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RÉSUMÉ

La décomposition d’images numériques en d’autres bases ou dictionnaires que les do-

maines temporel ou spatial est une approche très courante et efficace dans le traitement

et l’analyse d’images. Une telle décomposition est couramment obtenue à l’aide de trans-

formations fixes (par exemple, Fourier ou ondelettes) ou de dictionnaires appris à partir

de bases de données d’exemple ou à partir du signal ou de l’image eux-mêmes. Ces

dernières années, avec la croissance de la puissance de calcul, les stratégies exploitant la

redondance des patchs extraits d’une ou de plusieurs images pour faciliter leur décompo-

sition parcimonieuse sont devenues très populaire, notamment grâce à leur efficacité à

restaurer des images. Un des objectifs de cette thèse est de savoir comment concevoir

une telle transformation adaptative à l’aide de principes de la mécanique quantique.

Cette thèse explore de nouvelles approches de construction de telles bases dépen-

dantes de l’image inspirées de la mécanique quantique. Tout d’abord, nous constru-

isons une base dépendante de l’image en utilisant les solutions d’onde de l’équation de

Schrödinger. En particulier, en considérant l’image comme un potentiel dans l’équation

de Schrödinger discrétisée, nous obtenons les solutions d’onde qui constitue une base et

qui joue le rôle de transformée. L’efficacité de la décomposition proposée est illustrée par

des résultats de débruitage dans le cas des bruits Gaussiens, de Poisson et de speckle et

par comparaison aux algorithmes de l’état de l’art. Cette décomposition adaptative est

ensuite généralisée en s’inspirant de la théorie quantique à plusieurs corps. Sur la base

de l’analyse par patchs, les mesures de similarité dans un voisinage d’image local sont

formalisées par un terme apparenté à l’interaction en mécanique quantique qui peut

efficacement préserver les structures locales des images. La nature polyvalente de cette

base adaptative étend la portée de son application à des scénarios de bruit indépendants

ou dépendants de l’image sans aucun ajustement. Nous effectuons une comparaison

rigoureuse avec les méthodes existantes pour démontrer la capacité de débruitage de

l’algorithme proposé, quelles que soient les caractéristiques de l’image, les statistiques
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de bruit et l’intensité. Nous montrons la capacité de nos approches à traiter des données

médicales réelles telles que le débruitage d’images de tomodensitométrie dentaire clin-

ique et les applications de despeckling d’images d’échographie médicale. Nous étendons

encore notre travail aux tâches de déconvolution d’image et de super-résolution en ex-

ploitant nos algorithmes de debruitage adaptatifs quantiques proposés. En particulier,

suite à des développements récents, nous imposons ces débruiteurs externes comme

fonction préalable au sein des approches de type Plug-and-Play et Régularisation par

Débruitage.

Enfin, nous présentons une architecture de réseau neuronal profond dépliant notre

proposition d’algorithme de débruitage adaptatif, reposant sur la théorie de la physique

quantique à plusieurs corps. Les ingrédients clés de la méthode proposée sont d’une part,

sa capacité à gérer des structures d’image non locales à travers le terme d’interaction

patch et l’opérateur Hamiltonien quantique, et, d’autre part, sa flexibilité pour adapter les

hyperparamètres aux caractéristiques de chaque patch. De plus, il est démontré qu’avec

de très légères modifications, ce réseau peut être amélioré pour résoudre des tâches de

restauration d’image plus difficiles telles que le défloutage d’image, la super-résolution

et l’inpainting. Malgré une architecture compacte et interprétable (d’un point de vue

physique), le réseau d’apprentissage profond proposé améliore plusieurs algorithmes de

référence récents de la littérature, conçus spécifiquement pour chaque tâche. Enfin, nous

abordons le problème de l’amélioration des image échocardiographiques clinique pour

démontrer le potentiel de notre réseau profond dans des applications médicales réelles.

Mots clés: Mécanique quantique, Interaction quantique à plusieurs corps, Transforma-

tion adaptative, Équation de Schrödinger, Apprentissage profond, Débruitage quantique,

Traitement d’image quantique, Imagerie médicale, Restauration d’images, Imagerie

computationnelle.
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ABSTRACT

Decomposition of digital images into other basis or dictionaries than time or space

domains is a very common and effective approach in image processing and analysis.

Such a decomposition is commonly obtained using fixed transformations (e.g., Fourier

or wavelet) or dictionaries learned from example databases or from the signal or image

itself. In recent years, with the growth of computing power, data-driven strategies

exploiting the redundancy within patches extracted from one or several images to

increase sparsity have become more prominent. They have demonstrated very promising

image restoration results. The question to pursue in this thesis is how to design such an

adaptive transformation based on principles of quantum mechanics.

In this thesis, we explore new possibilities of constructing such image-dependent

bases inspired by quantum mechanics. First, we construct an image-dependent basis

using the wave solutions of the Schrödinger equation, in particular, by considering

the image as a potential in the discretized Schrödinger equation. The efficiency of the

proposed decomposition is illustrated through denoising results in the case of Gaussian,

Poisson, and speckle noises and compared to the state-of-the-art algorithms. We further

generalize our proposed adaptive basis by exploiting the data-driven strategy inspired

by quantum many-body theory. Based on patch analysis, the similarity measures in a

local image neighborhood are formalized through a term akin to interaction in quantum

mechanics that can efficiently preserve the local structures of real images. The versatile

nature of this adaptive basis extends the scope of its application to image-independent

or image-dependent noise scenarios without any adjustment. We carry out a rigorous

comparison with contemporary methods to demonstrate the denoising capability of the

proposed algorithm regardless of the image characteristics, noise statistics and intensity.

We show the ability of our approaches to deal with real-medical data such as clinical

dental computed tomography image denoising and medical ultrasound image despeckling

applications. We further extend our work to image deconvolution and super-resolution
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tasks exploiting our proposed quantum adaptive denoisers. In particular, following

recent developments, we impose these external denoisers as a prior functions within the

Plug-and-Play and Regularization by Denoising approaches.

Lastly, we present a deep neural network architecture unfolding our proposed baseline

adaptive denoising algorithm, relying on the theory of quantum many-body physics.

The key ingredients of the proposed method are on one hand, its ability to handle

non-local image structures through the patch-interaction term and the quantum-based

Hamiltonian operator, and, on the other hand, its flexibility to adapt the hyperparameters

patch wisely, due to the training process. Furthermore, it is shown that with very slight

modifications, this network can be enhanced to solve more challenging image restoration

tasks such as image deblurring, super-resolution and inpainting. Despite a compact

and interpretable (from a physical perspective) architecture, the proposed deep learning

network outperforms several recent benchmark algorithms from the literature, designed

specifically for each task. Finally, we address the problem of clinical cardiac ultrasound

image enhancement to demonstrate the potential of our proposed deep unfolded network

in real-world medical applications.

Keywords: Quantum Mechanics, Quantum many-body interaction, Adaptive trans-

formation, Schrödinger equation, Deep learning, Deep unfolding, Quantum denoising,

Quantum image processing, Medical imaging, Image restoration, Computational imag-

ing.
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Overview

This chapter introduces, in broad strokes, the frame-
work of inverse problems for imaging applications,
in particular, the image restoration problems and
the motivation for the explorations of quantum
mechanics-based algorithms for solving such tasks.
The outline and contribution of this thesis are sum-
marized at the end of this chapter.
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1.1. DIGITAL IMAGE

1.1 Digital Image

From the perspective of photography history, the development of digital imaging is

relatively recent. It originated in the nineteen-fifties with the digitization of newspapers

and was accelerated in the nineteen-seventies with the development of the first charge-

coupled device (CCD) sensor. Since then devices have continued to improve and have

reached very high resolution. In this chapter, we first recall how the CCD sensor works

to produce a digital image before identifying the sources of error during the acquisition

process.

1.1.1 What is a Digital Image?

The process of digital imaging begins with an optical device. The light rays reflected from

the object pass through a series of lenses and are projected onto the CCD sensor. This

CCD sensor processes these light rays and converts the light information into electrical

information. To do so, the sensor is composed of an array of capacitors that accumulate

electric charge proportionally to the light intensity. Next, the charge is converted into a

voltage which is converted into digital data for storage. Fig. 1.1 portrays the process of

digital image generation. Note that the CCD sensor is solely sensitive to light intensity,

captures only that information and provides a grayscale image after acquisition (i.e.,
sampling and quantization). To produce digital color image, a bare filter is usually placed

over the CCD sensor.

This process of acquiring raw digital data often gets affected by various physical phe-

Object

Optical system CCD sensor

Photons

Thermal 
noise

Shot 
noise Noisy image

Denoising

Image 
processing

Numerical image

Pixels values

FIGURE 1.1. The process of creating a digital image.
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nomena in its surroundings and requires several restoration operations before obtaining

the final output image. Other physical circumstances and sensors in different imaging

modalities (e.g., tomography and ultrasound imaging that used in this thesis) can exhibit

such situations. This process of restoration operations, called digital image restoration,

is briefly introduced in the following.

1.2 Digital Image Restoration

Digital images have become omnipresent in our modern age of computers. Their ap-

plications are not only limited to photography to capture our life’s most memorable

moments, but have become an integral part of modern medical science, astronomy, geo-

logical science, engineering, and other fields. In a wide range of real world applications,

one does not have direct access to the true image of interest but only to its distorted

version. These distortions often appear from various unavoidable physical phenomena

in hands-on implementation. They may depend on the acquisition process, the physical

laws of the phenomenon studied, the devices or sensors used for acquisition, and the

mode of communication. In science and engineering, the forward problem is a process of

finding observations from the original data, while deriving the original data from the

observations is called the inverse problem. The restoration of the original image from a

distorted observation is one of the most fundamental tasks in inverse problems. There is

a wide range of real-life problems within the range of image restoration, such as image

denoising where the observed image is contaminated by random noise, image deblurring

where the observed image is blurry caused by motions or optics, image super-resolution

(SR) where the spatial resolution of a low-resolution (LR) observed image is improved

to obtain a high-resolution (HR) output, image impainting where parts of the observed

image are removed or corrupted, etc. For all these imaging applications, recovery of the

original latent image from the observed one is the primary objective. Over the past few

decades, image restoration techniques have been extensively studied, yet remain an

active field of research. In this thesis, the objective is to tackle such imaging problems

from a different perspective, specifically using tools inspired by quantum theory.
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1.3 Motivation for Quantum Mechanics-Based
Algorithms

After the digital revolution, the future might be an age of quantum computers. Quantum

computers allow conducting an operation efficiently with enormous parallelism. Fur-

thermore, the exploitation of a logarithmic number of qubits by quantum computation

may effectively improve computational efficiency against a classical computer where

exponentially more bits are needed. Despite all these advantages, the quantum computer

is still far from real-life implementation and only small-scale versions are available.

However, the concepts and principles of quantum theory can be used as tools to design

algorithms for classical computers. The implementation of such quantum principles

can significantly boost the performance of algorithms. Thus, exploiting the concepts of

quantum physics, these algorithms may enable to deal with real-life problems such as

medical imaging, remote sensing, low-level vision, surveillance, astronomy, geology, etc,

much better than the traditional methods.

The objective of this thesis is to explore quantum mechanics-based approaches in the

field of image processing and analysis, particularly for image restoration problems, and

implement these schemes in real applications.

1.4 Outline of the Thesis

As stated earlier, this thesis aims to design new approaches for image restoration

problems inspired by the concepts of quantum physics. The forthcoming chapters are

organized as follows:

∗ Chapter 2: This chapter reminds the basic postulates of quantum mechanics. The

differences between classical and quantum theory are discussed. In addition, those

properties of the wave solutions of the time-independent Schrödinger equation are

presented. This quantum picture is illustrated with the very simple example of a

particle in a box. Furthermore, we discuss the behavior of these wave functions in

the presence of random potentials. Specifically we study the quantum localization

of these wave functions under a random potential. Finally, we introduce the concept

of quantum interactions in the presence of more than one quantum particle in a

system, i.e., a quantum many-body systems.
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∗ Chapter 3: In this chapter, we briefly introduce various image restoration problems

with a discussion of the existing state-of-the-art methods for solving such imaging

tasks using model-based, learning-based, and model-based learning approaches. In

addition, the development of quantum mechanics-based imaging algorithms over

the past few decades is summarized here.

∗ Chapter 4: Decomposition of digital signals and images into other basis or dic-

tionaries than time or space domains is a very common approach in signal and

image processing and analysis. Such a decomposition is commonly obtained using

fixed transforms (e.g., Fourier or wavelet) or dictionaries learned from example

databases or from the signal or image itself. In this chapter, we propose a new way

of generating an adaptive basis from the signal or image itself by exploiting princi-

ples of quantum mechanics. In particular the wave solutions of the Schrödinger

equation give the adaptive transforms and are used to construct an adaptive basis

suitable for signal and image representation applications, where the signal or

image acts as the potential of the quantum system. This adaptive basis will be

used for signal or image decomposition. To illustrate the potential of the proposed

decomposition, we study the signal or image denoising problem.

∗ Chapter 5: This chapter addresses the Poisson image deconvolution problem,

a common problem that occurs in several imaging applications, such as limited

photon acquisition, X-ray computed tomography or positron emission tomography.

A new Plug-and-Play (PnP) alternating direction method of multipliers (ADMM)

scheme is introduced based on the adaptive denoiser proposed in Chapter 4 using

the Schrödinger equation’s solutions of quantum physics. The adaptative nature of

this denoiser makes it highly efficient at selectively eliminating noise from higher

intensity pixels, without relying on any statistical assumption about the noise,

which makes the proposed method capable of handling the Poisson deconvolution

task.

∗ Chapter 6: In the context of image decomposition, data-driven dictionaries and, in

particular, exploiting the redundancy between patches extracted from one or more

images, allowed important improvements. This chapter proposes an original idea of

constructing such an image-dependent basis inspired by the principles of quantum

many-body physics. The similarity between two image patches is introduced in

the formalism through a term akin to interaction terms in quantum mechanics.
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The potential of the proposed adaptive decomposition is illustrated through image

denoising in presence of image-independent and image-dependent noise scenarios.

∗ Chapter 7: This chapter introduces a blueprint of a new deep network unfolding

a baseline quantum mechanics-based adaptive denoising scheme (De-QuIP), pro-

posed in Chapter 6. Furthermore, it is shown that with very slight modifications,

this network can be enhanced to solve more challenging image restoration tasks

such as image deblurring, SR and inpainting. The proposed deep network embeds

both quantum interactions and other quantum concepts, mainly the Hamiltonian

operator, which enables the network to predict the possible stationary solutions

of the Schrödinger equation by harnessing the power of the convolutional layers

during the training process.

∗ Chapter 8: The final conclusions of this thesis and as well as possible directions

for future work on these topics are summarized in this chapter.

1.5 Main Contributions

The primary objective of this thesis is to propose new tools and algorithms for image

restoration problems integrating or inspired by the concepts and principles of quantum

physics. The main contributions of this thesis are as follows.

∗ Chapter 4: The main scope of this chapter is to show how tools from quantum

mechanics, in particular the Schrödinger equation, can be used to construct an adap-

tive transform suitable for signal and image processing applications. The proposed

framework reposes on the discrete version of the time-independent Schrödinger

equation for a quantum particle in a potential. In our case, the potential is repre-

sented by the signal samples or the pixel values. We use a basis of wave functions,

i.e., stationary solutions of the Schrödinger equation, directly computed from the

signal or image itself, as adaptive basis for signal or image decomposition. A de-

tailed description of the behavior of the wave functions and the proposed adaptive

basis with respect to the choice of the hyperparameters is provided, allowing to

gain insight about the practical consequences in signal and image processing of the

quantum mechanical principles involved. Furthermore, the proposed transform

embedded in a denoising algorithm shows promising results in different noise

scenarios, such as additive, multiplicative, signal/image dependent and indepen-

dent noise models. Finally a comprehensive comparison is reported in the case of

9
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Gaussian, Poisson, and speckle noise against several state of-the-art methods from

the literature.

∗ Chapter 5: The main novelty of this chapter is to propose an original Poisson

image deconvolution scheme using the concepts of quantum mechanics. The pri-

mary contributions are the construction of a computationally advanced quantum

denoiser compared to Chapter 4, its integration into a PnP-ADMM scheme, and the

experimental proof of convergence of the final algorithm. The efficiency of the pro-

posed method regardless of the assumption of Gaussian noise represents the main

motivation of its interest in Poisson deconvolution PnP-ADMM algorithms. This

performance gain regardless of the amount of noise affecting the observations is

explained by the flexibility of the embedded quantum denoiser constructed without

assuming any prior statistics about the noise, which is one of the major advantages

of this method. Generally, in the literature, while dealing with a Poisson deconvolu-

tion task using a PnP scheme, a variance stabilizing transformation (VST) is often

used to approximately Gaussianize the Poisson data, although the convolution

operation is not invariant under such transformation. The proposed algorithm

discards the need for a VST due to its adaptive architecture, a clear advantage

of this proposed scheme. Finally, detailed quantitative and qualitative analyses

of the proposed scheme have been conducted compared to recent state-of-the-art

techniques, for both benchmark and real-life fluorescence microscopy images.

∗ Chapter 6: The main contribution of this chapter is to translate concepts of quan-

tum many-body theory to imaging problems. Interactions in quantum physics

correspond to two or more quantum particles present in the system that can influ-

ence each other’s quantum state. From an image processing perspective, we propose

to adapt this theory to extend the idea of interaction between image patches. More

precisely, the proposed framework consists in placing a quantum particle in every

image-patch, i.e., every image-patch acts like a single particle system, and the

whole collection of patches, that is the entire image, behaves like a many-body sys-

tem where interactions describe local similarities in the neighbouring patches. This

chapter includes the characterization of the hyperparameters and their respective

effects on the denoising performance, together with automated rules of selecting

their values close to the optimal one in experimental setups with ground truth not

available, explorations of the denoising possibilities beyond Gaussian statistics

without any modification, and a rigorous comparison with contemporary methods
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to demonstrate the denoising capability of the proposed algorithm regardless of the

image characteristics, noise statistics and intensity. Finally, the chapter highlights

the capabilities of the proposed approach to deal with practical image denoising

problems such as medical ultrasound (US) image despeckling applications. Fur-

thermore, we address the super-resolution (SR) problem exploiting our proposed

quantum adaptive denoiser. In particular, following recent developments, we im-

pose this external denoiser as a prior function within the Plug-and-Play (PnP) and

Regularization by Denoising (RED) approaches. Medical Dental computed tomog-

raphy (CT) images are used to illustrate the potential of the proposed algorithms

for high-resolution (HR) image retrieval.

∗ Chapter 7: Designing a deep network architecture unfolding a baseline quantum

algorithm called DIVA, relying on the theory of quantum many-body physics, is

the main contribution of this chapter. The key ingredients of the proposed method

are on one hand, its ability to handle non-local image structures through the

patch-interaction term and the quantum-based Hamiltonian operator, and, on

the other hand, its flexibility to adapt the hyperparameters patch-wisely, due to

the training process. Thus, recasting the De-QuIP algorithm in the framework of

a deep learning network while preserving the essence of the baseline structure

significantly enhances the adaptability of the model to various challenging im-

age restoration tasks such as image denoising, deblurring, SR and inpainting. In

general, the model-based approaches are fairly successful in tackling a variety

of image recovery tasks, including proper interpretation of their roles, however,

require costlier manual computation process. Deep network structures are in most

cases determined empirically, which makes them suffer from a lack of interpreta-

tion of their true functionality. Despite a compact and interpretable (from a physical

perspective) architecture, the proposed deep learning network outperforms several

recent algorithms from the literature, designed specifically for each task. Finally,

we show the ability of our approach to deal with clinical cardiac ultrasound image

enhancement applications.
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Overview

This chapter presents the basic postulates of classi-
cal and quantum mechanics. In addition, the con-
cepts of wave-particle duality, matter waves and
wave solutions of the time-independent Schrödinger
equation are illustrated. We discuss the particle in
a box problem in quantum mechanics. Furthermore,
we present the behavior of these wave solutions in
a random potential. Finally, we recall the notion
of a quantum many-body system, where quantum
interactions take place in the presence of more than
one quantum particles.
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2.1. INTRODUCTION

2.1 Introduction

Unlike Newtonian mechanics, or Maxwell’s electrodynamics, or Einstein’s relativity,

quantum mechanics was not invented by one individual. Resorting to new ideas, which

were radically opposite from classical ideas, to explain some experimental results in the

last quarter of the nineteenth century called forth a wholly new and radically counter-

intuitive way of thinking about the world. This led to the introduction of quantum

mechanics. The physical theory of quantum mechanics was born by the efforts of many

scholars, such as Born, Dirac, Jordan, Pauli, Schrödinger, Heisenberg and many more.

A series of ad hoc moves by Planck, Bohr, Ehrenfest and many others, now called old

quantum theory, to explain some phenomena indicated the need of formulating a new

mechanics for microscopic particles, which was subsequently synthesized by Schrödinger,

Heisenberg, Dirac and others. Their formulations were physico-mathematical in their

own right. Later on, in the middle and second half of the twentieth century, Dirac,

Feynman, Schrödinger, Kramers, Bethe, Tomonaga, and many others, made major ad-

vancements in the theory that combined classical field theory, special relativity, and

quantum mechanics. This modified generalized theory, known as quantum field theory, is

the basis of our current understanding of physical particles at the subatomic level, and is

the foundation of the Standard Model of elementary particles. Nevertheless, a rigorous

mathematical formulation was needed in order to reveal full ramification of the quan-

tum revolution. This task was first taken by Hilbert and Neumann during 1926-1927

[166, 358, 359]. Not only did they give a firm mathematical foudation but also introduced

the sharp separation between the mathematical formalism - what Hilbert called "der

analytische Apparat", the analytical apparatus - and its physical interpretation [166].

2.2 Classical Mechanics

Classical mechanics, narrowly defined, is the study of the motion of systems of particles

in Euclidean three-dimensional space, under the influence of specific force laws, the

evolution of motion being determined by Newton’s second law, a second-order differential

equation. That is, given the physical forces at certain times and certain boundary

conditions on the positions of the particles at some particular times, the problem is

to determine the trajectories of all the particles at all times. Newton’s formalism of

classical mechanics, together with the investigation of appropriate force laws, provided

the basic framework of physics from Newton’s time, until the beginning of the last century.
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In the eighteenth and nineteenth century, the scope of classical mechanics expanded

from Newton’s laws to the development of Lagrangian and Hamiltonian formulations of

mechanics.

Classical mechanics has a deterministic property, that is, it is possible to determine

or measure the position and momentum of a classical particle at any time under a given

force and initial conditions. For a system, the positions q⃗ and momenta p⃗ provide a

complete picture of the trajectories of the classical particles of the system. The space

consisting of all such possible values of positions and momenta for the system at all

instants is known as phase space. The Hamiltonian formulation of mechanics is the

natural description for working in phase space. In general the Hamiltonian H(q⃗, p⃗), a

function of q⃗ and p⃗, is just the sum of the kinetic and potential energies, or the total

energy of a system, and the physical motion obeys Hamilton’s equations of motion,

(2.1) ⃗̇q = ∂H
∂p⃗

, ⃗̇p =−∂H
∂q⃗

,

where ⃗̇q and ⃗̇p represent the time derivatives of q⃗ and p⃗, respectively. The kinetic energy

is T = 1
2

m⃗̇q2, where m is the mass and given that p⃗ = m⃗̇q, so T = 1
2m

p⃗2 is a function of

p⃗. The potential V only depends on the position q⃗. In general, Hamiltonian H = kinetic

energy T + potential energy V , or, H = 1
2m

p⃗2 +V (q⃗).

The Hamilton equations (2.1) are generalization of the Newton equation of motion to

arbitrary configuration-space coordinate frames. By solving these first-order differential

equations with some initial conditions, one can accurately determine the properties (i.e.,
position and momentum) of classical particles at any instant of time [148, 275].

Starting from Hamilton’s equations, it is very easy to derive the Newton equation.

Indeed, Hamiltonian H = kinetic energy T + potential energy V , with the kinetic energy

T = 1
2

m⃗̇q2, and ⃗̇q is the velocity of the particle and V is a function of q⃗ only. Now

in Hamiltonian formulation, momentum p⃗ = m⃗̇q. Hence, the second equation of the

Hamilton’s equations of motion (2.1) gives, m⃗̈q =−∂V
∂q⃗

, where ⃗̈q is the acceleration. Note

that, −∂V
∂q⃗

= F is the force acting on the particle. Therefore, one has m⃗̈q = F, which is

exactly Newton’s second law of motion [306].

Following the above discussions, it is clear that in classical mechanics, the position

and momentum of a classical particle can be determined precisely, starting from Newton’s

or Hamilton’s equations of motion. Fig. 2.1 illustrates this concept through a pictorial

diagram. Suppose a classical particle is moving under a potential V with an energy E
in the Euclidean space. At point q3, the potential energy is higher than the particle’s
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(0,0)

FIGURE 2.1. Motion of a classical particle with an energy E under a potential
V . The blue dashed line represents the energy of the classical particle.

energy. Thus this potential energy acts as a potential barrier for the particle and limits

its motion. With the given energy E, the classical particle will never cross the potential

barrier and reach the point q4. Indeed, the particle is trapped between the points q1 and

q2, and remains so while oscillating forever if there is no damping force (e.g., friction)

acting on the particle.

2.3 Quantum Mechanics

Until the end of the nineteenth century, the laws of classical mechanics were found to

be sufficient to explain the physical phenomena studied up to that time. The universe

was conceived as containing matter consisting of particles and radiation (waves). The

motions of material bodies were described using the laws of Newtonian mechanics, while

the theory of electromagnetism was used to describe radiation. Interactions between

radiation and matter were well explained by the Maxwell’s equations. This set of laws
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was considered satisfactory to explain the experimental data at that time. In this context,

it is to be mentioned that by a particle one means a point endowed with some mass.

So particles are localized bundles of energy and momentum. At each instant of time a

particle has a definite position in space and it follows a trajectory, when it moves from

one point to another. A wave, in contrast, is a disturbance spread over the space. It is

described by a function which characterizes the disturbance at a point at a particular

time t. Diffraction and interference are two properties of a wave, which are not exhibited

by particles described by classical mechanics.

2.3.1 Wave-Particle Duality

Newton considered light to be a beam of particles which can bounce back upon reflection

from a mirror. But such a concept could not explain the interference effect of light. During

the first half of the nineteenth century, interference and diffraction effects of light were

successfully explained considering light as a wave. Later on, it was found that visible

lights are particular forms of electromagnetic radiation which move in vacuum with a

speed of 3×108 m/sec. Electromagnetic theory formulated by Maxwell was successful in

explaining electromagnetic radiation.

However, it was not possible to explain experimental observations of black body

radiation using electromagnetic theory. In order to explain the observed data of black

body radiation, Planck had to assume that an electromagnetic radiation of frequency

ν could have energies which are only integral multiple of hν, where h is a constant

known as Planck’s constant (h = 6.55×10−34 Joule-sec). Thus, following Planck, electro-

magnetic radiation of frequency ν can be considered as consisting of stream of particles

or corpuscles each of energy hν. These particles which can be localized in space are

known as photons. Making use of the concept of photons, Einstein was able to explain

the characteristics of the photoelectric effect quite successfully. Later on, the corpuscular

character of electromagnetic radiation was confirmed by Compton while explaining the

scattering of X-ray by a stationary electron.

From the above discussion, we can arrive at the following conclusion. The interaction

between radiation and matter takes place by means of an elementary process in which

radiation appears to be composed of particles, called photons. We have thus returned

to the particle conception of light, though this conception is very much different from

that considered by Newton. Reconciliation with the corpuscular nature of radiation leads

to a natural question - should we give up the wave theory? The answer is no. Because,

we know that interference and diffraction phenomena can not be explained in a purely
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Light Source
(Monochromatic

And Coherent)

F1

F2

S1 S2

P1

P2

P

Photographic

plate

One slit

open

Interference 

pattern

Screen 

containing 

two slits

Two slits

open

FIGURE 2.2. Pictorial illustration of the double slit experiment. A monochro-
matic coherent light source emits photons that pass through a two-slit
screen and are detected on a photographic plate placed behind the screen.
The sum P1 + P2 of the intensities P1, when slit F2 is closed, and P2 when
slit F1 is closed, is not equal to the intensity P measured when both slits
are open.

particle framework. As a matter of fact, a complete interpretation of the phenomena

concerning radiation can only be made by assuming both particle and wave aspects of

radiation. So we face a paradox, because the concepts of wave and particle are mutually

exclusive. This is particularly visible in the double slit experiment.

2.3.1.1 Double Slit Experiment with Single Photons

In the basic version of the experiment, a monochromatic coherent light source (for

example, a laser beam) illuminates a screen S1 containing two slits F1 and F2. At some

distance beyond this screen a second screen S2 is placed, incorporating detectors (for

example, a photographic plate) which can detect the light that falls on a given point

[144, 306].
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FIGURE 2.3. Double slit experiment with single photons. The top left image is
the result after a short exposure time, after around 100 photons have landed
on the detector. Each dot of light represents one photon, which behaves
as a particle here. With increasing exposure time – top middle and top
right, and again from bottom left to bottom right – it becomes clear that the
photons are landing at random positions but with a wave-like distribution
of probability and generates interference pattern [373].

We observe that with the slits open one at a time, we get a classical distribution, and

with both slits open, we get the interference pattern as in Fig. 2.2. Let us now consider

the case when both slits are open. At first sight one might think that the interference

pattern develops due to the interactions of photons passing through the slits F1 and

F2. But it is not the case. Because, if the intensity of the source is diminished until

the photons strike the screen one by one so that there is no possibility of interaction

between the photons, the interference pattern is still found to be developed after a long

time (that is, after a large number of photons is recorded). Therefore, purely corpuscular

interpretation must be rejected.

Let us now try to explain the results on the basis of wave picture. According to the

wave picture, light intensity at a point on the screen S2 is proportional to the square of

the amplitude of the wave at this point. If we consider the case "when the source emits
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photons one by one" and analyse the screen S2 after it has received a few photons, we then

observe that each photon produces a localized impact on S2 (see top left image in Fig.2.3)

and not a very weak interference pattern. Therefore, the purely wave interpretation

must also be rejected. In reality, the individual impacts of photons on the screen S2 are

distributed in a random manner, and only when a large number of photons has reached

the screen S2, the distribution of the impacts begins to have a continuous aspect or

interference fringes (see bottom right image in Fig.2.3).

The top left image in Fig.2.3 is the result after a short exposure time, after around

100 photons have landed on the detector. Each dot of light represents one photon, which

behaves as a particle here: it hits exactly one position – one detector pixel. If the wave

property would dominate, each photon would be distributed over the whole detector

surface, just as a sea wave does not hit the beach at one point only but over the whole

length of the beach. With increasing exposure time – in Fig.2.3 top middle and top right,

and again from bottom left to bottom right – it becomes clear that the photons are landing

at random positions but with a wave-like distribution of probability. A long exposure

time with a high number of detected photons leads to the interference pattern which we

know from a normal monochromatic light source at the double slit.

It is thus clear that interference pattern is the result of the impacts of a large

number of photons. Let us now try to determine through which slit each photon passed

before it reached the screen S2. In order to do this we have to place detectors behind

the slit F1 and F2. It is then observed that, if the photons arrive one by one, each one

passes through a well-determined slit (F1 or F2, but not both). But obviously photons,

recorded in this way, are absorbed and do not reach the screen. Removing detectors from

one of the slit, say from F2, tells us that about half of the photons emitted from the

source pass through the slit F2. But in this case, no interference pattern is developed,

since slit F1 is blocked. We only obtain a classical distribution of F2. The content of

this paragraph can be summarised by concluding that it is impossible to observe the

interference pattern and to know at the same time through which slit each photon has

passed. The analysis of the double-slit experiment thus shows that it is not possible

to explain all the observed phenomena if only one of the two aspects of light, wave or

particle, is considered. Classically, these two aspects are mutually exclusive. We are thus

led to the conclusion that this classical idea, although our everyday experience tells us to

consider this well-founded, is not valid in the microscopic domain.
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2.3.2 Matter Waves

One of the greatest challenges of the nineteenth century was to explain the atomic

spectra. It is found that atomic spectra are composed of narrow lines which indicate that

a given atom can emit or absorb only photons having well-determined frequencies or

energies. Classical mechanics is totally unable to explain this fact.

In 1923, de Broglie put forward a hypothesis which unifies particle and wave. He

postulated that material particles, just like photons, can have wavelike aspect. These

are called matter waves. What is true for photons should be valid for any type of particle.

More specifically, de Broglie conjectured, in analogy with photons, that particles of

momentum p will produce an interference pattern corresponding to a wave number

k = p/ℏ (where, ℏ= h/2π) in the double-slit experiment. We therefore associate with a

material particle having energy E and momentum p, a wave whose angular frequency ω

and wave vector k are given by the same relations as for photons:

(2.2) E = ℏω, and p = ℏk.

This prediction was verified for electrons by Davisson and Germer, shortly thereafter. It

is now widely accepted that all particles are described by probability amplitudes ψ, and

that the assumption that they move in definite trajectories is ruled out by experiment.

But what about common sense, which says that billiard balls and baseballs travel along

definite trajectories? How did classical mechanics survive for three centuries? The answer

is that the wave nature of matter is not apparent for macroscopic phenomena since ℏ is

so small [306].

2.3.3 Wave Functions and Quantum Description of Particle

From the analysis of the double-slit experiment we have learnt that the concept of

trajectory of a particle does not make sense at the microscopic scale. In order to describe

the motion of a microscopic particle, such as an electron, quantum mechanics introduced

the concept that the probability of finding the particle at a given location is proportional

to the square of the modulus of the wave function ψ(z, t) which characterizes the state

of the particle, z being a spatial coordinate. Thus the probability of finding the particle

within the volume element dz about the point z at time t is

(2.3) P(z, t)dz = |ψ(z, t)|2dz,

so that P(z, t)= |ψ(z, t)|2 is the probability density. We thus see that the wave function

associated with a particle determines its space-time behaviour which is statistical in
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nature. Since the probability of finding the particle somewhere in the space must be

unity, we deduce that

(2.4)
∫

|ψ(z)|2dz= 1,

So the wave functions are square-integrable functions.

As we have seen in the previous sections, in order to account for the interference

effects, it must be possible to superpose wave functions. This means that if ψ1 and ψ2

are two possible states of a particle, then any linear combination, c1ψ1+ c2ψ2, is also a

possible state of the particle, where c1 and c2 are constants.

The equation describing the evolution of ψ should then be linear. It is called the

Schrödinger equation. This equation is a fundamental equation of the non-relativistic

quantum mechanics. We simply consider this equation as a postulate and for the sake of

simplicity we restrict ourself to one dimensional case. For a particle of mass m moving in

the field of potential V (z, t), the Schrödinger equation takes the form

(2.5) iℏ
∂

∂t
ψ(z, t)=− ℏ2

2m
∂2

∂z2ψ(z, t)+V (z, t)ψ(z, t).

The Schrödinger equation is linear and homogeneous in ψ. As a result, for material

particles there exists a superposition principle which, combined with interpretation of ψ

as a probability amplitude, is the source of wavelike effects. Furthermore the equation is

of first order in t. So if the state at some time, say t0, is known we can determine exactly

the subsequent state of the particle. Thus there exists a fundamental analogy between

matter and radiation - in both cases, a correct description of the phenomena needs the

introduction of quantum concepts, in particular the idea of wave-particle duality.

At this point it is clear that wave functions ψ(z, t) describe the states of a quantum

particle. Let us assume a wave function ψ(z, t)= cei(kz−ωt), where c is a constant [360].

Performing differentiation with respect to z we get

∂

∂z
ψ(z, t)= ∂

∂z

(
cei(kz−ωt)

)
or,

∂

∂z
ψ(z, t)= ik

(
cei(kz−ωt)

)
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or, − iℏ
∂

∂z
ψ(z, t)= ℏkψ(z, t)

or, − iℏ
∂

∂z
ψ(z, t)= pψ(z, t) since p = ℏk from equation (2.2),(2.6)

Again applying differentiation with respect to t we get

∂

∂t
ψ(z, t)= ∂

∂t

(
cei(kz−ωt)

)
or,

∂

∂t
ψ(z, t)=−iω

(
cei(kz−ωt)

)
or, iℏ

∂

∂t
ψ(z, t)= ℏωψ(z, t)

or, iℏ
∂

∂t
ψ(z, t)= Eψ(z, t) since E = ℏω from equation (2.2),(2.7)

Relations (2.6) and (2.7) show that the operators −iℏ ∂
∂z and iℏ ∂

∂t , when acting on the

wave function, yield respectively the momentum and energy of the particle as eigenvalues

of the operators. This gives hints to the fact that momentum and energy of a free particle

can be represented by the differential operators

(2.8) poperator =−iℏ
∂

∂z
, and Eoperator = iℏ

∂

∂t

acting on the wave function ψ. It is a postulate of wave mechanics that when the particle

is not free the dynamical variables p⃗ and E are still represented by these differential

operators.

Let us consider a particle moving under the potential V (z, t). So the total energy

E of the particle is given by the sum of kinetic energy T = p2

2m and potential energy V .

Therefore,

(2.9) E = p2

2m
+V .

Since the potential energy V (z, t) does not depend on p or E, using the operators repre-

sentation (2.8) we obtain

(2.10) iℏ
∂

∂t
=− ℏ2

2m
∂2

∂z2 +V .
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This leads to the Schrödinger equation,

(2.11) iℏ
∂

∂t
ψ(z, t)=

[
− ℏ2

2m
∂2

∂z2 +V
]
ψ(z, t).

The operator
[− ℏ2

2m
∂2

∂z2 +V
]

appearing on the right hand side of the Schrödinger equation

plays a fundamental role in quantum mechanics. It is called the Hamiltonian operator of

the particle, and is denoted by H. Thus

H =− ℏ2

2m
∂2

∂z2 +V

= 1
2m

(
p2

operator
)+V

= T +V ,(2.12)

where T = 1
2m

(
p2

operator
)

is the kinetic energy operator. Therefore the time-dependent

Schrödinger equation can be written as

(2.13) iℏ
∂

∂t
ψ(z, t)= Hψ(z, t).

Note that the quantum mechanical Hamiltonian operator is obtained from classical

Hamiltonian by performing the substitution p⃗ → poperator =−iℏ ∂
∂z .

2.4 The Postulates of Quantum Mechanics

In the following we describe the postulates for the case of a single particle in one space

dimension. The quantum postulates are written together with the classical Hamiltonian

formalism to provide some perspective [306].
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Classical Mechanics

I. The state of a particle at any give

time t is specified by the two vari-

ables position q⃗(t) and momentum

p⃗(t), that is, as a point in a two-

dimensional phase space.

II. Every dynamical variable f is a

function of q⃗ and p⃗, thus f = f
(
q⃗, p⃗

)
.

III. If the particle is in a state given by

q⃗ and p⃗, the measurement of the

variable f will yield a value f
(
q⃗, p⃗

)
.

The state will remain unaffected.

Quantum Mechanics

I. The state of a physical system at a

fixed time t, is described by a vector

|ψ(t)〉 belonging to the Hilbert space

of square-integrable functions.

II. Every measurable physical quantity

is described by an operator in the

Hilbert space and this operator is

an observable.

The independent variables q⃗ and

p⃗ of classical mechanics are rep-

resented by Hermitian operators z
and p.

Any observable corresponding to the

classically defined dynamical vari-

able f
(
q⃗, p⃗

)
, is obtained as the same

function of the operators z and p.

Thus the observable is given by Her-

mitian operators F(z, p) = f
(
q⃗ →

z, p⃗ → p
)
.

III. The only possible result of the mea-

surement of a physical quantity is

one of the eigenvalues of the corre-

sponding observable.

If the particle is in a state |ψ〉,
measurement of the variable (cor-

responding to) F will yield one of

the eigenvalues f with probability

P( f )= |〈 f |ψ〉|2. The state of the sys-

tem will change from |ψ〉 to | f 〉 as a

result of the measurement.
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IV. The state variables change with

time according to Hamilton’s equa-

tions of motion,

⃗̇q = ∂H
∂p⃗

,

⃗̇p =−∂H
∂q⃗

.

IV. The time evolution of the state

vector |ψ(t)〉 is governed by the

Schrödinger equation:

iℏ d
dtψ(t)= H(t)ψ(t),

where H(t) is the observable associ-

ated with the total energy or Hamil-

tonian of the system.

2.4.1 Physical Interpretation of the Postulates

In quantum mechanics, the state of a physical system is described by a vector in a

Hilbert space. Since the state vectors define a Hilbert space, this implies a superposition

principle: a linear combination of state vectors is a possible state vector. Therefore, if |ψ〉
and |ψ1〉 correspond to two different states of a system, c1 |ψ〉+c2 |ψ1〉 also corresponds to

a state of the system. This also follows from the Schrödinger equation. Since Schrödinger

equation is a linear equation, linear combination of any number of solutions is again a

solution.

In classical mechanics for a given state
(
q⃗, p⃗

)
, one can say that any dynamical variable

f has a value f
(
q⃗, p⃗

)
, in the sense that if the variable is measured, the result f

(
q⃗, p⃗

)
will be obtained. Analogous to that in quantum mechanics for the particle in a state

|ψ〉, every measurable physical quantity is described by an observable. The description

of the physical quantities by observables has important consequences. First of all, the

Hermitian nature of the observable ensures that measurement of the physical quantity

always gives a real value. The quantum theory makes only probabilistic predictions for

the result of a measurement of F. Furthermore, from the third postulate, if a state is an

eigenstate | f 〉 of some observable F, then the corresponding measurement, surely, yields

the value f , the eigenvalue of F corresponding to | f 〉. Thus the only possible values of F
are its eigenvalues and these eigenvalues are all real due to the Hermitian nature of F.

As a consequence, a collapse of the quantum state |ψ〉 to one of the eigenstates | f 〉 of the

observable F takes place during the measurement process [152].

Finally, Schrödinger equation is a fundamental equation in non-relativistic quantum

mechanics since time evolution of the states of physical systems is governed by this

equation. The Schrödinger equation is first order in time t. It thus follows that if the
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initial state of the system, say |ψ(t0)〉, is known, the state |ψ(t)〉 at any subsequent time t
can be easily uniquely determined. So, there is no indeterminacy in the time evolution of

a quantum system. Indeterminacy appears only when a physical quantity is measured,

the state vector then undergoes an unpredictable modification. However, between two

measurements, the state evolves in a perfectly deterministic way in accordance with the

equation.

2.5 Stationary States and Time-Independent
Schrödinger Equation

If the Hamiltonian operator is time-independent, its eigenstates are called stationary

states. In such states, the probability of measurement of any time-independent observable

F is independent of time. Thus all the physical properties of a system in a stationary

state do not vary over time.

Now the Hamiltonian of a single particle of mass m moving in time-independent

potential is given by

(2.14) H =− ℏ2

2m
d2

dz2 +V (z).

Thus we have

(2.15) − ℏ2

2m
d2

dz2ψ(z)+V (z)ψ(z)= Eψ(z),

an eigenvalue equation and is known as time-independent Schrödinger equation. Note

that equation (2.15) can be written in operator notation as

(2.16) Hψ(z)= Eψ(z)

and thus the eigenvalue E of H can be identified with the energy of the system. Obviously

E is real, since H is a Hermitian operator. Here it is important to note that, since H
is time-independent, wave functions ψ(z) are the eigenfunctions of H corresponding to

the eigenvalue E. These eigenfunctions ψ(z) of the Hamiltonian operator H give the

stationary solutions of the time-independent Schrödinger equation (2.15). Note that the

position probability density |ψ(z)|2 of these stationary states are constant in time.
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FIGURE 2.4. Infinite potential box.

�
In this thesis, we exploit these stationary wave solutions ψ(z) of the time-

independent Schrödinger equation in the context of signal and image decom-

position. In Chapter 4, we use the fact that for a finite-dimensional problem

these stationary wave functions will form a complete set of basis functions

of the Hilbert space of L2-integrable functions.

In the next subsection, now let us discuss a simple problem concerning the motion of

a single particle in one dimension and see how the Schrödinger equation describes the

picture.

2.6 Particle in a Box

Consider a particle of energy E and mass m confined into a region 0 to l of the z−axis.

At z = 0 and z = l, there are two absolutely rigid, impenetrable walls of infinite height
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[44, 152]. Therefore the potential V is given by

V

{
= 0 for 0≤ z ≤ l,
=∞ otherwise.

(2.17)

The potential experienced by the particle is shown graphically in Fig. 2.4.

To leave the region [0, l], the particle needs infinite energy. Since this is impossible,

one can have the probabilities of finding the particle at z = 0 and z = l to be zero. As

probability is measured by the modulus square of the wave function, so we choose

(2.18) ψ(0)=ψ(l)= 0

Similarly, since the particle can not cross the infinite barrier and go outside the box, the

wave function ψ= 0 everywhere outside the box.

Since the potential V does not depend on time, we use the time-independent Schrödinger

equation (2.15), given by

− ℏ2

2m
d2

dz2ψ(z)+V (z)ψ(z)= Eψ(z)

or,
d2

dz2ψ(z)+ 2m
ℏ2

(
E−V (z)

)
ψ(z)= 0,(2.19)

to obtain the stationary wave function of the particle. Inside the box V (z)= 0, therefore

Schrödinger equation (2.19) takes the form

(2.20)
d2

dz2ψ(z)+k2ψ(z)= 0,

where k =
p

2mE
ℏ

.

The solution of equation (2.20) is of the form

(2.21) ψ(z)= c1sin(kz)+ c2cos(kz),

where c1 and c2 are arbitrary constants. Now by the boundary condition ψ(0)= 0⇒ c2 = 0.

Hence we get

(2.22) ψ(z)= c1sin(kz).

Again the boundary condition ψ(l) = 0 gives c1sin(kl) = 0 which is satisfied and gives

nontrivial solution if

(2.23) sin(kl)= sin(rπ), r = 1,2,3, · · · .
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FIGURE 2.5. Wave functions and energy levels of a particle in a potential box.
The first three wave functions and energy levels are respectively plotted in
subfigures (a) and (b).

So,

(2.24) kr = rπ
l

,

and therefore,

(2.25) ψr(z)= c1rsin
( rπz

l

)
.

The subscript r denotes the r−dependence of the underlying quantities. The eigenvalues

thus form a discrete set as in the problem of a vibrating string with the two ends fixed.

We get the energy of the particle as

(2.26) Er = ℏ2kr
2

2m
= r2ℏ2π2

2ml2 .

Thus the wave function of a particle confined in an one-dimensional box is given by

ψ(z)=ψr(z)= c1rsin
( rπz

l

)
, r = 1,2,3, · · · for 0≤ z ≤ l,

= 0 otherwise.(2.27)
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This wave function can be normalized as follows∫ ∞

∞
|ψ(z)|2dz= 1

or, |c1r|2
∫ l

0
sin2

( rπz
l

)
dz= 1

or, |c1r|2
l
2
= 1

or, c1r =
√

2
l

.(2.28)

Thus the normalized wave function is given by

(2.29) ψr(z)=
√

2
l

sin
( rπz

l

)
, r = 1,2,3, · · · .

{ψr} forms a complete orthonormal set. There is only one independent eigenfunction ψr

corresponding to each energy level Er. Thus the energy spectrum is non-degenerate. The

energy spectrum Er as well as ψr has been shown in Fig. 2.5.

Now instead of V = 0, consider a nonzero potential inside the infinite potential box

given by

V


= a for 0≤ z ≤ l/2,

= b for l/2≤ z ≤ l,
=∞ otherwise,

(2.30)

where a and b are positive constants with b < a. Fig. 2.6 shows the graphical representa-

tion of this potential. Similar to the previous case, the particle can not leave the region

[0, l] due to the infinite potential barrier. So we choose ψ(0)=ψ(l)= 0 as the boundary

conditions.

Since V ̸= 0 and time-independent, so we get from Schrödinger equation (2.19)

(2.31)
d2

dz2ψ(z)+k2ψ(z)= 0,

where k =
p

2m(E−V )
ℏ

. All nontrivial solutions of (2.31) have locally the form

(2.32) ψr(z)∼ ei
p

2m(Er−V )
ℏ z, r = 1,2,3, · · · for 0≤ z ≤ l.

Therefore each solution ψr is associated with a specific value of Er, with Er > V and

takes discrete values. This means that the frequency of the stationary wave solution
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FIGURE 2.6. Wave functions of a particle in a nonzero potential box. Three wave
functions and respective energy levels are shown. The frequency of the wave
functions are proportional to

p
Er −V , with Er >V .

ψr is proportional to
p

Er −V . Hence, the stationary solutions are locally oscillatory

functions with an oscillation frequency dependent on the local value of V for a given

energy Er. In presence of the nonzero potential V the wave functions ψr are shown in

Fig. 2.6.

�
In this thesis, we will calculate these stationary solutions ψr in the case of a

more intricate potential, where V is no more a simple constant and depends

on position. Indeed, we will consider the value of the signal sample or image

pixels as the potential V . Therefore, the local oscillation frequency of the

stationary wave functions ψr will depend on the local value of the signal

sample or image pixels. These locally oscillatory stationary wave functions

will be exploited for further signal or image decomposition tasks. Chapter 4

will put more insights into this fact.
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FIGURE 2.7. Motion of an electron in a disordered potential according to classical
theory.

2.7 Quantum Localization of Wave Functions

If one considers an electron in a disordered crystal, according to classical theories, the

zigzag motion of electrons is directly correlated to the mean free path, which is the

average length traveled by an electron before it collides with an impurity. The motion of

an electron is shown in Fig. 2.7 according to classical theories. The classical Drude theory

tells us that the mean free paths of electrons are directly proportional to the electronic

conductivity of a metal. It was clear that if the level of impurity increases, the mean

free path becomes smaller and smaller. After the discovery of quantum mechanics, in

the late 1950s, Philip Anderson came up with a new picture of electronic conductivity

using quantum theory. He proved that beyond a critical amount of impurity scattering

the zigzag motion of the electron is not just reduced, it can come to a complete halt. The

electron becomes trapped or localized [19, 20] and the conduction is stopped.

Imagine an electron bounded on an one-dimensional lattice. If the lattice is periodic,

all sites have the same potential energy, as shown in the top diagram in Fig.2.8. The

electron will tunnel through one site to another according to the quantum mechanical

laws. This tunneling process becomes efficient in the presence of an ordered lattice where

the depth of the wells is the same in the lattice. In other words, we get a good coupling

efficiency between neighboring wells, since the energy differences are zeros. As a result,

extended Bloch wave functions [19] are present and motion is ballistic.

On the contrary, for a random lattice, each site has random potential energy and

nearby wells have very different energies, as shown in the bottom diagram in Fig.2.8.
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𝑉

𝑉

Periodic lattice

Random lattice

Nearby wells have different energies

All wells have the same energy

FIGURE 2.8. Periodic and random lattices. Here different colors represent dif-
ferent potential energies.

The electron will still tunnel from one site to another through large energy barriers, but

the cross-coupling efficiency becomes very low due to the high energy differences. Thus,

a critical amount of randomness in the depth of the wells leads to exponentially localized

wave function |ψ| ∼ e(z−z0)/L of the electron [201], where L is the localization length.

According to scaling theory [201], the scaling function β(g) describes how or more

precisely, with what exponent the average conductance g grows with system size l. The

conductance varies as lD−2, for a normal Ohmic conductor with dimension D, correspond-

ingly β(g)∼ D−2 for large g. Thus for the three-dimensional case the beta function is

positive, zero for two dimension and for one dimension beta is negative. In the localized

regime, g decays exponentially with sample size so that β(g) is negative. In three di-

mensions, that leads to a critical point [19, 20, 201] at which β vanishes for some special

value of g. But the one or two-dimensional systems do not undergo a phase transition

because the conductance always decreases with system size [198]. The localization length

decreases when the system becomes more and more disordered. Therefore, localization
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(0,0)

FIGURE 2.9. Wave function with energy E under a smooth potential V . The
blue dashed line represents the energy of the quantum particle.

is always present for one or two-dimensional systems. The level of localization can be

measured by computing the inverse participation ratio (IPR) of the wave functions, which

is directly proportional to the localization length. For a given wave function ψ, the IPR is

mathematically defined as:

(2.33) IPR(ψ)=
(∑

i |ψi|2
)2

∑
i |ψi|4

.

