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Abstract

Solid state sintering is a widely used powder processing technique for ceramics and
metals. The treatment is carried out at high temperatures, below the melting point.
Consolidation, densification, and grain growth occur during sintering. The discrete
element method (DEM) has been effectively applied for modeling densification and
consolidation at the mesoscale for spherical particles. Nevertheless, grain growth af-
fects sintering during the intermediate and final stages. It is not considered by actual
DEM simulations. Here, a realistic grain growth model is developed. The mechanisms
considered are surface diffusion and grain boundary migration. The standard densi-
fication model, based on grain boundary diffusion and surface diffusion, is refined to
take into account large particle size ratios. Both models are coupled for studying the
microstructural evolution during sintering until the relative density approaches 0.90.
The densification and grain growth kinetics, the sintering trajectories, and the evolu-
tion of the particle size distribution are analyzed for an initial packing with realistic
size distribution. The results are in good agreement with grain growth experimental
data from the literature for conventional sintering of alumina. Grain growth is par-
ticularly problematic and difficult to avoid for nano-powders. A possible approach to
mitigate grain growth is two-step sintering, which uses a combination of high and low
temperatures during the sintering thermal cycle. DEM simulations are employed to
explore the mechanisms that can explain the success of two-step sintering. Another
means to improve the realism of DEM sintering models is to consider actual particle
shapes instead of spheres. This is particularly relevant for sintering since the driving
force is the local curvature. The real shape of particles can be captured using the
level set discrete element method (LS-DEM). An optimization-based contact detection
algorithm is proposed to reduce computational cost. The proposed LS-DEM implemen-
tation is a proof of concept of its potential effectiveness for sintering. For illustration,
simulations of ellipsoidal particle packings with elastic and sintering interactions are
shown. Sintering simulations allow to analyze the influence of the particle aspect ratio
on shrinkage.

Keywords: sintering, discrete element method, grain growth, nano-powders, two-step
sintering, non-spherical particles, Level-Sets
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Résumé

Le frittage à l’état solide est un procédé de mise en œuvre des poudres largement
utilisée pour les céramiques et les métaux. Le traitement s’effectue à des températures
élevées, inférieures au point de fusion. Consolidation, densification et croissance des
grains se produisent au cours du frittage. La méthode des éléments discrets (DEM) a
été appliquée efficacement pour modéliser la densification et la consolidation à l’échelle
mésoscopique pour des particules sphériques. Néanmoins, la croissance des grains
affecte le frittage pendant les étapes intermédiaires et finales. Elle n’est pas prise
en compte par les simulations DEM actuelles. Dans ce travail, un modèle réaliste
de croissance des grains est développé. Les mécanismes considérés sont la diffusion
de surface et la migration des joints de grain. Le modèle de densification standard,
basé sur la diffusion aux joints de grain et la diffusion de surface, est raffiné pour
prendre en compte les grands rapports de taille des particules. Les deux modèles
sont couplés pour étudier l’évolution microstructurale pendant le frittage jusqu’à des
densités relatives proches de 0,90. La cinétique de densification et de croissance des
grains, les trajectoires de frittage et l’évolution de la distribution de taille des particules
sont analysées pour un empilement initial avec une distribution de taille réaliste. Les
résultats sont en bon accord avec les données expérimentales de la littérature sur la
croissance des grains pour le frittage conventionnel de l’alumine. La croissance des
grains est particulièrement problématique et difficile à éviter pour les nanopoudres. Une
approche possible pour limiter la croissance des grains est le frittage en deux étapes, qui
utilise une combinaison de températures élevées et basses pendant le cycle thermique de
frittage. Les simulations DEM sont utilisées pour explorer les mécanismes qui peuvent
expliquer le succès du frittage en deux étapes. Un autre moyen d’améliorer le réalisme
des modèles de frittage DEM est de considérer les formes réelles des particules plutôt
que des sphères. Ceci est particulièrement pertinent pour le frittage puisque la force
motrice est la courbure locale. La forme réelle des particules peut être capturée à l’aide
de la méthode des éléments discrets Level-Sets (LS-DEM). Un algorithme de détection
des contacts basé sur l’optimisation est proposé pour réduire le temps de calcul. La
mise en œuvre proposée de la LS-DEM est une preuve de concept de son efficacité
potentielle pour le frittage. À titre d’illustration, des simulations d’empilement de
particules ellipsoïdales avec des interactions élastiques et de frittage sont présentées.
Les simulations de frittage permettent d’analyser l’influence du rapport d’aspect des
particules sur le retrait.

Mots-clés : frittage, méthode des éléments discrets, croissance des grains, nanopoudres,
frittage en deux étapes, particules non sphériques, Level-Sets
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Introduction générale
Ce doctorat s’inscrit dans le cadre du projet MATHEGRAM, un programme de la
communauté Européenne ITN (Integrated Training Network). L’objectif de MATHE-
GRAM est d’étudier le comportement thermomécanique des matériaux granulaires à
travers 15 thèses basées sur la modélisation et l’expérimentation. Le présent travail
concerne la modélisation du frittage à l’échelle de la particule avec la méthode des
éléments discrets (Discrete Element Method, DEM). Ce sujet est lié au thème d’un
autre doctorant de MATHEGRAM (Aatreya Venkatesh, également à SIMaP), qui se
concentre sur l’analyse nanotomographique in-situ du frittage.

Le frittage est utilisé par l’humanité depuis des milliers d’années. Une des carac-
téristiques originales du frittage est qu’en fournissant simplement de l’énergie thermique
à un milieu particulaire poreux (sans aucune force mécanique externe), le système
évolue naturellement vers un état plus dense. La réduction de l’énergie libre de surface
s’effectue par transport de masse, et l’augmentation de la température ne déclenche
dans la plupart des cas aucune réaction chimique, mais est seulement utilisée pour
augmenter la cinétique de la densification.

Bien que de nombreuses nouvelles technologies soient apparues à l’époque moderne,
le frittage continue d’être largement utilisé pour le traitement des poudres céramiques,
métalliques, polymères et composites. Les techniques de frittage, qu’elles soient con-
ventionnelles ou plus novatrices, sont étudiées pour mieux comprendre les mécanismes,
améliorer l’efficacité des procédés et trouver de nouvelles applications. En complément
de l’approche expérimentale, la modélisation a été utilisée pour atteindre ces objectifs.
La grande variété des méthodes employées comprend : les modèles analytiques, les tech-
niques de différences finies, les éléments finis, les éléments discrets, les techniques de
champs de phase, la méthode de Monte-Carlo cinétique, les méthodes de minimisation
d’énergie de surface, et les level sets, entre autres. Ces modélisations ont été réalisées
à l’échelle de l’atome, du grain ou du composant. Dans certains cas, elles ont égale-
ment tenté de coupler plusieurs échelles. Les méthodes citées diffèrent dans l’échelle de
longueur considérée, le niveau de description physique et l’étape de frittage considérée.
La méthode des éléments discrets (DEM) a la particularité de représenter chaque par-
ticule de la poudre, avec une forme constante tout au long du processus, ce qui permet
de simuler plusieurs centaines de milliers de particules en un temps raisonnable. La
méthode a été utilisée pour modéliser la densification de céramiques polycristallines
et de métaux pendant les étapes initiales et intermédiaires du frittage. Des questions

https://www.surrey.ac.uk/research-projects/multiscale-analysis-thermomechanical-behaviour-granular-materials


d’intérêt pratique pour le processus de frittage ont été couvertes par la modélisation
DEM telles que : le réarrangement des particules, la densification anisotrope, la prop-
agation des défauts, l’effet des inclusions, le frittage sous contrainte et le frittage des
composites.

Cependant, il existe encore plusieurs améliorations cruciales qui peuvent conduire
les modèles de frittage DEM vers une description plus réaliste du processus. La pre-
mière est la prise en compte du grossissement des grains, qui n’a pas été incluse de
manière réaliste jusqu’à présent. Le grossissement des grains est pertinent car il entre
en compétition avec la densification et a un impact sur l’évolution microstructurale et
la cinétique de densification. Dans la plupart des cas, la croissance des grains n’est pas
souhaitée car elle a un effet négatif sur les propriétés, en particulier mécaniques, du
matériau final. Par exemple, les céramiques suivent une relation de type Hall-Petch,
qui prédit une diminution de la contrainte à rupture avec l’augmentation de la taille
des grains. Comme le grossissement des grains se produit naturellement pendant le
frittage, il doit être inclus dans les simulations discrètes.

Un autre aspect qui doit être amélioré dans la modélisation DEM du frittage est la
forme des particules. Les modèles actuels considèrent les particules comme des sphères.
Ceci est dû au fait qu’en DEM, une étape cruciale consiste à rechercher les contacts
entre les particules. Cette recherche est relativement facile pour les sphères car elle
n’implique que la comparaison entre deux distances. Mais elle devient beaucoup plus
difficile lorsque la forme s’éloigne de la sphère. Ainsi, les simulations de très grands
empilements avec des millions de particules ont été réalisées avec des sphères mais sont
encore rares pour les particules non sphériques. À ce jour, nous n’avons connaissance
d’aucun travail pour simuler le frittage avec des particules non sphériques en DEM.

Et cependant la plupart des poudres céramiques ne présentent pas de particules
parfaitement sphériques. Cela peut être critique dans le frittage car il s’agit d’un
processus gouverné par la courbure locale. Par conséquent, les deux axes de cette
thèse de doctorat sont :

• Le développement d’un modèle DEM de grossissement des grains pour le frittage.
Il doit être basé sur des mécanismes réalistes de transfert de masse. Le modèle
doit être couplé avec les modèles de densification, ce qui permettra d’étudier
l’évolution microstructurale d’empilements réels pendant le frittage.

• La mise en œuvre d’un cadre pour étudier le frittage de particules non sphériques
dans le contexte de la DEM. La méthodologie choisie est la méthode des éléments
discrets level set (LS-DEM).

Le projet est centré sur le frittage à l’état solide de poudres polycristallines poreuses.
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Du point de vue des matériaux, le champ d’application des modèles développés sera
dirigé vers les poudres métalliques et principalement céramiques. Les résultats sont
présentés pour l’alumine, une poudre largement utilisée dans le frittage pour laquelle
de nombreuses données expérimentales et de propriétés sont disponibles.

Les principaux modèles et résultats du projet sont discutés dans trois articles sci-
entifiques. Deux d’entre eux ont été acceptés et le dernier sera soumis prochainement.
Le chapitre 2 décrit les principaux concepts du frittage conventionnel à l’état solide qui
seront utiles tout au long de ce travail. Une revue critique des différentes méthodologies
existantes dans la littérature pour la modélisation du frittage à différentes échelles est
proposée. L’accent est mis sur l’état de l’art des modèles de frittage en DEM. Dans
la deuxième section de ce chapitre, les principes fondamentaux de la DEM et de la
LS-DEM sont détaillés.

Le modèle de croissance des grains est basé sur deux mécanismes de transport de
masse : la diffusion de surface et la migration aux joints de grains. La description
détaillée des modèles de grossissement et de densification des grains est présentée dans
un premier article (chapitre 3), qui a été accepté dans Acta Materialia en 2021 [1]. Les
résultats de la simulation sont comparés aux données expérimentales de frittage pour les
poudres d’alumine microniques. Le bon accord entre la simulation et les expériences sur
l’évolution microstructurale de grands empilements pour un frittage conventionnel rend
possible la simulation de processus de frittage plus complexes. Dans le deuxième article
(chapitre 4), qui a été accepté dans Journal of the European Ceramic Society en 2022
[2], des simulations du frittage en deux étapes de nanopoudres d’alumine sont réalisées.
Le but du frittage en deux étapes est de limiter le grossissement des grains, mais les
mécanismes sous-jacents qui peuvent expliquer l’arrêt de la croissance des grains ne
sont pas encore clarifiés. En particulier, le modèle explore l’hypothèse de la littérature
selon laquelle le succès du frittage en deux étapes est dû à une forte augmentation de
l’énergie d’activation de la mobilité des joints de grain à basse température. Toutes les
simulations sont effectuées dans des conditions non isothermes pour différents vitesses
de montée en température.

Ayant atteint le premier objectif du projet, nous procédons au développement d’une
preuve de concept d’un modèle de frittage LS-DEM pour des particules de forme arbi-
traire. Contrairement à la méthodologie LS-DEM originale, nous mettons en œuvre un
schéma basé sur l’optimisation pour la détection des contacts. Ce schéma particulier
devrait être plus efficace pour détecter les petits contacts, qui sont particulièrement
pertinents pour le frittage. Ce développement et des simulations d’empilements de
particules ellipsoïdales en frittage sont décrits dans le troisième article (chapitre 5), qui
sera soumis prochainement.
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Le chapitre 6 résume les principales conclusions de ce travail et propose quelques
perspectives pour la modélisation du grossissement des grains et des particules non
sphériques en frittage dans le cadre de la DEM.
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Chapter 1

General introduction
This PhD is part of the MATHEGRAM, project, a European ITN (Integrated Train-
ing Network) program. The aim of MATHEGRAM is to study the thermomechanical
behavior of granular materials through 15 PhD projects based on modeling and exper-
iments. The present work concerns the modeling of sintering at the particle scale with
the Discrete Element Method (DEM). This topic is linked with the subject of another
PhD in MATHEGRAM (Aatreya Venkatesh, also at SIMaP), which focuses on the
in-situ nanotomography analysis of sintering.

Sintering has been used by humanity for thousands of years. A great feature of
sintering is that by simply supplying thermal energy to a porous particulate medium
(without any external mechanical force), the system naturally evolves towards a denser
state. The reduction of surface free energy takes place by mass transport, and increas-
ing temperature does not in many cases trigger any chemical reaction, but is simply
used to increase the kinetics of densification.

Despite the appearance of many new technologies in modern times, sintering contin-
ues to be widely used in the processing of ceramic, metallic, polymeric and composite
powders. Conventional and new sintering techniques are being studied to better un-
derstand the mechanisms, improve process efficiency and find new applications. Com-
plementary to the experimental approach, modeling has been used to achieve these
goals. The wide variety of employed methods include: analytical models, finite dif-
ferences, finite elements, discrete elements, phase-field, kinetic Monte-Carlo, surface
evolver, level sets, among others. The modeling has been performed at the atomistic,
grain, or component length scales. It has also in some cases attempted to couple vari-
ous scales. The cited methods differ in the length scale considered, the level of physical
description and the sintering stage considered. The Discrete Element Method (DEM)
has the particularity of representing each particle of the powder, with a constant shape
throughout the process, allowing the simulation of up to hundreds of thousands of par-
ticles in a reasonable time. The method has been used to model the densification of
porous polycrystalline ceramics and metals during the initial and intermediate stages
of sintering. Questions of practical interest for the sintering process have been covered
by DEM modeling such as: particle rearrangement, anisotropic densification, defect
propagation, the effect of inclusions, constrained sintering and sintering of composites.

However, there are still some crucial improvements that can lead DEM sintering
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CHAPTER 1. GENERAL INTRODUCTION

models towards a more realistic description of the process. The first is the consideration
of grain growth, which to date has not been realistically included. Grain growth is
relevant since it competes with densification and impacts the microstructural evolution
and densification kinetics. In most cases, grain growth is not desired because it has a
detrimental bearing on the properties, in particular mechanical, of the final material.
For example, oxide ceramics follow a Hall–Petch relationship, which predicts a decrease
in strength with increasing grain size. However, grain growth naturally arises during
sintering and thus should be included in discrete simulations.

Another aspect that needs improvement in DEM modeling of sintering is the particle
shape. Current models consider particles as spheres. This is because in DEM, a crucial
step consists in searching for contacts between particles. This is relatively easy for
spheres as it only involves the comparison between two distances. But it becomes
much more challenging as the shape departs from the sphere. Thus, the simulation of
very large packings with millions of particles have been carried out with spheres but
are still rare for non-spherical particles. To date, we are not aware of any effort to
simulate sintering with non-spherical particles in DEM.

Nevertheless, most ceramics powders do not have perfect spherical particles. This
can be critical in sintering as it is a curvature-driven process. Therefore, the two axes
of this PhD thesis are:

• The development of a grain growth DEM model for sintering. It should be based
on realistic mass transfer mechanisms. The model is to be coupled with the
densification models, that will allow to study the microstructural evolution of
real packings during sintering.

• The implementation of a framework to study the sintering of non-spherical par-
ticles in the DEM context. The selected methodology is the Level Set Discrete
Element Method (LS-DEM).

The interest of the project is on solid-state sintering of porous polycrystalline pow-
ders. The scope of the developed models is to represent a variety of metallic and mainly
ceramic powders. Results are presented for alumina, a powder widely used in sintering
for which extensive experimental and material property data are available.

The main models and results of the project are discussed through three scientific
articles. Two of them accepted and one will be submitted in the near future. Chapter
2 describes the main concepts of conventional solid-state sintering that will be useful
all along this work. A critical review of the various existing methodologies in the
literature for modeling sintering at different scales is proposed. Emphasis is placed on
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the state of the art of DEM sintering models. In the second section of this chapter,
the fundamentals of DEM and LS-DEM are detailed.

The grain growth model is based on two mass transport mechanisms: surface dif-
fusion and grain boundary migration. The detailed description of the grain growth
and densification models is reported in a first paper (chapter 3), which was accepted
in Acta Materialia in 2021 [1]. The simulation results are compared against sintering
experimental data for alumina micronic powders. The good agreement between simu-
lation and experiments on the microstructural evolution of large packings for standard
sintering makes it possible to simulate more challenging sintering processes. In the
second article (chapter 4), which has been accepted in Journal of the European Ce-
ramic Society in 2022 [2], simulations of two-step sintering of alumina nano-powders
are carried out. The goal of two-step sintering is to limit grain growth, but the un-
derlying mechanisms that may explain the arrest of grain growth are not yet clarified.
In particular, the model explores the literature hypothesis stating that the success of
two-step sintering is due to a large increase in the activation energy of the grain bound-
ary mobility at low temperatures. All the simulations are performed in nonisothermal
conditions for different heating rates.

Having reached the first project goal, we proceed to the development of a proof
of concept of a LS-DEM sintering model for particles of arbitrary shape. Unlike the
original LS-DEM methodology, we implement an optimization-based scheme for contact
detection. This particular scheme should be efficient to capture small contacts, that are
particularly relevant for sintering. This development and the simulations of packings
of ellipsoidal particles in sintering are described in the third article (chapter 5), which
will be submitted in the near future.

Chapter 6 summarizes the main conclusions of this work and proposes some per-
spectives for modeling grain growth and non-spherical particles in sintering in the DEM
framework.
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Chapter 2

Literature review and Methods

2.1 Solid-state sintering

This section is dedicated to single phase solid-state sintering with conventional heating
source. Free sintering condition is considered, i.e., no external pressure is applied. The
focus is on porous polycrystalline structures. The aim of this section is to review the
main ideas that have been developed to model solid-state sintering. These models
have been proposed in the last 60 years and are extremely useful to build analytical
or numerical solutions for sintering. We will use some important concepts in these
models to develop our own in the chapters devoted to the Discrete Element simulation
of sintering.

2.1.1 Fundamentals

Sintering is a high temperature process, below the melting point, for consolidating
ceramic or metallic powders. The driving force is the decrease of the total interfacial
energy Eint, given by [1]:

Eint = γSAS + γGBAGB (2.1)

where γ is the specific interfacial energy, A the area, S is for solid-gas interfaces (pore
surfaces) and GB for solid-solid interfaces (grain boundaries). The decrease of solid-gas
area is reached by consolidation and the decrease of solid-solid area by grain growth
[1]. Fig. 2.1 shows a schematic of these two competitive processes during sintering.
For any pair of adjacent grains, the grain boundary and the pore surfaces intersect
forming a junction surface. At equilibrium, the forces on both sides of the junction are
balanced. The balance can be reached at one point of the junction on a perpendicular
plane to the grain boundary. Forces can be calculated from the specific interfacial
energies, leading to the following equilibrium balance [2]:

γGB = 2γScos

(
Ψeq

2

)
(2.2)

where Ψeq is the equilibrium dihedral angle.
Consolidation and grain growth are carried out by mass transport. It is feasible

only if a gradient of chemical potential exists. In the absence of external pressure and
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Consolidation &
Densification

Grain growth

Figure 2.1: Main processes during sintering.

chemical reaction, and electric potential, the chemical potential gradient is generated
by the pressure difference of a curved surface, i.e., the Laplace pressure. In sintering
of polycrystals, both pores and grain boundaries have a curved surface.

2.1.1.1 Consolidation and densification

A comprehensive list of sintering mechanisms was first proposed by Ashby [3]. All
mechanisms involve diffusive transport of matter driven by the curvature gradient and
leading to consolidation, i.e., neck growth. The mechanisms differ from each other by
the type of diffusion and the source of matter. Some mechanisms lead to center-to-
center approach, that is a densification at the macroscopic scale (shown in blue in Fig.
2.2). Non-densifying mechanisms are shown in gray and have the surface as source of
matter. On the other hand, densifying mechanisms have the internal body and the
grain boundary as sources.

Generally, for oxide ceramics surface diffusion is the dominant mechanism at the
beginning of sintering and grain boundary diffusion is the dominant mechanism for
densification. In contrast, vapor transport only appears if the material has a high
vapor pressure [4], meanwhile, the diffusion from dislocations (plastic flow) is more
common in sintering of metal powders [2].
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4

5

6

1

2

3

1. Surface diffusion
2. Lattice diffusion from surface
3. Vapor transport
4. Grain-boundary diffusion
5. Lattice diffusion from

grain-boundary
6. Lattice diffusion from

dislocations (plastic flow)

Figure 2.2: Densifying (blue) and nondensifying (gray) sintering mechanisms.

2.1.1.2 Grain growth

Our interest is to study grain growth in porous systems. As mentioned above, grain
growth is an unavoidable process driven by the decrease of the total solid-solid area.
In general terms, large grains grow at the expense of small ones by diffusion mech-
anisms. The mean grain size increases because of the continuous disappearance of
smaller grains.

Fig. 2.3 shows a simplified sketch of diffusion-controlled grain growth. The external
transport refers to transport via vapor or liquid phases in the pores. Grain boundary
migration can be understood as a mass transfer across the grain boundary, instead
of parallel as in the consolidation mechanism. Grain boundary migration is the main
mechanism for grain growth but it can encounter energy barrier depending on the local
curvature. In order to overcome this barrier, grain growth first occurs by other diffusion
mechanisms, like surface diffusion or vapor transport. [5].

Grain growth is affected both by process variables (sintering temperature, heating
rate, initial green density and time) and by grain properties (specific interfacial en-
ergies, diffusivities, crystal orientation and secondary phases) [4]. The effect of the
temperature on grain growth depends strongly on the densification material proper-
ties. Assuming that the material has a higher densification activation energy than its
grain growth activation energy, both a higher temperature and a higher heating rate
will retard grain growth. This is the case of alumina as investigated in chapter 4. A
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Figure 2.3: Diffusion controlled grain growth. [4]

higher green density also hinders grain growth [6]. Regarding grain properties, higher
specific interfacial energies or higher diffusivities increase grain growth. Moreover, two
grains in contact with low crystallographic misorientation are more likely to boost grain
growth by coalescence (removal of the grain boundary) [4]. The effect of the secondary
phase depends on its solubility [7], for instance MgO inhibits while FeO enhance grain
growth in pure alumina [8]. Therefore, in real conditions more complex scenarios than
those shown in Fig. 2.3 can appear modifying the grain growth mechanism or its rate.
They include: pore drag, pore separation, solute drag, pore growth and complexion
transitions [9].

During sintering, for a wide variety of conditions and powders, it is observed that
grain size distribution is self-similar. It means that the grain size distribution normal-
ized by the grain size is not significantly modified along time. When this self-similar
behavior is observed, it is denominated normal grain growth [10]. On the other hand,
abnormal grain growth arises when a few grains grow significantly at the expense of
others. Usually, abnormal grain growth is caused by a non-uniformity of the microstruc-
ture, for instance: anisotropic grain boundary energy or mobility, impurity segregation
or the existence of few large grains at the onset of sintering [7].

It is important to note that the analysis described for consolidation/densification
and grain growth assumes that the diffusion of atoms is the rate-limiting step. But as
pointed by Bordia et al. [11], recent works show that in some cases, kinetics can be
governed by the interface reaction (detachment from the source) of transport atoms
instead of the diffusion.

The mechanisms and models of grain growth will be explored in more details in
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Chapter 3.

2.1.1.3 The different stages of sintering

As discussed above, consolidation, densification and grain growth have different driv-
ing forces and mechanisms, thus sintering proceeds in several stages. Generally, the
sintering process can be divided in three main stages according to pore geometry. Fig.
2.4 shows the three stages for the sintering of initially spherical grains.

Figure 2.4: Schematic of the four sintering stages of initially spherical grains. [4]

In the initial stage, necks are formed between adjacent grains. They grow (consoli-
dation) rapidly, decreasing the curvature gradient. This stage ends when the curvature
between two adjacent grain boundaries is almost uniform [1] and the pores become
nearly cylindrical. The densification is limited, up to a relative density of about 66%,
and grain growth is negligible [4].

At this point, there is a network of interconnected pores, i.e., open porosity. During
the intermediate stage, the open porosity will be gradually eliminated, resulting in a
considerable densification (up to about 90%) and closed porosity. The neck growth of
a contact stops when the decrease in surface energy is lower than the increase of grain
boundary energy [5]. This initiates the growth of the grain, which emerges slowly in
this intermediate stage.

