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Abstract
Abstract Magnetic reconnection is a change of topology of the magnetic field,

responsible for the explosive release of magnetic energy in astrophysical plasmas, as in
the case of magnetospheric substorms and coronal mass ejections, as well as in labora-
tory plasmas, as in the case of sawtooth crashes in tokamaks. In collisionless plasmas
as, for instance, the magnetosphere and the solar wind, electron inertia becomes par-
ticularly relevant to drive reconnection at regions of intense localized current, referred
to as current sheets. In these collisionless, magnetized environments, the temperature
can often be anisotropic with respect to the magnetic field direction and effects at the
electron scale on the reconnection process can become non-negligible.

In this Thesis, the stability of two-dimensional current sheets with respect to recon-
necting perturbations in collisionless plasmas with a strong guide field is analysed on
the basis of gyrofluid models assuming cold ions. These models take into account the
possibility of an equilibrium temperature anisotropy, and a finite 𝛽𝑒 , the latter being
a parameter corresponding to the ratio between equilibrium electron kinetic pressure
and magnetic pressure.

We derive and analyze a dispersion relation for the growth rate of collisionless tear-
ing modes accounting for equilibrium electron temperature anisotropy. The analytical
predictions are tested against numerical simulations, showing a very good quantitative
agreement. In the isotropic case, accounting for finite-𝛽𝑒 effects, we observe a stabi-
lization of the tearing growth rate when electron finite Larmor radius effects become
important. In the nonlinear phase, stall phases and faster than exponential phases are
observed, similarly to what occurs in the presence of ion finite Larmor radius effects.

We also investigate the marginal stability conditions of secondary current sheets
for the development of plasmoids, in collisionless plasmas. In the isotropic 𝛽𝑒 → 0
limit, we analyze the geometry that characterizes the reconnecting current sheet, and
identify the conditions under which it is plasmoid unstable. Our study shows that
plasmoids can be obtained, in this context, from current sheets with an aspect ratio
much smaller than in the collisional regime. Furthermore, we investigate plasmoid
formation comparing gyrofluid and gyrokinetic simulations. We show that the effect of
finite 𝛽𝑒 promotes the plasmoid instability. Finally, we study the impact of the closure
applied on the moments, performed during the derivation of the gyrofluid model, on
the distribution and conversion of energy during reconnection.

Keywords Magnetic reconnection, gyrofluid models, collisionless plasma, plas-
moids
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Résumé La reconnexion magnétique est une modification de la topologie du
champ magnétique, responsable d’une libération explosive d’énergie magnétique dans
les plasmas astrophysiques. Elle intervient dans les orages magnétiques, les éjections
de masse coronale, ainsi que dans les plasmas de laboratoire. Dans les plasmas sans
collisions comme ceux de la magnétosphère et le vent solaire, l’inertie des électrons de-
vient particulièrement pertinente pour provoquer la reconnexion des lignes de champs
dans les régions de courant intense, appelées feuilles de courant. Dans ces environ-
nements non collisionnels, la température peut souvent être anisotrope et les effets
présent à l’échelle électronique peuvent affecter le processus de reconnexion.

Dans cette thèse, la stabilité des feuilles de courant bidimensionnelles dans des plas-
mas sans collisions avec un fort champ guide est analysée à partir de modèles gyroflu-
ides qui considèrent des ions froids. Ces modèles peuvent prendre en compte une
anisotropie de température d’équilibre, et un 𝛽𝑒 fini. Le paramètre 𝛽𝑒 correspondant
au rapport entre la pression cinétique électronique d’équilibre et la pression magné-
tique.

Nous dérivons et analysons une relation de dispersion pour le taux de croissance
des modes tearing sans collisions en tenant compte de l’anisotropie de la température
d’équilibre des électrons. Les prédictions analytiques sont testées par des simulations
numériques, montrant un très bon accord quantitatif. Dans le cas isotrope, en prenant
en consideration des effets de 𝛽𝑒 finis, nous observons une stabilisation du taux de
croissance du mode tearing lorsque les effets du rayon de Larmor fini des électrons
deviennent non négligeables. Dans la phase non linéaire, des phases de ralentisse-
ment et des phases d’accélération sont observées, identiquement à ce qui se produit en
présence d’effets de rayon de Larmor fini des ions.

Nous étudions également les conditions de stabilité marginale des feuilles de courant
secondaires, pour le développement de plasmoïdes. Dans le régime isotrope 𝛽𝑒 → 0,
nous analysons la géométrie qui caractérise le feuillet de courant, et identifions les
conditions pour lesquelles elle devient instable à l’instabilité plasmoïde. Cette étude
montre que des plasmoïdes peuvent être obtenus, dans ce contexte, à partir de feuille
de courants aillant un rapport d’aspect beaucoup plus petit que dans le régime colli-
sionnel. De plus, nous étudions la formation de plasmoïdes en comparant les simula-
tions gyrofluides et gyrocinétiques. Ceci a permis de montrer que l’effet de 𝛽𝑒 favorise
l’instabilité plasmoïde. Enfin, nous étudions l’impact de la fermeture appliquée sur les
moments, effectuée lors de la dérivation du modèle gyrofluide, sur la distribution et la
conversion de l’énergie lors de la reconnexion.

Mots-Clés Reconnection magnétique, modèles gyrofluides, plasmas non colli-
sionels, plasmoïdes
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Sommario La riconnessione magnetica è un cambiamento nella topologia del
campo magnetico, responsabile del rilascio esplosivo di energia magnetica nei plasmi
astrofisici, come nelle tempeste magnetosferiche e nelle espulsioni di massa coronale,
nonché nei plasmi di laboratorio, come nel caso delle oscillazioni a dente di sega nei
tokamak. Nei plasmi non-collisionali come, ad esempio, la magnetosfera e il vento so-
lare, l’inerzia elettronica diventa particolarmente efficace nel causare la riconnessione
in regioni di corrente intensa e localizzata, detti strati di corrente. In tali plasmi non-
collisionali, la temperatura può essere spesso anisotropa e gli effetti su scala elettronica
sul processo di riconnessione possono diventare non trascurabili.

In questa tesi, viene analizzata la stabilità di strati di corrente bidimensionali in
plasmi non-collisionali con un forte campo guida, sulla base di modelli girofluidi che
assumono ioni freddi. Questi modelli possono tenere conto di un’anisotropia di tem-
peratura di equilibrio e di un 𝛽𝑒 finito. Quest’ultimo è un parametro corrispondente al
rapporto tra la pressione cinetica elettronica di equilibrio e la pressione magnetica.

Deriviamo e analizziamo una relazione di dispersione per il tasso di crescita dei modi
tearing non-collisionali tenendo conto dell’anisotropia della temperatura di equilib-
rio degli elettroni. Le previsioni analitiche sono verificate mediante simulazioni nu-
meriche, che mostrano un ottimo accordo quantitativo. Nel caso isotropico, tenendo
conto degli effetti di 𝛽𝑒 finito, si osserva una stabilizzazione del tasso di crescita del
modo tearing quando diventano rilevanti gli effetti del raggio finito di Larmor degli
elettroni. Nella fase non lineare si osservano fasi di decelerazione e fasi di acceler-
azione, simili a quanto avviene in presenza di effetti del raggio di Larmor finito ionico.

Studiamo anche le condizioni di stabilità marginale degli strati di corrente secon-
daria, per lo sviluppo di plasmoidi, in plasmi senza collisioni. Nel regime isotropico
con 𝛽𝑒 → 0, analizziamo la geometria che caratterizza lo strato di corrente e identi-
fichiamo le condizioni in cui esso diventa instabile a causa di un’instabilità che genera
plasmoidi. Il nostro studio mostra che i plasmoidi possono essere ottenuti, in questo
contesto, da strati di corrente aventi un rapporto d’aspetto molto più piccolo rispetto
al regime collisionale. Inoltre, studiamo la formazione di plasmoidi confrontando sim-
ulazioni girofluidi e girocinetiche. Ciò ha permesso di dimostrare che l’effetto di 𝛽𝑒
promuove l’instabilità che genera plasmoidi. Infine, si studia l’impatto della chiusura
applicata ai momenti, eseguita durante la derivazione del modello girofluido, sulla dis-
tribuzione e conversione dell’energia durante la riconnessione.

Parole Chiave Riconnessionemagnetica, modelli girofluidi, plasmi non-collisionali,
plasmoidi
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𝜏★ time scale for the plasma to be expelled from the current sheet 5.14

Velocities
𝑣𝑡ℎ ∥𝑠 parallel velocity based on the parallel temperature 2.23
u⊥ perpendicular plasma flows
𝑣𝐴 Alfvén speed 2.109
𝑐𝑠 ion-sound velocity, based on electron temperature 1.5

Fluid and gyrofluid moments
𝑛𝑠 particle density 2.40
𝑁𝑠 gyrocenter density 2.40
𝑢𝑠 particle parallel velocity 2.40
𝑈𝑠 gyrocenter parallel velocity 2.40
𝑡∥𝑠 parallel particle temperature 2.57
𝑇∥𝑠 parallel gyrocenter temperature 2.40
𝑡∥𝑠 perpendicular particle temperature 2.58
𝑇⊥𝑠 perpendicular gyrocenter temperature 2.40

Electromagnetic fields and potentials
E electric field 2.9
B magnetic field 2.8
𝜙 electrostatic potential 2.9
A magnetic vector potential 2.8
𝐴(0)
∥ equilibrium magnetic potential 2.155, 2.156

𝜙 (0) equilibrium electrostatic potential # 2.155
𝐴∥ perturbation of parallel magnetic potential 2.8
𝐵∥ perturbation of parallel magnetic field 2.8

Dimensionless parameters
𝛿 square root of the mass ratio 2.77
𝛽𝑠 ratio thermal pressure to magnetic pressure 1.4
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𝛽⊥𝑠 ratio perpendicular thermal pressure to magnetic pressure 2.33
Θ𝑠 equilibrium temperature anisotropy parameter (= 𝑇0⊥𝑠/𝑇0∥𝑠 ) 2.24
𝜏𝑖 ratio ion to electron equilibrium temperature # 2.66
𝜏⊥𝑖 ratio ion to electron perpendicular equilibrium temperature 2.66
𝐴rec aspect ratio of the current sheet # 1.10
𝑅rec reconnection rate 1.13
𝜆 stretching factor of the equilibrium magnetic field 2.155

Other amplitudes and constants
𝐵0 guide field amplitude # 2.8
𝑛0 equilibrium densities # 2.23
𝑇0∥𝑠 equilibrium parallel temperature 2.23
𝑇0⊥𝑠 equilibrium perpendicular temperature 2.23
𝜇𝑠 magnetic moment based on the perpendicular velocity 2.23
𝑆 Lundquist number 1.13
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1 Introduction

Magnetic reconnection can be roughly summarized by saying that oppositly ori-
ented magnetic-field lines, under some conditions, break and reconnect to a new con-
figuration. Once the modification of the topology has taken place, strongly curved
magnetic-field lines drive Alfvénic outflows. During this process, the magnetic en-
ergy initially stored is converted into kinetic energy, accelerated particles, and heating.
This process takes place in a wide variety of astrophysical plasmas and underlies many
transient phenomena in nature. Solar flares, magnetic substorms, and 𝛾−ray bursts are
typical examples. In addition to the astrophysical applications, a better understanding
of this phenomenon is also relevant for the control of instabilities in fusion plasmas.
A series of fundamental studies and experiments have been dedicated to shed light
on the different mechanisms that cause this phenomenon, and to predict the very fast
reconnection process observed in nature. A major obstacle for understanding recon-
nection is that it results from a dynamic, multi-scale coupling. This requires a coalition
of many contributions using several combined approaches.

In this Introduction, we set the scene by presenting the different scales in plasma
physics, focusing in particular on those that are the main subjects of this Thesis (Sec.
1.1). After giving some relevant examples of reconnection events, we present the con-
ditions allowing it to take place (Secs. 1.2 and 1.3). This Introduction also highlights
some crucial aspects, such as the difference between collisional and collisionless recon-
nection. Finally, because this Thesis deals with the analysis of various effects on the
reconnection process, although always studied in the context of current sheet instabil-
ity, a final section provides an overview of such analyses, and presents in particular
the motivations behind each of these studies (Sec. 1.4).

1.1 What is a plasma?

1.1.1 Description of a plasma
The term ”plasma” was introduced for the first time in the year 1922, by the physicist

Irvin Langmuir, who studied electric discharges in weakly ionized gases. The peculiar-
ity of a plasma lies in its self-consistent behavior — the charged particles themselves

1



1 Introduction

generate fields and are thus subject in return to the action of these fields. This pro-
duces a collective motion of particles which can often take the form of waves. This
coherent particle motion reproduces itself periodically in space and in time, which is
the origin of the plasma’s own oscillations.

During a rise in temperature, matter converts from a solid state to a liquid state, by
melting, then converts in the state of gas, by vaporisation. The molecules will break
apart and dissociate into atoms between 5× 103 and 104 K. At temperatures exceeding
104K the last bounds are broken and atoms decompose into electrons and positive ions.
The latter state is what is called a plasma, and is also called the fourth state of matter.
More than 99.9% of the visible universe is made of matter in the plasma state, as it
constitutes the matter of the sun, stars, inter-stellar and inter-galactic mediums, white
dwarfs,.. etc.

The temperature range covered by the plasma state is vast. In cold plasmas (electric
discharge lamps, electric arcs, plasma torches, etc.), the temperature𝑇0 hardly exceeds
104 K. In these cases, the average energy of the thermal agitation is insufficient to
ensure complete ionization, and these plasmas are often weakly ionised. However, in
hot thermonuclear fusion plasmas, confined by magnetic confinement or by inertial
confinement, the temperature reaches around 108 K. For comparison, the temperature
at the center of the sun is around 107 K.

As in the case of the temperature, the density of electrons, 𝑛𝑒 , and ions, 𝑛𝑖 , within a
plasma, can vary widely. It can be of the order of 1m−3 in the interstellar medium, and
reaches more than 1012 m−3 in the Earth’s ionosphere. It can be ∼ 1014 m−3 in the solar
corona, and get close to 1020 m−3 in a magnetic fusion plasma. It approaches 1032 m−3

at the center of the sun or in an inertial confinement fusion plasma.
Nevertheless, not all ionized gases can be considered as plasmas, and not all plasmas

can be considered in the same way. It depends, of course, on their characteristics, but
above all, it depends on the scales of the phenomena in which we are interested. While
ionized gases are still mainly dominated by short-range collisions, plasmas are mainly
dominated by long-range electromagnetic interactions.

Basically, a plasma is a hot ionized gas consisting of approximately equal numbers
of positively charged ions and negatively charged electrons, to ensure a state elec-
trically quasi-neutral, responding to electric and magnetic field better than gases.
The motion of particles generates microscopic electromagnetic fields. These fields
affect the motion of other charged particles far away, which generates collective
behavior.

The conditions to affirm that our system can be treated as a plasma are the following.
The first criteria is that the characteristic spatial scale of the process which interests
us, 𝐿, must be greater than the average distance between the particles, ∼ 𝑛1/3. This
condition ensures the interaction of particles with mean fields generated by the other
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1.1 What is a plasma?

charges.
The second criteria is given by a scale of particular importance, called theDebye length,
𝜆𝐷 =

√
𝑇0/4𝜋𝑛0𝑒2, 1 which is the typical distance over which any charge imbalance is

shielded by the electrostatic field. In a tokamak, for instance, the fusion plasma has
𝜆𝐷 ∼ 10−3 cm. If the characteristic length of our system satifies 𝐿 > 𝜆𝐷 the plasma is
assumed to be ”quasi-”neutral. Given these two criteria, the conditions

𝐿𝑛1/3 ≫ 1, 𝐿 ≫ 𝜆𝐷 , (1.1)

define the domain of parameters where matter is in the plasma state.
Fig. 1.1 shows the different plasmas existing in nature and laboratory experiments on
a diagram based on the temperature (𝑇 ) and density (𝑛).

We anticipate now that, in this manuscript, the plasmas of interest are hot plasmas,
with large mean-free-path so that the plasma is in a collisionless regime, i.e the
collisions between particle are negligible. This type of plasma corresponds to those
circled in red in the figure 1.1.

1.1.2 Many scales
Plasmas are composed of different ionized species. Withmass of a proton being 1836

times that of the electron, we expect the behavior of the components to be very differ-
ent. One can first define the time scales by introducing the characteristic frequencies
for each species. Assume that, for example, in a plasma made by electrons and ions,
we displace a certain amount of particles of one species with respect to their origi-
nal configuration. Then the system will then respond by trying to restore itself to its
initial state. Plasma electrostatic waves are then generated and the particles oscillate
at the plasma frequency, defined as 𝜔𝑝𝑖,𝑒 =

√
4𝜋𝑒2𝑛/𝑚𝑖,𝑒 . In traditional electron-ion

plasmas, the plasma frequency appears in the dispersion relation for all elementary
plasma waves in which particles are oscillating. If a particle moves at the thermal
velocity 𝑣𝑡ℎ𝑖,𝑒 =

√
2𝑇0𝑖,𝑒/𝑚𝑖,𝑒 on a time scale 𝜔𝑝𝑖,𝑒 , it will be able to travel the distance

𝜆𝐷 before the system is restored by forces maintaining quasi-neutrality, which gives
us the simple relation 𝑣𝑡ℎ𝑖,𝑒 = 𝜆𝐷𝜔𝑝𝑖,𝑒 . The inverse of the plasma frequency, 𝜔−1

𝑝𝑖,𝑒 corre-
sponds to the characteristic response time of the particles to the exterior perturbations.
For waves characterized by frequencies that are higher than the plasma frequency, the
length scale associated to this response is called the inertial length

𝑑𝑖,𝑒 =
𝑐

𝜔𝑝𝑖,𝑒
. (1.2)

1𝑛0 ∼ 𝑛𝑖 ∼ 𝑛𝑒 and 𝑇0 ∼ 𝑇𝑖 ∼ 𝑇𝑒 are the usual plasma density and temperature.
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Figure 1.1: Diagram showing the different plasmas in nature and laboratory.
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1.1 What is a plasma?

The trajectory of a particle projected on the plane perpendicular to themeanmagnetic-
field direction is the sum of a rectilinear motion due to the displacement of the field
line and of a circular motion called the gyro-motion, where the radius of the circular
motion is referred to as Larmor radius. We point out that the presence of a magnetic-
field component that is constant in one direction, which is referred to a configuration
with a guide field, can substantially modify the behavior of the plasma. A strong guide
field introduces transport anisotropy, because the circular particle motion tends to be
preferentially in the plane perpendicular to this guide field. Two important quantities
that describe this gyro-motion are the thermal Larmor radius, also called the thermal
gyro-radius, and the cyclotron frequency, also called the gyro-frequency,

𝜌𝑖,𝑒 =
𝑚𝑖,𝑒𝑐𝑣𝑡ℎ𝑖,𝑒
𝑒𝐵0

, 𝜔𝑐𝑖,𝑒 =
𝑒𝐵0
𝑚𝑖,𝑒𝑐

, (1.3)

respectively, where 𝐵0 is the magnetic-field strength. For a very strongly magnetized
plasma, the gyration of the particles around the field lines can be reasonably ignored.
The importance of the amplitude of the magnetic field in the plasma is quantified by
a parameter called the plasma 𝛽𝑖,𝑒 , defined, for each species, as the ratio between the
square of the thermal gyro-radius and the square of the skin depth. Making use of the
definitions (1.2) and (1.3), one can see that 𝛽𝑒,𝑖 also corresponds to the ratio between
the thermal pressure, for each species, and the magnetic pressure. Thus, it follows that

𝛽𝑖,𝑒 =
𝜌2𝑖,𝑒

𝑑2𝑖,𝑒
=
8𝜋𝑛0𝑇0𝑖,𝑒
𝐵20

. (1.4)

The thermal pressure of the particles brings in the scale of the effective ion-sound
Larmor radius, which will be of particular importance for us,

𝜌𝑠 =

√
𝑇0𝑒
𝑚𝑖

𝑚𝑖𝑐

𝑒𝐵0
(1.5)

based on the ion–sound speed 𝑐𝑠 =
√
𝑇0𝑒/𝑚𝑖 . At this scale the electron compressibility

parallel to the magnetic field has to be taken into account.

Another important length corresponds to the mean free path between the particles
𝜆𝑚𝑓 𝑝 , or, in other words, an important frequency, corresponds to the electron-ion col-
lision rate 𝜈𝑒𝑖 , which measures the rate at which electrons are scattered by ions. As
already anticipated, all the work presented in this manuscript applies to plasmas for
which collisions between particles are neglected. Therefore, we will not detail this
point any further, and we will just assume that our characteristic length is always
such that 𝐿 ≪ 𝜆𝑚𝑓 𝑝 .
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We give here a summary of some useful relationships between the different plasma
scales.

𝑑𝑖 =

√
2
𝛽𝑒
𝜌𝑠, 𝑑𝑒 =

√
2
𝛽𝑒

√
𝑚𝑒

𝑚𝑖
𝜌𝑠, (1.6)

𝜌𝑖 =
√
𝜏𝜌𝑠, 𝜌𝑒 =

√
𝑚𝑒

𝑚𝑖
𝜌𝑠 =

√
𝛽𝑒
2
𝑑𝑒 . (1.7)

with
𝜏 =

𝑇0𝑖
𝑇0𝑒

(1.8)

the ratio between the background ion and electron temperature.

1.2 Qualitative description of magnetic reconnection

1.2.1 Early history of magnetic reconnection
The first attempt to deal with the processes that we would group today under the

name ’magnetic reconnection’ is generally attributed to Giovannelli (1947), who in
1947 used the concept of changing magnetic-field line connectivity to explain the ac-
celeration of particles occurring during solar flares. A few years after, as part of his
Thesis, James Dungey studied the properties of current sheets and showed that the con-
nectivity can change assuming the existence of a dissipation process (Dungey (1953)).
Dungey was the first to invoke the name magnetic reconnection.

The Sweet-Parker model

With the first observation of solar flares (Carrington (1859)), several authors, notably
Sweet and Parker, developed a simple model for how steady-state reconnection might
work. For this, they used amodel that considers the plasma as a single conducting fluid,
using equations describing mass, momentum, and energy conservation, as well as an
induction equation for the magnetic field. This set of equations is commonly called the
resistivemagnetohydrodynamic (MHD) model. In this model, unlike the models we use
in this Thesis, the plasma is subject to diffusion effects caused by electrical resistivity
generated by collisions between particles.

The basic configuration of Sweet and Parker reconnection is shown on Fig. 1.2. Such
a two-dimensional picture qualitatively shows the key features of a stationary recon-
nection site — a current sheet (with out-of-plane current), magnetic-field lines before
and after reconnection (shown by the red and blue lines), a so-called diffusion region
(gray region) with a neutral point at the center, called the X-point (not shown on this
sketch), and the plasma flow (green arrows). The flow may be divided into an inflow
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1.2 Qualitative description of magnetic reconnection

diffusion region 

uout

u in

Lcs

csδ

Figure 1.2: Qualitative picture of Sweet-Parker reconnection. Credit: adapted from
Rhouni (2012)

converging towards the diffusion region and an outflow pointing away from the diffu-
sion region. Here, the newly reconnected magnetic field moves outward under its own
tension, accelerating the out-flowing plasma in the process. In the 2D Sweet-Parker
model of reconnection, the diffusion region is a rectangular domain with a length 𝐿cs,
and a width 𝛿cs. The reconnection rate refers to the magnetic flux reconnected per unit
time. As a first approximation this amounts to calculating the ratio of plasma velocities
upstream and downstream of the reconnection site,

𝑅rec =
𝑢in
𝑢out

. (1.9)

The Sweet and Parker analysis consists in applying mass continuity in 2D to the
diffusion region, to first obtain the relation

𝑢in𝐿cs ∼ 𝑢out𝛿cs. (1.10)

Therefore, the reconnection rate, can be approximated by what is commonly called the
aspect ratio of the current sheet 𝐴cs = 𝛿cs/𝐿cs.

We now consider the equation deduced from the electron momentum conservation,
called the resistive Ohm’s law, given by E + v × B = 𝜂j, where 𝜂 is the electrical
resistivity, j is the current density and v is the fluid velocity (the generalized Ohm’s law,
obtained from the complete equation of motion will be described in Section 1.3.2). Far
from the current sheet, where the current density is small, resistivity can be neglected.
However, inside the current sheet, the change of field-line connectivity takes place at
a point where the magnetic field is null. In addition, Sweet and Parker considered a
steady reconnection process, and for such a thing to be possible, the electric field must
be uniform on the domain. This gives the relations

𝐸 ∼ 𝑢in𝐵in ∼ 𝜂 𝑗, (1.11)

where the current density can be approximated by Ampère’s law 𝑗 ∼ 𝐵in/4𝜋𝛿cs.
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If the magnetic energy of the reconnecting field is almost entirely converted into ki-
netic energy of the out-flowing plasma, then energy conservation also requires equat-
ing the upstream magnetic pressure with the downstream dynamic pressure, which
leads to 𝐵2in𝑢in𝐿cs/4𝜋 ∼𝑚𝑖𝑛0𝑢

3
out𝛿cs. This implies a condition on the outflow velocity

𝑢out ∼

√
𝐵2in

4𝜋𝑚𝑖𝑛0
= 𝑣𝐴, (1.12)

where 𝑣𝐴 is the Alfvén speed. As already mentioned, using the approximation (1.10),
we can express the reconnection rate 𝑅rec = 𝑢in/𝑢out ∼ 𝛿cs/𝐿cs, while using (1.11), we
obtain the relation 𝑅rec ∼ 𝜂/4𝜋𝑣𝐴𝛿cs. This gives us the Sweet-Parker reconnection rate

𝑅rec ∼
(
𝜂

𝑣𝐴𝐿cs

)1/2
= 𝑆−1/2, (1.13)

where 𝑆 is the Lundquist number defined as the ratio of a global Ohmic diffusion time
to the global Alfvén time. In space plasmas 𝑆 is usually very large. Here are some
values taken from Ji & Daughton (2011):

- Magnetopause and solar corona: 𝑆 ∼ 1 × 1013,
- Solar wind: 𝑆 ∼ 3 × 1012,
- Sgr A∗ flares: 𝑆 ∼ 5 × 1020.

In plasma experiments, it can be smaller:
- ITER Tokamak: 𝑆 ∼ 6 × 108.

Consequently, the Sweet–Parker reconnection is usually too slow to account for some
weakly collisional and collisionless plasma phenomena. The typical example is the so-
lar flare. Simply considering the Sweet-Parker reconnection rate (1.13) in the corona
provides time scales (years) that are considerably larger than that observed for flares
(minutes).

Although the Sweet-Parker model has limitations, the features of the diffusion re-
gion is common to most reconnection problems.

The Petschek model

In 1964, Petschek (1964) introduced another reconnection model where he, instead,
reduced the length of the diffusion region, providing a much greater inflow speed
needed for fast reconnection. In his model, he overcame the elongation of the cur-
rent layers by invoking the appearance of standing shock waves that develop at the
edges of the current layer. The Petschek reconnection rate is many orders of magni-
tude greater than the Sweet–Parker rate and was the first model of fast reconnection
to be proposed. However, its mechanism was proved not to be reproducible in numeri-
cal simulations by Biskamp (1986), unless a non-uniform resistivity was accounted for
(Uzdensky & Kulsrud (2000).
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1.2 Qualitative description of magnetic reconnection

Figure 1.3: Sketch of magnetic-field lines of Dungey’s open magnetosphere model, in
the meridian plane. The two blue regions are the two main reconnection
sites. The plasma flow is indicated by the solid black arrows. Credit: adapted
from Eastwood et al. (2017).

Dungey’s model

A conceptual model of an open magnetosphere by Dungey (1961) addressed the
interaction between the magnetized interplanetary medium and the Earth’s magneto-
sphere. This interaction is sketched on Fig. 1.3. In this Figure, the two main reconnec-
tion regions are shown by gray squares.

The solar wind, near the Earth (at 1 AU from the Sun), is made of a plasma with
a lower density and magnetic-field strength than the magnetosphere. Together, they
constitute two differentmagnetizedmedia in interaction. The solar wind is transported
towards the Earth at hundreds of kilometers per second, a speed which is greater than
the local fast magnetosonic speed, and must slow down to wrap around the magne-
tosphere, which leads to the formation of standing shock in the magnetosheath. In
this region, a current sheet and reconnection exhausts are observable (e.g., Phan et al.
(2007)), allowing for a mixing of the two different magnetized background. The day-
side magnetosphere, which is a first main reconnection site, is characterised by hot
(1− 10 keV) but dilute plasma (𝑛 < 1 cm−3), which is composed mainly of protons and
electrons.

The combined action of the flow of the solar wind and shock on the dayside, drive
the newly reconnected field lines to accumulate in the tail of themagnetosphere, where
they reconnect a second time. This time, the jets are oriented towards the Earth and
towards the interplanetary medium. This acceleration of particles towards the Earth
leads to the formation of polar aurora. In the thin magnetotail, the plasma density is
about 1 cm−3 and goes down below 0.1 cm−3 in the magnetotail lobes.
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The tearing instability

On the experimental plasma side, reconnection began to attract attention due to
its interest in the magnetic confinement of fusion plasma in the Sawtooth instability,
during which the plasma current and density profiles periodically reorganize through
reconnection (von Goeler et al. (1974), Hastie (1997)). This interest led to one of the
most important developments in the theory of reconnection, when Furth, Killeen, and
Rosenbluth published their fundamental paper (Furth et al. (1963)). Compared to the
Sweet-Parker and Petchekmodels, inwhich the system is in a steady-state and the ques-
tion of the reason of the occurrence of reconnection is not addressed, they showed that
certain magnetic-field equilibria can be unstable to small perturbations, called tearing
modes that reconnect the field lines. A simple potential candidate for an instability that
changes the magnetic topology is a one-dimensional current sheet with a reversal in
the magnetic-field direction. Starting from this equilibrium magnetic field, the disper-
sion relation of an instability leading to spontaneous reconnection was derived. This
instability tears and reconnects the field lines, hence the name of the tearing instability.

Collisionless reconnection

The Sweet-Parker and Petschek reconnection models are resistive-MHD models, in
which the plasma resistivity is provided by collisions between the charged particles.
However, as we will present in the following Sections, the plasma in the magneto-
sphere and solar wind, which regularly undergoes reconnection, is so dilute that col-
lisions between particles are extremely infrequent. This means that this model is not
applicable to many plasmas. It was shown in a series of papers by Coppi et al. (1976),
Ottaviani & Porcelli (1993) and Drake & Lee (1977) that, in the collisionless regime, two-
fluid effects driving reconnection can provide a way for achieving fast reconnection. The
width of the reconnection region in the collisionless regime typically depends on the
length of the electron skin depth (1.2), defined as the depth in a plasma to which elec-
tromagnetic radiation can penetrate. The resulting inertial reconnection rate, obtained
by a scaling proposed by Wesson (1990), is given by 𝜏𝑖 ∼ 𝜏𝐴𝐿cs/𝑑𝑒 , and is much faster
than its counterpart in the resistive models, obtained with the Sweet-Parker scaling
and given by 𝜏𝑆𝑃 ∼ 𝜏𝐴

√
𝑆 . In Wesson (1990), the Authors considered parameters of an

experiment donewith the JET tokamak, given by 𝑆 ∼ 9×106,𝑑𝑒 ∼ 10−3 m−1, 𝜏𝐴 ∼ 10−6 s
and 𝐿cs ∼ 0.3 cm. experimental conditions, the resistive time scale is 𝜏𝑆𝑃 ∼ 3 × 10−3 𝑠
and the inertial reconnection time scale is 𝜏𝑖 ∼ 3 × 10−4 𝑠 which is much closer to the
collapse times observed in JET due to reconnection, of the order of ∼ 10−4 𝑠 .

After the above mentioned pioneering works, the modelling of magnetic reconnec-
tion evolved enormously following different directions and approaches. Nevertheless,
such early models are still an important reference and, also in the context of this Thesis,
use will be made of concepts such as the Sweet-Parker reconnection.
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1.2.2 Examples of magnetic reconnection events
Observations of reconnection in space plasmas

The magnetosphere represents a natural laboratory for the study of reconnection
in the immediate proximity of our planet. Coherent structures and reconnection sites
have been directly studied in much detail in near-Earth plasmas by space missions,
including Pionneer 5 (Coleman et al. (1960)), Explorer 12 (Freeman Jr. (1964)), or Ex-
plorer 14 (Cahill Jr. (1966)). In 2000, the four satellites Cluster (Escoubet et al. (2001))
were launched, flying in a tetrahedral configuration with adjustable inter-spacecraft
distance. These multi-spacecraft missions allowed one to measure plasma fluctuations
and particle spectra in the solar wind and magnetosphere. In 2015 the Magnetosphere
Multi Scale (MMS) mission was launched. This mission was specifically designed to
identify ion and electron diffusion regions, as well as to study the impact of small-scale
plasma turbulence on the acceleration and heating of particles. It was indeed able to ob-
serve electron diffusion regions in the magnetosphere, with and without strong guide
field, as well as in the magnetotail (Torbert et al. (2018)).

The two main reconnection sites are therefore the dayside and the nightside of the
magnetosphere. However, recently, high-resolution measurements from MMS have
been used to provide evidence of reconnection driven by electron dynamics also in
the magnetopause (Burch et al. (2016)). In addition, it turns out that magnetopause
reconnection often occurs with a non-negligible magnetic guide field (Pu et al. (2007)).

We note that reconnection is not unique to Earth’s magnetosphere and has been
observed for other planets of the solar system. Indeed, some signatures have been
observed around Mercury, which has a weak planetary magnetic field (Slavin et al.
(2009)).

The many space missions mentioned above also make it possible to probe the solar
wind. Some survey of the Wind spacecraft observations revealed the presence of re-
connection in the solar wind with large guide field (Gosling et al. (2007a)) as well as
large plasma 𝛽𝑒 (Gosling (2007)).

Observations in experiments

Recently, dedicated experiments for controlled reconnection in laboratories allowed
to probe different plasma regimes. This is the case, for instance, of the MRX (Magnetic
Reconnection Experiment), and the upcoming FLARE (Facility for Laboratory Recon-
nection Experiments) devices. In these experiments, in response to external drive coils,
a current sheet forms and extends between two flux cores. A simulation from Ji et al.
(2022) is shown on figure 1.4 to depict the scenario. In this thinning current sheet,
tearing instabilities grow and become unstable, forming eventually several X-points.

After this brief survey, it is not surprising that magnetic reconnection is nowadays
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Figure 1.4: Numerical simulation of the Facility for Laboratory Reconnection Experi-
ments, which illustrates the reconnection driven by inductive coils. Credit:
Ji et al. (2022).

actively studied on dedicated laboratory experiments and has been the main purpose
of some spacecraft missions. The main problems are that, this phenomenon involves
many scales, and the rates at which magnetic energy is converted into kinetic energy,
obtained by different models, often fail to account for the experimental evidence and
observations.

1.3 Quantitative description of magnetic
reconnection

1.3.1 Topology and flux conservation
Two important notions to define reconnection are the magnetic topology and the

magnetic flux conservation properties. The former means that two fluid elements con-
nected by a magnetic-field line at a given time, will be connected by a field line at every
subsequent time. The latter means that the magnetic flux through any surface, whose
boundary moves with the plasma velocity, is constant in time, or, in other words, that
the magnetic field is frozen-in the plasma.

Topology conservation

We consider a magnetic field (but this definition of topology conservation is applica-
ble to any vector field), B(x, 𝑡), represented as the derivative of a flow, F𝐵 (x, 𝑡, 𝑠) with
F𝐵 (x, 𝑡, 0) = x, given by

𝜕F𝐵 (x, 𝑡, 𝑠)
𝜕𝑠

= B(F𝐵 (x, 𝑡, 𝑠), 𝑡), (1.14)

12
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y' = Fv(F              , t, t0)

= FB(F             , t, s')
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v

B
B

v

B(x, t0, s)

B(x, t0, s)
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Figure 1.5: Scheme of the transport of B by v from its position at time 𝑡0 to its position
at time 𝑡 . Credit: Birn & Priest (2007). The original picture has been modified.

such that F𝐵 (x, 𝑠, 𝑡) is parameterized by 𝑠 at a fixed time 𝑡 and maps the points x along
the field lines.

The same procedure can be applied to a fluid moving with a velocity field v(x, 𝑡)
that can be described by a flow F𝑣 (x, 𝑡, 𝑡0) with F𝑣 (x, 𝑡0, 𝑡0) = x such that

𝜕F𝑣 (x, 𝑡, 𝑡0)
𝜕𝑡

= v(F𝑣 (x, 𝑡, 𝑡0), 𝑡) . (1.15)

The perfect transport of the field lines of B by the generating vector previously defined
v can be described, in terms of the corresponding flows, by the condition

F𝑣 (F𝐵 (x, 𝑡0, 𝑠), 𝑡, 𝑡0) = F𝐵 (F𝑣 (x, 𝑡, 𝑡0), 𝑡, 𝑠′). (1.16)

The condition (1.16) describes how a point x will be mapped along the field line while
this field line is transported by the flow of v from a time 𝑡0 to 𝑡 . Figure 1.5 shows the
transport of a field line from its initial position 𝑡0 to an arbitrary time 𝑡 . When deriving
by 𝑡 and 𝑠 and using the definitions 𝜕𝑡F𝑣 = v and 𝜕𝑠F𝐵 = B we obtain the condition

𝜕B
𝜕𝑡

+ v.∇B − B.∇v = 𝜆B, (1.17)

where 𝜆 = 𝜕2𝑠′/𝜕𝑠𝜕𝑡 is a free function and accounts for the fact that, in general, we
allowed for a different parametrization, in terms of the parameter 𝑠′ of the field line of
B mapped at the time 𝑡 .

In conclusion, the evolution of a smooth vector field B(x, 𝑡) conserves the topology
if a generating vector field v(x, 𝑡) and a scalar function 𝜆(x, 𝑡) exist and satisfy the
condition (1.17) (Hornig & Schindler (1996)).

The right-hand side (r.h.s) of (1.17) vanishes at the null points of the field, so topology
conservation, according to this definition, requires the preservation of points where
the field vanishes. For a smooth divergence-free field, like the magnetic field, this
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Figure 1.6: Flux passing through an arbitrary surface 𝑆 , with contour 𝐶 , moving with
the velocity v.

equation becomes,
𝜕B
𝜕𝑡

− ∇ × (v × B) = 𝜆B. (1.18)

If we now consider the case inwhichB is amagnetic field, for which Faraday’s equation
𝜕𝑡B = −∇ × E holds, we can write the final condition for the conservation of the
topology

∇ × (E + v × B) = −𝜆B. (1.19)

Flux conservation

In a conducting fluid , we consider an arbitrary surface 𝑆 with normal n and bounded
by a curve𝐶 , which is moving with the velocity v of the fluid. The flux passing through
it remains constant in time:

𝑑

𝑑𝑡

ˆ
𝑆
n.B𝑑𝑆 =

ˆ
𝑆

(
𝜕B
𝜕𝑡

− ∇ × (v × B)
)
.n𝑑𝑆. (1.20)

The first contribution in (1.20) comes simply from the time dependence of themagnetic
field, while the second term is the part of the flux swept out of the contour 𝐶 due to
the surface motion. To conserve the flux, 𝑑𝑡

´
𝑆 n.B𝑑𝑆 = 0, one finds that the condition

is
𝜕B
𝜕𝑡

− ∇ × (v × B) = 0. (1.21)

This condition can be seen as a particular case of the condition for the conservation
of the topology of B (1.18). Consequently, it is easy to see that if there is a flux-
conserving velocity then this velocity is also field-line conserving. Hence, a break
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down of topology conservation results in a non-flux conserving velocity. For a mag-
netic field, using Faraday’s equation, the magnetic flux conservation can also be writ-
ten as −

´
𝑆 (∇ × (E + v × B)) .n𝑑𝑆 = 0, so that the condition (1.21) can be expressed

as
∇ × (E + v × B) = 0. (1.22)

Summary

∇ × (E + v × B) = 𝜆B ⇒ Topology conservation, (1.23)

∇ × (E + v × B) = 0 ⇒ Flux conservation (1.24)

Since magnetic reconnection requires only a change in the magnetic connectivity of
plasma elements, for any form of reconnection, a nonideal term R, whose curl is not
in the form ∇×R = −𝜆B, is required for the topology of the magnetic field B not to be
preserved by the flow v. Such a non-ideal term would appear on the right-hand side
of the following expression

E + v × B = R. (1.25)

In two dimensions, which is the situation considered in this Thesis, reconnection can
take place if the magnetic field possesses a hyperbolic point, referred to as X-point,
and such non-ideal term is non-vanishing in a region including the hyperbolic point.
There must be also a velocity field v crossing the magnetic-field lines passing by the X-
point, called the separatrices. Fig. 1.7 shows the evolution of two magnetic-field lines
and four fluid elements represented by the points A, B, C and D. These fluid elements
drift with a velocity represented by the green arrows. This velocity field crosses the
separatrices and allows a change of connectivity between the fluid elements. Note
that if this term is represented by the gradient of a function 𝜙 , i.e. R = ∇𝜙 , then
it will not cause reconnection since its curl will be zero. In such case, indeed, there
exists no global smooth velocity field that can satisfy (1.25) in the non-ideal region and
coincide with the velocity v = E×B/|B|2 in the ideal region where the non-ideal term
R vanishes (Schindler (2006)). The situation remains similar in the case where a guide
field is present and the projection of themagnetic field in the plane perpendicular to the
guide field still presents X-points. The pure 3D case, on the other hand, is considerably
more complicate (Schindler (2006); Priest & Forbes (2000)). Furthermore, if R = w × B,
then we obtain the induction equation 𝜕B/𝜕𝑡 − ∇ × (v − w) × B = 0. This is not
considered as a magnetic reconnection but often called a slippage.

In conclusion, not all R actually do lead to magnetic reconnection and the following
part will be dedicated to the description of some situations for some particular choices
of R.
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Figure 1.7: Time evolution of antiparallel magnetic-field lines (blue lines), as well as
fluid elements that are frozen (points A, B, C, D) near a magnetic hyperbolic
point, with a velocity field crossing the reconnection site (green lines).

1.3.2 What can drive reconnection: Ohm’s law
In this section, we apply the general concepts introduced in Section 1.3.1 to the

plasma magnetic field.
We will present the different dissipation mechanisms, that are susceptible to break

the frozen-in condition. These mechanisms appear in the generalized Ohm’s law, de-
rived from the equation of electron motion, and are associated with an energy release
at specific spatial scales. In principle, for reconnection to take place, it is sufficient that
these non-ideal effects, normally negligible at large scales, become locally dominant
in the diffusion region.

The resistive Ohm’s law, as was introduced to describe the Sweet-Parker reconnec-
tion in the resistive-MHD context, is not valid at all scales. Starting from the momen-
tum equation of motion for the electron fluid we can obtain the following generalized
Ohm’s law:

E + v𝑖 × B = 𝜂j + j × B
𝑛𝑒

− 1
𝑒𝑛𝑒

∇.P𝑒 −
𝑚𝑒

𝑒

dv𝑒
d𝑡
, (1.26)

where v𝑖 ≃ u is the ion velocity, which, nearly coincides to that of the center-of-mass
fluid velocity u, j is the current density, 𝑛0 is the particle density, 𝑚𝑒 is the electron
mass, and P𝑒 is the electron pressure tensor. In the last term, the derivative is defined
as d/d𝑡 = 𝜕/𝜕𝑡 + v𝑒 · ∇. This equation is part of the two-fluid description of the plasma
and must obviously be accompanied by the equations for mass continuity, the ion mo-
mentum, and the pressure tensors and by closure relations.

Equation (1.26) is of the form of Eqs. (1.25). On the r.h.s of (1.26), the first term is
called the resistive term and is due to electrical resistivity. The second term is the Hall
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term and has to do with the fact that electrons and ions, at sufficiently small scales, can
decouple and move separately. The third term is due to the force associated with the
divergence of the electron pressure tensor. Finally, the last term comes from electron
inertia. This equation can be greatly simplified by noting that not all of the terms are
important at every scale. They are all associated with different microscopic length-
scales that were introduced in Section 1.1. In addition, some of the terms on the r.h.s
can break the frozen-flux condition, while others do not. We will see which of them do
so, by moving from one scale to another and trying to give a (as) complete (as possible)
overview (actually not so complete because we will consider 𝜌𝑖,𝑒 ∼ 𝑑𝑖,𝑒 , which implies
𝛽𝑖,𝑒 ∼ 1).

For 𝐿 ≫ 𝜌𝑖,𝑒, 𝑑𝑖,𝑒 :

At scale lengths larger than the ion gyro-radius and skin depth, when 𝐿 ≫ 𝜌𝑖,𝑒, 𝑑𝑖,𝑒 ,
the MHD equations (single-fluid description) are found to be appropriate to describe
phenomena. At these scales, the three last terms in the r.h.s of (1.26) can be ignored.
We must then decide if the mean free path of the particles is large (or not) compared
to this characteristic length, for neglecting or not the electrical resistivity. We will
first start by assuming a very large mean free path, so collisions exist, but they are not
frequent enough to be significant. The resulting equation is the ideal Ohm’s law,

E + v𝑖 × B = 0, ⇒ 𝜕B
𝜕𝑡

= ∇ × (v𝑖 × B), (1.27)

describing a perfectly conducting plasma. This induction equation contains only an ad-
vective term and has no dissipative term, so no reconnection is possible. This property
is extremely important because (1.27) is always valid on very very large scale. Mean-
ing that, to an excellent approximation, on a large scale, magnetized structures do not
mix their connectivity.