The IPR (or localization length) of a wave function ψ decreases with increasing disorder

of the system.

Let us illustrate this concept through a pictorial diagram. It is clear that in quantum

mechanics, a wave function characterizes the state of a quantum particle where the

position and momentum of the particle can not be determined precisely. Suppose a

particle is moving under an arbitrary but smooth potential V . For an energy E, the

solution of the time-independent Schrödinger equation under the potential V gives the

wave solution as shown in Fig. 2.9. Although at point q3, the potential barrier is higher
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(0,0)

Random fluctuation

FIGURE 2.10. Slaking wave function with energy E under a random potential
V . The blue dashed line represents the energy of the quantum particle.

than the particle’s energy E, the particle can tunnel through the barrier and reach reach

the point q4. Thus we get a non-zero probability at point q5 as well as at point q4. This

phenomenon is impossible for a classical particle.

In the case of a disordered system, i.e., the potential V is not smooth anymore and is

affected by random fluctuations, as shown in Fig. 2.10. Due to the random changes of V ,

the destructive interference between different waves causes an exponential decay of the

wave function, resulting in the localization of wave function. Hence, the wave function

no longer extends over the entire space and becomes trapped around point q5.
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FIGURE 2.11. Interactions between particles in a many-body system.

�
In the context of signal or image processing, the random noise, that contami-

nates signal or image represents the disorderness of the system. In other

words, a noisy signal or image behaves like a random lattice with random

potential energies at each signal value or image pixel. As the noise intensity

grows, the signals or images become more and more disordered, causing

the waves of that system to become completely localized in some regions of

the signals or images. So, for one-dimensional signals and two-dimensional

images with random noise, the localization factor plays a crucial role. In

Chapter 4, we will elaborate on this in the context of signal and image

decomposition.

2.8 Quantum Many-Body Theory

Our discussion so far has been restricted to a system with a single particle in one

dimension. We want to deal with the case of several quantum particles generalizing the

theory. In reality, the motion of a particle is often influenced by other particles nearby.

In general, it is straightforward to understand the underlying physical laws governing

the motion of each particle in the absence of such effects, but the complex nature of

such influence makes the study of collections of interacting particles extremely difficult.

This is a well known as the ’Many-Body Problem’ in physics. Our universe is primarily
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𝑚3
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Average mean-field

FIGURE 2.12. Interaction between a particle and the average mean-field.

governed by four fundamental interactions, these are gravitational, electromagnetic,

weak-nuclear and strong-nuclear interactions. Fig. 2.11 presents a pictorial diagram of

such particle-particle interaction in a classical system.

Consider a quantum system with w particles with mass m1,m2,m3, · · · ,mw. Thus

the characteristics of each particle depends of others. Hence we then have to solve a

Schrödinger equation with a wave function ψ(z1, z2, z3, · · · , zw) depending on the w vari-

ables corresponding to the w particles, where z1, z2, z3, · · · , zw are the spatial coordinates

of the w particles. The potential V =V (z1, z2, z3, · · · , zw) is also a function of w variables.

Therefore, for a system with w particles the Hamiltonian operator becomes [232]:

(2.34) H(z1, z2, z3, · · · , zw)=−
w∑

a=1

ℏ2

2ma

d2

dz2
a
+V (z1, z2, z3, · · · , zw).

Thus, for a given energy E the associated wave function ψ(z1, z2, · · · , zw) satisfies a new

Schrödinger equation:

(2.35) Hψ(z1, z2, · · · , zw)= Eψ(z1, z2, · · · , zw).

Solving this equation (2.35) is not straightforward because of the highly nonlinear nature

of V (z1, z2, z3, · · · , zw). V (z1, z2, z3, · · · , zw) contains the original potentials of particles as

single particle systems and the external potentials due to the interactions, mathemati-

cally given by

(2.36) V (z1, z2, · · · , zw)= ∑
a

V (za)︸ ︷︷ ︸
1-body term

+∑
a,b

I(za, zb)︸ ︷︷ ︸
2-body term

+ ∑
a,b,c

I(za, zb, zc)︸ ︷︷ ︸
3-body term

+·· ·+ I(z1, z2, · · · , zw)︸ ︷︷ ︸
w-body term

,
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where the 1-body term V (za) is the original potential of a-th particle as single particle

system, 2-body term I(za, zb) is the interaction generated by two particles, 3-body term

I(za, zb, zc) is the interaction generated by three particles, and so on.

Considering approximations like the Mean-Field approximation, we can simplify the

problem. It assumes that the particles do not interact with each other except through

an average self-consistent mean-field [242, 257]. For example, the a-th particle does not

interact with other particles of the system one-by-one or one-by-two or so on and only

interacts with an average mean-field generated by the other particles of the system.

Under this approximation, all higher order terms present in equation (2.36) vanish, and

only interaction, say Ia, between the a-th particle with its average mean-field remains

(see Fig. 2.12 for a pictorial representation). Therefore, we get an approximated potential

given by

(2.37) V (z1, z2, · · · , zw)≈∑
a

V (za)+∑
a

Ia.

Hence, the many-body problem reduces into an effective one-body problem and for

each particle their respective Hamiltonian operator is given by

(2.38) Ha = − ℏ2

2ma

d2

dz2
a
+V (za)︸ ︷︷ ︸

H0a

+Ia, for a = 1,2,3, · · · ,w,

where, H0a is the Hamiltonian for the a-th particle as a single-particle system. Under this

reduced Hamiltonian, the Schrödinger equation gives wave solutions for each particle,

providing useful insight into understanding the underlying physics of the many-body

system.

�
We show in Chapter 6 that by exploiting this many-body framework for imag-

ing problems, we can obtain significant improvements in image restoration

performance, especially in image denoising, where this quantum interaction

plays a crucial role in preserving image features.
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Chapter Highlights

ò
In quantum mechanics, (non-relativistic) particles in a potential V
are described by wave functions ψ, whose absolute values |ψ|2 corre-

spond to the probability of presence of the particles. The stationary

wave functions are the solutions of the time-independent Schrödinger

equation and these stationary functions ψ are the eigenfunctions of

the Hamiltonian operator H corresponding to the eigenvalue Er.

For a quantum particle in an infinite potential box, the stationary

solutions are locally oscillatory functions with an oscillation frequency

dependent on the local value of V for a given energy Er.

In a disordered system, the random fluctuations of V cause destructive

interference between different waves and lead to an exponential decay

of the wave function, resulting in the localization of the wave function.

In a quantum many-body system, in general, particle-particle inter-

actions take place and the characteristics of each particle are often

influenced by other particles nearby.

Ô
In this thesis, we exploit these stationary wave solutions ψ(z) of

the time-independent Schrödinger equation to construct a signal

or image-dependent basis set, which will be used in the context

of signal or image decomposition. Indeed, we will consider the

value of the signal sample or image pixels as the potential V .

Therefore, the local oscillation frequency of the basis vectors will

depend on the local value of the signal sample or image pixels.

In this thesis, a noisy signal or image behaves like a disordered

system with random potential energies at each signal value or

image pixel. This disorderness increases with the noise intensity,

causing the basis vectors of that system to become completely

localized in some regions of the signals or images. These local-

ized basis vectors play a crucial role in the signal and image

decomposition tasks.

Finally, we exploit the quantum many-body theory for imaging

problems, where the quantum interaction plays a crucial role in

preserving local image features.
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Overview

This chapter briefly introduces various image
restoration problems with a discussion of the exist-
ing state-of-the-art methods for solving such imag-
ing tasks using model-based, learning-based, and
model-based learning approaches. In addition, the
development of the quantum mechanics based imag-
ing algorithms over the past few decades are sum-
marized here.
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3.1 Introduction

The spatial resolution of an imaging system is the capacity to differentiate two closely

spaced point sources. In other words, it is the ability of the system to separate two

close targets. In almost all practical applications, we do not have direct access to the

desired image through observations but only to a degraded version of that ground truth

due to various unavoidable phenomena in real-life situations causing such distortions.

These distortions that can significantly damage the spatial resolution and image details,

i.e., the overall image quality, arise due to the sensors or to the environment of the

physical system. In most imaging applications, a high-quality image is always desired

as it provides more precise image details that facilitate accurate image analysis. This

image analysis becomes very critical, particularly for medical diagnosis, and also has

a great impact on astrophysics, geosciences, engineering, etc. Due to this drive, image

restoration problems to obtain a high-quality image from a low-quality observation have

been extensively studied over the years yet remain an open research domain even in

present times.

3.2 Examples of Image Restoration Tasks

The process of retrieving a clean image from a distorted observation is known as image

restoration. There is a wide range of practical problems within image restoration. In the

following, we discuss the forward models associated with the most common ones.

3.2.1 Image Denoising

Let us consider a physical system acquiring visual information (e.g., by a digital camera)

of its surroundings in the form of images. Frequently, the images appear to be noisy,

suggesting that they were degraded during the acquisition process, because of various

factors depending on the apparatus. Under certain assumptions, the noisy image is

assumed to be the sum of two terms, the noise, which depends on the imaging system,

and a noiseless version of the observed image, which corresponds to the clear image.

Obtaining an estimate of this true image is then an image restoration problem (more

generally an inverse problem), known in the literature as image denoising. Note that

depending on the noise nature and application specificities, the noise is not necessarily

additive.
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(a) Gaussian denoising of photographic image
[9]

(b) Poissonian denoising of fluorescence micro-
scopic image [1]

FIGURE 3.1. Examples of image denoising.

The random variation of information related to color or brightness value in the

images is known as noise. Image noise is caused by the circuitry and sensor of a scanner

or digital camera, and also to film grain or quantum fluctuations of photons. One can

range image noise from almost invisible specks on a photograph taken in good light,

to optical and radio-astronomical images that are extremely noisy, from which one can

only collect a small amount of information. Generally the Gaussian noise is generated as

an intrinsic noise in the sensor of a scanner or digital camera due to the illumination

level and internal temperature of the electronic circuits connected to the sensor. As a

different example, in the case of counting process such as limited photon acquisition, the

process gets contaminated by Poisson noise, which is a signal-dependent noise. Thus,

in several applications such as astronomy, photography, microscopy, medical imaging,

etc., the denoising task becomes crucial to acquire a high-quality image by removing

unwanted contributions to pixels due to noise. Fig. 3.1 shows denoising applications

for photography and microscopy images in the presence of Gaussian and Poissonian

noise, respectively. In Chapters 4 and 6, we address this image denoising problem by

exploiting the principles of quantum theory using adaptive transform domain shrinkage

and a nonlocal data-driven approach, respectively. Furthermore, a quantum-inspired

deep neural network is proposed in Chapter 7 for the denoising task.

3.2.2 Image Deblurring

Image deblurring is a process of recovering a sharp and noise-free image from a blurry

and noisy observation. For simplicity, let us consider the scenario of acquiring visual

information from surroundings by a digital camera. An additional image degradation

can occur due to depth-of-field effects or defocusing. These degradation processes produce
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(a) Deblurring of fluorescence microscopy cell im-
age [150]

(b) Deblurring of astronomical image from James
Webb Telescope [255]

FIGURE 3.2. Examples of image deblurring.

images that are not only noisy but also blurred. Other phenomena may occur that reduce

image sharpness, such as camera motion or light propagation through the atmosphere.

Image deblurring is widely used in many applications including astronomy, mi-

croscopy, medical imaging, etc. Fig. 3.2 shows its application for microscopy and astron-

omy images. Generally, the forward model associated with image blurring consists in a

convolution between blur kernel that can be caused by motion or the system impulse

response. The blur kernel often corresponds to a filter that causes information loss

when applied to an image, especially from the high-frequency spectrum. In our case,

the image deblurring algorithm aims to recover lost information under noisy system

conditions when the blur kernel itself is known or unknown. Chapters 4 and 7 present

image deblurring methods using model-based and neural network-based approaches,

respectively.

3.2.3 Single Image Super-Resolution

Imaging beyond the system resolution is referred to as super-resolution (SR). Assume

a situation of obtaining information about an object from a distance, typically by using

sensors or cameras. These sensors or cameras primarily capture an optical image, which

is a set of pixels representing the spatial information of the object. The number of pixels

is related to the spatial resolution of the image. Enhancing the resolution of the image

is another example of restoration problem, known as the single image SR problem. In

this case, the system is usually modeled as a degradation process acting on a sharp

high-resolution (HR) image. This degradation is a consequence of the characteristics of

the sensor or camera that was used to capture the image. SR techniques are often used
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FIGURE 3.3. Examples of image super-resolution. From left to right are low-
resolution, restored high-resolution (using nearest-neighbor interpolation),
and ground truth images, respectively [405].

in image enhancement, medical imaging and hyper-spectral imaging. The problem of

SR can be thought of as a combination of the process of image deblurring and image

upsampling. To handle the loss of information, multiple low-resolution (LR) observations

are usually used in order to recover a single frame HR image. However, we focus on the

single image approach in our work. An example of SR is shown in Fig. 3.3. We discuss

this SR problem in Chapters 6 and 7, employing various imaging and quantum tools.

The main advantage of analyzing all the different problems described in the previous

paragraphs as restoration problems lie in the fact that this can be done systematically.

Note that the ultimate goal of solving a restoration problem (inverse problem) is to

retrieve the original underlying data from the degraded observations. This is typically

harder to do than the reverse. As an example, consider the problem of image deblurring:

it requires estimation of not only a deblurred image but also parameters related to the

camera. It can then be helpful to develop ways to use additional information about the

system under study.

When formulating a restoration problem, one usually needs to address four different

points:

(a) the selection of an observation model describing the underlying physical reality,

(b) the establishment of a criterion quantifying how well the observations are

described by the model,
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(c) the design of a way to incorporate any additional information about the para-

meters, if available, and,

(d) the selection of a computational approach to tackle the restoration problem.

In the following, we focus on the mathematical formulation of the image restoration

problem.

3.3 Image Formation Model

Often, such a degradation process as those introduced previously, can be formulated

mathematically to capture the nature of the contamination or degradation as

(3.1) y=N (Ox),

where, y and x denote the degraded observation and unobservable image of interest,

respectively, O denotes the degradation operator, and N accounts for the effect of the

noise (be it additive, speckle, Poissonian, etc.). The goal is to recover the underlying

image x from the observation y. Note that y ∈ Rm and x ∈ Rn are respectively the

standard vectorized versions of images Y and X in lexicographical order. Depending on

the degradation operator O, different restoration problems occur. For example, if O is

the identity operator, the resulting problem is an image denoising problem. If O is a

blurring operator then restoration becomes a deblurring, or a SR task if O includes a

subsampling operator. In practice, estimating x from y by mitigating the effect of the

degradation operator O is a challenging ill-posed inverse problem.

3.4 State-of-the-Art Methods

Over time, original methods from various branches of science have enriched the liter-

ature of digital image processing, and specifically the fundamental question of image

restoration. Such methods are inspired from statistics [157], probability theory [208, 271],

graph theory [262, 297, 310] or differential equations [191, 227]. This section will present

benchmark techniques reported in the literature for various image restoration problems

such as denoising, deblurring and SR. Fig. 3.4 presents a hierarchical representation

of various types of inverse problem techniques. Note that it is possible to classify these

imaging techniques in several ways, here we choose one way to do it depending on the

statistical or learning-based approach.
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Inverse problem techniques

Model-based methods Learning-based methods Model-based Learning methods

Transform domain methods Space domain methods Variational methods

Discrete Fourier transform

Discrete wavelet transform

Discrete cosine transform

Linear filters Nonlinear filters

Mean filters

Wiener filters

Patch-based methods

Median filter Bilateral filter Spatial filters Guided filters

Supervised learning Unsupervised learning

Nonlocal methodsDictionary learning

Model-aided networks Deep-learning-aided inference system

Adaptive filters

Adaptive transform

SpaRSA Douglas-Rachford splitting Forward-backward splitting ADMMTwIST FISTA

Hybrid methodsBayesian methods

FIGURE 3.4. Hierarchical representation of various types of image restoration
techniques.

3.4.1 Model-Based Methods

Traditional signal and image processing is dominated by algorithms based on math-

ematical models which are hand-designed from domain knowledge. Such knowledge

can come from statistical models based on measurements and understanding of the

underlying physics, or from deterministic representations of the particular problem at

hand. These domain-knowledge-based processing algorithms, known as model-based

methods, carry out inference based on knowledge of the underlying model relating the

observations at hand and the desired information. Model-based methods do not rely

on data to learn their mapping, though data is often used to estimate a small number
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of parameters. Fundamental techniques like the Kalman filter and message passing

algorithms belong to the class of model-based methods. Classical statistical models rely

on simplifying assumptions (e.g., linear systems, Gaussian and independent noise, etc.)

that make models tractable and understandable.

3.4.1.1 Filters for Image Denoising

Image denoising is one of the fundamental image restoration challenges that has been

extensively studied over the last forty years and is still an active area of research

[65, 251]. Nowadays, denoising algorithms are present in all imaging domains. More

recently, new denoising challenges have appeared, for instance with the apparition

of cameras in smartphones, high-resolution sensors in satellites, or modern imaging

equipments in medical diagnosis. Image denoising consists in estimating an unknown

noiseless image x from a noisy observation y, that obeys the classic image degradation

model

(3.2) y= x+ e,

since O in eq. (3.1) is the identity operator for denoising and we consider additive noise

e for simplicity.

All denoising methods assume some underlying image regularity. Depending on this

assumption, most of them can be divided into transformation-domain and spatial-domain

methods.

For the denoising problem, number of methods are based on sparse representations

into a given basis, with most of the true image described by the projections on a few

basis vectors. This enables to efficiently store and restore the image. Transform domain

methods work by shrinking or thresholding the coefficients of some transform domain

[147, 217, 320]. The Wiener filter [372] is one of the first such methods operating on the

Fourier domain, further extended to the wavelet domain by Donoho et al. [106]. Such

sparse representations [6, 23, 53, 105, 106, 196, 273, 320] depend on both the transfor-

mation chosen and the nature of the image. Fig. 3.5 shows how one can get a denoised

image by thresholding these sparse coefficients in the wavelet domain. Traditionally, all

these methods exploit few explicit or underlying hypotheses about the image to restore,

for example, piece-wise smoothness, but are not strong enough to capture the complex

textures present in a true image.

Space-domain methods traditionally use a local notion of regularity with edge-

preserving algorithms such as total variation [133, 289, 290, 371], anisotropic diffusion
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(a) Noisy image (b) Wavelet coefficients (c) Thresholded coefficients (d) Denoised image

FIGURE 3.5. Examples of image denoising using wavelet transform. Four-scale
wavelet transform and hard thresholding are used here [268].

[267, 369, 370], spatial filtering [109, 340], bilateral filter [122, 340, 408], or guided

filters [160, 197], etc. In Chapter 4, we exploit this notion of sparsity by an adaptive

transformation designed from the principles of quantum mechanics.

With the growth of computing power, data-driven strategies to increase the sparsity

and overcome the limitations of general transforms have become more prominent in

recent decades. One such approach is to learn overcomplete dictionaries from training

image sets [10, 102, 123, 236]. These data-driven methods are non-local as they denoise

by averaging similar patches in the image. Patch-based denoising has developed into

attempts to model the patch space of an image, or of a set of images. These techniques

model the patch as sparse representations on dictionaries [100, 123, 234], using Gaussian

Scale Mixtures models [273, 278, 418], or with non-parametric approaches by sampling

from a huge database of patches [213, 214, 250, 269].

Another alternative patch-based scheme uses patch neighborhood as a feature vector

and takes advantage of both space- and transform-domain approaches [82, 208]. They

group similar image patches and jointly denoise them through associative filtering in

a transform domain (see Fig. 3.6). Additionally, they proceed by applying two slightly

different denoising stages, with the second stage using the output of the first as its guide.

For example, block-matching and 3D filtering known as BM3D creates 3D data arrays

by grouping similar image fragments before computing a sparse representation applying

3D transformations [82, 83].

Patch-based algorithms exploit the self-similarity model, which takes into account

the fact that natural images often represent repetitive patterns. The idea behind these

patch-based algorithms is to exploit the non-local self-similarity (NLSS) while processing

a group of similar patches. The first, most famous denoising schemes using NLSS is the
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FIGURE 3.6. Illustration of grouping blocks from noisy natural images corrupted
by white Gaussian noise with standard deviation 15 and zero mean. Each
fragment shows a reference block marked with "R" and a few of the blocks
matched to it [82].

Non-Local Means (NLM) algorithm that brought a different perspective to the image

denoising problem, where each estimated image pixel intensity is a weighted average of

pixels centered at patches that are similar to the patch centered at the estimated pixel

[48, 50]. Fig. 3.7 illustrates the principle of NLM filtering algorithm. An alternative patch-

based NLM approach projects image patches into a lower dimensional subspace using

principal component analysis (PCA) before performing the weighted average for denoising

[92, 333]. Later on, various schemes were proposed in the literature to accelerate or to

improve the NLM performance, such as a fast NLM algorithm with a probabilistic early

termination [355], quadtree-based NLM with locally adaptive PCA [419], fast processing

using statistical nearest-neighbor strategy [136], adaptive neighborhoods [187], patch-

based locally optimal Wiener filtering [66] and others [102, 216, 233, 350, 397, 399–

401]. NLSS-based sparse modeling significantly improves the performance of sparse

representation-based image restoration and eventually enhances the denoising process

[102, 154, 235]. These NLSS-based schemes are known as a powerful way of denoising

exploiting similar patches from the whole image. Hence, the patch neighborhood gives

an effective way of preserving the local structures of an image where neighborhood

similarity is the key ingredient.

57



CHAPTER 3. IMAGE RESTORATION PROBLEMS AND RELATED METHODS
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FIGURE 3.7. Principle of Non-Local Means filtering algorithm. Similar pixel
neighborhoods give a large weight, w(z̄, z1) and w(z̄, z2), while much differ-
ent neighborhoods give a small weight w(z̄, z3).

In the last decade, a new way of exploiting the local similarities in an image neighbor-

hood has been introduced through graph theory. The graph image processing methods

[73, 259, 262, 282, 307] use a graph Laplacian constructed from the image to build an

adaptive basis that can be used to decompose the noisy image. This constructed graph

Laplacian emphasizes the similarities between neighboring pixel values that eventu-

ally increase the algorithm’s performance [243, 342–344]. We introduce a notion of a

patch-interaction inspired by the quantum many-body theory in Chapter 6 that can take

advantage of NLSS in a local image neighborhood.

In a Poisson noise model, the conventional algorithms fail to recover the latent im-

age since the counting process introduces intensity-dependent noise. This problem is

solved by simply transforming Poisson data to produce data with approximate Gaussian

noise via, for instance, the variance stabilizing Anscombe transform (VST) [21, 238] or

Fisz transform [134, 138]. ATBM3D [238], NLBayes [209], SAFIR [41, 187] are a few

such examples where classical Gaussian denoising algorithms are consolidated with the

Anscombe transform. In fact, these VST-based refinements exhibit very good performance

for low-intensity noise but are less accurate while dealing with high-intensity noise (i.e.,
low SNR) [296]. The low-dimensional modeling and sparse Poisson intensity reconstruc-

tion algorithm [54, 296], or Bayesian approach [15] present different perspectives to
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counter Poissonian problem without considering any transformation. In Chapter 4, we

present a new denoising algorithm with promising performances in the presence of

Poisson noise distribution without using any of these transformations.

3.4.1.2 Generalized Restoration Methods

Image denoising, deblurring or super-resolution (SR) is a restoration problem of recov-

ering the sharp-clean underlying or high-resolution (HR) image x from a noisy blurred

degraded or low-resolution (LR) one y. We reproduce the forward model eq. (3.1) by

considering additive noise e for simplicity,

(3.3) y=Ox+ e.

Note that degradation O is an identity operator for image denoising, for a deblurring

problem O =G, with G is a convolution matrix (which can be chosen as block circulant,

block Toeplitz, etc.) to account for boundary conditions and represents the point spread

function (PSF), and in case of SR problem O = SG, where S and G are respectively the

decimation and blurring/convolution operators [5, 84, 94, 102, 103, 125, 141, 174, 175,

318, 328].

The estimation of the underlying hidden image from this distorted observation is

often formulated as the optimization of a cost function resulting from the maximum-

a-posteriori (MAP) estimator [272], i.e., the maximization of the posterior probability,

defined as

(3.4) x̂= arg max
x

P(x|y),

where P(x|y) is the posterior probability density function that defines x for a given

measurement y and x̂ represents the estimation of the unobserved image x. Taking

−log(·) element-wise and applying Bayes’ theorem, the maximization problem above

becomes

x̂= arg min
x

− log (P(x|y))

= arg min
x

− log
(

P(y|x)P(x)
P(y)

)
= arg min

x

(− log (P(y|x))− log (P(x))+ log (P(y))
)
.(3.5)

In eq. (3.5), f (x)=−log (P(y|x)) is the negative log-likelihood function whose expression

depends on the observation (degradation) model, and g(x)=−log (P(x)) is the a priori
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log-distribution of x, that only depends on some prior knowledge on the image to estimate

and is also called regularization function. Note that P(y) does not depend on x and is

usually ignored in the estimation of x̂.

Often, since the forward model of a particular problem is well defined, most of the

design effort of the optimization problem is put into the prior formulation (formulation

of log (P(x))). Several prior distributions have been well studied in the literature such

as ℓ1 norm (Laplacian distribution prior) that promotes a sparse solution for optimiza-

tion, ℓ2 norm (Gaussian distribution prior) promoting smooth solutions, and also total

variation norm (Laplacian prior in the derivative or gradient domain) that enforces

piece-wise smooth solutions. The choice of the prior depends on the specific problem and

characteristics of the latent image.

With these notations, the optimization problem to solve can be expressed as

(3.6) x̂= arg min
x

(
f (x)+ g(x)

)
.

Using a suitable choice of the regularization function, based for example on the

a priori statistics of the image to estimate, various proximal operator-based [31] it-

erative optimization schemes have been extensively studied to solve (3.6), such as

the sparse reconstruction by separable approximation (SpaRSA) [375], the two-step

iterative shrinkage thresholding (TwIST) [39], the fast iterative shrinkage threshold-

ing algorithm (FISTA) [32–34, 416], the alternating minimization algorithm [384],

the Douglas-Rachford splitting method [120, 133, 305, 325], the forward-backward

splitting method [277], or the alternating direction method of multipliers (ADMM)

[8, 14, 42, 58, 61, 69, 332, 385, 411, 416]. In particular, ADMM, originally introduced

around 1975 [140], has been largely used in many applications, by redefining the opti-

mization problem (3.6) into a constrained optimization framework using an Augmented

Lagrangian functional to decouple cost functions. ADMM technique will be used in

several of the imaging algorithms we present in Chapters 5-6, as it is one of the most

versatile method that allows decoupling and shows competitive convergence properties.

Therefore the basics of the ADMM optimization algorithm are provided hereafter.

3.4.1.2.1 Alternating Direction Method of Multipliers
ADMM is an iterative convex optimization algorithm, resulting from the fusion of the

dual decomposition method with the method of multipliers. The dual decomposition

method is a parallelization technique, initially proposed by Dantzig and Wolfe [85, 86],

and Benders [35], and consists in splitting a minimization problem into several parallel
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minimizations solved separately. The method of multipliers, introduced by Hestenes [165]

and Powell [274], originally introduced the use of the augmented Lagrangian for solving

constrained optimization problems. ADMM is mainly the blend of the primary ideas

behind dual decomposition and method of multipliers techniques. While the seminal

ideas of ADMM were proposed by Gabay and Eckstein [140] and Golwinski [146], several

developments have been proposed during the last few decades, resulting into a rapidly

growing literature [8, 42, 52, 64, 72, 120, 305, 341, 385, 416]. The ADMM algorithm is

able to solve constrained optimization problems of the form

(3.7)
minimize

x,z
f (x)+ g(z)

subject to Ax+Bz = c,

where f and g are assumed to be closed convex functions of variables x ∈Rn and z ∈Rm,

with A ∈Rp×n, B ∈Rp×m and c ∈Rp. The associated augmented Lagrangian function is

defined as

Lλ(x, z,v)= f (x)+ g(z)+vT(Ax+Bz− c)+ λ

2
∥Ax+Bz− c∥2

2 ,(3.8)

where v ∈ Rp is the Lagrangian multiplier, and λ ∈ R+ is the penalty parameter of

the augmented Lagrangian. An equivalent expression of the augmented Lagrangian

Lλ(x, z,v) can be obtained by scaling the Lagrangian multiplier u = (1/λ)v, as follows:

Lλ(x, z,v)= f (x)+ g(z)+vT(Ax+Bz− c)+ λ

2
∥Ax+Bz− c∥2

2

= f (x)+ g(z)+ λ

2

∥∥∥Ax+Bz− c+ v
λ

∥∥∥2

2
− 1

2λ
∥v∥2

2

= f (x)+ g(z)+ λ

2
∥Ax+Bz− c+u∥2

2 −constantv

def= Lλ(x, z,u).(3.9)

The ADMM algorithm decouples the augmented Lagrangian into three iterative steps

as follows:

xk+1 ∈ arg min
x

Lλ(x, zk,uk),(3.10)

zk+1 ∈ arg min
z

Lλ(xk+1, z,uk),(3.11)

uk+1 = uk + Axk+1 +Bzk+1 − c.(3.12)
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(a) Degraded input (b) Iteration 1 (c) Iteration 3 (d) Iteration 5

(e) Iteration 10 (f) Iteration 20 (g) Iteration 50 (h) Iteration 100

FIGURE 3.8. Iterations of PnP ADMM algorithm for image super-resolution
problem using proposed quantum adaptive denoiser (from Chapter 6) as
the PnP prior.

The convergence of this iterative scheme has been widely discussed in the literature

of convex programming and within various statistical problems [128, 139, 159]. The

ADMM technique has a broad spectrum of applications in the context of signal and image

restoration applications [61, 133, 168, 249, 325, 416]. Fig. 3.8 shows an example of the

ADMM algorithm in the image SR problem.

3.4.1.2.2 ADMM Application to Image Restoration

Let us consider the following general image restoration problem, characterized by the

forward model eq. (3.1), where y is the observed image related to the underlying image x
through the degradation operator O (remind that, for image denoising O is an identity

operator, for image deblurring O =G is generally assumed to be a block circulant with

circulant blocks (BCCB) matrix, and for SR problem O = SG is a product of decimation

and blurring operator). ADMM can be used to estimate the MAP solution of such an

62



3.4. STATE-OF-THE-ART METHODS

image restoration task by reformulating it as (3.7) using the following parameterization:

z = x, thus A =−B = In×n, c = 0n, where In×n is the identity matrix of size n×n and 0n

is a zero vector of size n. The associated augmented Lagrangian is given by

(3.13) Lλ(x, z,u)= f (x)+ g(z)+ λ

2
∥x− z+u∥2

2 ,

where f (x)=−log (P(y|x)) is the data fidelity term depending on O and g(z) the regu-

larization function. To accelerate the convergence, the penalty parameter λ is usually

increased at each iteration, by multiplication by a factor of γ> 1 [62], instead of using a

fixed value. At each iteration, ADMM performs the following steps:

xk+1 = arg min
x

f (x)+ λk

2

∥∥∥x− zk +uk
∥∥∥2

2
,(3.14)

zk+1 = arg min
z

g(z)+ λk

2

∥∥∥xk+1 − z+uk
∥∥∥2

2
,(3.15)

uk+1 = uk + xk+1 − zk+1,(3.16)

λk+1 = γλk.(3.17)

3.4.1.2.3 Plug-and-Play (PnP) Framework
Recently, a breakthrough was made in the literature, enabling the use of state-of-the-art

denoisers instead of the proximal operator g(z) in eq. (3.15) in the ADMM framework,

known as the plug-and-play (PnP) scheme [354]. PnP paves the way of using a wide range

of state-of-the-art denoisers such as patch-based dictionary learning methods [123], block-

matching 3D filtering (BM3D) [82], non-local means (NLM) [47], high-order variational

models [230], etc. Since its initial development, the PnP scheme [354] is largely accepted

for signal and image restoration problems due to its extremely promising performance

[26, 27, 46, 60, 62, 77, 200, 287, 293, 319, 335, 337, 347, 364, 380, 404]. The primary goal

of PnP is to consider a state-of-the-art denoiser as the prior of a constrained optimization

process. Interestingly, no prior knowledge is required about the image to estimate to

derive the regularization function g, since g is intrinsically defined through the external

denoiser used.

The efficiency of ADMM algorithm mainly reposes on its ability of decoupling the

optimization processes over each variable, as shown in the previous section. ADMM

steps performed at each iteration, (3.14), (3.15) and (3.16), can be interpreted as follows.

Eq. (3.14) is originally an inversion step to get the best possible primary image satisfying

the data through the data fidelity function f (x), while the third step (3.16) updates the
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Lagrangian multiplier. The second step (3.15) can be rewritten as

(3.18) zk+1 = arg min
z

g(z)+ λk

2

∥∥∥z− (xk+1 +uk)
∥∥∥2

2
.

The expression on the right hand side of (3.18) fundamentally intends to find the

solution that optimizes the compromise between the difference between z and (xk+1+uk)

and the regularization function g(z). Thus, it can be associated to a denoising problem

designed to denoise (xk+1 +uk). Therefore it is possible to rewrite this step as

(3.19) zk+1 =D
(
xk+1 +uk

)
,

where D(·) is a denoising operator. Hence it is feasible to implement a state-of-the-art

denoiser to handle the denoising operation as proposed in [354]. The most interesting

feature representing the key benefit of this approach is that this PnP model does not

require the prior term g(z) explicitly, rather it is indirectly related to the choice of

the denoiser D(·) (see, e.g., [47, 67, 82, 193]). In the literature, it is well established

that a state-of-the-art denoiser [47, 67, 82, 193] without having an explicit formulation

from an optimization problem shows very good performance compared to a prior based

regularization method [14, 58, 332, 385, 411] for image denoising. In Chapter 5, we

study this prospect for the Poisson image deconvolution problem, exploiting a quantum

adaptive basis as the PnP denoiser.

3.4.1.2.4 Convergence of PnP-ADMM Algorithms
One major challenge of PnP-ADMM algorithms is to prove their convergence, due to the

implicit relation between the regularization function g(z) and the denoising operator

D(·). Note that the convergence of conventional ADMM has been largely discussed in the

literature, primarily in [139] and [120] and more recently in [42] based on the proximal

operator [248] or in [167]. The proof of global convergence of PnP-ADMM algorithm

[319] has been shown in the case of non-expansive denoisers belonging to the family of

symmetric smoothing filters [63, 188, 246, 338]. Yet these conditions are too restrictive

for generalisation to all the denoisers. To overcome this issue, a series of works has

been published during the last few years showing the fixed point convergence of PnP-

ADMM algorithms for bounded denoisers not necessarily symmetric and non-expansive

[60, 62, 77, 293, 337, 380, 404], but we stress that all these algorithms were constructed

for Gaussian noise model. Still, the convergence of a PnP algorithm is not straightforward

as the operation is highly sensitive to the hyperparameter tuning process and can lead to

bad outcomes for slight changes in their values. Fig. 3.9 presents such a diverging PnP

64



3.4. STATE-OF-THE-ART METHODS

(a) Noisy (b) Iteration 1 (c) Iteration 100 (d) Iteration 800

FIGURE 3.9. Example of a diverging PnP algorithmic scheme [314].

scenario, where with each iteration, the algorithm gradually diverge, and after some

iterations, the image gets completely destroyed [314]. We will show that the algorithm

we build in Chapter 5 is more robust to the hyperparameter choice and shows numerical

proof of convergence for general images.

3.4.1.2.5 Regularization by Denoising (RED) Framework
Although the PnP scheme may sound like an appealing solution for the image retrieval

problem, in reality it is a bit complicated. First, this method is not always accompanied

by a clear definition of the objective function, since the regularization being effectively

used is only implicit, implied by the denoising algorithm. In fact, it is not at all clear that

there is an underlying objective function behind the PnP scheme if arbitrary denoising

engines are used [59]. Second, parameter tuning of the ADMM scheme is a delicate

matter, and especially so under a nonprovable convergence regime, as is the case when

using sophisticated denoising algorithms. Finally, being closely coupled with ADMM, the

PnP scheme does not provide an easy and flexible way to replace the optimization nature.

For this reason, the PnP scheme is not a general tool for treating an arbitrary retrieval

problem. Nevertheless, the PnP method has drawn much attention, and rightfully so, as

it offers a clear and more efficient path towards harnessing a given off-the-shelf denoising

architecture for restoration tasks [46, 62, 87, 294, 336, 354, 380].

The Regularization by Denoising (RED) [286] scheme is a variation of the PnP

framework, with a more flexible alternative of the optimization method to use, not

as tightly coupled to a specific strategy, as in the case of the PnP relying on ADMM.

The RED generalizes the PnP scheme, offering a systematic use of such off-the-shelf

denoising engines as regularizers, relying on a general structured smoothness penalty

term harnessed to regularize any desired restoration problem. Unlike PnP, RED proposes
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an explicit construction of the regularization function of the form of an image-adaptive

Laplacian based on an external denoiser. More specifically, the regularization function is

defined as

(3.20) g(z)= 1
2

zT
(
z−D(z)

)
,

in which the denoising engine itself is applied on the candidate image z, and the penalty

induced is proportional to the inner product between this image and its denoising

residual. This defined smoothness regularization is effectively done using an image-

adaptive Laplacian, which in turn draws its definition from the arbitrary D(·) image

denoising engine. Furthermore, the gradient of the regularization term is manageable,

given as the denoising residual [286], i.e., ∇g(z) = z−D(z), and leads to a reasonable

expression for any restoration task while calling the denoising engine iteratively.

Apart from adding more flexibility to the process, RED offers an explicit adaptive

Laplacian-based regularization functional, making the overall Bayesian objective func-

tion clearer and better defined. RED can incorporate any image denoising scheme and

can treat general restoration problems very effectively when an overall algorithm with a

simple framework is developed. The potential of the RED scheme has been demonstrated

in various restoration works using steepest descent method [286], fixed-point strategy

[78, 329], ADMM [280, 286], etc. However, RED denoisers should be symmetric Hessian

matrices, which is a limitation of this approach. In Chapter 6, we will show that the real

medical computed tomography image SR problems can be solved efficiently under this

RED framework exploiting a quantum denoiser as the RED prior.

3.4.1.2.6 Convergence of RED-ADMM Algorithms
An important advantage of RED over the PnP scheme is that it guarantees a more

reliable and stable convergence of the iterative algorithms under some circumstances.

For convex data-fidelity terms and non-expansive denoisers the fixed-point convergence

of the RED scheme is proven in [286, 330]. The convergence of RED algorithms can also

be analyzed using monotone operator theory. In particular, it can be shown that for a

convex function g and a nonexpansive denoiser D(·), RED steepest descent converges

sublinearly to a set of z satisfying the equilibrium condition ∇g(z)= z−D(z) [329], in this

setting ∇g is known as the "score" of this distribution. This negative gradient describes

the steepness of the log-likelihood function and hence the sensitivity to changes in z.

From this, we see that it balances changes in the log-likelihood against the update step

z−D(z) [280]. Very recently the works [169, 226] extend this limit even for nonconvex
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data-fidelity terms and expansive image denoisers, offering a stable convergence for a

monotone RED algorithm.

3.4.2 Learning-Based Methods

Complementary to the aforementioned approaches, learning-based methods for determin-

ing a non-linear mapping that restores the image while adapting parameter choices to an

underlying training image set have been developed. Particularly important in this class

are techniques that employ deep neural networks. The history of using neural networks

for blind deblurring actually dates back to the last century [326]. The incredible success

of deep learning over traditional image processing algorithms, for example, on vision

[161, 210], as well as challenging games such as Go [311] and Starcraft [357], has initi-

ated a general data-driven mindset. It is currently prevalent to replace simple principled

models with purely datadriven pipelines, trained with massive labeled data sets. In

particular, deep neural networks can be trained in a supervised way end-to-end to map

inputs to predictions. The benefits of data-driven methods over model-based approaches

are twofold: first, purely data-driven techniques do not rely on analytical approximations

and thus can operate in scenarios where analytical models are not known. Second, for

complex systems, data-driven algorithms are able to recover features from observed data

which are needed to carry out inference [36].

More recently, deep learning (DL)-based methods, especially the convolutional neural

network (CNN) based architectures have been known for their very competitive denois-

ing performance. Large modeling capacity and robust training procedure make CNN

attractive for image denoising and has been explored with various networks, such as a

fast flexible learning method [71], deep residual learning [162, 405], a fast and flexible

denoising with a tunable noise level [407], denoising autoencoders with a local unsuper-

vised criterion [356], multi layer perceptron (MLP) method applied to image patches

FIGURE 3.10. The architecture of a residual dense network for image super-
resolution [414].
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[51], random shrinkage field-based architecture combining the image model and the

optimization algorithm in a single unit [301], operational neural networks (ONN) based

models [192, 240, 241] with non-linear generalized CNN architecture, and others. These

benchmark DL networks have proven their efficiency in image denoising, exploiting

noisy-clean image pairs in the learning process.

Due to the successes in many computer vision and denoising applications in the

past few years, deep neural networks have been used more frequently for solving image

restoration tasks [28, 40, 96, 163, 223, 231, 252, 283, 291, 339, 379, 402]. Fig. 3.10 shows

an example of a deep network architecture for image super-resolution problem. To over-

come the non-interpretability of end-to-end deep learning-based restoration approaches

[379], many approaches resort to unrolling an optimization algorithm as a static cascade

scheme with a fixed number of steps in which specific neural networks are integrated into

different steps [199, 303, 402, 406]. The deep neural network components usually model

the operators only corresponding to the priors/regularizers (e.g., proximal projectors

[283]). In these static model structures, the deep neural network-based operators in

each step are learned specifically for the intermediate output from the previous step.

Based on this philosophy, DL algorithms [96, 97, 183, 331, 398] achieved state-of-the-art

performances learning the mapping functions from observed degraded or low-resolution

(LR) images to the original or high-resolution (HR) images. Deep image prior [346], deep

CNN denoiser prior [101, 402], deep gradient descent optimization [149], sparse coding

based deep network [368], residual learning [224, 362], dense residual network [414],

self-organized operational neural networks [241], variational expected maximization

network to quantify the uncertainty of learned image prior [254], deep network for

guided super-resolution for single-photon depth imaging [292], accelerated convolutional

neural network by reformulate the mapping layer [98], deep feature alignment using

geometric information and depth information [43], deep convolutional network inspired

by VGG-net [190], densely connected residual network with Laplacian attention [22],

deep residual network with block channel attention mechanism [410], etc., are some

of the well-known DL networks with proven efficiency in image restoration over the

conventional model-based approaches, exploiting a training dataset in the learning

process.

3.4.3 Model-Based Deep Learning or Hybrid Methods

Completely separating existing literature into model-based versus data-driven is a

daunting, subjective and debatable task. In general, all model-based approaches are
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FIGURE 3.11. The architecture of a deep learning-aided inference system for
image restoration using the DCNN network as the RED denoiser in the
iterative algorithm [194].

fairly successful in tackling the image denoising tasks, including proper interpretation of

their roles. However, these schemes require conducting a costlier computation process and

manual tuning of several hyperparameters, which are the primary challenges of these

strategies. On the other side, training a CNN is not straightforward. The performance

largely depends on the number of layers, the kernel size and the learning rate. Deeper

network structures may provide better results but exponentially increase the training

complexity [162]. Thus, network structures are in most cases determined empirically,

which makes them suffer from a lack of interpretation of their true functionality. Instead

of tilting towards any one these approaches a recent breakthrough lies in the middle

ground giving a useful overview of these landscapes. The considered families of methods

incorporate domain knowledge in the form of an established model-based algorithm
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which is suitable for the problem at hand, while combining capabilities to learn from

data via deep learning techniques. Benefiting from CNN’s powerful representation ability,

this new concept, known as unfolding [151], gathering the advantages of both model

and DL-based approaches, is currently gaining more attention due to its explanatory

properties.

Techniques for studying and designing inference rules in a hybrid model-based/data-

driven fashion can be divided into two main strategies: the first is to use model-aided

networks, which utilize deep neural networks for inference; however, rather than using

conventional DL network architectures, here a specific network tailored for the problem

at hand is designed by following the operation of suitable model-based methods. The

second strategy DL-aided inference systems, uses conventional model-based methods for

inference; however, unlike purely model-based schemes, specific parts of the model-based

algorithm are augmented with DL tools, allowing the resulting system to implement the

algorithm while learning to overcome partial or mismatched domain knowledge from

data. Fig. 3.11 shows such a DL-aided inference system for image restoration. More

precisely, the main idea of such frameworks is to construct a DL network starting from a

classical algorithm.

This approach has been recently successfully explored in the literature, leading to

superior restoration performance over the classical peer for denoising, such as BM3D-

NET [383] network is designed on the BM3D framework, LKSVD [300] scheme follows

the principles of dictionary-learning, Deep-NLM [225] model built on a NLM architecture,

the deep graph-convolutional network GCDN [348] generalizes the classic convolution to

arbitrary graphs, to cite few.

There has been exciting recent explorations of neural network architectures by

unrolling iterative algorithms [183, 304, 308, 352]. During the past few years the im-

plementation of the Deep-CNN networks [28, 40, 163, 223, 231] has been introduced

for image denoising [402, 405] and further extended to the PnP or RED schemes [70].

These Deep-CNN networks give several advantages such as reconstruction accuracy

and convergence speed [145]. However, more often they suffer from some drawbacks.

First, such denoisers should be trained using the noise variance in each iteration. Hence,

during the iterative process of the PnP or RED framework, the noise variance is usually

unknown since it varies at each iteration, and leads to a divergence of the algorithm for

a pre-trained Deep-CNN architecture [314]. Second, the training procedure is very costly

since Deep-CNN denoisers require expensive retraining whenever the noise level or noise

type change. Also, each iteration involves a Deep-CNN denoising process, so using a large
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neural network and/or too many iterative operations leads to a time consuming task.

Third, the theoretical aspects of Deep-CNN denoiser-based PnP or RED models are still

not clear. Later on more robust unfolded PnP or RED networks have been introduced in

the literature, for example, deep plug-and-play network combining physical and learned

models [186], an unfolded PnP network with three complementary deep priors [396], deep

RED unfolded network [194], deep equilibrium learning for regularization by denoising

[226, 376], that solve the convergence problem. Other widely known deep unfolded image

restoration networks are deep Wiener deconvolution network [99], unfold optimization

scheme with deep priors [95], deep unfolded network for total-variation regularization

in the gradient domain [221, 222], deep unfolded robust principle component analysis

[313], regularized residual networks with long and short skip-connections [315], unfolded

one-bit quantizers [189], deep network for alternating direction method of multipliers

[387], deep unfolding of the MAP inference via a half-quadratic splitting algorithm [403],

deep network that exploit the inherent non-local self-similarity via variational methods

[212], deep neural networks as beamformers in ultrasound imaging [351], statistical

Bayesian algorithm into a new deep learning architecture [195], hierarchical graph

representation with unsupervised learning [37], and unfolded graph neural networks for

weighted minimum mean squared error [75], graph-based temporal network structures

[156]. Exploiting the advantages of model-and data-driven strategies, these unfolded

deep models demonstrated benchmark performances in the literature. In Chapter 7,

we explore this direction of model-based deep learning or hybrid methods by unfolding

a baseline algorithm based on the principles of quantum many-body physics. We thus

show that we can build a robust DL model inspired by the algorithm of Chapter 6, which

compares favorably with other state-of-the-art DL methods from the literature.

3.4.4 Related Works on Quantum Mechanics-Based Algorithm

In 1982, Feynman proposed a novel computation model, named quantum computers,

which can efficiently solve some problems that are believed to be intractable on classical

computers [131]. He suggested that the superposition principle of quantum mechanics

enables exponentially many computations to be performed in parallel [121, 324]. Thus,

in principle, quantum processors using the full power of quantum mechanics may be

enormously faster than today’s classical computers. After that, many researchers have

specified various aspects of such quantum computers. Later, a significant breakthrough

came with the Shor’s algorithm [309], which factors large numbers with exponential

efficiency compared to any known classical algorithm. Another such example is the

71



CHAPTER 3. IMAGE RESTORATION PROBLEMS AND RELATED METHODS
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FIGURE 3.12. Schematic structure of this thesis by exploiting various image
restoration techniques and quantum mechanical tools.

72



3.4. STATE-OF-THE-ART METHODS

Grover’s algorithm [153], which speeds up the search in an unsorted database. These

ground-breaking results have attracted much attention in the scientific community and

many experimental proposals have been explored to realize such a quantum computer.

The development of quantum computer caused people’s interest to study quantum

imaging which refers to the use of quantum computers to process images. Many re-

searchers have proposed several kinds of quantum imaging algorithms, such as ge-

ometric transformation [177, 179, 207, 361], color transformation [180, 412], image

scrambling [178, 181, 181], quantum image watermark [173, 182, 316, 317, 409], im-

age segmentation [218, 353], feature extraction [413], edge detection [388], quantum

image encryption [171, 363, 417], quantum sound processing [284, 285], quantum image

processing [172, 176, 327, 382], computational imaging [18], quantum convolutional

neural networks [2, 55, 81], etc. Their efficiency are theoretically higher than their

corresponding classical schemes. Despite these gains, all these schemes remain primarily

theoretical achievements and present abstract frameworks. To date, the large-scale

quantum computer is still a distant goal and seems to remain so in the near future.

A new point of view was presented in the early 2000s by Y. Eldar et al. [126], in-

troducing a new concept called quantum mechanics-based algorithm in the imaging

domain. In [126], they propose the concept of a quantum measurement for a signal

processing tasks. In contrast to works in fields like quantum computing and quantum

information theory, quantum mechanics-based algorithms do not entirely depend on

the physics associated with quantum mechanics and give us the freedom to impose

quantum mechanical constraints that we find useful for imaging problems. Indeed, the

implementation of such quantum principles in imaging problems can significantly boost

the performance of classical algorithms. The next big breakthrough came in 2013 by Ç.

Aytekin et al. [24], where they proposed an algorithm for automatic object extraction

using the solutions of Schrödinger equation. After that, A. Youssry et al. published a

series of papers on object detection [389] and vessel segmentation in retinal images

[390] by using the time-dependent Hamiltonian operator as an unitary time evolution

operator, and classical image segmentation algorithm by associating each pixel with

a quantum harmonic oscillator [391]. Other proposed works in this domain are signal

reconstruction algorithms using spectral quantities associated with some self-adjoint

realization of the Schrödinger operator [127, 164], pulse shaped signal processing using

the discrete spectrum of the Schrödinger operator [203, 270], image representation and

denoising by decomposing the images into 1D signals before applying the Schrödinger

operator in 1D [185], the region-of-interest characterization based on the Schrödinger
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equation’s solutions for Magnetic Resonance Imaging (MRI) [57] and Magnetic Resonance

Spectroscopy (MRS) [56], and spectral data denoising using localized wave functions for

MRS images [204]. From the literature survey we can observe that all these quantum

mechanics-based algorithms are primarily designed for image segmentation problem or

the characterization of 1D signals. Not only that, the exploitation of the quantum theory

in these works is quite limited.

The quantum mechanical framework opens up great opportunities for developing

new or modifying existing signal or imaging processing algorithms by drawing a parallel

between quantum tools and signal or imaging processing schemes and exploiting the rich

mathematical structure of quantum mechanics without requiring a physical implementa-

tion based on quantum theory. In this thesis, we will explore this paradigm of quantum

mechanics-based signal or image processing algorithm borrowing principles and axioms

of quantum mechanics. This framework provides a structure to deal with various tradi-

tional imaging problems, leading to new tools for image processing with applications in

areas of computer vision, medical imaging, surveillance, etc. In the following chapters, we

will study these different prospects of quantum mechanics-based algorithms for signal or

image processing. Fig. 3.12 schematizes the structure of this thesis and gives an overview

of how quantum mechanical tools are combined with imaging techniques to solve image

restoration problems.
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∗ This chapter presents material from the journal paper [114].

