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Introduction

A plasma is an ionized gas, i.e. a gas to which enough energy has been given for a significant number of electrons to overcome the binding potential energy that would normally bind them together with ions into atoms [START_REF] Bittencourt | Fundamentals of plasma physics[END_REF]. In contrast with gases, the interaction between charged particles in a plasma takes place through electromagnetic forces and is thus long range. These interactions between many particles at once are the source of collective effects, and the diversity of these effects is responsible for the richness of plasma physics. In nature, stars, the solar wind and the interstellar medium, to mention but three, are typical examples of plasmas. In fact, it is estimated that over 99% of the visible matter in the universe is constituted of plasma [START_REF] Chen | Introduction to plasma physics[END_REF]. Besides natural plasmas, other examples of plasmas are those produced on Earth for a variety of purposes including thermonuclear fusion, material processing or electric propulsion for space applications. Each of these plasmas feature very different properties, and plasmas tend to be categorized based on these properties. We distinguish for example high temperature plasmas from low temperature plasmas, and partially ionized plasmas from fully ionized plasmas.

Within these property based categories, a particularly important property is whether a magnetic field is present or not in the plasma. This is because a magnetic field has a profound influence on charged particles dynamics. Magnetic fields can notably be used to confine particles, and the development of magnetized plasma physics has historically been very closely connected to the study of magnetic confinement fusion. Another consequence of magnetic fields is that while unmagnetized plasmas can generally not support significant electric fields, the presence of a magnetic field makes it possible for electric field perpendicular to the magnetic field to exist. Such a configuration is referred to as a crossed-fields or E × B configuration.

E × B configurations

Electric fields perpendicular to magnetic surfaces in plasmas are of importance to a variety of applications. In magnetic confinement fusion for instance, radial electric fields are known to play an important role on confinement [START_REF] Itoh | [END_REF], as observed both in tokamaks [4,5] and stellerators [START_REF] Stroth | the ECRH team, and the W7-AS team[END_REF]. Confinement enhancement is in this case believed to be enabled by transport barriers induced by E × B sheared flows [7,8,9] in the presence of radial electric fields. Perpendicular electric fields also offer opportunities for the design of alternative confinement schemes in toroidal geometry such as the magnetoelectric confinement studied by Stix [10], or more recently the wave driven rotating torus [11].

At lower temperature and for more modest magnetic fields such that ions are not or only weakly magnetized, the application of an external magnetic field in the direction perpendicular to the discharge current can be used to reduce electron transport, and as a result to produce strong electric fields. Such electric fields can then be used to accelerate ions for a variety of applications [12]. This scheme is for instance used to produce thrust in Hall thrusters [START_REF] Goebel | Fundamentals of electric propulsion: ion and Hall thrusters[END_REF][START_REF] Boeuf | [END_REF] and to accelerate ions for sputtering applications in magnetrons [15,16].

E × B configurations can be found either in Cartesian or cylindrical geometry, leading to fundamentally different drifts. In Cartesian geometry the drift path is not closed, which implies that in Introduction a finite system the corresponding current terminates on walls. In contrast, in a cylindrical configuration the drift path can be closed. This can for instance be done via the combination of an axial magnetic field B = B 0 ẑ and a radial electric field E = E ⊥ r, which as illustrated in Figure 1 results in a closed azimuthal drift. For slow enough rotations the drift velocity is to lowest order equal to that obtained for the same field in linear geometry [17], which as we will show in Chapter 1 is v = E × B/B 2 0 = -E ⊥ /B 0 θ. This then translates into a rotation frequency

Ω ∼ 1 rB 0 ∂ϕ ∂r (1) 
with ϕ the radial potential profile. Although this simple single particle picture becomes more complex as collisional and collective effects are accounted for, with notably a competing contribution from diamagnetic effects, Eq. ( 1) suggests that under certain conditions controlling the potential distribution in the direction perpendicular to an imposed magnetic field would allow controlling the plasma rotation. This has notably been shown to be the case in plasma centrifuges [18,19].

Figure 1: Schematic of a crossed-fields configuration with a uniform axial magnetic field B = B 0 ẑ and radial electric field E = E ⊥ r, leading to an azimuthal drift.

Rotating magnetized plasmas for mass separation applications

Inertia effects in rotating fluids offer opportunities to discriminate elements based on mass. Classical examples are gas and liquid centrifuges. In this case though fluid rotation is imparted mechanically through a rotor, and the mechanical properties of this moving rotor limits the achievable rotation frequency. Because the separating power in a centrifuge depends on the rotation frequency, mechanical stress on moving parts sets an upper limit on the achievable separation in fluid centrifuges. On the other hand, because as shown through Eq. (1) rotation can in principle be produced without the need for moving parts, such limits would not apply to plasma centrifuges. This observation and the search for new isotope separation techniques led to the proposal and subsequent development Introduction of amu. These new applications also demand much larger throughput than what was originally envisioned for plasma centrifuges. Taking note of this situation, there has been in recent years a growing interest for developing high throughput plasma separation techniques [28,29]. The concepts proposed to date rely on a variety of mechanisms [28], a number of which exploit rotation [17]. We briefly introduce here some of these concepts to illustrate how the realization of these new rotating filter concepts demands control over the perpendicular electric field, and refer the interested reader to Refs. [23,17,28,29] for a fuller discussion of these schemes.

Figure 2: Composition of the input feed as a function of atomic mass for various separation needs: (a) separation of high-activity waste from low activity waste in nuclear waste cleanup, from [22], (b) actinides/lanthanides separation in nuclear spent fuel reprocessing, from [25] and (c) rare earth separation in rare earth recycling of NdFeB magnets, from [27]. Illustration taken from Ref. [17].

Rotation in a linear magnetized plasma column such as the one showed in Figure 1 can in principle be used in various ways to separate elements based on atomic mass. Historically, plasma centrifuges exploit differences in azimuthal drift velocity between ions of different mass, which comes from corrections to Eq. (1) due to inertia [17]. More specifically, collisions between ion species drifting at different velocity are the source of a preferential diffusion of light ions towards the core and of heavy ions towards the edge [START_REF] Bonnevier | Diffusion due to ion-ion collisions in a multicomponent plasma[END_REF]. In a plasma centrifuge particles are thus layered radially based on mass as illustrated in Figure 3 (a), and all species are extracted along field lines. In the search for high throughput separation technologies, alternative plasma separation schemes relying on rotation have been proposed. One such scheme is the Archimedes filter [START_REF] Freeman | AIP Conf. Proc[END_REF], which is based on the DC bandgap ion mass filter proposed by Ohkawa and Miller [START_REF] Ohkawa | [END_REF]. In this concept solid body rotation is assumed to be obtained from a parabolic potential profile imposed from endelectrodes, and the rotation frequency is chosen so that light ions are radially confined but heavy ions are not. This is possible because for the positive radial electric field considered here radial confinement demands for the magnetic force to cancel out the sum of the electric force and the centrifugal force, which translates into a species dependent rotation frequency beyond which ions are unconfined [17]. By choosing the plasma rotation frequency between the threshold frequencies for light and heavy species, heavy ions can be extracted radially across field lines whereas light ions are extracted axially along field lines, as shown in Figure 3 (b). We note immediately that this concept requires greater control on the electric field that centrifuges as the rotation in this case not only needs to be large enough for inertia to play a role, but also for heavy ions to be unconfined while light ions remain confined. In addition, heavy ions are here unconfined and would thus have to be collected on a larger and less well defined surface, which could be an issue Introduction for nuclear materials. A variation on this concept addressing this issue is the Double Well Mass Filter [32], which utilizes a higher order radial potential profile to now confine both species radially but at different radial positions. In this concept both species would thus be extracted axially along field lines but at different radii, as shown in Figure 3 (c), which could prove advantageous when dealing with a radioactive heavy stream. A clear downside of this new concept, however, is that the requirements on the potential profile to achieve separation are even greater.

Figure 3: Sketch of the separation process for (a) a plasma centrifuge, (b) Ohkawa's filter, and (c) the Double Well Mass Filter. The different flows observed result from the various radial profiles required by each concept. Thick red and gray arrows represent heavy and light ion streams, with the length proportional to a larger flow. Illustration is taken from Ref. [29].

Electric potential control

As illustrated above, the ability to control the electric field perpendicular to magnetic surfaces could open up a number of applications for plasma technologies. Although waves could in principle be used to achieve such control [33], the largest fraction of the research effort to date on this topic has relied on electrode biasing.

In magnetic confinement fusion experiments, the high plasma temperature and density generally prohibit inserting electrodes in the plasma core, and biasing experiments thus typically involve edge biasing [34]. While this technique has been shown to be effective at affecting edge properties under certain conditions [35,36], the use of a limiter, i.e. a single polarized surface at the edge, as illustrated in Figure 4 (a), does not provide control over how the applied bias distributes itself across magnetic surfaces. Similarly, biasing a central rod with respect to an outer electrode, as done in the homopolar configuration [START_REF] Anderson | Proceedings of the United Nations international conference on the peaceful uses of atomic energy[END_REF] depicted in Figure 4 (b), sets only the voltage drop across the magnetic field lines. In both biasing configurations, the perpendicular electric field is not directly controlled by those devices and remains an intricate function of the plasma properties [34].

Cooler and less dense plasmas, especially in open-field line geometries, open additional possibilities for biasing studies, and a broad array of electrode geometries have been used for the primary purpose of instabilities and turbulence suppression [START_REF] Mase | [END_REF]39,40] and flow control [41,42,43]. For perpendicular electric field control, a biasing configuration of particular interest is end-electrodes, that is electrodes intercepting magnetic field surfaces, as illustrated in Figure 4 (c). The basic idea here, as originally suggested by Lehnert [44,45], is that one could control the electric potential Introduction of individual magnetic field surfaces through the biases imposed on a set of end-electrodes. More specifically, the potential of a given magnetic surface is postulated to be set by the applied bias on the electrode on which this magnetic surface terminates, allowing in principle in turn for perpendicular electric field control. While very attractive, the practicality of this scheme remains a question. Indeed, while control has been successfully demonstrated under certain conditions [46], other experiments reported more contrasted results (see Ref. [29] for a more complete description of end-electrodes biasing experiments in linear geometry).

Figure 4: Possible biasing schemes to produce a cross-field configuration: (a) limiter, (b) biased central rod, and (c) ring-electrodes. For each scheme, the left figure is the side view, and the right figure is the end-on view. Black lines denote the cylindrical grounded vacuum vessel; brown lines represent the biased electrode. Illustration taken from Ref. [29].

Conceptually, the ability to control the potential of a magnetic surface in a plasma through the bias applied on an end-electrode can be split into two problems: controlling the potential drop along magnetic field lines in the quasi-neutral plasma ∆ ∥ ϕ(r) and controlling the potential drop across the non-neutral sheath formed in front of the biased electrode ∆ sh ϕ(r). These two contributions are illustrated in Figure 5. So far, these two problems have mostly been treated separately. On the former, control along magnetic field lines in a quasi-neutral plasma is guaranteed in the limit that field lines are isopotential, which as noted by Lehnert in his original paper [44] can in principle be asymptotically approached using a large enough magnetic field. Restated through conductivities, this is equivalent to the limit of a zero perpendicular to parallel conductivity ratio µ = σ ⊥ /σ ∥ . Practically though, µ is finite, which implies that field lines are not strictly isopotential. Examining specifically this problem, it has recently been shown that the relative variation in potential along field lines in a plasma column of radius a and length L is about τ = L/a √ µ [47]. This suggests that a necessary condition for potential control along field lines is τ ≪ 1. On the latter, Liziakin et al.

showed considering the sheath formed in front of a negatively biased electrode that the combination of the plasma perpendicular conductivity σ ⊥ and the ion saturation current sets a lower limit on Introduction the minimal plasma potential ϕ p < 0 one can expect from applying a negative bias ϕ b < ϕ p [48].

Building on this finding, the same authors recently showed that the addition of thermionic emission from a negatively biased electrode can lower further the plasma potential ϕ p at the expense of the voltage drop across the sheath ϕ pϕ b [49], which is consistent with earlier theoretical work [50] and observations [51].

Figure 5: Illustration of the electric potential variation along a magnetic field line at radius r 0 from a negatively biased end-electrode (potential ϕ b < 0) to the midplane of a linear machine. The total voltage drop ϕ mid (r 0 )ϕ b is the sum of a voltage drop across the sheath ∆ sh ϕ(r 0 ) and a voltage drop along field line in the quasi-neutral plasma ∆ ∥ ϕ(r 0 ).

Scope and organization of the thesis

Motivated by these prospects, we consider in this thesis these two problems jointly, with the goal of highlighting the overall limits on perpendicular electric field control from emissive and biased end-electrodes. To do so, a number of simplifying assumptions are made. Two important ones are introduced here, while the rest is discussed as part of the analysis. First, while the configuration in mind throughout this work is the ring electrodes configuration proposed by Lehnert [44] shown in Figure 4 (c), this thesis work focuses for simplicity on a single disk electrode (sometimes referred to as a button electrode) as shown in Figure 6. We also limit our work to negatively biased electrodes, though consider both cold and hot surfaces to highlight the effect of thermionic emission. Second, a strong limiting hypothesis used throughout this thesis is that transport is assumed to be classical, that is that any possible contribution from instabilities and turbulence is neglected. While this hypothesis is questionable in light of the fact that E × B configurations are known to host a variety of instabilities [52,12], it is also essential to derive simple analytical models that can then be used to develop an intuition for the mechanisms at play. Beyond practicality, another justification for this hypothesis is also the fact that there is evidence that biasing may precisely lead to reduced (if not suppressed) instabilities and turbulence [START_REF] Mase | [END_REF]39,40,36], in which case studying the potential distribution under classical transport may be more reasonable. Lastly, because as we will show the assumption of collisional transport allows us to model the electric properties of the plasma through its conductivity tensor, one can think of the results obtained in this work as a baseline. The contribution of instabilities and turbulence relative to this collisional transport could then in Introduction principle be assessed by plugging in appropriate reduced models for these phenomena.

Figure 6: Typical configuration studied in this thesis. The magnetized plasma column terminates on two single disk electrodes (in orange). Electrodes are biased negatively (potential ϕ b ) with respect to the grounded vacuum vessel. The entire domain is permeated by a uniform axial magnetic field

B = B 0 ẑ.
This thesis is organized as follows:

• Chapter 1 first recalls some basic elements on classical collisional transport in magnetized plasmas. It notably shows how the plasma parallel and perpendicular conductivity σ ∥ and σ ⊥ , which will be key properties in our analysis, can be derived from the momentum balance equations for ions, electrons, and neutrals. Chapter 1 then briefly reviews the properties of the sheath region which forms in front of a biased electrode, as well as how this region affects the plasma potential. These reminders will prove useful for the discussion of biasing effects later in this manuscript.

• Chapter 2 focuses on the effect of finite conductivity anisotropy on the potential distribution in a quasi-neutral plasma, that is neglecting sheath effects. This chapter begins with a rederivation of the analytical result obtained by Gueroult et al. in a homogeneous magnetized plasma characterized by uniform conductivity σ ∥ and σ ⊥ [47], and then extends this analytical result to specific radial conductivity profiles representative of radial variations in plasma parameters.

• Chapter 3 addresses the effect of the sheath on the potential at the sheath edge assuming infinite parallel conductivity σ ∥ . After introducing the sheath models developed by Liziakin et al. [48,49], this chapter exposes how these models can be used to identify limits on how much control can be exerted on the plasma potential using a negatively biased surface. This chapter also extends these results to the case of an emissive cathode, considering notably the possible impact of the formation of a virtual cathode at high emission.

• Chapter 4 examines the combined effects of a sheath and finite conductivity on the potential distribution. First a number of simple analytical models are introduced to obtain scaling laws for the voltage drop along field lines in the quasi-neutral plasma under idealized conditions. In a second part a new numerical code solving the anisotropic Laplace equation (ALS) is introduced and then used to study and confirm the validity of these theoretical trends under more realistic conditions. This work allows in particular to identify the existence of a trade off when using thermionic emission to improve control on the plasma potential. Finally, the last section of this chapter makes use of ALS to take a look at multi-electrodes configurations.

• Chapter 5 offers a first attempt at comparing the newly developed theoretical models to experimental data. First the main characteristics of the Von-Kármán Plasma experiment,
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as well as the particular data set under investigation, are presented. The experimentally observed evolution of the plasma potential with applied bias and emission is then showed to be qualitatively in agreement with model predictions, even if the observed radial voltage drop is about an order of magnitude lower than what would be expected from classical collisional perpendicular conductivity. Comparison with experimental data also reveals the existence of a sudden drop in plasma potential near the anode, which can not be captured in existing models. It also shows that the plasma density, which is consider independent of bias and emission in ALS, does actually vary. These two points as well as other limitations of the existing models are discussed in the last section of this chapter.

• Chapter 6 introduces a new numerical code developed to address one of the shortcomings of ALS by modeling consistently the plasma potential and plasma density responses to a biased and possibly emissive electrode. The first part of this chapter introduces the fluid model under consideration, before the numerical methods implemented to solve this set of fluid equations are discussed in detail. This newly developed code is then validated against both analytical solutions and another proven numerical fluid solver called PlasmaSim [53]. Finally, promising applications of this code in the context of this thesis work are discussed.

Chapter 1 A plasma is a collection of charged particles (electrons and ions) and neutral species that interact together through collisions and electromagnetic fields. The sum of all those interactions leads to a very complex non-linear physics. In this chapter, as an introduction to the results discussed later in this manuscript, some basic elements concerning collisional particle transport in a magnetized plasma and plasma sheaths are recalled.

In this thesis we consider exclusively a uniform and a static magnetic field B = B 0 b, and write b the unit vector pointing along B. It will often be convenient to decompose a vector quantity W (such as a velocity, an electric field, an external force, etc.) into its components parallel W ∥ and perpendicular W ⊥ to the magnetic field,

W = W ∥ + W ⊥ = (W • b) b + b × (W × b). (1.1)
This decomposition is illustrated in Figure 1.1.

Collisional transport in magnetized plasma

Transport is generally discussed in terms of macroscopic fluid fluxes and described through diffusion and conductivity coefficients. The aim of this section is to show how these quantities can be derived from first principles. We focus here and throughout this manuscript exclusively on collisional transport. At the microscopic level, a plasma can be seen as a cloud of individual particles (both charged and neutral) interacting with each other through fields and collisions. The physical quantities describing this system are the positions and velocities of the particles. Considering collisions as 1. Background instantaneous events, the dynamics in between collisions is governed within the realm of Newtonian physics by the equation of motion

m α dv α dt = q α (E + v α × B) , (1.2) 
where q α , m α , v α , are the charge, the mass and the velocity of a charged particle type α (electron or ion). In Eq. (1.2) the electric field E and the magnetic field B are the sum of externally imposed fields plus the contributions due to the particles' motion obtained from Maxwell's equations.

Single particle motion in magnetized plasma

Although our focus will in fine be on collisional transport, it is informative to examine first the dynamics of isolated charged particles. We thus consider here the dynamics of individual charged particles in prescribed fields E and B. The following discussion is largely inspired by the corresponding chapter of the textbook "Fundamentals of plasma physics" by J.A. Bittencourt [START_REF] Bittencourt | Fundamentals of plasma physics[END_REF].

Uniform magnetostatic field

In the absence of an electric field (E = 0), the equation of motion Eq. (1.2) for a single charged particle reduces to

m α dv α dt = q α (v α × B) . (1.3) 
Decomposing the velocity v α into its components parallel v α∥ and perpendicular v α⊥ to the magnetic field v α = v α∥ + v α⊥ (1.4) the equation of motion rewrites as

m α dv α∥ dt = 0 (1.5a) m α dv α⊥ dt = -q α B 0 b × v α⊥ .
(1.5b)

Eq. (1.5a) shows that the dynamics along b is unaffected by the magnetic field, so that the parallel velocity remains constant. Considering now the perpendicular component, the scalar product of Eq. (1.5b) with v α⊥ shows that the particle kinetic energy W α is constant

d dt m α 2 v 2 α⊥ = d dt W α = 0. (1.6)
This immediately implies that v α⊥ (the magnitude of v α⊥ ) is also constant. Eq. (1.5b) thus shows that the norm of the particle acceleration is constant and that its direction is perpendicular to both 1.1. Collisional transport in magnetized plasma v α⊥ and b. This acceleration corresponds to a rotation of the velocity vector v α⊥ in the plane perpendicular to b at constant angular velocity

Ω c,α = - q α B 0 m α b. (1.7)
This rotation motion is illustrated in Figure 1.2. It is characterized by its direction, its angular velocity Ω c,α and its radius of gyration ρ L,α .

Figure 1.2: Circular motion of a charged particle about its guiding center in a uniform magnetostatic field.

From Eq. (1.7) the direction of rotation is proportional to the particle charge q α . Rotation is thus counter-clockwise for negatively charged particles and clockwise for positively charged particles. The angular velocity

Ω c,α = |Ω c,α | = |q α |B 0 m α (1.8)
is called the cyclotron frequency or gyrofrequency. The gyrofrequency scales as inverse mass, so that the electron cyclotron frequency is larger than the ion cyclotron frequency by the ion to electron mass ratio.

Because Ω c,α is constant, Eq. (1.5b) can be integrated to write the perpendicular velocity as

v α⊥ = Ω c,α × x L,α , (1.9) 
where x L,α is interpreted as the particle position vector with respect to the center of gyration (G in Figure 1.2) in the plane perpendicular to B in which the particle lies. Its norm

ρ L,α = |x L,α | = v α⊥ Ω c,α (1.10) 
is called the Larmor radius. It is inversely proportional to Ω c,α , so inversely proportional to the field amplitude B 0 . For particles with thermal velocity,

v th,α = 8eT α πm α , (1.11) 
with T α the temperature in eV, the electron to ion Larmor radius ratio writes ρ L,e ρ L,i = T e T i m e m i . (1.12) This shows that, except for some unconventionally large value of T e /T i , the Larmor radius of electrons is considerably smaller than that of ions.

Background

Uniform electrostatic and magnetostatic fields

Consider now uniform static electric E and magnetic B fields. The equation of motion then writes m α dv α dt = q α (E + v α × B) .

(1.13)

Here again we decompose the vectors E and v α into parallel and perpendicular components

v α = v α∥ + v α⊥ (1.14a) E = E ∥ + E ⊥ (1.14b)
which, after substitution into Eq. (1.13), leads to the linear system of two equations

dv α∥ dt = q α m α E ∥ (1.15a) dv α⊥ dt = q α m α (E ⊥ + v α⊥ × B) . (1.15b)
Since the acceleration along the magnetic field is constant q α E ∥ /m α , the parallel velocity v α,∥ is readily obtained by integrating the dot product of Eq. (1.15a) and b .16)

v α,∥ (t) = q α E ∥ m α t + v ∥ (0). ( 1 
Looking now at Eq. (1.15b), we will show that it is convenient to separate v α⊥ into two terms

v α⊥ (t) = v ′ α⊥ (t) + v E , (1.17) 
where v E is a constant velocity in the plane normal to B. From Eq. (1.17), v ′ α⊥ represents the particle velocity as seen by an observer in a frame of reference mowing with the constant velocity v E . Substituting Eq. (1.17) into Eq. (1.15b) and noting that

E ⊥ = - E ⊥ × B B 2 0 × B (1.18)
we finally obtain dv

′ α⊥ dt = q α m α v ′ α⊥ (t) + v E - E ⊥ × B B 2 0 × B. (1.19) 
This last equation shows that in a coordinate system moving with the constant velocity

v E = E ⊥ × B B 2 0
(1. [START_REF] Bonnevier | Diffusion due to ion-ion collisions in a multicomponent plasma[END_REF] the particle motion in the plane normal to B is governed entirely by the magnetic field, with

dv ′ α⊥ dt = - q α B 0 m α b × v ′ α⊥ (t) . (1.21) 
One verifies that Eqs. (1.21) and (1.5b) are identical. We thus conclude that in the reference system moving with the constant velocity v E the particle describes a circular motion at the cyclotron frequency Ω c,α with radius ρ L,α v ′ α⊥ = Ω c,α × x L,α .

(1.22)

Combining Eqs. (1.16), (1.20) and (1.22), the particle velocity can be expressed in vector form, independently of a coordinate system, as

v α (t) = Ω c,α × x L,α + E ⊥ × B B 2 0 + q α E ∥ m t + v ∥ (0). (1.23)
1.1. Collisional transport in magnetized plasma

The resulting particle motion obtained by integrating Eq. (1.23) is the superposition of a circular motion in the plane normal to B with a translation at constant velocity v E in the direction perpendicular to both E ⊥ and B, plus a uniform acceleration q α E ∥ /m α along B. In the plane perpendicular to B, the particle motion is a cycloid as shown in Figure 1.3. The velocity v E is called the crossed-field drift velocity. An important property of this drift is that it depends only on the electric and magnetic fields, and not on the particle mass nor on its charge. It is notably the same of ions and electrons. Note though that this last property is only true for uniform fields, and thus in particular not strictly true for the cylindrical configuration shown in Figure 1. 

Collisional particle transport

Up to this point we considered only collisionless particles in prescribed fields. In a plasma, however, particles can interact through self-generated fields and collisions. In this paragraph we examine the effect of collisions. This paragraph and the next one are largely inspired by the textbook "Physique des plasmas" by J. M. Rax [START_REF] Rax | Physique des plasmas: Cours et applications[END_REF].

Collision parameters

When a collision occurs between particles, colliding particles can exchange both momentumleading to a change of trajectories -and energy. However, the total momentum and the total energy (the sum of kinetic and potential energies) are conserved. If the total kinetic energy is conserved, the collision is said to be elastic; otherwise, the collision is said to be inelastic. Examples of inelastic collision are excitation, ionization or recombination processes [START_REF] Lieberman | Principles of plasma discharges and materials processing[END_REF]. In this manuscript, however, we will primarily be concerned with elastic collisions. A simple picture of the parameters characterizing a collisional process can be outlined by considering a species α (density n α , velocity v α ) incident on a target species β (density n β at rest) as illustrated in Figure 1.4 (a), and by assuming species α and β are elastic spheres of radii r α and r β as sketched in Figure 1. 4 (b). In this model particles interact if they come within a distance r αβ = r α + r β of each other. The number of targets in a volume of unit area perpendicular to v α and infinitesimal distance v α dt along v α is n β v α dt. The fraction of the unit area for which a collision occurs is n β v α dtπr αβ 2 . From there the number of particles α passing through this surface per unit time, that is the number of interactions per unit time and unit volume, is

n α n β v α dtπr αβ 2 so that dn α dt = -πr αβ 2 n α v α n β . (1.24)
This equation relates the number of interactions per unit time and volume to the flux of incident particles n α v α and the target density n β . The coefficient of proportionality, called the collision cross section for the αβ interaction of interest, is homogeneous to a surface and is generally denoted by σ αβ (v α ). In this simple hard spheres model it is simply πr αβ 2 , and it is independent of the velocity v α . Writing dx = v α dt and neglecting target depletion, Eq. (1.24) can be readily integrated to give the variation of density of incident particles

Background

n(x) = n 0 exp (-n β σ αβ x) = n 0 exp (-x/λ αβ ).
(1.25)

The quantity

λ αβ = 1 n β σ αβ , (1.26) 
homogeneous to a distance, is called the mean free path. It physically represents the distance traveled by a particle between two collisions. The mean time between interactions τ αβ is then defined as

τ αβ = λ αβ v α . (1.27) 
Lastly, the collision frequency ν αβ (Hz) is defined as the inverse of the mean time τ αβ

ν αβ = τ αβ -1 = n β σ αβ v α , (1.28) 
and represents the number of interactions per second. Note finally that we assumed throughout this derivation a target particle at rest (v β = 0), but that the above results can be generalized to a moving target population by substituting the relative velocity

v αβ ≡ |v α -v β | instead of v α .

Collision frequencies for short and long range interactions

As highlighted above by Eq. (1.28), the determination of the collision frequency ν αβ for a particular interaction requires information on the cross-section σ αβ for this very interaction. Here, there is an important distinction to be made between charged-charged and charged-neutral interactions. From Coulomb's law, the electric field of a single charged particle decreases as 1/r 2 . Chargedcharged interactions are thus long-range interactions, and accounting for charged-charged interaction requires a more complex target model than the simple model developed above for short-range hard spheres. Nevertheless, a rough estimate for the cross-section can be obtained as follows [START_REF] Chen | Introduction to plasma physics[END_REF]. Consider an electron (charge -e) with velocity v e scattering off of a fixed ion (charge +Ze) with an impact parameter r 0 . The norm of the Coulomb force exerted on the electron by the ion is Ze 2 /(4πϵ 0 r 0 2 ), while the duration of the interaction is roughly r 0 /v e . The product of these two quantities yields the change in electron's momentum

∆(m e v e ) = Ze 2 4πϵ 0 r 0 v e . (1.29) 
Now if we are interested in large angle deflection, we want this change of momentum ∆(m e v e ) to be about the initial electron momentum m e v e . This condition then provides an estimate for the 1.1. Collisional transport in magnetized plasma impact parameter r 0 , which finally translates into the cross-section for electron-ion collision

σ ei = πr 0 2 = Z 2 e 4 16πϵ 0 2 v e 4 .
(1.30)

The collision frequency then immediately follows from the relation ν ei = n e σ ei v e . Assuming a Maxwellian distribution, v e ∝ √ T e , this simple derivation reveals the important T -3/2 e scaling of the electron-ion collision frequency. Nevertheless, even if this qualitative analysis does provide a good approximation of the impact parameter for Coulomb collisions, we use in the remaining of this manuscript the more standard and rigorous formula [START_REF] Rax | Physique des plasmas: Cours et applications[END_REF] 

ν ei = Z 2 e 4 Λ c 6 √ 2π 3/4 ϵ 0 2 √ m e n(eT e ) -3/2 , (1.31) 
where Λ c the Coulomb logarithm, and correspondingly

ν ie = m e m i ν ei . (1.32)
On the other hand collisions between charged particles and neutrals are typically short range. The detail nature of elastic charged-neutral collisions is however complex. At low energies the dominant process for instance is polarization scattering, with a cross-section that is inversely proportional to the relative velocity. This is turn leads to a constant collision frequency [START_REF] Lieberman | Principles of plasma discharges and materials processing[END_REF]. On the other hand other processes can dominate at higher energies (for instance charge-exchange), leading to different cross-section dependencies on the relative velocity. To avoid further complexity in trying to capture this complex physics, we choose in this manuscript to model charged-neutral collisions through a hard spheres model. Considering further that the ordering T n ≤ T i ≪ T e is usually verified in the plasmas we will be interested in, we neglect the neutral velocity in front of the ion and electron velocity, leading to the collision frequencies

ν in = σ 0 n n 8eT i πm i (1.33a) ν en = σ 0 n n 8eT e πm e . (1.33b) 
In this work, except when explicitly stated, we will further use for simplicity a fiducial cross section σ 0 = 5 10 -19 m 2 . In summary, particle interactions are considered in this thesis through the collision frequencies defined in Eqs. (1.31), (1.32), (1.33a) and (1.33b). One must keep in mind though that Eqs. (1.33a) and (1.33b) are idealized representation adopted for the sake of simplicity, and do not represent accurately the scattering dynamics of charged-neutral collisions. Comparing electron-ion and electron-neutral collision frequencies, the ratio ν ei /ν en can be written in terms of the plasma ionization fraction (n/n n ), or equivalently

ν ei ν en ≃ 0.64 n 18 P T -2 e (1.34)
where n 18 is the plasma density in 10 18 m -3 and P = (k B T n )n n is the neutral pressure with T n the neutral temperature in Kelvin. This last result shows that for the low temperature weakly ionized plasma we will be primarily interested in electron-ion collisions are typically less frequent than electron-neutral collisions.

Transport in a weakly ionized magnetized plasma

The results derived in the previous paragraphs can now be used to study collisional transport at the macroscopic scale through fluid equations for the different species (electron, ion, neutral) composing a plasma. We consider first here the particular case of a weakly ionized plasma where as we just saw charged-neutral collisions dominate over Coulomb collisions.

Background

Transport coefficients

Collisions between charged species α and neutrals are responsible for momentum exchange between the two species through the drag force

F n→α = -m α n α ν αn (v α -v n ) . (1.35)
The minus sign denotes a loss of momentum for the α population due to its interaction with the neutral species. The macroscopic fluid equation of motion for charged particles of type α (electrons or ions) can then be written as

n α m α dv α dt = n α q α (E + v α × B) -F n→α -F src -∇p α , (1.36) 
where v α is the fluid velocity, p α = n α |q α |T α is the scalar pressure, d/dt represents the advective derivative

dv α dt = ∂v α ∂t + (v α • ∇) v α (1.37)
and F src represents the momentum gain or loss associated with particle sources and sinks (see, e. g, Ref. [START_REF] Kolmes | [END_REF]).

To facilitate our derivation of transport coefficients, we make here four additional assumptions. First, we assume that the neutral velocity v n can be neglected in front of v α . This assumption stands as long as the neutral particles are not strongly driven through collisions with electrons and ions. In this case the friction force simply writes F n→α = -m α n α ν αn v α . Second, we consider a steady-state regime and thus neglect the time derivative in Eq. (1.36). Third, we neglect for simplicity the F src term. Lastly, we neglect here the advection term (v α • ∇) v α . This last hypothesis is expected to hold when the mean free path λ αn of the charged particles (electrons or ions) is smaller than the characteristic dimension L of the plasma. Indeed, taking

| (v α • ∇) v α | ∼ v 2 α /L, one gets |(v • ∇)v| |F n | ≃ v α Lν αn = λ αn L ≪ 1. (1.38) 
Under these assumptions, Eq. (1.36) reduces to

n α q α (E + v α × B) -m α n α ν αn v α -∇p α = 0, (1.39) 
which leads to the velocity

v α = q α m α ν αn (E + v α × B) - |q α |T α m α ν αn ∇p α p α = µ α (E + v α × B) -D α ∇p α p α (1.40)
where we have defined the transport coefficients

µ α = q α m α ν αn , D α = |q α |T α m α ν αn . (1.41)
The variables µ α and D α are respectively called the mobility and the free-diffusion coefficient and are related by the Einstein relation

D α /µ α = (|q α |/q α )T α .
In the absence of a magnetic field (B = 0), Eq. (1.40) reduces to

v α = µ α E -D α ∇p α p α (1.42)
which is known as the drift-diffusion equation. Taking p α = n α |q α |T α , the pressure gradient is the sum of a density gradient and a temperature gradient

∇p α p α = ∇n α n α + ∇T α T α . (1.43)
The drift-diffusion equation thus shows that the fluid velocity of type α is driven by gradients of the electric potential, the plasma density, and the temperature.

Collisional transport in magnetized plasma

Parallel and perpendicular collisional transport

Let us now consider the general magnetized case given in Eq. (1.40). Similarly to what was done earlier in Eqs. (1.14a) and (1.14b) for the electric field E and the velocity v α , it is handy to decompose here the pressure gradient into parallel and perpendicular components to the magnetic field,

∇p α = ∇ ∥ p α + ∇ ⊥ p α . (1.44)
Here

∇ ⊥ = -b × ( b × ∇) and ∇ ∥ = b( b • ∇).
As already noticed in the analysis of single particle motion, the dynamics along b is not affected by the magnetic field. Indeed, the parallel component of Eq. (1.40) writes

v α∥ = µ α E ∥ -D α ∇ ∥ p α p α , (1.45) 
which is the drift-diffusion equation Eq. (1.42) derived for an isotropic plasma. The parallel mobility and free-diffusion coefficient are thus equal to their unmagnetized counterparts, µ α∥ = µ α and

D α∥ = D α .
Let us now look at the velocity in the plane perpendicular to the magnetic field. To this end, we first introduce the basis with unit vectors b, b⊥ and b⊥ × b directed respectively along the magnetic field B, the perpendicular electric field B × (E × B) and the cross-field direction E × B. On this basis the perpendicular velocity vector v α⊥ writes

v α⊥ = (v α⊥ • b⊥ ) b⊥ + v α⊥ • ( b⊥ × b) b⊥ × b.
(1.46)

For transport properties, the direction pointing along b⊥ is known as the perpendicular direction whereas the direction pointing along b⊥ × b is known as the Hall direction. For the axisymmetric plasma column with axial magnetic field and radial electric field shown in Figure 1 which will be more specifically discussed in this thesis, the perpendicular and Hall directions are then the radial and azimuthal directions. Anticipating this, we focus here on the velocity along the perpendicular electric field (that is along b⊥ ), but a similar analysis can be used to obtain the velocity in the Hall direction. Note also that the qualifier perpendicular, say for instance for mobility or later for conductivity, refers specifically to the direction along the perpendicular electric field. This is in contrast with its meaning for vectorial quantities (e.g. the fluid velocity) where perpendicular then refers to a 2D vector quantity in the plane perpendicular to the magnetic field.

Taking first the dot product of Eq. (1.40) and b⊥ yields

v α⊥ • b⊥ = µ α E ⊥ + µ α B 0 v α⊥ × b • b⊥ -D α ∇ ⊥ p α p α • b⊥ . (1.47)
The second on the RHS term can then be rewritten through the scalar product of b⊥ and the result of the cross product between Eq. (1.40) and b

µ α B 0 v α⊥ × b • b⊥ = µ α B 0 v α⊥ × b × b • b⊥ = µ α B 0 v α⊥ • b b -b v α⊥ • b⊥ = -µ α B 0 (v α⊥ • b⊥ ).
(1.48) Substituting Eq. (1.48) into Eq. (1.47) and noting that µ α B 0 = Ω α /ν αn , the velocity along E ⊥ finally writes

v α⊥ • b⊥ = µ α 1 + (Ω c,α /ν αn ) 2 E ⊥ - D α 1 + (Ω c,α /ν αn ) 2 ∇ ⊥ p α p α • b⊥ . (1.49)
Examining Eq. (1.49) shows that it is analogous to the drift-diffusion equation Eq. (1.42), but that the transport coefficients (mobility and free-diffusion coefficients) are smaller by a factor

1. Background 1 + (Ω c,α /ν αn ) 2 , with now µ α⊥ = µ α 1 + (Ω c,α /ν αn ) 2 = m α q α B 0 2 ν αn 1 + (ν αn /Ω c,α ) 2 (1.50) and D α⊥ = D α 1 + (Ω c,α /ν αn ) 2 = m α T α |q α |B 0 2 ν αn 1 + (ν αn /Ω c,α ) 2
.

(1.51)

This factor is generally very large so that the magnetic field acts to reduce perpendicular transport along E ⊥ compared to parallel transport. Because µ α⊥ and D α⊥ roughly scale as Ω -2 c,α (for Ω c,α ≫ ν αn ), perpendicular collisional transport along E ⊥ is roughly lower than parallel transport by a factor proportional to the square of the magnetic field amplitude B 0 .

Taking a step back, we have seen in Paragraph 1.1.1 that the motion of a single particle in a uniform crossed-field geometry (see Eq. (1.23)) follows a cycloidal trajectory with a drift in the direction perpendicular to both E and B, but not net motion along E ⊥ . What we see here is that cycloidal trajectories are interrupted by collisions with neutrals, and that these collisions are now responsible for a mass flow along E ⊥ . More precisely, charged particles follow a random walk and move along E ⊥ by about a Larmor radius at each collision, as illustrated in Figure 1.5 (a). The ratio ν αn /Ω c,α , which is a measure of the particle magnetization, dictates the particle's dynamics in the (E ⊥ ,E × B) plane as illustrated in Figure 1.5 (b). In the limit ν αn /Ω c,α ≫ 1 collisions dominate and the plasma behaves like an isotropic media. On the other hand for ν αn /Ω c,α ≪ 1, that is for strong magnetization, collisions are the source of a perpendicular mass flow. 

Parallel and perpendicular collisional conductivity

In the previous paragraph we examined the effect of charged-neutral collisions on transport and identified collisional flows. In a plasma these charged particles flows are in general the source of currents j = en

(v i -v e ) (1.52)
where we assumed here singly charge ions and quasi-neutrality (n = n e ∼ n i ). The parallel and perpendicular velocities derived for each charged species above can then be used to determine the 

j ∥ = en µ i∥ -µ e∥ E ∥ - enD i∥ p i ∇ ∥ p i + enD e∥ p e ∇ ∥ p e (1.53a) j ⊥ • b⊥ = en (µ i⊥ -µ e⊥ ) E ⊥ + enD e⊥ p e ∇ ⊥ p e - enD i⊥ p i ∇ ⊥ p i • b⊥ . (1.53b)
Neglecting the pressure term in front of the electric field term for the parallel dynamics, and assuming density gradients scale-length large compared to the gyroradius so that diamagnetic effects can be neglected to lowest order [START_REF] Rax | Physique des plasmas: Cours et applications[END_REF], Eqs (1.53b) and (1.53a) lead to

j ∥ = en µ i∥ -µ e∥ E ∥ (1.54a) j ⊥ • b⊥ = en (µ i⊥ -µ e⊥ ) E ⊥ . (1.54b)
From these equations we define the charged-neutral collision driven parallel and perpendicular conductivity

σ ∥ = en(µ i∥ -µ e∥ ) (1.55) and σ ⊥ = en (µ i⊥ -µ e⊥ ) (1.56) so that j ∥ = σ ∥ E ∥ and j ⊥ • b⊥ = σ ⊥ E ⊥ .
Charged-neutral collisions are therefore not only responsible for charged particle flows along E ⊥ , but also for a current j ⊥ • b⊥ . Eqs. (1.55) and (1.56) with the help of Eqs. (1.41) and (1.50) provide exact expressions for the charged-neutral collision driven parallel and perpendicular conductivity. It is however insightful at this point to derive approximate expressions by considering which charged particle transport dominates respectively the parallel and perpendicular mobility. From Eq. (1.41), we see that µ α∥ ∝ (m α ν αn ) -1 . From the hard spheres cross-section Eqs. (1.33a) and (1.33b), one gets

µ i∥ µ e∥ ∝ m e m i T e T i . (1.57) 
This ratio is small for most typical plasma parameters. This implies from Eq. (1.55) that the parallel current is primarily carried by electrons, and

σ ∥ ∼ e 2 n m e ν en . (1.58) 
Similarly, Eq. (1.50) shows that, in the limit

ν αn /Ω c,α ≪ 1, µ α⊥ ∝ ν αn m α -1 Ω c,α -2 so that µ i⊥ µ e⊥ ∝ m i m e T i T e . ( 1 

.59)

This ratio is very large for most typical plasma parameters. This implies from Eq. (1.56) that the perpendicular current is primarily carried by ions, and

σ ⊥ ∼ σ p = e 2 n m i ν in Ω 2 c,i + ν 2 in . (1.60)
This expression σ p is known as the ion-driven Pedersen conductivity.