If we now take into account the collisions between the particles, we obtain theOhm’s
law considered in the resistive MHD, and which leads to the following induction equa-
tion:

E + v𝑖 × B = 𝜂j, ⇒ 𝜕B
𝜕𝑡

= ∇ × (v𝑖 × B) + 𝜂ΔB. (1.28)

The second term on the r.h.s can break the frozen-flux condition. By equating the left-
hand side (l.h.s) with the diffusion term we can obtain the diffusion time scale 1/𝜏𝐷 ,

𝜏𝐷 =
𝐿2

𝜂
, (1.29)

with ∇ scaling as 1/𝐿 and 𝜕/𝜕𝑡 scaling as 1/𝜏𝐷 . The importance of the resistivity is
usually evaluated by comparing 𝜏𝐷 with the Alfvén time, defined as a time scale of a
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typical MHD process. This comparison leads to the definition of the Lundquist number,
that we already introduced, 𝑆 = 𝜏𝐷

𝜏𝐴
= 𝐿𝑣𝐴

𝜂 , with 𝑣𝐴 = 𝐵0/
√
4𝜋𝑚𝑖𝑛0 = 𝜔𝑐𝑖𝑑𝑖 , the Alfvén

speed.

This plasma description is certainly appropriate for some astrophysical environ-
ments that might be weakly conllisional (𝜆𝑚𝑓 𝑝 ≲ 𝐿), as for instance

- Intra-cluster medium: 𝜆𝑚𝑓 𝑝 ∼ 1 kpc for a system length of about 𝐿 ∼ 100 kpc

- Sgr 𝐴∗: 𝜆𝑚𝑓 𝑝 ∼ 0.01 pc for 𝐿 ∼ 0.1 pc.
However, as previously mentioned, many of the environments in which reconnection
occurs constitute collisionless plasmas. Therefore, the resistive MHD model suffers
from the fact that the scale associated with the resistivity is very small compared to the
characteristic dimensions of the environments spatial locations where reconnection is
assumed to occur.

For 𝐿 ∼ 𝑑𝑖, 𝜌𝑖

At scales 𝐿 ∼ 𝑑𝑖, 𝜌𝑖 , where ions and electrons cannot be considered to move together,
the Hall term and the electron pressure tensor become important.

The Hall term will introduce a slippage of the fluid, related to the motional separa-
tion between electrons and ions. In this scenario, the fluctuations are too small and
fast to affect the ions so they are no longer frozen-in to the magnetic-field lines. But
the electrons, thanks to their small mass, can still create a perfectly conducting cur-
rent, and therefore constitute the only frozen species. The magnetic field is frozen-in
the electron fluid velocity, and not in the plasma bulk velocity, therefore the Hall term
is ideal and cannot break the frozen-flux in condition. However, when taken into ac-
count, along with a non-ideal term, it can greatly amplify the reconnection process. Its
importance was pointed out by Birn et al. (2001). The authors investigated numerically
different expressions of the Ohm’s law (1.26) and it was found that all the codes includ-
ing the Hall effect provided higher reconnection rates and behaved similarly. Figure
1.8 shows the results of the Geospace Environmental Modeling (GEM) of magnetic
reconnection challenge from Birn et al. (2001).

Since applying the curl operation makes all irrotational contributions vanish, leav-
ing just the rotational terms contributing to the induction equation, only the off-diagonal
elements of the electron pressure tensor, or non-barotropic pressure (𝑃𝑒 ≠ 𝑃𝑒 (𝑛)), will
break the flux conservation. Indeed, if the divergence of the pressure tensor can be
written in the form of the gradient of a scalar (polytropic law for example) this contri-
bution, just as the Hall term, will not be able to drive reconnection. The off-diagonal
components of the electron pressure tensor, on the other hand, can in principle cause
reconnection, and can be attributed to nongyrotropic effects (FLR effects).
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Figure 1.8: Results of the GEM challenge, where full particle, hybrid, Hall MHD, and
resistive MHD were tested to investigate the effects of the nonlinear terms
described in the generalised Ohm’s law. Credit: Birn et al. (2001).

For 𝐿 ∼ 𝑑𝑒, 𝜌𝑒

At the scale 𝐿 ∼ 𝑑𝑒, 𝜌𝑒 , the electron inertia term, becomes important due to the
non-negligible mass of the electrons that makes their response to the electric field not
instantaneous and thus prevents the plasma from being a perfect conductor. This ef-
fect can drive reconnection, and allows to reach growth rates2 of the tearing mode that
are faster than exponential (Ottaviani & Porcelli (1993)).

Collisionless diffusion region

Field lines are frozen to the plasma everywhere in a global region where an ideal
flow drives the field lines to a small localized diffusion region, in which they recon-
nect. When several non-ideal effects are taken into account, given the multiple spatial
scales involved with two-fluid physics, the description of the diffusion region has to
be adapted into a hierarchy of sub-regions. In these sub-regions, each term of the
generalized Ohms law will gain or lose its importance.

The internal structures are shown on Fig. 1.9, taken from Zweibel & Yamada (2009).
On this figure, there is a large and constant guide field in the out-of-plane direction.
The presence of a strong guide field tightly couples the electron and ion motions ev-
erywhere outside the diffusion regions.

In the ion-diffusion region, at a distance of about 𝑑𝑖 from the X-point, ions and elec-
trons are decoupled. The electrons continue to flow ideally toward the X-point until

2The growth rate of the tearing instability is related to the amount of magnetic flux reconnected
per unit time.
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Figure 1.9: Sketch of the collisionless reconnection. Credit: Zweibel & Yamada (2009).

they enter the thin electron diffusion region, where field line reconnect. In the elec-
tron diffusion region, around the smallest plasma scales, 𝑑𝑒 , a decoupling between the
electrons and the magnetic field is attributed to the non-instantaneous response of
the electrons to electric field fluctuations, due to their non negligible mass. Therefore,
the ion and electron diffusion regions are characterized by nongyrotropic ions and
electrons, respectively. The ion diffusion region is larger than the electron one since
stronger magnetic fields are required to make the ions gyrotropic.

The current resulting from the decoupling of ions and electrons leads to the appear-
ance of the Hall magnetic field (out of plane magnetic field on Fig. 1.9). In the solar
wind, the Hall out‐of‐plane magnetic field has been observed (Mistry et al. (2016); Ya-
mada et al. (2010)), and the Hall effect is assumed to take place on scales of about 𝑑𝑖 .

1.4 Thesis overview
After having recalled some basic concepts of plasma physics and introduced the phe-

nomenon of magnetic reconnection, we provide here an overview of the next chapters,
where the original results will be presented. In particular, we summarize here the mo-
tivations for treating the different problems concerning the theory of current-sheet
instabilities in collisionless plasmas, which make the object of this Thesis.

Chapter 2: Modelling of the problem

A considerable progress in the understanding of the collisionless tearing instability
has been achieved through the fluid description of plasmas. In particular, the fluid
framework is less costly in terms of computational resources, and physically more in-
tuitive when compared to the kinetic framework. Also, in general, it is more suitable
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for analytical treatment. Thanks to the model reductions, the fluid and gyrofluid3 ap-
proaches allow effectively for a great simplification of the system, enabling one to iso-
late relevant effects. So far, fluid modelling has afforded a good understanding of the
roles of many effects, as for instance, electron inertia, electron temperature, electron
parallel incompressibility, and finite-ion-Larmor radius effectd (e.g. Aydemir (1992);
Ottaviani & Porcelli (1993); Schep et al. (1994); Cafaro et al. (1998); Grasso et al. (1999);
Del Sarto et al. (2006); Fitzpatrick & Porcelli (2007); Grasso & Tassi (2015)).

This Thesis aims to extend this hierarchy of investigation to other effects, such as the
electron equilibrium temperature anisotropy and finite-electron-Larmor-radius effects.
We therefore conducted this work through such type of modelling method. Indeed,
the study is carried out by means of two different gyrofluid models that have been
derived from gyrokinetic equations, assuming an isothermal and a quasi-static closure,
respectively.

Chapter 2, is a transitional chapter that aims to introduce the two models employed
in this thesis and their numerical implementation. In order to better detail the regimes
of validity of these models, we present the major steps of their derivations. For that, we
make a brief review of what the gyrokinetic, and therefore the gyrofluid, approach can
describe, by presenting the gyrokinetic ordering. We then explain the two different
closures applied on the gyrofluid moments. Finally, we present and discuss the main
assumptions that allowed for the reduction of the two models involved in this work.

Chapter 3: The tearing instability with background temperature anisotropy

A feature of collisionless plasmas is that they can exhibit particle distribution func-
tions that are anisotropic with respect to the direction of the magnetic field. This can
lead in particular to anisotropic temperature distributions. A natural question in the
theory of collisionless plasmas concerns then the influence of temperature anisotropy
on characteristic features of reconnection, such as the linear growth rate of the tearing
mode.
The influence of equilibrium temperature anisotropy on the reconnection growth rate
has actually been the object of several studies (Forslund (1968); Chen & Palmadesso
(1984); Shi et al. (1987); Chiou & Hau (2002); Karimabadi et al. (2004); Daughton &
Karimabadi (2005); Matsui & Daughton (2008); Quest et al. (2010)) carried out with ki-
netic and fluid approaches. Such studies agree in predicting that temperature (and in
particular electron temperature) anisotropy enhances the tearing growth rate, mean-
ing that the growth rate increases as the ratio between the perpendicular and parallel
temperature increases, where perpendicular and parallel are referred to the direction
of the equilibrium magnetic field. Such studies, on the other hand, consider the case
of absent or moderate magnetic guide field. The investigation of Shi et al. (1987) also

3Gyrofluid models include finite-Larmor-radius effects. The concept is presented in more detail in
Chapter 2.
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indicates that, when the amplitude of the guide field is increased from zero to 2.5 times
the amplitude of the equilibrium field in the reconnection plane, the enhancement of
the growth rate gets weakened.

In Chapter 3 we present an analytical and numerical investigation of the influence
of electron temperature anisotropy on the reconnection growth rate in the opposite
regime, i.e., the regime of strong guide field, which is still little explored. For this,
we use an analytical approach to derive a dispersion relation, and test this dispersion
relation against numerical simulations.

Chapter 4: The tearing instability with finite 𝛽𝑒 and 𝜌𝑒

Fluid models, in general, neglect the effects of the electron Larmor radius, which
makes it impossible to describe phenomena taking place at microscopic scales compa-
rable to the electron thermal gyro-radius, 𝜌𝑒 . Gyrofluid models are effective tools to fill
this gap. Indeed, although obtained by truncating the infinite hierarchy of equations
evolving themoments of the gyrokinetic equations, gyrofluidmodels, unlike fluidmod-
els, allow for finite Larmor radius effects and are thus valid on thermal Larmor radius
scales.

Electron FLR effects arise from the combination of electron inertia and a finite 𝛽𝑒
parameter. The study of reconnection for a finite 𝛽𝑒 can be relevant especially for plas-
mas with relatively large temperatures, such as in the Earth magnetosheath, where
some 𝛽 > 1 values are observed, in the presence of a guide field, during reconnection
events (Man et al., 2020; Eastwood et al., 2018). Some studies of the tearing instability
for finite 𝛽𝑒 have been carried out, such as Numata & Loureiro (2015) in a gyrokinetic
framework. In this Reference, although two-fluid effects were accounted for, the resis-
tivity was considered as the element driving reconnection.

Also, most of the available reduced gyrofluid models, to the best of our knowledge,
neglect the perturbations of the magnetic field along the direction of a guide field,
the latter typically corresponding to the mean magnetic field in astrophysical plasmas
(e.g. Schekochihin et al. (2009)) or to an imposed external field in laboratory plasmas.
However, even in the case of a strong guide field, such perturbations can be relevant
in some nearly collisionless environments as the solar wind, which motivates their
inclusion in an analysis of collisionless reconnection.

In Chapter 4, we make use of a gyrofluid model to study the linear and nonlinear
evolution of the tearing instability with finite 𝛽𝑒 effects, and, in particular, electron
FLR, in a collisionless plasma with strong guide field. A new dispersion relation of the
tearing instability is derived for the case 𝛽𝑒 = 0, which contains a corrective term with
respect to a dispersion relation already existing (Porcelli (1991)), and tested against
numerical simulations.
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Chapter 5: The collisionless plasmoid instability

It is well established that the secondary instability of thin current sheets, known as
the plasmoid instability, has a fundamental impact on the reconnection rate (Daughton
et al. (2009); Bhattacharjee et al. (2009)). Indeed, even in the resistive MHD frame-
work, the development of plasmoids in the reconnection layer induces a fast magnetic
reconnection regime characterized by a reconnection rate that can exceed the esti-
mates based on the Sweet-Parker (SP) theory (Sweet (1958); Parker (1957)) by several
orders of magnitude. In collisional current sheets, it has been shown that plasmoids
develop when the Lundquist number exceeds the threshold value 𝑆★ ∼ 104 (Biskamp
(1986)). The other quantities are the plasma resistivity 𝜂, the speed of light 𝑐 , and
the Alfvén speed 𝑣𝐴. The threshold value on the Lundquist number, 𝑆★, separates
the Sweet-Parker regime from the plasmoid-mediated regime of collisional reconnec-
tion. In addition, it controls the dimensional reconnection rate 𝑅rec in the plasmoid-
mediated regime, 𝑅rec ∼ 𝑆−1/2★ 𝑣𝐴𝐵up (Huang & Bhattacharjee (2010); Uzdensky et al.
(2010); Comisso et al. (2015a); Comisso & Grasso (2016)), where 𝐵up is the reconnecting
magnetic field. The extension of the resistive reconnection regime with the inclusion
of the ion dynamics associated with the ion sound Larmor radius, 𝜌𝑠 , or the ion iner-
tial length, 𝑑𝑖 , complicates the picture. The community that studies the formation of
plasmoids often represents the results in the form of a 2D parameter phase diagram to
explain when the generation of magnetic islands occurs, and better understand the role
of the macroscopic scale (𝑑𝑖 or 𝜌𝑠 ) and resistive scale (Ji & Daughton (2011); Daughton
& Roytershteyn (2012); Huang & Bhattacharjee (2013); Karimabadi & Lazarian (2013);
Comisso et al. (2015b); Le et al. (2015); Loureiro & Uzdensky (2015); Bhat & Loureiro
(2018)).

In contrast, the marginal stability of reconnecting current sheets in the purely colli-
sionless regime has seen relatively little investigation. This subject was approached in
Ji & Daughton (2011), in which it is argued that, below the scales 𝑑𝑖 or 𝜌𝑠 , no plasmoids
were formed. Yet, it is acknowledged that reconnection in nature is often driven by
collisionless effects beyond the resistive MHD description.

In Chapter 5, we investigate a phase space described by the two kinetic scales 𝑑𝑒
(electron inertial length) and 𝜌𝑠 , compared to the current length 𝐿cs. We show how
the aspect ratio of the marginally stable reconnection layer depends on these relevant
kinetic scales. We identify the conditions for the marginal stability of a reconnecting
collisionless current sheet that forms self-consistently during the nonlinear evolution
of a tearing-unstable configuration. For this study we use the two-fluid collisionless
model presented in the previous section. In a second part, we use a gyrofluid model
to investigate the role of 𝛽𝑒 and of the finite-electron-Larmor-radius on the plasmoid
instability, and compare these results with a gyrokinetic approach. This will help to
validate the above mentioned results on the plasmoid instability and also to identify
possible limitations of the gyrofluid approach.
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The vast parameter space of the plasma physics inevitably leads to the derivation of
several models to address specific multiscale problems such as reconnection.

In this Chapter, we briefly review some different approaches, starting with the sta-
tistical description. We gradually introduce the hypotheses that are applied to reach
our final destination: the two systems of gyrofluid equations that are used for the re-
connection analysis in this Thesis.

To do so, we start by introducing the complete description of the single particle
motion, called the Klimontovich-Maxwell system, which is the richest one in informa-
tion but also the most complex one. We briefly explain how it is connected to the
continuum kinetic description, called the Vlasov-Maxwell equations. This system gov-
erns the evolution of distribution functions, representing the probability density of
finding a particle of the plasma at a given point in phase space, coupled with the evo-
lution of electromagnetic fields. The continuum kinetic models on a 6-dimensional
phase space are now numerically solvable, but require substantial computational re-
sources. On the other hand, in the presence of a uniform strong guide field, strong
anisotropies are introduced and a possible reduction consist in averaging out the par-
ticle gyro-motion from the Vlasov equation, thus leading to a 5-dimensional reduced
problem (see Brizard & Hahm (2007) and also Frieman & Chen (1982); Howes et al.
(2006)). This is the so-called gyrokinetic modelling, an example of which is presented
in this Chapter.

Although reduced by one dimension in phase space, the gyrokinetic model is still
complex and computationally demanding. In order to lessen the computational ex-
pense of the gyrokinetic simulations, alternative gyrofluid methods have been devel-
oped (Brizard (1992); Beer & Hammett (1996); Strintzi et al. (2005); Madsen (2013);
Keramidas Charidakos et al. (2015); Tassi (2019); Tassi et al. (2020)) and operate instead
on the velocity moments, corresponding to macroscopic quantities, of the gyrokinetic
set of equations. Compared to the Vlasov-Maxwell system, gyrokinetic models are
valid for frequencies much less than the lowest cyclotron frequency in the system, and
evolve distribution functions of gyrocenters. These can be approximately interpreted
as point-like-particles with respect to which the actual plasma particles execute their
gyro-motion.

25



2 Plasma modeling

In this Thesis we choose essentially a gyrofluid/fluid approach, with the expectation
that this yields models that include relevant kinetic effects, while remaining practical
for realistic simulations and physical intuitions. The reduction from gyrokinetic to gy-
rofluid for obtaining these models was carried out in detail in the articles Tassi (2019);
Tassi et al. (2020); Granier et al. (2021). The resulting equations correspond to mass
and momentum conservation and describe the evolution of the gyrocenter moments,
such as the gyrocenter density, velocity and the electromagnetic fields. Despite the
fact that these macroscopic quantities hold less information compared to distribution
function, they are more intuitive to understand. The gyrofluid methods, however, en-
counter inevitably a closure problem. In this Thesis, the two models employed orig-
inate from different closures, namely an isothermal closure and a quasi-static closure.
These closures were chosen to be suitable for preserving the Hamiltonian structure of
the system, and are presented in Appendix A.

To solve the equations of the gyrofluid model, a code used in Tassi et al. (2018) and
Grasso et al. (2020) has been adapted to the new equations to include the gyroaverage
operators and the parallel perturbation of the magnetic field.

In this Chapter, our goal is to indicate the key stages of the derivation, in order
to present the validity regime of our models. The model with an isothermal closure
is presented in Sect. 2.3, while the model with a quasi-static closure is presented in
Sect. 2.4. Finally, in Sec. 2.6 we present the numerical implementation of the gyrofluid
model with isothermal closure and the set up of the tearing instability, used to study
reconnection.

Some text of this Chapter also appear in Granier et al. (2021) and Granier et al. (2022a).

2.1 Kinetic descriptions

2.1.1 Kinetic equations
The most complete, description of a system of 𝑁 particles in a volume 𝑉 , consists

of describing the coordinates x𝑖 (𝑡) and the velocity v𝑖 (𝑡) of all the particles over time.
We introduce a microscopic distribution function, fmicro(x, v, 𝑡), which characterizes
the number of particles found at a time 𝑡 in the volume of phase space d3xd3v, given
by d𝑁 = fmicro(x, v, 𝑡)d3xd3v. The function fmicro is called the Klimontovich distribution
function, and can be expressed as the product of a Dirac functions for all the coordinates
of the set of particles

fmicro(x, v, 𝑡) =
𝑁∑
𝑖=1

= 𝛿 (x − x𝑖 (𝑡))𝛿 (v − v𝑖 (𝑡)), (2.1)

where, 𝛿 (x) = 𝛿 (𝑥)𝛿 (𝑦)𝛿 (𝑧) is the Dirac function in three dimensions.
In the case of a gas of charged particles, where only electromagnetic forces are con-
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sidered, the equation of conservation of particles and momentum in the phase space,
can be written

𝜕fmicro

𝜕𝑡
+ v · ∇fmicro +

𝑞𝑠
𝑚𝑠

(
Emicro +

v × Bmicro

𝑐

)
· 𝜕fmicro

𝜕v
= 0, (2.2)

called the equation of Klimontovich. The fields Emicro(x, 𝑡) and Bmicro(x, 𝑡) are the
exact microscopic fields, and result from the superposition of the external fields and
the self-consistent fields generated by the other particles and acting on the considered
particle at the time 𝑡 . When averaged on spatial scales larger than the average distance
between particles, but small compared to the Debye length on which electric potentials
are screened by the plasma, they give the macroscopic fields ⟨Emicro⟩ = E, ⟨Bmicro⟩ = B.

The Klimontovich equation retains all information about the microstate of a system
and contains the exact trajectories of all particles. This is far too much information
to be practical, and it is much more convenient to work with an averaged distribution
function, ⟨fmicro⟩ = f𝑠 . The ensemble average of fmicro is called the particle distribu-
tion function. Using this average and neglecting binary interactions between discrete
charged particle, a new equation can be written, called the Vlasov kinetic equation

𝜕f𝑠
𝜕𝑡

+ v · ∇f𝑠 +
𝑞𝑠
𝑚𝑠

(
E + v × B

𝑐

)
· 𝜕f𝑠
𝜕v

= 0. (2.3)

It was proposed by Anatoly Vlasov in 1945 to give a theoretical explanation of plasma
oscillations, and is currently the basis of kinetic models for particles bound by long-
range forces.

Since we are interested in collisionless plasmas, for which the typical length is much
smaller than the collision mean free path, we will neglect the collisional operator, that
arises from averaging the scalar product between the Lorentz force and the velocity
gradient of fmicro, and originates from particle collisions that are interactions at small
distances of the order of a Debye length. If the collisional effects were to be considered,
they would be approximated by the so-called collision operator, which would gener-
ally appear in the right hand side of (2.3).

The kinetic equation (2.3) must be completed using equations for the mean fields. A
self-consistent description is given by coupling (2.3) with Maxwell’s equations
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∇ · E = 4𝜋
∑
𝑠

𝑞𝑠

ˆ
d3vf𝑠, (2.4)

∇ · B = 0, (2.5)

∇ × E + 1
𝑐

𝜕B
𝜕𝑡

= 0, (2.6)

∇ × B − 1
𝑐

𝜕E
𝜕𝑡

=
4𝜋
𝑐

∑
𝑠

𝑞𝑠

ˆ
d3vvf𝑠 . (2.7)

The system (2.3)-(2.7) is the aforementioned Vlasov-Maxwell system. The fully ki-
netic description based on the model is the most straightforward and accurate repre-
sentation, and is now realizable for computer simulations. However, although Eq. (2.3)
it is already simplified compared to the single-particle description, it requires solving a
nonlinear problem in the 6-dimensional phase space, which is really expensive to carry
out in practice. Moreover, such simulations are possible only for a limited number of
physical scenarios. It has therefore proved extremely useful to reduce the Vlasov equa-
tion in order to adapt it to the properties of the system we want to describe, and to
introduce a set of approximations to retain only these spatial and time scales relevant
for the physical effects studied here.

2.1.2 Gyrokinetic ordering
In this Thesis, we study a high-temperature plasma strongly magnetized by a uni-

form guide field, which introduces a striking scale separation between the parallel and
the perpendicular dynamics:

B ≈ 𝐵0z + 𝐵∥z + ∇𝐴∥ × z, (2.8)

where the constant magnetic field is of amplitude 𝐵0 along the z direction defined as
the parallel direction, 𝐴∥ is the fluctuation of the 𝑧 component of the magnetic vector
potential, and 𝐵∥ is the parallel magnetic fluctuation. The expression for B in Eq. (2.8)
is approximate as it is not divergence-free and represents the expression of the mag-
netic field at the first order in the fluctuations. The higher-order contributions, which
guarantee ∇·B = 0, turn out to be negligible with the adopted ordering. The perturbed
electric field can be written as

Ẽ = −∇𝜙 − 1
𝑐

𝜕Ã
𝜕𝑡
, with ∇ × Ã∥ = B̃∥z + ∇Ã∥ × z, (2.9)

with 𝜙 the electrostatic potential.
In this case, it is possible to identify small parameters, motivated by experimental

findings and theoretical considerations, and develop an ordering called the gyrokinetic
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ordering.
We introduce an expansion parameter 𝜖 (not to be confused with the thickness of

the inner region in the tearing theory)1. The main ideas and assumptions entering the
gyrokinetic derivation are summarized in the following (Frieman & Chen (1982)):

• 1) Strongly magnetized plasma
The Larmor radius is very small compared to the length scales corresponding
to magnetic field variations, justifying the assumption of purely circular gyro-
orbits. This can be expressed as

𝜌𝑖,𝑒
𝐿

∼ 𝜖. (2.10)

We point out that the presence of a strong guide field does not prescribe a large
𝛽𝑖,𝑒 parameter, and in fact, we can add the assumption 𝛽𝑖,𝑒 ∼ 1, without loss of
generality.

• 2) Low frequency
The gyromotion of the particles around the guide magnetic-field lines is consid-
ered to be very fast compared to the fluctuation time scale. This will allow us to
ignore the gyromotion, and can be expressed as

𝜔

𝜔𝑐,𝑖
∼ 𝜖, (2.11)

where 𝜔 is the relevant frequency scale of the fluctuations.

• 3) Anisotropic fluctuation
The fluctuations in the plasma are assumed to be highly anisotropic. We denote
by 𝑘⊥ and 𝑘∥ the parallel and perpendicular wavenumbers of the fluctuations.
Perturbations along the guide field occur on length scales of the order of the
macroscopic length scale 𝐿, which can be expressed as

𝑘∥𝐿 ∼ 1, (2.12)

while perturbations perpendicular to the mean magnetic field occur on length
scales comparable to the Larmor radius of the particles, which can be expressed
as

𝑘⊥𝜌𝑖 ∼ 1. (2.13)

These give the wavenumber ordering

𝑘∥
𝑘⊥

∼ 𝜖. (2.14)

1In principle, each small quantity should have its own 𝜖 , but the maximal ordering principle allows
to neglect the differences and use a generic 𝜖 .
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• 4) 𝛿 𝑓 splitting
A method commonly used in the derivation of gyrokinetic equations is the split-
ting of the distribution function into an equilibrium part and a fluctuation. This
approximation is valid in systems in which the total distribution function does
not deviate too much from its equilibrium state F𝑒𝑞𝑠 . The total particle distribu-
tion function can therefore be expressed as

f𝑠 = f̃𝑠 + F𝑒𝑞𝑠 , (2.15)

with F𝑒𝑞𝑠 being the equilibrium distribution function and f̃𝑠 bieng a perturbation,
which is assumed to be small,

f̃𝑠
F𝑒𝑞𝑠

∼ 𝜖. (2.16)

The amplitude of the field perturbations are also assumed to be small compared
to the equilibrium electromagnetic fields, which can be expressed

𝐵∥
𝐵0

∼ 𝑞𝜙

𝑇0𝑒
∼ 𝜖. (2.17)

Note carefully that here, to remain consistent with the notation used in Tassi
et al. (2020), perturbations are indicated by a tilde, whereas, in general, in other
gyrokinetic articles, they are often indicated by a delta symbol: 𝛿f𝑠 .

Guiding-center phase-space transformation and ring average

The second stage of the reduction that is specific to gyrokinetics is the guiding-
center phase-space transformation, which eliminates the gyroangle dependence. The
gyrokinetic equations employ the phase-space coordinates transformation

{𝑣𝑥 , 𝑣𝑦, 𝑣𝑧} −→ {𝑣 ∥, 𝜇𝑠, 𝜃 }, (2.18)

with the particle velocitywritten v = 𝑣 ∥z+𝑣⊥(cos𝜃x+sin𝜃y). In (2.18), 𝑣 ∥ is the velocity
parallel to the equilibrium magnetic field and is used as a first velocity coordinate in
the phase space. The velocity 𝑣⊥ is the perpendicular velocity, and allows to express
the magnetic moment, 𝜇𝑠 = 𝑚𝑠𝑣

2
⊥/2𝐵0, which is used as a second velocity coordinate

in the phase space. The third coordinate is the gyroangle, 𝜃 = arctan(𝑣𝑦/𝑣𝑥 ). These
three coordinates allow one to define the integration over the volume element,

ˆ 2𝜋

0

d𝜃
2𝜋

ˆ +∞

0
dW𝑠 =

ˆ 2𝜋

0

d𝜃
2𝜋

ˆ
d𝑣 ∥

ˆ +∞

0

2𝜋𝐵0
𝑚𝑠

d𝜇𝑠 . (2.19)

We now define the position of the guiding centers X𝑠 = (𝑋𝑠, 𝑌𝑠, 𝑍𝑠), which is the
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Figure 2.1: Description of the guiding-center phase-space coordinate. The circle repre-
sents the particle trajectory.

center of the particle orbit around the guide field, as shown on Fig. 2.1,

X𝑠 = x − v × z
𝜔𝑐𝑠

, (2.20)

with
r𝐿𝑠 =

v × z
𝜔𝑐𝑠

(2.21)

bing the Larmor radius of the particle, shown in Fig. 2.1. Finally, we introduce the ring
average, which is an average over a ring centered about X𝑠 of a radius r𝐿𝑠 , aimed at
reducing the number of variables by integrating over 𝜃〈

𝑎(x, v, 𝑡)
〉
X𝑠

=
ˆ 2𝜋

0

𝑑𝜃

2𝜋
𝑎
(
X𝑠 +

v × z
𝜔𝑐𝑠

, 𝑣 ∥, 𝜇𝑠, 𝜃, 𝑡
)
. (2.22)

which is a generic function of phase space coordinates, 𝑎. Compared to the guiding
centers, the coordinates of the aforementioned gyrocenters, are found when the elim-
ination of the dependence on the gyroangle is carried out in the presence of the elec-
tromagnetic fluctuations (Brizard & Hahm (2007)).

2.1.3 Gyrokinetic equations of Kunz et al. 2015
The two gyrofluid models used in this work were derived taking as a starting point

the slab gyrokinetic equations of Kunz et al. (2015), valid for a possibly non-Maxwellian
equilibrium distribution functions and multiple ionic species with relative mean drifts
along the direction parallel to the guide field. However, during the gyrofluid reduction
procedure, a plasma composed of only electrons and ions was assumed, with no mean
parallel drift.
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The equilibrium distribution function we chose is the bi-Maxwellian, which allows
us to take into account an equilibrium temperature anisotropy:

F𝑒𝑞𝑠 (𝑣 ∥, 𝜇𝑠) =
(𝑚𝑠

2𝜋

)3/2 𝑛0

𝑇 1/2
0∥𝑠
𝑇0⊥𝑠

e
−

𝑚𝑠𝑣
2
∥

2𝑇0∥𝑠
− 𝜇𝑠𝐵0
𝑇0⊥𝑠 , (2.23)

giving us the uniform equilibrium density 𝑛0 =
´
dW𝑠F𝑒𝑞𝑠 . The temperatures𝑇0∥𝑠 and

𝑇0⊥𝑠 are the parallel and perpendicular equilibrium temperatures, and 𝑣𝑡ℎ ∥𝑠 =
√
𝑇0∥𝑠/𝑚𝑠

is the parallel thermal speed.

We define the temperature anisotropy parameter

Θ𝑠 =
𝑇0⊥𝑠
𝑇0∥𝑠

. (2.24)

When applying the phase-space coordinate transformation and ring average to the
particle distribution, Kunz et al. (2015) obtain the relation between the perturbed par-
ticle distribution function f𝑠 and that of the gyrocenters 𝑓𝑠 , given by

f̃𝑠k𝑒𝑖k.x = 𝑓𝑠k𝑒𝑖k.x +
𝑞𝑠
𝑇0⊥𝑠

F𝑒𝑞𝑠
(
𝐽0(𝑎𝑠) (𝜙k(𝑡) +

𝑣 ∥
𝑐
(Θ𝑠 − 1)𝐴k(𝑡))𝑒𝑖k·(x+r𝐿𝑠 )

)
− 𝑞𝑠
𝑇0⊥𝑠

F𝑒𝑞𝑠
(
(𝜙k(𝑡) +

𝑣 ∥
𝑐
(Θ𝑠 − 1)𝐴k(𝑡))𝑒𝑖k·x

)
+ 𝑞𝑠
𝑇0⊥𝑠

F𝑒𝑞𝑠
(
2
𝜇𝑠𝐵0
𝑞𝑠

𝐽1(𝑎𝑠)
𝑎𝑠

𝐵∥k (𝑡)
𝐵0

𝑒𝑖k·(x+r𝐿𝑠 )
))

= 0,

(2.25)

where we consider a Fourier representation f̃𝑠 =
∑

k f̃𝑠k𝑒𝑖k·x and where 𝑎𝑠 = 𝑘⊥𝑟𝐿𝑠 is the
perpendicular wave number times the gyroradius of the particle of species 𝑠 defined
by (2.21). The gyroaverage operators 𝐽0𝑠 and 𝐽1𝑠 are defined, in the Fourier space, as
multiplications by 𝐽0(𝑎𝑠) and 𝐽1(𝑎𝑠), the latter being the zero- and first-order Bessel
functions of the first kind, respectively. Therefore one has

𝐽0𝑠 𝑓 (x, 𝑣 ∥, 𝜇𝑠) =
∑
k

𝐽0(𝑎𝑠) 𝑓k(𝑣 ∥, 𝜇𝑠)𝑒𝑖k·x, (2.26)

𝐽1𝑠 𝑓 (x, 𝑣 ∥, 𝜇𝑠) =
∑
k

𝐽1(𝑎𝑠)
𝑎𝑠

𝑓k(𝑣 ∥, 𝜇𝑠)𝑒𝑖k·x, (2.27)

where the vector k = (𝑘𝑥 , 𝑘𝑦, 𝑘𝑧). Expanding all fields in powers of 𝜖 and keeping
contributions up to the first order and expressing the system in terms of the gyrocenter
distribution function gives (Appendix C of Kunz et al. (2015))
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𝜕

𝜕𝑡

(
𝑓𝑠 +

𝑞𝑠
𝑇0∥𝑠

𝑣 ∥
𝑐
F𝑒𝑞𝑠 𝐽0𝑠𝐴∥

)
+ 𝑐

𝐵0

[
𝐽0𝑠𝜙 −

𝑣 ∥
𝑐
𝐽0𝑠𝐴∥ +

𝑚𝑠𝑣
2
⊥

𝑞𝑠
𝐽1𝑠
𝐵∥
𝐵0
, 𝑓𝑠 +

𝑞𝑠
𝑇0∥𝑠

𝑣 ∥
𝑐
F𝑒𝑞𝑠 𝐽0𝑠𝐴∥

]
+ 𝑣 ∥

𝜕

𝜕𝑧

(
𝑓𝑠 +

𝑞𝑠
𝑇0∥𝑠

F𝑒𝑞𝑠

(
𝐽0𝑠𝜙 + 𝑚𝑠𝑣

2
⊥

𝑞𝑠
𝐽1𝑠
𝐵∥
𝐵0

))
= 0, (2.28)

∑
𝑠

𝑞𝑠

ˆ
dW𝑠 𝐽0𝑠 𝑓𝑠 =

∑
𝑠

𝑞2𝑠
𝑇0⊥𝑠

ˆ
dW𝑠 F𝑒𝑞𝑠

(
1 − 𝐽 20𝑠

)
𝜙 −

∑
𝑠

𝑞𝑠

ˆ
dW𝑠

𝑚𝑠𝑣
2
⊥

𝑇0⊥𝑠
F𝑒𝑞𝑠 𝐽0𝑠 𝐽1𝑠

𝐵∥
𝐵0
,

(2.29)

∑
𝑠

𝑞𝑠

ˆ
dW𝑠 𝑣 ∥ 𝐽0𝑠 𝑓𝑠 = − 𝑐

4𝜋
∇2
⊥𝐴∥, (2.30)

∑
𝑠

𝛽⊥𝑠

𝑛0

ˆ
dW𝑠

𝑚𝑠𝑣
2
⊥

𝑇0⊥𝑠
J1𝑠 𝑓𝑠 = −

∑
𝑠

𝛽⊥𝑠

𝑛0

𝑞𝑠
𝑇0⊥𝑠

ˆ
dW𝑠

𝑚𝑠𝑣
2
⊥

𝑇0⊥𝑠
F𝑒𝑞𝑠 𝐽0𝑠 𝐽1𝑠𝜙

−
(
2 +

∑
𝑠

𝛽⊥𝑠

𝑛0

ˆ
dW𝑠 F𝑒𝑞𝑠

(
𝑚𝑠𝑣

2
⊥

𝑇0⊥𝑠
𝐽1𝑠

)2) 𝐵∥
𝐵0
. (2.31)

We denote by

[𝑓 , 𝑔] := 𝜕𝑓

𝜕𝑥

𝜕𝑔

𝜕𝑦
− 𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥
, (2.32)

the canonical bracket.

One parameter is included:

𝛽⊥𝑠 = 8𝜋
𝑛0𝑇0⊥𝑠
𝐵20

, (2.33)

corresponding to the ratio between the perpendicular equilibrium kinetic pressure
and the magnetic pressure.

Equation (2.28) is obtained from the Vlasov equation, following the procedure in
Kunz et al. (2015), and describes the evolution of the perturbed gyrocenter distribution
function. Equation (2.29) represents the quasineutrality constraint expressed in terms
of the perturbed gyrocenter distribution function. It can be derived from the Poisson’s
equation (2.4), assuming that the length scale of the fluctuation is much larger than
the Debye length.
Equations (2.30) and (2.31) are the parallel and perpendicular components of Ampère’s
law (2.7), written in terms of the perturbed gyrocenter distribution function. They can
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be derived using the expression of the current density

j =
∑
𝑠

𝑞𝑠

ˆ
d𝜃d𝑣 ∥d𝜇𝑠

𝐵0
𝑚𝑠

v𝑓𝑠 = 0, (2.34)

and using Faraday’s law (2.6).

In order to remain consistent with the notation and parameters used in the articles
Tassi (2019); Tassi et al. (2020), we introduce the generalized perturbed distribution
function 𝑔𝑠 , which is connected to the perturbed gyrocenter distribution function 𝑓𝑠 by
the relation

𝑔𝑠 = 𝑓𝑠 +
𝑞𝑠
𝑇0∥𝑠

𝑣 ∥
𝑐
F𝑒𝑞𝑠 𝐽0𝑠𝐴∥, (2.35)

and allows use to write the Eqs. (2.28) - (2.31) in the form

𝜕𝑔𝑠
𝜕𝑡

+ 𝑐

𝐵0

[
𝐽0𝑠𝜙 −

𝑣 ∥
𝑐
𝐽0𝑠𝐴∥ + 2

𝜇𝑠𝐵0
𝑞𝑠

𝐽1𝑠
𝐵∥
𝐵0
, 𝑔𝑠

]
+ 𝑣 ∥

𝜕

𝜕𝑧

(
𝑔𝑠 +

𝑞𝑠
𝑇0∥𝑠

F𝑒𝑞𝑠

(
𝐽0𝑠𝜙 −

𝑣 ∥
𝑐
𝐽0𝑠𝐴∥ + 2

𝜇𝑠𝐵0
𝑞𝑠

𝐽1𝑠
𝐵∥
𝐵0

))
= 0, (2.36)

∑
𝑠

𝑞𝑠

ˆ
dW𝑠 𝐽0𝑠𝑔𝑠 =

∑
𝑠

𝑞2𝑠
𝑇0⊥𝑠

ˆ
dW𝑠 F𝑒𝑞𝑠

(
1 − 𝐽 20𝑠

)
𝜙

−
∑
𝑠

𝑞𝑠

ˆ
dW𝑠 2

𝜇𝑠𝐵0
𝑇0⊥𝑠

F𝑒𝑞𝑠 𝐽0𝑠 𝐽1𝑠
𝐵∥
𝐵0
, (2.37)

∑
𝑠

𝑞𝑠

ˆ
dW𝑠 𝑣 ∥ 𝐽0𝑠

(
𝑔𝑠 −

𝑞𝑠
𝑇0∥𝑠

𝑣 ∥
𝑐
F𝑒𝑞𝑠 𝐽0𝑠𝐴∥

)
= − 𝑐

4𝜋
∇2
⊥𝐴∥

+
∑
𝑠

𝑞2𝑠
𝑚𝑠

ˆ
dW𝑠 F𝑒𝑞𝑠

(
1 − 1

Θ𝑠

𝑣2∥

𝑣2
𝑡ℎ ∥𝑠

) (
1 − 𝐽 20𝑠

) 𝐴∥
𝑐
, (2.38)

∑
𝑠

𝛽⊥𝑠

𝑛0

ˆ
dW𝑠 2

𝜇𝑠𝐵0
𝑇0⊥𝑠

𝐽1𝑠𝑔𝑠 = −
∑
𝑠

𝛽⊥𝑠

𝑛0

𝑞𝑠
𝑇0⊥𝑠

ˆ
dW𝑠 2

𝜇𝑠𝐵0
𝑇0⊥𝑠

F𝑒𝑞𝑠 𝐽0𝑠 𝐽1𝑠𝜙

−
(
2 +

∑
𝑠

𝛽⊥𝑠

𝑛0

ˆ
dW𝑠 F𝑒𝑞𝑠

(
2
𝜇𝑠𝐵0
𝑇0⊥𝑠

𝐽1𝑠

)2) 𝐵∥
𝐵0
. (2.39)

This formulation of the equations has the advantage that they are written as a dynam-
ical system of the form 𝜕𝑡𝑔𝑠 = 𝐹 (𝑔𝑠). From the numerical point of view, the benefits of
this formulation are mentioned in, for instance, Numata et al. (2010).
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2.2 From gyrokinetic to gyrofluid: the closure problem

2.2 From gyrokinetic to gyrofluid: the closure
problem

Perturbations of the gyrofluid moments, such as the perturbations of the gyrocenter
density, parallel velocity, and parallel and perpendicular temperatures, are computed
as moments in normalized form of the perturbation of the gyrocenter distribution func-
tion 𝑓𝑠 . We express here, for instance, the first four moments, given by

𝑁𝑠 =
ˆ

dW𝑠 𝑓𝑠,
𝑈𝑠
𝑣𝑡ℎ ∥𝑠

=
1
𝑛0

ˆ
dW𝑠

𝑣 ∥
𝑣𝑡ℎ ∥𝑠

𝑓𝑠, (2.40)

𝑇∥𝑠
𝑇0∥𝑠

=
1
𝑛0

ˆ
dW𝑠

(
𝑣2∥

𝑣2
𝑡ℎ ∥𝑠

− 1

)
𝑓𝑠,

𝑇⊥𝑠
𝑇0⊥𝑠

=
1
𝑛0

ˆ
dW𝑠

(
𝜇𝑠𝐵0
𝑇0⊥𝑠

− 1

)
𝑓𝑠,

where 𝑁𝑠 is the gyrocenter density fluctuation,𝑈𝑠 is that of the parallel velocity,𝑇∥𝑠 of
the parallel temperature, and 𝑇⊥𝑠 of the perpendicular temperature.

We derive evolution equations for the gyrocenter density and parallel velocity fluc-
tuations. The evolution equation for each gyrofluid moment, turns out to depend, in
principle, on an infinite number of higher-order moments due to the presence of the
gyroaverage operators 𝐽0𝑠 in the gyrokinetic equations. In order to obtain a closed
gyrofluid system, it is therefore necessary to impose closure relations to truncate the
infinite hierarchy of equations. We will need to take into account gyrocenter temper-
ature fluctuations in order to impose a closure on the temperature fluctuations.

The perturbed gyrocenter distribution function can be developed as a series of its
gyrocenter moments using Hermite polynomials 𝐻𝑚 and Laguerre polynomials 𝐿𝑛 ,

𝐻𝑚 (𝑥) = (−1)𝑚𝑒𝑥2 𝑑
𝑚

𝑑𝑥𝑚
𝑒−𝑥

2
, 𝐿𝑛 (𝑥) =

𝑒𝑥

𝑛!
𝑑𝑛

𝑑𝑥𝑛
𝑥𝑛𝑒−𝑥 . (2.41)

where𝐻𝑛 are polynomials of 𝑣 ∥/𝑣𝑡ℎ ∥𝑠 and 𝐿𝑚 are polynomials of 𝜇𝑠𝐵0/𝑇0⊥𝑠 , with𝑚 and𝑛
are non-negative integers. This expansions are used in, for instance, Scott et al. (2010);
Mandell et al. (2018); Gorbunov & Teaca (2022).

The expansion reads

𝑓𝑠 (x, 𝑣 ∥, 𝜇𝑠, 𝑡) =
+∞∑
𝑚,𝑛=0

1
√
𝑚!
𝑓𝑚𝑛𝑠 (x, 𝑡)𝐻𝑚

(
𝑣 ∥
𝑣𝑡ℎ ∥𝑠

)
𝐿𝑛

(
𝜇𝑠𝐵0
𝑇0⊥𝑠

)
F𝑒𝑞𝑠 (𝑣 ∥, 𝜇𝑠). (2.42)

The functions 𝑓𝑚𝑛𝑠 are coefficients of the expansion and are related to the moments of
𝑓𝑠 . For instance, considering the couples (𝑚,𝑛) = (0, 0) and (𝑚,𝑛) = (1, 0), we obtain
the gyrocenter density and parallel velocity respectively. These polynomials satisfy
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2 Plasma modeling

convenient orthogonality relations
ˆ
𝑒−𝑥

2
𝐻𝑚 (𝑥)𝐻𝑛 (𝑥)d𝑥 =

√
𝜋2𝑛𝑛!𝛿𝑚𝑛, (2.43)

ˆ ∞

0
𝑒−𝑥𝐿𝑚 (𝑥)𝐿𝑛 (𝑥)d𝑥 = 𝛿𝑚𝑛, (2.44)

which will be useful in the derivation of the gyrofluid models.