Finally, the closed pores are eliminated by diffusion from grain-boundaries and from
the core of the grain. Here the grain growth is considerable. The evolution at this final
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stage is controlled by the interaction between pore and grain boundary [11].

2.1.2 Models

For clarity, we classify sintering models according to a characteristic length scale: atom-
istic, grain and component (continuum). Grain-scale models are discussed in more
detail as they are central to this thesis.

2.1.2.1 Atomistic scale

The most detailed description of sintering can be obtained when modeling at the atom-
istic scale. Molecular dynamics (MD) is the most common method for this task. By
simulating hundreds or thousands of atoms per grain, it allows to elucidate the sinter-
ing mechanisms at play. For example, surface diffusion, grain boundary migration and
viscous flow mechanisms were detected by calculating the mean square displacement of
atoms and analyzing their displacement vector for nickel particles [12]. For iron grains,
the following mechanisms have been identified: surface and grain boundary diffusion,
viscous flow and plastic deformation [13].

In MD, the interaction between a pair of atoms is defined by a potential. For
illustration, a basic 2D Lennard-Jones potential U for a distance r between two atoms
is [14]:

U(r) = 4ϵ
[(
σ

r

)12
−
(
σ

r

)6
]

(2.3)

where ϵ is the depth of the potential in energy units and σ is the length range. In the
literature, more accurate potentials have been proposed. For instance, Roy et al. [15]
compare several atomic potentials for alumina, which, as an oxide material, requires
the inclusion of long-range effects. Most of the MD models for sintering are dedicated
to metals, however some works also focuses on ceramics [15]–[19].

Molecular dynamics allows to study the influence of the orientation of the crystal
structure [20]–[22]. Arcidiacono et al. [23] observed that misoriented grains have
a smaller neck size at the beginning of sintering, but later it can be slightly larger
than well oriented grains. Moreover, the misaligned grains can rotate and remove the
grain boundary [14]. These authors performed simulations for three grains (Fig. 2.5),
reporting on grain growth as compared to those obtained at the particle scale (see
Chapter 4).

The effect of the sintering temperature has also been analyzed. Jiang et al. [24]
obtained a linear dependence between the grain size and the temperature at which
the neck starts to form. Liu et al. [25] studied the effect of the heating rate. Also
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Figure 2.5: Evolution three nanograins simulated by MD. [14]

they found by MD simulations that some organic coating can delay the sintering of
aluminum nanoparticles.

Due to their high computational cost, MD simulations are normally carried out for
two nanoparticles. For the first time, four particles and periodic boundary conditions
has been included in [26]. Another general limitation of MD simulations is that the
timescale is of the order of picoseconds or nanoseconds of real time.

2.1.2.2 Grain scale

Analytical

Historically the analytical methods at the grain scale were the first class of methods
to be proposed for sintering. The basic idea was to represent grains with a simplified
geometry and limit the study to the interaction between two equal-sized grains. It
was assumed that those two grains represent in average the whole packing. The main
developments were proposed by Kuczynski [27], Herring [28], Kingery and Berg [29],
Coble [30], [31], Johnson [32], Ashby [3], [33] and Coblenz [34]. Because of the differ-
ences commented above along sintering, different models are proposed for each stage
of sintering.

For the initial stage, Coble proposed a two-sphere approximation of the grains for
both densifying and non-densifying mechanisms as shown in Fig. 2.6. This geometrical
assumption results in the well-known relation between the indentation h and the neck
radius a for densifying mechanisms:

a2 = 2Rh. (2.4)

where R is the particle radius.
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Figure 2.6: Assumed geometry for initial stage of sintering. (a) For nondensifying mecha-
nisms and (b) for densifying mechanisms [2].

Applying diffusive fluxes between the two grains, kinetic equations are developed
both for the neck size and the indentation. Here, the expressions developed by Coblenz:
[34], as a correction of the original Coble results, are presented. These equations are
obtained when grain boundary diffusion is the controlling mechanism:

(
a

R

)6
= 192 t

τg

(2.5)

(
h

R

)3

= 3 t
τg

(2.6)

where τg = kbT R4

δGBDGBΩγS
is an important characteristic time that introduces the Boltz-

mann constant kb, the temperature T , the grain boundary thickness δGB, the grain
boundary diffusivity DGB, the atomic volume Ω and the surface energy γS.

As summed up by Rahaman [2], a general expression for consolidation and shrinkage
during the first stage can be written as:

(
a

R

)n

= K

Rn−m
t (2.7)

(
h

R

)n/2

= − K

2nRn−m
t (2.8)

where m and n depend on the sintering mechanism and K is a function of the geo-
metrical and material parameters of the powder and of the sintering temperature. The
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above equations simply point to some basic aspects of sintering: the importance of
temperature (via the diffusivity), and of grain size in the kinetics of sintering.

Figure 2.7: Coble’s geometry for (a) intermediate stage and (b) for final stage [35].

For intermediate stage, Coble [31] proposed a tetrakaidecahedral shape to emulate
the consolidated grains and cylinders on its edges. This is to account for the open
porosity as shown in the Fig. 2.7a. While for the final stage, the closed porosity is
represented as spheres on the corners of the tetrakaidecahedral (Fig. 2.7b). The rate of
porosity change can be calculated and consequently the relative density rate (dD/dt).
Eq. (2.9) shows a general density rate expression [35]:

1
D

dD
dt = K1

(1 −D)k

GmD
(2.9)

where K1 depends on the material parameters and G is the grain size. The densification
rate depends on the grain size and hence is influenced by grain growth.

Regarding grain growth, the first theoretical analyses were developed in the absence
of pores by Mullins [36] and Hillert [10]. Later, several studies deduced expressions for
different mechanisms of grain growth from the consideration of pores (see for instance
Riedel and Svoboda [37]). A more recent study [38] proposes new analytical equations
for mechanisms present in the solid-state sintering of ceramics. Eq. (2.10) shows a
general grain growth rate at final stage sintering [35]:

1
G

dG
dt = K2

1
Gn(1 −D)l

(2.10)

where K2 depends on the material parameters and l is an exponent dependent on the
grain growth mechanism. This equation is valid when pores and grains are uniformly
distributed and when there is no separation of pores from the grain boundary [11]. A
more comprehensive review of analytical models can be found in [39].
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Finite Difference Method

Instead of solving analytically the diffusive fluxes in fixed simple geometries, another
solution is to use numerical tools in order to track the evolution of grain shape. One of
the tools is the Finite Difference Method (FDM). Starting more than 50 years ago, re-
searchers have used FDM to study the sintering between two initially spherical particles
[40]–[45]. These particles change their curvature depending on the diffusive fluxes.

Bouvard and McMeeking [43] developed a FDM model for the deformation of the
particle neck by grain boundary diffusion, surface diffusion and an additional stress
(tensile or compressive) acting on the junction. They analyzed the influence of the
dihedral angle and of the diffusivities ratio ξ = δGBDGB/δSDS, where δGB is the grain
boundary thickness and δS the thickness of the surface diffusion layer. The numerical
results were fitted to an expression that takes the form of the Coblenz Eqs. (2.5) and
(2.6). The resulting formula relates the shrinkage rate with the neck size and the neck
stress:

dh
dt = α∆GB

a4 RγS − β∆GB

a2 σ (2.11)

where ∆GB = Ω
kbT

DGBδGB, σ the average stress on the neck and α, and β are parameters
of the model. β = 4 while α = 4.5 for ξ = 2, α = 3 for ξ = 0.2 and α = 2.5 for ξ = 0.02.

Later, Pan et al. [45] developed a FDM approach similar to the Bouvard and
McMeeking, but generalizing the problem to particles of different sizes. Likewise, they
fitted their results with the following equation:

dh
dt = 0.5

(
1 + rs

rl

)(
α∆GB

a4 rlγS − β∆GB

a2 σ

)
(2.12)

where rs and rl are the radii of the small and large particles, respectively. Eqs. (2.11)
and (2.12) are relevant as they give important information on the sintering between
two particles for a large range of shrinkage. This information will be used in DEM
(see Chapter 3). In particular, we will see that the introduction of an additional stress
term σ (on top of the free sintering term), allows for the derivation of a normal force
expression that is necessary in DEM simulations. The study of Pan et al. [45] also
presents a fitted expression for geometrically relating the indentation h and the neck
size a:

a2 = κ
[
0.5

(
1 + rs

rl

)]ζ

rlh (2.13)

where κ = 2.4 and ζ = 1.5 are fitted values. Unlike Coble equation (Eq. (2.4)),
Eq. (2.13)) is valid for particles of different sizes. In many studies, Coble expression
has been generalized to a2 = 4Reqh using the equivalent radius Req = rsrl/(rs + rl).
However, adapted Coble equation underestimates a for the same h, this effect is higher
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as the particle size ratio increases.
Finally, in a very recent FDM work, Weiner et al. [46] use non-spherical particles

as starting geometry, that are defined by a first-order wave function. The considered
mechanisms are grain boundary diffusion and surface diffusion. The simulations are
carried out for two particles. In a subsequent study [47], the same authors use their
model to compare results for spherical and non-spherical initial grains. They observed
clear differences on the neck size but minor ones on the shrinkage.

Discrete Element Method

Two-particle systems are somewhat limited to account for the behaviors observed in
real sintering packings. This is why, numerical methods able to work with packing
of particles were employed to model sintering. One of these methods is the Discrete
Element Method (DEM) initially developed by Cundall and Strack [48] to model the
mechanical behavior of granular materials (geomaterials). An advantage of DEM is
that it naturally accounts for the rearrangement of particles during sintering. Particle
rearrangement is an important feature that characterizes particulate systems. It was
observed experimentally by Petzow and Exner [49] on sintering copper particles ar-
ranged on a planar substrate. Since the end of the 90’s, DEM has been used to study
sintering at the particle scale for a large number of particles. The interaction among
particles is transmitted by normal and tangent forces. A detailed description of DEM
methodology is given in section 2.2.1. Here, we will limit the description of DEM to
the sintering force laws that are used in the simulations.

The model of Parhami and McMeeking [50] is, to the best of our knowledge, the first
DEM approach to study sintering by grain boundary and surface diffusion. However,
for historical interest it is also worth noting the paper of Soppe et al. from Netherlands
[51] who devised a program in 1994 for simulating dynamically the sintering of a 3D
random packing of 450 particles that integrates grain boundary diffusion and lattice
diffusion.

Unlike Cundall and Strack, the resolution of the mechanical equilibrium in [50] is
carried out with an implicit static numerical approach. The model was used for a 3D
simulation of 266 copper spheres. The expression for the magnitude of the normal force
was derived from the work of Bouvard and McMeeking [43] using Coble’s geometry [30]:

N = πa4

8∆GB

dh
dt − πγS

[
4R

(
1 − cos ψ2

)
+ a sin ψ2

]
(2.14)

where ψ is the dihedral angle. The first term on the RHS is a viscous resistance to the
particle relative motion, while the second term is the sintering attractive force.
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Later, Martin et al. [52] used Eq. (2.14) in their DEM model but allowing new
contacts or the loss of contacts thanks to an explicit numerical scheme. The DEM
employed here is more similar to the classical Cundall and Strack method. The simu-
lations were carried out for the first time for a large packing of 40 000 micronic copper
particles during free sintering. The results were compared with experimental data.
Almost in parallel, Henrich et al. [53] developed a DEM model for free and pressure-
assisted sintering. They used an expression for normal force from [54] and [55] that is
similar in its form to (2.14):

N = πa4

8∆GB

dh
dt + π2/3RγS

31/6 (1 − ϵ)2/3Y (ϵ, ψ) (2.15)

where Y (ϵ, ψ) is a polynomial function of the porosity ϵ and the dihedral angle ψ.
They also analyzed the influence of mass upscaling; this concept is discussed in section
2.2.1.1. Another similar function for the normal force can be deduced directly from
the Bouvard and McMeeking eq. (2.11):

N = πa4

8∆GB

dh
dt − α

4 πRγS (2.16)

The parameter α allows a direct influence of the surface diffusion mechanism.
While normal force accounts for consolidation and densification, Henrich et al. [53]

and Martin et al. [56] attempted to elucidate the importance of a tangential force that
opposes shear at the contact between particles. They observed that the tangential force
impacts directly the rearrangement of particles and thus the densification rate and the
propagation of cracks. A common expression for the magnitude of the tangential force
during sintering is [54], [57]:

T = −µv
πa2R2

8∆GB

dδt

dt (2.17)

where µv is a dimensionless viscous parameter. The tangential force is a viscous force
that opposes the tangential component of the relative velocity at the contact dδt

dt
. The

choice of the value of the dimensionless viscosity is not trivial, recently µv = 0.1 [58]
reported a good agreement with experiments for a simulation of densification and grain
growth of alumina. But other studies [53], [56] have used different values (from 0.01 to
0.5).

The models of Martin et al. [52] and Henrich et al. [53] were the basis for most of
the DEM subsequent studies. Eqs. (2.14), (2.15) or (2.16) or some generalizations have
been widely used in the DEM literature [59]–[67]. A slight modification was proposed
by Nosewicz et al. [63]. They added a viscoelastic component to the model (instead
of the purely viscous model of [52], [53]) for the first term of the normal force. This
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allows the possibility of using larger time steps. A very different approach is using Non-
Smooth Discrete Element Method as in S. Martin et al. [68]. It introduces an implicit
time integration and indentation among particles is not allowed. The authors reported
a more accurate rearrangement calculation when comparing with smooth/traditional
DEM owing to the fact that no mass upscaling is required with their approach.

Using DEM sintering models, the influence on sintering of the initial microstruc-
ture has been analyzed by studying the initial size distribution [60],[69], green density
[70] and coordination number [71]. The microstructure evolution was studied in the
presence of inclusions [72] [70], agglomerates [73] [70] and pore formers [70]. Likewise,
the anisotropy observed during some sintering processes was investigated [59], [74],
[75]. Pressure-assisted sintering has been also considered [53], [63]. The constrained
sintering case was considered in some works [61], [76], [77]. The defect formation and
evolution were also evaluated extensively [53], [56], [70], [77]–[79]. For example, Fig.
2.8 [77] shows a good agreement of the crack propagation between experiments and
DEM simulations for the sintering of thin films with cylindrical cavity. DEM allowed
to conclude that micro fractures existing before sintering can be the cause for the
formation of macroscopic cracks, that evolve from the cavity during sintering. The
sintering of composite powders was also modeled [72], [80]–[83]. Tomographic images
were used to validate the results [80], [84] and to use as initial microstructure in DEM
[74], [85]. DEM can also be used to calculate the mechanical properties of partially
sintered bodies [86]–[89].

Generally, the sintering models are performed at isothermal conditions, Teixeira
et al. [90] considered the heating ramp and also heat transfer among the particles.
A model of thermal conductance for DEM was proposed recently [91]. A quite new
interesting study [92] coupled DEM and FDM in the modelling of initial stage sintering.
The idea was to solve the issue that the empirical eq. (2.11) was originally fitted for a
fixed ratio ξ. But the ratio can change with temperature, so this new model can allow
to perform more accurate DEM simulations of non-isothermal sintering.

Grain growth has not been well studied with DEM. Simple models with no realistic
driven force was proposed in [52] and in [59]. A new realistic DEM grain growth model
is proposed in Chapter 3. In addition, to the best of my knowledge, all the reviewed
DEM models consider always sphere particles. A model for sintering of particles with
initially arbitrary shape is proposed in chapter 5.

Phase-Field

Another class of models at the grain scale is the phase-field approach. This method
has been widely used in literature for modeling sintering [93]–[110] of porous and poly-
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Figure 2.8: Crack propagation in experiments (top), DEM without initial crack (middle)
and DEM with initial crack [77].

crystalline systems.

The method allows the motion of grain interfaces by reducing the total free energy
driven by diffusion and structural relaxation [107]. In other words, the grains shape is
not constrained to remain the same along time. Instead of re-meshing as in other meth-
ods, the phase-field uses fixed grid points and track implicitly the moving interfaces
[106]. In order to account for the rigid-body motion, some authors include an advection
term in the evolution equations. Also, there is a model that couples phase-field with
DEM [111]. Some works also treat grain growth [100], [104], [106]. As the geometry
evolution is very accurate, the computational time for phase-field is high. Therefore,
many models were developed for a limited number of particles and restricted to 2D.
Recently, Termuhlen et al. [106] developed a 3D phase-field simulation including rigid-
body motion and grain growth. Using large computational resources, they were able to
simulate up to 3 000 particles. Fig. 2.9 shows the microstructural evolution and shape
change of a packing of particles (initially spherical). Recently, phase-field formulations
for pressure-assisted sintering have also been proposed [104], [109]. For this end, the
latter uses a fully coupled mechano-diffusional phase-field model.
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Figure 2.9: Sintering structure evolution from a phase-field simulation. [106]

Kinetic Monte Carlo

Kinetic Monte Carlo (kMC) is another common method for modeling sintering [112]–
[124]. The microstructure is represented in a voxel grid, where each voxel can represent
solid or void. As in other methods, the objective is to minimize the total interfacial
free energy. It is calculated straightforwardly by the number of distinct neighbors for
a given voxel. The microstructure evolution is dictated by a series of kMC processes.
Each kMC process represents a physical process, such as: grain and pore growth,
pore migration and vacancy annihilation and formation. Each process is randomly
chosen in a random voxel. If the energy decreases, the process is directly accepted
else the process is accepted with a given probability [123]. This description allows
a complex variation of grains and pores shape. The simulations are performed in a
non-dimensional framework. In order to obtain real values, it is necessary to find scale
factors, for instance for: the time, grain growth and temperature [115]. There is one
study on constrained sintering [119], while we did not find any kMC treating pressure
assisted sintering.
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Surface Evolver

Wakai and his colleagues have extensively used the surface evolver approach to simu-
late sintering [125]–[132]. Here, the particles are meshed and the velocity of the vertex
depends on its curvature. The surface evolver can be classified as a Front Tracking
Method with discretization. These authors have considered several mechanisms of dif-
fusion: grain boundary, surface and evaporation-condensation. Grain growth [126] and
recently rigid-body motion have been implemented [132]. The same method was also
used for the simulation of nanoparticles [133]. The description of the diffusion processes
is very accurate. Nevertheless, the high computational cost limits the simulations to
only a few particles. Finally at the grain scale, Bruchon et al. [134] used the finite
element method to study sintering by surface and lattice diffusion in 2D up to 82 grains.

Differences have been found when comparing models at the atomistic scale and
at the grain scale. One cause can be the faceted nature of the nanocrystals against
the smooth crystals assumed by analytical sintering theories [21]. In addition, Ding
et al. [14] compared MD results with finite element simulations at the particle scale
for two nanograins. They concluded that nano-powders can behave in many different
scenarios that the FEM cannot detect. The first observation was that at the beginning
of sintering, one particle can reorient causing the elimination of the grain boundary
with a particle, while the grain boundary with another particle is preserved. This
results in different rates and mechanisms for the growth of different necks. Another
interesting scenario observed is the switch of the sintering mechanism along the process
for a given neck.

2.1.2.3 Component scale

The methods discussed in previous sections are crucial for understanding the mecha-
nisms of sintering. Nevertheless, it is useful for practical and industrial applications
to have models at the scale of the real sintered parts. Commonly, the finite element
method (FEM) is used for this task. An example is given in Fig. 2.10 [4] for the
sintering of an inverted T part. The initial height was 30cm and after sintering the
part was 19cm high. The predicted part is reasonable when comparing with the real
sintered part.

This type of modeling is based on continuum mechanics and allows to study the
influence of macroscopic factors on sintering. Basically, it calculates the response of a
sintering part to a given general state of stress. The sintering body is modeled as a
visco-plastic material [11]. A constitutive law relates the stress and the strain rate.

The continuum theory of sintering had its origin in the early 1970s. The idea was
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Figure 2.10: Finite element simulation of the sintering of an inverted T part. [4]

to treat the diffusion process in sintering as a creep process [135]. As reviewed by
Bordia et al. [11], the most well-known model of continuum sintering was developed
by Olevsky [136]. The isotropic constitutive law for linear viscous materials in the
principal coordinate system is given by [11]:

ϵ̇i = ϵ̇f +
(

1
Ep

)
(σi − νp (σj + σk)) (2.18)

where the strain rate ϵ̇i is a function of the principal stresses σi, σj, σk. The free
sintering rate ϵ̇f and the two constitutive parameters, i.e., the uniaxial viscosity Ep

and the viscous Poisson’s ratio νp, are needed. Depending on the complexity of the
model, these parameters may be written as functions of the local relative density, of
the grain size, pore size, size distributions, etc...

More recently, anisotropic laws were proposed [137], [138] to investigate the anisotropic
shrinkage observed during the sintering of powders pre-compacted with uniaxial load-
ing. They concluded that the pre-sintering cold compaction is the main cause for
the anisotropy. The continuum theory of sintering has been applied to free sintering
[139], [140], pressure-assisted sintering [141]–[143], constrained sintering [144], [145],
composites [146]–[148], multilayers [149], [150] and reaction sintering [151]. One of
the main challenges of this approach is to estimate the constitutive parameters. For
isotropic conditions, these parameters can be obtained experimentally. For example,
by using stairway heating cycles with samples of different green densities [140]. On
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the other hand, this approach is challenging for estimating the anisotropic constitutive
parameters. A prominent solution to this is the multi-scale simulation [11].

2.1.2.4 Multiscale

A more complete understanding of the sintering phenomena might be reached with a
multiscale modeling. Two approaches are possible [11]: determine the parameters at a
small scale for use in a simulation at a larger scale, or the large-scale simulation itself
composed of small-scale simulators.

Regarding the first approach, Olevsky et al. [152] used a 2D kinetic Monte Carlo
method to determine the constitutive parameters to be used in a 3D macroscopic finite
element model of sintering. Their kMC simulations calculated the sintering stress and
the bulk viscosity. Using a similar approach, Nosewicz and his team [153], [154] pro-
posed a multiscale method with three levels. These authors used a Molecular Dynamics
model to calculate the grain boundary diffusivity, that will be used in the discrete ele-
ment method. Then, the DEM model was used to find the values of the viscous moduli,
that is used in the continuum model.

Concerning the second approach, Maximenko et al. [155] and Molla et al. [156]
proposed a finite element method composed of kMC mesoscale simulators. Fig. 2.11a)
shows the schematic of how both scales are coupled. The microstructural evolution of
the sintering of a bi-layer part is shown in Fig. 2.11b). Fig.2.11c) shows the stress
on the final distorsed system. For future works, DEM could be used to calculated the
anisotropic constitutive parameters that are needed for the continuum model. [11]

2.2 Discrete element methods

2.2.1 Classic discrete element method (DEM)

By classic discrete element method, we mean the discrete element method that uses
spheres as discrete elements. This is in contrast with the level-sets method that can
be used in conjunction with DEM and that will be described in section 2.2.2. Also, in
the following sections, we will describe the DEM by describing general techniques from
the literature. However, we often specialize this description to techniques used in the
in-house code dp3D that will be involved in this work.

2.2.1.1 General description

The discrete or distinct element method (DEM) studies the dynamic interaction of
individual particles. Cundall and Strack [48] proposed this method using the so-called
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Figure 2.11: Multiscale simulation of the sintering of a bi-layer porous structure. [156]

soft-sphere approach [157]. In this approach, the particles are geometrical objects
invariant in shape but that are allowed to overlap. This overlap models a possible
deformation and it will determine the force magnitude. The translation and rotation
of each particle is given by Newton’s second law of motion. For simplicity, spherical
particles are generally considered. The contact force is calculated for a pair of particles
in contact and generally is considered independent of the presence of other neighboring
contacts (pair interactions). The force between two particles i and j is decomposed in
a tangential and normal components:

F⃗ij = N⃗ij + T⃗ij (2.19)

A sketch of two particles i and j in DEM is shown in Fig. 2.12. l⃗ij is the branch vector
connecting the two particle centers x⃗i and x⃗i, while h is the indentation.

The general expressions for the position x⃗i and the angular displacement θ⃗i of any
particle i with contact forces F⃗ij and external body force F⃗b,i (gravity, magnetic field,
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Figure 2.12: A general pair of particles in DEM.

etc.) are given by:
mi
⃗̈xi =

∑
F⃗ij + F⃗b,i (2.20)

Ii
⃗̈θi =

∑
M⃗ij (2.21)

wheremi and Ii are the particle mass and moment of inertia and M⃗ij the torque between
two particles. The rotation equation takes this simple expression for 2D analysis or for
spherical particles in 3D [158]. The simplicity of the equations allows to model millions
of particles in many applications. From an initial state, the packing of particles will
evolve iteratively depending on the phenomena described by the laws of the normal and
tangent forces. At each time step, a sequence of operations is performed as showing in
Fig. 2.13. The main steps are explained in the next sections.

2.2.1.2 Contact detection

One of the main tasks of a DEM code is to determine the list of contacts that need to
be treated in Eq. (2.20). The detection is simply carried out by comparing the center-
to-center distance to the sum of radii: the contact exists if ||x⃗i − x⃗j|| < ri + rj, where
x⃗ and r are the center position and the radius of a particle, respectively. The easiest
implementation is to apply it at every time step for all the particle pairs. However,
this crude implementation would result in a waste of CPU time.