1. Background

Generalization to include Coulomb collisions

So far only short-range interactions between charged particles and neutrals have been considered in the particle's momentum conservation equation, and we found that in the limit of zero neutral flow ions and electrons flows are uncoupled. Accounting for Coulomb interactions does, on the other hand, introduce a coupling between ions and electrons through the friction forces

F e→i = nm i ν ie (v i -v e ) (1.61)
and

F i→e = nm e ν ei (v e -v i ) . (1.62)
The momentum balance equation for ions, electrons and neutrals then write

en (E + v i × B) -nm i ν in (v i -v n ) -nm i ν ie (v i -v e ) = 0 (1.63a) -en (E + v e × B) -nm e ν en (v e -v n ) -nm e ν ei (v e -v i ) = 0 (1.63b) and -n n m i ν ne (v n -v e ) -n n m i ν ni (v n -v i ) = 0. (1.63c)
This system can be used to derive generalized forms for parallel and perpendicular conductivity as an extension of the derivation done earlier neglecting Coulomb collisions. Rather than going this route though, we follow here the more direct derivation proposed by Song et al. [57], who similarly derived Ohm's law from a three fluid model (electrons, ions, and neutrals), with the goal of underlining the main findings. Song's approach consists in recasting the electron and ion fluid velocity v e and v i in terms of the current density

j = en (v i -v e ) , (1.64) 
and the plasma velocity

U = m i v i + m e v e m i + m e ≃ v i + m e m i v e . (1.65) 
Substitution into the momentum equations for ions and electrons Eqs. (1.63a) and (1.63b) yields a pair of coupled equations for j, U and v n . Subtracting one equation from the other allows to eliminate either the plasma velocity U or the neutrals velocity v n , finally producing two different tensorial Ohm's law formulations. These vectorial relations, which can be projected along the unit vectors b, b⊥ , and b⊥ × b, are referred to by the authors as the plasma frame (eliminate v n ) and the neutral frame (eliminate U) formulations. Having our zero neutral flow limit mind, we focus here on the neutral frame formulation

j = σ ′ ∥ (E • b) b + σ ′ ⊥ ( b × (E × b) + v n × B) + σ ′ × b × ( b × (E × b) + v n × B) (1.66)
in which case the parallel and perpendicular conductivities obtained by Song et al. write [57] σ

′ ∥ = e 2 n m e (ν en + ν ei ) (1.67) and σ ′ ⊥ = en B 0 κ [1 + κ 2 ] (1.68)
where we have defined, following Liziakin et al. [49],

κ = ν en Ω c,e + ν ei Ω c,e + Ω c,i ν in . (1.69)
Compared to the situation neglecting Coulomb collisions obtained in Eq. (1.56), the perpendicular conductivity in this three fluid model now depends on the three ratios Ω c,i /ν in , ν en /Ω c,e and ν ei /Ω c,e . We verify though that the Pedersen conductivity σ P in Eq. (1.60) is recovered in the limit 1.2. Plasma sheath that Ω c,i /ν in is the dominant contribution to κ. We can then ask when is this condition verified experimentally, or in other words what are the conditions for which perpendicular conductivity can be approximated by the Pedersen conductivity. Using the definitions of the cyclotron frequency and the collision frequencies (see Eqs (1.31), (1.33a) and (1.33b)), these three ratios can be expanded as

Ω c,i ν in = √ πek B T n σ 0 √ 8T i m i B 0 P , ν en Ω c,e = σ 0 √ 8T e m e √ πek B T n B 0 P -1 , ν ei Ω c,e = Z 2 e 3/2 Λ c √ m e 6 √ 2π 3/4 ϵ 0 2 T -3/2 e B 0 n -1
.

(1.70) Plotting these three ratios as a function of B 0 /P and B 0 /n, as shown in Figure 1.6, one verifies that the ion-driven Pedersen conductivity is the dominant contribution to perpendicular conductivity over a large range of operating conditions in weakly ionised magnetized plasmas, as already noted recently by Liziakin et al. [49].

Figure 1.6: Comparison of the contribution of ions and electrons to the perpendicular conductivity, from Eq. (1.68). The ratios Ω c,i /ν in and ν en /Ω c,e vary with the lower x-axis (B 0 /P ), whereas the ratio ν ei /Ω c,e varies with the upper x-axis (B 0 /n).

Summing up this paragraph, we have seen that accounting for Coulomb collisions does lead to corrections to the perpendicular conductivity in a magnetized plasma. However, to the extent that these modifications are generally small in the weakly ionized magnetized plasmas that are of particular interest in this thesis, we will often use the simpler form Eq. (1.56) when deriving scaling laws involving the perpendicular conductivity. Finally, note that both the conductivity due to collisions between charged particles and neutrals [11] and the conductivity due to Coulomb collisions [58,[START_REF] Kolmes | [END_REF] are modified when advection terms are retained, as expected for instance in a rotating plasma. While fundamentally important these effects are generally small [47], and they are therefore ignored in this thesis.

Plasma sheath

The discussion of collisional transport properties in a magnetized plasma given in the previous section implicitly assumed an infinite plasma. Practically though, low-pressure laboratory plasmas are produced in a vacuum chamber and the interaction between the chamber walls and the quasineutral plasma must be considered. This interaction leads to the formation of a transition region 1. Background called the sheath, where an ambipolar electric field exists to balance out the ion and electron fluxes to the walls. In this section the mechanisms at the origin of sheath formation are reviewed with the goal of highlighting flux conditions. This discussion follows largely the textbook by Lieberman and Lichtenberg [START_REF] Lieberman | Principles of plasma discharges and materials processing[END_REF]. It is further shown that, depending on the surface and the polarity of the biased electrode, different sheath structures supporting different voltage drops across the sheath can form. This discussion will guide our more in depth analysis in Chapter 3 of the voltage drop across the ion sheath formed in front of a negatively biased electrode.

Properties of the transition layer between grounded walls and a quasineutral plasma

The region between a quasineutral plasma (n = n e ≃ n i ) and surrounding walls is called the sheath.

To introduce the dynamics of sheath formation, we consider an isotropic plasma that is initially quasineutral and bounded by two walls, as illustrated in Figure 1.7 (a). We suppose there is no appreciable electric field inside the plasma and choose the electric potential to be zero everywhere.

Because of their higher thermal velocity electrons reach the walls much more rapidly than ions and are lost there. This leaves a positive charge density in front of the walls, whereas the wall itself becomes negatively charged. This charge separation creates a potential barrier which confines electrons, as illustrated in Figure 1.7 (b). This process continues up until the voltage drop across the sheath is such that the flows of mobile electrons and much less mobile ions are equal. This type of sheath is known as an ion sheath. The steady-state plasma is partitioned into two regions: the sheath and the quasineutral plasma bulk. To guide future discussions, we recall here the ion and electron density n i (x) and n e (x) and plasma potential ϕ(x) structure across a collisionless sheath. Introducing the dimensionless electric 1.2. Plasma sheath potential ψ = ϕ/T e with T e in eV, Poisson's equation writes

d 2 ψ(x) dx 2 = e ϵ 0 T e [n e (x) -n i (x)] . (1.71)
We assume the electron density to verify Boltzmann's relation

n e (x) = n exp [ψ(x)] , (1.72) 
while the ion density is determined from flux and energy conservation. The steady-state ion continuity equation then writes

d dx [n i (x)v i (x)] = 0 (1.73) which yields n i (x)v i (x) = nv 0 (1.74)
with n and v 0 the quasineutral plasma density and the ion velocity at the sheath edge. The ion velocity across the sheath v i (x) is determined from the conservation of ion energy

m i 2 v i (x) 2 + eϕ(x) = m i 2 v 0 2 . (1.75)
The term +eϕ(x) represents the potential energy gained by the ions across the sheath. Rewriting Eq. (1.75) for the dimensionless ψ(x) brings up a term eT e /m i which is homogeneous to a velocity. This velocity is called the ion sound speed and is generally denoted by C s . Introducing M = v 0 /C s , the ion velocity is expressed as

v i (x) = v 0 1 - eϕ(x) m i v 0 2 /2 = v 0 1 - 2 M 2 ψ(x). (1.76) 
Plugging Eq. (1.76) into Eq. (1.74), the ion density across the sheath writes

n i (x) = n 1 - 2 M 2 ψ(x)
.

(1.77)

Substituting n i (x) and n e (x) into Poisson's equation Eq. (1.71) then yields

d 2 ψ(x) dx 2 = 1 λ D 2 exp [ψ(x)] -1 - 2 M 2 ψ(x) -1/2 . (1.78)
At this point we note that by introducing the potential 

V = -exp [ψ(x)] -M 2 1 - 2 M 2 ψ(x) (1.
λ D 2 2 dψ(x) dx 2 = exp [ψ(x)] + M 2 1 - 2 M 2 ψ(x) -1 -M 2 , (1.81) 
1. Background where we chose ψ = 0 and dψ/dx = 0 at the sheath edge, consistent with a field free plasma. From Eq. (1.81) it is apparent that the RHS should be positive for a solution to exist. Fundamentally, this implies that the electron density has to be less than the ion density in the sheath region. Expanding the RHS to second order in ψ yields exp

[ψ(x)] + M 2 1 - 2 M 2 ψ(x) -1 -M 2 ≃ ψ(x) 2 2 1 - 1 M 2 (1.82)
so that the inequality writes

M = v 0 C s ≥ 1. (1.83)
This result is known as the Bohm sheath criterion, and the dimensionless variable M is the Mach number. Physically, it means that ions must enter in the sheath region with a velocity at least equal to the ion sound speed C s . Although this calculation will not be developed here, it can be shown that a presheath region exist to accelerate the ion flow from subsonic v < C s to supersonic v > C s velocity. Nevertheless we will use for simplicity M = 1 at the sheath edge throughout this manuscript.

Plasma response to a biased electrode

If we now consider a biased electrode, different sheath structures associated with different potential barriers and charged particle fluxes can form depending among other things on the applied bias and the electrode surface. To introduce these concepts, we follow here the model proposed by Baalrud et al. [59]. Consider a plasma bounded by a grounded chamber (potential ϕ W = 0, surface A w ) and a positively biased electrode (potential ϕ b > 0, surface A E ) as shown in Figure 1.8, and assume that the plasma is quasineutral with uniform density and potential except in the sheaths. In steadystate, the plasma potential ϕ p is determined by balancing the total current of electrons and ions lost from the plasma. Figure 1.8: Illustration of the hypothetical experimental configuration proposed by Baalrud et al. [59]. A positively biased electrode (potential ϕ b , surface A E ) is inserted into a quasi-neutral uniform plasma bounded by a grounded vessel (surface A W ). The gray area represents an insulator, so that only an area A E of the biased electrode is exposed to the plasma.

As long as the electrode is biased at least a few T i above the plasma potential ions will be lost only to the chamber walls. This situation corresponds to an electron sheath at the biased electrode. We have shown in the previous section that ions enter the sheath with the Bohm velocity C s (since we assume M = 1), leading to an ion current at the grounded wall

I i,W = A W enC s .
(1.84) which can be solved for the normalized plasma potential yielding

ψ p = -ln exp(Λ) -1 - A E A W .
(1.89)

In the limit of negligibly small electrode area (i.e. A E /A W → 0) Eq. (1.89) gives

ψ p = Λ, (1.90) 
which we recognize as the classical floating potential. The plasma potential is therefore unaffacted by the electrode bias, which is the standard assumption of probe theory [START_REF] Chen | Langmuir Probe Diagnostics (Mini-Course on Plasma Diagnostics[END_REF]. On the other hand for non-negligible electrode surface Eq. (1.89) shows that ψ p grows with A E /A W . This growth of ψ p continues up until A E approaches A W exp(Λ) -1 , at which point the potential diverges up. Physically, this implies that the condition A E < A W exp(Λ) -1 must be verified to ensure an electron sheath at the positively biased electode.

For larger electrodes (A E ≥ A W exp(Λ) -1 ), current balance thus demands that the plasma potential be higher than the electrode potential, i.e. that an ion sheath forms at the positively biased electrode. In this case ions are now lost both to the positively biased electrode

I i,E = enC s A E , (1.91a) 
and to the wall

I i,W = enC s A W . (1.91b)
Meanwhile, ions sheaths are now responsible for a reduction of the electron flux to both electrodes. Noting ψ b = ϕ b /T e the normalized applied bias, we obtain

I e,E = A E enC s exp (Λ + ψ b -ψ p ) (1.91c)
and I e,W = A W enC s exp (Λψ p ) .

(1.91d)

The current balance I e,W +I e,E -I i,W -I i,E = 0 finally leads to a new expression for the normalized plasma potential

ψ p = -ln     1 + A E A W exp(Λ) 1 + A E A W exp (ψ b )     . (1.92)
1. Background Eq. (1.92) is only valid for an ion sheath at the positively biased electrode. The evolution of the normalized plasma potential ψ p with the surface ratio A E /A W , as predicted in the two different sheath regimes from Eqs. (1.89) and (1.92), is shown in Figure 1.9.

To conclude this section, we note that this simple model assuming a positively biased electrode shows that the plasma potential is affected, and to some extent controlled, by the bias ϕ b applied on the electrode. Figure 1.9 further shows that such control requires a large enough surface. We will show in this thesis that a similar result is recovered in the case this time of negatively biased electrodes, and that this condition for control can be restated in terms of current.

Chapter 2

Electric potential distribution in a quasi-neutral plasma The scope of this thesis concerns the control on the electric potential distribution offered by facing end-electrodes in a magnetized plasma column. As mentioned in the Introduction, fully addressing this problem fundamentally requires considering jointly the physics of the sheath and potential distribution in the quasi-neutral plasma. Nevertheless, some basic insights into this problem can be obtained by neglecting first for simplicity sheath effects, thus focusing only on how an electric potential imposed at the extremity of the plasma column varies along a given magnetic field line in a quasineutral plasma. The scope of the present chapter is to highlight what can be learned from such simplified models. These results obtained here will also be useful when discussing the interplay with sheath effects in Chapter 4. The first part of this chapter, Section 2.1, re-derives results previously obtained by Gueroult et al. [47] in the case of a uniform plasma. The second part, Section 2.2, brings new results considering this time radial dependencies.

The basic configuration considered in this chapter is shown in Figure 2.1. It consists of a quasi-neutral magnetized plasma column of length L and radius r g characterized by parallel and perpendicular conductivities σ ∥ and σ ⊥ and where the radial profile of the plasma potential is assumed to be known at both extremities of the plasma column (ϕ(r, ±L/2) in the two planes shown in gray in Figure 2.1). We work in cylindrical coordinates and consider a domain defined by [0, r g ] × [-L/2, L/2]. In line with Paragraph 1.1.3, we neglect diamagnetic effects and assume throughout this chapter that the current density verifies Ohm's law j = σE with σ the conductivity tensor. Conservation of charge in steady-state ∇ • j = 0 then gives that the electric potential is solution of the partial differential equation (PDE)

σ ⊥ ∂ 2 ϕ ∂r 2 + σ ⊥ r + ∂σ ⊥ ∂r ∂ϕ ∂r + ∂σ ∥ ∂z ∂ϕ ∂z + σ ∥ ∂ 2 ϕ ∂z 2 = 0. (2.1)
This equation will be referred to in this thesis as the anisotropic Laplace equation.

2. Electric potential distribution in a quasi-neutral plasma The PDE Eq. (2.1) is an elliptic equation which for appropriate boundary conditions can be solved by separation of variables. This method seeks solutions for the electric potential of the form

ϕ(r, z) = ϕ 0 R(r)Z(z), (2.2) 
where R and Z are respectively functions of r and z alone, and ϕ 0 a constant. Anticipating our interest for symmetrical biased electrodes and a grounded vacuum chamber, we choose ϕ 0 to be the potential on-axis at both extremities of the plasma column (ϕ(r = 0, z = ±L/2) = ϕ 0 ) and seek solutions such that ϕ(r = r g , z) = 0. From Eq. (2.2), this yields

R(r = 0) = 1 (2.3a) R(r = r g ) = 0 (2.3b) Z(z = ±z sh ) = 1, (2.3c) 
where we introduced z sh = L/2 the axial position of the plasma column extremity. It is worth noting here that by imposing a solution of the form Eq. (2.2) the potential is only imposed at the domain vertices (r = 0, z = ±z sh ) and (r = r g , z = ±z sh ), and that under this assumption the radial potential profile at the plasma column extremities ϕ(r, ±z sh ) (shown in gray in Figure 2.1) is actually governed by the PDE Eq. (2.1).

Uniform plasma

In this section we restrict ourselves to an anisotropic uniform plasma, characterized by uniform parallel and perpendicular conductivities σ ∥ and σ ⊥ . Let µ 0 = σ ⊥ /σ ∥ be the uniform conductivity ratio. Under these assumptions Laplace equation Eq. (2.1) then reduces to

∂ 2 ϕ ∂r 2 + 1 r ∂ϕ ∂r + 1 µ 0 ∂ 2 ϕ ∂z 2 = 0.
(2.4)

Separation of variables

Plugging Eq. (2.2) in Eq. (2.4) gives

µ 0 R d 2 R dr 2 + 1 r dR dr = - 1 Z d 2 Z dz 2 .
(2.5)

The left-hand side is a function of r only whereas the right-hand side is a function of z only, implying that both the left-and right-hand side are constant. Physically, we expect the potential to decay 2.1. Uniform plasma along z, and therefore set this constant to -k 2 . Eq. (2.5) can then be decomposed into the two ordinary differential equations (ODEs)

µ 0 d 2 R dr 2 + µ 0 r dR dr + k 2 R = 0 (2.6a) and d 2 Z dz 2 -k 2 Z = 0. (2.6b)
Using boundary conditions defined in Eq. (2.3c), the solution of Eq. (2.6b) is

Z(z) = cosh (kz) cosh k L 2 -1
.

(2.7a)

Looking now at Eq. (2.6a), this equation is known as Bessel's equation [START_REF] Fitzpatrick | Chapter 2: Electrostatic Fields[END_REF]. For the boundary condition R(0) = 1 given in Eq. (2.3a), its solution is

R(r) = J 0 k √ µ 0 r , (2.7b) 
where J 0 is the zeroth order Bessel function of the first kind. The constant k is determined from the ground boundary condition R(r g ) = 0 given in Eq. (2.3b). One solution is to choose

k = p 1 √ µ 0 r g , (2.8) 
with p 1 ∼ 2.4048 the first zero of J 0 . Substituting Eq. (2.8) into Eqs. (2.7a) and (2.7b), the functions R and Z write

R(r) = J 0 p 1 r r g (2.9a) 
and

Z(z) = cosh p 1 L r g √ µ 0 z L cosh p 1 2 L r g √ µ 0 -1 , (2.9b) 
which finally gives the electric potential

ϕ(r, z) = ϕ 0 J 0 p 1 r r g cosh p 1 τ z L cosh p 1 2 τ -1 (2.10) 
where we have introduced the dimensionless parameter

τ = L r g √ µ 0 . (2.11)
This parameter is the inverse of the "geometric factor" s previously derived by Poulos [50]. Figure 2.2 shows the evolution of the solution Eq. (2.10) normalized by the on-axis potential ϕ 0 for different values of µ 0 , assuming here an aspect ratio L/r g = 10. We verify on the lower panel that the magnetic field lines (r = cst for the uniform axial field considered) are in very good approximation isopotential for µ 0 = 10 -5 (i.e. τ = 1/ √ 1000). However, as µ 0 increases (i.e. as τ increases), we see on the middle and upper panels that iso-contours progressively bend away, up until the two plasma extremities become electrically disconnected for τ ∼ O [START_REF] Bittencourt | Fundamentals of plasma physics[END_REF].

The scaling derived from the analysis of Eq. (2.10) and Figure 2.2 is further supported by estimating the fraction of the potential lost along field lines, whose maximum is

δ ∥ ϕ(r) = 1 - ϕ(r, 0) ϕ(r, ±z sh )
.

(2.12)

2. Electric potential distribution in a quasi-neutral plasma Indeed, because the plasma column is symmetric, the axial voltage drop reaches its maximum between the extremities (z = ±z sh ) and the mid plane (z = 0). From Eq. (2.10), one gets

δ ∥ ϕ = 1 -cosh p 1 2 τ -1 , (2.13) 
which is independent of the radial position r. Expanding the RHS term to first order in τ finally yields

δ ∥ ϕ ≃ p 1 2 8 τ 2 . (2.14)
This result not only confirms the requirement τ ≪ 1 to minimize the fraction of the potential lost along field lines, but also shows that for τ ≪ 1 the relative voltage drop δ ∥ ϕ will scale as τ 2 . We note here though that the smallness of δ ∥ ϕ should not be taken equivalent to the smallness of the absolute voltage drop along field lines

∆ ∥ ϕ(r) = ϕ(r, ±z sh ) -ϕ(r, 0) = ϕ(r, ±z sh )δ ∥ ϕ(r). (2.15)
Smallness of ∆ ∥ ϕ(r), in contrast to δ ∥ ϕ, indeed clearly depends on the potential at the extremity ϕ(r, ±z sh ), and on what it is compared to. This important nuance will be further discussed in Chapter 4.

Hankel transform

It is informative to see how the results obtained by separation of variable in the previous paragraph compare with the results obtained by Poulos [50] and then by Gueroult et al. [47] using Hankel transforms. Recalling the definition of the zeroth order Hankel transform of the potential ϕ(r, z)

φ(k, z) = +∞ 0 rϕ(r, z)J 0 (kr)dr, (2.16) 
the anisotropic Laplace equation Eq. (2.4) can be conveniently rewritten as

-k 2 φ(k, z) + 1 µ 0 ∂ 2 φ(k, z) ∂z 2 = 0.
(2.17)

General solutions of Eq. (2.17) are

φ(k, z) = A + (k) exp (-k √ µ 0 z) + A -(k) exp (k √ µ 0 z) , (2.18) 
where the functions A + (k) and A -(k) are determined from boundary conditions. Enforcing symmetry at z = ±z sh , solutions of Eq. (2.17) can be written as

φ(k, z) = A(k) exp -k √ µ 0 |z -z sh | + exp -k √ µ 0 |z + z sh | 1 + exp -k √ µ 0 L . (2.19)
The electric potential solution to Eq. (2.4) is then formally obtained from the inverse Hankel transform 

ϕ(r, z) = +∞ 0 k φ(k, z)J 0 (kr)dk. ( 2 
ϕ(r, z) = 2ϕ 0 +∞ 0 δ k - p 1 r g J 0 (kr) exp[-k √ µ 0 |z -z sh |] + exp[-k √ µ 0 |z + z sh |] 1 + exp[-k √ µ 0 L] dk = ϕ 0 J 0 p 1 r r g exp -p 1 rg √ µ 0 |z -z sh | + exp -p 1 rg √ µ 0 |z + z sh | 1 + exp -p 1 rg √ µ 0 L = ϕ 0 J 0 p 1 r r g exp p 1 τ z L + exp -p 1 τ z L exp p 1 2 τ + exp -p 1 2 τ
.

(2.24)

Recalling that cosh(x) = [exp(x) + exp(-x)]/2, this last result is precisely that already obtained in Eq. (2.10) through separation of variables, demonstrating the consistency of the two methods.

Radial dependencies

While the previous section assumed uniform parallel and perpendicular conductivities, it is expected that density and temperature gradients, or magnetic field inhomogeneities, would often in practice invalidate this assumption. To shed light on this effect, we extend in this section the previous model to the case of a plasma media presenting a radial dependence of the conductivity ratio. For definiteness and to preserve analytical solutions we choose

µ(r, ξ) = µ 0 1 -ξ r 2 r g 2 , (2.25) 
with ξ a gradient parameter varying in the half open interval [0, 1[. When ξ = 0 the plasma is effectively uniform, µ(r, ξ) = µ 0 , and the solution of the electric potential is given by Eq. (2.10). On the contrary, the gradient becomes steeper as ξ increases and approaches 1. This is shown in Figure 2.3 where the radial profile µ(r, ξ) normalized by µ 0 is illustrated for different values of ξ.

To highlight differences with the uniform plasma case discussed above, we use here the notation a to refer the variable a in the case of non-uniform µ.

From a physical point of view such a radial profile of the conductivity ratio µ can have different origins. For instance one expects from the parametric dependence of parallel and perpendicular conductivities discussed in Paragraph 1.1.3 (Eq. (1.58) and Eq. (1.60

) for Ω c,i ≫ ν in ) that µ ∝ √ m i √ T i B 0 2 P 2 T e (2.26)
in a regime where charged-neutral interactions are dominant (i.e. ν ei ≪ ν en ). In this case the radial dependence of µ in Eq. (2.25) may be the result of variations of electron and ion temperature, or of neutral density. Similarly, one finds that 27) in the opposite regime ν ei ≫ ν en , in which case the radial dependence of µ may reflect a similar plasma density profile. Searching now for solutions of the form ϕ(r, z) = ϕ 0 R(r) Z(z), Eq. (2.1) yields the following pair of ODEs

µ ∝ √ m i √ T i B 0 2 P nT -3/2 e (2.
µ d 2 R dr 2 + µ r + dµ dr d R dr + k 2 R = 0 (2.28a) d 2 Z dz 2 -k 2 Z = 0 (2.28b)
with k a constant that depends on k and ξ as will be shown later. Eq. (2.28b) is identical to the ODE Eq. (2.6b) obtained for Z for a uniform plasma other than for the substitution of k in lieu of k, so that one similarly gets

Z(z) = cosh kz cosh k L 2 -1
.

(2.29)

Looking now at Eq. (2.28a), plugging in Eq. (2.25) for µ yields

µ 0 1 -ξ r 2 r g 2 d 2 R dr 2 + µ 0 r 1 -3ξ r 2 r g 2 d R dr + k 2 R = 0. (2.30)
Non-diverging solutions of Eq. (2.30) are of the form

R(r) = 2 F 1   1 2   1 -1 + k 2 r g 2 µ 0 ξ   , 1 2 
  1 + 1 + k 2 r g 2 µ 0 ξ   , 1, ξ r 2 r g 2   (2.31)
with 2 F 1 the ordinary hypergeometric function. From the identity [62, Eq. (14.3.15)],

P λ (z) = 2 F 1 -λ, λ + 1, 1, 1 -z 2 (2.32)
with P λ (z) the Legendre function of order λ ∈ R, and the radial solution can thus be rewritten as

R(r) = P α ξ 1 -2ξ r 2 r g 2 (2.33)
2. Electric potential distribution in a quasi-neutral plasma with

α ξ = 1 2 1 + L 2 τ 2 ξ k 2 -1 . (2.34)
The parameter α ξ must be chosen so as to satisfy the boundary conditions at r = 0 and r = r g given in Eqs. (2.3a) and (2.3b). Although one verifies that Eq. (2.3a) is satisfied by construction, Eq. (2.3b) demands

P α ξ (1 -2ξ) = 0, (2.35)
highlighting the dependence of α ξ on ξ. This dependence is illustrated in Figure 2.4 (a), where we see that the order α ξ of the Legendre polynomial increases as ξ decreases, that is as the steepness of the conductivity ratio µ decreases. Having determined α ξ for a given gradient parameter ξ from Eq. (2.35), the parameter k is obtained by rewriting Eq. (2.34) as

k = τ L 2ξα ξ [2α ξ + 1] = k 2ξα ξ p 1 2 [2α ξ + 1], (2.36) 
with k the parameter derived for a uniform plasma defined in Eq.(2.8). In Figure 2.4 (b) the ratio C k = k/k is plotted as a function of the Legendre polynomial order α ξ for µ 0 = 10 -3 and for the same plasma column dimensions used in Section 2.1. One verifies as expected that the ratio k/k approaches 1 for large values of α ξ , that is in the limit of a uniform plasma, but that is drops rapidly below 1 for steeper gradients (lower α ξ ). This result is confirmed when plotting as shown in Figure 2.4 (c) the radial profile R(r) for different values of ξ. Indeed, one finds that R(r) is well approximated by the Bessel function of the first kind J 0 (p 1 r/r g ) in the limit that ξ tends to 0, that is for a flat conductivity ratio µ. This is precisely what was obtained in the previous section in Eq. (2.9a). On the other hand we see in Figure 2.4 (c) that steeper conductivity ratio profiles µ(r) (larger ξ) lead to a more pronounced flat top profile for the radial potential profile R(r). Combining Eqs. (2.29) and (2.33), the electric potential finally writes

ϕ(r, z) = ϕ 0 P α ξ 1 -2ξ r 2 r g 2 cosh p 1 τ C k z L cosh p 1 2 τ C k -1
.

(2.37)

The dimensionless electric potential ϕ(r, z)/ϕ 0 obtained in Eq. (2.37) is plotted in Figure 2.5 for different values of ξ, as a point of comparison to the results obtained for a uniform plasma plotted in Figure 2.2. Results plotted here are for τ = 1/ √ 10, corresponding to the intermediate case (middle panel) in Figure 2.2. Starting from a small value of ξ = 0.1, that is a nearly uniform conductivity profile µ(r), we have already pointed out that in this case the radial profile R(r) is well approximated by the Bessel function J 0 (p 1 r/r g ), and also that k ∼ k (i.e. C k ∼ 1). Accordingly, the distribution of ϕ(r, z)/ϕ 0 shown in the upper panel in Figure 2.5 is qualitatively very similar to the one obtained for a uniform plasma shown in Figure 2.2 for the same value µ 0 . Considering now larger values of ξ in the middle and lower panels of Figure 2.5, that is steeper conductivity profiles µ(r), we see first that a given iso-contour is pushed radially outward as ξ increases. This observation is the direct consequence that a steeper profile µ(r) leads to a more flat top profile for R(r), as already seen in Figure 2.4 (c). Beyond being pushed radially outward, closer examination further shows that iso-potential straighten as ξ increases. This second observation can be explained by going back to the fraction of the electric potential lost along field lines δ ∥ ϕ introduced in Eq. (2.12). From Eq. (2.37) one gets for a non-uniform plasma

δ ∥ ϕ = 1 -cosh p 1 2 τ C k -1
.

(2.38)

Expanding the RHS term to first order in τ yields 2. Electric potential distribution in a quasi-neutral plasma where we have used the Taylor expansion for the uniform δ ∥ ϕ given in Eq. (2.14) to derive the last result. In light of the behavior of C k = k/k shown in Figure 2.4 (b), we conclude, consistent with our observation in Figure 2.5, that for a given value of τ the relative voltage drop along field lines δ ∥ ϕ actually decreases with ξ. It is worth noting though that Figure 2.4 (b) suggests C k = O(1), so that the rough scaling δ ∥ ϕ ∝ τ 2 is expected to hold even for non-uniform conductivity ratios µ(r).

δ ∥ ϕ ≃ p 1 2 8 τ 2 C k 2 ≃ C k 2 δ ∥ ϕ, (2.39) 

Summary

The main takeaway message of this chapter is that the potential distribution along and across a quasi-neutral magnetized plasma column can, under the condition that Eq. (2.1) holds, be shown to be controlled by the smallness of the dimensionless factor Eq. (2.11)

τ = L r g √ µ 0 , (2.40) 
with µ 0 = σ ⊥ /σ ∥ the perpendicular to parallel conductivity ratio. One in particular finds through this result that the often made assumption that magnetic field lines are iso-potential is only true in the limit that σ ⊥ /σ ∥ → 0. Going back to our objective in this thesis of plasma potential control, this result indicates as already underlined by Gueroult et al [47] that potential control requires τ ≪ 1. We showed here though that this result still holds for radially dependent conductivity ratios µ(r), suggesting that this necessary condition will persist in the case of density or temperature radial profiles.

Yet, while the analysis of past biasing experiments did show encouraging correlation with the condition τ ≪ 1 underlined here [47], we know that this can only be a necessary condition as it assumes a set potential at the end of a magnetic field lines, and neglects in doing so the effect of the sheath expected to form in front of biased electrodes. Another limit of this model is that since the potential at the end of a magnetic field lines is an input, one cannot determine physically the voltage drop along field lines ∆ ∥ ϕ(r). Only the relative voltage drop along field lines δ ∥ ϕ(r) can be inferred. To address these issues one needs to consider the effect of the sheath. This is the object of the next chapter, Chapter 3. Chapter 3

Summary

Effect of the sheath on the plasma potential at the sheath edge The discussion of plasma potential control in a magnetized plasma started in the previous chapter was limited to a quasi-neutral plasma. Under this assumption, we showed that the fraction of the potential lost along field lines depends on the dimensionless parameter τ = (L/r g ) σ ⊥ /σ ∥ , where L/r g represents the aspect ratio of the plasma column under consideration. The condition τ ≪ 1 was then showed to be necessary to allow for potential control along field lines, a condition that had previously shown to be consistent with results from past end-electrodes biasing experiments [47]. The major hypothesis at the root of the analysis conducted in Chapter 2 is that the radial potential profile at the edge of the quasi-neutral plasma can be imposed freely. In the context of electrode control, this is basically assuming that any electric potential imposed on an end-electrode terminating a plasma column, as illustrated in Figure 3.1, can be transferred unaltered to the quasi-neutral plasma. From the discussion of sheath physics given in Section 1.2, this is assuming that the voltage drop across the sheath is negligible no matter the bias or the plasma parameters, which we know to be overly simplified.

In this chapter, we address this shortcoming by examining specifically the effect of the sheath on the plasma potential at the sheath edge, which we define here as the boundary between the sheath and the quasi-neutral plasma. To highlight how practical limits exist on potential control via electrode biasing, we review and build here on sheath models developed by Liziakin et al. [49,48]. For simplicity and to underline the effect of the sheath alone the models developed in this chapter assume, contrary to the findings of Chapter 2, that the potential is constant along field lines past the sheath in the quasi-neutral plasma. These two different contributions, that is the effect of the 3. Effect of the sheath on the plasma potential at the sheath edge sheath and the potential variation along field lines in the quasi-neutral plasma, will be studied jointly in the next chapter, Chapter 4.

To set the stage, the configuration considered in this chapter and the next is that illustrated in Figure 3.1. It consists in a magnetized plasma column of length L and radius r g , with two facing symmetric disk-electrodes of radius r e at its axial ends. These electrodes are assumed to be negatively biased (potential ϕ b < 0) with respect to the grounded vacuum vessel and can be either cold or emissive (current density j eth ). We also choose in an effort to ease comparison between experiments across a broad range of conditions to work with dimensionless variables. We thus define for all electric potential quantities ϕ their dimensionless analog ψ through ψ = ϕ/T e with T e in eV.

Simple model neglecting variations in the electrode shadow

A first picture of how the plasma potential at the sheath edge relates to the applied bias ϕ b can be obtained from the model proposed by Liziakin et al. [48]. As mentioned above, a key simplifying assumption of this model is that the potential ϕ(r, z) is constant along the plasma column, that is ϕ(r, z) = ϕ sh (r). From our discussion in the previous chapter, we know this to be true only in the limit µ = σ ⊥ /σ ∥ → 0. Another important assumption of this model is that the potential is constant in the shadow of the electrode (i.e. for r ≤ r e ). This potential is written ϕ p , that is ϕ(r, z) = ϕ p for r ∈ [0, r e ] , z ∈ [-z sh , z sh ], with z sh = L/2 the axial position of the sheath edge.

Sheath transfer function for the potential

The basic idea behind this simple model is that charged particles flow radially across field lines, establishing a constant radial current I between the outer edge of the negatively biased electrode at r = r e and the grounded vacuum vessel at r = r g (the validity of this picture is examined in detail via a refined model in Section 3.2). Under the above assumptions, the plasma-electrode system can then be modeled through the equivalent electric circuit shown in Figure 3.2, where we write ϕ b the bias applied on the electrode and ∆ sh ϕ the voltage drop across the sheath. This circuit substantiates the fact that the current I flowing across the plasma column must be equal to that collected at the electrode through the sheath.

From this equivalent circuit, one directly deduces ϕ p = R ⊥ I where the perpendicular plasma resistance R ⊥ has been obtained by integrating between r e and r g the incremental resistance associated with the annular region of length L/2 located between r and r + dr [48]. Note here that we choose R ⊥ to be the perpendicular resistance associated with half the plasma column length, consistent with the fact that we consider I as the current on one axial end-electrode. Going back to the circuit, the current

I = ϕ p R ⊥ (3.2)
is also equal to the current drawn at the biased electrode. Considering an ion sheath formed in front of the possibly hot negatively biased electrode and counting positively particle fluxes leaving the electrode, one then gets I = I e -I is -I eth where electron, ion, and thermionic electron currents have respectively been obtained from integrating the current densities

j e = j is exp Λ + ϕ b -ϕ p T e , (3.3a) 
j is = enC s , (3.3b 
)

j eth = A G T w 2 exp - eW k B T w , (3.3c) 
over the electrode surface. Here n is the plasma density, C s = eT e /m i is the ion sound speed, Λ = ln( m i /(2πm e )) is a sheath parameter, T w is the temperature of the electrode (in Kelvin) and W and A G are respectively the work function and the Richardson's constant [START_REF] Richardson | [END_REF] of the emissive electrode. Although both the work function and the Richardson's constant are practically functions of the emissive electrode's material and can vary significantly [START_REF] Anders | Cathodic arcs: from fractal spots to energetic condensation[END_REF], we set for simplicity in this work W = 4.54 eV and A G = 6.0 10 5 A K -2 m -2 . These values are consistent with tungsten [START_REF] Anders | Cathodic arcs: from fractal spots to energetic condensation[END_REF], which will be the electrode material considered when comparing theoretical results with experimental data in Chapter 5. Note that for a negatively biased electrode, this convention implies that j e , j is and j eth are all positive quantities, but that the total current I is negative. Moving to dimensionless variables, the normalized current flowing through the plasma hence writes

I I is = exp (Λ + ψ b -ψ p ) -1 -Ξ (3.4)
where we have introduced the dimensionless parameter

Ξ = j eth j is . (3.5)
This parameter, which quantifies thermionic emission with respect to the ion saturation current, will be used extensively in the rest of this thesis. One verifies that for an applied bias ψ b smaller than ψ p the current I is negative, and reaches a minimum equal to

-(I is + I eth ) for ψ b ≪ ψ p .
3. Effect of the sheath on the plasma potential at the sheath edge Recasting Eq. (3.2) in terms of the normalized plasma potential ψ p and plugging it into Eq. (3.4) finally yields the transcendental equation

exp (Λ + ψ b -ψ p ) -1 -Ξ -χψ p = 0 (3.6)
where we have introduced the dimensionless parameter

χ = T e I is R ⊥ . ( 3.7) 
Eq. (3.6) is identical to that obtained by Liziakin et al. [48], other than for the choice of using dimensionless variables and the addition in our work of thermionic emission. It should be stressed, however, that it has been implicitly assumed in deriving Eq. (3.6) that neither biasing nor thermionic emission does affect the plasma properties, allowing us to assume that the perpendicular resistance R ⊥ remains identical to that obtained in the cold electrode case absent biasing. The validity of this assumption will be questioned later in this manuscript in Chapters 5 and 6.

Saturated and non-saturated regimes

Considering first the case of a cold electrode, i.e. without thermionic emission (Ξ = 0), Figure 3.3 shows the evolution of ψ p as a function of ψ b for different values of χ as predicted by Eq. (3.6).