2.3 The isothermal closure

2.3.1 The closure

We now drop the tilde ˜ on the perturbed electromagnetic fields 𝜙 , 𝐴∥ and 𝐵∥ .

In this Section, the imposed closure relation consists in setting the perturbations of
the parallel and perpendicular particle temperatures to zero, 𝑡∥𝑠 = 0 and 𝑡⊥𝑠 = 0, and
in setting equal to zero also all the perturbations of the gyrocenter moments of order
higher than those temperatures. The isothermal closure is a rather standard one in fluid
models for plasmas. In the gyrofluid approach, however, it requires to be formulated
in terms of the gyrocenter temperatures.

Using the orthogonality relations of Hermite and Laguerre polynomials, and retain-
ing the first four moments, the gyrokinetic function 𝑓𝑠 is written as

𝑓𝑠 = F𝑒𝑞𝑠

(
𝑁𝑠
𝑛0

+
𝑣 ∥
𝑣𝑡ℎ ∥𝑠

𝑈𝑠
𝑣𝑡ℎ ∥𝑠

+ 1
2

(
𝑣2∥

𝑣2
𝑡ℎ ∥𝑠

− 1

)
𝑇∥𝑠
𝑇0∥𝑠

+
(
𝜇𝑠𝐵0
𝑇0⊥𝑠

− 1

)
𝑇⊥𝑠
𝑇0⊥𝑠

)
. (2.45)

Inserting this expression for 𝑓𝑠 in the gyrokinetic equation and integrating over dW𝑠 ,
yields the evolution equation for 𝑁𝑠

𝜕

𝜕𝑡

𝑁𝑠
𝑛0

+ 𝑐
𝐵0

[
𝐺10𝑠𝜙 + 𝑇0⊥𝑠

𝑞𝑠
2𝐺20𝑠

𝐵∥
𝐵0
,
𝑁𝑠
𝑛0

]
− 𝑐

𝐵0

[
𝐺11𝑠𝜙 + 𝑇0⊥𝑠

𝑞𝑠
2𝐺21𝑠

𝐵∥
𝐵0
,
𝑇⊥𝑠
𝑇0⊥𝑠

]
− 1
𝐵0

[
𝐺10𝑠𝐴∥,𝑈𝑠

]
+ 𝜕𝑈𝑠
𝜕𝑧

= 0.
(2.46)

Multiplying the gyrokinetic equation by 𝑣 ∥/(𝑛0𝑣𝑡ℎ ∥𝑠 ) and integrating over dW𝑠 , gives
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2.3 The isothermal closure

the evolution equation for 𝑈𝑠

𝜕

𝜕𝑡

(
𝑈𝑠
𝑣𝑡ℎ ∥𝑠

+
𝑞𝑠𝑣𝑡ℎ ∥𝑠
𝑇0∥𝑠𝑐

𝐺10𝑠𝐴∥

)
+ 𝑐

𝐵0

[
𝐺10𝑠𝜙 + 𝑇0⊥𝑠

𝑞𝑠
2𝐺20𝑠

𝐵∥
𝐵0
,
𝑈𝑠
𝑣𝑡ℎ ∥𝑠

]
−
𝑣𝑡ℎ ∥𝑠
𝐵0

[
𝐺10𝑠𝐴∥,

𝑁𝑠
𝑛0

+
𝑇∥𝑠
𝑇0∥𝑠

]
+
𝑣𝑡ℎ ∥𝑠
𝐵0

[
𝐺11𝑠𝐴∥,

𝑇⊥𝑠
𝑇0⊥𝑠

]
+
𝑞𝑠𝑣𝑡ℎ ∥𝑠
𝑇0∥𝑠𝐵0

+∞∑
𝑛=0

[
𝐺1𝑛𝑠𝜙,𝐺1𝑛𝑠𝐴∥

]
+
Θ𝑠𝑣𝑡ℎ ∥𝑠
𝐵0

+∞∑
𝑛=0

[
2𝐺2𝑛𝑠

𝐵∥
𝐵0
,𝐺1𝑛𝑠𝐴∥

]
+ 𝑣𝑡ℎ ∥𝑠

𝜕

𝜕𝑧

(
𝑞𝑠
𝑇0∥𝑠

𝐺10𝑠𝜙 + 2
𝑇0⊥𝑠
𝑇0∥𝑠

𝐺20𝑠

𝐵∥
𝐵0

+ 𝑁𝑠
𝑛0

+
𝑇∥𝑠
𝑇0∥𝑠

)
= 0,

(2.47)

where the operators𝐺1𝑛𝑠 and𝐺2𝑛𝑠 are defined in Fourier space so that (Brizard (1992))

𝐺1𝑛𝑠 𝑓k𝑒
𝑖k·x =

∑
k

𝐵0
𝑇0⊥𝑠

ˆ
d𝜇𝑠 𝑒

− 𝜇𝑠𝐵0
𝑇0⊥𝑠 𝐿𝑛

(
𝜇𝑠𝐵0
𝑇0⊥𝑠

)
𝐽0(𝑎𝑠) 𝑓k𝑒𝑖k·x

=
∑
k

𝑒−𝑏𝑠/2

𝑛!

(
𝑏𝑠
2

)𝑛
𝑓k𝑒

𝑖k·x, (2.48)

𝐺2𝑛𝑠 𝑓k𝑒
𝑖k·x =

∑
k

𝐵0
𝑇0⊥𝑠

ˆ
d𝜇𝑠 𝑒

− 𝜇𝑠𝐵0
𝑇0⊥𝑠 𝐿𝑛

(
𝜇𝑠𝐵0
𝑇0⊥𝑠

)
𝜇𝑠𝐵0
𝑇0⊥𝑠

𝐽1(𝑎𝑠)
𝑎𝑠

𝑓k𝑒
𝑖k·x

= −
∑
k

𝑒−𝑏𝑠/2

2

((
𝑏𝑠
2

)𝑛−1 1
(𝑛 − 1)! −

(
𝑏𝑠
2

)𝑛 1
𝑛!

)
𝑓k𝑒

𝑖k·x, for𝑛 ≥ 1, (2.49)

𝐺20𝑠 𝑓k𝑒
𝑖k·x =

∑
k

𝑒−𝑏𝑠/2

2
𝑓k𝑒

𝑖k·x, (2.50)

with 𝑏𝑠 given by 𝑏𝑒 = 𝑘2⊥𝜌
2
𝑒⊥ and 𝑏𝑖 = 𝑘2⊥𝜌

2
𝑖⊥ for the electrons and for the ions re-

spectively, and with 𝜌𝑖,𝑒⊥ the Larmor radius based on the equilibrium perpendicular
temperatures.

For the range of parameters adopted in our analysis, in particular for 𝑏𝑠 not largely
exceeding 1, the gyroaverage operators, corresponding to those introduced by Brizard
(1992), are shown to be adequate. Nevertheless, different gyroaverage operators, de-
scribed in Dorland & Hammett (1993) and Mandell et al. (2018), have proven to provide
a very good agreement with the linear kinetic theory for a wider range of scales and
are widespread in gyrofluid numerical codes.

With regard to the static equations (2.37) - (2.39), by inserting the expansion (2.45),
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we obtain ∑
𝑠

𝑞𝑠

(
𝐺10𝑠

𝑁𝑠
𝑛0

−𝐺11𝑠
𝑇⊥𝑠
𝑇0⊥𝑠

+ 𝑞𝑠
𝑇0⊥𝑠

(Γ0𝑠 − 1)𝜙 + (Γ0𝑠 − Γ1𝑠)
𝐵∥
𝐵0

)
= 0, (2.51)

− ∇2
⊥𝐴∥ =

4𝜋𝑛0
𝑐

∑
𝑠

𝑞𝑠

(
𝐺10𝑠𝑈𝑠 +

𝑞𝑠
𝑚𝑠

(
1 − 1

Θ𝑠

)
(Γ0𝑠 − 1)

𝐴∥
𝑐

)
, (2.52)∑

𝑠

𝛽⊥𝑠

(
2𝐺20𝑠

𝑁𝑠
𝑛0

− 2𝐺21𝑠
𝑇⊥𝑠
𝑇0⊥𝑠

)
= −

∑
𝑠

𝛽⊥𝑠

𝑞𝑠
𝑇0⊥𝑠

(Γ0𝑠 − Γ1𝑠)𝜙 − 2
𝐵∥
𝐵0

(2.53)

−
∑
𝑠

𝛽⊥𝑠2(Γ0𝑠 − Γ1𝑠)
𝐵∥
𝐵0
, (2.54)

where

Γ0𝑠 𝑓k𝑒
𝑖k·x =

∑
k

𝐼0(𝑏𝑠)𝑒−𝑏𝑠 𝑓k𝑒𝑖k·x, (2.55)

Γ1𝑠 𝑓k𝑒
𝑖k·x =

∑
k

𝐼1(𝑏𝑠)𝑒−𝑏𝑠 𝑓k𝑒𝑖k·x (2.56)

and 𝐼𝑛 are the modified Bessel functions of order 𝑛.

The system given by Eqs. (2.46), (2.47) and (2.51), (2.52), (2.54) requires a closure on
the temperature fluctuations. The isothermal closure imposes

𝑡∥𝑠
𝑇0∥𝑠

=
1
𝑛0

ˆ 2𝜋

0

𝑑𝜃

2𝜋

ˆ
dW𝑠

(
𝑣2∥

𝑣2
𝑡ℎ ∥𝑠

− 1

)
f𝑠 = 0, (2.57)

𝑡⊥𝑠

𝑇0⊥𝑠
=

1
𝑛0

ˆ 2𝜋

0

𝑑𝜃

2𝜋

ˆ
dW𝑠

(
𝜇𝑠𝐵0
𝑇0⊥𝑠

− 1

)
f𝑠 = 0. (2.58)

We make use of the relation (2.25), expressing the perturbation of the particle distri-
bution function f𝑠 in terms of that of the gyrocenter 𝑓𝑠 , into Eqs. (2.57) - (2.58), to
express the closure in terms of the gyrocenter temperature fluctuations. By means of
the identity (Kunz et al. (2015))

𝐽0(𝑎𝑠) 𝑓𝑠k =
1
2𝜋

ˆ 2𝜋

0
d𝜃 𝑓𝑠k𝑒

𝑖k·r𝐿𝑠 , (2.59)

we obtain that Eqs. (2.57) and (2.58) lead to the following closure relations in terms of
gyrocenter variables

𝑡∥𝑠 = 𝐺10𝑠𝑇∥𝑠 = 0, (2.60)
𝑡⊥𝑠

𝑇0⊥𝑠
= −𝐺11𝑠

𝑁𝑠
𝑛0

+
(
𝐺10𝑠 − 2𝐺11𝑠 +𝐺12𝑠

) 𝑇⊥𝑠
𝑇0⊥𝑠

− 𝑞𝑠
𝑇0⊥𝑠

𝐺𝑇 0𝑠𝜙 −𝐺𝑇 1𝑠
𝐵∥
𝐵0

= 0, (2.61)
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with two additional operators defined as

𝐺𝑇 0𝑠 𝑓k𝑒
𝑖k·x =

∑
k

𝑏𝑠𝑒
−𝑏𝑠 (𝐼0(𝑏𝑠) − 𝐼1(𝑏𝑠)) 𝑓k𝑒𝑖k·x, (2.62)

𝐺𝑇 1𝑠 𝑓k𝑒
𝑖k·x =

∑
k

2𝑒−𝑏𝑠
((
𝑏𝑠 −

1
2

)
𝐼0(𝑏𝑠) − 𝑏𝑠𝐼1(𝑏𝑠)

)
𝑓k𝑒

𝑖k·x. (2.63)

We remark that the relations included in Eqs. (2.60) and (2.61), permitting to express
particle temperature fluctuations in terms of gyrocenter temperature fluctuations, agree
with those of Brizard (1992)2. In particular, we note that such relations do not depend
explicitly on Θ𝑒 .

2.3.2 Normalization by 𝜌𝑠, and assumptions

The adopted dimensionless variables are

𝑥 =
𝑥

𝜌𝑠⊥
, 𝑦 =

𝑦

𝜌𝑠⊥
, 𝑧 =

√
𝛽⊥𝑒

2
𝑧

𝜌𝑠⊥
, 𝑡 = 𝜔𝑐𝑖𝑡,

�̂�𝑠 =
𝑁𝑠
𝑛0
, 𝑈𝑠 =

√
𝛽⊥𝑒

2
𝑈𝑠
𝑐𝑠⊥

, 𝑇⊥𝑠 =
𝑇⊥𝑠
𝑇0⊥𝑠

, 𝑇∥𝑠 =
𝑇∥𝑠
𝑇0∥𝑠

,

𝜙 =
𝑒𝜙

𝑇0⊥𝑒
, �̂�∥ =

𝐵∥
𝐵0
, 𝐴∥ =

1
𝜌𝑠⊥

√
2
𝛽⊥𝑒

𝐴∥
𝐵0
.

(2.64)

Where 𝜌𝑠⊥ =
√
𝑇0⊥𝑒/𝑚𝑖 (𝑚𝑖𝑐/𝑒𝐵0) is the sonic Larmor radius based on the perpendicular

electron equilibrium temperature. For the ease of notation, we now drop the hat over the
dimensionless variables. From (2.64) and until the end of the Thesis, when we mention
the model with our isothermal closure, it will be in reference to the equations obtained
after the normalization. Concerning the normalization of𝐴∥,𝑈𝑒 and 𝑧 in Eq. (2.64), we
tpoint out that, in comparison for instance with Tassi et al. (2018), the factor

√
2/𝛽⊥𝑒

was introduced here in order to make the limit 𝛽⊥𝑒 → 0 more transparent. This also
explains the presence of the coefficient

√
𝛽⊥𝑒/2 appearing in the following normalized

expression of the magnetic field in dimensionless variables

B ≈ z + 𝐵∥z +
√
𝛽⊥𝑒

2
∇𝐴∥ × z, (2.65)

A new parameter, naturally emerging from the normalization, is given by

𝜏⊥𝑠 =
𝑇0⊥𝑠
𝑇0⊥𝑒

, (2.66)

2up to a misprint in the sign of 𝐼1 in Brizard (1992).
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corresponding to the ratio between the equilibrium perpendicular temperatures, which
becomes 𝜏𝑖 = 𝑇0𝑖/𝑇0𝑒 is case of isotropic equilibrium temperature.

The complete 4-field dimensionless evolution equations are given by

𝜕𝑁𝑠
𝜕𝑡

+
[
𝐺10𝑠𝜙, 𝑁𝑠

]
+ sgn(𝑞𝑠)𝜏⊥𝑠

[
2𝐺20𝑠𝐵∥, 𝑁𝑠

]
−

[
𝐺11𝑠𝜙,𝑇0⊥𝑠

]
−

[
𝐺10𝑠𝐴∥,𝑈𝑠

]
(2.67)

− sgn(𝑞𝑠)𝜏⊥𝑠

[
2𝐺21𝑠𝐵∥,𝑇0⊥𝑠

]
+ 𝜕𝑈𝑠
𝜕𝑧

= 0,

𝜕

𝜕𝑡

(
2
𝛽⊥𝑒

𝑚𝑠

𝑚𝑖
𝑈𝑠 + sgn(𝑞𝑠)𝐺10𝑠𝐴∥

)
+ 2
𝛽⊥𝑒

[
𝐺10𝑠𝜙,

𝑚𝑠

𝑚𝑖
𝑈𝑠

]
+ sgn(𝑞𝑠)𝜏⊥𝑠

2
𝛽⊥𝑒

[
2𝐺20𝑠𝐵∥,

𝑚𝑠

𝑚𝑖
𝑈𝑠

]
− 𝜏⊥𝑠

Θ𝑠

[
𝐺10𝑠𝐴∥, 𝑁𝑠 +𝑇∥𝑠

]
+ 𝜏⊥𝑠

Θ𝑠

[
𝐺11𝑠𝐴∥,𝑇0⊥𝑠

]
+ sgn(𝑞𝑠)

+∞∑
𝑛=0

[
𝐺1𝑛𝑠𝜙,𝐺1𝑛𝑠𝐴∥

]
(2.68)

+ 𝜏⊥𝑠

+∞∑
𝑛=0

[
2𝐺2𝑛𝑠𝐵∥,𝐺1𝑛𝑠𝐴∥

]
+ 𝜕

𝜕𝑧

(
sgn(𝑞𝑠)𝐺10𝑠𝜙 + 2𝜏⊥𝑠𝐺20𝑠𝐵∥ +

𝜏⊥𝑠

Θ𝑠

(
𝑁𝑠 +𝑇∥𝑠

) )
= 0,

and the static equations correspond to∑
𝑠

sgn(𝑞𝑠)
(
𝐺10𝑠𝑁𝑠 −𝐺11𝑠𝑇0⊥𝑠 +

sgn(𝑞𝑠)
𝜏⊥𝑠

(Γ0𝑠 − 1)𝜙 + (Γ0𝑠 − Γ1𝑠)𝐵∥

)
= 0, (2.69)

∑
𝑠

(
𝛽⊥𝑠

2
2
𝛽⊥𝑒

sgn(𝑞𝑠)𝐺10𝑠𝑈𝑠 +
(
1 − 1

Θ𝑠

)
(Γ0𝑠 − 1)𝑚𝑖

𝑚𝑠

𝛽⊥𝑠

2
𝐴∥

)
= −∇2

⊥𝐴∥, (2.70)

∑
𝑠

𝛽⊥𝑠

sgn(𝑞𝑠)
𝜏⊥𝑠

(Γ0𝑠 − Γ1𝑠)𝜙 + 2𝐵∥ + 2
∑
𝑠

𝛽⊥𝑠 (Γ0𝑠 − Γ1𝑠)𝐵∥ = −2
∑
𝑠

𝛽⊥𝑠

(
𝐺20𝑠𝑁𝑠 −𝐺21𝑠𝑇0⊥𝑠

)
,

(2.71)

(
𝐺10𝑠 − 2𝐺11𝑠 +𝐺12𝑠

)
𝑇0⊥𝑠 −𝐺11𝑠𝑁𝑠 −𝐺𝑇 0𝑠

sgn(𝑞𝑠)
𝜏⊥𝑠

𝜙 −𝐺𝑇 1𝑠𝐵∥ = 0, (2.72)

𝐺10𝑠𝑇∥𝑠 = 0. (2.73)

The system (2.67)-(2.73) is a new gyrofluid model accounting for parallel magnetic
perturbations, FLR effects, and equilibrium temperature anisotropies.

This gyrofluid model, although greatly simplified with respect to the original gy-
rokinetic system, is still amenable to further reductions. Because of the complexity of
the model, for the purpose of an analytical investigation of the tearing instability, we
simplify it by applying a number of assumptions. In particular, we aim at reducing the
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2.3 The isothermal closure

model to a two-field model consisting of the evolution equations for the fluctuations
of the electron density and electron parallel velocity.

Firstly, we consider a cold ion regime, assuming that the value of the ion to electron
perpendicular equilibrium temperature ratio is small

𝜏⊥𝑖 → 0. (2.74)

In particular, assuming 𝜏⊥𝑖 ≪ 𝑑2𝑒 as 𝑑𝑒 → 0 effectively removes all finite ion tem-
perature effects, except for the one associated with the ion polarization in the quasi-
neutrality relation3, which introduces the diamagnetic drift. The cold ion limit also
implies a negligible ion Larmor radius since, 𝜌𝑖⊥ =

√
𝜏⊥𝑖𝜌𝑠⊥.

Secondly, ions are assumed to be an immobile background, so all the involved fluc-
tuations of the ion gyrocenter moments, i.e. 𝑁𝑖 , 𝑈𝑖 , 𝑇⊥𝑖 and 𝑇∥𝑖 , are assumed to be
negligible in the static relations, which effectively decouples the electron dynamics
from the ion gyrocenter dynamics,

𝑁𝑖 = 𝑈𝑖 = 𝑇⊥𝑖 = 𝑇∥𝑖 = 0. (2.75)

Note that (2.75) does not prevent a fluctuation of the particle ion density. Indeed, as
we will see later, 𝑛𝑖 ≠ 0.
These assumptions on the ions are of course very strong. The expressions given in Eq.
(2.75) are not solutions of the equations for the ion gyrofluid moments. However, they
are solutions up to terms of order 𝛽⊥𝑒 and in the following we will assume 𝛽⊥𝑒 ≪ 1.
Also, at least in the case of initial conditions 𝑁𝑖 = 𝑈𝑖 = 0, ion gyrocenter density
and parallel velocity fluctuations appear not to substantially modify the reconnection
process (Comisso et al. (2013); Numata et al. (2011)).
We also assume an isotropic ion temperature, and consider a temperature anisotropy
only for the electrons, i.e.

Θ𝑖 = 1. (2.76)

To simplify the notation, the square root of the mass ratio will be denoted

𝛿 =

(
𝑚𝑒

𝑚𝑖

)1/2
. (2.77)

Finally, we further reduce the system by considering the following ordering, where

33rd term in (2.69) for 𝑠 = 𝑖 .
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𝛽⊥𝑒 is used as an expansion parameter:

𝜕𝑥 ∼ 𝜕𝑦 ∼ Θ𝑒 = 𝑂 (1), (2.78)

𝜕𝑡 ∼ 𝜕𝑧 ∼ 𝑁𝑒 ∼ 𝜙 ∼ 𝐴∥ ∼ 𝑈𝑒 = 𝑂 (𝜀) ≪ 1, (2.79)

𝐵∥ ∼ 𝑇⊥𝑒 = 𝑂 (𝜀𝛽⊥𝑒 ), (2.80)

𝛿2 ≪ 𝛽⊥𝑒 ≪ 1. (2.81)

The ordering (2.78) fixes equal to 𝜌𝑠⊥ the characteristic scale length for the variations
of the fluctuations in the perpendicular plane, and assumes the electron temperature
anisotropy to remain finite as the expansion parameters tend to zero. The order-
ing (2.79), on the other hand, refers to small-amplitude, low-frequency, and strongly
anisotropic fluctuations, which are typical assumptions of the 𝛿 𝑓 gyrokinetic approach
(note, on the other hand, that due to our subsidiary ordering in the parameter 𝛽⊥𝑒 , the
ordering (2.79) is not equivalent to the one assumed in Kunz et al. (2015) for deriving
the parent gyrokinetic model (2.28)-(2.31)). All the lowest-order terms in the gyrofluid
equations (2.67)-(2.68) are of order 𝜀2 and no further expansion will be performed in
the parameter 𝜀.

According to Eq. (2.81), we consider a small value of the 𝛽⊥𝑒 parameter, although
much larger than the mass ratio 𝛿2. The reason for the latter ordering is that it will
allow to neglect electron FLR effects, while retaining electron inertia term in Ohm’s
law, which is required for reconnection. As a consequence, the fluctuations 𝐵∥ and𝑇⊥𝑒
will turn out to be subdominant with respect to the other fluctuations, as indicated by
Eq. (2.80).

We focus, in the coming steps, on the reduction of the gyroaverage operators using
the assumptions (2.81) and (2.74). The cold ion limit and the ordering (2.74) indicate
that the normalized parameter 𝑏𝑠 for each species, corresponding to 𝑏𝑒 = 𝛿2𝑘2⊥ and 𝑏𝑖 =
𝜏⊥𝑖𝑘

2
⊥, can be expanded, allowing us to simplify the gyroaverage operators 𝐺1𝑛𝑠 and

𝐺2𝑛𝑠 , whose general form is given by Eqs. (2.48) and (2.49). For the sake of clarity, we
write below the explicit expression of the normalized operators acting on the moments
that will be considered for the reduction (operators of higher order moment will be
negligible):

𝐺10𝑒 𝑓k𝑒
𝑖k·x = 2𝐺20𝑒 𝑓k𝑒

𝑖k·x =
∑
k

𝑒−
𝛿2
2 𝑘

2
⊥ 𝑓k𝑒

𝑖k·x,

𝐺11𝑒 𝑓k𝑒
𝑖k·x =

∑
k

𝛿2

2
𝑘2⊥𝑒

−𝛿2
2 𝑘

2
⊥ 𝑓k𝑒

𝑖k·x,

𝐺21𝑒 𝑓k𝑒
𝑖k·x = −

∑
k

𝑒−
𝛿2
2 𝑘

2
⊥

2

(
1 − 𝛿2

2
𝑘2⊥

)
𝑓k𝑒

𝑖k·x;

(2.82)
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and for the ions:

𝐺10𝑖 𝑓k𝑒
𝑖k·x = 2𝐺20𝑖 𝑓k𝑒

𝑖k·x =
∑
k

𝑒−
𝜏⊥𝑖
2 𝑘

2
⊥ 𝑓k𝑒

𝑖k·x,

𝐺11𝑖 𝑓k𝑒
𝑖k·x =

∑
k

𝜏⊥𝑖

2
𝑘2⊥𝑒

− 𝜏⊥𝑖
2 𝑘

2
⊥ 𝑓k𝑒

𝑖k·x,

𝐺21𝑖 𝑓k𝑒
𝑖k·x = −

∑
k

𝑒−
𝜏⊥𝑖
2 𝑘

2
⊥

2

(
1 − 𝜏⊥𝑖

2
𝑘2⊥

)
𝑓k𝑒

𝑖k·x.

(2.83)

Upon the ordering (2.81), these operators are written using their Taylor expansions as

𝐺10𝑒 𝑓 = 2𝐺20𝑒 𝑓 =

(
1 + 𝛿

2

2
∇2
⊥

)
𝑓 +𝑂 (𝛿3),

𝐺11𝑒 𝑓 = −𝛿
2

2
∇2
⊥𝑓 +𝑂 (𝛿3),

𝐺21𝑒 𝑓 = −1
2

(
1 + 𝛿

2

2
∇2
⊥

)
𝑓 +𝑂 (𝛿3),

(2.84)

For the ions, upon the ordering (2.74),

𝐺10𝑖 𝑓 = 2𝐺20𝑖 𝑓 =
(
1 + 𝜏⊥𝑖

2
∇2
⊥

)
𝑓 +𝑂 (𝜏2⊥𝑖

),

𝐺11𝑖 𝑓 = −𝜏⊥𝑖

2
∇2
⊥𝑓 +𝑂 (𝜏2⊥𝑖

),

𝐺21𝑖 𝑓 = −1
2

(
1 + 𝜏⊥𝑖

2
∇2
⊥

)
𝑓 +𝑂 (𝜏2⊥𝑖

),

(2.85)

while the operators𝐺1𝑛𝑠 and𝐺2𝑛𝑠 with𝑛 ≥ 2 are of higher order in 𝜏⊥𝑖 and thus turn out
to be negligible. Regarding the ion and electron Γ𝑛𝑠 operators whose general expression
is given in Eq. (2.55), they can be simplified as well using Eqs. (2.81) and (2.74), and
can be written as

Γ0𝑒 𝑓 = (1 + 𝛿2∇2
⊥) 𝑓 +𝑂 (𝛿3), Γ1𝑒 𝑓 = 𝑂 (𝛿3),

Γ0𝑖 𝑓 = (1 + 𝜏⊥𝑖∇2
⊥) 𝑓 +𝑂 (𝜏2⊥𝑖

), Γ1𝑖 𝑓 = 𝑂 (𝜏2⊥𝑖
).

(2.86)

Using the ordering (2.78) in the closure equations (2.60) and (2.61) and neglecting terms
proportional to 𝑑2𝑒 compared to terms of order one, we obtain the reduced closure
equations,

𝑇∥𝑒 = 0, 𝑇⊥𝑒 = −𝐵∥ . (2.87)

When applying the ordering, to the evolution equations (2.67) and (2.68), the assump-
tion 𝛿2 ≪ 𝛽⊥𝑒 ≪ 1 allows us to neglect terms proportional to 𝛿2, arising from the
operators 𝐺1𝑛𝑒 and 𝐺2𝑛𝑒 , when compared to terms proportional to 𝛿2/𝛽⊥𝑒 and, there-
fore, to neglect electron FLR effects. However, retaining first order corrections in 𝛽⊥𝑒
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allows us to keep some terms involving the perturbation 𝐵∥
4.

𝜕𝑁𝑒
𝜕𝑡

+ [𝜙 − 𝐵∥, 𝑁𝑒] − [𝐴∥,𝑈𝑒] +
𝜕𝑈𝑒
𝜕𝑧

= 0, (2.88)

𝜕

𝜕𝑡

(
𝐴∥ −

2𝛿2

𝛽⊥𝑒

𝑈𝑒

)
+

[
𝜙 − 𝐵∥, 𝐴∥ −

2𝛿2

𝛽⊥𝑒

𝑈𝑒

]
+ 1
Θ𝑒

[𝐴∥, 𝑁𝑒] +
𝜕

𝜕𝑧

(
𝜙 − 𝐵∥ −

𝑁𝑒
Θ𝑒

)
= 0.

(2.89)

Applying now the ordering to the static equations (2.69) - (2.71) and neglecting terms
proportional to 𝛿2, while retaining first order corrections in 𝛽⊥𝑒 , yields the relations

𝑁𝑒 = ∇2
⊥𝜙, (2.90)

𝑈𝑒 =

(
1 + 𝛽⊥𝑒

2

(
1 − 1

Θ𝑒

))
∇2
⊥𝐴∥, (2.91)

𝐵∥ = − 𝛽⊥𝑒

2 + 𝛽⊥𝑒

∇2
⊥𝜙. (2.92)

By means of the first relation in Eq. (2.90), indicating that the electron gyrocenter
density equals the E×B vorticity∇2

⊥𝜙 , Eq. (2.69) becomes an evolution equation for the
vorticity. As is customary with gyrofluid models, Eqs. (2.88) and (2.89) are expressed
in terms of gyrocenter variables, but in this limit, gyrocenter variable can easily be
expressed in terms of particle variables

𝑁𝑒 = 𝑛𝑒, 𝑈𝑒 = 𝑢𝑒 +
(
𝛽⊥𝑒

2

(
1 − 1

Θ𝑒

))
∇2
⊥𝐴∥, 𝐵∥ = − 𝛽⊥𝑒

2 + 𝛽⊥𝑒

𝑛𝑒 . (2.93)

Regarding the ions, further insight about the assumptions 𝑁𝑖 = 𝑈𝑖 = 0 can be obtained
expressing these assumptions in terms of particle moments, instead of gyrocenter mo-
ments. The plasma quasi-neutrality implies 𝑛𝑒 − 𝑛𝑖 = 0 and therefore

𝑛𝑖 = ∇2
⊥𝜙. (2.94)

Regarding the assumption on the gyrocenter ion parallel velocity, 𝑈𝑖 = 0 it imposes
𝑢𝑖 = 0.

For the study of the tearing instability, we take perturbation with 𝑘𝑧 = 0, thus mak-
ing the approach essentially 2D. Using the relations (2.87) and (2.92)-(2.93), and neglect-
ing corrections of order 𝛽⊥𝑒 , the 2D evolution equations (2.88) and (2.89) become

4Therefore, we canwrite the evolution equations, retaining the abovementioned corrections as well
as the subdominant term (2/𝛽⊥𝑒 ) [𝐵 ∥ , 𝛿

2𝑈𝑒 ] of order 𝛿2, allowing the system to keep a Hamiltonian for-
mulation (a similar inconsistency in the ordering, possessing, on the other hand, the merit of preserving
the Hamiltonian character of the parent gyrokinetic model, is discussed in Passot et al. (2018)).
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𝜕∇2
⊥𝜙

𝜕𝑡
+ [𝜙,∇2

⊥𝜙] − [𝐴∥,∇2
⊥𝐴∥] = 0, (2.95)

𝜕

𝜕𝑡

(
𝐴∥ −

2𝛿2

𝛽⊥𝑒

∇2
⊥𝐴∥

)
+

[
𝜙,𝐴∥ −

2𝛿2

𝛽⊥𝑒

∇2
⊥𝐴∥

]
− 1
Θ𝑒

[∇2
⊥𝜙,𝐴∥] = 0. (2.96)

The model (2.95) - (2.96), is the one considered for studying the impact of temper-
ature anisotropy on the tearing instability in Chapter 3.

To sum up the main characteristics of this model used to study reconnection:

• Electron inertia breaks the frozen-in condition

• Cold ions (negligible ion FLR effects) are assumed

• Immobile ions are assumed along the guide field direction, but ion density
fluctuations are allowed

• Temperature anisotropy can be included

• In the application of reconnection, themodel normalisation is such that ami-
croscopic current sheet of characteristic length scale 𝜌𝑠⊥ is assumed (with
respect to the macroscopic length scale 𝐿 of MHD)

When taking the isotropic limit Θ𝑒 = 1 for the electron temperature, the system
(2.95) - (2.96) corresponds, up to the normalization, to the two-field model (2.136) -
(2.137) of Schep et al. (1994). However, unlike the present model, the model of Schep
et al. (1994) has a characteristic length scale 𝐿 ≫ 𝜌𝑠⊥. As a consequence, in the latter
model, the analogue of the last term on the right-hand side of Eq. (2.96) is typically a
small perturbation, proportional to (𝜌𝑠⊥/𝐿) ≪ 1, whereas, on the presently adopted
scale 𝜌𝑠⊥, this term is comparable to other terms retained in the same equation.

Neglecting electron inertia as well as the term −(1/Θ𝑒) [∇2
⊥𝜙,𝐴∥] in Eq. (2.96), the

system corresponds to 2D low 𝛽 reducedmagnetohydrodynamics (Kadomtsev&Pogutse
(1974); Strauss (1976)). A version of a similar model, neglecting electron inertia but ac-
counting for parallel magnetic perturbations, was adopted in order to investigate the
impact of electron temperature anisotropy on the linear stability of magnetic vortex
chains (Granier & Tassi (2020)).

Using the relation 𝐵∥ = − 𝛽⊥𝑒
2 ∇2

⊥𝜙 (coming from Eq. (2.132)) in the Eqs. (2.95)
and (2.96), the resulting model is similar to electron magnetohydrodynamic (EMHD)
(Kingsep et al. (1990)). Analogously to EMHD, ions are assumed to be immobile along
the guide field direction. On the other hand the continuity equation (2.95) turns to be
an evolution equation for the perturbation of the parallel magnetic field 𝐵∥ and not of
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the field 𝐵∥ − (2𝛿2/𝛽⊥𝑒 )∇2
⊥𝐵∥ as is the case for EMHD.

Regarding the term−(1/Θ𝑒) [∇2
⊥𝜙,𝐴∥] in Eq. (2.96)5, where the temperature anisotropy

parameter Θ𝑒 , appears in the denominator, and is usually not present in EMHD, this
contribution is coming from the projection, along the magnetic field, of the divergence
of the anisotropic pressure tensor. This term plays an important role in the linear sta-
bility analysis that we present in Chapter 3. In particular, with respect to the case of
EMHD, it leads to modifications of the linearized system in the inner region, eventu-
ally leading to a dispersion relation different from those derived for EMHD systems in
Refs. Bulanov et al. (1992) and Cai & Li (2008).

In Refs. Kuznetsova et al. (1995) and Cai & Li (2009), a fluid description for the
electron species was adopted, in order to study collisionless tearing stability taking
into account non-gyrotropic terms. In the stability analysis presented in Chapter 3
we do not account for such terms, as they are associated with electron FLR correc-
tions, that we neglect due to the small 𝛽⊥𝑒 limit. Compared to such studies, where a
space-dependent equilibrium pressure is also considered, our equations (2.95) - (2.96)
are assuming, in terms of the perpendicular and parallel particle temperature fluctu-
ations, an isothermal closure and we consider a homogeneous equilibrium pressure
resulting from a bi-Maxwellian distribution function. This closure leads to the can-
cellation of a number of contributions coming from the pressure tensor, and the term
−(1/Θ𝑒) [∇2

⊥𝜙,𝐴∥] is the remaining contribution.

2.3.3 Conserved energy
In this subsection, we give the expression of the conserved total energy of the system

and of the different forms of energies contributing to it. We introduce the dynamical
variable

𝐴𝑒 = 𝐴∥ −
2𝛿2

𝛽⊥𝑒

𝑈𝑒 . (2.97)

The static relations (2.93) can be seen, in Fourier space, as an inhomogeneous linear
system with the Fourier coefficients of 𝜙 and 𝐵∥ as unknowns, for given 𝑁𝑖,𝑒 . From the
solution of this system, one can express the fields 𝜙 and 𝐵∥ in terms of 𝑁𝑖 and 𝑁𝑒 , by
means of relations of the form

𝑈𝑒 = L𝑈𝑒 (𝐴𝑒), 𝐵∥ = L𝐵 (𝑁𝑒), 𝜙 = L𝜙 (𝑁𝑒), (2.98)

whereL𝑈𝑒 ,L𝜙 andL𝐵 are symmetric operators, i.e., operatorsL such that
´
𝑑2𝑥 𝑓 L𝑔 =´

𝑑2𝑥 𝑔L 𝑓 , for two functions 𝑓 and 𝑔. They permit to express𝑈𝑒 , 𝜙 and 𝐵∥ in terms of
𝑁𝑒 and 𝐴𝑒 by means of Eqs. (2.93).

The system (2.88)-(2.89) was shown to be Hamiltonian in Tassi (2019); Granier et al.
(2021). Its Hamiltonian structure is presented in Appendix A. The total conserved

5in 3D there will also be the term −(1/Θ𝑒 )𝜕𝑧∇2
⊥𝜙 .
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energy consists of the Hamiltonian functional

𝐻 (𝑁𝑒, 𝐴𝑒) =
1
2

ˆ
𝑑2𝑥

(
𝑁 2
𝑒

Θ𝑒
−𝐴𝑒∇2

⊥L𝑈𝑒𝐴𝑒 − 𝑁𝑒L𝜙𝑁𝑒 + 𝑁𝑒L𝐵𝑁𝑒

)
. (2.99)

2.4 The quasi-static closure
In this section, we present a second model, derived by Tassi et al. (2020), that is used

in Chapter 4, to study the impact of electron FLRs on the tearing mode growth rate.
It is also used in Chapter 5, to study their effects on the plasmoid instability. This
model is based on the so-called quasi-static closure, implying that the perturbations
are assumed to propagate along the guide field with a phase velocity much smaller
than the particle thermal velocities.

The field normalization applied to this model differs from that applied to the previ-
ous model. Here, instead of normalizing the lengths and the time by the sonic Larmor
radius and the cyclotron frequency respectively, we use a macroscopic length 𝐿 and
the Alfvén time 𝜏𝐴 = 𝐿/𝑣𝐴.

2.4.1 The closure
The procedure for applying the quasi-static closure, derived in the Appendix of Tassi

et al. (2020), consists of fixing a number of moments, for which a corresponding evolu-
tion equation is derived from the gyrokinetic model, and of applying to all remaining
moments appearing in such evolution equations,

𝑓𝑚𝑛𝑠 = −𝛿𝑚0

(
−𝐺1𝑛𝑠

𝑒

𝑇0𝑠
𝜙 + 2𝐺2𝑛𝑠

𝐵∥
𝐵0

)
, (2.100)

where 𝛿𝑚0 is a Kronecker delta and𝑚 and 𝑛 are non-negative integers. We note that,
using Eqs. (2.43)-(2.44) the gyrofluid moments 𝑓𝑚𝑛 can be expressed in terms of the
perturbation of the gyrocenter distribution function as

𝑓𝑚𝑛𝑠 =
1

𝑛0
√
𝑚!

ˆ
dW𝑠𝐻𝑚

(
𝑣 ∥
𝑣𝑡ℎ ∥𝑠

)
𝐿𝑛

(
𝜇𝑠𝐵0
𝑇0⊥𝑠

)
𝑓𝑠 (2.101)

This relation is originally obtained in Tassi et al. (2020) by linearizing the 3D gy-
rokinetic Eqs. (2.28) about an equilibrium 𝜙𝑒𝑞 = 𝐴∥𝑒𝑞 = 𝐵∥𝑒𝑞 = 0 and assuming waves
with a small parallel phase velocity 𝜔/𝑘𝑧 ≪ 𝑣𝑡ℎ𝑠 , which justifies the term quasi-static.
Although in 2D, with 𝑘𝑧 = 0, this quasi-static closure can be obtained by linearizing
the gyrokinetic equation about 𝜙𝑒𝑞 = 𝐵∥𝑒𝑞 = 0, 𝐴∥𝑒𝑞 = 𝑎𝑥 , with constant 𝑎, and be valid
when the condition

𝜔

𝑘𝑦
≪ 𝑣𝑡ℎ𝑠 (2.102)
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is satisfied. For the tearing instability analysis, we indeed selected perturbations inde-
pendent on 𝑧 which effectively leads us to consider a 2D reduction of the models.

For obtaining the model considered in this Thesis it is enough to retain only the first
two moments of the hierarchy for the two species, and apply the closure starting from
the gyrocenter temperature fluctuations. Thus, (2.100) constrains all the moments,
excluding (𝑚,𝑛) ≠ (0, 0) and (𝑚,𝑛) ≠ (1, 0), namely to exclude 𝑁𝑒,𝑖 and 𝑈𝑒,𝑖 , and sets
the moments with 𝑚 ≠ 0 to zero. For, instance, taking the couple (𝑚,𝑛) = (2, 0)
correspond to considering the gyrocenter parallel temperature fluctuation. Therefore,
injecting (2.100) into (2.42), taking (𝑚,𝑛) = (2, 0), implies that 𝑇∥𝑒,𝑖 = 0.
The expansion of the gyrocenter perturbed distribution functions for the two species
is thus given by

𝑓𝑠 = F𝑒𝑞𝑠

(
𝑁𝑠
𝑛0

+
𝑣 ∥
𝑣𝑡ℎ ∥𝑠

𝑈𝑠
𝑣𝑡ℎ ∥𝑠

−
+∞∑
𝑛=1

𝐿𝑛

(
𝜇𝑠𝐵0
𝑇0⊥𝑠

) (
𝐺1𝑛𝑠

𝑞𝑠
𝑇0∥𝑠

𝜙 + 2Θ𝑠𝐺2𝑛𝑠
𝐵∥
𝐵0

))
, (2.103)

Applying the same procedure as described in the previous Section one can derive the
following 4-field Hamiltonian gyrofluid model derived by Tassi et al. (2020), taken in
the 2D limit (assuming that all the independent variables do not vary along the direc-
tion of the guide field),

1
𝑛0

𝜕𝑁𝑠
𝜕𝑡

+ 𝑐

𝐵0

[
𝐺10𝑠𝜙 + 𝑇0⊥𝑠

𝑞𝑠
2𝐺20𝑠

𝐵∥
𝐵0
,
𝑁𝑠
𝑛0

]
− 1
𝐵0

[
𝐺10𝑠𝐴∥,𝑈𝑠

]
= 0, (2.104)

𝜕

𝜕𝑡

(
𝑈𝑠
𝑣𝑡ℎ ∥𝑠

+
𝑞𝑠𝑣𝑡ℎ ∥𝑠
𝑇0∥𝑠𝑐

𝐺10𝑠𝐴∥

)
+ 𝑐

𝐵0

[
𝐺10𝑠𝜙 + 𝑇0⊥𝑠

𝑞𝑠
2𝐺20𝑠𝐵∥,

𝑈𝑠
𝑣𝑡ℎ ∥𝑠

+
𝑞𝑠𝑣𝑡ℎ ∥𝑠
𝑇0∥𝑠𝑐

𝐺10𝑠𝐴∥

]
−

𝑣𝑡ℎ ∥𝑠
𝐵0

[
𝐺10𝑠𝐴∥,

𝑁𝑠
𝑛0

]
= 0, (2.105)

where 𝐺10𝑠 and 𝐺20𝑠 are the dimensional operators defined by Eqs. (2.48) - (2.50). The
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dimensional static relations are given by∑
𝑠

𝑞𝑠

(
𝐺10𝑠

𝑁𝑠
𝑛0

+ 𝑞𝑠
𝑇0⊥𝑠

(1 − Θ𝑠)Γ0𝑠𝜙 + 𝑞𝑠
𝑇0⊥𝑠

(Θ𝑠𝐺10𝑠𝐺
2
10𝑠 − 1)𝜙

+(1 − Θ𝑠) (Γ0𝑠 − Γ1𝑠)
𝐵∥
𝐵0

+ Θ𝑠2𝐺10𝑠𝐺20𝑠

𝐵∥
𝐵0

)
= 0, (2.106)

− ∇2
⊥𝐴∥ =

4𝜋𝑛0
𝑐

∑
𝑠

𝑞𝑠

(
𝐺10𝑠𝑈𝑠 +

𝑞𝑠
𝑚𝑠

(
1 − 1

Θ𝑠

)
(Γ0𝑠 − 1)

𝐴∥
𝑐

)
, (2.107)

𝐵∥
𝐵0

= −1
2

∑
𝑠

𝛽⊥𝑠

(
2𝐺20𝑠

𝑁𝑠
𝑛0

+ 𝑞𝑠
𝑇0⊥𝑠

(1 − Θ𝑠)(Γ0𝑠 − Γ1𝑠)𝜙 + 2(1 − Θ𝑠)(Γ0𝑠 − Γ1𝑠)
𝐵∥
𝐵0

+Θ𝑠
𝑞𝑠
𝑇0⊥𝑠

2𝐺10𝑠𝐺20𝑠𝜙 + Θ𝑠4𝐺
2
20𝑠

𝐵∥
𝐵0

)
. (2.108)

2.4.2 Normalisation by 𝐿, and assumptions

We consider here an Alfvénic normalization, different from that used for the previ-
ous model, and given by

𝑡 =
𝑣𝐴
𝐿
𝑡, 𝑥 =

𝑥

𝐿
, 𝑦 =

𝑦

𝐿
,

�̂�𝑠 =
𝐿

𝑑𝑖

𝑁𝑠
𝑛0
, 𝑈𝑠 =

𝐿

𝑑𝑖

𝑈𝑠
𝑣𝐴
, (2.109)

𝐴∥ =
𝐴∥
𝐿𝐵0

, �̂�∥ =
𝐿

𝑑𝑖

𝐵∥
𝐵0
, 𝜙 =

𝑐

𝑣𝐴

𝜙

𝐿𝐵0
.

