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Titre: Validation et déploiement de capteurs de gaz à effet de serre (CH4) pour la caractéri-sation de sources industrielles et urbaines
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Résumé: Cette thèse a pour objectif la re-construction des concentrations deméthane(CH4) atmosphérique à partir des sig-naux bruts (tension électrique) de capteursd’oxyde de métal (MOS) à bas coût afin desurveiller les émissions de CH4 sur des sitesindustriels. Notre stratégie se base essen-tiellement sur la colocalisation des mesuresdes capteurs à bas coût avec des instru-ments de référence de haute précision. Lesdonnées de concentration de CH4 des in-struments de haute précision sont utiliséescomme variable cible pour être reconstruitesà partir des mesures brutes de tension élec-trique issue des capteurs MOS et d’autresprédicteurs. La reconstruction est accomplieavec des modèles d’apprentissage automa-tique et paramétriques. Il est appliqué auxproblèmes très complexes dont la recon-struction des : 1) faibles variations de CH4dans l’air ambiant du laboratoire, 2) varia-tions rapides et de grandes amplitudes deCH4 sous forme de pics générés artificielle-ment sur un bac d’essai en laboratoire repro-duisant des signaux typiquement observéslors de fuites réelles sur le terrain, et 3) vari-ations rapides et de grandes amplitudes deCH4 mesurées sur le terrain durant une ex-périence de largage contrôlé de CH4 dansl’atmosphère. La première expérience delaboratoire a révélé une forte influence dela vapeur d’eau sur les mesures des capteursMOS, ainsi que les bonnes performances dumodèle de perceptron multicouches (MLP)pour reconstruire le signal CH4 à partir du sig-nal brut du capteur (Chapitre 2). Les résultats

de la deuxième expérience (Chapitre 3) ontmontré l’importance du choix du type de cap-teur pour reconstruire le signal de concentra-tion CH4 avec une précision de 1 ppm (RMSE).Nous avons ainsi mis en avant que les cap-teurs TGS 2611-C00 ont permis une recon-struction plus précise des pics de CH4 que lescapteurs TGS 2611-E00. Une stratégie parci-monieuse d’apprentissage du modèle nousa permis de restreindre l’ensemble des don-nées nécessaires à l’apprentissage de 70% à25% des données totales sans dégradationdes performances pour la reconstruction depics de CH4. Les performances sur les es-timations des flux d’émissions de CH4 lorsdes largages contrôlés dans l’atmosphèreen utilisant les concentrations de CH4 re-construites à partir des mesures issus descapteurs MOS et une inversion avec un mod-èle gaussien (Chapitre 4) ont été similairesà celles obtenues à partir des données desinstruments de référence à haute précision,avec une erreur moyenne d’estimation desflux d’émission de 25% sur 11 largages et uneerreur moyenne de localisation des sourcesd’émission de 9.5 m. Les résultats de cettethèse constituent une base pour explorerles techniques avancées d’apprentissage au-tomatique pour la reconstruction du signalde concentrations de CH4 à partir du signalbrut des capteurs MOS et étudier les infor-mations requises par lesmodèles d’inversionafin d’offrir les meilleures estimations desflux d’émission et localisation des fuites deCH4.
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Abstract: This PhD aims at reconstructingatmospheric CH4 concentrations from volt-age signals recorded by low-cost Metal Ox-ide Sensors (MOS) for the purpose of mon-itoring CH4 leaks from an industrial facility.Our strategy is based on the collocation ofmeasurements by low-cost sensors and ex-pensive very high accuracy instruments. TheCH4 concentrations data from the high ac-curacy reference instrument are then usedas a target variable to be reconstructed us-ing MOS voltage and other predictors. Thereconstruction is performed with both ma-chine learning models and parametric mod-els. It is applied to increasingly complexproblems, including the reconstruction of: 1)smooth variations of ambient room air CH4in a laboratory, 2) fast and large variations ofCH4 during concentration spikes generatedon a test bench in a laboratory with a typi-cal signature similar to that observed for realworld leaks, and 3) fast and large variationsof CH4 observed in the field during a ded-icated controlled release experiment. Thefirst laboratory experiments revealed a highinfluence of H2O in TGS sensors, and thereconstruction with a Multilayer perceptronmodel showed good agreement between the

references and the reconstructed room airconcentrations (Chapter 2). The results ofthe second experiment (Chapter 3) showedthe importance of the selection of the sen-sor’s type in order to produce reconstruc-tions of CH4 concentrationwith a 1 ppmaccu-racy (RMSE). We also discovered that the TGS2611-C00 sensors provided a more accuratereconstruction of CH4 spikes than the TGS2611-E00 ones. A parsimonious model train-ing strategy allowed us to restrict the train-ing set from 70% to 25% of the data withouta degradation in the reconstruction of theCH4 spikes. Emission of controlled releasesfrom reconstructed CH4 concentrationsmea-sured by TGS sensors and the inversion ofa Gaussian atmospheric model (Chapter 4)were similar to those inverted from high ac-curacy reference data, with an average emis-sion rate estimation error of 25% over 11controlled releases and a location error of 9.5m. The results of this PhD are the basis toexplore advanced techniques based on ma-chine learning to produce accurate estimatesof CH4 concentrations, and study the infor-mation required by inversion modelling thatproduced best estimates of the emission rateand location of CH4 leaks.





Résumé

Le Méthane (CH4) est un gaz à effet de serre avec une capacité de réchauffement 28 fois plus
puissant que le CO2 dans une échelle du temps de 100 ans. La concentration de CH4 dans
l’atmosphère a incrémenté 2.6 fois depuis l’ère pré-industrielle (700 ppb) jusqu’à nos jours (1866
ppb). Le principal facteur qui contribue à l’incrément du CH4 dans l’atmosphère est l’activité hu-
maine (plus de 60% des émissions globales). Dans le secteur de la production et de l’utilisation
des combustibles fossiles, 63% des émissions sont liées à la production de gaz et de pétrole. Des
fuites fugitives de CH4 se produisent dans toute la chaîne de production de gaz et de pétrole,
depuis l’extraction, le transport, le stockage et la distribution. Pourtant, les fuites de méthane
non détectées pourraient produire des émissions importantes aux taux élevés. Il existe aussi une
grande variabilité, temporelle et spatiale, dans les estimations d’émissions dans les installations
de gaz et de pétrole oudans des sites de déchets. Il n’y a pas d’informations sur les émissions pour
ces installations dans les inventaires et les facteurs d’émission sont difficiles d’appliquer. C’est la
raison pour laquelle une étude lieu par lieu est nécessaire. Les estimations des émissions dans
ces sites peuvent être améliorées à partir des mesures continues des concentrations de CH4.
Une alternative pour produire des mesures continues est le déploiement d’un réseau de sta-
tions à point fixe dans ces sites. Cependant, le déploiement d’un tel réseau avec des instruments
d’haute précision, comme le CRDS (Cavity ring down spectrometers), est limitant à cause des prix
élevés, les dimensions des instruments et les besoins au niveau d’énergie pour son correct fonc-
tionnement. L’utilisation des capteurs à bas cout peut permettre de surmonter ces limitations.
Ma thèse se focalise dans l’étude des capteurs d’oxide de métal (MOS) du fabricant Figaro® et
je m’intéresse à déterminer une stratégie d’étalonnage pour trois versions de ces capteurs MOS
et de fournir des estimations fiables des émissions de CH4 lors d’un déploiement sur le terrain.
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Trois expériences ont été conçus pour atteindre cet objectif. La première expérience a pour but
de tester trois versions des capteurs MOS (TGS 2600, TGS 2611-C00 et TGS 2611-E00) dans des
conditions contrôlées. Les capteurs ont été exposées à l’air d’une pièce de laboratoire pendant
47 jours où les paramètres environnementaux (température et humidité relative) ont été surveil-
lés de façon continue. La première partie de cette étude consistait à étudier la sensitivité des
capteurs à des variations de CH4, H2O et CO. D’une part, on a pu observer l’influence importante
du H2O dans les capteurs, ce qui limite la sensitivité au CH4 ; et d’autre part, les relations non
linéaires existantes avec le vapeur d’eau. La deuxième partie consistait à utiliser une approche
d’apprentissage automatique (réseaux des neurones) pour reconstruire le signal de CH4 à partir
des variations de résistancemesurées avec les capteursMOS et des informations des paramètres
environnementaux comme la pression, la température, la fraction molaire d’eau et le CO. On a
observé un bon accord entre le signal simulé par le modèle et la référence correspondent à des
mesures prises par une capteur d’haute précision où on a pu atteindre notre objectif d’erreur
(RMSE <= 0.2 ppm). Dans la deuxième expérience, on explore les capacités de deux versions de
capteurs MOS (TGS 2611-C00 et TGS 2611-E00) pour détecter et quantifier des variations rapi-
des et des grandes amplitudes de CH4 sous forme des pics générés artificiellement reproduisant
des signaux de fuites produits typiquement lors du terrain. Quatre chambres ont été dévelop-
pées et exposées pendant quatre mois aux pics de CH4. Je me suis focalisé sur quatre ques-
tions dans cette expérience : i) la capacité de détection et de quantification des pics artificielles
de CH4 en comparant les deux types de capteurs sur cinq modèles différentes, paramétriques
et non paramétriques (régression linéal et polynomial, random forest, hybrid random forest et
multilayer perceptron) ; ii) la possibilité de réduire la taille de l’ensemble de l’apprentissage sans
dégrader les performances dans la reconstruction du signal de CH4 ; iii) l’évaluation de l’effet de
l’âge dans les capteur après six mois des mesures continues d’air ambiante ; et iv) la capacité
d’utiliser un modèle entrainé avec des données d’une chambre et un type de MOS sur une autre
chambre avec le même type de capteur. Les résultats ont montré que les capteurs TGS 2611-C00
permettent d’avoir une meilleure reconstruction des pics de CH4 que les capteurs TGS 2611-E00.
Notre stratégie d’apprentissage parcimonieuse nous a permis de réduire l’ensemble des données



d’apprentissage de 70% à 25% sans dégradation des performances pour la reconstruction des
pics de CH4. La troisième expérience est consacrée à l’évaluation de la performance des capteurs
MOS sur le terrain. Sept chambres, incluant deux versions des capteurs MOS (TGS 2611-C00 et
TGS 2611-E00), ont été développées. Les chambres ont été exposées à une série des largages de
CH4 contrôlés pour simuler des fuites d’émission typiques dans des installations de pétrole et de
gaz. La première partie de l’étude se focalise dans la reconstruction des plumes de CH4 (concen-
trations) à partir des mesures de voltage des capteurs MOS dans un site où les paramètres envi-
ronnementaux varient et où il existe aussi d’autres composantes qui peuvent affecter la capacité
des capteurs à mesurer le CH4. La deuxième partie se concentre à étudier l’estimation des flux
d’émissions et la localisation de la source d’émission avec desmodèles gaussiennes de dispersion
de plume à partir des signaux de CH4 reconstruites. Nos résultats ont montré une estimation de
flux d’émission similaires à celles estimées en utilisant des données issues des capteurs à haute
précision avec une erreurmoyenne dans l’estimation de flux de 25% et une erreurmoyenne dans
la localisation de la source d’émission de 9.5 m sur 11 largages contrôlés. Le dernière chapitre de
cette thèse se focalise dans la discussion des résultats de ces trois expériences. Je propose une
discussion sur les développements futurs et les priorités de recherche des capteurs MOS pour
étudier l’effet des sensitivités aux autres espèces et aux paramètres environnementaux, dans le
développement des modèles d’étalonnage, lors du déploiement dans un réseaux de capteurs et
pour améliorer l’estimation des flux et la localisation de sources d’émission.
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Chapter 1