It is possible to filter the pairs in order to search contacts only within nearby
particles. Those form the so-called list of potential contacts or Verlet list. Because the

28



CHAPTER 2. LITERATURE REVIEW AND METHODS

Start of time step

Contact detection

Contact calculation

Summation of forces

Calculation of accelerations

New position and rotation

End of time step

Figure 2.13: DEM main steps during one time iteration.

list includes potential contacts, it does not need to be actualized at each time step,
thus saving CPU time. To include a contact in the list, the basic idea is to use the
geometrical relation above, with the addition of a "radius" s. The condition is given
by the following relation [159]:

||x⃗i − x⃗j|| < ri + rj + s (2.22)

where s is called the Verlet parameter. It may also take an alternative but similar
form:

||x⃗i − x⃗j|| < α (ri + rj) (2.23)

where α > 1. The number of time steps for which the Verlet list remains valid (Nverlet)
can be estimated conservatively based on the Verlet parameter s and assuming a con-
stant time step and a maximum particle velocity vmax [159]:

Nverlet = s

2vmax∆t (2.24)

or if using Eq. 2.23:
Nverlet = (α− 1) 2rmin

vmax∆t (2.25)

where rmin is the minimum particle radius in the packing.
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The above method can be complemented by the linked-cell method [160] to build
the list of potential contacts. The method creates a uniform grid with a cell size equal
to the diameter of the largest particle in the packing. The list is built by considering
only the discrete objects in the same cell and in the surrounding cells.

The linked-cell method is not effective for packings with a large size distribution,
which is the case of our sintering powders. Building a hierarchical grid with different
cell sizes is a class of methods to address spheres with dispersed size. Ogarko and
Luding [161] proposed a fast hierarchical contact detection method. The algorithm
has two stages: a mapping phase followed by a contact detection phase. In the first
stage, L uniform grids are created, each one with independent different cell size. The
levels are ordered from the smallest to the largest cell size. For every particle, the
lower level that has a cell size equal or greater than the particles size is called its level
of insertion. An advantage of this algorithm is that the authors proposed an optimal
way for estimating the number of levels L and the cell size of each level depending on
the size distribution of the packing. The main idea is to keep constant the number of
particles per cell for all the levels. A detailed explanation can be found in [162].

In the second stage, there are two main steps. First, the contact detection is
performed for particles in the same level, where the linked-cell method can be used.
Then, the search is performed between different levels (cross-level search) as sketched
in Fig. 2.14. The figure shows a bimodal packing with two grid levels, each one
with cell size equal to the size of its corresponding particle. The cross-level search
is performed between a given particle and lower levels. In the example, a search for
potential contacts among the large particle B and the small particles A is carried out.
Based on the size of the particle B and on the cell size of its level of insertion, a search
region is built around it (gray box in Fig.2.14). Finally, the contact is tested among
the particle B and particles A that have their centers inside the search region. Those
particles A are shown in green.

2.2.1.3 Contact calculation

Once the contacts have been detected, the total force at each contact is calculated.
The nature of the force law depends on the physics of the contact. Some possibilities
are: elasticity, plasticity, elasticity with adhesion, bonding, fracture, sintering, where
the latter is the focus of this work. The force at each contact has a normal and a
tangential component (Eq. (2.19)). The normal component N⃗ij direction is given by
the vector x⃗i−x⃗j

||x⃗i−x⃗j || . The amplitude of the normal component depends mainly on the
indentation that is calculated in the contact detection stage.

The tangential component that represents frictional forces can simply be modeled
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Figure 2.14: Multilevel contact detection. [161]

through a Coulomb law. Its direction may oppose the relative shear velocity of the two
particles or may depend on the total displacement integrated from the initial contact
[163], [164].

2.2.1.4 Time integration

In order to know the new position and rotation of each particle, it is necessary to
integrate equations (2.20)-(2.21) with respect to time. The integration in the DEM
soft-sphere approach is performed numerically using an explicit scheme. Mainly three
classes of numerical schemes are used: one-step, multi-step and predictor-corrector.
The velocity Verlet algorithm described hereafter is a one-step algorithm commonly
used in DEM. A description and comparison of the different integration schemes can
be found in [165].

The velocity Verlet algorithm is a central difference scheme that has been used since
the proposition of DEM by Cundall and Strack [48]. A common implementation of this
method is detailed below for a particle i at each time step:

1. The velocity is calculated at the half step:
⃗̇xi

(
t+ 1

2∆t
)

= ⃗̇xi(t) + 1
2
⃗̈xi (t) ∆t

2. The new position is calculated using the velocity calculated in step 1:
x⃗i (t+ ∆t) = x⃗i(t) + ⃗̇xi

(
t+ 1

2∆t
)

∆t

3. The new acceleration ⃗̈xi (t+ ∆t) is calculated using the second law of Newton
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4. The new velocity is calculated using the new acceleration and the velocity at the
half-step:
⃗̇xi (t+ ∆t) = ⃗̇xi

(
t+ 1

2∆t
)

+ 1
2
⃗̈xi (t+ ∆t) ∆t.

2.2.1.5 Quasi-static analysis and time step calculation

A special case of dynamic systems is the quasi-static regime, that occurs when the
system evolves as a series of equilibrium states. The inertia number IN is a very useful
parameter to identify if the system is quasi-static and is given by [166]:

IN = ϵ̇

√
m

PG
(2.26)

where ϵ̇ is a characteristic strain rate, m the mass of the particle, P the confinement
pressure and G the particle size. This dimensionless number represents the ratio of two
time scales: the inertial time over the shear time. In a quasi-static system, the inertial
effects can be neglected, that is, when the inertial number is small. This definition is
quite important in the DEM context as the timestep in quasi-static simulations can be
significantly increased. To give an example, let’s consider a two-mass spring system,
the critical time step to ensure numerical stability is [63]:

∆tc =
√

2
√
m

kn

(2.27)

where kn is the contact stiffness. In practice, for a DEM simulation a safety factor ft

of the order of 0.01 to 0.1 is used to determine the timestep: ∆t = ft

√
m
kn

. In quasi-
static simulations, the time step can be increased (gain in CPU time) by increasing
artificially the mass (the so-called mass upscaling) without consequences in the result
if IN is small enough (typically IN < 10−3).

An alternative to the inertia number, which is useful when the macroscopic pressure
P is very small (typically the case of sintering) is the normalized kinetic energy, defined
as [167]:

Ẽc = Ec

nmax (NR) (2.28)

where Ec is the kinetic energy of the packing (taking into account translation and
rotation), max (NR) is the maximum of the product of contact force and particle radius
in the packing, and n is the number of particles in the packing. Agnolin and Roux
propose that Ẽc = 1.E−08 − 1.E−07 is a good range of values for ensuring quasi-static
conditions.
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2.2.1.6 Boundary conditions

The most direct representation of boundary conditions in the simulation domain is to
include the walls or free surfaces present in the real experiment. On the other hand,
in most cases, it is not computationally feasible to run the same number of particles
as in the experiment. In those cases, it is more effective to use a representative volume
of particles with periodic boundary conditions as sketched in Fig. 2.15 for a periodic
box of length L.

Figure 2.15: Periodic conditions. Particle i is in contact with particle j through the period-
icity.

2.2.1.7 Stress calculation

The macroscopic stress tensor on the packing Σpq can be calculated using the Love’s
formula (originally derived by Dantu) [168], [169]:

Σpq = 1
V

contacts∑
1

(Nnp + Ttp) lij,q (2.29)

where V is the volume of the periodic simulation box (or of the volume of considera-
tion for the contact summation), np and tp the pth component of the normal and the
tangential vector and lij,q is the qth component of the branch vector between particles
i and j.

2.2.1.8 DEM simulation of sintering in dp3D

The above sections have briefly described the main necessary ingredients of a DEM
simulation. In this section, we describe the special features of DEM simulations for
sintering. In particular, we describe the methodology employed for sintering in the
in-house code dp3D, which is used all along this work. Sintering can be considered as
a quasi-static process, with negligible inertia effects.
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For free sintering, the macroscopic stress on the packing of particles should be
close to zero. A characteristic stress in sintering is the so-called sintering stress: γs

R
,

where γs is the surface energy (J.m−2), and R is a characteristic length (the radius
of the spherical particles). In dp3D, a very small compressive macroscopic pressure is
sought for to ensure numerical stability. This compressive macroscopic pressure is set
to P0 = 0.004 × γs

R
. At each timestep, the three principal stresses computed by Eq.

(2.29) are compared to P0. Using a scheme similar to the one proposed in [53], the error
between the sought stress and the actual stress is used to compute the macroscopic
strain-rate ϵ̇pp to be applied to the periodic box at the next time step in the direction
p:

ϵ̇pp (t+ ∆t) = ϵ̇pp (t) + Σpp − P0

P0

∆t
η

(2.30)

where η is an empirical numerical constant. With this scheme, the pressure P0 is
obtained after a few thousand time steps.

Following the methodology proposed by Thornton and Antony [170], the centers
of all spheres in the periodic box move at the start of the timestep according to the
macroscopic strain-rate calculated from Eq. (2.30). This is the so-called affine solution
as though they are points in a continuum:

∆xp = ϵ̇ppxp∆t (2.31)

Once this affine displacement is imposed, contacts are sought for, and the Verlet algo-
rithm is applied to obtain an additional ∆xp for all particles to approach the quasi-static
equilibrium (Fig. 2.13).

The time step for sintering is not obtained as in elasticity through Eq. (2.27).
Instead, it is simply given by:

∆t = ϵmax

max (ϵ̇i)
(2.32)

where ϵmax is the maximum characteristic indentation (set to 10−5) that is permitted
during a time step to ensure stability in the velocity Verlet algorithm. With this
scheme, the time step may gradually increase as the densification rate decreases upon
sintering. This time step may be reduced if the error Σii−P0

P0
becomes too large.

2.2.2 Level-set discrete element method (LS-DEM)

Here the original LS-DEM method proposed by Kawamoto et al. [171] is described.
Some improvements proposed in this work or by other authors in the literature are
detailed in Chapter 5. The general methodology originally proposed by the team of
Prof. Andrade (in collaboration with laboratory 3SR at Univ. Grenoble Alpes) has
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been used to study triaxial tests with an initial packing configuration that originates
from X-ray tomography images [171], predicting shear banding [172], investigating the
effect of brittle breakage of particles [173], and the effect of particle bonding [174]. All
these studies focused on granular materials for geomechanics applications.

2.2.2.1 General description

The LS-DEM combines the dynamic behavior of particles of the classical DEM and the
shape description using the Level-Set method. The shape of particles can be arbitrary,
but remains constant along the simulation. The level-set is a scalar function that
computes the signed distance of a point to an interface. In our context, the interface is
the particle surface. The level-set is zero for any point on the particle surface, negative
inside the particle and positive outside the particle. More detailed information on the
concepts of Level-Sets and its use in other domains can be found in [175], [176].

A Cartesian local uniform grid is built around each particle with grid size ∆l in all
direction. The first step is to assess the level-set values at the grid points as shown
in Fig. 2.16a. The level-set can be computed analytically from the equation of a 3D
shape or obtained from tomography images of a packing of particles. The latter is one
of the main advantages of LS-DEM, as it allows to use real arbitrary particle shapes.
In that case, it only needs a distance field in order to describe the shape of particles.

Figure 2.16: Level-set calculation. Adapted from [171].

It is necessary to know the level-set value ϕ(p) at any point p (x, y, z) inside or
around the particle. A trilinear interpolation is used based on the known level-set
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values ϕabc of grid points around the point p:

ϕ(p) =
1∑

a=0

1∑
b=0

1∑
c=0

ϕabc [(1 − a) (1 − x) + ax] [(1 − b) (1 − y) + by] [(1 − c) (1 − z) + cz]

(2.33)
The parameters a, b, c can be 0 or 1, where the combination represents the 8 grid points
around any point p. The interpolation allows to have the level-set values at any point
around the particle (Fig. 2.16b). In practice, just a few points p are evaluated on-
demand by the contact detection algorithm (see next section 2.2.2.2). If desired, the
particle surface can be reconstructed by determining the points that fulfill the condition
ϕ = 0 (Fig. 2.16c). By differentiating Eq. (2.33), an expression for the gradient of the
level-set ∇ϕ(p) is obtained. It will be used in the contact detection stage as well.

As already commented, LS-DEM follows the same dynamic approach of DEM,
which means that the DEM main stages showed in Fig. 2.13 are also applied here.
Nevertheless, non-spherical particles make that different approaches are adopted mainly
in the contact detection and contact calculation stages. This is shown in the next
sections, as well as the calculation of inertial properties that must be adapted for
arbitrary particle shapes.

2.2.2.2 Contact detection

The contact detection of arbitrary shape particles is more challenging and with higher
computational cost than the one for spheres. The basic idea in LS-DEM is to create
boundary nodes on the particle surface and check if any node is inside the other particle.
Fig. 2.17 shows a general case of two particles that may or may not be in contact.

Figure 2.17: Contact detection in LS-DEM. Particle 1 is the master particle. It carries nodes
that are used to check contact with slave particle 2.
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The level-set values of each particle ϕ1, ϕ2 are already known inside the particle
and in its surroundings. Uniform nodes (red dots in Fig. 2.17) are created on the
surface of the so-called master particle (particle 1). The level set of the slave particle
(2) is calculated at each boundary node of particle 1. If at least one of these nodes has
a ϕ2 < 0 value, it means that the node of particle 1 is inside particle 2, i.e., there is
contact. In figure 2.17, a contact is detected at two nodes (bn∗

1, bn
∗
2) on particle 1 as

they fulfill the condition ϕ2 < 0. For a pair of particles with a detected contact, the
parameters of the contact are calculated as detailed in the next section.

2.2.2.3 Contact calculation

Unlike spheres in classical DEM, LS-DEM allows to have more than one contact point
between a contact pair ij. The number of contact points depends on the number cp
of boundary nodes of particle i inside the particle j. The indentation and the normal
at the contact are calculated at each contact point. LS-DEM adopts a node-to-surface
approach, i.e., the contact properties of the boundary nodes in i are calculated in
relation to the surface of particle j. The indentation and the unit normal vector at a
contact point (bnp

i ) on particle i are given respectively by:

hp
j,i = ϕj (bnp

i ) (2.34)

n⃗p
j,i = ∇ϕj (bnp

i )
||∇ϕj (bnp

i ) ||
(2.35)

The contact calculation is thus relatively fast as it only requires the computation of
level-set and gradient values.

The normal and tangential forces are calculated at each contact point with the
same expressions as those used in classic DEM. Then the total force at the contact ij
is obtained by summing the forces at every contact point between the two particles:

F⃗ij =
cp∑

p=1

(
N⃗p

ij + T⃗ p
ij

)
(2.36)

Different ways of computing this total force at the contact, such as taking the average
or maximum indentation, are discussed and compared in [177].

2.2.2.4 Calculation of inertial properties

In order to calculate the new positions and rotations in DEM, the inertial particle
properties (mass, moment of inertia and center of mass) are needed. The same applies
for LS-DEM, however the calculation of these properties for arbitrary shape particles
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is not as trivial and needs the local grid of each particle. All points of the grid are
defined by a negative (inside the particle) or positive (outside) level-set function ϕ. A
smoothed Heaviside function H(ϕ) of the level-set value may be defined as:

H(ϕ) =



0 ifϕ < −ϵH

1
2

1 + ϕ
ϵH

+
sin

(
πϕ
ϵH

)
π

 if − ϵH < ϕ < ϵH

1 ifϕ > ϵH

(2.37)

where ϵH is the Heaviside parameter that smooths the function near the surface of the
particle. The Heaviside function H(−ϕ) may be seen as a weight function that equals
1 inside the particle and vanishes rapidly outside. The summation of this function
for each point of the grid (xi, yj, zk) is used for calculating all the necessary inertial
properties. The particle mass is given by:

m = ρ∆l3
I∑

i=1

J∑
j=1

K∑
k=1

H(−ϕ(xi, yj, zk)) (2.38)

where I,J ,K are the number of grid points in each direction. Eq. (2.38) shows that m
is proportional to the mass of a grid cell ρ∆l3, where ρ is the particle density. Similarly,
the center of mass is estimated by:

cx = ρ∆l3
m

I∑
i=1

J∑
j=1

K∑
k=1

H(−ϕ(xi, yj, zk))xi

cy = ρ∆l3
m

I∑
i=1

J∑
j=1

K∑
k=1

H(−ϕ(xi, yj, zk))yj

cz = ρ∆l3
m

I∑
i=1

J∑
j=1

K∑
k=1

H(−ϕ(xi, yj, zk))zk

(2.39)
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And the moment of inertia tensor is given by:

I11 = ρ∆l3
I∑

i=1

J∑
j=1

K∑
k=1

H(−ϕ(xi, yj, zk))
[
(yj − cy)2 + (zk − cz)2

]

I22 = ρ∆l3
I∑

i=1

J∑
j=1

K∑
k=1

H(−ϕ(xi, yj, zk))
[
(xi − cx)2 + (zk − cz)2

]

I33 = ρ∆l3
I∑

i=1

J∑
j=1

K∑
k=1

H(−ϕ(xi, yj, zk))
[
(xi − cx)2 + (yj − cy)2

]

I12 = I21 = −ρ∆l3
I∑

i=1

J∑
j=1

K∑
k=1

H(−ϕ(xi, yj, zk)) [(xi − cx)(yj − cy)]

I13 = I31 = −ρ∆l3
I∑

i=1

J∑
j=1

K∑
k=1

H(−ϕ(xi, yj, zk)) [(xi − cx)(zk − cz)]

I23 = I32 = −ρ∆l3
I∑

i=1

J∑
j=1

K∑
k=1

H(−ϕ(xi, yj, zk)) [(yj − cy)(zk − cz)]

(2.40)
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2.3 Conclusion

Sintering is a high temperature manufacturing process, where consolidation, densi-
fication and grain growth interact. The investigation from the atomistic sintering
mechanisms to the full sintered component is a multi-scale task. Efforts have been un-
dertaken with a variety of numerical methods at different scales for modeling sintering.
Among them, the discrete element method represents particles in a straightforward
form, which allows the study of packings with large number of particles. It has been
applied to investigate different sintering conditions. However, a realistic description of
grain growth is lacking. A new realistic DEM model of sintering is presented in the
next chapter (chapter 3). This will expand the grain growth scenarios that can be
examined for large packings and that are difficult to tackle with theoretical models.
Some of them are the influence of the size distribution, non-isothermal conditions, sin-
tering of composites and constrained sintering. Another aspect that can be improved
in DEM models is the description of the particle shape, which until now is spherical for
sintering simulations. Mainly phase-field, surface evolver and finite difference methods
have been used to describe in detail the evolution of particle shape during sintering.
Kinetic Monte Carlo also stands out for the ability of allowing shape evolution consid-
ering different microstructural aspects. However, here the aim is to remain in the DEM
framework to be able to simulate large packings and in a dimensional domain unlike
kMC. The LS-DEM approach seems a prominent method as it captures arbitrary shape
particles preserving the general methodology of DEM. Chapter 5 presents a LS-DEM
model for sintering with an alternative contact detection scheme as compared to the
original LS-DEM reviewed in the present chapter. Chapter 5 also reviews the context
of LS-DEM and other methods in DEM for modeling non-spherical particles.
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Chapter 3

Grain growth model
This chapter introduces the grain growth model developed within the DEM code dp3D.
The validation of the model and its application to the isothermal sintering of a micronic
alumina powder is discussed. This is presented as a scientific article entitled Grain
growth in sintering: A discrete element model on large packings published in Acta
Materialia in July 2021 [1]. The article is reported as published, with Supplementary
Information (SI) included in Appendix A and supplementary videos in v1 and v2.

Chapter 2 discussed the relevance of grain growth in sintering and the competition
with densification. However as also examined, realistic grain growth DEM models lack
in the literature. From this arose the first objective of this PhD thesis concerning the
development of a grain growth model within a discrete element framework. The model
must be simple enough to allow for large-scale computations and clear interpretation
of the results. The model must nevertheless be able to take into account the main in-
gredients of grain growth. The model is based on two mass transport mechanisms valid
for a variety of ceramics and metals: surface diffusion and grain boundary migration.

The previous chapter reviewed different formulas for the normal force and the neck
size evolution to model densification with DEM. These formulas, originally developed
for equal-size particles, were extended for non-monomodal packings by introducing
the equivalent radius concept. Due to the transfer of matter among particles arising
during grain growth, contacts between particles with very large size ratio may appear.
In that case, simply replacing the radius in equations by twice the equivalent radius
(Req = rirj

ri+rj
) of two particles with radii ri and rj is not anymore valid. More accurate

formulas, available in the literature, are used here for this type of contacts. Many
particles will disappear during grain growth, making it necessary to use a large number
of particles for the initial packing. The simple methodology of DEM explained in
chapter 2 allows to start here with very large packings of up to 400 000 particles.

A couple of models reviewed in chapter 2, such as the phase field model and the
surface evolution model, which have a more detailed description of the physics of sin-
tering, are used to validate the grain growth model for a two-particle system. The
simulation of the sintering of large packings are compared with experimental data.
The model shows the ability of studying the microstructural evolution caused by den-
sification and grain growth during conventional sintering. The application of the model
in more complex sintering scenarios will be investigated in chapter 4.
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CHAPTER 3. GRAIN GROWTH MODEL

Abstract

Sintering is a high temperature process used for ceramic or metallic powder consolida-
tion that consists of concurrent densification and grain growth. This work presents a
coupled solid-state sintering and grain growth model capable of studying large packings
of particles within the Discrete Element Method (DEM) framework. The approach uses
a refinement for large particle size ratios of previously established contact laws to model
shrinkage. In addition, mass transfer between neighboring particles is implemented to
model grain growth by surface diffusion and grain boundary migration. The model as-
sumptions are valid for initial and intermediate stage sintering. The model is validated
on a two-particle system by comparing neck and particle size evolutions with those
obtained by phase-field and meshed-based methods. Simulations on large packings (up
to 400 000 particles) with particle size distributions originating from experiments are
performed. The results of these simulations using physical data from the literature
are compared to experimental data with good accordance of the key features of the
microstructure evolution (densification kinetics, grain size-density trajectory, evolution
of the mean grain size and of the size distribution). The simulations show that even at
an early stage of sintering, hardly detectable grain growth actually affects the sintering
kinetics to a non-negligible extent and that the realism of DEM simulations of sintering
is improved when grain growth is considered. Taking advantage of the possibility to
simulate large packings, the model elucidates the influence of the initial particle size
distribution on the grain growth kinetics.

Keywords: sintering, grain growth, grain boundary migration, grain size distribu-
tion, discrete element method

3.1 Introduction

The sintering of metallic or ceramic powders is a high temperature process occurring
below the melting temperature. It leads to the consolidation of the powder by growing
necks between particles while generally decreasing the porosity of the packing [2]. The
fundamental driving force for sintering is the reduction of the interfacial energy of the
system, which, in addition to the reduction of the free surface, can result in grain
growth [3], [4]. For relatively dense powder compact (green density 0.5-0.6), grain
growth is mostly observed in the intermediate and final stages of sintering (typically
for relative density D > 0.8) and is driven by grain boundary migration, leading to
the coarsening of larger grains at the expense of the smaller ones and to an increase
of the average grain size Ḡ. Grain growth kinetics is classically described by a power
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law of the type Ḡn − Ḡn
0 ∝ t with Ḡ0 the initial grain size. Under the assumption of

grain growth by grain boundary (GB) migration the theoretical value of the exponent
n is 2 for a dense body [5] while for a body with closed porosity the growth is slower
due to the pinning of the grain boundaries by closed pores leading theoretically to
n = 3 for volume diffusion and n = 4 for surface diffusion [6]. Experimental data
on sintering confirms an exponential type law but with n generally close to 3 [4], [7].
Lange and Kellet [3] have described grain growth during sintering of porous compacts
with a broad particle size distribution by inter-particle mass transport followed by
GB migration. For a wide variety of ceramics and metals, surface diffusion is the most
relevant mechanisms of inter-particle mass transport [8], [9]. Lange and Kellet scenario
is in line with experimental observation: a linear grain size evolution with fractional
porosity at lower densities, followed by a non-linear evolution in the late stages of
sintering [4]. On the other hand, Bernard-Granger et al. have shown that a wide range
of experimental data on alumina is correctly described by a theoretical relationship
between Ḡ and the relative density D derived under the assumption of grain growth by
GB migration (1/Ḡ2 − 1/Ḡ2

0 ∝ D) in solid-state sintering, which tends to demonstrate
that GB migration is the dominant mechanism [10], [11].

