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La décomposition d'images numériques en d'autres bases ou dictionnaires que les domaines temporel ou spatial est une approche très courante et efficace dans le traitement et l'analyse d'images. Une telle décomposition est couramment obtenue à l'aide de transformations fixes (par exemple, Fourier ou ondelettes) ou de dictionnaires appris à partir de bases de données d'exemple ou à partir du signal ou de l'image eux-mêmes. Ces dernières années, avec la croissance de la puissance de calcul, les stratégies exploitant la redondance des patchs extraits d'une ou de plusieurs images pour faciliter leur décomposition parcimonieuse sont devenues très populaire, notamment grâce à leur efficacité à restaurer des images. Un des objectifs de cette thèse est de savoir comment concevoir une telle transformation adaptative à l'aide de principes de la mécanique quantique.

Cette thèse explore de nouvelles approches de construction de telles bases dépendantes de l'image inspirées de la mécanique quantique. Tout d'abord, nous construisons une base dépendante de l'image en utilisant les solutions d'onde de l'équation de Schrödinger. En particulier, en considérant l'image comme un potentiel dans l'équation de Schrödinger discrétisée, nous obtenons les solutions d'onde qui constitue une base et qui joue le rôle de transformée. L'efficacité de la décomposition proposée est illustrée par des résultats de débruitage dans le cas des bruits Gaussiens, de Poisson et de speckle et par comparaison aux algorithmes de l'état de l'art. Cette décomposition adaptative est ensuite généralisée en s'inspirant de la théorie quantique à plusieurs corps. Sur la base de l'analyse par patchs, les mesures de similarité dans un voisinage d'image local sont formalisées par un terme apparenté à l'interaction en mécanique quantique qui peut efficacement préserver les structures locales des images. La nature polyvalente de cette base adaptative étend la portée de son application à des scénarios de bruit indépendants ou dépendants de l'image sans aucun ajustement. Nous effectuons une comparaison rigoureuse avec les méthodes existantes pour démontrer la capacité de débruitage de l'algorithme proposé, quelles que soient les caractéristiques de l'image, les statistiques vii de bruit et l'intensité. Nous montrons la capacité de nos approches à traiter des données médicales réelles telles que le débruitage d'images de tomodensitométrie dentaire clinique et les applications de despeckling d'images d'échographie médicale. Nous étendons encore notre travail aux tâches de déconvolution d'image et de super-résolution en exploitant nos algorithmes de debruitage adaptatifs quantiques proposés. En particulier, suite à des développements récents, nous imposons ces débruiteurs externes comme fonction préalable au sein des approches de type Plug-and-Play et Régularisation par Débruitage. Enfin, nous présentons une architecture de réseau neuronal profond dépliant notre proposition d'algorithme de débruitage adaptatif, reposant sur la théorie de la physique quantique à plusieurs corps. Les ingrédients clés de la méthode proposée sont d'une part, sa capacité à gérer des structures d'image non locales à travers le terme d'interaction patch et l'opérateur Hamiltonien quantique, et, d'autre part, sa flexibilité pour adapter les hyperparamètres aux caractéristiques de chaque patch. De plus, il est démontré qu'avec de très légères modifications, ce réseau peut être amélioré pour résoudre des tâches de restauration d'image plus difficiles telles que le défloutage d'image, la super-résolution et l'inpainting. Malgré une architecture compacte et interprétable (d'un point de vue physique), le réseau d'apprentissage profond proposé améliore plusieurs algorithmes de référence récents de la littérature, conçus spécifiquement pour chaque tâche. Enfin, nous abordons le problème de l'amélioration des image échocardiographiques clinique pour démontrer le potentiel de notre réseau profond dans des applications médicales réelles.
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The architecture of a residual dense network for image super-resolution. . . .
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The architecture of a deep learning-aided inference system for image restoration using the DCNN network as the RED denoiser in the iterative algorithm. 

Overview

This chapter introduces, in broad strokes, the framework of inverse problems for imaging applications, in particular, the image restoration problems and the motivation for the explorations of quantum mechanics-based algorithms for solving such tasks.

The outline and contribution of this thesis are summarized at the end of this chapter.

DIGITAL IMAGE

Digital Image

From the perspective of photography history, the development of digital imaging is relatively recent. It originated in the nineteen-fifties with the digitization of newspapers and was accelerated in the nineteen-seventies with the development of the first chargecoupled device (CCD) sensor. Since then devices have continued to improve and have reached very high resolution. In this chapter, we first recall how the CCD sensor works to produce a digital image before identifying the sources of error during the acquisition process.

What is a Digital Image?

The process of digital imaging begins with an optical device. The light rays reflected from the object pass through a series of lenses and are projected onto the CCD sensor. This CCD sensor processes these light rays and converts the light information into electrical information. To do so, the sensor is composed of an array of capacitors that accumulate electric charge proportionally to the light intensity. Next, the charge is converted into a voltage which is converted into digital data for storage. Fig. 1.1 portrays the process of digital image generation. Note that the CCD sensor is solely sensitive to light intensity, captures only that information and provides a grayscale image after acquisition (i.e., sampling and quantization). To produce digital color image, a bare filter is usually placed over the CCD sensor. This process of acquiring raw digital data often gets affected by various physical phe- nomena in its surroundings and requires several restoration operations before obtaining the final output image. Other physical circumstances and sensors in different imaging modalities (e.g., tomography and ultrasound imaging that used in this thesis) can exhibit such situations. This process of restoration operations, called digital image restoration, is briefly introduced in the following.

Digital Image Restoration

Digital images have become omnipresent in our modern age of computers. Their applications are not only limited to photography to capture our life's most memorable moments, but have become an integral part of modern medical science, astronomy, geological science, engineering, and other fields. In a wide range of real world applications, one does not have direct access to the true image of interest but only to its distorted version. These distortions often appear from various unavoidable physical phenomena in hands-on implementation. They may depend on the acquisition process, the physical laws of the phenomenon studied, the devices or sensors used for acquisition, and the mode of communication. In science and engineering, the forward problem is a process of finding observations from the original data, while deriving the original data from the observations is called the inverse problem. The restoration of the original image from a distorted observation is one of the most fundamental tasks in inverse problems. There is a wide range of real-life problems within the range of image restoration, such as image denoising where the observed image is contaminated by random noise, image deblurring where the observed image is blurry caused by motions or optics, image super-resolution (SR) where the spatial resolution of a low-resolution (LR) observed image is improved to obtain a high-resolution (HR) output, image impainting where parts of the observed image are removed or corrupted, etc. For all these imaging applications, recovery of the original latent image from the observed one is the primary objective. Over the past few decades, image restoration techniques have been extensively studied, yet remain an active field of research. In this thesis, the objective is to tackle such imaging problems from a different perspective, specifically using tools inspired by quantum theory.

MOTIVATION FOR QUANTUM MECHANICS-BASED ALGORITHMS

Motivation for Quantum Mechanics-Based

Algorithms

After the digital revolution, the future might be an age of quantum computers. Quantum computers allow conducting an operation efficiently with enormous parallelism. Furthermore, the exploitation of a logarithmic number of qubits by quantum computation may effectively improve computational efficiency against a classical computer where exponentially more bits are needed. Despite all these advantages, the quantum computer is still far from real-life implementation and only small-scale versions are available.

However, the concepts and principles of quantum theory can be used as tools to design algorithms for classical computers. The implementation of such quantum principles can significantly boost the performance of algorithms. Thus, exploiting the concepts of quantum physics, these algorithms may enable to deal with real-life problems such as medical imaging, remote sensing, low-level vision, surveillance, astronomy, geology, etc, much better than the traditional methods.

The objective of this thesis is to explore quantum mechanics-based approaches in the field of image processing and analysis, particularly for image restoration problems, and implement these schemes in real applications.

Outline of the Thesis

As stated earlier, this thesis aims to design new approaches for image restoration problems inspired by the concepts of quantum physics. The forthcoming chapters are organized as follows: * Chapter 2: This chapter reminds the basic postulates of quantum mechanics. The differences between classical and quantum theory are discussed. In addition, those properties of the wave solutions of the time-independent Schrödinger equation are presented. This quantum picture is illustrated with the very simple example of a particle in a box. Furthermore, we discuss the behavior of these wave functions in the presence of random potentials. Specifically we study the quantum localization of these wave functions under a random potential. Finally, we introduce the concept of quantum interactions in the presence of more than one quantum particle in a system, i.e., a quantum many-body systems. CHAPTER 1. INTRODUCTION * Chapter 3: In this chapter, we briefly introduce various image restoration problems with a discussion of the existing state-of-the-art methods for solving such imaging tasks using model-based, learning-based, and model-based learning approaches. In addition, the development of quantum mechanics-based imaging algorithms over the past few decades is summarized here. * Chapter 4: Decomposition of digital signals and images into other basis or dic- tionaries than time or space domains is a very common approach in signal and image processing and analysis. Such a decomposition is commonly obtained using fixed transforms (e.g., Fourier or wavelet) or dictionaries learned from example databases or from the signal or image itself. In this chapter, we propose a new way of generating an adaptive basis from the signal or image itself by exploiting principles of quantum mechanics. In particular the wave solutions of the Schrödinger equation give the adaptive transforms and are used to construct an adaptive basis suitable for signal and image representation applications, where the signal or image acts as the potential of the quantum system. This adaptive basis will be used for signal or image decomposition. To illustrate the potential of the proposed decomposition, we study the signal or image denoising problem. * Chapter 5: This chapter addresses the Poisson image deconvolution problem, a common problem that occurs in several imaging applications, such as limited photon acquisition, X-ray computed tomography or positron emission tomography.

A new Plug-and-Play (PnP) alternating direction method of multipliers (ADMM) scheme is introduced based on the adaptive denoiser proposed in Chapter 4 using the Schrödinger equation's solutions of quantum physics. The adaptative nature of this denoiser makes it highly efficient at selectively eliminating noise from higher intensity pixels, without relying on any statistical assumption about the noise, which makes the proposed method capable of handling the Poisson deconvolution task. * Chapter 6: In the context of image decomposition, data-driven dictionaries and, in particular, exploiting the redundancy between patches extracted from one or more images, allowed important improvements. This chapter proposes an original idea of constructing such an image-dependent basis inspired by the principles of quantum many-body physics. The similarity between two image patches is introduced in the formalism through a term akin to interaction terms in quantum mechanics. 

Main Contributions

The primary objective of this thesis is to propose new tools and algorithms for image restoration problems integrating or inspired by the concepts and principles of quantum physics. The main contributions of this thesis are as follows. * Chapter 4: The main scope of this chapter is to show how tools from quantum mechanics, in particular the Schrödinger equation, can be used to construct an adaptive transform suitable for signal and image processing applications. The proposed framework reposes on the discrete version of the time-independent Schrödinger equation for a quantum particle in a potential. In our case, the potential is represented by the signal samples or the pixel values. We use a basis of wave functions, i.e., stationary solutions of the Schrödinger equation, directly computed from the signal or image itself, as adaptive basis for signal or image decomposition. A detailed description of the behavior of the wave functions and the proposed adaptive basis with respect to the choice of the hyperparameters is provided, allowing to gain insight about the practical consequences in signal and image processing of the quantum mechanical principles involved. Furthermore, the proposed transform embedded in a denoising algorithm shows promising results in different noise scenarios, such as additive, multiplicative, signal/image dependent and independent noise models. Finally a comprehensive comparison is reported in the case of Gaussian, Poisson, and speckle noise against several state of-the-art methods from the literature. * Chapter 5: The main novelty of this chapter is to propose an original Poisson image deconvolution scheme using the concepts of quantum mechanics. The primary contributions are the construction of a computationally advanced quantum denoiser compared to Chapter 4, its integration into a PnP-ADMM scheme, and the experimental proof of convergence of the final algorithm. The efficiency of the proposed method regardless of the assumption of Gaussian noise represents the main motivation of its interest in Poisson deconvolution PnP-ADMM algorithms. This performance gain regardless of the amount of noise affecting the observations is explained by the flexibility of the embedded quantum denoiser constructed without assuming any prior statistics about the noise, which is one of the major advantages of this method. Generally, in the literature, while dealing with a Poisson deconvolution task using a PnP scheme, a variance stabilizing transformation (VST) is often used to approximately Gaussianize the Poisson data, although the convolution operation is not invariant under such transformation. The proposed algorithm discards the need for a VST due to its adaptive architecture, a clear advantage of this proposed scheme. Finally, detailed quantitative and qualitative analyses of the proposed scheme have been conducted compared to recent state-of-the-art techniques, for both benchmark and real-life fluorescence microscopy images. * Chapter 6: The main contribution of this chapter is to translate concepts of quan- tum many-body theory to imaging problems. Interactions in quantum physics correspond to two or more quantum particles present in the system that can influence each other's quantum state. From an image processing perspective, we propose to adapt this theory to extend the idea of interaction between image patches. More precisely, the proposed framework consists in placing a quantum particle in every image-patch, i.e., every image-patch acts like a single particle system, and the whole collection of patches, that is the entire image, behaves like a many-body system where interactions describe local similarities in the neighbouring patches. This chapter includes the characterization of the hyperparameters and their respective effects on the denoising performance, together with automated rules of selecting their values close to the optimal one in experimental setups with ground truth not available, explorations of the denoising possibilities beyond Gaussian statistics without any modification, and a rigorous comparison with contemporary methods 

Overview

This chapter presents the basic postulates of classical and quantum mechanics. In addition, the concepts of wave-particle duality, matter waves and wave solutions of the time-independent Schrödinger equation are illustrated. We discuss the particle in a box problem in quantum mechanics. Furthermore, we present the behavior of these wave solutions in a random potential. Finally, we recall the notion of a quantum many-body system, where quantum interactions take place in the presence of more than one quantum particles.

INTRODUCTION

Introduction

Unlike Newtonian mechanics, or Maxwell's electrodynamics, or Einstein's relativity, quantum mechanics was not invented by one individual. Resorting to new ideas, which were radically opposite from classical ideas, to explain some experimental results in the last quarter of the nineteenth century called forth a wholly new and radically counterintuitive way of thinking about the world. This led to the introduction of quantum mechanics. The physical theory of quantum mechanics was born by the efforts of many scholars, such as Born, Dirac, Jordan, Pauli, Schrödinger, Heisenberg and many more.

A series of ad hoc moves by Planck, Bohr, Ehrenfest and many others, now called old quantum theory, to explain some phenomena indicated the need of formulating a new mechanics for microscopic particles, which was subsequently synthesized by Schrödinger, Heisenberg, Dirac and others. Their formulations were physico-mathematical in their own right. Later on, in the middle and second half of the twentieth century, Dirac, Feynman, Schrödinger, Kramers, Bethe, Tomonaga, and many others, made major advancements in the theory that combined classical field theory, special relativity, and quantum mechanics. This modified generalized theory, known as quantum field theory, is the basis of our current understanding of physical particles at the subatomic level, and is the foundation of the Standard Model of elementary particles. Nevertheless, a rigorous mathematical formulation was needed in order to reveal full ramification of the quantum revolution. This task was first taken by [START_REF] Hilbert | Über die grundlagen der quantenmechanik[END_REF]Neumann during 1926-1927 [166, 358, 359]. Not only did they give a firm mathematical foudation but also introduced the sharp separation between the mathematical formalism -what Hilbert called "der analytische Apparat", the analytical apparatus -and its physical interpretation [START_REF] Hilbert | Über die grundlagen der quantenmechanik[END_REF].

Classical Mechanics

Classical mechanics, narrowly defined, is the study of the motion of systems of particles in Euclidean three-dimensional space, under the influence of specific force laws, the evolution of motion being determined by Newton's second law, a second-order differential equation. That is, given the physical forces at certain times and certain boundary conditions on the positions of the particles at some particular times, the problem is to determine the trajectories of all the particles at all times. Newton's formalism of classical mechanics, together with the investigation of appropriate force laws, provided the basic framework of physics from Newton's time, until the beginning of the last century. Classical mechanics has a deterministic property, that is, it is possible to determine or measure the position and momentum of a classical particle at any time under a given force and initial conditions. For a system, the positions ⃗ q and momenta ⃗ p provide a complete picture of the trajectories of the classical particles of the system. The space consisting of all such possible values of positions and momenta for the system at all instants is known as phase space. The Hamiltonian formulation of mechanics is the natural description for working in phase space. In general the Hamiltonian H(⃗ q, ⃗ p), a function of ⃗ q and ⃗ p, is just the sum of the kinetic and potential energies, or the total energy of a system, and the physical motion obeys Hamilton's equations of motion, (2.1)

⃗ q = ∂H ∂⃗ p , ⃗ ṗ = - ∂H ∂⃗ q ,
where ⃗ q and ⃗ ṗ represent the time derivatives of ⃗ q and ⃗ p, respectively. The kinetic energy

is T = 1 2 m ⃗ q2
, where m is the mass and given that ⃗ p = m ⃗ q, so T

= 1 2m ⃗ p 2 is a function of ⃗ p.
The potential V only depends on the position ⃗ q. In general, Hamiltonian H = kinetic energy T + potential energy V , or,

H = 1 2m ⃗ p 2 + V (⃗ q).
The Hamilton equations (2.1) are generalization of the Newton equation of motion to arbitrary configuration-space coordinate frames. By solving these first-order differential equations with some initial conditions, one can accurately determine the properties (i.e., position and momentum) of classical particles at any instant of time [START_REF] Goldstein | Classical Mechanics[END_REF][START_REF] Spiegel | Theory and Problems of Theoretical Mechanics (schaum's Outline[END_REF].

Starting from Hamilton's equations, it is very easy to derive the Newton equation.

Indeed, Hamiltonian H = kinetic energy T + potential energy V , with the kinetic energy

T = 1 2 m ⃗ q2
, and ⃗ q is the velocity of the particle and V is a function of ⃗ q only. Now in Hamiltonian formulation, momentum ⃗ p = m ⃗ q. Hence, the second equation of the Hamilton's equations of motion (2.1) gives, m ⃗ q = - ∂V ∂⃗ q , where ⃗ q is the acceleration. Note that, -∂V ∂⃗ q = F is the force acting on the particle. Therefore, one has m ⃗ q = F, which is exactly Newton's second law of motion [START_REF] Shankar | Principles of Quantum Mechanics[END_REF].

Following the above discussions, it is clear that in classical mechanics, the position and momentum of a classical particle can be determined precisely, starting from Newton's or Hamilton's equations of motion. Fig. 2.1 illustrates this concept through a pictorial diagram. Suppose a classical particle is moving under a potential V with an energy E in the Euclidean space. At point q 3 , the potential energy is higher than the particle's energy. Thus this potential energy acts as a potential barrier for the particle and limits its motion. With the given energy E, the classical particle will never cross the potential barrier and reach the point q 4 . Indeed, the particle is trapped between the points q 1 and q 2 , and remains so while oscillating forever if there is no damping force (e.g., friction) acting on the particle.

Quantum Mechanics

Until the end of the nineteenth century, the laws of classical mechanics were found to be sufficient to explain the physical phenomena studied up to that time. The universe was conceived as containing matter consisting of particles and radiation (waves). The motions of material bodies were described using the laws of Newtonian mechanics, while the theory of electromagnetism was used to describe radiation. Interactions between radiation and matter were well explained by the Maxwell's equations. This set of laws was considered satisfactory to explain the experimental data at that time. In this context, it is to be mentioned that by a particle one means a point endowed with some mass.

So particles are localized bundles of energy and momentum. At each instant of time a particle has a definite position in space and it follows a trajectory, when it moves from one point to another. A wave, in contrast, is a disturbance spread over the space. It is described by a function which characterizes the disturbance at a point at a particular time t. Diffraction and interference are two properties of a wave, which are not exhibited by particles described by classical mechanics.

Wave-Particle Duality

Newton considered light to be a beam of particles which can bounce back upon reflection from a mirror. But such a concept could not explain the interference effect of light. During the first half of the nineteenth century, interference and diffraction effects of light were successfully explained considering light as a wave. Later on, it was found that visible lights are particular forms of electromagnetic radiation which move in vacuum with a speed of 3 × 10 8 m/sec. Electromagnetic theory formulated by Maxwell was successful in explaining electromagnetic radiation. However, it was not possible to explain experimental observations of black body radiation using electromagnetic theory. In order to explain the observed data of black body radiation, Planck had to assume that an electromagnetic radiation of frequency ν could have energies which are only integral multiple of hν, where h is a constant known as Planck's constant (h = 6.55 × 10 -34 Joule-sec). Thus, following Planck, electromagnetic radiation of frequency ν can be considered as consisting of stream of particles or corpuscles each of energy hν. These particles which can be localized in space are known as photons. Making use of the concept of photons, Einstein was able to explain the characteristics of the photoelectric effect quite successfully. Later on, the corpuscular character of electromagnetic radiation was confirmed by Compton while explaining the scattering of X-ray by a stationary electron.

From the above discussion, we can arrive at the following conclusion. The interaction between radiation and matter takes place by means of an elementary process in which radiation appears to be composed of particles, called photons. We have thus returned to the particle conception of light, though this conception is very much different from that considered by Newton. particle framework. As a matter of fact, a complete interpretation of the phenomena concerning radiation can only be made by assuming both particle and wave aspects of radiation. So we face a paradox, because the concepts of wave and particle are mutually exclusive. This is particularly visible in the double slit experiment.

Double Slit Experiment with Single Photons

In the basic version of the experiment, a monochromatic coherent light source (for example, a laser beam) illuminates a screen S 1 containing two slits F 1 and F 2 . At some distance beyond this screen a second screen S 2 is placed, incorporating detectors (for example, a photographic plate) which can detect the light that falls on a given point [START_REF] Ghoshal | Basics of Quantum Mechanics[END_REF][START_REF] Shankar | Principles of Quantum Mechanics[END_REF]. We observe that with the slits open one at a time, we get a classical distribution, and

with both slits open, we get the interference pattern as in Fig. 2.2. Let us now consider the case when both slits are open. At first sight one might think that the interference pattern develops due to the interactions of photons passing through the slits F 1 and F 2 . But it is not the case. Because, if the intensity of the source is diminished until the photons strike the screen one by one so that there is no possibility of interaction between the photons, the interference pattern is still found to be developed after a long time (that is, after a large number of photons is recorded). Therefore, purely corpuscular interpretation must be rejected.

Let us now try to explain the results on the basis of wave picture. According to the wave picture, light intensity at a point on the screen S 2 is proportional to the square of the amplitude of the wave at this point. If we consider the case "when the source emits 2.3. QUANTUM MECHANICS photons one by one" and analyse the screen S 2 after it has received a few photons, we then observe that each photon produces a localized impact on S 2 (see top left image in Fig. 2.3)

and not a very weak interference pattern. Therefore, the purely wave interpretation must also be rejected. In reality, the individual impacts of photons on the screen S 2 are distributed in a random manner, and only when a large number of photons has reached the screen S 2 , the distribution of the impacts begins to have a continuous aspect or interference fringes (see bottom right image in Fig. 2.

3).

The top left image in Fig. 2.3 is the result after a short exposure time, after around 100 photons have landed on the detector. Each dot of light represents one photon, which behaves as a particle here: it hits exactly one position -one detector pixel. If the wave property would dominate, each photon would be distributed over the whole detector surface, just as a sea wave does not hit the beach at one point only but over the whole length of the beach. With increasing exposure time -in Fig. 2.3 top middle and top right, and again from bottom left to bottom right -it becomes clear that the photons are landing at random positions but with a wave-like distribution of probability. A long exposure time with a high number of detected photons leads to the interference pattern which we know from a normal monochromatic light source at the double slit.

It is thus clear that interference pattern is the result of the impacts of a large number of photons. Let us now try to determine through which slit each photon passed before it reached the screen S 2 . In order to do this we have to place detectors behind the slit F 1 and F 2 . It is then observed that, if the photons arrive one by one, each one passes through a well-determined slit (F 1 or F 2 , but not both). But obviously photons, recorded in this way, are absorbed and do not reach the screen. Removing detectors from one of the slit, say from F 2 , tells us that about half of the photons emitted from the source pass through the slit F 2 . But in this case, no interference pattern is developed, since slit F 1 is blocked. We only obtain a classical distribution of F 2 . The content of this paragraph can be summarised by concluding that it is impossible to observe the interference pattern and to know at the same time through which slit each photon has passed. The analysis of the double-slit experiment thus shows that it is not possible to explain all the observed phenomena if only one of the two aspects of light, wave or particle, is considered. Classically, these two aspects are mutually exclusive. We are thus led to the conclusion that this classical idea, although our everyday experience tells us to consider this well-founded, is not valid in the microscopic domain.

Matter Waves

One of the greatest challenges of the nineteenth century was to explain the atomic spectra. It is found that atomic spectra are composed of narrow lines which indicate that a given atom can emit or absorb only photons having well-determined frequencies or energies. Classical mechanics is totally unable to explain this fact.

In 1923, de Broglie put forward a hypothesis which unifies particle and wave. He postulated that material particles, just like photons, can have wavelike aspect. These are called matter waves. What is true for photons should be valid for any type of particle.

More specifically, de Broglie conjectured, in analogy with photons, that particles of momentum p will produce an interference pattern corresponding to a wave number k = p/ℏ (where, ℏ = h/2π) in the double-slit experiment. We therefore associate with a material particle having energy E and momentum p, a wave whose angular frequency ω and wave vector k are given by the same relations as for photons:

(2.

2) E = ℏω, and p = ℏk.

This prediction was verified for electrons by Davisson and Germer, shortly thereafter. It is now widely accepted that all particles are described by probability amplitudes ψ, and that the assumption that they move in definite trajectories is ruled out by experiment.

But what about common sense, which says that billiard balls and baseballs travel along definite trajectories? How did classical mechanics survive for three centuries? The answer is that the wave nature of matter is not apparent for macroscopic phenomena since ℏ is so small [START_REF] Shankar | Principles of Quantum Mechanics[END_REF].

Wave Functions and Quantum Description of Particle

From the analysis of the double-slit experiment we have learnt that the concept of trajectory of a particle does not make sense at the microscopic scale. In order to describe the motion of a microscopic particle, such as an electron, quantum mechanics introduced the concept that the probability of finding the particle at a given location is proportional to the square of the modulus of the wave function ψ(z, t) which characterizes the state of the particle, z being a spatial coordinate. Thus the probability of finding the particle within the volume element dz about the point z at time t is

(2.3) P(z, t)dz = |ψ(z, t)| 2 dz,
so that P(z, t) = |ψ(z, t)| 2 is the probability density. We thus see that the wave function associated with a particle determines its space-time behaviour which is statistical in 2.3. QUANTUM MECHANICS nature. Since the probability of finding the particle somewhere in the space must be unity, we deduce that

(2.4) |ψ(z)| 2 dz = 1,
So the wave functions are square-integrable functions.

As we have seen in the previous sections, in order to account for the interference effects, it must be possible to superpose wave functions. This means that if ψ 1 and ψ 2 are two possible states of a particle, then any linear combination, c 1 ψ 1 + c 2 ψ 2 , is also a possible state of the particle, where c 1 and c 2 are constants.

The equation describing the evolution of ψ should then be linear. It is called the Schrödinger equation. This equation is a fundamental equation of the non-relativistic quantum mechanics. We simply consider this equation as a postulate and for the sake of simplicity we restrict ourself to one dimensional case. For a particle of mass m moving in the field of potential V (z, t), the Schrödinger equation takes the form

(2.5) iℏ ∂ ∂t ψ(z, t) = - ℏ 2 2m ∂ 2 ∂z 2 ψ(z, t) + V (z, t)ψ(z, t).
The Schrödinger equation is linear and homogeneous in ψ. As a result, for material particles there exists a superposition principle which, combined with interpretation of ψ as a probability amplitude, is the source of wavelike effects. Furthermore the equation is of first order in t. So if the state at some time, say t 0 , is known we can determine exactly the subsequent state of the particle. Thus there exists a fundamental analogy between matter and radiation -in both cases, a correct description of the phenomena needs the introduction of quantum concepts, in particular the idea of wave-particle duality.

At this point it is clear that wave functions ψ(z, t) describe the states of a quantum particle. Let us assume a wave function ψ(z, t) = ce i(kz-ωt) , where c is a constant [START_REF] Wan | Quantum Mechanics: A Fundamental Approach[END_REF].

Performing differentiation with respect to z we get

∂ ∂z ψ(z, t) = ∂ ∂z ce i(kz-ωt) or, ∂ ∂z ψ(z, t) = ik ce i(kz-ωt) or, -iℏ ∂ ∂z ψ(z, t) = ℏkψ(z, t) or, -iℏ ∂ ∂z ψ(z, t) = pψ(z, t) since p = ℏk from equation (2.2), (2.6) 
Again applying differentiation with respect to t we get

∂ ∂t ψ(z, t) = ∂ ∂t ce i(kz-ωt) or, ∂ ∂t ψ(z, t) = -iω ce i(kz-ωt) or, iℏ ∂ ∂t ψ(z, t) = ℏωψ(z, t) or, iℏ ∂ ∂t ψ(z, t) = Eψ(z, t) since E = ℏω from equation (2.2), (2.7) 
Relations (2.6) and (2.7) show that the operators -iℏ ∂ ∂z and iℏ ∂ ∂t , when acting on the wave function, yield respectively the momentum and energy of the particle as eigenvalues of the operators. This gives hints to the fact that momentum and energy of a free particle can be represented by the differential operators Let us consider a particle moving under the potential V (z, t). So the total energy E of the particle is given by the sum of kinetic energy T = p 2 2m and potential energy V . Therefore, (2.9)

E = p 2 2m + V .
Since the potential energy V (z, t) does not depend on p or E, using the operators representation (2.8) we obtain

(2.10) iℏ ∂ ∂t = - ℏ 2 2m ∂ 2 ∂z 2 + V .

THE POSTULATES OF QUANTUM MECHANICS

This leads to the Schrödinger equation,

(2.11) iℏ ∂ ∂t ψ(z, t) = - ℏ 2 2m ∂ 2 ∂z 2 + V ψ(z, t).
The operator

-ℏ 2 2m ∂ 2
∂z 2 + V appearing on the right hand side of the Schrödinger equation plays a fundamental role in quantum mechanics. It is called the Hamiltonian operator of the particle, and is denoted by H. Thus

H = - ℏ 2 2m ∂ 2 ∂z 2 + V = 1 2m p 2 operator + V = T + V , (2.12) 
where T = 1 2m p 2 operator is the kinetic energy operator. Therefore the time-dependent Schrödinger equation can be written as (2.13) iℏ ∂ ∂t ψ(z, t) = Hψ(z, t).

Note that the quantum mechanical Hamiltonian operator is obtained from classical

Hamiltonian by performing the substitution ⃗ p → p operator = -iℏ ∂ ∂z .

The Postulates of Quantum Mechanics

In the following we describe the postulates for the case of a single particle in one space dimension. The quantum postulates are written together with the classical Hamiltonian formalism to provide some perspective [START_REF] Shankar | Principles of Quantum Mechanics[END_REF].

Classical Mechanics

I. The state of a particle at any give time t is specified by the two variables position ⃗ q(t) and momentum ⃗ p(t), that is, as a point in a two- dimensional phase space.

II. Every dynamical variable f is a function of ⃗ q and ⃗ p, thus f = f ⃗ q, ⃗ p . III. If the particle is in a state given by ⃗ q and ⃗ p, the measurement of the variable f will yield a value f ⃗ q, ⃗ p .

The state will remain unaffected.

Quantum Mechanics

I. The state of a physical system at a fixed time t, is described by a vector |ψ(t)〉 belonging to the Hilbert space of square-integrable functions.

II. Every measurable physical quantity is described by an operator in the Hilbert space and this operator is an observable.

The independent variables ⃗ q and ⃗ p of classical mechanics are rep- resented by Hermitian operators z and p.

Any observable corresponding to the classically defined dynamical variable f ⃗ q, ⃗ p , is obtained as the same function of the operators z and p.

Thus the observable is given by Her-

mitian operators F(z, p) = f ⃗ q → z, ⃗ p → p .
III. The only possible result of the measurement of a physical quantity is one of the eigenvalues of the corresponding observable.

If the particle is in a state |ψ〉, measurement of the variable (corresponding to) F will yield one of the eigenvalues f with probability

P( f ) = |〈 f |ψ〉| 2 .
The state of the system will change from |ψ〉 to | f 〉 as a result of the measurement. IV. The time evolution of the state vector |ψ(t)〉 is governed by the Schrödinger equation:

iℏ d dt ψ(t) = H(t)ψ(t),
where H(t) is the observable associated with the total energy or Hamiltonian of the system.

Physical Interpretation of the Postulates

In quantum mechanics, the state of a physical system is described by a vector in a Hilbert space. Since the state vectors define a Hilbert space, this implies a superposition principle: a linear combination of state vectors is a possible state vector. Therefore, if |ψ〉 and |ψ 1 〉 correspond to two different states of a system, c 1 |ψ〉+ c 2 |ψ 1 〉 also corresponds to a state of the system. This also follows from the Schrödinger equation. Since Schrödinger equation is a linear equation, linear combination of any number of solutions is again a solution.

In classical mechanics for a given state ⃗ q, ⃗ p , one can say that any dynamical variable f has a value f ⃗ q, ⃗ p , in the sense that if the variable is measured, the result f ⃗ q, ⃗ p will be obtained. Analogous to that in quantum mechanics for the particle in a state can be easily uniquely determined. So, there is no indeterminacy in the time evolution of a quantum system. Indeterminacy appears only when a physical quantity is measured, the state vector then undergoes an unpredictable modification. However, between two measurements, the state evolves in a perfectly deterministic way in accordance with the equation.

Stationary States and Time-Independent

Schrödinger Equation

If the Hamiltonian operator is time-independent, its eigenstates are called stationary states. In such states, the probability of measurement of any time-independent observable F is independent of time. Thus all the physical properties of a system in a stationary state do not vary over time.

Now the Hamiltonian of a single particle of mass m moving in time-independent potential is given by (2.14)

H = - ℏ 2 2m d 2 dz 2 + V (z).
Thus we have

(2.15) - ℏ 2 2m d 2 dz 2 ψ(z) + V (z)ψ(z) = Eψ(z),
an eigenvalue equation and is known as time-independent Schrödinger equation. In this thesis, we exploit these stationary wave solutions ψ(z) of the timeindependent Schrödinger equation in the context of signal and image decomposition. In Chapter 4, we use the fact that for a finite-dimensional problem these stationary wave functions will form a complete set of basis functions of the Hilbert space of L 2 -integrable functions.

In the next subsection, now let us discuss a simple problem concerning the motion of a single particle in one dimension and see how the Schrödinger equation describes the picture.

Particle in a Box

Consider a particle of energy E and mass m confined into a region 0 to l of the z-axis.

At z = 0 and z = l, there are two absolutely rigid, impenetrable walls of infinite height CHAPTER 2. BASICS OF QUANTUM MECHANICS [START_REF] Brandt | The Picture Book of Quantum Mechanics[END_REF][START_REF] Griffiths | Introduction to Quantum Mechanics[END_REF]. Therefore the potential V is given by

V = 0 for 0 ≤ z ≤ l, = ∞ otherwise. (2.17)
The potential experienced by the particle is shown graphically in Fig. 2.4.

To leave the region [0, l], the particle needs infinite energy. Since this is impossible, one can have the probabilities of finding the particle at z = 0 and z = l to be zero. As probability is measured by the modulus square of the wave function, so we choose (2.18)

ψ(0) = ψ(l) = 0
Similarly, since the particle can not cross the infinite barrier and go outside the box, the wave function ψ = 0 everywhere outside the box.

Since the potential V does not depend on time, we use the time-independent Schrödinger equation (2.15), given by

- ℏ 2 2m d 2 dz 2 ψ(z) + V (z)ψ(z) = Eψ(z) or, d 2 dz 2 ψ(z) + 2m ℏ 2 E -V (z) ψ(z) = 0, (2.19) 
to obtain the stationary wave function of the particle. Inside the box V (z) = 0, therefore 

ψ(z) = c 1 sin(kz) + c 2 cos(kz),
where c 1 and c 2 are arbitrary constants. Now by the boundary condition

ψ(0) = 0 ⇒ c 2 = 0.
Hence we get

(2.22) ψ(z) = c 1 sin(kz).
Again the boundary condition ψ(l) = 0 gives c 1 sin(kl) = 0 which is satisfied and gives nontrivial solution if The subscript r denotes the r-dependence of the underlying quantities. The eigenvalues thus form a discrete set as in the problem of a vibrating string with the two ends fixed.

(2.23) sin(kl) = sin(rπ), r = 1, 2, 3, • • • . ∞ ∞ 0 𝑙 𝑧 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝐸 𝑟 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝜋 2 ℏ 2 2𝑚𝑙 2 4𝜋 2 ℏ 2 2𝑚𝑙 2 9𝜋 2 ℏ 2 2𝑚𝑙 2 (a) (b) 
We get the energy of the particle as

(2.26) E r = ℏ 2 k r 2 2m = r 2 ℏ 2 π 2 2ml 2 .
Thus the wave function of a particle confined in an one-dimensional box is given by

ψ(z) = ψ r (z) = c 1r sin rπz l , r = 1, 2, 3, • • • for 0 ≤ z ≤ l, = 0 otherwise. (2.27) CHAPTER 2.
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This wave function can be normalized as follows

∞ ∞ |ψ(z)| 2 dz = 1 or, |c 1r | 2 l 0 sin 2 rπz l dz = 1 or, |c 1r | 2 l 2 = 1 or, c 1r = 2 l . (2.28)
Thus the normalized wave function is given by

(2.29) ψ r (z) = 2 l sin rπz l , r = 1, 2, 3, • • • .
{ψ r } forms a complete orthonormal set. There is only one independent eigenfunction ψ r corresponding to each energy level E r . Thus the energy spectrum is non-degenerate. The energy spectrum E r as well as ψ r has been shown in Fig. 2.5. Now instead of V = 0, consider a nonzero potential inside the infinite potential box given by

V        = a for 0 ≤ z ≤ l/2, = b for l/2 ≤ z ≤ l, = ∞ otherwise, (2.30) 
where a and b are positive constants with b < a. Fig. 2.6 shows the graphical representation of this potential. Similar to the previous case, the particle can not leave the region [0, l] due to the infinite potential barrier. So we choose ψ(0) = ψ(l) = 0 as the boundary conditions.

Since V ̸ = 0 and time-independent, so we get from Schrödinger equation (2.19)

(2.31) d 2 dz 2 ψ(z) + k 2 ψ(z) = 0,
where

k = 2m(E -V ) ℏ
. All nontrivial solutions of (2.31) have locally the form

(2.32) ψ r (z) ∼ e i 2m(E r -V ) ℏ z , r = 1, 2, 3, • • • for 0 ≤ z ≤ l.
Therefore each solution ψ r is associated with a specific value of E r , with E r > V and takes discrete values. This means that the frequency of the stationary wave solution In this thesis, we will calculate these stationary solutions ψ r in the case of a more intricate potential, where V is no more a simple constant and depends on position. Indeed, we will consider the value of the signal sample or image pixels as the potential V . Therefore, the local oscillation frequency of the stationary wave functions ψ r will depend on the local value of the signal sample or image pixels. These locally oscillatory stationary wave functions will be exploited for further signal or image decomposition tasks. Chapter 4 will put more insights into this fact. 

Quantum Localization of Wave Functions

If one considers an electron in a disordered crystal, according to classical theories, the zigzag motion of electrons is directly correlated to the mean free path, which is the average length traveled by an electron before it collides with an impurity. The motion of an electron is shown in Fig. 2.7 according to classical theories. The classical Drude theory tells us that the mean free paths of electrons are directly proportional to the electronic conductivity of a metal. It was clear that if the level of impurity increases, the mean free path becomes smaller and smaller. After the discovery of quantum mechanics, in the late 1950s, Philip Anderson came up with a new picture of electronic conductivity using quantum theory. He proved that beyond a critical amount of impurity scattering the zigzag motion of the electron is not just reduced, it can come to a complete halt. The electron becomes trapped or localized [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF][START_REF] Anderson | Ill-Condensed Matter: Les Houches 1978[END_REF] and the conduction is stopped.

Imagine an electron bounded on an one-dimensional lattice. If the lattice is periodic, all sites have the same potential energy, as shown in the top diagram in Fig. 2.8. The electron will tunnel through one site to another according to the quantum mechanical laws. This tunneling process becomes efficient in the presence of an ordered lattice where the depth of the wells is the same in the lattice. In other words, we get a good coupling efficiency between neighboring wells, since the energy differences are zeros. As a result, extended Bloch wave functions [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF] are present and motion is ballistic. The electron will still tunnel from one site to another through large energy barriers, but the cross-coupling efficiency becomes very low due to the high energy differences. Thus, a critical amount of randomness in the depth of the wells leads to exponentially localized wave function |ψ| ∼ e (z-z 0 )/L of the electron [START_REF] Lagendijk | Fifty years of anderson localization[END_REF], where L is the localization length.

According to scaling theory [START_REF] Lagendijk | Fifty years of anderson localization[END_REF], the scaling function β(g) describes how or more precisely, with what exponent the average conductance g grows with system size l. The conductance varies as l D-2 , for a normal Ohmic conductor with dimension D, correspondingly β(g) ∼ D -2 for large g. Thus for the three-dimensional case the beta function is positive, zero for two dimension and for one dimension beta is negative. In the localized regime, g decays exponentially with sample size so that β(g) is negative. In three dimensions, that leads to a critical point [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF][START_REF] Anderson | Ill-Condensed Matter: Les Houches 1978[END_REF][START_REF] Lagendijk | Fifty years of anderson localization[END_REF] at which β vanishes for some special value of g. But the one or two-dimensional systems do not undergo a phase transition because the conductance always decreases with system size [START_REF] Kramer | Anderson Localization, Interaction, and Transport Phenomena: Proceedings of the International Conference[END_REF]. The localization length decreases when the system becomes more and more disordered. Therefore, localization (0,0) is always present for one or two-dimensional systems. The level of localization can be measured by computing the inverse participation ratio (IPR) of the wave functions, which is directly proportional to the localization length. For a given wave function ψ, the IPR is mathematically defined as:

(2.33)

IPR(ψ) = i |ψ i | 2 2 i |ψ i | 4 .
The IPR (or localization length) of a wave function ψ decreases with increasing disorder of the system. Let us illustrate this concept through a pictorial diagram. It is clear that in quantum mechanics, a wave function characterizes the state of a quantum particle where the position and momentum of the particle can not be determined precisely. Suppose a particle is moving under an arbitrary but smooth potential V . For an energy E, the solution of the time-independent Schrödinger equation under the potential V gives the wave solution as shown in Fig. 2.9. Although at point q 3 , the potential barrier is higher than the particle's energy E, the particle can tunnel through the barrier and reach reach the point q 4 . Thus we get a non-zero probability at point q 5 as well as at point q 4 . This phenomenon is impossible for a classical particle.

In the case of a disordered system, i.e., the potential V is not smooth anymore and is affected by random fluctuations, as shown in Fig. 2 

Quantum Many-Body Theory

Our discussion so far has been restricted to a system with a single particle in one dimension. We want to deal with the case of several quantum particles generalizing the theory. In reality, the motion of a particle is often influenced by other particles nearby.

In general, it is straightforward to understand the underlying physical laws governing the motion of each particle in the absence of such effects, but the complex nature of such influence makes the study of collections of interacting particles extremely difficult. This is a well known as the 'Many-Body Problem' in physics. Our universe is primarily
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Average mean-field FIGURE 2.12. Interaction between a particle and the average mean-field.

governed by four fundamental interactions, these are gravitational, electromagnetic, weak-nuclear and strong-nuclear interactions. Therefore, for a system with w particles the Hamiltonian operator becomes [START_REF] Mahan | Local Density Theory of Polarizability, Physics of Solids and Liquids[END_REF]:

(2.34)

H(z 1 , z 2 , z 3 , • • • , z w ) = - w a=1 ℏ 2 2m a d 2 dz 2 a + V (z 1 , z 2 , z 3 , • • • , z w ).
Thus, for a given energy E the associated wave function

ψ(z 1 , z 2 , • • • , z w ) satisfies a new
Schrödinger equation:

(2.35)

Hψ(z 1 , z 2 , • • • , z w ) = Eψ(z 1 , z 2 , • • • , z w ).
Solving this equation (2.35) is not straightforward because of the highly nonlinear nature

of V (z 1 , z 2 , z 3 , • • • , z w ). V (z 1 , z 2 , z 3 , • • • , z w )
contains the original potentials of particles as single particle systems and the external potentials due to the interactions, mathematically given by 

(2.36) V (z 1 , z 2 , • • • , z w ) = a V (z a ) 1-body term
+ • • • + I(z 1 , z 2 , • • • , z w ) w-body term ,
where the 1-body term V (z a ) is the original potential of a-th particle as single particle system, 2-body term I(z a , z b ) is the interaction generated by two particles, 3-body term I(z a , z b , z c ) is the interaction generated by three particles, and so on.

Considering approximations like the Mean-Field approximation, we can simplify the problem. It assumes that the particles do not interact with each other except through an average self-consistent mean-field [START_REF] Martin | Many-Body Problems and Quantum Field Theory[END_REF][START_REF] Neil Ashcroft | Solid State Physics[END_REF]. For example, the a-th particle does not interact with other particles of the system one-by-one or one-by-two or so on and only interacts with an average mean-field generated by the other particles of the system.

Under this approximation, all higher order terms present in equation (2.36) vanish, and only interaction, say I a , between the a-th particle with its average mean-field remains (see Fig. 2.12 for a pictorial representation). Therefore, we get an approximated potential given by (2.37)

V (z 1 , z 2 , • • • , z w ) ≈ a V (z a ) + a I a .
Hence, the many-body problem reduces into an effective one-body problem and for each particle their respective Hamiltonian operator is given by (2.38)

H a = - ℏ 2 2m a d 2 dz 2 a + V (z a ) H 0 a +I a , for a = 1, 2, 3, • • • , w,
where, H 0 a is the Hamiltonian for the a-th particle as a single-particle system. Under this reduced Hamiltonian, the Schrödinger equation gives wave solutions for each particle, providing useful insight into understanding the underlying physics of the many-body system.

We show in Chapter 6 that by exploiting this many-body framework for imaging problems, we can obtain significant improvements in image restoration performance, especially in image denoising, where this quantum interaction plays a crucial role in preserving image features.

QUANTUM MANY-BODY THEORY

Chapter Highlights

In quantum mechanics, (non-relativistic) particles in a potential V are described by wave functions ψ, whose absolute values |ψ| 2 correspond to the probability of presence of the particles. The stationary wave functions are the solutions of the time-independent Schrödinger equation and these stationary functions ψ are the eigenfunctions of the Hamiltonian operator H corresponding to the eigenvalue E r .

For a quantum particle in an infinite potential box, the stationary solutions are locally oscillatory functions with an oscillation frequency dependent on the local value of V for a given energy E r .

In a disordered system, the random fluctuations of V cause destructive interference between different waves and lead to an exponential decay of the wave function, resulting in the localization of the wave function.

In a quantum many-body system, in general, particle-particle interactions take place and the characteristics of each particle are often influenced by other particles nearby.

In this thesis, we exploit these stationary wave solutions ψ(z) of the time-independent Schrödinger equation to construct a signal or image-dependent basis set, which will be used in the context of signal or image decomposition. Indeed, we will consider the value of the signal sample or image pixels as the potential V .

Therefore, the local oscillation frequency of the basis vectors will depend on the local value of the signal sample or image pixels.

In this thesis, a noisy signal or image behaves like a disordered system with random potential energies at each signal value or image pixel. This disorderness increases with the noise intensity, causing the basis vectors of that system to become completely localized in some regions of the signals or images. These localized basis vectors play a crucial role in the signal and image decomposition tasks.

Finally, we exploit the quantum many-body theory for imaging problems, where the quantum interaction plays a crucial role in preserving local image features. 

Introduction

The spatial resolution of an imaging system is the capacity to differentiate two closely spaced point sources. In other words, it is the ability of the system to separate two close targets. In almost all practical applications, we do not have direct access to the desired image through observations but only to a degraded version of that ground truth due to various unavoidable phenomena in real-life situations causing such distortions.

These distortions that can significantly damage the spatial resolution and image details, i.e., the overall image quality, arise due to the sensors or to the environment of the physical system. In most imaging applications, a high-quality image is always desired as it provides more precise image details that facilitate accurate image analysis. This image analysis becomes very critical, particularly for medical diagnosis, and also has a great impact on astrophysics, geosciences, engineering, etc. Due to this drive, image restoration problems to obtain a high-quality image from a low-quality observation have been extensively studied over the years yet remain an open research domain even in present times.