Introduction

1.1 Energybalance, effective radiative forcing andglobalwarm-

ing

The amount of energy received by the Earth fromSun, on a stable climate, is similar to the amount
of energy emitted in the form of reflected sunlight and radiation (Forster et al., 2021). Neverthe-
less, anthropogenic processes affect the exchange of energy at the surface of Earth producing an
imbalance in the global mean budget. Figure 1.1 presents a schematic of the best estimates of
the incoming and outgoing energy at the surface of the Earth at beginning of 21st century. The
estimated incoming shortwave radiation from the Sun is 340 W m−2, and about 23% (80 W m−2)
is absorbed by the atmosphere, 29% (100Wm−2) is reflected to the space by clouds, and the sur-
face of Earth absorbs 47% (160Wm−2) of the energy and it reflects∼7% (25 Wm−2) to the space.
Earth emits energy in the form of longwave radiation by evaporation (82 Wm−2) associated to la-
tent heat and as sensible heat (21 Wm−2), which refers to exchange of heat between the surface
of Earth and the atmosphere. Earth also emits infrared radiation (398 Wm−2), from which 60% is
emitted directly to the space and rest is absorbed by the greenhouse gases. Greenhouse gases,
such as CO2, CH4 or H2O, introduce feedbacks on the earth system emitting 342 Wm−2, which
creates a phenomenon called the “Greenhouse effect” and thus increasing the global mean tem-
perature. On the globalmean radiative budget it is observed that there is an estimated imbalance
of 0.7 W m−2, which leads to an increase of the mean temperature on Earth’s surface.
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There are different factors, called forcing agents, which allow the temperature of Earth to in-
crease or decrease. The principal forcing agents are the solar radiation, tropospheric aerosols,
greenhouse gases and alteration in land coverage (Hansen and Sato, 2001). Greenhouse gases
are important for life development on Earth. Indeed, by trapping the longwave radiation emit-
ted by Earth, it allows to raise the global mean temperature to 15◦C, instead of -18◦C without
atmosphere (Mitchell, 1989).

Figure 1.1: Global mean energy budget. Bold numbers are the mean magnitude estimate of theglobal energy balance in Wm−2. In parenthesis is shown the uncertainty range (5 – 95%) (Source:Forster et al. (2021))

The Intergovernmental Panel on the Climate Change (IPCC) has assessed, since its creation in
1990, the impact of human activities on the Earth’s climate and the outcomes on different case
scenarios of increase in global mean surface temperature. Their latest report (6th Assessment
Report) demonstrated a direct link between the anthropogenic activities and the increase in the
average surface temperature on Earth (Eyring et al., 2021). Since its 5th assessment report, and
following the current literature, IPCC highlights that radiative forcing represents a good predictor
of the temperature change on the surface (Bellouin et al., 2020).



The radiative forcing is the change in the planetary radiation balancemeasured by the change
in the net radiative flux, adjusted to equilibrium, in response to a perturbation. This perturba-
tion can be due to a change in the solar radiation, the planetary surface or the composition of
the atmosphere (Hansen et al., 1997). The adjustment time of the radiative flux in the tropo-
sphere after a perturbation is estimated between 2 to 3 months. The effective radiative forcing
(ERF) was presented as a better predictor as it takes into account rapid adjustments. Further-
more, it considers the heating and cooling of the troposphere, and the heat change in absence
of temperature variations in the ocean surface (Bellouin et al., 2020).

Figure 1.2a and 1.2b show the contribution of emitted components to the ERF and the change
in the global surface temperature respectively. Amongst present greenhouse gases in the atmo-
sphere, CO2 and CH4 contribute in larger proportions to increase the surface temperature. Since
the pre-industrial era, CO2 is responsible of the biggest contribution to the ERF reaching 2 W
m−2, which represents 1◦C change in the global surface temperature. Whereas CH4 contributes
1.2 Wm−2 to the ERF, which represents 0.6 ◦C change.

Figure 1.2: Contribution to (a) the effective radiative forcing and (b) the global surface tempera-ture from component emissions for the period 1750 – 2019 (Source: (Arias et al., 2021))

Another metric used to evaluate the warming effects of greenhouse gases is the global warm-
ing potential (GWP). It includes information of the radiative forcing of a single pulse emission
(usually 1 Kg) and its lifetime in the atmosphere, and it is compared to another forcing factor,
usually CO2 (Ramanswamy et al., 1991; Forster et al., 2021). It is estimated that CH4 has a GWP 28



times larger than CO2 on century time scale and a lifespan in the atmosphere of 9 years (Saunois
et al., 2020). A reduction of the CH4 anthropogenic emissions would lead to a fast stabilization
of CH4 in the atmosphere (Turner et al., 2019) and a reduction of its concentration in decades
(Nisbet et al., 2020; Saunois et al., 2020).

In order to achieve adapted policies which promote the reduction of atmospheric CH4 con-
centrations, it is important to understand and quantify the principal sources and sinks of CH4

emissions at a local and global scale.

1.2 Global CH4 Budget

Since the pre-industrial era, CH4 concentrations have increased 2.6 times, from 700 ppb to 1866
ppb in 2019 (Saunois et al., 2020). Ice coremeasurements showed that CH4 concentrations in the
atmosphere on the last millennium have been stable at around 700 ppb. Human activities have
contributed to the increase in CH4 concentrations especially from 1900 to 2000. This is due to
intensive agriculture and a larger use of fossil fuels. Then, a stabilization period occurs during 7
years, with CH4 concentrations around 1840 ppb. Finally, from 2007 to nowadays, CH4 concen-
trations in the atmosphere have continuously increased, with an increase rate of 6 ppb/year at
the end of 2007, and of 10 ppb/year in 2014. (Turner et al., 2019; Nisbet et al., 2020)



Figure 1.3: Atmospheric CH4 concentrations observed for the past 2000 years. The inset plotcorresponds to the period from 1984 to 2019 (black line). Removing the stabilization period of 7years (red line of the inset plot), it is appreciated a continuous growth of CH4 concentrations inthe last decades. (Source: (Turner et al., 2019))

Figure 1.4 summarizes the global CH4 budget showing the sources and sinks by category and
the total estimates. The global CH4 budget can give us an overview of the emissions estimate
by sources and sinks. This budget can be estimated from Top-Down (TD) or Bottom-up (BU)
approaches. Top-Down emission estimates are obtained by combining information of concen-
tration measurements from a network of stations, and information of atmospheric transport of
gases from each region. The Bottom-up emission estimates come from inventory datasets, al-
though there are differences on detail level among datasets due to the information reported by
each country. (Saunois et al., 2020; Turner et al., 2019)

1.2.1 Sources and sinks

Methane emissions can be from either natural or anthropogenic origin, and they are related to
threemain processes: i) biogenic: it is the result of decomposition of organicmatter bymethanogenic
Archaea, which occurs in anaerobic environments such as wetlands, landfill sites, wastewater, ru-



minants, etc. ii) Thermogenic: it is originated on geological timescales by breakdown of buried
organic matter under heat and pressure in Earth’s crust. CH4 and other gases reach the atmo-
sphere through gas seeps in the sea or earth, or through human activities related to the exploita-
tion and distribution of fossil fuels. iii) Pyrogenic: it is the product of incomplete combustion of
biomass and organic matter. The largest sources of pyrogenic methane are wildfires, peat fires,
biofuel and biomass burning of deforested/degrade areas. (Saunois et al., 2020)

In the last synthesis conducted by Saunois et al. (2020), it was reported that global methane
emissions on the period between 2008 and 2017 account for 576 Tg CH4 yr−1 (550 – 594 Tg CH4

yr−1, min - max respectively) from top-down estimates; and 737 Tg CH4 yr−1 (594 – 881 Tg CH4

yr−1) from bottom-up estimates. Bottom-up and top-down estimates present a discrepancy of
30%. The overestimation of BU emissions are related to up-scaling local measurements and in
some cases, double counting natural sources (Saunois et al., 2020). Figure 1.4 summarizes the
global CH4 budget showing the sources and sinks by category and the total estimates.

1.2.2 CH4 sinks

The total mean loss of CH4 in the atmosphere is estimated to 625 Tg CH4 yr−1 [500 – 798, min –
max in Tg CH4 yr−1 respectively](BU) and 556 Tg CH4 yr−1 [501 - 574](TD), and it can be regrouped
in four categories. BU chemical sinks are estimated using the Chemistry Climate Model Initiative
(CCMI) project (Morgenstern et al., 2017):

Tropospheric oxidation by hydroxyl radical (OH): it is the most important sink, represent-
ing 90% of the sink mechanism. The presence of OH in the atmosphere could give an indication
of the CH4 loss, although it is not directly linked (Saunois et al., 2020). Indeed, climate variabil-
ity, biomass burning, and anthropogenic activities can alter the OH concentrations (Turner et al.,
2018; Saunois et al., 2020). Saunois et al. (2020) reported an estimated loss of 553 Tg CH4 yr−1

(BU) linked to OH oxidation.
Stratospheric loss: CH4 is a reactive gas and its interactions with exited atoms of oxygen,

atomic chlorine (Cl), atomic fluorine (F) and OH produce a loss of CH4 in the stratosphere. An
estimate of 31 Tg CH4 yr−1 of chemical loss is reported for the period 2000 – 2010 (Saunois et al.,



2020).
Tropospheric reactionwith atomic chlorine (Cl): it is a seasonally varying sink in themarine

boundary layer which produces Cl after a reaction between NaCl and NO2 and UV interactions.
This reaction would be responsible of CH4 loss. Despite the large amount of uncertainties in the
quantification of Cl, Saunois et al. (2020) reported an estimated CH4 loss of about 11 Tg CH4 yr−1.

Soil uptake: methanotrophic bacteria can consume methane as a source of energy repre-
senting a sink of methane in unsaturated oxic soils. The estimated CH4 loss is of 30 Tg CH4 yr−1

for periods 2000 – 2009 and 2008 – 2017 (Saunois et al., 2020).

1.2.3 CH4 Sources

1.2.3.1 Natural sources

Organic matter decomposition in water-saturated or flooded ecosystems produces anaerobic
conditions andmethane. A combination of the following three processes can lead to CH4 reaching
the atmosphere: diffusive loss of dissolved CH4 across the air-water boundary, ebullition flux
from sediments, and plant transport (Saunois et al., 2020). Therefore, natural sources ofmethane
include wetlands and water systems, land geological sources, wild animals and oceanic sources.

Wetlands are ecosystems with saturated water, or flooded soils or peats where anaerobic
conditions can lead to methane production. Estimated emissions from Wetlands are of 149 Tg
CH4 yr−1 on the decade 2008 – 2017 (Saunois et al., 2020).

Inlandwater systems are referred to freshwater systems, like lakes, ponds or rivers onwhich
the main CH4 fluxes, between 50 to 90%, are attributed to ebullition and plant fluxes, specially to
lakes and ponds. An estimation of 159 Tg CH4 yr−1 is reported for freshwater systems(Saunois
et al., 2020).

Geological sources refer to CH4 originated from Earth’s crust that migrate to the atmosphere
by tectonic faults and fractured rocks. Global emissions are reported to be 45 TgCH4 yr−1 (Saunois
et al., 2020).

Wild animals refer to wild ruminants that produce CH4 through microbial fermentation in



their rumen. Their contribution to the methane budget is estimated to be around 2 Tg CH4 yr−1

(Saunois et al., 2020).
Termites are also a natural source of methane, which is produced by anaerobic decomposi-

tion of biomass in their gut. The decadal value of CH4 emissions is estimated to be 9 Tg CH4 yr−1

(Saunois et al., 2020).
Oceanic sources include coastal and open ocean methane releases. Some possible sources

of methane production come from marine sediments, water column, leaks from geological ma-
rine seepage or emissions from destabilization of marine hydrates. The average emission esti-
mates are 13 Tg CH4 yr−1 for oceanic sources (Saunois et al., 2020).