For a small bias at the electrode or a sufficiently small value of χ, the plasma potential is seen to follow the applied bias, that is

ψ p ≃ ψ b + Λ. ( 3.8) 
In this regime the plasma potential is hence controlled by the electrode bias. The voltage drop across the sheath is the smallest ∆ sh ψ = Λ, and the current drawn at the electrode is negligible compared to -I is . For reasons that will become clear in a moment, we refer to this regime as the non-saturated regime. For larger negative biases for a given value of χ, Figure 3.3 shows that the plasma potential progressively deviates from the floating solution ψ p ≃ ψ b + Λ until it reaches a maximal value

ψ p ψ p = ψ b + Λ ψ p = -χ -1 Ξ = 0 χ = 0.02 χ = 0.05 χ = 0.1 χ = 0.2 χ = 0.4
ψ p = -χ -1 .
(3.9)

Simple model neglecting variations in the electrode shadow

This behaviour is consistent with the fact that the current I decreases and approaches its minimum value -I is . At this point the plasma potential ψ p is no longer controlled by the applied bias ψ b , and any further decrease in ψ b is entirely recovered in the voltage drop across the sheath ∆ sh ψ which grows as |ψ b |χ -1 . Reflecting the property of the current in this regime, we will refer to it as the saturated regime. In contrast with the non-saturated regime introduced just above, the maximum plasma potential is indeed here set by the maximum current (in absolute value) drawn at the biased electrode. Going back to Eq. (3.9), the dimensionless parameter χ -1 can then be interpreted as a measure of the maximum radial voltage drop the plasma column can sustain. From the definition of R ⊥ , one gets

χ = L r e 2 ln(r g /r e ) T e σ ⊥ j is . (3.10)
As shown in Figure 3.3, a decrease of χ will delay the apparition of the saturated regime, extending the domain of control over the plasma potential ψ p to more negative biases applied on the electrode ψ b . Physically, since χ ∝ (I is R ⊥ ) -1 , χ can in principle be lowered by increasing either the ion saturation current I is or the perpendicular resistance R ⊥ , or both. Recalling from Paragraph 1.1.4 that the perpendicular conductivity σ ⊥ is dominated by the ion-driven Pedersen conductivity σ P over a larger range of plasma parameters and plugging the expression for σ P from Eq. (1.60), Eq. (3.10) can be further expanded to give

χ ∝ L r e 2 ln(r g /r e ) √ T e T i m i P B 0 2 . (3.11)
Let us first focus on geometric dependencies. Eq. (3.11) shows that χ scales as r -2 e , which is consistent with the fact that I is is proportional to the electrode area πr 2 e . Likewise, χ scales as L/ ln(r g /r e ), which indeed is the inverse of the plasma resistance R ⊥ obtained by integrating the infinitesimal resistance given in Eq. (3.1). Regarding the plasma parameters, χ scales as the square root of the ion and electron temperatures and is proportional to the neutral pressure. This suggests control will be facilitated at low pressure and low electron and ion temperatures. Note however that while the √ T i and P scalings are direct consequences of the form of the ion-neutral collision frequency Eq. (1.33a) which appears in σ P , the √ T e scaling results from the combination of a √ T e scaling for the ion saturation current density j is and the normalization ψ ∝ ϕ/T e . Finally, Eq. (3.11) shows that χ scales as B 2 0 , reflecting the inverse square scaling of the perpendicular conductivity on the magnetic field, and suggesting that potential control will be best achieved in strongly magnetized plasma.

To conclude, it is worth mentioning that while it may be surprising at first to find that χ does not depend on the plasma density n, this result is the consequence that both I is and σ P are proportional to n. As a result, for a cold electrode, the plasma density n is not expected to affect the ability to control the plasma potential through the electrode bias.

Influence of thermionic emission

The effect of thermionic emission on plasma potential control using biased electrode can be examined through the transcendental Eq. (3.6) with now Ξ = j eth /j is ̸ = 0.

Additional control

Since, as mentioned earlier, the model discussed here assumes that the perpendicular resistance R ⊥ does not vary with thermionic emission (i.e. with Ξ), the influence of thermionic emission stems entirely from the change in current I. In particular, by definition the electron current drawn from the plasma in the saturated regime is zero, so that now I = -(I is + I eth ), which is (1 + Ξ) larger than in the cold electrode case. The dimensionless plasma potential in the saturated regime for non-zero thermionic emission correspondingly writes

ψ p = - 1 + Ξ χ .
(3.12)

Effect of the sheath on the plasma potential at the sheath edge

This scaling is verified in Figure 3.4 where the numerical solution ψ p from Eq. (3.6) has been plotted as a function of ψ b for increasing thermionic emission Ξ and a value χ = 0.20 matching that used for the red curve in the zero thermionic emission case shown in Figure 3.3. Indeed, comparing the red and green curves in Figure 3.4 obtained respectively for Ξ = 0 and Ξ = 0.5, one verifies that the plasma potential is saturated in both cases for ψ b ≤ -15, and that the ratio between the plasma potential ψ p in this regime is about 7.5/5 = 3/2 which is precisely the ratio in 1 + Ξ for these two curves. More generally, we see that for strongly negative values of ψ b increasing Ξ leads to a more negative plasma potential up until it reaches the floating solution

ψ p = ψ b + Λ -ln (1 + Ξ) , (3.13) 
indicating that the non-saturated regime is then recovered. Defining

ζ = |ψ b |χ 1 + Ξ . (3.14)
one verifies that the condition ζ ≪ 1 corresponds to a non-saturated regime, whereas ζ ≥ 1 corresponds to a saturated regime. These results suggest that thermionic emission can be used to extend the operating parameters space (density, temperature, etc.) where the electrode bias controls the plasma potential, or at least to lower further the plasma potential compared to the cold electrode case if thermionic emission is not large enough to achieve a non-saturated regime. It is interesting to note that this prediction is consistent with experimental observations [51] where the plasma potential measured approaches the value of the electrode bias as the thermionic current increases. Going back to parameter dependencies, we get from the definition of j is in Eq. (3.3b) that

ψ p ψ p = ψ b + Λ -l n ( 1 + Ξ ) ψ p = -(1 + Ξ) χ χ = 0.20 Ξ = 0 Ξ = 0.5 Ξ = 2 Ξ = 50
Ξ ∝ √ m i n √ T e j eth . (3.15) 
While the plasma density n was shown earlier to play no role in the definition of the inverse normalized plasma potential χ, we find that the dimensionless thermionic emission parameter Ξ depends on the inverse of the plasma density. As a result, for a given set of plasma parameters (i.e. here a given χ), the higher the plasma density the stronger the thermionic current density j eth needed to transition from saturated to non-saturated regime.
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Upper bounds set by virtual cathode formation

The results obtained above suggest using large thermionic current I eth as a means to reach the non-saturated regime and regain control over the plasma potential at the sheath edge through the electrode bias. There are, however, limits on how large this thermionic current may be. Indeed, for too large a current, a negative space charge can accumulate in front of the electrode, leading to the formation of what is known as a virtual cathode [59,[START_REF] Prewett | [END_REF]66,67,68]. In this case, as illustrated in Figure 3.5, the plasma potential then has a minimum within the sheath, creating a potential barrier for electrons that acts to limit the fraction of thermionic current reaching the quasi-neutral plasma [69,70,71,72], invalidating in turn the hypotheses of our model. One must thus ensure that the thermionic current is small enough to guarantee a monotonously increasing potential through the sheath. The condition to meet this requirement can be obtained analytically as done in the derivation below, which borrows from Poulos's work (Appendix C of Ref. [50]). It should be noted that the discussion here focuses on the virtual cathode regime, and does not consider more complex phenomena such as a possible potential well weakening and evolution to an inverted sheath that have been postulated to arise from trapped ions in the sheath [73,74,75,76].

Our starting point is Poisson's equation across the sheath, which for the normalized potential

ψ reads d 2 ψ(z) dz 2 = e ϵ 0 T e [n e (z) -n i (z) + n eth (z)] . (3.16) 
As already done in Paragraph 1.2.1, it will be convenient to choose the plasma potential to be zero at the sheath-plasma interface. For this purpose, we introduce the plasma potential ϕ ⋄ (z) = ϕ(z)ϕ p that varies from -∆ sh ϕ at the electrode to 0 at the sheath edge (see Figure 3.5 (a)). This potential verifies the same equation as ψ, namely

d 2 ψ ⋄ (z) dz 2 = e ϵ 0 T e [n e (z) -n i (z) + n eth (z)] . (3.17) 
Similarly to what was done in Paragraph 1.2.1, and more specifically Eqs. (1.72) and (1.77), we also have for the electron and ion density

n e (z) = n exp [ψ ⋄ (z)] , (3.18 
)

n i (z) = n 1 - 2 M 2 ψ ⋄ (z) , (3.19) 
with M is the Mach number. Looking now at the thermionic electron density n eth (z), the first step consists in rewriting it in terms of the dimensionless parameter quantifying thermionic emission Ξ = j eth /j is , that is

n eth (z) = nC s Ξ v eth (z) . (3.20)
The thermionic electron velocity v eth at position z in Eq. (3.20) can be obtained through energy conservation through the electric potential drop across the sheath

m e 2 v eth (z) 2 -eϕ ⋄ (z) = e∆ sh ϕ, (3.21) 
which writing the electron thermal velocity ve = eT e /m e and moving to dimensionless potential parameters (i.e. ψ ⋄ = ϕ ⋄ /T e and ∆ sh ψ = ∆ sh ϕ/T e ) yields

v eth (z) = ve 2 (ψ ⋄ (z) + ∆ sh ψ). (3.22)
Plugging this result into Eq. (3.20) then leads to the thermionic electron density

n eth (z) = nΞ m e 2m i (ψ ⋄ (z) + ∆ sh ψ) . (3.23) 
Putting these pieces together and substituting n i (z), n e (z) and n eth (z) into Poisson's equation Eq. (3.17) finally yields Analogously to what was done in Paragraph 1.2.1, we writes that the RHS bracket term in Eq. (3.24) derives from the potential

d 2 ψ ⋄ (z) dz 2 = 1 λ D 2 exp [ψ ⋄ (z)] -1 - 2 M 2 ψ ⋄ (z) -1/2 + Ξ m e 2m i (ψ ⋄ (z) + ∆ sh ψ) . ( 3 
V ⋄ = -exp [ψ ⋄ (z)] -M 2 1 - 2 M 2 ψ ⋄ (z) -Ξ 2m e m i (ψ ⋄ (z) + ∆ sh ψ). (3.25) 
Multiplying Eq. (3.25) by dψ/dz and then integrating from the sheath edge to the electrode surface yields

λ D 2 2 dψ ⋄ (z) dz 2 elec = λ D 2 2 dψ ⋄ (z) dz 2 sh-edge + (exp [-∆ sh ψ] -1) + M 2 1 + 2 M 2 ∆ sh ψ -1 -Ξ 2m e m i ∆ sh ψ. (3.26)
As stated above, the condition that no virtual cathode forms in front of the biased electrode (non-formation of a virtual cathode or NFVC in short) requires that the plasma potential grows monotonically from the electrode surface to the sheath edge. This is the regime illustrated in Figure 3.5 (a), as opposed to the virtual cathode regime shown in Figure 3.5 (b). This condition requires the right hand side of Eq. (3.26) to be positive, that is

Ξ < m i 2m e ∆ sh ψ λ D 2 2 dψ ⋄ (z) dz 2 sh-edge + (exp [-∆ sh ψ] -1) + M 2 1 + 2 M 2 ∆ sh ψ -1 .
(3.27) In most instances of interest in this thesis potential variations along field lines are small, so that the axial potential gradient length is much larger than the Debye length. In this case the first term in the bracket on the RHS of Eq. (3.27) can be neglected, and if one further assumes as done earlier M ≃ 1, Eq. (3.27) 

reduces to Ξ < Ξ crit , (3.28) 
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with Ξ crit = m i m e exp [-∆ sh ψ] -2 + √ 1 + 2∆ sh ψ √ 2∆ sh ψ . (3.29)
In Figure 3.6 the limit thermionic current for monotonic potential variation across the sheath Ξ crit is plotted as a function of ∆ sh ψ for different ions, as predicted by Eq. (3.29). We first verify that Ξ crit grows with the ion mass m i . This means that a monotonic sheath potential can be maintained at larger Ξ (that is for stronger thermionic emission) for a given ∆ sh ψ when using heavier gases. We also observe in Figure 3.6 that Ξ crit grows with ∆ sh ψ. This result is the consequence of the modeling of the potential variation across the sheath from Poisson's equation Eq. (3.17), where in some sense ∆ sh ψ can be thought of as an output for a given input Ξ. Physically, this results is consistent with the intuition that the larger the voltage drop, the larger the thermionic current density can be before the associated negative space charge leads to the formation of a virtual cathode. 3. Effect of the sheath on the plasma potential at the sheath edge green region, ensuring that the values of Ξ there do not lead to the formation of a virtual cathode in front of the electrode. In this limit the thermionic current is adequately captured by the circuit model described earlier. To conclude this paragraph, we note that the visual approach employed in Figure 3.7 to determine Ξ max is analogous to Poulos' method to plug the critical current in his circuit equation [50,Eq. (36)]. With our use of the thermionic dimensionless variable Ξ, this indeed means plugging Eq. (3.29) into the transcendental equation Eq. (3.6), which gives

exp (Λ -∆ sh ψ) -1 - m i m e exp [-∆ sh ψ] -2 + √ 1 + 2∆ sh ψ √ 2∆ sh ψ -χ(∆ sh ψ + ψ b ) = 0. (3.30)
Eq. (3.30) can then be solved numerically for ∆ sh ψ, and one verifies that results consistent with those deduced from the curves crossing in Figure 3.7 are obtained for the particular parameters χ = 0.2, ψ b = -10 and Λ ≃ 4.68 (Argon) used in this case. The results shown in Figure 3.7 discussed above were obtained for specific values of χ and ψ b (respectively 0.20 and -10) and we now examine their influence on the apparition of the virtual cathode. Considering first the electrode bias ψ b , and recalling that ∆ sh ψ scales as |ψ b |χ -1 Ξ (for Ξ ≫ 1), a decrease of ψ b (i.e. a more negative electrode bias) leads to an increase of ∆ sh ψ, and therefore a larger Ξ can be accommodated before the virtual cathode formation. This corresponds to a situation where the crossing point in Figure 3.7 is shifted towards the top right leading to larger values of both Ξ max and ∆ sh ψ(Ξ max ). Looking at the influence of χ on the apparition of the virtual cathode, Figure 3.8 now shows the thermionic dimensionless parameter Ξ as a function of ∆ sh ψ as obtained from the transcendental equation Eq. (3.6) for different values of χ. Compared to Figure 3.7, only the values of Ξ respecting the NFVC criteria are showed in Figure 3.8, that is Ξ ≤ Ξ crit . As previously discussed through Figure 3.3, a larger χ calls for a larger Ξ to control the plasma potential through the electrode bias. In other words, for two different plasma regimes χ 1 < χ 2 one needs Ξ 1 < Ξ 2 to achieve the same voltage drop across the sheath ∆ sh ψ. This means that Ξ(∆ sh ψ) curves are stacked from left to right in Figure 3.8 with increasing χ. Meanwhile, since Ξ crit grows with ∆ sh ψ, Ξ max increases with χ. This implies that the larger χ, the larger the voltage drop across the sheath ∆ sh ψ for which a virtual cathode will form. This is confirmed when computing the saturation parameter ζ from Eq. (3.14) for Ξ = Ξ crit , as shown for the different χ in Figure 3.8. One indeed verifies that ζ at the onset of the virtual cathode regime (that is when crossing the Ξ = Ξ crit curve) grows with χ. Closer examination further shows that ζ > 1 at the onset for large enough χ, indicating that a virtual cathode can form even in the saturated regime. To sum up this discussion on virtual cathode formation, the take away message is that while thermionic emission can help improve control over the plasma potential and is predicted by simple circuit model to allow for recovering a non-saturated regime, one must be careful as a virtual cathode can form before this transition takes place. In this case the predictions from the circuit model presented here do not hold as only part of the thermionic current contributes to the discharge current. It has been shown here that, all other things being equal, this was more likely to happen for large values of χ. Note that while the virtual cathode will appear at lower emission for lower χ, the voltage drop across the sheath for this maximum emission may already be lower than what could be achieved with larger χ and Ξ. As a matter of fact the plasma potential will scale as [1 + Ξ crit (χ)]/χ.

Ξ max 29 Ξ ≥ Ξ max Ξ < Ξ max Ξ Ξ crit

Limits of the model

The results obtained from this model and discussed above depend critically on the current I collected at the electrode, and from there on how the different contributions to this current (electrons, ions, thermionic electrons, ...) are defined. We discuss in this paragraph the different choices that were made, and how different choices may affect results.

Schottky effect

The thermionic current density j eth was assumed to be characterized by Richardson's law Eq. (3.3c), and thus only depends on the surface temperature T w and the work function W of the electrode's material. A possible correction may come from Schottky effect, which corresponds to a lowering of the work function in the presence of an electric field at the emitter surface [77,78]. In this case the thermionic current density is

j (Schottky) eth (ϕ b , ϕ p ) = A G T w 2 exp - e[W -∆W (ϕ b , ϕ p )] k B T w (3.31) with ∆W (ϕ b , ϕ p ) = e 4πϵ 0 E sh (ϕ b , ϕ p ) (3.32)
3. Effect of the sheath on the plasma potential at the sheath edge the modification in the material work function W [79]. Since the work function is lowered, thermionic emission is enhanced, and the Schottky effect is often accordingly referred to as field enhanced thermionic emission. An estimate of the electric field at the electrode surface can be obtained by assuming for simplicity a uniform field in the sheath, in which case

E sh (ϕ b , ϕ p ) = ∆ sh ϕ L sh = ϕ p -ϕ b L sh . (3.33)
While the potential difference ϕ p -ϕ b is known, the question of the actual sheath thickness remains. For a cold electrode and assuming a Child-Langmuir scaling [59,66] we expect the sheath thickness to grow as

L sh λ D = 2 5/4 3 ∆ sh ψ 3/4 . (3.34)
This result suggests that the sheath can hence be several Debye lengths thick for large normalized voltage drops. A growth of the sheath thickness with emission is also expected from the Child-Langmuir scaling for a fixed voltage drop across the sheath. On the other hand, an increase of Ξ in the saturated regime leads to a smaller voltage drop across the sheath ∆ sh ϕ and, by doing so, a thinner sheath L sh . The two contributions (higher emission, lower voltage drop) may hence have opposite effects on the sheath thickness. It is also our goal within this model to stay away from regimes, so that the sheath growth due to emission, if any, would be limited. For all of the above reasons, it seems difficult to evaluate L sh more definitively. We thus stick to the Debye length scaling, but keep in mind that it may be off by say an order of magnitude. Maybe more importantly, one verifies that a larger sheath means a weaker field and from there a weaker Schottky correction. For the purpose of determining whether this correction is important or not it is thus essential to have a lower bound for L sh , but its actual value matters less. Imposing L sh ≃ λ D , and recalling that the Debye length λ D is equal to ϵ 0 T e /(en), Eq. (3.32) gives

∆W ≃ e 3/2 n 1/2 T 1/2 e 4πϵ 0 3/2 ∆ sh ψ. (3.35) 
In Figure 3.9, the Schottky correction, which is measured here through the ratio

j (Schottky) eth j eth = exp e∆W k B T w , (3.36) 
is plotted as a function of both the plasma density n and the surface temperature T w for different values of ∆ sh ψ. One first notices that the correction grows with the plasma density n. This is because an increase in n leads to a thinner sheath, which from Eq. (3.33) gives a larger ∆W and thus a larger Schottky correction. As a matter of fact, plugging Eq. (3.35) into Eq. (3.36) gives

j (Schottky) eth /j eth ∝ exp n 1/4 ∆ sh ψ 1/2 T w . (3.37) 
Figure 3.9 and Eq. (3.37) also shows that the Schottky correction is weaker for higher emission temperature T w . This last result is consistent with the intuition that the hotter the electrode the larger the correction to the work function ∆W has to be to matter. It must be stressed here though that in the discharge model presented so far the key parameter quantifying thermionic emission is not the current density j eth but rather its normalization by the ion saturation current density, that is Ξ (Schottky) = j (Schottky) eth /j is . To see how it matters, the region such that Ξ (Schottky) ≤ 1, that is for which the main contribution to the current is due to the ion flux from the plasma (see Paragraphs 3.1.2 and 3.1.3), is overlaid in hatched green in Figure 3.9. What we observe is that for the conditions (n, T e , T w , ∆ sh ψ) considered here, the largest Schottky corrections are found in regions where Ξ (Schottky) ≪ 1, that is where the thermionic current is not expected to play a significant role in the first place. It is thus unlikely that Schottky corrections will have a large effect there, short of immense corrections. Yet, there are regions in Figure 3.9 with Ξ (Schottky) > 1 and a Schottky corrections of a few, for instance at large T w and large ∆ sh ψ. However, one must keep in mind that these regions also coincide with regions where the sheath thickness is expected to grow. Because of the difficulty to account realistically for these two opposed mechanisms, we simply neglect Schottky corrections in this manuscript, but keep in mind that it could in principle be responsible for corrections of order O(1) to the current.

Secondary emission

Going back to the definitions of currents, a contribution that has been omitted so far is that of secondary emission from particle impact at the cathode. For a classical ion sheath, one expects this to primarily take the form of electron emission from ion impact.

Electron emission by ion impact is typically characterized by the coefficient γ which quantifies the number of electrons emitted on average for each ion impact at the electrode. It can have two contributions, namely kinetic and potential emission [START_REF] Kaminsky | Atomic and ionic impact phenomena on metal surfaces[END_REF]. Potential emission occurs anytime the incident ion has an energy greater than twice the work function of the electrode material, and is relatively independent of the incident energy past this threshold. On the other hand, kinetic emission depends strongly on incident energy. Potential emission is generally the dominating contribution for incident energies below about 500 eV [START_REF] Kaminsky | Atomic and ionic impact phenomena on metal surfaces[END_REF], and is thus the only contribution considered here. Indeed, the incident energy is roughly the potential drop across the sheath (ions enter the sheath with Bohm velocity and gain energy through the sheath), so that kinetic secondary electron emission would only matter for biases significantly lower than -500 V and saturated regimes.

In terms of current balance at the cathode, secondary emission by ion impact is the source of a secondary current

I se = γI is (3.38)
which depends critically on γ. Because γ depends on many parameters including the gas, the energy of the incident ions, the surface condition and the electrode material [START_REF] Kaminsky | Atomic and ionic impact phenomena on metal surfaces[END_REF][START_REF] Mahadevan | [END_REF], accounting for it accurately is an immense task. However, the typical values reported in the literature [START_REF] Konuma | Film deposition by plasma techniques[END_REF] for incident energy below 100 eV and various targets and incident particles remain modest and much below 1 as shown in Table 3.1. This means, for instance, that for the common case of a Tungsten electrode immersed in an argon plasma, the secondary emission current corresponds to about 9.5% of the ion saturation current. Practically, this would increase the total current I and thus lower the saturation potential by the same amount. Yet, one finds that this additional contribution will be dominated by thermionic emission for Ξ ≥ γ. Since most of our work will be done for strongly emissive surfaces we simply neglect this contribution throughout this manuscript, but one should keep in mind that it could affect result by a factor (1 + γ) for a cold electrode, or more generally if γ ≥ Ξ.

Material

He + Ne + Ar + Kr + Xe + Molybdenum (Mo) 0.274 0.281 0.115 0.0611 0.019 Tungsten (W) 0.263 0.246 0.095 0.051 0.012 Table 3.1: Secondary electron emission coefficient by ion impact γ for an incident energy of 100 eV [START_REF] Konuma | Film deposition by plasma techniques[END_REF].

Increase of the Bohm velocity under thermionic emission

Another possible side effect of thermionic emission lies in the increase of the ion saturation current density j is through a modification of the Bohm velocity. Considering this question Palacio Mizrahi and Krasik [START_REF] Palacio Mizrahi | [END_REF] suggested that the velocity C 

C (therm) s C s = 1 + Ξ me 2m i ∆ sh ψ -1 1 -Ξ me 8m i ∆ sh ψ -3 . (3.39)
Taylor expansion to lowest order in m e /m i ≪ 1 then gives

C (therm) s C s ≃ 1 + 1 2 √ 2 m e m i ∆ sh ψ -1 + ∆ sh ψ -3 Ξ. (3.40)
The linear scaling of this correction with Ξ is confirmed in Figure 3.10. While these results show that this contribution will affect j is , and from there the plasma potential in the saturated regime, results shown in Figure 3.10 show that it will do so by at most a few percent. This additional contribution in the presence of thermionic emission is therefore neglected in this manuscript. 

C (therm) s /C s ∆ sh ψ = k Λ k = 1 k = 2 k = 3 k = 4

Capturing potential variations in the electrode shadow

So far in this Chapter the plasma potential was assumed to be constant in the shadow of the electrode, that is for r < r e . While this simplifying assumption facilitated the identification of various trends and shed light onto the limits on plasma potential control through biasing, it does have some limitations. This is particularly true if one is interested in electrodes with large radius in which case the assumption of a plasma potential that is uniform radially is difficult to justify.

This problem was recently studied by Liziakin et al. [49]. Compared to the model developed above, this new model still assumes that the variation of the plasma potential along field lines is negligible, but now allows for plasma potential radial variation all the way to the axis by considering that the current flowing radially at any radius r is the sum of all axial currents collected in the end-planes z = ±L/2 for r ′ ≤ r. Mathematically, this writes

I r (r) = r 0 j sh,∥ (r ′ )2πr ′ dr ′ .
(3.41)

3. Effect of the sheath on the plasma potential at the sheath edge

Note that, consistent with our earlier notation, I r is here the current corresponding to half the plasma column length. The plasma potential is then similarly obtained by integrating Ohm's law dϕ p (r) = -I r (r)dR(r), (3.42) with just like earlier dR(r) the incremental resistance given in Eq. (3.1). Note though that while ϕ p was used to denote the (constant) plasma potential in the electrode shadow in Section 3.1, it now depends on the radius ϕ p (r) = ϕ(r, z). In dimensionless variables, this rewrites

dψ p (r) dr = - 1 πrLT e σ ⊥ r 0 j sh,∥ (r ′ )2πr ′ dr ′ . (3.43)
This last equation is identical to Eq. (3.5) in Ref. [49], other than for our choice of notation and the fact that we use dimensionless variables.

In their work [49], Liziakin et al. consider that σ ⊥ depends on dψ p /dr, leading to an integrodifferential equation for ψ p . This is because they assume an ion-neutral collision frequency ν in that depends linearly on the ion velocity, and consider ions drifting with velocity

v i = T e B 0 dψ p (r) dr . (3.44)
From our discussion of ion-neutral collision in Paragraph 1.1.2, this is unlikely to be correct at low ion energy since the polarization scattering cross-section scales as the inverse of the ion velocity, which then leads an ion-neutral collision frequency ν in that is independent of the ion velocity. A dependence (albeit not necessarily linear) on v i and thus on dψ P /dr may on the other hand be representative of supersonic rotation Ωr ≫ v thi with Ω ≃ -E r /(rB 0 ) the plasma angular frequency. Following instead our assumption from Paragraph 1.1.2, we consider a constant cross section and thermal ion speed, leading to the ion-neutral collision frequency given in Eq. (1.33a). The perpendicular conductivity in Eq. (3.43) is then independent of ψ p and its derivative, which may in some sense corresponds to the slow rotation regime. A side benefit of this choice is that it allows, as we will show in the next paragraph, finding analytical solutions to Eq. (3.43).

Similarly to the model developed in Section 3.1, the equation for the potential must be complemented by the definition of axial currents collected in the end-planes z = ±L/2. For the particular configuration of a biased electrode of radius r e studied earlier and shown in Figure 3.1, the current density j sh,∥ (r) can be written as

j sh,∥ (r) = j e (r) -j is -j eth for r ∈ [0, r e ] , r 0 for r ∈ ]r e , r g ] . (3.45) 
While it looks very similar to the current I imposed in the earlier model, a key difference is that the electron current density j e (r) in Eq. (3.45) is expected to vary along the electrode radius. Indeed, j e depends on the plasma potential ϕ p (see Eq. (3.3a)), which is now assumed to depend on radius ϕ p (r). Eq. (3.45) also enforces no net axial current density flow past the end-planes z = ±L/2 beyond the extremity of the electrode (i.e. for r ∈]r e , r g ]), which is consistent with the assumption of a constant current past r e used in Section 3.1. Physically this corresponds to a dielectric boundary condition.

Analytical solution in the saturated regime

Consider first the saturated regime. Since the contribution of electrons to the current density j sh,∥ is in this case by definition zero, the dependence on ϕ p in Eq. (3.45) is removed. One then has a uniform current throughout the electrode j sh,∥ = -(j is + j eth ). Treating separately the electrode region (0 ≤ r ≤ r e ) and the dielectric region (r e < r ≤ r g ), Eq. (3.43) reduces to

dψ p (r) dr =          1 πrLT e σ ⊥ r 0 (j is + j eth ) 2πr ′ dr ′ for r ∈ [0, r e ] , r (3.46) 
1 πrLT e σ ⊥ re 0 (j is + j eth ) 2πr ′ dr ′ for r ∈ [r e , r g ] .
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Carrying the integrals immediately yields 

dψ p (r) dr =          j is (1 + Ξ) LT e σ ⊥ r for r ∈ [0, r e ] r (3.48) j is (1 + Ξ) LT e σ ⊥
ψ p (r e ≤ r ≤ r g ) = - j is T e σ ⊥ r e 2 L (1 + Ξ) rg r dr r = - j is T e σ ⊥ r e 2 ln (r g /r) L (1 + Ξ) . (3.50)
Using the definition of the dimensionless parameter χ in Eq. (3.10) and Ξ = j eth /j is , one can rewrite Eq. (3.50) as

ψ p (r e ≤ r ≤ r g ) = - 1 + Ξ χ ln (r g /r) ln (r g /r e ) . (3.51) 
One verifies that as expected the dimensionless plasma potential ψ p (r e ) then corresponds precisely to ψ p obtained in Eq. (3.12). Integrating now Eq. (3.48) from r to r e gives the radial profile of ψ p (r) in front of the electrode

ψ p (r e ) -ψ p (r ≤ r e ) = re r j is (1 + Ξ) LT e σ ⊥ r = j is (1 + Ξ) r e 2 2LT e σ ⊥ 1 - r 2 r e 2 . (3.52) 
Plugging in the expression for ψ p (r e ) obtained just above, Eq. (3.52) can be recast in terms of the dimensionless parameters χ and Ξ as 

ψ p (r ≤ r e ) = - 1 + Ξ χ 1 + 1 2 ln(r g /r e ) 1 - r 2 r e 2 . ( 3 
ψ p (r) =          - 1 + Ξ χ 1 + 1 2 ln(r g /r e ) 1 - r 2 r e 2 for r ∈ [0, r e ] , r (3.54) 
- 1 + Ξ χ ln (r/r g ) ln (r e /r g ) for r ∈ [r e , r g ] . (3.55) 
Analyzing these results, Eq. (3.54) shows that the potential in the electrode shadow actually exhibits a parabolic radial dependence. This is noteworthy insofar as this profile leads to a constant angular E×B drift frequency, and thus to solid body rotation in the shadow of the electrode. Indeed neglecting the diamagnetic contributions associated with gradients of density and temperature in front of the crossed-field drift, the plasma rotation writes

Ω = T e rB 0 dψ p (r) dr , (3.56) 
which is constant for a parabolic ϕ p (r). It should also be noted here that the fact that a parabolic profile is obtained in Eq. (3.54) instead of the r 3/2 profile derived by Liziakin et al. [49] is the consequence that, as mentioned above, σ ⊥ is assumed in this work independent of dψ p (r)/dr.

Numerical solution as an initial value problem

Although we were able to derive an analytical solution for the potential in the saturated regime, Eq. (3.43) must in general be solved numerically to obtain the radial profile of the dimensionless plasma potential ψ sh (r). In Ref. [49], Liziakin et al. used the numerical solver LaPotential [START_REF] Oiler | Program LaPotential[END_REF] to solve the integro-differential equation Eq. (3.43), taking into account a radial gradient of density and temperature in the perpendicular conductivity, as well as multiple electrodes, with the goal of comparing simulations results with experimental data. Rather than trying to accommodate right away more realistic experimental conditions (this will be done in Chapter 4), we use here numerical methods to further our understanding of the transition between saturated and nonsaturated regimes.

Figure 3.11: 1D radial mesh with N r the total number of nodes and N re the number of nodes along the electrode.

To do so we choose to solve Eq. (3.43) using a shooting method. First, the 1D radial domain is meshed using N r nodes, as illustrated in Figure 3.11. We write

r j = j∆r (3.57)
the radial position of the j th node where ∆r is the radial step size and j is an integer between 0 and N r -1. The associated surface elements are

S r j =            π ∆r 2 2 if j = 0 2πr j ∆r if j ∈ [1, N r -2] (3.58) 2πr g ∆r 2 if j = N r -1.
Using this grid, the derivative of ψ p (r) with respect to r on the LHS of Eq. (3.43) is discretized using a backward finite difference scheme,

dψ p (r) dr = ψ j -ψ j-1 ∆r + O(∆r), (3.59) 
whereas the continuous integral term on the RHS in Eq. (3.43) is handled via a discrete integral which for r = r j = j∆r writes 

- r 0 j sh,∥ (r ′ )2πr ′ dr ′ ≃                j k=0 j is (1 + Ξ -exp (Λ + ψ b -ψ k )) S r k for r ∈ [0, r e ] (3.60) Nr e -1 k=0 j is (1 + Ξ -exp (Λ + ψ b -ψ k )) S r k for r ∈ [r e ,
-ψ j + ψ j-1 + χ -1 πr e 2 ln(r g /r e ) ∆r r j [1 + Ξ -exp (Λ + ψ b -ψ j )] S r j (3.62) + χ -1 πr e 2 ln(r g /r e ) ∆r r j j-1 k=0 [1 + Ξ -exp (Λ + ψ b -ψ k ] S r k ) = 0,
3.2. Capturing potential variations in the electrode shadow whereas the plasma potential ψ j in front of the dielectric, that is ∀j ∈ [N re , N r -1], verifies

-ψ j + ψ j-1 + χ -1 πr e 2 ln(r g /r e ) ∆r r j   Nr e -1 k=0 [1 + Ξ -exp (Λ + ψ b -ψ k ] S r k )   = 0. (3.63)
Usually such a system is solved for set boundary conditions at r = 0 and r = r g . Here, because only the ground condition at r = r g is known, the set of Eqs. (3.62) and (3.63) is instead described as an initial value problem. Also, because the derivative is known on axis from symmetry, namely dψ p (r) dr r=0 = 0, (3.64)

our "shooting parameter" is actually Green and red curves highlight the potential profiles obtained for the non-saturated and saturated regimes, respectively. The black dots for r ≤ r e illustrate a parabolic radial dependence, whereas the dotted black curve near r g represents a logarithmic radial profile.

ψ 0 = ψ 1 = a.
Figure 3.12 shows the computed dimensionless plasma potential radial profile ψ p (r) normalized by its on-axis value |ψ p (0)| for different values of χ and for a cold electrode (Ξ = 0). Note that much lower values of χ are used here as compared to Fig. 3.3. This is because of the much larger bias ψ b ≃ -83.33 used here. Looking first at the normalized current density in the inset, one recovers the non-saturated and saturated regimes for respectively small and large values of χ. Indeed, consistent with the simpler model used in Section 3.1, the current density on the electrode j sh,∥ (r) is observed to be uniform and equal to its maximum value (in absolute value) in the saturated regime, whereas it is negligible in the non-saturated regime. However, we also observe that these two regimes are now separated by a group of curves obtained for intermediate values of χ for which the current goes from near zero on-axis to its saturated value at the outer edge of the biased electrode. This shows that saturation is actually a local phenomenon. By analogy with the nomenclature introduced earlier, we refer to this regime as partially saturated. A closer examination reveals that saturation first appears at the outer edge of the biased electrode and progressively moves radially inward with increasing χ until full saturation has been reached, which is to be expected for a monotonically increasing radial potential profile.

Effect of the sheath on the plasma potential at the sheath edge

Moving on now to the radial profile of the normalized plasma potential and starting from small value of χ, that is in the non-saturated regime, one observes a nearly constant profile in the shadow of the electrode (r ≤ r e ). This result can be explained from Ohm's law and the fact that the current drawn at the electrode is in this case very small. In this regime in the electrode shadow one simply finds ψ p ≃ ψ e + Λ, independent of radius. This same profile holds as χ increases up until partial saturation begins at the outer edge of the electrode. As the current then becomes larger (in amplitude), Ohm's law predicts an increase of ψ p . Since, as showed above, partial saturation move radially inward with χ, the position where ψ p (r) begins to deviate from its constant on-axis value is also observed to move radially inward. Finally, once the fully saturated regime has been reached, a new profile sets in and holds for arbitrary large value of χ. One verifies in passing that this profile matches the analytical solution Eqs. (3.54) and (3.55) derived in Paragraph 3.2.1.

Effect of a supplemental floating electrode

Although the number of possible end-electrode configurations is essentially infinite, biased endelectrodes have often been combined with floating end-electrodes [START_REF] Mase | [END_REF][START_REF] Shinohara | [END_REF]86,42,87]. Among the various motivations for this choice is that floating end-electrodes can have a positive effect on endlosses [88], while biased electrodes may be advantageous to improve confinement by creating radial electric fields [89]. Positioning a floating electrode in between a biased electrode and a grounded chamber, as illustrated in Figure 3.13, has also been suggested to prevent the formation of an arc discharge between the biased electrode and the ground [49]. Here we briefly discuss how the addition of such an electrode is expected to affect plasma potential control possibilities based on the results highlighted earlier in this chapter. This problem will be revisited later in Paragraph 4.4.1. A floating electrode is by definition characterized by a total current drawn from the plasma

I f = r f re j f,∥ (r)2πrdr = 0 (3.65) 3.4. Summary with j f,∥ (r) = j is exp Λ + ϕ f -ϕ p (r) T e -1 (3.66) 
the current density. The floating electrode potential ϕ f in Eq. (3.66) self adjusts to satisfy the zero current condition Eq. (3.65). It must be stressed however that this condition should not be confused (as it appears to be the case in Liziakin et al. [49]) with zero current density locally (i.e. j f,∥ = 0), the latter corresponding to a steady-state dielectric condition. Indeed, local current collected on a floating electrode can very well be non-zero while maintaining zero total current. From Eq. (3.66), it is in particular obvious that since the electrode potential ϕ f is everywhere the same, the current density j f must vary if placed in a region with varying plasma potential ϕ p (r). This is precisely the case of the ring annular electrode shown in Figure 3.13. We indeed know from the previous sections that the potential monotonically grows from the axis to the ground at r = r g . The floating electrode will hence have no other choice but to adjust its potential somewhere in between the plasma potential at its extremities to maintain zero current. This in turn implies that the charged particle flux reaching the floating electrode will be electron dominated in the inner region of the electrode (j f,∥ > 0), and ion dominated (j f,∥ < 0) in the outer region. This results in a current flowing radially inward through the floating electrode, which hence acts as a deviation from the radial current crossing the plasma.

The impact of this effect on the plasma potential on axis is illustrated more immediately by comparing the cases without and with the floating electrode under the assumption of a saturated regime, through the idealized circuits shown in Figures 3.14 (a) and 3.14 (b). We note ϕ p (r) and ϕ f p (r) the plasma potential for r ∈ [r e , r g ] respectively without and with the floating electrode, and break down the radial plasma resistance

R ⊥ into two components R ⊥ 1 and R ⊥ 2 (R ⊥ 1 + R ⊥ 2 = R ⊥ ),
corresponding respectively to the region [r e , r f ] and [r f , r g ]. Looking at Figure 3.14 (a), the current reaching the electrode in the saturated regime is -I is (with our current convention), and the plasma potential on axis ϕ p (r e ) is simply

ϕ p (r e ) = -(R ⊥ 1 + R ⊥ 2 )I is . (3.67) 
Looking now at the case with a floating electrode in Figure 3.14 (b), the plasma potential on axis ϕ 

(f ) p (r e ) now writes ϕ (f ) p (r e ) = -(R ⊥ 1 + R ⊥ 2 )I is -R ⊥ 1 I. ( 3 
p (r e )| < |ϕ p (r e )|. This simple analysis suggests that the presence of an intermediate floating electrode will lessen control on the plasma potential, or in other words that the plasma potential on axis in the saturated regime will be lower without than with the supplemental floating electrode. This will be confirmed via numerical simulations in Paragraph 4.4.1.

Summary

To summarize our findings, we have shown in this chapter that the ability to control the plasma potential through the electrode bias ψ b is conditioned upon the smallness of the saturation criterion

ζ = |ψ b |χ 1 + Ξ . (3.69)
derived in Eq. (3.14). For values of χ, Ξ, and ψ b such that this quantity is greater than 1, the regime is said to be saturated. The plasma potential ψ p then no longer varies with ψ b . As showed in Eq. (3.12), it is constant and equal to

ψ p = -(1 + Ξ)χ -1 , whereas the sheath drop ∆ sh ψ = ψ p -ψ b grows as |ψ b | -(1 + Ξ)χ -1 .
These results point to using an emissive electrode to increase control over the potential by increasing the current crossing radially the plasma column. Further analysis did however show 3. Effect of the sheath on the plasma potential at the sheath edge that the formation of a virtual cathode sets an upper limit on how large thermionic emission can be, or at least on thermionic emission regimes for which the models developed here remain valid. Conversely, simple current consideration showed that adding a supplemental floating ring electrode past the central biased electrode reduces the current flowing through the plasma, lessening potential control through the electrode bias.