Examples of Image Restoration Tasks

The process of retrieving a clean image from a distorted observation is known as image restoration. There is a wide range of practical problems within image restoration. In the following, we discuss the forward models associated with the most common ones.

Image Denoising

Let us consider a physical system acquiring visual information (e.g., by a digital camera) of its surroundings in the form of images. Frequently, the images appear to be noisy, suggesting that they were degraded during the acquisition process, because of various factors depending on the apparatus. Under certain assumptions, the noisy image is assumed to be the sum of two terms, the noise, which depends on the imaging system, and a noiseless version of the observed image, which corresponds to the clear image.

Obtaining an estimate of this true image is then an image restoration problem (more generally an inverse problem), known in the literature as image denoising. Note that depending on the noise nature and application specificities, the noise is not necessarily additive. The random variation of information related to color or brightness value in the images is known as noise. Image noise is caused by the circuitry and sensor of a scanner or digital camera, and also to film grain or quantum fluctuations of photons. One can range image noise from almost invisible specks on a photograph taken in good light, to optical and radio-astronomical images that are extremely noisy, from which one can only collect a small amount of information. Generally the Gaussian noise is generated as an intrinsic noise in the sensor of a scanner or digital camera due to the illumination level and internal temperature of the electronic circuits connected to the sensor. As a different example, in the case of counting process such as limited photon acquisition, the process gets contaminated by Poisson noise, which is a signal-dependent noise. Thus, in several applications such as astronomy, photography, microscopy, medical imaging, etc., the denoising task becomes crucial to acquire a high-quality image by removing unwanted contributions to pixels due to noise. Fig. 3.1 shows denoising applications for photography and microscopy images in the presence of Gaussian and Poissonian noise, respectively. In Chapters 4 and 6, we address this image denoising problem by exploiting the principles of quantum theory using adaptive transform domain shrinkage and a nonlocal data-driven approach, respectively. Furthermore, a quantum-inspired deep neural network is proposed in Chapter 7 for the denoising task.

Image Deblurring

Image deblurring is a process of recovering a sharp and noise-free image from a blurry and noisy observation. For simplicity, let us consider the scenario of acquiring visual information from surroundings by a digital camera. An additional image degradation can occur due to depth-of-field effects or defocusing. These degradation processes produce images that are not only noisy but also blurred. Other phenomena may occur that reduce image sharpness, such as camera motion or light propagation through the atmosphere.

Image deblurring is widely used in many applications including astronomy, microscopy, medical imaging, etc. Fig. 3.2 shows its application for microscopy and astronomy images. Generally, the forward model associated with image blurring consists in a convolution between blur kernel that can be caused by motion or the system impulse response. The blur kernel often corresponds to a filter that causes information loss when applied to an image, especially from the high-frequency spectrum. In our case, the image deblurring algorithm aims to recover lost information under noisy system conditions when the blur kernel itself is known or unknown. Chapters 4 and 7 present image deblurring methods using model-based and neural network-based approaches, respectively.

Single Image Super-Resolution

Imaging beyond the system resolution is referred to as super-resolution (SR). Assume a situation of obtaining information about an object from a distance, typically by using sensors or cameras. These sensors or cameras primarily capture an optical image, which is a set of pixels representing the spatial information of the object. The number of pixels is related to the spatial resolution of the image. Enhancing the resolution of the image is another example of restoration problem, known as the single image SR problem. In this case, the system is usually modeled as a degradation process acting on a sharp high-resolution (HR) image. This degradation is a consequence of the characteristics of the sensor or camera that was used to capture the image. SR techniques are often used The main advantage of analyzing all the different problems described in the previous paragraphs as restoration problems lie in the fact that this can be done systematically.

Note that the ultimate goal of solving a restoration problem (inverse problem) is to retrieve the original underlying data from the degraded observations. This is typically harder to do than the reverse. As an example, consider the problem of image deblurring: it requires estimation of not only a deblurred image but also parameters related to the camera. It can then be helpful to develop ways to use additional information about the system under study.

When formulating a restoration problem, one usually needs to address four different points:

(a) the selection of an observation model describing the underlying physical reality, (b) the establishment of a criterion quantifying how well the observations are described by the model,

IMAGE FORMATION MODEL

(c) the design of a way to incorporate any additional information about the parameters, if available, and, (d) the selection of a computational approach to tackle the restoration problem.

In the following, we focus on the mathematical formulation of the image restoration problem.

Image Formation Model

Often, such a degradation process as those introduced previously, can be formulated mathematically to capture the nature of the contamination or degradation as 

(

State-of-the-Art Methods

Over time, original methods from various branches of science have enriched the literature of digital image processing, and specifically the fundamental question of image restoration. Such methods are inspired from statistics [START_REF] Hamza | Image denoising: a nonlinear robust statistical approach[END_REF], probability theory [START_REF] Lebrun | A nonlocal bayesian image denoising algorithm[END_REF][START_REF] Pizurica | Estimating the probability of the presence of a signal of interest in multiresolution single-and multiband image denoising[END_REF],

graph theory [START_REF] Pang | Graph laplacian regularization for image denoising: Analysis in the continuous domain[END_REF][START_REF] Sandryhaila | Discrete signal processing on graphs[END_REF][START_REF] Shuman | The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[END_REF] or differential equations [START_REF] Kim | Pde-based image restoration: a hybrid model and color image denoising[END_REF][START_REF] Liu | Remote-sensing image denoising using partial differential equations and auxiliary images as priors[END_REF]. This section will present benchmark techniques reported in the literature for various image restoration problems such as denoising, deblurring and SR. Fig. All denoising methods assume some underlying image regularity. Depending on this assumption, most of them can be divided into transformation-domain and spatial-domain methods.

Model-Based Methods

For the denoising problem, number of methods are based on sparse representations into a given basis, with most of the true image described by the projections on a few basis vectors. This enables to efficiently store and restore the image. Transform domain methods work by shrinking or thresholding the coefficients of some transform domain [START_REF] Sadasivam | Image de-noising using double density wavelet transform based adaptive thresholding technique[END_REF][START_REF] Li | New image denoising method based wavelet and curvelet transform[END_REF][START_REF] Starck | The curvelet transform for image denoising[END_REF]. The Wiener filter [START_REF] Wiener | Extrapolation, Interpolation, and Smoothing of Stationary Time Series: with Engineering Applications[END_REF] is one of the first such methods operating on the Fourier domain, further extended to the wavelet domain by Donoho et al. [START_REF] Donoho | Ideal spatial adaptation by wavelet whrinkage[END_REF]. Such sparse representations [6,[START_REF] Aujol | Wavelet-based level set evolution for classification of textured images[END_REF][START_REF] Candés | Fast discrete curvelet transforms[END_REF][START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF][START_REF] Donoho | Ideal spatial adaptation by wavelet whrinkage[END_REF][START_REF] Kopsinis | Development of emd-based denoising methods inspired by wavelet thresholding[END_REF][START_REF] Portilla | Image denoising using scale mixtures of gaussians in the wavelet domain[END_REF][START_REF] Starck | The curvelet transform for image denoising[END_REF] depend on both the transformation chosen and the nature of the image. Fig. 3.5 shows how one can get a denoised image by thresholding these sparse coefficients in the wavelet domain. Traditionally, all these methods exploit few explicit or underlying hypotheses about the image to restore, for example, piece-wise smoothness, but are not strong enough to capture the complex textures present in a true image.

Space-domain methods traditionally use a local notion of regularity with edgepreserving algorithms such as total variation [START_REF] Figueiredo | Restoration of poissonian images using alternating direction optimization[END_REF][START_REF] Rudin | Total variation based image restoration with free local constraints[END_REF][START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF][START_REF] Weiss | Efficient schemes for total variation minimization under constraints in image processing[END_REF], anisotropic diffusion Examples of image denoising using wavelet transform. Four-scale wavelet transform and hard thresholding are used here [START_REF] Peyré | The numerical tours of signal processing[END_REF]. [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF][START_REF] Weickert | Theoretical foundations of anisotropic diffusion in image processing[END_REF][START_REF] Weickert | Anisotropic Diffusion in Image Processing[END_REF], spatial filtering [START_REF] Durand | Fast bilateral filtering for the display of high-dynamicrange images[END_REF][START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF], bilateral filter [START_REF] Elad | On the origin of the bilateral filter and ways to improve it[END_REF][START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF][START_REF] Zhang | Multiresolution bilateral filtering for image denoising[END_REF], or guided filters [START_REF] He | Guided image filtering[END_REF][START_REF] Kou | Gradient domain guided image filtering[END_REF], etc. In Chapter 4, we exploit this notion of sparsity by an adaptive transformation designed from the principles of quantum mechanics.

With the growth of computing power, data-driven strategies to increase the sparsity and overcome the limitations of general transforms have become more prominent in recent decades. One such approach is to learn overcomplete dictionaries from training image sets [START_REF] Aharon | An algorithm for designing overcomplete dictionaries for sparse representation[END_REF][START_REF] Dong | Nonlocally centralized sparse representation for image restoration[END_REF][START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF][START_REF] Mairal | Sparse representation for color image restoration[END_REF]. These data-driven methods are non-local as they denoise by averaging similar patches in the image. Patch-based denoising has developed into attempts to model the patch space of an image, or of a set of images. These techniques model the patch as sparse representations on dictionaries [START_REF] Dong | Nonlocal image restoration with bilateral variance estimation: A low-rank approach[END_REF][START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF][START_REF] Mairal | Non-local sparse models for image restoration[END_REF], using Gaussian Scale Mixtures models [START_REF] Portilla | Image denoising using scale mixtures of gaussians in the wavelet domain[END_REF][START_REF] Rajaei | An Analysis and Improvement of the BLS-GSM Denoising Method[END_REF][START_REF] Weiss | From learning models of natural image patches to whole image restoration[END_REF], or with non-parametric approaches by sampling from a huge database of patches [START_REF] Levin | Natural image denoising: Optimality and inherent bounds[END_REF][START_REF] Levin | Patch complexity, finite pixel correlations and optimal denoising[END_REF][START_REF] Mosseri | Combining the power of internal and external denoising[END_REF][START_REF] Pierazzo | Boosting "shotgun denoising" by patch normalization[END_REF].

Another alternative patch-based scheme uses patch neighborhood as a feature vector and takes advantage of both space-and transform-domain approaches [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF][START_REF] Lebrun | A nonlocal bayesian image denoising algorithm[END_REF]. They group similar image patches and jointly denoise them through associative filtering in a transform domain (see Fig. 3.6). Additionally, they proceed by applying two slightly different denoising stages, with the second stage using the output of the first as its guide.

For example, block-matching and 3D filtering known as BM3D creates 3D data arrays by grouping similar image fragments before computing a sparse representation applying 3D transformations [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF][START_REF] Dabov | Bm3d image denoising with shape-adaptive principal component analysis[END_REF].

Patch-based algorithms exploit the self-similarity model, which takes into account the fact that natural images often represent repetitive patterns. The idea behind these patch-based algorithms is to exploit the non-local self-similarity (NLSS) while processing a group of similar patches. The first, most famous denoising schemes using NLSS is the FIGURE 3.6. Illustration of grouping blocks from noisy natural images corrupted by white Gaussian noise with standard deviation 15 and zero mean. Each fragment shows a reference block marked with "R" and a few of the blocks matched to it [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF].

Non-Local Means (NLM) algorithm that brought a different perspective to the image denoising problem, where each estimated image pixel intensity is a weighted average of pixels centered at patches that are similar to the patch centered at the estimated pixel [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF][START_REF] Buades | Nonlocal image and movie denoising[END_REF]. Fig. 3.7 illustrates the principle of NLM filtering algorithm. An alternative patchbased NLM approach projects image patches into a lower dimensional subspace using principal component analysis (PCA) before performing the weighted average for denoising [START_REF] Deledalle | Image denoising with patch based pca: local versus global[END_REF][START_REF] Tasdizen | Principal neighborhood dictionaries for nonlocal means image denoising[END_REF]. Later on, various schemes were proposed in the literature to accelerate or to improve the NLM performance, such as a fast NLM algorithm with a probabilistic early termination [START_REF] Vignesh | Fast non-local means (nlm) computation with probabilistic early termination[END_REF], quadtree-based NLM with locally adaptive PCA [START_REF] Zuo | Image denoising using quadtree-based nonlocal means with locally adaptive principal component analysis[END_REF], fast processing using statistical nearest-neighbor strategy [START_REF] Frosio | Statistical nearest neighbors for image denoising[END_REF], adaptive neighborhoods [START_REF] Kervrann | Optimal spatial adaptation for patch-based image denoising[END_REF], patchbased locally optimal Wiener filtering [START_REF] Chatterjee | Patch-based near-optimal image denoising[END_REF] and others [START_REF] Dong | Nonlocally centralized sparse representation for image restoration[END_REF][START_REF] Li | Patch-based weighted scad prior for rician noise removal[END_REF][START_REF] Mahmoudi | Fast image and video denoising via nonlocal means of similar neighborhoods[END_REF][START_REF] Van De | Sure-based non-local means[END_REF][START_REF] Zha | Image restoration via reconciliation of group sparsity and low-rank models[END_REF][START_REF] Zha | Nonconvex structural sparsity residual constraint for image restoration[END_REF][START_REF] Zha | From rank estimation to rank approximation: Rank residual constraint for image restoration[END_REF][START_REF] Zha | Image restoration via simultaneous nonlocal self-similarity priors[END_REF]. NLSS-based sparse modeling significantly improves the performance of sparse representation-based image restoration and eventually enhances the denoising process [START_REF] Dong | Nonlocally centralized sparse representation for image restoration[END_REF][START_REF] Gu | Weighted nuclear norm minimization and its applications to low level vision[END_REF][START_REF] Mairal | Non-local sparse models for image restoration[END_REF]. These NLSS-based schemes are known as a powerful way of denoising exploiting similar patches from the whole image. Hence, the patch neighborhood gives an effective way of preserving the local structures of an image where neighborhood similarity is the key ingredient.

. ) and w( z, z 2 ), while much different neighborhoods give a small weight w( z, z 3 ).

In the last decade, a new way of exploiting the local similarities in an image neighborhood has been introduced through graph theory. The graph image processing methods [START_REF] Cheung | Graph spectral image processing[END_REF][START_REF] Ortega | Graph signal processing: Overview, challenges, and applications[END_REF][START_REF] Pang | Graph laplacian regularization for image denoising: Analysis in the continuous domain[END_REF][START_REF] Ricaud | Fourier could be a data scientist: From graph fourier transform to signal processing on graphs[END_REF][START_REF] Shekkizhar | Efficient graph construction for image representation[END_REF] use a graph Laplacian constructed from the image to build an adaptive basis that can be used to decompose the noisy image. This constructed graph Laplacian emphasizes the similarities between neighboring pixel values that eventually increase the algorithm's performance [START_REF] Meyer | Perturbation of the eigenvectors of the graph laplacian: Application to image denoising[END_REF][START_REF] Tremblay | Subgraph-based filterbanks for graph signals[END_REF][START_REF] Tremblay | Chapter 11 -design of graph filters and filterbanks[END_REF][START_REF] Tremblay | Accelerated spectral clustering using graph filtering of random signals[END_REF]. We introduce a notion of a patch-interaction inspired by the quantum many-body theory in Chapter 6 that can take advantage of NLSS in a local image neighborhood.

In a Poisson noise model, the conventional algorithms fail to recover the latent image since the counting process introduces intensity-dependent noise. This problem is solved by simply transforming Poisson data to produce data with approximate Gaussian noise via, for instance, the variance stabilizing Anscombe transform (VST) [START_REF] Anscombe | The transformation of poisson, binomial and negative-binomial data[END_REF][START_REF] Makitalo | Optimal inversion of the anscombe transformation in low-count poisson image denoising[END_REF] or

Fisz transform [START_REF] Fisz | The limiting distribution of a function of two independent random variables and its statistical application[END_REF][START_REF] Fryzlewicz | Poisson intensity estimation using wavelets and the fisz transformation[END_REF]. ATBM3D [START_REF] Makitalo | Optimal inversion of the anscombe transformation in low-count poisson image denoising[END_REF], NLBayes [START_REF] Lebrun | Secrets of image denoising cuisine[END_REF], SAFIR [START_REF] Boulanger | Patch-based nonlocal functional for denoising fluorescence microscopy image sequences[END_REF][START_REF] Kervrann | Optimal spatial adaptation for patch-based image denoising[END_REF] are a few such examples where classical Gaussian denoising algorithms are consolidated with the Anscombe transform. In fact, these VST-based refinements exhibit very good performance for low-intensity noise but are less accurate while dealing with high-intensity noise (i.e., low SNR) [START_REF] Salmon | Poisson noise reduction with non-local pca[END_REF]. The low-dimensional modeling and sparse Poisson intensity reconstruction algorithm [START_REF] Blanc-Féraud | Sparse poisson noisy image deblurring[END_REF][START_REF] Salmon | Poisson noise reduction with non-local pca[END_REF], or Bayesian approach [START_REF] Altmann | A bayesian approach to denoising of single-photon binary images[END_REF] present different perspectives to 

The estimation of the underlying hidden image from this distorted observation is often formulated as the optimization of a cost function resulting from the maximuma-posteriori (MAP) estimator [START_REF] Poor | An introduction to signal detection and estimation[END_REF], i.e., the maximization of the posterior probability, defined as In eq. (3.5), f (x) = -log (P(y|x)) is the negative log-likelihood function whose expression depends on the observation (degradation) model, and g(x) = -log (P(x)) is the a priori log-distribution of x, that only depends on some prior knowledge on the image to estimate and is also called regularization function. Note that P(y) does not depend on x and is usually ignored in the estimation of x.

Often, since the forward model of a particular problem is well defined, most of the design effort of the optimization problem is put into the prior formulation (formulation of log (P(x))). Several prior distributions have been well studied in the literature such as ℓ 1 norm (Laplacian distribution prior) that promotes a sparse solution for optimization, ℓ 2 norm (Gaussian distribution prior) promoting smooth solutions, and also total variation norm (Laplacian prior in the derivative or gradient domain) that enforces piece-wise smooth solutions. The choice of the prior depends on the specific problem and characteristics of the latent image.

With these notations, the optimization problem to solve can be expressed as

(3.6) x = arg min x f (x) + g(x) .
Using a suitable choice of the regularization function, based for example on the a priori statistics of the image to estimate, various proximal operator-based [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] iterative optimization schemes have been extensively studied to solve (3.6), such as the sparse reconstruction by separable approximation (SpaRSA) [START_REF] Wright | Sparse reconstruction by separable approximation[END_REF], the two-step iterative shrinkage thresholding (TwIST) [START_REF] Bioucas-Dias And | A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration[END_REF], the fast iterative shrinkage thresholding algorithm (FISTA) [START_REF] Beck | Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[END_REF][START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF][START_REF] Beck | A fast iterative shrinkage-thresholding algorithm with application to wavelet-based image deblurring[END_REF][START_REF] Zhao | Fast single image super-resolution using a new analytical solution for ℓ 2 -ℓ 2 problems[END_REF], the alternating minimization algorithm [START_REF] Yang | An efficient tvl1 algorithm for deblurring multichannel images corrupted by impulsive noise[END_REF],

the Douglas-Rachford splitting method [START_REF] Eckstein | On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF][START_REF] Figueiredo | Restoration of poissonian images using alternating direction optimization[END_REF][START_REF] Setzer | Deblurring poissonian images by split bregman techniques[END_REF][START_REF] Steidl | Removing multiplicative noise by douglas-rachford splitting methods[END_REF], the forward-backward splitting method [START_REF] Raguet | A generalized forward-backward splitting[END_REF], or the alternating direction method of multipliers (ADMM) [8,[START_REF] Almeida | Deconvolving images with unknown boundaries using the alternating direction method of multipliers[END_REF][START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF][START_REF] Chan | Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers[END_REF][START_REF] Chan | An augmented lagrangian method for total variation video restoration[END_REF][START_REF] Chen | Learning non-local spatial correlations to restore sparse 3d singlephoton data[END_REF][START_REF] Tao | Alternating direction algorithms for total variation deconvolution in image reconstruction[END_REF][START_REF] Yang | A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data[END_REF][START_REF] Zhang | Signal reconstruction of compressed sensing based on alternating direction method of multipliers[END_REF][START_REF] Zhao | Fast single image super-resolution using a new analytical solution for ℓ 2 -ℓ 2 problems[END_REF]. In particular, ADMM, originally introduced around 1975 [START_REF] Glowinski | A dual algorithm for the solution of nonlinear variational problems via finite element approximation[END_REF], has been largely used in many applications, by redefining the optimization problem (3.6) into a constrained optimization framework using an Augmented Lagrangian functional to decouple cost functions. ADMM technique will be used in several of the imaging algorithms we present in Chapters 5-6, as it is one of the most versatile method that allows decoupling and shows competitive convergence properties.

Therefore the basics of the ADMM optimization algorithm are provided hereafter.

Alternating Direction Method of Multipliers

ADMM is an iterative convex optimization algorithm, resulting from the fusion of the dual decomposition method with the method of multipliers. The dual decomposition method is a parallelization technique, initially proposed by Dantzig and Wolfe [START_REF] Dantzig | Linear programming and extensions[END_REF][START_REF] Dantzig | Decomposition principle for linear programs[END_REF],

and Benders [START_REF] Benders | Partitioning procedures for solving mixed-variables programming problems[END_REF], and consists in splitting a minimization problem into several parallel minimizations solved separately. The method of multipliers, introduced by Hestenes [START_REF] Hestenes | Multiplier and gradient methods[END_REF] and Powell [START_REF] Powell | A method for nonlinear constraints in minimization problems[END_REF], originally introduced the use of the augmented Lagrangian for solving constrained optimization problems. ADMM is mainly the blend of the primary ideas behind dual decomposition and method of multipliers techniques. While the seminal ideas of ADMM were proposed by Gabay and Eckstein [START_REF] Glowinski | A dual algorithm for the solution of nonlinear variational problems via finite element approximation[END_REF] and Golwinski [START_REF] Glowinski | Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires[END_REF], several developments have been proposed during the last few decades, resulting into a rapidly growing literature [8,[START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF][START_REF] Canales-Rodríguez | Sparse wars: A survey and comparative study of spherical deconvolution algorithms for diffusion MRI[END_REF][START_REF] Charbonnier | Deterministic edge-preserving regularization in computed imaging[END_REF][START_REF] Chen | Compressive deconvolution in medical ultrasound imaging[END_REF][START_REF] Eckstein | On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF][START_REF] Setzer | Deblurring poissonian images by split bregman techniques[END_REF][START_REF] Tourbier | An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization[END_REF][START_REF] Yang | A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data[END_REF][START_REF] Zhao | Fast single image super-resolution using a new analytical solution for ℓ 2 -ℓ 2 problems[END_REF]. The ADMM algorithm is able to solve constrained optimization problems of the form

(3.7) minimize x,z f (x) + g(z) subject to Ax + Bz = c,
where f and g are assumed to be closed convex functions of variables

x ∈ R n and z ∈ R m , with A ∈ R p×n , B ∈ R p×m and c ∈ R p .
The associated augmented Lagrangian function is defined as

L λ (x, z, v) = f (x) + g(z) + v T (Ax + Bz -c) + λ 2 ∥Ax + Bz -c∥ 2 2 , (3.8) 
where v ∈ R p is the Lagrangian multiplier, and λ ∈ R + is the penalty parameter of the augmented Lagrangian. An equivalent expression of the augmented Lagrangian L λ (x, z, v) can be obtained by scaling the Lagrangian multiplier u = (1/λ)v, as follows:

L λ (x, z, v) = f (x) + g(z) + v T (Ax + Bz -c) + λ 2 ∥Ax + Bz -c∥ 2 2 = f (x) + g(z) + λ 2 Ax + Bz -c + v λ 2 2 - 1 2λ ∥v∥ 2 2 = f (x) + g(z) + λ 2 ∥Ax + Bz -c + u∥ 2 2 -constant v def = L λ (x, z, u). (3.9)
The ADMM algorithm decouples the augmented Lagrangian into three iterative steps as follows: The convergence of this iterative scheme has been widely discussed in the literature of convex programming and within various statistical problems [START_REF] Starck | Monotone operator splitting for optimization problems in sparse recovery[END_REF][START_REF] Gabay | Chapter ix applications of the method of multipliers to variational inequalities[END_REF][START_REF] He | On non-ergodic convergence rate of douglas-rachford alternating direction method of multipliers[END_REF]. The ADMM technique has a broad spectrum of applications in the context of signal and image restoration applications [START_REF] Chan | An augmented lagrangian method for total variation video restoration[END_REF][START_REF] Figueiredo | Restoration of poissonian images using alternating direction optimization[END_REF][START_REF] Hourani | Restoration of ultrasonic images using non-linear system identification and deconvolution[END_REF][START_REF] Morin | Alternating direction method of multipliers framework for super-resolution in ultrasound imaging[END_REF][START_REF] Steidl | Removing multiplicative noise by douglas-rachford splitting methods[END_REF][START_REF] Zhao | Fast single image super-resolution using a new analytical solution for ℓ 2 -ℓ 2 problems[END_REF]. 

x k+1 ∈ arg min x L λ (x, z k , u k ), (3.10) z k+1 ∈ arg min z L λ (x k+1 , z, u k ), (3.11) u k+1 = u k + Ax k+1 + Bz k+1 -c. (3.12)
(3.13) L λ (x, z, u) = f (x) + g(z) + λ 2 ∥x -z + u∥ 2 2 ,
where f (x) = -log (P(y|x)) is the data fidelity term depending on O and g(z) the regularization function. To accelerate the convergence, the penalty parameter λ is usually increased at each iteration, by multiplication by a factor of γ > 1 [START_REF] Chan | Plug-and-play admm for image restoration: Fixed-point convergence and applications[END_REF], instead of using a fixed value. At each iteration, ADMM performs the following steps:

x k+1 = arg min x f (x) + λ k 2 x -z k + u k 2 2 , (3.14) z k+1 = arg min z g(z) + λ k 2 x k+1 -z + u k 2 2 , (3.15) u k+1 = u k + x k+1 -z k+1 , (3.16) λ k+1 = γλ k . (3.17)

Plug-and-Play (PnP) Framework

Recently, a breakthrough was made in the literature, enabling the use of state-of-the-art denoisers instead of the proximal operator g(z) in eq. (3.15) in the ADMM framework, known as the plug-and-play (PnP) scheme [START_REF] Venkatakrishnan | Plug-and-play priors for model based reconstruction[END_REF]. PnP paves the way of using a wide range of state-of-the-art denoisers such as patch-based dictionary learning methods [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF], blockmatching 3D filtering (BM3D) [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF], non-local means (NLM) [START_REF] Buades | A non-local algorithm for image denoising[END_REF], high-order variational models [START_REF] Lu | Implementation of high-order variational models made easy for image processing[END_REF], etc. Since its initial development, the PnP scheme [START_REF] Venkatakrishnan | Plug-and-play priors for model based reconstruction[END_REF] is largely accepted for signal and image restoration problems due to its extremely promising performance [START_REF] Foi | Variance stabilization for noisy+estimate combination in iterative poisson denoising[END_REF][START_REF] Foi | Variance stabilization in poisson image deblurring[END_REF][START_REF] Brifman | Turning a denoiser into a super-resolver using plug and play priors[END_REF][START_REF] Chan | Performance analysis of plug-and-play admm: A graph signal processing perspective[END_REF][START_REF] Chan | Plug-and-play admm for image restoration: Fixed-point convergence and applications[END_REF][START_REF] Cohen | Regularization by denoising via fixedpoint projection (red-pro)[END_REF][START_REF] Kwan | Resolution enhancement for hyperspectral images: A super-resolution and fusion approach[END_REF][START_REF] Rond | Poisson inverse problems by the plug-andplay scheme[END_REF][START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF][START_REF] Sreehari | Plug-and-play priors for bright field electron tomography and sparse interpolation[END_REF][START_REF] Teodoro | Image restoration and reconstruction using variable splitting and class-adapted image priors[END_REF][START_REF] Teodoro | Scene-adapted plug-and-play algorithm with convergence guarantees[END_REF][START_REF] Unni | Linearized admm and fast nonlocal denoising for efficient plug-and-play restoration[END_REF][START_REF] Wang | Parameter-free plug-and-play admm for image restoration[END_REF][START_REF] Xu | Provable convergence of plug-and-play priors with mmse denoisers[END_REF][START_REF] Zhang | Plug-andplay image restoration with deep denoiser prior[END_REF]. The primary goal of PnP is to consider a state-of-the-art denoiser as the prior of a constrained optimization process. Interestingly, no prior knowledge is required about the image to estimate to derive the regularization function g, since g is intrinsically defined through the external denoiser used.

The efficiency of ADMM algorithm mainly reposes on its ability of decoupling the optimization processes over each variable, as shown in the previous section. ADMM steps performed at each iteration, (3.14), (3.15) and (3.16), can be interpreted as follows.

Eq. (3.14) is originally an inversion step to get the best possible primary image satisfying the data through the data fidelity function f (x), while the third step (3.16) updates the Lagrangian multiplier. The second step (3.15) can be rewritten as

(3.18) z k+1 = arg min z g(z) + λ k 2 z -(x k+1 + u k ) 2 2 .
The expression on the right hand side of (3.18) fundamentally intends to find the solution that optimizes the compromise between the difference between z and (x k+1 + u k ) and the regularization function g(z). Thus, it can be associated to a denoising problem designed to denoise (x k+1 + u k ). Therefore it is possible to rewrite this step as

(3.19) z k+1 = D x k+1 + u k ,
where D(•) is a denoising operator. Hence it is feasible to implement a state-of-the-art denoiser to handle the denoising operation as proposed in [START_REF] Venkatakrishnan | Plug-and-play priors for model based reconstruction[END_REF]. The most interesting feature representing the key benefit of this approach is that this PnP model does not require the prior term g(z) explicitly, rather it is indirectly related to the choice of the denoiser D(•) (see, e.g., [START_REF] Buades | A non-local algorithm for image denoising[END_REF][START_REF] Chatterjee | Patch-based near-optimal image denoising[END_REF][START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF][START_REF] Knaus | Progressive image denoising[END_REF]). In the literature, it is well established that a state-of-the-art denoiser [START_REF] Buades | A non-local algorithm for image denoising[END_REF][START_REF] Chatterjee | Patch-based near-optimal image denoising[END_REF][START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF][START_REF] Knaus | Progressive image denoising[END_REF] without having an explicit formulation from an optimization problem shows very good performance compared to a prior based regularization method [START_REF] Almeida | Deconvolving images with unknown boundaries using the alternating direction method of multipliers[END_REF][START_REF] Chan | Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers[END_REF][START_REF] Tao | Alternating direction algorithms for total variation deconvolution in image reconstruction[END_REF][START_REF] Yang | A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data[END_REF][START_REF] Zhang | Signal reconstruction of compressed sensing based on alternating direction method of multipliers[END_REF] for image denoising. In Chapter 5, we study this prospect for the Poisson image deconvolution problem, exploiting a quantum adaptive basis as the PnP denoiser.

Convergence of PnP-ADMM Algorithms

One major challenge of PnP-ADMM algorithms is to prove their convergence, due to the implicit relation between the regularization function g(z) and the denoising operator

D(•).
Note that the convergence of conventional ADMM has been largely discussed in the literature, primarily in [START_REF] Gabay | Chapter ix applications of the method of multipliers to variational inequalities[END_REF] and [START_REF] Eckstein | On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF] and more recently in [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF] based on the proximal operator [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF] or in [START_REF] Hong | Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems[END_REF]. The proof of global convergence of PnP-ADMM algorithm [START_REF] Sreehari | Plug-and-play priors for bright field electron tomography and sparse interpolation[END_REF] has been shown in the case of non-expansive denoisers belonging to the family of symmetric smoothing filters [START_REF] Chan | Understanding symmetric smoothing filters via gaussian mixtures[END_REF][START_REF] Kheradmand | A general framework for kernel similaritybased image denoising[END_REF][START_REF] Milanfar | Symmetrizing smoothing filters[END_REF][START_REF] Teodoro | A convergent image fusion algorithm using scene-adapted gaussian-mixture-based denoising[END_REF]. Yet these conditions are too restrictive for generalisation to all the denoisers. To overcome this issue, a series of works has been published during the last few years showing the fixed point convergence of PnP-ADMM algorithms for bounded denoisers not necessarily symmetric and non-expansive [START_REF] Chan | Performance analysis of plug-and-play admm: A graph signal processing perspective[END_REF][START_REF] Chan | Plug-and-play admm for image restoration: Fixed-point convergence and applications[END_REF][START_REF] Cohen | Regularization by denoising via fixedpoint projection (red-pro)[END_REF][START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF][START_REF] Teodoro | Scene-adapted plug-and-play algorithm with convergence guarantees[END_REF][START_REF] Xu | Provable convergence of plug-and-play priors with mmse denoisers[END_REF][START_REF] Zhang | Plug-andplay image restoration with deep denoiser prior[END_REF], but we stress that all these algorithms were constructed for Gaussian noise model. Still, the convergence of a PnP algorithm is not straightforward as the operation is highly sensitive to the hyperparameter tuning process and can lead to bad outcomes for slight changes in their values. Fig. 3.9 presents such a diverging PnP scenario, where with each iteration, the algorithm gradually diverge, and after some iterations, the image gets completely destroyed [START_REF] Sommerhoff | Energy dissipation with plugand-play priors[END_REF]. We will show that the algorithm we build in Chapter 5 is more robust to the hyperparameter choice and shows numerical proof of convergence for general images.

Regularization by Denoising (RED) Framework

Although the PnP scheme may sound like an appealing solution for the image retrieval problem, in reality it is a bit complicated. First, this method is not always accompanied by a clear definition of the objective function, since the regularization being effectively used is only implicit, implied by the denoising algorithm. In fact, it is not at all clear that there is an underlying objective function behind the PnP scheme if arbitrary denoising engines are used [START_REF] Chan | Algorithm-induced prior for image restoration[END_REF]. Second, parameter tuning of the ADMM scheme is a delicate matter, and especially so under a nonprovable convergence regime, as is the case when using sophisticated denoising algorithms. Finally, being closely coupled with ADMM, the PnP scheme does not provide an easy and flexible way to replace the optimization nature.

For this reason, the PnP scheme is not a general tool for treating an arbitrary retrieval problem. Nevertheless, the PnP method has drawn much attention, and rightfully so, as it offers a clear and more efficient path towards harnessing a given off-the-shelf denoising architecture for restoration tasks [START_REF] Brifman | Turning a denoiser into a super-resolver using plug and play priors[END_REF][START_REF] Chan | Plug-and-play admm for image restoration: Fixed-point convergence and applications[END_REF][START_REF] Dar | Postprocessing of compressed images via sequential denoising[END_REF][START_REF] Sadiq | Model based image reconstruction with physics based priors[END_REF][START_REF] Teodoro | Image restoration with locally selected class-adapted models[END_REF][START_REF] Venkatakrishnan | Plug-and-play priors for model based reconstruction[END_REF][START_REF] Xu | Provable convergence of plug-and-play priors with mmse denoisers[END_REF].

The Regularization by Denoising (RED) [START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF] scheme is a variation of the PnP framework, with a more flexible alternative of the optimization method to use, not as tightly coupled to a specific strategy, as in the case of the PnP relying on ADMM.

The RED generalizes the PnP scheme, offering a systematic use of such off-the-shelf denoising engines as regularizers, relying on a general structured smoothness penalty term harnessed to regularize any desired restoration problem. Unlike PnP, RED proposes an explicit construction of the regularization function of the form of an image-adaptive Laplacian based on an external denoiser. More specifically, the regularization function is defined as

(3.20) g(z) = 1 2 z T z -D(z) ,
in which the denoising engine itself is applied on the candidate image z, and the penalty induced is proportional to the inner product between this image and its denoising residual. This defined smoothness regularization is effectively done using an imageadaptive Laplacian, which in turn draws its definition from the arbitrary D(•) image denoising engine. Furthermore, the gradient of the regularization term is manageable, given as the denoising residual [START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF], i.e., ∇g(z) = z -D(z), and leads to a reasonable expression for any restoration task while calling the denoising engine iteratively.

Apart from adding more flexibility to the process, RED offers an explicit adaptive Laplacian-based regularization functional, making the overall Bayesian objective function clearer and better defined. RED can incorporate any image denoising scheme and can treat general restoration problems very effectively when an overall algorithm with a simple framework is developed. The potential of the RED scheme has been demonstrated in various restoration works using steepest descent method [START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF], fixed-point strategy [START_REF] Cohen | Regularization by denoising via fixedpoint projection (red-pro)[END_REF][START_REF] Sun | Block coordinate regularization by denoising[END_REF], ADMM [START_REF] Reehorst | Regularization by denoising: Clarifications and new interpretations[END_REF][START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF], etc. However, RED denoisers should be symmetric Hessian matrices, which is a limitation of this approach. In Chapter 6, we will show that the real medical computed tomography image SR problems can be solved efficiently under this RED framework exploiting a quantum denoiser as the RED prior.

Convergence of RED-ADMM Algorithms

An important advantage of RED over the PnP scheme is that it guarantees a more reliable and stable convergence of the iterative algorithms under some circumstances.

For convex data-fidelity terms and non-expansive denoisers the fixed-point convergence of the RED scheme is proven in [START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF][START_REF] Sun | Async-RED: A provably convergent asynchronous block parallel stochastic method using deep denoising priors[END_REF]. The convergence of RED algorithms can also be analyzed using monotone operator theory. In particular, it can be shown that for a convex function g and a nonexpansive denoiser D(•), RED steepest descent converges sublinearly to a set of z satisfying the equilibrium condition ∇g(z) = z-D(z) [START_REF] Sun | Block coordinate regularization by denoising[END_REF], in this setting ∇g is known as the "score" of this distribution. This negative gradient describes the steepness of the log-likelihood function and hence the sensitivity to changes in z.

From this, we see that it balances changes in the log-likelihood against the update step z -D(z) [START_REF] Reehorst | Regularization by denoising: Clarifications and new interpretations[END_REF]. Very recently the works [START_REF] Hu | Monotonically convergent regularization by denoising[END_REF][START_REF] Liu | Online deep equilibrium learning for regularization by denoising[END_REF] extend this limit even for nonconvex data-fidelity terms and expansive image denoisers, offering a stable convergence for a monotone RED algorithm.

Learning-Based Methods

Complementary to the aforementioned approaches, learning-based methods for determining a non-linear mapping that restores the image while adapting parameter choices to an underlying training image set have been developed. Particularly important in this class are techniques that employ deep neural networks. The history of using neural networks for blind deblurring actually dates back to the last century [START_REF] Steriti | Blind beconvolution of images by use of neural networks[END_REF]. The incredible success of deep learning over traditional image processing algorithms, for example, on vision [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF][START_REF] Lecun | Deep learning[END_REF], as well as challenging games such as Go [START_REF] Silver | Mastering the game of go without human knowledge[END_REF] and Starcraft [START_REF] Vinyals | Grandmaster level in starcraft ii using multi-agent reinforcement learning[END_REF], has initiated a general data-driven mindset. It is currently prevalent to replace simple principled models with purely datadriven pipelines, trained with massive labeled data sets. In particular, deep neural networks can be trained in a supervised way end-to-end to map inputs to predictions. The benefits of data-driven methods over model-based approaches are twofold: first, purely data-driven techniques do not rely on analytical approximations and thus can operate in scenarios where analytical models are not known. Second, for complex systems, data-driven algorithms are able to recover features from observed data which are needed to carry out inference [START_REF] Bengio | Learning deep architectures for ai, Foundations and Trends® in Machine Learning[END_REF].

More recently, deep learning (DL)-based methods, especially the convolutional neural network (CNN) based architectures have been known for their very competitive denoising performance. Large modeling capacity and robust training procedure make CNN attractive for image denoising and has been explored with various networks, such as a fast flexible learning method [START_REF] Chen | Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[END_REF], deep residual learning [START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF], a fast and flexible denoising with a tunable noise level [START_REF] Zhang | FFDNet: Toward a fast and flexible solution for cnn-based image denoising[END_REF], denoising autoencoders with a local unsupervised criterion [START_REF] Vincent | Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[END_REF], multi layer perceptron (MLP) method applied to image patches FIGURE 3.10. The architecture of a residual dense network for image superresolution [START_REF] Zhang | Residual dense network for image restoration[END_REF].

[51], random shrinkage field-based architecture combining the image model and the optimization algorithm in a single unit [START_REF] Schmidt | Shrinkage fields for effective image restoration[END_REF], operational neural networks (ONN) based models [START_REF] Kiranyaz | Operational neural networks[END_REF][START_REF] Malik | Image denoising by super neurons: Why go deep?[END_REF][START_REF] Malik | Self-organized operational neural networks for severe image restoration problems[END_REF] with non-linear generalized CNN architecture, and others. These benchmark DL networks have proven their efficiency in image denoising, exploiting noisy-clean image pairs in the learning process.

Due to the successes in many computer vision and denoising applications in the past few years, deep neural networks have been used more frequently for solving image restoration tasks [START_REF] Bai | Deep learning methods for solving linear inverse problems: Research directions and paradigms[END_REF][START_REF] Borgerding | Amp-inspired deep networks for sparse linear inverse problems[END_REF][START_REF] Dong | Learning a deep convolutional network for image super-resolution[END_REF][START_REF] Heide | Flexisp: A flexible camera image processing framework[END_REF][START_REF] Liang | Deep magnetic resonance image reconstruction: Inverse problems meet neural networks[END_REF][START_REF] Lucas | Using deep neural networks for inverse problems in imaging: Beyond analytical methods[END_REF][START_REF] Mudunuri | Low resolution face recognition across variations in pose and illumination[END_REF][START_REF] Chang | One network to solve them all-solving linear inverse problems using deep projection models[END_REF][START_REF] Ruget | Robust and guided super-resolution for single-photon depth imaging via a deep network[END_REF][START_REF] Timofte | A+: adjusted anchored neighborhood regression for fast super-resolution[END_REF][START_REF] Xu | Deep convolutional neural network for image deconvolution[END_REF][START_REF] Zhang | Learning fully convolutional networks for iterative non-blind deconvolution[END_REF]. Fig. 3.10 shows an example of a deep network architecture for image super-resolution problem. To overcome the non-interpretability of end-to-end deep learning-based restoration approaches [START_REF] Xu | Deep convolutional neural network for image deconvolution[END_REF], many approaches resort to unrolling an optimization algorithm as a static cascade scheme with a fixed number of steps in which specific neural networks are integrated into different steps [START_REF] Kruse | Learning to push the limits of efficient FFT-based image deconvolution[END_REF][START_REF] Schuler | A machine learning approach for non-blind image deconvolution[END_REF][START_REF] Zhang | Learning fully convolutional networks for iterative non-blind deconvolution[END_REF][START_REF] Zhang | Learning deep CNN denoiser prior for image restoration[END_REF]. The deep neural network components usually model the operators only corresponding to the priors/regularizers (e.g., proximal projectors [START_REF] Chang | One network to solve them all-solving linear inverse problems using deep projection models[END_REF]). In these static model structures, the deep neural network-based operators in each step are learned specifically for the intermediate output from the previous step.

Based on this philosophy, DL algorithms [START_REF] Dong | Learning a deep convolutional network for image super-resolution[END_REF][START_REF] Dong | Image super-resolution using deep convolutional networks[END_REF][START_REF] Jin | Deep convolutional neural network for inverse problems in imaging[END_REF][START_REF] Tai | Memnet: A persistent memory network for image restoration[END_REF][START_REF] Zha | Low-rankness guided group sparse representation for image restoration[END_REF] achieved state-of-the-art performances learning the mapping functions from observed degraded or low-resolution (LR) images to the original or high-resolution (HR) images. Deep image prior [START_REF] Ulyanov | Deep image prior[END_REF], deep CNN denoiser prior [START_REF] Dong | Denoising prior driven deep neural network for image restoration[END_REF][START_REF] Zhang | Learning fully convolutional networks for iterative non-blind deconvolution[END_REF], deep gradient descent optimization [START_REF] Gong | Learning deep gradient descent optimization for image deconvolution[END_REF], sparse coding based deep network [START_REF] Wang | Deep networks for image super-resolution with sparse prior[END_REF], residual learning [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF][START_REF] Wang | Training very deep cnns for general non-blind deconvolution[END_REF], dense residual network [START_REF] Zhang | Residual dense network for image restoration[END_REF],

self-organized operational neural networks [START_REF] Malik | Self-organized operational neural networks for severe image restoration problems[END_REF], variational expected maximization network to quantify the uncertainty of learned image prior [START_REF] Nan | Variational-em-based deep learning for noise-blind image deblurring[END_REF], deep network for guided super-resolution for single-photon depth imaging [START_REF] Ruget | Robust super-resolution depth imaging via a multi-feature fusion deep network[END_REF], accelerated convolutional neural network by reformulate the mapping layer [START_REF] Dong | Accelerating the super-resolution convolutional neural network[END_REF], deep feature alignment using geometric information and depth information [START_REF] Bozorgtabar | Syndemo: Synergistic deep feature alignment for joint learning of depth and ego-motion[END_REF], deep convolutional network inspired by VGG-net [START_REF] Kim | Accurate image super-resolution using very deep convolutional networks[END_REF], densely connected residual network with Laplacian attention [START_REF] Anwar | Densely residual laplacian super-resolution[END_REF],

deep residual network with block channel attention mechanism [START_REF] Zhang | Image super-resolution using very deep residual channel attention networks[END_REF], etc., are some of the well-known DL networks with proven efficiency in image restoration over the conventional model-based approaches, exploiting a training dataset in the learning process.

Model-Based Deep Learning or Hybrid Methods

Completely separating existing literature into model-based versus data-driven is a daunting, subjective and debatable task. In general, all model-based approaches are FIGURE 3.11. The architecture of a deep learning-aided inference system for image restoration using the DCNN network as the RED denoiser in the iterative algorithm [START_REF] Kong | Deep red unfolding network for image restoration[END_REF].

fairly successful in tackling the image denoising tasks, including proper interpretation of their roles. However, these schemes require conducting a costlier computation process and manual tuning of several hyperparameters, which are the primary challenges of these strategies. On the other side, training a CNN is not straightforward. The performance largely depends on the number of layers, the kernel size and the learning rate. Deeper network structures may provide better results but exponentially increase the training complexity [START_REF] He | Deep residual learning for image recognition[END_REF]. Thus, network structures are in most cases determined empirically, This approach has been recently successfully explored in the literature, leading to superior restoration performance over the classical peer for denoising, such as BM3D-NET [START_REF] Yang | BM3D-Net: A convolutional neural network for transformdomain collaborative filtering[END_REF] network is designed on the BM3D framework, LKSVD [START_REF] Scetbon | Deep k-svd denoising[END_REF] scheme follows the principles of dictionary-learning, Deep-NLM [START_REF] Liu | Non-local mean filtering algorithm based on deep learning[END_REF] model built on a NLM architecture, the deep graph-convolutional network GCDN [START_REF] Valsesia | Deep graph-convolutional image denoising[END_REF] generalizes the classic convolution to arbitrary graphs, to cite few.

There has been exciting recent explorations of neural network architectures by unrolling iterative algorithms [START_REF] Jin | Deep convolutional neural network for inverse problems in imaging[END_REF][START_REF] Schuler | Learning to deblur[END_REF][START_REF] Shlezinger | Model-based deep learning[END_REF][START_REF] Vasu | Non-blind deblurring: Handling kernel uncertainty with cnns[END_REF]. During the past few years the implementation of the Deep-CNN networks [START_REF] Bai | Deep learning methods for solving linear inverse problems: Research directions and paradigms[END_REF][START_REF] Borgerding | Amp-inspired deep networks for sparse linear inverse problems[END_REF][START_REF] Heide | Flexisp: A flexible camera image processing framework[END_REF][START_REF] Liang | Deep magnetic resonance image reconstruction: Inverse problems meet neural networks[END_REF][START_REF] Lucas | Using deep neural networks for inverse problems in imaging: Beyond analytical methods[END_REF] has been introduced

for image denoising [START_REF] Zhang | Learning fully convolutional networks for iterative non-blind deconvolution[END_REF][START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF] and further extended to the PnP or RED schemes [START_REF] Chen | Deep learning for linear inverse problems using the plug-and-play priors framework[END_REF].

These Deep-CNN networks give several advantages such as reconstruction accuracy and convergence speed [START_REF] Giryes | Tradeoffs between convergence speed and reconstruction accuracy in inverse problems[END_REF]. However, more often they suffer from some drawbacks.

