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Résumé

La simulation efficace et de haute qualité de l’éclairage d’environnements 3D a de nom-
breuses applications : le rendu en temps réel permet des interactions transparentes dans
les jeux vidéo et les applications de réalité virtuelle, tandis que le rendu interactif est util-
isé par les créateurs de contenu pour évaluer l’aspect d’une scène en quelques secondes, et
l’affiner progressivement avant de passer au rendu hors ligne. Ces applications modélisent
une géométrie 3D très détaillée où chaque point de la géométrie reçoit de la lumière de
toutes les directions. Une partie de l’énergie lumineuse est absorbée par le matériau et
une autre partie est réémise potentiellement dans toutes les directions. En conséquence,
le champ de radiance reçu ou émis en chaque point de la scène est une fonction sphérique.
Ainsi, la simulation de l’éclairage introduit un besoin de caractériser efficacement ces fonc-
tions sphériques.

Les harmoniques sphériques répondent à ce besoin en réduisant une fonction sphérique
quelconque à un vecteur de coefficients, où chaque coefficient est rattaché à une fonc-
tion de base des harmoniques sphériques. Les harmoniques sphériques sont analogues aux
séries de Fourier, décomposition en sinus et cosinus, mais définies sur la sphère. Ainsi
les harmoniques sphériques décomposent le signal en fréquence et jouent le rôle d’un fil-
tre passe-bas dont la fréquence de coupure dépend du nombre d’harmoniques sphériques
impliquées. Par construction, les harmoniques sphériques sont définies sur le corps des
complexes. Cependant, cette thèse se concentre sur une utilisation efficace de leurs ho-
mologues réelles.

En informatique graphique, les harmoniques sphériques sont historiquement utilisées
pour stocker efficacement la radiance reçue en tout point de la scène. L’orthogonalité des
fonctions de base permet notamment un calcul efficace de la radiance sortante. Néan-
moins, le calcul des coefficients d’harmoniques sphériques représentant une radiance quel-
conque est coûteux et ne peut pas être réalisé en chaque point de la scène et pour chaque
image pour le temps réel. Cela limite l’utilisation des harmoniques sphériques à des scènes
statiques, dont la géométrie de la scène est généralement fixe et à des sources de lumières
statiques elles-aussi, ou à des approximations grossières des coefficients d’harmoniques
sphériques représentant le champ de radiance. Ainsi, la première contribution de cette
thèse est un calcul efficace des coefficients d’harmoniques sphériques représentant le champ
de radiance produit par des lumières sphériques, une dizaine de lumières peuvent-être util-
isées en temps réel. La méthode est étendue afin de calculer le gradient spatial des coeffi-
cients d’harmoniques sphériques. Le gradient permet de ne calculer les coefficients que sur
un ensemble parcimonieux de points tout en ayant une très bonne qualité d’interpolation
des coefficients en tout point de la scène. Cela permet d’utiliser des centaines de lu-
mières sphériques en temps réel. Le calcul du gradient des coefficients repose notamment
sur une méthode efficace de calcul du gradient des fonctions de base des harmoniques
sphériques proposée aussi dans cette thèse. Néanmoins, calculer efficacement les coeffi-
cients des fonctions de bases représentant le champ de radiance entrant n’est pas suffisant
pour supporter des scènes à la géométrie dynamique. À cette fin, nous proposons un nou-
veau cadre de travail permettant de calculer efficacement la radiance sortante de n’importe
quel point de la scène, en identifiant et en factorisant, notamment, certaines redondances
liées aux harmoniques sphériques qui apparaissent dans le calcul de l’éclairage. Enfin, de
nombreuses méthodes reposent sur des lumières virtuelles distribuées dans la scène selon
l’éclairage primaire pour générer l’éclairage global. Nous proposons un nouveau modèle
de lumières virtuelles basé sur le travail effectué pour les lumières sphériques.
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Abstract

Efficient and high-quality simulation of lighting in 3D environments has many applica-
tions: real-time rendering enables seamless interactions in video games and virtual reality
applications, while interactive rendering is used by content creators to assess the appear-
ance of a scene in seconds, and gradually refine it before moving to offline rendering. These
applications model highly detailed 3D geometry where each point in the geometry receives
light from all directions. Some of the light energy is absorbed by the material and some is
potentially re-emitted in all directions. Consequently, the radiance field received or emit-
ted at each point of the scene is a spherical function. Thus, lighting simulation introduces
a need to efficiently characterize these spherical functions.

Spherical harmonics address this need by reducing any spherical function to a vector
of coefficients, where each coefficient is attached to a spherical harmonic basis function.
Spherical harmonics are analogous to Fourier series, decomposition into sine and cosine,
but defined on the sphere. Thus, the spherical harmonics decompose the signal in fre-
quency and play the role of a low-pass filter whose cut-off frequency depends on the num-
ber of spherical harmonics involved. By construction, spherical harmonics are defined in
a complex form. However, this thesis focuses on an efficient use of their real counterparts.

In computer graphics, spherical harmonics are historically used to efficiently store the
radiance received at any point in the scene. The orthogonality of the basis functions al-
lows an efficient computation of the outgoing radiance. Nevertheless, the computation of
the spherical harmonics coefficients representing any radiance is expensive and cannot be
performed at each point of the scene and for each image in real time. This limits the use of
spherical harmonics to static scenes, with generally fixed scene geometry and static light
sources, or to coarse approximations of the spherical harmonic coefficients representing
the radiance field. Thus, the first contribution of this thesis is an efficient computation
of the spherical harmonic coefficients representing the radiance field produced by spher-
ical lights, a dozen lights can be used in real time. The method is extended to compute
the spatial gradient of the spherical harmonic coefficients. The gradient allows comput-
ing the coefficients only on a parsimonious set of points while having a very good quality
of interpolation of the coefficients in any point of the scene. This allows using hundreds
of spherical lights in real time. The computation of the gradient of the coefficients relies
in particular on an efficient calculation method of the gradient of the spherical harmon-
ics basis function also proposed in this thesis. Nevertheless, efficiently computing the
spherical harmonic coefficients representing the incoming radiance field is not sufficient
to support scenes with dynamic geometry. To this end, we propose a new framework to
efficiently compute the outgoing radiance of any point in the scene, by identifying and
factoring some redundancies related to the spherical harmonics that appear in the final
lighting computation. Finally, numerous methods rely on virtual lights distributed in the
scene according to the primary lighting to generate the global lighting. We propose a new
model of virtual lights based on the work done for spherical lights.
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1 Introduction

Efficiency is a requirement for many applications in computer graphics. The efficiency in
rendering spans 3 categories, real-time, interactive time and offline. Real-time corresponds
to a computation time of the order of a few milliseconds, thus allowing a fast display fre-
quency, as required in video games generally aiming to more than 60 Frames Per Second
(FPS). The interactive time is of the order of less than a few seconds allowing a finer quality
of rendering while the refresh rate is sufficient to interact efficiently, Computer-Aided De-
sign (CAD) generally aim this category. Beyond that, it’s called offline rendering, allowing
maximum quality like the one wanted for the final film images. The process of film creation
generally relies on interactive methods to setup the scenes and ultimately produce the final
image over several dozen hours with offline rendering. Efficient rendering is synonymous

Figure 1.1: From the dusty garage in Call of duty: Modern Warfare [Inf19, SSS+20] (top left) to
the subtle misty exterior in The Last of Us Part II [Nau20] (top right) or God of war [SIE18] (bottom
left), as well as the highly specular environments of Mirror’s Edge Catalyst [DIC16] (bottom right),
the needs to simulate complex light transports efficiently are very diverse.
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Figure 1.2: From the large luminous landscapes of Red Dead Redemption II [Roc18] (left) to the
small dark caves of Elden Ring [Fro22] (right), the scale of the light transports may be very different.

with performance, in terms of number of operations but also in terms of organization of
these operations to optimize their execution according to the hardware used. However,
the notion of efficiency must also be crossed with the notion of quality. Indeed, offline
rendering methods are often based on stochastic processes that need iteration to converge
towards the final result. Thus, these methods are generally not suitable for rendering in
video games since they tend to create noise until convergence is reached.

In addition, the need for efficiency is always growing. On the one hand, because of the
use of 3D scenes that are more and more complex, in terms of their geometry but also
because of the complexity of the light transports present in the scene. And on the other
hand, the needed resolutions of the images also increases, increasing de facto the number
of pixels to be computed. Also, some screens are not any more limited to 60 fps, going to
240 fps and even more. Thus, applications, such as competitive video games, require such
efficiency. Moreover, why use costly methods that take several hours to produce an image if
methods that run for only a few milliseconds produce a rendering with comparable quality.
Especially in a context where energy saving is becoming a crucial point.

The key to efficiency in rendering is an adapted characterization of the light transport in
a 3D scene. It is the variety of possible scene configurations that make this problem partic-
ularly complex. Thus, some rendering methods are only adapted to specific configurations
(fog, smoke, water . . . ). The multiplication of specific method makes them particularly dif-
ficult to use without a thorough knowledge of the domain. In contrast, the methods pro-
posed in this thesis are not specific to any particular configuration. They can be used from

Figure 1.3: Cult of the Lamb [Mas22] (left) and Card Shark [Ner22] (right) have renderings that are
inspired by the laws of physics but modify them for artistic or scenaristic purposes. Such renderings
are not the main focus of this thesis but can benefit from the work it proposes.
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Figure 1.4: Halo 3 [Bun07, CL08] is one of the first notable game to deploy spherical harmonics
rendering technique.

indoor to outdoor scenes (Figure 1.1). As well as from large luminous landscapes to small
dark caves (Figure 1.2). This thesis focuses on physically realistic rendering, rendering
approaches that are inspired by physics but modify its behavior for artistic or scenaristic
purposes (Figure 1.3). Thus, these rendering approaches are not the core of this thesis but
can be inspired by this thesis to propose original content.

1.1 Spherical harmonics rendering
It is in this context of efficiency that the spherical harmonics (SH) have taken all their

meaning in computer graphics. SH are orthogonal basis functions allowing to approxi-
mate any spherical function with a vector of coefficients. Each coefficient being attached
to one SH. The orthogonality of the basis functions makes their use particularly interest-
ing for rendering in computer graphics, we will see the mathematical reasons in Chapter 2.
Moreover, the decomposition of a signal into SH is a frequency decomposition. Thus, the
approximation of the decomposition increases in frequency when more SH are taken into
account, thus increasing (quadratically) the size of the vector of coefficients. Any signal can
be accurately represented because there is an infinite number of SH allowing to go up to any
frequency, with an appropriate vector size. However, if the number of SH used is too small
to represent the signal accurately, artifacts, analogous to the Gibbs phenomenon, appear that
must be handled carefully. The SH, being a complete basis, encode the signal globally and
thus do not to encode it only locally. Due to this property, diffuse lighting is particularly ef-
ficient to compute with SH, requiring only a few coefficients (9). It becomes more problem-
atic for specular transport which requires a large number of coefficients, ranging from 25
for low specularity to several hundred coefficients for highly specular surfaces. Thanks to
these properties, spherical harmonics were used very early in computer graphics [CMS87].
However, their most notable application come a little later with the method of Precomputed
Radiance Transfer (PRT) [SKS02]. In this method, the spherical harmonics encode the light
transport at each shaded points. The computation of the lighting is fast for diffuse surface
but becomes expensive when specular surfaces are involved because of the number of SH
needed. Nevertheless, it is especially the storage of the coefficients which becomes prob-
lematic, indeed the initial method stores the coefficients at each vertex of the mesh of the
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Figure 1.5: The cities at night of Cyberpunk 2077 [CD 20] (left) and Stray [Blu22] (right) have a
special atmosphere with their hundred of area lights.

scene, hence the storage becomes intractable with the actual 3D scenes with millions of
vertices.

The initial formulation of PRT fixes the geometry of the scene as well as the materials
at each vertex of the mesh. Multiple improvements have been proposed to tackle these
limitations and a more in-depth introduction to the mathematics of spherical harmonics
and their use in computer graphics is given in Chapter 2. In contrast, the work proposed
in this thesis do not store any costly vector of coefficients to enable fully dynamics scenes
(viewpoint, light, geometry and material) and in particular, takes advantage of the numerous
recursive properties of the spherical harmonics to efficiently compute the SH coefficients
encoding the light, where the length of the vector is arbitrary fixed. Halo 3 is one of the first
notable video games using spherical harmonics rendering (Figure 1.4). Despite their draw-
backs, they are commonly used in today’s games in particular to simulate the low frequency
global illumination on dynamic objects [SIE18, Nau20, Bli22].

1.2 Applications and rendering techniques
Multiple configurations of 3D scenes and associated rendering techniques can be con-

sidered. Thus, this section gives a quick overview of the possible applications and render-
ing techniques considered in this thesis.

The high performance rendering context takes generally advantage of simple light prim-
itives without areas, such as point lights. The light is emitted at a single point and thus light

Figure 1.6: In video games, it is not rare to find exploration phases where the only source of
lighting is a flashlight that the player controls. These situations appear in The Last of Us Part
II [Nau20, Dog20] (left) and Uncharted 4: A Thief’s End [Nau16] (right) where a special care is
taken to the global illumination for an optimal immersion.
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received at any other point corresponds to a single direction. When using area light, the
light is received in a measurable set of directions, which makes them more difficult to use
efficiently. However, scene configurations based on this kind of light are numerous, e.g.
the use of neon or billboard lights for urban night scenes is common (Figure 1.5). The mul-
tiplication of these light sources makes them more complex to implement in an interactive
environment. Hence, in a first time, this thesis addresses a solution to simulate the direct
lighting from a few dozen to a few hundred of spherical lights with real-time performance.

Real-time lighting algorithms are generally divided into two categories. One bounce
illumination, where only the lighting of the primary sources of light is computed and the
global illumination also computing the many bounces of lights that may occur in the scene.
To generate the indirect lighting, a classically used method relies on the use of virtual
sources, traditionally a set of Virtual Point Lights (VPL) distributed at the surface of the
scene to capture the incident lighting and redistribute it to the shaded points visible to the
camera. Thus, the indirect lighting is converted into a direct lighting problem with many
virtual sources. These methods are classically used to simulate the global lighting produced
by a flashlight because the VPLs are straightforward to distribute at the first light bounce
(Figure 1.6). However, we will see in Chapter 5 that the gathering of the VPL lighting is not
straightforward and must be done cautiously.

Another method reducing the complexity of the direct or indirect lighting computation
is based on a set of probes distributed in the volume of the scene. These probes capture the
illumination which is then interpolated at each shaded points within the volume covered by
the probes. So instead of computing the lighting at each point of the scene, the lighting is
computed only at a reduced number of points corresponding to the position of the probes.
The efficiency of this method makes it particularly popular in competitive video games to
generate the global lighting on dynamic objects (Figure 1.7).

So far, we have shown that the use of spherical harmonics, VPLs and probes are very com-
mon in video games, nevertheless film design and CAD also employ this kind of techniques
(Figure 1.8). The work on global illumination proposed in this thesis seeks to efficiently
combine the use of spherical harmonics with the VPL and also with the probes methods.
In particular by seeking to take advantage of the work proposed on spherical lights.

Figure 1.7: For dynamic object, global illumination in Tom Clancy’s The Division [Mas16] (left)
and Overwatch 2 [Bli22] (right) is captured by a set of probes, represented by white spheres, and the
illumination is interpolated between a subset of probes closes to the shading point.



6 Chapter 1 ● Introduction

Figure 1.8: Rendering techniques discussed in this thesis are not only applied on video games
but also for movies. The Na’vi from Avatar [Cam09] (left) is lighted with a spherical harmonics
based method. Davy Jones from Pirates of the Caribbean: Dead Man’s Chest [Ver06,Chr08] (right)
is lighted with a point-based global illumination. The light emitted by the points is stored using
spherical harmonics.

1.3 Organization of this thesis and overview of the contributions
Before reviewing the literature on the use of spherical harmonics for rendering, it is

necessary to introduce the main motivations for their use in computer graphics as well as
to present the mathematical background of spherical harmonics (Chapter 2).

One of the major difficulties in using spherical harmonics for dynamic scenes is the on-
the-fly SH projection of the radiance field to any illuminated point. Chapter 3 presents
three distinct contributions enhancing the efficiency of the projection on spherical har-
monics for spherical lights. The first contribution consists in an analytical and recursive
computation of the projection of the radiance field produced by spherical light based on
an efficient evaluation of the spherical harmonics. The second contribution is an analyt-
ical derivation of the evaluation of the spherical harmonics basis functions allowing to
propose in a third contribution an analytical and recursive computation of the gradient of
the projection of the radiance field produced by spherical light. We demonstrate the ef-
ficiency of this third contribution by computing the SH projection of the radiance field,
with the gradient of the SH coefficients, only on a parsimonious subset of points volu-
metrically distributed in the scene. The gradient allows to interpolate accurately the SH
coefficients representing the radiance field at each shading points. These contributions
are motivated by recent works proposing similar contributions but adapted to polygonal
lights [WR18, WCZR20].

However, the lighting that we perceive in a point is not simply the field of radiance that
the point receives, but the result of the integral between the radiance field and the ma-
terial on which the point is located. Depending on the use case, e.g. when the geometry
of the scene is static, the convolution by spherical harmonics is straightforward to com-
pute once the radiance field is projected onto the spherical harmonics. We designed a new
framework to efficiently compute the convolution for dynamic scenes and with the use of
materials commonly used in computer graphics that separates the diffuse and specular con-
tribution (Chapter 4). Moreover, our methods for projecting the radiance field produced by
spherical lights being more efficient than the proposed work for polygonal lights, we pro-
pose a method to approximate the projection of the radiance field produced by polygonal
lights using our methods presented in the previous chapter.

Finally, Chapter 5 focuses on global lighting by combining the use of spherical harmonics
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with point-based global lighting. We propose a new type of virtual source, called Harmon-
ics Virtual Light (HVL), based on the methods of efficient projection of the radiance field
produced by spherical lights proposed in Chapter 3. We also show that the combination
of VPL and spherical harmonics can be particularly beneficial to efficiently compute the
global radiance field received by probes volumetrically distributed in the scene. In order
to introduce the global illumination methods used in this chapter, an overview of virtual
lights and probe methods is presented at the beginning of this chapter.

1.4 Main results and publications
The work of this thesis has been presented in four distinct publications:

Projection efficace de lumières sphériques sur les harmoniques sphériques.
Pierre Mézières and Mathias Paulin.
Journées Françaises d’Informatique Graphique 2020. [MP20]

å National publication presenting an efficient SH projection of the radiance field pro-
duced by spherical lights (Section 3.1).

Efficient Spherical Harmonic Shading for Separable BRDF.
Pierre Mézières and Mathias Paulin,
Association for Computing Machinery 2021. [MP21]

å New framework to simulate efficiently the lighting with spherical harmonics with the
use of materials that separate the diffuse and specular contribution (Section 4.1).

Harmonics Virtual Lights: fast projection of luminance field on spherical harmonics
for efficient rendering.
Pierre Mézières, François Desrichard, David Vanderhaeghe and Mathias Paulin.
Computer Graphics Forum 2022. [MDVP22]

å Efficient point-based global illumination method (Section 5.2) based on an efficient
SH projection of the radiance field produced by spherical lights (Section 3.1). The
SH projection of the radiance field is the same as the one presented in the national
publication (first publication of this list).

Recursive analytic spherical harmonics gradient for spherical lights.
Pierre Mézières, Nicolas Mellado, Loïc Barthe and Mathias Paulin.
Computer Graphics Forum 2022. [MMBP22]

å Efficient computation of the gradient of the SH coefficients representing the radiance
field produced by spherical lights (Section 3.3). The method relies on an efficient
computation of the gradient of the SH basis functions (Section 3.2). Similar methods
focus on the radiance fields produced by polygonal lights [WR18, WCZR20], as our
method is faster we propose a method to approach their radiance field using spherical
lights (Section 4.2).
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2 Lighting and Spherical
Harmonics

This thesis focuses on physically based rendering. In order to allow a good reading of this
document, this chapter introduces the technical notions of such rendering methods (Sec-
tion 2.1). It turns out that the spherical harmonics are particularly well adapted to these
methods, after an exposition of the mathematical background of the spherical harmonics
(Section 2.2) a review of their use in computer graphics is presented (Section 2.3). Never-
theless, the spherical harmonics are not the only functions well suited for the rendering
which have their own pros and cons compared to the spherical harmonics (Section 2.4).

2.1 Image synthesis

2.1.1 3D scene

This thesis focuses on the efficient simulation of light transport in a 3D scene. A 3D
scene is based on four components which are the lights, the geometry, the materials and
the sensors.

Lights Light is a form of electromagnetic wave that propagates through space and can
be modeled as light rays when observed in a transparent medium. Light rays are in fact a
macroscopic manifestation of electromagnetic waves and their behavior can be described
using the laws of physics that govern electromagnetic waves. The light rays emitted by the
sources will bounce on the scene to be finally caught and contribute to an image and make
the objects visible. Thus, a point in space can receive light in all directions. This introduces
a need to efficiently characterize the directional distribution of light. Spherical harmonics
provide solutions to this problem. There are multiple ways to define light sources. For in-
stance, for outdoor environments the sun can be modeled by an infinitely far light whose
light rays reach the scene in parallel. To simulate distant environment lighting, environ-
ment maps are precomputed and store the light coming from all possible directions. In
indoor environment, the use of infinitely small, area-less lights, are common due to their
simplicity of use, for the design and ease of computation. Surface lights are more diffi-
cult to set up for the same two reasons but bring a more important physical coherence.
However, without anything to light, the simulation is useless.

Geometry The geometry represents the shape of the objects. This information can be
stored and rendered in multiple ways, such as triangular meshes, quadrangular meshes,
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Figure 2.1: Visualization of different quantities of the rendering. Flux and intensity are respec-
tively similar to irradiance and radiance but without the surface element ∂A and can be visualized
in an analogous way.

implicit surfaces or voxels. However, graphics cards are specially designed to work with
triangular meshes and this is the most common form of shape representation used in ren-
dering. Each vertex of the mesh represents a point in space whose coordinates must be
stored. Since rendering methods like PRT, precompute information per vertex, such as a
color or visibility information of nearby vertices. This introduces an additional amount of
information that becomes non-negligible for complex scenes with several thousand ver-
tices. SH rendering approaches store information per vertex and are therefore confronted
to this problem. However, without materials applied on the geometry, the simulation of
the light transport is meaningless.

Materials The materials transform the incident radiance field into an outgoing radiance
field depending on the nature of the material. Hence, as for light, this introduces a need for
efficient description of directional distributions. The material can define the way in which
an object will reflect, but also its refraction or transmission that will be in the object, as in a
cloud or smoke. Materials can thus define a variety of objects ranging from diffuse opaque
material, such as a sheet of paper to transparent and highly specular materials, such as
iridescent bubbles.

Sensor The role of the sensor is to capture light rays to generate an image. The sensor can
be seen as a virtual camera, composed of an optical system and an image plane. The use
of complex optical system allows simulating various optical effects, ranging from depth of
field to temporal blur when the notion of time is involved. Like the majority of the real-time
rendering methods, this thesis only uses a pinhole camera model.

2.1.2 Rendering quantities

Physically based rendering relies on several quantities, including radiometric quantities
(Figure 2.1). It is necessary to introduce them before formalizing the light transports equa-
tions. However, depending on the discipline, the definition of these quantities may slightly
vary.

Solid angle The solid angle Ω gives the amount of field of view covered by the projection
of an object at a point, i.e. the area covered by the projection of an object on the unit sphere,
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therefore going from 0 to 4π. The unit of Ω is the steradian (sr) and given by

Ω =
A

r2 , (2.1)

where A is the area of the projected surface S on the sphere of radius r. In general, the
solid angle is considered by default for a unit sphere (r = 1). The solid angle is then defined
by the integration of the constant 1 for all directions ω that lie in the area A:

Ω = ∫A
dω . (2.2)

The solid angle can also be defined according to the elementary solid angle dωy, i.e. consid-
ering the points y (and their normal ny) lying on the surface S , the elementary solid angle
is given by the ratio of the area projected at x and the square of the distance:

Ω = ∫
y∈S

dωy with dωy =
(ny ⋅ x⃗y)dSy

∥x − y∥2 , (2.3)

where dSy is an infinitesimal surface element of S . For simplicity, the integral on the unit
sphere is denoted by ∫Ω dω. In such case, the solid angle is equal to 4π and 2π for the unit
hemisphere. For the characterization of the directions, it is particularly useful to define
the triplet (r, θ, φ) corresponding to the spherical coordinates (Figure 2.1). The conversion
between Cartesian and spherical coordinates is defined by

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x = r cosφ sin θ
y = r sinφ sin θ
z = r cos θ

. (2.4)

The use of θ and φ alone is sufficient to characterize the set of directions, so the integral
on the sphere can be rewritten by

∫
Ω

dω = ∫

2π

φ=0
∫

π

θ=0
sin θ dθ dφ = 4π (2.5)

where sin θ is the Jacobian of the contraction of the spherical coordinates at the poles.
Indeed, considering small solid angles defined by bounding θ and φ, for the same boundary
intervals this solid angle will tend to 0 when θ tends to 0 (or π).

Spherical cap generalizes the notion of sphere and hemisphere. The spherical cap is
defined by a direction ω and the set of directions that form an angle with ω smaller than a
chosen θ. ω is the central direction of the cap and θ is its half angle. The solid angle of the
cap is given by Ω = 2π(1 − cos θ).

Flux and intensity The radiant flux is the radiant energy emitted or received per unit of
time through any surface

Φ =
∂Q

∂t
(2.6)

where Q is the energy quantity and then the flux is given in Watt (W). For rendering, the
considered surface is usually the sphere to define the energy arriving or leaving its center.

The intensity is a directional quantity defined by the radiant flux per unit of solid angle.
The unit of solid angle can be seen as a small spherical cap centered on ω

I(ω) =
∂Φ
∂Ω

. (2.7)

The unit of the intensity is thus W.sr−1. Intensity therefore describes the light that arrives
or leaves a point in a specific direction.
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Irradiance and radiance The irradiance and radiance can be respectively seen as an ex-
tension of the flux and intensity with surface elements. Thus, the irradiance is the radiant
flux per unit of area of an infinitesimal surface element around the point x:

E(x) =
∂Φ
∂A

. (2.8)

The unit of irradiance is W.m−2 and thus characterizes the total light received on a surface
element. Radiosity follows the same principle as the irradiance but for the emitted light.

The radiance is the radiant flux per unit of projected area of an infinitesimal surface
element around x and per unit of solid angle

L(x, ω) = ∂2Φ
∂Ω∂A ∣ω ⋅ nx∣

(2.9)

where nx is the surface normal at x andA(ω⋅nx) is the projected area. Its unit isW.m−2sr−1.
Radiance thus characterizes the directional light received or emitted on a surface element.
Considering nx as the surface normal at x, the irradiance is related to the radiance by the
following equation

E(x) = ∫
Ω
L(x, ω) ∣ω ⋅ nx∣dω . (2.10)

This means that the irradiance can be deduced from the radiance function. Spherical har-
monics allow this deduction in a particularly efficient way [RH01].

Reflectance The reflectance is the function describing the reflective behavior of a mate-
rial. This function is usually called the Bidirectional Reflectance Distribution Function (BRDF).
For a point x on the object, this function is 4D, and yields the amoung of light reflected
from an input direction ωi to an output direction ωo. BRDF is thus defined as the outgoing
radiance per unit of irradiance received in the direction ωi

F (x, ωi, ωo) =
∂Lo(ωo)

∂Ei(ωi)
=

∂Lo(ωo)

Li(ωi)(ωi ⋅ nx)∂ωi
. (2.11)

The unit of irradiance received in the direction ωi corresponds to the projected radiance
in the same direction. The unit of the reflectance is then sr−1. Reflectance, like any func-
tion, can be stored and reconstructed analytically or with tabulated measures. Tabulated
measures correspond to a sampling of the function associated to a reconstruction method.
Databases offer dozens of tabulated materials [MPBM03, DHB17]. In contrast, analytical
materials are defined in the form of an analytical expression, usually fast to compute on
the fly and therefore particularly suitable for real-time rendering. Decomposable BRDF con-
sider two parts, the diffuse and the specular components. Both components have a dis-
tinct reflectance lobes, where the diffuse corresponds to a Lambertian reflectance and
the specular can be simulated by a cosine lobe, for its simplest form in the Blinn-Phong
model, or by more complex forms for a more accurate physical simulation, such as the
GGX model [WMLT07]. To improve the physical accuracy, additional terms are added to
the equation, e.g. the Fresnel coefficient. Furthermore, physical based materials follow
additional properties that are

● positivity: F (x, ωi, ωo) ≥ 0
● Helmholtz reciprocity: F (x, ωi, ωo) = F (x, ωo, ωi)
● energy conservation: ∀ωo, ∫Ω F (x, ωi, ωo)(ωi ⋅ nx)dωi ≤ 1

(2.12)
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Figure 2.2: Visualization of the integral components of the rendering equation (Equation 2.13).

Defining a sphere whose north pole is fixed by the surface normal, the reflection is defined
in the northern hemisphere and the refraction is defined in the southern hemisphere. Thus,
the BRDF is defined only in the northern hemisphere, the refraction is modeled by the Bidi-
rectional Transmittance Distribution Function (BTDF). Both are included in the Bidirectional
Scattering Distribution Function (BSDF). Thus, the BxDF, referring to the three methods, are
similar and define the light transfer between two directions. This thesis focuses on BRDF
and the generalization to BxDFs is straightforward. However, these functions can be ex-
tended to take more parameters into account, like time or wavelength. However, these
more complex materials are out of scope of this thesis.

2.1.3 Rendering equation

The rendering equation [Kaj86] is an energy balance at the surface of an object, it relates
the incoming radiance to the outgoing radiance at a point x. The formalization of light
transport is based only on the rendering equation when the scene is immersed in vacuum.
To simulate any atmospheric effects, it is necessary to take into account the equations of
radiative transfer but this is beyond the scope of this thesis. Moreover, this thesis focuses
on the stationary and monochromatic rendering equation, i.e. without time and wavelength
variation.

Directional formulation The rendering equation expresses the outgoing radiance at one
point and direction Lo(x, ωo) as a function of the incoming radiance from all possible di-
rections (Figure 2.2 and 2.3)

Lo(x, ωo) = Le(x, ωo) + ∫
Ω
Li(x, ωi)F (x, ωi, ωo) ∣ωi ⋅ nx∣dωi (2.13)

Figure 2.3: The rendering equation can be written as a function of the input and output directions,
ωi and ωo (Equation 2.13) but also as function of the points on the surface x,y,z (Equation 2.16)
where the n vectors are the surface normals. The point y can be seen as a light and z as a sensor.
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where:

• Le(x, ωo) is the emitted radiance at x in the direction ωo (for instance when x is on a
light),

• Li(x, ωi) is the ingoing radiance at x from direction ωi,

• F (x, ωi, ωo) is the reflectance function describing the energy transfer between the
two directions ωi and ωo,

• (ωi ⋅nx) is a weakening factor to take into account that the area of a surface projected
perpendicular to the direction ωi is less than its area, where nx is the surface normal.
This factor is the cosine of the angle formed between ωi and nx,

• ∫Ω[⋯]dωi is an integral over the spherical domain Ω.

When the incident radiance Li arriving to x is only the radiance emitted from the pri-
mary light sources, this case is called the direct lighting. The global illumination is when the
incident radiance is also coming from the other points of the scene according to the ra-
diance that they have received themselves. The light rays start from a primary light, then
bounce in the scene before reaching the point x considered. Thus, the rendering equa-
tion is defined recursively between all possible points of the scene. Defining t(x, ωi) as a
function that computes the first point x′ hit by the ray leaving x in the direction ωi. With-
out scattering in the atmosphere, the radiance arriving at x in the direction ωi is the same
radiance as the one leaving x′ in direction −ωi

Li(x, ωi) = Lo(t(x, ωi),−ωi) . (2.14)

Managing the global illumination is the main complexity in solving the rendering equa-
tion. Find the points from which is emitted the incident radiance Li arriving from any di-
rection ωi is also a source of complexity. The points are straightforward to compute using a
ray-tracing based solution [WRC88]. However, other methods avoid this problem by refor-
mulating the rendering equation as a function of the surface of the scene, which directly
yields the set of points from which is emitted the incident radiance arriving at x [SAWG91].

Surface formulation The rendering equation can be also expressed in terms of the surface
of the sceneS where the ingoing, outgoing radiance and the reflectance can be written with
points on the surface (x,y,z) instead of directions

L(y→ x) = Lo(y, y⃗x) = Li(x, x⃗y) and F (y↔ x↔ z) = F (x, x⃗y, x⃗z) (2.15)

where the vectors are all normalized. The rendering equation becomes

L(x → z) = Le(x → z) + ∫S
L(y→ x)F (y↔ x↔ z)V (x,y)G(x,y)dSy . (2.16)

where V (x,y) is a binary visibility function yielding 0 if an obstacle lies between x and y,
and 1 otherwise. The geometric factor G(x,y) multiplied by dSy is related to the elemen-
tary solid angle dωy (Equation 2.3), i.e. the solid angle of the small surface element around y
and seen from x multiplied by the weakening factor of the directional rendering equation
(Equation 2.13)

dωy =
(x⃗y ⋅ nx)(y⃗x ⋅ ny)

∥x − y∥2 dSy = G(x,y)dSy . (2.17)

The surface formulation of the rendering equation is particularly useful for approaches
based on Virtual Point Lights (VPL). Indeed, each point y plays the role of a virtual source
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whose emission depends on the radiance their receive. Hence, a set of virtual sources dis-
tributed on the scene allows to approximate the rendering equation on each point x. How-
ever, in this case, sampling Equation 2.16 is problematic due to the division by the squared
distance in the geometric factor, producing artifacts when x and y are close. These are not
the only artifacts produced by VPLs and they are discussed further in Chapter 5.

2.1.4 Monte-Carlo integration
The resolution of the rendering equation is based on the resolution of an integral defined

on the spherical domain. Monte-Carlo methods are classically used to compute integrals
numerically.

General Monte-Carlo Considering the space Ω, of any dimension, general Monte-Carlo
methods allow to compute an estimator of the integral of any function f on Ω.

F = ∫
Ω
f(x)dx (2.18)

Monte-Carlo methods distribute N points in Ω to estimate the integral, whose resolution
depends on the way the points are distributed. Thus, a Monte-Carlo estimator is written
as

F̂ =
1
N

N

∑
i=1

f(xi)

p(xi)
with lim

N→∞
F̂ = F (2.19)

where p is the Probability Density Function (PDF) describing the way the samples xi are dis-
tributed. Thus, the larger N is, the more F̂ will converge to F , at the convergence rate of
√
N . For the convergence to happen sooner, the choice of the PDF is crucial but relies on

an a priori knowledge of the function to integrate.

Quasi Monte-Carlo and quadrature General Monte-Carlo methods rely on a random
drawing of the samples, whereas quasi Monte-Carlo relies on sequences with low discrep-
ancy. Low discrepancy means that the N samples are distributed as evenly as possible.
Thus, these methods have a convergence rate ofN instead of

√
N for general Monte-Carlo.

However, this approach is based on deterministic algorithms carefully designed.

The general principle of the quadrature is based on methods that are simpler to imple-
ment. An integral can be seen as a sum of Riemann, in a 1D case, the area under the function
can be seen as a set of rectangles, where the approximation of the area becomes better when
the number of rectangles used is large. Thus, when the rectangles have the same width, i.e.
the samples are evenly distributed, this method is particularly simple to implement and of-
fers a convergence of the integral computation sufficient for many applications. However,
unlike general or quasi Monte-Carlo, their generalization to any dimension is complex.
An integral on the spherical domain can be performed with the spherical Fibonacci map-
ping [KISS15] that allows a good approximation of an even distribution of the samples on
the sphere.

2.1.5 Orthogonal basis functions
Orthogonal basis functions are a mathematical tool allowing to represent a function by

a vector of coefficients where the i-th coefficient Si is attached to the i-th function of
the base Bi. The function is projected onto each of the basis functions to compute the
coefficients (Figure 2.4 - top).

