (κa = −1), and the
three signs κa are correlated such that fAfBfC = −(fAfBfC)

∗. It is easy to find three
vectors |f⊥i ⟩ orthogonal to the BCLS, namely

|f⊥1 ⟩ = (0,−κCfC , κBfB)T ,
|f⊥2 ⟩ = (−fC , 0,−κBfA)T ,
|f⊥3 ⟩ = (fB, κCfA, 0)

T .

(4.69)

However, there is clearly no constant vector orthogonal to the BCLS, so it cannot
be of type A. Interestingly, we can nevertheless construct a linear Hermitian matrix
orthogonal to the BCLS as

OABC
k ≡

∑
i

|ei⟩⟨f⊥i | =
∑
i

|f⊥i ⟩⟨ei| =


0 −fC fB

−κCfC 0 κCfA

κBfB −κBfA 0

 , (4.70)

where i = 1, 2, 3 and |ei⟩ = |vi⟩, with |vi⟩ three-component unit basis vectors as
introduced earlier. Clearly, the matrix OABC

k is of the desired form (4.48) with λi =
1/2, and satisfies the property (B).

Thus, any BI -CLS can be used to build a linear flat-band Bloch Hamiltonian

H(k) = λABC
k OABC

k . (4.71)

This Hamiltonian has a band structure

ϵ0(k) = 0, ϵ1,2(k) = ±λABC
k

√
⟨oABC |oABC⟩, (4.72)

which is particle-hole symmetric due to the presence of a CP symmetry (2.10) with
x = k and C = diag(κA, κB, κC). Again λ

ABC
k = 1 hereafter.

Examples. CLSs of type BI cannot be found on all N = 3 lattices, due to the
above-mentioned constraints. For instance, a BI -CLS cannot exist on the dice lattice,
but it can exist on the Kagome lattice. As an example, consider the CLS shown
in Fig. 4.10(a), where we take the amplitudes wa1 to be real for concreteness. In
order for the CLS to qualify as BI , the three amplitudes wa2 have to be chosen as
wa2 = κawa1 , with κAκBκC = −1. The corresponding BCLS (4.68) is determined by

fA = wA1

(
e−ik− + κAe

ik−
)
,

fB = wB1

(
eik+ + κBe

−ik+
)
,

fC = wC1

(
eikx + κCe

−ikx
)
.

(4.73)

Inserting into Eq. (4.71), we find a flat-band tight-binding model of the form (4.66),
where

HAB(k) = tAB
(
eikx + κCe

−ikx
)
,

HAC(k) = tAC
(
eik+ + κBe

−ik+
)
,

HBC(k) = tBC
(
e−ik− + κAe

ik−
)
.

(4.74)
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Fig. 4.10 – (a) A CLS on the Kagome lattice that is type BI if the amplitudes are properly correlated.
(b) Tight-binding model built from the CLS. The corresponding band structure with wa1 = 1 is shown
in (c) for κa = −1 and in (d) for κA = −κB = κC = 1. (e) A more extended BI -CLS on the Kagome
lattice, with wai = ±1 as shown. (f) Band structure for the corresponding tight-binding model.

Here, the hopping parameters are tAB ≡ −wC1 , t
AC ≡ wB1 and tBC ≡ κCwA1 . This

model is shown in Fig. 4.10(b). Again, the band structure can be designed using the
CLS amplitudes. An example with a band crossing at the Γ point is shown in Fig.
4.10(c) – this is equivalent to a “breathing Kagome” lattice (Green et al. 2010) – and
one with a band crossing at the M point in Fig. 4.10(d).

As a more complicated example, consider the extended BI -CLS shown in Fig.
4.10(e). Inserting into Eq. (4.71) leads to a flat-band tight-binding model with linear
band crossings at the Γ and M points, as shown in Fig. 4.10(f). Finally, an example
for a BI -CLS on a 3D lattice is given in Appendix IV.D.

Flat-band models from BII-CLSs. The last possibility for building an N = 3
linear flat-band Hamiltonian that we will consider arises if the input CLS (4.31)
occupies all sublattices, with the following constraints: under inversion, the orbital
positions of one sublattice are mapped to those of a second sublattice (with the
localization center being the center of inversion), and the CLS amplitudes are related
by complex conjugation. At the same time, the third sublattice (indicated by u) has
orbitals (position and amplitude) that are correlated in a symmetric fashion with
respect to the localization center. We may define such a CLS as type BII . More
precisely, any BII -CLS has a corresponding BII -BCLS

|f(k)⟩ = |qABC
u ⟩,

|qABC
A ⟩ ≡ (fA,−f∗C , fC)T ,

|qABC
B ⟩ ≡ (fA, fB,−f∗A)T ,

|qABC
C ⟩ ≡ (−f∗B, fB, fC)T ,

(4.75)
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where the component fu is real, and thus fAfBfC = (fAfBfC)
∗. For any given u,

there are three vectors |f⊥i,u⟩ orthogonal to the BCLS, namely

|f⊥1,A⟩ = (0, f∗C , fC)
T , |f⊥2,A⟩ = (fC , fA, 0)

T , |f⊥3,A⟩ = (f∗C , 0,−fA)T ,
|f⊥1,B⟩ = (−fB, f∗A, 0)T , |f⊥2,B⟩ = (fA, 0, f

∗
A)

T , |f⊥3,B⟩ = (0, fA, fB)
T ,

|f⊥1,C⟩ = (fC , 0, fB)
T , |f⊥2,C⟩ = (0,−fC , f∗B)T , |f⊥3,C⟩ = (f∗B, fB, 0)

T .

Again, there is no constant vector orthogonal to the BCLS, but a Hermitian matrix
that vanishes on |qABC

u ⟩ can be constructed as

QABC
u,k =

∑
i

|ei⟩⟨f⊥i,u| =
∑
i

|f⊥i,u⟩⟨ei|, (4.76)

where i = 1, 2, 3 and |ei⟩ = |vi⟩, or more explicitly

QABC
A,k =


0 fC f∗C

f∗C fA 0

fC 0 −fA

 , QABC
B,k =


−fB fA 0

f∗A 0 fA

0 f∗A fB

 ,

QABC
C,k =


fC 0 f∗B

0 −fC fB

fB f∗B 0

 .

(4.77)

Again, the matrix QABC
u,k is of the desired form (4.48) with λi = 1/2, and satisfies

the property (B). Thus, any BII -CLS can be used to build a linear flat-band Bloch
Hamiltonian

H(k) = λABC
k QABC

u,k . (4.78)

This Hamiltonian is in fact a pseudospin-1 Hamiltonian, that is, it can be written in
the form Hk = hx(k)Sx+hy(k)Sy +hz(k)Sz, with pseudospin-1 operators that fulfill
the algebra (2.5). It has a band structure

ϵ0(k) = 0, ϵ1,2(k) = ±λABC
k

√
⟨qABC

u |qABC
u ⟩, (4.79)

whose particle-hole symmetric character is protected by a CP symmetry (2.10) with
x = k and C = eiπSy , with diagonal matrix elements Caa = −δau and off-diagonal
elements Cab = 1− δau − δbu. Again λ

ABC
k = 1 in the examples below.

Examples. CLSs of type BII cannot be found on all N = 3 lattices due to
the requirement of two sublattices being the conjugate of each other. For instance,
a BII -CLS cannot exist on the Kagome lattice, but it can exist on the dice lattice.
As an example, consider the CLS shown in Fig. 4.11(a), where we fix wBi to be
imaginary for concreteness. In order for the CLS to qualify as BII , we now have to
take wB2 = −wB1 , implying u = B, and additionally wCi = −w∗

Ai
. The corresponding

BCLS |qABC
B ⟩, cf. Eq. (4.75), is then determined by

fA = wA1e
ik+ + wA2e

ik− + wA3e
−ikx , fB = 2iwB1 sin(kx + k+). (4.80)
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Fig. 4.11 – (a) A CLS on the dice lattice that is BII if the amplitudes are properly correlated.
(b) Tight-binding model built from the CLS. The corresponding band structure is shown in (c) for
wA1 = wA2 = −wA3/2 = 1, wB1 = i and in (d) for wA1 = wA2 = wA3/2 = 1, wB1 = i. (e) A more
extended BII -CLS on the dice lattice, with wAi = ±1 and wBi = ±i as shown. (f) Band structure
for the corresponding tight-binding model.

Inserting into Eq. (4.78), we find a flat-band tight-binding model

H(k) =


HAA(k) HAB(k) 0

H∗
AB(k) 0 HBC(k)

0 H∗
BC(k) HCC(k)

 , (4.81)

where
HAA(k) = −HCC(k) = 2itAA sin(kx + k+),

HAB(k) = HBC(k) = tAB
1 eik+ + tAB

2 eik− + tAB
3 e−ikx ,

(4.82)

with hopping parameters tAA ≡ −wB1 and tAB
i ≡ wAi . The corresponding real-space

tight-binding model is shown in Fig. 4.11(b), and its band structure can be designed
using the CLS amplitudes. An example with a band crossing at the Γ point is shown
in Fig. 4.11(c), and one with a crossing at the M point in Fig. 4.11(d). Note that
band crossings at the K points could be created by taking an input CLS with six B
orbitals arrayed hexagonally.

As a more complicated example, consider the extended BII -CLS shown in Fig.
4.11(e). Inserting into Eq. (4.78) leads to a flat-band tight-binding model with linear
crossings at the Γ and M points, as shown in Fig. 4.11(f). Finally, an example for a
BII -CLS in 3D is given in Appendix IV.D.

4.5.2 | N-band models

Here we outline how to extend the construction of a linear flat-band Hamiltonian to
any N , without developing the theory in full detail. Consider again a generic CLS
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(4.1) built on a lattice with N orbitals per unit cell, associated to a BCLS (4.8). Two
general procedures for building a linear flat-band Hamiltonian from such a CLS can
be adopted.

The first consists in looking for a Hamiltonian of the form (4.48), just like we did
in the three-band case. Such a linear flat-band Hamiltonian cannot be built from
a completely arbitrary CLS, however it can be built if the CLS is subject to some
constraints. For example, for N = 4, if the D sublattice is unoccupied by the input
CLS, |f(k)⟩ = (fA, fB, fC , 0), one can find three vectors that are linear in the fa
and orthogonal to the BCLS: |f⊥1,D⟩ = |fAB⟩, |f⊥2,D⟩ = |fAC⟩, |f⊥3,D⟩ = |fBC⟩, as
given by Eq. (4.41). Additionally there is a constant vector |e1⟩ = |v4⟩ which is also
orthogonal to the BCLS. A CLS of this kind is easily identified as type A, and a
flat-band Hamiltonian (4.48) consisting of a linear combination of three matrices can
be built from it:

H(k) =


0 0 0 λ1f

∗
B + λ2f

∗
C

0 0 0 −λ1f∗A + λ3f
∗
C

0 0 0 −λ2f∗A − λ3f
∗
B

λ1fB + λ2fC −λ1fA + λ3fC −λ2fA − λ3fB 0

 .

Clearly, while a type AI Hamiltonian is not tunable for N = 3, cf. Eq. (4.53), it
is tunable by three parameters λ1,2,3 for N = 4. This reflects the general fact that
more tunability is present when the number of bands increases. While we have only
addressed the example of an AI -CLS here, for any given N > 3 it would be interesting
to classify all possible types of CLSs that exhibit appropriate internal symmetries that
make them suitable for the construction of linear flat-band models (4.48).

The second possible procedure is very similar in spirit to what was done in Section
4.4 for the quadratic flat-band models. There, we identified the N = 2 quadratic
Hamiltonian (4.25) as a building block that allowed to construct N ×N matrices F ab

k

that vanish on |f(k)⟩; the N -band quadratic Hamiltonian (4.43) was then formed as
a linear combination of these matrices. In exactly the same way, we can now regard
the N = 3 linear Hamiltonians (4.53), (4.63), (4.71) and (4.78) as building blocks that
will allow to construct N ×N matrices F abc

k that vanish on |f(k)⟩. An N -band linear
flat-band Hamiltonian can then be formed as a linear combination of these matrices,

H(k) =
∑

a,b>a,c>b

λabck F abc
k , (4.83)

where λabck is an arbitrary function with the periodicity of the Brillouin zone (again
λabck = λabc hereafter). The N ≥ 4 linear models obtained from Eq. (4.83) are, just
like the N ≥ 3 quadratic models, tunable by the input CLS and the parameters λabc
that arise from the linear combination. For more details about this method and for
explicit examples, we refer the reader to Graf and Piéchon (2021b). Here we only
mention that in order to give rise to a flat-band model (4.83) the input CLS must be
decomposable into typeA or type B sub-CLSs, each of which involves three sublattices
(a, b, c) out of the N sublattices.
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4.6 | Further remarks on the flat-band design method

4.6.1 | Scarcity of linear flat-band models

We should comment on an important difference between the quadratic flat-band
Hamiltonians of Section 4.4 and the linear ones of Section 4.5. Namely, there are
two fundamental reasons that make the linear flat-band models much rarer than the
quadratic models. The first is the following:

� Only for certain classes of input CLSs it is possible to construct a linear matrix
H(k) that fulfills H(k)|f(k)⟩ = 0.

We have seen this in detail in Section 4.5.1 above, where we found that a given CLS
has to possess special properties (type A or type B) to allow for the construction of
a linear flat-band model.

However, even if some given CLS possesses such properties, it is not automatically
guaranteed that the flat-band Hamiltonian constructed from it will be reasonable, that
is, make sense when transformed to real space [cf. condition (4.20)]. For example,
while we have only studied AI -CLSs for which the corresponding linear flat-band
Hamiltonian (4.53) does make sense on a lattice (cf. Fig. 4.8), it is easy to find
a counterexample. Indeed, consider the CLS shown in Fig. 4.12(a). It perfectly
qualifies as an AI -CLS with u = B, however we can convince ourselves that the Bloch
Hamiltonian obtained by inserting its BCLS into Eq. (4.53) does not correspond to
a reasonable lattice model. Similarly, while we have only studied BII -CLSs for which
Eq. (4.78) makes sense on a lattice (cf. Fig. 4.11), the CLS shown in Fig. 4.12(b)
constitutes a counterexample. It perfectly qualifies as a BII -CLS with u = A if
wA1 = wA2 is real and wCi = −w∗

Bi
, but will not lead to a reasonable real-space

model when its BCLS is inserted into Eq. (4.78).
Thus, we can formulate a second constraint that reduces the number of possible

linear flat-band models:

� Even if the input CLS belongs to a special class (such as A or B), the position
of the localization center and the arrangement of the sites around it need to be
compatible with the underlying lattice (Appendix IV.A), else the linear matrix
H(k) will not make sense in real space.

Fig. 4.12 – (a) An AI -CLS on the dice lattice for which the linear Hamiltonian (4.53) is not
physically reasonable. (b) A BII -CLS on the dice lattice for which the linear Hamiltonian (4.78) is
not physically reasonable.
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4.6.2 | Interpolating between linear and quadratic band touching

From the previous discussion we know that all CLSs allow to build quadratic flat-band
models, while only special CLSs allow to build linear ones. In other words, each such
special CLS can be used to create both a linear and a quadratic flat-band model;
both models will have a zero-energy flat band and an identical flat-band eigenstate.
In this way, we can construct tight-binding models that allow to interpolate smoothly
between multifold linear and quadratic band touchings, without moving the touching
point or destroying the flat band.

As a simple example, consider again a six-site CLS on the Kagome lattice, where
we fix wA1 = −wB1 = wC1 = −wA2 = wB2 = −wC2 = 1 for simplicity, as shown in
Fig. 4.13(a). This CLS is clearly of BI -type, with BCLS |f(k)⟩ = (fA, fB, fC)

T =
−2i(sin k−, sin k+,− sin kx)

T , and can thus be used to create a linear Bloch Hamil-
tonian Hlin via Eq. (4.71). But it can also be used to create a quadratic Bloch
Hamiltonian Hquad via Eq. (4.35). We may now interpolate between the two,

H(k) = (1− λ)Hlin + λHquad, (4.84)

which gives rise to a tight-binding model that can be smoothly tuned from linear to
quadratic by the parameter λ ∈ [0, 1], without the flat band and its eigenstate being
affected in any way. This is illustrated in Fig. 4.13(b)–(d).

In the same way, for any N , any linear band crossing point created via the meth-
ods exposed in Section 4.5 can be smoothly tuned to become quadratic, simply by
interpolating the respective linear flat-band model with the quadratic model (4.43)
built from the same CLS. It should also be mentioned that, from a practical point of
view, such tuning processes are often very useful to extract information on a certain
physical phenomenon. In the α − T3 model, for example, quantum geometry can be
tuned without changing the spectrum, which helps to isolate interband contributions
to the orbital magnetic susceptibility from conventional (Landau-Peierls) contribu-
tions (Raoux et al. 2014). Here we are in the opposite limit, where the spectrum
can be tuned without changing the flat-band eigenstate, which may equally be used
to separate quantum geometric from spectral information. Indeed, for exactly this
reason, our Hamiltonian (4.84) was recently put to use to study the behavior of the
superfluid weight in flat-band systems with band touchings (Huhtinen et al. 2022).

Fig. 4.13 – (a) A CLS on the Kagome lattice. (b)–(d) Band structure of the mixed linear-quadratic
tight-binding model (4.84) built from it, for different values of λ. For the linear contribution we use
λABC = 1 and for the quadratic one the parameters λab are as in Fig. 4.6(d).
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4.6.3 | Flat-band models beyond the linear or quadratic class

While the method exposed in this chapter yields infinitely many flat-band tight-
binding models, it is clear that not all flat-band models are governed by Bloch Hamil-
tonians that are simply linear or quadratic functions of the BCLS |f(k)⟩. In fact, it
is possible to define matrices H(k) whose elements are higher-order polynomials (e.g.
of degree three or four) in the components fa, and that still verify H(k)|f(k)⟩ = 0.
Furthermore, some flat-band Hamiltonians may actually be viewed as infinite-order
polynomials of the BCLS’s components. As a prominent example for this, consider
the ordinary nearest-neighbor tight-binding model on the (N = 3) Kagome lattice
[cf. Fig. 2.1(b)]. According to Eq. (2.1), it is captured by a Bloch Hamiltonian

H(k) = 2


0 cos kx cos k+

cos kx 0 cos k−

cos k+ cos k− 0

 , (4.85)

where k± = kx/2±
√
3ky/2, and the unnormalized flat-band eigenstate (BCLS) asso-

ciated to the flat band at energy ϵ0 = −2 reads

|f(k)⟩ = (fA, fB, fC)
T = (sin k−, sin k+,− sin kx)

T . (4.86)

At least in some sectors of the Brillouin zone one may thus be tempted to write the
Bloch Hamiltonian as

H(k) = 2


0

√
1− f2C

√
1− f2B√

1− f2C 0
√
1− f2A√

1− f2B

√
1− f2A 0

 , (4.87)

such that the matrix elements are infinite-order polynomials in the BCLS components.
Clearly, the Kagome model lies outside of our flat-band classification scheme.

Another way to see that the Kagome Hamiltonian cannot be covered by our ap-
proach is the following. At the Γ point, the flat-band eigenstate (4.86) vanishes, and
the band structure exhibits a twofold band touching point. A situation of this kind
cannot be captured by the Hamiltonians discussed in this chapter, since they always
satisfy H(k0) = 0 whenever |f(k0)⟩ = 0, forcing all bands to touch simultaneously.

In view of the discussion of this important example, it would be rewarding to
establish all possible relations between H(k) and |f(k)⟩, involving both finite- and
infinite-order polynomials.

4.7 | Perspectives of flat-band systems

As a last contribution to this chapter, we outline several perspectives connected to
the results presented above, which might be worthwhile exploring in more detail.
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4.7.1 | Quantum geometry of flat-band models

The quantum geometry of 2D flat-band systems has recently attracted considerable
attention. First, there is a wide community interested in the quantum geometry of
quasi-flat bands, as they appear for example in twisted bilayer graphene. These quasi-
flat bands are often topologically non-trivial, and both the quantum geometry and
topology of these bands has profound effects on superconductivity, see for example
Törmä et al. (2022) for a very recent review. Second, there is also much work on the
quantum geometric properties of touching points between flat and dispersive bands in
2D. Topics that have been addressed include the Berry phase of threefold crossings,
for example in a lattice that can be smoothly tuned from a honeycomb to a dice
geometry (Raoux et al. 2014); the non-contractible loop states arising from singular
band crossings, which were observed in photonic kagome lattices (Ma et al. 2020b);
the Landau levels of a singular flat-band crossing (Rhim et al. 2020), and many more.

Here we want to focus on the quantum geometric properties of the flat-band
systems that can be obtained by our construction scheme. In principle, we could
consider flat-band models with any number of bands N , any spatial dimension d,
any degree D of degeneracy for the band crossing point, and any type of low-energy
dispersion, and then conduct a systematic investigation of the quantum geometric
properties of the corresponding continuum models around the crossing points.

Instead of carrying out this task in full depth, we here showcase the perhaps most
interesting case: the four fundamental types of linear crossing points (N = D = 3)
introduced in Section 4.5.1, with the number of spatial dimensions fixed to d = 3.
Indeed, given the different symmetry properties of the Hamiltonians (4.53), (4.63),
(4.71) and (4.78), it may be expected that the quantum geometry of the corresponding
low-energy models should be very different. To obtain a generic continuum model for
each given type of crossing point (AI , AII , BI or BII), we assume the crossing to be
located at the Γ point without loss of generality, k = q, and then make an ansatz

fa(q) = va · q (4.88)

for the BCLS components, where va is a three-component complex vector. To obtain
the simplest generic models, we will also constrain H(q) to exhibit an isotropic energy
spectrum.

Using the expansion (4.88), we obtain a representative continuum model of type
AI from Eq. (4.53):

H(q) =


0 −vC · q vB · q

−v∗
C · q 0 0

v∗
B · q 0 0

 . (4.89)

An isotropic spectrum can be ensured by imposing the constraint Re(v∗B,ivB,j +
v∗C,ivC,j) = cδij , where c is a constant. For example, taking vB = (0, 0,−i) and
vC = (−1, i, 0), we get ϵα = cα|q|, where cα = 0,±1. Note that this spectrum is
exactly the same as for a pseudospin-1. To address quantum geometry, we compute
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the Berry curvature from Bloch vectors [e.g. by combining Eqs. (3.32) and (3.10)],
which yields a pseudovector that takes the form of a Berry dipole,

Ωα(q) = κα(d · q) q

|q|4
, (4.90)

with geometric charges κ0 = 2, κ± = −1 and a dipole orientation d = (0, 0, 1). As
a second example, we may take vB = (0, 1,−i cos θ) and vC = −(1, 0, i sin θ), which
leads to a Berry dipole with the same geometric charges but with a tunable orientation
d = (cos θ, sin θ, 0). A lattice realization of such a tunable model would be interesting
as it would allow to rotate the Berry dipole simply by varying the hopping strengths,
but without changing the lattice topology. This is quite reminiscent of the 2D α−T3
model interpolating between honeycomb and dice lattices (Raoux et al. 2014). For
the moment, we do not delve any deeper into this topic, since the Berry dipole and
its physical consequences will be the main subject of Chapter 5.

From Eq. (4.63) we get a representative continuum model of type AII as

H(q) =


0 γ2(−λ1γ∗1 + λ2γ

∗
2)v

∗
C · q γ1(λ1γ

∗
1 − λ2γ

∗
2)v

∗
C · q

... 2λ1Re(γ
∗
2vA) · q (−λ1γ1v∗

A − λ2γ
∗
2vA) · q

... ... 2λ2Re(γ
∗
1vA) · q

 . (4.91)

To impose an isotropic spectrum, we first need to ensure C1 = Tr(H) = 0, which
can be done either (i) by fixing λ1γ

∗
2 + λ2γ

∗
1 = 0 while keeping vA arbitrary, or (ii)

by taking γi real and vA imaginary. In both cases one obtains an effective chiral
symmetry. Under the constraint of an isotropic spectrum, the model (4.91) becomes
thus equivalent to the model (4.89) upon transforming to the chiral basis.

From Eq. (4.71) we get a generic continuum model of type BI ,

H(q) =


0 −vC · q vB · q

−κCvC · q 0 κCvA · q

κBvB · q −κBvA · q 0

 , (4.92)

where the va are constrained to be real (in which case κa = 1) or imaginary (then
κa = −1), and to fulfill κAκBκC = −1. Under these conditions the spectrum is
particle-hole symmetric due to CP symmetry, and is guaranteed to be isotropic if
κAvA,ivA,j + κBvB,ivB,j + κCvC,ivC,j = cδij with a constant c. A simple example
would be vA = (1, 0, 0), vB = (0, 1, 0) and vC = (0, 0, i), which gives rise to a
pseudospin-1 Hamiltonian with Berry monopole (2.8). The same happens for any
other allowed choice of the va. Similarly, from Eq. (4.78) we obtain a representative
continuum model of type BII as

H(q) =


0 vC · q v∗

C · q

v∗
C · q vA · q 0

vC · q 0 −vA · q

 , (4.93)
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where vC is arbitrary and vA is real. The spectrum is isotropic whenever Re(vA,ivA,j+
2v∗C,ivC,j) = cδij . This Hamiltonian also describes a pseudospin-1 fermion and is thus
equivalent to Eq. (4.92) ; for example a standard representation of a pseudospin-1 is
obtained for vA = (0, 0, 1) and vC = (1,−i, 0)/

√
2.

In summary, the continuum models HB(q) derived from the type-B flat-band
Hamiltonians introduced in Section 4.5.1 exhibit a CP symmetry (2.10) and the quan-
tum geometric structure is that of a Berry monopole (2.8), more precisely that of a
pseudospin-1. Such crossings are known from chiral multifold semimetals. In contrast,
the continuum models HA(q) derived from the type-A lattice models, despite having
the same spectrum as a pseudospin-1, exhibit a chiral symmetry (2.3) instead of a CP
symmetry, and the quantum geometric structure associated to the threefold crossing
is that of a Berry dipole (4.90) instead of a Berry monopole. Such systems have, to
our knowledge, not been described in the literature. It will be the purpose of Chapter
5 to carry out an in-depth study of semimetals with chiral symmetry that exhibit
such Berry dipole crossings. It would certainly also be rewarding to systematically
investigate the quantum geometric properties of other kinds of nodal points (with
different N , D or d) that can be obtained from our flat-band construction scheme.

4.7.2 | Designing magnetic flat-band models

So far, we have exclusively considered systems without spin-orbit coupling, where
the spin-up and spin-down electrons are uncoupled and can individually be treated
as spinless electrons. However, it would be very interesting to construct flat-band
models with spin-orbit coupling, where the spin degree of electrons can flip and thus
has to be taken into account, as explained in the following.

The main idea is to repeat exactly the same procedure as in Fig. 4.3, but where
the input CLS (4.1) now exhibits a spin texture. More precisely, it can be written in
the form

|ΨRC
CLS⟩ =

∑
ai∈CLS

(wai↑|ai ↑⟩+ wai↓|ai ↓⟩), (4.94)

and the CLS amplitude on any given site can be written as a spinorwai↑

wai↓

 = eiΓai

 cos
θai
2

sin
θai
2 e

iϕai

 . (4.95)

For a lattice with N inequivalent geometric sites a = A,B, ... per unit cell, it is then
clear that the BCLS has 2N components, and can be written as

|f(k)⟩ = (fA↑, fA↓, fB↑, fB↓, ...)
T (4.96)

in the Bloch basis, where faσ =
∑

i∈CLSwaiσe
ik·δai . As an example, consider the CLS

built on the simple square lattice (N = 1) shown in Fig. 4.14(a). It corresponds to a
BCLS

|f(k)⟩ = 2i(sin[(kx − ky)/2], sin[(kx + ky)/2])
T . (4.97)
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Fig. 4.14 – Examples for CLSs with spin texture. The CLS amplitude spinor is visualized by a red
arrow. (a) CLS on a square lattice (N = 1) with θAi = (i− 1)π and ϕAi = 0. (b) CLS on a Kagome
lattice (N = 3) with θA1 = −θB2 = −2π/3, θA2 = −θB1 = 4π/3, θC1 = 2π, θC2 = 0 and ϕai = 0.

As another example, the CLS built on the Kagome lattice (N = 3) visualized in Fig.
4.14(b), corresponds to a BCLS

|f(k)⟩ = −i(sin k−,−
√
3 sin k−, sin k+,

√
3 sin k+, 2 sin kx, 0)

T . (4.98)

It is straightforward to build flat-band models from such CLSs by directly applying
the results established previously, simply by reinterpreting the sense of the sublattices.
For example, for any CLS built on a lattice with N = 1, we can construct a flat-band
Hamiltonian as

H(k) ≡ λ↑↓k F
↑↓
k = λ↑↓k

 |fA↓|2 −fA↑f∗A↓

−f∗A↑fA↓ |fA↑|2

 , (4.99)

which is just a reinterpretation of Eq. (4.25). The real-space interpretation of such
a Hamiltonian is straightforward. The off-diagonal matrix elements that previously
described inter-sublattice hoppings (A to B) now describe spin flips during hopping
(A ↑ to A ↓). This is nothing else than a tight-binding description of an effective
spin-orbit coupling. We stress that this spin-orbit coupling is an intrinsic feature of
the flat-band model that cannot be eliminated, and that does not destroy the perfect
flat band. This is in contrast to approaches that add spin-orbit coupling to spinless
flat-band models, which often results in topological quasi-flat bands, see for example
Ma et al. (2020a). Similarly, the diagonal matrix elements that previously described
on-site energies Va and intra-sublattice hoppings (e.g. A to A) now correspond to
spin-dependent on-site energies VAσ and spin-preserving hoppings (e.g. A ↑ to A ↑).

More generally, any Hamiltonian with an even matrix dimension presented earlier
in this chapter can be directly used to create a flat-band model from a CLS with
spin texture. Such models will in general have non-trivial magnetic properties. For
example, for any geometric sublattice a = A,B,C, ... one obtains the spin magnetic
moment of the band α as

s(a)α (k) =
1

2

⟨ψ(a)
α |σ|ψ(a)

α ⟩
⟨ψ(a)

α |ψ(a)
α ⟩

, (4.100)
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where |ψ(a)
α ⟩ = (cα,a↑, cα,a↓)T is the part of the full eigenstate |ψα⟩ that is associated

to the sublattice a. The spin magnetization (of a 2D system) is then obtained by
integrating over filled bands as

M (a)
s =

∑
α

∫
BZ

d2k

(2π)2
f(ϵα(k))s

(a)
α (k). (4.101)

Let us now assume zero temperature for simplicity. If the Fermi level is such that
the flat band is completely filled or completely empty, the spin magnetization (per
sublattice) is uniform across the whole lattice, which is an evident consequence of
the periodicity. However, if the flat band is partially filled, it is not clear if this is
necessarily the case. In particular, it appears very intriguing to study the precise
manner of how the flat band is filled, in other words how the N different available
CLSs are sequentially populated. The spatial profile of the spin magnetization should
strongly depend on the details of this process (Ferro and Piéchon n.d.).

In addition to the spin magnetization, the orbital magnetization (1.48) will also
contribute to the total magnetization of such spin-orbit coupled flat-band systems.
Many open questions remain as to the interplay between magnetism and quantum
geometry in such systems.

4.7.3 | Designing models with more than one flat band

Throughout this chapter we have been content with the construction of a single flat
band, but an intriguing possibility is to design tight-binding models with two or
more flat bands. For creating a system with two flat bands, according to our general
method, one could start out with two CLSs represented by BCLSs |f1(k)⟩ and |f2(k)⟩,
respectively. One should then construct a Hamiltonian that verifies

H(k)|f1(k)⟩ = ϵ1|f1(k)⟩, H(k)|f2(k)⟩ = ϵ2|f2(k)⟩, (4.102)

where ϵ1 and ϵ2 are the flat-band energies. If one wants to have two non-degenerate
flat bands, the corresponding input CLSs have to be chosen orthogonal to each other.
A major problem that arises in this case is that one cannot construct the desired
flat-band Hamiltonian as a matrix orthogonal to both BCLSs. While it can always be
chosen orthogonal to the first BCLS, the flatness of the energy eigenvalue belonging
to the second BCLS needs to be ensured by some other means.