Examining more closely the potential near the axis, a more refined analytical model showed that the saturation phenomenon is local, starting at the outer edge of the biased electrode and moving radially inward until the entire surface of the biased electrode is collecting maximum current density (in absolute value). In the non-saturated regime, this model shows little difference compared to the one neglecting radial potential variations in the electrode shadow. On the other hand, this new model shows new physics in the saturated regime, where the plasma potential is found to have a parabolic profile in the electrode shadow.

Chapter 4

Effect of the sheath on the voltage drop along field lines Although we have identified in Chapter 3 different levers that are predicted to allow minimizing the voltage drop across the sheath and thus improving or even regaining control over the potential at the sheath edge, it remains to examine how these levers simultaneously affect the voltage drop along magnetic field lines in a quasi-neutral plasma. Control over the plasma potential indeed demands to minimize both the voltage drop across the sheath and the voltage drop along magnetic field lines in the plasma.

Having examined separately the potential distribution in a quasi-neutral plasma in Chapter 2, and the voltage drop across the ion-sheath formed in front of a negatively biased and possibly emissive electrode in Chapter 3, we now complete in this new chapter this analysis by considering these two pieces together. We begin by discussing what can be said on the effect of the sheath on the voltage drop along field lines based on theoretical considerations, and then turn to numerical simulations to validate these findings and gain further insights. Part of the work presented in this chapter has been published in the scientific literature [90].

4. Effect of the sheath on the voltage drop along field lines

Insights from theory

Existing analytical models pertaining to plasma potential control from a biased electrode so far either neglect the effect of an ion-sheath in front of the biased electrode [47] or the loss of the potential along field lines [49,48]. Those models were studied in respectively Chapters 2 and 3. The main challenge in unifying these models lies in the need to include a flux condition capturing the physics of the ion sheath into the anisotropic Laplace equation Eq. (2.1) derived from charge conservation.

Short of fully achieving here this goal (this will be done numerically in the next sections), we introduce in this section two new analytical models shedding light onto the effect of the sheath on the variation of the plasma potential along field lines.

Voltage drop along field lines in the saturated regime

Ohm's law at the sheath edge, which we recall is defined here as the boundary between the sheath and the quasi-neutral plasma, writes

j sh,∥ (r, -z sh ) = -σ ∥ ∂ϕ(r, z) ∂z z=-z zh (4.1)
with z sh = L/2 the axial position of the sheath edge. Meanwhile, we have shown in the last chapter that the plasma potential at the sheath edge is controlled by the current drawn at the electrode, which led us to conclude that an increased current could help maximize control. Although local, Eq. (4.1) then already suggests that minimizing the voltage drop across the sheath will be done at the expense of a larger potential variation along field lines.

To confirm this finding, we first expand the first partial derivative of ϕ with respect to z around -z sh to obtain

∂ϕ ∂z (r, z) = ∂ϕ ∂z (r, -z sh ) + (z + z sh ) ∂ 2 ϕ ∂z 2 (r, -z sh ) + 1 2 (z + z sh ) 2 ∂ 3 ϕ ∂z 3 (r, -z sh ) + O (z + z sh ) 3 . (4.2)
Additional terms in ∂/∂r expected for the expansion of a bi-variate function do not appear here since we only consider a change in position along ẑ. From Eq. (4.1) the first term on the RHS of Eq. (4.2) is simply

∂ϕ ∂z (r, -z sh ) = - j sh,∥ (r, -z sh ) σ ∥ . (4.3) 
Then, from the uniform anisotropic Laplace equation Eq. (2.4), the second and third partial derivative of ϕ with respect to z read

∂ 2 ϕ ∂z 2 (r, z) = - σ ⊥ σ ∥ 1 r ∂ ∂r r ∂ϕ ∂r (r, z) (4.4) 
and

∂ 3 ϕ ∂z 3 (r, z) = - ∂ ∂z σ ⊥ σ ∥ 1 r ∂ ∂r r ∂ϕ ∂r (r, z) = - σ ⊥ σ ∥ 1 r ∂ ∂r r ∂ ∂r ∂ϕ ∂z (r, z) = σ ⊥ σ ∥ 1 r ∂ ∂r r ∂ ∂r j ∥ (r, z) σ ∥ . (4.5) 
Writing r = r/r e and z = z/L, Eq. (4.5) rewrites

∂ 3 ϕ ∂ z3 (r, z) = τ 2 L r g r e 2 1 r ∂ ∂ r r ∂ ∂ r j ∥ (r, z) σ ∥ (4.6)
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with τ = L r g σ ⊥ σ ∥ (4.7)
as previously defined in Ref. [47] and recalled in Chapter 2. This qualitatively shows that the contribution of the third partial derivative in Eq. (4.6) scales as (τ /L ∇rj ∥ ) 2 where L ∇rj ∥ characterizes the radial gradient length of the parallel current density in units of r e . Similarly, higher order derivatives can be written as

∂ m ϕ ∂ zm (r, z) = τ 2 L r g r e 2 1 r ∂ ∂ r r ∂ ∂ r ∂ m-3 ∂ zm-3 j ∥ (r, z) σ ∥ . (4.8) 
A similar analysis as that done for the third derivative can thus be made here, with the difference that the gradient length is now taken on the (m -3) th partial derivative of j ∥ with respect to z. Because j ∥ is expected to vary smoothly along field lines from its value at the electrode to 0 for z = 0 (by symmetry), the contribution of these extra terms is expected to decrease rapidly with m, and in any case to be dominated by third order contribution.

In the saturated regime the parallel current density is constant along the entire electrode, j sh,∥ = -(j is + j eth ), and thus j ∥ (r ≤ r e , -z sh ) does not depend on r (i.e. L ∇rj ∥ → ∞). Eq. (4.6) then implies that the last term in Eq. (4.2) simply cancels out in this case. In addition from Eq. (3.48) we obtain,

∂ϕ ∂r (r, -z sh ) = (j is + j eth )r Lσ ⊥ (4.9) so that 1 r ∂ ∂r r ∂ϕ ∂r (r, -z sh ) = 2 (j is + j eth ) Lσ ⊥ , (4.10) 
which plugging into Eq. (4.4) yields

∂ 2 ϕ ∂z 2 = -2 (j is + j eth ) Lσ ∥ . (4.11) 
Substituting Eqs. (4.3) and (4.11) into Eq. (4.2), and recalling that j sh,∥ = -(j is + j eth ) finally leads to

∂ϕ ∂z (r, z) = (j is + j eth ) σ ∥ 2z L 1 + O τ 2 , (4.12) 
where the O τ 2 term comes from higher order terms involving ∂j ∥ /∂z. Integrating Eq. (4.12) between -z sh and z gives the electric potential at any point in the shadow of the electrode (r ≤ r e ) as a function of its value at the same radius at the sheath edge. Writing ϕ sh (r) = ϕ(r, -z sh ) the plasma potential at the sheath edge, one gets to lowest order in τ

ϕ(r, z) = ϕ sh (r) + L 4 (j is + j eth ) σ ∥ 1 - 2 L z 2 . (4.13)
Writing similarly ϕ mid (r) = ϕ(r, 0) the plasma potential at the midplane, the voltage drop along field lines ∆ ∥ ϕ sat (r) = ϕ mid (r)ϕ sh (r) is then

∆ ∥ ϕ sat (r) = L 4σ ∥ (j is + j eth ), (4.14) 
or equivalently using dimensionless variables

∆ ∥ ψ sat (r) = L 4T e σ ∥ j is (1 + Ξ). (4.15)
This result shows that, at least in the saturated regime, the voltage drop along field lines in the quasi-neutral plasma ∆ ∥ ψ is expected to grow with the current drawn at the electrode, and thus with thermionic emission.

Effect of the sheath on the voltage drop along field lines

In the non-saturated regime, the contribution of the third derivative is no longer zero, but scales as (τ /L ∇rj ∥ ) 2 . One can then write analogously

∆ ∥ ψ th (r) = - L 4T e σ ∥ j sh,∥ (r), (4.16) 
indicating that the voltage drop along field lines in this regime is controlled by the now radius dependent current density drawn at the electrode, and that as long as j sh,∥ (r) r e ∂j sh,∥ (r) ∂r ≫ τ. (4.17)

Taking a step back, we have seen in Paragraph 3.1.3 that thermionic emission can help achieve control over the plasma potential over a larger range of operating conditions compared to the case of a cold biased electrode. It has notably been shown to reduce the voltage drop which exists across the sheath in the case of a strongly negative bias such that |ψ b |χ > 1. On the other hand, Eq. (4.15) now suggests that in these same saturated conditions thermionic emission would lead to a greater voltage drop along field lines, suggesting the existence of a trade-off.

Discharge model with a 2D resistor circuit

A second direction explored to capture jointly sheath and quasi-neutral physics consists in extending the electric circuit discharge model proposed by Liziakin et al. [48] to allow capturing both axial and radial potential variations. This is done here by modeling the plasma through the 2D resistor circuit illustrated in Figure 4.1, instead of the simple resistor that was employed in Liziakin's model. It is important to note though that this model by construction still considers the potential in the shadow of the electrode (r < r e ) to be constant. Accordingly the plasma potential is only modeled here over the domain [r e , r g ] × [-L/2, 0].

Domain discretization

The domain [r e , r g ] × [-L/2, 0] is discretized using respectively N r and N z nodes along the radial and axial directions, and we define accordingly the step sizes ∆r = (r gr e ) N r -1 (4.18)

and

∆ ∥ z =        L/2 N z -1 if N z > 1 (4.19a) 0 if N z = 1. (4.19b)
As it will prove handy, we also define here for convenience

∆ ⊥ z = (L/2) N z . (4.20)
The positions at which the electric potential is known are the nodes of the circuit (r j , z i ) represented as pink dots in Figure 4.1, with

r j = r e + j∆r with j ∈ [0, N r -1] (4.21)
and

z i = - L 2 + i∆ ∥ z with i ∈ [0, N z -1], (4.22) 
and we write ϕ i,j = ϕ(r j , z i ) as a shorthand for the discretized potential. associated with an annular surface 2πrdr and a length dz. From the step sizes defined above, we can then compute by integration along r and z the discrete resistors in our circuit. Specifically, writing R (i,j) ⊥ the discretized perpendicular resistance between node (i, j) and node (i, j + 1) and R (i,j) ∥ the discretized parallel resistance between node (i, j) and node (i + 1, j), one gets

R (i,j) ⊥ = ln(r j+1 /r j ) 2π∆ ⊥ zσ ⊥ (4.25)
and

R (i,j) ∥ =            ∆ ∥ z πr 2 e σ ∥ for j = 0 (4.26a) ∆ ∥ z π(r 2 j -r 2 j-1 )σ ∥ else. (4.26b)

Determination of the discretized potential

Solving for the electric potential ϕ i,j at each node of the 2D resistor circuit is done in two steps. The first step is done through the mesh-current method [START_REF] Tooley | Electronic Circuits-Fundamentals & Applications[END_REF], also known as the loop current method. For a set potential ϕ 0,0 this method determines the loop currents, that is to say the current in each mesh or smallest closed path forming a circuit, via Kirchhoff's law. This leads to a linear system of the form

[R] {I} = {ϕ input } , (4.27) 
where [R] is a matrix of resistors, {I} is a vector of loop currents and {ϕ input } is a vector storing voltage sources. In the particular case of the circuit shown in Figure 4.1 vectors have 1 + (N r -1)(N z -1) components, and only the first component of {ϕ input } is non-zero and equal to ϕ 0,0 . Solving Eq. (4.27) for {I}, the current I at the top left at the circuit can be computed as a function of ϕ 0,0 and resistors. Just as before, this current must match the current flowing through the sheath, which can be expressed through the transcendental equation given by Eq. (3.6) as

exp Λ + ϕ b -ϕ 0,0 T e -1 - j eth j is - I(ϕ 0,0 ) I is = 0. (4.28)
Eq. (4.28) can then be solved for ϕ 0,0 .

Having now determined the potential ϕ 0,0 , the second step consists in computing the distribution of ϕ i,j in between the resistors of the circuit. This is done by reconstruction from the ground reference at r = r g using Ohm's law through each resistor, the current loop in each mesh having been determined for a given ϕ 0,0 in the first step.

Illustration through a 3 × 2 example

To illustrate this method, let us consider the 3 × 2 circuit shown in Figure 4.2. This is the minimal configuration to account both for axial and radial potential variations. ). This electric circuit is made of three meshes which the corresponding loop currents I, I (0,0) and I (0,1) . The actual current flowing through each resistor (denoted as I R (i,j) ⊥ and I R (i,j)

∥

) can then immediately be computed from these loop currents.

The first step is realized by applying the mesh-current method over the three meshes leading to the following set of equations

                   I R (0,0) ⊥ + R (0,1) ⊥ -I (0,0) R (0,0) ⊥ -I (0,1) R (0,1) ⊥ = ϕ 0,0 I (0,0) R (0,0) ⊥ + R (1,0) ⊥ + R (0,0) ∥ + R (0,1) ∥ -IR (0,0) ⊥ -I (0,1) R (0,1) ∥ = 0 
I (0,1) R (0,1) ⊥ + R (1,1) ⊥ + R (0,1) ∥ -IR (0,1) ⊥ -I (0,0) R (0,1) ∥ = 0 a (4.29)
where the different resistances are determined through the definitions R

(i,j) ⊥ and R (i,j) ∥
given by Eqs. (4.25), (4.26a), and (4.26b). Introducing the variables C r = ln(r g /r 1 )/ ln(r 1 /r e ) and α r = 2∆ ∥ z∆ ⊥ z/(r e 2 ln(r 1 /r e )), solving for {I} and expanding to the second order in µ = σ ⊥ /σ ∥ ≪ 1 yields

I ≃ ϕ 0,0 R (0,0) ⊥ 2 1 + C r - α r (1 + C r ) 2 µ (4.30a) I (0,0) ≃ ϕ 0,0 R (0,0) ⊥ 1 1 + C r - α r (2 + C r ) 2 (1 + C r ) 2 µ (4.30b) I (0,1) ≃ ϕ 0,0 R (0,0) ⊥ 1 1 + C r - α r 2 (1 + C r ) 2 µ . (4.30c)
The loop currents are functions of ϕ 0,0 , which is then obtained by equating the current drawn at the electrode with the discharge current given by Eq. (4.30a), leading to

exp Λ + ϕ b -ϕ 0,0 T e -1 - j eth j is - ϕ 0,0 R (0,0) ⊥ I is 2 1 + C r - α r (1 + C r ) 2 µ = 0. (4.31)
4. Effect of the sheath on the voltage drop along field lines

Finally, once ϕ 0,0 has been determined, the potential at each node is obtained by writing Ohm's law for each resistor

               ϕ 0,0 ϕ 0,1 ϕ 0,2 ϕ 1,0 ϕ 1,1 ϕ 1,2                =           R (0,0) ⊥ + R (0,1) ⊥ -R (0,0) ⊥ -R (0,1) ⊥ -R (0,1) ⊥ R (0,1) ⊥ 0 0 0 0 0 R (0,1) ⊥ R (0,1) ⊥ 0 0 R (0,1) ⊥ 0 0 0              I I (0,0) I (0,1)    . (4.32)

General results

The mesh-current method described above can be used to examine the radial profiles of normalized plasma potential both at the sheath edge ϕ sh Starting with the most anisotropic case µ = 10 -5 , we see in Figure 4.3 that the potential profile 4.1. Insights from theory follows a logarithmic radial profile both at the sheath edge and in the midplane. This is consistent with our earlier findings that the potential at the sheath edge is predicted in Eq. (3.55) to follow a logarithmic profile, and that as shown in Figure 2.2 magnetic field lines are in this regime nearly iso-potential.

Looking now at the effect of µ at the sheath edge in Figure 4.3 (a), we observe that an increase of µ makes the profile radial ϕ sh (r)/|ϕ sh (r e )| steeper on axis. This result is confirmed when going back to the 3 × 2 example shown in Figure 4.2. Indeed from Eq. (4.32), the normalized plasma potential at the sheath edge ϕ sh (r j )/|ϕ sh (r e )| writes

ϕ sh (r j ) |ϕ sh (r e )| =        -1 for j = 0 (4.33a) - ln(r g /r 1 ) ln(r g /r e ) + α r C r 2 (1 + C r ) 2 µ for j = 1 (4.33b) 0 for j = 2 (4.33c)
and Eq. (4.33b) clearly shows that the larger µ the larger (in absolute value) the potential variation at low radius. Physically, this can be understood by noting that an increase of σ ⊥ at fixed σ ∥ leads to a uniform decrease in R (i,j)

⊥ , but that the radial current though the perpendicular resistors I R (0,j) ⊥ scales roughly as µ j . As a result one expects as observed the radial voltage drop to be more concentrated near axis for larger µ ≤ 1.

Examining now the midplane in Figure 4.3 (b), we find that an increase of µ progressively leads to a deviation of the radial profile ϕ mid (r)/|ϕ mid (r e )| from the logarithm solution, and that solutions approach a Bessel radial profile of the first kind and zero-th order for µ ≃ 1. It is interesting to note here that a Bessel profile is precisely the radial solution of the anisotropic Laplace equation for a uniform plasma obtained by separation of variables in Eq. (2.9a). One way to interpret this finding is to note that for large µ the effect of the potential at the sheath edge ϕ sh (r) on the potential in the mid-plane ϕ mid (r) is limited, so that it stands to reason that the "natural" Bessel profile is recovered in this limit.

Finally, we can use the 2D resistor model developed here to examine the radial profile of the fraction of the plasma potential lost along field lines

δ ∥ ϕ(r) = 1 - ϕ mid (r) ϕ sh (r) . ( 4 

.34)

As a reminder, a similar analysis was performed in Paragraph 2.1.1 neglecting sheath effects, where we then showed in Eq. (2.13) that the normalized voltage drop along field lines was independent of the radial position r. As can be seen in Figure 4.4, predictions from Eq. (4.34) are roughly consistent with the earlier results, but we now find that the fraction of the plasma potential lost along field lines δ ∥ ϕ(r) depends on radius. For the two most anisotropic cases, δ ∥ ϕ(r) is shown to be larger than the predictions from Paragraph 2.1.1 close to the electrode, and smaller close to the ground condition at r g . This decrease near r g was to be expected since by construction both profiles verifies ϕ(r g ) = 0.

Brief

The analytical models derived in this section provide new insights into plasma behavior under electrode biasing. First, we have shown that in the saturated regime, the plasma potential distribution along magnetic field in the shadow of the electrode is described by Eq. (4.13). This result suggests that increasing the discharge current, for instance through thermionic emission, will be associated with a larger voltage drop along field lines in the quasi-neutral plasma. In addition, the extended electric circuit developed here sheds new light on the radial profile of the plasma potential in the midplane, which in contrast to earlier results derived in Paragraph 3.2.1 now depends on the degree of plasma anisotropy µ = σ ⊥ /σ ∥ . This model, however, can not capture the potential distribution within the electrode shadow (r ≤ r e ). To reconcile these findings and develop of a more comprehensive picture of these coupled effects we now turn to numerical simulations. 

Solving the anisotropic Laplace equation with flux boundary condition: the Anisotropic Laplace Solver (ALS)

As mentioned above, capturing jointly the sheath physics and the plasma potential distribution in the quasi-neutral plasma requires solving the anisotropic Laplace equation

σ ⊥ ∂ϕ 2 ∂r 2 + σ ⊥ r + ∂σ ⊥ ∂r ∂ϕ ∂r + ∂σ ∥ ∂z ∂ϕ ∂z + σ ∥ ∂ 2 ϕ ∂z 2 = 0 (4.35)
which was already derived in Eq. (2.1), but now imposing flux conditions representative of the sheath. Although this is a difficult task analytically, this can be done numerically, and this is the purpose of the Anisotropic Laplace Solver (ALS) which we will now discuss in detail. The numerical methods presented in the following discussion are largely inspired by the textbook "Numerical methods for partial differential equations: finite difference and finite volume methods" by S. Mazumder [START_REF] Mazumder | Numerical methods for partial differential equations: finite difference and finite volume methods[END_REF].

Implementation of the Anisotropic Laplace Solver

Numerical methods to solve partial differential equations (PDEs) such as Eq. (4.35) can roughly be grouped into three categories [START_REF] Mazumder | Numerical methods for partial differential equations: finite difference and finite volume methods[END_REF][START_REF] Langtangen | Finite difference computing with PDEs: a modern software approach[END_REF][START_REF] Larson | The finite element method: theory, implementation, and applications[END_REF]: Finite Difference Methods (FDM), Finite Volume Methods (FVM) and Finite Element Methods (FEM). Finite Difference Methods solve PDEs by approximating derivatives with finite differences. Because FDM solves the PDEs in its original form, the solutions obtained are called strong form solutions [START_REF] Mazumder | Numerical methods for partial differential equations: finite difference and finite volume methods[END_REF]. This is in contrast with FVM and FEM which solves an integral or weak form of the governing equation, and whose solution are therefore accordingly called weak form solutions. The choice of a particular method is often motivated by the conservation property of the governing equation. The weak approach notably conserves fluxes which is particularly desirable if the PDE is a conservative equation. In this thesis, both approaches are used. The numerical code ALS introduced here employs for simplicity finite differences to solve Eq. (4.35), whereas finite volume methods will be used in Chapter 6 to solve a system of couple PDEs for conserved quantities. We write again ϕ(r, z) = ϕ i,j the potential solution at node (r j , z i ) with now

r j = j∆r with j ∈ [0, N r -1] (4.38)
and

z i = - L 2 + i∆z with i ∈ [0, N z -1]. (4.39)
Adopting as mentioned above a finite difference approach, the different derivatives of ϕ, σ ⊥ , and σ ∥ which appear in Eq. (4.35) are approximated using Taylor series. To illustrate this process, consider the Taylor expansion of the potential at grid positions (r j -∆r, z i ) and (r j + ∆r, z i ) in terms of the potential at grid position (r j , z i ), which yields

ϕ i,j+1 = ϕ i,j + ∆r ∂ϕ ∂r + ∆r 2 2! ∂ 2 ϕ ∂r 2 + ∆r 3 3! ∂ 3 ϕ ∂r 3 + ∆r 4 4! ∂ 4 ϕ ∂r 4 + ... (4.40a) ϕ i,j-1 = ϕ i,j -∆r ∂ϕ ∂r + ∆r 2 2! ∂ 2 ϕ ∂r 2 - ∆r 3 3! ∂ 3 ϕ ∂r 3 + ∆r 4 4! ∂ 4 ϕ ∂r 4 -... . (4.40b) 
By adding the two last expressions one immediately obtains

∂ 2 ϕ ∂r 2 = ϕ i,j+1 -2ϕ i,j + ϕ i,j-1 ∆r 2 - ∆r 2 12 
∂ 4 ϕ ∂r 4 + ... (4.41) which shows that the second partial derivative of ϕ with respect to r at (r j , z i ) can be estimated to second order in ∆r from ϕ i,j-1 , ϕ i,j and ϕ i,j+1 . In other words the truncation error

O(∆r 2 ) = - ∆r 2 12 
∂ 4 ϕ ∂r 4 + ... , (4.42) 
scales as the square of the grid step ∆r, and this finite difference scheme is accordingly said to be second order. More generally, a truncation error O[(∆r) m ] corresponds to a scheme of order m.

In general one needs a stencil with at least m + 1 points and m Taylor series expansions to approximate an mth derivative. If a greater number of points are used it is then possible to eliminate higher order terms, and as a result to derive a higher order approximation [START_REF] Mazumder | Numerical methods for partial differential equations: finite difference and finite volume methods[END_REF]. For instance, the first partial derivative of ϕ with respect to r can be obtained from either Eq. (4.40a) or Eq. (4.40b) (using respectively forward and backward schemes), with in both cases a truncation error that is first order. Alternatively an additional point gives the centered scheme

∂ϕ ∂r = ϕ i,j+1 -ϕ i,j-1 2∆r + O(∆r 2 ) (4.43)
which is now second order. Following this approach for all spatial derivatives (see Appendix A for a detail discussion of operators discretization in ALS), a second-order finite difference formulation of Eq. (4.35) based on the 5-points stencil shown in Figure 4.5 is

σ ⊥,i,j ϕ i,j+1 -2ϕ i,j + ϕ i,j-1 ∆r 2 + σ ⊥,i,j r j + σ ⊥,i,j+1 -σ ⊥,i,j-1 2∆r ϕ i,j+1 -ϕ i,j-1 2∆r (4.44) + σ ∥,i+1,j -σ ∥,i-1,j 2∆z ϕ i+1,j -ϕ i-1,j 2∆z + σ ∥,i,j ϕ i+1,j -2ϕ i,j + ϕ i-1,j ∆z 2 = 0.

Effect of the sheath on the voltage drop along field lines

To facilitate readability, we introduce the following parameters α = 2 σ ⊥,i,j ∆r + σ ∥,i,j ∆z (4.45a)

β + = 1 ∆z 2 σ ∥,i,j + 1 4∆z 2 σ ∥,i+1,j - 1 4∆z 2 σ ∥,i-1,j (4.45b) β -= 1 ∆z 2 σ ∥,i,j - 1 4∆z 2 σ ∥,i+1,j + 1 4∆z 2 σ ∥,i-1,j (4.45c 
)

γ + = 1 ∆r 2 + 1 2r j ∆r σ ⊥,i,j + 1 4∆r 2 σ ⊥,i,j+1 - 1 4∆r 2 σ ⊥,i,j-1 (4.45d) γ -= 1 ∆r 2 - 1 2r j ∆r σ ⊥,i,j - 1 4∆r 2 σ ⊥,i,j+1 + 1 4∆r 2 σ ⊥,i,j-1 (4.45e)
which then enables to rewrite Eq. (4.44) in compact form as 

-α ϕ i,j + γ + ϕ i,j+1 + γ -ϕ i,j-1 + β + ϕ i+1,j + β -ϕ i-1,j = 0. ( 4 

Boundary conditions

Solving the partial differential equation Eq. (4.35) or its discretized formulation Eq. (4.46) requires imposing boundary conditions for the potential ϕ on all edges of the domain. To illustrate options available in ALS we consider here more particularly the computational domain shown in Figure 4.6, which corresponds to the physical configuration of interest in this thesis and which will be used later for physically motivated studies.

Physical conditions.

Starting with symmetries, the configuration of interest is both invariant by rotation around the axis ẑ and symmetrical with the plane z = 0. These symmetry conditions translate into the boundary conditions for the potential ∂ϕ ∂r r=0

= 0 (4. 

z=-z sh = j is σ ∥ 1 + Ξ -exp Λ + ϕ b (r) -ϕ(r, -z sh ) T e , (4.50) 
which is simply equating the parallel current density written from Ohm's law at the edge of the quasi-neutral plasma to the current density flowing through the sheath, as already given in Eq. (3.3). We note here though the important property that this flux boundary condition makes our problem non-linear, and that even if the governing equation Eq. 

α ϕ i,0 + γ+ ϕ i,1 + γ++ ϕ i,2 = 0 ∀i ∈ [1, N z -2] (4.56)
the symmetry condition with respect to the plane z = 0 Eq. (4.48) writes

ᾱ ϕ Nz-1,j + β+ ϕ Nz-2,j + β++ ϕ Nz-3,j = 0 ∀j ∈ [0, N r -2] (4.57)
and finally the dielectric condition Eq. (4.51) writes While the discretization of the boundary conditions was rather standard, the flux condition Eq. (4.50) deserves a little more attention. Indeed, while a second-order scheme can be used for the first order partial spatial derivative with respect to z as already done for Eqs. (4.48) and (4.51), the dependence of the right hand side of Eq. (4.50) on ϕ must also be dealt with. Writing ϕ b,j = ϕ b (j∆r), this term writes at node j

ᾱ ϕ 0,j + β+ ϕ 1,j + β++ ϕ 2,j = 0 ∀j ∈ [N re , N r -2]. (4.58) 
S j = j is σ ∥ 1 + Ξ -exp Λ + ϕ b,j -ϕ 0,j T e . ( 4 

.59)

This non-linearity is addressed iteratively, with the goal of finding ϕ 0,j that fulfill the flux condition Eq. (4.50) given an initial guess ϕ * 0,j . To do so, we linearize the non-linear "source term" as 

S k+1 j = S k j + dS k j dϕ ϕ k+1 0,j -ϕ k 0,j + ... ( 4 
(ᾱ -dSϕ) ϕ k+1 0,j + β+ ϕ k+1 1,j + β++ ϕ k+1 2,j = -dSϕ ϕ k 0,j ∀j ∈ [0, N re -1] (4.61) with dSϕ = - j is T e σ ∥ exp Λ + ϕ b,j -ϕ k 0,j T e (4.62)
a constant known from the previous step. Practically the guess ϕ * 0,j is set in ALS to the analytical potential in the non-saturated regime, that is

ϕ * 0,j = ϕ b,j + ΛT e -ln(1 + Ξ) ∀j ∈ [0, N re -1] (4.63)
for a hot electrode.

Resolution strategy

Instead of manipulating 2D arrays for quantities defined on the computational domain, we first recast our pair of indices (i, j) as a single index κ defined as

κ = i + j N z , (4.64) 
and write K n = N r × N z the total number of nodes. This remapping is illustrated in Figure 4.8.

The discretized set of governing equation plus boundary conditions can then be written down as a linear system

[A] ϕ k+1 = A k (4.65)
with [A] a K n × K n matrix, ϕ k+1 the K n long vector of potential unknowns at step k + 1 and A k the source term known at step k. This linear system can in principle be solved for ϕ k using either iterative or direct methods. Practically, both methods have been successfully tested in the course of this thesis. We discuss here the direct solver resolution that has been implemented as it proved faster.

The historical direct method to solve such a system of equations is the Gaussian elimination [START_REF] Mazumder | Numerical methods for partial differential equations: finite difference and finite volume methods[END_REF] which involves two main steps, namely forward elimination and backward substitution. This method however poses two difficulties. First, the number of operations scales approximately as K n 3 for the forward elimination and as K n 2 for backward substitution, which makes this algorithm prohibitive for a large system of equation (i.e. large K n ). Second, the storage of the matrix [A] requires significant memory. Indeed, since a double precision number requires 8 Bytes of storage [START_REF]Standard data types[END_REF], a N r = N z = 1000 domain would roughly require 8 TB (terabytes) of storage to store the matrix [A]. Fortunately, more advanced methods and tactics have been proposed to address these issues, such as Stone's method [START_REF] Stone | [END_REF] and sparse matrices [98].

For the purpose of reducing storage needs, one can store only non-zero elements in the RAM, which is the idea behind the concept of sparse matrices. For our problem, the interior of the matrix [A] is a 5-band matrix, which for N r = N z = 1000 reduces the storage need to a much more manageable 40 MB. Going back to the resolution issue, an improvement over the Gaussian elimination that also takes advantage of sparse matrices is to use incomplete LU decomposition [99], i.e. to approximate [A] as a matrix product [L][U ] with [L] a lower triangular and [U ] an upper triangular matrix. Because of [L] and [U ] are triangular, solving the approximate linear system only requires a forward or a backward substitution, but no forward elimination [START_REF] Mazumder | Numerical methods for partial differential equations: finite difference and finite volume methods[END_REF]. Since as mentioned above the forward elimination step is the most time-consuming step of Gaussian elimination, this technique developed by Stone [START_REF] Stone | [END_REF] is very efficient. Note however that technically this method is no longer direct but rather iterative because an incomplete LU decomposition is used to iteratively find a solution to the problem. This approach is implemented in the code ALS to solve the linear system Eq. ( 4.65) for the potential ϕ k+1 . Practically this is done via the python module 4. Effect of the sheath on the voltage drop along field lines has to be lower than a given value set here to 10 -9 .

Validation of the Anisotropic Laplace Solver

Before using the newly developed ALS to study the effect of electrode biasing on potential distribution, we carry out here simple tests to validate the numerical model. This validation process is done here through two test cases with two different objectives. First, we want to ensure that the anisotropic Laplace equation is properly modelled. Second, we want to ensure that the flux boundary condition imposed at the electrode describes appropriately the effect of the ion-sheath on the plasma.

Validation of the governing equation solver

This part focuses on the anisotropic Laplace solver. For this purpose, we compare numerical results to the analytical solution 

ϕ th (r, z) = ϕ 0 J 0 p 1 r r g cosh p 1 τ z L cosh p 1 2 τ -1 ( 
ϕ 0,j = ϕ th (r j , -z sh ), (4.68) 
for j ∈ [0, N r -1]. The boundary conditions for the three other sides are identical to those shown in Figure 4.6, which happen to match Eq. ( 4.67) at these locations. Finally, we impose that the perpendicular and parallel conductivities are uniform, and choose a ratio µ = 10 -3 as already used in Paragraph 2.1.1. Numerical predictions are then compared to analytical results using as a metric the relative L 1 -norm defined as

δ R L 1 [ϕ] = |ϕ th -ϕ| |ϕ th | . ( 4.69) 
As can be seen in Figure 4.9 grid convergence studies confirm that δ R L 1 [ϕ] decreases quadratically with the number of nodes, i.e. that the error is divided by 4 if the mesh size is doubled, which is what was expected for the second-order scheme implemented with ALS. Quantitatively, we see that for this simple problem a grid of a few hundred cells square is enough to achieve reasonable accuracy. Relative error δ

R L 1 [φ]
2 nd order error Figure 4.9: Relative L 1 -norm δ R L 1 [ϕ] of the error between the analytical solution Eq. (4.67) and simulation results as a function of the mesh size K n = N r × N z , for µ = 10 -3 and for an aspect ratio L/r g = 10.

Radial potential profile at the sheath edge under the saturated regime

The second validation test focuses on the flux condition used to model an ion-sheath in front of the biased electrode. For this test, we compare the radial profile of the plasma potential at the sheath edge ψ sh (r) = ϕ sh (r)/T e obtained by ALS and the analytical solution Eqs. (3.54) and (3.55) in the saturated regime obtained in Chapter 3. To guarantee that this saturated regime is indeed reached, we purposely choose plasma parameters (see Table 4.1 for a full list of simulation inputs) such that the saturation criterion ζ ≫ 1. The boundary conditions imposed here are those illustrated in Figure 4.6 and discussed above, and we use this test as an opportunity to also assess the effect of imposing either dielectric (Eq. (4.51)) or Dirichlet condition (Eq. (4.52)) between r e and r g , with r e = 5 cm. Figure 4.10 shows that results from the ALS for a moderate grid size N r × N z = 125 × 101 are overall in very good agreement with theoretical predictions throughout the plasma column radius. Looking more closely at simulations results, we further see that the two simulated profiles, that is for either dielectric Eq. (4.51) or Dirichlet Eq. (4.52) imposed between r e and r g , cannot be visually differentiated. This confirms, as anticipated earlier, that these two choices are equivalent, at least in the conditions studied here. We note though that in the case of a Dirichlet boundary condition more iterations are needed to converge toward a final solution as compared to the dielectric condition. 

Using ALS to examine the effect of thermionic emission

The anisotropic Laplace solver (ALS) is versatile and can be used to perform parametric studies to quantify the influence of one or several parameters on the distribution of the plasma potential and its control through the electrode bias. In this section, we focus more particularly on the role of thermionic current and use the code to examine more closely the two opposite trends highlighted so far. For memory, we indeed showed in Paragraph 3.1.3 that thermionic current can improve control over the plasma potential at the sheath edge, but also conversely saw in Paragraph 4.1.1 that the voltage drop along field lines is expected to increases with thermionic emission. To facilitate the discussion of these effects, we recall here the definitions of the voltage drop along field lines at position r

∆ ∥ ψ(r) = ψ mid (r) -ψ sh (r) (4.71)
and of the voltage drop across the sheath at position r ≤ r e

∆ sh ψ(r) = ψ sh (r) -ψ b , (4.72) 
where ψ sh (r) and ψ mid (r) are respectively the radial profiles of the dimensionless plasma potential at the sheath edge and in the mid-plane.

The results presented here were obtained for a set of dimensional geometric and plasma parameters (see Table 4.1) which corresponds loosely to the conditions expected in a RF or Helicon laboratory plasma. Note though that the electrode radius is set through this section to r e = 2.5 cm, consistent with the value we used previously in Ref. [90]. One verifies that the Debye length to machine length ratio λ D /L in these conditions is less than 10 -3 . This strong ordering suggests that the assumption of a negligible sheath thickness used in our model is valid here, and that even if biasing and emission were to lead to an expansion of the sheath compared to the λ D scaling classically 4. Effect of the sheath on the voltage drop along field lines obtained for a cold floating electrode [59]. The validity of this assumption may on the other hand need to be questioned for plasma regimes where the length-scale separation is less strong. Finally, the results presented here were obtained by imposing the Dirichlet condition given by Eq. (4.52) between the extremity of the electrode and the ground, i.e. between r e and r g .

We also note here that while we showed in Paragraph 3.1.3 that strong thermionic emission may lead to the formation of a virtual cathode -that is to the existence of an inflection point of the potential in the sheath -, we do not account for this effect in the next two Paragraphs, that is 4.3.1 and 4.3.2. In these sections we indeed only ensure that the plasma potential remains at a potential larger than the applied bias ϕ b < 0, which simply requires Ξ < exp(Λ) -1. This is consistent with the work presented in Ref. [90]. Corrections brought up by properly considering the formation of a virtual cathode are specifically discussed in Paragraph 4.3.4.

Influence of thermionic emission on the plasma potential distribution onaxis

To begin our investigation of the influence of thermionic current we choose to focus first on the effect on axis, that is for r = 0. ALS results for the voltage drop along field lines on axis ∆ ∥ ψ(r = 0), the voltage drop across the sheath on axis ∆ sh ψ(r = 0) (left axis) and the current density ratio (right axis) are shown in Figure 4.12 as a function of the thermionic emission parameter Ξ. For low thermionic current (low Ξ), we verify that the current is maximum as |j sh,∥ (0)|/|j is (1 + Ξ)| = 1, which implies that the regime is saturated. This result is consistent with the large saturation criterion ζ ≫ 1 derived for the conditions studied here as listed in Table . 4.1. In this regime the plasma potential is not controlled by the bias electrode, which can result in a significant voltage drop across the sheath. Increasing Ξ, we see that the on-axis voltage drop across the sheath ∆ sh ψ(0) decreases, which is consistent with the prediction in Eqs. (3.12) and (3.13) that a larger Ξ will lead for a set electrode bias ϕ b < 0 to a more negative potential at the sheath edge. Meanwhile the voltage drop along field lines is observed to grow with Ξ, and can in certain conditions become larger than the voltage drop across the sheath ∆ sh ψ(0). One further verifies in Figure 4.12 that the voltage drop along field lines ∆ ∥ ψ(0) predicted by ALS matches very well the analytical solution ∆ ∥ ψ sat derived in Eq. (4.15). For even larger Ξ, we see that the normalized current drawn at the electrode on axis decreases, which indicates that the transition from saturated to non-saturated regime has started. In this regime we see that numerical results for ∆ ∥ ψ(0) deviate as expected from the analytical results derived assuming saturation in Eq. (4.15), but remain in good agreement with the generalization of this same result accounting for a smaller and radially dependent current Eq. (4.16). This encouraging agreement suggests that the voltage drop along field lines at a given radius is indeed primarily driven by the current flowing through the sheath at the same radius.

Radial dependence of the voltage drop along field lines

We now consider how the voltage partitioning between the sheath and the quasi-neutral plasma depends on the radial position. ALS results for the voltage drop along field lines ∆ ∥ ψ(r) is plotted as function of thermionic emission Ξ in Figure 4.13, extending the results on axis shown in Figure 4.12. One immediately observes that the axial voltage drop ∆ ∥ ψ(r) is not uniform across the radius, and also depends strongly on the regime of operation (that is saturated or non-saturated).

Starting from zero thermionic emission (Ξ = 0), we see in Figure 4.12 that the current density drawn at the electrode is constant and equal to the sum of the ion saturation current density j is and thermionic electron j eth throughout the electrode radius r ≤ r e . This is characteristic of the saturated regime. Consistent with our predictions in Eq. (4.15), we then observe that the voltage drop is in this case constant along the electrode radius.

Increasing the thermionic current Ξ, we see that there is a growing region near the axis where the current density is smaller than the maximum value j = 1 (thick black dash-dot line in Figure 4.13). This is characteristic of a transition to the partially saturated regime. As predicted through theoretical considerations in Section 3.2, we verify here that this transition begins at the center of the electrode and continues until it reaches the extremity of the electrode. We further Figure 4.12: On-axis voltage drop across the sheath ∆ sh ψ(0) (black dash-dot, left axis) and along field lines ∆ ∥ ψ(0) (black solid, left axis) and normalized current density (red solid, right axis) as a function of thermionic emission Ξ obtained from ALS simulations using a grid size N r × N z = 102 × 101. The analytical solutions ∆ ∥ ψ sat and ∆ ∥ ψ th (0) based on the current density flowing through the sheath given in Eqs. (4.15) and (4.16) are respectively represented by the green diamonds and the green dotted curve. Potentials are normalized by the electron temperature T e in eV, ψ = ϕ/T e . observe that the voltage drop in this regime is larger at lower radius, which can be understood as the consequence of a greater current at larger radius r ≤ r e for a given Ξ.