Si = ⟨S,Bi⟩ = ∫ S(x)Bi(x)dx (2.20)
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Figure 2.4: The projection (top) of a function (blue) on basis functions (green) yields a coefficient by
basis function (ci). The reconstruction (bottom) of the function consists of scaling the basis function
(red) by the coefficients and summing them up to compute an approximation of the function, whose
quality depends on the basis functions.

where ⟨ , ⟩ is the inner product that generalizes the dot product, which computes the pro-
jection of a vector on another, to continuous functions. Then the function is reconstructed
by summing the multiplication of the coefficients with the basis function (Figure 2.4 - bot-
tom).

S(x) ≈∑
i

SiBi(x)dx (2.21)

The reconstruction is generally an approximation but can be an exact reconstruction de-
pending on the basis functions used. Some basis have functions that are orthogonal to each
other, these function bases follow the following property.

∫ Bi(x)Bj(x)dx = δij = {
1 if i = j
0 otherwise

(2.22)
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This property allows simplifying the integral of the product of two functions projected
beforehand on the basis functions

∫ L(x)F (x)dx ≈ ∫ (∑
i

LiBi(ω))(∑
j

FjBj(x))dx

≈∑
i

∑
j

LiFj ∫ Bi(x)Bj(x)dx

≈∑
i

LiFi .

(2.23)

Thus, the integral is simplified by a scalar product of the coefficient vectors of each func-
tion. This property works with any number of dimensions and thus works for a spherical
domain defined in 2D (θ, φ). The choice to use the radiance L and the reflectance F is
not innocent, since the similarity between the Equation 2.23 and the rendering equation
(Equation 2.13) is obvious. As indicated in their name, the spherical harmonics are spheri-
cal functions that are orthogonal to each other. They are therefore very suitable to simplify
the integral of the rendering equation by a simple scalar product of the coefficients vec-
tors. Moreover, Monte-Carlo methods are known to make noise as long as the number of
samples is not sufficient and this number can be very high. Solving the integral by us-
ing spherical harmonics will avoid this problem. However, if the integral of the rendering
equation is avoided, the projection integral (Equation 2.20) becomes a problem. Solutions
to compute an efficient projection on spherical harmonics are addressed in this thesis.

2.2 Mathematics of Spherical Harmonics
Spherical harmonics are basis functions [Hob31], defined first by their complex form.

Real spherical harmonics, particularly used in computer graphics, are derived from their
complex form. Thus, many of their properties, in particular the convolution and rotation,
defined for their complex form have been adapted to their real form. Although their com-
plex form can be very useful and it is important to mention them in order to fully understand
some properties of real spherical harmonics, the efficient use of the complex spherical har-
monics is out of the scope of this thesis. A significant amount of the information developed
in this chapter can be found in the papers written by Green [Gre03] and Sloan [Slo08].

2.2.1 Spherical harmonics and notations

Spherical Harmonics (Figure 2.5) form an orthogonal basis function where each function
is indexed by an order l and a degreem. SH are analogous to Fourier series, decomposition
in sines and cosines but defined on a sphere. The SH are ordered as: the larger the order l
is, the higher the angular frequencies. More specifically, the order l defines the number of
oscillations along θ and the degree m along φ. The order l can go to infinity and the degree
m varies between −l and l, thus forming a pyramid of functions.

Spherical Harmonics take their name from the Laplace’s equation. Indeed, the functions
that verify the Laplace’s equation are called harmonics, i.e. the divergence of the gradients
for any point of the surface of the function is equal to zero. The Laplace’s equation is
verified at any point of the surface of the graph of each SH (Figure 2.5). They are spherical
because defined on the unit sphere and using spherical coordinates, Complex SH Yml are
expressed as

Y
m
l (θ, φ) = (−1)mKm

l P
m
l (cos θ)eimφ (2.24)
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Figure 2.5: Representation of the first real spherical harmonics basis functions. Lobes are colored
according to their sign, with positive values in red and negative in green. The sub-basis of zonal
harmonics for which m = 0 is outlined in the middle.

where Pml denotes the associated Legendre polynomials (ALP), and Km
l is a normalization

factor:

Km
l =

¿
Á
ÁÀ2l + 1

4π
(l −m)!
(l +m)!

. (2.25)

The consideration of the Condon–Shortley phase (−1)m is often a source of confusion de-
pending on the field of study, sometimes included in the SH in quantum physics and other
times directly in the ALP as in computer graphics. In this thesis, the phase (−1)m is inte-
grated in the ALP which are then defined by

Pm
l (cos θ) = (−1)mPml (cos θ) = sinm θ d

m

dxm
(Pl(cos θ)) (2.26)

where Pl are the Legendre Polynomials (LP) defined with the Condon-Shortley phase. Re-
currence relations allow to evaluate the ALP (and LP) efficiently

(l −m)Pm
l (x) = x(2l − 1)Pm

l−1(x) − (l +m − 1)Pm
l−2(x) (2.27)

Pm
m (x) = (−1)m(2m − 1)!!(1 − x2

)
m/2 (2.28)

Pm
m+1(x) = x(2m + 1)Pm

m (2.29)

where P 0
0 (x) = 1, P 1

0 (x) = x and x!! is the double factorial that return the product of the
odd integers less than or equal to x. Hence, these relations allow to compute efficiently
the ALP per degree m. Equation 2.28 computes the first term of degree m, Equation 2.29
computes the second and Equation 2.27 computes the other.

In computer graphics, the use of complex functions is uncommon, it is then more con-
venient to use the real SH Y build from the complex SH Y .

Y m
l (θ, φ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

√
2Im[Y

∣m∣
l ] m < 0

Y0
l m = 0

√
2Re[Yml ] m > 0

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

√
2K ∣m∣l P

∣m∣
l (cos θ) sin(∣m∣φ) m < 0

K0
l P

0
l (cos θ) m = 0

√
2Km

l Pm
l (cos θ) cos(mφ) m > 0

(2.30)
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where
√

2 is a normalization factor to preserve the orthonormality of the basis function,
and hence maintain the following property

∫
Ω
Yi(ω)Yj(ω)dω = δij = {

1 if i = j
0 otherwise

(2.31)

with δij the Kronecker delta and the index i and j corresponds to a linearization of the
order l and the degree m.

Notations

The SH are defined by the order l and the degree m, forming a pyramid of function
(Figure 2.5). However, these index can be linearized, thus facilitating they indexa-
tion.

i = l(l + 1) +m
Y m
l (ω) = Yi(ω) = Y

m
l (θ, φ) = Yi(θ, φ)

(2.32)

The same principle applies for the coefficient vectors of the projected function. Us-
ing the index i allows to simplify the notations on equations using SH, nevertheless,
the use of indices l and m are sometimes necessary. Thus, the two notations will be
used appropriately.

Any spherical function can be approximated by a linear combination of the SH basis
function, encoded as a vector of coefficients (Section 2.2.3). Thanks to the orthogonality of
the SH basis function, any linear operator that applies on the basis function also applies
on the coefficients vector (e.g. the convolution or the rotation (Section 2.2.10 and 2.2.12)).
The SH of any order and degree are naturally defined with spherical coordinates. Never-
theless, polynomial forms with Cartesian coordinates can be derived for each SH that are
particularly convenient to use when a low number of SH bands is involved (e.g. 3 SH bands).
However, Sloan [Slo13] shows an efficient computation method of the SH basis function
based on their definition with spherical coordinates that we leverage to compute the gra-
dient of the SH basis function. The Sloan’s method and our improvement are detailed in
Section 3.2.

2.2.2 Hemispherical harmonics

Gautron et al. [GKPB04] define the hemispherical harmonics (HSH) (Figure 2.6) by shift-
ing the associated Legendre polynomials so that they are defined only for the northern
hemisphere θ ∈ [0, π/2]

Hm
l (θ, φ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

√
2K̃ ∣m∣l P

∣m∣
l (2 cos θ − 1) sin(∣m∣φ) m < 0

K̃0
l P

0
l (cos θ) m = 0

√
2K̃m

l Pm
l (2 cos θ − 1) cos(mφ) m > 0

. (2.33)

Thus, the normalization factor is redefined for the hemisphere

K̃m
l =

¿
Á
ÁÀ2l + 1

2π
(l −m)!
(l +m)!

. (2.34)

As they are concentrated on the hemisphere, hemispherical harmonics need less functions
to represent hemispheric functions compared to spherical harmonics. It is therefore partic-
ularly useful to represent the radiance and its transfer on an opaque surface, since only the
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Figure 2.6: Representation of the first real "hemispherical harmonics" basis functions [GKPB04].
Lobes are colored according to their sign, with positive values in red and negative in green.

hemisphere directed according to the normal of the surface contains useful information. A
matrix transfer M can be defined to convert the vector of spherical harmonics coefficients
Y to the vector of hemispherical harmonics coefficients H, and inversely, by projecting
each HSH to each SH

Mij = ∫
Ω
Hi(ω)Yj(ω)dω → H = YM . (2.35)

Gautron et al. [GKPB04] show that M is very sparse but it still adds a computation step
when the two basis are used in same time, e.g. when using a spherical environment map
projected on SH and a hemispherical reflectance function projected on HSH. This thesis
is not limited to hemispherical functions and focuses on the use of spherical functions and
thus on an efficient use of spherical harmonics.

2.2.3 Projection and reconstruction

Projection to and reconstruction from SH of the spherical function S(ω) obey the same
rules as any basis function (Section 2.1.5) but adapted to the spherical domain:

Sml = ⟨S,Y m
l ⟩ = ∫

Ω
S(ω)Y m

l (ω)dω (2.36)

S(ω) =
+∞
∑
l=0

l

∑
m=−l

Sml Y
m
l (ω) ≈

n

∑
l=0

l

∑
m=−l

Sml Y
m
l (ω) (2.37)

where S is the vector of the SH coefficients. In practice, SH coefficients are bands limited
to l = n and the reconstruction becomes an approximation with a fixed maximum frequency
represented by the band n, thus using N = n2 coefficients. The energy captured by the SH
is equal to the sum of the square of the coefficients

Es =
n

∑
l=0

l

∑
m=−l

(Sml )
2 . (2.38)

Therefore, the lost energy (approximation error) is equal to ∑∞l=n+1 ∑
l
m=−l(Sml )2.
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Notations

In order to simplify the notations, when the double sum of the reconstruction is not
necessary (Equation 2.37) the reconstruction can be noted

n

∑
l=0

l

∑
m=−l

Sml Y
m
l (ω) =

N

∑
l,m

Sml Y
m
l (ω) =

N

∑
i

Si Yi(ω) (2.39)

where the last term use the linearization of the indices (Equation 2.32). The same
notation but without the n (or N ) indicates that the reconstruction uses an infinity
of SH, i.e. l goes to infinity.

The integral of the projection (Equation 2.36) can be solved by multiple methods, ana-
lytically, with Monte-Carlo integration (Section 2.1.4), or any other way to solve integrals.
It should be noted that when using the complex SH (Equation 2.24) its SH projection use
the Fourier transform for the integral on φ and can thus benefit from the well known Fast
Fourier transform

Sml =Km
l ∫

θ
(∫

φ
S(θ, φ) eimφ dφ )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fourier transform

Pm
l (cos θ) sin(θ)dθ . (2.40)

The integral on θ is then resolved with a different method, a discrete Legendre transform
based on recurrence relations [HRKM03], or a different quadrature [Sch13, MW11]. How-
ever, the projection is computed for Y and need to be converted to Y [CIGR99].

Using M uniformly distributed samples and N SH coefficients, the projection can be
written with a matrix form

⎛
⎜
⎜
⎝

S0
⋮

SN

⎞
⎟
⎟
⎠

≈
4π
M

⎛
⎜
⎜
⎝

Y0(ω0) . . . Y0(ωM)

⋮ ⋮

YN(ω0) . . . YN(ωM)

⎞
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Apdf

⎛
⎜
⎜
⎝

S(ω0)

⋮

S(ωM)

⎞
⎟
⎟
⎠

(2.41)

where 4π/M is the probability density function for each sample. Using another distribution
implies that the pdf of each sample is spread in the samples vector or can be embedded in
Apdf if the sampled directions are precomputed.

2.2.4 Least squares projection

The reconstruction from the SH basis (Equation 2.37) can be written in a matrix form
when using M samples and N SH coefficients

⎛
⎜
⎜
⎝

S(ω0)

⋮

S(ωM)

⎞
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b

≈

⎛
⎜
⎜
⎝

Y0(ω0) . . . YN(ω0)

⋮ ⋮

Y0(ωM) . . . YN(ωM)

⎞
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

⎛
⎜
⎜
⎝

S0
⋮

SN

⎞
⎟
⎟
⎠

²
x

(2.42)

when N =M , the SH coefficients can be estimated by x ≈ A−1b. For a general case where
N ≠M , the Moore-Penrose generalized inverse is used A+ = (ATA)−1AT . However, in the
experiments we have conducted, using a uniform sampling, the matrix A tends to be nearly
singular whenN tends toM , whetherN is greater or less thanM . A more in-depth analysis
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of this problem as well as a comparison of the convergence of the SH projection between
the method solving the scalar product (Equation 2.36) and this least square method is given
in Section 5.3.1. The Equation 2.42 is equivalent to write the problem as a minimization
problem

∥Ax − b∥2
. (2.43)

Sloan et al. [SHHS03, Slo08] prove that the global solution of this minimization problem is
exactly the same as the one obtained by solving the integral for the SH projection (Equa-
tion 2.36). i.e. whenN tends to infinity, the least squares method (Equation 2.42) and solving
numerically the integral of projection (Equation 2.41) will yield the same SH coefficients.
Hence, when the number of uniform samples N (and M ) tends to infinity, we may under-
stand Apdf as the inverse of A. As the SH are orthogonal functions, the columns of A
tend to be orthogonal as well and the inverse of an orthogonal matrix M is MT . The least
squares approach must invert a matrix, which is usually expensive [GvL13]. However, when
Apdf and A−1 are precomputed, both methods have the same complexity to estimate the
SH coefficients, i.e. a matrix vector product. Nonetheless, constraints can be added to the
least squares method, e.g. under the form of a regularization

∥Ax − b∥2
+ λ ∥Γx∥2

⇒ x = (ATA + λΓTΓ)
−1AT b (2.44)

where Γ is the Thikonov matrix and λ control the amount of regularization. Constraints
allow to make the estimation more robust and can take various forms, based on a target
energy in order to make the estimation less sensitive to noise [LLW06], or to make it more
robust with few samples [VSG+13]. Since the SH originates from the Laplace’s equation,
approaches rely on the Laplace-Beltrami operator to construct Γ in order to penalize strong
oscillations [Slo08,NWNB15]. These constraints will act as a filter to eliminate artifacts due
to the frequency representation of the SH.

2.2.5 Filtering

The frequencies are brutally truncated at the band limit when using a finite number of SH
bands. This introduces a frequency discontinuity that will produce oscillations, commonly
called ringing. The oscillations become stronger and stronger when the reconstruction band
limit becomes small compared to the band limit of the projected signal [Slo08]. This is anal-
ogous to the Gibbs Phenomenon, i.e. projecting a discontinuous signal into a finite Fourier
basis will exhibit ringing around the discontinuities. Hence, using a finite number of SH
bands correspond to frequency filtering with a square signal, and in this case a common
solution is to change the shape of the filter to attenuate the oscillations where each band
is filtered independently. Many filters are proposed in the literature: sinc (1), Hamming (2),
Hann (3) . . .

(1)
1 + cos(π l

w
)

2
(2)

sin(π l
w
)

π l
w

(3) 0.54 + 0.46 cos(π l
w
) (2.45)

These equations give the weight of the filter for each order l, where w is the size of the
filter. In general, using n SH bands, the oscillations totally disappear when w = n at the
cost of a significant decrease in frequency. Typically, the optimal w is found by hand to
avoid any ringing artifacts while keeping as much high-frequency as possible. Sloan [Slo17]
proposes an automatic algorithm for 3 SH bands to deduce this optimal w for any function
projected on SH.
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Large oscillations tend to create ringing artifacts. Hence, constraints on the least squares
approach penalizing these oscillations will help to reduce these artifacts. As shown by
Sloan [Slo08], some constraints can be resolved analytically to find an equation for the filter
that is applied after the estimation of the SH coefficients instead of a constraint applied
during the estimation. The amount of constraint λ can also be adjusted according to the
properties of the chosen constraint. Sloan [Slo08] also demonstrate that with the right
amount of constraint, the traditional filters (Equation 2.45), and the constraint for least
squares exhibit similar results.

Finally, Sloan [Slo08] proposes a filtering sensitive to the content. Indeed, considering
the SH projection of the radiance, the most annoying ringing artifacts appear far from the
principal lighting directions. Thus, stronger filtering can be applied in these areas, how-
ever this solution need an a priori knowledge of the lighting and is particularly inadequate
to a general use of the SH.

2.2.6 Double and triple product
Computing the integral of the multiplication between two or three functions is very com-

mon in computer graphics. Using the SH definitions, the integral of the product of two
functions (double product) projected on SH is straightforward to compute

D = ∫
Ω
L(ω)F (ω)dω

= ∫
Ω
(∑

i

LiYi(ω))(∑
j

FjYj(ω))dω

=∑
i

∑
j

LiFj ∫
Ω
Yi(ω)Yj(ω)dω

=∑
i

LiFi .

(2.46)

The integral vanishes thanks to the orthogonality property of the SH (Equation 2.31). Hence
the integral of the product of two functions is reduced to a scalar product of their SH coeffi-
cient vector. The integral of the product of three functions (triple product) is more complex.
Indeed, the integral of the product of three SH basis functions is not directly simplified:

T = ∫
Ω
L(ω)F (ω)V (ω)dω

= ∫
Ω
(∑

i

LiYi(ω))(∑
j

FjYj(ω))(∑
k

VkYk(ω))dω

=∑
i

∑
j

∑
k

LiFjVk ∫
Ω
Yi(ω)Yj(ω)Yk(ω)dω

=∑
i

∑
j

∑
k

LiFjVkCi j k

(2.47)

whereC denotes the Clebsch-Gordan coefficients. These coefficients can be precomputed
using a closed form solution of the integral ∫Ω Yi(ω)Yj(ω)Yk(ω)dω. This precomputation
allows to generate an efficient code that apply the triple product. The triple sum implies
a complexity of O(n6), where n is the number of SH bands used. However, the number of
zero in C reduce the complexity to O(n5) [NRH04].

2.2.7 SH product and transfer matrix
Project on SH the product of two functions that are projected on SH is called the SH

product. The SH product is analogous to the triple product (Equation 2.47) and involves
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also the Clebsch-Gordan coefficients. Indeed, the SH projection of the multiplication of
two functions is defined by

Tk = ∫
Ω
L(ω)F (ω)Yk(ω)dω

= ∫
Ω
(∑

i

LiYi(ω))(∑
j

FjYj(ω))Yk(ω)dω

=∑
i

∑
j

LiFj ∫
Ω
Yi(ω)Yj(ω)Yk(ω)dω

=∑
i

∑
j

LiFjCi j k .

(2.48)

The double sum introduces a lot of calculation and if one of the two functions is known,
e.g. F, a lot of operations can be precomputed in a transfer matrix M

Tk =∑
i

Li∑
j

FjCi j k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Mik

. (2.49)

Furthermore, the function F can be directly integrated in the computation instead of its
SH projection.

Tk = ∫
Ω
(∑

i

LiYi(ω))F (ω)Yj(ω)dω =∑
i

Li∫
Ω
F (ω)Yi(ω)Yk(ω)dω

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Mik

.
(2.50)

Compared to Equation 2.49, F is not frequency approximated but, most of the time, each
element of M for Equation 2.50 have to be resolved numerically. It’s important to note that
the transfer matrix is a linear operation, indeed applying a linear operator on the resulting
vector T is the same as applying it on all the lines of the transfer matrix M. For instance,
applying the double product with each line of M is the same as applying it with T. This is
a very important property that allows to precompute a large amount of operations directly
in the transfer matrix M.

2.2.8 General SH product

Compared to the previous subsections, this subsection considers the integral of the mul-
tiplication of M functions

DM = ∫
Ω
F1(ω)F2(ω)⋯FM(ω)dω . (2.51)

The brute force approach consists in the generalization of the double and triple product
(Equation 2.46 and 2.47)

DM =∑
i1

∑
i2

⋯∑
in

(F1,i1F2,i2⋯FM,iMCi1 i2 ⋯ iM ) (2.52)

where C are the generalized Clebsch-Gordan coefficients defined by

Ci1 i2 ⋯ iM = ∫
Ω
Yi1(ω)Yi2(ω)⋯YiM (ω)dω . (2.53)

Hence, using n SH bands, the complexity of the brute force approach (Equation 2.52) is
O(n2M). A common acceptable alternative for real-time performance is the recursive ap-
plication of the SH product (Equation 2.48) [ZHL+05]. i.e. F1 and F2 are multiplied together
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and reprojected on SH, the result is multiplied with F3 and so on until FM . The complexity
of this approach becomes O(Mn5), however, this is an approximation of the brute force
approach since each intermediate product is frequency approximated by the SH.

An alternative to these methods is to move into a space where the multiplication is sim-
pler to compute. Thus, Ren et al. [RWS+06] propose to convert the SH function in log space
to change the multiplication to a simple summation and then going back with an exponen-
tial operator. Recently, Xin et al. [XZA+21] have performed a 2D Fourier series of the SH
coefficients. Thus, the product of functions can be written as a convolution of their Fourier
series. Using the well known Fast Fourier transform to go in the so-called Fourier space of
the coefficients, the convolution becomes a point-wise multiplication.

2.2.9 Zonal harmonics

Zonal Harmonics are a basis of a sub-space of the spherical harmonics defined for m = 0
(Figure 2.5). They are particularly useful to represent circularly symmetric signals

f(ω) = f(θ, 0) =
∞
∑
l

F0
l Y

0
l (ω) . (2.54)

Hence, the number of ZH is linear to the number of SH bands used since when n SH bands
are used, n ZH are involved. This is particularly efficient compared to the n2 expansion on
the set of SH, thus it has motivated multiple works on ZH in computer graphics in order
to accelerate the computations. Especially by approximating any arbitrary function with
different set of ZH [SLS05, NSF12, SBN15].

It turns out that all the SH of order l can be constructed from rotations and scaling of
the ZH of same order, with at most 2l + 1 different copies of the ZH (Figure 2.7)

Y m
l (ω) =

l

∑
d=−l

αml,−lY
0
l (ω → ωl,d) (2.55)

where ωl,d are the directions of rotations and αml,−l are the weights to scale the ZH. This
indicates that the SH projection can be deduced by computing the ZH projection for the
different rotated copies of the ZH and then scaled by the weights. This equation can be

Figure 2.7: The SH Y m
l can be reconstructed from rotations (ω → ωl,m′) and scaling αml,m′ of the

ZH of same order Y 0
l [NSF12].
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rewritten in matrix form

⎛
⎜
⎜
⎝

Y −l
l (ω)

⋮

Y l
l (ω)

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

α−ll,−l . . . α−ll,l
⋮ ⋱ ⋮

αll,−l . . . αll,l

⎞
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Al

⎛
⎜
⎜
⎝

Y 0
l (ω → ωl,−l)

⋮

Y 0
l (ω → ωl,l)

⎞
⎟
⎟
⎠

(2.56)

while an infinity of directions and weights can be used in this equation, Nowrouzezahrai et
al. [NSF12] show that the sparsity of Al can be maximized by choosing wisely the directions.
Inversely, the SH addition theorem states that any ZH can be reconstructed by a weighted
sum of spherical harmonics

Y 0
l (ω → ωl,d) =

√
4π

2l + 1

l

∑
m′=−l

Y m′

l (ωl,d)Y
m′

l (ω) . (2.57)

As shown by Nowrouzezahrai et al. [NSF12] the SH addition theorem can be seen as the dual
of Equation 2.55. Hence, injecting Equation 2.57 into Equation 2.55 give us

⎛
⎜
⎜
⎝

Y −l
l (ω)

⋮

Y l
l (ω)

⎞
⎟
⎟
⎠

= AlDl
²

Âl

⎛
⎜
⎜
⎝

Y −l
l (ωl,−l) . . . Y l

l (ωl,−l)
⋮ ⋱ ⋮

Y −l
l (ωl,l) . . . Y l

l (ωl,l)

⎞
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Yl

⎛
⎜
⎜
⎝

Y −l
l (ω)

⋮

Y l
l (ω)

⎞
⎟
⎟
⎠

(2.58)

where Dl =
√

4π
2l+1I, with I the identity matrix. In this case we observe that ÂlYl = I, this

means that replacing the SH basis functions by their coefficients, this equation will yield
the same SH coefficients. Nowrouzezahrai et al. [NSF12] build on this property an efficient
rotation algorithm (Section 2.2.12).

2.2.10 Convolution
The spherical convolution [DH94] is an important property of SH from which rotation of

the SH coefficients is derived (Section 2.2.12). We note here some important notations for
the following.

We note α,β, γ the Euler angles decomposition of a rotation R following the zyz
decomposition [Sla99]:

R = Rz(α)Ry(β)Rz(γ) . (2.59)

Any axisω can be written as the mapping of the z axis by the rotationR (ω = Rz), then
corresponding to one Euler angles decomposition. Hence, the Wigner D-matrix,
traditionally written with the Euler angles can be rewritten by

Dl
m′m(α,β, γ) = Dl

m′m(R). (2.60)

Also, we note the spherical convolution between any function f and a kernel g ro-
tated by R as

(f ∗ g)(R) = ∫
Ω
f(ω)g(Rω)dω . (2.61)

The spherical convolution using a SH decomposition for f and the kernel of convolution
g can be written as

(f ∗ g)(R) =∑
l,m

l

∑
m′=−l

Fm
l Gm′

l Dl
m′m(R) . (2.62)
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However, this relation is defined for the complex SH Y but can be adapted for their real
counterparts Y . Unfortunately, the interesting geometrical properties of complex numbers
are not as convenient using only real numbers. Indeed, rotation in the complex plane is
just a scalar multiplication (Equation 2.62). Nevertheless, when g is a circularly symmetric
kernel, this equation is non-null only for m′ = 0 and in this case D is related to the real SH

Dl
0m(R) =

√
4π

2l + 1
Y m
l (Rz) . (2.63)

Thus, the convolution for the real SH with a circularly symmetric kernel can be simplified
by

(f ∗ g̃)(R) =∑
l,m

√
4π

2l + 1
G̃0
l F

m
l Y

m
l (Rz) . (2.64)

2.2.11 Linear transformation

The SH are invariant to linear transformation, in other words, the linear transformation
can be applied before or after the SH projection, i.e. on the function or on its SH coeffi-
cients, the result will yield the same linearly transformed function. In addition, the linear
transformation is applied as a matrix vector product, where the vector contains the SH
coefficients and the matrix depend on the linear transformation. This can be proven by
taking ĝ, a linearly transformed copy of g

g(ω) = ĝ(Tω) . (2.65)

The SH projection of ĝ and g have the following relations

Ĝi = ∫
Ω
ĝ(Tω)Yi(Tω)dω = ∫

Ω
g(ω)Yi(Tω)dω , (2.66)

and replacing g by its reconstruction from the SH coefficients

Ĝi = ∫
Ω
(∑
j

GjYj(ω))Yi(Tω)dω =∑
j

Gj ∫
Ω
Yi(Tω)Yj(ω)dω

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Mij

. (2.67)

Hence this equation shows that any linear transformation of the SH coefficients is a ma-
trix vector product Ĝ = GM. An example of linear transformation is the rotation (Sec-
tion 2.2.12). Wang et al. [WXZ+06] seek to determine M such that the function g is shrunk
or expanded around any axis with any angle value.

2.2.12 Rotation

Rotation being a linear transformation, it can be applied by multiplying the SH coeffi-
cients by a matrix. However, instead of resolving the integral of Equation 2.67, a link with
the spherical convolution can be applied and it is strongly recommended to read the section
on convolution (Section 2.2.10) before reading this section.

Let’s consider that ĝ is the rotated copy of g, ĝ(ω) = g(Rω). The SH are bandwise stable
by rotation, this means that projecting the rotated function will yield the same result as
applying the rotation to the SH coefficients vector representing the non-rotated function,
i.e. ∑i GiYi(Rω) = ∑j ĜjYj(ω). Also, it means that the coefficients of the band l will
be modified only by the coefficients of the same band, in other words, the frequencies
represented by the band l remain in the same band.
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The convolution of a function f with a kernel g rotated by R is equal to the integral of
their product (i.e. the double product (Section 2.2.6)). Thanks to the orthogonality of the
SH, the convolution product is the dot product of their SH coefficients vector

∫
Ω
f(ω)ĝ(ω)dω = (f ∗ g)(R) =∑

l,m

Fm
l Ĝm

l . (2.68)

Replacing the definition of the convolution (Equation 2.62) into Equation 2.68 gives us

∑
l,m

Fm
l Ĝm

l =∑
l,m

l

∑
m′=−l

Fm
l D

l
m′m(R)Gm′

l . (2.69)

As the relation of Equation 2.68 is true for any f , we deduce that

Ĝm
l =

l

∑
m′=−l

Dl
m′m(R)Gm′

l , (2.70)

which could be written in matrix form Ĝ = MG where M is a block diagonal sparse rotation
matrix for the complex SH coefficients, since each SH bands is rotated independently of
the others

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 . . .

0 X X X 0 0 0 0 0 . . .

0 X X X 0 0 0 0 0 . . .

0 X X X 0 0 0 0 0 . . .

0 0 0 0 X X X X X . . .

0 0 0 0 X X X X X . . .

0 0 0 0 X X X X X . . .

0 0 0 0 X X X X X . . .

0 0 0 0 X X X X X . . .

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.71)

For the real SH, the bands are also independent under rotation but the real only implemen-
tation cannot be deduced directly as explained after Equation 2.62. However, as the rotation
is a linear transformation (Section 2.2.11), each element can be defined by the integral of
the multiplication between the SH and its rotated copy

Mij = ∫
Ω
Yi(Rω)Yj(ω)dω . (2.72)

As demonstrated by Ivanic and Ruedenberg [IR96,IR98] each block of the matrix M can be
computed recursively from the block of the previous order.

Rotation of Zonal Harmonics
As noted by Sloan et al. [SLS05], if the rotated function g is circularly symmetric, the

rotation complexity is greatly reduced. The same procedure is applied as for the general
rotation (Equation 2.68, 2.69 and 2.70). Except that the convolution (Equation 2.62) is re-
placed by the convolution with a circularly symmetric kernel (Equation 2.64). At the end,
we obtain

Ĝm
l =

√
4π

2l + 1
G0
l Y

m
l (Rz) (2.73)

where, in this case, z is mapped to the symmetry axis of g by the rotation matrix R. Hence,
the rotation becomes a point-to-point multiplication vector, instead of a vector matrix mul-
tiplication. As a result, any method that uses a ZH factorization can benefit of this efficient
rotation (Section 2.2.9).
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Other methods

The rotation of a SH coefficient Ĝm
l around the z axis with an angle α is simply a linear

combination of the same SH coefficients Gm
l and the one of opposite degree G−m

l :

{
Ĝ−m
l = G−m

l cos(mα) −Gm
l sin(mα)

Ĝm
l = G−m

l sin(mα) +Gm
l cos(mα) (2.74)

and Ĝ0
l = G0

l . Furthermore, the sine and cosine factor can be computed recursively to avoid
unnecessary computations of trigonometric functions:

{
sin(mα) = 2 sin((m − 1)α) cos(α) − sin((m − 2)α)
cos(mα) = 2 cos((m − 1)α) cos(α) − cos((m − 2)α) . (2.75)

Hence, using a traditional zyz decomposition for the rotation, the rotations around z are
simple to compute on the fly but the rotation around y is complex to compute. The rotation
around y can be decomposed by a rotation xzx, where the first rotation around x maps the
z axis on the y axis and the second maps back the z axis to its initial location:

Rz(α)Ry(β)Rz(γ) = Rz(α)Rx(−90○)Rz(β)Rx(90○)Rz(γ) (2.76)

where the rotations Rx are computed once for all. This method is known as the zxzxz
rotation in the literature [Gre03,KSS02]. While this method is an exact rotation for the SH
coefficients, Krivánek et al. [KKP+06] propose a Taylor approximation for Ry(β) instead of
using its xzx decomposition which makes the method particularly competitive.

Finally, Nowrouzezahrai et al. [NSF12], use their zonal harmonics factorization (Equa-
tion 2.56 and 2.58) to propose an efficient rotation method. They show that the rotation
of the SH coefficients can be done by simply rotate each element of Yl (i.e. Y m

l (Rωl,−l)).
However, this method requires a lot of SH evaluation and exhibits similar computation
time as the zxzxz rotation. Nevertheless, for a static function the product between Yl and
the vector of SH coefficients can be precomputed for each order l and for each rotation R,
i.e. the per band SH projection is precomputed for each direction of factorization and for
each rotation R (i.e. ∑lm=−l Y

m
l (Rωl,m)Gm

l ). Since only the directions of factorization are
rotated, each possible rotation are perfectly defined on a sphere and thus the precomputa-
tion for each R can be done on a cubemap. This improvement brings a significant gain for
real-time computation.

2.3 Applications to computer graphics
The use of spherical harmonics in computer graphics has a rich history. Their potential

covers a wide range of applications. Precomputed Radiance Transfer (PRT) is the starting
point for many improvements in the efficient use of spherical harmonics. This section aims
at tracing the history of spherical harmonics in computer graphics as well as an overview
of the related work used in this thesis.

2.3.1 Environment map lighting

The first notable method that use SH for rendering was proposed by Cabral et al. [CMS87]
to take advantage of the acceleration of the double product (Equation 2.46). The SH projec-
tion of the light, constituted by an environment map, is computed once for all the shaded
points and the SH projection of the materials is computed once for each material in the
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scene, the cosine of the rendering equation is packed with the material. Before applying
the double product, a rotation is necessary at each shaded points since the light is in the
world reference frame, while the material is in the local reference frame at the object sur-
face. The light must be projected only once because the incident radiance is the same at
any points when the visibility of the environment map is not taken into account. Indeed,
for two points x and y of the scene the light coming from the map is exactly the same for
the same direction Li(x, ωi) = Li(y, ωi). Ramamoorthi and Hanrahan [RH01] show that the
irradiance can be deduced very efficiently from the projection of the radiance because 3 SH
bands are sufficient to capture the complexity of the irradiance, i.e. 9 SH coefficients. The
irradiance on an opaque surface considers only the radiance received above the surface,
and is thus rewritten by

E(x) = ∫
Ω
L(x, ω)max(0, (ω ⋅ nx))dω (2.10 revisited)

where the cosine becomes a clamped cosine. Hence, the irradiance is computed by a SH
double product between the radiance and the clamped cosine. The clamped cosine is pro-
jected once on the local frame and is rotated efficiently since the clamped cosine is a circu-
larly symmetric kernel, so a ZH function (Equation 2.73). As the clamped cosine is mainly
captured on 3 SH bands, it is not necessary to store the environment map on more SH
bands, i.e. only 9 SH coefficients are sufficient.

2.3.2 Material convolution

The evaluation of the color at each shading point of the scene corresponds to a convolu-
tion between the radiance L and reflectance F evaluated in direction ωo (Equation 2.13)

Lo(x, ωo) = ∫
Ω
Li(x, ωi)F (x, ωi, ωo) ∣ωi ⋅ nx∣dωi . (2.77)

In spherical harmonics rendering, there are two main methods to process the BRDF de-
pending on how they are stored and computed.

Arbitrary BRDF An arbitrary reflectance F is a 4D function defined by two directions
ωi and ωo. When one of the two directions is fixed, the material becomes a 2D function
directly projectable on the SH. Let’s consider that ωo is fixed, Kautz et al. [KSS02] create a
tabulation of the SH coefficients where ωo is the table entry. The cosine in the integral can
be directly included in the tabulation. As a result, Equation 2.77 is evaluated by a simple
scalar product of the SH coefficients (Section 2.2.6). Arbitrary BRDF can also benefit from
the zonal harmonics factorization, as detailed in Section 2.3.4. Appendix B provides the
SH projection of the materials from the MERL database [MPBM03] as well as the database
produced by Dupuy and Jakob [DJ18] using a similar technique than Kautz et al.. The ap-
pendix also contains a table referencing all the materials from these databases used in this
thesis (Table B.1).