This is difficult to achieve in general, however we can illustrate how this might work
using the example of a two-band system. Indeed, since the Hamiltonian (4.25) covers
all possible N = 2 flat-band systems, we know that two flat bands are only possible
if |f1,A|2 + |f1,B|2 = |f2,A|2 + |f2,B|2 = const. This can be satisified, for example, on a
square lattice with two orbitals per site by choosing two CLSs as shown in Fig. 4.15,
such that |f1(k)⟩ = (cx + isy, isx + cy) and |f2(k)⟩ = (isx − cy, cx − isy). Inserting,
say, |f1(k)⟩ into Eq. (4.25), one obtains a Bloch Hamiltonian

H(k) =

 s2x + c2y −(cx + isy)(cy − isx)

−(cx − isy)(cy + isx) c2x + s2y

 (4.103)

with two completely flat eigenvalues ϵ1 = 0 and ϵ2 = 2. This Hamiltonian describes
a tight-binding model with at most third-neighbor hoppings.
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Fig. 4.15 – (a) Two CLSs on a two-orbital square lattice. (b) Distribution of CLS amplitudes that
gives rise to a model with two flat bands.

4.8 | Conclusions

It has been known for a long time that, for any given flat-band tight-binding model
H on a periodic lattice, it is possible to find a macroscopic number of compact local-
ized states (CLSs) as eigenstates of H. Conversely, in the present chapter, we have
shown that for any given (input) CLS |ΨRC

CLS⟩ on any periodic lattice, it is possible to
engineer one or several families of tight-binding Hamiltonians H for which this CLS
and all its translated copies are eigenstates. We have provided a precise procedure
to find such tight-binding Hamiltonians, which are flat-band models by construction.
Since infinitely many different CLSs can be constructed on any lattice, this repre-
sents an efficient flat-band construction scheme: it yields infinitely many flat-band
tight-binding models on any periodic lattice.

This procedure is most conveniently carried out in reciprocal space, and relies on
the one-to-one correspondence between any given CLS |ΨRC

CLS⟩, see Eq. (4.1), and its
Fourier transform, the BCLS |f(k)⟩, see Eq. (4.6). Flat-band Bloch Hamiltonians
H(k) can be conveniently engineered as a function of the BCLS, from which the
real-space model H is naturally deduced.

For any arbitrarily designed input CLS, it is always possible to construct a flat-
band model H(k) as a quadratic function of the BCLS. This generic quadratic Hamil-
tonian, which works for any number of bands N ≥ 2, is provided in Eq. (4.43) and
gives rise to models with quadratic multifold band touching points at the flat-band
energy. In contrast, if the input CLS has certain special properties, it can be used not
only to build quadratic models, but also to construct a Bloch Hamiltonian H(k) as a
linear function of the BCLS. Such a generic linear Hamiltonian, can be constructed
using Eq. (4.48) for any given N ≥ 3, or using a superposition (4.83) of 3× 3 blocks.
It provides tight-binding models with linear multifold band crossings at the flat-band
energy.

Due to the underlying superposition principle, our models can not only be designed
by choice of the input CLS, but are also widely tunable by a set of completely free
parameters. Importantly, the flat band and its eigenstate are independent of these
free parameters. This tunability in terms of the input CLS and the free parameters
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equips us with a huge playground to vary the existence, degeneracy, location and
(non-)singularity of multifold band touching points.

While our method allows to build infinitely many flat-band models, and while
it captures most models known in the literature, it can be generalized in several
ways. For example, a more general version of the quadratic Hamiltonian (4.43) reads
Hk =

∑
α,β>α

∑
γ,δ>γ λαβγδ|f

αβ
k ⟩⟨fγδk |, where λ∗αβγδ = λγδαβ. Moreover, as we have

mentioned, some important flat-band systems such as the standard nearest-neighbor
hopping model on the Kagome lattice reside outside of our classification scheme.

Beyond the mere construction of flat bands, we have presented several interesting
perspectives. First, we have shown that the quantum geometry of three-band linear
band crossings in 3D is essentially governed by a Berry dipole if chiral symmetry
is imposed. This is in contrast to more well-known linear three-band crossings of
pseudospin-1 type, which have exactly the same energy spectrum but a quantum
geometry governed by a CP symmetry and a Berry monopole. The physical properties
of Berry dipole crossings will be the main subject of the next chapter. It would
certainly be of interest to conduct a more detailed investigation of the different kinds
of multifold crossings that can be obtained by our method, and to establish a kind of
classification table of the quantum geometric properties in terms of spatial dimension,
number of bands involved in the crossing, and symmetries. Second, we have argued
that it is a promising route to create magnetic flat-band models from CLSs with
spin texture. Their magnetic and quantum geometric properties are quite unexplored
terrain.

Additional perspectives can be envisaged. For example, we have only used strictly
localized states as an input for our Hamiltonians, in order to obtain short-range tight-
binding models with an exactly flat band. This implies that all flat bands presented
in this work have a first Chern number C0 = 0. It might be worthwhile to use our
construction scheme assuming that flat-band eigenstates could now be represented by
power-law localized states instead of CLSs – in particular with regard to a possible
topological character of the flat bands.





Chapter 5

Multifold fermions beyond Berry
monopoles

5.1 | Introduction

As discussed in Section 2.2, three-dimensional topological semimetals are materials
with energy band crossing points that act as sources or sinks of Berry curvature, so-
called Berry monopoles, see Eq. (2.8). These monopoles always come in pairs [Fig.
5.1(a)]. As also mentioned, such materials are of enormous interest in the condensed
matter community because they host exotic phenomena such as Fermi arcs, anomalous
Hall effect, and many more (Armitage et al. 2018; Lv et al. 2021).

Motivated by the importance of these materials, in this chapter we would like to
address a fundamental issue of linear band crossings in three dimensions. Namely, it
is known that any linear two-band (N = 2) crossing in 3D necessarily is of the Weyl
form (1.36), and thus creates a Berry monopole. A common belief is that any linear
multiband (N > 2) crossing also acts as a Berry monopole. At first glance, this seems
to be confirmed by the existence of the pseudospin-s Hamiltonians (2.6), which have
linear multifold crossings with Berry monopole, the only difference to the Weyl case
being the higher Chern numbers. The purpose of this chapter is to illustrate that
this common belief is actually wrong, and to draw attention to the existence of other
linear multiband crossings, which are not of the Berry monopole type.

In the following, we first explain the above claim that any linear two-band crossing
is a Berry monopole, and disprove the assumption that any linear multiband (N > 2)
crossing is also a Berry monopole (Section 5.2). Then, as an explicit example, we
propose a class of systems that exhibit linear multifold crossings, just like a chiral
multifold semimetal, but with the peculiar property that each crossing point carries
a dipolar Berry curvature

Ωα(q) = κα(d · q) q

|q|4
. (5.1)

Notice that while it is possible to view each monopole-antimonopole pair of a topo-
logical semimetal as forming a Berry curvature dipole d0 in the Brillouin zone [Fig.
5.1(a)], such a dipole is extended, that is, the two poles are separated in momentum
space. In stark contrast, Eq. (5.1) describes a point-like Berry dipole d [Fig. 5.1(b)],
that is, a point that acts as source and sink of Berry curvature flux simultaneously.
Accordingly, d represents an anisotropy axis fixing the dipole direction, but not a
distance in momentum space. The Berry dipole (5.1) really emerges from the multi-
fold band crossing point, as shown in Fig. 5.1(c)–(e). The dipole charge κα, which is

101
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Fig. 5.1 – (a) Known topological semimetals are based on linear crossings each of which is a
Berry monopole (left). Those appear in monopole-antimonopole pairs (right). (b) Multifold Hopf
semimetals are based on linear crossings each of which is a Berry dipole. (c)–(e) Energy spectrum
and dipole charges of the models (5.4a)–(5.4c).

an integer associated to each band, plays a similar role as the Chern number for the
Berry monopole (2.8). We will come back to its importance in more detail below.

Systems with Berry dipole crossings (5.1) will be referred to as multifold Hopf
semimetals (MHSs). In Sections 5.3 and 5.4 we introduce explicit continuum and
lattice models for such semimetals, with N = 3, 4, 5 bands.1 We further discuss in
detail the physical properties of these models; they are strongly affected by the Berry
dipoles and thus very different from those of conventional topological semimetals,
despite the exact same low-energy spectrum. In particular, we illustrate this for the
Landau level spectrum, anomalous Hall effect, and magnetoconductivity, all of which
have been extensively studied in Weyl and chiral multifold semimetals.

While the terms “multifold” and “semimetal” are self-explanatory from the nature
of the energy spectrum [Fig. 5.1(c)–(e)], the term “Hopf” is for the moment unclear.
It will be justified in Section 5.5, where we demonstrate that the multifold Hopf
semimetals are closely related to a certain class of delicate topological insulators
(Nelson et al. 2021), namely the Hopf insulators (Moore et al. 2008; Deng et al. 2013).
To be more precise, we propose lattice models for multiband Hopf insulators (Lapierre
et al. 2021) and show that multifold Hopf semimetals appear at their topological
phase transitions. This justifies the word “Hopf”, extends recent results regarding
topological phase transitions of two-band Hopf insulators (Alexandradinata et al.
2021; Nelson et al. 2022) to the multiband case, and provides an interesting platform
to study delicate topology. During this discussion, we will also find that a second
class of semimetals with Berry dipole is possible, characterized by quadratic band
touchings; this class is however fundamentally different from the linear crossings with

1Recall that we have already seen in Section 4.7.1 that Berry dipoles can exist in flat-band systems
with linear band crossings in the presence of chiral symmetry; in agreement with this, chiral symmetry
will play an important role for the multifold Hopf semimetal models.
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Berry dipole, in particular it can be obtained from merging the monopoles of a chiral
multifold semimetal.

At the end of the chapter, we suggest intriguing perspectives in the realm of Hopf
semimetals and insulators (Section 5.6). Notably, we show that linear multiband
crossings can carry quantum geometric structures yet more exotic than the Berry
dipole, such as Berry quadrupoles and octupoles. Moreover, we point out an analogy
between the systems considered here and the 2D Haldane model described in Section
1.4. Finally, Hopf semimetals appear to be related to 4D semimetals with tensor
monopoles by a dimensional reduction procedure.

5.2 | Motivation: Exploring the matrix space of linear
Hamiltonians

Consider a linear crossing of two bands (N = 2) in three dimensions, as visualized in
Fig. 5.2(a). In addition to being linear, we demand the crossing to be isotropic for
simplicity, that is, we assume that the energy of each band is directly proportional to
the distance from the crossing point, ϵα(q) ∼ |q|. Imposing these constraints, there is
only a single possibility to write down a continuum Hamiltonian, which can be seen
as follows. Taking the crossing point as the origin of energy, any linear two-band
Hamiltonian has to be of the form

H(q) = h(q) · σ, h(q) = qxvx + qyvy + qzvz, (5.2)

according to Eq. (2.15), where vi are three-component real vectors. Imposing isotropy
implies |h|2 =

∑
ij vi · vjqiqj ∼ |q|2 and thus vi · vj = cδij with some constant c.

Thus, there is a unique Hamitonian describing a linear isotropic two-band crossing in
3D: the Weyl Hamiltonian (1.36) that acts as a Berry monopole [Fig. 5.2(a)].

Consider now a linear 3D crossing of more than two bands (N ≥ 3), as shown
in Fig. 5.2(b). According to Eq. (2.24), a generic Hamiltonian describing such a
crossing is of the form

H(q) = h(q) · λ, h(q) = qxvx + qyvy + qzvz, (5.3)

where vi are (N2 − 1)-component real vectors. Again we impose an isotropic energy
spectrum ϵα(q) ∼ |q|. A simple choice to achieve this would be to take vi · λ = Si,
which recovers the pseudospin-s Hamiltonian (2.6). However, other choices for the
vectors vi are allowed in the vast space RN2−1, so that there is no unique Hamiltonian
for a linear isotropic multiband (N > 2) crossing in 3D. For example, for N = 3,
taking vx = e1, vy = e2, and vz = e5, where ei are basis vectors of R8, one obtains a
Hamiltonian with an isotropic spectrum identical to that of a pseudospin-1, but with
a Berry dipole (5.1) instead of a Berry monopole.2 In fact, this is exactly the same

2Note that it can be very instructive to try to get some intuition about the behavior of the vectors
vi, which encode all of the quantum geometric structure of the respective Hamiltonians. For example,
the difference in the quantum geometry of a pseudospin-s and that of the models (5.4) introduced
below appears to be reflected in the vectorial identities vi ×vj = 1

2
ϵijkvk and (vi ×vj) ·vk = 0. The

former constitutes a vectorial formulation of the spin algebra (2.5) and is satisfied by the multifold
crossings with Berry monopole, while the latter is satisfied by the multifold crossings with chiral
symmetry and Berry dipole.
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Fig. 5.2 – (a) A linear two-band crossing in 3D is captured by a unique Hamiltonian. (b) Linear
N -band crossings in 3D (where N > 2) can be obtained from several different Hamiltonians, with
different geometric and topological properties.

scenario as already studied in Section 4.7.1.

In summary, by exploring the matrix space of N > 2 Gell-Mann matrices, one
can construct various models for 3D linear band crossings whose quantum geometry
drastically differs [Fig. 5.2(b)]. The bulk of this chapter presents one particular class
obtained from this main idea: the multifold Hopf semimetals. However other classes,
e.g. with Berry multipole structure, are possible, as discussed later.

5.3 | Continuum models for multifold Hopf semimetals

5.3.1 | Models and symmetries

Consider the following continuum models Hξ
N (q), with N = 3, 4, 5 bands:

Hξ
3(q) =

 0 Qξ
3

(Qξ
3)

† 02

 , Qξ
3 =

(
qξ− −iqz

)
, (5.4a)

Hξ
4(q) =

 02 Qξ
4

(Qξ
4)

† 02

 , Qξ
4 =

aqξ− iaqz

ibqz bqξ+

 , (5.4b)

Hξ
5(q) =

 03 Qξ
5

(Qξ
5)

† 02

 , Qξ
5 =


0 i

√
2qz

iqz qξ+
√
2qξ+ 0

 . (5.4c)
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Threefold HS Fourfold HS Fivefold HS

cα −1, 0, 1 −a,−b, b, a −
√
2,−1, 0, 1,

√
2

κα −1, 2,−1 −1, 1, 1,−1 −3, 1, 4, 1,−3

ωα 1, 0,−1 a,−b, b,−a
√
2, 3, 0,−3,−

√
2

Table 5.1 – Coefficients cα, κα and ωα determining the energy spectrum, Berry curvature and
orbital magnetic moment of the continuum models (5.4), respectively. Each coefficient is listed from
the lowest to the highest band.

Here we have defined a term qξ± ≡ ξqx±iqy familiar from graphene or Weyl semimetals,
where ξ = ± can be viewed as a valley index. For the four-band model, we have
introduced two real parameters a and b, where we assume a > b > 0. The models
(5.4) are constructed to have a linear isotropic spectrum3

ϵα(q) = cα|q|, (5.5)

with band velocities cα as listed in the first row of Table 5.1. Clearly, this spectrum
is as visualized in the previous Figs. 5.1 and 5.2: there is a cone along with a flat
band for N = 3, two cones with different slopes for N = 4, and two cones along with
a flat band for N = 5. The particle-hole symmetric character of the spectrum (5.5)
is obviously due to a chiral symmetry (2.3) with S2 = 1N , where S is just a diagonal
matrix.

The continuum models are further constructed to exhibit a dipolar Berry curva-
ture (5.1). Here the Berry dipole vector is given by d = (0, 0, ξ).4 The fact that the
quantum geometry is anisotropic can be understood from the fact that the Hamiltoni-
ans (5.4), as opposed to pseudospin models, do not exhibit a full rotation symmetry.
Instead, they only have an axial rotation symmetry

[Ld +Σd, H
ξ
N (q)] = 0. (5.6)

Here Ld = d · L is the projection of angular momentum onto the Berry dipole axis,
and Σd is a diagonal matrix acting as an effective spin projection.5

Aside from the Berry dipole orientation d, an important ingredient of Eq. (5.1)
is the dipole charge κα, which is an integer for each band. For the models (5.4),
these dipole charges take values as listed in the second row of Table 5.1 [see also
Fig. 5.1(c)–(e)]. Importantly, they are distributed symmetrically with respect to zero
energy, κα = κ−α, and thus Ωα = Ω−α. This is a consequence of the chiral symmetry,
and it implies that large dipole charges are carried by the flat bands: κ0 = 2 for the
threefold and κ0 = 4 for the fivefold Hopf semimetal. We emphasize that, in stark

3Constructing models with this property is not trivial for N > 3. We found the models by mapping
the Hamiltonian to a pseudomolecule, as explained in Appendix V.A for the interested reader.

4For simplicity, we restrict to models with a fixed dipole axis (up to the ξ degree of freedom).
Recall however from Section 4.7.1 that it is also possible to construct models with tunable d.

5To be concrete, we have Σd = 1
3
diag(1,−2, 1), Σd = 1

2
diag(1,−1,−1, 1), and Σd =

1
5
diag(4,−1,−6,−1, 4) for the models (5.4a)–(5.4c), respectively.
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contrast, one has Ωα = −Ω−α for any two-band system, and also for any pseudospin-
s Hamiltonian (2.6); accordingly, the flat band carries no geometric charge (Chern
number).

In addition to the Berry curvature, below we will also have need of the orbital
magnetic moment. It also takes a dipolar form:

mα(q) =
e

2
ωα(d · q) q

|q|3
. (5.7)

The coefficients ωα are listed in the third row of Table 5.1. Comparing to the orbital
magnetic moment (2.9) of a pseudospin-s Hamiltonian, one can see that, just like
for the Berry curvature, the symmetry of the coefficients ωα is opposite: they satisfy
ωα = ω−α for a pseudospin, while ωα = −ω−α for a Hopf semimetal.

We now illustrate via three scenarios that the Berry dipole charge κα and orien-
tation d have a strong impact on physical properties of the continuum models (5.4).
Namely, we consider (i) the Landau level spectrum in the presence of a strong mag-
netic field; (ii) the anomalous Hall conductivity in the presence of an electric field; (iii)
the magnetoconductivity in the presence of an electric and a weak magnetic field. For
the moment, we consider these effects for a single continuum model Hξ

N (q). Later we
will introduce tight-binding models for multifold Hopf semimetals, with one or more
Berry dipole crossings in the Brillouin zone, and discuss the same physical effects
from a lattice perspective.

5.3.2 | Physical properties (I) – Landau levels

Consider electrons modeled by Eq. (5.4) in the presence of a strong magnetic field
B = BB̂. A generic magnetic field orientation can be expressed as

B̂ = (0, sin θ, cos θ) (5.8)

without loss of generality, due to the axial rotation symmetry (5.6). In order to find
the energy spectrum under the magnetic field, we replace the canonical momentum q
by the gauge-invariant kinetic momentum (Jackson 2012), as q → Π = q+ eA, with
the gauge choice A = Bx(0, cos θ,− sin θ). Note that the momentum

q0 = B̂ · q = sin θ qy + cos θ qz (5.9)

along the magnetic field is conserved. Using the canonical commutation relations
[xj , qk] = iδjk, one finds

[Πx,Πy] = −i cos θ/l2B, [Πy,Πz] = 0, [Πz,Πx] = −i sin θ/l2B, (5.10)

where lB ≡ 1/(eB) is the magnetic length. Moreover, it is convenient to introduce
ladder operators as (Li et al. 2016)

d̂ =
lB√
2
(Πx − i cos θΠy + i sin θΠz),

d̂† =
lB√
2
(Πx + i cos θΠy − i sin θΠz).

(5.11)
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They act on number states |n⟩ as d̂† |n⟩ =
√
n+ 1 |n+ 1⟩ and d̂ |n⟩ =

√
n |n− 1⟩, and

satisfy the bosonic commutation relation [d̂, d̂†] = 1. Reversing the above relations,
we can express the kinetic momentum in terms of the ladder operators as

Πx =
1√
2lB

(d̂+ d̂†),

Πy = q0 sin θ +
i√
2lB

cos θ(d̂− d̂†),

Πz = q0 cos θ −
i√
2lB

sin θ(d̂− d̂†),

Πξ
± = ξΠx ± iΠy =

1√
2lB

[
(ξ ± cos θ)d̂† + (ξ ∓ cos θ)d̂

]
± i sin θ q0.

(5.12)

The Hamiltonian in the presence of the magnetic field can now fully be written in
terms of ladder operators.

Using the above procedure, the Landau level spectrum of the Hopf semimetals
(5.4) can be easily computed analytically, as carried out in detail in Appendix V.B.
The Landau levels are expected to form a quasi-1D dispersion in terms of the con-
served momentum q0, and are further expected to be particle-hole symmetric due to
the fact that the magnetic field does not break the chiral symmetry of the zero-field
Hamiltonian.

We find the exact Landau levels for a three-band crossing (5.4a) to be given by

ϵn,ξα = cα

√
2eB

(
n+

1− καξ cos θ

2

)
+ q20, n = 0, 1, ... (5.13)

with cα = 0,±1 and n the Landau level index. As expected, the flat band is main-
tained under the magnetic field. More importantly, the dispersive bands carry a clear
signature of the Berry dipole’s charge (κα) and orientation (ξ cos θ ≡ B̂ · d). As a
consequence, the Landau level spectrum strongly depends on the magnetic field di-
rection: it is gapped for B ↿↾ d, and gapless for B ↿⇂ d, see Fig. 5.3(a). We should
like to emphasize that this tunability is a pure quantum geometric effect. Indeed, the
magnetic field couples to the eigenstates of the Hopf semimetal and thus unveils the
Berry dipole via the magnetic energy levels; in contrast, the existence of the Berry
dipole is invisible in the fully isotropic zero-field energy spectrum.

Similarly, we find the exact Landau levels of a four-band crossing (5.4b):

ϵn,ξα = α1

√
η+ + η− + α2

√
(η+ − η−)2 + ν2, n = 0, 1, ...

η± =
c2±
2

[
2eB

(
n+

1− κ±ξ cos θ
2

)
+ q20

]
.

(5.14)

Here, we use a band index tuple α = (α1, α2) with αi = ±; c+ = a and c− = b are
the band velocities of the two cones, and κ± = ∓1 the corresponding dipole charges;
moreover, ν = c+c−e(B× d)x = abeBξ sin θ. Again, the Berry dipole (5.1) explicitly
appears and the Landau levels can be tuned by rotating B, see Fig. 5.3(b). The
precise character of this tunability, however, is now quite different, in particular the
Landau level spectrum remains gapless for any orientation of B.
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Fig. 5.3 – (a) Landau level spectrum (5.13) for ξ = + for three different θ, in units of the inverse
magnetic length 1/lB . It can be tuned from gapped to gapless by rotating B. (b) Landau levels
(5.14) for ξ = +, a/2 = b = 1. They are gapless for any θ. (c) Landau levels (5.15) for ξ = +. They
behave similarly to the three-band case.
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Finally, the Landau levels of the fivefold crossing (5.4c) are given by

ϵn,ξα = α1

√
η+ + η− + α2

√
(η+ − η−)2 + ν̃2, n = 1, 2, ...

η± =
c2±
2

[
2eB

(
n+

1− κ±ξ cos θ
2

)
+ q20

]
.

(5.15)

Now we have α1 = 0,± and α2 = ±. The band velocities of the two cones are
c+ =

√
2 and c− = 1, the corresponding dipole charges are κ+ = −3 and κ− = 1,

and ν̃ = 2
√
3(B× d)x = 2

√
3ξeB sin θ. This five-band spectrum behaves similarly to

the three-band spectrum above, notably it can be tuned from gapped to gapless by
rotating the magnetic field relative to the Berry dipole direction.

To contextualize these results, it is useful to compare to the Landau level spectrum
of several known systems with “Dirac-like” band crossings. First, there is clearly a big
difference with the Landau levels of pseudospin-s systems (2.6), which are independent
of the magnetic field orientation B̂ due to the full rotation symmetry (2.11). Moreover,
for a pseudospin-like crossing, the topological character of the Berry monopole (2.8)
is reflected in the Landau level spectrum via the existence of chiral Landau levels.
These are modes connecting two families of Landau levels with different band index
α, similar to what happens for chiral modes in the absence of a magnetic field (see
for example the chiral edge states of the Chern insulator in Fig. 1.6). The number of
chiral Landau levels is directly determined by the Chern number Cα, see for example
Bradlyn et al. (2016) for the pseudospin-1 case, and Ezawa (2017) or Delplace (2022)
for the case of general s. Also, for a pseudospin-s crossing with integer s, the flat
band of the zero-field spectrum is destroyed since B breaks the CP symmetry. More
details on the Landau levels of pseudospin-s fermions are given in Appendix V.C.

There is also a big difference with the Landau levels of Dirac fermions (Dirac
1928). Since the Dirac Hamiltonian has full rotation symmetry, the Landau levels
are independent of B̂. However, in contrast to pseudospin fermions, Dirac fermions
feature chiral symmetry and thus the Landau level spectrum remains particle-hole
symmetric. Indeed, if we allow the case a = b (that we have so far excluded) in
the model (5.4b), then this model becomes a Dirac semimetal HD(q) = q · Γ with
anticommuting matrices Γx,y,z. Accordingly, in the limit a = b we recover from Eq.
(5.14) the famous Landau level spectrum of Dirac fermions ϵn± = ±(2eBn + q20)

1/2,
established a long time ago by Rabi (1928).

Finally, one can also compare the Landau levels of the Hopf semimetals to those of
an extended Berry dipole d0 formed from twoWeyl nodes (or more generally two Berry
monopoles in a chiral multifold semimetal). Those obviously depend on the direction
of B̂ since the dipole axis d0 induces an anisotropy (Saykin et al. 2018). However,
this dependence is quite distinct from the one of Eqs. (5.13)–(5.15), in particular due
to the broken particle-hole symmetry of the spectrum and the presence of connected
chiral Landau levels originating from the two valleys.

To close this discussion on the Landau levels of Hopf semimetals, we emphasize
that some useful insight can also be obtained from a semiclassical analysis. Indeed,
aside from the quantum approach described above, it is possible to establish Eq. (5.13)
using Onsager’s semiclassical quantization condition (Onsager 1952). More precisely,
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one needs to employ an extended Onsager condition that takes into account intra-
band corrections due to Berry curvature and orbital magnetic moment (Roth 1966;
Mikitik and Sharlai 1999; Fuchs et al. 2010; Gao and Niu 2017). More importantly,
the semiclassical approach helps to understand the origin of the terms ν ∼ |B × d|
in Eq. (5.14) and ν̃ ∼ |B × d| in Eq. (5.15). These terms remain unexplained in
the quantum approach but find an intuitive semiclassical interpretation in terms of
interband coupling between degenerate orbits. Such coupling arises whenever a con-
stant energy curve intersects more than one band, as is unavoidable for a zero-field
spectrum consisting of two or more cones. For more details, see Appendix V.D, where
we develop an original approach to semiclassical Landau quantization of degenerate
orbits.

5.3.3 | Physical properties (II) – Anomalous Hall effect

Consider now electrons modeled by Eq. (5.4) in the presence of a weak electric field
E. To describe the linear response of the system, we adopt the semiclassical Boltz-
mann approach in the relaxation time approximation, as already described in Section
1.5.5. In the absence of an external magnetic field, this approach yields only two
contributions to the electrical conductivity tensor: the standard Drude conductivity
and the anomalous Hall conductivity. The former is not very interesting for our pur-
poses, as it depends only on the zero-field spectrum; indeed, the Drude conductivity
of the Hopf semimetals (5.4) is exactly the same as for the pseudospin Hamiltonians
(2.6). In contrast, the anomalous Hall (AH) conductivity (1.57a) is expected to be
very interesting, as it is strongly influenced by the dipolar Berry curvature.

Inserting the Berry dipole (5.1) into Eq. (1.57a), and assuming zero temperature,
we obtain

σAH
xy = −ξ e

2

6π2

∑
α

κα

∫ qc

0
dqΘ(EF − cαq), (5.16)

where Θ(q) is the Heaviside function and q = |q|. It is necessary to introduce a
momentum cutoff qc ≫ 0 to the upper integration limit to avoid divergence. This
is an artefact of the continuum model, induced by the infinite band width, and is
absent in an actual lattice model, as we shall see below. For the three-band Hopf
semimetal (5.4a), three regions can be distinguished when tuning EF , see Fig. 5.4(a).
The anomalous Hall conductivity in these regions becomes

σAH
xy = −ξ e

2

6π2


0

κ−(EF + qc)

κ+(EF − qc)

= ξ
e2

6π2


0, |EF | > qc

EF + qc, −qc < EF < 0

EF − qc, 0 < EF < qc

(5.17)

where the Berry dipole charges are κ+ = κ− = −1 (Table 5.1). This conductivity is
plotted in Fig. 5.4(b) and changes sign abruptly at the flat band, with a jump equal to
the flat band Berry dipole charge κ0 = 2. Similarly, for the four- and five-band Hopf
semimetals, several regions can be distinguished when tuning EF , as is clear from
Fig. 5.4(a). The corresponding anomalous Hall conducitivity (see Appendix V.E for
explicit expressions) is plotted in Fig. 5.4(b). For the fourfold Hopf semimetal, the
anomalous Hall conductivity is continuous at half filling since there is no flat band.
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Fig. 5.4 – (a) Schematic energy spectrum of the Hopf semimetal continuum models (5.4), with Fermi
energy EF , momentum cutoff qc and band velocities cα indicated. (b) Corresponding anomalous Hall
conductivity for ξ = +. For N = 4, we have used band velocities a = 2, b = 1. For N odd, there
is an abrupt sign change at half filling, with a jump equal to the Berry dipole charge κ0 of the flat
band.

For the fivefold Hopf semimetal, the jump at half filling is again equal to the flat-band
Berry dipole charge κ0 = 4.

For all continuum models, we may therefore write the general anomalous Hall
current jAH with components jAH

i =
∑

j σ
AH
ij Ej in the form

jAH(EF ) = σAH(EF )E× d, (5.18)

where σAH(EF ) = −σAH(−EF ) and d = (0, 0, ξ). This current flows perpendicular
to both the electric field and the Berry dipole, and it flips sign when flipping the
orientation ξ. This can be understood from the fact that the Berry curvature acts
as a fictitious magnetic field. Moreover, the current (5.18) is clearly an odd function
of the Fermi energy. This important parity property can be directly explained from
the symmetries of the Hamiltonians (5.4): it is a combined effect of the particle-hole
symmetric spectrum and the Berry curvature property Ωα = Ω−α. For a proof, see
Appendix V.E.

The continuum treatment of the anomalous Hall effect may be considered some-
what unsatisfying, due to the necessity to introduce a cutoff and the discontinuous
jumps at half filling. It is reasonable to regularize the problem by considering the
anomalous Hall conductivity of an appropriate lattice model. In particular, we con-
sider the Hopf semimetal lattice models hN (k) (N = 3, 4, 5) that will be defined in
more detail in Eq. (5.26) below. In these models, we fix the parameter ∆0 = −3,
such that a single Berry dipole crossing exists in the Brillouin zone at the Γ point.
Using the Berry curvature of the lattice model, we then calculate the anomalous Hall
conductivity at zero temperature numerically from Eq. (1.57a). The result is shown
in Fig. 5.5(a). It agrees with both the qualitative predictions of the continuum theory
and the general symmetry arguments presented in Appendix V.E. In particular, it is
odd in EF and its global sign can be flipped by inverting the direction of the Berry
dipole at the Γ point. Also, as one can see, the discontinuous jump at half filling is
replaced by a smooth behavior.

