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Résumé:
Dans le cadre de cette thèse, nous présen-

tons trois contributions relatives à la stabilité
des réseaux de neurones. La première con-
tribution consiste en un attaquant adverse de
style “boîte blanche", simple et facilement im-
plémentable, ciblant les modèles de régression
dans le domaine des données tabulaires. Nous
utilisons les propriétés du jacobien du réseau
de neurones afin de générer la pire attaque
pour l’échantillon considéré. Pour quantifier
le succès des attaques, nous proposons trois
métriques analogues à celles présentées dans les
scénarios de classification. La deuxième contri-
bution réside en une analyse de sensibilité mul-
tivariée des entrées des réseaux de neurones,
en se basant sur leur constante de Lipschitz.
Une telle étude permet de mieux comprendre
l’effet de chaque entrée sur la dynamique du sys-
tème. La méthode présentée fonctionne sur les

entrées prises individuellement ou par groupes.
Nous proposons également une représentation
sous forme “d’étoile de Lipschitz" pour synthé-
tiser graphiquement cette analyse de sensibil-
ité. Dans notre dernière contribution, nous
convevons une méthode de contrôle de stabil-
ité permettant de réaliser le meilleur compro-
mis entre performance et stabilité, lors de la
phase d’apprentissage des modèles de réseau de
neurones. Cette méthode repose sur une nor-
malization spectrale s’insérant dans une boucle
d’entraînement, dont l’objectif est d’atteindre
une performance et une stabilité données. Pour
valider cette approche, nous l’apliquons à des
données récoltées sur un drône aérien. Pour
étayer nos contributions, nous les testons à la
fois sur des données publiques libres d’accès et
sur un jeu de données industrielles fourni par
Thales LAS France, correspondant au champ
des applications critiques en termes de sécurité.

Title: Stability Quantification of Neural Networks
Keywords: Robustness, stability, neural networks, adversarial attacks, constant

Abstract: This thesis contains three main con-
tributions concerning the stability of neural net-
works. First, we present a simple and easily
implementable white box adversarial attacker
for regression models operating on tabular data.
We rely upon the Jacobian properties of the
neural networks to generate the worst attack
on the sample. We propose three metrics for
quantifying the success of the attacks analo-
gous to metrics used in classification scenarios.
In our second contribution, we propose a mul-
tivariate sensitivity analysis of the neural net-
work inputs based on its Lipschitz properties.
Such a study helps to understand better the
effect of individual inputs on the dynamics of
the outputs. The presented method works on

individual as well as any group of inputs. We
also propose a “Lipschitz star" representation
to display this sensitivity analysis of the inputs.
In the last contribution, we design a stability
control method to achieve the best trade-off be-
tween accuracy and stability during the training
phase of neural network models. This method
is based on a spectral normalization inserted in
a training loop that allows us to achieve given
performance and stability targets. We validate
this approach on an Unmanned Aerial Vehicle
(UAV) application. To support our contribu-
tions, we test them both on open-source, public
datasets and an industrial dataset provided by
Thales LAS France that is related to the domain
of safety-critical applications.



Abstract
Artificial neural networks are at the core of recent advances in Artificial Intelligence.
One of the main challenges faced today, especially by companies like Thales de-
signing advanced industrial systems is to ensure the safety of new generations of
products using these technologies. In 2013 in a key observation, neural networks
were shown to be sensitive to adversarial perturbations, raising serious concerns
about their applicability in critically safe environments. In the last years, publi-
cations studying the various aspects of this robustness of neural networks, and
rising questions such as "Why adversarial attacks occur?", "How can we make
the neural network more robust to adversarial noise?", "How to generate stronger
attacks?" etc., have grown exponentially. The contributions of this thesis aim to
tackle such problems. The adversarial machine learning community concentrates
majorly on classification scenarios, whereas studies on regression tasks are scarce.
Our contributions bridge this significant gap between adversarial machine learning
and regression applications. Also, all the datasets used as part of the contributions
are tabular, which has not been highly researched by the deep learning community
and only recently received more attention.

The first contribution in Chapter 3 proposes a white-box attackers designed to
attack regression models. The presented adversarial attacker is derived from the
algebraic properties of the Jacobian of the network. We show that our attacker
successfully fools the neural network and measure its effectiveness in reducing the
estimation performance. We present our results on various open-source and real
industrial tabular datasets. Our analysis relies on the quantification of the fooling
error as well as different error metrics. Another noteworthy feature of our attacker
is that it allows us to optimally attack a subset of inputs, which may help to analyze
the sensitivity of some specific inputs. We also, show the effect of this attacker
on spectrally normalised trained models which are known to be more robust in
handling attacks.

The second contribution of this thesis (Chapter 4) presents a multivariate
Lipschitz constant analysis of neural networks. The Lipschitz constant is widely
used in the literature to study the internal properties of neural networks. But most
works do a single parametric analysis, which do not allow to quantify the effect
of individual inputs on the output. We propose a multivariate Lipschitz constant-
based stability analysis of fully connected neural networks allowing us to capture
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the influence of each input or group of inputs on the neural network stability.
Our approach relies on a suitable re-normalization of the input space, intending
to perform a more precise analysis than the one provided by a global Lipschitz
constant. We display the results of this analysis by a new representation designed
for machine learning practitioners and safety engineers termed as a Lipschitz star.
We perform experiments on various open-access tabular datasets and an actual
Thales Air Mobility industrial application subject to certification requirements.

The use of spectral normalization in designing a stability control loop is dis-
cussed in Chapter 5. A critical part of the optimal model is to behave according to
specified performance and stability targets while in operation. But imposing tight
Lipschitz constant constraints while training the models usually leads to a reduc-
tion of their accuracy. Hence, we design an algorithm to train "stable-by-design"
neural network models using our spectral normalization approach, which optimizes
the model by taking into account both performance and stability targets. We focus
on Small Unmanned Aerial Vehicles (UAVs). More specifically, we present a novel
application of neural networks to detect in real-time elevon positioning faults to
allow the remote pilot to take necessary actions to ensure safety.
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Résumé (French)
Les réseaux de neurones artificiels sont au cœur des avancées récentes en Intelli-
gence Artificielle. L’un des principaux défis auxquels on est aujourd’hui confronté,
notamment au sein d’entreprises comme Thales concevant des systèmes industriels
avancés, est d’assurer la sécurité des nouvelles générations de produits utilisant
cette technologie. En 2013, une observation clé a révélé que les réseaux de neu-
rones sont sensibles à des perturbations adverses. Ceci soulève de sérieuses inquié-
tudes quant à leur applicabilité dans des environnements où la sécurité est critique.
Au cours des dernières années, des publications ont étudiées les différents aspects
de la robustesse des réseaux de neurones, et des questions telles que “Pourquoi des
attaques adverses se produisent?", “Comment pouvons-nous rendre les réseaux de
neurones plus robustes à ces bruits ?", “Comment générer des attaques plus fortes
?", etc., se sont posées avec une acuité croissante. Cette thèse vise à apporter des
réponses à de telles questions. La communauté s’intéressant aux attaques adverses
en apprentissage automatique travaille principalement sur des scénarios de classifi-
cation, alors que les études portant sur des tâches de régression sont rares. Nos
contributions comblent le fossé existant entre les méthodes adverses en appren-
tissage et les applications de régression. De plus, tous les ensembles de données
utilisés dans le cadre de nos travaux sont tabulaires. De telles données ont fait
l’objet de peu de recherches approfondies dans la communauté de l’apprentissage
et n’ont reçu que récemment une attention plus soutenue.

Notre première contribution, dans le chapitre 3, propose un algorithme de
type “boîte blanche" pour attaquer les modèles de régression. L’attaquant adverse
présenté est déduit des propriétés algébriques du Jacobien du réseau. Nous mon-
trons que notre attaquant réussit à tromper le réseau de neurones et évaluons son
efficacité à réduire les performances d’estimation. Nous présentons nos résultats
sur divers ensembles de données tabulaires industriels en libre accès et réels. Notre
analyse repose sur la quantification de l’erreur de tromperie ainsi que différentes
métriques. Une autre caractéristique remarquable de notre algorithme est qu’il
nous permet d’attaquer de manière optimale un sous-ensemble d’entrées, ce qui
peut aider à identifier la sensibilité de certaines d’entre elles. Nous montrons égale-
ment l’effet de cet attaquant sur des modèles entraînés avec une normalisation
spectrale, connus pour être plus robustes aux attaques.

La deuxième contribution de cette thèse (Chapitre 4) présente une analyse de

5



la constante de Lipschitz multivariée des réseaux de neurones. La constante de
Lipschitz est largement utilisée dans la littérature pour étudier les propriétés in-
trinsèques des réseaux de neurones. Mais la plupart des travaux font une analyse
mono-paramétrique, qui ne permet pas de quantifier l’effet des entrées individu-
elles sur la sortie. Nous proposons une analyse multivariée de la stabilité des
réseaux de neurones entièrement connectés, reposant sur leur propriétés Lipschitzi-
ennes. Cette analyse nous permet de saisir l’influence de chaque entrée ou groupe
d’entrées sur la stabilité du réseau de neurones. Notre approche repose sur une
re-normalisation appropriée de l’espace d’entrée, visant à effectuer une analyse plus
précise que celle fournie par une constante de Lipschitz globale. Nous visualisons
les résultats de cette analyse par une nouvelle représentation conçue pour les prati-
ciens de l’apprentissage automatique et les ingénieurs en sécurité appelée “étoile
de Lipschitz". Nous menons des expérimentations sur différents ensembles de don-
nées tabulaires en libre accès et sur une application industrielle réelle de Thales Air
Mobility soumise à des exigences de certification.

L’utilisation de la normalisation spectrale dans la conception d’une boucle de
contrôle de stabilité est abordée au chapitre 5. Une caractéristique essentielle du
modèle optimal consiste à satisfaire aux objectifs de performance et de stabilité
spécifiés pour le fonctionnement. Cependant, contraindre la constante de Lipschitz
lors de l’apprentissage des modèles conduit généralement à une réduction de leur
précision. Par conséquent, nous concevons un algorithme permettant de produire
des modèles de réseaux de neurones “stable dès la conception" en utilisant une
nouvelle approche de normalisation spectrale, qui optimise le modèle, en tenant
compte à la fois des objectifs de performance et de stabilité. Nous nous concentrons
sur les petits drones aériens (UAV). Plus précisément, nous présentons une nouvelle
application des réseaux de neurones pour détecter en temps réel les défauts de
positionnement d’aileron, afin de permettre au télépilote de prendre les mesures
nécessaires pour assurer la sécurité du vol.
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Chapter 1
Introduction

1.1 . Context and Motivations

Neural networks (NN) are at the core of recent advances in Artificial Intelligence
(AI). One of the main challenges faced today, especially by companies like Thales
designing advanced industrial systems, is ensuring the safety of new products using
these technologies. In 2013, neural networks were first shown to be sensitive to
adversarial perturbations [3], raising serious concerns about their suitability of use
in mission-critical or safety-critical products and leading to the development of a
new field of study concerning the robustness of neural networks.

In the literature, various classes of AI desirable properties have been defined
by adding some objectives, components, or constraints to AI such as robustness,
ethics, trustworthiness aiming at making neural networks more reliable for real-
world applications as described in Table 1.1.

Concept Definition

Robust AI systems with the ability to cope with errors duringexecution and cope with erroneous input
Ethical AI systems that do what is right, fair, and just andprevent harm.

Trustworthy AI systems that achieve their full potential if trustcan be established in the development, deployment, and use [4]
Fair

AI systems absent from any prejudice or favoritismtoward an individual or a group based on theirinherent or acquired characteristics [5]
Safe AI systems deployed in ways that do not harm humanity

Dependable AI systems that focus on reliability,verifiability, explainability, and security [6]
Human-centered AI systems that are “continuously improving because of humaninput while providing an effective experience between human and robot”

Socially Responsible AI systems that follow ethical and philanthropic responsibilitiesalongwith legal and performance responsibilities[7].
Table 1.1: Different classes of AI systems
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Among these different classes of AI properties, the contributions presented in
this thesis come under the category of Robust AI. In particular, we deal with errors
(wrong predictions) during execution due to the inability of the neural network to
cope with small perturbations applied to nominal inputs within the Operational
Design Domain (ODD). These perturbations can result from natural system degra-
dation, such as aging sensors, or a deliberate and malicious attack (cyber crimes).

In Szegedy et al. [3] the concept of adversarial attacks was first proposed
to fool DNNs. Adding a subtle perturbation to the input of the neural network
produces an incorrect output, while human eyes cannot recognize the difference in
the modification of the input data. For example, after adding a slight perturbation
to the original image labelled as "panda", it is classified as a “gibbon” by the
same model with 99.3% confidence, while the human eyes cannot distinguish the
differences between the original image and the adversarial image in Figure 1.1 [1].
This behavior of DNNs is possible even when the model is well-trained with good
accuracy. The capability of handling adversarial noise is known as the robustness
of the Neural Network. Even though different models have different architectures
and might use different training data, the same kind of adversarial attack strategies
can attack related models (transferability of Adversarial attacks). These attacks
pose a huge threat to the performance of DNNs and cannot be ignored in safety-
and security-critical AI applications. Analyzing the cause of adversarial attacks
can help researchers to fix the vulnerability effectively, to provide defenses, and to
guide in generating more robust and safe models.

Figure 1.1: By adding an unnoticeable perturbation, an image labelled as “panda” isclassified as “gibbon” [1]. .
In the recent years, the number of works devoted to understanding the instabil-

ity and increasing robustness of NNs have grown exponentially. Many approaches
have been proposed, more or less dedicated to some specific architectures, partic-
ularly networks using only ReLU activation functions, and grounded on more or
less empirical techniques [8, 9]. Broadly we can classify the works in literature as
follows:
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i) Purely computational approaches consist of attacking a neural network and
observing its response to such attacks [10, 11].

ii) Methods based on heuristics for testing / promoting the robustness of a
neural net [12, 13, 14].

iii) Studies that aim to establish mathematical certificates and provide theoret-
ical robustness guarantees [15, 9, 16].

The three strategies might ultimately be necessary to effectively build robust
neural networks and certify them. However, we believe the only one providing
strong robustness guarantees is the last one. Hence, we concentrate more on
providing theoretical guarantees. In the next chapter, we give details on various
state-of-the-art methods used for verifying and promoting robustness of NN.

slope = -L

slope = L

f(x)

xx x+z

f(x)
f(x+z)

f(x)+L||z||p

f(x)-L||z||p

Figure 1.2: Intuition of using Lipschitz constant as a stability property of neural net-work [2].
Among the possible mathematical approaches, we focus on those relying upon

the analysis of the Lipschitz properties of neural networks. The Lipschitz modulus
of any function is defined as the upper bound on the ratio of variations in the
output to the variations in the output. In the context of neural networks, it can
be seen as a slope of the changes in a high dimensional space. An intuition of
using Lipschitz bounds for any neural network function f is given in Figure 1.2.
Very high changes or steep slope values can be sign of highly unstable models,
hence not robust to input perturbations. Although neural networks not being
robust can be attributed to various factors, such properties play a fundamental
role in understanding the internal mechanisms governing these complex non-linear
systems. Besides, these methods make very few assumptions on the type of non-
linearities used and are thus valid for a wide range of networks. We base our work
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and contributions on estimating and controlling the Lipschitz bounds of neural
networks and hence enable engineers to develop "Stable-by-design" models which
are safe under deployment phase.

1.2 . Contributions of the Thesis

The contributions presented in this thesis aim to bridge the gaps encountered
in adversarial machine learning literature especially when applied to safety- and
mission-critical systems. One major limitation of the existing works is related to
information on the nature of adversarial attacks in regression tasks. The literature
and context of adversarial attacks and their defenses move around classification
tasks and notion of clear boundaries between the classes. Technically, adversarial
attacks occur for neural networks when the logit of "wrong/target" class crosses
the "true" class. Similarly, the defenses are designed or models are trained so
that the logit of any class will be less likely to cross the logit of "true" class.
More specifically, these notions are modelled using cross-entropy losses which are
primarily used for classification scenarios. Regression applications cover a major
chunk of industrial applications, but the adversarial perturbations are not defined
as easily in this context. Also, the first industrial application presented in the thesis
is a regression problem. To bridge this major gap in the literature, we provide a
simple "white" box attacker for generating adversarial attacks for regression tasks.
We define some metrics similar to those used in classification scenarios for checking
the effectiveness of attacking the neural networks. It is worthy to note here that
adversarial attacks in the literature mostly correspond to ℓ∞ or ℓ2 norm while the
attacker designed as part of our contribution can work for various combinations of
norms on input and output space. Also, we provide a way to attack only a group
of inputs at a time.

The work on estimation of Lipschitz constant in the literature aims to find a
single Lipschitz constant parameter that does not highlight individual contributions
of the inputs in the prediction of the output. In other words, they do not provide
any information on the sensitivity of the inputs. Such analysis is important so
that engineers can give importance to control the perturbations arising in certain
sensors over others. To assess this information on the sensitivity of the inputs, our
next contribution provides a multivariate Lipschitz analysis of the neural networks
by introducing the concepts of partial/weighted Lipschitz constants. As part of
our contribution, we provide a representation called Lipschitz star, a graphical
and practical tool to analyze the sensitivity of a neural network model during it’s
development, concerning different combinations of inputs.

The Lipschitz constrained neural networks often perform poorly on the clean
samples if constrained to have very tight Lipschitz bounds. Such poor performance
is not acceptable for a working model. For achieving the most optimally trained
models it is necessary to attain a trade-off between the clean accuracy and the
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Lipschitz constant value. To achieve this trade-off in our next contribution, we
designed a spectral normalized stability control loop which takes care of both pre-
defined stability and performance targets.

To support our contributions, we have validated and tested various open-source
and real world applications, including a use-case provided by Thales LAS France
for air traffic management and another one related to fault detection in UAVs.

1.3 . Organisation of the Thesis

This thesis is organised as follows.

i) In Chapter 2 we provide a literature review of the different strategies used
to improve neural networks’ stability. We have divided this chapter primarily
into two parts : (a) Estimation of stability and (b) Controlling the stability
of neural networks. Since the main focus of this work is based on a Lipschitz
constant analysis we provide an in-depth study of works utilizing the Lipschitz
properties of neural networks to improve the robustness.

ii) In Chapter 3 we focus on designing an adversarial attacker for regression
tasks which are somewhat neglected in the adversarial machine learning
community. We show that by utilizing the Jacobian properties of neural
networks it is possible to design an attacker which generates worst attack
on the sample. To achieve this, we provide some metrics for quantifying the
effectiveness of the presented attacker. We show the effect of our proposed
attacker on standard trained model and spectral normalized trained models
which have much lower Lipschitz bounds.

iii) In Chapter 4, we present a multivariate Lipschitz analysis of neural networks.
We provide the concept of partial/weighted Lipschitz constant for quanti-
fying the sensitivity of individual inputs w.r.t to outputs. We present a
new representation "Lipschitz star" to graphically represent the introduced
partial Lipschitz constant. We study the effect of spectral normalization
method and adversarial learning on the sensitivity of each input.

iv) In Chapter 5 we handle the issue of highly constrained Lipschitz training
which leads to poor accuracy performance. Blindly training neural networks
models with spectral normalized constraints to lower the Lipschitz bounds
and improve stability leads to a poor performance and even sometimes the
model fails to learn anything. In this part, we focus on training neural
networks model within a stability-accuracy trade-off, given some specified
targets. We use a spectral normalization technique for designing a stability
control loop, which takes into account both accuracy and a Lipschitz target
to propose an optimal model.
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v) Finally, we conclude in Chapter 6 and present future work based on the
contributions of this thesis.

vi) In appendix A we provide additional results related to effect of different
training strategies on the robustness of neural networks for tabular data. In
appendix B we provide a strategy to train robust neural networks having a
specific architecture and positive weights.

Note: For this thesis we have used words stability and robustness interchange-
ably and they thus represent the same concept i.e. neural network’s ability to
handle any kind of perturbations and adversarial attacks. The stability criterion
considered here highlights the fact that small perturbations in the inputs do not
produce high variations of the outputs. It should be noted that the safety commu-
nity has defined robustness and stability of models as two different notions. The
robustness of the model is the extent to which the system can continue to operate
correctly despite abnormal inputs and conditions outside the defined Operational
Design Domain (ODD). In contrast, stability is the network’s ability to handle
small perturbations within its inputs ODD 1. The research community working on
Robust AI currently does not differentiate between the two concepts.

1.4 . List of Publications

i) Verma, S., Gupta, K. Robustness of Neural Networks used in Electrical
Motor Time-Series. Workshop on Robustness in Sequence Modeling (Ro-
bustSeq), Conference on Neural Information Processing Systems (NeurIPS
2022), November 2022, New Orleans, United States [17].

ii) Gupta, K., Pesquet-Popescu, B., Kaakai, F., Pesquet, J. C. Safe Design of
Stable Neural Networks for Fault Detection in Small UAVs. Workshop on Ar-
tificial Intelligence Safety Engineering (WAISE), International Conference on
Computer Safety, Reliability and Security (SAFECOMP), September 2022,
Munich, Germany [18]. [Runner Up Best Paper Award]

iii) Gupta, K., Kaakai, F., Pesquet-Popescu, B., Pesquet, J. C., Malliaros, F.
(2022). Multivariate Lipschitz Analysis of the Stability of Neural Networks.
Frontiers in Signal Processing [19].

iv) Gupta, K., Pesquet-Popescu, B., Kaakai, F.,Pesquet, J.C. , Malliaros, F. An
Adversarial Attacker for Neural Networks in Regression Problems. Workshop
on Artificial Intelligence Safety (AISafety), International Joint Conferences
on Artificial Intelligence Organization (IJCAI), August 2021 [20]. [Runner Up

Best Paper Award]

1This definition of model stability and robustness comes from the standardiza-tion working group EUROCAE WG-114 and SAE G34.
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v) Gupta, K., Pesquet-Popescu, B., Kaakai, F., Pesquet, J. C. A Quantita-
tive Analysis of the Robustness of Neural Networks for Tabular Data. In
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), June 2021 [21].

vi) Neacsu, A., Gupta, K., Pesquet, J. C., Burileanu, C. Signal denoising using
a New Class of Robust Neural Networks. In European Signal Processing
Conference (EUSIPCO) January 2021 [22].

1.5 . Dissemination Activities

i) Oral presentation at WAISE SAFECOMP 2022.

ii) Oral presentations at AISafety IJCAI, and ICASSP 2021.

iii) Poster presentation at DATAIA Workshop 2021 and PRAIRIE/MIAI AI sum-
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M., ...Gupta, K.. Blum, MG (2021). Integrating deep learning CT-scan
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tients. Nature communications , 12 (1), 1-11.

ii) Reviewer AISTATS 2023, AAAI 2022/2023, TCSVT, Frontiers in signal Pro-
cessing, WiCV CVPR 2022, IEEE Transactions on Systems, Man and Cyber-
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iii) Area Chair of Women in Machine Learning Workshop (WiML), NeurIPS
2022.
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Chapter 2A Survey on the Stability of NeuralNetworks
In this chapter we provide a literature review for various works in Robust AI domain
related to verification and certification of neural networks. We concentrate on
the methods utilizing the Lipschitz properties of the neural network as a formal
guarantee of robustness.

2.1 . Provable Defenses

Neural networks (NNs) are being deployed in a wide range of applications,
including safety- and mission-critical tasks, certifying robustness of a neural network
against perturbations has become an important research topic in machine learning
community. There are various approaches and strategies to test the robustness
of neural networks. Traditional coverage-based approaches may be irrelevant for
testing neural network systems. In such cases, code certifiability can be trivially
satisfied while providing only limited guarantees on the system safe behavior when
facing situations that have not been strictly met during the training process.

Deep Neural Network(DNN) verification is experimentally beyond the capabil-
ities of tools such as Linear Programming (LP) solvers or Satisfiability Modulo
Theories (SMT) solvers [23, 24]. By far, these dedicated tools have only been able
to handle very small networks (a single hidden layer with 10/20 neurons [23, 25]).
The difficulty in using and estimating robustness properties for DNNs is the conse-
quence of the presence of activation functions at various parts of the architecture.
An attempt towards property verification of neural networks with ReLU Activa-
tions in safety critical applications was made in [26]. The idea is to find the
exact value of minimum perturbation distance (say ∆) i.e. the trained classifier
is safe against any perturbations with norm less than ∆. Finding this minimum
distortion/perturbation of adversarial examples with ReLU activations is known to
be an NP-complete problem [27, 26]. This makes formal verification technique in
Reluplex [26] computationally demanding even for small-sized NNs and hence they
suffer from scalability issues. In another line of work, the piece-wise linear nature
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of ReLU is exploited to efficiently compute a non-trivial certified lower bound of
the minimum distortion [12, 13, 28]. Zhang et al. [14] introduced an approxima-
tion technique called CROWN for computing a certified lower bound of minimum
adversarial distortion given any input data point with general activation functions
beyond ReLU such as tanh, sigmoid, and arctan for larger networks.