Thawing of permafrost could generate direct and indirect emissions. Direct emissions occur
when trapped CH4 in the ice is released to the atmosphere accounting for less than 1 Tg CH4

yr−1 in the global budget. Indirect emissions occur on three processes: i) when organic matter
contained in the ice is released; ii) changes on the land surface hydrology; and iii) formation of
thermokarst lakes. Indirect emissions are difficult to estimate and they overlap with wetland and
freshwater emissions.

Vegetation could lead to three pathways of CH4 production: i) plants produce CH4 through an
abiotic photochemical process induced by stress; ii) plants act as ‘straws’ releasingmethane from
soils; and iii) stems of living and dead wood are a suitable environment for microbial methano-
genesis. These emissions are potentially larger but it remains uncertain or they are included in
other flux categories.

1.2.3.2 Anthropogenic emissions

Agriculture and waste management

Agricultural and waste sectors accounts for 56% of the total anthropogenic emissions with an
estimated emission of 206 Tg CH4 yr−1 (191 – 223 Tg CH4 yr−1, min - max respectively). This
category includes emissions linked to livestock production, rice cultivation, landfills and waste
handling.

Like wild ruminants, domestic ruminants producemethane bymicrobial activity in their diges-



tive system. Livestock manure management is also related to the production of CH4 in anaerobic
conditions (liquid treated lagoons, ponds, tanks, etc.). Manure decomposition would lead to CH4

production. However, if it is handled as a solid, in stacks or dry lots, there is little to no production
of CH4. Global emissions from livestock production are estimated to be 111 Tg CH4 yr−1 (Saunois
et al., 2020).

Regarding rice cultivation, the most relevant factor which induces the production of CH4 is
the water management system, since rice cultivation is commonly done in flooded paddy fields
where the environment is ideal for CH4 production. The use of fertilizers such as urea, soil tem-
perature and type, rice variety and cultivation practices are other factors which contribute to CH4

emissions. The largest emissions correspond to Asia representing 30% to 50% of global emis-
sions linked to rice production. The global emission estimate is 30 Tg CH4 yr−1, which represents
8% of total anthropogenic emissions (Saunois et al., 2020).

Waste management accounts for 12% of global anthropogenic emissions, and it includes
emissions of managed and non-managed landfills and wastewater handling. The pH, moisture,
and temperature of thematerials are key factors to produce CH4 fromwaste. For wastewater, the
production of CH4 is defined by the amount of degradable carriedmaterial. High organicmaterial
leads to anerobic processes generating more CH4. Waste management emission is estimated to
be 65 Tg CH4 yr−1 (Saunois et al., 2020).

Biomass and biofuel burning

Biomass and biofuel burning emits CH4 by incomplete combustion conditions, like charcoal man-
ufacturing. This category includes emissions from biomass burning in the forest, savannahs,
grasslands, peats, agricultural residues and burning biofuels in residential areas.

Biomass burning accounts for 5% of total anthropogenic emissions, and arson fires represent
the 90% of total fires in the Earth. Anthropogenic fires are originated for many reasons, such as,
clearing lands for agricultural purposes or agricultural waste burning. The estimated emission
on this sector is 17 Tg CH4 yr−1 (Saunois et al., 2020).

Energy production frombiomass burning, called biofuel burning, represents 3%of total global



anthropogenic CH4 emissions. It comes mostly from domestic cooking or heating where materi-
als like wood, charcoal, agricultural residues or animal dung are burned. This sector contributes
with 12 Tg CH4 yr−1 to the global CH4 budget (Saunois et al., 2020).

Fossil fuels

This category includes emissions related to exploitation, transportation and usage of coal, oil and
natural gas. The global mean emissions related to fossil fuel activities is 128 Tg CH4 yr−1 for the
decade 2008 – 2017.

In coal mining, CH4 is produced mainly by ventilation ducts which introduce large volumes of
air tomaintain CH4 mixing ratio below 0.5% and prevent accidental ignition. It is also emitted dur-
ing post-mining handling, processing and transportation. Abandoned mines and coal piles also
emit CH4. The emissions estimate of coal mining represents 33% of fossil fuel related activities
with 42 Tg CH4 yr−1.

Oil and natural gas systems represent 63% of total fossil fuel emissions, including conven-
tional and shale oil and gas production. CH4 is emitted in all the chain of gas production. Fugitive
and planned emissions occur during drilling, extraction, transportation, storage, distribution, end
use and incomplete combustion. Fugitive emissions can occur during the transportation stage,
in oil tankers, fuel trucks or pipelines. Measurement campaigns showed that they can be orig-
inated in localized areas, storage facilities, pipeline pressurization/depressurization points, etc.
However, they vary from one city or infrastructure to another. Undetected single point failures
could lead to large emissions at high rate. Inventories, in general, rely on the same sources and
magnitudes for activity data using emission factors, which are country specific or site specific.
Emission factors produce large uncertainties usually underestimating emissions from oil and gas
facilities. The estimated contribution to the global CH4 budget is 80 Tg CH4 yr−1.



Figure 1.4: Global methane budget during 2008 – 2017 shows Bottom-up (left numbers) and Top-Down (right numbers) estimates and themin - max range (in parentheses) for each emission andsink categories and the total estimates. Units are in Tg CH4 yr−1 (Source: (Saunois et al., 2020))

1.3 Improving emission estimates

From the BU perspective, inventory datasets from fossil fuel activities, livestock production, agri-
culture and waste management present large spatial and temporal variations (Saunois et al.,
2020). They are also not available for many cities (Arzoumanian et al., 2019), and the uncertainty
of these datasets increase due to omission or double counting in some sectors.

From the TD approach, a common practice is to measure the gradients of dry air greenhouse
gases between the upwind and downwind vicinity and infer the emissions that are consistent
with those gradients and uncertainties with atmospheric transport models (ATM). At a global or
regional scale, it could provide accurate estimates, but at local scale, with few stations in the
vicinity of an emitter zone, such as a city or an oil and gas facility, the uncertainties increase (Ar-
zoumanian et al., 2019). TD emission estimates can be used as a verification tool for BU estimates
on regions with large measurement networks like Europe (Bergamaschi et al., 2018).

Fugitive leaks of CH4 also represent a safety issue that needs to be continuously monitored
due to its episodic and spatial variability nature (Coburn et al., 2018). Leak detection and repair



(LDAR) surveys are conducted periodically to detect and quantify those leaks, specially at indus-
trial facilities. It consists in detecting hotspots and quantify them with high precision analyzers.
Even though they are conducted periodically, they present limitations such as, the portability of
instruments or the accessibility of the site.

The idea of developing a high-density network of sensors to improve greenhouse gases fluxes
monitoring in a region was studied by Wu et al. (2016); Turner et al. (2016) and Kumar et al.
(2015). This study showed that uncertainties at local scale are largely reduced. In addition, such
a network could allow to continuously monitor fugitive leaks at industrial facilities or landfills.
Nevertheless, deploying research level instruments at this scale is cost prohibitive and it has
minimum technical requirements to correctly operate, like a constant power supply, which is not
always available for monitoring wastelands or for oil and gas facilities.

These limitations have motivated the research of instruments that are portable and cheap,
can provide reliablemeasurements of greenhouse gases and can be deployed in dense networks.

In the following sections are explained the common CH4 measurement techniques and the
available technologies to quantify CH4 concentrations.

1.4 Methane measurement techniques

There are different measurement techniques to quantify fugitive CH4 emissions that can be con-
ducted at the surface and spread out to several kilometers away from the point source. Their
time scales also vary from minute resolutions to days or months, even sporadic measurements.
We can distinguish two kind of techniques: qualitative and quantitative measurement. Figure
1.5 presents a diagram of the most common used qualitative and quantitative techniques with
their approximate area coverage. On the following subsections we summarize themeasurement
techniques reported in the review paper of Mønster et al. (2019). Despite the techniques listed
below are focused on ground-based sources, several techniques can also be applied to quantify
fluxes on industrial facilities.



1.4.1 Qualitative measurement techniques

These techniques are used as a reconnaissance of a site and allow to detect hotspots.

1.4.1.1 Visual inspection

It is the first approach for routine inspection. It consists in conducting a visual and olfactory
inspection on site. The detection of possible hotspots is linked to odors perception from additive
odorous gases like THT (TetraHydroThiophene), and irregularities on the vegetation or material
on site. Topography and wind conditions could alter the perception of the operator.

1.4.1.2 Portable CH4 analyzer

Measurements are conducted with handheld analyzer that quantifies concentrations at surface
level. The screening process is carried out by determining sections of the site and measuring the
concentration by following grid points or bywalking on accessible paths. The recorded concentra-
tions at surface level are, theoretically, correlated with surface fluxes; although this relationship
depends on different factors such as, the measurement distance from the source (e.g. ground),
ground characteristics and weather conditions (atmospheric transport).

1.4.1.3 Field infrared survey

It uses thermal infrared devices, usually cameras, to detect changes in temperature, which are
associated to gas emissions. It is easy to deploy and this can be done on a site, an unmanned
aerial vehicle (UAV) or an aircraft. The main issues are: i) the origin of thermal anomalies, which
can come from other processes than the gas emission; ii) the instrument will detect surface fea-
tures such as materials with high heat absorption without leakage; and iii) the detection limit as
it will need a minimum of CH4 flux before the instrument can detect it.



1.4.1.4 Unmanned Aerial Vehicle (UAV)

UAV, such as drones, can be equipped with different type of CH4 sensors. Their deployment is
faster and simpler than traditional surveys. Screening could be controlled with more precision
and cover larger areas. Limitations come from battery life (generally about 15 to 30 minutes),
weather conditions and safety regulations on the site for UAVs. This technique was presented
as qualitative by Mønster et al. (2019), although it can be categorized as a quantitative technique
when using mass balance techniques or more complex inverse modeling (see next section).

1.4.2 Quantitative measurement techniques

The following techniques are arranged in ascending order from small-scale to large scale mea-
surements.

1.4.2.1 Vertical soil gas concentration profiles

This method relies on the computation of the flux with equations of diffusional and pressure
fluxes fed by single point measurements of CH4 concentrations and pressure variations. It allows
to understand the direction of the diffusional flux and the presence of subsurface CH4 sources
and sinks. Highly limited by the spatial variability, it also requires information of soil diffusivity.
It is not recommended for upscaling in the quantification of emissions of an area or site.

1.4.2.2 Surface flux chambers

Mainly designed for ground sources, it consists in single point in-situ measurements using a
chamber installed on site on the ground sources. It could be a ‘closed’ chamber if there is no
exchange between the air in the chamber and the outside air; and an ‘open’ chamber when
there is a continuous flow of air inside the chamber. Closed chambers can measure emission
and uptake of CH4, providing positive and negative fluxes. There are several chamber size con-
figurations from small-size (< 0.1 m2), mid-size (0.4 – 1 m2) to over-size (> 15 m2). Deployment is
labor intensive and time consuming, and the detection of fluxes is linked to the chamber place-



ment on site. Upscaling the measured fluxes from such limited surface study depends on the
spatial homogeneity of the sources on the considered site.

1.4.2.3 Eddy covariance

This method relies on the measurement of the turbulent transfer of gases between the surface
and the atmosphere. It requires fast and high precision instruments to measure eddy fluxes.
The footprint is linked to the height from which the measurements are taken, in the order of a
radius equivalent to 100 times the height of the measurement point if sufficient information of
wind is measured. It is sensitive to topography and wind conditions. The footprint study is a
key parameter to interpret the estimated fluxes from such technique and it presents the same
limitations of upscaling than other small area studies like surface flux chamber.