Let us compare the anomalous current (5.18) with that caused by an extended
Berry dipole d0 [Fig. 5.1(a)], as in a Weyl semimetal. It is known that a pair of
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Fig. 5.5 – (a) Anomalous Hall conductivity for lattice models hN (k) [cf. Eq. (5.26)] of multifold
Hopf semimetals. Choosing ∆0 = −3 ensures the existence of a single Berry dipole at the Γ point.
The odd parity is due to the property κα = κ−α of the geometric charges of this Berry dipole. (b)
Typical anomalous Hall conductivity for lattice models of chiral topological semimetals with a single
pair of Berry monopoles [cf. Eq. (2.12)]. The even parity is due to the property Cα = −C−α of each
Berry monopole.

coupled Weyl nodes causes an anomalous Hall current of the form

jWAH(EF ) = σWAH(EF )E× d0, (5.19)

see for example Klinkhamer and Volovik (2005), Burkov and Balents (2011), or Yang
et al. (2011). Here d0 represents the distance between Weyl nodes (or a tilt direction).
Importantly, the anomalous Hall conductivity σWAH(EF ) is now an even function of
the Fermi energy, see again Appendix V.E for a simple proof. Again, to corroborate
this claim, we numerically compute the anomalous Hall conductivity for lattice models
featuring a pair of pseudospin-s crossings (Berry monopoles), where s = 1/2, s = 1, or
s = 2. In particular, we take the model (2.12) considered previously, which describes
a chiral multifold semimetal with a pair of nodes at k0 = ±(0, 0, k0) [for s = 1/2 this
is just the Weyl model (1.38)]. Taking the same parameters as for the Berry curvature
plot in Fig. 1.7(a), namely ti = 1, m = 2 and k0 = π/2, one obtains the anomalous
Hall conductivity shown in Fig. 5.5(b). As expected, it is even in EF .

In summary, the anomalous Hall current (5.18) caused by a point-like Berry dipole
crossing (5.4) is similar in form to the anomalous Hall current (5.19) caused by an
extended Berry dipole formed from two topological monopoles of a Weyl or multifold
topological semimetal. However, it is opposite in parity. This can be viewed as a pure
quantum geometric effect, as it is a direct consequence of the symmetry of the Berry
dipole charges (κα = κ−α).

5.3.4 | Physical properties (III) – Magnetoconductivity

Finally, consider electrons modeled by Eq. (5.4) in the presence of both weak electric
and magnetic fields E and B. We again adopt the Boltzmann approach of Section
1.5.5, and focus on the contributions to the electrical conductivity that are of lin-
ear order in B. These contributions include (see also Appendix V.E): the classical
Hall conductivity caused by the Lorentz force, which depends only on the zero-field
spectrum; a correction to the anomalous Hall effect caused by the orbital magnetic
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moment, which we will however not focus on; and, most importantly, a dissipative
quantum geometric current jgeo(B), with components

jgeoi =
∑
j

[
σBerry
ij (B) + σOMM

ij (B)
]
Ej . (5.20)

This current is caused by Berry curvature [cf. Eq. (1.57b)] and orbital magnetic
moment [cf. Eq. (1.57c)]. In the following we focus on this latter contribution, which
is expected to be strongly affected by the Berry dipole.

Inserting the Berry dipole (5.1), the band velocity vα = cαq/|q|, and the orbital
magnetic moment (5.7) into Eqs. (1.57b) and (1.57c), and assuming zero temperature,
a simple calculation shows that the geometric current takes the general form

jgeo = A1(E ·B)d+A2(E · d)B+A3(B · d)E (5.21)

for all continuum models (5.4). In other words, there is a current along the Berry
dipole direction (except if the applied magnetic field is perpendicular to the electric
field), a current along the applied magnetic field (except if the electric field is perpen-
dicular to the Berry dipole), and a longitudinal current (except if the magnetic field
is applied perpendicular to the Berry dipole).

The explicit expressions for the coefficients Ai (i = 1, 2, 3), in units of A0 ≡
−e3τ/(12π2), are as follows (see Appendix V.E for a derivation): Ai = A0 for the
continuum model (5.4a) describing a threefold Hopf semimetal; similarly Ai = A0(a−
b) for the fourfold Hopf semimetal (5.4b); and A1,2 = (21

√
2 − 17)A0/5, A3 = (23 +√

2)A0/5 for the fivefold Hopf semimetal (5.4c). As we can see, these coefficients are
independent of the Fermi level EF . This is of course not true on the lattice, but it
implies that the magnetoconductivity can be expected to be an even function of EF .
Indeed, as for the anomalous Hall current above, this parity property can be readily
understood from general symmetry arguments, more precisely from the combined
effect of a particle-hole symmetric spectrum and a Berry curvature Ωα = Ω−α. See
Appendix V.E for a short proof.

As for the anomalous Hall current, we confirm the validity of the magnetocurrent
(5.21) by conducting a numerical calculation of the tensors (1.57b) and (1.57c) for
the lattice models hN (k) introduced in Eq. (5.26) below. Again we use conditions
such that a single Berry dipole crossing is located at the Γ point. These calculations
(not shown) confirm that jgeo(B) is indeed even in EF .

Again, let us compare the current (5.21) to that caused by an extended Berry
dipole d0 formed from a pair of Berry monopoles. As a matter of fact, it is well
known that a pair of coupled Weyl nodes gives rise to a current jCA ∼ (E · B)d0,
which is attributed to the chiral anomaly (Nielsen and Ninomiya 1983; Zyuzin 2017;
Sharma et al. 2017). Moreover, it gives rise to a current jCME ∼ δϵB, where δϵ is
an energy difference between the valleys. This is known as the chiral magnetic effect
(Vilenkin 1980; Fukushima et al. 2008; Zyuzin et al. 2012; Zyuzin 2017). Finally, a
pair of Weyl nodes exhibits a current jMCE ∼ (B · d0)E, known as the magnetochiral
effect (Cortijo 2016; Kundu et al. 2020). Similar kinds of currents exist for pairs of
pseudospin crossings with s > 1/2. The three current contributions jCA, jCME, and
jMCE are odd functions of EF , due to the particle-hole symmetric spectrum and the
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Fig. 5.6 – Valley-Hopf semimetals (topological Hopf semimetals) have an even (odd) number of
linear multifold crossings with Berry dipole.

Berry curvature property Ωα = −Ω−α. Again a short proof is provided in Appendix
V.E. To further confirm this, we have also conducted numerical calculations of the
geometric current jgeo(B) for the lattice model (2.12).

In summary, each term of the linear magnetocurrent (5.21) caused by a point-like
Berry dipole crossing (5.4) has a counterpart in the response of an extended Berry
dipole formed from two topological monopoles. However, just like for the anomalous
Hall effect, the currents have opposite parity as a function of the filling. This is again
a direct consequence of the dipole charges (κα = κ−α).

5.4 | Tight-binding models for multifold Hopf semimetals

We now demonstrate how the continuum models discussed above can be obtained
as the low-energy theory of lattice models. In particular, we introduce two different
classes of tight-binding models for multifold Hopf semimetals, both of which recover
Eq. (5.4) in the vicinity of high-symmetry points of the Brillouin zone. The first
class consists of semimetals that have an even number of crossing points with Berry
dipole in the Brillouin zone. The crossings can be arranged in pairs ξ = ±, with
opposite dipole orientation in each valley [Fig. 5.6(a)]. These systems will be called
valley-Hopf semimetals. The second class comprises semimetals with an odd number
of Berry dipole crossings in the Brillouin zone. These systems will be called topological
Hopf semimetals. We first present a selection of examples for the two classes, and
then describe their physical properties.

5.4.1 | Valley-Hopf semimetals

Within this class, we can further distinguish between models hN (k) with preserved
time-reversal symmetry and models h̃N (k) with broken time-reversal symmetry.

Valley-Hopf semimetals with time-reversal symmetry

As examples for this class of lattice models we choose Hamiltonians of the form

hN (k) =

 0 QN

Q†
N 0

 , (5.22)
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Fig. 5.7 – (a)–(c) Tight-binding models for threefold, fourfold and fivefold valley-Hopf semimetals
with time-reversal symmetry on a 3D hexagonal lattice. Links are non-zero hoppings of the tight-
binding Hamiltonian (5.22).

where

Q3 =
(
wk −isz

)
, Q4 =

awk iasz

ibsz bw∗
k

 , Q5 =


0 i

√
2sz

isz w∗
k

√
2w∗

k 0

 .

Here wk ≡ 2
3

∑
j exp(ik·δj), where δ1,2 =

1
2(±

√
3, 1, 0) and δ3 = (0,−1, 0), and we use

shorthand notations si ≡ sin ki. The Hamiltonians (5.22) represent nearest-neighbor
tight-binding models on a hexagonal Bravais lattice, with Bravais vectors a1 =

√
3x̂,

a2 =
1
2(
√
3x̂+ 3ŷ), a3 = 2ẑ. Indeed, the models describe 2D honeycomb layers (as in

graphene), stacked in a particular way along the ẑ direction, as visualized in Fig. 5.7.
The tight-binding models have the following nearest-neighbor hoppings in real space.
The three-band model h3(k) has isotropic hoppings tAB = 2/3 in the A-B planes and
alternating hoppings tAC = ±1/2 along the A-C direction, see Fig. 5.7(a). The four-
band model h4(k) has isotropic hoppings tAC = 2a/3 and tBD = 2b/3 in the A-C and
B-D planes, respectively, as well as alternating hoppings tAD = ±a/2 and tBC = ±b/2
in the perpendicular direction, see Fig. 5.7(b). Finally, the five-band model h5(k)
has isotropic hoppings tBE = 2/3 and tCD = 2

√
2/3, as well as alternating hoppings

tBD = ±1/2 and tAE = ±1/
√
2 along the vertical direction, see Fig. 5.7(c).

The band structure of the models hN (k) is given by

ϵα(k) =
2

3
cα

√
f(kx, ky) +

9

4
sin2 kz. (5.23)

It is particle-hole symmetric due to a chiral symmetry (2.3) with a diagonal matrix
S, and the coefficients cα are the same as for the continuum models (5.4), see Table
5.1. The function f(kx, ky) = 3 + 2 cos

(√
3kx
)
+ 4 cos

(√
3kx/2

)
cos(3ky/2) describing

in-plane hopping is exactly the same as for graphene, cf. Eq. (1.27).
Since, for all models hN (k), the Bravais period is doubled along the ẑ direction,

such that the Brilloun zone extends from kz = −π/2 to kz = π/2, it is clear that
nodal points in the spectrum (5.23) can appear only in the kz = 0 plane. Indeed, the
hexagonal Brillouin zone contains one N -fold nodal point at the K (ξ = +) and one
at the K’ (ξ = −) valley, with coordinates Kξ as given by Eq. (1.28). These nodal
points are described exactly by the continuum models (5.4) at low energy, as can be
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easily seen by noting that wk → ξqx− iqy around these points. Thus, there is a Berry
dipole pointing up in the K valley and one pointing down in the K’ valley.

Valley-Hopf semimetals without time-reversal symmetry

As examples for this class of lattice models we choose Hamiltonians of the form

h̃N (k) =

 0 Q̃N

Q̃†
N 0

 , (5.24)

where

Q̃3 =
(
s− −isz

)
, Q̃4 =

as− iasz

ibsz bs+

 , Q̃5 =


0 i

√
2sz

isz s+
√
2s+ 0

 .

Here we use shorthand notations s± ≡ sx ± isy. The Hamiltonians h̃N (k) represent
nearest-neighbor tight-binding models on a tetragonal Bravais lattice, with Bravais
vectors a1 = x̂+ ŷ, a2 = x̂− ŷ, and a3 = 2ẑ. Indeed, the models describe 2D square
layers stacked in a particular way along the ẑ direction, as shown in Fig. 5.8. Note
that the five-band model has two types of orbitals (A and C) located at the same site.

The three-band model h̃3(k) has alternating hoppings tAB = ±i/2 (tAB = ±1/2)
in the x̂-direction (ŷ-direction) within the A-B plane and alternating hoppings tAC =
±1/2 along the A-C direction, see Fig. 5.8(a). Similarly, the model h̃4(k) has alter-
nating hoppings tAC = ±ia/2 (tAC = ±a/2) in the x̂ direction (ŷ direction) within the
A-C plane, alternating hoppings tBD = ±ib/2 (tBD = ±b/2) in the x̂ direction (ŷ di-
rection) within the B-D plane, and alternating hoppings tAD = ±a/2 and tBC = ±b/2
in the perpendicular direction, see Fig. 5.8(b). Finally, the five-band model h̃5(k) has
alternating hoppings tBE = ±i/2 (tBE = ±1/2) in the x̂ direction (ŷ direction) within
the B-E plane, alternating hoppings tCD = ±i/

√
2 (tCD = ±1/

√
2) in the x̂ direction

(ŷ direction) within the C-D plane, as well as alternating hoppings tAE = ±1/
√
2 and

tBD = ±1/2 along the vertical direction, see Fig. 5.8(c).

The corresponding band structure of the models h̃N (k) is given by

ϵα(k) = cα

√
sin2 kx + sin2 ky + sin2 kz, (5.25)

which is again particle-hole symmetric due to a chiral symmetry, and where the band
velocities cα are the same as for the continuum models (5.4), see Table 5.1. Again
nodal points can appear only in the kz = 0 plane. Indeed, the tetragonal Brillouin
zone contains two N -fold nodal points, namely one located at the Γ point (ξ = +) and
one at the M point (ξ = −), where kΓ = 0 and kM = (π, 0, 0). It is straightforward
to see that the low-energy theory around these points is exactly described by the
continuum models (5.4).
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Fig. 5.8 – (a)–(c) Tight-binding models for threefold, fourfold and fivefold valley-Hopf semimetals
with broken time-reversal symmetry on a 3D tetragonal lattice, as given by the tight-binding Hamil-
tonian (5.24).

5.4.2 | Topological Hopf semimetals

This class, characterized by an odd number of Berry dipoles in the Brillouin zone, is
somewhat harder to realize than the previous one, in particular it appears that time-
reversal symmetry always has to be broken. This is not surprising considering that
these systems are closely related to Hopf insulators (see Section 5.5 below), which
are also characterized by broken time-reversal symmetry. As examples for topological
Hopf semimetals, we consider Hamiltonians of the form

hN (k) =

 0 QN

Q†
N 0

 , (5.26)

where

Q3 =
(
s− g∆0

)
, Q4 =

 as− −ag∆0

bg∗∆0
bs+

 , Q5 =


0

√
2g∗∆0

g∗∆0
s+

√
2s+ 0

 ,

and with
g∆0 ≡ ∆0 + cx + cy + e−iz, (5.27)

where ∆0 is a real parameter. These Hamiltonians are difficult to realize as pure
hopping models with only one orbital per site, however since they contain only terms
∼ sin ki or ∼ cos ki they may be constructed assuming a simple cubic Bravais lattice
with N orbitals per site and appropriate couplings, see Fig. 5.9.

The Hamiltonians hN (k) have an energy spectrum

ϵα(k) = cα

√
s2x + s2y + s2z + (∆0 + cx + cy + cz)2, (5.28)

where again a chiral symmetry is evident and the coefficients cα are as in Table 5.1.
This spectrum becomes gapless only for ∆0 = ±1,±3. For the moment, since we are
interested in the semimetallic phase, we only allow the parameter ∆0 to take one of
these discrete values.
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Fig. 5.9 – (a)–(c) Tight-binding models for threefold, fourfold and fivefold topological Hopf semimet-
als can be constructed on a multiorbital cubic lattice, with hoppings as given by the tight-binding
Hamiltonian (5.26).

For ∆0 = −3, there is a single N -fold crossing at the Γ point of the cubic
Brillouin zone, described by a low-energy theory H+

N (q), corresponding to a Berry
dipole pointing up. Similarly, for ∆0 = 3, there is a single N -fold crossing at
the R point, kR = (π, π, π), described by −H+

N (q), and thus corresponding to a
Berry dipole pointing down. For ∆0 = −1, there are three N -fold crossings at
the inequivalent X points: kX1 = (π, 0, 0), kX2 = (0, π, 0), kX3 = (0, 0, π). They
are described by HN,X1(q) = H+

N (−qx, qy, qz), HN,X2(q) = H+
N (qx,−qy, qz), and

HN,X3(q) = H+
N (qx, qy,−qz), respectively, thus corresponding to Berry dipoles point-

ing down, down and up. Finally, for ∆0 = 1, there are three N -fold crossings at the
M points: kM1 = (0, π, π), kM2 = (π, 0, π), kM3 = (π, π, 0). They are described by
HN,Mi(q) = −HN,Xi(q), thus corresponding to Berry dipoles pointing up, up, and
down. The four types of high-symmetry points mentioned here (Γ, R, X, M) will
play an important role below when we discuss topological phase transitions of Hopf
insulators.

5.4.3 | Physical properties from a lattice perspective

For a Fermi level close to the nodal points, the physical properties of the semimetallic
lattice models (5.22), (5.24) and (5.26) are simply obtained by summing the contin-
uum results, as obtained in Sections 5.3.2–5.3.4, over all valleys. It is then clear that
both the anomalous Hall current (5.18) and the magnetocurrent (5.21) cancel for a
valley-Hopf semimetal, since there is an even number of crossings with opposite Berry
dipoles, cf. Fig. 5.6(a). However, the currents are non-trivial for the topological Hopf
semimetals (5.26), since there is one net Berry dipole in the Brillouin zone. To con-
firm this, as already mentioned, we have numerically calculated the anomalous Hall
conductivity of hN (k) for parameters such that a single Berry dipole crossing exists
at the Γ point, see Fig. 5.5(a). A similar lattice calculation (not shown) confirms the
existence of weak-field magnetocurrents jgeo for a topological Hopf semimetal (5.26).

Despite the fact that the anomalous Hall conductivity and magnetoconductivity
cancel for the valley-Hopf semimetals, it is possible to conceive of other ways to unveil
the presence of the Berry dipoles in these systems. For example, consider the lattice
model h3(k) [shown in Fig. 5.7(a)], and assume the presence of a strong magnetic
field (5.8). For θ = 0, we know from Fig. 5.3(a) that the Landau level spectrum at
the K valley (ξ = +) will be gapped out, while the Landau level spectrum at the K’
valley (ξ = −) will be gapless. For θ = π, the situation is reversed. Flipping the
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Fig. 5.10 – Two classes of multiband Hopf insulators and semimetals. (a) Multiband Hopf insulators
as described by Eq. (5.34) exhibit linear multifold crossings with a Berry dipole such that κα = κ−α.
(b) Multiband Hopf insulators as described by a generalized Moore-Ran-Wen model (5.40) exhibit
quadratic multifold touchings with a Berry dipole such that κα = −κ−α.

magnetic field thus provides a means to completely switch the valley polarization of
dispersive states in an energy window EF ∈ [−eB, eB] around the highly degenerate
flat band. This effect is purely due to the Berry dipole. A similar effect exists for the
lattice model h5(k). From a more general perspective, it appears interesting to study
optical and magnetooptical responses of the valley-Hopf semimetals.

5.5 | Multiband Hopf semimetals and Hopf insulators

In this section we connect the semimetals introduced above to the theory of Hopf in-
sulators. We start by describing the well-known concept of a two-band Hopf insulator,
first introduced by Moore et al. (2008), as well as a generalization of the Hopf insu-
lator to the multiband (N > 2) case, which was proposed very recently by Lapierre
et al. (2021). We then propose the first concrete lattice models for multiband Hopf
insulators, which can be separated into two fundamentally different classes. For the
first class, the semimetallic phase obtained at a topological phase transition is exactly
the (linear) multifold Hopf semimetal (5.4), characterized by a linear crossing with a
Berry dipole (5.1) such that κα = κ−α. For the second class, the semimetal at a topo-
logical phase transition may be called a quadratic multifold Hopf semimetal ; it also
carries a Berry dipole (5.1), however emerging from a quadratic touching and with
κα = −κ−α. As we shall see, the quadratic Hopf semimetals can be obtained from
merging Berry monopoles, while the linear Hopf semimetals cannot. These results
are summarized in Fig. 5.10 and explained in detail in the following.

5.5.1 | Two-band and multiband Hopf insulators

Two-band Hopf insulators

Consider a three-dimensional two-band system (2.15) and assume the two bands to be
fully gapped. The Bloch Hamiltonian can be seen as a map H(k) : T3 7→ S2 from the
Brillouin zone 3-torus T3 to the two-sphere S2. The possible topological character of
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such a map can be determined from homotopy classification, as was first carried out by
Pontrjagin (1941). The classification involves three Chern numbers (weak topological
invariants) that classify maps T2 7→ S2 from the three possible sub-tori T2 to S2.
If H(k) is such that all three Chern numbers vanish, the homotopy classification of
maps H(k) : T3 7→ S2 is the same as that of H(k) : S3 7→ S2 (Lapierre et al. 2021),
and the relevant topological invariant is the Hopf invariant or Hopf number, which
takes integer values NHopf ∈ Z. This name originates from an important work of Hopf
(1931) regarding mappings from the three-sphere S3 to the two-sphere S2.

The above rather abstract notions were applied to the theory of band insulators
by Moore et al. (2008), who proposed a class of topological insulators (3D two-band
insulators in the absence of time-reversal symmetry) based on the Hopf map. They
argued that this phase might be realizable in crystals for example when electrons move
in a magnetic background. In particular, they constructed the following tight-binding
model:6

H(k) = h(k) · σ,
h1(k) = 2sxsz + 2sy(cx + cy + cz +∆),

h2(k) = −2sysz + 2sx(cx + cy + cz +∆),

h3(k) = s2x + s2y − s2z − (cx + cy + cz +∆)2,

(5.29)

where ∆ is a tunable parameter. This Hamiltonian will be referred to as the Moore-
Ran-Wen model. To be precise, in the original paper Moore et al. (2008) considered
only the particular value ∆ = −3/2; we here use a slightly more general version of
the model, which was studied by Deng et al. (2013).

The Moore-Ran-Wen model is designed to exhibit a non-trivial Hopf number,
which can be computed as a Brillouin zone integral

NHopf =
1

4π2

∫
BZ
d3kAα(k) ·Ωα(k) (5.30)

over the scalar product of Berry connection and curvature. Importantly, the Hopf
invariant is not associated to an individual band [unlike, say, the Chern number
(1.23)], but instead it is a characteristic of the whole band structure. Accordingly,
it is irrelevant whether one chooses the valence or conduction band to compute it
(α = ±). This fact becomes more transparent when writing NHopf in the form of Eq.
(1.25). This equation, which is actually valid for arbitrary N (see below), is indeed
equivalent to Eq. (5.30) for the two-band case.7 It should also be mentioned that the
integral in Eq. (5.30), and more generally the Hopf number (1.25), is not obviously
gauge-invariant. It can however be shown that gauge invariance is guaranteed if the
three Chern numbers mentioned above vanish (Moore et al. 2008). It can indeed be

6This model is often written in the equivalent form

H(k) = (z†σz) · σ, z = (sx + isy, sz + i(cx + cy + cz +∆))T .

7To see this, insert the 2× 2 matrix U(k) = (|ψ+(k)⟩, |ψ−(k)⟩) into Eq. (1.25), where |ψα(k)⟩ =
(ψα,1(k), ψα,2(k))

T . By explicit calculation one finds χ(k) = 3ϵijkAα,i(k)Ωα,jk(k) = 6Aα(k)·Ωα(k).
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Fig. 5.11 – (a) Hopf invariant for the Moore-Ran-Wen model (5.29). Topological phase transitions
occur for ∆ = ∆0 ∈ {±1,±3}, where gaps close at the Γ, X, M or R points of the cubic Brillouin
zone, see (b). Red (blue) colors denote a positive (negative) change of NHopf.

easily verified for the Moore-Ran-Wen model that the three Chern numbers

NChern,ij
α =

1

2π

∫
T2

dkidkjΩα,ij(ki, kj ; kl = const.) (5.31)

for (i, j) = (x, y), (y, z), (z, x) are zero, which implies that Eq. (5.30) really yields a
gauge-invariant Z number.

In Fig. 5.11(a) we plot the Hopf number of the Moore-Ran-Wen model [as com-
puted from Eqs. (1.25) or (5.30)] as a function of the parameter ∆. Clearly, the
system is topologically non-trivial in the Hopf sense for |∆| < 3. Topological phase
transitions occur whenever the energy spectrum

ϵ±(k) = ±(s2x + s2y + s2z + (cx + cy + cz +∆)2) (5.32)

becomes gapless, which happens at points Γ, R, X, M for ∆ = −3, 3,−1, 1, respec-
tively, as visualized in Fig. 5.11(b). These transitions will be discussed in more detail
below.

Multiband Hopf insulators

A multiband generalization of the Hopf insulator was recently established by Lapierre
et al. (2021). Consider a three-dimensional N -band system (2.24) and assume all
N bands to be fully gapped, such that there are no degenerate subspaces. Un-
der these conditions, the Bloch Hamiltonian H(k) can be seen as a map H(k) :
T3 7→ SU(N)/U(1)N−1 from the Brillouin zone 3-torus T3 to the quotient group
SU(N)/U(1)N−1. In the N = 2 case this reduces to the scenario discussed above as
SU(2)/U(1) is isomorphic to S2. Under the assumption that all three weak invari-
ants (Chern numbers) vanish, it can be shown from homotopy classification that the
map H(k) : T3 7→ SU(N)/U(1)N−1 is classified by a Z invariant, which is known as
the Hopf invariant or Hopf number of the N -band system. This name is chosen by
analogy to the two-band case.

To compute the Hopf number of the N -band system, Lapierre et al. (2021) in-
troduced Eq. (1.25). As we have seen, for N = 2 there is the equivalent expression
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(5.30), but it relies on very specific properties which are no longer valid for N > 2.
Indeed, in general the Hopf number cannot be written in terms of Abelian geometric
quantities. Instead, an expression based on the non-Abelian Chern-Simons three-form
(Ryu et al. 2010) is possible:8

NHopf =
1

8π2

∫
BZ
d3kTr

[
A · (∇×A)− 2i

3
A · (A×A)

]
. (5.33)

Here, A = A(k) = (Ax(k),Ay(k),Az(k)) is a vector formed from N×N non-Abelian
Berry connection matrices with matrix elements Ai,αβ(k) = i⟨ψα(k)|∂iψβ(k)⟩. While
Eq. (5.33) is conceptually useful as a generalization of Eq. (5.30), we find Eq. (1.25)
to be less cumbersome for practical purposes. We emphasize again that Eqs. (1.25)
and (5.33) are gauge-invariant if the three weak invariants [Chern numbers (5.31)]
vanish.

5.5.2 | Lattice models for multiband Hopf insulators

Aside from the Moore-Ran-Wen model (5.29), several similar Hamiltonians have been
proposed for two-band Hopf insulators (Deng et al. 2013; Kennedy 2016; Liu et al.
2017; Schuster et al. 2019). Here we introduce the first known lattice models for multi-
band Hopf insulators. They can be separated into two classes (linear and quadratic)
as shown in Fig. 5.10, and as discussed in more detail in the following.

Linear multiband Hopf insulators

Consider the tight-binding Hamiltonians

hHopf
N (k) =

 0 QHopf
N

(QHopf
N )† 0

 , (5.34)

where

QHopf
3 =

(
s− g∆

)
, QHopf

4 =

as− −ag∆

bg∗∆ bs+

 , QHopf
5 =


0

√
2g∗∆

g∗∆ s+
√
2s+ 0

 ,

with g∆ ≡ ∆ + cx + cy + e−iz and with a continuous parameter ∆.9 They have an
energy spectrum

ϵα(k) = cαϵ, ϵ =
√
s2x + s2y + s2z + (∆+ cx + cy + cz)2, (5.35)

8It appears that there is a wrong sign in the second term of Eq. (12) in the work of Lapierre et al.
(2021).

9The attentive reader may have noticed that the Hamiltonians (5.34) are obtained from the models
(5.26) upon simply replacing the discrete parameter ∆0 by a continuous parameter ∆. This implies
that the semimetals (5.26) occur at topological phase transitions of the insulators (5.34), as we will
discuss further below.
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Fig. 5.12 – (a) Hopf invariant (1.25) for the models (5.34) with N = 3, 4, 5. Topological phase
transitions occur for ∆ = ±1,±3, where gaps close at the Γ, X, M or R points of the cubic Brillouin
zone, see (b).

which is particle-hole symmetric due to chiral symmetry and has band velocities cα as
listed in Table 5.1. We now claim that these models are multiband Hopf insulators.
More precisely, they may be called linear multiband Hopf insulators, in the sense
that they exhibit linear crossing points at topological phase transitions, as discussed
further below. The linear crossings originate from the fact that hHopf

N (k) can be viewed
as tight-binding models with only nearest-neighbor hoppings on a multiorbital cubic
lattice, such as shown in Fig. 5.9.

To confirm that the Hamiltonians (5.34) are Hopf insulators, we first verify that
the three Chern numbers (5.31) vanish, and then compute the Hopf number from Eq.
(1.25); for the N = 3 and N = 4 case, using a convenient gauge choice we find a Hopf
density

χ(k) =
12

ϵ4
(cxcy + cycz + czcx +∆cxcycz) , (5.36)

and from numerical integration one obtains

NHopf =


0 |∆| > 3

1 1 < |∆| < 3

−2 0 < |∆| < 1

, (5.37)

as shown in Fig. 5.12(a). For the N = 5 model the Hopf density is more involved; for
our gauge choice we have10

χ(k) =
12

ϵ4
{
−cxcy + 2cxcz + 2cycz − 2(c2x + c2y)

− (cxc2y + cyc2x)cz + 2(cx − cy)sxsysz

+∆ [cxcycz − (cxc2y + cyc2x)− 3(cx + cy)]− 2∆2cxcy
}
,

(5.38)

leading to higher Hopf numbers:

NHopf =


0 |∆| > 3

5 1 < |∆| < 3

−10 0 < |∆| < 1

. (5.39)

10We recall that the Hopf density is not gauge-invariant, but the Hopf number is.
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Topological phase transitions occur whenever the energy gap of the spectrum (5.36)
closes, as will be discussed in more detail shortly.

It should also be mentioned that the model hHopf
3 (k) is actually well known as a

chiral topological insulator in the literature (Wang et al. 2014; Lian et al. 2019). It
was introduced for constructing fractional topological phases (Neupert et al. 2012),
and we here identify it as a three-band Hopf insulator. Indeed, it appears that the
topological invariant defined in Eq. (3.7) of Neupert et al. (2012) is just the Hopf
number, however calculated from a simplified formula that makes explicit use of the
fact that the system has N = 3 bands and chiral symmetry. However, when chiral
symmetry is broken without a gap-closing, the topological invariant in Eq. (3.7) of
Neupert et al. (2012) should become ill-defined. In contrast, the Hopf number (1.25)
remains well-defined and the values (5.37) should remain unchanged.

Quadratic multiband Hopf insulators: generalized Moore-Ran-Wen model

We here introduce a second class of multiband insulators, generalizing the Moore-
Ran-Wen model (5.29) to any N . This is done simply by replacing the Pauli matrices
by pseudospin-s matrices, to obtain

hHopf
s (k) = h(k) · S,
h1(k) = 2sxsz + 2sy(cx + cy + cz +∆),

h2(k) = −2sysz + 2sx(cx + cy + cz +∆),

h3(k) = s2x + s2y − s2z − (cx + cy + cz +∆)2.

(5.40)

These models have an energy spectrum

ϵα(k) = cα(s
2
x + s2y + s2z + (cx + cy + cz +∆)2), (5.41)

where cα = ms as listed in Table 2.1. The gap closings occur at the same values of ∆
and at the same points in the Brillouin zone as for the two-band Hopf insulator (5.29)
and the multiband Hopf insulator (5.34). Since these gap closings are characterized
by quadratic touchings – which originates from the fact that Eq. (5.40) can be viewed
as a tight-binding model with next-nearest-neighbor hoppings on a multiorbital cubic
lattice –, we will call the models (5.40) quadratic multiband Hopf insulators.