Another popular certifiable defense against ℓ∞ norm bounded inputs via the
convex outer adversarial polytope [12] which is applicable to small networks with
ReLU activation functions. Mirman et al. [29] takes a similar approach via ab-
stract interpretation. These methods use linear relaxations of neural networks to
compute an outer bound at the final layer. However, because the convex relax-
ations employed are relatively expensive, these methods are typically slow to train.
A simple and fast certifiable defense for ℓ∞ norm bounded inputs is Interval Bound
Propagation (IBP) [30, 29]. In [30] authors demonstrated that IBP bound can
be quite loose for general networks. But it can be used to train large provable
NNs by using appropriate loss and clever hyper-parameters to allow the network to
adapt such that the IBP bound is tight. CROWN-IBP [31] outperforms previous
methods by combining IBP bound in a forward bounding pass and a tighter linear
relaxation bound in a backward bound pass. Shi et al. [32] improved IBP with bet-
ter initialization to accelerate training. The certification methods discussed so far
provide deterministic robustness guarantees. Additionally, randomized smoothing
[33, 34, 35] provides probabilistic guarantees to certify ℓ2 norm robustness with
arbitrarily high confidence. The prediction of a randomized smooth classifier is the
most likely prediction returned by the base classifier that is fed by samples from a
Gaussian distribution. Salman et al. [36] further improves the performance of ran-
domized smoothing via adversarial training. All these defenses are computationally
expensive and increases the run-time.

2.2 . Estimation of Stability

2.2.1 . Quantification of Lipschitz constant
An m-layered feed-forward network Figure 2.1 can be modelled by the following

recursive equations:

(∀i ∈ {1, . . . , m}) xi = Ti(xi−1) = Ri(Wixi−1 + bi) (2.1)
where, at the ith layer, Wi ∈ RNi×Ni−1 is the weight matrix, bi ∈ RNi is the
bias vector, and Ri : RNi → RNi is the activation operator. This operator may
consist of the application of basic nonlinear functions, e.g. ReLU or tanh, to each
component of the input. Alternatively, it may consist of a softmax operation or
group sorting operations which typically arise in max pooling.

As shown in [1], the problem is related to the choice of the weight matri-
ces. One way of quantifying the stability of the system is to calculate a Lipschitz
constant of the network. A Lipschitz constant is an upper bound on the ratio
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Figure 2.1: m-layered feed-forward neural network architecture. For the ith-layer, Wiis the linear weight operator, bi the bias vector, and Ri the activation operator.

between the variations of the outputs and the variations of inputs of a function
T and thus it is a measure of sensitivity of the function with respect to input
perturbations. This means that, if θ ∈ [0,+∞[ is a Lipschitz constant of T, then

∥T(x + z)− T(x)∥ ⩽ θ∥z∥ (2.2)
for every input x ∈ RN0 and perturbation z ∈ RN0 . Note that the same notation is
used here for the norms on RN0 and RNm , but different norms can be used. If not
specified, the standard Euclidean norm will be used. An important assumption is
that the operators (Ri)1⩽i⩽m are non-expansive, i.e. 1-Lipschitz. This assumption
is satisfied for all the standard choices of activation operators.

Remark 1 For every (x, z) ∈ (RN0)2, if T is continuous on the segment [x, x + z] and
differentiable on ]x, x + z[, it follows from the mean value inequality that

∥T(x + z)− T(x)∥ ⩽ ∥z∥ sup
α∈]0,1[

∥T′(x + α(z− x))∥S, (2.3)
where T′ is the Jacobian of T and ∥ · ∥S is the spectral norm. We deduce that, when
T is differentiable on RN0 , the optimal Lipschitz constant is θ = supx∈RN0 ∥T′(x)∥S.
According to the differentiation chain rule, if the activation operators (Ri)1⩽i⩽m are
differentiable, the Jacobian matrix of T at x0 ∈ RN0 is expressed as

T′(x0) = R′m(ym)WmR′m−1(ym−1) · · · R′1(y1)W1 (2.4)
where

(∀i ∈ {1, . . . , m}) yi = Wixi−1 + bi. (2.5)
The variables (xi)1⩽i⩽m and (yi)1⩽i⩽m−1 are computed during the forward pass. It is
important to note that the differentiability assumption is not satisfied by the ReLU
activation function or its variants (leaky ReLU, capped ReLU,...).

Remark 2 From a practical viewpoint, it appears sometimes more relevant to de-
termine a local Lipschitz constant of the network. Indeed, the vector of inputs of
the network usually varies in a restricted subset C of RN0 . In addition, it appears
reasonable to assume that the perturbations z lie in a ball B(0, ϵ) centered at 0 and
with radius ϵ > 0. We can thus define the local Lipschitz constant as

θC,ϵ = sup
x∈C

sup
z∈B(0,ϵ)\{0}

∥T(x + z)− T(x)∥
∥z∥ . (2.6)

From this definition, it is clear that θC,ϵ is lower than the optimal global Lipschitz
constant, whose expression is recovered as a limit case when C = RN0 and ϵ→ +∞.
Two point must however be emphasized:

27



i) This local Lipschitz constant may not significantly differ from the global one.
To support this claim, assume that T is differentiable on RN0 and that there
exists x̂ ∈ C such that ∥T′(x̂)∥ = supx∈RN0 ∥T′(x)∥. Then it follows from
Eq. (2.3) and Eq. (2.6) that θC,ϵ reduces to the optimal global Lipschitz constant
whatever the choice of ϵ > 0.

ii) Computing θC,ϵ (or an upper bound of it) often is a more difficult problem
than the computation of a global Lipschitz constant of T since it corresponds
to solving a twice constrained maximization problem. In particular, numerical
approaches can be developed where samples within the set C are drawn and
adversarial examples are generated by identifying the worst choices for z for
each sampled value of the input [37]. Such approaches may appear better
suited for designing networks with improved robustness than for certification
purposes. Alternative measures to the local Lipschitz constant have also been
considered for multi-class classification problems [38].

2.2.1.1 . Trivial Upper Bound
The first upper-bound on the Lipschitz constant of a neural network was derived

by analyzing the effect of each layer independently and considering a product of
the resulting spectral norms [1]. This leads to the following Upper Bound:

θm = ∥Wm∥S∥Wm−1∥S · · · ∥W1∥S. (2.7)
Although easy to compute, this upper bound turns out be over-pessimistic and
loose.

2.2.1.2 . Improved Bounds
In [8],the problem of computing the exact Lipschitz constant of a differentiable

function is pointed out to be NP-hard. A first generic algorithm (AutoLip) for upper
bounding the Lipschitz constant of any automatically differentiable function is pro-
posed. This bound however reduces to Eq. (2.7) for standard feed-forward neural
networks. Additionally, the authors proposed, an algorithm SeqLip for sequential
neural networks, which shows significant improvement over AutoLip. A sequential
neural network is a network for which the activation operators are separable in the
sense that, for every i ∈ {1, . . . , m},

(∀xi = (ξi,k)1⩽k⩽Ni ∈ RNi) Ri(x) = (ρi(ξi,k))1⩽k⩽Ni , (2.8)
where the activation function ρi : R→ R.1 In [8], it is assumed that the functions
(ρi)1⩽i⩽m are differentiable, increasing, and their derivative are upper bounded by
one. By using Eq. (2.4), one can conclude that a Lipschitz constant of the network
is

ϑm = sup
Λ1∈DN1 ([0,1]),...,Λm−1∈DNm−1 ([0,1])

∥WmΛm−1 · · ·Λ1W1∥S, (2.9)

1More generally, a function ρi,k can be applied to each component ξi,k but thissituation rarely happens in standard neural networks.
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where DN(I) designate the set of diagonal matrices of dimension N × N with
diagonal values in I ⊂ R. This bound simplifies as

ϑm = sup
Λ1∈DN1 ({0,1}),...,Λm−1∈DNm−1 ({0,1})

∥WmΛm−1 · · ·Λ1W1∥S, (2.10)

which shows that 2Ni values of the diagonal elements of matrix Λi have to be
tested at each layer i ∈ {1, . . . , m}, so that the global complexity amounts to
2N1+···+Nm−1 and thus grows exponentially as a function of the number of neurons.
Estimating the Lipschitz constant using this method is intractable even for medium-
size networks and authors use a greedy algorithm to compute a bound, which
may under-approximate the Lipschitz constant. This does not provide tight upper
bounds.

2.2.1.3 . CPLip

In [9] various bounds on the Lipschitz constant of a feed-forward network are
derived by assuming that, for every i ∈ {1, . . . , m} the activation operator Ri is
αi-averaged with αi ∈]0, 1]. We recall this means that there exists a non-expansive
(i.e. 1-Lipschitz) operator Qi such that Ri = (1− αi)Id + αiQi. The following
inequality is then satisfied

(∀(x, y) ∈ RNi)∥Rix− Riy∥2 ⩽ ∥x− y∥2 − 1− αi

αi
∥(Id− Ri)x− (Id− Ri)y∥2.

(2.11)
We thus see that the smaller αi, the more "stable" Ri. In the limit case when
α1 = 1, Ri is non-expansive and, when αi = 1/2, Ri is said to be firmly non-
expansive. An important sub-class of firmly non-expansive operators is the class of
proximity operators of convex functions which are proper and lower-semicontinuous.
Let Γ0(RN) the be the class of such function defined from RN to ]−∞,+∞]. The
proximity operator of a function f ∈ Γ0(RN), at some point x ∈ RN, is the unique
vector denoted by prox f (x) such that

prox f (x) = argmin
p∈RN

1
2
∥p− x∥2 + f (p). (2.12)

The proximity operator is a fundamental tool in convex optimization. As shown
in [39], most of the activation functions (sigmoid, ReLU, leaky ReLU, ELU,...)
currently used in neural networks are the proximity operators of proper lower-semi-
continuous convex functions. This property is also satisfied by activation operators
which are not separable like softmax or the squashing function used in capsule
networks. The few activation operators which are not proximity operators (e.g.
convex combinations of a max pooling and an average pooling) can be viewed as
over-relaxations of proximity operators and correspond to a value of the averaging
parameter greater than 1/2.
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Based on these averaging assumptions, a first estimation of the Lipschitz con-
stant is given by

θm = βm;p̃∥Wm ◦ · · · ◦W1∥+
m−1

∑
k=1

∑
(j1,...,jk)∈Jm,k

βm;{j1,...,jk}σm;{j1,...,jk}, (2.13)

where

(∀ J ⊂ {1, . . . , m− 1}) βm;J =

(
∏
j∈J

αj

)
∏

j∈{1,...,m−1}∖J

(1− αj), (2.14)

for every k ∈ {1, . . . , m− 1},

Jm,k =

{{
(j1, . . . , jk) ∈Nk

∣∣ 1 ⩽ j1 < · · · < jk ⩽ m− 1
}

, if k > 1;
{1, . . . , m− 1}, if k = 1

(2.15)
and, for every (j1, . . . , jk) ∈ Jm,k,

σm;{j1,...,jk} = ∥Wm · · ·Wjk+1∥S ∥Wjk · · ·Wjk−1+1∥S · · · ∥Wj1 · · ·W1∥S. (2.16)
When, for every i ∈ {1, . . . , m − 1}, Ri is firmly nonexpansive, the expression
simplifies as

θm =
1

2m−1

(
∥Wm · · ·W1∥S +

m−1

∑
k=1

∑
(j1,...,jk)∈Jm,k

σm;{j1,...,jk}

)
. (2.17)

If, for every i ∈ {1, . . . , m − 1}, Ri is separable,2 a second estimation is
provided which reads

ϑm = sup
Λ1∈DN1 ({2α1−1,1}),

...,
Λm−1∈DNm−1 ({2αm−1−1,1})

∥WmΛm−1 · · ·Λ1W1∥S, (2.18)

We thus see that, when α1 = · · · = αm−1 = 1/2, we recover Eq. (2.10)
without making any assumption on the differentiability of the activation functions.
This estimation is more accurate than the previous one in the sense that

∥Wm · · ·W1∥S ⩽ ϑm ⩽ θm. (2.19)
It is proved in [9] that, if the network is with non-negative weights, that is (∀i ∈
{1, . . . , m}) Wi ∈ [0,+∞[Ni×Ni , the lower bound in Eq. (2.19) is attained, i.e.

ϑm = ∥Wm · · ·W1∥S. (2.20)
2The result remains valid if different scalar activation functions are used in a givenlayer.
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Another interesting result which is established in [9] is that similar results hold
if other norms than the Euclidean norm are used to quantify the perturbations
on the input and the output. For example, for a given i ∈ {1, . . . , m}, for every
p ∈ [1,+∞], we can define the following norm:

(
∀xi = (ξi,k)1⩽k⩽Ni ∈ RNi

)
∥x∥p =


∣∣∣∣∣ Ni

∑
k=1
|ξi,k|p

∣∣∣∣∣
1/p

, if p < +∞

sup
1⩽k⩽Ni

|ξi,k|, if p = +∞.
(2.21)

If (p, q) ∈ [1,+∞]2, the input space RN0 is equipped with the norm ∥ · ∥p,
and the output space RNm is equipped with the norm ∥ · ∥q a Lipschitz constant
for a network with separable activation operators is

ϑm = sup
Λ1∈DN1 ([2α1−1,1]),

...,
Λm−1∈DNm−1 ([2αm−1−1,1])

∥WmΛm−1 · · ·Λ1W1∥p,q (2.22)

= sup
Λ1∈DN1 ({2α1−1,1}),

...,
Λm−1∈DNm−1 ({2αm−1−1,1})

∥WmΛm−1 · · ·Λ1W1∥p,q, (2.23)

where ∥ · ∥p,q is the subordinate Lp,q matrix norm induced by the two previous
norms. The ability to use norms other than the Euclidean one may be sometimes
more meaningful in practice (especially for the ℓ1 or the sup norm). However,
computing such a subordinate norm is not always easy [40].

2.2.1.4 . SDP based approach
The work in [16] focuses on neural networks using separable activation opera-

tors. It assumes that the activation function ρi used at a layer i ∈ {1, . . . , m} is
slope-bounded, i.e. there exists non-negative parameters σmin and σmax such that

(∀(ξ, ξ ′) ∈ R2) ξ ̸= ξ ′ ⇒ σmin ⩽
ρi(ξ)− ρi(ξ

′)

ξ − ξ ′
⩽ σmax.

As noted by the authors, most activation functions satisfy this inequality with
σmin = 0 and σmax = 1. In other words, the above inequality means then that
ρi is an increasing function and it is non-expansive. But a known result [41,
Proposition 2.4] states that a function ρi satisfies these properties if and only if
it is the proximity operator of some proper lower-semicontinuous convex function.
So it turns out that we recover similar assumptions to those made in [39]. By use
of the firm non-expansivity of the operators Ri

Let us thus assume that σmin = 0, σmax = 1, and m ⩾ 2. It is well-known
that Ri is firmly nonexpansive if and only if

(∀(x, y) ∈ (RNi)2 (x− y)⊤(Rix− Riy) ⩾ ∥Rix− Riy∥2. (2.24)
31



The point is that, if Ri is a separable operator, this inequality holds in a more
general metric associated with a matrix

Qi = Diag(qi,1,1, . . . , qi,Ni ,Ni), (2.25)
where (∀k ∈ {1, . . . , Ni}2) qi,k,k ⩾ 0. In the following, the set of such matrices
(Qi)1⩽i⩽m−1 will be denoted by Q. This means that

(∀(x, y) ∈ (RNi)2 (x− y)⊤Qi(Rix− Riy) ⩾ (Rix− Riy)⊤Qi(Rix− Riy).(2.26)
For every (xi, yi) ∈ (RNi)2, let xi = Ri(Wixi−1 + bi) and yi = Ri(Wiyi−1 +

bi). It follows from Eq. (2.26) that(
Wi(xi−1 − yi−1)

)⊤Qi(xi − yi) ⩾ (xi − yi)
⊤Qi(xi − yi). (2.27)

Summing for the first m− 1 layers yields

m−1

∑
i=1

(
Wi(xi−1 − yi−1)

)⊤Qi(xi − yi) ⩾
m−1

∑
i=1

(xi − yi)
⊤Qi(xi − yi). (2.28)

On the other hand, ϑm > 0 is a Lipschitz constant of the neural network T if

ϑ2
m∥x0 − y0∥2 ⩾ ∥Wm(xm−1 − ym−1)∥2. (2.29)

For the latter inequality to hold, it is thus sufficient to ensure that,

ϑ2
m∥x0 − y0∥2 − ∥Wm(xm−1 − ym−1)∥2

⩾ 2
m−1

∑
i=1

(
Wi(xi−1 − yi−1)

)⊤Qi(xi − yi)− 2
m−1

∑
i=1

(xi − yi)
⊤Qi(xi − yi). (2.30)

This inequality can be rewritten in matrix form as x0 − y0
...

xm−1 − ym−1


⊤

M(ρm, Q1, . . . , Qm−1)

 x0 − y0
...

xm−1 − ym−1

 ⩾ 0 (2.31)

with ρm = ϑ2
m and

M(ρm, Q1, . . . , Qm−1) =

ρmIdN0 −W⊤1 Q1 0

−Q1W1 0
. . .

. . . . . . . . .
. . . 0 −W⊤m−1Qm−1

0 −Qm−1Wm−1 2Qm−1 −W⊤m Wm


. (2.32)
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In the case of a network having just one hidden layer, which is mainly investigated
in [16], the above matrix reduces to

M(ρ2, Q1) =

[
ρ2IdN0 −W⊤1 Q1
−Q1W1 2Q1 −W⊤2 W2

]
. (2.33)

Condition (2.31) is satisfied, for every (x0, . . . , xm−1) and (y0, . . . , ym−1) if and
only if

M(ρm, Q1, . . . , Qm−1) ⪰ 0. (2.34)
It is actually sufficient that this positive semidefiniteness constraint be satisfied

for any matrix Q ∈ QNi for
√

ρm to be a Lipschitz constant. The smallest possible
value of the resulting constant can be obtained by solving the following semidefinite
positive programming (SDP) problem:

minimize
(ρm,Q1,...,Qm−1)∈C

ρm, (2.35)
where C is the closed convex set

C =
{
(ρm, Q1, . . . , Qm−1) ∈ [0,+∞[×Q

∣∣ Eq. (2.34) holds
}

. (2.36)
Although there exists efficient SDP solvers, the method remains computationally
intensive. A solution to reduce its computational complexity at the expense of
a lower accuracy consists of restricting the optimization of the metric matrices
Q1, . . . , Qm−1 to a subset of Q.

One limitation of this method is that it is taylored to the use of the Euclidean
norm.

Remark 3 In [16], it is claimed that Eq. (2.26) is valid for every metric matrix

Qi =
Ni

∑
k=1

qi,k,keke⊤k + ∑
1⩽k<ℓ⩽Ni

qi,k,l(ek − eℓ)(ek − eℓ)⊤, (2.37)

where (ek)1⩽k⩽Ni
is the canonical basis of RNi and (∀(k, ℓ) ∈ {1, . . . , Ni}2) with k ⩽ ℓ,

qi,k,ℓ ⩾ 0 Unfortunately, this turns out to be incorrect as shown by the counterexample
next. Assume that all the coefficients (qi,k,ℓ)1⩽k⩽ℓ⩽Ni

are zero, except one in the second
summation set to 1. We have then

Q = (ek − eℓ)(ek − eℓ)⊤ (2.38)
for some (k, ℓ) ∈ {1, . . . , Ni}2 with k < ℓ. Consider the simple case when ρi is the
ReLU function, that is

(∀ξ ∈ R) ρi(ξ) = max{ξ, 0}.
ρi is an example of slope-bounded function with σmin = 0 and σmax = 1. Then, for
every x = (ξk)1⩽k⩽Ni

∈ RNi and y = (υk)1⩽k⩽Ni
∈ RNi ,

(ek − eℓ)⊤(x− y) = ξk − ξℓ − υk + υℓ

(ek − eℓ)⊤(Ri(x)− Ri(y)) = ρi(ξk)− ρi(ξℓ)− ρi(υk) + ρi(υℓ). (2.39)
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We have thus

(x− y)⊤Q(Rix− Riy) = (ξk − ξℓ − υk + υℓ)(ρi(ξk)− ρi(ξℓ)− ρi(υk) + ρi(υℓ))

(Rix− Riy)⊤Q(Rix− Riy) = (ρi(ξk)− ρi(ξℓ)− ρi(υk) + ρi(υℓ))
2. (2.40)

If we now assume that ξk < 0, υk = 0, and υℓ > ξℓ > 0, we deduce from the
expression of the ReLU function that

(x− y)⊤Q(Rix− Riy) = (ξk + υℓ − ξℓ)(υℓ − ξℓ)

(Rix− Riy)⊤Q(Rix− Riy) = (υℓ − ξℓ)
2. (2.41)

Inequality Eq. (2.26) then becomes

ξk + υℓ − ξℓ ⩾ υℓ − ξℓ, (2.42)
which contradicts the fact that ξk has been chosen negative.

The erroneous statement comes from a flaw in the deduction of Lemma 1 from
Lemma 2 in [16]. Another counterexample was also recently provided in [42].

2.2.1.5 . Polynomial optimization based approach
The approach in [43] applies to neural networks having a single output (i.e.

Nm = 1)3. The authors state that their approach is restricted to differentiable
activation functions, but it is actually valid for any separable firmly non-expansive
activation operators. Indeed, when Nm = 1, the Lipschitz constant in Eq. (2.22)
reduces to

ϑm = sup
Λ1∈DN1 ([0,1]),

...,
Λm−1∈DNm−1 ([0,1])

∥W⊤1 Λ1 · · ·Λm−1W⊤m ∥p∗ , (2.43)

where p∗ ∈ [1,+∞] is the dual exponent of p (such that 1/p+ 1/p∗ = 1). Recall
that p ∈ [1,+∞] is the exponent of the ℓp-norm equipping the input space. This
shows that ϑm is equal to

ϑm = sup{Φ(x, λ1, . . . , λm−1) | ∥x∥p ⩽ 1, (λi)1⩽i⩽m−1 ∈ [0, 1]N1+···+Nm−1},
(2.44)

where, for every x ∈ RN0 and (λi)1⩽i⩽m ∈ RN1+···+Nm−1 ,

Φ(x, λ1, . . . , λm−1) = x⊤W⊤1 Diag(λ1) · · ·Diag(λm−1)W⊤m . (2.45)
Function Φ is a multivariate polynomial of the components of its vector arguments.
Therefore if the unit ball associated with the ℓp norm can be described via polyno-
mial inequalities, which happens when p ∈N \ {0} and p = +∞, then finding ϑm

turns out to be a polynomial constrained optimization problem. Solving such an

3This can be extended tomultiple output network, if the output space is equippedwith the ℓ+∞ norm.
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optimization problem can be achieved by solving a hierarchy of convex problems.
However, the size of the hierarchy tends to grow fast and if the order of the hier-
archy is truncated to a too small value, the delivered result becomes inaccurate.
Leveraging the sparsity properties that might exist for the weight matrices may be
helpful numerically. Note that the approach is further improved in [44] by using
Lasserre’s hierarchy.

Remark 4

i) Any polynomial optimization problem can be reduced to a quadratically con-
strained quadratic program. This approach is followed in [45] and the problem
is then solved via an SDP relaxation. This leads to an upper bound on ϑm.

ii) In [43], the authors argue that their method allows a local Lipschitz constant to
be computed. Indeed, in the case when the activation functions are differen-
tiable, Eq. (2.4) holds where

(∀i ∈ {1, . . . , m− 1}) R′i(yi) = Diag(ρ′i(υi,1), . . . , ρ′i(υi,Ni )) (2.46)
and yi = (υi,k)1⩽k⩽Ni

is defined by Eq. (2.5). Consequently, if the input x of the
network belongs to a bounded convex set C, then, for every i ∈ {1 . . . , m− 1}
yi varies in a bounded set too, which implies that (ρ′i(υi,k))1⩽k⩽Ni

belongs to a
polytope Ci (say a hyperrectangle) of [0, 1]Ni . This allows us to define a local
Lipschitz constant as

ϑm,C = sup{Φ(x, λ1, . . . , λm−1) | ∥x∥p ⩽ 1, (λi)1⩽i⩽m−1 ∈ C1 × · · · × Cm−1}.(2.47)
Computing this constant is still a a polynomial optimization problem. So, the
same approach as in the global case can be followed, with an extra effort for
the determination of polytopes (Ci)1⩽i⩽m−1.

2.2.2 . Local Lipschitz Bound
As discussed briefly in Remark 2 local definitions of Lipschitz bounds are also

possible. Few works in literature utilize local Lipschitz bounds to improve the
robustness of the NNs. The advantage of using a local bound is that we may theo-
retically expect tighter bounds since of course the local Lipschitz constant cannot
be any larger than the global Lipschitz constant. However, using a local bound
also has its cons. Firstly, a local bound is more computationally expensive, as each
instance has its own bound, hence the required memory grows with the batch size.
This in turn reduces the amount of parallelism that can be exploited when using
a local bound, reducing the model throughput. Furthermore, because the local
Lipschitz constant is different for every point, it must be computed every time
the network sees a new point. By contrast, the global bound can be computed in
advance, meaning that verification via the global bound is essentially free. This
makes the global bound advantageous, assuming that it can be effectively lever-
aged for verification. Finding an exact local Lipschitz constant for a neural network
is generally NP-hard [8], so most works focus on finding a sound upper bound. Re-
cent work has explored methods for obtaining upper bounds on the local Lipschitz
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constant [28, 14, 46]. In [2], the authors convert the robustness analysis problem
into a local Lipschitz constant estimation problem, where they estimate this local
constant by a set of independently and identically sampled local gradients. This
algorithm is scalable but is not guaranteed to provide upper bounds. In a similar
work, the authors of [28] exploit the piece-wise linear structure of ReLU activation
functions to estimate the local Lipschitz constant of neural networks. In [47], the
authors use quadratic constraints and semidefinite programming to analyze local
(point-wise) robustness of neural networks. Hein et al. [48] derived an analytical
bound for two layer neural networks and found that local Lipschitz bounds could
be much tighter than the global one and provide better robustness certificates.
RecurJac [49] is a recursive algorithm that analyzes the local Lipschitz constant
in a neural network using a bound propagation [31] based approach. FastLip [28]
is a special and weaker form of RecurJac. Jordan et al. [50] formulated the com-
putation of the local Lipschitz constant as a Mixed Integer Linear Programming
(MILP) problem and they were able to solve it. Although the authors of these
approaches claim that they can obtain reasonably tight and sound local Lipschitz
constants, none of them have been demonstrated effective for training a certifiably
robust network, which requires high efficiency and scalability.