First, such denoisers should be trained using the noise variance in each iteration. Hence, during the iterative process of the PnP or RED framework, the noise variance is usually unknown since it varies at each iteration, and leads to a divergence of the algorithm for a pre-trained Deep-CNN architecture [START_REF] Sommerhoff | Energy dissipation with plugand-play priors[END_REF]. Second, the training procedure is very costly since Deep-CNN denoisers require expensive retraining whenever the noise level or noise type change. Also, each iteration involves a Deep-CNN denoising process, so using a large neural network and/or too many iterative operations leads to a time consuming task.

Third, the theoretical aspects of Deep-CNN denoiser-based PnP or RED models are still not clear. Later on more robust unfolded PnP or RED networks have been introduced in the literature, for example, deep plug-and-play network combining physical and learned models [START_REF] Kamilov | Plug-andplay methods for integrating physical and learned models in computational imaging[END_REF], an unfolded PnP network with three complementary deep priors [START_REF] Zha | Triply complementary priors for image restoration[END_REF], deep RED unfolded network [START_REF] Kong | Deep red unfolding network for image restoration[END_REF], deep equilibrium learning for regularization by denoising [START_REF] Liu | Online deep equilibrium learning for regularization by denoising[END_REF][START_REF] Wu | Online regularization by denoising with applications to phase retrieval[END_REF], that solve the convergence problem. Other widely known deep unfolded image restoration networks are deep Wiener deconvolution network [START_REF] Dong | Deep wiener deconvolution: Wiener meets deep learning for image deblurring[END_REF], unfold optimization scheme with deep priors [START_REF] Diamond | Unrolled optimization with deep priors[END_REF], deep unfolded network for total-variation regularization in the gradient domain [START_REF] Li | Deep algorithm unrolling for blind image deblurring[END_REF][START_REF] Li | Efficient and interpretable deep blind image deblurring via algorithm unrolling[END_REF], deep unfolded robust principle component analysis [START_REF] Solomon | Deep unfolded robust PCA with application to clutter sup-pression in ultrasound[END_REF], regularized residual networks with long and short skip-connections [START_REF] Son | Fast non-blind deconvolution via regularized residual networks with long/short skip-connections[END_REF], unfolded one-bit quantizers [START_REF] Khobahi | Model-based deep learning for one-bit compressive sensing[END_REF], deep network for alternating direction method of multipliers [START_REF] Yang | Admm-csnet: A deep learning approach for image compressive sensing[END_REF], deep unfolding of the MAP inference via a half-quadratic splitting algorithm [START_REF] Zhang | Deep unfolding network for image superresolution[END_REF],

deep network that exploit the inherent non-local self-similarity via variational methods [START_REF] Lefkimmiatis | Non-local color image denoising with convolutional neural networks[END_REF], deep neural networks as beamformers in ultrasound imaging [START_REF] Van Sloun | Deep learning in ultrasound imaging[END_REF], statistical Bayesian algorithm into a new deep learning architecture [START_REF] Koo | A bayesian based deep unrolling algorithm for single-photon lidar systems[END_REF], hierarchical graph representation with unsupervised learning [START_REF] Béthune | Hierarchical and unsupervised graph representation learning with loukas's coarsening[END_REF], and unfolded graph neural networks for weighted minimum mean squared error [START_REF] Chowdhury | Unfolding wmmse using graph neural networks for efficient power allocation[END_REF], graph-based temporal network structures [START_REF] Hamon | Extraction of temporal network structures from graph-based signals[END_REF]. Exploiting the advantages of model-and data-driven strategies, these unfolded deep models demonstrated benchmark performances in the literature. In Chapter 7,

we explore this direction of model-based deep learning or hybrid methods by unfolding a baseline algorithm based on the principles of quantum many-body physics. We thus show that we can build a robust DL model inspired by the algorithm of Chapter 6, which compares favorably with other state-of-the-art DL methods from the literature.

Related Works on Quantum Mechanics-Based Algorithm

In 1982, Feynman proposed a novel computation model, named quantum computers, which can efficiently solve some problems that are believed to be intractable on classical computers [START_REF] Feynman | Quantum mechanical computers[END_REF]. He suggested that the superposition principle of quantum mechanics enables exponentially many computations to be performed in parallel [START_REF] Ekert | Quantum computation and shor's factoring algorithm[END_REF][START_REF] Steane | Quantum computing[END_REF]. Thus, in principle, quantum processors using the full power of quantum mechanics may be enormously faster than today's classical computers. After that, many researchers have specified various aspects of such quantum computers. Later, a significant breakthrough came with the Shor's algorithm [START_REF] Shor | Algorithms for quantum computation: Discrete logarithms and factoring[END_REF], which factors large numbers with exponential efficiency compared to any known classical algorithm. Another such example is the Grover's algorithm [START_REF] Grover | Quantum mechanics helps in searching for a needle in a haystack[END_REF], which speeds up the search in an unsorted database. These ground-breaking results have attracted much attention in the scientific community and many experimental proposals have been explored to realize such a quantum computer.

The development of quantum computer caused people's interest to study quantum imaging which refers to the use of quantum computers to process images. Many researchers have proposed several kinds of quantum imaging algorithms, such as geometric transformation [START_REF] Jiang | Quantum image scaling up based on nearestneighbor interpolation with integer scaling ratio[END_REF][START_REF] Jiang | Quantum image scaling using nearest neighbor interpolation[END_REF][START_REF] Le | Fast geometric transformations on quantum images[END_REF][START_REF] Wang | Quantum image translation[END_REF], color transformation [START_REF] Jiang | Quantum image pseudocolor coding based on the density-stratified method[END_REF][START_REF] Zhang | NEQR: A novel enhanced quantum representation of digital images[END_REF], image scrambling [START_REF] Jiang | Analysis and improvement of the quantum arnold image scrambling[END_REF][START_REF] Jiang | The quantum realization of arnold and fibonacci image scrambling[END_REF][START_REF] Jiang | The quantum realization of arnold and fibonacci image scrambling[END_REF], quantum image watermark [START_REF] Iliyasu | Watermarking and authentication of quantum images based on restricted geometric transformations[END_REF][START_REF] Jiang | LSB based quantum image steganography algorithm[END_REF][START_REF] Song | Dynamic watermarking scheme for quantum images based on hadamard transform[END_REF][START_REF] Song | A dynamic watermarking scheme for quantum images using quantum wavelet transform[END_REF][START_REF] Zhang | A watermark strategy for quantum images based on quantum fourier transform[END_REF], image segmentation [START_REF] Li | Image storage, retrieval, compression and segmentation in a quantum system[END_REF][START_REF] Venegas-Andraca And | Processing images in entangled quantum systems[END_REF], feature extraction [START_REF] Zhang | Local feature point extraction for quantum images[END_REF], edge detection [START_REF] Yao | Quantum image processing and its application to edge detection: Theory and experiment[END_REF], quantum image encryption [START_REF] Hua | Quantum image encryption algorithm based on image correlation decomposition[END_REF][START_REF] Wang | A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion[END_REF][START_REF] Zhou | Quantum image encryption and decryption algorithms based on quantum image geometric transformations[END_REF], quantum sound processing [START_REF] Mannone | Embryo of a quantum vocal theory of sound[END_REF][START_REF] Mannone | A quantum vocal theory of sound[END_REF], quantum image processing [START_REF] Iliyasu | Towards realising secure and efficient image and video processing applications on quantum computers[END_REF][START_REF] Jiang | Quantum image matching[END_REF][START_REF] Su | A new trend of quantum image representations[END_REF][START_REF] Yan | A survey of quantum image representations[END_REF], computational imaging [START_REF] Altmann | Quantum-inspired computational imaging[END_REF], quantum convolutional neural networks [2,[START_REF] Cerezo | Higher order derivatives of quantum neural networks with barren plateaus[END_REF][START_REF] Cong | Quantum convolutional neural networks[END_REF], etc. Their efficiency are theoretically higher than their corresponding classical schemes. Despite these gains, all these schemes remain primarily theoretical achievements and present abstract frameworks. To date, the large-scale quantum computer is still a distant goal and seems to remain so in the near future.

A new point of view was presented in the early 2000s by Y. Eldar et al. [START_REF] Eldar | Quantum signal processing[END_REF], introducing a new concept called quantum mechanics-based algorithm in the imaging domain. In [START_REF] Eldar | Quantum signal processing[END_REF], they propose the concept of a quantum measurement for a signal processing tasks. In contrast to works in fields like quantum computing and quantum information theory, quantum mechanics-based algorithms do not entirely depend on the physics associated with quantum mechanics and give us the freedom to impose quantum mechanical constraints that we find useful for imaging problems. Indeed, the implementation of such quantum principles in imaging problems can significantly boost the performance of classical algorithms. The next big breakthrough came in 2013 by Ç.

Aytekin et al. [START_REF] Aytekin | Quantum mechanics in computer vision: Automatic object extraction[END_REF], where they proposed an algorithm for automatic object extraction using the solutions of Schrödinger equation. After that, A. Youssry et al. published a series of papers on object detection [START_REF] Youssry | A quantum mechanics-based framework for image processing and its application to image segmentation[END_REF] and vessel segmentation in retinal images [START_REF] Youssry | A quantum mechanics-based algorithm for vessel segmentation in retinal images[END_REF] by using the time-dependent Hamiltonian operator as an unitary time evolution operator, and classical image segmentation algorithm by associating each pixel with a quantum harmonic oscillator [START_REF] Youssry | A continuous-variable quantuminspired algorithm for classical image segmentation[END_REF]. Other proposed works in this domain are signal reconstruction algorithms using spectral quantities associated with some self-adjoint realization of the Schrödinger operator [START_REF] Eleiwi | A semi-classical signal analysis method for the analysis of turbomachinery flow unsteadiness[END_REF][START_REF] Laleg-Kirati | On semi-classical questions related to signal analysis[END_REF], pulse shaped signal processing using the discrete spectrum of the Schrödinger operator [START_REF] Laleg-Kirati | Semi-classical signal analysis[END_REF][START_REF] Laleg-Kirati | Quantum-based interval selection of the semi-classical signal analysis method[END_REF], image representation and denoising by decomposing the images into 1D signals before applying the Schrödinger operator in 1D [START_REF] Kaisserli | A novel algorithm for image representation using discrete spectrum of the schrödinger operator[END_REF], the region-of-interest characterization based on the Schrödinger equation's solutions for Magnetic Resonance Imaging (MRI) [START_REF] Chahid | A new roi-based performance evaluation method for image denoising using the squared eigenfunctions of the schrödinger operator[END_REF] and Magnetic Resonance Spectroscopy (MRS) [START_REF] Chahid | Semi-classical signal analysis method with soft-thresholding for mrs denoising[END_REF], and spectral data denoising using localized wave functions for MRS images [START_REF] Laleg-Kirati | Spectral data de-noising using semi-classical signal analysis: application to localized mrs[END_REF]. From the literature survey we can observe that all these quantum mechanics-based algorithms are primarily designed for image segmentation problem or the characterization of 1D signals. Not only that, the exploitation of the quantum theory in these works is quite limited.

The quantum mechanical framework opens up great opportunities for developing new or modifying existing signal or imaging processing algorithms by drawing a parallel between quantum tools and signal or imaging processing schemes and exploiting the rich mathematical structure of quantum mechanics without requiring a physical implementation based on quantum theory. In this thesis, we will explore this paradigm of quantum mechanics-based signal or image processing algorithm borrowing principles and axioms of quantum mechanics. This framework provides a structure to deal with various traditional imaging problems, leading to new tools for image processing with applications in areas of computer vision, medical imaging, surveillance, etc. In the following chapters, we will study these different prospects of quantum mechanics-based algorithms for signal or image processing. To reinforce the sparsity, overcomplete dictionaries have also been explored over the last decades, such as the wavelet frames or more recently patch-based or convolutional dictionaries learned from a set of training signals or images [START_REF] Aharon | rmk-svd: An algorithm for designing overcomplete dictionaries for sparse representation[END_REF]. The latter has been shown to be of particular interest in image denoising [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF].

Contributions

In this chapter, we investigate a novel signal and image representation, through a dedicated basis extracted from the signal or image itself, using concepts from quantum mechanics. Compared to fixed basis such as Fourier, discrete cosinus, wavelets, curvelets, etc, or dictionary learning that generally needs a training database, the proposed approach has the advantage of computing a transform adapted to the signal or image of interest.

Several attempts of translating quantum principles in image or signal processing applications have been proposed in the literature. One may note the seminal work in [START_REF] Eldar | Quantum signal processing[END_REF], or, more recently, the interest of quantum mechanics in image segmentation [START_REF] Aytekin | Quantum mechanics in computer vision: Automatic object extraction[END_REF][START_REF] Youssry | A quantum mechanics-based framework for image processing and its application to image segmentation[END_REF] or in pulse-shaped signal analysis [START_REF] Laleg-Kirati | Semi-classical signal analysis[END_REF][START_REF] Laleg-Kirati | Spectral data de-noising using semi-classical signal analysis: application to localized mrs[END_REF]. More related to our work, we note that there was a recent attempt to use quantum mechanics in the same context in [START_REF] Chahid | A new roi-based performance evaluation method for image denoising using the squared eigenfunctions of the schrödinger operator[END_REF][START_REF] Kaisserli | A novel algorithm for image representation using discrete spectrum of the schrödinger operator[END_REF]. Although there are similarities between the two approaches, there are also some important differences. The authors in [START_REF] Chahid | A new roi-based performance evaluation method for image denoising using the squared eigenfunctions of the schrödinger operator[END_REF][START_REF] Kaisserli | A novel algorithm for image representation using discrete spectrum of the schrödinger operator[END_REF] start from a continuous mathematical representation of the signal, and the discretization only occurs at the end of the process.

The processing of a large image in these papers is done by decomposing it into lines and columns to get 1D signals, while the proposed work is applied block-wisely, which offers a more efficient solution for image denoising given that the correlation between neighbouring pixels is preserved. Additionally, unlike [START_REF] Chahid | A new roi-based performance evaluation method for image denoising using the squared eigenfunctions of the schrödinger operator[END_REF][START_REF] Kaisserli | A novel algorithm for image representation using discrete spectrum of the schrödinger operator[END_REF], our method fully takes into account the quantum localization phenomenon, a subtle effect due to quantum interference which makes the distribution of the eigenfunctions of the Schrödinger operator strongly dependent on noise, and has important effects on the denoising process.

We also use the physics of the problem to identify the optimal domain of applicability of such methods.

The proposed framework reposes on the discrete version of the Schrödinger equation for a quantum particle in a potential. In our case, the potential is represented by the signal samples or the pixel values. The bases used to decompose the signal or the image are directly computed from the signal and image itself and correspond to the wave function representing the stationary solutions of the Schrödinger equation. These wave functions have interesting properties of temporal or spatial localization and of frequency dependence on the value of the potential. In particular, they present higher frequencies for low potential values, thus allowing an original signal or image decomposition.

The proposed method has a certain formal similarity with graph signal processing methods [START_REF] Cheung | Graph spectral image processing[END_REF][START_REF] Meyer | Perturbation of the eigenvectors of the graph laplacian: Application to image denoising[END_REF][START_REF] Ortega | Graph signal processing: Overview, challenges, and applications[END_REF][START_REF] Pang | Graph laplacian regularization for image denoising: Analysis in the continuous domain[END_REF][START_REF] Shekkizhar | Efficient graph construction for image representation[END_REF], which use a graph Laplacian constructed from the signal to build an adaptive basis. However, graph signal processing constructs the graph Laplacian to emphasize the similarities between neighbouring pixel values, while in the proposed method the adaptive basis is solely related to the individual pixel values, resulting into very different adaptive bases with different properties.

Within the proposed framework, the frequency and localization properties of the basis can be controlled through several parameters, thus ensuring flexibility in applications such as denoising. A detailed description of the behavior of the proposed transform and denoising method with respect to the choice of these parameters is provided, allowing to gain insight about the practical consequences in signal and image processing of the quantum mechanical principles involved. Furthermore, the proposed transform embedded in a denoising algorithm shows promising results in different noise scenarios 

Adaptive Basis from Quantum Mechanics

General Framework

The main idea of the proposed method is to describe a signal or an image onto a specific basis which is constructed through the resolution of a related problem of quantum mechanics: the probability of presence of a quantum particle in a potential related to the signal or image. While the motivation of using quantum mechanics in this particular context is not straightforward, its main purpose is to produce a basis of oscillating functions with the following properties: 1) the oscillation frequency increases with a parameter of the basis corresponding to the energy, 2) for a given basis function, the oscillation frequency is higher for low values of the signal. The adopted strategy will then be to threshold a noisy signal in energy once expanded in this basis: this will automatically keep higher frequencies for low pixel values, and lower frequencies for high pixel values. Intuitively, one could expect that this method is especially efficient for signal-dependent noise, stronger for high signal values, such as, for instance, Poisson noise. 

Adaptive Transform for Signals or Images

Our method uses quantum mechanics as a tool for building an adaptive basis suitable for denoising applications. The basics of quantum mechanics which are useful for our purpose have already been explained in Chapter 2, we refer the interested reader to more extensive introductions to this vast field of physics [START_REF] Cohen-Tannoudji | Quantum mechanics[END_REF][START_REF] Feynman | The Feynman lectures on physics[END_REF][START_REF] Lifshitz | Quantum Mechanics Non-Relativistic Theory[END_REF]. Our formalism is based on the resolution of the Schrödinger equation of non-relativistic quantum mechanics.

This equation determines the wave function ψ(z) which belongs to the Hilbert space of L 2 -integrable functions, z being e.g. a spatial coordinate. The function |ψ(z)| 2 gives the probability of presence of the particle, which implies that |ψ(z)| 2 dz = 1. In Chapter 2, we discussed the properties of these wave functions.

The basic idea of the proposed method is to consider the signal or image as a potential V (z) for a quantum system, as illustrated in Fig. 4.1. The 3D surface plot of a 2D image is shown in Fig. 4.1. This surface will act as the potential of the system, where we consider pixel intensity as the height of the potential (i.e., along the z-axis). It is clearly visible that there are many hills and valleys in the potential which are associated with the high and low pixel values respectively. If a quantum particle with energy E probes this surface, then the probability of presence of this quantum particle at some position on the surface will be determined by the wave function ψ(z). Unlike the classical picture where one can precisely determine the position of a classical particle, the quantum theory only gives a probability of finding a quantum particle at some point. The stationary Schrödinger equation corresponds to the probability of presence of a stationary quantum 4.2. ADAPTIVE BASIS FROM QUANTUM MECHANICS particle with energy E in a potential V (z), the associated wave function ψ(z) satisfying [START_REF] Schrödinger | An undulatory theory of the mechanics of atoms and molecules[END_REF]:

(4.1) - ℏ 2 2m ∇ 2 ψ = -V (z)ψ + Eψ,
with m the mass of the quantum particle, ℏ the Planck constant that are both parameters of the problem, and ∇ 2 the Laplacian operator.

To illustrate the nature of the solution of (4.1), let us consider a simple case corresponding to a constant potential V and to the wave function ψ(z) following a periodic boundary condition, i.e., ψ(z + L) = ψ(z), where L is the periodicity. Solving equation (4.1)

under the above conditions is trivial, all solutions having the form:

(4.2) ψ(z) = A e i 2m(E-V ) ℏ z ,
where A is a given amplitude. Each solution ψ is associated with a specific value of E, with E taking discrete values, all higher than V . If space is discretized in n values, there will be n solutions and E takes only n different values.

In the case of a more intricate 1D potential, where V is no more a simple constant and depends on position, (4.1) implies that the relation (4.2) will still hold locally, with an amplitude and phase depending on position. This means that the stationary solutions of (4.1) are locally oscillatory functions with an oscillation frequency dependent on the local value of V for a given energy E, with a frequency proportional to E -V . This is illustrated in Fig. In 2D, (4.2) is not exactly valid, but the solutions of (4.1) will still have typically an oscillation frequency proportional to E -V . This is illustrated in Fig. 4.1 (bottom panels) where the wave function frequency of oscillation is clearly seen to increase in the regions of low potential.

To summarize, the global properties of the wavefunctions which form the proposed adaptive basis are the following:

(i) they are oscillating functions indexed by the energy E, (ii) the local frequency is typically proportional to E -V , thus increasing with E while differing locally for the same wavefunction depending on the local value of E -V , (iii) the precise dependence on the frequency of oscillation with respect to E -V is tuned by the parameter ℏ 2 /2m.

In the application addressed herein, the Schrödinger equation (4.1) is just a way to obtain an adaptive basis possessing these properties, which can further be used independently of its quantum mechanical nature as a tool for signal or image processing.

The basis of eigenvectors of (4.1) naturally describes with different frequencies the different parts of the signal or image, in contrast to e.g the Fourier or wavelet bases. As said above, the precise relation between the local frequency of the eigenvectors and the value of the signal or image pixel is governed by the parameter ℏ 2 /2m. In the physical problem of quantum mechanics, this quantity is linked to Planck's constant and the particle mass, but in our framework it is a free parameter. It should be chosen with care, as extreme values are clearly inadequate. Indeed, as the problem is discretized there is a maximal frequency in the problem, linked to the inverse of the discretization step.

If ℏ 2 /2m is very small, the local frequencies 2m(E -V ) /ℏ become very high even for low values of the energy, the maximal energy becomes very low, and the basis does not explore properly high values of the signal or pixels of the image. On the other side for very large values of ℏ 2 /2m, the local frequencies become smaller and smaller at fixed energy, the maximal energy becomes larger and larger, and eventually when ℏ 2 /2m tends to infinity most vectors of the adaptive basis are so high above the signal or image pixel that they do not discriminate between low and high values, becoming closer and closer to the standard Fourier basis vectors. Therefore it is crucial to tune the free parameter ℏ 2 /2m in the right way. However, we are interested in signal or image processing applications, where the space is discretized in a finite number of points. Specifically, we assume that the potential V is represented by the value of signal sample or image pixel x. In the case of a discretized problem, the operators become finite matrices and the resolution of (4.1) is equivalent to diagonalizing the Hamiltonian matrix.

Specifically, one has, following (4.1), H = -

ℏ 2 2m
∇ 2 + x, with:

• the potential V represented by x (the signal or the image),

• if x is a signal of size n, then the size of H is n × n,

• if x is an image of size n × n, it is transformed into a vector (in lexicographical order) of size n 2 and H is a n 2 × n 2 matrix,

• in both cases (x is a signal or an image), x is considered in a vector form.

For a 1D signal, we have:

• numerical derivatives of ψ: (∇ψ) i = ψ[i + 1] -ψ[i],
• numerical Laplacian of ψ:

(∇ 2 ψ) i = ψ[i + 1] -2ψ[i] + ψ[i -1]. Thus, (Hψ) i = - ℏ 2 2m (ψ[i + 1] -2ψ[i] + ψ[i -1]) + x[i]ψ[i] =⇒ (Hψ) i = x[i] + 2 ℏ 2 2m ψ[i] - ℏ 2 2m (ψ[i + 1] - ℏ 2 2m ψ[i -1]).
Therefore, (Hψ

) i = i+1 j=i-1 H[i, j]ψ[ j], for i = 1, 2, 3, • • • , n.
where,

H[i, j] =            x[i] + 2 ℏ 2 2m for j = i, - ℏ 2 2m for j = i ± 1, 0 otherwise. (4.3)
where x[i] represents the i-th component of a signal and H[i, j] is the (i, j)-th element of the Hamiltonian matrix.

The resolution of (4.1) is thus equivalent to finding eigenvectors and eigenvalues of the discretized Hamiltonian matrix H ∈ R n×n written as:

H =                x[]1] + 2 ℏ 2 2m - ℏ 2 2m - ℏ 2 2m . . . . . . . . . - ℏ 2 2m - ℏ 2 2m x[n] + 2 ℏ 2 2m               
For a 2D image x ∈ R n×n the methodology is similar. In (4.1), the Laplacian operator should be replaced by its discrete version, following the standard numerical definitions of the gradient operator:

∇ h x[i, j] = x[i + 1, j] -x[i, j] if i < n ∇ v x[i, j] = x[i, j + 1] -x[i, j] if j < n
where ∇ h and ∇ v are associated to the horizontal and vertical gradients. The boundary conditions correspond simply to a zero padding of the image.

The Hamiltonian matrix is thus:

H[i, j] =                      x[i] + 4 ℏ 2 2m for i = j, - ℏ 2 2m for i = j ± 1, - ℏ 2 2m for i = j ± n, 0 otherwise, (4.4) 
where x[i] represents the i-th component of a vectorized image x in the lexicographical order and and H[i, j] represents the (i, j)-th element of the operator H ∈ R n 2 ×n 2 . x

[1] + 2 ℏ 2 2m - ℏ 2 2m 0 0 - ℏ 2 2m 0 0 0 0 0 0 0 0 0 0 0 - ℏ 2 2m x[2] + 3 ℏ 2 2m - ℏ 2 2m 0 0 - ℏ 2 2m 0 0 0 0 0 0 0 0 0 0 0 - ℏ 2 2m x[3] + 3 ℏ 2 2m - ℏ 2 2m 0 0 - ℏ 2 2m 0 0 0 0 0 0 0 0 0 0 0 - ℏ 2 2m x[4] + 2 ℏ 2 2m 0 0 0 - ℏ 2 2m 0 0 0 0 0 0 0 0 - ℏ 2 2m 0 0 0 x[5] + 3 ℏ 2 2m - ℏ 2 2m 0 0 - ℏ 2 2m 0 0 0 0 0 0 0 0 - ℏ 2 2m 0 0 - ℏ 2 2m x[6] + 4 ℏ 2 2m - ℏ 2 2m 0 0 - ℏ 2 2m 0 0 0 0 0 0 0 0 - ℏ 2 2m 0 0 - ℏ 2 2m x[7] + 4 ℏ 2 2m - ℏ 2 2m 0 0 - ℏ 2 2m 0 0 0 0 0 0 0 0 - ℏ 2 2m 0 0 - ℏ 2 2m x[8] + 3 ℏ 2 2m 0 0 0 - ℏ 2 2m 0 0 0 0 0 0 0 0 - ℏ 2 2m 0 0 0 x[9] + 4 ℏ 2 2m - ℏ 2 2m 0 0 - ℏ 2 2m 0 0 0 0 0 0 0 0 - ℏ 2 2m 0 0 - ℏ 2 2m x[10] + 4 ℏ 2 2m - ℏ 2 2m 0 0 - ℏ 2 2m 0 0 0 0 0 0 0 0 - ℏ 2 2m 0 0 - ℏ 2 2m x[11] + 4 ℏ 2 2m - ℏ 2 2m 0 0 - ℏ 2 2m 0 0 0 0 0 0 0 0 - ℏ 2 2m 0 0 - ℏ 2 2m x[12] + 3 ℏ 2 2m 0 0 0 - ℏ 2 2m 0 0 0 0 0 0 0 0 - ℏ 2 2m 0 0 0 x[13] + 2 ℏ 2 2m - ℏ 2 2m 0 0 0 0 0 0 0 0 0 0 0 - ℏ 2 2m 0 0 - ℏ 2 2m x[14] + 3 ℏ 2 2m - ℏ 2 2m 0 0 0 0 0 0 0 0 0 0 0 - ℏ 2 2m 0 0 - ℏ 2 2m x[15] + 3 ℏ 2 2m - ℏ 2 2m 0 0 0 0 0 0 0 0 0 0 0 - ℏ 2 2m 0 0 - ℏ 2 2m x[16] + 2 ℏ 2 2m
As the boundary conditions correspond to zero padding of the image, a few individual coefficients of the matrix H follow specific rules. Indeed,

H[i, j] = x(i) + 2 ℏ 2 2m for i = j and i ∈ {1, n, n 2 -n + 1, n 2 }, H[i, j] = x(i) + 3 ℏ 2 2m for i = j and i ∈ {2, 3, ..., n -1, n 2 -n + 2, n 2 -n + 3, ..., n 2 -1}, H[i, j] = x(i) + 3 ℏ 2
2m for i = j and i mod n ∈ {0, 1}, except for i ∈ {1, 2, ..., n, n 2 -n + 1, n 2 -n + 2, ..., n 2 } in order to respect the boundary conditions, and

H[i, i + 1] = H[i + 1, i] = 0 for any i multiple of n apart from n 2 .
In the specific case of n = 4, i.e. for an image of size 4 × 4 the discretized Hamiltonian is of size 16 × 16. This Hamiltonian matrix is explicitly shown in Table 4.1.

The set of eigenvectors gives a basis of the Hilbert space, with each eigenvector associated to an energy E, which is the corresponding eigenvalue of the Hamiltonian operator. The n 2 eigenvectors, denoted by ψ i ∈ R n 2 ×1 , each with components

ψ j i with j = 1, • • • , n 2 ,
are the main tool for the proposed adaptive transform in this work. Indeed, our method consists in projecting the signal or image on this particular basis and use the energy associated to each eigenfunction as a parameter on which we perform the thresholding of these coefficients.

A Technical Problem for Noisy Signals or Images: the

Problem of Quantum Localization

In order to use the adaptive basis for various problems of signal or image processing, including denoising, the procedure should be adapted for noisy signals and images. A technical problem then arises, linked to the phenomenon of quantum localization. As explained in Chapter 2, the quantum localization is a property of wave functions in a disordered potential which makes the adaptive basis localized in position space, which in turn makes it less useful for our purpose. In this subsection, we propose a way to mitigate this technical problem which will be implemented throughout the chapter. Indeed, it is known in quantum mechanics that a disordered potential localizes the wavefunctions in one and two dimensions. Due to destructive interference, the different wave functions are exponentially localized at different positions of the potential, an effect known as Anderson localization, which earned the Nobel prize in 1977 to its discoverer [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF]. If the signal or image are not smooth, which certainly arises in the case of a noisy signal or image, we expect the vectors of the basis to be localized, with a localization length which will be smaller and smaller for increasing noise intensity.

Let us start from a wave function defined as eigenfunction of (4.4), ψ i ∈ R n 2 ×1 with components ψ j i . The level of localization is measured by computing the inverse participa- tion ratio (IPR) of the wave functions, mathematically defined for a given wave function as:

IPR(ψ i ) = n 2 j=1 |ψ j i | 2 2 n 2 j=1 |ψ j i | 4 , (4.5)
where n 2 is the dimension of the Hilbert space. For a vector uniformly spread over P indices and zero elsewhere, this quantity is exactly P. For an exponentially localized vector such as the wavefunctions in a disordered potential, it is proportional to the localization length for each vector in the adaptive basis. In this case, these vectors will still be oscillating functions, but will no longer have different frequencies at different locations since they are localized in a specific part of the potential.

In Fig. 4.4 the averaged IPR of all functions of the adaptive basis is shown for a synthetic signal (Fig. 4.3) degraded by an additive Gaussian noise with different signal to noise ratios (SNR). The localization property is clearly seen: the IPR decreases with decreasing SNR, indicating that noisy signals tend to localize the basis.

To modify this characteristic of the basis, we use a smoothed adaptation of the noisy signal or image to construct the Hamiltonian matrix, computed by a simple convolution with a Gaussian kernel whose standard deviation is denoted by σ. This is not part of the denoising process, it is just a technical trick to delocalize the adaptive basis while keeping the main features of the signal/image. In our framework, this standard deviation σ is an additional free parameter. If σ is chosen too large, then the noisy signal or image becomes so smooth that many characteristics needed for the adaptive basis will be lost.

On the opposite, if σ is too small the basis vector will remain strongly localized. To balance both sides one needs to tune the parameter σ to get the best achievable outcome. 

Application to the Denoising Problem

This section explains in detail the application of the proposed adaptive basis from quantum mechanics to the denoising problem. The significant difficulties for signal or image denoising are to sharpen the edges without blurring and preserve the image textures without generating artifacts. The most common denoising strategies are based on three primary steps. To distinguish the useful information and the noise, the noisy signal or image is projected onto a dictionary. This is then accompanied by a hard or soft thresholding process in the transformed space. Finally, the revised coefficients are back projected to the time or space domain, so that the denoised signal or image could be retrieved. We will apply the same procedure using the adaptive basis defined by the eigenvectors ψ i obtained by solving the Schrödinger equation (4.1).

The basic assumptions is that the noise is more present in high frequency components of the signal or image, corresponding to eigenvectors associated with large energy eigenvalues. The thresholding will therefore be performed in energy, leaving out the components of the signal or image on high energy eigenvectors. The fact that our basis has frequencies which vary depending on the position should be an asset, especially for signal or image dependent noise (e.g. Poisson noise). In the following, we will show that it is indeed the case in some examples of signals and images with various types of noise. The denoising process is expressed as follows; for a noisy signal or image denoted by y, the denoised signal or image x is rebuilt through:

x = n 2 i=1 α i ψ i τ i , (4.6) with τ i =          1 for i ≤ s, 1 - i -s ρ for i > s and for 1 - i -s ρ > 0, 0 otherwise. (4.7)
where α i = 〈y, ψ i 〉 are the coefficients representing the signal or image y in the proposed adaptive basis. s and ρ are two hyperparameters, used to define the thresholding function for the proposed denoising algorithm. In order to use this procedure, we will need to specify which values of the parameter ℏ 2 /2m should be selected. As we will see, there is a relatively large range of values where the algorithm is efficient, meaning that it can be set to a specific value independent of the signal or image on which the algorithm is used.

Algorithm Description

Denoising a signal or an image using the proposed method requires the computation of • The noisy signal or image is divided into sub-blocks of equal size, using in particular square sub-blocks in the case of images.

• Use algorithm 4.1 for each sub-block.

• Reconstruct the denoised signal or image by integrating each denoised sub-block. 

Results

This section regroups results showing the interest of the proposed approach in signal and image denoising and analyze the optimal choice of parameters. Subsection 4.4.1

elaborates the dependence of the proposed denoising method on the choice of the hyperparameters ℏ 2 /2m, σ, s and ρ. Subsection 4.4.2 compares the denoising results obtained with the proposed approach to several state of the art methods. 

Efficiency of the Algorithm

In this subsection, we provide a detailed discussion about the influence of the hyperparameters on the proposed adapative bases. 

Properties of the Gaussian Smoothing Hyperparameter σ

The second hyperparameter studied in this section that has a strong impact on the proposed denoising algorithm is the paramater σ which makes the adaptive basis delocalized on the system (signal or image). As explained above in Subsection 4. of taking into account the localization effects. However, even if an optimal value exists for the different hyperparameters, a small variation in the choice of these hyperparameters around the optimal values only slightly influences the quality of the denoising. Moreover, the optimal values are only slightly dependent on the nature of the noise. This means that for this type of signal the hyperparameters could be fixed beforehand at a fixed value which can be chosen independently of the type of noise present.

Next, the dependence of ℏ 2 /2m and σ hyperparameters on the shape of the signals is analyzed. For this purpose, two additional synthetic signals were generated as shown in Fig. 4.12(d)(g) together with Fig. 4.12(a), which corresponds to the same synthetic signal used previously, further normalized to 1 and corrupted by Poisson noise. From the results in Fig. 4.12(b-c)(e-f)(h-i), it can be clearly observed that the quality of the denoising does depend on the shape of the signals, which can be expected given the nature of the adaptive basis used by the proposed approach. However, the denoising process is efficient for a fairly large interval around the optimal values. As there is a big overlap in the acceptable range of values of the hyperparameters for various signal shape, again this means that the hyperparameters could be fixed beforehand at a fixed value which can be chosen independently of the signal. as expected and similar to any other denoising method, the choice of the hyperparameters does have an impact on the results, and the optimal range of parameters depend on the noise. However, even though the acceptable range of parameters seems smaller than for the 1D signal, there is still a relatively large parameter region where the denoising is very effective. This again makes realistic the possibility to set these parameters beforehand in the algorithm independently from the signal or image. Additionnally, there is a large overlap between the optimal parameter ranges for Poisson and speckle noise, with a marked difference for Gaussian noise. This seems to indicate that the choice of the parameters may differ according to the broad class to which the noise of interest belongs, an information that is usually known beforehand in many cases.

Efficiency of the Denoising Process

This section presents denoising results on a synthetic signal, a synthetic image and six standard testing images of size 512 × 512 and 320 × 320 pixels, shown in Fig. 4.14.

Denoising is an extensively explored research field that prevents an exhaustive comparison of the proposed approach to all the existing methods. Moreover, we remind that the most important contribution herein is to investigate a novel way of decomposing signals or images, which is not meant to outperform all the denoising algorithms in any scenario. Five algorithms from the literature were used for comparison purpose: i) wavelet denoising based on hard and soft thresholding of detail coefficients [START_REF] Donoho | Wavelet shrinkage: asymptopia?[END_REF][START_REF] Donoho | Ideal spatial adaptation by wavelet whrinkage[END_REF],

ii) the variance stabilization transform (VST) relevant for data dependent noise models [START_REF] Makitalo | A closed-form approximation of the exact unbiased inverse of the anscombe variance-stabilizing transformation[END_REF], iii) an optimization-based approach using the total variation (TV) semi-norm to regularize the solution [START_REF] Figueiredo | Restoration of poissonian images using alternating direction optimization[END_REF][START_REF] Rudin | Total variation based image restoration with free local constraints[END_REF], iv) a graph signal processing (GSP) method by constructing an optimal graph and corresponding graph Laplacian regularizer [START_REF] Pang | Graph laplacian regularization for image denoising: Analysis in the continuous domain[END_REF],

v) a non-local means (NLM) image denoising method that uses principal component analysis approach [START_REF] Tasdizen | Principal neighborhood dictionaries for nonlocal means image denoising[END_REF], and vi) a dictionary learning (DL) method exploiting sparse and redundant representations over learned patch-based dictionaries [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF]. Note that for all the methods and for all the simulation scenarios, their hyperparameters were manually tuned to obtain optimal denoising results in the sense of the quantitative measurements employed. We used the Matlab implementations available in the Numerical tours website [START_REF] Peyré | The numerical tours of signal processing[END_REF].

Three quantitative measurements were used to evaluate the denoised images: the signal to noise ratio (SNR), the peak signal to noise ratios (PSNR) and the structure similarity (SSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]. All the quantitative results are regrouped in that in almost all the cases, regardless of the noise nature and the image, the proposed method is one of the two best ones. This proves its adaptability to different scenarios and general applicability which can be considered a strong point in number of practical applications. Second, we may remark that for the synthetic signal and image, our method outperforms all the others. The main reason is that the synthetic signal and image were generated to provide a best case for the proposed decomposition, that keeps preferentially higher frequencies for low gray levels and lower frequencies for high gray levels. For such images or signals, the proposed method is very efficient. On the contrary, TV and DL, for example, fail in these cases because of the non piece-wise constant nature of the synthetic data. Finally, we remark that the proposed denoising algorithm provides competitive results compared to DL that learns the redundant dictionary from a database of clean images. Of course the proposed method does not need such a database. In summary, the results show that while our method is clearly the best for some specific types of signals or images for which it is well-adapted, it is also competitive for general types of images, being in almost all cases one of the two best methods. This indicates that the algorithm we propose can be used reliably for denoising applications in a variety of contexts.

Application to CBCT Dental Image Denoising

This section illustrates the ability of the proposed method to denoise real medical images.

In particular, the application considered in this work for illustration purpose is CBCT dental imaging. CBCT is a medical imaging modality that allows tooth visualization with low radiation doses, and is thus suitable for dental applications. However, the low radiation prevents the current scanners to provide images with high SNR. In [START_REF] Michetti | Cone-beam computed tomography contrast validation of an artificial periodontal phantom for use in endodontics[END_REF], the 

Conclusions

We investigated in this chapter an original approach of constructing an adaptive trans- In general, the method should be optimal for signals or images with large contrasts in presence of Poisson-like noise. Our study of the hyperparameters shows that they cannot be chosen at random, but that the range of optimality is large enough to allow to set them beforehand independently of the signal or image, although the choice may be modified according to the type of noise present in the application.

Limitations

In presence of strong noise, the wave functions become localized due to the quantum localization phenomenon and make the image restoration tasks more challenging. To mitigate this quantum effect a Gaussian smoothing was considered before the computation of the wave functions from the Hamiltonian operator. Although accumulation of this Gaussian smoothing significantly enhances the potential of the adaptive basis for imaging problems, it increases the number of tunable hyperparameters of the algorithm.

Furthermore, the computational time of the eigenvectors of the Hamiltonian operator is the major drawback of this method. For a large-scale signal or image, this computation of the adaptive vectors becomes very costly and makes the practical implementations of our proposed algorithm difficult.

Perspectives

The issue of computational complexity can be tackled by more refined algorithms or by adapting the patch-based processing to the proposed framework, using for example the theory of multiple-particle quantum mechanics. It should be also noted that in many applications the computational efficiency of the algorithm, while important, is less crucial than the efficiency to denoise the signal or image considered. Moreover, implementing a patch-based architecture that relies on the quantum many-body theory can mitigate the problem of the quantum localization phenomenon of the adaptive vectors.

In Chapter 6, we will illustrate this many-body quantum theory and its implementation in imaging tasks. This improved scheme profoundly enhances the efficiency of the proposed algorithm at a significantly lesser cost and without any Gaussian smoothing.

Using more complex quantum mechanical tools/concepts, such as the time-dependent Schrödinger equation, i.e., the wave functions and the potential change with time, gives a very fascinating direction for further research. As another perspective of this study, it would be very interesting to extend this framework to three dimensional data or color images. It could be also extended to other reconstruction applications available in the literature, such as deconvolution, super-resolution or compressed sensing. In the succeeding Chapter 5, we will study the image deconvolution problem by plugging our proposed quantum adaptive basis (QAB) as an off-the-shelf denoiser following the Plug-and-Play (PnP) scheme [START_REF] Venkatakrishnan | Plug-and-play priors for model based reconstruction[END_REF] described in Section 3.4.1.2. * This chapter presents materials from the journal paper [START_REF] Dutta | Plug-and-play quantum adaptive denoiser for deconvolving poisson noisy images[END_REF] and conference paper [START_REF] Dutta | Poisson image deconvolution by a plug-and-play quantum denoising scheme[END_REF].

Overview 

A

Introduction

Maximum-a-Posteriori (MAP) Estimation

In number of applications such as limited photon acquisition, X-ray computed tomography, positron emission tomography, etc., the noise degrading the acquired data follows a Poisson distribution. These Poissonian models have been extensively studied in the fields of astronomical [START_REF] Starck | Astronomical image representation by the curvelet transform[END_REF][START_REF] Starck | Astronomical image and data analysis[END_REF][START_REF] Starck | Deconvolution in astronomy: A review[END_REF], photographic [START_REF] Foi | A spatially adaptive poissonian image deblurring[END_REF][START_REF] Guo | Toward convolutional blind denoising of real photographs[END_REF] or biomedical [START_REF] Vieilleville | Alternating direction method of multipliers applied to 3d light sheet fluorescence microscopy im-age deblurring using gpu hardware[END_REF][START_REF] Dey | Richardson-lucy algorithm with total variation regularization for 3d confocal microscope deconvolution[END_REF][START_REF] Fessler | Penalized maximum-likelihood image reconstruction using space-alternating generalized em algorithms[END_REF][START_REF] Kolaczyk | A statistical multiscale framework for poisson inverse problems[END_REF][START_REF] Sarder | Deconvolution methods for 3-d fluorescence microscopy images[END_REF][START_REF] Willett | Fast multiresolution photon-limited image reconstruction[END_REF] imaging. The inversion process is expressed as the estimation of a clean image

x ∈ R n from observed degraded image y ∈ R m .
As stated in Chapter 3, we often formulate this estimation problem as a maximum-a-posteriori (MAP) estimation [START_REF] Poor | An introduction to signal detection and estimation[END_REF], where the goal is to maximize the posterior probability: In this chapter, we focus on the alternating direction method of multiplier (ADMM) [8,[START_REF] Almeida | Deconvolving images with unknown boundaries using the alternating direction method of multipliers[END_REF][START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF][START_REF] Chan | Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers[END_REF][START_REF] Tao | Alternating direction algorithms for total variation deconvolution in image reconstruction[END_REF][START_REF] Yang | A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data[END_REF][START_REF] Zhang | Signal reconstruction of compressed sensing based on alternating direction method of multipliers[END_REF], which has become the workhorse for a variety of problems in the form of (5.1).

ADMM Algorithm

As discussed in Chapter 3, the idea of ADMM is to convert (5.1), an unconstrained optimization, into a constrained problem 

x k+1 = arg min x f (x) + λ k 2 x -z k + u k 2 2 , (5.3) z k+1 = arg min z g(z) + λ k 2 x k+1 -z + u k 2 2 , (5.4) u k+1 = u k + x k+1 -z k+1 , (5.5) λ k+1 = γλ k . (5.6)
where u ∈ R p is the Lagrangian multiplier, λ ∈ R + is the penalty parameter of the augmented Lagrangian, and the constand γ > 1 accelerates the convergence.

Plug-and-Play (PnP) ADMM

The interest of PnP schemes have been extensively studied in image restoration problems, e.g., [START_REF] Foi | Variance stabilization for noisy+estimate combination in iterative poisson denoising[END_REF][START_REF] Foi | Variance stabilization in poisson image deblurring[END_REF][START_REF] Brifman | Turning a denoiser into a super-resolver using plug and play priors[END_REF][START_REF] Chan | Performance analysis of plug-and-play admm: A graph signal processing perspective[END_REF][START_REF] Chan | Plug-and-play admm for image restoration: Fixed-point convergence and applications[END_REF][START_REF] Cohen | Regularization by denoising via fixedpoint projection (red-pro)[END_REF][START_REF] Kwan | Resolution enhancement for hyperspectral images: A super-resolution and fusion approach[END_REF][START_REF] Rond | Poisson inverse problems by the plug-andplay scheme[END_REF][START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF][START_REF] Sreehari | Plug-and-play priors for bright field electron tomography and sparse interpolation[END_REF][START_REF] Teodoro | Image restoration and reconstruction using variable splitting and class-adapted image priors[END_REF][START_REF] Teodoro | Scene-adapted plug-and-play algorithm with convergence guarantees[END_REF][START_REF] Unni | Linearized admm and fast nonlocal denoising for efficient plug-and-play restoration[END_REF][START_REF] Wang | Parameter-free plug-and-play admm for image restoration[END_REF][START_REF] Xu | Provable convergence of plug-and-play priors with mmse denoisers[END_REF][START_REF] Zhang | Plug-andplay image restoration with deep denoiser prior[END_REF]. The key benefit of this process is that the regularizer does not need to be defined explicitly because of its implicit dependence on the denoising operator. More precisely, one may observe that (5.4) is associated with a denoising process, and can be rewritten as (5.7)

z k+1 = arg min z g(z) + λ k 2 z -(x k+1 + u k ) 2 2
.

Treating (x k+1 + u k ) as the "noisy" image, (5.7) minimizes the residue between (x k+1 + u k ) and the "clean" image z using the prior g(z), and is thus associated with a denoising problem designed to denoise (x k+1 + u k ). Therefore (5.7) can be replaced by using an off-the-shelf image denoising algorithm, denoted by D(•) [START_REF] Venkatakrishnan | Plug-and-play priors for model based reconstruction[END_REF], as illustrated in Chapter 3 to yield (5.8)

z k+1 = D x k+1 + u k .

Contributions

This chapter focuses on PnP-ADMM algorithms applied to Poisson deconvolution problems, i.e., recover an image from a blurred observation contaminated by Poisson noise.

Since the state-of-the-art denoisers (e.g., BM3D [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF]) used within PnP schemes were primarily designed for additive Gaussian noise, they consequently exhibit inconsistency with a non-Gaussian model. Furthermore, decoupling the restoration and denoising steps within PnP frameworks converts the noise distribution affecting the observed distorted image into a possibly different noise model, and in particular into a non-Gaussian noise. To mitigate this limitation, a variance stabilizing transformation (VST) [START_REF] Anscombe | The transformation of poisson, binomial and negative-binomial data[END_REF][START_REF] Dupe | A proximal iteration for deconvolving poisson noisy images using sparse representations[END_REF][START_REF] Makitalo | A closed-form approximation of the exact unbiased inverse of the anscombe variance-stabilizing transformation[END_REF][START_REF] Makitalo | Optimal inversion of the anscombe transformation in low-count poisson image denoising[END_REF], known as the Anscombe transformation, was embedded in several PnP-ADMM algorithms to adapt them to a data-dependent model. Indeed, VST was designed to remodel approximately a random data-dependent noise into an additive Gaussian noise, before processing through a Gaussian denoiser. Although these refined VST-based PnP schemes exhibit very good performance for low-intensity noise [START_REF] Foi | Variance stabilization for noisy+estimate combination in iterative poisson denoising[END_REF][START_REF] Foi | Variance stabilization in poisson image deblurring[END_REF][START_REF] Rond | Poisson inverse problems by the plug-andplay scheme[END_REF] and outperform existing state-of-the-art prior based models, they are less accurate while dealing with high-intensity noise (i.e., low SNR) [START_REF] Salmon | Poisson noise reduction with non-local pca[END_REF]. Furthermore, the nonuniform nature of the convolution operator under a VST leads to fundamental flaws in the deconvolution algorithms [START_REF] Foi | Variance stabilization in poisson image deblurring[END_REF][START_REF] Deledalle | How to compare noisy patches? patch similarity beyond gaussian noise[END_REF][START_REF] Rond | Poisson inverse problems by the plug-andplay scheme[END_REF]. Therefore, a versatile denoiser adapted to different noise models, without a priori hypothesis about the noise statistics, is desirable to be efficient regardless of the prior noise distribution in this PnP framework.