We also normalize the following lengths

𝑑𝑖 =
𝑑𝑖
𝐿
, 𝜌𝑠 =

𝜌𝑠
𝐿
, 𝑑𝑒 =

𝑑𝑒
𝐿
. (2.110)

The hat indicates dimensionless quantities, and 𝑣𝐴 = 𝐵0/
√
4𝜋𝑚𝑖𝑛0 is the Alfvén speed.

The length 𝐿 is our characteristic reconnecting magnetic field length scale, appearing
in the dimensional equilibrium. All times are normalized by the Alfvén time 𝜏𝐴 = 𝐿/𝑣𝐴.
For ease of notation, we now drop the hat over the dimensionless variables.

This normalization has been used several times in the past for fluid and gyrofluid
models (Grasso et al. (2001); Del Sarto et al. (2003); Grasso et al. (2006); Comisso et al.
(2013)) and turns out to be more natural and convenient in order to make contact with
previous work based on equilibrium current sheets with a characteristic length greater
than the Larmor radius scales. This was not the case of the previous model, for which
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the tearing analysis focused on current sheets with size of the order of 𝜌𝑠⊥. A second
advantage is that the parameters associated with different kinetic scales, 𝑑𝑒 and 𝜌𝑠 , are
treated as small parameters (this was also not the case with the other normalization),
which can make the approach more intuitive.

The complete normalized 4-field gyrofluid model is given by

𝜕𝑁𝑖
𝜕𝑡

+ [𝐺10𝑖𝜙 + 𝜏⊥𝑖𝜌
2
𝑠⊥2𝐺20𝑖𝐵∥, 𝑁𝑖] − [𝐺10𝑖𝐴∥,𝑈𝑖] = 0, (2.111)

𝜕

𝜕𝑡
(𝑑2𝑖𝑈𝑖 +𝐺10𝑖𝐴∥) + [𝐺10𝑖𝜙 + 𝜏⊥𝑖𝜌

2
𝑠⊥2𝐺20𝑖𝐵∥, 𝑑

2
𝑖𝑈𝑖 +𝐺10𝑖𝐴∥] −

𝜏⊥𝑖𝜌
2
𝑠⊥

Θ𝑖
[𝐺10𝑖𝐴∥, 𝑁𝑖] = 0,

(2.112)
𝜕𝑁𝑒
𝜕𝑡

+ [𝐺10𝑒𝜙 − 𝜌2𝑠⊥2𝐺20𝑒𝐵∥, 𝑁𝑒] − [𝐺10𝑒𝐴∥,𝑈𝑒] = 0, (2.113)

𝜕

𝜕𝑡
(𝐺10𝑒𝐴∥ − 𝑑2𝑒𝑈𝑒) + [𝐺10𝑒𝜙 − 𝜌2𝑠⊥2𝐺20𝑒𝐵∥,𝐺10𝑒𝐴∥ − 𝑑2𝑒𝑈𝑒] +

𝜌2𝑠⊥
Θ𝑒

[𝐺10𝑒𝐴∥, 𝑁𝑒] = 0,

(2.114)

complemented by the static relations

𝐺10𝑖𝑁𝑖 −𝐺10𝑒𝑁𝑒 + (1 − Θ𝑖)Γ0𝑖
𝜙

𝜏⊥𝑖𝜌
2
𝑠⊥

+ (1 − Θ𝑒)Γ0𝑒
𝜙

𝜌2𝑠⊥
+ (Θ𝑖𝐺2

10𝑖 − 1) 𝜙

𝜏⊥𝑖𝜌
2
𝑠⊥

+ (Θ𝑒𝐺2
10𝑒 − 1) 𝜙

𝜌2𝑠⊥
+ (Θ𝑖𝐺10𝑖2𝐺20𝑖 − Θ𝑒𝐺10𝑒2𝐺20𝑒 )𝐵∥

+ ((1 − Θ𝑖)(Γ0𝑖 − Γ1𝑖) − (1 − Θ𝑒)(Γ0𝑒 − Γ1𝑒))𝐵∥ = 0, (2.115)

∇2
⊥𝐴∥ =

((
1 − 1

Θ𝑒

)
(1 − Γ0𝑒)

1

𝑑2𝑒
+

(
1 − 1

Θ𝑖

)
(1 − Γ0𝑖)

1

𝑑2𝑖

)
𝐴∥

+𝐺10𝑒𝑈𝑒 −𝐺10𝑖𝑈𝑖, (2.116)

𝐵∥ = −𝛽⊥𝑒

2

(
𝜏⊥𝑖2𝐺20𝑖𝑁𝑖 + 2𝐺20𝑒𝑁𝑒 + (1 − Θ𝑖) (Γ0𝑖 − Γ1𝑖)

𝜙

𝜌2𝑠⊥

− (1 − Θ𝑒)(Γ0𝑒 − Γ1𝑒)
𝜙

𝜌2𝑠⊥
+ Θ𝑖𝐺10𝑖2𝐺20𝑖

𝜙

𝜌2𝑠⊥
− Θ𝑒𝐺10𝑒2𝐺20𝑒

𝜙

𝜌2𝑠⊥
+ Θ𝑖𝜏⊥𝑖4𝐺

2
20𝑖𝐵∥

+Θ𝑒4𝐺2
20𝑒𝐵∥ + 𝜏⊥𝑖2(1 − Θ𝑖)(Γ0𝑖 − Γ1𝑖)𝐵∥ + 2(1 − Θ𝑒)(Γ0𝑒 − Γ1𝑒)𝐵∥

)
(2.117)

In the gyroaverage operators, the normalized𝑏𝑠 parameter corresponds now to 𝜌2𝑒𝑘
2
⊥

for the electron and 𝜌2𝑖 𝑘
2
⊥ for the ions. The gyroaverage operators are associated with

corresponding Fourier multipliers in the following way

𝐺10𝑒 𝑓k𝑒
𝑖k·x = 2𝐺20𝑒 𝑓k𝑒

𝑖k·x = e−𝑘
2
⊥
𝛽⊥𝑒
4 𝑑2𝑒 𝑓k𝑒

𝑖k·x, (2.118)

𝐺10𝑖 𝑓k𝑒
𝑖k·x = 2𝐺20𝑖 𝑓k𝑒

𝑖k·x = e−𝑘
2
⊥
𝜏⊥𝑖
2 𝜌2𝑠⊥ 𝑓k𝑒

𝑖k·x. (2.119)
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and

Γ0𝑒 𝑓k𝑒
𝑖k·x = 𝐼0

(
𝑘2⊥
𝛽⊥𝑒

2
𝑑2𝑒

)
𝑒−𝑘

2
⊥
𝛽⊥𝑒
2 𝑑2𝑒 𝑓k𝑒

𝑖k·x, (2.120)

Γ1𝑒 𝑓k𝑒
𝑖k·x = 𝐼1

(
𝑘2⊥
𝛽⊥𝑒

2
𝑑2𝑒

)
𝑒−𝑘

2
⊥
𝛽⊥𝑒
2 𝑑2𝑒 𝑓k𝑒

𝑖k·x, (2.121)

Γ0𝑖 𝑓k𝑒
𝑖k·x = 𝐼0

(
𝑘2⊥𝜏⊥𝑖𝜌

2
𝑠⊥

)
𝑒−𝑘

2
⊥𝜏⊥𝑖 𝜌

2
𝑠⊥ 𝑓k𝑒

𝑖k·x, (2.122)

Γ1𝑖 𝑓k𝑒
𝑖k·x = 𝐼1

(
𝑘2⊥𝜏⊥𝑖𝜌

2
𝑠⊥

)
𝑒−𝑘

2
⊥𝜏⊥𝑖 𝜌

2
𝑠⊥ 𝑓k𝑒

𝑖k·x. (2.123)

Also for this model, we intend to obtain a reduced version of the four-field model in
order to retain some specific effects.
Again, we carry out most of the analysis in the isotropic cold-ion limit, a simplifying
assumption which is also helpful for the comparison with previous works

𝜏⊥𝑖 → 0. (2.124)

Nevertheless, in Chapter 4, some comments will be provided also with regard to the
opposite limit of hot ions. Similar to the previous case, the limit (2.124) allows to
develop the ion gyroaverage operators with a Taylor expansion.

The gyrocenter ion density fluctuations 𝑁𝑖 and ion gyrocenter parallel velocity fluc-
tuations𝑈𝑖 are neglected, and the equilibrium temperature of both species are isotropic.
The latter conditions amount to impose

𝑁𝑖 = 𝑈𝑖 = 0, Θ𝑖 = Θ𝑒 = 1. (2.125)

It is important to point out that, in principle, in the case where 𝑑𝑒 and 𝜌𝑠 remain finite,
𝑈𝑖 = 𝑁𝑖 = 0 is solution of the 4-field parent model only if 𝛽𝑒 ≪ 1. Therefore, for a finite
𝛽𝑒 , the parallel ion dynamics should be taken into account. InChapter 5 one of the aims
is indeed to discuss the admissibility of the suppression of the parallel ion dynamics
by comparing with gyrokinetic simulations, that are considering the ion dynamic. The
gyrokinetic simulations, that are compared to the gyrofluid model were performed in
the same range of parameter and used the same initial conditions. We anticipate that
it turns out that, for 𝛽𝑒 values approaching 1 from below, the ion dynamics do not play
an important role, and the growth rates of the tearing mode obtained from the two
approaches remain in agreement. The formation of plasmoids is also not significantly
impacted by the absence or presence of the ions.

Sincewe consider here the isotropic case, it is in fact possible to follow the derivation
procedure, starting the reduction fromgyrokinetic equations that consider aMaxwellian
equilibrium distribution function (instead of a bi-Maxwellian). In this case, isotropy
would be assumed from the start. The reason why anisotropy was retained until here,
is because originally the model was derived in an attempt to describe instabilities due
to temperature anisotropy and finite 𝛽𝑒 , such as the firehose instability.
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We can write the assumption 𝑁𝑖 = 0 in terms of the normalized particle density
fluctuation 𝑛𝑖 as

𝑛𝑖 = 𝑁𝑖 + ∇2
⊥𝜙 + 𝐵∥, (2.126)

valid in the limit 𝜏⊥𝑖 → 0 and Θ𝑖 = 1 (Brizard, 1992).
Neglecting 𝑁𝑖 in Eq. (2.126) thus amounts to assuming that the ion density response

is due only to the ion polarization (second term on the right-hand side of Eq. (2.126))
and to the parallel magnetic perturbation 𝐵∥ . In the low-𝛽 limit, the influence of 𝐵∥
becomes negligible and (2.126) corresponds to a solution for the ion response derived
by the kinetic theory of Schep et al. (1994).

With regard to the assumption that neglects the evolution of the ion gyrocenter
parallel velocity, 𝑈𝑖 = 0, the relation with the normalized parallel ion velocity 𝑢𝑖 is
simply given by𝑈𝑖 = 𝑢𝑖 = 0 and ions are assumed to be immobile along the guide field
direction which is reasonable by virtue of the larger ion inertia.6

Given that 𝛽𝑒 = 𝜌2𝑠 /𝑑2𝑖 , from Eq. (2.112) in the 𝜏⊥𝑖− > 0 limit, it is therefore apparent
that the simplifying hypothesis𝑈𝑖 = 𝑢𝑖 = 0 is reasonable for studying the impact of 𝛽𝑒
values smaller than one, which is realistic in the case of a number of astrophysical and
laboratory plasmas.

By applying the conditions (2.124)-(2.125) in the static relations (2.106)-(2.108) we
obtain the final static relations(

𝐺2
10𝑒

− 1

𝜌2𝑠
+ ∇2

⊥

)
𝜙 −

(
𝐺10𝑒2𝐺20𝑒 − 1

)
𝐵∥ = 𝐺10𝑒𝑁𝑒, (2.127)

∇2
⊥𝐴∥ = 𝐺10𝑒𝑈𝑒, (2.128)(
𝐺10𝑒2𝐺20𝑒 − 1

) 𝜙
𝜌2𝑠

−
(
2
𝛽𝑒

+ 4𝐺2
20𝑒

)
𝐵∥ = 2𝐺20𝑒𝑁𝑒 . (2.129)

The two evolution equations read

𝜕𝑁𝑒
𝜕𝑡

+ [𝐺10𝑒𝜙 − 𝜌2𝑠 2𝐺20𝑒𝐵∥, 𝑁𝑒] − [𝐺10𝑒𝐴∥,𝑈𝑒] = 0, (2.130)

𝜕

𝜕𝑡
(𝐺10𝑒𝐴∥ − 𝑑2𝑒𝑈𝑒) + [𝐺10𝑒𝜙 − 𝜌2𝑠 2𝐺20𝑒𝐵∥,𝐺10𝑒𝐴∥ − 𝑑2𝑒𝑈𝑒]

+ 𝜌2𝑠 [𝐺10𝑒𝐴∥, 𝑁𝑒] = 0, (2.131)

6Such assumptions can also be justified by the fact that the evolution of ion gyrocenter density and
parallel velocity, at least when their initial conditions are 𝑁𝑖 = 𝑈𝑖 = 0, have been shown to have a
negligible role in simulations of reconnection (Comisso et al. (2012)).
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2.4 The quasi-static closure

Eqs. (2.130), (2.131) and (2.127)-(2.129) correspond to the gyrofluid model adopted
for the analysis of magnetic reconnection in Chapter 4 and for the study of plas-
moid instability in Chapter 5.

To sum up the main characteristics of this model:

• Electron inertia and electron gyrations break the frozen-in condition

• Cold ions (negligible ion FLR effects) are assumed

• Immobile ions are assumed along the guide field direction, but ion density
fluctuations are allowed

• Finite, but small, 𝛽𝑒 and electron FLR effects are retained

• Subdominant (since 𝛽𝑒 is small) fluctuations of the parallel magnetic field
are included

For the sake of the subsequent analysis, it can be useful also to express the rela-
tions between gyrofluid models and particle variables. Such relation, in particular, is
affected by the quasi-static assumption, used in the derivation of the model (Tassi et al.,
2020) to obtain a closure on the infinite hierarchy of moment equations obtained from
a parent gyrokinetic system. As a consequence of such quasi-static closure the normal-
ized density fluctuations and parallel velocity fluctuations of the electrons, indicated
with 𝑛𝑒 and 𝑢𝑒 , respectively, are related to those of the corresponding gyrocenters by

𝑁𝑒 = 𝐺
−1
10𝑒

(
𝑛𝑒 +

(
𝐺2
10𝑒 − 1

) 𝜙
𝜌2𝑠

−𝐺2
10𝑒𝐵∥

)
, (2.132)

𝑈𝑒 = 𝐺
−1
10𝑒𝑢𝑒 . (2.133)

From the quasi-neutrality relation (2.127), Ampère’s law (2.128)-(2.129), combined
with Eqs. (2.132)-(2.133), we can obtain the relations

𝑛𝑒 =
2

2 + 𝛽𝑒
∇2
⊥𝜙 = − 2

𝛽𝑒
𝐵∥, (2.134)

𝑢𝑒 = ∇2
⊥𝐴∥, (2.135)

that permit to express the electron particle (as opposed to gyrocenter) density and
parallel velocity fluctuations, in terms of electromagnetic perturbations such as 𝜙 , 𝐵∥
and 𝐴∥ .

It is also particularly relevant to consider the limit 𝛽𝑒 → 0 with 𝑑𝑒 and 𝜌𝑠 remain-
ing finite (which implies𝑚𝑒/𝑚𝑖 → 0). This limit to suppresses the effects of parallel
magnetic perturbations and electron FLR effects. One of the purposes of our investiga-
tion is indeed to consider possible modifications, due to kinetic effects, of the plasmoid
instability scenario described by Granier et al., to appear in Phys. Rev. E (2022), and
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2 Plasma modeling

which was conceived namely in the regime with 𝛽𝑒 → 0 and finite 𝑑𝑒 and 𝜌𝑠 . Using
this development in Eqs. (2.129) - (2.130) and neglecting the first-order corrections, we
obtain the evolution equations (Schep et al. (1994))

𝜕𝑛𝑒
𝜕𝑡

+ [𝜙, 𝑛𝑒] − [𝐴∥, 𝑢𝑒] = 0, (2.136)

𝜕

𝜕𝑡

(
𝐴∥ − 𝑑2𝑒𝑢𝑒

)
+

[
𝜙,𝐴∥ − 𝑑2𝑒𝑢𝑒

]
− 𝜌2𝑠 [𝑛𝑒, 𝐴∥] = 0, (2.137)

where the static relations (2.127) - (2.129) are replaced by

∇2
⊥𝜙 = 𝑁𝑒 = 𝑛𝑒, (2.138)

∇2
⊥𝐴∥ = 𝑈𝑒 = 𝑢𝑒, (2.139)

𝐵∥ = 0. (2.140)

In this limit, particle density and parallel velocity fluctuations coincide with the corre-
sponding gyrocenter counterparts. The system (2.136)-(2.137), complemented by the
static relations (2.138)-(2.139), was originally derived from a more general three-field
version by Schep et al. (1994) and applied for the first time to magnetic reconnection
by Cafaro et al. (1998). Following this first study, the tearing instability has then been
extensively studied (Porcelli (1991); Grasso et al. (2001, 1999)). We note that, if also the
parallel compressibility of the electrons is neglected, which means 𝜌𝑠 → 0 we obtain
the 2D reduced ideal MHD equations.

In this Thesis we make use of and mention this model several times. Because of the
absence of FLR effects, we will often refer to the model as the fluid limit of the general
gyrofluid model (2.129) - (2.130).

2.4.3 Conserved energy

We define the dynamical variable

𝐴𝑒 = 𝐺10𝑒𝐴∥ − 𝑑2𝑒𝑈𝑒 . (2.141)

The three relations (2.127)-(2.129), together with the definition of𝐴𝑒 in Eq. (A.7), make
it possible to express 𝐵∥ , 𝜙 and𝑈𝑒 , in terms of the two dynamical variables 𝑁𝑒 and 𝐴𝑒 ,
according to

𝐵∥ = L𝐵0𝑁𝑒, 𝜙 = L𝜙0𝑁𝑒, 𝑈𝑒 = L𝑈𝑒0𝐴𝑒 . (2.142)

The corresponding Hamiltonian, representing the conserved total energy of the sys-
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2.5 Remarks regarding the two closure choices

tem, consists of the functional

𝐻 (𝑁𝑒, 𝐴𝑒) =
1
2

ˆ
𝑑2𝑥

(
𝜌2𝑠𝑁

2
𝑒 −𝐴𝑒L𝑈𝑒0𝐴𝑒 − 𝑁𝑒 (𝐺10𝑒L𝜙0𝑁𝑒 − 𝜌2𝑠 2𝐺20𝑒L𝐵0𝑁𝑒)

)
.

(2.143)

The complete Hamiltonian structure of this model is presented in Appendix A.

2.5 Remarks regarding the two closure choices

The isothermal closure derives from the assumptions 𝑡∥𝑒 = 0 and 𝑡⊥𝑒 = 0, and implies
that gyrocenter temperature perturbations are coupled to the system by the Eqs. (2.72)
and (2.73). For this closure, the hypothesis 𝛿2 ≪ 𝛽⊥𝑒 ≪ 1 allowed us to neglect
electron FLR effects and to greatly simplify Eq. (2.72) into 𝑇⊥𝑒 = −𝐵∥ . However, if we
consider perpendicular electron temperature fluctuations in the system, we note that
in the limit 𝛿2 ≪ 𝛽⊥𝑒 ≪ 1, the evolution equation of 𝑡⊥𝑒 is given by

𝜕𝑡⊥𝑒

𝜕𝑡
+ [𝜙, 𝑡⊥𝑒 ] = 𝑂 (𝛽⊥𝑒 ). (2.144)

Therefore one can see that if we neglect the 𝛽⊥𝑒 order corrections, as it is considered
in Chapter 3 for studying the tearing instability, 𝑡⊥𝑒 decouples from system.

For the quasi-static closure, in the case Θ𝑒 = 1 which is adopted in Chapters 4 and
5, the isothermal closure obtained for the electron temperatures emerges as a conse-
quence of the quasi-static hypothesis 𝜔/𝑘𝑦 ≪ 𝑣𝑡ℎ𝑒 . This hypothesis of slowly varying
fields also implies that 𝑇∥𝑒 = 0 and

𝑇⊥𝑒 = −𝐺11𝑒
𝑒

𝑇0𝑒
𝜙 + 2𝐺21𝑒

𝐵∥
𝐵0
. (2.145)

In the context of the tearing instability, we verified that the dispersion relations of
the tearing mode that are derived in this Thesis satisfy the condition𝜔/𝑘𝑦 ≪ 𝑣𝑡ℎ𝑒 . This
relation indicates that electrons have time to thermalize along the field lines while the
tearing mode develops. Similar comments have already been made in the context of
the MHD model with pressure anisotropies. Shi et al. (1987) discussed the following
two equations of state: double adiabatic and isothermal. According to Kulsrud (1983),
a double adiabatic closure requires 𝐿/𝑡 ≫ 𝑣𝑡ℎ𝑒 , with 𝑡 the characteristic scale of time
variation and 𝐿 the scale of the spatial variation. Shi et al. (1987) indicated that 𝐿/𝑡 ≫
𝑣𝑡ℎ𝑒 cannot be satisfied by most tearing modes with 𝑡 and 𝐿 taken to be the growth
time and the wavelength of the mode, respectively. On the other hand, the isothermal
closure for the electrons, valid in the opposite regime (𝐿/𝑡 ≪ 𝑣𝑡ℎ𝑒 ) can be a better
approximation for the study of the tearing instability.
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2 Plasma modeling

2.6 Numerical implementation of the gyrofluid
model

2.6.1 Numerical scheme

In this Thesis, simulations have been carried out with the fluid code used in Refs.
Tassi et al. (2018); Grasso et al. (2020), recently named SCOP3D (Solver for COllision-
less Plasma Equations in 3D geometry). The code has been adapted to solve the set of
Eqs. (2.130) and (2.131) coupled to the static relations (2.127) - (2.129). The equations
are solved using a pseudo-spectral approach, with Fast Fourier Transform (FFT) algo-
rithm used to compute nonlinear term. The computation is parallelized using message
passing interface (MPI), where the computational domain is distributed among cores
along𝑦 and 𝑧 axes. The advancement in time is achieved through a third-order explicit
Adams-Bashforth scheme, started with two Euler steps. Periodic boundary conditions
are imposed along the 𝑥 and the 𝑦-directions. The scheme uses numerical filters act-
ing on typical length scales much smaller than the physical scales of the system (Lele
(1992)).

The gyroaverage operators are introduced as they are defined in the Fourier space
by Eqs. (2.118) and (2.119). Equations (2.127) and (2.129) permit us to express the field
𝜙 and 𝐵∥ in terms of the advanced quantity 𝑁𝑒 . They can be written, in Fourier space,
as

ak𝜙k + bk𝐵∥k = 𝑁𝑒k, (2.146)
bk
𝜌2𝑠
𝜙k + ck𝐵∥k = 𝑁𝑒k, (2.147)

where

ak = 𝐺−1
10𝑒

(
𝐺−1
10𝑒

− 1

𝜌2𝑠
+ 𝑘2⊥

)
, (2.148)

bk = −𝐺−1
10𝑒 (𝐺

−1
10𝑒 − 1), (2.149)

ck = −𝐺−1
10𝑒

(
2
𝛽𝑒

+𝐺2
10𝑒

)
, (2.150)

and where we used the relation 𝐺10𝑒 = 2𝐺20𝑒 . At each time step, for each k and for a
given 𝑁𝑒k, the solution of (2.146) and (2.147) is given by
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2.6 Numerical implementation of the gyrofluid model

𝜙k =
𝜌2𝑠 (ck − bk)
𝜌2𝑠 akck + b2k

𝑁𝑒k, (2.151)

𝐵∥k =
𝜌2𝑠 ak − bk
𝜌2𝑠 akck + b2k

𝑁𝑒k. (2.152)

Using Eq. (2.128), we can express𝐴∥ from𝐴𝑒 = 𝐺10𝑒𝐴∥ −𝑑2𝑒𝑈𝑒 , which is advanced in
time by the Ohm’s law (2.131). In Fourier space, we obtain

𝐴∥k = (𝐺10𝑒 − 𝑑2𝑒𝐺−1
10𝑒𝑘

2
⊥)−1𝐴𝑒k. (2.153)

The parallel electron current is then obtained by solving

𝑈𝑒k =
𝐺10𝑒𝐴∥k

𝑑2𝑒
. (2.154)

Although the code is fully 3D, we have restricted the studies in this Thesis to the 2D
case i.e., the fields are assumed to be independent on 𝑧.

The numerical simulationswere performed using the EUROfusion high performance
computerMarconi Fusion (project FUA35-FKMR) aswellMarconi100 (grant n. HP10CY8TU5)
hosted at CINECA, and the computing facilities provided by Mesocentre SIGAMME
hosted by Observatoire de la Côte d’Azur.

2.6.2 Set up for the tearing instability

A part of this Thesis deals with the tearing instability which, as anticipated in Sec.
1.2.1, is a process through which reconnection can manifest itself. We find it useful, at
this stage, to present the equilibrium states that will be used later to investigate tearing
instability by means of the models introduced in Secs. 2.3 and 2.4.

The 2D tearing instability involves an equilibrium with oppositely directed field
lines. Numerically, we consider the domain D = {−𝐿𝑥 ≤ 𝑥 ≤ 𝐿𝑥 , −𝐿𝑦 ≤ 𝑦 ≤ 𝐿𝑦}, with
𝐿𝑥 and 𝐿𝑦 being positive constants7. This equilibrium magnetic field reverses at 𝑥 = 0.

7Although, in the linear theory, we will actually assume an infinite domain along 𝑥 , corresponding
to −∞ < 𝑥 < +∞.
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Figure 2.2: Profile along 𝑥 of the sheared equilibrium magnetic field and current sheet
for 𝐴𝑒𝑞∥0 = 𝜆 = 1.

In this Thesis, two types of equilibrium for the magnetic flux are considered and
are the following:

𝐴(0)
∥ (𝑥) = −𝐴𝑒𝑞∥0𝜆 ln cosh

(𝑥
𝜆

)
, (2.155)

𝐴(0)
∥ (𝑥) =

𝐴
𝑒𝑞
∥0𝜆

cosh2
(𝑥
𝜆

) , (2.156)

where 𝐴𝑒𝑞∥0 is a constant amplitude, changing between 1 and 1.299a, and 𝜆 is a
constant stretching factor of the magnetic-field. The two equilibrium magnetic
field and current-sheet profiles associated to this equilibria are shown on Fig. 2.2.
The equilibrium (2.155) is commonly called the Harris sheet (Harris (1962)), while
(2.156) was adopted for the first time in Porcelli et al. (2002).

a𝐴
𝑒𝑞
∥0 = 1.299, is chosen in order to have max𝑥 (𝐵 (0)

𝑦 (𝑥)) = 1

No equilibrium flow is assumed, 𝜙 (0) (𝑥) = 0. The two magnetic equilibria consid-
ered are not periodic, therefore, if only derivatives are applied to the equilibria, they
will be treated outside the spectral part of the code. For the gyrofluid simulations
where the operators (2.118) are adopted, we use the second equilibrium (2.156), that
admits the following truncated approximated version in terms of a Fourier truncated
series

𝐴(0)
∥ (𝑥) = 𝐴𝑒𝑞∥0

30∑
𝑛=−30

𝑎𝑛𝑒
𝑖𝑛𝑥 , (2.157)

where 𝑎𝑛 are the Fourier coefficients of the function 𝑓 (𝑥) = 𝜆/cosh2 (𝑥/𝜆) (Grasso et al.
(2006)). The approximation (2.157) allows to satisfy the periodic boundary conditions.
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3 Impact of electron temperature
anisotropy

In this Chapter, we derive and analyze a dispersion relation for the growth rate of a
marginally stable collisionless tearing mode, driven by electron inertia and accounting
for equilibrium electron temperature anisotropy in a strong guide field regime.

In the absence of a guide field, the impact of temperature anisotropy on the tearing
mode has been thoroughly investigated (Laval & Pellat (1968); Forslund (1968); Chen
& Palmadesso (1984); Shi et al. (1987); Califano et al. (2001); Browning et al. (2001);
Karimabadi et al. (2004); Quest et al. (2010)). In Forslund (1968), a dispersion relation
was derived for a weak electron temperature anisotropy. It was found that the tearing
mode is stabilized for (1−𝑇⊥𝑒/𝑇∥𝑒 ) > 𝜌𝑒/(𝛿cs/2). The principal results of the numerous
studies seem to indicate that, in the absence of a guide field, an anisotropy such as
𝑇⊥ > 𝑇∥ increases the growth rate. The guide field regime was actually touched in
Shi et al. (1987), where it was suggested that the presence of a guide field reduces
the enhancement of the growth rate due to temperature anisotropy. These results are
visible on the right panel of Fig. 3.1 (taken from Shi et al. (1987)), showing the plot
of the tearing growth rate for different 𝑃⊥/𝑃∥ ratios, as a function of the guide field
amplitude (in their study the guide-field is along 𝑦 and the reconnecting magnetic
field is along 𝑥 ). They considered a finite resistivity, but they claimed that their result
is expected to be valid also for collisionless plasmas.

The strong guide-field regime has therefore seen very little investigation, perhaps
in the belief that it would completely cancel the effects of anisotropy. But in reality,
it can be interesting to explore this regime for many cases of astrophysical plasmas.
The regions of particular interest are the magnetosheath and magnetopause, which
are known to contain many small-scale current sheets in which reconnection occurs
typically in the presence of a guide field (Phan et al. (2013); Burch & Phan (2016a);
Øieroset et al. (2017); Phan et al. (2018); Eastwood et al. (2018)). In Phan et al. (2018),
the Authors focus on observations of several electron-scale current sheets measured
with MMS. Most of them had strong guide field. In this study, the authors emphasize
the absence of ion diffusion regions and ion jets, which is consistent with our model
assuming cold ions. Moreover, the discovery of electron-only reconnection reveals
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3 Impact of electron temperature anisotropy

Figure 3.1: Left: growth rate of the tearing instability as a function of pressure
anisotropy (directly related to temperature anisotropy) for 𝐵0𝑦/𝐵0𝑥 = 0.1
(here the guide field is along 𝑦 and the reconnecting magnetic field is along
𝑥 ). Right: growth rate as a function 𝐵0𝑦/𝐵0𝑥 , for 𝑆 = 100 and different val-
ues of the pressure anisotropy. One can see that, as the relative intensity
of the guide field increases, the enhancement of the growth rate, due to the
pressure anisotropy, decreases. Credit: taken from Shi et al. (1987).

that reconnection operates differently in current sheets with small dimensions. In
most of these observational papers, temperature anisotropy is reported before, during,
and after the reconnection onset, with, in particular, a sudden increase in the parallel
electron temperature during reconnection. Figure 3.2 reports, for instance, the analy-
ses of Burch et al. (2016). We see clearly that the electron distribution function has a
bi-Maxwellian shape with an elongation in the 𝑣 ∥ direction.

Figure 3.2: MMS is going from the magnetosheath to the magnetosphere and encoun-
tering a reconnecting magnetopause. Left: evolution of the magnetic field,
of the ion and electron temperatures, and of the electric field. Right: the
electron distribution function, measured at times 1, 2, 3 and 4 shown on the
plot. Credit: Taken from Burch & Phan (2016a)
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The above discussionmotivates the investigation of the effect of temperature anisotropy
on the growth rate of collisionless tearing modes in the presence of a strong guide field.
Although both ion and electron temperature anisotropies are observed, for simplicity
we focus on the role of electron anisotropy only, in a regime with 𝛽𝑒 ≪ 1.

The adopted tool for modelling inertial reconnection in the presence of electron
temperature anisotropy is the strong guide field model provided by Eqs. (2.95) - (2.96).
The choice of the perpendicular sonic Larmor radius, 𝜌𝑠⊥, as a characteristic length,
implies that our study focuses on amicroscopic current sheet, as opposed to the usually
considered MHD macroscopic current sheet (Del Sarto & Ottaviani (2017)).

It is important to point out, however, that in most of the astrophysical plasmas the
ion temperature is thought to be higher than that of the electrons (Fig. 3.2). This does
not correspond to the regime considered in our model, since we took the opposite limit,
𝜏⊥𝑖 ≪ 1 1. The presence of cold ions is not completely excluded in the magnetosphere,
since the ionosphere can be a source of cold ions, but it is nevertheless infrequent. The
cold ion limit is more suitable for laboratory plasmas. On the other hand, at the end
of this Chapter we will discuss how, relying on an already existing dispersion relation,
it is possible to infer the influence of electron temperature anisotropy for an arbitrary
ion temperature.

In this Chapter, by applying the theory of asymptotic matching we derive a dis-
persion relation for the tearing mode, which does not predict an enhancement of the
growth rate as the ratio Θ𝑒 , between perpendicular and parallel equilibrium electron
temperatures, increases. This indicates a significant difference with respect to the case
of absent or moderate guide field (Karimabadi et al. (2004); Daughton & Karimabadi
(2005)). Instead, we obtain that, in the strong guide field regime and in the limit 𝛽⊥𝑒 ≪ 1
the dimensional growth rate increases with 𝑣𝑡ℎ ∥𝑒 and therefore as 𝑇 1/2

0∥𝑒
. We provide a

detailed discussion of the range of validity of the derived dispersion relation and of the
compatibility among the different adopted assumptions. The analytical treatment will
also make it possible to compare the resulting dispersion relation for the growth rate,
with a previously derived analytical formula, obtained assuming similar simplifying as-
sumptions but not accounting for temperature anisotropy (Porcelli (1991); Fitzpatrick
& Porcelli (2007); Fitzpatrick (2010); Tassi et al. (2018)).

The Chapter is organized as follows. Section 3.1 contains the derivation of the ana-
lytical dispersion relation for the growth rate. The predictions based on the analytical
dispersion relation are checked against numerical simulations in Sec. 3.2. In Sec. 3.3
we first summarize and discuss the conditions of applicability of the analytical disper-
sion relation, and conclude, indicating also possible future developments. In Appendix
B we describe a technical step, required to show that the outer solution for the electro-
static potential, derived in Sec. 3.1.1, satisfies the appropriate boundary condition.

1𝑇0⊥𝑖 ≪ 𝑇0⊥𝑒
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In this Chapter, some parts of the text and figures also appear in Granier et al. (2021).

3.1 Analytical investigation of the linear tearing
mode stability

Tearing instability can occur in a plasma in the presence of non-ideal effects, by
perturbing an equilibrium possessing a resonant surface. In the 2D case treated in this
Thesis, resonant surfaces correspond to lines where the equilibrium magnetic field
vanishes, in the planes perpendicular to the guide field. The tearing instability causes
the formation of magnetic loops, denoted as magnetic islands, at the resonant surface.
The size of magnetic islands can increase in time following the growth rate of the
instability. The derivation of an analytical formula for the linear growth rate of the
tearing instability in the presence of effects such as electron temperature anisotropy
is namely one of the purposes of this Section. Our derivation follows the standard
procedure adopted for tearing modes since the seminal work by Furth et al. (1963) and
described also in monographs such as Priest & Forbes (2000), and which is based on
matched asymptotic expansion.

We consider the model (2.95) - (2.96), complemented by the static relations (2.90) -
(2.92). We linearize about the Harris sheet equilibrium given by (2.155) (i.e. 𝐴(0)

∥ (𝑥) =
−𝜆 ln cosh(𝑥/𝜆)). This equilibrium gives a magnetic field with components 𝐵 (0)

𝑥 = 0
and 𝐵 (0)

𝑦 (𝑥) =
√
𝛽⊥𝑒/2 tanh(𝑥/𝜆). In this analysis, we take the equilibrium amplitude

𝐴
𝑒𝑞
∥0 = 1, but 𝜆 varies. The positive parameter 𝜆 can be seen as a stretching factor for

the equilibrium shear length given by 𝐿𝑠 = 𝜆𝜌𝑠⊥, and is defined as being the charac-
teristic scale at which the dimensional reconnecting magnetic field is varying, so that
𝑑𝑥 �̂�

(0)
𝑦 (0) = 𝐵0

√
𝛽⊥𝑒/2/𝐿𝑠 . Finally, we linearize the equations considering uniform

perturbations along the guide field with a sinusoidal variation along 𝑦,

𝐴(1)
∥ (𝑥,𝑦, 𝑡) = 1

2

(
𝐴∥ (𝑥)𝑒𝛾𝑡+𝑖𝑘𝑦𝑦 + ¯̃𝐴∥ (𝑥)𝑒𝛾𝑡−𝑖𝑘𝑦𝑦

)
, (3.1)

𝜙 (1) (𝑥,𝑦, 𝑡) = 1
2

(
𝜙 (𝑥)𝑒𝛾𝑡+𝑖𝑘𝑦𝑦 + ¯̃𝜙 (𝑥)𝑒𝛾𝑡−𝑖𝑘𝑦𝑦

)
. (3.2)

where𝛾 is the growth rate of the instability, 𝑘𝑦 = 2𝜋𝑚/𝐿𝑦 is the wave number with𝑚 ∈
N, and the overbar refers to the complex conjugate. The perturbations are subject to
the boundary conditions 𝐴∥, 𝜙 → 0, as 𝑥 → ±∞. In addition, we should seek for even
solutions of 𝐴∥ (𝑥) and odd solutions for 𝜙 (𝑥). This is a standard parity of the linear
tearing mode, which is well respected by this particular model (2.136) - (2.137). As a
consequence of such parity, 𝐴∥ and 𝜙 are purely real and imaginary-valued functions,
respectively. The perturbation used, in the form𝐴(1)

∥ ∝ cos(𝑘𝑦𝑦), introduces a singular
point at the center of the current sheet where the field lines will reconnect.
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3.1 Analytical investigation of the linear tearing mode stability

Proceeding to the linearization of Eqs. (2.95) and (2.96) gives

𝑔(𝜙′′ − 𝑘2𝑦𝜙) − 𝑖𝐵
(0)′′
𝑦 𝐴∥ + 𝑖𝐵 (0)

𝑦 (𝐴′′
∥ − 𝑘

2
𝑦𝐴∥) = 0, (3.3)

𝑔

(
𝐴∥ −

2𝛿2

𝛽⊥𝑒

(𝐴′′
∥ − 𝑘

2
𝑦𝐴∥)

)
+ 𝑖𝜙

(
𝐵 (0)
𝑦 − 2𝛿2

𝛽⊥𝑒

𝐵 (0)′′
𝑦

)
−
𝑖𝐵 (0)
𝑦

Θ𝑒
(𝜙′′ − 𝑘2𝑦𝜙) = 0, (3.4)

where the prime notation denotes the derivative with respect to 𝑥 and where

𝑔 =
𝛾

𝑘𝑦
. (3.5)

Due to the choice of normalization, the last term of the equation (3.4), proportional
to 1/Θ𝑒 , is of order 1. This makes the equations slightly different from that of the
fluid model of Schep et al. (1994), in which this bracket is multiplied by the square of
the sonic Larmor radius normalized by the scale length of a macroscopic equilibrium,
which typically results in a small coefficient (see Eq. (2.137)). In our tearing analysis,
the consequence is that the outer solution will be different from that obtained with the
fluid model.

We consider the time variation of the perturbation to be slow, which, together with
the assumption (2.81), leads to considering the following two small parameters:

𝑔 ≪ 1,
2𝛿2

𝛽⊥𝑒

≪ 1. (3.6)

The non-ideal term considered here is associated with the non-negligible mass of the
electrons, present in the coefficient 𝛿2. This parameter being small, it will be important
only at small spatial scale. In particular, one sees from Eqs. (3.3)-(3.4) that the terms
with the small coefficients indicated in Eq. (3.6), are negligible everywhere, except
where 𝐵 (0)

𝑦 also vanishes. For the equilibria (2.155)-(2.156) this occurs at 𝑥 = 0, which
identifies the resonant surface. As is customarywith linear tearingmodes, the presence
of small parameters allows then to separate the domain in two spatial scales, and the
stability analysis leads to a boundary layer problem, implying that one has to calculate
the solution in two separate regions involving two different scalings (Grasso et al.
(2002), Fitzpatrick & Porcelli (2007)). The outer region is far from the resonant surface,
characterized by a strong current layer, and is where the non-ideal terms are negligible.
In this region, the current is weak, so terms proportional to electron inertia (which are
identified by the combination ∼ 𝛿2𝑢𝑒 ∼ 𝛿2∇2

⊥𝐴∥) can be neglected, and the coupling
between the plasma and the field lines remains ideal. The inner region is where the
X-point is located and non-ideal effects are important. In the inner region, the terms
proportional to electron inertia, can no longer be ignored and they break the frozen
in condition. The inner region is supposed to have a certain width, denoted 𝜖 , that
has to be identified. Splitting the domain into two sub-domains according to the scale
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3 Impact of electron temperature anisotropy

separation implies that a spatial rescaling 𝑥 = 𝜖𝑥 will be involved.
From this method, two separate solutions will be obtained and they must match in

an overlapping region called the boundary layer, i.e, the solutions for 𝜙 have to satisfy
the conditions

𝜙out ∼
𝑥→0

𝜙𝑚𝑎𝑡𝑐ℎout, and 𝜙in ∼
x→+∞

𝜙matchin,

matching condition : 𝜙matchout = 𝜙matchin, (3.7)

where the subscript in and out indicate the solutions obtained in the inner and
outer region respectively. The same conditions have to be satisfied by themagnetic
potential 𝐴∥ .

A further matching condition, imposed between the logarithmic derivatives of
the inner and outer solutions for𝐴∥ will determine the dispersion relation that we
are looking for, relating the growth rate 𝛾 with the equilibrium parameters.

3.1.1 Outer region
In the outer region, we keep terms of order one with respect to terms of order

2𝛿2/𝛽⊥𝑒 ≪ 1. Therefore Eqs. (3.3) and (3.4) become

𝑔(𝜙′′out − 𝑘2𝑦𝜙out) − 𝑖𝐵
(0)′′
𝑦 𝐴∥out + 𝑖𝐵 (0)

𝑦 (𝐴′′
∥out − 𝑘

2
𝑦𝐴∥out) = 0, (3.8)

𝑔𝐴∥out + 𝑖𝐵 (0)
𝑦 𝜙out −

𝑖𝐵 (0)
𝑦

Θ𝑒
(𝜙′′out − 𝑘2𝑦𝜙out) = 0. (3.9)

We then neglect the terms proportional to 𝑔 in Eq. (3.8). On the other hand, we are
looking for odd solutions for 𝜙out, which means 𝜙out(0) = 0, and have also to meet
the boundary conditions 𝜙out → 0 when 𝑥 → 0. To satisfy these conditions, it is
necessary not to neglect the term 𝑔𝐴∥out in the equation (3.9). Using the equilibrium
𝐵 (0)
𝑦 = tanh(𝑥/𝜆) we get the following equations

𝐴′′
∥out −𝐴∥out

(
𝑘2𝑦 −

2
𝜆2 cosh (𝑥/𝜆)2

)
= 0, (3.10)

𝜙′′out −
(
𝑘2𝑦 + Θ𝑒

)
𝜙out = −𝑖𝑔Θ𝑒

𝐵 (0)
𝑦

𝐴∥out. (3.11)

We remark that, although Eq. (3.10) corresponds to a standard equation in MHD lin-
ear tearing mode theory, yielding the outer solution for the perturbation 𝐴out in the
presence of a Harris sheet equilibrium, this is not the case for Eq. (3.11). In particular,
the first two terms in Eq. (3.11) are absent in the outermost region in the tearing mode
linear analysis of reduced MHD and of the two-field model of Cafaro et al. (1998). This
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3.1 Analytical investigation of the linear tearing mode stability

difference comes from the fact that, in the present case, the magnetic equilibrium has
a characteristic scale length corresponding to 𝜌𝑠⊥, in contrast with the current sheet of
macroscopic length characteristic of MHD. The new terms in Eq. (3.11) are due to elec-
tron parallel compressibility, which becomes relevant on the scale length 𝜌𝑠⊥. They
do not affect the outer solution for the magnetic flux function2, but alter the outer
solutions for the flow.

Given the assumed parities of 𝐴∥ and 𝜙 , we can solve the system for 𝑥 ≥ 0 and then
extend the solutions to the whole domain, using 𝐴∥ (𝑥) = 𝐴∥ (−𝑥) and 𝜙 (𝑥) = −𝜙 (−𝑥).

The solution of Eq. (3.10), satisfying the boundary condition at 𝑥 → +∞, is given
by (White (1986))

𝐴∥out(𝑥) =
𝑒−𝑘𝑦𝑥

𝜆

(
tanh(𝑥/𝜆)

𝑘𝑦
+ 𝜆

)
, (3.12)

whereas the solution of (3.11) can be found by the method of the variation of parame-
ters and corresponds to

𝜙out(𝑥) =𝑖𝑒𝛼𝑥
(
𝐶1 −

𝑔Θ𝑒
2𝛼𝜆

ˆ 𝑥

𝑎

(
1
𝑘𝑦

+ 𝜆

tanh(𝑡/𝜆)

)
𝑒−(𝛼+𝑘𝑦)𝑡𝑑𝑡

)
+ 𝑖𝑒−𝛼𝑥

(
𝐶2 +

𝑔Θ𝑒
2𝛼𝜆

ˆ 𝑥

𝑎

(
1
𝑘𝑦

+ 𝜆

tanh(𝑡/𝜆)

)
𝑒 (𝛼−𝑘𝑦)𝑡𝑑𝑡

)
,

(3.13)

where we introduced the short-hand notation 𝛼2 = 𝑘2𝑦 +Θ𝑒 . The lower integral bound
𝑎 is a strictly positive arbitrary value that can be freely chosen. The constant 𝐶1 is
chosen to ensure that the boundary condition lim𝑥→+∞ 𝜙out = 0 is respected and is
given by

𝐶1 =
𝑔Θ𝑒
2𝛼𝜆

ˆ ∞

𝑎

(
1
𝑘𝑦

+ 𝜆

tanh(𝑡/𝜆)

)
𝑒−(𝛼+𝑘𝑦)𝑡𝑑𝑡 . (3.14)

Note that the coefficient 𝛼 − 𝑘𝑦 , present in the exponential of the second term of 𝜙out,
is positive. The convergence of this term in the limit 𝑥 → ∞, which might be not
obvious at first sight, is shown in detail in Appendix B. The constant𝐶2 will be chosen
later to insure the matching condition (3.7).