Overview

Decomposition of digital signals and images into
other basis or dictionaries than time or space do-
mains is a very common approach in signal and
image processing and analysis. Such a decompo-
sition is commonly obtained using fixed transfor-
mations (e.g., Fourier or wavelet) or dictionaries
learned from example databases or from the signal
or image itself. In this chapter, we investigate in
detail a new approach of constructing such a sig-
nal or image-dependent bases inspired by quantum
mechanics tools, i.e., by considering the signal or
image as a potential in the discretized Schrödinger
equation. To illustrate the potential of the proposed
decomposition, denoising results are reported in the
case of Gaussian, Poisson, and speckle noise and
compared to the state-of-the-art algorithms based
on wavelet shrinkage, total variation regularization
or patch-wise sparse coding in learned dictionaries,
non-local means image denoising, and graph signal
processing. Finally, application to clinical CBCT
dental image denoising is presented.
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4.1. INTRODUCTION

4.1 Introduction

4.1.1 Image Representation and Related Works

In number of applications, processing or analyzing signals and images require the use

of other representations than time or space. While the most famous transformation

still remains the Fourier transform, other representations have been proposed to over-

come the non-localization in time or space of the Fourier basis vectors. The most used

time-frequency representations are the short time Fourier and the wavelet transforms

[104, 106]. Most often (e.g., image compression, restoration, reconstruction, denoising

or compressed sensing), such transforms are associated with the concept of sparsity,

i.e., their ability to concentrate most of the signal or image energy in a few coefficients.

To reinforce the sparsity, overcomplete dictionaries have also been explored over the

last decades, such as the wavelet frames or more recently patch-based or convolutional

dictionaries learned from a set of training signals or images [11]. The latter has been

shown to be of particular interest in image denoising [124].

4.1.2 Contributions

In this chapter, we investigate a novel signal and image representation, through a ded-

icated basis extracted from the signal or image itself, using concepts from quantum

mechanics. Compared to fixed basis such as Fourier, discrete cosinus, wavelets, curvelets,

etc, or dictionary learning that generally needs a training database, the proposed ap-

proach has the advantage of computing a transform adapted to the signal or image of

interest.

Several attempts of translating quantum principles in image or signal processing

applications have been proposed in the literature. One may note the seminal work

in [126], or, more recently, the interest of quantum mechanics in image segmentation

[24, 389] or in pulse-shaped signal analysis [203, 204]. More related to our work, we note

that there was a recent attempt to use quantum mechanics in the same context in [57,

185]. Although there are similarities between the two approaches, there are also some

important differences. The authors in [57, 185] start from a continuous mathematical

representation of the signal, and the discretization only occurs at the end of the process.

The processing of a large image in these papers is done by decomposing it into lines

and columns to get 1D signals, while the proposed work is applied block-wisely, which

offers a more efficient solution for image denoising given that the correlation between
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neighbouring pixels is preserved. Additionally, unlike [57, 185], our method fully takes

into account the quantum localization phenomenon, a subtle effect due to quantum

interference which makes the distribution of the eigenfunctions of the Schrödinger

operator strongly dependent on noise, and has important effects on the denoising process.

We also use the physics of the problem to identify the optimal domain of applicability of

such methods.

The proposed framework reposes on the discrete version of the Schrödinger equation

for a quantum particle in a potential. In our case, the potential is represented by the

signal samples or the pixel values. The bases used to decompose the signal or the image

are directly computed from the signal and image itself and correspond to the wave

function representing the stationary solutions of the Schrödinger equation. These wave

functions have interesting properties of temporal or spatial localization and of frequency

dependence on the value of the potential. In particular, they present higher frequencies

for low potential values, thus allowing an original signal or image decomposition.

The proposed method has a certain formal similarity with graph signal processing

methods [73, 243, 259, 262, 307], which use a graph Laplacian constructed from the

signal to build an adaptive basis. However, graph signal processing constructs the graph

Laplacian to emphasize the similarities between neighbouring pixel values, while in

the proposed method the adaptive basis is solely related to the individual pixel values,

resulting into very different adaptive bases with different properties.

Within the proposed framework, the frequency and localization properties of the basis

can be controlled through several parameters, thus ensuring flexibility in applications

such as denoising. A detailed description of the behavior of the proposed transform and

denoising method with respect to the choice of these parameters is provided, allowing

to gain insight about the practical consequences in signal and image processing of

the quantum mechanical principles involved. Furthermore, the proposed transform

embedded in a denoising algorithm shows promising results in different noise scenarios

(additive Gaussian, Poisson or speckle noise). Finally using different signals and images,

comparisons with several state-of-the-art methods are performed.

The remainder of the chapter is organized as follows. Section 4.2 and 4.3 respectively

give the details of the adaptive transform design and its application to denoising. Results

and comparisons are provided in Section 4.4. Application to clinical CBCT dental image

denoising is presented in Section 4.5 and concluding remarks are finally reported in

Section 4.6.

80



4.2. ADAPTIVE BASIS FROM QUANTUM MECHANICS

FIGURE 4.1. Relationship between quantum mechanics and image representa-
tion: example on Lena image.

4.2 Adaptive Basis from Quantum Mechanics

4.2.1 General Framework

The main idea of the proposed method is to describe a signal or an image onto a specific

basis which is constructed through the resolution of a related problem of quantum

mechanics: the probability of presence of a quantum particle in a potential related to the

signal or image. While the motivation of using quantum mechanics in this particular

context is not straightforward, its main purpose is to produce a basis of oscillating

functions with the following properties: 1) the oscillation frequency increases with a

parameter of the basis corresponding to the energy, 2) for a given basis function, the

oscillation frequency is higher for low values of the signal. The adopted strategy will

then be to threshold a noisy signal in energy once expanded in this basis: this will

automatically keep higher frequencies for low pixel values, and lower frequencies for

high pixel values. Intuitively, one could expect that this method is especially efficient for

signal-dependent noise, stronger for high signal values, such as, for instance, Poisson

noise.
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FIGURE 4.2. Relationship between the frequency of the adaptive basis functions
and the height of the potential.

4.2.2 Adaptive Transform for Signals or Images

Our method uses quantum mechanics as a tool for building an adaptive basis suitable

for denoising applications. The basics of quantum mechanics which are useful for our

purpose have already been explained in Chapter 2, we refer the interested reader to more

extensive introductions to this vast field of physics [80, 132, 206]. Our formalism is based

on the resolution of the Schrödinger equation of non-relativistic quantum mechanics.

This equation determines the wave function ψ(z) which belongs to the Hilbert space of

L2-integrable functions, z being e.g. a spatial coordinate. The function |ψ(z)|2 gives the

probability of presence of the particle, which implies that
∫ |ψ(z)|2dz= 1. In Chapter 2,

we discussed the properties of these wave functions.

The basic idea of the proposed method is to consider the signal or image as a potential

V (z) for a quantum system, as illustrated in Fig. 4.1. The 3D surface plot of a 2D image is

shown in Fig. 4.1. This surface will act as the potential of the system, where we consider

pixel intensity as the height of the potential (i.e., along the z-axis). It is clearly visible

that there are many hills and valleys in the potential which are associated with the

high and low pixel values respectively. If a quantum particle with energy E probes this

surface, then the probability of presence of this quantum particle at some position on

the surface will be determined by the wave function ψ(z). Unlike the classical picture

where one can precisely determine the position of a classical particle, the quantum theory

only gives a probability of finding a quantum particle at some point. The stationary

Schrödinger equation corresponds to the probability of presence of a stationary quantum
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particle with energy E in a potential V (z), the associated wave function ψ(z) satisfying

[302]:

(4.1) − ℏ2

2m
∇2ψ=−V (z)ψ+Eψ,

with m the mass of the quantum particle, ℏ the Planck constant that are both parameters

of the problem, and ∇2 the Laplacian operator.

To illustrate the nature of the solution of (4.1), let us consider a simple case corre-

sponding to a constant potential V and to the wave function ψ(z) following a periodic

boundary condition, i.e., ψ(z+L)=ψ(z), where L is the periodicity. Solving equation (4.1)

under the above conditions is trivial, all solutions having the form:

(4.2) ψ(z)= A ei
p

2m(E−V )
ℏ z,

where A is a given amplitude. Each solution ψ is associated with a specific value of E,

with E taking discrete values, all higher than V . If space is discretized in n values, there

will be n solutions and E takes only n different values.

In the case of a more intricate 1D potential, where V is no more a simple constant

and depends on position, (4.1) implies that the relation (4.2) will still hold locally, with

an amplitude and phase depending on position. This means that the stationary solutions

of (4.1) are locally oscillatory functions with an oscillation frequency dependent on

the local value of V for a given energy E, with a frequency proportional to
p

E−V .

This is illustrated in Fig. 4.2, where two different potentials are taken into account in

the Schrödinger equation (4.1): a constant potential and a potential with non-uniform

heights. For the constant potential, the solutions are just plane waves satisfying (4.2). All

solutions are indexed by the values of the associated energy, and higher energy translates

in higher frequency of oscillations. This frequency is the same for all positions for a given

wavefunction. For a non constant potential which depends on position (right panel of

Fig. 4.2), the oscillation frequency still increases with higher values of E, but at the same

time a given stationary solution of (4.1), which corresponds to the physical wavefunction,

contains different local oscillation frequencies according to the local value of V . Thus,

although at each local position the frequency increases with E, it does so in a different

way from place to place according to the local value of V . In other words, for a given

energy E the wave function ψ(z) associated with a quantum particle will use a higher

frequency to probe a low potential region in comparison with a high potential region. In

the regions where E−V is negative, (4.2) leads to exponentially decreasing functions

which quickly become constant (see e.g. the solutions for E0 and E1 in the right side of

Fig. 4.2).
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In 2D, (4.2) is not exactly valid, but the solutions of (4.1) will still have typically

an oscillation frequency proportional to
p

E−V . This is illustrated in Fig. 4.1 (bottom

panels) where the wave function frequency of oscillation is clearly seen to increase in the

regions of low potential.

To summarize, the global properties of the wavefunctions which form the proposed

adaptive basis are the following:

(i) they are oscillating functions indexed by the energy E,

(ii) the local frequency is typically proportional to
p

E−V , thus increasing with

E while differing locally for the same wavefunction depending on the local value of E−V ,

(iii) the precise dependence on the frequency of oscillation with respect to E−V
is tuned by the parameter ℏ2/2m.

In the application addressed herein, the Schrödinger equation (4.1) is just a way

to obtain an adaptive basis possessing these properties, which can further be used

independently of its quantum mechanical nature as a tool for signal or image processing.

The basis of eigenvectors of (4.1) naturally describes with different frequencies the

different parts of the signal or image, in contrast to e.g the Fourier or wavelet bases. As

said above, the precise relation between the local frequency of the eigenvectors and the

value of the signal or image pixel is governed by the parameter ℏ2/2m. In the physical

problem of quantum mechanics, this quantity is linked to Planck’s constant and the

particle mass, but in our framework it is a free parameter. It should be chosen with care,

as extreme values are clearly inadequate. Indeed, as the problem is discretized there

is a maximal frequency in the problem, linked to the inverse of the discretization step.

If ℏ2/2m is very small, the local frequencies
p

2m(E−V ) /ℏ become very high even for

low values of the energy, the maximal energy becomes very low, and the basis does not

explore properly high values of the signal or pixels of the image. On the other side for

very large values of ℏ2/2m, the local frequencies become smaller and smaller at fixed

energy, the maximal energy becomes larger and larger, and eventually when ℏ2/2m tends

to infinity most vectors of the adaptive basis are so high above the signal or image pixel

that they do not discriminate between low and high values, becoming closer and closer

to the standard Fourier basis vectors. Therefore it is crucial to tune the free parameter

ℏ2/2m in the right way.
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4.3 Proposed Method for Denoising Applications

4.3.1 Explicit Construction of the Adaptive Basis

In operator notation, (4.1) corresponds to Hψ= Eψ with H =− ℏ2

2m∇2 +V the Hamilto-

nian operator. The energy E of the particle in (4.1) labels the solutions of the problem.

Solutions of this stationary Schrödinger equation in a bounded domain correspond to a

discrete set of energy levels, from a minimal energy to infinity.

Solutions of (4.1) form a basis of the Hilbert space to which the wavefunctions

belong. This space is infinite-dimensional for continuous values of the position y in (4.1).

However, we are interested in signal or image processing applications, where the space

is discretized in a finite number of points. Specifically, we assume that the potential V is

represented by the value of signal sample or image pixel x. In the case of a discretized

problem, the operators become finite matrices and the resolution of (4.1) is equivalent to

diagonalizing the Hamiltonian matrix.

Specifically, one has, following (4.1), H =− ℏ2

2m
∇2 + x, with:

• the potential V represented by x (the signal or the image),

• if x is a signal of size n, then the size of H is n×n,

• if x is an image of size n× n, it is transformed into a vector (in lexicographical

order) of size n2 and H is a n2 ×n2 matrix,

• in both cases (x is a signal or an image), x is considered in a vector form.

For a 1D signal, we have:

• numerical derivatives of ψ: (∇ψ)i =ψ[i+1]−ψ[i],

• numerical Laplacian of ψ: (∇2ψ)i =ψ[i+1]−2ψ[i]+ψ[i−1].

Thus, (Hψ)i =− ℏ2

2m
(ψ[i+1]−2ψ[i]+ψ[i−1])+ x[i]ψ[i]

=⇒ (Hψ)i =
(
x[i]+2

ℏ2

2m

)
ψ[i]− ℏ2

2m
(ψ[i+1]− ℏ2

2m
ψ[i−1]).

Therefore, (Hψ)i =∑i+1
j=i−1 H[i, j]ψ[ j], for i = 1,2,3, · · · ,n.
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where,

H[i, j]=


x[i]+2

ℏ2

2m
for j = i,

− ℏ2

2m
for j = i±1,

0 otherwise.

(4.3)

where x[i] represents the i-th component of a signal and H[i, j] is the (i, j)-th element of

the Hamiltonian matrix.

The resolution of (4.1) is thus equivalent to finding eigenvectors and eigenvalues of

the discretized Hamiltonian matrix H ∈Rn×n written as:

H =



x[]1]+2
ℏ2

2m
− ℏ2

2m

− ℏ2

2m
. . . . . . . . .

− ℏ2

2m

− ℏ2

2m
x[n]+2

ℏ2

2m


For a 2D image x ∈Rn×n the methodology is similar. In (4.1), the Laplacian operator

should be replaced by its discrete version, following the standard numerical definitions

of the gradient operator:

∇hx[i, j]= x[i+1, j]− x[i, j] if i < n

∇vx[i, j]= x[i, j+1]− x[i, j] if j < n

where ∇h and ∇v are associated to the horizontal and vertical gradients. The boundary

conditions correspond simply to a zero padding of the image.

The Hamiltonian matrix is thus:

H[i, j]=



x[i]+4
ℏ2

2m
for i = j,

− ℏ2

2m
for i = j±1,

− ℏ2

2m
for i = j±n,

0 otherwise,

(4.4)

where x[i] represents the i-th component of a vectorized image x in the lexicographical

order and and H[i, j] represents the (i, j)-th element of the operator H ∈Rn2×n2
.
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TABLE 4.1. The Hamiltonian matrix of size 16×16 corresponding to an image of size 4×4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x[1]+2
ℏ2

2m
− ℏ2

2m
0 0 − ℏ2

2m
0 0 0 0 0 0 0 0 0 0 0

− ℏ2

2m
x[2]+3

ℏ2

2m
− ℏ2

2m
0 0 − ℏ2

2m
0 0 0 0 0 0 0 0 0 0

0 − ℏ2

2m
x[3]+3

ℏ2

2m
− ℏ2

2m
0 0 − ℏ2

2m
0 0 0 0 0 0 0 0 0

0 0 − ℏ2

2m
x[4]+2

ℏ2

2m
0 0 0 − ℏ2

2m
0 0 0 0 0 0 0 0

− ℏ2

2m
0 0 0 x[5]+3

ℏ2

2m
− ℏ2

2m
0 0 − ℏ2

2m
0 0 0 0 0 0 0

0 − ℏ2

2m
0 0 − ℏ2

2m
x[6]+4

ℏ2

2m
− ℏ2

2m
0 0 − ℏ2

2m
0 0 0 0 0 0

0 0 − ℏ2

2m
0 0 − ℏ2

2m
x[7]+4

ℏ2

2m
− ℏ2

2m
0 0 − ℏ2

2m
0 0 0 0 0

0 0 0 − ℏ2

2m
0 0 − ℏ2

2m
x[8]+3

ℏ2

2m
0 0 0 − ℏ2

2m
0 0 0 0

0 0 0 0 − ℏ2

2m
0 0 0 x[9]+4

ℏ2

2m
− ℏ2

2m
0 0 − ℏ2

2m
0 0 0

0 0 0 0 0 − ℏ2

2m
0 0 − ℏ2

2m
x[10]+4

ℏ2

2m
− ℏ2

2m
0 0 − ℏ2

2m
0 0

0 0 0 0 0 0 − ℏ2

2m
0 0 − ℏ2

2m
x[11]+4

ℏ2

2m
− ℏ2

2m
0 0 − ℏ2

2m
0

0 0 0 0 0 0 0 − ℏ2

2m
0 0 − ℏ2

2m
x[12]+3

ℏ2

2m
0 0 0 − ℏ2

2m

0 0 0 0 0 0 0 0 − ℏ2

2m
0 0 0 x[13]+2

ℏ2

2m
− ℏ2

2m
0 0

0 0 0 0 0 0 0 0 0 − ℏ2

2m
0 0 − ℏ2

2m
x[14]+3

ℏ2

2m
− ℏ2

2m
0

0 0 0 0 0 0 0 0 0 0 − ℏ2

2m
0 0 − ℏ2

2m
x[15]+3

ℏ2

2m
− ℏ2

2m

0 0 0 0 0 0 0 0 0 0 0 − ℏ2

2m
0 0 − ℏ2

2m
x[16]+2

ℏ2

2m
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As the boundary conditions correspond to zero padding of the image, a few individual

coefficients of the matrix H follow specific rules. Indeed, H[i, j] = x(i)+2 ℏ2

2m for i = j
and i ∈ {1,n,n2 − n+1,n2}, H[i, j] = x(i)+3 ℏ2

2m for i = j and i ∈ {2,3, ...,n−1,n2 − n+
2,n2 − n+ 3, ...,n2 − 1}, H[i, j] = x(i)+ 3 ℏ2

2m for i = j and i mod n ∈ {0,1}, except for

i ∈ {1,2, ...,n,n2 −n+1,n2−n+2, ...,n2} in order to respect the boundary conditions, and

H[i, i+1]= H[i+1, i]= 0 for any i multiple of n apart from n2.

In the specific case of n = 4, i.e. for an image of size 4×4 the discretized Hamiltonian

is of size 16×16. This Hamiltonian matrix is explicitly shown in Table 4.1.

The set of eigenvectors gives a basis of the Hilbert space, with each eigenvector

associated to an energy E, which is the corresponding eigenvalue of the Hamiltonian

operator. The n2 eigenvectors, denoted by ψi ∈ Rn2×1, each with components ψ j
i with

j = 1, · · · ,n2, are the main tool for the proposed adaptive transform in this work. Indeed,

our method consists in projecting the signal or image on this particular basis and use

the energy associated to each eigenfunction as a parameter on which we perform the

thresholding of these coefficients.

4.3.2 A Technical Problem for Noisy Signals or Images: the
Problem of Quantum Localization

In order to use the adaptive basis for various problems of signal or image processing,

including denoising, the procedure should be adapted for noisy signals and images. A

technical problem then arises, linked to the phenomenon of quantum localization. As

explained in Chapter 2, the quantum localization is a property of wave functions in a

disordered potential which makes the adaptive basis localized in position space, which

in turn makes it less useful for our purpose. In this subsection, we propose a way to

mitigate this technical problem which will be implemented throughout the chapter.

Indeed, it is known in quantum mechanics that a disordered potential localizes the

wavefunctions in one and two dimensions. Due to destructive interference, the different

wave functions are exponentially localized at different positions of the potential, an effect

known as Anderson localization, which earned the Nobel prize in 1977 to its discoverer

[19]. If the signal or image are not smooth, which certainly arises in the case of a noisy

signal or image, we expect the vectors of the basis to be localized, with a localization

length which will be smaller and smaller for increasing noise intensity.

Let us start from a wave function defined as eigenfunction of (4.4), ψi ∈Rn2×1 with

components ψ j
i . The level of localization is measured by computing the inverse participa-
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FIGURE 4.3. Synthetic signal used to illustrate the localization property of the
wave functions.

tion ratio (IPR) of the wave functions, mathematically defined for a given wave function

as:

IPR(ψi)=
(∑n2

j=1 |ψ
j
i |2

)2

∑n2

j=1 |ψ
j
i |4

,(4.5)

where n2 is the dimension of the Hilbert space. For a vector uniformly spread over P
indices and zero elsewhere, this quantity is exactly P. For an exponentially localized

vector such as the wavefunctions in a disordered potential, it is proportional to the

localization length for each vector in the adaptive basis. In this case, these vectors will

still be oscillating functions, but will no longer have different frequencies at different

locations since they are localized in a specific part of the potential.

In Fig. 4.4 the averaged IPR of all functions of the adaptive basis is shown for a

synthetic signal (Fig. 4.3) degraded by an additive Gaussian noise with different signal

to noise ratios (SNR). The localization property is clearly seen: the IPR decreases with

decreasing SNR, indicating that noisy signals tend to localize the basis.

To modify this characteristic of the basis, we use a smoothed adaptation of the noisy

signal or image to construct the Hamiltonian matrix, computed by a simple convolution

with a Gaussian kernel whose standard deviation is denoted by σ. This is not part of

the denoising process, it is just a technical trick to delocalize the adaptive basis while

keeping the main features of the signal/image. In our framework, this standard deviation

σ is an additional free parameter. If σ is chosen too large, then the noisy signal or image

becomes so smooth that many characteristics needed for the adaptive basis will be lost.

On the opposite, if σ is too small the basis vector will remain strongly localized. To

balance both sides one needs to tune the parameter σ to get the best achievable outcome.
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FIGURE 4.4. Quantum localization effect: IPR corresponding to the wave func-
tions calculated from the signal in Fig. 4.3 degraded by an additive Gaussian
noise for several SNR. The size of the signal was 512. The IPR is computed
through (4.5) and averaged over all 512 wave functions of the adaptive
basis.

Fig. 4.5(b) and Fig. 4.6(b-c) show examples of wave functions calculated from a noisy

signal and image. From these examples, one observes again that the wave functions

are completely localized in a specific location and present a fast decrease due to the

destructive interference. On the contrary, in the case where the same wave functions are

calculated from low-pass filtered versions of the noisy signal and image (i.e. a smoothed

version of the potential), they are shown to delocalize and spread over the whole available

space as illustrated in Fig 4.5(d) and Fig. 4.6(e-f).

4.3.3 Application to the Denoising Problem

This section explains in detail the application of the proposed adaptive basis from

quantum mechanics to the denoising problem. The significant difficulties for signal or

image denoising are to sharpen the edges without blurring and preserve the image

textures without generating artifacts. The most common denoising strategies are based

on three primary steps. To distinguish the useful information and the noise, the noisy

signal or image is projected onto a dictionary. This is then accompanied by a hard or

soft thresholding process in the transformed space. Finally, the revised coefficients are

back projected to the time or space domain, so that the denoised signal or image could
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(a) Noisy signal
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(b) Localized wave function

(c) Blurred signal
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(d) Delocalized wave function

FIGURE 4.5. Role of the hyperparameter σ and localization: (a) Signal in Fig. 4.3
contaminated by additive Gaussian noise corresponding to a SNR of 15 dB,
(b) localized wave function number 68 calculated from the noisy signal with
energy level illustrated by the dashed line in (a), (c) blurred version of
the noisy signal in (a) obtained by Gaussian low-pass filter corresponding
to σ2 = 10, (d) delocalized wave function number 68 calculated from the
low-pass filtered signal with the same energy level illustrated by the dashed
line in (c).

be retrieved. We will apply the same procedure using the adaptive basis defined by the

eigenvectors ψi obtained by solving the Schrödinger equation (4.1).

The basic assumptions is that the noise is more present in high frequency components

of the signal or image, corresponding to eigenvectors associated with large energy

eigenvalues. The thresholding will therefore be performed in energy, leaving out the

components of the signal or image on high energy eigenvectors. The fact that our basis

has frequencies which vary depending on the position should be an asset, especially for

signal or image dependent noise (e.g. Poisson noise). In the following, we will show that

it is indeed the case in some examples of signals and images with various types of noise.
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(a) Noisy image (b) Localized wave function (c) Contours of localized function
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(d) Blurred image (e) Delocalized wave function (f) Contours of delocalized function

FIGURE 4.6. Role of the hyperparameter σ and localization: (a) Lena image
used in Fig. 4.1, contaminated by additive Gaussian noise corresponding to
a SNR of 15 dB, (b,c) localized wave function number 195 calculated from
the noisy Lena image (a), (d) blurred version of the noisy Lena image in (a)
obtained by Gaussian low-pass filter corresponding to σ2 = 6, (e,f) the same
wave function but delocalized due to the low pass Gaussian filter applied to
the noisy image.

The denoising process is expressed as follows; for a noisy signal or image denoted by

y, the denoised signal or image x̂ is rebuilt through:

x̂=
n2∑
i=1

αiψiτi,(4.6)

with

τi =


1 for i ≤ s,

1− i− s
ρ

for i > s and for 1− i− s
ρ

> 0,

0 otherwise.

(4.7)

where αi = 〈y,ψi〉 are the coefficients representing the signal or image y in the proposed

adaptive basis. s and ρ are two hyperparameters, used to define the thresholding function

for the proposed denoising algorithm.
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FIGURE 4.7. Flowchart of the proposed denoising algorithm.

In order to use this procedure, we will need to specify which values of the parameter

ℏ2/2m should be selected. As we will see, there is a relatively large range of values where

the algorithm is efficient, meaning that it can be set to a specific value independent of

the signal or image on which the algorithm is used.
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4.3.4 Algorithm Description

Denoising a signal or an image using the proposed method requires the computation of

eigenvalues and eigenvectors of the discretized Hamiltonian matrix (4.4) for appropriate

values of the parameters ℏ2/2m and σ, project the signal or image on this basis, threshold

the coefficients by an appropriate threshold in energy, and reconstruct from this a

denoised signal or image. These steps are summarized in Algorithm 4.1 and Fig. 4.7.

For very large signals and images, where the size of the matrix (4.4) becomes too

large for practical simulations, we implement a modified version of the algorithm where

the matrix (4.4) is diagonalized for subparts of the signal or image independently, and

then a complete signal or image is reconstructed:

• The noisy signal or image is divided into sub-blocks of equal size, using in particular

square sub-blocks in the case of images.

• Use algorithm 4.1 for each sub-block.

• Reconstruct the denoised signal or image by integrating each denoised sub-block.

Algorithm 4.1: Denoising algorithm using the proposed adaptive transform.

Input: y, ℏ2/2m, s, ρ, σ

1 Compute a smooth version of y by Gaussian filtering
2 Construct the Hamiltonian matrix H based on the smoothed version of y using

equation (4.4)
3 Calculate the eigenvectors ψi of H
4 Compute the coefficients αi by projecting y onto the basis formed by ψi
5 Threshold the coefficients αi and recover the denoised signal or image following

equations (4.7) and (4.6)

Output: Denoised x̂

4.4 Results

This section regroups results showing the interest of the proposed approach in signal

and image denoising and analyze the optimal choice of parameters. Subsection 4.4.1

elaborates the dependence of the proposed denoising method on the choice of the hyper-

parameters ℏ2/2m, σ, s and ρ. Subsection 4.4.2 compares the denoising results obtained

with the proposed approach to several state of the art methods.
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(a) Hyperparameter ℏ2/2m = 0.08
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(b) Hyperparameter ℏ2/2m = 1
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(c) Hyperparameter ℏ2/2m = 15

FIGURE 4.8. Role of the hyperparameter ℏ2/2m: adaptive basis functions (wave
functions) number 25, 70 and 100 calculated from the signal Fig. 4.3 are
shown from top to bottom with different values of the hyperparameter
ℏ2/2m.

4.4.1 Influence of Hyperparameters ℏ2/2m, σ, s and ρ on the
Efficiency of the Algorithm

In this subsection, we provide a detailed discussion about the influence of the hyperpa-

rameters on the proposed adapative bases.

4.4.1.1 Properties of Hyperparameter ℏ2/2m

As mentioned above, the parameter ℏ2/2m specifies how the local frequencies of the

vectors of the basis vary with the amplitude of the signal or image pixel value. To

illustrate this relationship, the effect of ℏ2/2m on local frequencies is shown in Fig. 4.8 for
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three distinct values of this parameter. For each case, three wave functions (number 25,

70 and 100) computed from the synthetic signal in Fig. 4.3 are displayed. For low values

of ℏ2/2m (i.e., 0.08 for the results in Fig. 4.8(a)), one may remark that the wave functions

are oscillating at very high frequencies, even for higher values of the potential (i.e., of

the signal). The presence of a maximal oscillation period due to the discretization of the

signal implies that in this limit the high values of the signal are not taken properly into

account. For very high values of ℏ2/2m (15 for the results in Fig. 4.8(c)), most of the wave

functions are at an energy well above the potential values, and they discriminate less

and less between the regions with different potential height. In this limit, wave functions

behave very similarly to cosine functions with increasing frequencies, thus reducing the

interest of the proposed bases that becomes very similar to the Fourier transform. At

intermediate values of ℏ2/2m (1 for the results in Fig. 4.8(b)), wave functions explore the

different regions but with clearly different oscillation frequencies, i.e. wave vectors have

significantly larger frequencies or short wavelengths for the low potential valued regions

as opposed to high potential regions.

4.4.1.2 Properties of the Gaussian Smoothing Hyperparameter σ

The second hyperparameter studied in this section that has a strong impact on the

proposed denoising algorithm is the paramater σ which makes the adaptive basis

delocalized on the system (signal or image). As explained above in Subsection 4.3.2,

this parameter corresponds to the cut-off frequency of the Gaussian low pass filter used

to smooth the noisy signal or images before computing the wave functions through (4.1).
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FIGURE 4.9. Role of the hyperparameter σ: (a) Cropped version of clean Lena, (b)
cropped version of noisy Lena contaminated by Poisson noise corresponding
to a SNR of 15 dB, (c) denoised result with hyperparameter σ2 = 0, giving a
PSNR = 25.37 dB, of the image (b), (d) denoised result with hyperparameter
σ2 = 4, giving a PSNR = 28.81 dB. The hyperparameters are ℏ2/2m = 0.6,
ρ = 1, and s = 600 for each set of experiment.
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This cutoff frequency is fixed through the choice of the standard deviation σ of the

Gaussian filter. Again, we highlight that this parameter is not related to the denoising

process itself, but to the definition of the adaptive basis to be used for denoising.

The localization of the wave functions in the presence of noise has an important

impact on the proposed signal or image representation and furthermore on the efficiency

of the denoising process. To illustrate this claim, Fig 4.9 shows a denoising result with

and without the use of the low pass Gaussian filter prior to the computation of the

wave functions. In this example, the cropped version of Lena in Fig. 4.9(a) was degraded

by a Poisson noise resulting into a SNR of 15 dB. The denoised images in Fig. 4.9(c,d)

were obtained using the algorithm detailed in Algo. 4.1. However, while the result in

Fig. 4.9(c) exploits the image decomposition through localized wave functions computed

directly from the noisy image, the result in Fig. 4.9(d) was obtained by filtering the noisy

image by a low pass Gaussian filter before using (4.1), in order to delocalize the wave

functions. The interest of such delocalization can be visually appreciated in this example

and allows a peak SNR (PSNR) gain of more than 3 dB. In the following, we will always

use a pre-smoothed signal or image in (4.1), and the parameter σ of the smoothing is

thus an important parameter of the algorithm.
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(a) PSNR as a function of the thresholding hyper-
parameter s, for σ2 = 20, ρ = 1 and ℏ2/2m = 0.5.
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(b) SNR as a function of the thresholding hyperpa-
rameter s, for ρ = 1, ℏ2/2m = 0.4 and four different
values of σ2 (0, 4, 8 and 40).

FIGURE 4.10. Role of the hyperparameters s and σ. Simulations with the 1D
signal Fig. 4.3 corrupted by additive Gaussian noise corresponding to a SNR
of 15 dB.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.11. Influence of the hyperparameters ℏ2/2m and σ on the proposed
decomposition performed on the 1D system Fig. 4.3 in presence of (a,b)
Poisson noise, (c,d) Gaussian noise and (e,f) speckle noise corresponding to
a SNR of 15 dB respectively. The hyperparameters are ρ = 1 and s = 110 for
each set of experiment.
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FIGURE 4.12. (a) Sample A, (b,c) influence of the hyperparameters ℏ2/2m and σ
on the proposed method performed on the sample A corrupted with Poisson
noise corresponding to a SNR of 15 dB, (d) sample B, (e,f) influence of the
hyperparameters ℏ2/2m and σ on proposed method performed on the sample
B corrupted with Poisson noise corresponding to a SNR of 15 dB, (g) sample
C, (h,i) influence of the hyperparameters ℏ2/2m and σ on proposed method
performed on the sample C corrupted with Poisson noise corresponding to a
SNR of 15 dB. The hyperparameters are ρ = 1 and s = 110 for each set of
experiment.
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4.4.1.3 Properties of the Thresholding Hyperparameters s and ρ

At last, in order to denoise the signal or image one has to threshold the coefficients of

the signal or image on the adaptive basis; this process uses two thresholding hyperpa-

rameters s and ρ defined in (4.7), which define respectively the threshold value and the

abruptness of the cutoff. In particular, the parameter s corresponds to the threshold in

energy of the wave functions taken into account in the expansion (4.6) to reconstruct the

signal or image.

Fig. 4.10(a) illustrates the PSNR as a function of the thresholding hyperparameter

s while reconstructing the denoised result corresponding to the signal in Fig. 4.3 con-

taminated by additive Gaussian noise of 15 dB. It is clear from that figure that initially

PSNR decreases due to the low pass filtering, whereas the thresholding operation on the

adaptive basis shows improvement in PSNR value. Fig. 4.10(b) illustrates the variation

of the SNR for changing values of the hyperparameter s. For σ2 = 0, the reconstructed

signal has a SNR worse or similar to the original noisy one, indicating once more the

importance of the smoothing process before computing the adaptive basis through (4.1).

For nonzero values of σ2, there is a relatively small range of optimal s values, where

the SNR is much better than in the original noisy signal. Of course this threshold value

should eventually depend on the level of noise. The adaptive transform makes the filter-

ing of high frequencies stronger at high values of the potential, but the overall level of

filtering should still depend on the noise properties.

4.4.1.4 Effects of the Hyperparameters ℏ2/2m and σ on the Denoising
Performance

Numerical experiments on the synthetic signal of Fig. 4.3 and on the Lena image in

Fig. 4.1 were carried out to analyze the impact of ℏ2/2m and σ on the denoising quality

and subsequently to adjust these parameters to their best values for assessment of

the efficiency of the algorithm. Three different types of noise were considered: Poisson,

additive Gaussian and multiplicative speckle noise. In all cases, the level of noise was

adjusted to correspond to a SNR of 15 dB.

Fig. 4.11 show the quality of the denoising results for the synthetic signal Fig. 4.3, in

terms of SNR, versus the value of the hyperparameters ℏ2/2m and σ2 for different types

of noise: Poisson noise, Gaussian noise and speckle noise. Several observations can be

made from these results. As expected, an optimal value arises in each case. In particular,

the hyperparameter σ should clearly be chosen to be nonzero, indicating the importance
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.13. Influence of the hyperparameters ℏ2/2m and σ on the proposed
decomposition carried out on the 2D Lena image in Fig. 4.1 in presence of
(a,b) Poisson noise, (c,d) Gaussian noise and (e,f) speckle noise corresponding
to a SNR of 15 dB respectively. The hyperparameters are ρ = 1 and s = 600
for each set of experiment.
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of taking into account the localization effects. However, even if an optimal value exists for

the different hyperparameters, a small variation in the choice of these hyperparameters

around the optimal values only slightly influences the quality of the denoising. Moreover,

the optimal values are only slightly dependent on the nature of the noise. This means

that for this type of signal the hyperparameters could be fixed beforehand at a fixed

value which can be chosen independently of the type of noise present.

Next, the dependence of ℏ2/2m and σ hyperparameters on the shape of the signals is

analyzed. For this purpose, two additional synthetic signals were generated as shown

in Fig. 4.12(d)(g) together with Fig. 4.12(a), which corresponds to the same synthetic

signal used previously, further normalized to 1 and corrupted by Poisson noise. From

the results in Fig. 4.12(b-c)(e-f)(h-i), it can be clearly observed that the quality of the

denoising does depend on the shape of the signals, which can be expected given the

nature of the adaptive basis used by the proposed approach. However, the denoising

process is efficient for a fairly large interval around the optimal values. As there is a

big overlap in the acceptable range of values of the hyperparameters for various signal

shape, again this means that the hyperparameters could be fixed beforehand at a fixed

value which can be chosen independently of the signal.

Finally, Fig. 4.13 regroups the results for the cropped Lena image for the three types

of noise. The same conclusions can be drawn as from the results on 1D signals in Fig. 4.11:

as expected and similar to any other denoising method, the choice of the hyperparameters

does have an impact on the results, and the optimal range of parameters depend on the

noise. However, even though the acceptable range of parameters seems smaller than

for the 1D signal, there is still a relatively large parameter region where the denoising

is very effective. This again makes realistic the possibility to set these parameters

beforehand in the algorithm independently from the signal or image. Additionnally, there

is a large overlap between the optimal parameter ranges for Poisson and speckle noise,

with a marked difference for Gaussian noise. This seems to indicate that the choice of

the parameters may differ according to the broad class to which the noise of interest

belongs, an information that is usually known beforehand in many cases.

4.4.2 Efficiency of the Denoising Process

This section presents denoising results on a synthetic signal, a synthetic image and six

standard testing images of size 512×512 and 320×320 pixels, shown in Fig. 4.14.

Denoising is an extensively explored research field that prevents an exhaustive

comparison of the proposed approach to all the existing methods. Moreover, we remind
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(b) Synthetic image

(c) Boat (512×512) (d) Elaine (512×512) (e) Lena (512×512)

(f) Lighthouse (512×512) (g) Fruits (512×512) (h) Moon (320×320)

FIGURE 4.14. Signal and images used to compare the proposed denoising
method to existing algorithms. The size in number of pixels is indicated for
each considered image.

that the most important contribution herein is to investigate a novel way of decomposing

signals or images, which is not meant to outperform all the denoising algorithms in

any scenario. Five algorithms from the literature were used for comparison purpose: i)

wavelet denoising based on hard and soft thresholding of detail coefficients [104, 106],

ii) the variance stabilization transform (VST) relevant for data dependent noise models

[237], iii) an optimization-based approach using the total variation (TV) semi-norm

to regularize the solution [133, 289], iv) a graph signal processing (GSP) method by
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(a) Clean signal (b) Noisy signal (c) PSNR=23.59 dB

(d) PSNR=24.64 dB (e) PSNR=24.07 dB (f) PSNR=23.45 dB (g) PSNR=27.63 dB

FIGURE 4.15. Result of the denoising algorithm compared with other methods:
(a) Clean synthetic signal, (b) Signal corrupted with Poisson noise corre-
sponding to a SNR of 15 dB. Denoising results obtained using, (c) Fourier
transformation, (d) wavelet hard thresholding, (e) wavelet soft thresholding,
(f) total variation regularization and (g) proposed method. The proposed
adaptive transform was computed with the hyperparameters ℏ2/2m = 1.2,
σ2 = 20, ρ = 1 and s = 180.

constructing an optimal graph and corresponding graph Laplacian regularizer [262],

v) a non-local means (NLM) image denoising method that uses principal component

analysis approach [333], and vi) a dictionary learning (DL) method exploiting sparse and

redundant representations over learned patch-based dictionaries [123]. Note that for all

the methods and for all the simulation scenarios, their hyperparameters were manually

tuned to obtain optimal denoising results in the sense of the quantitative measurements

employed. We used the Matlab implementations available in the Numerical tours website

[268].

Three quantitative measurements were used to evaluate the denoised images: the

signal to noise ratio (SNR), the peak signal to noise ratios (PSNR) and the structure

similarity (SSIM) [365]. All the quantitative results are regrouped in Table 4.2 where the

best and the second best values have been highlighted by red and blue colors respectively

for each dataset. Note that VST is only used for data-dependent noise, whereas GSP

and NLM is used only for Gaussian noise. Moreover, VST, GSP, NLM, and DL were only

tested for images, as initially suggested by the seminal papers. Illustrative results for
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TABLE 4.2. Quantitative denoising results.

Sample Method Gaussian Noise (15dB) Poisson Noise (15 dB) Speckle Noise (15dB)
SNR (dB) PSNR (dB) SSIM SNR (dB) PSNR (dB) SSIM SNR (dB) PSNR (dB) SSIM

Synthetic Signal

Wavelet hard 18.84 25.21 - 17.21 24.64 - 17.36 24.13 -
Wavelet soft 18.53 24.21 - 17.79 24.07 - 17.02 22.70 -

TV 16.20 23.01 - 15.94 23.45 - 15.92 22.92 -
Proposed 22.21 27.50 - 22.51 27.63 - 20.75 26.86 -

Synthetic Image

Wavelet hard 15.01 24.46 0.61 15.01 25.68 0.69 15.01 25.34 0.76
Wavelet soft 15.71 25.05 0.64 15.61 26.20 0.70 15.49 25.80 0.77

VST - - - 15.09 25.83 0.69 15.06 25.58 0.76
TV 15.74 25.07 0.64 15.62 26.23 0.71 15.53 25.78 0.77

GSP 20.28 28.78 0.79 - - - - - -
NLM 18.70 26.88 0.71 - - - - - -
DL 17.35 26.15 0.71 17.14 27.22 0.75 17.21 27.48 0.80

Proposed 23.42 31.78 0.89 23.92 32.78 0.92 25.32 33.50 0.95

Boat

Wavelet hard 20.28 26.87 0.62 19.92 27.26 0.61 19.71 25.85 0.59
Wavelet soft 21.50 27.83 0.59 21.35 27.82 0.59 21.08 26.16 0.58

VST - - - 21.77 28.62 0.62 22.80 28.03 0.68
TV 22.46 28.77 0.71 22.25 29.00 0.64 23.11 28.19 0.71

GSP 23.88 29.36 0.78 - - - - - -
NLM 23.56 29.27 0.77 - - - - - -
DL 24.02 29.52 0.80 23.44 29.77 0.77 22.64 27.71 0.73

Proposed 23.15 28.88 0.77 23.51 29.29 0.77 23.65 28.73 0.78

Elaine

Wavelet hard 20.52 27.02 0.52 20.08 28.17 0.49 19.75 25.99 0.48
Wavelet soft 21.99 27.69 0.53 21.67 28.59 0.51 21.31 26.61 0.50

VST - - - 21.71 28.64 0.53 22.51 27.81 0.56
TV 23.67 29.63 0.62 22.03 28.84 0.55 23.06 27.61 0.59

GSP 25.89 30.73 0.72 - - - - - -
NLM 24.67 30.70 0.67 - - - - - -
DL 24.97 29.92 0.68 23.96 29.84 0.62 22.99 27.58 0.58

Proposed 24.70 29.87 0.68 23.89 29.03 0.65 23.52 28.32 0.64

Lena

Wavelet hard 20.84 28.17 0.72 20.01 28.89 0.68 19.22 27.49 0.66
Wavelet soft 21.23 28.12 0.71 20.75 28.54 0.67 20.29 27.31 0.66

VST - - - 20.82 29.50 0.73 21.24 28.55 0.69
TV 21.95 29.32 0.70 21.34 29.58 0.68 21.83 28.71 0.72

GSP 22.43 29.32 0.78 - - - - - -
NLM 22.92 30.58 0.77 - - - - - -
DL 23.14 30.02 0.77 21.89 29.61 0.71 20.35 27.24 0.71

Proposed 23.01 29.89 0.78 22.86 29.95 0.77 23.21 30.10 0.78

Lighthouse

Wavelet hard 18.89 26.39 0.63 18.15 26.47 0.58 17.70 25.14 0.57
Wavelet soft 19.76 26.82 0.65 18.62 26.58 0.56 18.85 25.36 0.59

VST - - - 18.40 26.76 0.61 19.99 26.46 0.64
TV 20.90 27.85 0.73 19.01 27.31 0.61 19.99 26.03 0.68

GSP 21.30 29.01 0.77 - - - - - -
NLM 20.98 28.54 0.75 - - - - - -
DL 20.09 26.84 0.67 19.78 27.29 0.65 19.19 25.40 0.63

Proposed 20.82 28.40 0.73 20.59 27.56 0.70 20.45 26.77 0.72

Fruits

Wavelet hard 18.60 25.07 0.65 18.59 25.53 0.65 18.38 24.86 0.64
Wavelet soft 18.84 25.08 0.71 18.81 25.29 0.72 18.51 24.50 0.71

VST - - - 19.37 25.96 0.76 19.01 25.61 0.76
TV 20.69 26.86 0.79 20.60 26.71 0.75 20.18 26.34 0.74

GSP 21.44 27.43 0.81 - - - - - -
NLM 21.48 28.02 0.77 - - - - - -
DL 21.30 27.37 0.79 20.87 27.16 0.71 20.39 27.08 0.72

Proposed 21.39 28.07 0.77 21.93 28.31 0.79 21.83 28.29 0.82

Moon

Wavelet hard 22.91 30.02 0.70 21.45 29.90 0.72 21.19 29.07 0.71
Wavelet soft 23.09 30.98 0.74 22.14 30.51 0.80 21.90 29.79 0.79

VST - - - 22.58 31.17 0.85 22.11 30.01 0.84
TV 23.35 32.19 0.80 23.51 32.21 0.86 22.91 30.84 0.86

GSP 23.33 31.22 0.85 - - - - - -
NLM 25.79 33.94 0.86 - - - - - -
DL 23.82 32.71 0.81 22.95 31.65 0.85 22.32 30.07 0.84

Proposed 24.81 33.11 0.83 24.65 33.34 0.86 23.48 31.55 0.89

∗The symbol - denotes that the methods are not suitable for a particular experiment, as suggested by the seminal papers.
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(a) Clean (b) Noisy (c) PSNR=25.07 dB (d) PSNR=25.08 dB (e) PSNR=26.86 dB

(f) PSNR=27.43 dB (g) PSNR=28.02 dB (h) PSNR=27.37 dB (i) PSNR=28.07 dB

FIGURE 4.16. Result of the denoising algorithm compared with other methods:
(a) Clean Fruits image, (b) Image corrupted with Gaussian noise correspond-
ing to a SNR of 15 dB. Denoising results obtained using, (c) wavelet hard
thresholding, (d) wavelet soft thresholding, (e) total variation regularization,
(f) graph signal processing, (g) non-local means, (h) dictionary learning and
(i) proposed method. The proposed adaptive transform was computed with
the hyperparameters ℏ2/2m = 0.23, σ2 = 7.5, ρ = 2 and s = 560.

synthetic signal (Fig. 4.14 (a)) contaminated with Poisson noise, Fruits image (Fig. 4.14

(e)) corrupted by Gaussian noise, Moon image (Fig. 4.14 (f)) with Poisson noise and Lena
image (Fig. 4.14 (d)) with speckle noise are shown respectively in Fig. 4.15, 4.16, 4.17

and 4.18. All these results allow us to draw some conclusions. First, one may remark

that in almost all the cases, regardless of the noise nature and the image, the proposed

method is one of the two best ones. This proves its adaptability to different scenarios

and general applicability which can be considered a strong point in number of practical

applications. Second, we may remark that for the synthetic signal and image, our method

outperforms all the others. The main reason is that the synthetic signal and image were

generated to provide a best case for the proposed decomposition, that keeps preferentially

higher frequencies for low gray levels and lower frequencies for high gray levels. For such

images or signals, the proposed method is very efficient. On the contrary, TV and DL, for

example, fail in these cases because of the non piece-wise constant nature of the synthetic

data. Finally, we remark that the proposed denoising algorithm provides competitive
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(a) Clean (b) Noisy (c) PSNR=29.90 dB (d) PSNR=30.51 dB

(e) PSNR=31.17 dB (f) PSNR=32.21 dB (g) PSNR=31.65 dB (h) PSNR=33.34 dB

FIGURE 4.17. Result of the denoising algorithm compared with other methods:
(a) Clean Moon image, (b) Image corrupted with Poisson noise corresponding
to a SNR of 15 dB. Denoising results obtained using, (c) wavelet hard thresh-
olding, (d) wavelet soft thresholding, (e) variance stabilization transform,
(f) total variation regularization, (g) dictionary learning and (h) proposed
method. The proposed adaptive transform was computed with the hyperpa-
rameters ℏ2/2m = 0.32, σ2 = 2.5, ρ = 1 and s = 520.

results compared to DL that learns the redundant dictionary from a database of clean

images. Of course the proposed method does not need such a database. In summary, the

results show that while our method is clearly the best for some specific types of signals

or images for which it is well-adapted, it is also competitive for general types of images,

being in almost all cases one of the two best methods. This indicates that the algorithm

we propose can be used reliably for denoising applications in a variety of contexts.

4.5 Application to CBCT Dental Image Denoising

This section illustrates the ability of the proposed method to denoise real medical images.

In particular, the application considered in this work for illustration purpose is CBCT

dental imaging. CBCT is a medical imaging modality that allows tooth visualization

with low radiation doses, and is thus suitable for dental applications. However, the low

radiation prevents the current scanners to provide images with high SNR. In [245], the
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(a) Clean (b) Noisy (c) PSNR=27.49 dB (d) PSNR=27.31 dB

(e) PSNR=28.55 dB (f) PSNR=28.71 dB (g) PSNR=27.24 dB (h) PSNR=30.10 dB

FIGURE 4.18. Result of the denoising algorithm compared with other methods:
(a) Clean Lena image, (b) Image corrupted with speckle noise corresponding
to a SNR of 15 dB. Denoising results obtained using, (c) wavelet hard thresh-
olding, (d) wavelet soft thresholding, (e) variance stabilization transform,
(f) total variation regularization, (g) dictionary learning and (h) proposed
method. The proposed adaptive transform was computed with the hyperpa-
rameters ℏ2/2m = 0.36, σ2 = 1.35, ρ = 2 and s = 600.

TABLE 4.3. Quantitative denoising results for CBCT image.

Sample CNR (dB) SSIM
Noisy CBCT image 23.89 0.66

Denoised CBCT image 25.26 0.75

quality of CBCT dental image within phantom and in vivo data were evaluated. Fig. 4.19

shows a noisy image resulting from that study, as well as the denoised images with

the proposed approach. The region of interest in this image is the dark region in the

middle of the tooth, that represents the canal root. The results displayed show that the

method has some practical applications in this field. For a quantitative analysis the

contrast-to-noise ratio (CNR) computed between the dark region representing the canal

root and the bright region representing the dentine, and the SSIM values comparing the

noisy and the denoised image to the clean one, are presented in Table 4.3. They clearly

show the ability of the proposed method to enhance the noisy CBCT image.
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(a) Clean CBCT image (b) Noisy CBCT image (c) Denoised CBCT image

FIGURE 4.19. Result of the denoising algorithm for a biomedical image: (a)
Clean CBCT dental image, (b) Noisy CBCT dental image, (c) CBCT dental
image after denoising considering the hyperparameters ℏ2/2m = 0.5, σ2 = 20,
ρ = 1 and s = 3000.

4.6 Conclusions

We investigated in this chapter an original approach of constructing an adaptive trans-

form in the context of signal and image processing based on the resolution of a quantum

mechanical problem. More precisely, the signal or image was used as the potential in a

quantum problem, the resolution of which gives as eigenvectors the proposed adaptive

basis. The basis vectors automatically use a different range of frequencies to explore

low potential valued regions compare to the regions corresponding to the high potential

values. Therefore, thresholding the coefficients of the signal or image expanded in this

basis will process differently high and low values of the signal or image. This framework

has been illustrated through denoising applications on different signals and images

in presence of Gaussian, Poisson and speckle noise. We have performed a detailed in-

vestigation of the impact of the hyperparameters on the denoising accuracy. We have

also presented a quantitative comparison of the denoising efficiency of the proposed

adaptive method compared to state-of-the-art methods on synthetic signals and standard

images. The results show that our method has interesting potential to denoise signals

and images, especially for Poisson and speckle noise to which it is well adapted; indeed,

as a vector in the adaptive basis naturally uses higher frequencies for low values of the

signal compared to low values, the thresholding process keeps more frequencies for low

values than for high values. The results show that our denoising procedure outperforms

standard methods in specific cases, and ranks among the best methods in most cases.