Decomposable BRDF The reflectance can also be the result of the separation of the dif-
fuse and specular reflectance (Section 2.1.2). The diffuse reflectance is constant over Ω and
can thus be taken out of the integral (Equation 2.77). In this case, it corresponds to the com-
putation of the irradiance E multiplied by the diffuse color of the material. The irradiance
can therefore be computed by the method of Ramamoorthi and Hanrahan [RH01] as ex-
plained above. The specular contribution can be computed in the same way as an arbitrary
reflectance. However, if the specular lobe is circularly symmetric, the computation can be
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greatly accelerated using Zonal Harmonics (Section 2.2.9). Indeed, in this case, the lobe can
only be represented by ZH whose convolution can be efficiently computed (Section 2.2.10).

However, this introduces redundancies between the computations of the diffuse and
specular contribution. These redundancies are identified and factored in Section 4.1. Fi-
nally, if the radiance is also a circularly symmetric function, as is the case when using
spherical light, the convolution can be further accelerated, but this is explained in more
detail in Section 5.2.7.

2.3.3 Precomputed radiance transfer
Initial formulation The methods described in Section 2.3.1 do not take into account the
global lighting. Sloan et al. [SKS02] precompute transfer functions at each vertex of the
mesh to compute the interreflections that appear in the scene (Figure 2.8). First, let’s con-
sider only direct lighting, where Li is the radiance emitted by an environment map. Thus,
Li is projected on SH once for the whole scene, but does not take into account the shadow-
ing at each point of the scene. A visibility term V is introduced in the rendering equation
to obtain a correct shadowing

Lo(x, ωo) = ∫
Ω
Li(x, ωi)F (x, ωi, ωo) ∣ωi ⋅ nx∣V (x, ωi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T(x,ωi)

dωi . (2.78)

V is a binary function equal to 1 when there is no object in direction ωi from x and 0 oth-
erwise. For direct lighting, the transfer function T is the visibility multiplied with ∣ωi ⋅ nx∣

and is projected on SH at each vertex of the mesh. At runtime, the outgoing radiance is
computed at each vertex and then interpolated for each triangle. The organization of the
final lighting computations depends on the nature of the material. For the diffuse part, i.e.
constant over the sphere, F can be taken out of the integral. Thus, the outgoing radiance
is equal to the material multiplied by the dot product of the SH coefficients of the incom-
ing radiance and the transfer function Lo = F × (L ⋅ T). For the specular contribution, a
SH product is computed between Li and T and the result is convolved with the material.
Precomputing the transfer matrix (Section 2.2.7) instead of the SH projection of T at each
vertex requires less operation at runtime to compute the SH product but consumes more
storage.

Global illumination is computed by taking into account the interreflections of the scene
in the transfer function. The diffuse interreflections are view independent, then the trans-

Figure 2.8: Precomputed Radiance Transfer (PRT) precomputes a transfer function, represent-
ing the interreflections, at each vertex of a mesh and apply it to light at run time to compute the
shading [SKS02]. The application is only a dot product for diffuse contribution but is more complex
for specular contribution.
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fer function at x is a scaling of the transfer function of the other points y of the scene visible
from x according to the color of the diffuse material at y and the cosine of the rendering
equation. The double product between the transfer function and the incident radiance is
applied to compute the diffuse interreflections L ⋅T. For the specular contribution, being
view dependent, the transfer function at y is convolved with the material at the same lo-
cation and evaluated in the direction of reflection to yield the radiance transferred from
y to x. Unlike for the direct lighting, it is not a SH product between the incident radi-
ance and the transfer function that is computed at x but a linear transformation to convert
the incident radiance coming from the environment map into an incident radiance com-
ing from the scene. Which is then convolved with the material to compute the specular
interreflections.

Hence, at runtime the shading at x considers only the incident radiance arriving at the
same point. This creates a strong assumption that the radiance received at x must be the
same as at any point y. This is true with an environment map but becomes false with
close-range lighting. Nevertheless, this remains a consistent approximation with diffuse
materials and close interreflections. Furthermore, the light sources cannot be located in-
side the scene at the risk of falsifying the precomputed (binary) visibility. Let’s consider
that y is visible from x (V (x, x⃗y) = 0), if the light source is between x and y, thus visible
from x, the precomputed visibility indicates that the light is not visible. In such a case, the
SH projection of the visibility must be recomputed.

In order to use local light sources, whose radiance field is not constant on the whole
scene, the incident radiance of such sources is projected on SH on a sparse set of samples
and interpolated between the samples at run time. To use dynamics light sources, the SH
projection needs to be computed at each frame.

This initial PRT formulation allows to use a dynamic camera but the geometry of the
scene is fixed since the transfer function T is precomputed at each vertex. The output
direction ωo is fixed for each vertex if the camera is static. In this case, the specular con-
tribution of the material, being view dependent, becomes a spherical function that can be
packed directly in the transfer function. This greatly simplifies the runtime computation
since there are only two functions left, the radiance Li and the transfer T to convolve by
the SH double product.

Dynamic scenes In order to use dynamic geometry, the SH projection of the visibility
must be computed at each frame. To avoid computing the SH projection from scratch

Figure 2.9: To enable dynamic visibility in PRT system, Zhou et al. [ZHL+05] encode the visibility
from different viewpoint q. Ren et al. (left) [RWS+06] (right) use an approximation of the scene with
spheres where the visibility is the product of the visibility of each sphere.
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at each frame Zhou et al. [ZHL+05] precompute the Object Occlusion Field (OOF) of each
dynamic, but rigid object. The OOF gives the SH coefficients representing the visibility
for any point q that sees the center of the object O in a direction ω (Figure 2.9 - left). The
OOF is a set of SH coefficient vectors precomputed for different distances between q and
O and different directions ω. Hence, the OOF structure yields the SH visibility for a single
object. Considering N objects, the total visibility is the multiplication of the visibility of
each object

V (x, ω) = V1(x, ω)V2(x, ω)⋯VN(x, ω) (2.79)

where Vi(x, ω) is the visibility of the i-th object according to the position x and direction
ω. Precisely, the OOF yields the SH projection of the visibility V of each object. Thus,
the total visibility on SH is obtained by applying the general SH product (Section 2.2.8) or
by applying the SH triple product recursively (Section 2.2.6) with the SH visibility of each
object.

For each point x, the shading is managed as follows. The occluders and local light
sources are sorted in a list according to their distance to x and the current visibility is
the visibility of the object on which x is located. Then the list is processed, when it is an
occluder, the current visibility is multiplied by the visibility of the occluder. When it is a
light source, the convolution is computed with the current visibility. This method is lim-
ited to few rigid objects to remain efficient. Ren et al. [RWS+06] discretize the scene by
a set of spheres (Figure 2.9 - right). Thus, the OOF is the same for each sphere of same
radius and can be precomputed once for a set of radius. Instead of using the classical SH
product, they convert the SH projection into an exponential space where the multiplica-
tion becomes an addition. This was described earlier (Section 2.2.8) as well as the proposal
of Xin et al. [XZA+21] who switch to a Fourier space to perform the multiplication. The
SH exponentiation proposed by Ren et al. has been used to develop a practical shading of
height fields [GN15].

These improvements allow the use of dynamic visibility but do not take into account
the interreflections of dynamic objects. Iwasaki et al. [IDYN07] propose a solution using a
similar principle to that of OOF but adapted for interreflections.

However, the OOF method requires to compute the SH coefficients from different points
q (Figure 2.9 - left). These points q are distributed on 3 dimensions, the direction (θ, φ)
and the distance of the object (r). Wang et al. [WXZ+06] propose to use only one r and
approximate the SH coefficients for the other r by scaling the visibility.

In general, rendering requires efficient rotations, e.g. to convert a function from world
coordinates to local coordinates of the surface. In some cases of SH rendering, a rotation is
sufficient to render a dynamic scene, for example by computing the rotation of the transfer
function initially computed in the local space to send it to the rotated local space accord-
ing to the movements of the object. In order to take advantage of the efficient rotations
allowed by ZH, Sloan et al. [SLS05] approximate the transfer function by a set of ZH lobes
(Section 2.2.12). However, this is not the only method relying on ZH factorization and these
methods are more discussed in the dedicated section (Section 2.3.4).

Diverse improvements The initial PRT formulation benefit of the ZH (Section 2.2.10) to
compute an efficient convolution between the radiance and the reflectance. This limits
the reflectance to circularly symmetric specular lobes, such as the blinn-phong material.
Ramamoorthi and Hanrahan [RH02] avoid this limitation by preconvolving the radiance
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and the reflectance with each possible rotation of the radiance. This method is not limited
to any material but very costly in terms of memory in particular for anisotropic materials.
The BRDF is a function that depends on two directions (ωi, ωo), so when one direction is
fixed, the resulting function is spherical and can therefore be projected onto SH. Kautz et
al. [KSS02] use a spherical map where each element corresponds to a direction ωo and stores
the corresponding reflectance projected onto the SH. The memory cost is much more neg-
ligible than the Ramamoorthi and Hanrahan method but the convolution have to be eval-
uated at each shaded points. Thus, for both methods, at runtime, they fetch the necessary
SH coefficients from the memory. This can represent a lot of memory accesses, and thus
be a bottleneck, especially when many SH bands are involved.

When using large scenes, the PRT methods are particularly memory-intensive because
of the storage of the SH coefficients and the transfer matrix of the transfer function at
each vertex. In order to reduce the memory cost, Sloan et al. [SHHS03] build cluster on
vertices with similar transfer function with a principal component analysis. This reduces
the storage, which keeps only one transfer function per cluster, but also the execution time
since the number of convolutions is also reduced to the number of clusters and not to the
number of vertices.

The initial PRT formulation computes the shading at each vertex to interpolate it at each
pixel. However, the use of normal maps change the local reference frame at each point of
the triangle forcing the explicit computation of the lighting at each pixel. Sloan [Slo06]
avoids this problem by storing the spherical convolution between radiance and reflectance
at each vertex which is interpolated at each pixel and evaluated in the desired direction
according to the new normal.

Dubouchet et al. [DSJN19] introduce a new framework to take into account the lighting
effect that volumetric media will have to the surface of the scene. For additional informa-
tion on PRT methods, the reader is referred to state-of-the-art documents [Leh07,Ram09].

2.3.4 Advanced rendering

SH allow an efficient computation of the rendering equation and can therefore be applied
to a whole range of techniques. However, if some methods are satisfied with a naive use of
spherical harmonics, some methods take advantage of advanced properties of the SH.

Zonal Harmonics factorization

The main interest of using ZH instead of SH is to take advantage of the efficient con-
volution (Section 2.2.10) and rotation (Section 2.2.12) properties. Thus ,any circularly sym-
metrical signal can only be represented using ZH and can therefore take advantage of these
properties. For instance, the use of a circularly symmetric specular lobe simplifies the com-
putation of the convolution with any radiance [SKS02]. For an arbitrary signal, there are sev-
eral factorization methods on the ZH in order to represent the signal only with ZH lobes.
Sloan et al. [SLS05] use an optimization to approximate the signal with an arbitrary number
of lobes that will best represent the function. Nowrouzezahrai et al. [NSF12] show that any
SH basis function can be represented with the ZH of same order with a fixed number of
lobe directions (Section 2.2.9). Thus, any signal can be factored onto the same ZH lobes.
Wang and Ramamoorthi [WR18] use this principle to propose an efficient method to project
the radiance emitted by polygonal lights onto the SH. Belcour et al. [BXH+18] also use this
principle to propose a method of integration on a clipped spherical polygon. The work of
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Figure 2.10: The work of Annen et al. [AKDS04] (left) and Wu et al. [WCZR20] (right) use the
gradient of the SH coefficients to interpolate them accurately using a Taylor or Hermite interpola-
tion.

Soler et al. [SBN15] can be seen as a generalization of the principle of Nowrouzezahrai et
al., indeed they generalize the factorization with any circularly symmetric kernel.

Spherical harmonics gradient

In computer graphics, many methods interpolate the radiance, so computing the radi-
ance gradient helps to improve the interpolation quality. Thus, methods are interested in
computing the gradient of the SH coefficients, e.g. to interpolate the radiance projected on
SH (Figure 2.10). Annen et al. [AKDS04] propose to compute the SH coefficients of the inci-
dent illumination with their spatial gradient on a sparse set of samples and then reconstruct
the SH coefficients at any shaded point. However, gradients are computed with a numeri-
cal integration over the area light, which significantly increases computation times when
considering higher SH frequency bands. On the other hand, based on the initial results to
compute the SH coefficients representing the radiance emitted by polygonal light [WR18],
Wu et al. [WCZR20] derive an analytical solution to compute the spatial gradient of the SH
coefficients representing also the radiance emitted by polygonal lights. This thesis follows
the same principle, but adapted to spherical lights (Section 3.3).

2.3.5 Area lights

Simple light primitives, such as point, directional or spot lights are convenient to use.
Indeed, the lighting received at a point of such light sources corresponds only to a single
direction, where the lighting received from an area light correspond to a set of direction
(Figure 2.11). Hence, their use for real-time rendering is more complex and expensive but
has a greater physical sense. The integration of the lighting function over an area light
source was studied for different representations of the light source. While Monte-Carlo
integration provides a ground-truth solution for lighting, analytical integration schemes
introduce less stochastic error while being specific to the area light representation. Deal-
ing with polygonal representation of the area light, Heitz et al. [HDHN16] propose a method
called Linearly Transformed Cosines (LTC) to approximate the lighting by transforming the
projection of the polygon onto the unit sphere toward a clamped cosine according to the
BRDF distribution. Multiple improvements of LTC have been proposed, for instance Pe-
ters couples LTC with importance sampling of the BRDF [Pet21], and Allmenröder and
Peters [AP21] combine LTC with SH. The initial formulation of LTC limits them to con-
stant polygonal lights, whose emission color is constant on the surface of the light source,
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Figure 2.11: The model of Dupuy et al. [DHB17] (left) for the spherical light contribution allows
analytical integration for real time as well as efficient sampling for offline. Wang and Ramamoorthi
[WR18] (right) project the radiance field produced by polygonal lights onto SH.

as well as limited to isotropic materials. Kuge et al. [KYM22] propose to lift the first limi-
tation by extending LTC to any free-form area light whose emission color can vary on the
surface. KT et al. [KHDN22] lift the second limitation by allowing the use of anisotropic
GGX materials with LTC. Dealing with spherical representation of the area light, Dupuy et
al. [DHB17] propose a spherical cap parameterization enabling the use of an analytic inte-
gration and an importance sampling scheme of the lighting function.

These methods are however limited to a small number of lights to provide real-time
performances and the precomputation of the radiance transfer is an efficient solution to
compute lighting with numerous lights. For SH based lighting, some approaches introduce
an analytical solution to compute the SH coefficients of polygonal lights [WR18, BXH+18].
Following the approach introduced in Wang and Ramamoorthi [WR18], Wu et al. [WCZR20]
propose to precompute and store the SH coefficients and their spatial gradients on the ver-
tices of a low resolution 3D grid. These coefficients are then interpolated during rendering,
which allows to handle several hundreds of polygonal lights in real-time.

The approaches developed to project the radiance field of polygonal sources [WR18,
WCZR20] are based on the ZH factorization principle proposed by Nowrouzezahrai et
al. [NSF12] (Section 2.2.9). Zhou and Wei [ZW20] use the same principle but adapted for
spherical lights, although their approach seems to be usable for real-time, since their algo-
rithm has a similar complexity to the one of Wang and Ramamoorthi [WR18], they demon-
strate impressive offline results. In contrast, the methods developed in this thesis for spher-
ical lights are not based on the method of Nowrouzezahrai et al. but rely on the fact that the
radiance field emitted by a spherical light and received at a point is a circularly symmetric
signal, thus only representable with ZH.

2.3.6 Radiance caching and probes lighting

Irradiance and radiance caching are widely used to compute global illumination by re-
constructing the lighting function from a sparse set of caches storing the global light field
[WRC88, KGBP05, KGW+08] (Figure 2.12). When the caches are distributed on the surface
of opaque objects, only the radiance received or emitted above the surface is considered.
Thus, the initial methods of radiance caching use the hemispherical harmonics [KGBP05,
KGW+08] (Section 2.2.2). To improve the sparsity of the caches and enhance the interpo-
lation accuracy, a solution is to use the function gradients [WH92,KGBP05,JDZJ08,JZJ08].
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(a) Radiance caching from [KGBP05] (b) Radiance caching from [KGW+08]

Figure 2.12: Radiance caching methods capture the radiance on caches distributed over the scene
surface and interpolate the radiance from the nearest caches. Both results are rendered with the
same caches, only the computation of the radiance gradient changes [KGW+08].

These methods estimate the gradient numerically using Monte-Carlo; in contrast, we com-
pute the gradient of the SH-encoded light field analytically. Several recent approaches rely
on offline precomputation of radiance cache for real-time rendering [DSJN19, ZBN19] or
even with neural networks [MRNK21].

Based on a volumetric approach introduced by Greger et al. [GSHG98], caches are un-
der the form of probes distributed volumetrically in the scene (Figure 2.13). To simplify
the interpolation of the probes, they are usually placed on a uniform 3D grid. However,
the placement of the probes is critical because the management of the visibility of the
probes is particularly problematic, indeed a probe not visible by the point of a surface
should not generally contribute to the radiance at that point. Cupisz [Cup12] uses a tetra-
hedral grid which allows to simplify the placement of the probes. However, since the probes
are in space and not on the surface of the objects, an interpolation is generally not suffi-
cient for highly specular materials, but a reprojection must be computed so that the ra-
diance directions are corrected [RLP+20] or a better placement of probes can also avoid
this problem [WKKN19]. Many approaches store the data from each probe in the form of a
map [MMNL17, SL17, MGNM19]. Depending on the materials in the scene, it is unneces-
sary to use high resolution maps, so filtering methods can be implemented [MS16]. Further-
more, the probes can also be projected onto the spherical harmonics [IKA+21]. For addi-
tional information, the reader is referred to the recent state of the art on probes [MMSM21].

Yet, even using techniques that exploit a sparse set of probes [SL17], the cost of storage
becomes high for large and complex scenes. To overcome this limitation, probes data can
be compressed with only a low loss in quality [SS21].

Figure 2.13: McGuire et al. [MMNL17] use a set of probes volumetrically distributed in the scene
capturing the radiance arriving at the probe position in order to interpolate it to the point of the
nearby scene. This method uses a map representation for the radiance but these maps can be pro-
jected on the SH.
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Figure 2.14: The occlusion characterizes the accessibility of a point according to the surrounding
geometry (left: without occlusion, middle: only occlusion and right: combination of both). Result
given by Jimenez et al. [JWPJ16].

2.3.7 Occlusion

Occlusion is derived from the visibility at small distance scales (Figure 2.14). The distinc-
tion is necessary for real-time methods, as techniques handling visibility at the scene scale
are not suitable for rendering convincing occlusion at the object scale. Thus, it is necessary
to develop other methods to compute the occlusion. The occlusion defines the accessibil-
ity of a point with respect to the geometry that surrounds it, the occlusion is therefore a
scalar and not a spherical function. Occlusion is sufficient for diffuse materials, since a
diffuse material does not need to know where the shadow comes from. However, for spec-
ular materials directional occlusion is necessary. Directional occlusion can be defined as
the presence of geometry in one direction over a small distance, so it is a spherical function
that can be approximated by SH. Directional occlusion is perfectly suited for SH since it is
generally spatially low frequency. Herholz et al. [HSSS12] adapt the traditional Screen Space
Ambient Occlusion (SSAO) [BS08] to project the occlusion on SH at each pixel. Jimenez et
al. [JWPJ16] take advantage of the convolution with ZH by approximating the directional
occlusion by a set of ZH lobes.

2.3.8 Differentiable rendering and neural radiance field

Differentiable rendering and Neural Radiance Field (NeRF) are two hot topics in computer
graphics. While these two topics are not directly related to SH, they can still benefit from
the various improvements on the use of SH.

Differentiable rendering Computing the gradient of numerous rendering quantities is at
the heart of differentiable rendering approaches (Figure 2.15 - left). Aiming at solving in-
verse problems [LTL+19, LZBD21, NDDJK21], differentiable rendering frameworks mainly
rely on path-space [ZMY+20] or physical formulation of light transport [ZWZ+19].

While works proposed in this thesis are not directly related to such differentiable ap-
proaches, they may serve as building blocks for improving gradient computations of the
incident light field. Indeed, several approaches based on differentiable rendering take ad-
vantage of SH. For instance, Liu et al. [LTL+19] directly compute the gradient of the SH
basis function. A method to compute it efficiently is developed in this thesis (Section 3.2).
Lyu et al. [LHL+21] use a spherical representation of the scene to compute differentiable
shadow by projecting the spheres on SH. This approach can thus directly benefit from our
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Figure 2.15: Differentiable rendering [ZMY+20] (left) and neural radiance field [MST+20] (right)
are two hot topics in computer graphics. The scene is differentiated according to the sun position and
the result is displayed as false colors. The goal of neural radiance field approaches is to reconstruct
the radiance field with a set of capture from different viewpoints.

method on spherical light (Chapter 3). Technically, while most of the methods rely on finite
differences or automatic differentiation frameworks, we introduce an analytical expression
optimizing the evaluation of the SH coefficient gradients.

Neural radiance field The goal of NeRF approaches (Figure 2.15 - right) [MST+20] is to
render a scene from a new point of view from a finite set of viewpoints. In other words,
these methods seek to reconstruct efficiently the radiance field at any point in the scene.

Similarly, the goal of some of the methods developed in this thesis is to reconstruct the
radiance field, e.g. the radiance field produced by spherical lights (Chapter 3). Some recent
NeRF methods use the SH and their gradients for this purpose [YLT+21, STC+22]. Hence,
the method we develop to compute efficiently the gradient of the SH basis functions con-
stitute a direct improvement for these methods.

In a way, NeRF methods seek to deconvolve the lighting in order to recover the radiance
and reflectance at each point of the scene. Mahajan et al. [MRC07] achieve this deconvolu-
tion with a SH representation.

2.4 Other basis functions to encode light transports
Spherical harmonics have been widely used in computer graphics to encode the local

light transports. If their use allows a particularly efficient low frequency approach, they do
not allow a low cost all frequency approach. Wavelets and spherical Gaussians allow to lift
this limitation but with their own drawbacks (Section 2.4.1). However, these approaches
are designed to encode only local light transports. Recent approaches propose a paradigm
shift from these methods by encoding global light transports instead (Section 2.4.2).

2.4.1 Local light transports

Wavelet Wavelets Ψ are basis functions, historically competing with spherical harmonics
on PRT methods. Indeed, wavelets allow an all-frequency approximation more easily than
SH which are particularly adapted to a low frequency approximation (Figure 2.16) [NRH03].
Since both wavelets and spherical harmonics are orthogonal basis functions, the double
product is of equal complexity. The triple product has a complexity of O(N logN) when
using the N first basis function, while the triple product complexity with SH is O(N5/2)
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Figure 2.16: Wavelets encode high-frequency information with fewer coefficients than SH, allow-
ing all-frequency illumination more easily, where SH are more likely to produce a low-frequency
illumination. However, wavelets are more costly for the precomputation and at runtime. The envi-
ronment map is encoded on SH on the left and wavelets on the right, also the final rendering uses
SH on the left and wavelets on the right [NRH03].

(Section 2.2.6). This is due to the property of wavelets which often nullifies the integral
involved in the triple product [NRH04]

T =∑
i

∑
j

∑
k

LiFjVk ∫
Ω

Ψi(ω)Ψj(ω)Ψk(ω)dω . (2.80)

However, even with few basis functions, SH can still bring consistent results but limited in
frequency, where wavelets must use a minimum number of basis functions before having a
consisting result since the basis function are non linear. The use of near and dynamic light
is complex in PRT systems, especially when the radiance emission function is a complex
function, such as a textured area light. The initial PRT formulation [SKS02] samples the
radiance projected on SH on a sparse set of samples. Instead, Sun and Ramammorthi [SR09]
approximate the radiance field projected on wavelets at any point in the scene by an affine
transformation of the radiance field emitted by the surface light.

Importance sampling is an important issue in many fields that requires an a priori knowl-
edge of the function. Clarberg et al. [CJAMJ05] propose to distribute samples according to
an approximation of the function by wavelets, this work has been adapted to SH [JCJ09].
These methods are not directly related to PRT methods since they are intended to place
samples for Monte-Carlo techniques.

Spherical Gaussian Spherical Gaussians are not basis functions like SH (Figure 2.17), but
a mixture of spherical Gaussians can fit any spherical signal. Like ZH, spherical Gaussians
can only represent circularly symmetric functions. However, even limited to circularly sym-
metric functions, ZH can represent complex functions where spherical Gaussians have to
use a mixture of Gaussians to approximate them [WRG+09]. Xu et al. [XSD+13] introduce
anisotropic spherical Gaussian which are particularly useful for representing more complex
specular lobes than simply circularly symmetric ones. Like wavelets, that trade steerabil-
ity for high frequency and locality, spherical Gaussians allow an all-frequency approach
more suitable than SH. However, convolution and product operations of spherical Gaus-
sians (anisotropic or not) generally do not have simple analytical solutions, even if fast and
accurate approximations are developed [WRG+09, XSD+13]. Spherical Gaussians are used
in various global lighting simulation applications. For instance, Xu et al. [XCM+14] com-
pute global illumination by fitting spherical Gaussians representing the radiance emitted
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Figure 2.17: The Spherical Gaussian (SG) or Anistropic Spherical Gaussian (ASG) [XSD+13] are
not basis functions like spherical harmonics. But the illumination can be computed by representing
the radiance and reflectance on a mixture of Gaussian lobes. Here, only one spherical Gaussian
is used, the left part represent different Gaussian and anisotropic Gaussian lobe and the red part
shows renderings results.

by each triangle in the scene. Currius et al. [CDAS20] propose an application of precom-
puted radiance transfer where mixtures of Gaussians are used to approximate the local light
field at each point on the scene surface.

2.4.2 Global light transports

The PRT methods encode the transfer functions and lighting at each illuminated point
of the scene, so this represents various difficulties mentioned so far and especially storage.
In order to overcome this limitation, some approaches try to encode the global light trans-
ports of the underlying scene (Figure 2.18). Rainer et al. [RBRD22] rely on neural networks
to encode the incident lighting on one side and the light transfer on the other side. An
other network takes both encoding to compute the final lighting to each pixel. Belcour et
al. [BDBS22] extract basis functions directly from the global light transfers that arise from
various luminous configuration. Thus, both methods reduce the light transports to a small

Figure 2.18: Neural Precomputed Radiance Transfer [RBRD22] (left) is inspired by PRT by encod-
ing the transport and incident radiance using neural networks. The work of Belcour et al. [BDBS22]
encodes the light transports using basic functions directly deduced from the transports present in
the scene, i.e. direct and indirect illumination from various luminous configurations.
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set of coefficients independent of the scene size. However, these methods are specifically
designed to work with relatively small scenes. Indeed, since these methods encode global
light transports, they cannot be used in scenes where the possible lighting combinations
are large, which is the case in large scenes.
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3 Spherical Light

Surface lights are physically more plausible than area-less lights, however the integration
of such light sources requires the consideration of their surface, which makes them par-
ticularly complex to consider in high performance rendering contexts. Recently, work
has demonstrated an efficient analytical projection of the radiance produced by polygo-
nal lights onto the SH [WR18, WCZR20]. The goal of this chapter is to extend these works
to spherical lights (Section 3.1) while reducing the number of arithmetic operations re-
quired for the SH projection, allowing a better scalability with respect to the number of
coefficients. Our method being more efficient than that of polygonal lights, we propose
a method to approximate the projection of their radiance fields on the SH in chapter 4 in
order to take advantage of the performances of our method.

Our method to compute the SH projection of the radiance field produced by spherical
light requires the evaluation of the SH basis functions, which is done by the efficient Sloan’s
method [Slo13]. We propose an extension of Sloan’s method to efficiently compute the
gradient of the SH basis functions (Section 3.2). We leverage this to compute efficiently
the gradient of the SH coefficients representing the radiance field produced by spherical
lights (Section 3.3). It is the same idea as Wu et al. [WCZR20] who compute the gradient
of the coefficients for polygonal lights in order to compute the projection only on a sparse
grid. The gradient of the SH coefficients allows implementing a more accurate Hermite
interpolation than a simple linear interpolation to reconstruct the SH coefficients at each
shading points.

Figure 3.1: San-miguel with only 10 spherical lights whose projection is computed on 10 SH bands.
Image rendered in 69ms with the resolution 3400×900.
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Figure 3.2: Primitive of simple lights. The emission of each source corresponds to a Dirac distri-
bution.

3.1 Spherical Light
Spherical lights are a typical example of light sources that we naturally find inside 3D

scenes (Figure 3.1). A form factor can be computed to characterize the light contribution of
such sources but does not keep the directional distribution information of the incident ra-
diance field. For this purpose, we propose an efficient method to project the radiance field
produced by such sources on the spherical harmonics. The performance of this method
heavily relies on the evaluation of the spherical harmonics basis functions.

3.1.1 SH projection of simple light primitive

The luminance contribution of a simple light source, such as point light, spot, or di-
rectional light, corresponds to a Dirac distribution (Figure 3.2). Thus, the computation of
the projection amounts to evaluate the SH in the Dirac direction and scaling by the light
source’s intensity.

3.1.2 SH projection of spherical light

The projection of a spherical light is more expensive. The framework proposed here
aims at handling thousand of them. Zonal Harmonics offers an efficient projection and
reconstruction algorithm for spherical lights.

For the hemisphere around a shaded point, the solid angle Q subtended by the light
source is a spherical cap (Figure 3.3). Considering the incident luminance as constant, and
equal to 1, overQ and 0 elsewhere, the projection on SH of the incident luminance function
simplifies to:

Lml = ∫
Q
Y m
l (ω)dω . (3.1)

Let ωl be the direction from the shaded point to the center of the spherical light. Q induces
a circularly symmetric luminance field around ωl. Considering the shading frame with
ωl as z-axis, the computation of Zonal Harmonics boils down to the computation of L̃l
coefficients, since the other coefficients are null,

L̃l =Kl ∫
Q
Pl(ωl ⋅ ω)dω (3.2)

where Kl =K
0
l and Pl = P 0

l . Using spherical coordinates, this equation becomes

L̃l =Kl ∫

a

θ=0
∫

2π

φ=0
Pl(cos(θ)) sin(θ)dφdθ (3.3)
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Figure 3.3: Geometric setup of a spherical light luminance contribution. (a) 2D cut showing the
spherical light radius r, the distance d with the spherical light, and the half-angle a of the cap.
(b) The spherical light in blue projects to a spherical cap Q on the unit sphere centered at the
shading point x.

where a is the half-angle subtended by the spherical light source (Figure 3.3). Integrating
on φ, we obtain

L̃l = 2πKl ∫

a

θ=0
Pl(cos(θ)) sin(θ)dθ . (3.4)

We search for a closed form to the integral of Legendre polynomials over a spherical cap
of angle a:

∫

a

θ=0
Pl(cos(θ)) sin(θ)dθ . (3.5)

Substituting the variable u = cos(θ) yields

∫

a

θ=0
Pl(cos(θ)) sin(θ)dθ = ∫

1

u=cos(a)
Pl(u)du . (3.6)

We get the primitive from the recursive formula

∫ Pl(x)dx = Pl+1(x) − Pl−1(x)

2l + 1
(3.7)

and as ∀ l ≥ 0, Pl(1) = 1 we obtain

∫

1

cos(a)
Pl(u)du =

⎡
⎢
⎢
⎢
⎢
⎣

Pl+1(u) − Pl−1(u)

2l + 1

⎤
⎥
⎥
⎥
⎥
⎦

1

cos(a)

=
−Pl+1(cos(a)) + Pl−1(cos(a))

2l + 1
.

(3.8)

In summary, we have established that

∫

a

θ=0
Pl(cos(θ)) sin(θ)dθ = −Pl+1(α) + Pl−1(α)

2l + 1
(3.9)

where α = cos(a). By re-injecting this into Equation 3.4, the computation of the zonal har-
monics coefficients for a spherical light in the coordinates frame aligned with the emission
direction only requires evaluating Legendre polynomials and by simplifying, we obtain

L̃l =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

√
π

2l + 1
(Pl−1(α) − Pl+1(α)) if l ≠ 0

√
π(1 − α) otherwise

. (3.10)
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Figure 3.4: Number of arithmetic operations needed to compute the vector of ZH coefficients up to
a certain band. Our method (Equation 3.10) is compared with the analytic Sloan’s method [Slo08].
Number of operations calculated assumes that the recurrence loop is unrolled to avoid operations
corresponding to constants for each ZH bands (e.g.

√
π/(2l + 1) counts as one multiplication for

each band.)

The SH coefficients are then obtained by rotating the ZH coefficients (Equation 2.73):

Lml =

√
4π

2l + 1
Y m
l (ωl)L̃l . (3.11)

As shown in Figure 3.4, beyond 5 SH bands, computing the ZH coefficients L̃l using the
closed form derived by Sloan [Slo08] exhibits more arithmetic operations than our gen-
eral recurrence (Equation 3.10). To evaluate the Y m

l basis function, we use the work of
Sloan [Slo13], that is explained in Section 3.2.

3.1.3 Evaluation of the proposal

We have implemented our model in a prototype of rendering engine using OpenGL /
GLSL 4.5 on an Intel Xeon 2.10 GHz processor and an RTX 2080 graphic card.

In our implementation, we did not take into account the visibility and we implemented
two representations for the reflectance functions and the associated convolution methods
exposed in Section 2.3.2. The SH coefficients of the received radiance field and the convolu-
tion with the material are computed at each pixel. To avoid ringing artifacts (Section 2.2.5),
we have applied an aggressive filtering by using a window size equal to the number of SH
bands used.

Using our formulation, the computation time of the ZH coefficients is very low, domi-
nated by the evaluation of the SH functions (Equation 3.11). Nevertheless, as shown (Fig-
ure 3.5 and 3.6), our projection algorithm supports a dozen of spherical lights projected
on a dozen of SH bands while allowing a refresh rate compatible with real-time. In the
results presented here, the ZH coefficients are computed analytically at each frame (Equa-
tion 3.10). However, these coefficients can be easily tabulated since for each band, the ZH
coefficients depends only on the cosine of the angle subtended by the spherical light. When
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4.9ms

(a)

4.9ms

(a)

8.3ms

(b)

8.3ms

(b)
Figure 3.5: Sponza with 30 spherical sources rendered in 1980×995. Rendered with (a) 5 SH bands
and (b) 8 bands. A more precise delineation of the reflections on the ground can be observed, as
well as a more important appearance of the colors when the limit band is increased.

(a) (b) (c) (d) (e)

Figure 3.6: Rendered with different material from the database produced by Dupuy and
Jakob [DJ18] and 10 spherical lights, convolution is computed on 10 SH bands. (a) overview of
the scene with the material paper_white, (b) ilm_solo_millennium_falcon, (c) acrylic_felt_orange,
(d) ilm_solo_m_68 and (e) cc_amber_citrine. Images from (b) to (e) are rendered in 600×816 in less
than 3 ms each.

we tried rendering with the tabulation of the coefficients, we only obtained a time differ-
ence of the order of half a millisecond with the analytical version. Our method is therefore
interesting for real-time rendering since the additional memory required for storing the
tabulated coefficients, although of the order of only a few tens of kilobytes, is not accom-
panied by a significant time saving. Nevertheless, this is true for the number of SH bands
used (between 5 and 8). Beyond that, the tabulation method may be limited by the memory
bandwidth creating a non-negligible overhead compared to the analytical computation of
the ZH coefficients. In order to reduce the computation time, we have proposed a similar
solution to the one discussed by Wang et Ramamoorthi [WR18] and implemented by Wu et
al. [WCZR20] whose idea is to exploit the smooth spatial variation of the SH coefficients
by computing the coefficients and their spatial gradients on a 3D grid and then interpo-
lating them for each shading points (Section 3.3). These works use polygonal lights and a
performances comparison between spherical lights and these polygonal lights is brought
in Section 3.3.5.