The outer solution (3.12), 𝐴′
∥out, has a discontinuous derivative at the point 𝑥 = 0.

This discontinuity characterizes themagnetic energy initially stored in the system, that
will feed the reconnection process. Indeed, positive-real growth rate of the tearing
modes will exist only if enough free magnetic energy exists in the equilibrium, and
can be released. The amount of magnetic energy released by each unstable mode will
therefore depend on themode itself and on the choice of equilibrium, whichwill impact
the form of the external solution.
The common way to determine if a mode is unstable or not is to look at the sign of

2and consequently, they do not affect the expression for the parameter Δ′ that we will introduce
later
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Figure 3.3: OuterMHD-type solution of the system (2.136) - (2.137), for the Harris sheet
equilibrium, and different value of Δ′. The configuration is tearing unstable
and reconnection occurs if Δ′ is positive. The value of 𝜆 is 1.

a parameter called the tearing parameter, Δ′, which measures the discontinuity of the
logarithmic derivative of the outer solution, 𝐴out, at the boundary layer location, and
which is defined by

Δ′(𝑘𝑦) = lim
𝑥→0+

𝐴′
out

𝐴out

− lim
𝑥→0−

𝐴′
out

𝐴out

. (3.15)

Basically, Δ′ quantifies the magnetic energy available and indicates the spectrum of
unstable wavenumbers 𝑘𝑦 = 𝜋𝑚/𝐿𝑦 , for a given equilibrium, defined as the set of wave
number satisfying

Δ′(𝑘𝑦) > 0. (3.16)

The expression of Δ′(𝑘𝑦) for solution (3.12) is well known and is given by

Δ′ =
2
𝜆

(
1
𝑘𝑦𝜆

− 𝑘𝑦𝜆
)
. (3.17)

Figure 3.3 shows, on the left panel, the shape of the outer solution𝐴out(𝑥) for a tearing
parameter Δ′ of −1, 0.9 and 2. In the limit |𝑥 | → 0 the outer solution can then be
written in the form

𝐴∥out = 1 + Δ′

2
|𝑥 | +𝑂 (𝑥2). (3.18)

As mentioned, the parameter Δ′ will depend on the chosen equilibrium. Figure 3.4
shows the dependence of Δ′ on 𝑘𝑦 for the two equilibria (2.155) and (2.156) considered
in this Thesis, and for 𝜆 = 1.
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Figure 3.4: The tearing parameter Δ′ as a function of 𝑘𝑦 for the two different equilibria,
with 𝜆 = 1.

3.1.2 Inner region

In the inner region, centered about the resonant surface where 𝑥 ≪ 1, we introduce
the change of variable

𝑥 = 𝜖𝑥, 𝑟𝑚𝑤𝑖𝑡ℎ 𝜖 ≪ 1, (3.19)

and consider the unknown functions 𝐴∥in(𝑥) and 𝜙in(𝑥) defined by 𝐴∥ (𝑥) = 𝐴∥in(𝑥)
and 𝜙 (𝑥) = 𝜙in(𝑥).

Assuming that 𝜖 is a small parameter implies that 𝑥-derivatives are large in this
region (i.e. 𝑘𝑦 ≪ 𝜕𝑥 ) since they will scale as 1/𝜖 . Moreover, 𝐵 (0)

𝑦 (𝑥) = 𝐵 (0)
𝑦 (𝜖𝑥) can be

substituted by its Taylor expansion as 𝜖 → 0. Inspection of the ordering of the various
terms of Eqs. (3.3) - (3.4) in the inner region, after rescaling, indicates that

𝜖 = 𝑔𝛿

√
2
𝛽⊥𝑒

, (3.20)

is the distinguished limit allowing to keep themaximumnumber of terms in the system
as 𝜖 → 0 (Bender & Orszag (1999)). Thus (3.20) provides the appropriate choice for the
scaling parameter 𝜖 .

The leading contributions of Eqs. (3.3) and (3.4) in the inner region are

𝐴′′
∥in =

𝑖𝑔𝜆

𝑥𝜖
𝜙′′in, (3.21)

𝑔

(
𝐴∥in −

2𝛿2

𝛽⊥𝑒

1
𝜖2
𝐴′′
∥in

)
− 𝑖𝑥

Θ𝑒𝜆

1
𝜖
𝜙′′in = 0, (3.22)

where we recall that now the prime denotes derivative with respect to the inner vari-
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able 𝑥 . Inserting (3.21) into (3.22) we get

𝑖

𝜖
𝜙′′in =

𝑔𝑥𝐴∥in

𝜆(1 + 𝑥2

Θ𝑒𝜆2
)
. (3.23)

We introduce a re-scaled displacement function 𝜉𝑖𝑛 related to 𝜙in by

𝜉𝑖𝑛 = − 𝑖

𝑔𝜖
𝜙in. (3.24)

The rescaling in Eq. (3.24) makes 𝜉𝑖𝑛 a purely real function, and allows one to eliminate
the inner parameter 𝜖 from Eq. (3.23). This gives the following layer equation for 𝜉𝑖𝑛:

𝜉′′𝑖𝑛 =
−𝑥𝐴∥in

𝜆
(
1 + 𝑥2

Θ𝑒𝜆2

) . (3.25)

Under the change of variables (3.19), the expansion (C.10) becomes 𝐴∥out = 1 +
Δ′

2 𝜖 |𝑥 | + 𝑂 (𝑥2). In this work we consider small values of Δ′ allowing the use of the
so-called constant𝜓 approximation, which consists in approximating the shear field in
the vicinity of the neutral line by supposing𝐴∥ constant at the neighbourhood of 𝑥 = 0
(Furth et al. (1963)). Looking at (C.10), this assumption is valid for Δ′𝜖 ≪ 1. Thus, we
can set 𝐴∥in = 1 + 𝐴∥1(𝑥), where 𝐴∥1(𝑥) ≪ 1. Combining Eqs. (3.21) and (3.25) one
eventually finds that the solution for 𝜉𝑖𝑛 is not required for determining the dispersion
relation (which will be obtained by calculating the integral in Eq. (C.25)). Nevertheless,
the solution of Eq. (3.25) has to be determined to make sure the matching does exist
in the overlap region. Such solution is given by

𝜉𝑖𝑛 (𝑥) = −𝜆Θ𝑒
2
𝑥 log

(
𝜆2Θ𝑒 + 𝑥2

)
− 𝜆2Θ3/2

𝑒 arctan

(
𝑥

𝜆Θ1/2
𝑒

)
+ 𝑥 (𝜆Θ𝑒 + 𝐷2) + 𝐷1. (3.26)

We set 𝐷1 = 0 in order to respect the condition lim𝑥→0 𝜉𝑖𝑛 = 0, following from 𝜙 being
an odd function.
In terms of the electrostatic potential 𝜙in and the outer variable 𝜉𝑖𝑛 (𝑥), Eq. (3.24) reads

𝜙in(𝜖𝑥) = − 𝑖Θ𝑒𝜆𝑔
2

𝑥 log

(
𝜆2Θ𝑒 +

𝑥2𝛽⊥𝑒

𝑔2𝛿22

)
+ 𝑖𝑔𝑥 (𝜆Θ𝑒 + 𝐷2)

− 𝑖𝑔2𝛿
√

2
𝛽⊥𝑒

𝜆2Θ3/2
𝑒 arctan

(√
𝛽⊥𝑒

2
𝑥

𝑔𝛿𝜆Θ1/2
𝑒

)
,

(3.27)

We now choose the constants 𝐶2 and 𝐷2 in order to ensure the matching condition
(3.7). This gives the constants
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𝐶2 = 𝑔Θ𝑒𝜆𝑎 − 𝑔2𝛿
√

2
𝛽⊥𝑒

𝜆2Θ3/2
𝑒
𝜋

2
−𝐶1, (3.28)

and

𝐷2 =
𝛼

𝑔
(𝐶1 −𝐶2) +

𝑎Θ𝑒
𝑘𝑦𝜆

− 𝑎𝑘𝑦𝜆Θ𝑒 + 𝜆Θ𝑒 log
(√

𝛽⊥𝑒

2
𝑎

𝑔𝛿

)
. (3.29)

As is customary in linear tearing mode theory, we impose a matching between the
logarithmic derivatives of the inner and outer region. Under the constant-psi approxi-
mation, this condition gives

Δ′ =
ˆ ∞

−∞
𝐴′′
∥ind𝑥 =

1
𝜖

ˆ ∞

−∞
𝐴′′
∥ind𝑥 . (3.30)

The condition (C.25) will provide the dispersion relation giving the growth rate of the
tearing mode as function of Δ′ and of other parameters of the system. Combining
Eqs. (3.21), (3.24) and (3.25) with the relation (C.25), and making use of the constant-𝜓
approximation, leads to

Δ′ =
2𝑔2

𝜖

ˆ +∞

0

𝑑𝑥(
1 + 𝑥2

Θ𝑒𝜆2

) . (3.31)

Using the expression (3.20) for 𝜖 , we obtain the following normalized dispersion
relation

𝛾 =
Δ′𝑘𝑦𝛿

𝜋𝜆
√
Θ𝑒

√
2
𝛽⊥𝑒

, (3.32)

where we recall that Δ′ = 2
𝜆

(
1
𝑘𝑦𝜆

− 𝑘𝑦
)
, given by Eq. (3.17).

The dispersion relation (3.32) accounts for well known features of inertial reconnec-
tion in the small Δ′ regime, such as the linear dependence on Δ′ and on the square root
of the mass ratio 𝛿 (Porcelli (1991); Fitzpatrick & Porcelli (2007); Fitzpatrick (2010)).
The growth rate (3.32), for Θ𝑒 = 1, reduces to the one found in Ref. Tassi et al. (2018),
the difference being the factor

√
2/𝛽⊥𝑒 emerging from the fact that we used a different

normalization of the perturbed magnetic potential, which amounts to taking a differ-
ent dimensional magnetic equilibrium. The main element of novelty is given by the
dependence on the electron temperature anisotropy parameter Θ𝑒 . The formula (3.32)
predicts a decrease of the reconnection growth rate as Θ𝑒 increases. The evolution of
the dispersion relation as a function of Θ𝑒 is shown on Fig. 3.6 in Section 3.2.
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In order to make the dependence of the growth rate (3.32) on various physical
quantities, more transparent, and to facilitate the comparison with the formula
derived in Ref. Porcelli (1991) for the isotropic case, we rewrite the relation (3.32)
in the following dimensional form:

𝛾 =
2

𝜆𝜌𝑠⊥

(
1

𝑘𝑦𝜆𝜌𝑠⊥
− 𝑘𝑦𝜆𝜌𝑠⊥

)
𝑘𝑦𝑣𝑡ℎ ∥𝑒𝑑

2
𝑒

𝜋𝜆𝑑𝑖
, (3.33)

where dimensional quantities are indicated with a hat and where we used the di-
mensional expression for the tearing parameter

Δ̂′ =
2

𝜆𝜌𝑠⊥

(
1

𝑘𝑦𝜆𝜌𝑠⊥
− 𝑘𝑦𝜆𝜌𝑠⊥

)
, (3.34)

which allows to see its dependence on 𝜌𝑠⊥ and, consequently, its dependence
on 𝑇0⊥𝑒 (we recall that 𝜌𝑠⊥ = 𝑐𝑠⊥𝜔𝑐𝑖 =

√
𝑇0⊥𝑒/𝑚𝑖𝜔𝑐𝑖 ). We also used the expres-

sion for the electron thermal speed based on the parallel electron temperature

𝑣𝑡ℎ ∥𝑒 =
√
𝑇0∥𝑒/𝑚𝑒 .

In the dimensional expression, the dependence in 𝑇0⊥𝑒 coming from the parame-
ters 𝛽⊥𝑒 and Θ𝑒 of the normalized expression (3.32), is canceled. This implies that
the equilibrium perpendicular temperature appears in the final expression (3.33)
from the fact that it affects the current sheet width, and consequently the tearing
parameter as well.
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Figure 3.5: Right: Dimensional growth rate (in s−1) as a function of 𝑣𝑡ℎ ∥𝑒 ∝
√
𝑇0∥𝑒 . Left:

Same quantity as a function of 𝑐𝑠⊥ ∝
√
𝑇0⊥𝑒 (in km.s−1). The value used for

the plots are: 𝑑𝑒 = 1 km, 𝑑𝑖 = 40 km, �̂�𝑐𝑖 = 0.81 s−1, 𝜆 = 1, 𝑘𝑦 = 5 × 10−3 km.
For the left plot, 𝑐𝑠⊥ = 50 km.s−1. For the right plot 𝑣𝑡ℎ ∥𝑒 = 1500 km.s−1.
These values are taken from Jovanović et al. (2020) and correspond to the
solar wind plasma with a weak magnetic field and 𝛽𝑒 values close to unity.
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3.2 Numerical results

Figure 3.5 shows the dimensional growth rate (3.33) as a function of 𝑣𝑡ℎ ∥𝑒 ∝
√
𝑇0∥𝑒

and 𝑐𝑠⊥ ∝
√
𝑇0⊥𝑒 for values taken from Jovanović et al. (2020). We can make, in the first

place, the following two comments:

• This dispersion relation predicts that 𝑇0⊥𝑒 < 𝑇0∥𝑒 increases the tearing growth
rate. This differs from what occurs in the case of weak and absent guide field
(Forslund (1968); Chen & Palmadesso (1984); Shi et al. (1987); Karimabadi et al.
(2004); Quest et al. (2010)) where, as already mentioned in Sec. 3, an enhance-
ment of the growth rate is observed as Θ𝑒 increases.

• However the dependence of the normalized dispersion relation on 𝑇0⊥𝑒 only
comes from the fact that the equilibrium is of characteristic length 𝜌𝑠 ∝

√
𝑇0⊥𝑒 .

According to our normalization (2.109) and to our choice (2.155) for the equilibrium
magnetic flux function, we are considering a dimensional equilibrium magnetic field
�̂� (0)
𝑦 (𝑥) = 𝐵0

√
𝛽⊥𝑒/2 tanh(𝑥/(𝜆𝜌𝑠⊥)) whose amplitude contains the factor

√
𝛽⊥𝑒/2 and

is given by 𝐵0
√
𝛽⊥𝑒/2. Considering this equilibrium, in the isotropic case, Θ𝑒 = 1, and

with 𝜆 = 1, the dimensional growth rate is given by (Porcelli (1991))

𝛾𝑖𝑠𝑜 =
Δ̂′𝑘𝑦𝑣𝑡ℎ𝑒𝑑

2
𝑒

𝜋𝐿

√
𝛽𝑒
2
, (3.35)

where 𝐿 is the shear length, 𝑣𝑡ℎ𝑒 =
√
𝑇0𝑒/𝑚𝑒 is the isotropic electron thermal speed and

𝛽𝑒 is the isotropic electron beta parameter. Our growth rate (3.32) reduces to the one
given in Eq. (3.35) in the absence of temperature anisotropy and for 𝐿 = 𝜆𝜌𝑠⊥. There-
fore, the comparison shows that the extension of the formula for 𝛾𝑖𝑠𝑜 , to account for
equilibrium electron temperature anisotropy is obtained by replacing the electron ther-
mal speed with the parallel electron thermal speed and by considering the appropriate
equilibrium scale length. Note, on the other hand, that the dispersion relation (3.33)
differs from those derived in Refs. Bulanov et al. (1992); Cai & Li (2008) for EMHD
models. In particular, for such models, the growth rate depends quadratically on Δ′,
whereas, in our case, the dependence is linear.

3.2 Numerical results

3.2.1 Numerical validation of the dispersion relation
We made the use, for this study, of a 2D domain where 𝐿𝑦 = 4𝜋 and 𝐿𝑥 = 10𝜋 . We

made the choice of 𝜆 = 3 which, according to the relation (3.17), gives the fixed values
Δ′ = 0.38 with 𝑘𝑦 = 0.24 for the mode𝑚 = 1. The mass ratio has been taken equal to
𝛿2 = 0.01 while different values of 𝛽⊥𝑒 have been considered.
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3 Impact of electron temperature anisotropy

We point out that, considering that 𝛽⊥𝑒 = 2𝜌2𝑠⊥/𝑑2𝑖 , where 𝜌𝑠⊥ can be explicitly written

as 𝜌𝑠⊥ =
√
𝑇0⊥𝑒𝑚𝑖𝑐2/𝑒2𝐵20, a variation of 𝛽⊥𝑒 can be interpreted in two different ways.

On one hand, it can mean a variation of 𝑑𝑖 performed by modifying the background
density 𝑛0 and keeping a current sheet of a fixed thickness. Alternatively, it can also
be interpreted as a variation of the perpendicular equilibrium temperature𝑇0⊥𝑒 , which
implies a variation of the thickness of the current sheet 𝜌𝑠⊥, for a fixed density 𝑛0.
Both ways leave 𝐵0 and 𝑚𝑖 (and in turn 𝜔𝑐𝑖 ) constant, thus guaranteeing that one is
comparing different values of the growth rate, normalized with respect to the same
unit of time.

The numerical growth rate is determined by the formula

𝛾𝑁 =
𝑑

𝑑𝑡
log

���𝐴(1)
∥

(𝜋
2
, 0, 𝑡

)��� , (3.36)

where 𝑥 = 𝜋/2, 𝑦 = 0 is the location of the X point, during the linear phase. Figure 3.6
shows a very good agreement between the analytical formula (3.32) and the numer-
ical results. In particular, a stabilizing, although weak, role of electron temperature
anisotropy at a fixed 𝛽⊥𝑒 is clearly visible, as Θ𝑒 increases. The stabilizing role, for the
adopted normalization, of the 𝛽⊥𝑒 parameter is also confirmed.
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1Figure 3.6: Growth rate as a function of the electron temperature anisotropy for differ-
ent values of 𝛽⊥𝑒 and taking the parameters 𝛿 = 0.1 and Δ′ = 0.38 fixed. For
the filled circle, the run has been made taking 𝑛𝑥 = 300, for the open circles
𝑛𝑥 = 600, and for the diamonds 𝑛𝑥 = 1200. We recall that 𝛾 is normalized
with respect to 𝜔𝑐𝑖 , the ion gyrofrequency.
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Figure 3.7: Comparison between the theoretical growth rate predicted by Eq. (3.32)
(denoted 𝛾𝑇 on this figure) and the numerical growth rate (𝛾𝑁 ) as a function
of the wave number 𝑘𝑦 , for the cases 𝛿 = 0.1 and 𝛿 = 0.03. The values of
the parameters are Θ𝑒 = 1, 𝛽⊥𝑒 = 0.1, 𝜆 = 3 and the numerical simulations
were carried out using the modes 1 ≤ 𝑚 ≤ 6.

We find it also useful to analyze how the theoretical predictions based on Eq. (3.32)
compare with the numerical results, for different values of 𝑘𝑦 . Figure 2 shows the
numerical and theoretical growth rates for different 𝑘𝑦 values in the cases 𝛿 = 0.1 and
𝛿 = 0.03. We recall that the relation between Δ′ and 𝑘𝑦 is given by Eq. (3.17). In
order to obtain higher values of Δ′ for low modes, the length 𝐿𝑦 has been increased to
𝐿𝑦 = 20𝜋 , while we kept 𝐿𝑥 = 10𝜋 .

As shown in Fig. 3.7, in the two cases, the agreement between the theoretical and
the numerical values is very satisfactory for 𝑘𝑦 > 0.15 (corresponding to Δ′ < 1.15).
For 𝛿 = 0.1, the lowest mode (associated to 𝑘𝑦 = 0.05, Δ′ = 4.3) gives a relative error
between 𝛾 and 𝛾𝑁 of 33%. In this case we have 𝜖Δ′ = 0.4 and 𝛾/𝑘𝑦 = 0.2, which appear
to be too large for the formula (3.32) to be valid. However, in the case of 𝛿 = 0.03,
which leads to a smaller 𝛾/𝑘𝑦 ratio, the error for the lowest mode is reduced to 9%. In
the latter case we have 𝜖Δ′ = 0.03 and 𝛾/𝑘𝑦 = 0.06. To conclude, the error between 𝛾𝑁
and 𝛾 is well decreasing with the ratio 𝛾/𝑘𝑦 and the product 𝜖Δ′, in consistency with
the assumptions No. 1 and 4 of Table 1 (note that 𝜖 depends linearly on 𝛾/𝑘𝑦). Small
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3 Impact of electron temperature anisotropy

values of 𝛾/𝑘𝑦 increase the upper bound of (44) and allow for larger values of Δ′.

3.2.2 Comparison between the numerical and analytical
solutions

Since our outer solution 𝜙out, given by (3.13) differs from the outer solution obtained
in the framework of the reduced MHD, we proceed here to a comparison between the
analytical solution and the numerical solution.

Using the outer and inner solution, (3.13) and (3.27), respectively, it is possible to
build an approximate solution of the system (2.95) - (2.96). The approximate solution
is given by (Bender & Orszag (1999))

𝜙unif = 𝜙out + 𝜙in − 𝜙match, (3.37)

where 𝜙match = 𝜙matchin = 𝜙matchout defined by (3.7). Figure 3.8 shows the comparison
between the numerical and approximated solution for a given set of parameter, at 𝑡 =
50 and 𝑦 = 2𝜋 . The figure shows a good agreement, although a slight difference could
come from a time sampling too wide or from the amplitude of the initial perturbation
used in the code.
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Figure 3.8: Comparison between 𝜙unif (𝑥) and a profile along 𝑥 of the numerical solu-
tion, at a certain time. All the values are given on top of the plot.
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No. Adopted assumptions

1 Time variation of the perturbation is slow 𝑔 ≪ 1

2 Smallness of the inner scale 𝜖 ≪ 1

3 Keeping electron inertia terms while neglecting electron FLR 𝛿2 ≪ 𝛽⊥𝑒 ≪ 1

4 Use of the constant-𝜓 approximation 𝜖Δ′ ≪ 1

5 Neglecting electron FLR effects in the inner region 𝛿 ≪ 𝜖

Table 3.1: Table summarizing the various assumptions identifying small parameters
adopted to derive the relation (3.32).

3.3 Discussion

3.3.1 Limits of validity of the dispersion relation
The dispersion relation (3.32) was derived on the basis of a number of assumptions

imposing some parameters to be small. We find it useful to summarize and discuss
here such assumptions.

Neglecting electron FLR in the inner region

The adopted model (2.95) - (2.96) neglects electron FLR effects. It is thus valid for
scales much larger than the electron Larmor radius. Therefore, we must ensure that,
when moving to the spatial scale of the order of 𝜖 , after the rescaling (3.19), we do
not approach the scale of the electron Larmor radius. In the inner region, the perpen-
dicular wave number is normalized such that 𝑘⊥ = 𝑘⊥/𝜖𝜌𝑠⊥. Thus, written in terms
of 𝜖 , electron FLR corrections would lead to the presence of operators of the form
(𝛿2/𝜖2) (𝜕2/𝜕𝑥2). To make sure that these operators are negligible, compared to the
other effects retained in the inner region, we must ensure 𝜌𝑒𝑘⊥/𝜖𝜌𝑠⊥ ≪ 1, with 𝑘⊥ of
order 1. Using the relation 𝜌𝑒 = 𝛿𝜌𝑠⊥, it is evident to see that, for our linear analysis to
be consistent with the assumptions of the model, 𝜖 , has to satisfy the condition

𝛿 ≪ 𝜖. (3.38)

Summary of the assumptions and discussions

Relation (3.38) and the other assumptions adopted for the tearing analysis are num-
bered in Table 3.3.1. Given the expressions for 𝜖 (3.20) and for 𝛾 (3.32), it is possible to
see that the assumptions 1, 2 and 3 are compatible. Combining the assumptions 4 and
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5 gives the following additional constraint on Δ′

𝜋𝜆
√
Θ𝑒

𝛿

𝛽⊥𝑒

2
≪ Δ′ ≪

√
𝜋𝜆

√
Θ𝑒

𝛿

√
𝛽⊥𝑒

2
. (3.39)

The assumption, for neglecting the electron FLR effects in the inner region (No. 5 in
the Table 3.3.1), provides the lower bound of (3.39). It compels us, in order to be per-
fectly consistent with the derivation of the model, not to take too small values for Δ′.
Fulfilling such condition forces the admissible values for Δ′ to lie in a rather narrow
interval, given in Eq. (3.39). Although the derivation of the dispersion relation (3.32),
starting from the system (2.95) - (2.96), was obtained using only assumptions 1 - 4, vi-
olating the assumption 5 leaves the doubt about whether electron FLR effects might
have played an important role in the inner region.

In assumption 3, the condition 𝛽⊥𝑒 ≪ 1 allows to neglect the FLR effects in the
general model while retaining electron inertia. Recalling that 𝛽⊥𝑒 = 8𝜋𝑛0𝑇0⊥𝑒/𝐵20, the
low-𝛽⊥𝑒 regime is consistent with the strong guide field configuration.

3.3.2 Keeping small 𝛽⊥𝑒 corrections

Although negligible at the leading order, if we keep first order corrections in 𝛽⊥𝑒

in the evolution equations (2.95) - (2.96), we find the modified growth rate

𝛾 =
𝛿Δ′𝑘𝑦
𝜋𝜆

(
2
𝛽⊥𝑒

+ 1 − 1
Θ𝑒

) √
1
Θ𝑒

− 𝛽⊥𝑒

𝛽⊥𝑒 + 2

√
𝛽⊥𝑒

2
,

which is non-negative if
𝛽⊥𝑒

2 + 𝛽⊥𝑒

≤ Θ𝑒 ≤
2 + 𝛽⊥𝑒

𝛽⊥𝑒

. (3.40)

By comparing Eq. (3.40) with Eq. (3.32), it emerges that the inclusion of first-order
corrections in 𝛽⊥𝑒 introduces, in the dispersion relation, new modifications due to the
temperature anisotropy, which are not merely due to the specific choice of the equi-
librium scale length. We remark that the condition on the lower bound for Θ𝑒 in Eq.
(3.40), corresponds to the condition for firehose stability (Hasegawa (1975)). However,
under the adopted assumptions 𝛽⊥𝑒 ≪ 1 and Θ𝑒 = 𝑂 (1), violating this condition leads
outside the range of validity of the model.

Figure 3.9 shows the evolution of the normalized growth rate (3.40) as a function of
Θ𝑒 . The value of 𝛽𝑒 for this plot were 0.3, 0.4 and 0.5. We see that the stabilization of
the tearing mode, appears only for an important temperature anisotropy (for 𝜃𝑒 < 0.1
or 𝜃𝑒 > 5).
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Figure 3.9: Growth rate (3.40) as a function of the electron temperature anisotropy for
different values of 𝛽⊥𝑒 and taking the parameters 𝛿 = 0.1 and Δ′ = 0.38 fixed.
We recall that 𝛾 is normalized with respect to 𝜔𝑐𝑖 , the ion gyrofrequency.

3.3.3 Possible extension to arbitrary ion temperature
The gyrofluid equations, derived using the isothermal closure, can be reduced to

obtain a 2-field fluid model, similar to a model which has been studied by Grasso et al.
(2000), but which contains temperature anisotropy. In this discussion, we will just give
the list of stages of the model reduction leading to the above-mentioned model.

Starting from Eqs. (2.46) - (2.47), the reduction procedure is the following:

• We assume the normalisation by the Alfvén time (2.109) (instead of (2.64)).

• We assume, as for all the models in this Thesis, that the gyrocenter ion density
and parallel velocity are negligible 𝑁𝑖 = 𝑈𝑖 = 0.

• We assure the regime 𝛽𝑒 ≪ 1, which implies a negligible electron Larmor radius
and allows to Taylor expand the electron gyroaverage operators.

• We relax the hypoThesis of cold ions (consisting in taking 𝜏⊥𝑖 ≪ 1), and assume
an arbitrary (but isotropic) ion temperature.

In this case the model is reduced to

𝜕𝑛𝑒
𝜕𝑡

+ [𝜙, 𝑛𝑒] − [𝐴∥, 𝑢𝑒] = 0, (3.41)

𝜕

𝜕𝑡

(
𝐴∥ − 𝑑2𝑒𝑢𝑒

)
+

[
𝜙,𝐴∥ − 𝑑2𝑒𝑢𝑒

]
− 𝜌2𝑠⊥

Θ𝑒
[𝑛𝑒, 𝐴∥] = 0, (3.42)

(3.43)
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where the static relations (2.127) - (2.129) are replaced by

𝑁𝑒 = 𝑛𝑒 =
1

𝜌2𝑖⊥
(Γ0𝑖 − 1) 𝜙, (3.44)

𝑈𝑒 = 𝑢𝑒 = ∇2
⊥𝐴∥, (3.45)

𝐵∥ = 0. (3.46)

In (3.44) we used the relation 𝜌𝑖⊥ = 𝜌𝑠⊥
√
𝜏⊥𝑖 .

It is possible to absorb the parameter Θ𝑒 , by assuming an effective 𝜌𝑠 ∥ given by

𝜌𝑠 ∥ =
𝜌𝑠⊥√
Θ𝑒
, (3.47)

which corresponds to the ion-sound Larmor radius based on the parallel temperature.
Following this change of variable, the model is identical to the model used in Ref.
Grasso et al. (2000) when the latter is taken in the collisionless limit, and to the models
of Refs. Grasso et al. (2010) and Comisso et al. (2013) when the latter are taken in the
limit 𝑛𝑖 = 0. For this model, the linear theory of the tearing instability of Porcelli (1991)
can be recovered.

The dispersion relation, in the case of short wavelength, reduces to the relation

𝛾𝜏 =
2𝑘𝑦
𝜋𝜆

𝑑𝑒Δ
′

Θ𝑒

√
𝜌2𝑠⊥ + 𝜌2𝑖⊥, (3.48)

which, if we write it in such a way as to bring out the contributions 𝑇0⊥𝑒 and 𝑇0∥𝑒 ,
is expressed as

𝛾𝜏 =
2𝑘𝑦
𝜋𝜆

𝑑𝑒Δ
′𝑇0∥𝑒
𝑇0⊥𝑒

√
𝑇0⊥𝑒
𝑚𝑖𝜔2

𝑐𝑖

+ 𝜌2𝑖⊥. (3.49)

The normalized dispersion relation (3.49) is valid for an arbitrary (isotropic) ion
temperature. It also predicts an increase of the tearing growth rate in the case of
𝑇0∥𝑒 > 𝑇0⊥𝑒 .

3.4 Conclusion and discussion
In this Chapter, a dispersion relation of the tearing instability depending on tem-

perature anisotropy is obtained by applying the theory of asymptotic matching. For a
magnetic equilibrium shear length of the order of 𝜌𝑠⊥ we showed that the dimensional
growth rate, in the 𝛽⊥𝑒 ≪ 1 limit that we considered, increases as 𝑇 1/2

0∥𝑒
. Let us try to

consider the characteristics of a plasma in the magnetosheath assuming, for example,
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values estimated from Phan et al. (2018), giving a plasma immersed with a guide field
with a 𝛽𝑒 ∼ 0.3 and 𝑇0∥𝑒 ∼ 65 eV. We consider a current sheet with the dimensions
�̂�cs ∼ 𝑑𝑖 ∼ 50 km, and 𝑎cs ∼ 𝑑𝑒 ∼ 1 km which are typical lengths observed in the mag-
netosheath. Applying now (3.33), these values give us a reconnection time 𝜏 ∼ 160 ms.
However, (3.33) assumes cold ions, while in Phan et al. (2018) ions are about 3 times
hotter than the electrons. In this Chapter, we have also obtained a possible dispersion
relation valid for arbitrary ion to electron equilibrium temperature ratio given by Eq.
(3.48). Considering 𝑇𝑖 ∼ 3𝑇𝑒 in Eq. (3.48), we obtain a reconnection time of 𝜏 ∼ 80 ms,
which is closer to the observed exhaust time in Phan et al. (2018) of 𝜏𝑜𝑏𝑠 ∼ 45 ms.

It is therefore shown that, in the strong guide field regime, the effect of equilibrium
electron temperature anisotropy is different from what occurs in the case of absent
or weak guide field. The enhancement of the growth rate observed in the latter case
is indeed absent in the strong guide field case. In this respect we remark that, in Shi
et al. (1987), the tendency of a finite guide field to weaken such enhancement was
observed (although with a guide field of amplitude at maximum only 2.5 greater than
that of the equilibrium field). The analytical predictions are tested against numerical
simulations showing a very good quantitative agreement. In this Chapter, we also
provide a dispersion relation valid for small FLR effects.
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4 Gyrofluid analysis of 𝛽𝑒 effects on
the tearing instability

In this Chapter, we make use of the gyrofluid model (2.130) - (2.131) to study the
impact of a finite 𝛽𝑒 , assuming now isotropic equilibrium temperature, on the linear
and nonlinear evolution of the tearing instability.

An important progress in the understanding of magnetic reconnection has been pos-
sible thanks to fluid models. However, many of these models are either collisional, or
collisionless with a focus on the limit 𝛽𝑒 ≪ 1. This limit is indeed often adopted,
which is not so surprising given that plasmas where reconnection is observable have
in general 𝛽𝑒 ≲ 1. For example, some values that are calculated from the paper of
Kivelson & Russell (1995) and Hughes (1995) give us: solar Wind, at 1 AU: 𝛽𝑒 ∼ 0.65,
magnetosheath: 𝛽𝑒 ∼ 0.22, magnetotail lobes: 𝛽𝑒 ∼ 2.8 × 10−4. On the other hand, it is
nevertheless not unusual to find 𝛽𝑒 ∼ 1 − 2 in the magnetosheath, even when strong
guide fields are observed. In addition, as we show in this Chapter, the tearing growth
rate can actually be affected even by a small, but finite, 𝛽𝑒 . The study of reconnection
for a finite 𝛽𝑒 can also be relevant for diluted plasmas with relatively large tempera-
tures. For instance, in the intracluster medium, plasma 𝛽𝑒 as large as 𝛽𝑒 ∼ 102 are
expected.

Among the studies that have taken into account the effects of 𝛽𝑒 for reconnection in
the strong guide field regime, we can point to Numata et al. (2011); Numata & Loureiro
(2015), in which a gyrokinetic model is used to study the tearing instability as well as
the electron and ion heating during reconnection. In these studies, different 𝛽𝑒 values
were considered. Figure 4.1 is a plot taken from Numata & Loureiro (2015), showing
the growth rate of the tearing instability scaling as 𝛽−1/2𝑒 for 𝜌𝑠 and𝑚𝑒/𝑚𝑖 fixed. How-
ever, in this work, the resistivity was the main responsible for breaking the frozen in
condition, and the width of the current sheet was too large to be affected by electron
inertia or electron larmor radius effects, which implies a difference compared to our
study in which these effects are retained. In Muraglia et al. (2009), the effects of 𝛽𝑒 are
investigated, and are also associated with the presence of magnetic field curvature and
equilibrium pressure gradient. In a different context, large 𝛽𝑒 were also considered in
Alt & Kunz (2019); Winarto & Kunz (2022), in which also the temperature anisotropy
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4 Gyrofluid analysis of 𝛽𝑒 effects on the tearing instability

Figure 4.1: Growth rate of the tearing instability as a function of the electron 𝛽𝑒 . The
electron skin depth varies as𝑑𝑒 =

√
2𝑚𝑒/𝛽𝑒𝑚𝑖𝜌𝑠 , for 𝜌𝑠 and𝑚𝑒/𝑚𝑖 fixed. The

temperature ratio is 𝜏 = 1. Credit: Taken from Numata & Loureiro (2015).

is included in order to study the impact of the mirror instability on the tearing mode
instability threshold. We also remark that finite 𝛽𝑒 effects were taken into account
in the fluid model of Fitzpatrick & Porcelli (2004, 2007). However, also in that model,
electron FLR effects were neglected.

The gyrofluid model used in this Chapter accounts for both finite electron Larmor
radius effects and perturbations parallel to the direction of the guide field. The regime
is taken within the asymptotic cold ion limit, although we present a small set of simu-
lations performed in the limit of hot ions to reflect the differences and possible conse-
quences of this limit.

In the limit 𝛽𝑒 → 0 (in the following also referred to as the ”fluid” limit), the model
corresponds to the two-field fluid model of Schep et al. (1994). A relevant dispersion
relation for the collisionless tearing mode, applicable to this model, has been derived
by Porcelli (1991). For the 𝛽𝑒 → 0 regime, we present in this Chapter a new analytical
formula, whose derivation is presented in Appendix and follows the procedure used
by Grasso et al. (2002), which is carried out in real space and resorts to the constant-
𝜓 approximation (Furth et al. (1963)). This new formula differs from the small tearing
parameterΔ′ limit of the formula of Porcelli (1991), by the presence of a small corrective
term. These two formulas are tested against numerical simulations and, in its regime
of validity, our new relation shows a better agreement with the numerical growth rate.

In this Chapter, we also study numerically the effect of a finite 𝛽𝑒 in the linear and
nonlinear phase of the tearing instability. For 𝛽𝑒 ≪ 1 the equilibrium electron tem-
perature is seen to enhance the linear growth rate, whereas we observe a stabilizing
role when electron finite Larmor radius effects become more relevant. In the nonlin-
ear phase, stall phases and faster-than-exponential phases are observed, similarly to
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what occurs in the presence of ion finite Larmor radius effects. Energy transfers are
also analyzed, but a more detailed analysis of energy conversion in the presence of
𝛽𝑒 will be provided in Chapter 5, when comparing with simulations performed with a
gyrokinetic code in Numata et al. (2010).

The Chapter is organized as follows. In Sec. 4.1 we present a new dispersion relation
for the case 𝛽𝑒 = 0. Section 4.2 contains the results of numerical simulations in the
linear phase, for finite 𝛽𝑒 and we present a dispersion relation valid for small FLR
effects. In Sec. 4.3 the results obtained in the nonlinear phase are presented and the
gyrofluid case is compared to the fluid case. In this Section, we also study the impact
of a finite 𝛽𝑒 on the evolution of the different energy components. In the Appendix C
we present the derivation of the new dispersion relation for the 𝛽𝑒 → 0 limit, which is
based on the asymptotic matching theory.

In this Chapter, some parts of the text and figures also appear in Granier et al. (2022b).

4.1 Dispersion relation for 𝛽𝑒 → 0

In this Subsection we focus on the regime for which the electron FLR effects and the
parallel magnetic perturbations are negligible. The limit of vanishing thermal electron
Larmor radius, 𝜌𝑒 = 𝑑𝑒

√
𝛽𝑒/2 → 0, is adopted by considering 𝛽𝑒 → 0 and𝑚𝑒/𝑚𝑖 →

0. This limit enables to reduce the gyrofluid model (2.130)-(2.129) to the fluid model
(2.136)-(2.137). We assume an equilibrium given by (2.156), 𝐴(0)

∥ (𝑥) = 𝜆/cosh2 (𝑥/𝜆).
With this equilibrium the tearing parameter is

Δ′ = 2

(
5 − 𝜆2𝑘2𝑦

) (
𝜆2𝑘2𝑦 + 3

)
𝜆3𝑘2𝑦 (𝜆2𝑘2𝑦 + 4)1/2

. (4.1)

Because of the requirement of periodic boundary conditions, the equilibrium is approx-
imated by (2.157). We consider the perturbations (3.1).

We consider the linear theory of tearing modes in collisionless plasmas presented in
Porcelli (1991) and the results can be adapted to the model (2.136)-(2.137). In particu-
lar, a dispersion relation has been derive for the tearing instability, valid for arbitrary
values of Δ′, and is given by

𝜋

2

(
𝜆𝛾𝑝

2𝑘𝑦

)2
= −𝜌𝑠

𝜋

Δ′ + 𝜌
2
𝑠𝑑𝑒

2𝑘𝑦
𝛾𝑝𝜆

. (4.2)

In general, the spectrum can be divided in two different regimes, a long-wavelength
regime Δ′𝜖 ≪ 1 giving a large set of unstable modes, and a short-wavelength regime,
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No. Assumptions used

1 Time variation of the perturbation is slow 𝛾
𝑘𝑦

≪ 1

2 Smallness of the inner scales 𝛾𝑑𝑒
𝑘𝑦𝜌𝑠

≪ 𝜌𝑠 ≪ 1

3 Use of the constant-𝜓 approximation 𝛾𝑑𝑒
𝑘𝑦𝜌𝑠

Δ′ ≪ 𝜌𝑠Δ
′ ≪ 1

4 Neglecting FLR effects in the inner regions 𝜌𝑒 ≪ 𝛾𝑑𝑒
𝑘𝑦𝜌𝑠

,

Table 4.1: Table summarizing the various assumptions adopted for deriving the disper-
sion relation.

Δ′𝜖 ≫ 1. In the small-wavelength regime, the relation is reduced to

𝛾 =
2𝑘𝑦
𝜆

𝑑𝑒𝜌𝑠
𝜋

Δ′, for 𝜌s ∼ de, (4.3)

𝛾 =
2𝑘𝑦
𝜆

[
Γ(1/4)

2𝜋Γ(3/4)

]2
Δ

′2𝑑3𝑒 , for 𝜌s → 0. (4.4)

In the large-wavelength regime, the dispersion relation reduces to

𝛾 =
2𝑘𝑦
𝜆

(
𝑑𝑒2
𝜋

)1/3
𝜌2/3𝑠 , for 𝜌s ∼ de, (4.5)

𝛾 =
2𝑘𝑦
𝜆
𝑑𝑒, for 𝜌s → 0. (4.6)

In Appendix C, we present the derivation of a new dispersion relation valid in the
limit (𝛾𝑑𝑒/(𝑘𝑦𝜌𝑠))Δ′ ≪ 1. The method adopted for the derivation is essentially the
same used in Sec. 3.1, although in the present case, two inner scales are required. In the
appropriate regime of validity, the new dispersion relation includes a corrective term
to Eq. (4.3). We derived this dispersion relation using an asymptotic matching method
and various assumptions, slightly different from those adopted by Porcelli (1991). Table
4.1 gives a review of the assumptions that were adopted on the parameters during the
analysis. The result of our linear theory (details are provided in Appendix C) is given
by the dispersion relation

𝛾𝑢 =
2𝑘𝑦
𝜆

𝑑𝑒𝜌𝑠
𝜋

Δ′ + 𝛾
2
𝑢𝑑𝑒𝜋𝜆

4𝑘𝑦𝜌2𝑠
. (4.7)

The first term on the r.h.s of (4.7) is exactly that of the formula (4.3), for 𝜆 = 1. In the
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parameter regime indicated by Table 4.1, the second term in (4.7) is a small term that
provides a correction to the formula (4.3).

With regard to the assumptions of Table 4.1, we remark that the assumption No.
1 indicates a slow time variation of the perturbation. No. 2 is the assumption on
the scales of the inner region, where electron inertia becomes important and allows
the break of the frozen-flux condition. The assumption No. 3 allows the use of the
so-called constant-𝜓 approximation, implying that the dispersion relation is valid for
large wave numbers (Furth et al. (1963)). The condition No. 4, imposed to neglect
electron FLR, can be verified for a low-𝛽𝑒 plasma. From a technical point of view, our
new dispersion relation is obtained by solving the equations in the inner layer in real
space, unlike in Porcelli (1991) where the corresponding equations are transformed
and solved in Fourier space.

A solution of the dispersion relation (4.7), considered in the regime identified by
the assumptions of Table 4.1, is

𝛾𝑢 = 2𝑘𝑦

(
𝜌2𝑠
𝜋𝑑𝑒𝜆

− 𝜌3/2𝑠

√
𝜌𝑠 − 2𝑑2𝑒Δ′

𝜋𝑑𝑒𝜆

)
, (4.8)

and is real for 𝜌𝑠 > 2𝑑2𝑒Δ
′.

This new dispersion relation is tested against numerical simulations and compared
to the expression (4.3). Just for testing this formula, we also performed additional tests
on the Harris-sheet equilibrium (2.155).

The numerical value chosen and indicated for Δ′ will always be associated to that of
the mode𝑚 = 1, and we change its value by taking different box lengths along the 𝑦
direction. The results obtained with the two different equilibria are presented on Figs.
4.2 and 4.3. The agreement between the theoretical and the numerical values appears
to be improved by this new formula, when the latter is applied in its regime of validity.
Consequently, (4.8) can be seen as an upgrade of the formula (4.3) in the regime of
parameters indicated by the Table 4.1.