In general, the method should be optimal for signals or images with large contrasts

in presence of Poisson-like noise. Our study of the hyperparameters shows that they
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cannot be chosen at random, but that the range of optimality is large enough to allow to

set them beforehand independently of the signal or image, although the choice may be

modified according to the type of noise present in the application.

4.6.1 Limitations

In presence of strong noise, the wave functions become localized due to the quantum

localization phenomenon and make the image restoration tasks more challenging. To

mitigate this quantum effect a Gaussian smoothing was considered before the compu-

tation of the wave functions from the Hamiltonian operator. Although accumulation of

this Gaussian smoothing significantly enhances the potential of the adaptive basis for

imaging problems, it increases the number of tunable hyperparameters of the algorithm.

Furthermore, the computational time of the eigenvectors of the Hamiltonian operator is

the major drawback of this method. For a large-scale signal or image, this computation

of the adaptive vectors becomes very costly and makes the practical implementations of

our proposed algorithm difficult.

4.6.2 Perspectives

The issue of computational complexity can be tackled by more refined algorithms or

by adapting the patch-based processing to the proposed framework, using for example

the theory of multiple-particle quantum mechanics. It should be also noted that in

many applications the computational efficiency of the algorithm, while important, is

less crucial than the efficiency to denoise the signal or image considered. Moreover,

implementing a patch-based architecture that relies on the quantum many-body theory

can mitigate the problem of the quantum localization phenomenon of the adaptive vectors.

In Chapter 6, we will illustrate this many-body quantum theory and its implementation

in imaging tasks. This improved scheme profoundly enhances the efficiency of the

proposed algorithm at a significantly lesser cost and without any Gaussian smoothing.

Using more complex quantum mechanical tools/concepts, such as the time-dependent

Schrödinger equation, i.e., the wave functions and the potential change with time, gives

a very fascinating direction for further research. As another perspective of this study,

it would be very interesting to extend this framework to three dimensional data or

color images. It could be also extended to other reconstruction applications available

in the literature, such as deconvolution, super-resolution or compressed sensing. In

the succeeding Chapter 5, we will study the image deconvolution problem by plugging
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our proposed quantum adaptive basis (QAB) as an off-the-shelf denoiser following the

Plug-and-Play (PnP) scheme [354] described in Section 3.4.1.2.
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∗ This chapter presents materials from the journal paper [112] and conference paper

[113].

Overview

A new alternating direction of multipliers (ADMM)
Plug-and-Play (PnP) scheme is proposed in this
chapter, by embedding the adaptive denoiser intro-
duced in the previous chapter using the Schrödinger
equation’s solutions of quantum physics. The poten-
tial of the proposed model is studied for Poisson
image deconvolution, which is a common problem
occurring in number of imaging applications, such
as limited photon acquisition or X-ray computed
tomography. Numerical results show the efficiency
and good adaptability of the proposed scheme com-
pared to recent state-of-the-art techniques, for both
high and low signal-to-noise ratio scenarios. This
performance gain regardless of the amount of noise
affecting the observations is explained by the flexibil-
ity of the embedded quantum denoiser constructed
without anticipating any prior statistics about the
noise, which is one of the main advantages of this
method. The main novelty of this work resides in
the integration of a modified quantum denoiser into
the PnP-ADMM framework and the numerical proof
of convergence of the resulting algorithm. A more
computationally efficient algorithm for the quantum
mechanics-based scheme of Chapter 4 is also pre-
sented. Finally, we show the ability of the proposed
method to enhance real-life fluorescence microscopy
images.
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5.1 Introduction

5.1.1 Maximum-a-Posteriori (MAP) Estimation

In number of applications such as limited photon acquisition, X-ray computed tomogra-

phy, positron emission tomography, etc., the noise degrading the acquired data follows

a Poisson distribution. These Poissonian models have been extensively studied in the

fields of astronomical [321–323], photographic [135, 155] or biomedical [90, 94, 129, 258,

299, 374] imaging. The inversion process is expressed as the estimation of a clean image

x ∈Rn from observed degraded image y ∈Rm. As stated in Chapter 3, we often formulate

this estimation problem as a maximum-a-posteriori (MAP) estimation [272], where the

goal is to maximize the posterior probability:

x̂= arg max
x

P(x|y)

= arg min
x

(− log (P(y|x))− log (P(x))
)
.(5.1)

for some conditional probability P(y|x) defining the forward imaging model, and a

prior distribution P(x) defining the probability distribution of the latent image, with

f (x) = −log (P(y|x)) as the negative log-likelihood function depends on the degrada-

tion (forward) model, and g(x) = −log (P(x)) as the a priori log-distribution of x or a

regularization function. The optimization in eq. (5.1) is a generic unconstrained opti-

mization. Thus, standard optimization algorithms can be used to solve the problem.

In this chapter, we focus on the alternating direction method of multiplier (ADMM)

[8, 14, 42, 58, 332, 385, 411], which has become the workhorse for a variety of problems

in the form of (5.1).

5.1.2 ADMM Algorithm

As discussed in Chapter 3, the idea of ADMM is to convert (5.1), an unconstrained

optimization, into a constrained problem

(5.2)
minimize

x,z
f (x)+ g(z)

subject to x= z,

and considering its augmented Lagrangian function, we can reproduce the sequence of

subproblems (3.14)-(3.17):

117



CHAPTER 5. PLUG-AND-PLAY QUANTUM ADAPTIVE DENOISER FOR DECONVOLVING POISSON NOISY IMAGES

xk+1 = arg min
x

f (x)+ λk

2

∥∥∥x− zk +uk
∥∥∥2

2
,(5.3)

zk+1 = arg min
z

g(z)+ λk

2

∥∥∥xk+1 − z+uk
∥∥∥2

2
,(5.4)

uk+1 = uk + xk+1 − zk+1,(5.5)

λk+1 = γλk.(5.6)

where u ∈ Rp is the Lagrangian multiplier, λ ∈ R+ is the penalty parameter of the

augmented Lagrangian, and the constand γ> 1 accelerates the convergence.

5.1.3 Plug-and-Play (PnP) ADMM

The interest of PnP schemes have been extensively studied in image restoration problems,

e.g., [26, 27, 46, 60, 62, 77, 200, 287, 293, 319, 335, 337, 347, 364, 380, 404]. The key

benefit of this process is that the regularizer does not need to be defined explicitly because

of its implicit dependence on the denoising operator. More precisely, one may observe

that (5.4) is associated with a denoising process, and can be rewritten as

(5.7) zk+1 = arg min
z

g(z)+ λk

2

∥∥∥z− (xk+1 +uk)
∥∥∥2

2
.

Treating (xk+1+uk) as the "noisy" image, (5.7) minimizes the residue between (xk+1+uk)

and the "clean" image z using the prior g(z), and is thus associated with a denoising

problem designed to denoise (xk+1 +uk). Therefore (5.7) can be replaced by using an

off-the-shelf image denoising algorithm, denoted by D(·) [354], as illustrated in Chapter 3

to yield

(5.8) zk+1 =D
(
xk+1 +uk

)
.

5.1.4 Contributions

This chapter focuses on PnP-ADMM algorithms applied to Poisson deconvolution prob-

lems, i.e., recover an image from a blurred observation contaminated by Poisson noise.

Since the state-of-the-art denoisers (e.g., BM3D [82]) used within PnP schemes were

primarily designed for additive Gaussian noise, they consequently exhibit inconsistency

with a non-Gaussian model. Furthermore, decoupling the restoration and denoising

steps within PnP frameworks converts the noise distribution affecting the observed
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distorted image into a possibly different noise model, and in particular into a non-

Gaussian noise. To mitigate this limitation, a variance stabilizing transformation (VST)

[21, 108, 237, 239], known as the Anscombe transformation, was embedded in several

PnP-ADMM algorithms to adapt them to a data-dependent model. Indeed, VST was

designed to remodel approximately a random data-dependent noise into an additive

Gaussian noise, before processing through a Gaussian denoiser. Although these re-

fined VST-based PnP schemes exhibit very good performance for low-intensity noise

[26, 27, 287] and outperform existing state-of-the-art prior based models, they are less

accurate while dealing with high-intensity noise (i.e., low SNR) [296]. Furthermore, the

nonuniform nature of the convolution operator under a VST leads to fundamental flaws

in the deconvolution algorithms [27, 91, 287]. Therefore, a versatile denoiser adapted to

different noise models, without a priori hypothesis about the noise statistics, is desirable

to be efficient regardless of the prior noise distribution in this PnP framework.

In this chapter, we address these shortcomings by embedding into a PnP-ADMM

scheme a new adaptive denoiser designed in the previous Chapter 4 by borrowing tools

from quantum mechanics. The adaptive nature of this denoiser makes it highly efficient

at selectively eliminating noise from higher intensity pixels, without relying on any

statistical assumption about the noise. Its efficiency regardless of the assumption of

Gaussian noise represents the main motivation of its interest in Poisson deconvolution

PnP-ADMM algorithms, discarding the necessity of a VST. To summarize, the main

novelty of the work is the use of quantum mechanical concepts in the field of image

restoration. The primary contributions are the quantum denoiser, its integration into a

PnP-ADMM scheme, and the experimental proof of convergence of the final algorithm.

The remainder of the chapter is organized as follows. Section 5.2 proposes the PnP-

ADMM algorithm for Poisson inverse problems. The numerical experiments and results

are regrouped in Section 5.3. Section 5.4 shows the ability of the proposed method to

enhance experimental fluorescence microscopy images before drawing conclusions in

Section 5.5 with perspectives.

5.2 Proposed PnP-ADMM Algorithm

5.2.1 Poissonian Deconvolution Model

Let us denote by x ∈ Rn2
the image to be recovered from the observation y ∈ Rn2

, a

degraded version by a point spread function (PSF) and Poisson process denoted by P (·).
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Without loss of generality, we consider herein square images of size n×n, written as

vectors in lexicographical order. The resulting image formation model is

(5.9) y=P (Gx),

where G ∈ Rn2×n2
is a block circulant with circulant blocks (BCCB) matrix acounting

for 2D circulant convolution with the PSF. The pixels of the observed blurry and noisy

image y are denoted by y[i], i = 1,2, · · · ,n2, and are treated as independent realizations

of a Poisson process with parameter (Gx)[i]≥ 0 given by

P
(
y[i]

∣∣x[i]
)

for i=1,2,··· ,n2

=


e−(Gx)[i](Gx)[i]y[i]

y[i]!
if y[i]≥ 0,

0 elsewhere,
(5.10)

where (·)[i] represents the i-th component of a vectorized image. The restoration of x
from the noisy-blurred observation y is the primary objective of Poisson deconvolution

methods.

One standard way to estimate x from the observation model (5.9) is to use the MAP

estimator in (5.1). The Poisson noise probability density function is defined as

(5.11) P(y|x)=∏
i

e−(Gx)[i](Gx)[i]y[i]

y[i]!
.

Thus, the log-likelihood term, i.e., the data fidelity term f (x) used within the MAP

estimator, is given by

f (x)=−log (P(y|x))

=−∑
i

log

(
e−(Gx)[i](Gx)[i]y[i]

y[i]!

)
=−yT log(Gx)+1TGx+constant,(5.12)

where 1 is a vector of length n2 with all elements equal to 1. As explained previously, the

function g(x), a prior of x, depends on some prior knowledge on the image to estimate.

In a PnP framework, this prior is intrinsically defined through the external denoiser,

removing the need of defining the prior term g(x) explicitly. Hence, using the data fidelity

term f (x) in (5.12), the PnP-ADMM steps depicted in (5.3), (5.5), (5.6) and (5.8) become:

xk+1 = arg min
x

(
− yT log(Gx)+1TGx+ λk

2

∥∥∥x− zk +uk
∥∥∥2

2

)
,(5.13)

zk+1 =D
(
xk+1 +uk

)
,(5.14)

uk+1 = uk + xk+1 − zk+1,(5.15)

λk+1 = γλk,(5.16)
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FIGURE 5.1. Relationship between the clean and noisy images under the quan-
tum mechanical framework and their effects on the wave functions: example
of the Boat image.

where D(·) is the denoising operator considered within the PnP-ADMM algorithm. In

this work, following [288], a gradient descent algorithm is used to solve the minimization

problem (5.13), that requires the use of the gradient of the augmented Lagrangian Lλ

given by

(5.17) ∇xLλ =−GT(
y/(Gx)

)+GT1+λk(x− zk +uk),

where ∇x represents the derivative with respect to x and y/(Gx) stands for element-wise

division.

The following subsection describes the Poisson denoiser inspired from quantum me-

chanics used within the proposed PnP-ADMM algorithm for Poisson image deconvolution,

to solve the step in (5.14).
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5.2.2 Quantum Adaptive Basis (QAB) Denoiser

As said before, in the last decade, several works have been conducted to use quantum

mechanical principles in signal [126] and image processing applications. More precisely,

the interest in image segmentation [24, 389–391], restoration [395] and denoising [114,

204, 312] have been studied in the literature.

The denoiser embedded in the proposed method is based on the construction of an

adaptive basis inspired by quantum mechanics, as originally proposed in the preceding

Chapter 4. An illustration of the adaptive basis construction is given in Fig. 5.1. It

displays the relationship between a clean and a noisy image in the quantum mechanical

framework. The basic idea is to use the image as a potential of a quantum system,

where the height of the potential is determined by the pixel intensity. For illustration

purpose, we considered the Boat image with half of it contaminated by Gaussian noise.

Two patches, one clean and one noisy, are extracted from the image and plotted as 3D

surfaces, which will ultimately act as the potentials of the system. In this system, the

wave function governs the probability of presence of a quantum particle with energy

E at some position on the surface. For a clean image, the wave function uses a broad

range of frequencies to probe the surface. In presence of random noise, the wave function

becomes localized at some particular position on the surface, as highlighted in Fig. 5.1.

The salient feature of the adaptive basis is the fact that the pixel intensity is directly

linked to the local frequency of the wave. The localization property in the presence of

noise is actually a hindrance, cured by performing a pre-smoothing of the noisy potential

in order to create an adaptive basis extended over the whole image. For more details

on the construction of the basis, we refer the reader to the previous Chapter 4. For

self-consistency, we recall hereafter the main steps of the QAB (quantum adaptive basis)

technique.

5.2.2.1 Background on the Adaptive QAB Transform

In the non-relativistic quantum mechanics, the time-independent Schrödinger equation

yields an equation for the stationary wave solution ψ(z), given by

(5.18) − ℏ2

2m
∇2ψ=−V (z)ψ+Eψ,

where ℏ is the Planck constant and ψ(z) characterizes the energy state E of the particle

with mass m in a potential V . The probability amplitude of the particle is given by

|ψ(z)|2, normalized under
∫ |ψ(z)|2dz = 1. The wave function ψ(z) is an element of the
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Hilbert space of square-integrable functions. It is possible to rewrite the equation (5.18)

as

(5.19) Hψ= Eψ,

where H =− ℏ2

2m∇2 +V is the Hamiltonian operator. One can conclude from (5.19) that

the solution ψ(z) of the equation (5.18) represents an eigenstate of the system described

by the Hamiltonian operator. These eigenstates of (5.19) are oscillatory functions and

primarily have two properties: i) the oscillation frequency increases with energy and ii)

for the same eigenfunction, the local frequency depends on the local value of the potential,

and this dependence is regulated by the value of ℏ2/2m which acts as a hyperparameter

herein.

As in Chapter 4, in the perspective of designing an adaptive transformation for

image processing, one may consider the image pixels’ values as the potential V in

the Schrödinger equation (5.18) for a discretized space. We recall here, for easiness,

the stationary solutions of (5.18) can be obtained by computing the eigenpairs of the

discretized Hamiltonian operator defined as:

H[i, j]=



x[i]+4
ℏ2

2m
for i = j,

− ℏ2

2m
for i = j±1,

− ℏ2

2m
for i = j±n,

0 otherwise,

(5.20)

where x ∈ Rn2
is an image (i.e., V = x), vectorized in lexicographical order and H[i, j]

represents the (i, j)-th element of the operator H ∈Rn2×n2
. Note that zero padding is used

to handle the boundary conditions. As a consequence some violations of the rule (5.20)

can be observed. More precisely, H[i, j]= x[i]+2 ℏ2

2m for i = j and i ∈ {1,n,n2 −n+1,n2},

H[i, j]= x[i]+3 ℏ2

2m for i = j and i ∈ {2,3, ...,n−1,n2 −n+2,n2 −n+3, ...,n2 −1}, H[i, j]=
x[i]+3 ℏ2

2m for i = j and i mod n ∈ {0,1}, except for i ∈ {1,2, ...,n,n2−n+1,n2−n+2, ...,n2}

in order to respect the boundary conditions, and H[i, i +1] = H[i +1, i] = 0 for any i
multiple of n apart from n2. More details about the construction of the Hamiltonian

operator associated to an image can be found in Subsection 4.3.1 of the Chapter 4.

The corresponding eigenbasis of the Hamiltonian operator (5.20) represents the

adaptive transform. In the previous Chapter 4, it was shown that this adaptive basis

gives an efficient way of image denoising, especially in the presence of Gaussian, Poisson
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or speckle noise. In this chapter, this adaptive basis, referred to as QAB, is used to

construct the denoiser DQA B(·) embedded in the proposed PnP-ADMM scheme.

These basis vectors belong to the family of oscillating functions along with the

Fourier and wavelet bases, but with a local frequency depending on the local value

of
p

2m(E−V ) /ℏ. Due to its dependence on the difference between the energy E and

potential V , in the same basis vector the lower values of the potential are associated

with oscillations of higher frequency. Thus, the property of these adaptive basis vectors

able to describe different image pixels’ values using different frequency levels, makes it

fundamentally distinct from the Fourier and wavelet bases. From the above discussion

it is understandable that the local frequency depends on the value of ℏ2/2m, which is

a hyperparameter. Apart from that, the level of noise also has an impact on the basis

vectors. Indeed, the presence of random noise in the system leads to a subtle quantum

phenomenon [19] which makes these vectors localize exponentially at different positions

of the potential in the system. To mitigate this phenomenon which degrades the denoising,

it is important to low-pass the corrupted image using, for example, a Gaussian filter

with suitable standard deviation σQA B, before the computation of the QAB from the

Hamiltonian operator (5.20). The reader may refer to Subsection 4.3.2 of the previous

chapter for an in-depth discussion about the QAB vector localization in the presence of

noise.

The QAB explained above is used to denoise an image, as follows: project the noisy

image onto the QAB to identify the valuable information and the noise, followed by a

soft-thresholding of the projection coefficients, before taking the inverse projection of the

modified coefficients to recover the noise-free image. The denoised image x̂ is retrieved

as following:

x̂=
n2∑
i=1

τiαiψi,(5.21)

with

τi =


1 for i ≤ s,

1− i− s
ρ

for i > s and for 1− i− s
ρ

> 0,

0 otherwise,

(5.22)

whereαi are the coefficients representing the image x in QAB, whose basis vectors areψi.

s and ρ are two thresholding hyperparameters. The denoising process thus corresponds

to expanding the signal in the adaptive basis and thresholding the coefficients according

to an energy criterion (see Chapter 4 for a detailed discussion of this procedure).
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FIGURE 5.2. Flowchart of the proposed QAB-PnP algorithm.

5.2.3 QAB-PnP Algorithm

This section illustrates, in the context of Poisson image deconvolution, the proposed

PnP-ADMM algorithm, denoted as QAB-PnP, incorporating the QAB denoiser introduced

in the previous section. In this particular context, various state-of-the-art denoisers have

been introduced in the literature, such as Gaussian denoisers (e.g., BM3D [82], etc) fused

with VST-like transforms or not. Using QAB DQA B instead of a classical denoiser is the

main contribution of this chapter. It consists in including a modified version of the QAB

denoiser into the deconvolution PnP-ADMM method from Section 5.2.1, more precisely
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to solve (5.14).

The denoising process integrated in the proposed QAB-PnP algorithm requires the

computation of the coefficients αi, obtained by projecting the noisy image onto the QAB.

This is a time consuming task for a large image and affects the computational load of the

deconvolution algorithm given that the denoising process is performed at each iteration.

However, one may note that most of the αi are not used for reconstructing the denoised

image given that they are discarded by the threshohlding operation. To increase the

computational efficiency of the proposed algorithm, only the coefficients which contribute

the most in the restoration process are computed. To this end, let us focus on T basis

vectors αi from DQA B , corresponding to an energy level below E , assuming that higher

energy levels naturally correspond to higher frequencies, where E is considered as a free

hyperparameter. The corresponding T coefficients will be the most significant for the

reconstruction of the clean image, and can be computed using the orthogonal matching

pursuit (OMP) algorithm [88, 256, 295, 345].

The OMP algorithm was fundamentally designed to obtain a sparse approximation

α̂i with sparsity T of the corresponding coefficients αi while projecting the noisy image,

say v ∈ Rn2
onto the denoising basis DQA B . Therefore the primary goal of OMP is to

recover coefficients α̂i with T non-zero elements, such that v ≃ DQA Bα̂i. To get the

best possible approximation, it is important to identify the columns ψi ∈DQA B which

contribute in the reconstruction of v. The basic idea is to choose the column of DQA B

which is mostly correlated with v, followed by subtracting its contribution and repeat

Algorithm 5.1: Modified Orthogonal Matching Pursuit algorithm.

Input: v , T , DQA B

1 Initialization: r0 = v , Λ0 =; , Φ0 is an empty matrix
2 for l from 0 to T −1 do
3 l = l+1
4 λl = arg max

j=1,2,...,T
|〈rl−1,ψ j〉|, for ψ j ∈DQA B (Break ties deterministically)

5 Λl =Λl−1 ⋃
λl

6 Φl = [Φl−1 ψλl ]

7 al = arg min
a

∥∥v−Φla
∥∥2

2

8 rl = v−Φlal

Output: α̂, which has nonzero elements only at Λl , i.e., α̂Λl = al
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Algorithm 5.2: QAB denoising algorithm.

Input: z , DQA B , T , s , ρ

1 Compute the sparse coefficients α̂i with sparsity T by using the measurement
data z and the operator DQA B following the modified orthogonal matching
pursuit method as illustrated in Algorithm 5.1.

2 Threshold the coefficients α̂i.
3 Compute ẑ following (5.22) and (5.21).

Output: ẑ

Algorithm 5.3: Poisson deconvolution using QAB-PnP algorithm.

Input: y , E , λ0 , γ,
ℏ2

2m
, σQA B , N

1 Initialization: x0 , z0 , u0

2 Compute a smooth version of y by low-pass Gaussian filter with standard
deviation σQA B

3 Form the Hamiltonian matrix H based on the smoothed version of y using (5.20)
4 Calculate the eigen-pairs of H
5 Construct DQA B using the eigenvectors ψi of H
6 Find the total number of eigenvalue T , less than the energy level E

7 begin
8 ADMM process:
9 for k from 0 to N −1 do

10 Step 1:

11 xk+1 = arg min
x

− yT log(Gx)+1TGx+ λk

2

∥∥x− zk +uk∥∥2
2

12 Step 2:
13 zk+1 =DQA B(xk+1 +uk), following QAB denoising Algorithm 5.2
14 Step 3:
15 uk+1 = uk + xk+1 − zk+1

16 λk+1 = γλk

Output: x̂= xN

the step on the residual. After T iterations one can have the desired set of basis vectors

and projection coefficients. Within the adaptive basis DQA B , the basis eigenvectors are

organized in ascending order, the first T basis vectors with energy less than E being

the most correlated with v. Therefore, the OMP algorithm is modified herein so that it
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(a) Lena (b) Fruits (c) Synthetic

FIGURE 5.3. Images used for deconvolution simulations.

estimates only the projection coefficients onto the subspace formed by these T basis

vectors. This modified OMP algorithm is detailed in Algorithm 5.1.

The sparse coefficients α̂i estimated by Algorithm 5.1 are further used by the denois-

ing method detailed in Algorithm 5.2, integrated in the proposed QAB-PnP deconvolution

method in Fig. 5.2 and Algorithm 5.3.

5.2.3.1 Computational Complexity

The computational complexity of the algorithm is dominated by the eigendecomposition

of the high dimensional Hamiltonian matrix and the QAB image projection. For a n×n
image, the Hamiltonian matrix is of size n2×n2. Usual textbook diagonalization methods

would require O(n6) operations (time complexity) and O(n4) storage space. However,

the Hamiltonian matrix is extremely sparse, and is more efficiently diagonalized by

iterative methods such as the Lanczos method (as we actually did). In this case the

computational complexity would be O(n4) if we compute all eigenvalues and eigenvectors

(and still O(n4) in storage space). If we compute only T of these eigenvalues and

eigenvectors (with T ≤ n2), the time complexity becomes O(T n2) and the storage space

(space complexity) also O(T n2). The QAB image projection is O(n4) with the simplest

algorithm, and becomes O(T n2) in time and space with the OMP algorithm. We thus

conclude that our algorithm requires O(T n2) time and space resources, with T ≤ n2,

for a n×n image. To further decrease the complexity, a block-wise approach could be

used as proposed in the Chapter 4, where a large image is divided into smaller patches

denoised independently by the QAB denoiser. In this the complexity is O(T Pn2) for P
patches of size n (<< n). Moreover, such a patch-based architecture can be improved by

considering the dependence between neighboring patches by borrowing tools from the

quantum interaction theory and will be discussed in Chapter 6.
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5.2.4 Convergence Analysis of QAB-PnP Algorithm

Despite their popularity during the last decade, the proof of convergence of PnP-ADMM

algorithms may still be an issue. Some interesting developments have been proposed

during the last few years on global [319] and fixed point [60, 62, 77, 293, 337, 380, 404]

convergence of these algorithms, while imposing restrictions on the denoising operator. In

this section, our goal is to analyse the fixed point convergence of the proposed QAB-PnP

algorithm.

To enable the fixed point convergence and in particular to avoid the issue of un-

bounded gradient in (5.17) for pixel values equal to 0, i.e., to overcome the singularity

problem at x= 0, we slightly modify the observation model (5.9) by introducing a small

positive constant ϵ≪ 1, as suggested in [158]:

(5.23) y=P (Gx+ϵ1).

Therefore the negative Poisson log-likelihood (5.12) becomes

(5.24) f (x)=−yT log(Gx+ϵ1)+1TGx,

and the corresponding gradient

(5.25) ∇ f (x)=−GT(y/(Gx+ϵ1))+GT1.

One should note that within practical experiments, ϵ is much smaller than any back-

ground value, so that its influence on the final output is negligible [158].

Remark 5.1. For f (x) : [0,1]n2 →R+, with nontrivial constant vector y ∈Rn2
and operator

G ∈Rn2×n2
, the gradient ∇ f (x) is bounded.

Proof. Since ϵ is the lower bound of (Gx+ ϵ1), therefore 1/ϵ is the upper bound of

1/(Gx+ϵ1). Since y and G are constants, they are bounded. Hence one can write:

∥∇ f (x)∥2 =
∥∥∥−GT(y/(Gx+ϵ1))+GT1

∥∥∥
2

≤
∥∥∥GT

∥∥∥
2

∥∥∥ y
Gx+ϵ1

∥∥∥
2
+

∥∥∥GT
∥∥∥

2

≤ δ1

ϵ
+δ2

≤ L <∞(5.26)

where δ1,δ2,L ∈R+.

■
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(a) Performed on the image in Fig. 5.3(a). (b) Performed on the image in Fig. 5.3(b).

(c) Performed on the image in Fig. 5.3(c).

FIGURE 5.4. Numerical validation of the criteria,
∥∥DQA B(xk)− xk∥∥

2 ≤σkM for
any xk ∈ Rn2

, performed on the sample images in Fig. 5.3(a-c).

Remark 5.2. Denoiser DQA B is a bounded denoising operator with a parameter σk.

We cannot offer a general proof of this statement, also it intuitively appears highly

likely. The denoising process denoted by DQA B certainly reduces the level of noise at

each iteration and gets DQA B(xk) closer and closer to xk. It is therefore fair to consider

that
∥∥DQA B(xk)− xk∥∥

2 decreases with k. It is also bounded by
∥∥xk∥∥

2 since DQA B is a

projection operator.

The rate of decrease is not a priori easy to bound, but we offer numerical evidence

that the decrease is fast. Indeed, in all three examples shown in Fig. 5.4 the decrease is

very fast. In particular, it is much faster that the rate of decrease of σk
def= 1/λk. We thus

generalize this result and take as generic that
∥∥DQA B(xk)− xk∥∥

2 ≤σkM where M is a

system-dependent constant.

Remark 5.3 (Fixed Point Convergence of QAB-PnP algorithm). If
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1. f (x) : [0,1]n2 → R+ is analytic and has bounded gradient, i.e., for all x ∈ [0,1]n2
,

there exists L <∞ such that ∥∇ f (x)∥2 ≤ L, and

2. DQA B is a bounded denoising operator with a parameter σk,

then QAB-PnP converges to a fixed point. That is, there exists (x∗, z∗,u∗) such that∥∥xk − x∗∥∥
2 → 0,

∥∥zk − z∗∥∥
2 → 0,

∥∥uk −u∗∥∥
2 → 0 as k →∞.

Proof. ∗ First condition: The first condition holds as shown in Remark 5.1.

∗ Second condition: The second condition should hold generically as discussed in

Remark 5.2.

Given that the two conditions are satisfied within the proposed framework, let us

move to the proof of the fixed point convergence in Remark 5.3. We start by proving the

following statements:

∥∥∥zk+1 − zk
∥∥∥≤ C2

λk(5.27) ∥∥∥xk+1 − xk
∥∥∥≤ C1

λk(5.28) ∥∥∥uk+1 −uk
∥∥∥≤ C3

λk(5.29)

where C1, C2 and C3 are constants and λk is the penalty parameter with λk+1 = γλk,

where γ> 1.

∗ First step: Proof of condition (5.27).

From (5.3), we have

(5.30) xk+1 = arg min
x

f (x)+ λk

2

∥∥∥x− zk +uk
∥∥∥2

2
.

The first order optimality implies

(5.31) x− (zk −uk)=−∇ f (x)
λk .

Since the minimizer is obtained in x = xk+1, replacing x by xk+1 and using the

boundedness property of ∇ f (x), we have

(5.32)
∥∥∥xk+1 − (zk −uk)

∥∥∥
2
=

∥∥∇ f (xk+1)
∥∥

2

λk ≤ L
λk .
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Furthermore, since the denoiser DQA B is bounded and zk+1 =DQA B(xk+1+uk), one

can write ∥∥∥zk+1 − (xk+1 +uk)
∥∥∥

2

=
∥∥∥DQA B(xk+1 +uk)− (xk+1 +uk)

∥∥∥
2

≤σkM = M
λk .(5.33)

One also has ∥∥∥zk+1 − zk
∥∥∥

2
≤

∥∥∥zk+1 − (xk+1 +uk)
∥∥∥

2

+
∥∥∥(xk+1 +uk)− zk

∥∥∥
2

.(5.34)

Finally, using (5.32) and (5.33), we obtain

(5.35)
∥∥∥zk+1 − zk

∥∥∥
2
≤ L
λk + M

λk = C2

λk .

∗ Second step: Proof of condition (5.29).

From (5.5), we get∥∥∥uk+1
∥∥∥

2
=

∥∥∥uk + xk+1 − zk+1
∥∥∥

2

=
∥∥∥(xk+1 +uk)−DQA B(xk+1 +uk)

∥∥∥
2

≤ M
λk .(5.36)

Using (5.36), we have

(5.37)
∥∥∥uk+1 −uk

∥∥∥
2
≤

∥∥∥uk+1
∥∥∥+∥∥∥uk

∥∥∥
2
≤ M
λk + M

λk = C3

λk .

∗ Third step: Proof of condition (5.28).

(5.5) can be written as

(5.38) xk+1 = uk+1 −uk + zk+1.

Using (5.38), we have∥∥∥xk+1 − xk
∥∥∥

2

=
∥∥∥(uk+1 −uk + zk+1)− (uk −uk−1 + zk)

∥∥∥
2

≤
∥∥∥uk+1 −uk

∥∥∥
2
+

∥∥∥zk+1 − zk
∥∥∥

2
+

∥∥∥uk −uk−1
∥∥∥

2

≤ C3

λk + C2

λk + C3

λk−1 ≤ C3

λk + C2

λk + γC3

λk = C1

λk(5.39)
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Hence all three conditions (5.27), (5.28) and (5.29) are true.

Next, we aim at proving that {xk}∞k=1 is a Cauchy sequence. Therefore, one has to

show that for all integer n > k,
∥∥xn − xk∥∥

2 → 0 as n →∞ and k →∞.

For any finite n and k, one can write using the condition (5.28)

(5.40)
∥∥∥xn − xk

∥∥∥
2
≤

n−1∑
l=k

C1

λl = C1

n−1∑
l=k

1
λ0γl =

C1

λ0γk

n−k−1∑
l=0

1
γl .

Therefore, as n →∞ and k →∞,
∥∥xn − xk∥∥

2 → 0, since γ> 1, so {xk}∞k=1 is a Cauchy

sequence. Hence, the sequence {xk}∞k=1 is convergent, thus there exits x∗ ∈ [0,1]n2
such

that
∥∥xk − x∗∥∥

2 → 0 as k →∞.

Similarly, one can show that the sequence {zk}∞k=1 and {uk}∞k=1 are convergent, so

there exit z∗,u∗ ∈ [0,1]n2
such that

∥∥zk − z∗∥∥
2 → 0 and

∥∥uk −u∗∥∥
2 → 0 as k →∞.

Therefore we can conclude that the proposed QAB-PnP algorithm converges to a fixed

point.

■

The proof we propose is not a convergence proof in the mathematical sense, since it

reposes on Remark 5.2 for which we only have plausibility arguments and numerical

evidence. Nevertheless, the discussion above and the numerical results in Fig. 5.4 for

three very different images, indicate that with high confidence the algorithm should

converge in practice for any image.

5.3 Simulation Results

This section illustrates the efficiency of the proposed QAB-PnP algorithm for Poisson

image deconvolution. An analysis of the influence of the hyperparameters on the decon-

volution accuracy is first provided in Subsection 5.3.1, before comparing its performance

to several state-of-the-art methods in Subsection 5.3.2. In Chapter 4, we already per-

formed a detailed analysis of the hyperparameters σQA B , s and ρ for the efficiency of

the denoiser. We recall that these hyperparameters control respectively the smoothing

of the potential to avoid localization effects in the expansion basis, and the cutoff in

energy which leads to denoising. We therefore chose these hyperparameters to be op-

timal according to the study in the previous Chapter 4. However, the computational

method used in the present work (OMP algorithm) introduces a new hyperparameter

E which controls the accuracy and efficiency of the OMP process. The accuracy of OMP

increases for increasing E , but at the cost of higher computational time. A trade-off is
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thus necessary, and we will show that the optimal value of E is also influenced by the

value of the hyperparameter ℏ2/2m, which fixes how the local frequencies of the basis

vectors vary as a function of pixels’ amplitudes.

The simulations are conducted on three images, shown in Fig. 5.3. Two of them

represent cropped versions of the standard Lena and fruits images. The third one was

synthetically constructed so that it contains high frequencies for low gray levels and, vice

versa, low frequencies for high intensity pixels. Its purpose is to illustrate the ability of

the proposed deconvolution method, and in particular of the embedded quantum-based

denoiser, to handle such images. All the sample images are distorted with two Gaussian

blurring kernel h4×4
σ of size 4×4 and standard deviation σ = 3 and σ = 5 respectively.

The study was conducted with three different Poisson noise levels corresponding to SNRs

of 20, 15 and 10 dB. Note that the noise was image-dependent Poisson distributed and

that the SNRs of the observations was computed a posteriori to emphasize the amount

of noise.

5.3.1 Hyperparameter Analysis

This subsection presents a detailed analysis on the influence of the hyperparameters on

the proposed method. In particular, the role of the hyperparameter E will be evaluated,

given its important impact on the compromise between accuracy and computational time,

and its relationship with the hyperparameter ℏ2/2m will be assessed. It is important

101214161820

SNR (dB)
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FIGURE 5.5. PSNR mean and standard deviation values for all the three sample
images in Fig. 5.3 as a function of Poisson noise levels.
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TABLE 5.1. Quantitative measurements obtained using the proposed QAB-PnP
algorithm with and without modified OMP

Sample Noise
Without OMP With OMP, best E

PSNR (dB) SSIM PSNR (dB) SSIM

Synthetic
20 dB 30.1724 0.9179 29.9497 0.8934
15 dB 26.8101 0.8604 26.7300 0.8620
10 dB 23.1674 0.7489 23.1006 0.7493

Lena
20 dB 29.1330 0.8112 28.9842 0.8091
15 dB 26.5853 0.7712 26.5805 0.7709
10 dB 21.4328 0.6989 19.8070 0.6942

Fruits
20 dB 20.7366 0.6908 20.1657 0.6817
15 dB 18.8144 0.6471 18.6564 0.6474
10 dB 14.9236 0.6114 14.9200 0.6117

TABLE 5.2. Average computation time (all the algorithms have been imple-
mented in Matlab and tested on a computer with an Intel(R) Core(TM)
i7-10510U CPU of 4 cores each with 1.80 GHz, 16 GB memory and using
Windows 10 Pro version 20H2 as operating system) and required number of
iterations for different images.

Method
Run time (sec) Number of iterations

Synthetic Lena Fruits Synthetic Lena Fruits
TV-ADMM 0.111 0.107 0.130 26 17 23
ADMM+BM3D 0.017 0.017 0.022 27 20 26
ADMM+TNRD 78.375 81.980 104.179 17 22 25
ADMM+VST+TNRD 77.310 82.630 112.070 20 19 17
P4IP 0.037 0.039 0.049 18 8 19
QAB-PnP (Without OMP) 190.284 186.677 266.221 17 7 14
QAB-PnP (With OMP, best E ) 37.425 35.732 48.568 18 7 15

to mention that in general the hyperparameter ℏ2/2m and the number of significant

wave vectors T vary in an opposite way, one of them increasing when the other one

decreases. In addition, there is a linear relation between T and the processing time.

Therefore, to achieve an optimal behaviour of the algorithm, a good balance between the

hyperparameters ℏ2/2m and E needs to be achieved. We will also discuss the choice of

the hyperparameter λ0 which controls the iterations of the ADMM algorithm described

in Section 5.1.

From this perspective, we first show that considering the wave vectors up to the en-

ergy level E and evaluating only the corresponding coefficients αi following the modified
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(a) Influence of the hyperparameters E and ℏ2/2m on the proposed method in terms
of PSNR (dB)

(b) Number of significant wave vectors T for different values of the hyperparameters
E and ℏ2/2m

(c) Computation time for different values of the hyperparameters E and ℏ2/2m

FIGURE 5.6. Experiment performed on the image in Fig. 5.3(a) blurred by
a Gaussian kernel h4×4

σ of size 4×4 with standard deviation σ = 3, and
corrupted by Poisson noise corresponding to a SNR of 20 dB. QAB-PnP was
performed with λ0 = 1.5, and γ, σQA B, s and ρ manually tuned to their
best possible values for each set of experiments.
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(a) Performed on the image in Fig.
5.3(a) with E = 3.9, ℏ2/2m = 4

(b) Performed on the image in Fig.
5.3(b) with E = 4.1, ℏ2/2m = 4

(c) Performed on the image in Fig.
5.3(c) with E = 4.5, ℏ2/2m = 4.3

FIGURE 5.7. Evolution of the RMSE (logarithmic scale) for different values of
the hyperparameter λ0, for a Gaussian blurring kernel h4×4

σ of size 4×4
with standard deviation σ= 3 and Poisson noise corresponding to a SNR of
20 dB. The other hyperparameters γ, σQA B , s and ρ have been manually
tuned to their best possible values for each set of experiments.

OMP algorithm in Algo. 5.1 helps reducing the computation time with minimal accuracy

loss. Quantitative results showing the influence of E on the simulations performed over

the three sample images in Fig. 5.3, distorted by a Gaussian blurring kernel h4×4
σ of

size 4×4 and standard deviation σ= 3, and corrupted by Poisson noise corresponding

to a SNR of 20 dB, 15 dB, and 10 dB, have been regrouped in Table 5.1, where the best

results have been highlighted in bold. Similarly, the average peak signal to noise ratios

(PSNR) values for different SNR, obtained with the proposed deconvolution method

with and without the modified OMP algorithm, are shown in Fig. 5.5. The results in

Fig. 5.5 and Table 5.1 prove that the accuracy loss, caused by the use of the parameter

E within the modified OMP algorithm, is very limited. This accuracy loss is caused by

the denoising process that reconstructs the denoised image only from the wave functions

associated with an energy level lower than E . Indeed, although wave functions associated

with higher energies are dominated by noise, they may still carry information about

certain features of the clean image. The average computation time for different images

obtained with a Matlab implementation on a desktop computer, with and without E ,

given in Table 5.2, confirms the computational efficiency gain enabled by the modified

OMP algorithm embedded in QAB-PnP method.

In addition to E , as stated previously, ℏ2/2m is also an important hyperparameter

of the proposed deconvolution technique. The hyperparameter ℏ2/2m dictates how the

local frequencies of the basis vectors vary with the amplitude of the image pixel values.

On the other hand, E is associated with the sparsity. Given their mutual dependence,
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Fig. 5.6(a) shows the accuracy of QAB-PnP algorithm for different couple values of these

two hyperparameters over an acceptable range. This experiment consisted in recovering

the image in Fig. 5.3(a) from a degraded version blurred by a 4×4 Gaussian kernel with

standard deviation equal to 3 and Poisson noise corresponding to a SNR of 20 dB.

Similarly, Figs. 5.6(b) and (c) show the variation of the number of the significant

wave vectors T and of the computation time. These results also justify the linear

proportionality of T and processing time. Note that as explained previously, the other

hyperparameters, σQA B , s and ρ, were chosen as suggested in the previous Chapter 4.

Finally, the choice of the hyperparameter λ0 used within the iterations of the ADMM

algorithm is important to accelerate the convergence. The curves in Fig. 5.7 show, within a

logarithmic scale, the evolution of the root mean square error (RMSE) over the iterations

of the proposed deconvolution method, for different values of λ0. These simulations were

performed for the three images in Fig. 5.3, distorted by a Gaussian blurring kernel h4×4
σ

of size 4×4 and standard deviation σ= 3, and corrupted by Poisson process corresponding

to a SNR of 20 dB.

The studies performed in this subsection show that a certain range of optimal choice

of the hyperparameters considered is possible. Without a priori knowledge, it should be

possible to use values in this range for arbitrary images, taking care to choose E and

ℏ2/2m in a correlated way. As a further note, keeping the hyperparameters constant to the

same values for all the images considered hereafter leads to a very low PSNR degradation

of about 0.1 dB. From the discussions above, one may note that the hyperparameters

ℏ2/2m and E are primarily associated with the construction of the quantum adaptive

basis and the sparsity of the clean image in this basis, both related to the denoising

process. In contrast, λ0, the penalty parameter, regulates the restoration process by

accelerating the convergence. Therefore, the optimal choice of ℏ2/2m and E discussed

above is independent of the value of λ0.

5.3.2 Poisson Deconvolution Results

Poisson deconvolution is a well discussed domain in the literature where PnP algorithms

implanting a Gaussian denoiser with or without a VST transformation have exhibited

promising outcomes [27, 287]. The proposed method is intrinsically adaptive, which

makes it well-adapted to different noise statistics for the problem addressed and does

not require using any additional transformation in the denoising step.

This subsection regroups image deconvolution results obtained with the proposed

method and five approaches from the literature. The experiments consisted in recover-
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0 5 10 15 20 25 30 35 40

Iteration (k)

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

lo
g
(R

M
S
E
)

TV-ADMM
ADMM+BM3D
ADMM+TNRD
ADMM+VST+TNRD
P4IP
QAB-PnP

FIGURE 5.8. RMSE in logarithmic scale as a function of iteration number for
TV-ADMM, ADMM+BM3D, ADMM+TNRD, ADMM+VST+TNRD, P4IP and
proposed QAB-PnP methods. The results correspond to the restoration of
the image in Fig. 5.3(a) from a degraded image by a Gaussian blurring
kernel h4×4

σ of size 4×4 and standard deviation σ = 3, and Poisson noise
corresponding to a SNR of 20 dB. All hyperparameters were manually tuned
to their best possible values for all the methods.

ing the images in Fig. 5.3 from degraded versions by Gaussian blurring kernels with

different variances and Poisson noise at different SNRs. The first comparative method

(a) Clean image (b) Corrupted image (c) TV-ADMM (d) ADMM+BM3D

(e) ADMM+TNRD (f) ADMM+VST+TNRD (g) P4IP (h) QAB-PnP

FIGURE 5.9. Deconvolution result for Lena image, blurred by a Gaussian kernel
h4×4
σ=3 and corrupted by Poisson noise corresponding to a SNR of 10 dB. The

proposed QAB-PnP algorithm used E = 3.9, λ0 = 1.5, ℏ2/2m = 4 and γ= 1.01,
σQA B = 7.
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(a) Clean image (b) Corrupted image (c) TV-ADMM (d) ADMM+BM3D

(e) ADMM+TNRD (f) ADMM+VST+TNRD (g) P4IP (h) QAB-PnP

FIGURE 5.10. Deconvolution result for Synthetic image, blurred by a Gaussian
kernel h4×4

σ=5 and corrupted by Poisson noise corresponding to a SNR of 15
dB. The proposed QAB-PnP algorithm used E = 4.1, λ0 = 1.3, ℏ2/2m = 4 and
γ= 1.01, σQA B = 7.

(a) Clean image (b) Corrupted image (c) TV-ADMM (d) ADMM+BM3D

(e) ADMM+TNRD (f) ADMM+VST+TNRD (g) P4IP (h) QAB-PnP

FIGURE 5.11. Deconvolution result for Fruits image, blurred by a Gaussian
kernel h4×4

σ=3 and corrupted by Poisson noise corresponding to a SNR of 20
dB. The proposed QAB-PnP algorithm used E = 4.5, λ0 = 3.15, ℏ2/2m = 4.3
and γ= 1.01, σQA B = 8.

is a standard Poisson deconvolution method that consists in estimating the image that

minimizes a cost function formed by the data fidelity term in (5.12) and the classical total
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variation regularization [90]. This method will be denoted by TV-ADMM hereafter. The

second method denoted by ADMM+BM3D is an integration of the BM3D denoiser in the

PnP-ADMM algorithm. Similarly, a deep learning denoiser trained on natural images

was integrated into the PnP-ADMM scheme and used as comparison method. In particu-

lar, the CNN-based flexible learning method, known as the trainable nonlinear reaction

diffusion (TNRD) [71], was used given its efficiency within regularization by denoising

approaches [286]. Finally, a PnP-ADMM algorithm coupled with an Anscombe transfor-

mation (VST) and a BM3D denoiser, denoted by P4IP in [287] was used for comparison.

Note that TNRD has been also used with and without VST. The resulting algorithms

are denoted by ADMM+TNRD and ADMM+VST+TNRD. It is important to mention that

the methods used for comparisons such as TV-ADMM, P4IP and ADMM+VST+TNRD

are particularly designed for handling data degraded by Poisson noise, and are there-

fore appropriate choices as comparative methods to the proposed Poisson deconvolution

algorithm.

As explained previsouly, the proposed method does not require such a VST-like trans-

formation due to the adaptive nature of the embedded denoiser. Therefore, the proposed

algorithm is expected to present better generic convergence properties compared to P4IP.

In the example in Fig. 5.8, where P4IP had fast convergence, the rate of convergence of

QAB-PnP is similar to P4IP and faster than TV-ADMM, ADMM+BM3D, ADMM+TNRD

and ADMM+VST+TNRD. To evaluate the computational complexity of the proposed

algorithm in comparison with other standard techniques, the average computational

time and required number of iterations before convergence are given in Table 5.2 with

respect to different images. The results confirm the faster convergence of the proposed

method, albeit, at the cost of higher computational time per iteration.

The deconvolution results obtained with the six methods can be visually appreciated

in Figs. 5.9, 5.10 and 5.11. The PSNR and the structure similarity (SSIM) [366] were

used to evaluate the deconvolution accuracy. The resulting numerical results, for two

different blurring kernels and three different SNRs, are regroupped in Table 5.3. In

particular, average and standard deviation values are reported for 200 noise realizations.

For further investigation, the quantitative results obtained with the proposed method in

presence of very high-intensity noise, in particular, with SNRs close to 5 dB and 0 dB,

are provided in Table 5.4.

One may observe that the proposed scheme is capable to adapt both to low and high

level of noise and outperforms the five other methods in almost all the simulations. It is

important to note that QAB-PnP not only provides the best average values, but also the
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TABLE 5.3. Quantitative results (average over 200 noise realizations). Best
results are shown in bold.

Gaussian kernel hσ=3
4×4

Sample Method
Poisson Noise (20 dB) Poisson Noise (15 dB) Poisson Noise (10 dB)
PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

Synthetic

TV-ADMM 26.46±0.10 0.66±0.01 24.80±0.34 0.58±0.01 22.52±1.55 0.52±0.02
ADMM+BM3D 23.37±0.16 0.73±0.01 19.70±0.23 0.54±0.01 17.67±0.37 0.47±0.02
ADMM+TNRD 23.94±0.14 0.65±0.01 21.55±0.31 0.56±0.01 18.88±0.40 0.40±0.01
ADMM+VST+TNRD 23.96±0.11 0.71±0.02 21.73±0.19 0.54±0.02 19.02±0.23 0.38±0.03
P4IP 23.90±1.37 0.74±0.06 20.91±2.18 0.59±0.11 18.96±3.34 0.48±0.18
QAB-PnP 29.86±0.12 0.92±0.00 27.18±0.43 0.86±0.01 24.23±1.34 0.74±0.03

Lena

TV-ADMM 27.37±0.31 0.74±0.01 24.52±0.65 0.66±0.01 19.97±1.32 0.52±0.02
ADMM+BM3D 25.87±0.40 0.75±0.01 23.59±0.66 0.66±0.03 17.59±1.02 0.50±0.05
ADMM+TNRD 25.76±0.19 0.71±0.01 24.67±0.21 0.69±0.01 19.22±0.38 0.50±0.02
ADMM+VST+TNRD 25.85±0.23 0.69±0.01 24.73±0.39 0.60±0.01 19.11±0.80 0.42±0.07
P4IP 27.32±0.44 0.81±0.01 24.87±2.76 0.76±0.07 18.67±4.83 0.55±0.16
QAB-PnP 28.97±0.19 0.81±0.00 27.04±0.44 0.75±0.01 20.18±3.39 0.65±0.08

Fruits

TV-ADMM 20.51±0.38 0.57±0.01 19.02±0.23 0.55±0.01 17.54±0.93 0.51±0.01
ADMM+BM3D 19.75±0.42 0.61±0.01 17.07±0.20 0.53±0.01 13.59±0.35 0.51±0.02
ADMM+TNRD 19.73±1.91 0.64±0.02 17.41±0.57 0.59±0.01 16.67±0.79 0.51±0.06
ADMM+VST+TNRD 20.65±0.39 0.64±0.01 18.40±1.19 0.58±0.02 16.51±1.36 0.43±0.08
P4IP 20.42±1.79 0.59±0.04 17.22±4.62 0.52±0.11 14.35±3.85 0.53±0.04
QAB-PnP 21.37±0.94 0.62±0.01 19.35±0.96 0.57±0.02 17.28±3.55 0.51±0.12

Gaussian kernel hσ=5
4×4

Sample Method
Poisson Noise (20 dB) Poisson Noise (15 dB) Poisson Noise (10 dB)
PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

Synthetic

TV-ADMM 26.47±0.07 0.59±0.01 25.23±0.14 0.54±0.01 23.15±0.29 0.44±0.01
ADMM+BM3D 22.95±0.18 0.70±0.01 19.78±0.24 0.53±0.01 17.89±0.34 0.46±0.02
ADMM+TNRD 23.81±0.18 0.66±0.01 21.72±0.22 0.58±0.02 19.03±0.44 0.41±0.01
ADMM+VST+TNRD 23.89±0.12 0.69±0.01 21.82±0.22 0.52±0.02 18.96±0.34 0.37±0.04
P4IP 22.35±2.15 0.67±0.09 20.60±2.87 0.56±0.12 18.67±3.42 0.49±0.21
QAB-PnP 29.44±0.13 0.91±0.00 27.24±0.58 0.86±0.01 24.06±1.07 0.73±0.02

Lena

TV-ADMM 27.17±0.25 0.74±0.01 25.11±0.46 0.61±0.01 19.41±0.42 0.44±0.01
ADMM+BM3D 25.02±0.48 0.73±0.01 23.51±0.78 0.65±0.02 17.64±1.47 0.48±0.06
ADMM+TNRD 25.44±0.17 0.71±0.01 24.43±0.26 0.68±0.02 19.20±0.23 0.51±0.02
ADMM+VST+TNRD 25.46±0.29 0.69±0.01 24.53±0.32 0.60±0.01 19.41±0.49 0.43±0.05
P4IP 27.26±0.34 0.81±0.01 25.07±2.90 0.77±0.06 17.99±4.73 0.54±0.21
QAB-PnP 28.80±0.21 0.81±0.00 26.63±1.01 0.76±0.03 20.20±3.89 0.67±0.05

Fruits

TV-ADMM 19.94±0.25 0.57±0.01 17.24±0.28 0.55±0.01 16.58±0.34 0.50±0.01
ADMM+BM3D 19.15±0.58 0.60±0.01 17.11±0.33 0.54±0.01 13.45±0.55 0.50±0.02
ADMM+TNRD 19.68±1.10 0.63±0.02 17.95±0.96 0.58±0.01 16.13±0.74 0.51±0.06
ADMM+VST+TNRD 20.18±0.29 0.65±0.01 18.16±0.87 0.58±0.01 16.45±1.04 0.45±0.03
P4IP 20.47±1.99 0.61±0.05 17.49±3.44 0.56±0.04 13.83±4.22 0.51±0.05
QAB-PnP 20.24±1.09 0.60±0.01 18.83±0.71 0.58±0.01 17.44±2.09 0.53±0.02
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lowest standard deviations, in particular compared to P4IP. This observation is confirmed

by the results in Fig. 5.12, that displays, for a given simulation, the best, the worst and

an intermediate result over 200 noise realizations. While the difference between these

three results is barely observable for the proposed method, this is not the case for P4IP.