1.4.2.4 Stationary mass balance

This technique is based on measurements of gas concentrations at different heights and is com-
bined with atmospheric vertical mixing (e.g. vertical diffusion coefficients) to determine the flux
of CH4. Advantages and limitations are in line with the eddy covariance method with the differ-
ence that it does not require fast instruments. Typically, measurements are taken at a maximum
height of 10 m and cover a radius of 150 m (Scharff et al., 2003).

1.4.2.5 Radial plume mapping

It consist in using lasers and mirrors to measure downwind plume cross-sections, together with
wind profile measurements and background (upwind) measurements. It provides estimations of
emission on a localized area. This technique is limited by the line of sight between the lasers and
the mirrors, the stable wind conditions and it requires two independent set of instruments. This
makes its deployment costly and dependent on the site topography; although a deployment with
a single instrument is possible depending on the disposition of the instrument and its scanning
ability.



1.4.2.6 Mass balance using aerial measurements

This technique relies on high precision CH4 sensor embedded on an aircraft or an UAV in order
to measure the emission plume downwind, coupled with wind conditions to provide integrated
emissions of the site. It is useful when access to the site is not available, but separate close
sources is challenging.

1.4.2.7 Tracer gas dispersion

This technique consists of measuring CH4 and a tracer gas simultaneously. The tracer gas is re-
leased at a fixed and known rate and at a known location (ideally collocated with the source to
consider). The CH4 emission rate is determined by the concentration ratio between both gases. It
is called ‘stationary’ when measurements are on fixed point locations, and ‘dynamic’ when mea-
surements are mobile. The latest one requires a vehicle to drive downwind the source in order
to measure across the plume at a suitable distance. The advantage is that it does not rely on
atmospheric conditions and provides integrated measurements of area fluxes. Common tracer
gases employed are N2O and C2H2, depending on the site co-emitted species and atmospheric
background in the vicinity.

1.4.2.8 Differential absorption LiDAR (DIAL)

This method relies on emitting a pulsed laser radiation into the atmosphere at an appropriate
absorption line of CH4. Part of the emitted radiation is backscattered by the atmosphere and
measured by a detector. The quantification is done by comparing it with a second detector that
emits the radiation in a different wavelength that is not absorbed by CH4 but is reflected in a
similar way as the first laser. Measuring at several lines of sight gives information of the vertical
distribution of CH4 concentration. Combining the vertical CH4 profile with wind measurements
at different height provides the emission estimates. Data treatment is complex, and deployment
is expensive.



1.4.2.9 Inverse modeling

It consists of providing measurements to an inverse transport model together with atmospheric
parameters, such as wind speed and direction. It can be of different types depending on the
nature of the measurements: ‘stationary’, if models are feed by measurements of fixed-point
locations; ‘dynamic’, if they are captured downwind the plume; and ‘aerial’, if observations are
obtained by aerial instruments like UAV or an aircraft. These approaches can give estimates
of emissions for the entire site and for emissions from a specific area, depending on the good
quality of the data and its density. These models requires a complex data treatment and they
are sensitive to other interfering sources and to the topography of the site.

Figure 1.5: Common methods used to quantify CH4 emissions (Source: (Mønster et al., 2019))

1.5 Technologies used for methane detection

There are six types of sensors that are typically used for methane detection and quantification:
electroacoustic, calorimetric, pyroelectric, electrochemical, chemi-resistive, optical and electroa-
coustic sensors. On this thesis we will study Chemi-resistive sensors, specifically metal oxide
semiconductors (MOS), and for the reference measurements we use optical sensors, cavity ring
down spectrometers. Therefore, only a brief description will be made for the other types of CH4

sensors.



1.5.1 Electroacoustic sensors

The quartz crystal microbalance (QCM) and the surface acoustic wave (SAW) sensors are themost
commonly used to measure CH4. QCM is composed of a resonating disk with metal electrodes.
The principle of measurement is as follows: an oscillating signal is provided to the disk producing
a resonation at a characteristic frequency. When CH4 is in contact with the sensing material, it
produces an increase in the mass of the device reducing the frequency of the resonance. The
rate of change in frequency is inversely proportional to the mass adsorbed by the sensing mate-
rial (Hong et al., 2020). SAW sensors are based on two principles: the first one is the piezoelectric
effect that depends on the quality of some materials to produce electrical signal after a mechan-
ical stress. The second one is the surface elastic waves, specifically Rayleigh waves (RW), which
are characterized by propagating on the surface of a material and decaying into the depth of
this material. The principle of sensing is to produce an excitation of the piezoelectric material
with RW. The presence of the target gas will affect the modulation of the RW’s characteristics and
those changes in modulation indicate the concentration of the target gas (Devkota et al., 2017).

1.5.2 Calorimetric sensors

Calorimetric sensors that measure CH4 are used in several applications, such as in coal mines,
petroleum drilling and landfills (Aldhafeeri et al., 2020). Calorimetric sensors are composed of a
temperature sensor, a catalytic combustor and a heater. The principle of sensing is based on a
chemical reaction that absorbs or releases heat. The catalytic material when it is in contact with
the target gas produces a chemical reaction, in the case of CH4 it releases heat and changes the
temperature on its surface. This is measured and converted to the gas concentration. Common
catalysts are platinum, palladium and rhodium. Common problems of these sensors are crack-
ing, catalyst poisoning, oversaturation from high concentration of gas, high power consumption,
unsuitable for long term deployments and requirement of high temperatures to operate (Ald-
hafeeri et al., 2020).



1.5.3 Pyroelectric sensors

Pyroelectric sensors are another type of methane sensors, whose typical applications are as fire
alarms, laser detectors, thermal or gas analyzers. They are composed of an electric or infrared
laser heater that produces a thermal wave, which travels through a dielectric substrate and the
gas, to finally arrives to a pyroelectric material. This produces an electrical signal, voltage, in
proportion to the change on the heat measured that can be correlated to gas concentration. The
presence of the gas will alter the heatmeasured by the pyroelectric material. This kind of sensors
perform well at room temperature, since it does not alter the gas by any chemical reaction and
the degradation of the material is low. The main drawbacks are the high cost of pyroelectric
materials and high energy consumptions. (Aldhafeeri et al., 2020)

1.5.4 Electrochemical sensors

Electrochemical sensors are composed of three electrodes, called ‘working’, ‘counter’ and ‘ref-
erence’, and an electrolytic fluid that maintains charge neutrality in the system. The ‘working’
electrode will suffer a chemical reaction when it is in contact with the target gas. The ‘counter’
electrode balances the current on the ‘working’ electrode and the ‘reference’ electrodemeasures
the electrode potential. The concentration of the target gas is proportional to the potential mea-
sured between the ‘working’ and the ‘counter’ electrode. The application of these sensors depend
on the materials used for the electrodes and the electrolytic fluid (Aldhafeeri et al., 2020)

1.5.5 Chemi-resistive sensors

The principle of sensing is to measure the change of electrical properties when the sensing ma-
terial is in contact with the target gas. The most common are the metal oxide semiconductors
(MOS) and the conductive polymers/carbon material-based sensors.

MOS sensors are composed of a sensingmaterial and a heater material. The heater increases
the temperature of the sensing material between 200◦ to 500◦C (Özgür Örnek and Karlik, 2012;
Barsan et al., 2007; Hong et al., 2020) attracting oxygen molecules to the surface of the sensing



material. In presence of a deoxidizing gas, such as CH4, a change in the conductivity is produced
by removing some of the oxygen molecules in the surface of the sensing material. This change
is measured by an external circuit (Özgür Örnek and Karlik, 2012; Hong et al., 2020), usually a
voltage divider. Conductive polymer/carbon material sensors quantify CH4 concentrations as
changes in conductivity when there is direct interaction with the sensing material. (Hong et al.,
2020).

The most common material used in MOS sensors is the tin oxide/stannic oxide (SnO2) that
presents high chemical and thermal stability in air. It has proved to distinguish different VOC
gases such as carbon monoxide, hydrogen, nitrogen dioxide and methane (Hong et al., 2020).
The effect of water vapor on CH4 and CO was studied by Ionescu et al. (1999) and it was found
that CH4 and H2O compete in reacting with oxygen at the surface affecting to the sensing per-
formance in presence of humidity. A prolonged exposure to humid environments will degrade
progressively the sensitivity of the sensor (Wang et al., 2010). In addition, the work of Tischner
et al. (2008) has shown that after exposing the sensors to several humidity pulses, the resistance
does not recover to its initial levels until it is heated up to temperatures up to 450◦C for several
minutes. Variations in temperature need to be taken into account when working with this kind of
sensors, as the response of the sensors increases with temperature until it reaches a maximum
at a temperature value, then it decreases rapidly on higher temperatures (Kolmakov et al., 2005).
Another drawback of these sensors is the poor selectivity to various gases and several studies
have tested ways of improving its selectivity and sensing response using catalyst, such as silver,
iron, palladium, nickel, platinum or CuO. (Hong et al., 2020)

Chemi-resistive sensors are inexpensive and small which make them suitable for massive
deployment in a network of sensors. Nevertheless, despite their wide range of detection they
tend to be less precise than other technologies, such optical sensors. They also present cross-
sensitivities to other electron donor gases and atmospheric parameters, such as temperature,
humidity and pressure (Popoola et al., 2018). MOS sensors also present drift issues requiring
develop continuous calibration models (Romain and Nicolas, 2010).

In this thesis wewill focus on the study ofMOS sensors from themanufacturer Figaro®, specif-



ically the Taguchi Gas Sensors (TGS) 2600, 2611-C00 and 2611-E00. All three sensors are sensitive
to CH4, but their design alter their sensitivities to CH4. TGS 2600 was conceived as a smoke detec-
tor and it is sensitive to various air contaminants, such as, hydrogen, CO, iso-butane, ethanol and
methane. TGS 2611-C00 and TGS2611-E00 are two versions with increased selectivity to gases
presenting less response in presence of ethanol and iso-butane. The last one includes a carbon
filter further increasing its selectivity.

Figure 1.6 and 1.7 illustrate typical values of the sensitivity response of the three types of TGS
measured at air temperature at 20◦C and 60% relative humidity (Figaro®, 2005, 2013).

Figure 1.6: Sensitivity response of TGS 2600 to different gases on concentrations from 1 ppm to100 ppm. (Source: (Figaro®, 2005))



Figure 1.7: Sensitivity response of TGS 2611-C00 (left) and TGS2611-E00 (right) to different gaseson concentrations from 200 ppm to 10000 ppm. (Source: (Figaro®, 2013))

1.5.6 Optical sensors

These sensors detect changes in visible light or electromagnetic waves resulting from an inter-
action of the target gas with the receptor. There are several optical sensing mechanisms, such
as fluorescence, absorption, colorimetry, refractive index, surface plasmon resonance or lumi-
nescence. (jie Yin et al., 2018). Although, the most common technique is the infrared absorption
spectroscopy to quantify CH4 sensors. Depending on their specific molecular vibration (related
to their chemical structure), each gas species interact with infrared radiation and in particular ab-
sorb infrared radiation at a specific wavelength. Methane presents two strong absorption bands
around 1.3 and 3µm wavelengths. Cavity ring down spectroscopy (CRDS) is a technique based
on infrared absorption with high sensitivity detection and accurate quantification of greenhouse
gases able to meet WMO/GAW inter-laboratory compatibility goals (Rella et al., 2013).

