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Résumé : Ce travail de recherche propose de
nouvelles approches de solutions pour deux pro-
blèmes importants dans les domaines de l’éner-
gie, du pétrole et du gaz, qui impliquent des pa-
ramètres d’entrée incertains.

Dans le contexte des réseaux d’énergie in-
telligents, le premier problème concerne la réa-
lité des micro-réseaux qui échangent de l’éner-
gie avec le réseau principal pour vendre leur sur-
plus de production (provenant de sources d’éner-
gie renouvelables) ou acheter un montant supplé-
mentaire pour soutenir la demande des consom-
mateurs locaux. Dans ce scénario, les dispositifs
de contrôle intelligents sont des éléments impor-
tants, exécutant la planification énergétique en
temps réel en fonction des fluctuations de la pro-
duction et de la consommation. Comme on pou-
vait s’y attendre, la production et l’approvisionne-
ment en électricité du réseau principal deviennent
plus imprévus et risqués à mesure que les quanti-
tés d’énergie échangées oscillent au fil du temps.
La première partie de la thèse étudie un frame-
work de souscription des contrats énergétiques
flexibles et bilatéraux, établis entre des fournis-
seurs d’électricité et un client. La souscription est
liée à une stratégie de commande en temps réel
(RTCS), adaptée à la planification énergétique
des micro-réseaux avec des incertitudes dans la
production et la consommation d’électricité.

Les principaux produits développés sont un
modèle d’optimisation robuste multipériode em-
barqué, capable de fournir des solutions pour
l’échange d’énergie sur plusieurs périodes, mini-
misant le coût par le client dans le pire des cas,
ainsi qu’un ensemble de stratégies de contrôle
pour la planification énergétique en temps réel.
Au cours de la recherche, le modèle d’optimisa-
tion robuste initial a été amélioré pour représenter
l’incertitude budgétisée, permettant des solutions
moins conservatrices qui sont, en même temps,
plus flexibles et moins chères, tout en assurant
une protection contre les pires scénarios. La so-
lution proposée a été testée à l’aide de données
de consommation et de production collectées au-
près d’un micro-réseau énergétique réel dans un
centre de recherche à Tsukuba, au Japon.

S’appuyant sur un ensemble de contrats

d’achat d’énergie inspirés du monde réel, les ré-
sultats de simulation ont confirmé l’efficacité de
différentes stratégies de contrôle robustes, se-
lon les types de scénarios d’incertitude. Pour des
niveaux de protection spécifiques, les stratégies
de contrôle robustes ont dominé les stratégies
déterministes (naïves) dans toutes les mesures
de coût opérationnel et de fiabilité du système.
Les résultats obtenus avec une étude de cas
montrent que l’efficacité de chaque solution ro-
buste dépendra du profil de charge du micro-
réseau et de la production renouvelable, qui va-
rient selon la saison de l’année. D’où l’importance
de l’ensemble d’incertitudes budgétées, qui four-
nit un ensemble de solutions robustes, avec dif-
férents niveaux de protection, parmi lesquelles le
décideur peut choisir.

Le deuxième front de recherche est lié à la
planification de la production sous incertitude, en
particulier le problème d’ordonnancement connu
sous le nom de Robust Permutation Flow Shop
Scheduling. Nous utilisons l’approche de l’incerti-
tude budgétaire, où les temps de traitement des
opérations varient dans un intervalle donné. Le
scénario le plus défavorable est borné par un pa-
ramètre de budget Γ, qui limite le nombre maxi-
mum d’opérations dont les temps de traitement
peuvent osciller à leurs valeurs les plus défavo-
rables. Le grand avantage de cette variante du
problème consiste à ajuster le niveau de conser-
vatisme de la solution, obtenant ainsi un équilibre
entre le coût de la solution et la robustesse dans
le pire des cas. Nous avons développé des mé-
thodes de résolution pour deux fonctions objectifs
différentes : makespan et somme pondérée des
temps d’exécution des tâches. A notre connais-
sance, il s’agit du premier travail permettant d’ob-
tenir des solutions robustes optimales aux deux
objectifs.

Concernant la fonction objectif makespan,
nous avons étendu deux formulations MILP clas-
siques pour le cas déterministe et les avons com-
binées avec un cadre de génération de colonnes
et de contraintes (Column-and-Constraint Gene-
ration - C&CG). A cet effet, un algorithme de pro-
grammation dynamique a également été déve-
loppé, permettant l’identification des pires scé-



narios en temps polynomial. De nombreux résul-
tats expérimentaux ont démontré que l’algorithme
proposé était efficace pour obtenir des ordonnan-
cements robustes optimaux pour des problèmes
de petite et moyenne taille (y compris des ins-
tances de 50 × 2, 100 × 2 et 10 × 5, 15 × 5). De
plus, sur la base d’une étude de cas avec deux
instances représentatives, nous avons évalué le
compromis entre la qualité de la solution et le
coût, en comparant des solutions robustes à des
solutions déterministes et stochastiques. De plus,
selon des simulations basées sur trois distribu-
tions de probabilités, ces calendriers robustes ne
présentaient qu’un faible surcoût dans le coût de
solution attendu.

Nous avons également développé une mé-
taheuristique de recherche adaptative randomi-
sée gloutonne (GRASP) pour obtenir des solu-
tions efficaces pour les instances de problèmes
volumineux (jusqu’à 100 × 50). L’évaluation des
performances de GRASP a nécessité l’adapta-
tion d’instances de la littérature, telles que les
instances bien connues de Taillard. Les résul-
tats expérimentaux ont démontré que l’algorithme
GRASP est efficace pour obtenir des ordonnan-
cements robustes optimaux pour des problèmes
de petite et moyenne taille, par rapport à la mé-
thode de résolution exacte C&CG. L’évaluation
était basée sur 4 ensembles de problèmes de test

et il a été démontré que GRASP produisait des
solutions optimales ou quasi optimales sur toutes
ces instances.

Enfin, nous avons exploré le flow shop ro-
buste avec l’objectif somme pondérée des temps
de réalisation des tâches (weighted sum of job
completion times, en anglais), où les temps de
traitement des opérations sont sujets à l’incerti-
tude. Dans le contexte de l’industrie pétrolière et
gazière, cette variante du flow shop est associée
au planning de maintenance des plates-formes
pétrolières. Lorsque chaque équipement fait l’ob-
jet d’une maintenance, certaines opérations d’as-
sistance doivent voir leur ordre d’exécution res-
pecté. Et pour terminer cet ensemble défini de
tâches, les puits de pétrole doivent être fermés
uniquement pour rouvrir à la production à la fin
du calendrier. L’objectif, dans ce cas, est de trou-
ver un calendrier qui minimise la perte de produc-
tion de pétrole causée par le temps pendant le-
quel chaque puits de pétrole est resté fermé pour
maintenance. Sur la base du cadre de généra-
tion de colonnes et de contraintes, nous avons pu
obtenir des solutions exactes pour des instances
d’une taille allant jusqu’à 15 × 5. En plus, nous
avons proposé une étude de cas appliquée à l’in-
dustrie pétrolière et gazière, en utilisant des don-
nées réelles, obtenues à partir de l’historique des
plates-formes pétrolières brésiliennes.
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Abstract: This thesis proposes new solution ap-
proaches for two important problems in the areas
of energy, oil and gas, which involve uncertain in-
put parameters.

In the context of smart grids, the first problem
addresses the reality of microgrids which trade
energy with the main grid to either sell its pro-
duction surplus (from renewable energy sources)
or buy an additional amount to support local con-
sumers’ demand. In this scenario, smart control
devices are important elements, executing real-
time energy scheduling according to fluctuations
in production and consumption. As we might ex-
pect, the main grid’s power generation and sup-
ply becomes more unscheduled and risky as en-
ergy trading quantities oscillate over time. The
first part of the work studies a flexible bilateral
energy contract subscription framework, estab-
lished between electricity suppliers and a client.
The framework is coupled with a real-time com-
mand strategy (RTCS), suited for energy schedul-
ing of microgrids with uncertainty in both produc-
tion and consumption.

The main products are an embedded Ro-
bust Optimization model, capable of providing so-
lutions for multi-period-ahead trading of energy,
while minimizing the microgrid’s worst-case cost,
as well as a set of control strategies for real-time
energy scheduling. During the research, the ini-
tial robust optimization model was improved to
represent budgeted uncertainty, allowing for less
conservative solutions that are, at the same time,
more flexible and less expensive, while providing
protection against worst-case scenarios. The pro-
posed solution was tested using consumption and
production data collected from a real microgrid in
a research lab in Tsukuba, Japan.

Relying on a set of real-world-inspired energy
purchase contracts, simulation experiments have
confirmed the efficacy of different robust-based
RTCS strategies, according to scenario types. For
specific protection levels, the robust RTCS was
able to dominate the naïve deterministic RTCS in
all operational cost and system reliability metrics.
Results obtained with a case study show that the
effectiveness of each robust solution will depend
on the microgrid’s load profile and renewable pro-
duction, which vary according to the season of the

year. Hence the importance of the budgeted un-
certainty set, which provides a pool of robust solu-
tions, with different protection levels, the decision-
maker can choose from.

The second research avenue is related to pro-
duction planning under uncertainty, in particular
the scheduling problem known as Robust Per-
mutation Flow Shop Scheduling. We adopt the
budgeted uncertainty approach, where operation
processing times are expected to vary within a
given interval. Moreover the worst-case scenario
is bounded by a budget parameter Γ, which limits
the maximum number of operations whose pro-
cessing times may oscillate to their worst-case
values. The great advantage of this variant of the
problem consists in adjusting the level of con-
servatism of the solution, thus obtaining a bal-
ance between solution cost and robustness in the
worst case. We developed solution methods for
two different objective functions: makespan and
weighted sum of job completion times. To our
knowledge, this is the first work to obtain optimal
robust solutions to both objectives.

Regarding the makespan objective function,
we extended two classical MILP formulations for
the deterministic case and combined them with
a Column-and-Constraint Generation (C&CG)
framework. For this purpose, a dynamic program-
ming algorithm was also developed, allowing the
identification of worst-case scenarios in polyno-
mial time. Extensive experimental results demon-
strated that the proposed algorithm was effective
in obtaining optimal robust schedules for small
and medium-sized problems (including 50 × 2,
100× 2 and 10× 5, 15× 5 instances). Additionally,
based on a case study with two representative in-
stances, we have assessed the trade-off between
solution quality and cost, comparing robust solu-
tions to deterministic and stochastic ones. Also,
according to simulations based on three probabil-
ity distributions, such robust schedules presented
only a small overhead in the expected solution
cost.

We also developed a greedy randomized
adaptive search (GRASP) metaheuristic to ob-
tain efficient solutions for large problem instances
(up to 100 × 50). The evaluation of GRASP per-
formance required the adaptation of literature



instances, such as the well-known Taillard in-
stances. Experimental results have demonstrated
that the GRASP algorithm is efficient in obtaining
optimal robust schedules for small and medium-
sized problems, when compared to the C&CG ex-
act solution method. The evaluation was based
on 4 sets of test problems and GRASP has been
shown to produce optimal or near-optimal solu-
tions on all of these instances.

Finally, we explored the robust flow shop with
the weighted sum of job completion times objec-
tive, where the processing times of operations are
subject to uncertainty. In the context of the oil and
gas industry, this variant of the flow shop is asso-
ciated with the maintenance schedule for oil rigs.

When each piece of equipment is subject to main-
tenance, certain assistance operations must have
their order of execution respected. Additionally, to
complete this defined set of tasks, oil wells must
be shut down only to reopen to production at the
end of the schedule. The objective, in this case,
is to find a schedule that minimizes the loss of
oil production caused by the time that each oil
well has remained closed for maintenance. Based
on the Column-and-Constraint Generation frame-
work, we were able to obtain exact solutions to
instances of size up to 15× 5. In addition, we pro-
posed a case study applied to the oil and gas in-
dustry, using real data, obtained from the history
of Brazilian oil platforms.
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Resumo: Esta tese propõe novas abordagens
de solução para dois problemas importantes nas
áreas de energia, petróleo e gás, que envolvem
parâmetros de entrada incertos.

No contexto das redes elétricas inteligentes
(smart grids), o primeiro problema aborda a re-
alidade das micro-redes (microgrids) que comer-
cializam energia com a rede principal para vender
seu excedente de produção (oriundo de fontes
renováveis de energia) ou comprar um volume
adicional para atender à demanda dos consumi-
dores locais. Nesse cenário, dispositivos de con-
trole inteligentes são elementos importantes, ex-
ecutando a programação de energia em tempo
real de acordo com as oscilações de produção
e consumo. Como poderíamos esperar, a ger-
ação e o fornecimento de energia da rede prin-
cipal apresentam mais incerteza e risco, pois as
quantidades de energia comercializadas oscilam
ao longo do tempo. A primeira parte do trabalho
estuda uma estrutura flexível de assinatura de
contratos bilaterais de energia, estabelecida en-
tre fornecedores de energia elétrica e um cliente.
A estrutura de contratação é acoplada a uma
estratégia de comando em tempo real (RTCS),
adaptada à programação de energia de micro-
redes com incerteza tanto na produção quanto
no consumo de eletricidade.

Os principais produtos são um modelo de
Otimização Robusta multi-período embarcado,
capaz de fornecer soluções para comercializa-
ção de energia em vários períodos, minimizando
o custo pago pelo cliente no pior caso, bem como
um conjunto de estratégias de controle para pro-
gramação de energia em tempo real. Durante
a pesquisa, o modelo inicial de Otimização Ro-
busta foi aprimorado para representar a incerteza
orçamentária (budgeted uncertainty ), permitindo
soluções menos conservadoras, mas ao mesmo
tempo mais flexíveis e menos dispendiosas, sem
abrir mão da proteção contra os piores cenários.
A solução proposta foi testada usando dados de
consumo e produção coletados de uma micro-
rede instalada em um laboratório de pesquisa em
Tsukuba, no Japão.

Baseando-se em um conjunto de contratos
de compra de energia inspirados no mundo real,

experimentos de simulação confirmaram a eficá-
cia de diferentes estratégias de controle robus-
tas, de acordo com os tipos de cenário de in-
certeza. Para níveis de proteção específicos, as
estratégias de controle robustas foram capazes
de dominar as estratégias determinísticas (in-
gênuas) em todas as métricas de custo opera-
cional e confiabilidade do sistema. Os resultados
obtidos com um estudo de caso mostram que
a eficácia de cada solução robusta dependerá
do perfil de carga da micro-rede e da produção
renovável, que variam de acordo com a estação
do ano. Daí a importância da utilização da in-
certeza orçamentária, que fornece um conjunto
de soluções robustas, com diferentes níveis de
proteção, entre as quais o decisor pode escolher
a mais apropriada.

O segundo estudo envolve o planejamento da
produção sob incerteza, em particular o prob-
lema de programação conhecido como Robust
Permutation Flow Shop Scheduling. Adotamos
a abordagem de Otimização Robusta conhecida
como budgeted uncertainty, onde se espera que
os tempos de processamento das operações
variem dentro de um determinado intervalo. Além
disso, o cenário de pior caso é limitado por um
parâmetro de orçamento Γ, que limita o número
máximo de operações cujos tempos de proces-
samento podem oscilar para seus valores de
pior caso. A grande vantagem desta variante do
problema consiste em ajustar o nível de conser-
vadorismo da solução, obtendo assim um equi-
líbrio entre custo da solução e robustez no pior
caso. Métodos de solução foram então desen-
volvidos para duas funções objetivo diferentes:
makespan e soma ponderada dos tempos de
término dos jobs. Até onde sabemos, este é o
primeiro trabalho que conseguiu obter soluções
ótimas robustas para ambas as funções objetivo.

Em relação à função objetivo makespan, es-
tendemos duas formulações clássicas de MILP
para o caso determinístico e as combinamos
com uma estrutura de geração de colunas e
restrições (Column-and-Constraint Generation -
C&CG). Para tanto, também foi desenvolvido um
algoritmo de programação dinâmica, que per-
mite a identificação dos cenários de pior caso



em tempo polinomial. Extensos resultados exper-
imentais demonstraram que o algoritmo proposto
foi eficaz na obtenção de soluções robustas óti-
mas para instâncias de pequeno e médio porte
(incluindo 50 × 2, 100 × 2 e 10 × 5, 15 × 5). Adi-
cionalmente, com base em um estudo de caso
com duas instâncias representativas, avaliamos
o trade-off entre qualidade e custo da solução,
comparando soluções robustas com determinís-
ticas e estocásticas. Além disso, de acordo com
simulações baseadas em três distribuições de
probabilidade, os cronogramas robustos obtidos
apresentaram apenas uma pequena elevação no
custo esperado da solução.

Também foi desenvolvida uma metaheurís-
tica de busca adaptativa randomizada gulosa
(GRASP) para obter soluções eficientes para in-
stâncias grandes do problema (até 100 × 50). A
avaliação de desempenho do GRASP exigiu a
adaptação de instâncias da literatura, como as
conhecidas instâncias Taillard. Resultados exper-
imentais demonstraram que o algoritmo GRASP
foi eficiente na obtenção de soluções ótimas
robustas para instâncias de pequeno e médio
porte, quando comparado ao método exato de
solução C&CG. A avaliação foi baseada em 4
conjuntos de problemas de teste e o GRASP foi

capaz de obter soluções ótimas ou quase ótimas
em todas essas instâncias.

Por fim, exploramos o flow shop robusto
com o objetivo soma ponderada dos tempos
de término dos jobs, onde os tempos de pro-
cessamento das operações estão sujeitos à in-
certeza. No contexto da indústria de óleo e
gás, esta variante do flow shop está associ-
ada ao cronograma de manutenção das platafor-
mas de petróleo. Quando cada equipamento é
submetido à manutenção, determinadas oper-
ações devem ter sua ordem de execução re-
speitada. Além disso, para concluir esse con-
junto definido de tarefas, os poços de petróleo
devem ser fechados, podendo ser reabertos ape-
nas no final do cronograma. O objetivo, neste
caso, é encontrar um cronograma que mini-
mize a perda de produção de petróleo causada
pelo tempo que cada poço de petróleo per-
maneceu fechado para manutenção. Com base
no framework de Column-and-Constraint Gener-
ation, conseguimos obter soluções exatas para
instâncias de tamanho até 15 × 5. Além disso,
propusemos um estudo de caso aplicado à indús-
tria de óleo e gás, utilizando dados reais, obtidos
a partir do histórico das plataformas de petróleo
brasileiras.
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Chapter 1

INTRODUCTION

1.1 Context

This research proposes new robust solution approaches for two crucial problems in the energy,
oil, and gas industries, involving uncertain input parameters. The first one concerns the operation
of microgrids with uncertain production and consumption, including electricity trading and real-time
energy scheduling. The robustness of the energy grid, i.e., the capacity to be resilient to demand
fluctuations, has always been a topic of extreme importance. More recently, with the advent of hybrid
energy systems, new issues related to renewable energy production (e.g., wind, biomass, sun) and
consumption (i.e., electric cars, batteries) have become apparent. Optimization problems appear in
the operation of these systems, and uncertainty ought to be considered.

The second problem concerns the Oil and Gas industry, particularly oil-well maintenance
scheduling. Among several exploration and production problems, planning and scheduling of oil
platforms are of main interest. A frequent objective in these problems is to determine the optimum
values of decision variables to maximize profits, increase production rates and reduce production
costs. Nonetheless, considering uncertainty in such optimization problems is extremely important,
given the risky nature of the industry.

It is worth noting that the classic paradigm for decision making in Mathematical Programming
consists in developing a model which assumes that the input data is accurate and equal to nominal
values. In other words, the influence of data uncertainties on the quality and feasibility of the model
are not considered. Therefore, if data can assume different values than the nominal ones, several re-
strictions of the problem under analysis can be violated. The optimal solution obtained from nominal
data may not be appropriate or even possible. This context evidences the need to develop “robust”
models, as flexible as possible to data uncertainty.

When optimal decisions are calculated based on uncertain data, naïve solution approaches in-
clude applying a margin of error to the decision or considering a set of cases to obtain a balanced
judgment. Although useful, the success of these approaches depends on decision makers’ abilities
and the completeness of available data. Moreover, if business complexity increases, it may be im-
possible to adopt these strategies. A common solution approach that has been used in Operational
Research for a long time is Stochastic Optimization (SO) [53], whose fundamental premise states
that the uncertainty can be described by using probabilities.
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On the other hand, Robust Optimization (RO) [14] provides a different approach for optimizing
problems under uncertain conditions. According to it, the objective and constraint functions are only
assumed to belong to certain sets in function space. Uncertain problem parameters are modeled
as belonging to a set of uncertainties, which contrasts with the more traditional modeling approach
which uses probability distributions. The intention is to make a feasible decision no matter what the
constraints turn out to be, and optimal for the worst-case objective function.

RO is a suitable modeling approach when the uncertainty interval is known, but not necessarily
the probability distribution. Input data will assume an uncertain value in a specified fixed range.
This way, calculated solutions will be available, considering all constraints, when model parameters
vary within the ranges of uncertainty. If this is too restrictive, it is also possible to define with which
probability the solution will satisfy restrictions. The robustness of decisions is measured in terms of
better performance considering all input values.

While Stochastic Optimization can originate large models if several scenarios have to be an-
alyzed (thus making it important to limit the number of scenarios considered, and unfortunately
making the results less robust), Robust Optimization models in general grow only slightly when
uncertainty is added and, therefore, can be solved efficiently.

RO is currently becoming a popular approach, applied in several areas of Mathematical Program-
ming, ranging from Mixed Integer Linear Programming (MILP) to non-linear optimization. Moreover,
its solution methods have already been applied to several problems in the energy, and oil and gas
industries, including:

— Refinery operational planning [81] and scheduling of crude oil operations, an important part of
overall refinery operations [143, 88].

— In Field Appraisal and Development, optimization of oil production under uncertainty (including
the Recovery Factor (RF) of an oil field) can benefit from Robust Optimization [35, 158]. In
particular, many RO models are focused on the recovery phases of a petroleum reservoir [35,
156, 158].

— Maritime transportation [1] is a common problem in the oil and gas industry, where routing
problems are known to include many types of uncertainty related to unforeseen events (e.g.,
bad weather, mechanical breakdowns, and port congestion).

— Planning the transition to hybrid electric vehicules [51].

— Sustainable energy planning [7, 73, 41].

1.2 A robust contract collaboration framework for smart grids

In the context of smart grids, the first problem studied in this thesis is related to the collabo-
ration established between a partner (energy suppliers) and its clients (individuals, households or
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businesses, also known as end consumers) through the engagement on one or more day-ahead
energy contracts. For a client’s microgrid, the optimization framework allows for the two-way flow
of electricity, with periodic energy market transactions (buying or selling energy), alternative energy
sources (e.g., solar panels, wind turbines), electric cars, and energy storage systems (batteries). To
our knowledge, this work is the first one to consider multiple energy contracts in microgrid energy
management.

Undoubtedly, the proposed model’s most significant feature involves mitigating the effects of
uncertainty in energy production and consumption through Robust Optimization techniques. The
final product is a real-time control algorithm embedded in smart control devices, providing a cost-
effective strategy for buying and selling energy at each period of the day. Such strategy benefits not
only the clients, which can make considerable savings, but also the partner, since the amount of
energy bought out of engaged contracts tends to be minimized, thus reducing unexpected peaks in
energy consumption (increasing predictability in consumer demands).

1.3 Robust Scheduling applied to Oil and Gas industry

Exploration and production of hydrocarbons 1 constitute a high-risk endeavor. While geologists
deal with uncertainties related to structure, reservoir seal, and hydrocarbon charge, on the other
side, economic evaluations also have to consider risk when analyzing costs, the economic viabil-
ity of reservoirs, technology, and oil price. Indeed, even at the production stage, engineering pa-
rameters include a high level of uncertainties concerning critical variables, such as infrastructure,
production schedule, quality of oil, and operational costs. All these uncertainties involve high-risk
decision scenarios, which present no guarantee that hydrocarbon resources will be discovered and
developed.

In fact, the need for decision-making under conditions of risk and uncertainty has always been
common in the oil industry. However, only in 1956 the economics and risk of exploration were an-
alyzed using probability theory and explicit modeling of oil and gas exploration stages [4]. Making
important decisions in the petroleum industry requires the incorporation of significant uncertainties,
long time horizons, multiple alternatives, and complex value issues into the decision model.

In this thesis, we focus on the maintenance scheduling of oil wells. When the pieces of equipment
of each well go through maintenance, certain support operations must have their order of execution
respected. The objective is to find a suitable sequence of maintenance tasks that minimizes the
loss of oil production caused by the time each oil well remains closed for maintenance. The moment
and the order in which the wells are closed and subsequently reopened impact the oil platform’s
production. Therefore, minimizing the time a set of wells stays closed for maintenance generates

1. Includes all the necessary tasks to obtain oil and gas products, such as basin and plan analysis, leads, prospect
evaluation, development stages, facilities, logistics, and management.
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financial gains (more oil will be produced), in the order of thousands and even millions of dollars.

In particular, we investigate a variation of the problem known as Permutation Flow Shop. Solving
such scheduling problem taking real-world characteristics into account is a challenging task. First,
there is the need to solve the problem quickly and efficiently. Additionally, in oil and gas companies,
the data used as input to scheduling problems are actually forecasted, i.e., uncertainty is neglected
in most cases. The solution methods proposed in this thesis will then focus on developing Robust
Optimization models, and new solution approaches. Operation processing times are subject to un-
certainty, and the lower and upper bounds of processing times are the only information available.

1.4 Challenges

As mentioned before, Robust Optimization provides a different approach to optimization prob-
lems under uncertain conditions. According to it, the unknown parameters are modeled as belong-
ing to an uncertainty set, making it a more suitable modeling approach when the uncertainty set
is known, but not necessarily the probability distribution. Unlike other robust optimization models,
which generate only one conservative solution, the budgeted approach, applied in this thesis, allows
the adjustment of the level of conservatism of the solution (protection level), enabling the incorpo-
ration of different attitudes toward risk (e.g., risk-averse, risk-neutral, or risk-seeking). As a result,
the decision-maker can select the solution that achieves the best balance between robustness and
optimality.

Besides the development of the solution method itself, when applying Robust Optimization, one
major challenge concerns the quality evaluation of the obtained solutions, i.e., how it compares to
deterministic (nominal) and stochastic solutions. Existing works from the literature have provided
tools to accomplish this task. In particular, [16] proposed sensitivity analysis, which can be used
to assess the price of increasing or decreasing the protection level. Measures such as the price of
robustness and hedge value can be used to determine the trade-off between solution quality and
cost, comparing robust solutions to deterministic ones.

Additionally, in the RO literature, it is well-known that such a hedge against worst-case costs
might come at the price of higher expected costs in the long run. With this in mind, the Monte-Carlo
simulation can be applied to compare robust, deterministic, and stochastic solutions, by obtaining a
series of measures based on statistical data acquired from a vast number of simulation runs.

Even so, the proposal of comprehensive solution evaluation frameworks remains a challenge. In
this thesis, we apply a mixture of the aforementioned techniques, which can be used to evaluate the
quality of the obtained solutions and guide the decision-making process.
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1.5 Contributions

In the first part of the thesis, concerning microgrid energy management, we propose the Contract
Collaboration Problem (CCP) and its underlying multi-contract microgrid energy subscription frame-
work, based on flexible commitments. We develop a Robust Optimization model under budgeted
uncertainty to hedge against worst-case energy costs, coupled with Real-Time Command Strate-
gies (RTCS) for microgrid energy trading and scheduling. An extensive case study is presented,
including simulations on real microgrid data to evaluate the robust model performance. The results
demonstrate the effectiveness of the proposed energy contract framework, which could be applied
in the near future, along with the introduction of forward, short-term energy trading at the microgrid
/ local consumer level.

The second part of the thesis explores two robust scheduling problems derived from the classical
Permutation Flow Shop Problem. We start with the robust version of the classical makespan objec-
tive, which is then used as a research path for the subsequent development of solution approaches
to a second problem, based on the total weighted completion time objective.

Concerning the first scheduling problem, we propose an exact solution method, based on
Column-and-Constraint Generation, and a GRASP metaheuristic to provide efficient solutions to
problems of arbitrary size. In the solution process, we develop two robust counterpart formulations,
along with a polynomial-time dynamic programming algorithm to enumerate the worst-case scenar-
ios. The performance of the solution methods is evaluated, as well as the trade-off of robustness
price and hedge value, according to different selections of the budget parameter value Γ. Solution
quality assessment makes use of some techniques mentioned in Section 1.4.

We then solve the second robust flow shop problem, also under budgeted uncertainty, which now
minimizes the worst-case total weighted completion time. The final intent is to provide cost-effective
solutions to the real case of the oil-well maintenance scheduling problem, where the objective is
to minimize the worst-case value associated with loss of oil production. Similarly to the previous
problem, we use a Column-and-Constraint Generation algorithm to obtain exact solutions, based on
seven proposed Robust Counterpart (RC) models. Good quality results and low average solution
gaps are obtained on both synthetic and real-world problem instances, allowing the application of
this solution method to day-to-day maintenance scheduling.

We propose a set of benchmark instances for both variations of the flow shop problem, along with
a comprehensive case study to compare the obtained robust solutions to deterministic and stochas-
tic ones, in terms of worst-case and expected solution values. According to simulations based on
three probability distributions, it turns out that the cost overhead of the robust solutions is, in fact,
negligible, i.e., when analyzing the empirical estimation of the expected solution cost of robust and
stochastic solutions (as well as other statistical measures), there are no remarkable differences be-
tween them. Even though we cannot generalize it, the behavior observed in the case study does not

15



Part , Chapter 1 – Introduction

indicate “loss of quality” when adopting specific robust solutions instead of deterministic or stochas-
tic ones.

In summary, the experimental results indicate the feasibility of applying robust solution methods
to real-world problem instances, such as the ones from the oil and gas industry, whose current
solutions are obtained through methods that disregard either uncertainty or the impact of worst-
case scenarios. Based on their risk preferences, decision-makers can then choose an appropriate
schedule from a pool of robust solutions with different levels of exposure to uncertainty.

Besides the obtained experimental results and observations about how robust solutions can be
competitive in the long run, this thesis also contributes to data and code availability, since we publicly
made available all datasets, source code, and results used throughout this thesis, as indicated in
each chapter.

1.6 Personal Bibliography

All the contributions listed in Section 1.5 allowed us to make the following publications and sub-
missions:

— International Journals

— Mario Levorato, Rosa Figueiredo, Yuri Frota, Exact solutions for the two-machine robust
flow shop with budgeted uncertainty, European Journal of Operational Research, 2021,
Elsevier, ISSN 0377-2217, https://doi.org/10.1016/j.ejor.2021.10.021. [82]

— Mario Levorato, Rosa Figueiredo, Yuri Frota. Robust microgrid energy trading and
scheduling under budgeted uncertainty, Expert Systems with Applications, 2022, Else-
vier, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2022.117471. [83]

— International Conferences / Workshops

— Mario Levorato, Rosa Figueiredo, Yuri Frota, Antoine Jouglet, David Savourey. Real-time
command strategies for smart grids based on the Robust Contract-based Collaboration
Problem International Network Optimization Conference (INOC 2019), Jun 2019, Avi-
gnon, France [84]

— National Conferences / Workshops with proceedings

— Mario Levorato, Rosa Figueiredo, Yuri Frota, Antoine Jouglet, David Savourey. Real-time
energy scheduling for microgrids based on the Contract Collaboration Problem. 21eme
Conferénce ROADEF de la Société Française de Recherche Opérationnelle et d’Aide à
la Décision (ROADEF 2020), Feb 2020, Montpellier, France [85]
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— Mario Levorato, Rosa Figueiredo, Yuri Frota, David Sotelo. The 2-machine robust flow
shop problem under budgeted uncertainty. 22eme Conferénce ROADEF de la société
Française de Recherche Opérationnelle et d’Aide à la Décision (ROADEF 2021), Apr
2021, Mulhouse, France [86]

— Submitted Articles for International Journals

— Mario Levorato, David Sotelo, Rosa Figueiredo, Yuri Frota. Robust permutation flow shop
total weighted completion time problem: solution and application to the oil and gas indus-
try. Paper submitted to Computers & Operations Research, Elsevier, 2022.

1.7 Organization

The thesis comprises two different research problems. It is organized into four additional chap-
ters, which we summarize as follows.

In the microgrid context, Chapter 2 presents the Robust Contract Collaboration Problem, the
proposed robust framework and details an application to smart energy grids, including a realistic
case study based on a research center microgrid in Japan.

Chapter 3 proposes exact and approximate solution approaches for the Robust Permutation
Flow Shop Problem with the makespan objective, where operation processing times are uncertain
and vary in a given interval. Based on the concept of budgeted uncertainty, the objective is to obtain
a robust scheduling that minimizes the makespan of the restricted worst-case scenario, where only
a subset of job processing times will oscillate to their worst-case values.

In its turn, Chapter 4 presents the Robust Permutation Flow Shop scheduling problem that min-
imizes the worst-case total weighted completion time objective under budgeted uncertainty. Exper-
iments on real instances show that the obtained solution improvement is of great interest to the oil
and gas industry.

Finally, Chapter 5 summarizes the research work and proposes some leads to solve the existing
limitations. Some major perspectives are also identified.
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Chapter 2

THE ROBUST CONTRACT COLLABORATION

PROBLEM (RCCP)

Given the advent of smart grids, we have witnessed several technological developments, and
new electricity market rules and regulation mechanisms. The use of sensors, online connections,
computational resources, and control strategies now plays a crucial role in ensuring reliability, reduc-
ing costs, and improving the efficiency of energy networks. Powered by renewable energy sources,
microgrids can trade energy with the main grid to either sell its production surplus or buy an ad-
ditional amount to support local consumers’ demand, including flexible loads, such as smart appli-
ances and electric vehicles. In this scenario, smart control devices are important elements, executing
real-time energy scheduling according to fluctuations in production and consumption.

As we might expect, the main grid’s power generation and supply become more unscheduled
and risky as energy trading quantities oscillate over time. In this chapter, based on a flexible energy
contract subscription framework, we propose real-time command strategies to be used by smart
control devices, and suited for energy scheduling of microgrids with uncertainty in both production
and consumption. The main contributions are a Robust Optimization model for contract subscription
under budgeted uncertainty, and a set of heuristic control strategies for real-time energy scheduling.
The robust model can provide solutions for multi-period-ahead trading of energy, while minimizing
the restricted worst-case cost. An extensive computational case study, conducted on a real microgrid
instance, has then confirmed the efficacy of the proposed solution approach.

2.1 Introduction to the problem

A microgrid consists of a small-scale integrated energy system that can manage its own gener-
ation and storage resources to dynamically supply local consumers’ electricity demands [80]. Since
a microgrid can integrate various sources of distributed generation, especially Renewable Energy
Sources (RES), an increasing participation of microgrids can help relieve the supply tension of
conventional generators in the main grid. However, the high fluctuation of RES production makes
energy management more complex and uncertain. Consider, for example, a microgrid powered by
a photo-voltaic system. Even if energy consumption follows a regular pattern, it is difficult to predict
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its renewable generation accurately as it is subject to sudden weather changes. Consequently, the
microgrid will present a volatile production profile and sometimes its energy storage capacity may
not be able to cope with the instant demand for energy. Therefore the subsequent decision, how
much electricity to buy, will inherit a considerable level of uncertainty, which is also undesirable for
the main grid, since it introduces risk and higher operational costs.

Other relevant issues concerning microgrids have arised with the introduction of free energy
markets. Consumers became able to produce energy (thus being called prosumers) and, in parallel,
contract types, market models and pricing schemes have evolved [96, 65, 100, 5]. In liberalized
markets, large-scale generators, suppliers, industrial consumers and other financial intermediaries
trade energy in wholesale markets, including day-ahead auctions, where agents submit their bids
and offers for delivery of electricity for each hour of the following day, before market closing time.
On the other hand, small-scale prosumers are currently serviced by large suppliers in the retail
market. Nonetheless, forward energy trading is expected to happen at the local level, with microgrids
and actively managed distribution networks becoming more widespread [23]. As new challenges
related to local purchasing fluctuations of prosumers arise, the main grid must regulate and stabilize
the microgrids’ energy purchasing behaviors. One way to accomplish this objective is to introduce
flexible commitments contracts [133].

This study addresses a new framework for microgrid energy trading, with the novel introduction
of flexible commitments in a multiple contract setting. The impacts of this contract-based framework
are also investigated from the viewpoint of microgrid energy management. Consider a time horizon
divided into discrete time periods. For each period, one or more contracts are offered, defining either
selling or purchasing commitments, and providing the flexibility to trade energy between minimum
and maximum amounts. Bearing in mind the uncertain nature of the renewable resources, the pro-
sumer must choose the contracts for the whole time horizon, to minimize the worst-case cost, while
guaranteeing that each commitment will be honored. In a second level of decision, in each time
period, following the list of engaged contracts and minimum/maximum commitment constraints, a
real-time scheduler coordinates the microgrid’s systems, making energy trading and transfer op-
erations, according to current storage units’ status and instantaneous information regarding local
electricity production and demand.

Although microgrid energy dispatch has been well studied in the literature, existing methods
do not investigate the subscription to multiple and flexible electricity contracts, or even commit to
future energy usage, according to forward markets. The same holds for works focused on dynamic
electricity pricing [96, 65]. The closest work is by [32], which, based on Stochastic Optimization,
proposed a dynamic contract mechanism to smooth out fluctuations of microgrids’ purchasing from
the main grid with time-specific commitments. Their research, however, assumes a single dynamic
contract for the whole time horizon, in which the microgrid buys electricity from the energy company.

Among the benefits of flexible contracts, it enables small customers to engage in a set of short-
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term contracts and spread energy purchasing decisions over a period of time. Besides avoiding the
risk of relying on a single energy contract, the client also has the option to sell the contracted energy
back to the grid and start over, which could be used to hedge against risk.

Flexible contract engagement may have drawbacks as well. Intelligent energy scheduling strate-
gies are needed, a smart meter is essential to take accurate readings, and purchasing decisions
are often more complex, with the client more exposed to risk, as market prices can go up or down.
Moreover, if the client needs to buy out of any engaged contract, the energy price will be higher
than the existing contract prices. For these reasons, the choice of energy contracts should be robust
enough to protect the consumer even in the worst-case scenario, given its operational constraints.
Traditional modeling approaches for handling uncertainty include Robust Optimization (RO) and
Stochastic Optimization (SO). In this work, RO was chosen for two main reasons. First, probability
distributions for energy production/consumption are generally unknown for recently-installed micro-
grid energy systems. Second, SO methods typically rely on scenario trees for modeling uncertainty,
which makes them computationally expensive [102]. When applying a RO approach, the obtained
models have improved tractability with less computational effort.

In a conference work [87], we introduced the first robust microgrid energy management model
based on an electricity contract subscription framework with flexible commitments. In that previous
work, we assumed a conservative box-shaped uncertainty set and obtained preliminary computa-
tional results on a single realistic case-study instance. In the present work, we extend both model
and real-time command strategies: a budgeted uncertainty robust counterpart, which controls the
level of solution conservatism, is described [16] and used in a look-ahead strategy for the real-time
energy scheduling. We also present extensive computational experiments on a set of multiyear and
seasonal case-studies based on data from a Japanese research center microgrid recently described
in the literature [140].

The main features of this work are summarized as follows. Section 2.2 introduces the Contract
Collaboration Problem and the underlying framework. Once the problem has been formally defined,
Section 2.3 presents the state of the art on microgrid energy trading and management literature, and
related works on Robust Optimization. In the context of the forward electricity market for microgrids,
we describe in Section 2.4.2 a mathematical model for multi-contract energy trading with flexible
commitments. A robust version of this model is then presented in Section 2.5, minimizing the costs
and protecting against the worst-case realization of local production and consumption of electricity
under budgeted uncertainty. Then, in Section 2.6, we describe real-time command strategies for
energy scheduling within the microgrid, considering the contracts previously selected by our model.
Finally, we present a case study, based on a real microgrid, detailing the results of these scheduling
strategies, when coupled with the robust model solution (list of engaged contracts), in contrast with
a deterministic approach to solving the problem.
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2.2 The Contract Collaboration Framework
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...

CONTRACTS

Figure 2.1 – The Contract Collaboration framework

Considering the context of demand response and smart grids [121], we propose a Contract Col-
laboration framework, established in two phases (Figure 2.1). It consists of an approach to handling
energy management in microgrids, along with purchase/sell contracts based on flexible commit-
ments.

The first level of decision concerns the list of contracts the client can subscribe to, at each
time period, given the microgrid’s energy demands and operational constraints (Contracts table in
Figure 2.1). The solution to the so-called Contract Collaboration Problem (CCP), formally described
in Section 2.2.1, provides the client with a commitment planning for the time horizon (i.e. which
contracts to engage at each time period). Once this decision has been made, the list of engaged
contracts cannot be changed for the whole time horizon.

In a second level of decision, inside each time period, a Real-time Command Strategy (RTCS)
is responsible for performing on-line energy scheduling (item 2 in Figure 2.1). As explained in Sec-
tion 2.2.2, the RTCS follows a predefined strategy to balance energy demand and supply at each
instant of time, considering renewable energy sources, storage devices, drivable systems and de-
ciding how much energy will be traded via each engaged contract.
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2.2.1 The Contract Collaboration Problem (CCP)

The contract collaboration is established between two entities, both producers and consumers
of a same kind of energy resource. One entity is called the client (individuals, households or busi-
nesses) and the other one the partner (energy supplier). These two entities have to collaborate in
order to balance their consumption and production over a given time horizon. We consider a set
{T0, T1, . . . , Tt̄} of time points dividing the given time horizon into a set I = {I0, . . . , It̄−1} of t̄ time
periods where It = [Tt, Tt+1), for each t ∈ {0, 1, 2, . . . , t̄− 1}.

The collaboration between the entities is established by the use of a set C of contracts of con-
sumption or production, both offered by the partner. Let Ct ⊆ C be the subset of contracts offered
by the partner at time period It. Each contract c ∈ Ct has its own functional constraints and its own
gain/cost functions. The partner determines the set Ct and sets a price to engage each contract
c ∈ Ct. On each time period It ∈ I, the client is free to enter into a commitment with the partner
through any subset of Ct. However, these commitments have to be taken by the client at the begin-
ning of the time horizon and must be honored. At any time period, the client also has the option to
buy energy out of any engaged contract, but at a higher cost which can vary with the time period.

The client’s microgrid is composed by a set of systems S that produce/consume energy, each
one with its own functional constraints and a cost/gain of consuming/producing over the time peri-
ods. In particular, the consumption/production can be driven for a subset of these systems (drivable
systems) while the consumption/production is already planned for the other ones (non-drivable sys-
tems). Drivable systems are devices that allow being turned on/off or that must be loaded/unloaded
from time to time (e.g., batteries, electric car), whereas non-drivable systems must be permanently
turned on. Additionally, some of the drivable systems can store the energy resource under a capac-
ity constraint and provide it when it is needed, thus being called storage systems. The uncertainty
considered in the problem lies in a subset of the non-drivable systems, for which only uncertain
previsions of the consumption/production are known. The so-called uncertain non-drivable systems
include, for example, renewable generation and variable energy consumption.

The Contract Collaboration Problem (CCP) consists in determining a cost-minimizing contract
subscription from the client to the partner that satisfies all client-side consumer demands over the
time horizon, and also guarantees that each commitment taken by the client with the partner is
honored. For a detailed description of the CCP models, we refer the reader to Sections 2.4 and 2.5.

2.2.2 The Real-Time Command Strategy (RTCS)

In the first level of decision, the list of engaged contracts (i.e., the solution of the CCP problem)
is set. The second level of the framework is in charge of defining a Real-Time Command Strategy
(RTCS) that guarantees these contracts will be honored. The RTCS operates on smart control
devices, being in charge of making scheduling decisions according to instantaneous energy supply
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and demand fluctuations observed on customers’ premises. Thanks to the development of advanced
metering and communication infrastructure, these control devices have the ability to regulate energy
consumption by directly communicating to the energy supplier and to other devices in the microgrid
so as to prevent system overloads. Interesting examples would be the load reduction of a set of
electric vehicle charging stations and the automatic activation of a group of electric generators.