Finally, one may observe the big accuracy difference between the proposed method and

the five others for the synthetic image. Indeed, in presence of strong noise intensities the

methods particularly associated with the VST (or the Anscombe transformation) exhibit

more volatility compared to others. This VST only provides a Gaussian approximation of
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· · ·Continued on next page.
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(a) Clean Lena image (b) PSNR 27.40dB, SSIM .81 (c) PSNR 15.68dB, SSIM .56 (d) PSNR 22.23dB, SSIM .68
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(e) Clean Lena image (f) PSNR 27.71dB, SSIM .77 (g) PSNR 24.93dB, SSIM .74 (h) PSNR 26.96dB, SSIM .76

FIGURE 5.12. The best, the worst and an intermediate deconvolution results
over 200 noise realizations obtained using TV-ADMM, ADMM+BM3D,
ADMM+TNRD, ADMM+VST+TNRD, P4IP and the proposed QAB-PnP
method for Lena image degraded by a Gaussian blurring kernel h4×4

σ=3 and
Poisson noise corresponding to a SNR of 15 dB.

TABLE 5.4. Quantitative deconvolution results when images are corrupted with
high intensity noise.

Gaussian kernel hσ=3
4×4 + Poisson Noise

Sample
SNR ≈ 5 dB SNR ≈ 0 dB

PSNR (dB) SSIM PSNR (dB) SSIM
Synthetic 18.76 0.41 16.48 0.35

Lena 16.25 0.49 15.72 0.42
Fruits 15.04 0.39 13.32 0.30

a Poissonian distribution and is contaminated with higher inaccuracies as noise intensity

increases. Our method does not suffer from such issues and provides a stable output

despite the noise level and realization.

5.4 Application to Fluorescence Microscopy Imaging

This section highlights the applicability of the proposed deconvolution method to real-

life imaging applications, in particular to fluorescence microscopy imaging using, e.g.,
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confocal [263] or two-photon [93] microscopes. Fluorescence microscopy images are intrin-

sically noisy, contaminated by Poisson-Gaussian noise. Poisson noise is the dominating

source of noise [90, 253, 415], due to a limited number (∼ 102 per pixel) of quantized

photons captured by a microscopic detector compared to normal photography (∼ 105 per

pixel). Therefore, enhancing such contaminated fluorescence images is of interest for

many modern biological studies.

Herein, we used three microscopy images from the online available data-set1 to

illustrate the potential of the proposed method. Fig. 5.13 regroups the observed distorted

images, their corresponding ground truth, and the deblurred images estimated by the

six methods. PSNR and SSIM values comparing the observed and the deblurred images

to the clean ones are given in Table 5.5. These results clearly show the efficiency of the

proposed algorithm in real fluorescence microscopy image enhancement.

5.5 Conclusions

This chapter proposed a new PnP-ADMM scheme to handle Poisson deconvolution

problems. Although Gaussian denoiser-based PnP-ADMM algorithms have achieved

enormous success in the domain of image restoration, they are still facing a theoretical

limitation related to the Anscombe transformation used to approximately transform the

Poisson noise into additive Gaussian noise. Under this transformation, the convolution
1http://tinyurl.com/y6mwqcjs

TABLE 5.5. Quantitative results for experimental fluorescence microscopy im-
ages. Best results are shown in bold.

Methods Data Confocal microscopy Two-photon microscopy
Zebra Fish Mouse Brain Mouse Brain

Observed PSNR (dB) 20.20 27.37 24.07
Data SSIM 0.37 0.59 0.40

D
eb

lu
rr

ed
R

es
ul

ts

TV-ADMM PSNR (dB) 24.27 30.27 26.57
SSIM 0.61 0.88 0.70

ADMM+BM3D PSNR (dB) 24.74 32.97 27.66
SSIM 0.74 0.90 0.81

ADMM+TNRD PSNR (dB) 25.85 34.26 31.04
SSIM 0.79 0.91 0.89

ADMM+VST+TNRD PSNR (dB) 25.88 34.44 31.23
SSIM 0.79 0.90 0.90

P4IP
PSNR (dB) 25.18 33.06 27.09
SSIM 0.77 0.92 0.85

QAB-PnP PSNR (dB) 28.91 35.68 30.14
SSIM 0.82 0.93 0.79
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operation is not invariant. To overcome this drawback, we proposed in this work the

QAB denoiser derived from principles of quantum mechanics, whose architecture makes

it well adapted to different noise statistics, explaining its good behavious as denoiser

embedded in a PnP-ADMM algorithm. The simulation results allowed to provide an

in-depth analysis of the impact of the hyperparameters on the accuracy and computation

efficiency of the proposed method. They also allowed to show its interest compared to

five existing methods.

Zebra Fish (Confocal microscopy imaging)

(a) Ground truth (b) Observed image (c) TV-ADMM (d) ADMM+BM3D

(e) ADMM+TNRD (f) ADMM+VST+TNRD (g) P4IP (h) QAB-PnP

Mouse Brain (Confocal microscopy imaging)

(i) Ground truth (j) Observed image (k) TV-ADMM (l) ADMM+BM3D

(m) ADMM+TNRD (n) ADMM+VST+TNRD (o) P4IP (p) QAB-PnP

· · ·Continued on next page.
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· · ·Continued from previous page.
Mouse Brain (Two-photon microscopy imaging)

(a) Ground truth (b) Observed image (c) TV-ADMM (d) ADMM+BM3D

(e) ADMM+TNRD (f) ADMM+VST+TNRD (g) P4IP (h) QAB-PnP

FIGURE 5.13. Deconvolution results for experimental fluorescence mi-
croscopy images using TV-ADMM, ADMM+BM3D, ADMM+TNRD,
ADMM+VST+TNRD, P4IP and the proposed QAB-PnP method. The pro-
posed QAB-PnP algorithm used E = 4.1, λ0 = 1.3, ℏ2/2m = 4 and γ= 1.01,
σQA B = 7.

5.5.1 Limitations

An issue of our method is the computational burden. The use of the OMP algorithm al-

ready dramatically decreases this time compared to earlier implementation in Chapter 4,

but other improvements are certainly possible. For small-scale images, the proposed

algorithm is computational efficient but for a larger image, this process still demands

higher computing resources. Moreover, processing a large-scale image in a block-wise

fashion as proposed in Chapter 4, is done independently for each block. However, this

strategy of processing each block separately cannot benefit from the idea of structural

similarities in a local image neighborhood, which is a key feature of natural images.

Furthermore, in presence of random noise, a Gaussian smoothing is required to avoid

the phenomenon of quantum localization. In absence of this smoothing, the localized

adaptive vectors become less efficient for an imaging task as discussed in Chapter 4.
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5.5.2 Perspectives

The computational limitation can be solved by incorporating a many-patch architecture

based on the many-body quantum theory. Such an algorithm will be proposed in the

subsequent Chapter 6. The advantage of such many-patch construction is not limited to

the computing power but also removes the effect of quantum localization and efficiently

preserves the structural similarities from a local image neighborhood. As shown in

Chapter 4, the proposed quantum adaptive basis is equally efficient for Gaussian, Poisson

and speckle noise removal problems without considering any prior information about

the noise statistics. Therefore, the proposed deconvolution method could be suitable for

other noise degradation than Poisson, and its evaluation in such conditions represents

an interesting perspective. As another future perspective of this work one may think of

implementing a more advanced inversion algorithm for a Poissonian model (e.g., SPIRAL-

TAP [158]) instead of using a gradient descent method. Moreover, blind deconvolution is

also an interesting perspective for future study, by coupling the proposed deconvolution

algorithm with a PSF estimation method [107, 392]. Finally, such a PnP scheme can

be further extended to other reconstruction problems, such as compressed sensing

or super-resolution, using more efficient quantum mechanics based algorithms or by

including the patch-based procedure to the proposed framework, using for example the

multiple-particle quantum theory. In the following Chapter 6, we will illustrate the

image-resolution task following the PnP and a more robust version of the PnP scheme,

known as regularisation by denoising (RED), in combination with an advanced QAB

denoised based on the many-body quantum theory.
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∗ This chapter presents materials from the journal paper [117] and conference papers

[110, 111, 119].

Overview

Sparse representation of real-life images is a very
effective approach in imaging applications, such
as denoising. In recent years, with the growth of
computing power, data-driven strategies exploiting
the redundancy within patches extracted from one
or several images to increase sparsity have become
more prominent. This chapter presents a novel im-
age denoising algorithm exploiting such an image-
dependent basis inspired by the quantum many-
body theory. Based on patch analysis, the similarity
measures in a local image neighborhood are formal-
ized through a term akin to interaction in quan-
tum mechanics that can efficiently preserve the local
structures of real images. The versatile nature of
this adaptive basis extends the scope of its appli-
cation to image-independent or image-dependent
noise scenarios without any adjustment. We carry
out a rigorous comparison with contemporary meth-
ods to demonstrate the denoising capability of the
proposed algorithm regardless of the image char-
acteristics, noise statistics and intensity. We illus-
trate the properties of the hyperparameters and their
respective effects on the denoising performance, to-
gether with automated rules of selecting their values
close to the optimal one in experimental setups with
ground truth not available. Finally, we show the
ability of our approach to deal with real-medical
imaging problems such as medical ultrasound im-
age despeckling applications and clinical dental
computed tomography image super-resolution (SR)
problems using Plug-and-Play (PnP) and Regular-
ization by Denoising (RED) approaches.
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6.1 Introduction

6.1.1 Image Representation and Related Works

As detailed in Chapter 3, during the past two decades, the redundancy between patches

extracted from one or several images has been shown to be a key aspect for number

of imaging techniques to increase the sparsity and overcome the limitations of the

traditional transforms. Data-driven techniques to exploit the non-local self-similarity

(NLSS) while processing a group of similar patches is big breakthrough in recent decades.

With the growth of computing power, these patch-based algorithms exploiting NLSS have

demonstrated state-of-the-art performance in image denoising, For example, dictionary

learning [10, 123], block-matching and 3D filtering (BM3D) [82, 83], Non-Local Means

(NLM) [48, 50], etc. This chapter explores such an approach of exploiting the image

neighborhood by borrowing tools from quantum mechanics, precisely, the quantum

interactions.

6.1.2 Contributions

In this chapter, we propose a novel image representation algorithm well adapted for

denoising based on the theory of quantum many-body interaction. In the case of a system

containing two or more quantum particles, they can influence each other’s quantum

state through quantum interactions. The main idea of this work is to adapt ideas from

this theory to extend the concept of interaction to imaging problems. More precisely, the

proposed framework consists in quantum interactions between image patches where

interactions reflect patch similarity measures in a local neighborhood. In this way, each

patch acts as a single-particle system, and the whole collection, that is the entire image,

behaves as a many-body system where interactions describe regional similarities to

neighboring patches. Herein, we show that this method constitutes a robust generalized

formalism for image-independent and image-dependent noise models with an extensive

study in:

(i) the characterization of the hyperparameters and automated ways to predict

their optimal values with limited knowledge about the input image,

(ii) investigation on the denoising possibilities beyond Gaussian statistics without

any modification of the algorithms,
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(iii) a detailed discussion of denoising performance compared to state-of-the-art

methods for both image-independent and image-dependent scenarios,

(iv) application on real medical data for ultrasound (US) image despeckling,

(v) application on clinical dental computed tomography image super-resolution

(SR) problems using Plug-and-Play (PnP) and Regularization by Denoising

(RED) approaches.

Earlier proposed single-particle based schemes [25, 112–114, 185, 389, 391] have

proven their good restoration abilities for different noise models, but are too simple to

take advantage of the structural properties of the image and are computationally costly

at large scale. As we will show, the proposed generalized framework based on the use of

quantum many-body physics improves the previous methods on both counts, building

a more versatile computationally efficient adaptive basis that considers similarities

between neighboring image patches.

In general, it may seem that there is a close architectural resemblance between the

NLM and the proposed many-body scheme since similarity measure is the key for both

cases. However, the two methods are different from several perspectives. The NLM image

denoising algorithm exploits the self-similarities among the image patches to obtain

the similarity weights resulting into a non-local weighted average scheme for denoising.

The proposed approach brings non-local characteristics within the quantum framework,

where interactions between neighboring patches preserve the local structural similarities.

For each patch, these interactions convey the structural information into a quantum

adaptive basis offering a good sparsifying transformation at a patch level further used for

denoising. It turns out that such a theory can be elegantly written using multi-particle

quantum theory instead of the single-particle one.

In the chapter, we first remind briefly of the previously proposed decomposition con-

cept in Chaptre 4 using a quantum adaptive basis based on single-particle theory with

its limitations in Section 6.2.1, and then introduce its generalization using many-body

quantum theory for imaging problems in Section 6.2.2. Our image denoising algorithm

is described in detail in Section 6.3. We then turn to numerical implementation of the

method on several examples in Section 6.4. We first explore ways to propose automated

rules for hyperparameters selection, and then display numerical results showing that

the ability of the proposed method in reducing low and high intensity noise regardless of

the noise statistics. We also show its good performance in real-life medical US image de-

speckling in Section 6.5 and clinical dental computed tomography image super-resolution
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FIGURE 6.1. A simple example of the construction of adaptive vectors from
many-patch interaction.

(SR) applications in Section 6.6, which highlight the potential of the proposed scheme for

real-world problems. Finally we end with conclusions and perspectives in Section 6.7.

6.2 Quantum Many-Body Theory for Imaging

6.2.1 Quantum Theory for a Single-Particle System

6.2.1.1 Quantum Theory

Before detailing the proposed method, we briefly review, for self consistency, the quantum

mechanical method for denoising built on single-particle theory introduced in [114]. For

more details on quantum theory, one may refer to one of the many textbooks on this
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subject, e.g. [79, 130, 205].

In a non-relativistic single-particle quantum system the wave function ψ(z) describes

a particle with energy E in a potential V (z) and satisfies the stationary Schrödinger

equation:

(6.1) − ℏ2

2m
∇2ψ(z)+V (z)ψ(z)= Eψ(z),

with m, ℏ, ∇, and z are respectively the mass of the quantum particle, the Planck

constant, the gradient operator, and the spatial coordinate. The wave function ψ(z) is

an element of the Hilbert space of L2-integrable functions, and its modulus square i.e.,
|ψ(z)|2, gives the probability of presence of the particle at some point z on the potential

V (z).

The wave function solutions of (6.1) form a complete set of basis vectors of the

Hilbert space with the following properties: i) Wave vectors are oscillating functions. ii)

Oscillation frequency increases with increasing energy E. iii) The basis vectors oscillate

with a local frequency proportional to
p

E−V (z) , thus for the same wave function the

frequency differs locally depending on the local value of E−V (z). iv) The hyperparameter

ℏ2/2m controls the dependence of the local frequency on E−V (z). These properties of

the basis vectors are the key features to use them as an adaptive basis for an imaging

problem. For a more detailed illustration of these features, we refer readers to Chapter 4.

6.2.1.2 Application to Imaging Problems

To adapt these concepts to image processing applications, the wave equation (6.1) is

rewritten in operator notation leading to Hψ(z) = Eψ(z) with Hamiltonian operator

H =−(ℏ2/2m)∇2+V (z). The eigenvectors of the Hamiltonian operator are the stationary

solutions of (6.1).

For imaging applications, the space is finite and discretized, and the potential V
of the system may be defined as the image pixel values x. This leads to a discretized

problem, where the Hamiltonian operator becomes a finite matrix and can be used as

a tool for constructing an adaptive basis [114]. This discretized Hamiltonian operator

reads:

H[i, j]=



x[i]+4
ℏ2

2m
for i = j,

− ℏ2

2m
for i = j±1,

− ℏ2

2m
for i = j±n,

0 otherwise,

(6.2)
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where x ∈ Rn2
is an image (i.e., V = x), and x[i] and H[i, j] represent respectively the

i-th component of the image x, vectorized in lexicographical order and the (i, j)-th
component of the operator. Note that standard zero padding is used to handle the

boundary conditions. A more detailed description of the Hamiltonian construction can be

found in Chapter 4. The corresponding set of eigenvectors of the Hamiltonian operator

(6.2) serves as the quantum adaptive basis on which the image is decomposed before

denoising is performed by thresholding the coefficients in energy.

6.2.1.3 Shortcomings of the Single-Particle Theory in Image Processing

This method of constructing an adaptive basis using quantum principles in a single-

particle setting has already been studied in some of our previous works, notably for

image denoising in Chapter 4 and deconvolution in Chapter 5. This adaptive method

not only is effective for handling different noise statistics (e.g., Gaussian, Poisson) but

also equally efficient for different levels of noise (low as well as high-intensity noise).

Nevertheless, there are some technical and intrinsic challenges, such as:

i) Structural features are crucial for imaging applications, but this adaptive approach

does not take advantage of them.

ii) The random noise present in the system leads to the well-known phenomenon of

quantum localization [19] of the wave vectors. The presence of this subtle quantum

phenomenon gives additional structures to the adaptive basis and makes it less

effective for image denoising. This problem was cured in Chapter 4 by adding an

additional step of low-pass filtering, for example, through a Gaussian filter with

appropriate standard deviation, of the noisy image. This complicates the method and

in particular entails the integration of a new hyperparameter (standard deviation)

in the algorithm, which increases the complexity of hyperparameter tuning.

iii) The computational burden of such a method can be quite large compared to other

sophisticated state-of-the-art methods, thus preventing it from implementation in

large-scale images.

In the following, we will show that these drawbacks can be addressed by constructing

a new adaptive basis by exploiting quantum many-body theory, more precisely the

physics of quantum interactions.
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6.2.2 Quantum Many-Body Theory for Image Processing

6.2.2.1 Quantum Theory for Many Particles

The quantum theory described above is modified for a system with more than one particle

as illustrated in Chapter 2 Section 2.8. In particular, particle-to-particle interactions

take place inside the quantum system. For a system with w particles the Hamiltonian

operator for the many-body system becomes [232]:

(6.3) H(z1, z2, z3, · · · , zw)=−
w∑

a=1

ℏ2

2ma
∇2 +V (z1, z2, z3, · · · , zw),

where ma is the mass of the a-th particle and the potential V = V (z1, z2, z3, · · · , zw) is

a function of z1, z2, · · · , zw, the spatial coordinates of the w particles. Thus, for a given

energy E the associated wave function ψ depends on z1, z2, · · · , zw, and satisfies a new

Schrödinger equation:

(6.4) Hψ(z1, z2, · · · , zw)= Eψ(z1, z2, · · · , zw).

6.2.2.2 Application to Image Processing

We propose to extend this multi-body theory to build an adaptive basis for imaging

applications by assimilating similarities between patches into the quantum framework

using the hypothesis as proposed in Chapter 2 Section 2.8. Similar to non-local means

filter-based approaches, the proposed algorithm splits the image or a local region into

into small patches ranging from 1 to w. Each of these patches acts as a single-particle

quantum system, which allows the Hamiltonian operator to be defined for each patch as

follows:

(6.5) Ha = ︸ ︷︷ ︸
H0a

− ℏ2

2ma
∇2 +

V e f f ective
a︷ ︸︸ ︷

V (za)+ Ia, a = 1, · · · ,w,

where H0a is the Hamiltonians in the patch A for a single particle system (as discretized

in (6.2)). Ia =∑w
b=1,b ̸=a Iab represents the total interaction between the patch A and the

other patches in the system, where Iab is the interaction between the A and B patches.

Thus, inside the patch A the effective potential V e f f ective
a is

(6.6) V e f f ective
a =V (za)+ Ia =V (za)+

w∑
b=1,b ̸=a

Iab.
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Therefore, we have a different adaptive basis for each patch containing a unique effective

potential V e f f ective
a associated with an energy Ea. Fig. 6.1 depicts one such simple

example of constructing adaptive vectors from the many-patch interaction concept. Thus

the problem of finding the adaptive basis is transformed into the solution of a system of

w equations, as follows:

(6.7) Haψ(za)= Eaψ(za), a = 1,2, · · · ,w.

where similar discretization procedures should be used in each patch as in (6.2).

6.2.2.3 Definition of the Quantum Interaction Between two Image Patches

Interaction between two or more objects is a universal phenomenon that governs the

world at a very basic level, fundamentally classified into four groups: gravitational,

electromagnetic, strong, and weak interactions. The gravitational and electromagnetic

interactions have long-range properties characterized by power laws. We extend this

concept to an imaging problem by introducing the interaction between two image patches,

as follows:

• There is an inverse proportionality between the interaction and the square of the

Euclidean distance (i.e., physical distance) between the patches, i.e., Iab ∝ 1
D2

ab
,

where Dab is the Euclidean distance between two patches denoted by A and B.

• There is a linear proportionality between the interaction and the absolute value of

the pixel-wise difference between the patches. This process is defined pixel-wise,

i.e., I i
ab ∝|A i −Bi|, i = 1,2, · · · ,Pdim, where superscript i and Pdim are associated

with the i-th pixel and the number of pixels in every image patch respectively.

Hence, within the proposed image processing framework, the power law for an

interacting many-patch system can be defined as

(6.8) I i
ab = p

|A i −Bi|
D2

ab

, i = 1,2, · · · ,Pdim,

where the proportionality constant p acts as a hyperparameter for the proposed formal-

ism.

6.2.2.4 Interaction and Patch Similarity in Image Processing

In our many-patch model the proposed mathematical formalism of the power law inter-

action can be interpreted in the following way:
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FIGURE 6.2. Average inverse participation ratio (IPR) of all the adaptive basis
vectors as a function of signal to noise ratio for the Lena image degraded by
AWGN using different sizes of the image patch.

(i) two patches with similar pixel values have smaller interaction than the ones with

very different values,

(ii) patches located far from each other have small interaction regardless of their pixel

values.

In other words, neighboring patches show high interactions if they are very different

from each other based on pixel values, while distant patches are always less interactive

despite their possible dissimilarity. Based on these principles, the power law manifests it-

self in such a way that the effective potential of the patch A is V e f f ective
a . This is obtained

after the combination of the initial potential (i.e., the target patch itself) with the total

interaction between the target patch and its neighboring patches, exploiting the concept

of patch similarity in the local neighborhood. This local-similarity is a fundamental

building block of real images that preserves structural features [48]. We note that power

laws other than the inverse square law could be used, thus modifying the importance of

distant patches compared to the nearby ones in the proposed methodology.
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6.2.2.5 Why the Many-Patch Theory Avoids the Quantum Localization
Problem

The presence of random fluctuations in the potential of a quantum system leads to the

phenomenon of quantum localization, also known as Anderson localization [19]. This is a

property of wave functions in a disordered potential which makes them exponentially

localized due to destructive interference. As a consequence, the adaptive basis vectors for

various imaging problems are localized at different positions of the potential in presence

of random noise, which makes the adaptive basis less suitable for image decomposition

tasks. In Chapter 4, this challenge was solved by adding a cumbersome first step of

image low-pass filtering, with an additional hyperparameter involved. A more detailed

discussion of this phenomenon, in particular for image decomposition and denoising, can

be found in the previous Chapter 4.

In the framework of the many-patch theory described above, the decomposition is

done at the level of the individual patch, much smaller than the full image. The inverse

participation ratio (IPR) of the wave functions, defined as
(∑

i |ψ(i)|2)2/∑
i |ψ(i)|4 for

a wave function ψ, gives a measure of the localization. For a vector uniformly spread

over L indices and zero elsewhere, the IPR is exactly L. More generally, the localization

length of localized wave functions is proportional to the IPR. It is known from localization

theory that this localization length decreases with the intensity of the disorder. Thus

unless the noise is extremely strong, the localization length may be larger than the patch

size, making the localization irrelevant for our problem. Fig. 6.2 shows the average IPR

(measuring the localization length) of all the adaptive basis vectors for the Lena image

degraded by additive white Gaussian noise (AWGN) with increasing signal to noise ratio

(SNR) using different patch sizes. This illustration confirms that the IPR decreases with

the SNR, but this effect reduces with patch size. For example, for a 80×80 patch, the

IPR decreases rapidly with decreasing SNR (increasing noise intensity) and becomes less

than the patch size for SNR ≤ 12 dB, making the system extremely localized. However,

for smaller patches like 7×7, almost no such effect is visible for similar noise intensities.

In other words, the localization effect becomes less important in a small patch than in a

large one and turns out to be irrelevant below a certain level of patch size. We found out

that even for fairly strong noise it is always possible to find a patch size smaller than

the average IPR that makes irrelevant the localization effect, avoiding the need of the

low-pass filtering to create the adaptive basis.

163



CHAPTER 6. A NOVEL IMAGE DENOISING ALGORITHM USING CONCEPTS OF QUANTUM MANY-BODY THEORY

6.3 Quantum Many-Patch Interaction for Imaging
Applications: Problem of Image Decomposition

6.3.1 Key Principles of the Proposed Many-Patch Model

The objective of this work is to propose a methodology of an explicit construction of an

adaptive basis related to the many-body interaction theory under the principles:

• Every small patch extracted from an image corresponds to a quantum particle;

each of these image-patches or potential surfaces with a quantum particle acts like

a single-particle system.

• These single-particle systems are not isolated from each others, on the contrary,

the interaction between them and other patches occurs within the whole image,

like a quantum many-body system, where a particle-to-particle interaction takes

place in the quantum system.

• As a consequence of these interactions, the effective potential (see (6.6)) of quantum

particles changes, thus the local oscillation frequency of the wave function depends

on these interactions.

• These interactions transmit structural features to the wave functions through the

effective potential.

• The effective potentials will be used to construct an adaptive basis for each individ-

ual patch, in particular used for the decomposition of that patch.

• As an element of the set of oscillatory functions, this basis function uses low

oscillation frequencies to probe higher values of the effective potential and vice-

versa, i.e., local frequencies depend on the effective potential, and thus on the pixel

values and inter-patch interactions.

6.3.2 Denoising Algorithm using Quantum Many-Patch
Interactions

This subsection illustrates in detail the application of the proposed many-patch scheme

to address image denoising. In this application, the construction of an adaptive basis

for each individual image-patch is the primary objective, which leads to a three step
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denoising strategy: decomposition of that patch using the adaptive basis, thresholding of

the projection coefficients, and finally recovery of the denoised patch by back-projection.

These basis vectors are the eigenvectors of the Hamiltonian matrix (6.2), constructed

from the effective potential (6.6).

These adaptive vectors belong to the Hilbert space of oscillatory functions with: i)

the frequency of oscillation increases with increasing energy value (i.e., eigenvalue in

(6.7)), and ii) a given basis vector uses low oscillation frequencies to probe higher values

of the effective potential and vice-versa. It is now assumed that the noise primarily

rules the high-frequency components of the image, i.e., eigenvectors corresponding to

higher energy eigenvalues. Therefore as in the single-particle algorithm, thresholding

in energy should be done to eliminate the image components associated with the high

energy eigenvectors.

In the proposed interaction framework, the structural similarity between neighboring

image patches is assumed to be an innate property of the image. Hence two neighboring

patches are assumed to be similar to the extent of random noise. Following the definition

(6.8), two adjacent patches show high interaction if they are pixel-wise dissimilar (i.e.,
random noise is present), thus further contributing to the effective potential (6.6). In

other words, the interaction term or ultimately the effective potential increases if the

noise intensity increases, which eventually shifts the high-frequency noise components

of the image to even higher energy eigenvectors. Thus, in order to have a denoised patch,

a noisy patch is projected onto a d-dimensional subspace that is constructed by the

lowest energy solutions of (6.7) and the denoised patch is rebuilt from these projection

coefficients. In this way, a lack of similarity between pixels leads to a stronger denoising,

since for the same value of the energy these regions will have lower frequencies than the

ones with more similarity. Here, d acts as a thresholding hyperparameter. Combining

all the denoised patches, following a path similar to the one proposed in the non-local

means architecture, one can obtain the final denoised image. Hereafter this proposed

adaptive quantum denoiser which integrates the quantum theory of interactions to

imaging problems is called Denoising by Quantum Interactive Patches (De-QuIP). The

whole denoising process is displayed in Algorithm 6.1.

6.3.3 Computational Complexity

In the precedingly developed algorithm based on single particle quantum physics (in

Chapter 4), the computational complexity of the algorithm was essentially controlled by

the diagonalization of a large Hamiltonian matrix and the identification of its eigenvec-
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Algorithm 6.1: De-QuIP algorithm.

Input: y , Ph, Wh, d, p, ℏ2/2m

1 Divide the noisy image y into small patches of size Ph; say total number is Tpatch.
So, the patch dimension Pdim = Ph

2

2 for w = 1 : Tpatch do
3 Choose one small image patch Jw
4 Create a search window of size Wh centering at Jw and using cyclic boundary

conditions
5 Collect all the small image patches inside this search window; say the total

number is Spatch

6 for l = 1 : Spatch do
7 Calculate Euclidean distance Dwl between the Jw and J l patch inside the

search window
8 Calculate interaction Iwl between the Jw and J l patch inside the search

window as, Ik
wl = p

|Jk
w − Jk

l |
D2

wl

, k = 1, · · · ,Pdim

9 Calculate total interaction I total
w between the patch Jw and the patches

inside the search window by taking sum over all l; i.e.,
I totalk

w =∑Spatch
l=1 Ik

wl , k = 1, · · · ,Pdim

10 Effective potential for the Jw patch is

V e f f ectivek

w = Jk
w + I totalk

w , k = 1, · · · ,Pdim

11 Construct the Hamiltonian matrix Hw using the effective potential V e f f ective
w

12 Calculate the eigenvalues and eigenvectors of Hw

13 Construct adaptive basis Badaptive
w using the eigenvectors ψk

w, k = 1, · · · ,Pdim

14 Project the noisy patche Jw onto this adaptive basis Badaptive
w

15 Calculate projection coefficients cw in the Pdim-dimensional space. Note that,
Pdim > d

16 Redefine the projection coefficients in the d-dim subspace as
cnewk

w = ck
w,k = 1, · · · ,d

17 Reconstruct the patch by Rw =∑d
k=1 cnewk

w ψk
w

18 Combining all Tpatch number of small denoised image patches Rw restores the
full denoised image x̂

Output: x̂
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House (2562) Lake (2562) Lena (5122) Hill (2562) Fingerprint (5122) Saturn (2562)

Flintstones (5122) Ridges (5122) Peppers (2562) Cameraman (2562)Bridge (2562)

FIGURE 6.3. Sample images (sizes in parentheses).

tors. For an image of size n×n, this matrix is n2×n2. In general, for an arbitrary matrix,

the diagonalization process would require O(n6) operations and O(n4) storage space.

However, for a highly sparse matrix (like the Hamiltonian matrix), efficient iterative

methods such as the Lanczos method reduce the computational complexity to O(n4)

operations with O(n4) space complexity required for the diagonalization.

In the case of the many patch algorithm, the denoising is done patch-wisely (of size

Ph ×Ph), the time and space complexity become O(P4
h) for each denoise region, much

smaller than the previous one for Ph ≪ n. Yet, the best time complexity one can achieve

is O(dP2
h) if one computes only the d eigenvectors used for the restoration task (with

d ≤ P2
h), with a space complexity also in O(dP2

h).

Apart from the diagonalization, the second major contribution comes from the compu-

tations of the transform coefficients using an iterative scheme that would require O(dPh)

operations for each denoise region.

The interaction count for each denoise region gives a complexity in total of O((Spatch+
1)Ph) if there are Spatch patches inside the Wh ×Wh size search window.

Therefore, if the image consists of Tpatch regions (patches), then the dominant compu-

tational cost of the proposed denoising algorithm is O(TpatchdP2
h). Additionally, parallel

computation can be used to boost up the process even further.
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6.4 Simulation Results

This section illustrates the interest of the proposed approach in image denoising problems

and explores ways to choose the suitable hyperparameters. At the outset, Subsection 6.4.1

explains the reliance of the proposed denoising scheme on the optimal choice of the hy-

perparameters Ph, Wh, p, ℏ2/2m and d, and explores rules for their possible estimations.

For a thorough investigation, we explore cases of four different noise intensities (low to

high) with image independent (e.g., Gaussian) and dependent (e.g., Poisson) noise models.

The subsequent Subsection 6.4.2 provides denoising results and a comparison between

the proposed approach and several standard state-of-the-art methods.

6.4.1 Influence of Hyperparameters Ph, Wh, p, ℏ2/2m and d and
How to Select Them

6.4.1.1 Effect of the Patch Size Ph

The effect of localization of the basis vectors is associated with the length of the image

patch, as explained in Subsection 6.2.2.5. The respective localization length or IPR

decreases for increasing noise intensity. To deal with this quantum localization phe-

nomenon, the size of the patch should be always less than or equal to the localization

length of the basis vectors for different levels of noise. If the localization length is greater

than the size of the patch, the basis vectors probe the entire region of the image patch

with different ranges of oscillation frequencies depending on the intensity of the image

pixels. On the contrary, a smaller localization length leads to an exponential localization

of the basis vectors on a specific part of the image patch. Thus, these localized vectors

will not have different frequencies at different pixel values and lose a key asset of this for-

malism. The drastic effect of this localization phenomenon on image denoising is shown

in the previous Chapter 4, where an additional Gaussian smoothing was necessary

before computing the quantum adaptive basis (QAB), used as a denoiser in that process.

On the contrary, the current formalism eliminates this issue without any additional

computational requirements.

Furthermore, a smaller patch size helps to reduce the computational complexity,

as discussed in the section above. As a consequence, De-QuIP denoiser is more compu-

tationally efficient than the previously proposed QAB denoiser in Chapter 4, applied

patch by patch independently. Table 6.1 summarizes the run time using the QAB and

De-QuIP denoiser with increasing patch size. The peak signal to noise ratios (PSNR)
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TABLE 6.1. Simulation data with different patch sizes for the Lake image
contaminated by AWGN (SNR = 16dB). For the proposed De-QuIP method
hyperparameters ℏ2/2m = 1.5, and p and d are estimated from the equations
(6.9) and (6.10) respectively.

Data
Patch size

1×1 3×3 5×5 7×7 11×11 17×17 27×27 63×63

Q
A

B PSNR(dB) 11.36 12.78 21.56 24.40 26.54 27.12 27.33 28.09
SSIM 0.43 0.46 0.48 0.48 0.63 0.70 0.74 0.79

Time(sec) 30.56 17.09 41.31 70.32 161.96 328.97 881.69 5800.72

D
e-

Q
uI

P PSNR(dB) 22.12 28.16 28.73 28.84 28.58 28.23 28.16 27.77
SSIM 0.37 0.78 0.83 0.83 0.82 0.81 0.80 0.79

Time(sec) 21.93 22.75 82.61 108.01 490.52 3829.31 5644.90 22765.18

and the structure similarity (SSIM), used as denoising quality metrics, are given to

have a quantitative analysis concerning the patch size. All the algorithms have been

implemented in Matlab and tested on a computer with an Intel(R) Core(TM) i7-10510U

CPU of 4 cores each with 1.80 GHz, 16 GB memory and using Windows 10 Pro version

20H2 as operating system. From Table 6.1, one can see that the computational time for

both denoisers increases as the patch size increases but the denoising performance (i.e.,
PSNR and SSIM values) for De-QuIP first increases with the patch size and then begins

to decrease gradually after size 11×11. Whereas, QAB requires much larger patches to

achieve a similar performance, which essentially imposes a huge computational burden

on the process. The gradual decrease in the performance of the De-QuIP denoiser for

increasing patch size is expected due to the localization phenomenon, which is discussed

above. Therefore, a smaller patch size preserves the fundamental features of these adap-

tive vectors and reduces the computational complexity and run time. Herein, we will

only focus on the patch sizes 5×5, 7×7 and 11×11 for further investigations.

6.4.1.2 Effect of the Search Window Size Wh

The search window is the image region aroung the current patch regrouping all the

patches interacting with it. Following the discussion in Subsection 6.2.2.3, the size of

the search window plays an important role in preserving the structural similarities in a

local neighborhood. This search window is usually defined as a square window of limited

size so that the implementation is restricted to a small neighborhood centered on the

target patch (to be denoised) instead of the whole image. In the literature, mostly two

types of approaches are used, based on a fixed search window size [92, 233, 333, 355] or

169



CHAPTER 6. A NOVEL IMAGE DENOISING ALGORITHM USING CONCEPTS OF QUANTUM MANY-BODY THEORY

Poisson caseGaussian case

FIGURE 6.4. Denoising performance in terms of PSNR (left y-axis) and average
run time (right y-axis) of De-QuIP as a function of the search window size
for the first seven sample images in Fig. 6.3. The images hyperparameters
Ph = 7 and others are estimated from the equations (6.9)-(6.12).

an adaptive approach [187]. In this work, we concentrate on the fixed size approach for

examining the effect of the search window on De-QuIP.

Fig. 6.4 shows the denoising performance of De-QuIP in terms of PSNR as a function

of the search window size for the Gaussian and Poisson noise cases. For these simulations,

the patch size is kept fixed at 7×7 for all images. Note that in these simulations patches

overlap, given that consecutive target patches are one pixel away from each other, both

in the horizontal and vertical direction. In Fig. 6.4, one can see that in both cases, the

denoising ability increases with the size of the search window before roughly stabilizing

beyond a size 20×20 for both noise models. These observations show that the patch

neighborhood is important to increase the denoising performance but larger search

windows do not bring additional information about the neighborhood due to the inverse

square nature of the interaction term. It is also important to notice that the computation

time increases with the search window size, as shown in the right y-axis in Fig. 6.4. The

use of a relatively moderate size search window is computationally more efficient while

preserving the image attributes using the proposed interaction framework. Note that

these results are consistent for other patch sizes. Therefore, for simplicity, in this work

we choose a search window size of 15×15, 21×21 and 33×33 respectively for the patch

sizes of 5×5, 7×7 and 11×11. One interesting observation can be drawn here, that the
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(a) PSNR vs p (b) PSNR vs Ffactor

(c) PSNR vs d

FIGURE 6.5. Denoising performance of De-QuIP in terms of PSNR as a function
of the hyperparameters for the House image corrupted with AWGN (SNR =
16dB) using three different patch sizes. All hyperparameters are estimated
using equations (6.9)-(6.12).

search window size changes with the patch size and not with the noise model within the

proposed algorithm.

6.4.1.3 Influence of the Proportionality Constant p

As mentioned above, the proportionality constant p regulates the interaction term in

the effective potential, and consequently the shape of the basis vectors. Hence, there

exists an optimal choice of p depending on the size of the patch for optimal performance

of De-QuIP for a given noisy image. Fig. 6.5(a) presents the denoising performance in

terms of PSNR as a function of p for the House image corrupted with AWGN (SNR =

16dB), for three different patch sizes. These optimal values also depend on the level of

noise present in the image. These p values that maximize the output PSNRs for the first
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seven sample images in Fig. 6.3 corrupted with different noise intensities are highlighted.

These optimal p values are shown as a function of SNR in Fig. 6.6 using box-plots for a

fixed patch size. The observations confirm that there is a tendency for optimal values

to decrease as the noise level increases. The explicit details of these optimal values are

reported in Table 6.2. A possible explanation for this phenomenon comes from the fact

that dissimilarities increase with the noise intensity in a local-neighborhood. Hence, to

balance the original potential (patch pixels) and the interactions in the effective potential,

the hyperparameter p decreases.

The data in Fig. 6.6 enables rules to fix the p value closer to its optimal values. The

distribution of the data gives an intuition about a possible linear relationship between

the optimal p and the SNR. Therefore, the proportionality constant p can be chosen from

the following rule:

(6.9) p = m1 × (SNR)+ c1.

TABLE 6.2. Optimal proportionality constant p for De-QuIP.

Sample Input
Gaussian case Poisson case

Patch size Patch size
SNR(dB) 5×5 7×7 11×11 5×5 7×7 11×11

house

22 0.0385 0.0750 0.0550 0.0109 0.0467 0.0800
16 0.0197 0.0667 0.0700 0.0046 0.0325 0.0900
8 0.0053 0.0600 0.0625 0.0064 0.0305 0.0500
2 0.0001 0.0225 0.0475 0.00013 0.0034 0.0400

lake

22 0.0220 0.0900 0.0900 0.0057 0.0555 0.0600
16 0.0130 0.0522 0.0936 0.0033 0.0269 0.0400
8 0.0060 0.0460 0.0755 0.0018 0.0355 0.0499
2 0.0001 0.0290 0.0573 0.00013 0.0096 0.0300

lena

22 0.0215 0.0950 0.1250 0.0156 0.0533 0.0625
16 0.0107 0.0758 0.1100 0.0067 0.0317 0.0550
8 0.0046 0.0467 0.0600 0.00031 0.0207 0.0775
2 0.00001 0.0100 0.0400 0.00001 0.0010 0.0550

hill

22 0.0154 0.0643 0.1229 0.0089 0.0500 0.0900
16 0.0139 0.0521 0.0888 0.0056 0.0400 0.0800
8 0.0072 0.0375 0.0625 0.00088 0.0300 0.0629
2 0.00001 0.0146 0.0340 0.00001 0.0055 0.0429

fingerprint

22 0.0500 0.0700 0.0450 0.0244 0.0600 0.1000
16 0.0369 0.0657 0.0650 0.0133 0.0400 0.0833
8 0.0041 0.0543 0.0900 0.00011 0.0350 0.0650
2 0.0022 0.0110 0.0830 0.00005 0.0011 0.0500

saturn

22 0.0257 0.0700 0.1100 0.0100 0.0500 0.1083
16 0.0021 0.0578 0.0900 0.0080 0.0400 0.0967
8 0.0031 0.0234 0.0600 0.0006 0.0124 0.0617
2 0.00001 0.0157 0.0500 0.00001 0.0010 0.0540

flintstones

22 0.0260 0.0931 0.0463 0.0089 0.0400 0.0500
16 0.0183 0.0500 0.0304 0.0044 0.0225 0.0655
8 0.0052 0.0308 0.0500 0.0006 0.0200 0.0525
2 0.0016 0.0205 0.0500 0.00017 0.0126 0.0450
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TABLE 6.3. Slope and intercept used in determining proportionality constant
p for various patch sizes for Gaussian and Poisson noise models. Also, the
associative ℓ2 error, PSNR (dB) loss and SSIM loss in linear curve fitting to
the optimal p.

Size of the patches
5×5 7×7 11×11

G
au

ss
ia

n Slope (m1) 12.84×10−4 30.96×10−4 16.46×10−4

Intercept (c1) −35.96×10−4 13.56×10−3 50.40×10−3

ℓ2 error for p fit 0.0327 0.0528 0.1196
PSNR(dB) loss 0.278 0.306 0.179
SSIM loss 0.0139 0.0172 0.0106

Po
is

so
n

Slope (m1) 60.33×10−5 21.00×10−4 16.64×10−4

Intercept (c1) −21.85×10−4 36.31×10−4 44.23×10−3

ℓ2 error for p fit 0.0189 0.0392 0.0811
PSNR(dB) loss 0.380 0.422 0.485
SSIM loss 0.0197 0.0185 0.0150

In Fig. 6.6, the best linear fits to the optimal p as a function of SNR are shown for three

different patch sizes as well as for Gaussian and Poisson noise models. These linear fits

give a robust way of choosing the suitable p for a given patch size and noise level.

The linear fit parameters are summarized in Table 6.3 together with the ℓ2 error and

the resulting average loss in the denoising performance in terms of PSNR and SSIM.

One may notice that the denoising performance loss with rule (6.9) rather than the

optimal choice is negligible. This is expected due to the smooth nature of the PSNR

curve with a broad maxima shown in Fig. 6.5(a), which makes the De-QuIP resilient to

small sub-optimalities in the adoption of p. Hence, it is anticipated that the parameters

learned from the sample images to estimate p using (6.9), will be effective for a large

set of images. These conclusions are valid for various cases of noise models and patch

sizes, as shown in the simulations results. Furthermore, an adaptive approach of tuning

p that depends on the image patch gives an alternative to the above rules and opens an

interesting perspective for future investigation.

6.4.1.4 Influence of ℏ2/2m and the Subspace Dimensionality d

The last two hyperparameters to be analyzed are ℏ2/2m and the subspace dimensionality

d. Although the utilization of these two hyperparameters seems to be different, the first

one being used in the construction of the Hamiltonian operator and the other one acting

as a threshold, there is a deep connection between them. In this subsection, we will

explain this connection with experimental validation and propose rules for automated

estimation of their optimal choices.

173



CHAPTER 6. A NOVEL IMAGE DENOISING ALGORITHM USING CONCEPTS OF QUANTUM MANY-BODY THEORY
P

o
is

so
n

 c
as

e
G

au
ss

ia
n

 c
as

e

𝟓 × 𝟓 𝟕 × 𝟕 𝟏𝟏 × 𝟏𝟏

FIGURE 6.6. Optimal proportionality constant p value as a function of SNR
for three patch sizes, where the three left and the three right graphs are
associated with the case of Gaussian and Poisson noise models. The bars
indicate the minimum and maximum values of the optimal p. The bottom
and top edges of the blue boxes indicate the 25th and 75th percentiles and
the central mark and green star indicate the median and mean values. The
red line is the best linear curve fitted to the data points corresponding to
the mean of the optimal p values.

As stated above in Subsection 6.2.1.1, the hyperparameter ℏ2/2m controls how the

local frequencies of the basis vectors change with the image pixel values. For low values

of ℏ2/2m, the oscillation frequencies are very high, regardless of the low and high

pixel values, due to the presence of a very high maximal oscillation in this limit which

restricts the wave vectors from properly exploring higher pixel values. On the other side,

increasing too much the values of ℏ2/2m decreases the ability of the basis vectors to

distinguish between high and low values pixels. For more illustrations about the effect

of this hyperparameter ℏ2/2m on the basis vectors, we refer readers to the previous

Chapter 4. Therefore, the optimal ℏ2/2m value has a strong dependence on the maximum

and minimum values of the pixels present in the image patch. Thus, it is more convenient
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TABLE 6.4. Optimal Ffactor values for De-QuIP.

Sample Input
Gaussian case Poisson case

Patch size Patch size
SNR(dB) 5×5 7×7 11×11 5×5 7×7 11×11

house

22 1.4714 2.4250 2.2000 1.7000 2.2667 2.6000
16 1.9000 1.6733 2.3000 1.6000 1.9167 1.8500
8 1.9800 1.5333 1.9833 1.9900 2.1000 1.0000
2 1.5000 1.2000 1.7300 2.9000 1.9000 1.5800

lake

22 1.6000 2.1125 2.4000 1.4889 1.8000 1.6000
16 1.5500 1.9633 2.8000 1.6333 1.9900 2.0000
8 2.2000 1.4083 2.0650 2.5000 1.8500 2.0000
2 1.6632 2.1000 2.3000 2.8333 2.6000 1.7000

lena

22 1.3850 1.9000 2.4000 1.6000 2.0400 2.5000
16 1.8500 1.7800 2.3000 1.8000 1.8500 2.1000
8 2.0000 1.5500 2.0200 1.9200 2.2667 1.7000
2 1.2400 0.8571 2.1000 2.6500 2.2333 2.0000

hill

22 1.3570 1.5000 1.8000 1.6500 1.5182 1.9000
16 2.4500 2.2500 2.0000 2.0000 2.2000 1.9400
8 2.6222 2.7400 2.5000 3.0000 3.0000 2.2800
2 1.6167 2.1444 2.0000 2.5000 2.9000 3.2000

fingerprint

22 1.2500 1.3800 1.4500 1.6000 1.5000 1.5000
16 1.7000 1.7500 2.1000 1.5400 1.6000 2.3000
8 3.3000 3.0000 1.8000 3.8000 3.0000 1.9000
2 2.7000 2.0000 2.0000 3.8000 3.0000 3.6000

saturn

22 1.3500 1.3900 1.9000 1.5500 1.8778 2.2600
16 1.7818 1.7000 1.7000 1.5600 1.4889 1.8000
8 1.5909 1.8400 1.8000 2.1143 2.0000 1.9600
2 1.6286 1.7100 1.7000 1.8333 1.6000 2.0429

flintstones

22 1.4000 1.5500 1.5000 1.8000 1.4000 1.5000
16 1.9333 1.9000 1.9000 1.7000 1.8400 1.5000
8 1.8000 2.0000 1.9000 3.0000 1.9700 1.9000
2 3.0000 2.5750 1.8000 3.8000 2.9000 1.9000

to use an adaptive way to select ℏ2/2m that depends on the image patch to have the

optimal performance of De-QuIP. Herein, it is possible to write the hyperparameter in

terms of the difference between this maximum and minimum pixel values multiplied by

a factor Ffactor, for example, for the patch A,

(6.10) ℏ2/2m = Ffactor× (Amax− Amin),

where Amax, Amin are the maximum and minimum pixel values of the patch A. Hence,

the optimal choice of Ffactor is needed to have the best possible output.

In this proposed scheme, the subspace dimensionality d is used as the threshold for

truncating high energy wave solutions, which mostly carry noise information. Hence,

an optimal choice of d exists for a noisy image that yields the best denoising output

depending on the patch size. ℏ2/2m or say Ffactor controls the frequency distribution

across the basis vectors since the maximal frequency of a vector with energy E at the

local pixel value V is
√

(E−V )/(ℏ2/2m) . Hence, the maximal frequency decreases with
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TABLE 6.5. Optimal subspace dimensionality d for De-QuIP.

Sample Input
Gaussian case Poisson case

Patch size Patch size
SNR(dB) 5×5 7×7 11×11 5×5 7×7 11×11

house

22 16 39 120 15 33 85
16 10 24 111 10 25 74
8 6 11 56 3 11 24
2 3 4 24 2 6 18

lake

22 24 48 84 24 48 120
16 21 40 64 22 36 101
8 7 15 25 8 14 36
2 3 7 11 3 6 24

lena

22 19 35 100 18 33 98
16 12 21 58 11 22 90
8 7 8 27 5 8 28
2 2 4 12 2 4 17

hill

22 25 48 120 24 48 120
16 20 40 111 22 43 115
8 6 13 41 6 13 41
2 3 6 11 2 6 11

fingerprint

22 13 28 86 13 26 86
16 8 18 56 8 17 47
8 4 9 28 4 8 18
2 3 7 19 3 7 13

saturn

22 8 17 51 8 17 47
16 7 11 30 8 12 30
8 3 6 15 3 4 15
2 2 5 7 2 3 7

flintstones

22 24 48 120 24 47 120
16 13 41 118 14 37 118
8 8 13 41 8 13 32
2 5 10 25 4 8 24

increasing Ffactor. As a consequence, low-energy basis vectors become more prominent

to distinguish low and high pixel regions using different levels of frequency. Thus, the

optimal subspace dimensionality d decreases as Ffactor increases. These optimal choices

vary with the image patch size and noise statistics. Table 6.4 and Table 6.5 show these

optimal values that give the best output PSNRs for the first seven sample images. In

Fig. 6.7, all these optimal values that give the best output PSNRs for the first seven

sample images are shown as a scatter-plot of Ffactor vs d, which clearly shows their

inverse relationship, i.e., d decreases with Ffactor’s growth or vice-versa and validates

our above arguments.