For even larger thermionic emission Ξ the normalized current density is below the maximum value, that is j < 1, throughout the entire electrode. This is however were the largest axial voltage drop ∆ ∥ ψ(r) is found, with here ∆ ∥ ψ(r) as large as 4 T e near the outer radius of the electrode. Although this result can appear counter-intuitive, in particular in light of the fact that we saw in Figure 4.12 that ∆ ∥ ψ(0) in the non-saturated regime is small compared to T e , we have seen that the current density is the largest at the outer edge of the electrode, and more importantly the absolute current density j ∥ (r) grows with Ξ. This means that for a given radius j ∥ (r) can increase with Ξ even if j(r) decreases, leading to a larger voltage drop ∆ ∥ ψ(r).

Parametric dependencies

The results presented in Figures 4.12 and 4.13 were obtained for the specific plasma, geometric and electrode parameters listed in Table 4.1 and for r e = 2.5 cm. They can, however, be used in combination with the analytical models introduced in Paragraphs 3.1.1 and 4.1.1 to offer a more general analysis. Indeed, although both ζ and ∆ ∥ ψ sat derived in Eqs. (3.14) and (4.15) already provided insights into the effect of thermionic emission, a deeper understanding can be gained by developing the parametric dependencies of conductivities.

As discussed in Chapter 1, expressions for parallel and perpendicular conductivity in a magnetized plasma are in general non-trivial and require solving a full set of fluid equations [57,58,[START_REF] Kolmes | [END_REF]. However one can often reasonably use simplified formulas within an appropriate operating parameter space. For instance, we have seen in Figure 1.6 that electron-neutral and ion-neutral collisions are the main contributions to respectively parallel and perpendicular conductivity across a range of low-temperature partially ionized and magnetized plasma laboratory experiments [49], which happen to include those used in the simulations presented above. In this case the general perpendicular with ν in and ν en the ion-neutral and electron-neutral collision frequency, respectively given by Eqs. (1.33a) and (1.33b). We then use Eqs.(4.73), (4.74) to determine the parametric dependencies of the saturated plasma potential and of the axial voltage drop.

Cold electrode

Consider first the case of a cold electrode (i.e. Ξ = 0). Plugging Eq. (4.73) into Eq.(3.14) leads to

ζ cold ∝ L r e 2 ln(r g /r e ) n n √ T i m i √ T e B 2 0 |ϕ b |. (4.75)
The 1/ √ T e dependence here comes from the fact that χ ∝ T e /j is , that j is ∝ √ T e and that ψ b = ϕ b /T e . In this cold case the parametric dependency shown by Eq. (4.75) simply expands the result highlighted in Paragraph 3.1.2 that the more negatively biased (ϕ b ≪ 0) an electrode is, the smaller χ has to be to control the plasma potential through ϕ b . Plugging now Eqs. ( 4.77), we note that a weaker magnetic field B 0 will expand the range of operating conditions leading to saturation. Recalling that Ξ ∝ ( m i /T e /n)j eth , a smaller B 0 will therefore require a stronger thermionic emission (i. e larger Ξ) to transition from the saturated to the non-saturated regime. Looking at figure 4.13, this means moving the transition region higher up. Meanwhile, since the voltage drop along field lines does not depend on B 0 but does depend on Ξ, the expansion of the saturated region means that higher voltage drop along field lines will be observed in this regime. From Eqs. (4.78) and (4.77), a similar growth is expected for heavier ion species, a smaller electrode radius r e as well as a hotter ion temperature or a denser neutral gas. Examining now the effect of the plasma density, one finds that ζ hot ∝ n/j eth whereas ∆ ∥ ψ sat en,hot ∝ j eth /n, implying that, for a denser plasma the thermionic current density j eth has to be larger to realize the transition from the saturated to the non-saturated regime, which will increase the voltage drop along field lines.

Alternatively, one could consider a denser plasma where ν ei /ν en ≫ 1 with ν ei the electron-ion collision frequency given by Eq. (1.31), in which case the parallel conductivity would be dominated by electron-ion collisions. In this other limit the parallel conductivity is then governed by Spitzer conductivity 

σ ∥,

Limits due to the formation of a virtual cathode

As discussed in Paragraph 3.1.3 the formation of a virtual cathode in front of a negatively biased electrode acts to limit the fraction of thermionic emission reaching the quasi-neutral plasma. By combining the predictions of our electric circuit model and Poisson's equation in the sheath, we more specifically derived an upper limit Ξ max for the thermionic emission parameter Ξ beyond which the formation of a virtual cathode is expected. Because our model assumes that the full thermionic current reaches the quasi-neutral plasma, Ξ max is also the upper limit beyond which model's predictions are no longer valid. As mentioned in the introduction of this section, this effect has been neglected so far in the results discussed in Paragraphs 4.3.1 and 4.3.2, where the simpler constraint of a plasma potential above the applied bias has been enforced as a limit on Ξ. We are thus interested in assessing here how accounting for a more realistic constraint on Ξ affect these results.

As a first step, we showed in Paragraph 3.1.3 how to compute from Poisson's equation the thermionic current Ξ crit past which an inflection point is expected to form, given a voltage drop across the sheath. Using numerical simulation results this quantity can now be derived locally at a particular radius. Practically, we first determine the radial profile of the voltage drop across the sheath ∆ sh ψ(r) = ψ sh (r)ψ b (4.82)

from the numerical results used in Figure 4.13 and then use Eq. (3.29) to obtain Ξ crit (r) as a function of Ξ and r/r e . Then, just like we compared Ξ crit with Ξ used in the circuit model in Figure 3.7, we do the same here other than for the fact that this is now done as a function of radius. As shown in Figure 4.14, we now have two 3D surfaces, and the intersection of these two surfaces defines the maximum thermionic emission parameter Ξ max as a function of r and ∆ sh ψ(r). The intersection of the two 3D surfaces drawn upon the left and blue curves is by definition Ξ max . The obtained 3D curve can then be projected onto the (Ξ, r) plane to get Ξ max (r) (in yellow).

The radial profile Ξ max (r) shown in yellow in Figure 4.14 can then be compared to the ALS results. As shown in Figure 4.15, we find that for the conditions listed in Table . 4.1 and studied in Figures 4.13 and 4.14, the maximum thermionic current beyond which ALS results are put into question is comparable to the thermionic current for which the transition from saturated to non-saturated regime was observed. More precisely, we find that a virtual cathode is expected to form near the axis before the outer edge of the electrode has had the chance to transition to a non-saturated regime.

Trying to assess the implications of this finding, we can distinguish two thermionic emission regimes. For strong emission, by which we mean here Ξ ≥ Ξ max (r e ) (yellow crosses overlay in Figure 4.15), sheath models predict a virtual cathode throughout the electrode. As a result, one anticipates a rather large difference between the emitted thermionic current and the one reaching the quasi-neutral plasma. To the extent that the circuit model at the root of ALS depends strongly on this current, model predictions in this region can be strongly questioned. In particular, since the parallel current that will reach the plasma will be smaller than what is obtained considering Ξ as a free parameter, and because this currrent has been shown to drive the voltage drop along field The red overlay corresponds to Ξ > Ξ max (r = 0) and thus indicates the region where ALS results are questioned as the a virtual cathode is expected to form in front of at least part of the biased electrode. The yellow dots overlay corresponds to the region where a virtual cathode is predicted locally whereas the yellow crosses overlays corresponds to the region where a virtual cathode is predicted over the entire electrode.

lines, it stands to reason that the actual voltage drop along field lines in the region Ξ ≥ Ξ max (r e ) will be smaller than those displayed in Figure 4.15.

For intermediate emission, by which we mean here Ξ max (0) ≤ Ξ ≤ Ξ max (r e ) (yellow dots overlay in Figure 4.15), sheath models predict that a virtual cathode will have formed near the axis, but that a normal ion-sheath will still be found near the outer edge. In this case, while the local existence of a virtual cathode will have a global effect on the current balance and from there on model's predictions, it stands to reason that the deviation from simulations neglecting virtual cathode effects should be less pronounced. This analysis is reinforced when considering that for geometrical reasons the contribution to the total electrode current of regions at small radii is small. Although this analysis might, at first glance, suggest that the trends identified though paragraphs 4.3.1 and 4.3.2 are not valid, it is important to note as mentioned earlier that depending on operating parameters these exact trends could be observed at lower Ξ, in which case the issue of virtual cathode formation is non-existent. This would for instance be the case if all other things being equal one would consider a stronger magnetic field. This limit imposed by virtual cathode formation should thus be understood as a practical limit on the parameters for which the model applies, but not as a evidence that the physics identified neglecting this effect is necessarily incorrect.

Looking ahead, a key question to properly address this issue and capture these effects in models is what fraction of emitted thermionic current actually reaches that plasma past the limit Ξ max . One may for instance assumed for simplicity that any further increase of emission will only contribute to lowering the potential barrier of the virtual cathode, leading to a constant current reaching the plasma past Ξ max . More realistically though a fraction of this extra current still reaches the plasma, though in that case the relation between this current and Ξ is complex (see for instance Refs. [71,72]). A detailed analysis of this effect is left for future work. 

Using ALS to study multiple concentric ring electrodes configurations

The discussion so far in this chapter focused on a single disk electrode, as we were primarily interested in exposing the basic effects of electrode biasing on the plasma potential. Yet, using multiple end-electrodes appears desirable if one is interested in tailoring the radial potential profile. This is notably the goal of the concentric ring electrodes scheme proposed by Lehnert [44,45], as discussed in Introduction. In this section we take advantage of the newly developed ALS to study multi-electrodes configurations. First, we study the combination of a central negatively biased electrode with a concentric floating electrode, as introduced in Section 3. 

Combination of a cold negatively biased electrode with an annular floating ring electrode

We go back to the combination of biased and floating electrodes introduced in Section 3.3. As shown in Figure 3.13, it consists of a negatively biased disk electrode (potential ϕ b ) together with an annular floating ring electrode of inner and outer radii r e and r f . A characteristic of floating electrodes is that the electric potential ϕ f of this electrode self-adjusts so as to draw zero net current from the plasma (I f = 0). For a finite size electrode immersed in a plasma where the plasma potential is non-uniform along the exposed length of the electrode, this necessarily leads to local currents from and to the plasma which average out. For the particular case of plasma potential radial profile that grows monotonically from the axis to the ground and a floating electrode of normal ẑ, we postulated in Section 3.3 that the current flowing to the inner region of the electrode should be electron dominated (j f,∥ (r) > 0), while the current flowing to the outer region should be ion dominated (j f,∥ (r) < 0). Following this analysis and considering that the floating electrode then acts as a short-circuit for the radial current through the plasma, we postualted in Section 3.3 that introducing a ring floating electrode should lead to a less negative potential at the sheath edge.

Using ALS to study multiple concentric ring electrodes configurations

Model

To assess the reality of these predictions, the set of boundary conditions available in ALS is extended to allow for a floating electrode. For this the floating electrode condition

I f = r f re j f,∥ (r)2πrdr = 0 (4.83)
is discretized as

Nr f -1 j=Nr e j is exp Λ + ϕ k f -ϕ k 0,j T e -1 S r j = 0 (4.84)
where r f = (N r f -1)∆r as shown in Figure 4.17, and where S r j is the surface associated with the jth node as defined in Eq. (3.58), and k indices reflect the fact that due to the non-linear Neumann condition both the electrode floating potential and the plasma potential will evolve through iterations until convergence. The system is initialized imposing ϕ 0 f = ϕ b,Nr e -1 + ΛT e .

Figure 4.17: Illustration of the grid along r. N r is the total number of nodes along r, while N re and N r f are the node numbers corresponding to the outer edge of respectively the biased electrode and the annular floating electrode.

The full set of boundary conditions used here are shown Figure 4.18. Beyond the inclusion of the floating electrode condition between r e and r f , another difference compared to the study made in previous section is that we impose here a dielectric condition between r e and r g , rather than Dirichlet. The motivation for this choice is to guarantee that no current leaves the system axially between r e and r g , to mimic as closely as possible the assumptions behind the circuit model discussed in Section 3.3. Operating conditions are identical, that is those listed in Table 4.1, and we set the outer radius of a the floating electrode r f to 12.6 cm whereas we impose r e = 5 cm. 19 (a) shows the radial plasma potential at the sheath edge ϕ sh (r) obtained from ALS simulations with and without the floating electrode. One verifies immediately as predicted that the plasma potential on axis is less negative when the floating electrode is inserted.

Effect on the radial potential profile at the sheath edge

Looking more closely at the actual radial potential profiles together with the current density shown in Figure 4. 19 (b) and comparing results leads to the following analysis. Starting at the outer edge from the ground condition, we see that both profiles are superimposed in the region r f ≤ r ≤ r g where a dielectric boundary conditions is imposed. This is simply the consequence that the radial current past r f has to be the same due to the dielectric condition, which as shown in Section 3.2 imposes for the potential to be Moving radially inward we can now examine the region in front of the floating electrode, as highlighted in purple in Figure 4.19. Comparing both plasma potential curves confirms that this is where the two cases differ. Looking more specifically at the floating electrode case, we first verify by comparing the radial variation of potential profile and the potential ϕ f + ΛT e that the plasma potential in front of the outer portion of the electrode is above ϕ f +ΛT e (that is the plasma potential for which an electrode biased at ϕ f will draw zero current), whereas the plasma potential in front of the inner portion of the electrode is below. Indeed, we also see accordingly in Figure 4. 19 (b) that the current density leaving the electrode j sh,∥ is positive and negative in respectively the inner and outer parts of the electrode, as was anticipated in Section 3.3. Because as we have seen earlier the current at r = r f is the same, the fact that a negative current leaves the electrode in the outer region of the floating electrode can be seen as a decrease of the radial current as we move radially inward from r f . This lower current translates into a less steep decrease of the plasma potential as compared to the case without floating electrode. On the inner part of the floating electrode the situation is reversed, with now a radial current that increases as we move inward, until it reaches back I(r f ) since by construction I(r e ) = I(r f ) (see Eq. (4.86)). Below r e the current is the same so the profiles with and without floating electrode are again identical other than for the offset introduced in the region facing the floating electrode.

ϕ sh (r > r f ) = I(r f )

Effect on the voltage drop along field lines

Recalling our finding in paragraph 4.1.1 that the current emitted at an electrode controls the voltage drop along field lines, the current density profiles observed with a floating electrode in Figure 4. 19 (b) suggest that the axial voltage drop |∆ ∥ ψ(r)| in the region facing the floating electrode should differ when the floating electrode is present. More specifically since the j f,∥ (r) > 0 in the inner part of the floating electrode, the voltage drop along field lines must be negative, which implies a plasma potential that is more negative in the midplane than at the sheath edge (i.e. ϕ mid (r) < ϕ sh (r)). 

Effect of the sheath on the voltage drop along field lines

This behavior is recovered in ALS simulations, where as shown in Figure 4.20 ∆ ∥ ψ(r) varies significantly between r e and r f when a floating electrode is present. Although the values of the voltage drop in this region are limited, it is important to stress here that they are at least in these conditions comparable to the voltage drop on axis in front of the biased electrode. Indeed, while it remains to be seen if this pattern would hold when emission is accounted for, we have seen in Figure 4.12 that the axial voltage drop on axis can grow significantly in the presence of emission. These two results suggest that adding an annular floating electrode would not only lower in absolute value the plasma potential on axis, but also possibly contribute to larger axial potential variations in front of the floating electrode. Finally, while the smallness of ∆ ∥ ψ(r) can make the effect of the annular floating electrode on the axial distribution of plasma potential less striking, this effect is much more easily seen through the currents, as shown in Figure 4.21. Indeed, the "short-circuit" effect of the annular floating electrode is here very clear, with a current flowing directly from the grounded cylinder to the negatively biased electrode when there is no floating electrode. On the other hand we see that current is drawn on the outer part of the floating electrode, and emitted on the inner part of the floating electrode.

Combination of two segmented ring electrodes with different negative biases

To conclude this section and this chapter we now consider the case of two segmented electrodes made of a single disk and an annular ring which are negatively biased at potentials ϕ b 1 and ϕ b 2 , which is the simplest extension towards the multi-ring system proposed by Lehnert [44,45] and discussed in Introduction. The goal of this exploratory work is to get a feel for how, given a potential ϕ b 1 on the central electrode, the potential ϕ b 2 imposed on an intermediate annular electrode can be used to tailor the radial profile of the plasma potential at the sheath edge. As such, our ambition here is not to provide an exhaustive analysis of this configuration, but rather to use ALS simulations to develop an intuition for the physics at play.

Model

We write r e 1 and r e 2 the outer radii of the two electrodes, and use in simulations r e 1 = 5 cm and r e 2 = 12.6 cm. Also, for the sake of simplicity, we focus here exclusively on cold electrodes. The 

Behavior in the non-saturated plasma regime

To achieve a non-saturated regime without thermionic emission, the plasma parameters under consideration must momentarily be modified since those used so far were precisely determined to guarantee ζ ≫ 1 for a cold electrode. From the parameter dependencies of the saturation criteria ζ cold derived in paragraph 4.3.3, we choose here a lower operating pressure together with a less negative electrode biased and a stronger magnetized field to achieve ζ < 1. The operating conditions which are changed compared to Table 4.1 are summarized in Table 4.2, others remaining the same.

The radial profiles of the potential at the sheath edge ϕ sh (r) and of the normalized current through the sheath j sh,∥ /j is obtained from ALS simulations for a range of intermediate potential ϕ b 2 on the annular electrode are shown in Figure 4.23. Looking first at Figure 4. 23 (a), we see that the potential in the region facing the annular electrode (i.e. r e 1 ≤ r ≤ r e 2 ) is strongly affected by the bias ϕ b 2 applied on this electrode. Indeed, the plasma potential in this region tracks well the non-saturated limit ϕ b 2 + ΛT e , other than for limited regions in the innermost and outermost parts of the electrode. On the contrary, we observe that the addition of this electrode is accompanied by a loss of control over the potential in front of the central electrode, meaning that the plasma potential deviates from the non-saturated limit ϕ b 1 + ΛT e . This behavior becomes progressively more marked as the difference between the central bias ϕ b 1 and the annular bias ϕ b 2 grows.

Looking now at currents in Figure 4.23 (b), we see that this loss of control over the potential in front of the central electrode comes with a growth (in absolute value) of the current drawn at this electrode. In some sense the perpendicular plasma resistance is not large enough to accommodate 4.2, leading to a non-saturated regime. The dash-dot lines correspond to the plasma potential in the non-saturated regime, that is ϕ b 2 + ΛT e , as given by Eq. (3.8). The gray area highlights the region in front of the annular electrode.

4. Effect of the sheath on the voltage drop along field lines such a large localized radial variation in plasma potential. As a result this variation is spread over a greater radial extent, which then leads to current flows to the electrodes as the plasma potential differs from the floating or non-saturated limit ϕ b +ΛT e . This is clearly seen in Figure 4. 23 (b), where for large differences ϕ b 2ϕ b 1 the outer region of the central electrode has reached saturation (that is j sh,∥ /j is = -1), while simultaneously the inner region of the annular electrode draws a significant electron current from the plasma. These simple results suggest that the spatial gap between ring electrode should be large enough for the corresponding perpendicular plasma resistance to allow for the jump in potential, and that not meeting this condition will result in a blurred out radial potential profile. Further to highlighting possible issues for radial potential control, the effect of a secondary annular electrode on the current profiles observed in Figure 4.23 brings questions on possible effects on the potential uniformity along magnetic field lines. Indeed, we have shown in paragraph 4.1.1 that the current flowing through the sheath at a given radius has a strong effect on the voltage drop along field lines at this same radius, and Figure 4.23 shows significant currents at the electrode interface r = r e 1 . While these effects remain here quantitatively small, this is possibly simply due the fact that for a cold electrode in these conditions the axial variations are small overall, as was already noted for the cold floating electrode in Figure 4.20. A similar behavior at larger neutral fill pressure could on the other hand lead to more significant axial voltage variations, as predicted by Eq. (4.76).

Behavior in the saturated plasma regime

To now study the two segmented biased electrodes configuration in the saturated regime, we return to the plasma parameters set given in Table 4.1. The boundary conditions are identical to the previous case (see Figure 4.22).

The radial profiles of the potential at the sheath edge ϕ sh (r) and of the normalized current through the sheath j sh,∥ /j is obtained from ALS simulations in this regime for a range of intermediate potential ϕ b 2 on the annular electrode are shown in Figure 4.24. In this case, we observe that as long as the bias ϕ b 2 applied on the intermediate electrode is lower than the plasma potential in saturated regime Eq. (3.54) (here ϕ b 2 = -100 V and ϕ b 2 = -80 V), the radial profile of the plasma potential at the sheath edge remains the same. This observation is consistent with both electrodes being saturated. As we weaken the applied bias ϕ b 2 , we see in Figure 4.24 (b) that the current drawn at the annular electrode begins to deviate from -j is , indicating that this electrode is no longer fully saturated. Consistent with this change in current profile, the plasma potential in front of the annular electrode begins to respond to the applied bias ϕ b 2 . Yet, this modification of the plasma potential for r e 1 ≤ r ≤ r e 2 comes at the expense of a less negative potential on axis in front of the central electrode, and therefore of an overall loss in control. For even weaker applied biases ϕ b 2 (ϕ b 2 = -30 V here), the annular electrode acts as a current deviation, similarly to the floating electrode case studied in Figure 4.19.

To sum up, the addition of an intermediate biased electrode when the central electrode operates in the saturated regime only brings limited control over the plasma potential in front of this electrode, and does so by lowering control over the plasma potential on axis.

Summary

In this chapter we completed the analysis of the effect of a biased electrode on the plasma potential started in Chapters 2 and 3, and considered for that the combined effects of the sheath and of the finite conductivity along magnetic field lines.

Considering Ohm's law at the sheath edge and extending it to the plasma column for large conductivity anisotropy, we showed that the potential variation along field lines in the quasi-neutral plasma is largely controlled by the current density flowing across the sheath at the same radial position. We also showed how Liziakin's electrical circuit [48] for the effect of a biased electrode can be generalized to capture both radial and axial plasma potential variations. Using this model for 4.5. Summary Figure 4.24: Radial profile of (a) the plasma potential at the sheath edge ϕ sh (r) and (b) the current density ratio j sh,∥ (r)/j is obtained from ALS simulations for different values of ϕ b 2 . Operating conditions are those listed in Table 4.1, leading to a saturated regime. The dash-dot lines correspond to the plasma potential in the non-saturated regime, that is ϕ b 2 + ΛT e , as given by Eq. (3.8). The gray area highlights the region in front of the annular electrode.

4. Effect of the sheath on the voltage drop along field lines large conductivity anisotropy confirmed the scaling for the normalized axial voltage drop identified in Chapter 2, but also showed that this quantity can be radius dependent.

Because both of these models have separately important limitations, we then went on to develop a new numerical solver called ALS that can account both for the potential distribution in a quasineutral magnetized plasma through the anisotropic Laplace equation and for flux conditions that are representative of sheaths. After validating this solver against simple test cases, we put it to use to illustrate in detail the effect of thermionic emission for plasma potential control. This study confirmed that as uncovered in Chapter 3 the additional current brought by thermionic emission can help transfer the bias applied on a cathode to the plasma potential at the sheath edge, improving in turn control. However, this study also showed that by increasing the current through the sheath, thermionic emission also increases the voltage drop along magnetic field lines, as postulated from theoretical considerations at the beginning of this chapter. Scaling laws for this potential variation along field lines were then derived by analyzing the parametric dependencies of the plasma parallel and perpendicular conductivities.

Quantitatively, we found plasma potential variations along field lines of the order of a few times the electron temperature for typical RF or Helicon laboratory experiments under strong thermionic emission. Although such potential variations along field lines may not in themselves be a showstopper, they suggest that the possibility of using thermionic emission to minimize the voltage drop across the sheath and hence to maximize control over the plasma potential at the sheath edge should be consider carefully. An added challenge with strong emission regimes lies in the formation of a virtual cathode. Although our current model does not allow for capturing this effect, we showed that it could affect predictions. Addressing this issue and studying the potential distribution in these regimes will require determining consistently which fraction of the emitted thermionic current reaches the quasi-neutral plasma.

Lastly, we used the ALS to briefly explore multi-electrodes configurations. We first confirmed that the addition of a supplemental floating ring electrode past the central biased electrode leads to a loss in plasma potential control, as postulated in Section 3.3. We then studied how two independently biased electrodes can help tailor the radial profile. While an extra electrode may prove helpful when the central electrode is operating in the non-saturated regimes, it appears to have overall a detrimental effect when the central electrode operates in the saturated regime.

An important question and extension of this work that remains to be addressed is how plasma parameters are affected by thermionic emission, and how this may in turn affect the plasma potential behavior uncovered in this chapter. As we will see in the next chapter, thermionic emission can indeed affect both the plasma density and the electron temperature in front of the emissive electrode, and both of these parameters can have an effect on the thermal electron flux to the electrode and thus on the saturation phenomena highlighted here. A first step towards capturing and understanding these effects is the development of a new solver in Chapter 6.

Chapter 5

Comparison with data from the Von-Kármán Plasma experiment The previous chapters of this thesis introduced different theoretical models developed in the course of this work to characterize the plasma potential response when a negative bias is imposed on a possibly emissive electrode terminating a magnetized plasma column axially. A key goal of this work was to better understand opportunities for plasma potential control through the bias imposed on an electrode. To test and validate these models beyond the simple numerical simulations carried out alongside model developments, we now turn in this chapter to experimental studies.

The preliminary results presented in this chapter were obtained as part of a joint initiative in the last couple of years between researchers from the "Laboratoire de Physique de l'ENS de Lyon" (LPENSL), the "Laboratoire Physique des Interactions Ioniques et Moléculaires" (PIIM) in Marseille and the "Laboratoire Plasma et Conversion d'Energie" (Laplace) in Toulouse, focusing on the self-organization of weakly magnetized plasmas under external forcing [START_REF] Camenen | Soplasma network[END_REF]. Of particular relevance here are discussions initiated on comparisons between predictions from the models developed in this thesis and experimental data obtained on the Mistral [START_REF] Matsukuma | [END_REF] and Von-Kármán Plasma (VKP) [103] experiments at PIIM and LPENSL respectively. There has indeed been in recent years an effort on VKP to study the effect of emissive electrodes [START_REF] Pagaud | Proceedings of the 48th European Conference on Plasma Physics[END_REF], notably in the course of the theses of Drs. V. Désangles [START_REF] Désangles | Forçage à grande échelle d'une colonne de plasma faiblement magnétisée: influence d'une cathode émissive de grande taille[END_REF] and S. Vincent [START_REF] Vincent | Azimuthal waves modification by current injection in a magnetized plasma column[END_REF]. The work presented here, conducted in collaboration with Drs. N. Plihon and V. Dolique, builds on this earlier work, and studies a configuration thought to be more directly amenable to the models developed in this thesis. More specifically, the choice was 5. Comparison with data from the Von-Kármán Plasma experiment made to rotate and move the cathode in VKP to bring it to an orientation similar to that assumed in models. This experimental work was made as part of the thesis of F. Pagaud at LPENSL. For completeness, we note that there would be a clear interest in carrying out a similar effort using this time results from Mistral, and preliminary discussions have been initiated in this regard.

The Von-Kármán Plasma (VKP) experiment

The Von-Kármán Plasma (VKP) experiment at the "Laboratoire de Physique de l'ENS de Lyon" (LPENSL) is a linear plasma column experiment designed to explore the dynamics of basic magnetic induction processes and the dynamics of flows driven in weakly magnetized plasmas [103]. Here we briefly sum up some of the key characteristics of the experiment which will be useful to our later discussion of biasing effects, but we refer the readers to Refs. [103,[START_REF] Désangles | Forçage à grande échelle d'une colonne de plasma faiblement magnétisée: influence d'une cathode émissive de grande taille[END_REF][START_REF] Vincent | Azimuthal waves modification by current injection in a magnetized plasma column[END_REF] for a more complete description of the experiment, its diagnostics and its capabilities.

Main characteristics of the experiment

As illustrated in Figure 5.1 the VKP experiment is a cylindrical device made of two connected chambers. The smaller chamber of radius r src = 5 cm and length L src = 20 cm (left in Figure 5.1) is where the plasma is created. This first chamber is connected to a larger chamber (right in Figure 5.1) of radius r g = 10 cm and length L = 80 cm where the plasma is studied.

The argon plasma is produced using RF waves at 13.56 MHz generated by an inductive 3-turns helicoidal coil. The input power P src can be varied to access different plasma regimes, but will here typically be 1 kW. The intensity of the magnetic field is controlled by the current I B 0 flowing through three coil stacks placed at three axial positions. The cathode, which will be discussed in more details next, is positioned at the axial end of the machine opposite to the source.

This brief overview already allows underlining two differences compared to the models developed in previous chapters. First, we note that the magnetic configuration used in VKP leads to magnetic field non-uniformity [START_REF] Désangles | Forçage à grande échelle d'une colonne de plasma faiblement magnétisée: influence d'une cathode émissive de grande taille[END_REF][START_REF] Vincent | Azimuthal waves modification by current injection in a magnetized plasma column[END_REF], in contrast with the assumption of a homogeneous field used in models. This effect will be neglected for simplicity here. Second, the configuration described here is non-symmetric as one axial end (left in Figure 5.1) corresponds to the source, as opposed to symmetrical electrodes assumed in models. This is an important distinction, particularly if one is interested in modeling axial potential variation.

Specific dataset under investigation

The new experimental dataset presented here has been obtained by F. Pagaud specifically for the purpose of our comparison between models and experimental data. This dataset consists of radial profiles of the plasma potential ϕ(r), the density n(r) and the electron temperature T e (r) for three different combinations of operating magnetic field and gas pressure and two different applied biases, as summarised in Table 5.1. For each of these six operating conditions, radial profiles were obtained for various levels of thermionic emission at the cathode, as controlled through the heating current I h (see next paragraph). The full set of radial profiles of ϕ(r), n(r), and T e (r) measured by F. Pagaud are plotted respectively in Figures 5.5,C.1, and C.2. Plasma potential, density and electron temperature radial profiles were obtained from a combination of emissive probes [72] and 5-tips probe [START_REF] Vincent | [END_REF]. All measurements discussed here are made in the plane z = 49 cm, which corresponds to an axial distance to the electrode surface of 31 cm.

The choice of these three particular combinations of operating magnetic field and gas pressure is motivated by the definition of the plasma resistance R ⊥ . Indeed, we have seen in Eq. (3.1) that R ⊥ ∝ 1/σ ⊥ , and in Eq. (4.73) that σ ⊥ ∝ P/B 2 0 for ion-driven Pedersen conductivity which we will show in Paragraph 5.1.4 to be the dominant contribution in VKP. On this ground one expects the same plasma resistance in Cases 1 and 2 as the pressure P and magnetic field B 0 change in such a way that the ratio B 0 2 /P is conserved. Conversely, the resistance is expected to grow by a factor 4 going from Case 1 to Case 3. This is made to facilitate comparisons, since this scaling would then 5.1. The Von-Kármán Plasma (VKP) experiment The input power is P src = 1 kW for all cases.

5. Comparison with data from the Von-Kármán Plasma experiment translate directly to the voltage drop across this resistor for a given thermionic current. Yet, this is only true in the limit that, as assumed in the models, n and T e do not vary. Figures C.1 and and C.2 show that this is not verified experimentally, so that the simple scalings with B and P obtained above should only be taken as trends.

Cathode design and arrangement

For practical and historical reasons, the cathode implemented in VKP is a Tungsten wire shaped in the form of an Archimedean spiral, as illustrated in the inset in Figure 5.2. As shown in Figure 5.2, a first power supply is used to control the applied bias ϕ b < 0. A secondary power supply then controls the heating current I h entering the wire off-axis.

Beyond I b , which by construction corresponds to the current flowing from the plasma to the electrode, one is ideally interested for comparison with models in determining the partitioning of this current among thermal electrons collected from the plasma, ions collected from the plasma and thermionic electrons emitted from the electrodes, as given in Eq. (3.3). From Richardson's law [START_REF] Richardson | [END_REF] Eq. (3.3c), determining the electron thermionic emission current requires in particular the actual wire temperature T w , which poses challenges experimentally. One possibility is to measure the wire resistivity to then deduce from tabulated data [108] the wire temperature for the appropriate geometric parameters (wire diameter and length). Yet, while this resistance R h can be taken to be equal to I h /ϕ h in the limit that |I h | ≫ |I b |, this choice is not valid if this last condition is not verified. Unfortunately, this is the case for the conditions studied here, as both I h and I b are typically between a fraction of amp and 20 A. As an alternative and to address this issue the resistor R h can be determined just after the plasma has been terminated, assuming that thermal properties vary on much longer timescales. A compounded difficulty in determining the thermionic current comes from the fact at high thermionic emission (e. g. T w ≥ 2700 K for Tungsten) a relatively modest error of ±25 K yields important variations in the deduced thermionic current. The challenges in interpreting experimental control parameters in terms of model inputs are heightened here by the fact that the potential on the cathode is not uniform in the case of the spiral cathode. Indeed, in models the cathode is represented by a piece of metal with uniform potential and emission over the exposed surface. Experimentally though, the cathode's design and its biasing and heating circuit is such that the applied bias varies along the length L f of the wire cathode. As a matter of fact the applied bias must be ϕ b on axis and ϕ b + ϕ h at the maximum radius of the spiral. Because the current drawn at a given point on the electrode depends on the potential at this point (see Eq. (3.3)), the current I flowing through the cathode then also depends on the
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position. Worse, the fact that the wire resistivity depends on the temperature and thus on the current flowing through the cathode makes this behaviour non-linear. For these reasons we limit our interpretation here to the overall effect of the current I b and leave a detail study of the different current contributions to future work.

Dominant contributions to parallel and perpendicular transport

The theoretical models developed in this thesis use parallel and perpendicular electric conductivities σ ∥ and σ ⊥ as inputs. As recalled in Chapter 1, these conductivities can be deduced if assuming classical collisional transport from the collision frequencies ν ei , ν in and ν en respectively defined in Eqs. (1.31), (1.33a), and (1.33b). More precisely, we showed in Eq. (1.68) that the relative importance of the different contributions to perpendicular conductivity are determined by the frequency ratios Ω c,i /ν in , ν en /Ω c,e and ν ei /Ω c,e .

The evolution of these three ratios across all operating conditions for which measurements were taken in this experimental campaign (corresponding to the potential, density and temperature radial data points shown in Figures 5.5, C.1, and C.2) is illustrated in Figure 5.3. Looking first in Figure 5.3 (a), we see that the collision frequency ν en is significantly larger than the Coulomb collision frequency ν ei for all operating conditions considered here, no matter the applied bias ϕ b . We thus conclude that the parallel conductivity is governed electron-neutral collisions. Moving now to the contributions to the perpendicular conductivity, we see in Figures 5.3 (b) and 5.3 (c) that both Ω c,i /ν in ≫ ν en /Ω c,e and Ω c,i /ν in ≫ ν ei /Ω c,e for all operating conditions. From Eq. (1.68), we similarly conclude that the perpendicular conductivity is mainly due to the ion-neutral collisions. Note here for completeness that the fact the data points in the middle and bottom panels in Figure 5.3 have a constant y-coordinate is the direct consequence that T i is assumed in this study constant radially and independent of the bias and emission. Quantitatively, we have T i = 0.2, 0.28 and 0.45 eV for respectively Cases 1, 2 and 3.

In light of this analysis, we consider in the remaining of this chapter the perpendicular conductivity to be the ion-driven Pedersen conductivity as given in Eq. (4.73), and the parallel conductivity to be the electron-neutral driven conductivity as given in Eq. (4.74). We do, however, proceed to a minor modification compared to the work done in earlier chapters. Indeed, while we used for simplicity as introduced in Paragraph 1.1.2 the fiducial cross section σ 0 = 5 10 -19 m 2 , we now use the value σ 0 = 13 10 -19 m 2 as it seems more consistent with the values reported in the literature for the gas and ion temperatures considered [109].

Discussion of experimental results

Having introduced the experimental setup, we now attempt to analyze experimental results in light of the theory developed in the previous chapters of this thesis. The different model inputs used for comparison with experimental data are summarized in Table 5 5.2: Set of plasma and geometrical parameters used for the analysis of VKP's data.

Cold vs. hot electrode

To start with, we seek to expose the effect of thermionic emission on the influence of the biased electrode on the plasma potential. To keep things simple, we consider here first the effect of the Figure 5.3: Evolution of (a) ν en vs. ν ei , (b) Ω c,i /ν in vs. ν en /Ω c,e , and (c) Ω c,i /ν in vs. ν ei /Ω c,e across the different operating conditions. The dashed black line represents y = x. All data points for a given case in middle and bottom panels have constant y because T i is here assumed for simplicity independent of bias and emission.

Discussion of experimental results

applied bias on the plasma potential on axis, which we write here ϕ(r = 0). Note that the axial dependence is generally omitted in this chapter since all measurements are carried out in a single axial plane (z = 49 cm in Figure 5.1). The potential measured using respectively a cold electrode and a hot electrode (with a set heating current I h = 16.9 A) for a range of applied biases ϕ b is shown Figure 5.4. Starting with the cold case, the plasma potential ϕ(r = 0) is found to be independent of the electrode bias. This behaviour can be interpreted through our models by the fact that the plasma is for these conditions in the saturated regime. In contrast, in the hot case, the plasma potential is observed to decrease with the applied bias, which would be consistent with a non-saturated regime. This analysis is further supported by the fact that the plasma potential appears to follow the ϕ b + ϕ h limit expected for a plasma potential driven by the electrode bias for weak negative bias. We also observe the plasma potential to deviate from this limit for more negative biases, which could be the sign that the applied bias is now more negative that the saturated potential. However, we would expect from our simple circuit model the plasma potential to remain in that case constant. Yet, this simple model assumes no change in plasma parameters as ϕ b varies, whereas Figures C. 

Qualitative agreement with theoretical trends

Having found evidence through Figure 5.4 that thermionic emission affects the plasma potential response to the applied bias, we now dig deeper in these effects. We specifically examine here how this response depends on plasma parameters by considering the three test cases introduced in Paragraph 5.1.2 and summed up in Table 5.1. We also look at the full radial profile of the plasma potential rather than the on-axis value only. To this end potential profiles ϕ(r) obtained for all six cases and various emission regimes are compared in Figure 5.5. First, we observe for all cases that the plasma potential decreases as the discharge current I b increases (in absolute value). This behaviour is consistent with the picture of radial current flowing through a perpendicular plasma resistor, as proposed in Chapter 3. Comparing now the plasma potential between Cases 1 and 3, we observe that for a similar I b the plasma potential decreases as the magnetic field B 0 increases. Going back to the discharge model presented in Section 3.1, this can be understood as the effect of a larger perpendicular resistor as B 0 increases. Indeed for Figure 5.5: Radial profiles of the plasma potential ϕ(r) measured for two different cathode biases and three different operating conditions (see Table 5.1), and a range of discharge current I b representing a range of thermionic emission regimes. Dotted lines correspond to the limit ϕ b + ϕ h for each case. The color code represent the thermionic emission intensity, from moderate in blue to strong in red. 104
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a constant discharge current a larger perpendicular plasma resistor would lead to a more negative plasma potential ϕ(r = 0) ≃ R ⊥ I b .

Looking more attentively at results, we see that for strong thermionic emission and a bias ϕ b = -40 V the plasma potential in the shadow of the electrode approaches the non-saturated limit ϕ b + ϕ h for Case 3, while it stays some distance above this limit for Cases 1 and 2. This is interesting in that Case 3 is precisely the one for which transition to non-saturated regime with thermionic emission is expected to happen first as it is the one corresponding to the largest perpendicular resistor. This interpretation is further supported by the observation that for Case 3 and the same current I b but this time a stronger bias ϕ b = -60 V the plasma potential is now more negative. We must however point out that the plasma potential is in this last case not a full 20 V lower as could be expected from the difference in applied biases, suggesting other effects or that we are very close to the regime transition.

Finally, we observe in Figure 5.5 that the plasma potential measured at r = r g = 10 cm is always non zero. Although it would be tempting to attribute this finding to the fact that the plasma may penetrate into the large diameter port through which diagnostic probes are inserted, new measurements obtained by the VKP group at LPENSL confirm the existence of a voltage drop located in front of the anode in a region at most a few mm thick. This last finding poses challenges for the interpretation of results through our models as these models precisely assume zero potential at r g and no anode sheath. As a first workaround, and because we would like to check if the perpendicular resistor image holds, we consider next the radial profiles of ϕ(r)ϕ(r g ), that is the profile after the offset at r g has been artificially removed.

Analysis of the potential profile without the offset at the anode

While the models proposed in this thesis do not capture the potential offset at the anode, we can still examine if the interpretation of the radial profile of ϕ(r) being governed by the perpendicular plasma resistance and the radial current holds.