The RTCS consists of a heuristic strategy that schedules, in real-time, the set of actions to be
taken in order to properly manage the client’s microgrid. From a real-time point of view, inside each
time period It ∈ I, the instantaneous production/consumption of each microgrid system is measured
every ∆ time units. It is also at this time scale that drivable systems are driven, i.e, every ∆ time
units a scheduling decision has to be taken by the control device, embedded in the client’s microgrid,
considering its state. For example, according to energy load and in real time, a group of generators
(a type of drivable system) may be switched on during a period of higher demand and, analogously,
a set of storage systems such as batteries can store energy during off-peak times in order to ease
high demand supply in peak periods.

Regarding the energy contracts, the RTCS is in charge of deciding how much energy will be
bought or sold, given each engaged contract and its minimum and maximum commitments. For
instance, given a time period, if the client engages contract c, energy quotas (for buying or selling
electricity) are established for each time period and, analogously, for each time slot.

The main objective of the RTCS is to reduce power consumption costs and promote load bal-
ance, while dealing with the effects of uncertainty in both production and consumption of energy.
As we can expect, the RTCS operates subject to the CCP constraints, guaranteeing both contract
commitments and energy balance at each moment. A full description of the real-time command
strategies developed in this work is available in Section 2.6.

2.3 Literature review

In this section, we highlight existing works involving the two subjects addressed in the paper:
microgrid energy scheduling (RTCS) and electricity trading models (such as the CCP). Also, we
review works presenting robust approaches to related problems.

2.3.1 Microgrid energy scheduling and electricity trading models

Various approaches have been proposed to optimize microgrid operational schedules, with dis-
tinct objectives, constraints, and methods for handling uncertainty. As a consequence, different
terms have been used to refer to similar real-time control mechanisms: microgrid energy schedul-
ing [106, 164, 131, 160], real-time scheduling [57], real-time control system [152, 153], real-time
power management and control [25], energy management policies [104], energy dispatching poli-
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cies [151], microgrid energy management [163, 139] and microgrid operation [59, 116]. Some au-
thors have also studied the islanded-mode operation of microgrids [56, 60].

In this review, we will focus on grid-connected microgrids, since energy trading with the main grid
is a main premise of our work. As far as grid-connected microgrids are concerned, many works have
applied risk-averse optimization methods to energy scheduling, dealing with uncertainties in several
model parameters: energy prices, solar power production, wind power generation, Plug-in Electric
Vehicle (PEV) consumption and availability, and load demand. An extensive, but not exhaustive, list
of papers on microgrid energy scheduling is presented in Table 2.1, including the approach used to
deal with uncertain data (SO or RO), which microgrid elements are assumed to be uncertain and
the type of contract with the main grid.

The common point of existing works is how the microgrid interacts with the external energy mar-
ket: energy transactions are modeled through a single contract (often with the utility grid/retail mar-
ket), via purchase and sale prices that may vary in time, sometimes including a minimum/maximum
tradable energy amount. One exception is the work of [106], where the prosumer can have at most
two active contracts: one with a retailer and one with the grid company. In other words, flexible con-
tract frameworks are not investigated. Such type of contract allows buying/selling from/to the main
grid not only at different prices (even in the same time period), but also from/to different energy
companies at the same time.

Ref SO RO Uncertainty Solution Method Contract
[25] x PV, spot price Decentralized multi-agents Single (Spot market)
[32] x REN, load de-

mands
Stochastic Dynamic Program-
ming

Single dynamic contract

[106] x Energy loads, en-
ergy prices

General stochastic MILP model 1 contract with Utility grid + 1
dynamic price contract

[151] x Wind, PEV Scenario generation and reduc-
tion

Single (Utility grid)

[131] x Wind, PV Two-stage stochastic model
(with scenarios)

Single (Utility grid)

[58] x REN, energy
prices, energy
consumption

Constrained stochastic program-
ming; Lyapunov optimization

Single (Utility grid)

[104] x REN, load de-
mands

Stochastic dynamic program-
ming

Single (Utility grid)

[152] x PEV, PV, home
load demand

Stochastic Dynamic Program-
ming

Single (Utility grid)

[99] x Wind, PEV, energy
prices

Multi-objective ILP and scenario
analysis

Single (Utility grid)

[160] x Residual load Chance-constrained optimization Day-ahead commitments
[139] x PV, Wind Bilevel stochastic MIP Multiple contracts, but can only

subscribe to one
[153] x PEV Stochastic Dynamic Program-

ming
Single (Utility grid)

[163] x REN Dual decomposition and dis-
tributed subgradient

Single (Spot market)

[164] x REN Dual decomposition and dis-
tributed subgradient methods

Single (Spot market)

[144] x Net demand, heat
demand, and elec-
tricity price

Chance constraint approxima-
tion and RO (budget-constrained
& distribution uncertainty)

Single (Utility grid)

[59] x CHP, electrical
loads

Budget-constrained min-max ro-
bust counterpart

Single (Utility grid)

[27] x Wind Scenario-robust MILP based on
realistic weather forecast scenar-
ios

Single (Utility grid)

[57] x REN, load demand Day-ahead scheduling with two-
stage RO

Single (Utility grid)

[116] x PV Two-stage RO with budget con-
straints

1 firm contract and 1 non-firm
contract

Table 2.1 – Summary of the works listed in literature review. SO (Stochastic Opt model), RO (Robust
Opt model). Uncertainty: list of uncertain parameters. REN (Renewable energy production), CHP
(Combined Heat and Power), PEV (Plug-in Electric Vehicle), Wind (Wind Generator), PV (Photo-
Voltaic). Contract: type of contract used to buy and sell energy.
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The novelty in our work is the incorporation of a multi-contract subscription framework for micro-
grids, based on flexible commitments. Even though such contract model is not present in existing
low-voltage energy markets, it can be applied as an extension to the forward market (via an aggre-
gator or similar energy service provider), or in local microgrid markets, following market structures
depicted in [105, 72].

To our knowledge, only two authors present research directions similar to ours. From the view-
point of multiple energy contracts, in [139] different Generation Companies can offer buy/sell con-
tracts to the microgrid. However, although the microgrid can receive contract offers from different
competing companies, it can select at most one contract for the whole time horizon. As far as con-
tract flexibility is concerned, [160] explored the stochastic scheduling of microgrids where energy
exchange must be made with day-ahead commitments. In the proposed market structure, the mi-
crogrid may be either rewarded for respecting existing commitments, or penalized for deviating too
much from them. Despite this flexibility, their work assumes a single long-term contract with the
utility company.

2.3.2 Related works on Robust Optimization

The retailer-supplier problem is a NP-hard supply chain problem in which decisions are normally
taken in a finite horizon of time periods. The retailer must order some products from a supplier for
each period, being sometimes allowed to change these orders according to customer’s demand.
Ordering, holding and shortage costs are involved. Demand uncertainty is frequent in this scenario
and should be taken into account. Flexible commitments [11] is a coordination mechanism that
aims to assist both retailers and suppliers in handling the uncertainty in customer’s demand in a
cooperative way. In this model, the retailer-supplier relation is established by contracts through which
the retailer may have some flexibility to purchase quantities that actually deviate from his original
commitments. Some variants of this mechanism were proposed in the literature, including orders
that can be changed along the time horizon, sometimes incurring in penalty costs. The retailer-
supplier problem with flexible commitments (RSFC problem) is a NP-hard problem.

[12] applied the Affinely Adjustable Robust Counterpart methodology (AARC) to the RSFC prob-
lem with uncertain demand, based on the box uncertainty set. First, the retailer places his commit-
ments for each time period. Then, at the beginning of each time period, the retailer is allowed to
order a quantity not necessarily respecting his commitment, but subject to certain lower and upper
bounds. Cumulative bounds are also imposed, and the supplier specifies a penalty that must be paid
due to any deviation between committed and actual orders. The cost function involved is minimized
against the worst-case demand occurrence (min-max criterion). In the present work, the applied
solution approach presented in Section 2.5 is similar to the one used by [12].

Besides the RO works listed in Table 2.1, which directly involve microgrids, we also refer the
reader to additional RO works on related problems with uncertain demand and production of elec-
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tricity. The first one involves the application of constraint generation and duality-based reformulation
to solve the robust multistage Unit Commitment Problem, using both budgeted uncertainty and a
customized dynamic uncertainty set [91]. The second work [26] involves an aggregator of residen-
tial prosumers, which participates in the day-ahead energy market to minimize operation costs.
Budgeted uncertainty is considered in energy prices, demand and PV production, and Adjustable
Robust Optimization is employed. The model takes into account energy purchases in the wholesale
market, with the possibility of buying additional blocks of energy. However, no flexible commitments
were considered in this framework.

2.4 A deterministic version of the CCP

In this section, we will present a simpler, deterministic model version of the CCP, denoted as
DCCP, where the value of the uncertain parameters are assumed to be known in advance. The
formulation comprises each microgrid component, its operational constraints, as well as the under-
lying contract subscription framework. The main idea of the CCP model is to find a cost-minimizing
solution which provides the client with a list of energy contracts to engage in each time period, con-
sidering the whole time horizon. In the rest of this text, time is discretized into periods as indicated
by I0, .., It̄−1 and energy units are assumed to be in kWh. Moreover, we will often write t for a time
period It.

2.4.1 Nomenclature
Sets
I Time periods: I = {I0, .., It̄−1}
T Time period indexes: T={0, .., t̄− 1}
Ct ⊆ C Contracts offered by partner at period It
SD ⊆ S Certain drivable systems
SND ⊆ S Certain non-drivable systems
B (Certain, drivable) storage systems

Input parameters - Partner
vtc ≥ 0 fixed cost paid by the client for engaging contract c ∈ Ct at period It, ∀ t ∈ T
αtc ≥ 0 cost per energy unit consumed/provided according to contract c ∈ Ct at period It
Π−t,c minimal energy quota for contract c ∈ Ct during period It
Π+
t,c maximal energy quota for contract c ∈ Ct during period It

βt ≥ 0 cost per energy unit consumed by the client at period It not provided by engaged contracts, ∀ t ∈ T
Input parameters - Client
δt ≥ 0 length of period It: how many slots of ∆ time units compose this time period
P ts energy consumption(< 0)/production(> 0) of s ∈ (SD ∪ SND) during the whole time period It
vs cost per energy unit produced(> 0)/consumed(< 0) when using system s ∈ (SD ∪ SND)
Pmin

t
s minimum energy to be produced(> 0)/consumed(< 0) by drivable system s ∈ SD before the end of period It
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vs ≥ 0 cost of energy unit charged/discharged by storage system s ∈ B
umins ≥ 0 minimal storage level of system s ∈ B
umaxs ≥ 0 storage capacity of system s ∈ B
u0
s ≥ umins initial storage level (at period I0)

0 ≤ λs ≤ 1 the loss coefficient of system s ∈ B
θabss > 0 maximum energy stored in s ∈ B during ∆ time units

θrefs > 0 rated capacity, i.e., maximum energy delivered during ∆ time units

Model variables

ytc

{
1 if the client engages contract c ∈ Ct at period It

0 otherwise

qtc amount of electricity sold (< 0) / bought (> 0) by the client at time period It related with contract c ∈ Ct
0 ≤ xts ≤ 1 percentage of time period It drivable system s ∈ SD is used

gts ≥ 0 energy fed into storage system s ∈ B during period It
hts ≥ 0 energy consumed from storage system s ∈ B during period It
rts ≥ 0 amount of energy stored in s ∈ B at time period t ∈ T ∪ {t̄}
et ≥ 0 extra amount of energy requested by the client (out of any engaged contract) at time period It

Given a set of contracts offered by the partner, each contract c ∈ Ct is associated with a time
period It and its fixed (vtc) and variable prices (αtc) may vary if the period is in peak hours or off-
peak. By engaging in a contract, the client must respect the established energy quotas Π−t,c and Π+

t,c,
that may be positive (if the client purchases energy from the partner) or negative (the client sells
energy to the partner). The partner can also sell energy to the client out of any engaged contract at
a specific unit price βt.

The information about energy consumption (or production) P ts of all drivable and non-drivable
systems is discretized into time periods It. Moreover, in the microgrid’s energy scheduling, each
time period It is further subdivided into δt time slots of size ∆, where ∆ is an input parameter. At
this time scale, the instantaneous production/consumption of each microgrid system is measured.

Each system s ∈ SD∪SND∪B may have an associated operational cost vs (e.g. energy produced
by a fuel generator has positive cost). This cost can also be zero (e.g. consumer system such as a
building). Additionally, for each drivable system s ∈ SD, we define minimum requirements for energy
production/consumption at time period It. In other words, for each consumer drivable system s,
Pmin

t
s > 0 means system s must be supplied with Pmin

t
s units of energy before the end of time

period It (e.g. when charging an electric car). Normally, Pmints = 0 if s is a producer drivable system.

Last but not least, the storage systems are a key component for the success of the contract
subscription framework. A set of batteries can store energy during off-peak time periods in order to
ease high demand supply in peak periods. Besides the unit cost, there are several battery-specific
parameters related to the storage levels, capacity and efficiency: umins , umaxs , u0

s, λs, θabss and θrefs .
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2.4.2 Mixed-Integer Linear Programming formulation

Based on the model variables defined, we present a Mixed-Integer Linear Programming (MILP)
model, whose optimal solution provides the client with a commitment planning for the whole time
horizon: which contracts to engage in each time period.

Min
∑
t∈T

∑
c∈Ct

(vtcytc + αtcq
t
c) +

∑
s∈SD

vs
∑
t∈T

P tsx
t
s +
∑
s∈B

vs
∑
t∈T

(gts + hts) +
∑
t∈T

βtet (2.1)

∑
t′≤t P

t′
s x

t′
s ≥ Pmin

t
s, ∀ t ∈ T, ∀ s ∈ SD : P ts > 0 (2.2)∑

t′≤t P
t′
s x

t′
s ≤ Pmin

t
s, ∀ t ∈ T, ∀ s ∈ SD : P ts < 0 (2.3)

hts ≤ rts, ∀ t ∈ T, ∀ s ∈ B (2.4)

r0
s = u0

s, ∀ s ∈ B (2.5)

umins ≤ rts ≤ umaxs , ∀ t ∈ T ∪ {t̄}, ∀ s ∈ B (2.6)

rt+1
s = rts − hts + λsg

t
s, ∀ t ∈ T, ∀ s ∈ B (2.7)

gts ≤ θabss δt, ∀ t ∈ T, ∀ s ∈ B (2.8)

hts ≤ θrefs δt, ∀ t ∈ T, ∀ s ∈ B (2.9)

Π−t,cytc ≤ qtc ≤ Π+
t,cy

t
c, ∀ t ∈ T, ∀ c ∈ Ct : Π+

t,c > 0 (2.10)

Π+
t,cy

t
c ≤ qtc ≤ Π−t,cytc, ∀ t ∈ T, ∀ c ∈ Ct : Π−t,c < 0 (2.11)∑

c∈Ct
qtc +

∑
s∈SND

P ts +
∑

s∈SD
xtsP

t
s +

∑
s∈B λsh

t
s + et ≥

∑
s∈B g

t
s, ∀ t ∈ T (2.12)

The objective function (2.1) includes, respectively: (i) the fixed costs involved in the client-partner
engagement through a set of contracts; (ii) the sum of costs/gains of consuming/providing the
amounts of electricity predicted by the set of engaged contracts; (iii) the costs of using drivable
systems; (iv) the costs of using storage systems (including depreciation); (v) the costs of consuming
extra amounts of electricity not predicted in the set of engaged contracts.

There are also costs associated with the use of non-drivable systems. However, since these
costs are fixed, they do not need to be included in the objective function to be minimized.

Constraints (2.2)-(2.3) ensure the minimum usage of drivable system s, in case it produces
(2.2) or consumes (2.3) electricity. Constraints (2.4) restrict the amount of electricity consumed from
storage system s during a time period to be at most the amount stored. Additionally, constraints
(2.5)-(2.6) state that the initial, minimum and maximum capacities of storage system s must be
respected. Constraints (2.7) determine the amount of electricity stored on storage system s at the
next time period. It must take into account its loss coefficient λs, i.e., when storing gts kWh of energy,
only λs % is effectively stored in s. Remark that hts includes the amount of energy provided by s as
well as the energy lost during this operation. The maximum quantity of energy that can be stored by
storage system s during a time period t is guaranteed by constraints (2.8), while constraints (2.9)
ensure the maximum quantity of energy that can be provided by a storage system s during a time
period t.

Constraints (2.10)-(2.11) establish minimum and maximum quotas for contracts. They also guar-
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antee that a non-zero consumption/production related with a contract available at a certain time
period will imply an engagement to it.

Finally, constraints (2.12) define the electricity balance at each time period. When calculating the
energy refunded by storage systems s, these inequalities must take into account the amount of en-
ergy lost during discharge, therefore hts must be reduced proportionally to λs %. Besides, at any time
period, total consumption may be greater than the energy available from the microgrid’s production,
storage systems and currently engaged contracts. In this case, the microgrid can buy additional en-
ergy et from the partner in order to fulfill unforeseen demand. We also assume a dissipation system
is available with no cost of use associated.

We denote by MIP(DCCP) the formulation defined by objective function (2.1), constraints (2.4)–
(2.12) and appropriated integrality and bounding constraints. With |T |(|SD|+ 5|B|+ |C|) constraints
and 2|C| + |T ||SD| + 3|T ||B| + |T | variables, this formulation is classified as a Mixed-Integer Pro-
gramming (MIP) model [150], whose solution can be obtained with both commercial and open-
source solvers, using well-known branch-and-bound algorithms. As seen in the experiments with
case study instances, the solution to the deterministic CCP is returned by CPLEX solver in less than
a second.

2.5 A robust formulation of the CCP

We consider in this section the robust version of the CCP, denoted as RCCP, in which the un-
certainty of non-drivable systems will be treated via Robust Optimization methods. The developed
model is capable of protecting against the worst-case realization of production and consumption of
electricity, within a provided uncertainty set, considering all uncertain non-drivable systems, denoted
as ŜND ⊆ S. Once again, the model solution consists of a list of contracts to engage in each time
period, for the whole time horizon.

Regarding the uncertainty in non-drivable devices’ production/consumption, the only information
required by the model are the lower and upper bound parameters, namely {P ts , P ts}, ∀t ∈ T, ∀s ∈
ŜND, which can be determined via inference schemes based on historical data:
∀ t ∈ T , ∀ s ∈ ŜND:

P ts lower bound on energy consumption(<0)/production(>0) of s in the whole period t

P ts upper bound on energy consumption(<0)/production(>0) of s in the whole period t

Similarly to drivable and non-drivable devices, uncertain devices s ∈ ŜND also have associated
operational costs vs, per energy unit consumed/produced.

2.5.1 Definition of the uncertainty sets

In this work, we adopt a min-max criterion to assess the cost of feasible solutions to the problem.
This means that we look for a solution that is feasible for each attribution of the uncertain parameters
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and that minimizes the cost function in the worst case scenario. The uncertain data are assumed to
be varying in a given uncertainty set.

The formulation of the Robust Optimization model is connected with the definition of this uncer-
tainty set and this definition depends on the suppositions made on the problem being solved. In our
problem, the set U(t, s) describes how the uncertainty is defined.
∀ t ∈ T , ∀ s ∈ ŜND:

P̂ ts ∈ U(t, s) energy consumption(<0)/production(>0) of s in the whole time period t

Consider a vector v ∈ <n×m. This text uses the vector notation vi = (vij ; j = 1, . . . ,m) and
vj = (vij ; i = 1, . . . , n). Hence, P t = (P ts ; s ∈ ŜND) and P s = (P ts ; t ∈ T ). If we presume that each
uncertain parameter belongs to an interval, i.e, U(t, s) = [P ts , P ts ], the box uncertainty set [128],
denoted here by Ubox, can be defined as:

Ubox = ×
s∈ŜND

Us

where Us = [Ps, Ps], s ∈ ŜND.
Assuming that the uncertain parameter belongs to an interval is equivalent to say that it lies

between a mean value and peak values, i.e.,

U(t, s) = {P̂ ts = v̄ts + ∆t
sv̂
t
s | −1 ≤ ∆t

s ≤ 1},

with v̂ t
s = (P ts − P ts)/2 and v̄ t

s = P ts + v̂ t
s.

Now suppose that, given all uncertain devices s ∈ ŜND and time periods t ∈ T , at most Γ
uncertain parameters P̂ ts may reach peak values in the whole time horizon. We can then define the
budget uncertainty set, studied in [16] and largely applied [1, 91, 26]:

UΓ = {P̂ ∈ Ubox :
∑
s∈ŜND

∑
t∈T | ∆t

s |≤ Γ}.

The purpose of the budget of uncertainty is to control the level of conservatism of the robust
solution, in terms of deviations in the uncertain model parameters. It allows an intuitive interpretation
for the decision maker, providing a trade-off between the nominal performance of the deterministic
model and the risk protection of the most conservative model. Additionally, the obtained robust
counterpart remains efficiently solvable, provided that the original nominal problem can be effectively
solved.

In the context of the RCCP, with the objective of simplifying the model and the analysis of the
obtained results, we opted for a single budget parameter Γ. It controls the total number of deviated
parameters regarding both energy consumption (P̂ ts < 0) or production (P̂ ts > 0) of all uncertain
devices s ∈ ŜND, over all time periods t ∈ T .

2.5.2 Discussing the uncertainty definition

It is expectable to have the worst case scenario defined by the lowest possible production and/or
by the highest possible consumption of systems in set ŜND. From Example 2.5.1, we can see that
the opposite can also happen, i.e., the worst case scenario defined by the uncertain parameters can
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also be associated with the highest possible production of an uncertain system s ∈ ŜND.

Example 2.5.1. Let T = {0}, C = C0 = {c1}, SND = {s1}, SD = B = ∅ and ŜND = {s2}.
The contract offered by the partner has costs vtc1 , α

t
c1 > 0, minimal and maximal consumption Π−c1 =

Π+
c1 = ā. The cost of buying energy not provided by contract c1 is β0 > (vtc1 + āαtc1)/ā. The certain

and uncertain systems s1 and s2 are, respectively, a consumption and a production system. System
s1 has a cost vs1 = 0 and a consumption P 0

s1 = −ā. System s2 has a cost vs2 > (vtc1 + āαtc1)/ā and
an uncertain production P̂ 0

s2 ∈ [0, ā]. Consider β0 < vs2. The optimal solution is yc1 = 0. The worst
case scenario is given by P̂ 0

s2 = ā with a cost equal to āvs2. If β0 > vs2, the optimal solution is also
yc1 = 0, but the worst case scenario is given by P̂ 0

s2 = 0 with a cost of āβ0.

Situations like the one depicted in this small example (highest production/lowest consumption of
non-drivable uncertain systems) can cause the client to engage contracts in order to sell the excess
energy produced by the systems.

2.5.3 Robust counterpart

Similarly to the DCCP, we describe a formulation for the robust version of the problem based on
time decomposition, in which decisions are made for every time period It. The Min-Max Adjustable
Robust Counterpart (ARC) formulation, used in this work, ensures feasibility of the constraints for
any realization of the uncertainty, through the appropriate selection of the second stage decision
variables. For more details on Adjustable RO for multi-stage optimization problems, we refer the
interested reader to [49].

In the robust version of our problem, the RCCP, variables y (defined in Section 2.4.2) are non-
adjustable ones, i.e, they consist of “here and now” decisions, or first-stage variables, before having
any knowledge of the actual value taken by the uncertainty. The other variables, namely q, r, h, g, x
and e, are adjustable ones, i.e, they consist of “wait and see” decisions (i.e., second-stage variables)
and define a set of decisions that depend on the uncertain parameters.

The Min-Max ARC, based on formulation MIP(DCCP) from Section 2.4.2, is as follows:
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(ARC) minyt
c,E

E (2.13)

s.t. E ≥
∑

t∈T

∑
c∈Ct

(vtcytc + αtcq
t
c(P̂t)) +

∑
s∈SD

vs
∑

t∈T P
t
sx

t
s(P̂t)

+
∑

s∈ŜND

vs
∑
t∈T

P̂ ts +
∑
s∈B

vs
∑
t∈T

(gts(P̂t) + hts(P̂t)) +
∑
t∈T

βtet(P̂t), ∀ P̂ ∈ U , (2.14)

∑
c∈Ct

qtc(P̂t) +
∑

s∈SND
P ts +

∑
s∈ŜND

P̂ ts +
∑

s∈SD
P tsx

t
s(P̂t)

+
∑

s∈B λsh
t
s(P̂t) + et(P̂t) ≥

∑
s∈B g

t
s(P̂t), ∀ P̂ ∈ U , ∀ t ∈ T, (2.15)

hts(P̂t) ≤ rts(P̂t−1),∀P̂ ∈ U , ∀t ∈ T,∀s ∈ B, (2.16)

r0
s = u0

s, ∀ s ∈ B, (2.17)

umins ≤ rts(P̂t−1) ≤ umaxs , ∀ P̂ ∈ U , ∀ t ∈ T ∪ {t̄}, ∀ s ∈ B, (2.18)

rt+1
s (P̂t) = rts(P̂t−1)− hts(P̂t) + λsg

t
s(P̂t), ∀ P̂ ∈ U , ∀ t ∈ T, ∀ s ∈ B, (2.19)

gts(P̂t) ≤ θabss δt, ∀ P̂ ∈ U , ∀ t ∈ T, ∀ s ∈ B, (2.20)

hts(P̂t) ≤ θrefs δt, ∀ P̂ ∈ U , ∀ t ∈ T, ∀ s ∈ B, (2.21)

Π−t,cytc ≤ qtc(P̂t) ≤ Π+
t,cy

t
c, ∀ P̂ ∈ U , ∀ t ∈ T, ∀ c ∈ Ct : Π+

t,c > 0, (2.22)

Π+
t,cy

t
c ≤ qtc(P̂t) ≤ Π−t,cytc, ∀ P̂ ∈ U , ∀ t ∈ T, ∀ c ∈ Ct : Π−t,c < 0, (2.23)∑

t′≤t P
t′
s x

t′
s (P̂t) ≥ Pmin

t
s,∀ P̂ ∈ U , ∀ t ∈ T, ∀ s ∈ SD : P ts > 0, (2.24)∑

t′≤t P
t′
s x

t′
s (P̂t) ≤ Pmin

t
s,∀ P̂ ∈ U , ∀ t ∈ T, ∀ s ∈ SD : P ts < 0, (2.25)

ytc ∈ {0, 1}, ∀ t ∈ T,∀ c ∈ Ct, (2.26)

rts(P̂t−1), hts(P̂t), gts(P̂t) ≥ 0, ∀ P̂ ∈ U ,∀ t ∈ T,∀ s ∈ B, (2.27)

et(P̂t) ≥ 0, ∀ P̂ ∈ U , ∀ t ∈ T, (2.28)

0 ≤ xts(P̂t) ≤ 1, ∀ P̂ ∈ U , ∀ t ∈ T,∀ s ∈ SD, (2.29)

where U is the uncertainty set chosen. For a given t′ ∈ T , variables qt
′
, ht

′
, gt

′
, xt

′
, and et

′

depend on the vector of uncertain parameters P̂t′ while variables rt
′

depend on P̂t′−1.

In a previous work [87], a conservative Ubox uncertainty set was assumed and preliminary com-
putational results were obtained. In the next subsection, we will explain how the dualization approach
was employed to derive a robust counterpart for the UΓ uncertainty set. Notice that the cost associ-
ated with the use of uncertain non-drivable systems, given by

∑
s∈ŜND

vs
∑
t∈T P̂

t
s , must be included

in the robust model. Different from the cost of certain non-drivable systems, P̂ ts values are not con-
stant and vary with the uncertain parameters. Also notice that constraints (2.19) can be used to
eliminate variables hts, reducing the set of second-stage variables.

An approach proposed in the literature to make model (ARC) tractable consists of restricting
the functional relations qtc, rts, gts, xts and et to be affine by replacing them with linear decision rules
(LDR) [13]. Also known as affine policies, LDRs have been commonly used in the literature as an
effective approximation to multistage RO problems [63, 146, 91], with each recourse decision taking
the form of an affine function of the uncertain parameters.

This way, we restrict recourse variables, say gts(P̂ t), to be affinely dependent on the primitive
uncertainties, considering all uncertain devices ς ∈ ŜND and all time periods prior to t. Of course,
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only in very rare occasions, linear decision rules are optimal. Indeed, the main motivation for linear
decision rules is its tractability. The following decision rules were applied for the set of adjustable
variables in our problem:

rts = r0
ts +

∑t−1
τ=0

∑
ς∈ŜND

rτςts P̂
τ
ς , ∀t ∈ T \ {0} ∪ {t̄},∀ s ∈ B, (2.30)

gts = g0
ts +

∑t
τ=0

∑
ς∈ŜND

gτςts P̂
τ
ς , ∀t ∈ T, ∀ s ∈ B, (2.31)

xts = x0
ts +

∑t
τ=0

∑
ς∈ŜND

xτςts P̂
τ
ς , ∀t ∈ T, ∀ s ∈ SD, (2.32)

qtc = q0
tc +

∑t
τ=0

∑
ς∈ŜND

qτςtc P̂
τ
ς , ∀t ∈ T, ∀ c ∈ Ct, (2.33)

et = e0
t +

∑t
τ=0

∑
ς∈ŜND

eτςt P̂
τ
ς , ∀t ∈ T. (2.34)

As seen in the next subsection, after bringing the linear decision rules to the formulation, by
taking U = UΓ, each constraint holding uncertain parameters is transformed by means of strong
duality theory. As a result, we obtain a linear approximation to the model, called (ARC-L1). Each
inequality will be characterized in terms of max/min values, and later replaced by its corresponding
dual equivalent. In this process, a new set of continuous variables and a new set of constraints will
be added to the formulation. This final product is a MILP model to the robust problem, which will be
called MIP(RCCP), and whose solution can be obtained with commercial optimization solvers.

2.5.4 RCCP under budgeted uncertainty

Given the definition of the budget uncertainty set UΓ, we now present a dualization rule that
can be applied to each constraint of the robust counterpart. Each ARC constraint can be written
either in form (a) f0 +

∑
t∈T

∑
s∈ŜND

P̂ tsf
t
s ≤ 0, or (b) f0 +

∑
t∈T

∑
s∈ŜND

P̂ tsf
t
s ≥ 0, where f0 is the

independent term and f ts is the term that depends on the uncertain parameters P̂ ts ∈ UΓ. In form (a),
each problem constraint can be rewritten as:

f0 + max
P̂∈UΓ

{∑
t∈T

∑
s∈ŜND

P̂ tsf
t
s

}
≤ 0, (2.35)

with the second term being reformulated as:

max∆+
t,s, ∆−t,s

{∑
s

∑
t f

t
s

(
vts + ∆+

t,s.v̂
t
s −∆−t,s.v̂ts

)
: (2.36)

∆+
t,s + ∆−t,s 6 1, s ∈ ŜND, t ∈ T, (µts) (2.37)∑
s

∑
t

(
∆+
t,s + ∆−t,s

)
6 Γ, (ρ) (2.38)

∆+
t,s > 0, ∆−t,s > 0, s ∈ ŜND, t ∈ T

}
6 0 (2.39)

Where variables ∆+
t,s and ∆−t,s indicate that the uncertain parameter P̂ ts has oscillated above (or

below) its nominal value P ts. Constraints (2.37) limit the oscillation according to the maximum value
allowed (v̂ts) and constraints (2.38) limit the budget of uncertainty to Γ.

Analogously, for each problem constraint in form (b), we derive:

min∆+
t,s, ∆−t,s

{∑
s

∑
t f

t
s

(
vts + ∆+

t,s.v̂
t
s −∆−t,s.v̂ts

)
: s.t. (2.37)-(2.39)

}
> 0. (2.40)

The inclusion of the above robustified equations in the tractable MILP model is possible via
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2.6. Real-time energy scheduling with the RTCS

dualization. In both cases above, dual variables µts and ρ can be derived, along with dual objective
function:

∑
s

∑
tµ
t
s + ρ.Γ +

∑
s

∑
t f

t
s.v

t
s.

In the first case (a), the dual constraints are:

µts + ρ > |v̂ts.f ts| ≡


µts + ρ > v̂ts.f

t
s (∆+

t,s) (2.41)

µts + ρ > −v̂ts.f ts (∆−t,s) (2.42)

µts > 0, ρ > 0 (2.43)
And, in the second case (b), the dual constraints are:

µts + ρ 6 |v̂ts.f ts| ≡


µts + ρ 6 v̂ts.f

t
s (∆+

t,s) (2.44)

µts + ρ 6 −v̂ts.f ts (∆−t,s) (2.45)

µts 6 0, ρ 6 0 (2.46)
In form (a), after dualization, each constraint is replaced by the following constraints in the

tractable MILP model:

f0 +
∑
s

∑
t µ

t
s + ρ.Γ +

∑
s

∑
t f

t
s.v

t
s 6 0 , and (2.41)-(2.43).

While, in form (b), each constraint is replaced by constraints:

f0 +
∑
s

∑
t µ

t
s + ρ.Γ +

∑
s

∑
t f

t
s.v

t
s > 0 , and (2.44)-(2.46).

The resulting tractable robust MILP model has (5 + |T ||ŜND|)(2|C| + |T ||SD| + 3|T ||B| + |T |)
constraints and |T |2|ŜND|(2|B|+ |C|+ 1) + (6|T ||SD|+ 8|C|+ 14|T ||B|+ |T ||C|) variables.

2.6 Real-time energy scheduling with the RTCS

The solution of the CCP (either the deterministic version in Section 2.4 or the robust version from
Section 2.5) provides the client a decision for the first level in our framework: the contract subscrip-
tion for the whole time horizon. However, for the success of the proposed contract framework, an
efficient real-time energy scheduling mechanism is needed, so that distributed energy resources,
storage devices and drivable loads within the microgrid are operated in a coordinated and coherent
way, together with the energy exchange with the main grid.

Recall the RTCS definition given in Section 2.2. In order to perform energy scheduling, each time
period It is further subdivided into δt time slots of size ∆. At this time scale, the instantaneous pro-
duction/consumption of each microgrid system is measured. For certain (drivable and non-drivable)
systems, the consumption/production, for each time period It, is known beforehand. And every ∆
time units a scheduling decision has to be made by the control device, according to the state of the
microgrid.

In this sense, the RTCS consists of a scheduling heuristic that, based on the microgrid state
and the energy contracts engaged by the client, solves an online optimization problem, selecting in
real-time the set of actions to be taken, with the objective of reducing energy consumption costs and
promoting load balance, while, at the same time, dealing with the effects of uncertainty. Remark that
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the solution approaches commonly used to solve off-line scheduling problems are not appropriate
for the on-line scheduling case.

Since the RTCS operates according the Contract Collaboration Framework, we remark that,
once the heuristic starts, the set of subscribed energy contracts y0, for the whole time horizon, has
already been established. Such decision is made by the client after running one of the previously
presented CCP models. According to the microgrid energy balance, the following operations must
be considered: (a) turn on/off a production/consumption drivable system; (b) buy/sell a quantity of
energy under an engaged contract; (c) recharge/retrieve energy from a storage system; (d) buy
energy out of engaged contracts; (e) throw energy away (if remaining energy cannot be sold back to
the grid). Also, a subset of actions taken in a specific moment must obey the Contract Collaboration
Problem constraints.

2.6.1 Naïve RTCS policy

This section describes the most straightforward approach to perform energy scheduling. The
proposed naïve control strategy can be used as a baseline strategy to schedule the use of the
Battery Energy Storage Systems (BESS) and the energy exchange via contracts. The naïve strategy
relies on two assumptions. First, the microgrid should only sell energy via contracts as a last resort
because the selling price is typically lower than the contract buying price. Besides, most of the
time, the production obtained from renewables does not match the microgrid’s energy demand. As
a result, the microgrid will eventually buy energy from the power grid.

The proposed naïve RTCS policy works as follows. At each time step, the current demand for
electricity is determined as the sum of the amount of energy required by the consumer drivable and
non-drivable systems minus the amount of energy actually produced by the microgrid. In case the
produced energy outweighs the demand, the resulting surplus is used to charge the battery. If the
BESS is already full or the surplus exceeds the charging rate, the excess energy is sold via contracts.
On the contrary, if existing demand goes beyond the available produced energy, the difference is
provided by discharging the battery. If the stored energy is not enough, then the remaining required
energy is bought from the grid, first via available engaged contracts (provided they still have existing
capacity), or bought out of any engaged contracts, possibly at a higher price.

2.6.2 Using model solution as a look-ahead policy to guide RTCS

The solution of the CCP models provide not only a list of contracts to engage, but also a set of
values that can be used as a look-ahead (LA) policy to guide the RTCS energy dispatch operations,
at each time period It. The policy is defined by the optimal value of all model variables, except y
variables.

When using the deterministic model, look-ahead values are obtained directly from the model
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solution, while for the robust models, the LDRs (2.30)-(2.34) are used to derive the look-ahead
values for the current time period It′ . In Section 2.7, we will show that the look-ahead policies based
on the robust models can effectively enhance the performance of the RTCS. Among the advantages,
the better utilization of storage devices and greater protection against uncertainty, when compared
to the deterministic model.

We propose different heuristics for the RTCS, each one with a distinct behavior. As previously
mentioned, the RTCS operates based on a predefined set of engaged contracts, obtained from a
specific CCP model solution. Therefore, in the remainder of this section, we refer to X-RTCS as the
general RTCS that can be executed based on an existing CCP model solution X.

Algorithm 1 depicts the X-RTCS executed inside a given time period It′ , every ∆ time units
or, analogously, at each time slot d ∈ {1, . . . , δt′}. At this time, the uncertainty concerning energy
production/consumption has been revealed for all time periods before It′ , and the microgrid con-
figuration is given by its battery storage levels, drivable system requirements, load demand and
renewable production. Let X(y0, t

′) be the X model obtained by fixing y = y0 and all variables and
parameters related with t < t′. The optimal solution of X(y0, t

′) serves as a policy for all t ≥ t′. Two
different parameters, named REOPTIMIZE and GAP POLICY, define how the X(y0, t

′) solution will be
used as a policy in the X-RTCS heuristic.

The first one concerns the usage of model X. The REOPTIMIZE option determines which model
X solution will be used as a forecast tool to determine the initial quantities regarding how much en-
ergy will be consumed or how much excess energy will be sent to the grid, via engaged contracts 1,
and how long drivable systems should remain powered on. If REOPTIMIZE is enabled (line 1), model
X will be reoptimized at each time period It′ , for the remaining time periods t ≥ t′ (line 2), and the
new solution obtained will guide the initial energy quantities (line 3). Otherwise, as listed on line 5,
the RTCS policy will be based on the initial solution at the start of the time horizon (t = 1), i.e., the
optimal solution of X(y0, 1).

The next step of the algorithm is the calculation of the current microgrid energy gap (i.e., to-
tal consumption minus total production) at the current time slot d (line 9), based on collected data
regarding instantaneous energy production/consumption, minimum contract engagements, as well
as model predictions regarding batteries and drivable systems (lines 6-8). We denote by qt

′,d
c the

amount of energy that will be bought or sold via the contract c in time slot d; and xt
′,d
s as the percent-

age of time in which drivable system s will be on at time slot d. Also assume P̂ t
′,d
s is an estimation of

the uncertain production/consumption of device s at time slot d.

Finally, according to this information, X-RTCS must decide which additional dispatch operations
will be executed to balance supply and demand, by applying a GAP POLICY (Table 2.2). These
operations involve, for example, seling (line 15) or buying (line 24) additional energy to/from the

1. It is worth noting, however, that the amount of electricity bought or sold via each engaged contract may be more
than the initial values proposed by the model policy, depending on the actual energy demand.

37



Part , Nomenclature

partner, turning on/off drivable systems (lines 16&23) and interacting with an energy storage system
(lines 14&25).

Gap Cheapest gap policy
Positive Cheapest storage operation (batteries/drivable/contracts)
Negative Cheapest retrieval operation (batteries/drivable/contracts)
Gap Conservative gap policy
Positive Store energy surplus in batteries, then use sell contracts
Negative Buy from engaged contracts first, then use batteries

Table 2.2 – X-RTCS policy executed at each time slot d (inside period It′), according to the microgrid
energy gap, defined as

∑
(Production)−

∑
(Consumption). A positve gap (+) means there is energy

surplus in the current time slot, while a negative gap (−) represents lack of energy (more power needs
to be bought from the partner or produced by the microgrid).

In summary, the combination of REOPTIMIZE and GAP POLICY parameters yield 4 different look-
ahead heuristics, whose behavior is determined by which CCP model predictions are used (from
reoptimized model or not), along with a strategy to either fulfill demands greater than the microgrid’s
own production (negative gap) or use the available energy surplus (positive gap).

Remark that the algorithm considers the cost of purchasing additional blocks of energy (nega-
tive imbalance) and the revenue from selling surplus energy (positive imbalance) due to deviations
concerning the forecast of energy contract usage, made in the beginning of X-RTCS. Additionally,
the amount of electricity bought out of any contract e(·) presumes an indirect penalization on price,
since they are less attractive than settled day-ahead prices.

2.7 Experimental results

This section sets up a realistic microgrid and conducts simulations with different sets of scenar-
ios, comprising uncertain electricity production and consumption in a given time horizon. The main
objective is to evaluate the impact of adopting a robust approach for engaging in flexible energy con-
tracts. This is achieved through the performance assessment of the RTCS approaches proposed in
the previous section, based on contract decisions taken by either the deterministic or the robust
CCP model solution.

2.7.1 Computational environment and simulation details

The mathematical models and numerical simulations were coded in Julia 1.6.0 using CPLEX
solver 20.1.0, and their source code is available at https://github.com/levorato/ccp_rtcs. All
experiments were performed on a workstation with an Intel Xeon CPU X5355 × 8 with 64 GB
RAM, under Ubuntu 18.04 LTS. As defined in Section 2.6.2, each RTCS heuristic can use either
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2.7. Experimental results

Algorithm 1: RTCS algorithm that runs at each time slot d ∈ {1, . . . , δt′}, inside time
period It′ .

Input: CCP model ccpm, initial ccpm solution X(y0, 1), gap policy, Reoptimize
Result: Set of policies qc(·), xs(·), hs(·), e(·)

1 if Reoptimize is enabled then
2 Reoptimize ccpm with t0 := t′ and fix engaged contracts y = y0

3 Let {qt
′
, xt
′
, gt
′
, ht
′
} be the reoptimized ccpm solution at t = t0 = t′

4 else // Use initial CCP model solution at t0 = 1
5 Let {qt

′
, xt
′
, gt
′
, ht
′
} be the initial ccpm solution at t = t′

6 qt
′,d
c := dqt

′
c /δ

t′e, ∀c ∈ Ct′ // Initial contract usage according to y0

7 xt
′,d
s := max

[
xt
′
s ,

Pmint′
s

Pmaxt′
s

]
, ∀s ∈ SD // Power drivable according to CCP solution

8 ht
′,d
s := dht

′
s /δ

t′e; gt
′,d
s := dgt

′
s /δ

t′e // Use batteries according to CCP solution
/* Sum energy consumption/production for all devices (certain and uncertain) */

9 gap :=
∑

s∈ŜND

P̂ t
′,d
s +

∑
s∈SND

P t′
s

δt′ +
∑
c∈Ct′

qt
′,d
c +

∑
s∈SD

x
t′,d
s P t′

s

δt′ +
∑
s∈SB

(ht
′,d
s − gt

′,d
s )

10 if gap > 0 then // energy left over
11 if gap policy = cheapest then
12 Execute dispatch operations (Charge batteries, Sell via contracts, Power drivable consumers)

following smallest energy cost first
13 else // conservative gap policy
14 gap := Charge-batteries({s ∈ SB})
15 gap := Sell-energy-surplus-via-contracts({c ∈ Ct′ : Π−t′,c < 0})

16 gap := Power drivable consumers({s ∈ SD : Pmint
′

s < 0})
17 et′,d := 0
18 Throw remaining energy away
19 else // Negative gap, need for additional energy
20 if gap policy = cheapest then
21 Execute operations (Turn on drivable producer, Use batteries, Consume from contracts, Consume out

of contract) according to smallest cost first
22 else // conservative gap policy

23 gap := Turn-on-drivable-producer-devices({s ∈ SD : Pmint
′

s > 0})
24 gap := Consume-energy-via-contracts({c ∈ Ct′ : Π−t′,c > 0})
25 gap := Discharge-batteries({s ∈ SB})
26 et′,d := gap // Consume remaining energy out of contracts if needed
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the deterministic or the robust CCP model solution as input. We denote by Det-RTCS the RTCS
based on the deterministic model, and Rob-RTCS the one based on the robust budgeted model.
The RTCS simulation is based on sets of realistic scenarios from the case study defined in this
section.