3.2 Translational gradient of the spherical harmonics
Our method to compute the contribution of spherical lights, like many other applica-

tions, is based on the evaluation of the spherical harmonics basis functions. Computing
them efficiently is therefore not negligible for the performance of these approaches. After
explaining the key principle behind the efficient evaluation proposed by Sloan [Slo13], we
propose to extend it to compute the spatial gradient of the spherical harmonics basis func-
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tion in order to develop in Section 3.3 an efficient method to compute the gradient of the
SH coefficients representing the radiance produced by spherical lights.

3.2.1 Efficient spherical harmonics evaluation
In this section, we summarize the key principle proposed by Sloan [Slo13]. The evaluation

of the SH basis functions requires the evaluation of the Associated Legendre Polynomials
(ALP) Pm

l :

Pm
l (cos θ) = sinm θ d

m

dxm
(Pl(cos θ)) . (3.12)

Sloan proposes to pair the sinm θ from the ALP with sin(mφ) and cos(mφ) from the SH
expression (Equation 2.30). These pairings lead to computationally simpler recurrence re-
lations:

Um = sinm θ cos(mφ) = xUm−1 − yVm−1

Vm = sinm θ sin(mφ) = xVm−1 + yUm−1 ,
(3.13)

where Um corresponds to the case wherem > 0 and Vm corresponds tom < 0, x = sin θ cosφ,
and y = sin θ sinφ. As a consequence, Qm

l = Pm
l (cos θ)/ sinm θ is a polynomial in z, with

z = cos θ, that does not require the explicit computation of sinm θ and is defined by these
five recurrence relations:

Qm
m = (1 − 2m)Qm−1

m−1

Qm
m+1 = (2m + 1)zQm

m

Qm
l =

(2l − 1)zQm
l−1 − (l +m − 1)Qm

l−2
l −m

Qm
m+2 =

(2m + 3)(2m + 1)Qm
mz

2 − (2m + 1)Qm
m

2

Qm
m+3 =

zQm
m((2m + 5)(2m + 3)(2m + 1)z2 − 3(4m2 + 8m + 3))

6
.

(3.14)

where the second and third equations are the same as the traditional recursive formu-
las for the ALP (respectively Equation 2.29 and 2.27) because both are used after the first
equation which divides Pm

m by sinm θ. The fourth and fifth equations are not fundamentally
necessary to unfold the calculations, but reduce in practice the number of arithmetic opera-
tions because these equations are precomputed for each l andm. The same principle could
be applied for m + 4 and beyond but Sloan stopped at m + 3. In order to improve the final
computation, the normalization factors

√
2 and Km

l of SH (Equation 2.30) should directly
be integrated in the recurrence relations of Q, these final forms are given in Section 3.2.2.

3.2.2 Efficient spherical harmonics gradient
Defining the two points x and y, we seek ∇yY

m
l (y − x), i.e. the translationnal gradient

of the spherical harmonics basis functions with respect to y. For an efficient computation,
we first perform this computation in spherical coordinates and then make the conversion
to Cartesian coordinates by multiplying the gradient computed in spherical coordinates
with the Jacobian of the spherical coordinates with respect to the Cartesian coordinates.
Since the SH functions vary only in θ and φ, we have ∂rY m

l = 0, and:

⎛
⎜
⎜
⎝

∂xY
m
l

∂yY
m
l

∂zY
m
l

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

xz

Ψ
−y

x2 + y2

yz

Ψ
x

x2 + y2

−x2 − y2

Ψ
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(
∂θY

m
l

∂φY m
l

) , (3.15)
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where (x, y, z) = y − x and Ψ = (x2 + y2 + z2)
√
x2 + y2.

Partial derivatives with respect to φ

The SH partial derivative with respect to φ is :

∂φY
m
l (θ, φ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−mY −m
l (θ, φ) m < 0

0 m = 0
−mY −m

l (θ, φ) m > 0
, (3.16)

and can be computed without overhead when the SH Y m
l is already evaluated.

Partial derivatives with respect to θ

The SH partial derivative with respect to θ is:

∂θY
m
l (θ, φ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

√
2K ∣m∣l T sin(∣m∣φ) m < 0

K0
l T m = 0

√
2Km

l T cos(mφ) m > 0
. (3.17)

where T = ∂θP
∣m∣
l (cos θ). Equation 3.17 might be computed directly, giving the thereafter

called Direct method. This method improves the one proposed in [LTL+19] using a less
expensive formula evaluating the derivatives of the ALP based on the recursion formula
given by Hansen [Han88]:

T =

⎧⎪⎪
⎨
⎪⎪⎩

P 1
l (cos θ) m = 0

−
1
2
{(l −m + 1)(l +m)Pm−1

l (cos θ) − Pm+1
l (cos θ)} m > 0 . (3.18)

We however propose a more efficient computation method, called the Sloan’s like method,
based on the same principle as the one used for the SH basis function computation (Sec-
tion 3.2.1). Instead of computing T , we compute T / sinm θ to remove sinm θ in other SH
terms. When deriving T and factorizing to have a sinm θ factor, we obtain:

T

sinm θ
=
Pm
l (cos θ)
sinm θ

m cos θ
sin θ

+ ∂θ(
Pm
l (cos θ)
sinm θ

) . (3.19)

The first term of the right member of Equation 3.19 is exactly Qm
l corresponding to the

recurrence relations given by Sloan (Section 3.2.1) and the last term is ∂θQm
l = Tml . We can

thus rewrite Equation 3.19 as:

T

sinm θ
= Qm

l

m cos θ
sin θ

+ Tml . (3.20)

To compute Tml , we derive the recurrence relations of Qm
l (Equation 3.14):

Tmm = 0
Tmm+1 = −(2m + 1)(sin θQm

m)

Tml =
(2l − 1)(cos θTml−1 − sin θQm

l−1) − (l +m − 1)Tml−2
l −m

Tmm+2 = −(2m + 3)(2m + 1)(sin θ cos θQm
m)

Tmm+3 =
(sin θQm

m)((−(2m + 5)(2m + 3)(2m + 1) cos2 θ) + (4m2 + 8m + 3))
2

.

(3.21)
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Final forms We need to integrate the normalization factors of SH in the recurrences re-
lations Q (Equation 3.14) and T (Equation 3.21) to obtain their final efficient forms. Let’s
write:

Jml = {

√
2Km

l m > 0
K0
l m = 0 ,

Xm
l = Jml Q

m
l

Zml = Jml T
m
l

. (3.22)

Multiplying Equation 3.20 by the normalization factor Jml , it gives us:

Jml
T

sinm θ
= Xm

l

m cos θ
sin θ

+Zml . (3.23)

Then, we extend the recurrence relations Q to integrate the normalization factors.

Xm
m = Jmm (1 − 2m)Qm−1

m−1

Xm
m+1 = J

m
m+1(2m + 1) cos θQm

m

Xm
l =

(2l − 1) cos θXm
l−1

Km
l

Km
l−1

− (l +m − 1)Xm
l−2

Km
l

Km
l−2

l −m

Xm
m+2 = J

m
m+2

(2m + 3)(2m + 1)Qm
m cos2 θ − (2m + 1)Qm

m

2

Xm
m+3 = J

m
m+3

cos θQm
m((2m + 5)(2m + 3)(2m + 1) cos2 θ − 3(4m2 + 8m + 3))

6
.

(3.24)

These relations are the final forms developed in the code given by Sloan [Slo13]. The final
recurrences for the derivatives T are then:

Zmm = 0
Zmm+1 = −J

m
m+1(2m + 1)(sin θQm

m)

Zml =
(2l − 1)(cos θZml−1

Km
l

Km
l−1

− sin θXm
l−1

Km
l

Km
l−1

) − (l +m − 1)Zml−2
Km

l

Km
l−2

l −m

Zmm+2 = −J
m
m+2(2m + 3)(2m + 1)(sin θ cos θQm

m)

Zmm+3 = J
m
m+3

(sin θQm
m)((−(2m + 5)(2m + 3)(2m + 1) cos2 θ) + (4m2 + 8m + 3))

2
.

(3.25)

Evaluation and validation of our methods

To compare the performance of our two methods, Direct and Sloan’s like, we perform
several unit tests on CPU (Table 3.1), with a reference evaluation of the SH functions and
their gradients using the polynomial form of SH. The goal is to compare the mean time
to evaluate the SH coefficients and their gradient in one direction. This comparison uses
the same validation procedure than the one proposed by Sloan [Slo13]. For each method,
the mean computation time is measured using the same set of thousand directions. For
each method, timings are averaged over a hundred executions for each direction. We ob-
serve that both the Direct and the Sloan’s like methods are faster than the polynomial form
when having 3 SH bands or more, including the Cartesian conversion. Also, the Sloan’s
like method is always faster than the Direct method. The gradient of the SH basis function
obtained by the Sloan’s like method is correct, as demonstrated by Figure 3.9.
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Algorithm
Band limit

3 4 5 6 8 10

Polynomial
Eval 27.82 32.22 40.57 54.63 84.51 144.01

Gradient ∇x,y,z 56.91 83.34 122.28 190.25 386.91 720.26
Sum 84.74 115.56 162.85 244.87 471.42 864.27

Eval &
Gradient ∇θ,φ

Sloan’s like (ours) 25.86 33.77 44.51 59.95 106.35 169.82
Direct (ours) 42.28 60.66 81.15 112.32 196.33 296.94

Cartesian conversion 41.63 43.67 48.97 53.82 66.19 84.41
Eval &

Gradient ∇x,y,z
Sloan’s like (ours) 67.50 77.43 93.48 113.78 172.55 254.23

Direct (ours) 83.92 104.32 130.13 166.14 262.52 381.35

Table 3.1: Timings (in ns, on the CPU) comparison to evaluate SH and their corresponding gra-
dients at different orders. Both our methods are efficient compared to the traditional Cartesian
approach. However, our Sloan’s like approach is the most efficient, achieving a speedup of more
than ×3 on 10 SH bands. Our gradients expressed with respect to the spherical direction are con-
verted to obtain the Cartesian spatial gradients (Section 3.2.2). For both our methods, SH are eval-
uated with Sloan’s method [Slo13] and are not separated from the gradient calculations because∇φ
is directly calculated from the SH evaluation (Equation 3.16).

3.3 Translational gradient of the projected radiance field
We want to compute the gradient of the coefficients of the SH representing the radiance

produced by spherical light. The efficiency of this method is demonstrated in an appli-
cation of interpolation of the SH coefficients. The SH coefficients (and their gradient) are
computed only on a sparse grid and interpolated at each shaded point (Figure 3.7). The gra-
dient allows a more accurate interpolation than a simple linear interpolation. This method
can handle several hundreds of dynamic lights in real-time.

3.3.1 Formulation
We denote ∇xLml (x) the spatial gradient of the SH coefficients (Equation 3.11) with re-

spect to the shaded point x (Figure 3.3). It is defined as:

∇xLml (x) = −

√
4π

2l + 1
(∇yY

m
l (ω)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Section 3.2.2

Section 3.1.2


L̃l(x) +

Section 3.2.1
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
Y m
l (ω) ∇yL̃l(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Section 3.3.2

). (3.26)

∇xLml (x) represents the gradient according to the translation of a point x. Its computa-
tion involves the evaluation of the gradient∇Y m

l (ω) of the SH basis functions. To compute
the latter, it is more convenient to consider that the point y moves: moving x along a di-
rection d is equivalent to move y along −d. This is what introduces the minus sign and the
gradient ∇y in Equation 3.26.

The definition of ∇xLml (x) contains four main terms: the SH functions Y m
l (ω), the ZH

projection of the spherical light L̃l(x), and their respective gradients∇Y m
l (ω) and∇L̃l(x).

An efficient computation of the gradient ∇Y m
l (ω) of the SH basis functions was proposed

earlier (Section 3.2.2). In the following, the computation of the gradient ∇L̃l(x) of ZH
coefficients is derived first (Section 3.3.2).

It should be noted that L̃l(x) and Y m
l (ω) are two functions that could be written in poly-

nomial Cartesian form for each order and degree [Slo08]. If doing so, computing the spa-
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(a)(a) (b)(b)

Figure 3.7: This fully dynamic scene is rendered at 77 fps with 1793 lights in an image of resolution
1920 × 1080. This is achieved by introducing new analytic formulae that efficiently computes the
spherical harmonics (SH) gradients for lighting with uniform spherical lights. We integrate our new
computations in a SH based rendering system able to compute the lighting from several hundreds
of light sources in real time. This rendering system first computes the SH coefficients and their
gradients on a 3D grid, and then compute the shading at each visible point by interpolating the
samples grid. Our formulae reduce the gradients computational cost and allow to: increase the
frame rate, increase the number of SH bands, use more lights and/or increase the 3D grid resolution.

tial gradient would essentially be a matter of differentiating each equation. However, our
method is based on a more efficient recursive analytical equations than these polynomial
forms (Table 3.1 and 3.2).

3.3.2 Gradient of the zonal harmonics coefficients

Our analytical definition of the gradient of the ZH coefficients is derived using the chain
rule as follows.

Subtended angle gradient Recalling that the half-angle subtended by a spherical light is

a(x) = arcsin (
r

∥y − x∥
) . (3.27)

The gradient of this half-angle with respect to to the position of the spherical light y can
be written as:

∇ya(x) =
−r

∥y − x∥

√

∥y − x∥
2
− r2

y − x
∥y − x∥

. (3.28)

Angle gradient for an oriented disk

If we change the definition of the half-angle by the one subtended by a disk whose
normal would always be directed towards the shaded point, the half-angle its gradi-
ent become respectively

adisk(x) = arctan (
r

∥y − x∥
) , ∇adisk(x) =

−r

r2 + ∥y − x∥
2

y − x
∥y − x∥

(3.29)
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Interpolation

Polygonal Spherical

SH coefficients on 3D grid

#threads = 3D grid × (2L-1)

#threads = 3D grid × 3 (rgb)

#threads = 3D grid

ZH coefficients on 3D grid
(for each ZH lobes of factorization)

Z
H
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1 thread computes the projection for one ZH lobe and one 3D grid vertex

1 thread computes the ZH rotation to SH for one 3D grid vertex and one rgb channel

Projection on pre-
rotated ZH lobes

ZH to SH

Projection on SH
Number of 
ZH lobes

1 thread computes the SH projection for one 3D grid vertex

Figure 3.8: Parallelization scheme for polygonal (left) and spherical lights (right). The projection of
polygonal lights relies on the ZH factorization [NSF12], which is efficiently parallelized and provide
a good tradeoff between the number of threads and the register pressure. Our method cannot follow
the same parallelization model, another factorization method is proposed to lower the pressure on
the registers (Section 3.3.3).

Gradient of the ZH coefficients Given Equation 3.10, the gradient of the ZH coefficients
corresponding to the projection of a spherical light is:

∇yL̃l(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−

√
π

2l + 1
∇ya(x) sin(a(x))O′

l if l ≠ 0
√
π∇ya(x) sin(a(x)) otherwise

, (3.30)

where O′
l = (−P ′

l+1(α)+P
′
l−1(α)). Considering the derivative of the Legendre polynomials:

∂xPl(x) = −
(l + 1)(xPl(x) − Pl+1(x))

x2 − 1
, (3.31)

we obtain:
O′
l =

(l + 2)(αPl+1(α) − Pl+2(α)) − l(αPl−1(α) − Pl(α))

α2 − 1
. (3.32)

3.3.3 Efficient parallel grid construction

The method of Wu et al. [WCZR20] relies on the ZH factorization (Section 2.2.9). The
projection is done on a set of independent ZH lobes whose directions are fixed for all lights.
Each ZH lobe can be processed in parallel, which allows a good distribution of the workload
(Figure 3.8) on the GPU. In our approach, each light defines a ZH lobe direction, which
makes the workload difficult to distribute over the different threads, thus increasing the
pressure on registers, especially when increasing the SH bands.

To better parallelize the computations, we reverse the main loops of the algorithm. First,
as our SH recurrence relations do not use relations between two different degreesm, except
for the opposite degree −m, we only need to fix a degree m and loop through the orders
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SH
bands
limit

Spherical lights Polygonal
lights

[WCZR20]
Analytical Ours

forward reverse forward reverse
5 4.48 4.32 4.08 2.22 7.21
6 7.25 6.37 5.98 2.96 13.08
7 13.11 8.54 7.24 3.77 16.21
8 19.30 10.41 12.73 4.76 29.07
9 33.23 12.91 22.26 5.18 164.01

Table 3.2: Timings (in ms) for the computation of the SH and gradients coefficients in a 83 3D
grid, using 648 lights. Columns labeled "analytical" correspond to the SH computations with their
Cartesian form, ZH projection is computed in closed form [Slo08] and gradients are computed with
analytical derivation. Reverse columns correspond to the inversion of the loops (Section 3.3.3). Our
method is much more efficient to increase the SH band limit compared to the reference method for
polygonal lights.

l. So, the natural approach to compute the SH coefficients and their gradients for all the
lights, denoted as Forward in the following, is to loop first over the lights, and then over
all the degrees m and orders l of SH. As we need to accumulate the SH coefficients for
all the lights, this Forward strategy needs to keep in GPU registers all the SH coefficients.
This requires so many temporary storage that the parallel workload between GPU cores
is limited. To improve parallel workload on the GPU, we permute the loops on the lights
and on degree m, denoted as Reverse in the following. Doing this, we only need to keep in
registers the SH coefficients deduced for a given degreem, decreasing the register pressure.

Forward (natural) Reverse (ours)
FOR(∀ lights)

FOR(∀m)

FOR(∀l)

→

FOR(∀m)

FOR(∀ lights)
FOR(∀l)

This improves the overall performance of our method, especially when increasing the SH
band limit (Table 3.2). The drawback is that, for each light, we have to recompute all the
terms that depend on m. Despite that, the register pressure drop is such that the extra cost
of calculation is largely absorbed by a better usage of GPU cores.

3.3.4 Interpolation and rendering pipeline
The rendering pipeline performs two independent passes at each frame (Section 2.3.4).

The first pass computes SH coefficients and their gradients at each vertex of a 3D grid
enclosing the scene. The second pass interpolates the SH coefficients and computes the
shading at each visible fragment.

Our rendering pipeline is a clone of the one proposed by Wu et al. [WCZR20] in which
polygonal lights are replaced by spherical ones. As they do, we can use any of the three in-
terpolations they propose to reconstruct the SH coefficients from the grid values (the linear
interpolation, the Taylor interpolation [AKDS04] and the Hermite interpolation [WCZR20]).
The final shading is computed with the SH framework proposed in Section 4.1. We skip the
visibility in our computations, and add a pass of SSAO [BS08] to compensate for the lack of
shadows. We also show in Figure 3.16 that our method is versatile and can, for instance, be
applied with captured data-driven materials following the principles given in Section 2.3.2.
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(a) Analytical (b) Ours (c) 100× Abs. diff.

∇
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Figure 3.9: Validation of our method to compute the gradients of SH basis functions (top line,
Section 3.2.2) and the gradients of SH coefficients for spherical lights (bottom line, Equation 3.26)
using (l,m) = (6, 3). Column (a) computed using the differentiation of the analytical equa-
tions [Slo08](Section 3.3.1) and (b) computed with our methods. We show in (c) the difference be-
tween (a) and (b) to highlight the accuracy of our methods. Spatial gradients are encoded as colors
such that each pixel corresponds to a different pair (θ, φ), θ varies according to the columns, and
φ varies according to the rows of each image. The gradients for the SH coefficients are computed
using a spherical light at a distance of 2 and a radius equal to 0.5.

3.3.5 Evaluation of the proposal

We implemented our method in an experimental rendering engine (Section 3.3.4) using
OpenGL / GLSL 4.5 running on an Intel Xeon 2.10 GHz processor and a RTX 2080 NVIDIA
graphics card. For our experiments and comparisons, we use the same band limitations as
Wu et al. did for the polygonal lights [WCZR20]. Lighting is band-limited on 5 SH bands
and the convolution with the GGX specular lobes are computed on 9 SH bands. In the
following, we denote as "SH reference" the results obtained without interpolation. They are
obtained by computing the exact projection of the radiance on SH at each pixel.

Quality As pointed out in the overview (Section 3.3.1), the SH gradient’s coefficients for
spherical lights (Equation 3.26) can be computed with Cartesian analytic equations for each
SH. While being as accurate as these Cartesian analytical forms (Figure 3.9), our recursive
analytical equations are faster to evaluate (Table 3.2).

From the three interpolation schemes (trilinear, Taylor and Hermite), the Hermite inter-
polation is, as demonstrated by Wu et al. [WCZR20], the more accurate and the accuracy
increases as the grid is denser (Figure 3.10). When an equal time is allocated to generate the
SH coefficients and their gradients on a 3D grid, or to generate only the coefficients on a
3D grid, the latter grid can be denser. Nevertheless, linear interpolation on such a grid does
not reach the quality provided by the Hermite interpolation on a sparser grid (Figure 3.11)
while using, in this case, 3.35× more memory to store the grid data.
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Ref.Ref.

MAE (103)MAE (103)

4343 1.60ms1.60ms

3.25223.2522

8383 1.82ms1.82ms

0.23720.2372

163163 3.24ms3.24ms

0.05630.0563

Figure 3.10: Results obtained by varying the 3D grid resolution with Hermite interpolation and
578 lights. Timings at the top right of each image indicate the computation time of the SH coeffi-
cients and their gradients on the 3D grid. The reference is computed with SH without interpolation.
The inset of the reference image shows the scene configuration and other insets show 100× absolute
errors.

Ref.Ref.

MAE (103)MAE (103)

Trilinear (193)Trilinear (193)

1.38ms1.38ms
MAE: 0.5752MAE: 0.5752

Hermite (83)Hermite (83)

1.39ms1.39ms
MAE: 0.1310MAE: 0.1310

Figure 3.11: Equal-time grid generation comparison using 512 lights. The same time is required
to compute a 193 3D grid without gradient (for trilinear interpolation) (bottom-left) and a 83 3D
grid with gradients (for Hermite interpolation) (bottom-right). When trilinearly interpolating the
very large grid is still not dense enough to surpass the quality of the Hermite interpolation. Insets
show 40× absolute errors.
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As shown in Figure 3.12, reconstructing the SH coefficients with Hermite interpolation
from grid samples generates results that closely match the per-pixel direct computation of
SH coefficients. We also illustrate a benefit of using spherical lights when representing
textured lights in Figure 3.13. In this case, a spherical light is placed at each texture pixel,
and the results always closely match the SH reference (Table 3.3).

Performance We present in Table 3.3 the results produced on different scene configura-
tions. We observe that with ≈ 500 lights we obtain an acceleration of ≈ 5× compared to
the SH reference. This acceleration is even higher when the number of sources increases.
On average, we obtain an overhead of ≈ 1.8× to evaluate the gradient of the coefficients in
addition to the computation of the coefficients themselves. This shows that, as depicted in
the previous sections (Equation 3.16), we are able to reuse temporary results between the
computations of the coefficients and their gradients.

In our renderings, the light is projected on a full set of SH and the material is an isotropic
GGX-based microfacet model projected only on ZH. The convolution between light and
material is computed respectively between a function projected on SH (for the light) and an-
other only on ZH (for the material) (Section 2.3.2). When interpolating SH coefficients in a
grid, the radiance function cannot be reduced to a ZH representation. We thus cannot take
advantage of the fast convolution computation between two ZH proposed in Section 5.2.7.
Despite this, the gain provided by the grid interpolation over the direct projection of light
sources pays off, and the overhead produced by the convolution SH by ZH becomes negli-
gible as the number of lights increases (Figure 3.14).

In addition, the convolution between two ZH functions has multiple inconveniences.
Firstly, the cosine of the rendering equation is approximated by the cosine between the

820.82ms820.82ms

MAE (103)MAE (103)

820.82ms820.82ms

MAE (103)MAE (103)

820.82ms820.82ms

MAE (103)MAE (103)

(a) Ray casting

30.50ms30.50ms

19.0519.05

30.50ms30.50ms

19.0519.05

30.50ms30.50ms

19.0519.05

(b) SH reference

11.56ms11.56ms

19.0819.08

11.56ms11.56ms

19.0819.08

11.56ms11.56ms

19.0819.08

(c) Ours

≈ =

Figure 3.12: Comparison against ray casting with a Lambertian Buddha, a glossy Armadillo and
242 lights. As demonstrated for polygonal lights [WCZR20], our approximation with interpolation
(c) almost perfectly match the result without interpolation (b). Both results are close to the ray cast
reference. Looking at the armadillo, results only differ on glossy material due to the order limit on
SH approximation. The ray cast result is generated using 100 importance samples for each light.



3.3 ● Translational gradient of the projected radiance field 59

(a) 900 lights(a) 900 lights 15.65ms15.65ms (b) 2500 lights(b) 2500 lights 20.02ms20.02ms

Figure 3.13: Textured lights rendering with 900 lights (a) and 2500 lights (b). The insets illustrate
the scene configurations.

Compared method
Figure 3.12 Figure 4.8

Number of lights
288 512 800 722

Comparison with spheres (Equation 3.11)
Spheres (ZH approx.) (Section 5.2.7) 1.866 1.865 1.865 1.540

Spheres interp. (Equation 3.26) 0.192 0.192 0.193 0.079

Table 3.4: MAE (103) with different scene configurations with an interpolation in a 83 3D grid.
Bold text highlights rendering without interpolation. The comparisons show that the interpolation
for spherical sources produces a better approximation than using the ZH acceleration (Section 5.2.7)
that approximate the cosine in the lighting equation.

surface normal and the direction to the center of the sphere, which significantly affects
the Mean Absolute Error (MAE) (Table 3.4). Secondly, we cannot use this method with
arbitrary materials (Section 2.3.2) (Figure 3.16) since SH coefficients for the BRDF cannot
be directly reduced to ZH.

Performance comparison with polygonal lights The purpose of this paragraph is to bring
a quick comparison of performances between spherical lights and polygonal lights, without
interpolation [WR18] and with interpolation [WCZR20] for both types of lights. Section 4.2
discuss two methods to approximate the SH projection of the radiance field produced by
polygonal lights with spherical lights, therefore a more in-depth comparison is made at
this point. For simplicity, we only compare spherical lights with triangular lights and for
a fair comparison a similar radiance field is produced by distributing the spherical light
according to the geometry of the triangles following the method exposed in Section 4.2.2.
Also, to produce a similar radiance field regardless of the number of lights, the triangles
are broken into smaller ones to increase the number of lights and the spherical lights are
redistributed according to the new triangles. Thus, with or without interpolation, the SH
projection of the radiance field produced by spherical lights (as well as the gradient of
the SH coefficients) is more efficient per light than the methods for polygonal lights (Fig-
ure 3.14 and 3.15a). In addition, using a larger interpolation grid or increasing the SH band
limit is much less expensive with spherical lights than with polygonal lights (Figure 3.15b
and Table 3.2).
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Figure 3.14: Timings (in ms) to compute the final shading, i.e. SH coefficients and gradients plus
interpolation, on a 83 3D grid using different number of lights on Figure 3.12. We compare spherical
lights, triangular lights and our approximation of triangular lights, with and without interpolation.
References correspond to the computation without interpolation. The ZH approximation for spheres
proposed in Section 5.2.7 cannot be used with interpolation but efficiently approximates spherical
light at low cost.

3.4 Limitations and future work
Our methods to compute the SH coefficients representing the radiance field produced

by spherical lights face the limitations inherent to the SH representation. Some of the
limitations listed here are similar to those found for polygonal lights [WR18, WCZR20].

Analytical and numerical integration As evoked by Wu et al. [WCZR20], it could be en-
visioned to switch between analytic and numerical integration to compute SH coefficients
(with or without their gradients). Indeed, when lights are far away from the shaded point,
only one sample should be sufficient for numerical integration. Moreover, importance sam-
pling of spherical lights is well studied in literature [DHB17]. However, in practice, sam-
pling numerical materials, i.e. data-driven materials (Appendix B), on the GPU (Figure 3.16)
is difficult and often very expensive. Using SH thus remains a pertinent solution as SH al-
low the use of data-driven materials with only a very small overhead.

Textured and anisotropic lights Our methods handles textured light in a very simple
manner, by replacing each texel by a spherical light. However, neighboring texels in the
texture may have a similar color, which introduces redundancy in the spherical light colors.
This redundancy can be used to drastically reduce the number of required spherical lights,
e.g. by building a quadtree approximating the texture and placing a spherical light at the
center of each leaf. Being orthogonal to our contributions, this is left for future work. Con-
sidering anisotropic lights, i.e. angularly non uniform emissive lights, the SH projection,
as the gradient, should be adapted to take into account the radiance variations within the
solid angle subtended by the spherical source (Figure 3.3).



3.4 ● Limitations and future work 61

(a) Timings according to number of lights (b) Timings according to grid size

Figure 3.15: Timings (in ms) comparison between spherical light and triangular light. (a) Timings
to compute SH coefficients and their gradients in a 83 3D grid using different number of lights
on Figure 3.12. (b) Timings to compute SH coefficients and their gradients for different 3D grid
resolutions on Figure 4.8 with 722 lights.

31.47ms31.47ms

Figure 3.16: Rendering using a 83 3D grid for interpolation with captured materials from
[DJ18]. From left to right: cm_toxic_green, paper_blue, vch_frozen_amethyst, satin_gold,
cc_nothern_aurora.

Shadow and visibility Our results do not integrate the visibility other than by a rough
ambient occlusion approximation. Two problems must be faced to integrate the visibility in
our framework: (1) projecting the dynamic visibility on SH at each frame and (2) modifying
the light-field projection at each shaded point. While the former is related to efficient
SH projection of arbitrary functions and is an active research area, the latter is related to
handling anisotropic emission as noted above. It should also be noted that integrating
visibility would add a costly general SH triple product (Section 2.2.7). Solving this visibility
problem is an important future research direction while being orthogonal to our proposal
that focuses on efficient gradient computation.

SH band limit for real-time rendering The number of bands can be a bottleneck for both
the SH grid computation, and the SH interpolation at shading stage. In the work for polyg-
onal light [WCZR20], scalability has not been investigated when increasing the number of
SH bands. In this thesis, we have shown that using a higher number of bands to construct
the 3D grid is faster with spherical lights than with polygonal lights (Table 3.2). However,
during interpolation, the number of memory accesses to retrieve the SH coefficients and
gradients is high (especially when using a high number of SH bands) and creates a non-
negligible bottleneck (Table 3.5). We believe that a careful low-level implementation on
GPU could reduce this limitation.



62 Chapter 3 ● Spherical Light

SH Eval coeff
Interp. Total

Reference
bands & grad. Time Speed up

5 1.39 7.65 9.04 45.25 5.0×
6 1.87 8.90 10.77 53.77 5.0×
7 2.43 26.14 28.57 77.18 2.7×
8 3.07 55.57 58.64 98.79 1.7×
9 3.35 132.29 135.64 148.04 1.1×

Table 3.5: Timings (in ms) with different number of SH bands using Figure 3.11. Interpolation is
difficult to compute in reasonable times when increasing the SH bands due to the large number of
memory accesses required to retrieve the SH coefficients. Polygonal lights [WCZR20] suffer from
the same problem since interpolation has also to be performed.

Applications of SH gradients The goal of our last proposal is to efficiently reconstruct
the radiance field using a gradient based interpolation method (Section 3.3). This is also
the goal of Neural Radiance Field approaches (NeRF) (Section 2.3.8). Some recent methods
use the SH and their gradients for this purpose [YLT+21, STC+22], hence they constitute
a direct application of our method. Jimenez et al. [JWPJ16] propose to compute the am-
bient occlusion on SH using spherical kernels, i.e. the same framework as for spherical
lights. Occlusion being generally smooth, this approach could take advantage of our gradi-
ent computation method. However, the use of gradients in a general visibility context is a
complex problem because the visibility is not generally a continuous and smooth function.

Second-order derivatives Instead of only using the gradient, existing methods go further
and compute the Hessian matrix [SJJ12,MJJG18]. This matrix might be computed by deriv-
ing again the recursive relations we developed. As our method exhibits auto-similarities in
its formulation, e.g. deriving SH basis function results in an expression using the same sub-
terms but at another degree Equation 3.30, 3.16 and 3.18, this might ease this derivation.
However, the mathematical and computational complexity of these derivations need to be
carefully investigated and we leave this interesting direction for future investigations.

3.5 Conclusion
This chapter proposes three distinct contributions. The first one is the recursive compu-

tation of the ZH coefficients representing the radiance field produced by spherical lights
in the reference frame oriented according to the light sphere position. The second is the
extension of the Sloan’s method of efficient computation of SH basis functions [Slo13] to
compute their gradient. Finally, the third one is derived from the two previous ones in order
to propose an efficient method to compute the gradient of the SH coefficients representing
the radiance field produced by spherical lights.

However, the computation of the gradient of the SH coefficients requires a careful im-
plementation on GPU. Indeed, a naive implementation of the method produces a strong
pressure on the registers, strongly impacting the performances. An additional development
effort is necessary to lower this pressure and thus drastically improve the performances, in
particular with the increase of the SH band limit. However, even without this improvement,
the methods developed in this chapter for spherical lights are more efficient than the state-
of-the-art method for polygonal lights [WR18,WCZR20]. In order to take advantage of these
better performances with spherical lights, the next chapter proposes to approach the SH
projection of the radiance field produced by polygonal lights with spheres.
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4 Direct Spherical Harmonics
Lighting

In chapter 3, it was demonstrated an effective SH projection of the radiance field emit-
ted by spherical lights. To take full advantage of the performance gains of these methods,
the outgoing light at any point in the scene must be computed efficiently. In this chapter,
an efficient framework for computing lighting with decomposable BRDFs is proposed (Sec-
tion 4.1). This framework is particularly useful when using dynamic scenes, without any
scene preconditions, where traditional SH lighting methods require a sufficiently refined
mesh depending on the camera viewpoint.

In computer graphics, the use of polygonal lights is very common, for instance several
methods in the literature estimate the global illumination by considering the triangles of
the scene mesh as light sources [XCM+14,LDdLRB16]. It has been shown in chapter 3 that
the methods of SH projection of the radiance field were more efficient with the methods
proposed in this thesis for spherical lights compared to polygonal lights. In order to take
advantage of this acceleration, several methods are proposed to approximate the SH pro-
jection of the radiance field produced by polygonal lights. Thus, future methods can take
advantage of our acceleration with a good quality for the radiance field approximation.

4.1 Efficient shading with decomposable BRDF
Precomputed Radiance Transfer (PRT) (Section 2.3.3) precomputes and stores the lighting

using SH at the vertices of a mesh and interpolate the SH over the triangles to compute per-
pixel shading. 3D scenes are nowadays made of very refined meshes, and thus require long
precomputation time and large memory space to store and interpolate the SH coefficients.
The proposal of this section makes it possible to dispense with this costly precomputation
step.

In addition, SH have limited ability to represent high frequencies with limited memory
requirements. As such, they first have been used to store and compute low frequency light-
ing contribution when using decomposable BRDFs. Recent approaches have been proposed
to use SH for the specular contribution, but at the cost of increasing the rendering time.
The main objective of this work is to reformulate SH operations to speed up the shading
computation.

Using decomposable BRDF, we observed that diffuse and specular contributions are al-
ways treated separately in the literature (Section 2.3.2), but in practice there is a clear com-
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trad. : 836.34mstrad. : 836.34ms
ours : 6.09msours : 6.09ms

trad. : 1715.40mstrad. : 1715.40ms
ours : 11.08msours : 11.08ms

trad. : 728.53mstrad. : 728.53ms
ours : 5.12msours : 5.12ms

RefRef

1026ms1026ms

rmse : 0.024488rmse : 0.024488
rmse : 0.021868rmse : 0.021868

RefRef

4275ms4275ms

rmse : 0.002609rmse : 0.002609
rmse : 0.002156rmse : 0.002156

RefRef

1441ms1441ms

rmse : 0.051379rmse : 0.051379
rmse : 0.049212rmse : 0.049212

Figure 4.1: Computing per-pixel shading using Spherical Harmonics (SH) is a costly task that
requires to compute a SH product when evaluating specular contribution. In this work, we derive
a new formulation of this product for decomposable BRDFs. Our approach reduces computation
timings by two orders of magnitude and improves the quality of the final image (as measured by
RMSE). Top: images obtained with our approach using 9 SH bands. Bottom: Reference images
generated by sampling 10,000 rays for each light.

putational similarity between them. In this work we demonstrate the gain obtained by
taking advantage of this similarity, and expose an efficient algorithm to compute the SH
product between any function and the clamped cosine one, allowing a significant acceler-
ation (Figure 4.1).