Perpendicular resistance

Because the VKP experiment is not a symmetrical device, the current flowing to the electrode is that corresponding to the full column length (as opposed to half the plasma length as done in Chapter 3), so that the analytical plasma resistance now writes

R (ana) ⊥ = rg re dr 2πLrσ ⊥ (r) . (5.1) 
Here σ ⊥ (r) is the radial profile of the Pedersen conductivity given in Eq. (4.73), which can be evaluated for all three cases, biases and thermionic emission intensity using the radial measurements of plasma density and electron temperature given in Appendix C as inputs. The theoretical plasma perpendicular resistance R (ana) ⊥ obtained by integration of Eq. (5.1) can then be compared to the resistor

R (exp) ⊥ = ϕ(r e ) -ϕ(r g ) I b (5.2)
constructed from the voltage drop across the plasma column assuming no offset and the current I b collected at the electrode. These two quantities are plotted side by side for all operating conditions in Figure 5.6. Although a clear gap is observed in Figure 5.6 between the resistor predicted resistance assuming ion-driven classical collisional transport R , we find a relatively good correlation between these two quantities for both applied biases. On average, the measured resistor is found to be about 10 times larger than the theoretically predicted value, with this ratio increasing slightly for the stronger bias (ϕ b = -60 V). While this difference certainly calls for comments, this level of agreement seems remarkable given the number of simplifications and approximations made here, and tends to support this interpretation. Among the many effects that 5.2. Discussion of experimental results could reduce this gap, a particularly noteworthy one is neutral pressure. The neutral density used in these estimates is simply based on the neutral fill pressure and a neutral temperature T n = 500 K. If the actual neutral density were to be lower than estimated, which is known to happen under certain conditions in helicon sources such as VKP as a result of neutral depletion [110,111], this would then lead to a lower ion-neutral collision frequency, and from there to a larger theoretical plasma perpendicular resistance. The overall effect would thus be to reduce the gap observed in Figure 5.6. Other phenomena susceptible to affect this picture are the cross-section σ 0 used to estimate collision frequencies, as well as the possible temperature dependence of the ion-neutral collision cross section as discussed in Paragraph 1.1.2.

Dependence on plasma parameters

After having looked at the dataset as a whole, we now consider how results vary with plasma parameters within this dataset. We are particularly interested in examining whether experimental results are quantitatively consistent with the saturated plasma potential scaling

ϕ p ∝ -1 √ T i m i B 0 2 P I b n 18 (5.3) 
predicted by our models. To do so we focus here on measurements made for an applied bias ϕ b = -40 V, different magnetic field and fill pressure but comparable discharge currents I b . Although this will not be developed here, we note that these findings carry over to the ϕ b = -60 V case. Figure 5.7 (a) shows the radial profile of ϕ(r)-ϕ(r g ) for two different values of B 0 corresponding to Cases 1 and 3 in Table 5.1. As already mentioned a stronger magnetic field leads to a more negative plasma potential. Quantitatively though, the observed decrease in potential is found to be of only about 1.4, whereas Eq. ( 5.3) predicts a decrease by a factor of 4 as the magnetic field B 0 is doubled. It must be kept in mind though that Eq. (5.3) assumes a uniform plasma, which is clearly not the case as can be seen in Figures C.1 and C.2. These radial dependencies are then responsible for more intricate radial variations as can clearly be seen in Figure 5.7 (a). While very interesting, the study and possible interpretation of these features is left for future work.

Figure 5.7 (b) shows the radial profile of ϕ(r)ϕ(r g ) for two different values of B 0 and two different values of fill pressure P , corresponding to Cases 1 and 2 in Table 5.1. We recall that these parameters choices were made so that the ratio B 0 2 /P found in R ⊥ remains the same in both of these cases. Yet, because the plasma density is greater for Case 2 than for Case 1 (see Figure C.1), the saturation current is larger (in absolute value) and Eq. (5.3) thus predicts a less negative potential for a given discharge current I b . This is indeed what is observed in Figure 5.7 (b), with a less negative potential on axis for Case 2 than for Case 1. Quantitatively, we see that the variation between Cases 1 and 2 is weaker than that predicted from Eq. (5.3) using the average plasma density. This is however only so surprising in that, as already noted for Figure 5.7 (a), Figure 5.7 (b) shows complex radial variations suggesting that the use of a radially averaged density in Eq. (5.3) is over-simplistic.

To conclude this paragraph, we found that the simple discharge model appears to be in qualitative agreement with experimental data obtained on VKP. In particular the voltage drop across the plasma column appears to be reasonably explained in terms of the perpendicular resistance associated with ion-driven classical collisional perpendicular transport. This explanation is further supported when exploring parametric dependencies, and in particular the variations with the background magnetic field. While encouraging and offering insights into these effects, these results are limited in that analytical formulas are only available for uniform plasmas, whereas experimental data show complex radial variations. A more in-depth analysis of these features should however in principle be within reach of the numerical models developed in this thesis, and this work is left for future studies. 

Analysis of the potential offset at the anode

As noted when discussing Figure 5.5 in Paragraph 5.2.2, an experimental finding that can not be captured in the models developed so far in this thesis is the presence of a spatially localized variation of the potential in front of the anode at r = r g . As pointed earlier, additional measurements recently obtained by F. Pagaud and the VKP group suggest that this rapid potential transition takes place within a region less than a millimeter thick. Although an in-depth study of this feature is beyond the scope of this thesis, we briefly discuss here for completeness different hypotheses.

Since our interpretation of the radial potential profile has been to consider it as the potential needed to carry ions across magnetic field lines and towards the negatively biased cathode, a question we can ask ourselves is what happens when there are no longer ions to carry out this current. It stands to reason that this problem may arise near the anode, which is precisely where the voltage drop is experimentally observed.

Before discussing what may be the effect of an hypothetical electron sheath near the anode, it is informative to consider first the effect of a change of current carriers from ions to electrons. We thus consider a toy problem with two regions: an inner region A for r < r α where the current is assumed to be carried out by ions, and an outer region B for r α ≤ r ≤ r g where the current is assumed to be carried out by electrons. This is illustrated in Figure 5.8. Because the electron cross-field mobility is, as derived in Eq. (1.59), [m e T e /(m i T i )] 1/2 smaller than the ion cross-field mobility, the ion-driven Pedersen conductivity which we showed to hold in VKP is about [m i T i /(m e T e )] 1/2 larger than the electron-driven conductivity. Going back to our two different conductivity regions shown in Figure 5.8 we thus have

σ A ⊥ = m i T i m e T e σ B ⊥ (5.4) 
For VKP parameters, that is an Argon plasma with T e ∼ 3 eV and T i ∼ 0.1 -0.4 eV, this ratio is about 50 -100. Since resistivity is inversely proportional to conductivity, this lower conductivity in region B would then support the idea of a steeper potential variation in front of the anode.

Figure 5.8: Two-regions model for perpendicular conductivity along the radius of the plasma column. Inside the region A for r ≤ r α the current is assumed to be carried out primarily by ions, whereas inside the region B for r α ≤ r ≤ r g the current is assumed to be carried out by electrons.

Yet, considering the average voltage drop of about 5 V over 10 cm typically found in Figure 5.7, that is an electric field of about 50 V/m, a 50 -100 times larger electric field would only lead a voltage drop of a few volts over a millimeter. In fact, this picture supports an even lower voltage drop across region B since for the cylindrical geometry under consideration the incremental perpendicular resistance dR ⊥ scales as dr/(σ ⊥ r) as shown in Eq. (3.1). In some sense the weaker conductivity in region B is partly offset by a larger radius, as compared to region A with larger conductivity but smaller radius. Carrying out the exact integration for our step conductivity profile over region A-B yields a two-tier logarithmic profile

ϕ(r) =            I 2πL 1 σ A ⊥ ln r α r + 1 σ B ⊥ ln r g r α if r ≤ r α I 2πLσ B ⊥ ln r g r if r ≥ r α (5.5) 
which quantitatively leads to a voltage drop of 0.9 V over 1 mm for a voltage drop of 5 V across the plasma column and σ A ⊥ = 50 σ B ⊥ . This picture thus seems to capture the observed behavior, but predicts a voltage drop that is about an order of magnitude less than the tens of volts observed experimentally in Figure 5.5.

On the other hand, our two charge carrier regions model is overly simplified. Indeed, if only electrons are assumed in region B, then one should accordingly account for the space-charge potential associated with this electron layer. This would then lead to a negative potential (with respect to the ground at r = r g ) at the edge of the quasi-neutral plasma r = r α . For an unmagnetized plasma one would typically expect a potential difference of the order of T e over a distance of the order of a Debye length. Although the situation here differs in that the surface is parallel to the magnetic field, which makes it difficult to estimate this voltage drop, it stands to reason that an analogous effect will be at play, contributing to a larger voltage drop across region B.

Finally, the negative space charge in the electron layer in region B will lead to an increasingly negative electric field as we move from the plasma to the anode. Assuming electrons perpendicular velocity is given by the cross-field mobility Eq. (1.50), this implies that the velocity will increase. Current conservation then imposes for the density to decrease from r α to r g . Since the perpendicular conductivity scales linearly with the electron density, this density gradient will act as an increased resistivity, leading once again to a larger voltage drop compared to the simple model discussed above.

In summary, we have seen here that there are reasons to believe that the voltage drop observed experimentally in a narrow region in front of the anode may be the consequence of an electron sheath, resulting in a change in resistivity compared to the ion-driven collisional transport assumed to hold in the core of the plasma. Further investigation of this question and possible confirmation of this hypothesis are left for a future study.

5.

Comparison with data from the Von-Kármán Plasma experiment

Limitations of the models to capture biasing effects in VKP

The discussion of experimental results conducted in this chapter allows for a first critical assessment of the analytical and numerical models developed in this thesis. We identify here to a number of limitations and difficulties, and when possible point to some options to address them.

A strong limitation, which has already been noted earlier in this chapter, lies in the modeling of the cathode. Because of its complex geometry and electric circuitry, it appears very delicate to model accurately the emissive cathode behaviour. Even if neglecting non-linear effects (see Paragraph 5.1.3), electric potential variations along the length of the spiral cathode, which are inherent to the resistivity of the thin wire cathode, indeed translate into a problem that is non azimuthally symmetric. Ways to address this issue on the modelling side unfortunately appear limited.

Another limitation, which was discussed in the previous paragraph, lies in the voltage drop observed experimentally in front of the anode, which cannot be accounted for in current models. On this front it is hoped that new theoretical developments, possibly in the form of a model for the magnetized electron sheath at the anode, will make it possible to capture this physics in a more consistent manner.

A third limitation, which was not revisited in this chapter, is the possible onset of virtual cathode effects. On this topic also it is hoped that extension of the theoretical model will allow for a broader range of applicability of the models.

Finally, a limitation of models developed so far which was highlighted in this chapter is that experimental results clearly show that the plasma properties are affected both by the applied bias and emission. Figures C.1 and C.2 indeed clearly show that the plasma density and electron temperature change in response to variations in the applied bias ϕ b and/or in the thermionic emission parameter. Meanwhile, models developed and used so far assumed the plasma to be characterized by fixed parallel and perpendicular conductivities, and that only the electric potential was affected by the cathode. As a matter of fact, the conductivities are as we discussed multiple times dictated by plasma parameters including density and temperature, so that assuming set conductivities correspond to assuming set plasma parameters. This finding motivated the development of new fluid code, which as discussed in detail in the next chapter allows for the consistent modelling of potential and density in response to the bias applied on an emissive electrode.

Summary

In this chapter we turned to experimental data with the dual goal of testing the theoretical models developed in the previous chapters and gaining insights into experimental observations. For this purpose we analyzed data obtained on the Von-Kármán Plasma experiment at LPENSL. We focused more particularly on a dataset consisting of radial profiles of plasma potential, density and electron temperature obtained for three sets of operating plasma parameters, two different applied biases and a range of discharge currents by F. Pagaud as part of his PhD at LPENSL under the supervision of Drs. N. Plihon and V. Dolique.

Qualitative analysis of experimental data for these three sets confirmed that increasing thermionic emission leads to a plasma potential that is more negative and closer to the applied bias, which is consistent with the behaviour predicted by theory for a plasma in a saturated regime. Comparative analysis also confirmed that for a given discharge current the plasma potential is more negative for stronger background magnetic fields, which is also consistent with the scaling predicted assuming classical collisional perpendicular transport. On the other hand, experimental results revealed the existence of an important voltage drop in a narrow region in front of the anode, which effectively acts as a potential offset at the plasma edge, and which is not captured in models.

More quantitative analysis of the potential variation across the plasma column subtracting this offset showed qualitative agreement for all studied conditions with the potential variation expected from the discharge current and the plasma resistivity obtained considering ion-driven Pedersen conductivity. The experimentally inferred resistivity was however found to be about an order of 5.4. Summary magnitude larger than the theoretical value. Possible explanations for this discrepancy include neutral depletion and errors on the ion-neutral scattering input data.

Going back to the voltage drop observed in front of the anode, simple considerations showed that this feature could possibly be explained by the transition from an ion-driven conductivity dominated region in the core to an electron-driven conductivity dominated region in front of the anode. While interesting confirmation of this finding will require new theoretical developments.

Finally, we used this analysis to identify a number of limitations of the analytical and numerical models presented so far for the purpose of modelling biasing effects in VKP. Salient issues include a realistic modelling of the emissive cathode, modelling of the newly observed voltage drop at the anode sheath, modelling of virtual cathode effects and capturing the effect of the cathode on plasma parameters. Addressing this last point is the object of the newly developed fluid code introduced in the next chapter.

Chapter 6

Consistent model for plasma potential and plasma density We showed in the previous chapter how experimental measurements suggest that an emissive and negatively biased electrode not only affects the plasma potential, but also the plasma density and the electron temperature. Such behavior can clearly not be captured through the models developed so far in this thesis since they precisely rely on constant plasma density and electron temperature to determine the conductivity used as input to compute the plasma potential response. In this chapter we try to provide a first solution to this problem by developing a new solver which computes consistently the plasma potential and plasma density response to the bias and thermionic emission imposed on a negatively biased electrode. The electron temperature, on the other hand, is still taken as an input for the sake of simplicity. Yet, thanks to the fluid model employed here, generalization to include an energy equation for the electrons is conceptually straightforward. The ALS code introduced in Chapter 4 solves the anisotropic Laplace equation for the plasma potential Eq. (2.1) using conductivity maps over the simulation domain as inputs. As explained above, this approach precludes capturing density and temperature responses to the applied bias. To address this limitation, we turn here instead to fluid models.

Fluid models describe a plasma through macroscopic properties such as density n α , mean velocity v α and temperature T α . These properties are fundamentally related to the moments of the distribution function f α (x, v, t) which represents the particles of type α in phase space [START_REF] Bittencourt | Fundamentals of plasma physics[END_REF], and whose evolution is governed by the Boltzmann equation. Integration of the Boltzmann equation over momentum (i.e. velocity space) then yields conservation laws for the macroscopic properties [START_REF] Bittencourt | Fundamentals of plasma physics[END_REF][START_REF] Sadouni | Fluid modeling of transport and instabilities in magnetized low-temperature plasma sources[END_REF]. In particular, multiplying the Boltzmann equation by m α and m α v α and integrating over momentum gives respectively the conservation of mass and conservation of momentum, which are the two conservation equations that will be used in the Classical Transport Solver (CTS) developed here.

Set of equations

The continuity or mass conservation equation for ions and electrons write

∂n i ∂t + ∇ • (n i v i ) = S i (6.1a
)

∂n e ∂t + ∇ • (n e v e ) = S e , (6.1b) 
where v i and v e are the ion and electron fluid velocity, n i and n e are the ion and electron density, and S i and S e represent the sources and sinks of ions and electrons. If S α (r, z) > 0 (resp. S α (r, z) < 0) charged particles of species α are created (resp. destroyed). Examples of physical processes leading to sources and sinks are respectively ionization and recombination. In a quasi-neutral plasma, ion and electron densities are by definition equal (i.e. n i = n e = n). The plasma density can then be determined by solving either Eq. (6.1a) or Eq. (6.1b), assuming the corresponding velocity field is known. Note also that quasi-neutrality implies that the sources/sinks terms are also equal, that is

S i = S e = S.
One possibility to determine the velocity field is to use the drift-diffusion approximation

v α = µ α ∇ϕ -D α ∇n n + ∇T α T α , (6.2) 
where µ α and D α are the mobility and diffusion tensors [START_REF] Bittencourt | Fundamentals of plasma physics[END_REF] for charged species α, as introduced when discussing parallel and perpendicular collisional transport in a magnetized plasma in Chapter 1. As discussed then, this model is expected to hold in the limit that collisions between charged particles and neutrals are the dominant contribution to transport and that inertia effects are negligible. This is often verified for electrons, and in particular for the experimental conditions studied in Paragraph 5.1.2, and we thus use in CTS

v e = µ e ∇ϕ -D e ∇n n + ∇T e T e . (6.3) 
On the other hand, because of their much larger mass the response of ions to an applied force can not generally be assumed to be instantaneous and inertia effects have to be accounted for. We thus use for ions the momentum conservation equation

∂v i ∂t + (v i • ∇) v i = - e m i ∇ϕ + e m i v i × B -ν i v i (6.4)
where ν i is a quantity homogeneous to a collision frequency defined as The ratio S/n represents the ionization collision frequency. It captures the fact that ions created from ionization have zero initial velocity, so that ionization collision effectively acts as a momentum loss for the ion fluid. Note that because the advective term is retained in Eq.( 6.4), this model could in principle be used to study the effect of rotation on conductivity and transport [58,[START_REF] Kolmes | [END_REF][START_REF] Rax | [END_REF]. Note finally that the ion pressure term has been neglected in Eq. (6.4). Although this assumption is rather standard in low temperature plasma modelling, it may not hold true in all magnetized plasma experiments of interest here, notably VKP. The importance of this additional term should thus be assessed before reaching conclusions in these experiments. As mentioned above, only one of the two equations Eqs. (6.1a) and (6.1b) is required to compute the density. In CTS, we use Eq. (6.1a) and recast Eq. (6.1b) to instead obtain an expression for the charge conservation equation. Specifically, subtracting Eq. (6.1b) from Eq. (6.1a) and multiplying by the elementary charge e yields the charge conservation ∇ • (en [v iv e ]) = 0, which using the electron fluid velocity v e from Eq. ( 6.3) rewrites

ν i = ν in + m e m i ν ei + S n . ( 6 
∇ • enµ e ∇ϕ = ∇ • env i + eD e ∇n + n T e ∇T e . (6.6) 
For a given plasma density n, ion velocity field v i and electron temperature T e , Eq. (6.6) can be used to determine the plasma potential ϕ(r, z). It is the analog of the anistropic Laplace equation solved by ALS. The key difference is that rather than assuming fixed conductivities the plasma potential response is now captured through the ion velocity field v i that is self-consistently computed from Eq. (6.4), the density field n that is self-consistently computed from Eq. (6.1a) and the drift-diffusion approximation for electrons Eq. ( 6.3).

In short, CTS solves the set of coupled equations for (n, v i , ϕ) made of Eqs. (6.1a), (6.4), and (6.6). We note that the equation of mass and charge conservation Eqs. (6.1a) and (6.6) are in conservative form. Since as mentioned in passing in Chapter 4 Finite Volume Methods (FVM) are particularly suited to solve conservative equations, FVM will be used to solve these two equations. On the contrary, because the ion momentum equation Eq. (6.4) is written in non-conservative form it will be solved by finite differences.

Discretization

We now proceed to introduce the discretization strategy implemented in CTS.

Space and time discretization

As already discussed our primary goal with CTS is to extend the investigation initiated with ALS of the effect of emissive and negatively biased electrodes positioned at the end of a magnetized plasma column such as depicted in Figure 3.1. Therefore, similarly to what was done in Chapter 4, we consider a computational domain (r, z) ∈ [0, r g ] × [-L/2, 0] and discretize this domain using respectively N r and N z nodes along r and ẑ. The radial and axial position of node i, j are hence

r j = j∆r with j ∈ [0, N r -1] (6.7)
and

z i = - L 2 + i∆z with i ∈ [0, N z -1], (6.8) 
and the radial and axial grid steps ∆r = r g N r -1 , (6.9) and ∆z = (L/2) N z -1 . (6.10) Also, because the plasma density and the ion velocity fields are now time dependent, time is also discretized with a time step ∆t. This time step is however not a free parameter as it is limited 6. Consistent model for plasma potential and plasma density by the CFL condition [START_REF] Mazumder | Numerical methods for partial differential equations: finite difference and finite volume methods[END_REF]114], which imposes that the distance traveled by an ion in one time step must be less than the grid step to guarantee stability. Following Ref [START_REF] Hagelaar | HdR[END_REF], we thus impose

∆t < v iz ∆z + v ir ∆r -1 (6.11) 
and ∆t is in effect computed in CTS by taking as an upper limit v ir = v iz = C s with C s the Bohm's velocity. Note however that meeting the CFL condition is necessary but not necessarily sufficient. Indeed, because the time step is used to advance in time the ion velocity, ∆t should also be smaller than a fraction of the inverse of the cyclotron frequency Ω -1 c,i . For strongly magnetized plasma this may be more restricting that Eq. (6.11). This will for instance be the case in Test B in Paragraph 6.3.2.

Finite Volume Methods (FVM)

Having defined our computational grid, we briefly recall here the basic properties of Finite Volume Methods as it will justify our choice of discretization for the ion velocity field v i . This discussion is largely inspired by the textbook "Numerical methods for partial differential equations: finite difference and finite volume methods" by S. Mazumder [START_REF] Mazumder | Numerical methods for partial differential equations: finite difference and finite volume methods[END_REF].

FVM use a computational domain that is divided into a set of control volumes V i,j known as cells. Interior cells are here centered on nodes, as shown in yellow in Figures 6.1. Surfaces bounding individual cells are known as cell faces and are denoted by A z i,j , A r i,j+ 1 2 , and A r i,j-1 2 as depicted in Figure 6.1 (b). Note that because of the cylindrical geometry under consideration here the area of cell faces of normal r depends on j, whereas that of cell faces of normal ẑ does not. The derivation of the finite volume equations start with integrating the governing PDE over control volumes. Using as an example charge conservation ∇ • j = C with j = j r r + j z ẑ the current density, this writes

V i,j ∇ • j dV = V i,j C dV.
(6.12)

The volume integral on the LHS can then be converted to a surface integral by applying the Gauss-divergence theorem

V i,j ∇ • j dV = A i,j j • n dA, (6.13) 
with A i,j the area of the surface bounding the (i, j)-th cell and dA the differential area of the bounding surface with outward pointing normal unit vector n. The RHS of Eq. (6.13) corresponds to the flux of charged particles leaving the control volume through the bounding surface, and it can be replaced by a discrete summation over the cell faces

A i,j j • n dA ≃ A z i,j j z i+ 1 2 ,j -j z i-1 2 ,j + A r i,j+ 1 2 j r i,j+ 1 2 -A r i,j-1 2 j r i,j-1 2 . (6.14)
Applying the mean value theorem [START_REF] Mazumder | Numerical methods for partial differential equations: finite difference and finite volume methods[END_REF] to the RHS of Eq. (6.12) and assuming that the mean of C over the volume V i,j is equal to the value of C at the node at the center of the (i, j)-th cell, one gets

V i,j C dV = C i,j V i,j . (6.15) 
Combining Eqs. (6.14) and (6.15), the finite volume form of ∇ • j = C finally writes

A z i,j j z i+ 1 2 ,j -j z i-1 2 ,j + A r i,j+ 1 2 j r i,j+ 1 2 -A r i,j-1 2 j r i,j-1 2 = C i,j V i,j , (6.16) 
where j z i± 1 2 ,j , and j r i,j±+ 1 2 are the parallel and perpendicular current densities evaluated at the center of the cell faces as depicted in Figure 6.1 (a).

Expressions for the area of bounding surfaces and cell volumes depends on the position of the central node (i, j) as well as on whether this is an interior cell or not, as illustrated in Figures 6.3 and 6.4. For the 2D cylindrical grid introduced above, one gets for the bounding surfaces with normal ẑ

A z i,j =    π r 2 j+ 1 2 -r 2 j-1 2 , if 0 < j < N r -1 πr 2 1 2 
, if j = 0 (6.17a)

and for the bounding surfaces with normal r

A r i,j+ 1 2 =              2πr j+ 1 2 ∆z, if j ̸ = N r -1 and 1 ≤ i ≤ N z -2 2πr j+ 1 2 ∆z, 2 if j ̸ = N r -1 and i = 0 or i = N z -1 2πr j ∆z, if j = N r -1 and 1 ≤ i ≤ N z -2 2πr j ∆z, 2 if j = N r -1 and i = 0 or i = N z -1 (6.17b) A r i,j-1 2 =            2πr j-1 2 ∆z, if j ̸ = 0 and 1 ≤ i ≤ N z -2 2πr j-1 2 ∆z, 2 if j ̸ = 0 and i = 0 or i = N z -1 0, if j = 0 and 1 ≤ i ≤ N z -2 0 if j = 0 and i = 0 or i = N z -1. (6.17c)
Finally, the control volume writes .18) Note finally than going from a cylindrical to a Cartesian grid is much simpler using FVM than with finite differences as it only requires rewriting the area of cell faces and volume of cells.

V i,j =    A z i,j ∆z, if 0 < i < N z -1 A z i,j ∆z 2 , if i = 0 or i = N z -1. ( 6 

Discretized variables

From the discussion of FVM given just above, it becomes clear that it is advantageous to know n and S at cell centers, that is on grid nodes, and to know the ion velocity at the center of cell faces. Doing so indeed allows to estimate fluxes through control volume surfaces without the need 6. Consistent model for plasma potential and plasma density for interpolation. This strategy is notably used in the plasma simulation codes MAGNIS [START_REF] Sadouni | Fluid modeling of transport and instabilities in magnetized low-temperature plasma sources[END_REF][START_REF] Futtersack | Modélisation fluide du transport magnétisé dans les plasmas froids[END_REF] and PlasmaSim [53]. Implementing this strategy in CTS, scalar quantities a such as the plasma potential ϕ(r, z), the density n(r, z), the electron temperature T e (r, z) and the particles' sources/sinks term S(r, z) are known on grid nodes and we write a i,j = a(r j , z i ). On the contrary, the radial, azimuthal and axial ion fluid velocities v r (r, z), v θ (r, z) and v z (r, z) are known on grids shifted by half a grid step along the direction of the said component. More specifically, the radial velocity is known at radial positions r j + ∆r/2 as shown by orange arrows in Figure 6.1 (a), and we write v r i,j± 1 2 = v r (r j + ∆r/2, z i ). Conversely, the axial velocity is known at axial positions z i + ∆z/2 as shown by pink arrows in Figure 6.1 (a), and we write v z i± 1 2 ,j = v z (r j , z i +∆z/2). Finally, and although this is not directly dictated by the FVM approach as we assume axisymetry, we choose here the azimuthal velocity v θ (r, z) to be collocated with the radial velocity v r (r, z) as it simplifies the ion velocity update. Note finally that to avoid confusion and since this is the only velocity field considered we from now on in this chapter drop the index i on v i and simply use v to refer to the ion velocity.

Lastly, because variables are advanced in time, we used an upper index k to refer to the variable at a particular time step. As opposed to space discretization, all variables are known at the same time.

Workflow

To conclude this section we introduce the resolution workflow implemented in CTS, which is illustrated in Figure 6.2. Inputs for the code are geometrical parameters as well space dependent but time-independent electron temperature T e and source/sink term S(r, z).

First, the plasma density n(r, z, t = 0) and ion fluid velocity v(r, z, t = 0) are initialized. This is typically done by assuming a uniform initial plasma density and zero velocity. The information on density is then used to compute on nodes the transport coefficients µ e and D e .

At this point Eq. (6.6) can be solved for the potential ϕ(r, z). From there the ion velocity field v can be advanced in time by ∆t through Eq. (6.4). Then, the density field n is advanced in time by ∆t by solving Eq. (6.1a). This time update scheme is identical to that used in the code MAGNIS developed by G. Haagelar and R. Futtersack [START_REF] Sadouni | Fluid modeling of transport and instabilities in magnetized low-temperature plasma sources[END_REF][START_REF] Futtersack | Modélisation fluide du transport magnétisé dans les plasmas froids[END_REF].

The plasma density and ion velocity field are advanced in time (and the plasma potential updated accordingly) until a steady state regime is reached. In CTS, this typically corresponds to a relative L 1 -norm of the difference in plasma potential between two consecutive time steps k and k + 1

δ R L 1 ϕ k+1 = i,j |ϕ k+1 i,j -ϕ k i,j | i,j
|ϕ k+1 i,j | ≤ 10 -9 . (6.19)

Numerical methods implemented in CTS

Having introduced the general structure of CTS in the previous section, we now discuss in more details the numerical methods implemented to solve Eqs. (6.1a), (6.4), and (6.6). We begin by introducing the numerical scheme used for each of these equations on the interior of the computational domain and then address how different boundary conditions are implemented.

Equation of ion continuity

We begin by introducing the upwind scheme employed to solve the equation of ion continuity Eq. (6.1a). For this we consider that the ion velocity field v is known at time t + ∆t which corresponds to time step k + 1 and that the plasma density n is known at time t which corresponds to time step k. Integrating the ion continuity equation Eq.(6.1a) over a control volume V i,j and applying the Gauss-divergence theorem leads to

∂n ∂t + 1 V i,j A i,j [nv] • ndA = S. (6.20)
The first LHS term is discretized through an explicit Euler scheme

∂n ∂t (r j , z i ) = n k+1 i,j -n k i,j ∆t + O(∆t). (6.21) 
Meanwhile, decomposing the second LHS term surface integral in Eq. (6.20) over the surfaces bounding a control volume V i,j yields

1 V i,j A i,j n k v k+1 • ndA ≃ A z i,j V i,j n k v k+1 z i+ 1 2 ,j -n k v k+1 z i-1 2 ,j (6.22) 
+ A r i,j+ 1 2 V i,j n k v k+1 r i,j+ 1 2 - A r i,j-1 2 V i,j n k v k+1 r i,j-1 2 .
Plugging Eqs. (6.21) and (6.22) into Eq. (6.20) enables to express the distribution of the plasma density at t + ∆t as

n k+1 i,j =n k i,j - ∆t V i,j A z i,j n k v k+1 z i+ 1 2 ,j -n k v k+1 z i-1 2 ,j (6.23) 
- ∆t V i,j A r i,j+ 1 2 n k v k+1 r i,j+ 1 2 + ∆t V i,j A r i,j-1 2 n k v k+1 r i,j-1 2 + ∆tS k i,j .
A challenge here is that while the ion velocity is known at the faces, the plasma density is not, so that choices have to be made on how to evaluate the bracketed terms on the RHS in Eq. (6.23). In CTS this is done using an upwind scheme [START_REF] Mazumder | Numerical methods for partial differential equations: finite difference and finite volume methods[END_REF]. This scheme uses the sign of the velocity at the cell surface to determine whether to use density information from the cell to the left (bottom) of this surface, or from the cell to the right (top) of this surface. Mathematically, the square bracketed terms in Eqs. (6.22) and (6.23) then write

n k v k+1 z i+ 1 2 ,j = max(v k+1 z i+ 1 2 ,j , 0) n k i,j + min(v k+1 z i+ 1 2 ,j , 0) n k i+1,j (6.24a 
)

n k v k+1 z i-1 2 ,j = max(v k+1 z i-1 2 ,j , 0) n k i-1,j + min(v k+1 z i-1 2 ,j , 0) n k i,j (6.24b 
)

n k v k+1 r i,j+ 1 2 = max(v k+1 r i,j+ 1 2 , 0) n k i,j + min(v k+1 r i,j+ 1 2 , 0) n k i,j+1 (6.24c 
)

n k v k+1 r i,j-1 2 = max(v k+1 r i,j-1 2 , 0) n k i,j-1 + min(v k+1 r i,j-1 2 , 0) n k i,j . (6.24d)

Equation of charge conservation

We now examine the FVM formulation of the equation of charge conservation Eq (6.6). For this we consider that the plasma density n and ion velocity field v are known at time t which corresponds to time step k. From the density and the input electron temperature T e the parallel and perpendicular transport coefficients µ e⊥ (r, z), µ e∥ (r, z), D e⊥ (r, z), and D e∥ (r, z) are also known on grid nodes at time t (time step k). Eq. (6.6) can be integrated over a control volume V i,j , (6.26) In the remaining of this Paragraph we focus on how to treat the LHS term of Eq. (6.26). The second and third RHS terms can be dealt with analogously and are thus not treated here explicitly. They can however be found in Appendix D. Finally, the first RHS term is dealt with via an upwind scheme similar to that employed for the equation of continuity, as discussed in detail in Paragraph 6.2.1.

V i,j ∇ • enµ e ∇ϕ dV = V i,j
The LHS surface integral in Eq. (6.26) can be decomposed on the different cell faces bounding the control volume to give

A i,j e nµ e ∇ϕ • n dA ≃ eA z i,j n k µ k e∥ ∂ϕ k ∂z i+ 1 2 ,j -n k µ k e∥ ∂ϕ k ∂z i-1 2 ,j (6.27) + eA r i,j+ 1 2 n k µ k e⊥ ∂ϕ k ∂r i,j+ 1 2 -eA r i,j-1 2 n k µ k e⊥ ∂ϕ k ∂r i,j-1 2 .
Here bracketed terms must be evaluated at cell edges, whereas the plasma potential and the electron mobility are both known on grid nodes. The solution used here to overcome this issue is to take the average over two consecutive nodes. The derivatives of ϕ are approximated using Taylor series.

To illustrate this process, we develop the first bracketed term in Eq. (6.27), that is the term evaluated at (r j , z i + ∆z/2). For a grid quantity a we define the operators Plugging Eq (6.30) into the first RHS term of Eq. (6.27) one immediately obtains

⟨a⟩ z i,j = a i+1,j + a i,j 2 (6.28) 
n k µ k e∥ ∂ϕ k ∂z i+ 1 2 ,j = n k µ k e∥ z i,j 1 ∆z ϕ k i+1,j -ϕ k i,j . (6.31a) 
Similarly, one gets for the other RHS terms of Eq. (6.27)

n k µ k e∥ ∂ϕ k ∂z i-1 2 ,j = n k µ k e∥ z i-1,j 1 ∆z ϕ k i,j -ϕ k i-1,j , (6.31b 
)

n k µ k e⊥ ∂ϕ k ∂r i,j+ 1 2 = n k µ k e⊥ r i,j 1 ∆r ϕ k i,j+1 -ϕ k i,j , (6.31c 
)

n k µ k e⊥ ∂ϕ k ∂r i,j-1 2 = n k µ k e⊥ r i,j-1 1 ∆r ϕ k i,j -ϕ k i,j-1 . (6.31d) 
As mentioned earlier, the second and third RHS term of Eq. (6.26) are treated analogously in CTS, whereas the first RHS term is obtained from Eqs. (6.24a), (6.24b), (6.24c), and (6.24d) using 6. Consistent model for plasma potential and plasma density the velocity at time step k instead of k + 1. Putting these pieces together one finally obtains a linear system to determine the potential inside the computation domain which writes

C i,j ϕ k i,j + C i,j+1 ϕ k i,j+1 + C i,j-1 ϕ k i,j-1 + C k i+1,j ϕ k i+1,j + C i-1,j ϕ k i-1,j = -eA z i,j n k v k z i+ 1 2 ,j -n k v k z i-1 2 ,j -eA r i,j+ 1 2 n k v k r i,j+ 1 2 + eA r i,j-1 2 n k v k r i,j-1 2 -F i,j n k i,j + F i,j+1 n k i,j+1 + F i,j-1 n k i,j-1 + F i+1,j n k i+1,j + F i-1,j n k i-1,j
-(G i,j T e i,j + G i,j+1 T e i,j+1 + G i,j-1 T e i,j-1 + G i+1,j T e i+1,j + G i-1,j T e i-1,j ) . (6.32)

The explicit expressions for the different coefficients can be found in Appendix D. This set of equations for interior nodes, complemented by boundary conditions for boundary nodes as discussed in the next section, forms a N r × N z linear system. This system is solved in CTS using the same direct method that combines sparse matrices and Stone's approach and which was introduced when discussing ALS in Chapter 4.

Equation of ion momentum conservation

We now finally examine how the ion momentum conservation Eq. (6.4) is solved using finite differences in CTS. For this we assume that the plasma potential distribution ϕ and the ion velocity field v are now known at time t which corresponds to the time step k.

The ion momentum conservation Eq. ( 6.4) can be expanded on a cylindrical basis (r, θ, and ẑ)

as ∂v r ∂t + v r ∂v r ∂r - v 2 θ r + v z ∂v r ∂z + ν i v r = - e m i ∂ϕ ∂r + Ω c,i v θ , (6.33a 
)

∂v θ ∂t + v r ∂v θ ∂r + v θ r + v z ∂v θ ∂z + ν i v θ = -Ω c,i v r , (6.33b 
)

∂v z ∂t + v r ∂v z ∂r + v z ∂v z ∂z + ν i v z = - e m i ∂ϕ ∂z . (6.33c)
This system of coupled partial differential equations for the three velocity components (v r , v θ , v z ) is solved in CTS using the Finite Difference Method (FDM), with velocities known on staggered grid as introduced in Paragraph 6.1.2 and showed in Figure 6.3. Bracketed terms in Eqs. (6.33a), (6.33b) and (6.33c) correspond to the advective term (v • ∇)v. We introduce the resolution scheme employed in CTS by considering first the limit of zero advection, and then discuss the challenges brought by these bracketed terms and how they are handled in CTS.

Without advection

Time derivatives in Eqs. (6.33a), (6.33b), and (6.33c) are discretized using an Euler explicit scheme, which is first order in time. This is analogous to what was done for the density in Paragraph 6.2.1. For the radial velocity, this for instance writes

∂v r ∂t r i + ∆r 2 , z i = v k+1 r i,j+ 1 2 -v k r i,j+ 1 2 ∆t + O(∆t). (6.34)
Meanwhile, the staggered grids can be exploited to provide directly estimates for the axial and radial partial derivatives of the potential that are accurate to second order in grid step. Combining these results leads to

v k r i,j+ 1 2 = 1 1 + ∆t ν I v k r i,j+ 1 2 + ∆tΩ c,i v k θ i,j+ 1 2 - e∆t m i ∆r ϕ k i,j+1 -ϕ k i,j (6.35a) 
and v k+1 θ i,j+

1 2 = 1 1 + ∆t ν I v k θ i,j+ 1 2 -∆tΩ c,i v k r i,j+ 1 2 , (6.35b) 
6.2. Numerical methods implemented in CTS for 1 ≤ i ≤ N z -1 and 0 ≤ j ≤ N r -2 and

v k+1 z i+ 1 2 ,j = 1 1 + ∆t ν I v k z i+ 1 2 ,j - e∆t m i ∆z ϕ k i+1,j -ϕ k i,j , (6.35c) 
for 0 ≤ i ≤ N z -2 and 0 ≤ j ≤ N r -2. Note that because of the grid stagger, information on the potential over the entire grid is sufficient to update the velocity field when advection is neglected.

With advection

Extending Eqs. (6.35a), (6.35b) and (6.35c) to include advective terms gives

v k+1 r i,j+ 1 2 = 1 1 + ∆t ν I    v k r i,j+ 1 2 -γ ∆t v k r ∂v k r ∂r i,j+ 1 2 + ∆tΩ c,i v k θ i,j+ 1 2   1 + γ v k θ i,j+ 1 2 rΩ c,i   (6.36a) -γ ∆t v k z ∂v k r ∂z i,j+ 1 2 - e∆t m i ∆r ϕ k i,j+1 -ϕ k i,j    , v k+1 θ i,j+ 1 2 = 1 1 + ∆t ν I    v k θ i,j+ 1 2 1 -γ ∆t r v k r i,j+ 1 2 -∆tΩ c,i v k r i,j+ 1 2 -γ ∆t v k r ∂v k θ ∂r i,j+ 1 2 (6.36b) -γ ∆t v k z ∂v k θ ∂z i,j+ 1 2    , v k+1 z i+ 1 2 ,j = 1 1 + ∆t ν I    v k z i+ 1 2 ,j -γ ∆t v k z ∂v k z ∂z i+ 1 2 ,j -γ ∆t v k r ∂v k z ∂r i+ 1 2 ,j (6.36c) 
- e∆t m i ∆z 1 2 ϕ k i+1,j -ϕ k i,j    .
Here γ is simply a parameter equal to 1 or 0 used to artificially turn on/off the advective terms in CTS. The numerical challenges brought by advective terms come primarily from the terms involving the product of a component of the velocity and a derivative of a velocity component. Within these terms we further distinguish between the non-cross terms (purple boxes in Eqs. (6.36)) which involve velocities and velocity gradients that are collocated, and the cross terms (orange boxes in Eqs. (6.36)) where they are not. Both terms require specific attention. Let us first discuss the non-crossed term [v r ∂v r /∂r] i,j+1/2 . The radial velocity v r is known at position (r j +∆r/2, z i ), but it remains to evaluate at this position its partial derivative with respect to r. One option to do so is to use an upwind scheme as already introduced in Paragraph 6.2.1. Although this approach was tried, it proved to lead to numerical instabilities. As a workaround a different upwind scheme is used in CTS, following the work of G. Hagelaar [START_REF] Hagelaar | HdR[END_REF], with instead

v k r ∂v k r ∂r i,j+ 1 2 = min v k r i,j+ 3 2 + v k r i,j+ 1 2 , 0 2 v k r i,j+ 3 2 -v k r i,j+ 1 2 ∆r (6.37) + max v k r i,j+ 1 2 + v k r i,j-1 2 , 0 2 v k r i,j+ 1 2 -v k r i,j-1 2 ∆r .
∆r .