The CRDS consists of ameasurement cell boundedwith high-reflectivity concavemirrors (usu-
ally > 99%), a laser and a photodetector. The working principle is as follows: the light from the
laser is injected into the cavity through one of the mirrors, and then it is reflected in the whole
cavity. Its light intensity increases over time and it is monitored by the detector placed outside



the cavity behind a mirror. An exponential decay in the intensity occurs when the laser is turned
off with a known time constant τ . In the presence of an absorbing gas, the intensity decay is
affected, shortening the decay time due to absorption and scattering of the gas. The mixing ratio
of the target gas inside the mixture is computed comparing the decay time with and without the
gas. The high sensitivity of CRDS instruments is due to the high reflectivity of themirrors allowing
the laser beam remains trapped inside the cavity for a long period of time, usually in the order
of µs, representing an optical path length of few kilometers (Wheeler et al., 1998; Crosson, 2008)
with precision reaching to parts per trillion depending on the analyte gas (Rella et al., 2013).

On this thesis we use high precision CRDS instruments as a reference for the CH4 measure-
ments to which we compare the MOS sensor measurements. We will briefly explain a few of the
characteristics of the instruments used as reference in our studies. Picarro Inc. (Santa Clara, CA)
is a manufacturer of research level CRDS instruments, equipped with telecom lasers, a setup of
three high-reflectivemirrors inside a cavity with a volume about 35 cm3 andwith an effective opti-
cal path length of 15 to 20 km (Rella et al., 2013). Their systemallows to capture discrete spectrum
on limited wavelength band on amillisecond timescale that convertes to gas concentrations with
a precisions of 0.3 ppb for CH4 at 5 seconds time resolution. Laboratory test (Yver-Kwok et al.,
2015) pointed to high stability of the instruments with drifts over time in about 1 ppb CH4 per
month.

1.6 Current calibration methods used on TGS MOS sensors

In recent years, a focus on TGS MOS sensors have led to several studies of its capabilities to
quantify not only CH4 but other VOCs with promising results.

The use of empirical equations that link resistance measurements to CH4 concentration have
been used on several studies (Eugster et al., 2020; Eugster and Kling, 2012; Riddick et al., 2020)
with good performances, although this approach is sensitive to the site and environmental con-
ditions.

Linear and multilinear models have been also explored (Casey et al., 2019; Collier-Oxandale



et al., 2019, 2018), introducing interactions between environmental variables on the multilinear
models have produced better results than simple linear models.

Artificial neural networks (ANN) have been also tested (Casey et al., 2019; Eugster et al., 2020)
with interesting results: ANNoutperformed linearmodels and provided relatively good estimates
but failed at reproduce the range of the CH4 signal. On warmer temperatures the ANN was no
better than a linear model, but on colder temperatures its performance improved, and daily
features were better captured by the ANN model than on linear models.

1.7 Objective and structure of this thesis

In recent years the focus on low-cost sensors, especially MOS sensors, has increased. Several
studies partly assessed the capabilities of these sensors to quantify CH4 concentrations and to
be used in a network to detect and quantify fugitive emissions on industrial sites or landfill. This
thesis aims to improve the knowledge of MOS sensors as a tool to detect and quantify fugitive
emissions. Themain objective of this PhD is to determine a calibration strategy for CH4 MOS low-
cost sensors from the manufacturer Figaro® and to provide reliable estimates of CH4 emission
computed from observations of these sensors when they are deployed in the field.

The approach to achieve this goal is to conduct three experiments on which the MOS sensors
were tested. The manuscript is structured as follows:

In chapter 2, we present the first experiment, which consists in a 47 days deployment of a
chamber with three types of MOS sensors (TGS 2600, TGS 2611-C00 and TGS 2611-E00) together
with a high precision instrument (Picarro CRDS G2401) that will act as a reference, in a controlled
space, room laboratory, where temperature and relative humidity are continuously monitored
and presents low variations compared to a deployment in the field. Both chamber and reference
instrument were exposed to room air. This first experiment in the study is important, since it
explores the behavior of the MOS sensors under controlled conditions, allowing to understand
the sensitivity to environmental parameters, notably H2O, and it presents a first approach of
data treatment for measurements of these sensors coupled with a machine learning model to



reconstruct the CH4 signal.
Chapter 3 is dedicated to the second experiment on which we explore the capabilities of two

versions of the MOS sensors (TGS 2611-C00 and TGS 2611-E00) to detect and quantify high fre-
quency enhancements of CH4 (spikes) under controlled conditions. Four chambers including
both types of sensors were collocated with a reference instrument and exposed to artificial CH4

spikes generated over variations of ambient air measurements (sampled from outside). On this
experiment we have explored four questions related to the detection and quantification of CH4

concentrations and the deployment of MOS sensors on an industrial site or landfill: i) the capa-
bility of detection and quantification of CH4 concentrations of high frequency spikes comparing
each type of sensor and employing five different models (parametric and non-parametric); ii) the
possibility of reducing the training set size without losing performance on the reconstruction of
the signal; iii) the effect of the ageing of the sensors in the reconstruction of the signal and; iv) the
capability of sharing models between chambers. This study, as a second step, presents the basis
of the calibration strategy defining the data preprocessing approach, the modeling selection and
the discussion of several aspects of the sensors to consider in a field deployment.

On Chapter 4 we present the results of the third experiment, where we assess the perfor-
mance of MOS sensors on a real case study in the field. Seven chambers containing two types of
Figaro® TGS sensors (TGS 2611-C00 and TGS 2611-E-00) have been deployed on an experimen-
tal platform (Total Energies ® Anomaly Detection Initiatives, TADI) implemented with equipment
simulating the typical environment of an industrial site. At this site, the chambers collocated
each one with a high precision instruments have been exposed to a series of controlled releases
of CH4 with other compounds to simulate typical fugitive emissions at oil and gas facilities. In
this experiment, we have treated two main questions: the first one is related to the capability of
detection and quantification of CH4 plumes (concentration) by the sensors on an environment
where environmental factors vary and there is also the presence of other compounds that could
interfere on the capability of the sensors to detect the interested species. The second question is
related to the capability to quantify emissions from the reconstructed signal employing a Gaus-
sian plume dispersion model and assessing the performance by comparing with the estimates



obtained with the reference instruments and the actual values for the same releases. We have
employed the tools developed on the previous chapters to retrieve the information of the signal
linked to the CH4 enhancement. We have compared two models, statistical and machine learn-
ing, to reconstruct the CH4 signal, and we have provided accurate estimates of the emissions for
the releases exploiting the framework developed by Kumar et al. (2022).

Finally, on Chapter 5 we summarized the findings and provide an outlook of the possible
research paths of these sensors.
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2.1 Summary of the publication

2.1.1 Introduction and motivation

Detection and quantification of CH4 emissions from fossil fuel production or agricultural and
waste facilities is challenging due to the nature of the emissions, temporally and spatially vari-
able (Coburn et al., 2018). Emission estimates from inventories and atmospheric measurements
have large inconsistencies (Duren et al., 2019). Some solutions to improve these estimates are
proposed, like the development of a dense network of sensors that can continuously monitor at
fixed locations on an area like a landfill or at oil and gas facilities (Kumar et al., 2015; Wu et al.,
2016; Turner et al., 2016). Developing dense networks with research level instruments, such as
Cavity Ring Down Spectrometers (CRDS), despite their high precision and low maintenance in
terms of calibration, are a costly option, especially for a long-time deployment. The estimated
prices are in the order of tens of thousands dollars per instrument. In recent years, the research
of low-cost alternatives has been studied. Metal Oxide semiconductor sensors are a good alter-
native to implement in such dense networks, although as explained on Chapter 1 they are prone
to drift over time and they are sensitive to environmental parameters such as H2O and temper-
ature and to other VOCs. In this chapter we present the results obtained in a first experiment
involving three types of MOS sensors from the manufacturer Figaro®. We will focus specifically
on the Taguchi Gas Sensors (TGS) 2600, 2611-C00 and 2611-E00 to measure CH4 at background
atmospheric levels. In order to assess the reconstruction accuracy, we defined an error target
with a RMSE below 0.2 ppm of methane.

2.1.2 Design of the experiment

Two sensors of three different TGS types (2600, 2611-C00 and 2611-E00) were installed inside a
stainless steel/glass chamber of 120 mL together with two sensors to measure environmental
parameters (SHT75, that measures temperature and relative humidity; and BMP180 for temper-
ature and pressure). The logging system was controlled by a Raspberry PI 3b+ and sampling was



made at 0.5 Hz. The chamber was collocated with a high precision instrument, Picarro G2401
CRDS, to have reference measurements for the CH4 mole fractions.

We performed two sensitivity tests to measure the response of TGS voltage to variations of
CH4, H2O and CO. The first test consisted in measuring the sensitivity of TGS to CO and H2O. In
this case, we exposed the sensors to air from a single high pressure air cylinder with a mixing of
1.5 ppm CO and 2 ppm CH4 in natural air. The sampling line was splitted in two branches. In one
of the branches, CO was removed (chemical scrubber) without affecting the H2O mole fraction.
Both branches included dedicated mass flow controllers and they were finally mixed at different
ratios to generate eight CO levels (0, 0.07, 0.14, 0.3, 0.5, 0.8, 1.2 and 1.5 ppm). In addition, the H2O
mole fraction was controlled by a dew point generator producing three levels of H2O (0, 1 and 2.3
%). In the second test we assessed the sensitivities of TGS resistance to CH4 and H2O, we exposed
the MOS sensors to six different concentrations levels of CH4, from 1.9 ppm up to 9 ppm, similar
to concentration levels we can typically encounter in CH4 enhancements around industrial sites.
Each level was generated by the mixing of two high pressure dry air cylinders: one with High CH4

mole fraction (9 ppm CH4 and 0.08 ppm CO) and the other with Low CH4 mole fraction (1.9 ppm
CH4 and 0.11 ppm CO). Then, it was humidified by a dew point generator to obtain four different
H2O levels (0.65, 1, 1.5 and 2.5 %). A stabilization time of the sensors of about 40 minutes was
considered after each change of H2O and CH4 levels were increased at 20 minutes intervals.

The second part of the study was dedicated to the reconstruction of room air variations of
CH4, with magnitudes ranging from 1.9 to 2.4 ppm, from TGS resistance measurements using
artificial neural networks (ANN), specifically the Multi-Layer Perceptron (MLP) model. Sensors
were exposed to indoor air of an air-conditioned room for a period of 47 days. The reference
measurements were measured by a Picarro G2401 CRDS instrument which took air from the
same sampling line that was connected to the TGS chamber. We defined five predictors to train
the reconstruction model: TGS resistance variations, CO, H2Omole fraction, and air temperature
and pressure. To train and assess the MLP model we have subset the dataset in a training set,
corresponding to 70% of the observations, and a test set, for the remaining 30%. The influence
of the choice of the training set in the model’s performance was studied by creating 50 sliding



training and test sets that produced 50 different models, and four metrics were evaluated for
each model: RMSE, bias, the ratio between the spread of the predicted outputs and the spread
of the true values, and the correlation coefficient between the output of the models and the
reference. We conducted a sensitivity test on the models with two approaches. The first was
training the MLP models on two cases, i) by removing one predictor at a time and ii) testing the
effect in the reconstruction error of the inclusion of different types of TGS or several versions of
the same type of TGS in themodels. The second approachwas computing the partial dependence
plots that shows the marginal effect of each predictor to the modelled signal.

2.1.3 Main results

2.1.3.1 Sensitivity to CO andH2O

The first test allowed us to determine the voltage contribution due to CO variations and was used
to correct themeasured voltage for CH4 variations of the second test. We determined this voltage
contribution caused by CO variations by fitting a multivariate quadratic model for each type of
TGS on which we included the interaction between the CO and H2O.

The corrected voltage, transformed to resistance, on the second experiment showed a non-
linear relationship between the sensors’ resistance variations and H2O. This experiment, aligned
with previous studies (Ionescu et al., 1999; Wang et al., 2010; Tischner et al., 2008), showed the
high sensitivity to H2O of MOS sensors, specifically in this study for the three types of TGS. In
addition, it was observed that the TGS studied presents a small sensitivity to CH4 with a slightly
higher sensitivity for the TGS 2611-C00 sensor (slope: -1.85kW/ppm CH4 at 1% H2O).