Figure 4.4 gives a comparison between the theoretical growth rate predicted by Eqs.
(4.2), (4.3) and (4.8), and the numerical growth rate𝛾𝑁 as a function of the wave number
𝑘𝑦 . According to these tests, 𝛾𝑢 seems to give a very good prediction for wave numbers
𝑘𝑦 > 1.1. The discrepancy observed for lower values of 𝑘𝑦 comes from the fact that the
condition allowing the use of the constant𝜓 approximation, (𝛾𝑑𝑒/(𝑘𝑦𝜌𝑠))Δ′ ≪ 𝜌𝑠Δ

′ ≪
1, is no longer satisfied for a small wave number. The breakdown of 𝛾𝑢 for 𝑘𝑦 ≪ 0.95
is due to the fact that for Δ′ > 𝜌𝑠/(2𝑑2𝑒 ), the solution (4.8) is no longer real.
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Figure 4.2: Comparison between the analytical growth rate, 𝛾𝑢 , obtained from the new
formula (4.8) (dashed line), the analytical growth rate obtained from the
formula (4.3) (solid line) and the numerical growth rate 𝛾𝑁 defined in Eq.
(5.24) (circles). The parameters are 𝑑𝑒 = 0.1, 𝜆 = 1, Δ′ = 0.72,𝑚 = 1. The
box size is given by −10𝜋 < 𝑥 < 10𝜋 , −0.48𝜋 < 𝑦 < 0.48𝜋 . The values of
the parameters lie in the regime of validity of the new formula (4.8). One
can see that, for different values of 𝜌𝑠 , the correction present in Eq. (4.8)
yields a better agreement with the numerical values.
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Figure 4.3: This plot is showing additional tests, analogous to those of Fig. 4.2, but with
the Harris sheet equilibrium 𝐴(0)

∥ (𝑥) = −𝜆 ln cosh(𝑥/𝜆), and 𝜙 (0) (𝑥) = 0,

for which Δ
′
= (2/𝜆)

(
1/(𝑘𝑦𝜆) − 𝑘𝑦𝜆

)
and using the mode 𝑚 = 1. The

parameters are 𝑑𝑒 = 0.2 and 𝜆 = 3. The box size is −10𝜋 < 𝑥 < 10𝜋 ,
−4𝜋 < 𝑦 < 4𝜋 . For this case, Δ′ = 0.38. For this equilibrium the dispersion
relation corresponds to 𝛾𝑢 = 𝑘𝑦

(
𝜌2𝑠 /(𝜋𝑑𝑒𝜆) − 𝜌

3/2
𝑠 (𝜌𝑠 − 2𝑑2𝑒Δ

′)1/2/(𝜋𝑑𝑒𝜆)
)

and differs from (4.8) by a factor 2 coming from the evaluation of 𝑑𝐵𝑦0/𝑑𝑥
at the X-point. Symbols are the same as on Fig. 4.2 . Also in this case, the
new formula yields a better agreement with the numerical values.
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Figure 4.4: Comparison between the theoretical growth rate predicted by Eqs. (4.2),
(4.3) and (4.8), and the numerical growth rate 𝛾𝑁 as a function of the
wavenumber, 𝑘𝑦 = 𝜋𝑚/𝐿𝑦 . The parameters are 𝑑𝑒 = 0.03, 𝜌𝑠 = 0.03, 𝜆 = 1.
The runs were done with the modes 1 ≤ 𝑚 ≤ 4 and 𝐿𝑦 = 1.789𝜋 . The
corresponding values of the tearing stability parameter lie in the interval
0.005 ≤ Δ′ ≤ 47.86. The new formula yields a better agreement with nu-
merical results for large 𝑘𝑦 , where the Δ′ approximation is better fulfilled.
For 𝑘𝑦 < 0.95 the new formula is no longer valid and the numerical results
are better approximated by the formulas (4.2) and (4.3).
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4.2 Linear growth rate for finite 𝛽𝑒

We now proceed to a numerical study of the model (2.130) and (2.131), comple-
mented by (2.127), (2.128) and (2.129). The numerical set-ups are the same as those
presented in the previous Section, relative to the equilibrium (2.156), but the code ac-
counts now for finite 𝛽𝑒 effects. For the linear tests we focus on a weakly unstable
regime for which 0 < Δ′ < 1. The strongly unstable case shows interesting behaviors
in the nonlinear phase and will be studied in the Section 4.3. For all the tests, we use
𝜆 = 1.

4.2.1 For a varying mass ratio

In order to isolate the contribution coming from purely varying 𝛽𝑒 , we first scan
𝛽𝑒 from 10−3 to 1 while 𝜌𝑠 and 𝑑𝑒 remain fixed, which is equivalent to considering a
different mass ratio for each 𝛽𝑒 value. We recall that the parameters are indeed linked
by the relations (1.7). We repeat this scan for three different values of 𝑑𝑒 . The results
are presented in Fig. 4.5 and show that increasing 𝛽𝑒 and𝑚𝑒/𝑚𝑖 stabilize the tearing
mode. This is consistent with the results obtained in the gyrokinetic and collisional
study of Numata et al. (2011), where 𝛽𝑒 and the mass ratio are also varied. Figure
4.5 also shows the competition between the destabilizing effect of the electron inertia
and the stabilizing effect of 𝛽𝑒 . For this set of parameters, the influence of 𝛽𝑒 on the
weakly unstable regimes is almost negligible until 𝛽𝑒 = 1. For relatively low values
of 𝛽𝑒 , the highest growth rate corresponds to that for which the parameter 𝑑𝑒 is the
largest. We recall that, for 𝛽𝑒 ≪ 1, the formulas (4.3) and (4.8) hold. Such formulas,
for 𝑑𝑒 ≪ 1, predict that the growth rate increases linearly with 𝑑𝑒 . Conversely, when
𝛽𝑒 becomes large enough, as appears for 𝛽𝑒 > 0.15, the growth rate for which 𝑑𝑒 is
the largest, decreases drastically under the effect of the finite 𝜌𝑒 and of the parallel
magnetic perturbations induced by 𝛽𝑒 .

Dispersion relation for small FLR effects

Some information about the stabilizing role of 𝛽𝑒 can be inferred by taking the small
FLR limit of the equation (2.131), which consists in considering the regime of parame-
ters

𝑑𝑒 ≪ 1, 𝜌𝑠 ≪ 1,
𝑑𝑒
𝜌𝑠

≪ 1, 𝛽𝑒 = 𝑂 (1), (4.9)

and assuming,
∇2
⊥ = 𝑂 (1). (4.10)
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Figure 4.5: Numerical growth rates of the collisionless tearing mode as a function of
𝛽𝑒 , for three different values of 𝑑𝑒 . The box length along 𝑦 is such that
−0.45𝜋 < 𝑦 < 0.45𝜋 , yielding a value of the tearing instability parameter of
Δ′ = 0.067 for the largest mode in the system. We stand in a very small Δ′

regime, close to a marginal stability when 𝛽𝑒 < 0.1. One sees that for higher
values of 𝛽𝑒 , and depending on the value of 𝑑𝑒 , the mode is stabilized.
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If we retain the first-order FLR corrections as 𝑑𝑒, 𝜌𝑠 → 0, the resulting Ohm’s law reads

𝜕

𝜕𝑡

(
𝐴∥ +

(
𝛽𝑒
4
− 1

)
𝑑2𝑒∇2

⊥𝐴∥

)
+

[
𝜙,𝐴∥ +

(
𝛽𝑒
4
− 1

)
𝑑2𝑒∇2

⊥𝐴∥

]
+ 𝜌2𝑠

(
𝛽𝑒

2 + 𝛽𝑒
− 1

)
[∇2

⊥𝜙,𝐴∥] = 0. (4.11)

The new contributions in Eq. (4.11) are those due to finite 𝛽𝑒 and are not present in the
usual two-field model by Schep et al. (1994). In particular, the contributions propor-
tional to (𝛽𝑒/4)𝑑2𝑒 come from electron FLR effects and the contribution proportional
to 𝛽𝑒𝜌2𝑠 /(2 + 𝛽𝑒) is due to the presence of the finite 𝐵∥ . In Eq. (4.11), comparing with
Eqs. (2.136)-(2.137), it is possible to identify an effective electron skin depth 𝑑′𝑒 and an
effective sonic Larmor radius 𝜌′𝑠 , given by,

𝑑′𝑒
𝑑𝑒

=

√
1 − 𝛽𝑒

4
, (4.12)

and
𝜌′𝑠
𝜌𝑠

=

√
2

𝛽𝑒 + 2
, (4.13)

respectively. This argument holds for 𝑑′𝑒 purely real and consequently for 𝛽𝑒 < 4.
Because 𝑑′𝑒 < 𝑑𝑒 , one can infer that the contribution of 𝛽𝑒 , at the leading order in
the expansion (4.9)-(4.10), reduces the amplitude of the term that breaks the frozen-in
condition. For this reason, one could indeed expect a stabilizing role of 𝛽𝑒 . Deriving
rigorously a dispersion relation for tearing modes from the model (2.130)-(2.129), in
the general case with finite 𝛽𝑒 , is a very challenging task. In the absence of a rigorous
dispersion relation for finite 𝛽𝑒 , a rough but readily available approximation can be ob-
tained from the 𝛽𝑒 = 0 dispersion relation (4.8) (or (4.3)), by replacing𝑑𝑒 and 𝜌𝑠 with the
effective parameters 𝑑′𝑒 and 𝜌′𝑠 , respectively. This amounts to taking into account the
leading-order electron FLR corrections, according to the ordering (4.9)-(4.10), in Ohm’s
law, while neglecting all the 𝛽𝑒 effects in the electron continuity equation. In particu-
lar, higher-order derivative terms (coming from the gyroaverage operators, assuming
it is possible to identify the multiplication operator for 𝑘𝑥 with 𝜕𝑥 ) are neglected, al-
though these can become relevant around the resonant surface and thus influence the
growth rate. Using this approximation, it follows immediately that the inclusion of
finite-𝛽𝑒 corrections reduces the growth rate, given that 𝛾 ∝ 𝑑′𝑒𝜌′𝑠 (if one considers the
leading-order relation given by Eq. (4.3)) and that 𝑑′𝑒 < 𝑑𝑒 and 𝜌′𝑠 < 𝜌𝑠 . However, the
error made with this approximation needs to be checked numerically. We carried out
this check by first determining the approximated growth rate in the following way.
When replacing 𝑑𝑒 and 𝜌𝑠 by the effective 𝑑′𝑒 and 𝜌

′
𝑠 in our formula (4.8), valid for small

Δ′, we obtain the dispersion relation
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𝛾𝑎𝑝𝑝𝑟 =

𝑘𝑦

(
8𝜌2𝑠 − (𝛽𝑒 + 2)

(
8𝜌2𝑠
𝛽𝑒+2

)3/4 √√
8𝜌2𝑠
𝛽𝑒+2 + (𝛽𝑒 − 4)Δ′𝑑2𝑒

)
𝜋
√
4 − 𝛽𝑒 (𝛽𝑒 + 2)𝑑𝑒𝜆

. (4.14)

We tested the dispersion relation (4.14) against small Δ′ simulations and the results
are shown on Fig. (4.6). By comparing the analytical formula (4.14) (solid black curve)
and the numerical results obtained by the gyrofluid code (black circles), we can see
that 𝛾𝑎𝑝𝑝𝑟 gives a reasonably good approximation for low 𝛽𝑒 values, as expected. The
red circles on Fig. (4.6) show the growth rate obtained using, as input in the fluid code,
the effective 𝑑′𝑒 and 𝜌′𝑠 , that were calculated on the basis of the values 𝑑𝑒 = 0.1 and
𝜌𝑠 = 0.3 that we used in the gyrofluid code. The numerical and analytical growth
rates obtained from the fluid model replacing 𝑑𝑒 and 𝜌𝑠 with the effective parameters,
exhibit a behavior qualitatively similar to that of the gyrofluid growth rate. However,
a significant quantitative difference emerges as 𝛽𝑒 increases. This could be due to the
higher electron FLR contributions that are absent in the approximation. From Fig. 5 it
emerges that the net effect of such contributions is that of further reducing the growth
rate, as the curve obtained from the gyrofluid model always lies below those obtained
from the effective fluid model.

4.2.2 For a fixed mass ratio
Varying 𝜌𝑠

A further analysis we carried out consists of investigating the effect of 𝛽𝑒 on the
linear growth rate, but at a fixed mass ratio. In order to keep a constant mass ratio
during the scan in 𝛽𝑒 , we carried out a study with 𝛽𝑒 ranging from 10−3 to 2 with 𝜌𝑠
varying simultaneously. Physically, thismight be interpreted as investigating the effect
of the variation of the equilibrium electron temperature 𝑇0𝑒 , supposing that 𝑛0, 𝐵0,𝑚𝑖 ,
𝐿 (and thus the Alfvén frequency, which is the unit of measure of the dimensional
growth rate) are fixed. We fix the relation 𝑑𝑒 =

√
𝑚𝑒/𝑚𝑖 (implying 𝜌𝑠 =

√
𝛽𝑒/2) and we

evaluate the cases 𝑑𝑒 = 0.07, 𝑑𝑒 = 0.15, 𝑑𝑒 = 0.1. Figure 4.7 shows that when 𝛽𝑒 and 𝜌𝑠
are increased simultaneously there seems to be a competition between the destabilizing
effect of 𝜌𝑠 and the stabilizing effect of 𝛽𝑒 . Also in this case, the behavior at small 𝛽𝑒 ,
can be interpreted on the basis of the formulas (4.3) and (4.8), predicting an increase of
the growth rate with increasing 𝜌𝑠 . When electron FLR effects come into play at larger
𝛽𝑒 , the growth rates decreases. The values chosen for the mass ratio in Fig. 4.7 are
not realistic. Such values were chosen to show the dependence on the 𝛽𝑒 parameter
more clearly. On the other hand, the mass ratio is not taken as a small parameter in
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Figure 4.6: Numerical growth rates of the collisionless tearing mode as a function of 𝛽𝑒 .
The parameters are𝑑𝑒 = 0.1, 𝜌𝑠 = 0.3, Δ′ = 0.59,𝑚 = 1, 𝑘𝑦 = 2.12, 𝜆 = 1. The
solid black curve is showing the approximate-𝛽𝑒 dispersion relation (4.14).
The black circles are showing the results obtained with the gyrofluid code.
The red circles are showing the results obtained with the fluid code, using,
instead of 𝑑𝑒 and 𝜌𝑠 , 𝑑′𝑒 and 𝜌

′
𝑠 , given by (4.12)-(4.13).

the derivation of the model, so these values are respecting the validity conditions of
the model. In the case of the artificial value of 𝑑𝑒 =

√
𝑚𝑒/𝑚𝑖 = 0.15, the stabilizing

effect takes over the destabilizing effect of 𝜌𝑠 even for 𝛽𝑒 < 1. However, for the case√
𝑚𝑒/𝑚𝑖 = 0.07, much closer to a real mass ratio, the effect of 𝜌𝑠 appears to be dominant.

Indeed, decreasing 𝑑𝑒 at a fixed 𝛽𝑒 amounts to decreasing 𝜌𝑒 . Thus, for 𝑑𝑒 = 0.07 the
stabilizing effect of the electron FLR terms gets weakened, with respect to the other
values of 𝑑𝑒 , even at large 𝛽𝑒 .

Varying 𝑑𝑒 and comments about the 𝑁𝑖 = 𝑈𝑖 = 0 hypothesis

Figure 4.8 shows the variation of the growth rate of the tearing instability as a func-
tion of 𝛽𝑒 , for a fixed value of 𝜌𝑠 = 10𝜌𝑒 = 0.3. Here, the parameter 𝑑𝑒 is varied.
The obtained results are confirming the scaling of the growth rate as 𝛽−1/2𝑒 (or, equiv-
alently, as 𝑑𝑒 ) has been determined with the gyrokinetic study of Numata & Loureiro
(2015) and the fluid theory of Fitzpatrick & Porcelli (2007). This shows the capabil-
ity of the gyrofluid model to reasonably reproduce gyrokinetic results (Numata et al.
(2011); Numata & Loureiro (2015)) in a quantitative way, although, in the gyrokinetic
study, the ion dynamic is taken into account consistently, which is not the case with
our model. Thus, this comparison also allows us to deduce that, at least up to values
of 𝛽𝑒 ∼ 0.8 and in the linear phase, the simplifying hypothesis of suppressing ion gy-
rocenter density and parallel velocity fluctuations still permits to obtain predictions in
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4.2 Linear growth rate for finite 𝛽𝑒
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Figure 4.7: Numerical growth rates of the collisionless tearing mode as a function of

𝛽𝑒 and 𝜌𝑠 , for different values of 𝑑𝑒 =
√
𝑚𝑒/𝑚𝑖 . The box size is −𝜋 < 𝑥 < 𝜋 ,

−0.47𝜋 < 𝑦 < 0.47𝜋 , which leads to Δ′ = 0.59.

good agreement with gyrokinetic results.

4.2.3 The hot-ion limit, 𝜏𝑖 → +∞
In this Chapter we have focused, so far, on the cold-ion limit, but in this Subsection

we temporarily deviate from the cold-ion case, to consider the opposite limit, in which
𝜏𝑖 → +∞. We only carry out the comparison between the cold and hot-ion limits in the
linear regime and leave the comparison of the nonlinear evolution for a future work.
The hot-ion limit can actually be of greater interest for space plasmas such as the solar
wind. When considering the gyrofluid model in the hot-ion limit, the ion gyrocen-
ter density fluctuation and the ion gyrocenter parallel velocity are still neglected, and
therefore the evolution equations remain unchanged. Only the assumption (2.124) is
taken in the opposed limit, with respect to the cold-ion limit, which has an impact on
the development of ion gyroaverage operators. The static relations (2.127) and (2.129)
are thus changed to

𝜙 =
𝜌2𝑠𝑁𝑒(

1 − 𝛽𝑒
2

)
𝐺10𝑒 −𝐺−1

10𝑒

, (4.15)

𝐵∥ =
𝛽𝑒

2𝜌2𝑠
𝜙. (4.16)

The linear results obtained in the hot-ion limit are compared to the results obtained
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Figure 4.8: The value of 𝑑𝑒 for each run increases as 𝑑𝑒 =
√
2𝑚𝑒/(𝛽𝑒𝑚𝑖)𝜌𝑠 . The box

size is −𝜋 < 𝑥 < 𝜋 , −0.47𝜋 < 𝑦 < 0.47𝜋 . The numerical values (triangles)
are compared with the curve 𝛾 = 𝛽−1/2𝑒 (dotted line), which is the scaling
predicted by Fitzpatrick & Porcelli (2007) on the basis of a fluid model, and
confirmed by gyrokinetic simulations by Numata & Loureiro (2015). The
comparison shows that also our gyrofluid model confirms such scaling.
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Figure 4.9: Comparison between the linear growth rate obtained in the cold-ion regime

and the hot-ion regime. The box size is −𝜋 < 𝑥 < 𝜋 , −0.47𝜋 < 𝑦 < 0.47𝜋 ,
which leads to Δ′ = 0.59.

in the cold-ion regime on Figure 4.9. The parameters are 𝑑𝑒 = 0.1, 𝜌𝑠 = 0.1. Our results
seem to indicate that, for 𝛽𝑒 > 0.5, the growth rate is insensitive to the temperature
of the ions, which is in agreement with the results obtained by Numata et al. (2011).
Studies have been carried out with arbitrary ratios between the equilibrium ion and
electron temperature in the low-𝛽 limit, by Porcelli (1991); Grasso et al. (1999), and
predict that the growth rate is significantly higher when the temperature of the ion
background temperature is higher than that of the electrons. This is indeed what we
observe for 𝛽𝑒 < 10−2.

4.3 Nonlinear phase

4.3.1 Identification of a slowdown
To study the impact of a finite 𝛽𝑒 on the nonlinear evolution of the magnetic island,

we focus on the strongly unstable case, Δ′ = 14.31 (𝑚 = 1), resulting from a box length
along 𝑦 given by −𝜋 < 𝑦 < 𝜋 . In this case, the mode 𝑚 = 2 has a positive tearing
parameter Δ′

2 = 1.23. The higher harmonics are linearly stable. The box along 𝑥 is
chosen to be −1.5𝜋 < 𝑥 < 1.5𝜋 and allows to reach a large island without incurring
in boundary effects. We make use of a resolution up to 2880 × 2880 grid points. The
mass ratio will be taken as𝑚𝑒/𝑚𝑖 = 0.01 for the following tests.

The first tests are carried out by making a scan in 𝛽𝑒 from 𝛽𝑒 = 0.1 to 𝛽𝑒 = 1.5

95



4 Gyrofluid analysis of 𝛽𝑒 effects on the tearing instability

20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

t

d t
 lo

g(
A

||)
t

||
t

||
t

||

βe=0.1

βe=0.2

βe=0.5

βe=0.8

βe=1.5

Figure 4.10: Plot of the effective growth rate 𝑑
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) ���, as a function of time.
The corresponding values of 𝛽𝑒 are shown in the table. The value of the
electron skin depth is kept fixed to 𝑑𝑒 = 0.08, whereas 𝜌𝑠 is varied (and
ranges from 0.17 to 0.69) so to keep the mass ratio fixed to𝑚𝑒/𝑚𝑖 = 0.01.
All the growth rates, except for the case 𝛽𝑒 = 1.5 exhibit the same behav-
ior, characterized by linear, faster-than-exponential, and saturation phase.
The case 𝛽𝑒 = 1.5 exhibits also a slowdown phase.
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The parameters are 𝛽𝑒 = 0.8, implying 𝜌𝑒 =
√
0.4𝑑𝑒 and 𝜌𝑠 = 10

√
0.4𝑑𝑒 .

while keeping 𝑑𝑒 = 0.08 and varying 𝜌𝑠 as 𝜌𝑠 = 0.8
√
𝛽𝑒/

√
2. Increasing 𝛽𝑒 and 𝜌𝑠

simultaneously in this way, as stated in Sec. 4.2.2, amounts to varying the electron
background temperature 𝑇0𝑒 . Figure 4.10 shows the evolution in time of the effective
growth rate, given by Eq. (5.24), for each simulation. In all these cases, with the ex-
ception of 𝛽𝑒 = 1.5, we identify three phases: (1) a linear phase during which the
perturbation evolution scales as exp(𝛾𝑡); (2) a faster-than-exponential phase, which is
delayed in the case 𝛽𝑒 = 0.1, given that the linear growth rate is smaller, with respect
to the case 𝛽𝑒 = 0.8 for which the instability reaches the nonlinear phase faster; (3) a
saturation during which the growth rate drops to 0. The fact that the linear growth
rate increases with increasing 𝛽𝑒 is related to the fact that 𝜌𝑠 is also increased for each
run. As discussed in the previous Section, the isolated effect of an increasing 𝛽𝑒 in the
equations actually implies a stabilization of the linear growth rate. In the case 𝛽𝑒 = 0.8,
the nonlinear growth shows a slightly different behavior from the cases 𝛽𝑒 ≤ 0.5 and
exhibits a stall phases, during which the growth rate slows down. This stall phase
seems to separate two faster-than-exponential phases. Similar stall phase have been
studied in (Comisso et al., 2013), where a finite ion Larmor radius is considered, and ap-
pear to be obtained when considering a large ion Larmor radius. For the case 𝛽𝑒 = 1.5,
on which we will focus later, this slowdown is enhanced.
We focus now on the case 𝛽𝑒 = 0.8 in order to consider more in detail the observed

slowdown. We scan the values of𝑑𝑒 from 0.06 to 0.1, and with 𝜌𝑠 and 𝜌𝑒 varying accord-
ingly, given that 𝜌𝑠 = 10𝜌𝑒 = 10

√
0.4𝑑𝑒 ≈ 6.32𝑑𝑒 . The results are shown on Fig. 4.11.

These curves are compared for a fixed time unit (fixed 𝑣𝐴), while keeping 𝛽𝑒 and the
mass ratio constant, which corresponds to varying 𝐵0 ∼ 𝑛1/20 while keeping the elec-
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(black curve) and 𝛽𝑒 = 1.5 (purple curve). The other parameters are 𝜌𝑠 =
0.519 and 𝑑𝑒 = 0.06.

tron temperature 𝑇0𝑒 fixed. For the case of 𝑑𝑒 = 0.06, which corresponds to 𝜌𝑠 ∼ 0.37,
we observe the slowdown at the end of the linear phase, followed by the faster-than-
exponential phase. On the other hand, in the case of 𝑑𝑒 = 0.1, for which 𝜌𝑠 ∼ 0.63,
the slowdown appears at a later stage of the evolution process and seems to interrupt
the faster-than-exponential phase by introducing a stall phase. We conclude that, the
effects of 𝛽𝑒 , and consequently the effects of electron gyrations, causes the appearance
of a slowing down phase of the growth of the island during the nonlinear evolution.
The larger 𝛽𝑒 , the more distinguishable this slowing phase will be. For a fixed values of
𝛽𝑒 and𝑚𝑒/𝑚𝑖 , the fact of increasing 𝑑𝑒 and 𝜌𝑠 , and consequently increasing the radius
of gyration of the electrons, will delay the appearance of this slowing phase.
The last test consists in studying an extreme case for which the slowing down phase
is accentuated, which corresponds to the case of 𝑑𝑒 = 0.06, 𝜌𝑠 = 0.519, 𝛽𝑒 = 1.5. We
also perform the simulation for 𝛽𝑒 = 0, and the same values for 𝑑𝑒 and 𝜌𝑠 , using a code
that solves the fluid equations (2.136) - (2.137). Figure 4.12 shows the overplot of the
evolution of the growth rate for both simulation as a function of time. The slowing
down phase is followed by an oscillation of the nonlinear growth rate. This oscillation
was obtained in other tests for which 𝛽𝑒 = 1.5.

In order to understand in detail what causes this slowing down and these oscilla-
tions of the island growth that we observe between 𝑡 = 43 and 𝑡 = 65, we compared
all the fields for the cases 𝛽𝑒 = 0 and 𝛽𝑒 = 1.5 of Fig. 4.12. A remarkable difference
between these two regimes concerns the evolution of the inflow and outflow perpen-
dicular velocities. In the fluid case, the latter is given by u⊥ = 𝑧 × ∇𝜙 . In the gy-
rofluid case, in addition to electron FLR effects, a nonlinear grad-B drift, due to the
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Figure 4.13: Contour plot of the perpendicular velocity component for 𝛽𝑒 = 0 at 𝑡 = 35.
Left: 𝑢𝑦 . Right: 𝑢𝑥 . The parameters are the same as those on Fig. 4.12.
The magnetic island edges are shown by the dotted lines. Not the entire
domain is shown.

non-uniformity of the parallel magnetic field, is affecting the perpendicular velocity
given by u⊥ = 𝑧 × ∇(𝐺10𝑒𝜙 − 𝜌2𝑠 2𝐺20𝑒𝐵∥). Fig. 4.13 shows the contour of the compo-
nents 𝑢𝑥 and 𝑢𝑦 of the advecting perpendicular velocity for 𝛽𝑒 = 0. These contours do
not show the entire box so that we focus on the island region drawn by the dotted lines.
As expected, the contour of 𝑢𝑦 shows an outflow leaving the X-point and 𝑢𝑥 shows an
inflow in the direction of the X-point.

Figure 4.14 shows 𝑢𝑥 and 𝑢𝑦 , for 𝛽𝑒 = 1.5, at two different times . For a better
comparison we also show the part of the perpendicular velocity only induced by the
electrostatic potential 𝑧 × ∇𝐺10𝑒𝜙 on Fig. 4.15 to identify the role of 𝐺10𝑒𝜙 and show
that its behavior in the case 𝛽𝑒 = 1.5 is similar to that of the case 𝛽𝑒 = 0. The first time
shown in Fig. 4.14 corresponds to the beginning of the slow down of the island growth.
We observe that, close to the reconnection region, there is a small region where the
velocity changes sign, with respect to the standard 𝛽𝑒 = 0 case. This inversion is more
visible for 𝑢𝑦 , where, inside the island, the fluid velocity is dominated by 𝐵∥ . We can
conclude that 𝐺10𝑒𝜙 ≤ 𝜌2𝑠 2𝐺20𝑒𝐵∥ in the reconnected region. Consequently, the slow-
ing down of the island growth can be explained by the fact that the advection velocity
contains an additional grad-B drift due to the presence of the magnetic perturbation
along the guide field. This effect decelerates the convergence of the field lines towards
the reconnection region, where their evolution will be decoupled from that of the fluid.
At the time 𝑡 = 66, when the island begins to grow faster-than-exponentially, the re-
gion where𝐺10𝑒𝜙 ≤ 𝜌2𝑠 2𝐺20𝑒𝐵∥ shrinks and the advection towards the X-point becomes
much more effective, allowing the explosive growth.
We now focus on the behavior of 𝑢𝑦 during the small oscillations of the growth rate,
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Figure 4.14: Top left and right: 𝑢𝑦 . Bottom left and right: 𝑢𝑥 . For all these contours we
used 𝛽𝑒 = 1.5 and the other parameters are the same as those on the Fig.
4.12. The magnetic island edges are shown by the dotted lines. Not the
entire domain is shown and 𝑡 = 45.
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Figure 4.15: Contour plot of the velocity components of 𝑧 × ∇𝐺10𝑒𝜙 , at t=45. This cor-
responds to the case 𝛽𝑒 = 1.5 and the other parameters are the same as
those on the Fig. 4.12. The magnetic island edges are shown by the dotted
lines. Not the entire domain is shown and 𝑡 = 45.
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Figure 4.16: Contour plot of 𝑢𝑦 showing the upper part of the domain for 𝛽𝑒 = 1.5.
The parameters are the same as those on Fig. 4.12. The magnetic island
edges are shown by the dotted lines. 𝑢𝑦 is negative inside the island and
the cell structures indicate the regions where the flow amplitude is greater.
The situations where the highest (in absolute value) peak is closer to the
X-point (𝑡 = 46 and 𝑡 = 52) correspond to maxima of the growth rate.
Minima of the growth rate occur when the highest peak is far from the
X-point (𝑡 = 48 and 𝑡 = 55).
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4 Gyrofluid analysis of 𝛽𝑒 effects on the tearing instability

visible on Fig. 4.12. Figure 4.16 shows a contour of 𝑢𝑦 in the upper part of the domain,
between 𝑡 = 46 and 𝑡 = 55. The cell structures indicate two negative peaks. We recall
that, in the case of 𝛽𝑒 = 0, we would observe a single positive peak. These peaks are
growing at the center of the island and will follow each other while moving toward the
X-point. The acceleration or deceleration of the island growth depends on the position
(in absolute value) of the highest peak. When the highest peak is closer to the X-point,
the reconnection rate reaches a maximum (𝑡 = 46 or 𝑡 = 52). This peak will then
decrease while the other one, farther from the X-point, will grow (𝑡 = 48 or 𝑡 = 55).
During this part of the cycle, the growth rate reaches a minimum. We interpret this
intermittent flow, generated by the presence of 𝐵∥ , as the mechanism responsible for
the accelerations and decelerations of the island growth.

4.3.2 Energy considerations
The time variations of the different components of the energy for the cases 𝛽𝑒 = 0

and 𝛽𝑒 = 1.5, whose rate of growth is shown on Fig. 4.12, are shown on Fig. 4.17. The
variations are defined as

1
2

ˆ (𝜉 (𝑥,𝑦, 𝑡) − 𝜉 (𝑥,𝑦, 0))
𝐻 (0) d𝑥2 (4.17)

where the function 𝜉 can be replaced by the different contributions of the Hamiltonian
(2.143). In terms of the gyrofluid variables and in the presence of FLR effects, it is not
obvious to identify the physical meaning of all the contributions to the energy. Here,
we use the terminology adopted in Tassi et al. (2018) and which refers to the fluid limit
𝛽𝑒 = 0. The different contributions associated to the colors of the curves of the Fig.
4.17 are:

• the magnetic energy, 𝐸𝑚𝑎𝑔, for which 𝜉 = −𝑈𝑒𝐺10𝑒𝐴∥ , and which reduces to
|∇⊥𝐴∥ |2 in the fluid case (blue curves),

• the parallel electron kinetic energy, 𝐸𝑘𝑒 , for which 𝜉 = 𝑑2𝑒𝑈
2
𝑒 , and which reduces

to 𝑑2𝑒 (∇2
⊥𝐴∥)2 in the fluid case (green curve),

• the energy due to the fluctuation of the electron density, 𝐸𝑝𝑒 , for which 𝜉 = 𝜌2𝑠𝑁
2
𝑒 ,

and which reduces to 𝜌2𝑠 (∇2
⊥𝜙)2 in the fluid case (purple curve),

• the perpendicular electrostatic energy of the electrons combinedwith the energy
of the parallelmagnetic perturbations, 𝐸𝑘𝑝 , forwhich 𝜉 = −(𝐺10𝑒𝜙−𝜌2𝑠 2𝐺20𝑒𝐵∥)𝑁𝑒 ,
and which reduces to |∇⊥𝜙 |2 in the fluid case (red curve).

We consider the simulation as being reliable until the time at which the percentage of
the total energy that gets dissipated numerically (black curve) reaches 1%.
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Figure 4.17: Time evolution of the energy variations. Top: 𝛽𝑒 = 0. Bottom: 𝛽𝑒 = 1.5.
The parameters are 𝑑𝑒 = 0.06, 𝜌𝑠 = 0.519 and their corresponding growth
rate is shown on Fig. 4.12.
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4 Gyrofluid analysis of 𝛽𝑒 effects on the tearing instability

By comparing the two simulations, one can see that there appears to be a compa-
rable amount of magnetic energy being converted. The remarkable difference is the
evolution of the component that combines the electrostatic energy and the energy of
the parallel magnetic perturbations, 𝐸𝑘𝑝 , which, in the case 𝛽𝑒 = 1.5, also seems to be
converted into electron thermal energy (𝐸𝑝𝑒 ), resulting in an increase in this compo-
nent.

We also carried out a test with 𝛽𝑒 = 1.5 by artificially removing the parallel magnetic
perturbation 𝐵∥ from the code, so that it does not appearing in the expression for 𝐸𝑘𝑝 .
It appeared first that the presence of 𝐵∥ has a stabilizing effect on the tearing mode,
and secondly, the energy component 𝐸𝑘𝑝 was slightly increasing instead of decreasing.
This leads us to conclude that the energy related to the parallel magnetic perturbations
is in fact the decreasing component that seems to be converted into electron thermal
energy 𝐸𝑝𝑒 .

4.4 Conclusion
In this Chapter, we have attempted to provide an overview of the impact of finite

electron plasmas 𝛽 effects on the tearing instability in non-collisional plasma with cold
ions and a strong guide field. Adopting a gyrofluid model, we have studied the effects
of electron gyration and of a parallel magnetic perturbation.

Our main results are the following. First, when increasing 𝛽𝑒 and 𝜌𝑠 while keeping
𝑑𝑒 and the mass ratio fixed, the evolution of the reconnection growth rate seems to be
dominated by the destabilizing effect of 𝜌𝑠 , up to a certain threshold where the effects
of 𝜌𝑒 become important and the growth rate diminishes (Fig. 4.7). This can also be
interpreted as fixing the background density, 𝑛0, the ion mass (so that 𝑑𝑒 is fixed) and
the guide field amplitude 𝐵0, while increasing the electron temperature𝑇0𝑒 . In the case
of a small Δ′ regime, a high 𝛽𝑒 can eventually stabilize the tearing mode and prevents
reconnection from occurring.

Secondly, in the nonlinear regime of the case 𝜌𝑠 ≫ 𝑑𝑒 with 𝑚𝑒/𝑚𝑖 ≪ 𝛽𝑒 ≪ 1,
(which is referred to as being the fluid regime in this Chapter), we retrieved the well-
know collisionless faster-than-exponential growth which leads to an explosive growth
of the magnetic island. However, when we increase 𝛽𝑒 , this explosive paradigm is mod-
ified with the appearance of a slowdown phase preceding the explosive growth. This
slowing down is induced by the inclusion of a nonlinear grad B drift that becomes im-
portant for finite 𝛽𝑒 . This drift creates an intermittent velocity opposed to the velocity
induced by the electrostatic potential and prevents the convergence of the field lines
towards the X point.

The results obtained with our gyrofluid model are in agreement with results ob-
tained by gyrokinetic studies (Numata et al. (2011); Numata & Loureiro (2015)). They
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4.4 Conclusion

also complement some two-fluid studies where a consistent accounting for 𝛽𝑒 effects,
including both electron FLR and parallel magnetic perturbationswere neglected (Schep
et al. (1994); Grasso et al. (1999); Del Sarto et al. (2006); Fitzpatrick & Porcelli (2007)).
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5 Investigation of the plasmoid
instability

In the development of the tearing process, after the saturation of the unstable dom-
inant mode (𝑚 = 1), eventually a thinning current sheet located at the X-point of
the initial tearing configuration will form (middle panel of Fig. 5.1). In this evolving
current sheet, tearing-mode-like perturbations can develop to form magnetic islands
referred to as plasmoids when they enter their nonlinear phase (right panel of Fig. 5.1).
This instability is commonly called the plasmoid instability (Biskamp (1986); Loureiro
et al. (2005); Ji & Daughton (2011); Comisso et al. (2016)).

The transition between the different regimes of current sheets reconnecting via a
plasmoid instability driven by plasma resistivity has been investigated in the past, and
the present understanding of reconnection has been summarized in the form of param-
eter space diagrams (Ji & Daughton (2011); Daughton & Roytershteyn (2012); Huang
& Bhattacharjee (2013); Karimabadi & Lazarian (2013); Comisso et al. (2015b); Le et al.
(2015); Loureiro & Uzdensky (2015); Bhat & Loureiro (2018)). An example of such a
diagram is shown on Fig. 5.2, taken from Ji & Daughton (2011). For building this 2D
diagram, two key parameters were identified: one is the Lundquist number 𝑆 , the sec-
ond one, denoted as 𝜆, is the system length normalized by the relevant kinetic scale
of the system. This scale will be 𝑑𝑖 in the absence of strong guide field, and 𝜌𝑠 in the
presence of a strong guide field (Ji & Daughton (2011)).

On Fig. 5.2, various regimes are shown. Biskamp (1986) predicted that, for 𝜌𝑖, 𝜌𝑠 ≪
𝐿, the Sweet-Parker current sheet becomes plasmoid unstable when 𝑆 > 104 (green
line). This threshold provides a diffusion regions aspect ratio of 𝐿cs/𝛿cs ≈ 𝑆1/2 ∼ 100,
corresponding to a dimensional reconnection rate of 𝑅rec ∼ 0.01𝑣𝐴𝐵up. Several studies,
like Bhattacharjee et al. (2009); Huang & Bhattacharjee (2010); Uzdensky et al. (2010);
Loureiro et al. (2012), confirmed this value for the resistive reconnection rate in this
plasmoid regime.
Between the green and black lines, in the hybrid regime, the reconnection is faster, but
not by a large amount. No observations or laboratory experiments allowed, for now,
to rigorously probe this region, although the new FLARE experiment (Sec 1.2.2) should
be able to investigate the angle of this parameter space region.
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5 Investigation of the plasmoid instability

Figure 5.1: Simulation performed by solving the model (2.136) - (2.137) showing the
parallel electron velocity with isolines of the magnetic potential. From left
to right: the initial current sheet equilibrium, the evolving thinning current
sheet after the saturation of the tearing instability and just before the plas-
moid onset, the plasmoid formation. The dashed lines are drawn to help
identified what is called the width and the length 𝛿cs and 𝐿cs.

The extension of the resistive reconnection regime with the inclusion of the ion
dynamics associated with the ion-sound Larmor radius, 𝜌𝑠 , or the ion-inertial length,
𝑑𝑖 , complicates the picture since it enlarged the study to a broader parameter space,
but also suggested that plasmoids are fundamental features of reconnecting current
sheets, regardless the value of the Lundquist number (Ji & Daughton (2011); Daughton
& Roytershteyn (2012)). The ”Multiple X line collisionless” region of Fig. 5.1 includes
plasmas such as those of the magnetosphere and the solar wind, and was also probed
by, for instance, PIC simulations in Daughton et al. (2006) and Drake et al. (2006). The
vertical orange line labelled 𝜆𝑐 is an empirical delimitation that follows from the PIC
simulations performed in Daughton et al. (2006), indicating that simulations of colli-
sionless reconnection with 𝐿cs/𝜌𝑠 > 50 tend to exhibit multiple plasmoids, while those
with 𝐿cs/𝜌𝑠 < 50 tend to show a single X-point with no plasmoids.

These studies were generally performed either by fluid models with finite resistiv-
ity, or needed very large kinetic simulations, which limits the accessible parameter
range. Moreover, in contrast with the body of work that has investigated the marginal
stability of reconnecting current sheets where reconnection is driven by plasma resis-
tivity, the collisionless regime has just been relatively little studied, and no instability
threshold was clearly identified. Yet, we believe this study might be useful to support
observational and experimental results in collisionless plasmas. For instance, as we
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Figure 5.2: Theoretical phase diagram indicating different regimes of reconnection
where multiple X-lines separated by plasmoids are expected for both col-
lisional and collisionless reconnection as a function of the Lundquist num-
ber and the normalized system size. In the case of strong guide field, the
parameter 𝜆, on this diagram, corresponds to 𝜆 = 𝐿/𝜌𝑠 . Credit: Taken and
adapted from Ji & Daughton (2011).
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5 Investigation of the plasmoid instability

already mentioned, recent observations revealed many reconnection onsets driven by
electrons, in the presence of a strong guide field, close to the dayside magnetopause
and magnetosheath Burch et al. (2016); Phan et al. (2018). Moreover, in Phan et al.
(2018), current sheets having a thickness of the order of the electron inertial length
were identified. A study by Olson et al. (2016) also gave direct experimental proof
of plasmoid formation at the X-point and at the electron scale in a regime where no
plasmoids were predicted by the theory.

In this Chapter we carry out a detailed study of collisionless plasmoid instability, in
the case of a strong guide field. We first make use of the fluid model (2.136) - (2.137).
We analyze the geometry characterizing the reconnecting current sheet, and what pro-
motes its elongation. Once the reconnecting current sheet is formed, we identify the
regimes for which it is plasmoid unstable. For 𝛽𝑒 → 0, a new phase space diagram
spanned by the parameters 𝐿cs/𝑑𝑒 and 𝐿cs/𝜌𝑠 is presented, in order to identify the col-
lisionless plasmoid instability regime. In the second part of this Chapter we use the
gyrofluid model (2.130) - (2.131) to investigate the effect of 𝛽𝑒 on the plasmoid instabil-
ity. The gyrofluid results are then compared with collisionless gyrokinetic simulations.

The Chapter is organized as follow. In Sec. 5.1, we present some numerical results
and a theory for determining the plasmoid regimes by investigating the phase space
described by the two kinetic scales 𝑑𝑒 and 𝜌𝑠 , compared to the current sheet length
𝐿cs. In Sec. 5.2, we include a finite 𝛽𝑒 and compare the plasmoid simulations of the
gyrofluid code with results obtained with a gyrokinetic code.

In this Chapter, some parts of the text and figures also appear in Granier et al. (2022a)

5.1 Fluid investigation, 𝛽𝑒 = 0

5.1.1 Numerical results
In this Section, in order to analyze the marginal stability conditions of the plasmoid

instability in the collisionless regime, we performed a large number (∼ 30) of numerical
simulations of the system of Eqs. (2.136)-(2.137). We consider a number of grid points
up to 2000 × 2400. As in the previous Chapter, We assume an equilibrium given by
(2.156), (i.e. 𝐴(0)

∥ (𝑥) = 𝜆/cosh2 (𝑥/𝜆)). We recall that the tearing stability parameter
for this equilibrium is

Δ′
box = 2

(
5 − 𝜆2𝑘2𝑦

) (
𝜆2𝑘2𝑦 + 3

)
𝜆3𝑘2𝑦 (𝜆2𝑘2𝑦 + 4)1/2

. (5.1)

This equilibrium is tearing unstable if Δ′
box > 0, thus for a wavenumber 𝑘𝑦 = 𝜋𝑚/𝐿𝑦 <√

5/𝜆. In this Chapter we make use of the notation Δ′
box to indicate Δ′ for the initial

equilibrium, in order to distinguish it from the effective Δ′ of the secondary current
sheet, which will be denoted as Δ′

cs. We will always refer to Δ′
box as being associated

to the mode 𝑚 = 1, and we change its value by taking different box lengths along
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Figure 5.3: In black: profile of the numerical solution (𝑢𝑒) along 𝑥 just before the
plasmoid onset. The initial parameters for this simulations are 𝑑𝑒 =
0.085, 𝜌𝑠 = 0.3, Δ′

box = 14.5. In green: fit made by the function

𝑢 (0)
𝑒cs (𝑥) = −2.6/cosh(33.33𝑥)2, generated by the magnetic flux 𝐴(0)

cs (𝑥) =
−𝐴𝑒𝑞cs𝑎2 ln cosh (𝑥/𝑎), with 𝐴𝑒𝑞cs = 2.6 and a half width 𝑎 = 0.03.

the 𝑦 direction. With this set up, one or several tearing modes are initially unstable.
The dominant mode (𝑚 = 1) generates two magnetic islands separated by the X-point.
During the nonlinear phase, a slowly thinning current sheet forms self-consistently at
the X-point location (as shown on Fig. 5.1). This secondary current sheet evolves until
reaching a width and length, denoted 𝛿cs and 𝐿cs, and these quantities are decisive for
the formation of plasmoids. If plasmoids emerge because tearing mode have grown,
this means that a Δ′

cs > 0 has been approached, where Δ′
cs is the tearing parameter

of the secondary current sheet. Just before the plasmoid onset, the profile of the sec-
ondary current sheet can be well fitted by that of a Harris current sheet of a certain
dimension, i.e. by a parallel current generated by a parallel magnetic potential given
by 𝐴(0)

cs (𝑥) = −𝐴𝑒𝑞cs𝑎2 ln cosh (𝑥/𝑎), with 𝑎 = 𝛿cs/2 the half width measured from the
numerical data. The parameter 𝐴𝑒𝑞cs is an amplitude factor corresponding to the value
of 𝑢𝑒 evaluated at the X-point. Figure 5.3 shows the comparison between the profile of
a numerical solution𝑢𝑒 and the parallel electron current of a Harris sheet,𝑢 (0)

𝑒cs = 𝜕2𝑥𝐴
(0)
cs ,

with 𝐴𝑒𝑞cs = 2.6 and a half width 𝑎 = 0.03.