Remember that, in order to obtain a deterministic solution for the CCP model, it is necessary to
establish a fixed value for the uncertain parameters. In this study, we solved the deterministic model
by using three sets of values for uncertain parameters P̂s of each system s ∈ ŜND.

2.7.2 Microgrid in a research building in Tsukuba, Japan

This case study involves the microgrid of a research building in Tsukuba, Japan. A multiyear
dataset [140] provides microgrid statistics in full details (every second) and summarized (per hour),
for the period between april 2015 and april 2018. Supplied data includes the Battery Energy Storage
System (BESS) installed (active power, voltage, current, state of charge), the power generation
from the four operating solar arrays, as well as purchased electricity (voltage, active power), solar
irradiance, list of holidays and electricity prices (including surcharges).

Four problem instances were generated, one for each season of the year. Thus the lower and up-
per bounds for uncertain consumption and production were calculated as a function of the historical
data for the corresponding season.

2.7.3 Problem instance generation

The considered planning horizon comprises 24 time periods of 1 hour, each one with δt = 6.
Given all periods, a total of 457 contracts were proposed, inspired by Électricité de France price
distribution [33], allowing the client to buy electricity from the partner at different quantities and
costs.

Concerning uncertain devices demand and production of electricity at each time period t, histor-
ical data of the microgrid is used to calculate the lower and upper bounds of these values. Moreover,
instead of applying simple min/max approach, we use the 10th and 90th quantiles to determine the
Pmin and Pmax values, which guarantees robustness against outliers. The determination of BESS
kWh price is based on the cost model of [18].

2.7.4 RTCS simulation and scenario types

Based on the production and consumption history of the Tsukuba microgrid, the simulation ob-
jective is twofold: to evaluate how the solutions provided by the two CCP models proposed (robust
and deterministic) behave under uncertainty, and to assess the performance of the RTCS policies
defined in Section 2.6.2.
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2.7. Experimental results

For each uncertain system, a particular scenario contains the realization of the uncertain elec-
tricity production (or consumption) values for each time slot over the whole time horizon. Given a list
of engaged contracts (previously obtained with the solution of the CCP model), the simulation iter-
ates over each time step, executing the chosen RTCS policy. As explained in the previous section,
at this point, real-time energy scheduling actions are taken, according to the current state of the mi-
crogrid and the realization of energy production and consumption values. Among these values, the
ones concerning the uncertain systems are obtained through the given scenario data in the current
simulation.

For the Tsukuba microgrid, an individual set of scenarios was generated for each of the four
seasonal instances, based on real values of PV production and building consumption provided in the
dataset. The spring instance scenarios, for example, encompass all information recorded between
March 20th until June 21st, given the dataset’s 3-year time horizon.

In summary, for each microgrid instance, the simulation process consists in testing the RTCS
policies based on each CCP model solution. The combination of 2 types of gap policy (Cheapest and
Conservative), with or without model reoptimization, yields a total of 4 possible X-RTCS procedures
for each model X, deterministic or robust. Simulation is then performed by executing each pair of
model X and X-RTCS heuristic on the proposed microgrid instances and their associated scenario
groups. For each of the 4 seasonal Tsukuba instances, simulation will be executed on a specific
scenario set from each season.

2.7.5 Performance of the robust solution method

Instance
Deterministic / Φ
0 50 100

Robust budget / Γ
0 20 40 60 80 100

Autumn

Spring

Summer

Winter
33,728.24

0.28 s

37,364.42
0.32 s

30,534.44
0.32 s

32,531.61
0.36 s

27,183.29
0.25 s

29,954.69
0.29 s

24,429.74
0.31 s

26,273.60
0.25 s

20,443.66
0.04 s

22,281.03
0.33 s

18,345.28
0.15 s

19,969.98
0.07 s

33,482.90
54.43 s

37,132.68
263.40 s

30,294.95
50.57 s

32,302.23
57.86 s

33,482.34
60.53 s

37,132.68
294.62 s

30,294.75
40.48 s

32,300.27
64.91 s

33,394.60
75.76 s

36,960.79
603.36 s

30,125.96
81.47 s

32,186.66
86.03 s

32,670.23
68.91 s

36,082.87
738.91 s

29,398.48
55.88 s

31,527.87
209.69 s

31,111.05
229.54 s

34,129.95
2159.94 s

27,899.25
241.17 s

29,981.41
189.20 s

26,895.68
0.68 s

29,611.22
0.84 s

24,161.60
0.30 s

25,984.11
0.71 s

Table 2.3 – Robust vs. Determinisitc model result comparison for different budget parameters. The
first value indicates the objective function value obtained, followed by the time spent (in seconds) to
obtain the optimal solution. CPLEX default optimality gap of 10−4 was applied.

The study performed in this section analyses several cost and reliability metrics obtained from
simulations of the proposed RTCS policies. By mimicking the real-time operation of the microgrid
energy management system, each simulation was based on a specific solution provided by either
the robust or the deterministic CCP model.
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Part , Nomenclature
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Cost Std ($)
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OC Cost Avg ($)
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SOC Avg (%)

SOC Std (%)

r t

19.0

91.7

0.0

0.0

32,382.9

477.1

31,791.0

28.8

67.7

3.5

406.5

32,662.8

3,077.8

27,638.0

12.2

38.2

76.4

73,516.4

179,591.2

55,760.3

94,758.0

29.7

72.5

3.4

3,540.6

39,906.4

4,977.2

31,938.6

29.7

71.9

14.2

12,506.7

60,409.8

12,741.9

40,486.3

29.3

73.4

0.3

102.2

32,396.3

1,772.7

29,490.5

29.6

68.2

0.3

99.0

31,554.8

2,182.1

27,919.7

29.4

69.8

5.8

5,623.2

45,220.2

6,898.7

34,128.8

28.1

68.2

16.3

17,677.2

92,132.1

26,486.9

49,191.6

18.2

91.6

0.0

0.0

32,091.1

622.1

31,223.2

27.3

68.4

3.5

406.5

32,607.8

3,271.5

27,367.2

14.3

40.2

75.8

73,128.5

179,581.4

55,872.6

94,486.2

26.9

74.2

4.0

3,457.0

39,705.3

5,539.0

30,758.4

26.9

70.5

16.2

13,163.7

60,727.0

13,421.8

39,762.5

28.5

70.9

0.3

99.0

31,510.4

2,453.3

27,530.0

27.7

69.9

0.3

99.0

31,479.3

2,530.4

27,338.6

27.6

68.7

6.4

5,121.0

43,902.0

7,286.9

31,941.4

26.5

69.1

15.9

15,949.0

90,519.4

26,155.9

46,781.5

16.1

93.4

0.0

0.0

32,650.3

555.6

31,849.2

27.1

77.7

3.6

392.2

32,682.6

3,004.8

27,858.4

19.8

43.4

77.8

72,042.4

179,582.4

56,354.0

93,504.6

25.4

80.1

4.0

2,795.1

38,917.0

4,533.3

31,312.5

27.0

75.7

16.3

11,514.0

59,054.6

11,875.6

39,614.5

24.3

81.9

0.3

79.9

32,398.7

1,738.0

29,553.9

25.5

78.7

0.3

78.6

31,461.5

2,117.0

28,002.5

27.5

75.7

7.6

4,617.2

44,291.2

6,529.3

33,243.9

27.4

71.9

18.4

15,911.4

90,514.8

25,330.0

47,212.1

15.7

93.8

0.0

0.0

32,374.0

709.6

31,300.5

25.5

80.2

3.6

381.8

32,662.5

3,187.0

27,552.1

21.1

44.7

77.8

71,714.2

179,577.0

56,490.5

93,207.7

23.8

82.3

4.0

2,713.5

38,498.1

5,000.4

30,126.7

25.3

76.0

16.3

11,125.2

58,263.8

12,288.9

37,929.5

24.6

81.6

0.3

79.7

31,600.6

2,479.6

27,561.9

24.2

81.8

0.3

77.1

31,477.5

2,460.5

27,424.1

26.4

75.3

7.6

4,310.1

42,866.4

6,823.9

31,276.0

25.9

73.2

18.4

15,134.2

88,850.8

25,098.8

45,754.8

16.4

94.3

0.0

0.0

33,871.2

443.0

33,244.7

30.1

76.6

3.2

280.1

33,874.3

1,885.5

31,022.1

0.1

31.7

77.8

73,858.1

179,606.9

55,737.6

94,924.7

18.6

93.9

3.3

2,650.5

41,025.8

3,570.1

35,122.0

19.8

92.0

14.1

10,412.0

59,656.9

10,828.7

41,556.7

17.4

94.2

0.1

38.2

33,900.6

830.7

32,699.1

18.1

94.6

0.1

42.2

33,929.1

864.4

32,654.4

25.8

87.0

5.5

4,297.9

45,006.2

5,770.0

35,176.8

28.7

71.6

14.4

17,219.9

90,187.1

24,725.5

50,149.3

17.0

91.6

0.1

0.2

30,209.9

310.9

29,808.7

27.6

58.6

23.7

23,133.2

68,773.0

12,653.1

49,631.0

10.5

36.1

76.1

60,979.9

144,445.2

44,527.0

82,186.0

29.1

67.0

1.9

346.1

31,088.5

1,643.7

28,471.7

29.0

72.6

0.0

0.0

29,776.1

831.8

28,428.7

28.8

58.1

1.9

1,497.9

31,491.0

2,598.0

27,256.6

28.3

61.1

0.0

0.0

29,027.2

1,823.3

26,182.7

28.0

58.7

5.6

5,773.3

38,129.8

4,890.4

30,524.7

8.9

36.3

43.9

62,076.8

147,380.1

32,307.5

104,241.0

17.8

90.5

0.1

0.2

30,128.9

438.3

29,471.5

26.8

58.1

23.9

23,014.2

68,774.0

12,899.3

49,300.1

12.9

38.2

75.5

60,764.1

144,425.1

44,570.9

82,052.9

27.5

63.1

2.7

1,191.8

32,189.3

3,021.3

27,470.1

27.7

62.6

0.0

0.0

29,043.4

1,723.1

26,380.9

26.8

65.4

2.3

1,066.2

31,084.1

2,634.4

26,759.9

26.8

64.2

0.0

0.0

29,058.2

1,961.2

26,046.1

26.4

62.2

5.5

4,274.0

36,043.9

4,783.8

28,074.3

27.3

63.4

43.9

55,391.8

144,888.6

32,312.2

97,740.2

13.3

95.4

0.1

0.2

30,671.3

438.6

29,985.3

29.0

64.0

25.7

22,171.6

68,682.4

12,686.5

48,523.9

17.3

40.6

76.9

59,869.0

144,404.3

45,007.2

81,254.4

26.5

74.4

3.6

356.2

30,815.2

1,388.0

28,585.7

24.3

81.6

0.0

0.0

29,975.4

890.3

28,550.6

28.8

66.4

2.3

1,011.7

30,992.7

2,319.9

27,148.5

25.9

74.7

0.0

0.0

29,071.7

1,762.3

26,365.0

28.8

66.0

6.9

5,214.9

37,881.0

4,665.6

30,307.6

12.7

38.3

43.9

61,622.5

147,554.6

32,620.3

103,804.9

13.1

95.5

0.1

0.2

30,595.9

574.8

29,689.7

28.5

63.4

25.7

22,154.8

68,648.3

12,837.6

48,324.4

19.6

42.7

76.9

59,446.2

144,691.0

45,122.8

80,876.6

26.6

75.4

3.6

490.8

30,752.9

2,370.5

26,944.2

25.8

78.5

0.0

0.0

29,204.7

1,693.2

26,654.3

24.0

80.5

2.3

626.5

30,302.0

2,278.1

26,799.5

23.0

81.8

0.0

0.0

29,166.0

1,941.8

26,261.2

26.4

71.1

6.9

3,936.4

35,301.6

4,427.5

28,015.7

27.3

63.8

43.9

54,914.1

144,014.4

31,950.5

97,190.6

19.9

92.0

0.0

0.0

32,409.6

230.2

32,054.0

27.8

61.1

23.3

19,660.5

61,597.8

9,188.1

47,094.5

0.0

31.7

76.8

61,162.3

144,446.5

44,485.8

82,254.6

22.3

86.4

1.9

292.0

32,975.9

949.0

31,565.9

13.7

96.1

0.0

0.0

32,705.1

200.8

32,405.1

15.8

94.3

1.3

422.8

33,026.5

778.6

31,836.7

17.6

93.3

0.0

0.0

32,439.3

215.9

32,106.1

27.0

84.7

4.7

4,547.8

38,840.6

3,437.6

33,056.5

14.9

49.6

41.4

58,143.1

144,268.3

30,518.9

102,186.3

Table 2.4 – Robust vs. Deterministic RTCS performance comparison for autumn and spring scenario
groups. Cost Avg is the average scenario cost over all simulations. Cost Std represents the standard
deviation of scenario cost. Cost CVaR is the conditional value at risk of scenario cost at 80% con-
fidence level (i.e., the average scenario cost of the 20% highest scenario costs). OC Cost Avg is the
average cost from Out of Contract (OC) energy consumption. Penalty Freq is the proportion of time
periods with OC consumption. SOC Avg and SOC Std are the average and standard deviation of
BESS State Of Charge (SOC). 42



2.7. Experimental results
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17.2

92.4

0.0

1.0

36,896.1

369.2

36,431.7

28.3

63.4

0.8

221.9

37,232.9

3,317.8

31,732.4

8.8

34.3

70.9

93,388.0

204,123.3

54,258.0

125,414.5

29.1

67.9

0.0

1.0

36,171.1

1,814.3

33,113.3

28.4

74.5

0.0

1.0

36,483.6

1,440.8

33,982.6

27.1

62.9

23.7

33,416.7

92,785.6

21,842.2

60,577.1

29.1

68.4

0.0

1.0

36,167.0

1,874.9

33,014.1

29.9

63.3

11.0

18,616.6

75,714.4

16,370.9

52,252.5

25.9

58.1

8.7

17,614.9

79,873.1

17,148.2

53,796.2

17.5

91.6

0.0

1.0

36,521.0

595.8

35,613.8

26.8

65.9

0.8

220.7

37,171.2

3,488.4

31,504.4

8.9

34.5

70.9

93,235.6

204,123.3

54,481.0

125,259.3

28.4

66.4

0.0

1.0

35,929.4

2,340.0

32,008.3

28.3

64.5

0.0

1.0

35,873.6

2,575.5

31,626.9

26.4

65.4

25.6

32,584.1

91,683.2

21,816.3

59,809.0

27.6

64.3

0.0

1.0

35,856.7

2,718.4

31,405.1

27.8

63.8

12.1

16,537.6

73,993.1

16,658.7

49,528.7

26.8

65.0

8.4

15,242.8

79,164.2

18,412.7

49,974.0

14.4

94.9

0.0

0.1

37,270.4

491.9

36,510.3

26.2

77.9

0.8

158.4

36,890.4

3,106.7

31,889.2

10.4

34.9

72.1

93,142.6

204,123.3

54,554.2

125,181.1

25.8

79.7

0.0

0.1

36,245.3

1,821.0

33,211.4

24.6

83.3

0.0

0.1

36,792.5

1,527.3

34,224.9

27.0

66.3

25.7

31,747.3

91,313.2

21,113.8

59,447.1

25.9

79.0

0.0

0.1

36,311.4

1,897.4

33,145.8

29.1

65.6

12.9

17,549.9

74,756.1

16,023.4

51,224.0

26.5

70.5

8.7

14,771.1

77,266.5

17,468.4

49,404.7

14.3

94.9

0.0

0.1

36,884.8

713.3

35,707.4

24.2

81.4

0.8

133.7

36,870.8

3,250.4

31,637.1

10.5

35.0

72.1

93,047.6

204,123.3

54,692.1

125,082.1

27.2

77.9

0.0

0.1

35,996.9

2,347.4

32,118.8

26.9

77.5

0.0

0.1

35,994.2

2,551.9

31,816.6

26.2

67.6

25.7

31,278.8

90,419.7

21,118.5

58,676.6

25.2

79.6

0.0

0.2

35,934.5

2,717.0

31,559.6

28.4

66.1

12.9

16,191.2

73,555.5

16,422.3

49,046.9

24.4

73.0

8.7

14,219.1

75,526.3

16,917.4

48,639.4

23.8

84.2

0.0

1.0

37,337.4

1,351.5

34,979.3

23.5

82.0

0.7

186.9

37,882.7

2,576.3

33,652.3

7.2

34.0

71.7

91,216.4

204,128.2

56,068.6

122,920.1

23.8

84.2

0.0

1.0

37,337.4

1,351.5

34,979.3

23.8

84.2

0.0

1.0

37,337.4

1,351.5

34,979.3

25.6

75.4

23.7

31,260.6

92,283.5

20,688.6

61,909.9

23.2

85.5

0.0

1.0

37,233.1

1,384.6

34,840.8

27.1

75.0

11.1

17,575.8

74,149.4

15,575.6

51,780.1

24.0

82.9

7.9

14,372.6

76,893.5

16,305.2

51,728.6

19.8

89.4

0.0

0.0

33,578.3

382.5

32,997.6

27.0

56.2

7.2

7,027.7

42,303.1

4,334.7

35,756.3

8.8

34.1

93.0

111,139.4

215,657.7

64,239.2

132,265.2

30.1

65.2

0.0

1.6

33,598.4

1,171.8

31,675.9

27.8

58.7

11.3

18,490.6

55,120.2

9,835.9

41,840.9

28.1

58.4

7.0

16,950.4

52,670.7

9,289.5

40,181.0

26.8

55.1

3.3

5,318.1

43,499.2

6,460.1

34,654.3

27.4

56.4

10.1

13,672.9

59,003.5

11,876.2

42,897.5

18.0

44.7

17.1

32,233.9

95,339.4

25,296.3

62,654.2

20.0

88.3

0.0

0.0

33,477.1

640.3

32,419.3

25.9

60.3

7.0

6,705.5

42,219.5

4,388.0

35,405.6

9.5

34.7

92.7

110,906.4

215,657.7

64,429.2

132,087.0

26.7

60.0

0.0

1.6

33,106.9

2,253.5

29,745.7

26.2

60.4

12.5

17,970.9

55,465.4

10,318.8

41,098.7

26.6

61.8

8.2

15,631.1

52,505.1

9,627.6

39,065.3

26.7

59.9

4.0

5,507.2

43,445.9

6,674.4

34,444.8

26.2

59.4

12.0

12,632.4

58,130.2

12,113.2

41,105.0

25.2

59.7

16.5

28,288.4

95,114.4

26,873.9

58,703.7

16.3

93.3

0.0

0.2

34,014.7

519.4

33,159.8

27.7

69.6

7.3

6,205.0

41,198.2

3,880.3

35,177.8

10.8

34.8

93.9

110,873.7

215,657.3

64,453.9

132,038.9

26.4

75.4

0.0

0.2

33,725.3

1,204.6

31,802.2

27.5

66.3

12.5

16,461.3

54,310.1

9,403.4

40,828.1

28.2

66.4

8.2

14,886.9

51,993.8

8,912.2

39,218.5

27.3

64.8

4.0

4,631.4

42,776.1

5,903.9

34,138.1

27.7

62.1

12.1

12,353.5

58,392.5

11,655.2

41,745.8

23.4

54.5

17.1

29,091.6

93,555.5

25,427.1

59,530.0

16.0

93.6

0.0

0.2

33,902.8

771.1

32,632.3

25.4

74.4

7.3

5,977.7

40,431.2

3,718.8

34,852.4

11.8

35.5

93.9

110,708.5

215,657.3

64,618.6

131,898.3

25.6

74.4

0.0

0.2

33,161.3

2,237.5

29,871.2

26.3

70.0

12.5

15,464.9

53,244.2

9,461.0

39,418.6

26.4

70.1

8.2

13,880.9

50,968.4

8,894.6

38,056.8

26.1

70.5

4.0

4,397.6

42,124.8

5,966.3

33,560.3

27.1

63.9

12.1

11,474.1

57,040.2

11,584.9

40,123.6

25.2

65.4

17.1

25,970.7

91,735.7

25,152.3

56,418.3

21.8

87.3

0.0

0.6

34,880.6

875.8

33,394.3

27.0

72.5

6.9

6,121.0

42,050.3

2,859.5

37,499.6

0.2

31.8

93.9

111,612.8

215,659.6

64,059.4

132,574.1

21.8

87.3

0.0

0.6

34,990.1

875.8

33,514.3

24.9

83.3

11.2

15,150.6

54,524.4

8,416.8

42,897.5

25.2

83.7

6.9

13,619.6

52,614.1

8,051.1

41,547.7

22.6

86.9

3.3

5,037.4

45,129.7

5,178.4

37,680.1

25.6

77.8

10.0

11,529.1

58,027.3

10,564.7

43,047.4

23.5

74.1

14.2

25,515.2

93,695.3

24,685.5

57,904.2

Table 2.5 – Robust vs. Determinisitc RTCS performance comparison for summer and winter scenario
groups. Cost Avg is the average scenario cost over all simulations. Cost Std represents the standard
deviation of scenario cost. Cost CVaR is the conditional value at risk of scenario cost at 80% con-
fidence level (i.e., the average scenario cost of the 20% highest scenario costs). OC Cost Avg is the
average cost from Out of Contract (OC) energy consumption. Penalty Freq is the proportion of time
periods with OC consumption. SOC Avg and SOC Std are the average and standard deviation of
BESS State Of Charge (SOC). 43
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The robust CCP model under budgeted uncertainty was tested with six Γ budget parameter val-
ues (0%, 20%, 40%, 60%, 80% and 100%). They indicate the proportion of the maximum allowed
deviation of uncertain parameters regarding production or consumption of energy, as defined in Sec-
tion 2.5.2. As a baseline for comparison, the deterministic CCP model was tested with 3 different
sets of values regarding uncertain devices. When Φ = 0%, the model is based on the most optimistic
scenario, assuming minimal consumption and maximal production for uncertain consumer and pro-
ducer devices, respectively. The exact opposite situation is represented by Φ = 100%, apparently
the most pessimistic one. Finally, the scenario where Φ = 50% depicts the middle interval, with aver-
age values of uncertain devices. A general comparison will be conducted to determine which model
behaves best under uncertainty, remembering that the Γ and Φ values used by the deterministic and
robust models have different meanings.

The solution statistics for each model are presented in Table 2.3. The obtained results show that,
when solving the first-stage problem to determine the list of contracts to engage, optimal solutions
for robust models with different budget parameter values can be obtained in less than an hour with
an 8-core CPU.

Regarding the simulation results, according to the season of the year, for each of the 4 RTCS
policies proposed in the previous section, Tables 2.4 and 2.5 present statistical measures based
on the operational cost (Cost Avg, Cost Std, Cost CVaR), as well as Out of Contract (OC) energy
consumption cost (OC Cost Avg), penalty frequency (i.e., the proportion of time periods where OC
consumption occurred) and the State of Charge (SOC) of the microgrid’s BESS (SOC Avg and SOC
Std). In robust and deterministic CCP models, higher values of Γ or Φ parameters, respectively,
ensure improved system reliability through elevated protection against the realization of worst-case
scenarios, but at the expense of increased overall cost. The above measures allow a trade-off anal-
ysis between operational cost and system reliability, which can be applied by the decision-maker to
select the most appropriate model.

For the autumn season, except for the naïve RTCS policy, remark that Rob-RTCS solution with
Γ = 40% significantly improves not only the operational cost (Cost Avg and Cost Std), but also
microgrid’s reliability (Cost CVaR metric), when compared to Det-RTCS solutions. In particular,
when considering the best economic performance of Det-RTCS (Cheapest+ReOpt policy with Φ =
50%), Rob-RTCS with Γ = 40% achieves a reduction of 0.1% in Cost Avg, 22.7% in Cost Std and
3.5% in Cost CVaR.

In spring season instance, the look-ahead Rob-RTCS policies with Γ = 40% and Γ = 80%
outperform the deterministic counterparts in average cost and CVaR cost metrics. When compared
to the previous set of scenarios, Rob-RTCS performance is further improved, with Γ = 40% and
Γ = 80% budget-based RTCS achieving the best economic performance (Cost Avg), with zero OC
cost and thus zero penalty frequency. In this case, when compared to the Det-RTCS models whose
policy has the lowest average cost (Cheapest+ReOpt), the Rob-RTCS with Γ = 40% is 17.6%
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2.7. Experimental results

cheaper on average, with a 3.6% decrease in Cost CVaR.
For summer, the naïve policy is not able to offer improved results when coupled with the robust

CCP model. On the other hand, the robust solutions with Γ ∈ {40%, 80%, 100%} provide the best
protection for all look-ahead RTCS policies, when compared to their deterministic counterparts. In
particular, the robust solution for Γ = 40% coupled with Cheapest+ReRopt RTCS presents the
best observed economic and reliability values (Cost Avg = 31,405.1 and Cost CVaR = 35,856.7),
as well as low levels of OC Cost and zero penalty frequency. It is worth noting that, besides having
elevated PV electricity production, energy consumption reaches its highest levels during this season,
according to the dataset.

Last, in winter season, it is possible to observe an interesting case where the maximum hedge
(Rob-RTCS with Γ = 100%) represents the best option from the viewpoint of worst-case protection
as well as economic performance. The best results were obtained with model re-optimization en-
abled (either Cheapest+ReRopt or Conservative+ReRopt RTCS). The robust model with Γ = 100%
presents the lowest Cost CVaR values among all models tested. It also provides the cheapest av-
erage costs (Cost Avg), considering all robust and deterministic models simulated. Once again, the
robust-based naïve policy is not able to offer improved results when compared to Det-RTCS.

A statistical analysis was also performed to assess the cost difference between each pair of
simulations, considering every combination of CCP model and RTCS policy. For this purpose, we
applied the Wilcoxon signed-rank test [148], a non-parametric alternative to the paired Student’s
t-test, which does not depend on the assumption that the data is normally distributed. This test is
based upon the ranks of the paired differences of measurements, and the null hypothesis H0 is that
two related paired samples come from the same distribution. If valid, H0 indicates that there is no
tendency for the outcome in one group of simulations to be higher or lower than in the other group. In
a pair-wise comparison with a significance level α = 0.05, considering all pairs of RTCS simulations,
in only 3 cases it is not possible to reject the null hypothesis. These cases are related with the
autumn, spring and summer instances, with no significant statistical difference when comparing
the scenario costs of the Conservative+ReOpt RTCS based either on the Det-RTCS solution with
Φ = 50% or on the Rob-RTCS with Γ = 40%. All other simulation comparisons yielded P-values
inferior to 0.05, which indicates there is enough evidence to reject the null hypothesis and conclude
that the tested samples were likely drawn from populations with differing distributions.

As a final remark, we refer the reader to the last two measures in Tables 2.4 and 2.5. According
to the average and standard deviation of BESS State Of Charge, the robust-based policies rely more
on the use of batteries to regulate the microgrid’s system load than Det-RTCS.

2.7.6 Best options for CCP model and RTCS policy

The presented results confirm the overall superiority of the RTCS simulations derived from the
robust CCP model results, according to the value of the budgeted uncertainty parameter Γ. Such
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value will depend on the scenario type and, therefore, the season of the year. For the microgrid
under study, an intermediate value of Γ = 40% proved to be the best parameter option for the robust
model during spring, summer and autumn, while the maximum hedge (Γ = 100%) fits best during
winter season. It is worth noting that only the Rob-RTCS policies which incorporated the look-ahead
mechanism obtained improved results when compared to the deterministic-based policies.

As a complementary evaluation, based on each season and the best performing robust CCP
models presented above, we now investigate the differences among the proposed RTCS policies.
Once again, we turn ourselves to Tables 2.4 and 2.5, restricting our analysis to fixed values of Γ. For
each combination of season and Γ value, we split the policies into three groups: naïve, look-ahead
without model re-optimization (ReOpt) and look-ahead with re-optimization applied.

As far as the robust models are concerned, it is possible to observe that the naïve policy is not
able to perform well according to cost and reliability metrics, and its simulation results are inferior to
those obtained by the look-ahead policies. Regarding LA policies, both average and CVaR values of
scenario cost improve in re-optimization-based policies, when compared to non-re-optimized ones.
As an example, considering the summer instance, re-optimized models provide an improvement
of 3% in average scenario cost and 1% in CVaR. Out of Contract (OC) costs also decrease in
most cases. One possible explanation for this behaviour is related to how the look-ahead policy
works when the CCP model is re-optimized. At each time period, the LA mechanism updates the
values regarding uncertain energy parameters and linear decision rules, based on a new run of
the optimization model. Using these updated predictions inside the RTCS policy seems to be more
cost-effective than not using them.

A second analysis, based on Pareto frontier, can also be used to determine the best-performing
policy. In Figure 2.2, we plot the standard deviation of the daily cost (x-axis) versus the average of
this cost (y-axis) for deterministic and robust model policies, where each point denotes a specific
value of Φ or Γ, respectively. On each curve, the right most point corresponds to Φ = 0% in the
deterministic-based policies or Γ = 0% in the robust-based ones. Note that every point of each
curve can be strictly improved in both average and std of cost by changing to a different value of
Γ, without the need to trade off between average and standard deviation (std) of the cost. In other
words, each point is dominated by the points to its left. Therefore, the left-most part of each curve
shows the Pareto frontier of cost average vs. cost standard deviation performance of the associated
model policy. This evaluation framework can be applied to choose a suitable value of Φ or Γ, making
sure the system operates on the Pareto frontier.

For the winter instance, this means that, to retain the same level of average cost, the robust
budget model with conservative+ReOpt policy achieves the lowest std (i.e., the highest reliability);
or, conversely, to maintain the same level of std (i.e., reliability), this policy incurs the lowest average
cost. That is, robust budget / conservative+ReOpt dominates every other policy.

Finally, in Figure 2.3, we present a graph which highlights some advantages of the robust model
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Figure 2.2 – Winter instance: daily cost std and cost average obtained with simulations of cheapest,
cheapest+ReOpt, conservative, convervative+ReOpt and naïve policies, based on either determin-
istic or robust budget models with Φ = 0%, 50%, 100% and Γ = 0%, 20%, 40%, 60%, 80%, 100%,
respectively.
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Figure 2.3 – Cumulative total costs and out-of-contract (OC) costs of the best deterministic (Det)
and robust (Rob) CCP models (and associated policies) of each season, obtained after simulation
over the whole time horizon (from January 2015 until May 2018).

in the long run, by comparing the accumulated costs obtained after simulating the best set of deter-
ministic and robust CCP models and policies for each season instance, over the whole time horizon
(from January 2015 until May 2018). In this analysis, at the end of the simulation time horizon, the
system running with the robust model decisions incurs in no out-of-contract costs as well as signifi-
cantly cheaper accumulated total cost, 21% less when compared to the best deterministic model.

2.8 Discussion

This chapter presented the Contract Collaboration Problem (CCP), a multi-contract energy
trading framework based on flexible commitments, coupled with a Real-Time Command Strategy
(RTCS) for usage in microgrid energy trading and scheduling. As the main component, we devel-
oped a robust model under budgeted uncertainty which provides protection against the worst-case
realization of the microgrid’s production and consumption of electricity, by presenting a cost-effective
contract commitment planning for a given time horizon.

A case study was conducted on a real microgrid, with a total of four problem instances, one
for each season of the year. Monte-Carlo simulations were used to assess the performance of the
proposed CCP robust model solution (against the deterministic alternative), when used as input
for real-time energy scheduling strategies. Relying on a set of real-world-inspired energy purchase
contracts, simulation results have confirmed the efficacy of different robust-based RTCS strategies,
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2.8. Discussion

according to scenario types. For specific protection levels, the robust RTCS was able to dominate
the deterministic RTCS in all operational cost and system reliability metrics.

Overall, the CCP robust model under budgeted uncertainty provides a pool of solutions with
different protection levels so that decision-makers can pick according to their preferences. The ef-
fectiveness of each robust solution will depend on the microgrid’s load profile and renewable pro-
duction, which vary according to the season of the year.
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Chapter 3

THE ROBUST PERMUTATION FLOW SHOP

PROBLEM (MAKESPAN OBJECTIVE)

In permutation flow shop scheduling problems, the operations concerning each job are per-
formed in a serial flow (i.e., in a specific production sequence) on each machine, and the process-
ing order of the jobs is the same for each subsequent step. Such configuration is commonly used
in assembly lines throughout several types of industry, including chemical [22], petrochemical [30],
automobile manufacturing [155], electronic [64], food and metallurgical [52]. In all these applica-
tions, maintaining a continuous flow of processing tasks while minimizing idle time and waiting time
is highly important, guaranteeing process efficiency and increasing production rates and profits.

The Permutation Flow Shop (PFS) scheduling has been widely investigated considering de-
terministic processing times, assuming input data are accurate and known in advance. However,
in real-world industrial settings, manufacturing systems usually operate in uncertain environments
where interruptions (essentially random in nature) restrict the execution of production schedules pre-
cisely as they were planned. In particular, variation in processing times and other stochastic events
(e.g., machine breakdowns, due-date changes, order cancellations, and raw material shortages)
bring increased variability in production systems and may influence the optimization model’s quality
and feasibility [119].

A typical solution approach applied to these cases is Stochastic Optimization [53], whose fun-
damental premise states that the unknown parameters can be described using probabilities. On the
other hand, Robust Optimization (RO) [14] provides a different approach to optimization problems
under uncertain conditions. The unknown parameters are modeled as belonging to an uncertainty
set, making it a more suitable modeling approach when the uncertainty interval is known, but not
necessarily the probability distribution. The goal for RO is to obtain a feasible decision, no matter
what the constraints turn out to be, which is optimal for the worst-case objective function.

The objective of this chapter is to provide solution methods for the Robust Permutation Flow
Shop to minimize the worst-case makespan. Assuming processing times are uncertain and vary in
a given interval, the only information required is the lower and upper bounds of processing times,
obtained from historical data. We are interested in a job permutation that minimizes the worst-
case makespan for any possible realization of job processing times under the budgeted uncertainty
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set [16]. Unlike other robust optimization models, which generate only one conservative solution,
the budgeted approach allows the adjustment of the level of conservatism of the solution, allowing
the incorporation of different attitudes toward risk (e.g., risk-averse, risk-neutral, or risk-seeking).
As a result, the decision-maker can select the schedule that achieves the best balance between
robustness and optimality.

3.1 Overview

The first problem to be analyzed is the 2-machine Robust Permutation Flow Shop (2RPFS) prob-
lem to minimize the worst-case makespan. The objective is to provide exact solutions to this variation
of the problem, by developing an exact method, based on the Column-and-Constraint (C&CG) gen-
eration algorithm. Afterwards, we solve the m-machine version of the problem, with the application
of both metaheuristics and exact methods.

We start this chapter introducing the classical Permutation Flow Shop (PFS) Problem, whose
processing times are deterministic (i.e. fixed). The four most well-known MILP models for this prob-
lem are also presented, in Section 3.2.3. An extensive literature review on solution methods for the
PFS problem with uncertain processing times is presented in Section 3.3. The two-machine Robust
Permutation Flow Shop Problem is introduced in Section 3.4, together with the budgeted uncer-
tainty set and two proposed robust counterpart formulations. In sequence, Section 3.5 describes
an exact solution method to the 2RPFS problem, which uses a dynamic-programming-based worst-
case procedure. The obtained performance is then discussed in Section 3.6, based on extensive
computational experiments on existing literature instances.

The second part of this chapter is devoted to the m-machine version of the Robust Permutation
Flow Shop (RPFS) problem and proposes, in Section 3.7, an extension of the 2RPFS budget uncer-
tainty set, now considering m machines and a single budget parameter. This section also presents
extended versions of the Robust Counterparts originally introduced in Section 3.4.3, which can now
be used to solve the RPFS problem with an arbitrary number of machines. A baseline exact solu-
tion method for the problem is then depicted in Section 3.8, generalizing the solution method and
worst-case procedures initially proposed in Section 3.5. With solution method efficiency in mind,
Section 3.9 introduces a Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic
to solve the RPFS, followed by Section 3.10, with the obtained results of exact and heuristic solu-
tion methods. Finally, we close this chapter with a general discussion on the results obtained when
solving both 2RPFS and m-machine RPFS problems, in Section 3.11.
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3.2 The Deterministic Permutation Flow Shop (PFS) Problem

This section presents the Permutation Flow Shop Problem (PFSP) to minimize the makespan.
Following the well-known α|β|γ notation for scheduling problems, established by [50], where α rep-
resents the machine environment, β stands for job characteristics, and γ symbolizes the objective
function, this problem is denoted as F |prmu|Cmax. Since job processing time values are assumed
to be known in advance, we will use the term deterministic when referring to this version of the
problem.

3.2.1 Problem definition

The problem can be stated as follows. Consider a production planning process consisting of a
set J = {J1, J2, . . . , Jn} of n jobs to be executed in a set M = {M1,M2, . . . ,Mm} of m machines. In
this process, every job Ji is composed of m stages O1,i, O2,i, . . . , Om,i, named operations. Each job
operation Or,i must only be executed on machine Mr. Every operation Or,i has a non-negative pro-
cessing time pr,i forming the matrix P ∈ R+

M×J. At any time, each machine cannot execute more than
one operation. Operation Or,i can only be executed after operation Or−1,i is finished. Preemption is
not allowed: once an operation is started, it must be completed without any interruption. The permu-
tation flow shop’s particularity is that the sequence in which the jobs are processed (permutation) is
the same for all machines. Such sequence is defined by a permutation σ: {1, . . . , n} −→ J, with σ(j)
indicating the jth job to be executed. We call Σ the set of all permutations of n jobs, hence σ ∈ Σ.
The completion time of an operation Or,σ(j), denoted by Cr,σ(j), can be defined by the recurrence:

Cr,σ(j) =


pr,σ(j) if r = 1 and j = 1,
Cr,σ(j−1) + pr,σ(j) if r = 1 and j > 1,
Cr−1,σ(j) + pr,σ(j) if r > 1 and j = 1,
max(Cr,σ(j−1), Cr−1,σ(j)) + pr,σ(j) if r > 1 and j > 1.

The completion time of a job Ji is defined as its completion time on the last machine: Cm,i. The
makespan is the maximum completion time Cmax, considering all jobs, i.e., Cmax = max

i∈{1,...n}
Cm,i =

Cm,σ(n). The PFSP objective is to find a sequence of jobs (permutation σ) that minimizes the
makespan.

As far as the makespan objective is concerned, the PFSP was proved strongly NP-hard by [44]
for instances with three or more machines. However, the two-machine version of the problem can
be solved in O(n logn) time with the well-known algorithm proposed by [66] in one of the pioneering
papers in the scheduling literature. Indeed, for the two-machine case, the optimal makespan for
the deterministic flow shop problem is the same with or without the permutation constraint (i.e., the
sequence in which the jobs are processed is the same for all machines) [109].

Several solution approaches have been developed for the PFS problem with makespan mini-
mization: Mixed Integer Linear Programming (MIP) models [136], approximation algorithms [101,
110], branch-and-bound [111, 21, 75], Simulated Annealing [62], Tabu Search [137] and Genetic
Algorithms [154], to name a few.
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To our knowledge, no proven optimal solutions for the problem are currently available for in-
stances with more than 2000 operations (n = 200, m = 10). Therefore there is scope for new ap-
proaches that provide either exact or approximate improved solutions for larger instances.

3.2.2 Nomenclature used in the models

Indices and sets
n number of jobs
m number of machines
r machine indices; r ∈ {1, 2, . . . ,m}
i, k job indices; i, k ∈ {1, 2, . . . , n}
j sequence position; j ∈ {1, 2, . . . , n}
J set of job indices: J = {1, 2, . . . , n}
M set of machine indices: M = {1, 2, . . . ,m}

Input parameters
{pri} m× n matrix of processing times of job i on machine r

Model variables
Brj start (begin) time of job in sequence position j on machine r
Erj completion (end) time of job in sequence position j on machine r
Sri start time of job i on machine r
Cri completion time of job i on machine r
Cmax maximum flowtime (makespan) of the schedule determined by the completion time of the job in the last sequence
position on the last machine
Xrj idle time on machine r before the start of job in sequence position j
Yrj idle time of job in sequence position j after it finishes processing on machine r

Dik =

{
1, if job i is scheduled any time before job k

0, otherwise

Zij =

{
1, if job i is assigned to sequence position j

0, otherwise

Dik and Zij are binary integer variables, while the others are real variables that take integer
values when processing times are also integer values. The four most popular MILP models for the
PFS Problem are described next.

3.2.3 Mixed Integer Programming Formulations

Several Mixed-integer linear programming (MILP) models have been developed for the PFSP
with an arbitrary number of machines. For a comparative analysis among the best performing PFSP
formulations, we refer the reader to [135], which presents an empirical study based on a standard
set of 60 problem instances. We now present four competing MILP models designed for the PFS
Problem.

54



Nomenclature used in the models

3.2.3.1 The Wagner model

Wagner [142] formulated an all-integer programming model for a three-machine flow shop, which
was later extended to problems where m > 3 by Baker [8] and Stafford [129]. The all-integer model
was converted to an MILP model by Stafford. The following is a corrected and simplified version of
this model:

minimize Cmax = Cmn (3.1)

subject to
∑
j∈J

Zij = 1 ∀ i ∈ J (3.2)

∑
i∈J

Zij = 1 ∀ j ∈ J (3.3)

∑
i∈J

priZi,j+1 −
∑
i∈J

pr+1,iZij +Xr,j+1 −Xr+1,j+1

+ Yr,j+1 − Yrj = 0; (1 ≤ r ≤ m− 1; 1 ≤ j ≤ n− 1) (3.4)∑
i∈J

priZi1 +Xr1 −Xr+1,1 + Yr1 = 0; (1 ≤ r ≤ m− 1) (3.5)

Cmn =
∑
i∈J

pmi +
∑
p∈J

Xmp (3.6)

Constraints (3.2) and (3.3) are the classical assignment problem, ensuring that each job is as-
signed to one, and only one sequence position; and that each sequence position is filled by one,
and only one job. Constraints (3.4) and (3.5), called Job-Adjacency Machine-Linkage (JAML) con-
straints, ensure that (a) the job in sequence position j cannot begin processing on machine r + 1
until it has completed its processing on machine r; and (b) the job in sequence position j+ 1 cannot
begin its processing on machine r until the job in sequence position j has completed its processing
on that same machine. Constraint (3.5) was not included in Wagner’s work, but was later proved to
be necessary by Stafford and Tseng [130]. Constraint (3.6) measures the makespan of the set of
jobs.

3.2.3.2 The Wilson model

Alternatively, Wilson [149] applied sets of inequality constraints to control the JAML relationships,
similar to those used in the Manne models, described in the next section. His model is formulated
as follows:
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minimize Cmax = Bmn +
∑
i∈J

pmiZin (3.7)

subject to
∑
j∈J

Zij = 1 ∀ i ∈ J (3.8)

∑
i∈J

Zij = 1 ∀ j ∈ J (3.9)

B1j +
∑
i∈J

p1iZij = B1,j+1 (1 ≤ j ≤ n− 1) (3.10)

B11 = 0 (3.11)

Br1 +
∑
i∈J

priZi1 = Br+1,1; (1 ≤ r ≤ m− 1) (3.12)

Brj +
∑
i∈J

priZij ≤ Br+1,j ; (1 ≤ r ≤ m− 1; 2 ≤ j ≤ n) (3.13)

Brj +
∑
i∈J

priZij ≤ Br,j+1; (2 ≤ r ≤ m; 1 ≤ j ≤ n− 1) (3.14)

The assignment problem (previously described in Wagner’s model) is represented by constraints
(3.8) and (3.9). Constraints (3.10), (3.11), and (3.12) guarantee no idle time on machine 1, and that
job 1 is processed by all m machines without delay. Constraints (3.13) assure that the start of each
job on machine r+ 1 is no earlier than its finish on machine r. Constraints (3.14) ensure that the job
in position j + 1 in the sequence only starts on machine r after the job in position j in the sequence
has completed its processing on that machine.