In this chapter, we address these shortcomings by embedding into a PnP-ADMM 

Proposed PnP-ADMM Algorithm

Poissonian Deconvolution Model

Let us denote by x ∈ R n 2 the image to be recovered from the observation y ∈ R n 2 , a degraded version by a point spread function (PSF) and Poisson process denoted by P (•).

Without loss of generality, we consider herein square images of size n × n, written as vectors in lexicographical order. The resulting image formation model is (5.9)

y = P (Gx),
where One standard way to estimate x from the observation model (5.9) is to use the MAP estimator in (5.1). The Poisson noise probability density function is defined as (5.11)

G ∈ R n 2
P y[i] x[i] for i=1,2,••• ,n 2 =      e -(Gx)[i] (Gx)[i] y[i] y[i]! if y[i] ≥ 0, 0 
P(y|x) = i e -(Gx)[i] (Gx)[i] y[i] y[i]! .
Thus, the log-likelihood term, i.e., the data fidelity term f (x) used within the MAP estimator, is given by

f (x) = -log (P(y|x)) = - i log e -(Gx)[i] (Gx)[i] y[i] y[i]! = -y T log(Gx) + 1 T Gx + constant, (5.12)
where 1 is a vector of length n 2 with all elements equal to 1. As explained previously, the function g(x), a prior of x, depends on some prior knowledge on the image to estimate.

In a PnP framework, this prior is intrinsically defined through the external denoiser, removing the need of defining the prior term g(x) explicitly. Hence, using the data fidelity term f (x) in (5.12), the PnP-ADMM steps depicted in (5.3), (5.5), (5.6) and (5.8) become: where D(•) is the denoising operator considered within the PnP-ADMM algorithm. In this work, following [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF], a gradient descent algorithm is used to solve the minimization problem (5.13), that requires the use of the gradient of the augmented Lagrangian L λ given by (5.17)

x k+1 = arg min x -y T log(Gx) + 1 T Gx + λ k 2 x -z k + u k 2 2 , ( 5 
∇ x L λ = -G T y/(Gx) + G T 1 + λ k (x -z k + u k ),
where ∇ x represents the derivative with respect to x and y/(Gx) stands for element-wise division.

The following subsection describes the Poisson denoiser inspired from quantum mechanics used within the proposed PnP-ADMM algorithm for Poisson image deconvolution, to solve the step in (5.14).

Quantum Adaptive Basis (QAB) Denoiser

As said before, in the last decade, several works have been conducted to use quantum mechanical principles in signal [START_REF] Eldar | Quantum signal processing[END_REF] and image processing applications. More precisely, the interest in image segmentation [START_REF] Aytekin | Quantum mechanics in computer vision: Automatic object extraction[END_REF][START_REF] Youssry | A quantum mechanics-based framework for image processing and its application to image segmentation[END_REF][START_REF] Youssry | A quantum mechanics-based algorithm for vessel segmentation in retinal images[END_REF][START_REF] Youssry | A continuous-variable quantuminspired algorithm for classical image segmentation[END_REF], restoration [START_REF] Yuan | Quantum digital image processing algorithms based on quantum measurement[END_REF] and denoising [START_REF] Dutta | Quantum mechanicsbased signal and image representation: Application to denoising[END_REF][START_REF] Laleg-Kirati | Spectral data de-noising using semi-classical signal analysis: application to localized mrs[END_REF][START_REF] Smith | Adaptive transform via quantum signal processing: application to signal and image denoising[END_REF] have been studied in the literature.

The denoiser embedded in the proposed method is based on the construction of an adaptive basis inspired by quantum mechanics, as originally proposed in the preceding where the height of the potential is determined by the pixel intensity. For illustration purpose, we considered the Boat image with half of it contaminated by Gaussian noise.

Two patches, one clean and one noisy, are extracted from the image and plotted as 3D surfaces, which will ultimately act as the potentials of the system. In this system, the wave function governs the probability of presence of a quantum particle with energy E at some position on the surface. For a clean image, the wave function uses a broad range of frequencies to probe the surface. In presence of random noise, the wave function becomes localized at some particular position on the surface, as highlighted in Fig. 5.1.

The salient feature of the adaptive basis is the fact that the pixel intensity is directly linked to the local frequency of the wave. The localization property in the presence of noise is actually a hindrance, cured by performing a pre-smoothing of the noisy potential in order to create an adaptive basis extended over the whole image. For more details on the construction of the basis, we refer the reader to the previous Chapter 4. For self-consistency, we recall hereafter the main steps of the QAB (quantum adaptive basis) technique.

Background on the Adaptive QAB Transform

In the non-relativistic quantum mechanics, the time-independent Schrödinger equation yields an equation for the stationary wave solution ψ(z), given by (5.18) -

ℏ 2 2m ∇ 2 ψ = -V (z)ψ + Eψ,
where ℏ is the Planck constant and ψ(z) characterizes the energy state E of the particle with mass m in a potential V . The probability amplitude of the particle is given by where H = -ℏ 2 2m ∇ 2 + V is the Hamiltonian operator. One can conclude from (5.19) that the solution ψ(z) of the equation (5.18) represents an eigenstate of the system described by the Hamiltonian operator. These eigenstates of (5.19) are oscillatory functions and primarily have two properties: i) the oscillation frequency increases with energy and ii) for the same eigenfunction, the local frequency depends on the local value of the potential, and this dependence is regulated by the value of ℏ 2 /2m which acts as a hyperparameter herein.

As in Chapter 4, in the perspective of designing an adaptive transformation for image processing, one may consider the image pixels' values as the potential V in the Schrödinger equation (5.18) for a discretized space. We recall here, for easiness, the stationary solutions of (5.18) can be obtained by computing the eigenpairs of the discretized Hamiltonian operator defined as:

H[i, j] =                      x[i] + 4 ℏ 2 2m for i = j, - ℏ 2 2m for i = j ± 1, - ℏ 2 2m for i = j ± n, 0 otherwise, (5.20) 
where x ∈ R n 2 is an image (i.e., V = x), vectorized in lexicographical order and H[i, j] represents the (i, j)-th element of the operator H ∈ R n 2 ×n 2 . Note that zero padding is used to handle the boundary conditions. As a consequence some violations of the rule (5.20) can be observed. More precisely,

H[i, j] = x[i] + 2 ℏ 2 2m for i = j and i ∈ {1, n, n 2 -n + 1, n 2 }, H[i, j] = x[i] + 3 ℏ 2 2m for i = j and i ∈ {2, 3, ..., n -1, n 2 -n + 2, n 2 -n + 3, ..., n 2 -1}, H[i, j] = x[i]+3 ℏ 2
2m for i = j and i mod n ∈ {0, 1}, except for i ∈ {1, 2, ..., n, n 2 -n+1, n 2 -n+2, ..., n 2 } in order to respect the boundary conditions, and These basis vectors belong to the family of oscillating functions along with the Fourier and wavelet bases, but with a local frequency depending on the local value of 2m(E -V ) /ℏ. Due to its dependence on the difference between the energy E and potential V , in the same basis vector the lower values of the potential are associated with oscillations of higher frequency. Thus, the property of these adaptive basis vectors able to describe different image pixels' values using different frequency levels, makes it fundamentally distinct from the Fourier and wavelet bases. From the above discussion it is understandable that the local frequency depends on the value of ℏ 2 /2m, which is a hyperparameter. Apart from that, the level of noise also has an impact on the basis vectors. Indeed, the presence of random noise in the system leads to a subtle quantum phenomenon [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF] which makes these vectors localize exponentially at different positions of the potential in the system. To mitigate this phenomenon which degrades the denoising, it is important to low-pass the corrupted image using, for example, a Gaussian filter with suitable standard deviation σ QA B , before the computation of the QAB from the Hamiltonian operator (5.20). The reader may refer to Subsection 4.3.2 of the previous chapter for an in-depth discussion about the QAB vector localization in the presence of noise.

H[i, i + 1] = H[i + 1, i] = 0
The QAB explained above is used to denoise an image, as follows: project the noisy image onto the QAB to identify the valuable information and the noise, followed by a soft-thresholding of the projection coefficients, before taking the inverse projection of the modified coefficients to recover the noise-free image. The denoised image x is retrieved as following:

x = n 2 i=1 τ i α i ψ i , (5.21) with τ i =          1 for i ≤ s, 1 - i -s ρ for i > s and for 1 - i -s ρ > 0, 0 otherwise, (5.22) 
where α i are the coefficients representing the image x in QAB, whose basis vectors are ψ i .

s and ρ are two thresholding hyperparameters. The denoising process thus corresponds to expanding the signal in the adaptive basis and thresholding the coefficients according to an energy criterion (see Chapter 4 for a detailed discussion of this procedure). 

QAB-PnP Algorithm

This section illustrates, in the context of Poisson image deconvolution, the proposed PnP-ADMM algorithm, denoted as QAB-PnP, incorporating the QAB denoiser introduced in the previous section. In this particular context, various state-of-the-art denoisers have been introduced in the literature, such as Gaussian denoisers (e.g., BM3D [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF], etc) fused with VST-like transforms or not. Using QAB D QA B instead of a classical denoiser is the main contribution of this chapter. It consists in including a modified version of the QAB denoiser into the deconvolution PnP-ADMM method from Section 5.2.1, more precisely to solve (5.14).

The denoising process integrated in the proposed QAB-PnP algorithm requires the computation of the coefficients α i , obtained by projecting the noisy image onto the QAB. This is a time consuming task for a large image and affects the computational load of the deconvolution algorithm given that the denoising process is performed at each iteration.

However, one may note that most of the α i are not used for reconstructing the denoised image given that they are discarded by the threshohlding operation. To increase the computational efficiency of the proposed algorithm, only the coefficients which contribute the most in the restoration process are computed. To this end, let us focus on T basis vectors α i from D QA B , corresponding to an energy level below E , assuming that higher energy levels naturally correspond to higher frequencies, where E is considered as a free hyperparameter. The corresponding T coefficients will be the most significant for the reconstruction of the clean image, and can be computed using the orthogonal matching pursuit (OMP) algorithm [START_REF] Davenport | Analysis of orthogonal matching pursuit using the restricted isometry property[END_REF][START_REF] Tropp | Cosamp: Iterative signal recovery from incomplete and inaccurate samples[END_REF][START_REF] Sahoo | Signal recovery from random measurements via extended orthogonal matching pursuit[END_REF][START_REF] Tropp | Signal recovery from random measurements via orthogonal matching pursuit[END_REF].

The OMP algorithm was fundamentally designed to obtain a sparse approximation αi with sparsity T of the corresponding coefficients α i while projecting the noisy image, say v ∈ R n 2 onto the denoising basis D QA B . Therefore the primary goal of OMP is to recover coefficients αi with T non-zero elements, such that v ≃ D QA B αi . To get the best possible approximation, it is important to identify the columns ψ i ∈ D QA B which contribute in the reconstruction of v. The basic idea is to choose the column of D QA B which is mostly correlated with v, followed by subtracting its contribution and repeat Algorithm 5.1: Modified Orthogonal Matching Pursuit algorithm.

Input: v , T , D QA B 1 Initialization: r 0 = v , Λ 0 = , Φ 0 is an empty matrix 2 for l from 0 to T -1 do 3 l = l + 1 4 λ l = arg max j=1,2,...,T |〈r l-1 , ψ j 〉|, for ψ j ∈ D QA B (Break ties deterministically) 5 Λ l = Λ l-1 λ l 6 Φ l = [Φ l-1 ψ λ l ] 7 a l = arg min a v -Φ l a 2 2 8 r l = v -Φ l a l
Output: α, which has nonzero elements only at Λ l , i.e., αΛ l = a l Algorithm 5.2: QAB denoising algorithm.

Input: z , D QA B , T , s , ρ 1 Compute the sparse coefficients αi with sparsity T by using the measurement data z and the operator D QA B following the modified orthogonal matching pursuit method as illustrated in Algorithm 5.1.

2 Threshold the coefficients αi . for k from 0 to N -1 do 10

Step 1:

11 x k+1 = arg min x -y T log(Gx) + 1 T Gx + λ k 2 x -z k + u k 2 2 12
Step 2:

13 z k+1 = D QA B (x k+1 + u k ), following QAB denoising Algorithm 5.2

14

Step 3:

15 u k+1 = u k + x k+1 -z k+1 16 λ k+1 = γλ k Output: x = x N
the step on the residual. After T iterations one can have the desired set of basis vectors and projection coefficients. Within the adaptive basis D QA B , the basis eigenvectors are organized in ascending order, the first T basis vectors with energy less than E being the most correlated with v. Therefore, the OMP algorithm is modified herein so that it 

Computational Complexity

The computational complexity of the algorithm is dominated by the eigendecomposition of the high dimensional Hamiltonian matrix and the QAB image projection. For a n × n image, the Hamiltonian matrix is of size n 2 × n 2 . Usual textbook diagonalization methods would require O(n 6 ) operations (time complexity) and O(n 4 ) storage space. However, the Hamiltonian matrix is extremely sparse, and is more efficiently diagonalized by iterative methods such as the Lanczos method (as we actually did). In this case the computational complexity would be O(n 4 ) if we compute all eigenvalues and eigenvectors (and still O(n 4 ) in storage space). If we compute only T of these eigenvalues and eigenvectors (with T ≤ n 2 ), the time complexity becomes O(T n 2 ) and the storage space (space complexity) also O(T n 2 ). The QAB image projection is O(n 4 ) with the simplest algorithm, and becomes O(T n 2 ) in time and space with the OMP algorithm. We thus conclude that our algorithm requires O(T n 2 ) time and space resources, with T ≤ n 2 , for a n × n image. To further decrease the complexity, a block-wise approach could be used as proposed in the Chapter 4, where a large image is divided into smaller patches denoised independently by the QAB denoiser. In this the complexity is O(T P n 2 ) for P patches of size n (<< n). Moreover, such a patch-based architecture can be improved by considering the dependence between neighboring patches by borrowing tools from the quantum interaction theory and will be discussed in Chapter 6. 

Convergence Analysis of QAB-PnP Algorithm

Despite their popularity during the last decade, the proof of convergence of PnP-ADMM algorithms may still be an issue. Some interesting developments have been proposed

during the last few years on global [START_REF] Sreehari | Plug-and-play priors for bright field electron tomography and sparse interpolation[END_REF] and fixed point [START_REF] Chan | Performance analysis of plug-and-play admm: A graph signal processing perspective[END_REF][START_REF] Chan | Plug-and-play admm for image restoration: Fixed-point convergence and applications[END_REF][START_REF] Cohen | Regularization by denoising via fixedpoint projection (red-pro)[END_REF][START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF][START_REF] Teodoro | Scene-adapted plug-and-play algorithm with convergence guarantees[END_REF][START_REF] Xu | Provable convergence of plug-and-play priors with mmse denoisers[END_REF][START_REF] Zhang | Plug-andplay image restoration with deep denoiser prior[END_REF] convergence of these algorithms, while imposing restrictions on the denoising operator. In this section, our goal is to analyse the fixed point convergence of the proposed QAB-PnP algorithm.

To enable the fixed point convergence and in particular to avoid the issue of unbounded gradient in (5.17) for pixel values equal to 0, i.e., to overcome the singularity problem at x = 0, we slightly modify the observation model (5.9) by introducing a small positive constant ϵ ≪ 1, as suggested in [START_REF] Harmany | This is spiral-tap: Sparse poisson intensity reconstruction algorithms-theory and practice[END_REF]:

(5.23)

y = P (Gx + ϵ1).
Therefore the negative Poisson log-likelihood (5.12) becomes (5.24)

f (x) = -y T log(Gx + ϵ1) + 1 T Gx,
and the corresponding gradient

(5.25) ∇ f (x) = -G T (y/(Gx + ϵ1)) + G T 1.
One should note that within practical experiments, ϵ is much smaller than any background value, so that its influence on the final output is negligible [START_REF] Harmany | This is spiral-tap: Sparse poisson intensity reconstruction algorithms-theory and practice[END_REF].

Remark 5.1. For f (x) : [0, 1] n 2 → R + , with nontrivial constant vector y ∈ R n 2 and operator

G ∈ R n 2 ×n 2 , the gradient ∇ f (x) is bounded.
Proof. Since ϵ is the lower bound of (Gx + ϵ1), therefore 1/ϵ is the upper bound of 1/(Gx + ϵ1). Since y and G are constants, they are bounded. Hence one can write: We cannot offer a general proof of this statement, also it intuitively appears highly likely. The denoising process denoted by D QA B certainly reduces the level of noise at each iteration and gets D QA B (x k ) closer and closer to x k . It is therefore fair to consider

∥∇ f (x)∥ 2 = -G T (y/(Gx + ϵ1)) + G T 1 2 ≤ G T 2 y Gx + ϵ1 2 + G T 2 ≤ δ 1 ϵ + δ 2 ≤ L < ∞ (5.26) where δ 1 , δ 2 , L ∈ R + .
that D QA B (x k ) -x k 2 decreases with k. It is also bounded by x k 2 since D QA B is a projection operator.
The rate of decrease is not a priori easy to bound, but we offer numerical evidence that the decrease is fast. Indeed, in all three examples shown in Fig. 5.4 the decrease is very fast. In particular, it is much faster that the rate of decrease of σ k def = 1/λ k . We thus generalize this result and take as generic that

D QA B (x k ) -x k 2 ≤ σ k M
where M is a system-dependent constant.

Remark 5.3 (Fixed Point Convergence of QAB-PnP algorithm). If

1. f (x) : [0, 1] n 2 → R + is analytic and has bounded gradient, i.e., for all x ∈ [0, 1] n 2 , there exists L < ∞ such that ∥∇ f (x)∥ 2 ≤ L, and 2. D QA B is a bounded denoising operator with a parameter σ k , then QAB-PnP converges to a fixed point. That is, there exists (x * , z * , u * ) such that Given that the two conditions are satisfied within the proposed framework, let us move to the proof of the fixed point convergence in Remark 5.3. We start by proving the following statements:

x k -x * 2 → 0, z k -z * 2 → 0, u k -u * 2 → 0 as k → ∞.
z k+1 -z k ≤ C 2 λ k (5.27) x k+1 -x k ≤ C 1 λ k (5.28) u k+1 -u k ≤ C 3 λ k (5.29)
where C 1 , C 2 and C 3 are constants and λ k is the penalty parameter with λ k+1 = γλ k , where γ > 1. * First step: Proof of condition (5.27). From (5.3), we have (5.30)

x k+1 = arg min

x f (x) + λ k 2 x -z k + u k 2 2 .
The first order optimality implies

(5.31) x -(z k -u k ) = - ∇ f (x) λ k .
Since the minimizer is obtained in x = x k+1 , replacing x by x k+1 and using the boundedness property of ∇ f (x), we have (5.32) 

x k+1 -(z k -u k ) 2 = ∇ f (x k+1 ) 2 λ k ≤ L λ k .
z k+1 -(x k+1 + u k ) 2 = D QA B (x k+1 + u k ) -(x k+1 + u k ) 2 ≤ σ k M = M λ k . (5.33)
One also has

z k+1 -z k 2 ≤ z k+1 -(x k+1 + u k ) 2 + (x k+1 + u k ) -z k 2 .
(5.34) Finally, using (5.32) and (5.33), we obtain

(5.35) z k+1 -z k 2 ≤ L λ k + M λ k = C 2 λ k . * Second step: Proof of condition (5.29).
From (5.5), we get

u k+1 2 = u k + x k+1 -z k+1 2 = (x k+1 + u k ) -D QA B (x k+1 + u k ) 2 ≤ M λ k . (5.36)
Using (5.36), we have (5.37)

u k+1 -u k 2 ≤ u k+1 + u k 2 ≤ M λ k + M λ k = C 3 λ k .
* Third step: Proof of condition (5.28).

(5.5) can be written as (5.38)

x k+1 = u k+1 -u k + z k+1 .
Using (5.38), we have Next, we aim at proving that {x k } ∞ k=1 is a Cauchy sequence. Therefore, one has to show that for all integer n > k, x nx k 2 → 0 as n → ∞ and k → ∞. For any finite n and k, one can write using the condition (5.28) (5.40)

x k+1 -x k 2 = (u k+1 -u k + z k+1 ) -(u k -u k-1 + z k ) 2 ≤ u k+1 -u k 2 + z k+1 -z k 2 + u k -u k-1 2 ≤ C 3 λ k + C 2 λ k + C 3 λ k-1 ≤ C 3 λ k + C 2 λ k + γC 3 λ k = C 1 λ k (5.
x n -x k 2 ≤ n-1 l=k C 1 λ l = C 1 n-1 l=k 1 λ 0 γ l = C 1 λ 0 γ k n-k-1 l=0 1 γ l . Therefore, as n → ∞ and k → ∞, x n -x k 2 → 0, since γ > 1, so {x k } ∞ k=1 is a Cauchy sequence. Hence, the sequence {x k } ∞ k=1 is convergent, thus there exits x * ∈ [0, 1] n 2 such that x k -x * 2 → 0 as k → ∞.
Similarly, one can show that the sequence {z k } ∞ k=1 and {u k } ∞ k=1 are convergent, so there exit z * , u * ∈ [0, 1] n 2 such that z kz * 2 → 0 and u ku * 2 → 0 as k → ∞. Therefore we can conclude that the proposed QAB-PnP algorithm converges to a fixed point.

■

The proof we propose is not a convergence proof in the mathematical sense, since it reposes on Remark 5.2 for which we only have plausibility arguments and numerical evidence. Nevertheless, the discussion above and the numerical results in Fig. 5.4 for three very different images, indicate that with high confidence the algorithm should converge in practice for any image.

Simulation Results

This section illustrates the efficiency of the proposed QAB-PnP algorithm for Poisson image deconvolution. An analysis of the influence of the hyperparameters on the deconvolution accuracy is first provided in Subsection 5.3.1, before comparing its performance to several state-of-the-art methods in Subsection 5.3.2. In Chapter 4, we already performed a detailed analysis of the hyperparameters σ QA B , s and ρ for the efficiency of the denoiser. We recall that these hyperparameters control respectively the smoothing of the potential to avoid localization effects in the expansion basis, and the cutoff in energy which leads to denoising. We therefore chose these hyperparameters to be optimal according to the study in the previous Chapter 4. However, the computational method used in the present work (OMP algorithm) introduces a new hyperparameter E which controls the accuracy and efficiency of the OMP process. The accuracy of OMP increases for increasing E , but at the cost of higher computational time. A trade-off is thus necessary, and we will show that the optimal value of E is also influenced by the value of the hyperparameter ℏ 2 /2m, which fixes how the local frequencies of the basis vectors vary as a function of pixels' amplitudes.

The simulations are conducted on three images, shown in Fig. 5.3. Two of them represent cropped versions of the standard Lena and fruits images. The third one was synthetically constructed so that it contains high frequencies for low gray levels and, vice versa, low frequencies for high intensity pixels. Its purpose is to illustrate the ability of the proposed deconvolution method, and in particular of the embedded quantum-based denoiser, to handle such images. All the sample images are distorted with two Gaussian blurring kernel h 4×4 σ of size 4 × 4 and standard deviation σ = 3 and σ = 5 respectively.

The study was conducted with three different Poisson noise levels corresponding to SNRs of 20, 15 and 10 dB. Note that the noise was image-dependent Poisson distributed and that the SNRs of the observations was computed a posteriori to emphasize the amount of noise.

Hyperparameter Analysis

This subsection presents a detailed analysis on the influence of the hyperparameters on the proposed method. In particular, the role of the hyperparameter E will be evaluated, given its important impact on the compromise between accuracy and computational time, and its relationship with the hyperparameter ℏ 2 /2m will be assessed. It is important to mention that in general the hyperparameter ℏ 2 /2m and the number of significant wave vectors T vary in an opposite way, one of them increasing when the other one decreases. In addition, there is a linear relation between T and the processing time.

Therefore, to achieve an optimal behaviour of the algorithm, a good balance between the hyperparameters ℏ 2 /2m and E needs to be achieved. We will also discuss the choice of the hyperparameter λ 0 which controls the iterations of the ADMM algorithm described in Section 5.1.

From this perspective, we first show that considering the wave vectors up to the energy level E and evaluating only the corresponding coefficients α i following the modified 5.1 prove that the accuracy loss, caused by the use of the parameter E within the modified OMP algorithm, is very limited. This accuracy loss is caused by the denoising process that reconstructs the denoised image only from the wave functions associated with an energy level lower than E . Indeed, although wave functions associated with higher energies are dominated by noise, they may still carry information about certain features of the clean image. The average computation time for different images obtained with a Matlab implementation on a desktop computer, with and without E , given in Table 5.2, confirms the computational efficiency gain enabled by the modified OMP algorithm embedded in QAB-PnP method.

In addition to E , as stated previously, ℏ 2 /2m is also an important hyperparameter of the proposed deconvolution technique. The hyperparameter ℏ 2 /2m dictates how the local frequencies of the basis vectors vary with the amplitude of the image pixel values.

On the other hand, E is associated with the sparsity. Given their mutual dependence, Finally, the choice of the hyperparameter λ 0 used within the iterations of the ADMM algorithm is important to accelerate the convergence. The curves in Fig. 5.7 show, within a logarithmic scale, the evolution of the root mean square error (RMSE) over the iterations of the proposed deconvolution method, for different values of λ 0 . These simulations were performed for the three images in Fig. 5 The studies performed in this subsection show that a certain range of optimal choice of the hyperparameters considered is possible. Without a priori knowledge, it should be possible to use values in this range for arbitrary images, taking care to choose E and ℏ 2 /2m in a correlated way. As a further note, keeping the hyperparameters constant to the same values for all the images considered hereafter leads to a very low PSNR degradation of about 0.1 dB. From the discussions above, one may note that the hyperparameters ℏ 2 /2m and E are primarily associated with the construction of the quantum adaptive basis and the sparsity of the clean image in this basis, both related to the denoising process. In contrast, λ 0 , the penalty parameter, regulates the restoration process by accelerating the convergence. Therefore, the optimal choice of ℏ 2 /2m and E discussed above is independent of the value of λ 0 .

Poisson Deconvolution Results

Poisson deconvolution is a well discussed domain in the literature where PnP algorithms implanting a Gaussian denoiser with or without a VST transformation have exhibited promising outcomes [START_REF] Foi | Variance stabilization in poisson image deblurring[END_REF][START_REF] Rond | Poisson inverse problems by the plug-andplay scheme[END_REF]. The proposed method is intrinsically adaptive, which makes it well-adapted to different noise statistics for the problem addressed and does not require using any additional transformation in the denoising step. This subsection regroups image deconvolution results obtained with the proposed method and five approaches from the literature. The experiments consisted in recover-138 is a standard Poisson deconvolution method that consists in estimating the image that minimizes a cost function formed by the data fidelity term in (5.12) and the classical total variation regularization [START_REF] Vieilleville | Alternating direction method of multipliers applied to 3d light sheet fluorescence microscopy im-age deblurring using gpu hardware[END_REF]. This method will be denoted by TV-ADMM hereafter. The second method denoted by ADMM+BM3D is an integration of the BM3D denoiser in the PnP-ADMM algorithm. Similarly, a deep learning denoiser trained on natural images was integrated into the PnP-ADMM scheme and used as comparison method. In particular, the CNN-based flexible learning method, known as the trainable nonlinear reaction diffusion (TNRD) [START_REF] Chen | Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[END_REF], was used given its efficiency within regularization by denoising approaches [START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF]. Finally, a PnP-ADMM algorithm coupled with an Anscombe transformation (VST) and a BM3D denoiser, denoted by P 4 IP in [START_REF] Rond | Poisson inverse problems by the plug-andplay scheme[END_REF] was used for comparison.

Note that TNRD has been also used with and without VST. As explained previsouly, the proposed method does not require such a VST-like transformation due to the adaptive nature of the embedded denoiser. Therefore, the proposed algorithm is expected to present better generic convergence properties compared to P 4 IP.

In the example in Fig. 5.8, where P 4 IP had fast convergence, the rate of convergence of QAB-PnP is similar to P 4 IP and faster than TV-ADMM, ADMM+BM3D, ADMM+TNRD and ADMM+VST+TNRD. To evaluate the computational complexity of the proposed algorithm in comparison with other standard techniques, the average computational time and required number of iterations before convergence are given in Table 5.2 with respect to different images. The results confirm the faster convergence of the proposed method, albeit, at the cost of higher computational time per iteration.

The deconvolution results obtained with the six methods can be visually appreciated in Figs. 5.9, 5.10 and 5.11. The PSNR and the structure similarity (SSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] were used to evaluate the deconvolution accuracy. The resulting numerical results, for two different blurring kernels and three different SNRs, are regroupped in Table 5.3. In particular, average and standard deviation values are reported for 200 noise realizations.

For further investigation, the quantitative results obtained with the proposed method in presence of very high-intensity noise, in particular, with SNRs close to 5 dB and 0 dB, are provided in Table 5.4.

One may observe that the proposed scheme is capable to adapt both to low and high level of noise and outperforms the five other methods in almost all the simulations. It is important to note that QAB-PnP not only provides the best average values, but also the lowest standard deviations, in particular compared to P 4 IP. This observation is confirmed by the results in Fig. 5.12, that displays, for a given simulation, the best, the worst and an intermediate result over 200 noise realizations. While the difference between these three results is barely observable for the proposed method, this is not the case for P 4 IP. 

Application to Fluorescence Microscopy Imaging

This section highlights the applicability of the proposed deconvolution method to reallife imaging applications, in particular to fluorescence microscopy imaging using, e.g.,
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confocal [START_REF] Pawley | Handbook of biological confocal microscopy[END_REF] or two-photon [START_REF] Denk | Two-photon laser scanning fluorescence microscopy[END_REF] microscopes. Fluorescence microscopy images are intrinsically noisy, contaminated by Poisson-Gaussian noise. Poisson noise is the dominating source of noise [START_REF] Vieilleville | Alternating direction method of multipliers applied to 3d light sheet fluorescence microscopy im-age deblurring using gpu hardware[END_REF][START_REF] Nam | A holistic approach to cross-channel image noise modeling and its application to image denoising[END_REF][START_REF] Zhang | A poisson-gaussian denoising dataset with real fluorescence microscopy images[END_REF], due to a limited number (∼ 10 2 per pixel) of quantized photons captured by a microscopic detector compared to normal photography (∼ 10 5 per pixel). Therefore, enhancing such contaminated fluorescence images is of interest for many modern biological studies.

Herein, we used three microscopy images from the online available data-set 1 to illustrate the potential of the proposed method. Fig. 5.13 regroups the observed distorted images, their corresponding ground truth, and the deblurred images estimated by the six methods. PSNR and SSIM values comparing the observed and the deblurred images to the clean ones are given in Table 5.5. These results clearly show the efficiency of the proposed algorithm in real fluorescence microscopy image enhancement. 

Conclusions

Limitations

An issue of our method is the computational burden. The use of the OMP algorithm already dramatically decreases this time compared to earlier implementation in Chapter 4, but other improvements are certainly possible. For small-scale images, the proposed algorithm is computational efficient but for a larger image, this process still demands higher computing resources. Moreover, processing a large-scale image in a block-wise fashion as proposed in Chapter 4, is done independently for each block. However, this strategy of processing each block separately cannot benefit from the idea of structural similarities in a local image neighborhood, which is a key feature of natural images.

Furthermore, in presence of random noise, a Gaussian smoothing is required to avoid the phenomenon of quantum localization. In absence of this smoothing, the localized adaptive vectors become less efficient for an imaging task as discussed in Chapter 4.

Perspectives

The computational limitation can be solved by incorporating a many-patch architecture based on the many-body quantum theory. Such an algorithm will be proposed in the subsequent Chapter 6. The advantage of such many-patch construction is not limited to the computing power but also removes the effect of quantum localization and efficiently preserves the structural similarities from a local image neighborhood. As shown in Chapter 4, the proposed quantum adaptive basis is equally efficient for Gaussian, Poisson and speckle noise removal problems without considering any prior information about the noise statistics. Therefore, the proposed deconvolution method could be suitable for other noise degradation than Poisson, and its evaluation in such conditions represents an interesting perspective. As another future perspective of this work one may think of implementing a more advanced inversion algorithm for a Poissonian model (e.g., SPIRAL-TAP [START_REF] Harmany | This is spiral-tap: Sparse poisson intensity reconstruction algorithms-theory and practice[END_REF]) instead of using a gradient descent method. Moreover, blind deconvolution is also an interesting perspective for future study, by coupling the proposed deconvolution algorithm with a PSF estimation method [START_REF] Du | Convolutional plug-and-play sparse optimization for impulsive blind deconvolution[END_REF][START_REF] Yu | A blind deconvolution approach to ultrasound imaging[END_REF]. Finally, such a PnP scheme can be further extended to other reconstruction problems, such as compressed sensing or super-resolution, using more efficient quantum mechanics based algorithms or by including the patch-based procedure to the proposed framework, using for example the multiple-particle quantum theory. In the following Chapter 6, we will illustrate the image-resolution task following the PnP and a more robust version of the PnP scheme, known as regularisation by denoising (RED), in combination with an advanced QAB denoised based on the many-body quantum theory. * This chapter presents materials from the journal paper [START_REF] Dutta | A novel image denoising algorithm using concepts of quantum many-body theory[END_REF] and conference papers [START_REF] Dutta | Despeckling ultrasound images using quantum many-body physics[END_REF][START_REF] Dutta | Image denoising inspired by quantum many-body physics[END_REF][START_REF] Dutta | Quantum denoising-based super-resolution algorithm applied to dental tomography images[END_REF].

Overview

Sparse representation of real-life images is a very effective approach in imaging applications, such With the growth of computing power, these patch-based algorithms exploiting NLSS have demonstrated state-of-the-art performance in image denoising, For example, dictionary learning [START_REF] Aharon | An algorithm for designing overcomplete dictionaries for sparse representation[END_REF][START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF], block-matching and 3D filtering (BM3D) [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF][START_REF] Dabov | Bm3d image denoising with shape-adaptive principal component analysis[END_REF], Non-Local Means (NLM) [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF][START_REF] Buades | Nonlocal image and movie denoising[END_REF], etc. This chapter explores such an approach of exploiting the image neighborhood by borrowing tools from quantum mechanics, precisely, the quantum interactions.

Contributions

In this chapter, we propose a novel image representation algorithm well adapted for denoising based on the theory of quantum many-body interaction. In the case of a system containing two or more quantum particles, they can influence each other's quantum state through quantum interactions. The main idea of this work is to adapt ideas from this theory to extend the concept of interaction to imaging problems. More precisely, the proposed framework consists in quantum interactions between image patches where interactions reflect patch similarity measures in a local neighborhood. In this way, each patch acts as a single-particle system, and the whole collection, that is the entire image, behaves as a many-body system where interactions describe regional similarities to neighboring patches. Herein, we show that this method constitutes a robust generalized formalism for image-independent and image-dependent noise models with an extensive study in: Earlier proposed single-particle based schemes [25, 112-114, 185, 389, 391] have proven their good restoration abilities for different noise models, but are too simple to take advantage of the structural properties of the image and are computationally costly at large scale. As we will show, the proposed generalized framework based on the use of quantum many-body physics improves the previous methods on both counts, building a more versatile computationally efficient adaptive basis that considers similarities between neighboring image patches.

In general, it may seem that there is a close architectural resemblance between the NLM and the proposed many-body scheme since similarity measure is the key for both cases. However, the two methods are different from several perspectives. The NLM image denoising algorithm exploits the self-similarities among the image patches to obtain the similarity weights resulting into a non-local weighted average scheme for denoising.

The proposed approach brings non-local characteristics within the quantum framework, where interactions between neighboring patches preserve the local structural similarities.

For each patch, these interactions convey the structural information into a quantum adaptive basis offering a good sparsifying transformation at a patch level further used for denoising. It turns out that such a theory can be elegantly written using multi-particle quantum theory instead of the single-particle one.

In the chapter, we first remind briefly of the previously proposed decomposition concept in Chaptre 4 using a quantum adaptive basis based on single-particle theory with its limitations in Section 6.2.1, and then introduce its generalization using many-body quantum theory for imaging problems in Section 6.2.2. Our image denoising algorithm is described in detail in Section 6.3. We then turn to numerical implementation of the method on several examples in Section 6.4. We first explore ways to propose automated rules for hyperparameters selection, and then display numerical results showing that the ability of the proposed method in reducing low and high intensity noise regardless of the noise statistics. We also show its good performance in real-life medical US image despeckling in Section 6.5 and clinical dental computed tomography image super-resolution subject, e.g. [START_REF] Cohen-Tannoudji | Quantum Mechanics[END_REF][START_REF] Feynman | The Feynman Lectures on Physics, Addison-Wesley world student series[END_REF][START_REF] Landau | Quantum Mechanics: Non-Relativistic Theory[END_REF].

In a non-relativistic single-particle quantum system the wave function ψ(z) describes a particle with energy E in a potential V (z) and satisfies the stationary Schrödinger equation:

(6.1) - ℏ 2 2m ∇ 2 ψ(z) + V (z)ψ(z) = Eψ(z),
with m, ℏ, ∇, and z are respectively the mass of the quantum particle, the Planck constant, the gradient operator, and the spatial coordinate. The wave function ψ(z) is an element of the Hilbert space of L 2 -integrable functions, and its modulus square i.e., |ψ(z)| 2 , gives the probability of presence of the particle at some point z on the potential

V (z).
The wave function solutions of (6.1) form a complete set of basis vectors of the Hilbert space with the following properties: i) Wave vectors are oscillating functions. ii)

Oscillation frequency increases with increasing energy E. iii) The basis vectors oscillate with a local frequency proportional to E -V (z) , thus for the same wave function the frequency differs locally depending on the local value of E -V (z). iv) The hyperparameter ℏ 2 /2m controls the dependence of the local frequency on E -V (z). These properties of the basis vectors are the key features to use them as an adaptive basis for an imaging problem. For a more detailed illustration of these features, we refer readers to Chapter 4.

Application to Imaging Problems

To adapt these concepts to image processing applications, the wave equation (6.1) is rewritten in operator notation leading to Hψ(z) = Eψ(z) with Hamiltonian operator

H = -(ℏ 2 /2m)∇ 2 + V (z).
The eigenvectors of the Hamiltonian operator are the stationary solutions of (6.1).

For imaging applications, the space is finite and discretized, and the potential V of the system may be defined as the image pixel values x. This leads to a discretized problem, where the Hamiltonian operator becomes a finite matrix and can be used as a tool for constructing an adaptive basis [START_REF] Dutta | Quantum mechanicsbased signal and image representation: Application to denoising[END_REF]. This discretized Hamiltonian operator reads:

H[i, j] =                    x[i] + 4 ℏ 2 2m for i = j, - ℏ 2 2m for i = j ± 1, - ℏ 2 2m for i = j ± n, 0 otherwise, (6.2)
where x ∈ R n 2 is an image (i.e., V = x), and x[i] and H[i, j] represent respectively the i-th component of the image x, vectorized in lexicographical order and the (i, j)-th component of the operator. Note that standard zero padding is used to handle the boundary conditions. A more detailed description of the Hamiltonian construction can be found in Chapter 4. The corresponding set of eigenvectors of the Hamiltonian operator (6.2) serves as the quantum adaptive basis on which the image is decomposed before denoising is performed by thresholding the coefficients in energy.

Shortcomings of the Single-Particle Theory in Image Processing

This method of constructing an adaptive basis using quantum principles in a singleparticle setting has already been studied in some of our previous works, notably for image denoising in Chapter 4 and deconvolution in Chapter 5. This adaptive method not only is effective for handling different noise statistics (e.g., Gaussian, Poisson) but also equally efficient for different levels of noise (low as well as high-intensity noise).

Nevertheless, there are some technical and intrinsic challenges, such as: i) Structural features are crucial for imaging applications, but this adaptive approach does not take advantage of them.

ii) The random noise present in the system leads to the well-known phenomenon of quantum localization [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF] of the wave vectors. The presence of this subtle quantum phenomenon gives additional structures to the adaptive basis and makes it less effective for image denoising. This problem was cured in Chapter 4 by adding an additional step of low-pass filtering, for example, through a Gaussian filter with appropriate standard deviation, of the noisy image. This complicates the method and in particular entails the integration of a new hyperparameter (standard deviation) in the algorithm, which increases the complexity of hyperparameter tuning.

iii) The computational burden of such a method can be quite large compared to other sophisticated state-of-the-art methods, thus preventing it from implementation in large-scale images.

In the following, we will show that these drawbacks can be addressed by constructing a new adaptive basis by exploiting quantum many-body theory, more precisely the physics of quantum interactions.

Quantum Many-Body Theory for Image Processing

Quantum Theory for Many Particles

The quantum theory described above is modified for a system with more than one particle as illustrated in Chapter 2 Section 2.8. In particular, particle-to-particle interactions take place inside the quantum system. For a system with w particles the Hamiltonian operator for the many-body system becomes [START_REF] Mahan | Local Density Theory of Polarizability, Physics of Solids and Liquids[END_REF]:

(6.3) H(z 1 , z 2 , z 3 , • • • , z w ) = - w a=1 ℏ 2 2m a ∇ 2 + V (z 1 , z 2 , z 3 , • • • , z w ),
where m a is the mass of the a-th particle and the potential 

V = V (z 1 , z 2 , z 3 , • • • , z w ) is a function of z 1 , z 2 , • • • , z w ,
Hψ(z 1 , z 2 , • • • , z w ) = Eψ(z 1 , z 2 , • • • , z w ).

Application to Image Processing

We propose to extend this multi-body theory to build an adaptive basis for imaging applications by assimilating similarities between patches into the quantum framework using the hypothesis as proposed in Chapter 2 Section 2.8. Similar to non-local means filter-based approaches, the proposed algorithm splits the image or a local region into into small patches ranging from 1 to w. Each of these patches acts as a single-particle quantum system, which allows the Hamiltonian operator to be defined for each patch as follows:

(6.5)

H a = H 0 a - ℏ 2 2m a ∇ 2 + V e f f ective a V (z a ) + I a , a = 1, • • • , w,
where H 0 a is the Hamiltonians in the patch A for a single particle system (as discretized in (6.2)). I a = w b=1,b̸ =a I ab represents the total interaction between the patch A and the other patches in the system, where I ab is the interaction between the A and B patches. associated with an energy E a . Fig. 6.1 depicts one such simple example of constructing adaptive vectors from the many-patch interaction concept. Thus the problem of finding the adaptive basis is transformed into the solution of a system of w equations, as follows:

(6.7) H a ψ(z a ) = E a ψ(z a ), a = 1, 2, • • • , w.
where similar discretization procedures should be used in each patch as in (6.2).

Definition of the Quantum Interaction Between two Image Patches

Interaction between two or more objects is a universal phenomenon that governs the world at a very basic level, fundamentally classified into four groups: gravitational, electromagnetic, strong, and weak interactions. The gravitational and electromagnetic interactions have long-range properties characterized by power laws. We extend this concept to an imaging problem by introducing the interaction between two image patches, as follows:

• There is an inverse proportionality between the interaction and the square of the Euclidean distance (i.e., physical distance) between the patches, i.e., I ab ∝ 1

D 2 ab ,
where D ab is the Euclidean distance between two patches denoted by A and B.

• There is a linear proportionality between the interaction and the absolute value of the pixel-wise difference between the patches. This process is defined pixel-wise, i.e.,

I i ab ∝ |A i -B i |, i = 1, 2, • • • , P dim
, where superscript i and P dim are associated with the i-th pixel and the number of pixels in every image patch respectively.

Hence, within the proposed image processing framework, the power law for an interacting many-patch system can be defined as (6.8)

I i ab = p |A i -B i | D 2 ab , i = 1, 2, • • • , P dim ,
where the proportionality constant p acts as a hyperparameter for the proposed formalism.

Interaction and Patch Similarity in Image Processing

In our many-patch model the proposed mathematical formalism of the power law interaction can be interpreted in the following way: . This is obtained after the combination of the initial potential (i.e., the target patch itself) with the total interaction between the target patch and its neighboring patches, exploiting the concept of patch similarity in the local neighborhood. This local-similarity is a fundamental building block of real images that preserves structural features [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF]. We note that power laws other than the inverse square law could be used, thus modifying the importance of distant patches compared to the nearby ones in the proposed methodology.

Why the Many-Patch Theory Avoids the Quantum Localization

Problem

The presence of random fluctuations in the potential of a quantum system leads to the phenomenon of quantum localization, also known as Anderson localization [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF]. This is a property of wave functions in a disordered potential which makes them exponentially localized due to destructive interference. As a consequence, the adaptive basis vectors for various imaging problems are localized at different positions of the potential in presence of random noise, which makes the adaptive basis less suitable for image decomposition tasks. In Chapter 4, this challenge was solved by adding a cumbersome first step of image low-pass filtering, with an additional hyperparameter involved. A more detailed discussion of this phenomenon, in particular for image decomposition and denoising, can be found in the previous Chapter 4.

In the framework of the many-patch theory described above, the decomposition is done at the level of the individual patch, much smaller than the full image. The inverse participation ratio (IPR) of the wave functions, defined as i |ψ(i)| 2 2 i |ψ(i)| 4 for a wave function ψ, gives a measure of the localization. For a vector uniformly spread over L indices and zero elsewhere, the IPR is exactly L. More generally, the localization length of localized wave functions is proportional to the IPR. It is known from localization theory that this localization length decreases with the intensity of the disorder. Thus unless the noise is extremely strong, the localization length may be larger than the patch size, making the localization irrelevant for our problem. Fig. 6.2 shows the average IPR (measuring the localization length) of all the adaptive basis vectors for the Lena image degraded by additive white Gaussian noise (AWGN) with increasing signal to noise ratio (SNR) using different patch sizes. This illustration confirms that the IPR decreases with the SNR, but this effect reduces with patch size. For example, for a 80 × 80 patch, the IPR decreases rapidly with decreasing SNR (increasing noise intensity) and becomes less than the patch size for SNR ≤ 12 dB, making the system extremely localized. However, for smaller patches like 7 × 7, almost no such effect is visible for similar noise intensities.

In other words, the localization effect becomes less important in a small patch than in a large one and turns out to be irrelevant below a certain level of patch size. We found out that even for fairly strong noise it is always possible to find a patch size smaller than the average IPR that makes irrelevant the localization effect, avoiding the need of the low-pass filtering to create the adaptive basis.

Quantum Many-Patch Interaction for Imaging

Applications: Problem of Image Decomposition

Key Principles of the Proposed Many-Patch Model

The objective of this work is to propose a methodology of an explicit construction of an adaptive basis related to the many-body interaction theory under the principles:

• Every small patch extracted from an image corresponds to a quantum particle; each of these image-patches or potential surfaces with a quantum particle acts like a single-particle system.

• These single-particle systems are not isolated from each others, on the contrary, the interaction between them and other patches occurs within the whole image, like a quantum many-body system, where a particle-to-particle interaction takes place in the quantum system.

• As a consequence of these interactions, the effective potential (see (6.6)) of quantum particles changes, thus the local oscillation frequency of the wave function depends on these interactions.

• These interactions transmit structural features to the wave functions through the effective potential.

• The effective potentials will be used to construct an adaptive basis for each individual patch, in particular used for the decomposition of that patch.

• As an element of the set of oscillatory functions, this basis function uses low oscillation frequencies to probe higher values of the effective potential and viceversa, i.e., local frequencies depend on the effective potential, and thus on the pixel values and inter-patch interactions.

Denoising Algorithm using Quantum Many-Patch

Interactions

This subsection illustrates in detail the application of the proposed many-patch scheme to address image denoising. In this application, the construction of an adaptive basis for each individual image-patch is the primary objective, which leads to a three step Algorithm 6.1: De-QuIP algorithm.