2.2.3 . Dealing with scalability issues
To handle scalability issues arising when estimating a Lipschitz constant of a

deep or broad network, several techniques can be employed as we show next.

2.2.3.1 . Serial splitting of the network
A feed-forward network can be decomposed as a cascade of smaller sub-networks

(Uj)1⩽j⩽k, where the j-th sub-network comprises mj weight operators (hence,
∑k

j=1 mj = m). Let θUj,mj be a Lipschitz constant of the j-th sub-network. An
overall Lipschitz constant for T is given by

θT,m =
k

∏
j=1

θUj,mj . (2.48)
Various decompositions can be performed which lead to more or less tight bounds.
For example, if we constrain the size of the sub-networks to be equal to mmax ⩽ m,
except possibly the first and the last one, the number of possible decompositions
is equal to mmax while the maximum number of sub-networks in a decomposition
is equal to ⌊m/mmax⌋+ 1. If m = 7 and mmax = 3, we can choose

U1 = T1

U2 = T4 ◦ T3 ◦ T2

U3 = T7 ◦ T6 ◦ T5

, (2.49)


U1 = T2 ◦ T1

U2 = T5 ◦ T4 ◦ T3

U3 = T7 ◦ T6

, (2.50)
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or 
U1 = T3 ◦ T2 ◦ T1

U2 = T6 ◦ T5 ◦ T4

U3 = T7

. (2.51)

If we look at the complexity reduction based on the computation of Eq. (2.23),
we see that for the j-th sub-network, the computational complexity is of the or-
der of 2NUj where NUj is the number of neurons in its hidden layers. For the
previous example splittings, the complexity are thus reduced to 2N2+N3 + 2N5+N6 ,
2N1 + 2N3+N4 + 2N6 , and 2N1+N2 + 2N4+N5 , respectively (to be compared with
2N1+···+N6).

Figure 2.2: A network T is split into three sub-networks U1, U2, and U3.
An additional degree of flexibility consists of factorizing the weight matrix Wi

at a given layer i as
Wi = ṼiVi (2.52)

where Ṽi ∈ RNi×Mi and Vi ∈ RMi×Ni−1 . Such a factorization may result from
a singular value decomposition of Wi. In [8], it is proposed to perform such a
decomposition and to consider k = m− 1 sub-networks having one hidden layer,
of the form

(∀i ∈ {1, . . . , m− 2}) Ui = Vi+1 ◦ Ri ◦ (Ṽi ·+bi) (2.53)
Um−1 = Rm ◦ (Vm ·+bm) ◦ Rm−1 ◦ (Ṽm−1 ·+bm−1) (2.54)

with Ṽ1 = W1 and Vm = Wm . This yields a Lipschitz constant of the form
Eq. (2.48) where

(∀i ∈ {1, . . . , m− 1}) θUi ,Ni = sup
Λi∈DNi

∥Vi+1ΛiṼi∥p,q, (2.55)

thus inducing a global computational complexity of the order of 2N1 + · · ·+ 2Nm−1 .

2.2.3.2 . Parallel splitting of the network
When the number of neurons at a given layer is large, a parallel splitting of

the network may be preferable. This technique mainly applies to the computation
of Eq. (2.23). The basic idea consists of block-decomposing the matrix Λi ∈ DNi

associated with the activation operator used at layer i ∈ {1, . . . , m − 1} in Ji
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diagonal matrices Λi,j ∈ DNi,j with j ∈ {1, . . . , Ji}. For every i ∈ {1, . . . , m− 1},
we have thus

Λi =


Λi,1 0 . . . 0

0 Λi,2
. . .

...
...

. . . . . . 0
0 . . . 0 Λi,Ji

 (2.56)

where the j-th block contains a reduced number Ni,j of diagonal elements. Then

∑Ji
j=1 Ni,j = Ni. Set Jm = 1, J0 = 1, Nm,1 = Nm, and N0,1 = N0. For every

i ∈ {1, . . . , m}, each weight matrix can be similarly block-decomposed as

Wi =

Wi,1,1 . . . Wi,1,Ji−1
...

...
Wi,Ji ,1 . . . Wi,Ji ,Ji−1

 (2.57)

where, for every j′ ∈ {1, . . . , Ji} and j ∈ {1, . . . , Ji−1}, Wi,j,j′ is a matrix of
dimension Ni,j′ × Ni−1,j. We have then

WmΛm−1Wm−1 · · ·W2Λ1W1

=
J1

∑
j1=1
· · ·

Jm−1

∑
jm−1=1

Wm,1,jm−1 Λm−1,jm−1Wm−1,jm−1,jm−2 · · ·W2,j2,j1 Λ1,j1W1,j1,1 (2.58)
By using now the triangle inequality, we deduce that

∥WmΛm−1Wm−1 · · ·W2Λ1W1∥p,q

⩽
J1

∑
j1=1
· · ·

Jm−1

∑
jm−1=1

∥Wm,1,jm−1 Λm−1,jm−1Wm−1,jm−1,jm−2 · · ·W2,j2,j1 Λ1,j1W1,j1,1∥p,q.

This leads to

ϑm ⩽
J1

∑
j1=1
· · ·

Jm−1

∑
jm−1=1

ϑm,j1,...,jm−1 , (2.59)
where

ϑm,j1,...,jm−1

= sup
Λ1,j1∈DN1,j1

({2α1−1,1}),
...,

Λm−1,jm−1∈DNm−1,jm−1
({2αm−1−1,1})

∥Wm,1,jm−1 Λm−1,jm−1 · · ·Λ1,j1W1,j1,1∥p,q. (2.60)

The complexity of the computation of the latter constant is of the order of
2N1,j1+···+Nm−1,jm−1 . The complexity of the Lipschitz constant defined by the upper-
bound in Eq. (2.59) thus amounts to

J1

∑
j1=1
· · ·

Jm−1

∑
jm−1=1

2N1,j1+···+Nm−1,jm−1
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For example, if for every layer i ∈ {1, . . . , m− 1}, a decomposition in 2 blocks of
equal size is performed (i.e. Ji = 2 and Ni,1 = Ni,2 = Ni/2 ∈ N), the resulting
complexity is 2(N1+...+Nm−1)/2+m−1.

As an illustration, when m = 2, we get

W1 =

[
W1,1,1
W1,2,1

]
(2.61)

W2 = [W2,1,1 W2,1,2]. (2.62)
By omitting redundant indices these decompositions can be rewritten as

W1 =

[
W1,1
W1,2

]
(2.63)

W2 = [W2,1 W2,2] (2.64)
and Eq. (2.59) becomes

ϑm ⩽ sup
Λ1,1∈DN1,1({2α1−1,1})

∥W2,1Λ1,1W1,1∥p,q

+ sup
Λ1,2∈DN1,2({2α1−1,1})

∥W2,2Λ1,2W1,2∥p,q. (2.65)

2.2.3.3 . Serial and parallel splitting of the network
A combination of the two previous splitting techniques can be used for an

efficient estimation of the Lipschitz constant of a feed-forward neural network.

2.3 . Control of Stability

2.3.1 . Adversarial attacks and defenses
2.3.1.1 . Adversarial attacks

Classification: Szegedy et al. [3] proposed L-BFGS (Limited-memory; Broy-
den, Fletcher, Goldforb, Shanno) to construct adversarial attacks and since then,
there has been a plethora of works introducing various adversarial attacks and their
defenses for DNNs. Goodfellow et al. [1] proposed a simpler and faster method to
construct adversarial attacks (FGSM- Fast Gradient Sign Method). The generated
images are misclassified by adding perturbations and linearizing the cost function
in the gradient direction. This is a non-iterative attack; hence it has a lower
computation cost than the previous method. The Fast Gradient Sign Method
(FGSM) is an ℓ∞ bounded attack and is often prone to label leaking.

It may be difficult for FGSM to control the perturbation level in constructing
attacks. Kurakin et al. [10] proposed an optimized FGSM, termed Iterative Gradi-
ent Sign Method (IGSM), which adds perturbations in multiple smaller steps and
clips the results after each iteration ensuring that the perturbations are restricted
to the neighborhood of the example. [51] added momentum to IGSM attacks.
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[52] proposed the Jacobian-based Saliency Map Attack (JSMA), based on the ℓ0

sparsity measure. The basic idea is to construct a saliency map with the gradients
and model the gradients based on the impact of each image pixel.

Moosavi et al. [53] proposed a non-targeted attack method based on the ℓ2-
norm, called DeepFool. It tries to find the decision boundary closest to the sample
in the image space and then uses the classification boundary to fool the classifier.
FGSM, JSMA, and DeepFool are designed to generate adversarial attacks corre-
sponding to a single image to fool the trained classifier model. Moosavi et al. [54]
proposed a universal image-agnostic perturbation attack method that deceives the
classifier by adding a single perturbation to all images in the dataset. Carlini et al.
[55] proposed a powerful attack based on L-BFGS. The attack can be generated
according to ℓ1, ℓ2, and ℓ∞ norm, which can be targeted or non-targeted. Liu
et al. [56] proposed an ensemble attack method combining multiple models to
construct adversarial attacks. Rony et al. [57] proposed a method to generate
minimally perturbed adversarial examples based on Augmented Lagrangian for var-
ious distance metrics. In [58], authors propose a general framework for generating
adversarial examples in both classification and regression tasks for applications in
the image domain. Most of the methods in the literature about adversarial exam-
ple generation belong to the class of white box attackers, i.e., the attacker has
access to the information related to the trained neural network model, including
the model architecture and its parameters. A black box attacker is introduced
in [59]. Such attackers do not know the model but can interact with it. [59]
proposed a one-pixel attack method that only changes one pixel for each image to
construct an adversarial attack to fool DNNs. A byproduct of black-box attack is
grey-box attack, where attackers might have limited information regarding the
model. Weng et al. [2] proposed a computationally feasible method called Cross
Lipschitz Extreme Value for nEtwork Robustness (CLEVER), which applies extreme
value theory to estimate a lower bound of the minimum adversarial perturbation
required to misclassify the image. CLEVER is the first attack-independent method
and can also evaluate the intrinsic robustness of neural networks.

Most of the introduced attack methods are applied digitally, where the adver-
sary supplies input images directly to the DNN. However, this is not always the case
in scenarios that use cameras, microphones, or other sensors to receive the signals
as input. These systems can still be attacked by generating physical-world adver-
sarial objects. For example, Eykholt et al. [60] attached stickers to road signs that
can severely threaten autonomous car sign recognizer and in [61] introduced the
generation of physical 3D adversarial objects. These kinds of adversarial objects
are more destructive for deep learning models because they can directly challenge
many practical applications of DNN, such as face recognition, autonomous vehicles,
etc.

Regression: In regression tasks, there are no natural margins as in the case of
classification tasks, and difficulties hinder adversarial learning in a regression setting
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to define the adversarial attacks, their success, and evaluation metrics. Despite the
number of works in adversarial attack generation, there are few articles dealing with
regression tasks. Tong et al. [62] looked at adversarial attacks in the setting of an
ensemble of multiple learners, investigating the interactions between these linear
learners and an attacker in regression tasks, modeled as a Multi-Learner Stackelberg
Game (MLSG). However, the investigated linear case cannot capture the larger
class of non-linear models. The focus only on specific applications of regression
is common. Ghafouri et al. [63] examined an important problem: selecting an
optimal threshold for each sensor against an adversary for regression tasks in cyber-
physical systems. Deng et al. [64] introduced the concept of adversarial threshold,
which is related to a deviation between the original prediction and the prediction
of an adversarial example, i.e., an acceptable error range in driving models. In
a regression context, [65] introduced a generically useful defense to reduce the
effectiveness of adversarial attacks. They consider adversarial attacks as a potential
symptoms of numerical instability in the learned function.

2.3.1.2 . Adversarial Defenses
Adversarial Training : All ML models are vulnerable to adversarial attacks

[66]. Therefore, defending against adversarial examples is urgent for ML security.
Goodfellow et al. [1] proposed the concept of adversarial training to improve the
robustness of the model. The idea is to add adversarial attacks to the training
data and continuously generate new examples at each training step. The number
and relative weight of adversarial examples at each batch is controlled by the
loss function independently. Adversarial training can be viewed as the process of
minimizing classification error rates when the data is maliciously perturbed and it
can be formulated as a minimax problem. Although a model can be robust to white-
box attacks after the adversarial training step, it is still vulnerable to the adversarial
attacks generated from other models, i.e., the model is not robust to black-box
attacks. Based on this, Tramer et al. [67] proposed the concept of ensemble
adversarial training. It consists in augmenting the training data constructed not
only from the model being trained but also from the other pre-trained models,
increasing the diversity of adversarial attacks and improving the generalization
ability.

Defensive Distillation: Adversarial training needs adversarial examples to
train the model; thus, the defense is related to the process of adversarial examples
construction. In Papernot et al. [52] proposed a universal defensive method for
neural networks called defensive distillation. The distillation method uses a small
model to simulate a large and computationally intensive model without affecting
the accuracy and can solve the problem of missing information. Different from the
traditional distillation technique, defensive distillation aims to smooth the model
during the training process by generalizing examples outside the training data. The
basic idea of defensive distillation is to generate smooth classifiers that are more
resilient to adversarial examples, reducing the sensitivity of the DNN to the input
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perturbation.
Strategies to improve robustness, such as adversarial training only provide em-

pirical robustness, without any formal guarantees on the safety of trained models.
Stronger and more aggressive attacks have successfully broken many existing ad-
versarial defenses [68]. Similarly, Carlini and Wagner [55] show that the method of
Defensive Distillation is still vulnerable to their adversarial examples. In contrast,
certified defenses using bounds such as the Lipschitz constant provide formal ro-
bustness guarantees that any norm-bounded adversary cannot alter the prediction
of a given network.

2.3.2 . Control using Lipschitz constant
Utilizing the Lipschitz constant to certify robustness has been studied at sev-

eral instances in the literature. Neural networks trained without any robustness
constraint usually have very large global Lipschitz constant bounds [3], so most
existing works train the network with a criterion that promotes small Lipschitz
bound.

Parseval Networks: [69] designed networks with orthogonal weights, whose
Lipschitz constants are exactly 1. This can be too restrictive and later works
mostly use the power iteration to obtain per-layer induced norms, whose product
is a Lipschitz constant

Spectral Normalization: [70] showed control on the Lipschitz constant using
spectral normalization for GANs. We discuss Spectral Normalization in Section
2.3.2.1.

Hinge Regularisation: The authors of [71] propose to learn 1-Lipschitz net-
works for binary classification using a new loss which is a hinge regularized version
of the Kantorovich-Rubinstein dual formulation for the Wasserstein distance esti-
mation. They prove that the proposed loss function has a direct interpretation in
terms of adversarial robustness together with certifiable robustness bound.

Prior work seeks to use global or local Lipschitz bounds during training to
promote robustness. Computing and imposing loose global Lipschitz bounds is
often easy but over-regularize the network during training and decrease its accuracy
on clean data.

Lipschitz Margin training(LMT): In [72] authors train models that are cer-
tifiably robust by constructing a new loss on worst logits using the global Lipschitz
bounds. They add a value of

√
2ϵLglob, where ϵ is the perturbation radius, to all

logits other than the logit corresponding to the ground-truth class and calculate
the loss thereafter.

Box constrained propagation (BCP): Lee et al. [46] achieves a tighter outer
bound than global Lipschitz-based outer bound, by considering local information
via interval bound (box) propagation. They also compute the worst-case logit
based on the intersection of a (global) ball and a (local) box.

GloRo: Leino et al. [15] bounds the upper bounds on the worst margins using
the global Lipschitz constant. It constructs a new logit with a newly constructed

42



class called the bottom class and determines if the sample can be certified.
Local-Lip: [73] utilizes the interactions between activation functions (e.g.

ReLU, MaxMin) and weight matrices. By eliminating the corresponding rows and
columns where the activation function output is constant, they guarantee a lower
provable local Lipschitz bound than the global Lipschitz bound for the neural net-
work.

LipNet1: Bethune et al. [74] concentrate on classifiers constructed with 1-
Lipschitz networks. They use DeelLip Library [71] for constructing 1-Lipschitz neu-
ral networks. They show that the classifiers trained with 1-Lipschitz constrained
can be as expressive as those trained without any Lipschitz constraints and are cer-
tifiably robust. They introduce an implicit parameter τ, which controls the network
expressiveness. A careful examination of the algorithm reveals that controlling this
parameter is equivalent to relaxing the Lipschitz constant of the neural network,
which is the approach we follow in a more direct manner in this work.

Known Lipschitz Constants: In Piat et al. [75], authors learn general neural
networks for which the target Lipschitz constants are known before hand. They
propose a PGD-like algorithm to approximate the target fixed Lipschitz constant
by maximizing a spectral norm.

2.3.2.1 . Spectral Normalization

Spectral normalization stabilizes DNN training by constraining the Lipschitz
constant of the objective function. Spectrally normalized DNNs have also been
shown to generalize well [76], which is an indication of stability in machine learning.
For fully-connected layers, the spectral norm of a given weight matrix W can be
computed by using the approach described by [70] using the power iteration method.
For each W, we initialize a vector ũ and approximate both the left and right singular
vectors by iterating the update rules:

ṽ←Wũ/∥Wũ∥2

ũ←W⊤ṽ/∥W⊤ṽ∥2

The final singular value can be approximated with σ(W) ≈ ṽTWũ.
The final weight matrix after spectral normalization WSN is given as

WSN = W/σ(W).

In the case of a CNN consisting of convolutional layers, dense layers, and ReLU
activations, the spectral norm of each of the ReLU layers can be calculated using the
power iteration method [11, 77]. Gouk et al. [77] also give a procedure for bounding
the spectral norm of skip connections, and batch normalization layers enable this
approach on ResNet architectures. The effectiveness of spectral normalization in
training safety-critical systems was shown in [78, 79]. The DNNs are trained with
layer-wise spectrally normalized weight matrices. In practice, we can apply spectral
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normalization to the weight matrices in each layer during training as follows:

WSN =
W

σ(W)
γ1/m (2.66)

where γ is the intended global Lipschitz constant of the DNN having m layers.

2.3.2.2 . Conclusion
Several developments related to various state-of-art approaches have been pre-

sented in this chapter. In the following chapters, we present some contributions
and discuss the limitations of state-of-the-art techniques. We show how to tackle
a few of these shortcomings so as to better understand and improve the stability of
neural networks. We evaluate our proposed methods on diverse open-source and
industrial datasets in the field of safety-critical applications.
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Chapter 3Adversarial Attacks on RegressionTasks
3.1 . Introduction

Adversarial attacks against neural networks and their defenses have been primar-
ily investigated in classification tasks. However, adversarial attacks in a regression
setting remain understudied, although regression tasks are an important part of
mission-critical and safety-critical use cases in many domains like aviation, space,
transportation, and defense. In this work, we present an adversarial attacker for
regression tasks derived from the algebraic properties of the Jacobian of the neural
network. We show that our attacker successfully fools the neural network and we
measure its effectiveness in reducing the estimation performance. This white-box
adversarial attacker aims to support engineers in designing safety-critical regres-
sion machine learning models. We present our results on various open-source and
real industrial tabular datasets. In particular, the proposed adversarial attacker
outperforms attackers based on random perturbations of the inputs. Our analysis
relies on the quantification of the fooling error as well as various error metrics. A
noteworthy feature of our attacker is that it allows us to optimally attack a subset
of inputs, which may help to analyze the sensitivity of some specific inputs, as we
will see in the next chapter.

3.2 . Limitations of Previous Works

As pointed out in Section 2.3.1, adversarial machine learning has received
increased attention in the past decade. Adversarial attacks cause vulnerability
in model deployment and especially need to be considered in the deployment of
security-critical AI applications. Despite the newfound interest of the research
community in trustworthy and explainable AI, only a few works are investigating
adversaries in the case of regression tasks.

Current advances in the adversarial machine learning field evolve around the
issue of designing attacks and defenses with a focus on the use of neural networks
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in image analysis and computer vision [1], [10]. Much fewer works concern tabular
data. However, most machine learning tasks in the industry rely on tabular data,
e.g., fraud detection, product failure prediction, anti-money laundering, recommen-
dation systems, click-through rate prediction, or flight arrival time prediction. To
the best of our knowledge, the only work dealing with adversarial attacks in white
box settings for tabular data has been proposed in [80], and this work handles only
classification tasks. In this work, we focus on generating adversarial attacks for
neural networks in the specific scenario when i) a regression task is performed and
ii) tabular data are employed.

3.3 . Proposed Attacker

3.3.1 . Objective
As already mentioned, the problem of adversarial attacks is closely related to

the robustness issue of a neural network, i.e., its sensitivity to perturbations. Let
T : RN0 → RNm be the considered neural network having N0 scalar inputs and Nm

scalar outputs. If x ∈ RN0 is a given vector of inputs for some data for which y is
the associated target output, the network has been trained to produce an output
T(x) close to y. If the input is now perturbed by an additive vector e ∈ RN0 ,
the perturbed output is T(x + e). Attacking the network then amounts to finding
a perturbation e of preset magnitude, which makes the output of the network
maximally deviate from a reference output. This reference output may be the
model output T(x) or the ground truth output y. Since our purpose is to develop
an efficient approach even if the network accuracy is not very high, we choose
y as the reference output when available. In this context, measures of deviation
and magnitude of the perturbation play an important role in the mathematical
formulation of the problem. As a common choice, the measure of perturbation
magnitude will be here an ℓp-norm where p ∈ [1,+∞]. For measuring the output
deviation, we will similarly consider an ℓq-norm where q ∈ [1,+∞]. It must be
emphasized that this choice makes sense when dealing with regression problems.
In this context, the ℓ2 or the ℓ1 norms are frequently used as training loss functions.
On the other hand, the ℓ+∞ norm is also a popular measure when dealing with
reliability issues.

3.3.2 . Optimization formulation
In the described setting, the design of the attacker can be formulated as the

problem of finding the “worst perturbation" ê such that

ê ∈ Argmax
e∈Cp,δ

∥T(x + e)− y∥q, (3.1)
where Cp,δ is the closed and convex set defined as

Cp,δ = {e ∈ RN0 | ∥Σ−1/2e∥p ⩽ δ}. (3.2)
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Σ ∈ RN0×N0 is symmetric positive definite matrix. δ is a parameter that controls
the maximum allowed perturbation, and Σ is a weighting matrix typically corre-
sponding to the covariance matrix of the inputs. For instance, if we assume it
to be a diagonal matrix, it simply introduces a normalization of the perturbation
components with respect to the standard deviations of the associated inputs.

For standard choices of activation functions, T is a continuous function. Using
the Weierstrass theorem, the existence of a solution (not necessarily unique) to
Problem 3.1 is then ensured. Although Cp,δ is a relatively simple convex set, this
problem appears as a difficult non-convex problem due to the fact that i) T is
a complex nonlinear operator, ii) we maximize an ℓq measure which, in addition,
leads to a non-smooth cost function when q = 1 or q = +∞. A further difficulty
is that we usually need to attack a large dataset to evaluate the robustness of a
network, and the provided optimization algorithm should therefore be fast.

3.3.3 . Algorithm
We propose to implement a two-step approach.

• Step 1. We first perform a linearization based on the following first-order
Taylor expansion:

T(x + e) ≃ T(x) + J(x)e, (3.3)
where J(x) ∈ RNm×N0 is the Jacobian of the network at x.1 Note that J(x)
can be computed by classical back-propagation techniques. We will make a
second approximation, that is y ≃ T(x). Based on these two approximations
and after the variable change e′ = δ−1Σ−1/2e, Problem 3.1 simplifies to

maximize
e′∈Bp

∥J(x)Σ1/2e′∥q, (3.4)
where Bp is the closed ℓp ball centered at 0 and with unit radius. Note
that the optimal cost value in Eq. (3.4) is the subordinate norm of matrix
J(x)Σ1/2 when the input space is equipped with the ℓp norm and the output
space with the ℓq one. We recall that this subordinate norm is defined, for
every matrix M ∈ RNm×N0 , as

∥M∥p,q = sup
z∈RN0\{0}

∥Mz∥q

∥z∥p
. (3.5)

Problem 3.4 is thus equivalent to find a vector ê′ for which the value of the
cost function is equal to ∥J(x)Σ1/2∥p,q. For values of (p, q) listed below
the expression of such vector has an explicit form.