3.2.3.3 The Manne model

Following a different approach, Manne [94] initially proposed a dichotomous-constraints integer
programming model for the general job shop problem, which assures that only one of each pair of
constraints can hold: job i either precedes job k somewhere in the processing sequence, or job k

precedes job i. The original Manne model was later adapted to the PFS by Stafford and Tseng [67]:

minimize Cmax (3.15)

subject to C1i ≥ p1i; (i ∈ J) (3.16)

Cri − Cr−1,i ≥ pri; (2 ≤ r ≤ m; i ∈ J) (3.17)

Cri − Crk + PDik ≥ pri; (r ∈M; 1 ≤ i < k ≤ n) (3.18)

Crk − Cri + P (1−Dik) ≥ prk; (r ∈M; 1 ≤ i < k ≤ n) (3.19)

Cmax ≥ Cmi; (i ∈ J) (3.20)

Constraints (3.16) assure that the completion time of each job on machine 1 must be at least the
duration of that job’s processing time on the first machine. Constraints (3.17) ensure that each job’s
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completion time on machine r is no earlier than that job’s completion time on machine r−1 plus that
job’s processing time on machine r. With P defined as a very large constant, the paired disjunctive
constraints (3.18) and (3.19) make sure that job k is either ahead of job i or comes after job i in the
sequence, but not both. Constraint (3.20) defines the makespan as the maximum completion time
of all jobs on the last machine.

3.2.3.4 The Liao–You model

In Liao and You [89], an alternative Job Shop model was proposed. Each pair of inequality di-
chotomous constraints from the original Manne [94] model was algebraically combined into a single
equality constraint, which equals a surplus variable qrik. Such variable controls the precedence re-
lationship of jobs i and k on machine r. The model also assumes P is a very large constant. Finally,
in order to guarantee feasibility, the authors added a boundary constraint on the surplus variables.

Pan [107] later developed an adaptation of this model to the Permutation Flow Shop Problem,
which is stated below.

minimize Cmax (3.21)

subject to Sri + pri ≤ Sr+1,i; (1 ≤ r ≤ m− 1; i ∈ J) (3.22)

Sri − Srk + PDik − prk = qrik; (r ∈M; 1 ≤ i < k ≤ n) (3.23)

qrik ≤ P − pri − prk; (r ∈M; 1 ≤ i < k ≤ n) (3.24)

Cmax ≥ Smi + pmi; (i ∈ J) (3.25)

Where constraints (3.22) represent a lower bound on the start time of job i on the subsequent
machine r+ 1, constraints (3.23) are the algebraic combination of the paired disjunctive constraints
(3.18) and (3.19) from the Manne model, and constraints (3.24) define an upper bound on the
respective surplus variable qrik. Finally, constraints (3.25) represent the makespan value (largest
completion time on the last machine m, given all jobs i ∈ J, such that Cmi = Smi + pmi).

3.3 Literature review

This section provides an overview of the flow shop problem with uncertain processing times,
concerning existing Stochastic Optimization methods (Section 3.3.1) and Robust Optimization ap-
proaches (Section 3.3.2).

3.3.1 Stochastic Optimization

[48] surveyed 100 papers that study uncertainty in different variations of flow shop scheduling
problems, published between 2001 and 2016. According to their analysis, the two most common
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uncertain parameters are processing times and machine breakdowns. The majority of works are
related to Stochastic Optimization, including heuristics [31, 34, 9, 42], simheuristics [40], probabilistic
hybrid heuristics [77], branch-and-bound [10], and simulation [43].

It is worth noting that Stochastic Optimization approaches model random parameters using
probability distributions, which may be difficult to infer in many cases. Additionally, optimizing the
expected value of an objective may not be the best alternative for processes that incorporate only a
small number of trials. The benefits of optimum expected value shall only be visible in the long haul,
after a large number of tests.

The problem was also investigated from the viewpoint of fuzzy programming [55, 95] and stability
analysis [78, 20].

3.3.2 Robust Optimization

When applying Robust Optimization techniques, no assumptions are necessary concerning the
underlying probability distribution of uncertain data. Also, different approaches towards risk can be
incorporated into the problem. As far as robust scheduling problems are concerned, the objective
is to optimize a performance measure considering the worst possible scenario, thus developing a
schedule that will perform relatively well under a wide range of possible realizations of processing
times. Different optimization criteria may be used to choose a robust solution [2]. The first and most
straightforward criterion is the minimax (also known as the absolute robust criterion). In this case,
given a minimization problem, the robust decision is made by choosing a solution that minimizes the
highest cost over all possible scenarios.

A second possible criterion is minimax regret, aiming to find the least maximum regret over all
possible scenarios. Regret can be either defined as the difference or the ratio between the resulting
cost of the candidate decision and the cost of the decision that would have been taken if uncertain
input data were known in advance (before the decision time, i.e., before solving the problem). In the
first case, where regret is defined as a difference, the so-called robust deviation decision is obtained.
For the latter case (regret being the ratio of two values), the resulting decision is the relative robust
decision.

Concerning the uncertain nature of the problem, scenarios represent the set of possible real-
izations of processing time values. When applying RO, there are two usual ways of describing the
set of scenarios. In the discrete case, an explicit scenario list is given, i.e., one processing time
matrix P λ for each scenario λ. In the interval case, for each operation Or,i concerning the execu-
tion of job i on machine r, a range [pLr,i, p

U
r,i] of lower and upper bounds of processing times is

defined. The so-called continuous processing time interval involves, therefore, an infinite number of
scenarios. Regardless of the scenario representation approach, interval or discrete, once the robust
counterpart formulations have been defined, developing an appropriate solution method remains a
challenge.
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Table 3.1 summarizes existing works regarding the makespan-objective Robust Permutation
Flow Shop Problem, in terms of optimization criterium (problem type), solution approach (heuristics
or exact methods), the number of machines, and how processing time uncertainty was represented
(discrete or interval).

Given the minimax regret makespan criterion, [74] studied both the discrete and interval cases
of processing time uncertainty. Their work proposed branch-and-bound and heuristic procedures
to obtain robust solutions, along with experiments based on a considerable set of randomly gener-
ated instances, with no more than 15 jobs, however. They also provided NP-hardness proof for the
discrete scenario case of the robust flow shop with m = 2. Very recently, the 2-machine interval
processing time case has been proven to be NP-hard by [120].

Problem Type Heuristics / Approximation Exact methods
Minimax Regret 2 machines: Greedy [74]D, I 2 machines:

3 machines: Evolutionary [28]I Branch & Bound
m machines: Constructive [29]I [74]D, I

Scatter Search [123]I 2 jobs: O(m) [6]I

Minimax 2 machines: PTAS [71]D -
Minimax, 2 machines: SA and IG [159]I -
Budgeted uncertainty

Table 3.1 – Summary of algorithms listed in the literature review regarding the Robust PFSP
(makespan objective). For each work, we specify how processing time uncertainty was represented: a
D means discrete processing time matrices; an I means processing time intervals.

Concerning the existing solution approaches involving only discrete-scenario uncertainty, [71]
studied the two-machine permutation flow shop problem (F2 | prmu | Cmax) with uncertain data,
whose deterministic counterpart is known to be polynomially solvable. The work proved that the
minimax and minimax regret versions of the problem are strongly NP-hard even for two scenarios.
The authors developed a polynomial-time approximation scheme (PTAS) algorithm to be used with
the minimax version of the problem when the number of scenarios is constant. They also stated that
the minimax regret version is not at all approximable, even for two scenarios.

Regarding the interval scenario case with the minimax makespan criterion, the computational
complexity of the robust flow shop with m = 2 is still an unsolved open problem [71]. Note that
the problem is NP-hard for m ≥ 3 following the complexity of the deterministic problem. Several
solution strategies deal exclusively with processing time uncertainty represented as intervals of
known bounds. [6] studied the minimax regret flow shop with m machines but only two jobs. [123]
proposed a Scatter Search metaheuristic for the PFSP and other two scheduling problems with
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interval uncertainty, based on the minimax regret criterion.

Unlike previous works, [159] adopted a new approach, which searches for a minimax robust
schedule given the restricted worst-case scenario, based on the [16] budgeted uncertainty set.
Simulated annealing (SA) and Iterated Greedy (IG) metaheuristics were applied to solve the problem
over a set of 300 randomly generated instances.

In the same year, [28] proposed an evolutionary algorithm for the minimax regret makespan ro-
bust flow shop with three machines, assuming processing times belonged to known intervals. Later,
the same authors proposed another solution approach for an arbitrary number of machines [29],
where a constructive algorithm based on the Nawaz-Enscore-Ham (NEH) heuristic [103] has been
introduced and experimentally evaluated against two other heuristic algorithms: the authors’ evolu-
tionary algorithm and a Middle Interval heuristic.

3.4 The two-machine Robust Flow Shop Problem (2RPFS)

From this moment on, we will concentrate on the two-machine robust flow shop problem. Dif-
ferent optimization criteria may be used to choose a robust solution [46, 2]. Our research focuses
on the minimax criterion, also known as the absolute robust criterion. In this case, considering a
minimization problem, the robust decision is made by choosing a solution that minimizes the highest
solution value over all possible scenarios, according to a predefined uncertainty set. We refer the
reader to Appendix A for a summary of the two types of optimization criteria that can be applied
when solving the robust version of the problem.

Given that the computational complexity remains an open problem for 2RPFS under budgeted
uncertainty, in this work, we fill a gap in the literature by providing an exact solution method (see
Table 3.1 from Section 3.3). Furthermore, it is worth noting that the models and the solution method
presented in this section can be generalized to the m-machine variant of the robust PFSP, which is
NP-hard for m ≥ 3, following the complexity of the deterministic problem.

After defining the 2RPFS problem, this section describes the application of the budgeted uncer-
tainty set. Finally, two robust counterpart formulations are proposed, based on well-known Mixed-
Integer Linear Programming (MILP) formulations for the deterministic problem.

3.4.1 Problem statement

Assume the matrix of individual processing times P = {pr,i} as uncertain. A scenario λ is defined
as a realization of uncertainty and, for each λ, there is a unique matrix of processing times Pλ =
{pλr,i ∈ R : r = 1, 2, i = 1, 2, . . . , n}. We define Λ as the set indexing all possible scenarios.

Let ϕ(σ,Pλ) be the makespan of a sequence σ ∈ Σ in scenario λ (i.e., given processing time
matrix Pλ). The objective of the two-machine robust (minimax makespan) flow shop is to find a job

60



3.4. The two-machine Robust Flow Shop Problem (2RPFS)

permutation σ ∈ Σ that minimizes the maximum possible makespan over all possible scenarios
λ ∈ Λ:

2RPFS: min
σ∈Σ

max
λ∈Λ
{ϕ(σ,Pλ)} (3.26)

For any sequence σ ∈ Σ, the value

Z(σ) := max
λ∈Λ
{ϕ(σ,Pλ)} (3.27)

is called the worst-case makespan or robust cost for σ. A maximizer in (3.27) is called a worst-
case scenario for σ.

3.4.2 Budgeted uncertainty set for the 2RPFS problem

[159] compared the three classical Robust-Counterpart Optimization (RCO) models in terms of
the number of variables, the number of required constraints, and if the respective formulation is
linear or not. The first and simplest model, by [128], consists of a linear formulation that presents
the smallest number of variables and constraints. However, it is not possible to adjust its degree
of solution conservatism. Following a new approach, [15] proposed an RCO model with safety pa-
rameters, which allow a trade-off between robustness and performance. However, the resulting for-
mulation is non-linear (conic quadratic) and more challenging to solve than the original problem.
Finally, the model developed by [16] provided a linear formulation that allows controlling the level
of conservatism of the robust solution without resulting in a substantial increase in problem size.
With the inclusion of a budget parameter for each constraint, it is possible to adjust the number of
coefficients that simultaneously take their largest variations, thus providing a compromise between
robustness and optimality. Therefore, the so-called budgeted uncertainty set, defined by this RCO
model, comes as a natural choice to model processing time uncertainty in scheduling problems.

The budgeted uncertainty set for the 2RPFS problem was proposed by [159]. We reproduce their
definition below, with some modifications in notation as well as additional comments.

As stated in Section 3.3, there are two common ways of representing scenario set Λ. Given the
interval approach for representing uncertain values, consider two positive processing time matrices
P={pr,i} and P̂={p̂r,i}, that represent the nominal values of and the maximum allowed deviations
of P, respectively. Additionally, we introduce two positive integers Γ1 and Γ2, which will be called
budget parameters, that denote the maximum number of operations whose uncertain processing
times can reach their worst-case values in machines M1 and M2, respectively. We can define the
bounded (processing time) uncertainty sets of operations in M1 and M2, denoted as Ur (r = 1, 2),
as follows:

Ur =
{

Pr = {pr,i} : pr,i = pr,i + δr,i p̂r,i, δr,i ∈ {0, 1}, i ∈ {1, . . . , n},
n∑
i=1

δr,i ≤ Γr
}

, (3.28)

where Pr is the projection of P in the space defined by machine Mr (r = 1, 2).
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We can now define the budgeted uncertainty set as:

UΓ = U(Γ1,Γ2) = U1 × U2.

Notice that a scenario λ ∈ Λ is defined by the matrix P λ ∈ UΓ. Also, for a given r ∈ M and i ∈ J,
let δλr,i be the value defining the deviation of the processing time regarding the execution of job i on
machine r in scenario λ, i.e., pλr,i = pr,i + δλr,ip̂

λ
r,i. Therefore, the total number of operations whose

processing time can deviate to its maximum value in machine Mr is limited to Γr.

The main advantage of applying budgeted uncertainty sets is the ability to model the risk-
averseness of the decision-maker by varying Γ1 and Γ2. As mentioned by [16], the idea is that
an event where all uncertain parameters pr,i reach their worst-case values at the same time has a
very low probability of happening. In particular, higher values of Γ1 and Γ2 lead to larger uncertainty
sets and thus more conservative solutions. When Γ1 = Γ2 = 0, the problem is equivalent to the
nominal problem, i.e., the PFSP with two machines. If Γ1 = Γ2 = n, we obtain the box uncertainty
set [128]. For a given value of Γ1 and Γ2, there are

(Γ1
n

)
×
(Γ2
n

)
possible worst-case scenarios, given

the budgeted uncertainty set UΓ.

[159] affirmed that obtaining an exact solution for the two-machine Robust PFSP under budgeted
uncertainty would be computationally intractable for real-sized problem instances. However, with the
method introduced in this research, it turns out that it is possible to obtain exact solutions for most
instances from that work in reasonable execution time (see results in Section 3.6).

3.4.3 Robust counterparts

We now present the robust counterparts for Wagner [142] and Wilson [149] PFSP MILP models.
According to the empirical study conducted by [135], these two assignment-problem-based models
are the best performing ones, based on results obtained on a standard set of 60 problem instances.
In both models, the number of constraints and the model matrix size are smaller than the other two
competing integer programming models from the literature [67, 89]. Experimental data suggests that
this factor greatly influences the computational time of the PFS models, apparently more than the
number of binary variables.

3.4.3.1 Robust Counterpart for Wagner PFS Model

[142] proposed an all-integer programming model for a three-machine deterministic flow shop,
later extended to an m-machine MILP model by [129], and commonly named in the literature as
wagner model. We now present its robust counterpart for two machines. In this two-stage RO
formulation, y and Zi,j are the first-stage variables, while Xλ

j and Y λ
j are in the second stage.
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Zi,j =
{

1, if σ(j) = i (job i occupies position j in the sequence σ)
0, otherwise.

Xλ
j idle time on machine M2 before the start of operation concerning the job in sequence position

j given scenario λ.
Y λj idle time of the job in sequence position j after it finishes processing on machine M1 given

scenario λ.

min y (3.29)
st
∑n
i=1

(
p2,i + p̂2,iδ

λ
2,i

)
+
∑n
j=1X

λ
j ≤ y, λ ∈ Λ, (3.30)∑n

i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,j+1 + Y λj+1 =

∑n
i=1

(
p2,i + p̂2,iδ

λ
2,i

)
Zi,j +Xλ

j+1 + Y λj ,

1 ≤ j ≤ n− 1, λ ∈ Λ, (3.31)∑n
i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,1 = Xλ

1 , λ ∈ Λ, (3.32)∑n
i=1 Zi,j = 1, j = 1, . . . , n, (3.33)∑n
j=1 Zi,j = 1, i = 1, . . . , n, (3.34)

Zi,j ∈ {0, 1}, i, j = 1, . . . , n, (3.35)

Xλ
j ≥ 0, Y λ1 = 0, Y λj ≥ 0, j = 1, . . . , n, λ ∈ Λ, (3.36)

y ≥ 0. (3.37)

The objective function (3.29) and constraint (3.30) have the goal of finding a robust schedule that
minimizes the makespan y of the worst-case scenario, among all possible scenarios. Constraints
(3.31) and (3.32) are the Job-Adjacency and Machine-Linkage (JAML) constraints from the Wagner
model, written for each scenario λ ∈ Λ. We refer the reader to Figure 3.1 for an illustrative JAML
diagram. They ensure that, for each scenario λ: (a) the job in sequence position j cannot begin
processing on machine M2 until it has completed its processing on machine M1, and (b) the job in
sequence position j+1 cannot begin its processing on machineMr until the job in sequence position
j has completed its processing on that same machine. Remark that the original Wagner model does
not enforce an important aspect: all jobs are processed on machine M1 without any in-sequence
machine idleness, i.e., the idle time before any job is processed on machine M1 is always zero. As a
consequence, the idle time of the first job after processing on M1 is zero (Y1 = 0).Constraints (3.33)
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and (3.34) are the classical assignment constraints, ensuring, respectively, that each job is assigned
to one and only one sequence position; and that each sequence position is filled by one and only
one job. Finally, constraints (3.35)-(3.37) define the domain of the variables.

3.4.3.2 Robust Counterpart for Wilson PFS Model

Rather than using equality constraints and idle time variables for controlling the so-called JAML
relationships, [149] applied sets of inequality constraints based on start time variables defined for
each job operation and each machine. This variant of the model uses the following decision vari-
ables:

Zi,j =
{

1, if σ(j) = i (job i occupies position j in the sequence σ)
0, otherwise.

Bλj = start time of operation concerning job σ(j) (in position j) on machine M2 given scenario λ.

Based on the above definitions, where variables Zi,j and Bλ
j are in the first and second stage,

respectively, the two-stage robust-counterpart of the Wilson model for 2RPFS can be formulated as
follows:

min y (3.38)

st Bλn +
n∑
i=1

(
p2,i + p̂2,iδ

λ
2,i

)
Zi,n ≤ y, λ ∈ Λ, (3.39)

∑n
i=1
∑j
`=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,` ≤ Bλj , j = 1, . . . , n, λ ∈ Λ, (3.40)

Bλj +
∑n
i=1

(
p2,i + p̂2,iδ

λ
2,i

)
Zi,j ≤ Bλj+1, j = 1, . . . , n− 1, λ ∈ Λ, (3.41)∑n

i=1 Zi,j = 1, j = 1, . . . , n, (3.42)∑n
j=1 Zi,j = 1, i = 1, . . . , n, (3.43)

Zi,j ∈ {0, 1}, i, j = 1, . . . , n, (3.44)

Bλj ≥ 0, j = 1, . . . , n, λ ∈ Λ, (3.45)

y ≥ 0. (3.46)

The objective function (3.38) and constraint (3.39) state that this formulation aims to find a robust
schedule that minimizes the makespan y of the worst-case scenario, among all possible scenarios.
Constraints (3.40) and (3.41) guarantee that the robust schedule is feasible and that start time
variables are appropriately calculated for each scenario λ. Constraints (3.42) and (3.43) are as
defined in the previous formulation. Constraints (3.44)-(3.46) define the domain of the variables.

Solving the two models above, for all possible combinations of λ ∈ Λ, is unrealistic. Therefore, in
the next section, we will introduce an algorithm capable of obtaining optimal results for 2RPFS with
only a subset of these combinations.
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3.5 Column-and-Constraint Generation applied to 2RPFS problem

This section presents an exact method for solving 2RPFS under budgeted uncertainty. Our ap-
proach is based on Column-and-Constraint Generation, a cutting plane procedure for two-stage RO
problems which has been recently used to solve different robust scheduling problems [117, 124].
The method’s name originated from how the decomposition operates: besides new constraints, each
cutting plane is also associated with a set of new decision variables for the recourse problem [162].

Given one of the robust counterparts presented in Section 3.4, the main idea is to relax it into
a master problem (MP) where each robust constraint is written only for a finite subset U ′ of the
uncertainty set UΓ. Then, given a feasible solution to the MP, the solution is checked for feasibility
by solving an adversarial separation subproblem (SP). If the SP solution indicates that one or more
robust constraints become infeasible, the uncertainty set U ′ is expanded by one or more vectors, and
the master problem is augmented, according to the column-and-constraint generation procedure.

For the 2RPFS problem, the adversarial separation problem is represented by the worst-case
procedure, which, given the sequence σ returned by the MP solution, returns the highest possible
makespan under the uncertainty set UΓ. Since the uncertainty set UΓ, defined in Section 3.4, is
polyhedral, the number of possible extreme solutions that the procedure can fetch is finite, and the
algorithm terminates [162].

3.5.1 C&CG algorithm

In order to explain the C&CG algorithm, we will consider the 2-stage RO formulations defined
in Section 3.4.3. Given that uncertainty set U(Γ1,Γ2) is discrete and finite, obtaining a solution for
one of these formulations is equivalent to solving a probably large-scale MILP, enumerating all
variables and constraints for each scenario λ in the set Λ. This possibility, as we can expect, is
unrealistic. [162] propose an alternative solution approach, generating only a subset of scenarios
Θ = {λ1, . . . , λv} ⊆ Λ. With the application of the so-called C&CG procedure, if the problem is formu-
lated in a master-subproblem framework, it can be solved iteratively, with each iteration generating
one scenario λv ∈ Θ, obtained by solving a subproblem.

With this idea in mind, we define the Master Problem (MP) by choosing an appropriate 2-stage
RO formulation, in our case, either Wagner or Wilson robust counterpart models. Let RWagner =
{X(1), . . . ,X(v),Y(1), . . . ,Y(v)} and RWilson = {B(1), . . . ,B(v)} be the corresponding recourse deci-
sion variables of each model, respectively. The master problem is solved iteratively, with each step
generating Wagner constraints (3.30)-(3.32) or Wilson constraints (3.39)-(3.41), as well as recourse
variables linked with one or more scenarios λv ∈ Λ, obtained by solving the associated subproblem.

In order to deal with the scenarios defined by Θ, we assume that an oracle can obtain an optimal
solution to the worst-case subproblem for a given value of the first-stage decision variables Zi,j . The
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Algorithm 2: Column-and-constraint generation algorithm
1 Set LB = −∞, UB = +∞, v = 1 and Θ = {λ(0) : δ(0)

r,i = 0, ∀r = 1, 2, ∀i = 1, . . . , n}
2 while (UB− LB)/LB > ε do
3 if model = Wagner then Solve the MP defined in (3.29)-(3.37) with Λ := Θ
4 if model = Wilson then Solve the MP defined in (3.38)-(3.46) with Λ := Θ
5 Let (Z∗(v), y

∗, R∗model) be the MP optimal solution

6 Update LB := max
[
LB, y∗

]
7 Call the oracle to solve subproblem (SP) in (3.47) with Z := Z∗(v)
8 Let S∗(v) be the SP optimal solution value with associated scenario λ∗(v)

9 Update UB := min
[
UB, S∗(v)

]
10 if (UB− LB)/LB > ε then
11 Add recourse decision variables R(v)

model for scenario λ
∗
(v) on MP

12 if model = Wagner then Generate MP constraints (3.30)-(3.32)&(3.36) for λ∗(v)
13 if model = Wilson then Generate MP constraints (3.39)-(3.41)&(3.45) for λ∗(v)

14 Update Θ := Θ ∪ {λ∗(v) : δ(v) = δ∗} and set (v) := (v + 1)
15 end
16 end
17 Return UB, Z∗(v)

subproblem SP is defined as:

(SP) S(σ) = max
λv∈UΓ

ϕ(σ,Pλv ) (3.47)

where job permutation σ is derived using (MP) optimal values of variables Zi,j . In our case, the
optimal solution for (SP) can be obtained by the worst-case procedure defined in Section 3.5.2.

The C&CG method is presented in Algorithm 2, where LB denotes the lower bound, UB denotes
the upper bound, v is the iteration counter, Θ is the set of worst-case scenarios generated by the
method, and ε ∈ R+ represents the tolerance of optimality.

3.5.2 Worst-case evaluation

We now discuss how to determine the worst-case realization under the budgeted uncertainty set
UΓ, for a specific sequence of jobs σ = {σ(j), j = 1, . . . , n}. From equation (3.27), given a protection
level Γ = (Γ1,Γ2) and a schedule σ, we extend the definition of worst-case makespan or robust cost
Z(σ,Γ) as follows:

Z(σ,Γ) := max
λ∈UΓ
{ϕ(σ,Pλ)}. (3.48)

We assume that parameters Γ1 and Γ2, from the budgeted uncertainty set, are non-negative inte-
gers. Based on this assumption, statement (3.48) reflects a problem with a convex function being
maximized over a polytope defined by uncertainty set UΓ. Thus, in order to obtain the worst-case
realization of uncertainty, only specific realizations of UΓ are needed, namely the extreme points of
the polytope. For each machine Mr and job Ji, the set of extreme scenarios are characterized either
by the values pr,i or pr,i + p̂r,i (see proof in Appendix C), i.e., any worst-case realization will use as
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much budget of uncertainty as possible. Therefore, for the optimal solution of (3.48), with worst-case

scenario λ∗,
∑n
i=1

|pλ∗r,i−pr,i|
p̂r,i

= Γr, ∀r ∈ {1, 2}.

We developed a worst-case solution method based on dynamic programming. The complexity
of this algorithm is O(n2). Given 1 ≤ r ≤ 2, 1 ≤ k ≤ n, and 0 ≤ γ ≤ n, let us define a value
function α(r, k, γ) as the optimal value of the restricted separation problem for machine Mr and job
positions {1, . . . , k}, when at most γ jobs are using their maximum processing time on machine Mr.
The optimal value of the problem is then defined by Z(σ,Γ) = α(2, n,Γ2).

The value-function is defined by the recursion:
α(1, k, γ) = max

[
p1,σ(k) + α(1, k − 1, γ), p1,σ(k) + p̂1,σ(k) + α(1, k − 1, γ − 1)

]
,

for 1 ≤ k ≤ n, 0 ≤ γ ≤ Γ1, (3.49)
α(2, k, γ) = max

[
p2,σ(k) + max[α(2, k − 1, γ), α(1, k, Γ1)] ,
p2,σ(k) + p̂2,σ(k) + max[α(2, k − 1, γ − 1), α(1, k, Γ1)]

]
,

for 1 ≤ k ≤ n, 0 ≤ γ ≤ Γ2, (3.50)

and the following initialization values:
α(r, k, γ) = −∞ if γ < 0, α(r, k, γ) = 0 if k = 0 and γ ≥ 0,
α(2, k, 0) = p2,σ(k) + max[α(2, k − 1, 0), α(1, k, Γ1)], for 1 ≤ k ≤ n.

If r = 1, the first maximizer argument accounts for the case when there is no delay of execution
regarding job σ(k) on the first machine, while the second expression handles the case where a
delay occurs. Similarly, for r = 2, we take the maximum of two cases: with or without delay when
executing job σ(k) on the second machine. However, the job start time has to be computed as the
maximum between the previous job’s σ(k − 1) worst-case completion time on the same machine
M2, and the worst-case completion time of the same job σ(k) on the previous machine M1, taking
into account its budget of uncertainty Γ1.

3.6 2RPFS Experimental results

We conducted extensive experiments on randomly generated datasets to assess the perfor-
mance of the proposed solution method and additional aspects, including solution robustness, the
trade-off between robustness and optimality, and the impact of data uncertainty on the obtained
schedules. The analyses employed in this section follow the same lines as recent works on RO un-
der budget uncertainty [93, 36, 124]. Sub-section 3.6.1 presents the testbed and environment setup,
while 3.6.2 examines the robust method performance regarding execution time and the number of
optimal solutions. Finally, based on Monte-Carlo simulation, we close with a case study that anal-
yses the expected behavior of robust, stochastic, and deterministic solutions, to verify a possible
increase in the expected solution cost in the long run.
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3.6.1 Test instances and computational environment

Our experiments were based on a set of random instances generated by [159]. In his
work, six groups of instances were created, each one with a different number of jobs n =
{10, 20, 50, 100, 150, 200}. The expected processing time pr,i (r = 1, 2; i = 1, . . . , n) is an integer
drawn from the uniform distribution [10, 50] and the largest processing time deviation was set as a
ratio of the expected processing time (i.e., p̂r,i = αpr,i), where α = {10%, 20%, 30%, 40%, 50%}. Ten
instances were generated for each combination of n and α for a total of 300 test instances. All test
instances are available at https://github.com/levorato/2RPFS_Cmax_Budget.

The C&CG algorithm was coded in Julia 1.4.0, and IBM CPLEX 12.9.0 (with default parameters)
was used to solve 2RPFS MILP models. All experiments were performed on a workstation with an
Intel Xeon® CPU E5640 @2.67GHz with 32 GB RAM, under Ubuntu 18.04 LTS. Time limit was set
to 2 hours to solve each instance and the ε convergence parameter for C&CG was set to 10−8.

With a particular interest in examining the impact of budget parameters on the performance
of the proposed robust scheduling algorithms, when solving each instance, we tested the 2RPFS
models by varying Γ1 and Γ2 according to five ratios (20%, 40%, 60%, 80%, and 100%) of the
number of operations subject to processing time deviation on machines M1 and M2, respectively.

3.6.2 Comparative performance of the algorithms

This section examines the performance and effectiveness of the C&CG algorithm when using
either Wagner or Wilson 2RPFS models. The comparison is based on the computational efficiency
in terms of CPU time and the percentage of instances solved to optimality (i.e., zero solution gap).

We present in Table 3.2 overall results, comparing the performance of the algorithms. Wagner-
model C&CG is the one that solves the majority of the instances to optimality with the best execution
time. The % Best Performance measurement indicates that, from the total number of instances
solved to optimality, the Wagner model solved 86% of these instances faster, using less CPU time,
followed by Wilson, which solved 14%. Measurements % Solved 150 and % Solved 200 indicate
that the Wilson-based algorithm could not obtain optimal solutions for most of the 150 and 200-
job instances within the time limit. The other presented measurements (%Solved, Avg % Gap, and
Median time) also favor the Wagner model. In this analysis, we present medians to mitigate the
effect of instances not solved within the time limit.

Table 3.3 presents, for every instance size, the average performance of the C&CG algorithm
with each robust-counterpart model, including average run time values. When using average, the
results of all instances (even outliers) are taken into account. Standard deviation is also included
as a secondary measure. Additionally, the average number of iterations and the standard deviation
are listed. These results evidence that, as instance size grows, the models become harder to solve
(especially the Wilson model), as seen on the smaller percentage of instances solved to optimality
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Model
%Best Per
formance % Solved

% Solved
10-20

% Solved
50

% Solved
100

% Solved
150

% Solved
200

Avg. %
gap

Median
time

Median
Iterations

Wagner
Wilson 7.0

9.0
148.62
14.05

1.21%
1.11%

37%
67%

46%
68%

58%
90%

86%
97%

100%
100%

45%
55%

14%
86%

Table 3.2 – Wagner vs. Wilson Robust PFSP C&CG performance comparison, given all instances.
% Best Performance is the percentage of instances solved to optimality where the model achieved
shorter execution time; % Solved contains the percentage of instances solved to optimality within
the time limit; % Solved < n > represents the percentage of solved instances of size n; Avg. % gap
is the average percentage gap of solutions from instances not solved to optimality; Median time is
the median execution time, in seconds; Median iterations is the median of the number of iterations
performed.

n  /  Model
10

Wagner Wilson
20

Wagner Wilson
50

Wagner Wilson
100

Wagner Wilson
150

Wagner Wilson
200

Wagner Wilson
% Best Performance
% Solved
Avg. % gap
Avg. time opt. (s)
Std. dev. of time opt. (s)
Avg. Iterations
Std. dev. of Iterations 2

4
1
0

100%
39%

2
4
1
0

100%
61%

8
7
54
7

100%
19%

8
7
7
2

100%
81%

23
20
888
310

0.86%
86%
5%

24
17
616
117

0.40%
97%
95%

15
21

1,177
526

1.68%
58%
5%

32
31
684
258

1.09%
90%
95%

8
14

1,233
878

1.62%
46%
7%

28
28
877
338

1.21%
68%
93%

4
11

1,888
2,362
0.61%
37%
5%

44
30
752
441

1.09%
67%
95%

Table 3.3 – Wagner vs. Wilson Robust PFSP C&CG performance comparison, for each instance size
n. % Best Performance is the percentage of instances solved to optimality where the model achieved
shorter execution time; % Solved contains the percentage of instances solved to optimality within
the time limit; Avg. % gap is the average percentage gap of solutions from instances not solved to
optimality; Avg. time opt. and Std. dev. of time opt. are the mean and standard deviation in solution
time, respectively, regarding instances solved to optimality; Avg. iterations and Std. dev. of iterations
are the mean and standard deviation of the number of iterations performed.

and increased average execution time.

3.6.3 Case study on two representative instances

In this subsection, we assess the quality and level of robustness of scheduling solutions for two
large problem instances, the first one with small uncertainty (α = 20%) and the second with high
uncertainty (α = 50%). The following solution methods were used:

— Det(P=): deterministic PFSP solution with P = {pr,i},∀r ∈M, i ∈ J;
— 2RPFS(Γ1,Γ2): Wagner-based 2RPFS model, solved with the C&CG framework. The Γ param-

eters are used to control the level of the conservativeness of the robust model, and both vary
in the set {20%, 40%, 60%, 80%, 100%} as a fraction of the number of jobs n. The robust model
with Γ1 = Γ2 = 0 is equivalent to Det(P=), while the one with Γ1 = Γ2 = n is the deterministic
model that is entirely risk-averse and overestimates all parameters. The other values of Γ1 and
Γ2 model intermediate risk aversions;
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— SimGRASP: stochastic PFSP simheuristic solution from [40]. SimGRASP is a modified GRASP
metaheuristic that incorporates Monte Carlo Simulation to solve the PFSP with random process-
ing times. The objective is to find a schedule that minimizes the expected makespan. Given
its stochastic nature, we obtained 25 independent runs for each instance file (and respective α
parameter). For result comparison, when calculating the robust cost of each (Γ1,Γ2) combina-
tion, we stored, for each instance, the smallest and largest robust costs found within these 25
simheuristic executions. We call them SimGRASP-Min(25) and SimGRASP-Max(25).

We assessed the robustness of each solution method by calculating the robust cost at dif-
ferent protection levels (Γ1%,Γ2%), using the dynamic programming algorithm defined in Sec-
tion 3.5.2. Figure 3.3 depicts the robust cost Z(σ) of each solution σ under different protection
levels (Γ1%,Γ2%). For clarity of the graphs, the robust costs for some protection levels were omitted.

Observe that, as the protection level (Γ1%,Γ2%) increases, so does the robust cost, i.e.,
makespan of the worst-case scenario defined by the protection level. In other words, higher val-
ues of Γ1% and Γ2% are equivalent to a greater quantity of operations with deviated processing
times, which directly impacts the makespan. In the examples from Figure 3.3, the extreme cases
occur whenever Γ2% = 100, yielding the highest robust costs.

From the viewpoint of the decision-maker who needs to hedge against worst-case costs, it would
be preferable to obtain a solution method that performs well under different protection levels. With
this in mind, in the two graphs presented, we identify which scheduling method (and respective solu-
tion) presents the best (smallest) robust cost, considering all (Γ1%,Γ2%) values. Regarding the first
graph (small uncertainty instance), note that both 2RPFS(80,40) and 2RPFS(60,40) offer improved
protection against worst-case scenarios, regardless of (Γ1%,Γ2%) values used for worst-case eval-
uation. We also highlight the disappointing worst-case performance of both the nominal solution
Det(=) and the stochastic method. The vast distance between the robust costs of the stochastic
method, i.e., SimGRASP-Min(25) and SimGRASP-Max(25), reveals a significant exposure to the
realization of worst-case scenarios.

In its turn, the “large uncertainty range” instance (α = 50%) presents increased robust cost dif-
ferences between distinct protection levels. For this instance, the variation of Γ1 and Γ2, i.e., the
number of operations whose processing times can deviate on each machine, has even more im-
pact on the worst-case makespan. In Figure 3.3(b), we can observe that either 2RPFS(40,40) or
2RPFS(60,60) offer the best protection against worst-case scenarios, depending on the combina-
tion of (Γ1%,Γ2%) values. Once again, the solutions Det(=) and SimGRASP-Max(25) present high
robust costs. In particular, for (Γ1%,Γ2%) = (60, 60), the solution provided by 2RPFS(60,60) is 8%
cheaper than Det(=) and SimGRASP-Max(25).

In summary, the choice of a robust solution depends on the instance and the desired protection
level. The examples above illustrate how 2RPFS can provide a pool of robust schedules, depending
on the value of (Γ1,Γ2). With these options, the decision-makers can choose one of the schedules
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based on their risk preferences. Also, remark that, if the stochastic method is chosen, depending
on the solution returned by the algorithm, the worst-case performance may be weak, as can be
seen on the robust costs achieved by SimGRASP-Max(25). Indeed, neither SimGRASP nor the
deterministic models have the objective of minimizing the worst-case makespan.

(a) Small uncertainty instance #8, n = 150, α = 20% (RB1502008)
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(b) Large uncertainty instance #10, n = 200, α = 50% (RB2005010)
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Figure 3.2 – Probability distributions of makespan value for 2RPFS and SimGRASP solutions, ac-
cording to simulation results from lognormal, triangular, and uniform distributions for uncertain job
processing times.

As a complementary analysis, we evaluate the expected behavior of obtained problem solutions.
The makespan distribution of the obtained robust schedules was simulated by subjecting the pro-
cessing time matrix to random perturbations. In particular, in each Monte Carlo simulation run, the
(actual) processing time p̃r,i,∀r ∈ M, i ∈ J, was independently drawn from a predefined probabil-
ity distribution, yielding a random processing time matrix P̃ . For this purpose, we used lognormal,
symmetric triangular, and uniform distributions in [p− p̂, p+ p̂] to generate random processing times.
We generated 10, 000 processing time matrices P̃ . Then, for each 2RPFS solution σ(Γ1,Γ2), obtained
with a specific protection level (Γ1,Γ2), we processed the set of all corresponding makespan values
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(a) Small uncertainty instance #8, n = 150, α = 20% (RB1502008)
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Figure 3.3 – Robust cost of deterministic, 2RPFS and SimGRASP solutions versus protection level (Γ1%, Γ2%). All presented
2RPFS solutions are optimal.
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ϕ(σ(Γ1,Γ2), P̃ ) obtained through simulation on P̃ . The same was made for the solutions returned by
Det(P=) and SimGRASP-Min(25).

We first focus on simulation results presented in Figure 3.2(a). Regarding the small uncertainty
instance, the expected makespan performance of 2RPFS(40,60), 2RPFS(40,80), 2RPFS(60,40)
and 2RPFS(80,80), are equivalent to SimGRASP. However, depending on the budget parameters,
if we return to worst-case evaluation, as seen in Figure 3.3(a), the protection against worst-case sce-
narios varies considerably. The best performing solutions, from smallest to largest robust cost, are:
2RPFS(60,40), 2RPFS(80,40), SimGRASP-Min(25) and 2RPFS(40,60). When analyzing the large
uncertainty instance in Figure 3.2(b), the following robust solutions present expected makespan per-
formance quite similar to SimGRASP: 2RPFS(40,40), 2RPFS(60,60) and 2RPFS(80,40). However,
according to the worst-case evaluation, only the first two provide better protection against worst-case
costs.

Finally, Table 3.4 presents some statistics related to the simulation of processing times of the
large uncertainty instance. Given 10, 000 processing time matrices P̃ obtained after simulation runs,
let ϕ(σ) be the random cost (makespan) of scheduling σ, which depends on the realization of P .
E(ϕ(σ)) and SD(ϕ(σ)) are empirical estimations of expectation and standard deviation of ϕ(σ),
respectively. Also, ϕ0.95(σ) and ϕ0.99(σ) are the 0.95 and 0.99 quantiles of ϕ(σ), respectively, and
ϕmax(σ) is the maximum observed ϕ(σ) in the simulation.

Observe that 2RPFS(60,60) has the least E(ϕ(σ)) in lognormal distribution, while 2RPFS(40,20)
presents the smallest expected makespan in symmetric triangular and uniform distributions. When
analyzing the largest observed makespan, 2RPFS(60,60), 2RPFS(80,80), and 2RPFS(80,80) have
the lowest ϕmax(σ) for lognormal, triangular and uniform distributions, respectively. The best solu-
tions for Det(P=) and SimGRASP did not provide minimum values for any measure of the simulated
distributions. Also, by analyzing the smallest maximum makespan obtained in uniform distribution
simulations, the value ϕmax(σ) observed for scheduling 2RPFS(80,80) is 2% cheaper than Sim-
GRASP, and, at the same time, its expected makespan is 0.5% less than the stochastic schedule.
Based on these observations, the hedge provided by the obtained robust solutions does not cause
a significant increase in the expected solution cost when compared to stochastic and deterministic
solutions.

3.6.4 Evaluating price of robustness and hedge value

Given a protection level Γ, besides robust cost Z, two other measures can be used to evaluate
performance: price of robustness η and hedge value H.