Input: y

, P h , W h , d, p, ℏ 2 /2m
Divide the noisy image y into small patches of size P h ; say total number is T patch . So, the patch dimension P dim = P h 2 for w = 1 : T patch do Choose one small image patch J w Create a search window of size W h centering at J w and using cyclic boundary conditions Collect all the small image patches inside this search window; say the total number is S patch for l = 1 : S patch do Calculate Euclidean distance D wl between the J w and J l patch inside the search window Calculate interaction I wl between the J w and J l patch inside the search window as,

I k wl = p |J k w -J k l | D 2 wl , k = 1, • • • , P dim
Calculate total interaction I total w between the patch J w and the patches inside the search window by taking sum over all l; i.e.,

I total k w = S patch l=1 I k wl , k = 1, • • • , P dim
Effective potential for the J w patch is

V e f f ective k w = J k w + I total k w , k = 1, • • • , P dim
Construct the Hamiltonian matrix H w using the effective potential V e f f ective w

Calculate the eigenvalues and eigenvectors of H w

Construct adaptive basis B adaptive w

using the eigenvectors ψ k w , k = 1, • • • , P dim
Project the noisy patche J w onto this adaptive basis B adaptive w

Calculate projection coefficients c w in the P dim -dimensional space. Note that,

P dim > d
Redefine the projection coefficients in the d-dim subspace as

c new k w = c k w , k = 1, • • • , d Reconstruct the patch by R w = d k=1 c new k w ψ k w
Combining all T patch number of small denoised image patches R w restores the full denoised image x

Output: x

House (256 2 ) Lake ( 2562 ) Lena (512 2 ) Hill ( 2562 ) Fingerprint (512 2 ) Saturn ( 2562 )

Flintstones (512 2 ) Ridges (512 2 ) Peppers ( 2562 ) Cameraman ( 2562 ) Bridge ( 2562 ) FIGURE 6.3. Sample images (sizes in parentheses).

tors. For an image of size n × n, this matrix is n 2 × n 2 . In general, for an arbitrary matrix, the diagonalization process would require O(n 6 ) operations and O(n 4 ) storage space.

However, for a highly sparse matrix (like the Hamiltonian matrix), efficient iterative methods such as the Lanczos method reduce the computational complexity to O(n 4 ) operations with O(n 4 ) space complexity required for the diagonalization.

In the case of the many patch algorithm, the denoising is done patch-wisely (of size P h × P h ), the time and space complexity become O(P 4 h ) for each denoise region, much smaller than the previous one for P h ≪ n. Yet, the best time complexity one can achieve is O(dP 2 h ) if one computes only the d eigenvectors used for the restoration task (with d ≤ P 2 h ), with a space complexity also in O(dP 2 h ).

Apart from the diagonalization, the second major contribution comes from the computations of the transform coefficients using an iterative scheme that would require O(dP h ) operations for each denoise region.

The interaction count for each denoise region gives a complexity in total of O((S patch + 1)P h ) if there are S patch patches inside the W h × W h size search window.

Therefore, if the image consists of T patch regions (patches), then the dominant computational cost of the proposed denoising algorithm is O(T patch dP 2 h ). Additionally, parallel computation can be used to boost up the process even further.

Simulation Results

This section illustrates the interest of the proposed approach in image denoising problems and explores ways to choose the suitable hyperparameters. At the outset, Subsection 6.4.1 explains the reliance of the proposed denoising scheme on the optimal choice of the hyperparameters P h , W h , p, ℏ 2 /2m and d, and explores rules for their possible estimations.

For a thorough investigation, we explore cases of four different noise intensities (low to high) with image independent (e.g., Gaussian) and dependent (e.g., Poisson) noise models.

The subsequent Subsection 6.4.2 provides denoising results and a comparison between the proposed approach and several standard state-of-the-art methods. The effect of localization of the basis vectors is associated with the length of the image patch, as explained in Subsection 6.2.2.5. The respective localization length or IPR decreases for increasing noise intensity. To deal with this quantum localization phenomenon, the size of the patch should be always less than or equal to the localization length of the basis vectors for different levels of noise. If the localization length is greater than the size of the patch, the basis vectors probe the entire region of the image patch with different ranges of oscillation frequencies depending on the intensity of the image pixels. On the contrary, a smaller localization length leads to an exponential localization of the basis vectors on a specific part of the image patch. Thus, these localized vectors will not have different frequencies at different pixel values and lose a key asset of this formalism. The drastic effect of this localization phenomenon on image denoising is shown in the previous Chapter 4, where an additional Gaussian smoothing was necessary before computing the quantum adaptive basis (QAB), used as a denoiser in that process.

Influence of Hyperparameters

On the contrary, the current formalism eliminates this issue without any additional computational requirements. Furthermore, a smaller patch size helps to reduce the computational complexity, as discussed in the section above. As a consequence, De-QuIP denoiser is more computationally efficient than the previously proposed QAB denoiser in Chapter 4, applied patch by patch independently. Table 6.1 summarizes the run time using the QAB and De-QuIP denoiser with increasing patch size. The peak signal to noise ratios (PSNR) and the structure similarity (SSIM), used as denoising quality metrics, are given to have a quantitative analysis concerning the patch size. All the algorithms have been implemented in Matlab and tested on a computer with an Intel(R) Core(TM) i7-10510U CPU of 4 cores each with 1.80 GHz, 16 GB memory and using Windows 10 Pro version 20H2 as operating system. From Table 6.1, one can see that the computational time for both denoisers increases as the patch size increases but the denoising performance (i.e., PSNR and SSIM values) for De-QuIP first increases with the patch size and then begins to decrease gradually after size 11 × 11. Whereas, QAB requires much larger patches to achieve a similar performance, which essentially imposes a huge computational burden on the process. The gradual decrease in the performance of the De-QuIP denoiser for increasing patch size is expected due to the localization phenomenon, which is discussed above. Therefore, a smaller patch size preserves the fundamental features of these adaptive vectors and reduces the computational complexity and run time. Herein, we will only focus on the patch sizes 5 × 5, 7 × 7 and 11 × 11 for further investigations.

Effect of the Search Window Size W h

The search window is the image region aroung the current patch regrouping all the patches interacting with it. Following the discussion in Subsection 6.2.2.3, the size of the search window plays an important role in preserving the structural similarities in a local neighborhood. This search window is usually defined as a square window of limited size so that the implementation is restricted to a small neighborhood centered on the target patch (to be denoised) instead of the whole image. In the literature, mostly two types of approaches are used, based on a fixed search window size [START_REF] Deledalle | Image denoising with patch based pca: local versus global[END_REF][START_REF] Mahmoudi | Fast image and video denoising via nonlocal means of similar neighborhoods[END_REF][START_REF] Tasdizen | Principal neighborhood dictionaries for nonlocal means image denoising[END_REF][START_REF] Vignesh | Fast non-local means (nlm) computation with probabilistic early termination[END_REF] or an adaptive approach [START_REF] Kervrann | Optimal spatial adaptation for patch-based image denoising[END_REF]. In this work, we concentrate on the fixed size approach for examining the effect of the search window on De-QuIP. search window size changes with the patch size and not with the noise model within the proposed algorithm.

Influence of the Proportionality Constant p

As mentioned above, the proportionality constant p regulates the interaction term in the effective potential, and consequently the shape of the basis vectors. Hence, there exists an optimal choice of p depending on the size of the patch for optimal performance of De-QuIP for a given noisy image. These optimal p values are shown as a function of SNR in Fig. 6.6 using box-plots for a fixed patch size. The observations confirm that there is a tendency for optimal values to decrease as the noise level increases. The explicit details of these optimal values are reported in Table 6.2. A possible explanation for this phenomenon comes from the fact that dissimilarities increase with the noise intensity in a local-neighborhood. Hence, to balance the original potential (patch pixels) and the interactions in the effective potential, the hyperparameter p decreases.

The data in Fig. 6.6 enables rules to fix the p value closer to its optimal values. The distribution of the data gives an intuition about a possible linear relationship between the optimal p and the SNR. Therefore, the proportionality constant p can be chosen from the following rule: (6.9) In Fig. 6.6, the best linear fits to the optimal p as a function of SNR are shown for three different patch sizes as well as for Gaussian and Poisson noise models. These linear fits give a robust way of choosing the suitable p for a given patch size and noise level.

p = m 1 × (SNR) + c 1 .
The linear fit parameters are summarized in Table 6.3 together with the ℓ 2 error and the resulting average loss in the denoising performance in terms of PSNR and SSIM.

One may notice that the denoising performance loss with rule (6.9) rather than the optimal choice is negligible. This is expected due to the smooth nature of the PSNR curve with a broad maxima shown in Fig. 6.5(a), which makes the De-QuIP resilient to small sub-optimalities in the adoption of p. Hence, it is anticipated that the parameters learned from the sample images to estimate p using (6.9), will be effective for a large set of images. These conclusions are valid for various cases of noise models and patch sizes, as shown in the simulations results. Furthermore, an adaptive approach of tuning p that depends on the image patch gives an alternative to the above rules and opens an interesting perspective for future investigation.

Influence of ℏ 2 /2m and the Subspace Dimensionality d

The last two hyperparameters to be analyzed are ℏ 2 /2m and the subspace dimensionality d. Although the utilization of these two hyperparameters seems to be different, the first one being used in the construction of the Hamiltonian operator and the other one acting as a threshold, there is a deep connection between them. In this subsection, we will explain this connection with experimental validation and propose rules for automated estimation of their optimal choices. to use an adaptive way to select ℏ 2 /2m that depends on the image patch to have the optimal performance of De-QuIP. Herein, it is possible to write the hyperparameter in terms of the difference between this maximum and minimum pixel values multiplied by a factor F factor , for example, for the patch A, (6.10)

ℏ 2 /2m = F factor × (A max -A min ),
where A max , A min are the maximum and minimum pixel values of the patch A. Hence, the optimal choice of F factor is needed to have the best possible output.

In this proposed scheme, the subspace dimensionality d is used as the threshold for truncating high energy wave solutions, which mostly carry noise information. Hence, an optimal choice of d exists for a noisy image that yields the best denoising output depending on the patch size. ℏ 2 /2m or say F factor controls the frequency distribution across the basis vectors since the maximal frequency of a vector with energy E at the local pixel value V is (E -V )/(ℏ 2 /2m) . Hence, the maximal frequency decreases with increasing F factor . As a consequence, low-energy basis vectors become more prominent to distinguish low and high pixel regions using different levels of frequency. Thus, the optimal subspace dimensionality d decreases as F factor increases. These optimal choices vary with the image patch size and noise statistics. Table 6.4 and Table 6.5 show these optimal values that give the best output PSNRs for the first seven sample images. In Fig. 6.7, all these optimal values that give the best output PSNRs for the first seven sample images are shown as a scatter-plot of F factor vs d, which clearly shows their inverse relationship, i.e., d decreases with F factor 's growth or vice-versa and validates our above arguments.

These experimental data enable an automated way of selecting the values of d and F factor close to their optimalities. To do this, the optimal d values are shown in Fig. 6.8

as a function of SNR using box-plots for a fixed patch size, for the Gaussian and Poisson cases. The observation shows a very predictable behaviour of this optimal d as a function of SNR which is expected as it needs to be further thresholded as the noise increases.

For a specific patch size, the optimal d and SNR follow a linear relationship. Therefore, the subspace dimensionality d and F factor can be inferred from the following two rules, ( As explained earlier, the De-QuIP follows a similar principle to the NLM approach.

d = m 2 × (SNR) + c 2 , (6.12) F factor -l 1 = l 3 /(d -l 2 ). 6.11) 
Comparisons with NLM-based state-of-the-art methods are thus provided in order to prove the efficiency of the proposed algorithm. However, for a comprehensive survey of the denoising ability of De-QuIP, rigorous comparisons with contemporary noise removal methods from the literature are also presented. For the recovery of Gaussian corrupted images, the following methods were used for comparison: NLM method using PCA called PND in [START_REF] Tasdizen | Principal neighborhood dictionaries for nonlocal means image denoising[END_REF], two patch-based PCA for NLM denoising methods referred to as PGPCA (global approach) and PLPCA (local approach) in [START_REF] Deledalle | Image denoising with patch based pca: local versus global[END_REF], BM3D [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF], dictionary learning (DL) method [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF], graph signal processing (GSP) method [START_REF] Pang | Graph laplacian regularization for image denoising: Analysis in the continuous domain[END_REF], and finally, our earlier implementations of quantum adaptive basis (QAB) for image denoising based on the single particle theory from Chapter 4.

For the recovery of Poisson corrupted images, comparisons have been carried out with recent algorithms dedicated to the Poissonian model such as Poisson non-local PCA (PNLPCA) [START_REF] Salmon | Poisson noise reduction with non-local pca[END_REF], BM3D consolidated with the Anscombe transform [START_REF] Makitalo | Optimal inversion of the anscombe transformation in low-count poisson image denoising[END_REF] leveled as ATBM3D, and finally the QAB from Chapter 4 method.

The proposed denoising algorithm has been extensively compared to other standard methods to demonstrate the accuracy of De-QuIP. Detailed quantitative evaluations in terms of PSNR and SSIM for both noise models are available in Tables 6.8-6.9. From face of the Flintstones, and around the sharp edges of the House images, while De-QuIP preserves all these image features in a better way and consequently provides a denoised image closer to the original one. This is due to the interaction term that allows De-QuIP to better extract the image information. Although, for the increasing noise intensity, some artefacts can be observed in the denoised images (for example in House, Saturn, Through visual and quantitative inspections of Figs. 6.11-6.12, it is clear that the proposed De-QuIP uniformly outperforms all the NLM-based approaches with a significant increase in terms of PSNR and SSIM. For Gaussian corrupted images, BM3D is still the best method in most cases, but De-QuIP allows competitive comparisons in all scenarios. addition, for increasing noise intensity, this Anscombe transformation loses its accuracy [START_REF] Dutta | Plug-and-play quantum adaptive denoiser for deconvolving poisson noisy images[END_REF], which is clearly observable in the Fig. 6.13(b) in the cases of low SNR. On contrary.

Noisy
De-QuIP is a straightforward method without having any such transformation and efficiently shows good denoising performance in all situations. Similar to the Gaussian 6.5. APPLICATION TO ULTRASOUND IMAGE DESPECKLING case, De-QuIP outperforms PNLPCA, a NLM based method, by a large margin. This proves its adaptability for high as well as for low SNR images regardless of their noise statistics which can be viewed as a strong point in several practical applications.

Application to Ultrasound Image Despeckling

In this section, for further illustration of the potential of De-QuIP, we investigated its ability for real medical ultrasound (US) image despeckling. US imaging is an integral part of modern medical science as it gives harmless, non-invasive, real-time images in an affordable way. The main artefact affecting US images is a random granular pattern, the speckle, which is generated by random constructive and destructive interference between US waves. This phenomenon related to the acquisition system is used as a source of information about the tissues in several applications, but can also affect the interpretability of the images by diminishing their readability. Indeed, the speckle does not follow an additive rule and has a complex noise distribution. Therefore, the important task of estimating speckle-free US images, known as despeckling [START_REF] Liu | Sar speckle removal using hybrid frequency modulations[END_REF] in the relevant literature, has been extensively explored using various schemes [START_REF] Achim | Novel bayesian multiscale method for speckle removal in medical ultrasound images[END_REF][START_REF] Lee | Digital image enhancement and noise filtering by use of local statistics[END_REF][START_REF] Santos | Ultrasound image despeckling using stochastic distance-based bm3d[END_REF][START_REF] Yu | Speckle reducing anisotropic diffusion[END_REF] to enhance the readability of the US images.

Ultrasound Image Despeckling Performance of De-QuIP

Despeckling performance of De-QuIP is investigated through a phantom as well as four real cancer and two non-cancer thyroid US images acquired with a 7.5 MHz linear probe.

We are proposing a comprehensive study of this problem here. The estimated despeckled outcomes are compared with three existing despeckling algorithms, the anisotropic diffusion (AD) [START_REF] Yu | Speckle reducing anisotropic diffusion[END_REF], Lee [START_REF] Lee | Digital image enhancement and noise filtering by use of local statistics[END_REF] and NLM [START_REF] Tasdizen | Principal neighborhood dictionaries for nonlocal means image denoising[END_REF] filters. For the quantitative analysis, the contrast-to-noise-ratio (CNR) and resolution loss (RL) are regrouped in Table 6.10. In that De-QuIP offers a better image contrast (higher CNR than AD, Lee and slightly lower than NLM, which over-smooths the images and yields poor resolution) while having less spatial resolution loss (De-QuIP has less spatial resolution loss compared to the native US image). Note that these images are chosen arbitrarily, that is, the quality of the results should not depend on the data tested.

Application to Clinical Dental Computed Tomography Image Super-Resolution

Medical image resolution, critical in number of clinical applications, is subject to physical limitations, such as the X-ray doses in the case of computed tomography (CT) considered herein. Therefore, enhancing spatial resolution in post-processing, referred to as superresolution (SR) in the related literature, is an important research field. Most of the existing algorithms are based on modeling image degradation by specific operators such as blurring or downsampling, or on machine learning strategies requiring training databases. In this section, we focus on the first approach and in particular on algorithms exploiting the potential of image denoising in more complex image restoration tasks such as SR [START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF][START_REF] Venkatakrishnan | Plug-and-play priors for model based reconstruction[END_REF]. More precisely, we propose two algorithms, both exploiting the De-QuIP denoiser and a computationally efficient way of handling simultaneously the decimation and blur operators based on their underlying properties in the Fourier domain within SR.

Image Super-Resolution Problem

The single image SR problem is a process of retrieval of an unknown high-resolution (HR) image x ∈ R sN from a noisy low-resolution (LR) and spatially decimated (by a factor s > 1) measurement y ∈ R N , modeled as, (6.13)

y = SGx + e,
where S ∈ R N×sN and G ∈ R sN×sN are respectively the decimation and blurring/convolution operators, and e ∈ R N is an additive white Gaussian noise (AWGN). Note that y, x and e are expressed in standard vectorized lexicographical order. G is assumed to be a block circulant matrix with circulant blocks (BCCB) for computation efficiency.

The maximum-a-posteriori (MAP) estimator formulates this highly ill-posed estimation problem as an optimization of a cost function formed by a data fidelity term (quadratic herein given the Gaussian noise assumption) and a regularization term g(x)

resulting from an a priori statistical distribution of x

(6.14) x = 1 2 arg min x ∥SGx -y∥ 2 2 + λg(x),
where x is the restored HR image and λ is a hyper-parameter. Therefore, a suitable prior based on strong assumptions about the HR image is crucial to obtain a reliable solution and leads to the question of the appropriate choice of this regularization term.

Over the years, various regularization functions have been proposed in the literature, among which the most common are based on the sparsity of the HR image through an application-dependent transformation.

As an alternative to the explicit choice of the regularization, the Plug-and-Play (PnP) scheme [START_REF] Venkatakrishnan | Plug-and-play priors for model based reconstruction[END_REF] provides a way to turn an inverse problem into a chain of denoising processes and opens the possibilities for the existing state-of-the-art denoisers (e.g., BM3D

[82], TRND [START_REF] Chen | Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[END_REF], etc.) to act as an underlying prior. Another scheme called Regularization by Denoising (RED) [START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF] follows similar principles. The good performance of these PnP and RED denoising engines [START_REF] Chan | Plug-and-play admm for image restoration: Fixed-point convergence and applications[END_REF][START_REF] Cohen | Regularization by denoising via fixedpoint projection (red-pro)[END_REF][START_REF] Reehorst | Regularization by denoising: Clarifications and new interpretations[END_REF][START_REF] Reehorst | Regularization by denoising: Clarifications and new interpretations[END_REF][START_REF] Rond | Poisson inverse problems by the plug-andplay scheme[END_REF][START_REF] Sun | Async-RED: A provably convergent asynchronous block parallel stochastic method using deep denoising priors[END_REF] as an underlying prior is discussed in Chapter 3 in detailed.

In this section we exploit these denoising engines using the De-QuIP denoiser to propose implicit regularization functions for solving the SR inverse problem expressed in (6.13). The following subsection introduce the main principle of De-QuIP denoiser and its implementation into SR PnP and RED algorithms. The PnP alternating direction method of multipliers (ADMM) scheme provides an elegant way to separate the problem (6.14) into an inversion step and a denoising process, where the latter is solved separately by an off-the-shelf denoiser. Thus the PnP scheme offers an intrinsic association between the regularization function and the denoising operator.

Finding the MAP estimator (6. 

L (x,v,u) = 1 2 ∥SGx -y∥ 2 2 + λg(v) + β 2 ∥x -v + u∥ 2 2 ,
where u and β are the Lagrangian multipliers and penalty parameter respectively. After variable splitting, we obtain:

x k+1 = arg min x ∥SGx -y∥ 2 2 + β 2 x -v k + u k 2 2 (6.17a) v k+1 = arg min v λg(v) + β 2 x k+1 -v + u k 2 2 (6.17b) u k+1 = u k + x k+1 -v k+1 (6.17c)
Note that the first step (6.17a) has a closed-form solution as, (6.18)

x k+1 = G H S H SG + βI -1 G H S H y + β(v k -u k ) , Since G is BCCB, G = F H ΛF and G H = F H Λ H F.
Here F and F H are respectively the Fourier and inverse Fourier transformations, G H and S H are associated with the conjugate transpose of G and S, Λ is a diagonal matrix, whose diagonal elements are the Fourier transformation of the first column of G, and I ∈ R sN×sN is the identity matrix.

Besides, it is worth mentioning that the decimation operator S prevents this analytical solution to be implemented efficiently in the Fourier domain. Consequently, most existing methods use a gradient descent algorithms to solve (6.18). However, following the work in [START_REF] Zhao | Fast single image super-resolution using a new analytical solution for ℓ 2 -ℓ 2 problems[END_REF], (6.18) maybe rewritten as, (6. [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF])

x k+1 = F H 1 s Λ H Λ + βI -1 F G H S H y + β(v k -u k )
where

Λ ∈ C N×sN is defined as Λ = [Λ 1 , Λ 2 , • • • , Λ s ] and the blocks Λ j ∈ C N×N for j = 1, 2, • • • , s obey diag{Λ 1 , Λ 2 , • • • , Λ s } = Λ,
which ensures a direct computational effective implementation to solve (6.18).

Moving to eq. (6.17b), that is associated with the denoising of the noisy image ṽk =

x k+1 + u k . Hence, following the PnP method we can apply the De-QuIP denoiser D (symbolic notation) for solving step (6.17b), this leads to (6.20) v k+1 = D ṽk .

Super-Resolution Regularization by denoising with De-QuIP

The RED scheme [START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF] is an alternative to PnP ADMM which allows integration of denoising algorithms in more complex image restoration tasks such as SR. Unlike PnP, RED proposes an explicit construction of the regularization function of the form of an image-adaptive Laplacian based on an external denoiser. This regularization function uses the inner product between the image and its denoising residual. Thus, considering

De-QuIP denoiser D as the denoising operator, the associated RED-prior function is defined as g(x) = 1 2 x T (x -D(x)), and leads to, ∇g(x) = (x -D(x)), i.e., the gradient of the RED-prior is the denoising residual [START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF].

Similarly to the PnP scheme in Section 6.6.2.1, an ADMM-based algorithm can be designed to find the MAP estimator in (6.14) for the RED regularization function. The associated augmented Lagrangian function becomes 2 2 , (6.21) which leads to following iterative scheme:

L (x,v,u) = 1 2 ∥SGx -y∥ 2 2 + λ 2 v T (v -D(v)) + β 2 ∥x -v + u∥
x k+1 = arg min x ∥SGx -y∥ 2 2 + β 2 x -v k + u k 2 2 , (6.22a) v k+1 = arg min v λ 2 v T (v -D(v)) + β 2 x k+1 -v + u k 2 2 , (6.22b) u k+1 = u k + x k+1 -v k+1 . (6.22c)
Notice that the step (6.22a) has the same analytical solution of the form (6.19) following the derivations proposed in [START_REF] Zhao | Fast single image super-resolution using a new analytical solution for ℓ 2 -ℓ 2 problems[END_REF]. Also, considering the property of RED gradient the second step (6.22b) leads to the following solution, (6.23)

v k+1 = 1 λ + β λD(v k ) + β(x k+1 + u k ) ,
where D represents the quantum adaptive denoiser De-QuIP.

Experimental Results on Clinical Dental Computed Tomography Images

This subsection regroups experiments of SR image reconstruction using the proposed algorithms PnP with De-QuIP and RED with De-QuIP, respectively denoted by PnP-De-QuIP and RED-De-QuIP, on dental CT data. In dental applications, cone beam CT (CBCT) is increasingly used in clinics, but suffers from low spatial resolution because of low X-ray dose requirements, for particular application such as endodontics that concerns the root canal. In this work, µCT, only available for extracted teeth given the small tube and the high radiation dose, is used to obtain the ground truth.

Three methods from the literature have been used to evaluate the efficiency of the proposed methods: i) a fast SR algorithm with total variation regularization [START_REF] Zhao | Fast single image super-resolution using a new analytical solution for ℓ 2 -ℓ 2 problems[END_REF] denoted proposed SR algorithms for enhancing the CBCT images, particularly for enhancing the region of interest, the dark region in the middle of the tooth, which is the canal root.

Conclusions

A novel image denoising algorithm inspired by the quantum many-body theory has been developed in this chapter. This gives a way to adapt the concept of interaction from the many-body physics to an imaging problem. More precisely, the interactions between image patches are nothing more than a reflection of the similarity-measures in the optimal ones when less information is available.

In real-life problems, De-QuIP shows good performance, for example in medical US image despeckling applications demonstrates its ability in handling multiplicative noise efficiently. Furthermore, we proposed two new SR algorithms combining the adaptive quantum denoiser De-QuIP and an analytical solution of the inversion step. This property increases the denoiser's efficiency while acting as a PnP or RED prior in a SR problem.

Comparisons with standard techniques justify the potential of the proposed schemes in clinical dental computed tomography imaging applications.

Limitations

In this chapter, we have made a comprehensive study to optimize the relevant hyperparameter values and proposed automatic rules to tune them efficiently based on some physical intuitions. Despite these observations to guide the choice of hyperparameters, they are generally limited to the whole image and cannot be exploited patch-wise. It raises the question of using different hyperparameter values for different patches due to the nonlocal structure of the De-QuIP algorithm. Furthermore, patch-dependent hyperparameters may further enhance the adaptability of De-QuIP. In Chapter 7, we will address this issue.

Perspectives

Adaptation of this new quantum many-body idea opens up a new domain of future explorations. Since De-QuIP primarily has a non-local nature and significantly outperforms contemporary NLM-based methods, the first obvious perspective comes from the extension of this idea of interactions for collaborative patch denoising, as originally proposed in [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF]. * This chapter presents materials from the submitted journal paper [START_REF] Dutta | DIVA: Deep unfolded network from quantum interactive patches for image restoration[END_REF] and conference papers [START_REF] Dutta | Deep unfolding of image denoising by quantum interactive patches[END_REF][START_REF] Dutta | Adaptive contrast enhancement of cardiac ultrasound images using a deep unfolded many-body quantum algorithm[END_REF]. 

Overview

Y = OX + e,
where, Y and X are the low quality observation and the underling true image respective, respectively, the degradation operator is O, and e is associated with an additive noise.

The Chapter 3 explains that the nature of the degradation operator O sets the tone of the restoration process of the latent high-quality image X . More precisely, we get a denoising [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF][START_REF] Dong | Nonlocal image restoration with bilateral variance estimation: A low-rank approach[END_REF][START_REF] Donoho | Ideal spatial adaptation by wavelet whrinkage[END_REF][START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF], deblurring [START_REF] Chan | Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers[END_REF][START_REF] Chen | Compressive deconvolution in medical ultrasound imaging[END_REF][START_REF] Danielyan | Bm3d frames and variational image deblurring[END_REF][START_REF] Yang | A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data[END_REF] or super-resolution (SR) [START_REF] Gao | Image super-resolution with sparse neighbor embedding[END_REF][START_REF] Mudunuri | Low resolution face recognition across variations in pose and illumination[END_REF][START_REF] Zhao | Fast single image super-resolution using a new analytical solution for ℓ 2 -ℓ 2 problems[END_REF] problem if O is an identity, a blurring or a subsampling operator, respectively. In practice, the estimation of the latent image X from a degraded observation by neutralizing operator O's effects is a challenging ill-posed inverse problem and has been extensively studied over the years, yet remains an active field of research.

Related Works

Traditionally, the restoration process is framed as a model-based optimization problem from a Bayesian perspective, in which the desired solution is obtained by minimizing the sum of a regularization and a data fidelity term [START_REF] Aharon | An algorithm for designing overcomplete dictionaries for sparse representation[END_REF][START_REF] Donoho | Ideal spatial adaptation by wavelet whrinkage[END_REF][START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF][START_REF] Mairal | Sparse representation for color image restoration[END_REF][START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF]. Later, datadriven non-local self-similarity (NLSS) filters [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF][START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF][START_REF] Durand | Fast bilateral filtering for the display of high-dynamicrange images[END_REF][START_REF] Kou | Gradient domain guided image filtering[END_REF][START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF][START_REF] Yu | Speckle reducing anisotropic diffusion[END_REF], in particular, non-local regularization approaches [START_REF] Dong | Nonlocally centralized sparse representation for image restoration[END_REF][START_REF] Dong | Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization[END_REF][START_REF] Sun | Gradient profile prior and its applications in image super-resolution and enhancement[END_REF][START_REF] Teodoro | Image restoration and reconstruction using variable splitting and class-adapted image priors[END_REF] blending the NLSS and low-rank regularity, dominated the field due to their state-of-the-art restoration performances.

However, these schemes require conducting a costlier computation process and manual tuning of several hyperparameters, which are the primary challenges of these strategies.

Based on deep convolutional neural networks (CNN), deep-learning (DL)-based strategies brought an alternative to the well-established model-based methods to counter such imaging problems [START_REF] Anwar | Densely residual laplacian super-resolution[END_REF][START_REF] Dong | Learning a deep convolutional network for image super-resolution[END_REF][START_REF] Dong | Denoising prior driven deep neural network for image restoration[END_REF][START_REF] Schmidt | Shrinkage fields for effective image restoration[END_REF][START_REF] Zha | Low-rankness guided group sparse representation for image restoration[END_REF][START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF] 

Brief Review of Quantum Interactive

Patches-Based Denoising

To facilitate the understanding of the proposed method, we briefly revisit the baseline De-QuIP algorithm as proposed in Chapter 6 for image denoising and its main properties.

The De-QuIP Scheme

Built on an underlying nonlocal architecture, De-QuIP offers an adaptive way of image denoising based on the theory of quantum many-body interaction. The theory of quantum many-body physics describes many-body quantum systems, where generally particle-toparticle interactions emerge. De-QuIP provides a framework for extending this concept of interaction to imaging problems. Effectively, De-QuIP divides an image into small patches, and each image patch acts as a single-particle system while interacting with its neighbors, i.e., with neighboring patches, inside the whole image, similarly to a many-body system. Indeed, these interactions between neighbors reflect their mutual similarities that enhance the denoising performance of De-QuIP significantly.

Similar to any denoising method, the goal is to estimate the underlying clean image gives the adaptive transformations for the respective patch. Thus, for a system with multiple particles, the Hamiltonian operator H a for the a-th patch is defined by:

X ∈ R M×N from
(7.2) H a = - ℏ 2 2m ∇ 2 + J a + I a ,
where J a and I a are respectively the pixels' values and interaction term for the a-th patch. The corresponding set of eigenvectors B a of H a acts as the quantum adaptive basis for the a-th patch. The key steps of De-QuIP algorithm are as follows.

• Patch extraction: The patch extraction step primarily uncoils small patches from the observed image and assimilates their neighbors into their respective local groups. Let us denote by J a a patch of size n 2 whose upper-left pixel position is a, and by Ω the set containing all such patches extracted from the image y. For all J a ∈ Ω, one creates a window of size W × W centered on J a and accumulates all patches inside the window in a set denoted by S J a to create local groups.

• Total interaction: The goal of the interaction step is to preserve local structures/similarities by exploiting the local groups through a notion akin to the interactions in quantum mechanics. This step computes the interactions L ab , for all J b ∈ S J a and all J a ∈ Ω, using power laws of physics, i.e., interaction is linearly proportional to the pixel-wise difference In this construction the proportionality constant p acts as a hyperparameter.

K k ab = |J k a -J k b | for k = 1, • • • , n
• Hamiltonian operator and adaptive basis: This step formulates the energy or Hamiltonian operators of the extracted patches by incorporating their total interaction with their neighbors in the local group using (7.2). The associated set of eigenvectors B a of the Hamiltonian operator H a operates as the adaptive basis for the current image patch J a .

• Thresholding: The thresholding is processed on the coefficients resulting from patch projections onto their respective adaptive basis. Hence, the noise is attenuated by projecting J a onto B a and performing hard/soft-thresholding T in energy.

Finally, reverse projecting the truncated coefficients reinstates the denoised patch Ĵa , ∀J a ∈ Ω.

• Patch accumulation: This step accumulates all the denoised patches to their original positions and normalizes them to reconstruct the estimated denoised image x. In the following, the patch extractor operator is denoted by E, while the operation of accumulating the patches to form the denoised image is denoted by

E -1 .
In the De-QuIP framework, the preserved spatial information by the patch interaction phenomenon coherently passes through the Hamiltonian operator to the quantum adaptive basis and enables the algorithm to handle denoising tasks regardless of the noise intensity, statistics and image nature. Its application field is not limited to denoising tasks, and its efficiency has been illustrated in various imaging problems such as despeckling and super-resolution as shown in Chapter 6. Fig. 7.1(a) depicts the De-QuIP architecture, where interaction, proportionality constant, adaptive basis and thresholded coefficients are denoted by L, P, B and R respectively.

Shortcomings of De-QuIP

The major challenge of De-QuIP is its high computational cost of tuning the hyperparameters p, (ℏ 2 /2m) and energy threshold. In Chapter 6, the influence of these hyperpa- 

Proposed DIVA Architecture

The main idea behind the proposed unfolding strategy is to replace the matrix multiplication steps in De-QuIP by convolution layers. The analogy between the original algorithm and its unfolded version is illustrated in Fig. 7.1. The proposed DIVA network primarily stands upon eight main pillars.

• Extraction layer: Similar to the De-QuIP algorithm, the extraction layer in DIVA assembles all patches from a local window of size W × W centered at J a in a local patch-group denoted as S J a , ∀J a ∈ Ω. Let the cardinality of S J a be κ, ∀J a ∈ Ω and ζ be the cardinality of Ω. The patch extraction operation from the local window can be defined as a matrix multiplication by E J a ∈ R n 2 κ×M N for each J a . Therefore, mathematically, G J a = E J a y, where G J a ∈ R n 2 κ is the concatenated vectorized local patch group for each J a . Thus, for the whole image, the patch extractor operator

E ∈ R ζn 2 κ×M N is constructed by concatenating E J a ∈ R n 2 κ×M N ∀J a ∈ Ω. Finally, J a
and G J a ∀J a ∈ Ω are concatenated and reshaped to construct matrices J ∈ R ζ×n 2 and G ∈ R ζ×n 2 κ , further considered as inputs for the next layer. 

(k = 1, • • • , n 2 ) and patch b (b = 1, • • • , κ; ̸ = a)
respectively. Therefore, the total interaction can be expressed as (7.4)

I k a = κ b=1,b̸ =a p k ab K k ab D 2 ab = κ b=1,b̸ =a p k ab L k ab , for each G J a .
In matrix notation, I a = P ab L ab , for each G J a , where I a ∈ R n 2 , P ab ∈ R n 2 ×n 2 (κ-1) , and L ab ∈ R n 2 (κ-1) respectively denote the total interaction for patch J a , proportionality constant in local group G J a , and interaction between J a and J b patches.

At this point, the main challenge is to tune the values of P ab so that I a can efficiently preserve the local information and incorporate them into the Hamiltonian.

One may note that this process is equivalent to a convolution between L ab and a learnable filter C 1 a of appropriate size. Hence, the local operation in the layer is, (7.5)

I a = C 1 a ⋆ L ab , ∀G J a ,
where ⋆ indicates the convolution product. This convolution layer is followed by a Rectified Linear Unit (ReLU) to truncate the insignificant contributions of the interactions. Finally, by concatenating I a , ∀G J a , one obtains I ∈ R ς×n 2 .

• Construct the Hamiltonian kernel: In the baseline architecture of De-QuIP, for each J a , the Hamiltonian/energy operator depends on the hyperparameter (ℏ 2 /2m) (i.e., the Planck constant), the total interaction I a and the original potential/pixels' values J a . This operator gives the adaptive basis B a on which the noisy patch J a is projected. The integration of the local interactions, bringing a non-local dimension to the formalism, is a core feature of De-QuIP.

This physical attribute of the Hamiltonian operator is preserved in this step by constructing a kernel

(7.6) C 2 a = ℏ 2 2m a ∇ 2 + J a + I a , ∀J a ∈ Ω,
where different learnable values of (ℏ 2 /2m) a are allotted instead of a constant one.

This kernel C 2 a mimics the role of the adaptive basis B a in the next layer in the shadow of a convolutional process. Note that throughout the learning process the kernel retains its original Hamiltonian structure which is a key ingredient of the original De-QuIP algorithm.

• Projection layer: This layer deals with the adaptive transformation of the noisy patch J a on the associative quantum adaptive basis B a for each J a ∈ Ω, i.e., α a = B a J a , where α a ∈ R n 2 are the projection coefficients of J a . In our proposed deep architecture, this process is conducted by performing convolution operations on J a using a learnable kernel C 2 a built in the previous step, as:

(7.7) α a = C 2 a ⋆ J a , ∀J a ∈ Ω.
Exploiting the power of a deep network, the convolution operation (7.7) removes the algebraically expensive processes, such as the computation of adaptive basis and projection coefficients, and uses the training dataset to directly estimate the projection coefficients. Finally, all α a are concatenated to form α ∈ R ζ×n 2 , serving as input to the next layer.

• Thresholding layer: The thresholding layer handles the process of trimming the projection coefficients α. A nonlinear ReLU activation function ϕ is used as a thresholding function, which makes the denoising process more robust by adding more flexibility than the baseline scheme, where thresholding was done in energy.

Therefore, the shrunk coefficients R a = ϕ(α a ) are obtained for each J a ∈ Ω, further concatenated into R ∈ R ζ×n 2 , before stepping to the next layer.

• Inverse projection layer: In the original algorithm the denoised patch Ĵa is created from the reduced coefficients R a by inverse projecting onto the quantum adaptive basis B a for each J a ∈ Ω, i.e., Ĵa = B -1 a R a . This step resembles a convolution process of R a with a learnable kernel C 3 a . Hence, the mathematical operation of the layer is defined as

(7.8) Ĵa = C 3 a ⋆ R a , ∀J a ∈ Ω.
Finally, before proceeding to the following layer, all outputs Ĵa are concatenated to

Ĵ ∈ R ζ×n 2 .
Note that in the baseline algorithm, the operator used in the inversion step was the inverse of the adaptive basis used in the projection process. This mutual dependence is highlighted in Fig. 7. • Aggregation layer: Akin to the De-QuIP scheme, this layer conducts the E -1

operation to accumulate all the denoised patches and put them back to their initial positions in the image after normalization, and reconstructs the denoised image x.

Note that overlapping patches are considered in the proposed formalism. Fig. 7.2(a)

illustrates the proposed DIVA network architecture, highlighting all the layers described above.

Proposed DIVA Advanced Network

An advanced version of the DIVA network introduced in the previous section is proposed hereafter. This network slightly differs from DIVA, and is adapted to image restoration tasks involving, in addition to noise, other degradation effects on the observed image y, such as blur, pixel resolution loss or missing pixels. In the case of additive Gaussian noise, the effect of the noise and the additional degradation can be considered independently.

Therefore, the DIVA network of Subsection 7.3.1 is extended by additional convolutional layers after the inversion process. In this way, the first part of the network eliminates the noise, and the second part neutralizes the effects of a nonidentity degradation operator.

The modified network referred to as DIVA-A primarily plugs a neutralization layer between the inverse projection and aggregation layers, as highlighted in Fig. 7.2(b).

• Neutralization layer: This layer corresponds to the restoration of the patch Ja by eliminating the influence of a degradation operator O a from the patch Ĵa reconstructed in the inverse projection layer for each J a ∈ Ω, i.e., Ja = O -1 a Ĵa , where O a denotes a degradation operator acting on a patch J a , ∀J a ∈ Ω. This operation is analogous to a convolutional process of Ĵa with a learnable kernel C 4 a , defined as (7.9) Ja = C 4 a ⋆ Ĵa , ∀J a ∈ Ω.

The proposed network conducts this operation by adding three convolutions with multiple learnable filters, and one ReLU function to remove any unwanted contribution (see Fig. 7.2(b)). The power of a CNN architecture is used to learn these filters that mimic the role of a degradation operator in this layer.

Before proceeding to the aggregation layer, all Ja are concatenated to obtain J ∈ R ζ×n 2 . Similar to the DIVA network, the aggregation layer assembles all recovered patches and outputs the restored image x.

Loss Function

The proposed networks are trained end-to-end, where the mean squared error (MSE) between the predicted and original residuals is adopted as the loss function [START_REF] Yang | BM3D-Net: A convolutional neural network for transformdomain collaborative filtering[END_REF]:

(7.10) L Θ = 1 MN ||R( x; Θ) -(y -x)|| 2 2 ,
where R( x; Θ) denotes the predicted residual by the network with parameter set Θ.

This loss function allows our models to learn the disorders present in a distorted image without bothering about the features of the true image. Note that it is possible to use other loss functions.

Experimental Results

In this section, we analyze the proposed networks and illustrate their performance in various image restoration tasks, such as image denoising, deblurring, SR, and inpainting. To tackle an unknown noise level, DIVA was also trained blindly for a range of noise levels corresponding to σ ∈ [5,[START_REF] Borgerding | Amp-inspired deep networks for sparse linear inverse problems[END_REF]. The corresponding model is referred as DIVA-blind.

• Testing data: The trained networks were tested on five standard benchmark datasets Set12, BSD68, Kodak, LIVE1 and Urban100, widely-used for denoising problems [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF][START_REF] Zhang | FFDNet: Toward a fast and flexible solution for cnn-based image denoising[END_REF].

Image Deblurring

• Training data: DIVA-A was trained separately for two types of blur kernels, i.e., motion and Gaussian blur, using the recently released high-quality dataset DIV2K

[9] that consists of 800 images. Eight real motion blur (MB) kernels [START_REF] Kong | Deep red unfolding network for image restoration[END_REF][START_REF] Levin | Efficient marginal likelihood optimization in blind deconvolution[END_REF] and three Gaussian blur (GB) kernels [START_REF] Wang | Training very deep cnns for general non-blind deconvolution[END_REF] were considered with AWGN.

• Testing data: The models trained for motion blur were tested on four benchmark datasets Set10, Levin, Sun et al., and Set12, used in [START_REF] Kong | Deep red unfolding network for image restoration[END_REF][START_REF] Nan | Variational-em-based deep learning for noise-blind image deblurring[END_REF]. The BSD100 and Set16 datasets were considered for the Gaussian case, following [START_REF] Wang | Training very deep cnns for general non-blind deconvolution[END_REF].

Single Image Super-Resolution)

• Training data: Similar to the deblurring model, the high-quality DIV2K [START_REF] Timofte | NTIRE 2017 challenge on single image superresolution: Dataset and study[END_REF] dataset was used as training data for image SR application. Two degradation models were used to simulate low-resolution (LR) images for network training: (i) bicubic downsampling (BD), and (ii) Gaussian downsampling (GD). The scaling factor was set to x2, x3, and x4. For BD case [START_REF] Anwar | Densely residual laplacian super-resolution[END_REF], a LR image was simulated from the high-resolution (HR) image by adopting Matlab imresize function, whereas for GD scenario, the HR image was blurred by a Gaussian kernel of size 7 × 7 with standard deviation 1.6 before downsampling, similar to [START_REF] Anwar | Densely residual laplacian super-resolution[END_REF].

• Testing data: For testing, four widely-used benchmark datasets for image SR problem [START_REF] Ahn | Fast, accurate, and lightweight super-resolution with cascading residual network[END_REF][START_REF] Anwar | Densely residual laplacian super-resolution[END_REF][START_REF] Tai | Memnet: A persistent memory network for image restoration[END_REF] Set5, Set14, BSD100, and Urban100, were used.

Image Inpainting

• Training data: The same 400 gray-scale images [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF] exploited by the denoising model were used to conduct the training of the proposed DIVA-A model for image inpainting. Random pixel missing model was considered to generate LR images from HR ones. 20%, 50% and 80% rates of missing pixels were used.

• Testing data: Datasets Set5 and Set12 were used to evaluate the trained inpaining networks.

Quantitative Metrics

For the purpose of quantitative evalution, the peak-signal-to-noise-ratio (PSNR) and the structural similarity (SSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] computed between the true and the restored images were used. 

Comparison Methods

This subsection regroups the state-of-the-art methods used to conduct a comprehensive comparison to illustrate the potential of the proposed models in various imaging problems.

Image Denoising

The residual learning-based DnCNN [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF] model is the benchmark for AWGN denoising, and its superiority over model-based (e.g., BM3D [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF], NLM [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF], etc.), and learning-based (e.g., TNRD [START_REF] Chen | Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[END_REF], MLP [START_REF] Burger | Image denoising: Can plain neural networks compete with BM3D?[END_REF], CSF [START_REF] Schmidt | Shrinkage fields for effective image restoration[END_REF] etc.) algorithms is well-established. In addition to DnCNN [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF], our denoising model DIVA was also compared to two recently introduced DL-based networks, FFDNet [START_REF] Zhang | FFDNet: Toward a fast and flexible solution for cnn-based image denoising[END_REF] and IRCNN [START_REF] Zhang | Learning fully convolutional networks for iterative non-blind deconvolution[END_REF]. Furthermore, comparisons were carried out with a newly proposed deep unfolded scheme, BM3D-NET [START_REF] Yang | BM3D-Net: A convolutional neural network for transformdomain collaborative filtering[END_REF], as well as with the baseline De-QuIP algorithm as proposed in Chapter 6.

Image Deblurring and Super-Resolution

For image deblurring and SR problems, newly published leading methods from the literature were considered to illustrate the accuracy of DIVA-A architecture. In the following, the relevant methods used for comparison purposes in different settings are listed.

(i) MB model: IDD-BM3D [START_REF] Danielyan | Bm3d frames and variational image deblurring[END_REF], FDN [START_REF] Kruse | Learning to push the limits of efficient FFT-based image deconvolution[END_REF], VEMNet [START_REF] Nan | Variational-em-based deep learning for noise-blind image deblurring[END_REF], DWDN [START_REF] Dong | Deep wiener deconvolution: Wiener meets deep learning for image deblurring[END_REF], DRED-DUN [START_REF] Kong | Deep red unfolding network for image restoration[END_REF];

(ii) GB model: IDD-BM3D [START_REF] Danielyan | Bm3d frames and variational image deblurring[END_REF], Son et al. [START_REF] Son | Fast non-blind deconvolution via regularized residual networks with long/short skip-connections[END_REF], DEBCNN [START_REF] Wang | Training very deep cnns for general non-blind deconvolution[END_REF];

(iii) BD model: LapSRN [START_REF] Lai | Deep laplacian pyramid networks for fast and accurate super-resolution[END_REF], MemNet [START_REF] Tai | Memnet: A persistent memory network for image restoration[END_REF], CARN [START_REF] Ahn | Fast, accurate, and lightweight super-resolution with cascading residual network[END_REF], DRLN [START_REF] Anwar | Densely residual laplacian super-resolution[END_REF];

(iv) GD model: IRCNN [START_REF] Zhang | Learning fully convolutional networks for iterative non-blind deconvolution[END_REF], DFAN [START_REF] Li | Dfan: Dual feature aggregation network for lightweight image super-resolution[END_REF], RDN [START_REF] Zhang | Residual dense network for image restoration[END_REF], DRLN [START_REF] Anwar | Densely residual laplacian super-resolution[END_REF].

In image SR problems, the DRLN [START_REF] Anwar | Densely residual laplacian super-resolution[END_REF] is the new benchmark in the literature. It is already shown in the seminal paper that the DRLN [START_REF] Anwar | Densely residual laplacian super-resolution[END_REF] exhibits reference state-of-theart performance for image SR.

Thus, the DRLN [START_REF] Anwar | Densely residual laplacian super-resolution[END_REF] was considered in the comparisons, avoiding to include all the other approaches. Similarly, for image deblurring, DWDN [START_REF] Dong | Deep wiener deconvolution: Wiener meets deep learning for image deblurring[END_REF], DRED-DUN [START_REF] Kong | Deep red unfolding network for image restoration[END_REF], and DEBCNN [START_REF] Wang | Training very deep cnns for general non-blind deconvolution[END_REF] were the best performing models in their fields. Hence, these models are selected for comparisons over other methods in the literature.