The same approach is used for the non-crossed terms [v z ∂v z /∂z] i+1/2,j which reads

v k z ∂v k z ∂z i+ 1 2 ,j = min v k z i+ 3 2 ,j + v k z i+ 1 2 ,j , 0 2 v k z i+ 3 2 ,j -v k z i+ 1 2 ,j ∆z (6.39) + max v k z i+ 1 2 ,j + v k z i-1 2 ,j , 0 2 v k z i+ 1 2 ,j -v k z i-1 2 ,j
∆z .

Examining now the crossed terms and starting with [v z ∂v r /∂z] i,j+1/2 , we see that the axial component of the ion velocity v z is not defined at position (r j + ∆r/2, z i ). In order to address this issue while preserving the energy conserving upwind scheme, we average v z over multiple radial nodes. Specifically, we use

v k z ∂v k r ∂z i,j+ 1 2 = min v k z r i+ 1 2 ,j , 0 v k r i+1,j+ 1 2 -v k r i,j+ 1 2 ∆z (6.40) 
+ max v k z r i-1 2 ,j , 0 v k r i,j+ 1 2 -v k r i-1,j+ 1 2 ∆z ,
where we defined 2 ,j are used to determined the crossed term [v r ∂v θ /∂z] i,j+1/2 , which similarly reads

v k z r i+ 1 2 ,j = v k z i+ 1 2 ,j+1 + v k z i+ 1 2 ,j 2 
v k z ∂v k θ ∂z i,j+ 1 2 = min v k z + , 0 v k θ i+1,j+ 1 2 -v k θ i,j+ 1 2 ∆z (6.42) + max v k z - , 0 v k θ i,j+ 1 2 -v k θ i-1,j+ 1 2 ∆z .
Finally, the same method is used to write [v r ∂v z /∂r] i+1/2,j . However, since it is now the radial velocity v r that is not defined at position (r j , z i +∆z/2), we consider this time the averaged velocity

v k r z i,j+ 1 2 = v k r i,j+ 1 2 + v k r i+1,j+ 1 2 2 (6.43)
to finally get

v k r ∂v k z ∂r i+ 1 2 ,j = min v k r z i,j+ 1 2 , 0 v k z i+ 1 2 ,j+1 -v k z i+ 1 2 ,j ∆r (6.44) + max v k r z i,j-1 2 , 0 v k z i+ 1 2 ,j -v k z i+ 1 2 ,j-1
∆r .

Numerical methods implemented in CTS

Plugging Eqs. (6.37), (6.38), (6.39), (6.40), (6.42) and (6.44) into Eqs. (6.36a), (6.36b) and (6.36c), the ion velocity field can be computed at time t + ∆t.

To conclude this paragraph note that the generalized upwind scheme used here for the advective terms requires information on the velocity past the edges of the computational domain. Practically, this is dealt with by substituting suitable boundary conditions for the ion fluid velocity at these positions, as discussed in the next section.

Boundary conditions

We now discuss how boundary conditions representative of different physical properties are enforced in CTS. Having as a primary focus the generalization of the simulations done using ALS, we discuss boundary conditions for the same physical problem as that studied in Chapter 4. The corresponding computational domain is depicted in Figure 6.3. Figure 6.3: Computational domain considered for CTS simulations. The green dash-dot boundary condition (BC) corresponds to axisymmetry. The pink dash-dot BC corresponds to symmetry with respect to the plane z = 0. The blue BC represents the grounded vacuum vessel. The orange BC corresponds to the flux condition Eq. (6.50) modeling the ion-sheath in front of the electrode. The purple BC corresponds to the dielectric condition.

From our discussion in the previous section of numerical methods used to solve Eqs. (6.1a), (6.4) and (6.6) on the computational domain interior, we know that these methods can not be applied at boundary nodes. This is because writing the interior FVM schemes for both the ion continuity and the charge conservation equations Eq. (6.23) and Eq. (6.32) at boundary nodes would require information at points outside the computational domain. A similar issue arise when trying to evaluate the derivatives in advective terms for the ion momentum equation. The way this is handle in CTS is by replacing the interior FVM schemes by boundary equivalents obtained by considering specific control volumes for boundary cells, as showed in yellow in Figure 6.4, and by imposing physically motivated flux values through the cell faces forming the domain boundary. Specifying velocity properties on the domain boundary also allow to determine derivatives of the velocity field at boundary nodes for the ion momentum equation. This process is detailed below. 

Numerical methods implemented in CTS

Boundary conditions for the ion continuity equation Once control volumes for boundary cells have been defined, the same FVM approach can be defined to update the plasma density as long as the ion flux nv • n through the cell face representing the computational domain boundary is known. Since the density is known on the domain boundary from the previous times step, this only requires information of the velocity normal to the cell face surface on the computational domain boundary. This choice is made in CTS depending on the nature of the boundary.

Physical conditions. Going around clockwise from the upper right corner of the computational domain in Figure 6.3, axial symmetry simply corresponds to v z (r, 0) = 0 whereas axisymmetry leads to v r (0, z) = v θ (0, z) = 0. Moving on to the electrode region, we assume an ion sheath to form in front of the negatively biased electrode. Consistent with our simplified assumption of a Mach number equal to 1 at the sheath entrance, ions are therefore assumed to enter the sheath with the ion sound speed C s = eT e /m i , and we thus take v z (0 ≤ r ≤ r e , -z sh ) = -C s . On this electrode, and although this is not needed for the density update, we further assume no ion-slip so that v r (0 ≤ r ≤ r e , -z sh ) = v θ (0 ≤ r ≤ r e , -z sh ) = 0. The next region, that is the region between the end of the electrode and the grounded vessel r e < r < r g , is the most challenging to model as it requires making assumptions on the physics at play. For the code testing and validation done here we use the same condition as the electrode, that is v z (r e < r < r g , -z sh ) = -C s and v r (r e < r < r g , -z sh ) = v θ (r e < r < r g , -z sh ) = 0, though the influence of these choices will have to be studied when carrying out more physical studies. Lastly, based on the discussions of experimental findings given in Chapter 5, we assume an electron sheath to form in front the grounded vessel and thus take v r (r g , z) = 0. We also assume here no ion slip, and thus v θ (r g , z) = v z (r g , z) = 0.

Discretization. With this information on the velocity normal to the cell surface on the computational domain boundary and the FVM written for control volumes for boundary cells the density at cell nodes can be readily updated. We consider here for illustration the case of a node on the negatively biased electrode (r = r j , z = -z sh ) with r j ≤ r e but formulas for nodes representative other boundary conditions are similarly derived and can be found in Appendix D. Using our modified control volume for boundary cell axial fluxes must be evaluated at axial positions z = -z sh and z = -z sh + ∆z/2, instead of the z = z i -∆z/2 and z = z i + ∆z/2 used for interior nodes in Eqs. (6.24a) and (6.24b). The axial flux at z = -z sh + ∆z/2 is entirely determined from variables in the interior of the domain and thus poses no difficulty. Looking at axial flux at z = -z sh , our assumption that v z (0 ≤ r ≤ r e , -z sh ) = -C s immediately gives

n k v k+1 z 0,j = -C s n k 0,j . (6.45) 
Meanwhile, the no-ion slip condition v r (0 ≤ r ≤ r e , -z sh ) = v θ (0 ≤ r ≤ r e , -z sh ) makes fluxes through cell surfaces of normal r at r j ± ∆r/2 zero. Putting these pieces together the plasma density in front of the electrode at time t + ∆t is simply given by

n k+1 0,j = n k 0,j - ∆t V 0,j A z 0,j n k v k+1 z 1 2 ,j + C s n k 0,j + ∆tS 0,j . (6.46) 
This method can be implemented over all the computational domain boundary with appropriate conditions for the velocity. The one exception is the node at (r g , -z sh ). Indeed, assuming no ion slip there would lead to n k+1 0,Nr-1 = n k 0,Nr-1 + ∆tS 0,Nr-1 . (6.47)

For S 0,Nr-1 > 0 the plasma density would continuously increase. To prevent such non physical behavior we instead choose the density there to be the average of the two neighboring nodes

n k+1 0,Nr-1 = n k+1 1,Nr-1 + n k+1 0,Nr-2 2 
. (6.48)

Consistent model for plasma potential and plasma density

Boundary conditions for the charge conservation equation

The extension of the FVM scheme to boundary nodes discussed above for the ion continuity equation is similarly employed in CTS for the charge conservation equation, with the difference that boundary conditions are now stated for the normal current density j • n rather than for the ion flux nv • n. The only exception is the ground condition ϕ(r g , z) = 0, which is simply built in.

Dirichlet conditions. The simpler case is the case of a set potential. In this case the FVM formulation for the charge conservation equation is simply skipped and replaced by a set potential on these nodes. For instance the zero potential condition for all z at r = r g is simply done by imposing ϕ i,Nr-1 = 0 ∀i ∈ [0, N z -1] (6.49) in the linear system modeling Eq. (6.6).

Flux conditions.

Other types of boundary conditions (symmetry and fluxes) are handled in terms of current density, and via the already introduced control volumes for boundary cells showed in yellow in Figure 6.4. Going again around clockwise from the upper right corner of the computational domain in Figure 6.3, the axial symmetry is enforced through j z (0, z) = 0, while axisymmetry is enforced via j r (r, 0) = 0. On the electrode shown in orange in Figure 6.3, that is for 0 ≤ r ≤ r e and z = -z sh = -L/2, we similarly to what was done in Eq. (4.50) in ALS impose

j z (r ≤ r e , -z sh , t) = j is (r, -z sh , t) exp Λ + ϕ b -ϕ(r, -z sh , t) T e -1 - j eth j is (r, -z sh , t)
. (6.50)

One should however note that both the current drawn at the electrode and the ion saturation current are now time-dependent. Indeed, because the density is time-dependent, we accordingly have j is (r, -z sh , t) = en(r, -z sh , t) eT e (r, -z sh ) m i . (6.51)

Note also that just like in ALS imposing Eq. (6.50) as a boundary condition makes the problem non-linear since the RHS is a function of ϕ. Finally, we model the region between the extremity of the electrode and the ground shown in purple in Figure 6.3 via the dielectric condition j z (r e < r < r g , -z sh ) = 0.

Flux conditions discretization.

Flux conditions are implemented using the edge cell control volumes showed in yellow in Figure 6.4. To do so we evaluate the different contributions in Eq. (6.26) on the three bounding surfaces other than the domain boundary -these depend on the variables v, ϕ and n -and use the fact that the flux normal to last cell surface (the one common with the domain boundary) is known (imposed). In certain instances this can be further simplified. One example is the case where no-slip is imposed, in which case the fluxes through the bounding surfaces of normal parallel to the computational domain boundary is zero.

Similarly to what was done for the ion continuity we detail here how this extension of FVM to boundary nodes is used to compute the plasma potential at a boundary node corresponding to the negatively biased electrode (r = r j , z = -z sh ) with r j ≤ r e , as it is the most complex due to the non-linearity. Other flux conditions are handled in a similar fashion and the corresponding discretized boundary conditions implemented in CTS can be found in Appendix D. Developing the flux balance equation Eq. (6.26) over the edge cell control volume to compute the potential at time t + ∆t (time step k + 1), and using the fact that for a no-slip condition radial fluxes are both zero, one gets

en k µ k e∥ ∂ϕ k ∂z 1 2 ,j = -j k z (r j , -z sh ) + en k v k z 1 2 ,j + eD k e∥ ∂n k ∂z 1 2 ,j + e n k T e D k e∥ ∂T e ∂z 1 
2 ,j . (6.52)

Numerical methods implemented in CTS

As already discussed for ALS a singular challenge associated with the ion-sheath condition is that the first RHS term in Eq. (6.52) depends on the potential ϕ k 0,j , which is precisely the unknown. In ALS, where no-time dependence was considered, this was handled through a linearization of the non-linear source term (see Eq. (4.60)) and iterations until the potential was such that the flux condition computed for this potential matched the current density expected through an ion sheath.

Here, because we are primarily interested in the steady-state solution, we choose not to carry out these iterations to reach equilibrium at each time step, and instead simply compute the non-linear source term at time step k + 1 as an implicit combination of the source term computed for the potential at time k and the derivative of the source term with respect to the potential. Noting N j = -j k+1 z (r j , -z sh ), this writes

N k+1 j = N k j + dN dϕ k j ϕ k+1 0,j -ϕ k 0,j . (6.53) 
Plugging Eq.( 6.53) into Eq.(6.52) yields the formula to update the potential ϕ k+1 0,j for j ∈ [0, N re -1], that is the potential at the sheath edge in front of the negatively biased electrode,

- 1 ∆z • en k+1 µ k+1 e∥ 1,0 + dN dϕ k j ϕ k+1 0,j + 1 ∆z • en k+1 µ k+1 e∥ 1,0 ϕ k+1 1,j = N k j - dN dϕ k j ϕ k 0,j + en k+1 v k+1 z 1 2 ,j + eD k+1 e∥ ∂n k+1 ∂z 1 2 ,j + e n k+1 T e D k+1 e∥ ∂T e ∂z 1 2 ,j . (6.54) 
It must be emphasized here that because of our choice to not seek equilibrium between the nonlinear flux condition and the plasma potential at every time step the updated potential and, from there, the subsequent velocity and density updates, may not be physical in the sense that they will not accurately represent the actual ϕ, n, v at instant t. This is however only an issue for transient regimes since the potential will properly capture the non-linear flux condition once the steady-state regime (t → ∞) we are interested in has been reached.

Boundary conditions for the ion momentum equation

As mentioned when introducing the numerical scheme to solve the ion momentum equation on interior nodes in Paragraph 6.2.3, boundary conditions are only required in the case where advective terms are included. When these terms are neglected the velocity field can indeed be directly updated using the plasma potential at nodes. When these terms are included though the numerical scheme needs to be modified at boundary nodes since Eqs. (6.37), (6.38), (6.39), (6.40), (6.42) and (6.44) would otherwise involve information past the edge of the computational domain. To address this issue we inject into these equations information on the velocity on the edge of the computational domain based on physical considerations. These boundary conditions for the velocity are the same as those used for the ion continuity equation, as listed in the corresponding sub-paragraph above.

To illustrate how this is done, we consider as an example here how the axial velocity v z is updated at the position (r, z) = (r j , ∆z/2), that is the leftmost position where the axial velocity is known in front of the biased electrode. Other terms are dealt with similarly and the scheme implemented in CTS can be found in Appendix D. Taking i = 0 in the equation for interior nodes Eq. (6.36c) gives

v k+1 z 1 2 ,j = 1 1 + ∆t ν I    v k z 1 2 ,j -γ ∆t v k z ∂v k z ∂z 1 2 ,j -γ ∆t v k r ∂v k z ∂r 1 
2 ,j (6.55)

- e∆t m i ∆z 1 2 ϕ k 1,j -ϕ k 0,j    .

Consistent model for plasma potential and plasma density

Looking first at the non-crossed term, highlighted with a purple box in Eq. (6.55), we see in Eq. (6.39) that computing this term would normally require the axial velocity at position (r, z) = (r j , -∆z/2), which is outside the staggered grid. In CTS we remediate to this problem by instead approximating the axial derivative over the forward stencil depicted in Figure 6.4. By doing so only the axial velocity at position (r, z) = (r j , 0) is required, and it is known from the boundary condition v z (0 ≤ r ≤ r e , -z sh ) = -C s imposed on this boundary. We then obtain

v k z ∂v k z ∂z 1 2 ,j = min v k z 3 2 ,j + v k z 1 2 ,j , 0 2 v k z 3 2 ,j -v k z 1 2 ,j ∆z (6.56) + max v k z 1 2 ,j -C s , 0 2 v k z 1 2 ,j + C s ∆z/2 .
Examining now the crossed term, highlighted with an orange box in Eq. (6.55), the derivative ∂v z /∂z poses no particular problem and can be handled as in Eq. (6.44), but the radial velocity v r requires comments. Indeed, because of the grid stagger, v r is unknown at radial position r = j∆r. In Eq. (6.44) this was handled via the definition of v k r z i,j+ 1 2 for interior nodes in Eq. (6.43), but one needs to know how to compute these terms for boundary nodes. In CTS we use the no slip and axisymmetry conditions v r (0 ≤ r ≤ r e , -z sh ) = 0 and v r (0, z) = 0 enforced on this boundary and simply write

v k r z 0,j+ 1 2 = v k r 1,j+ 1 2
for j ̸ = 0 0 for j = 0. (6.57)

Note that contrary to the way this is done for interior nodes, we do not here average the radial velocity but simply takes it equal to its value at the next known position towards the interior (z = ∆z). Plugging Eq. ( 6.57) into Eq. (6.44), the crossed term writes for j ̸ = 0

v k r ∂v k z ∂r 1 2 ,j̸ =0 = min v k r 1,j+ 1 2 , 0 v k z 1 2 ,j+1 -v k z 1 2 ,j ∆r (6.58a) + max v k r 1,j-1 2 , 0 v k z 1 2 ,j -v k z 1 2 ,j-1
∆r .

and for j = 0

v k r ∂v k z ∂r 1 
2 ,0 = 0. (6.58b)

The axial velocity v k+1 z i+ 1 2 ,j at the leftmost position in front of the electrode, i.e. for i = 0 and 0 ≤ j ≤ N re -1, is finally obtained by plugging Eqs. (6.56) and (6.58) into Eq. (6.55).

Source term

In CTS, the source (sink) term S(r, z) is typically either set uniform, that is S(r, z) = S 0 , or defined via a 2D Gaussian distribution

S(r, z) = S 0 exp - (r -r 0 ) 2 2σ 2 r exp - (z -z 0 ) 2 2σ 2 z , (6.59) 
where r 0 and z 0 are the radial and axial means of the Gaussian, and σ r and σ z are the radial and axial standard deviations. Rather than choosing the amplitude of the source term S 0 directly, it can be more convenient to infer it from the equivalent current 

I src = e V S(
with V i,j the (i, j)-th control volume. This current indeed represents the current leaving the domain in steady-state. For the case of a negatively biased electrode of particular interest in this thesis it is expected that this current should be comparable to the current drawn at the electrode. This provides an estimate of the source term needed to model a particular configuration. For instance for the geometric parameters listed in Table 4.1, a current I src = 20 A roughly translates to a uniform source term S 0 ∼ 10 21 m -3 s -1 .

Code validation

We now move to the validation of this new tool. Because, as discussed in detail in the first two sections of this chapter, CTS solves a set of three coupled conservative equations for the potential ϕ, the ion velocity field v and the plasma density n, we first test the results of the code for each of these three equations one at a time, by purposely turning off momentarily the others. After that, the results of the full code are compared for two different test cases against the results obtained for the same conditions with the code PlasmaSim developed, validated and used by G. Hagelaar [53] at Laplace.

Validation of the solver on uncoupled problems

The general method used in this Paragraph is to compare numerical results against analytical solutions for Eqs. (6.1a), (6.4), and (6.6).

Ion continuity solver

We use here the Method of Manufactured Solutions [START_REF] Roache | [END_REF]. Specifically, we choose a density field

n ⋄ (r, z) = n 0 cos π 2L z cos π 4r g r , (6.62) 
with n 0 the amplitude of the plasma density distribution set here to 10 18 m -3 . This solution is plotted in Figure 6.5 for the geometrical parameters listed in Table 4.1. We further choose to impose radial and axial velocities v r (r, z) = r r g C s (6.63a)

and v z (r, z) = C s sin π L z . (6.63b) 
Because our goal here is to study the ion continuity equation solver in isolation, these are inputs. The Method of Manufactured Solutions then consists in determining the source term S(r, z) such that the steady-state solution of Eq. (6.1a) given this velocity field is n ⋄ (r, z). From Eq. (6.1a), this writes To test the solver, and consistent with the scheme introduced above, we then proceed by discretizing this source term Eq. (6.65) on grid nodes and the input radial and axial velocities on 4.1. This field is used as a test for the ion continuity solver.

S = ∇ • (n ⋄ v) = 1 r ∂ (rn ⋄ v r ) ∂r + ∂ (n ⋄ v z ) ∂z . ( 6 
the staggered grids. The computed solution for n can then be compared with n ⋄ (r j , z i ) = n ⋄ i,j for validation. We specifically focus on the relative L 1 -norm defined as

δ R L 1 [n] = i,j n ⋄ i,j -n i,j i,j n ⋄ i,j , (6.66) 
which is plotted as a function of the number of grid points along r and ẑ for a square grid (N r = N z ) in Figure 6.6. We verify here that the error decreases linearly with the number of linear grid points, which is consistent with the fact that the upwind scheme Eq. (6.24) is only first order accurate. Quantitatively, we see that for this simple problem a grid larger than 20 × 20 cells is sufficient to get an error δ R L 1 [n] below 1%. Here N r = N z .

Code validation

Ion momentum solver

A first test of the ion momentum solver can be obtained in the limit of zero magnetic field (B 0 = 0) and zero advection ((v • ∇)v = 0). Eq. (6.4) One finds that a particular solution to this system such that v r (r, z, t

= 0) = v z (r, z, t = 0) = C s is v ⋄ r (r, z, t) = C s exp (-ν i t) + [exp (-ν i t) -1] e m i ν i ∂ϕ ∂r (6.68a) v ⋄ z (r, z, t) = C s exp (-ν i t) + [exp (-ν i t) -1] e m i ν i ∂ϕ ∂z . (6.68b) 
One must then choose an input potential ϕ(r, z). For this test we take here the analytical formula obtained in Eq. (2.10), that is

ϕ ⋄ (r, z) = ϕ 0 J 0 p 1 r r g cosh p 1 τ z L cosh p 1 2 τ -1 , (6.69) 
which leads to the steady-state solution

v ⋄ r (r, z, t → ∞) = v ⋄ 0 J 1 p 1 r r g cosh p 1 τ z L cosh p 1 2 τ -1 (6.70a) v ⋄ z (r, z, t → ∞) = -v ⋄ 0 r g L J 0 p 1 r r g sinh p 1 τ z L cosh p 1 2 τ -1 (6.70b) 
where we have defined

v ⋄ 0 = ep 1 ϕ 0 m i ν i r g . (6.71) 
These steady-state solutions normalized by respectively v ⋄ 0 max[J 1 (p i r/r g )] and v ⋄ 0 (r g /L) tanh [p 1 τ /2] are shown for the parameters given in Table 4.1 in Figures 6.7 (a) and 6.7 (b).

These solutions are compared with numerical results obtained by imposing in CTS this same electric potential on grid nodes and zero magnetic field, and by turning off the advective terms, that is taking γ = 0 in Eq. (6.36). For this comparison we similarly introduce the relative L

1 -norms δ R L 1 [v r ] = i,j v ⋄ r i,j+ 1 2 -v r i,j+ 1 2 i,j |v ⋄ r i,j+ 1 2 | (6.72) and δ R L 1 [v z ] = i,j v ⋄ z i+ 1 2 ,j -v z i+ 1 2 ,j i,j |v ⋄ z i+ 1 2 ,j | . ( 6 

.73)

As can be seen in Figures 6.8 (a) and 6.8 (b), a grid convergence study confirms that δ R L 1 [v r ] and δ R L 1 [v z ] decrease quadratically with the number of nodes, i.e. that the error is divided by 4 when the number of grid points along r or ẑ is doubled. This result is consistent with the second-order scheme employed in CTS. Quantitatively, we see that for this simple problem a grid of a few tens of cells square is enough to achieve a satisfying accuracy. Relative error δ

R L 1 [v z ] (b) 2 nd order error Figure 6.8: Relative L 1 -norms (a) δ R L 1 [v r ] and (b) δ R L 1 [v z ]
of the error between analytical and simulation results as a function of the number of grid points in the axial and radial directions N z and N r . Here N r = N z .

Consistent model for plasma potential and plasma density

Charge conservation solver

Our strategy to test the charge conservation solver is again to use the Method of Manufactured Solutions. First, we choose a plasma potential solution ϕ ⋄ (r, z). Here we take again this field to be the analytical solution ϕ ⋄ (r, z) originally derived in Eq. (2.10) and repeated above in Eq. (6.69). Then we choose the fixed plasma density and electron temperature fields n(r, z) = n 0 cos π z 2L cos π r 4r g (6.74a)

and

T e (r, z) = T 0 cos π z 2L cos π r 4r g . (6.74b) 
From Eq. (6.6), we know that the ion velocity must then verify

v r (r, z) = µ e⊥ ∂ϕ ⋄ ∂r -D e⊥ 1 n ∂n ∂r + 1 T e ∂T e ∂r (6.75a) = - p 1 µ e⊥ ϕ 0 r g J 1 p 1 r r g cosh p 1 τ z L cosh p 1 2 τ -1 + D e⊥ 2r g tan π r 4r g v z (r, z) = µ e∥ ∂ϕ ⋄ ∂z -D e∥ 1 n ∂n ∂z + 1 T e ∂T e ∂z (6.75b) = p 1 µ e⊥ ϕ 0 L J 0 p 1 r r g sinh p 1 τ z L cosh p 1 2 τ -1 + D e⊥ L tan π z 2L .
To carry out our validation, the input fields Eqs. (6.74a) and (6.74b) are then discretized at grid nodes, whereas the components of the ion current density env are directly computed from the plasma density Eq. (6.74a) and the velocity field Eqs. (6.75a) and (6.75b) on the staggered grids. Also, similarly to the test case done for ALS, we do not use the FVM on the left-hand side of the domain and instead simply enforce there the Dirichlet boundary condition

ϕ 0,j = ϕ ⋄ (r j , -z sh ) ∀j ∈ [0, N r -1] (6.76)
which matches the solution on the left hand side of the computational domain, that is for z = z sh = L/2. The numerical results produced by CTS are then compared to ϕ ⋄ through the relative-L

1 norm δ R L 1 [ϕ] = i,j ϕ ⋄ i,j -ϕ i,j |ϕ ⋄ i,j | . ( 6.77) 
As can be seen from the grid convergence study plotted in Figure 6.9 the error decreases with the number of nodes. We note though that contrary to the convergence results from ALS for the charge conservation equation (see Figure 4.9), the error does not here decrease quadratically as one may have expected from the second-order approximation for the derivatives of the potential, the density, and the electron temperature. This result can however be explained as follows. First, and even if this is unlikely the reason for this particular case since the ion current density env is here imposed analytically, the ion current contribution in Eq. (6.26) is normally obtained from a first order upwind scheme, making the implemented scheme for the charge conservation equation only first order accurate. Second, the finite volume formulation on control volumes associated with edge cells implemented in CTS uses information for fluxes parallel to the domain boundary that is known at the cell edges rather than at the center of the face. For instance the axial flux on an edge cell on the axisymmetry axis which extends from r = 0 to r = ∆r/2 uses the axial velocity at r = 0 rather than at the cell center r = ∆r/4. Irrespective of this, the values of δ R L 1 [ϕ] found in Figure 6.9 suggest that the charge conservation equation is solved with satisfying accuracy. 

Code validation

Relative error

δ R L 1 [φ]
1 st order error Figure 6.9: Relative L 1 -norm δ R L 1 [ϕ] of the error between analytical and simulation results as a function of the number of grid points in the axial and radial directions N z and N r . Here N r = N z .

Validation of the full model against PlasmaSim

The previous Paragraph confirmed the ability of the code to solve separately the three equations at the core of CTS. This was however done through comparison with analytical solutions, which required simplifying assumptions. For instance the ion momentum conservation solver was only tested in the limit of zero magnetic field and without the advective terms, and the boundary condition for the charge conservation equation representative of an ion-sheath was not tested. To lift these contraints and include more realistic phenomena, we now turn to numerical validation against a well established code taken here to be PlasmaSim.

PlasmaSim is a multi-fluid computational code developed by G. Hagelaar at Laplace which solves the mass, momentum, and energy conservation equations for different species, with the possibility to include Maxwell's equations [53]. To provide a benchmark for CTS, G. Hagelaar modified PlasmaSim to solve the very same equations as those modelled in CTS. Writing ϕ ⋄ and n ⋄ the plasma potential and density predicted for a given problem by PlasmaSim, we introduce the relative errors

δ R [ϕ(r j , z i )] = ϕ ⋄ i,j -ϕ i,j |ϕ ⋄ i,j | and δ R L 1 [ϕ] = i,j ϕ ⋄ i,j -ϕ i,j i,j ϕ ⋄ i,j , (6.78) 
and

δ R [n(r j , z i )] = n ⋄ i,j -n i,j n ⋄ i,j and δ R L 1 [n] = i,j n ⋄ i,j -n i,j i,j n ⋄ i,j . (6.79) 
which will be used as metrics to assess the performances of CTS. It should however be noted here that while the set of equations solved by CTS and PlasmaSim is the same, and that the simulation grids are the same, the way these equations are discretized and the manner by which boundary conditions are enforced are not exactly identical. As a consequence predictions may exhibit differences, especially near boundaries. For this reason we mostly focus on the error on the domain interior. Validation of CTS against PlasmaSim is conducted on two specific test cases which test different aspects of the conservative equation solved by CTS. The first one corresponds to a weak magnetic field B 0 = 30 G. The second one corresponds to a stronger magentic field B 0 = 400 G, which is more representative of the experimental conditions studied in Chapter 5. We emphasize though that while the results presented for these two test cases could certainly warrant a physical discussion, 6.3. Code validation and 6.11 (b). We find that the relative error on both quantities is less than 1% throughout the domain interior. We also see through Figures 6.11 (c) and 6.11 (d) that even if the relative error can locally approach or slightly exceed 1%, the absolute errors at these points remain limited. This good agreement between CTS and PlasmaSim results for this test case is further supported when computing the domain integrated errors since one obtains δ R L 1 [ϕ] ∼ 0.10% and δ R L 1 [n] ∼ 0.06%. 6.2. Here n max = max(n) = 1.24 10 19 m -3 .

Effect of an emissive and negatively biased electrode on the distribution of the plasma density and plasma potential

CTS was developed with the goal of lifting the constraint of a plasma density independent of the applied bias and emission found in ALS, which was shown in Chapter 5 to be oversimplified. A first direction would thus be to use this new capabilities to revisit this problem.

Revisiting ALS findings

Because CTS models not only the potential but also the plasma density response, it is in principle possible to comparatively assess the effect of neglecting the density response to the applied bias and emission in ALS, and from there to refine our predictions of the effect of biasing and thermionic emission on plasma potential control. On the other hand, because the equation of ion continuity Eq. (6.1a) is now solved, one must first decide on a source term S(r, z) for such a comparison. One option would be to compute this source term from an ALS reference simulation. One could indeed imagine choosing a base configuration for ALS (density map, applied bias, emission) and compute with ALS the corresponding plasma potential solution. This potential can then be used to infer the ion velocity field via the classical ion collisional mobility µ i∥ and µ i⊥ , which from the steady-state condition S(r, z) = ∇(nv) in turn provide an estimate of the source term locally. The idea would then be to run a CTS simulation using this local source term directly, or possibly via a Gaussian profile whose amplitude would be determined from the volume integrated current

I src = e V ∇(nv)dV. (6.80)
Running CTS with this source term, identical electrode conditions and without advective terms (to match the ALS model) should then lead to results comparable to ALS for this reference configuration. More interestingly, it would then be possible to modify in CTS the electrode conditions (bias, emission) while keeping this same source term, so to underline the effect of the density response through comparative analysis with ALS results for this same electrode conditions but a fixed density. predicted by CTS and PlasmaSim. Red dashed contours highlight a 1% relative error.

Summary

Fuller comparison with experimental data

Besides comparative analysis with ALS results, an interesting prospect of CTS is to compare simulations results with experimental data, using these time both potential and density experimental radial profiles. This dataset is indeed already part of the data discussed in Chapter 5. Here again though one must first decide on a source term. One solution for that would be to use experimental data on ion fluxes to the walls, though measuring these fluxes poses challenges. Alternatively, one could use 2D density and ion velocity maps, or even 1D maps and a number of hypotheses on the axial and radial dependencies.

Effect of rotation on conductivity

The theoretical and numerical results from ALS obtained and discussed in Chapters 3 and 4, as well as used in Chapter 5, all relied on formulae for conductivity obtained in Chapter 1 under the assumption that the advection term in the ion momentum equation was negligible. In effect this is equivalent to considering for the purpose of transport our cylindrical geometry as a slab. Although this hypothesis was essential to obtain simple scaling laws, it is limiting in that advection effects are essential to plasma mass separation, which as discussed in introduction is one of the main applications motivating this thesis work. CTS, by modeling advective terms in the ion momentum equation Eq. (6.4), offers opportunities to test these effects.

An interesting point to investigate with CTS is the effect of rotation on perpendicular conductivity. Theoretical models have indeed been proposed by Rax et al. [START_REF] Rax | [END_REF] in which the perpendicular conductivity due to collisions between charged particles and neutrals now depend on the electric field, which could in principle be tested by examining CTS simulation results for the perpendicular current under various conditions. Such work could help understand when rotation can itself affect the ability to control the plasma potential, and from there cross-field rotation.

Summary

In this chapter, a new numerical modeling tool called CTS (Classical Transport Solver) has been developed to capture self-consistently the responses of the plasma potential ϕ and the plasma density n to a negatively biased emissive electrode. To do so CTS solves a set of three coupled fluid equations made of the equation of ion continuity Eq. (6.1a), the equation of momentum for ions Eq. (6.4) and the charge conservation equation Eq. (6.6)), and implements non-linear flux boundary conditions that are representative of the ion sheath expected to form in front of a negatively biased emissive electrode.

This newly developed code was then successfully tested and validated, first again simple analytical solutions, and then against the well established fluid solver PlasmaSim on two test cases. This successful validation step gives confidence in the ability of this new tool to carry out physically motivated studies.

Finally, although it was not possible to exploit CTS to carry out such physically motivated investigations within the time frame of this thesis, a number of promising applications have been identified. One direction would be to use CTS to understand the effect of the plasma density response, either through comparison with the simpler ALS, or via direct comparison with existing experimental data obtained in VKP as discussed in Chapter 5. Another direction would be to use CTS to understand the effect of rotation on the potential distribution, and thus how rotation may affect itself through the potential (and density) distribution. Such studies are particularly relevant in the context of the development of plasma mass separation in rotating plasmas.

Chapter 7

Conclusions and future prospects

Summary

This thesis examines if and how the electric potential distribution in a magnetized plasma column can be controlled using emissive and negatively biased electrodes positioned at the end of this column. To do so we consider that the requirements to set the potential of individual magnetic field surfaces through the bias applied on an end-electrode can conceptually be split into two coupled problems: controlling the potential drop along magnetic field lines in the quasi-neutral plasma ∆ ∥ ϕ(r) and controlling the potential drop across the non-neutral sheath formed in front of the biased electrode ∆ sh ϕ(r). Historically, these two problems have been considered separately.

Separate models for the quasi-neutral plasma and for the sheath. On the former, building on the work of Gueroult et al. [47], we show that the plasma potential distribution in a quasi-neutral plasma where the finite conductivity ratio σ ⊥ /σ ∥ is no longer uniform but radially dependent is still controlled by the smallness of the dimensionless factor

τ = L r g σ ⊥ σ ∥ , (7.1) 
with L/r g the plasma column aspect ratio. On the latter, considering this time the limit τ → 0, we show using models previously developed by Liziakin et al. [48,49] that the plasma potential is not arbitrarily controlled by the electrode bias ϕ b . More precisely we show that control is conditioned upon the smallness of the saturation criterion ζ derived in Eq. (3.14). In the non-saturated regime, i.e. ζ < 1, the radial discharge current from the negatively biased electrode to the grounded chamber I is small compared to its maximum value -(I is + I eth ) and the plasma potential is controlled by ϕ b . On the other hand, in the saturated regime this current is at its maximum I = -(I is + I eth ). Simple electric considerations then show that the plasma potential is in this case a function of the plasma resistance R ⊥ and the maximum discharge current I is + I eth . From this interpretation, we conclude that by increasing the current flowing through the plasma column thermionic emission allows greater control over the plasma potential at the sheath edge, compared to the case of cold electrodes. Conversely, we show through simple current models that adding a supplemental floating ring electrode past the central biased electrode reduces the current flowing through the plasma, lessening in turn potential control through the applied bias.

Coupled effects. Because as mentioned above potential control from end-electrode demands control over these two contributions, we then consider them as part of a unified model assuming finite conductivity ratio. First we show through analytical considerations for simplified models that the current density through the sheath directly impacts the voltage drop along field lines in the quasi-neutral plasma. This suggests that while thermionic emission reduces the voltage drop across the sheath ∆ sh ϕ(r), it is simultaneously responsible for a larger voltage drop along field lines ∆ ∥ ϕ(r). To confirm the existence of such a trade off and explore these coupled effects further, a new numerical tool called ALS that solves the anisotropic Laplace equation for the potential in a quasineutral magnetized plasma with flux boundary conditions representative of sheaths is developed. Numerical results obtained with this new tool indeed confirm these predictions and further show that plasma potential variations along field lines of the order of a few times the electron temperature can occur in typical RF or Helicon laboratory experiments when strong thermionic emission is used. Finally, this new tool is used to develop an intuition of the effect of multiple end-electrodes. We first confirm that the addition of a supplemental floating ring electrode past the central biased electrode leads to a loss in plasma potential control. We then study how two independently biased electrodes may help tailor the radial profile. While preliminary, we show that an extra electrode off-axis may prove useful when the central electrode is operating in the non-saturated regime, but will conversely have a detrimental effect when this central electrode is operating in the saturated regime.

Experimental investigation. To test these findings against experimental data, we then discuss results obtained in biasing experiments conducted in the Von-Kármán Plasma experiment at LPENSL, in collaboration with Drs. N. Plihon and V. Dolique. We focus more particularly on a dataset consisting of radial profiles of plasma potential, density, and electron temperature measured for three sets of operating plasma parameters, two different applied biases, and a range of discharge currents by F. Pagaud as part of his PhD at LPENSL. Qualitative analysis of experimental data shows good agreement with the predictions of the theoretical models. In particular, we confirm that thermionic emission helps reduce the voltage drop across the sheath, that is allows for more negative plasma potentials. We also verify that a stronger magnetic field does lead to a more negative plasma potential, in agreement with theoretical predictions. Yet, comparison with experimental data also reveals some limitations of theoretical models, notably the fact that not only the plasma potential but also the plasma density are affected by biasing and emission.

New numerical tools. To address this last point, a new numerical tool is finally developed in this thesis with the goal of determining self-consistently the response of the plasma density and the plasma potential to an emissive negatively biased electrode. To do so this new tool called CTS (Classical Transport Solver) solves a set of three coupled fluid equations made of the equation of ion continuity Eq. (6.1a), the equation of momentum for ions Eq. (6.4) and the charge conservation equation Eq. (6.6), and implements non-linear flux boundary conditions that are representative of the ion sheath expected to form in front of a negatively biased and possibly emissive electrode. Although it was unfortunately only possible within the time frame of this thesis to validate this new tool but not to carry out physically motivated studies, a number of promising directions left for future studies are identified.

Prospects for future research

The work conducted in the course of this thesis has underlined a number of new interesting research directions, either extending this work or leveraging new findings or capabilities. We list here what we believe are some of the most promising topics for future studies, in order of appearance in this thesis.

Virtual cathode. An important finding of this thesis work is that thermionic emission from a heated surface can bring additional control over the plasma potential at the sheath edge, but that it does so at the cost of an increased potential variation along magnetic field lines in the quasi-neutral plasma. In principle the model developed in this thesis precisely quantify this voltage drop. This is however only true in the limit of an ion sheath, whereas we have seen that under strong emission a virtual cathode may form. It thus appears desirable to extend the theoretical models developed in this thesis to account for a cathode sheath structure that features a virtual cathode, so as to extend 7.2. Prospects for future research the domain of applicability of these models. By including this model into ALS it would then be possible to explore more physically the strong emission regime, as touched upon in Chapter 4.

Multi-electrodes. Other than for a brief phenomenological discussion in Chapter 4, the problem of how multiple electrodes can be used to achieve a certain potential profile has not been studied in this thesis. A very natural extension of this work will therefore consist in examining how the results exposed in this thesis carry over to multi-electrodes configurations. This would also help answer if and when the ring electrodes configuration (Figure 4 (c)) proposed by Lehnert [44,45] is effective.

Anode physics. The analysis of experimental data in Chapter 5 showed the existence of a sharp radial potential gradient in front of the anode, which we conjectured could be the signature of an electron sheath. Because such a physics cannot be captured by the models developed in this thesis, and because it is seen experimentally that this region can have a dominant impact on the plasma potential in the plasma core, a goal would be to include into our models the physics of this hypothetical electron sheath. Ideally these models would then be implemented in ALS and CTS in the form of appropriate boundary conditions.

More comparison with experimental data. The comparison with experimental data from the Von-Kármán Plasma experiment in presented in Chapter 5 was informative both in that it helped us identify and provide possible explanations for trends observed in experimental results, but also in that it pointed us to a number of limitations of our models. It thus seems particularly interesting to expand this effort on comparison between theory and models. This is the object of ongoing work in collaboration with LPENSL. It would also be interesting to check these models against data from other experiments, notably using different plasma sources. As mentioned in Chapter 5 preliminary work along these lines has been done for the Mistral experiment at PIIM.

Exploiting CTS. Finally, significant opportunities lie in the use of the newly developed numerical tool CTS introduced in Chapter 6. As discussed in Section 6.4, these include the possibility to generalize the findings of this thesis on the effect of bias and emission on the plasma potential by now accounting for a physical plasma density response. Besides the examination of density effects, the fact that this new tool captures ion inertia effects opens a number of opportunities to study rotation effects, going from the effect of rotation on conductivity in a plasma to the study of mass separation in a generalization of CTS including two or more ion species.