– If p = q = 2, ê′ is any unit ℓ2 norm eigenvector of Σ1/2 J(x)⊤ J(x)Σ1/2

associated with the maximum eigenvalue of this matrix. This vector

1Weassume that J(x) is defined at x, see [81] for a justification of this assumptionin the non-smooth case.
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can be computed by performing a singular value decomposition of
J(x)Σ1/2.

– If p = 2 and q = +∞, ê′ is any unit ℓ2 norm vector colinear with a
row of J(x)Σ1/2 having maximum ℓ2 norm.

– If p = +∞ and q = +∞, ê′ is a unit norm vector whose elements are
equal to (ϵ(i))1⩽i⩽N0 where, for every i ∈ {1, . . . , N0}, ϵi ∈ {−1, 0, 1}
is the sign of the i-th element of a row of J(x)Σ1/2 with maximum ℓ1

norm.

– If p = 1 and q = 1, ê′ is a vector which has only one nonzero
component equal to ±1, the index of this component corresponds
to the column of J(x)Σ1/2 with maximum ℓ1 norm.

– If p = 1 and q = 2, ê′ is a vector with only one nonzero component
equal to ±1. The index of this component corresponds to a column
of J(x)Σ1/2 with maximum ℓ2 norm.

– If p = 1 and q = +∞, ê′ is again a vector with only one nonzero
component equal to ±1. The index of this component corresponds
to a column of J(x)Σ1/2 where is located an element of maximum
absolute value.

• Step 2. In the previous optimization step, the optimal solution is not unique.
Indeed if ê = δΣ1/2ê′ is a solution to Problem 3.4, then −ê is also a
solution. In addition, there may exist other reasons for the multiplicity of
the solutions. For example, there may be several maximum norm rows for
matrix J(x)Σ1/2. Among all the possible choices, we propose to choose the
solution ê leading to the maximum deviation w.r.t. the ground truth, that is
such that ∥T(x + ê)− y∥q is maximum. This requires to perform a search
on a small number of possible candidates. Note that no approximation error
is involved in this step. If the ground truth for the output is not available,
it can be replaced by the model output.

• Post-optimization. If 1 < q < +∞ and T is assumed to be differentiable,
e 7→ ∥T(x + e) − y∥q

q is a differentiable function. A further refinement
consists of minimizing this function over Cp,δ by using a projected gradient
algorithm with Armijo search for the step-size. The previous estimates of ê
can then be used to initialize the algorithm. According to our numerical tests,
implementing this strategy when q = 2 only brings a marginal improvement.
Moreover, this approach cannot be used when q = 1 or q = +∞.

3.3.4 . Attacking a group of inputs
It can also be interesting to attack only a selected subset of inputs. It may

help in identifying the more sensitive inputs of the network. Also, for some inputs
like unsorted categorical ones, attacks are often meaningless since they introduce
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a main change in the informative contents of the dataset, which can be easily
detected. Our proposed approach can be adapted to generate such partial attacks.
In Problem 3.4, it is indeed sufficient to replace matrix Σ1/2 by DΣ1/2D, where D
a masking diagonal matrix whose diagonal elements are equal to 1 when the input
is attacked and 0 otherwise. The optimal solutions ê′ and ê = δDΣ1/2Dê′have
then their components equal to 0 for the non-attacked inputs. Note that the naive
approach which would consist in solving Eq. (3.4) and setting to zero the resulting
perturbation components for non-attacked inputs would be sub-optimal.

3.3.5 . Error Metrics

Analogous to metrics such as fooling rates/success rates in classification tasks
we propose three metrics to quantify the performance of the proposed adversarial
attacker in regression tasks. These metrics formulations are given in Table 3.1.
Let K be the number of samples in the dataset.

• Mean Accuracy Error (MAE) : It is the average of the distance between the
ground truth of the sample and the prediction of the attacked sample over
K samples.

• Fooling Error (E) : It is the average of the distance between the prediction
of the original sample and the prediction of the attacked sample over K
samples.

• Symmetric Mean Accuracy Error (SMAPE) : This measure takes into ac-
count relative error distances of perturbed samples and original samples
from the ground truth. This value is averaged over samples where distance
of ground truth is farther from perturbed samples than the original sample.
For all the above metrics, a high value implies a strong attack.

Mean Accuracy Error MAE = 1
K

K

∑
k=1
∥T(xk + ek)− yk∥q

Fooling Error E = 1
K

K

∑
k=1
∥T(xk + ek)− T(xk)∥q

Symmetric Mean Accuracy Percentage Error SMAPE = 2
K+

K+

∑
k=1

∥T(xk + ek)− yk∥q − ∥T(xk)− yk∥q

∥T(xk + ek)− yk∥q + ∥T(xk)− yk∥q

Table 3.1: Error metrics used for evaluation. The mean value computed for SMAPEis limited to the K+ positive values of the elements in the summation. ek is the per-turbation generated by the adversarial attacker on the k-th sample in the dataset oflength K.
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3.4 . Experiments

3.4.1 . Open Source Datasets
We run our experiments on three open source regression datasets. The Com-

bined Cycle Power Plant [82] dataset has 4 features with 9,568 instances. The
task is to predict the net hourly electrical energy output using hourly average am-
bient variables. The Red Wine Quality dataset [83] contains 1,599 total samples
and each instance has 11 features. The features are physio-chemical and sensory
measurements for wine. The output variable is a quality score ranging from 0 to
10, where 10 represents for best quality and 0 for least quality. For the Abalone
dataset, the task is to model an Abalone’s age based purely on its physical mea-
surements. This would allow Abalone’s age estimation without cutting its shell.
There are in total 4,177 instances with 8 input variables including one categorical
variable. The datasets are divided with a ratio of 4:1 between training and testing
data. The categorical attributes are dealt with by using one hot encoding based on
the number of categories. The input attributes are normalized by removing their
mean and scaling to unit variance.

We train fully connected networks for the estimation of variables from the
datasets. The network architecture for the dataset are given below. The values
represent the number of hidden neurons in the layers. The activation function at
each layer is ReLU except for the last layer.

• Combined cycle Power Plant dataset - (10, 6, 1)

• Red Wine Quality dataset - (100, 100, 100, 10, 1)

• Abalone Data set - (256, 256, 256, 256, 1)

3.4.2 . Industrial Dataset – Safety Critical Application
An industrial application dataset is also considered with 2,219,097 training,

739,639 validation, and 739,891 test samples. The description of the input/output
variables of the dataset is given in Table 3.2. The variable to be predicted is
the Estimation of Arrival time (ETE) of a flight, given variables including the
distance and speed, and also an initial estimate of ETE. The dataset is related
to flight control, an activity area where safety is critical. The input attributes are
normalized by removing their mean and scaling to unit variance. For models, we
build fully connected networks with ReLU activation function on all the hidden
layers except the last one. The network architecture is shown in the Figure 3.1.

3.4.3 . Adversarial attacks on Standard Training
For checking the efficacy of the proposed adversarial attacker, we first train the

neural networks without any constraints using the network architecture presented
in the previous section with the aim of reducing the prediction/performance loss
on the train dataset. This is refered to as a standard training procedure.
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Figure 3.1: Network Architecture.

Input

0 Speed

continuous

1 Flight Distance2 Departure Delay3 Initial ETE4 Latitude Origin5 Longitude Origin6 Altitude Origin7 Latitude Destination8 Longitude Destination9 Altitude Destination10 Arrival Time Slot 7 slots (categorical)11 Departure Time Slot 7 slots (categorical)12 Aircraft Category 6 classes (categorical)13 Airline Company 19 classes (categorical)
Output 3 Refinement ETE continuous

Table 3.2: Input and output variables description for the Thales Air Mobility industrialapplication dataset.

We compare the proposed adversarial attacker with random noise attackers gen-
erated by i.i.d. perturbations. We use three additive noise distributions: Gaussian,
uniform, and binary for comparisons. The output of these attackers have been
normalized so as to meet the desired bound on the norm of the perturbation. The
metrics (MAE, E and SMAPE) are computed on the test samples where K is the
total number of samples in the test set. The results on the 4 datasets for varying
noise levels for ℓ2 perturbations are shown in Table 3.3. Our proposed attacker
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successfully attacks the neural network models, and is significantly better than
random noise attackers in terms of distance metrics.

We also show the histograms of (∥T(xk + ek)− yk∥q − ∥T(xk)− yk∥q)1⩽k⩽K
in Figures 3.2-3.5, where (ek)1⩽k⩽K have been generated from various noise distri-
butions and the proposed adversarial attacker. From the histograms, we observe
the proposed attacker is guaranteed to attack the sample as it generates the worst
positive deviation, while the random noise attackers are symmetric around zero.
This implies that random attackers sometimes make the prediction better rather
than making it deviate from the ground truth predictions. We observe similar
trends for all four test datasets in the histograms.

Noise 1× 10−1 2× 10−1 1× 10−1 2× 10−1 5× 10−2 1× 10−1 1× 10−1 2× 10−1

Dataset Power Plant Wine Abalone Industrial
MAEstd 6.4× 10−3 6.4× 10−3 0.47 0.47 1.68 1.68 9.2× 10−3 9.2× 10−3

MAEgauss 6.5× 10−3 6.8× 10−3 0.46 0.47 1.68 1.68 9.6× 10−3 10.7× 10−3

MAEuni 6.5× 10−3 6.8× 10−3 0.46 0.47 1.68 1.68 9.6× 10−3 10.7× 10−3

MAEbin 6.5× 10−3 6.9× 10−3 0.47 0.48 1.68 1.68 9.6× 10−3 10.7× 10−3

MAEadv 10.3× 10−3 14.2× 10−3 0.58 0.66 2.04 2.40 20.9× 10−3 32.5× 10−3

Eguass 1.3× 10−3 2.5× 10−3 0.04 0.09 0.02 0.05 2.6× 10−3 5.1× 10−3

Euni 1.3× 10−3 2.5× 10−3 0.05 0.09 0.02 0.05 2.6× 10−3 5.2× 10−3

Ebin 1.4× 10−3 2.7× 10−3 0.04 0.09 0.03 0.05 2.7× 10−3 5.4× 10−3

Eadv 4.0× 10−3 8.0× 10−3 0.12 0.21 0.36 0.72 11.8× 10−3 24.0× 10−3

SMAPEgauss 0.33 0.34 0.34 0.49 0.05 0.09 0.45 0.65
SMAPEuni 0.34 0.52 0.33 0.51 0.04 0.08 0.46 0.66
SMAPEbin 0.36 0.56 0.29 0.48 0.05 0.09 0.47 0.67
SMAPEadv 0.62 0.87 0.41 0.56 0.38 0.58 0.96 1.24

Table 3.3: Comparison on evaluation metrics random attacker vs. proposed adver-sarial attacker with variation in perturbation level (ℓ2 attack).
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Figure 3.2: Error distribution of random attacks and proposed adversarial attack onCombined cycle Power Plant dataset for perturbation level of 2× 10−1 for ℓ2 attack.

3.4.4 . Attacks on Spectral Normalization training
In these experiments, we train our networks while using a spectral normalization

technique as shown in section 2.3.2.1 which has been proven to be very effective
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Figure 3.3: Error distribution of random attacks and proposed adversarial attack onRed-wine dataset for perturbation level of 2× 10−1 for ℓ2 attack.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Error

0

50

100

150

200

Co
un

t

Gaussian

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Error

0

50

100

150

200

Co
un

t

Uniform

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Error

0

50

100

150

200

250

Co
un

t
Binary

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Error

0

50

100

150

200

250

300

Co
un

t

Adversarial

Figure 3.4: Error distribution of random attacks and proposed adversarial attack onAbalone dataset for perturbation level of 1× 10−1 for ℓ2 attack.
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Figure 3.5: Error distribution of random attacks and proposed adversarial attack onindustrial dataset for perturbation level of 2× 10−1 for ℓ2 attack.

in controlling Lipschitz properties in GANs. Recall that, given an m layer fully
connected architecture and a Lipschitz target θ, we constrain the spectral norm of
each layer to be less than m

√
θ. This ensures that the upper bound on the global

Lipschitz constant is less than θ. We keep the network architectures exactly the
same as the standard training procedures in the previous section. The performance
of adversarial attacker on standard and spectrally normalized trained model in terms
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of Fooling Error (E) and Symmetric Mean Accuracy Percentage error (SMAPE)
for various datasets and varying perturbation magnitude under ℓ2 perturbations
is given in Table 3.4. We observe that the spectral normalized models are more
resilient to attacks than the standard trained models. Thus spectral normalization
constraints help to generate more robust and safer models.

Noise Eadv Espec SMAPEadv SMAPEspec
Power Plant

1× 10−1 4.0× 10−3 3.9× 10−3 0.62 0.60
2× 10−1 8.0× 10−3 7.7× 10−3 0.87 0.84

Wine
1× 10−1 0.12 0.02 0.41 0.12
2× 10−1 0.21 0.03 0.56 0.17

Abalone
5× 10−2 0.36 0.11 0.38 0.12
1× 10−1 0.72 0.23 0.58 0.21

Industrial
1× 10−1 11.8× 10−3 9.1× 10−3 0.91 0.49
2× 10−1 24.0× 10−3 17.5× 10−3 1.24 0.72

Table 3.4: Standard training vs Spectral Normalization training on ℓ2 attacks.

3.4.5 . Attacking only continuous variables
All the previous results have been obtained with attack and noise addition on

all the input features present in the datasets. As pointed in Section 3.3.4, the
introduced adversarial attacker is capable of attacking a group of inputs. While
generating an adversarial attack, we avoid attacking the categorical input variables
[80]. Attacking categorical inputs may introduce a major change in the informative
contents of the dataset, which is often easily identifiable and detectable. This is
clearly in contradiction with the purpose of generating adversarial attacks which
are hardly noticeable by the user. Hence in Abalone and industrial datasets, we
attack only the continuous variables. For the Combined Power plant dataset, we
attack 3 out of 4 continuous variables since it does not contain any categorical
variables. Similarly, for the Red-wine dataset we attack 8 continuous variables out
of 11. The performance of the adversarial attacker, when attacking only few inputs,
is shown in Table 3.5. We observe that, from the attacker viewpoint, attacking
only few inputs has an advantage since some inputs can be more sensitive than
others and can contribute more in generating perturbed outputs. Attacking all the
inputs might add redundancy to the generated perturbation and hence render the
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attack more easily detectable.

3.4.6 . Comparison on different measures of deviations
As emphasized in Section 3.3.3, our adversarial attacker is applicable for various

measures of perturbation on input and output deviations. The previous results have
been obtained for the value p = q = 2 termed as ℓ2 attacks here. We further
show results for p = q = 1 termed as ℓ1 attacks and for p = q = +∞ termed
as ℓ∞ attacks in Table 3.6. We observe that our proposed attacker us successful
in attacking under different measures of perturbations and remains better than
random noise attackers in all cases and for all metrics.

Noise Eadv Einp SMAPEadv SMAPEinp
Power Plant

1× 10−1 4.0× 10−3 3.4× 10−3 0.62 0.58
2× 10−1 8.0× 10−3 7.0× 10−3 0.87 0.82

Wine
1× 10−1 0.12 0.13 0.41 0.44
2× 10−1 0.21 0.22 0.56 0.60

Abalone
5× 10−2 0.36 0.36 0.38 0.38
1× 10−1 0.72 0.71 0.58 0.59

Industrial
1× 10−1 12.0× 10−3 12.0× 10−3 0.91 0.96
2× 10−1 24.0× 10−3 24.0× 10−3 1.24 1.24

Table 3.5: Standard training attacking all inputs vs standard training attacking fewinputs on ℓ2 attacks.

3.5 . Summary

The contributions of this work are summarised as follows:

• We propose a simple, novel, and easily implementable Jacobian-based ad-
versarial attacker for regression tasks in the context of white box attacks.

• We define three error metrics: Mean Accuracy Error, Fooling Error, and Sym-
metric Mean Accuracy Percentage Error that help to analyze the attacker’s
effectiveness.
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Noise 1× 10−1 2× 10−1 1× 10−1 2× 10−1 1× 10−1 2× 10−1

Attacks ℓ2 ℓ1 ℓ∞

MAEgauss(×10−3) 9.6 10.7 9.2 9.4 10.5 13.5
MAEuni(×10−3) 9.6 10.7 9.2 9.3 11.1 15.3
MAEbin(×10−3) 9.6 10.7 9.2 9.3 13.0 22.0
MAEadv(×10−3) 20.9 32.5 18.5 28.1 31.1 52.5

Egauss(×10−3) 2.6 5.1 0.84 1.7 4.7 9.4
Euni(×10−3) 2.6 5.2 0.81 1.6 6.0 12.0
Ebin(×10−3) 2.7 5.4 0.72 1.4 9.9 19.0
Eadv(×10−3) 11.8 24.0 9.5 20.0 22.0 45.0
SMAPEgauss 0.45 0.65 0.22 0.35 0.63 0.84
SMAPEuni 0.46 0.66 0.21 0.34 0.71 0.92
SMAPEbin 0.47 0.67 0.20 0.32 0.87 1.08
SMAPEadv 0.96 1.24 0.87 1.15 1.22 1.47

Table 3.6: Comparison on industrial dataset for ℓ2, ℓ1 and ℓ∞ attacks with variationin perturbation levels. MAEstd(MAE for Standard training) = 9.2× 10−3

• Our attacker is generic in the sense that it can handle any measure (ℓ1, ℓ2,
ℓ∞) on input or output perturbations according to the target application.

• We show that the proposed attacker allows us to attack any given subset of
input features optimally. This feature may be helpful when handling specific
tabular datasets and also be insightful when information regarding sensitivity
or the ability to control some inputs is available.

• We evaluate our results on open-source regression datasets and an industrial
dataset (output and input features described in Table 3.2) which lies in the
domain of safety-critical applications.

• Our tests concentrated on fully connected networks, but it is worth pointing
out that the proposed approach can be applied to any network architecture.
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Chapter 4Multivariate Estimation of Stabilityof Neural Networks
4.1 . Introduction

In this chapter, we introduce a multivariate Lipschitz constant-based stability
analysis of fully connected neural networks allowing us to capture the influence of
each input or group of inputs on the neural network stability. Our approach relies
on a suitable re-normalization of the input space, with the objective to perform a
more precise analysis than the one provided by a global Lipschitz constant. We
investigate the mathematical properties of the proposed multivariate Lipschitz anal-
ysis and show its usefulness in better understanding the sensitivity of the neural
network with regard to groups of inputs. We display the results of this analysis by
a new representation designed for machine learning practitioners and safety engi-
neers termed as a Lipschitz star. The Lipschitz star is a graphical and practical
tool to analyze the sensitivity of a neural network model during its development,
with regard to different combinations of inputs. By leveraging this tool, we show
that it is possible to build stable-by-design models using spectral normalization
techniques for controlling the stability of a neural network.Thanks to our multivari-
ate Lipschitz analysis, we can also measure the efficiency of adversarial training in
inference tasks. We used the adversarial attacker proposed in Chapter 3 to gener-
ate adversarial attack and perform adversarial training. We perform experiments
on various open access tabular datasets, and also on a real Thales Air Mobility
industrial application subject to certification requirements, also considered in the
previous chapter.

4.2 . Limitations of Previous Works

The main limitations of the Lipschitz constant, defined in either global or local
context, is that it only provides a single parameter to quantify the stability of a neu-
ral network. Such a single-parameter analysis does not facilitate the understanding
of potential sources of instability. In particular, it may be insightful to identify
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the inputs which have the highest impact in terms of sensitivity on the output.
In the context of tabular data mining, the inputs often have quite heterogeneous
characteristics. Some of them are categorical data, often encoded in a specific way
(e.g., one-hot encoder [84]) and among them, one can usually distinguish those
which are unsorted (like labels identifying countries) or those which are sorted (like
severity scores in a disease). So, it may appear useful to analyze in a specific
manner each type of inputs of a NN and even sometimes to exclude some of these
inputs (e.g., unsorted categorical data for which the notion of small perturbation
may be meaningless) from the performed sensitivity analysis. A comparison of the
state-of-the-art and proposed approach is presented in Table 4.1.

Method Properties Sensitivity of InputsNaive upper Bound [1] spectral bound, loose bound, univariate NoSDPLip [16] ℓ2 norm, more scalable to broad networks, univariate NoCPLip [9] ℓp ∈ [1,+∞], not scalable to broad networks, univariate NoLipOpt-k [43] ℓp ∈ [1,+∞] , univariate NoProposed scalable to broad networks,multivariate Yes
Table 4.1: Comparison of state-of-the-art Lipschitz estimation approaches vs the pro-posed one.

4.3 . Partial/Weighted Lipschitz Constant

We present in this section a new approach based on a suitable weighting op-
eration performed in the computation of Lipschitz constants. This enables a mul-
tivariate sensitivity analysis of the neural network stability for individual inputs or
groups of inputs. We will start by motivating this weighting from a statistical
standpoint. Then we will define it in a more precise manner, before discussing its
resulting mathematical properties.

4.3.1 . Statistical motivations
For tractability, assume that the perturbation at the network input is a realiza-

tion of a zero-mean Gaussian distributed random vector z with N0×N0 covariance
matrix Σ ≻ 0. Then, its density upper level sets are defined as

Cη = {z ∈ RN0 | z⊤Σ−1z ⩽ η}, (4.1)
for every η ∈]0,+∞[. The set Cη defines an ellipsoid where the probability density
takes its highest values. More precisely, the probability for z to belong to this set
is independent of Σ and is equal to

P(z ∈ Cη) =
γ(N0/2, η/2)

Γ(N0/2)
, (4.2)

where Γ is the gamma function and γ the lower (unnormalized) incomplete gamma
function.
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Proof of Eq. (4.2):
Let B(0,

√
η) be the closed ball of RN0 with center 0 and radius

√
η and let SN0−1

be the surface of the unit-radius sphere in RN0−1. We have

P(z ∈ Cη) =
1

(2π)N0/2(det(Ω))1/2

∫
Cη

exp
(
− 1

2
z⊤Ω−1z

)
dz

=
1

(2π)N0/2

∫
B(0,
√

η)
exp

(
− 1

2
∥u∥2

)
du

=
1

(2π)N0/2 SN0−1

∫ √η

0
ρN0−1 exp

(
− ρ2

2

)
dρ

=
1

(2π)N0/2
2(π)N0/2

Γ(N0/2)

∫ √η

0
ρN0−1 exp

(
− ρ2

2

)
dρ

=
1

Γ(N0/2)

∫ η
2

0
ζN0/2−1 exp(−ζ) dζ

=
γ(N0/2, η/2)

Γ(N0/2)
. (4.3)

On the other hand, let us assume that the maximum standard deviation σmax of
the components of z (i.e., square root of the maximum diagonal element of matrix
Σ) is small enough. If we suppose that the network T is differentiable in the
neighborhood of a given input x ∈ RN0 , as the input perturbation is small enough,
we can approximate the network output by the following first-order expansion:

T(x + z) ≃ T(x) + T′(x)z. (4.4)
Let us focus our attention on perturbations in Cη. By doing so, we impose some
norm-bounded condition, which may appear realistic for adversarial perturbations.
Then, we will be interested in calculating

sup
z∈Cη

∥T(x + z)− T(x)∥ ≃ sup
z∈Cη

∥T′(x)z∥. (4.5)
By making the variable change z′ = z/

√
η and using Eq. (4.1),

sup
z∈Cη

∥T(x + z)− T(x)∥ ≃ √η sup
z′∈C1

∥T′(x)z′∥

=
√

η sup
z∈RN0
z′ ̸=0

∥T′(x)z′∥
∥z′∥Σ−1

=
√

ησmax sup
z′∈RN0

z′ ̸=0

∥T′(x)z′∥
∥z′∥Ω−1

, (4.6)

where Ω = Σ/σ2
max and ∥ · ∥Ω−1 =

√
(·)⊤Ω−1(·). This suggests that, in this

context, the suitable subordinate matrix norm for computing the Lipschitz constant
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is obtained by weighting the Euclidean norm in the input space with Ω−1. We can
also deduce from Eq. (4.6), by setting z′′ = Ω−1/2z′, that

sup
z∈Cη

∥T(x + z)− T(x)∥ ≃ √ησmax sup
z′′∈RN0

z′′ ̸=0

∥T′(x)Ω1/2z′′∥
∥z′′∥

=
√

η∥T′(x)Σ1/2∥S. (4.7)
On the other hand, based on the first-order approximation in Eq. (4.4), T(x + z) is
approximately Gaussian with mean T(x) and covariance matrix T′(x)ΣT′(x)⊤. As
∥T′(x)ΣT′(x)⊤∥S = ∥T′(x)Σ1/2∥2

S, we see that another insightful interpretation
of Eq. (4.7) is that, up to the scaling factor

√
η, it approximately delivers the square

root of the spectral norm of the covariance matrix of the output perturbations.