The control of grain growth during sintering is an important topic as coarse mi-
crostructures are generally detrimental for material performance, in particular for me-
chanical properties. When the grain size distribution maintains the self-similarity pre-
dicted theoretically [5] the grain growth is referred to as normal but under specific
conditions a few large grains can exhibit very fast growth, giving rise to so-called
abnormal grain growth, characterized by a significant broadening of the grain size dis-
tribution. An explanation often provided is that large GB mobility appears locally
because of a non-uniform distribution of impurities or secondary phase [9]. Indeed,
the presence of secondary phase at a GB can influence positively or negatively its
mobility, a phenomenon that can also be advantageously used to limit grain growth
[4], [12], [13]. Recently, numerical modeling of sintering coupled with grain growth
have been proposed through finite difference method [14], Monte Carlo (MC) model
[15]–[19], phase field approach [20]–[25], finite element or meshed-based methods [26],
[27], Discrete Element Method (DEM) [28] or a combination of methods [29], [30].
Due to the complexity of the representation of the shape and of the physics of sin-
tering, these approaches are, with the exception of DEM, generally computationally
limited to a few particles, rarely a few hundreds, and often in 2D. Still, simulations
with relatively large number of particles have been performed using a Monte Carlo
model [15]–[19]. The advantage of such simulations is their capability to describe the
evolution of realistic microstructures with all the necessary kinetic processes that come
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with solid-state sintering. This type of simulation is able to provide useful information
on grain size evolution with density. However, in the MC method, model parameters
and time (Monte Carlo steps) may not have a clear physical meaning. In addition, MC
models are limited to free sintering [31].

Grain growth at the later stage of sintering has also been simulated with phase
field simulations on a relatively large 3D system by Rehn et al. [32], starting with
an initial configuration of small isolated pores at triple lines and quadruple junctions.
Recently, approaches have been proposed using initial random packings of spherical
particles [33], [34], where starting from an initial configuration typically obtained by
discrete simulations, the authors perform 3D phase field simulations with the main
diffusion mechanisms simulated (surface, grain boundary, and bulk diffusion). The
effect of rigid-body motion of individual particles may also be included [34]. In the
latter study, the authors were able to run simulations with about 3000 particles and up
to a final relative density of around 0.8. Although, the number of particles is already
a great improvement, it comes at the cost of massive CPU parallelization (120 CPUs)
and may not be sufficient as many grains disappear with coarsening at large relative
densities (typically above 0.70 relative density).

Thus, there is still a need for further improvement for numerical simulations that
operate at the particle scale to obtain valuable information on the microstructure
evolution. The evolution of size distribution, which would necessitate large number
of particles for statistics, or the influence of large defects have not been studied for
example. Indeed, it would be beneficial to have access to simulations that provide
such information with typically 10 times the number of particles and only a fraction of
the CPU cost, while retaining the main physical ingredients that govern sintering and
grain growth. For example, starting with several tens of thousands of particles would
allow for a statistically representative size distribution even at large densities where
the number of particles may have decreased down to less than a thousand.

In this context, following the initial work of Parhami and McMeeking [35], Martin
et al. [28] have used DEM [36] to model sintering of tens of thousands of particles.
Nevertheless, most sintering investigations based on DEM [35], [37]–[42] do not take
into account grain growth and coarsening of particles. To our best knowledge, only one
DEM study [28] includes a crude model of grain growth that does not consider realistic
driving forces at the scale of individual particles. Still, grain growth should be included
in large-scale simulations as coarsening and sintering are intimately linked and grain
growth affects sintering kinetics [3]. Even in the early stage of sintering, the realism
of DEM simulations can benefit from the addition of a physically based grain growth
model. Also, DEM provides a natural mean to introduce realistic initial packing with
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size distribution [42]–[45]. For packings with size distribution, sintering contact models
that handle particles of different sizes are necessary. Whereas most DEM simulations
deal with equal size particles [28], [37], [38], [46] or use an equivalent radius by analogy
with elastic and plastic contact theories [38], [40], [42], [43], it is necessary to introduce
more realistic models for unequal size particles with large size ratios. Pan et al. [14]
proposed such a description based on numerical simulations at the scale of individual
particles, but to our best knowledge no DEM simulation has yet introduced this type
of model.

The aim of this work is thus to propose a discrete model of the sintering of a packing
of particles under equilibrated sintering forces coupled with a grain growth model for
particles of different sizes. The model, applied at the particle scale, should be suffi-
ciently realistic to agree with state-of-the-art phase field simulations that operate at
much smaller length scales, while taking advantage of the fully discontinuous frame-
work of DEM to simulate large packings that can be statistically useful for further
analysis. The model is limited to initial and intermediate stage sintering. In the model
description section, we first briefly delineate the DEM methodology and the model
focusing on the description of the sintering contact laws that include: the normal and
tangential contact forces, the evolution of the contact size and equilibrium contact size
for two particles unequal in size. The proposed grain growth model is then detailed
with the necessary conditions for triggering each mechanism (surface diffusion and GB
migration). The model results for two particles are analyzed and validated against
phase field simulation for each stage of the sintering process. In the last section, the
sintering of 40,000 and 400,000 alumina particle packings are simulated for various GB
mobility and initial particle size distribution. The results are compared to experiments
and discussed in light of existing laws for grain growth kinetics and mean grain size -
density trajectory.

3.2 Model description

The model is developed in the DEM code dp3D, dedicated to materials science and
already used for sintering studies over the last 15 years [28], [47]–[49]. Here we briefly
describe its general scheme. Each particle is a single crystallographic grain and is con-
sidered as a sphere which upon densification can indent its neighbors. Note that unlike
in the description proposed by Lange and Kellet [3] there is no distinction between
particles and grain and thus GB migration is bound to be an inter-particle/grain mass
transport. The main geometrical parameters defining two particles in contact are given
in Fig. 3.1, where rs and rl are the radius of the smaller and larger particles, respec-
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tively, a is the contact radius and h is their mutual indentation. Unlike the classical
DEM approach, the radius of particles can evolve depending on matter diffusion driven
by curvature gradient. Particles interact through their contacts that transmit forces.
Rotations are not allowed here as they are rapidly opposed by resisting moments when
contact size becomes finite. Contact forces are summed for each particle and the total
force is used to compute explicitly the acceleration, velocity and the new position of
each particle using Newton’s second law with a velocity Verlet algorithm.

Figure 3.1: Geometrical parameters for a large particle (radius rl) sintering with a small
one (radius rs). h, a and n are the geometric indentation, the contact radius and the normal
vector, respectively. Ψ is the contact angle and Ψeq is the equilibrium dihedral angle at the
grain boundary GB.

Contact detection is a critical stage for the computational efficiency of large DEM
simulations. This is especially true here since grain growth implies the coexistence of
particles of very different sizes along the simulation as large particles will grow at the
expense of smaller ones. Standard detection schemes for nearly monomodal packings
such as Verlet list together with the Linked-Cell method are insufficient in that case.
A fast multilevel algorithm as proposed by Ogarko and Luding [50] was implemented
to resolve effectively this issue.

Free sintering is modeled here within a periodic box in all three directions. The
stress tensor Σpq is calculated from Love’s formulation using the pth component of the
total contact force vector F and the qth component of the branch vector that connects
the two particle centers [51]:

Σpq = 1
V

∑
contacts

Fp (rs + rl − h)nq (3.1)
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where the summation is made on all contacts with normal vector n (Fig. 3.1), and V

is the volume of the periodic box. The macroscopic strain-rates are imposed to the
simulation box, such that the principal components of the macroscopic stress tensor
Σpq tends to zero at each time-step. Note that the same scheme can be used for
stress-assisted sintering.

3.2.1 Contact laws for sintering

The normal force between two sintering particles in contact is derived from the models
of Bouvard and McMeeking [46] and of Pan et al. [14]. The Bouvard and McMeeking
model applies to pairs of particles of identical size whereas Pan et al. fitted their results
for two particles of different sizes with a similar expression as Bouvard and McMeeking.
These expressions can be rearranged to derive the normal force N between two particles
with radii rs and rl:

N = πa4(
1 + rs

rl

)
β∆GB

dh
dt − α

β
πrlγS (3.2)

which introduces the surface energy γS and a diffusion-related term:

∆GB = Ω
kbT

DGBδGB (3.3)

where DGB = D0GB exp −QGB

RT
is the diffusion coefficient along the grain boundary with

activation energy QGB at temperature T , δGB the grain boundary thickness, kb the
Boltzmann constant and Ω the atomic volume. The α and β parameters depend on
the ratio of the grain boundary diffusion to surface diffusion ξ = δGBDGB/δSDS [46].
Here, for a given temperature, grain boundary and surface diffusion coefficients DGB

and DS were chosen and (α;β) were set in accordance with ξ parameter (Table 3.1
and [28]). Eq. (3.2) introduces a viscous component (repulsive or attractive) that
counteracts the relative approach of the two particles while the second term is always
attractive and represents the force responsible for shrinkage. Another method for
accounting for unequal size particles in Eq. (3.2), in analogy with elasticity, is to use
the equivalent radius rsrl

rs+rl
[28], [38], [52]. The two methods depart only markedly for

large size ratios, for which Eq. (3.2) better captures the Pan et al. [14] finite difference
results, with larger values of both the viscous and tensile components. Eq. (3.2)
introduces the contact radius a to the power 4 in the viscous term, thus accounting for
the slower kinetics of sintering as a increases. Our DEM model introduces a contact
radius evolution equation. The Coble model [53], valid for equal-sized particles writes:

a2 = 2rh (3.4)
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For two particles of different sizes, Pan et al. [14] fitted their finite difference simulation
results to obtain a generalized equation:

a2 = κ
[
0.5

(
1 + rs

rl

)]ζ

rlh (3.5)

where κ = 2.4 and ζ = 1.5 are fitted empirical values. Note that in the original Pan’s
equations (Eqs. (3.2) and (3.5)), the initial radii are considered whereas in our DEM
model, we use the current radii. The proposed model reproduces correctly the original
results from Pan et al. [14] (see section A.1 of the Supplementary Information (SI)).

As the contact grows, the sum of the grain boundary and surface energies may
reach a local minimum from which any perturbation of the contact shape increases
the total energy. This equilibrium state is obtained when the contact angle Ψ reaches
the equilibrium dihedral angle Ψeq. The calculation of the corresponding equilibrium
contact radius aeq is based on geometric considerations to obtain a relation between
the contact angle Ψ and the contact radius a, whatever mechanism is at play for its
growth. This results in a set of nonlinear equations (see section A.2 of the SI) that can
be numerically resolved and fitted linearly reasonably well for a wide range of contact
angles and particle size ratios leading to:

aeq = Ψeq

Ψ̂
rs

1 + rs

rl

(3.6)

where Ψ̂ = 92.937◦ is a fitted constant. This is a generalization of the work of Lange
[3], which assumed a simplest contact geometry strictly defined by the intersection
of two spheres. Finally, when a = aeq the equilibrium configuration is reached and
the tensile shrinkage term in Eq. (3.2) is set to zero so that any additional growth
of the contact requires a compressive force. Additionally to normal interactions (Eq.
(3.2)), tangential viscous interactions are also introduced as detailed in [38], with a
dimensionless viscous parameter µv = 0.01.

3.2.2 Grain growth

The evolution of the radius of a particle is calculated by considering the exchange of
volume at each contact, with the volume flux always from the smaller to the larger
particle. The sum of volume fluxes for each particle leads to an updated radius. When
the volume of a given particle decreases below a critical value (C × 4

3πr
3
m,0) (with rm,0

the initial mean radius), the particle is simply removed from the box and its volume is
equally distributed to all remaining particles. We checked that results are not affected
by the value of C, providing C ≤ 10−3.
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The values of the current contact radius (Eq. (3.5)) and contact equilibrium size
(Eq. (3.6)) are used to activate specific grain growth mechanisms. When activated,
the equation for the volume variation of a large particle l in contact with a small one
s writes:

dVl,s

dt = 4πr2
l

drl

dt =
∑

i

JiAiΩ (3.7)

where the volume exchanged for a given contact dVl,s is due to different mechanisms
of mass transport (Surface diffusion S or grain boundary Migration GBM), each one
represented by a flux cross-section area Ai and by an atomic flux density Ji (i =
S,GBM):

Ji = − Di

kbT
∇Pi (3.8)

GB migration and surface diffusion are considered here as they are recognized as the
two mass transport mechanisms contributing to grain growth as discussed in the in-
troduction. Both mass fluxes can be represented by a generic form, where Di is the
diffusion coefficient of the mechanism, and ∇Pi the Laplace pressure gradient that
causes mass transfer. The volume variation of the smaller particle s in contact with
the larger one l is dVs,l

dt
= −dVl,s

dt
, thus ensuring volume conservation.

Both grain growth mechanisms are based on the curvature gradient as the driving
force. The curvature difference is related with the chemical potential [54], which is
proportional to the local Laplace pressure gradient. Denoting γS and γGB the surface
and grain boundary energies, for two spherical particles the Kelvin equation leads to
a Laplace pressure difference of 2γS

(
1
rl

− 1
rs

)
and 2γGB

(
1
rl

− 1
rs

)
for surface diffusion

and GB migration, respectively [3], [55]. Although reasonable for surface diffusion,
this expression is a simplification of the real configuration for GB migration. First,
it is considered that grain boundary interfaces are dominant when grain boundary
migration is active and, as proposed in mean field theories of grain growth [5], [56], a
mean Laplace pressure difference at particle scale is used.

The activation criteria for these mechanisms are based on equilibrium considera-
tions. For surface diffusion, matter from the smaller particle has to flow to the neck
before migrating to the larger particle. Therefore, to allow mass transfer between par-
ticles, the local neck curvature cannot be concave. This configuration occurs when two
particles in contact reach the equilibrium configuration [3], i.e., the contact angle Ψ
reaches the equilibrium dihedral angle Ψeq. Hence, grain growth by surface diffusion
is activated once the condition a ≥ aeq is fulfilled. (Fig. 3.2 stage 2). At this stage, as
stated above, the shrinkage term in Eq. (3.2) is set to zero (Fig. 3.2 stage 2).

For GB migration, the growth is activated when thermodynamically favorable con-
ditions are met, i.e., when the grain boundary area does not increase during GB mi-
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gration [3]. Thus, GB migration is activated in our model when the contact radius is
equal or greater than the radius of the smallest particle (Fig. 3.2 stage 3).

Figure 3.2: Possible mechanisms activated for sintering and grain growth. 1) Standard
sintering with shrinkage without grain growth when the neck is sufficiently small. 2) Surface
diffusion without shrinkage when the neck radius is larger than or equal to the equilibrium
neck radius (Eq. (3.6)). 3) GB migration with shrinkage when the neck radius is larger than
or equal to the smallest particle radius. Note that mechanism 1) may lead directly to 3). The
GB considered in the model is not flat, the straight line in the figure is only a representation.

The pressure gradient calculation in Eq. (3.8) necessitates the definition of a proper
distance to write the local Laplace pressure gradient. For surface diffusion, we choose
the center-to-center distance, (rs + rl − h), considering that it represents a suitable
average distance for the flux of matter. For GB migration, instead of using the trans-
verse grain boundary diffusion coefficient DGBM as the input parameter we introduce
the more convenient and often used grain boundary mobility, MGB = DGBM Ω

kbT δGB
. Hence,

the considered diffusion distance is implicitly the grain boundary thickness δGB. At the
macroscopic scale, the grain boundary mobility depends on the porosity [57], [58] and
the grain boundary misorientation [59], [60]. In our model, we consider the intrinsic
grain boundary mobility [61], that depends only on temperature via an Arrhenius law
[57]. Porosity is indirectly taken into account by the local configuration of contacts.
Additionally, the grain boundary and surface energies are considered constant. The
exchange area for surface diffusion is a circular ring of radius a and thickness of the
surface diffusion layer δS. For GB migration, it is the entire area of the neck, that is
considered as circular.

The DEM implicit assumption of indented spherical particles is no more fulfilled for
the small particle at the later stage of grain growth [14], [23]. The DEM geometrical
sphere simplification leads to a very small contact area in the last instants of grain
growth which unrealistically slows down mass transport. Thus, we assume this area to
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be constant (with a∗ the related neck radius) for the computation of matter fluxes and
contact forces from the beginning of GB migration. With these simplifying assump-
tions, the following contributions for the fluxes of matter by Surface diffusion (i = S)
and grain boundary migration (i = GBM) write:

(
dVl,s

dt

)
S

= −2DS

kbT
γSΩ

1
rl

− 1
rs

rl + rs − h

[
π(a+ δS)2 − πa2

]
(3.9)

(
dVl,s

dt

)
GBM

= −2MGBγGB

( 1
rl

− 1
rs

) [
πa∗2

]
(3.10)

Both coefficients MGB and DS introduce temperature dependence through Arrhenius
law with pre-exponential factors M0GB and D0S, and activation energies QGBM and
QS, respectively.

To sum up, Eqs. (3.9) and (3.10) are applied at each time step for each contact when
appropriate conditions are met by a. Three scenarios are possible as sketched in Fig. 3.2
depending on the values of the contact radius. The shrinkage force is reactivated in
stage 3. This reactivation is required to avoid unrealistic losses of contacts when particle
size ratio becomes too large. In addition, for the sake of simplicity and considering
that once GB migration is activated it is the dominant mechanism [10], [11], matter
transport by surface diffusion is not active for a contact in stage 3. Note also that
stage 3 may arise either from stage 1 or 2. The model thus creates a coupling between
grain growth and sintering kinetics, which will be studied in the next sections.

3.3 Results and discussion

The grain growth mechanisms considered above are valid for a wide variety of ceramics
and metals. To illustrate the accuracy of the model, we choose to apply it to alumina,
as literature provides extensive material data (see Table 3.1). No fitting parameter
is used in this comparison. A wide variation of DS is reported in the literature as
discussed by Tsoga and Nikolopoulos [62]. We chose the data of Robertson and Chang
[63] (powder from Morganite inc.) as they were obtained for the largest temperature
range (1100-1720◦C). This leads to a ratio between grain boundary and surface diffusion
ξ = 0.001. Likewise, MGB has a wide range that depends strongly on porosity [57] and
on the presence of dopants [12], [64]. To our knowledge, experimental GB mobility
data for porous alumina (relative density < 0.95) is available in literature only for
temperatures above 1600◦C [12], [13]. We chose the GB mobility from [57] measured
for the largest temperature range (1325-2020◦C). As this data is for dense alumina and
the GB mobility MGB is one of the most relevant parameters affecting grain growth, we

71



CHAPTER 3. GRAIN GROWTH MODEL

δGBD0GB (m3/s) 1.3x10−8 [65] QGB (kJ/mol) 475 [66]
D∗

0S (m2/s) 0.09 [63] QS (kJ/mol) 313.8 [63]
M∗

0GB (m3/(N.s)) 0.02 [57] QGBM (kJ/mol) 443 [57]
Ψeq (◦) 138 [62] Ω (m3) 2.11x10−29 [63]

γS (J/m2) 0.905 [63] γGB (J/m2) 2γS cos(Ψeq/2)
α1 2.46 or 2.48 [46]1 β 4 [46]

rm,0 (µm) 0.2 [67] σ0 0.23 [67]
1α = 2.46 for D∗

0S (ξ = 0.001) and α = 2.48 for 0.1D∗
0S (ξ = 0.01), linearly interpolated from

[46].

Table 3.1: Parameters used in the simulations for alumina. Diffusion coefficients and mo-
bility are functions of the temperature T with Arrhenius dependence of the form exp

(
−Q
RT

)
.

Simulations are conducted at T=1350◦C.

will study the influence of lower values of MGB. All parameters used in the simulations
are shown in Table 3.1.

3.3.1 Sintering of two particles

First, we compare our results with other approaches on a simple configuration made of
two unequally sized particles. Kumar et al. [23] have tackled this problem through nu-
merical simulations by representing thermodynamic quantities in the system by phase
fields and minimizing its total free energy (bulk free energy, surface and grain boundary
energy). Using a surface mesh and the Surface Evolver program, Wakai et al. [26] also
provide numerical solutions with a rather different method. Note that the initial ratio
of the two particles is different in the two studies ( rs,0

rl,0
= 0.5 and 0.75) and that Wakai

et al. consider sintering by evaporation-condensation instead of coupled GB/surface
diffusion as in Kumar’s study and the present one. Fig. 3.3 compares the evolution of
the contact radius and of the radius of the smaller particle (both normalized by their
maximum values) from the present study to those of these prior works. Two simulations
with different values of the initial size ratio at 1350◦C for alumina were carried out.
Three stages corresponding to the three possible mechanisms modeled (Fig. 3.2) are
clearly visible on the simulations: initial neck growth without changes in radii followed
by a second stage characterized by a slow decrease of the small particle radius at a
nearly constant neck size and a third stage with both fast decrease in neck size and
small particle radius.

The evolution of the contact size and the small particle size (Fig. 3.3) are in correct
qualitative accordance with both Kumar et al. and Wakai et al. albeit an earlier
onset of grain growth for their simulations. Also, the transitions between each stage
are more gradual in their simulations as in our model different mechanisms cannot
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Figure 3.3: Evolution of the normalized contact radius a
max(a) (a) and of the normalized

smaller particle radius rs
max(rs) (b) for two values of the initial size ratio rs,0/rl,0. Comparison

with results from Kumar et al. [23] and Wakai et al. [26]. The numbers and arrows show
the beginning of second (surface diffusion) and third (grain boundary migration) stages (Fig.
3.2). Time is normalized by the total time of disappearance of the smaller particle. Snapshots
of the configuration of the pair of particles and the neck are given at various stages: initial,
stage 2 and 3 and on the way to the final disappearance of the smallest particle. The images
have been generated from particles positions and radii, and the computed neck size (Eq.
(3.5)). The geometry used to represent the necks is two inverse tori tangent to each particle,
which degenerate to a cylinder having the radius of the small particle in the last stage (see
section A.2 of the SI).

occur simultaneously (e.g. grain growth by surface diffusion and GB migration). In
addition, in our model an underestimation of the mass transport by surface diffusion
is possible due to the distance chosen (rs + rl − h) for the gradient in Eq. (3.8) as this
approximation is reasonable if we assume a linear gradient. In all practical situations
where the gradient is not linear, the gradient will be steeper.

In short, it can be concluded that our simplistic two-sphere scheme correctly repro-
duce the scenario predicted by both the phase field approach of Kumar et al. [23] and
the surface evolver approach of Wakai et al. [26], but with significantly less computa-
tional effort. This is both mandatory, as we are aiming for several tens of thousands
of particles in DEM, and encouraging as it means that DEM simulations will not com-
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promise too much on accuracy compared to more elaborate methods.

The influence of the two main material parameters of the grain growth model,
namely surface diffusivity and grain boundary mobility is assessed. Fig. 3.4a indicates
that, as expected, higher values of both parameters reduce the time for disappearance
of the smallest particle. We checked that the values are in the same order of magnitude
than that of Pan et al. [14]. Fig. 3.4a also clearly shows the necessity to include both
mechanisms in a coarsening model at the length scale of particles. If only surface
diffusion (first decay slope) is considered, it would take an unrealistically long time
to remove the whole mass. Despite the rapid action of GB migration (second decay
slope), surface diffusion is required to reach the geometric starting conditions, i.e., the
small particle size reaches the neck size.

Figure 3.4: Evolution of the smaller particle radius with normalized time τ = r4
l,0kbT

γSDGBδGBΩ
[14]. a) For different pair values of surface diffusivity (DS) and grain boundary mobility
(MGB) defined by the values in Table 3.1. The radius of the smaller particle is normalized
by its initial value (rs0). b) For different initial size ratios between the smaller and larger
particles. The radius of the smaller particle is normalized by the initial radius of the larger
particle (rl0). The numbers show the beginning of stage 2 (surface diffusion) and 3 (GB
migration) ( see Fig. 3.2).

Realistic initial green packings should feature particles with a wide range of size
ratios. Fig. 3.4b displays the disappearance dynamics of the smallest particle for dif-
ferent initial size ratios. As expected from examining the gradient terms in Eqs. (3.9)
and (3.10), the vanishing time is considerably shorter for smaller ratios, with two or-
ders of magnitude, between the vanishing times of ratios 1

4 and 3
4 . Surface diffusion,

if activated, is the limiting stage for grain growth due to its duration. Interestingly,
for ratio 1

4 stage 2 is absent. This is because this configuration already exhibits, after
sintering (stage 1), the geometrical conditions to immediately start grain growth by
GB migration.
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3.3.2 Sintering of large packings of particles

Packings made of 40,000 and 400,000 particles were used. The preparation procedure
of the initial green packings is detailed in section A.3 of the SI.

3.3.2.1 Comparison to Nettleship experimental data

In order to evaluate the newly formulated model at the scale of a large packing, we chose
to focus on the only study on alumina that carefully reports the particle size distribu-
tion during sintering (see section A.3 of the SI for a description of the lognormal(µ0, σ

2
0)

size distribution adopted here) [67]. Indeed, we observed that the initial particle size
distribution significantly affects the simulation results, hence the need to have access
to this information for a proper comparison. The simulation parameters are reasonable
values from the literature (Table 3.1) and the initial particle size distribution and green
density match the experiments of Nettleship et al. The comparison is carried out in
terms of grain size - relative density trajectory (Fig. 3.5a) and evolution of the lognor-
mal law parameter σ (Fig. 3.5b). Three different values of GB mobility were tested.
The simulations were stopped either when they reached D = 0.95 or when they expe-
rienced very rapid grain growth that was incompatible with numerical stability within
reasonable computational times. Simulations show that GB mobility strongly affects
the results and that the nominal value M∗

0GB taken from literature measurements on
dense alumina is too high to reproduce the grain growth trajectory of Nettleship sinter-
ing experiment. A more appropriate value might lie between 0.25M∗

0GB and 0.5M∗
0GB

, and it is probable that this value evolves with density during the course of sintering
[9]. Fig. 3.5b shows that the self-similarity (i.e. σ = constant) observed in Nettleship
experiments up to D ≈ 0.9 is not correctly reproduced by simulations but the widening
of the size distribution during the whole sintering is in reasonable agreement. At the
onset of grain growth, before particles begin to disappear, a strict self-similarity is not
expected in the simulations as mass transfer between particles increases the size of large
particles and decreases the size of small particles, thus broadening the size distribution.
The first part of simulations with a moderate increase of σ can however be interpreted
as a normal grain growth, in contrast to the faster increase of σ observed for M∗

0GB

that is typical of abnormal grain growth i.e., a fast increase in size of only a few parti-
cles. Such behavior is also observed for experimental data, but only above D = 0.95.
It is worth noting that while local variations of GB mobility (due to inhomogeneous
distribution of impurities, crystallographic orientations, etc...) are generally claimed
to be responsible for abnormal grain growth [9]; here, we observe that these, while
surely exacerbating the phenomenon, do not appear to be mandatory. Last, 40k and
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400k packings exhibit very similar outputs indicating that 40k particles are sufficient
to obtain representative results with periodic boundary conditions in this system.