A.2 Finite difference formulation for non-uniform grids

Because for some configurations the electrode radius r e can be much smaller than the plasma column radius r g , and since the electrode must be sufficiently resolved to capture the physics at play, it can be advantageous to use a non-uniform grid along the radial direction to avoid using a prohibitively large grid. This option is implemented in ALS, with one radial grid size ∆r 1 for the region between 0 and r e , and another radial grid size ∆r 2 for the region between r e and r g . To illustrate how this is done, we consider the Taylor expansion of the potential at the limit between the two regions with grid steps ∆r 1 and ∆r 2 , as illustrated in Figure A.1. Expanding the potential at grid positions (r j -∆r 1 , z i ) and (r j + ∆r 2 , z i ) with respect to the grid position (r j , z i ), yields The second order partial derivative with respect to r is obtained by adding Eq. (A.4a) to ϑ 3 times Eq. (A.4b), ∂ 2 ϕ ∂r 2 = 2 ∆r 2 2 (1 + ϑ) ϕ i,j+1 -1 + ϑ 3 ϕ i,j + ϑ 3 ϕ i,j-1 + ∆r One verifies that for a uniform mesh, that is ∆r 1 = ∆r 2 , ϑ = 1 and ϱ = 0 so that Eqs. B.1: Main parameters and their dependencies on plasma parameters. Plasma density n, neutral density n n , electron temperature T i , ion temperature T i , ion mass m i and magnetic field intensity B 0 . Parameters for the estimates in the last column are the plasma column length L, the electrode radius r e , the grounded vessel radius r g , the collision cross section σ 0,19 in 10 19 m 2 , the Coulomb logarithm Λ c , the plasma density n 18 in 10 18 m -3 , the electron and ion temperature T e and T i in eV, the hot electrode temperature T w in K, the hot electrode work function W in V, the ion mass M in atomic mass units, the magnetic field intensity B 0 in T, and the neutral pressure P in Pa. 

D.1 Full derivation of the charge conservation equation discretization

We have seen in Paragraph 6.2.2 how applying finite volume methods to the charge conservation equation Eq. (6.6) led to Eq (6.26), and then discussed more specifically how the LHS term of Eq (6.26) was handled in CTS. Here we detail for completeness how the other terms are handled. Let us first consider the second RHS surface integral in Eq. (6.26). Decomposing it on the different cell faces bounding the control volume gives Let us now examine the third RHS surface integral in Eq. (6.26). This term can also be decomposed on the different cell faces bounding the control volume to give We can now go back to Eq. (6.26). Replacing all surface integral terms by their discretized form given by Eqs. (6.27), (6.22), (D.1) and (D.6), the plasma potential inside the computational domain finally verifies C i,j ϕ k i,j + C i,j+1 ϕ k i,j+1 + C i,j-1 ϕ k i,j-1 + C k i+1,j ϕ k i+1,j + C i-1,j ϕ k i-1,j = -eA z i,j

n k v k z i+ 1 2 ,j -n k v k z i-1 2 ,j -eA r i,j+ 1 2 n k v k r i,j+ 1 2 + eA r i,j-1 2 n k v k r i,j-1 2
-F i,j n k i,j + F i,j+1 n k i,j+1 + F i,j-1 n k i,j-1 + F i+1,j n k i+1,j + F i-1,j n k i-1,j -(G i,j T e i,j + G i,j+1 T e i,j+1 + G i,j-1 T e i,j-1 + G i+1,j T e i+1,j + G i-1,j T e i-1,j ) . (D.8)

D.2. Full list of implemented boundary conditions

This compact form is identical to Eq. (6.32), and the various coefficients write 

D.2 Full list of implemented boundary conditions

We summarize here how the various physical boundary conditions available in CTS are numerically implemented in the code. We again discuss boundary conditions by going clockwise around the computational domain shown in Figure 6. 

∆t V i,0 A z 0 n (k) v (k+1) z i+ 1 2 ,0 -n (k) v (k+1) z i-1 2 ,0 - ∆t V i,0 A r 1 2 n (k) v (k+1)
C i,0 ϕ k i,0 + C i,1 ϕ k i,1 + C k i+1,0 ϕ k i+1,0 + C i-1,0 ϕ k i-1,0 = -eA z i,0 n k v k z i+ 1 2 ,0 -n k v k z i-1 2 ,0 -eA r i, 1 2 n k v k r i, 1 2 -F i,0 n k i,0 + F i,1 n k i,1 + F i+1,0 n k i+1,0 + F i-1,0 n k i-
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 11 Figure 1.1: Decomposition of a vector W into components parallel W ∥ = W ∥ b and perpendicular W ⊥ to the magnetic field B = B 0 b.
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 13 Figure 1.3: E × B drift for ions and electrons.
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 14 Figure 1.4: (a) Flux of incident particles colliding with a population of target particles. (b) Hardsphere scattering.
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 15 Figure 1.5: (a) Motion of an electron in uniform electric and magnetic fields in the presence of a collision (b) Effect of the ratio ν αn /Ω c,α on charged particle transport in a weakly ionized plasma. Illustration inspired from Ref. [54].
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 17 Figure 1.7: Formation of plasma sheaths: (a) initial ion and electron densities and potential (b) densities, electric field, and potential after formation of the sheath.
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 3019 Figure 1.9: Normalized plasma potential ψ p as a function of the surface ratio A E /A W for two different values of the normalized applied bias ψ b , as predicted by Eqs. (1.89) and (1.92).
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 21 Figure 2.1: Magnetized plasma column of length L and radius r g . In this chapter a known radial electric potential profile is assumed at both axial extremities (in gray).

Figure 2 . 3 :

 23 Figure 2.3: Radial profile of µ(r, ξ)/µ 0 for different values of ξ. The black dashed line represents the limit where ξ = 0, which corresponds to µ(r, ξ)/µ 0 = 1.
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 1024 Figure 2.4: (a) Order α ξ of the Legendre polynomial as a function of the parameter ξ characterizing the steepness of the conductivity ratio. (b) Ratio k/k as a function of α ξ . (c) Radial profile R(r) for different values of ξ. The solution for a uniform plasma is plotted in black dashed line. The circle markers highlight the value of α ξ and k/k corresponding to the gradient parameters ξ used in (c).
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 25 Figure 2.5: Normalized plasma potential distribution ϕ(r, z)/ϕ 0 predicted by Eq. (2.37) for different values of the parameter ξ characterizing the steepness of the conductivity ratio µ(r) (see Eq. (2.25)). Here we assume τ = 1/ √ 10, consistent with the middle panel in Figure 2.2. 37
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 31 Figure 3.1: Magnetized plasma column terminating on two single disk electrodes (in orange). Electrodes are biased negatively (potential ϕ b ) with respect to the grounded vacuum vessel. The entire domain is permeated by a uniform axial magnetic field B = B 0 ẑ.
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 3132 Figure 3.2: Equivalent electric circuit for the plasma-biased electrode system.
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 33 Figure 3.3: Normalized plasma potential in the electrode shadow ψ p as a function of the normalized applied bias ψ b for different values of χ as predicted in Eq. (3.6) where thermionic emission (Ξ = 0) is absent. Potentials are normalized by the electron temperature T e in eV, ψ = ϕ/T e .
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 34 Figure 3.4: Normalized plasma potential ψ p as a function of the normalized applied bias ψ b for different values of thermionic emission Ξ, and for χ = 0.20, as predicted in Eq. (3.6). Potentials are normalized by the electron temperature T e in eV, ψ = ϕ/T e .
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 2435 Figure 3.5: Illustration of the plasma potential variation across an ion-sheath for an emissive (thermionic current I eth ) and negatively biased (potential ϕ b ) electrode under (a) standard and (b) virtual cathode regimes.
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 36 Figure 3.6: Limit thermionic current for monotonic potential variation across the sheath Ξ crit as a function of the voltage drop across the sheath ∆ sh ψ for different ion gases, as predicted by Eq. (3.29).

∆

  sh ψ(Ξ max ) 1.33 

Figure 3 . 7 :

 37 Figure 3.7: Thermionic current Ξ and Ξ crit as a function of the voltage drop across the sheath ∆ sh ψ. The green and red regions highlight respectively values of Ξ where the NFVC criterion is and is not respected. The mass ratio is that for an Argon plasma, χ = 0.20 and ψ b = -10.
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 138 Figure 3.8: Thermionic current Ξ as a function of ∆ sh ψ for different values of χ and for ψ b = -10. The black curve χ = 0.2 is identical to the one shown in the green region in Figure 3.7. The values of the saturation criteria ζ correspond to Ξ = Ξ crit for the different χ values.
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 39 Figure 3.9: Ratio j (Schottky) eth /j eth (i.e. Schottky correction) for Argon (Λ ≃ 4.68) as a function of n and T w , for two different values of ∆ sh ψ. The green hatched overlay depicts regions such that Ξ (Schottky) = j (Schottky) eth /j is < 1. Here T e = 3 eV.
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 522 (therm) s of ions entering the sheath formed in front of Capturing potential variations in the electrode shadow an emissive surface differs from the classical Bohm velocity by

Figure 3 .

 3 Figure 3.10: Ratio C (therm) s /C s as a function of the dimensionless parameter quantifying the thermionic emission Ξ for different values of the dimensionless voltage drop across the sheath ∆ sh ψ.
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 2 for r ∈ [r e , r g ] . (3.49) Integrating first Eq. (3.49) from r to r g with boundary condition ψ b (r g ) = 0 gives
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 53 Combining Eqs. (3.51) and (3.53), the radial profile of ψ p (r) finally writes
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 2312 Figure 3.12: Normalized plasma potential ψ p (r) |ψ p (0)| radial profile for different values of χ, and normalized current density radial profile (inset) for a cold electrode (Ξ = 0) and for ψ b ≃ -83.33.Green and red curves highlight the potential profiles obtained for the non-saturated and saturated regimes, respectively. The black dots for r ≤ r e illustrate a parabolic radial dependence, whereas the dotted black curve near r g represents a logarithmic radial profile.
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 313 Figure 3.13: Illustration of an end-electrode configuration combining a central button electrode of radius r e biased at potential ϕ b < 0 and an annular ring electrode of inner and outer radius r e and r f that is left floating. The outer region r f ≤ r ≤ r g is assumed to have zero parallel current density, corresponding to a dielectric condition.
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 68 As indicated earlier, since the plasma potential grows with r while the floating electrode potential is constant, I in Figure3.14 (b) is negative. Comparing Eqs. (3.67) and (3.68) then directly shows that the absolute value of the plasma potential is lower with a floating electrode than without, |ϕ
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 314 Figure 3.14: Electric circuit modeling of an end-electrode configuration (a) without, and (b) with an annular floating ring electrode located between r e and r f in the saturated regime.
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 1414 Figure 4.1: 2D resistor circuit extending the 1D model by Liziakin et al. [48] to now account both for axial and radial potential variations.
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 42 Figure 4.2: Minimal 2D resistor circuit to account both for axial and radial potential variations (N z = 2 and N r = 3). This electric circuit is made of three meshes which the corresponding loop currents I, I (0,0) and I (0,1) . The actual current flowing through each resistor (denoted as I R (i,j)
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 543 Figure 4.3: Normalized plasma potential radial profiles (a) at the sheath edge ϕ sh (r)/|ϕ sh (r e )| and (b) in the midplane ϕ mid (r)/|ϕ mid (r e )| for different values of µ = σ ⊥ /σ ∥ . Here r e = 5 cm, r g = 20 cm, L = 2 m.
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 4144 Figure 4.4: Fraction of the plasma potential lost along field lines δ ∥ ϕ(r) as a function of the plasma radius r/r g for different values of µ, and for r e = 5 cm, r g = 20 cm, and L = 2 m. δ ∥ ϕ th is the scaling obtained in Eq. (2.13) neglecting sheath effects . The vertical axis is limited here to [10 -4 , 2] for readability.
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 2 Solving the anisotropic Laplace equation with flux boundary condition: the Anisotropic Laplace Solver (ALS)Domain and equation discretizationTaking advantage of the symmetries of the plasma column illustrated in Figure3.1, the computational domain is limited to [0, r g ] × [-L/2, 0]. Consistent with the 2D resistor circuit studied in the previous section, this domain is discretized using N r and N z nodes along r and ẑ respectively, though we stress that r now varies from the axis r = 0 to r = r g . Accordingly the grid steps are here ∆r
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 4645 Figure 4.5: Centered 5-points stencil used to obtain a second-order finite difference formulation of the anisotropic Laplace equation Eq. (4.35) at interior nodes.
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 4246 Figure 4.6: Computational domain used in numerical simulations. The green dash-dot boundary condition (BC) corresponds to axisymmetry. The pink dash-dot BC corresponds to symmetry with respect to the plane z = 0. The dark blue BC represents the grounded vacuum vessel. The orange BC corresponds to the flux condition Eq. (4.50) modeling the ion-sheath in front of the electrode. The gray BC corresponds either to the dielectric or Dirichlet condition which are respectively given in Eqs. (4.51) and (4.52).
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 44 (4.35) is linear, since the right hand side of Eq. (4.50) is a function of ϕ. Finally, a choice has to be made for the boundary r e < r < r g and z = -z sh shown in gray in Figure4.6. Indeed, because this region does not correspond to a well defined property or symmetry, one may choose to impose as done earlier in Section 3.2 a dielectric condition (i.e. zero net current locally), which writes ∂ϕ ∂z (r > r e , z) may choose to impose a Dirichlet condition on the plasma potential, with a current that then adjusts self-consistently. In particular, one may choose to enforce a logarithmic profile for the potential ϕ(r > r e , -z sh ) = ϕ(r e , -z sh ) ln(r r g ) ln(r e r g ) (4.52) which corresponds to the solution of Laplace equation neglecting axial variations. It turns out that by construction both approaches are equivalent for the anisotropic Laplace equation with uniform conductivities. Both options are available in ALS. Effect of the sheath on the voltage drop along field lines Discretization. When written on grid nodes, ground condition Eq. (4.49) and, if employed, Dirichlet condition Eq. (4.52) immediately yield ϕ i,Nr-1 = 0 ∀i ∈ [0, N z -1] (4.53) and ϕ 0,j = ϕ 0,Nr e -1 ln(r j r g ) ln(r e r g ) ∀j ∈ [N re , N r -2] (4.54) where N re < N r is such that (N re -1)∆r = r e , as illustrated in Fig 3.11. On the other hand, since the boundary conditions Eqs. (4.47), (4.48), (4.50) and (4.51) involve spatial derivatives at the edge of the domain, they must be discretized through Taylor series using either forward or backward schemes depending on the node location. The corresponding stencils are illustrated in Figure the axisymmetry condition Eq. (4.47) writes
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 473 Figure 4.7: 3-points stencil used to discretize normal first order partial derivative at (a) left boundary nodes, (b) bottom boundary nodes and (c) right boundary nodes.

Figure 4 . 8 :

 48 Figure 4.8: Uniform cartesian mesh illustrating the "κ" indexing.
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 45102 Effect of the sheath on the voltage drop along field lines Pressure P Plasma column length L = 2 m Plasma column radius r g = 20 cm Electrode bias ϕ b = -250 V Thermionic current density j eth = 0 Am -2 Normalized electrode potential ψ b = -83.33 Radius ratio (r = r g /r e ) r = 8 Inverse admissible plasma potential χ ≃ 1.48 Dimensionless thermionic emission Ξ = 0 Saturation criterion ζ ≃ 123 >> 1 Dimensionless anisotropy parameter τ = 0.15Table 4.1: Set of plasma and geometrical parameters used for all ALS simulations in this chapter, except for the modeling of the non-saturated regime in Paragraph 4.4.2.

Figure 4 . 10 :

 410 Figure 4.10: Comparison of the radial profile of the dimensionless plasma potential at the sheath edge ψ sh (r), as obtained from theoretical models in Eqs. (3.54) and (3.55), and from the ALS using a grid size N r × N z = 125 × 101 and the parameters listed in Table 4.1.Looking more quantitatively at numerical results, we see though as highlighted in the inset in Figure4.10 that the numerical results deviates from the analytical solution as we move closer to the axis. To quantify this deviation we define similarly to what was done above the metric

Figure 4 . 11 :

 411 Figure 4.11: Relative L 1 -norm δ R L 1 [ψ] of the error between analytical solutions Eqs. (3.54) and (3.55) and simulation results for the radial potential at the sheath edge as a function of the number of radial grid nodes N r and a fixed N z = 101. Numerical results are those for a dielectric condition Eq. (4.51).

4 .Figure 4 . 13 : 2 ( 4 . 73 )

 44132473 Figure 4.13: Colormap of the voltage drop along field lines ∆ ∥ ψ(r) as a function of the radius r and the thermionic emission Ξ. Red solid lines indicate iso-contours of ∆ ∥ ψ(r). Black dotted lines indicate values of Ξ for which transition for non-saturated to partially saturated and finally saturated regimes occur. Potentials are normalized by the electron temperature T e in eV, ψ = ϕ/T e . Black dash-dot lines indicate iso-contours of normalized current density j = |j sh,∥ | [j is (1 + Ξ)]. The thick dash-dot line represents the local regime transition, that is j = 1.

Figure 4 . 14 :

 414 Figure 4.14: Thermionic current Ξ from ALS (in blue) and Ξ crit derived from Poisson's equation through the sheath (in red) as a function of the voltage drop across the sheath ∆ sh ψ and radius r.The intersection of the two 3D surfaces drawn upon the left and blue curves is by definition Ξ max . The obtained 3D curve can then be projected onto the (Ξ, r) plane to get Ξ max (r) (in yellow).

4. 3 .Figure 4 . 15 :

 3415 Figure 4.15: Radial profile of Ξ max (r) from Figure 4.14 plotted on top of the axial voltage drop map ∆ ∥ ψ(r, Ξ) obtained from ALS as showed in Figure 4.13.The red overlay corresponds to Ξ > Ξ max (r = 0) and thus indicates the region where ALS results are questioned as the a virtual cathode is expected to form in front of at least part of the biased electrode. The yellow dots overlay corresponds to the region where a virtual cathode is predicted locally whereas the yellow crosses overlays corresponds to the region where a virtual cathode is predicted over the entire electrode.
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 4 Effect of the sheath on the voltage drop along field lines

  3 and illustrated 4.16 (a). Second, we study the combination of two negatively biased electrodes with independent biases as shown in 4.16 (b).

Figure 4 . 16 :

 416 Figure 4.16: Multi-electrodes configurations studied with ALS: single button biased electrode (orange) plus floating ring electrode (blue) (a) and button biased electrode (orange) plus biased ring electrode (green) (b).

Figure 4 .

 4 Figure 4.19 (a) shows the radial plasma potential at the sheath edge ϕ sh (r) obtained from ALS simulations with and without the floating electrode. One verifies immediately as predicted that the plasma potential on axis is less negative when the floating electrode is inserted.Looking more closely at the actual radial potential profiles together with the current density shown in Figure4.19 (b) and comparing results leads to the following analysis. Starting at the outer edge from the ground condition, we see that both profiles are superimposed in the region r f ≤ r ≤ r g where a dielectric boundary conditions is imposed. This is simply the consequence that the radial current past r f has to be the same due to the dielectric condition, which as shown in Section 3.2 imposes for the potential to be

j 4 .Figure 4 . 18 :

 4418 Figure 4.18: Computational domain used for modelling the effect of a floating electrode. The green and pink dash-dot boundary condition (BC) corresponds to conditions of symmetry. The dark blue BC represents the grounded vacuum vessel. The orange BC corresponds to the flux condition Eq. (4.50) modeling the ion-sheath in front of the electrode. The gray BC corresponds to the dielectric condition. Finally the cyan BC corresponds to the new floating condition I f = 0 given in Eq. (4.83).

4. 4 .Figure 4 . 19 :

 4419 Figure 4.19: Radial profile of (a) the plasma potential ϕ sh (r) and (b) the current density ratio j sh,∥ (r)/j is obtained from ALS simulations with and without the annular floating electrode.

Figure 4 . 20 :

 420 Figure 4.20: Radial profile of the voltage drop along field lines ∆ ∥ ψ(r) obtained from ALS simulations with and without the annular floating electrode.

4. 4 .

 4 Using ALS to study multiple concentric ring electrodes configurations

Figure 4 . 21 :

 421 Figure 4.21: Distribution of the plasma potential ϕ(r, z) over the computational domain (a) without and (b) with the presence of a floating electrode. Orange solid lines are streamlines of current density j(r, z) = j r (r, z)r + j ∥ (r, z)ẑ, with the linewidth proportional to |j|.

Figure 4 . 22 :

 422 Figure 4.22: Computational domain used for modelling the effect of two concentric negatively biased cold electrodes. The green and pink dash-dot boundary condition (BC) corresponds to conditions of symmetry. The dark blue BC represents the grounded vacuum vessel. The orange and cyan BC corresponds to the flux condition Eq. (4.50) modeling the ion-sheath in front of those two segmented electrodes, respectively biased at ϕ b 1 < 0 and ϕ b 2 < 0. The gray BC corresponds to the dielectric boundary condition.
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 4 Using ALS to study multiple concentric ring electrodes configurations Pressure P = 0.015 Pa Magnetic Field B = 200 mT Electrode bias 1 ϕ b 1 = -100 V Electrode radius 1 r e 1 = 5 cm Electrode radius 2 r e 2 = 12.6 cm Normalized electrode potential ψ b 1 = -33.3 Admissible plasma potential χ ≃ 0.014 Dimensionless thermionic emission Ξ = 0 Saturation criterion ζ ≃ 0.47 < 1 Dimensionless anisotropy degree τ = 1.5 × 10 -4

Figure 4 . 23 :

 423 Figure 4.23: Radial profile of (a) the plasma potential at the sheath edge ϕ sh (r) and (b) the current density ratio j sh,∥ (r)/j is obtained from ALS simulations for different values of ϕ b 2 . Operating conditions are those listed in Table4.2, leading to a non-saturated regime. The dash-dot lines correspond to the plasma potential in the non-saturated regime, that is ϕ b 2 + ΛT e , as given by Eq.(3.8). The gray area highlights the region in front of the annular electrode.
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 5151 Figure 5.1: Sketch (top) and picture (bottom) of the Von-Kármán Plasma (VKP) experiment. Picture taken from Dr. S. Vincent's thesis [106].

Figure 5 . 2 :

 52 Figure 5.2: Electric circuit to bias and heat the cathode, with ϕ b < 0 and ϕ h > 0. The picture of the cathode is taken from Dr. V. Désangles's thesis [105].
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 1 

Figure 5 . 4 :

 54 Figure 5.4: Plasma potential on-axis ϕ(r = 0) as a function of the cathode bias ϕ b for cold and hot electrodes, as measured with an emissive probe. The dotted black line represent the potential ϕ b + ϕ h at the outer edge of the biased cathode. Case 3: B 0 = 340 G, P = 1 mTorr, I h = 16.9 A.

Figure 5 . 7 :

 57 Figure 5.7: Radial profiles of the plasma potential ϕ(r) for (a) different magnetic field (Cases 1 and 3) and (b) different magnetic field, fill pressure and plasma density (Cases 1 and 2). In all cases ϕ b = -40 V. In each figure the profile is plotted for a similar discharge current in the two cases.
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 6 Consistent model for plasma potential and plasma density 6.1 Development of the Classical Transport Solver (CTS)
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 561 Development of the Classical Transport Solver (CTS)

Figure 6 . 1 :

 61 Figure 6.1: (a) Centered 5-points stencil used in CTS on interior nodes. The discretized scalar quantities are known at nodes (black dots) whereas the axial and radial flux are known at cell centers, that is the pink and orange arrows respectively. (b) Schematic representation of the control volume V i,j . Cell faces bounding this volume are written A z j for faces with normal ẑ and A r i,j+ 1 2

6. 2 .Figure 6 . 2 :

 262 Figure 6.2: Workflow implemented in CTS.

6 .Figure 6 . 4 :

 664 Figure 6.4: Forward and backward stencil used in CTS at boundary nodes. Yellow boxes represent the control volumes of edge cells.

6 .Figure 6 . 5 :

 665 Figure 6.5: Map of the density n ⋄ (r, z)/n 0 given in Eq. (6.62) for the geometrical parameters listed in Table4.1. This field is used as a test for the ion continuity solver.

Figure 6 . 6 :

 66 Figure 6.6: Relative L 1 -norm δ R L 1 [n] of the error between analytical and simulation results (see Eq. (6.66)) as a function of the number of grid points in the axial and radial directions N z and N r . Here N r = N z .
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Figure 6 . 11 :

 611 Figure 6.11: Relative ((a) and (b)) and absolute error ((c) and (d)) over the interior of the computational domain for the plasma potential ((a) and (c)) and the plasma density ((b) and (d)) predicted by CTS and PlasmaSim. Red dashed contours highlight a 1% relative error.

Figure 6 . 13 :

 613 Figure 6.13: Relative ((a) and (b)) and absolute error ((c) and (d)) over the interior of the computational domain for the plasma potential ((a) and (c)) and the plasma density ((b) and (d)) predicted by CTS and PlasmaSim. Red dashed contours highlight a 1% relative error.

Figure A. 1 :

 1 Figure A.1: Centered 5-points stencil used to obtain a second-order finite difference formulation of the anisotropic Laplace equation Eq. (4.35) at interior nodes for non-uniform mesh grid.

∂r 4 -

 4 ϕ i,j+1 = ϕ i,j + ∆r 2 ... . (A.4b)Noting ϑ = ∆r 2 /∆r 1 , the first order partial derivative of the potential with respect to r is obtained by multiplying Eq. (A.4b) by ϑ 2 and substracting the result from Eq. (A.4a)

Ω| = χ - 1 r 88 P

 188 (A.2a) and (A.3a) are recovered for the first and second order partial derivative as expected. Introducing the coefficientsA = 1 ∆r 2 (1 + ϑ) (A.8a) B = -ϑ 2 -1 ∆r 2 (1 + ϑ) (A.8b) C = -ϑ 2 ∆r 2 (1 + ϑ) (A.8c)B. Summary of the main parameters affecting plasma potential control and dependencies on plasma parameters for ν in ≪ Ω c,i )σ ⊥ en B 0 ν in Ω c,i 1 + (ν in /Ω c,i ) 2 -1 m -1 Para. (for ν ei ≪ ν en ) T w 2 exp [-eW/(k B T w )] e 2 ln(r g /r e ) L j is T e σ ⊥r e 2 ln(r g /r e ) L B 0 2 n n m i √ T i √ T e 2.5 10 6 r e 2 ln(r g /r e ) 8 r e 2 ln(r g /r e ) L B 0 2 T w 2 exp [-eW/(k B T w )] σ 0,19 n 18 P √ M T e √ T i LT w 2 exp [-eW/(k B T w )]

Figure C. 1 :

 1 Figure C.1: Radial profiles of the plasma density n(r) measured for two different cathode biases and three different operating conditions (see Table 5.1), and a range of discharge current I b representing a range of thermionic emission regimes. The color code represent the thermionic emission intensity, from moderate in blue to strong in red. 156

  Figure C.1: Radial profiles of the plasma density n(r) measured for two different cathode biases and three different operating conditions (see Table 5.1), and a range of discharge current I b representing a range of thermionic emission regimes. The color code represent the thermionic emission intensity, from moderate in blue to strong in red. 156
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 2 Figure C.2: Radial profiles of the electron temperature T e (r) measured for two different cathode biases and three different operating conditions (see Table 5.1), and a range of discharge current I b representing a range of thermionic emission regimes. 157

  Figure C.2: Radial profiles of the electron temperature T e (r) measured for two different cathode biases and three different operating conditions (see Table 5.1), and a range of discharge current I b representing a range of thermionic emission regimes. 157

A 2 .

 2 i,j eD e ∇n • n dA ≃ eA z Similarly to what was done in Chapter 6, we introduce the operators ⟨a⟩ z i,j = a i+1,j + a i,j 2 (D.2) and ⟨a⟩ r i,j = a i,j + a i,j+1 2 . (D.3) to determine the average values of a grid quantity a between two consecutive axial and radial nodes. Meanwhile, partial derivatives in Eq. (D.1) are treated via Taylor expansions, for instance ∂n ∂z (r j , z i + ∆z/2) = n i+1,jn i,j ∆z + O(∆z 2 ). (D.4) Plugging Eq (D.4) into the first RHS term of Eq. (D.1) one immediately obtains other partial derivatives, one gets for the other RHS terms in Eq. (D.1) n k i,j-1 . (D.5d)

2 .

 2 Following the same approach as done above for Eq. (D.1), we similarly obtain i+1,j -T e i,j ) . i,j -T e i-1,j ) , (D.7b) i,j -T e i,j-1 ) . (D.7d)
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 1124 3, starting from the upper right corner. Coefficients used in the plasma potential formulations below are those found in the general form Eq. (D.8) derived above in Section D.1. r ∂v r /∂r] Nz-1, and [v r ∂v θ /∂r] Nz-1,are respectively obtained from Eqs. (6.37) and (6Axisymmetry 0 < i < N z -1 and j = 0

Figure D. 4 :

 4 Figure D.4: Stencil and control volume for boundary node on the axis of symmetry.
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 2 Full list of implemented boundary conditionswith n (k) v (k+1)

1 , 0 -Figure D. 5 :v k z ∂v k z /∂z 1 2 , 0 1 Figure D. 6 :- 1 2

 10520161 Figure D.5: Stencil and control volume for the corner node at the intersection of axisymmetry and ion sheath conditions.

  

  On the other hand electrons will be lost on both surfaces. At the positively biased electrode, electrons do not face any potential barrier. The electron flux is therefore simply Γ e,th = nv e,th /4.At the grounded wall the electron flux is reduced due to the potential barrier. Using the dimensionless electric potential ψ p = ϕ p /T e , the current then writes I e,W = eA W Γ e,th exp(ψ p ), or equivalently I e,W = A W enC s exp (Λψ p ) .

	Introducing the sheath parameter			
	Λ = ln	m i 2πm e	.	(1.85)
	the electron flux can be rewritten as Γ e,th = nC s exp (Λ), so that the electron current at the
	positively biased electrode is			
	I e,E = A E enC s exp (Λ) .	(1.86)
				(1.87)
	Counting positively particle fluxes leaving the electrode, the current balance between Eqs. (1.84), (1.86)
	and (1.87) is written as			
	I e,E + I e,W -I i,W = 0	(1.88)

1.2. Plasma sheath
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  .60) 4.2. Solving the anisotropic Laplace equation with flux boundary condition: the Anisotropic Laplace Solver (ALS) with k indicating the iteration number. Plugging Eq. (4.59) into Eq. (4.60) and using the secondorder scheme forward scheme for ∂ϕ/∂z, the flux boundary condition Eq. (4.50) is finally discretized as

  4.67) 4.2. Solving the anisotropic Laplace equation with flux boundary condition: the Anisotropic Laplace Solver (ALS) obtained earlier in Paragraph 2.1.1. To carry out this comparison, rather than an electrode we simply impose Dirichlet boundary conditions on the left-hand side of the domain, that is

  Examining now the case of an emissive electrode, especially in the limit where the thermionic current is much larger than the ion saturation current (i.e. I eth ≫ I is ), plugging Ξ into the saturation criterion defined in Eq. (3.14) yields

	4.3. Using ALS to examine the effect of thermionic emission
	Emissive electrode						
	ζ hot ∝	L r e 2 ln(r g /r e )	nn n	√ B 2 T i m i 0	|ϕ b | j eth	.	(4.77)
	Comparing first Eqs. (4.77) and (4.75), we see that for a hot cathode the saturation criteria no
	longer depends on the electron temperature, but now depends on the ratio n/j eth . Moving on to
	the voltage drop along field lines, we analogously find in the hot cathode case
	∆ ∥ ψ sat en,hot ∝ L	n	n n √ T e	j eth .	(4.78)
	Looking at Eqs. (4.78) and (						
								4.74)
	and (4.79) into Eq. (4.15) one finds that						
	∆ ∥ ψ sat en,cold ∝ L	n n √ m i	.		(4.76)

Table 4 .

 4 2: Set of plasma and geometrical parameters used to study the double electrode configuration in the non-saturated regime.

  Sr j , z i V i,j

			6.3. Code validation
	or its numerical estimate	
	I src ≃ e	i,j
		r, z)dV	(6.60)

  indeed then reduces to two the pair of uncoupled ODEs for v r and v z

		∂v r ∂t	+ ν i v r = -	e m i	∂ϕ ∂r	(6.67a)
	and	∂v z ∂t	+ ν i v z = -	e m i	∂ϕ ∂z	.	(6.67b)

  Plugging Eq. (A.5) into Eq. (A.6) and introducing the variable ϱ = (1ϑ 2 )/(1 + ϑ) yields

						2 1 -ϑ 2 ∂ϕ ∂r	+ O(∆r 2	2 ).	(A.6)
	∂ 2 ϕ ∂r 2 =	2 (1 -ϱ) ∆r 2 2 (1 + ϑ)	ϕ i,j+1 -	2 1 + ϑ 3 + ϱ ϑ 2 -1 ∆r 2 2 (1 + ϑ)	ϕ i,j +	2 ϑ 3 + ϱϑ 2 ∆r 2 2 (1 + ϑ)	ϕ i,j-1 + O(∆r 2	2 ). (A.7)

Electric potential distribution in a quasi-neutral plasma aa

Taking a step back, this finding should however now be discussed in the context of our earlier findings on the effect of the sheath on the plasma potential. Remembering here that χ is a measure of the maximum plasma potential (in absolute value) that the plasma can support, and that Ξ characterizes the intensity of thermionic emission with respect to the ion saturation current, we had seen that ∆ sh ψ was set by Ξ for a given χ, and more specifically that in the saturated regime ∆ sh ψ = |ψ b |χ -1 Ξ (for Ξ ≫ 1) decreases with Ξ. In other words, the analysis of the sheath structure alone suggests that the larger the thermionic current, the larger the voltage drop across the sheath has to be to avoid the formation of a virtual cathode, whereas the discharge model showed that the larger the thermionic current, the lower the voltage drop across the sheath. One must thus ensure that the voltage drop across the sheath ∆ sh ψ obtained for an input parameter Ξ from the circuit model Eq. (3.6) is such that Ξ < Ξ crit (∆ sh ψ) as obtained from the NFVC condition Eq.(3.29). To illustrate this condition, Ξ and Ξ crit are plotted together in Figure3.7 as a function of ∆ sh ψ. Since Ξ and Ξ crit respectively decreases and increases with the voltage drop across the sheath ∆ sh ψ, there exists a point where those two curves cross. Writing (∆ sh ψ(Ξ max ), Ξ max ) the coordinates of this point, the analysis of the potential through the sheath tells us that the solution of the circuit model is not valid in the red region ∆ sh ψ ≤ ∆ sh ψ(Ξ max ) in Figure3.7 since a virtual cathode is expected to form in this case, and that only a fraction of the thermionic current will then contribute to the discharge current. On the other hand the condition Ξ < Ξ crit is respected in the

Remerciements

 5.1. The light colored overlays are only here to guide the eye by marking the extrema of the two quantities. Edges of these shading are linear fits. [START_REF] Stroth | the ECRH team, and the W7-AS team[END_REF]. Consistent model for plasma potential and plasma density Figure 6.7: Normalized (a) radial and (b) axial steady-state velocity field predicted by Eqs. (6.70a) and (6.70b), corresponding to the potential given in Eq. (2.10) and zero magnetic field. [START_REF] Stroth | the ECRH team, and the W7-AS team[END_REF]. Consistent model for plasma potential and plasma density our immediate goal here is to validate the newly developed code. We therefore primarily focus on quantitative comparison with PlasmaSim, and do not aim at providing a physical picture of these results.

Test A: weak magnetic field B 0 = 30 G

The operating plasma and geometrical parameters used for this first test are listed in Table 6. [START_REF] Bittencourt | Fundamentals of plasma physics[END_REF]. By choosing a non-zero magnetic field we will have the opportunity to validate the ion momentum solver when the radial and azimuthal dynamics are now coupled. We also choose to apply a bias ϕ b = 0 V on the electrode. By doing so we ensure that the plasma regime is not saturated, which will allow to validate the linearization of the ion-sheath boundary condition. The steady-state adimensional plasma potential ϕ(r, z)/T e and normalized density fields n(r, z)/n max computed for this test case on a 101 × 101 points mesh are shown respectively in Figures 6.10 (a) and 6.10 (b). The positive value of ϕ/T e observed here is likely due to the fact that the applied bias is 0 V, as opposed to the negative biases generally considered in this thesis. Comparing these results with PlasmaSim for the same grid, the relative error on the plasma potential and density are shown for points inside the computational domain in Figures 6.11 The operating plasma and geometrical parameters used for this second test are listed in Table 6.2. Compared to the first case, a significantly stronger magnetic field is used here, so as to now test the code in regimes where ions are at least partly magnetized. Most of our interest in this thesis is indeed in regimes where ions are affected by the magnetic field, as opposed to the conditions used in Test A above. Besides the use of a stronger field, this second test case is done for a reduced source term S 0 . This is simply because as discussed in Chapter 1 the use of a stronger magnetic field reduces perpendicular transport, and a less intense source term is thus needed to avoid excessively large plasma densities. Finally, the use of a stronger magnetic field demands a smaller time step ∆t. For this last reason results for this test case are computed on a more modest 31 × 31 grid. The steady-state normalized plasma potential ϕ/|ϕ b | and plasma density n/n max obtained for this test case are plotted in Figures 6.12 (a) and 6.12 (b). Looking more particularly at the potential in Figure 6.12 (a), we see that it is above the applied bias ϕ b and rather uniform within the domain, other than for two regions with significant potential gradients are found. The first region is at the cathode, as would be expected for a saturated regime. The second region is near the anode, where a large radial voltage drop is observed. Although this goes beyond our validation goal here this is clearly interesting in light of the similar behavior observed experimentally as discussed in Paragraph 5.2.4. This suggests that future work using this model could help identify the physics at play near the anode.

Comparing these results with results from PlasmaSim obtained on an identical grid, we find in Figures 6.13 (a) and 6.13 (b) that the relative error on both the plasma potential and plasma density is less than 1% over most of the domain interior. Similarly to what was found in Test A, we further verify in Figures 6.13 (a) and 6.13 (b) that at points where the relative error approaches 1% the absolute error remains limited. Integrated over the computation domain, one gets δ R L 1 [ϕ] ∼ 0.03% and δ R L 1 [n] ∼ 0.06%, which confirms the very good agreement between the two codes on this test case.

To conclude this comparative validation of CTS against PlasmaSim, we found the two codes to be in good agreement for the two test cases considered. This provides confidence in the ability of CTS to capture the physics of electrode biasing, and thus in the suitability of this code to revisit and extend the results obtained using ALS in Chapter 4.

Promising applications of CTS

Although CTS has been fully implemented and tested, it has unfortunately not been possible within the time frame of this thesis to exploit these new simulation capabilities. Instead we present here briefly a few promising directions. The Anisotropic Laplace Solver (ALS) introduced in Chapter 4 solves through finite difference the anisotropic Laplace equation Eq. (4.35). Here we summarize how all the different differential operator present in Eq. (4.35) are handled, first in the case of a uniform grid, and then in the case of a non-uniform grid as is typically used in simulations.

A.1 Operators discretization for uniform grids

Since finite differences are used in ALS, spatial operators are obtained from Taylor expansions. Using a five points stencil, estimation of a spatial operator at position (r j , z i ) involves information at grid positions (r j -∆r, z i ), (r j + ∆r, z i ), (r j , z -∆z), (r j , z + ∆z) and (r j , z i ). In ALS and for a uniform grid we use specifically for first order partial derivatives

and for second order partial derivatives

the finite difference formulation of the anisotropic Laplace equation Eq. (4.35) at nodes at the interface (r = r e ) between the two different radial grid regions writes

where we further introduced

and where β + and β -are given in Eqs. (4.45b) and (4.45c).

Appendix B

Summary of the main parameters affecting plasma potential control and dependencies on plasma parameters

Table B.1 below summarizes in one location the various dimensional and dimensionless parameters used in the plasma potential distribution models, as well as their dependence on plasma parameters and numerical estimates. All dimensionless potentials and voltages are related to their dimensional counterparts through T e .

Appendix C

Density and temperature data from the VKP campaign

The dataset obtained by F. Pagaud on VKP and studied in Chapter 5 includes beyond the potential radial profiles plotted in Figure 5.5 corresponding radial profiles for the plasma density n(r) and electron temperature T e (r). These are given here in Figures C.1, and C.2. For memory this data was obtained for three different combinations of operating magnetic field and gas pressure and two different applied biases as summarized in Table 5.1. For each of these six operating conditions different levels of thermionic emission at the cathode were explored through the heating current I h Density formulation

with Ion velocity formulation Density formulation

with

Plasma potential formulation

-(G Nz-1,j T e Nz-1,j + G Nz-1,j+1 T e Nz-1,j+1 + G Nz-1,j-1 T e Nz-1,j-1 + G Nz-2,j T e Nz-2,j ) .

(D.19)

Ion velocity formulation

where [v r ∂v z /∂r] Nz- Density formulation