4.3.2 . New definition of a weighted Lipschitz constant
Based on the previous motivations, we propose to employ a weighted norm to

define a Lipschitz constant of the network as follows:

Definition 5 Let Ω be an N0 × N0 symmetric positive definite real-valued matrix. We
say that θΩ

m is an Ω-weighted norm Lipschitz constant of T as described in Fig. 2.1 if

(∀(x, z) ∈ (RN0)2) ∥T(x + z)− T(z)∥ ⩽ θΩ
m ∥z∥Ω−1 . (4.8)

The above definition can be extended to non Euclidean norms by making use of
exponents (p, q) ∈ [1,+∞]2 and by replacing inequality Eq. (4.8) with

(∀(x, z) ∈ (RN0)2) ∥T(x + z)− T(z)∥q ⩽ θΩ
m ∥Ω−1/2z∥p. (4.9)

By changes of variable, this inequality can also be rewritten as

(∀(x′, z′) ∈ (RN0)2) ∥T(Ω1/2(x′ + z′))− T(Ω1/2z′)∥q ⩽ θΩ
m ∥z′∥p. (4.10)

Therefore, we see that calculating θΩ
m is equivalent to deriving a Lipschitz con-

stant of the network T where an additional first linear layer Ω1/2 has been added.
Throughout the rest of this section, it will be assumed that, for every i ∈ {1, . . . , m−
1} the activation operator Ri is separable and αi-averaged. It then follows from
Eq. (2.23) that an Ω-weighted norm Lipschitz constant of T is

ϑΩ
m = sup

Λ1∈DN1 ({2α1−1,1}),
...,

Λm−1∈DNm−1 ({2αm−1−1,1})

∥WmΛm−1 · · ·Λ1W1Ω1/2∥p,q. (4.11)

Although all our derivations were based on the fact that Ω is positive definite,
from the latter expression we see that, by continuous extension, ϑΩ

m can be defined
when Ω is a singular matrix.
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4.3.3 . Sensitivity with respect to a group of inputs
In this section, we will be interested in a specific family of weighted norms

associated with the set of matrices

{Ωϵ,K | ∅ ̸= K ⊂ {1, . . . , N0}, ϵ ∈]0, 1]},

defined, for every nonempty subset K of {1, . . . , N0} and for every ϵ ∈]0, 1], as

Ωϵ,K = Diag(σ2
ϵ,K,1, . . . , σ2

ϵ,K,N0
), (4.12)

where

(∀ℓ ∈ {1, . . . , N0}) σϵ,K,ℓ =

{
1 if ℓ ∈ K

ϵ otherwise.
(4.13)

If we come back to the statistical interpretation in Section 4.3.1, Ωϵ,K is then (up
to a positive scale factor) the covariance matrix of a Gaussian random vector z

with independent components.1 The components with indices in K have a given
variance σ2

max while the others have variance ϵ2σ2
max. Such a matrix thus provides

a natural way of putting emphasis on the group of inputs with indices in K. Thus,
variables ϑ

Ωϵ,K
m will be termed partial Lipschitz constants in the following.

The next proposition lists the main properties related to the use of such
weighted norms for calculating Lipschitz constants.

Proposition 6 Let (p, q) ∈ [1,+∞]2. For every nonempty subset K of {1, . . . , N0} and
for every ϵ ∈]0, 1], let Ωϵ,K be defined as above and let ϑ

Ωϵ,K
m be defined by Eq. (4.11). Let

K0 and K1 be nonempty subsets of {1, . . . , N0}. Then the following hold:

i) As ϵ → 0, ϑ
Ωϵ,K0
m converges to the Lipschitz constant of a network where all the

inputs with indices out of K0 are kept constant.

ii) ϑ
Ω1,K0
m is equal to the global Lipschitz constant ϑm defined by Eq. (2.23).

iii) Let (ϵ, ϵ′) ∈]0, 1]2. If Ωϵ,K0 ⪯ Ωϵ′ ,K1
,2 then ϑ

Ωϵ,K0
m ⩽ ϑ

Ωϵ′ ,K1
m .

iv) Function ϑ
Ω·,K0
m : ]0, 1]→ [0,+∞[ : ϵ 7→ ϑ

Ωϵ,K0
m is monotonically increasing.

v) Let ϵ ∈]0, 1]. If K0 ⊂ K1, then ϑ
Ωϵ,K0
m ⩽ ϑ

Ωϵ,K1
m .

vi) Let ϵ ∈]0, 1], let K ∈N \ {0}, and let

ωK,ϵ =

(
N0 − 1
K− 1

)(
1 +

(N0

K
− 1
)

ϵ

)
. (4.14)

We have
max

K⊂{1,...,N0}
card K=K

ϑ
Ωϵ,K
m ⩽ ϑm ⩽

1
ωK,ϵ

∑
K⊂{1,...,N0}

card K=K

ϑ
Ωϵ,K
m . (4.15)

1Recall that this interpretation is valid when p = 2 in Eq. (4.11).2⪯ designates the Loewner order.
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vii) Let ϵ ∈]0, 1], letP be a partition of {1, . . . , N0}, and let ωP ,ϵ = 1+ (cardP − 1)ϵ.
We have

max
K∈P

ϑ
Ωϵ,K
m ⩽ ϑm ⩽

1
ωP ,ϵ

∑
K∈P

ϑ
Ωϵ,K
m . (4.16)

viii) Let K2 be such that K1 ∩K2 ̸= p̃ and K1 ∪K2 = K0. Let p∗ ∈ [1,+∞] be such
that 1/p + 1/p∗ = 1 Then

ϑ
Ωϵ,K0
m ⩽

(
(ϑ

Ωϵ,K1
m )p∗ + (ϑ

Ωϵ,K2
m )p∗

)1/p∗
+ o(ϵ). (4.17)

Proofs:
i): As ϵ → 0, the diagonal elements of Ωϵ,K0 with index ℓ ̸∈ K tend to zero,
which in Eq. (4.11) amounts to assuming that the corresponding components of
the input perturbation are zero. The existence of the limit Ω0,K0 is secured based
on the remark at the end of Section4.3.2.

ii): If ϵ = 1, then Ωϵ,K0 = IdN0 and Eq. (4.11) reduces to Eq. (2.23).

iii): For every i ∈ {1, . . . , m− 1}, let Λi ∈ DNi({2αi − 1, 1}). Then, by using the
triangle inequality,

∥WmΛm−1 · · ·Λ1W1(Ωϵ,K0)
1/2∥p,q ⩽

∥WmΛm−1 · · ·Λ1W1(Ωϵ′,K1)
1/2∥p,q∥(Ωϵ′,K1)

−1Ωϵ,K0∥1/2
p,p . (4.18)

By taking the supremum of both sides with respect to the (Λi)1⩽i⩽m−1 matrices,
we deduce that

ϑ
Ωϵ,K0
m ⩽ ∥(Ωϵ′,K1)

−1Ωϵ,K0∥1/2
p,p ϑ

Ωϵ′ ,K1
m . (4.19)

On the other hand,

(Ωϵ′,K1)
−1Ωϵ,K0 = Diag

(
σ2

ϵ,K0,1

σ2
ϵ′,K1,1

, . . . ,
σ2

ϵ,K0,N0

σ2
ϵ′,K1,N0

)
, (4.20)

where, by using the fact that Ωϵ,K0 ⪯ Ωϵ′,K1 ,

(∀ℓ ∈ {1, . . . , N0})
σϵ,K0,ℓ

σϵ′,K1,ℓ
⩽ 1. (4.21)

Since (Ωϵ′,K1)
−1Ωϵ,K0 is a diagonal matrix with elements lower than or equal to

1, ∥(Ωϵ′,K1)
−1Ωϵ,K0∥p,p ⩽ 1 and it follows from Eq. (4.19) that

ϑ
Ωϵ,K0
m ⩽ ϑ

Ωϵ′ ,K1
m . (4.22)
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iv): Let (ϵ, ϵ′) ∈]0, 1]2 with ϵ < ϵ′. We have Ωϵ,K0 ⪯ Ωϵ′,K0 and, according to
iii),

ϑ
Ωϵ,K0
m ⩽ ϑ

Ωϵ′ ,K0
m . (4.23)

v): If K0 ⊂ K1, then Ωϵ,K0 ⪯ Ωϵ,K1 and the result follows from iii).

vi): We have

∑
K⊂{1,...,N0}

card K=K

Ω1/2
ϵ,K =

((
N0 − 1
K− 1

)
+
((N0

K

)
−
(

N0 − 1
K− 1

))
ϵ

)
IdN0 . (4.24)

By using the relation (
N0

K

)
=

N0

K

(
N0 − 1
K− 1

)
, (4.25)

we deduce that

∑
K⊂{1,...,N0}

card K=K

Ω1/2
ϵ,K = ωK,ϵIdN0 . (4.26)

For every i ∈ {1, . . . , m− 1}, let Λi ∈ DNi({2αi − 1, 1}). Then,

∥WmΛm−1 · · ·Λ1W1∥p,q =
1

ωK,ϵ

∥∥∥∥∥∥∥WmΛm−1 · · ·Λ1W1

(
∑

K⊂{1,...,N0}
card K=K

Ω1/2
ϵ,K

)∥∥∥∥∥∥∥
p,q

⩽
1

ωK,ϵ
∑

K⊂{1,...,N0}
card K=K

∥WmΛm−1 · · ·Λ1W1Ω1/2
ϵ,K∥p,q.

(4.27)
We deduce that

ϑm = sup
Λ1∈DN1 ({2α1−1,1}),

...,
Λm−1∈DNm−1 ({2αm−1−1,1})

∥WmΛm−1 · · ·Λ1W1∥p,q

⩽
1

ωK,ϵ
∑

K⊂{1,...,N0}
card K=K

sup
Λ1∈DN1 ,

...,
Λm−1∈DNm−1

∥Wm · · ·Λ1W1Ω1/2
ϵ,K∥p,q

=
1

ωK,ϵ
∑

K⊂{1,...,N0}
card K=K

ϑ
Ωϵ,K
m . (4.28)
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Furthermore, according to ii) and iv), for every K ⊂ {1, . . . , N0},

ϑ
Ωϵ,K
m ⩽ ϑ

Ω1,K
m = ϑm. (4.29)

This yields
max

K⊂{1,...,N0}
card K=K

ϑ
Ωϵ,K
m ⩽ ϑm. (4.30)

vii): The proof is similar to that of vi) by noticing that, if P is a partition of
{1, . . . , N0}, then

∑
K∈P

Ω1/2
ϵ,K = ωP ,ϵIdN0 . (4.31)

viii): For every ∅ ̸= K ⊂ {1, . . . , N0}, ϑ
Ωϵ,K
m = ϑ

Ω0,K
m + o(ϵ). It is thus sufficient

to prove this inequality in the limit case when ϵ→ 0. For every i ∈ {1, . . . , m− 1},
let Λi ∈ DNi({2αi − 1, 1}). Let x ∈ RN0 and let xK be the projection of x onto
the space of vectors whose components indexed by {1, . . . , N0} \K are zero. We
have thus xK0 = xK1 + xK2 . Then,

∥WmΛm−1 · · ·Λ1W1Ω1/2
0,K0

x∥q

= ∥WmΛm−1 · · ·Λ1W1xK0∥q

⩽ ∥WmΛm−1 · · ·Λ1W1xK1∥q + ∥WmΛm−1 · · ·Λ1W1xK2∥q

= ∥WmΛm−1 · · ·Λ1W1Ω1/2
0,K1

xK1∥q + ∥WmΛm−1 · · ·Λ1W1Ω1/2
0,K2

xK2∥q

⩽ ∥WmΛm−1 · · ·Λ1W1Ω1/2
0,K1
∥p,q∥xK1∥p + ∥WmΛm−1 · · ·Λ1W1Ω1/2

0,K2
∥p,q∥xK2∥p.

(4.32)
By using Hölder’s inequality, we deduce that

∥WmΛm−1 · · ·Λ1W1Ω1/2
0,K0

x∥q ⩽(
∥Wm · · ·Λ1W1Ω1/2

0,K1
∥p∗

p,q + ∥Wm · · ·Λ1W1Ω1/2
0,K2
∥p∗

p,q

)1/p∗

(∥xK1∥
p
p + ∥xK2∥

p
p)

1/p. (4.33)
Since ∥xK1∥

p
p + ∥xK2∥

p
p = ∥xK0∥

p
p, it follows that

∥WmΛm−1 · · ·Λ1W1Ω1/2
0,K0
∥p,q ⩽(

∥Wm · · ·Λ1W1Ω1/2
0,K1
∥p∗

p,q + ∥Wm · · ·Λ1W1Ω1/2
0,K2
∥p∗

p,q

)1/p∗ (4.34)
Taking the supremum with respect to (Λi)1⩽i⩽m−1 and majorizing the supre-

mum of the sum in the right-hand side by the sum of the suprema yield Eq. (4.17).
Let us comment on these results. According to Property i) in the limit case

when ϵ → 0, only the inputs with indices in K0 are used in the computation of
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the associated Lipschitz constant. In turn, Property ii) states that, when ϵ = 1,
we recover the classical expression of a Lipschitz constant where the perturbations
on all the inputs are taken into account. In addition, based on Property iv),
the evolution of ϑ

Ωϵ,K0
m when ϵ varies from 1 to 0 provides a way of assessing

how the group of inputs indexed by K0 contributes progressively to the overall
Lipschitz behaviour of the network. Although one would expect that summing
the Lipschitz constants obtained for each group of inputs would yield the global
Lipschitz constant, Properties vi) and vii) show that this does not hold in general
whatever the way the entries are split (possibly overlapping groups of given size
K or disjoint groups of arbitrary size). Instead, after suitable normalization, such
sums provide upper bounds on ϑm. Furthermore, it follows from ii), Eq. (4.15),
and Eq. (4.16) that the difference between these normalized sums and ϑm tends
to vanish when ϵ increases.
Note that, when looking at the sensitivity with respect to individual inputs, i.e.,
when the considered set of indices are singletons, both vi) (with K = 1) and vii)
(with P = {{k} | k ∈ {1, . . . , N0}} lead to the same inequality

max
k∈{1,...,N0}

ϑ
Ωϵ,{k}
m ⩽ ϑm ⩽

1
1 + (N0 − 1)ϵ

N0

∑
k=1

ϑ
Ωϵ,{k}
m . (4.35)

4.3.4 . Lipschitz Star
We propose a new representation for displaying the results of the Lipschitz

analysis of a neural network utilizing radial plots. More precisely, we plot the
values of (ϑ

Ωϵ,{k}
m )1⩽k⩽N0 on a star or radar chart where each branch of the star

corresponds to the index k of an input. For each value of ϵ, a new plot is obtained
which is displayed in a specific color. Note that, according to Proposition 6iv),
the plots generated for different ϵ values cannot cross. When ϵ = 1, we obtain
an "isotropic" representation whose "radius" corresponds to the global Lipschitz
constant ϑm of the network. This representation is called a Lipschitz star. All the
results of our analysis will be displayed using this representation.

4.4 . Experiments

4.4.1 . Validation on Synthetic Datasets
4.4.1.1 . Context

To verify the correctness of the partial Lipschitz computation, we first study
simple synthetic examples of polynomial systems for which we can calculate explic-
itly the partial Lipschitz constants. We generate input-output data for the defined
systems, and train a fully connected model using a standard training, i.e., without
any constraints. We compare this approach with a training subject to a spectral
norm constraint on the layers.

Spectral Normalization: For safety critical tasks, Lipschitz constant and
performance targets can be specified as engineering requirements, prior to network
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Figure 4.1: Lipschitz Star: Representing Partial Lipschitz constants w.r.t. to the inputsas the vertices of the radial plot.

training. A Lipschitz target can be defined by a safety analysis of the acceptable
perturbations for each output knowing the input range and it constitutes a current
practice in many industries. As mentioned in the previous chapter, imposing this
Lipschitz target can be done either by controlling the Lipschitz constant for each
layer or for the whole network depending on the application at hand. In our
experiments, we train networks while using a spectral normalization technique. We
recall from section 2.3.2.1 for practical application of spectral normalization, given
an m layer fully connected architecture and a Lipschitz target θ, we can constrain
the spectral norm of each layer to be less than m

√
θ. According to Eq. (2.7), this

ensures that the upper bound on the global Lipschitz constant is less than θ.
For each training, we study the effect of input variables on the stability of

the networks. As proposed in Section 4.3.3, for a given group of inputs with
indices in K, we will quantify the partial Lipschitz constant ϑ

Ωϵ,K
m . The obtained

value of ϑ
Ωϵ,K
m allows us to evaluate how the corresponding group of variables may

potentially affect the stability of the network. For simplicity, in the next section,
we will focus on the limit case when ϵ = 0 (see the last remark in Section 4.3.2).

Partial Lipschitz constant values ϑ
Ω0,K
m , for all possible choices for K, are com-

puted using the numerical method described in Section 2.2.1.4 and compared with
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the theoretical values derived in the following subsection. More details on the
models are also provided in these sections.

4.4.1.2 . Polynomial systems
We consider regression problems where the data is synthesized by a second-

order multivariate polynomial. The system to be modelled is thus described by the
following function:

(∀(ξ1, . . . , ξN0) ∈ RN0) f (ξ1, . . . , ξN0) =
N0

∑
k=1

akξk +
N0

∑
k=1

N0

∑
l=1

bk,lξkξl , (4.36)
where (ak)k∈N0 and (bk,l)1⩽k,l⩽N0 are the real-valued polynomial coefficients. Note
that, such a polynomial system is generally not Lipschitz-continuous. The Lipschitz-
continuity property only holds on every compact set. Subsequently, we will thus
study this system on the hypercube [−M, M]N0 with M > 0.

The explicit values of the partial Lipschitz constant on this domain can be
derived as follows. We first calculate the gradient of f

∇ f (ξ1, . . . , ξN0) =
(
∂k f (ξ1, . . . , ξN0)

)
1⩽k⩽N0

, (4.37)
where, for every k ∈ {1, . . . , N0}, ∂k f denotes the partial derivative w.r.t. the k-th
variable given by

∂k f (ξ1, . . . , ξN0) = ak +
N0

∑
l=1

(bk,l + bl,k)ξl . (4.38)

For every K ⊂ {1, . . . , N0}, the partial Lipschitz constant ϑ̊Ω0,K of the polynomial
system (restricted to [−M, M]N0) w.r.t. the group of variables with indices in K

is then equal to

ϑ̊Ω0,K = sup
(ξ1,...,ξN0 )∈[−M,M]N0

√
λΩ0,K(ξ1, . . . , ξN0), (4.39)

where, for every diagonal matrix Λ = Diag(ε2
1, . . . , ε2

N0
) with (ε1, . . . , εN0) ∈

[0,+∞[N0 ,

λΛ(ξ1, . . . , ξN0) = ∥(∇ f (ξ1, . . . , ξN0))
⊤Λ1/2∥2

=
N0

∑
k=1

εk
(
∂k f (ξ1, . . . , ξN0)

)2. (4.40)
Since the partial derivatives in Eq. (4.38) are affine functions of the variables
(ξ1, . . . , ξN0), λΛ is a convex function. We deduce that the supremum in Eq. (4.39)
is attained when ξ1 = ±M, . . . , ξN0 = ±M, so that ϑ̊Ω0,K can be computed by
looking for the maximum of a finite number (2N0) of values.
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4.4.1.3 . Numerical results
In our numerical experiments, we consider a toy example corresponding to

N0 = 3 and

(∀(ξ1, ξ2, ξ3) ∈ R3) f (ξ1, ξ2, ξ3) = ξ1 + 100ξ3 − ξ2
2 + γξ1ξ3, (4.41)

where γ ∈ [0,+∞[. We deduce from Eq. (4.40) that

λΛ(ξ1, ξ2, ξ3) = ε1(1 + γξ3)
2 + 4ε2ξ2

2 + ε3(100 + γξ1)
2 (4.42)

and, consequently,

sup
(ξ1,ξ2,ξ3)∈[−M,M]3

λΛ(ξ1, ξ2, ξ3) = ε1(1 + γM)2 + 4ε2M2 + ε3(100 + γM)2.

(4.43)
By looking at the seven possible binary values of (ε1, ε2, ε3) ̸= (0, 0, 0), we thus
calculate the Lipschitz constant of f with respect to each group of inputs. For
example,

• if ε1 = 1, ε = 0, ε3 = 0, we calculate ϑ̊Ω0,K with K = {1}, i.e., evaluate the
sensitivity w.r.t. the first variable;

• if ε1 = ε2 = 1, ε3 = 0, we calculate ϑ̊Ω0,K with K = {1, 2}, i.e., evaluate
the joint sensitivity w.r.t. the first and second variables;

• if ε1 = ε2 = ε3 = 1, we calculate ϑ̊Ω0,K with K = {1, 2, 3}, i.e., evaluate
the sensitivity w.r.t. all the variables (global Lipschitz constant).

These Lipschitz constants allow us to evaluate the intrinsic dynamics of the system,
that is how it responds when its inputs vary.

Our interest will be now to evaluate how this dynamics is modified when the
system is modelled by a neural network. To do so, three systems are studied by
choosing γ ∈ {0, 1

10 , 1} and M = 50. We generate 5,000 data samples from
each system, the input values being drawn independently from a random uniform
distribution. While training the neural networks, the dataset is divided with a ratio
of 4:1 into training and testing samples. The input is normalized using its mean and
standard deviation, while the output is max-normalized. We build neural networks
for approximating the systems using two hidden layers (m = 3) with a number
of hidden neurons equal to 30 in each layer and ReLU activation functions. The
training loss is the mean square error.

For different values of γ, we report the values of the partial Lipschitz constants
in Tables 4.2-4.4. The variable θK corresponds to ϑ̊Ω0,K for the analytical value we
derived from previous formulas, whereas it corresponds to the Lipschitz constant
ϑ

Ω0,K
3 , when computed for the neural network trained either in a standard manner

or with a spectral normalization constraint. The value of θ used in the spectral
normalization was adjusted to obtain a similar global Lipschitz constant to the
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polynomial system. In the caption, we also indicate the accuracy in terms of nor-
malized mean square error (NMSE) and normalized mean absolute error (NMAE).
These values are slightly higher for constrained training, but remain quite small.

Partial LC Analytical Standard Spectral Normalized

θ{1} 1 133.9 6.75
θ{2} 100 211.7 76.3
θ{3} 100 299.7 136.0

θ{1,2} 100.0 229.0 102.2
θ{1,3} 100.0 303.1 136.0
θ{2,3} 141.4 314.2 141.2

θ{1,2,3} 141.4 315.3 141.2

Table 4.2: Comparison of Lipschitz constant values when γ = 0. Test performancefor standard training: NMSE = 0.007, NMAE = 0.005, for spectral normalization: NMSE= 0.011, NMAE = 0.009.

Partial LC Analytical Standard Spectral Normalized

θ{1} 6 138.7 10.1
θ{2} 100 219.2 90.0
θ{3} 105 302.7 138.9

θ{1,2} 100.2 231.6 108.1
θ{1,3} 105.2 306.3 139.0
θ{2,3} 145 316.4 147.2

θ{1,2,3} 145.1 316.5 147.2

Table 4.3: Comparison of Lipschitz constant values when γ = 1/10. Test perfor-mance for standard training: NMSE = 0.006, NMAE = 0.005, for spectral normalization:NMSE = 0.009, NMAE = 0.007.
Comments on the results:

• In general, ξ3 impacts the output of this system the most, and (ξ2, ξ3)

mainly account for the global dynamics of the system.

• With standard training, we see that there exists a significant increase of the
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Partial LC Analytical Standard Spectral Normalized

θ{1} 51 274.7 59.5
θ{2} 100 298.9 80.3
θ{3} 150 388.7 183.7

θ{1,2} 112.6 337.0 119.4
θ{1,3} 158.4 392.2 183.7
θ{2,3} 180.3 400.1 188.9

θ{1,2,3} 187.4 400.5 189.0

Table 4.4: Comparison of Lipschitz constant values when γ = 1. Test performancefor standard training: NMSE = 0.006, MAE =0.005, for spectral normalization: NMSE= 0.014, NMAE = 0.009.

sensitivity with respect to the input variations, so making the neural network
vulnerable to adversarial perturbations.

• By using spectral normalization, it is possible to constrain the global Lips-
chitz constant of the system to be close to the analytical global value while
keeping a good accuracy. One may however notice an increase of the sensi-
tivity to ξ1 and ξ3, and a decrease of the sensitivity to ξ2 with respect to
the original system.

• For all the three models, the values obtained with neural networks follow
the same trend, for different groups of inputs, as those observed with the
analytical values.

• Although the Lipschitz constant of the neural networks is computed on the
whole space and the one of the system on [−50, 50]3, our Lipschitz estimates
appear to be consistent without resorting to a local analysis.

These observations emphasize the importance of controlling the Lipschitz con-
stant of neural network models through specific training strategies. In addition, we
see that evaluating the Lipschitz constant with respect to groups of inputs allow
us to have a better understanding of the behaviour of the models.

In this section, we have discussed the proposed method for synthetic datasets.
In the next section, the sensitivity analysis will be made on widely used open source
datasets and an industrial dataset.

4.4.2 . Open-source use-cases
We study regression problems involving tabular datasets to showcase our pro-

posed multivariate analysis of the stability of neural networks. Tabular data take
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advantage of heterogeneous sources of information coming from different sensors or
data collection processes. We apply our methods on widely used tabular datasets:
i) Combined Cycle Power Plant dataset 3 which has 4 attributes with 9,568 in-
stances; ii) Auto MPG dataset 4 consists of 398 instances with 7 attributes; iii)
Boston Housing dataset 5 consists of 506 instances with 13 attributes. For Com-
bined Power Plant and Auto MPG datasets, we solve a regression problem with
a single output, whereas for Boston Housing dataset we consider a two-output
regression problem with “price" and “ptratio :pupil-teacher ratio by town" as the
output variables. The attributes in the dataset are a combination of continuous
and categorical ones. The datasets are divided with a ratio of 4:1 between train-
ing and test data. Information on the input and output attributes are provided in
Tables 4.5-4.7, respectively.