η(Γ) = ϕ(σ∗Γ, P )− ϕ(σ̄∗, P ), (3.51)
H(Γ) = Z(σ̄∗,Γ)−Z(σ∗Γ,Γ), (3.52)

where ϕ(.) is the makespan function, σ∗Γ is the optimal solution of 2RPFS(Γ1,Γ2) and σ̄∗ is the
optimal solution of Det(P=).
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Large uncertainty instance #10, n = 200, α = 50% (RB2005010)

Method

Probability Distribution  /  Measure
Lognormal Distribution

E(𝜑(σ)) SD(𝜑(σ)) 𝜑⁰ˑ⁹⁵(σ) 𝜑⁰ˑ⁹⁹(σ) 𝜑ᵐᵃˣ(σ)
Symmetric Triangular Distribution

E(𝜑(σ)) SD(𝜑(σ)) 𝜑⁰ˑ⁹⁵(σ) 𝜑⁰ˑ⁹⁹(σ) 𝜑ᵐᵃˣ(σ)
Uniform Distribution

E(𝜑(σ)) SD(𝜑(σ)) 𝜑⁰ˑ⁹⁵(σ) 𝜑⁰ˑ⁹⁹(σ) 𝜑ᵐᵃˣ(σ)
2RPFS(20,20)
2RPFS(20,40)
2RPFS(20,60)
2RPFS(20,80)
2RPFS(20,100)
2RPFS(40,20)
2RPFS(40,40)
2RPFS(40,60)
2RPFS(40,80)
2RPFS(40,100)
2RPFS(60,20)
2RPFS(60,40)
2RPFS(60,60)
2RPFS(60,80)
2RPFS(60,100)
2RPFS(80,20)
2RPFS(80,40)
2RPFS(80,60)
2RPFS(80,80)
2RPFS(80,100)
2RPFS(100,20)
2RPFS(100,40)
2RPFS(100,60)
2RPFS(100,80)
2RPFS(100,100)
Det( P = )
SimGRASP

6,125.6 52.4 6,214.5 6,254.6 6,320.1 6,143.6 84.6 6,288.4 6,352.5 6,467.6 6,162.2 116.2 6,360.4 6,446.8 6,627.1
6,161.4 54.3 6,252.7 6,291.4 6,348.8 6,177.5 88.7 6,328.5 6,397.0 6,559.7 6,195.0 119.7 6,400.8 6,483.0 6,688.0
6,151.5 53.8 6,241.8 6,280.4 6,342.5 6,165.5 87.0 6,312.7 6,379.8 6,499.7 6,182.0 118.7 6,383.1 6,472.4 6,677.8
6,164.1 54.5 6,256.3 6,294.4 6,384.2 6,176.8 88.5 6,328.6 6,394.3 6,561.2 6,191.3 119.7 6,394.8 6,491.6 6,703.6
6,211.5 54.9 6,302.3 6,340.8 6,444.0 6,228.4 93.9 6,385.6 6,450.2 6,571.4 6,247.2 126.0 6,455.8 6,544.9 6,709.3
6,125.6 52.5 6,214.6 6,254.3 6,317.2 6,143.0 84.8 6,288.5 6,353.4 6,476.9 6,160.9 116.5 6,359.3 6,445.3 6,639.6
6,129.9 50.7 6,215.7 6,257.6 6,321.3 6,153.9 83.2 6,294.9 6,358.3 6,466.5 6,177.3 114.8 6,371.5 6,462.6 6,667.6
6,142.7 53.4 6,232.8 6,273.3 6,347.5 6,157.7 86.6 6,305.5 6,372.1 6,493.2 6,174.6 118.0 6,374.2 6,468.2 6,694.6
6,140.7 53.2 6,229.8 6,268.7 6,326.6 6,159.3 86.3 6,307.6 6,372.7 6,508.4 6,178.8 117.1 6,376.1 6,460.3 6,636.4
6,234.3 54.4 6,324.3 6,358.5 6,431.3 6,253.3 92.9 6,409.4 6,472.9 6,631.6 6,273.7 128.1 6,485.6 6,573.4 6,740.0
6,127.5 51.3 6,214.7 6,254.9 6,336.5 6,147.4 83.8 6,291.9 6,354.5 6,529.1 6,167.7 114.9 6,360.5 6,447.1 6,681.4
6,129.1 50.1 6,215.2 6,252.7 6,315.6 6,151.4 82.8 6,291.6 6,357.5 6,491.5 6,172.1 114.0 6,364.7 6,451.6 6,627.3
6,125.4 52.5 6,214.4 6,254.2 6,313.5 6,143.5 84.5 6,287.4 6,350.5 6,479.8 6,161.3 115.2 6,353.3 6,446.8 6,643.0
6,164.2 54.3 6,255.4 6,295.1 6,362.1 6,176.7 88.8 6,330.5 6,394.2 6,518.9 6,191.9 119.9 6,396.2 6,486.2 6,711.7
6,138.8 52.8 6,228.6 6,266.2 6,335.9 6,163.4 85.1 6,307.0 6,372.0 6,506.3 6,189.2 117.6 6,386.3 6,473.2 6,628.6
6,269.6 54.6 6,360.7 6,400.4 6,483.5 6,289.8 95.0 6,446.2 6,512.8 6,711.9 6,309.8 129.0 6,524.2 6,613.2 6,884.9
6,129.4 50.0 6,214.0 6,253.1 6,318.0 6,151.9 82.9 6,294.5 6,354.0 6,484.0 6,173.1 114.3 6,365.7 6,456.4 6,687.7
6,128.7 50.3 6,215.1 6,252.1 6,334.1 6,152.2 82.8 6,291.2 6,355.0 6,478.6 6,175.0 114.3 6,367.7 6,454.8 6,660.6
6,126.8 51.7 6,214.3 6,254.8 6,320.3 6,147.4 84.2 6,291.7 6,353.3 6,464.4 6,168.1 114.9 6,361.4 6,451.5 6,623.2
6,148.4 53.9 6,238.9 6,276.7 6,345.9 6,167.0 86.7 6,315.8 6,379.3 6,497.7 6,187.8 118.0 6,387.2 6,483.1 6,695.6
6,144.5 46.8 6,224.0 6,260.9 6,342.8 6,178.2 81.1 6,312.8 6,372.5 6,531.9 6,208.8 113.6 6,402.6 6,487.4 6,655.5
6,144.5 46.8 6,224.0 6,260.9 6,342.8 6,178.2 81.1 6,312.8 6,372.5 6,531.9 6,208.8 113.6 6,402.6 6,487.4 6,655.5
6,144.5 46.8 6,224.0 6,260.9 6,342.8 6,178.2 81.1 6,312.8 6,372.5 6,531.9 6,208.8 113.6 6,402.6 6,487.4 6,655.5
6,144.5 46.8 6,224.0 6,260.9 6,342.8 6,178.2 81.1 6,312.8 6,372.5 6,531.9 6,208.8 113.6 6,402.6 6,487.4 6,655.5
6,144.5 46.8 6,224.0 6,260.9 6,342.8 6,178.2 81.1 6,312.8 6,372.5 6,531.9 6,208.8 113.6 6,402.6 6,487.4 6,655.5
6,142.8 49.0 6,223.8 6,264.4 6,325.0 6,178.0 82.4 6,316.9 6,375.9 6,523.4 6,211.0 114.4 6,399.8 6,485.5 6,626.0
6,136.2 50.6 6,221.8 6,259.3 6,366.0 6,167.4 83.8 6,309.0 6,370.4 6,544.3 6,198.1 115.7 6,391.8 6,477.7 6,783.3

Table 3.4 – Simulation summary for 2RPFS, Det(P=), and SimGRASP solution methods from log-
normal, triangular, and uniform distributions of processing times. Minimum values for each column
are highlighted.

The first measure, η(Γ), is defined as the price paid by the decision-maker for employing the
robust sequence σ∗Γ in place of the optimal nominal sequence σ̄∗ in the scenario of nominal pro-
cessing times (when P = P , i.e., no processing time deviations). H(Γ) represents the value gained
from adopting the robust sequence σ∗Γ, instead of the optimal nominal sequence σ̄∗ in the occur-
rence of the worst-case scenario associated with protection level Γ = (Γ1,Γ2). In other words, η(Γ)
can be seen as the trade-off between robustness and optimality, and H(Γ) represents the regret of
employing sequence σ̄∗ in the worst-case scenario.

Table 3.5 displays the relative price of robustness η(Γ)% = ϕ(σ∗Γ,P )−ϕ(σ̄∗,P )
ϕ(σ̄∗,P ) and hedge value

H(Γ)% = Z(σ̄∗,Γ)−Z(σ∗Γ,Γ)
Z(σ∗Γ,Γ) for various protection levels, based on instance #8 with n = 150, with

different degrees of processing time uncertainty α. Observe that, given a protection level Γ, as α
grows, so does the regret H(Γ)% of employing the optimal nominal sequence in the occurrence of
the worst-case scenario defined by Γ. The only exception is for extreme values of Γ1 and Γ2, where
H(Γ)% = 0. Regarding the relative price of robustness, for several protection levels Γ, the relative
robustness price η(Γ)% is zero, i.e., in the absence of processing time deviations, most robust
schedules present the same makespan as the optimal nominal solution. Among these schedules,
the best ones, which maximize hedge value H(Γ)%, are 2RPFS(60,20) for α = 10%, 2RPFS(60,40)
for α ∈ {20%, 30%, 40%}, and 2RPFS(40,40) for α = 50%.
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3.6. 2RPFS Experimental results
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Table 3.5 – Relative robustness price η(Γ)% and hedge value H(Γ)% for instance #8, n = 150, for
different degrees of uncertainty α ∈ {10%, 20%, 30%, 40%, 50%}. Best values are highlighted.
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62%

-0.3%

61%

-0.3%

60%

-0.4%

64%

-0.4%

63%

-0.1%

55%

0.0%

50%

-0.2%

56%

-0.4%

63%

-0.4%

65%

0.1%

47%

-0.6%

67%

-0.5%

63%

-0.6%

66%

0.4%

37%

0.4%

37%

-0.7%

66%

-0.6%

66%

-0.5%

63%

-0.4%

64%

0.6%

31%

-0.6%

65%

-0.7%

67%

-0.6%

67%

-0.4%

64%

-0.4%

62%

-0.6%

66%

-0.6%

63%

-0.7%

67%

-0.6%

67%

-0.2%

55%

-0.1%

53%

-0.4%

60%

-0.6%

66%

-0.6%

67%

0.1%

47%

-0.2%

61%

-0.2%

61%

-0.2%

62%

-0.2%

61%

0.2%

28%

0.1%

37%

-0.2%

59%

-0.2%

61%

0.4%

28%

0.2%

28%

-0.1%

55%

0.1%

36%

-0.2%

62%

-0.1%

61%

0.2%

28%

1.2%

4%

0.3%

20%

-0.2%

57%

-0.2%

62%

0.2%

28%

1.1%

3%

-0.1%

48%

0.1%

32%

-0.2%

62%

0.2%

28%

-0.5%

66%

-0.5%

66%

-0.5%

66%

-0.2%

60%

0.3%

35%

-0.3%

55%

-0.5%

65%

-0.4%

63%

0.4%

36%

0.3%

35%

-0.4%

62%

-0.3%

56%

-0.5%

65%

-0.2%

59%

0.3%

35%

0.9%

23%

0.0%

47%

-0.5%

64%

-0.5%

65%

0.3%

35%

1.0%

20%

-0.4%

60%

-0.3%

54%

-0.5%

65%

0.3%

35%

-0.8%

67%

-0.8%

68%

-0.7%

67%

-0.3%

57%

0.4%

36%

-0.5%

60%

-0.8%

66%

-0.5%

63%

0.4%

40%

0.4%

36%

-0.5%

62%

-0.6%

62%

-0.7%

67%

-0.3%

58%

0.4%

36%

0.6%

34%

-0.4%

55%

-0.9%

67%

-0.7%

67%

0.4%

36%

0.9%

30%

-0.6%

64%

-0.6%

60%

-0.7%

67%

0.4%

36%

Table 3.6 – Simulation results for instance #8, n = 150, for different degrees of uncertainty α ∈
{10%, 20%, 30%, 40%, 50%}. Comparison is based on two measures: (i) ω(Γ) is the % of simulated
scenarios (over a total of 10,000) where 2RPFS(Γ) obtained smaller makespan cost when compared
to Det(P=); (ii) ∆Φ(Γ) = Avgλ∈S

[
ϕ(σ∗Γ,P

λ)−ϕ(σ̄∗,Pλ)
ϕ(σ̄∗,Pλ)

]
is the average relative cost difference between

2RPFS(Γ) and Det(P=), given all simulated scenarios λ.
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Based on the simulation framework presented in Section 3.6.3, we close this section with a
further analysis of the actual cost overhead of robust solutions in the long run. Two performance
measures are calculated for each variability level α, as shown in Table 3.6. The obtained results
show that, for different protection levels Γ, several solutions present two important characteristics:
(i) high proportion of cheapest solutions (ω(Γ) > 50%), and (ii) smaller expected costs, i.e., negative
relative cost difference ∆Φ(Γ). Overall, 2RPFS provides a pool of robust schedules decision-makers
can choose based on their risk preferences.

3.7 The m-machine Robust Permutation Flow Shop Problem (Rob-
PFSP)

In this section, we extend the robust permutation flow shop problem, generalizing it to an ar-
bitrary number of machines. We start by providing a formal definition for the makespan-objective
m-machine Robust Flow Shop Problem (Section 3.7.1), followed by a description of the underlying
budgeted uncertainty set (Section 3.7.2). Finally, two robust counterpart formulations are proposed
(Section 3.7.3), based on well-known Mixed-Integer Linear Programming (MILP) formulations for the
deterministic problem.

In the subsequent sections, we will develop and test two solution procedures for this problem:
an exact C&CG method, used as baseline, followed by a GRASP metaheuristic. Both procedures
make use of a dynamic programming algorithm which, given a scheduling σ and a protection level
Γ, determines the worst-case scenario.

3.7.1 Problem statement

The following problem statement generalizes the 2RPFS definition from Section 3.4.1 to the m-
machine case. Assume the matrix of individual processing times P = {pr,i, r ∈ M, i ∈ J} contains
uncertain data. A scenario λ is defined as a realization of uncertainty and, for each λ, there is
a unique matrix of processing times denoted as Pλ = {pλr,i, r ∈ M, i ∈ J}. Let Λ be the set of
all possible scenarios λ. Whenever a matrix of processing times Pλ is known, an instance of the
deterministic PFSP is defined.

Let ϕ(σ,Pλ) be the makespan of a sequence σ ∈ Σ given a scenario λ ∈ Λ. The objective of the
m-machine Robust PFS is to find a job permutation σ ∈ Σ that minimizes the maximum makespan
over all scenarios λ ∈ Λ:

RPFS: min
σ∈Σ

max
λ∈Λ
{ϕ(σ,Pλ)} (3.53)

For any sequence σ ∈ Σ, the value

Z(σ) := max
λ∈Λ
{ϕ(σ,Pλ)} (3.54)
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is called the worst-case makespan or robust cost for σ. The maximizer in (3.54) is called a
worst-case scenario for σ.

3.7.2 Generalizing the budget uncertainty set to the m-machine problem

Similarly to Section 3.4.2, consider the interval approach for representing uncertain values. Two
positive processing time matrices P and P̂ represent the nominal value and the maximum allowed
deviation of P , respectively. To apply budgeted uncertainty to the m-machine problem, we intro-
duce the budget parameter Γ : 0 ≤ Γ ≤ mn, which denotes the maximum number of operations
whose uncertain processing times can reach their worst-case values. The budgeted uncertainty set
of operations (processing time), denoted as UΓ, can be defined as follows:

UΓ =
{

P = {pr,i} : pr,i = pr,i + δr,i p̂r,i, δr,i ∈ {0, 1},∀r ∈M,∀i ∈ J :
m∑
r=1

n∑
i=1

δr,i ≤ Γ
}

, (3.55)

Given uncertainty set UΓ, a scenario λ is described by one of the infinite matrices in this set. For
a given operation Or,i concerning the execution of job i on machine r, let δλr,i be the value defining
the deviation of its processing time, i.e., pλr,i = pr,i+δλr,ip̂

λ
r,i. Therefore, the total number of operations

whose processing time can deviate to its maximum value is limited to Γ.

As mentioned before, the main advantage of applying budgeted uncertainty sets is the ability to
model the risk-averseness of the decision maker by varying Γ. The idea is that an event where all
uncertain parameters pr,i reach their worst-case values at the same time has a very low probability
of happening [16]. In particular, higher values of Γ lead to larger uncertainty sets and thus more
conservative solutions. When Γ = 0, the problem is equivalent to the nominal problem, i.e., the
deterministic PFSP. If Γ = mn, we obtain the box uncertainty set [128]. For a given value of Γ, there
are

(mn
Γ
)

possible worst-case scenarios, given the budgeted uncertainty set UΓ.

3.7.3 Robust counterparts

Based on existing PFSP MILP models, we developed two robust counterparts for the m-machine
PFSP, based on Wilson [149] and Wagner [129] formulations. Both models rely on assignment
constraints in order to find the position occupied by each job in the schedule. Certain parts of
the models described below are similar to the ones introduced in Section 3.4.3, but adapted to
the m-machine case. For completeness, we have chosen to repeat the introductory explanation of
both models. For more details on the rationale behind each deterministic PFSP model, including
illustrative diagrams, we refer the reader to [135].
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3.7.3.1 Robust Counterpart for Wilson PFS Model

[149] proposed a MILP model for the makespan-minimizing flow shop scheduling problem, by ap-
plying sets of inequality constraints, based on the start time variables, of each job on each machine.
In this work, we derived a two-stage robust counterpart of his model, with the following decision
variables:

Zi,j =
{

1, if σ(j) = i (job i occupies position j in the sequence σ),
0, otherwise.

Bλr,j = start time of job σ(j) (in position j) on machine Mr given scenario λ.

Based on the above definitions, variables Zi,j are in the first stage, and variables Bλ
r,j are in the

second stage of this robust counterpart. The two-stage robust-counterpart of Wilson model for the
RPFS can be formulated as follows:

Min y (3.56)

st Bλm,n +
∑n

i=1

(
pm,i + p̂m,iδ

λ
m,i

)
Zi,n ≤ y, λ ∈ Λ, (3.57)

Bλ1,1 = 0, λ ∈ Λ, (3.58)

Bλ1,j +
∑n

i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,j = Bλ1,j+1, j = 1, . . . , n− 1, λ ∈ Λ, (3.59)

Bλr,1 +
∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,1 = Bλr+1,1, r = 1, . . . ,m− 1, λ ∈ Λ, (3.60)

Bλr,j +
∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j ≤ Bλr+1,j , r = 1, . . . ,m− 1, j = 2, . . . , n, λ ∈ Λ, (3.61)

Bλr,j +
∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j ≤ Bλr,j+1, r = 2, . . . ,m, j = 1, . . . , n− 1, λ ∈ Λ, (3.62)∑n

i=1 Zi,j = 1, j = 1, . . . , n, (3.63)∑n

j=1 Zi,j = 1, i = 1, . . . , n, (3.64)

Zi,j ∈ {0, 1}, i, j = 1, . . . , n, (3.65)

Bλr,j ≥ 0, r = 1, . . . ,m, j = 1, . . . , n, λ ∈ Λ, (3.66)

y ≥ 0. (3.67)

The objective function (3.56) and constraint (3.57) state that this formulation aims to find a robust
schedule for the processing of n jobs that minimizes the makespan of the worst-case scenario,
among all possible scenarios λ ∈ Λ. Constraints (3.58)-(3.62) guarantee that the robust schedule is
feasible and that start time variables are appropriately calculated, for each scenario λ. Constraints
(3.63) and (3.64) are the classical assignment constraints, ensuring, respectively, that each job is
assigned to one and only one sequence position, and that each sequence position is filled by one
and only one job. Finally, constraints (3.65)-(3.67) define the domain of the variables.

3.7.3.2 Robust Counterpart for Wagner PFS Model

[142] proposed an all-integer programming model for a three-machine deterministic flow shop,
later extended to a m-machine MILP model by [129], and commonly named in the literature as
Wagner model. In our research, we derived a two-stage robust counterpart of the Wagner model,
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with the following decision variables:

Zi,j =
{

1, if σ(j) = i (job i occupies position j in the sequence σ),
0, otherwise.

Xλ
r,j = idle time on machine Mr before the start of job in sequence position j given scenario λ.

Y λr,j = idle time of job in sequence position j after it finishes processing on machine Mr given scenario λ.

Based on the above definitions, variables Zi,j are in the first stage, and variablesXλ
r,j and Y λ

r,j are
in the second stage of this robust counterpart. The Wagner model for the RPFS can be formulated
as follows:

Min y (3.68)

st
∑n

i=1

(
pm,i + p̂m,iδ

λ
m,i

)
+
∑n

p=1 X
λ
m,p ≤ y, λ ∈ Λ, (3.69)

Xλ
1,1 = 0, λ ∈ Λ, (3.70)∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j+1 +Xλ

r,j+1 + Y λr,j+1 =
∑n

i=1

(
pr+1,i + p̂r+1,iδ

λ
r+1,i

)
Zi,j

+Xλ
r+1,j+1 + Y λr,j , r = 1, . . . ,m− 1, j = 1, . . . , n− 1, λ ∈ Λ, (3.71)∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,1 +Xλ

r,1 + Y λr,1 = Xλ
r+1,1, r = 1, . . . ,m− 1, λ ∈ Λ, (3.72)∑n

i=1 Zi,j = 1, j = 1, . . . , n, (3.73)∑n

j=1 Zi,j = 1, i = 1, . . . , n, (3.74)

Zi,j ∈ {0, 1}, i, j = 1, . . . , n, (3.75)

Xλ
r,j ≥ 0, Y λr,j ≥ 0, r = 1, . . . ,m, j = 1, . . . , n, λ ∈ Λ, (3.76)

y ≥ 0. (3.77)

The objective function (3.68) and constraint (3.69) state that this formulation aims to find a robust
schedule for the processing of n jobs that minimizes the makespan of the worst-case scenario,
among all possible scenarios λ ∈ Λ. Constraints (3.70)-(3.72) guarantee that the robust schedule
is feasible and that idle time variables are appropriately calculated, for each scenario λ. Constraints
(3.73) and (3.74) are as defined in Wilson formulation. Finally, constraints (3.75)-(3.77) define the
domain of the variables.

Solving the aforementioned models for all possible combinations of λ ∈ Λ is unrealistic. There-
fore, in the next subsection, we will present an algorithm capable of obtaining optimal results for the
m-machine RPFS with a subset of these combinations.

3.8 Solving Rob-PFSP with an exact C&CG method

Given that the uncertainty set UΓ defined in Section 3.7.2 is discrete and finite, it is possible to
obtain a solution to the RPFS problem by choosing an appropriate Robust Counterpart formulation
and enumerating all variables and constraints for each scenario λ in the set Λ. This possibility, as
we can expect, is unrealistic.

As an alternative approach, the C&CG framework [162] generates only a subset of scenarios
Θ = {λ1, . . . , λv} ⊆ Λ. For its application, the problem has to be formulated in a master-subproblem
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framework. Solutions are then obtained iteratively, with each iteration generating one or more sce-
narios λv ∈ Θ, obtained by solving a worst-case subproblem (SP).

In this section, we apply the same C&CG algorithm presented in Section 3.5, but this time with
new Robust Counterparts and a new worst-case procedure for them-machine robust problem. Using
the RC formulations defined in Section 3.7.3, we derive two solution approaches, in which the Master
Problem (MP) is based on either the Wilson or Wagner formulations.

Additionally, we define the worst-case scenario procedure, based on dynamic programming, for
the solution of the subproblem (SP), under the budgeted uncertainty set UΓ, for a specific sequence
of jobs σ = {σ(j), j = 1, . . . , n}. By extending the notation of Equation (3.54), given a sequence σ
and a protection level Γ, its worst-case makespan or robust cost, Z(σ,Γ) is given by:

Z(σ,Γ) := max
Pλ∈ UΓ

{ϕ(σ,Pλ)} (3.78)

For the sake of simplicity, we assume that budget parameter Γ is a non-negative integer. Based
on this assumption, statement (3.78) reflects a problem with a convex function being maximized
over a polytope defined by uncertainty set UΓ. Thus, in order to obtain the worst-case realization
of uncertainty, only specific realizations of UΓ are needed, namely the extreme points of the poly-
tope. For each machine r and job i, the set of extreme point scenarios is characterized either by
the values pr,i or pr,i + p̂r,i. Any worst-case realization will use as much budget of uncertainty as
possible. Therefore we can expect that, for the optimal solution of (3.78), with worst-case scenario

λ∗,
∑m
r=1

∑n
i=1

|pλ∗r,i−pr,i|
p̂r,i

= Γ.

The following worst-case method is a generalization of the dynamic programming proposed in
Section 3.5.2. The novelty of this new method involves the extension for an arbitrary number of ma-
chines m, and the use of a single budget parameter Γ, which limits the number of operations with
deviated processing times. The complexity of the algorithm is O(mn2). Given 1 ≤ r ≤ m, 1 ≤ k ≤ n,
and 0 ≤ γ ≤ n, let us define a value function α(r, k, γ) as the optimal value of the restricted sepa-
ration problem for machine r and job positions {1, . . . , k}, when at most γ operations are using their
maximum processing time. The optimal value of the problem is then defined by Z(σ) = α(m,n,Γ).

The value-function is defined by the recursion:
α(1, k, γ) = max

[
p1,σ(k) + α(1, k − 1, γ), p1,σ(k) + p̂1,σ(k) + α(1, k − 1, γ − 1)

]
,

for 1 ≤ k ≤ n, 0 ≤ γ ≤ Γ,

α(r, k, γ) = max
[
pr,σ(k) + max[α(r, k − 1, γ), α(r − 1, k, γ)] ,

pr,σ(k) + p̂r,σ(k) + max[α(r, k − 1, γ − 1), α(r − 1, k, γ − 1)]
]
,

for 2 ≤ r ≤ m, 1 ≤ k ≤ n, 0 ≤ γ ≤ Γ,

and the following initialization values:
α(r, k, γ) = −∞ for 1 ≤ r ≤ m, 0 ≤ k ≤ n, γ < 0,

α(r, 0, γ) = 0 for 1 ≤ r ≤ m, and 0 ≤ γ ≤ Γ,

α(r, k, 0) = pr,σ(k) + max[α(r, k − 1, 0), α(r − 1, k, 0)], 1 ≤ r ≤ m, 1 ≤ k ≤ n.
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If r = 1, the first maximizer argument accounts for the case when there is no delay of execution
regarding job σ(k) on the first machine, while the second expression handles the case where a
delay occurs. Similarly, for r ≥ 2, we take the maximum of two cases: with or without delay when
executing job σ(k) on machine r. However, the job start time has to be computed as the maximum
between the previous job’s σ(k − 1) worst-case completion time on the same machine Mr, and the
worst-case completion time of the same job σ(k) on the previous machine Mr−1, taking into account
the current budget γ.

3.9 Solving Rob-PFSP with the GRASP metaheuristic

Due to the NP-hardness of the regular PFSP with three or more machines, only relatively small
instances can be solved by exact methods. To solve larger problems, several approximate methods
have been developed in the literature. For a comparison of the existing heuristics and metaheuristics
for the makespan objective, we refer the reader to [39]. Since the robust PFSP is at least as difficult
as regular PFSP, heuristics are very much needed. In this section, to solve the RPFS Problem, we
apply the GRASP metaheuristic [37], which has been successfully applied in other scheduling prob-
lems [17, 47]. The main idea is to reuse the worst-case calculation procedure, defined in Section 3.8,
as the objective function of GRASP.

GRASP is a multi-start metaheuristic in which each iteration consists basically of two phases:
construction and local search [37]. The solutions generated by a GRASP construction procedure
are not guaranteed to be locally optimal with respect to simple neighborhood definitions. Hence, it
is almost always beneficial to apply a local search to attempt to improve each constructed solution.

Our RGRASP is described in Algorithm 5. Instead of limiting the number of iterations, the only
adopted stopping criterion is the time limit. The first task in each iteration of RGRASP is the con-
struction of an initial solution in a greedy randomized fashion. In this phase, a feasible solution is
progressively constructed with the addition of solution elements, one at a time. Choosing the next
element to be added is determined using a greedy function, which measures the impact of incorpo-
rating each element in the partial solution under construction. Besides this greedy evaluation, the
constructive phase of GRASP also includes a probabilistic component. Each construction step ran-
domly selects an element among the most promising candidates, although not necessarily the top
one, thus allowing the generation of different initial solutions, at each iteration of GRASP. In other
words, the best rated elements (still unassigned to the current solution) are stored in a Restricted
Candidate List (RCL), from which the next element to be added to the solution is taken.

The ConstructivePhase procedure is described in Algorithm 3. For partial solution evaluation,
we have applied a robust cost (minimization) gain function, suitable for Robust Optimization prob-
lems. In order to formalize it, we need some additional notation. Let σP = {j1, j2, . . . , jk} denote
a partial job permutation (i.e., a sequence of jobs of size |σP | < n). We define below a function
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g : σP → R, which will measure the impact on the robust cost Z(σP ) of inserting a new job j ∈ J\σP
in the partial permutation σP .

g(σP ) = min
j∈J\σP

Z(σP ∪ {j}). (3.79)

This minimization function compares the cost of inserting each unassigned job j into the partial
permutation σP . Note that a job with a low gain function value will probably contribute less to the
robust cost if we add it to the partial permutation σP .

Algorithm 3: ConstructivePhase
1 Input: P̄ , P̂ and α
2 Output: permutation σ
3 σ = ∅; Lg = Order(J)
4 while Lg 6= ∅ do
5 Choose job j randomly among the first bα. | Lg |c elements of Lg
6 Update σ = σ ∪ {j}
7 Lg = Lg − {j}; Re-order(Lg)
8 return σ

Algorithm 4: V ariableNeighborhoodDescent
1 Input: P̄ , P̂ and permutation σ
2 Output: permutation σ
3 r = 1
4 while r ≤ vnd-size do
5 for σ ∈ Nr(σ) do
6 if Z(σ) < Z(σ) then
7 r = 1
8 σ = σ

9 if Z(σ) has not improved then
10 r = r + 1

11 return σ

In this phase, the ordered set Lg is defined (line 3) as the set of jobs J\σP ordered in increasing
order of function g (Figure 3.4). At each iteration, in lines 4-7, we randomly choose a job j among
the first bα. | Lg |c vertices in this set and add it to the partial permutation. This process is repeated
until a full permutation σ is obtained.

Notice that this technique tends to generate different solutions every time the multi-start proce-
dure (i.e., iteration) is run, which helps the GRASP algorithm to avoid getting trapped into a local
minimum. Additionally, the α parameter provides a compromise between search exploitation (inten-
sification using more greediness) and search exploration (diversification using more randomness).
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Figure 3.4 – Constructive phase.

Small values improve the average quality of the RCL list elements and encourage exploitation. When
α = 0, the constructive phase becomes a deterministic greedy algorithm, while an alpha value of
one makes the algorithm completely random.

In this work, after extensive experiments, in order to determine the value of the α parameter, we
opted for the so-called dynamic approach. In other words, the α value is randomly chosen from a
uniform distribution in the range [β1, β2], at each construction of a new solution. The values β1 and
β2 then become parameters for the GRASP procedure.

Algorithm 5: RGRASP
1 Input: P̄ , P̂ and α
2 Output: permutation σ∗
3 σ∗ = ∅; Z(σ∗) =∞
4 while time limit is not reached do
5 σ = ConstructivePhase(P̄ , P̂ , α)
6 σ = V ariableNeighborhoodDescent(P̄ , P̂ , σ)
7 if Z(σ) < Z(σ∗) then
8 σ∗ = σ

9 return σ∗

There is no guarantee that the construction method returns a (locally) optimal solution with re-
spect to some neighborhood. Therefore, the solution σ obtained in ConstructivePhase can be im-
proved by the local search procedure V ariableNeighborhoodDescent (Algorithm 4).

The Variable Neighborhood Search (VNS) method, proposed by Mladenović and Hansen [98], is
a metaheuristic that explores distant neighborhoods of the current incumbent solution, and moves
to a new solution if and only if an improvement is made. The main idea is to systematically explore
differing neighborhood structures, with the goal of escaping from local minima. Within this work, we
apply the Variable Neighborhood Descent (VND) search, a variant of VNS.

As illustrated in Figure 3.5, VND starts with the permutation provided by the construction
phase and iteratively compares the incumbent value Z(σ) with the new value Z(σ̄) obtained in
the r − neighborhood, denoted by Nr(σ) and defined as the family of all permutations obtained by

83



Part , Nomenclature used in the models

σ σ*N1 N2 Nr...

Figure 3.5 – Variable Neighborhood Descent procedure. N1 stands for neighborhood #1, N2 stands
for neighborhood #2, and so on.

traversing the r-th neighborhood structure over σ. In this work, we employ a local search approach
similar to the one used by [118], but with the inclusion of other structures, in addition to the insertion
neighborhood, as seen on Table 3.7. If an improvement is obtained, r is returned to its initial value
and the new incumbent updated (lines 7 and 8 in Algorithm 4). Otherwise, the next neighborhood
is considered (line 10). The local search halts when no better partition is found in the most dis-
tant neighborhood of the current solution. Additionally, our implementation of the VND procedure
includes a Random-VND (RNVD) parameter [125], allowing to shuffle the order according to which
the neighborhood structures from Table 3.7 will be traversed by VND.

Remark that, in all employed solution neighborhoods, each evaluated solution is further improved
by shifting all modified jobs to the left (“shift-to-left movement”). Moreover, since these structures are
huge (great number of permutations), they are not traversed completely. The search in neighborhood
#1 stops whenever it finds an improvement of the current solution (first improvement rule). In the
other neighborhoods, only a single (random) movement is evaluated at each invocation.

# Name and Description
1 Move

Remove each job from its current position and insert it in all remaining positions.
2 Random Swap

Select two jobs at random and swap their positions in the permutation.
3 Random Move End (d = 2)

After removing d random jobs from the permutation (destruction), reinsert each one in the last
d positions (construction).

Table 3.7 – Solution neighborhoods employed in the VND procedure, ordered by complexity. The
RVND parameter allows to shuffle the order according to which these neighborhood structures are
applied. In all employed solution neighborhoods, each evaluated solution is further improved by
shifting all modified jobs to the left (“shift-to-left movement”).
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Similarly to [68], as the termination criteria for the multi-start procedure, max-time seconds is
defined by the product of the number of jobs, n, the number of machines, m, and a time factor t =
0.03, such that: max-time = n×m× 0.03. This leads to very short computation times, ranging from
only a few seconds to a maximum of 5 minutes for the largest instances.

3.10 Rob-PFSP experimental results

We conducted extensive experiments to assess the performance of both the exact and heuristic
solution methods when solving Rob-PFSP, including the quality of the obtained heuristic schedules.

3.10.1 Test instances

In the PFSP literature, there exists a classical set of very well-known benchmarks commonly
used to test new algorithmic approaches. However, except for the 2-machine instances proposed by
[159], there are no standard benchmarks for the m-machine Rob-PFSP.

With this in mind, in order to verify the effectiveness of the proposed algorithms, our experiments
were based on Ying instances (i), along with three new instance sets (ii, iii, iv) 1:

(i) Two-machine robust PFSP instances, originally proposed by [159]. In his work, six groups of
instances were created, each one with a different number of jobs n ∈ {10, 20, 50, 100, 150, 200}.
The expected processing time pr,i (r = 1, 2; i = 1, . . . , n) is an integer drawn from the uniform
distribution [10, 50] and the largest processing time deviation was set as a ratio of the expected
processing time (i.e., p̂r,i = αpr,i), where α ∈ {10%, 20%, 30%, 40%, 50%}. Ten instances were
generated for each combination of n and α, for a total of 300 test instances.

(ii) Robust PFSP instances with 3, 4, 5, 10 and 15 machines. Following the same instance
generation algorithm of instance set (i) [159], we generated random instances with 10 jobs and
3, 4, 5, 10 and 15 machines, respectively. Ten instances were generated for each combination
of m, n and α, for a total of 250 test instances.

(iii) Taillard-based instances 2. In order to generalize the classical Taillard PFS instances [132]
to the robust PFS problem, we assumed the provided processing times as nominal values
(pr,i). Similarly to the instance generation algorithm of [159], the maximum processing time
deviations were generated as a ratio of the expected processing time (i.e., p̂r,i = αpr,i), where
α = {10%, 20%, 30%, 40%, 50%}. Therefore, five robust instances were generated for each
original Taillard PFSP instance, yielding a total of 500 test instances.

1. All test instances are available at https://github.com/levorato/RPFS_Cmax_Budget.
2. Taillard instances are grouped in 12 sets of 10 instances each, according to the number of jobs and the number

of machines (i.e., Set 20 x 5, set 20 x 10, set 20 x 20, set 50 x 5, set 50 x 10, set 50 x 20, set 100 x 5, set 100 x 10, set
100 x 20, set 200 x 10, set 200 x 20, and set 500 x 20).
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(iv) Robust PFSP instances with random processing time deviations. For each instance of
the previous three sets with variability level α = 10%, we generated 4 new instances with
distinct variability levels αr,i for each operation Or,i. First, we define a maximum variability level
αmax ∈ {30%, 50%, 100%, 200%}. Then, in each generated instance, the variability level αr,i of
each operation Or,i is drawn from a uniform distribution in the interval [0, αmax). Therefore,
the maximum processing time deviation of each operation equals p̂r,i = αr,ipr,i. The idea
behind this new set is to generate instances whose operation processing time deviation follow
a completely random behavior, when compared to the previous sets. This way, we will be able
to assess the impacts of such behavior on the solution method.

3.10.2 Implementation details and algorithm parameters

The C&CG algorithm was coded in Julia 1.6.0, and the IBM ILOG CPLEX solver 12.9.0 was used
to solve the Mixed-integer programs. The GRASP algorithm was coded in C++ 11. All experiments
were conducted on a workstation with an Intel Xeon® CPU E5640 @2.67GHz with 32 GB RAM,
under Ubuntu 18.04 LTS.

In the Exact method, we used CPLEX (default parameters) to solve the MILP models with time
limit of 7,200 s. Relative optimality gap tolerance was set to 10−6. On the other hand, in the GRASP
procedure, the time limit for the solution of each instance varies according to its size. In order to
determine the best set of GRASP parameters, for each instance, Rob-PFSP was solved for all
Γ ∈ {10%, 20%, . . . , 100%}. Moreover, all values in Table 3.8 were tested.

Only a subset of problem instances were used for GRASP parameter calibration. For this pur-
pose, we randomly chose 20% of the instances from each group. Parameter tuning was performed
with the irace package [90]. For each value of budget Γ, we ran irace twice in the following way.
In a first run, irace generated the initial configurations by uniformly sampling the parameters space
(Table 3.8). In the second run, the best configurations given at the end of the first run were used as
the new set of initial configurations. The final parameter set used in the experiments was defined in
the end of the second run, by choosing the best configuration returned by irace, among all budget
values Γ ∈ {10%, 20%, . . . , 100%}. In this study, the number of algorithm executions per irace run
was set to 104, yielding a total parametrization budget of 105 GRASP executions, considering all Γ
values. The final overall time consumed in the GRASP configuration was five days wallclock time,
using 8 computing cores. Apart from the previous description, the remaining irace default settings
were used.

3.10.3 Comparative performance of the Robust Counterpart models

When assessing the performance of the exact solution method, we solved each problem instance
with different values of the budget of uncertainty parameter Γ. Therefore we obtained solutions for
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3.10. Rob-PFSP experimental results

Parameter name Tested values
random-VND false, true
vnd-size 1, 2, 3
first-improvement false, true
time-factor 30, 300
β1 0.2, 0.4, 0.6, 0.8, 1.0
β2 0.2, 0.4, 0.6, 0.8, 1.0

Table 3.8 – GRASP parameter values evaluated during calibration. The best performing parameter
values are underlined.

each RC model by varying Γ according to ten ratios (10, 20, 30, 40, 50, 60, 70, 80, 90 and 100%)
of operations with uncertain processing times.

We first present overall results in Table 3.9, by comparing the performance of Wagner and Wilson
RC models, for each instance size. When using average, the results of all instances (even outliers)
are taken into account. Standard deviation is also included as a secondary measure. Additionally,
the average number of iterations and its standard deviation are listed. As we could expect, these
results show that, as instance size grows, the models become harder to solve, as seen on the
smaller percentage of solved instances and increased average execution time.

Regarding the hardest instances of the test-bed, namely Ying 15×5 and Taillard 20×5, Wagner-
based C&CG is the method that solves the majority of instances within the time limit: 64.4% and
24.7%, respectively. It also presents the smallest average gap among instances not solved to op-
timality. Additionally, the % Best Performance measurement indicates that Wagner model tends to
solve Taillard 20× 5 instances faster than Wilson.

A further investigation, based on the α and αmax parameters, is portrayed in Tables 3.10 and
3.11. In this context, we explore solution statistics regarding Ying 15 × 5 and Taillard 20 × 5 in-
stances, respectively. It is possible to note the decrease of model performance as α and αmax val-
ues increase. This can be observed in the % Solved, Avg. % gap and Avg. time rows, from columns
α = 10% until α = 50%, and from columns αmax = 30% until αmax = 200%.

It is worth noting that, when solving the Taillard 20×5 instances, the hardest ones in this compar-
ison, we perceive a drastic performance reduction of the C&CG algorithm. The percentage of solved
instances drops to 25% when applying the best-performing Wagner model. Also, when analyzing the
% gap of instances not solved to optimality, the average % gap is considerably higher (12%), as well
as its standard deviation (19%). In these cases (75% of all tested instances), the C&CG algorithm
was not able to obtain an optimal solution within the 2-hour time limit.

Having achieved the limits of the exact solution method, in the next subsection, we will anal-
yse the performance and solution quality of the GRASP metaheuristic, using C&CG solutions as a
baseline for comparison.
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Measure

Instance type  /  Instance size  /  Model

Ying

10x2
Wagner Wilson

20x2
Wagner Wilson

50x2
Wagner Wilson

100x2
Wagner Wilson

150x2
Wagner Wilson

200x2
Wagner Wilson

% Best Performance

% Solved

Avg. % gap

Std. dev. of % gap

Avg. iterations

Std. dev. of iterations

Avg. MP time

Avg. SP time

Avg. time

Std. dev. of time 522.9

39.7

0.3

39.4

119.5

11.4

1.1

0.9

99.5

49.0

522.8

39.5

1.1

38.5

170.1

15.3

0.6

0.6

99.5

59.5

572.8

47.6

0.5

47.1

69.9

8.6

1.4

0.8

99.4

40.3

600.9

53.4

1.4

52.0

105.5

12.9

0.5

0.6

99.3

61.1

596.7

55.6

1.0

54.6

32.0

6.4

0.9

0.5

99.3

29.8

611.6

58.6

1.1

57.5

59.6

9.4

0.1

0.1

99.3

70.2

761.2

104.8

2.0

102.8

26.4

6.5

0.1

0.1

98.9

25.0

867.2

131.8

3.7

128.2

34.6

9.4

0.1

0.1

98.8

75.0

1,140.9

248.7

6.2

242.5

21.2

7.2

0.0

0.0

97.6

23.8

1,665.7

480.9

14.0

466.9

29.7

10.8

0.7

0.2

94.5

76.1

1,777.1

572.9

19.8

553.1

24.5

10.1

0.1

0.1

93.9

23.3

2,300.1

966.0

14.0

952.0

37.7

15.3

0.5

0.2

88.0

76.6

Performance_Per_Instance_1

Soma de Value dividido por Instance type,Instance sizeeModel vs. Measure.A exibição é filtrada em Instance sizeeMeasure.O filtro Instance size
mantém 6 membros.O filtro Measure mantém 10 membros.