2.1.3.2 Reconstruction of CH4 signal with Multi-Layer Perceptron (MLP)

The results observed from the reconstruction of CH4 concentrations with theMLPmodel showed
two critical aspects. The first one is related to the selection of the training period. It was observed
that the performances of the models were higher for cases that had an overlapping in the distri-
bution of the training and test set, where the range of variations were similar. The second one is



the difficulty in reproducing high frequency variations of CH4 by the MLP, which showed a low-
pass filter behavior benefiting a correction of the misfits for low frequencies when adjusting the
weights during the training process.

The sensitivity tests led to interesting results regarding the importance of the predictors in
the construction of the model. In the test of removing one predictor at a time, we observed that
performances were significantly reduced when removing H2O, and slightly increased when CO
was not included as predictor. For the test with several versions and types of sensors, inconsis-
tent information from several types of sensors affected the stability of the model and caused a
larger spread of the test set error, especially when including the TGS 2611-E00 type as a predictor
together with the other types. The use of two versions of the same type also led to a degraded
performance of the MLP.

The results obtained from the partial dependence plots derived from the results of the MLP
model showed a qualitative agreement between the sensitivity of reconstructed CH4 to resis-
tances and the sensitivities measured directly from the experimental tests. The positive sensi-
tivities to H2O resulting from the partial dependence plots, up to 1.6% of H2O, were consistent
with the experimental sensitivities. However, for larger H2O values, the model-derived sensitivi-
ties presented a different behavior which could be explained by a poor training of the model on
certain ranges of values.



2.2 Publication in the MDPI Atmosphere Journal

2.2.1 Introduction

Anthropogenic CH4 emissions comprise 30% of the global source of this greenhouse gas, and
are from various economic sectors (Saunois et al., 2016). Oil, gas and coal sector sources are
localized in space, going from point scale (e.g., a single well, a compressor) to area sources (e.g.,
a refinery, a gas extraction field). The waste sector has area sources for waste-water treatment
plants and landfills, although within a site there can be leaky equipment forming point sources.

Numerous campaigns estimated emissions from point and area sources using atmospheric
measurements by deploying local dense networks of CH4 instruments at fixed points and using
mobile ground-based platforms and aircraft (Alvarez et al., 2018; Collier-Oxandale et al., 2018;
Duren et al., 2019). The signal from a source in terms of CH4 concentration at a nearby atmo-
spheric measurement location depends on the magnitude of this source, on the wind speed, on
the atmospheric turbulence and on the sampling distance. An excess of CH4 mixing ratio going
from a few tenth parts per billion (ppb) (Ars et al., 2017; Yver-Kwok et al., 2015) up to several parts
per million (ppm) (Feitz et al., 2018) is typically recorded at a downwind distance from the source.

Research class CH4 analyzers such as Cavity Ring Down Spectrometers (CRDS) used for back-
ground air monitoring have a precision higher than 1 ppb (Berhanu et al., 2016; Rella et al., 2013)
but they are expensive. Such precision is needed to monitor the small CH4 gradients between
background stations, on the order of 10 to 50 ppb, that are used as an input of atmospheric in-
versionmodels to diagnose large-scale emissions (Pison et al., 2018). The deployment ofmultiple
CRDS instruments in the vicinity of an industrial site for detecting and/or estimating its emissions
is however a too costly option on a routine basis, especially when needing a very dense network
to ensure precise location and quantification of a fugitive source. This has prompted research
to develop low-cost sensors with a precision sufficient to characterize the signal of atmospheric
plumes from industrial sites. From typical plume signals that are on the order of more than a
ppm, a precision of 0.1 to 0.2 ppm on instantaneous measurements can be deemed to be suffi-



cient for a low cost CH4 sensors. Low cost sensors are more likely to drift with time than CRDS
analyzers, but the atmospheric signal used to quantify the emission of an industrial site is the
near instantaneous difference between upwind and downwind concentrations (Feitz et al., 2018;
Kumar et al., 2015). Therefore, constraining the drift of upwind and downwind sensors during a
few hours to be less than 0.1 to 0.2 ppm would still be sufficient for monitoring CH4 emissions
from an industrial site.

Here, we formulate a target precision requirement of 0.1 to 0.2 ppm over a time scale of one
hour forCH4 low cost sensors to be deployed on dense networks around an emitting source. This
requirement is suitable for detecting variations of CH4 in background air, which are on the order
of 0.1 ppm on an hourly time scale, and characterize CH4 conditions upwind from an emitting
source. We tested for this requirement solid-state tin-oxide (SnO2) sensors models TGS 2600,
TGS 2611-C00 and TGS 2611-E00 manufactured by Figaro®. We performed measurements of
room air where CH4 concentration varies from day to day by up to 0.5 ppm above a background
value of 1950 ppb. The principle of those sensors is to measure changes in the tin-oxide resis-
tance affected by electron donors in the air to which the tin-oxide is exposed. These sensors
are cheap, with a unit cost of about 3 € to 25 € per sensor and they were shown to be sensi-
tive to low CH4 concentrations, thus being potentially suitable for emissions monitoring with a
good characterization of background variations and plume amplitudes even for modest sources
(Collier-Oxandale et al., 2018). On the other hand, low cost sensors are known to drift with time, to
be sensitive to other reduced species than CH4 and to factors such as water vapor, pressure and
temperature (Collier-Oxandale et al., 2019). Therefore, cross sensitivities to these other species
must be characterized in order to understand how they impact the retrieval of CH4 from mea-
sured variations of resistance.

The first research question addressed in this study is to characterize the cross sensitivities of
Figaro® resistances to CH4 versus other factors known to influence the tin-oxide resistance: car-
bonmonoxide (CO), water vapor, pressure and temperature (Chaiyboun et al., 2007). To address
this question, we characterized in a laboratory facility under controlled conditions the resistances
of six Figaro® sensors for a range of CH4, CO, temperature and H2O, and examined covariance



between their sensitivities, in a first step to diagnose cross-sensitivity effects from non-CH4 re-
lated variables.

The second research question is to testwhethermeasurements of low-cost sensors resistance
combinedwith other cross-sensitivity variables allow for the reconstruction ofCH4 concentration
and its variability to meet our precision requirement of 0.1 to 0.2 ppm, here in the case of CH4

variations around background values of up to 0.5 ppm. To address this second question, we
analyzed time series of Figaro® resistances continuously recorded by six Figaro® sensors and
CH4 measured with a high-precision CRDS analyzer for room air CH4 variations, during a period
of 47 days. This study is the first step to assess the potential of Figaro® sensors for measuring
CH4 concentrations close to current atmospheric levels; with small co-variations of water vapor
and of a limited number of cross-sensitive species. On previous studies Collier-Oxandale et al.
(2019) and on initial tests showing that there is a non-linear relation between CH4, resistances
and other variables affecting resistances such as temperature andH2Omole fraction, we chose to
construct and apply a machine learning model to reconstruct the true CH4 concentration from
the CRDS by using as predictors the resistances of the Figaro® sensors, as well as H2O mixing
ratio, carbon monoxide, temperature and pressure recorded by other sensors. The model is
trained to optimally reconstruct the true CH4 signal during a given period, and its results are
evaluated against an independent subset of the data. The results are systematically evaluated
varying the training and test periods, the number of ambient variables, and the addition of more
than one type of Figaro® sensor resistance to reconstruct the true CH4 time series.

2.2.2 Experimental Set-Up

2.2.2.1 Measurement of Low-Cost Sensors Sensitivities to CH4, CO andH2O

The cross sensitivities of the resistance of Figaro® sensors types TGS 2600, TGS 2611-C00, and TGS
2611-E00 were measured in the laboratory (measurements conducted at LSCE, Saclay, France).
The sensors were incorporated into a low-cost sensor logger that featured a Raspberry Pi 3B+
single-board computer andRaspbianoperating system, using bespoke software (coded in Python).



Figaro resistances for types TGS 2600, TGS 2611-C00 and TGS 2611-E00 were measured as volt-
ages using a voltage divider Figaro® (2005, 2013) with precision resistor (5 kΩ, tolerance, temp
coeff), and measured as single-ended voltages using an A/D board (ADCPiPlus, ABElectronics)
with 17-bit resolution across the 5.06 V range. Air temperature and relative humidity were mea-
sured using a Sensirion SHT75 digital sensor which has an accuracy of ±0.3 ◦C and ±1.8%RH
respectively and a repeatability of ±0.1 ◦C and ±0.1 %RH respectively. Air pressure was mea-
sured using a digital Bosch BMP180 pressure sensor (Adafruit, BMP180 breakout module), which
has an accuracy of ±0.12% across the range 950-1050 hPa. All sensors were mounted in a 120
mL stainless steel/glass sealed chamber (EIF 3S1NRGL), which provided a gas inlet and outlet and
an air-tight port for the sensor cable (see Figure 2.1a). All measurements were made at 0.5 Hz
and stored on the Raspberry Pi’s SD card.

To assess the sensitivities of the sensor resistances to CH4 and H2O, we used air from two
high pressure dry air cylinders, with a high CH4 mole fraction of 8.999 ppm CH4 and 0.08 ppm
CO, and a low CH4 mole fraction of 1.900 ppm CH4 and 0.11 ppm CO, respectively. Air from the
two cylinders was mixed using two mass flow controllers (see Figure 2.1b) to create six levels of
CH4 of 1.9, 2.985, 4.04, 6.17, 7.58 and 8.985 ppm in dry air. This range covers CH4 mole fractions
recorded in the atmosphere from background sites up to typical excess found in plumes from
industrial sites (Xueref-Remy et al., 2019). The air with different CH4 concentration was humidi-
fied by a dew-point generator (Licor, LI-610) in order to get four H2Omixing ratios of 0.65, 1, 1.5
and 2.5% at stable atmospheric pressure and temperature. The experiment set up is illustrated
in Figure 2.1b.

In the experiment, the dew point generator was set to one of the four H2O mixing ratios. At
each change of H2Omixing ratio, the Figaro® reading was given 40 or more minutes to stabilize
at the lowest CH4 level, before CH4 was increased in steps at 20 min intervals. Only the last 5
min’ data of each step was used. Data from the sensors and the Picarro CRDS were merged and
converted to one-minute medians.

The Figaro® sensors’ sensitivity to CO and H2O was measured in a similar manner, using a
single high pressure dry air cylinder containing 1.5 ppm CO and 2 ppm CH4. The sample line was



split into two branches, one equipped with Sofnocat 514, a hydrophobic CO oxidizing agent, to
remove CO without changing the humidity. The air from the two lines was combined in different
ratios thanks to dedicatedmass flow controllers in order to produce COmole fractions of 0, 0.07,
0.14, 0.29, 0.57, 0.87, 1.17 and 1.50 ppm, at H2Omixing ratios of 0, 1.0 and 2.3% thanks to a dew
point generator (Licor, LI-610) operated at constant temperature and pressure. The experimental
configuration is shown in Figure 2.1c. The logging equipment and sampling procedure were the
same as for the first experiment.

In this experiment, a Picarro G2401 CRDS was used as a reference high-precision instrument
for CH4, CO2, CO and H2O mole fraction. The CH4 precision of a Picarro CRDS analyzer in dry
air is below 1 ppb (Picarro Inc.: Santa Clara, CA, USA; Yver-Kwok et al., 2015) at instrument data
acquisition rate (0.3 Hz) within the atmospheric range. CRDS calibration drift over time is usually
better than 1 ppb CH4 per month (Yver-Kwok et al., 2015).