To confirm the Hopf character, we again compute the Hopf invariant from Eq.
(1.25). For s = 1/2 this is equivalent to the Moore-Ran-Wen model. For s = 1 we
obtain

NHopf =


0 |∆| > 3

−5 1 < |∆| < 3

10 0 < |∆| < 1

, (5.42)

as shown in Fig. 5.13. It would be interesting to compute the Hopf numbers for higher
s and to try to establish the function NHopf(s); this gets however quite cumbersome
for s > 1 due to the complicated expressions for the energy eigenstates.
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Fig. 5.13 – (a) Hopf invariant (1.25) for the models (5.40) with s = 1/2 and s = 1. The s = 1/2
case is equivalent to the Moore-Ran-Wen model (5.29). Topological phase transitions occur when
gaps close at the Γ, X, M or R points of the cubic Brillouin zone, see (b).

5.5.3 | Hopf semimetals as topological phase transitions

We now demonstrate that at the topological phase transitions of each of the Hopf in-
sulators (5.29), (5.34) and (5.40) there appear semimetallic phases with Berry dipole.
Such phases will be called Hopf semimetals, which establishes the desired connection
with the first four sections of this chapter.

Twofold Hopf semimetal in the Moore-Ran-Wen model

The band structure (5.32) of the Moore-Ran-Wen model (5.29) is in general insu-
lating, but becomes gapless for ∆ = ±1,±3. Accordingly, there occur topological
phase transitions at these parameter values, see Fig. 5.11. We now investigate these
transitions more closely by introducing a continuum model

Hν(q) = hν(q,∆ν) · σ (5.43)

in the vicinity of each gap-closing value of ∆, where

hΓ(q,∆Γ) = (2qxqz + 2qy∆Γ,−2qyqz + 2qx∆Γ, q
2
x + q2y − q2z −∆2

Γ),

hR(q,∆R) = hΓ(q,∆Γ → −∆R),

hXi(q,∆X) = hΓ(qi → −qi,∆Γ → ∆X),

hMi(q,∆M) = hXi(q,∆X → −∆M),

(5.44)

with ∆Γ = ∆+ 3, ∆R = ∆ − 3, ∆X = ∆+ 1 and ∆M = ∆ − 1. Note that there are
three different continuum models for the three points Xi and Mi, where i = 1, 2, 3.
The continuum models (5.43) have an energy spectrum

ϵ±(q) = ±(|q|2 +∆2
ν), (5.45)

such that there is an isotropic quadratic touching point whenever ∆ν = 0. Next, let
us consider the Berry curvature, the key quantity of interest for our purposes. For
the continuum model HΓ(q) we find

Ωα(q) =
κα

(|q|2 +∆2
Γ)

2

[
(q · d)q+∆Γ(q× d) + ∆2

Γd
]

(5.46)
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with d = (0, 0, 1), and very similar expressions are obtained for all other continuum
models Hν(q). In other words, at any topological phase transition of the Moore-Ran-
Wen model, there exists a twofold Hopf semimetal characterized by a quadratic two-
band touching (5.45) and a Berry dipole. This fact was recently studied in considerable
detail by Alexandradinata et al. (2021) and Nelson et al. (2022).

We have to emphasize, however, that the nature of the Berry dipole of such a
two-band Hopf semimetal is fundamentally different from that of the linear multiband
Hopf semimetals (5.4). In particular, the dipole charge κα in Eq. (5.46), which takes
the explicit values κ± = ∓2 for the two bands, clearly has the property κα = −κ−α,
which is enforced by the Berry curvature sum rule

∑
αΩα = 0. In stark contrast, as

we have stated repeatedly, the multifold Hopf semimetals (5.4) have a Berry dipole
with κα = κ−α, something that is impossible to achieve in a two-band system (see
also Fig. 5.10).

One may also attempt to employ the continuum models (5.43) to determine the
Hopf number without the need to carry out numerical integration. In particular,
using the eigenstates of the continuum models Hν(q), (Nelson et al. 2022) define a
continuum Hopf number as

NHopf
ν (∆ν) =

1

4π2

∫
R3

d3qAα(q) ·Ωα(q). (5.47)

The goal is then to compute the jump δNHopf of the Hopf number at a topological
phase transition as the difference between the continuum Hopf numbers on both sides
of the transition, summed over all points where the gap closes:

δNHopf =
∑
ν

[
NHopf

ν (∆ν > 0)−NHopf
ν (∆ν < 0)

]
. (5.48)

This sum consists of one term for the transitions at Γ and R, and of three terms
for the transitions at X and M. For a convenient gauge choice, this indeed seems to
confirm the lattice results shown in Fig. 5.11(a); for example for the model HΓ(q) one

finds NHopf
Γ (∆Γ) = −1

2sgn(∆Γ) and thus δNHopf = −1. However the formula (5.47) is
explicitly gauge-dependent, such that it should not be trusted for predicting the true
Hopf number of the lattice model without a confirmation via Eq. (1.25).

Multifold Hopf semimetals from linear multiband Hopf insulators

Next, let us consider the topological phase transitions of the linear multiband Hopf
insulators (5.34). They also happen at parameter values ∆ = ±1,±3, and it is evident
that at these transitions the topological Hopf semimetals (5.26) introduced earlier are
exactly recovered. These semimetals are characterized by a linear multifold crossing
(5.4) and a Berry dipole (5.1) with the property κα = κ−α, see Fig. 5.10. The
fact that the continuum models (5.4) are representative Hamiltonians for topological
phase transitions of (linear) multiband Hopf insulators justifies the use of the word
“Hopf” in the name for those semimetals.

One may again study the jump δNHopf at the topological phase transitions shown

in Fig. 5.12 in terms of the continuum limit Hν(q) of h
Hopf
N (k) around a gap-closing
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momentum kν , where ν ∈ {Γ,X,M,R}. In particular, one may be tempted to define
a continuum Hopf number for the N -band system via the two equivalent expressions

NHopf
ν (∆ν) =

1

24π2

∫
R3

d3q χ(q), χ(q) ≡ ϵijk Tr[ui(q)uj(q)uk(q)],

NHopf
ν (∆ν) =

1

8π2

∫
R3

d3qTr

[
A · (∇×A)− 2i

3
A · (A×A)

]
,

(5.49)

which can be viewed as a multiband generalization of Eq. (5.47). Here, A = A(q) =
(Ax(q),Ay(q),Az(q)) is a vector formed from N ×N non-Abelian Berry connection
matrices with matrix elements Ai,αβ(q) = i⟨ψα(q)|∂iψβ(q)⟩. Using the continuum
Hopf numbers of all gap-closing momenta (see Appendix V.F) along with Eq. (5.48),
we find again that for a convenient gauge choice the jumps shown in Fig. 5.12(a)
can be predicted from the continuum approach. However, the expressions (5.49) are
again gauge-dependent and should be treated with care.

Multifold Hopf semimetals from quadratic multiband Hopf insulators

Finally, consider the topological phase transitions of the quadratic multiband Hopf
insulator (5.40). By writing down continuum models Hν(q) in analogy to the two-
band models (5.43), one readily finds that the spectrum is given by

ϵα(q) = cα(|q|2 +∆2
ν), (5.50)

where the band velocities are as listed in Table 2.1. The transitions are thus charac-
terized by quadratic multifold touchings as shown in Fig. 5.10(b). Further, the Berry
curvature of these N -fold touchings (N = 2s+ 1) is equivalent to Eq. (5.46) in that
the Berry dipole charge always satisfies κα = −κ−α for any s. The Berry dipoles are
thus fundamentally different from those of the linear multifold crossings (5.4).

5.5.4 | Berry dipoles from merging of monopoles

As we have stated repeatedly and as summarized in Fig. 5.10, the Berry dipoles
carried by the quadratic touchings of a (generalized) Moore-Ran-Wen model and those
carried by the multifold Hopf semimetals (5.4) are fundamentally different. While we
have only justified this by a rather unphysical argument (the parity κα = ±κ−α of
the dipole charges), it can also be understood in more physical terms, as explained in
the following.

When taking a look at Fig. 5.1(a), one might ask what happens when the two
Berry monopoles merge at a single point, that is, when one takes d0 → 0. In particu-
lar, one may expect to find some kind of band touching point with Berry dipole, and
wonder if this scenario is equivalent to the one described by Eq. (5.4). Let us study
this situation via a simple continuum model

H(q) = qxSx + qySy + (q2z − δ0)Sz, (5.51)
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describing a pair of Berry monopoles merging along the ẑ direction, where δ0 = |d2
0|/4.

It is straightforward to obtain the Berry curvature of this model as

Ωα(q) =
Cα

[q2x + q2y + (q2z − δ0)2]3/2


qxqz

qyqz

1
2(q

2
z − δ0)

 , (5.52)

where Cα is the Chern number as listed in Table 2.1. Clearly, this indeed corresponds
to some kind of point-like Berry dipole for δ0 = 0. However, the situation is funda-
mentally different from the point-like dipole (5.1) of the Hopf semimetals (5.4). First,
the Berry curvature (5.52) emerges from an anisotropic semi-Dirac touching point
with an evident memory of the merging direction. More importantly, the CP sym-
metry and the property Ωα = −Ω−α of the chiral multifold semimetal phase (δ0 > 0)
are also retained after the two Berry monopoles annihilate. The same behavior can
be confirmed when studying the merging of two Berry monopoles in a lattice model.
In fact, we have already computed the Berry curvature of such a model in Eq. (2.14),
and to obtain two merged monopoles we just need to insert k0 = 0 or k0 = π. Clearly,
one arrives at the same conclusions as for the continuum model (5.51).

The situation described by the merging model (5.51) is at first glance also different
from the twofold Hopf semimetal (5.43) existing at topological phase transitions of the
Moore-Ran-Wen model, since the latter has a fully isotropic quadratic band touching.
However, this difference is not fundamental. Indeed, Nelson et al. (2022) recently
introduced a minimal model

H(q) = 2qxqzσ1 − 2qyqzσ2 + (q2x + q2y − q2z − δ0)σ3 (5.53)

which shows that the twofold Hopf semimetal (5.43) can be obtained from merging
a pair of Weyl nodes. Indeed, the model (5.53) represents a Weyl semimetal for
δ0 < 0 and a nodal-line semimetal for δ0 > 0. The twofold Hopf semimetal (5.43)
with isotropic spectrum ϵ±(q) = ±|q|2 and Berry dipoleΩ± = ∓2qzq/|q|4 appears for
δ0 = 0. By extending the model (5.53) to the multiband case (again replacing σ → S),
it is clear that the multifold quadratic touchings at topological phase transitions of
the models (5.40) can be obtained from merging a pair of pseudospin-s monopoles.

In summary, the quadratic touching points appearing at topological phase tran-
sitions between quadratic Hopf insulators [Fig. 5.10(b)] are not fundamentally dif-
ferent from touching points that exist at the critical point between a chiral multifold
semimetal and a nodal-line semimetal. In contrast, the linear crossing points ap-
pearing at topological phase transitions between linear Hopf insulators [Fig. 5.10(a)]
cannot be obtained by such a process. This provides a physical argument for the fun-
damental difference between these two types of Berry dipole touchings, in addition to
the different parity of the dipole charges κα.

Note also that the physical properties of the quadratic semimetals at phase transi-
tions of the generalized Moore-Ran-Wen model (5.40) are thus somewhere in between
those of chiral multifold semimetals and linear multifold Hopf semimetals: On the one
hand, just like for the multifold Hopf semimetals (5.4), there is a quantum geometric
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anisotropy already for a single touching point, which will create non-trivial Landau
levels, as well as an anomalous Hall effect and linear magnetocurrents. On the other
hand, the parity as a fuction of EF will be as for a chiral multifold semimetal.

5.6 | Perspectives of Hopf semimetals and insulators

To conclude this chapter, we discuss several extensions and perspectives.

5.6.1 | Linear band crossings with Berry multipole structure

As argued in Section 5.2, linear band crossings of N > 2 bands can be obtained
from several different Hamiltonians. So far, we have mainly compared pseudospin-s-
like crossings and Hopf-like crossings, characterized by a Berry monopole and Berry
dipole, respectively. However, there is no fundamental reason why other, yet more
exotic geometric structures should not be possible. To illustrate this, we here propose
models for fivefold crossings that give rise to a Berry quadrupole or Berry octupole.

Consider the five-band model

Hξ
5a(q) =



0 qξ+ 0 iqz 0

qξ− 0 −iqz 0 iqz

0 iqz 0 qξ− 0

−iqz 0 qξ+ 0 qξ+

0 −iqz 0 qξ− 0


, (5.54)

where again qξ± = ξqx ± iqy. The spectrum is exactly the same as for the five-band
model (5.4c), namely ϵα(q) = cα|q| with cα = 0,±1,±

√
2. However, the Berry

curvature takes a different form,

Ωα(q) = κα(q · d) q

|q|4
+

≈
κα(q · d)3 q

|q|6
, (5.55)

where d = (0, 0, ξ), which corresponds to a dipolar together with an octupolar term.
The dipole and octupole charges are κα = 1,−3, 4,−3, 1 and

≈
κα = −4, 8,−8, 8,−4

from the lowest to the highest band. The fivefold crossing with Berry octupole is
visualized in Fig. 5.14(b).

Fig. 5.14 – A fivefold linear crossing acting as (a) a Berry quadrupole. (b) a Berry octupole.



130 5 |Multifold fermions beyond Berry monopoles

As a second example, consider the Hamiltonian

Hξ
5b(q) =



0 qξ− iqz iqz 0

qξ+ 0 qξ+ 0 −iqz

−iqz qξ− 0 −qξ+ −iqz

−iqz 0 −qξ− 0 qξ−

0 iqz iqz qξ+ 0


. (5.56)

The spectrum is again of the form ϵα(q) = cα|q| where now cα = 0,±1,±
√
3. The

Berry curvature takes the exotic form

Ωα(q) = κ̃αqxqz
q

|q|5
+ ξ

≈
καqyq

2
z

q

|q|6
, (5.57)

with κ̃α = −
√
3, 3, 0,−3,

√
3 and

≈
κα = −4/3, 4,−16/3, 4,−4/3. This corresponds to

a quadrupolar and an octupolar term, as visualized in Fig. 5.14.
Considering these examples, it appears very interesting to speculate that the Berry

curvature of any linear crossing in 3D takes the form of a multipole expansion

Ωα(q) =
∞∑
n=0

κ(n)α

n∏
i=1

(q · di)
q

|q|n+3
, (5.58)

where κ
(n)
α are geometric charges and di are 3D unit vectors. The allowed terms in Eq.

(5.58) should be selected depending on the symmetries of the model and the number
N of bands involved in the crossing. Indeed, we know that for N = 2 only the n = 0
term in Eq. (5.58) is allowed. For N = 3 and N = 4 we have seen that the n = 0
term is allowed in the presence of CP symmetry, whereas the n = 1 term is allowed
in the presence of chiral symmetry. The examples (5.54) and (5.56) show that for
N = 5 all terms n = 0, 1, 2, 3 are in principle possible, depending on the symmetries.
For example the model (5.54) has a chiral symmetry S = diag(1,−1, 1,−1, 1), which
appears to select the terms with odd n.

There are many open questions, such as whether Berry quadrupoles and octupoles
are possible for N < 5, whether hexadecapoles are possible for N = 5, and so on.
Moreover, very rich physical properties can be expected for such exotic crossings, for
example in the Landau level spectrum, anomalous Hall conductivity, et cetera. The
possibility to establish a full hierarchy of Berry multipole crossings thus appears very
intriguing.

5.6.2 | Hopf-Haldane analogy

We here observe that the (linear) multiband Hopf semimetals and insulators presented
in this chapter can be viewed as a family of 3D systems that is quite analogous to the
family of 2D Dirac semimetals and Chern insulators that we described in Section 1.4.

Valley-Dirac semimetal versus valley-Hopf semimetal. Consider a 2D
Dirac semimetal such as graphene, with a Hamiltonian (1.26). In fact, to be pre-
cise, graphene is an example for a valley-Dirac semimetal, because it has an even
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number of linear nodal points in the Brillouin zone, with “opposite” quantum geo-
metric properties in the two valleys. More precisely, the Berry curvature vanishes
everywhere in the Brillouin zone except for singularities at the two nodal points,

Ωα,xy(k) ∼ ξδ(k−Kξ). (5.59)

Accordingly, the Berry phase computed as a line integral around these points is given
by ϕα ∼ ξπ. In a very similar way, the 3D valley-Hopf semimetals (5.22) and (5.24)
have two linear nodal points with opposite quantum geometry. To be more precise,
the Hopf density vanishes everywhere in the Brillouin zone, except for singularities
at these nodal points:

χ(k) ∼ ξδ(k− kν), (5.60)

where kν ∈ {K+,K−} for the model (5.22) based on hexagonal layers and kν ∈
{kΓ,kM} for the model (5.24) based on square layers. Additionally, the Berry dipoles
have opposite orientation in the two valleys, d = (0, 0, ξ). The analogy between these
two kinds of semimetals is visualized in Fig. 5.15.

Topological Dirac semimetal versus topological Hopf semimetal. Second,
consider the topological phase transition lines ∆ = ±3

√
3t′ sinϕ in Haldane’s model

(1.33), as visualized in Fig. 1.5(a). We may call the semimetallic phase along these
lines a Haldane semimetal. The Haldane semimetal is an example for a 2D topological
Dirac semimetal, as it exists at the transition between two insulators with different
Chern number. The Haldane semimetal has only a single nodal point in the Brillouin
zone (Thonhauser and Vanderbilt 2006). The Berry curvature

Ωα,xy(k) = −
√
3

ϵ3α(k)
[±3

√
3w∆(k)− wϕ(k)]t

′ sinϕ, (5.61)

as obtained from Eq. (1.35), is peaked at this nodal point, but also non-zero in
other regions of the Brillouin zone. In a very similar way, the 3D topological Hopf
semimetals (5.26) exist at the transition between two insulators with different Hopf
number. They have an odd number of nodal points in the Brillouin zone. The
corresponding Hopf density (for N = 3, 4) is given by

χ(k) =
12

ϵ4
(cxcy + cycz + czcx +∆0cxcycz) , (5.62)

as obtained from Eq. (5.36), where ∆0 ∈ {±1,±3}. It is peaked at the nodal points
but also non-zero away from them. The analogy is again visualized in Fig. 5.15.

Valley-Chern insulator versus valley-Hopf insulator. Third, consider Se-
menoff’s model (1.31), which we may view as an example for a 2D valley-Chern in-
sulator. It has a Berry curvature (1.32) which is non-zero in each valley [Fig. 1.4(b)],
but distributed such that the Chern number vanishes. By analogy, we may write
down a model for a 3D valley-Hopf insulator as

hv-Hopf
N (k) =

 0 Qv-Hopf
N

(Qv-Hopf
N )† 0

 , (5.63)
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Fig. 5.15 – Analogy between 2D Dirac semimetals (Chern insulators) and 3D Hopf semimetals (Hopf
insulators), based on the number of linear nodal points and the properties of the relevant topological
densities (Berry curvature versus Hopf density).

where the matrices Qv-Hopf
N are obtained from Eq. (5.34) upon deleting the cosine

terms, for example Qv-Hopf
3 = (s− ∆− isz). We then find a Hopf density

χN=3,4(k) =
12

ϵ4
∆cxcycz, χN=5(k) =

60

ϵ4
∆cxcycz, (5.64)

where ϵ2 = s2x + s2y + s2z + ∆2. It is non-zero throughout the Brillouin zone but
topologically trivial in the sense that the Hopf number vanishes. This analogy is also
visualized in Fig. 5.15.

Chern insulator versus Hopf insulator. Finally, a 2D Chern insulator such
as Haldane’s insulator (1.33) has a non-trivial Berry curvature (1.35) that produces
a non-zero Chern number. In the same way, the 3D Hopf insulators (5.34) have a
non-trivial Hopf density, cf. Eqs. (5.36) and (5.38), which produces a non-zero Hopf
number; this is also visualized in Fig. 5.15.

In summary, all 3D multiband Hopf semimetals and Hopf insulators introduced in
this chapter have a 2D counterpart in Haldane’s model, in the sense that the relevant
topological density (the Berry curvature in 2D and the Hopf density in 3D) has very
similar properties. In order to make this Hopf-Haldane analogy more precise, one
should systematically analyze all possible ways to gap out multifold Hopf semimetals,
and establish the corresponding phase diagrams. Such an approach is quite similar in
spirit to recent work on two-band systems, concerning the conversion between Weyl
points, nodal lines, quadratic Berry dipole touchings and two-band Hopf insulators
(Liu et al. 2017; Sun et al. 2018; Bouhon et al. 2020; Nelson et al. 2022).
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5.6.3 | Dimensional reduction and tensor monopoles

Finally, here we describe that the Hopf semimetals and insulators presented above are
related to 4D semimetals with so-called tensor monopoles by dimensional reduction.

Consider the 4D continuum model

H(q) =


0 qx − iqy 0

qx + iqy 0 qz + iqw

0 qz − iqw 0

 , (5.65)

as proposed by Palumbo and Goldman (2018). It has a chiral symmetry with S =
diag(1,−1, 1) and an energy spectrum ϵα(q) = cα|q|, with band index α = 0,±1
and band velocity cα = α. Its quantum geometric struture is that of a Kalb-Ramond
monopole or tensor monopole. Namely, one can associate to each band a gauge-
invariant anti-symmetric tensor field

Hα,ijk(q) = −αϵijkl
ql
|q|4

. (5.66)

The corresponding topological number is the Dixmier-Douady invariant. It is defined
from the monopole flux in a way completely analogous to the Chern number of a Weyl
point. Namely, for a Weyl point (1.36) with helicity γ = + the integral of the Berry
flux through an enclosing sphere S2, which we already considered in Eq. (1.24), can
alternatively be written as

Cα =
1

2π

∫
S2
dqi ∧ dqjΩα,ij(q) =

1

4π

∫ π

0
dθ

∫ 2π

0
dϕ sin θ = −α. (5.67)

Here we used Ωij = −αϵijkqk/(2q3), where q = |q|, and spherical coordinates (q, θ, ϕ)
with surface element dS = q2 sin θdθdϕ. Analogously, for the 4D model (5.65), the
monopole flux of the Kalb-Ramond curvature Hijk through a sphere S3 enclosing the
nodal point is given by (Palumbo and Goldman 2018)

NDD
α =

1

2π2

∫
S3
dqi ∧ dqj ∧ dqkHα,ijk(q)

=
1

2π2

∫ π

0
dθ1

∫ π

0
dθ2

∫ 2π

0
dϕ sin2 θ1 sin θ2 = −α,

(5.68)

where we used Eq. (5.66) and hyperspherical coordinates (q, θ1, θ2, ϕ) with surface
element dS = q3 sin2 θ1 sin θ2dθ1dθ2dϕ.

To make a link with our 3D Hopf systems, it suffices to take a 3D slice qz = 0
out of the 4D model (5.65), which exactly recovers the threefold Hopf semimetal
(5.4a). Similarly, if we take a 3D slice at finite qz = ∆, we obtain a continuum model
which exactly describes the Hopf insulator (5.34) (with N = 3) in the vicinity of a
topological phase transition; compare in particular Eq. (V.49).

We can push the dimensional reduction correspondence even further, by consider-
ing a lattice model for a 4D semimetal with tensor monopoles, as introduced by Zhu
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et al. (2020). This model is given by

H(k) =

 0 Q(k)

Q†(k)

 , Q(k) =

agk + hk gk + ahk

g∗k − ah∗k ag∗k − h∗k

 , (5.69)

where gk = sx− isz and hk = ∆− cx− cz − cw− eiy, and with a ≥ 0 a real parameter.
It has a chiral symmetry11 and an energy spectrum

ϵα(k) = cα

√
s2x + s2y + s2z + (∆− cx − cy − cz − cw)2, (5.70)

where the band velocity cα = ±(1 ± a). For 2 < ∆ < 4 there is a pair of fourfold
crossings in the Brillouin zone; taking ∆ = 3 without loss of generality, the crossings
are located at kξ = (0, 0, 0, ξπ/2), where ξ = ±. The corresponding 4D continuum
Hamiltonian Hξ(q) is given by Eq. (5.69) with gk → qx − iqz and hk → ξqw − iqy.
It has a linear spectrum of four crossing bands, ϵα(q) = cα|q|. For a = 0, it reduces
to a 4D Dirac Hamiltonian HD = q · Γ with four matrices Γi that satisfy a Clifford
algebra. Accordingly, the spectrum is twofold degenerate. For a > 0, however, the two
cones have different band velocities, and the crossings carry tensor monopoles with
topological charges NDD

α = ξ, ξ,−ξ,−ξ from lowest to highest band. At half filling,
the nodal points thus carry Dixmier-Douady numbers NDD = 2ξ. We note that
certain physical phenomena such as Fermi arcs on the 3D surface can be associated
to these topological charges.

It is again easy to make a link with our Hopf models. Taking a 3D slice at
kw = π/2, the model (5.69) becomes similar to the Hopf insulator (5.34) with N = 4.
For example, the corresponding continuum model for ∆ = 3 is given by

Q(q) =

a(qx − iqz)− iqy qx − iqz − iaqy

qx + iqz − iaqy a(qx + iqz)− iqy

 , (5.71)

and it exhibits a Berry dipole (5.1) with d = (0, 0, 1) and κα = 4,−4,−4, 4 from the
lowest to the highest band. Clearly, the dipole charges are as expected for a system
with chiral symmetry, but have numerical values different from the model (5.4b). It
would thus be interesting to verify that Eq. (5.69) really represents a four-band Hopf
insulator, and to compute the corresponding Hopf number as a function of ∆.

5.7 | Conclusions

In this chapter we have demonstrated that linear band crossings in 3D exhibit rich
physical properties if more than two bands cross simultaneously. In particular, beyond
the well-known Berry monopoles of Weyl semimetals (Armitage et al. 2018) and chiral
multifold semimetals (Lv et al. 2021), other types of band crossings with more exotic
quantum geometric structure are possible. We have focused on the case where each

11In the work of Zhu et al. (2020) the basis is chosen such that S = diag(1,−1,−1, 1). We have
transformed the model to the chiral basis where S = diag(1, 1,−1,−1).
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crossing point acts as a Berry dipole, but also more general Berry multipoles are in
principle possible.

To study linear N -fold crossings with Berry dipole in detail, we have introduced
several lattice models whose low-energy theory is of the form (5.4), which we call mul-
tifold Hopf semimetals. The lattice models can be distinguished according to whether
they exhibit an even (valley-Hopf semimetal) or odd (topological Hopf semimetal)
number of Berry dipoles in the Brillouin zone. For the topological Hopf semimet-
als there are clear signatures of the Berry dipole in the anomalous Hall effect and
magnetoconductivities. It is expected that this extends to a host of other physical
quantities. For the valley-Hopf semimetals the anomalous Hall and magnetoconduc-
tivities cancel, but the effect of the Berry dipole is still clearly visible in the Landau
level spectrum. It would be interesting to study responses for which the contributions
from the different valleys do not cancel, and a first step in this direction was made
very recently by Habe (2022). This is promising in particular because the lattice
models for valley-Hopf semimetals are very simple and quite close to the graphene
tight-binding model.

We further introduced two different classes of lattice models for multiband Hopf
insulators (Lapierre et al. 2021). The first class is a simple multiband generalization
of the Moore-Ran-Wen model (Moore et al. 2008), see Eq. (5.40). More importantly,
we introduced a second class of multiband Hopf insulators (5.34), which becomes
exactly equivalent to the Hopf semimetals (5.26) at topological phase transitions.
One considerable advantage of these models is that they require only nearest-neighbor
hoppings, thus avoiding the complicated second-neighbor hoppings of two-band Hopf
insulators (Moore et al. 2008; Nelson et al. 2022). These models might provide a
fertile platform to test theoretical predictions for the bulk-boundary correspondence
of delicate topological insulators (Alexandradinata et al. 2021; Lapierre et al. 2021).

Many fundamental questions remain as to the conversion processes between the
different systems discussed here. To be more precise, a systematic investigation of the
phase diagrams that can be obtained by gapping out or merging one or several Berry
dipoles and/or monopoles is called for. Additionally, there appear to be interesting
connections to systems of different spatial dimensions. We have pointed out analogies
to the 2D Haldane model as well as to 4D semimetals with tensor monopoles. It
appears very intriguing to develop the corresponding dimensional hierarchies in more
detail, as has been done years ago for stable topological insulators and superconduc-
tors (Ryu et al. 2010).

From an experimental point of view, the existence of the valley-Hopf semimetals,
in particular the graphene-like models (5.22), appears possible. To make progress
in this regard, one should determine the space groups of the models and check in
which materials they might occur. If realized in a crystal, the Berry dipole crossings
could potentially be probed via the peculiar, strongly valley-dependent depence of the
Landau levels on the magnetic field orientation (Fig. 5.3). Anomalous Hall currents
and linear magnetocurrents induced by the Berry dipoles have symmetries opposite
to those of a pair of Weyl nodes (Fig. 5.5), which could be probed by varying the
electron density close to half filling. A different route involves artificial systems such
as ultracold atoms, photonic crystals, or superconducting circuits. Those have been
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suggested and used many times to realize semimetallic phases with two- and multifold
crossings (Lu et al. 2015; Chen et al. 2016; Riwar et al. 2016; Wang et al. 2017; Zhu
et al. 2017; Zhang et al. 2018; Tan et al. 2018; Fulga et al. 2018; Hu et al. 2018).
Moreover, the tensor monopole crossing (5.65), which is very similar to Eq. (5.4a) as
we have discussed, was recently observed experimentally using a transmon in a cavity
(Tan et al. 2021).

Finally, we mention that there is considerable activity regarding the observation
of Hopf numbers in two-band insulators (Deng et al. 2017; Ünal et al. 2019; Schuster
et al. 2021a; Schuster et al. 2021b). Such proposals could potentially be extended to
the multiband Hopf insulators (5.34) and (5.40). Most notably, for the three-band

Hopf insulator hHopf
3 (k) (viewed as a chiral topological insulator) there already exists

not only a proposal based on ultracold atoms (Wang et al. 2014), but also a claimed
experimental realization based on machine learning analysis of a nitrogen-vacancy
center in diamond (Lian et al. 2019). In such experiments, the topological Hopf
semimetal (5.26) is reached at critical parameter values corresponding to topological
phase transitions.



Conclusions

The present work is concerned with three closely related aspects of multiband
problems in solid-state physics and, more generally, of arbitrary parametric quantum
systems: (i) The quantum geometry of wave functions. (ii) The properties of flat
bands, that is, bands with vanishing group velocity. (iii) The properties of linear
band crossings, that is, bands with constant group velocity meeting at a single point
in momentum space.

In general, the study of such situations is inspired by numerous recent break-
throughs in materials physics, as we described in Chapter 2. In particular, quasi-two-
dimensional crystals such as twisted bilayer graphene or transition metal dichalco-
genides exhibit nearly flat bands with non-trivial quantum geometry. Similarly, three-
dimensional topological semimetals (e.g., Mn3Sn, CoSi, or RhSi) are characterized by
linear (two- or multifold) crossings that may also include flat bands, and where quan-
tum geometry and topology play a fundamental role.

While the existence of such materials provides an important context, it is not the
primary motivation for the work presented here. In fact, the main motivation un-
derlying all chapters of this thesis is to develop a better analytical understanding of
multiband systems. While two-band systems are easy to master, one quickly reaches
the limits of what is analytically feasible when the number of bands is increased, as
described in Chapter 2. The interest in developing an improved analytical under-
standing, beyond just calculating things for a given system, is to be able to construct
insightful models with some desired physical properties in a controlled way, and even-
tually make new physical predictions. The results presented in Chapters 3–5 have in
common that they are all consistent with this basic idea, as we would like to illustrate
in the following. For a more detailed summary of the technical results of each chapter,
we refer the reader to the individual conclusions in Sections 3.6, 4.8, and 5.7.