Figure 3.5: Comparison of DEM simulations with alumina experimental data from Nettleship
et al. [67]. Simulations results are obtained using three different values of grain boundary
mobility (MGB) with M∗

0GB given in Table 3.1. Results for packings made of 40k particles
(solid lines) and 400k particles packings (dashed lines) are shown. (a) Mean grain size-
density trajectories. (b) σ parameter of the lognormal

(
µ, σ2) grain size distribution along

densification.

Various visual representations of the microstructure evolution during a sintering
simulation are provided in Fig. 3.6. It is interesting to note that at D = 0.85 grain
growth is clearly present visually while it is barely noticeable on the mean grain size
value ( Ḡ−Ḡ0

Ḡ0
≈ 1%). In other words, it is not required to observe a significant increase in

mean grain size to have significant grain growth that might influence the microstructure
and sintering kinetics. Another remarkable point is a global microstructure coarsening.
Indeed, even if a quantitative evaluation has not been performed, pore coarsening is
clearly observed above D = 0.85. On the last two snapshots, some contact impinge-
ments are also noticed. These impingements are in conflict with the DEM hypothesis
of independent treatment of the contacts but we believe that, at least in the density
range 0.85 - 0.9, they are relatively rare events that do not challenge the simulation
results. However, above D = 0.9 the simulation results should be taken with more
caution.

3.3.2.2 Sintering and grain growth kinetics

Although Nettleship et al. do not report grain growth kinetics, it is an important
output of the simulation that can be investigated in light of the existing classical
power laws. Using simulations described above, both relative density and mean grain
size are plotted on Fig. 3.7 as a function of the normalized time τ = r4

m,0kbT

γSDGBδGBΩ . A
first qualitative observation is that, in these typical sintering conditions, grain growth
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Figure 3.6: Evolution of the microstructure of a 40k particles packing, 0.5M∗
0GB and σ =

0.23. The 2D and 3D images have been generated from particles positions and radii, and the
computed neck sizes (Eq. (3.5)). The geometry used for the necks is two inverse tori tangent
to each particle (see section A.2 of the SI) and GBs are displayed in red. For the sake of
clarity only a portion of the total volume (L3) is shown.

slows down densification kinetics. This is a classically observed phenomenon, which
is explained both by a decrease of the driving force for sintering and by an increase
of the diffusion distances, with the increase of particle size. In addition, simulations
show that this decrease in densification rate is pronounced even for a barely perceptible
increase in mean grain size and seems to limit the achievable final density. This last
point should be taken with care, however, as the DEM intrinsic hypothesis to treat
separately the contacts is not met at high densities. An intriguing and also never
or rarely experimentally observed point, but reported in the idealized grain growth
simulations of Wakai et al. [68], is the observed slight decrease in mean grain size
before the expected increase. The explanation is nonetheless very simple: for a given
volume transferred from a smaller particle to a larger one, the decrease of the small
particle radii will be proportionally more important than the radius change of the larger
particles, thus decreasing the mean radius. The subsequent increase in mean particle
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size is a direct consequence of the decrease of the number of particles, a phenomenon
only active after some time as observed in Fig. 3.7b. This time represented by dotted
lines represents the incubation and transition periods reported by Wakai et al. from
which the classical power law (Ḡn − Ḡn

0 ∝ t) starts. We obtain n values in between 2.6
and 3.1, which are consistent with experimentally observed values [4], [7] but slightly
larger than the expected value n = 2 from theory [5], [9], [11]. This theoretical value has
been derived under the assumption of GB migration as the dominant mechanism. The
mean field analysis conducted by Hillert [5] or its simplified version proposed by Kang
[9] can be applied to Eqs. (3.9) and (3.10) (see section A.4 of the SI). The theoretical
exponents obtained are n = 4 for grain growth by surface diffusion (Eq. (3.9)) and,
as expected, n = 2 for grain growth by grain boundary migration (Eq. (3.10)). It is
thus consistent with our results which indicate that n tends to 2 as the grain boundary
mobility increases. For the highest value of the grain mobility, abnormal grain growth
runaway was triggered in the simulation. This simulation has been stopped at this
point as it was not possible to handle it correctly and no power-law fit was attempted.
The value n = 4 predicted by Riedel et al. [69] takes into account the pinning of GB
by closed pores which slows down the grain boundary motion. Our model does not
take this pinning into account but nevertheless reproduces correctly the experimental
data up to quite high densities.

The rate of disappearance of grains is not widely discussed in the solid-phase sinter-
ing literature. For dense materials [70] or liquid phase sintering [4] it is accepted that
the number of grains Np scales with the inverse of time (Np ∝ 1/t). Fig. 3.7b indicates
that simulations lead to Np ∝ 1/tm with 1.2 < m < 1.5, where higher GB mobilities
result in higher rates of decay. Note that for longer times τ , the rate of decay slows
down and m tends towards values closer to unity.

3.3.2.3 Influence of particle size distribution

Our model can be advantageously used to study the impact of the initial particle size
distribution, a task that would be tedious experimentally, and that is hardly accessible
by other numerical approaches due to the large number of particles required. It is
observed in Fig. 3.8 that a slight broadening of the initial size distribution can strongly
promote early grain growth. This effect of initial particle size distribution is a common
experimental observation [4], [71]–[74]. From our two particle results in Fig. 3.4b, we
conclude that a direct grain boundary migration (i.e., without surface diffusion stage)
is one of the mechanisms for earlier grain growth of wider distributions that necessarily
exhibit larger particle size ratios. In addition, the slight initial decrease of the mean
grain size (Fig. 3.8) disappears for larger size distribution. This explains why this
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Figure 3.7: Densification and grain growth kinetics for three values of GB mobility with
M∗

0GB from Table 3.1 together with a simulation without any grain growth. Dashed vertical
lines indicate the starting time for the fitting curves. (a) Relative density and mean grain
size Ḡ versus normalized time τ = r4

m,0kbT

γSDGBδGBΩ . The power-law exponents n for grain growth
(Ḡn − Ḡn

0 ∝ t) are indicated together with their R-square values. (b) Number of particles Np

(for a 40,000 particles packing) as a function of normalized time τ . The exponent m of the
power-law Np ∝ 1/tm is indicated.

phenomenon, although reported in simulations [68], is not observed experimentally.

3.3.2.4 Normalized grain size - density trajectory and comparison with
experimental data

The observed large influence of the initial size distribution confirms that any direct
comparison with experimental data not reporting it might be doubtful. Still, after
the initial assessment of the model using Nettleship data we sought for a broader
simulation-experiment comparison. Available data encompasses very different mean (or
median) particle sizes, sintering temperatures, purity and size distributions (mostly un-
known). Still, Bernard-Granger et al. have demonstrated that Ḡ0

2
/Ḡ2 is linear with D

[11] under the assumption that the main mechanism for grain growth is GB migration.
According to their work, the proportionality coefficient k is a function of Ḡ0 and the
ratio of diffusion coefficients DGBM/DGB. The temperature has only a minor influence
on k through the different activation energies of DGBM and DGB, which is consistent
with the observation that grain size - density trajectory is not temperature-dependent
[11]. Thus, the comparison between our isothermal simulations with experimental data
using a heating rate ramp followed by an isothermal dwell is relevant. Section A.6 of
the SI confirms that the introduction of a realistic heating rate ramp has no significant
impact on the grain size - density trajectory. This relationship between grain size and
density has actually long been experimentally observed as reported by German [4], but
in the form Ḡ = θḠ0/ϵ

1/2 with ϵ = 1 −D the porosity. As illustrated in Fig. 3.9, plot-
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Figure 3.8: Effect of the initial size distribution on grain growth. Mean grain size Ḡ as a
function of density for three initial standard deviations of the lognormal

(
µ0, σ2

0
)

distribution.
A wider distribution results in earlier grain growth. The initial size distribution for each
sample is shown in the inset.

ting Ḡ0
2
/Ḡ2 versus relative density is an attractive approach to normalize and report

very different experimental data on a single plot. The linearity is clearly confirmed
for most of the collected data. German proposed that θ has generally a value near
0.6. Given that the slope k in Fig. 3.9 is related to θ by θ = 1/|k|1/2, we obtain a
wider range 0.41< θ <0.72 from the literature (not considering values from Bae and
Baik that are not typical due to the very large particle size). The numerical results
also show that |k| decreases with grain size and the values obtained are in agreement
with those computed from the theoretical formula of Bernard-Granger et al. [11], using
the same set of parameters (see section A.5 of the SI). The simulations bring valuable
additional information and show that the decrease of |k| with grain size is associated
with an earlier and more progressive, non-linear, onset of grain growth. The influence
of a narrower size distribution is a delayed onset of grain growth but without con-
siderable change in |k|. A decrease of grain boundary mobility logically slows grain
growth in favor of densification. The onset of grain growth is also slightly delayed to
larger densities and the beginning of the trajectory is non-linear with a moderate rate

80



CHAPTER 3. GRAIN GROWTH MODEL

which might be related to more important first stage of grain growth dominated by
surface diffusion. Indeed, linearity has been established under the assumption of grain
growth by GB migration only. Interestingly, the experiment of Berry et al. (Al2O3

without MgO doping) also exhibits a non-linear trajectory but with a different shape
as compared to the simulations. The same curve behavior of Berry et al. is observed in
Greskovich and Lay [75] and in Zhao and Harmer [64]. While the simulation trajectory
has a convex shape (increasing grain growth - density rate) the experiment trajectory
has a concave shape (decreasing grain growth - density rate). This latter behavior
might be explained by a decreasing GB mobility at the onset of pore closure due to an
associated increase of pore drag. In addition, pore and grain sizes could also influence
the GB mobility through varying amount of drag effects. Introducing a density- or
grain-size-dependent grain boundary mobility could thus make some sense and help to
model more correctly some experimental cases.

Figure 3.9: Grain size-density trajectories. (a) Experimental data (symbols) from Li and Ye
[76], Bernard-Granger and Guizard [10], Geng et al. [77], Nettleship et al. [67], Suzuki et al.
[78], Berry and Harmer [12] and Bae and Baik [13]. Dashed lines show linear fits with the
corresponding slope k. (b) Simulations results obtained for different initial mean grain size
Ḡ0, initial grain size distribution σ0 and grain boundary mobility M0GB.

It can be concluded that, by adjusting the particle size distribution and GB mobility,
the model has the ability to reproduce the large range of observed grain growth - density
trajectories. However, we believe that using these as two fitting parameters might not
be relevant since the involved intercorrelated phenomena might be too complex to be
caught by a simple variation of grain size with density.

3.4 Conclusion

Sintering and grain growth are a highly coupled phenomena with shrinkage, surface dif-
fusion, grain boundary migration and particle coalescence arising simultaneously, that
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poses a challenge to current simulation methods. Until now, these couplings have only
been successfully treated by mesoscale phase-field or Monte Carlo methods. By taking
full advantage of the 3D discontinuous discrete element framework, simulations pre-
sented here provide an alternative that has the ability to treat very large systems. The
adopted model treats nonetheless the main fluxes of matter between particles through
physically-based interaction laws to provide reasonable accuracy. Its limitation lies
mainly on the assumption that interactions between particles are handled as pairs. As
densification progresses, contact impingement becomes more likely which restricts the
domain of quantitative validity of our DEM simulations to initial and intermediate
sintering stages (D ≤ 0.90 − 0.95). Also, our model considers a grain boundary mo-
bility that only depends on temperature. This is questionable for the final stage of
sintering for which the pore drag force on grain boundary mobility can be significant.
Still, for initial and intermediate stages, using reasonable material parameters from the
literature the model correctly reproduces experimental mean grain size evolution for
alumina. For realistic particle size distribution, grain growth can affect the sintering
kinetics and the microstructure evolution early in the first stage and in the interme-
diate stage of sintering. Hence, the realism of DEM simulation of sintering is largely
improved by the present model as compared to earlier DEM approaches that do not
account for grain growth. Taking advantage of the large systems tractable by DEM,
the influence of initial particle size distribution on grain growth has been studied. The
DEM simulations show, as reported from experiments [4], that broader particle size
distributions exhibit faster grain growth. This points to some potential avenues for
retarding grain growth with narrower initial size distributions. However, narrow size
distributions are difficult to achieve experimentally and lead to a smaller green density
that is detrimental for densification. The present DEM model might help to optimally
choose the size distribution for a given system. As large-scale simulations are feasible
with DEM (up to 400 000 particles have been treated here), future work will address
more complex sintering conditions (sintering on a substrate, composites, presence of
defects, stress-assisted sintering, two-step sintering...). Improvements of the model
should for example consider the use of a porosity- or impurity-dependent GB mobility.
This should provide a better understanding of the conditions, strongly dependent on
GB mobility, that lead either to the emergence of a self-similar grain size distribution
or, on the contrary, to abnormal grain growth. Further improvements of the model,
however, will be hampered by a lack of experimental data for its reliable assessment.
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Chapter 4

Grain growth in two-step sintering
This chapter describes the application of the grain growth model developed in chap-
ter 3 to non-isothermal sintering. In particular we investigate two-step sintering of
nano-powders. This is presented as a scientific article entitled Two-step sintering of
alumina nano-powders: A discrete element study accepted in Journal of the European
Ceramic Society in September 2022 [1]. The article is reported as accepted, with its
two appendices included in Appendix B.

The previous chapter detailed the model of grain growth implemented in the DEM
code. The application focused on the study of grain growth in isothermal conventional
sintering. This application was mainly used as a validation of the model as it showed
that the grain size evolution predicted by DEM simulations was in reasonable agreement
with experimental data. The Supplementary Information (Appendix A) reported some
basic simulations involving different heating rates, which showed that the sintering
trajectory remains unchanged for micronic alumina powders, as expected. Thus, we
can use the possibility to impose heating ramps in the DEM code to push further the
application of the grain growth model. This can prove particularly useful for nano-
powders since experimental results on alumina nano-powders [2] indicates that the
densification trajectory depends on the heating rate value. This chapter will employ
the developed model of grain growth in the nonisothermal sintering of alumina nano-
powders, specifically during two-step sintering.

Two-step sintering is characterized by the use of a thermal cycle to retard grain
growth. However, the underlying mechanisms are still unclear, especially for alumina.
Therefore, this study will allow to both test the model ability of reproduce the heating
rate dependence of nano-powders and to investigate a possible mechanism of two-step
sintering.

During the development of this chapter, the need of an adjustment of the grain
growth model emerged. This is related to the considered hypothesis that for a given
contact, the smaller particle always transfer mass to the larger one. Results of small-
scale simulations, discussed in chapter 2, suggest this is not always the case in nano-
powders. In this chapter, this observation is integrated in the DEM model.

This study completes the first axis of the PhD thesis outlined in chapter 1.
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Abstract

Avoiding grain growth during sintering of ceramic nano-powders is of great techno-
logical interest. Although two-step sintering is an effective technique to achieve this
goal, the mechanisms at play are not well understood. This study adapts our previous
discrete model to investigate the conventional and two-step sintering of nano-powders.
The densification and grain growth results agree qualitatively well with experimental
data on α-alumina. Simulations confirm that faster heating rates retard grain growth
in conventional sintering of nano-alumina. Our results support the hypothesis that the
success of nano-alumina two-step sintering relies on the sharp increase in the activa-
tion energy of the grain boundary mobility at low temperatures. Simulations indicate
a transition temperature of 1100◦C and that at least a 2.5-fold increase in activation
energy is required to explain the suppression of grain growth. The relative weights of
surface diffusion and of grain boundary motion for grain growth are clarified.

Keywords: nano-powders, two-step sintering, grain growth, alumina, discrete el-
ement method

4.1 Introduction

Solid-state sintering produces dense or density-controlled materials from ceramic or
metallic powders using thermal energy. The driving force for sintering is the reduction
in the total interfacial energy of the system [3], [4]. There are two contributions to the
reduction of the product γA, where γ is the average interface energy and A is the total
interface area of the system: Adγ and γdA. Thus, during sintering, a coupling between
two mechanisms occurs: densification that reduces interfacial energy (dγ) by replacing
solid-gas interfaces by less energetic solid-solid interfaces, and coarsening that reduces
interfacial area (dA) [3], [5]. In general, materials scientists and practitioners favor
densification while attempting to limit coarsening.

This is especially true when starting from nano-powders (typically < 100 nm grain
size) that have great scientific and technological interest. The short diffusion distances
in nano-powders inherently favor both grain growth and densification kinetics. Yang
et al. [2] have recently demonstrated that the densification of nano-sized α-alumina
powders proceeds through the same dominant mechanism as that involved in the sin-
tering of micron-sized alumina, namely grain boundary diffusion. For nano-powders,
keeping submicronic size grains while ensuring a nearly dense material is challenging.
A fast-heating rate is an efficient processing method to enhance densification over grain
growth. It is based on the usual condition for most materials that activation energies
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of grain boundary diffusion along the boundary (densification) are higher than that of
grain boundary diffusion perpendicular to the boundary (grain growth) [4]. Fast heat-
ing rates may be effectively combined with a modification of the thermal cycle, using a
combination of high and low temperatures. This so-called two-step sintering technique
may be declined in several variants [6]. Following the two-step approach proposed by
Chen and Wang on Y2O3 [7], Yang et al. [2], [8] have recently demonstrated the effec-
tiveness of two-step sintering technique to densify Al2O3 ceramic nano-powders while
keeping small grain size (≈ 40 nm).

The reason for the suppression of grain growth in the two-step sintering of α-alumina
is still under study. For Y2O3 Chen and Wang have argued that it is possible, at low
temperature, to almost eliminate grain boundary motion while keeping grain boundary
diffusion active. Their argument is based on the theory proposed by Gottstein et
al. that triple junctions can drag grain boundary motion at low temperature [9]. In
particular, these authors have been able to confirm experimentally their theoretical
predictions by measuring mobility of triple junctions on Zn and Al tricrystals [9], [10].
Accordingly, a transition in grain boundary mobility between grain boundary-controlled
motion at high temperature and triple junction-controlled motion at low temperature is
expected. Such a mobility transition has indeed been observed in Y2O3 polycrystals [11]
thus confirming the suggested scenario. For α-alumina, the interplay between surface
diffusion, grain boundary diffusion along and perpendicular to the grain boundary is
not sufficiently documented to unambiguously propose a clear scenario. This task is
made more difficult by the fact that, in conjunction with temperature changes, the
microstructure itself undergoes profound alterations. The initial material is granular
and begins as an assembly of discrete particles that interact with small contacts. It
ends as a set of grains with small isolated pores remaining.

Numerical modeling can provide a better understanding of the grain growth of
nano-powders during conventional and two-step sintering. At the atomistic scale using
molecular dynamics, Ding et al. [12] provided insights into the mechanisms of neck and
grain growth during the sintering of 2 and 3 nanoparticles. Depending on the crystalline
orientation of the grains, they observed the disappearance of the grain boundary and
the switch of neck growth mechanisms halfway during the sintering process. At the
particle scale, Benabou and Wang [13] used the surface evolver approach to simulate
the sintering of up to 40 particles. The detailed description of the surfaces allowed
them to observe the elimination of pores and the disappearance of small particles
by grain growth. Monte Carlo methods can also model efficiently the sintering of
a reasonable number of initial particles with realistic interactions [14]. There is a
drastic decrease in particle number with coarsening. Thus, a representative packing
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Neck growth
and shrinkage

GG by Surface diffusion 

GG by Grain Boundary migration

ℎ

(a) (b)

Figure 4.1: Graphical summary of the model. (a) Grain growth (GG) by Surface diffusion
is activated after neck growth reaches the equilibrium configuration. Grain growth by Grain
Boundary migration can be attained after GG by surface diffusion or directly after neck
growth. (b) Volume exchange dV is always from small to large particle when the small
particle has only one contact (i, j). For small particles with more than one contact ((j, k)
and (k, l)), a large particle may give volume dV to a small one with probability Ps,l.

with a large initial number of particles is needed to properly study the microstructure
evolution in simulations. Using discrete element modeling (DEM), we have already
successfully investigated grain growth occurring during the sintering of large packings
of micronic α-alumina particles (up to 400 000) [15].

The aim of this study is to extend our previous work to analyze grain growth and
densification of nano-sized α-alumina during conventional and two-step sintering. Sec-
tion 2 summarizes our model with some modifications to correctly model nano-powders.
The simulations and comparison with experimental data of conventional sintering are
presented in Section 3. These simulations are performed for different heating rates. The
evolution of density, densification rate and grain size with temperature are reported and
critically compared to experimental data from Yang et al. [2]. The volumes transferred
by surface diffusion and grain boundary migration are quantified. Section 4 presents
two-step sintering simulations, their comparison to experimental data and a discussion
on the origin of the absence of grain growth.

4.2 Model description

The details of the model (contact laws, contact size, grain growth model) can be found
in [16]. Here we summarize its main ingredients and report the material parame-
ters used in the simulations. In DEM, particles are represented as spheres that are
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progressively truncated at contacts with other particles as sintering proceeds. The
powder compact is modeled as a 3D random assembly of spherical particles interacting
through their contacts. At each time step, all contacts are considered and contact
forces are calculated and summed up for all particles. Particle velocities and new
positions are updated using a velocity-Verlet algorithm. As proposed in our earlier
work [17] and classically adopted by other researchers in DEM simulations of sintering
[18]–[23], normal contact forces appear between particles including two components.
The viscous component introduces the diffusion coefficient along the grain boundary
DGB = D0GB exp −QGB

RT
with temperature dependence (activation energy QGB). This

component opposes the relative motion between the two particles. The tensile com-
ponent (also known as the sintering force) introduces the surface energy γS. The
expression of the normal force is derived from results obtained by Bouvard et al. [24]
and Pan et al. [25] and accounts for sintering by coupled grain boundary diffusion and
surface diffusion, typical of solid-state sintering of oxide ceramics. The contact radius
a is calculated here from the model of Pan et al. [25] for particles of different sizes. The
size of the contact plays an important role in the model as it dictates the transition
from one mechanism to another. The equilibrium contact radius aeq, at which the sum
of the grain boundary and surface energies reaches a local minimum, is given by the
equilibrium dihedral angle Ψeq. When the contact size becomes larger than aeq, grain
growth (GG) by surface diffusion becomes active, unless the smallest particle is itself
smaller than the contact, in which case GG by grain boundary migration becomes
active (Fig. 4.1a).

Grain growth is modelled by simply considering that an exchange of matter dV
results in a radius decrease and a radius increase for the two particles in contact. The
flux of matter dV

dt
originates from two contributions: Surface (S) diffusion or Grain

Boundary Migration (GBM ). The surface diffusion contribution writes:

(
dV
dt

)
S

= −4π
δSD0S exp −QS

RT

kBT
γSΩ

1
rl

− 1
rs

rl + rs − h
a a ≥ aeq (4.1)

where h is the geometric indentation between the two spherical discrete elements (Fig.
4.1a), kbT has the usual meaning, Ω is the atomic volume and δS is the thickness of
the diffusion layer. The Grain Boundary Migration diffusion contribution writes:

(
dV
dt

)
GBM

= −2M0GB exp −QGBM

RT
γGB

( 1
rl

− 1
rs

) [
πa∗2

]
a ≥ rs (4.2)

with a∗ the contact radius when Grain Boundary Migration becomes active. Both
Eqs. (4.1) and (4.2) have temperature dependence through Arrhenius law with pre-
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exponential factors D0S and M0GB, and activation energies QS and QGBM , respectively.
Note that as sketched in Fig. 4.1a, the two contributions are mutually exclusive, i.e.,
only one (or none) is active at a given point for a contact.