These experimental data enable an automated way of selecting the values of d and

Ffactor close to their optimalities. To do this, the optimal d values are shown in Fig. 6.8

as a function of SNR using box-plots for a fixed patch size, for the Gaussian and Poisson

cases. The observation shows a very predictable behaviour of this optimal d as a function

of SNR which is expected as it needs to be further thresholded as the noise increases.

For a specific patch size, the optimal d and SNR follow a linear relationship. Therefore,
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FIGURE 6.7. Ffactor vs d scatter plot and the respective best-fitted curve of the
form (Ffactor− l1)= l3/(d− l2).

the subspace dimensionality d and Ffactor can be inferred from the following two rules,

(6.11) d = m2 × (SNR)+ c2,

(6.12) Ffactor− l1 = l3/(d− l2).

Fig. 6.7 and Fig. 6.8 show the best-fitted curves to the optimal Ffactor and d, and

the respective fit parameters are regrouped in Table 6.6. These rules give an efficient

way of selecting the hyperparameters close to their optimality depending on the size of

the given patch and the intensity of the noise. Our data show that the respective costs

in terms of performance loss are minimal, since the output PSNR curves are smooth

and have broad maxima, shown in Figs. 6.5(b)-6.5(c) for the choice of Ffactor and d, as

discussed in Subsection 6.4.1.3 for the hyperparameter p. Hence, the rules for automated

selecting hyperparameters are expected to be valid for other images as well.
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FIGURE 6.8. Optimal subspace dimensionality d value as a function of SNR
for three patch sizes are shown for the Gaussian and Poisson noise models.
Similar to Fig. 6.6, a box-plot diagram is used for the optimal d. The red
line is the best linear curve fitted to the data points corresponding to the
mean of the optimal d.

6.4.2 Denoising Efficiency of the Proposed Scheme in
Comparison with Standard Methods

This subsection presents the denoising performance of the De-QuIP algorithm depending

on the noise statistics and intensity, and also how this performance varies with patch size

for the sample images. The denoising outputs using three patch sizes are summarized

in Table 6.7. The numerical simulations show that 11×11 is the suitable patch size for

most of the cases, but for low-level noise, smaller sizes give a small advantage. It is

expected to have a better result with a large patch for a strong noise scenario since high

noise intensity refers to an extreme random system and a large patch is more efficient to

capture the similarity measures from this strong randomness. Obviously, the size should

not be so large because it is affected by the phenomenon of localization, as illustrated in

Subsubsection 6.2.2.5.
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TABLE 6.6. Curve fitting parameters used in determining d and Ffactor for
various patch sizes for Gaussian and Poisson noise models. The table also
includes the associative ℓ2 errors, PSNR (dB) loss and SSIM loss in curve
fitting to the optimal d and Ffactor.

Size of the patches
5×5 7×7 11×11

G
au

ss
ia

n

Slope (m2) 0.7783 1.7000 4.2500
Intercept (c2) 0.7315 0.5345 4.8210
ℓ2 error for d fit 21.1673 43.3499 112.4127
Parameter l1 0.5287 1.2630 1.9161
Parameter l2 −4.4551 −4.1915 6.8223
Parameter l3 20.6204 13.9698 9.7995
ℓ2 error for Ffactor fit 2.3845 2.6135 1.9334
PSNR(dB) loss 0.416 0.361 0.209
SSIM loss 0.0153 0.0129 0.0118

Po
is

so
n

Slope (m2) 0.8202 1.6030 4.3990
Intercept (c2) 0.8621 0.5800 2.8900
ℓ2 error for d fit 23.2670 43.4135 115.9894
Parameter l1 0.8083 1.5391 1.8587
Parameter l2 −3.8975 −4.4288 11.6517
Parameter l3 16.8476 10.1560 3.9798
ℓ2 error for Ffactor fit 3.3802 2.0652 2.2571
PSNR(dB) loss 0.487 0.594 0.485
SSIM loss 0.0175 0.0266 0.0386

As explained earlier, the De-QuIP follows a similar principle to the NLM approach.

Comparisons with NLM-based state-of-the-art methods are thus provided in order to

prove the efficiency of the proposed algorithm. However, for a comprehensive survey of

the denoising ability of De-QuIP, rigorous comparisons with contemporary noise removal

methods from the literature are also presented. For the recovery of Gaussian corrupted

images, the following methods were used for comparison: NLM method using PCA called

PND in [333], two patch-based PCA for NLM denoising methods referred to as PGPCA

(global approach) and PLPCA (local approach) in [92], BM3D [82], dictionary learning

(DL) method [123], graph signal processing (GSP) method [262], and finally, our earlier

implementations of quantum adaptive basis (QAB) for image denoising based on the

single particle theory from Chapter 4.

For the recovery of Poisson corrupted images, comparisons have been carried out

with recent algorithms dedicated to the Poissonian model such as Poisson non-local

PCA (PNLPCA) [296], BM3D consolidated with the Anscombe transform [238] leveled as

ATBM3D, and finally the QAB from Chapter 4 method.

The proposed denoising algorithm has been extensively compared to other standard

methods to demonstrate the accuracy of De-QuIP. Detailed quantitative evaluations in

terms of PSNR and SSIM for both noise models are available in Tables 6.8-6.9. From
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TABLE 6.7. Comparison of denoising performance of De-QuIP with different
patch sizes for different noise levels.

Sample Input
Gaussian case Poisson case

5×5 7×7 11×11 5×5 7×7 11×11
SNR(dB) PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

house

22 35.30 0.88 35.45 0.89 35.58 0.89 34.94 0.87 35.10 0.88 35.14 0.88
16 31.91 0.83 32.15 0.83 32.29 0.83 31.49 0.82 31.78 0.82 31.73 0.82
8 26.85 0.72 27.45 0.75 27.91 0.76 26.45 0.72 27.02 0.74 27.27 0.75
2 23.05 0.60 23.92 0.68 24.66 0.72 22.65 0.59 23.48 0.66 24.09 0.70

lake

22 33.23 0.92 33.16 0.91 32.80 0.90 33.09 0.91 33.04 0.90 32.72 0.90
16 28.81 0.83 28.85 0.82 28.63 0.81 28.54 0.81 28.60 0.81 28.42 0.81
8 24.05 0.69 24.19 0.71 24.37 0.69 23.75 0.66 23.98 0.68 24.11 0.68
2 21.09 0.57 21.59 0.62 21.75 0.63 20.90 0.56 21.33 0.61 21.48 0.63

lena

22 35.05 0.89 35.21 0.89 35.34 0.90 34.86 0.88 35.05 0.89 35.16 0.89
16 31.73 0.84 32.00 0.85 32.17 0.85 31.49 0.83 31.78 0.84 32.34 0.84
8 26.17 0.71 27.67 0.78 28.00 0.78 26.93 0.74 27.40 0.77 27.61 0.76
2 23.60 0.63 24.53 0.71 25.04 0.74 23.36 0.63 24.30 0.71 24.71 0.71

hill

22 31.54 0.82 31.58 0.83 31.55 0.83 32.01 0.82 32.16 0.83 32.13 0.83
16 27.95 0.69 28.06 0.70 28.10 0.70 28.25 0.70 28.37 0.70 28.39 0.70
8 24.42 0.55 24.49 0.55 24.61 0.55 24.58 0.55 24.63 0.55 23.58 0.54
2 21.97 0.46 22.41 0.48 22.61 0.49 22.08 0.46 22.46 0.48 22.54 0.49

fingerprint

22 32.35 0.93 32.50 0.93 32.54 0.94 33.39 0.94 32.15 0.93 33.49 0.95
16 28.12 0.86 28.46 0.87 28.65 0.87 28.63 0.87 28.16 0.86 28.24 0.86
8 23.36 0.72 23.31 0.72 23.63 0.73 23.65 0.74 23.07 0.72 23.40 0.73
2 20.03 0.59 19.80 0.57 20.01 0.58 19.90 0.59 19.58 0.56 19.56 0.56

saturn

22 38.94 0.89 39.36 0.92 39.53 0.94 40.64 0.97 40.85 0.98 40.87 0.98
16 34.67 0.79 35.27 0.83 35.63 0.87 36.00 0.94 36.31 0.95 36.42 0.94
8 28.94 0.61 29.87 0.67 30.60 0.74 30.44 0.89 31.00 0.90 31.40 0.89
2 24.45 0.46 25.97 0.55 27.03 0.62 26.40 0.82 27.26 0.86 27.46 0.85

flintstones

22 32.20 0.87 32.16 0.87 31.97 0.86 33.20 0.88 33.08 0.88 32.99 0.88
16 28.65 0.80 28.69 0.79 28.47 0.78 29.04 0.80 29.00 0.78 28.77 0.78
8 23.48 0.67 23.78 0.68 23.70 0.66 23.44 0.65 23.84 0.68 23.64 0.64
2 19.74 0.52 19.87 0.56 20.03 0.56 19.50 0.51 19.69 0.53 19.63 0.53

these results, on can observe that De-QuIP scheme significantly outperforms all NLM-

based methods with an average gain of 1.1 to 2.6 dB in PSNR and 3 to 20% in SSIM.

One can also observe that De-QuIP and BM3D-based methods stand out as the two

best-performing algorithms for both Gaussian and Poissonian cases. The denoising

performance of De-QuIP and BM3D-based methods are presented in Figs. 6.9-6.10 for

visual inspection, where ground truth, noisy, and corresponding denoised images are

shown. These results confirm the good performance of De-QuIP regardless of the noise

model and intensity. In the denoised images, image features and details, for example,

patterns (in Fingerprint and Ridges), sharp edges (in Lake, Bridge, Cameraman and

House), smooth areas (in Peppers, Flintstones, and Lena), are well-preserved. Although

BM3D and respectively ATBM3D are slightly more accurate in some of the experiments,

a smoothing effect is present in their corresponding denoised images and becomes more

prominent as the noise level increases. This effect is clearly visible around the windows

and roof of the Hill, on the patterns of the Fingerprint, near the eye of the Lena, on the
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face of the Flintstones, and around the sharp edges of the House images, while De-QuIP

preserves all these image features in a better way and consequently provides a denoised

image closer to the original one. This is due to the interaction term that allows De-QuIP

to better extract the image information. Although, for the increasing noise intensity,

some artefacts can be observed in the denoised images (for example in House, Saturn,
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SSIM 0.896

De-QuIP
PSNR 33.57dB

SSIM 0.888

Ground Truth
Peppers image
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Ground Truth
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SSIM 0.714
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FIGURE 6.9. The Gaussian denoising results for different level of noise. The
noisy, BM3D results, De-QuIP results, and ground-truth images are pre-
sented here accordingly. The BM3D and De-QuIP schemes are listed as
these are always among the two best-performing methods.
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FIGURE 6.10. The Poissonian denoising results for different level of noise. The
noisy, ATBM3D results, De-QuIP results, and ground-truth images are
presented here accordingly. The ATBM3D and De-QuIP schemes are listed
as these are always among the two best-performing methods.

Cameraman images) due to the presence of strong noise, they are very few and negligible

for low-level noises.

For further inspection in Fig. 6.11, we show zoomed segments of the denoised results

of the Flintstones image while corrupted with AWGN (SNR 16dB). Similarly, for Poisson

corrupted (SNR 16dB) Lake image the zoomed segments of the denoised estimations
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Ground truth Noisy
SNR 16 dB

PND
PSNR 25.79 dB/ SSIM 0.752

PGPCA
PSNR 27.37 dB/ SSIM 0.775

PLPCA
PSNR 27.63 dB/ SSIM 0.781

BM3D
PSNR 28.73 dB/ SSIM 0.809

DL
PSNR 26.09 dB/ SSIM 0.718

GSP
PSNR 28.38 dB/ SSIM 0.784

QAB
PSNR 27.90 dB/ SSIM 0.768

De-QuIP
PSNR 28.69 dB/ SSIM 0.797

FIGURE 6.11. Zoomed segments of the denoised estimations of the Flintstones
image while corrupted with AWGN (SNR 16dB) using different methods.

Ground truth Noisy
SNR 16 dB

ATBM3D
PSNR 28.67 dB/ SSIM 0.843

QAB
PSNR 27.73 dB/ SSIM 0.781

De-QuIP
PSNR 28.60 dB/ SSIM 0.829

PNLPCA
PSNR 27.41 dB/ SSIM 0.819

FIGURE 6.12. Zoomed segments of the denoised estimations of the Lake image
while corrupted with Poisson noise (SNR 16dB) using different methods.

are shown in Fig. 6.12. Quantitative performance in terms of PSNR and SSIM adopting

different methods for Gaussian and Poisson contaminated images are presented in

Fig. 6.13 using box-plots as a function of SNR. The detailed quantitative performance

related to these experiments are repoted in Tables 6.8-6.9.

Through visual and quantitative inspections of Figs. 6.11-6.12, it is clear that the pro-

posed De-QuIP uniformly outperforms all the NLM-based approaches with a significant

increase in terms of PSNR and SSIM. For Gaussian corrupted images, BM3D is still the

best method in most cases, but De-QuIP allows competitive comparisons in all scenarios.
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(a) Recovery of Gaussian corrupted images

(b) Recovery of Poisson corrupted images

FIGURE 6.13. Quantitative denoising results using different methods for Gaus-
sian and Poisson corrupted images with four different noise levels. The
bottom and top edges of the boxes indicate the 25th and 75th percentiles,
and the central black line and circle indicate the median and mean relative
to the data points.

Furthermore, for both noise models, the positive effects of local similarity considerations

are clearly visible in the Fig. 6.13 data of QAB and De-QuIP, as it gives much better

PSNR and SSIM values with significantly fewer computations. The Figs. 6.11-6.12 show

a pronounced gain in the qualitative performance of the proposed DeQuIP model against

the QAB. Therefore, exploiting the structural details through interaction terms notably

contributes to the preservation of image details, as verified by quantitative and visual as-

sessments. Additionally, regardless of the noise intensity, De-QuIP always provides good

PSNR and SSIM for the recovery of Gaussian corrupted images as shown in Fig 6.13(a),

which is not the case with most algorithms, as highlighted by SSIM values. Although in

Fig. 6.13, our results look comparable with BM3D, one should note that a beautification
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TABLE 6.8. Quantitative denoising results for Gaussian corrupted images (aver-
age over 10 independent noise realizations). The best values are highlighted
by color.

Sample Input
Methods

PND PGPCA PLPCA BM3D DL GSP QAB De-QuIP
SNR PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

house

22 33.17 0.831 34.28 0.863 34.80 0.866 35.89 0.896 32.86 0.827 35.70 0.891 33.77 0.856 35.60 0.892
16 30.78 0.800 31.13 0.803 31.47 0.802 33.05 0.848 29.72 0.747 32.91 0.839 30.16 0.767 32.86 0.843
8 27.52 0.753 26.83 0.672 26.65 0.605 28.73 0.786 25.31 0.587 28.19 0.760 25.71 0.601 28.13 0.764
2 24.25 0.679 23.45 0.491 22.63 0.371 24.96 0.706 21.20 0.405 23.93 0.589 22.92 0.464 24.78 0.719

lake

22 30.29 0.855 32.36 0.895 32.56 0.895 33.07 0.919 30.90 0.863 32.09 0.913 32.22 0.878 33.27 0.926
16 26.78 0.780 28.21 0.815 28.39 0.814 28.92 0.857 27.22 0.768 28.45 0.836 28.59 0.795 29.11 0.842
8 23.61 0.697 23.87 0.653 23.77 0.606 24.43 0.739 23.25 0.588 24.30 0.722 24.24 0.599 24.52 0.705
2 21.42 0.623 21.23 0.483 20.73 0.388 21.97 0.652 20.16 0.419 21.27 0.548 20.79 0.441 21.80 0.631

lena

22 33.52 0.858 34.78 0.881 35.04 0.883 35.50 0.898 34.08 0.868 35.09 0.893 34.36 0.876 35.81 0.904
16 31.10 0.822 31.75 0.831 31.95 0.829 32.70 0.861 30.93 0.801 32.43 0.852 31.02 0.801 32.41 0.852
8 27.94 0.773 27.65 0.716 27.35 0.648 28.75 0.799 26.34 0.638 28.18 0.767 26.61 0.657 28.31 0.778
2 25.21 0.716 24.27 0.536 23.34 0.415 25.57 0.728 22.27 0.446 24.93 0.664 22.76 0.476 25.04 0.737

hill

22 29.35 0.742 30.98 0.812 31.29 0.819 31.36 0.818 29.80 0.761 30.97 0.811 30.56 0.810 31.59 0.826
16 26.90 0.640 27.86 0.690 28.07 0.700 28.32 0.710 27.17 0.649 28.15 0.708 27.24 0.671 28.34 0.710
8 24.34 0.534 24.55 0.539 24.42 0.515 24.98 0.575 23.85 0.478 24.86 0.571 23.91 0.492 24.78 0.563
2 22.49 0.475 22.24 0.405 21.75 0.345 22.72 0.493 21.14 0.354 22.33 0.447 21.39 0.375 22.61 0.491

fingerprint

22 28.40 0.845 31.14 0.912 31.30 0.914 31.47 0.917 29.79 0.882 31.23 0.896 30.32 0.894 32.53 0.934
16 25.57 0.757 27.27 0.830 27.46 0.835 27.92 0.850 25.97 0.783 26.99 0.824 27.16 0.815 28.61 0.868
8 22.58 0.666 22.73 0.680 23.02 0.676 23.77 0.734 21.09 0.575 23.22 0.698 22.95 0.671 23.65 0.733
2 20.05 0.563 18.92 0.471 19.50 0.474 20.73 0.613 17.85 0.385 20.21 0.546 20.04 0.527 20.56 0.605

saturn

22 40.95 0.955 39.32 0.935 39.63 0.929 42.26 0.970 37.55 0.891 41.20 0.943 38.63 0.916 39.70 0.937
16 37.86 0.904 35.80 0.907 36.02 0.883 38.64 0.937 33.74 0.776 38.01 0.881 34.44 0.850 36.93 0.873
8 32.23 0.775 30.70 0.753 30.09 0.647 33.16 0.861 28.00 0.541 32.58 0.757 29.44 0.712 31.25 0.735
2 28.13 0.640 26.68 0.544 25.31 0.398 28.31 0.747 23.36 0.347 27.64 0.608 25.27 0.601 27.18 0.615

flintstones

22 28.54 0.766 30.62 0.827 30.83 0.831 31.31 0.847 29.15 0.793 30.91 0.841 30.34 0.811 32.20 0.865
16 25.63 0.702 27.36 0.755 27.61 0.758 28.61 0.802 25.64 0.695 28.33 0.776 27.68 0.752 28.46 0.781
8 21.86 0.620 22.15 0.586 22.31 0.567 23.96 0.705 21.12 0.520 23.61 0.662 22.54 0.561 23.67 0.662
2 18.79 0.521 18.67 0.415 18.62 0.364 20.12 0.585 17.86 0.361 19.38 0.498 19.17 0.435 19.99 0.555

ridges

22 46.41 0.985 47.52 0.980 47.18 0.973 50.58 0.993 44.49 0.968 47.76 0.980 46.47 0.956 49.23 0.982
16 42.32 0.961 43.34 0.950 42.97 0.938 45.37 0.978 40.17 0.922 42.60 0.931 41.44 0.898 43.56 0.940
8 32.65 0.816 38.03 0.856 37.09 0.828 38.60 0.922 33.60 0.779 37.06 0.859 34.68 0.754 38.28 0.851
2 25.99 0.599 33.07 0.720 31.91 0.672 33.56 0.837 28.97 0.618 33.15 0.727 29.86 0.643 33.39 0.749

peppers

22 31.23 0.842 32.83 0.871 33.06 0.872 33.79 0.897 31.32 0.840 33.34 0.891 32.08 0.849 33.52 0.888
16 28.46 0.801 29.39 0.814 29.70 0.811 30.58 0.853 28.02 0.762 30.25 0.839 28.67 0.758 30.43 0.847
8 24.54 0.744 24.93 0.674 25.03 0.639 26.24 0.771 23.96 0.608 26.07 0.752 23.94 0.612 26.19 0.755
2 21.73 0.687 21.67 0.519 21.38 0.420 22.83 0.683 20.43 0.434 21.96 0.579 20.49 0.457 22.14 0.696

bridge

22 27.91 0.751 29.90 0.839 30.08 0.845 30.11 0.846 28.72 0.799 29.43 0.824 29.27 0.817 30.72 0.864
16 25.16 0.608 26.28 0.685 26.46 0.697 26.57 0.698 25.52 0.655 26.33 0.693 25.78 0.662 26.49 0.699
8 22.53 0.464 22.82 0.499 22.82 0.493 23.12 0.511 22.27 0.467 23.00 0.508 22.31 0.472 22.84 0.503
2 20.69 0.393 20.61 0.372 20.29 0.337 21.00 0.421 19.71 0.333 20.60 0.389 20.04 0.362 20.72 0.403

cameraman

22 30.25 0.812 32.66 0.880 32.97 0.881 33.54 0.907 31.54 0.858 32.71 0.882 32.13 0.865 32.91 0.892
16 27.29 0.757 28.78 0.793 29.08 0.792 29.99 0.843 27.98 0.758 29.17 0.840 28.18 0.751 29.36 0.841
8 24.28 0.695 24.42 0.635 24.45 0.579 25.80 0.755 23.72 0.581 25.54 0.751 23.93 0.612 25.57 0.751
2 21.78 0.617 21.45 0.434 21.03 0.347 22.77 0.674 20.28 0.393 22.13 0.597 20.51 0.402 22.49 0.636

happens in the BM3D outputs due to the smoothing effect as illustrated in Figs. 6.9-6.10,

which is not present in our outcomes and makes our resultant image texture closer to

the original one.

For Poisson corrupted images, De-QuIP provides better outcomes compared to the

other methods. ATBM3D generates comparable PSNR and SSIM data in some scenarios,

but the visual assessment clearly shows an extra smoothing effect present on the denoised

image, which causes lower SSIM values for low SNR images as shown in Fig. 6.13(b). This

is due to the process of data Gaussianization through the Anscombe transformation. In
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TABLE 6.9. Quantitative denoising results for Poisson corrupted images (aver-
age over 10 independent noise realizations). The best values are highlighted
by color.

Sample Input
Methods

PNLPCA ATBM3D QAB De-QuIP
SNR PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

house

22 33.19 0.848 35.36 0.879 32.85 0.833 35.27 0.879
16 30.64 0.815 33.13 0.851 29.18 0.738 32.79 0.839
8 26.72 0.706 28.48 0.731 25.63 0.619 27.72 0.757
2 20.93 0.519 23.96 0.549 21.02 0.413 23.94 0.651

lake

22 30.23 0.884 32.13 0.913 31.21 0.845 32.43 0.892
16 27.45 0.832 28.69 0.854 27.76 0.789 28.62 0.839
8 22.42 0.675 24.50 0.698 23.29 0.567 24.28 0.707
2 19.38 0.494 21.65 0.534 20.70 0.418 21.51 0.637

lena

22 32.68 0.852 34.92 0.886 34.29 0.872 35.15 0.889
16 30.74 0.846 32.39 0.856 30.65 0.791 31.87 0.827
8 26.19 0.686 28.08 0.751 25.83 0.617 27.78 0.768
2 21.76 0.541 24.23 0.599 21.88 0.436 24.63 0.707

hill

22 30.88 0.792 31.81 0.813 30.89 0.824 31.69 0.824
16 26.24 0.673 28.14 0.696 27.44 0.682 27.89 0.696
8 22.95 0.535 24.98 0.555 24.45 0.494 24.71 0.548
2 19.59 0.413 22.37 0.445 21.80 0.397 22.48 0.480

fingerprint

22 27.95 0.846 31.40 0.913 30.74 0.905 32.39 0.924
16 26.81 0.820 28.41 0.860 27.62 0.829 28.36 0.862
8 21.94 0.686 23.63 0.719 22.91 0.679 23.56 0.732
2 19.42 0.538 20.16 0.569 20.07 0.549 20.01 0.565

saturn

22 39.36 0.942 41.15 0.976 38.94 0.906 40.96 0.978
16 35.85 0.909 37.39 0.957 34.42 0.849 36.71 0.942
8 28.55 0.851 30.82 0.874 28.75 0.714 30.31 0.890
2 24.87 0.740 26.20 0.765 24.58 0.591 27.12 0.845

flintstones

22 30.08 0.820 31.72 0.843 30.29 0.789 32.28 0.864
16 28.12 0.796 29.46 0.814 27.23 0.678 29.31 0.806
8 22.51 0.631 23.93 0.650 23.67 0.529 23.76 0.668
2 18.23 0.435 19.97 0.479 21.08 0.389 19.72 0.532

ridges

22 42.67 0.942 48.98 0.991 45.59 0.947 47.93 0.986
16 39.95 0.894 43.88 0.988 42.23 0.902 42.97 0.965
8 31.92 0.630 38.33 0.898 34.64 0.734 37.09 0.865
2 26.42 0.491 33.00 0.815 29.83 0.602 31.79 0.816

peppers

22 31.85 0.860 33.35 0.893 31.42 0.816 33.32 0.889
16 30.02 0.847 30.49 0.855 27.78 0.737 29.97 0.830
8 25.08 0.693 25.97 0.743 23.02 0.587 25.45 0.737
2 20.61 0.532 22.19 0.591 19.74 0.434 21.69 0.676

bridge

22 28.59 0.734 29.22 0.800 30.49 0.847 30.58 0.860
16 25.99 0.660 26.61 0.690 26.44 0.689 26.50 0.694
8 22.37 0.471 23.16 0.512 23.13 0.472 22.65 0.496
2 19.46 0.351 20.94 0.413 20.17 0.352 20.56 0.398

cameraman

22 29.48 0.855 32.45 0.881 31.77 0.837 32.41 0.890
16 28.03 0.821 29.86 0.839 27.78 0.720 28.76 0.818
8 23.87 0.645 25.83 0.734 23.12 0.524 24.87 0.716
2 19.39 0.470 22.37 0.546 19.41 0.359 22.08 0.612

addition, for increasing noise intensity, this Anscombe transformation loses its accuracy

[112], which is clearly observable in the Fig. 6.13(b) in the cases of low SNR. On contrary.

De-QuIP is a straightforward method without having any such transformation and

efficiently shows good denoising performance in all situations. Similar to the Gaussian
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case, De-QuIP outperforms PNLPCA, a NLM based method, by a large margin. This

proves its adaptability for high as well as for low SNR images regardless of their noise

statistics which can be viewed as a strong point in several practical applications.

6.5 Application to Ultrasound Image Despeckling

In this section, for further illustration of the potential of De-QuIP, we investigated its

ability for real medical ultrasound (US) image despeckling. US imaging is an integral

part of modern medical science as it gives harmless, non-invasive, real-time images in

an affordable way. The main artefact affecting US images is a random granular pattern,

the speckle, which is generated by random constructive and destructive interference

between US waves. This phenomenon related to the acquisition system is used as a

source of information about the tissues in several applications, but can also affect the

interpretability of the images by diminishing their readability. Indeed, the speckle does

not follow an additive rule and has a complex noise distribution. Therefore, the important

task of estimating speckle-free US images, known as despeckling [228] in the relevant

literature, has been extensively explored using various schemes [7, 211, 298, 393] to

enhance the readability of the US images.

6.5.1 Ultrasound Image Despeckling Performance of De-QuIP

Despeckling performance of De-QuIP is investigated through a phantom as well as four

real cancer and two non-cancer thyroid US images acquired with a 7.5 MHz linear probe.

We are proposing a comprehensive study of this problem here. The estimated despeckled

TABLE 6.10. Quantitative despeckling results of real medical US images using
different methods. The best values are highlighted by color.

Sample
Methods

Input AD Lee NLM De-QuIP
CNR CNR RL (%) CNR RL (%) CNR RL (%) CNR RL (%)

phantom 0.69 7.97 6.9 12.25 7.0 15.92 7.2 14.29 7.0
non-cancer 1 9.56 15.39 7.0 18.04 7.6 19.97 8.5 18.54 7.8
non-cancer 2 1.86 7.05 6.0 9.77 6.7 11.89 8.4 10.54 7.3
cancer 1 1.41 4.59 7.5 5.41 8.0 8.43 8.8 9.10 8.1
cancer 2 0.49 6.14 6.8 8.91 7.9 11.80 9.0 9.92 7.6
cancer 3 0.96 4.12 6.9 6.12 8.4 8.20 9.4 6.40 8.5
cancer 4 1.22 5.35 7.3 6.90 9.2 9.04 11.6 7.24 9.6
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outcomes are compared with three existing despeckling algorithms, the anisotropic

diffusion (AD) [393], Lee [211] and NLM [333] filters. For the quantitative analysis, the

contrast-to-noise-ratio (CNR) and resolution loss (RL) are regrouped in Table 6.10. In

Fig. 6.14, four US images are presented for visual demonstrations. Observation shows

AD
CNR = 7.97

RL = 6.9%

NLM
CNR = 15.92

RL = 7.2%

De-QuIP
CNR = 14.29

RL = 7.0%

Input
CNR = 0.69

Lee
CNR = 12.25

RL = 7.0%

AD
CNR = 15.39

RL = 7.0%

NLM
CNR = 19.97

RL = 8.5%

De-QuIP
CNR = 18.54

RL = 7.8%

Input
CNR = 9.56

Lee
CNR = 18.04

RL = 7.6%

· · ·Continued on next page.
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· · ·Continued from previous page.

AD
CNR = 4.59

RL = 7.5%

NLM
CNR = 8.43

RL = 8.8%

De-QuIP
CNR = 9.10

RL = 8.1%

Input
CNR = 1.41

Lee
CNR = 5.41

RL = 8.0%

AD
CNR = 6.14

RL = 6.8%

NLM
CNR = 11.80

RL = 9.0%

De-QuIP
CNR = 9.92

RL = 7.6%

Input
CNR = 0.49

Lee
CNR = 8.91

RL = 7.9%

FIGURE 6.14. US image despeckling results using different methods. The first
one is the phantom image, the second one is the non-cancer image, and the
last two are associated with cancer images. The normalized pixel intensities
of the extracted red lines from speckled and despeckled US images are
shown.
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that De-QuIP offers a better image contrast (higher CNR than AD, Lee and slightly lower

than NLM, which over-smooths the images and yields poor resolution) while having

less spatial resolution loss (De-QuIP has less spatial resolution loss compared to the

native US image). Note that these images are chosen arbitrarily, that is, the quality of

the results should not depend on the data tested.

6.6 Application to Clinical Dental Computed
Tomography Image Super-Resolution

Medical image resolution, critical in number of clinical applications, is subject to physical

limitations, such as the X-ray doses in the case of computed tomography (CT) considered

herein. Therefore, enhancing spatial resolution in post-processing, referred to as super-

resolution (SR) in the related literature, is an important research field. Most of the

existing algorithms are based on modeling image degradation by specific operators

such as blurring or downsampling, or on machine learning strategies requiring training

databases. In this section, we focus on the first approach and in particular on algorithms

exploiting the potential of image denoising in more complex image restoration tasks such

as SR [286, 354]. More precisely, we propose two algorithms, both exploiting the De-QuIP

denoiser and a computationally efficient way of handling simultaneously the decimation

and blur operators based on their underlying properties in the Fourier domain within

SR.

6.6.1 Image Super-Resolution Problem

The single image SR problem is a process of retrieval of an unknown high-resolution

(HR) image x ∈RsN from a noisy low-resolution (LR) and spatially decimated (by a factor

s > 1) measurement y ∈RN , modeled as,

(6.13) y= SGx+ e,

where S ∈RN×sN and G ∈RsN×sN are respectively the decimation and blurring/convolution

operators, and e ∈RN is an additive white Gaussian noise (AWGN). Note that y, x and e
are expressed in standard vectorized lexicographical order. G is assumed to be a block

circulant matrix with circulant blocks (BCCB) for computation efficiency.

The maximum-a-posteriori (MAP) estimator formulates this highly ill-posed esti-

mation problem as an optimization of a cost function formed by a data fidelity term
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(quadratic herein given the Gaussian noise assumption) and a regularization term g(x)

resulting from an a priori statistical distribution of x

(6.14) x̂= 1
2

arg min
x

∥SGx− y∥2
2 +λg(x),

where x̂ is the restored HR image and λ is a hyper-parameter. Therefore, a suitable

prior based on strong assumptions about the HR image is crucial to obtain a reliable

solution and leads to the question of the appropriate choice of this regularization term.

Over the years, various regularization functions have been proposed in the literature,

among which the most common are based on the sparsity of the HR image through an

application-dependent transformation.

As an alternative to the explicit choice of the regularization, the Plug-and-Play (PnP)

scheme [354] provides a way to turn an inverse problem into a chain of denoising pro-

cesses and opens the possibilities for the existing state-of-the-art denoisers (e.g., BM3D

[82], TRND [71], etc.) to act as an underlying prior. Another scheme called Regulariza-

tion by Denoising (RED) [286] follows similar principles. The good performance of these

PnP and RED denoising engines [62, 77, 280, 281, 287, 330] as an underlying prior is

discussed in Chapter 3 in detailed.

In this section we exploit these denoising engines using the De-QuIP denoiser to

propose implicit regularization functions for solving the SR inverse problem expressed

in (6.13). The following subsection introduce the main principle of De-QuIP denoiser and

its implementation into SR PnP and RED algorithms.

6.6.2 Proposed Super-Resolution Algorithms using De-QuIP

6.6.2.1 Super-Resolution Plug-and-Play ADMM with De-QuIP

The PnP alternating direction method of multipliers (ADMM) scheme provides an elegant

way to separate the problem (6.14) into an inversion step and a denoising process, where

the latter is solved separately by an off-the-shelf denoiser. Thus the PnP scheme offers

an intrinsic association between the regularization function and the denoising operator.

Finding the MAP estimator (6.14) using ADMM with appropriate parameterization leads

to the optimization problem:

(6.15) x̂= 1
2

arg min
x

∥SGx− y∥2
2 +λg(v), s.t. x= v,

whose associated augmented Lagrangian function is,

(6.16) L(x,v,u) =
1
2
∥SGx− y∥2

2 +λg(v)+ β

2
∥x−v+u∥2

2 ,
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where u and β are the Lagrangian multipliers and penalty parameter respectively. After

variable splitting, we obtain:

xk+1 = arg min
x

∥SGx− y∥2
2 +

β

2

∥∥∥x−vk +uk
∥∥∥2

2
(6.17a)

vk+1 = arg min
v

λg(v)+ β

2

∥∥∥xk+1 −v+uk
∥∥∥2

2
(6.17b)

uk+1 = uk + xk+1 −vk+1(6.17c)

Note that the first step (6.17a) has a closed-form solution as,

(6.18) xk+1 =
(
GHSHSG+βI

)−1(
GHSH y+β(vk −uk)

)
,

Since G is BCCB, G = FHΛF and GH = FHΛHF. Here F and FH are respectively

the Fourier and inverse Fourier transformations, GH and SH are associated with the

conjugate transpose of G and S, Λ is a diagonal matrix, whose diagonal elements are the

Fourier transformation of the first column of G, and I ∈RsN×sN is the identity matrix.

Besides, it is worth mentioning that the decimation operator S prevents this analytical

solution to be implemented efficiently in the Fourier domain. Consequently, most existing

methods use a gradient descent algorithms to solve (6.18). However, following the work

in [416], (6.18) maybe rewritten as,

(6.19) xk+1 = FH
(1

s
ΛHΛ+βI

)−1
F

(
GHSH y+β(vk −uk)

)
where Λ ∈ CN×sN is defined as Λ = [Λ1,Λ2, · · · ,Λs] and the blocks Λ j ∈ CN×N for j =
1,2, · · · , s obey diag{Λ1,Λ2, · · · ,Λs} =Λ, which ensures a direct computational effective

implementation to solve (6.18).

Moving to eq. (6.17b), that is associated with the denoising of the noisy image ṽk =
xk+1 + uk. Hence, following the PnP method we can apply the De-QuIP denoiser D

(symbolic notation) for solving step (6.17b), this leads to

(6.20) vk+1 =D
(
ṽk)

.

6.6.2.2 Super-Resolution Regularization by denoising with De-QuIP

The RED scheme [286] is an alternative to PnP ADMM which allows integration of

denoising algorithms in more complex image restoration tasks such as SR. Unlike PnP,

RED proposes an explicit construction of the regularization function of the form of an

image-adaptive Laplacian based on an external denoiser. This regularization function
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uses the inner product between the image and its denoising residual. Thus, considering

De-QuIP denoiser D as the denoising operator, the associated RED-prior function is

defined as g(x)= 1
2 xT(x−D(x)), and leads to, ∇g(x)= (x−D(x)), i.e., the gradient of the

RED-prior is the denoising residual [286].

Similarly to the PnP scheme in Section 6.6.2.1, an ADMM-based algorithm can be

designed to find the MAP estimator in (6.14) for the RED regularization function. The

associated augmented Lagrangian function becomes

L(x,v,u) =
1
2
∥SGx− y∥2

2 +
λ

2
vT(v−D(v))+ β

2
∥x−v+u∥2

2 ,(6.21)

which leads to following iterative scheme:

xk+1 = arg min
x

∥SGx− y∥2
2 +

β

2

∥∥∥x−vk +uk
∥∥∥2

2
,(6.22a)

vk+1 = arg min
v

λ

2
vT(v−D(v))+ β

2

∥∥∥xk+1 −v+uk
∥∥∥2

2
,(6.22b)

uk+1 = uk + xk+1 −vk+1.(6.22c)

Notice that the step (6.22a) has the same analytical solution of the form (6.19) following

the derivations proposed in [416]. Also, considering the property of RED gradient the

second step (6.22b) leads to the following solution,

(6.23) vk+1 = 1
λ+β

(
λD(vk)+β(xk+1 +uk)

)
,

where D represents the quantum adaptive denoiser De-QuIP.

6.6.3 Experimental Results on Clinical Dental Computed
Tomography Images

This subsection regroups experiments of SR image reconstruction using the proposed

algorithms PnP with De-QuIP and RED with De-QuIP, respectively denoted by PnP-

De-QuIP and RED-De-QuIP, on dental CT data. In dental applications, cone beam CT

(CBCT) is increasingly used in clinics, but suffers from low spatial resolution because of

low X-ray dose requirements, for particular application such as endodontics that concerns

the root canal. In this work, µCT, only available for extracted teeth given the small tube

and the high radiation dose, is used to obtain the ground truth.

Three methods from the literature have been used to evaluate the efficiency of the

proposed methods: i) a fast SR algorithm with total variation regularization [416] denoted
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FIGURE 6.15. Restored µCT tooth images from axial, sagittal and coronal slices.
The dark region inside the tooth corresponds to the canal root.
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CBCT
(LR image)

FSR-TV RED-BM3D

RED-TNRD RED-De-QuIPPnP-De-QuIP

𝝁CT

FIGURE 6.16. Restored CBCT tooth image from axial slice. The dark region
inside the tooth corresponds to the canal root.

by FSR-TV, ii) the RED algorithm using BM3D denoiser [77] denoted by BM3D-RED, iii)

RED algorithm using a convolutional neural network-based flexible learning denoising

method, known as the trainable nonlinear reaction diffusion (TNRD) denoiser [286],

referred as TNRD-RED.

The first experiment consists of three synthetic LR images created from the µCT

dataset by using a 9×9 Gaussian blurring kernel with std of 3, decimation factor of 2 in

each spatial direction, and contamination by an AWGN corresponding to blurred-signal-

to-noise-ratio (BSNR) of 20 dB (Fig. 6.15). Within the second experiment, CBCT images

were considered as the LR input of the SR algorithms. In this case, the ground truth is

not directly available but was assimilated to µCT images acquired on the same tooth,

given their very good spatial resolution and SNR (Fig. 6.16). Note that the point spread

function, unknow for this experiment, was estimated from the CBCT image itself and

approximated by a Gaussian kernel with std 6.2, 0.4 and 3.3 respectively for the axial,

sagittal and coronal slices. Table 6.11 depicts the resulting peak-signal-to-noise-ratio

(PSNR) and structure similarity (SSIM) of the restored µCT and CBCT images. The

results show a slight gain in PSNR and SSIM compared to FSR-TV and RED-BM3D, and

are comparable with RED-TNRD. The restored HR µCT and CBCT images are presented

in Fig. 6.15 and Fig. 6.16 respectively. The displayed results justify the potential of the
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TABLE 6.11. Quantitative SR results for dental tomography images. The best
values are highlighted in bold.

Methods Output
Tooth Image Slices

Axial Sagittal Coronal

µ
C

T

FSR-TV
PSNR(dB) 39.67 39.90 38.95

SSIM 0.969 0.973 0.981

RED-BM3D
PSNR(dB) 40.36 39.44 39.92

SSIM 0.973 0.972 0.982

RED-TNRD
PSNR(dB) 40.61 40.05 40.88

SSIM 0.973 0.974 0.983

PnP-De-QuIP
PSNR(dB) 40.68 39.96 40.63

SSIM 0.974 0.974 0.983

RED-De-QuIP
PSNR(dB) 40.75 39.98 40.71

SSIM 0.974 0.974 0.983

C
B

C
T

FSR-TV
PSNR(dB) 21.22 23.20 23.01

SSIM 0.764 0.895 0.891

RED-BM3D
PSNR(dB) 21.78 22.87 23.03

SSIM 0.808 0.895 0.897

RED-TNRD
PSNR(dB) 21.99 23.60 23.39

SSIM 0.825 0.899 0.899

PnP-De-QuIP
PSNR(dB) 22.07 23.42 23.37

SSIM 0.829 0.898 0.899

RED-De-QuIP
PSNR(dB) 22.15 23.56 23.39

SSIM 0.834 0.899 0.899

proposed SR algorithms for enhancing the CBCT images, particularly for enhancing the

region of interest, the dark region in the middle of the tooth, which is the canal root.

6.7 Conclusions

A novel image denoising algorithm inspired by the quantum many-body theory has

been developed in this chapter. This gives a way to adapt the concept of interaction

from the many-body physics to an imaging problem. More precisely, the interactions

between image patches are nothing more than a reflection of the similarity-measures in

a local image neighborhood and provide an efficient way to capture the local structures

of real images. Through these interactions, structural details are transmitted on a

patch-based adaptive basis created by the solutions of the Schrödinger equation of

quantum mechanics, which can be exploited as filters for denoising the patches. The

versatile nature of the adaptive basis that conveys the structural similarities of image
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neighborhood, extends its scope of applications beyond AWGN without modification.

A rigorous comparison with contemporary methods exemplifies the denoising ability

of our De-QuIP algorithm regardless of the image nature, noise statistics and intensity.

Simulation results demonstrate that the proposed method clearly outperforms other

schemes and gives a good comparison with the best outcome for both image independent

and dependent noise models. Additionally, De-QuIP achieves much better results at a

significantly less computational cost in comparison with the earlier single-particle based

quantum scheme of Chapter 4. To make De-QuIP more robust, automated rules are

discussed in this chapter to efficiently select the values of the hyperparameters close to

the optimal ones when less information is available.

In real-life problems, De-QuIP shows good performance, for example in medical US

image despeckling applications demonstrates its ability in handling multiplicative noise

efficiently. Furthermore, we proposed two new SR algorithms combining the adaptive

quantum denoiser De-QuIP and an analytical solution of the inversion step. This property

increases the denoiser’s efficiency while acting as a PnP or RED prior in a SR problem.

Comparisons with standard techniques justify the potential of the proposed schemes in

clinical dental computed tomography imaging applications.

6.7.1 Limitations

In this chapter, we have made a comprehensive study to optimize the relevant hyper-

parameter values and proposed automatic rules to tune them efficiently based on some

physical intuitions. Despite these observations to guide the choice of hyperparameters,

they are generally limited to the whole image and cannot be exploited patch-wise. It

raises the question of using different hyperparameter values for different patches due

to the nonlocal structure of the De-QuIP algorithm. Furthermore, patch-dependent hy-

perparameters may further enhance the adaptability of De-QuIP. In Chapter 7, we will

address this issue.

6.7.2 Perspectives

Adaptation of this new quantum many-body idea opens up a new domain of future explo-

rations. Since De-QuIP primarily has a non-local nature and significantly outperforms

contemporary NLM-based methods, the first obvious perspective comes from the exten-

sion of this idea of interactions for collaborative patch denoising, as originally proposed

in [82].
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A second interesting point would be to embed this interaction architecture into a

convolutional neural network, as explored with various schemes, such as a fast flexible

learning method [71, 407], residual learning [405] and others, and study imaging prob-

lems through this many-body network where each node shows interaction with others.

We will study this aspect in Chapter 7.

Further expansion of the framework in three dimensional data or RGB color images

can be easily done by simply bypassing data across different processing channels. Finally,

this work could be extended to other medical imaging problems, for example to 3D

SR problems with image-dependent noise models, and one can also investigate the

theoretical analysis of the method in the context of PnP and RED.
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∗ This chapter presents materials from the submitted journal paper [116] and conference

papers [115, 118].

Overview

This chapter presents a deep neural network called
DIVA unfolding a baseline adaptive denoising al-
gorithm (De-QuIP), relying on the theory of quan-
tum many-body physics. Furthermore, it is shown
that with very slight modifications, this network
can be enhanced to solve more challenging image
restoration tasks such as image deblurring, super-
resolution and inpainting. Despite a compact and
interpretable (from a physical perspective) archi-
tecture, the proposed deep learning network out-
performs several recent algorithms from the lit-
erature, designed specifically for each task. The
key ingredients of the proposed method are on one
hand, its ability to handle non-local image struc-
tures through the patch-interaction term and the
quantum-based Hamiltonian operator, and, on the
other hand, its flexibility to adapt the hyperparam-
eters patch-wisely, due to the training process. Fi-
nally, we show the ability of our approach to deal
with clinical cardiac ultrasound images enhance-
ment applications.

203





7.1. INTRODUCTION

7.1 Introduction

7.1.1 Image Restoration Problem

Restoring a high-quality image from a degraded observation is a classic but still major

challenge in imaging applications, such as medical imaging, remote sensing, low-level

vision, surveillance, to cite few. Such a degradation process can be formulated as

(7.1) Y =OX + e,

where, Y and X are the low quality observation and the underling true image respective,

respectively, the degradation operator is O, and e is associated with an additive noise.

The Chapter 3 explains that the nature of the degradation operator O sets the tone of the

restoration process of the latent high-quality image X . More precisely, we get a denoising

[82, 100, 106, 123], deblurring [58, 72, 84, 385] or super-resolution (SR) [141, 252, 416]

problem if O is an identity, a blurring or a subsampling operator, respectively. In practice,

the estimation of the latent image X from a degraded observation by neutralizing

operator O’s effects is a challenging ill-posed inverse problem and has been extensively

studied over the years, yet remains an active field of research.

7.1.2 Related Works

Traditionally, the restoration process is framed as a model-based optimization problem

from a Bayesian perspective, in which the desired solution is obtained by minimizing

the sum of a regularization and a data fidelity term [10, 106, 123, 236, 260]. Later, data-

driven non-local self-similarity (NLSS) filters [49, 82, 109, 197, 340, 394], in particular,

non-local regularization approaches [102, 103, 328, 335] blending the NLSS and low-rank

regularity, dominated the field due to their state-of-the-art restoration performances.

However, these schemes require conducting a costlier computation process and manual

tuning of several hyperparameters, which are the primary challenges of these strategies.

Based on deep convolutional neural networks (CNN), deep-learning (DL)-based

strategies brought an alternative to the well-established model-based methods to counter

such imaging problems [22, 96, 101, 301, 398, 405] and have proven efficiency in image

restoration over the conventional model-based approaches, exploiting a training dataset

in the learning process. However, a CNN network performance largely depends on

the number of layers, the kernel size and the learning rate. Indeed, deeper network

structures may provide better results but exponentially increase the training complexity
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[162]. Thus, network structures are in most cases determined empirically, which makes

them suffer from a lack of interpretation of their true functionality.

Very recently a new concept, known as unfolding [151], is gaining more attention

due to its explanatory properties, while exploiting the computation power of CNN

architecture. Gathering the advantages of both model and DL-based approaches, this

framework constructs a DL network starting from a classical algorithm and has recently

been successfully explored in the literature, leading to superior restoration performance

over the classical methods [194, 212, 300, 313, 383].

7.1.3 Contributions

In this chapter, we advocate novel CNN architectures for image restoration problems,

unfolding our recently introduced quantum mechanics-based adaptive denoising algo-

rithm called De-QuIP in Chapter 6. It is shown that despite the promising performances

in imaging domain, the quantum-single-particle-based frameworks cannot benefit from

the structural features of the image like NLSS algorithms. In contrast, De-QuIP is based

on the theory of many-body quantum systems, where each image patch behaves like a

single particle system and interacts with its neighbors. This phenomenon of interaction

preserves the image similarity/features from a local neighborhood. Indeed, use of this

concept of interaction in De-QuIP brings an intrinsic non-local structure to the algorithm

that notably enhances the denoising performance and has been extensively studied in

Chapter 6. Despite its interesting performances, De-QuIP suffer from costly computa-

tional processes (e.g., hyperparameters tuning and eigenvalue decomposition) like many

other model-based schemes, which may limit its practical use.

In this chapter, we introduce a novel DL network unfolding the baseline De-QuIP

algorithm, denoted as DIVA (Deep denoising by quantum InteractiVe pAtches) for image

denoising problem. We further extend the network architecture to conduct a general im-

age restoration task. The inclusion of the quantum interaction theory brings a non-local

structure to the proposed CNN architecture. Indeed, in our depicted DL models, the fun-

damental aspects of quantum theory from the baseline De-QuIP algorithm are essentially

preserved. Furthermore, the DL model efficiently resolves the hyperparameter tuning

problem of the original De-QuIP scheme, harnessing the power of back-propagation. The

integration of the key attributes of DL and quantum theory significantly enhances the

functionality of our proposed networks due to their intrinsic versatility and enables our

models to exhibit state-of-the-art performances for several restoration tasks. Herein, we

present a robust generalized formalism by incorporating additional features in signif-

206



7.2. BRIEF REVIEW OF QUANTUM INTERACTIVE PATCHES-BASED DENOISING

icant ways: (i) we initially propose a DL model, primarily designed for denoising, and

further extend it to more complex image restoration tasks such as deblurring, super-

resolution and inpainting, with a resilient generalized network architecture; (ii) we

conduct a detailed investigation regarding the network diagram and add considerable

analysis of the incorporated quantum background, tunable parameter number, and run

time; (iii) we report a comprehensive survey of image restoration performance against

benchmark methods for various imaging problems; (iv) we also conduct experiments with

clinical cardiac ultrasound (US) images to demonstrate our model ability in real medical

applications.

The remainder of the chapter is organized as follows. Section 7.2 reminds briefly the

concepts of the baseline De-QuIP algorithm for self-consistency reasons. Section 7.3 first

presents the proposed DIVA network for denoising and then extends it to an advanced

model for other imaging tasks. The experimental settings and extensive evaluations are

reported in Section 7.4. Section 7.5 summarizes findings related to clinical US image

contrast enhancement problems. Section 7.6 outlines the overall remarks and possible

future perspectives. Finally, Section 7.7 draws the conclusions.

7.2 Brief Review of Quantum Interactive
Patches-Based Denoising

To facilitate the understanding of the proposed method, we briefly revisit the baseline

De-QuIP algorithm as proposed in Chapter 6 for image denoising and its main properties.