The development of the formalism in Chapter 3, which uses SU(N)-Gell-Mann
matrices and the associated vector algebra, is based on the simple desire to generalize
the well-known formula (2.41) for the Berry curvature [which makes the unwieldy
eigenstates (2.37) superfluous] to systems with arbitrarily many bands. This general-
ization, given in Eq. (3.10) or more explicitly in Eqs. (3.34)–(3.36), can now, on the
one hand, be used for explicit calculations. This has proved very convenient countless
times in the preparation of this work. On the other hand, the improved analytical
understanding afforded by these expressions can also be used for new qualitative pre-
dictions. For example, the structure of Eqs. (3.34)–(3.36) already suggests what we
found later in Chapter 5, namely that a multipole form (5.58) of the Berry curvature
should be possible.

Certainly, it would be desirable to establish Bloch vector-based expressions for
quantities beyond the quantum geometric tensor and the orbital magnetization. They
can be used both for practical purposes, since they obviate the need to choose a gauge
and explicitly parametrize the energy eigenstates, and at the same time be useful for
gaining insight into the generic structure (in particular regarding intra- and interband
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contributions) of the quantity of interest.

The flat-band design scheme presented in Chapter 4 arose from a persistent dissat-
isfaction with existing strategies for generating flat bands. Such strategies typically
involve either fine-tuning of the hopping processes on a given lattice or developing
numerical algorithms to obtain a flat-band Hamiltonian. In both cases, it is difficult
to predict which topology of the lattice will work or what modifications of a given
flat-band model are allowed without destroying the flat band; more generally, it is
difficult to gain any unified understanding beyond the specific model in question.

Our motivation was therefore to develop a general, simple analytical approach to
flat-band systems. Chapter 4 shows that such a method does indeed exist and can
be based on the important concept of a compact localized state. Our method clearly
shows that the specific lattice does not play a crucial role. In fact, any lattice geom-
etry with an arbitrary number of orbitals per unit cell and in any spatial dimension
can accommodate an arbitrarily large number of different flat-band models. We are
convinced that the presented method is not only the simplest, but also the most nat-
ural and general framework for describing flat bands. Incidentally, it captures almost
all flat-band models known in the literature.

We further emphasize that simple modifications of the method are suitable for the
study of more general systems beyond the approximation of spinless, non-interacting
electrons. In particular, this concerns magnetic flat-band systems in the presence
of spin-orbit coupling. Compact localized states also appear to be an ideal starting
point for the study of electronic correlations in flat bands and, more generally, for the
study of any physical process for which visualization in real space is useful.

The results obtained in Chapter 5 again emerged from a simple question: Is it
possible to change the quantum geometry of a linear band crossing in 3D without
changing the energy spectrum? The answer is positive, and in this way we have
found a new class of semimetals, which we call multifold Hopf semimetals. They have
a “Weyl-like” energy dispersion just like the known (multifold) topological semimetals,
but are topologically trivial in the Berry-Chern sense, that is, they do not carry a
Berry monopole. Instead, they are characterized by a Berry dipole or, more generally,
a Berry multipole. We emphasize that any differences between the physical properties
of these hypothetical semimetals – we have described, in particular, the Landau levels,
the anomalous Hall effect, and magnetotransport – and those of known topological
semimetals are due exclusively to the anisotropy of the quantum geometric structure.
It would be interesting to see if the existence of such multifold Berry dipole crossings,
predicted from minimal models, can actually be confirmed in the band structure of a
crystalline material.

In the course of studying Hopf semimetals, we have confirmed the recent claim
of Lapierre et al. (2021), namely that the family of topological Hopf insulators is not
restricted to two-band systems, via the introduction of concrete lattice models. As
mentioned earlier, there are several proposals for the experimental realization of two-
band Hopf insulators (Deng et al. 2017; Ünal et al. 2019; Schuster et al. 2021a; Schus-
ter et al. 2021b), which can certainly be adapted to our proposed models. Indeed, the
linear multiband Hopf insulators in Eq. (5.34), which involve only nearest-neighbor
couplings, seem easier to realize than the paradigmatic Moore-Ran-Wen model (5.29),
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which has unrealistically large second-neighbor hoppings. As also mentioned earlier,
the linear three-band Hopf insulator is nothing but the chiral topological insulator
introduced by Neupert et al. (2012), which is close to experimental realization (Wang
et al. 2014; Lian et al. 2019).

To conclude this thesis, we would like to return to some of the perspectives already
described in the individual chapters. First, it appears interesting to apply the Bloch
vector formalism developed in Chapter 3 to non-Hermitian systems. In such systems,
which can be described by so-called biorthogonal quantum mechanics (Brody 2013),
each eigenprojector is a mixture of left and right eigenstates. Such a projector ap-
pears as the natural object for the correct definition of quantum geometry. It can
again be related to the Hamiltonian by the Cayley-Hamilton theorem, and it can fur-
thermore be used to define a complex Bloch vector via Eq. (2.50). The study of such
Bloch vectors should provide valuable insights into the properties of non-Hermitian
parametric Hamiltonians.

Further, it seems promising to investigate more systematically the quantum geo-
metric properties of flat-band systems with multiband crossings, which we considered
only superficially in Chapter 4. In fact, we found two fundamentally different types
of band crossings in the superficial consideration (three-band crossings with Berry
monopole and dipole, respectively), and it is expected that other interesting situa-
tions will arise if the number of bands is increased or the spatial dimension is changed.

Finally, it is a necessary task to study the transformation processes and stability
of the topological semimetals and insulators we presented in Chapter 5. This should
lead to rich phase diagrams containing fundamentally different multiband systems
(trivial insulators, Hopf insulators, topological semimetals, Hopf semimetals, nodal
line semimetals, et cetera). Moreover, from a fundamental point of view, it seems
very interesting to properly establish and generalize the dimensional hierarchies that
we have observed when connecting Berry dipoles in 3D with tensor monopoles in 4D.





Appendix I

I.A | Recap on tight-binding theory and Bloch basis

Within a tight-binding approximation (Simon 2013), one constructs the wave func-
tion of electrons moving through the crystal (single-particle excitations) from valence
orbitals located at the atomic lattice sites. At the same time, this approach has to
respect Bloch’s theorem, which can be done in the following way.

Assume one has atomic orbitals |a, i⟩, where a = A,B,C, ... denotes the N in-
equivalent orbitals per unit cell and i is the index of the unit cell. The wave function
of an atomic orbital is ⟨r|a, i⟩ ≡ ϕa(r − Ri − ra), assumed to be centered at and
“tightly bound” to an atom at position Ri+ra, where Ri is the origin of the unit cell
and ra the position of the atom relative to this origin. Then the total wave function
entering the time-independent Schrödinger equation (1.1) can be chosen as

|Ψα(k)⟩ =
∑
a

cα,a(k)|a,k⟩,

|a,k⟩ = 1√
N

∑
i

e−ik·(Ri+ra)|a, i⟩,
(I.1)

where i is summed over all lattice sites and N is the total number of unit cells. It is
easy to see that this works: the wave function

Ψα,k(r) = ⟨r|Ψα(k)⟩ =
1√
N

∑
a

cα,a(k)
∑
i

e−ik·(Ri+ra)ϕa(r−Ri − ra) (I.2)

is clearly an eigenfunction of the translation operator TRj , with eigenvalue exp(−ik ·
Rj). Since TRj and H commute, Ψα,k(r) is also an eigenfunction of H, as required.

To work with Eq. (I.1) in practice, it is convenient to switch to the Bloch basis,
with basis states |a,k⟩. Namely, combining Eqs. (1.1) and (I.1) we have∑

b

cα,b(k)⟨a,k|H|b,k⟩ = ϵα(k)
∑
b

cα,b(k)⟨a,k|b,k⟩. (I.3)

Assuming orthonormality of the Bloch basis states, ⟨a,k|b,k⟩ = δab, that is, neglecting
overlap corrections by assuming ⟨a, i|b, j⟩ = δabδij ,

1 this can be rewritten in matrix
form as 

HAA(k) HAB(k) ...

HBA(k) HBB(k) ...

... ... ...



cα,A(k)

cα,B(k)

...

 = ϵα(k)


cα,A(k)

cα,B(k)

...

 . (I.4)

1This is not always well-justified, but it is common practice in order to simplify the tight-binding
approach. We will adopt this approximation throughout the thesis.
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Comparing with Eq. (1.3), we see that, for a tight-binding model in the Bloch
basis, the state |ψα(k)⟩ takes the form of a complex column vector, |ψα(k)⟩ =
(cα,A(k), cα,B(k), ...)

T , and the Hamiltonian H takes the form of an N × N matrix,
with matrix elements Hab(k) ≡ ⟨a,k|H|b,k⟩.

I.B | Quantum geometry in early band theory formalisms

The ideas exposed here have emerged from a set of papers on the problem of electrons
moving in a perturbed periodic potential (Wannier 1937; Slater 1949; Adams 1952;
Adams 1953b), that is, an extended version of the basic Bloch problem (1.1):

H =
p2

2m
+ V (r) + U(r,p). (I.5)

Due to the perturbing potential U , the full Hamiltonian H is no longer diagonal in the
eigenbasis of the unperturbed Hamiltonian. Interband effects are then expected to
arise much in the same way as discussed below Eq. (1.14). Indeed, the situation (I.5)
has been investigated in several different physical contexts ranging from impurities
in semiconductors (Luttinger and Kohn 1955) to electronic transport and Hall cur-
rents (Karplus and Luttinger 1954; Adams and Blount 1959), magnetic susceptibility
(Adams 1953a; Blount 1962a; Roth 1962), and more, all of which exhibit interband
effects.

Let us see more quantitatively how interband effects arise. Any wave function of
the unperturbed system can be written as a general superposition

|Φ⟩ =
∑
α

∫
d3kΦα(k)|Ψα(k)⟩ (I.6)

of Bloch states (1.2). Blount calls Φα(k) the wave function in the crystal momentum
representation. When treating U as a perturbation to the Bloch states, it is natural
to be interested in the matrix elements of basic quantum mechanical operators in this
representation. The matrix elements of the crystal momentum operator kc and true
momentum operator p are readily obtained,

⟨Ψα(k)|kc|Ψβ(k
′)⟩ = kδαβδkk′ ,

⟨Ψα(k)|p|Ψβ(k
′)⟩ = (kδαβ +Yαβ(k)) δkk′ ,

(I.7)

where Yαβ(k) ≡ −i
∫
UC d

3rψ∗
α,k(r)∇rψβ,k(r) and UC designates integration over a

single real-space unit cell. It follows that the operators act on |Φ⟩ as

⟨Ψα(k)|kc|Φ⟩ = kΦα(k),

⟨Ψα(k)|p|Φ⟩ = kΦα(k) +
∑
β

Yαβ(k)Φβ(k).
(I.8)

The matrix elements of the position operator r pose a bigger problem, since the inte-
gral ⟨Ψα(k)|r|Ψβ(k

′)⟩ =
∫
d3rΨ∗

α,k(r)rΨβ,k′(r) is not well defined. However, through
a careful derivation, one can show that the action of r on |Φ⟩ is given by

⟨Ψα(k)|r|Φ⟩ = i∇kΦα(k) +
∑
β

Xαβ(k)Φβ(k), (I.9)

142



where

Xαβ(k) ≡ i

∫
UC

d3rψ∗
α,k(r)∇kψβ,k(r) = i⟨ψα(k)|∇kψβ(k)⟩UC. (I.10)

Crucially, the momentum operator (I.8) and position operator (I.9) are not diagonal
in the band index, and thus interband effects are, a priori, always expected in the
presence of a perturbing potential U .

The object Xαβ determining the crystal momentum representation of the position
operator is of particular importance. It is nothing else than what is now known as
the non-Abelian Berry connection (Wilczek and Zee 1984), and its diagonal (intra-
band) part Xαα is just the (Abelian) Berry connection (1.7). Blount understood all
key aspects of this connection, such as its gauge arbitrariness, its role dual to the
electromagnetic vector potential, and the fact that “its curl is a well-defined quantity
invariant under the phase transformations and is thus a characteristic of the band
structure” (Blount 1962b); this characteristic is just the Berry curvature (1.8).

I.C | Magnetotransport in multiband systems to linear
order in B

The equations of motion (1.56) can be fully decoupled as

(1 + eΩα ·B)ṙ = wα − eΩα ×E+ e(wα ·Ωα)B,

(1 + eΩα ·B)k̇ = −eE− ewα ×B− e2(E ·B)Ωα.

Now, for a homogeneous system in the steady state, and to first order in the electric
field (linear response regime), the Boltzmann equation (1.55) becomes

e[E+wα ×B+ e(E ·B)Ωα] ·∇kfα(k) = (1 + eΩα ·B)
fα(k)− f eqα (k)

τ
. (I.11)

This equation has to be solved for the distribution function fα(k). To proceed, it is
convenient to rewrite the Boltzmann equation (I.11) as

[1 + eΩα ·B+ eτB · (vα ×∇k)]f
neq
α (k) = [eτE+ e2τ(E ·B)Ωα] ·∇kf

eq
α (k),

where fneqα (k) = fα(k) − f eqα (k) is the nonequilibrium part of the distribution func-
tion, and f eqα (k) ≡ f(ϵ̃α) is the equilibrium part with f(x) ≡ 1/(1 + exp[β(x − µ)])
the Fermi-Dirac distribution function with inverse temperature β = 1/(kBT ) and
chemical potential µ. To first order in B, the nonequilibrium part can be obtained as

fneqα (k) = eτ [1− eΩα ·B− eτB · (vα ×∇k)][E+ e(E ·B)Ωα] ·wαf
′(ϵ̃α)

= eτ(E · vα)f
′(ϵα) + e2τ [(E ·B)(Ωα · vα)− (Ωα ·B)(E · vα)]f

′(ϵα)

− eτ
{
E · [∇k(mα ·B)]f ′(ϵα) + (E · vα)(mα ·B)f ′′(ϵα)

}
− e2τ2[B · (vα ×∇k)](E · vα)f

′(ϵα).
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The full electrical current is then obtained by integrating over the full phase space
using the full distribution function (Xiao et al. 2010),

j = −e
∑
α

∫
d3k

(2π)3
(1 + eΩα ·B)ṙ[f(ϵ̃α) + fneqα (k)]

= −e
∑
α

∫
d3k

(2π)3
[wα − eΩα ×E+ e(vα ·Ωα)B][f(ϵ̃α) + fneqα (k)],

(I.12)

and consists of three parts, j = j0 + jAH + jout. The first term j0 is an equilib-
rium current (typically vanishing) independent of E, which we will not consider here.
The second term jAH describes the (non-dissipative) anomalous Hall current, which
requires the presence of an electric field but is determined by the equilibrium distri-
bution function; the third term jout is the true out-of-equilibrium current with both
dissipative and non-dissipative contributions, determined by the nonequilibrium part
of the distribution function:

jAH = e2
∑
α

∫
d3k

(2π)3
(Ωα ×E)f(ϵ̃α),

jout = −e
∑
α

∫
d3k

(2π)3
[wα + e(vα ·Ωα)B]fneqα (k).

(I.13)

Expanding to linear order in B and introducing an anomalous Hall conductivity tensor
as jAH

i =
∑

j σ
AH
ij (B)Ej , where σ

AH
ij (B) = σAH0

ij + σAH1
ij (B), we have

σAH0
ij = −e2

∑
α

∫
d3k

(2π)3
f(ϵα)ϵijk(Ωα)k,

σAH1
ij (B) = e2

∑
α

∫
d3k

(2π)3
f ′(ϵα)(mα ·B)ϵijk(Ωα)k,

(I.14)

where σAH0
ij is the true anomalous Hall effect and σAH1

ij (B) is a magnetic field depen-
dent quantum geometric correction caused by the orbital magnetic moment. Similarly,
the out-of-equilibrium conductivity tensor can be defined as as jouti =

∑
j σij(B)Ej ,

with

σij(B) = σDrude
ij + σLorentzij (B) + σBerry

ij (B) + σOMM
ij (B), (I.15)

where σDrude
ij is the Drude conductivity, σLorentzij (B) the classical Hall conductivity

induced by the Lorentz force, and σBerry
ij (B) and σOMM

ij (B) are interband contributions
induced by Berry curvature and orbital magnetic moment. The classical conductivity
tensors read explicitly as

σDrude
ij = −e2τ

∑
α

∫
d3k

(2π)3
f ′(ϵα)(vα)i(vα)j ,

σLorentzij (B) = e3τ2
∑
α

∫
d3k

(2π)3
f ′(ϵα)(vα)i[B · (vα ×∇k)](vα)j ,

(I.16)
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while the quantum geometric contributions take the form

σBerry
ij (B) = −e3τ

∑
α

∫
d3k

(2π)3
f ′(ϵα)

× {(Ωα · vα) [(vα)iBj + (vα)jBi]− (Ωα ·B)(vα)i(vα)j} ,

σOMM
ij (B) = e2τ

∑
α

∫
d3k

(2π)3
{
f ′′(ϵα)(mα ·B)(vα)i(vα)j

+f ′(ϵα) [(vα)i∂j(mα ·B) + (vα)j∂i(mα ·B)]
}

= e2τ
∑
α

∫
d3k

(2π)3
f ′(ϵα) {−(mα ·B)∂j(vα)i

+ [(vα)i∂j(mα ·B) + (vα)j∂i(mα ·B)] /2} .

(I.17)

Note that these results appear to agree exactly with a microscopic (fully quantum
mechanical) approach, see Eqs. (8) and (12) of in the work of Könye and Ogata
(2021).
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Appendix II

II.A | Gell-Mann and spin matrices

Here we list the N = 3 (N = 4) Gell-Mann matrices and relate them to spin-1
(spin-3/2) matrices. Note that the generalization to N ≥ 5 Gell-Mann matrices (not
listed here explicitly) is straightforward, see for example the book by Pfeifer (2003)
or the article by Bertlmann and Krammer (2008): There are N(N − 1)/2 symmetric
matrices (purely real), N(N − 1)/2 antisymmetric matrices (purely imaginary), and
N − 1 diagonal matrices.

N = 3 Gell-Mann matrices

The N = 3 Gell-Mann matrices (Gell-Mann 1962) are given by

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 ,

λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 .

They can easily be related to spin-1 matrices, which in the standard representation
read

Sx =
1√
2
(λ1 + λ6),

Sy =
1√
2
(λ2 + λ7),

Sz =
1

2
(λ3 +

√
3λ8).

(II.1)
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N = 4 Gell-Mann matrices

The N = 4 Gell-Mann matrices are given by extended SU(3) Gell-Mann matrices as
(Pfeifer 2003; Bertlmann and Krammer 2008)

λ1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , λ2 =


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 , λ3 =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 ,

λ4 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , λ5 =


0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

 , λ6 =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 ,

λ7 =


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 , λ8 =
1√
3


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

 ,

plus an additional seven matrices

λ9 =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 , λ10 =


0 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 0

 , λ11 =


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 ,

λ12 =


0 0 0 0

0 0 0 −i

0 0 0 0

0 i 0 0

 , λ13 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 , λ14 =


0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0

 ,

λ15 =
1√
6


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

 .
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This can easily be used to express the standard representation of spin-3/2 matrices:

Sx =
1

2
(
√
3λ1 + 2λ6 +

√
3λ13),

Sy =
1

2
(
√
3λ2 + 2λ7 +

√
3λ14),

Sz =
1

2
(λ3 +

√
3λ8 +

√
6λ15).

(II.2)

II.B | The generalized Bloch sphere

We give here a short summary of the concept of a generalized Bloch sphere [that is,
the eigenprojector’s Bloch sphere B(N)

Pα
introduced in Section 2.4.2], drawing largely

on the work of Harriman (1978), Jakóbczyk and Siennicki (2001), Kimura (2003),
Zyczkowski and Sommers (2003), Byrd and Khaneja (2003), Kimura and Kossakowski
(2005), Mendaš (2006) and Goyal et al. (2016).

For an N -dimensional Hilbert space, the three defining properties of a (mixed
state) density matrix ρα representing an N -component (mixed) quantum state |ψα⟩,
where α = 1, ..., N , are hermiticity ρ†α = ρα, probability conservation Tr ρα = 1 and
positive semi-definiteness, ρα ≥ 0. Pure states have, in addition, ρ2α = ρα, in which
case ρα = Pα is an eigenprojector. An expansion in the basis of SU(N) generator
matrices analogous to Eq. (2.50) can be made for a general (mixed state) density
matrix:

ρα =
1

N
1N +

1

2
bα · λ, (II.3)

where now |bα| can take various values depending on the pureness of the state. In the
pure state case, we have |bα| =

√
2(N − 1)/N . Considering the vector space RN2−1,

and denoting the (N2−1)-dimensional subspace accessible to the (mixed state) Bloch
vector bα as Σ

(N)
ρα , one needs to distinguish between two kinds of boundaries, namely

its (N2 − 2)-dimensional topological boundary ∂Σ
(N)
ρα and its extremal boundary B(N)

Pα
.

The latter is of dimension 2(N − 1), and it comprises the vectors of maximal |bα|,
that is, it is the space of pure state Bloch vectors, or in other words the generalized
Bloch sphere. This is sketched in Fig. II.1.

Another set of immediate interest in this discussion is the sphere

WN2−2 ≡

{
r ∈ RN2−1

∣∣∣ |r| =√2(N − 1)

N

}
(II.4)

that contains all pure state Bloch vectors; in other words, it is the surface of the
ball BN2−1, the smallest ball that contains Σ

(N)
ρα . For N = 2, one trivially has

∂Σ
(2)
ρα = B(2)

Pα
= W2 (and W2 = S2, with the unit two-sphere S2), as illustrated in

Fig. II.1; but for higher N the three spaces are different. One has B(N)
Pα

⊂ ∂Σ
(N)
ρα and

B(N)
Pα

⊂ WN2−2, meaning that the generalized Bloch sphere is a proper subset of (i)
the boundary of the space of mixed states and (ii) the sphere WN2−2; in fact, it is
their intersection: ∂Σ

(N)
ρα ∩WN2−2 = B(N)

Pα
. In other words, if bα corresponds to a

pure state, it lies on WN2−2, but not necessarily the other way around: not all points
on WN2−2 represent physically valid pure states.
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Fig. II.1 – Schematic illustration of the generalized Bloch sphere and other relevant sets, for N =
2, 3, 4. The large (N2 − 2)-sphere WN2−2, of radius

√
2(N − 1)/N , corresponds to the highest

permissible length of a Bloch vector. In its interior, the Ball BN2−1, there is the space Σ
(N)
ρα accessible

to a mixed state (II.3), with topological boundary ∂Σ
(N)
ρα , and in the interior of Σ

(N)
ρα there is the

small (N2−2)-sphere VN2−2, of radius
√

2/[N(N − 1)]. The extremal boundary B(N)
Pα

of Σ
(N)
ρα , which

is the intersection of Σ
(N)
ρα with the large sphere, is the generalized (eigenprojector’s) Bloch sphere.

For the familiar N = 2 case, these complications are hidden, since all the relevant sets coincide.

Analogously, the interior of WN2−2, that is, the ball BN2−1, is not composed
of only physically valid mixed states. In fact, calculations (Zyczkowski and Som-
mers 2003) of the volume of Σ

(N)
ρα show that vol(Σ

(3)
ρα )/vol(B8) ≈ 0.26 as well as

vol(Σ
(4)
ρα )/vol(B15) ≈ 0.12, meaning that most points in BN2−1 do actually not repre-

sent physically valid states as soon as N > 2.
At the origin of all of these complications is the constraint of positive semi-

definiteness, ρα ≥ 0: for N = 1, this condition is trivially fulfilled. For N = 2,
it is equivalent to Tr

(
ρ2α
)
≤ 1, so for a given density matrix there is one additional

constraint as compared to N = 1. In the same way, whenever N increases by one,
one additional constraint involving traces Dα,n ≡ Tr(ρnα) needs to be fulfilled in or-
der to have positive semi-definiteness. For example, for N = 3, there are the three
constraints (Kimura 2003) Dα,1 = 1, Dα,2 ≤ 1, and −2Dα,3 + 3Dα,2 ≤ 1, which can
be translated to constraints on the Bloch vectors via Eq. (II.3). This restricts the
elements of B8 that represent physically valid states. As a consequence, the relevant
sets (including the generalized Bloch sphere) acquire a very non-trivial shape already
for N = 3 (Goyal et al. 2016):

B(3)
Pα

=

{
bα ∈ R8

∣∣∣∣ |bα|2 =
4

3
, |bα|2 − bα · (bα ⋆ bα) =

4

9

}
,

∂Σ(3)
ρα =

{
bα ∈ R8

∣∣∣∣ |bα|2 ≤
4

3
, |bα|2 − bα · (bα ⋆ bα) =

4

9

}
,

Σ(3)
ρα =

{
bα ∈ R8

∣∣∣∣ |bα|2 ≤
4

3
, |bα|2 − bα · (bα ⋆ bα) ≤

4

9

}
,

(II.5)

where the agreement of the first line with Eq. (2.51) is to be noted. Similarly, more
complicated constraints can be obtained for higher N , see Kimura (2003).

Yet another way to understand the complexity of the generalized Bloch sphere is
to realize that bγ = ⟨ψγ |λ |ψγ⟩ is a vector of expectation values of the operators λi
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(Kimura and Kossakowski 2005). The minimum and maximum values of the com-
ponents bγ,i are thus fundamentally restricted by the eigenvalues of the generators
λi. For example, for N = 2, the Pauli matrices have eigenvalues ϵσi = ±1, which
a priori restricts the Bloch vectors to a unit cube. Since the Pauli matrices do not
commute, that is, ⟨ψγ |σi |ψγ⟩ cannot yield an eigenvalue for all i simultaneously, this
cube gets restricted further, and this restriction results in the Bloch unit sphere S2.
In the same way, for N = 3, there is a polytope embedded in R8 and defined by the
eigenvalues of the Gell-Mann matrices (cf. Appendix II.A): ϵΛi = 0,±1 for i = 1, ..., 7,
and ϵΛ8 = − 2√

3
, 1√

3
. This polytope is asymmetric due to the eigenvalues of λ8, and

it gets further restricted by the commutation relations (2.28), resulting in a quite
complicated shape of Σ3.

Finally, note that there exists another sphere

VN2−2 ≡

{
r ∈ RN2−1

∣∣∣ |r| =√ 2

N(N − 1)

}
(II.6)

inscribed inside Σ
(N)
ρα , such that ∂Σ

(N)
ρα lies between VN2−2 and WN2−2.

The essence of all these established facts is visualized schematically in Fig. II.1.
Note that the figure is only a rough sketch supposed to highlight the different sets
involved. A visual insight into the true (very complicated) shape of those sets can be
gained by considering two- or three-sections, see for instance Jakóbczyk and Siennicki
(2001), Kimura and Kossakowski (2005), Mendaš (2006), or Goyal et al. (2016).
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Appendix III

III.A | General recipe to find a Bloch vector expression

Given a kernel such as (3.15), the general strategy to achieve a maximally compact
expression in terms of Bloch vectors is the following.

1.) Write the Green’s function and the Hamiltonian in terms of eigenprojectors as
G =

∑
αDαPα [cf. Eq. (1.46)] and H =

∑
αHα, respectively, where Dα =

1/(E − εα + iη) and Hα ≡ εαPα.

2.) Use the chain rule H i
β = εiβPβ + εβP

i
β and the eigenprojector identities

PαPβ = δαβPα, PαP
i
β = δαβP

i
α − P i

αPβ (III.1)

in order to maximally simplify the trace.

3.) In order to facilitate E-integration, it is useful to rewrite the expressions ob-
tained from step 2.) in terms of powers of the Green’s function’s poles, as

Kindices =

NG∑
n=1

∑
α

Dn
αF

(indices)
α,n (III.2)

where NG is the total number of Green’s functions in the kernel.

4.) Expand the eigenprojectors in the generators of SU(N) using Eq. (2.50), such
that the traces can be evaluated explicitly. In the final result for the kernel,
conventional contributions depend only on the energies εα and their deriva-
tives, while geometric contributions depend on the Bloch vectors bα and their
derivatives.

Example: Simple kernels

Here we illustrate the above procedure using the simple kernels Ki = Tr
(
GH i

)
and

Kij = Tr
(
GH iGHj

)
. According to step 1.), we start by inserting G and H, such that

Ki =
∑
αβ

DαTr
(
PαH

i
βPα

)
, Kij =

∑
αβγδ

DαDγ Tr
(
PαH

i
βPγH

j
δPα

)
. (III.3)

Note that we have symmetrized the kernels using the identity P 2
α = Pα and cyclicity

of the trace. Using the chain rule and simplifying according to step 2.), one has

Ki =
∑
α

Dαε
i
α, Kij =

∑
α

D2
αε

i
αε

j
α +

∑
αβ

DαDβ∆
2
αβT

(ij)
αβ , (III.4)
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with ∆αβ ≡ εα − εβ. Here we made use of the trace identities

Tr
(
PαP

i
βPα

)
= 0,

Tr
(
PαP

i
βPγP

j
δ Pα

)
= (δαβ − δβγ)(δγδ − δδα) Tr

(
PαP

i
αP

j
γ

)
= (δαβ − δβγ)(δαδ − δγδ)T (ij)

αγ ,

(III.5)

where we introduced the shorthand notation T (ij)
αβ ≡ Tr

(
P i
αPβP

j
α

)
. According to step

3.), the kernels can be expanded in powers of poles as

Ki =
∑
α

DαF
(i)
α,1, Kij =

∑
α

(
DαF

(ij)
α,1 +D2

αF
(ij)
α,2

)
. (III.6)

It is trivial to see that F
(i)
α,1 = εiα and F

(ij)
α,2 = εiαε

j
α. For determining the remaining

coefficients of Kij , one can make use of the partial fraction decomposition

DαDβ∆
2
αβ = ∆αβ(Dα −Dβ), (III.7)

leading to

F
(ij)
α,1 =

∑
β ̸=α

∆αβ(T
(ij)
αβ + T (ji)

αβ ). (III.8)

Here we used the useful fact that

T (ij)
αβ = T (ji)

βα for α ̸= β, (III.9)

as can be deduced from Eq. (III.1).
We are now ready to apply step 4.) to achieve the final Bloch vector decomposi-

tion. The kernel Ki has no geometric contribution, as it depends only on the energies.
The kernel Kij , however, does have a geometric contribution determined by

F
(ij)
α,1 = −1

4

∑
β ̸=α

∆αβ

(
bi
α · bj

β + bj
α · bi

β

)
, (III.10)

where we used the identity

T (ij)
αβ =

1

2

(
δαβ − 1

2

)
bi
α · bj

β − i

4
bβ · (bi

α × bj
α). (III.11)

For N = 2, where the Bloch vector is given by Eq. (2.46), this reduces to a quantum

metric contribution F
(ij)
α,1 = εαu

i ·uj = 4εαgα,ij , but for general N a more complicated
geometric object appears.

III.B | SU(N) Jacobi identities

The first Jacobi identity (Kaplan and Resnikoff 1967; Macfarlane et al. 1968) can
be written alternatively for the generator matrices, the antisymmetric structure con-
stants and the SU(N) vectors as

[[λi, λj ], λk] + [[λj , λk], λi] + [[λk, λi], λj ] = 0,

fijmfklm + fikmfljm + filmfjkm = 0,

m× (n× o) + n× (o×m) + o× (m× n) = 0,

(m× n) · (o× p) + (m× o) · (p× n) + (m× p) · (n× o) = 0,

(III.12)
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where the third and fourth lines are obtained from the second line depending on
whether or not one keeps a free index. Similarly, the second Jacobi identity is given
by

[{λi, λj}, λk] + [{λj , λk}, λi] + [{λk, λi}, λj ] = 0,

fijmdklm + fikmdljm + filmdjkm = 0,

m× (n ⋆ o) + n× (o ⋆m) + o× (m ⋆ n) = 0,

(m× n) · (o ⋆ p) + (m× o) · (p ⋆ n) + (m× p) · (n ⋆ o) = 0.