Input
0 Temperature

continuous1 Ambient Pressure2 Relative Humidity3 Exhaust Vacuum
Output 4 Net hourly electrical energy output continuous

Table 4.5: Input and output attributes of Combined Cycle Power Plant dataset.

Input

0 Cylinders
continuous

1 Displacement2 Horsepower3 Weight4 Acceleration5 Model Year6 Origin unsorted categorical
Output 7 MPG continuous

Table 4.6: Input and output attributes of Auto MPG dataset.

4.4.3 . Industrial Dataset
Thales Air Mobility industrial application represents the prediction of the Esti-

mated Time En-route (ETE), meaning the time spent by an aircraft between the
take-off and landing, considering a number of variables as described in Table 3.2.

3https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant4https://archive.ics.uci.edu/ml/datasets/auto+mpg5https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
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Input

0 CRIM

continuous

1 ZN2 INDUS3 CHAS4 NOX5 RM6 AGE7 DIS8 RAD9 TAX10 B11 LSTAT
Output 12 MEDV continuous13 PTRATIO continuous

Table 4.7: Input and output attributes of Boston Housing dataset.

The application is important in air traffic flow management, which is an activity
area where safety is critical. The purpose of the proposed sensitivity analysis is
thus to help engineers in building safe by design models complying with given safety
stability targets. The dataset consists of 2,219,097 training, 739,639 validation,
and 739,891 test samples.

For all the models, we build fully connected networks with ReLU 6 activation
function on all the hidden layers, except the last one. The models are trained on
Keras with Tensorflow backend. The initializers are set to Glorot uniform. The
network architecture of the different models, number of layers, and neurons are
tabulated in Table 4.8. Combined Cycle Power Plant dataset with (10, 6) network
architecture is trained with two hidden layers having 10 and 6 hidden neurons,
respectively. For Thales Air Mobility industrial application (10 × (30)) implies
that the neural network has 10 hidden layers with 30 neurons each.

4.4.4 . Sensitivity analysis with respect to each input
In this section we study the effect of input variables on the stability of the

networks. More specifically, we study the effect of input variations on the stability
of the networks by quantifying ϑ

Ωϵ,K
m with ϵ ∈]0, 1], for various choices of K,

instead of a global Lipschitz constant accounting for the influence of the whole set
of inputs. The obtained value of ϑ

Ωϵ,K
m allows us to evaluate how the corresponding

group of variables may potentially affect the stability of the network. By performing
this analysis for several choices of K, we thus generate a multivariate analysis of

6We present the results only for ReLU, but we tested our approach with otheractivation functions such as tanh as well and found the trends in sensitivity of inputsto be similar.
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Dataset layers & neurons EPOCHS Optimizer lr

Combined Cycle Power Plant (10, 6) 100 Adam 0.01Auto MPG (16, 8) 1000 RMSprop 0.001Boston Housing (10, 5) 500 RMSprop 0.001Thales Air Mobility App. (10× (30)) 100 Adam 0.01
Table 4.8: Network Architecture and training setup for different datasets.

the Lipschitz regularity of the network.
As shown by Proposition 6, varying the ϵ parameter is also insightful since

it allows us to measure how the network behaves when input perturbations are
gradually more concentrated on a given subset of inputs.

Although our approach can be applied to groups of inputs, for simplicity in this
section, we will focus on the case when the sets K reduce to singletons.

For each dataset, we first perform a standard training when designing the
network. To facilitate comparisons, the Lipschitz star of the network trained in
such standard manner is presented as the first subplot of all the figures. Next,
we show the variation in terms of input sensitivity, when i) a Lipschitz target is
imposed, and ii) when an adversarial training of the networks is performed. The
network architecture remains unchanged, for all our experiments and each dataset.
All the Lipschitz constants for each value of ϵ are calculated using LipSDP-Neuron
[16]. Since an increased stability may come at the price of a loss of accuracy [85],
we also report the performance of the networks on test datasets in terms of MAE
(Mean Absolute Error) for each of the Lipschitz star plot.

4.4.5 . Effect of training with specified Lipschitz target

Spectral norm constrained training is performed as explained in Section 4.4.1.1.
The results are shown for our three datasets in Figures 4.2-4.5. On these plots, we
can observe a shrinkage of the Lipschitz stars following the reduction of the target
Lipschitz value. Interestingly, improving stability does not affect significantly the
performance of the networks. Let us comment on the last use case in light of the
obtained results.

Comments on the Thales Air Mobility industrial application: From the
star plots, it is clear that the various variables have a quite different effect on the
Lipschitz behavior of the network. This is an expected outcome since these vari-
ables carry a different amount of information captured by learning. From Figure 4.5
we observe that variables 1 – Flight Distance and 3 – Initial ETE play a prominent
role, while variables 5 – Longitude Origin, and 8 – Longitude Destination are also
sensitive. Some plausible explanations for these facts are mentioned below.

• Flight distance: The impact of a change of this input can be significant since,
as a result of air traffic management separation rules, commercial aircrafts
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Figure 4.2: Sensitivity w.r.t. to each input on Combined Cycle Power Plant dataset.Influence of a spectral normalization constraint. a) Standard training: Lipschitz con-stant = 0.66, MAE = 0.007 , b) With spectral normalization: Lipschitz constant = 0.25,MAE = 0.0066.
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Figure 4.3: Sensitivity w.r.t. to each input on AutoMPGdataset. Influence of a spectralnormalization constraint. a) Standard training : Lipschitz constant = 2.75, MAE = 0.05, b) With spectral normalization: Lipschitz constant = 0.76, MAE = 0.04.

cannot freely increase their speed to minimize the impact of a longer flight
distance.

• Initial ETE: Modifying this input is equivalent to changing the initial con-
ditions, which will have a significant impact. It is possible, in the worst
case scenario, to accumulate other perturbations coming from other cou-
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Figure 4.4: Sensitivity w.r.t. to each input on Boston Housing dataset. Influence of aspectral normalization constraint. a) Standard training : Lipschitz constant = 18.56,MAE(y1) = 2.45, MAE(y2) = 1.41, b) With spectral normalization: Lipschitz constant =8.06 , MAE(y1) = 2.96, MAE(y2) = 1.35.
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Figure 4.5: Sensitivity w.r.t. to each input on Thales Air Mobility industrial application.Influence of a spectral normalization constraint. a) Standard training: Lipschitz con-stant = 45.46, MAE = 496.37 (s), b) With spectral normalization constraint: Lipschitzconstant = 16.62, MAE = 478.88 (s).

pled inputs and parameters (e.g., weather conditions) and this is probably
the reason why the partial Lipschitz constant is very high, and close to the
global Lipschitz constant.

• Longitude origin and destination parameters: These parameters are related
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to different continents and even countries of the origin and destination air-
ports, probably with different qualities of air traffic equipment.

4.4.6 . Effect of adversarial training

Generating adversarial attacks and performing adversarial training constitute
popular methods in designing robust neural networks. However, these techniques
have received less attention for regression tasks, since most of the works deal with
classification tasks [60, 1, 86]. Also, most of the existing works in the deep learning
literature are for standard signal/image processing problems, whereas there are only
few works handling tabular data [87, 88]. One noticeable exception is [80] which
investigates problems related to adversarial attacks for classification tasks involving
tabular data.

Since our applications are related to regression problems for which few existing
works are directly applicable, we designed a specific adversarial training method.
More specifically, for a given amplitude of the adversarial noise and for each sample
in the training set, we generate the worst attack based on the spectral properties
of the Jacobian of the network, computed by backpropagation at this point. At
each epoch of the adversarial training procedure, we solve the underlying minmax
problem [89]. More details on the generation of adversarial attacks for regression
attacks can be found in [20].

The generated adversarial attacks from the trained model at the previous epoch
are successively concatenated to the training set for the next training epoch, much
like in standard adversarial training practices using FGSM [1] and Deepfool [53]
attacks. While generating adversarial attacks on tabular data, some of the variables
may be more susceptible to attacks than others. The authors of [80] take care
of this aspect by using a feature importance vector. They also only attack the
continuous variables, disregarding categorical ones while generating attacks. For
the Power plant and Boston Housing datasets, we attack all the four input variables,
while on the MPG dataset, we attack only the continuous variables. For the
industrial dataset, we generate attacks for the five most sensitive input variables.
We also tried attacking all the variables of the dataset but this was not observed to
be more efficient. The results in form of Lipschitz star are given in Figures 4.6-4.9.

As expected, adversarial training leads to a shrinkage of the star plots, which in-
dicates a better control on the stability of the trained models, while also improving
slightly the MAE. In the test we did, we observe however that our adversarial train-
ing procedure is globally less efficient than the spectral normalization technique.

4.4.7 . Sensitivity w.r.t. pair of variables

We now consider the case when the set K contains pairs of elements. We first
show the corresponding Partial Lipschitz constants using a Lipschitz star, for the
different datasets we have discussed in the article. Vertices in the Lipschitz star
represent the obtained Lipschitz constant value ϑ

Ωϵ,K
m for all possible combinations
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Figure 4.6: Sensitivity w.r.t. to each input on Combined Cycle Power Plant dataset.Effect of adversarial training. a) Standard training: Lipschitz constant = 0.657, MAE =0.007, b) Adversarial training: Lipschitz constant = 0.37, MAE = 0.0068.
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Figure 4.7: Sensitivity w.r.t. to each input on Auto MPG dataset. Effect of adversarialtraining. a) Standard training: Lipschitz constant = 2.75, MAE = 0.05, b) Adversarialtraining: Lipschitz constant = 1.84, MAE = 0.042.

of pair of variables with varying values of ϵ, i.e., it represents the sensitivity w.r.t.
to that particular pair.

As shown by Figure 4.10-4.13, this Lipschitz star representation can be useful
for displaying the influence of groups of variables instead of single ones. This
may be of high interest when the number of inputs is large, especially if they can
be grouped into variables belonging to a given class having a specific physical
meaning (e.g., electrical variables versus mechanical ones). Such Lipschitz star
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Figure 4.9: Sensitivity w.r.t. to each input on Thales Air Mobility industrial application.Effect of adversarial training. a) Standard training: Lipschitz = 45.47, MAE = 496.37 (s),Adversarial training. b) Lipschitz = 34.26, MAE = 494.7 (s).

representation might however not be very insightful for identifying the coupling
that may exist between the variables within a given group. For example, it may
happen that, considered together, two variables yield an increased sensitivity than
the sensitivity of each of them individually. The reason why we need to find a better
way for highlighting these coupling effects is related to Proposition 6v) which states
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that, for every ϵ ∈]0, 1] and (k, ℓ) ∈ {1, . . . , N0}2,

max{ϑΩϵ,{k}
m , ϑ

Ωϵ,{ℓ}
m } ⩽ ϑ

Ωϵ,{k,ℓ}
m . (4.44)

This property means that, when considering a pair of inputs, the one with the
highest partial Lipschitz constant will “dominate" the other. To circumvent this
difficulty and make our analysis more interpretable, we can think of normalizing
the Lipschitz constant in a suitable manner. Such a strategy is a common practice
in statistics when, for example, the covariance of a pair of variables is normalized
by the product of their standard deviations to define their correlation factor. Once
again, we can take advantage of the properties established in Proposition 6 to
provide us a guideline to perform this normalization. In addition to Eq. (4.44),
according to Property viii),

ϑ
Ωϵ,{k,ℓ}
m ⩽

(
(ϑ

Ωϵ,{k}
m )p∗ + (ϑ

Ωϵ,{ℓ}
m )p∗

)1/p∗

+ o(ϵ)

⩽ 21/p∗ max{ϑΩϵ,{k}
m , ϑ

Ωϵ,{ℓ}
m }+ o(ϵ). (4.45)

The two previous inequalities suggest to normalize the Lipschitz constant for pairs
of inputs by defining

ϑ̃
Ωϵ,{k,ℓ}
m =

1
21/p∗ − 1

(
ϑ

Ωϵ,{k,ℓ}
m

max{ϑΩϵ,{k}
m , ϑ

Ωϵ,{ℓ}
m }

− 1

)
. (4.46)

Indeed, when ϵ is close to zero, Eq. (4.44)-Eq. (4.46) show that ϑ̃
Ωϵ,{k,ℓ}
m ∈ [0, 1].

Note that, for the diagonal terms, ϑ̃
Ωϵ,{k,k}
m = 0. The higher ϑ̃

Ωϵ,{k,ℓ}
m , the higher the

gain in sensitivity due to the coupling between k and ℓ. The normalized values for
the different datasets are reported in Table 4.9.

4.4.8 . Interpretation of the results
We summarize some observations/properties concerning the stability of the

NNs which can be drawn from training on different datasets and leveraging the
quantitative tools we have proposed in this article.

(a) Combined Power Plant Dataset

• ’3 – Exhaust Vacuum’ is the most sensitive variable out of the four
variables.

• We observe for any variable coupled with ’3’ gives a higher partial
Lipschitz constant.

• From Table 4.9(a), we see that the effect is mostly caused by the
sensitivity of ’3’ and there is no gain when coupled with other variables.
Hence, ’3’ dominates the overall sensitivity of the NN.
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Figure 4.10: Sensitivity w.r.t to pair of variables on Combined Power Plant dataset

• On the other hand, we observe that, ’0’ when coupled with ’1’ and ’2’
becomes more sensitive as evidenced by the gain in Table 4.9(a).

(b) Auto MPG Dataset

• Variable ’6 – Origin’ and ’3 – Weight’ are the most sensitive variables.

• The values of partial Lipschitz constant peak when the other variables
are coupled with ’3’ or ’6’.

• From Table 4.9(b), we see that most of the values coupled with either
’3’ or ’6’ are close to zero, except when ’3’ and ’6’ are coupled together.
Also, we see an exception when ’5’ is coupled with either ’3’ or ’6’. This
suggests that altogether ’3’, ’5’, and ’6’ have a higher impact on the stability
of the network.

(c) Boston Housing Dataset

• Variable ’7 – DIS’ and ’11 – LSTAT’ are the most sensitive variables.

• We observe a high partial Lipschitz constant when coupling any vari-
ables with ’7’ or ’11’.
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Figure 4.11: Sensitivity w.r.t to pair of variables on Auto MPG dataset.

• From Table 4.9(c), we see that all the values for both ’7’ and ’11’
coupled with other variables are close to zero, except when ’7’ and ’11’ are
jointly considered. Hence, ’7’ and ’11’ dominate the sensitivity of the NN.

• We observe from the table of normalized values, that ’2-9’ have a higher
impact on the sensitivity of the NN when coupled. Similar observation can
be made for pairs ’2-8’,’1-4’,’3-4’.

(d) Thales Air Mobility industrial application

• Variable ’1 – Flight distance’,’3 – Initial ETE’, and ’8 – Longitude
Destination’ are the most sensitive variables.

• We see peaks in the partial Lipschitz constant values when these highly
sensitive variables are coupled with other variables.

• But when analyzing the normalized tables, it becomes clear that the
gain is mostly due to these sensitive variables.
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Figure 4.12: Sensitivity w.r.t to pair of variables on Boston Housing Dataset.

• We also observe from Table 4.9(d), an increased sensitivity of ’0’ when
coupled with other variables ’5’, ’7’, ’10’, ’11’, and ’13’.

4.5 . Summary

The contributions of this work are summarised as follows:

• This chapter proposes a new multivariate analysis of the Lipschitz regularity
of a neural network. The theoretical foundations of our approach are given
in Section 4.3.

• A multivariate analysis of the Lipschitz properties of NNs is performed by
generating a set of partial Lipschitz constants. This opens a new dimension
to studying the stability of NNs.

• Our sensitivity analysis allows us to capture the behaviour of an individual
input or group of inputs on the output of the neural network.
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Figure 4.13: Sensitivity w.r.t to pair of variables on Thales Air Mobility industrial appli-cation.

• The results of this analysis are displayed by a new graphical representation
termed as a Lipschitz star. This representation is helpful in displaying how
each input or group of inputs contributes to the global Lipschitz behaviour
of a network.

• Using the proposed analysis, we also study quantitatively the effect of spec-
tral normalization constraint and adversarial training on the stability of NNs.

• We showcase our results on various open-source datasets along with a real
industrial application in the domain of Air Traffic Management.

83



Variable 1 2 3

0 0.22 0.57 0.04
1 0.15 0.01
2 0.06

(a)
Variable 1 2 3 4 5 6

0 0.1 0.29 0.18 0.06 0.16 0.05
1 0.17 0.08 0.03 0.12 0.15
2 0.14 0.03 0.20 0.11
3 0.11 0.39 0.56
4 0.08 0
5 0.34

(b)
Variable 1 2 3 4 5 6 7 8 9 10 11

0 0.22 0.11 0.16 0.03 0.25 0.12 0.17 0.09 0.43 0.11 0.10
1 0.17 0.16 0.37 0.00 0.00 0.14 0.18 0 0.05 0.11
2 0.17 0.05 0 0.23 0 0.35 0.61 0.02 0.00
3 0.35 0.07 0.21 0 0.12 0.02 0.16 0.01
4 0.05 0.11 0.11 0.01 0.04 0.06 0.08
5 0.11 0.07 0.01 0.08 0.04 0.07
6 0.01 0 0.16 0.35 0
7 0.15 0.1 0.03 0.76
8 0.27 0.04 0.14
9 0.02 0.06
10 0.01

(c)
Variable 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0.01 0.03 0.01 0.03 0.21 0.03 0.23 0.09 0.11 0.21 0.27 0.06 0.28
1 0 0.03 0.01 0 0 0 0.12 0.01 0.07 0 0.24 0.03
2 0 0.04 0.01 0.05 0.02 0 0.06 0.01 0.02 0 0.01
3 0.01 0.19 0 0.03 0.08 0.01 0.05 0.01 0.26 0.15
4 0 0.02 0.17 0 0.13 0.11 0.06 0.01 0.01
5 0.06 0.13 0.11 0.02 0.08 0.07 0.19 0.27
6 0.03 0.01 0.04 0 0.19 0.02 0.01
7 0.01 0.07 0.19 0.09 0.02 0.32
8 0.01 0.06 0.02 0.29 0.03
9 0.27 0.06 0.02 0.03
10 0 0.21 0.16
11 0.01 0.07
12 0.12

(d)
Table 4.9: 2nd order normalized couplingmatrix with ϵ = 0.001 on a) Combined PowerPlant Dataset b) Auto MPG Dataset c) Boston Housing Dataset and d) Thales Air Mo-bility industrial application. 84



Chapter 5Spectral Normalization Loop for con-trolling stability
5.1 . Introduction

As discussed in the previous chapter, a form of formal measure of stability of
neural network is the Lipschitz constant of the model which allows to evaluate
how small perturbations in the inputs impact the output variations. With this
chapter we move to controlling and tightening the Lipschitz bounds of the neural
networks to promote robustness. We show the efficiency of a formal method based
on the Lipschitz constant for quantifying the stability of neural network models.
We present how this formal method can be coupled with spectral normalization
constraints at the design phase to control the internal parameters of the model
and make it more stable while keeping a high level of performance (accuracy-
stability trade-off). We first, show the efficacy of the proposed control loop on
a public tabular dataset related to German Credit risk and then move to safety
critical application. We evaluate our approach on an application related to Small
Unmanned Aerial Vehicles (sUAVs) which are in the frontage of new technology
solutions for intelligent systems. However, real-time fault detection/diagnosis in
such UAVs remains a challenge from data collection to prediction tasks. This
work presents a novel application of neural networks to detect in real-time elevon
positioning faults to allow the remote pilot to take necessary actions to ensure the
safety (e.g.remote triggering of the drone emergency parachute). In both scenarios,
we show the effectiveness of our proposed algorithm in reaching a optimal model
following both accuracy and stability targets that are user specified.

5.2 . Limitations of Previous Works

As introduced in the Section 2.3.2, the Lipschitz constant can be used to train
more robust models. The existing methods are hindered with several limitations.
One being the lack of accuracy-vs-stability trade-off. Randomly constraining neural
networks to have very tight Lipschitz bounds or maybe making them 1-Lipschitz
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as in the case of Spectral Normalization will lead the accuracy to drop drastically
on clean data. It is possible that, under very tight constraints, the networks
fails to learn anything. Such a reduction in the performance is not acceptable
in applications such as UAVs. Engineers need to maintain respectable levels of
accuracy and stability to deploy any solution in that case. To mitigate this effect,
we propose a clever use of Spectral Normalization to design a stability control loop
allowing us to lower the Lipschitz bounds while maintaining a good performance.

5.3 . Proposed Design method

For safety critical tasks, Lipschitz constant and performance targets can be
specified as engineering requirements, prior to network training. A Lipschitz con-
stant target can be defined by a safety analysis of the acceptable perturbations for
each output knowing the input ranges and it constitutes a current practice in many
industrial processes. The Lipschitz constant of a neural network can be arbitrarily
high when unconstrained, making it sensitive to adversarial attacks. Imposing this
Lipschitz target can be done either by controlling the Lipschitz constant for each
layer or for the whole network, depending on the application at hand. Spectral
normalization techniques [70, 90] have been proved to be very effective in con-
trolling stability properties of DNNs and counter adversarial attacks. But they
require an exact computation of the spectral norm in Eq. (2.18), which is compu-
tationally expensive, and therefore it becomes intractable for deep neural networks.
On the other hand, it has been shown that constraining the Lipschitz constant
of DNNs enhances their stability, but makes the minimization of the loss function
hard. Hence, a trade-off between stability and prediction performance needs to be
reached [91]. We subsequently propose an iterative procedure allowing us to find
the best trade-off.

Consider an m-layer fully connected NN architecture (FCN) denoted by T
with a desired Lipschitz constant θtarget and an accuracy target acctarget. We can
constrain the spectral norm of each layer to be less than m

√
θtarget. According to

Eq. (2.7), this ensures that the upper bound on the global Lipschitz constant is
less than θtarget. This bound is however over-pessimistic, which means that, by
monitoring accurately the value of the actual Lipschitz constant of the network,
we can relax the bound on individual linear layers so as to get an improved accuracy.
In our proposed approach, this process is done in a closed loop with two targets :
good performance (acctarget) and desired stability θtarget.

The approach is summarized in Algorithm 1. Module TrainSN(θ, . . .) is a
spectral normalization training module which trains the defined neural network
model with the Lipschitz constant constraint, i.e. each weight matrices Wi with
i ∈ {1, . . . , m} of the neural network is divided by (σi/

m
√

θ), where σi is the largest
singular value of Wi. Module LipEst estimates accurately the Lipschitz constant
of the trained neural network using LipSDP-neuron[16]. Module Predict checks
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the performance (classification accuracy) of the trained model on the validation
dataset. If θ is small, the training will be over-constrained and the accuracy of
the model will suffer. To relax this constraint, we iteratively increase the value of
θ through a factor α close to 1 to find the best value θopt which would be less
than θtarget and ensure an increase in the performance on the validation dataset to
achieve accopt greater than acctarget. We stop the iterations when both conditions
are met i.e. the accuracy of the trained model is greater than acctarget and the
Lipschitz constant is less than θtarget.

Algorithm 1 Spectral Normalization-based Stability Control Loop
1: Inputs : training dataset (Xtrain, Ytrain), validation dataset

(Xvalid, Yvalid), target Lipschitz constant θtarget, target accuracy
acctarget, neural network T, multiplicative factor α > 1, maximumiteration number nmax2: Output : optimal neural network Topt, Lipschitz constant θopt, andaccuracy accopt3: Algo :

4: L← θtarget, n← 0
5: T ← TrainSN(θ, Xtrain, Ytrain)6: θest ← LipEst(T)
7: acc← Predict(T, Xvalid, Yvalid)8: while (n < nmax) and (θest < θtarget) and (acc < acctarget) do9: θ ← α θ
10: T ← TrainSN(L, Xtrain, Ytrain)11: θest ← LipEst(T)
12: acc← Predict(T, Xvalid, Yvalid)13: n← n + 1
14: end while
15: Topt ← T
16: θopt ← θest17: accopt ← acc
18: if n = nmax then19: Notification: No trade-off found between Stability and Accuracy
20: else
21: Notification: Trade-off found between Stability and Accuracy
22: end if
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θtarget θ acc(%) acctarget(%) θprop accprop(%)

1 1.02 69.4 70 1.00 70.0
2 1.56 70.4 70 1.95 71.2
3 1.90 70.9 70 2.73 72.8
4 2.49 71.2 70 3.50 74.2
5 2.78 72.3 70 4.73 74.4
8 3.42 72.6 75 7.59 75.2
12 5.2 73.1 75 10.11 76.4
14 5.8 73.7 75 13.29 75.6

Table 5.1: Results on German Credit dataset using the proposed algorithm.

5.4 . Experiments

5.4.1 . Open source dataset

We first show the efficacy of the proposed stability control loop on an Open
source dataset. We use Statlog (German Credit Data) Data Set. It has a classi-
fication setting of 1,000 instances with 23 continuous features per instance. The
goal is to determine credit-worthiness of customers (Good or bad) . We build fully
connected networks with ReLU activation function on all the hidden layers, except
the last one. The architecture has two hidden layers with 50 and 20 neurons. The
input attributes are scaled between 0 and 1.