7.2.1 The De-QuIP Scheme

Built on an underlying nonlocal architecture, De-QuIP offers an adaptive way of image

denoising based on the theory of quantum many-body interaction. The theory of quantum

many-body physics describes many-body quantum systems, where generally particle-to-

particle interactions emerge. De-QuIP provides a framework for extending this concept

of interaction to imaging problems. Effectively, De-QuIP divides an image into small

patches, and each image patch acts as a single-particle system while interacting with

its neighbors, i.e., with neighboring patches, inside the whole image, similarly to a

many-body system. Indeed, these interactions between neighbors reflect their mutual

similarities that enhance the denoising performance of De-QuIP significantly.
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Similar to any denoising method, the goal is to estimate the underlying clean image

X ∈RM×N from a noisy observation Y ∈RM×N . The respective vectorized representations

of X and Y are denoted by x ∈RMN and y ∈RMN in lexicographical order. Based on the

many-body quantum physics, the primary idea of De-QuIP algorithm is to construct an

adaptive transformation using the wave solutions of the Schrödinger equation Hψ(z)=
Eψ(z), where the wave function ψ(z) describes a particle with energy E in a potential V ,

z being the spatial coordinate. In a many-body system, denoting by I the interaction, the

Hamiltonian operator is H =−(ℏ2/2m)∇2 +V + I, where ∇ and (ℏ2/2m) are respectively

the gradient operator and a function of the Planck’s constant (this function acts as a

hyperparameter in this formalism). For this patch-based imaging scheme, the potential

V is represented by the original pixels’ values of the image patch and the patch-similarity

measures act as the interaction I. The set of eigenvectors of the Hamiltonian operator

gives the adaptive transformations for the respective patch. Thus, for a system with

multiple particles, the Hamiltonian operator Ha for the a-th patch is defined by:

(7.2) Ha =− ℏ2

2m
∇2 + Ja + Ia,

where Ja and Ia are respectively the pixels’ values and interaction term for the a-th

patch. The corresponding set of eigenvectors Ba of Ha acts as the quantum adaptive

basis for the a-th patch. The key steps of De-QuIP algorithm are as follows.

• Patch extraction: The patch extraction step primarily uncoils small patches from

the observed image and assimilates their neighbors into their respective local

groups. Let us denote by Ja a patch of size n2 whose upper-left pixel position is a,

and by Ω the set containing all such patches extracted from the image y. For all

Ja ∈Ω, one creates a window of size W ×W centered on Ja and accumulates all

patches inside the window in a set denoted by SJa to create local groups.

• Total interaction: The goal of the interaction step is to preserve local struc-

tures/similarities by exploiting the local groups through a notion akin to the

interactions in quantum mechanics. This step computes the interactions Lab, for

all Jb ∈ SJa and all Ja ∈Ω, using power laws of physics, i.e., interaction is lin-

early proportional to the pixel-wise difference Kk
ab = |Jk

a − Jk
b| for k = 1, · · · ,n2 and

inversely proportional to the square of the Euclidean distance Dab between the

patches. Summing over b gives the total interaction for the a-th patch

(7.3) Ia = p
∑
b

Lab = p
∑
b

Kab

D2
ab

, ∀Ja ∈Ω.
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In this construction the proportionality constant p acts as a hyperparameter.

• Hamiltonian operator and adaptive basis: This step formulates the energy

or Hamiltonian operators of the extracted patches by incorporating their total

interaction with their neighbors in the local group using (7.2). The associated set

of eigenvectors Ba of the Hamiltonian operator Ha operates as the adaptive basis

for the current image patch Ja.

• Thresholding: The thresholding is processed on the coefficients resulting from

patch projections onto their respective adaptive basis. Hence, the noise is attenu-

ated by projecting Ja onto Ba and performing hard/soft-thresholding T in energy.

Finally, reverse projecting the truncated coefficients reinstates the denoised patch

Ĵa,∀Ja ∈Ω.

• Patch accumulation: This step accumulates all the denoised patches to their

original positions and normalizes them to reconstruct the estimated denoised

image x̂. In the following, the patch extractor operator is denoted by E, while the

operation of accumulating the patches to form the denoised image is denoted by

E−1.

In the De-QuIP framework, the preserved spatial information by the patch interac-

tion phenomenon coherently passes through the Hamiltonian operator to the quantum

adaptive basis and enables the algorithm to handle denoising tasks regardless of the

noise intensity, statistics and image nature. Its application field is not limited to denois-

ing tasks, and its efficiency has been illustrated in various imaging problems such as

despeckling and super-resolution as shown in Chapter 6. Fig. 7.1(a) depicts the De-QuIP

architecture, where interaction, proportionality constant, adaptive basis and thresholded

coefficients are denoted by L, P, B and R respectively.

7.2.2 Shortcomings of De-QuIP

The major challenge of De-QuIP is its high computational cost of tuning the hyperpa-

rameters p, (ℏ2/2m) and energy threshold. In Chapter 6, the influence of these hyperpa-

rameters and strategies to optimize their values were discussed. Despite some rules that

guided the choice of the hyperparameters, they remain general for the whole image and

are not optimized to be applied patch-wise. Although De-QuIP demonstrates favorable

outcomes despite these drawbacks, the intrinsic non-local architecture of the algorithm

raises an obvious question of assigning patch-dependent hyperparameter values, which
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FIGURE 7.1. Architectural comparison between De-QuIP and its DL counter-
part.

can further enhance the adaptability of the model. However, manually tuning all the

hyperparameters separately for each patch is practically impossible. The power of DL

architecture removes this barrier by involving many parameters that can be learned

during the training process.

Another challenge of De-QuIP is the computationally-expensive task of adaptive basis

vector computation from the Hamiltonian operator. Furthermore, this adaptive basis

is exploited to calculate the projection coefficients, bringing additional computational

burden. A deep learning model can bypass all these bottlenecks by directly estimating

the projection coefficients with the help of convolutional kernels. The subsequent section

focuses on this deep-learning prospect of the De-QuIP algorithm, the main contribution

of this chapter.

7.3 Proposed Deep Architectures for Image
Restoration

This section presents deep unfolding strategies for image restoration problems built

on the baseline De-QuIP algorithm. Depending on the image degradation operator O,

various imaging problems arise. If O is an identity operator, the image restoration

problem is equivalent to a denoising task, whereas, depending on O, it may turn into

deblurring, super-resolution or inpainting, addressed herein. In the following, two deep

architectures are introduced: the first addresses denoising, and the second more complex

image restoration tasks. The first proposed network, referred to as DIVA, is a direct

translation of the baseline De-QuIP algorithm into a deep learning model to handle

denoising. To handle non-identity degradation operators O, DIVA architecture is slightly
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modified and denoted by DIVA advanced (DIVA-A). The subsequent subsections illustrate

these two network architectures.

7.3.1 Proposed DIVA Architecture

The main idea behind the proposed unfolding strategy is to replace the matrix multiplica-

tion steps in De-QuIP by convolution layers. The analogy between the original algorithm

and its unfolded version is illustrated in Fig. 7.1. The proposed DIVA network primarily

stands upon eight main pillars.

• Extraction layer: Similar to the De-QuIP algorithm, the extraction layer in DIVA

assembles all patches from a local window of size W ×W centered at Ja in a local

patch-group denoted as SJa ,∀Ja ∈Ω. Let the cardinality of SJa be κ, ∀Ja ∈Ω and

ζ be the cardinality of Ω. The patch extraction operation from the local window

can be defined as a matrix multiplication by EJa ∈Rn2κ×MN for each Ja. Therefore,

mathematically, GJa = EJa y, where GJa ∈Rn2κ is the concatenated vectorized local

patch group for each Ja. Thus, for the whole image, the patch extractor operator

E ∈Rζn2κ×MN is constructed by concatenating EJa ∈Rn2κ×MN ∀Ja ∈Ω. Finally, Ja

and GJa ∀Ja ∈Ω are concatenated and reshaped to construct matrices J ∈Rζ×n2

and G ∈Rζ×n2κ, further considered as inputs for the next layer.

• Interaction layer: This layer computes the interactions between patches for each

local group GJa following the power laws discussed in Sec. 7.2.1. But rather than

considering a fixed hyperparameter value p as in (7.3), for each local group GJa a

different set of pk
ab values is assigned for each pixel k (k = 1, · · · ,n2) and patch b

(b = 1, · · · ,κ; ̸= a) respectively. Therefore, the total interaction can be expressed as

(7.4) Ik
a =

κ∑
b=1,b ̸=a

pk
ab

Kk
ab

D2
ab

=
κ∑

b=1,b ̸=a
pk

abLk
ab, for each GJa .

In matrix notation, Ia = PabLab, for each GJa , where Ia ∈ Rn2
, Pab ∈ Rn2×n2(κ−1),

and Lab ∈ Rn2(κ−1) respectively denote the total interaction for patch Ja, propor-

tionality constant in local group GJa , and interaction between Ja and Jb patches.

At this point, the main challenge is to tune the values of Pab so that Ia can effi-

ciently preserve the local information and incorporate them into the Hamiltonian.

One may note that this process is equivalent to a convolution between Lab and a

learnable filter C1a of appropriate size. Hence, the local operation in the layer is,

(7.5) Ia =C1a ⋆Lab, ∀GJa ,
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where ⋆ indicates the convolution product. This convolution layer is followed by

a Rectified Linear Unit (ReLU) to truncate the insignificant contributions of the

interactions. Finally, by concatenating Ia,∀GJa , one obtains I ∈Rς×n2
.

• Construct the Hamiltonian kernel: In the baseline architecture of De-QuIP, for

each Ja, the Hamiltonian/energy operator depends on the hyperparameter (ℏ2/2m)

(i.e., the Planck constant), the total interaction Ia and the original potential/pixels’

values Ja. This operator gives the adaptive basis Ba on which the noisy patch Ja is

projected. The integration of the local interactions, bringing a non-local dimension

to the formalism, is a core feature of De-QuIP.

This physical attribute of the Hamiltonian operator is preserved in this step by

constructing a kernel

(7.6) C2a =
( ℏ2

2m

)
a
∇2 + Ja + Ia, ∀Ja ∈Ω,

where different learnable values of (ℏ2/2m)a are allotted instead of a constant one.

This kernel C2a mimics the role of the adaptive basis Ba in the next layer in the

shadow of a convolutional process. Note that throughout the learning process the

kernel retains its original Hamiltonian structure which is a key ingredient of the

original De-QuIP algorithm.

• Projection layer: This layer deals with the adaptive transformation of the noisy

patch Ja on the associative quantum adaptive basis Ba for each Ja ∈ Ω, i.e.,
αa = BaJa, where αa ∈ Rn2

are the projection coefficients of Ja. In our proposed

deep architecture, this process is conducted by performing convolution operations

on Ja using a learnable kernel C2a built in the previous step, as:

(7.7) αa =C2a ⋆Ja, ∀Ja ∈Ω.

Exploiting the power of a deep network, the convolution operation (7.7) removes

the algebraically expensive processes, such as the computation of adaptive basis

and projection coefficients, and uses the training dataset to directly estimate the

projection coefficients. Finally, all αa are concatenated to form α ∈Rζ×n2
, serving

as input to the next layer.

• Thresholding layer: The thresholding layer handles the process of trimming

the projection coefficients α. A nonlinear ReLU activation function ϕ is used as a

thresholding function, which makes the denoising process more robust by adding
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more flexibility than the baseline scheme, where thresholding was done in energy.

Therefore, the shrunk coefficients Ra =ϕ(αa) are obtained for each Ja ∈Ω, further

concatenated into R ∈Rζ×n2
, before stepping to the next layer.

• Inverse projection layer: In the original algorithm the denoised patch Ĵa is

created from the reduced coefficients Ra by inverse projecting onto the quantum

adaptive basis Ba for each Ja ∈Ω, i.e., Ĵa =B−1
a Ra. This step resembles a convolu-

tion process of Ra with a learnable kernel C3a . Hence, the mathematical operation

of the layer is defined as

(7.8) Ĵa =C3a ⋆Ra, ∀Ja ∈Ω.

Finally, before proceeding to the following layer, all outputs Ĵa are concatenated to

Ĵ ∈Rζ×n2
.

Note that in the baseline algorithm, the operator used in the inversion step was

the inverse of the adaptive basis used in the projection process. This mutual

dependence is highlighted in Fig. 7.1(a) by an arrow. In the proposed deep unfolded

network, the learnable kernels C2a and C3a replaced respectively the original and

inverse adaptive basis. The convolutional operations are useful to learn these

kernels independently and are illustrated by removing the arrow in Fig. 7.1(b).

• Aggregation layer: Akin to the De-QuIP scheme, this layer conducts the E−1

operation to accumulate all the denoised patches and put them back to their initial

positions in the image after normalization, and reconstructs the denoised image x̂.

Note that overlapping patches are considered in the proposed formalism. Fig. 7.2(a)

illustrates the proposed DIVA network architecture, highlighting all the layers

described above.
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7.3.2 Proposed DIVA Advanced Network

An advanced version of the DIVA network introduced in the previous section is proposed

hereafter. This network slightly differs from DIVA, and is adapted to image restoration

tasks involving, in addition to noise, other degradation effects on the observed image y,

such as blur, pixel resolution loss or missing pixels. In the case of additive Gaussian noise,

the effect of the noise and the additional degradation can be considered independently.

Therefore, the DIVA network of Subsection 7.3.1 is extended by additional convolutional

layers after the inversion process. In this way, the first part of the network eliminates the

noise, and the second part neutralizes the effects of a nonidentity degradation operator.

The modified network referred to as DIVA-A primarily plugs a neutralization layer

between the inverse projection and aggregation layers, as highlighted in Fig. 7.2(b).

• Neutralization layer: This layer corresponds to the restoration of the patch

J̃a by eliminating the influence of a degradation operator Oa from the patch Ĵa

reconstructed in the inverse projection layer for each Ja ∈ Ω, i.e., J̃a = O−1
a Ĵa,

where Oa denotes a degradation operator acting on a patch Ja, ∀Ja ∈ Ω. This

operation is analogous to a convolutional process of Ĵa with a learnable kernel C4a ,

defined as

(7.9) J̃a =C4a ⋆ Ĵa, ∀Ja ∈Ω.

The proposed network conducts this operation by adding three convolutions with

multiple learnable filters, and one ReLU function to remove any unwanted contri-

bution (see Fig. 7.2(b)). The power of a CNN architecture is used to learn these

filters that mimic the role of a degradation operator in this layer.

Before proceeding to the aggregation layer, all J̃a are concatenated to obtain J̃ ∈
Rζ×n2

. Similar to the DIVA network, the aggregation layer assembles all recovered

patches and outputs the restored image x̂.

7.3.3 Loss Function

The proposed networks are trained end-to-end, where the mean squared error (MSE)

between the predicted and original residuals is adopted as the loss function [383]:

(7.10) LΘ = 1
MN

||R(x̂;Θ)− (y− x)||22,
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where R(x̂;Θ) denotes the predicted residual by the network with parameter set Θ.

This loss function allows our models to learn the disorders present in a distorted image

without bothering about the features of the true image. Note that it is possible to use

other loss functions.

7.4 Experimental Results

In this section, we analyze the proposed networks and illustrate their performance in

various image restoration tasks, such as image denoising, deblurring, SR, and inpainting.

Subsection 7.4.1 briefly summarizes the experimental settings used in the different

contexts. Subsection 7.4.2 gives an overview of various benchmark methods considered

for comparison purposes. An ablation study with/without considering the interaction

layer and the Hamiltonian kernel within the proposed networks is conducted in Subsec-

tion 7.4.3, with an additional discussion on the parameter number, run time, and the

depth of the network. Finally, Subsection 7.4.4 presents a quantitative and qualitative

evaluation of our DL models on various image restoration problems.

7.4.1 Experimental Settings

7.4.1.1 Image Denoising

• Training data: The proposed DIVA network was trained for the Gaussian de-

noising task following [71, 405, 407], over a set of 400 gray-scale images of size

180×180 extracted from BSD400 dataset. All images were contaminated with

additive white Gaussian noise (AWGN) with standard deviation σ, following two

configurations: known and unknown σ. For the case of known σ, the training was

conducted individually over six known noise levels, for σ= 10,15,25,50,75 and 100.

To tackle an unknown noise level, DIVA was also trained blindly for a range of

noise levels corresponding to σ ∈ [5,40]. The corresponding model is referred as

DIVA-blind.

• Testing data: The trained networks were tested on five standard benchmark

datasets Set12, BSD68, Kodak, LIVE1 and Urban100, widely-used for denoising

problems [405, 407].
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7.4.1.2 Image Deblurring

• Training data: DIVA-A was trained separately for two types of blur kernels, i.e.,
motion and Gaussian blur, using the recently released high-quality dataset DIV2K

[9] that consists of 800 images. Eight real motion blur (MB) kernels [194, 215] and

three Gaussian blur (GB) kernels [362] were considered with AWGN.

• Testing data: The models trained for motion blur were tested on four benchmark

datasets Set10, Levin, Sun et al., and Set12, used in [194, 254]. The BSD100 and

Set16 datasets were considered for the Gaussian case, following [362].

7.4.1.3 Single Image Super-Resolution)

• Training data: Similar to the deblurring model, the high-quality DIV2K [9]

dataset was used as training data for image SR application. Two degradation

models were used to simulate low-resolution (LR) images for network training: (i)

bicubic downsampling (BD), and (ii) Gaussian downsampling (GD). The scaling

factor was set to x2, x3, and x4. For BD case [22], a LR image was simulated from

the high-resolution (HR) image by adopting Matlab imresize function, whereas for

GD scenario, the HR image was blurred by a Gaussian kernel of size 7×7 with

standard deviation 1.6 before downsampling, similar to [22].

• Testing data: For testing, four widely-used benchmark datasets for image SR

problem [12, 22, 331] Set5, Set14, BSD100, and Urban100, were used.

7.4.1.4 Image Inpainting

• Training data: The same 400 gray-scale images [405] exploited by the denoising

model were used to conduct the training of the proposed DIVA-A model for image

inpainting. Random pixel missing model was considered to generate LR images

from HR ones. 20%, 50% and 80% rates of missing pixels were used.

• Testing data: Datasets Set5 and Set12 were used to evaluate the trained inpaining

networks.

7.4.1.5 Quantitative Metrics

For the purpose of quantitative evalution, the peak-signal-to-noise-ratio (PSNR) and the

structural similarity (SSIM) [366] computed between the true and the restored images

were used.
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7.4.1.6 Training Settings

All HR and simulated LR images were clipped between 0 and 1. The patch size was set

to n = 15 with a local window of size W = 35 for the proposed image denoising model with

known σ. For DIVA-blind and inpainting applications, these parameters were slightly

modified to n = 25 and W = 50. For deblurring and SR, larger patch and window sizes

were used, n = 35 and W = 70, to preserve more spatial information from the local

neighborhood. Finally, all LR-HR patch pairs were augmented randomly by rotating

90 degree and flipping horizontally or vertically to generate training data pairs. The

proposed models were trained in a supervised manner by exploiting these patch-pairs.

To conduct the training, the ADAM optimizer with a mini-batch size of 128 was em-

ployed. More precisely, the models were trained with an exponentially decaying learning

rate ranging from 10−3 to 10−6 over 60 epochs. The proposed network architectures

were implemented under the Keras and Keras-backend framework that relies on the

TensorFlow library, and trained using NVIDIA GTX 1080 Ti GPU. The training process

took about 6 hours for DIVA and 12 hours for DIVA-A to reach convergence for each

experiment.

7.4.2 Comparison Methods

This subsection regroups the state-of-the-art methods used to conduct a comprehen-

sive comparison to illustrate the potential of the proposed models in various imaging

problems.

7.4.2.1 Image Denoising

The residual learning-based DnCNN [405] model is the benchmark for AWGN denoising,

and its superiority over model-based (e.g., BM3D [82], NLM [49], etc.), and learning-based

(e.g., TNRD [71], MLP [51], CSF [301] etc.) algorithms is well-established. In addition to

DnCNN [405], our denoising model DIVA was also compared to two recently introduced

DL-based networks, FFDNet [407] and IRCNN [402]. Furthermore, comparisons were

carried out with a newly proposed deep unfolded scheme, BM3D-NET [383], as well as

with the baseline De-QuIP algorithm as proposed in Chapter 6.

7.4.2.2 Image Deblurring and Super-Resolution

For image deblurring and SR problems, newly published leading methods from the

literature were considered to illustrate the accuracy of DIVA-A architecture. In the
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following, the relevant methods used for comparison purposes in different settings are

listed.

(i) MB model: IDD-BM3D[84], FDN[199], VEMNet[254], DWDN[99], DRED-DUN[194];

(ii) GB model: IDD-BM3D[84], Son et al.[315], DEBCNN[362];

(iii) BD model: LapSRN[202], MemNet[331], CARN[12], DRLN[22];

(iv) GD model: IRCNN[402], DFAN[220], RDN[414], DRLN[22].

In image SR problems, the DRLN [22] is the new benchmark in the literature. It is

already shown in the seminal paper that the DRLN [22] exhibits reference state-of-the-

art performance for image SR.

Thus, the DRLN [22] was considered in the comparisons, avoiding to include all the

other approaches. Similarly, for image deblurring, DWDN [99], DRED-DUN[194], and

DEBCNN[362] were the best performing models in their fields. Hence, these models are

selected for comparisons over other methods in the literature.

7.4.2.3 Image Inpainting

DIVA-A trained for image inpainting was compared against the DL prior based model

IRCNN [402].

The pretrained models and the testing codes, made publicly available by the authors,

were used for comparisons. Importantly, note that the proposed networks have been

trained and tested exactly in the same conditions and on the same datasets as the

comparison methods, thus ensuring a fair comparison.

7.4.3 Ablation Study and Model Analysis

This section regroups several ablation studies aiming at showing the importance of the

layers inspired from quantum mechanics, and an in-depth analysis of the properties of

the proposed networks.

7.4.3.1 Influence of the Interaction Layer

To show the effect of the interaction layer’s integration in the Hamiltonian kernel, two

versions of the DIVA network were trained for image denoising with σ= 15: the complete

network as shown in Fig. 7.2(a), and the same network without the interaction layer.

Fig. 7.3 plots the corresponding loss functions for these two network settings with respect

to the number of epochs. One can see that using the interaction layer results into a faster

and more stable convergence of the training process. Meanwhile, in the absence of this
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FIGURE 7.3. Loss function (MSE) with respect to epochs. Two specific models
are trained for image denoising with σ= 15, with and without integrating
the interaction layer in the proposed DIVA architecture for the ablation
study.

layer, a strong periodic fluctuation can be observed. This is caused by the absence of a

non-local architecture in the network, which helps stabilizing the convergence process.

The same ablation study was conducted for different depths of the projection layer,

using the Hamiltonian convolutional kernel constructed with and without the interaction

layer. From Table 7.1, one can see a clear improvement in denoising performance in

the presence of the interaction layer. In addition, the interaction layer significantly

reduces the depth of the network by extracting the local similarities/structures from

the neighboring patches. Indeed, more local information can be transferred through

this non-local architecture, which helps network structures with lower depth to be more

efficient. On the contrary, the network without the interaction layer improves while

increasing the depth. This is expected since a deeper network consists of a larger set of

tunable parameters. Although a bigger set of parameters leads to a better outcome, the

learning process becomes more computationally expensive. Thus, the integration of the

interaction layer enhances the network performance with a reduced computational cost,

giving an edge to the proposed models.

Note that, in absence of the interaction layer in the proposed model, the network

does not consider the influence of neighboring patches on the target patch and loses

its non-local nature. Thus, each patch behaves as a single particle quantum system,

and all patches are independent. Hence, in this circumstance, the network without an

interaction layer becomes an unfolded DL scheme of the baseline QAB algorithm as
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TABLE 7.1. Ablation investigation of the projection layer’s depth using Hamilto-
nian kernel with or without the interaction layer. The results (PSNR/SSIM)
are obtained on Set12 contaminated with AWGN with σ= 15, in 50 epochs.

Depth of the projection layer using Hamiltonian convolutional kernel
1 2 3 4 5 1 2 3 4 5

Interaction layer ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

PSNR (dB) 30.38 31.61 31.95 32.17 32.28 32.09 32.92 32.95 32.96 32.98
SSIM (%) 87.64 89.22 90.74 91.61 91.88 93.68 95.41 95.52 95.55 95.60

TABLE 7.2. Ablation study with/without using the Hamiltonian kernel in the
network. The results (PSNR/SSIM) are obtained in 50 epochs on Set12
images contaminated with AWGN (σ= 15).

Contribution of different components
Hamiltonian kernel ✗ ✓ ✓

Interaction layer ✗ ✗ ✓

PSNR (dB) 29.30 31.61 32.92
SSIM (%) 86.82 89.22 95.41

proposed in Chapter 4, originally proposed for image denoising based on single-particle

quantum theory. In Chapter 6, it has been shown that the baseline De-QuIP outperforms

the conventional QAB algorithm significantly. This observation for the traditional De-

QuIP algorithm is also consistent with results for our unfolded DL models, as reported in

Fig. 7.3 and Table 7.1. Therefore, the consideration of the quantum interaction concept

clearly enhances the model performance of both conventional and DL architectures.

7.4.3.2 Depth of the Projection Layer

Table 7.1 reports denoising performance on Set12 for σ= 15 for different depths of the

projection layer within the Hamiltonian kernel. As expected, the denoising performance

increases with the depth of the network, but this increment is less significant beyond

depth 3. Assessing the trade-off between the network efficiency and the computational

complexity, a depth of 2 was considered in the proposed DL models.

7.4.3.3 Ablation Study on the Hamiltonian Kernel

In the proposed models, the objective is to construct a Hamiltonian kernel to conduct the

projection operation, while preserving the original attributes of the proposed Hamiltonian

operator in the baseline De-QuIP algorithm. This Hamiltonian kernel is a sum of the
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(a) Left: Denoising performance vs parameter number. Comparisons are presented on
the BSD68 dataset with σ= 50. Right: Denoising performance vs run time. Comparisons
are presented on the Set12 dataset with σ= 50.

DIVA-A

DRED-DUNDWDN
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Son et al.
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(b) Left: Deblurring performance vs parameter number. Comparisons are presented on
the Levin dataset with motion blur and σ= 7.65. Right: Deblurring performance vs run
time. Comparisons presented on the Levin dataset with motion blur and σ= 7.65.
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(c) Left: SR performance vs parameter number. Comparisons are presented on the
BSD100 dataset for 4X SR. Right: SR performance vs run time. Comparisons are
presented on the Urban100 dataset for 4X SR.

FIGURE 7.4. Performance versus parameter number and run time versus perfor-
mance are presented for different methods for different tasks. The proposed
methods give high performances in terms of SSIM(%) with fewer number of
parameters and low computation time.
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nabla operator, original pixels’ values of the patch and the interactions with its neighbors,

following equation (7.6). To illustrate the importance of this Hamiltonian structure in the

proposed networks, an ablation investigation of this Hamiltonian kernel was conducted,

through three network settings:(i) without the Hamiltonian kernel and interaction layer,

(ii) with the Hamiltonian kernel but without the interaction layer, and (iii) with the

Hamiltonian kernel including the interaction layer. For all settings, the depth of the

projection layer was set to 2. Table 7.2 regroups the denoising results on Set12 for AWGN

with σ= 15 for all these three configurations. From these results, one may observe that

the accuracy of the network is significantly improved in the case where the Hamiltonian

shape is preserved and includes the interactions between neighboring patches. This

improvement is even further illustrated by the SSIM, that is more sensitive to the

image structure than the PSNR, and thus more suitable to reflect the contribution of the

interaction-based Hamiltonian operator. Furthermore, one may notice that with none

of these two ingredients, the denoising performance is largely decreased. This can be

explained by the fact that in this case, the resulting netwrok, very similar to DnCNN

[405], needs far more layers to achieve good denoising results. Indeed, a network depth

of 17 is suggested in [405], while, as mentionned previously, the proposed network depth

can be reduced to 2. Therefore, the exploitation of the local information through the

patch interaction, originally proposed in the baseline De-QuIP, and the attributes of

the Hamiltonian kernel, make the proposed DL networks easily adaptable but resilient

even for lower depth. In conclusion, this experiment illustrates the significance of the

inclusion of the Hamiltonian kernel with the interaction layer in the proposed models.

7.4.3.4 Analysis of the Parameter Number and Runtime

The number of hyperparamers of a DL network plays a crucial role in its efficiency.

Generally, a larger pool of parameters drives the model more resilient and leads to better

performance. However, it also imposes an important computational load, in particular

within the training process. Furthermore, an excessive number of parameters may lead

to an over-fitting problem. Hence, a balanced trade-off between the learnable parameter

number, the performance, and the computational cost becomes a crucial factor for an

efficient DL model.

As detailed in the previous ablation studies, the proposed models exploit the Hamil-

tonian kernel, which is enriched by an intrinsic non-local architecture through the

interaction layer. As a result, the resulting DL networks are able to process more infor-

mation through fewer parameters and significantly reduce the cost of training with high
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efficiency. Fig. 7.4 provides the performance in terms of SSIM(%) versus the number of

parameters and the runtime of the proposed models against state-of-the-art methods, in

the context of different image restoration problems. One can observe a significant gain in

performance of DIVA model for image denoising (see Fig. 7.4(a)). DIVA increases SSIM

by 10%, with almost half the number of parameters of its closest competitors FFDNet

[407] and DnCNN [405]. For image deblurring problem (see Fig. 7.4(b)), DIVA-A requires

only half of the parameters compared to its nearest rival DRED-DUN [194], but offers a

1% better SSIM value. Similarly, from Fig. 7.4(c), one can report a gain of 1-2% in SSIM

for image SR by DIVA-A compared to the recently introduced DRLN network, whereas

our model has 40 times less parameters than DRLN. Naturally, the proposed networks

that need a reduced number of parameters to perform well, also offer a significantly

reduced training cost. Fig. 7.4 presents the runtime comparisons against other standard

models in various imaging tasks, showing that the proposed models are significantly

faster. Note that similar results are achieved for image inpainting, but are not reported

here since the comparison network is IRCNN, already included in the SR experiments.

Hence, harnessing the benefits of the interaction layer and of the Hamiltonian kernel,

the proposed DL models demonstrate better performance for image restoration with

fewer parameters and more efficient computational costs.

7.4.4 Qualitative and Quantitative Image Restoration Results

7.4.4.1 Image Denoising

Table 7.3 summarizes the average PSNR and SSIM results of the different methods on

six commonly used testing datasets with six different noise levels. One might notice

that the proposed DIVA model uniformly outperforms all the state-of-the-art approaches,

irrespective of the noise level and dataset. Compared to the deep unfolded BM3D network

BM3D-NET, our model exhibits much better denoising performance with an average

increment of 1.5dB PSNR and 4.5% SSIM for low noise levels and up to 2dB PSNR and

13% SSIM for higher σ. Note also that BM3D-NET was only available for four levels of

noise. One can observe that the performance gain is much higher over the benchmark

DnCNN and FFDNet networks for high noise cases. Precisely, DIVA outperforms these

competing methods by 0.05-1.2dB PSNR and 4-18% SSIM in average and achieves the

best denoising yields. Moreover, our blind denoising model DIVA-blind that, in contrast

to the other networks, is not trained for a given (known) noise level, but for a range

of σ, still gives comparable PSNR values and improved SSIM compared to the state-
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TABLE 7.3. Image denoising results in terms of average PSNR (dB) and SSIM
(%) values for five benchmark datasets contaminated by six noise levels
(σ= 10,15,25,50,75,100). For each experiment, the best values are in red
and the second best values are in blue.

Dataset σ Input Methods
DnCNN[405] FFDNet[407] IRCNN[402] BM3D-NET[383] De-QuIP DIVA DIVA-blind

Set12

10 28.16/82.87 34.76/92.69 34.64/92.71 33.62/91.83 33.27/91.97 33.45/91.03 34.80/96.77 34.68/94.56
15 24.64/69.97 32.84/90.23 32.75/90.27 32.77/88.08 31.65/88.96 31.15/87.30 32.92/95.41 32.79/93.61
25 20.20/49.68 30.42/86.14 30.42/86.34 30.38/84.23 29.77/85.09 28.65/81.23 30.47/93.00 30.36/90.73
50 14.18/24.87 27.16/78.25 27.32/79.03 27.14/75.70 25.78/76.77 25.28/70.43 27.45/88.22 -/-
75 10.66/14.75 25.15/71.71 25.49/73.52 23.75/67.46 -/- 23.44/63.69 25.63/84.31 -/-

100 8.16/9.64 23.87/64.28 24.20/69.26 21.95/59.70 -/- 22.21/58.02 24.43/81.17 -/-

BSD68

10 28.15/83.57 33.87/92.71 33.75/92.66 33.74/90.57 32.74/91.73 32.67/90.65 33.94/96.21 33.80/94.38
15 24.63/70.99 31.73/89.06 31.63/89.02 31.63/87.98 31.42/88.77 30.24/85.38 31.79/94.04 31.64/92.74
25 20.19/50.70 29.22/82.78 29.19/82.89 29.15/79.51 28.95/81.42 27.83/77.35 29.34/90.07 29.19/87.44
50 14.17/25.08 26.22/71.85 26.29/72.45 26.16/68.13 25.73/70.31 24.88/64.25 26.33/82.99 -/-
75 10.65/14.61 24.63/64.69 24.78/65.86 22.87/60.05 -/- 23.33/56.55 24.87/77.81 -/-

100 8.15/9.41 23.16/55.46 23.77/60.96 19.46/49.47 -/- 22.27/51.23 23.93/74.21 -/-

Kodak

10 28.14/81.24 34.86/92.17 34.81/92.20 34.76/87.91 32.39/91.01 33.56/89.95 34.91/96.35 34.82/94.75
15 24.62/67.32 32.84/88.82 32.72/88.90 32.63/83.40 30.82/87.68 31.27/85.13 32.93/94.49 32.78/93.02
25 20.18/45.89 30.43/83.15 30.37/83.42 30.29/78.07 28.55/81.62 28.83/77.64 30.55/91.16 30.30/87.89
50 14.16/21.13 27.47/73.53 27.61/74.34 27.44/69.24 25.91/72.15 25.71/65.76 27.70/85.41 -/-
75 10.64/11.91 25.77/67.34 25.96/68.80 23.85/61.75 -/- 24.07/59.02 26.16/81.36 -/-

100 8.14/7.54 23.99/55.99 24.88/64.74 20.38/51.29 -/- 22.92/53.74 25.22/78.66 -/-

LIVE1

10 28.14/83.19 34.24/92.95 34.13/92.96 33.02/88.09 32.77/91.83 32.39/90.98 34.27/96.54 32.19/94.81
15 24.62/70.46 32.11/89.68 32.01/89.71 30.42/81.32 30.46/88.74 29.96/85.96 32.19/94.65 31.97/92.69
25 20.18/50.19 29.55/83.91 29.53/84.08 27.22/75.04 27.61/82.14 27.44/78.00 29.62/91.12 29.46/88.32
50 14.16/25.03 26.40/73.34 26.51/74.03 23.05/66.92 24.75/71.60 24.28/64.73 26.63/84.54 -/-
75 10.64/14.74 24.70/66.14 24.92/67.59 21.21/57.58 -/- 22.62/56.66 24.99/79.65 -/-

100 8.14/9.59 22.39/50.10 23.81/62.74 19.59/48.28 -/- 21.51/50.87 23.99/76.23 -/-

Urban100

10 28.15/87.17 34.43/95.74 34.45/94.89 32.93/91.35 32.53/94.52 31.25/93.26 34.75/97.84 34.52/95.37
15 24.63/77.13 32.17/93.36 32.42/92.73 30.30/88.77 30.65/91.99 29.53/88.60 32.51/96.52 32.26/94.11
25 20.19/60.04 29.27/88.42 29.92/88.87 27.01/83.09 27.68/86.63 25.75/82.53 30.01/93.73 29.75/91.89
50 14.17/34.98 25.46/77.82 26.52/80.57 22.79/71.51 23.99/75.34 22.81/68.02 26.67/87.80 -/-
75 10.65/22.46 23.23/68.69 24.52/73.65 20.81/61.21 -/- 20.59/58.92 24.80/82.10 -/-

100 8.15/15.38 22.04/62.85 23.08/67.59 18.79/53.57 -/- 19.65/50.51 23.39/77.37 -/-

∗The symbol -/- denotes that the results were not provided in the original paper for a
particular experiment.

of-the-art approaches. In all the cases, one can observe a considerable improvement

in SSIM enabled by the proposed network, which proves that it is better equipped for

image structure and pattern preservation than other models. Utilization of this local

information from neighboring patches enables our network to be resilient and adapted

to high and low-level noise, giving us an edge over other models.

Furthermore, a notable gain of an average of 1.5-3dB PSNR and 5-26% SSIM is

observed compared to the baseline De-QuIP method. This is a consequence of finely tuned

hyperparameters values for each patch by harnessing the power of the backpropagation

architecture.

Figs. 7.5- 7.7 illustrates denoising results for three images, Girl, Castle and Parrot,
from three datasets, for σ= 25, 50 and 75 respectively. The qualitative analysis of the
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Ground truth PSNR 20.18dB/SSIM 38.42%

Girl image Noisy image DnCNN

BM3D-NET DIVADe-QuIP

PSNR 32.04dB/SSIM 84.24%

PSNR 30.68dB/SSIM 83.32% PSNR 32.15dB/SSIM 92.70%PSNR 30.45dB/SSIM 82.64%

FFDNet

IRCNN

PSNR 32.09dB/SSIM 84.57%

PSNR 30.87dB/SSIM 81.71%

FIGURE 7.5. Denoising results using different methods for the Girl image
contaminated with AWGN with σ= 25.

denoised images confirms the superiority of the proposed model. Indeed, all competing

methods fail to recover the original textures around the eye and lips in Girl image, the

sharp edges and peaks around the windows and roof in Castle image, and the patterns

in Parrot image. IRCNN restores blurred edges, and BM3D-NET and De-QuIP generate

some small artifacts. DnCNN and FFDNet give comparable PSNR, but low SSIM, caused

by over-smoothed results, which were not able to retrieve small details. In contrast, DIVA

is faithful to the ground truths and restores the images with the right consistency by

capturing the subtle details more reliably.

Visual and quantitative inspections indicate that DIVA model conclusively outper-

forms its baseline method De-QuIP, as well as other advanced DL methods by a significant

margin in terms of PSNR and SSIM. The DnCNN and FFDNet are the closest to DIVA,

but struggle to preserve image textures accurately, mainly because of a smoothing effect.
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Ground truth PSNR 14.18dB/SSIM 21.28%

Castle image Noisy image DnCNN

BM3D-NET DIVADe-QuIP

PSNR 26.91dB/SSIM 79.35%

PSNR 25.21dB/SSIM 78.44% PSNR 27.13dB/SSIM 88.87%PSNR 25.01dB/SSIM 76.89%

FFDNet

IRCNN

PSNR 26.93dB/SSIM 80.06%

PSNR 25.82dB/SSIM 73.05%

FIGURE 7.6. Denoising results using different methods for the Castle image
contaminated with AWGN with σ= 50.

DIVA preserves most of the image fragments and textures in a better way without

creating any visible artifacts and thus provides a denoised image closer to the ground

truth.
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Ground truth PSNR 10.67dB/SSIM 17.63%

Parrot image Noisy image DnCNN

DIVADe-QuIP

PSNR 24.66dB/SSIM 74.79%

PSNR 22.97dB/SSIM 70.34% PSNR 24.87dB/SSIM 85.69%

FFDNet

IRCNN

PSNR 24.81dB/SSIM 76.11%

PSNR 24.40dB/SSIM 72.41%

FIGURE 7.7. Denoising results using different methods for the Parrot image
contaminated with AWGN with σ= 75.

7.4.4.2 Image Deblurring

Image deblurring results for Gaussian blur (GB) are illustrated on two benchmark

datasets degraded with three different GB kernel settings of size 25×25: (i) GB kernel

with standard deviation of 1.6 and AWGN with σ = 2, (ii) GB kernel with standard

deviation of 3 and AWGN with σ = 10, (iii) GB kernel with standard deviation of 5

and AWGN with σ = 10. Table 7.4 regroups the average PSNRs and SSIMs obtained

by all competing methods. One can observe that the benchmark DEBCNN method

performs much better than the model-based IDD-BM3D and learning-based Son et al.
[315] schemes. DIVA-A outperforms DEBCNN by 1.1 dB in PSNR and 2% in SSIM
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TABLE 7.4. Deblurring results in terms of average PSNR (dB) and SSIM (%)
values for two datasets degraded with three GB kernels and AWGN.

Dataset kernelσ noiseσ Methods
IDD-BM3D[84] Son et al.[315] DEBCNN[362] DIVA-A

BSD100
1.6 2 27.17/86.14 23.18/73.47 28.47/87.90 29.97/89.65
3 10 24.16/76.66 22.88/68.14 25.34/78.11 26.57/80.16
5 10 22.75/71.74 22.17/65.92 22.79/71.94 23.73/74.09

Set16
1.6 2 30.85/93.41 29.87/93.29 31.34/94.39 32.38/95.37
3 10 26.37/85.78 25.20/82.34 26.93/86.91 27.38/89.31
5 10 24.23/82.24 23.63/80.55 27.28/82.76 28.11/87.22

TABLE 7.5. Deblurring results in terms of average PSNR (dB) and SSIM (%)
values for four datasets degraded with standard MB kernels and AWGN.

Dataset noiseσ Methods
IDD-BM3D[84] FDN[199] VEMNet[254] DWDN[99] DRED-DUN[194] DIVA-A

Set10

0 36.24/89.24 -/- -/- 43.95/96.49 43.67/96.38 43.54/96.67
2.55 30.75/86.63 -/- 31.71/89.95 33.28/93.12 33.16/92.97 33.03/93.54
7.65 27.25/77.76 -/- 28.27/82.51 29.61/88.07 29.80/88.48 29.38/90.03
12.75 25.71/71.38 -/- 26.62/77.68 26.92/83.16 27.49/84.05 27.42/85.79

Levin

0 37.48/94.68 -/- -/- 46.13/97.63 45.56/97.27 46.19/97.76
2.55 33.75/92.19 34.05/93.35 34.31/94.31 36.90/96.14 36.02/95.79 36.19/95.86
7.65 29.26/85.78 29.77/85.83 30.50/87.86 32.77/91.79 32.87/91.97 33.12/92.46
12.75 27.33/78.92 27.94/81.39 28.52/82.73 30.77/88.57 30.89/88.79 30.80/89.87

Sun et al.

0 37.14/90.42 -/- -/- 43.10/97.19 42.49/97.08 42.65/97.36
2.55 32.24/87.79 32.63/88.87 32.73/90.13 34.05/92.25 34.43/92.97 34.44/93.49
7.65 28.74/77.86 28.97/78.42 29.41/81.08 29.11/86.31 29.88/87.28 30.30/89.14
12.75 27.30/73.24 27.62/74.52 28.04/77.89 27.81/80.85 28.20/81.59 27.95/83.36

Set12

0 -/- -/- -/- -/- -/- 43.48/96.39
2.55 31.43/88.14 31.43/89.17 31.93/90.19 -/- -/- 33.77/92.58
7.65 27.56/80.09 27.89/80.86 28.47/82.78 -/- -/- 28.97/87.89
12.75 25.95.74.88 26.28/76.24 26.77/78.13 -/- -/- 27.28/84.45

∗The symbol -/- denotes that the results were not provided in the original paper for a
particular experiment.

and 0.8 dB in PSNR and 2.6% in SSIM on average for BSD100 and Set16 datasets,

respectively.

In Fig. 7.8, a qualitative evaluation shows that the proposed method not only gen-

erates better image contrast but also retrieves sharp edges with more details than the

other approaches, like IDD-BM3D and Son et al. [315], where random artifacts and

blurred edges are visible in the deblurred outputs. Our DL model restores the Penguin
and Horse images with much sharper and more precise edges than the DEBCNN, for

which edges look hazy. Thus, though DEBCNN and DIVA-A are the two best models in
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Penguin image

Ground truth PSNR 29.69dB/SSIM 88.35%

Noisy blurred image

PSNR 33.13dB/SSIM 92.71%

IDD-BM3D

Son et al.

PSNR 31.27dB/SSIM 90.80% PSNR 33.91dB/SSIM 94.49%

DEBCNN DIVA-A

PSNR 34.65dB/SSIM 96.27%

Horse image

Ground truth PSNR 24.09dB/SSIM 73.65%

Noisy blurred image

PSNR 27.06dB/SSIM 83.49%

IDD-BM3D

Son et al.

PSNR 26.32dB/SSIM 78.63% PSNR 27.82dB/SSIM 87.08%

DEBCNN DIVA-A

PSNR 28.67dB/SSIM 88.05%

FIGURE 7.8. Image deblurring results for Penguin and Horse images degraded
by a 25×25 GB kernel of standard deviation 1.6 with random AWGN of
standard deviation 2.
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4th-Levin image

Ground truth PSNR 26.40dB/SSIM 89.84%

Noisy blurred image

PSNR 36.89dB/SSIM 92.71%

IDD-BM3D

DIVA-A

PSNR 45.07dB/SSIM 98.65%

DWDN

PSNR 44.78dB/SSIM 98.39%

DRED-DUN

PSNR 45.26dB/SSIM 98.92%

FIGURE 7.9. Deblurring results for 17×17 MB kernel. The restored 4th-image
from the Levin dataset with 17×17 motion blur kernel.

this setting, our model uniformly outperforms the sophisticated DEBCNN method for

GB problems.

Table 7.5 gives the average deblurring performance of our method in terms of PSNRs

and SSIMs in contrast to other standard models from the literature under eight com-

monly used motion blur (MB) kernels [194, 215] and four different noise levels. One

should note that the code or trained models provided by the authors are used to generate

these results. As the first observation, one can see that DWDN and DRED-DUN outper-

form the conventional IDD-BM3D, FDN and VEMNet for the Set10, Levin and Sun et
al. datasets, which is consistent with the findings in [194]. Secondly, DWDN performs

better in the case of low/no noise in terms of PSNRs compared to DRED-DUN and our

proposed model. DRED-DUN is more accurate for high levels of noise. On the contrary,

our proposed model exhibits the best SSIMs with a gain up to 0.15-1.8% against the

DWDN and DRED-DUN for low as well as high noise levels and this efficiency increases
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Parrot image

Ground truth PSNR 20.21dB/SSIM 74.96%

Noisy blurred image

PSNR 28.19dB/SSIM 92.62%

IDD-BM3D

DIVA-A

PSNR 29.95dB/SSIM 96.11%

DWDN

PSNR 30.62dB/SSIM 94.58%

DRED-DUN

PSNR 34.13dB/SSIM 97.89%

FIGURE 7.10. Deblurring results for 25×25 MB kernel. The restored Parrot
images with 25×25 motion blur kernel.

with noise intensity. In terms of PSNR values, our model often stays in the top two

and only fails to do so for Set10, where the average PSNR gaps between the best two

methods and our model is very small. Noticeably, although DIVA-A sometimes offers

slightly worse PSNRs than DWDN and DRED-DUN, it requires only half of the tunable

parameters (shown in Fig. 7.4(b)). Finally for Set12, our model unilaterally dominates

the comparison and exceeds its nearest rival VEMNet by up to an average of 1dB PSNR

and 3.5% SSIM.

For visual assessment, restored images from images degraded with four different MB

kernels are shown in Figs. 7.9, 7.10, 7.11, 7.12. Figs. 7.9, 7.10 show that for the 4th-Levin,

and Parrot images respectively under a MB kernel of size 17×17 and 25×25, the quality

of the restored images by our model is considerably improved compared to the other
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Butterfly image

Ground truth PSNR 20.24dB/SSIM 69.06%

Noisy blurred image

PSNR 25.60dB/SSIM 84.22%

IDD-BM3D

DIVA-A

PSNR 27.05dB/SSIM 87.40%

FDN

PSNR 28.32dB/SSIM 90.50%

VEMNet

PSNR 28.79dB/SSIM 92.68%

FIGURE 7.11. Deblurring results for 13×13 MB kernel. The restored Butterfly
images with 13×13 motion blur kernel and Gaussian noise of standard
deviation 7.65.

methods. In particular, the finer texture of the images is severely smoothed out by IDD-

BM3D, DWDN and DRED-DUN, as shown in the zoomed boxes. Additionally, in Fig. 7.11,

the Butterfly image is degraded by a moderate size 13×13 motion blur kernel with

random Gaussian noise of standard deviation 7.65. Our proposed model for retrieving

original image quality is significantly better than other competitors. For example, IDD-

BM3D, FDN, and VEMNet fail to properly restore the pattern on the butterfly’s wings

and body, and show many distortions in the restored images, as visible in the zoomed

boxes. Furthermore, the overall visual impression of the restored images is improved,

as visible on the facial decorations, finer details on the wings and minute patterns that

are better preserved with DIVA-A. Finally, Fig. 7.12 offers a similar conclusion for the

restored 3th-Levin image under a 23×23 MB kernel with AWGN with σ= 2.55. Thus,
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3rd-Levin image

Ground truth PSNR 19.22dB/SSIM 57.41%

Noisy blurred image

PSNR 31.94dB/SSIM 91.55%

IDD-BM3D

PSNR 33.44dB/SSIM 92.44%

FDN

PSNR 33.97dB/SSIM 93.47%

VEMNet DIVA-A

PSNR 35.33dB/SSIM 96.51%

DWDN

PSNR 34.84dB/SSIM 95.49%

DRED-DUN

PSNR 35.07dB/SSIM 96.60%

FIGURE 7.12. Deblurring results for the 3rd-image from the Levin dataset with
motion blur kernel of size 23×23 and random AWGN σ= 2.55.

under MB kernels DIVA-A demonstrates a better efficiency in recovering edges and

patterns of the original images. DWDM and DRED-DUN produce comparative results

compared to our model, but with lower contrast. Quantitatively, our method is always

among the best two approaches in this context.

7.4.4.3 Single Image Super-Resolution

This subsection presents super-resolution (SR) results for two standard downsampling

operators, bicubic downsampling (BD) and Gaussian downsampling (GD). Tables 7.6, 7.7

regroup average PSNR and SSIM values of different methods on four datasets for BD
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TABLE 7.6. SR results in terms of average PSNR (dB) and SSIM (%) values for
4 benchmark datasets degraded with bicubic downsampling with downsam-
pling factors of 2, 3 and 4.

Dataset Scale Methods
LapSRN[202] MemNet[331] CARN[12] DRLN[22] DIVA-A

Set5
2x 37.52/95.91 37.78/95.97 37.76/95.90 38.27/96.16 37.42/97.43
3x 33.82/92.27 34.09/92.48 34.29/92.55 34.78/93.03 33.14/93.36
4x 31.54/88.50 31.74/88.93 32.13/89.37 32.63/90.02 30.87/90.02

Set14
2x 33.08/91.30 33.28/91.42 33.52/91.66 34.28/92.31 33.67/93.69
3x 29.87/83.20 30.00/83.50 30.29/84.07 30.73/84.88 29.18/85.34
4x 28.19/77.20 28.26/77.23 28.60/78.06 28.94/79.00 27.74/80.66

BSD100
2x 31.80/89.50 32.08/89.78 32.09/89.78 32.44/90.28 32.00/90.49
3x 28.82/79.80 28.96/80.01 29.06/80.34 29.36/81.17 28.91/82.15
4x 27.32/72.80 27.40/72.81 27.58/73.49 27.83/74.44 27.66/76.95

Urban100
2x 30.41/91.00 31.31/91.95 31.51/93.12 33.37/93.90 31.48/93.06
3x 27.07/82.80 27.56/83.76 27.38/84.04 29.21/87.22 27.54/85.31
4x 25.21/75.60 25.50/76.30 26.07/78.37 26.98/81.19 25.39/81.29

TABLE 7.7. SR results in terms of average PSNR (dB) and SSIM (%) values
for 4 benchmark datasets degraded with GD by using a 7×7 GB kernel of
standard deviation 1.6 with scaling factors of 2, 3 and 4.

Dataset Scale Methods
IRCNN[402] DFAN[220] RDN[414] DRLN[22] DIVA-A

Set5
2x 35.34/93.04 -/- -/- -/- 33.62/93.79
3x 33.38/91.82 34.50/92.74 34.58/92.80 34.81/92.97 32.70/91.45
4x 30.76/85.47 -/- -/- -/- 29.02/85.76

Set14
2x 31.98/88.49 -/- -/- -/- 30.88/90.65
3x 29.63/82.81 30.43/84.19 30.53/84.47 30.81/84.87 28.97/83.47
4x 27.73/74.12 -/- -/- -/- 26.86/76.01

BSD100 3x 28.65/79.22 29.17/80.58 29.23/80.79 29.40/81.21 28.26/80.65
Urban100 3x 26.77/81.54 28.27/85.26 28.46/85.82 29.11/86.97 27.72/84.92

∗The symbol -/- denotes that the results were not provided in the original paper for a
particular experiment.

and GD respectively. One may observe that the recently introduced benchmark method

DRLN [22] provides the best performance in both contexts. DRLN has a complex network

architecture with dense residual Laplacian modules powered by 34 million parameters.