(III.13)

Furthermore, there is the identity

[λi, [λj , λk]] = {λk, {λi, λj}} − {λj , {λi, λk}},

fijmfklm =
2

N
(δikδjl − δilδjk) + dikmdjlm − dilmdjkm,

m× (n× o) =
2

N
[(m · o)n− (m · n)o]

+ (m ⋆ o) ⋆ n− (m ⋆ n) ⋆ o,

(m× n) · (o× p) =
2

N
[(m · o)(n · p)− (m · p)(n · o)]

+ (m ⋆ o) · (n ⋆ p)− (m ⋆ p) · (n ⋆ o).

(III.14)

III.C | Alternative QGT formula in terms of Bloch vec-
tors

From Eq. (3.7) together with Eq. (3.21) we have

gα,ij =
∑
β ̸=α

Sij
αβ

(εα − εβ)2
, Ωα,ij = −

∑
β ̸=α

Aij
αβ

(εα − εβ)2
, (III.15)

where

Sij
αβ =

4

N2
hi · hj +

1

N

[
(bα · hi)(bβ · hj) + (bα · hj)(bβ · hi)

]
+

2

N
(bα + bβ) · (hi ⋆ hj) +

1

2

[
(bα ⋆ h

i) · (bβ ⋆ h
j) + (bα ⋆ h

j) · (bβ ⋆ h
i)
]
,

Aij
αβ =

2

N
(bα − bβ) · (hi × hj) + (bα ⋆ h

i) · (bβ × hj) + (bα × hi) · (bβ ⋆ h
j).

It is straigthforward to check that Sij
αβ is symmetric under an exchange of indices

i, j (or of α, β), whereas Aij
αβ is antisymmetric under such an exchange, and as a

consequence
∑

αΩα,ij = 0. While much less compact than Eq. (3.10), the expressions
(III.15) appear more convenient for numerical implementation. Conceptually, they
mainly distinguish themselves from Eq. (3.10) in that, on the one hand, they involve
solely the parametric derivatives of the Hamiltonian vector, while on the other hand
they also illustrate the interband nature of the two geometric tensors, and lastly they
also show explicitly the importance of the star product for both the N -band quantum
metric and Berry curvature.
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III.D | Derivation of Eq. (3.26)

To find the eigenprojector Pα as a polynomial in the Hamiltonian matrix, our starting
point is the following textbook formula, involving the set {εβ, β = 1, ..., N} of all
energy eigenvalues (Halmos 2017):

Pα =
∏
β ̸=α

H − εβ1N
εα − εβ

. (III.16)

Note that in the language of matrix theory, Eq. (III.16) defines the Frobenius co-
variants of H. Note also that the denominator of Eq. (III.16) corresponds to the
derivative p′N (εα) of the Hamiltonian’s characteristic polynomial, evaluated at the
energy εα. Indeed, before proceeding, it proves useful to compile some more details
on the characteristic polynomial pN (z).

Characteristic polynomial

The characteristic polynomial of an N ×N matrix A is given by (Gantmacher 1980)

p̃N (z) = det(z1N −A) =

N∑
k=0

c̃kz
N−k =

N∏
α=1

(z − aα), (III.17)

where aα denotes an eigenvalue of A and c̃0 = 1. According to the Faddeev-Le Verrier
algorithm (Gantmacher 1980), the coefficients c̃k may be computed from the traces
sk ≡ TrAk of powers of A as

c̃k = −1

k
(sk + c̃1sk−1 + ...+ c̃k−1s1)

=
(−1)k

k!
Yk(s1, ..., (−1)k−1(k − 1)!sk).

(III.18)

The second equality involves (exponential) complete Bell polynomials Yk(z1, ..., zk)
(Bell 1934; Comtet 1974), the first few of which read explicitly

Y0 = 1,

Y1(z1) = z1,

Y2(z1, z2) = z21 + z2,

Y3(z1, z2, z3) = z31 + 3z1z2 + z3,

Y4(z1, z2, z3, z4) = z41 + 6z21z2 + 4z1z3 + 3z22 + z4.

(III.19)

Focusing now on the case where A = H represents a traceless N × N Hamiltonian
matrix, we have the Hamiltonian’s characteristic polynomial

pN (z) = det(z1N −H) =

N∑
k=0

ckz
N−k =

N∏
α=1

(z − εα). (III.20)

154



Using the Casimir invariants defined in Eq. (3.28), one may write the coefficients as

ck =
(−1)k

k!
Yk(0,−C2, ..., (−1)k−1(k − 1)!Ck), (III.21)

and the first few of them read explicitly

c0 = 1, c1 = 0,

c2 = −C2

2
, c3 = −C3

3
,

c4 =
C2
2

8
− C4

4
, c5 =

C2C3

6
− C5

5
,

c6 = −C
3
2

48
+
C2
3

18
+
C2C4

8
− C6

6
.

(III.22)

Rewriting Eq. (III.16)

The goal is now to eliminate all εβ ̸=α from Eq. (III.16), such that Pα becomes a
proper polynomial in H with coefficients that depend only on the single eigenvalue
εα, that is, Pα = Pα(εα, H). Consider first the numerator of Eq. (III.16) and note
that by explicit multiplication one may write

∏
β ̸=α

(H − εβ1N ) =
N−1∑
n=0

(−1)nen(ε1, ..., εα−1, εα+1, ..., εN )HN−1−n, (III.23)

where en = en(ε1, ..., εα−1, εα+1, ..., εN ) are known as elementary symmetric polyno-
mials (Macdonald 1998). One has e0 = 1 and all higher en are determined recursively
by Newton’s identities:

en =
1

n

n∑
k=1

(−1)k−1(Ck − εkα)en−k, (III.24)

where the Ck are the Casimir invariants of Eq. (3.28) and it was exploited that∑
β ̸=α ε

k
β = Ck − εkα. This may further be rewritten as

en = (−1)n
n∑

k=0

ckε
n−k
α , (III.25)

where ck are the coefficients (III.21) of the characteristic polynomial. If we now define
polynomials qn(z) by Eq. (3.27), it is clear that qN (z) = pN (z) is the characteristic
polynomial (III.20), and qn(εα) = (−1)nen. Moreover, inserting into Eq. (III.23), we
have ∏

β ̸=α

(H − εβ1N ) =
N−1∑
n=0

qN−1−n(εα)H
n (III.26)

by relabeling the sum. This depends only on εα and H, as desired.
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Similarly, for the denominator of Eq. (III.16), exactly the same procedure as
above (where H gets replaced by εα) leads to∏

β ̸=α

(εα − εβ) =

N−1∑
n=0

qN−1−n(εα)ε
n
α. (III.27)

As mentioned above,
∏

β ̸=α(εα − εβ) is equal to the derivative p′N (εα) of the charac-
teristic polynomial. From this one may also demonstrate the validity of the identity∏

β ̸=α(εα − εβ) =
∑N−1

n=0 qN−1−n(εα)Cn. Combining all of these results, one finally
arrives at Eq. (3.26) in the main text.

III.E | Closed-form solutions for energy eigenvalues

The solutions of the characteristic equation pN (z) = 0, with pN (z) given by Eq.
(III.20), are the eigenvalues of H. For N = 2, the solution of p2(εα) = ε2α −C2/2 = 0
is simple, cf. Eq. (2.17). For N > 2, the complexity of the function εα({Cn}) grows
very quickly. For N = 3, the solutions of p3(εα) = ε3α − (C2/2)εα − C3/3 = 0 can be
parametrized as (Abramowitz and Stegun 1965; Weisstein n.d.[a])

εα =
(−1)α

1 + |α|
(S+ + S−) + α

i
√
3

2
(S+ − S−), S± ≡ 1

6
1
3

(
C3 ± i

√
C3
2

6
− C2

3

) 1
3

,

where α = 0,±1. Note that since C3
2 ≥ 6C2

3 , all εα are of course real (Abramowitz
and Stegun 1965; Rosen 1971). This allows to interpret the eigenvalues as lying on a
circle, that is, one may parametrize the solutions using trigonometric functions, see
for example Rosen (1971):

εα =

√
2C2

3
cos

[
1

3
arccos

(√
6C3

C
3/2
2

)
+

2(α+ 2)π

3

]
=

2|h|√
3
cos γα,

γα ≡ 1

3

[
arccos

(√
3h · h⋆/|h|3

)
+ 2(α+ 2)π

]
.

(III.28)

For N = 4, there are again several ways to parametrize the solutions of p4(εα) =
ε4α − (C2/2)ε

2
α − (C3/3)εα + C2

2/8− C4/4 = 0, for example (Abramowitz and Stegun
1965; Weisstein n.d.[b])

εα =
sgn(α)

2
√
3

R+ (−1)α

√
2C2 −D + sgn(α)

2
√
3C3

R

 ,
R ≡

√
D + C2,

D ≡ B

(
2

A+
√
A2 − 4B3

)1/3

+

(
A+

√
A2 − 4B3

2

)1/3

,

A ≡ 3C2
3 + C2

(
17

4
C2
2 − 9C4

)
,

B ≡ 7

4
C2
2 − 3C4,

(III.29)
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where α = ±1,±2. For N ≥ 5, closed-form solutions εα({Cn}) of the characteristic
equation are unknown (Van Kortryk 2016).

III.F | Eigenstates from eigenprojectors

The eigenprojector Pα permits to construct the eigenstate |ψα⟩ from a gauge freedom
state |ψg⟩. For example, in the two-band case, using the eigenprojector Pα given by
Eq. (2.46), an eigenstate is easily constructed from Eq. (3.31) by projecting onto

|ψg⟩ =

 cos θg

sin θge
−iϕg

 , (III.30)

where the gauge freedom angles (θg, ϕg) can be chosen at will at any point in parameter
space x. For the particular gauge choice cos θg = 1 and sin θg = 0, one exactly recovers
Eq. (2.35).

More generally, each N -band eigenstate |ψα⟩ in an arbitrary gauge may be ob-
tained from Eq. (3.31), where |ψg⟩ can be chosen arbitrarily. The only constraint
is that the state |ψg⟩ must not be orthogonal to the projector Pα(x), that is, one
requires Pα(x) |ψg⟩ ̸= 0 for all x. This constraint implies that it might be necessary
to change |ψg⟩ when the parameter x is varying because it is never guaranteed that
a single |ψg⟩ (a fixed gauge) is sufficient to describe a given eigenstate |ψα⟩ over the
entire parameter space.

III.G | Derivation of Eq. (3.32)

Here we detail the steps that allow to find bα(h, εα) from the eigenprojector formula
(3.26). The only missing ingredient is Hn = (h · λ)n in terms of the generators of
SU(N). Defining vectors ηn ≡ Tr(Hnλ)/2, we can write:

Hn = (h · λ)n =
Cn

N
1N + ηn · λ, (III.31)

where obviously η0 = 0 and η1 = h. Here, the Cn are the Casimir invariants from
Eq. (3.28), and we defined ηn ≡ 1

2 Tr(H
nλ). Inserting into Eq. (3.26) and using Eq.

(2.50), we obtain the intermediate result:

bα = 2

∑N−1
n=0 qN−1−n(εα)ηn∑N−1
n=0 qN−1−n(εα)εnα

. (III.32)

At this point it remains the task to find the explicit form of the vectors ηn(h) for
n > 1. To accomplish this task, we need to compute Hn = (h · λ)n by applying
Eq. (2.32) repeatedly. In the course of this, it proves useful to employ the notation
(2.33) for repeated star products of a vector with itself. The resulting vectors have
the following properties (with n1, n2 ∈ N0):

m
(n1)
⋆ ·m(n2)

⋆ =

∣∣∣∣∣m
(

n1+n2
2

)
⋆

∣∣∣∣∣
2

, n1 + n2 even; m
(n1)
⋆ ×m

(n2)
⋆ = 0 ∀n1, n2. (III.33)
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The former identity follows directly from the total symmetry of the structure constants
(2.28), and the latter is a consequence of the second Jacobi identity (III.13), as can
be proven by mathematical induction.

With all these prerequisites we may now calculate (h · λ)n, that is, determine
Cn(h) and η(h). In particular, we obtain the following simple recursion relations:

Cn+1 = 2h · ηn, ηn+1 = h ⋆ ηn +
Cn

N
h, (III.34)

with initial conditions C0 = N and η0 = 0. Making use of the fact that ηn and the
structure constants fijk are real by definition, we can also establish the identity

ηn1 × ηn2 = 0, ∀n1, n2. (III.35)

Applying the recursion (III.34), for a traceless Hamiltonian matrix, we obtain succes-
sively up to n = 4 the important identities

C1 = 0, η1 = h,

C2 = 2|h|2, η2 = h⋆,

C3 = 2h · h⋆, η3 =
C2

N
h+ h⋆⋆,

C4 =
4|h|4

N
+ 2|h⋆|2, η4 =

C3

N
h+

C2

N
h⋆ + h⋆⋆⋆.

C5 =
8|h|2

N
h · h⋆ + 2h⋆ · h⋆⋆, η5 = ... .

(III.36)

More generally, for a generic N > 1, the form of the vector ηn(h) is compactly written
as:

ηn =
1

N

n−1∑
p=0

Cph
(n−1−p)
⋆ . (III.37)

The final step required for completing our task of finding the explicit expressions of
the Bloch vector bα(h, εα) consists in substituting Eqs. (III.36) and (III.37) into Eq.
(III.32). One can then write down the explicit Bloch vectors for any N , as done
explicitly in Eq. (3.32) for N = 2 to N = 5.

As a final remark, be aware that, for given N , only Cn≤N and ηn<N are relevant,
and there are only N − 1 independent vectors h

(k)
⋆ , k = 0, ..., N − 2. For example, for

N = 3, all information we need is encoded in C2, C3, h and h⋆. This again follows
from the Cayley-Hamilton theorem, which states that qn=N (H) = pN (H) = 0. From
this property it is easy to establish the following useful identities for N = 3:

h⋆⋆ =
C2

6
h, h⋆ ⋆ h⋆ =

C3

3
h− C2

6
h⋆, (III.38)

and for N = 4:

h⋆⋆⋆ =
C3

12
h+

C2

4
h⋆, h⋆ ⋆ h⋆ =

C3

3
h, h⋆ ⋆ h⋆⋆ =

|h⋆|2

2
h+

C3

12
h⋆. (III.39)
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III.H | Berry curvature for N-band systems

A Berry curvature formula for arbitrary SU(N) systems can be obtained from insert-
ing Eq. (III.37) into Eq. (III.32), and further inserting the result into Eq. (3.10).
To maximally simplify the formula, we require the total antisymmetry of the triple
product m · (n× o) = fijkniojmk and the orthogonality relations (III.33) or (III.35).
The general formula then is

Ωα,ij = − 2bα

[q′N (εα)]2
·

 N−1∑
n,m=1

qN−1−n(εα)qN−1−m(εα) τ
(i)
n × τ (j)

m

 . (III.40)

Here we use the Bloch vectors (3.10), the polynomials qn(z) introduced in Eq. (3.27),
and have defined vectors

τ (i)
n ≡ 1

N

n−1∑
p=0

Cp∂ih
(n−1−p)
⋆ . (III.41)

With the notation mi ≡ ∂im, the first few τ
(i)
n read

τ
(i)
1 = hi, τ

(i)
2 = hi

⋆, τ
(i)
3 =

C2

N
hi + hi

⋆⋆. (III.42)

From Eq. (III.40), one can obtain the Berry curvature for any given N , as we now
illustrate.

For N = 2, Eq. (2.41) is immediately obtained. For N = 3, analogously, we have

Ωα,ij = −4(εαh+ h⋆)

(3ε2α − C2
2 )3

·
[
ε2α h

i × hj + εα
(
hi × hj

⋆ + hi
⋆ × hj

)
+ hi

⋆ × hj
⋆

]
,

(III.43)
or equivalently Eq. (3.34) in the main text. This result can be simplified due to the
following identities:

h · (hi × hj
⋆) = h · (hi

⋆ × hj) = h⋆ · (hi × hj),

h⋆ · (hi × hj
⋆) = h⋆ · (hi

⋆ × hj) = h · (hi
⋆ × hj

⋆),

h⋆ · (hi
⋆ × hj

⋆) =

[
−2

3
(h · h⋆)h+ |h|2h⋆

]
· (hi × hj).

(III.44)

The first two lines are valid for general N and can be proved using the second Jacobi
identity (III.13). The proof of the third line requires the Jacobi identity as well, but
additionally the SU(3)-specific identities (III.38). Inserting all of these identities into
Eq. (III.43), and exploiting the characteristic equation ε3α = C2

2 εα + C3
3 , one obtains

the generic SU(3) Berry curvature formula

Ωα,ij =
−4

(3ε2α − |h|2)3
{
εα
[
|h|2h ·

(
hi × hj

)
+ 3h ·

(
hi
⋆ × hj

⋆

)]
+
(
3ε2α + |h|2

)
h⋆ ·

(
hi × hj

)}
.

(III.45)
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The advantage of this formula, as compared to Eq. (3.34), consists in the fact that
it contains only three terms, and that the Berry curvature sum rule

∑
αΩα,ij = 0 is

more evident.
In principle, one can continue in this way to obtain the Berry curvature for any

N . As a shortcut, it is however useful to realize that, when the Bloch vectors (3.32)
are substituted into Eq. (3.10), the derivatives effectively do not act on the prefactors
but only on the vectors h, h⋆, etc. This is due to the orthogonality relations (III.33)
and (III.35). For example, for the N = 2 case, it suffices to replace bi

α → 1
εα
hi in Eq.

(3.10), which allows to directly read off the Berry curvature: Ωα,ij = −1
2

h
εα

·(hi

εα
× hj

εα
).

Similarly, for N = 3, it suffices to replace bi
α → 2

3ε2α−C2/2
(εαh

i + hi
⋆), and so on for

higher N . In this way, one directly obtains Eqs. (3.34)–(3.36) in the main text.
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Appendix IV

IV.A | Relation between CLSs and real-space tight-binding
models

In order to determine the real-space tight-binding model corresponding to the Bloch
Hamiltonian H(k) built from some input CLS, we write the off-diagonal matrix ele-
ments (a ̸= b) as

Hab(k) =
∑
n

tabn e
ik·rabn , (IV.1)

where rabn denotes the possible hopping directions (distinguished by the label n) from
an orbital of type b towards orbitals of type a, and tabn denotes the corresponding
hopping parameters. Similarly, we write the diagonal matrix elements as

Haa(k) = Va +
∑
n

taan e
ik·raan , (IV.2)

where Va is the onsite energy, raan denotes the possible hopping directions from an
orbital of type a towards other orbitals of type a, and taan are the corresponding
hopping parameters. Clearly, the expressions for the hopping directions, hopping
parameters and onsite energies depend on whether the Bloch Hamiltonian is quadratic
or linear, as described in the following.

For the quadratic flat-band models described by Eq. (4.43), the off-diagonal and
diagonal matrix elements (4.44) read

Hab(k) = −λab
∑

i,j∈CLS

waiw
∗
bj
e
ik·(δai−δbj ),

Haa(k) =
∑
b ̸=a

λab
∑

i,j∈CLS

wbiw
∗
bj
e
ik·(δbi−δbj ),

(IV.3)

respectively, where Eq. (4.7) was used. Comparing this with Eqs. (IV.1) and (IV.2),
we find that the possible hopping directions rabn are given by all vectors that connect
orbitals b to orbitals a inside the CLS. Similarly, the hopping directions raan are given
by all vectors that connect orbitals b ̸= a to other orbitals b inside the CLS. This
is well visible in Figs. 4.4 and 4.5. In other words, the position of the localization
center is irrelevant, cf. Fig. IV.1(a). This is exactly why any CLS will give rise to a
reasonable quadratic flat-band model. The relative distance between any two orbitals
is automatically compatible with the underlying lattice. For the quadratic flat-band
models, the hopping parameters as well as onsite energies are functions both of the
CLS amplitudes and of the parameters λab.

For the linear flat-band models described by Eq. (4.83), the exact form of the
matrix elements depends on the input CLS. However, since all matrix elements are
linear in fa(k), it is clear from Eq. (4.7) that they always contain phase factors of the
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Fig. IV.1 – (a) For quadratic flat-band models, only the relative distance between each pair of
orbitals within the CLS is relevant. (b) For linear flat-band models, only the position of each orbital
with respect to the localization center is relevant.

form exp[ik · δai ]. Generically, the hopping directions rabn are given by the positions
of some orbitals of a third kind c ̸= a, b with respect to the localization center. This
is well visible in Figs. 4.8–4.11. Thus, for linear flat-band models, the position of the
localization center is very important, cf. Fig. IV.1(b). This is why linear flat-band
models can only be built from CLSs that fulfill certain compatibility relations with the
underlying lattice. For the linear flat-band models, all onsite energies are zero. The
hopping parameters are functions both of the CLS amplitudes and of the parameters
λabc.

IV.B | Two-band Hamiltonian with a flat band

To find a 2×2 matrixH(k) with a (unnormalized) flat-band eigenstate |f(k)⟩, we may
first assume that |f(k)⟩ is such an eigenstate. Evidently, this uniquely determines the
corresponding eigenprojector

P0(k) =
|f(k)⟩ ⟨f(k)|
⟨f(k)|f(k)⟩

=
1

|fA|2 + |fB|2

 |fA|2 fAf
∗
B

f∗AfB |fB|2

 , (IV.4)

but, crucially, it also fixes the orthogonal eigenprojector

P1(k) = 12 − P0(k) =
1

|fA|2 + |fB|2

 |fB|2 −fAf∗B
−f∗AfB |fA|2

 . (IV.5)

This latter property is unique to the two-band case. According to the spectral theo-
rem, the desired flat-band Hamiltonian now necessarily takes the form

H(k) = ϵ0P0(k) + ϵ1(k)P1(k) = ϵ012 + (ϵ1(k)− ϵ0)P1(k), (IV.6)

with the flat-band energy ϵ0. Without loss of generality, we may now take ϵ0 = 0,
such that Eq. (IV.6) turns into Eq. (4.25) of the main text. In summary, all two-band
models with a flat band are of the form (4.25).
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IV.C | Band touching scenarios for the quadratic three-
band Hamiltonian

Consider the three-band Hamiltonian (4.35) with band structure (4.36). For any given
point k0 in the Brillouin zone, one can distinguish four possibilities for the behavior
of |f(k0)⟩:
(1) If |f(k0)⟩ = 0, there is a threefold (singular) band touching point.

(2) If two out of the three components of |f(k0)⟩ vanish (say fB(k0) = fC(k0) = 0
for concreteness), the local Bloch Hamiltonian becomes diagonal with eigenen-
ergies ϵ0(k0) = 0, ϵ1(k0) = λAB|fA(k0)|2, ϵ2(k0) = λAC |fA(k0)|2. At the point
k0, the degeneracy of the band touching can now be controlled by the parame-
ters λab. If λAB and λAC are non-zero, the flat band is fully gapped. If λAB = 0
or λAC = 0, there is a twofold touching. If λAB = λAC = 0, there is a threefold
touching, however this possibility should be ignored since the flat band would
be trivially decoupled.

(3) If one out of the three components of |f(k0)⟩ vanishes (say fC(k0) = 0 for
concreteness), the degeneracy of the band touching point is again tunable by
the λab. For most values of the λab, all bands will be gapped from each other at
k0, but choosing λAB = 0 leads to ϵ0(k0) = ϵ2(k0) = 0, ϵ1(k0) = λAC |fA(k0)|2+
λBC |fB(k0)|2, and choosing λAC |fA(k0)|2+λBC |fB(k0)|2 = 0 similarly leads to
ϵ0(k0) = ϵ2(k0) = 0, ϵ1(k0) = λAB(|fA(k0)|2+ |fB(k0)|2). By a proper choice of
the λab, one can thus obtain a twofold touching and even a threefold touching
without trivially decoupling the flat band.

(4) If none of the components of |f(k0)⟩ vanish, a threefold touching is impossible,
but a twofold touching can be achieved by λABλAC |fA(k0)|2+λABλBC |fB(k0)|2+
λACλBC |fC(k0)|2 = 0.

In summary, the band structure of the Hamiltonian (4.35) can exhibit a gapped
flat band, a twofold or a threefold band touching point, depending on the interplay
between the BCLS |f(k)⟩ and the parameters λab.

IV.D | Examples for three-dimensional flat-band models

Quadratic case

Quadratic flat-band models can be built from any CLS on any d-dimensional lattice.
For example, consider the CLS on the simple 3D cubic lattice shown in Fig. IV.2(a).
The corresponding BCLS reads

|f(k)⟩ =


wA1e

− i
2
(kx+ky+kz) + wA2e

i
2
(kx+ky+kz)

wB1e
− i

2
(kx−ky+kz) + wB2e

i
2
(kx−ky+kz)

wC1e
i
2
(kx−ky−kz) + wC2e

− i
2
(kx−ky−kz)

wD1e
i
2
(kx+ky−kz) + wD2e

− i
2
(kx+ky−kz)

 . (IV.7)
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Fig. IV.2 – (a) A CLS on an N = 4 cubic lattice. (b) A CLS on the 3D-stacked Kagome lattice
that is type BI if the amplitudes are properly correlated. (c) A CLS on the 3D-stacked dice lattice
that is type BII if the amplitudes are properly correlated.

Inserting into Eq. (4.43), one obtains a flat-band tight-binding model tunable by the
CLS amplitudes and six parameters λab.

Linear case

The simplest linear flat-band models on a 3D lattice are three-band models. A type
AI CLS can be easily found on any lattice. A type AII CLS can be easily constructed
for example on a 3D cubic lattice. Finding CP-CLSs is more difficult, but a simple way
consists in forming a 3D lattice by stacking up appropriate 2D lattices. Importantly,
the localization center must be chosen within one of the 2D layers. For example,
a BI -CLS can be found on the 3D-stacked Kagome lattice, see Fig. IV.2(b), where
wai+3 = −wai ∈ R. The corresponding BCLS reads |f(k)⟩ = |oABC⟩ = (fA, fB, fC),
where

fA = −2i[wA1 sin(k− − kz) + wA2 sin k− + wA3 sin(k− + kz)],

fB = 2i[wB1 sin(k+ + kz) + wB2 sin k+ + wB3 sin(k+ − kz)],

fC = 2i[wC1 sin(kx + kz) + wC2 sin kx + wC3 sin(kx − kz)].

(IV.8)

Inserting into Eq. (4.71), one obtains a linear 3D flat-band tight-binding model.
Similarly, a BII -CLS can be found on the 3D dice lattice, see Fig. IV.2(c), where
wB1 = wB2 ∈ R and wCi = −wAi . The corresponding BCLS reads |f(k)⟩ = |qABC

B ⟩ =
(fA, fB,−f∗A), where

fA = wA1e
i(k++kz) + wA2e

i(k−+kz) + wA3e
−i(kx−kz) + wA4e

ik+ + wA5e
ik−

+ wA6e
−ikx + wA7e

i(k+−kz) + wA8e
i(k−−kz) + wA9e

−i(kx+kz),

fB = 2wB1 cos kz.

Inserting into Eq. (4.78), one obtains another linear 3D flat-band model.
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Appendix V

V.A | Continuum model construction via pseudomolecule

Consider an SU(N) Hamiltonian matrix (2.24) with matrix elements Hjk ≡ zjke
iϕjk .

This representation in terms of magnitude zjk = zkj and phase ϕjk = −ϕkj allows for
a convenient mapping to a pseudomolecule, see Fig. V.1. Each corner of the molecule
represents a diagonal matrix element, and each directed link represents a complex off-
diagonal matrix element. We can now make use of this to design Hamiltonians with
a desired spectrum. Namely, the key idea is that any Casimir invariant Cn = Tr(Hn)
can be interpreted as the sum of all possible closed paths of length n on the molecule.
Since the set {Cn, n ≤ N} uniquely determines the characteristic polynomial (see
Appendix III.D), the spectrum can be understood from and controlled by these closed
paths.

Specifically, we will be interested in zero-diagonal Hamiltonians with Hjj = 0,
such that C1 = 0 always. Accordingly, for N = 2, we have only one relevant Casimir
invariant C2 = 2z2AB, as is clear from Fig. V.1(a). For N = 3, one has two Casimir
invariants of interest:

C2 = 2(z2AB + z2BC + z2CA), C3 = 6zABzBCzCA cosΦABC , (V.1)

where ΦABC ≡ ϕAB + ϕBC + ϕCA. Pictorially, C2 corresponds to the three possible
“back-and-forth” paths along the rim of the triangle in Fig. V.1(b), while C3 captures
the closed paths of length three, and thus ΦABC can be viewed as pseudoflux piercing

Fig. V.1 – An N × N Hamiltonian matrix mapped to a pseudomolecule. Links (dots) represent
complex (real) off-diagonal (diagonal) matrix elements.
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Fig. V.2 – Diagrammatic representation of (a) the threefold Hopf semimetal (5.4a). (b) a pseudospin-
1 Hamiltonian. (c) the fourfold Hopf semimetal (5.4b). (d) the fivefold Hopf semimetal (5.4c)

the triangle. For N = 4, one has three relevant Casimir invariants

C2 = 2(z2AB + z2AC + z2AD + z2BC + z2BD + z2CD),

C3 = 6(zABzBCzCA cosΦABC + zABzBDzDA cosΦABD

+ zACzCDzDA cosΦACD + zBCzCDzDB cosΦBCD),

C4 = C2
2/2− 4(z2ABz

2
CD + z2DAz

2
BC + z2ACz

2
BD)

+ 8(zABzBCzCDzDA cosΦABCD + zDCzCAzABzBD cosΦDCAB

+ zCAzADzDBzBC cosΦCADB),

(V.2)

where Φjkl ≡ ϕjk + ϕkl + ϕlj is odd (even) under odd (even) index permutations,
and where Φjklm ≡ Φjkm + Φklm. Pictorially, the four interference terms in C3 stem
from the four triangles in Fig. V.1(c), and the three interference terms in C4 from
the three different four-link loops. Similarly, for N = 5, one has Casimir invariants
C2, C3, C4, C5 determined by all single links, triangles, quadrangles, and pentagons of
the diagram in Fig. V.1(d), respectively.

Now, multifold fermion models with a particle-hole symmetric spectrum can be
easily designed by choosing matrix elements Hjk such that the Cn with n odd vanish.
For N = 3 it suffices to choose the matrix elements Hjk such that C3 = 0, which can
be achieved, according to Eq. (V.1), either by eliminating one link of the triangle or
by adjusting the pseudoflux ΦABC such that the cosine vanishes. The former case
will give rise to a model with chiral symmetry, while the latter can give rise to a
model with CP symmetry. For example, the threefold MHS model (5.4a) is visualized
in Fig. V.2(a), while the pseudospin-1 Hamiltonian obtained from Eq. (4.92) with
vA = (1, 0, 0), vB = (0, 1, 0), vC = (0, 0, i) is shown in Fig. V.2(b). Similarly, to
construct an N = 4 (N = 5) model with particle-hole symmetric spectrum, we have to
make sure that we choose a Hamiltonian such that the corresponding pseudomolecule
verifies C3 = 0 (C3 = C5 = 0). In Fig. V.2(c) we show the fourfold Hopf semimetal
(5.4b), where obviously C3 = 0 since there are no triangles. In Fig. V.2(d) we show
the fivefold Hopf semimetal (5.4c), where C3 = 0 and C5 = 0 since there are neither
triangles nor pentagons.