Figure 2.1: (a) Picture showing the sealed chamber with six Figaro® sensors of different types,and temperature and pressure sensors. (b) Scheme of the CH4 and H2O cross-sensitivity mea-surement set up. (c) Scheme of the CO and H2O cross-sensitivity measurement set up.



2.2.2.2 Measurements of Room Air with Low Cost Sensors and CRDS

The resistances of six Figaro® sensors exposed to CH4 variability in indoor air were monitored
during 47 days (from 27 April to 12 June of 2018) in an air-conditioned room, with three versions
of Figaro® sensors: TGS 2600, TGS 2611-C00 and TGS 2611-E00. Details of the data acquisition
are as described in the previous section. Reference data was again provided by a Picarro G2401
gas analyzer. Air temperature and relative humidity was measured using a DHT22 digital sensor
(Aosong Electronics) which has an accuracy of ±0.5 ◦C and ±0.5% RH respectively. The sensors
were installed in a semi-open enclosure from which the Picarro CRDS took its intake, thus sam-
pling the same air that the Figaro®s̃ensors.

2.2.3 Modeling CH4 from Figaro Resistances and Other Predictors

Low-cost sensors, generally, present a non-linear dependency on environmental variables caus-
ing cross-sensitivities (Collier-Oxandale et al., 2018). There is no mathematical model of the
relationship between the resistances and CH4, given the dependency of resistances on other
environmental variables (CO, H2O, pressure and temperature). The analytical problem thus re-
mains nonlinear and multi-dimensional. Therefore, an Artificial Neural Network model (ANN)
was chosen to reconstruct CH4 from observed time series of resistances, CO, H2O, pressure and
temperature. We chose a Multi Layer Perceptron (MLP) which is a classical supervised-based
algorithm (Rumelhart et al., 1986). MLP models are generally considered to be the reference
amongmachine learning methods because several theoretical results prove their ability as a uni-
versal approximator (Cybenko, 1989; Hornik et al., 1989), capable of learning from examples. For
our problem, the advantages of a machine learning model such as MLP are the following: (i) it
does not require any prior knowledge about I/O dependencies, (ii) it is able to construct arbi-
trary functions from noisy data (Bishop, 1995b), it makes no assumption on the distribution of
data (Gardner and Dorling, 1998), and (iii) could produce reasonable outputs from entries that
are not present in the learning set, i.e., generalization (Haykin, 1994). Over the past decade, deep
networks such as MLP have demonstrated superior performance over a wide variety of tasks,



including function approximation. Recently, MLP have been proven to be more efficient than
inverse linear methods in reconstructing the signals of trace gas species from low-cost sensors
(Casey et al., 2019).

In aMLPmodel, unknown parameters (i.e., architecture and connection weights) are adjusted
in order to obtain the best match between a dataset of model inputs (Figaro resistances, H2O,
CO, Temperature and Pressure) and corresponding outputs (FigaroCH4). The connectionweights
are adjusted by using iterative learning processes such as the backpropagation (Rumelhart et al.,
1986) or several algorithms that have been developed in order to achieve a good learning of
the model (i.e., Stochastic gradient descent, Adam, etc., (Géron, 2019)). In our study, we chose
to use a quasi-Newton method, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which
provide the optimal MLP weights in a limited number of iterations (300) due to its relatively fast
convergence (Haykin, 1994). For our study, the architecture of theMLP producing the best results
was found to be a four-layer network with 5 units in the input layer, 14 and 19 units with tanh
activation function in the hidden layer and 1 unit with a linear activation function in the output
layer. Allmodelswere constructed using the library scikit-learn (Varoquaux et al., 2015) on python
3.6.

The generalization error, also called test error, is the expected value of the error produced
by new inputs (Goodfellow et al., 2016). This error is obtained from the performance of the MLP
to match an independent test dataset. A central challenge of function approximation by MLPs is
the risk of underfitting and overfitting (Goodfellow et al., 2016). Underfitting is referred to a high
training error when, because of an inconvenient architecture or because of training inputs that
are not explanatory enough for example, the MLP does not manage to efficiently fit the training
data set. In our case, the risk of underfitting is mitigated by using a sufficiently complex model.
Overfitting happenswhen theMLP learns features from the training data set, e.g., noise or biases,
that are not relevant and do not generalize well to a different data set. To reduce the risk of
overfitting we used the weight decay regularizer or L2 Norm that drives excess weights (weights
of the network that does have little or no influence in the model) to values close to zero Haykin
(1994). We use also an early stopping technique that constantly monitors the error produced



by the model with respect to an independent validation data set (validation error) during the
learning process. When the validation error starts increasing, the training process is stopped in
order to moderate the generalization error (Bishop, 1995b; Goodfellow et al., 2016). The best
MLP model was selected as the one producing the lowest validation error from the results of
many tests in which the number of neurons of the hidden layer were varied (see Section 2.2.4.4).

2.2.4 Results

2.2.4.1 Sensitivities of Low-Cost Sensors

To account for the systematic error of the Figaro® resistances sensitivities to CH4 and H2O,
caused by the different CO levels in the two CH4 target tanks, the sensors’ sensitivities to CO
and H2O were separately measured and used to correct the data. In Figure 2.2, for each Figaro®
type, the upper plot shows the measured voltage across the load resistor for changing CO mole
fraction, at each of the three humidity levels 0, 1 and 2.3% mole fraction. The lower plot shows
how much the Figaro® voltages increased above the baseline voltage, where the baseline is the
voltage at zero CO and is a function of the humidity.

Figure 2.2: Measured sensitivity of Figaro® sensors (a) TGS 2600, (b) TGS 2611-C00 and (c) TGS2611-E00 to CO, at different humidity levels. Upper plots show the measured resistance, whilelower plots show the contribution to the resistance due to CO.



For each sensor type, these data were fitted with a multivariate quadratic model of the form:

f(x1 = CO, x2 = H2OMoleFraction) = ax1 ∗ x2 + bx2
1 + cx2

2 (2.1)

The voltage contribution due to CO was calculated as f(x1 = CO, x2 = H2O)− f(x1 = CO =

0, x2 = H2O), where f is the fitted value. This model was used to correct the CH4-H2O voltage
data to zero CO by subtracting the CO contribution from each point. These corrected values are
show in Figure 2.3, converted to resistances.

The range of CH4 mole fraction was 2 to 9 ppm, thus being larger than in the room air exper-
iment where CH4 varied only from 1.95 to 2.5 ppm. The range of H2O mole fraction was from
0.5% to 2.5%, which is comparable to that of the room air experiment. In general, the sensors
resistance presents a strong sensitivity to H2O and a small sensitivity to CH4. The TGS 2611-C00
is slightly the most sensitive sensor to CH4, with a slope of −1.85 kΩ/ppm CH4 at 1% H2O.

Figure 2.3: Resistances of Figaro® sensors (a) TGS 2600, (b) TGS 2611-C00 and (c) TGS 2611-E00calculated from load voltages corrected for the cross-sensitivity to CO.

2.2.4.2 Data Pre-Processing for MLP Model

The data pre-processing scheme for the MLP model is summarized in Figure 2.4. We filtered the
input and output data by removing NaN values and observations by an unknown source in the
room that resulted in clear spikes of the TGS resistances. This resulted in 49,103 observations at



a resolution of 1-min or 34 days of measurements. For each of the independent input variables,
a low pass Savitzky-Golay Filter has been applied to remove high frequencies corresponding to
fluctuations of sensor measurements (1 min variations) and a median filter has been used to
remove the effect produced by the low pass filter on gaps (Press and Teukolsky, 1990). These
filters have been not applied to the output data because the CH4 observations provided by the
Picarro are not characterized by high frequency variations and because we wanted to keep the
output data used for the training of theMLP as close as possible to the original data set. Figure A.1
shows a comparison between the raw signal and the filtered signal for one day of data. Because
input variables have different units and scales that could affect the relative sensitivities of the
MLP with respect to each variable, they were normalized with a robust scaler which considers the
statistical dispersion of the observations by, removing themedian and scaling the data according
to a quantile range (Hagan et al., 2014). We used this scaler in order to prevent that outliers could
affect the relative importance of each variable in themodel, with that filtered dataset, we created
two sub-sets of data to train and evaluate the MLP model. A training set always contained 70%
of the entire dataset, the remaining 30% being the cross-validation dataset.

Figure 2.4: Data preprocessing and sub setting for the training and cross-validation of the Multi-Layer Perceptron model.



2.2.4.3 Room Air Measurements

In Figure 2.5 are shown the smoothed time series on a time step of 1min after a low pass filtering
(see Section 2.2.4.2) of roomCH4 from the CRDS analyzer, resistances fromeach Figaro® CO from
CRDS, room temperature of the DHT22 sensor, and pressure of the BMP180 sensor. H2O mole
fraction (in %) was computed from relative humidity and temperature of the DHT22 sensor and
atmospheric pressure of the BMP180 sensor using Rankine’s formula:

H2OMole Fraction = 100×

(
RH
100

× e
13.7−5120
T+273.15

P
100000

− RH
100

× e
13.7−5120
T+273.15

)
(2.2)

where RH is the relative humidity in%, P the atmospheric pressure in Pa and T the temperature
in ◦C.

The large spikes in the variations of temperature is due to the roomair conditioning regulation
system. Table 2.1 summarizes the principal statistics of the dataset.

Table 2.1: Summary of the statistics for each variable in the dataset.
CH4 (ppm) TGS 260001 (Ω) TGS 260002 (Ω) TGS 2611 − C01 (Ω) TGS 2611 − C02 (Ω)# of Obs. 49,103 49,103 49,103 49,103 49,103mean 2.12 32,356.48 32,487.65 47,193.12 49,262.97

σ 0.11 5948.07 5969.96 4352.56 4891.01min 1.94 18,446.51 18,871.92 37,504.39 37,768.43max 2.45 47,262.67 47,418.24 57,590.59 60,616.8025% 2.03 28,881.76 28,848.63 44,136.81 45,890.2150% 2.10 31,584.97 31,633.92 46,706.42 48,884.9475% 2.18 34,994.97 35,015.34 49,233.17 51,842.68
σRel 5.35 18.38 18.38 9.22 9.93

TGS 2611 − E01 (Ω) TGS 2611 − E02 (Ω) H2OMole Fraction (%) CO [ppm] T (◦C) P (Pa)# of Obs. 49,103 49,103 49,103 49,103 49,103 49,103mean 60,425.14 63,378.21 1.58 0.11 25.53 99,709.67
σ 3010.45 6234.00 0.27 0.02 0.46 420.74min 52,472.35 54,468.19 1.07 0.08 24.11 98,289.72max 79,018.36 93,671.74 2.07 0.24 27.15 100,528.7925% 58,255.57 59,549.05 1.38 0.10 25.29 99,406.2250% 60,227.14 61,428.60 1.52 0.11 25.52 99,698.5775% 61,792.62 64,557.91 1.87 0.12 25.74 100,004.34
σRel 4.98 9.84 17.17 18.38 1.81 0.42

Before applying MLP models to reconstruct the (CRDS) reference CH4 time series, we ana-
lyzed the partial correlations between resistances and other predictors. The correlation matrix
is show in Figure 2.6. This first analysis of linear correlations does not capture non-linear sensi-



Figure 2.5: Time series of gasmole fractions, Figaro® sensors’ resistances, temperature and pres-sure in room air during the room air experiment. The data was filtered as explained in Section2.2.4.2.

tivities of Figaro® resistances to CH4 and other predictors, but it is performed in order to identify
the most influential predictors of CH4 (i.e., those showing a higher positive or negative correla-
tion with CH4), the sign of the sensitivities (i.e., the sign of the correlation coefficient) and how
stable is the influence of different predictors on CH4 during the 47 days duration of the experi-
ment (variability of correlations in time between 3-h intervals during the measurement period).
The data in Figure 2.6 shows the upper triangular part the correlation matrix between variables,
and in the lower triangular part the standard deviation of the correlation computed on bins of
3 days previously smoothed on 3-h intervals (the temporal resolution at which MLP is trained
and applied). A stationary correlation would give a standard deviation close to zero. The Figaro®



resistances presented weak partial correlations with CH4, the target variable, with r values of
0.25 and −0.27 for TGS 2600, 0.015 and −0.0098 for TGS 2611-C00, and −0.14 and 0.099 for
TGS 2611-E00 types, respectively. Other variables also presented weak correlations with CH4 of
−0.17 (H2Omole fraction), 0.16 (CO), 0.21 (T) and−0.18 (P), respectively. Correlations between of
the resistances of two versions of sensors of the same type were strong for TGS 2600 (1) and TGS
2611-C00 (0.98) but not for TGS 2611-E00 (0.3). There were also appreciable strong correlations,
positive and negative, between resistances of sensors from different types, in particular between
TGS 2600 and TGS 2611-C00 types. The resistance of TGS 2611-E00 showed a weak correlation
with TGS 2600 and a stronger one with TGS 2611-C00 (Figure 2.6). Again, as for the correlations
with CH4, we found a clear difference in the correlations of resistances from TGS 2600 and TGS
2611-C00 types on one hand, and from TGS 2611-E00 on the other. The resistances of all sensors
were negatively correlated withH2O on one version, with r values of. −0.31,−0.61 and−0.32 for
version 2 of TGS 2600, TGS 2611-C00 and TGS 2611-E00 types, respectively. However, version 1
of the same sensors was instead positively correlated with H2O (Figure 2.6). We also found weak
correlations of the resistances with CO, but still larger in absolute values than the correlations
with CH4.