Image Inpainting

DIVA-A trained for image inpainting was compared against the DL prior based model IRCNN [START_REF] Zhang | Learning fully convolutional networks for iterative non-blind deconvolution[END_REF].

The pretrained models and the testing codes, made publicly available by the authors, were used for comparisons. Importantly, note that the proposed networks have been trained and tested exactly in the same conditions and on the same datasets as the comparison methods, thus ensuring a fair comparison.

Ablation Study and Model Analysis

This section regroups several ablation studies aiming at showing the importance of the layers inspired from quantum mechanics, and an in-depth analysis of the properties of the proposed networks.

Influence of the Interaction Layer

To show the effect of the interaction layer's integration in the Hamiltonian kernel, two versions of the DIVA network were trained for image denoising with σ = 15: the complete network as shown in Fig. 7.2(a), and the same network without the interaction layer. Fig. 7.3 plots the corresponding loss functions for these two network settings with respect to the number of epochs. One can see that using the interaction layer results into a faster and more stable convergence of the training process. Meanwhile, in the absence of this layer, a strong periodic fluctuation can be observed. This is caused by the absence of a non-local architecture in the network, which helps stabilizing the convergence process.

The same ablation study was conducted for different depths of the projection layer, using the Hamiltonian convolutional kernel constructed with and without the interaction layer. From Table 7.1, one can see a clear improvement in denoising performance in the presence of the interaction layer. In addition, the interaction layer significantly reduces the depth of the network by extracting the local similarities/structures from the neighboring patches. Indeed, more local information can be transferred through this non-local architecture, which helps network structures with lower depth to be more efficient. On the contrary, the network without the interaction layer improves while increasing the depth. This is expected since a deeper network consists of a larger set of tunable parameters. Although a bigger set of parameters leads to a better outcome, the learning process becomes more computationally expensive. Thus, the integration of the interaction layer enhances the network performance with a reduced computational cost, giving an edge to the proposed models.

Note that, in absence of the interaction layer in the proposed model, the network does not consider the influence of neighboring patches on the target patch and loses its non-local nature. Thus, each patch behaves as a single particle quantum system, and all patches are independent. Hence, in this circumstance, the network without an interaction layer becomes an unfolded DL scheme of the baseline QAB algorithm as proposed in Chapter 4, originally proposed for image denoising based on single-particle quantum theory. In Chapter 6, it has been shown that the baseline De-QuIP outperforms the conventional QAB algorithm significantly. This observation for the traditional De-QuIP algorithm is also consistent with results for our unfolded DL models, as reported in Fig. 7.3 and Table 7.1. Therefore, the consideration of the quantum interaction concept clearly enhances the model performance of both conventional and DL architectures.

Depth of the Projection Layer

Table 7.1 reports denoising performance on Set12 for σ = 15 for different depths of the projection layer within the Hamiltonian kernel. As expected, the denoising performance increases with the depth of the network, but this increment is less significant beyond depth 3. Assessing the trade-off between the network efficiency and the computational complexity, a depth of 2 was considered in the proposed DL models.

Ablation Study on the Hamiltonian Kernel

In the proposed models, the objective is to construct a Hamiltonian kernel to conduct the projection operation, while preserving the original attributes of the proposed Hamiltonian operator in the baseline De-QuIP algorithm. This Hamiltonian kernel is a sum of the Hamiltonian kernel including the interaction layer. For all settings, the depth of the projection layer was set to 2. Table 7.2 regroups the denoising results on Set12 for AWGN with σ = 15 for all these three configurations. From these results, one may observe that the accuracy of the network is significantly improved in the case where the Hamiltonian shape is preserved and includes the interactions between neighboring patches. This improvement is even further illustrated by the SSIM, that is more sensitive to the image structure than the PSNR, and thus more suitable to reflect the contribution of the interaction-based Hamiltonian operator. Furthermore, one may notice that with none of these two ingredients, the denoising performance is largely decreased. This can be explained by the fact that in this case, the resulting netwrok, very similar to DnCNN [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF], needs far more layers to achieve good denoising results. Indeed, a network depth of 17 is suggested in [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF], while, as mentionned previously, the proposed network depth can be reduced to 2. Therefore, the exploitation of the local information through the patch interaction, originally proposed in the baseline De-QuIP, and the attributes of the Hamiltonian kernel, make the proposed DL networks easily adaptable but resilient even for lower depth. In conclusion, this experiment illustrates the significance of the inclusion of the Hamiltonian kernel with the interaction layer in the proposed models.

Analysis of the Parameter Number and Runtime

The number of hyperparamers of a DL network plays a crucial role in its efficiency.

Generally, a larger pool of parameters drives the model more resilient and leads to better performance. However, it also imposes an important computational load, in particular within the training process. Furthermore, an excessive number of parameters may lead to an over-fitting problem. Hence, a balanced trade-off between the learnable parameter number, the performance, and the computational cost becomes a crucial factor for an efficient DL model.

As detailed in the previous ablation studies, the proposed models exploit the Hamiltonian kernel, which is enriched by an intrinsic non-local architecture through the interaction layer. As a result, the resulting DL networks are able to process more information through fewer parameters and significantly reduce the cost of training with high efficiency. Fig. 7.4 provides the performance in terms of SSIM(%) versus the number of parameters and the runtime of the proposed models against state-of-the-art methods, in the context of different image restoration problems. One can observe a significant gain in performance of DIVA model for image denoising (see Fig. 7.4(a)). DIVA increases SSIM by 10%, with almost half the number of parameters of its closest competitors FFDNet [START_REF] Zhang | FFDNet: Toward a fast and flexible solution for cnn-based image denoising[END_REF] and DnCNN [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF]. For image deblurring problem (see Fig. 7.4(b)), DIVA-A requires only half of the parameters compared to its nearest rival DRED-DUN [START_REF] Kong | Deep red unfolding network for image restoration[END_REF], but offers a 1% better SSIM value. Similarly, from Fig. this setting, our model uniformly outperforms the sophisticated DEBCNN method for GB problems. and GD respectively. One may observe that the recently introduced benchmark method DRLN [START_REF] Anwar | Densely residual laplacian super-resolution[END_REF] provides the best performance in both contexts. DRLN has a complex network architecture with dense residual Laplacian modules powered by 34 million parameters.

In contrast, the proposed model has a much simpler architecture, and requires only 850K parameters approximately. Nevertheless, our model obtains the best SSIM for three datasets (e.g., Set5, Set14 and BSD100) and among the top two SSIM for Urban100 [START_REF] Dutta | Despeckling ultrasound images using quantum many-body physics[END_REF][START_REF] Frost | A model for radar images and its application to adaptive digital filtering of multiplicative noise[END_REF][START_REF] Lee | Digital image enhancement and noise filtering by use of local statistics[END_REF][START_REF] Santos | Ultrasound image despeckling using stochastic distance-based bm3d[END_REF][START_REF] Yu | Speckle reducing anisotropic diffusion[END_REF], or image deconvolution [START_REF] Michailovich | A novel approach to the 2-d blind deconvolution problem in medical ultrasound[END_REF][START_REF] Taxt | Two-dimensional noise-robust blind deconvolution of ultrasound images[END_REF] to increase spatial resolution by compensating the effect of the point spread function. Both model-based [START_REF] Alessandrini | A restoration framework for ultrasonic tissue characterization[END_REF][START_REF] Binaee | An ultrasound image enhancement method using local gradient based fuzzy similarity[END_REF] and machine learning-based [START_REF] Liu | Deep learning for ultrasound localization microscopy[END_REF][START_REF] Mishra | Ultrasound image enhancement using structure oriented adversarial network[END_REF][START_REF] Perdios | A deep learning approach to ultrasound image recovery[END_REF][START_REF] Perdios | Deep learning based ultrasound image reconstruction method: A time coherence study[END_REF][START_REF] Solomon | Deep unfolded robust PCA with application to clutter sup-pression in ultrasound[END_REF] approaches have been proposed. The former rely on image formation models and statistical assumptions, while the latter offer more flexibility by learning the relationship between the observations and the target images. 

Contributions

Network Training for Ultrasound Image Enhancement Tasks

Our proposed DIVA-A network was trained on 700 speckle-free image pairs. The clean images were extracted from 700 high-resolution human anatomy images (National Library of Medicine). The corresponding US images were simulated using SIMUS [START_REF] Cigier | Simus: An open-source simulator for medical ultrasound imaging. part ii: Comparison with four simulators[END_REF][START_REF] Garcia | An open-source simulator for medical ultrasound imaging. part i: Theory & examples[END_REF] from MUST (MATLAB UltraSound Toolbox) [START_REF] Garcia | Make the most of must, an open-source matlab ultrasound toolbox[END_REF], following a standard focused 

Experimental Results on Ultrasound Images

The potential of the proposed DIVA-A network is illustrated through simulated and real cardiac US image enhancement tasks. The enhanced images show a gain in contrast and resolution while preserving underlying structures and significantly reducing speckle. For more visual illustrations, three movies with these enhanced cardiac images are available in the GitHub file1 .

Discussions

In this section, we briefly recap the benefits and limitations of our proposed networks and future prospects in this regard.

Advantages

With the quantum principles of the baseline De-QuIP algorithm, our proposed DIVA/DIVA-A network provides an efficient DL method for image restoration following the deep unfolding philosophy. Indeed, the use of quantum concepts like patch interaction layer and Hamiltonian kernel makes our models better equipped than others. The local structure/similarities in an image neighborhood are preserved through the interaction layer exploiting the local patch groups that convey an intrinsic non-local network architecture. Processing of the local information by this interaction layer significantly enhances the performances of the network. It even yields a smaller network depth, leading to a good trade-off between the performance and computational cost, as portrayed in Subsec- 

Limitations

In the case of a challenging image degradation task, our method may sometimes struggle to produce a better recovered image than other benchmarks. To restore a Gaussian downsampled LR image, we notice that our DL model fails to compete in quantitative data against benchmark methods, like DRLN, RDN, and DFAN, as noted in Table 7.7.

However, the overall visual efficiency of our method is good, as depicted in Fig. 7.17. From our observations, in presence of a strong decay, such as 'blur+downsampling', our method does not match the true pixels' intensity, which seems to be the main reason for the lower quantitative measures. Instead, our method utilizes the interaction layer to provide better visual quality by preserving the image structure, patterns, and textures with more details. Furthermore, our proposed models are trained in an end-to-end supervised manner, i.e., we need the clean-degraded image pairs for training. However it is worthnoting that the proposed method is much simpler and not specialized in a specific task as is the case for the other methods.

Perspectives

The quantum mechanics-based imaging methods open up a broad spectrum of future prospects. Following the limitations, the obvious direction would be an unsupervised DL network design, that essentially solves the training data problem and extends our reach to real-life applications more reliably [START_REF] Chen | Robust equivariant imaging: A fully unsupervised framework for learning to image from noisy and partial measurements[END_REF][START_REF] De Morsier | Kernel low-rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images[END_REF][START_REF] Pereyra | Fast unsupervised bayesian image segmentation with adaptive spatial regularisation[END_REF]. Another possibility is to design a versatile network by stacking the proposed DIVA to build a deep and more complex architecture like UNet [START_REF] Kong | Deep red unfolding network for image restoration[END_REF] and offer some attention mechanisms [START_REF] Anwar | Densely residual laplacian super-resolution[END_REF] to make the patch interaction robust while preserving the core philosophy. This complex network system should enhance the capacity of the proposed network in challenging degradation operators and even for blind imaging problems. Furthermore, the idea of quantum interaction can also be treated as a transformer in a deep architecture [START_REF] Wang | Uformer: A general u-shaped transformer for image restoration[END_REF]. Another interesting prospect would be to explore imaging problems beyond the Gaussian model since baseline De-QuIP is well-adapted for such tasks without modifying the global architecture. Combining graph signal processing model with the proposed quantumbased interaction framework is also an interesting perspective [START_REF] Hua | Learning combination of graph filters for graph signal modeling[END_REF].

Conclusions

This chapter introduces a novel neural network approach to solve image denoising problems, further extended to general image restoration tasks relying on the philosophy of quantum many-body theory. Our model recasts the baseline De-QuIP algorithm into a DL framework and optimizes the relevant parameters by exploiting the power of backpropagation approach. The proposed unfolded CNN architecture inherently employs various quantum mechanical components, such as interaction and Hamiltonian operator, from its baseline method to boost up the network performance while significantly reducing the training cost.

Integration of these key features from the quantum theory enables our proposed model to be well-adapted for handling several imaging problems efficiently. We conduct thorough ablation investigations and present extensive assessments regarding the network design. Finally, we perform comprehensive evaluations of our proposed

Overview

This chapter proposes a summary of the work of this thesis and outlines possible directions for future work on these topics.

Conclusions

The objective of this thesis was to explore new imaging methodologies based on a quantum mechanical framework, particularly for image restoration problems, borrowing principles and axioms of quantum mechanics. In contrast to the quantum computing and quantum information theory, quantum mechanics-based algorithms do not entirely depend on the physics associated with quantum mechanics and give us the freedom to impose quantum mechanical constraints that we find useful for imaging problems. Indeed, we showed that the implementation of such quantum principles in imaging problems significantly increases the performance of algorithms. Thus, exploiting the concepts of quantum physics, these algorithms were enabled to deal with real-life problems such as medical imaging, computer vision, etc, much better than some traditional methods. • Loss Function: The mean squared error (MSE) between the predicted and original residuals is adopted as the loss function in our network. Our models perform well with this loss function in terms of visual quality. But it is possible to use different other loss functions, for example, perceptual loss [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF][START_REF] Li | SACNN: Self-attention convolutional neural network for low-dose ct denoising with self-supervised perceptual loss network[END_REF][START_REF] Rad | Srobb: Targeted perceptual loss for single image super-resolution[END_REF][START_REF] Yang | Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss[END_REF],

which exploits similarities between two images, that could significantly boost our model performances.

Other Quantum Mechanical Tools

Here we propose some quantum mechanical concepts that can be exploited in future for imaging problems.

• Time-dependent Schrödinger equation: As discussed in Chapter 2, in the time-dependent Schrödinger equation the Hamiltonian operator depends on time.

Therefore, there are no stationary solutions of the Schrödinger equation anymore.

However, for Hamiltonian periodic in time, one can use Floquet theory [START_REF] Barone | Floquet theory and applications[END_REF] and follow a similar formalism as in this thesis using eigenfunctions of the evolution operator over one period. This theory can be implemented for the processing of periodic signals [START_REF] Chicharo | A new algorithm for improving the accuracy of periodic signal analysis[END_REF].

• Quantum Harmonic Oscillator: For the image segmentation problem [START_REF] Youssry | A continuous-variable quantuminspired algorithm for classical image segmentation[END_REF] proposed an idea to associate each pixel with a quantum harmonic oscillator, where the Hamiltonian operator is derived from the features extracted at the pixel level.

In that scenario from the time evolution of an initial ground state, one can extract the image features and use them for segmentation. This idea of assigning image pixels with quantum harmonic oscillators can be further extended to other imaging problems.

Extension to Quantum Computing and Quantum

Information Theory

In this thesis, we have studied the paradigm of quantum mechanics-based image processing algorithms where the computations are performed on conventional computers.

In view of the recent developments in quantum information and computation, it is a natural idea to adapt these algorithms for quantum computers.

• Quantum denoising: We have recently begun to develop such an approach.

Indeed, it is possible to build unitary operators to transform and store classical signals or images into quantum states by exploiting qubits and quantum logic gates [START_REF] Zhang | NEQR: A novel enhanced quantum representation of digital images[END_REF]. We have thus constructed a computationally efficient denoising scheme in the line of the preceding methods by using various transformation and Grover's quantum search [START_REF] Grover | Quantum mechanics helps in searching for a needle in a haystack[END_REF] on these quantum states to perform denoising. Abstract: Decomposition of digital images into other basis or dictionaries than time or space domains is a very common and effective approach in image processing and analysis. Such a decomposition is commonly obtained using fixed transformations (e.g., Fourier or wavelet) or dictionaries learned from example databases or from the signal or image itself. In recent years, with the growth of computing power, data-driven strategies exploiting the redundancy within patches extracted from one or several images to increase sparsity have become more prominent. They have demonstrated very promising image restoration results. The question to pursue in this thesis is how to design such an adaptive transformation based on principles of quantum mechanics.

R ésum é:

In this thesis, we explore new possibilities of constructing such imagedependent bases inspired by quantum mechanics. First, we construct an image-dependent basis using the wave solutions of the Schr ödinger equation, in particular, by considering the image as a potential in the discretized Schr ödinger equation. The efficiency of the proposed decomposition is illustrated through denoising results in the case of Gaussian, Poisson, and speckle noises and compared to the state-of-the-art algorithms. We further generalize our proposed adaptive basis by exploiting the data-driven strategy inspired by quantum many-body theory. Based on patch analysis, the similarity measures in a local image neighborhood are formalized through a term akin to interaction in quantum mechanics that can efficiently preserve the local structures of real images. The versatile nature of this adaptive basis extends the scope of its application to image-independent or image-dependent noise scenarios without any adjustment. We carry out a rigorous comparison with contemporary methods to demonstrate the denoising capability of the proposed algorithm regardless of the image characteristics, noise statistics and intensity. We show the ability of our approaches to deal with real-medical data such as clinical dental computed tomography image denoising and medical ultrasound image despeckling applications. We further extend our work to image deconvolution and superresolution tasks exploiting our proposed quantum adaptive denoisers.

In particular, following recent developments, we impose these external denoisers as a prior functions within the Plug-and-Play and Regularization by Denoising approaches. Lastly, we present a deep neural network architecture unfolding our proposed baseline adaptive denoising algorithm, relying on the theory of quantum many-body physics. The key ingredients of the proposed method are on one hand, its ability to handle non-local image structures through the patch-interaction term and the quantum-based Hamiltonian operator, and, on the other hand, its flexibility to adapt the hyperparameters patch wisely, due to the training process. Furthermore, it is shown that with very slight modifications, this network can be enhanced to solve more challenging image restoration tasks such as image deblurring, super-resolution and inpainting. Despite a compact and interpretable (from a physical perspective) architecture, the proposed deep learning network outperforms several recent benchmark algorithms from the literature, designed specifically for each task. 
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 5 MAIN CONTRIBUTIONS The potential of the proposed adaptive decomposition is illustrated through image denoising in presence of image-independent and image-dependent noise scenarios. * Chapter 7: This chapter introduces a blueprint of a new deep network unfolding a baseline quantum mechanics-based adaptive denoising scheme (De-QuIP), proposed in Chapter 6. Furthermore, it is shown that with very slight modifications, this network can be enhanced to solve more challenging image restoration tasks such as image deblurring, SR and inpainting. The proposed deep network embeds both quantum interactions and other quantum concepts, mainly the Hamiltonian operator, which enables the network to predict the possible stationary solutions of the Schrödinger equation by harnessing the power of the convolutional layers during the training process. * Chapter 8: The final conclusions of this thesis and as well as possible directions for future work on these topics are summarized in this chapter.
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 5 MAIN CONTRIBUTIONS to demonstrate the denoising capability of the proposed algorithm regardless of the image characteristics, noise statistics and intensity. Finally, the chapter highlights the capabilities of the proposed approach to deal with practical image denoising problems such as medical ultrasound (US) image despeckling applications. Furthermore, we address the super-resolution (SR) problem exploiting our proposed quantum adaptive denoiser. In particular, following recent developments, we impose this external denoiser as a prior function within the Plug-and-Play (PnP) and Regularization by Denoising (RED) approaches. Medical Dental computed tomography (CT) images are used to illustrate the potential of the proposed algorithms for high-resolution (HR) image retrieval. * Chapter 7: Designing a deep network architecture unfolding a baseline quantum algorithm called DIVA, relying on the theory of quantum many-body physics, is the main contribution of this chapter. The key ingredients of the proposed method are on one hand, its ability to handle non-local image structures through the patch-interaction term and the quantum-based Hamiltonian operator, and, on the other hand, its flexibility to adapt the hyperparameters patch-wisely, due to the training process. Thus, recasting the De-QuIP algorithm in the framework of a deep learning network while preserving the essence of the baseline structure significantly enhances the adaptability of the model to various challenging image restoration tasks such as image denoising, deblurring, SR and inpainting. In general, the model-based approaches are fairly successful in tackling a variety of image recovery tasks, including proper interpretation of their roles, however, require costlier manual computation process. Deep network structures are in most cases determined empirically, which makes them suffer from a lack of interpretation of their true functionality. Despite a compact and interpretable (from a physical perspective) architecture, the proposed deep learning network outperforms several recent algorithms from the literature, designed specifically for each task. Finally, we show the ability of our approach to deal with clinical cardiac ultrasound image enhancement applications. C H A P T E R

CHAPTER 2 .

 2 BASICS OF QUANTUM MECHANICSIn the eighteenth and nineteenth century, the scope of classical mechanics expanded from Newton's laws to the development of Lagrangian and Hamiltonian formulations of mechanics.

FIGURE 2 . 1 .

 21 FIGURE 2.1. Motion of a classical particle with an energy E under a potential V . The blue dashed line represents the energy of the classical particle.

FIGURE 2 . 2 .

 22 FIGURE 2.2. Pictorial illustration of the double slit experiment. A monochromatic coherent light source emits photons that pass through a two-slit screen and are detected on a photographic plate placed behind the screen. The sum P 1 + P 2 of the intensities P 1 , when slit F 2 is closed, and P 2 when slit F 1 is closed, is not equal to the intensity P measured when both slits are open.

FIGURE 2 . 3 .

 23 FIGURE 2.3. Double slit experiment with single photons. The top left image is the result after a short exposure time, after around 100 photons have landed on the detector. Each dot of light represents one photon, which behaves as a particle here. With increasing exposure time -top middle and top right, and again from bottom left to bottom right -it becomes clear that the photons are landing at random positions but with a wave-like distribution of probability and generates interference pattern [373].

(2. 8 )

 8 p operator = -iℏ ∂ ∂z , and E operator = iℏ ∂ ∂t acting on the wave function ψ. It is a postulate of wave mechanics that when the particle is not free the dynamical variables ⃗ p and E are still represented by these differential operators.

2. 4 .

 4 THE POSTULATES OF QUANTUM MECHANICS IV. The state variables change with time according to Hamilton's equations of motion,

𝜓 1 = 2 /FIGURE 2 . 5 .

 1225 FIGURE 2.5. Wave functions and energy levels of a particle in a potential box. The first three wave functions and energy levels are respectively plotted in subfigures (a) and (b).

ψ

  Fig. 2.6.

FIGURE 2 . 7 .

 27 FIGURE 2.7. Motion of an electron in a disordered potential according to classical theory.

FIGURE 2 . 9 .

 29 FIGURE 2.9. Wave function with energy E under a smooth potential V . The blue dashed line represents the energy of the quantum particle.

FIGURE 2 . 10 .

 210 FIGURE 2.10. Slaking wave function with energy E under a random potential V . The blue dashed line represents the energy of the quantum particle.

Fig. 2 .

 2 11 presents a pictorial diagram of such particle-particle interaction in a classical system. Consider a quantum system with w particles with mass m 1 , m 2 , m 3 , • • • , m w . Thus the characteristics of each particle depends of others. Hence we then have to solve a Schrödinger equation with a wave function ψ(z 1 , z 2 , z 3 , • • • , z w ) depending on the w variables corresponding to the w particles, where z 1 , z 2 , z 3 , • • • , z w are the spatial coordinates of the w particles. The potential V = V (z 1 , z 2 , z 3 , • • • , z w ) is also a function of w variables.

  a , z b ) 2-body term + a,b,c I(z a , z b , z c ) 3-body term

  Poissonian denoising of fluorescence microscopic image[1] 

FIGURE 3 . 1 .

 31 FIGURE 3.1. Examples of image denoising.

3. 2 .FIGURE 3 . 2 .

 232 FIGURE 3.2. Examples of image deblurring.

FIGURE 3 . 3 .

 33 FIGURE 3.3. Examples of image super-resolution. From left to right are lowresolution, restored high-resolution (using nearest-neighbor interpolation), and ground truth images, respectively [405].

FIGURE 3 . 5 .

 35 FIGURE 3.5. Examples of image denoising using wavelet transform. Four-scale wavelet transform and hard thresholding are used here [268].
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 5843412 STATE-OF-THE-ART METHODS counter Poissonian problem without considering any transformation. In Chapter 4, we present a new denoising algorithm with promising performances in the presence of Poisson noise distribution without using any of these transformations. Generalized Restoration Methods Image denoising, deblurring or super-resolution (SR) is a restoration problem of recovering the sharp-clean underlying or high-resolution (HR) image x from a noisy blurred degraded or low-resolution (LR) one y. We reproduce the forward model eq. (3.1) by considering additive noise e for simplicity, (3.3) y = Ox + e. Note that degradation O is an identity operator for image denoising, for a deblurring problem O = G, with G is a convolution matrix (which can be chosen as block circulant, block Toeplitz, etc.) to account for boundary conditions and represents the point spread function (PSF), and in case of SR problem O = SG, where S and G are respectively the decimation and blurring/convolution operators [5, 84,

-

  where P(x|y) is the posterior probability density function that defines x for a given measurement y and x represents the estimation of the unobserved image x. Taking -log(•) element-wise and applying Bayes' theorem, the maximization problem above becomes x = arg min x -log (P(x|y)) log (P(y|x)) -log (P(x)) + log (P(y)) .(3.5) 

FIGURE 3 . 8 .

 38 FIGURE 3.8. Iterations of PnP ADMM algorithm for image super-resolution problem using proposed quantum adaptive denoiser (from Chapter 6) as the PnP prior.

Fig. 3 . 3 . 4 . 1 . 2 . 2 ADMM

 334122 8 shows an example of the ADMM algorithm in the image SR problem. Application to Image Restoration Let us consider the following general image restoration problem, characterized by the forward model eq. (3.1), where y is the observed image related to the underlying image x through the degradation operator O (remind that, for image denoising O is an identity operator, for image deblurring O = G is generally assumed to be a block circulant with circulant blocks (BCCB) matrix, and for SR problem O = SG is a product of decimation and blurring operator). ADMM can be used to estimate the MAP solution of such an 3.4. STATE-OF-THE-ART METHODS image restoration task by reformulating it as (3.7) using the following parameterization: z = x, thus A = -B = I n×n , c = 0 n , where I n×n is the identity matrix of size n × n and 0 n is a zero vector of size n. The associated augmented Lagrangian is given by

FIGURE 3 . 9 .

 39 FIGURE 3.9. Example of a diverging PnP algorithmic scheme [314].

  which makes them suffer from a lack of interpretation of their true functionality. Instead of tilting towards any one these approaches a recent breakthrough lies in the middle ground giving a useful overview of these landscapes. The considered families of methods incorporate domain knowledge in the form of an established model-based algorithm which is suitable for the problem at hand, while combining capabilities to learn from data via deep learning techniques. Benefiting from CNN's powerful representation ability, this new concept, known as unfolding[START_REF] Gregor | Learning fast approximations of sparse coding[END_REF], gathering the advantages of both model and DL-based approaches, is currently gaining more attention due to its explanatory properties.Techniques for studying and designing inference rules in a hybrid model-based/datadriven fashion can be divided into two main strategies: the first is to use model-aided networks, which utilize deep neural networks for inference; however, rather than using conventional DL network architectures, here a specific network tailored for the problem at hand is designed by following the operation of suitable model-based methods. The second strategy DL-aided inference systems, uses conventional model-based methods for inference; however, unlike purely model-based schemes, specific parts of the model-based algorithm are augmented with DL tools, allowing the resulting system to implement the algorithm while learning to overcome partial or mismatched domain knowledge from data. Fig.3.11 shows such a DL-aided inference system for image restoration. More precisely, the main idea of such frameworks is to construct a DL network starting from a classical algorithm.

7 FIGURE 3 . 12 .

 7312 FIGURE 3.12. Schematic structure of this thesis by exploiting various image restoration techniques and quantum mechanical tools.
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 34 12 schematizes the structure of this thesis and gives an overview of how quantum mechanical tools are combined with imaging techniques to solve image restoration problems. C H A P T E R * This chapter presents material from the journal paper [114]. Overview Decomposition of digital signals and images into other basis or dictionaries than time or space domains is a very common approach in signal and image processing and analysis. Such a decomposition is commonly obtained using fixed transformations (e.g., Fourier or wavelet) or dictionaries learned from example databases or from the signal or image itself. In this chapter, we investigate in detail a new approach of constructing such a signal or image-dependent bases inspired by quantum mechanics tools, i.e., by considering the signal or image as a potential in the discretized Schrödinger equation. To illustrate the potential of the proposed decomposition, denoising results are reported in the case of Gaussian, Poisson, and speckle noise and compared to the state-of-the-art algorithms based on wavelet shrinkage, total variation regularization or patch-wise sparse coding in learned dictionaries, non-local means image denoising, and graph signal processing. Finally, application to clinical CBCT dental image denoising is presented.

1

 1 Image Representation and Related WorksIn number of applications, processing or analyzing signals and images require the use of other representations than time or space. While the most famous transformation still remains the Fourier transform, other representations have been proposed to overcome the non-localization in time or space of the Fourier basis vectors. The most used time-frequency representations are the short time Fourier and the wavelet transforms[START_REF] Donoho | Wavelet shrinkage: asymptopia?[END_REF][START_REF] Donoho | Ideal spatial adaptation by wavelet whrinkage[END_REF]. Most often (e.g., image compression, restoration, reconstruction, denoising or compressed sensing), such transforms are associated with the concept of sparsity, i.e., their ability to concentrate most of the signal or image energy in a few coefficients.

(

  additive Gaussian, Poisson or speckle noise). Finally using different signals and images, comparisons with several state-of-the-art methods are performed. The remainder of the chapter is organized as follows. Section 4.2 and 4.3 respectively give the details of the adaptive transform design and its application to denoising. Results and comparisons are provided in Section 4.4. Application to clinical CBCT dental image denoising is presented in Section 4.5 and concluding remarks are finally reported in Section 4.6.

FIGURE 4 . 1 .

 41 FIGURE 4.1. Relationship between quantum mechanics and image representation: example on Lena image.

FIGURE 4 . 2 .

 42 FIGURE 4.2. Relationship between the frequency of the adaptive basis functions and the height of the potential.

  Fig.4.2), the oscillation frequency still increases with higher values of E, but at the same time a given stationary solution of (4.1), which corresponds to the physical wavefunction, contains different local oscillation frequencies according to the local value of V . Thus, although at each local position the frequency increases with E, it does so in a different way from place to place according to the local value of V . In other words, for a given energy E the wave function ψ(z) associated with a quantum particle will use a higher frequency to probe a low potential region in comparison with a high potential region. In the regions where E -V is negative, (4.2) leads to exponentially decreasing functions which quickly become constant (see e.g. the solutions for E 0 and E 1 in the right side of Fig. 4.2).

4. 3 .

 3 PROPOSED METHOD FOR DENOISING APPLICATIONS 4.3 Proposed Method for Denoising Applications 4.3.1 Explicit Construction of the Adaptive Basis In operator notation, (4.1) corresponds to Hψ = Eψ with H = -ℏ 2 2m ∇ 2 + V the Hamiltonian operator. The energy E of the particle in (4.1) labels the solutions of the problem. Solutions of this stationary Schrödinger equation in a bounded domain correspond to a discrete set of energy levels, from a minimal energy to infinity. Solutions of (4.1) form a basis of the Hilbert space to which the wavefunctions belong. This space is infinite-dimensional for continuous values of the position y in (4.1).

FIGURE 4 . 3 .

 43 FIGURE 4.3. Synthetic signal used to illustrate the localization property of the wave functions.

FIGURE 4 . 4 .

 44 FIGURE 4.4. Quantum localization effect: IPR corresponding to the wave functions calculated from the signal in Fig. 4.3 degraded by an additive Gaussian noise for several SNR. The size of the signal was 512. The IPR is computed through (4.5) and averaged over all 512 wave functions of the adaptive basis.

FIGURE 4 . 5 .

 45 FIGURE 4.5. Role of the hyperparameter σ and localization: (a) Signal in Fig. 4.3 contaminated by additive Gaussian noise corresponding to a SNR of 15 dB, (b) localized wave function number 68 calculated from the noisy signal with energy level illustrated by the dashed line in (a), (c) blurred version of the noisy signal in (a) obtained by Gaussian low-pass filter corresponding to σ 2 = 10, (d) delocalized wave function number 68 calculated from the low-pass filtered signal with the same energy level illustrated by the dashed line in (c).

  Blurred image (e) Delocalized wave function (f) Contours of delocalized function

FIGURE 4 . 6 .

 46 FIGURE 4.6. Role of the hyperparameter σ and localization: (a) Lena image used in Fig. 4.1, contaminated by additive Gaussian noise corresponding to a SNR of 15 dB, (b,c) localized wave function number 195 calculated from the noisy Lena image (a), (d) blurred version of the noisy Lena image in (a) obtained by Gaussian low-pass filter corresponding to σ 2 = 6, (e,f) the same wave function but delocalized due to the low pass Gaussian filter applied to the noisy image.

FIGURE 4 . 7 .

 47 FIGURE 4.7. Flowchart of the proposed denoising algorithm.

  eigenvalues and eigenvectors of the discretized Hamiltonian matrix (4.4) for appropriate values of the parameters ℏ 2 /2m and σ, project the signal or image on this basis, threshold the coefficients by an appropriate threshold in energy, and reconstruct from this a denoised signal or image. These steps are summarized in Algorithm 4.1 and Fig. 4.7. For very large signals and images, where the size of the matrix (4.4) becomes too large for practical simulations, we implement a modified version of the algorithm where the matrix (4.4) is diagonalized for subparts of the signal or image independently, and then a complete signal or image is reconstructed:
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 1548441 FIGURE 4.8. Role of the hyperparameter ℏ 2 /2m: adaptive basis functions (wave functions) number 25, 70 and 100 calculated from the signal Fig. 4.3 are shown from top to bottom with different values of the hyperparameter ℏ 2 /2m.
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 411 Properties of Hyperparameter ℏ 2 /2mAs mentioned above, the parameter ℏ 2 /2m specifies how the local frequencies of the vectors of the basis vary with the amplitude of the signal or image pixel value. To illustrate this relationship, the effect of ℏ 2 /2m on local frequencies is shown in Fig. 4.8 for three distinct values of this parameter. For each case, three wave functions (number 25, 70 and 100) computed from the synthetic signal in Fig. 4.3 are displayed. For low values of ℏ 2 /2m (i.e., 0.08 for the results in Fig. 4.8(a)), one may remark that the wave functions are oscillating at very high frequencies, even for higher values of the potential (i.e., of the signal). The presence of a maximal oscillation period due to the discretization of the signal implies that in this limit the high values of the signal are not taken properly into account. For very high values of ℏ 2 /2m (15 for the results in Fig. 4.8(c)), most of the wave functions are at an energy well above the potential values, and they discriminate less and less between the regions with different potential height. In this limit, wave functions behave very similarly to cosine functions with increasing frequencies, thus reducing the interest of the proposed bases that becomes very similar to the Fourier transform. At intermediate values of ℏ 2 /2m (1 for the results in Fig. 4.8(b)), wave functions explore the different regions but with clearly different oscillation frequencies, i.e. wave vectors have significantly larger frequencies or short wavelengths for the low potential valued regions as opposed to high potential regions.

  3.2, this parameter corresponds to the cut-off frequency of the Gaussian low pass filter used to smooth the noisy signal or images before computing the wave functions through (4.1).

FIGURE 4 . 9 .

 49 FIGURE 4.9. Role of the hyperparameter σ: (a) Cropped version of clean Lena, (b) cropped version of noisy Lena contaminated by Poisson noise corresponding to a SNR of 15 dB, (c) denoised result with hyperparameter σ 2 = 0, giving a PSNR = 25.37 dB, of the image (b), (d) denoised result with hyperparameter σ 2 = 4, giving a PSNR = 28.81 dB. The hyperparameters are ℏ 2 /2m = 0.6, ρ = 1, and s = 600 for each set of experiment.

96 4. 4 .

 964 Fig.4.9(c) exploits the image decomposition through localized wave functions computed directly from the noisy image, the result in Fig.4.9(d) was obtained by filtering the noisy image by a low pass Gaussian filter before using (4.1), in order to delocalize the wave functions. The interest of such delocalization can be visually appreciated in this example and allows a peak SNR (PSNR) gain of more than 3 dB. In the following, we will always use a pre-smoothed signal or image in (4.1), and the parameter σ of the smoothing is thus an important parameter of the algorithm.

  PSNR as a function of the thresholding hyperparameter s, for σ 2 = 20, ρ = 1 and ℏ 2 /2m = 0SNR as a function of the thresholding hyperparameter s, for ρ = 1, ℏ 2 /2m = 0.4 and four different values of σ 2 (0, 4, 8 and 40).

FIGURE 4 . 10 .

 410 FIGURE 4.10. Role of the hyperparameters s and σ. Simulations with the 1D signal Fig. 4.3 corrupted by additive Gaussian noise corresponding to a SNR of 15 dB.

FIGURE 4 . 11 .

 411 FIGURE 4.11. Influence of the hyperparameters ℏ 2 /2m and σ on the proposed decomposition performed on the 1D system Fig. 4.3 in presence of (a,b) Poisson noise, (c,d) Gaussian noise and (e,f) speckle noise corresponding to a SNR of 15 dB respectively. The hyperparameters are ρ = 1 and s = 110 for each set of experiment.
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 4441344414 FIGURE 4.12. (a) Sample A, (b,c) influence of the hyperparameters ℏ 2 /2m and σ on the proposed method performed on the sample A corrupted with Poisson noise corresponding to a SNR of 15 dB, (d) sample B, (e,f) influence of the hyperparameters ℏ 2 /2m and σ on proposed method performed on the sample B corrupted with Poisson noise corresponding to a SNR of 15 dB, (g) sample C, (h,i) influence of the hyperparameters ℏ 2 /2m and σ on proposed method performed on the sample C corrupted with Poisson noise corresponding to a SNR of 15 dB. The hyperparameters are ρ = 1 and s = 110 for each set of experiment.
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 4413 Fig. 4.11 show the quality of the denoising results for the synthetic signal Fig. 4.3, in terms of SNR, versus the value of the hyperparameters ℏ 2 /2m and σ 2 for different types of noise: Poisson noise, Gaussian noise and speckle noise. Several observations can be made from these results. As expected, an optimal value arises in each case. In particular, the hyperparameter σ should clearly be chosen to be nonzero, indicating the importance

Finally, Fig. 4 .

 4 [START_REF] Alessandrini | A restoration framework for ultrasonic tissue characterization[END_REF] regroups the results for the cropped Lena image for the three types of noise. The same conclusions can be drawn as from the results on 1D signals in Fig.4.11:

  FIGURE 4.14. Signal and images used to compare the proposed denoising method to existing algorithms. The size in number of pixels is indicated for each considered image.

  FIGURE 4.15. Result of the denoising algorithm compared with other methods: (a) Clean synthetic signal, (b) Signal corrupted with Poisson noise corresponding to a SNR of 15 dB. Denoising results obtained using, (c) Fourier transformation, (d) wavelet hard thresholding, (e) wavelet soft thresholding, (f) total variation regularization and (g) proposed method. The proposed adaptive transform was computed with the hyperparameters ℏ 2 /2m = 1.2, σ 2 = 20, ρ = 1 and s = 180.

  FIGURE 4.16. Result of the denoising algorithm compared with other methods: (a) Clean Fruits image, (b) Image corrupted with Gaussian noise corresponding to a SNR of 15 dB. Denoising results obtained using, (c) wavelet hard thresholding, (d) wavelet soft thresholding, (e) total variation regularization, (f) graph signal processing, (g) non-local means, (h) dictionary learning and (i) proposed method. The proposed adaptive transform was computed with the hyperparameters ℏ 2 /2m = 0.23, σ 2 = 7.5, ρ = 2 and s = 560.

and 4 . 18 .

 418 All these results allow us to draw some conclusions. First, one may remark

4. 5 .

 5 FIGURE 4.17. Result of the denoising algorithm compared with other methods: (a) Clean Moon image, (b) Image corrupted with Poisson noise corresponding to a SNR of 15 dB. Denoising results obtained using, (c) wavelet hard thresholding, (d) wavelet soft thresholding, (e) variance stabilization transform, (f) total variation regularization, (g) dictionary learning and (h) proposed method. The proposed adaptive transform was computed with the hyperparameters ℏ 2 /2m = 0.32, σ 2 = 2.5, ρ = 1 and s = 520.

  FIGURE 4.18. Result of the denoising algorithm compared with other methods: (a) Clean Lena image, (b) Image corrupted with speckle noise corresponding to a SNR of 15 dB. Denoising results obtained using, (c) wavelet hard thresholding, (d) wavelet soft thresholding, (e) variance stabilization transform, (f) total variation regularization, (g) dictionary learning and (h) proposed method. The proposed adaptive transform was computed with the hyperparameters ℏ 2 /2m = 0.36, σ 2 = 1.35, ρ = 2 and s = 600.

Fig. 4 .

 4 [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF] shows a noisy image resulting from that study, as well as the denoised images with the proposed approach. The region of interest in this image is the dark region in the middle of the tooth, that represents the canal root. The results displayed show that the method has some practical applications in this field. For a quantitative analysis the contrast-to-noise ratio (CNR) computed between the dark region representing the canal root and the bright region representing the dentine, and the SSIM values comparing the noisy and the denoised image to the clean one, are presented in Table4.3. They clearly show the ability of the proposed method to enhance the noisy CBCT image.

  FIGURE 4.19. Result of the denoising algorithm for a biomedical image: (a) Clean CBCT dental image, (b) Noisy CBCT dental image, (c) CBCT dental image after denoising considering the hyperparameters ℏ 2 /2m = 0.5, σ 2 = 20, ρ = 1 and s = 3000.

  form in the context of signal and image processing based on the resolution of a quantum mechanical problem. More precisely, the signal or image was used as the potential in a quantum problem, the resolution of which gives as eigenvectors the proposed adaptive basis. The basis vectors automatically use a different range of frequencies to explore low potential valued regions compare to the regions corresponding to the high potential values. Therefore, thresholding the coefficients of the signal or image expanded in this basis will process differently high and low values of the signal or image. This framework has been illustrated through denoising applications on different signals and images in presence of Gaussian, Poisson and speckle noise. We have performed a detailed investigation of the impact of the hyperparameters on the denoising accuracy. We have also presented a quantitative comparison of the denoising efficiency of the proposed adaptive method compared to state-of-the-art methods on synthetic signals and standard images. The results show that our method has interesting potential to denoise signals and images, especially for Poisson and speckle noise to which it is well adapted; indeed, as a vector in the adaptive basis naturally uses higher frequencies for low values of the signal compared to low values, the thresholding process keeps more frequencies for low values than for high values. The results show that our denoising procedure outperforms standard methods in specific cases, and ranks among the best methods in most cases.

  new alternating direction of multipliers (ADMM) Plug-and-Play (PnP) scheme is proposed in this chapter, by embedding the adaptive denoiser introduced in the previous chapter using the Schrödinger equation's solutions of quantum physics. The potential of the proposed model is studied for Poisson image deconvolution, which is a common problem occurring in number of imaging applications, such as limited photon acquisition or X-ray computed tomography. Numerical results show the efficiency and good adaptability of the proposed scheme compared to recent state-of-the-art techniques, for both high and low signal-to-noise ratio scenarios. This performance gain regardless of the amount of noise affecting the observations is explained by the flexibility of the embedded quantum denoiser constructed without anticipating any prior statistics about the noise, which is one of the main advantages of this method. The main novelty of this work resides in the integration of a modified quantum denoiser into the PnP-ADMM framework and the numerical proof of convergence of the resulting algorithm. A more computationally efficient algorithm for the quantum mechanics-based scheme of Chapter 4 is also presented. Finally, we show the ability of the proposed method to enhance real-life fluorescence microscopy images.

-

  log (P(y|x)) -log (P(x)) .(5.1) for some conditional probability P(y|x) defining the forward imaging model, and a prior distribution P(x) defining the probability distribution of the latent image, with f (x) = -log (P(y|x)) as the negative log-likelihood function depends on the degradation (forward) model, and g(x) = -log (P(x)) as the a priori log-distribution of x or a regularization function. The optimization in eq. (5.1) is a generic unconstrained optimization. Thus, standard optimization algorithms can be used to solve the problem.

f

  (x) + g(z) subject to x = z, and considering its augmented Lagrangian function, we can reproduce the sequence of subproblems (3.14)-(3.17):

  scheme a new adaptive denoiser designed in the previous Chapter 4 by borrowing tools from quantum mechanics. The adaptive nature of this denoiser makes it highly efficient at selectively eliminating noise from higher intensity pixels, without relying on any statistical assumption about the noise. Its efficiency regardless of the assumption ofGaussian noise represents the main motivation of its interest in Poisson deconvolutionPnP-ADMM algorithms, discarding the necessity of a VST. To summarize, the main novelty of the work is the use of quantum mechanical concepts in the field of image restoration. The primary contributions are the quantum denoiser, its integration into a PnP-ADMM scheme, and the experimental proof of convergence of the final algorithm.The remainder of the chapter is organized as follows. Section 5.2 proposes the PnP-ADMM algorithm for Poisson inverse problems. The numerical experiments and results are regrouped in Section 5.3. Section 5.4 shows the ability of the proposed method to enhance experimental fluorescence microscopy images before drawing conclusions in Section 5.5 with perspectives.

  ×n 2 is a block circulant with circulant blocks (BCCB) matrix acounting for 2D circulant convolution with the PSF. The pixels of the observed blurry and noisy image y are denoted by y[i], i = 1, 2, • • • , n 2 , and are treated as independent realizations of a Poisson process with parameter (Gx)[i] ≥ 0 given by

  )[i] represents the i-th component of a vectorized image. The restoration of x from the noisy-blurred observation y is the primary objective of Poisson deconvolution methods.

. 13 )FIGURE 5 . 1 .

 1351 FIGURE 5.1. Relationship between the clean and noisy images under the quantum mechanical framework and their effects on the wave functions: example of the Boat image.

Chapter 4 .

 4 An illustration of the adaptive basis construction is given in Fig. 5.1. It displays the relationship between a clean and a noisy image in the quantum mechanical framework. The basic idea is to use the image as a potential of a quantum system,

  for any i multiple of n apart from n 2 . More details about the construction of the Hamiltonian operator associated to an image can be found in Subsection 4.3.1 of the Chapter 4. The corresponding eigenbasis of the Hamiltonian operator (5.20) represents the adaptive transform. In the previous Chapter 4, it was shown that this adaptive basis gives an efficient way of image denoising, especially in the presence of Gaussian, Poisson 123 CHAPTER 5. PLUG-AND-PLAY QUANTUM ADAPTIVE DENOISER FOR DECONVOLVING POISSON NOISY IMAGES or speckle noise. In this chapter, this adaptive basis, referred to as QAB, is used to construct the denoiser D QA B (•) embedded in the proposed PnP-ADMM scheme.
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 52 FIGURE 5.2. Flowchart of the proposed QAB-PnP algorithm.

FIGURE 5 . 3 .

 53 FIGURE 5.3. Images used for deconvolution simulations.
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  (a) Performed on the image in Fig. 5.3(a). (b) Performed on the image in Fig. 5.3(b). (c) Performed on the image in Fig. 5.3(c).

FIGURE 5 . 4 .

 54 FIGURE 5.4. Numerical validation of the criteria, D QA B (x k ) -x k 2 ≤ σ k M for any x k ∈ R n 2 , performed on the sample images in Fig. 5.3(a-c). Remark 5.2. Denoiser D QA B is a bounded denoising operator with a parameter σ k .

Proof. *

 * First condition: The first condition holds as shown in Remark 5.1. * Second condition: The second condition should hold generically as discussed in Remark 5.2.

131 CHAPTER 5 .

 1315 PLUG-AND-PLAY QUANTUM ADAPTIVE DENOISER FOR DECONVOLVING POISSON NOISY IMAGES Furthermore, since the denoiser D QA B is bounded and z k+1 = D QA B (x k+1 + u k ), one can write

39 ) 132 5

 39132 .3. SIMULATION RESULTSHence all three conditions (5.27), (5.28) and (5.29) are true.

FIGURE 5 . 5 .

 55 FIGURE 5.5. PSNR mean and standard deviation values for all the three sample images in Fig. 5.3 as a function of Poisson noise levels.