Having ensured particle-hole symmetry of the spectrum, we can further use the
pseudomolecule approach to design the isotropy of the spectrum. For N = 3 this is
straightforward as it only requires C2 to be isotropic. This is obviously the case for
both models in Fig. V.2(a) and (b). For N = 4 and N = 5 we need to make sure
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that both C2 and C4 are isotropic. This is non-trivial but one can verify that it is the
case for both models in Fig. V.2(c) and (d).

V.B | Landau levels of multifold Hopf semimetals

Using the conventions introduced in Section 5.3.2, we here derive in detail the Landau
levels (LLs) of the continuum models (5.4). The main tool to simplify the calculations
is to make use of the chiral symmetry.

Threefold Hopf semimetal

The LL spectrum of the threefold Hopf semimetal (5.4a) is easily computed analyti-
cally. Replacing qi → Πi, we have

Ĥξ
3 =

 0 Q

Q† 02

 , Q =
(
Πξ

− −iΠz

)
. (V.3)

Making an ansatz Ĥξ
3Ψα = ϵαΨα, where ϵα = αϵ, α = 0,± and Ψα = (ψα

1 ,Ψ
α
2 ) with

Ψα
2 a two-component spinor, it follows

ϵαψ
α
1 = QΨα

2 , ϵαΨ
α
2 = Q†ψα

1 , ϵ2αψ
α
1 = QQ†ψα

1 . (V.4)

Using Πξ
−Π

ξ
+ = Π2

x +Π2
y + ξ cos θ/l2B and Π2 = (2d̂†d̂+ 1)/l2B + q20, one easily finds

QQ† = [eB(2d̂†d̂+ 1 + ξ cos θ) + q20], (V.5)

implying that ψα
1 ∼ |n⟩. From the second identity of Eq. (V.4), one immediately

obtains

ϵαΨ
α
2 ∼

ξ − cos θ i sin θ q0 ξ + cos θ

sin θ i cos θ q0 − sin θ




βn |n− 1⟩

|n⟩

βn+1 |n+ 1⟩

 , (V.6)

where βn =
√
eBn/2, and finally the full solution for the LLs and their corresponding

eigenstates reads as

ϵn,ξα = α

√
2eB

(
n+

1 + ξ cos θ

2

)
+ q20, n = 0, 1, 2, ...

Ψn,ξ
α ∼


0 ϵn,ξα 0

ξ − cos θ i sin θ q0 ξ + cos θ

sin θ i cos θ q0 − sin θ




βn |n− 1⟩

|n⟩

βn+1 |n+ 1⟩

 .

(V.7)

167



Fourfold Hopf semimetal

We proceed to compute the LL spectrum of the fourfold Hopf semimetal (5.4b).
Replacing qi → Πi, we have

Ĥξ
4 =

02 Q

Q† 02

 , Q =

aΠξ
− iaΠz

ibΠz bΠξ
+

 . (V.8)

We make an ansatz Ĥξ
4Ψα = ϵαΨα, where ϵα = α1ϵα2 with α1 = ±, α2 = ±, and

where Ψα = (Ψα
1 ,Ψ

α
2 ) with Ψα

1 and Ψα
2 being two-component spinors. It follows

ϵαΨ
α
1 = QΨα

2 , ϵαΨ
α
2 = Q†Ψα

1 , ϵ2αΨ
α
1 = QQ†Ψα

1 . (V.9)

We first focus on the last identity. Straightforward computation yields

QQ† =

a2[eB(2d̂†d̂+ 1 + ξ cos θ) + q20] ξabeB sin θ

ξabeB sin θ b2[eB(2d̂†d̂+ 1− ξ cos θ) + q20]

 ,

and it is clear that Ψα
1 ∼ (uα2 , vα2) |n⟩. Solving the eigenvalue problem2ηa ν

ν 2ηb

uα2

vα2

 = ϵ2α

uα2

vα2

 , (V.10)

where

ηa =
a2

2

[
2eB

(
n+

1 + ξ cos θ

2

)
+ q20

]
,

ηb =
b2

2

[
2eB

(
n+

1− ξ cos θ

2

)
+ q20

]
,

ν = ξabeB sin θ,

(V.11)

leads to
ϵ2α = ηa + ηb + α2

√
(ηa − ηb)2 + ν2,

uα2 = ηa − ηb + α2

√
(ηa − ηb)2 + ν2,

vα2 = ν.

(V.12)

Turning now to the second identity of Eq. (V.9), we have

ϵαΨ
α
2 ∼

 aΠξ
+ −ibΠz

−iaΠz bΠξ
−

uα2 |n⟩

vα2 |n⟩

 =M1



uα2βn |n− 1⟩

vα2βn |n− 1⟩

uα2 |n⟩

vα2 |n⟩

uα2βn+1 |n+ 1⟩

vα2βn+1 |n+ 1⟩


M1 =

a(ξ − cos θ) −b sin θ ia sin θ q0 −ib cos θ q0 a(ξ + cos θ) b sin θ

−a sin θ b(ξ + cos θ) −ia cos θ q0 −ib sin θ q0 a sin θ b(ξ − cos θ)

 .
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Finally, the complete solution for the LLs and their eigenstates is

ϵn,ξα = α1

√
ηa + ηb + α2

√
(ηa − ηb)2 + ν2, n = 0, 1, 2, ...

Ψn,ξ
α ∼


0 0 ϵn,ξα 0 0 0

0 0 0 ϵn,ξα 0 0

a(ξ − cos θ) −b sin θ ia sin θ q0 −ib cos θ q0 a(ξ + cos θ) b sin θ

−a sin θ b(ξ + cos θ) −ia cos θ q0 −ib sin θ q0 a sin θ b(ξ − cos θ)



×



uα2βn |n− 1⟩

vα2βn |n− 1⟩

uα2 |n⟩

vα2 |n⟩

uα2βn+1 |n+ 1⟩

vα2βn+1 |n+ 1⟩


.

(V.13)

Fivefold Hopf semimetal

The LL spectrum of the fivefold Hopf semimetal (5.4c) can be derived from the
Hamiltonian

Ĥξ
5 =

03 Q

Q† 02

 , Q =


0 i

√
2Πz

iΠz Πξ
+

√
2Πξ

+ 0

 . (V.14)

We make an ansatz Ĥξ
5Ψα = ϵαΨα, where ϵα = α1ϵα2 , α1 = 0,± and α2 = ±. The

wave function is of the form Ψα = (Ψα
1 ,Ψ

α
2 ) with Ψα

1 a three-component and Ψα
2 a

two-component spinor, respectively. We again have to solve equations of the form

ϵαΨ
α
1 = QΨα

2 , ϵαΨ
α
2 = Q†Ψα

1 , ϵ2αΨ
α
2 = Q†QΨα

2 , (V.15)

and thus consider

Q†Q =

2Πξ
−Π

ξ
+ +Π2

z −iΠzΠ+

(−iΠzΠ+)
† Πξ

−Π
ξ
+ + 2Π2

z

 , (V.16)
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where

2Πξ
−Π

ξ
+ +Π2

z =
eB

2
s2θ(d̂)

2 +
eB

2
s2θ(d̂

†)2 + eB(3 + c2θ)d̂
†d̂

+

√
eB

2
iq0s2θd̂−

√
eB

2
iq0s2θd̂

†

+
eB

2
(3 + c2θ + 4ξcθ) + (1 + s2θ)q

2
0,

−iΠzΠ+ =
eB

2
sθ(cθ − ξ)(d̂)2 +

eB

2
sθ(ξ + cθ)(d̂

†)2 − eB

2
s2θd̂

†d̂

+

√
eB

2
iq0(c2θ − ξcθ)d̂−

√
eB

2
iq0(c2θ + ξcθ)d̂

†

− eB

2
sθ(ξ + cθ) + sθcθq

2
0,

Πξ
−Π

ξ
+ + 2Π2

z = −eB
2
s2θ(d̂)

2 − eB

2
s2θ(d̂

†)2 + eB(2 + s2θ)d̂
†d̂

−
√
eB

2
iq0s2θd̂+

√
eB

2
iq0s2θd̂

†

+
eB

2
(2 + s2θ + 2ξcθ) + (1 + c2θ)q

2
0.

Using an ansatz

Ψα
2 =

U
V

 =

u1 |n− 1⟩+ u2 |n⟩+ u3 |n+ 1⟩

v1 |n− 1⟩+ v2 |n⟩+ v3 |n+ 1⟩

 ,

a lengthy calculation yields

(2Πξ
−Π

ξ
+ +Π2

z)U =MT
UN

T ,

−iΠzΠ
ξ
+V =MT

V N
T ,

where N = (|n− 3⟩ , |n− 2⟩ , |n− 1⟩ , |n⟩ , |n+ 1⟩ , |n+ 2⟩ , |n+ 3⟩) and with

MU =



s2θβn−1βn−2u1

βn−1

[
s2θiq0u1 + s2θβnu2

]
βn
[
s2θiq0u2 + s2θβn+1u3

]
+ eB

[
(3 + c2θ)(n− 1

2) + 2ξcθ
]
u1 + (1 + s2θ)q

2
0u1

s2θiq0 [βn+1u3 − βnu1] + eB
[
(3 + c2θ)(n+ 1

2) + 2ξcθ
]
u2 + (1 + s2θ)q

2
0u2

βn+1

[
−s2θiq0u2 + s2θβnu1

]
+ eB

[
(3 + c2θ)(n+ 3

2) + 2ξcθ
]
u3 + (1 + s2θ)q

2
0u3

βn+2

[
−s2θiq0u3 + s2θβn+1u2

]
s2θβn+2βn+3u3


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and

MV =



sθ(cθ − ξ)βn−1βn−2v1

βn−1 [(c2θ − ξcθ)iq0v1 + sθ(cθ − ξ)βnv2]

βn [(c2θ − ξcθ)iq0v2 + sθ(cθ − ξ)βn+1v3]− eBsθ

[
(n− 1

2)cθ +
ξ
2

]
v1 + sθcθq

2
0v1

iq0 [(c2θ − ξcθ)βn+1v3 − (c2θ + ξcθ)βnv1]− eBsθ

[
(n+ 1

2)cθ +
ξ
2

]
v2 + sθcθq

2
0v2

βn+1 [−(c2θ + ξcθ)iq0v2 + sθ(cθ + ξ)βnv1]− eBsθ

[
(n+ 3

2)cθ +
ξ
2

]
v3 + sθcθq

2
0v3

βn+2 [−(c2θ + ξcθ)iq0v3 + sθ(cθ + ξ)βn+1v2]

sθ(cθ + ξ)βn+2βn+3v3


.

Solving the linear system (MT
U +MT

V )N
T = ϵ2αU , one finds the LL spectrum

ϵn,ξα = α1

√
η+ + η− + α2

√
(η+ − η−)2 + ν̃2, n = 1, 2, 3, ...

η± =
c2±
2

[
2eB

(
n+

1− κ±ξ cos θ
2

)
+ q20

]
,

ν̃ = 2
√
3ξeB sin θ

, (V.17)

where c± =
√
2, 1 are the band velocities of the two cones and κ± = −3, 1 are

the corresponding Berry dipole charges. The corresponding eigenfunctions are very
complicated and are not written here explicitly.

V.C | Landau levels of pseudospin-s fermions

The Landau levels (LLs) of pseudospin-s fermions were previously obtained for s =
1/2 by Nielsen and Ninomiya (1983), for s = 1 by Bradlyn et al. (2016), and for
general s by Ezawa (2017). See also the review article by Delplace (2022) for a more
general context. The LLs do not depend on the magnetic field direction due to the
rotational invariance of the pseudospin continuum Hamiltonian (2.6). Moreover, since
the magnetic field breaks parity symmetry, but not charge conjugation symmetry
(Ryu et al. 2010), the spectrum is no longer particle-hole symmetric but satisfies
ϵn(qz) = −ϵn(−qz).

We here derive the LLs for s = 1/2, 1, 3/2, 2. To proceed, we replace q → Π =
q+ eA, with the gauge choice A = Bx(0, 1, 0) such that B = Bez. In this situation,
qz is a conserved quantity. Using the canonical commutation relations, one finds
[Πx,Πy] = −i/l2B, [Πy,Πz] = [Πz,Πx] = 0. One can define ladder operators as

d̂ =
lB√
2
(Πx − iΠy), d̂† =

lB√
2
(Πx + iΠy) (V.18)

such that [d̂, d̂†] = 1.
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Consider first the Hamiltonian of a simple pseudospin-1/2 in the presence of a
magnetic field, which reads as

Ĥ =
1

2

 qz
√
2

lB
d̂,

√
2

lB
d̂† −qz

 . (V.19)

Its eigenstates consist of one chiral LL

|ψchir⟩ = (0, |0⟩) (V.20)

with energy ϵ = −qz/2, and a series of nonchiral LLs

|ψn⟩ = (un |n⟩ , vn |n+ 1⟩), (V.21)

where n = 0, 1, 2, ... and with corresponding energies ϵn = ±1
2

√
2eB(n+ 1) + q2z . The

full LL spectrum is shown in Fig. V.3(a). Similarly, the Hamiltonian of a pseudospin-1
is

Ĥ =


qz

1
lB
d̂ 0,

1
lB
d̂† 0 1

lB
d̂

0 1
lB
d̂† −qz

 . (V.22)

There are now two types of chiral Landau levels, namely

|ψchir
a ⟩ = (0, 0, |0⟩), |ψchir

b ⟩ = (0, vb |0⟩ , wb |1⟩), (V.23)

with energies ϵa = −qz and ϵb = −1
2qz ±

1
2

√
4eB + q2z . The nonchiral LLs are of the

form

|ψn⟩ = (un |n⟩ , vn |n+ 1⟩ , wn |n+ 2⟩) (V.24)

and have eigenvalues as obtained from the cubic equation ϵ3n − [(2n+ 3)eB + q2z ]ϵn +
eBq2z = 0. The LL spectrum of a pseudospin-1 thus takes the form shown in Fig.
V.3(b).

For a pseudospin-3/2, the Hamiltonian reads as

Ĥ =
1

2


3qz

√
6

lB
d̂ 0 0

√
6

lB
d̂† qz

2
√
2

lB
d̂ 0

0 2
√
2

lB
d̂† −qz

√
6

lB
d̂

0 0
√
6

lB
d̂† −3qz

 . (V.25)

It admits three types of chiral solutions, namely

|ψchir
a ⟩ = (0, 0, 0, |0⟩),

|ψchir
b ⟩ = (0, 0, wb |0⟩ , xb |0⟩),

|ψchir
c ⟩ = (0, vc |0⟩ , wc |1⟩ , xc |2⟩),

(V.26)
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Fig. V.3 – Landau level spectrum of (a) pseudospin-1/2 (b) pseudospin-1 (c) pseudospin-3/2 and
(d) pseudospin-2 fermions. Chiral LLs of different types are highlighted by colors.

with ϵa = −3qz/2, ϵb = −qz ± 1
2

√
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and have energies as determined by the quartic equation ϵ4n − 5[(n+2)eB + 1
2q

2
z ]ϵ
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n +

6eBqzϵn + 9
16 [2eB(n + 1) + q2z ][2eB(n + 3) + q2z ] = 0. The full LL spectrum of a

pseudospin-3/2 thus takes the form shown in Fig. V.3(c). Finally, for a pseudospin-2,
the Hamiltonian reads as
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. (V.28)

It admits four families of chiral solutions,

|ψchir
a ⟩ = (0, 0, 0, 0, |0⟩),

|ψchir
b ⟩ = (0, 0, 0, xb |0⟩ , yb |1⟩),

|ψchir
c ⟩ = (0, 0, wc |0⟩ , xc |1⟩ , yc |2⟩),

|ψchir
d ⟩ = (0, vd |0⟩ , wd |1⟩ , xd |2⟩ , yd |3⟩),

(V.29)
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with corresponding energies ϵa = −2qz and ϵb = −3
2qz ±

1
2

√
8eB + q2z , as well as ϵc

given by ϵ3c + 3qzϵ
2
c + (2q2z − 7eB)ϵc − 6eBqz = 0 and ϵd obtained from ϵ4d + 2qzϵ

3
d −

(15eB + q2z)ϵ
2
d − (9eB + 2q2z)qzϵd + 6eB(3eB + q2z) = 0. The nonchiral LLs are of the

form
|ψn⟩ = (un |n⟩ , vn |n+ 1⟩ , wn |n+ 2⟩ , xn |n+ 3⟩ , yn |n+ 4⟩) (V.30)

and have energies as determined by a quintic equation. The full LL spectrum of a
pseudospin-2 is shown in Fig. V.3(d).

V.D | Onsager quantization with intraband and interband
coupling

Here we derive the Landau level spectrum of the MHS continuum models (5.4) using
an alternative method, namely semiclassical quantization based on a generalized On-
sager condition. We will find excellent agreement with the exact quantum mechanical
results (5.13)–(5.15).

Cosider Eq. (5.4) in the presence of a strong magnetic field B̂ = (0, sin θ, cos θ). To
proceed, we try to recover the exact Landau levels (LLs) by increasing the complexity
of the semiclassical quantization condition in three steps: first, using the method of
Onsager (1952) for a single closed orbit; second, using Onsager quantization for a
single closed orbit, extended by intraband quantum geometric corrections important
in a multiband system (Roth 1966; Mikitik and Sharlai 1999; Fuchs et al. 2010;
Gao and Niu 2017; Fuchs et al. 2018); finally, we develop an approach to Landau
quantization of degenerate orbits, taking into account also interband matrix elements
of Berry curvature and orbital magnetic moment, similar in spirit to the work of Wang
et al. (2019).

Onsager quantization of a single closed orbit

Consider a band dispersion relation ϵα(q). Let’s denote q0 the component of q parallel
to the magnetic field and q⊥ the momentum perpendicular to the magnetic field such
that q ≡ (qx, qy, qz) = q0B̂+q⊥, with q⊥ = q⊥[cosϕ⊥x̂+sinϕ⊥(x̂×B̂)]. We can then
rewrite qx = q⊥ cosϕ⊥, qy = q0 sin θ − q⊥ sinϕ⊥ cos θ, qz = q0 cos θ + q⊥ sinϕ⊥ sin θ.
Let’s assume that for a fixed q0, the constant energy curve ϵα(q⊥, q0) = E defines a
closed orbit Oα in the q⊥ plane. Onsager quantization then corresponds to postulate
that the Landau level energies ϵn (with LL index n) are obtained by quantizing the
momentum space area Sα(ϵn, q0) of the orbit Oα according to

Sα(ϵn, q0)l
2
B = 2π(n+ γ), (V.31)

where γ is the Maslov index of the orbit, in particular for an orbit deformable to
a circle γ = 1/2. Since Sα(E, q0) = 4π2Nα(E, q0), where Nα(E, q0) =

∫ dq⊥
4π2 Θ(E −

ϵα(q⊥, q0)) is equivalent to the effective 2D zero-field integrated density of states of
the band ϵα(q), the previous relation can be rewritten as

Nα(ϵn, q0) =

(
n+

1

2

)
eB

2π
, (V.32)

174



where now eB/(2π) is the degeneracy (per unit area) of each Landau level (note that
ℏ = 1).

For a zero-field spectrum of the form ϵα(q) = cα|q| = cα
√

|q⊥|2 + q20 one imme-
diately obtains

Nα(E, q0) =
1

4π

(
E2

c2α
− q20

)
, (V.33)

from which we deduce

ϵn = ±|cα|

√
2eB

(
n+

1

2

)
+ q20. (V.34)

For Weyl multifold topological semimetals (2.6), and also for Hopf semimetals (5.4),
this last expression does not recover the correct results because it misses quantum
geometric effects.

Quantization of a single closed orbit in a multiband system

To linear order in magnetic field, the modified Onsager quantization rule (which takes
care of intraband effects but still ignores coupling between degenerate orbits) reads
(Gao and Niu 2017; Fuchs et al. 2018)

Nα(ϵn, q0) +M′
α(ϵn, q0) ·B =

(
n+

1

2

)
eB

2π
, (V.35)

where M′
α(E, q0) = ∂/∂EMα(E, q0) with Mα(E, q0) the orbital magnetization (for

spinless particles) of the band α at fixed (E, q0). This orbital magnetization may be
written as (at T = 0)

Mα(E, q0) =

∫
dq⊥
4π2

[mα(q) + e(E − ϵα(q))Ωα(q)]Θ(E − ϵα(q)), (V.36)

Here the Berry curvature and orbital magnetic moment pseudovectors can be ex-
pressed in several ways, for example as in Eqs. (1.21) and (1.49) in terms of eigen-
states, or as in Eqs. (3.10) and (3.12) in terms of Bloch vectors.

For our purposes, it is instructive to introduce an alternative notation that will
ensure a seamless transition to the discussion of interband coupling below:

mα(q) = −e
2

∑
γ ̸=α

Aαγ × Vγα,

Ωα(q) = ∇q ×Aαα = i
∑
γ

Aαγ ×Aγα.
(V.37)

Here we have introduced the non-Abelian Berry connection Aαγ(q) = i⟨ψα|∇q|ψγ⟩
and Vαγ = ⟨ψα|∇qH(q)|ψγ⟩ is the velocity operator such that Vαα(q) = ∇qϵα.
Note that, using the identity Vαγ = i(ϵα − ϵγ)Aαγ , valid for α ̸= γ, one immediately
recovers from Eq. (V.37) the textbook formulas (1.21) and (1.49).
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For our MHS continuum models, these intraband contributions are given by Eqs.
(5.1) and (5.7), with coefficients as listed in Table 5.1. From these expressions, using
q = q0B̂+ q⊥, one first obtains

mα(q) · B̂ =
e

2
ωα
q20(d · B̂) + q0(d · q⊥)

(|q⊥|2 + q20)
3/2

, Ωα(q) · B̂ = κα
q20(d · B̂) + q0(d · q⊥)

(|q⊥|2 + q20)
2

.

Performing the q⊥ integration at fixed (E, q0), the contributions proportional to (d ·
q⊥) average to zero and one finds

Mα(E, q0) ·B =
eB

2π
(d · B̂)

[
κα
2
E +

(
ωα

2cα
− κα

)
cαq0 −

(
ωα

cα
− κα

)
(cαq0)

2

2E

]
.

By differentiating with respect to E one finally obtains

M′
α(E, q0) ·B =

e

2π
(d ·B)

[
κα
2

+

(
ωα

cα
− κα

)
(cαq0)

2

2E2

]
.

If we ignore the contribution ∼ 1/E2 then the semiclassical LL spectrum reads

ϵn = ±|cα|

√
2eB

(
n+

1

2
− κα

2
ξ cos θ

)
+ q20, (V.38)

where ξ cos θ = (d · B̂). For N = 3 since ωα/cα−κα = 0 this expression is identical to
the exact LL spectrum (5.13). For N = 4, despite the fact that ωα/cα − κα = 0 this
expression still fails to recover the exact LL spectrum (5.14) as it misses the coupling
between degenerate orbits. For N = 5 since ωα/cα − κα ̸= 0 it is strictly speaking no
longer valid to ignore the contribution ∼ 1/E2. A more physical argument in favor of
neglecting this contribution anyway consists in acknowledging that the semiclassical
calculation should only be trustworthy in the large n or large E limit, where 1/E2 ≪ 1.
We adopt this approximation hereafter.

Quantization of two degenerate closed orbits in a multiband system

The previous calulation of the quantity Mα(E, q0) takes into account only the intra-
band diagonal element of the orbital magnetization. As recently put forward by Wang
et al. (2019), for systems with two (or more) bands exhibiting quasi-degenerate orbits
(that is, orbits degenerate simultaneously in momentum space and energy space) it
is necessary to also consider off-diagonal (interband) elements of the orbital magne-
tization. We here adopt a similar approach and define these interband contributions
as

mαβ(q) = −e
4

∑
γ ̸=α

Aαγ × Vγβ −
∑
γ ̸=β

Vαγ ×Aγβ

 ,

Ωαβ(q) = ∇q ×Aαβ = i
∑
γ

Aαγ ×Aγβ,

(V.39)

which is a generalization of Eq. (V.37) that satisfies mαβ = m∗
βα and Ωαβ = Ω∗

βα.
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Considering the MHS models (5.4) with N = 4, 5 and ξ = +, and denoting
ϵ±(q) > 0 the two bands that are associated to degenerate electron orbits either in
energy or momentum space, explicit calculation yields

m+−(q) · B̂ =
e

2
ω+−

sin θq20 + q0q⊥(i cosϕ⊥ − sinϕ⊥ cos θ)

(|q⊥|2 + q20)
3/2

,

Ω+−(q) · B̂ = κ+−
sin θq20 + q0q⊥(i cosϕ⊥ − sinϕ⊥ cos θ)

(|q⊥|2 + q20)
2

,

(V.40)

where ω+− = ω−+ and κ+− = κ−+ are effective parameters that play a similar
role as their diagonal conterparts ωα, κα. More quantitatively, for N = 4 we obtain
ω+− = −(a + b)/4 and κ+− = −1 whereas for N = 5 we find ω+− = −

√
2 and

κ+− = (1 +
√
2). We now integrate these expressions over q⊥ on a constant energy

contour E = (E++E−)/2 = c+−|q| with c+− = (c++c−)/2 at fixed q0. Very similarly
to the previous intraband calculation we obtain

M+−(E, q0) ·B =
eB

2π
sin θ

[
κ+−
2
E +

(
ω+−
2c+−

− κ+−

)
c+−q0

−
(
ω+−
c+−

− κ+−

)
(c+−q0)2

2E

]
,

M′
+−(E, q0) ·B =

eB

2π
sin θ

[
κ+−
2

+

(
ω+−
c+−

− κ+−

)
(c+−q0)2

2E2

]
.

(V.41)

The most striking qualitative feature is that this off-diagonal contribution is propor-
tional to sin θ = |(d × B̂)|, whereas the diagonal contributions are proportional to
cos θ = d · B̂. Taking this quantitative form of the off-diagonal term, the modified
semiclassical LL quantization rule now takes a 2× 2 matrix form for the two coupled
orbits. More precisely, the LLs are found as the solutions of

det

Ξ+ − eB
2π (n+ 1

2) M′
+−(ϵn, q0) ·B

M′
−+(ϵn, q0) ·B Ξ− − eB

2π (n+ 1
2)

 = 0, (V.42)

where Ξα = Nα(ϵn, q0) + M′
α(ϵn, q0) · B. Within the approximation 1/E2 ≪ 1 we

only consider the simplified forms M′
±(ϵn, q0) ·B = eB

2π
κ±
2 cos θ and M′

+−(ϵn, q0) ·B =
eB
2π

κ+−
2 sin θ. Within that simplified scheme the semiclassical LLs are solutions of

det

 ϵ2n
c2+

− [2eB(n+ 1−κ+ cos θ
2 ) + q20] eBκ+− sin θ

eBκ+− sin θ ϵ2n
c2−

− [2eB(n+ 1−κ− cos θ
2 ) + q20]

 = 0,

from which we finally obtain

ϵn = ±
√
η+ + η− ±

√
(η+ − η−)2 + η2+−,

η± =
c2±
2

[
2eB

(
n+

1

2
− κ±

2
cos θ

)
+ q20

]
,

η+− = c+c−eBκ+− sin θ.

(V.43)
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Repeating the same calculation for ξ = −, we exactly recover the LLs (5.14) and
(5.15) if we choose the effective interband parameters as κ+− = 1 for N = 4 and
κ+− =

√
6 for N = 5.

V.E | Semiclassical transport theory for MHS models

Evaluating conductivities for MHS continuum models

For the MHS continuum models, we have an energy (5.5), Berry curvature (5.1) and
orbital magnetic moment (5.7). Evaluating Eqs. (I.14)–(I.17) at zero temperature
yields

σDrude
ij =

e2τ

6π2
E2

F

(∑
cα>0

1

cα

)
δij ,

σLorentzij (B) = −e
3τ2

6π2
EF

(∑
cα>0

cα

)
ϵijlBl

(V.44)

for the classical Drude and Lorentz conductivities. Those are the same as for a
pseudospin (2.6), since they only depend on the zero-field energy spectrum. Also, we
have

σAH
ij = −ξ e

2

6π2

∑
α

κα

∫ qc

0
dqΘ(EF − cαq)ϵijz,

σAH1
ij (B) = − e3

60π2EF

(∑
cα>0

καωα

)
(1 + 2δixδjy + 2δiyδjx)ϵijlBl

(V.45)

for the non-dissipative anomalous Hall conductivities, and

σBerry
ij (B) = ξ

e3τ

30π2

(∑
cα>0

καcα

)
−Bz 0 4Bx

0 −Bz 4By

4Bx 4By 7Bz

 ,

σOMM
ij (B) = ξ

e3τ

60π2

(∑
cα>0

ωα

)
7Bz 0 −3Bx

0 7Bz −3By

−3Bx −3By Bz


(V.46)

for the dissipative currents at first order in B. In this thesis, we restrict our attention
to the three most interesting contributions: the true anomalous Hall contribution
σAH
ij , as well as the quantum geometric contributions σBerry

ij (B) and σOMM
ij (B). To

evaluate these contributions, recall the coefficients cα, κα and ωα listed in Table 5.1.

Proof of symmetry properties of anomalous Hall conductivities

Proof that AH conductivity is odd for multifold Hopf semimetals. Assume first that
the number of bands N is even, such that there is no flat band. Due to chiral
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symmetry, the bands are arranged in pairs ±ϵα, where each pair contributes an AH
conductivity σAH

ij,α ∼ ϵijl
∫
d3k[f(ϵα) + f(−ϵα)](Ωα)l, cf. Eq. (1.57a), where we have

used Ωα = Ω−α. Rewriting f(ϵα) + f(−ϵα) = 1 + ρα, where ρα is an odd function of
the Fermi energy, we have

σAH
ij ∼ ϵijl

∫
d3k

N/2∑
α=1

ρα(Ωα)l,

where we have used
∑N/2

α=1(Ωα)l = 0. Second, assume N odd, such that there is a flat
band. Then we can conduct a similar procedure to find

σAH
ij ∼ ϵijl

∫
d3k

(N−1)/2∑
α=1

(1 + ρα)(Ωα)l + f(0)(Ω0)l


= ϵijl

∫
d3k

(N−1)/2∑
α=1

[ρα + 1− 2f(0)](Ωα)l,

where we have used the relation
∑(N−1)/2

α=1 (Ωα)l = −(1/2)(Ω0)l between the Berry
curvature of the flat band ϵ0 and the dispersive bands. Both expressions for the AH
conductivity derived above are odd in EF .

Proof that AH conductivity is even for a Weyl semimetal. For a Weyl semimetal
the Berry curvature has opposite signs in the two bands, Ωα = −Ω−α, such that the
AH conductivity becomes

σAH
ij ∼ ϵijl

∫
d3k[f(ϵ+)− f(ϵ−)](Ω+)l.

If the spectrum is particle-hole symmetric, ϵ+ = −ϵ−, the AH conductivity is nec-
essarily even in EF . Note that similar arguments can be used to show that the AH
conductivity is even for a multifold topological semimetal.

Anomalous Hall conductivity for four- and fivefold Hopf semimetals

The AH conductivity σAH
ij in Eq. (V.45) requires a momentum cutoff as explained

in the main text. For the three-band HS (5.4a) it is given by Eq. (5.17) in the main
text. Similarly, for the four-band HS (5.4b) we find

σAH
xy = −ξ e

2

6π2


0

κ−a(EF /a+ qc)

EF (κ−a/a+ κ−b/b)

κa(EF /a− qc)

= ξ
e2

6π2


0, |EF | > aqc

EF /a+ qc, −aqc < EF < −bqc
EF (1/a− 1/b), −bqc < EF < bqc

EF /a− qc, bqc < EF < aqc

(V.47)
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with Berry dipole charges κ±a = −1, κ±b = 1. Finally, for the five-band HS (5.4c),
we obtain

σAH
xy = −ξ e

2

6π2



0

κ−
√
2(EF /

√
2 + qc)

EF (κ−
√
2/
√
2 + κ−1) + (κ0/2)qc

EF (κ√2/
√
2 + κ1)− (κ0/2)qc

κ√2(EF /
√
2− qc)

= ξ
e2

6π2



0, |EF | >
√
2qc

3(EF /
√
2 + qc), −

√
2qc < EF < −qc

EF (3/
√
2− 1) + 2qc, −qc < EF < 0

EF (3/
√
2− 1)− 2qc, 0 < EF < qc

3(EF /
√
2− qc), qc < EF <

√
2qc

(V.48)

where κ±
√
2 = −3, κ±1 = 1 and κ0 = 4, cf. Table 5.1. These AH conductivities are

plotted in Fig. 5.4(b).