When Grain Boundary Mobility is active (a > rs), by default the volume of mat-
ter flows from the small to the large particle. We have observed that this simplistic
assumption triggers abnormal grain growth in our simulations for nano-sized particles.
As compared to our previous work in [16], we have thus added an ingredient to the
model that controls the occurrence of abnormal grain growth by introducing some de-
parture from this default condition. This is carried out by stating that a small particle
that has two or more contacts (particle k in Fig. 4.1b) has a probability Ps,l to have
positive matter flux from the larger one. This scenario is supported by finite difference
simulations on particles of different sizes for two or three particles in contact [26]. For
nanosized particles, these authors reported the intriguing result that a small particle
in contact with two larger ones can develop some resistance to invasion. In particular,
they showed that, rather than shrinking, the small particle grows at the expense of
the two larger ones. Eventually, the small particle always disappears as the bound-
ary migrates. This result was further refined by molecular dynamics simulations of
nanoparticles sintering [12] that showed that many different scenarios could exist, de-
pending mainly on the initial crystalline misalignment between particles. These results
indicate that local curvature (or grain size for spherical grains) may not always dictate
the grain boundary velocity when departing from the simplistic model of two grains.
This is consistent with recent experimental results that reveal that there is no observed
relationship between grain boundary velocity and curvature in polycrystalline Ni with
multiple grain boundaries [27]. These scenarios cannot be realistically included in DEM
simulations with several hundreds of thousands of particles. The probability Ps,l that
a small particle (with more than one contact) can temporarily eat away a larger one
accounts for these alternative scenarios in a very simple manner. We set this value in
all simulations to Ps,l = 1/4, and observed that this was sufficient to prevent abnormal
grain growth.

4.3 Sintering at constant heating rate

The model described above was applied to simulate the sintering of α-Al2O3 nanopow-
ders, which has been thoroughly examined experimentally in [2], [8]. Starting from a
powder cold-compacted to a green density of 0.48, sintering was carried out at various
heating rates. The initial powder (before compaction) was observed by TEM at approx-
imately 5 nm in size, with a narrow initial grain-size distribution (standard deviation
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normalized by the average grain size = 0.23). Numerical specimens were prepared to
reproduce this initial green packing. We observed in our simulations that applying a
500 MPa axial stress on this packing already triggered at room temperature some grain
coarsening (i.e. a ≥ aeq or a ≥ rs) due to surface energy effects. This is because ad-
hesive forces induce local elastic strains that are far from negligible for nano-powders.
Using the DMT model, which is well adapted for hard and small particles [28], [29], the
equilibrium contact radius a of two identical spheres of radius r with Young’s modulus
E and Poisson’s ratio ν writes:

a

r
= 3

2π
γs

r

1 − ν2

E
(4.3)

yielding a value a/r ≈ 0.17. Eq. (4.3) is derived for two particles without external
stress. Adding external stress further increases strain at contacts, which should lead
to irreversible grain deformation and coalescence even below 800◦C. Thus, we started
our sintering simulations with an average grain size of 10 nm, which is in good ac-
cordance with SEM observations [2]. Packings made of 400 000 randomly located
particles, with an initial relative standard deviation of the grain-size distribution of
0.23 were compacted up to 0.50 relative density in a periodic simulation box to obtain
the starting green powder. This large number of initial particles is needed to obtain
statistically meaningful results at the end of sintering when a large number of particles
have disappeared (see Appendix B.1).

Material parameters used in the simulations are summarized in Table 4.1. Acti-
vation energies for grain boundary diffusion, QGB, surface diffusion, QS, and grain
boundary mobility, QGBM , were taken directly from the literature, and are the same as
those used for micronic α-alumina powder sintering in [16]. The prefactor of the grain
boundary diffusion coefficient was adjusted to fit the experimentally observed relative
density at T1 = 1150◦C for a 10 ◦C/min heating rate. The partially sintered packing
obtained at this temperature is used for two-step sintering simulations in section 4.4.
The prefactor of the surface diffusion coefficient was chosen to keep the same ratio of
the grain boundary diffusion to surface diffusion (ξ = 0.001) as in our previous work
for a temperature of 1350◦C. For small values of ξ (associated with the lower temper-
atures simulated here), the work of Bouvard and McMeeking [24] suggests that the
tensile term in the normal force expression depends only weakly on ξ. This ensures
that the parameters of the sintering model used for micronic sizes remain valid [16].
Note that the activation energies in Table 4.1 are consistent with the range proposed
in [2] for nano-powders.
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δGBD0GB (m3/s) 1.04x10−11 QGB (kJ/mol) 475 [30]
D0S (m2/s) 7.2x10−05 QS (kJ/mol) 313.8 [31]

M0GB (m3/(N.s)) 0.02 [16], [32] QGBM (kJ/mol) 443 [32]
Ψeq (◦) 138 [33] Ω (m3) 2.11x10−29 [31]

γS (J/m2) 0.905 [31] γGB (J/m2) 2γS cos(Ψeq/2)

Table 4.1: Material parameters used for α-alumina.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 700  800  900  1000  1100  1200  1300

d
 ρ

/d
t 

(x
1
0

−
5
 s

−
1
)

Temperature (°C)

experimental 10 °C/min
experimental  5  °C/min
experimental  3  °C/min

DEM 10°C/min
DEM  5 °C/min
DEM  3 °C/min
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.

Fig. 4.2 shows the evolution of the densification rate dρ/dt for the three simulated
heating rates (3, 5 and 10◦C/min). Fig. 4.2 indicates that, owing to the very small
size of the starting powders, densification is already active at 800◦C. This may be
understood by recognizing that the sintering force expression in our model leads to
a time normalization (before coarsening mechanisms start to play a role) that scales
with the mean particle size, G to the power 4: τ ∝ ⟨r⟩4. This is in line with classic
analytical models that lead to densification rates scaling with G4 [34].

While our simulations indicated that the heating rate has a minor influence on
the sintering of micro-alumina [16], this is no more the case for nano-alumina. For
all three heating rates, the densification rate increases to a maximum and decreases
to very small values when full density is approached. The temperature at which this
maximum occurs increases with increasing heating rates. A higher heating rate is
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.

associated to a higher maximum densification rate: the peak densification rate at
10◦C/min is three times as fast as that at 3◦C/min. This is the result of two effects.
First, Fig. 4.3 shows the evolution of density with temperature. It indicates that at a
given temperature, a faster heating rate results in a lower relative density, thus keeping
the driving force for densification higher. Second, Fig. 4.4 shows that grain growth
arises at higher temperatures as the heating rate increases. The occurrence of the
maximum densification rate is well correlated in all three simulations to the initiation
of grain growth. Fig. 4.4 indicates that the heating rate has a clear effect on the final
grain size.

Figs. 4.2, 4.3 and 4.4 include experimental data from [2] for comparison. Recall
that the only material parameter that was adjusted was the prefactor of the grain
boundary diffusion coefficient to fit approximately the experimental relative density for
10◦C/min at T1 = 1150◦C. The comparison demonstrates that the DEM simulations
are able to capture qualitatively well all relevant experimental features. In particular,
the bell shape of the densification rate with temperature (Fig. 4.2), the S shape of the
evolution of the density with temperature (Fig. 4.3), and the concave shape of the grain
growth (Fig. 4.4). However, some quantitative differences are clear. In particular,
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the DEM simulations underestimate the initial sintering activity of the powder at
low temperature (both densification rate and grain growth). Because of the strong
model assumptions, it was not possible to fit the densification curves at both low and
high temperatures. In particular the following model assumptions may not be valid:
homogeneous packing (nano powders are prone to agglomeration), presence of defects,
impurities or irregularly shaped particles (due to high-energy ball milling [2]). The
choice was made to fit densities at high temperatures and consequently the densification
is underestimated at low temperatures. For grain growth, the delayed initiation is
linked to our simplistic assumption that surface diffusion and grain boundary motion
are mutually exclusive and abruptly starts only when the contact radius is above a
critical radius (Fig. 4.1). This results in DEM relative density curves lagging behind
the experimental curves at low temperature. In addition, we observed that the mean
grain size of DEM packings calculated using image analysis on 3D images generated
from the simulations (dashed lines in Fig. 4.4) results in larger grain size that are in
better accordance with experimental data. This methodology, comparable to the one
used by [2], is detailed in Appendix B.2.

Keeping in mind these discrepancies with experimental data, the mechanisms that
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Figure 4.5: DEM simulation results. a) Evolution of the mean volume transferred per contact
(normalized by the mean volume of particles) with temperature for three heating rates: 3, 5
and 10◦C/min. Two contributions for grain growth (GG) are shown: surface diffusion (Eq.
(4.1)) and grain boundary migration (Eq. (4.2)). Circles indicate the temperature at which
grain boundary migration contribution exceeds surface diffusion contribution. b) Evolution
of the relative contact number (normalized by the total number of contacts) for each possible
status: neck growth, GG by surface diffusion and GB migration for 10◦C/min.

lead to grain growth in nano-powders can still be analyzed using the detailed results
of DEM simulations. Fig. 4.5a shows on a log-scale the mean volume transferred per
contact at a given temperature. It is separated into the two contributions given by
Eqs. (4.1) and (4.2). Fig. 4.5a indicates that at low temperature, surface diffusion
is the main contributor to grain growth, although this contribution becomes signifi-
cant only above 1070-1100◦C, depending on the heating rate. This is in line with the
general view that at lower sintering temperatures, surface diffusion dominates matter
redistribution during grain growth. Grain boundary migration becomes dominant at
higher temperature with large transfer of volumes from one particle to another (com-
pared to the actual volume of particles). Fig. 4.5b confirms this result. It shows the
evolution of contact status as temperature increases for the 10◦C/min heating rate (it
is representative of all 3 heating rates). At low temperatures, all contacts are in the
initial neck growth status and gradually shift to grain growth by surface diffusion and
by grain boundary migration. Note that below 1100◦C, Fig. 4.5b shows that very few
contacts contribute to grain growth, thus explaining the very small volume transfer
indicated by Fig. 4.5a for these temperatures at 10◦C/min.

Because new contacts arise between particles all along sintering due to densification
and rearrangement of particles, neck growth and shrinkage are still active leading to the
continuation of densification. These results are similar qualitatively to those obtained
for micronic powders [16]. It shows that conventional sintering models can be applied to
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ρc G (nm) T1 (◦C) T2 (◦C)
10◦C/min 0.82 13.6 1150 1025
5◦C/min 0.76 10.7 1100 975
3◦C/min 0.72 10.2 1075 950

Table 4.2: Main parameters of the second-step sintering. ρ, G : density and mean grain
size attained in the first step. T1: temperature at which this density was obtained, and T2:
temperature of the second isothermal sintering step.

nano-powders and reproduce their very good sinterability and significant grain growth.
Fig. 4.5a also explains the results shown in Fig. 4.4, which indicate the beneficial

effect of higher heating rates to retard grain growth. The shift from surface diffusion
to grain boundary migration triggers significant grain growth in our model. This
shift arises at higher temperature for faster heating rates. We believe that our model
underestimates grain growth by surface diffusion at low temperature (as proved by
the grain size curves lagging behind the experimental curves at low temperature, Fig.
4.4). Still, Fig. 4.5a points to an interesting lever to retard grain growth: delaying the
migration of grain boundaries, which is much more effective than surface diffusion for
grain growth.

A practical alternative to retard the migration of grain boundaries is to actually
freeze this mechanism by using two-step sintering, which takes advantage of low tem-
peratures in a second prolonged isothermal stage [6]. This is studied in the next section.

4.4 Two-step sintering

Numerical samples originating from constant heating rate simulations were retrieved for
a second sintering step at a lower constant temperature. In line with the experimental
procedure adopted in [2], table 4.2 lists the main parameters of these simulations.
The densities obtained in simulation at the end of the first step (ρc) are lower than
the experimental densities (Fig. 4.3). As input for the second step, we opted to
use the microstructure obtained at the experimental temperature T1 instead of the
microstructure obtained at the same density of experiments.

First, we ran the simulations of the second step (lower temperature) with the same
activation energies as in the first step (higher temperature). In that case, considerable
grain growth is observed. However, Gottstein et al. [9] observed that at low tempera-
tures the motion of the grain boundary is controlled by the 3-grains junction lines that
have a higher mobility activation energy. This was the principle employed by Chen
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and Wang [7] to propose for the first time the variant of two-step sintering used in the
present study. The effect of the junction mobility results in a higher apparent activation
energy of the grain boundary motion below a transition temperature. This has been
measured experimentally for aluminum crystals [10], tungsten [35] and yttria-stabilized
zirconia [11]. The multiplicative factor of the observed increase in activation energy
is between 1.9 and 2.6. Yang et al. [2] suggested that this activation energy increase
could also occur in the case of α-alumina. Thus, we have tested a higher activation
energy of grain boundary migration QGBM for low temperatures in our simulations.

Fig. 4.6 shows the grain boundary mobility as a function of temperature, where the
slope represents the value of the activation energy QGBM . Data points are collected
from the literature [32], [36]–[40]. For the first step, we choose QGBM=443kJ/mol
according to α-alumina experimental data at high temperatures (red line). To the best
of our knowledge, no activation energies for junction mobility or for grain boundary
mobility at temperatures below 1325◦C are reported in the literature. Based on the
data for other materials commented above, we choose an activation energy 2.5×QGBM

(blue line) for the second step. Regarding the transition temperature, there is also
no experimental data for alumina. Based on our simulation results of grain size (Fig.
4.4), we choose T = 1100◦C as below this temperature grain growth is negligible.
Simulations indicate that using lower transition temperatures, very high nonphysical
values of activation energy (> 3 × QGBM) would be needed to suppress grain growth.
We corroborated that using the selected activation energy and transition temperature
in the second step has negligible effects in the results of the first step.

Simulations of the second step were carried out for the three heating rates studied
in the previous section, using 2.5 × QGBM at low temperatures. Fig. 4.7 illustrates
the 3D microstructural evolution from DEM simulations for conventional and two-
step sintering for the heating rate 5◦C/min. From 0.50 to 0.76 relative density (T =
800◦C → T1 = 1100◦C), the number of particles decreases (from 400 000 to 263 000)
due to some volume transfer but without significant increase of the mean grain size.
Conventional sintering (T1 = 1100◦C → T = 1175◦C) leads to grain growth as already
indicated in Fig. 4.4 with a further decrease in particle number (from 263 000 to
36 000). In contrast, two-step sintering (T2 = 975◦C) keeps the same number of
particles and mean grain size.

Fig. 4.8 shows the grain size-density trajectories obtained by simulations for both
conventional sintering and in two steps. The simulations of two-step sintering were
able to reproduce the experimental results, i.e., annihilating the grain growth while
continuing densification. During the second step, a slight grain growth is observed at
10◦C/min, while no grain growth occurs for the two slower heating rates. This is due
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to a combined effect of much higher grain boundary mobility for 10◦C/min (higher
T2, table 4.2 and Fig. 4.6) and a more advanced state of the microstructure on the
sintering trajectory at the beginning of the second step in our simulations, which favors
grain growth.

In order to inspect the alterations produced by two-step sintering on grain growth,
Fig. 4.9 shows the volume transferred by surface diffusion and grain boundary motion
for one and two-step sintering. In accordance with Fig. 4.8, the grain growth from
both mechanisms is lower in two-step than in conventional sintering. The decrease of
the volume transferred by surface diffusion is essentially due to the lower temperature
employed in two-step sintering. One way to further decrease it is to use a powder with
a narrow initial size distribution as indicated for nanopowders by Fang et al. [42] and
verified by simulations in micro-alumina in our previous work [16]. The decrease of
volume transmitted by grain boundary migration is much more substantial (Fig. 4.9)
and caused both by the reduction of process temperature and, mainly, by the increase
of the associated activation energy (Fig. 4.6). Therefore, our simulations suggest
the validity of the hypothesis proposed by Yang et al. [2] on the grain boundary
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Figure 4.7: Evolution of DEM microstructures at 5◦C/min heating rate. The sintered necks
are represented by two inverted tori tangent to each particle [16]. Grain boundaries are shown
in red. Only a portion of the total simulation cube (L3) is shown for clarity.

mobility transition as a cause for the effectiveness of the α-alumina two-step sintering.
This applies since the activation energy of the alumina grain boundary diffusion, that
governs densification, is assumed constant and is lower than the activation energy of
GB mobility. We studied the effect of different values of the activation energy of the
GB mobility (Fig. 4.10). Simulations confirm that an increase of at least 2.5 ×QGBM

is necessary to suppress grain growth. We also observed that keeping the same value
for the activation energy (1.0 × QGBM , pink curve), the two-step trajectory actually
accelerates grain growth as compared to conventional sintering for 10◦C/min (dashed
red line). This is again because the activation energy of the grain boundary mobility is
lower than that of the grain boundary diffusion. The sintering temperature being low
(T2 = 1025◦C), a significant grain growth is obtained after a long sintering time (170h),
which is contradictory to experimental data for two-step sintering. The densification
kinetics is very slow in this case, due to the significant growth of grains. For two-step
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Figure 4.8: DEM simulation results. Grain size - density trajectories for three heating rates:
3, 5 and 10◦C/min obtained by DEM simulations. Two-step sintering curves are represented
by thicker lines, while thinner lines represent conventional sintering. The second step is
performed at constant temperature after a first heating ramp stage. Sintering temperatures
are given in Table 4.2. A high activation energy for grain boundary mobility (2.5 × QGBM )
is used in the second step as sketched in Fig. 4.6.

sintering and 2.5 × QGBM , the times indicated (in hour) in Fig. 4.10 are in line with
experimental data, which report full densification after 40 hours of sintering in the
second step [2].

4.5 Conclusion and outlook

The sintering behavior, even for only two nanoparticles, can be complex and strongly
dependent on the crystalline orientation as shown in [12]. Our discrete model at the
particle scale cannot reproduce all the subtleties that can be simulated at the atomic
scales. Still, our simulations show good agreement with experimental data in terms of
the evolution of the densification rate, density and grain size. However, the very early
densification and grain growth of nano-powders reported by Yang et al. [2] are not
correctly reproduced by the model.

A limitation in our discrete modeling is the assumption of spherical particles that
indent during sintering. This hypothesis is particularly challenged in the last stage of
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Figure 4.9: DEM simulation results. Transferred volume per contact for the two grain
growth mechanisms considered in the DEM simulations. Comparison between conventional
and two-step sintering.

grain growth where a typical pear shape has been suggested by two-particles modeling
[25], [43]. Freeing from this assumption, while keeping the discrete framework, can
only be achieved by introducing a new paradigm such as using level-set representation
of particles [44].

We observed that for nanoparticles, abnormal grain growth is triggered in our sim-
ulations if we enforce the simplistic rule that small particles are always eaten away by
larger ones. This phenomenon needs further investigation to clarify the conditions that
lead to abnormal grain growth. In particular, molecular dynamics simulations could
help (if they are able to model several tens of nanoparticles for large physical times) to
detect the conditions that lead to abnormal versus normal grain growth. The transfer
of matter from one grain to another is dictated by the local curvature. For spherical
grains, as used here, the local curvature is uniquely related to particle sizes. This
is clearly simplistic and simulating non-spherical geometries would certainly provide
more realistic information about abnormal grain growth.

With the ability to study thermal cycles during sintering, the model confirms the
effectiveness of using fast heating rates to retard grain growth in conventional sintering
of nano-powders. The mechanisms underlying the efficiency of two-step sintering of α-
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Figure 4.10: DEM simulation results. Grain size-density trajectories for different QGBM

in the second step at T2 = 1025◦C (solid lines) and in conventional sintering for 10◦C/min
(dashed line). Times in hour are indicated to illustrate the associated sintering kinetics.

alumina and more generally of ceramic oxides still need some further investigation, both
from experiments and modelling. Still, this study plausibly supports the hypothesis of
[2] that a transition of the apparent activation energy of the grain boundary mobility
is the main reason. Our results suggest that the halting of grain growth in the second
step is explained by a large increase (≥ 2.5) of the activation energy of grain boundary
mobility for a transition temperature of 1100◦ C. Further experimental and numerical
studies are needed to confirm these values and to clarify whether the cause of the
mobility activation energy is the junction drag or some other property of the alumina
grain boundary.
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Chapter 5

LS-DEM model of sintering
This chapter introduces a proof of concept of a LS-DEM framework for studying the
sintering of non-spherical particles. This is presented as a scientific article entitled A
level set Discrete Element Model (LS-DEM) for sintering with an optimization-based
contact detection that will be submitted to one of the following journals: Computational
Particle Mechanics, Computational Materials Science or Modelling and Simulation in
Materials Science and Engineering at the end of 2022.

Previous chapters have described the development and application of a coupled
grain growth and densification model for studying sintering from a discrete perspec-
tive. This allowed us to investigate the microstructural evolution of large packings of
spherical particles. Chapter 2 showed that sintering is a curvature-driven process and
that there are no DEM sintering methods for non-spherical particles in the literature.
The fact that many sintering powders are composed of non-spherical particles, mo-
tivates the second axis of this PhD thesis, dedicated to the development of a DEM
framework for non-spherical particles. The reader’s attention is attracted to the fact
that this chapter focuses more on computational methods than on materials science,
unlike the previous chapters. This is because, as stated above, the proposed LS-DEM
framework is essentially a proof of concept with applications following later on.

The fundamentals of the LS-DEM method, capable of describing arbitrary shape
particles from a DEM perspective, were presented in chapter 2. In this chapter the
main ingredients of the proposed LS-DEM sintering model are explained. Emphasis
is on the proposed algorithm of contact detection for non-spherical particles, which
is a critical change from the straightforward contact detection for spherical particles
discussed in chapters 1 and 2. The developed sintering framework is valid for modeling
arbitrary shape particles. Here, as a proof of concept, the simulations are performed
for ellipsoidal particles and without considering grain growth.

The incorporation of non-spherical particles into DEM simulations of sintering,
as with the introduction of grain growth (chapter 3), calls for new expressions for the
normal force and for the neck size. Simple approximations are employed in this chapter,
nevertheless their validation or the proposition of new expressions should be the object
of future work. This chapter completes the modeling proposed in this PhD.
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Abstract

Sintering is a well-known high temperature process for the consolidation of ceramic,
metal and polymer powders. The Discrete Element Method (DEM) has been effectively
used to model the sintering process at the particle scale considering spherical parti-
cles. However, manufacturing processes result very often in non-spherical particles.
Since sintering is a curvature-driven process, it is important to take deviation from
sphericity into account. This study presents for the first time a DEM sintering model
for non-spherical particles. The description and dynamic evolution of arbitrary shape
particles is achieved by using the level set discrete element method (LS-DEM). The
original LS-DEM approach used boundary nodes on the particles to detect contacts.
We use an optimization-based contact detection approach. This improves the capture
of small contacts, which are important for a correct description of sintering evolution
with a reasonable CPU consumption. A Newton-Raphson scheme is employed for the
optimization algorithm. The normal force and neck size evolution expressions of spher-
ical particles are adapted for arbitrary shape particles by using the local curvature at
the contact. The developed model is validated for elastic contacts on superquadric
ellipsoids. It is validated for sintering contacts by comparing with standard DEM on
spheres. This work is a proof of concept of a LS-DEM sintering model. It is applied
to investigate the densification and consolidation kinetics of a packing of ellipsoidal
particles.

Keywords: discrete element method, level set, sintering, non-spherical particles,
contact detection, optimization.

5.1 Introduction

Sintering is a prominent high-temperature process to manufacture ceramic, metallic
and polymeric materials by consolidating powders. The driving force to transform an
initial particulate material into a bulk material is the reduction of the interfacial energy
of the system. The seminal experimental work of Petzow and Exner showed that par-
ticle rearrangement is an important feature of solid-state sintering for crystalline and
amorphous powders [1]. More recent studies using X-ray tomography confirmed that
translational, rolling and intrinsic rotation movements of particles play an important
role [2]. These works substantiated the argument that during sintering, powders can-
not be considered as a continuum and that the discrete nature of the initial material
is maintained at a late stage of the process. This motivated the use of discrete simu-
lations to take explicitly into account the particulate nature of the processed material.
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The Discrete Element Method (DEM), is well adapted to this task as it can handle
the interactions of a large number of discrete particles. It has been used extensively
to model sintering over the past 20 years [3]–[13]. For simplicity and to limit CPU
time, all these studies represent particles as spheres. The main reason is that contact
detection between two spheres is fast and can be fairly easily optimized. Neverthe-
less, actual particles are not spherical. For example, SEM images of common alumina
powders show that the particle shape is far from being spherical (Figure 5.1a). Even
particles in advanced alumina manufacturing process, where the size, size distribution
and shape are controlled, are not perfect spheres (Figure 5.1b). The shape can in-
fluence the microstructural evolution as sintering is a curvature-driven process. For
instance, kinetic Monte-Carlo simulations have found that packings with higher aspect
ratio particles reach higher densities [14], [15].

(a) (b)

1μm 1μm

Figure 5.1: SEM images of powders of a) alumina from general manufacturing process (Bayer
process), b) alumina from advanced manufacturing process (hydrolysis of aluminum alkoxide)
(Courtesy of Aatreya Manjulagiri Venkatesh)

In the DEM framework, the most common representations of non-spherical par-
ticles, as summarized by Lu et al. [16], are multi-spheres, ellipsoids, polyhedral, su-
perquadrics, the combination of geometric elements, and potential particles. Multi-
spheres is a widely used method for representing arbitrary shape particles, however for
sintering applications is not convenient since the local curvature may not be correctly
captured. More recently new representations have been proposed in terms of level sets
[17], surface meshes [18] and Fourier series [19].