At first, we quickly recall the SH properties we need for these contributions (Section 4.1.1).
Then, we present how to compute the diffuse contribution from the specular one (Sec-
tion 4.1.2) and the way we can compute efficiently the SH product between an arbitrary
function and a clamped cosine (Section 4.1.3). We conclude by an exploration of the differ-
ent use case for both methods (Section 4.1.4) and an evaluation (Section 4.1.5).

4.1.1 Recall and reformulation of SH properties

Before introducing the contributions of this section, it is necessary to recall some prop-
erties of spherical harmonics as well as the traditional method of calculation of the diffuse
and specular contributions with spherical harmonics.

Double and SH product Double product and SH product are common operations when
using SH as described in Section 2.2.6 and 2.2.7. Double product computes a spherical
convolution between two functions, and is defined as

D = ∫
Ω
L(ω)F (ω)dω

= ∫
Ω
( ∑
l1,m1

Lm1
l1 Y

m1
l1 (ω))( ∑

l2,m2
Fm2
l2 Y

m2
l2 (ω))dω

= ∑
l1,m1

∑
l2,m2

Lm1
l1 Fm2

l2 ∫Ω
Y m1
l1 (ω)Y m2

l2 (ω)dω

=∑
l,m

Lml Fm
l .

(2.46 revisited)
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The SH product computes the SH coefficients of the multiplication of two spherical func-
tions:

Tm
l = ∫

Ω
( ∑
l1,m1

Lm1
l1 Y

m1
l1 (ω))( ∑

l2,m2
Fm2
l2 Y

m2
l2 (ω))Y m

l (ω)dω

= ∑
l1,m1

∑
l2,m2

Lm1
l1 Fm2

l2 ∫Ω
Y m1
l1 (ω)Y m2

l2 (ω)Y m
l (ω)dω

. (2.48 revisited)

Estimating diffuse and specular contributions Let’s consider a light function L, a visi-
bility V (cosine weighted according to surface normal) and a decomposable BRDF M . The
diffuse contribution is computed as the double product between L and V and multiplied
by the albedo. The specular contribution is given by computing the SH product between L
and V and then apply the double product between this result and the BRDF specular lobe.
This process requires to compute double and SH product on the same two functions, which
makes numerous computations redundant.

4.1.2 Diffuse from specular

In this section, we show how to compute the diffuse contribution of the lighting knowing
the specular one by replacing the double product (D) by a single multiplication. Let’s call
O, the unit function over the sphere:

O(ω) = 1 =∑
l,m

Om
l Y

m
l (ω) . (4.1)

Due to SH properties, only coefficient O0
0 is non-null and equal to

O0
0 = ∫Ω

Y 0
0 dω =

√
1

4π
4π = 2

√
π ≈ 3.5449077 . (4.2)

The integral of the product between two functions is equal to the double product D be-
tween O and the result of the SH product between the same two functions. Thus, since the
vector O has only one non-null coefficient (O0

0), only the coefficient T0
0 from the SH prod-

uct is needed. As the SH Y 0
0 is a constant, it can be taken out of the integral corresponding

to the coefficient T0
0

T0
0 = Y

0
0 ∑
l1,m1

∑
l2,m2

Lm1
l1 Fm2

l2 ∫Ω
Y m1
l1 (ω)Y m2

l2 (ω)dω = Y 0
0 D . (4.3)

By reversing, we obtain

T0
02

√
π = T0

0O0
0 = D . (4.4)

This signifies that when computing the SH product between two functions, the computa-
tion of the double product between the same functions is done with a single multiplication
(D ≈ 3.5449077T0

0) which corresponds to the double product between T and O.

4.1.3 Efficient clamped cosine product

Our method drastically reduces the number of arithmetic operations needed to compute
the SH product of a function L and a clamped cosine. The clamped cosine is a circularly
symmetric signal, hence it can be represented only with ZH (Section 2.2.9).
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Figure 4.2: Number of arithmetic operations needed to compute different SH product up to a
certain band.

Then, considering F as a clamped cosine, we replace it in the SH product (Equation 2.48)
by the equation of rotation of ZH functions (Equation 2.73), we obtain:

Tm
l = ∑

l1,m1

∑
l2,m2

Lm1
l1
Y m2
l2

(n)(

√
4π

2l2 + 1
F0
l2C

m1 m2 m
l1 l2 l ) (4.5)

where n is the normal surface and Cm1 m2 m
l1 l2 l are the Clebsch-Gordan coefficients corre-

sponding to the integral in Equation 2.48.

This solution is more efficient than the classical SH product (Figure 4.2). Moreover, as
most of the cosine energy is caught on 3 SH bands, we can limit the cosine projection to
this number of bands (l2 < 3) hence improving its evaluation. Nevertheless, there is a more
efficient solution that does not imply a low frequency approximation of the cosine func-
tion. We can instead express the cosine in the world coordinate system and precompute it
directly in the integral:

Tm
l = ∑

l1,m1

Lm1
l1

(∫
Ω
Y m1
l1

(ω)max(0, ω ⋅ z)Y m
l (ω)dω) . (4.6)

When the light function is expressed in the same coordinate system, this solution provides
fewer arithmetic operations. If light is not in the same coordinate system, adding a rotation
step, as the zxzxz method (Section 2.2.12), adds few operations and remains more efficient
than other methods (Figure 4.2). The parts of the equations into brackets (Equation 4.5 and
Equation 4.6) are precomputed to generate the code that will apply the SH product.

4.1.4 Use cases

As pointed out in the introduction, the goal of our methods is to compute the shading
with SH using as few arithmetic operations and data storage as possible, and thus to reduce
the computation time for rendering.

We compiled in Figure 4.3 the different algorithms one can implement to compute shad-
ing using SH, considering four functions that appear in the rendering equation: light (L),
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Figure 4.3: Flowchart of typical SH rendering with decomposable BRDF. We annotated four paths:
1. paths we used for our evaluation, 2. new paths from our first contribution, 3. Irradiance map
from [RH01], 4. Traditional PRT.

visibility (V ), brdf (M ) and the clamped cosine (cos). Paths that do not use visibility are
particularly adapted to render fully dynamic scenes because shading do not depend on
mesh-specific precomputations, unlike when visibility is precomputed at each vertex. Us-
ing traditional PRT, clamped cosine is packed with visibility in a precomputation step for
each vertex. Similar but less common, cosine can be packed with light instead of visibil-
ity. This path can be used with dynamic visibility that do not take cosine into account,
as it is included in the light function. Finally, path at the bottom, where L, V and cosine
are projected separately on SH is the more general. This path can be taken if everything
is dynamic, light and visibility, for instance when using many polygonal lights [WCZR20]
and with dynamic visibility [RWS+06]. In such case, cosine cannot be packed with either
function. Our contributions should be used for all of these algorithms to reduce their com-
putational cost.

4.1.5 Evaluations and discussions of the proposals
For all our experiments, we use the magenta path with spherical lights sources where

lighting is computed at each pixel. We evaluate our results on a RTX 2080 with all render-
ings done at resolution 1920 × 968. To compare, we compute the traditional SH product
(Equation 2.47) using the same path for specular and Irr. map path for diffuse. To render
dynamic scenes, cosine is precomputed on ZH and rotated on the fly using the efficient ZH
rotation (Section 2.2.12) before computing the product.

Estimating diffuse from specular
Our method to compute double product from SH product allows to avoid the convolution

needed to compute diffuse contribution, thus replacingN2 multiplications, whereN is the
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Figure 4.4: Clamped cosine projected on different number of SH bands. Even though the majority
of the cosine energy is caught with few bands, it produces non-negligible ringing artifacts as it is
clamped.

number of SH bands, by a single multiplication. This method creates a new derivation
on each path (Figure 4.3). Moreover, diffuse is classically computed on 3 SH bands as the
majority of the cosine energy is caught (Section 2.3.1) . This restriction produces non-
negligible ringing artifacts, visible when light is only on one object’s side (Figure 4.5), and is
clearly explained by looking at the behavior of clamped cosine projection on SH (Figure 4.4).
Our method removes these artifacts by computing diffuse lighting on the same number of
bands as specular at no extra cost (Figure 4.5).

Efficient SH product with clamped cosine

The efficient SH product with cosine is well adapted to render dynamic scenes. It fits
into paths where the SH product with cosine is a specific step. We have shown that with
our method the number of arithmetic operations is greatly reduced (Figure 4.2), as well as
computation time (Table 4.2). All our results were computed using Equation 4.6 with all SH
coefficients expressed in the same frame. We also demonstrated (Table 4.2, last row) that
when coefficients are not expressed in the same frame, thus requiring an additional SH

Eq. for SH product Figure 4.2*
rmse (×102)

Figure 4.1a Figure 4.1b Figure 4.1c
Equation 2.47 1 2.4488 0.2609 5.1379
Equation 4.5 2 2.3652 0.2609 4.9844

Equation 4.5 (lj < 3) 3 2.8814 0.5933 5.2027
Equation 4.6 (w. or wth. rotation) 6/4 2.1968 0.2156 4.9212

* Corresponding line in Figure 4.2

Table 4.1: RMSE (×102) for the SH product. Our method always generates the lowest rmse be-
cause the cosine is not directly approximated by SH Equation 4.6. The important difference in
magnitude between figures is due to the nature of materials used, mainly diffuse (Figure 4.1b) or
glossy (Figure 4.1c). Specular is computed up to 9 SH bands while diffuse is computed with our
method Equation 4.4.
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Eq. for SH product Figure 4.2*
band limit

3 5 7 9
Equation 2.47 1 1.65 6.92 183.54 836.34
Equation 4.5 2 1.65 6.42 128.22 590.13

Equation 4.5 (lj < 3) 3 1.63 3.78 41.54 289.88
Equation 4.6 6 1.46 1.78 2.92 6.09

Equation 4.6 (w. rotation) 4 1.59 2.19 5.08 15.78
* Corresponding line in Figure 4.2

Table 4.2: Timings (ms) with the different solution to apply the SH product with a clamped cosine.
Specular is computed up to the corresponding band while diffuse is computed using our proposal
Equation 4.4.

3 bands3 bands 5.38 ms5.38 ms

rmse : 0.056rmse : 0.056

3 bands3 bands 5.38 ms5.38 ms

rmse : 0.056rmse : 0.056

5 bands5 bands 5.60 ms5.60 ms

rmse : 0.043rmse : 0.043

5 bands5 bands 5.60 ms5.60 ms

rmse : 0.043rmse : 0.043

7 bands7 bands 6.42 ms6.42 ms

rmse : 0.035rmse : 0.035

7 bands7 bands 6.42 ms6.42 ms

rmse : 0.035rmse : 0.035

9 bands9 bands 7.56 ms7.56 ms

rmse : 0.033rmse : 0.033

9 bands9 bands 7.56 ms7.56 ms

rmse : 0.033rmse : 0.033

OursOurs 5.23ms5.23ms

rmse : 0.033rmse : 0.033

OursOurs 5.23ms5.23ms

rmse : 0.033rmse : 0.033

RefRef 289ms289ms

RefRef 289ms289ms
=

Figure 4.5: Ringing due to clamped cosine (Figure 4.4). The scene contains only one light behind
the elephant. Specular contribution is always computed on 9 SH bands. Diffuse contribution is
computed with various number of SH bands, or evaluated from specular computation (our method).
Negative color of shading result are clamped to zero, it explains why inset for 7 bands is darker than
9 while rmse is still higher. Ringing problem occurs too when using visibility with SH because of the
frequency cut introduced by the clamping of the southern hemisphere of the unit sphere.

rotation, our proposal still greatly improves the computation time. This last case is useful,
e.g., when the frame of the SH coefficients (and their gradient) is fixed to compute them
on a 3D grid (Section 3.3). Moreover, since the cosine is not directly approximated with SH
(Equation 4.6), the rmse is lower than the other methods (Table 4.1).

4.2 Polygonal light approximation
We propose a method to approximate the radiance field produced by polygonal lights,

more precisely, we seek a good approximation of the SH projection of the radiance field
produced by polygonal lights. As any polygon can be divided into triangles, we focus our
approximation on triangular lights. The method we propose approximates each triangu-
lar light by a corresponding spherical light. Approximating a triangular light by several
spherical lights, or inversely approximate multiple triangular lights by one spherical light,
are out of scope of this contribution and are left as future work.

4.2.1 Overview of the proposals

Let’s quickly recap how we compute the SH projection at a point x of the radiance pro-
duced by a spherical light at position y.
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Reminder of the SH projection of the radiance field produced by spherical light.

In a first time, the ZH coefficients are computed in the coordinates frame aligned
with the position of the spherical light

L̃l =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

√
π

2l + 1
(Pl−1(cos(a(x))) − Pl+1(cos(a(x)))) if l ≠ 0

√
π(1 − cos(a(x))) otherwise

(3.10 revisited)

where a(x) is the half-angle subtended by the spherical light and defined by

a(x) = arcsin (
r

∥y − x∥
) . (3.27 revisited)

The SH coefficients are obtained by applying the ZH rotation (Section 2.2.12)

Lml =

√
4π

2l + 1
Y m
l (ωl)L̃l . (3.11 revisited)

Our method to approximate the SH projection of the radiance field consists in position-
ing a spherical light on a triangle in order to obtain a similar geometrical configuration
(Section 4.2.2). Then, the energy is corrected according to a term depending on the normal
of the triangle and the direction to the point where the radiance field is evaluated (Sec-
tion 4.2.3). However, the energy correction can be taken into account at different steps of
the computation. We published a first method that apply this correction on the intensity
of the radiance field by modifying the amplitude of the spherical harmonics coefficients
(Equation 3.11 - Main method - [MMBP22]). Nevertheless, after developing this method
(Section 4.2.3), we discuss an alternative (Section 4.2.5 - Alternative method) which consist
in correcting the energy by modifying the solid angle of the sphere to match that of the
triangle. Both methods keep a similar energy in the radiance field, the main method keeps
the same solid angle and corrects the energy by changing the intensity while the alternative
method corrects the energy by changing the solid angle without modifying the intensity
(Figure 4.6).

4.2.2 Spherical light parameters

We look for the parameters of the spherical lights, in order to have a similar geomet-
rical configuration with the triangular lights. The spherical light position and radius are
deduced from the triangle vertices (Figure 4.7).

The position ps of the sphere is defined as the centroid of the triangle:

ps =
p1 + p2 + p3

3
, (4.7)

where p1, p2 and p3 are the triangle vertices. The sphere radius is defined so that a disc
with the sphere’s radius and the triangle have the same area. Reminding that πr2 measures
the area of a disc, and ∥ ⃗p1p2 ∧ ⃗p1p3∥ /2 the triangle area, the radius of the sphere is:

rs =

√
1

2π
∥ ⃗p1p2 ∧ ⃗p1p3∥ . (4.8)
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Figure 4.6: Overview of the two approximation methods, where the main method fixes the pa-
rameters of the sphere (position and radius) once for all, while the alternative method changes the
radius so that the solid angle of the sphere at each shaded point is equal to the solid angle of the
triangle.

4.2.3 Spherical harmonics coefficients and gradients

SH coefficients For each shading point, the flatness of the triangle is recovered from the
spherical shape of the light by multiplying its energy by the factor ∣cosγ∣ (Figure 4.7), where
γ is the angle between the triangle normal nt and the direction −ω from the center of the
spherical light to the shaded point. As this factor varies for each light at each shaded point,
the equation computing the SH coefficients for the light at the shaded point (Equation 3.11)
needs to be adapted, such that:

Pm
l (x) =

√
4π

2l + 1
Y m
l (ω)L̃l(x) ∣cosγ∣ (4.9)

(we use the absolute value for ∣cosγ∣ to consider the triangular light as double sided). This
equation only multiplies by ∣cosγ∣ the SH projection of spherical light that we proposed in
Section 3.1.2.

Impact on the gradient Thus, the gradient of this equation is deduced from the gradient
of the original equation (Equation 3.26) as:

∇xPm
l (x) = −

√
4π

2l + 1
(∇yY

m
l (ω)L̃l(x) ∣cosγ∣+

Y m
l (ω)∇yL̃l(x) ∣cosγ∣ + Y m

l (ω)L̃l(x)∇y ∣cosγ∣ ) ,
(4.10)

with

∇y ∣cosγ∣ = (
−nt

∥y − x∥
+ (y − x)

nt ⋅ (y − x)

∥y − x∥
3 )

cosγ
∣cosγ∣

. (4.11)
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Figure 4.7: Approximation of a triangular light with a sphere. The sphere position ps is the cen-
troid of the triangle (Equation 4.7) and the radius rs is determined so that the area of the yellow
disc is equal to the area of the triangle (Equation 4.8). γ is the angle between the triangle normal
nt and the direction ω. The shaded point is in grey.

SH
bands
limit

Spherical
lights
(Ours)

Polygonal lights
Our

approx.
Ref.

[WCZR20]

5 2.22 2.53 7.21
6 2.96 3.39 13.08
7 3.77 4.42 16.21
8 4.76 5.35 29.07
9 5.18 5.74 164.01

Table 4.3: Timings (in ms) for the computation of the SH and gradients coefficients in a 83 3D grid,
using 648 lights (spheres or triangles). The computation for spherical lights and our approximation
of polygonal lights are computed with the inversion of the loops (Section 3.3.3). Our approximation
of polygonal lights exhibits a low overhead compared to spherical lights.

4.2.4 Evaluation of the main proposal
In order to evaluate our approximation of polygonal lights (Figure 4.8), we propose to

consider a square light source split in small triangles (as done in [WCZR20]), and then re-
place each triangle by our spherical approximation (Section 4.2.2). For our comparison, we
use a slightly modified version of the code published by Wu et al. [WCZR20]. They used a
formula from Arvo [Arv95] to compute the solid angle subtended by a triangle:

Ωt = (
3
∑
i=1

cos−1
(( ⃗ui−1 × u⃗i) ⋅ (u⃗i × ⃗ui+1))) − π , (4.12)

in which u⃗i = (pi − x)/(∥pi − x∥) is the normalized direction from the point x to the vertex
pi of the triangle (Figure 4.13), and the index i is circular u⃗4 = u⃗1 and u⃗0 = u⃗3. This formula
creates numerical inaccuracies when a triangular light is far away or when many polygonal
lights have aligned edges. This strongly affects the comparison between triangular lights
and our approximation. To avoid these problems, we compute the solid angle subtended
by a triangle using the Van Oosterom’s formula [VS83]:

tan Ωt

2
=

(u⃗1 × u⃗2) ⋅ u⃗3

1 + u⃗1 ⋅ u⃗2 + u⃗2 ⋅ u⃗3 + u⃗3 ⋅ u⃗1
. (4.13)

We analyze three main criteria of scalability: the number of light sources, the 3D grid res-
olution, and the SH band limit. Our approximation of triangular lights creates only a small
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Figure 4.8: Accuracy of our approximation of triangular lights [WR18,WCZR20] using interpola-
tion. The insets show 100× absolute errors, insets and MAE are computed using the image with the
corresponding color patch as reference. MAE is reduced by two orders compared to raw spherical
lights and the 100× absolute error is only slightly visible, which illustrate the accuracy of our ap-
proximation of polygonal lights. This figure also highlights that triangular lights timings increase
significantly with the size of the 3D grid (Figure 4.9c).

overhead over spherical lights and it is more efficient to compute than the original triangu-
lar light (Figure 4.9b). We also observe a significantly better scalability of our approximation
when increasing the number of SH bands (Table 4.3) or increasing the 3D grid resolution
(Figure 4.9c). Our representation also provides an accurate approximation of the SH coef-
ficients of triangular lights (Figure 4.10). The MAE is reduced by one order of magnitude
compared to raw spherical lights (Table 3.4). The approximation error of the SH coefficients
has a quadratic behavior according to the number of SH bands (Figure 4.10d). However, us-
ing the number of SH bands traditionally considered in real-time rendering, i.e. 5 to 9 SH
bands, the error on the coefficients approximation remains very low, in an order of 10−8,
and the error in the final rendering is only slightly increased (Figure 4.11).

Limitations of the main proposal The triangles configuration plays a very important role
in the error introduced by our approximation (Figure 4.12). This error lies in the difference
of the shapes, sphere against triangle, projected on the unit hemisphere over a shading
point. The higher this difference, the higher the approximation error. This difference is
related to the solid angle subtended by the triangle, for well-shaped triangles, or to the
narrowness of the triangle in the general case. The narrowness can be quantified by the
inverse of the intersection area between the triangle and a co-planar disk centered at the
center of gravity of the triangle having the same area as the triangle.

4.2.5 Alternative method

In this chapter, we approximate the lighting produced by polygonal lights by positioning
a spherical light, whose position and radius are fixed once for all according to the triangle
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(a) General timings

(b) Timings according to number of lights (c) Timings according to grid size
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Figure 4.9: Timings (in ms) comparison between spherical light and triangular light (Section 3.3)
extended with our approximation of triangular lights. (a) General timings to compute the final shad-
ing, on a 83 3D grid using different number of lights on Figure 3.12. (b) Timings to compute SH
coefficients and their gradients in a 83 3D grid using different number of lights on Figure 3.12. (c)
Timings to compute SH coefficients and their gradients for different 3D grid resolutions on Fig-
ure 4.8 with 722 lights.

geometry. The energy is corrected by modifying the amplitude of the radiance function.
This solution is very efficient and accurate at low-frequency (under 9 SH bands for the
evaluation we proposed) as shown in the previous subsections. The alternative method
consists in fixing also once for all the position of the sphere and its radius is determined
at each shaded point so that the solid angle of the sphere is equal to the solid angle of the
triangle approximated.

Specifically, there is no need to compute precisely the value of the new radius but only
the new half-angle â(x) subtended by the sphere since the solid angle Ωs of a sphere is only
defined by the half-angle

Ωs = 2π(1 − cos (â(x))) → â(x) = arccos(1 − Ωs

2π
) . (4.14)

The half-angle â(x) is computed at each shaded points where Ωt is the solid angle of the
triangle (Equation 4.12 or 4.13). Therefore, this alternative method only modify the gradient
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(a) setup

(b) l=3,m=2

(c) l=8,m=6 (d) mean error (10−8) per SH band
between triangle and our approx.

Figure 4.10: Accuracy of our approximation of triangular lights SH projection [WR18]. We show
the setup of the scene in (a). In (b) and (c) we evaluate one SH coefficient on the red line highlighted
in (a). The plot in (d) represents the mean error (10−8) between triangles and our approximation
computed for each SH band on the whole plane lighted by the light.

of the subtended half-angle in the computation of the gradient of the spherical harmonics
coefficients for spherical lights. The gradient of the new half-angle is defined by

∇yâ(x) =
−∇xΩt

√
Ωt(4π −Ωt)

(4.15)

where ∇xΩt is the gradient of the solid angle of the triangle. This gradient can be com-
puted by a simple derivation of the work from Wu et al. [WCZR20] on the gradient of the
SH coefficients for polygonal lights. They leverage the Reynolds transport theorem which
originates in fluid mechanics [Lea07], i.e. the gradient of the SH coefficients is solved by an
integral on the contours of the projection of the polygonal light on the unit sphere at the
shaded point. As they consider the radiance as constant over the solid angle, the projection
integral only involves the SH basis function. Thus, we only need to remove all the terms
depending on the SH and simplifying to obtain a method for computing the gradient of the
solid angle subtended by a polygonal light

∇xΩt =
N

∑
i=0

(
u⃗i × ⃗ui+1

∥u⃗i × ⃗ui+1∥
)(

cos(Ti) − 1
sin(Ti)

)(
1
`i
+

1
`i+1

) (4.16)

where N is the number of vertices of the polygonal lights, Ti = arccos(u⃗i ⋅ ⃗ui+1) and `i =

∥pi − x∥ (Figure 4.13). This equation is directly applicable for triangular lights. However,
a careful differentiation of the equations to compute the solid angle of the triangle (Equa-
tion 4.12 and 4.13) could maybe lead to less computational equations but this is left as future
work.
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Figure 4.11: The error of our approximation of triangular light [WR18] according to the number of
SH bands. Results are generated with 36 lights, without interpolation and a glossy model. Bottom
images inset in the left show the scene configuration and insets in the right show 100× absolute
errors. The approximation error remains in the same magnitude order between 5 and 9 SH bands.

Methods comparison

In terms of quality, the alternative method allow to reduce the approximation error of the
radiance field produced by polygonal lights (Figure 4.14). The difference in error between
the two methods lies in the approximation of the solid angle, this is particularly noticeable
in the bright spot under the lights in the case where we use parallel triangular light to the
shaded surface. In this case, the solid angle for the main method will be much larger than
for the alternative method which will use the same solid angle value as for the triangle but
not with the exact same shape.

Without interpolation, the main method for the approximation is the computation for
each light of the factor ∣cosγ∣, that is a single scalar product, and then multiply it by all the
SH coefficients. While the alternative method needs to compute for each light the solid
angle of the triangle, so this means that the alternative method must keep in memory the 3
vertices of the triangle, which adds 2 floats (129% more data) compared to the main method
which only keeps in memory the center, the normal of the triangle and the corresponding
radius. The performance of the main method depends on the number of SH bands, since it
multiplies the factor ∣cosγ∣ to each SH coefficients, which is not the case for the alternative
method. As a result, on 5 SH bands (Figure 4.15), the main method is more efficient while
on 9 SH bands, the alternative method becomes the most efficient.

With interpolation, the main method also becomes less efficient compared to the alter-
native method when the SH bands limit is increased for the same reason. However, the
alternative method does not become more efficient on 9 SH bands. Indeed, for instance
with 2048 lights, the main method is ≈ 1.27 times better than the alternative method on
5 SH bands and it is only ≈ 1.06 times better on 9 SH bands. One of the reasons for this
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Compared method
Figure 3.12 Figure 4.8

Number of lights
288 512 800 722

Comparison with triangles [WR18]
Spheres (Equation 3.11) 15.86 15.76 15.67 62.08

Triangles approx. (Equation 4.9) 0.096 0.068 0.121 0.129
Comparison with triangles interp. [WCZR20]

Spheres interp. (Equation 3.26) 15.93 15.83 15.75 62.13
Triangles approx. interp. (Equation 4.10) 0.215 0.165 0.174 0.176

Table 4.4: MAE (103) with different scene configurations with an interpolation in a 83 3D grid.
Bold text highlights rendering without interpolation. The comparisons show that our approxima-
tion of triangles significantly reduces the MAE compared to spherical lights.

is that in order to lower the pressure of the registers, we have applied a loop inversion
(Section 3.3.3). Thus, instead of computing the solid angle of the triangle and its gradient
once per light for the alternative method, the inversion of the loops requires to recompute
this information as many times as there are different degrees m. Thus, the computational
weight of the operations to be computed for each light is greater because of this loop in-
version, and so we would have to go up further in limit band for the alternative method to
be more efficient than the main method.

However, there is a compromise between the two methods. Instead of computing exactly
the solid angle of the triangle, it can be approximated by multiplying the radius of the
sphere or the subtended angle

â1(x) = arcsin (
r ∣cosγ∣
∥y − x∥

) â2(x) = a(x) ∣cosγ∣ . (4.17)

The approximation of the solid angle for â1(x) and â2(x) is very similar (Figure 4.16). How-
ever, this idea does not provide a satisfactory quality of the approximation which is due to
a too large approximation of the solid angle (Figure 4.14). For you information, here is their
respective gradients

∇yâ1(x) = r
−
(y−x)
∥y−x∥2 ∣cosγ∣ +∇y ∣cosγ∣
√

∥y − x∥
2
− r2 ∣cosγ∣2

(4.18)

∇yâ2(x) = ∇ya(x) ∣cosγ∣ + a(x)∇y ∣cosγ∣ . (4.19)

4.3 Conclusion
Motivated by an efficient SH projection of the radiance field produced by spherical light

presented in chapter 3, the first part of this chapter proposes a framework for an efficient
SH shading with decomposable BRDFs allowing to take advantage of this efficient SH pro-
jection with the use of dynamic scene without any pre-computation per scene and with no
strong a priori on the scene mesh. This framework avoids redundant computations when
computing both diffuse and specular contributions in SH shading. We have also shown that
diffuse contribution can be easily computed with a single multiplication from the specular
computation. We also shown that the SH product between light, or an arbitrary function,
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and a clamped cosine can be done with only a few arithmetic operations. Our proposals
then improve the computation time up to two orders of magnitude when using 9 SH bands.
It could be envisioned to apply the same principle to other functions that we did for cosine,
i.e. replace cosine by any other function in Equation 4.6. Nevertheless, while improving the
computation time for the SH product, the final number of required operations will be hard
to predict.

The second part of this chapter proposes an approximation of the SH projection of the
radiance field produced by polygonal lights with spherical lights. This approach is moti-
vated by two factors, the first being that the radiance field projection methods for spherical
lights developed in this thesis are more efficient than the one developed in the state-of-
the-art for polygonal lights. The second is that the use of polygonal lights is widespread in
computer graphics and then several methods can benefit from our approach. However, the
proposed method is limited to triangular lights, as any polygon can be divided by triangles,
and distributes one spherical light per triangular light. The approximation of the SH coef-
ficients have been clearly identified according to the geometric configuration of the lights.
In these limiting cases, it appears that a distribution of several spherical lights per triangu-
lar light could push these limitations a little further. However, a careful investigation must
be studied in order to guarantee optimal computation time and quality.

This chapter focused on direct lighting, the next chapter focuses on the use of SH for the
estimation of global illumination and in particular by crossing the SH projection methods
developed in chapter 3 with the state-of-the-art of virtual light based global illumination.
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mean error (10−5) for the SH coefficients. Narrowness of the triangle

(a)(a)

MAE: 0.065MAE: 0.065

(b)(b)

MAE: 5.927MAE: 5.927

(c)(c)

MAE: 14.80MAE: 14.80

mean error for the SH coefficients. Solid angle of the triangle

(d)(d)

MAE: 0.348MAE: 0.348

(e)(e)

MAE: 4.989MAE: 4.989

(f)(f)

MAE: 16.20MAE: 16.20

Narrow triangle

Big triangle

(a)
(b)

(c)

(d)

(e)
(f)

Figure 4.12: Limitations and failure cases of our polygonal source approximation. Narrow trian-
gles (first row) are known to be problematic in rendering. The approximation error is proportional
to the narrowness of the triangle. Large triangles (second row) introduce an error related to their
subtended solid angle. Insets show 10× absolute errors.
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Figure 4.13: Notations and projection of a triangle on the unit hemisphere.

MAE (103)MAE (103) 4.994.99 2.492.49 13.1013.10

MAE (103)MAE (103) 2.042.04 1.891.89 16.4016.40
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Triangular light Main method Alternative method Compromise
Figure 4.14: Comparison of the different methods to approximate polygonal lights. Insets show
10× absolute errors. The alternative method, thanks to a good approximation of the solid angle,
allows a better approximation of the lighting produced by polygonal lights than the main method.
The alternative method looks for a similar solid angle value for the triangle and the sphere at each
shaded point, to avoid some computation step the compromise method approximate the solid angle
of the triangle. However, the solid angle approximation is too large and produces a poor quality
result (Figure 4.16).
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Without interpolation Grid construction
Figure 4.15: Timings to compute the SH coefficients for each pixel (without interpolation) or for
the 3D grid (grid construction) with their gradient for different number of SH bands. The main
method (blue) correct the magnitude of each SH coefficients, thus, the greater the number of coef-
ficients to be processed, the more expensive the method becomes. Indeed, the alternative method
(green) tends to become less expensive than the main method when more SH bands are involved.

(a) Figure (b) is computed along the red line.

(b) Solid angle for the different approximation methods.

Figure 4.16: Comparison of the solid angle of the triangle with the different approximation
method. The alternative method produces a good approximation of the solid angle of the trian-
gle while the compromise method produce a poor approximation of the solid angle which explains
the significant difference in error in the final rendering. (Figure 4.14)
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5 Global Illumination using
Point-based Spherical

Harmonics

PRT-based methods were initially proposed by the motivation of low-cost real-time global
lighting evaluation. So far in this thesis, we have discussed the efficiency of direct spherical
harmonic-based lighting. This chapter seeks to efficiently combine spherical harmonic-
based lighting with global point-based lighting.

First, a quick overview of global point-based lighting methods is given (Section 5.1). It
is also added a quick tour of the probe-based methods because the second contribution of
this chapter is validated with a probe-based implementation.

The first contribution of this chapter is a new type of virtual light, named HVL (Sec-
tion 5.2). These new virtual lights are based on the efficient SH projection of the radiance
field produced by the spherical lights proposed in chapter 3. It is therefore discussed, here,
the optimal distribution and configuration of the harmonics virtual lights as well as an in-
depth comparison of the HVL with the state-of-the-art about virtual lights.

The second contribution proposes a point-based PRT method (Section 5.3). The PRT
method precomputes traditionally the radiance transfers by path-tracing, which is inde-
pendent for each shaded point. The method, proposed here, distributes virtual lights that
are mutualized for all the shaded points. This allows to drastically reduce the precomputa-
tion time.

5.1 Point-based global illumination

Point-based global illumination converts the problem of global illumination where light
rays can come from all directions into a problem of direct illumination produced by several
hundreds or thousands (even millions) of virtual light sources. The idea is to distribute
from the primary light, virtual sources that capture the incident lighting and redistribute
it as direct lighting. This model is particularly efficient for simulating indirect lighting
with a single bounce, but can also be generalized by distributing the virtual sources over as
many bounces as necessary to simulate the global illumination. This section briefly reviews
the main techniques and improvements of point-based global illumination with particular
emphasis on the artifacts involved in these methods. Indeed, the contributions of this
chapter aim to avoid these artifacts. For additional information on these methods, we refer
the reader to the state of the art [RDGK12, DKH+14].
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Figure 5.1: The instant radiosity algorithm [Kel97] is based on two steps, the algorithm first dis-
tributes a set of VPLs from the primary source and then gather the lighting produced by the VPLs.

5.1.1 Instant radiosity

The instant radiosity algorithm is composed of two steps [Kel97] (Figure 5.1), the dis-
tribution of the virtual sources and the gathering of the light their produce. The method
derives its name from the radiosity, the radiometric quantity (Section 2.1.2), expressing the
light emitted from a surface element. Indeed, distributing a VPL on each bounce of the
light characterizes efficiently the radiosity of the scene.

The VPLs are distributed by a quasi-random walk [Kel97]. As in any quasi-Monte-Carlo
method (Section 2.1.4), the generation of the light paths is done by following low discrep-
ancy sequences. Thus, the VPL being distributed on the surface of the scene S , it becomes
more relevant to use the rendering equation formulated on the surface rather than in its
directional form (Section 2.1.3):

L(x → z) = ∫S
L(y→ x)F (y↔ x↔ z)V (x,y)G(x,y)dSy . (2.16 revisited)

Using M VPL, the rendering equation is approximated by a weighted sum of their contri-
butions:

L(x → z) ≈ 1
M

M

∑
i=1
Li(yi → x)F (yi ↔ x↔ z)V (x,yi)G(x,yi) (5.1)

where yi andLi are respectively the position and radiance emitted toward x of the i-th VPL.
For the visibility, since rasterization is synonymous with efficient parallelization, the most
efficient way is to use a traditional rasterized shadow map [Wil78] at each yi to compute
the visibility with different shaded points x.

Isotropic and anisotropic VPL The initial formulation of instant radiosity uses only
isotropic VPL, i.e. emitting the same radiance in all directions, for any x, Li(yi → x)

is constant. This makes it much easier to compute their contribution. However, the use
of anisotropic VPL is more consistent when specular surfaces are involved. The use of
anisotropic VPL is more annoying and notably a source of artifacts (Section 5.1.4).