FIGURE 5 . 6 . 3 FIGURE 5 . 7 .

 56357 FIGURE 5.6. Experiment performed on the image in Fig. 5.3(a) blurred by a Gaussian kernel h 4×4 σ of size 4 × 4 with standard deviation σ = 3, and corrupted by Poisson noise corresponding to a SNR of 20 dB. QAB-PnP was performed with λ 0 = 1.5, and γ, σ QA B , s and ρ manually tuned to their best possible values for each set of experiments.

Fig. 5 .

 5 Fig. 5.6(a) shows the accuracy of QAB-PnP algorithm for different couple values of these two hyperparameters over an acceptable range. This experiment consisted in recovering the image in Fig. 5.3(a) from a degraded version blurred by a 4 × 4 Gaussian kernel with standard deviation equal to 3 and Poisson noise corresponding to a SNR of 20 dB. Similarly, Figs. 5.6(b) and (c) show the variation of the number of the significant wave vectors T and of the computation time. These results also justify the linear proportionality of T and processing time. Note that as explained previously, the other hyperparameters, σ QA B , s and ρ, were chosen as suggested in the previous Chapter 4.

  .3, distorted by a Gaussian blurring kernel h 4×4 σ of size 4×4 and standard deviation σ = 3, and corrupted by Poisson process corresponding to a SNR of 20 dB.

FIGURE 5 . 8 .FIGURE 5 . 9 .

 5859 FIGURE 5.8. RMSE in logarithmic scale as a function of iteration number for TV-ADMM, ADMM+BM3D, ADMM+TNRD, ADMM+VST+TNRD, P 4 IP and proposed QAB-PnP methods. The results correspond to the restoration of the image in Fig. 5.3(a) from a degraded image by a Gaussian blurring kernel h 4×4 σ of size 4 × 4 and standard deviation σ = 3, and Poisson noise corresponding to a SNR of 20 dB. All hyperparameters were manually tuned to their best possible values for all the methods.
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 510511 FIGURE 5.10. Deconvolution result for Synthetic image, blurred by a Gaussian kernel h 4×4 σ=5 and corrupted by Poisson noise corresponding to a SNR of 15 dB. The proposed QAB-PnP algorithm used E = 4.1, λ 0 = 1.3, ℏ 2 /2m = 4 and γ = 1.01, σ QA B = 7.

Finally, one may

  observe the big accuracy difference between the proposed method and the five others for the synthetic image. Indeed, in presence of strong noise intensities the methods particularly associated with the VST (or the Anscombe transformation) exhibit more volatility compared to others. This VST only provides a Gaussian approximation of Clean Lena image (f) PSNR 24.35dB, SSIM .69 (g) PSNR 22.42dB, SSIM .58 (h) PSNR 23.87dB, SSIM .65 ADMM+TNRD (i) Clean Lena image (j) PSNR 25.71dB, SSIM .72 (k) PSNR 23.38dB, SSIM .59 (l) PSNR 24.23dB, SSIM .67 ADMM+VST+TNRD (m) Clean Lena image (n) PSNR 25.43dB, SSIM .64 (o) PSNR 23.66dB, SSIM .53 (p) PSNR 24.22dB, SSIM .61

  This chapter proposed a new PnP-ADMM scheme to handle Poisson deconvolution problems. Although Gaussian denoiser-based PnP-ADMM algorithms have achieved enormous success in the domain of image restoration, they are still facing a theoretical limitation related to the Anscombe transformation used to approximately transform the Poisson noise into additive Gaussian noise. Under this transformation, the convolution 1 http://tinyurl.com/y6mwqcjs

  FIGURE 5.13. Deconvolution results for experimental fluorescence microscopy images using TV-ADMM, ADMM+BM3D, ADMM+TNRD, ADMM+VST+TNRD, P 4 IP and the proposed QAB-PnP method. The proposed QAB-PnP algorithm used E = 4.1, λ 0 = 1.3, ℏ 2 /2m = 4 and γ = 1.01, σ QA B = 7.

  as denoising. In recent years, with the growth of computing power, data-driven strategies exploiting the redundancy within patches extracted from one or several images to increase sparsity have become more prominent. This chapter presents a novel image denoising algorithm exploiting such an imagedependent basis inspired by the quantum manybody theory. Based on patch analysis, the similarity measures in a local image neighborhood are formalized through a term akin to interaction in quantum mechanics that can efficiently preserve the local structures of real images. The versatile nature of this adaptive basis extends the scope of its application to image-independent or image-dependent noise scenarios without any adjustment. We carry out a rigorous comparison with contemporary methods to demonstrate the denoising capability of the proposed algorithm regardless of the image characteristics, noise statistics and intensity. We illustrate the properties of the hyperparameters and their respective effects on the denoising performance, together with automated rules of selecting their values close to the optimal one in experimental setups with ground truth not available. Finally, we show the ability of our approach to deal with real-medical imaging problems such as medical ultrasound image despeckling applications and clinical dental computed tomography image super-resolution (SR) problems using Plug-and-Play (PnP) and Regularization by Denoising (RED) approaches.

1

 1 Image Representation and Related WorksAs detailed in Chapter 3, during the past two decades, the redundancy between patches extracted from one or several images has been shown to be a key aspect for number of imaging techniques to increase the sparsity and overcome the limitations of the traditional transforms. Data-driven techniques to exploit the non-local self-similarity (NLSS) while processing a group of similar patches is big breakthrough in recent decades.

  (i) the characterization of the hyperparameters and automated ways to predict their optimal values with limited knowledge about the input image, (ii) investigation on the denoising possibilities beyond Gaussian statistics without any modification of the algorithms, (iii) a detailed discussion of denoising performance compared to state-of-the-art methods for both image-independent and image-dependent scenarios, (iv) application on real medical data for ultrasound (US) image despeckling, (v) application on clinical dental computed tomography image super-resolution (SR) problems using Plug-and-Play (PnP) and Regularization by Denoising (RED) approaches.

  Thus, inside the patch A the effective potential V e f f ective a is (6.6) V e f f ective a = V (z a ) + I a = V (z a ) + w b=1,b̸ =a I ab . 6.2. QUANTUM MANY-BODY THEORY FOR IMAGING Therefore, we have a different adaptive basis for each patch containing a unique effective potential V e f f ective a

FIGURE 6 . 2 .

 62 FIGURE 6.2. Average inverse participation ratio (IPR) of all the adaptive basis vectors as a function of signal to noise ratio for the Lena image degraded by AWGN using different sizes of the image patch.
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 6411 P h , W h , p, ℏ 2 /2m and d and How to Select Them Effect of the Patch Size P h

FIGURE 6 . 4 .

 64 FIGURE 6.4. Denoising performance in terms of PSNR (left y-axis) and average run time (right y-axis) of De-QuIP as a function of the search window size for the first seven sample images in Fig. 6.3. The images hyperparameters P h = 7 and others are estimated from the equations (6.9)-(6.12).
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 665 Fig.6.4 shows the denoising performance of De-QuIP in terms of PSNR as a function of the search window size for the Gaussian and Poisson noise cases. For these simulations, the patch size is kept fixed at 7 × 7 for all images. Note that in these simulations patches overlap, given that consecutive target patches are one pixel away from each other, both in the horizontal and vertical direction. In Fig.6.4, one can see that in both cases, the denoising ability increases with the size of the search window before roughly stabilizing beyond a size 20 × 20 for both noise models. These observations show that the patch neighborhood is important to increase the denoising performance but larger search windows do not bring additional information about the neighborhood due to the inverse square nature of the interaction term. It is also important to notice that the computation time increases with the search window size, as shown in the right y-axis in Fig.6.4. The use of a relatively moderate size search window is computationally more efficient while preserving the image attributes using the proposed interaction framework. Note that these results are consistent for other patch sizes. Therefore, for simplicity, in this work we choose a search window size of 15 × 15, 21 × 21 and 33 × 33 respectively for the patch sizes of 5 × 5, 7 × 7 and 11 × 11. One interesting observation can be drawn here, that the

Fig. 6 .

 6 5(a) presents the denoising performance in terms of PSNR as a function of p for the House image corrupted with AWGN (SNR = 16dB), for three different patch sizes. These optimal values also depend on the level of noise present in the image. These p values that maximize the output PSNRs for the first CHAPTER 6. A NOVEL IMAGE DENOISING ALGORITHM USING CONCEPTS OF QUANTUM MANY-BODY THEORY seven sample images in Fig. 6.3 corrupted with different noise intensities are highlighted.

FIGURE 6 . 7 .

 67 FIGURE 6.7. F factor vs d scatter plot and the respective best-fitted curve of the form (F factor -l 1 ) = l 3 /(dl 2 ).

Fig. 6 .

 6 Fig.6.7 and Fig.6.8 show the best-fitted curves to the optimal F factor and d, and the respective fit parameters are regrouped in Table6.6. These rules give an efficient way of selecting the hyperparameters close to their optimality depending on the size of the given patch and the intensity of the noise. Our data show that the respective costs in terms of performance loss are minimal, since the output PSNR curves are smooth and have broad maxima, shown in Figs.6.5(b)-6.5(c) for the choice of F factor and d, as discussed in Subsection 6.4.1.3 for the hyperparameter p. Hence, the rules for automated selecting hyperparameters are expected to be valid for other images as well.

  One can also observe that De-QuIP and BM3D-based methods stand out as the two best-performing algorithms for both Gaussian and Poissonian cases. The denoising performance of De-QuIP and BM3D-based methods are presented in Figs. 6.9-6.10 for visual inspection, where ground truth, noisy, and corresponding denoised images are shown. These results confirm the good performance of De-QuIP regardless of the noise model and intensity. In the denoised images, image features and details, for example, patterns (in Fingerprint and Ridges), sharp edges (in Lake, Bridge, Cameraman and House), smooth areas (in Peppers, Flintstones, and Lena), are well-preserved. Although BM3D and respectively ATBM3D are slightly more accurate in some of the experiments, a smoothing effect is present in their corresponding denoised images and becomes more prominent as the noise level increases. This effect is clearly visible around the windows and roof of the Hill, on the patterns of the Fingerprint, near the eye of the Lena, on the 6.4. SIMULATION RESULTS

FIGURE 6 . 9 .

 69 FIGURE 6.9. The Gaussian denoising results for different level of noise. The noisy, BM3D results, De-QuIP results, and ground-truth images are presented here accordingly. The BM3D and De-QuIP schemes are listed as these are always among the two best-performing methods.
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 6106116126 FIGURE 6.10. The Poissonian denoising results for different level of noise. The noisy, ATBM3D results, De-QuIP results, and ground-truth images are presented here accordingly. The ATBM3D and De-QuIP schemes are listed as these are always among the two best-performing methods.
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 613 FIGURE 6.13. Quantitative denoising results using different methods for Gaussian and Poisson corrupted images with four different noise levels. The bottom and top edges of the boxes indicate the 25 th and 75 th percentiles, and the central black line and circle indicate the median and mean relative to the data points.
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 6 Fig. 6.14, four US images are presented for visual demonstrations. Observation shows
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 62 Proposed Super-Resolution Algorithms using De-QuIP 6.6.2.1 Super-Resolution Plug-and-Play ADMM with De-QuIP

a

  schemes and gives a good comparison with the best outcome for both image independent and dependent noise models. Additionally, De-QuIP achieves much better results at a significantly less computational cost in comparison with the earlier single-particle based quantum scheme of Chapter 4. To make De-QuIP more robust, automated rules are discussed in this chapter to efficiently select the values of the hyperparameters close to

  This chapter presents a deep neural network called DIVA unfolding a baseline adaptive denoising algorithm (De-QuIP), relying on the theory of quantum many-body physics. Furthermore, it is shown that with very slight modifications, this network can be enhanced to solve more challenging image restoration tasks such as image deblurring, superresolution and inpainting. Despite a compact and interpretable (from a physical perspective) architecture, the proposed deep learning network outperforms several recent algorithms from the literature, designed specifically for each task. The key ingredients of the proposed method are on one hand, its ability to handle non-local image structures through the patch-interaction term and the quantum-based Hamiltonian operator, and, on the other hand, its flexibility to adapt the hyperparameters patch-wisely, due to the training process. Finally, we show the ability of our approach to deal with clinical cardiac ultrasound images enhancement applications.

  a noisy observation Y ∈ R M×N . The respective vectorized representations of X and Y are denoted by x ∈ R MN and y ∈ R MN in lexicographical order. Based on the many-body quantum physics, the primary idea of De-QuIP algorithm is to construct an adaptive transformation using the wave solutions of the Schrödinger equation Hψ(z) = Eψ(z), where the wave function ψ(z) describes a particle with energy E in a potential V , z being the spatial coordinate. In a many-body system, denoting by I the interaction, the Hamiltonian operator is H = -(ℏ 2 /2m)∇ 2 + V + I, where ∇ and (ℏ 2 /2m) are respectively the gradient operator and a function of the Planck's constant (this function acts as a hyperparameter in this formalism). For this patch-based imaging scheme, the potential V is represented by the original pixels' values of the image patch and the patch-similarity measures act as the interaction I. The set of eigenvectors of the Hamiltonian operator

2 ab,

 2 2 and inversely proportional to the square of the Euclidean distance D ab between the patches. Summing over b gives the total interaction for the a-th patch (7.3) I a = p b L ab = p b K ab D ∀J a ∈ Ω.
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 2082 BRIEF REVIEW OF QUANTUM INTERACTIVE PATCHES-BASED DENOISING
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 7173 FIGURE 7.1. Architectural comparison between De-QuIP and its DL counterpart.

  1(a) by an arrow. In the proposed deep unfolded network, the learnable kernels C 2 a and C 3 a replaced respectively the original and inverse adaptive basis. The convolutional operations are useful to learn these kernels independently and are illustrated by removing the arrow in Fig. 7.1(b).

Subsection 7 .•

 7 4.1 briefly summarizes the experimental settings used in the different contexts. Subsection 7.4.2 gives an overview of various benchmark methods considered for comparison purposes. An ablation study with/without considering the interaction layer and the Hamiltonian kernel within the proposed networks is conducted in Subsection 7.4.3, with an additional discussion on the parameter number, run time, and the depth of the network. Finally, Subsection 7.4.4 presents a quantitative and qualitative evaluation of our DL models on various image restoration problems. Training data: The proposed DIVA network was trained for the Gaussian denoising task following [71, 405, 407], over a set of 400 gray-scale images of size 180 × 180 extracted from BSD400 dataset. All images were contaminated with additive white Gaussian noise (AWGN) with standard deviation σ, following two configurations: known and unknown σ. For the case of known σ, the training was conducted individually over six known noise levels, for σ = 10, 15, 25, 50, 75 and 100.

7. 4 . 1 . 6

 416 Training SettingsAll HR and simulated LR images were clipped between 0 and 1. The patch size was set to n = 15 with a local window of size W = 35 for the proposed image denoising model with known σ. For DIVA-blind and inpainting applications, these parameters were slightly modified to n = 25 and W = 50. For deblurring and SR, larger patch and window sizes were used, n = 35 and W = 70, to preserve more spatial information from the local neighborhood. Finally, all LR-HR patch pairs were augmented randomly by rotating 90 degree and flipping horizontally or vertically to generate training data pairs. The proposed models were trained in a supervised manner by exploiting these patch-pairs. To conduct the training, the ADAM optimizer with a mini-batch size of 128 was employed. More precisely, the models were trained with an exponentially decaying learning rate ranging from 10 -3 to 10 -6 over 60 epochs. The proposed network architectures were implemented under the Keras and Keras-backend framework that relies on the TensorFlow library, and trained using NVIDIA GTX 1080 Ti GPU. The training process took about 6 hours for DIVA and 12 hours for DIVA-A to reach convergence for each experiment.

FIGURE 7 . 3 .

 73 FIGURE 7.3. Loss function (MSE) with respect to epochs. Two specific models are trained for image denoising with σ = 15, with and without integrating the interaction layer in the proposed DIVA architecture for the ablation study.

  Left: Denoising performance vs parameter number. Comparisons are presented on the BSD68 dataset with σ = 50. Right: Denoising performance vs run time. Comparisons are presented on the Set12 dataset with σ = 50. Left: Deblurring performance vs parameter number. Comparisons are presented on the Levin dataset with motion blur and σ = 7.65. Right: Deblurring performance vs run time. Comparisons presented on the Levin dataset with motion blur and σ = 7.65. Left: SR performance vs parameter number. Comparisons are presented on the BSD100 dataset for 4X SR. Right: SR performance vs run time. Comparisons are presented on the Urban100 dataset for 4X SR.

FIGURE 7 . 4 .

 74 FIGURE 7.4. Performance versus parameter number and run time versus performance are presented for different methods for different tasks. The proposed methods give high performances in terms of SSIM(%) with fewer number of parameters and low computation time.

7. 4 .

 4 EXPERIMENTAL RESULTS nabla operator, original pixels' values of the patch and the interactions with its neighbors, following equation(7.6). To illustrate the importance of this Hamiltonian structure in the proposed networks, an ablation investigation of this Hamiltonian kernel was conducted, through three network settings:(i) without the Hamiltonian kernel and interaction layer, (ii) with the Hamiltonian kernel but without the interaction layer, and (iii) with the

FIGURE 7 . 5 .

 75 FIGURE 7.5. Denoising results using different methods for the Girl image contaminated with AWGN with σ = 25.

FIGURE 7 . 10 .

 710 FIGURE 7.10. Deblurring results for 25 × 25 MB kernel. The restored Parrot images with 25 × 25 motion blur kernel.

FIGURE 7 .

 7 FIGURE 7.18. Restored HR Flowers images from LR images generated by Gaussian downsampling under a 7×7 Gaussian blur kernel of standard deviation 1.6 with scaling factor 3.

F- 16

 16 FIGURE 7.19. Image inpainting results by DIVA-A. The first row shows restored F-16 Jet images when 50% pixels' are missing and the second row shows restored Boat images when 80% pixels' are missing.

  Image enhancement, i.e., contrast and spatial resolution improvement, have been extensively studied in ultrasound (US) imaging. Most techniques rely on adaptive beamforming to mitigate the drawbacks of delay-and-sum, despeckling to reduce speckle noise

  Our main objective is to address the US image enhancement problem by implementing our proposed deep unfolded network DIVA-A (see Subsection 7.3.2). In previous Chapter 6, we have already shown that the baseline De-QuIP algorithm demonstrates its ability in medical US image despeckling problem and offers a better image contrast compared to other state-of-the-art methods. In this section we will extend this by studying the clinical US image contrast enhancement problem using the deep unfolded version of original De-QuIP algorithm.

FIGURE 7 . 20 .

 720 FIGURE 7.20. US image despeckling results using baseline De-QuIP and proposed unfolded deep-learning method DIVA-A for simulated US images.

Fig. 7 .FIGURE 7 . 21 .

 7721 Fig. 7.20 depicts despeckling results for simulated human anatomy US images using SIMUS, by original De-QuIP and the proposed DL methods, where peak-signalto-noise ratio (PSNR) and structural similarity (SSIM) were calculated for quantitative assessment (the best values are in bold). These results prove that the proposed DL model offers a significant improvement in spatial resolution and contrast, with a negligible

tion 7 . 4 . 3 .

 743 Harnessing the power of back-propagation, our networks uniquely tune all hyperparameters, such as proportionality constant, Planck constant and thresholding energy, for each patch. This enables network adaptability with several image restoration tasks, and leads to promising performances. Moreover, our proposed network shows sophisticated performance in real medical US image enhancement problems. The enhanced images show a gain in contrast and resolution while preserving underlying structures and significantly reducing speckle.

  The first work conducted in this thesis was introduced in Chapter 4, where we presented in detail a new approach of constructing a signal or image-dependent bases inspired by quantum mechanics tools, more precisely, by considering the signal or image as a potential in the discretized Schrödinger equation, the solution of which gives eigenvectors that form the proposed adaptive basis. The basis vectors automatically use a different range of frequencies to explore low potential valued regions compared to the regions corresponding to the high potential values. Therefore, thresholding the projection coefficients of the stretched signal or image on this basis treats the high and low values of the signal or image differently. To illustrate the potential of the proposed decomposition, denoising results were reported in the case of Gaussian, Poisson, and speckle noise and compared to state-of-the-art algorithms based on wavelet shrinkage, total variation regularization or patch-wise sparse coding in learned dictionaries, nonlocal means image denoising, and graph signal processing. The results showed that our denoising procedure outperforms standard methods in specific cases, and ranked among the best methods in most cases. In general, the method performed much better for signals or images with large contrasts in presence of Poisson-like noise. Furthermore, in real medical dental computed tomography images, our proposed method demonstrated the ability to enhance the noisy cone beam computed tomography images while preserving the canal root, which is the region of interest.In Chapter 5, we proposed a new Plug-and-Play (PnP) alternating direction of multipliers (ADMM) scheme for Poisson deconvolution problems by embedding a computationally more efficient quantum adaptive denoiser than the one introduced in the previous Chapter 4. Numerical results showed the efficiency and good adaptability of the proposed scheme compared to recent state-of-the-art techniques, for both high and low signal-to-noise ratio scenarios. This performance gain regardless of the amount of noise affecting the observations is explained by the flexibility of the embedded quantum denoiser constructed without anticipating any prior statistics about the noise, which is one of the main advantages of this method. Finally, we illustrated the efficiency of the proposed method in real fluorescence microscopy image enhancement tasks, which are intrinsically contaminated with Poisson-Gaussian noise.In Chapter 6, we developed a new image denoising algorithm exploiting an imagedependent basis inspired by the quantum many-body theory. Based on patch analysis, the similarity measures in a local image neighborhood are formalized through a term akin to interaction in quantum mechanics that can efficiently preserve the local structures of real images. Through these interactions, structural details are transmitted on a patch-based adaptive basis created by the solutions of the Schrödinger equation of quantum mechanics, which can be exploited as filters for denoising the patches. The versatile nature of this adaptive basis extends the scope of its application to imageindependent or image-dependent noise scenarios without any adjustment. We carried out a comprehensive comparison with contemporary methods to demonstrate the denoising capability of the proposed algorithm regardless of the image characteristics, noise statistics and intensity. Experimental results revealed that the proposed method convincingly beats other schemes and provides a better comparison with the best results for both image-independent and image-dependent noise models. Additionally, this newly proposed method, which is indeed a generalization of the earlier single-particle based quantum scheme of Chapter 4, achieved much better results at a significantly less computational cost in comparison with its first version of Chapter 4. In real-life problems, this newly proposed quantum mechanics-based algorithm demonstrated good performances, for example, in medical ultrasound image despeckling and clinical dental computed tomography image super-resolution applications.Finally, in Chapter 7, we introduced an original deep-learning approach to solve image denoising problems, further extended to general image restoration tasks relying on the philosophy of quantum many-body theory. Our model unfolds the baseline adaptive denoising algorithm as proposed in previous Chapter 6, into a deep-learning framework and optimizes the relevant parameters by exploiting the power of back-propagation approach. Absorption of various quantum mechanical components from its baseline method significantly increased the network performance while reducing training costs. We have performed comprehensive evaluations of our proposed deep networks for various imaging

FIGURE 8 . 1 ."

 81 FIGURE 8.1. Denoising results using a quantum algorithm (prototype) for synthetic signal corrupted with Poisson noise corresponding to a SNR of 15 dB. (a) Clean synthetic signal, (b) Signal corrupted with Poisson noise corresponding to a SNR of 15 dB. Denoising results obtained using, (c) Fourier transformation, (d) wavelet hard thresholding, (e) proposed quantum adaptive basis from Chapter 4 and (f) proposed quantum algorithm (prototype) for denoising.
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  Finally, we address the problem of clinical cardiac ultrasound image enhancement to demonstrate the potential of our proposed deep unfolded network in real-world medical applications. Universit é Toulouse 3 Paul Sabatier 118 Rte de Narbonne, 31062 Toulouse, France
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estimating x from y by mitigating the effect of the degradation operator O is a challenging ill-posed inverse problem.

  

	3.1)	y = N (Ox),
	where, y and x denote the degraded observation and unobservable image of interest,
	respectively, O denotes the degradation operator, and N accounts for the effect of the
	noise (be it additive, speckle, Poissonian, etc.). The goal is to recover the underlying
	image x from the observation y. Note that y ∈ R m and x ∈ R n are respectively the
	standard vectorized versions of images Y and X in lexicographical order. Depending on
	the degradation operator O, different restoration problems occur. For example, if O is
	the identity operator, the resulting problem is an image denoising problem. If O is a
	blurring operator then restoration becomes a deblurring, or a SR task if O includes a
	subsampling operator. In practice,	

.1.1 Filters for Image Denoising

  

		3.4. STATE-OF-THE-ART METHODS
	of parameters. Fundamental techniques like the Kalman filter and message passing
	algorithms belong to the class of model-based methods. Classical statistical models rely
	on simplifying assumptions (e.g., linear systems, Gaussian and independent noise, etc.)
	that make models tractable and understandable.
	3.4Image denoising is one of the fundamental image restoration challenges that has been
	extensively studied over the last forty years and is still an active area of research
	[65, 251]. Nowadays, denoising algorithms are present in all imaging domains. More
	recently, new denoising challenges have appeared, for instance with the apparition
	of cameras in smartphones, high-resolution sensors in satellites, or modern imaging
	equipments in medical diagnosis. Image denoising consists in estimating an unknown
	noiseless image x from a noisy observation y, that obeys the classic image degradation
	model	
	(3.2)	y = x + e,
	since O in eq. (3.1) is the identity operator for denoising and we consider additive noise
	e for simplicity.	
	Traditional signal and image processing is dominated by algorithms based on math-
	ematical models which are hand-designed from domain knowledge. Such knowledge
	can come from statistical models based on measurements and understanding of the
	underlying physics, or from deterministic representations of the particular problem at
	hand. These domain-knowledge-based processing algorithms, known as model-based
	methods, carry out inference based on knowledge of the underlying model relating the
	observations at hand and the desired information. Model-based methods do not rely
	on data to learn their mapping, though data is often used to estimate a small number

  𝑧 1 

	. 𝑧 𝑤(𝑧, 𝑧 1 )	. 𝑧 3
	𝑤(𝑧, 𝑧 2 )	
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FIGURE 3.7. Principle of Non-Local Means filtering algorithm. Similar pixel neighborhoods give a large weight, w( z, z 1

TABLE 4 .

 4 1. The Hamiltonian matrix of size 16 × 16 corresponding to an image of size 4 × 4.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Table 4 .

 4 2 where the best and the second best values have been highlighted by red and blue colors respectively

	4.4. RESULTS

for each dataset. Note that VST is only used for data-dependent noise, whereas GSP and NLM is used only for Gaussian noise. Moreover, VST, GSP, NLM, and DL were only tested for images, as initially suggested by the seminal papers. Illustrative results for

TABLE 4 .

 4 2. Quantitative denoising results.

	Sample	Method	Gaussian Noise (15dB) SNR (dB) PSNR (dB) SSIM SNR (dB) PSNR (dB) SSIM SNR (dB) PSNR (dB) SSIM Poisson Noise (15 dB) Speckle Noise (15dB)
		Wavelet hard	18.84	25.21	-	17.21	24.64	-	17.36	24.13	-
	Synthetic Signal	Wavelet soft TV	18.53 16.20	24.21 23.01	--	17.79 15.94	24.07 23.45	--	17.02 15.92	22.70 22.92	--
		Proposed	22.21	27.50	-	22.51	27.63	-	20.75	26.86	-
		Wavelet hard	15.01	24.46	0.61	15.01	25.68	0.69	15.01	25.34	0.76
		Wavelet soft	15.71	25.05	0.64	15.61	26.20	0.70	15.49	25.80	0.77
		VST	-	-	-	15.09	25.83	0.69	15.06	25.58	0.76
	Synthetic Image	TV GSP	15.74 20.28	25.07 28.78	0.64 0.79	15.62 -	26.23 -	0.71 -	15.53 -	25.78 -	0.77 -
		NLM	18.70	26.88	0.71	-	-	-	-	-	-
		DL	17.35	26.15	0.71	17.14	27.22	0.75	17.21	27.48	0.80
		Proposed	23.42	31.78	0.89	23.92	32.78	0.92	25.32	33.50	0.95
		Wavelet hard	20.28	26.87	0.62	19.92	27.26	0.61	19.71	25.85	0.59
		Wavelet soft	21.50	27.83	0.59	21.35	27.82	0.59	21.08	26.16	0.58
	Boat	VST TV	-22.46	-28.77	-0.71	21.77 22.25	28.62 29.00	0.62 0.64	22.80 23.11	28.03 28.19	0.68 0.71
		GSP	23.88	29.36	0.78	-	-	-	-	-	-
		NLM	23.56	29.27	0.77	-	-	-	-	-	-
		DL	24.02	29.52	0.80	23.44	29.77	0.77	22.64	27.71	0.73
		Proposed	23.15	28.88	0.77	23.51	29.29	0.77	23.65	28.73	0.78
		Wavelet hard	20.52	27.02	0.52	20.08	28.17	0.49	19.75	25.99	0.48
		Wavelet soft	21.99	27.69	0.53	21.67	28.59	0.51	21.31	26.61	0.50
		VST	-	-	-	21.71	28.64	0.53	22.51	27.81	0.56
	Elaine	TV GSP	23.67 25.89	29.63 30.73	0.62 0.72	22.03 -	28.84 -	0.55 -	23.06 -	27.61 -	0.59 -
		NLM	24.67	30.70	0.67	-	-	-	-	-	-
		DL	24.97	29.92	0.68	23.96	29.84	0.62	22.99	27.58	0.58
		Proposed	24.70	29.87	0.68	23.89	29.03	0.65	23.52	28.32	0.64
		Wavelet hard	20.84	28.17	0.72	20.01	28.89	0.68	19.22	27.49	0.66
		Wavelet soft	21.23	28.12	0.71	20.75	28.54	0.67	20.29	27.31	0.66
		VST	-	-	-	20.82	29.50	0.73	21.24	28.55	0.69
	Lena	TV GSP	21.95 22.43	29.32 29.32	0.70 0.78	21.34 -	29.58 -	0.68 -	21.83 -	28.71 -	0.72 -
		NLM	22.92	30.58	0.77	-	-	-	-	-	-
		DL	23.14	30.02	0.77	21.89	29.61	0.71	20.35	27.24	0.71
		Proposed	23.01	29.89	0						

.78 22.86 29.95 0.77 23.21 30.10 0.78

  

		Wavelet hard	18.89	26.39	0.63	18.15	26.47	0.58	17.70	25.14	0.57
		Wavelet soft	19.76	26.82	0.65	18.62	26.58	0.56	18.85	25.36	0.59
	Lighthouse	VST TV	-20.90	-27.85	-0.73	18.40 19.01	26.76 27.31	0.61 0.61	19.99 19.99	26.46 26.03	0.64 0.68
		GSP	21.30	29.01	0.77	-	-	-	-	-	-
		NLM	20.98	28.54	0.75	-	-	-	-	-	-
		DL	20.09	26.84	0.67	19.78	27.29	0.65	19.19	25.40	0.63
		Proposed	20.82	28.40	0.73	20.59	27.56	0.70	20.45	26.77	0.72
		Wavelet hard	18.60	25.07	0.65	18.59	25.53	0.65	18.38	24.86	0.64
		Wavelet soft	18.84	25.08	0.71	18.81	25.29	0.72	18.51	24.50	0.71
		VST	-	-	-	19.37	25.96	0.76	19.01	25.61	0.76
	Fruits	TV GSP	20.69 21.44	26.86 27.43	0.79 0.81	20.60 -	26.71 -	0.75 -	20.18 -	26.34 -	0.74 -
		NLM	21.48	28.02	0.77	-	-	-	-	-	-
		DL	21.30	27.37	0.79	20.87	27.16	0.71	20.39	27.08	0.72
		Proposed	21.39	28.07	0.77	21.93	28.31	0.79	21.83	28.29	0.82
		Wavelet hard	22.91	30.02	0.70	21.45	29.90	0.72	21.19	29.07	0.71
		Wavelet soft	23.09	30.98	0.74	22.14	30.51	0.80	21.90	29.79	0.79
		VST	-	-	-	22.58	31.17	0.85	22.11	30.01	0.84
	Moon	TV GSP	23.35 23.33	32.19 31.22	0.80 0.85	23.51 -	32.21 -	0.86 -	22.91 -	30.84 -	0.86 -
		NLM	25.79	33.94	0.86	-	-	-	-	-	-
		DL	23.82	32.71	0.81	22.95	31.65	0.85	22.32	30.07	0.84
		Proposed	24.81	33.11	0.83	24.65	33.34	0.86	23.48	31.55	0.89
											

* The symbol -denotes that the methods are not suitable for a particular experiment, as suggested by the seminal papers.

TABLE 4 .

 4 3. Quantitative denoising results for CBCT image.

	Sample	CNR (dB) SSIM
	Noisy CBCT image	23.89	0.66
	Denoised CBCT image	25.26	0.75

quality of CBCT dental image within phantom and in vivo data were evaluated.

3

  Compute ẑ following (5.22) and (5.21).

	Output:	ẑ	
	Algorithm 5.3: Poisson deconvolution using QAB-PnP algorithm.
	Input: y , E , λ 0 , γ,	ℏ 2 2m	, σ QA B , N

1 Initialization: x 0 , z 0 , u 0 2 Compute a smooth version of y by low-pass Gaussian filter with standard deviation σ QA B 3 Form the Hamiltonian matrix H based on the smoothed version of y using (5.20) 4 Calculate the eigen-pairs of H 5 Construct D QA B using the eigenvectors ψ i of H 6 Find the total number of eigenvalue T , less than the energy level E 7 begin 8 ADMM process: 9

TABLE 5 .

 5 

	1. Quantitative measurements obtained using the proposed QAB-PnP
	algorithm with and without modified OMP		
	Sample	Noise	Without OMP PSNR (dB) SSIM PSNR (dB) SSIM With OMP, best E
		20 dB	30.1724	0.9179	29.9497	0.8934
	Synthetic	15 dB	26.8101	0.8604	26.7300	0.8620
		10 dB	23.1674	0.7489	23.1006	0.7493
		20 dB	29.1330	0.8112	28.9842	0.8091
	Lena	15 dB	26.5853	0.7712	26.5805	0.7709
		10 dB	21.4328	0.6989	19.8070	0.6942
		20 dB	20.7366	0.6908	20.1657	0.6817
	Fruits	15 dB	18.8144	0.6471	18.6564	0.6474
		10 dB	14.9236	0.6114	14.9200	0.6117

TABLE 5 .

 5 

	Method	Run time (sec) Synthetic Lena Fruits Synthetic Lena Fruits Number of iterations
	TV-ADMM	0.111	0.107	0.130	26	17	23
	ADMM+BM3D	0.017	0.017	0.022	27	20	26
	ADMM+TNRD	78.375 81.980 104.179	17	22	25
	ADMM+VST+TNRD	77.310 82.630 112.070	20	19	17
	P 4 IP	0.037	0.039	0.049	18	8	19
	QAB-PnP (Without OMP)	190.284 186.677 266.221	17	7	14
	QAB-PnP (With OMP, best E )	37.425 35.732 48.568	18	7	15

2. Average computation time (all the algorithms have been implemented in Matlab and tested on a computer with an Intel(R) Core(TM) i7-10510U CPU of 4 cores each with 1.80 GHz, 16 GB memory and using Windows 10 Pro version 20H2 as operating system) and required number of iterations for different images.

  The resulting algorithms are denoted by ADMM+TNRD and ADMM+VST+TNRD. It is important to mention that the methods used for comparisons such as TV-ADMM, P 4 IP and ADMM+VST+TNRD are particularly designed for handling data degraded by Poisson noise, and are therefore appropriate choices as comparative methods to the proposed Poisson deconvolution algorithm.

TABLE 5 .

 5 3. Quantitative results (average over 200 noise realizations). Best results are shown in bold.

			Gaussian kernel h σ=3	4×4
	Sample	Method	Poisson Noise (20 dB) Poisson Noise (15 dB) Poisson Noise (10 dB) PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM
		TV-ADMM	26.46±0.10 0.66±0.01 24.80±0.34 0.58±0.01 22.52±1.55 0.52±0.02
		ADMM+BM3D	23.37±0.16 0.73±0.01 19.70±0.23 0.54±0.01 17.67±0.37 0.47±0.02
	Synthetic	ADMM+TNRD ADMM+VST+TNRD 23.96±0.11 0.71±0.02 21.73±0.19 0.54±0.02 19.02±0.23 0.38±0.03 23.94±0.14 0.65±0.01 21.55±0.31 0.56±0.01 18.88±0.40 0.40±0.01
		P 4 IP	23.90±1.37 0.74±0.06 20.91±2.18 0.59±0.11 18.96±3.34 0.48±0.18
		QAB-PnP	29.86±0.12 0.92±0.00 27.18±0.43 0.86±0.01 24.23±1.34 0.74±0.03
		TV-ADMM	27.37±0.31 0.74±0.01 24.52±0.65 0.66±0.01 19.97±1.32 0.52±0.02
		ADMM+BM3D	25.87±0.40 0.75±0.01 23.59±0.66 0.66±0.03 17.59±1.02 0.50±0.05
	Lena	ADMM+TNRD ADMM+VST+TNRD 25.85±0.23 0.69±0.01 24.73±0.39 0.60±0.01 19.11±0.80 0.42±0.07 25.76±0.19 0.71±0.01 24.67±0.21 0.69±0.01 19.22±0.38 0.50±0.02
		P 4 IP	27.32±0.44 0.81±0.01 24.87±2.76 0.76±0.07 18.67±4.83 0.55±0.16
		QAB-PnP	28.97±0.19 0.81±0.00 27.04±0.44 0.75±0.01 20.18±3.39 0.65±0.08
		TV-ADMM	20.51±0.38 0.57±0.01 19.02±0.23 0.55±0.01 17.54±0.93 0.51±0.01
		ADMM+BM3D	19.75±0.42 0.61±0.01 17.07±0.20 0.53±0.01 13.59±0.35 0.51±0.02
	Fruits	ADMM+TNRD ADMM+VST+TNRD 20.65±0.39 0.64±0.01 18.40±1.19 0.58±0.02 16.51±1.36 0.43±0.08 19.73±1.91 0.64±0.02 17.41±0.57 0.59±0.01 16.67±0.79 0.51±0.06
		P 4 IP	20.42±1.79 0.59±0.04 17.22±4.62 0.52±0.11 14.35±3.85 0.53±0.04
		QAB-PnP	21.37±0.94 0.62±0.01 19.35±0.96 0.57±0.02 17.28±3.55 0.51±0.12
			Gaussian kernel h σ=5	4×4
	Sample	Method	Poisson Noise (20 dB) Poisson Noise (15 dB) Poisson Noise (10 dB) PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM
		TV-ADMM	26.47±0.07 0.59±0.01 25.23±0.14 0.54±0.01 23.15±0.29 0.44±0.01
		ADMM+BM3D	22.95±0.18 0.70±0.01 19.78±0.24 0.53±0.01 17.89±0.34 0.46±0.02
	Synthetic	ADMM+TNRD ADMM+VST+TNRD 23.89±0.12 0.69±0.01 21.82±0.22 0.52±0.02 18.96±0.34 0.37±0.04 23.81±0.18 0.66±0.01 21.72±0.22 0.58±0.02 19.03±0.44 0.41±0.01
		P 4 IP	22.35±2.15 0.67±0.09 20.60±2.87 0.56±0.12 18.67±3.42 0.49±0.21
		QAB-PnP	29.

44±0.13 0.91±0.00 27.24±0.58 0.86±0.01 24.06±1.07 0.73±0.02

  

			5.3. SIMULATION RESULTS
		TV-ADMM	27.17±0.25 0.74±0.01 25.11±0.46 0.61±0.01 19.41±0.42 0.44±0.01
		ADMM+BM3D	25.02±0.48 0.73±0.01 23.51±0.78 0.65±0.02 17.64±1.47 0.48±0.06
	Lena	ADMM+TNRD ADMM+VST+TNRD 25.46±0.29 0.69±0.01 24.53±0.32 0.60±0.01 19.41±0.49 0.43±0.05 25.44±0.17 0.71±0.01 24.43±0.26 0.68±0.02 19.20±0.23 0.51±0.02
		P 4 IP	27.26±0.34 0.81±0.01 25.07±2.90 0.77±0.06 17.99±4.73 0.54±0.21
		QAB-PnP	28.80±0.21 0.81±0.00 26.63±1.01 0.76±0.03 20.20±3.89 0.67±0.05
		TV-ADMM	19.94±0.25 0.57±0.01 17.24±0.28 0.55±0.01 16.58±0.34 0.50±0.01
		ADMM+BM3D	19.15±0.58 0.60±0.01 17.11±0.33 0.54±0.01 13.45±0.55 0.50±0.02
	Fruits	ADMM+TNRD ADMM+VST+TNRD 20.18±0.29 0.65±0.01 18.16±0.87 0.58±0.01 16.45±1.04 0.45±0.03 19.68±1.10 0.63±0.02 17.95±0.96 0.58±0.01 16.13±0.74 0.51±0.06
		P 4 IP	20.47±1.99 0.61±0.05 17.49±3.44 0.56±0.04 13.83±4.22 0.51±0.05
		QAB-PnP	20.24±1.09 0.60±0.01 18.83±0.71 0.58±0.01 17.44±2.09 0.53±0.02

TABLE 5 .

 5 Clean Lena image (b) PSNR 27.40dB, SSIM .81 (c) PSNR 15.68dB, SSIM .56 (d) PSNR 22.23dB, SSIM .68

	4. Quantitative deconvolution results when images are corrupted with
	high intensity noise.				
	Gaussian kernel h σ=3	4×4 + Poisson Noise
	Sample	SNR ≈ 5 dB PSNR (dB) SSIM PSNR (dB) SSIM SNR ≈ 0 dB
	Synthetic	18.76	0.41	16.48	0.35
	Lena	16.25	0.49	15.72	0.42
	Fruits	15.04	0.39	13.32	0.30
	a Poissonian distribution and is contaminated with higher inaccuracies as noise intensity
	increases. Our method does not suffer from such issues and provides a stable output
	despite the noise level and realization.			

• • • Continued from previous page. P 4 IP (a) QAB-PnP (e) Clean Lena image (f) PSNR 27.71dB, SSIM .77 (g) PSNR 24.93dB, SSIM .74 (h) PSNR 26.96dB, SSIM .76

FIGURE 5.12. The best, the worst and an intermediate deconvolution results over 200 noise realizations obtained using TV-ADMM, ADMM+BM3D, ADMM+TNRD, ADMM+VST+TNRD, P 4 IP and the proposed QAB-PnP method for Lena image degraded by a Gaussian blurring kernel h 4×4 σ=3 and Poisson noise corresponding to a SNR of 15 dB.

TABLE 5 .
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		Methods	Data	Confocal microscopy Zebra Fish Mouse Brain	Two-photon microscopy Mouse Brain
	Observed		PSNR (dB)	20.20	27.37	24.07
	Data		SSIM	0.37	0.59	0.40
		TV-ADMM	PSNR (dB) SSIM	24.27 0.61	30.27 0.88	26.57 0.70
	Deblurred Results	ADMM+BM3D ADMM+TNRD ADMM+VST+TNRD	PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM	24.74 0.74 25.85 0.79 25.88 0.79	32.97 0.90 34.26 0.91 34.44 0.90	27.66 0.81 31.04 0.89 31.23 0.90
		P 4 IP	PSNR (dB) SSIM	25.18 0.77	33.06 0.92	27.09 0.85
		QAB-PnP	PSNR (dB) SSIM	28.91 0.82	35.68 0.93	30.14 0.79

5. Quantitative results for experimental fluorescence microscopy images. Best results are shown in bold.

  the spatial coordinates of the w particles. Thus, for a given energy E the associated wave function ψ depends on z 1 , z 2 , • • • , z w , and satisfies a new

	Schrödinger equation:
	(6.4)

TABLE 6 .

 6 1. Simulation data with different patch sizes for the Lake image contaminated by AWGN (SNR = 16dB). For the proposed De-QuIP method hyperparameters ℏ 2 /2m = 1.5, and p and d are estimated from the equations (6.9) and (6.10) respectively.

		Data	1 × 1	3 × 3	5 × 5	7 × 7	Patch size 11 × 11 17 × 17	27 × 27	63 × 63
	QAB	PSNR(dB) 11.36 12.78 21.56 24.40 SSIM 0.43 0.46 0.48 0.48 Time(sec) 30.56 17.09 41.31 70.32	26.54 0.63 161.96	27.12 0.70 328.97	27.33 0.74 881.69	28.09 0.79 5800.72
	De-QuIP	PSNR(dB) 22.12 28.16 28.73 28.84 SSIM 0.37 0.78 0.83 0.83 Time(sec) 21.93 22.75 82.61 108.01 490.52 3829.31 5644.90 22765.18 28.58 28.23 28.16 27.77 0.82 0.81 0.80 0.79
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			Gaussian case		Poisson case	
	Sample	Input		Patch size			Patch size	
		SNR(dB)	5 × 5	7 × 7	11 × 11	5 × 5	7 × 7	11 × 11
		22	0.0385	0.0750	0.0550	0.0109	0.0467	0.0800
	house	16 8	0.0197 0.0053	0.0667 0.0600	0.0700 0.0625	0.0046 0.0064	0.0325 0.0305	0.0900 0.0500
		2	0.0001	0.0225	0.0475	0.00013 0.0034	0.0400
		22	0.0220	0.0900	0.0900	0.0057	0.0555	0.0600
	lake	16 8	0.0130 0.0060	0.0522 0.0460	0.0936 0.0755	0.0033 0.0018	0.0269 0.0355	0.0400 0.0499
		2	0.0001	0.0290	0.0573	0.00013 0.0096	0.0300
		22	0.0215	0.0950	0.1250	0.0156	0.0533	0.0625
	lena	16 8	0.0107 0.0046	0.0758 0.0467	0.1100 0.0600	0.0067 0.00031 0.0207 0.0317	0.0550 0.0775
		2	0.00001 0.0100	0.0400	0.00001 0.0010	0.0550
		22	0.0154	0.0643	0.1229	0.0089	0.0500	0.0900
	hill	16 8	0.0139 0.0072	0.0521 0.0375	0.0888 0.0625	0.0056 0.00088 0.0300 0.0400	0.0800 0.0629
		2	0.00001 0.0146	0.0340	0.00001 0.0055	0.0429
		22	0.0500	0.0700	0.0450	0.0244	0.0600	0.1000
	fingerprint	16 8	0.0369 0.0041	0.0657 0.0543	0.0650 0.0900	0.0133 0.00011 0.0350 0.0400	0.0833 0.0650
		2	0.0022	0.0110	0.0830	0.00005 0.0011	0.0500
		22	0.0257	0.0700	0.1100	0.0100	0.0500	0.1083
	saturn	16 8	0.0021 0.0031	0.0578 0.0234	0.0900 0.0600	0.0080 0.0006	0.0400 0.0124	0.0967 0.0617
		2	0.00001 0.0157	0.0500	0.00001 0.0010	0.0540
		22	0.0260	0.0931	0.0463	0.0089	0.0400	0.0500
	flintstones	16 8	0.0183 0.0052	0.0500 0.0308	0.0304 0.0500	0.0044 0.0006	0.0225 0.0200	0.0655 0.0525
		2	0.0016	0.0205	0.0500	0.00017 0.0126	0.0450

2. Optimal proportionality constant p for De-QuIP.

TABLE 6 .

 6 3. Slope and intercept used in determining proportionality constant p for various patch sizes for Gaussian and Poisson noise models. Also, the associative ℓ 2 error, PSNR (dB) loss and SSIM loss in linear curve fitting to the optimal p.

			Size of the patches
			5 × 5	7 × 7	11 × 11
	Gaussian	Slope (m 1 ) Intercept (c 1 ) ℓ 2 error for p fit PSNR(dB) loss	12.84 × 10 -4 30.96 × 10 -4 16.46 × 10 -4 -35.96 × 10 -4 13.56 × 10 -3 50.40 × 10 -3 0.0327 0.0528 0.1196 0.278 0.306 0.179
		SSIM loss	0.0139	0.0172	0.0106
	Poisson	Slope (m 1 ) Intercept (c 1 ) ℓ 2 error for p fit PSNR(dB) loss	60.33 × 10 -5 21.00 × 10 -4 16.64 × 10 -4 -21.85 × 10 -4 36.31 × 10 -4 44.23 × 10 -3 0.0189 0.0392 0.0811 0.380 0.422 0.485
		SSIM loss	0.0197	0.0185	0.0150

TABLE 6 .

 6 4. Optimal F factor values for De-QuIP.