Measure

Instance type  /  Instance size  /  Model

Ying

10x3
Wagner Wilson

10x4
Wagner Wilson

10x5
Wagner Wilson

15x5
Wagner Wilson

Taillard

20x5
Wagner Wilson

% Best Performance

% Solved

Avg. % gap

Std. dev. of % gap

Avg. iterations

Std. dev. of iterations

Avg. MP time

Avg. SP time

Avg. time

Std. dev. of time 469.6

37.3

5.7

31.6

69.2

11.4

0.9

1.1

99.6

61.8

1,122.7

185.9

3.3

182.6

233.3

43.7

1.5

1.3

97.6

39.0

1,334.4

309.9

4.8

305.1

130.3

31.5

1.3

1.3

96.8

48.9

1,299.6

316.1

5.6

310.5

184.0

38.2

1.1

1.1

97.3

51.4

1,839.5

631.2

23.3

607.9

153.2

42.7

1.3

1.3

93.9

70.6

1,825.4

645.2

46.0

599.2

130.8

37.5

1.4

1.4

94.3

29.5

3,256.6

3,509.2

1,357.7

2,151.5

25.9

19.6

4.2

3.3

63.6

56.0

3,098.5

3,536.3

1,301.1

2,235.2

27.0

22.7

3.7

2.8

64.4

44.1

4,627.3

5,277.3

2,616.5

2,660.9

15.8

12.0

20.0

13.9

18.3

41.9

3,734.1

5,490.4

2,872.8

2,617.6

25.6

16.1

18.5

11.5

24.7

58.1

Performance_Per_Instance_2

Soma de Value dividido por Instance type,Instance sizeeModel vs. Measure.A exibição é filtrada em Instance sizeeMeasure.O filtro
Instance size mantém 10x3,10x4,10x5,15x5e20x5.O filtro Measure mantém 10 membros.
Table 3.9 – Robust PFSP C&CG performance comparison, for each instance size n×m and RC model.
% Best Performance is the percentage of instances where the model achieved shorter execution time
(ties included); % Solved contains the percentage of instances solved within the time limit; Avg. %
Gap and Std. dev. of % Gap are the mean and standard deviation of the percentage gap of solutions
from instances not solved to optimality; Avg. iterations and Std. dev. of iterations are the mean and
standard deviation of the number of iterations performed; Avg. MP(SP) time is the average time
(in seconds) to solve the Master(Sub) Problem; Avg. time and Std. dev. of time are the mean and
standard deviation in solution time (in seconds), respectively.
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Measure
Alpha

α=10% α=20% α=30% α=40% α=50% αm ᵃx=30% αm ᵃx=50% αm ᵃx=100% αm ᵃx=200%

M
od
el

W
ag
ne
r

% Best Performance

% Solved

Avg. % gap

Std. dev. of % gap

Avg. iterations

Std. dev. of iterations

Avg. MP time

Avg. SP time

Avg. time

Std. dev. of time

W
ils
on

% Best Performance

% Solved

Avg. % gap

Std. dev. of % gap

Avg. iterations

Std. dev. of iterations

Avg. MP time

Avg. SP time

Avg. time

Std. dev. of time

3,087.8

4,382.6

2,197.9

2,184.7

21.6

20.7

6.3

8.8

56.2

45.2

3,021.7

4,592.6

2,037.3

2,555.3

30.0

27.5

2.4

2.9

51.0

40.8

2,985.9

3,932.2

1,451.2

2,481.0

17.0

19.7

1.5

1.8

61.0

38.0

2,838.9

2,443.3

924.5

1,518.8

14.4

15.4

0.5

0.7

78.6

43.6

3,074.7

4,122.0

1,385.5

2,736.5

38.2

30.9

2.2

2.6

54.8

48.6

3,092.4

3,919.4

1,294.8

2,624.7

35.0

29.1

1.7

2.2

61.0

47.1

3,061.7

3,517.9

1,084.4

2,433.6

32.9

26.4

1.3

1.6

63.3

49.2

2,986.5

2,944.1

918.2

2,025.9

21.4

21.1

0.8

1.1

72.4

40.1

2,706.2

1,972.1

415.7

1,556.4

13.2

13.5

0.4

0.5

81.9

45.2

3,373.2

4,738.9

2,570.2

2,168.6

17.2

16.7

7.0

8.3

47.6

54.8

3,127.8

4,456.8

2,148.4

2,308.5

32.8

24.3

3.7

4.0

52.9

59.2

3,142.8

3,717.6

1,470.3

2,247.3

14.1

17.3

1.7

2.1

61.0

62.0

3,135.2

2,499.2

1,237.8

1,261.5

34.6

15.2

0.6

0.9

76.2

56.4

3,089.7

4,297.6

1,550.8

2,746.8

22.6

23.7

2.8

3.3

51.0

52.4

3,116.9

3,888.9

1,273.0

2,615.9

23.0

24.2

2.3

2.6

59.1

52.9

3,276.8

3,468.4

967.8

2,500.6

21.3

21.7

1.3

1.7

65.7

50.8

3,095.9

2,704.7

690.0

2,014.7

16.5

17.4

0.8

1.2

74.8

59.9

2,755.8

1,810.9

310.9

1,500.1

37.2

15.7

0.3

0.4

84.3

55.4

Performance_By_Alpha - ying, 15x5

Média de Value dividido por Alpha vs. ModeleMeasure na página ying, 15x5.A exibição está filtrada em Measure, que mantém 10 de 17 membros.Table 3.10 – Robust PFSP C&CG performance comparison for Ying instance size 15 × 5, grouped
by α and αmax values, and RC model. % Best Performance is the percentage of instances where the
model achieved shorter execution time (ties included); % Solved contains the percentage of instances
solved within the time limit; Avg. % Gap is the average percentage gap of solutions from instances
not solved to optimality; Avg. iterations is the average number of iterations performed; Avg. time
MP(SP) is the average time to solve the Master(Sub) Problem; Avg. time and Std. dev. of time are
the mean and standard deviation in solution time (in seconds), respectively.

89



Part , Nomenclature used in the models

Measure
Alpha

α=10% α=20% α=30% α=40% α=50% αm ᵃx=30% αm ᵃx=50% αm ᵃx=100% αm ᵃx=200%

M
od
el

W
ag
ne
r

% Best Performance

% Solved

Avg. % gap

Std. dev. of % gap

Avg. iterations

Std. dev. of iterations

Avg. MP time

Avg. SP time

Avg. time

Std. dev. of time

W
ils
on

% Best Performance

% Solved

Avg. % gap

Std. dev. of % gap

Avg. iterations

Std. dev. of iterations

Avg. MP time

Avg. SP time

Avg. time

Std. dev. of time

3,042.1

6,763.3

4,359.2

2,404.2

43.3

30.0

5.5

6.5

25.7

43.5

2,936.6

6,597.7

4,120.6

2,477.1

39.5

25.6

28.3

12.1

29.1

52.4

3,143.9

6,334.0

3,683.3

2,650.7

29.6

21.3

1.5

2.0

34.0

50.0

3,328.1

5,971.9

3,640.5

2,331.4

17.2

16.3

2.0

1.4

41.4

55.0

4,107.3

5,417.4

2,391.2

3,026.2

16.0

12.4

26.8

23.8

10.5

43.8

3,976.7

5,239.1

2,233.7

3,005.4

14.7

11.7

22.3

19.5

10.0

61.1

3,915.7

5,083.3

2,185.6

2,897.7

12.6

10.4

15.0

14.2

11.9

62.5

4,061.6

4,787.6

2,097.5

2,690.1

11.2

9.7

9.2

8.8

21.0

70.0

3,602.3

3,271.3

1,193.9

2,077.4

9.5

8.0

4.8

5.8

39.5

64.4

8,583.9

7,805.0

5,366.9

2,438.1

27.0

19.9

15.4

8.9

21.4

56.5

2,877.0

7,064.0

4,575.0

2,489.0

19.7

16.2

33.2

15.9

19.1

47.6

3,117.7

6,850.4

4,453.4

2,396.9

15.8

14.0

4.7

3.0

23.8

50.0

3,034.7

6,626.5

3,653.8

2,972.7

12.9

14.5

1.0

1.3

29.0

45.0

4,071.9

4,787.8

1,863.9

2,923.9

15.4

12.1

26.9

26.8

10.0

56.3

4,277.9

4,969.3

2,012.1

2,957.3

14.3

11.1

21.4

20.3

9.1

38.9

4,147.6

4,810.5

1,932.3

2,878.2

13.1

10.4

14.1

14.3

12.4

37.5

4,055.5

4,440.4

1,795.4

2,644.9

11.6

9.4

9.6

11.1

18.1

30.0

3,837.8

3,428.5

1,355.4

2,073.1

9.9

7.9

4.7

5.4

31.9

35.6

Performance_By_Alpha - tail, 20x5

Média de Value dividido por Alpha vs. ModeleMeasure na página tail, 20x5.A exibição está filtrada em Measure, que tem vários membros selecionados.Table 3.11 – Robust PFSP C&CG performance comparison for Taillard instance size 20×5, grouped
by α and αmax values, and RC model. % Best Performance is the percentage of instances where the
model achieved shorter execution time (ties included); % Solved contains the percentage of instances
solved within the time limit; Avg. % Gap is the average percentage gap of solutions from instances
not solved to optimality; Avg. iterations is the average number of iterations performed; Avg. time
MP(SP) is the average time to solve the Master(Sub) Problem; Avg. time and Std. dev. of time are
the mean and standard deviation in solution time (in seconds), respectively.
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3.10. Rob-PFSP experimental results

3.10.4 Comparative performance of GRASP and C&CG

Due to its stochastic nature, for each tested instance, 50 independent GRASP executions (repli-
cas) were run. Each replica was run for a maximum time tmax = 0.03×n×m seconds, where n is the
number of jobs and m is the number of machines. For the smallest instances tmax = 1 second, while
for the largest ones, tmax = 300 seconds. A summary of GRASP execution statistics is displayed
in Table 3.12, in terms of run time and number of iterations performed. On average, the algorithm
takes no more than three minutes to obtain a solution to the problem.

Instance
type Instance size

Measure

Median time Avg. time
Std. dev. of

time
Median

iterations
Avg.

iterations
Std. dev. of
iterations

Ying 10x2

20x2

50x2

100x2

150x2

200x2

10x3

10x4

10x5

15x5

Taillard 20x5

20x10

50x5

20x20

50x10

157

438

408

2,834

1

1

3

53

677

3,098

681

2,152

3,205

6,251

1

5

18

120

1,591

8,708

685

2,074

3,234

5,173

1

5

19

87

1,274

8,423

1

20

9

0

44

1

0

8

9

11

23

15

12

9

124

93

61

30

12

6

23

15

12

9

120

94

61

30

12

6

2

13

7

23

66

6

51

17

104

244

6

53

17

106

247

2

4

1

28

7

153

120

76

60

30

153

120

76

60

30

GRASP_Stats

Soma de Value dividido por Measure vs. Instance typeeInstance size.A exibição é filtrada em MeasureeInstance
size.O filtro Measure tem vários membros selecionados.O filtro Instance size mantém 15 membros.

Table 3.12 – GRASP solution statistics, grouped by instance type and instance size. Median time,
Avg. time and Std. dev. of time are the median, mean and standard deviation of solution time (in
seconds), respectively. Median iterations, Avg. iterations and Std. dev. of iterations are the median,
mean and standard deviation of the number of GRASP iterations, respectively.

We now compare the solutions obtained by the GRASP and C&CG robust methods when solv-
ing the same set of instances. Each solution provides an upper bound for the optimal robust cost of
the problem. Let UBCCG and UBGRASP be the upper bounds obtained by the C&CG and GRASP
methods, respectively. Also, let LBCCG be the lower bound obtained by the C&CG method. When-
ever LBCCG = UBCCG or LBCCG = UBGRASP , we have an optimal solution to the problem. To
assess the quality of the heuristic solutions obtained with GRASP, we compare their solution value,
denoted as UBGRASP , with both bounds provided by the C&CG method. We define gapLB% and
gapUB% as:

gapLB% = UBGRASP − LBCCG
LBCCG

× 100, (3.80)

gapUB% = UBGRASP − UBCCG
UBCCG

× 100. (3.81)

For each instance group, Table 3.13 shows the percentage of instances which were solved op-
timally by the GRASP metaheuristic (i.e., gapLB% = 0, considering the best solution found after 50
independent executions) and by the C&CG exact method within 7,200 seconds. The determination
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of optimal solutions is based on the upper bound of each solution method, relative to the lower
bound obtained by the C&CG method. GRASP was able to optimally solve all instances, except for
200 × 2 and 15 × 5 and 20 × 5 groups. Even so, regarding the 15 × 5 and 20 × 5 groups, GRASP
solved far more instances to optimality than C&CG, reaching 97% and 68%, respectively.

Additionally, we deepen the analysis of the percentage of instances optimally solved, grouping by
alpha and Γ% values, on Tables 3.14 and 3.15, respectively. Our evaluation is restricted to the three
instance groups for which GRASP did not obtain 100% optimal solutions. By observing Table 3.14,
it is possible to note the decrease of GRASP performance as α and αmax values increase. Also, as
the Γ% parameter values grows (Table 3.15), so does the difficulty of obtaining optimal solutions, as
the number of optimally solved instances decreases.

Solution Method

Instance  type  /  Instance  size

Ying
10x2 20x2 50x2 100x2 150x2 200x2 10x3 10x4 10x5 15x5

Taillard
20x5

C&CG
GRASP 96.9

64.4

100.0

94.3

100.0

97.3

100.0

97.6

85.5

88.0

100.0

94.5

100.0

98.8

100.0

99.3

100.0

99.3

100.0

99.5

68.3

22.3

GRASP_Opt_Perc

22.3 100.0

Percentage

Soma de Percentage dividido por Instance  typeeInstance  size vs. Solution Method. A cor mostra soma de Percentage. As marcas são
rotuladas por soma de Percentage.Os dados são filtrados em ModeleVariable.O filtro Model mantém NuloeWagner.O filtro Variable
mantém Nuloe% Solved.

Table 3.13 – Percentage of instances solved to optimality by C&CG and GRASP solution methods,
grouped by instance type and instance size.

Instance Type Instance Size
Alpha

α=10% α=20% α=30% α=40% α=50% αm ᵃx=30% αm ᵃx=50% αm ᵃx=100%αm ᵃx=200%
Ying 10x2

20x2

50x2

100x2

150x2

200x2

10x3

10x4

10x5

15x5

Taillard 20x5

97.0

100.0

100.0

100.0

61.8

100.0

100.0

100.0

100.0

100.0

99.5

100.0

100.0

100.0

88.0

100.0

100.0

100.0

100.0

100.0

95.5

100.0

100.0

100.0

80.2

100.0

100.0

100.0

100.0

100.0

95.2

100.0

100.0

100.0

80.4

100.0

100.0

100.0

100.0

100.0

94.9

100.0

100.0

100.0

96.4

100.0

100.0

100.0

100.0

100.0

97.8

100.0

100.0

100.0

98.3

100.0

100.0

100.0

100.0

100.0

97.2

100.0

100.0

100.0

81.9

100.0

100.0

100.0

100.0

100.0

97.2

100.0

100.0

100.0

89.1

100.0

100.0

100.0

100.0

100.0

97.6

100.0

100.0

100.0

91.9

100.0

100.0

100.0

100.0

100.0

96.794.383.368.458.264.159.358.857.4

GRASP_Opt_Alpha

57.4 100.0

Grasp Optimal Perc

Soma de Grasp Optimal Perc dividido por Alpha vs. Instance TypeeInstance Size. A cor mostra soma de Grasp Optimal Perc. As marcas são
rotuladas por soma de Grasp Optimal Perc.

Table 3.14 – Percentage of instances solved to optimality by GRASP, grouped by instance type,
instance size and instance alpha.

A further analysis was conducted to examine the gaps in solution values obtained by GRASP.
In Figure 3.6, for each instance size group, we present box plots depicting gapLB% (left plot) and
gapUB% (right plot) values obtained when comparing both lower and upper bounds of C&CG against
GRASP solution values. All gap values were obtained from 50 independent executions of GRASP,
including all instances of the corresponding size and all Γ% parameters values used to test the
algorithm. Observe that, for all instance groups except 20× 5, the majority of the obtained solutions
present zero or near zero optimality gap gapLB%, i.e., all Q1 − 1.5 IQR 3 and Q3 + 1.5 IQR box
plot values tend to zero. Also, in many occasions, gapUB% values reveal that GRASP achieved

3. IQR is defined as the difference between the 75th (Q3) and 25th (Q1) percentiles of the data.
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3.10. Rob-PFSP experimental results

Instance Type Instance Size
Γ %

10 20 30 40 50 60 70 80 90 100
Ying 10x2

20x2

50x2

100x2

150x2

200x2

10x3

10x4

10x5

15x5

Taillard 20x5

95.4

100.0

100.0

100.0

80.3

100.0

100.0

100.0

100.0

100.0

95.6

100.0

100.0

100.0

81.5

100.0

100.0

100.0

100.0

100.0

96.4

100.0

100.0

100.0

82.3

100.0

100.0

100.0

100.0

100.0

96.7

100.0

100.0

100.0

83.1

100.0

100.0

100.0

100.0

100.0

96.8

100.0

100.0

100.0

84.4

100.0

100.0

100.0

100.0

100.0

97.2

100.0

100.0

100.0

82.4

100.0

100.0

100.0

100.0

100.0

98.0

100.0

100.0

100.0

88.9

100.0

100.0

100.0

100.0

100.0

97.8

100.0

100.0

100.0

81.9

100.0

100.0

100.0

100.0

100.0

99.3

100.0

100.0

100.0

89.0

100.0

100.0

100.0

100.0

100.0

97.6

100.0

100.0

100.0

91.0

100.0

100.0

100.0

100.0

100.0

63.468.167.069.369.871.470.471.473.583.4

GRASP_Opt_Gamma

63.4 100.0

Grasp Optimal Perc

Soma de Grasp Optimal Perc dividido por Γ % vs. Instance TypeeInstance Size. A cor mostra soma de Grasp Optimal Perc. As marcas são
rotuladas por soma de Grasp Optimal Perc.A exibição está filtrada em Γ %, que mantém 10 membros.

Table 3.15 – Percentage of instances solved to optimality by GRASP, grouped by instance type,
instance size and Γ%.

improved solution values (i.e., negative gaps) when compared to C&CG. In particular, for the case
of 20× 5 instances not solved to optimality, 75% of the observed GRASP optimality gaps (gapLB%)
are smaller than 10%. Another interesting observation is that, for each solution group, composed
by instance and Γ% parameter value, the observed deviation in GRASP solution values, after 50
independent executions, is minimal. This is a strong indication of the robustness of the implemented
metaheuristic.

Finally, we drill down to instance groups 15×5 and 20×5 in order to analyze the gap between the
solutions obtained by C&CG and GRASP (gapUB%). Figure 3.7 helps visualize the gap distribution
of 15 × 5 instances, depending on either the alpha value, which specifies the maximum degree of
processing time deviation, or the Γ values, used as input to determine the level of solution robust-
ness. Observe that, in the experiments, the obtained gaps are always smaller than 2%, and solution
improvements are frequent, especially when solving the αmax instances from group (iv) or when
Γ% ≤ 30.

Similarly, Figure 3.8 shows the gapUB% distribution for Taillard 20 × 5 instances. The box plot
grouped by alpha values reveals significant solution improvements when αmax ≥ 50%, and very
small positive gaps (gapUB% ≤ 2), when they occur. The box plot on the right, grouped by Γ%
values, also reveals very small positive gaps (gapUB% ≤ 2), along with negative gaps of up to −9%.

We also ran the GRASP method to obtain solutions for the remaining Taillard-based instances
proposed in Section 3.10.1. Even though we were unable to evaluate their solution quality (due to
problem-size limitations of the baseline C&CG method), we published the best solution found for
each instance and Γ% value, along with the instance file set at https://github.com/levorato/

RPFS_Cmax_Budget.
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Figure 3.6 – Box plots of GRASP gapLB% (left plot) and gapUB% (right plot) values, grouped by
instance size, compared to the lower and upper bounds obtained by the C&CG method, respectively.
Considers all C&CG solutions, optimal or not.

Figure 3.7 – Box plots of gapUB% values for instance group Ying 15× 5, grouped by instance alpha
(left) and by Γ% (right), based on all solution values obtained by GRASP and C&CG methods.
Considers all C&CG solutions, optimal or not. All GRASP solution values were obtained from 50
independent executions of GRASP.
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3.11. Discussion

Figure 3.8 – Box plots of gapUB% values for instance group Taillard 20 × 5, grouped by instance
alpha (left) and by Γ% (right), based on all solution values obtained by GRASP and C&CG methods.
Considers all C&CG solutions, optimal or not. All GRASP solution values were obtained from 50
independent executions of GRASP.

3.11 Discussion

This section discusses the results obtained in this chapter, divided into two parts. In the first part,
we proposed the first exact solution method for the two-machine robust flow shop problem based
on budgeted uncertainty [16]. As a main contribution, we developed a worst-case determination
procedure for the problem using polynomial-time dynamic programming. Together with new robust-
counterpart formulations, we employed Column-and-Constraint (C&CG) Generation techniques. Ex-
tensive experimental results demonstrated that the proposed algorithm effectively obtained optimal
robust schedules for small and medium-sized problems (e.g., instances with m = 2 and n ≤ 100).
However, it requires more computational power and thus CPU time for larger instances (m = 2,
n ≥ 150) and as processing time variability level α increases.

Based on a case study with two representative instances, we have also assessed the trade-off
between solution quality and cost, comparing robust solutions to deterministic and stochastic ones.
The adoption of the budget of uncertainty avoids the over-conservativeness of conventional robust
scheduling approaches and, at the same time, provides a pool of robust schedules, many of which
perform well under different levels of realization of uncertainty. Also, according to simulations based
on three probability distributions, such robust schedules presented only a small overhead in the
expected solution cost.

In the second part of the chapter, we extended our research to the m-machine robust permuta-
tion flow shop problem to minimize the worst-case makespan. Two solution methods were proposed:
an exact algorithm based on C&CG and a greedy randomized adaptive search procedure (GRASP)
metaheuristic.

For the sake of performance evaluation, we proposed four sets of benchmark test instances for
the robust problem, including instances based on the classical permutation flow shop literature. Af-
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ter evaluating both C&CG and GRASP algorithms on this test-bed, GRASP was shown to produce
optimal solutions on most small and medium-sized instances (e.g., instances with n×m ≤ 100) and
associated budget parameters. In fact, it reached a higher proportion of instances solved to optimal-
ity than the exact C&CG method itself. Additionally, considering instances not solved to optimality,
75% of the observed GRASP optimality gaps are smaller than 10%.

In a nutshell, the GRASP method was able to process larger problem instances, as high as the
Taillard-based 100×50 instances. Extensive experimental results also demonstrated that, compared
to the baseline C&CG exact method, the GRASP algorithm was very efficient in obtaining robust
schedules, both in solution time and quality (i.e., gaps in solution values).
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Chapter 4

ROBUST SCHEDULING IN OIL AND GAS

EXPLORATION

In this chapter, we propose exact solution approaches for the m-machine robust permutation
flow shop problem, with the objective of minimizing worst-case total weighted completion time. In the
context of the oil and gas industry, this variant of the flow shop is associated with the maintenance
schedule for oil rigs.

Traditional problem formulations assume that the processing time of each operation does not
vary (i.e. the most likely scenario will certainly occur). However, in oil and gas applications like plat-
form maintenance, task duration does fluctuate according to a specific range. Rather than assigning
probabilities to different scenarios in order to generate a decision which is optimal in the long run (as
in Stochastic Optimization approaches), our goal is to apply Robust Optimization [14] techniques,
by considering a set of potentially realizable scenarios and a min-max criteria that returns a solution
with the best worst-case performance over the scenario set.

Similarly to the problem studied in the previous chapter, operation processing times are uncer-
tain and vary in a given interval. Moreover, following the concept of budgeted uncertainty, only a
subset of operation processing times will deviate to worst-case values. To solve this robust problem,
we developed seven robust counterpart formulations, which can be used to derive optimal solu-
tions for medium-sized problem instances by using a Column-and-Constraint Generation algorithm.
The efficacy of the solution methods is validated through experiments on three sets of randomly-
generated instances. And finally, a case study for maintenance schedule of Brazilian oil platforms is
presented.

4.1 Introduction

In the context of the Oil and Gas industry, maintenance scheduling plays a very important
role [113, 161, 38]. One major challenge is related to programmed shutdown and maintenance
of oil platforms. Due to existing policies in such schedules, a well-defined set of operations must
have their order of execution respected. These tasks must be performed on all equipment associ-
ated with a specific oil well. For example, they include substituting previously-installed provisional
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repairs, corrosion removal, replacing damaged paint, and servicing pipes and water re-injection
pumps. Moreover, since maintenance tasks have to be executed on every oil well connected to the
platform, they must be closed simultaneously. Oil wells will only reopen for production at the end of
the process, as soon as their associated maintenance operations finish.

The aforementioned process can be characterized as a permutation flow shop scheduling [109]
in which oil-wells are represented by jobs, and maintenance tasks by machines. Each oil well is
closed at the start of the schedule, while its associated equipment undergoes a series of mainte-
nance tasks that always follow the same order. The aim is to find a schedule that minimizes the
loss of oil production associated with each oil well’s flow rate and for how long it remained closed,
i.e., the total weighted completion time (TWCT) objective. Such optimization generates substantial
financial gains, as more oil will be produced, in the order of thousands of dollars.

The TWCT criterium is usually associated with production environments where inventory levels
and manufacturing cycle times are of critical concern. With a particular interest in minimizing in-
ventory or holding costs, some production environments aim to minimize the total completion time,
assuming all jobs are equal in importance. In specific contexts, however, the importance or value of
each job may not be the same. For example, jobs may have different unit costs and holding costs.
Such costs could be characterized as job weights. As is the case for the oil industry, the cost crite-
rion of each job will depend not only on its completion time but also on its weight, which represents
the flow rate of each oil well.

Considering real-world characteristics, solving this scheduling problem is a challenging task and
demands efficient solution approaches [54, 112]. Furthermore, job processing times are subject to
uncertainty, and no probability distribution is known. A viable alternative, adopted here, consists in
applying Robust Optimization to obtain a schedule hedging against worst-case scenarios.

Assuming processing times are uncertain and vary in a given interval, the objective of the present
chapter is to provide efficient solutions for the m-machine Robust Permutation Flow Shop with the
total weighted completion time objective (RPFS-TWCT). The only information required is the lower
and upper bounds of processing times, which can be obtained from historical data. We are inter-
ested in a job permutation that minimizes the worst-case cost, for any possible realization of job
processing times under the budgeted uncertainty set [16]. Unlike other robust optimization models,
which provide only one conservative solution, the budgeted approach allows the adjustment of the
solution’s level of conservatism according to the decision-maker’s risk-aversion.

Concerning uncertain processing times, scheduling problems that minimize the total weighted
completion time have been studied from various viewpoints, for example, single-machine schedul-
ing heuristics [3], branch-and-bound [108], m-machine heuristics [69], as well as stability analysis
methods [127, 79]. To the best of our knowledge, this is the first work to treat the m-machine ro-
bust permutation flow shop problem under budgeted uncertainty, which minimizes the worst-case
weighted sum of job completion times. The solution method is partly based on the column-and-
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constraint method designed for the RPFS with makespan objective and presented in the previous
chapter.

This chapter adopts the following structure. Section 4.2 introduces the classical deterministic
Permutation Flow Shop Problem, minimizing total weighted completion time. The m-machine Ro-
bust Permutation Flow Shop Problem is presented in Section 4.3, together with seven proposed Ro-
bust Counterpart (RC) formulations. Our exact solution approach based on Column-and-Constraint
Generation (C&CG) is explained in Section 4.4. An important enhancement to the solution method,
which uses a combinatorial branch-and-bound in the master phase of the C&CG method, is dis-
cussed in Section 4.5. The experimental results are shown in Section 4.6, based on extensive com-
putational experiments on three sets of randomly-generated problem instances. Section 4.7 brings
a case study applied to the oil and gas industry, using real data from the operation history of two
Brazilian oil platforms. Finally, Section 4.8 brings the final discussions.

4.2 The deterministic PFSP minimizing total weighted completion
time

This section presents the Permutation Flow Shop Problem (PFSP) to minimize the Total
Weighted Completion Time (TWCT), also known as total weighted flow time [109]. For the sake
of simplicity, we will refer to this problem as PFSP-TWCT. Following the well-known α|β|γ 1 notation
for scheduling problems, established by [50], this problem is denoted as F |prmu|

∑
wjCj . Since job

processing time values are assumed to be known in advance, we will use the term deterministic
when referring to this version of the problem. Also, for completeness, we decided to restate the
same basic notation and descriptions used in Section 3.2.1, with objective of redefining ϕ as the
TWCT objective function.

The problem can be stated as follows. Consider a production planning process consisting of a
set of jobs J = [n] to be executed in a set of machines M = [m] 2. Each job i ∈ J has an associated
weight wi and a non-negative processing time pr,i on machine r ∈M, forming the matrix P ∈ R+

M×J.
Each job must be processed without preemption on each machine in the same order. At any time,
a machine cannot handle more than one job. Also, at any time, a job can only be processed on
one machine. We assume intermediate storage between successive machines is unlimited. The
permutation flow shop’s particularity is that the sequence in which the jobs are to be processed is
the same for all machines. Such sequence is defined by a permutation σ : {1, . . . , n} −→ J, with σ(j)
indicating the jth job to be executed. We call Σ the set of all permutations of n jobs, hence σ ∈ Σ.
Consider an operation Or,σ(j), concerning the execution of the jth job on machine r. Its completion

1. Where α represents the machine environment, β stands for job characteristics, and γ symbolizes the objective
function. In our case: the flow shop problem, single job permutation, minimizing total weighted completion time.

2. We use the notation [n] = {1, . . . , n}.
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time, denoted by Cr,σ(j), can be defined by the recurrence:

Cr,σ(j) =


pr,σ(j) if r = 1 and j = 1,
Cr,σ(j−1) + pr,σ(j) if r = 1 and j > 1,
Cr−1,σ(j) + pr,σ(j) if r > 1 and j = 1,
max(Cr,σ(j−1), Cr−1,σ(j)) + pr,σ(j) if r > 1 and j > 1.

The completion time of a job i is defined as its completion time on the last machine Cm,i. The
objective is to find a job sequence that minimizes the total weighed completion times on the final
machine, i.e., a permutation σ minimizing ϕ(σ) =

∑
j∈{1,...n}wσ(j)Cm,σ(j).

The problem was proved strongly NP-hard by [44] for instances with two or more machines,
when all job weights are equal. It was also studied from the viewpoint of probabilistic analysis [70],
stability approach [126], heuristics [45, 97, 112, 145], combinatorial branch-and-bound [24], MIP-
based branch-and-bound [157, 141] and approximation algorithms [101]. Finally, the problem can
be solved with MILP techniques, by adapting the objective function of existing flowshop formula-
tions [135, 136].

4.3 The robust PFSP to minimize the total weighted completion
time

Different optimization criteria can be used to search for a robust solution. This study focuses on
the minimax or absolute robust criterion: the robust decision looks for a solution that minimizes the
highest objective value over all possible scenarios, following a predefined uncertainty set.

This section starts with a definition of the Robust Permutation Flow Shop - Total Weighted Com-
pletion Time (RPFS-TWCT) problem (Section 4.3.1), followed by a description of the underlying
budgeted uncertainty set (Section 4.3.2). Then, seven robust counterpart formulations are proposed
(Section 4.3.3), based on well-known Mixed-Integer Linear Programming (MILP) formulations for the
deterministic problem.

4.3.1 Problem statement

Assume the matrix of individual processing times P = {pr,i, r ∈ M, i ∈ J} contains uncertain
data. A scenario λ is defined as a realization of uncertainty and, for each possible λ, there is a unique
matrix of processing times denoted as Pλ = {pλr,i, r ∈ M, i ∈ J}. Let Λ be the set of all possible
scenarios λ. Whenever a matrix of processing times Pλ is known, an instance of the deterministic
PFSP-TWCT is defined.

Let’s redefine ϕ(σ,Pλ) as the total weighted completion time of a sequence σ ∈ Σ given a
scenario λ ∈ Λ. The objective of the RPFS-TWCT is to find a job permutation σ ∈ Σ that minimizes
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the maximum possible total weighted completion time over all scenarios λ ∈ Λ:

RPFS-TWCT: min
σ∈Σ

max
λ∈Λ
{ϕ(σ,Pλ)}. (4.1)

For any sequence σ ∈ Σ, the value

Z(σ) := max
λ∈Λ
{ϕ(σ,Pλ)} (4.2)

is called the worst-case total weighted completion time or robust cost for σ. A maximizer in (4.2) is
called a worst-case scenario for σ.

As mentioned in the introduction, to the best of our knowledge, this is the first research that ap-
plies the budgeted uncertainty set on them-machine robust permutation flow shop problem. Existing
works are related to either single or two-machine variants of the problem. In [19], the complexity of
the single-machine version of the RPFS-TWCT problem was shown to be weakly NP-hard if Γ = 1
and strongly NP-hard for Γ > 1. [159] developed two metaheuristic algorithms to solve the two-
machine problem, but with the makespan objective.

4.3.2 Budgeted uncertainty set for the RPFS-TWCT problem

In [159], the three classical Robust-Counterpart Optimization (RCO) models [128, 15, 16] are
compared in terms of the number of variables, the number of required constraints, and if the respec-
tive formulation is linear or not. When compared to the other RCO models [128, 15], the so-called
budgeted uncertainty model [16] fits best for robust scheduling problems, by providing a linear for-
mulation that allows adjusting the level of conservatism of the robust solution, without resulting in a
substantial increase in problem size. The inclusion of a budget parameter provides a compromise
between robustness and optimality. It is possible to adjust the number of coefficients that simulta-
neously take their largest variations, based on information about the application. For the case of
oil-well maintenance, the problem which will be analyzed in the case study section, it is known that
the probability of all maintenance tasks simultaneously deviating to their worst-case execution times
is low.

Next, the budget uncertainty set for the RPFS-TWCT problem is defined. Bearing in mind that the
definition below is equivalent to the one presented in Section 3.7.2, we decided to replicate it here for
the sake of completeness. Consider two positive processing time matrices P={pr,i, r ∈M, i ∈ J} and
P̂={p̂r,i, r ∈ M, i ∈ J}, that represent the nominal value of and the maximum allowed deviation of P,
respectively. In order to apply budgeted uncertainty, we introduce the budget parameter 0 ≤ Γ ≤ mn,
which denotes the maximum number of operations whose uncertain processing times can reach
their worst-case values. The budgeted uncertainty set of operation processing times, denoted as UΓ,
can be defined as follows:

UΓ =
{

P = {pr,i} | pr,i = pr,i + δr,i p̂r,i, δr,i ∈ {0, 1},∀r ∈M,∀i ∈ J;
m∑
r=1

n∑
i=1

δr,i ≤ Γ
}

, (4.3)

Given the uncertainty set UΓ, each scenario λ is described by one of the infinite matrices in
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this set. For a given scenario λ, let δλr,i be the value defining the deviation of the processing time
regarding the execution of job i ∈ J on machine r ∈M, i.e., pλr,i = pr,i+δλr,ip̂λr,i. Therefore, considering
all jobs and machines, the total number of operations whose processing time can deviate to its
maximum value is limited to Γ. When Γ = 0, the problem is equivalent to the nominal problem, i.e.,
the deterministic PFSP-TWCT. If Γ = mn, we obtain the box uncertainty set [128]. For a given value
of Γ, there are

(mn
Γ
)

possible worst-case scenarios, given the budgeted uncertainty set UΓ.

4.3.3 Robust counterparts

A number of MILP models were proposed in the literature for the PFSP. We now present the
robust counterparts for the PFSP-TWCT, based on the following seven formulations: Wilson [149];
TBA [138]; Wagner-WST2; TS2 and TS3 [136]; Manne [67] and Liao-You [89]. In their original def-
inition, the first five models rely on assignment constraints in order to find the position occupied by
each job in the schedule, while the last two apply disjunctive inequalities with Big-M reformulation
to determine if a job appears either before or after another job in the sequence. For more details
on the rationale behind each deterministic PFSP model, including illustrative diagrams, we refer the
reader to [136].

It is worth noting that the first five models were further adapted for the TWCT objective. Such
adaptation involved additional constraints based on the Big-M method to appropriately calculate the
variables which represent the completion time of each job i on the last machine. These variables,
which are not present in the original models, had to be defined for the correct calculation of total
weighted completion time.

4.3.3.1 Robust Counterpart for Wilson PFS Model

Wilson [149] proposed a MILP model for the makespan-minimizing flow shop scheduling prob-
lem, by applying sets of inequality constraints, based on start time variables, of each job on each
machine. In this work, we derived a two-stage robust counterpart of his model, for the total weighted
completion time objective, with the following decision variables:

Zi,j =
{

1, if σ(j) = i (job i occupies position j in the sequence σ),
0, otherwise.

Bλr,j = start time of job σ(j) (in position j) on machine Mr given scenario λ.
Fλi = variable representing the completion time of job i on machine Mm in scenario λ.

Based on the above definitions, variables Zi,j are in the first stage, and variables Bλ
r,j and F λi are

in the second stage of this robust counterpart. The two-stage robust-counterpart of Wilson model
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for the RPFS-TWCT can be formulated as follows:
Min y (4.4)

st
∑n

i=1 wiF
λ
i ≤ y, λ ∈ Λ, (4.5)

Bλ1,1 = 0, λ ∈ Λ, (4.6)

Bλ1,j +
∑n

i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,j = Bλ1,j+1, j = 1, . . . , n− 1, λ ∈ Λ, (4.7)

Bλr,1 +
∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,1 = Bλr+1,1, r = 1, . . . ,m− 1, λ ∈ Λ, (4.8)

Bλr,j +
∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j ≤ Bλr+1,j , r = 1, . . . ,m− 1, j = 2, . . . , n, λ ∈ Λ, (4.9)

Bλr,j +
∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j ≤ Bλr,j+1, r = 2, . . . ,m, j = 1, . . . , n− 1, λ ∈ Λ, (4.10)

Fλi ≥ Bλm,j +
(
pm,i + p̂m,iδ

λ
m,i

)
Zi,j −Q(1− Zi,j), i = 1, ..., n, j = 1, ..., n, λ ∈ Λ, (4.11)∑n

i=1 Zi,j = 1, j = 1, . . . , n, (4.12)∑n

j=1 Zi,j = 1, i = 1, . . . , n, (4.13)

Zi,j ∈ {0, 1}, i, j = 1, . . . , n, (4.14)

Bλr,j ≥ 0, r = 1, . . . ,m, j = 1, . . . , n, λ ∈ Λ, (4.15)

Fλi ≥ 0, i = 1, . . . , n, λ ∈ Λ, (4.16)

y ≥ 0. (4.17)

The objective function (4.4) and constraint (4.5) state that this formulation aims to find a robust
schedule for the processing of n jobs that minimizes the weighted sum of completion times of the
worst-case scenario, among all possible scenarios λ ∈ Λ. Constraints (4.6)-(4.10) guarantee that
the robust schedule is feasible and that start time variables are appropriately calculated, for each
scenario λ. Constraints (4.11) are used to determine the completion time of job i on the last ma-
chine m, for each scenario λ. In these constraints, assume Q is a large-enough number. The same
assumption is made in all other formulations, using a big-M value Q. Constraints (4.12) and (4.13)
are the classical assignment constraints, ensuring, respectively, that each job is assigned to one
and only one sequence position, and that each sequence position is filled by one and only one job.
Finally, constraints (4.14)-(4.17) define the domain of the variables.

4.3.3.2 Robust Counterpart for TBA PFS Model

Relying on the assignment constraints of Wilson model, Turner and Booth [138] derived a MILP
formulation for the PFSP, here called Turner–Booth alternative (TBA) model. After deriving an equiv-
alent mathematical expression for start time variables, in terms of processing and idle times of each
job, the authors applied variable substitution techniques, significantly reducing the number of model
constraints. We derived a two-stage robust counterpart of this model, for the TWCT objective, with
decision variables Zi,j and F λi as well as the new ones described below:

Xλ
r,j = idle time on machine Mr before the start of job in sequence position j given scenario λ.

Based on the above definitions, variables Zi,j are in the first stage, and variables Xλ
r,j and F λi
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are in the second stage of this robust counterpart. The two-stage robust-counterpart of TBA model
for the RPFS-TWCT can be formulated as follows:

Min y (4.18)

st (4.5), (4.12), (4.13), (4.14), (4.16), (4.17),

Xλ
1,j = 0, j = 2, . . . , n, λ ∈ Λ, (4.19)∑n

i=1

(
pr−1,i + p̂r−1,iδ

λ
r−1,i

)
Zi,1 +

∑j−1
q=1

∑n

i=1

(
pr,i − pr−1,i

)
Zi,q

+
∑j−1

q=1

∑n

i=1

(
p̂r,iδ

λ
r,i − p̂r−1,iδ

λ
r−1,i

)
Zi,q +

∑j

s=2

(
Xr,s −Xr−1,s

)
−
∑n

i=1

(
pr−1,i + p̂r−1,iδ

λ
r−1,i

)
Zi,j ≥ 0, r = 2, . . . ,m, j = 2, . . . , n, λ ∈ Λ, (4.20)

Fλi ≥
∑m−1

r=1

∑n

`=1

(
pr,` + p̂r,`δ

λ
r,`

)
Z`,1 +

∑j

q=1

∑n

`=1

(
pm,` + p̂m,`δ

λ
m,`

)
Z`,q

+
∑j

s=1 Xm,s −Q(1− Zi,j), i = 1, . . . , n, j = 1, . . . , n, λ ∈ Λ, (4.21)

Xλ
r,j ≥ 0, r = 1, . . . ,m, j = 1, . . . , n, λ ∈ Λ. (4.22)

The objective function (4.18) and constraints (4.5), (4.12) and (4.13) are as defined in the previous
formulation. Constraints (4.19)-(4.20) guarantee that the robust schedule is feasible and that idle
time variables are appropriately calculated, for each scenario λ. Constraints (4.21) are big-M con-
straints used to determine the completion time of job i on the last machine m, for each scenario
λ. For an illustrative diagram, we refer the reader to Figure 2 in [136, p. 1376]. Finally, constraints
(4.14), (4.16), (4.17) and (4.22) define the domain of the variables.

4.3.3.3 Robust Counterpart for WST2 PFS Model

Wagner [142] proposed an all-integer programming model for a three-machine deterministic flow
shop, later extended to a m-machine MILP model by Stafford [129], and commonly named in the
literature as Wagner model. In 2002, based on this model and works from other authors, Stafford and
Tseng released an improved model called WST and, later on, a second version called WST2 [136],
which enforces the initial condition that all jobs are processed on the first machine without any
in-sequence machine idleness. In our research, we derived a two-stage robust counterpart of the
WST2 model, for the total weighted completion time objective, with decision variables Zi,j , X λ

r,j and
F λi as described in the previous formulations, and variables Y λ

r,j :

Y λr,j = idle time of job in sequence position j after it finishes processing on machine Mr given scenario λ.

Variables Zi,j are in the first stage, and variables Xλ
r,j , Y

λ
r,j and F λi are in the second stage of
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this robust counterpart. The WST2 model for the RPFS-TWCT can be formulated as follows:
Min y (4.23)

st (4.5), (4.12), (4.13), (4.14), (4.16), (4.17), (4.22),

Xλ
1,1 = 0, λ ∈ Λ, (4.24)∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j+1 +Xλ

r,j+1 + Y λr,j+1 =
∑n

i=1

(
pr+1,i + p̂r+1,iδ

λ
r+1,i

)
Zi,j

+Xλ
r+1,j+1 + Y λr,j , r = 2, . . . ,m− 1, j = 2, . . . , n− 1, λ ∈ Λ, (4.25)∑n

i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,j+1 + Y λ1,j+1 =

∑n

i=1

(
p2,i + p̂2,iδ

λ
2,i

)
Zi,j

+Xλ
2,j+1 + Y λ1,j , j = 2, . . . , n− 1, λ ∈ Λ, (4.26)∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,2 +Xλ

r,2 + Y λr,2 =
∑n

i=1

(
pr+1,i + p̂r+1,iδ

λ
r+1,i

)
Zi,1

+Xλ
r+1,2, r = 2, . . . ,m− 1, λ ∈ Λ, (4.27)∑n

i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,2 + Y λ1,2 =

∑n

i=1

(
p2,i + p̂2,iδ

λ
2,i

)
Zi,1 +Xλ

2,2, λ ∈ Λ, (4.28)∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,1 +Xλ

r,1 = Xλ
r+1,1, r = 1, . . . ,m− 1, λ ∈ Λ, (4.29)

Fλi ≥
∑j

p=1

∑n

x=1

(
pm,x + p̂m,xδ

λ
m,x

)
Zx,p +

∑j

p=1 X
λ
m,p −Q(1− Zi,j),

i = 1, . . . , n, j = 1, . . . , n, λ ∈ Λ, (4.30)

Y λr,j ≥ 0, r = 1, . . . ,m, j = 1, . . . , n, λ ∈ Λ. (4.31)

The objective function (4.23) and constraints (4.5), (4.12) and (4.13) are as defined in the first
formulation. Constraints (4.24)-(4.29) guarantee that the robust schedule is feasible and that idle
time variables are appropriately calculated, for each scenario λ. (4.30) are big-M constraints used to
determine the completion time of job i on the last machinem, for each scenario λ. Finally, constraints
(4.14), (4.16), (4.17), (4.22) and (4.31) define the domain of the variables.