In the following, we characterize this reconnecting current sheet according to the
initial parameters 𝑑𝑒 , 𝜌𝑠 , and Δ′

box. Specifically, we measured the length and the width
of the current sheet at a time 𝑡 just before the plasmoid onset. Below we describe how
each quantity is measured. To illustrate better what each quantity represents, a scheme
on which the lengths are represented by arrows is shown on Fig. 5.4. For this Figure,
we took the example of the most marginally unstable plasmoid case, which is also the
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5 Investigation of the plasmoid instability

one having the smallest plasmoid.

• We define themeasure𝐿cs, such that, taking the variation from the lowest current
position 𝑢𝑒 |𝑋 (𝑢𝑒 evaluated at the X-point), the standard deviation of the current
distribution from 𝑦 = 0 to 𝑦 = 𝐿cs/2 equals unity, i.e.√∑𝑁

𝑖=1 [𝑢𝑒 |𝑋 − 𝑢𝑒 (0, 𝑖Δ𝑦, 𝑡)]2

𝑁
= 1, (5.2)

where Δ𝑦 is the distance between two grid-points along 𝑦 and 𝑁 indicates the
number of points from𝑦 = 0 to𝑦 = 𝐿cs/2. A profile of𝑢𝑒 along𝑦 is visible on Fig.
5.4a. In formula 5.2, the value unity does not come from a mathematical result,
but was identified to provide a good measurement of the flat part of the profile
of 𝑢𝑒 , while also taking into account a slight deviation from this flat part. Given
that the deviation becomes more and more important as we approach the end
of the current sheet, considering the value 1, 2 or 3 doesn’t change significantly
the measured 𝐿cs. Formula 5.2 allows to apply a single consistent method for all
the simulations, while taking into account the reduction of the current intensity
along the layer.

• Once 𝐿cs is identified, the half width of the current sheet corresponds to the
distance, along 𝑥 , between 𝑢𝑒 |𝑋 and the position where the current reaches the
value 𝑢𝑒 (𝛿cs/2, 0) = 𝑢𝑒 (0, 𝐿cs/2) (Fig. 5.4 b).

We also measure the width and length of the outflow velocity channel coming out
from the end of the current sheet.

• The length 𝐿outf corresponds to the distance between the upward and downward
peaks in the distribution of 𝑢𝑦 = 𝜕𝑥𝜙 . (Fig. 5.4 c).

• The width 𝛿outf is also measured with the standard deviation method, but mea-
suring the deviation from the value 𝑢𝑦 (0, 𝐿outf/2) along 𝑥 (Fig. 5.4 c).

Finally, the aspect ratios 𝐴cs = 𝐿cs/𝛿cs and 𝐴outf = 𝐿outf/𝛿outf are also reported.
We first focus on the limit 𝜌𝑠 = 0, for 𝑑𝑒 increasing and Δ′

box = 60 shown on Fig. 5.5.
On the top panel, we see that, although 𝛿cs is found to be always smaller than 𝑑𝑒 , we
have, in this limit

𝛿cs ∝ 𝑑𝑒, (5.3)

as discussed in Ottaviani & Porcelli (1993), and also confirmed in several following
works. To better show the geometry, the colored contour maps of 𝑢𝑒 with superim-
posed contour lines of 𝐴∥ in black, are shown for certain cases on Fig. 5.5 as well as
on Fig. 5.6. For low values of 𝑑𝑒 , an intense and uniform current density allows the
parallel alignment of a high density of magnetic-field lines (see color map of 𝑢𝑒 for
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Figure 5.4: The parameters are the same as in Fig. 5.3. These simulations correspond to
the least unstable one, for which the smallest plasmoid has been obtained.
a): profile of the parallel electron current along 𝑦. We measured 𝐿cs = 0.32.
b): contour map of 𝑢𝑒 at the X-point. The dotted black line is the isoline
for which 𝑢𝑒 (𝛿cs/2, 0). We measured 𝛿cs = 0.06. c): profile of the outflow,
𝑢𝑦 , along 𝑦. We measured 𝐿outf = 1.2. d): contour map of 𝑢𝑦 . We measured
𝛿outfl = 0.12. e): contours of 𝐴∥ showing the plasmoid emerging at a later
time.
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Figure 5.5: Characteristics of the reconnecting current sheet as a function of 𝑑𝑒 for
fixed 𝜌𝑠 = 0 and Δ′

box = 60. The current sheet is unstable to the formation
of plasmoids in all five cases. For 𝑑𝑒 = 0.05 and 𝑑𝑒 = 0.6, we show the color
maps of 𝑢𝑒 with isolines of𝐴∥ in black. The dashed black lines are showing
the obtained scalings.
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𝑑𝑒 = 0.05 and 𝜌𝑠 = 0). On the other hand, for high values of 𝑑𝑒 , the current is not
uniform enough along the layer for the magnetic-field lines to line up perfectly, since
their density decreases in the region where the current is weaker, (see 𝑑𝑒 = 0.6 and
𝜌𝑠 = 0). As we discuss below, this latter case is less likely to develop plasmoids.

Finally, for the length and the aspect ratios, in the limit 𝜌𝑠 = 0, we obtain the
approximate scalings

𝐿𝑐𝑠 ∝ 𝑑−1/10𝑒 and 𝐴cs ∝ 𝐴outf ∝ 𝑑−1𝑒 . (5.4)

When 𝜌𝑠 is taken into account, ion-sound Larmor effects can become important
and the current sheet changes into a cross shaped structure aligned with the magnetic
island separatrices (Cafaro et al. (1998)). Indeed, in Fig. 5.6, when 𝜌𝑠 is increased
(for 𝜌𝑠 ∼ 𝑑𝑒 ), a part at the end of the layer splits to extend along the separatrices
(see 𝑑𝑒 = 0.05 and 𝜌𝑠 = 0.05). Here, the measured 𝐿cs still corresponds to the length
distributed symmetrically on both sides of 𝑦 = 0.

We measured
𝐿cs ∝ 𝜌−1/2𝑠 . (5.5)

As for the aspect ratios, they scale as

𝐴cs ∝ 𝜌−0.6𝑠 and 𝐴outf ∝ 𝜌−1/2𝑠 . (5.6)

For the series of simulations with Δ′
box = 14.3 and 𝑑𝑒 = 0.1, the reconnection process

occurs without forming any plasmoids (gridded red region) until 𝜌𝑠 ∼ 0.4.
For 𝜌𝑠 ≳ 𝑑𝑒 and Δ′

box = 60 (green diagonally striped region), the aspect ratio 𝐴cs

is sufficiently large and one plasmoid emerges from the center of the current sheet.
This corresponds to a low wavenumber fluctuation that develops in the current sheet,
which is entering the nonlinear phase.

For 𝜌𝑠 ≫ 𝑑𝑒 (green dotted region), the current sheet reaches a perfect cross shape
Cafaro et al. (1998). This very different geometry can still lead to a more complex
plasmoid formation. Indeed, in the regime 𝜌𝑠 ≫ 𝑑𝑒 , the first plasmoids that break up
the current sheet are symmetrically located above and below the𝑋 -point. This process
is detailed in Fig. 5.7. We observe 4main phases: (I) formation of the𝑋 -shaped current;
(II) its ends meet to form a local 𝑌 -shaped current sheet; (III) plasmoids emerge and
enter the nonlinear phase; (IV) plasmoids are expelled by the outflow and the center
plasmoid emerges. This type of plasmoid onset takes place for 𝜌𝑠 > 0.4 ≫ 𝑑𝑒 in Fig.
5.6.

We now discuss the dependence on the Δ′
box parameter, for 𝜌𝑠 = 0 and for 𝜌𝑠 ≫ 𝑑𝑒 .

In order to clearly identify a current sheet, we have considered large Δ′
box values, which

vary from 11.3 to 240. For 𝜌𝑠 = 0 (Fig. 5.8), the parameter 𝐿cs depends linearly on Δ′
box,
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𝑑𝑒 = 0.05, all five cases are plasmoid unstable. For Δ′
box = 14.3 and 𝑑𝑒 = 0.1,

plasmoids grow only when 𝜌𝑠 ≥ 0.4. For 𝜌𝑠 = 0.05 and 𝜌𝑠 = 0.5, we show
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black lines are showing the obtained scalings. The current sheet is stable
in the red gridded region. The green diagonally striped region corresponds
to 𝜌𝑠 ≳ 𝑑𝑒 and the green dotted region corresponds to 𝜌𝑠 ≫ 𝑑𝑒 .
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Figure 5.7: Time evolution of the parallel current density. The plots show the color
maps of 𝑢𝑒 , while black lines are contour lines of 𝐴∥ . For this simulation
𝑑𝑒 = 0.085, 𝜌𝑠 = 0.3 and Δ′

box = 30. Resolution: 23042.
w

id
th

L c
s

a
sp

e
ct

  
ra

ti
o

−1.0 −0.5 0.0 0.5 1.0
−3

−2

−1

0

1

2

3

−1.0 −0.5 0.0 0.5 1.0
X

0

1

2

3

−1.0 −0.5 0.0 0.5 1.0

0

1

2

3
−11.4 0.0 11.4

−1.0 1.0

−2

0

2

−1.0 0.5
X

0

2

−0.5 0.0

0

2

−20.83 0.0 20.83

Y

4

6

8
·10−2

δcs
δoutf

1/5

0
5

10
15

∆′

101 101.5 1020
50

100
150

4/5

∆ ′
box

box

∆′
box

∆′
box

−1.0 −0.5 0.0 0.5 1.0

−5

0

5

10

−1.0 −0.5 0.0 0.5 1.0
X

−1.0 −0.5 0.0 0.5 1.0

−12.54 0.0 12.54

−10

Figure 5.8: Current sheet characteristics for varying Δ′
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From left to right: color maps of 𝑢𝑒 with isolines of 𝐴∥ in black for Δ′
box =

14.3, Δ′
box = 38, Δ′

box = 240 and plot of the same quantities as in Fig. 5.5 but
here as functions of Δ′

box. Resolution for the simulations from left to right:
17282, 2000 × 2400 and 2000 × 2400.
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box = 14.3, Δ′
box = 38, Δ′

box = 240, and aspect ratio of the
outflow velocity channel before the onset of plasmoids. Resolution from left
to right: 17282, 23042, 2000 × 2400.

as in the resistive case Waelbroeck (1989); Jemella et al. (2003, 2004); Loureiro et al.
(2005). We do not obtain plasmoids for Δ′

box ≤ 14.3, in agreement with Del Sarto et al.
(2003), in which this regime is shown to be prone to the development of the Kelvin-
Helmholtz instability. In the cases with 21 ≤ Δ′

box ≤ 38, one plasmoid emerges and
breaks up the reconnecting current sheet. For Δ′

box = 240, two other plasmoids are
formed when the reconnecting current sheet becomes more elongated (unstable) as
Δ′
box increases. In the limit 𝜌𝑠 = 0, the outflow channel follows the current sheet and

we observe indeed the scaling
𝐴outf ∝ Δ′

box. (5.7)

For 𝜌𝑠 ≫ 𝑑𝑒 (Fig. 5.9), on the other hand, the case with Δ′
box = 14.3 is plasmoid

unstable. In this regime, the small-scale, oscillating current layer pattern located inside
the twomagnetic islands, and identified inGrasso et al. (2001) andDel Sarto et al. (2003),
is visible on the two left panels.

Since increasingΔ′
box allows to increase significantly𝐿cs, we can compare the regimes

𝜌𝑠 < 𝑑𝑒 and 𝜌𝑠 > 𝑑𝑒 for various current sheet lengths. This test allows to show that the
role of 𝜌𝑠 is only relevant in marginally stable cases, since if 𝐿cs/𝑑𝑒 is large enough, the
current sheet becomes unstable regardless the value of 𝜌𝑠 . Additionally, in the case
of large Δ′

box, a notable difference between the two regime is in the number of plas-
moids. The regime 𝜌𝑠 > 𝑑𝑒 appears to be prone to the formation of a higher number
of plasmoids.

In the rightmost panel of Fig. 5.9, we show the measured aspect ratio of the outflow
velocity channel just before the appearance of the first plasmoid. For the least unstable
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Figure 5.10: Parameter space diagram that identifies where the plasmoid instability
leads to the break up of the current sheet. The cases that give plasmoids
(green dots) are either above the 𝐴(1)

★ or 𝐴(2)
★ thresholds. The threshold

𝐴(2)
★ is approximated by the scaling 𝐿(2)cs,★/𝑑𝑒 ∝ 𝐿cs/𝜌𝑠 from Eq. (5.21).

reconnecting current sheet (Δ′
box = 14.3), we measured 𝐿outf = 1.21 and 𝛿outf = 0.12,

shown on fig 5.4. This implies a steady state dimensional reconnection rate of

𝑅rec ∼
(
𝛿outf
𝐿outf

)
𝑣𝐴𝐵up ∼ 0.1𝑣𝐴𝐵up. (5.8)

The red area corresponds to stable cases. The green striped area corresponds to the
onset of only one plasmoid located at the center of the current sheet. Finally, the green
dotted region corresponds to the cases where the first plasmoids emerge from a local
𝑌 -shaped current sheet (as described on Fig. 5.7).

Gathering all the numerical results, we can construct a parameter space diagram,
analogously to what was done for reconnection induced by plasma resistivity (Ji &
Daughton (2011); Daughton & Roytershteyn (2012); Cassak & Drake (2013)), which
allows one to identify the collisionless plasmoid regimes that take place once a recon-
necting layer of a certain length is formed. The diagram is shown on Fig. 5.10, and
covers the space described by 𝑑𝑒/𝐿cs and 𝜌𝑠/𝐿cs.

According to our numerical simulations, the critical aspect ratio above which plas-
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moids break up the reconnecting current sheet, for 𝜌𝑠 = 0, is

𝐴(1)
★ =

(
𝐿cs
𝛿cs

) (1)
★

∼
(
𝐿cs
𝑑𝑒

) (1)
★

∼ 10, (5.9)

when 𝑑𝑒 ≫ 𝜌𝑠 . The green area of the diagram is the region with 𝐿cs/𝑑𝑒 > 𝐴(1)
★ .

On the other hand, for 𝜌𝑠 ≳ 𝑑𝑒 , the plasmoid formation has a different threshold

𝐴(2)
★ =

(
𝐿cs
𝛿cs

) (2)
★
, which appears to be a function of 𝐿cs/𝜌𝑠 . The simulations indicate

𝐴(2)
★ < 𝐴(1)

★ . (5.10)

The blue area of the diagram is the region with 𝐿cs/𝑑𝑒 > 𝐴(2)
★ .

It is worth emphasizing the difference between the diagrampresented in Ji &Daughton
(2011), shown on Fig. 5.2, and our diagram of Fig. 5.10. Presumably, in Ji & Daughton
(2011), the length ”𝐿” is a different length than the one we use in our work, and it is de-
fined by the authors as ”the plasma size”. Their length seems to be equivalent to our 𝐿𝑦 .
In Ji & Daughton (2011), Eq. (21) indicates a threshold 𝜌𝑠/𝐿𝑦 ∼ 50. If we consider the
length 𝐿𝑦 to indicate a threshold expressed in terms of the ratio between the ion-sound
Larmor radius and the ”plasma size”, we find plasmoids for 𝜌𝑠/𝐿𝑦 ∼ 10 (providing 𝑑𝑒 is
small). Therefore, with our collisionless fluid model in the strong-guide-field regime,
we find indeed plasmoids for values of the ratio between the plasma size and the sonic
Larmor radius, below the threshold predicted by Ji & Daughton (2011); Daughton et al.
(2006) on the basis of kinetic simulations.

5.1.2 Theory

The development of the analytical arguments that follow, rely on theoretical rela-
tions already known from the collisional case and on the results suggested by the sim-
ulations carried out in this Thesis, in the spirit of obtaining a scaling to evaluate 𝐴(2)

★ .
For that, we took inspiration from the the plasmoid instability theory presented in Refs.
Comisso et al. (2016, 2017); Huang et al. (2017).

We consider a forming current sheet in which the amplitude of the tearing mode
grows as

𝐴∥ (𝑘, 𝑡) = 𝐴0exp
(ˆ 𝑡

𝑡0

𝛾 (𝑘, 𝑡 ′)d𝑡 ′
)
, (5.11)

where 𝛾 and 𝑘 are the tearing mode growth rate and wavenumber, respectively, while
𝐴0 is the magnetic flux amplitude at 𝑡0. The plasmoid half-width is given by

𝑤 (𝑘, 𝑡) = 2

√
𝐴∥𝑎(𝑡)
𝐵up(𝑡)

, (5.12)
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where𝐴∥ is evaluated at the resonant surface, 𝐵up(𝑡) is the reconnecting magnetic field
and 𝑎(𝑡) is the half-width of the shrinking current sheet. Given that the current sheet
is slowly shrinking toward a finite width, and is evolving slower than the plasmoid
growth, we assume that the current sheet is nearly in steady-state and we neglect the
time dependency of 𝐵up and 𝑎.

Figure 5.3 confirms that the current sheet profiles are well fitted by a Harris sheet,
for which we recall that

Δ′
cs =

2
𝑎

(
1
𝑘𝑎

− 𝑘𝑎
)
. (5.13)

We denote by

𝜏★ =
𝐿cs,★
𝑣𝐴

(5.14)

the timescale for the plasma to be expelled from the current sheet of length 𝐿cs because
of the Alfvénic outflow. If the magnetic flux amplitude becomes nonlinear (with plas-
moid half-width 𝑤nl) in a timescale shorter than 𝜏★, the current sheet is broken by at
least one plasmoid. Otherwise it remains stable.

Therefore, taking

𝑤 (𝑘, 𝜏★) = 2

(
𝐴0𝑎

𝐵up

)1/2
𝑒

1
2𝜏★𝛾 , (5.15)

the threshold for the plasmoid formation can be written as

𝜏★𝛾 = 2 ln

[
𝑤nl

2

(
𝐵up

𝐴0𝑎

)1/2]
. (5.16)

We define the two different regimes: (1) 𝑑𝑒 > 𝜌𝑠 and (2) 𝑑𝑒 < 𝜌𝑠 . The two regimes have
different thresholds 𝜏 (1)★ = 𝐿(1)cs,★/𝑣𝐴 and 𝜏 (2)★ = 𝐿(2)cs,★/𝑣𝐴. From Eqs. (2.136)-(2.137), one
can consider the dispersion relation of the collisionless tearing mode for arbitrary val-
ues of Δ′

cs of Porcelli (1991). For the marginally stable current sheet, one can consider
the limit 𝛿inΔ′

cs ≪ 1, with 𝛿in indicating the width of the inner tearing layer. In this
case, taking into account the the full dispersion relation (Porcelli (1991)) reduces to

𝛾 (1) = 𝐴𝑒𝑞cs

[
Γ(1/4)

2𝜋Γ(3/4)

]2
Δ

′2
cs𝑑

3
𝑒𝑘, for 𝜌s < de, (5.17)

and

𝛾 (2) = 𝐴𝑒𝑞cs
Δ′
cs𝑑𝑒𝜌𝑠𝑘

𝜋
, for 𝜌s > de. (5.18)

Assuming that the needed amplification factor of the magnetic flux perturbation is
the same for the 𝜌2𝑠 ≪ 𝑑2𝑒 and 𝜌2𝑠 ≫ 𝑑2𝑒 cases requires that

𝜏 (2)★ 𝛾 (2) ∼ 𝜏 (1)★ 𝛾 (1) ∼ 2 ln

[
𝑤nl

2

(
𝐵up

𝐴0𝑎

)1/2]
, (5.19)
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which gives us 𝐿(2)cs,★𝑘/𝑑𝑒 ∼ 𝐿
(1)
cs,★Δ

′𝑑𝑒𝑘/𝜌𝑠 . Considering that for (𝑘𝑎)2 ≪ 1, we have

Δ′
cs𝑘 ∼ 1

𝑎2
∼ 1

𝑑2𝑒
, (5.20)

with 𝑘 ∝ 1/𝐿cs, and making use of the numerical result (𝐿cs/𝑑𝑒) (1)★ ∼ 10, gives us the
threshold condition

𝐿cs
𝑑𝑒

=
𝐿(2)cs,★

𝑑𝑒
∝ 𝐿cs
𝜌𝑠

. (5.21)

We identified a proportionality coefficient for which the proposed scaling, shown by
the dashed blue line in Fig. 5.10, correctly captures the plasmoid formation that occurs
for significantly lower values of the current sheet aspect ratio when 𝐿cs/𝜌𝑠 ≲ 1.

Figure 5.11 shows the evolution of the threshold 𝐿(2)cs,★ as a function of 𝜌𝑠 , for a
marginally stable current sheet. We assume 𝐿(1)cs,★ = 3. Given the threshold 𝐿(1)cs,★/𝑑𝑒 ∼
10, we assume 𝑑𝑒 = 0.3. We assume an equilibrium with Δ′

cs = 3.6, broken by the mode
𝑚 = 1. This can be verified by, for example, an equilibrium with 𝐿cs ∼ 3 and 𝜆 ∼ 0.3.
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Figure 5.11: Evolution of the threshold 𝐿(2)cs,★, as a function of 𝜌𝑠 , for Δ′
𝑐𝑠 = 3.6, 𝐿(1)cs,★ = 3,

𝑑𝑒 = 0.3.

While the aspect ratio of the current sheet controls the plasmoid growth, the aspect
ratio of the plasma flow channel regulates the rate of inflowing plasma via mass con-
servation. For 𝑑𝑒 ≫ 𝜌𝑠 , the aspect ratios 𝐴cs and 𝐴outf essentially coincide since the
plasma behaves as a one fluid. Therefore, for an incompressible flow in steady state,
the marginal stability threshold 𝐴(1)

★ ∼ 10 yields the reconnection rate 𝑅rec ∼ 0.1𝑣𝐴𝐵up.
On the other hand, for 𝜌𝑠 ≳ 𝑑𝑒 , two-fluid effects lead to a decoupling of the plasma
flow channel from the electric current density, and in this case we find that 𝑅rec ∼
(𝛿outf/𝐿outf ) (2)★ 𝑣𝐴𝐵up ∼ 0.1𝑣𝐴𝐵up even when 𝐴(2)

★ ≪ 𝐴(1)
★ . Since the global reconnec-

tion rate is controlled by the marginally stable current sheet (Comisso & Bhattachar-
jee (2016)), eventually 𝑅rec ∼ 0.1𝑣𝐴𝐵up in the entire green and blue parameter space
regions of Fig. 5.10.
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5.2 Comparison between gyrofluid and gyrokinetic,
𝛽𝑒 ≠ 0

In this Section, we investigate the role of 𝛽𝑒 on the plasmoid instability using the gy-
rofluid model ((2.129) - (2.130). The simulations are compared to gyrokinetic ones per-
formed and analysed by Ryusuke Numata with the code AstroGK described in Numata
et al. (2010). AstroGK is a 𝛿 𝑓 code which solves an electromagnetic gyrokinetic Vlasov-
Maxwell system in a five dimensional phase space and adopting a Fourier-spectral
method for evolving the equations in space.

One of the main advantages of using the AstroGK code for a comparison with the
gyrofluid results, is that, in a specific limit, the gyrokinetic system solved by AstroGK
reduces to the one (Howes et al., 2006) that was taken to derive the gyrofluid model
-(2.129) - (2.130). This allows to directly identify possible limitations of the closures
applied to the gyrofluid moments that distinguish the gyrofluid model from its gyroki-
netic parent model. The specific limit in which the AstroGK code has to be used, in
order to reproduce the parent gyrokinetic model of the gyrofluid model, is that cor-
responding to a straight and uniform guide field, with no density and temperature
gradients and without collisions. Note that, in order to satisfy Eqs. (2.127)-(2.129) at
equilibrium, the corresponding equilibrium density and parallel electron velocity fluc-
tuations of the electron gyrocenters are fixed as

𝑁 (0)
𝑒 = 0, ∇2

⊥𝐴
(0)
∥ = 𝐺10𝑒𝑈

(0)
𝑒 . (5.22)

Analogously to Eq. (2.156), the dimensional equilibrium for the gyrokinetic simula-
tions is set as

𝜙 (0) = 0, 𝐴(0)
∥ = 𝐴𝑒𝑞∥0𝐴0𝑆ℎ (𝑥)/cosh2

(
𝑥

𝐿

)
, 𝐵 (0)

∥ = 0, (5.23)

where 𝐴0 is a characteristic value for the magnetic vector potential and 𝑆ℎ (𝑥) is a
shape function to enforce periodicity (Numata et al. (2010)). Also in the gyrokinetic
simulations, in accordance with Eq. (5.22), the equilibrium current density is assumed
to be entirely due to the parallel electron velocity.

5.2.1 Results on the plasmoid onset
In this section, we present a comparison between the simulations reported in the

following tables:

Each simulation is identified by a code of the form 𝑝𝐹/𝐺𝐹/𝐺𝐾 𝑟 , where 𝑝 and 𝑟 are
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No. 𝜌𝑠 Δ′ 𝛽𝑒 𝑚𝑒/𝑚𝑖 𝛾𝐿 𝛾𝑚𝑎𝑥 Plasmoid
1𝐺𝐹1 0.3 14.3 0.2491 0.01 0.214 0.285 One small
1𝐺𝐹2 0.3 14.3 0.06228 0.0025 0.225 0.322 No
1𝐹 0.3 14.3 0 0 0.230 0.337 No
2𝐺𝐹1 0.3 29.09 0.2491 0.01 0.211 0.342 One plasmoid
2𝐺𝐹2 0.3 29.09 0.1246 0.005 0.218 0.367 One plasmoid
2𝐺𝐹3 0.3 29.09 0.06228 0.0025 0.231 0.378 One plasmoid
2𝐺𝐹4 0.3 29.09 0.0124 0.0005 0.241 0.385 Several plasmoids
2𝐹 0.3 29.09 0 0 0.242 0.386 Several plasmoids
3𝐺𝐹1 0.5 14.3 0.692 0.01 0.286 0.334 Several plasmoids
3𝐺𝐹2 0.5 14.3 0.3460 0.005 0.310 0.383 Several plasmoids
3𝐹 0.5 14.3 0 0 0.338 0.448 Several plasmoids
4𝐹 0.06 14.3 0 0 0.081 0.188 No

Table 5.1: Gyrofluid and fluid simulations.

No. 𝜌𝑠 Δ′ 𝛽𝑒 𝑚𝑒/𝑚𝑖 𝛾𝐿 𝛾𝑚𝑎𝑥 Plasmoid
1𝐺𝐾1 0.3 14.3 0.2491 0.01 0.2245 0.308 One small
1𝐺𝐾2 0.3 14.3 0.06228 0.0025 0.2438 0.342 No
2𝐺𝐾1 0.3 29.09 0.2491 0.01 0.2165 0.352 One large
2𝐺𝐾2 0.3 29.09 0.1246 0.005 0.2267 0.389 One large
2𝐺𝐾3 0.3 29.09 0.06228 0.0025 0.2329 0.401 One large
3𝐺𝐾1 0.5 14.3 0.692 0.01 0.3040 0.362 One
3𝐺𝐾2 0.5 14.3 0.3460 0.005 0.3286 0.410 One
3𝐺𝐾3 0.5 14.3 0.1730 0.0025 0.3472 0.453 One
4𝐺𝐾1 0.06 14.3 0.009965 0.01 0.08617 0.207 No
4𝐺𝐾2 0.06 14.3 0.002491 0.0025 0.08779 0.209 No

Table 5.2: Gyrokinetic simulations.
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integers and 𝐹 , 𝐺𝐹 and 𝐺𝐾 indicate whether the simulation is carried out in the fluid
limit, with the gyrofluid model or with gyrokinetic model, respectively. For all the
simulations, the value of the electron skin depth is fixed to 𝑑𝑒 = 0.085. Simulations
with the same number 𝑝 are characterized by the same values of 𝑑𝑒 , 𝜌𝑠 and Δ′. For
a fixed 𝑝 , different values of the index 𝑟 , on the other hand, indicate different values
of 𝛽𝑒 (and, consequently, of 𝑚𝑒/𝑚𝑖 ), with 𝛽𝑒 decreasing as 𝑟 increases. Not all the
simulations of Table 5.1 have a corresponding simulation in Table 5.2 and viceversa,
although this is the case for most of the simulations. In particular, we point out that,
because gyrokinetic simulations always have a finite value of 𝛽𝑒 , strictly speaking there
is no gyrokinetic counterpart for the fluid simulations, which formally correspond to
the 𝛽𝑒 → 0 limit.

For all the gyrokinetic simulations, the temperature ratio is set to 𝜏 = 10−3, where
the ion Larmor radius is

√
𝜏𝜌𝑠 . As mentioned before, the gyrofluid model assumes

𝜏 → 0. Therefore, in both the gyrofluid and gyrokinetic approach, the ion Larmor
radius effects are neglected.

As a first general comment, we observe, by comparing gyrofluid and gyrokinetic
simulations with the same indices 𝑝 and 𝑟 , that, in terms just of appearance or absence
of plasmoids, gyrofluid simulations agree with the gyrokinetic ones. Therefore, in
this respect, we can conclude that the quasi-static closure for the electrons and the
suppression of ion gyrocenter fluctuations, do not affect critically the stability of the
nonlinear current sheet. However, as will be discussed in the next Sections, differences
appear in terms of the number and size of plasmoids. In particular, when more than
one plasmoid is observed, this is indicated in table 5.1 and 5.2, generically, as ’several
plasmoids’. The number of plasmoids in the same simulation can indeed vary in time,
as plasmoids can form at different times and pairs of plasmoids can merge into a single
one.

These simulations are compared in the following sections. In particular, with the
set of simulations 𝑝 = 1 and 𝑝 = 2 the effects of 𝛽𝑒 on the formation of plasmoids are
investigated in Section 5.2.4. With the set of simulations 𝑝 = 3 and 𝑝 = 4 we verify
that the regime 𝜌𝑠 ≫ 𝑑𝑒 promotes the formation of plasmoids in Section 5.2.5.

5.2.2 Remarks on the numerical resolution
It is important to underline the role of the resolution in this study. In the forming

current sheet, tearing modes grow and can become unstable at different times. The
current sheet can therefore be broken by multiple dominant modes, and the number
of plasmoids is highly sensitive to the resolution used. In the following, we provide
some comments concerning, in particular, the resolution and the number of plasmoids
observed, for the series 𝑝 = 1, 2, 3.

For simulation 1𝐹 , no plasmoids were obtained by the fluid code with the resolution
1922. However, we obtained a very small one with the resolution 17282, as visible on
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𝑛𝑥 × 𝑛𝑦 # plasmoids Comments on the order of appearance
200 × 120 1 1 at the center

2002 3 2 symmetrically with respect to the center then 1 at the center
200 × 400 3 2 symmetrically with respect to the center then 1 at the center
12802 5 4 symmetrically with respect to the center then 1 at the center
23042 7 6 symmetrically with respect to the center then 1 at the center

3400 × 4800 7 6 symmetrically with respect to the center then 1 at the center

Table 5.3: number of visible plasmoids for simulation 2𝐹 for different grids.

the left panel of Fig. 5.9. The low 𝛽𝑒 gyrokinetic case 1𝐺𝐾2, did not identify plasmoid
onsets with the resolution 256 × 196.

Given that the fluid simulations 2𝐹 was the one which allowed the formation of sev-
eral plasmoids, we carried out resolution tests on these simulations to determine the
necessary number of points along 𝑦, that does not prevent the growth of large mode
numbers. Table 5.3 reports the number of visible plasmoids for simulation 2𝐹 as a func-
tion of the number of points and indicates their order of appearance. The convergence
is reached for a resolution of 23042.

For 3𝐹 , which is close to marginal stability, a ratio smaller than 2𝐿𝑦/𝑛𝑦 ∼ 0.0078was
needed to see the first two plasmoids. Unfortunately, it is not foreseeable to perform
gyrokinetic simulations with such a high resolution.

In order tomake a proper comparisonwe performed fluid/gyrofluid simulationswith
a resolution nearly identical to that of the gyrokinetics. However, since the fluid code
is much less demanding in computation time, we also performed additional fluid and
gyrofluid simulations with grids up to 23042 points.

5.2.3 Growth rates
Before discussing in detail the plasmoid instability, we briefly comment about the

linear growth rate of the tearing mode excited by the perturbation of the initial equilib-
ria (2.156). In the tables, we reported the value of the linear and maximum growth rate
of the tearing instability, evaluated measuring the following quantity at the X-point

𝛾 =
𝑑

𝑑𝑡
log

���𝐴(1)
∥

(𝜋
2
, 0, 𝑡

)��� . (5.24)

The two approaches give close growth rate values for small 𝛽𝑒 . Figure 5.12 shows the
value of 𝛾𝑚𝑎𝑥 for the set of simulations 𝑝 = 2 and 𝑝 = 3. The gyrofluid and gyrokinetic
simulations yield the same dependence of 𝛾𝑚𝑎𝑥 on the parameters, with the gyrofluid
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Figure 5.12: Maximum growth rates of the collisionless tearing mode as a function of
𝛽𝑒 , for the cases 𝑝 = 2 and 𝑝 = 3.

simulations slightly underestimating the growth rate, in general. This discrepancy
suggests that, for large values of 𝛽𝑒 and during the nonlinear phase, the efficiency of the
gyrofluid model to reproduce the gyrokinetic results becomes limited. One reason for
this might be the absence of ion gyrocenter density and parallel velocity fluctuations,
which occurs in the gyrofluid model, even for large 𝛽𝑒 .
By comparing the growth rate results, for a fixed mass ratios, of simulations 𝑝 =

1, 3, 4, we note that increasing 𝛽𝑒 and 𝜌𝑠 , as 𝜌𝑠 ∼
√
𝛽𝑒/2, destabilizes the tearing mode.

Increasing these parameters can be seen as fixing the background density, the ion mass
and the guide field amplitude, while increasing the electron temperature. It was shown
numerically in Numata & Loureiro (2015); Granier et al. (2022b) that, in this latter
situation, the linear tearing growth rate is first ruled by the destabilizing effect of the
sonic Larmor radius. However, in cases where the electron temperature is high enough
for the effects of 𝜌𝑒 to take over those of 𝜌𝑠 , the linear growth rate is damped. Here,
we find ourselves in the first case, for which the effects of the sonic Larmor radius are
visibly dominant.

5.2.4 Effect of 𝛽𝑒 on the plasmoid onset
In this Section we present how the 𝛽𝑒 parameter changes the characteristics of the

forming current sheet and promotes the plasmoid formation.
We focus first on the comparison of the series of simulations for 𝑝 = 1, starting with

the higher 𝛽𝑒 case, for which 𝛽𝑒 = 0.2491. The contour plots of the parallel electron
velocity 𝑢𝑒 (proportional to the parallel current density), for the gyrofluid simulation
1𝐺𝐹1 and of the current density, 𝑗∥ , for the gyrokinetic simulations 1𝐺𝐾1, are shown
on Fig. 5.13. Isolines of the magnetic potential, showing the topology of the magnetic
field, are overplotted. Both approaches indicate the formation of a plasmoid. For the
fluid simulation, the aspect ratio is 𝐴csf = 4.90. In the gyrokinetic case, we measure
𝐴csk = 4.03. We observe a persistent difference between the value of the gyrofluid and
gyrokinetic aspect ratios, which is explained by the difference in resolution. However,
their evolution according to the parameters are in agreement.

For the lowest 𝛽𝑒 cases, for which 𝛽𝑒 = 0.06228, the contour plots of the simulations
1𝐺𝐹2 and 1𝐺𝐾2, are shown on Fig. 5.14. The two simulations lead to the formation of a
stable current sheet having an aspect ratio decreasing in time. The maximum aspect
ratio is reached when the growth rate has reached its maximum value and the process
enters the saturation phase. From the gyrofluid simulation we measured a maximum
aspect ratio 𝐴csf = 5.11. In the gyrokinetic case, the aspect ratio is 𝐴csk = 4.14. The
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Figure 5.13: Top: Contour of the parallel electron velocity 𝑢𝑒 (proportional to the par-
allel current density) for simulation 1𝐺𝐹1. Bottom: Contour of the parallel
current density 𝑗∥ of simulation 1𝐺𝐾1. Isolines of the magnetic potential
are superimposed on all the contours. The same part of the domain is
shown on each panel. Credit: Gyrokinetic data processed by Ryusuke Nu-
mata.
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Figure 5.14: Top: Contour of the electron velocity 𝑢𝑒 (proportional to the parallel cur-
rent density) for simulation 1𝐺𝐹2. Bottom: Contour of the parallel current
density 𝑗∥ of simulation 1𝐺𝐾2. Isolines of the magnetic potential are super-
imposed on all the contours. The same part of the domain is shown on
each panels. Credit: Gyrokinetic data processed by Ryusuke Numata.
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Figure 5.15: Contour of the parallel current density 𝑗∥ for simulations 2𝐺𝐾3, 2𝐺𝐾2 and
2𝐺𝐾1. Isolines of the magnetic potential are superimposed on all the con-
tours. Credit: Data processed by Ryusuke Numata.

measured aspect ratio are very close to those obtained for 𝛽𝑒 = 0.2491, and yet, no
plasmoids develop. In this first series of tests we are at the frontier between stability
and instability, and the role of 𝛽𝑒 seems crucial to switch to an unstable case.

In the series of simulations for 𝑝 = 2, the idea is to consider the same parameters as
those for 𝑝 = 1 but with a longer forming current sheet. Since highly unstable primary
reconnecting modes favour the formation of extended secondary current sheets we
consider a larger domain size along the y direction, with 𝐿𝑦 = 1.4𝜋 , that corresponds
to Δ′ = 29.9. The other parameters are kept the same. In this case, even the small-
/negligible 𝛽𝑒 simulations become plasmoid unstable. Figure 5.15 shows the plasmoids
obtained at the end of the simulations 2𝐺𝐾1 - 2𝐺𝐾3. The magnetic potential contour is
shown as the plasmoid reaches its maximum size, which occurs in the saturation phase
of the tearing instability. Figure 5.16 shows the evolution in time of the growth rate of
the tearing mode and of the aspect ratio of the secondary current sheet. It can be seen
that increasing 𝛽𝑒 results in larger sized plasmoids, although, from the aspect ratio
measurement, increasing 𝛽𝑒 reduces the aspect ratio obtained just before the plasmoid
onset. Here, increasing 𝛽𝑒 (considering therefore larger mass ratios) seems to have a
similar effect to increasing 𝜌𝑠 , and allows the plasmoid instability to grow better in
current sheets whose dimensions are not particularly favourable (low aspect ratio).

In comparison, Fig. 5.17 shows the aspect ratio and the growth rate obtained for
the simulations 4𝐺𝐾1 and 4𝐺𝐾2. For this set of simulations, the parameters 𝜌𝑠 and Δ′

are smaller than those of simulations 2𝐺𝐾1 - 2𝐺𝐾3 and the effects of 𝛽𝑒 are negligible.
Nevertheless, despite a very different set of parameters, the series of simulations No. 2
and 4 lead to the formation of current sheets whose aspect ratio is almost identical. Yet,
unlike cases 2, cases 4 remain stable. The fact that the current sheets are of comparable
length can be explained since it was numerically shown in Sec. 5.1 that the length of
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Figure 5.16: Growth rate evolution as function of time and aspect ratio of the forming
current sheet as a function of time for simulations 2𝐺𝐾3, 2𝐺𝐾2 Credit: Data
processed by Ryusuke Numata.
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Figure 5.17: Simulations 4𝐺𝐾1 4𝐺𝐾2. Top: Growth rate evolution as function of time.
Bottom: aspect ratio of the forming current sheet as a function of time.
Credit: Data processed by Ryusuke Numata.
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the forming current layer should scale as 𝜌−1/2𝑠 . Therefore, even though series 2 has
a larger Δ′ and thus allows for a more elongated current sheet along 𝑦, the series 4,
performed with a smaller sonic Larmor radius, form an equally long current sheet .
Now, if we assume, as done in the theory by Comisso et al. (2016), that the growth
of the perturbation in the new current sheet does not depend on the initial tearing
equilibrium (and that therefore the initial Δ′ has no role in the plasmoid size) then
plasmoid formation is determined only by the values of 𝜌𝑠 and 𝛽𝑒 which are greater in
case 2.

Figure 5.18 shows in detail the evolution of the instability for the fluid and gyrofluid
runs having the highest resolution. For negligible 𝛽𝑒 we can see several plasmoids
forming in a row, whereas, for 𝛽𝑒 > 0.06 we see only a single central plasmoid. The
magnetic potential isolines of 2𝐺𝐹1 and 2𝐺𝐹3, shown in Fig. 5.18, can be compared to
that to 2𝐺𝐾1 and 2𝐺𝑘3, shown in Fig. 5.15. The effects of 𝛽𝑒 eventually prevent the
development of large modes inside the current sheets.

5.2.5 Validation of the plasmoid regime 𝜌𝑠 ≫ 𝑑𝑒

In this Subsection, we would like to validate the results obtained in Sec. 5.1, where
it was shown that, for a current sheet close to marginal stability, the regime 𝜌𝑠 ≫
𝑑𝑒 promotes the plasmoid formation. In this Section, the simulations were carried
out with the fluid model (2.136) - (2.137) which assumes a negligible mass ratio and
a negligible 𝛽𝑒 . The main motivation now is to present a gyrokinetic validation of
these results. In addition to observing a possible role played by the closure, we also
compare the fluid results with those including a finite mass ratio of𝑚𝑒/𝑚𝑖 = 0.005, and
consequently a small 𝛽𝑒 . Moreover, as already recalled, the evolution of ion quantities
such as 𝑁𝑖 and 𝑈𝑖 , prevented by the gyrofluid model, but present in the gyrokinetic
simulations, might in principle also play a role. Therefore, in this Subsection we focus
on the low 𝛽𝑒 regime and compare simulation set No. 3, for which 𝜌𝑠 ≫ 𝑑𝑒 , with
simulation set No. 4, for which 𝜌𝑠 ≪ 𝑑𝑒 . These two sets of simulation lead to the
formation of a current layer close to the instability threshold.

Figure 5.19 shows the evolution of the instability for the simulations 3𝐺𝐾3 (lowest
𝛽𝑒 gyrokinetic case of this series) and 3𝐹 . For the two approaches, the current sheet
becomes plasmoid unstable. Also in this case the resolution plays an important role.
With a resolution of 17282, three plasmoids were visible in the simulations 3𝐹 . How-
ever, the same fluid simulation performed with a resolution 500 × 360 shows only one
plasmoid. Since a resolution higher than that was not foreseeable with the gyrokinetic
code, we used a grid of 256× 128 points that allowed to observe one single plasmoid at
the center. In the regime 𝜌𝑠 ≫ 𝑑𝑒 , the current aligns with the magnetic field lines, thus
forming a cross shaped current sheet (Cafaro et al., 1998). This behavior is retrieved
by the gyrokinetic simulation.

Figure 5.20 shows the evolution of the instability for the cases 4𝐺𝐾3 (lowest 𝛽𝑒 gy-
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Figure 5.19: Top: contour of the parallel current density 𝑢𝑒 = 𝑈𝑒 for simulation 3𝐹 . Res-
olution for simulation 3𝐹 : 17282. Bottom: Contour of the parallel current
density 𝑗∥ of simulation 3𝐺𝐾 . Isolines of the magnetic potential are super-
imposed on all the color maps. The same part of the domain is shown on
each panels. Credit: Gyrokinetic data processed by Ryusuke Numata.
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density 𝑗∥ of simulation 4𝐺𝐾 . Isolines of the magnetic potential are super-
imposed on all the color maps. The same part of the domain is shown on
each panel. Credit: Gyrokinetic data processed by Ryusuke Numata.

rokinetic case of this series) and 4𝐹 . The current sheet formed in the two framework
does not follow the separatrices but remains mainly aligned along 𝑥 = 0. For 4𝐹 , the
dimensions are 𝐿csf = 0.725 and 𝛿csf = 0.110, which gives an aspect ratio of 𝐴cs = 6.59.

These results are coherent with the numerical results obtained in Sec. 5.1, indicating
that, in the regime 𝜌𝑠 ≪ 𝑑𝑒 , an aspect ratio threshold of 𝐴(1)

★ ∼ 10 is needed to allow
the growth of plasmoids in the current sheet. It is also in agreement with the scaling
𝐿csf ∼ 𝜌−1/2𝑠 (Eq. (5.5)). This comparison makes it possible to show that, by simply
adding bi-fluid effects resulting from a large sonic Larmor radius, one can switch from
a marginally stable case to a marginally unstable case. This result, shown in Sec. 5.1
by means of the fluid model, is thus confirmed by gyrokinetic simulations.
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5.3 Energy partition - Similarities and differences
between gyrokinetics and gyrofluid

5.3.1 Energy components

In this Section, gyrokinetic variables are dimensional, indicated with a hat, while
gyrofluid variables remain dimensionless. To compare the evolution of the energy
components, we always use the formula (4.17), which indicates the variation of each
component with respect to the initial energy.