The instant radiosity approach may be seen as distributing photons and each bounce
is used as a virtual source. In this sense, it is similar to the photon mapping approach
[Jen01, HHS05]. However, photon mapping relies on a density estimation to express the
lighting. While the instant radiosity use a few hundred or even a thousand of photons, the
photon map tends to use millions of photons. The simulation of photons is particularly
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useful to generate light effects related to their convergence or divergence, such as caustics.
In optics and mathematics, a caustic is the envelope of light rays undergoing reflection or
refraction on a surface or curve. Nevertheless, caustics are a high frequency phenomenon
requiring the simulation of many photons to be captured. Making photon maps more effi-
cient to precisely simulate these phenomena, while the instant radiosity if more efficient
to generate a low frequency global illumination. Wald et al. [WKB+02] combine both ap-
proaches to generate the two lighting effects efficiently.

5.1.2 Distribution
The initial formulation of instant radiosity [Kel97] distributes the VPL only according to

the position of the primary light. Hence, depending on the position of the camera, VPLs
may not contribute, or very little, to the final image. To avoid superfluous VPLs, importance
sampling methods can be applied. Segovia et al. [SIMP06] distribute the VPLs by tracing
paths from the camera and from the light and then connecting them explicitly. They keep
the most relevant VPLs and then resample paths until they get the desired number of VPLs.
Georgiev and Slusallek [GS10] reject the less relevant VPL with a probabilistic heuristic
based on the contributed power of the VPLs. Segovia et al. [SIP07] create mutations of the
most relevant path to create equally relevant paths that would be difficult to generate from
scratch and thus position the VPLs efficiently.

To efficiently resolve the visibility, each VPL may have its own shadow map, this in-
creases the cost to distribute the VPLs. Laine et al. [LLK07] alleviate this distribution cost
in an interactive context using an incremental approach. By limiting their use to a single
light bounce, a VPL is necessarily visible by the primary light to be considered as valid. A
set of VPL is precomputed with their respective shadow map and at run-time, the validity
of each VPL is computed according to the primary light position. The invalid VPLs are
deleted and a new set of VPLs is sampled to replace them. VPLs are processed in sub-
sets and processed separately during different frames to spread the distribution cost over
several frames.

Shadow maps project the scene to a point y as an image and keep only the depth informa-
tion at each pixel to compute the visibility of any point x. Dachsbacher et al. [DS05] extend
this principle by keeping reflective information, position, normal and color of the surface
element, in the so-called Reflective Shadow Map (RSM). Each pixel of the RSM is considered
as a potential VPL. Such approaches can benefit from an efficient rasterization, where
approaches relying on ray tracing are more difficult to parallelize. Nevertheless, recent
hardware offer massive ray-tracing capabilities allowing millions of VPLs to be distributed
in a few milliseconds [LY19, YY17].

5.1.3 Gathering
The light produced by the VPL, must be gathered at each shaded point. The forward

approach is to treat each shaded point independently summing the contribution of each
VPL. However, this approach introduces unnecessary calculations. Indeed, any VPL will
not necessarily contribute to the shaded point and therefore computing its contribution
becomes useless. The works proposed in this thesis are not about improving the gathering
of the VPL contributions, the approaches discussed in this section are orthogonal to our
contributions.

Ritschel et al. [REG+09] ensure that the contribution of the virtual lights is never zero
by clustering the virtual lights so that the solid angle of the cluster at the shaded point
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is greater than a minimum solid angle. Dachsbacher and Stamminger [DS06] reverse the
gathering, the contribution of the VPLs is splatted to each pixel. For each VPL, a splat in
screen space is computed to select pixels where the VPL contributions are accumulated.
Nichols and Wyman [NW09] note that a VPL have a similar contribution for two nearby pix-
els, in particular when the VPL is located on a diffuse material. Thus, the splats are refined
into sub-splats according to geometry and light discontinuities and the VPL contribution
is computed per sub-splat instead of per pixel. Forward light cut [LDdLRB16], not to be
confused with the lightcut methods described later, propose a stochastic approach by dis-
tributing one VPL per triangle of the scene, each VPL having a random support function
which define the spatial influence of the VPL and hence the splatting radius. While the
splatting methods compute the spatial extent of the VPL contribution in screen space us-
ing bounding boxes, the culling methods compute this in world space using ellipsoids. This
allows a shaded point to compute whether the contribution of a VPL will be zero or very
small in order to early reject it. For these purposes, Yusuke and Tokuyoshy use a stochastic
fall off of the VPL [TH16] and an ellipsoid fixed according to the GGX parameters of the
material [TH17]. Fujieda et al. [FTH22] adapt this work to participating media.

Clustering the VPL reduces the number of contributions to compute to the number of
clusters. The lighcut [WFA+05] represent the cluster by a tree according to the proximity
of the VPL and their orientation. The root contains all the VPL and each leaf contains one
VPL. A cut in the tree is computed so that any node of the cut satisfy an error criterion.
Walter et al. refined this principle to multidimensional integration of the luminance field
[WABG06] and bidirectional approach to also distribute VPL from the camera [WKB12].
Davidovič et al. [DKH+10a] propose an adaptive VPL stratification, the VPL are batched to
reduce the global memory cost and then being scalable on GPU.

Computing the global illumination with VPL can be seen as a computation of a 2D ma-
trix where the columns are the VPL and the rows are the shaded points. Each element of
the matrix describes the contribution of one VPL to one pixel. Hašan et al. [HPB07] render
random shaded points (rows) to select the representative VPL (column) and then render all
the shaded points with only the representative VPL. Ou and Pellacini [OP11] use the same
principle but on subsets that contain similar shading points. Hašan et al. [HVAPB08] gen-
eralize the principle with a third dimension, the time, to compress the VPL contributions
for animations.

Visibility Visibility queries are often the bottleneck of point-based methods. The visibility
of each VPL has to be computed for each shaded point, the number of queries can become
very important. Rather than computing the visibility by ray casting, computing shadow
maps [Wil78] at each VPL allows for efficient on-the-fly queries from any shaded point. The
use of parabolic maps allows simplifying shadow maps, where a shadow map will directly
characterize the visibility for the sphere, or hemisphere [OBM06,BAS02]. Moreover, the use
of VPL clusters allows reducing the number of shadow maps to compute to the number of
clusters [DGR+09]. Instead of lowering the number of shadow maps to be computed, the
geometry can be modified to lower the computation complexity of each shadow map, e.g.
Olsson et al. [OSK+14] use occluders clusters. Ritschel et al. [RGK+08], in their Imperfect
Shadow Maps, use a point cloud of the scene where each point is randomly sent to a VPL
to contribute to its shadow map. The shadow maps thus created have holes that are filled
in by a surface reconstruction step [MKC07]. The method is extended to be adapted to the
position of the camera [REH+11].
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Figure 5.2: Shading with VPL implies the inverse of the squared distance which tends to infinity
when the shaded point approaches the VPL, thus creating splotches. When using highly specular
materials, spikes appear if the density of VPL is not sufficient because the contributions of VPL will
not be caught at consecutive shaded points.

5.1.4 Artifacts
The VPLs are point lights, i.e. the radiance received at a shading point corresponds to a

Dirac. This singularity produces rendering artifacts. In this thesis, we identify two types of
artifacts related to two different causes that we call splotches and spikes. These artifacts are
often confused in the literature. Banding artifacts can also occur if too few virtual sources
are used compared to the size of the scene. They also appear if the quality of distribution
of the virtual sources (or clustering) is poor.

Splotches The geometric factor of the rendering equation formulated on the surfaces is
composed of a division by the squared distance between the shaded point x and the VPL
at position y (Section 2.1.3). This division comes from the computation of the solid angle
of the infinitesimal surface element of the VPL:

G(x,y) =
(x⃗y ⋅ nx)(y⃗x ⋅ ny)

∥x − y∥2 . (2.17 revisited)

Hence, G tends to infinity as the shaded point and the VPL get closer (Figure 5.2 - left). A
common workaround is to clamp the geometric factor but this introduces a bias. Indeed, by
bounding G there is an area around the shaded point whose light contribution is not fully
taken into account. Some works propose to sample new paths with ray-casting in order
to approximate a compensation term [KK06, DKH+10b, ENSD12]. Instead of ray casting,
Novák et al. [NED11] approximate the compensation of the bounded region with a screen
space method.

Spikes The spikes appear because of the specularity of the scene. Considering a shaded
point capturing the radiance emitted by a VPL, a nearby shaded point will not necessarily
capture the radiance of the VPL if the surface is too specular (Figure 5.2 - right). Thus, if
the density of VPL is not sufficient in this kind of area, spikes appear on specular surfaces.
Common workaround are to limit the glossiness of the scene. Therefore, more VPL must
be used to capture the variations in lighting. In other words, the scene must be sufficiently
covered with VPL. Instead of using more VPL, the Virtual Spherical Light (VSL) [HKWB09]
inflate the VPL, avoiding the spikes by covering the scene better. Moreover, the solid an-
gle in the geometric factor G becomes that of the sphere and avoids the division by the
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squared distance, thus also avoiding splotches. However, the light contribution of a VSL
is integrated over the area contained in the VSL and is computed by Monte-Carlo. In
contrast, the Harmonics Virtual Light (HVL) model that is proposed in this thesis is a simpli-
fication of the VSL model analytically integrating the HVL contribution through spherical
harmonics (Section 5.2). Yuksel [Yuk20] propose an attenuation for VPL based on the VSL
model to avoid the splotches artifacts. Similar approaches as VPL/VSL has been adapted
to participating media with the Virtual ray/beam light [NNDJ12a, NNDJ12b, VGS+19]. The
Virtual Spherical Gaussian Light (VSGL) [Tok15b] avoid the spikes by approximating a dense
set of VPL with a spherical Gaussian.

So far, we have explained the spikes when the shaded points are on specular surfaces
Similarly, spikes appear also when the shading point is on a diffuse surface and the VPL
are on a specular surface and the radiance they emit is anisotropic. VPLs are traditionally
distributed at the bounce of a single light path, so the radiance they emit will be concen-
trated around the reflection direction of the path for specular material. This creates spikes
when a shaded point is located in that direction. Rich-VPLs [SHD15] propose to route sev-
eral paths through a VPL and store the outgoing radiance as an octahedral map. Thus, the
radiance emitted by the Rich-VPL is the real radiance emitted at the VPL position and not
a subsampling concentrated around an axis. This avoids spikes when VPLs are located on
specular surfaces but not spikes for shading points located on specular surfaces. These
artifacts are also minimized by better positioning strategies of VPL, e.g. Li et al. [LWLY22]
distribute the VPL following a blue noise.

Flickering The flickering artifacts are related to splotches and spikes. When the scene is
dynamic, the gathering of lighting is not necessarily consistent between each frame. As
splotches and spikes, this problem does not exist if enough virtual lights can be gathered.
Thus, efficient lighting gathering methods reduce the problem by taking into account many
virtual lights, such as clustering methods [PKD12]. One of the best solutions relies on
consistent temporal sampling of the virtual lights [BBH13].

5.1.5 Basis functions

SH allow storing spherical functions efficiently as a reduced set of coefficients instead
of a discretization on the sphere, thus reducing the need of memory. For instance, Good
and Taylor [GT05] use them in a photon map approach to store the photons contributions,
avoiding an explicit storage of the photons. Similarly, Christensen [Chr08] projects the
radiance emitted by VPLs/surface elements on the SH but also projects the radiance emit-
ted by groups of VPLs. Thus, when VPLs are far from the shaded point the estimation of
the radiance received by the group of VPL is simply a reconstruction from the SH pro-
jection. These two methods use SH as a simple storage medium, while the HVL model
(Section 5.2) we propose takes advantage of the multiple SH properties, e.g. SH convolution
(Section 2.2.10). The VSGL [Tok15b] method uses spherical Gaussians to estimate the radi-
ance received from a group of VPL. In contrast, the HVL method only projects the radiance
onto the SH received from one VPL (or VSL to be more exact). Wang et al. [WMB15] encode
the radiance emitted by the VPL with wavelet, and use a wavelet-inspired tree structure
similar to the lightcut structure (Section 5.1.3) allowing to compute the radiance of VPL
cluster efficiently. However, their method is designed for offline rendering while the HVL
are designed for interactive rendering.
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Figure 5.3: (a) Harmonics Virtual Lights (HVLs) can render global illumination with arbitrary
BRDF at no extra cost, while for example VPLs have an additional cost to use numerical material.
(b) HVLs do not produce the classic artifacts of (c) the Virtual Point Lights methods.

5.2 Harmonics Virtual Light
The Harmonics Virtual Light (HVL) model is a new type of virtual lights based on the

efficient SH projection of the radiance field produced by spherical lights (Section 3.1). The
HVL avoid the singularity of the VPL by using spherical lights (Figure 5.3). Thus, the HVL
model can be seen as a simplification of the Virtual Spherical Light (VSL) model, we refer you
to Section 5.1.4 for more details. This section focuses on the HVL model and its comparison
with the VSL model and the Virtual Spherical Gaussian Light (VSGL) model.

5.2.1 Lighting pipeline

The HVLs rendering pipeline (Figure 5.4) is built over the SH projection of the BRDFs
as unified material representation. This representation is precomputed once for all for

3D Scene SH BRDF data

for each light

HVL distribution

HVL data

direct lighting

indirect lighting 
with HVL

output image

+

+

Figure 5.4: Overview of the HVLs rendering pipeline. The inputs are a 3D scene with dynamic ob-
jects and lights, along with precomputed BRDF spherical harmonics coefficients. For each primary
light of the scene, direct lighting is computed using SH framework. Indirect lighting starts with the
distribution of HVLs from primary lights, followed by the gathering of HVLs contributions at each
pixel. This pipeline allows using parametric like measured BRDF at the same cost.
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each material (Appendix B). Our two passes indirect lighting pipeline is similar to previous
many-lights approaches (Section 5.1). For each frame, the first pass distributes HVLs ac-
cording to primary lights; it stores the SH coefficients of the reflected luminance field of
each HVL in an HVLs cache. The second pass gathers the contributions of the HVLs from
the cache by computing the convolution between light emitted by HVLs and the material
at the shaded point location. The light emitted by HVL is the result of the reconstruction
of the HVL reflected luminance field in the direction of the shaded point. Thus, HVLs are
anisotropic spherical lights whose emission intensity depends on the direction ωj , the in-
cident direction on the receiving shaded point. Figure 5.5 shows a typical one-bounce light
path evaluated by our technique. The final image is then computed as the sum of direct
and indirect contributions from each primary lights.

We formulate the indirect lighting Lo(x, ωo), leaving the shaded point x in the direction
ωo as

Lo(x, ωo) =∑
s∈S

( ∑
j∈Hs

Lj,o(x, ωo, ωj)) (5.2)

where S is the set of primary lights, Hs the set of HVLs generated from light s, ωj the
direction from x to the HVL j and Lj,o(x, ωo, ωj) its luminance contribution. According to
the rendering equation (Section 2.1.3), this contribution is expressed as

Lj,o(x, ωo, ωj) = ∫
Ω
Lj(x, ωi)F (x, ωi, ωo)max(0, ωi ⋅ nx)dωi (5.3)

where Lj(x, ωi) is the incoming luminance at x emitted by the HVL j. As this luminance is
only perceived in the solid angle subtended by the HVL, the integral domain is reduced to
this solid angle Qj . We approximate this equation by considering that the HVL emission
is constant over the solid angle:

Lj,o(x, ωo, ωj) ≈ Lj(x, ωj)∫
Qj

F (x, ωi, ωo)max(0, ωi ⋅ nx)dωi

≈ Lj(x, ωj)∫
Qj

F ′
(x, ωi, ωo)dωi

(5.4)

Figure 5.5: Indirect lighting evaluation for one shaded point and one HVL. The HVL, in purple,
uses a low-frequency approximation of the light emission corresponding to the first bounce of light
emitted by the primary light. It’s contribution to the shaded point at x is evaluated by projecting the
HVL luminance onto SH and then convolving with the BRDF at the shaded point’s location. The
HVL emission is computed as constant over its subtended solid angle.
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where F ′(x, ωi, ωo) = F (x, ωi, ωo)max(0, ωi ⋅ nx) and we note F the SH projection of F
and F′ the SH projection of F ′. F will be needed to compute the HVL emission value
(Section 5.2.2). As explained in Appendix B, F (and F′) is a tabulation of the SH coefficients.
Hence, Fω (or F′

ω) is the vector of SH coefficient corresponding to the direction ω.

We rely on the number of bands for spherical harmonics evaluation as a tradeoff param-
eter between accuracy and speed. To reach interactive performance, we typically use 1-5
bands to evaluate HVLs emission and 0-10 bands for the SH convolution on shaded points.
This allows to represent low-frequency luminance field for HVLs and medium-frequency
BRDF for the shaded point. Our approach scales well regarding high band limit and is able
to render thousands of HVLs on 0-20 bands in a few seconds.

5.2.2 HVL luminance contribution

The luminance contribution of each HVL corresponds to the computation of Equation 5.4.
This equation is expressed as

Lj,o(x, ωo, ωj) ≈ Lj(x, ωj)L ⋅F′
ωo,x (5.5)

where L corresponds to the vector of SH coefficient representing the radiance field pro-
duced by the spherical light (Equation 3.11). The incoming luminance at x emitted by the
j-th HVL is defined as

Lj(x, ωj) = Φj(Fωl,y ⋅ Y (−ωj))Gj(−ωj) (5.6)

where y and ωl are respectively defined as the position of the HVL and its direction to
primary light (Figure 5.6). Φj is the power of the HVL, corresponding to the power of
the primary light divided by the number of HVL. Y (−ωj) is the vector of the evaluation
of the SH basis function in direction −ωj and thus, the dot product corresponds to the
reconstruction of the emission function towards the shaded point (Equation 2.37). Isotropic
HVL reconstruction only use band 0 coefficient and skip SH evaluation.

The geometric factor Gj(−ωj) corrects the energy taking into account the HVL light
source spherical shape:

Gj(−ωj) =
1
πr2

j

max(0, nj ⋅ −ωj)H(nx, ωj) (5.7)

where nj is the normal of the j-th HVL, rj its radius, πr2
j is an approximation of the surface

area of the scene that lies in the HVL. The dot product corrects the energy according to

Figure 5.6: Notations for a light path, y is an HVL and x a shaded point.
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the surface orientation. The factor H represents the proportion of the HVL that lies in
the shading hemisphere, it corresponds to the intersection of two spherical caps where
an approximation is given by Oat [OS07]. We derive the equation to our case, where the
spherical cap is the hemisphere oriented by nx, the normal at point x:

H(nx, ωj) = S(
ā −min(max(cos−1(nx ⋅ ωj), a), ā)

2a
) (5.8)

where a is the half-angle subtended by the spherical light source, ā = a + π
2 , a = a − π

2 and
S(x) = 3x2 − 2x3 is the Smoothstep function. H could also be computed with the exact
equation given in [OS07]. Since Monte-Carlo integration explicitly evaluates the clamped
cosines, the VSL approach does not need to use such a corrective term.

When evaluating the HVL emission (Equation 5.6), we use the BRDF projection F, with-
out the cosine term max(0, ωi ⋅ nx) which is integrated into the geometric factor (Equa-
tion 5.7). This ensures that, when using low-frequency reconstruction (i.e. a few SH bands),
the cosine is not over-smoothed and then, the energy is preserved.

The visibility term, although not present in the equations for the sake of clarity, is ap-
proximated by the visibility of the center of the HVL, as the VSL approach does.

5.2.3 Distribution and caching

We use a cache to store each HVL data: emission function, position, normal, BRDF index.
To fill the cache, our implementation follows the principle of RSM (Section 5.1.2): the scene
is rendered from each primary light and each rendered fragment stores HVL data in a
set of 2D GPU textures. The BDRF index corresponds to the index in the precomputed
material SH coefficients set. This set is stored as 2D textures, one per material. The memory
requirement of the HVL cache spans from 16KB for 400 HVLs to 400KB for 10 thousands
HVLs. This is negligible compared to the cost of storing the materials (Appendix B).

5.2.4 Radius heuristics

The radius of an HVL is an important parameter that impacts the rendered image quality.
Intuitively, if HVLs do not sufficiently cover the scene, the rendered image exhibits the
same kind of artifacts as VPLs (Section 5.1.4). But if HVL radius is too large, high frequency
shading details will be lost as the HVLs contributions will overlap. Hence, we have to adapt
HVLs radius so that there is the right amount of overlapping.

The HVL overlapping is directly linked to the HVL radius with regard to HVL density.
As done in VSL [HKWB09], we define each HVL radius based on an estimation of local
HVL density. Instead of searching for the closest neighbors, as proposed for VSL, we pro-
pose two dynamic heuristics relying on a regular HVL cache sampling to gather the HVL
locations (Figure 5.7). Our first heuristic estimates the radius of an HVL from an approxi-
mation of the HVLs local density by sampling the HVL’s 8-connected neighbors from the
HVL cache:

r1 =
∑nwn ∥p − pn∥

∑nwn
, wn =

1
∣d − dn∣ + ε

(5.9)

where r1 is the radius of the HVL, d the HVL distance to its related primary light, p denotes
the position in world space coordinates and ∑n sums over the 8-connected neighbors of
the HVL, pn and dn being neighbor’s position and distance from the primary light. This
heuristic averages the distance of a HVL to its neighbors so that it overlap them and thus



5.2 ● Harmonics Virtual Light 93

Figure 5.7: Diagram of the proposed heuristics to compute the radius of the HVL.

Figure 5.8: HVLs coverage. Each colored circle corresponds to one HVL. From left to right: HVLs
coverage with 400 and 100 HVLs; resulting image with 400 HVLs and then 100 HVLs. From top
to bottom: fixed radius of 0.25, heuristic 1, heuristic 2 respectively.
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avoid spike artifacts. We weight the contribution of neighbors by the difference of dis-
tances from HVLs to light to avoid too large overlapping because of the scene geometry,
such as the hole formed by the rabbit’s ears in Figure 5.8. A small ε value is added to avoid
a division by 0, should two HVLs distances to light be the same.

This first heuristic is based on the neighborhood of the HVL, making it expensive to
compute. We propose a second heuristic (Figure 5.7), more suitable for real-time scenarios,
independent of the HVL neighborhood by considering the FOV angle λ used to generate a
square RSM instead. First, we approximate the angle γ formed by two diagonally adjacent
HVLs by considering that the two HVLs are at the same distance from the light:

γ =
√

2 λ
√
M

(5.10)

where M is the total number of HVLs and
√

2 is the length of the diagonal. Starting from
this, we approximate the distance between those HVLs, and hence the radius r2 of an HVL,
by considering a right triangle between the primary light and the two HVLs, where the right
angle is at the HVL whose radius is sought:

r2 = d tan(γ) (5.11)

where d is the distance of the light of the HVL and k is the same user-specified constant as
for r1. To avoid any trigonometric function evaluation, as γ is close from 0, we approximate
the tan function by its Taylor series tan(x) ≈ x + x3/3. The heuristic then becomes

r2 ≈ d(γ +
γ3

3
) (5.12)

The approximation of Equation 5.11 by Equation 5.12 is accurate. Indeed, in order to have
an error of less than 0.01 for the evaluation of the function tan from its Taylor series, calcu-
lus hints that we must have γ ≲ 0.58 and thus λ/

√
M ≲ 0.2. So, for a spotlight of half-angle

45○,
√
M ≳ 3.92, means that we need at least 16 HVLs for precise evaluation of the tan func-

tion. For a spotlight of half-angle 90○, we need at least 64 HVLs. These requirements are
far below the number of HVLs required in practice (i.e. at least a few hundreds). As shown
in Figure 5.8, these heuristics allow having HVLs that overlap well, and thus covers the
directly illuminated scene geometry, without having one HVL that swallow another one,
which would reduce the impact of the number of HVLs. However, the balance remains
fragile and artifacts may still appear, especially when the depth distribution of HVLs is
heterogeneous because holes may appear in the coverage. To this end, and as in VSL, a
user specified factor should be used to scale the computed radii. In our experiments, we
obtained good results by setting this factor between 1 and 2.

5.2.5 Experimental results

Figure 5.9 illustrates how materials change the rendered image through the use of HVLs.
Our method applies a low-pass filter on the lighting due to the use of SH, thus providing
smooth and artifact-free results (Figure 5.10).

The HVL count has a linear impact on the computational cost, each HVL contribution
being independent of the others. Increasing the SH band limit has a quadratic cost with
respect to the band limit as the number of SH coefficients is equal to the square of the
bands number. Table 5.1 confirms these trends. Thus, the computation time for HVLs
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Direct lighting onlyDirect lighting only HVLs indirect illuminationHVLs indirect illumination

Figure 5.9: Global illumination using HVLs with different measured materials. In our framework,
materials can be changed dynamically without affecting rendering time. In the bottom row, only
the materials applied to the chairs and the table are modified between the three pictures.

is predictable, but is greatly impacted by the number of SH bands. Furthermore, if low-
frequency BRDF are used, increasing the band limit will have no impact on the final picture
quality. Using an adaptive band limit might keep the computational cost minimal but might
also increase code divergence in the shader evaluation of the SH projection.

5.2.6 Comparison with VPL and VSL

To fairly compare HVL, VPL and VSL, we only use microfacet based BRDF (Figure 5.10
and 5.11). Indeed, if VPL/VSL computation time might be greatly impacted by the use of
measured and SH encoded BRDF, our HVL method is agnostic to the used BRDF model and
performs similarly on parametric or measured BRDF. In our comparison, we use the GGX
microfacet distribution and evaluate the Fresnel reflectance using the exact term. We used
material from MERL database, fitted on GGX by the work of Ribardière et al. [RBMS17]. The
three methods are compared to path-traced references, rendered using pbrt-v3 [PJH16],
using three metrics: RMSE, PSNR and SSIM. Table 5.2 shows timings and error metric for
the three methods.

Scene
HVL Convolution band limit

number 3 5 7 9

Sponza
Figure 5.3(a)

64 6.6 7.8 10.3 18.6
196 19.8 23.5 30.4 56.1
400 41.0 48.6 62.7 115.3

Table 5.1: Timings (ms) for indirect lighting gathering from various HVLs numbers and SH bands
for convolution on shaded points. The emission function for each HVL is computed with 3 bands.
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(a) HVL rmse 0.0398, psnr 28.010, ssim 0.9805rmse 0.0398, psnr 28.010, ssim 0.9805

61ms

(a) HVL rmse 0.0398, psnr 28.010, ssim 0.9805rmse 0.0398, psnr 28.010, ssim 0.9805

61ms

(a) HVL rmse 0.0398, psnr 28.010, ssim 0.9805rmse 0.0398, psnr 28.010, ssim 0.9805

61ms

(a) HVL rmse 0.0398, psnr 28.010, ssim 0.9805rmse 0.0398, psnr 28.010, ssim 0.9805

61ms
(b) VPL rmse 0.0549, psnr 25.202, ssim 0.9772rmse 0.0549, psnr 25.202, ssim 0.9772

13ms

(b) VPL rmse 0.0549, psnr 25.202, ssim 0.9772rmse 0.0549, psnr 25.202, ssim 0.9772

13ms

(b) VPL rmse 0.0549, psnr 25.202, ssim 0.9772rmse 0.0549, psnr 25.202, ssim 0.9772

13ms

(b) VPL rmse 0.0549, psnr 25.202, ssim 0.9772rmse 0.0549, psnr 25.202, ssim 0.9772

13ms

(c) VPL rmse 0.0880, psnr 21.107, ssim 0.9811rmse 0.0880, psnr 21.107, ssim 0.9811

61ms

(c) VPL rmse 0.0880, psnr 21.107, ssim 0.9811rmse 0.0880, psnr 21.107, ssim 0.9811

61ms

(c) VPL rmse 0.0880, psnr 21.107, ssim 0.9811rmse 0.0880, psnr 21.107, ssim 0.9811

61ms

(c) VPL rmse 0.0880, psnr 21.107, ssim 0.9811rmse 0.0880, psnr 21.107, ssim 0.9811

61ms
(d) VSL rmse 0.0434, psnr 27.243, ssim 0.9745rmse 0.0434, psnr 27.243, ssim 0.9745

254ms

(d) VSL rmse 0.0434, psnr 27.243, ssim 0.9745rmse 0.0434, psnr 27.243, ssim 0.9745

254ms

(d) VSL rmse 0.0434, psnr 27.243, ssim 0.9745rmse 0.0434, psnr 27.243, ssim 0.9745

254ms

(d) VSL rmse 0.0434, psnr 27.243, ssim 0.9745rmse 0.0434, psnr 27.243, ssim 0.9745

254ms

(e) VSL rmse 0.0433, psnr 27.260, ssim 0.9720rmse 0.0433, psnr 27.260, ssim 0.9720

63ms

(e) VSL rmse 0.0433, psnr 27.260, ssim 0.9720rmse 0.0433, psnr 27.260, ssim 0.9720

63ms

(e) VSL rmse 0.0433, psnr 27.260, ssim 0.9720rmse 0.0433, psnr 27.260, ssim 0.9720

63ms

(e) VSL rmse 0.0433, psnr 27.260, ssim 0.9720rmse 0.0433, psnr 27.260, ssim 0.9720

63ms
(f) Path-tracing ReferenceReference

(f) Path-tracing ReferenceReference

(f) Path-tracing ReferenceReference

(f) Path-tracing ReferenceReference

sa
me num

ber same time

Figure 5.10: Comparison between HVL, VPL, VSL and path-tracing. (a) uses 5 SH bands for
convolution on shaded point, 3 bands for the emission function and 400 HVLs, (b) and (c) are resp.
render with 400 and 1928 VPLs. (d) and (e) are render resp. with 400 and 256 VSLs and 25 and
9 importance samples of the shaded point’s BRDF. HVLs and VSLs use heuristic r2. (f) is a path-
traced reference. Images are rendered at 1280x1024. The red circles show an artifact due to VPLs
on the background and resulting from the lack of visibility management for secondary lights in our
implementation. The orange circles highlight an overestimation of the indirect lighting due to the
spherical nature of the HVL and VSL.
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(a) HVL rmse 0.0387, psnr 28.242, ssim 0.9828rmse 0.0387, psnr 28.242, ssim 0.9828

≈500ms

(a) HVL rmse 0.0387, psnr 28.242, ssim 0.9828rmse 0.0387, psnr 28.242, ssim 0.9828

≈500ms

(a) HVL rmse 0.0387, psnr 28.242, ssim 0.9828rmse 0.0387, psnr 28.242, ssim 0.9828

≈500ms

(a) HVL rmse 0.0387, psnr 28.242, ssim 0.9828rmse 0.0387, psnr 28.242, ssim 0.9828

≈500ms

(b) VPL rmse 0.0402, psnr 27.906, ssim 0.9843rmse 0.0402, psnr 27.906, ssim 0.9843

≈500ms

(b) VPL rmse 0.0402, psnr 27.906, ssim 0.9843rmse 0.0402, psnr 27.906, ssim 0.9843

≈500ms

(b) VPL rmse 0.0402, psnr 27.906, ssim 0.9843rmse 0.0402, psnr 27.906, ssim 0.9843

≈500ms

(b) VPL rmse 0.0402, psnr 27.906, ssim 0.9843rmse 0.0402, psnr 27.906, ssim 0.9843

≈500ms
Figure 5.11: Comparison of HVL and VPL at same time using same resolution and same heuristic
for HVL as the figure above. (a) is rendered with 1500 HVLs and uses 9 SH bands for convolution
and 3 SH bands for the emission of HVLs. (b) is rendered with 10000 VPLs.

Figure 5.10a, 5.10b and 5.10d are computed using the same budget of virtual lights. To
avoid a visual comparison bias, virtual lights are placed at the exact same locations for all
three methods. Our method avoids the classical VPLs artifacts but is more computation-
ally expensive. Using 25 samples per virtual light, VSL is even more expensive while still
exhibiting noise. Aiming at interactive rendering, VSLs must use low sample count and
results on noisy pictures (Figure 5.10e). To remove this noise, particularly visible on the
bunny’s feet, the number of samples must be at least tripled, with a similar increase on the
computation time (Figure 5.10d).

With the same computation time budget, VPLs still exhibit artifacts despite using more
virtual lights, whereas HVLs produce a smoother but artifact-free result (Figure 5.10a and
5.10c). VSLs produce a noisy result as only a low number of samples might be used (Fig-
ure 5.10e). Thus, HVLs are an interesting alternative to produce a fast low-frequency global
lighting and gradually raise the final image in frequency. Figure 5.11a and 5.11b are com-
puted given a time budget of 500ms. VPLs still exhibit artifacts despite the big number of
virtual lights, while HVLs give a smooth result.

Light leaks artifacts may appear in some situations due to a combination of several fac-
tors (orange and red circles in Figure 5.10 and 5.11). Inaccurate visibility estimation is one
of these factors when using virtual lights. The red circles show a light leak due to this
visibility problem for VPLs due to sources located on the background. These artifacts are
not related to the VPLs themselves but to the limitations of our implementation. For HVL
and VSL (orange circles), the spherical nature of the sources is the main cause of artifacts,
due here to sources located near Suzanne. The spherical nature of the sources generate
an overestimation of the actual lit area. This is especially problematic when using a few
sources, since smaller is the number of sources, larger is their radius. Finally, the frequency
band limit resulting from the SH order for HVL smooths out these artifacts.

As shown by these experiments, HVLs always give a smooth but biased result, whatever
the number of virtual lights or the time budget given. This robustness of our method is its
biggest advantage for interactive lighting design. Note that while VPLs are less appropriate
for interactive usages due to the high-variance estimation of indirect lighting with small
number of VPLs, they define an unbiased estimator of indirect lighting. Hence, running
simulation using VPL for a long enough time will always give a better result than HVL.
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Figures
Parameters Timings Error metrics

lights
VSL SH

distrib.*
indirect

rmse psnr ssim
samp. bands light

VPL
5.10b 400 - - 0.59 13 0.054 25.20 0.977
5.10c 1928 - - 0.59 61 0.088 21.10 0.981
5.11b 10k - - 2.44 500 0.040 27.91 0.984

VSL
5.10d 400 25 - 0.59 254 0.043 27.24 0.974
5.10e 256 9 - 0.59 63 0.043 27.26 0.972

HVL
5.10a 400 - 5 0.38 61 0.039 28.01 0.980
5.11a 1.5k - 9 1.6 500 0.039 28.24 0.983

* cache size is 10242 pixels (bold=20482)

Table 5.2: Timings (ms) and error metrics (path-tracing used as reference) detail for Figure 5.10
and 5.11. RSM for HVLs are cheaper because fewer data are manipulated (see Section 5.2.3 for
details).

5.2.7 Optimized zonal harmonics shading

HVLs are a general model that handle any kind of material, we derive an efficient shading
when using a decomposable BRDF where the specular lobe is a circularly symmetric kernel,
i.e. only representable with ZH. This method also relies on the circularly symmetric radi-
ance produced by the spherical lights. Thus, the convolution has to be applied for each
spherical light independently instead of once at the end with the accumulated radiance for
all the lights. However, this improvement makes the method more competitive.

Diffuse contribution Ramamoorthi and Hanrahan use a 4 × 4 matrix to compute the dif-
fuse contribution (Section 2.3.2) where the radiance is represented by a full set of SH [RH01].
This matrix can be truncated by a 2× 2 matrix when using a circularly symmetric emission
function which can be projected on ZH, instead of SH, by orienting the projection accord-
ing to the direction of emission function

M = (
c3L0

2 c2L0
1

c2L0
1 c4L0

0 − c5L0
2
)

c2 = 0.511664 c3 = 0.743125
c4 = 0.886227 c5 = 0.247708 .

The diffuse contribution can be evaluated according to the direction of the emission lobe
ωl. If we note z = ωl ⋅ n, the illuminance is computed as

E(o) = otMo with ot = (z 1) .

Hence, we can write
E(z) = c3L0

2z
2
+ 2c2L0

1z + c4L0
0 − c5L0

2 .

The diffuse contribution can be modulated by the visibility of the HVL center.