If we train the neural network model without any stability constraint, i.e.,
perform standard training, the network performance is 75.2% with an estimate for
the Lipschitz constant of 17.58. Table 5.1 tabulates the results for basic spectral
normalization (with a Lipschitz target) in columns 2 and 3. The value of θ is
determined using LipSDP-neuron. The results with our proposed method, adding
an accuracy target, are given in columns 5 and 6. For the first set of results,
we train this model without any accuracy target and perform a simple Spectral
normalization to constrain the Lipschitz norm of each layer to 1; we see a reduction
in the accuracy by more than 5% with respect to the standard trained model. The
accuracy improves slowly as the Lipschitz constraint is relaxed, but the values
are much lower than the target value. For the second set of results, we provide
both accuracy and Lipschitz targets so as to obtain a better solution by using
Algorithm 1. We see an increase in the overall performance of the models. We
see a similar increase of the accuracy as the stability constraints are relaxed and
it can even become better than the baseline in some cases. We also observe that
the upper bounds for the Lipschitz constant provided by LipSDP are much closer
to the targeted values. For an accuracy target of 75% with a Lipschitz target less
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Figure 5.1: Fault Detection in drones/UAVs : Inertial sensors of the drone: accelerome-ter measures translational acceleration, and the gyrometer measures angular veloc-ities (rotational motion). By combining these measurements the flight controller isable to calculate the drone current attitude (angle of flying ) and perform necessarycorrections to the measurements. The component called "Fault Detection Compo-nent" computes a flight condition status (nominal or faulty) using the outputs of theinertial sensors and the elevon deflection control variable produced by the autopilot.

than 5, the algorithm fails to find a trade-off between stability and accuracy. We
report the results for θtarget less than 5 with acctarget of 70% in Table 5.1. The
best solution in terms of accuracy is obtained with θtarget = 12 and acctarget =
75%.
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5.4.2 . UAV use case

Unmanned Aerial Vehicles (UAVs) are currently being used in various appli-
cations such as surveillance, home delivery of products by e-commerce websites,
disaster management, emergency services, efficient farming, insurance underwrit-
ing, etc. UAVs are capable of replacing humans in potentially dangerous situations,
but also reduce the cost of operations in some businesses, these being the main
advantages of using drones. But systems of this kind need to be continuously mon-
itored to detect in real time any problem (called a "fault") that could lead to a
failure of the system, to the potential loss of the UAV, and thus an interruption of
the mission. Broadly, a fault analysis algorithm comprises of a continuously moni-
toring a system during its operation for detecting faults (Fault Detection), locate
faults (Fault Isolation) and predict their temporal evolution (Fault Identification).
This projected surge of use in the future by all industries makes real-time fault
diagnosis of these systems a priority to avoid further critical losses i.e there can be
many mission or safety critical implication to the faults if left undetected. Fault
diagnosis techniques are becoming increasingly important in order to ensure high
levels of safety and reliability in aeronautical systems. This gives rise for the need
for more intelligent and reliable systems in the future. Hence, the advances in UAV
or aerial vehicle technology is accompanied by the concern of safety. Designing a
system that is fault tolerant is a recognized approach in the field of dependabil-
ity engineering. Formally, fault tolerance is the ability of a system to perform its
intended function despite the presence or occurrence of faults, whether physical
damage to the hardware, software defects [92], or malicious attacks. In this work,
we will only deal with the fault detection capability that is depicted in Figure 1. It
is designed to detect mechanical faults like an elevon stucked or locked in a given
position. Other dimensions of fault tolerance involving error recovery mechanisms
or other safety measures are not addressed here.

5.4.3 . Limitation of AI in UAV use cases

Machine Learning methods and in particular neural networks are rapidly paving
their way in various mission-critical and safety-critical domains such as aeronau-
tics, aerospace, automotive, railways, and nuclear plants. In particular, UAVs are
currently being used in various applications such as surveillance of critical infras-
tructures, delivery of goods in densely populated urban areas, disaster management,
emergency services, etc. UAVs are capable of replacing humans in potentially dan-
gerous situations, but also reduce the cost of operations in some businesses. But
these kind of systems need to be continuously monitored to detect in real-time
any problem ("fault") that could lead to a failure of the UAV and with a potential
interruption of the mission, a potential collision with a manned aircraft (air risk),
a potential collision with people on ground or with a critical infrastructure like a
nuclear plant (ground risk).

AI based data-driven techniques are gaining more and more interest in the field
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of fault detection. Fault detection in UAVs has been studied by using different
sensors and/or for detecting faults in different fault prone parts of the vehicle.
Freeman et al.[93] compares model-based and data-driven fault detection methods
by using data from small, low-cost UAVs. Both approaches were shown to be
capable of detecting different elevon faults in real data during maneuvers and in
the presence of environmental variations. Guo et al.[94] proposed a hybrid feature
model and deep learning-based fault diagnosis for UAV sensors. The model detects
different sensor faults, such as GPS, IMU and ADS. The authors of [95] modelled
fault detection using Generalized Regression Neural Network with a particle swarm
optimization algorithm. Eroglu et al. [96] proposed a data-driven fault estimation
method for estimating actuator faults from aircraft state trajectories. The authors
propose to use an architecture with 1-D CNN followed by LSTM layers for learning
state trajectories on simulated data of fault injected aircraft. Sadhu et al. [97]
proposed a deep learning based real-time fault detection and identification on UAV
IMU sensor data using CNN and Bi-LSTM. Iannace et al. [98] presented a single
layered neural network for detecting unbalanced blades in a UAV propeller. Bronz
et al. [99] uses an SVM classifier with RBF kernel to classify the different faults
for small fixed-wing UAVs. We use the same real flight dataset for our analysis
and make comparisons with the reported results for SVM classifier.

5.4.4 . Dataset Description
For our fault detection and stability analysis, we use the real-flight dataset

provided in [99]. The authors use Paparazzi Autopilot system [100] for possible
flight trajectories. The flight test data is captured in outdoor setting on different
days with varying environments especially wind speeds and also imperfections in
the geometry due to manufacturing of the UAV.

The actuator fault model (F) as proposed in [101] is given by

uapp = Fucom + E (5.1)
where ucom is the commanded control deflection from the autopilot to the actua-
tors, uapp is the applied control deflection (i.e. final movement of the elevon), and
E is the offset. In vector form, it can be expressed as[

uappr

uappl

]
=

[
fr 0
0 fl

] [
ucomr

ucoml

]
+

[
er
el

]
, (5.2)

where ()r and and ()l stand for the right and left elevon respectively. The fea-
ture set is a vector of length 8 consisting of linear accelerations at three coordi-
nates (ax, ay, az), angular rates (ωx, ωy, ωz), and auto-pilot commanded controls
(ucomr , ucoml) for the two aerodynamic actuators. Depending on the values of fr

and fl, the fault detection problem can be translated into two kinds of classifi-
cation problems: 1) Binary Class Classification and 2) Multi-class Classification.
Each fault category is labeled according to its fault code in order to generate the
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Input

0 ax1 ay2 az3 ωx4 ωy5 ωz6 ucomr7 ucoml

Output Class Nominal or faulty

Table 5.2: Input and output attributes of UAV dataset for fault detection. a∗ - Linearacceleration , ω∗ - angular velocity , u∗ - autopilot command controls.

multi-labeled data. Data have been split into two parts containing 80% training
data and 20% test data.
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Figure 5.2: Time variations in the features of the tabular dataset for small fixed-wingUAV on 12th and 13th July. .
We use three performance measures: classification accuracy (%), F1 score, and

Matthews Correlation coefficient (MCC). For stability measure we use Lipschitz
constant estimate as calculated using LipSDP-Neuron [16]. We recall that, for
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Figure 5.3: Time variations in the features of the tabular dataset for mall fixed-wingUAV on 21st and 23rd July. .
LipSDP, we do not use the tightest bound LipSDP-Network, since it is erroneous
as mentioned in Section 2.2.1.2.

5.4.5 . Binary Classification Results

We train the data on 12th July and test the trained model on 12th july unseen
and 13th July data. The 12th and 13th July flights contain approximately 15 minutes
of similar fault pattern of reduced efficiency of right elevon ( fr = 0.3) making it
suitable for binary classification. It is interesting to use 12th July flight data for
training and predict fault for the next day, i.e 13th July since 12th and 13th July
had different atmospheric conditions at the time of data collection. For further
checking the efficacy and generalization capabilities of the methods, we checked
the trained models on flight data for 21st July. The faults were injected in the right
elevon fr = 0.3. Fault code 0 implies ’Nominal fault’ and fault code 1 implies fault
in the right elevon.

Implementation details: We propose to use fully connected feed-forward
networks (FCN) for solving the problem. We train such neural networks of varying
depth and width. We use ReLU as the activation function except for the last layer
where we employed sigmoid for binary classification. We use the cross entropy
function as the loss function for training the model. The feature set is standardized
by removing the mean and scaling to unit variance. While training, the dataset
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Model 12th July 13th July 21st July
Acc. (%) F1 MCC Acc. (%) F1 MCC Acc. (%) F1 MCC

SVM 98.7 0.99 0.98 60.5 0.59 0.38 85.3 0.85 0.72
LogReg 89.8 0.90 0.79 58.0 0.59 0.31 56.6 0.45 0.18
Baseline 98.6 0.99 0.97 73.3 0.74 0.52 93.1 0.93 0.86

Table 5.3: Binary Classification : Comparison between SVM, logistic regression, andbest NN trained with baseline training on 12th July.

Model 12th July 13th July LAcc. (%) F1 MCC Acc. (%) F1 MCC

(10) 98.3 0.983 0.967 66.4 0.67 0.41 12.26
(10,6) 98.4 0.985 0.969 71.0 0.71 0.47 27.56

(50,10,6) 98.7 0.987 0.974 73.3 0.74 0.52 37.76

Table 5.4: Binary Classification : Results on 12th and 13th July using NN trained withbaseline training on 12th July for various configurations of FCN.

is split into 4:1 ratio for train and validation sets. The models are trained using
Keras with Tensorflow backend. The initializers are set to Glorot uniform and
we use Adam as the optimizer. To capture the temporal dynamics of the system,
feature set of length 8 (ax, ay, az, ωx, ωy, ωz, ucomr , ucoml) is concatenated T times.
Therefore, the input feature vector to the model is of length 8T. We observe a
general increasing trend in the testing performance as we increase the value of T,
which suggests that concatenating more feature lists from the time history of the
flight data improves the performance of the real-time prediction. Hence, we found
the value T = 20 as optimal for our experiments. Adding time history beyond this
level did not contribute to the learning and the neural network starts to overfit.

In the first set of experiments for binary classification, we train on 12th July
flight data and test on of 12th July, 13th, and 21st July, and directly compare
our NN best models to SVM and logistic regression. SVM classifier is trained
with a RBF kernel and is optimized using grid-search. The results are given in
Table 5.3. The results obtained using SVM classifier are satisfactory, better than
for logistic regression, but they fail to generalize on the unseen data from 13th and
21st July. We remark that it is possible to train neural networks with much better
generalization performance on different days with varying weather conditions.

In the second set of experiments we discuss the stability performance of neural
networks which is our primary concern pertaining to stable model design. The
comparison of the classification task accuracy as well as the stability performance
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Model Baseline Spectral
Acc. (%) L Acc. (%) L

(10) 66.4 12.26 75.1 3.7
(10,6) 71.0 27.56 75.3 3.8

(50,10,6) 73.3 37.76 76.7 3.7
(a) Binary Classification: Results on 13th July trained on 12th July data.

Model Baseline Spectral
Acc. (%) L Acc. (%) L

(50,10) 69.7 31.44 72.65 3.8
(100,10) 69.54 34.17 71.07 3.6

(100,75,10) 68.9 69.06 71.93 3.7
(b) Multi-class Classification: Results on 23rd July trained on 21st July data.

Table 5.5: Comparison between models trained with baseline and spectral normal-ization constraint (θtarget = 4).

Model Training No attack FGSM (ϵ = 0.2) PGD(ϵ = 0.2)
Acc. (%) MCC Acc. (%) MCC Acc. (%) MCC

(50,10,6) Baseline 98.6 0.97 77.6 0.62 76.0 0.59
Spectral 98.7 0.97 81.0 0.66 79.2 0.62

Table 5.6: Binary Classification: Results on 12th July clean data, FGSM and PGD attacksusing model trained on 12th July.

in terms of Lipschitz constant for a varying number of hidden layers and hidden
neurons is shown in Table 5.4. Notation (10,6) in Table 5.4 implies that the FCN
has two hidden layers with 10 and 6 hidden neurons and so on. In the baseline
training, no constraints are employed while training the NN. The Lipschitz constant
(L) is computed using LipSDP-neuron [16] on the trained network.

Third, we show the performance and stability effect of constraining the training
of the neural network by spectral normalization, as introduced in Section 5.3 with
Algorithm 1. We chose the same configuration for the neural networks as the
baseline and introduced constraints by setting θtarget = 4 and acctarget = 75%.
Table 5.5a shows a comparison of the classification accuracy and Lipschitz constant
value for baseline training and the new training procedure described in Algorithm 1.
We remark that the proposed approach improves both accuracy and stability of
neural network models.

We also test and compare the results of the trained neural networks when they
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are attacked with widely known adversarial attacks such as FGSM [1] and PGD
[102]. The attacks are generated using ART toolbox.1 It is useful to test the
robustness of the neural network since the adversarial noise is crafted in a manner
to generate misclassification errors. We show the results on 12th July test dataset
in Table 5.6.2 We remark that spectral normalized training is better in handling
the adversarial attacks, leading to more stable models.

5.4.6 . Multi-class Classification Results
We use the flight data captured on the days of 21st and 23rd July for detecting

the faults in right and left elevons. For injecting the faults, efficiency of the right
elevon is reduced ( fr) and similarly for the left control elevon ( fl)Fault codes for
different classes are : ’0’ - nominal , ’1’ - fr = 0.3 , ’2’ - fl = 0.9 and ’3’ - fl = 0.3,
defining a 4-class classification problem. The emphasis has been put on detecting
faults on the left elevon which has the effect of a geometric twist. For training the
neural network, flight data are selected between 400 and 2600 seconds. Identical
faults are injected in the flight data for both days. For capturing the temporal
dynamics in the prediction performance, the optimal value of T is taken to be 20
as in the previous section. It is to be noted here again that the flights made on
different days will be affected by the environmental factors, which will impact the
real-time prediction of the faults.

Model 21st July 23rd July
Acc. (%) F1 MCC Acc. (%) F1 MCC

SVM 94.1 0.94 0.91 60.3 0.60 0.51
LogReg 89.0 0.88 0.84 57.8 0.55 0.43
Baseline 95.2 0.95 0.93 69.7 0.68 0.58

Table 5.7: Multi-class Classification: Comparison between SVM, logistic regressionand best NN trained with baseline training on 21st July and tested on 21st and 23rd

July .
For the experiments, we train a FCN with ReLU activation function for all

layers, except the last one for which softmax is used. We train the neural network
on the flight data of 21st July and test on data of 21st July not seen by the
model at the training time, and also on the flight data of 23rd July. We show
the prediction and generalization capabilities of the neural networks over state-
of-the-art SVM and logistic regression. We tabulate the classification metrics

1https://github.com/Trusted-AI/adversarial-robustness-toolbox2In case of SVM model, classification metric MCC had negative values for FGSMand PGD attacks implying model performs very poorly against adversarial attacks,hence we discard them from comparison.
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Model 21st July 23rd July LAcc. (%) F1 MCC Acc. (%) F1 MCC

(50,10) 95.2 0.95 0.93 69.7 0.68 0.58 31.44
(100,10) 95.3 0.95 0.93 69.5 0.68 0.57 34.17

(100,75,10) 95.4 0.95 0.93 68.9 0.67 0.57 69.06

Table 5.8: Multi-class Classification : Results on 21st July and 23rd July using NN trainedwith baseline training on 21st July for various configurations of FCN.

in Table 5.7. Varying configurations of model layers and neurons classification
metrics along with the stability metric (L) have been considered in Table 5.8. We
consider acctarget = 70% and θtarget = 4 as the model performance and stability
requirements. The results are shown in Table 5.5b.

5.5 . Summary

The contributions of this work are summarised as follows:

• We demonstrate the efficiency of formal guarantees based on the Lipschitz
constant for checking the stability of DNNs. We present a stability control
loop grounded on spectral normalization constraints to achieve an accuracy-
stability trade-off.

• We first show the efficacy of our proposed algorithm on an open source
dataset. Our algorithm achieved an optimal solution with a trade-off be-
tween performance and stability.

• Next, we analyse real flight data application for fault detection function
embedded in an UAV. Through the evaluation of classification performance,
we have shown that our approach based on DNN compares favorably with
SVM and logistic regression techniques. Unlike many works related to the
use of neural networks in industrial applications, we address the stability
of our trained neural networks using a formal verification method based
on the quantification of the Lipschitz constant of the model. We show the
effectiveness of spectral normalization techniques in controlling the Lipschitz
constant of the network to reach a Lipschitz safety target which can be
defined at system level.

• We also demonstrate the effectiveness of spectral normalized models in han-
dling adversarial tasks.
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Chapter 6Conclusion and Future Work
6.1 . Conclusion

Although they may appear at the top of their advancements, neural networks
are hindered by security, privacy and safety issues due to their sensitivity to various
attacks and perturbations they might encounter during their operation. It thus
becomes essential to understand the causes of neural network instability, identify
the concern areas, and provide solutions aiming to improve their stability, and
ensure that AI-based systems work as desired during their whole operational phase.

In this thesis, we have discussed various limitations and challenging problems in
the emerging field of robust AI, especially related to safety critical applications. We
have emphasized that the Lipschitz regularity of the network is a useful concept to
address stability issues from a mathematically rigorous perspective. In a nutshell,
we have studied various concepts and latest developments towards formalizing the
robustness and Lipschitz stability of neural network models. As shown in Chapter 2,
the concepts of robustness is quite broad and varied. For example, according to
experts in safety at Thales, we have to distinguish as:

• ML Model Robustness: The capacity of an ML model to preserve its ex-
pected/intended performance under well-characterized abnormalities (e.g.
lack of generalization) or deviations to its inputs and operating conditions
outside its Operational Design Domain (ODD).

• ML Model Stability: The capacity of an ML model to preserve its ex-
pected/intended output(s) under well-characterized and bounded perturba-
tions to its inputs and operating conditions within its operational design
domain .

The perturbations encountered can be natural (e.g. sensor noise, bias,...), due
to failures (e.g. invalid data from degraded sensors) or maliciously inserted (e.g.
pixels modified in an image) to fool the model predictions. Perturbations can also
be simply defined as true data locally different from the original data used for
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the model training and that might lead to a wrong prediction and an incorrect
behaviour of the system.

Below are the summarised contributions of this thesis before discussing poten-
tial future work to promote the ideas presented in this thesis.

• We discussed a major gap in the field of adversarial machine learning and
regression tasks. Regression tasks cover a wide range of safety- and mission-
critical applications, and significantly fewer efforts have been put into un-
derstanding the vulnerabilities in regression models. To overcome this limi-
tation, we have proposed a generic white-box attacker for regression neural
networks. The Jacobian of the trained neural network is used to drive the
attacks. Analogous to classification scenarios, useful metrics are proposed
to quantify the effectiveness of these attacks.

• Our proposed attacker has several unique features such as attacking few or
group of inputs and can address different norm perturbations on input and
output. Our proposed attacker is shown to be more powerful than random
attackers.

• Moving towards the notion of Lipschitz certificates which is the backbone of
the stability analysis carried out in this thesis, we propose a new multivari-
ate analysis of the Lipschitz regularity of a neural network by defining partial
Lipschitz constants. The theoretical foundations of this approach are pre-
sented in section 4.3. Most current works utilizing Lipschitz certificates offer
a single parameter analysis and limits the information that can be extracted
from existing theoretical guarantees of stability.

• Our sensitivity analysis allows us to capture the influence of an individual
input or group of inputs on the output of the neural network. The results of
this analysis are displayed by a novel graphical representation termed as a
Lipschitz star. This representation is helpful in displaying how each input or
group of inputs contributes to the global Lipschitz behaviour of a network.

• For controlling the Lipschitz bound of the neural network, we present a
stability control loop based on spectral normalization to train optimal neural
models achieving performance and stability targets. Model trained with tight
Lipschitz certificates are more robust to adversarial attacks and also maintain
good accuracy.

• All of the algorithms and methods presented in this thesis are tested on var-
ious open-source tabular datasets, an air traffic management case provided
by Thales LAS France and a real dataset of UAV safety application which is
publicly available.

• Following the insights presented in the work, we have shown that it is possible
to build neural networks which are "Stable-by-Design" and with guaranteed
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stability through Lipschitz certificates. These results regarding robustness
are strong developments towards understanding the vulnerabilities in ML
models and provide defenses against attacks.

6.2 . Future work

The contributions of the thesis being summarised, a few possible future research
directions based on the contributions and new concepts related to the work are
mentioned in this section.

6.2.1 . Stronger Adversarial Attacks for Regression
The adversarial attacker presented in the thesis is effective, however stronger

attacks can be achieved aligning to the classification scenarios. For generating ad-
versarial attacks in chapter 3, we use fooling error to make the perturbed sample
deviate from the ground truth sample. We can use stronger or multiple objectives
to create stronger attacks. More sophisticated optimization algorithms such as aug-
mented Lagrangian principles [57] and proximal splitting techniques [103] could be
explored for this purpose in the context of regression tasks. Our tests concentrated
on fully connected networks; it is worth pointing out that the proposed adversarial
attacker can be applied to any network architecture, but it needs to be validated
on other architectures.
Also, there is a growing body of work on intermediate-level attacks (ILAP) [104,
105] which try to eliminate or reduce the need for soft or hard labels. An initial
direction - in the latent space of the hidden, intermediate layers - is determined
via some suitable attack. Gradient steps are then used to maximally perturb the
intermediate hidden representation to find a suitable adversarial attack. Interest-
ingly, such a method can often outperform the method used to set the initial
direction itself, while being more transferable across different models. These work
eliminating the use of labels can help to design adequate adversarial attackers for
regression tasks. Overall, the literature studying adversarial attacks and defenses
for regression tasks is limited and needs more attention in future works.

6.2.2 . MIMO and Volterra Networks
One obvious extension of our analysis presented in chapter 4, where we have

concentrated mostly on MISO (Multi-Input Single-Output) systems, is the sensi-
tivity analysis of MIMO ((Multi-Input Multi-Output) systems. In chapter 4, we
provide partial Lipschitz constants w.r.t to input when all the outputs are ac-
tive—ignoring how the individual or group inputs can affect individual or a group
of outputs. To get further analysis, we can easily calculate these partial Lipschitz
constants corresponding to only specific outputs. Such analysis is important for
understanding the sensitivity of inputs, but it can also help to control unintended
couplings between variables that can be introduced by the neural network model.
We also observe a cross-link between the weighting matrices allowing us to obtain
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partial Lipschitz constants and explainability masks used in images, highlighting
the regions of the image which contribute most to the decision of CNNs to predict
a certain label. Similarly, the partial Lipschitz constant highlights the importance
of certain inputs w.r.t to output.

Another possible direction is to design new neural network architectures for
tabular data learning using the concept of Volterra neural networks [106] with
reduced or no use of activation functions. A neural network with a lower number
of activation functions should be intuitively more robust with less regions where the
approximation function exhibits steep slopes (i.e. higher local Lipschitz bounds),
hence it is more stable to perturbations. We can design a neural network using
second-order Volterra kernels to learn all relationships as in Eq. (4.36).

6.2.3 . Spectral Normalization and its variants

In chapter 5, we use the same level of Lipschitz normalization at each layer in
the network. This might not be best way to normalize the Lipschitz constant of
the layer because different layers in the neural network architecture learn more or
less informative features, which implies that Lipschitz normalization should depend
on the importance of the layer or its width. To mitigate this, we can add a learn-
able parameter, associated with each individual layer, to the spectral normalization
algorithm which can adjust itself while training to attain an optimal robust model.
Also, we have used fully connected layers in our experiments in chapter 5 but
Spectral normalization is well suited and tested for convolutional neural networks
as well. We are limited by the use of LipSDP module or any other module to esti-
mate Lipschitz bounds that work well only for dense networks with non-expansive
operators. Obtaining tight and numerically tractable Lipschitz bounds for convolu-
tional networks thus remains a main challenge. In [77], author proposes a relaxed
approach to normalize weights of different layers which is not as restrictive as
Spectral normalization. They do so for improving the performance of the neural
networks. Such a relaxation of normalization can also be explored to have better
control on the stability. Also, another means of attaining an accuracy-stability
trade-off can be achieved by utilizing two objective functions in order to maintain
accuracy (i.e. first achieve the best possible accuracy and keep the accuracy in the
tolerance levels) and gradually changing the weights to achieve tighter Lipschitz
bounds.