The level-set method was pioneered by Dervieux and Thomasset [20] and by Osher
and Sethian [21]. It uses a scalar function to represent a close surface in 3D. The
level-set function is zero for any point on the particle surface, negative inside and
positive outside. Coupling DEM and level-sets (LS-DEM) [17] is an interesting ap-
proach that captures arbitrary shapes using level sets, while keeping the discontinuous
framework of DEM. The method allows to obtain the real shapes of particle directly

119



CHAPTER 5. LS-DEM MODEL OF SINTERING

from 3D tomography images. Although LS-DEM computational cost is higher than
DEM, the method is tractable for tens or hundreds of thousands of particles [17]. A
detailed comparison between LS-DEM and DEM on accuracy and computational cost
has been recently proposed [22]. LS-DEM has already been applied for triaxial com-
paction tests [17], breakage mechanics [23], [24], electrostatic cohesion [25], prediction
of shear banding [26], the investigation of incremental behavior of granular materials
[27] and particle bonding [28]. The above studies have in common that they focus
on geomaterials, which feature elasto-plastic interactions between particles. For engi-
neering materials, the sintering at high temperature of specific contact laws have been
provided for DEM [3], [4], [12] with spherical particles. They introduce material pa-
rameters such as diffusion coefficients and surface energies. So far, and to the best of
our knowledge, LS-DEM has not been applied to the sintering process. The aim of this
work is to present a LS-DEM framework that is compatible both with elasto-plastic
interactions and sintering interactions.

Contact detection is the most challenging stage of simulating non-spherical parti-
cles. LS-DEM, as proposed originally by Kawamoto et al. [17] performs this task by
creating boundary nodes on the particle surface and evaluating if they are inside an-
other particle (see Fig. 2.17 in chapter 2). As part of our initial test, we have applied
this technique to a packing of relative density 0.59 with non-uniform size particles,
generated by classic DEM. The packing is composed of 400 spherical particles, which
allows a direct comparison with DEM results on one LS-DEM timestep. Fig. 5.2
shows the percentage of contacts detected by LS-DEM as a function of the number of
boundary nodes per particle. Fig. 5.2 indicates that even 40 000 nodes only detect
around 70% of the existing contacts. For denser packings (0.64 and 0.69), we observed
that 4 000 nodes lead to 99% of the contacts detected. This indicates that the contact
detection algorithm mainly misses small contacts. These results are coherent with those
of Duriez et al. [22] who have shown that 10 000 nodes lead to a 15% underestimation
of the macroscopic pressure (the number of missed contacts is not indicated). In a
packing where interactions are elastic, missing small contacts (30% for 40 000 nodes)
has only a limited impact on the macroscopic pressure since the pressure is linearly re-
lated to contact forces (Love equation [29]). However, for sintering, small contacts are
associated with large tensile forces driven by surface energy minimization (as detailed
in section 5.2.4). Thus, small contact detection is critical for a correct description of
the packing macroscopic behavior, and in particular of the densification rate, and of
the rearrangement of particles.

Increasing the number of boundary nodes is not a viable option as it becomes CPU
prohibitive above 10 000 nodes. A recent LS-DEM study [30] applied an optimization-
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based contact detection in order to decrease the computational cost and eliminate
the dependence of the force on the number of boundary nodes. While they used a
derivative-free optimization algorithm, we opt to use the Newton-Raphson method
because of its fast local convergence and the ease of calculating derivatives from the
discrete level set function, which will also be used for curvature calculation. This
approach is based on the two-contact points search proposed by Houlsby [31] in the
context of what he is defining as 2D potential particles (and what we define shape
function). The author developed it for convex particles, however, we add here a multi-
start strategy for contact detection among convex particles, that could also be used to
find multiple contact points in non-convex particles.
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Figure 5.2: Contact detection accuracy for an initial sintering packing as a function of the
number of boundary nodes in original LS-DEM for a packing density of 0.59.

Our work presents a LS-DEM model of sintering with an optimization-based contact
detection. Section 5.2 describes the model detailing the contact detection scheme.
Section 5.3 validates the developed model for elastic and sintering interactions. Section
5.4 models the sintering of a two-particle system and of a packing of particles. As the
aim is to provide a proof of concept of our scheme, we have limited applications to
ellipsoid shapes.
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5.2 Model description

5.2.1 Equations of motion

The evolution of the center of mass position, x⃗i, for each particle i follows Newton’s
second law:

mi
⃗̈xi =

∑
F⃗ij (5.1)

where mi is the particle mass and F⃗ij the total force (with normal and tangential
components in the local framework) exerted by a particle j in contact. The particle
position is updated by imposing first an affine displacement which follows the macro-
scopic imposed strain-rate and integrating Eq. (5.1) using a Velocity Verlet algorithm
as detailed in [32].

For non-spherical particles, even in the absence of frictional forces, rotations need
to be considered. We approximate sintering as a quasi-static process, in this case the
nonlinear term of the general equation of rotational motion can be neglected obtaining
the following expression for the angular position θ⃗i [33]:

Ii
⃗̈θi =

∑
M⃗ij (5.2)

with the particle moment inertia Ii and the torque M⃗ij. In addition, the quasi-static
assumption also allows the non-diagonal terms of the moment of inertia tensor to be
neglected [33], [34]. The particle mass and moment of inertia are estimated as proposed
in the original LS-DEM methodology [17].

Quaternions are used to track rotations of particles. The advantage (as compared
to Euler angles) is to avoid singularities at small angles [35]. A quaternion q, defined
by an orientation vector u⃗ and an angle θ, is attached to each particle:

q = (q0, q1, q2, q3, )T = cos(θ(t)/2) + sin(θ(t)/2) [uxx⃗+ uyy⃗ + uz z⃗] (5.3)

At each time step, its variation is calculated depending on the rotational velocity at
full time step ⃗̇θt+∆t:

q∆t = cos
 | ⃗̇θt+∆t|∆t

2

+ sin
 | ⃗̇θt+∆t|∆t

2

 ⃗̇θt+∆t

| ⃗̇θt+∆t|
(5.4)

The updated orientation is computed by the quaternion product: qt+∆t = qtq∆t [36].
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5.2.2 Discrete level set function and derivatives

The particle shape is described by the signed distance to the particle surface (level
set) stored at grid points [17]. The level set can be computed analytically from the
distance equation to a 3D shape or obtained from tomography images of the packing
of particles [37].

The bounding sphere of the particle is used to build a local uniform Cartesian grid
with ncellint number of cells in each direction (Figure 5.3). ncellext extra cells of the
same size are added in all directions for contact detection purposes (see section 5.2.3).
The level set values are stored on all these grid points (green dots in Figure 5.3).

𝑛𝑐𝑒𝑙𝑙𝑖𝑛𝑡

𝑛𝑐𝑒𝑙𝑙𝑒𝑥𝑡

Figure 5.3: 2D schematic of a local grid of a particle with grid points in green. The grid is
composed by ncellint+ncellext cells in each direction. The bounding sphere of the particle is
represented by the dashed circle.

During the contact detection and calculation stages, the level set values and their
derivatives are required at points among the grid points. Linear interpolation is used
to calculate the level set value ϕ at any point p from the surrounding abc grid points
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with level set values ϕabc [17]:

ϕ(p) =
1∑

a=0

1∑
b=0

1∑
c=0

ϕabc [(1 − a) (1 − x) + ax]

[(1 − b) (1 − y) + by] [(1 − c) (1 − z) + cz] (5.5)

Here for simplicity, the first and second derivatives of the level set are computed by
central finite differences (FD). To prevent the second derivative from vanishing due
to the first-degree polynomial ϕ(p), a FD step size greater than the grid cell size is
adopted. We verified that these approximations do not have any noticeable impact on
the final results.

In contrast with other LS-DEM works, our contact law needs the input of the local
curvature (see section 5.2.4). We use the mean curvature instead of the Gaussian
curvature to avoid singularities of the curvature radius as pointed out by Podlozhnyuk
et al. [38] for superquadric particles. The mean curvature κ of level sets is used by
adopting the formula proposed in [39] for implicit surfaces. Writing κ in terms of first
and second derivatives of a particle i gives:

κ =

ϕ2
ixϕiyy − 2ϕixϕiyϕixy + ϕ2

iyϕixx + ϕ2
ixϕizz − 2ϕixϕizϕixz

+ ϕ2
izϕixx + ϕ2

iyϕizz − 2ϕiyϕizϕiyz + ϕ2
izϕiyy

2|∇ϕi|3
(5.6)

where ϕik = ∂ϕi

∂k
and ϕikl = ∂2ϕi

∂k∂l
.

5.2.3 Contact detection

5.2.3.1 Particle-particle contact

The search algorithm for contacts is based on an optimization approach. We extend
to 3D the method developed by Houlsby [31] for 2D particles. These particles had an
analytical expression describing their shape. In our case, we adapt the method to the
level set discretized on the grid.

Recall that for a given particle, its level set is negative inside the particle, zero on
the surface, and positive outside as shown in Figure 5.4. Let i and j be two particles
in potential contact, in a first step, the objective is to find, if it exists, the innermost
point in j while imposing that it belongs to the surface of i (x⃗op,ϕi in Figure 5.4). This
point can be found by solving the following constrained optimization problem:

min
x,y,z

ϕj (x, y, z)

s.t. ϕi (x, y, z) = 0
(5.7)
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min𝜙𝑖

𝜙𝑗 = 0
min𝜙𝑗
𝜙𝑖 = 0

𝜙𝑖 = 0
𝜙𝑗 = 0

𝜙𝑖 < 0

𝜙𝑖 > 0

𝜙𝑗 > 0

𝜙𝑗 < 0

Ԧ𝑥𝑜𝑝,𝜙𝑖
Ԧ𝑥𝑜𝑝,𝜙𝑗

Figure 5.4: Optimization-based contact detection for two particles i and j described by level
sets ϕ. x⃗op,ϕi is the innermost point in j on the surface of i (first step). x⃗op,ϕj is the innermost
point in i on the surface of j (second step).

where s.t. stands for subject to. If the point found is inside the particle j, i.e.,
ϕj (x⃗op,ϕi) < 0, the two particles are in contact. In that case, a similar optimization
problem is solved to find the point x⃗op,ϕj (Figure 5.4):

min
x,y,z

ϕi (x, y, z)

s.t. ϕj (x, y, z) = 0
(5.8)

This second optimization step is needed to compute the required contact parameters
[31] (section 5.2.4). It is also used as a back-up to ensure that the contact actually
exists. This is because in a few cases, inaccuracies can arise due to the discretized
character of the level set function on the grid.

Solving the optimization problems in Eqs. (5.7) and (5.8) separately, Houlsby
[31] applied in 2D the method of Lagrangian multipliers to obtain a set of nonlinear
equations, which he solved with the Newton-Raphson (N-R) method. Here, the same
approach is adopted. The linear system of one N-R iteration that we have obtained
for the optimization problem (5.7) is in 3D:
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ϕix ϕiy ϕiz

ϕixxϕjy + ϕixϕjxy−
ϕjxxϕiy − ϕjxϕixy

ϕixyϕjy + ϕixϕjyy−
ϕjxyϕiy − ϕjxϕiyy

ϕixzϕjy + ϕixϕjyz−
ϕjxzϕiy − ϕjxϕiyz

ϕixxϕjz + ϕixϕjxz−
ϕjxxϕiz − ϕjxϕixz

ϕixyϕjz + ϕixϕjyz−
ϕjxyϕiz − ϕjxϕiyz

ϕixzϕjz + ϕixϕjzz−
ϕjxzϕiz − ϕjxϕizz




∆x
∆y
∆z



=


−ϕi

−ϕixϕjy + ϕjxϕiy

−ϕixϕjz + ϕjxϕiz



(5.9)

or in compact form:
J∆⃗x = −Φ (5.10)

where J is the Jacobian matrix. At iterations nr, the new point is x⃗nr+1 = x⃗nr +αnr∆⃗x

with αnr a scalar (αnr ≤ 1). The optimal point x⃗op,ϕi is obtained after a few N-R
iterations. The scalar parameter αnr ensures stability and is calculated as in [38]. The
initial point x⃗0sph is chosen as the barycenter of the two spheres that circumscribe the
particles. The barycenter initial point for N-R is kept as long as no contact is found.
Once a contact is detected, the last value of x⃗op,ϕi is kept for the next time step as the
initial point for N-R.

In very few instances, we have observed that the above procedure does not detect
existing contacts. This issue is due to the local convergence of Newton-Raphson. To
make contact detection more robust, we implement a simple multi-start strategy. If
the x⃗0sph initial point does not lead to a contact, Nms random points on the surface of
a sphere with origin in x⃗0sph and with radius rms = 0.5 min (ri, rj) are tested as initial
points for the N-R search. There is a compromise between the effectiveness of the
method and the computational cost. Our simulations have shown that Nms = 5 gives
a good balance for ellipsoids. The number of grid cells Ncell also affects this choice.

5.2.3.2 Particle-plane contact

Similarly, the contact detection of a particle-plane pair is based on optimization. From
the general equation of the plane, a level set function can be deduced. This allows to
formulate the optimization problem in the form of Eq. (5.7), where i is the particle and
j the plane. We consider only planes perpendicular to the main axes. For illustration,
considering a plane perpendicular to the z axis, the following system of equations is
obtained:
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ϕix ϕiy ϕiz

ϕixx ϕixy ϕixz

ϕixy ϕiyy ϕiyz




∆x
∆y
∆z

 =


−ϕi

−ϕix

−ϕiy

 (5.11)

The simplicity of the level set of a plane makes Eq. (5.11) simpler than particle-particle
Eq. (5.9). Eq. (5.11) is solved in the same way with a multi-start procedure. The only
difference is that for particle-plane it is not necessary to solve the second optimization
problem ( Eq. (5.8)).

5.2.4 Sintering contact law

Once a contact between two particles i and j is detected, the contact force is calculated
in the next stage. Like other forces, the sintering force needs the values of the overlap
or indentation hij and of the unit normal vector at the contact. Unlike the original
LS-DEM method, we have two points at each contact (x⃗op,ϕi and x⃗op,ϕj) instead of one.
Therefore, the contact variables are calculated based on the two points. We follow the
procedure of potential particles proposed in [31] that suggests to average the values.
The indentation then between two particles is given by:

hij = −ϕi (x⃗op,ϕj) − ϕj (x⃗op,ϕi)
2 (5.12)

while the unit normal vector is calculated from:

n⃗ij = ∇ϕi (x⃗op,ϕi) − ∇ϕj (x⃗op,ϕj)
|∇ϕi (x⃗op,ϕi) − ∇ϕj (x⃗op,ϕj)|

(5.13)

Our force calculation depends on the maximum indentation, which makes it mesh
independent, unlike some of the others LS-DEM approaches [40].

For two spherical particles, the normal force Nij [32], [41] is:

Nij =
πa4

ij

8∆GB

dhij

dt − α

2 πReq,ijγS (5.14)

where α is a parameter of the model, γS is the surface energy and ∆GB = Ω
kbT

DGBδGB,
with the atomic volume Ω, the Boltzmann constant kb, the temperature T , the grain
boundary diffusivity DGB, the grain boundary thickness δGB and Req,ij the equivalent
radius. The first term is a viscous component that counteracts the relative motion
of the two particles and the second term is the sintering attractive force. Eq. (5.14)
introduces the rate of approach of the two particles (dhij

dt
). This value is computed

using the relative velocity of the two particles (at the last time step) and the unit
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normal vector n⃗ij.
A simple analytical equation of the mean normalized indentation as a function of

time can be derived from Eq. (5.14) by assuming that the packing equilibrium is
attained if contacts fulfill Nij = 0. This simplistic assumption, together with assuming
that all particles have the same radius R = 2Req, and that the initial indentation is
zero leads to: (

h

R

)3

= 3
2
α∆GB

R4 t (5.15)

Eq. (5.15) exhibits the classic dependence to time (h ∝ t1/3) proposed by [42]. It will
be used for comparison with LS-DEM simulations.

Eq. (5.14) has been developed for two spherical particles (radii ri and rj), with
Req,ij = rirj/(ri + rj), denominated as the equivalent radius. Sintering is a process
driven by the local curvature gradient. Thus, we propose to generalize Eq. (5.14) for
non-spherical particles by ascribing the mean local curvature radii to ri and rj. A
similar approach was employed for the elastic Hertzian law in [38] with good results
when compared with FEM simulations. The mean local curvatures κi and κj are
calculated from Eq. (5.6) on the contact points x⃗op,ϕi and x⃗op,ϕj. The curvature radii
are given by ri = 1/κi and rj = 1/κj in Eq. (5.14). The sintering neck size a is related
to the indentation by Coble’s geometric model [32], [43]:

a2
ij = 4Req,ijhij (5.16)

Tangential forces are neglected. Thus, the force between two sintering particles
is given by: F⃗ij = Nijn⃗ij. Unlike spheres, a normal force applied on a non-spherical
particle creates a torque. Grain growth is not considered here.

5.3 Validation

In this and the following section, analyses are performed with ellipsoidal particles
defined by semi-axes a, b, c. In particular, we work with different types of spheroids
(ellipsoid of revolution with a = b) shown in Figure 5.5. Spheroid A is a prolate
spheroid (a < c) without any rotation, while B has a rotation of 90◦with respect to
axis x and C is an oblate spheroid a > c.

A level-set for these spheroids must be provided to fill the grid points as described
by Eq. (5.5). There is no simple analytical equation for the level-set of a spheroid. An
exact method, which rests on the numerical resolution to find the roots of polynomial
equations, has been proposed by Eberly [44]. An alternative consists of approximating
the level-set value by using a second ellipsoid that passes through the point p at which
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Figure 5.5: Mean indentation of ellipsoids as a function of time during jamming.

the level-set value must be determined. The level-set is approximated by the distance
between point p and p0. Fig. 5.6 shows schematically that the value is exact on the apex
of the ellipsoid (and on the surface of the ellipsoid) and overestimates ϕ(p) otherwise.
For a ellipsoid with semi-axes a = 0.5, b = 0.5, c = 1, we checked that the maximum
error is of the order of 10% of the larger semi-axis for ϕ(p) > 0 with the standard grid
used around the particle (see Fig. 5.3).

Figure 5.6: Exact level-set ϕ(p) and approximate level-set ϕ̃(p) and for an ellipsoid.

5.3.1 Elastic contact between two ellipsoidal particles

The first test aims at validating the basic calculations of our model. For this, a simple
system of two equal-size ellipsoids B (Figure 5.5) aligned on the z axis with elastic con-
tact is chosen. The contact force is calculated as a function of the mutual indentation
using the Hertz equation:

NHertz = 2
3

E

1 − ν2R
1/2
eq h

3/2 (5.17)
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Figure 5.7: Resulting normalized elastic force versus the indentation between two aligned
ellipsoids for LS-DEM, DEM superquadrics [38] and FEM [45]. The force is normalized by
Eb2, where E is the Young’s modulus and b is the short axis.

A complete description of the problem is found in [38]. Figure 5.7 shows the results
of our LS-DEM calculation compared with DEM superquadrics [38] and FEM calcula-
tion [45]. The overlay of the DEM superquadrics and our curve demonstrates that the
calculation of the local curvature and the first and second derivatives of our level set
function is correct. The close results to FEM values support the previously discussed
hypothesis of using the local curvature radii in the Hertzian law. Additionally, it is
possible to confirm the ability of detecting very small contacts, which will be discussed
further in the next sections.

5.3.2 Jamming of a packing of ellipsoidal particles

The relative density of packings prior to sintering is usually between 0.50-0.65. This
is close to the density of a random close packing or a maximally random jammed
state [46]. Such a packing can be obtained numerically by the jamming of an initial
random gas of particles. The procedure consists of randomly locating particles into the
simulation box with the only constraint that there is no contact between them. The
jamming itself is a stress-controlled simulation with a very small control pressure P as
compared to the Young’s modulus of the particles (P/E = 10−6). This ensures that
mutual indentation between particles is kept very small and does not contribute to
densification (only particle rearrangement contributes to densification). With such a
scheme, a maximum packing fraction is asymptotically approached while the pressure
tends toward the control pressure. Details on this process for spherical particles can
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be found in [47].
The jamming process is a relevant test of the proposed algorithm for contact detec-

tion as it tests its ability to detect small contacts. The packing procedure is performed
for two packings of 1 000 non-uniform size particles composed by prolate ellipsoids
with aspect ratio c/a = 1.43 and oblate ellipsoids with aspect ratio c/a = 0.75. The
simulation box is delimited by stiff planes that interact with particles with the Hertzian
equation (Eq.5.17). Figure 5.8 shows the jamming of prolate ellipsoids and oblate el-
lipsoids from a relative density of 0.22 and 0.33, respectively, to a final density of 0.52.
The normalized mean indentation is kept in low values around 10−3, which is consistent
with the applied pressure.
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Figure 5.8: (a) Mean indentation of ellipsoids as a function of relative density during jam-
ming. (b) Initial and final microstructures obtained.

5.3.3 Sintering of a packing of spherical particles

The tests with elastic contacts in the preceding sections have validated the main com-
ponents of the model (see appendix C.1, for a test that validates the rotations using
quaternions). The objective of this section is to check and validate the simulations
that implement sintering contacts. A packing of LS spherical particles is chosen to
compare with the analytical solution and DEM results. The initial packing contains
100 particles and exhibits a relative density D =0.52, i.e., a packing with very small
indentations (h=0.001). The simulation is carried out until h/R=0.1, which is the
most critical stage for contact detection and calculation. We use here a mesh with
ncellint = 50 and ncellext = 20.

The left axis of Figure 5.9 shows the evolution of the mean indentation with time
for LS-DEM and DEM simulations. All the curves are noisy due to the small number of
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particles (and non-periodic conditions). Both curves display almost the same evolution.
For completeness, the results are compared with the analytical solution given by eq.
(5.15). The right axis of Figure 5.9 plots (h/R)3 vs time. Both LS-DEM and DEM
simulations agree reasonably well with the linear analytical solution.
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Figure 5.9: Comparison of the evolution of densification: mean normalized indentation (left)
and mean normalized indentation to the cube (right) for comparison with the analytical
solution (Eq. 5.15). Simulations are carried out with spheres.

Figure 5.10 presents the evolution of the mean coordination number zc with time
for LS-DEM and DEM. In contrast with the indentation, the LS-DEM coordination
number differ markedly from the DEM results. Inspection of the results revealed that at
the first time step the number of contacts detected by LS-DEM is smaller than for DEM.
This makes each simulation follows a different dynamic hereafter. This particularly
affects sintering since very small contacts will trigger the attraction term in Eq. (5.14)
with very small viscous counteraction (the viscous term scales with h2). Fig. 5.10 shows
that later in the simulation, due to the different integrated history of the compacts,
LS-DEM and DEM differ, and the number of contacts in LS-DEM overreaches that of
DEM. Still, an agreement on the mean indentation is achieved (Figure 5.9) because
contacts, that exist in LS-DEM and not in DEM, quickly increase to the mean value
due to the term a4 in Eq. (5.14). The same agreement was observed for the neck size
a. Therefore, a good correlation between LS-DEM and DEM simulations of spheres
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was found for the densification kinetics (h) and the consolidation kinetics (a).
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Figure 5.10: Comparison of the evolution of the mean coordination number for spherical
particles.

5.4 Applications

5.4.1 Sintering between two ellipsoidal particles

So far, the DEM models have been applied to the sintering of spherical particles. In
order to gain a better understanding of the behavior of ellipsoidal particles sintering,
first, a system of two prolate particles of equal size is investigated. Two ellipsoids A
and two ellipsoids B (Figure 5.5) aligned on the z axis are studied to evaluate the
influence of curvature on sintering rates. Simulations with LS spheres (a = b = c) of
radius c are also performed to assess the influence of the particle aspect ratio.

Figure 5.11a shows the evolution of the normalized mean indentation, i.e., densi-
fication, with time. The analytical solution provides an insight about the observed
behavior: (Eq. (5.15)) shows that the normalized indentation (h/Req) scales with
(1/R4

eq). Given that at each contact point Req,sp > Req,B > Req,A, the expected mean
indentation follows hA > hB > hsp, as observed in the simulations.

DEM simulations on spherical particles show that two packings can be compared
simply by inspecting their normalized indentation h/R: a larger h/R for a given packing
is associated to a larger normalized neck size a/R. This does not apply anymore for
particles with different aspect ratios, as indicated by comparing Figure 5.11a and b.
Ellipsoids A exhibit the highest normalized indentation (where R is the radius of the
bounding sphere, i.e., R = c for ellipsoids A and B), while spheres have the largest
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(a) (b)

Figure 5.11: (a) Densification and (b) consolidation kinetics of two particles for different
particle aspect ratios. R is the mean radius of the bounding spheres.

neck. This is a consequence of our choice of keeping the same Coble’s geometric model
for ellipsoids and simply replacing radii by curvature radii (Eq. (5.16)).

5.4.2 Sintering of a packing of ellipsoidal particles

The previous section, limited to two particles, showed a decoupling between densifi-
cation (indentation) and consolidation (contact size) when departing from spherical
particles. Simulations of a packing of particles can provide more realistic information.
Packings of 1 000 prolate and oblate ellipsoidal particles with aspect ratio c/a = 1.43
and c/a = 0.75 respectively are used. These packings are non-monomodal. Particles
are generated from bounding spheres following a lognormal distribution with lognormal
standard deviation 0.20. The initial packings for sintering were generated in section
5.3.2. The stiff planes that were used to jam the packings are translated away from the
surface of the packing. This ensures that they do not interact during sintering. The
results are compared with simulations of spherical particles of mean radius 0.5µm. We
ensure that oblate, prolate and spherical particles have the same volume. We use here
a mesh with ncellint = 100 and ncellext = 20.