4.3.3.4 Robust Counterpart for TS2 PFS Model

The TS2 MILP model for the regular flow shop is based on an earlier model with the same
name that was developed by Tseng et al. [134] for the sequence-dependent setup times flow shop
problem. This model uses the job ending or completion time variables employed in other scheduling
models, which eliminates the need for the X and Y variables used in Wagner-WST2 model. Besides
adapting the TS2 model to the TWCT objective, we also derived a two-stage robust counterpart with
variables Zi,j and F λi as described in the first formulation, along with variables Eλr,j :

Eλr,j = completion time of job in sequence position j after it finishes processing on machine r given scenario λ.

Variables Zi,j are again in the first stage, while variables Eλr,j and F λi are in the second stage
of this robust counterpart. The two-stage robust-counterpart of TS2 model for the RPFS-TWCT can
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be formulated as:
Min y (4.32)

st (4.5), (4.12), (4.13), (4.14), (4.16), (4.17),

Eλr,j+1 ≥ Eλr,j +
∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j+1, r = 2 . . . ,m, j = 1, . . . , n− 1,

λ ∈ Λ, (4.33)

Eλr+1,j ≥ Eλr,j +
∑n

i=1

(
pr+1,i + p̂r+1,iδ

λ
r+1,i

)
Zi,j , r = 1 . . . ,m− 1,

j = 2, . . . , n, λ ∈ Λ, (4.34)

Eλ1,j+1 = Eλ1,j +
∑n

i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,j+1 j = 1, . . . , n− 1, λ ∈ Λ, (4.35)

Eλr+1,1 = Eλr,1 +
∑n

i=1

(
pr+1,i + p̂r+1,iδ

λ
r+1,i

)
Zi,1, r = 1, . . . ,m− 1, λ ∈ Λ, (4.36)

Eλ1,1 =
∑n

i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,1 λ ∈ Λ, (4.37)

Fλi ≥ Eλm,j −Q(1− Zi,j) i = 1, . . . , n, j = 1, . . . , n, λ ∈ Λ, (4.38)

Eλr,j ≥ 0, r = 1, . . . ,m, j = 1, . . . , n, λ ∈ Λ. (4.39)

The objective function (4.32) and constraints (4.5), (4.12) and (4.13) are as defined in the first formu-
lation. Constraints (4.33)-(4.37) guarantee that the robust schedule is feasible and that completion
time variables are appropriately calculated, for each scenario λ. Constraints (4.38) are big-M con-
straints used to determine the completion time of job i on the last machine m, for each scenario λ.
Finally, constraints (4.14), (4.16), (4.17) and (4.39) define the domain of the variables.

4.3.3.5 Robust Counterpart for TS3 PFS Model

Using an approach similar to the one applied in the TBA model, Tseng and Stafford [136] pro-
posed a MILP formulation for the PFSP called TS3. By applying variable substitution on Wilson
model, the start time variable, for a given r and j, is replaced by an expression that combines the
sum of the processing times of jobs in sequence positions 1 through j − 1 on machine 1, and the
sum of the processing times of the job in position j on machines 1 through r − 1, incremented of
job’s idle times (following each of these same machines). To apply Robust Optimization, we derived
a two-stage robust counterpart of the TS3 model, adapted to the total weighted completion time
objective, with variables Zi,j , F λi and Y λ

r,j as previously defined.

As in previous formulations, variables Zi,j are in the first stage, while variables Y λ
r,j and F λi are
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in stage two. The two-stage robust-counterpart of TS3 model can be formulated as follows:
Min y (4.40)

st (4.5), (4.12), (4.13), (4.14), (4.16), (4.17), (4.31),

Y λr,1 = 0, r = 1, . . . ,m− 1, λ ∈ Λ, (4.41)∑n

i=1

(
p1,i + p̂1,iδ

λ
1,i − pr,i − p̂r,iδλr,i

)
Zi,j−1

+
∑r−1

q=1

∑n

i=1

(
pq,i + p̂q,iδ

λ
q,i

)(
Zi,j − Zi,j−1

)
+
∑r−1

q=1

(
Yq,j − Yq,j−1

)
≥ 0, r = 2, . . . ,m, j = 2, . . . , n, λ ∈ Λ, (4.42)

Fλi ≥
∑j

q=1

∑n

i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,q +

∑m

r=2

∑n

i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j

+
∑m−1

r=1 Yr,j −Q(1− Zi,j), i = 1, . . . , n, j = 1, . . . , n, λ ∈ Λ. (4.43)

The objective function (4.40) and constraints (4.5), (4.12) and (4.13) are as defined in the first for-
mulation. Constraints (4.41)-(4.42) guarantee that the robust schedule is feasible and that idle time
variables are appropriately calculated, for each scenario λ. Constraints (4.43) are big-M constraints
used to determine the completion time of job i on the last machine m, for each scenario λ. Finally,
constraints (4.14), (4.16), (4.17) and (4.31) define the domain of the variables.

4.3.3.6 Robust Counterpart for Manne PFS Model

Manne [94] proposed a dichotomous-constraints integer programming model for the general job
shop problem. The model assures that, for two jobs i and k, only one of each pair of completion-
time subtraction constraints can hold, i.e., job i either precedes job k somewhere in the processing
sequence, or it does not, thus implying that job k precedes job i. Later, Stafford and Tseng [67]
adapted this model to a permutation flow shop (makespan objective). Based on this last model,
we developed its robust counterpart, adapted for the TWCT objective, with the following decision
variables:

Di,k =
{

1, if job i is scheduled any time before job k
0, otherwise.

Cλr,i completion time of job i on machine r given scenario λ.

In this two-stage RO formulation, Di,k are the first-stage variables, while Cλr,i are second stage
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ones. The robust counterpart for Manne PFS model can be formulated as follows.
Min y (4.44)

st
∑n

i=1 wiC
λ
m,i ≤ y, λ ∈ Λ, (4.45)

Cλ1,i ≥ p1,i + p̂1,iδ
λ
1,i, i = 1, . . . , n, λ ∈ Λ, (4.46)

Cλr,i − Cλr−1,i ≥ pr,i + p̂r,iδ
λ
r,i, r = 2, . . . ,m, i = 1, . . . , n, λ ∈ Λ, (4.47)

Cλr,i − Cλr,k +QDi,k ≥ pr,i + p̂r,iδ
λ
r,i, r = 1, . . . ,m,

i = 1, . . . , n− 1, k = i+ 1, . . . , n, λ ∈ Λ, (4.48)

Cλr,i − Cλr,k ≤ Q(1−Di,k)− (pr,k + p̂r,kδ
λ
r,k), r = 1, . . . ,m,

i = 1, . . . , n− 1, k = i+ 1, . . . , n, λ ∈ Λ, (4.49)

Cλr,i ≥ 0, r = 1, . . . ,m; i = 1, . . . , n, λ ∈ Λ, (4.50)

Di,k ∈ {0, 1}, i = 1, . . . , n− 1, k = i+ 1, . . . , n, (4.51)

y ≥ 0. (4.52)

The objective function (4.44) and constraints (4.45) represent the worst-case total weighted com-
pletion time objective, i.e., the minimization of the maximum sum of the weighted completion time of
all jobs on the last machine, given all scenarios λ ∈ Λ. Constraints (4.46) insure that the completion
time of each job on machine 1 occurs no earlier than the duration of that job’s processing time on
machine 1. Constraints (4.47) insure that each job’s completion time on machine r is no earlier than
the job’s completion time on machine r − 1 plus the job’s processing time on machine r (with or
without deviation). Constraints (4.48) and (4.49) are the paired disjunctive constraints, which insure
that job i either precedes job k or follows job k in the sequence, but not both. Finally, constraints
(4.50)-(4.52) define the domain of the variables.

4.3.3.7 Robust Counterpart for Liao-You PFS Model

Liao and You [89] made algebraic combinations of each pair of Manne disjunctive inequal-
ity constraints. As a result, they obtained one equality constraint associated to a surplus vari-
able, qr,i,k, related to the precedence relationship of jobs i and k on machine r. To ensure fea-
sibility, a second constraint was added to impose an upper bound on these surplus variables.
Based on Liao-You model (makespan objective), we developed its robust counterpart, adapted
for the total weighted completion time objective, with the following additional decision variables:
Sλr,i start time of job i on machine r given scenario λ.
qλr,i,k surplus variable related to the precedence relationship of jobs i and k on machine r given scenario λ.

In this two-stage RO formulation, Di,k are, as in the previous model, the first-stage variables,
while Sλr,i and qλr,i,k are on the second stage. The robust counterpart for Liao-You PFS model can be
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formulated as follows.
Min y (4.53)

st (4.51), (4.52),∑n

i=1 wi(S
λ
m,i + pm,i + p̂m,iδ

λ
m,i) ≤ y, λ ∈ Λ, (4.54)

Sλr,i + pr,i + p̂r,iδ
λ
r,i ≤ Sλr+1,i, r = 1, . . . ,m− 1, i = 1, . . . , n, λ ∈ Λ, (4.55)

Sλr,i − Sλr,k +QDi,k − (pr,k + p̂r,kδ
λ
r,k) = qλr,i,k, r = 1, . . . ,m,

i = 1, . . . , n− 1, k = i+ 1, . . . , n, λ ∈ Λ, (4.56)

Q− (pr,i + p̂r,iδ
λ
r,i)− (pr,k + p̂r,kδ

λ
r,k) ≥ qλr,i,k, r = 1, . . . ,m,

i = 1, . . . , n− 1, k = i+ 1, . . . , n, λ ∈ Λ, (4.57)

Sλr,i ≥ 0, r = 1, . . . ,m; i = 1, . . . , n, λ ∈ Λ, (4.58)

qλr,i,k ≥ 0, r = 1, . . . ,m; i = 1, . . . , n− 1, k = i+ 1, . . . , n, λ ∈ Λ. (4.59)

The objective function (4.53) and constraints (4.54) represent the worst-case total weighted com-
pletion time objective, i.e., the minimization of the maximum sum of the weighted completion time of
all jobs on the last machine, given all scenarios λ ∈ Λ. Constraints (4.55) insure that each job’s start
time on machine r + 1 is no earlier than the job’s start time on machine r plus the job’s processing
time on machine r (with or without deviation). Constraints (4.56) and (4.57) are the paired disjunctive
constraints, which insure that job i either precedes job k or follows job k in the sequence, but not
both. Finally, constraints (4.51), (4.52), (4.58) and (4.59) define the domain of the variables.

RC Model Binary variables Continuous variables Constraints
Wilson

O(n2) O(λmn) O(λ(n2 +mn))
TBA
WST2
TS2
TS3
Manne O(n2) O(λmn) O(λmn2)
Liao-You O(n2) O(λmn2) O(λmn2)

Table 4.1 – Size complexity of the RPFS-TWCT robust-counterpart MILP models.

Table 4.1 presents the size complexity of each robust counterpart MILP model presented in this
section. The number of binary variables remains the same of the original deterministic models, as
they consist of first-stage variables. Also observe that the number of continuous variables as well as
the number of constraints grow proportionally to the number of scenarios λ, as expected in robust
counterpart formulations. Finally, the number of constraints in the assignment-based models (first
five models in Table 4.1) is now quadratic in n, due to the calculation of the weighted completion
time of each job, which requires the use of n2 big-M constraints.

Solving each of the aforementioned models, for all possible scenarios λ ∈ Λ, is unrealistic.
Therefore, in the next section, we will describe an algorithm capable of obtaining optimal results for
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RPFS-TWCT by considering a subset of relevant scenarios.

4.4 Column-and-Constraint Generation applied to the RPFS-
TWCT

This section presents an exact method for solving RPFS-TWCT under budgeted uncertainty.
Our approach is based on a cutting plane procedure for two-stage RO problems, called Column-
and-Constraint Generation (C&CG), recently applied in the efficient solution of robust scheduling
problems [117, 124, 82], as well as in the exact solution methods proposed in the previous chapter.
Besides generating new constraints, as usual in this kind of method, each cutting plane of C&CG is
also associated with a set of new decision variables for the recourse problem [162].

Given one of the robust counterparts presented in Section 4.3, the main idea is to relax it into a
master problem (MP) where each robust constraint is written only for a finite subset of the uncertainty
set, i.e., for a Θ ⊆ Λ. Then, given a feasible solution to the MP, this solution is checked for feasibility
over the whole set Λ, by solving a separation subproblem (SP). If the SP solution indicates that
one or more robust constraints become infeasible, the uncertainty set is expanded by adding one or
more scenario vectors to Θ. Whenever the master problem is augmented, according to the column-
and-constraint generation procedure, the process is repeated.

For the RPFS-TWCT problem, the MP solution represents a permutation σ where σ(j) is the
order in which job j is executed. The separation problem is then solved by the worst-case procedure,
which, given the sequence σ, returns the highest possible total weighted completion time under
uncertainty set UΓ. Since the uncertainty set UΓ, defined in Section 4.3, is polyhedral, the number
of possible extreme solutions that can be fetched by the procedure is finite, and the C&CG algorithm
certainly terminates [162].

4.4.1 C&CG algorithm

We describe the solution method in a general way that can be applied to any two-stage RO
formulation from Section 4.3.3. Following the structure of the C&CG method, we define the Master
Problem (MP) by choosing an appropriate 2-stage RO formulation. Considering Θ = {λ1, . . . , λv} ⊆
Λ a subset of scenarios, let Fmodel and Rmodel be the set of corresponding first-stage and recourse
decision variables of the model, respectively. For instance, FWilson = {Zi,j,∀i, j = 1, . . . , n} and
RWilson = {B(λ)

r,j ,F
(λ)
r,j , ∀λ ∈ Θ, r = 1, . . . ,m, j = 1, . . . , n}. The master problem (MP) is solved

iteratively, with each step generating a subset of problem constraints and associated recourse vari-
ables R, regarding one newly-generated scenario λv ∈ Θ. The subset of scenarios Θ is iteratively
enlarged by solving the associated subproblem at each iteration.

In order to generate the scenarios defined by Θ, we assume that an oracle can obtain an optimal
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solution to the worst-case subproblem, based on the current MP solution. At iteration v, for a given
value of MP first-stage decision variables F , the subproblem SP is defined as:

(SP) Z(σ) = max
λv∈Λ

ϕ(σ,Pλv ) (4.60)

where job permutation σ is derived using MP optimal values of first-stage variables F at iteration v
(either Z(v)

i,j or D(v)
i,j , depending on the model). The oracle used to find the optimal solution λ∗(v) for

(SP) is the worst-case MILP described in Section 4.4.2.

The C&CG method is presented in Algorithm 6, where LB denotes the lower bound, UB denotes
the upper bound, v is the iteration counter, and Θ is the set of worst-case scenarios generated by the
method. The procedure starts by considering Θ with a single scenario in which no operation presents
processing time oscillation, and stops whenever the tolerance of optimality ε ∈ R+ is reached. It
returns the optimal solution value of the robust problem, along with the first-stage variables F∗,
which represent the optimal permutation σ∗.

4.4.2 Worst-case evaluation based on a MILP model

Solving the SP problem in (4.60) consists in determining the worst-case realization under the
budgeted uncertainty set UΓ, for a specific sequence of jobs σ = {σ(j), j = 1, . . . , n}. From equa-
tion (4.2), given a protection level Γ and a schedule σ, we extend the definition of worst-case total
weighted completion time or robust cost to Z(σ,Γ) with the equation:

Z(σ,Γ) := max
Pλ∈ UΓ

{ϕ(σ,Pλ)}. (4.61)

We assume that parameter Γ, from the budgeted uncertainty set, is a non-negative integer. Since
any worst-case realization will use as much budget of uncertainty as possible, we can expect that,
for the optimal solution of (4.61), with worst-case scenario λ∗(v),

∑m
r=1

∑n
i=1 δ

λ∗
r,i = Γ.

The worst-case scenario, and associated robust cost, can be obtained by solving the following
proposed SP MILP. As input parameters, besides the processing time matrices pr,i and p̂r,i, the
SP MILP requires the budget parameter Γ along with the sequence of jobs σ∗, provided by the
current Master Problem solution F∗. Since the proposed SP MILP relies on an assignment-based
formulation, an equivalent input matrix of assignment values z∗i,j needs to be derived in the following
way:

z∗i,j =

{
1, if σ∗(j) = i (job i occupies position j in the sequence σ∗)

0, otherwise.
.
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Algorithm 6: Column-and-constraint generation algorithm for the RPFS-TWCT problem
1 Set LB = −∞, UB = +∞, v = 1,Θ = {λ(0) : δ(0)

r,i = 0,∀r = 1, . . . ,m, i = 1, . . . , n}
2 while (UB− LB)/LB > ε do
3 if model=Wilson then Solve the MP defined in Section 4.3.3.1 with Λ := Θ
4 if model=TBA then Solve the MP defined in Section 4.3.3.2 with Λ := Θ
5 if model=WST2 then Solve the MP defined in Section 4.3.3.3 with Λ := Θ
6 if model=TS2 then Solve the MP defined in Section 4.3.3.4 with Λ := Θ
7 if model=TS3 then Solve the MP defined in Section 4.3.3.5 with Λ := Θ
8 if model=Manne then Solve the MP defined in Section 4.3.3.6 with Λ := Θ
9 if model=Liao-You then Solve the MP defined in Section 4.3.3.7 with Λ := Θ

10 Let (F∗(v), y
∗, R∗model) be the MP optimal solution

11 Update LB := max
[

LB, y∗
]

12 Call the oracle to solve subproblem (SP) in (4.60) with F := F∗(v)
13 Let (Z∗(v), λ

∗
(v)) be the SP optimal solution value and associated worst-case scenario, respectively

14 Update UB := min
[
UB, Z∗(v)

]
15 if (UB− LB)/LB > ε then
16 Create recourse decision variables R(v) for scenario λ∗(v) on MP
17 Update Rmodel := Rmodel ∪ {R(v)}
18 if model=Wilson then Generate MP constraints (4.5)-(4.11),(4.15)&(4.16) for λ∗(v)
19 if model=TBA then Generate MP constraints (4.5),(4.16),(4.19)-(4.22) for λ∗(v)
20 if model=WST2 then Generate MP constraints (4.5),(4.16),(4.22),(4.24)-(4.31) for λ∗(v)
21 if model=TS2 then Generate MP constraints (4.5),(4.16),(4.33)-(4.39) for λ∗(v)
22 if model=TS3 then Generate MP constraints (4.5),(4.16),(4.31),(4.41)-(4.43) for λ∗(v)
23 if model=Manne then Generate MP constraints (4.45)-(4.50) for λ∗(v)
24 if model=Liao-You then Generate MP constraints (4.54)-(4.59) for λ∗(v)
25 Update Θ := Θ ∪ {λ∗(v)} and set (v) := (v + 1)
26 end
27 end
28 Return UB, F∗(v)

Worst-case MILP - Problem variables

∆r,i =

{
1, if job i will have its processing time deviated on machine r

0, otherwise.

Cr,j = completion time of job σ(j) (in position j) on machine r.

Er,j = auxiliary variable, equals to min(Cr,j−1, Cr−1,j).

Ar,j = auxiliary variable, equals to | Cr,j−1 − Cr−1,j |.

Dr,j = auxiliary variable, models the disjunction used to calculate Ar,j .
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The worst-case MILP is stated as follows:

Max
∑n

i=1 wi
∑n

j=1 Cm,jz
∗
i,j (4.62)

st C1,1 =
∑n

i=1(p1,i + p̂1,i∆1,i)z∗i,1, (4.63)

C1,j = C1,j−1 +
∑n

i=1(p1,i + p̂1,i∆1,i)z∗i,j , j = 2, . . . , n, (4.64)

Cr,1 = Cr−1,1 +
∑n

i=1(pr,i + p̂r,i∆r,i)z∗i,1, r = 2, . . . ,m, (4.65)

Er,j ≤ Cr,j−1, j = 2, . . . , n, r = 2, . . . ,m, (4.66)

Er,j ≤ Cr−1,j , j = 2, . . . , n, r = 2, . . . ,m, (4.67)

Ar,j ≥ Cr,j−1 − Cr−1,j , j = 2, . . . , n, r = 2, . . . ,m, (4.68)

Ar,j ≥ −(Cr,j−1 − Cr−1,j), j = 2, . . . , n, r = 2, . . . ,m, (4.69)

Ar,j ≤ Cr,j−1 − Cr−1,j +QDr,j , r = 2, . . . ,m, j = 2, . . . , n, (4.70)

Ar,j ≤ −(Cr,j−1 − Cr−1,j) +Q(1−Dr,j), r = 2, . . . ,m, j = 2, . . . , n, (4.71)

Cr,j ≤
∑n

i=1(pr,i + p̂r,i∆r,i)z∗i,j + Er,j +Ar,j , r = 2, . . . ,m, j = 2, . . . , n, (4.72)∑m

r=1

∑n

i=1 ∆r,i ≤ Γ , (4.73)

∆r,i ∈ {0, 1}, r = 1, . . . ,m, i = 1, . . . , n, (4.74)

Cr,j ≥ 0, r = 1, . . . ,m, j = 1, . . . , n, (4.75)

Ar,j ≥ 0, Er,j ≥ 0, Dr,j ∈ {0, 1}, r = 1, . . . ,m, j = 1, . . . , n, (4.76)

The objective function (4.62) states that, given a fixed job permutation z∗i,j , this formulation aims to
find a worst-case processing time scenario that maximizes the weighted sum of completion times,
among all possible scenarios defined by UΓ. Constraints (4.63)-(4.64) are used to determine the
completion time of the jobs on the first machine, while constraints (4.65) define the completion time
of the first job on each machine r. For each machine r and job position j, constraints (4.66) and
(4.67) are used to calculate the minimum value between the completion time of the previous job
on the same machine (Cr,j−1) and the completion time of the same job on the previous machine
(Cr−1,j). Constraints (4.68)-(4.69), together with disjunctive constraints (4.70)-(4.71) are used to
determine the absolute value of the difference between Cr,j−1 and Cr−1,j . These absolute values
are used to define the completion time Cr,j . Constraints (4.72) ensure that the completion time Cr,j
is bounded by the processing time of job σ∗(j) (in position j) on machine r, plus the maximum of
Cr,j−1 and Cr−1,j , which is equivalent to the minimum of these two variables (Er,j) plus the absolute
difference between the same two variables (Ar,j). Constraints (4.73) define the budget of uncertainty
regarding the maximum allowed processing time deviations

∑m
r=1

∑n
i=1 ∆r,i given the execution of

all jobs i on all machines r. Finally, constraints (4.74)-(4.76) define the domain of the variables.

We employed two strategies to improve the performance of the SP MILP model. First, we
adopted a problem-specific method when calculating Big-M values, where each Q value varies ac-
cording to the constraint it belongs to. Second, in order to strengthen the formulation, the following
valid inequality was added, improving solution times by a factor of 10:

Ar,j = Cr,j−1 + Cr−1,j − 2× Er,j . (4.77)

The optimal solution of this MILP model, represented by ∆∗r,i values, consists in a valid worst-
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case scenario λ∗ under budget uncertainty set UΓ. Remark that ∆∗r,i values are used to define δλr,i
values for the scenario added to set Θ, and used in the 2-stage RO models.

In the experiments shown in Section 4.6, the convergence of the C&CG method was also accel-
erated by generating multiple worst-case scenarios at each iteration, whenever possible.

Our computational experiments have evidenced that the limits of the proposed C&CG solution
method lie in the solution of the Master Problem. In particular, we observed a high proportion of
time spent when solving Master Problems for instances with 15 jobs and 5 machines. Nonetheless,
for the oil and gas maintenance problem at hand, improved solutions are needed for instances of
this size. Therefore, in the next section, we will propose an algorithm enhancement to overcome this
limitation.

4.5 Hybrid C&CG Method

Unsurprisingly, the C&CG will suffer of computational limitation as instance size grows, in partic-
ular when solving the Master Problem. For this reason, we devise an improved MP solution method,
which brings a combinatorial branch-and-bound inside the MILP solver tree structure.

With this new approach, we implemented an alternative Master Problem solution method for
assignment-based and dichotomous-based Robust Counterparts. Similarly to the method presented
in Algorithm 6, the alternative MP solution method relies on a RC model invoked in an iterative way,
based on a list of C&CG cuts provided. We denote as Hybrid C&CG Method the C&CG solution
method that incorporates this new MP solution technique. The main advantage relies on the alter-
native branching strategy employed, which provides new information used to prune nodes, as well
as a powerful combinatorial lower bound.

The implementation of the hybrid C&CG method was based on the CPLEX solver 20.1. Based
on its branch callback, we developed a combinatorial branch-and-bound emulation similar to [114],
which will be described next.

4.5.1 Branching strategy

Consider the search tree of the classic flow shop combinatorial branch-and-bound [76], depicted
in Figure 4.1(a). The root node (at level 0) represents the null schedule. A given node N at level
s represents a partial schedule σ = (σ(1), . . . , σ(s)) of size s, indicating that job σ(j) occupies the
j-th position on each machine, for 1 ≤ j ≤ s, where 1 ≤ s ≤ n. By placing any unscheduled job i in
position (s+ 1), we produce a child node σi = (σ(1), . . . , σ(s), i), in level s+ 1.

It is clear that the flow shop search tree requires several branches at each node. However,
CPLEX allows the creation of at most two branches at a node. To circumvent this limitation and
produce more than two branches, we must emulate multi-way branching by binary branching. To
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accomplish that, instead of generating the branching tree of Figure 4.1(a), we create a branching
structure following the diagram in Figure 4.1(b). Consider an arbitrary node N from Figure 4.1(a).
The new branching scheme produces exactly the same offsprings of each original node, but in
multiple levels. In this case, one branch is always one of the children to be created (here called a
permutation branch), while the second branch is a duplicate of the parent node N, which we call a
meta node.

Root node
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(b) Emulated search tree
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s = 1
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s = 1
σ=(2)

s = 1
σ=(n-1)

s = 1
σ=(n)

s = 2
σ=(1,2)
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σ=(1,3)

s = 2
σ=(1,n)

...
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... ... ...

... ... ...

(a) Original search tree

...

...

s = 2
σ=(1,2)

Figure 4.1 – (a) Search tree of the deterministic flow shop combinatorial branch-and-bound. (b)
Diagram illustrating how flow shop multi-way branching was performed in CPLEX.

Whenever a new permutation branch is created, an unscheduled job i will be fixed in position j
of the partial permutation σ. This new partial permutation has to be reflected, in some way, on the
node information manipulated by CPLEX, via a set of node cuts. For the flow shop MILP models at
hand, this means one or more binary variables must have their bounds fixed. Observe that the other
branch created, which contains the meta node, will receive no additional node cuts associated to it,
but will receive additional information about the partial sequence generation.

For assignment-based flow shop models, variables Z will be fixed:
• Job i occupies sequence position j:

Zi,j := 1; (4.78)
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• Job i cannot occupy any other position k rather than position j:

Zi,k := 0, ∀k 6= j; (4.79)

• No other job ` 6= i can occupy position j:

Z`,j := 0, ∀` 6= i. (4.80)

For dichotomous-based flow shop models, partial order variables D will be fixed:
• Set all jobs ` that come before job i in partial permutation σ:

D`,i := 1, Di,` := 0, ∀` ∈ σ, (4.81)

• All jobs ` that have not been scheduled yet will necessarily come after job i:

Di,` := 1, D`,i := 0,∀` ∈ U. (4.82)

4.5.2 Improved lower bound

When solving the Master Problem, at each node of the B&B tree, in addition to the branching
strategy above, an extended combinatorial lower bound can be applied as an additional criterion to
prune nodes. Consider the MP is being solved at iteration v of the hybrid C&CG method. At this
point, a set of v − 1 C&CG cuts (i.e., violated scenarios λ) has already been generated and applied
to the MP model, as explained in Section 4.4.1. The list of existing C&CG cuts can be then used to
calculate the following combinatorial lower bound LBMP :

LBMP = max
λ∈Λ

LBdet(P λ), (4.83)

where LBdet is the lower bound of the deterministic PFSP-TWCT, assuming scenario λ and pro-
cessing time matrix P λ.

To calculate (4.83), we applied the tight lower bound for the deterministic problem described by
Chung et al. [24]. These authors developed a branch and bound algorithm to solve the m-machine
permutation flowshop problem, which assumes that a partial permutation is defined at each step.
In their work, they considered two possible objectives: the unweighted and weighted total flow-time
(i.e., TWCT). Their solution method efficiently handles test problems with n ≤ 15, thanks to an
improved machine-based lower bound, together with a dominance test for pruning nodes.

It is worth noting that, despite the overhead from the combinatorial branch-and-bound emulation,
the use of the lower bound LBMP to prune nodes has proved to be essential to the performance
gains obtained with this new Master Problem solution method.

4.6 Experimental results

We conducted extensive experiments to assess the performance of the C&CG solution method
as well as the proposed Robust Counterpart formulations.
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4.6.1 Test instances

In the flow shop literature, there is no set of benchmark instances for the total weighted comple-
tion time objective. In order to verify the effectiveness of the proposed algorithms, our experiments
were based on three instance sets 3 obtained by adapting a robust PFSP instance generator de-
scribed by Ying [159].

(i) Two-machine robust PFSP instances with 10 jobs (10x2). In his work, Ying [159] proposed
six groups of instances, each one with a different number of jobs n ∈ {10, 20, 50, 100, 150, 200}.
The expected processing time p̄r,i (r = 1, 2; i = 1, . . . , n) is an integer drawn from the uniform
distribution [10, 50] and the largest processing time deviation is set as a fixed ratio of the ex-
pected processing time (i.e., p̂r,i = αp̄r,i), with α ∈ {10%, 20%, 30%, 40%, 50%}. Ten instances
were generated for each combination of n and α, for a total of 300 test instances.

(ii) Robust PFSP instances with 3, 4 and 5 machines. Following the instance generation algo-
rithm of Ying [159], we generated random instances with sizes n ×m ∈ {10 × 3, 10 × 4, 10 ×
5, 15 × 5}. Ten instances were generated for each combination of m × n and α, for a total of
200 test instances.

(iii) Robust PFSP instances with random processing time deviations. For each instance of
the previous two sets with variability level α = 10%, we generated 4 new instances with dis-
tinct variability levels αr,i for each operation Or,i. First, we define a maximum variability level
αmax ∈ {30%, 50%, 100%, 200%}. Then, in each generated instance, the variability level αr,i
of each operation Or,i is drawn from a uniform distribution in the interval [0, αmax). Therefore,
the maximum processing time deviation of each operation equals p̂r,i = αr,ipr,i. The idea be-
hind this new set is to generate instances whose operation processing time deviation follow a
completely random behavior, when compared to the previous sets. This way, we will be able
to assess the impacts of such behavior on the solution method.

Since all instances above are related to the makespan objective, no job weight information is
available. Thus, for each instance, job weights (wj , ∀j ∈ J) were randomly generated, according to
a uniform distribution in the interval [1, 100]. These values are based on the job weight distribution
from the real-world instances under study.

4.6.2 Computational environment and model observations

The C&CG algorithm was coded in Julia 1.6.0. CPLEX solver 20.1 was used to solve the Master
Problems (MP) and Gurobi solver 9.1 was used to solve the subproblems SP, since it obtained
improved performance in preliminary experiments. The MILP time limit was set to 7,200 s and the
number of threads was set to 16. All experiments were conducted on a workstation with an Intel
Xeon® CPU E5640 @2.67GHz with 32 GB RAM, under Ubuntu 18.04 LTS. In the C&CG algorithm,

3. All test instances are available at https://github.com/levorato/RPFS_Budget_TWCT.
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optimality gap tolerance ε was set to 10−8.
In the literature [136], empirical tests have shown that the top 3 best performing PFSP MILP

models are, in this order: TS3, TBA and Wilson. In this work, we will observe that the performance
obtained with the PFSP robust counterparts is rather different to the existing performance of deter-
ministic PFSP MILP models.

4.6.3 Comparative performance of the Robust Counterpart models

Model

Variable

% Best    Per
formance

% Solved
10x2

% Solved
10x3

% Solved
10x4

% Solved
10x5 % Solved Avg. % gap

Median
iterations Median time

Manne
Liao-You
Wilson
TS2
TS3
TBA
WST2 1,143.74

883.80
334.56
436.48
276.03

85.32
88.10

5.00
5.00
5.00
4.00
5.00
5.00
5.00

2.09
1.76
1.65
3.08
2.33
0.08
0.07

80.22
82.06
89.28
90.78
88.38
94.47
94.67

66.44
69.67
86.78
85.67
80.89
90.11
90.89

69.67
71.44
78.11
85.22
83.56
91.89
91.67

86.78
87.78
92.67
95.67
95.00
96.44
96.56

98.00
99.33
99.56
99.89
99.33
99.44
99.56

0.14
0.51
4.95
6.03

13.78
34.38
45.70

GeneralModelStatsNoHybrid

Sum of Value broken down by Variable vs. Model. The view is filtered on Model and Variable. The Model filter has multiple members selected.
The Variable filter has multiple members selected.
Table 4.2 – Robust PFSP C&CG performance comparison, given all RC models and instances solved.
% Best Performance is the percentage of instances where the model achieved shorter execution time
(ties included); % Solved contains the percentage of instances solved within the time limit; % Solved
< n ×m > represents the percentage of solved instances of size n ×m; Avg. % Gap is the average
percentage gap of solutions from instances not solved to optimality; Median time is the median
execution time, in seconds; Median iterations is the median of the number of iterations performed.

With particular interest in examining the impact of the budget of uncertainty parameter on
scheduling performance, when solving each instance, we tested the RPFS-TWCT models by varying
Γ according to ten ratios (10, 20, 30, 40, 50, 60, 70, 80, 90 and 100%) of operations with uncertain
processing times.

Table 4.2 summarizes the obtained results with a performance comparison of the RC models.
In this table, we present medians to mitigate the effect of instances not solved within the time limit.
Manne C&CG is the one that solves the majority of the instances. It also obtains the lowest average
% gap for instances not solved to optimality. The % Best Performance measurement indicates that
the Manne model solved 46% of instances with the best performance, followed by Liao-You, that
solved 34%, and Wilson, with 14%. Measurements % Solved 10 × 4 and % Solved 10 × 5 reveal
that the RC models which rely on job assignment constraints solved less instances to optimality
within the time limit. The %Solved and Median time measurements also favor the dichotomous-
based models.

A second and deeper analysis, grouped by instance size, presents, in Table 4.3, the average
performance of each RC model, including average run time values. When using average, the results
of all instances (even outliers) are taken into account. Standard deviation is also included as a
secondary measure. Additionally, the average number of iterations and its standard deviation are
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Instance size Measure

ModelType  /  Model
Dichotomous-based

Manne Liao-You
Assignment-based

Wilson TS2 TS3 TBA WST2
10x2 % Best Performance

% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Std. dev. of iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

10x3 % Best Performance
% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Std. dev. of iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

10x4 % Best Performance
% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Std. dev. of iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

10x5 % Best Performance
% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Std. dev. of iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

546.95
105.37

0.95
104.42

66.12
8.64
0.00
0.00

99.44
17.43

532.32
113.79

0.85
112.94

56.32
7.69
0.00
0.00

99.56
36.83

1,354.99
666.47

0.37
666.10

2.47
3.98
0.85
0.78

98.00
0.11

944.73
376.07

0.51
375.57

4.71
3.93
0.68
0.52

99.33
1.23

604.03
210.67

0.55
210.11

16.31
4.57

11.39
5.78

99.56
0.78

802.44
316.95

0.39
316.55

3.53
3.81
0.00
0.00

99.89
12.90

618.42
137.43

0.38
137.05

19.00
5.60
0.18
0.07

99.33
31.10

1,386.44
486.82

9.19
477.63

67.38
17.70

0.21
0.04

96.44
32.26

1,317.86
424.00

7.35
416.65

76.10
18.87

0.00
0.00

96.56
49.65

2,559.65
2,305.87

3.47
2,302.40

4.18
5.71
1.68
1.23

86.78
0.00

2,440.00
2,157.40

5.53
2,151.87

3.36
5.62
8.64
2.26

87.78
0.00

2,104.25
1,280.56

4.36
1,276.20

5.21
6.17
1.71
1.20

92.67
8.15

2,005.33
1,387.32

8.13
1,379.19

7.62
6.20
1.63
1.20

95.67
6.85

1,888.22
1,153.05

8.97
1,144.08

7.72
6.21
9.66
4.88

95.00
6.78

2,018.60
976.31

46.19
930.11

77.97
24.42

0.35
0.11

91.89
60.27

2,047.19
1,022.92

52.43
970.49

69.66
23.26

0.33
0.12

91.67
30.26

2,881.46
3,573.12

28.33
3,544.79

3.48
6.25
2.89
2.25

69.67
0.48

2,819.48
3,429.51

34.56
3,394.95

3.78
6.57
2.79
2.20

71.44
0.31

2,828.57
2,578.52

53.68
2,524.83

6.47
7.73
2.51
2.04

78.11
4.13

2,568.41
2,278.23

43.88
2,234.34

6.80
7.75
2.34
1.98

85.22
2.09

2,643.78
2,124.98

48.41
2,076.57

18.05
10.11

2.20
1.65

83.56
10.11

2,166.21
1,112.08

229.35
882.73
100.17

32.64
0.26
0.08

90.11
29.10

2,086.74
1,003.53

196.24
807.29
109.28

35.26
0.16
0.04

90.89
66.95

2,878.93
3,834.10

298.72
3,535.38

4.75
5.93
5.82
2.37

66.44
0.00

2,916.78
3,420.57

177.76
3,242.81

6.61
6.79
1.64
1.16

69.67
0.32

2,523.15
2,057.77

206.78
1,850.99

4.90
6.72
1.40
1.11

86.78
7.09

2,532.00
2,251.50

280.31
1,971.19

12.17
8.03
1.65
1.10

85.67
1.04

2,726.14
2,412.85

208.22
2,204.63

12.70
8.23
1.56
1.15

80.89
4.40

SpecificModelStatsNoHybrid

ZN(LOOKUP(SUM([Value]), 0)) broken down by ModelType and Model vs. Instance size and Measure. The view is
filtered on Instance size and Measure. The Instance size filter has multiple members selected. The Measure filter
keeps 10 members.

Table 4.3 – Robust PFSP C&CG performance comparison, for each instance size n×m and RC model.
% Best Performance is the percentage of instances where the model achieved shorter execution time
(ties included); % Solved contains the percentage of instances solved within the time limit; Avg. %
Gap and Std. dev. of % Gap are the mean and standard deviation of the percentage gap of solutions
from instances not solved to optimality; Avg. iterations and Std. dev. of iterations are the mean and
standard deviation of the number of iterations performed; Avg. time MP(SP) is the average time to
solve the Master(Sub) Problem; Avg. time and Std. dev. of time are the mean and standard deviation
in solution time (in seconds), respectively.
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Instance .. Model Variable
Alpha

α=10% α=20% α=30% α=40% α=50% αᵐᵃˣ=30% αᵐᵃˣ=50% αᵐᵃˣ=100% αᵐᵃˣ=200%
10x5 Manne % Best Performance

% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

Liao-You % Best Performance
% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

TS2 % Best Performance
% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

Wilson % Best Performance
% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time

1,350.03
851.52
214.94
636.58

12.36
0.08
0.57

98.00
67.01

861.10
455.43

89.68
365.75

8.82
0.00
0.00

100.00
65.98

1,419.05
506.97

81.86
425.11

24.29
0.00
0.00

96.00
80.21

719.07
164.85

13.88
150.97

6.71
0.00
0.00

99.00
60.61

2,960.42
2,573.06

575.86
1,997.19

82.81
0.20
0.06

73.00
38.89

3,052.05
2,454.41

457.65
1,996.76

95.02
0.11
0.03

73.00
75.00

2,531.63
1,366.27

215.03
1,151.25

57.25
0.00
0.00

85.00
82.14

1,401.65
447.12
103.91
343.21

20.02
0.00
0.00

96.00
75.00

1,007.64
212.14

13.34
198.80

10.02
0.00
0.00

98.00
55.10

1,532.42
950.05
253.15
696.90

12.19
0.66
0.85

97.00
32.99

1,258.07
577.11
110.64
466.47

8.77
0.12
0.10

97.00
27.84

1,426.31
569.67

98.86
470.81

23.08
0.00
0.00

96.00
16.67

723.47
192.55

13.57
178.98

5.20
0.00
0.00

99.00
25.25

3,027.40
2,750.46

640.74
2,109.72

80.75
0.27
0.10

72.00
58.33

3,060.68
2,618.46

537.54
2,080.92

86.26
0.19
0.06

72.00
23.61

2,593.14
1,585.13

270.29
1,314.84

49.77
0.01
0.00

84.00
17.86

1,419.79
515.59
120.31
395.28

17.30
0.00
0.00

96.00
22.92

1,021.04
249.71

19.05
230.66

10.47
0.00
0.00

98.00
40.82

3,084.71
3,374.87

249.46
3,125.41

8.94
2.50
2.46

70.00
0.00

2,468.36
1,927.04

126.85
1,800.18

7.47
1.41
1.63

86.00
2.33

2,337.84
1,622.87

73.83
1,549.04

10.37
0.29
0.19

91.00
1.10

1,182.24
685.06

15.98
669.08

4.76
0.00
0.00

99.00
3.03

2,697.30
3,676.05

542.74
3,133.31

11.20
1.14
0.89

70.00
0.00

2,696.03
3,264.63

465.72
2,798.91

11.61
0.63
0.55

75.00
0.00

2,545.68
2,559.38

496.12
2,063.25

8.20
0.33
0.22

83.00
0.00

2,030.54
1,938.76

354.42
1,584.34

5.99
0.00
0.00

97.00
2.06

1,404.58
1,214.85

197.62
1,017.22

3.76
0.00
0.00

100.00
0.00

3,098.39
3,605.27

289.86
3,315.41

11.00
2.46
2.18

62.00
0.00

2,529.15
2,073.81

132.49
1,941.32

7.26
1.77
1.93

85.00
4.71

2,319.08
1,577.11

68.82
1,508.29

8.53
0.37
0.23

91.00
6.59

1,265.93
770.20

22.32
747.88

4.70
0.00
0.00

99.00
9.09

2,836.88
3,609.79

352.45
3,257.35

13.13
1.10
1.17

68.00
5.88

2,903.50
3,368.97

349.65
3,019.32

9.12
0.76
0.79

70.00
5.71

2,764.50
2,941.17

321.46
2,619.72

8.42
0.55
0.68

76.00
1.32

2,777.29
2,470.60

203.90
2,266.70

7.98
0.34
0.34

80.00
1.25

1,944.91
1,298.74

133.02
1,165.72

3.90
0.12
0.07

97.00
3.09

StatsPerAlphaNoHybrid

ZN(LOOKUP(AVG([Value]), 0)) broken down by Alpha vs. Instance size, Model and Variable. The view is filtered on Alpha, Instance size, Variable and Model. The Alpha filter keeps 9
members. The Instance size filter keeps 10x5. The Variable filter keeps 9 members. The Model filter keeps Liao-You, Manne, TS2 and Wilson.

Table 4.4 – Robust PFSP C&CG performance comparison for instance size 10 × 5, grouped by α
and αmax values, and RC model. % Best Performance is the percentage of instances where the model
achieved shorter execution time (ties included); % Solved contains the percentage of instances solved
within the time limit; Avg. % Gap is the average percentage gap of solutions from instances not solved
to optimality; Avg. iterations is the average number of iterations performed; Avg. time MP(SP) is
the average time to solve the Master(Sub) Problem; Avg. time and Std. dev. of time are the mean
and standard deviation in solution time (in seconds), respectively.
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Instance size Variable
Model

TS2 Wilson Liao-You Manne Liao-You-Hybrid Manne-Hybrid Wilson-Hybrid

15x5 % Best Performance
% Solved
Avg. % gap
Std. dev. of % gap
Avg. iterations
Std. dev. of iterations
Avg. MP time
Avg. SP time
Avg. time
Std. dev. of time 5,902.1

9,813.64
920.33

8,893.31
3.63
5.83
7.39
5.29

47.33
56.32

5,755.23
10,332.97

988.21
9,344.76

2.48
5.91
5.53
3.59

41.67
37.06

5,220.83
11,436.49

640.71
10,795.78

1.85
4.76
6.19
4.04

31.78
9.09

3,302.32
13,320.34

2,101.6
11,218.73

1.49
3.31
8.42
4.62

14.15
0

2,907.75
13,516.42

1,834.73
11,681.69

1.23
3

10.15
6.16

12.98
0

2,849.15
13,635.67

358.64
13,277.03

0.87
3.05

11.75
7.46

6.9
0

1,222.25
14,124.64

3,050.96
11,073.67

0.73
2.14

14.53
20.13

5.71
0

SpecModelSWithHybrid-15x5

Sum of Value broken down by Model vs. Instance size and Variable. The view is filtered on Variable, Model and Instance size. The Variable filter has multiple members
selected. The Model filter excludes TBA, TS3 and WST2. The Instance size filter keeps 15x5.