				Gaussian case		Poisson case
	Sample	Input		Patch size			Patch size
		SNR(dB)	5 × 5	7 × 7	11 × 11	5 × 5	7 × 7	11 × 11
		22	1.4714 2.4250	2.2000	1.7000 2.2667	2.6000
	house	16 8	1.9000 1.6733 1.9800 1.5333	2.3000 1.9833	1.6000 1.9167 1.9900 2.1000	1.8500 1.0000
		2	1.5000 1.2000	1.7300	2.9000 1.9000	1.5800
		22	1.6000 2.1125	2.4000	1.4889 1.8000	1.6000
	lake	16 8	1.5500 1.9633 2.2000 1.4083	2.8000 2.0650	1.6333 1.9900 2.5000 1.8500	2.0000 2.0000
		2	1.6632 2.1000	2.3000	2.8333 2.6000	1.7000
		22	1.3850 1.9000	2.4000	1.6000 2.0400	2.5000
	lena	16 8	1.8500 1.7800 2.0000 1.5500	2.3000 2.0200	1.8000 1.8500 1.9200 2.2667	2.1000 1.7000
		2	1.2400 0.8571	2.1000	2.6500 2.2333	2.0000
		22	1.3570 1.5000	1.8000	1.6500 1.5182	1.9000
	hill	16 8	2.4500 2.2500 2.6222 2.7400	2.0000 2.5000	2.0000 2.2000 3.0000 3.0000	1.9400 2.2800
		2	1.6167 2.1444	2.0000	2.5000 2.9000	3.2000
		22	1.2500 1.3800	1.4500	1.6000 1.5000	1.5000
	fingerprint	16 8	1.7000 1.7500 3.3000 3.0000	2.1000 1.8000	1.5400 1.6000 3.8000 3.0000	2.3000 1.9000
		2	2.7000 2.0000	2.0000	3.8000 3.0000	3.6000
		22	1.3500 1.3900	1.9000	1.5500 1.8778	2.2600
	saturn	16 8	1.7818 1.7000 1.5909 1.8400	1.7000 1.8000	1.5600 1.4889 2.1143 2.0000	1.8000 1.9600
		2	1.6286 1.7100	1.7000	1.8333 1.6000	2.0429
		22	1.4000 1.5500	1.5000	1.8000 1.4000	1.5000
	flintstones	16 8	1.9333 1.9000 1.8000 2.0000	1.9000 1.9000	1.7000 1.8400 3.0000 1.9700	1.5000 1.9000
		2	3.0000 2.5750	1.8000	3.8000 2.9000	1.9000

TABLE 6 .

 6 5. Optimal subspace dimensionality d for De-QuIP.

			Gaussian case		Poisson case
	Sample	Input		Patch size		Patch size
		SNR(dB)	5 × 5	7 × 7	11 × 11	5 × 5	7 × 7	11 ×
		22	16	39	120	15	33	
	house	16 8	10 6	24 11	111 56	10 3	25 11	
		2	3	4	24	2	6	
		22	24	48	84	24	48	120
	lake	16 8	21 7	40 15	64 25	22 8	36 14	101
		2	3	7	11	3	6	
		22	19	35	100	18	33	
	lena	16 8	12 7	21 8	58 27	11 5	22 8	
		2	2	4	12	2	4	
		22	25	48	120	24	48	120
	hill	16 8	20 6	40 13	111 41	22 6	43 13	115
		2	3	6	11	2	6	
		22	13	28	86	13	26	
	fingerprint	16 8	8 4	18 9	56 28	8 4	17 8	
		2	3	7	19	3	7	
		22	8	17	51	8	17	
	saturn	16 8	7 3	11 6	30 15	8 3	12 4	
		2	2	5	7	2	3	7
		22	24	48	120	24	47	120
	flintstones	16 8	13 8	41 13	118 41	14 8	37 13	118
		2	5	10	25	4	8	

TABLE 6 .

 6 6. Curve fitting parameters used in determining d and F factor for various patch sizes for Gaussian and Poisson noise models. The table also includes the associative ℓ 2 errors, PSNR (dB) loss and SSIM loss in curve fitting to the optimal d and F factor .

			Size of the patches
			5 × 5	7 × 7	11 × 11
		Slope (m 2 )	0.7783	1.7000	4.2500
		Intercept (c 2 )	0.7315	0.5345	4.8210
	Gaussian	ℓ 2 error for d fit Parameter l 1 Parameter l 2 Parameter l 3 ℓ 2 error for F factor fit PSNR(dB) loss	21.1673 0.5287 -4.4551 -4.1915 43.3499 112.4127 1.2630 1.9161 6.8223 20.6204 13.9698 9.7995 2.3845 2.6135 1.9334 0.416 0.361 0.209
		SSIM loss	0.0153	0.0129	0.0118
		Slope (m 2 )	0.8202	1.6030	4.3990
		Intercept (c 2 )	0.8621	0.5800	2.8900
	Poisson	ℓ 2 error for d fit Parameter l 1 Parameter l 2 Parameter l 3	23.2670 0.8083 -3.8975 -4.4288 43.4135 115.9894 1.5391 1.8587 11.6517 16.8476 10.1560 3.9798
		ℓ 2 error for F factor fit PSNR(dB) loss	3.3802 0.487	2.0652 0.594	2.2571 0.485
		SSIM loss	0.0175	0.0266	0.0386

TABLE 6 .

 6 7. Comparison of denoising performance of De-QuIP with different patch sizes for different noise levels.

					Gaussian case					Poisson case		
	Sample	Input	5 × 5		7 × 7		11 × 11	5 × 5		7 × 7		11 × 11
		SNR(dB) PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM	PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM
		22	35.30	0.88	35.45	0.89	35.58	0.89	34.94	0.87	35.10	0.88	35.14	0.88
	house	16 8	31.91 26.85	0.83 0.72	32.15 27.45	0.83 0.75	32.29 27.91	0.83 0.76	31.49 26.45	0.82 0.72	31.78 27.02	0.82 0.74	31.73 27.27	0.82 0.75
		2	23.05	0.60	23.92	0.68	24.66	0.72	22.65	0.59	23.48	0.66	24.09	0.70
		22	33.23	0.92	33.16	0.91	32.80	0.90	33.09	0.91	33.04	0.90	32.72	0.90
	lake	16 8	28.81 24.05	0.83 0.69	28.85 24.19	0.82 0.71	28.63 24.37	0.81 0.69	28.54 23.75	0.81 0.66	28.60 23.98	0.81 0.68	28.42 24.11	0.81 0.68
		2	21.09	0.57	21.59	0.62	21.75	0.63	20.90	0.56	21.33	0.61	21.48	0.63
		22	35.05	0.89	35.21	0.89	35.34	0.90	34.86	0.88	35.05	0.89	35.16	0.89
	lena	16 8	31.73 26.17	0.84 0.71	32.00 27.67	0.85 0.78	32.17 28.00	0.85 0.78	31.49 26.93	0.83 0.74	31.78 27.40	0.84 0.77	32.34 27.61	0.84 0.76
		2	23.60	0.63	24.53	0.71	25.04	0.74	23.36	0.63	24.30	0.71	24.71	0.71
		22	31.54	0.82	31.58	0.83	31.55	0.83	32.01	0.82	32.16	0.83	32.13	0.83
	hill	16 8	27.95 24.42	0.69 0.55	28.06 24.49	0.70 0.55	28.10 24.61	0.70 0.55	28.25 24.58	0.70 0.55	28.37 24.63	0.70 0.55	28.39 23.58	0.70 0.54
		2	21.97	0.46	22.41	0.48	22.61	0.49	22.08	0.46	22.46	0.48	22.54	0.49
		22	32.35	0.93	32.50	0.93	32.54	0.94	33.39	0.94	32.15	0.93	33.49	0.95
	fingerprint	16 8	28.12 23.36	0.86 0.72	28.46 23.31	0.87 0.72	28.65 23.63	0.87 0.73	28.63 23.65	0.87 0.74	28.16 23.07	0.86 0.72	28.24 23.40	0.86 0.73
		2	20.03	0.59	19.80	0.57	20.01	0.58	19.90	0.59	19.58	0.56	19.56	0.56
		22	38.94	0.89	39.36	0.92	39.53	0.94	40.64	0.97	40.85	0.98	40.87	0.98
	saturn	16 8	34.67 28.94	0.79 0.61	35.27 29.87	0.83 0.67	35.63 30.60	0.87 0.74	36.00 30.44	0.94 0.89	36.31 31.00	0.95 0.90	36.42 31.40	0.94 0.89
		2	24.45	0.46	25.97	0.55	27.03	0.62	26.40	0.82	27.26	0.86	27.46	0.85
		22	32.20	0.87	32.16	0.87	31.97	0.86	33.20	0.88	33.08	0.88	32.99	0.88
	flintstones	16 8	28.65 23.48	0.80 0.67	28.69 23.78	0.79 0.68	28.47 23.70	0.78 0.66	29.04 23.44	0.80 0.65	29.00 23.84	0.78 0.68	28.77 23.64	0.78 0.64
		2	19.74	0.52	19.87	0.56	20.03	0.56	19.50	0.51	19.69	0.53	19.63	0.53

these results, on can observe that De-QuIP scheme significantly outperforms all NLMbased methods with an average gain of 1.1 to 2.6 dB in PSNR and 3 to 20% in SSIM.

TABLE 6 .

 6 8. Quantitative denoising results for Gaussian corrupted images (average over 10 independent noise realizations). The best values are highlighted by color. assessment clearly shows an extra smoothing effect present on the denoised image, which causes lower SSIM values for low SNR images as shown in Fig.6.13(b). This is due to the process of data Gaussianization through the Anscombe transformation. In TABLE 6.9. Quantitative denoising results for Poisson corrupted images (average over 10 independent noise realizations). The best values are highlighted by color.

						Methods				
	Sample	Input	PND	PGPCA	PLPCA	BM3D	DL	GSP	QAB	De-QuIP
		SNR PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
		22	33.17 0.831 34.28 0.863 34.80 0.866 35.89 0.896 32.86 0.827 35.70 0.891 33.77 0.856 35.60 0.892
	house	16	30.78 0.800 31.13 0.803 31.47 0.802 33.05 0.848 29.72 0.747 32.91 0.839 30.16 0.767 32.86 0.843 27.52 0.753 26.83 0.672 26.65 0.605 28.73 0.786 25.31 0.587 28.19 0.760 25.71 0.601 28.13 0.764
			24.25 0.679 23.45 0.491 22.63 0.371 24.96 0.706 21.20 0.405 23.93 0.589 22.92 0.464 24.78 0.719
		22	30.29 0.855 32.36 0.895 32.56 0.895 33.07 0.919 30.90 0.863 32.09 0.913 32.22 0.878 33.27 0.926
	lake	16	26.78 0.780 28.21 0.815 28.39 0.814 28.92 0.857 27.22 0.768 28.45 0.836 28.59 0.795 29.11 0.842 23.61 0.697 23.87 0.653 23.77 0.606 24.43 0.739 23.25 0.588 24.30 0.722 24.24 0.599 24.52 0.705
			21.42 0.623 21.23 0.483 20.73 0.388 21.97 0.652 20.16 0.419 21.27 0.548 20.79 0.441 21.80 0.631
		22	33.52 0.858 34.78 0.881 35.04 0.883 35.50 0.898 34.08 0.868 35.09 0.893 34.36 0.876 35.81 0.904
	lena	16	31.10 0.822 31.75 0.831 31.95 0.829 32.70 0.861 30.93 0.801 32.43 0.852 31.02 0.801 32.41 0.852 27.94 0.773 27.65 0.716 27.35 0.648 28.75 0.799 26.34 0.638 28.18 0.767 26.61 0.657 28.31 0.778
			25.21 0.716 24.27 0.536 23.34 0.415 25.57 0.728 22.27 0.446 24.93 0.664 22.76 0.476 25.04 0.737
		22	29.35 0.742 30.98 0.812 31.29 0.819 31.36 0.818 29.80 0.761 30.97 0.811 30.56 0.810 31.59 0.826
	hill	16	26.90 0.640 27.86 0.690 28.07 0.700 28.32 0.710 27.17 0.649 28.15 0.708 27.24 0.671 28.34 0.710 24.34 0.534 24.55 0.539 24.42 0.515 24.98 0.575 23.85 0.478 24.86 0.571 23.91 0.492 24.78 0.563
			22.49 0.475 22.24 0.405 21.75 0.345 22.72 0.493 21.14 0.354 22.33 0.447 21.39 0.375 22.61 0.491
		22	28.40 0.845 31.14 0.912 31.30 0.914 31.47 0.917 29.79 0.882 31.23 0.896 30.32 0.894 32.53 0.934
	fingerprint	16	25.57 0.757 27.27 0.830 27.46 0.835 27.92 0.850 25.97 0.783 26.99 0.824 27.16 0.815 28.61 0.868 22.58 0.666 22.73 0.680 23.02 0.676 23.77 0.734 21.09 0.575 23.22 0.698 22.95 0.671 23.65 0.733
			20.05 0.563 18.92 0.471 19.50 0.474 20.73 0.613 17.85 0.385 20.21 0.546 20.04 0.527 20.56 0.605
		22	40.95 0.955 39.32 0.935 39.63 0.929 42.26 0.970 37.55 0.891 41.20 0.943 38.63 0.916 39.70 0.937
	saturn	16	37.86 0.904 35.80 0.907 36.02 0.883 38.64 0.937 33.74 0.776 38.01 0.881 34.44 0.850 36.93 0.873 32.23 0.775 30.70 0.753 30.09 0.647 33.16 0.861 28.00 0.541 32.58 0.757 29.44 0.712 31.25 0.735
			28.13 0.640 26.68 0.544 25.31 0.398 28.31 0.747 23.36 0.347 27.64 0.608 25.27 0.601 27.18 0.615
		22	28.54 0.766 30.62 0.827 30.83 0.831 31.31 0.847 29.15 0.793 30.91 0.841 30.34 0.811 32.20 0.865
	flintstones	16	25.63 0.702 27.36 0.755 27.61 0.758 28.61 0.802 25.64 0.695 28.33 0.776 27.68 0.752 28.46 0.781 21.86 0.620 22.15 0.586 22.31 0.567 23.96 0.705 21.12 0.520 23.61 0.662 22.54 0.561 23.67 0.662
			18.79 0.521 18.67 0.415 18.62 0.364 20.12 0.585 17.86 0.361 19.38 0.498 19.17 0.435 19.99 0.555
		22	46.41 0.985 47.52 0.980 47.18 0.973 50.58 0.993 44.49 0.968 47.76 0.980 46.47 0.956 49.23 0.982
	ridges	16	42.32 0.961 43.34 0.950 42.97 0.938 45.37 0.978 40.17 0.922 42.60 0.931 41.44 0.898 43.56 0.940 32.65 0.816 38.03 0.856 37.09 0.828 38.60 0.922 33.60 0.779 37.06 0.859 34.68 0.754 38.28 0.851
			25.99 0.599 33.07 0.720 31.91 0.672 33.56 0.837 28.97 0.618 33.15 0.727 29.86 0.643 33.39 0.749
		22	31.23 0.842 32.83 0.871 33.06 0.872 33.79 0.897 31.32 0.840 33.34 0.891 32.08 0.849 33.52 0.888
	peppers	16	28.46 0.801 29.39 0.814 29.70 0.811 30.58 0.853 28.02 0.762 30.25 0.839 28.67 0.758 30.43 0.847 24.54 0.744 24.93 0.674 25.03 0.639 26.24 0.771 23.96 0.608 26.07 0.752 23.94 0.612 26.19 0.755
			21.73 0.687 21.67 0.519 21.38 0.420 22.83 0.683 20.43 0.434 21.96 0.579 20.49 0.457 22.14 0.696
		22	27.91 0.751 29.90 0.839 30.08 0.845 30.11 0.846 28.72 0.799 29.43 0.824 29.27 0.817 30.72 0.864
	bridge	16	25.16 0.608 26.28 0.685 26.46 0.697 26.57 0.698 25.52 0.655 26.33 0.693 25.78 0.662 26.49 0.699 22.53 0.464 22.82 0.499 22.82 0.493 23.12 0.511 22.27 0.467 23.00 0.508 22.31 0.472 22.84 0.503
			20.69 0.393 20.61 0.372 20.29 0.337 21.00 0.421 19.71 0.333 20.60 0.389 20.04 0.362 20.72 0.403
		22	30.25 0.812 32.66 0.880 32.97 0.881 33.54 0.907 31.54 0.858 32.71 0.882 32.13 0.865 32.91 0.892
	cameraman	16	27.29 0.757 28.78 0.793 29.08 0.792 29.99 0.843 27.98 0.758 29.17 0.840 28.18 0.751 29.36 0.841 24.28 0.695 24.42 0.635 24.45 0.579 25.80 0.755 23.72 0.581 25.54 0.751 23.93 0.612 25.57 0.751
			21.78 0.617 21.45 0.434 21.03 0.347 22.77 0.674 20.28 0.393 22.13 0.597 20.51 0.402 22.49 0.636
	happens in the BM3D outputs due to the smoothing effect as illustrated in Figs. 6.9-6.10,
	which is not present in our outcomes and makes our resultant image texture closer to
	the original one.							
	For Poisson corrupted images, De-QuIP provides better outcomes compared to the
	other methods. ATBM3D generates comparable PSNR and SSIM data in some scenarios,
	but the visual								

TABLE 6 .

 6 [START_REF] Aharon | An algorithm for designing overcomplete dictionaries for sparse representation[END_REF]. Quantitative despeckling results of real medical US images using different methods. The best values are highlighted by color.

						Methods			
	Sample	Input	AD		Lee		NLM	De-QuIP
		CNR	CNR RL (%) CNR RL (%) CNR RL (%) CNR RL (%)
	phantom	0.69	7.97	6.9	12.25	7.0	15.92	7.2	14.29	7.0
	non-cancer 1	9.56	15.39	7.0	18.04	7.6	19.97	8.5	18.54	7.8
	non-cancer 2	1.86	7.05	6.0	9.77	6.7	11.89	8.4	10.54	7.3
	cancer 1	1.41	4.59	7.5	5.41	8.0	8.43	8.8	9.10	8.1
	cancer 2	0.49	6.14	6.8	8.91	7.9	11.80	9.0	9.92	7.6
	cancer 3	0.96	4.12	6.9	6.12	8.4	8.20	9.4	6.40	8.5
	cancer 4	1.22	5.35	7.3	6.90	9.2	9.04	11.6	7.24	9.6
					187					

TABLE 6 .

 6 11. Quantitative SR results for dental tomography images. The best values are highlighted in bold.

		Methods	Output	Tooth Image Slices Axial Sagittal Coronal
		FSR-TV	PSNR(dB) 39.67 SSIM 0.969	39.90 0.973	38.95 0.981
		RED-BM3D	PSNR(dB) 40.36 SSIM 0.973	39.44 0.972	39.92 0.982
	µCT	RED-TNRD	PSNR(dB) 40.61 SSIM 0.973	40.05 0.974	40.88 0.983
		PnP-De-QuIP	PSNR(dB) 40.68 SSIM 0.974	39.96 0.974	40.63 0.983
		RED-De-QuIP	PSNR(dB) 40.75 SSIM 0.974	39.98 0.974	40.71 0.983
		FSR-TV	PSNR(dB) 21.22 SSIM 0.764	23.20 0.895	23.01 0.891
	CBCT	RED-BM3D RED-TNRD	PSNR(dB) 21.78 SSIM 0.808 PSNR(dB) 21.99 SSIM 0.825	22.87 0.895 23.60 0.899	23.03 0.897 23.39 0.899
		PnP-De-QuIP	PSNR(dB) 22.07 SSIM 0.829	23.42 0.898	23.37 0.899
		RED-De-QuIP	PSNR(dB) 22.15 SSIM 0.834	23.56 0.899	23.39 0.899

  and have proven efficiency in image restoration over the conventional model-based approaches, exploiting a training dataset in the learning process. However, a CNN network performance largely depends on the number of layers, the kernel size and the learning rate. Indeed, deeper network structures may provide better results but exponentially increase the training complexity icant ways: (i) we initially propose a DL model, primarily designed for denoising, and further extend it to more complex image restoration tasks such as deblurring, super-The remainder of the chapter is organized as follows. Section 7.2 reminds briefly the concepts of the baseline De-QuIP algorithm for self-consistency reasons. Section 7.3 first presents the proposed DIVA network for denoising and then extends it to an advanced model for other imaging tasks. The experimental settings and extensive evaluations are reported in Section 7.4. Section 7.5 summarizes findings related to clinical US image contrast enhancement problems. Section 7.6 outlines the overall remarks and possible future perspectives. Finally, Section 7.7 draws the conclusions.

	resolution and inpainting, with a resilient generalized network architecture; (ii) we
	conduct a detailed investigation regarding the network diagram and add considerable
	analysis of the incorporated quantum background, tunable parameter number, and run
	time; (iii) we report a comprehensive survey of image restoration performance against
	benchmark methods for various imaging problems; (iv) we also conduct experiments with
	clinical cardiac ultrasound (US) images to demonstrate our model ability in real medical
	applications.

TABLE 7 .

 7 1. Ablation investigation of the projection layer's depth using Hamiltonian kernel with or without the interaction layer. The results (PSNR/SSIM) are obtained on Set12 contaminated with AWGN with σ = 15, in 50 epochs.

			Depth of the projection layer using Hamiltonian convolutional kernel	
		1	2	3	4	5	1	2	3	4	5
	Interaction layer	✗	✗	✗	✗	✗	✓	✓	✓	✓	✓
	PSNR (dB)	30.38 31.61 31.95 32.17 32.28	32.09 32.92 32.95 32.96 32.98
	SSIM (%)	87.64 89.22 90.74 91.61 91.88	93.68 95.41 95.52 95.55 95.60

TABLE 7 .

 7 2. Ablation study with/without using the Hamiltonian kernel in the network. The results (PSNR/SSIM) are obtained in 50 epochs on Set12 images contaminated with AWGN (σ = 15).

		Contribution of different components
	Hamiltonian kernel	✗	✓	✓
	Interaction layer	✗	✗	✓
	PSNR (dB)	29.30	31.61	32.92
	SSIM (%)	86.82	89.22	95.41

4 Qualitative and Quantitative Image Restoration Results 7.4.4.1 Image DenoisingTable 7 .

 7 7.4(c), one can report a gain of 1-2% in SSIM for image SR by DIVA-A compared to the recently introduced DRLN network, whereas our model has 40 times less parameters than DRLN. Naturally, the proposed networks that need a reduced number of parameters to perform well, also offer a significantly reduced training cost. Fig.7.4 presents the runtime comparisons against other standard models in various imaging tasks, showing that the proposed models are significantly faster. Note that similar results are achieved for image inpainting, but are not reported here since the comparison network is IRCNN, already included in the SR experiments. 3 summarizes the average PSNR and SSIM results of the different methods on six commonly used testing datasets with six different noise levels. One might notice that the proposed DIVA model uniformly outperforms all the state-of-the-art approaches, irrespective of the noise level and dataset. Compared to the deep unfolded BM3D network BM3D-NET, our model exhibits much better denoising performance with an average increment of 1.5dB PSNR and 4.5% SSIM for low noise levels and up to 2dB PSNR and 13% SSIM for higher σ. Note also that BM3D-NET was only available for four levels of noise. One can observe that the performance gain is much higher over the benchmark

	DnCNN and FFDNet networks for high noise cases. Precisely, DIVA outperforms these
	competing methods by 0.05-1.2dB PSNR and 4-18% SSIM in average and achieves the

Hence, harnessing the benefits of the interaction layer and of the Hamiltonian kernel, the proposed DL models demonstrate better performance for image restoration with fewer parameters and more efficient computational costs.

7.4.

best denoising yields. Moreover, our blind denoising model DIVA-blind that, in contrast to the other networks, is not trained for a given (known) noise level, but for a range of σ, still gives comparable PSNR values and improved SSIM compared to the state-

TABLE 7 .

 7 3. Image denoising results in terms of average PSNR (dB) and SSIM (%) values for five benchmark datasets contaminated by six noise levels (σ = 10,[START_REF] Altmann | A bayesian approach to denoising of single-photon binary images[END_REF][START_REF] Aytekin | Quantum mechanics in computer vision: Automatic object extraction[END_REF][START_REF] Buades | Nonlocal image and movie denoising[END_REF][START_REF] Chowdhury | Unfolding wmmse using graph neural networks for efficient power allocation[END_REF][START_REF] Dong | Nonlocal image restoration with bilateral variance estimation: A low-rank approach[END_REF]. For each experiment, the best values are in red and the second best values are in blue.

	Dataset	σ	Input	Methods
				DnCNN[405] FFDNet[407] IRCNN[402] BM3D-NET[383] De-QuIP	DIVA	DIVA-blind

Figs. 7.5-7.7 illustrates denoising results for three images, Girl, Castle and Parrot, from three datasets, for σ = 25, 50 and 75 respectively. The qualitative analysis of the

  FIGURE 7.6. Denoising results using different methods for the Castle image contaminated with AWGN with σ = 50.

	Castle image	Noisy image Noisy blurred image DnCNN	IDD-BM3D	FFDNet
	Ground truth	PSNR 26.40dB/SSIM 89.84%	PSNR 36.89dB/SSIM 92.71%
	DWDN	DRED-DUN	DIVA-A
	Ground truth	PSNR 14.18dB/SSIM 21.28%	PSNR 26.91dB/SSIM 79.35%	PSNR 26.93dB/SSIM 80.06%
	IRCNN	BM3D-NET	De-QuIP	DIVA
	PSNR 45.07dB/SSIM 98.65%	PSNR 44.78dB/SSIM 98.39%
	PSNR 25.82dB/SSIM 73.05%	PSNR 25.21dB/SSIM 78.44%	PSNR 25.01dB/SSIM 76.89%	PSNR 27.13dB/SSIM 88.87%

DIVA preserves most of the image fragments and textures in a better way without creating any visible artifacts and thus provides a denoised image closer to the ground truth. PSNR 45.26dB/SSIM 98.92% FIGURE 7.9. Deblurring results for 17 × 17 MB kernel. The restored 4th-image from the Levin dataset with 17 × 17 motion blur kernel.

Table 7 .

 7 5 gives the average deblurring performance of our method in terms of PSNRs and SSIMs in contrast to other standard models from the literature under eight commonly used motion blur (MB) kernels[START_REF] Kong | Deep red unfolding network for image restoration[END_REF][START_REF] Levin | Efficient marginal likelihood optimization in blind deconvolution[END_REF] and four different noise levels. One should note that the code or trained models provided by the authors are used to generate these results. As the first observation, one can see that DWDN and DRED-DUN outperform the conventional IDD-BM3D, FDN and VEMNet for the Set10, Levin and Sun et al. datasets, which is consistent with the findings in[START_REF] Kong | Deep red unfolding network for image restoration[END_REF]. Secondly, DWDN performs better in the case of low/no noise in terms of PSNRs compared to DRED-DUN and our proposed model. DRED-DUN is more accurate for high levels of noise. On the contrary, our proposed model exhibits the best SSIMs with a gain up to 0.15-1.8% against the DWDN and DRED-DUN for low as well as high noise levels and this efficiency increases

	Parrot image	Noisy blurred image	IDD-BM3D
	Ground truth	PSNR 20.21dB/SSIM 74.96%	PSNR 28.19dB/SSIM 92.62%
			DIVA-A

PSNR 29.95dB/SSIM 96.11% DWDN PSNR 30.62dB/SSIM 94.58% DRED-DUN PSNR 34.13dB/SSIM 97.89%

TABLE 7 .

 7 6. SR results in terms of average PSNR (dB) and SSIM (%) values for 4 benchmark datasets degraded with bicubic downsampling with downsampling factors of 2, 3 and 4. /89.78 32.44/90.28 32.00/90.49 3x 28.82/79.80 28.96/80.01 29.06/80.34 29.36/81.17 28.91/82.15 4x 27.32/72.80 27.40/72.81 27.58/73.49 27.83/74.44 27.66/76.95 Urban100 2x 30.41/91.00 31.31/91.95 31.51/93.12 33.37/93.90 31.48/93.06 3x 27.07/82.80 27.56/83.76 27.38/84.04 29.21/87.22 27.54/85.31 4x 25.21/75.60 25.50/76.30 26.07/78.37 26.98/81.19 25.39/81.29 TABLE 7.7. SR results in terms of average PSNR (dB) and SSIM (%) values for 4 benchmark datasets degraded with GD by using a 7 × 7 GB kernel of standard deviation 1.6 with scaling factors of 2, 3 and 4. /79.22 29.17/80.58 29.23/80.79 29.40/81.21 28.26/80.65 Urban100 3x 26.77/81.54 28.27/85.26 28.46/85.82 29.11/86.97 27.72/84.92 * The symbol -/-denotes that the results were not provided in the original paper for a particular experiment.

	Dataset	Scale			Methods	
			LapSRN[202] MemNet[331] CARN[12]	DRLN[22]	DIVA-A
		2x	37.52/95.91	37.78/95.97	37.76/95.90 38.27/96.16 37.42/97.43
	Set5	3x	33.82/92.27	34.09/92.48	34.29/92.55 34.78/93.03 33.14/93.36
		4x	31.54/88.50	31.74/88.93	32.13/89.37 32.63/90.02 30.87/90.02
		2x	33.08/91.30	33.28/91.42	33.52/91.66 34.28/92.31 33.67/93.69
	Set14	3x	29.87/83.20	30.00/83.50	30.29/84.07 30.73/84.88 29.18/85.34
		4x	28.19/77.20	28.26/77.23	28.60/78.06 28.94/79.00 27.74/80.66
	BSD100 32.09Dataset 2x 31.80/89.50 32.08/89.78 Scale Methods	
			IRCNN[402] DFAN[220]	RDN[414]	DRLN[22]	DIVA-A
		2x	35.34/93.04	-/-	-/-	-/-	33.62/93.79
	Set5	3x	33.38/91.82 34.50/92.74 34.58/92.80 34.81/92.97 32.70/91.45
		4x	30.76/85.47	-/-	-/-	-/-	29.02/85.76
		2x	31.98/88.49	-/-	-/-	-/-	30.88/90.65
	Set14	3x	29.63/82.81 30.43/84.19 30.53/84.47 30.81/84.87 28.97/83.47
		4x	27.73/74.12	-/-	-/-	-/-	26.86/76.01
	BSD100	3x	28.65			

89% Ground truth DRLN PSNR 33.11dB/SSIM 93

  FIGURE 7.15. A zoomed regions of the restored HR City-building images, extracted from SR results for a bicubic downsampling with scaling factor 3. .41% Bicubic interpolated PSNR 28.76dB/SSIM 84.64% FIGURE 7.16. The restored HR Fish images from LR images generated by bicubic downsampling with scaling factor 4.

					7.4. EXPERIMENTAL RESULTS
	Fish image	Zoomed LR image	Zoomed LR image	Bicubic	DIVA-A	LapSRN
		Baby-face image				
			Ground truth	PSNR 24.92dB	PSNR 27.81dB	PSNR 29.47dB
				SSIM 73.34%	SSIM 81.46%	SSIM 86.81%
			MemNet	CARN	DRLN		DIVA-A
	Book cover	Zoomed LR image	Bicubic interpolated	IRCNN		DIVA-A
			PSNR 30.16dB	PSNR 32.53dB	PSNR 33.42dB	
			SSIM 87.29 %	SSIM 91.02%	SSIM 92.80%	
			Zoomed LR image	Bicubic		LapSRN
			Ground truth	PSNR 22.06dB	PSNR 27.88dB	PSNR 30.22dB
				SSIM 76.55%	SSIM 88.08%	SSIM 92.18%
			MemNet	CARN	DRLN		DIVA-A
			PSNR 30.69dB	PSNR 30.38dB	PSNR 31.33dB	PSNR 31.27 dB
			SSIM 92.57%	SSIM 93.41%	SSIM 94.38%	SSIM 94.10%

PSNR 33.83dB SSIM 94.59% FIGURE 7.14. Two zoomed regions of the restored HR Baby-face images, extracted from SR results for a bicubic downsampling with scaling factor 4.

City-building image PSNR 26.04dB/SSIM 76.44% PSNR 32.87dB/SSIM 94.PSNR 21.32dB/SSIM 83.66% PSNR 23.02dB/SSIM 90.74% PSNR

24.17dB/SSIM 93.81% Ground

  truth PSNR 21.73dB/SSIM 85.24% FIGURE 7.17. Restored HR Book-cover images from LR images generated by Gaussian downsampling under a 7 × 7 GB kernel of standard deviation 1.6 with scaling factor 2. quality and preservation of the image structure compared to the state-of-the-art IRCNN, DFAN and RDN methods.

	7.4.4.4 Image Inpainting

Table 7 .

 7 8 illustrates our model performance in terms of average PSNR and SSIM on Set5 and Set12 datasets compared to the standard IRCNN network for image inpainting problems. Our model outperforms IRCNN in almost all situations when 20%, 50%, and

	Flowers image	Zoomed LR image	IRCNN		DFAN
	Ground truth	PSNR 23.29dB/SSIM 68.23% PSNR 26.26dB/SSIM 82.39%	PSNR 28.73dB/SSIM 86.95%
		RDN	DRLN	DIVA-A
			PSNR 30.76dB/SSIM 89.27%

PSNR 30.89dB/SSIM 88.75% PSNR 31.33dB/SSIM 89.90%

TABLE 7 .

 7 8. Image inpainting results in terms of average PSNR (dB) and SSIM (%) values for two benchmark datasets for respectively 20%, 50% and 80% pixels missing.

	Dataset Missing pixels'	Input	Methods
				IRCNN[402]	DIVA-A
		20%	13.33/38.61 41.62/98.67 41.85/99.24
	Set5	50%	9.34/23.44	35.57/95.87 36.08/97.84
		80%	7.29/12.40	29.41/88.54 30.38/94.01
		20%	12.46/27.93 39.06/98.29 38.57/99.15
	Set12	50%	8.48/14.45	32.82/94.53 33.02/97.21
		80%	6.44/6.71	26.75/84.53 27.73/91.92

  La d écomposition d'images num ériques en d'autres bases ou dictionnaires que les domaines temporel ou spatial est une approche tr ès courante et efficace dans le traitement et l'analyse d'images. Une telle d écomposition est couramment obtenue à l'aide de transformations fixes (par exemple, Fourier ou ondelettes) ou de dictionnaires appris à partir de bases de donn ées d'exemple ou à partir du signal ou de l'image eux-m êmes. Ces derni ères ann ées, avec la croissance de la puissance de calcul, les strat égies exploitant la redondance des patchs extraits d'une ou de plusieurs images pour faciliter leur d écomposition parcimonieuse sont devenues tr ès populaire, notamment gr âce à leur efficacit é à restaurer des images. Un des objectifs de cette th èse est de savoir comment concevoir une telle transformation adaptative à l'aide de principes de la m écanique quantique. Cette th èse explore de nouvelles approches de construction de telles bases d épendantes de l'image inspir ées de la m écanique quantique. Tout d'abord, nous construisons une base d épendante de l'image en utilisant les solutions d'onde de l' équation de Schr ödinger. En particulier, en consid érant l'image comme un potentiel dans l' équation de Schr ödinger discr étis ée, nous obtenons les solutions d'onde qui constitue une base et qui joue le r ôle de transform ée. L'efficacit é de la d écomposition propos ée est illustr ée par des r ésultats de d ébruitage dans le cas des bruits Gaussiens, de Poisson et de speckle et par comparaison aux algorithmes de l' état de l'art. Cette d écomposition adaptative est ensuite g én éralis ée en s'inspirant de la th éorie quantique à plusieurs corps. Sur la base de l'analyse par patchs, les mesures de similarit é dans un voisinage d'image local sont formalis ées par un terme apparent é à l'interaction en m écanique quantique qui peut efficacement pr éserver les structures locales des images. La nature polyvalente de cette base adaptative étend la port ée de son application à des sc énarios de bruit ind épendants ou d épendants de l'image sans aucun ajustement. Nous effectuons une comparaison rigoureuse avec les m éthodes existantes pour d émontrer la capacit é de d ébruitage de l'algorithme propos é, quelles que soient les caract éristiques de l'image, les statistiques de bruit et l'intensit é. Nous montrons la capacit é de nos approches à traiter des donn ées m édicales r éelles telles que le d ébruitage d'images de tomodensitom étrie dentaire clinique et les applications de despeckling d'images d' échographie m édicale. Nous étendons encore notre travail aux t âches de d éconvolution d'image et de super-r ésolution en exploitant nos algorithmes de debruitage adaptatifs quantiques propos és. En particulier, suite à des d éveloppements r écents, nous imposons ces d ébruiteurs externes comme fonction pr éalable au sein des approches de type Plug-and-Play et R égularisation par D ébruitage. Enfin, nous pr ésentons une architecture de r éseau neuronal profond d épliant notre proposition d'algorithme de d ébruitage adaptatif, reposant sur la th éorie de la physique quantique à plusieurs corps. Les ingr édients cl és de la m éthode propos ée sont d'une part, sa capacit é à g érer des structures d'image non locales à travers le terme d'interaction patch et l'op érateur Hamiltonien quantique, et, d'autre part, sa flexibilit é pour adapter les hyperparam ètres aux caract éristiques de chaque patch. De plus, il est d émontr é qu'avec de tr ès l ég ères modifications, ce r éseau peut être am élior é pour r ésoudre des t âches de restauration d'image plus difficiles telles que le d éfloutage d'image, la super-r ésolution et l'inpainting. Malgr é une architecture compacte et interpr étable (d'un point de vue physique), le r éseau d'apprentissage profond propos é am éliore plusieurs algorithmes de r éf érence r écents de la litt érature, conc ¸us sp écifiquement pour chaque t âche. Enfin, nous abordons le probl ème de l'am élioration des image échocardiographiques clinique pour d émontrer le potentiel de notre r éseau profond dans des applications m édicales r éelles.
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(SR) applications in Section 6.6, which highlight the potential of the proposed scheme for real-world problems. Finally we end with conclusions and perspectives in Section 6.7. Before detailing the proposed method, we briefly review, for self consistency, the quantum mechanical method for denoising built on single-particle theory introduced in [START_REF] Dutta | Quantum mechanicsbased signal and image representation: Application to denoising[END_REF]. For more details on quantum theory, one may refer to one of the many textbooks on this denoising strategy: decomposition of that patch using the adaptive basis, thresholding of the projection coefficients, and finally recovery of the denoised patch by back-projection.

Quantum Many-Body Theory for Imaging

These basis vectors are the eigenvectors of the Hamiltonian matrix (6.2), constructed from the effective potential (6.6).

These adaptive vectors belong to the Hilbert space of oscillatory functions with: i) the frequency of oscillation increases with increasing energy value (i.e., eigenvalue in (6.7)), and ii) a given basis vector uses low oscillation frequencies to probe higher values of the effective potential and vice-versa. It is now assumed that the noise primarily rules the high-frequency components of the image, i.e., eigenvectors corresponding to higher energy eigenvalues. Therefore as in the single-particle algorithm, thresholding in energy should be done to eliminate the image components associated with the high energy eigenvectors.

In the proposed interaction framework, the structural similarity between neighboring image patches is assumed to be an innate property of the image. Hence two neighboring patches are assumed to be similar to the extent of random noise. Following the definition (6.8), two adjacent patches show high interaction if they are pixel-wise dissimilar (i.e., random noise is present), thus further contributing to the effective potential (6.6). In other words, the interaction term or ultimately the effective potential increases if the noise intensity increases, which eventually shifts the high-frequency noise components of the image to even higher energy eigenvectors. Thus, in order to have a denoised patch, a noisy patch is projected onto a d-dimensional subspace that is constructed by the lowest energy solutions of (6.7) and the denoised patch is rebuilt from these projection coefficients. In this way, a lack of similarity between pixels leads to a stronger denoising, since for the same value of the energy these regions will have lower frequencies than the ones with more similarity. Here, d acts as a thresholding hyperparameter. Combining all the denoised patches, following a path similar to the one proposed in the non-local means architecture, one can obtain the final denoised image. Hereafter this proposed adaptive quantum denoiser which integrates the quantum theory of interactions to imaging problems is called Denoising by Quantum Interactive Patches (De-QuIP). The whole denoising process is displayed in Algorithm 6.1.

Computational Complexity

In the precedingly developed algorithm based on single particle quantum physics (in Chapter 4), the computational complexity of the algorithm was essentially controlled by the diagonalization of a large Hamiltonian matrix and the identification of its eigenvec- pixel values, due to the presence of a very high maximal oscillation in this limit which restricts the wave vectors from properly exploring higher pixel values. On the other side, increasing too much the values of ℏ 2 /2m decreases the ability of the basis vectors to distinguish between high and low values pixels. For more illustrations about the effect of this hyperparameter ℏ 2 /2m on the basis vectors, we refer readers to the previous Chapter 4. Therefore, the optimal ℏ 2 /2m value has a strong dependence on the maximum and minimum values of the pixels present in the image patch. Thus, it is more convenient 

Denoising Efficiency of the Proposed Scheme in

Comparison with Standard Methods

This subsection presents the denoising performance of the De-QuIP algorithm depending on the noise statistics and intensity, and also how this performance varies with patch size for the sample images. The denoising outputs using three patch sizes are summarized in Table 6.7. The numerical simulations show that 11 × 11 is the suitable patch size for most of the cases, but for low-level noise, smaller sizes give a small advantage. It is expected to have a better result with a large patch for a strong noise scenario since high noise intensity refers to an extreme random system and a large patch is more efficient to capture the similarity measures from this strong randomness. Obviously, the size should not be so large because it is affected by the phenomenon of localization, as illustrated in Subsubsection 6.2.2.5. by FSR-TV, ii) the RED algorithm using BM3D denoiser [START_REF] Cohen | Regularization by denoising via fixedpoint projection (red-pro)[END_REF] denoted by BM3D-RED, iii)

RED algorithm using a convolutional neural network-based flexible learning denoising method, known as the trainable nonlinear reaction diffusion (TNRD) denoiser [START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF],

referred as TNRD-RED.

The first experiment consists of three synthetic LR images created from the µCT dataset by using a 9 × 9 Gaussian blurring kernel with std of 3, decimation factor of 2 in each spatial direction, and contamination by an AWGN corresponding to blurred-signalto-noise-ratio (BSNR) of 20 dB (Fig. 6.15). Within the second experiment, CBCT images were considered as the LR input of the SR algorithms. In this case, the ground truth is not directly available but was assimilated to µCT images acquired on the same tooth,

given their very good spatial resolution and SNR (Fig. 6. [START_REF] Altmann | Unsupervised nonlinear unmixing of hyperspectral images using gaussian processes[END_REF]). Note that the point spread function, unknow for this experiment, was estimated from the CBCT image itself and approximated by a Gaussian kernel with std 6.2, 0.4 and 3.3 respectively for the axial, sagittal and coronal slices. Table 6.11 depicts the resulting peak-signal-to-noise-ratio (PSNR) and structure similarity (SSIM) of the restored µCT and CBCT images. The results show a slight gain in PSNR and SSIM compared to FSR-TV and RED-BM3D, and are comparable with RED-TNRD. The restored HR µCT and CBCT images are presented in Fig. 6.15 and Fig. 6.16 respectively. The displayed results justify the potential of the A second interesting point would be to embed this interaction architecture into a convolutional neural network, as explored with various schemes, such as a fast flexible learning method [START_REF] Chen | Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[END_REF][START_REF] Zhang | FFDNet: Toward a fast and flexible solution for cnn-based image denoising[END_REF], residual learning [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF] and others, and study imaging problems through this many-body network where each node shows interaction with others.

We will study this aspect in Chapter 7.

Further [START_REF] He | Deep residual learning for image recognition[END_REF]. Thus, network structures are in most cases determined empirically, which makes them suffer from a lack of interpretation of their true functionality.

Very recently a new concept, known as unfolding [START_REF] Gregor | Learning fast approximations of sparse coding[END_REF], is gaining more attention due to its explanatory properties, while exploiting the computation power of CNN architecture. Gathering the advantages of both model and DL-based approaches, this framework constructs a DL network starting from a classical algorithm and has recently been successfully explored in the literature, leading to superior restoration performance over the classical methods [START_REF] Kong | Deep red unfolding network for image restoration[END_REF][START_REF] Lefkimmiatis | Non-local color image denoising with convolutional neural networks[END_REF][START_REF] Scetbon | Deep k-svd denoising[END_REF][START_REF] Solomon | Deep unfolded robust PCA with application to clutter sup-pression in ultrasound[END_REF][START_REF] Yang | BM3D-Net: A convolutional neural network for transformdomain collaborative filtering[END_REF].

Contributions

In this chapter, we advocate novel CNN architectures for image restoration problems, Dataset noise σ Methods IDD-BM3D [START_REF] Danielyan | Bm3d frames and variational image deblurring[END_REF] FDN [START_REF] Kruse | Learning to push the limits of efficient FFT-based image deconvolution[END_REF] VEMNet [START_REF] Nan | Variational-em-based deep learning for noise-blind image deblurring[END_REF] DWDN [START_REF] Dong | Deep wiener deconvolution: Wiener meets deep learning for image deblurring[END_REF] DRED-DUN [START_REF] Kong | Deep red unfolding network for image restoration[END_REF] In Fig. 7.8, a qualitative evaluation shows that the proposed method not only generates better image contrast but also retrieves sharp edges with more details than the other approaches, like IDD-BM3D and Son et al. [START_REF] Son | Fast non-blind deconvolution via regularized residual networks with long/short skip-connections[END_REF], where random artifacts and blurred edges are visible in the deblurred outputs. Our DL model restores the Penguin and Horse images with much sharper and more precise edges than the DEBCNN, for which edges look hazy. Thus, though DEBCNN and DIVA-A are the two best models in with clinical cardiac ultrasound images showed significant improvement in the resolution and contrast while preserving underlying structures and significantly reducing speckles.

Future Perspectives

The quantum mechanics-based imaging methods open up a broad spectrum of future prospects. In this last section, we propose some subjects of interest that could lead to potentially valuable results. Some are ideas that suggest directions of research. Others are already planned as future work. We provide these perspectives as a list.

How to Design a Robust Deep-Learning Model

In this subsection, we propose some key elements that could allow to improve our proposed deep-learning methods presented in Chapter 7.

• Network training: Our proposed deep unfolded model DIVA/DIVA-A, as presented in Chapter 7, was trained in a supervised manner exploiting the pairs of clean and degraded images. In the absence of ground truth, training is no longer a straightforward process. The possible solutions of that is to design an unsupervised [START_REF] Altmann | Unsupervised nonlinear unmixing of hyperspectral images using gaussian processes[END_REF][START_REF] Altmann | Unsupervised restoration of subsampled images constructed from geometric and binomial data[END_REF][START_REF] Chen | Robust equivariant imaging: A fully unsupervised framework for learning to image from noisy and partial measurements[END_REF][START_REF] De Morsier | Kernel low-rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images[END_REF][START_REF] Pereyra | Fast unsupervised bayesian image segmentation with adaptive spatial regularisation[END_REF] deep-learning network by assigning a flexible prior model, or implement the framework of transfer learning [START_REF] Pan | A survey on transfer learning[END_REF][START_REF] Valverde | Transfer learning in magnetic resonance brain imaging: A systematic review[END_REF][START_REF] Xiao | Discriminative transfer learning for general image restoration[END_REF] and domain adaptation [3,[START_REF] Barbe | Optimization of the diffusion time in graph diffused-wasserstein distances: Application to domain adaptation[END_REF][START_REF] Yan | Disparity-aware domain adaptation in stereo image restoration[END_REF]. Using such schemes essentially solves the training data problem and extends our reach to real-life applications more reliably.

• Network architecture: It is possible to design a more versatile network architecture implementing UNet [START_REF] Chitty-Venkata | Searching architecture and precision for u-net based image restoration tasks[END_REF][START_REF] Kong | Deep red unfolding network for image restoration[END_REF] or VNet [4,[START_REF] Rastogi | Brain tumor segmentation and tumor prediction using 2d-vnet deep learning architecture[END_REF] frameworks while preserving the core philosophy of our proposed deep-learning model DIVA. Furthermore, the patch interaction framework can be offered as an attention mechanism [START_REF] Anwar | Densely residual laplacian super-resolution[END_REF] in the modified deep network. This complex network system should enhance the capacity of the proposed network in challenging degradation operators and even for blind imaging problems. Besides that, the idea of quantum interaction framework can also be treated as a transformer in a deep architecture [START_REF] Wang | Uformer: A general u-shaped transformer for image restoration[END_REF], where the interactions between patches are defined by attention mechanism.