In contrast, the proposed model has a much simpler architecture, and requires only

850K parameters approximately. Nevertheless, our model obtains the best SSIM for

three datasets (e.g., Set5, Set14 and BSD100) and among the top two SSIM for Urban100

235



CHAPTER 7. DEEP UNFOLDED NETWORK FROM QUANTUM INTERACTIVE PATCHES FOR IMAGE RESTORATION

Zebra image Zoomed LR image LapSRN

DIVA-A

PSNR 21.49dB/SSIM 69.21% PSNR 28.17dB/SSIM 81.90%

PSNR 28.74dB/SSIM 86.32%

Ground truth PSNR 28.38dB/SSIM 84.46%

MemNet

CARN DRLN

PSNR 28.54dB/SSIM 85.75% PSNR 29.28dB/SSIM 86.19%

FIGURE 7.13. SR results for Zebra image for a bicubic downsampling with
scaling factor 3.

images for BD. One can see an average gain of 1.5% SSIM by our method over DRLN in

the BD scenario. For GD problems, our method struggles to produce competitive results

against benchmark DRLN, RDN and DFAN approaches. Note that for SR problem our

method upsamples the observed LR image by bicubic interpolation to obtain an initial

HR image before enhancing it using the trained DL network.

The visual inspections of Figs. 7.13, 7.14, 7.15, 7.16, 7.17 and 7.18 illustrate the

potential of our method for SR. Figs. 7.13 and 7.16 correspondingly display the restored

HR images from the LR BD Zebra, Baby-face, City-building and Fish images with scale

factors of 3 or 4. The visual effects of HR images recovered by our method are better

than others and higher in accuracy. For example, in our retrieved HR images the stripes

on the zebra’s body, in Baby-face image the textures and shapes of eye, lips and nose, in

City-building image the sharp edges of the windows, in Fish image the patterns on the

fish and the shapes of the seagrass have better specifications than the other methods,

such as LapSRN, MemNet, CARN. Figs. 7.17 and 7.18 show the reconstructed HR images

from the LR Book-cover and Flowers images obtained by GD with scale factor of 2 and 3

respectively. In the degraded images, the small-scale details are nearly unrecognizable.

Observation reveals that our method efficiently recovers the edges, patterns and texts

of the original image from LR data. Moreover, our method strongly competes with the

benchmark DRLN and beats it in some respects, especially in terms of overall visual
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Baby-face image

Ground truth PSNR 24.92dB
SSIM 73.34%

Zoomed LR image Bicubic

PSNR 32.53dB
SSIM 91.02%

PSNR 27.81dB
SSIM 81.46%

CARN

LapSRN

PSNR 29.47dB
SSIM 86.81%

MemNet

PSNR 30.16dB
SSIM 87.29 %

PSNR 33.42dB
SSIM 92.80%

DRLN DIVA-A

PSNR 33.83dB
SSIM 94.59%

FIGURE 7.14. Two zoomed regions of the restored HR Baby-face images, ex-
tracted from SR results for a bicubic downsampling with scaling factor 4.

City-building image

Ground truth PSNR 22.06dB
SSIM 76.55%

Zoomed LR image Bicubic

PSNR 30.38dB
SSIM 93.41%

PSNR 27.88dB
SSIM 88.08%

CARN

LapSRN

PSNR 30.22dB
SSIM 92.18%

MemNet

PSNR 30.69dB
SSIM 92.57%

PSNR 31.33dB
SSIM 94.38%

DRLN DIVA-A

PSNR 31.27 dB
SSIM 94.10%

FIGURE 7.15. A zoomed regions of the restored HR City-building images, ex-
tracted from SR results for a bicubic downsampling with scaling factor 3.
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Fish image Zoomed LR image DIVA-A

PSNR 26.04dB/SSIM 76.44% PSNR 32.87dB/SSIM 94.89%Ground truth

DRLN

PSNR 33.11dB/SSIM 93.41%

Bicubic interpolated

PSNR 28.76dB/SSIM 84.64%

FIGURE 7.16. The restored HR Fish images from LR images generated by
bicubic downsampling with scaling factor 4.

Book cover Zoomed LR image IRCNN DIVA-ABicubic interpolated

PSNR 21.32dB/SSIM 83.66% PSNR 23.02dB/SSIM 90.74% PSNR 24.17dB/SSIM 93.81%Ground truth PSNR 21.73dB/SSIM 85.24%

FIGURE 7.17. Restored HR Book-cover images from LR images generated by
Gaussian downsampling under a 7×7 GB kernel of standard deviation 1.6
with scaling factor 2.

quality and preservation of the image structure compared to the state-of-the-art IRCNN,

DFAN and RDN methods.

7.4.4.4 Image Inpainting

Table 7.8 illustrates our model performance in terms of average PSNR and SSIM on

Set5 and Set12 datasets compared to the standard IRCNN network for image inpainting

problems. Our model outperforms IRCNN in almost all situations when 20%, 50%, and
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Flowers image Zoomed LR image IRCNN

DIVA-A

PSNR 23.29dB/SSIM 68.23% PSNR 26.26dB/SSIM 82.39%

PSNR 30.76dB/SSIM 89.27%

Ground truth PSNR 28.73dB/SSIM 86.95%

DFAN

RDN DRLN

PSNR 30.89dB/SSIM 88.75% PSNR 31.33dB/SSIM 89.90%

FIGURE 7.18. Restored HR Flowers images from LR images generated by Gaus-
sian downsampling under a 7×7 Gaussian blur kernel of standard deviation
1.6 with scaling factor 3.

80% of random pixels are missing in the degraded observed images. DIVA-A provides

a improvement of 0.2-1 dB in PSNR and 0.6-5.5% in SSIM over IRCNN and this gain

increases with data lacking.

The visual analysis of Fig. 7.19 confirms the quantitative results. From the restored

F-16 Jet image, it appears that our model efficiently reproduces the F-16 logo, borders and

sharp edges despite 50% of data missing, whereas IRCNN fails to do so and loses/distorts

many details in the restored output. Furthermore, in Boat image, despite 80% of data

missing our model recovers minute details like the ropes and structures on the deck, on

the contrary to the IRCNN model. Hence, our model can gather local information from

the image neighborhood quite promisingly and delivers a high-quality restored image

even with limited pixels available.
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F-16 Jet image Masked image IRCNN DIVA-A

PSNR 5.79dB/SSIM 8.32% PSNR 29.53dB/SSIM 93.43% PSNR 30.15dB/SSIM 96.29%Ground truth

Boat image Masked image IRCNN DIVA-A

PSNR 6.31dB/SSIM 5.80% PSNR 27.97dB/SSIM 81.17% PSNR 28.99dB/SSIM 91.01%Ground truth

FIGURE 7.19. Image inpainting results by DIVA-A. The first row shows restored
F-16 Jet images when 50% pixels’ are missing and the second row shows
restored Boat images when 80% pixels’ are missing.

7.5 Adaptive Contrast Enhancement of Ultrasound
Images

7.5.1 Background

Image enhancement, i.e., contrast and spatial resolution improvement, have been ex-

tensively studied in ultrasound (US) imaging. Most techniques rely on adaptive beam-

forming to mitigate the drawbacks of delay-and-sum, despeckling to reduce speckle noise

240



7.5. ADAPTIVE CONTRAST ENHANCEMENT OF ULTRASOUND IMAGES

TABLE 7.8. Image inpainting results in terms of average PSNR (dB) and SSIM
(%) values for two benchmark datasets for respectively 20%, 50% and 80%
pixels missing.

Dataset Missing pixels’ Input Methods
IRCNN[402] DIVA-A

Set5
20% 13.33/38.61 41.62/98.67 41.85/99.24
50% 9.34/23.44 35.57/95.87 36.08/97.84
80% 7.29/12.40 29.41/88.54 30.38/94.01

Set12
20% 12.46/27.93 39.06/98.29 38.57/99.15
50% 8.48/14.45 32.82/94.53 33.02/97.21
80% 6.44/6.71 26.75/84.53 27.73/91.92

[110, 137, 211, 298, 394], or image deconvolution [244, 334] to increase spatial resolution

by compensating the effect of the point spread function. Both model-based [13, 38] and

machine learning-based [229, 247, 264, 265, 313] approaches have been proposed. The

former rely on image formation models and statistical assumptions, while the latter offer

more flexibility by learning the relationship between the observations and the target

images.

7.5.2 Contributions

Our main objective is to address the US image enhancement problem by implementing

our proposed deep unfolded network DIVA-A (see Subsection 7.3.2). In previous Chap-

ter 6, we have already shown that the baseline De-QuIP algorithm demonstrates its

ability in medical US image despeckling problem and offers a better image contrast com-

pared to other state-of-the-art methods. In this section we will extend this by studying

the clinical US image contrast enhancement problem using the deep unfolded version of

original De-QuIP algorithm.

7.5.3 Network Training for Ultrasound Image Enhancement
Tasks

Our proposed DIVA-A network was trained on 700 speckle-free image pairs. The clean

images were extracted from 700 high-resolution human anatomy images (National

Library of Medicine). The corresponding US images were simulated using SIMUS [76,

143] from MUST (MATLAB UltraSound Toolbox) [142], following a standard focused

emission scheme. Patch size of 40 with a local window of size 70 were used during the

241



CHAPTER 7. DEEP UNFOLDED NETWORK FROM QUANTUM INTERACTIVE PATCHES FOR IMAGE RESTORATION

High-resolution 
image

Simulated US image 
using SIMUS

Despeckled by
De-QuIP

Despeckled by
proposed model

High-resolution 
image

Simulated US image 
using SIMUS

Despeckled by
De-QuIP

Despeckled by
proposed model

PSNR 23.43 dB
SSIM 70.26 %

PSNR 26.61 dB
SSIM 85.00 %

PSNR 24.10 dB
SSIM 60.61 %

PSNR 27.02 dB
SSIM 82.85 %

PSNR 20.06 dB
SSIM 55.90 %

PSNR 20.30 dB
SSIM 49.03 %

Human anatomy 
image

Human anatomy 
image

FIGURE 7.20. US image despeckling results using baseline De-QuIP and pro-
posed unfolded deep-learning method DIVA-A for simulated US images.

training. The training was carried out in a supervised manner, with batches of size 256,

using the Adam optimizer with an exponentially decaying learning rate ranging from

10−3 to 10−6 over 100 epochs. The training process took 15 hours to reach convergence

using NVIDIA GTX 1080 Ti GPU implemented in Keras frameworks.

7.5.4 Experimental Results on Ultrasound Images

The potential of the proposed DIVA-A network is illustrated through simulated and real

cardiac US image enhancement tasks.

Fig. 7.20 depicts despeckling results for simulated human anatomy US images

using SIMUS, by original De-QuIP and the proposed DL methods, where peak-signal-

to-noise ratio (PSNR) and structural similarity (SSIM) were calculated for quantitative

assessment (the best values are in bold). These results prove that the proposed DL model

offers a significant improvement in spatial resolution and contrast, with a negligible
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diastole systole

diastole systole

diastole systole

FIGURE 7.21. Snapshots in three patients during diastole and systole. The
left-hand images are the original images acquired with a GE scanner and
the right-hand images are the corresponding enhanced versions using our
DIVA-A network.

presence of speckle compared to De-QuIP. Quantitative data follow similar conclusions.

Furthermore, the performance of our network was evaluated on >700 clinical cardiac

images acquired in adults with a GE Vivid e95 during routine examinations. To obtain

contrast-enhanced echocardiographic scans, we generated composite images by fusing

the original and De-QuIP-derived images. Fig. 7.21 illustrates six of these cardiac images

acquired from three patients during diastole and systole compared with their enhanced

versions.

The enhanced images show a gain in contrast and resolution while preserving under-

lying structures and significantly reducing speckle. For more visual illustrations, three

movies with these enhanced cardiac images are available in the GitHub file1.

1github.com/SayantanDutta95/Cardiac-USimage-Enhancement
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7.6 Discussions

In this section, we briefly recap the benefits and limitations of our proposed networks

and future prospects in this regard.

7.6.1 Advantages

With the quantum principles of the baseline De-QuIP algorithm, our proposed DIVA/DIVA-

A network provides an efficient DL method for image restoration following the deep

unfolding philosophy. Indeed, the use of quantum concepts like patch interaction layer

and Hamiltonian kernel makes our models better equipped than others. The local struc-

ture/similarities in an image neighborhood are preserved through the interaction layer

exploiting the local patch groups that convey an intrinsic non-local network architec-

ture. Processing of the local information by this interaction layer significantly enhances

the performances of the network. It even yields a smaller network depth, leading to a

good trade-off between the performance and computational cost, as portrayed in Subsec-

tion 7.4.3. Harnessing the power of back-propagation, our networks uniquely tune all

hyperparameters, such as proportionality constant, Planck constant and thresholding

energy, for each patch. This enables network adaptability with several image restoration

tasks, and leads to promising performances. Moreover, our proposed network shows so-

phisticated performance in real medical US image enhancement problems. The enhanced

images show a gain in contrast and resolution while preserving underlying structures

and significantly reducing speckle.

7.6.2 Limitations

In the case of a challenging image degradation task, our method may sometimes struggle

to produce a better recovered image than other benchmarks. To restore a Gaussian

downsampled LR image, we notice that our DL model fails to compete in quantitative

data against benchmark methods, like DRLN, RDN, and DFAN, as noted in Table 7.7.

However, the overall visual efficiency of our method is good, as depicted in Fig. 7.17. From

our observations, in presence of a strong decay, such as ’blur+downsampling’, our method

does not match the true pixels’ intensity, which seems to be the main reason for the lower

quantitative measures. Instead, our method utilizes the interaction layer to provide

better visual quality by preserving the image structure, patterns, and textures with

more details. Furthermore, our proposed models are trained in an end-to-end supervised
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manner, i.e., we need the clean-degraded image pairs for training. However it is worth-

noting that the proposed method is much simpler and not specialized in a specific task

as is the case for the other methods.

7.6.3 Perspectives

The quantum mechanics-based imaging methods open up a broad spectrum of future

prospects. Following the limitations, the obvious direction would be an unsupervised

DL network design, that essentially solves the training data problem and extends our

reach to real-life applications more reliably [68, 89, 266]. Another possibility is to design

a versatile network by stacking the proposed DIVA to build a deep and more complex

architecture like UNet [194] and offer some attention mechanisms [22] to make the

patch interaction robust while preserving the core philosophy. This complex network

system should enhance the capacity of the proposed network in challenging degradation

operators and even for blind imaging problems. Furthermore, the idea of quantum

interaction can also be treated as a transformer in a deep architecture [367]. Another

interesting prospect would be to explore imaging problems beyond the Gaussian model

since baseline De-QuIP is well-adapted for such tasks without modifying the global

architecture. Combining graph signal processing model with the proposed quantum-

based interaction framework is also an interesting perspective [170].

7.7 Conclusions

This chapter introduces a novel neural network approach to solve image denoising prob-

lems, further extended to general image restoration tasks relying on the philosophy of

quantum many-body theory. Our model recasts the baseline De-QuIP algorithm into a

DL framework and optimizes the relevant parameters by exploiting the power of back-

propagation approach. The proposed unfolded CNN architecture inherently employs

various quantum mechanical components, such as interaction and Hamiltonian opera-

tor, from its baseline method to boost up the network performance while significantly

reducing the training cost.

Integration of these key features from the quantum theory enables our proposed

model to be well-adapted for handling several imaging problems efficiently. We con-

duct thorough ablation investigations and present extensive assessments regarding

the network design. Finally, we perform comprehensive evaluations of our proposed
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DL methods for various imaging problems, such as denoising, deblurring, single image

super-resolution, and inpainting. In all cases, notable improvements were shown in the

image restoration performance, especially overall visual quality, compared to standard

well-established techniques from the literature.

Furthermore, in real-life problems, experimental results showed significant improve-

ment in the resolution and contrast of the clinical cardiac data while preserving the

essence of the baseline structure. Indeed, our DL model significantly reduces the speckle

in the restored enhanced US images much better than its baseline De-QuIP algorithm.
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This chapter proposes a summary of the work
of this thesis and outlines possible directions for
future work on these topics.
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8.1 Conclusions

The objective of this thesis was to explore new imaging methodologies based on a

quantum mechanical framework, particularly for image restoration problems, borrowing

principles and axioms of quantum mechanics. In contrast to the quantum computing

and quantum information theory, quantum mechanics-based algorithms do not entirely

depend on the physics associated with quantum mechanics and give us the freedom to

impose quantum mechanical constraints that we find useful for imaging problems. Indeed,

we showed that the implementation of such quantum principles in imaging problems

significantly increases the performance of algorithms. Thus, exploiting the concepts of

quantum physics, these algorithms were enabled to deal with real-life problems such as

medical imaging, computer vision, etc, much better than some traditional methods.

The first work conducted in this thesis was introduced in Chapter 4, where we

presented in detail a new approach of constructing a signal or image-dependent bases

inspired by quantum mechanics tools, more precisely, by considering the signal or image

as a potential in the discretized Schrödinger equation, the solution of which gives

eigenvectors that form the proposed adaptive basis. The basis vectors automatically

use a different range of frequencies to explore low potential valued regions compared

to the regions corresponding to the high potential values. Therefore, thresholding the

projection coefficients of the stretched signal or image on this basis treats the high and

low values of the signal or image differently. To illustrate the potential of the proposed

decomposition, denoising results were reported in the case of Gaussian, Poisson, and

speckle noise and compared to state-of-the-art algorithms based on wavelet shrinkage,

total variation regularization or patch-wise sparse coding in learned dictionaries, non-

local means image denoising, and graph signal processing. The results showed that our

denoising procedure outperforms standard methods in specific cases, and ranked among

the best methods in most cases. In general, the method performed much better for signals

or images with large contrasts in presence of Poisson-like noise. Furthermore, in real

medical dental computed tomography images, our proposed method demonstrated the

ability to enhance the noisy cone beam computed tomography images while preserving

the canal root, which is the region of interest.

In Chapter 5, we proposed a new Plug-and-Play (PnP) alternating direction of mul-

tipliers (ADMM) scheme for Poisson deconvolution problems by embedding a compu-

tationally more efficient quantum adaptive denoiser than the one introduced in the

previous Chapter 4. Numerical results showed the efficiency and good adaptability of
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the proposed scheme compared to recent state-of-the-art techniques, for both high and

low signal-to-noise ratio scenarios. This performance gain regardless of the amount of

noise affecting the observations is explained by the flexibility of the embedded quantum

denoiser constructed without anticipating any prior statistics about the noise, which is

one of the main advantages of this method. Finally, we illustrated the efficiency of the

proposed method in real fluorescence microscopy image enhancement tasks, which are

intrinsically contaminated with Poisson-Gaussian noise.

In Chapter 6, we developed a new image denoising algorithm exploiting an image-

dependent basis inspired by the quantum many-body theory. Based on patch analysis,

the similarity measures in a local image neighborhood are formalized through a term

akin to interaction in quantum mechanics that can efficiently preserve the local struc-

tures of real images. Through these interactions, structural details are transmitted on

a patch-based adaptive basis created by the solutions of the Schrödinger equation of

quantum mechanics, which can be exploited as filters for denoising the patches. The

versatile nature of this adaptive basis extends the scope of its application to image-

independent or image-dependent noise scenarios without any adjustment. We carried

out a comprehensive comparison with contemporary methods to demonstrate the de-

noising capability of the proposed algorithm regardless of the image characteristics,

noise statistics and intensity. Experimental results revealed that the proposed method

convincingly beats other schemes and provides a better comparison with the best re-

sults for both image-independent and image-dependent noise models. Additionally, this

newly proposed method, which is indeed a generalization of the earlier single-particle

based quantum scheme of Chapter 4, achieved much better results at a significantly

less computational cost in comparison with its first version of Chapter 4. In real-life

problems, this newly proposed quantum mechanics-based algorithm demonstrated good

performances, for example, in medical ultrasound image despeckling and clinical dental

computed tomography image super-resolution applications.

Finally, in Chapter 7, we introduced an original deep-learning approach to solve im-

age denoising problems, further extended to general image restoration tasks relying on

the philosophy of quantum many-body theory. Our model unfolds the baseline adaptive

denoising algorithm as proposed in previous Chapter 6, into a deep-learning framework

and optimizes the relevant parameters by exploiting the power of back-propagation ap-

proach. Absorption of various quantum mechanical components from its baseline method

significantly increased the network performance while reducing training costs. We have

performed comprehensive evaluations of our proposed deep networks for various imaging
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tasks, such as denoising, deblurring, single image super-resolution, and inpainting and

observed notable improvements, especially in overall visual quality, compared to stan-

dard well-established techniques from the literature. Furthermore, experimental results

with clinical cardiac ultrasound images showed significant improvement in the resolution

and contrast while preserving underlying structures and significantly reducing speckles.

8.2 Future Perspectives

The quantum mechanics-based imaging methods open up a broad spectrum of future

prospects. In this last section, we propose some subjects of interest that could lead to

potentially valuable results. Some are ideas that suggest directions of research. Others

are already planned as future work. We provide these perspectives as a list.

8.2.1 How to Design a Robust Deep-Learning Model

In this subsection, we propose some key elements that could allow to improve our

proposed deep-learning methods presented in Chapter 7.

• Network training: Our proposed deep unfolded model DIVA/DIVA-A, as presented

in Chapter 7, was trained in a supervised manner exploiting the pairs of clean

and degraded images. In the absence of ground truth, training is no longer a

straightforward process. The possible solutions of that is to design an unsupervised

[16, 17, 68, 89, 266] deep-learning network by assigning a flexible prior model,

or implement the framework of transfer learning [261, 349, 378] and domain

adaptation [3, 29, 381]. Using such schemes essentially solves the training data

problem and extends our reach to real-life applications more reliably.

• Network architecture: It is possible to design a more versatile network architec-

ture implementing UNet [74, 194] or VNet [4, 279] frameworks while preserving

the core philosophy of our proposed deep-learning model DIVA. Furthermore, the

patch interaction framework can be offered as an attention mechanism [22] in the

modified deep network. This complex network system should enhance the capacity

of the proposed network in challenging degradation operators and even for blind

imaging problems. Besides that, the idea of quantum interaction framework can

also be treated as a transformer in a deep architecture [367], where the interactions

between patches are defined by attention mechanism.
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• Loss Function: The mean squared error (MSE) between the predicted and original

residuals is adopted as the loss function in our network. Our models perform

well with this loss function in terms of visual quality. But it is possible to use

different other loss functions, for example, perceptual loss [184, 219, 276, 386],

which exploits similarities between two images, that could significantly boost our

model performances.

8.2.2 Other Quantum Mechanical Tools

Here we propose some quantum mechanical concepts that can be exploited in future for

imaging problems.

• Time-dependent Schrödinger equation: As discussed in Chapter 2, in the

time-dependent Schrödinger equation the Hamiltonian operator depends on time.

Therefore, there are no stationary solutions of the Schrödinger equation anymore.

However, for Hamiltonian periodic in time, one can use Floquet theory [30] and

follow a similar formalism as in this thesis using eigenfunctions of the evolution

operator over one period. This theory can be implemented for the processing of

periodic signals [377].

• Quantum Harmonic Oscillator: For the image segmentation problem [391]

proposed an idea to associate each pixel with a quantum harmonic oscillator, where

the Hamiltonian operator is derived from the features extracted at the pixel level.

In that scenario from the time evolution of an initial ground state, one can extract

the image features and use them for segmentation. This idea of assigning image

pixels with quantum harmonic oscillators can be further extended to other imaging

problems.

8.2.3 Extension to Quantum Computing and Quantum
Information Theory

In this thesis, we have studied the paradigm of quantum mechanics-based image pro-

cessing algorithms where the computations are performed on conventional computers.

In view of the recent developments in quantum information and computation, it is a

natural idea to adapt these algorithms for quantum computers.
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• Quantum denoising: We have recently begun to develop such an approach.

Indeed, it is possible to build unitary operators to transform and store classical

signals or images into quantum states by exploiting qubits and quantum logic

gates [412]. We have thus constructed a computationally efficient denoising scheme

in the line of the preceding methods by using various transformation and Grover’s

quantum search [153] on these quantum states to perform denoising. Finally, by

taking quantum measurements, one can restore the denoised classical signals or

images. Fig 8.1 illustrates a preliminary result for signal denoising using this

prototype quantum algorithm. Although this work is still in progress, our results

indicate that the proposed quantum algorithm gives comparable denoising results

utilizing less computational power than its classical equivalent.

(a) Clean signal (b) Noisy signal (c) PSNR = 23.59 dB

(d) PSNR = 24.64 dB (e) PSNR = 27.63 dB (f) PSNR = 27.24 dB

FIGURE 8.1. Denoising results using a quantum algorithm (prototype) for syn-
thetic signal corrupted with Poisson noise corresponding to a SNR of 15 dB.
(a) Clean synthetic signal, (b) Signal corrupted with Poisson noise corre-
sponding to a SNR of 15 dB. Denoising results obtained using, (c) Fourier
transformation, (d) wavelet hard thresholding, (e) proposed quantum adap-
tive basis from Chapter 4 and (f) proposed quantum algorithm (prototype)
for denoising.
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proposed in this thesis are available in my GitHub file: nothing
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O. GALLO, J. LIU, W. HEIDRICH, K. EGIAZARIAN, J. KAUTZ, AND K. PULLI,

Flexisp: A flexible camera image processing framework, ACM Transactions on

Graphics, 33 (2014), pp. 1–13.

274



[164] B. HELFFER AND T.-M. LALEG-KIRATI, On semi-classical questions related to
signal analysis, Asymptotic Analysis, 75 (2011), pp. 125–144.

[165] M. R. HESTENES, Multiplier and gradient methods, Journal of optimization theory

and applications, 4 (1969), pp. 303–320.

[166] D. HILBERT, J. VON NEUMANN, AND L. NORDHEIM, Über die grundlagen der
quantenmechanik, Mathematische Annalen, 98 (1928), pp. 1–30.

[167] M. HONG, Z.-Q. LUO, AND M. RAZAVIYAYN, Convergence analysis of alternating
direction method of multipliers for a family of nonconvex problems, SIAM

Journal on Optimization, 26 (2016), pp. 337–364.

[168] M. HOURANI, A. BASARAB, D. KOUAMÉ, J.-M. GIRAULT, AND J.-Y. TOURNERET,

Restoration of ultrasonic images using non-linear system identification and
deconvolution, in 2018 IEEE 15th International Symposium on Biomedical

Imaging (ISBI 2018), 2018, pp. 1166–1169.

[169] Y. HU, J. LIU, X. XU, AND U. S. KAMILOV, Monotonically convergent regularization
by denoising, arXiv preprint arXiv:2202.04961, (2022).

[170] F. HUA, C. RICHARD, J. CHEN, H. WANG, P. BORGNAT, AND P. GONÇALVES,

Learning combination of graph filters for graph signal modeling, IEEE Signal

Processing Letters, 26 (2019), pp. 1912–1916.

[171] T. HUA, J. CHEN, D. PEI, W. ZHANG, AND N. ZHOU, Quantum image encryption
algorithm based on image correlation decomposition, International Journal of

Theoretical Physics, 54 (2015), pp. 526–537.

[172] A. M. ILIYASU, Towards realising secure and efficient image and video processing
applications on quantum computers, Entropy, 15 (2013), pp. 2874–2974.

[173] A. M. ILIYASU, P. Q. LE, F. DONG, AND K. HIROTA, Watermarking and au-
thentication of quantum images based on restricted geometric transformations,

Information Sciences, 186 (2012), pp. 126–149.

[174] A. JALOBEANU, L. BLANC-FÉRAUD, AND J. ZERUBIA, Satellite image deblurring
using complex wavelet packets, International Journal of Computer Vision, 51

(2003), pp. 205–217.

275



BIBLIOGRAPHY

[175] A. JALOBEANU, L. BLANC-FERAUD, AND J. ZERUBIA, An adaptive gaussian
model for satellite image deblurring, IEEE Transactions on Image Processing,

13 (2004), pp. 613–621.

[176] N. JIANG, Y. DANG, AND J. WANG, Quantum image matching, Quantum Informa-

tion Processing, 15 (2016), pp. 3543–3572.

[177] N. JIANG, J. WANG, AND Y. MU, Quantum image scaling up based on nearest-
neighbor interpolation with integer scaling ratio, Quantum Information Pro-

cessing, 14 (2015), pp. 4001–4026.

[178] N. JIANG AND L. WANG, Analysis and improvement of the quantum arnold image
scrambling, Quantum Information Processing, 13 (2014), pp. 1545–1551.

[179] N. JIANG AND L. WANG, Quantum image scaling using nearest neighbor interpo-
lation, Quantum Information Processing, 14 (2015), pp. 1559–1571.

[180] N. JIANG, W. WU, L. WANG, AND N. ZHAO, Quantum image pseudocolor coding
based on the density-stratified method, Quantum Information Processing, 14

(2015), pp. 1735–1755.

[181] N. JIANG, W.-Y. WU, AND L. WANG, The quantum realization of arnold and
fibonacci image scrambling, Quantum Information Processing, 13 (2014),

pp. 1223–1236.

[182] N. JIANG, N. ZHAO, AND L. WANG, LSB based quantum image steganography
algorithm, International Journal of Theoretical Physics, 55 (2016), pp. 107–123.

[183] K. H. JIN, M. T. MCCANN, E. FROUSTEY, AND M. UNSER, Deep convolutional
neural network for inverse problems in imaging, IEEE Transactions on Image

Processing, 26 (2017), pp. 4509–4522.

[184] J. JOHNSON, A. ALAHI, AND L. FEI-FEI, Perceptual losses for real-time style
transfer and super-resolution, in Computer Vision – ECCV 2016, Cham, 2016,

Springer International Publishing, pp. 694–711.

[185] Z. KAISSERLI, T.-M. LALEG-KIRATI, AND A. LAHMAR-BENBERNOU, A novel
algorithm for image representation using discrete spectrum of the schrödinger
operator, Digital Signal Processing, 40 (2015), pp. 80–87.

276



[186] U. S. KAMILOV, C. A. BOUMAN, G. T. BUZZARD, AND B. WOHLBERG, Plug-and-
play methods for integrating physical and learned models in computational
imaging, arXiv preprint arXiv:2203.17061, (2022).

[187] C. KERVRANN AND J. BOULANGER, Optimal spatial adaptation for patch-based
image denoising, IEEE Transactions on Image Processing, 15 (2006), pp. 2866–

2878.

[188] A. KHERADMAND AND P. MILANFAR, A general framework for kernel similarity-
based image denoising, in 2013 IEEE Global Conference on Signal and Infor-

mation Processing, 2013, pp. 415–418.

[189] S. KHOBAHI AND M. SOLTANALIAN, Model-based deep learning for one-bit com-
pressive sensing, IEEE Transactions on Signal Processing, 68 (2020), pp. 5292–

5307.

[190] J. KIM, J. LEE, AND K. LEE, Accurate image super-resolution using very deep
convolutional networks, in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016, pp. 1646–1654.

[191] S. KIM, Pde-based image restoration: a hybrid model and color image denoising,

IEEE Transactions on Image Processing, 15 (2006), pp. 1163–1170.

[192] S. KIRANYAZ, T. INCE, A. IOSIFIDIS, AND M. GABBOUJ, Operational neural
networks, Neural Computing and Applications, 32 (2020), pp. 6645–6668.

[193] C. KNAUS AND M. ZWICKER, Progressive image denoising, IEEE Transactions on

Image Processing, 23 (2014), pp. 3114–3125.

[194] S. KONG, W. WANG, X. FENG, AND X. JIA, Deep red unfolding network for image
restoration, IEEE Transactions on Image Processing, 31 (2022), pp. 852–867.

[195] J. KOO, A. HALIMI, AND S. MCLAUGHLIN, A bayesian based deep unrolling
algorithm for single-photon lidar systems, arXiv preprint arXiv:2201.10910,

(2022).

[196] Y. KOPSINIS AND S. MCLAUGHLIN, Development of emd-based denoising methods
inspired by wavelet thresholding, IEEE Transactions on Signal Processing, 57

(2009), pp. 1351–1362.

277



BIBLIOGRAPHY

[197] F. KOU, W. CHEN, C. WEN, AND Z. LI, Gradient domain guided image filtering,

IEEE Transactions on Image Processing, 24 (2015), pp. 4528–4539.

[198] B. KRAMER, G. BERGMANN, AND Y. BRUYNSERAEDE, Anderson Localization,
Interaction, and Transport Phenomena: Proceedings of the International Confer-
ence, August 23–28, 1984 Braunschweig, Fed. Rep. of Germany, vol. 61, Springer,

New York, 1985.

[199] J. KRUSE, C. ROTHER, AND U. SCHMIDT, Learning to push the limits of efficient
FFT-based image deconvolution, in Proceedings of the IEEE International

Conference on Computer Vision, 2017, pp. 4596–4604.

[200] C. KWAN, J. H. CHOI, S. CHAN, J. ZHOU, AND B. BUDAVARI, Resolution enhance-
ment for hyperspectral images: A super-resolution and fusion approach, in 2017

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2017, pp. 6180–6184.

[201] A. LAGENDIJK, B. VAN TIGGELEN, AND D. S. WIERSMA, Fifty years of anderson
localization, Physics Today, 62 (2009), pp. 24–29.

[202] W.-S. LAI, J.-B. HUANG, N. AHUJA, AND M.-H. YANG, Deep laplacian pyra-
mid networks for fast and accurate super-resolution, in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5835–5843.

[203] T.-M. LALEG-KIRATI, E. CRÉPEAU, AND M. SORINE, Semi-classical signal analy-
sis, Mathematics of Control, Signals, and Systems, 25 (2013), pp. 37–61.

[204] T.-M. LALEG-KIRATI, J. ZHANG, E. ACHTEN, AND H. SERRAI, Spectral data
de-noising using semi-classical signal analysis: application to localized mrs,

NMR in Biomedicine, 29 (2016), pp. 1477–1485.

[205] L. LANDAU AND E. LIFSHITZ, Quantum Mechanics: Non-Relativistic Theory,

Course of Theoretical Physics, Elsevier Science, 1991.

[206] L. D. LANDAU AND L. M. LIFSHITZ, Quantum Mechanics Non-Relativistic Theory,
Third Edition, Butterworth-Heinemann, 1981.

[207] P. Q. LE, A. M. ILIYASU, F. DONG, AND K. HIROTA, Fast geometric transforma-
tions on quantum images, IAENG International Journal of Applied Mathemat-

ics, 40 (2010).

278



[208] M. LEBRUN, A. BUADES, AND J.-M. MOREL, A nonlocal bayesian image denoising
algorithm, SIAM Journal on Imaging Sciences, 6 (2013), pp. 1665–1688.

[209] M. LEBRUN, M. COLOM, A. BUADES, AND J.-M. MOREL, Secrets of image denois-
ing cuisine, Acta Numerica, 21 (2012), pp. 475–576.

[210] Y. LECUN, Y. BENGIO, AND G. HINTON, Deep learning, Nature, 521 (2015),

pp. 436–444.

[211] J.-S. LEE, Digital image enhancement and noise filtering by use of local statistics,

IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2

(1980), pp. 165–168.

[212] S. LEFKIMMIATIS, Non-local color image denoising with convolutional neural
networks, in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), July 2017, pp. 3587–3596.

[213] A. LEVIN AND B. NADLER, Natural image denoising: Optimality and inherent
bounds, in Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2011, pp. 2833–2840.

[214] A. LEVIN, B. NADLER, F. DURAND, AND W. T. FREEMAN, Patch complexity, finite
pixel correlations and optimal denoising, in European Conference on Computer

Vision, Berlin, Heidelberg, 2012, Springer Berlin Heidelberg, pp. 73–86.

[215] A. LEVIN, Y. WEISS, F. DURAND, AND W. FREEMAN, Efficient marginal likelihood
optimization in blind deconvolution, in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2011, pp. 2657–2664.

[216] F. LI, Y. RU, AND X. LV, Patch-based weighted scad prior for rician noise removal,
Journal of Scientific Computing, 90 (2021), pp. 1573–7691.

[217] H.-Q. LI, S.-Q. WANG, AND C.-Z. DENG, New image denoising method based
wavelet and curvelet transform, in 2009 WASE International Conference on

Information Engineering, vol. 1, 2009, pp. 136–139.

[218] H.-S. LI, Z. QINGXIN, S. LAN, C.-Y. SHEN, R. ZHOU, AND J. MO, Image stor-
age, retrieval, compression and segmentation in a quantum system, Quantum

Information Processing, 12 (2013), pp. 2269–2290.

279



BIBLIOGRAPHY

[219] M. LI, W. HSU, X. XIE, J. CONG, AND W. GAO, SACNN: Self-attention convolu-
tional neural network for low-dose ct denoising with self-supervised perceptual
loss network, IEEE Transactions on Medical Imaging, 39 (2020), pp. 2289–2301.

[220] S. LI, G. ZHANG, Z. LUO, AND J. LIU, Dfan: Dual feature aggregation network
for lightweight image super-resolution, Wireless Communications and Mobile

Computing, 44 (2022), pp. 1530–8669.

[221] Y. LI, M. TOFIGHI, J. GENG, V. MONGA, AND Y. ELDAR, Deep algorithm unrolling
for blind image deblurring, arXiv preprint arXiv:1902.03493, (2019).

[222] Y. LI, M. TOFIGHI, J. GENG, V. MONGA, AND Y. C. ELDAR, Efficient and inter-
pretable deep blind image deblurring via algorithm unrolling, IEEE Transac-

tions on Computational Imaging, 6 (2020), pp. 666–681.

[223] D. LIANG, J. CHENG, Z. KE, AND L. YING, Deep magnetic resonance image
reconstruction: Inverse problems meet neural networks, IEEE Signal Processing

Magazine, 37 (2020), pp. 141–151.

[224] B. LIM, S. SON, H. KIM, S. NAH, AND K. LEE, Enhanced deep residual networks
for single image super-resolution, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), July 2017,

pp. 1132–1140.

[225] B. LIU AND J. LIU, Non-local mean filtering algorithm based on deep learning,

MATEC Web of Conferences, 232 (2018), p. 03025.

[226] J. LIU, X. XU, W. GAN, S. SHOUSHTARI, AND U. S. KAMILOV, Online deep equilib-
rium learning for regularization by denoising, arXiv preprint arXiv:2205.13051,

(2022).

[227] P. LIU, F. HUANG, G. LI, AND Z. LIU, Remote-sensing image denoising using
partial differential equations and auxiliary images as priors, IEEE Geoscience

and Remote Sensing Letters, 9 (2012), pp. 358–362.

[228] S. LIU, L. GAO, Y. LEI, M. WANG, Q. HU, X. MA, AND Y. ZHANG, Sar speckle
removal using hybrid frequency modulations, IEEE Transactions on Geoscience

and Remote Sensing, 59 (2021), pp. 3956–3966.

280



[229] X. LIU, T. ZHOU, M. LU, Y. YANG, Q. HE, AND J. LUO, Deep learning for ul-
trasound localization microscopy, IEEE Transactions on Medical Imaging, 39

(2020), pp. 3064–3078.

[230] W. LU, J. DUAN, Z. QIU, Z. PAN, R. W. LIU, AND L. BAI, Implementation of
high-order variational models made easy for image processing, Mathematical

Methods in the Applied Sciences, 39 (2016), pp. 4208–4233.

[231] A. LUCAS, M. ILIADIS, R. MOLINA, AND A. K. KATSAGGELOS, Using deep neural
networks for inverse problems in imaging: Beyond analytical methods, IEEE

Signal Processing Magazine, 35 (2018), pp. 20–36.

[232] G. MAHAN AND K. SUBBASWAMY, Local Density Theory of Polarizability, Physics

of Solids and Liquids, Springer US, 2013.

[233] M. MAHMOUDI AND G. SAPIRO, Fast image and video denoising via nonlocal
means of similar neighborhoods, IEEE Signal Processing Letters, 12 (2005),

pp. 839–842.

[234] J. MAIRAL, F. BACH, J. PONCE, G. SAPIRO, AND A. ZISSERMAN, Non-local sparse
models for image restoration, in 2009 IEEE 12th International Conference on

Computer Vision, 2009, pp. 2272–2279.

[235] J. MAIRAL, F. BACH, J. PONCE, G. SAPIRO, AND A. ZISSERMAN, Non-local sparse
models for image restoration, in 2009 IEEE 12th International Conference on

Computer Vision, 2009, pp. 2272–2279.

[236] J. MAIRAL, M. ELAD, AND G. SAPIRO, Sparse representation for color image
restoration, IEEE Transactions on Image Processing, 17 (2008), pp. 53–69.

[237] M. MAKITALO AND A. FOI, A closed-form approximation of the exact unbiased
inverse of the anscombe variance-stabilizing transformation, IEEE Transactions

on Image Processing, 20 (2011), pp. 2697–2698.

[238] M. MAKITALO AND A. FOI, Optimal inversion of the anscombe transformation in
low-count poisson image denoising, IEEE Transactions on Image Processing,

20 (2011), pp. 99–109.

[239] M. MAKITALO AND A. FOI, Optimal inversion of the anscombe transformation in
low-count poisson image denoising, IEEE Transactions on Image Processing,

20 (2011), pp. 99–109.

281



BIBLIOGRAPHY

[240] J. MALIK, S. KIRANYAZ, AND M. GABBOUJ, Image denoising by super neurons:
Why go deep?, arXiv preprint arXiv:2111.14948, (2021).

[241] J. MALIK, S. KIRANYAZ, AND M. GABBOUJ, Self-organized operational neural
networks for severe image restoration problems, Neural Networks, 135 (2021),

pp. 201–211.

[242] P. A. MARTIN AND F. ROTHEN, Many-Body Problems and Quantum Field Theory,

Springer Berlin, Heidelberg, 2004.

[243] F. G. MEYER AND X. SHEN, Perturbation of the eigenvectors of the graph laplacian:
Application to image denoising, Applied and Computational Harmonic Analysis,

36 (2014), pp. 326–334.

[244] O. V. MICHAILOVICH AND D. ADAM, A novel approach to the 2-d blind deconvolu-
tion problem in medical ultrasound, IEEE Transactions on Medical Imaging,

24 (2005), pp. 86–104.

[245] J. MICHETTI, A. BASARAB, M. TRAN, F. DIEMER, AND D. KOUAMÉ, Cone-beam
computed tomography contrast validation of an artificial periodontal phantom
for use in endodontics, in 2015 37th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2015,

pp. 7905–7908.

[246] P. MILANFAR, Symmetrizing smoothing filters, SIAM Journal on Imaging Sciences,

6 (2013), pp. 263–284.

[247] D. MISHRA, S. CHAUDHURY, M. SARKAR, AND A. S. SOIN, Ultrasound image
enhancement using structure oriented adversarial network, IEEE Signal Pro-

cessing Letters, 25 (2018), pp. 1349–1353.

[248] J.-J. MOREAU, Proximité et dualité dans un espace hilbertien, Bulletin de la Société

mathématique de France, 93 (1965), pp. 273–299.

[249] R. MORIN, A. BASARAB, AND D. KOUAMÉ, Alternating direction method of multi-
pliers framework for super-resolution in ultrasound imaging, in 2012 9th IEEE

International Symposium on Biomedical Imaging (ISBI), 2012, pp. 1595–1598.

[250] I. MOSSERI, M. ZONTAK, AND M. IRANI, Combining the power of internal and
external denoising, in IEEE International Conference on Computational Pho-

tography (ICCP), 2013, pp. 1–9.

282



[251] M. C. MOTWANI, M. C. GADIYA, R. C. MOTWANI, AND F. C. HARRIS, Survey of
image denoising techniques, in Proceedings of GSPX, vol. 27, 2004, pp. 27–30.

[252] S. MUDUNURI AND S. BISWAS, Low resolution face recognition across variations
in pose and illumination, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 38 (2016), pp. 1034–1040.

[253] S. NAM, Y. HWANG, Y. MATSUSHITA, AND S. J. KIM, A holistic approach to
cross-channel image noise modeling and its application to image denoising, in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2016, pp. 1683–1691.

[254] Y. NAN, Y. QUAN, AND H. JI, Variational-em-based deep learning for noise-blind
image deblurring, in IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2020, pp. 3623–3632.

[255] NASA, James Webb Telescope Images.

[256] D. NEEDELL AND J. A. TROPP, Cosamp: Iterative signal recovery from incomplete
and inaccurate samples, Applied and Computational Harmonic Analysis, 26

(2009), pp. 301–321.

[257] N. D. M. NEIL ASHCROFT, Solid State Physics, Saunders College Ed., 1976.

[258] R. D. NOWAK AND E. D. KOLACZYK, A statistical multiscale framework for pois-
son inverse problems, IEEE Transactions on Information Theory, 46 (2000),

pp. 1811–1825.

[259] A. ORTEGA, P. FROSSARD, J. KOVAČEVIĆ, J. M. F. MOURA, AND P. VAN-
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Titre: Nouvelles Approches de Restauration d’Images Inspirées des Concepts de la Mécanique Quantique
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de Schrödinger, Apprentissage profond, Débruitage quantique, Traitement d’image quantique, Imagerie médicale,
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Résumé:
La décomposition d’images numériques en d’autres bases ou dictio-
nnaires que les domaines temporel ou spatial est une approche très
courante et efficace dans le traitement et l’analyse d’images. Une telle
décomposition est couramment obtenue à l’aide de transformations
fixes (par exemple, Fourier ou ondelettes) ou de dictionnaires appris
à partir de bases de données d’exemple ou à partir du signal ou de
l’image eux-mêmes. Ces dernières années, avec la croissance de la
puissance de calcul, les stratégies exploitant la redondance des patchs
extraits d’une ou de plusieurs images pour faciliter leur décomposition
parcimonieuse sont devenues très populaire, notamment grâce à leur
efficacité à restaurer des images. Un des objectifs de cette thèse est de
savoir comment concevoir une telle transformation adaptative à l’aide
de principes de la mécanique quantique.
Cette thèse explore de nouvelles approches de construction de telles
bases dépendantes de l’image inspirées de la mécanique quantique.
Tout d’abord, nous construisons une base dépendante de l’image en
utilisant les solutions d’onde de l’équation de Schrödinger. En parti-
culier, en considérant l’image comme un potentiel dans l’équation de
Schrödinger discrétisée, nous obtenons les solutions d’onde qui con-
stitue une base et qui joue le rôle de transformée. L’efficacité de la
décomposition proposée est illustrée par des résultats de débruitage
dans le cas des bruits Gaussiens, de Poisson et de speckle et par com-
paraison aux algorithmes de l’état de l’art. Cette décomposition adap-
tative est ensuite généralisée en s’inspirant de la théorie quantique
à plusieurs corps. Sur la base de l’analyse par patchs, les mesures
de similarité dans un voisinage d’image local sont formalisées par un
terme apparenté à l’interaction en mécanique quantique qui peut ef-
ficacement préserver les structures locales des images. La nature
polyvalente de cette base adaptative étend la portée de son applica-
tion à des scénarios de bruit indépendants ou dépendants de l’image

sans aucun ajustement. Nous effectuons une comparaison rigoureuse
avec les méthodes existantes pour démontrer la capacité de débruitage
de l’algorithme proposé, quelles que soient les caractéristiques de
l’image, les statistiques de bruit et l’intensité. Nous montrons la ca-
pacité de nos approches à traiter des données médicales réelles telles
que le débruitage d’images de tomodensitométrie dentaire clinique
et les applications de despeckling d’images d’échographie médicale.
Nous étendons encore notre travail aux tâches de déconvolution
d’image et de super-résolution en exploitant nos algorithmes de de-
bruitage adaptatifs quantiques proposés. En particulier, suite à des
développements récents, nous imposons ces débruiteurs externes
comme fonction préalable au sein des approches de type Plug-and-
Play et Régularisation par Débruitage.
Enfin, nous présentons une architecture de réseau neuronal profond
dépliant notre proposition d’algorithme de débruitage adaptatif, re-
posant sur la théorie de la physique quantique à plusieurs corps.
Les ingrédients clés de la méthode proposée sont d’une part, sa
capacité à gérer des structures d’image non locales à travers le
terme d’interaction patch et l’opérateur Hamiltonien quantique, et,
d’autre part, sa flexibilité pour adapter les hyperparamètres aux car-
actéristiques de chaque patch. De plus, il est démontré qu’avec de très
légères modifications, ce réseau peut être amélioré pour résoudre des
tâches de restauration d’image plus difficiles telles que le défloutage
d’image, la super-résolution et l’inpainting. Malgré une architecture
compacte et interprétable (d’un point de vue physique), le réseau
d’apprentissage profond proposé améliore plusieurs algorithmes de
référence récents de la littérature, conçus spécifiquement pour chaque
tâche. Enfin, nous abordons le problème de l’amélioration des image
échocardiographiques clinique pour démontrer le potentiel de notre
réseau profond dans des applications médicales réelles.

Title: Novel Prospects of Image Restoration Inspired by Concepts of Quantum Mechanics

Keywords: Quantum Mechanics, Quantum many-body interaction, Adaptive transformation, Schrödinger equation,
Deep learning, Deep unfolding, Quantum denoising, Quantum image processing, Medical imaging, Image restora-
tion, Computational imaging.

Abstract: Decomposition of digital images into other basis or dic-
tionaries than time or space domains is a very common and effec-
tive approach in image processing and analysis. Such a decompo-
sition is commonly obtained using fixed transformations (e.g., Fourier
or wavelet) or dictionaries learned from example databases or from the
signal or image itself. In recent years, with the growth of computing
power, data-driven strategies exploiting the redundancy within patches
extracted from one or several images to increase sparsity have be-
come more prominent. They have demonstrated very promising image
restoration results. The question to pursue in this thesis is how to de-
sign such an adaptive transformation based on principles of quantum
mechanics.
In this thesis, we explore new possibilities of constructing such image-
dependent bases inspired by quantum mechanics. First, we construct
an image-dependent basis using the wave solutions of the Schrödinger
equation, in particular, by considering the image as a potential in the
discretized Schrödinger equation. The efficiency of the proposed de-
composition is illustrated through denoising results in the case of Gaus-
sian, Poisson, and speckle noises and compared to the state-of-the-art
algorithms. We further generalize our proposed adaptive basis by ex-
ploiting the data-driven strategy inspired by quantum many-body the-
ory. Based on patch analysis, the similarity measures in a local image
neighborhood are formalized through a term akin to interaction in quan-
tum mechanics that can efficiently preserve the local structures of real
images. The versatile nature of this adaptive basis extends the scope
of its application to image-independent or image-dependent noise sce-
narios without any adjustment. We carry out a rigorous comparison

with contemporary methods to demonstrate the denoising capability of
the proposed algorithm regardless of the image characteristics, noise
statistics and intensity. We show the ability of our approaches to deal
with real-medical data such as clinical dental computed tomography
image denoising and medical ultrasound image despeckling applica-
tions. We further extend our work to image deconvolution and super-
resolution tasks exploiting our proposed quantum adaptive denoisers.
In particular, following recent developments, we impose these external
denoisers as a prior functions within the Plug-and-Play and Regular-
ization by Denoising approaches.
Lastly, we present a deep neural network architecture unfolding our
proposed baseline adaptive denoising algorithm, relying on the the-
ory of quantum many-body physics. The key ingredients of the pro-
posed method are on one hand, its ability to handle non-local image
structures through the patch-interaction term and the quantum-based
Hamiltonian operator, and, on the other hand, its flexibility to adapt
the hyperparameters patch wisely, due to the training process. Fur-
thermore, it is shown that with very slight modifications, this network
can be enhanced to solve more challenging image restoration tasks
such as image deblurring, super-resolution and inpainting. Despite a
compact and interpretable (from a physical perspective) architecture,
the proposed deep learning network outperforms several recent bench-
mark algorithms from the literature, designed specifically for each task.
Finally, we address the problem of clinical cardiac ultrasound image
enhancement to demonstrate the potential of our proposed deep un-
folded network in real-world medical applications.
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