As we consider here a plasma with no collisions, the gyrokinetic system solved by
AstroGK conserves the total energy (Hamiltonian) (Howes et al., 2006; Schekochihin
et al., 2009)

�̂� (f̂𝑒, f̂𝑖) =
ˆ (∑

𝑠

ˆ
𝑇0𝑠 f2𝑠
2F̂𝑒𝑞𝑠

dv̂ +
|∇̂⊥𝐴∥ |2

8𝜋
+
|𝐵∥ |2

8𝜋

)
dr̂, (5.25)

where f̃𝑠 = f̃𝑠 (x̂, v̂, 𝑡) is the perturbation of the particle distribution function for the
species 𝑠 . The first term is the perturbed entropy of the species 𝑠 , while the second term
and third terms are the energy of the perpendicular and parallel perturbed magnetic
field. We can extract the first two moments from the perturbed particle distribution
function as

f̃𝑠 =
(
�̂�𝑠
𝑛0

+ 𝑢𝑠
𝑣2
𝑡ℎ𝑠

)
F̂𝑒𝑞𝑠 + ℎ̂

′
𝑠, (5.26)

where
�̂�𝑠 =

ˆ
f̃𝑠dv̂, 𝑢𝑠 =

1
𝑛0

ˆ
f̃𝑠dv̂, (5.27)

are the perturbed density and parallel velocity of the particle of species 𝑠 , and ℎ̂′𝑠 con-
tains all higher moments of the perturbed distribution function. We can therefore
decompose the expression (5.25) in the following way

�̂� (f̂𝑒, f̂𝑖) =
ˆ (∑

𝑠

(
𝑇0𝑠�̂�

2
𝑠

2𝑛0
+ 𝑚𝑠𝑛0𝑢

2
𝑠

2
+
ˆ
𝑇0𝑠ℎ̂

′2
𝑠

2F̂𝑒𝑞𝑠
dv

)
+
|∇̂⊥𝐴∥ |2

8𝜋
+
|𝐵∥ |2

8𝜋

)
dr, (5.28)

The first term is the energy generated by the electron density variance, the second
term is the kinetic energy of the parallel electron flow, and the third term is the free
electron energy.

With regard to the collisionless gyrofluid model, the system of equations (2.130) -
(2.129) possesses a conserved Hamiltonian given by Eq. (2.143). Using the relation
(2.134) and (2.135) we can also write the Hamiltonian in terms of particle variables as
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follows:

𝐻𝑝 (𝑛𝑒, 𝐴𝑒) =
1
2

ˆ
d𝑥d𝑦

(
𝜌2𝑠𝑛𝑒𝐺

−2
10𝑒𝑛𝑒 + 𝑑

2
𝑒

(
𝐺−1
10𝑒𝑢𝑒

)2
+ |∇2

⊥𝐴∥ |2 + 𝜌2𝑠
2
𝛽𝑒

|𝐵∥ |2 (5.29)

+𝑛𝑒
(
1 − 2𝐺−2

10𝑒

)
𝜙 + 𝜙

(
𝐺−2
10𝑒 − 1

) 𝜙
𝜌2𝑠

)
.

When we consider the limit 𝛽𝑒 ,𝑚𝑒/𝑚𝑖 → 0 the Hamiltonian of the gyrofluid equations
is reduced to

𝐻𝑝 (𝑛𝑒, 𝐴𝑒) =
1
2

ˆ
𝑥

(
𝜌2𝑠𝑛

2
𝑒 + 𝑑2𝑒𝑢2𝑒 + |∇2

⊥𝐴∥ |2 + |∇⊥𝜙 |2
)
, (5.30)

which is namely the Hamiltonian of the fluid Eqs. (2.136) - (2.137). In Eq. (5.30), the
contribution from left to right are the energy generated by the electron density fluctu-
ation, the parallel electron kinetic energy, the perpendicular magnetic energy and the
perpendicular plasma kinetic energy which is essentially the E × B flow energy.

5.3.2 Negligible 𝛽𝑒: fluid vs gyrokinetic
In Fig. 5.21 we present the comparison between the energy variation of the fluid

case 1𝐹 and that of the low 𝛽𝑒 gyrokinetic case 1𝐺𝐾3 (𝛽𝑒 = 0.062). The variations are
defined as (4.17) where the function 𝜉 can be replaced by the different contributions
to �̂� and 𝐻 (where �̂� is also considered in the 2D limit). On the gyrokinetic plots,
the four main energy channels are shown as solid lines. The solid purple line is the
total ion energy variation. We also show the evolution of the variations relative to the
density variance (dashed dotted), the parallel kinetic energy (densely dashed) and the
perpendicular kinetic energy (loosely dashed), that are components of the total particle
energy. The same channels are shown for the electrons in green.

The amount of magnetic energy that is converted is identical between fluid and gy-
rokinetics and appears to be transferred mainly to the electrons. On the other hand, it
is not identically distributed in the gyrokinetic and fluid frameworks. For the fluid sim-
ulations, the magnetic energy has no choice but to be converted into electron density
fluctuations or electron parallel acceleration, whereas in the gyrokinetic case, there
is little energy sent to these channels. This suggests that, in the gyrokinetic frame-
work, the energy of the electrons increases due the fluctuations of the higher-order
moments of the distribution function, such as for instance, the perpendicular and par-
allel electron temperature. It is likely that the magnetic energy is actually converted
into thermal electron energy. Such possibility is prevented in the fluid case because,
as a consequence of the closure, for 𝛽𝑒 → 0, no temperature fluctuations are allowed.

The striking difference between the two approaches is that the parallel electron en-
ergy increases in the fluid case, whereas it is quasi-constant or decreasing in the gyroki-
netic one (Fig. 5.21). In order to investigate the origin of this difference, we performed
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Figure 5.21: Top: Time evolution of the energy variations for the cases 1𝐹 and 1𝐺𝐾3.
Bottom: Change of the parallel kinetic energy for the same simulations.
No plasmoids are observed in this case. Credit: Gyrokinetic data processed
by Ryusuke Numata.

an initial condition check and decomposed the parallel electron kinetic energy. The
decomposition leads to three energy components, namely the equilibrium part (𝑢2𝑒𝑞),
the perturbation part (�̃�2𝑒 ) and the cross term (2�̃�𝑒𝑢𝑒𝑞). The change of each component
is shown on the bottom panel of Fig. 5.21. The equilibrium contribution clearly does
not change in time. The quadratic perturbation part is always positive but globally
the variation of parallel electron kinetic energy can decrease because the of the cross
term becoming negative, which is the case for the gyrokinetic simulation. For the fluid
case, the perturbation term increases considerably, leading to a positive variation of
the parallel kinetic energy, since the electrons are highly accelerated for conservation
of the total energy.

With regard to the ions, the closure assumptions imply an even rougher approx-
imation of the ion dynamics, in the fluid case, with respect to gyrokinetics. In the
gyrokinetic case, for low 𝛽𝑒 , we can see in Fig. 5.21 that the main component of the
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total ion energy consists of the perpendicular kinetic energy given by

𝐸𝑘𝑖𝑛𝑖⊥ =
ˆ 𝑚𝑖𝑛0𝑖𝑢

2
⊥,𝑖

2
dr̂. (5.31)

where the perpendicular ion velocity 𝑢⊥,𝑖 is calculated directly from its definition as a
moment in the following way:

𝑢⊥,𝑖 =
1
𝑛0

ˆ
d𝑣 𝑣⊥f̂𝑖 (5.32)

In spite of the closure, the evolution of the energy component (5.31) is very similar to
that of the E × B flow energy of the gyrofluid case. For a very small 𝛽𝑒 , no parallel ion
kinetic energy and parallel magnetic energy seem to be generated.

5.3.3 Finite 𝛽𝑒: gyrofluid vs gyrokinetic
When 𝛽𝑒 is very small, the electron gyration becomes negligible and the particle and

gyrocenter variables coincide. On the other hand, for non-negligible 𝛽𝑒 , the electron
Larmor radius becomes finite and the relations (2.132) and (2.133) allow us to relate the
density and parallel velocity of the particles to those of the gyrocenters. In Fig. 5.22
we compare the gyrofluid energy variations with the gyrokinetic ones for 0 < 𝛽𝑒 < 1.
For this purpose, we use the simulation set No. 3.

In the plot referring to the gyrofluid energy, we show the variation of both the par-
ticles and gyrocenters energy. For instance, the curve referring to ”Kin∥𝑒” corresponds
to the variation of (1/2)

´
d𝑥d𝑦𝑑2𝑒𝑢

2
𝑒 , which is comparable to the second term of the

gyrokinetic energy (5.28). The one referring to ”Gyrocenter Kin∥𝑒” corresponds to the
variation of (1/2)

´
d𝑥d𝑦𝑑2𝑒𝑈

2
𝑒 . By increasing 𝛽𝑒 , the difference between the variation

of the energy of the gyrocenters and that of the particles broadens. With finite 𝛽𝑒 , we
now note a loss of parallel kinetic energy of the electrons for the gyrofluid case, which
is in better agreement with the gyrokinetic approach. Increasing 𝛽𝑒 , will also generate
more parallel magnetic energy, which is well reproduced by the gyrofluid model. On
the other hand, the gyrokinetic cases indicate that a significant part of the magnetic
energy is now converted into parallel ion kinetic energy. A limitation of the reduced
gyrofluid model, as already mentioned, is that the ion parallel velocity has been ”arti-
ficially” removed by imposing 𝑈𝑖 = 𝑢𝑖 = 0. The limitations of this assumption become
evident, in particular, from Fig. 5.22 which shows that, in the gyrokinetic case, for
sufficiently large 𝛽𝑒 , the ion fluid is actually accelerated along the z axis. On the other
hand, it seems that despite this missing element, the gyrofluid model is suitable for
studying the formation of plasmoid for 0 < 𝛽𝑒 < 1.
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Figure 5.22: Top: Time evolution of the energy variations for the cases 3𝐺𝐹2 and 3𝐺𝐾2.
Bottom: Time evolution of the energy variations for the cases 3𝐺𝐹1 and
3𝐺𝐾1. Credit: Gyrokinetic data processed by Ryusuke Numata.

5.4 Conclusion
In this Chapter, we have identified, with two-fluid numerical simulations and ana-

lytical arguments, the marginal stability conditions for the development of plasmoids
in collisionless reconnecting current sheet. We find that in the collisionless regime, re-
connecting current sheet are unstable to the formation of plasmoids for critical aspect
ratios that can be as small as 𝐿cs/𝛿cs ≤ 10. For the marginally stable current sheet, we
find that the aspect ratio of the outflow channel is 𝐿outf/𝛿outf ∼ 10 independent of the
microscopic plasma parameters. The space of collisionless plasma parameters (𝐿cs/𝑑𝑒
and 𝐿cs/𝜌𝑠 ) for which magnetic reconnection driven by electron inertia occurs in the
plasmoid-mediated regime is organized in a new phase space diagram for collision-
less reconnection. Our results, obtained by means of a collisionless fluid model with
strong guide field, yield a threshold for plasmoid formation, measured in terms of the
ratio between the plasma size and the sonic Larmor radius, that appears to be smaller
than the one predicted by Daughton et al. (2006); Ji & Daughton (2011) based on ki-
netic simulations. Our results allow one to separate the collisionless laminar regime of
reconnection from the collisionless plasmoid-mediated regime. The properties of the
marginally stable current sheet obtained in this study contribute to the understanding
of the rate of collisionless reconnection mediated by the plasmoid instability.

In a second part of this Chapter, we investigated the plasmoid formation employ-
ing both gyrofluid and gyrokinetic simulations, assuming a finite, but small 𝛽𝑒 . The
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5.4 Conclusion

adopted gyrokinetic model is a 𝛿 𝑓 model, from which the fluid model can be derived
with appropriate approximations and closure hypotheses. This work showed the abil-
ity of the reduced gyrofluid model to achieve relevant new insights into current-sheet
stability and magnetic reconnection. In particular, predictions on marginal stability
on current sheets, obtained in the fluid limit, were confirmed by gyrokinetic simula-
tions. The comparison between the gyrofluid and the gyrokinetic models reveals key
similarities and differences between the two frameworks, which gives insight into the
important underlying physical effects. This made it possible to show that the effect
of finite 𝛽𝑒 , associated to finite electron Larmor radius effects, promotes the plasmoid
growth. This work also allowed to study the impact of the closure applied on the mo-
ments, performed during the derivation of the gyrofluid model, on the distribution
and conversion of energy during reconnection. The closure, which does not allow
for parallel temperature fluctuations, implies that the energy must be converted into
fluctuations of density and parallel velocity of the electrons. This is not in agreement
with the gyrokinetic simulations, but does not seem to interfere with the formation of
plasmoids. For relatively small but finite 𝛽𝑒 , the immobile ion hypothesis is valid and
doesn’t affect the plasmoid instability. Another point, is that this comparison indicates
that the fluid and gyrofluid models make it possible to obtain accurate results in short
computational times.
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6 Perspectives

The various assumptions adopted in order to simplify the original gyrofluid models
made the problem of tearing stability more simple but, on the other hand, impose se-
vere restrictions on the range of applicability of the results. We first start by listing
what we consider could allow for more realistic applications. Accounting for electron
FLR effects in (2.67)-(2.73) could be a further direction for improvement. In particular,
relaxing the assumption 𝛿2 ≪ 𝛽⊥𝑒 ≪ 1 would allow to study also the interaction of
tearing modes with instabilities induced by temperature anisotropy. Investigating the
impact of finite 𝛽𝑒 values, combined with temperature anisotropy, to see if the Δ′ > 0
criterion is changed, could be a lead for a future work. The inclusion of anisotropic
temperature fluctuations in our general gyrofluid model (although this might cause
some concerns with regard to the Hamiltonian structure, as pointed out in Tassi et al.
(2016)) could in principle make it possible to study numerically, in a gyrofluid context,
fast reconnection induced by electron temperature anisotropy as predicted by Cassak
et al. (2015). Finally, in terms of modelling space plasmas, a more refined treatment
of ion dynamics would be desirable. Considering a finite ion-to-electron temperature
ratio, in order to include ion finite Larmor radius effects can be relevant, in particular
in view of applications to the solar wind and the magnetosphere.

An interesting investigation (to be carried out with a kinetic model) of the recon-
nection rate in the transition between the weak and strong guide field regimes, in the
presence of temperature anisotropy, would help reconciling our present result with
previous results not assuming a strong guide field. In the case of an equilibrium with
isotropic temperature, this problem was treated by Daughton & Karimabadi (2005).

It is known that the combination of a high 𝛽𝑒 and a high parallel pressure, only pos-
sible in the case of a strong temperature anisotropy, can make Alfvén waves firehose
unstable. The more general gyrofluid model (2.113) and (2.114) coupled with (2.115)
- (2.117) is valid for large 𝛽𝑒 . This model can therefore allow to study the possible
triggering of the firehose instability during reconnection. In situ evidence of firehose
instability during multiple reconnection have been recently reported in the magneto-
tail. (Alexandrova et al. (2020)).
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6 Perspectives

Finally, several initiatives could follow our study on the plasmoid instability. One of
them is to include the equations for ion dynamics, in order to be able to study higher
values of 𝛽𝑒 . Another obvious track is to carry out this study in 3D. Some differences
are expected in the 3D case, with respect to the 2D case, in particular due to chaoticity
of magnetic-field lines. The fluid model, inexpensive in computing time, would be well
suited to address this problem.
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A Hamiltonian structures of the two
models

Models describing non-dissipative continuousmedia are supposed to possess aHamil-
tonian structure, reflecting the Hamiltonian character of the underlying microscopic
system. In the case of plasmas, for instance, the Vlasov-Maxwell system described in
the Introduction, was shown to possess a Hamiltonian structure in Ref. Marsden &
Weinstein (1982). The natural question then arises about whether all the models, such
as for instance fluid and gyrofluid models, derived from the Vlasov-Maxwell system,
still possess a Hamiltonian structure.

Hamiltonian structures in general avoids the introduction of uncontrolled dissipa-
tion in the system. They also provide powerful tools to perform stability analysis, such
as the Energy-Casimir method Morrison (1998); Holm et al. (1985). This method typi-
cally applies to Hamiltonian systems with a noncanonical Poisson bracket and is based
on identifying conditions for which the second variation of a functional conserved by
the model has a definite sign, when evaluated at the equilibrium point. For a complete
description, we refer to Refs. Morrison (1998); Holm et al. (1985); Tassi (2022). This
methodwas used recently in the article Granier & Tassi (2020), to study analytically the
stability of a chain of magnetic vortices, focusing on the role of 𝛽⊥𝑒 and Θ𝑒 . The study
was based on a 2D model similar to (2.95) -(2.96) which neglected electron inertia but
was accounting for parallel magnetic perturbations. For more examples of applications
of the Energy-Casimir method to fluid and plasma physics, examples can be found in
Refs. Fjørtoft (1950); Kruskal & Oberman (1958); Morrison & Kotschenreuther (1990);
Holm et al. (1985).

We show that it is the case for the twomodels adopted in this thesis. The knowledge
of the Hamiltonian structure will be useful in this thesis, in particular, as it provides
the total energy of the system.

Before presenting the Hamiltonian structures, we begin by recalling a few essential
elements about the Hamiltonian structures for fluid models.

A.0.1 Hamiltonian systems for fluid theories
Fluid models are systems of partial differential equations of the form

𝜕𝜒𝑖
𝜕𝑡

= 𝑃𝑖 (𝜒1, ..., 𝜒𝑁 ), 𝑖 = 1, ..., 𝑁 . (A.1)
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6 Perspectives

Where, the 𝜒𝑖 depend on time and space coordinates and stand as a set of field vari-
ables, while 𝑃𝑖 , are operators acting on 𝜒𝑖 . In the case of fluid models (here meant in
a general sense, which includes also gyrofluid models for plasmas), the fields 𝜒𝑖 can
be, for instance, the density, components of the Eulerian velocity fields, components
of the magnetic fields, etc...

A Hamiltonian system contains two geometrical objects: the Poisson bracket oper-
ator {, }, acting on two functionals, and the Hamiltonian functional, corresponding to
the total energy of the system. The Poisson bracket

• is bilinear: {𝜆𝑓 , 𝑔 + ℎ} = 𝜆{𝑓 , 𝑔} + 𝜆{𝑓 , ℎ}

• is antisymmetric: {𝑓 , 𝑔} = −{𝑔, 𝑓 }

• satisfies the Jacobi identity: {𝑓 , {𝑔,ℎ}} + {𝑔, {ℎ, 𝑓 }} + {ℎ, {𝑓 , 𝑔}} = 0

• has a product that satisfies the Leibniz identity: {𝑓 𝑔, ℎ} = 𝑓 {𝑔,ℎ} + {𝑓 , ℎ}𝑔,

for for 𝑓 , 𝑔 and ℎ, functions of (𝑥,𝑦) and 𝜆 a constant.
If two such objects exist so that the system (A.1) can be written in the form:

𝜕𝜒𝑖
𝜕𝑡

= {𝜒𝑖, 𝐻 }, 𝑖 = 1, ..., 𝑁 , (A.2)

then the system (A.1) is said to be Hamiltonian. From the antisymmetric property of
the Poisson bracket we have 𝜕𝐻

𝜕𝑡 = {𝐻,𝐻 } = −{𝐻,𝐻 } = 0, reflecting the conservation
of the total energy of the system.

It is important to emphasize that the above definition of Hamiltonian fluid models
is more general than that usually given for Hamiltonian classical field theories, where
pairs of canonically conjugate fields can be found globally on the whole phase space.
Indeed, fluid models expressed in Eulerian variables, typically possess noncanonical
Hamiltonian structures Morrison (1998).

A.0.2 The model with the isothermal closure
We introduce the dynamical variable

𝐴𝑒 = 𝐴∥ −
2𝛿2

𝛽⊥𝑒

𝑈𝑒 . (A.3)

The static relations (2.93) can be seen, in Fourier space, as an inhomogeneous linear
system with the Fourier coefficients of 𝜙 and 𝐵∥ as unknowns, for given 𝑁𝑖,𝑒 . From the
solution of this system, one can express the fields 𝜙 and 𝐵∥ in terms of 𝑁𝑖 and 𝑁𝑒 , by
means of relations of the form

𝑈𝑒 = L𝑈𝑒 (𝐴𝑒), 𝐵∥ = L𝐵 (𝑁𝑒), 𝜙 = L𝜙 (𝑁𝑒), (A.4)
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whereL𝑈𝑒 ,L𝜙 andL𝐵 are symmetric operators, i.e. operatorsL such that
´
𝑑2𝑥 𝑓 L𝑔 =´

𝑑2𝑥 𝑔L 𝑓 , for two functions 𝑓 and 𝑔. They permit to express𝑈𝑒 , 𝜙 and 𝐵∥ in terms of
𝑁𝑒 and 𝐴𝑒 by means of Eqs. (2.93)

Denoting 𝜒1 = 𝑁𝑒 and 𝜒2 = 𝐴𝑒 , the model (2.88)-(2.89) has then the form (A.1). It
was shown to be Hamiltonian in Ref. Tassi (2019); Granier et al. (2021). Its Hamiltonian
structure consists of the Hamiltonian functional

𝐻 (𝑁𝑒, 𝐴𝑒) =
1
2

ˆ
𝑑2𝑥

(
𝑁 2
𝑒

Θ𝑒
−𝐴𝑒∇2

⊥L𝑈𝑒𝐴𝑒 − 𝑁𝑒L𝜙𝑁𝑒 + 𝑁𝑒L𝐵𝑁𝑒

)
, (A.5)

and the Poisson bracket given by

{𝐹,𝐺} =
ˆ
𝑑2𝑥

(
𝑁𝑒

(
[𝐹𝑁𝑒 ,𝐺𝑁𝑒 ] +

𝛿2

Θ𝑒
[𝐹𝐴𝑒 ,𝐺𝐴𝑒 ]

)
+𝐴𝑒 ([𝐹𝐴𝑒 ,𝐺𝑁𝑒 ] + [𝐹𝑁𝑒 ,𝐺𝐴𝑒 ]) + 𝐹𝑁𝑒

𝜕𝐺𝐴𝑒

𝜕𝑧
+ 𝐹𝐴𝑒

𝜕𝐺𝑁𝑒

𝜕𝑧

)
,

(A.6)

for two arbitrary functionals 𝐹 and 𝐺 of 𝑁𝑒 and 𝐴𝑒 . In Eq. (A.6) the subscript on the
functionals indicates functional derivative, so that, for instance 𝐹𝑁𝑒 = 𝛿𝐹/𝛿𝑁𝑒 . This
noncanonical Poisson bracket has the same form as that of the two-field fluid model
of Schep et al. (1994).

A.0.3 The model with the quasi-static closure

The Hamiltonian structure of the model (2.127) - (2.131) allows for a more direct
comparison with previous Hamiltonian models for reconnection, in particular with
the two-field model considered by Cafaro et al. (1998), Grasso et al. (2001), Del Sarto
et al. (2006), Del Sarto et al. (2003). We define the dynamical variable

𝐴𝑒 = 𝐺10𝑒𝐴∥ − 𝑑2𝑒𝑈𝑒 . (A.7)

The three relations (2.127)-(2.129), together with the definition of𝐴𝑒 in Eq. (A.7), make
it possible to express 𝐵∥ , 𝜙 and𝑈𝑒 , in terms of the two dynamical variables 𝑁𝑒 and 𝐴𝑒 ,
according to

𝐵∥ = L𝐵0𝑁𝑒, 𝜙 = L𝜙0𝑁𝑒, 𝑈𝑒 = L𝑈𝑒0𝐴𝑒 . (A.8)

The corresponding Hamiltonian structure consists of the Hamiltonian functional

𝐻 (𝑁𝑒, 𝐴𝑒) =
1
2

ˆ
𝑑2𝑥

(
𝜌2𝑠𝑁

2
𝑒 −𝐴𝑒L𝑈𝑒0𝐴𝑒 − 𝑁𝑒 (𝐺10𝑒L𝜙0𝑁𝑒 − 𝜌2𝑠 2𝐺20𝑒L𝐵0𝑁𝑒)

)
. (A.9)
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and of the Poisson bracket

{𝐹,𝐺} =
ˆ
𝑑2𝑥

(
𝑁𝑒 ([𝐹𝑁𝑒 ,𝐺𝑁𝑒 ] + 𝑑2𝑒 𝜌2𝑠 [𝐹𝐴𝑒 ,𝐺𝐴𝑒 ]) +𝐴𝑒 ([𝐹𝐴𝑒 ,𝐺𝑁𝑒 ] + [𝐹𝑁𝑒 ,𝐺𝐴𝑒 ])

)
.

(A.10)

We remark that the Poisson bracket (A.10) has the same form as that of the model
investigated by Cafaro et al. (1998) and by Grasso et al. (2001). Due to their noncanoni-
cal structure, both Poisson brackets (A.6) and (A.10) possess Casimir invariants, which
implies the existence of conserved quantities for the models, in addition to the total
energy (Morrison (1998))
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B Convergence of a limit relevant
for the outer solution 𝜙out

In this Appendix we show that

lim
𝑥→+∞

𝑒−𝛼𝑥
ˆ 𝑥

𝑎

(
1
𝑘𝑦

+ 𝜆

tanh(𝑡/𝜆)

)
𝑒 (𝛼−𝑘𝑦)𝑡𝑑𝑡 = 0, (B.1)

which is necessary in order to verify that the solution (3.13), satisfies the boundary
condition lim𝑥→+∞ 𝜙out = 0.

First, we recall that the coefficient 𝛼 − 𝑘𝑦 =
√
𝑘2𝑦 + Θ𝑒 − 𝑘𝑦 is positive.

Then we use the fact that |1/tanh 𝑡 | < |1/𝑡 + 1| on the domain 𝑡 ∈]0, +∞). This yields

0 ≤ 𝑒−𝛼𝑥
ˆ 𝑥

𝑎

(
1
𝑘𝑦

+ 1
tanh(𝑡/𝜆)

)
𝑒 (𝛼−𝑘𝑦)𝑡𝑑𝑡 < 𝑒−𝛼𝑥

ˆ 𝑥

𝑎

(
1
𝑘𝑦

+ 𝜆
𝑡
+ 1

)
𝑒 (𝛼−𝑘𝑦)𝑡𝑑𝑡

= 𝑒−𝛼𝑥
(
𝜆

ˆ (𝛼−𝑘𝑦)𝑥

(𝛼−𝑘𝑦)𝑎

𝑒𝑢

𝑢
𝑑𝑢 +

1/𝑘𝑦 + 1

𝑘𝑦 − 𝛼
(
𝑒 (𝛼−𝑘𝑦)𝑎 − 𝑒 (𝛼−𝑘𝑦)𝑥

))
= 𝑒−𝛼𝑥

(
𝜆𝐸𝑖

(
(𝛼 − 𝑘𝑦)𝑥

)
− 𝜆𝐸𝑖

(
(𝛼 − 𝑘𝑦)𝑎

)
+
1/𝑘𝑦 + 1

𝑘𝑦 − 𝛼
(
𝑒 (𝛼−𝑘𝑦)𝑎 − 𝑒 (𝛼−𝑘𝑦)𝑥

))
∼

𝑥→+∞
𝑒−𝑘𝑦𝑥

(
𝜆

(𝛼 − 𝑘𝑦)𝑥
+𝑂

(
1
𝑥2

))
− 𝜆𝑒−𝛼𝑥𝐸𝑖 ((𝛼 − 𝑘𝑦)𝑎) +

1/𝑘𝑦 + 1

𝑘𝑦 − 𝛼
(
𝑒−𝛼𝑥+(𝛼−𝑘𝑦)𝑎 − 𝑒−𝑘𝑦𝑥

)
→

𝑥→+∞
0,

(B.2)

where 𝐸𝑖 is the exponential integral function and where in the last step we made use of

the asymptotic expansion 𝐸𝑖 (𝑥) ∼ 𝑒−𝑥
(
1
𝑥 +

1
𝑥2

+𝑂 ( 1
𝑥3
)
)
. This shows the convergence

of the integral (B.1).
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C Calculation of 𝛾𝑢
We start from the linearized Eqs. (2.136)-(2.137), using the equilibrium (2.156) and

the perturbations (3.1). The perturbations are subject to the boundary conditions
𝐴∥, 𝜙 → 0, as 𝑥 → ±∞. We look for even solutions of 𝐴∥ (𝑥) and odd solutions
for 𝜙 (𝑥), which are standard parities for the classical tearing problem.
We consider the time variation of the perturbation being slow,

𝑔 =
𝛾

𝑘𝑦
≪ 1, (C.1)

and the normalized electron skin depth as a small parameter, i.e.

𝑑𝑒 ≪ 1. (C.2)

In order to simplify several expressions in this derivation, we normalize out 𝜆 by con-
sidering the new characteristic length in (2.64) as given by

𝐿 = 𝜆𝐿. (C.3)

We will reintroduce the original normalization (2.64) at the end of the derivation, in
Eq. (C.34).

The linearized equations are given by

𝛾 (𝜙′′ − 𝑘2𝑦𝜙) − 𝑖𝑘𝑦𝐴∥𝐵
(0)
𝑦

′′ + 𝑖𝑘𝑦𝐵 (0)
𝑦 (𝐴′′

∥ − 𝑘
2
𝑦𝐴∥) = 0, (C.4)

𝛾 (𝐴∥ − 𝑑2𝑒 (𝐴′′
∥ − 𝑘

2
𝑦𝐴∥)) + 𝑖𝑘𝑦𝜙 (𝐵 (0)

𝑦 − 𝑑2𝑒𝐵
(0)
𝑦

′′) − 𝑖𝑘𝑦𝜌2𝑠 𝐵
(0)
𝑦 (𝜙′′ − 𝑘2𝑦𝜙) = 0, (C.5)

where 𝐵 (0)
𝑦 = −𝜕𝐴(0)

∥ /𝜕𝑥 is the equilibrium magnetic field. In order to solve (C.4) and
(C.5) we have to adopt an asymptotic matching method because the vanishing of the
two small parameters 𝑔 and 𝑑𝑒 leads to a boundary layer at the resonant surface 𝑥 = 0.
Wewill consider two spatial regions involving two spatial scales. Far from the resonant
surface, located at 𝑥 = 0, the plasma can be assumed to be ideal and electron inertia can
be neglected. This region is commonly called the outer region. Close to the resonant
surface, we will proceed to a spatial rescaling and get to a scale at which electron
inertia becomes important and drives the reconnection process. This second region is
called the inner region. We anticipate that we will find a second boundary layer inside
the inner region and will need the use of a second asymptotic matching.
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6 Perspectives

C.0.1 Outer region

As mentioned before, we assume 𝑑𝑒 ≪ 1 and 𝑔 ≪ 1. We then neglect terms of order
𝑑2𝑒 and 𝑔2 in Eqs. (C.4) and (C.5). The outer equations are given by

𝐴′′
∥ 𝑜𝑢𝑡 −

(
𝑘2𝑦 +

𝐵 (0)
𝑦

′′

𝐵 (0)
𝑦

)
𝐴∥𝑜𝑢𝑡 = 0 (C.6)

𝜙𝑜𝑢𝑡 (𝑥) =
𝑖𝑔𝐴∥𝑜𝑢𝑡 (𝑥)

𝐵𝑦0
, (C.7)

where we indicate with the prime symbol, the derivative with respect to the argument
of the function. The solution for �̃�𝑜𝑢𝑡 is given by

𝐴∥𝑜𝑢𝑡 (𝑥) = 𝑒−|𝑥 |
√
𝑘2𝑦+4

©«
15 tanh3 ( |𝑥 |)

𝑘2𝑦

√
𝑘2𝑦 + 4

+ 15 tanh2 ( |𝑥 |)
𝑘2𝑦

+

(
6
(
𝑘2𝑦 + 4

)
− 9

)
tanh (|𝑥 |)

𝑘2𝑦

√
𝑘2𝑦 + 4

+ 1
ª®®¬ (C.8)

From Eq. (C.7), on the other hand, one sees that the solution for 𝜙𝑜𝑢𝑡 is not defined
at the resonant surface 𝑥 = 0, where 𝐵𝑦0 vanishes. This indicates the presence of the
above mentioned boundary layer at 𝑥 = 0. We measure the logarithmic derivative of
the of the discontinuity of the outer solutions (C.8) at 𝑥 = 0 with the formula (3.15) of
the standard tearing parameter and we obtain the expression

Δ′ =
2
(
5 − 𝑘2𝑦

) (
𝑘2𝑦 + 3

)
𝑘2𝑦

√
𝑘2𝑦 + 4

. (C.9)

In the limit |𝑥 | → 0 the solution for �̃�𝑜𝑢𝑡 can be developed using its Taylor expansion

𝐴∥𝑜𝑢𝑡 = 1 + Δ′

2
|𝑥 | +𝑂 (𝑥2). (C.10)

If Δ′ is small enough, the solution𝐴∥ can be approximated to be equal to 1 in the region
where 𝑥 ≪ 1. This is standard procedure called the constant 𝜓 approximation (Furth
et al. (1963)).
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C.0.2 Inner region: first boundary layer

In the inner region, we proceed to a first spatial rescaling using an inner variable, 𝑥 ,
such that

𝑥 = 𝜖𝑥, (C.11)

where 𝜖 ≪ 1 is a stretching parameter. The rescaling (C.11) implies 𝑘𝑦 ≪ 𝜕𝑥 , and
allows to use a Taylor expansion of the equilibria

𝐵 (0)
𝑦 (𝜖𝑥) = 2𝑥𝜖 +𝑂 (𝜖2) . (C.12)

We obtain the two inner equations

𝐴∥
′′
𝑖𝑛 =

𝑖𝑔

2𝜖𝑥
𝜙′′𝑖𝑛, (C.13)

𝑔

(
𝐴∥𝑖𝑛 −

𝑑2𝑒
𝜖2
𝐴∥

′′
𝑖𝑛

)
+ 𝑖2𝜖𝑥𝜙𝑖𝑛 − 𝑖𝜌2𝑠

2𝑥
𝜖
𝜙′′𝑖𝑛 = 0. (C.14)

We introduce the real-valued displacement function

𝜉𝑖𝑛 = − 𝑖
𝑔
𝜙𝑖𝑛, (C.15)

and injecting (C.13) in (C.14), we obtain the layer equation

𝜉′′𝑖𝑛
𝜖2

− 2𝜖𝑥

𝜌2𝑠

(
𝑔2𝑑2𝑒
𝜌2𝑠

+ 4𝜖2𝑥2
) (2𝜖𝑥𝜉𝑖𝑛 − 1) = 0, (C.16)

where we used the constant 𝜓 approximation, which, we recall, consists in approxi-
mating 𝐴∥𝑖𝑛 ∼ 1 close to 𝑥 = 0. In order to solve (C.16) we will assume

𝑔𝑑𝑒 ≪ 𝜌2𝑠 ≪ 1, (C.17)

and will make use of a second asymptotic matching inside the inner region. We will
have indeed two boundary layers at 𝑥 = 0, defining two spatial regions in which the
equations can be solved. A boundary layer exists at the scale 𝜖1 = 𝜌𝑠 and a second one
at a smaller scale, for 𝜖2 =

𝑔𝑑𝑒
𝜌𝑠

.

In the first layer we use

𝜖 = 𝜖1 = 𝜌𝑠, 𝜉𝑖𝑛 =
𝜉𝑖𝑛
𝜖1
, (C.18)

where 𝜉𝑖𝑛 is the rescaled displacement function. This choice for 𝜖 yields a distinguished
limit allowing to retain the maximum number of terms in Eq. (C.16), as 𝜖 → 0, account-
ing for the condition (C.17), which allows to neglect the term 𝑔2𝑑2𝑒 /𝜌2𝑠 in the denomina-
tor of Eq. (C.16). We restrict our study to the case of negligible FLR effects in the inner
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6 Perspectives

region, which implies that 𝜌𝑒 ≪ 𝜖1. This condition ensures that the terms responsible
for the electron FLR effects remain smaller than those responsible for the effects of
electron inertia.
The rescaling leads to the layer equation

𝜉′′𝑖𝑛 − 𝜉𝑖𝑛 = − 1
2𝑥
. (C.19)

The solution of Eq. (C.19) is

𝜉𝑖𝑛 =
𝑒𝑥

4
𝐸1(𝑥) +

𝑒−𝑥

4

(
𝐸𝑖 (𝑥) − 𝑔𝑑𝑒

𝜌2𝑠

𝜋

2

)
. (C.20)

Where we already fixed the constants of integration in order to ensure lim𝑥→+∞ = 0
and to ensure the matching with the solution in the second layer. In (C.20) we used
the expression of the exponential integral functions

𝐸1(𝑥) =
ˆ +∞

𝑥

𝑒−𝑡

𝑡
𝑑𝑡, and 𝐸𝑖 (𝑥) =

ˆ 𝑥

−∞

𝑒𝑡

𝑡
𝑑𝑡 . for 𝑥 > 0, (C.21)

C.0.3 Inner region : second boundary layer

In the second layer, where 𝑥 ∼ 𝑔𝑑𝑒/𝜌2𝑠 , the solution (C.20) is no longer valid. There-
fore, in the second layer, we perform the following rescaling

𝜖 = 𝜖2 =
𝑔𝑑𝑒
𝜌𝑠
, 𝜉𝑖𝑛 =

𝑔𝑑𝑒

𝜌3𝑠
, (C.22)

and introduce the second inner variable 𝑥 = 𝑥/𝜖2 (so that 𝑥 = (𝑔𝑑𝑒/𝜌2𝑠 )𝑥 ). Since we
are at an even smaller spatial scale than that of the previous layer, we emphasize the
condition of neglecting the FLR effects also in this second inner layer, i.e. 𝜌𝑒 ≪ 𝜖2.
Considering our assumption (C.17), the equation (C.16) becomes,

′′+ 2
(1 + 42) = 0. (C.23)

The solution of Eq. (C.23), written bellow, in terms of the variables 𝑥 and 𝜉𝑖𝑛 reads

𝜉𝑖𝑛 (𝑥) =
(
1 − 𝛾𝐸 +

𝑔𝑑𝑒

2𝜌2𝑠

𝜋

2
+ log

(
𝜌2𝑠
𝑔𝑑𝑒

))
𝑥 − 𝑔𝑑𝑒

𝜌2𝑠
arctan

(
𝜌2𝑠 𝑥

𝑔𝑑𝑒

)
− 1
4
log

((
𝜌2𝑠 𝑥

𝑔𝑑𝑒

)2
+ 1
4

)
𝑥 .

(C.24)
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This solution satisfies the boundary condition 𝜉 (0) = 0, descending from the require-
ment of 𝜙 being an odd function. In Eq. (C.24) 𝛾𝐸 is the Euler constant.

C.0.4 Δ′ matching

We add the following matching condition concerning the derivatives of the solu-
tions:

Δ′ =
1
𝜖1

ˆ ∞

−∞
𝐴′′
∥ 𝑖𝑛𝑑𝑥. (C.25)

Using the relations (C.13) and (C.16) and using the variables 𝑥 and 𝜉𝑖𝑛 we write

Δ′ =
2𝑔2

𝜌3𝑠

ˆ +∞

0

(
1 − 2𝑥𝜉𝑖𝑛

)(
𝑔2𝑑2𝑒
𝜌4𝑠

+ 4𝑥2
)𝑑𝑥. (C.26)

We separate the integral referring to the second term on the right-hand side of Eq.
(C.26) in two parts, one from 0 to 𝜎 and one from 𝜎 to +∞, with 𝜎 a parameter con-
strained in the overlap region such that

𝑔𝑑𝑒

𝜌2𝑠
≪ 𝜎 ≪ 1

log
(
𝑔𝑑𝑒
𝜌2𝑠

) . (C.27)

We also recall that 𝑔𝑑𝑒
𝜌2𝑠

≪ 1 is our assumption (C.17). Equation (C.26) can then be
rewritten as

Δ′ =
2𝑔2

𝜌3𝑠

ˆ +∞

0

1(
𝑔2𝑑2𝑒
𝜌4𝑠

+ 4𝑥2
)𝑑𝑥 − 4𝑔2

𝜌3𝑠

ˆ 𝜎

0

𝑥𝜉𝑖𝑛(
𝑔2𝑑2𝑒
𝜌4𝑠

+ 4𝑥2
)𝑑𝑥 − 4𝑔2

𝜌3𝑠

ˆ ∞

𝜎

𝑥𝜉𝑖𝑛(
𝑔2𝑑2𝑒
𝜌4𝑠

+ 4𝑥2
)𝑑𝑥.

=
𝑔𝜋

2𝑑𝑒𝜌𝑠
+𝑊2 +𝑊1.

(C.28)

We calculate the expression (C.28) accurate to 𝑔2/𝜌3𝑠 so smaller terms are neglected
(the next higher term is of order 𝑔2

𝜌3𝑠
𝜎 log 𝑔𝑑𝑒

𝜌2𝑠
and thanks to the constraint (C.27) we

have 𝜎 log 𝑔𝑑𝑒
𝜌2𝑠

≪ 1). In the interval between 𝜎 and +∞, we use the hypothesis (C.17),
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given by 𝑔𝑑𝑒 ≪ 𝜌2𝑠 ≪ 1 to simplify the denominator.

𝑊1 = −4𝑔
2

𝜌3𝑠

ˆ ∞

𝜎

𝑥𝜉𝑖𝑛(
𝑔2𝑑2𝑒
𝜌4𝑠

+ 4𝑥2
)𝑑𝑥.

= −𝑔
2

𝜌3𝑠

ˆ ∞

𝜎

𝑥(
𝑔2𝑑2𝑒
𝜌4𝑠

+ 4𝑥2
) (
𝑒𝑥𝐸1(𝑥) + 𝑒−𝑥

(
𝐸𝑖 (𝑥) − 𝑔𝑑𝑒

𝜌2𝑠

𝜋

2

))
𝑑𝑥.

= − 𝑔2

4𝜌3𝑠

ˆ ∞

𝜎

1
𝑥

(
𝑒𝑥𝐸1(𝑥) + 𝑒−𝑥𝐸𝑖 (𝑥)

)
𝑑𝑥 + 𝑔

3𝑑𝑒

4𝜌5𝑠

𝜋

2

ˆ ∞

𝜎

𝑒−𝑥

𝑥
𝑑𝑥 .

(C.29)

Using the identity 𝑒𝑢𝐸1(𝑢) +𝑒−𝑢𝐸𝑖 (𝑢) = 2
´ ∞
0

𝑢
𝑢2+𝑡2 sin(𝑡)𝑑𝑡 (from Geller & Ng (1969) (id.

22 Tab. 3.3)) and knowing that Γ(0, 𝜎) =
´ ∞
𝜎

𝑒−𝑥

𝑥 𝑑𝑥 is the incomplete gamma function
whose dominant contribution, as 𝜎 → 0+, is log(𝜎), we obtain

𝑊1 = − 𝑔2

4𝜌3𝑠

(ˆ ∞

0

ˆ ∞

𝜎

sin(𝑡)
𝑥2 + 𝑡2 𝑑𝑥 𝑑𝑡 +𝑂

(
𝑔𝑑𝑒

𝜌2𝑠
log(𝜎)

))
𝑑𝑥, (C.30)

when 𝜎 → 0+ and 𝑔𝑑𝑒/(𝜌2𝑠 𝜎) → 0+. Focusing now on the remaining double integral,

ˆ ∞

0

ˆ ∞

𝜎

sin(𝑡)
𝑥2 + 𝑡2 𝑑𝑥 𝑑𝑡 =

ˆ ∞

0
sin(𝑡) arctan(𝑥/𝑡)

𝑡

���∞
𝜎
𝑑𝑡

=
𝜋

2

ˆ ∞

0

sin(𝑡)
𝑡

𝑑𝑡 −
ˆ ∞

0

sin(𝑡)
𝑡

arctan(𝜎/𝑡) 𝑑𝑡 .
(C.31)

We can prove that the second term is negligible when 𝜎 → 0+ by introducing a new
small parameter 𝜅 such as 𝜎 ≪ 𝜅 ≪ 1, splitting the integral into the sum of an integral
from 0 to 𝜅 with an integral from 𝜅 to +∞, and using that in the region 0 < 𝑡 < 𝜅,
arctan(𝜎/𝑡) < 𝜋

2 and sin(𝑡) ∼ 𝑡 and in the region 𝜅 < 𝑡 , one has arctan(𝜎/𝑡) ∼ (𝜎/𝑡).
We thus obtain

𝑊1 = − 𝑔2

4𝜌3𝑠

(
𝜋2

2
+𝑂

(
𝑔𝑑𝑒

𝜌2𝑠
log(𝜎)

))
, (C.32)

when 𝜎 → 0+ and 𝑔𝑑𝑒/(𝜌2𝑠 𝜎) → 0+.
It is then possible to show, using (C.27) and (C.17) that

𝑊2 = 𝑂

(
𝑔𝑑𝑒

𝜌2𝑠
log

(
𝑔𝑑𝑒

𝜌2𝑠

))
+𝑂

(
𝑔𝑑𝑒

𝜌2𝑠
log (𝜎)

)
+𝑂 (𝜎 log (𝜎)) +𝑂

(
𝜎 log

(
𝑔𝑑𝑒

𝜌2𝑠

))
, (C.33)

when 𝜎 → 0+ and 𝑔𝑑𝑒/(𝜌2𝑠 𝜎) → 0+.
Summing all the leading order terms and neglecting the higher order contributions,
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we obtain the dispersion relation, written using the normalizing length scale 𝐿,

Δ′ =
𝑔𝜆𝜋

2𝑑𝑒𝜌𝑠
− 𝑔

2𝜆2

4𝜌3𝑠

𝜋2

2
. (C.34)

It is possible, in virtue of (C.17), to verify that the second term on the right-hand side
of Eq. (C.34) is smaller than the first one (𝑔/(𝑑𝑒𝜌𝑠) ≫ 𝑔2/𝜌3𝑠 ).
Retaining only the first term in Eq. (C.34) gives the growth rate predicted by Porcelli
(1991) and corresponding to the dispersion relation (4.3). When taking into account
the corrective term, we obtain the expression for the growth rate

𝛾𝑢 = 2𝑘𝑦

(
𝜌2𝑠
𝜋𝑑𝑒𝜆

− 𝜌3/2𝑠

√
𝜌𝑠 − 2𝑑2𝑒Δ′

𝜋𝑑𝑒𝜆

)
, (C.35)

corresponding to Eq. (4.8). We remark that, because of the parity properties we re-
quired on 𝜙 and �̃�, the growth rate𝛾𝑢 has to be real, which enforces a further condition
of validity, corresponding to

𝜌𝑠 ≥ 2𝑑2𝑒Δ
′. (C.36)

We performed high precision tests to verify the corrective term of the dispersion rela-
tion (C.35).
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