Proof of symmetry properties of magnetoconductivities

Proof that magnetoconductivity is even for a multifold Hopf semimetal. For the MHS
models (5.4), the Berry curvature (5.1) is symmetric with respect to zero energy, Ωα =
Ω−α, while the orbital magnetic moment (5.7) is antisymmetric, mα = −m−α. It fol-

lows that both conductivities (1.57b) and (1.57c) are ∼
∑⌊N/2⌋

α=1 (f ′(ϵα) + f ′(−ϵα))Fα,
that is, they are even in EF . Here, Fα is some function independent of EF , and the
flat band for N odd plays no role.

Proof that magnetoconductivity is odd for a Weyl semimetal. For aWeyl semimetal,
or more generally for a multifold chiral topological semimetal, the Berry curva-
ture (2.9) is antisymmetric with respect to zero energy, while the orbital magnetic
moment (2.9) is symmetric. Thus, both conductivities (1.57b) and (1.57c) are ∼
(f ′(ϵα)− f ′(−ϵα)), that is, they are odd in EF .

V.F | Continuum limit of multiband Hopf insulators

Topological phase transitions at ∆ = ±3

The first type of topological phase transitions in the multiband Hopf insulator models
(5.34) occurs for ∆ = −3, where gap closing happens at the Γ point. The continuum

limit of the three-band Hamiltonian hHopf
3 around this point takes the form of a

threefold Hopf semimetal (5.4a) plus a gap term,

hHopf
3,Γ (q) = H+

3 (q) + ∆Γantidiag(1, 0, 1), (V.49)
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where ∆Γ = ∆ + 3. It has eigenvalues ϵα = 0,±ϵ, where ϵ ≡
√
|q|2 +∆2

Γ, and

eigenvectors

|ψ0⟩ =
1

ϵ

(
0,∆−

Γ , q
−
+

)
,

|ψ±⟩ =
1√
2ϵ

(
±ϵ, q++,∆+

Γ

)
,

(V.50)

where qξ± = ξqx ± iqy and ∆±
Γ ≡ ∆Γ ± iqz. Computing the continuum Hopf number

(5.49) using these eigenstates, one finds

χcon(q) ≡ ϵijk Tr

(
Ai∂jAk −

2i

3
AiAjAk

)
= 4∆Γ/ϵ

4 (V.51)

and consequently NHopf
Γ = 1

2sgn(∆Γ). According to Eq. (5.48), the Hopf number
thus changes by δNHopf = 1 across the topological phase transition. Similarly, for the

four-band Hopf insulator hHopf
4 , we have

hHopf
4,Γ (q) = H+

4 (q) + ∆Γantidiag(−a, b, b,−a), (V.52)

with eigenvalues ϵα = cαϵ, cα = α1
2 [a+ b+α2(a− b)] with α = (α1, α2), αi = ±1, and

eigenstates

|ψ±−⟩ =
1√
2ϵ

(
0,±ϵ,∆−

Γ , q
+
−
)
,

|ψ±+⟩ =
1√
2ϵ

(
∓ϵ, 0, q−−,∆+

Γ

)
.

(V.53)

One again finds χcon(q) = 4∆Γ/ϵ
4 and δNHopf = 1. For the five-band insulator hHopf

5 ,
we have

hHopf
5,Γ (q) = H+

5 (q) + ∆Γantidiag(
√
2, 1, 0, 1,

√
2), (V.54)

with eigenvalues ϵα = cαϵ, cα = α1
2 [1+

√
2−α2(1−

√
2)], with α = (α1, α2), α1 = 0,±1,

α2 = ±1, and eigenstates

|ψ0⟩ =
1

ϵ2

(
(q+−)

2,
√
2q−+∆

−
Γ , (∆

−
Γ )

2, 0, 0
)
,

|ψ±−⟩ =
1√
2ϵ2

(
±
√
2q+−∆

+
Γ ,±(q++q

+
− −∆+

Γ∆
−
Γ ),±

√
2q−−∆

−
Γ ,−∆−

Γ ϵ, q
+
−ϵ
)
,

|ψ±+⟩ =
1√
2ϵ2

(
±(∆+

Γ )
2,±

√
2q++∆

+
Γ ,±(q++)

2, q++ϵ,∆
+
Γ ϵ
)
.

(V.55)

From this one obtains χcon(q) = 20∆Γ/ϵ
4, NHopf

Γ = 5
2sgn(∆Γ) and hence δNHopf = 5.

For the phase transition at ∆ = 3, which is characterized by a gap closing at the
R point, one similarly has

hHopf
3,R (q) = −H+

3 (q) + ∆Rantidiag(1, 0, 1) = −hHopf
3,Γ (q,−∆),

hHopf
4,R (q) = −H+

4 (q) + ∆Rantidiag(−a, b, b,−a) = −hHopf
4,Γ (q,−∆),

hHopf
5,R (q) = −H+

5 (q) + ∆Rantidiag(
√
2, 1, 0, 1,

√
2) = −hHopf

5,Γ (q,−∆),

(V.56)

where ∆R = ∆− 3. The change in the Hopf number is thus δNHopf,R = −δNHopf,Γ.
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Topological phase transitions at ∆ = ±1

The second type of topological phase transitions in the models (5.34) occurs for ∆ =
−1, where gap closing happens at the three inequivalent X points. The continuum
limit of the Hamiltonian hHopf

3 around these points takes the forms

hHopf
3,X1(q) = H+

3 (−qx, qy, qz) + ∆Xantidiag(1, 0, 1),

hHopf
3,X2(q) = H+

3 (qx,−qy, qz) + ∆Xantidiag(1, 0, 1),

hHopf
3,X3(q) = H+

3 (qx, qy,−qz) + ∆Xantidiag(1, 0, 1),

(V.57)

where ∆X = ∆+ 1. All of these continuum Hamiltonians have eigenstates such that

χcon(q) = −4∆X/ϵ
4, where ϵ =

√
|q|2 +∆2

X, that is, N
Hopf
Xi = −1

2sgn(∆X). It follows

δNHopf =
∑

i=1,2,3

(
NHopf

Xi (∆X > 0)−NHopf
Xi (∆X < 0)

)
= −3. (V.58)

The same result is found for the four-band Hopf insulator hHopf
4 . For the five-band

model hHopf
5 , the continuum limit around the X points takes the forms

hHopf
5,X1(q) = H+

5 (−qx, qy, qz) + ∆Xantidiag(
√
2, 1, 0, 1,

√
2),

hHopf
5,X2(q) = H+

5 (qx,−qy, qz) + ∆Xantidiag(
√
2, 1, 0, 1,

√
2),

hHopf
5,X3(q) = H+

5 (qx, qy,−qz) + ∆Xantidiag(
√
2, 1, 0, 1,

√
2),

(V.59)

such that each X point contributes χcon(q) = −20∆X/ϵ
4. It follows δNHopf = −15.

Finally, for the transition at ∆ = 1, which is characterized by a gap closing at the
M points of the cubic Brillouin zone, one has

hHopf
N,Mi(q) = −hHopf

N,Xi(q,−∆), (V.60)

where i = 1, 2, 3. The change in the Hopf number is thus δNHopf,M = −δNHopf,X.
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Contexte

Les solides cristallins ont joué un rôle majeur dans les révolutions scientifiques et
industrielles du XIXe siècle, mais une compréhension microscopique approfondie de
leur comportement n’est devenue possible qu’après l’émergence de la théorie de la
mécanique quantique au début du XXe siècle, qui a donné naissance au domaine bien
établi de la physique de l’état solide (Ashcroft and Mermin 1976). À première vue,
décrire quantitativement la physique des solides est un problème à plusieurs corps
très compliqué. Cependant, l’histoire nous a appris qu’“il est possible de considérer
une grande partie de la physique de l’état solide en termes de certaines excitations
élémentaires qui n’interagissent que faiblement entre elles” (Pines 1963). En fonction
des circonstances physiques qui nous intéressent, la description théorique d’un solide
se résume alors à se concentrer sur une certaine excitation élémentaire.

Cette thèse suit principalement l’approche standard qui approxime un solide
comme étant un gaz de Fermi en présence d’un potentiel de réseau périodique. Dans
ce cadre, on s’intéresse aux excitations de particules individuelles qui sont décrites
par la célèbre théorie des bandes des solides (Singleton 2001). Au cours de la seconde
moitié du XXe siècle, la théorie des bandes des solides a été utilisée avec succès pour
construire les structures de bandes (et les surfaces de Fermi) des isolants, des semi-
conducteurs et des métaux, une démarche essentielle qui a servi de base à l’industrie
électronique moderne. Cependant, au-delà de la structure de bandes, il existe des
informations importantes codées dans les états propres de la mécanique quantique
de l’hamiltonien de Bloch. Cela donne lieu à des effets interbande sur les propriétés
observables des cristaux, également appelés effets géométriques quantiques, ou sim-
plement effets géométriques. Ces effets géométriques peuvent également donner lieu à
une physique topologique dans des circonstances appropriées ; l’inclusion de concepts
géométriques et topologiques a conduit à une théorie des bandes étendue, connue
sous le nom de théorie des bandes topologiques. (Hasan and Kane 2010; Qi and Zhang
2011; Bansil et al. 2016; Cayssol and Fuchs 2021). Les matériaux décrits par la théorie
des bandes topologiques sont actuellement au centre des préoccupations des labora-
toires de recherche sur l’état solide du monde entier. En effet, ils abritent une variété
de phénomènes non conventionnels lorsqu’il s’agit de conduire l’électricité, de réagir
aux champs magnétiques, à la pression, aux faisceaux lumineux, et cetera, ce qui est
prometteur pour les futures applications technologiques.

Du point de vue du physicien théorique, il faut noter qu’une grande partie des
progrès réalisés dans la théorie des bandes topologiques peut être attribuée à des
modèles effectifs basés sur l’approximation des liaisons fortes (Simon 2013) ou sur des
théories du continu à basse énergie. Dans le cas le plus simple, les modèles de liaisons
fortes utilisés dans la théorie des bandes topologiques sont des modèles à deux bandes,
car on est souvent principalement intéressé par la physique des bords des bandes de
conduction et de valence (dans le cas des isolants) ou par le croisement des deux
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bandes près de l’énergie de Fermi (dans le cas des semi-métaux). Ces modèles à deux
bandes ont des propriétés simples et bien connues. Parmi les exemples célèbres, citons
les modèles qui ont été développés pour le graphène (Wallace 1947), les semi-métaux
de Weyl (Nielsen and Ninomiya 1983), ou les isolants de Chern (Haldane 1988).

Cependant, ces dernières années, un nombre croissant de systèmes qui nécessitent
d’aller au-delà d’une description à deux bandes ont été mis en évidence, tels que les
réseaux avec des bandes d’énergie plates (Leykam et al. 2018) ou les semi-métaux
topologiques avec de multiples bandes d’énergie qui se croisent simultanément en
certains points de la zone de Brillouin (Bradlyn et al. 2016; Lv et al. 2021). Motivée
par ces développements, cette thèse est consacrée à l’étude de la physique des systèmes
multibandes, c’est-à-dire des systèmes qui impliquent N > 2 bandes d’énergie. En
particulier, elle se concentre sur trois aspects : la géométrie quantique des systèmes
multibandes, la physique des bandes plates dans les systèmes multibandes, et les
propriétés des croisements de plusieures bandes. Ces sujets sont a priori distincts,
mais ils sont aussi intimement liés : la géométrie quantique est fortement renforcée
au voisinage des croisements multibandes, les croisements multibandes sont souvent
accompagnés de bandes plates, et les bandes plates ont des propriétés géométriques
quantiques très particulières.

Organisation du manuscrit et principaux résultats

Principes fondamentaux

Les chapitres 1 et 2 fournissent une introduction aux sujets pertinents pour cette thèse
qui sont pour la plupart connus dans la littérature, ainsi qu’une motivation pour le
travail mené dans cette thèse.

Chapitre 1 – Pour commencer, nous rappelons les aspects fondamentaux de la
théorie des bandes, tels que l’hamiltonien de Bloch et l’approche des liaisons fortes
(Section 1.1). Nous introduisons ensuite le thème principal de cette thèse, c’est-à-
dire le concept de géométrie quantique, ainsi que les principaux objets géométriques
d’intérêt, à savoir la métrique quantique et la courbure de Berry (Section 1.2). En-
suite, nous traitons de la connexion entre la géométrie quantique et la topologie, et
mentionnons un certain nombre d’invariants topologiques qui seront importants par
la suite (Section 1.3). Ces concepts sont illustrés par une discussion des systèmes 2D
allant du graphène aux isolants de Chern (Section 1.4). Pour clore le chapitre, nous
voulons illustrer le fait que la géométrie et la topologie quantiques sont omniprésentes
dans la réponse physique des systèmes cristallins, et nous présentons un certain nom-
bre d’exemples pertinents allant des états de bord topologiques au rôle de la géométrie
quantique dans le transport (Section 1.5).

Chapitre 2 – Ce chapitre est consacré à la motivation de l’étude des systèmes
multibandes, c’est-à-dire des systèmes comportant plus de deux bandes. Nous don-
nons d’abord une motivation physique basée sur une sélection de systèmes multiban-
des qui ont été largement étudiés récemment, à savoir les réseaux de bandes plates
en 2D (Section 2.1) et les croisements de bandes multiples en 3D (Section 2.2). Nous
abordons ces deux types de systèmes au niveau des modèles simples et soulignons
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leur importance pour les expériences. Nous présentons ensuite une motivation plus
mathématique. Elle s’inspire de la riche structure mathématique de l’algèbre su(N)
qui est à la base des hamiltoniens multibandes (Section 2.3), et de la complexité
correspondante de l’espace interne des paramètres (Section 2.4).

Résultats originaux

Après cette préparation, le matériel original qui constitue le cœur de cette thèse est
présenté dans les chapitres 3–5, comme décrit ci-après.

Chapitre 3 – Dans ce court chapitre, nous développons un formalisme assez
général qui exprime les observables dans les systèmes multibandes en termes de
vecteurs de Bloch ; ceux-ci sont une représentation vectorielle des projecteurs propres
de l’hamiltonien. Après une brève introduction (Section 3.1), nous soutenons que ces
vecteurs de Bloch présentent plusieurs avantages par rapport à l’approche convention-
nelle des observables basée sur les états propres (Section 3.2). Nous expliquons ensuite
comment écrire n’importe quelle observable dans un système multibande en termes
de vecteurs de Bloch, et illustrons ces idées par des exemples simples, notamment le
tenseur géométrique quantique et l’aimantation orbitale (Section 3.3). Ensuite, nous
discutons comment les projecteurs propres et les vecteurs de Bloch peuvent être reliés
de manière unique à l’hamiltonien, ce qui permet (au moins en principe) de calculer
n’importe quelle observable sans avoir besoin de construire des états propres d’énergie
(Section 3.4). En particulier, nous arrivons ainsi à une généralisation multibande de
la formule bien connue de la ”densité de skyrmion” pour la courbure de Berry d’un
système à deux bandes. Pour clore le chapitre, nous appliquons le formalisme à un
exemple pédagogique (Section 3.5) et fournissons un bref résumé (Section 3.6).

Principaux résultats du chapitre 3 – Pour un système quantique décrit par
une matrice hamiltonienne paramétrique (2.24), les observables sont conventionnelle-
ment construites à partir d’éléments de matrice Oαβ qui nécessitent la connaissance
explicite des états propres d’énergie. Nous soutenons ici qu’il peut être intéressant
de se débarrasser des états propres et de viser une reformulation (3.19) en termes de
vecteurs de Bloch. Une telle approche des vecteurs de Bloch est motivée par le fait que
les vecteurs de Bloch (comme les projecteurs propres correspondants) offrent plusieurs
avantages par rapport aux états propres, à savoir qu’ils sont invariants de jauge, non-
singuliers et possèdent une paramétrisation unique, voir Tableau 3.1. Une formulation
en fonction des vecteurs de Bloch peut être effectuée pour n’importe quelle observable,
comme le chapitre illustre à l’aide d’exemples simples tels que le tenseur géométrique
quantique et l’aimantation orbitale, voir en particulier les équations (3.10) et (3.13).

Au niveau conceptuel, la forme du vecteur de Bloch (3.19) d’une quantité donnée
rend explicite le caractère intrabande ou interbande des contributions individuelles,
puisque les vecteurs de Bloch sont identiquement nuls dans un système à une bande
(ou dans un système multibande avec des bandes trivialement découplées). De plus, on
peut tirer la conclusion intéressante que toute observable peut (au moins en principe)
être calculée en utilisant uniquement le vecteur hamiltonien et les valeurs propres de
l’énergie, en accord avec les résultats récents de Pozo and Juan (2020). Cela devient
évident lorsqu’on combine les équations (3.19) et (3.32). Les expressions résultantes
χ = f(εα,h) sont extrêmement pratiques pour le calcul explicite de la courbure de
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Berry et du moment magnétique orbital. Nous soulignons également à nouveau que
nous avons généralisé l’expression bien connue de la courbure de Berry (2.41) à un
nombre de bandes N arbitraire, voir la section 3.4.3. Il est souhaitable d’étendre
les idées exposées ici à des quantités plus compliquées que le tenseur géometrique et
l’aimantation orbitale, et d’obtenir des expressions basées sur le vecteur de Bloch, par
exemple pour les magnétoconductivités [au-delà du résultat de Boltzmann (1.57)] ou
la susceptibilité magnétique orbitale.

Nous notons aussi que la validité du formalisme développé ici va au-delà du cas
des matrices hamiltoniennes hermitiennes. En particulier, les expressions clés (3.29)
pour le projecteur propre et (3.32) pour le vecteur de Bloch restent valides pour les
systèmes où la condition d’herméticité est relâchée (Bender 2007; Brody 2013).

Chapitre 4 – Dans ce chapitre, nous abordons le domaine des bandes plates.
Après une introduction donnant une vue d’ensemble des travaux antérieurs connexes
(Section 4.1), nous résumons certaines bases de la physique des bandes plates, en
particulier la notion importante d’un état localisé compact (Section 4.2). Sur la base de
la connaissance de tels états, nous développons une méthode puissante pour construire
des modèles de liaisons fortes à bande plate (Section 4.3). Cette méthode fournit
(une infinité) de modèles à bande plate sur n’importe quel réseau périodique, dans
n’importe quelle dimension spatiale et avec n’importe quel nombre de bandes. De
plus, comme détaillé dans les sections 4.4 et 4.5, la méthode permet un contrôle
considérable de l’existence et du caractère des croisements de bandes multiples à
l’énergie de la bande plate, et peut être considérée comme un nouveau schéma de
classification des bandes plates. Après quelques remarques supplémentaires sur les
particularités des systèmes à bandes plates ainsi obtenus (Section 4.6), et après avoir
mis en évidence certaines perspectives intéressantes telles que la géométrie quantique
des croisements multiples ou la construction de bandes plates magnétiques (Section
4.7), le chapitre se termine par un résumé dans la Section 4.8.

Principaux résultats du chapitre 4 – On sait depuis longtemps que, pour tout
hamiltonien à liaisons fortes H à bande plate sur un réseau périodique, il est possible
de trouver un nombre macroscopique d’états localisés compacts (CLSs) comme états
propres de H. Inversement, dans le chapitre 4, nous avons montré que pour tout CLS
donné |ΨRC

CLS⟩ sur n’importe quel réseau périodique, il est possible de concevoir une ou
plusieurs familles de hamiltoniens à liaisons fortesH pour lesquels ce CLS et toutes ses
copies sont des états propres. Nous avons fourni une procédure précise pour trouver
de tels hamiltoniens, qui sont des modèles à bande plate par construction. Puisque
l’on peut construire une infinité de CLSs différents sur n’importe quel réseau, ceci
représente un schéma de construction de bande plate efficace : il produit une infinité
de modèles à bande plate sur n’importe quel réseau périodique.

Cette procédure s’effectue le plus commodément dans l’espace réciproque et repose
sur la correspondance biunivoque entre un CLS donné |ΨRC

CLS⟩, voir Eq. (4.1), et sa
transformée de Fourier, le BCLS |f(k)⟩, voir Eq. (4.6). Les hamiltoniens de Bloch à
bande plate H(k) peuvent être commodément conçus comme une fonction du BCLS,
à partir duquel le modèle H dans l’espace réel est naturellement déduit. Pour tout
CLS de départ arbitrairement conçu, il est toujours possible de construire un modèle
à bande plate H(k) comme une fonction quadratique du BCLS. Cet hamiltonien
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quadratique générique, qui fonctionne pour un nombre quelconque de bandes N ≥ 2,
est fourni dans l’équation (4.43) et donne lieu à des modèles avec des points de contact
quadratiques à bandes multiples à l’énergie de la bande plate. En revanche, si le BCLS
de départ possède certaines propriétés particulières, il peut être utilisé non seulement
pour construire des modèles quadratiques, mais aussi pour construire un hamiltonien
de Bloch H(k) comme une fonction linéaire du BCLS. Un tel hamiltonien linéaire
générique peut être construit à l’aide de l’équation (4.48) pour tout N ≥ 3 donné, ou
en utilisant une superposition (4.83) de blocs 3× 3. Il fournit des modèles à liaisons
fortes avec des croisements linéaires de plusieures bandes à l’énergie de la bande plate.

Bien que notre méthode permette de construire une infinité de modèles à bande
plate, et qu’elle capture la plupart des modèles connus dans la littérature, elle peut
être généralisée de plusieurs façons. Par exemple, une version plus générale de
l’hamiltonien (4.43) se lit comme suit : Hk =

∑
α,β>α

∑
γ,δ>γ λαβγδ|f

αβ
k ⟩⟨fγδk |, où

λ∗αβγδ = λγδαβ. De plus, certains systèmes à bande plate importants, tels que le
modèle standard sur le réseau de Kagome, ne font pas partie de notre schéma de
classification.

Au-delà de la simple construction de bandes plates, nous avons présenté plusieurs
perspectives intéressantes. Premièrement, nous avons montré que la géométrie quan-
tique des croisements de bandes linéaires à trois bandes en 3D est essentiellement
régie par un dipôle de Berry si la symétrie chirale est imposée. Cela contraste avec les
croisements linéaires à trois bandes plus connus de type pseudospin-1, qui ont exacte-
ment le même spectre d’énergie mais une géométrie quantique régie par une symétrie
CP et un monopole de Berry. Les propriétés physiques des croisements de dipôles
de Berry sont le sujet principal du chapitre 5. Il serait certainement intéressant de
mener une enquête plus détaillée sur les différents types de croisements multiples qui
peuvent être obtenus par notre méthode, et d’établir une sorte de tableau de clas-
sification des propriétés géométriques quantiques en termes de dimension spatiale,
de nombre de bandes impliquées dans le croisement, et de symétries. Deuxièmement,
nous avons fait valoir qu’il est une voie prometteuse de créer des modèles magnétiques
à bande plate à partir de CLSs avec texture de spin. Leurs propriétés géométriques
magnétiques et quantiques sont un terrain assez inexploré.

D’autres perspectives peuvent être envisagées. Par exemple, nous n’avons utilisé
que des états strictement localisés comme point de départ pour nos hamiltoniens, afin
d’obtenir des modèles à liaisons fortes à courte portée avec une bande exactement
plate. Ceci implique que toutes les bandes plates présentées dans ce travail ont un
premier nombre de Chern C0 = 0. Il pourrait être intéressant d’utiliser notre schéma
de construction en supposant que les états propres de la bande plate pourraient main-
tenant être représentés par des états localisés en loi de puissance au lieu de CLS - en
particulier en ce qui concerne un éventuel caractère topologique des bandes plates.

Chapitre 5 – Ce dernier chapitre se concentre sur les semi-métaux en 3D avec des
croisements de bandes multiples. Alors que les semi-métaux topologiques largement
connus sont basés sur des singularités dans l’espace des moments avec une structure de
monopole de Berry, les croisements multibandes en 3D peuvent également présenter
des propriétés géométriques quantiques plus exotiques, comme expliqué dans les sec-
tions 5.1 et 5.2. Pour illustrer cela, nous présentons une classe de semi-métaux ayant
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la propriété particulière que chaque point de croisement porte un dipôle de Berry.
Nous les appelons semi-métaux de Hopf multiples, et nous étudions leurs propriétés
physiques à la fois au niveau du continu (Section 5.3) et des Hamiltoniens à liaisons
fortes (Section 5.4). En particulier, nous dévoilons des signatures claires du dipôle
de Berry dans les niveaux de Landau ainsi que dans l’effet Hall anormal et dans la
magnétoconductivité; ces effets sont similaires mais aussi fondamentalement différents
de ce qui se passe dans les semi-métaux de Weyl. Nous établissons ensuite un lien en-
tre les semi-métaux de Hopf multiples et une classe particulière d’isolants topologiques
connus sous le nom d’isolants de Hopf (Section 5.5). Dans ce cadre, nous introduisons
également les premiers modèles connus pour les isolants de Hopf multibandes. Après
avoir mentionné quelques perspectives intrigantes dans la section 5.6 (telles que les
liens étroits avec le modèle de Haldane et les monopoles tensoriels 4D), le chapitre se
termine à nouveau par un bref résumé (Section 5.7).

Principaux résultats du chapitre 5 – Dans ce chapitre, nous avons démontré
que les croisements de bandes linéaires en 3D présentent de riches propriétés physiques
si plus de deux bandes se croisent en même temps. En particulier, au-delà des
monopoles de Berry bien connus des semi-métaux de Weyl (Armitage et al. 2018)
et des semi-métaux multiples chiraux (Lv et al. 2021), d’autres types de croisements
de bandes avec une structure géométrique quantique plus exotique sont possibles.
Nous nous sommes concentrés sur le cas où chaque point de croisement agit comme
un dipôle de Berry, mais des multipôles de Berry plus généraux sont en principe
possibles.

Pour étudier en détail les croisements linéaires de N bandes avec un dipôle de
Berry, nous avons introduit plusieurs modèles sur réseau dont la théorie de basse
énergie est de la forme (5.4), que nous appelons les semi-métaux de Hopf multiples.
Les modèles de réseau peuvent être distingués selon qu’ils présentent un nombre pair
(semi-métal de Hopf de vallée) ou impair (semi-métal de Hopf topologique) de dipôles
de Berry dans la zone de Brillouin. Pour les semi-métaux de Hopf topologiques,
il existe des signatures claires du dipôle de Berry dans l’effet Hall anormal et les
magnétoconductivités. On s’attend à ce que cela s’étende à un grand nombre d’autres
quantités physiques, par exemple la conductivité optique (Habe 2022). Pour les semi-
métaux de Hopf de vallée, l’effet Hall anormal et les magnétoconductivités s’annulent,
mais l’effet du dipôle de Berry est toujours clairement visible dans le spectre des
niveaux de Landau. Il serait intéressant d’étudier des réponses pour lesquelles les
contributions des différentes vallées ne s’annulent pas, en particulier si l’on considère
le fait que les modèles de réseau pour les semi-métaux de Hopf de vallée sont très
simples et assez proches du modèle du graphène.

Nous avons également introduit deux classes différentes de modèles sur réseau pour
les isolants de Hopf multibandes (Lapierre et al. 2021). La première classe est une
simple généralisation multibande du modèle de Moore-Ran-Wen (Moore et al. 2008),
voir l’équation (5.40). Plus important encore, nous avons introduit une deuxième
classe d’isolants de Hopf multibandes (5.34), qui devient exactement équivalente aux
semi-métaux de Hopf (5.26) aux transitions de phase topologiques. L’un des avantages
considérables de ces modèles est qu’ils ne nécessitent que des sauts entre les voisins
les plus proches, évitant ainsi les sauts compliqués de seconds voisins des isolants de
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Hopf à deux bandes (Moore et al. 2008; Nelson et al. 2022). Ces modèles pourraient
constituer une plateforme fertile pour tester les prédictions théoriques concernant la
correspondance bord-volume des isolants topologiques délicats.

De nombreuses questions fondamentales demeurent quant aux processus de con-
version entre les différents systèmes abordés ici. Pour être plus précis, une étude
systématique des diagrammes de phase qui peuvent être obtenus par le gapping ou
la fusion d’un ou plusieurs dipôles et/ou monopôles de Berry s’impose. De plus, il
semble y avoir des connexions intéressantes avec des systèmes de différentes dimen-
sions spatiales. Nous avons souligné les analogies avec le modèle de Haldane en 2D
ainsi qu’avec les semi-métaux en 4D avec des monopoles tensoriels. Il semble très in-
triguant de développer plus en détail les hiérarchies dimensionnelles correspondantes,
comme cela a été fait il y a des années pour les isolants topologiques stables et les
supraconducteurs (Ryu et al. 2010).

D’un point de vue expérimental, l’existence des semi-métaux de Hopf de vallée,
en particulier les modèles de type graphène (5.22), semble possible. Pour progresser
dans ce domaine, il faut déterminer les groupes d’espace de ces modèles et vérifier
dans quels matériaux ils pourraient apparâıtre. S’ils sont réalisés dans un cristal,
les croisements de dipôles de Berry pourraient potentiellement être sondés via la
dépendance particulière et fortement dépendante de la vallée des niveaux de Landau
sur l’orientation du champ magnétique (Fig. 5.3). Les courants de Hall anormaux
et les magnétocourants linéaires induits par les dipôles de Berry ont des symétries
opposées à celles d’une paire de nœuds de Weyl (Fig. 5.5), qui pourraient être sondés
en faisant varier la densité d’électrons près de la moitié du remplissage. Une autre
voie implique des systèmes artificiels tels que des atomes ultrafroids, des cristaux
photoniques ou des circuits supraconducteurs. Ceux-ci ont été suggérés et utilisés à
de nombreuses reprises pour réaliser des phases semi-métalliques avec des croisements
à deux et plusieurs bandes (Lu et al. 2015; Chen et al. 2016; Riwar et al. 2016; Wang
et al. 2017; Zhu et al. 2017; Zhang et al. 2018; Tan et al. 2018; Fulga et al. 2018;
Hu et al. 2018). De plus, le croisement du monopole tensoriel (5.65), qui est très
similaire à l’équation (5.4a), a récemment été observé expérimentalement en utilisant
un transmon dans une cavité (Tan et al. 2021).

Enfin, nous notons qu’il existe une activité considérable concernant l’observation
des nombres de Hopf dans les isolants à deux bandes (Deng et al. 2017; Ünal et
al. 2019; Schuster et al. 2021a; Schuster et al. 2021b). Ces propositions pourraient
potentiellement être étendues aux isolants de Hopf multibandes (5.34) et (5.40). Plus

particulièrement, pour l’isolant de Hopf à trois bandes hHopf
3 (k) (considéré comme

un isolant topologique chiral), il existe déjà non seulement une proposition basée sur
des atomes ultrafroids (Wang et al. 2014), mais aussi une réalisation expérimentale
revendiquée basée sur l’analyse par apprentissage automatique d’un centre de vacance
d’azote dans le diamant (Lian et al. 2019). Dans ces expériences, le semi-métal de Hopf
topologique (5.26) est atteint à des valeurs de paramètres critiques correspondant à
des transitions de phase topologiques.
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