Table 4.5 – Robust PFSP C&CG performance comparison, for instance size 15×5, RC models Manne,
Liao-You, Wilson and TS2, along with Hybrid C&CG models Manne-Hybrid, Liao-You-Hybrid, and
Wilson-Hybrid. % Best Performance is the percentage of instances where the model achieved shorter
execution time (ties included); % Solved contains the percentage of instances solved within the time
limit of 14400s; Avg. % Gap and Std. dev. of % Gap are the mean and standard deviation of the
percentage gap of solutions from instances not solved to optimality; Avg. iterations and Std. dev.
of iterations are the mean and standard deviation of the number of iterations performed; Avg. time
MP(SP) is the average time to solve the Master(Sub) Problem; Avg. time and Std. dev. of time are
the mean and standard deviation in solution time (in seconds), respectively.

listed. As we could expect, these results show that, as instance size grows, the models become
harder to solve, as seen on the smaller percentage of solved instances and increased average
execution time. However, our results show that this is especially true for the assignment-based
models.

A complementary investigation, based on the α and αmax parameters, is portrayed in Table 4.4.
In this context, we explore solution statistics regarding the four best performing models, when solving
10× 5 instances. It is possible to note the decrease of model performance as the α and αmax values
grow. This can be observed in the % Solved, Avg. % gap and Avg. time rows, from columns α = 10%
until α = 50%, and from columns αmax = 30% until αmax = 200%.

According to our experiments, the Liao-You and Manne Robust Counterparts are the ones that
perform best when solving the RPFS-TWCT problem. The possible reason is related to how the
objective function is calculated in each robust counterpart model. In all assignment-based models
(namely Wilson, WST2, TBA, TS2 and TS3), when calculating the total weighted completion time,
we multiply the weight of job i by its corresponding completion time. However, in these models,
there are no variables representing the completion time of job index i. Instead, they represent the
completion time of job in position k. To properly calculate the objective function, the adopted solution
involves the creation of an auxiliary variable Fi, representing the completion time of job i (on the last
machine Mm). Then, in order to calculate each value of Fi, it is necessary to apply several Big-M
constraints, which make the MILP model relaxation weaker.

On the other hand, the Liao-You and Manne robust counterparts, which are based on disjunctive
constraints, directly offers these variables which represent the completion time of job index i, so the
only Big-M constraints in the model are the ones already present in the original model.
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Finally, when solving the 15×5 instances, the largest ones in the test-bed, we perceived a drastic
performance reduction of the algorithm. For this reason, besides extending the time limit parameter
to 14, 400 seconds, we chose to solve these instances with the four best performing RC models so
far: Manne, Liao-You, TS2 and Wilson. As shown in Table 4.5, the percentage of solved instances
drops from 98% to 14% when applying the best-performing Manne model. Also, when analyzing the
% gap of instances not solved to optimality, the average % gap is considerably higher in all models,
as well as its variance. We can see that, for these instances, the C&CG algorithm was not able to
perform more than 3 iterations on average.

4.6.4 Hybrid C&CG method performance

We will now analyse the performance of the hybrid algorithm enhancement, designed to over-
come the performance limitation observed when solving the C&CG master problems.

The last three columns of Table 4.5 show additional C&CG results obtained with the new hybrid
solution method. The Wilson-Hybrid model reached the best performance, for solving the highest
proportion of instances to optimality (47%), and also for obtaining the shortest solution time in 56%
of the instances solved to optimality, when compared to the other RC models. All hybrid solution
methods achieved drastic performance improvements when compared to the initial solution method
results, where the best-performing conventional C&CG algorithm, Manne, had obtained only 14% of
instances solved to optimality, along with an average % gap (standard deviation of % gap) of 4.62
(8.42), respectively.

One possible answer to the obtained results may be found in how the hybridization of the solution
method works. The partial permutation σ is built iteratively, using the same job fixation order of the
combinatorial branch-and-bound method, i.e., fixing one job at a time, from left to right. Given this
solution representation, whenever a new job k is fixed in the partial permutation, new cuts have to
be added to the existing MILP model of the corresponding node in the B&B tree, in order to make
the solutions from combinatorial B&B and MILP compatible. Experimental data shows that, in the
case of hybrid Wilson method, the cuts added to each node, which are based on the job assignment
binary variables Zi,j , turn out to be stronger than the cuts added to the Liao-You and Manne models,
which are based on the job precedence variable Di,k.

4.7 Case study on two real instances

In this section, we assess the quality and level of robustness of scheduling solutions for two real
problem instances, the first one representing a platform with 9 oil-wells and 4 maintenance tasks
(9× 4) and the second one a different platform with size 15× 5. The processing time matrices p and
p̂ were obtained from the available operation history. The following solution methods were used:
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4.7. Case study on two real instances

— Det: deterministic PFSP solution [149] with P={pr,i}, r ∈M, i ∈ J.
— RPFS(Γ): Wilson-Hybrid RPFS solution method, described in Section 4.5. The Γ parameter is

used to control the level of the conservativeness of the robust model, as a fraction of the number
of operations m×n. It varies from 5% to 100%, with 5% intervals. The robust model with Γ = 0%
is equivalent to Det, while the one with Γ = 100% is the deterministic model that is entirely
risk-averse and overestimates all parameters. The other values of Γ model intermediate risk
aversions.

— SimGRASP: stochastic PFSP simheuristic method from [40], properly modified to find the
schedule that minimizes the expected total weighted completion time. SimGRASP is a modified
GRASP metaheuristic that incorporates Monte Carlo Simulation to solve the PFSP with random
processing times. Given its stochastic nature, we obtained 25 independent runs for each instance
file. Then, for result comparison purposes, for each independent run, we calculated the robust
cost Z at each Γ protection level. Finally, we stored, for each instance, the smallest and largest
robust costs found within these 25 simheuristic executions. We call them SimGRASP-Min(25)
and SimGRASP-Max(25).

We assessed the robustness of each obtained solution σ by calculating the robust cost at dif-
ferent protection levels Γ, using the worst-case MILP model defined in Section 4.4.2. Figure 4.2
depicts the robust cost Z(σ,Γ) of each solution σ under different protection levels Γ. For clarity of
the graphs, the robust costs for some protection levels were omitted.

Observe that, as the protection level Γ increases, so does the robust cost, i.e., the total weighted
completion time (TWCT) of the worst-case scenario defined by the protection level. In other words,
higher values of Γ are equivalent to a greater quantity of operations with deviated processing times,
which directly impacts the solution cost Z(σ,Γ). In the case studies from Figure 4.2, the extreme
cases occur whenever Γ ≥ 60%, yielding the highest robust costs.

From the viewpoint of the decision-maker at the oil company who needs to hedge against worst-
case maintenance costs, it would be preferable to obtain a solution method that performs well under
different protection levels. With this in mind, in the two graphs presented, we identify which schedul-
ing method (and respective solution) presents the best (smallest) robust cost, considering all Γ
values. Regarding the first graph (9 × 4 instance), note that RPFS(10) offers improved protection
against worst-case scenarios for 10% ≤ Γ ≤ 20%, while RPFS(25) is the best-performing robust
solution considering 25% ≤ Γ ≤ 35%. Finally, RPFS(50) is indicated for higher protection levels
Γ ≥ 45%. We also highlight the disappointing worst-case performance of both the nominal solu-
tion Det and the stochastic method. The vast distance between the robust costs of the stochastic
method, i.e., SimGRASP-Min(25) and SimGRASP-Max(25), reveals a significant exposure to the
realization of worst-case scenarios, which is represented by the highlighted area in the graph.

In its turn, the larger instance (15 × 5) presents a distinct behavior in robust cost differences
between distinct protection levels. In Figure 4.2(b), we can observe that RPFS(50) presents the best
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overall protection against worst-case scenarios, considering Γ ≥ 20%. Once again, the solutions
Det and SimGRASP-Max(25) present high robust costs. In particular, for Γ = 30%, the robust cost
provided by RPFS(35) is 2% cheaper than Det and 3% cheaper than SimGRASP-Max(25).

In summary, the choice of a robust solution depends on the instance and the desired protection
level. The examples above illustrate how RPFS can provide a pool of robust schedules, depending
on the value of Γ. With these options, the decision-makers can choose one of the schedules based
on their risk preferences. Also, remark that, if the stochastic heuristic method is chosen, depending
on the solution returned by the algorithm, the worst-case performance may be weak, as can be
seen on the robust costs achieved by SimGRASP-Max(25). Indeed, neither SimGRASP nor the
deterministic models have the objective of minimizing the worst-case TWCT.

4.7.1 Analysis based on Monte-Carlo simulation

As a complementary analysis, we evaluate the expected behavior of obtained problem solutions.
The TWCT distribution of the obtained robust schedules was simulated by subjecting the processing
time matrix to random perturbations. In particular, in each Monte Carlo simulation run, the (actual)
processing time p̃r,i, ∀r ∈ M, i ∈ J, was independently drawn from a predefined probability distribu-
tion, yielding a random processing time matrix P̃ . For this purpose, we used lognormal, symmetric
triangular, and uniform distributions in [p− p̂, p+ p̂] to generate random processing times. We gener-
ated 10, 000 processing time matrices P̃ . Then, for each RPFS(Γ) solution σΓ, obtained with a spe-
cific protection level Γ, we processed the set of all corresponding TWCT values ϕ(σΓ, P̃ ) obtained
through simulation on P̃ . The same was made for the solutions returned by Det and SimGRASP-
Min(25).

We first focus on simulation results presented in Figure 4.3(a). Regarding the 9 × 4 instance,
we can observe that, in the long run, the TWCT performance of RPFS(5), RPFS(10) and RPFS(25)
are equivalent to SimGRASP, a method specialized at optimizing the expected TWCT. On the other
hand, as stated in the worst-case analysis of Figure 4.2(a), not all schedules are sufficiently immune
against worst-case scenarios. For instance, if the decision-maker assumes an intermediate protec-
tion level of Γ ≤ 35%, the two most appropriate schedules, with smallest robust costs, are RPFS(25)
and RPFS(10).

When analyzing the 15 × 5 instance in Figure 4.3(b), the following robust solutions present ex-
pected TWCT performance quite similar to SimGRASP: RPFS(5), RPFS(15) and RPFS(35). Taking
the worst-case evaluation into account and considering a protection level 15% ≤ Γ ≤ 40%, these
three robust solutions also provide better protection against worst-case costs, when compared to
the stochastic solution method.

Finally, Table 4.6 presents some statistics related to the simulation of processing times of the
9× 4 instance. In this analysis, whenever the same robust solution has been obtained for more than
one Γ parameter value, their (equivalent) statistics were reported in the same column. Given 10, 000
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Figure 4.2 – Robust cost of deterministic, RPFS and SimGRASP solutions versus protection level
Γ%. All presented RPFS solutions are optimal.
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Figure 4.3 – Probability distributions of TWCT value for RPFS(Γ), Det and SimGRASP solutions,
according to simulation results from lognormal, triangular, and uniform distributions for uncertain
processing times.

processing time matrices P̃ obtained after simulation runs, let ϕ(σ) be the random cost (TWCT ) of
scheduling σ, which depends on the realization of P . E(ϕ(σ)) and SD(ϕ(σ)) are empirical estima-
tions of expectation and standard deviation of ϕ(σ), respectively. Also, V aR(ϕ(σ)) and CV aR(ϕ(σ))
are the value-at-risk and conditional value-at-risk of ϕ(σ), respectively, both at 95% confidence level.
In other words, V aR(ϕ(σ)) is equivalent to the 0.95 quantile of ϕ(σ), while CV aR(ϕ(σ)) represents
the average of the largest 5% values of ϕ(σ). Finally, Max(ϕ(σ)) is the maximum observed ϕ(σ) in
the simulation.

Observe that RPFS(25,30,35) has the least E(ϕ(σ)) in all distributions. When analyzing the
largest observed TWCT, RPFS(5), has the lowest Max(ϕ(σ)) for lognormal, triangular and uni-
form distributions. The best solutions for Det and SimGRASP did not provide minimum values for
any measure of the simulated distributions. Indeed, SimGRASP presented the worst values for the
largest observed TWCT in lognormal and triangular distributions.
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Measure
Method
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6,619 6,606 6,820 6,606 6,941 6,749 6,772 6,841 6,725
63,528 63,812 63,712 63,812 63,939 66,126 65,959 63,751 63,972
66,839 67,319 67,344 67,319 67,843 69,442 69,447 67,677 67,532
79,857 82,729 83,287 82,729 82,151 83,973 82,780 84,934 86,193
65,110 65,854 64,481 65,854 64,435 68,049 67,890 65,121 65,599
6,739 6,687 7,176 6,687 7,392 6,893 6,946 7,027 6,865
76,531 77,215 76,973 77,215 77,362 79,567 79,620 77,399 77,372
79,360 80,181 80,060 80,181 80,801 82,532 82,649 80,683 80,383
90,901 94,283 93,286 94,283 93,362 96,123 96,399 96,200 97,623
68,566 69,399 67,838 69,399 67,730 71,538 71,426 68,739 69,143
9,153 9,066 9,706 9,066 9,878 9,331 9,414 9,432 9,280
83,425 84,246 83,831 84,246 84,266 86,717 86,839 84,490 84,393
86,487 87,533 87,398 87,533 88,013 90,096 90,223 88,086 87,699
98,076 100,090 100,462 100,090 102,587 102,107 102,600 101,782 102,039

MIN-MAX-V
Max
Min
Neither

Table 4.6 – Simulation summary for instance 9×4 with RPFS(Γ), Det and SimGRASP solutions after
10, 000 simulation runs under lognormal, triangular, and uniform distributions of operation processing
times. Minimum and maximum values, for each row, are highlighted. Similar robust solutions for
different Γ values are grouped in the same column (e.g., RPFS(10, 20)).

Also, by analyzing the smallest maximum TWCT obtained in triangular distribution simulations,
the value Max(ϕ(σ)) observed for scheduling RPFS(25,30,35) is 4.3% cheaper than SimGRASP,
and, at the same time, its expected TWCT is 1.8% less than the stochastic schedule. Following
these observations, the decision-maker of the oil company can evaluate the hedge provided by the
obtained robust solutions, and choose a specific solution (and associated protection level) that does
not cause a significant increase in the expected solution cost, when compared to stochastic and
deterministic solutions.

4.7.2 Evaluating hedge value and price of robustness

Given a protection level Γ, besides robust cost Z, two other measures can be used to evaluate
performance: hedge value H and price of robustness η, defined as:

H(Γ) = Z(σ̄∗,Γ)−Z(σ∗Γ,Γ), (4.84)
η(Γ) = ϕ(σ∗Γ, P )− ϕ(σ̄∗, P ), (4.85)

where σ∗Γ is the optimal solution of RPFS(Γ), σ̄∗ is the optimal solution of Det(P=), and ϕ(.) is
the TWCT function.

The first measure, H(Γ), represents the value gained from adopting the robust sequence σ∗Γ,
instead of the optimal nominal sequence σ̄∗ in the occurrence of the worst-case scenario associated
with protection level Γ. A visual interpretation of H(Γ) can be made in Figure 4.2, by analysing to
the robust cost difference between the solutions from Det (σ̄∗) and RPFS(Γ) (σ∗Γ) methods, at each
protection level Γ. The second measure, η(Γ) is defined as the price paid by the decision-maker for
employing the robust sequence σ∗Γ in place of the optimal nominal sequence σ̄∗ in the scenario of
nominal processing times (when P = P , i.e., no processing time deviations). In other words, H(Γ)
can be seen as the regret of employing sequence σ̄∗ in the worst-case scenario, and η(Γ) represents
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the trade-off between robustness and optimality.

Γ %

Instance Name  /  Measure
9 x 4

η % H %
15 x 5
η % H %

0
5
10
15
20
25
30
35
40
45
50
55
60
70
80
90
100 4.22%

4.22%
4.22%
4.22%
4.39%
4.36%
4.23%
4.26%
3.92%
3.97%
3.85%
3.73%
2.30%
1.02%
2.24%
4.69%
0.00%

6.87%
6.87%
6.87%
6.87%
6.87%
6.87%
6.87%
7.47%
7.47%
2.28%
2.28%
2.28%
2.97%
1.95%
2.97%
2.11%
0.00%

1.42%
1.42%
1.43%
1.55%
1.64%
1.63%
1.77%
1.87%
1.98%
1.95%
1.90%
2.33%
1.72%
1.75%
0.82%
1.62%
0.00%

4.86%
4.86%
4.86%
4.86%
4.91%
5.35%
4.58%
4.97%
4.74%
3.47%
5.70%
4.50%
4.86%
2.72%
1.69%
1.81%
0.00%

Table 4.7 – Relative robustness price η(Γ)% and hedge value H(Γ)% for instances 9× 4 and 15× 5.

Table 4.7 displays the relative price of robustness η(Γ)% = ϕ(σ∗Γ,P )−ϕ(σ̄∗,P )
ϕ(σ̄∗,P ) and hedge value

H(Γ)% = Z(σ̄∗,Γ)−Z(σ∗Γ,Γ)
Z(σ∗Γ,Γ) for various protection levels, based on the two instances from this case

study. Among the schedules obtained when solving RPFS with different Γ levels, the best ones,
which maximize hedge value H(Γ)%, are RPFS(5) for instance 9 × 4, and RPFS(25) for instance
15× 5.

Based on the simulation framework presented in Section 4.7.1, we close this section with a
further analysis of the actual cost overhead of robust solutions in the long run. Two performance
measures are calculated for instance 9 × 4, as shown in Table 4.8. The obtained results show that,
for the protection levels Γ used in the study, robust solutions RPFS(15), RPFS(25), RPFS(30), and
RPFS(35) present two important characteristics: (i) high proportion of cheapest solutions (ω(Γ) >
50%), and (ii) smaller expected costs, i.e., negative relative cost difference ∆η(Γ). All in all, RPFS
provides a pool of robust schedules decision-makers can choose based on their risk preferences.

4.8 Discussion

In this chapter, we presented an exact solution method for the m-machine robust permutation
flow shop problem to minimize the total weighted completion time. Similarly to the previous chap-
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4.8. Discussion

Γ %

Distribution  /  Measure
lognormal
ω Δ𝜂

triangular
ω Δ𝜂

uniform
ω Δ𝜂

5
10
15
20
25
30
35
40
45
50
55
60
70
80
90
100 4.7%

4.7%
4.7%
4.7%
4.7%
4.7%
4.7%
5.0%
5.0%
-0.4%
-0.4%
-0.4%
1.1%
-0.2%
1.1%
0.5%

12.1%
12.1%
12.1%
12.1%
12.1%
12.1%
12.1%
13.5%
13.5%
52.2%
52.1%
52.2%
34.5%
53.9%
34.5%
44.6%

4.3%
4.3%
4.3%
4.3%
4.3%
4.3%
4.3%
4.5%
4.5%
-1.1%
-1.1%
-1.1%
1.1%
-1.0%
1.1%
0.0%

9.0%
9.0%
9.0%
9.0%
9.0%
9.0%
9.0%
10.9%
10.8%
62.0%
62.0%
62.0%
31.3%
68.5%
31.3%
49.7%

3.9%
3.9%
3.9%
3.9%
3.9%
3.9%
3.9%
4.1%
4.1%
-1.5%
-1.5%
-1.5%
1.0%
-1.3%
1.0%
-0.3%

15.8%
15.8%
15.8%
15.8%
15.8%
15.8%
15.8%
17.1%
17.1%
63.6%
63.6%
63.6%
36.0%
67.4%
36.0%
52.6%

Table 4.8 – Simulation results for instance 9 × 4, for different protection levels Γ ∈
{5%, 15%, . . . , 100%}. Comparison is based on two measures: (i) ω(Γ) is the % of simulated scenarios
(over a total of 10,000) where RPFS(Γ) obtained smaller TWCT cost when compared to Det(P=);
(ii) ∆η(Γ) = Avgλ∈S

[
ϕ(σ∗Γ,P

λ)−ϕ(σ̄∗,Pλ)
ϕ(σ̄∗,Pλ)

]
is the average relative cost difference between RPFS(Γ) and

Det(P=), given all simulated scenarios λ.
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ters, the models developed here are based on budgeted uncertainty, a powerful tool for handling
robustness and the trade-off between cost and risk, avoiding the over-conservativeness of the con-
ventional robust scheduling approaches.

Besides proposing a set of benchmark instances for the problem, we developed seven robust-
counterpart formulations, coupled with an exact solution method based on Column-and-Constraint
Generation (C&CG). Additionally, we implemented a hybrid C&CG method which relies on two
strategies to enhance the processing of larger problem instances. First, a branching strategy used
in the combinatorial branch-and-bound for scheduling problems. Second, a new lower bound for the
robust problem, based on an existing bound used in the deterministic case. Computational exper-
iments suggest that the improved algorithm can handle test problems with n ≤ 15, reaching the
same instance-size limit of the best-performing deterministic solution methods. Despite the longer
average processing time required to solve the larger 15 × 5 instances, good-quality solutions were
obtained by the hybrid C&CG based on the Wilson formulation, with 47% of the instances solved to
optimality. For the remaining instances, average gaps of 5% were obtained.

We have also assessed the cost of the solutions returned by the robust model and compared
them to deterministic and stochastic solutions. According to simulations based on three probability
distributions, our solution method was capable of protecting against worst-case scenarios, with just
a small overhead in the expected solution cost.

Experimental results indicate the feasibility of applying this robust solution method to real-world
problem instances, such as the ones from the oil and gas industry, whose current solutions are
obtained through methods that disregard either uncertainty or the impact of worst-case scenarios.
Based on their risk preferences, decision-makers can then choose an appropriate schedule from a
pool of robust solutions, with different levels of exposure to uncertainty.
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Chapter 5

CONCLUSIONS AND PERSPECTIVES

The solution methods to all robust problems studied in this thesis rely on the budgeted uncer-
tainty set, which provides a pool of robust solutions under different levels of realization of uncertainty,
to hedge against worst-case costs. The great advantage of the applied budgeted approach lies in
its capacity to avoid the over-conservativeness of conventional robust optimization approaches, at
the same time enabling the decision-maker to evaluate the trade-off between robustness and higher
solution cost.

5.1 Conclusions

The first research work of this thesis is related to the Contract Collaboration Problem (CCP) and
microgrid energy scheduling. We proposed a comprehensive robust framework for flexible bilateral
energy contract engagement, coupled with a Real-Time Command Strategy (RTCS), suited for en-
ergy management of microgrids with uncertainty in both production and consumption of energy. The
framework is backed by a robust optimization model under budgeted uncertainty, whose solution
provides a cost-effective contract commitment planning for a given time horizon, while minimizing
the worst-case microgrid cost. It also features a set of control strategies for real-time energy trading
and scheduling.

Concerning the CCP framework, a case study was conducted on a real microgrid, with four prob-
lem instances generated, one for each season of the year. Monte-Carlo simulations were applied
to assess the performance of different robust model solutions under distinct protection levels. When
used as input for real-time energy scheduling strategies, each robust solution was compared to three
deterministic solution alternatives. Based on a set of real-world-inspired energy purchase contracts,
simulation results have confirmed the efficacy of different robust-based RTCS strategies on specific
protection levels, depending on the scenario type. The obtained results show that the effectiveness
of each robust solution (and associated protection level) largely depends on the microgrid’s load
profile and renewable production. These, in turn, may vary according to the season of the year or
even according to other recurrent patterns. Due to scope limitations, we opted not to deepen our
analysis based on specific dates of the year, but we believe additional studies could be performed
on this subject.
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It is also worth noting that the CCP contract framework, although not yet a reality for small
consumers, has the potential to be used as a tool to improve the predictability of consumption
and production of microgrids. Moreover, as microgrids and actively managed distribution networks
become widespread, the introduction of forward energy trading is expected to happen at the local
level [23]. In this sense, the CCP framework could be used in the context of small aggregators of
prosumers, improving energy exchange between them.

The second part of the thesis explored robust scheduling problems based on the budgeted
uncertainty set. We first studied the 2-machine robust permutation flow shop (2RPFS) problem
(makespan objective), developing an exact solution method based on Column-and-Constraint Gen-
eration (C&CG) techniques. To this end, together with new robust-counterpart formulations, we
employed a worst-case determination procedure for the problem, using polynomial-time dynamic
programming. Extensive experimental results demonstrated the effectiveness in obtaining optimal
robust schedules for small and medium-sized problems (e.g., instances with n ≤ 100). Moreover,
we developed a case study with two representative instances and assessed the trade-off between
solution quality and cost, comparing robust solutions to deterministic and stochastic ones. Based on
Monte-Carlo simulations performed on three probability distributions, we observed that the obtained
robust schedules are very competitive for specific budget parameter values, with no overhead in the
expected solution cost.

The next step of the research involved the development of solution methods for the m-machine
robust permutation flow shop problem to minimize the worst-case makespan. Firstly, we extended
the same exact solution method previously applied to the 2RPFS problem. New robust counterpart
formulations were developed, along with a m-machine generalization of the two-machine worst-
case procedure based on dynamic programming. Nonetheless, despite our best efforts, the exact
method was unable to efficiently solve even the smallest 100-job Taillard-based instances (20 × 5).
Therefore, to allow the solution of larger problem instances, we designed and implemented a Greedy
Randomized Adaptive Search Procedure (GRASP) metaheuristic, with the worst-case procedure
incorporated as the objective function. Extensive experimental results demonstrated that, compared
to the baseline C&CG exact method, the GRASP algorithm was very efficient in obtaining robust
schedules. In the absence of literature instances, four sets of benchmark test-beds were proposed,
including instances based on the classical flow shop literature. After evaluating both C&CG and
GRASP algorithms on this test-bed, GRASP was shown to produce optimal solutions on most small
and medium-sized instances. Indeed, GRASP obtained a higher proportion of solved instances than
the exact method, which evidences its efficiency and solution quality.

The research conducted with these robust scheduling methods allowed us to develop, in the
final study, an exact solution method for the m-machine robust permutation flow shop problem to
minimize the worst-case total weighted completion time (RPFS-TWCT), a problem with direct appli-
cation in the oil and gas industry. Similar to the previous studies, since no set of problem instances
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was available in the literature, we also proposed a set of benchmark instances to assess the algo-
rithm’s performance. After extensive computational experiments and algorithm enhancements, we
prepared a case study to evaluate the robust solutions obtained from problem instances that depict
the maintenance effort of a real oil platform. Once again, we applied Monte-Carlo simulations to
compare the solutions returned by the robust, deterministic, and stochastic methods. With a par-
ticular interest in the expected behavior of the solutions from each method, we wanted to verify a
possible increase in the expected solution cost of the robust method in the long run. According to
simulations based on three probability distributions, the hedge provided by the obtained robust so-
lutions did not cause a significant increase in the expected solution cost compared to the stochastic
and deterministic solutions.

In summary, experimental results indicated the feasibility of applying the proposed robust solu-
tion methods to real-world problem instances, including those from the oil and gas industry. Addi-
tionally, the same methodology applied in our studies can be followed by decision-makers, when
choosing an appropriate model result. By examining a pool of solutions with distinct budgeted un-
certainty levels, they can select the most appropriate one according to their risk preferences, thus
balancing solution protection and expected performance in the long run.

5.2 Perspectives

The different investigations conducted in this work suggest diverse questions that, to the best
of our knowledge, remain open. At the end of each chapter, we have already discussed the most
technical aspects related to these questions. In the following, we review the larger research points
deserving some longer-term efforts.

When evaluating CCP models, we only tested contracts where the microgrid buys electricity
from the energy companies, but not the opposite (i.e., selling contracts). In this sense, the energy
exchange between multiple microgrids could be seen as a game-theoretic model. It would also
be interesting to perform sensitivity analysis on energy contract values, such as fixed and variable
prices, and minimum and maximum amounts. The main question to be answered would be: at which
point does one contract become more attractive than the other?

The methodology itself could also be enhanced. For example, extending the RTCS method to
use forecasting techniques that help predict the amount of energy produced or consumed by the mi-
crogrid, according to the season of the year, or following other trends and patterns. Several machine
learning algorithms and frameworks are available for this task [122]. Another useful technique would
be Reinforcement Learning [147], which could also prove helpful inside the RTCS, making better de-
cisions on the order of execution of energy-related operations. One option involves the incorporation
of an online learning algorithm for real-time energy scheduling. For instance, the scheduling proce-
dure could predict which kind of operation would be better suited at a given period (e.g., store or sell
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surplus energy; retrieve from storage or buy from engaged contracts) and in which order.
Lastly, model refinements could be included, such as adding ramping constraints for genera-

tors and improving the battery efficiency and degradation model. Furthermore, the uncertainty set
adopted in the robust optimization model could also be extended to take into account the tempo-
ral correlations of uncertainty, following a similar approach to the dynamic uncertainty set adopted
by [92]. The main idea is that, in any time slot, individual oscillations in energy production and con-
sumption values are not independent of each other, but correlated.

Regarding the robust scheduling problems studied in this thesis, the computational complexity of
2RPFS under budgeted uncertainty remains an important topic to be studied. Future research may
also attempt to develop efficient heuristics for the m-machine RPFS-TWCT problem. However, this
largely depends on the efficient solution to the worst-case problem. In this sense, a computational
complexity study is needed, and, if possible, a pseudopolynomial algorithm for the worst-case TWCT
could be designed. Given that the RPFS-TWCT problem is NP-hard, this would be particularly im-
portant. To this end, our exact approach could play a useful role in the performance evaluation of
any heuristic.

Another avenue for future research could involve the design of new sets of robust problem in-
stances, structured according to each problem’s characteristics (e.g., where processing times are
such that the critical path remains fixed or alternates according to a pattern). This would allow a
deeper analysis of each robust problem’s easiest and most difficult instances. Moreover, the solu-
tion methods proposed in this work could be extended to similar scheduling problems and different
objective functions, such as total tardiness and total flow time.

Finally, concerning all problems studied in this thesis, an interesting topic involves the generation
of multiple optimal solutions for the robust problem and how to inspect the quality of each one. As
[115] noted, different robust solutions may even have the same worst-case objective value, but
might still differ on the mean objective value, or the expected value in the long run, considering the
realization of several possible scenarios. Therefore, an important research question would be: given
a protection level Γ, is it possible to generate a handful of optimal solutions and compare them in
terms of the hedge provided as well as the expected performance, so that the decision-maker can
choose the solution that best meets these requirements? Such analysis might be conducted as an
additional step inside the framework applied in this thesis, and, in this sense, the work of [61] on
Pareto Robustly Optimal solutions 1 could serve as a starting point.

1. A solution is called Pareto Robustly Optimal (PRO) if there is no other robustly feasible solution that has better
objective value for at least one scenario, and for all other scenarios in the uncertainty set the objective value is not
worse [61].

134



Appendices

135



Appendix A

OPTIMIZATION CRITERIA FOR ROBUST

PERMUTATION FLOW SHOP (RPFS)
PROBLEM

Different optimization criteria may be used to choose a robust solution [46, 2]. The first and
simplest criterion is the minimax (also known as the absolute robust criterion). In this case, given a
minimization problem, the robust decision is made by choosing a solution that minimizes the highest
cost over all possible scenarios.

A second possible criterion is called minimax regret, which aims to find the least maximum regret
over all possible scenarios. Regret can be either defined as the difference or the ratio between the
resulting cost of the candidate decision and the cost of the decision that would have been taken
if uncertain input data were known in advance (prior to the decision time). In the first case, where
regret is defined as the difference between two values, the so-called robust deviation decision is
obtained. For the latter case (regret being the ratio of two values), the resulting decision is the
relative robust decision. Either way, decisions originated from these two criteria tend to be less
conservative than the absolute robust criterion, because they measure the amount of deviation of
a specific candidate decision by comparing its performance with the performance of the “ideal”
solution of each possible scenario (i.e. its corresponding optimal decision if uncertainty was known
ahead of time).

Regarding the Rob-PFS problem, existing works deal with two possible measures of robustness,
associated with the makespan objective: minimax makespan and minimax regret makespan.

A.1 Minimax Makespan (MM) Rob-PFS problem with 2 machines

The objective of the Minimax Makespan is to minimize the maximum possible makespan asso-
ciated with a schedule.

The absolute robust schedule (σARS) satisfies:

max
λ∈Λ
{ϕ(σARS ,Pλ)} = min

σ∈Σ
max
λ∈Λ
{ϕ(σ,Pλ)} (A.1)
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A.2 Minimax Regret Makespan (MRM) Rob-PFS problem

In this case, the objective is to minimize the maximum possible regret associated with a sched-
ule. Given a scenario λ ∈ Λ, the regret of a schedule σ is measured as the absolute difference
between:

1. the makespan of the schedule σ for the scenario λ [ϕ(σ,Pλ)];
2. the makespan of the optimal schedule σ∗λ for the scenario λ [ϕ(σ∗λ,P

λ)].
The so-called absolute deviation robust schedule (σADRS) satisfies [74]:

max
λ∈Λ
{ϕ(σADRS ,Pλ)− ϕ(σ∗λ,Pλ)} = min

σ∈Σ
max
λ∈Λ
{ϕ(σ,Pλ)− ϕ(σ∗λ,Pλ)} (A.2)

The research on minimax regret optimization models is well-established nowadays. In particular,
most of the works on flow shop robust scheduling rely on this measure of robustness, as seen in
the literature review. Since the PFSP is NP-hard for 3 or more machines, it is not possible to obtain
exact solutions to the MRM RPFS problem when m ≥ 3, given the difficulty to calculate the optimal
deterministic schedule for a given scenario.
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Appendix B

A BRIEF INTRODUCTION TO THE

BUDGETED UNCERTAINTY MODEL

Bertsimas and Sim [16] proposed an alternative method of representing data uncertainty, avoid-
ing the complication of non-linear formulations.

Consider the following nominal linear optimization problem:

Maximize cTx (B.1)

subject to Ax ≤ B (B.2)

x ≥ 0 (B.3)

In the above formulation, we assume that data uncertainty only affects the elements in matrix A.
Without loss of generality, it can be assumed that the objective function c is not subject to uncertainty,
since it is possible to use the objective maximize z, and add the constraint z ≤ cTx, and then include
this constraint into Ax ≤ B.

Consider a specific row i of matrix A = [aij ] and let Ni represent the set of coefficients in row
i that are subject to uncertainty. Each entry aij , j ∈ Ni is modeled as a symmetric and bounded
random variable ãij , j ∈ Ni [15], and takes values in the interval [aij − ãij , aij + ãij ]. Associated with
the uncertain data ãij , we define the random variable ηij = (aij − ãij)/âij , which obeys an unknown
but symmetric distribution, taking values in [−1, 1].

Given the i-th constraint of the nominal problem aTi x ≤ bi, now consider that the set of coeffi-
cients aij , j ∈ Ni take values according to a symmetric distribution with mean equal to the nominal
value aij in the interval [aij − âij , aij + âij ]. For every i, a parameter Γi (not necessarily integer) is
introduced, and takes values in the interval [0, | Ni |].

Given these premises, Bertsimas and Sim defined the following symmetric and bounded uncer-
tainty data set, in which an uncertain budget parameter Γi is introduced to control the degree of
uncertainty:

Ui = {aij | aij ∈ [aij − âij , aij + âij ], ∀j ∈ Ni;
∑
j∈Ni

|aij − aij |
âij

≤ Γi}, ∀i (B.4)

Constraint (B.4) indicates that, at the same time, up to bΓic uncertainty coefficients can get
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their worst-case values, in which Γi ∈ [0, | Ni |] and is not necessarily an integer. The idea is that
all uncertain coefficients in Ni are often unlikely to simultaneously reach their worst-case values.
Therefore, it may be adequate to protect against up to bΓic of those coefficients in Ni reaching
their worst-case values, and one coefficient, say ti, to change by (Γi − [Γic) âi,ti . Regarding this
uncertainty set, a protection function β(x, Γi) for each constraint i is defined as follows:

β(x, Γi) = max{
Ñi∪{ti}:Ñi⊆Ni,|Ñi|=bΓic,ti∈Ni\Ñi

}{∑
j∈Ni

âijxj + (Γi − bΓic)âi,tixti}, ∀i (B.5)

where x = (xj , ∀j) is the decision variable vector. Based on the above idea, the budgeted RO
model (still nonlinear) is presented as:

(Budget-RO) Maximize
∑
j

cjxj (B.6)

subject to
∑
j

aijxj + β(x, Γi) ≤ bi, ∀i (B.7)

xj ≥ 0, ∀j (B.8)

The expression (B.6) to be maximized is the objective function. Constraints (B.7) are the func-
tional constraints, which use a protection function β(x,Γi) for each constraint to control the degree of
uncertainty. Constraints (B.8) are the non-negativity constraints. Note that by varying Γi ∈ [0, | Ni |],
the decision maker is able to adjust the solution robustness against the level of solution conser-
vatism. When Γi = 0, β(x, Γi) = 0, the problem is equivalent to the nominal problem. On the other
hand, if Γi = Ni, we obtain the most conservative version of the problem, which is equal to the
worst-case model, as developed by Soyster [128].

In order to solve the Budget-RO model, Bertsimas and Sim applied the duality theory, reformu-
lating the problem as an LP problem. They began by formulating an LP problem whose objective
function equals the protection function β(x,Γi). In other words, given the decision variable vector x,
the protection function β(x, Γi) defined in Constraint (B.5) is equal to the objective function of the
following LP problem, which will be called LP-Beta(i).

[LP-Beta(i)] Maximize
∑
j∈Ni

âijxjyij (B.9)

subject to
∑
j∈Ni

yij ≤ Γi (B.10)

0 ≤ yij ≤ 1, ∀j ∈ Ni (B.11)

The expression (B.9) defines an objective function equivalent to the protection function. Con-
straints (B.10) and (B.11) ensure that bΓic of those coefficients in Ni reach their worst-case val-
ues and one coefficient to change by (Γi − bΓic)âi,ti . This is equivalent to selecting a subset:
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{Ñi ∪ {ti} : Ñi ⊆ Ni, | Ñi |= bΓic, ti ∈ Ni \ Ñi} with the corresponding cost function:∑
j∈Ni âijxj + (Γi − bΓicâi,tixti).

Let ωi and πij (∀j ∈ Ni) be the dual variables corresponding to constraints (B.10) and (B.11),
respectively. The dual problem [DLP-Beta(i)] is obtained as follows:

[DLP-Beta(i)] Minimize
∑
j∈Ni

πij + Γi ωi (B.12)

subject to ωi + πij ≥ âijxj , ∀j ∈ Ni (B.13)

πij ≥ 0, ∀j ∈ Ni (B.14)

ωi ≥ 0 (B.15)

Since LP-Beta(i) is feasible and bounded for Γi ∈ [0, | Ni |], by strong duality, DLP-Beta(i) is
also feasible and bounded, and both models have the same objective function value. The protection
function β(x, Γi) is therefore equal to the objective function value of DLP-Beta(i).

Finally, by substituting DLP-Beta(i) (in place of β(x, Γi)) into Budget-RO, the following LP model
is obtained:

(LP-Budget-RO) Maximize
∑
j

cjxj (B.16)

subject to
∑
j

aijxj + Γiωi +
∑
j∈Ni

πij ≤ bi, ∀i (B.17)

ωi + πij ≥ âijxj , ∀i,∀j ∈ Ni (B.18)

πij ≥ 0, ∀i,∀j ∈ Ni (B.19)

ωi ≥ 0, ∀i (B.20)

xj ≥ 0, ∀j (B.21)
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Appendix C

PROOF OF 2RPFS WORST-CASE

SCENARIO EXTREME POINTS

Although not being explicitly stated, it is assumed that the 2RPFS budget parameters Γ1 and Γ2

are both integers.
Now suppose that, given a permutation σ, we are calculating its worst-case scenario λ and worst-

case makespan Z(σ), with fractional budget values of Γ1 and Γ2. In this case, the processing time
deviation amount δr,i lies in the [0, 1] interval. Every worst-case scenario has an associated critical
path as well as a set of operations Or,i that belong to this critical path. We propose the following
lemma.

Lemma C.0.1. Given a permutation σ with worst-case scenario λ, consider a machine Mr, for
which there are two operations Or,i1 and Or,i2 that belong to the critical path and 0 < δλr,i1 , δ

λ
r,i2 < 1.

Also suppose, without loss of generality, that p̂r,i1 ≤ p̂r,i2. Then, there is an equivalent worst-case
scenario λ# whose makespan is greater or equal than the makespan of scenario λ, such that at least
one of the following is true: δλ#

r,i1 = 0 or δλ#
r,i2 = 1.

The proof follows by construction. The idea is that, given two operations Or,i1 and Or,i2 that
belong to the critical path, it is always possible to “transfer” a portion of the processing time deviation
δr,i from the operation with largest maximum deviation (Or,i2) to the shortest one (Or,i1), until at least
one of their δr,i values reaches an extreme value of zero or one.

Let λ# be the worst-case scenario constructed in a way that at least δλ
#
r,i1 = 0 or δλ

#
r,i2 = 1:

δ
λ#
r,i ≡


δλr,i1 −min(δλr,i1 , 1− δ

λ
r,i2) if i = i1

δλr,i2 + min(δλr,i1 , 1− δ
λ
r,i2) if i = i2

δλr,i otherwise

(C.1)

Note that, since operations Or,i1 and Or,i2 belong to the critical path in both scenarios λ and λ#,
the makespan ϕ of the alternative worst-case scenario λ# is calculated as:

ϕ(λ#) = ϕ(λ)− (δλr,i1 p̂r,i1 + δλr,i2 p̂r,i2) + (δλ#
r,i1 p̂r,i1 + δλ

#
r,i2 p̂r,i2)

ϕ(λ#) = ϕ(λ)− (δλr,i1 p̂r,i1 + δλr,i2 p̂r,i2) +
+ (δλr,i1 −min(δλr,i1 , 1− δ

λ
r,i2))p̂r,i1 + (δλr,i2 + min(δλr,i1 , 1− δ

λ
r,i2))p̂r,i2

ϕ(λ#) = ϕ(λ) + min(δλr,i1 , 1− δ
λ
r,i2)(p̂r,i2 − p̂r,i1)
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And the following holds true:
ϕ(λ#)− ϕ(λ) = min(δλr,i1 , 1− δ

λ
r,i2)(p̂r,i2 − p̂r,i1) ≥ 0, since p̂r,i2 ≥ p̂r,i1 .

We just proved that the makespan in scenario λ# is greater or equal than the makespan in
scenario λ.

Remark that the same argument as above is valid for pairs of jobs that do not belong to the critical
path. In particular, a change in their processing times does not affect the (worst-case) makespan.

Now we can prove the following.

Corollary C.0.2. Given a permutation σ with worst-case scenario λ, for every machine Mr, there
is an equivalent worst-case scenario λ# where all δλ#

r,i are either zero or one, except for at most one
operation Or,i′ where δλ

#
r,i′ = Γr − bΓrc.

The proof follows by contradiction. Given a worst-case scenario λ induced by a permutation σ,
let x(λ, r) be the number of operations Or,i on machine Mr such that 0 < δλr,i < 1. Suppose, by
contradiction, that x(λ, r) ≥ 2. Therefore, by successively applying Lemma C.0.1, we end up an
alternative worst-case scenario λ#, such that x(λ#, r) ≤ 1 and, by Equation (C.1), δλ

#
r,i′ = Γr − bΓrc.

With that being said, it is possible to have the budget parameters Γ1 and Γ2 fractional, with a
slight adaptation in the dynamic programming table, taking into account that, for each machine Mr,
exactly one of its operations will deviate its processing time by a factor of Γr − bΓrc.
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