Figure 5.12a shows the evolution of the densification with time. The packings with
ellipsoids have a faster densification than spheres. This would indicate that particles
with larger aspect ratios promote faster densification. Also, Figure 5.12b shows that
the mean coordination number is higher for ellipsoids highlighting a stronger rearrange-
ment. These results have been also observed by kinetic Monte-Carlo (kMC) simulations
[14], [15], which also worked with spheres and ellipsoids of same volume.

Together, Figure 5.12a and b provide some evidence that local curvature variations
promote faster densification (Figure 5.12a) and that non-sphericity promote particle
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Figure 5.12: Evolution of (a) the densification and (b) the mean coordination number during
sintering of a packing for different particle aspect ratios.

rearrangement (Figure 5.12b). The results presented in this section are preliminary.
More realistic results will be obtained with inclusion of periodic boundary conditions,
tangential forces and resisting moments.

5.5 Conclusions and Perspectives

The modeling of sintering of non-spherical particles is challenging. The sintering LS-
DEM developed in this work looks promising to study the densification of realistic
packings composed of non-spherical particles. The framework developed can be applied
to sintering of arbitrary shaped particles. Here, the sintering of ellipsoidal particles
has been simulated as a proof of concept. Our future work will focus on the use
of arbitrary shape particles extracted from tomography images. Still, many aspects
should be improved to reach fast and accurate simulations.

Contact detection is one of the most critical stages when modeling non-spherical
particles. The presented optimization-based contact detection is effective for detect-
ing small contacts, that are important for sintering due to the high attractive force
produced. The use of a multi-start optimization algorithm was proposed in order to
decrease the number of missed contacts. This technique can also be used in future
work to detect multiple contact points in non-convex particles.

The optimization-based contact detection has a lower CPU consumption than the
boundary nodes technique since the number of level-set function evaluations is lower.
However, our simulations show that the number of grid cells and thus RAM consump-
tion is higher in the former. A detailed comparison of the overall computational cost
between both methods is needed. If the RAM consumption is limiting, one solution
can be to employ more effective grid structures like octree as proposed in [22]. Another
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possible approach can be to use a density-based grid cell size, as a fine grid is mainly
needed at low densities when contacts are very small.

The LS-DEM model described here was fully integrated into the dp3D code. Thus,
all the contact laws that exist in dp3D should a priori be available for use with LS-
DEM. The dp3D code is parallelized with a fine-grained method (at the loop level) with
openMP directives. The LS-DEM contact detection scheme is within the main loop over
contacts that is parallelized. However, it is clear that an optimization is needed. In
particular, the access to the memory is an important bottleneck when parallelizing a
code and it is an added issue for the current version of the LS-DEM, which uses many
very large arrays to access grid points.

Moreover, here we extend the normal force and neck size expressions of spherical to
non-spherical particles by simply using the local curvature radii instead of the sphere
radii. A validation of this assumption is needed. Alternatively, a new formulation of an
expression of the sintering force for non-spherical particles should be proposed. This
was already proposed for elasticity with ellipsoidal particles [45] or arbitrary shaped
particles [48], [49].

All the simulations carried out in this chapter have used stiff walls (jamming) or
free surfaces (sintering) as boundary conditions. Periodic boundary conditions are
handy to study packing behavior by minimizing the effect of boundary conditions. A
generalization of our LS-DEM formulation is thus needed for periodic conditions.
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Chapter 6

General conclusion and perspectives

6.1 Conclusions

In the last 20 years, DEM has been successfully used to model densification during
sintering at the particle length scale. The simplicity of the approach has allowed the
simulation of the microstructural evolution of packings with many thousands of parti-
cles, with ever-increasing refinements to get closer to realistic conditions. In addition
to study the influence of the initial microstructure and process parameters, the method
provides the ability of analyzing more complex sintering scenarios such as: anisotropy,
defect evolution, influence of second phases, constrained sintering, among others. The
coupling in this work with a grain growth model should improve the realism of these
analyses, but more importantly allows other applications in sintering, where grain
growth is important, to be explored.

The proposed grain growth model has as a basic assumption that smaller particles
transfer mass to larger particles by surface diffusion and grain boundary motion. Each
mechanism has a different condition for being activated, resulting in three possible
states for each contact: shrinkage, grain growth by surface diffusion, or grain growth
by grain boundary migration with shrinkage. The DEM model is in good agreement
with more sophisticated models for a two-particle system and with experimental grain
growth data from micron alumina sintering. One of the challenges for the application
of the model is the choice of diffusivity and mobility values, which are lacking in the
literature for many materials or present very large variations. In particular, the model
is sensitive to the grain boundary mobility, whose values can trigger abnormal grain
growth, with a higher broadening of the distribution size, in cases not observed in ex-
periments. However, this work shows the need of further numerical and experimental
analysys of the condition to have self-similarity in nano and micropowders. Despite
this, the coupled model is able to provide the densification and grain growth kinetics,
the sintering trajectory and even more specific data, as the evolution of the particle
size distribution. The ability of taking particle initial size distributions from experi-
ments allowed to observe that wider distributions favor grain growth to the detriment
of densification. Improvements can be made in the direction of the grain boundary
mobility description, which here only depends on the sintering temperature and is the
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same for all grains. It is interesting to note that our observation that a narrow particle
size distribution may retard grain growth is central to the strategy employed by Yang
et al. [1] for nano-powders.

Therefore, it seemed appropriate to use the model to investigate a current practical
challenge, that is to limit grain growth during the sintering of nano-powders. The
mechanisms and stages already validated for micronic powders were kept. Neverthe-
less, a probability that small particles that have more than one contact can receive
mass from large particles was introduced to avoid artificial abnormal grain growth. Al-
though this idea is supported by some nano-powders simulations, more investigations
are needed to verify the very existence of this phenomenon, its probability, and its
underlying mechanisms. Similarly, the next section discusses other possible model im-
provements, which may be appropriate to avoid the observed abnormal grain growth,
since the origin of this phenomenon may not be the hypothesis that matter always goes
from small to large particles. Nevertheless, the model was able to predict qualitatively
experimental data of nonisothermal conventional sintering and of two-step sintering.
The simulations confirm that faster heating rates retard grain growth in conventional
sintering of alumina. Furthermore, these simulations demonstrated one of the qualities
of numerical modeling, that is the ability to test new ideas that are difficult to mea-
sure experimentally. In this sense, DEM simulations support the hypothesis that the
effectiveness of two-step sintering is linked to the increase of the activation energy of
the grain boundary mobility for alumina at low temperatures.

Regarding the second axis of the thesis, a proof of concept of a LS-DEM model for
capturing arbitrary shape particles in sintering was developed. In this study, it was
possible to perform jamming and sintering simulations of ellipsoidal particles. Although
the implemented optimization approach for contact detection needs adjustments, it
shows more effectiveness when compared with the boundary nodes approach for the
detection of small contacts in sintering. Still, a detailed comparison of the overall
computational cost of both methods is needed. Some future improvements are proposed
in the next section. Despite the higher computational cost compared to the classical
DEM, the model is still feasible to run simulations of packings with thousands of
particles. The results shown for this preliminary LS-DEM sintering model are only a
first glimpse of the possible applications of the modeling of arbitrary shape particles
in sintering within the DEM framework.
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6.2 Perspectives

6.2.1 DEM grain growth model

The model could be used in a wider variety of sintering applications if the predicted
grain growth is smoother and less likely to produce artificial abnormal grain growth. To
this end, two central hypotheses must be addressed, and critically assessed. First, the
question of whether the flux of mass is always from the small to the large particle during
grain growth. At the nanoscale, molecular dynamics simulations could investigate this
phenomenon. For micronic particles, the good resolution of in-situ nano-tomography
could be used to follow the behavior of two or three particles in contact, specifically
the evolution of the particle volume and the center-to-center approach.

The second assumption that can be questioned relates to the mechanisms in each
status and the conditions for moving from one status to another. Currently, the shift is
made on the basis of the neck size and the two particle radii only. This information is a
simplistic approximation mainly because the particles are spheres and no information
about the surrounding porosity is taken into account. More information at the length
scale of the contact in addition to theoretical models should guide us to make a more
realistic choice of the mechanisms and conditions at each state. A possibility is to
estimate the pore size and the pore coordination number (zp) based on the Voronoi
tessellation method available in dp3D.

Also, the grain growth model assumes that once grain boundary mobility is active,
grain growth by surface diffusion is not. In other words, the two grain growth mecha-
nisms are mutually exclusive (Fig. 3.2 in chapter 2). This simplistic assumption may
have to be modified to account for the geometry of the neighboring pores (concave
versus convex pores). Similarly, in future work, efforts should be directed at improving
the accuracy of the model, for example by including the dependence of grain bound-
ary mobility MGB on mean porosity (or relative density D). If Voronoi tessellation is
used, one may go even further by using a more local information (local density, local
geometry to decide whether the grain boundary may be pinned) to modify the grain
boundary mobility at the scale of a given contact. These perspectives are sketched in
Fig. 6.1. In addition, a better approximation of the local curvature used in the grain
growth volume balance can be achieved by using realistically shaped particles with
LS-DEM.

Finally, future experimental work is needed for measuring the effective diffusivities
of powders in nano and micronic particles. This will allow to check the validity of
the very different prefactor values used here at the two scales. Moreover, a better
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Figure 6.1: Future work (blue) on the mechanisms and conditions of grain growth modeling
informed by the pore coordination number zp, or the relative density D.

understanding of the influence of the diffusivities on the grain growth in the simula-
tions can be reached using the ratio of diffusivities along and transverse to the grain
boundary. This is similar to the already employed ratio between grain boundary and
surface diffusion. These data on diffusivities are central to the quantitative quality of
DEM simulations for sintering. They may also originate from numerical simulations at
lower scales (molecular dynamics in particular).

6.2.2 LS-DEM sintering model

Being a proof of concept, the developed LS-DEM sintering model requires even more
immediate improvements. The inclusion of periodicity is the most pressing perspective
in order to eliminate the influence of boundaries in current simulations. Another main
step in reaching the full capacity of LS-DEM is the ability to capture the real shapes of
particles from tomographic images. Thus, an efficient preprocessing tool is needed to
transfer effectively the information from X-tomography images to level-sets on a grid.

Additional future work may be the simulation of large packing during sintering. In
this case the RAM consumption can be a limiting factor, mainly due to the use of the
optimization-based contact detection. A solution is the use of more efficient level set
data structures. An example is the octree method as suggested for LS-DEM by Duriez
and Galusinsky [2].

Regarding sintering, although rotations are already implemented, this should be
improved by implementing tangential forces and resisting moments. This is because,
large necks grow quite rapidly during sintering and may block entirely rotations. Once
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these steps have been completed, it will be possible to move on to LS-DEM modeling
of grain growth and coalescence. At this point, level-sets present a great advantage al-
lowing quite naturally the merging of two particles of arbitrary shape. This is achieved
by doing the following union Boolean operation between particles i and j to obtain a
new particle k:

ϕk (x, y, z) = min (ϕi (x, y, z) , ϕj (x, y, z)) (6.1)

This is similar to the approach employed by of Harmon et al. [3] for modeling breakage
mechanics, where intersection and difference operations were performed (Fig. 6.2).
However, there is a subtlety in sintering, as there is no conservation of mass when
two indented particles are simply merged together. A simple approach may be to
first perform an intersection operation between i and j to obtain a new particle, whose
volume can be calculated to obtain the intersection volume of i and j. Now the merging
operation (eq. 6.1) is performed and the intersection volume is homogeneously added
to the new particle k.

Figure 6.2: Breakage of particles in LS-DEM as proposed by Harmon et al. [3]

In the same direction, but with a paradigm shift, a future work could be to migrate
from the DEM perspective to a framework allowing the motion of particle surfaces using
the level set method. It has been used extensively in many different applications for
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describing interface motion and, to the best of our knowledge, only once for sintering in
[4]. This choice will depend on the type of sintering applications envisaged. Fig. 6.3 [5]
shows an example of the evolution and merging of interfaces that the level set method
can handle.

Figure 6.3: Growth and merging of arbitrary shape surfaces described by the level set method
[5]

All these perspectives have for objective to make DEM simulations more realistic.
The downside is that they make also DEM simulations much more complex from a
numerical point of view. This is somewhat in contradiction with the original philosophy
of DEM, which central numerical scheme is very simple (see Fig. 2.13). Thus, a good
balance must be found between going towards more realistic simulations and keeping
a simple and robust numerical method.
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Appendix A

Supplementary Information of Chap-
ter 3

A.1 Shrinkage and shrinkage rate: comparison with
Pan et al. results

The Eq. (3.5) from the main text shows the dependence of the contact radius a on the
indentation h from Pan et al. [1]. The only difference is we opted for convenience to
take the current radii and not the initial radii.

In order to check the validity of the new equation, we compare in Fig. A.1 the
obtained shrinkage h̃ and shrinkage rate dh̃

dt
for a given contact radius. Our simulation

results reproduced the original results from Pan et al.

Figure A.1: Normalized shrinkage and shrinkage rate versus neck radius. Comparison be-
tween DEM simulations ( ; ) and Pan et al. [1] (• ; △). Shrinkage is normalized by
the initial large particle radius rl,0, while the shrinkage rate is normalized by ∆GBγS/r3

l,0.
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A.2 Equilibrium neck size

In our study the relation between the contact size a and the contact angle Ψ are based
on geometric considerations. The basic representation and parameters for two spherical
particles are shown in Fig. A.2.

Figure A.2: Geometrical parameters for a contact between two unequal in size spherical
particles.

From this scheme the following trigonometric and geometrical expressions can be
written:

bl =
√
a2 + (rl − hs)2 bs =

√
a2 + (rs − hl)2 (A.1)

βl = arcsin rl

bl

βs = arcsin rs

bs

(A.2)

θl = arccos a
bl

θs = arccos a
bs

(A.3)

Ψl = π − βl − θl Ψs = π − βs − θs (A.4)

Ψ = Ψl + Ψs (A.5)
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h = hl + hs (A.6)

Dropping the square terms for simplicity leads to the following relation between hl and
hs:

hl

rl

= hs

rs

(A.7)

Our approach allows to choose any contact size. The expression of Pan et al. [1] is
used to define the relation between the indentation h and the contact size a due to
its accuracy to describe contact size in sintering and taking into account particles of
different sizes:

a2 = κ
[
0.5

(
1 + rs

rl

)]ζ

rlh (A.8)

The above equations form a nonlinear set of equations that relates Ψ to a and
that can be solved numerically or analytically. Fig. A.3 shows the numerical solution
(points) for different initial size ratios.

Figure A.3: Geometrical relationship between neck size and contact angle for different initial
size ratios between the smaller and larger particles with R∗ = rsrl

rs+rl
.

We propose a simple linear fit to relate both variables in order to save on compu-
tational time:

a = Ψ
Ψ̂

rs

1 + rs

rl

(A.9)

This solution is plotted as a straight line in Fig. A.3 with Ψ̂ = 92.937◦. We observe
that the linear equation fits the numerical results well for any value of the size ratio
greater than 1

4 . When the contact angle of equilibrium (dihedral angle Ψeq) is used,
the contact size of equilibrium aeq is obtained. This value is important in the model
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as it is the condition to start grain growth by surface diffusion and to stop sintering.

A.3 Sample preparation

Initial packings of particles are generated by random sequential addition of non-contacting
particles followed by isostatic densification. Periodic boundary conditions are applied
on all three directions. Here, since large particle size distributions are used and coars-
ening drastically decreases the number of particles, a large initial number of particles is
required to obtain statistically significant bulk properties. 40,000 particles have turned
out to be sufficient while resulting in reasonable computation times with our paral-
lelized DEM dp3D code. Much larger packings (400,000 particles) have been tested
without noticeable differences (Fig. 5).

Any particle size distribution can be accommodated and a lognormal size distribu-
tion, often used to describe experimental powders, is chosen here. During the initial
isostatic densification, only Hertzian elastic forces are considered. At the end of this
jamming process, before sintering, the packing relative density is 0.59, to allow com-
parison of our results with the experiments of Nettleship et al. [2]. The initial radius
r0 of the particles is given by a lognormal distribution (µ0, σ

2
0), with parameters µ0 and

σ0. The probability density function f is:

f(r0) = 1
r0σ0

√
2π

exp
(

−(ln r0 − µ0)2

2σ2
0

)
(A.10)

The mean particle radius is rm,0 = exp
(
µ0 + σ2

0
2

)
and the relative standard deviation√

exp(σ2
0) − 1. Note that mean grain sizes Ḡ, i.e., twice the particle radii, are reported

in the following in order to be consistent with experimental data.

A.4 Mean field analysis of grain growth kinetics

Scaling laws of the form Ḡn − Ḡn
0 ∝ t may be derived from the mass transfer equations

used in the DEM model, i.e., Eqs. (7), (8) and (9) of the main text. From these
equations, the scaling of the growth rate dr

dt
of a particle of radius r immersed in a

matrix of particles of mean radius r̄ can be obtained for each specific mechanism of
grain growth. Let us first consider grain growth by surface diffusion:

dr

dt
∝ 1
r2

1
r̄

− 1
r

r + r̄
AS (A.11)
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AS ≈ Z2πaeqδS with the coordination number Z ∝ 4πr2

πa2
eq

i.e. the surface of the particle
considered divided by the surface of one contact at equilibrium. Then, from Eq. (6) of
the main text aeq ∝ r̄r

r̄+r
hence:

dr

dt
∝ 1
rr̄

(1
r̄

− 1
r

)
(A.12)

From Eq. (A.12) the mean grain growth rate dr̄
dt

can be obtained following the math-
ematically complex approach of Hillert [3]. Here, for the sake of simplicity we opt for
the simplified approach proposed by Kang [4] in the context of Ostwald ripening. It
uses the approximate relation dr̄

dt
≈
(

dr
dt

)
max

. Derivation of Eq. (A.12) gives
(

dr
dt

)
max

for r = 2r̄ leading to :
dr̄

dt
∝ 1
r̄3 (A.13)

and finally after replacing r̄ by Ḡ and integration Ḡ4 − Ḡ4
0 ∝ t for grain growth by

surface diffusion.
Following a similar analysis, from Eq. (7) and (9) of the main text and assuming

AGBM ∝ r2 we obtain for grain growth by GB migration:

dr

dt
∝
(1
r̄

− 1
r

)
(A.14)

dr̄

dt
∝
(1
r̄

)
(A.15)

which lead, in accordance with Hillert [3] and Bernard-Granger et al. [5] to Ḡ2 −Ḡ2
0 ∝ t

for grain growth by GB migration.

A.5 Theoretical versus simulation sintering trajec-
tory slope k

As commented in the main text, Bernard-Granger et al. determined that Ḡ0
2
/Ḡ2 is

linear with D [5] if the main mechanism for grain growth is GB migration. The slope
of this curve k is given by:

k = Ḡ0
2 γGBDGBM

100γSδ2
GBDGB

(A.16)

The slope k is obtained by our simulations and compared with the theoretical k from
Eq. (A.16). We study in Fig. A.4 the influence of the initial mean grain size Ḡ0

and of the grain boundary mobility M0GB (i.e. DGBM). The other parameters of the
simulation are kept fixed following the values in Table 1 of the main text.
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Figure A.4: Dependence of the sintering trajectory slope k on the (a) Initial mean grain size
and on the (b) Grain boundary mobility. Theoretical calculations from Bernard-Granger et
al. [5].

In Fig. A.4 we can observe simulation results are relatively closer to the theoretical
values. The main reason for obtaining faster slopes in the simulation can be the initial
size distribution, this information is not taken into account on the theoretical analysis.
For instance, as showed in Fig. 9b of the main text, a narrower size distribution
decreased |k| from 12.2 to 10.5. In addition, our model includes surface diffusion on
top of grain boundary migration.

A.6 Heating rate influence

All the simulations in our study were performed in isothermal conditions. Here we show
the influence of a heating rate ramp followed by an isothermal dwell. Three different
ramps are used: 2◦C/min, 10◦C/min, 100◦C/min (Fig. A.5a) and compared with the
isothermal simulation, i.e., infinite heating rate. Fig. A.5b shows different densification
kinetics for various heating rates. The figure indicates that the densification rate is
similar when the temperature reaches the plateau.

Fig. A.6 shows the grain growth kinetics. As expected, grain growth arises sooner
when a higher heating rate is used. After the start of the grain growth, its rate is
almost the same regardless of the heating rate. This is confirmed by the dashed lines
representing the curves translated by the time necessary to reach the start of the grain
growth. These translated curves almost match the isothermal case.

We wish to verify the relevance of comparing the experimental grain size - den-
sity trajectories obtained with a realistic heating ramp with our simulation results in
isothermal conditions (Fig.9 of the main text). Fig. A.7 confirms that the trajectories
for different heating rates are nearly identical. Thus, this makes relevant the analysis
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Figure A.5: Simulations with different heating rates. (a) Sintering temperature profiles.
(b)Evolution of density with time. The dash lines indicate the time at which the temperature
reaches the plateau.

Figure A.6: Grain size - density trajectory for different heating rate ramps. Dashed lines
show the curves displaced in order to compare their evolution with the isothermal sample.

performed in Section 3.2.4 of the main text.
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Figure A.7: Grain size - density trajectories for different heating rates.
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Appendix B

Appendices of Chapter 4

B.1 Influence of the initial packing particle number

DEM has the ability to handle packings with a large number of particles in a feasi-
ble time. Nevertheless, even if millions of particles are considered, this value is much
lower than the number of particles used in experiments. It is thus necessary to choose
a number of particles that lead to a representative behavior of the real experimental
packing. The simulation results should converge when increasing the number of par-
ticles. This is more critical in simulations of grain growth as the number of particles
decreases significantly during sintering. Fig. B.1 shows the evolution of the mean grain
size with temperature for packings with initially: 4 000, 40 000 and 400 000 particles.
Below 1200◦C, all three packings have the same behavior. As the number of particles
continues to decrease, some discrepancies appear for the two smaller packings. This is
critical at the end of sintering for the 4 000 packing, as very few particles remain (only
12 at 1300◦C). We note that results converge to the 400 000 packing curve, thus this
initial packing is used for all simulations. For a parallel simulation on four CPU cores,
the computational time is approximately five days.

B.2 Calculation of the mean grain size

The simplest method to compute the mean grain size in our DEM simulations is to
perform the average of the diameter over all particles, which are considered as perfect
spheres (with the indented volume kept in the calculation to account for material
deposition at the neck). In experiments, starting from microstructural observations,
significantly different approaches are used to deal with real non-spherical shapes. To
illustrate this, the DEM packings (indented spheres inverted with torus necks shape [6])
are rendered in 3D and exported in the form of RAW image stacks (see Fig. 4.7). To
estimate the mean grain size, we use the granulometric analysis method [7], a widely
used approach in image processing to estimate the size of structural features. This
image analysis is computationally feasible if the number of particles in the images is
around a few thousands. For this purpose, we use packings with initially 4 000 and
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Figure B.1: Evolution of the mean grain size with temperature for increasing number of
particles in the initial packing (4 000, 40 000 and 400 000). The number of particles remaining
for each packing is indicated at 1050, 1200 and 1300◦C.

40 000 particles for the initial and intermediate stage of sintering respectively. In
Appendix A, we have shown that the results are similar to the 400 000 packing at
those stages. The granulometry algorithm in the GrainFind module of GeoDict [8] is
then capable of evaluating the size of grains, first by converting the image stacks into a
distance map by Euclidean distance transform (EDT) and then by fitting pre-defined
spheres into the structure. The spheres are successively fitted into the grain volume in
a descending order, thus giving an estimation of their diameters. In that sense, it is a
purely geometrical measurement as it does not require knowledge of the characteristics
of individual grains and non-spherical complex grains can be assigned the diameters of
the largest spheres that can be inscribed.
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Appendix C

Appendices of Chapter 5

C.1 Validation of rotations

The implementation of the LS-DEM model (chapter 5) makes it necessary to include
rotations in dp3D even if no friction is considered. Quaternions are used to implement
rotations. The quaternions are used several times in each time step to rotate points in
the contact detection stage to obtain their level set value. Likewise, the rotation of the
particle moment of inertia is achieved by using the associated quaternion. The update
of each particle quaternion following eq. 5.4 is also implemented in dp3D.

In order to test all the rotation elements above, a simple validation test of three
ellipsoids is created. Figure C.1 shows the schematic of the test. All the ellipsoid
rotations and translations are locked, except for the rotation of particle 3. The initial
configuration features an indentation only between particles 1 and 3. Therefore particle
3 will rotate until it reaches an equilibrium configuration. The simulation is carried out
with a Hertzian contact (5.17), no adhesion, no friction and in a quasi-static analysis.

12

3

Figure C.1: Initial configuration of the three ellipsoids test

Figure C.2 shows the evolution of the normal force for the two existing contacts
with time. Initially, a large compressive force is generated between particles 1 and 3
due to their initial overlap while no force exists for contact 2 − 3. Particle 3 begins to
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rotate clockwise and then in the opposite direction until the equilibrium configuration
is reached after approximately 600 time steps. Figure C.3 shows the final configuration.
Note that damping is used with the standard damping scheme (global and contact) of
the dp3D code (see https://www.overleaf.com/read/xvtqjkgrppvd).
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Figure C.2: Evolution of the normal force at each contact until equilibrium is reached
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Figure C.3: Final configuration of the three ellipsoids test
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