Specular contribution First, other function O other than the reflectance F or radiance L
are taken out of the integral and approximated by the direction of the HVL center ωl. The
functionO is the cosine of the rendering equation, but can also contain the visibility. Note
that the same process can be applied to the visibility, where the visibility is approximated by
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path-tracing

reference

path-tracing

reference

VPL 39ms

rmse 0.2603
psnr 11.691
ssim 0.8852

VPL 39ms

rmse 0.2603
psnr 11.691
ssim 0.8852

VSGL 40ms

rmse 0.2539
psnr 11.907
ssim 0.8740

VSGL 40ms

rmse 0.2539
psnr 11.907
ssim 0.8740

HVL 40ms

rmse 0.2317
psnr 12.713
ssim 0.8784

HVL 40ms

rmse 0.2317
psnr 12.713
ssim 0.8784

Figure 5.12: Comparison with 900 VPL, 529 VSGL and 400 HVL, generated at equal time. Im-
ages are rendered at 1600×900. The HVL cache resolution is 3222 pixels, and 142 pixels for one
VSGL. The contribution of HVLs is on 15 SH bands. In this rendering, HVL are limited to circu-
larly symmetric specular lobe to compute lighting only on ZH. Insets show VPL spike artifacts and
VSGL or HVL robustness to those artifacts.

the visibility of the HVL center. The integral is then computed by the dot product between
the vector of SH coefficients, where the ZH radiance L̃ is rotated in the SH frame coordinate
of F, where ωl is the direction to the HVL in the frame coordinate of F:

∫
Ω
F (ω)L(ω)O(ω)dω ≈ O(ωl)∑

l,m

Fm
l Lml ≈ O(ωl)∑

l,m

Fm
l

√
4π

2l + 1
Y m
l (ωl)L̃l . (5.13)

However, as noted in [DSJN19] if F is a circularly symmetric kernel oriented toward the ωr
direction, thus only represented with ZH in the frame coordinate aligned with ωr. F and L̃
can be aligned in the same frame coordinate by aligning the z axis of each frame coordinate
without caring for the phase alignment (x and y axis) since the two functions are circularly
symmetric. The alignment of the z axis corresponds to a rotation of angle arccos (ωl ⋅ ωr):

O(ωl)∑
l,m

Fm
l Lml ≈ O(ωl)∑

l

Fl

√
4π

2l + 1
Y 0
l (ωl ⋅ ωr)L̃l (5.14)

where Y 0
l (θ) = Y 0

l (ω). Hence, the complexity to compute the specular contribution be-
comesO(N) instead ofO(N2), where N is the number of SH bands and only the ZH basis
functions are evaluated instead of all the SH basis function.

5.2.8 Comparison with VSGL
We use our own implementation of a simplified version of VSGL [Tok15b], based on

publicly available faster VSGL code [Tok15a]. This allows us to produce a fair compari-
son between both methods, but without importance or interleaved sampling. Our method
benefits from faster computation time thanks to the ZH expansion, thereby limiting con-
volution to materials with a circularly symmetric specular lobe which is fair compared to
VSGL, being itself limited to BRDF with a single lobe.
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Method
Parameters Timing

(ms) rmse psnr ssimnumber
of VL

number of
SH bands

VPL
400 - 17 0.2428 12.296 0.8765
900 - 39 0.2603 11.691 0.8852

1156 - 52 0.2425 12.308 0.8831

HVL

400

5 23 0.2417 12.336 0.8592
10 32 0.2336 12.629 0.8733
15 40 0.2317 12.703 0.8785
20 47 0.2314 12.713 0.8804

1156

5 68 0.2406 12.374 0.8643
10 93 0.2321 12.687 0.8806
15 117 0.2297 12.776 0.8851
20 140 0.2292 12.796 0.8859

VSGL
400 - 32 0.2617 11.645 0.8756
529 - 40 0.2539 11.907 0.8740

1156 - 87 0.2336 12.632 0.8762

Table 5.3: Timings (ms) and metrics for the figures of comparison between HVL and VSGL.

To summarize our implementation:

• The ZH projection for the light is done using our method for spherical light (Equa-
tion 3.10).

• The BRDF convolution is computed with the fast shading with zonal harmonics pro-
posed in Section 5.2.7.

• The HVLs directional emission is computed by evaluating a GGX BRDF.

• Visibility of the HVLs (and VSGL) is not taken into account.

VSGL method approximates a set of nearby virtual light relying on RSM, as it is the most
efficient method to quickly access a VPL and its neighbors, and taking advantage of RSM
mipmaping. Our HVL method extends VSL and only relies on RSM to sample the position
of the virtual lights. HVL are then less dependent on RSM, thus more flexible than VSGL.
As shown in Figure 5.12, HVL and VSGL exhibit similar results without any spikes.

For a fair comparison, both methods are restricted to single-lobe BRDF only. Our VSGL
implementation defines one VSGL per pixel group; HVL are restricted to single-lobe BRDF
when using the ZH acceleration method. Moreover, this ZH acceleration makes the HVL
method much more competitive than the full SH method (40ms for 15 SH bands).

Implementation details of VSGL

We implemented a simpler version of VSGL from the code available online of a paper on
fast VSGL [Tok15b], because there is no code available for the full VSGL method [Tok15a].
We specify that one VSGL use two spherical Gaussians, one for diffuse and the other one
for specular contribution. What changes compared to the full version is that it is only one
VSGL without extras, no importance sampling and no interleaved sampling.

For a fair comparison between our method and VSGL, we slightly modified the code pub-
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5 ZH 23ms

rmse 0.2417
psnr 12.336
ssim 0.8592

10 ZH 32ms

rmse 0.2336
psnr 12.629
ssim 0.8733

15 ZH 40ms

rmse 0.2317
psnr 12.703
ssim 0.8785

20 ZH 47ms

rmse 0.2314
psnr 12.713
ssim 0.8804

Figure 5.13: Observation of the effect of the number of zonal harmonics using 400 HVLs. We
clearly see the specular reflection on the ground becoming higher with higher frequency. However,
we can also see that the rendering does not need to go beyond 15 ZH. Indeed, between 15 and 20
ZH, we do not observe any visible difference. The error values show it as well.

lished by [Tok15b] to generate several VSGLs, while the author generates only one VSGL
on the whole RSM. We distribute VSGLs and HVLs uniformly on the RSM. We typically
use 142 pixels for each VSGL, and an RSM of 2802 pixels for 400 VSGLs and 3222 pixels for
529 VSGLs. We place HVLs or VPLs at the center of the pixel group used to define a VSGL
when comparing with the same number of virtual lights.

Results and comparisons

Results are generated with a RTX 2080 on 1600×900 resolution. The strong specular
reflection on the ground of Sponza is the most visible effect which varies depending on the
rendering technique (Figure 5.12). We consider the result generated with path-tracing as a
reference to compute the error metrics. We compiled in Table 5.3 the timings to generate
these results and the resulting scores on RMSE, PSNR and SSIM.

The Sponza scene needs to use 15 ZH bands to catch the strong specular reflection on
the ground (Figure 5.13). Figure 5.12 shows that at equal time, HVL and VSGL are able to
render images with similar quality. With the same amount of virtual light and considering
the same quality on this scene, VSGL are faster (Figure 5.14). However, on mainly diffuse
scenes, we could lower the number of ZH bands while keeping a similar quality. And so,
HVL would become faster than VSGL. Hence, the number of ZH bands can be used as a
slider to manage the quality according to the scene used, being a trade-off between quality
and rendering time. Also, the VPL method is obviously faster than HVL or VSGL but
generates the traditional artifacts as shown in the (Figure 5.15) generated with the same
budget of virtual lights.
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psnr 11.645
ssim 0.8756

400 HVL - 5 ZH 23ms
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rmse 0.2336
psnr 12.629
ssim 0.8733

400 HVL - 15 ZH 40ms

rmse 0.2317
psnr 12.713
ssim 0.8785

Figure 5.14: Comparison between VSGL and HVL. HVL need use enough ZH bands to match
the rendering generated with VSGL.

5.2.9 Limitations and future work

Primary light As shown in Section 5.2.2, our HVLs framework only considers primary
light primitives from which incident direction is a Dirac. In order to manage area lights,
the process of computing HVLs luminance contribution should be adapted. The SH co-
efficients of the incident luminance field due to the area light are to be stored on each
HVL. Once the receiving shaded point is known, the SH coefficients for the emission of
each HVL are computed according to the shaded point. The convolution of this emission
function with the HVL incident luminance field will then result in the incident luminance
field at the shaded point. Due to this additional convolution, the computation time of the
method will increase.

HVLs visiblity The HVLs visibility could be approximated by taking into account only
their center and the traditional VPL method to compute the visibility (Section 5.1.3). This
approximation is only valid when HVLs radii are small. For large HVLs, visibility manage-
ment is more complex. It might be interesting to project the visibility on SH, as done in
PRT technique for dynamic scenes (Section 2.3.3), but this will require to evaluate a triple
product (V ⋅ L ⋅ F) instead of only a double product. The extra cost of visibility projection
and triple product would prevent to reach interactive rendering time. Indeed, unlike like
the double product, the triple product does not reduce to a dot product of vectors.

Efficient shading Our prototype implementation only uses a simple light gathering to
compute HVLs contributions at each pixel, in which each pixel gets the contribution of all
HVLs. This has a strong impact on the computation time when using numerous HVLs. For
a better efficiency, a shaded point must ideally consider only HVLs that will have an influ-
ence on itself. Our proposal is orthogonal to any efficient virtual light gathering method
(Section 5.1.3). As shown for the VSGL method [Tok15b], the shading time can be reduced
by using interleaved sampling [KH01]. HVLs are band limited by construction, thus, they do
not generate arbitrary high frequencies. This property is particularly useful in interleaved
sampling methods to define a proper sampling strategy.
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Figure 5.15: Comparison between VPL, HVL and VSGL. Compared to VPL, HVL and VSGL do
not produce artifacts with a low number of virtual sources, HVLs reduce artifacts through frequency
smoothing and the spherical nature of the virtual sources.

Hemispherical bases Although spherical in shape, HVLs only emit light in a hemisphere.
While the current implementation accounts for this using the geometric term, we thought
about using the hemispherical basis proposed by Gautron et al. [GKPB04]. Nevertheless,
this requires to correctly adapt several computations to this basis, such as the integration
of Legendre polynomials or the efficient evaluation of harmonics. Unfortunately, the tricks
proposed by Sloan [Slo13] to efficiently evaluate spherical harmonics do not apply directly
to hemispherical harmonics. Alternatively, the derivations could be adapted to a more re-
cent basis, such as theH-basis of Habel et al. [HW10].

Soft angular kernels In our proposal, as for VSLs, we consider that the emission is con-
stant on the solid angle subtended by the spherical light. If VSLs rely on this hypothesis
for efficient uniform sampling for Monte-Carlo integration, we use this to derive an ana-
lytical solution for HVL (Section 3.1). However, the solid angle boundary corresponds to
an infinite frequency in the emission function that produces ringing artifacts in the SH
approximation. To limit these ringing artifacts, one can use a soft angular kernel in the ZH
projection of spherical lights (Equation 3.4). However, finding an analytical and efficient
solution with an arbitrary kernel is challenging but should improve the final result.

Interpolation of the spherical light projection HVLs do not benefit from the interpo-
lation and gradient computation of spherical lights proposed in Section 3.3. Indeed, the
SH coefficients representing the radiance field produced by spherical lights have large am-
plitude variations when the light sources are close to the projection points, i.e. when the
spherical lights are included in the interpolation grid, which breaks the interpolation when
a sparse grid is used. By construction, the HVL are at the surface of the scene, therefore in
the interpolation grid. A careful implementation must therefore be implemented to take
advantage of the acceleration of the interpolation.
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5.3 Point-based precomputed radiance transfer
This section presents preliminary results where the idea is to efficiently project any func-

tion onto the SH using a point-based approximation. Thus, in a first step, we quickly study
the differences in convergence that exist between the two SH projection methods (Sec-
tion 5.3.1): the scalar product (Section 2.2.3) and the least squares (Section 2.2.4). Then in a
second step, we discuss the application of a point based SH projection for probes (Sec-
tion 2.3.6) and image based lighting to propose a VPL based SH projection (Section 5.3.2).

5.3.1 Efficient spherical harmonics projection

We compare the two main SH projection methods, with on the one hand the scalar product
based on the resolution of an integral (Section 2.2.3) and on the other side, the resolution
with the least squares (Section 2.2.4). Using the scalar product, the function can be projected
by solving analytically the integral, as done in this thesis for spherical lights (Chapter 3).
The integral can also be solved numerically with Monte-Carlo methods (Section 2.1.4). By
construction, the least squares are a numerical method and thus similar to Monte-Carlo
methods. The matrices constructed to compute the SH projection for both methods are
very similar and clearly outlined in Section 2.2.3 and 2.2.4. In this section, we compare the
convergence of the two methods.

The scalar product versus the least squares Let’s call N the number of SH coefficients
(number of unknowns) we are looking for and M the number of samples we use to resolve
the integral. For both methods, the samples are placed at exactly the same locations accord-
ing to the spherical Fibonacci sampling [KISS15]. In a first step, we have taken two functions
with different frequencies (Figure 5.16). We observed significant differences in conver-
gence on a range of 100 to 600 samples and up to about 20 SH bands. On these ranges, the
SH projection with the scalar product converges slowly to the final value of the SH coeffi-
cients where the least squares converges very quickly (Figure 5.16c and 5.16d). In addition,
we can note that the projection tends to create oscillations in the reconstructed signal as
long as it has not converged (Figure 5.16a). In the higher frequency function, there are still
oscillations which are not related to the convergence of the coefficients but related to the
traditional ringing artifact of the SH (Section 2.2.5) indicating that 15 SH bands are not
sufficient to capture the signal (Figure 5.16b).

By varying the number of bands, we can see that with a small number of bands the two
methods perform in the same way. When the number of bands increases, the least squares
tend to create less error in the reconstruction of the signal. We observe 3 configurations
in the reconstruction error (Figure 5.16e, 5.16f, 5.16g and 5.16h):

• Overdetermined system (N < M , before the blue circle). When there are more samples
than coefficients to compute. The least squares tend to converge faster than the scalar
product. This is even more true when the number of coefficients to compute become
closer to the number of samples.

• Underdetermined system (N > M , after the blue circle). When there are more coeffi-
cients to compute than samples. Least squares tend to produce a smaller error than
the scalar product. However, the error of both methods becomes large because of the
frequential nature of the SH. This means that when the problem is overdetermined,
there are not enough samples to capture the variations of the SH basis functions re-
sulting in a large error.
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Figure 5.16: Comparison of the convergence of the SH projection between the quadrature scalar
product resolution (red) and the least squares method (green). The comparison is computed on a low
frequency function (left) and a higher frequency function (right) and the samples for both methods
are positioned at exactly the same locations following the spherical Fibonacci sampling [KISS15].
On these sample ranges (between 300 and 600) the least squares method allows a faster convergence
but the method suffers from a stability problem when the method tends towards a determined system.
Indeed, when the number of samples approaches the number of coefficients, the conditioning of the
matrix becomes huge (Figure 5.18) and increases of the error (blue circle). To minimize the problem,
we inverted the matrix using a truncated SVD.
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Figure 5.17: On the comparison scale used (300-600 samples and 15 SH bands) both projection
methods perform similarly on a very high frequency signal. The environment probe (left) is projected
on 15 SH bands and with different number of samples (right).

Figure 5.18: Conditioning of the least squares matrix with different number of samples and SH
bands. The conditioning becomes huge when the number of SH coefficients tends towards the
number of samples. (The number of SH coefficients is equal to the square of the number of bands.)

• Determined system (M ≈ N , blue circle). When there are as many coefficients to com-
pute as there are samples, there is no particular problem to solve the scalar product.
However, the matrix to be inverted in the least squares method suffers from a condi-
tioning problem (Figure 5.18). The conditioning increases when M tends to N and is
maximal when the problem is exactly determined (M = N ).

However, these configurations (and thus the conditioning problem) only have an impact
on the evaluation for low/medium frequency functions. On the sample range considered in
this study and on higher frequency signals (Figure 5.17), it is mandatory to use an overde-
termined system in order to ensure the convergence. Indeed, the variations of the error of
the projection indicate that the projection requires much more than 600 samples before
converging, which is much higher than the 225 SH coefficients used. We also observe that
on these ranges, the projection error of the scalar product and the least squares have a very
similar behavior. On this example, we observed similar behaviors for both methods up to
at least 50 bands. Moreover, in computer graphics, the rendering methods rarely use more
than 20 SH bands because the number of coefficients is too large for the computations to
be efficient. This means that for traditional rendering, the two methods will perform in



5.3 ● Point-based precomputed radiance transfer 107

Figure 5.19: A VPL is distributed at each bounce of the paths launched from the primary light.
The probes gather the contribution of each VPL.

the same way. Nevertheless, if the signal to be projected is band limited, the least squares
may compute more efficiently the SH projection but the link between the band limit of the
signal and efficiency gain has to be established precisely and is left as future work.

We have not mentioned the differences in the execution time of the two methods because
we have experimented in a framework where the projection matrices of the two methods
are precomputed and thus giving the same execution time as explained in Section 2.2.4.

5.3.2 SH projection of the radiance field with VPL

Probe-based global illumination is a well-suited framework to apply the SH projection by
numerical resolution (Section 2.3.6) . Notably, because the global lighting acts as a low pass
filter, which is already interesting for the SH. This property is also interesting for the least
squares SH projection because of the assumptions made in the previous subsection. Hence,
methods projecting the radiance coming at each probe can benefit from the advantages of
the least squares convergences [MK20, IKA+21]. However, as detailed in Section 5.3.3, the
least squares are inappropriate to compute the SH projection of the radiance field using
VPL. Hence, we propose a simple way to greatly accelerate the SH projection of the probes
using VPL. In order to compute the radiance arriving at each probe, luminous paths must
be launched from each probe in all directions. This quickly becomes very expensive, so to
reduce the computation cost of each probe, we experimented with a projection using VPL
(Figure 5.19), which the SH projection of the radiance field is straightforward.

The HVL (Section 5.2) and the probe based approach proposed here are similar, both
seek to compute the SH projection of the radiance field. Nevertheless, the HVL approach
is specially designed to generate artifact-free one bounce indirect lighting in real-time
with few virtual sources and without precomputation. Here, the probe approach proposes
to precompute the indirect radiance field generated by VPLs distributed according to any
number of luminous bounces, where the number of VPLs and the number of bounces are
chosen appropriately to the scene used.

SH projection of probes

We seek to project on SH the radiance field arriving at each probe. The work presented
below is thus specialized for the use of probes but can be generalized to any shaded point.

Traditional approach Each probe is traditionally computed by path-tracing with an envi-
ronment camera. The resulting image is then projected on SH by scanning all the pixels
weighted by their solid angle [RH01]. It is an easy solution to implement from an exist-
ing render engine but that suffer from degeneration depending on the parameterization of
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Figure 5.20: Indirect illumination obtained with the probes using different attenuation model for
the VPL. Yuksel’s attenuation must set a radius for the VPLs, instead of choosing a radius for each
VPL independently according to the density of the virtual sources, we obtain good results by setting
a radius for all the VPLs according to the positioning of the probes. A parameter of 0 indicates that
the VPLs have a radius of 0 and a parameter of 1 gives a radius equal to the minimum distance that
exists between the probes (in a regular probe grid). A parameter of 0.5 yields a good result.

the environment camera, usually at the poles. A more efficient method is to compute di-
rectly the SH projection by launching paths on the desired directions, using, for instance,
uniform or quasi-uniform distribution:

Sml = ∫
Ω
S(ω)Y m

l (ω)dω ≈
4π
N

N

∑
i

S(ωi)Y
m
l (ωi) (5.15)

where S(ωi) is the result of the path-tracing converged in direction ωi. Hence, the SH
projection can be computed by the resolution of the scalar product or by the least squares.

VPL based approach The radiance field emitted by a VPL and received by a shaded point
is a Dirac (Section 3.1.1). Thus, the projection of the radiance field at the shaded point is
directly the evaluation of the SH basis functions in the direction of the Dirac multiplied by
the radiance emitted by the VPL in the direction of the shaded point:

Sml ≈
1
M

M

∑
i

Li(yi → p)Y m
l (ωi) (5.16)

where p is the probe position, yi is the position of the i-th VPL, ωi = (yi − p)/ ∥yi − p∥

and Li also gives the visibility and geometric term between the probe and the VPL (Equa-
tion 5.1). This means that instead of computing expensive path-tracing at each probe, VPLs
are distributed once to compute the SH projection for all the probes (or shading points).

However, VPL produce the spikes and splotches artifacts identified earlier (Section 5.1.4).
The HVL model avoids them by combining SH and spherical lights (Section 5.2). These
artifacts are smoothed out when few SH bands are used, since SH acts as a low pass filter,
and the spherical lights allow a better coverage of the indirect radiance emitted by the
scene, thus avoiding these artifacts (Section 5.1.4). The SH projection of the radiance field



5.3 ● Point-based precomputed radiance transfer 109

Figure 5.21: Typical artifacts related to probe positioning. They are due to probes inside objects
that do not capture illumination but are still interpolated to obtain the final shading. Thus, a
more cautious interpolation avoids this problem but this thesis is interested in computing the probes
efficiently and does not seek to solve this problem.

produced by VPLs does not escape these artifacts. However, the use of probes apply a
spatial filter when the probes are distributed parsimoniously in the volume of the scene.
Thus, we did not find any really annoying spikes artifacts in the results. In addition, we
use a number of VPLs appropriate to the underlying scene, which naturally reduces these
artifacts. Nevertheless, splotches still appeared. Their appearance is related to the division
by the square distance present in the geometric term. For simplicity, we call this division
the attenuation term:

A(x,y) = 1
∥y − x∥

2 . (5.17)

Instead, we use an attenuation model based on spherical lights proposed by Yuksel [Yuk20]

AY uksel(x,y) =
2
r2 (1 − ∥y − x∥

√

∥y − x∥
2
+ r2

) (5.18)

where r is a radius affected to the VPL. The model of the Virtual Spherical Light [HKWB09]
needs to compute a radius per virtual light according to their density. This step can be
costly because it requires access to nearby virtual lights. We observed that in order to
avoid splotches artifacts with the probes, it was not necessary to compute the density of the
virtual lights but choosing a radius according to the density of the probes was sufficient.
We obtained good results by choosing a radius equal to the minimum distance between
two probes divided by two (Figure 5.20). This metric is easy to compute on a regular grid
but simple equivalent metrics could be computed to adapt the VPL radius according to the
grid model.

Results

We implemented our prototype using an Intel Xeon 2.10 GHz, 32 threads processor and
a RTX 3080 graphics card. We implemented the computation of the probes as a precompu-
tation step in pbrt-v3 [PJH16]. The probes are either computed by path-tracing or by VPL,
both methods compute only the indirect lighting. Using path-tracing, the paths are inde-
pendent for each probe and start at the position of each probe distributed according to the
spherical Fibonacci mapping [KISS15]. The VPL are distributed using P path launched from
the primary lights with a depth of D (number of bounces for each path). Hence, the VPL
are distributed at each bounces of the paths yielding P ×D maximum VPL in the scene.
Each VPL is taken into account for the SH projection of the radiance field for each probe
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Figure 5.22: Indirect lighting computed with probes. The computation of the probes with VPLs
produces a final lighting very close to the one computed with path-traced probes at a much lower
cost (Table 5.4). Probes have difficulty capturing high frequency illumination if their density is not
sufficient (horse inset).

and visibility is computed by ray casting. For both methods, the SH basis functions are
evaluated using the efficient Sloan’s method (Section 3.2.1).

The interpolation of the probes is implemented in a prototype real-time engine using
OpenGL / GLSL 4.5. The core of the method is to speed up the computation of the SH
probes, so the probe interpolation implemented here is a simple trilinear interpolation
that can produce artifacts related to the positioning of the probes, e.g. if a probe is inside
an object and therefore does not receive light (Figure 5.21). Methods taking into account
these problems are orthogonal to the method proposed here [SL17]. The final shading is
computed with the new framework proposed in Section 4.1. It would be interesting to
take into account the radiance gradient in order to improve its interpolation. However, its
computation is not straightforward (Section 5.3.3).

The results were generated on 5 SH bands. We obtain a similar lighting quality between
the path-traced and VPL-computed probes, while achieving an indirect lighting quality
close to the result path-traced for each pixel (Figure 5.22 and 5.23). The low pass filter
induced by the use of SH allows reducing the number of VPLs needed while keeping an
acceptable quality. These first results show that VPLs allow to obtain a quality of projection
of the probes at a lower cost than the traditional path-tracing (Table 5.4), in particular when
many probes are involved. Indeed, the probes computed by path-tracing use independent
light paths while the VPL are mutualized for all the probes. Moreover, all the VPLs are
taken into account independently in the computation of the SH projection. Thus, all the
methods that accelerate the gathering of the VPLs can be directly used in this application
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Figure 5.23: Relighting result for dynamic objects. The sphere and the bunny are not present in the
scene during the computation of the probes (path-traced or with VPL). However, they are present
for the path-traced result at each pixel (left). Thus, the probes can simulate the lighting on dynamic
objects with a coherent lighting quality sufficient for many applications.

(Section 5.1.3). An in-depth analysis is left as future work, such as an analysis of the accuracy
and time according to the number of SH bands and number of VPL.

5.3.3 Discussions and future work

This section presents two different experimental works. The observations on the con-
vergence of the SH projection using the scalar product or the least squares (Section 5.3.1)
and the SH projection of the radiance field produced by VPLs (Section 5.3.2). These works
can be greatly improved and raise interesting research avenues that we expose here.

Least squares projection (Section 5.3.1) We have observed that the least squares can be
particularly interesting when the number of SH coefficients is smaller than the number of
samples and when it tends towards it, but also according to the frequencies that compose
the signal to be projected. Several methods [HRKM03, Sch13, MW11] compute exactly the
scalar product with a minimal number of samples on condition that the frequencies of
the signal respect certain conditions. Thus, similar research applied to the least squares
method is left as future work and seems to be an interesting opening of our preliminary
works.

The initial aim idea for the SH projection of probes using VPL was to take benefit of
the advantages of the least squares method. Indeed, in the context of SH rendering, it has
been shown that this method has good noise resistance properties as well as robustness
with sparse data [SHHS03,LLW06,VSG+13], properties that seem to fit perfectly with VPL
rendering. Defining the radiance function received in all directions (by a point) as the
radiance surface, the least squares must sample this surface to compute its SH projection.
However, the VPLs do not sample this surface but reconstruct it by summing the virtual
lights, this is due to the fact that VPL are a subsampling of the light paths. We believe that
virtual light approaches that accurately sample the surface of the radiance field at any point
of the scene could take advantage of the benefits of the least squares projection exposed in
Section 5.3.1. Hence, approaches such as Rich-VPL [SHD15] could be used for this purpose.
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Scene* #Probes
Path-traced probes VPL probes real-time

indirect
pass (ms)#paths depth time

(s)
VPL distribution SH

proj. (s)
total

time (s)#paths #VPL time (s)
Cornell 512 10000 8 7.8 2000 7894 0.2 0.2 0.4 2.3

Sun-temple 27000 6000 5 942.6 10000 27794 0.2 67.5 67.7 6.7
Sibenik 14400 10000 5 371.5 10000 49668 0.2 48.5 48.7 5.4
Sponza 8192 7000 4 467.6 30000 108177 0.8 90.5 91.3 4.3

*Cornell (Fig. 5.22 and 5.23 - top) , Sun-temple (Fig. 5.22 - bottom)
Sibenik (Fig. 5.23 - bottom) , Sponza (Fig. 5.22 - middle)

Table 5.4: Details of the parameters for the computations of the probes. The number of paths
corresponds to the number of paths launched from each probe, this corresponds to the number of
directions to evaluate the SH projection integral. Each direction relaunch the path 8 times and with
a certain depth. This depth is the same for the VPL distribution paths. Thus, the VPL uses a number
of paths starting from each light source and a VPL is positioned at each bounce on a surface. Their
distribution is extremely fast and their gathering to compute the SH projection is slower but still
faster than the path-tracing method for each probe. However, the gathering implemented here is
very naive, it consists of a for loop on each VPL, so the many gathering improvements proposed in
the state of the art can be used to strongly reduce this time (Section 5.1).

Perspectives on the VPL approach (Section 5.3.2)

Interactivity Interactivity means the refinement of the shading computation as well as its
display at different convergence steps. The refinement of the lighting is more straightfor-
ward with VPL than with path-tracing. It is common to see interactive rendering of path-
tracing slowly converging for a single image, but not suitable to compute the SH projection
of several thousand probes at different convergence steps of the path-tracer. Indeed, in or-
der to propose an interactive approach with path-traced probes, the SH projection (Equa-
tion 5.15) needs to be recomputed at each convergence steps which means that all radiance
from all directions ωi for each probe must be stored in memory. For instance, using a grid
of 303 probes with 10000 directions for each probe requires 3.24GB. It should be noted that
such a grid is not very dense for a large scene and this number of directions corresponds
to approximately only an image of 100 × 100. This implies that the memory requirements
in typical use cases will be much higher. Our method only necessitates to add the contri-
bution of VPL multiplied by the SH evaluation. Thus, no complete recomputation of the
SH projection is required and no significant storage is needed, since it is only necessary to
store the VPLs for all the probes.

Future applications All systems that need an efficient or interactive SH projection of the
incident radiance field can benefit from our proposal. For example, NeRF systems that
project the incident radiance and whose cost is reflected in the tens of hours of training
required of the neural network [YLT+21, STC+22]. In the context of differentiable render-
ing, recent work differentiates the SH projection of the direct radiance field produced by
polygonal lights [WCZR20]. We have proposed similar work but adapted to spherical lights
(Section 3.3). Generalizing these works for the full radiance fields, direct and indirect using
a point-based model, seems to be a promising and exciting avenue of research.

Radiance gradient Before discussing the differentiation of the radiance field generated
by VPL let’s discuss the one produced by a point light. The SH projection of the radiance
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emitted by such light source is simply an evaluation of the SH basis function in the direction
of the point light scaled by the intensity of the light, that can be also modulated by an
attenuation factor:

Cm
l = A(x,y)Y m

l (ω)I (5.19)

where x is the shaded point, y is the point light position, ω = (y − x)/ ∥y − x∥ and I is
the intensity of the light. Hence, using differentiation rules, the spatial gradient of the SH
coefficients is given by

∇xC
m
l = (∇xA(x,y)Y m

l (ω) +A(x,y)∇xY
m
l (ω))I . (5.20)

An efficient method to compute the gradient of the SH basis function ∇xY
m
l (ω) is given

in Section 3.2.2. The spatial gradient of the attenuation factor is straightforward to com-
pute, using the inverse of the squared distance (Equation 5.17) or the Yuksel method (Equa-
tion 5.18) [Yuk20], it is given by

∇xA(x,y) = −2(y − x)

∥y − x∥
4 (5.21)

∇xAY uksel(x,y) = −
2(y − x)

∥y − x∥ (∥y − x∥
2
+ r2)3/2 . (5.22)

While the intensity I is considered as constant for point light, it’s not longer the case for
VPL and hence needs to be also differentiate, involving the complex differentiation of ma-
terials as well as visibility (Equation 5.1). Many methods address this kind of problem in
differentiable rendering approaches (Section 2.3.8). An additional difficulty is that SH han-
dle a binary visibility, and are not suited to handle full visibility with depth information
(Section 2.3.3). This makes SH particularly difficult to handle complex visibility or reflec-
tions on fully dynamic scenes, especially when lights are inside the volume of the scene.
This is typically the case with VPLs, since by construction they are placed directly on the
surface of the scene. To the best of our knowledge, we don’t know method that use VPL to
differentiate the radiance field but it seems an interesting avenue of research to improve
the efficiency of the existing methods.

5.4 Conclusion
In this chapter, we have proposed to combine the spherical harmonics with the point-

based global illumination approaches. The first motivation was to propose an efficient
model to avoid the traditional artifacts of Virtual Point Lights (VPL) that appear due to their
singularity (Section 5.1.4). The Virtual Spherical Light (VSL) model minimizes these artifacts
by using spherical lights. However, the illumination produced by these virtual lights is in-
tegrated by Monte-Carlo, thus generating noise. We proposed a new model of virtual lights
called Harmonic Virtual Lights (HVL) which computes the global illumination by taking ad-
vantage of the efficient SH projection of the radiance field produced by spherical lights
proposed in Chapter 3. Hence, HVL produce an analytical, and noise-free, approximation
of VSL lighting.

The point based lighting methods allow to quickly approximate the integral of the ren-
dering equation. Thus, the SH projection, based on the resolution of an integral, can be
computed efficiently. As shown in Section 2.2, the SH projection can be computed by solv-
ing the integral or by a least square system. Thus, in a point-based lighting context, we
studied the differences in convergence between the two projection methods. However, if
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the VPL methods fit well with the resolution of the integral they do not fit directly with
the least squares method. We have designed a prototype to efficiently compute the SH
projection of the radiance field produced by VPL compared to the traditional path-tracing
method. However, a thorough comparison between the two approaches needs to be done
and is left as future work.
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6 Conclusion

6.1 Summary of the contributions
We have presented several contributions to improve the SH projection of the local and

global radiance field as well as to efficiently compute the final lighting at each pixel.

Spherical Light In Chapter 3, we proposed an efficient method to project on the SH, at
any point of the scene, the radiance field produced by spherical lights. Thus, several tens
of spherical lights can be used in a real time context where the projection is computed at
each pixel. We then extended this work to compute the gradient of the spherical harmonic
coefficients always representing the radiance field produced by spherical lights. The ap-
plication demonstrated in this thesis computes the projection and the gradient of the SH
coefficients only on the vertices of a 3D volumetric grid in which the 3D scene is immersed.
The SH coefficients are then interpolated for each shaded point of the scene. The interpo-
lation based on the gradient allows an accurate approximation of the SH coefficients while
using hundreds of spherical light in real time. The gradient of the SH basis functions is
used in the computation of the gradient of the SH coefficients. We have extended Sloan’s
work of efficient evaluation of SH basis functions to compute their gradient efficiently.

The proposed work on spherical lights is inspired by recent work for polygonal lights
[WR18,WCZR20]. Although similar in the final application, the methods of the SH projec-
tion for the two types of lights are greatly different and notably more expensive in number
of operation for the polygonal lights. So, in order to take advantage of the efficiency of the
methods, we suggested in Chapter 4 a method to approximate the SH coefficients repre-
senting the radiance field produced by polygonal lights with spherical lights. The shading
obtained on some SH bands (5-10) with our approximation is particularly close to the one
obtained with polygonal lights.

Spherical Harmonics framework with decomposable BRDF The use of dynamic scene
with SH rendering methods needs in a first step an efficient computation of the SH co-
efficients of the radiance field at each shaded points. This is possible with the proposed
methods for spherical lights. In a second step, the light and the material must be con-
volved efficiently. We have proposed in Chapter 4 a new framework to efficiently compute
this convolution with decomposable materials (whose diffuse and specular contribution
are computed separately). Thus, this new framework allows real-time performances, with
demonstrated performances beyond 60 frames per second and is also easy to implement.
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Harmonics Virtual Light Virtual point lights are commonly used to generate global lighting
efficiently. However, their singularity produces well known artifacts and several solutions
have been proposed to minimize them (Section 5.1.4). Thus, we have proposed a new type of
virtual lights, the harmonic virtual light (Chapter 5) which are based on the use of spherical
lights and thus on the efficient method of SH projection of the radiance field they pro-
duce proposed in Chapter 3. This new type of virtual lights corresponds to an extension
and approximation of the virtual spherical light, which avoids the singularity of point lights.
However, their integration is computed by Monte-Carlo thus generating the noise associ-
ated with these methods where our method computes analytically the illumination, thus
avoiding this kind of noise.

Point-based Precomputed Radiance Transfer Finally, in Chapter 5 we have proposed
experimental works to combine precomputed radiance transfer methods with point-based
lighting. There are two main methods to compute the SH projection of an arbitrary function
(Section 2.2); the resolution of the scalar product corresponding to a computation of an
integral, and a resolution with the least squares method. Thus, in a point-based context,
we have produced a comparative study of the convergence of these two methods. Then,
we used the virtual point lights to project on SH the radiance field efficiently at any point.
We demonstrated that this method worked better than the traditional projection methods
based on path-tracing. However, a thorough comparison needs to be made and is left as
future work.

6.2 Perspective and future work
The work presented in this thesis can be improved by several improvement levers. Here

are two possible improvements that we think are particularly interesting for future devel-
opment.