6.2.4 . Other architectures and application domains

Our work concentrated on using simple fully connected layers, understanding
them, and controlling their stability. More prevalent architectures such as ResNet,
EfficinetNet, graph networks, transformers, and generative models such as GANs
need to be explored. Even in case of tabular data, though researchers may rely on
methods such as XgBoost [107], deeper learning models, especially attention-based
mechanisms have emerged, such as TabTransformer [108], FT-Transformer [109],
TabNet transformer [110], and most recently Hopfield networks [111], successful
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in learning such data.
Also, a point to be noticed for these architectures is the use of activation functions
such as GELU in architectures, which are not firmly non-expansive, while the archi-
tecture in itself consists of simple fully connected layers. In addition, transformers
using standard DP product attention mechanism were shown to be non Lipschitz
continuous [112], again questioning the use of such networks in real-world applica-
tions. A Lipschitz continuous attention mechanism was proposed, but the robust-
ness of this block is still unknown. Another area which needs to be studied is the
use of batch and layer normalization layers and how they contribute to the overall
robustness of the neural networks. Similarly, [113] proposes Lipschitz normalization
for improving the performance of attention based graph neural networks without
discussion of their adversarial and certified robustness. These architectures must
be studied for robustness and vulnerabilities to deliver more trustworthy models.
Overall, there have been plethora of works designing and defending such networks
against adversarial attacks, but handful that certify theoretical guarantees against
perturbations.

6.2.5 . Other notions of robustness
A very close notion to Lipschitz bounds is related to curvature, which is a math-

ematical quantity that encodes the deviation of a curve from ‘flatness’. The high
degree of non-linearity present in deep neural networks, or equivalently their large
curvature, is critical to achieving good performance in difficult tasks. Networks
learnt by penalizing the curvature keep the trained model as linear as possible.
This implies that networks are learnt to obtain certain upper bounds on the cur-
vature similar to Lipschitz bounds. When a function is twice differentiable, the
maximum of the norm of the Hessian is the local Lipschitz constant of the Jaco-
bian of the network. In deep learning, the curvature of a function at a point is
quantified as the norm of the Hessian at that point. So, it is equivalent to look
at the Lipschitz properties of the Jacobian. Low curvature bounds is yet another
way to verify that the linearity is indeed the source of increased robustness. In
literature, a low curvature is imposed to induce robustness in the networks, and
this is done by penalizing the norms of the Hessian. Moosavi et al. [114] penalizes
the Frobenius norm of the Hessian, and [115] introduces a local linearity regular-
izer, which also implicitly penalizes the Hessian. Relationships and analysis can
be explored between Lipschitz bounds and curvature since the two concepts are
complementary and closely related. It would thus be interesting to explore training
strategies utilizing curvature as the objective.
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Appendix ALipschitz Constant Analysis of Tab-ular Data
This appendix describes one of our preliminary studies related to Lipschitz analysis
on tabular data published in [21].

Deep learning on tabular data has received much less attention than deep
learning for standard signal/image processing problems particularly seen in the
area of computer vision and natural language processing. Tabular data allows
to take advantage of heterogeneous sources of information coming from different
sensors or registered variables (like altitude of an aircraft, departure and destination
airport, duration of the flight, company type). Tabular data analysis covers a wide
variety of applications, e.g. fraud detection,product failure prediction, anti-money
laundering, recommendation systems [116], click-through rate prediction [117] etc.
A generalised NN framework for tabular data is presented in [87]. Most of the
mentioned tasks may be hampered with safety concerns and require reliability in
the performance of the NN used for predicting or classifying data. In [80], authors
presented a method for generation of imperceptible adversarial attacks for tabular
data.

In our stability analysis, we study three widely used tabular datasets from UCI
Repository: 1) Combined Cycle Power Plant Data Set has 4 attributes with 9568
instances , 2) Auto MPG Data Set consists of 398 instances with 7 attributes, 3)
Adult Data Set consists of 48842 instances in total with 14 attributes. Dataset
2 and 3 include both continuous and categorical attributes, whereas dataset 1
contains only continuous attributes. The datasets are divided with a ratio of 4:1
between training and testing data. The categorical attributes are dealt with by
using one hot encoding based on the number of categories. The input attributes
are normalised by removing their mean and scaling to unit variance. All the ar-
chitectures are made up of two hidden fully connected layers with the following
characteristics:

• Combined Cycle Power Plant Data set - (4, 10, 6, 1)• Auto MPG Data set - (9, 16, 8, 1)• Adult Data set - (88, 6, 6, 1)
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ℓ1 ℓ2
α 0 0.00001 0.0001 0.001 0.01 0.1 0.00001 0.0001 0.001 0.01 0.1MAE 0.0069 0.0071 0.0069 0.0094 0.0300 0.0300 0.0073 0.007 0.0077 0.0299 0.030

L2,2
LipSDP [16] 0.657 0.705 0.26 0.024 ≈ 0 ≈ 0 1.01 0.741 0.027 ≈ 0 ≈ 0CPLip[9] 0.638 0.681 0.25 0.024 5.33e-11 3.99e-11 0.96 0.73 0.027 1.26e-09 1.09e-17

L+∞,+∞
Lipopt-k [43] 1.41 1.39 0.47 0.028 ≈0 ≈ 0 1.89 1.26 0.040 1.07e-09 ≈ 0CPLip[9] 1.23 1.17 0.46 0.028 9.16e-11 6.75e-11 1.486 1.26 0.040 2.35e-09 1.95e-17

Table A.1: Results on Combined Cycle Power Plant Data Set for ℓ1 and ℓ2 regulariza-tion
ℓ1 ℓ2

α 0 0.00001 0.0001 0.001 0.01 0.1 0.2 0.00001 0.0001 0.001 0.01 0.1 0.2MAE 0.0418 0.0444 0.0405 0.0443 0.0505 0.1490 0.1490 0.0515 0.0404 0.0424 0.0454 0.1489 0.1489
L2,2

LipSDP [16] 2.75 1.74 0.38 0.16 0.11 ≈ 0 ≈ 0 2.13 0.78 0.201 0.089 ≈ 0 ≈ 0CPLip[9] 2.747 1.705 0.373 0.16 0.110 8.75e-09 7.44e-09 2.11 0.721 0.201 0.089 9.96e-09 9.72e-09
L+∞,+∞

Lipopt-k [43] 9.47 5.66 1.04 0.286 0.1642 1.66e-08 1.83e-08 7.048 3.088 0.4365 0.2099 1.41e-08 1.45e-08CPLip[9] 6.98 4.36 1.03 0.29 0.16 2.30e-08 2.06e-08 4.97 1.93 0.44 0.21 2.9e-08 2.8e-08

Table A.2: Results on Auto MPG Data Set for ℓ1 and ℓ2 regularization
ℓ1 ℓ2

α 0 0.00001 0.0001 0.001 0.01 0.1 0.2 0.00001 0.0001 0.001 0.01 0.1 0.2Acc 84.94 85.16 85.57 85.54 76.30 76.30 76.30 85.32 85.26 85.46 84.73 76.32 76.32
L2,2

LipSDP[16] 8.21 6.29 5.15 3.45 ≈ 0 ≈ 0 ≈ 0 9.15 5.32 4.19 1.91 ≈ 0 ≈ 0CPLip[9] 8.208 6.29 5.15 3.45 5.81e-10 1.84e-10 3.02e-10 9.15 5.32 4.19 1.91 1.839e-10 6.04e-11
L+∞,+∞

Lipopt-k [43] 56.22 31.77 20.53 12.36 ≈ 0 ≈ 0 ≈ 0 42.74 22.48 17.90 9.06 2.43e-11 ≈ 0CPLip[9] 56.22 31.77 20.53 12.36 4.33e-09 1.34e-09 2.21e-09 42.74 22.48 17.90 9.06 9.25e-10 3.85e-10

Table A.3: Results on Adult Data Set for ℓ1 and ℓ2 regularization

A.1 . Effect of Regularization Techniques

We present the results for three regularisation techniques: ℓ1, ℓ2, and Dropout
[118]. We study the relationship between the parameters associated with each
regularisation and the NN stability quantified by its Lipschitz constant. Attention
also to be paid to the resulting accuracy. We apply these regularization techniques
while training our NNs, then compute a Lipschitz constant associated with the
obtained weights. We use the three state-of-the-art estimation methods which
have been described in Section 2.2.1.2. The first one is LipSDP [16] which uses
Euclidean norms for both the input and output spaces (L2,2 spectral norm). The
second one is the polynomial based approach LipOpt [44] where the input and out-
put spaces are equipped with the sup norm while estimating the Lipschitz constant.
This estimation approach is thus linked to the L+∞,+∞ subordinate matrix norm.
The third estimation method is CPLip [9] which can work for any norm on the
input and output spaces.

Each experiment was run 10 times and we chose the model with best perfor-
mance (least MAE or highest classification accuracy) and computed a Lipschitz
constant for this model. The results for the datasets using ℓ1 and ℓ2 regularization
are reported in Tables A.1, A.2, and A.3 for varying values of the regularization
parameter α which controls the strength of the ℓ1 and ℓ2 penalty on the weights.
Similar results with varying drop-rates are presented in Tables A.4, A.5, and A.6.
Droprate corresponds to the proportion of the neurons which will be shut-off while
training a neural network.
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Drop-rate 0 0.05 0.1 0.2 0.3 0.4 0.5MAE 0.0069 0.0069 0.0074 0.0086 0.0115 0.0111 0.016
L2,2

LipSDP [16] 0.66 0.16 0.23 0.56 0.45 0.27 0.40CPLip[9] 0.64 0.16 0.23 0.54 0.42 0.27 0.39
L+∞,+∞

Lipopt-k [43] 1.41 0.26 0.32 1.01 0.79 0.42 0.69CPLip[9] 1.23 0.26 0.32 1.01 0.69 0.42 0.69
Table A.4: Results on Combined Cycle Power Plant Data set with Dropout

Drop-rate 0 0.05 0.1 0.2 0.3 0.4 0.5MAE 0.042 0.039 0.0364 0.043 0.044 0.045 0.050
L2,2

LipSDP [16] 2.75 1.86 2.1 1.89 2.28 1.88 1.41CPLip[9] 2.75 1.73 2.1 1.87 2.28 1.88 1.42
L+∞,+∞

Lipopt-k [43] 9.47 6.41 5.49 4.89 5.2 3.98 3.07CPLip [9] 6.98 4.45 4.631 4.89 5.19 3.98 3.07
Table A.5: Results on Auto MPG Data set with Dropout

Drop-rate 0 0.05 0.1 0.2 0.3 0.4 0.5Acc 84.94 85.13 85.14 85.08 85.03 85.09 84.81
L2,2

LipSDP [16] 8.21 7.17 7.39 6.82 6.53 6.68 6.63CPLip[9] 8.21 7.17 7.39 6.82 6.53 6.68 6.63
L+∞,+∞

Lipopt-k [43] 56.22 46.07 49.32 43.58 40.21 39.87 41.26CPLip[9] 56.22 46.07 49.32 43.58 40.21 39.87 41.26
Table A.6: Results on Adult Data Set with Dropout

A.2 . Positive Weighted Networks

Next we analyse the stability of NNs when the weights are constrained to be
non-negative. The comparison between arbitrary signed network and positively
signed network for all the three datasets is shown in Table A.7.

A.3 . Addition of Noise to the Dataset

We also perform a stability analysis when the original dataset is corrupted with
random noise which is a standard practice while training NNs having continuous
input variables. From the original dataset, we generated a dataset 20 times larger
by including noisy samples.

More precisely, to all the normalised input features, we added a noise value
drawn from a random i.i.d. zero-mean Gaussian distribution with a small standard
deviation. We combined the original training set with the generated noisy samples
and trained our model on the augmented dataset. The results on Combined Cycle
Power plant with variation of standard deviation are given in Table A.8.
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Dataset 1 Dataset 2 Dataset 3Arbitrary Positive Arbitrary Positive Arbitrary PositiveMAE/ACC 0.0069 0.021 0.042 0.08 84.94 83.54
L2,2

LipSDP [16] 0.66 0.03 2.75 0.57 8.21 3.65CPLip [9] 0.64 0.03 2.75 0.57 8.21 3.65
L+∞,+∞

Lipopt-k [43] 1.41 0.06 9.47 3.29 56.22 18.81CPLip[9] 1.23 0.06 6.98 1.24 56.22 18.81
Table A.7: Results with positive constraint on the weights

std No Noise 0.01 0.05 0.1 0.2MAE 0.0069 0.0064 0.0061 0.0065 0.0071
L2,2

LipSDP [16] 0.66 0.61 0.34 0.37 0.10CPLip[9] 0.64 0.61 0.33 0.36 0.09
L+∞,+∞

Lipopt-k [43] 1.411 1.12 0.58 0.61 0.24CPLip[9] 1.234 1.12 0.57 0.59 0.16
Table A.8: Results on Combined Cycle Power Plant Data set with added noise

A.4 . Comments on the results

A first observation is that CPLip provides slightly tighter bounds than LipSDP
and LipOpt. The two latter approaches may however be more scalable when applied
to deeper networks. Another remark is that similar behaviours can be seen when
using different norms. While designing a network for deployment, it also appears
that there is a trade-off between stability and performance.

• ℓ1 and ℓ2 regularization increase the stability of the network consistently, but
the performance is maintained up to a certain value of α, from where the
accuracy drops. ℓ1 usually yields better results, confirming the robustness
of this norm as training measure.

• We globally observe an increasing stability of the neural networks as we
increase the value of droprate. The results are however less consistent than
with regularization.

• The positive constraint leads to a significant loss of performance in terms of
MAE and classification accuracy, but the stability of the networks is improved
by a significant margin.

• As expected, adding noise leads to a drop in the value of the Lipschitz
constant as the noise level increases, without having a negative impact on
the accuracy.
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Appendix B
Robustness of a New Type of Neu-ral Networks using PositiveWeights
This appendix presents the work done in collaboration with another PhD student
at CVN. The work is published in [22].

B.1 . Making the bridge between CNNs and Fully Connected
Networks (FCN)

We use the fact that, if all the weights of a feed-forward neural network are
non-negative, an optimal Lipschitz constant reduces to ∥Wm · · ·W1∥S [9]. In other
words, it has the same Lipschitz constant as a linear network where the identity
function is substituted for all the activation operators. For a network with weights
having arbitrary signs, ϑm = ∥Wm · · ·W1∥S only constitutes a lower bound on the
Lipschitz constant [9].

In this work, we aim at filling the gap between FCNs and CNNs. In signal
processing context, a convolutive layer is a Multiple-Input Multiple-Output (MIMO)
filter. For one-dimensional signals, each of these filters can be viewed as a Tœplitz
matrix generated by the impulse response of the filter, which is applied to the vector
of signal samples. If the filter length is short, large upper and lower triangular parts
of this matrix are null. In our proposed approach, we will keep this band structure
for the weight matrix, which is equivalent to performing local processing at each
time within a sliding window. However, in order to add more flexibility in this
architecture, we will allow all the nonzero coefficients of this matrix to be fully
optimized.
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Figure B.1: Proposed architecture of Adaptive Convolutional Neural Network (ACNN).a) An encoder-decoder architecture composed of a 6-layer FCN followed by ReLU acti-vation function. b) Relation between proposed FCNs and CNNs; the weights are splitinto sub-matrices simulating convolutive filters in CNNs c) Each of the sub-matricesis constrained to have a band structure as shown in this example. The dark gray areamarks the zero-entries, while the light-gray colour corresponds to the ones that areallowed to be non-zero.

The proposed architecture is depicted in Figure B.1. Figure B.1.b is the graphi-
cal representation of the presented concept. As it can be observed, the weights are
split to emulate a MIMO system. Each kernel is associated with a specific shape
of the matrix, which is depicted in Figure 1.c. The lower and upper triangular null
parts are displayed in dark gray, while the light gray central part contains overlap
and may use different weight values.

B.1.1 . Learning algorithm

For training the proposed ACNN (Adaptive Convolutional Neural Network), we
use a stochastic gradient-like optimization based on Adam. Consider the vector of
parameters of the network, η = (ηi)1⩽i⩽m, such that, for each layer i ∈ {1, . . . , m},
ηi represents a vector of dimension Ni(Ni−1 + 1), composed of the elements of
weight matrix Wi and the components of the bias vector bi.

To secure the conditions of robustness while imposing the desired structure for
our network, the parameter vector η is projected onto a closed set S that expresses
all these constraints. The parameter update at epoch n > 0 is performed for mini-
batches (Mq,n)1⩽q⩽Q. If the training data are denoted by (zk)1⩽k⩽K, where zk
is the k-th pair of inputs and their associated outputs, the operations performed
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during the n-th epoch reads:

Partition {1, . . . , K} into mini-batches (Mq,n)1⩽q⩽Q (B.1)
For every q ∈ {1, . . . , Q} (B.2)

t = (n− 1)Q + q
For every i ∈ {1, . . . , m}

gi,t = ∑k∈Mq,n
∇iℓ

(
zk, (ηi,t

)
1⩽i⩽m)

µi,t = β1µi,t−1 + (1− β1)gi,t
νi,t = β2νi,t−1 + (1− β2)g2

i,t

γt = γ
√

1− βt
2/(1− βt

1)

ηi,t+1 = PSi,t

(
ηi,t − γtµi,t/(

√
νi,t + ϵ)

)
,

(B.3)

where the square, the square root, and the division are performed component-wise,
and

Si,t =
{

ηi | [(η⊤j,t+1)j<i η⊤i (η⊤j,t)j>i]
⊤ ∈ S

}
. (B.4)

Here-above, ℓ denotes the loss function, ∇i represents the gradients with re-
spect to ηi; µi,t and νi,t represent the first and second momentum estimates at the
iteration t, initialized with µi,0 = νi,0 = 0. PSi,t designates the projection onto the
constraint set Si,t. Although the set S is non-convex, the sets Si,t will be defined
as the intersection of three closed and convex constraint sets, as detailed next.
The parameters used for learning are set to β1 = 0.9, β2 = 0.999, γ = 0.001, and
ϵ = 10−12.

To ensure the computation of a tight robustness bound we impose non-negative
weights for every i ∈ {1, . . . , m} by considering the constraint set:

Di = {Wi ∈ RNi×Ni−1 |Wi ⩾ 0} (B.5)
Let Ri (resp. Qi) be the number of output (resp. input) channels used in

layer i ∈ {1, . . . , m}. The proposed algebraic structure of each weight operator
is guaranteed by splitting the corresponding matrix Wi into Ri × Qi sub-matrices
of dimension N′i × M′i (with N′i = Ni/Ri and M′i = Ni−1/Qi), denoted by

(W(r,q)
i )1⩽r⩽Ri ,1⩽q⩽Qi . The desired band structure of the sub-matrix W(r,q)

i is
ensured by imposing that it belongs to the following vector space:

Ei = {(Vu,v)1⩽u⩽N′i ,1⩽v⩽M′i
∈ RN′i×M′i | ∀(u, v) s.t.

|(M′i − 1)(u− 1)− (N′i − 1)(v− 1)| ⩾ di, Vu,v = 0}.

Herein, di is an integer and, if N′i = M′i > 1,
2⌊di/(N′i − 1)⌋ − 1 plays a role similar to a kernel length in standard CNNs.

Finally, to control the robustness, we need to limit the Lipschitz constant of
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PSNR MSE CCNoisy Signal 18.25 1.18× 10−2 0.76

Denoised Signal

Baseline - Wavelet-based denoiser 20.66 1.00× 10−3 0.80

ACNN denoiser
Scenario (i)

ϑ = 1 24.27 3.73× 10−3 0.96
ϑ = 5 29.03 1.25× 10−3 0.97

ϑ = 10 33.76 6.53× 10−4 0.98

Scenario (ii)
ϑ = 1 25.87 3.12× 10−3 0.96
ϑ = 5 30.63 8.63× 10−4 0.98

ϑ = 10 36.02 2.23× 10−4 0.99Standard FCN denoiser ϑ = 1 23.38 4.59× 10−3 0.90
Table B.1: Comparison of different variants of the proposed method with baselines.
the network to a given value ϑ > 0. The related constraint can be expressed as:

Ci,t = {Wi ∈ RNi×Ni−1 | ∥Ai,tWiBi,t∥S ⩽ ϑ} (B.6)
Ai,t = Wm,t · · ·Wi+1,t, (B.7)
Bi,t = Wi−1,t+1 · · ·W1,t+1 (B.8)

with the convention that for the first layer (i = 1), Bi,t is the Ni × Ni identity
matrix IdNi and for the last layer (i = m), Ai,m = IdNi . Above, (Wj,t)1⩽j⩽m

designates the estimates of the weight matrices at iteration t of the projected
ADAM optimizer.

The projection onto the intersection of the above three closed convex sets has
no closed-form expression. The intersection Di ∩ ERi×Qi

i is however quite simple
to handle since the projection onto this set reduces to PDi ◦ PERi×Qi

i
. To compute

the final projection onto Ci,t ∩ (Di ∩ ERi×Qi
i ) of a weight matrix Wi, we use the

dual forward-backward algorithm, as presented in [119].

B.2 . Experimental Evaluation

The proposed network has been evaluated for denoising music signals.

B.2.1 . Dataset Description
We train our proposed ACNN on a dataset consisting of musical exercises and

songs performed on a Ronald organ. The organ covers 5 octaves (range C2-C7),
each octave having 12 semitones, generating a total of 61 different possible notes.
For the recordings, the whole range of notes is used. The songs are recorded in
MIDI format using MidiEditor, in the following manner: the recording mode from
MidiEditor is activated before each song being played and is stopped after the song
is finished (so there is silence at the beginning and end of each recording). In total,
the dataset contains 100 MIDI recordings, with a sampling frequency Fs = 44100
Hz, constituting 1 h and 17 min of audio. The data set is available online1 .

1https://speed.pub.ro/downloads/
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Figure B.2: Convergence profile of the proposed method.
The dataset is divided into training, validation, and test sets. The training set

contains 90 clips with variable length, ranging from 6 s up to 150 s, having in total
over an hour (67 min) of audio recordings. Some songs are repeated on different
octaves to obtain a minimum number of occurrences for all notes. The validation
dataset contains 9 songs with length between 12 and 120 s, forming around 10
minutes of audio signals. The test set has one 2-minute long clip.

B.2.2 . Experimental setup
The noisy data for training, validating, and testing is generated by adding white

Gaussian noise to the original samples. The noise has zero mean and its standard
deviation is randomly chosen so that the resulting signal-to-noise ratio (SNR) varies
between 5 and 30dB. The dataset samples are normalized between 0 and 1. We
extract the frequency features from the audio signal using a STFT. The network
estimates the STFT coefficients of the samples and an ISTFT is performed as the
post-processing step. We consider a Hanning sliding analysis window of length
T = 23 ms, with an overlap between two consecutive windows of 50%. The STFT
is performed on 1024 points. In total, from each audio segment, a vector of length
L = 513 frequency coefficients is obtained, constituting the input of our ACNN.

The denoising is performed using a 6-layer ACNN architecture, as presented in
Figure B.1. The network has an encoder-decoder structure. Each layer employs
ReLU as activation function followed by a batch normalization step that acts as a
regularizer and prevents the model from overfitting.

B.2.3 . Simulations and results
In order to measure the performance of our proposed ACNN architecture, we

perform two sets of experiments. In the first set, we control the Lipschitz constant
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of the architecture for three values ϑ equal to 1, 5, and 10. In the second exper-
iment, we test our architecture by varying the number of channels, i.e. the way
we split each weight matrix. Note that for both scenarios we consider a network
with m = 6 layers and ∀i ∈ {1, . . . , 6}, di = d′i(max{N′i , M′i} − 1), having the
following characteristics:

(i) R1 = 2 = Q6, Q1 = 1 = R6, ∀i ∈ {2, . . . , 5} Ri = Qi = 2, (Ni)1⩽i⩽6 =

(400, 200, 100, 200, 400, 513), (d′i)1⩽i⩽6 = (237, 80, 30, 30, 80, 237);
(ii) R1 = 3 = Q6, Q1 = 1 = R6, ∀i ∈ {2, . . . , 5} Ri = 3, Qi = 3,

(Ni)1⩽i⩽6 = (630, 510, 420, 510, 630, 513), (d′i)1⩽i⩽6 = (237, 85, 65, 65, 85, 237).
We evaluate the performance on 3 standard metrics: Peak to Signal Noise Ratio
(PSNR), Mean squared error (MSE), and Cross-correlation (CC), as shown in the
Table B.1. We compare our method with a standard denoising technique, based
on a Wavelet decomposition. We employ a 5-level decomposition using Symlet8
filters combined with SureShrink thresholding. We also compare ACNN with a
FCN implementation, for which we ensured the Lipschitz bound ϑ = 1. Here,
the FCN has no structural constraints but, in addition to the imposed Lipschitz
property, it has positive weights.

Table B.1 reports the quantitative results obtained by all three approaches,
evaluated over the test set. Our method outperforms the baseline on all mea-
sures by a significant margin. ACNN also outperforms classical FCN, inferring that
structure imposed on the weight matrix for ACNN leads to a model with better
generalization power, whereas FCN implementation may be prone to overfitting.
We observed that, without any Lipschitz constraint, FCNs tend to have a very
high Lipschitz constant of the order 105 − 106, which emphasizes the importance
of controlling the Lipschitz behaviour of the system. The Lipschitz constant of the
network is also closely related to the expressiveness of the trained model. Architec-
tures with tight robustness constraint have fewer degrees of freedom and are thus
expected to be less accurate, and lead to a slower convergence. The convergence
profile of our proposed method is shown in Figure B.2.
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