Hemispherical Harmonics The work proposed in this thesis focuses on the use of spherical
harmonics to manage lighting in a generic way. Even if some cases consider the lighting
only on a hemisphere, algorithms consider the radiance that can come from all directions,
e.g. with the probes distributed in the volume of the scene. However, considering the
lighting on an opaque surface only requires an efficient characterization of the radiance
received on the hemisphere above the surface. In this case, hemispherical harmonics are
particularly useful (Section 2.2.2). It may therefore be particularly interesting to convert the
work proposed in this thesis to the hemispherical harmonics.

Efficient Spherical Harmonics projection The proposed work on the efficient projection
on spherical harmonics is experimental (Section 5.3). The comparison between the two
projection methods (scalar product and least square) highlights the advantages of the least
square method allowing a faster convergence of the SH coefficients. This observation can
be exploited for future applications. Also, we have shown that projecting the radiance field
using virtual sources on SH was efficient compared to the traditional path-tracing approach
but requires an in-depth comparison. Indeed, it is necessary to quantify more precisely the
error in the SH coefficients that appears with the use of VPLs, for instance by generating
comparisons with equal time or number of samples compared to path-tracing.
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A Résumé de la thèse

A.1 Introduction et contexte

L’efficacité est une exigence pour de nombreuses applications en informatique graphique.
L’efficacité du rendu se décline en 3 catégories : temps réel, temps interactif et hors ligne.
Le temps réel correspond à un temps de calcul de l’ordre de quelques millisecondes, per-
mettant ainsi une fréquence d’affichage rapide, telle que requise dans les jeux vidéo visant
généralement plus de 60 Images Par Secondes (IPS). Le temps d’interaction est de l’ordre
de moins de quelques secondes permettant une qualité de rendu plus fine tandis que la
fréquence de rafraîchissement est suffisante pour interagir efficacement, la Conception As-
sistée par Ordinateur (CAO) vise généralement cette catégorie. Au-delà, on parle de rendu
hors ligne, permettant une qualité maximale comme celle souhaitée pour les images fi-
nales d’un film. Un rendu efficace est synonyme de performance, en termes de nombre
d’opérations mais aussi en termes d’organisation de ces opérations pour optimiser leur
exécution en fonction du matériel utilisé. Le besoin d’efficacité est toujours plus grand
en raison, notamment, de l’utilisation de scènes 3D de plus en plus complexes, de par leur
géométrie mais aussi de par la complexité des transports de lumière présents dans la scène.
La clé de l’efficacité du rendu est une caractérisation efficace du transport de la lumière
dans une scène 3D. C’est la variété des configurations possibles de la scène qui rend ce
problème particulièrement complexe (Figure A.1).

Figure A.1: Les besoins de simulation de l’éclairage sont très divers, allant par exemple du rendu
de grands paysages lumineux comme dans Red Dead Redemption II [Roc18] (gauche) à des milieux
urbains de nuit utilisant des centaines de lumières surfaciques comme dans Stray [Blu22] (droite).
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C’est dans ce contexte d’efficacité que les harmoniques sphériques (HS) ont pris tout
leur sens en informatique graphique. Les HS sont des fonctions de base orthogonales per-
mettant d’approcher toute fonction sphérique par un vecteur de coefficients où chaque
coefficient est attaché à une HS. L’orthogonalité des fonctions de base rend leur utili-
sation particulièrement intéressante pour le rendu en informatique graphique. Grâce à
ces propriétés, les harmoniques sphériques ont été utilisées très tôt dans le domaine de
l’informatique graphique [CMS87]. Cependant, leur application la plus notable est venue
un peu plus tard avec la méthode du Précalcul de Transfert de Radiance [SKS02]. Dans cette
méthode, les harmoniques sphériques encodent le transport de la lumière à chaque point
de l’environnement 3D.

A.2 Organisation de la thèse et aperçu des contributions

L’une des principales difficultés de l’utilisation des harmoniques sphériques pour les
scènes dynamiques est la projection sur les HS à la volée du champ de radiance en tout point
de la scène. Le chapitre 3 présente trois contributions distinctes améliorant l’efficacité de
la projection sur les harmoniques sphériques pour les lumières sphériques. La première
contribution consiste en un calcul analytique et récursif de la projection du champ de radi-
ance produit par une lumière sphérique, basée sur une évaluation efficace des harmoniques
sphériques. La deuxième contribution est une dérivation analytique de l’évaluation des
fonctions de base des harmoniques sphériques permettant de proposer dans une troisième
contribution un calcul analytique et récursif du gradient de la projection du champ de ra-
diance produit par une lumière sphérique. Nous démontrons l’efficacité de cette troisième
contribution en calculant la projection sur les HS du champ de radiance, avec le gradient
des coefficients d’HS, uniquement sur un sous-ensemble parcimonieux de points distribués
volumétriquement dans la scène. Le gradient permet d’interpoler avec précision les coef-
ficients d’HS représentant le champ de radiance à chaque point de la scène. Ces contribu-
tions sont motivées par des travaux récents proposant des contributions similaires, mais
adaptées à des lumières polygonales : [WR18, WCZR20].

Cependant, l’éclairage que nous percevons en un point n’est pas simplement le champ de
radiance que le point reçoit, mais le résultat de la convolution entre le champ de radiance et
le matériau sur lequel le point est situé. Nous avons conçu un nouveau cadre de travail pour
calculer efficacement la convolution pour les scènes dynamiques et avec l’utilisation de
matériaux couramment utilisés en informatique graphique séparant la contribution diffuse
et spéculaire (Chapitre 4). De plus, nos méthodes de projection du champ de radiance
produit par les lumières sphériques étant plus efficaces que les travaux proposés pour les
lumières polygonales, nous proposons une méthode pour approcher la projection du champ
de radiance produit par les lumières polygonales en utilisant nos méthodes présentées dans
le chapitre précédent.

Enfin, le chapitre 5 se concentre sur l’éclairage global en combinant l’utilisation des
harmoniques sphériques avec les méthodes d’éclairage global basé point. Nous proposons
un nouveau type de lumière virtuelle, appelé Harmonics Virtual Light (HVL), basé sur les
méthodes de projection efficaces du champ de radiance produit par les lumières sphériques
proposées dans le chapitre 3. Nous montrons également que la combinaison des VPL et des
harmoniques sphériques peut être particulièrement bénéfique pour calculer efficacement
le champ de radiance global reçu par des sondes distribuées volumétriquement dans la
scène.
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A.3 Contenu du mémoire
Ce mémoire est divisé en 6 chapitres, dont le premier introduit la thèse et le dernier vient

le conclure. Le chapitre 2 vient poser l’état de l’art de l’éclairage utilisant les harmoniques
sphériques ainsi que détailler les mathématiques de ces dernières. Les 3 chapitres restants
décrivent les contributions proposées. Le chapitre 2 et les 3 suivants représentent les
chapitres d’intérêt de ce mémoire que nous venons résumer ici.

A.3.1 Chapitre 2 - Éclairage et harmoniques sphériques

Ce chapitre introduit les bases de la synthèse d’image, les mathématiques des harmoniques
sphériques, qui les rendent notamment particulièrement bien adaptées à la synthèse d’image
et les applications des HS dans l’histoire de l’informatique graphique. Ce chapitre permet
donc de poser les bases nécessaires à la compréhension des contributions présentées dans
les chapitres suivants. Ainsi, afin de bien comprendre le résumé des prochains chapitres
nous résumons ici les clés de compréhension du chapitre 2.

Synthèse d’image

L’équation du rendu [Kaj86] est un bilan énergétique à la surface d’un objet, elle relie la
radiance entrante à la radiance sortante en un point de la scène. L’équation du rendu re-
pose principalement sur deux fonctions, la radiance incidente et une fonction de transfert
correspondant aux propriétés du matériau sur lequel est posé le point de la scène. Pour une
direction de sortie (direction de vue), l’équation du rendu intègre la radiance incidente mul-
tipliée par la fonction de transfert pour l’ensemble des directions incidente. C’est-à-dire
l’ensemble des directions correspondant à la sphère unité. Les méthodes Monte-Carlo sont
classiquement utilisée pour résoudre numériquement l’équation du rendu en chaque point
de la scène. Les bases de fonctions sont un outil mathématique permettant de représen-
ter une fonction par un vecteur de coefficients, où chaque coefficient est rattaché à une
seule fonction de base. Les coefficients sont calculés en projetant la fonction sur chacune
des bases de fonctions. La projection correspond à un produit scalaire fonctionnel. Les
bases de fonctions orthogonales, telles que les harmoniques sphériques, simplifient le cal-
cul d’une intégrale du produit de deux fonctions par le produit scalaire des coefficients des
fonctions de base. Ainsi, cela s’applique parfaitement pour résoudre l’équation du rendu
efficacement.

Harmoniques sphériques

Les Harmoniques Sphériques (Figure A.2) forment une fonction de base orthogonale où
chaque fonction est indexée par un ordre l et un degrém. Les HS sont analogues aux séries
de Fourier, décomposition en sinus et cosinus, mais défini sur une sphère. Les HS sont
ordonnées de la manière suivante : plus l’ordre l est grand, plus les fréquences angulaires
sont élevées. Plus précisément, l’ordre l définit le nombre d’oscillations le long des longi-
tudes et le degré m le long des latitudes. L’ordre l peut aller à l’infini et le degré m varie
entre −l et l, formant ainsi une pyramide de fonctions.

La projection, le vecteur de coefficients, peut-être calculé par deux grandes méthodes.
D’un côté la projection par résolution du produit scalaire, comme évoqué précédemment,
et de l’autre la projection par moindres carrées. Analogiquement aux méthodes des moin-
dres carrées, la résolution du produit scalaire peut-être fait numériquement. Nous démon-
trons que la méthode des moindres carrées permet de converger plus rapidement selon la
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Figure A.2: Représentations des premières fonctions de base des harmoniques sphériques réelles.
Les lobes sont colorés selon leur signe, les valeurs positives en rouge et négative en vert. La sous-base
des harmoniques zonales pour lesquelles m = 0 est encadrée au milieu.

nature de la fonction qui est projetée (Section A.3.4). Les harmoniques sphériques agis-
sent comme un filtre passe-bas, où la fréquence de coupure est fixée par l’ordre l utilisé.
Ainsi, les représentations fréquentielles coupant brutalement les fréquences sont connues
en traitement de signal pour produire des oscillations dans la reconstruction du signal. Des
solutions classiquement utilisées en traitement de signal peuvent être mis en place pour
atténuer ces oscillations.

Le cas où m = 0 est une sous-base des HS, appelé les Harmoniques Zonales (HZ). Cette
sous-base est particulièrement utile pour représenter des signaux circulairement symétriques.
Ainsi, cela permet de réduire drastiquement le nombre de coefficients à prendre en compte
pour ce type de signal. En conséquent, des méthodes cherchent à factoriser des signaux
arbitraires par une combinaison d’HZ [NSF12, SLS05]. De plus, les propriétés de convolu-
tion et rotation sont beaucoup plus efficaces lorsque le signal est réduit à un vecteur de
coefficients sur les HZ, comparé aux mêmes propriétés posées sur les HS.

Application à l’informatique graphique

Les premières utilisations des HS en informatique graphique avaient pour but d’utiliser
des cartes d’environnement efficacement [CMS87,RH01]. En effet, une carte d’environnement
est valable pour l’ensemble des points de la scène et peut donc être compressée par un
vecteur de coefficients. La méthode de Précalcul de Transfert de Radiance [SKS02] est la
méthode la plus notable d’utilisation des HS. Celle-ci vient projeter sur les HS la fonction
caractérisant les transferts de radiance, et ceux en chaque point de la scène. Cela permet
de simuler en temps réel l’éclairage global avec des conditions d’éclairage quelconque.

Les techniques de mise en cache de la radiance [KGBP05] et éclairage par sondes [IKA+21]
sont des exemples typiques de l’utilisation des HS dans un cadre général. Des techniques
cherchent à tirer profit des méthodes de factorisation sur les HZ évoqués précédemment
pour proposer des méthodes d’éclairage toujours plus efficace [BXH+18,WR18,SBN15]. De
manière générale, les HS peuvent être mis à contribution lorsque des fonctions sphériques
doivent être représentées, pour représenter par exemple l’occlusion, ou améliorer les méth-
odes de rendu différentiable ainsi que les champs de radiance neuronaux (NeRF).
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Figure A.3: Configuration géométrique de la contribution de luminance d’une lumière sphérique.
(a) Découpage 2D montrant le rayon r de la lumière sphérique, la distance d avec la lumière
sphérique, et le demi-angle a de la calotte. (b) La lumière sphérique en bleu se projette sur une
calotte sphérique Q sur la sphère unitaire centrée sur le point d’ombrage x.

Enfin, il est intéressant de noter que les HS sont surtout utilisés pour encoder l’éclairage
localement, en un point de la scène. D’autres fonctions, comme les ondelettes [NRH03]
ou les gaussiennes sphériques [WRG+09] sont utilisés dans le même intérêt et disposent
de propriétés différentes comparées aux HS. Cependant, des travaux récents changent de
paradigme en encodant l’éclairage globalement [RBRD22, BDBS22].

A.3.2 Chapitre 3 - Lumière sphérique

Ce chapitre cherche à calculer efficacement en tout point de la scène les coefficients
d’HS représentant le champ de radiance produit par des lumières sphériques. Pour cela, ce
chapitre propose une projection efficace du champ de radiance sur les HS en tout point de
la scène. Le champ de radiance peut aussi être calculé seulement sur un ensemble parci-
monieux de point pour être par la suite interpolé en tout point de la scène. Ce chapitre
propose une méthode de calcul efficace du gradient des coefficients d’HS permettant no-
tamment d’améliorer la qualité d’interpolation. De plus, le calcul du gradient des coeffi-
cients repose sur le calcul du gradient des fonctions de base des HS aussi proposé dans
ce chapitre. Ces contributions sont notamment basées sur des travaux similaires récents,
mais pour calculer efficacement les coefficients d’HS représentant le champ de radiance
produit par des lumières polygonales [WR18, WCZR20].

Lumière sphérique

Une primitive de lumière simple émet de la lumière telle qu’un point x la recevant ne
la reçoit qu’en une seule direction ω. Dans ce cas, la projection sur les HS du champ de
radiance en x correspond à une simple évaluation des harmoniques sphériques en ω. Dans
le cas des sources surfaciques, la lumière est reçue dans un ensemble de directions. Pour
les lumières sphériques, cet ensemble de directions correspond à une calotte sphérique
(Figure A.3), c’est-à-dire une fonction circulairement symétrique qui est donc représentable
uniquement à l’aide des HZ. Ainsi, la contribution est une nouvelle formule permettant
de calculer efficacement la projection du champ de radiance sur les HZ. Cependant, la
projection est dans un repère orienté selon la direction du centre de la sphère au point x,
la projection de plusieurs lumières sphériques ne sont donc pas directement cumulable.
Cependant, les HZ disposent d’une propriété de rotation efficace permettant de mettre
toutes les projections dans le même repère (Section A.3.1).
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Gradient des harmoniques sphériques
La méthode de rotation des HS implique une évaluation des fonctions de base des har-

moniques sphériques. Sloan propose une méthode d’évaluation efficace des harmoniques
sphériques [Slo13]. Cette méthode repose sur la factorisation des fonctions trigonométriques
impliquées dans les HS. Cette factorisation fait disparaître l’évaluation explicite de fonc-
tions trigonométriques remplacée par des relations récursives sur l’ensemble des HS. Nous
étendons la méthode de Sloan afin de calculer efficacement le gradient des harmoniques
sphériques. Nous identifions une factorisation similaire à celle proposée par Sloan dans le
calcul du gradient des HS et nous adaptons les relations récursives pour obtenir le gradient.
Cette nouvelle méthode est mise à profit dans le calcul du gradient des coefficients d’HS
représentant le champ de radiance produit par des lumières sphériques.

Gradient de la projection des lumières sphériques
Nous cherchons ici à obtenir un calcul efficace du gradient des coefficients d’HS représen-

tant le champ de radiance produit par des lumières sphériques. La projection du champ
de radiance repose sur deux évaluations, d’un côté les coefficients d’HZ représentant le
champ de radiance dans le repère orienté selon la lumière sphérique et de l’autre côté,
l’évaluation des HS. Ces deux étapes nécessitent ainsi d’être dérivées pour pouvoir calculer
le gradient des coefficients d’HS. Ainsi, une méthode efficace du calcul du gradient des
HS a été proposée dans le précédent paragraphe. Le calcul du gradient des coefficients
d’HZ est simplement une dérivation analytique directe. La nature récursive sur l’ensemble
des HS de l’algorithme proposé nécessite de garder en mémoire un ensemble important de
coefficient et de gradient. Cela impacte grandement les performances dans un contexte
d’implémentation parallèle sur carte graphique. Afin de pallier ce problème, nous pro-
posons une réorganisation des calculs permettant de ne pas rompre les relations récursives
tout en minimisant le nombre de coefficients et de gradients à stocker en mémoire.

Le gradient des coefficients d’HS peut être utilisé à plusieurs fins. L’application utilisée
dans cette thèse et la même que celle proposée par Wu et al. [WCZR20]. Les coefficients des
HS représentant le champ de radiance produit par des lumières sphériques (et polygonales
dans le cas de Wu et al.) sont calculés sur une grille volumique qui contient la scène 3D. Le
gradient des coefficients est aussi calculé seulement sur cette grille. Les coefficients sont
ensuite interpolés pour chaque point de la scène, le gradient permet d’interpoler précisé-
ment les coefficients d’HS.

Ainsi, lorsque la projection sur les HS est calculée pour chaque point de la scène, une
dizaine de lumières sphérique peut-être utilisé en temps réel. Lorsque l’interpolation est
utilisée, plusieurs centaines de lumières sphériques peuvent être utilisées. Cela permet, par
exemple, de simuler des lumières texturées en temps réel. Le gradient permet d’obtenir une
qualité d’interpolation telle que la différence entre les deux méthodes est invisible à l’œil
nu.

A.3.3 Chapitre 4 - Éclairage direct
Ce chapitre est divisé en deux sous-sections distinctes. Dans un premier temps, nous

proposons un nouveau cadre de travail permettant de calculer efficacement l’éclairage final
avec des matériaux décomposables, c’est-à-dire dont la contribution diffuse et spéculaire
sont calculées séparément. Ensuite, il se trouve que les méthodes que nous avons dévelop-
pées pour des lumières sphériques sont plus efficaces que celles proposées pour des lu-
mières polygonales. Ainsi, nous proposons dans un second temps d’utiliser les lumières
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Figure A.4: Vue d’ensemble des deux méthodes d’approximation, où la méthode principale fixe les
paramètres de la sphère (position et rayon) une fois pour toutes, tandis que la méthode alternative
modifie le rayon de sorte que l’angle solide de la sphère à chaque point éclairé soit égal à l’angle
solide du triangle.

sphériques afin d’approcher les coefficients d’HS représentant le champ de radiance pro-
duit par des lumières polygonales.

Éclairage avec des matériaux décomposable

Un matériau peut être majoritairement diffus, comme une feuille de papier, ou majori-
tairement spéculaire comme une piste de bowling. Ces deux aspects correspondent à deux
façons de réfléchir la lumière, deux lobes de réflexions. Un matériau diffus réémet la lu-
mière reçue dans toutes les directions de manière uniforme tandis qu’un matériau spécu-
laire réémet la lumière dans un ensemble plus ou moins restreint de directions. La gestion
de ces deux lobes est suffisante pour simuler une grande variété de matériaux et la contri-
bution lumineuse de ces deux lobes sont généralement calculées séparément. Cependant,
lors du calcul de l’éclairage par le biais des HS, nous avons identifié des redondances de cal-
cul que nous avons factorisé. Cette factorisation permet de calculer la contribution diffuse
à partir du calcul de la contribution spéculaire avec une seule multiplication.

De plus, le calcul de la contribution spéculaire implique un produit avec un cosinus
clampé. Lors de l’utilisation de matériau capturé projeté à l’avance sur les HS, il est courant
d’y inclure le cosinus clampé de l’équation du rendu. Cependant, cela complexifie énormé-
ment le stockage des coefficients d’HS. L’alternative est de calculer un produit sur les HS
avec le cosinus clampé. Ainsi, nous proposons une méthode efficace de calculer ce produit
pouvant être calculé à la volée pour chaque pixel en temps réel.

Approximation des lumières polygonales

Les méthodes de calcul des coefficients d’HS représentant le champ de radiance produit
par des lumières sphériques (Section A.3.2) sont plus efficace que les méthodes calculant les
coefficients d’HS représentant le champ de radiance produit par de lumières polygonales.
Cela s’applique aussi pour le calcul du gradient des coefficients d’HS [WR18, WCZR20].
Ainsi, afin de tirer profit de nos méthodes de calculs moins coûteuses, nous proposons
deux méthodes afin d’approcher les coefficients d’HS représentant le champ de radiance
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produit par des lumières polygonales (Figure A.4). La méthode se focalise sur les lumières
triangulaires, comme n’importe quel polygone peut-être divisé en triangles et une lumière
sphérique correspond à une lumière triangulaire. Les deux méthodes positionnent le centre
de la sphère au barycentre du triangle. La méthode principale calcule le rayon de la sphère
tel que le disque sur le même plan du triangle ait la même aire que celui-ci. L’amplitude
de chaque coefficient d’HS est corrigée selon la normale du triangle est la direction du
point éclairé. La méthode alternative calcule le rayon de la sphère à chaque point éclairé
de manière que l’angle solide de la sphère soit le même que celui du triangle. Ainsi, la
méthode principale applique une correction rapide à calculer, mais dépendante du nombre
de coefficients à traiter. Tandis que la méthode alternative applique une correction moins
rapide à calculer, mais qui ne dépend pas du nombre de coefficients. En conséquence, la
méthode principale est plus rapide à calculer lorsque peu de coefficients d’HS sont im-
pliqués et la tendance s’inverse lorsque beaucoup d’HS sont utilisées. Néanmoins, la méth-
ode secondaire permet une meilleure qualité d’approximation des coefficients d’HS.

A.3.4 Chapitre 5 - Éclairage global basé point

Les chapitres précédents s’intéressent à une intégration locale de l’éclairage. En con-
traste, ce chapitre se focalise sur une génération de l’éclairage global en utilisant notam-
ment un système basé point. L’éclairage global basé point est une méthode communément
utilisée pour la synthèse d’image en temps réel où l’environnement 3D est échantillonné
sous forme d’un nuage de point capturant l’éclairage incident et le redistribuant dans la
scène afin de générer l’éclairage indirect. Les harmoniques sphériques sont combinés dans
ce chapitre avec ces modèles d’éclairage basé point pour notamment éviter les écueils de
ces derniers.

Traduction française des acronymes anglais

Ce chapitre utilise quelques acronymes en anglais. Nous utilisons dans ce résumé
les mêmes acronymes anglais pour simplifier le lien avec le contenu du mémoire.
Les acronymes anglais sont traduits dans la table suivante.

Acronyme Anglais Français
RSM Reflective Shadow Map Carte d’ombre réflective
VPL Virtual Point Light Lumière virtuelle ponctuelle
VSL Virtual Spherical Light Lumière virtuelle sphérique

VSGL
Virtual Spherical
Gaussian Light

Lumière virtuelle
sphérique gaussienne

HVL Harmonics Virtual Light Lumière virtuelle harmoniques

Radiosité instantanée

L’algorithme de radiosité instantanée repose sur deux étapes, la distribution des lumières
virtuelles et la collecte de leur éclairage (Figure A.5). Les lumières virtuelles sont position-
nées généralement à chaque rebond d’un chemin lumineux lancé depuis une source de
lumière [SIMP06, SIP07]. Ainsi, la lumière qu’elles émettent dépend du chemin lumineux
de distribution. Les cartes d’ombres permettent de générer les ombres dans une scène 3D
en gardant seulement une information de profondeur depuis la source primaire de lumière.
Cette approche est particulièrement intéressante pour le temps réel car hautement paral-
lélisable. Les RSM [DS05] étendent le principe des cartes d’ombres en gardant en plus de
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Figure A.5: L’algorithme de radiosité instantanée [Kel97] est basé sur deux étapes, l’algorithme
distribue d’abord un ensemble de VPLs à partir de la source primaire et rassemble ensuite l’éclairage
produit par les VPLs.

l’information de profondeur des informations de réflexions. Ainsi, les RSM sont partic-
ulièrement efficaces pour distribuer les lumières virtuelles. La collecte de l’éclairage des
lumières virtuelles est délicate à calculer efficacement, en particulier lorsque des milliers,
voire millions, de lumières virtuelles sont impliquées. Des approches regroupent les lu-
mières virtuelles similaires en une seule lumière [DGR+09] ou les organisent dans des struc-
tures arborescentes [WFA+05] afin de calculer leur éclairage plus facilement. Cependant,
cette thèse ne s’intéresse pas à simplifier la collecte de l’éclairage, mais à plutôt corriger
des défauts liés à la singularité des VPL.

Les VPL sont des lumières singulières car ponctuelles. Ainsi, l’éclairage est capturé et
redistribué en un seul point sur la scène 3D. Cela tend à créer des artefacts lorsque la densité
des VPL n’est pas suffisante pour capturer la complexité de l’éclairage. Les artefacts sont
liés au vide qui existe entre les lumières virtuelles, les VSL utilisent des lumières sphériques
afin d’éviter des zones de vide dans l’éclairage [HKWB09]. Cependant, elles introduisent
deux difficultés. Dans un premier temps, il est nécessaire de donner à chaque source un
rayon permettant d’éviter les zone de vide sans générer de recouvrement trop important des
VSL entre-elles et dans un second temps, l’éclairage généré par les VSL est plus complexe
à collecter. En contraste, les VSGL approchent l’éclairage d’un ensemble de VPL avec des
gaussiennes sphériques, permettant aussi de combler les zones de vides [Tok15b].

Sources virtuelles basées harmoniques sphériques

Les HVL sont un nouveau modèle de lumière virtuelle proposée dans cette thèse. Elles
peuvent être vues comme une simplification des VSL où l’éclairage produit par des lu-
mières sphériques est projeté sur les HS. Ainsi, ces travaux mettent à profit les travaux
proposés sur les lumières sphériques (Section A.3.2). Ce qui représente une accélération
significative par rapport au VSL où l’intégration de l’éclairage est calculée par les méthodes
Monte-Carlo. Les HVL sont initialement conçues pour supporter n’importe quel matériau
sans surcoût, les matériaux étant projetés sur les HS dans une étape de précalcul. Afin de
les distribuer le plus efficacement possible, nous proposons un modèle de distribution des
HVL basé sur les RSM. Nous proposons aussi deux heuristiques de calcul des rayons des
lumières sphériques virtuelles qui estiment la densité des lumières virtuelles lorsque celles-
ci sont distribuées à l’aide d’une RSM. Ainsi, les VSL peuvent directement bénéficier de
ce modèle de distribution. Nous démontrons que les HVL permettent d’obtenir un com-
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promis entre qualité et temps de calcul obtenu pour le modèle des VPL et des VSL. Le
modèle des VSGL est limité à des matériaux avec un seul lobe spéculaire simple. Les HVL
peuvent être optimisées lorsque les matériaux sont limités à un lobe spéculaire circulaire-
ment symétriquement. Cela permet d’accélérer grandement l’éclairage en limitant le calcul
aux HZ. Ainsi, les HVL deviennent compétitives par rapport aux VSGL en produisant une
qualité d’éclairage similaire.

Précalcul de transfert de radiance basé point

Cette section présente des travaux expérimentaux afin d’accélérer les modèles de pré-
calcul de transfert de radiance avec les modèles basé point. Dans un premier temps, nous
voulions obtenir un modèle de projection efficace sur les HS d’une fonction arbitraire.
Ainsi, nous avons comparé les deux grandes méthodes de projection sur les HS, à savoir
le calcul du produit scalaire (lorsque celui-ci est calculé par des méthodes Monte-Carlo) et
l’estimation aux moindres carrées (Section A.3.1). Dans l’état de l’art, l’estimation aux moin-
dres carrés démontre des qualités de résistance au bruit ainsi qu’une robustesse lorsque la
projection est calculée avec peu d’échantillons [SHHS03,LLW06,VSG+13]. Cependant, au-
cune comparaison de convergence n’est réalisée entre les deux méthodes de projection dans
l’état de l’art. Nous avons observé que les moindres carrés apportent une convergence plus
rapide selon la nature de la fonction projetée ainsi que le nombre de bandes d’HS utilisées.

Dans un second temps, l’idée est de projeter le champ de radiance sur les HS en utilisant
le modèle des VPL. Les méthodes de précalcul de transfert de radiance estiment les trans-
ferts à chaque point de la scène en lançant des chemins lumineux indépendant de chaque
point. En contraste, les VPL sont mutualisés pour l’ensemble des points de la scène. La
projection sur les HS du champ de radiance arrivant en chaque point de la scène devient
alors moins coûteuse à calculer tout en générant une qualité d’éclairage final similaire.

A.4 Conclusion
En conclusion, nous avons présenté plusieurs contributions pour améliorer la projection

sur les harmoniques sphériques de la radiance locale et globale ainsi que pour calculer ef-
ficacement l’éclairage final à chaque pixel. Nous avons proposé des méthodes efficaces
pour calculer les coefficients d’HS représentant le champ de radiance produit par des lu-
mières sphériques en tout point de la scène. Mais aussi, un nouveau cadre de travail pour
calculer efficacement l’éclairage en chaque pixel avec des matériaux décomposable. Ainsi
qu’un nouveau modèle de lumière virtuelle, les HVL, permettant de générer efficacement
l’éclairage global sans artefacts.

Le travail présenté dans cette thèse peut être amélioré par plusieurs leviers d’amélioration.
Gautron et al. [GKPB04] dérivent à partir des HS une nouvelle base appelée les harmoniques
hémisphériques, permettant donc de représenter seulement des signaux hémisphériques.
Cela signifie que les harmoniques hémisphériques auront besoin d’impliquées moins de
fonction de base pour représenter un signal à qualité égale. Ainsi, les travaux proposés
dans cette thèse pourraient être adaptés à cette base. Enfin, les derniers travaux proposés
dans cette thèse (Section A.3.4), notamment la projection efficace du champ de radiance
sur les HS, manquent d’une comparaison approfondie afin de quantifier plus précisément
le gain de temps ainsi que l’erreur d’approximation.
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B Spherical harmonics
material database

B.1 Brief presentation
In this thesis, we used different material models including the captured materials pro-

posed by the Mitsubishi Electric Research Laboratories (MERL) [MPBM03] as well as the Real-
istic Graphics Lab (RGL) [DJ18]. We share on a git repository1the files storing the SH projec-
tion of the materials of the two databases as well as the code computing the SH projection
and reading the files storing the SH coefficients. The next section (Section B.2) gives more
detail on the SH projection and Table B.1 references the materials used in this thesis.

We also produced a study2 to analyze the number of SH bands needed to capture the ma-
terial according to a percentage of signal energy capture. In order to simplify the data visu-
alization, this study is limited to isotropic material defined byF (ωo, ωi) = F (θo, θi, ∣φi − φo∣)

Hence, when θo is fixed, the reflectance F is a spherical function that can be projected on
the SH. We have computed SH projection tables according to θo and a target energy to
capture the signal organized in the following form.

1https://gitlab.com/PierreMezieres/shmaterials
2Redirection link in the git repository.

https://gitlab.com/PierreMezieres/shmaterials
https://gitlab.com/PierreMezieres/shmaterials
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For instance, this material requires 24 SH bands to capture 80% of the signal energy when
θo = 40○. As a result, we observe that mostly diffuse materials require at most about ten SH
bands to be captured accurately. While specular materials may require about 20 bands up to
more than 100 for the most specular materials. An order of magnitude that becomes partic-
ularly difficult to use for rendering. The study was conducted on spherical harmonics but
also on hemispherical harmonics which allow us to observe that hemispherical harmonics
require fewer coefficients to achieve a similar result obtained with spherical harmonics.

B.2 SH projection details
To compute BRDF coefficients, we use the approach proposed by Kautz et al. [KSS02].

A BRDF is a function of the two directions ωi and ωo, yielding a 4-dimensional function.
When evaluating F , the direction ωo is fixed; hence, the BRDF evaluation corresponds to
a 2-dimensional function projected on SH. The SH coefficients are tabulated according to
discrete samples of the direction ωo = (θo, φo).

Tab[θo, φo] = Fωo (B.1)

where Fωo is the SH coefficients vector of F computed for the output direction ωo. The
dabase is created with a sampling step of one degree for θ and φ. With such uniform sam-
pling, a material has 90× 360 samples of Fωo and accessing the coefficients requires a con-
stant time array lookup. The one degree step allows capturing subtle material variations.
Other sampling and reconstruction strategies might be used but are out of scope of this the-
sis. As an optimization compared to the approach of Kautz et al. [KSS02], we store isotropic
material in a one-dimensional array. Isotropic materials depend on the ∆φ = ∣φi − φo∣ rather
than the actual values of φi and φo. Hence, by using the isotropic parametrization of F :

Fiso(θo, θi,∆φ) = F (θo, 0, θi,∆φ) , (B.2)

we drop the explicit dependence on φo and only discretize θo. This way, the storage of
isotropic material drops down to 90 samples

Tabiso[θo] = Fωo with ωo = (θo, 0) . (B.3)

Limitation We use an equiangular parametrization of the input direction to project mate-
rials on SH. If this memory efficient parametrization scales well for isotropic materials, the
memory cost for anisotropic ones quickly become prohibitive. Indeed, for an isotropic ma-
terial, 90 directions are sampled; using 10 SH bands and 32-bit float RGB coefficients, one
material represents 108kB. For instance, the required memory to use 200 different materi-
als is 21MB. On the other hand, in the presence of anisotropic materials, the storage for one
material is 360 times larger and raise to 388MB for one material. Investigating the parabolic
parametrization proposed by Kautz et al. [KSS02] should help to reduce this memory cost.
Indeed, using their 128 × 128 parabolic map would reduce the cost of one anisotropic ma-
terial on 10 SH bands from 388MB to 20MB. Doing so, it must be first demonstrated that
the resolution will be sufficient to capture the full behavior of the material according to
the number of SH bands.
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Fig. Object materials
Figure 3.6 Horse 23, 28, 32, 33, 38,
Figure 3.16 Fertility 29, 30, 35, 39, 40

Figure 5.3
Dragon 12, 18, 34, 35, 39
Atrium 1, 2, 6, 11, 18

Figure 5.8 - 1, 4, 11
Figure 5.9
(Sponza) Sponza

10, 11, 18, 19, 20, 22, 23
24, 25, 26, 31, 36, 37, 40

Figure 5.9
(Breakfast)

Table 7, 16, 36
Chairs 16, 23, 32
Other 3, 8, 15, 17, 18, 21, 22, 27, 33

Figure 5.10, 5.11 - 5, 9, 13, 14
Figure 5.16 - 23, 39

MERL [MPBM03] (1) alum-bronze, (2) alumina-oxide, (3) aluminium, (4) beige-fabric,
(5) blue-acrylic, (6) blue-fabric, (7) blue-rubber, (8) gold-metallic-paint, (9) gold-paint,

(10) green-plastic, (11) red-fabric2, (12) red-phenolic, (13) red-specular-plastic,
(14) silver-metallic-paint, (15) silver-metallic-paint2, (16) teflon, (17) two-layer-gold,

(18) white-fabric, (19) white-marble, (20) white-paint, (21) yellow-phenolic.

RGL [DJ18] (22) acrylic-felt-green, (23) acrylic-felt-orange, (24) acrylic-felt-pink,
(25) acrylic-felt-purple, (26) acrylic-felt-white, (27) cardboard, (28) cc-amber-citrine,

(29) cc-nothern-aurora (30) cm-toxic-green, (31) ilm-l3-37-metallic, (32) ilm-solo-m-68,
(33) ilm-solo-illenium-falcon, (34) irid-flake-paint2, (35) paper-blue, (36) paper-red,

(37) paper-yellow, (38) paper-white, (39) sating-gold, (40) vch-frozen-amethyst.

Table B.1: Materials used from MERL/RGL database
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