From the stability analysis (see lower triangular in Figure 2.6) we observe that most of the r
(correlation) values are under 0.5 meaning that most of the data are consistent during a window
of 3 days. We also noted relatively high values of r on the two versions of the TGS 2611-E00
with the TGS 2611-C00 (0.59), the H2O with the two versions of TGS 2600 (0.64) and with the two
versions of TGS 2611-C00 (0.63), high values are also present on the pressure with the CH4 (0.6)
and with the H2O (0.59).

We conclude from this first analysis of correlations that, although there are correlations, be-
tween CH4 and the resistances of TGS 2600 and TGS 2611 sensors, such correlations are small
and vary with time, which will make it challenging to reconstructCH4 time series with linear mod-
els, and justifies a priori our choice of a MLP model. Same conclusions have been drawn from
previous studies (Casey et al., 2019; Collier-Oxandale et al., 2018).



Figure 2.6: Partial correlation (r) matrix (upper triangular) and standard deviation of correlationfor bins of 3 days previously smoothed at 20 min scale on 3 consecutive hours (lower triangular).

2.2.4.4 Evaluation of the MLP Model

To assess the influence of the choice of the training period in the performance of the MLP, we
defined over thewhole data set 50 sliding training periodswhich contain 70%of the observations.
The corresponding test sets contain thus 30% of the observations and the results associated to
the fits of the 50 MLPs are described in Figure 2.7.

The evaluation of the performance was based on 4 metrics: the RMSE on hourly data, the
mean bias, the ratio between the spread of the predicted outputs from themodel and the spread
of the true values (σModel/σData) and the correlation coefficient between the output of the model
and the true values. On Figure 2.8 are presented two examples of the performance of the MLP
with different test periods, selected to represents a bad (period 50) and a good test (period 7)
performance.



Figure 2.7: Performance of the MLP model for the 50 training and test periods. (a) RMSE onhourly data. (b) Mean bias. (c) Ratio between the spread of the predicted outputs (σModel) andthe spread of the true values (σData). (d) Correlation coefficient between the predicted outputsand the reference values.

In general, the RMSE, on the test set, was less than 0.2 ppm, except for one period in the end
of the time series (50th). This value of RMSE meets our precision requirement target of 0.2 ppm
posed in the introduction. The periods of lowest errors are periods 5 to 20 (from 30 April to 29
May), and we can observe that the worst case corresponds to amodel learned only for low values
ofH2O and tested on a test set which containsmuch higher values of this input variable. Likewise,
many low temperature values are observed in the test set, while these values are missing in the
learning set. In the best case, on the contrary, the ranges of variation of the input variables are
narrower in the test set than in the set used for learning. (see Figures A.3 and A.4). A better
performance in the model was observed when using the TGS 2611-C00 sensor. From the test



Figure 2.8: Time series showing a good (a) and a bad (b) performance of the MLP model for thetest period 7 and 50 respectively. In red, time series of the reference instrument, and in bluethe reconstructed signal given by the MLP model. White background: observations used for thetraining stage. Blue background: observations used for the test stage.

periods 31 to 50 we observed a larger increase of the test error than in the previous periods, the
worst case being test period 50 (RMSE > 0.4 ppm).

Misfits are mostly due to a wrong simulation by the MLPs of the variability and/or the phasing
of the data. For the periods 2, 3, 19 to 21 and from 35 to the end of the series, the difference
between the standard deviations of the data and the MLP can reach 50% which points out a
incorrect reconstruction of the amplitudes of the test data sets by the corresponding MLPs. For
all the periods, theMLPs face difficulties to reproduce the phasing of the test data sets: themean
correlation coefficient is indeed of 0.54 and from the periods 30 to the end of the series, the
phasing between the MLP and the observations is notably deteriorated (r < 0.5). At the contrary,
theMLPs simulate correctly the average values of the data: themean bias is under 0.1 ppmwhich
represents less than 1% of the average values of the data. This is likely explained by a tendency
of the MLP to act as a low-pass filter of the data: during the process of learning, the weights are
indeed adjusted in order to minimize the misfits, over the entire training data set, between the
MLP outputs and the Picarro CH4 data which thus favors a correction of the misfits for the low
frequencies.

In summary, the results of the MLP model point out to several critical aspects. In the first
place, the selection of the training period affects the performance of the model to reconstruct



CH4, in which the covering of the same range of values in the training and test set is traduced by
good performance. The choice of a ‘good’ training period results in higher cross validation scores.
In particular, the period of CH4 variation from 30 April to 29 May appears particularly critical and
if it is not used for the training, themodel cannot extrapolate theCH4 data well (RMSE > 0.4 ppm).
An overlapping of the data distribution of the training set and the test set, in the sense of similar
variations observed in both sets, increases the performance of the model (see Figures A.3 and
A.4). Secondly, we found that the model cannot reproduce well the magnitude of high frequency
anomalies of CH4, but tends to better reproduce the low frequency component of the signal
which is consistent with low-pass filter behavior of the MLP described above (see Figure A.5).

2.2.4.5 Sensitivity of MLP Model to Input Variables

To understand the relative contribution of each input on the MLP model, the sensitivity to the
number of inputs and to the number of TGS sensors were calculated and results are shown in
Figure 2.9. For every case we compared the results with a reference model that has as inputs
the Figaro TGS 2611-C00 resistance, H2O mole fraction, Air temperature and pressure, and CO,
corresponding to our best case from the previous section. For every configuration we trained
50 models in the same way as described in Section 2.2.4.4. For all the tests we kept the same
MLP architecture of 4 layers with the same number of units for the hidden layers, and compared
their performance for training datasets using the root mean square error (RMSE) of hourly data.
For an identical architecture, the number of input variables has consequences on the complexity
of the model (total number of parameters of the model) and therefore on the overfitting effects
already mentioned.

We observe in Figure 2.9a that omitting the air pressure results in a better performance on
the test set compared with the omission of other variables. On the other hand, omitting H2O

decreased the performance on the training periods RMSE increased from 0.036 to 0.046 ppm for
the training set, and from 0.12 to 0.13 ppm for the test set. Omitting temperature gave a better
performance on the test set, and omitting CO led to no appreciable differences. The Figure 2.9b
shows the effect of increasing the number of Figaro® sensors in theMLPmodel. For this analysis,



Figure 2.9: (a) Comparison of 5 models in which one input has been removed at each time (de-noted ‘W/O’) with the reference model that has been built with the resistance data of the FigaroTGS 2611-C00 and the 4 other types of data (Reference). (b) Effect of increasing the number ofFigaro® sensors in the model with no modification of the ambient variables in the input. The barplot represents the mean error for every configuration and the error bar on top is the range ofvariation over the 50 validation periods.

the four environmental variables (Temperature, pressure, CO, and water vapor mole fraction)
and four different combinations of resistances data from the three types of Figaro® sensors were
used to train the MLP with one combination corresponding to the reference model (blue bar). A
decrease in the performance (RMSE∼0.15 ppm) was found in the test set when using resistances
from three types of Figaro sensor: the TGS 2600, the TGS 2611-E00 and the TGS 2611-C00, brown
bar. Using two versions of the same sensor decreased theMLP performance in the test set (RMSE
∼0.133 ppm for a combination of two TGS 2600 and TGS 2611-C00 and RMSE∼0.13 ppm for two
versions of TGS 2611-C00) in relation to the reference MLP model. For the training set, we found
a decrease on the training error when using 3 different types of sensor (RMSE = 0.034 ppm). We
found that all the models of this sensitivity test are matching our requirement as presented on
Table A.1.

Several conclusions can be drawn from those tests using a reduced numbers of predictors.
Firstly, the water vapor mole fraction affects significantly the predictive power of the model, and
removing this variable produced a larger spread of the test error. This result is consistent with the



large sensitivity of resistance to H2O shown in Figure 2.3 and indicates that this variable should
be measured together with Figaro® resistances if using machine-learning models to reconstruct
CH4. An interesting result was that when CO is removed from the model predictors, the MLP
performance even slightly improved. Using three types of sensor data in the training of themodel
increased the spread of the test error, that affected the stability of the model, because of the
inconsistent information from different sensors, in particular the different behavior of type TGS
2611-E00 compared to the two others. Using data resistances from two versions of the same
type of sensor degrades as well the model performance.

In addition to testing the sensitivity of the MLP results to the choice of predictors and sen-
sors type, we analyzed the partial dependence of the target variable CH4 to the marginal effect
of each predictor in the reference model with 5 predictors included. The corresponding par-
tial dependence plots were constructed using the scikit-learn package on python 3.6 (Varoquaux
et al., 2015). The results for the type TGS 2611-C00 are show in Figure 2.10. In the case of the
resistances of Figaro® sensors, we found a negative sensitivity of MLP-reconstructed CH4 to re-
sistances. This result is in qualitative agreement with the negative sensitivities measured exper-
imentally in Figure 2.3. We could not compare however the values of experimental sensitivities
with those inferred by the MLP because the range of CH4 was much larger in the experiments
(2 to 9 ppm) than in the room air dataset (2 to 2.5 ppm). Nevertheless, we noticed that the ex-
perimental sensitivity shown in Figure 2.3, ranging from −0.7 to −2.8 kΩ per ppm CH4 over a 7
ppm CH4 is much smaller (about twenty times less) than the sensitivity diagnosed fromMLP par-
tial dependence analysis in Figure 2.10. The reasons for this discrepancy may be due to sensors
aging or to an over-estimation by the MLP model. The partial dependence of MLP-reconstructed
CH4 toH2O showed a different behavior between ’good’ and the ’bad’ test datasets as seen in the
data from Figure 2.10. For the good training period, the sensitivity to H2O was rather constant
and even slightly positive forH2O values going from 1.2% to 1.6%, then a negative sensitivity was
found until 1.9%. For the average of all training periods, the H2O sensitivity peaks and declines
with a humped shape curve reaching a maximum at 1.6%. The positive sensitivity below 1.6% is
consistent with experimental sensitivities of Figure 2.3, in which the resistance decreases for an



increase of H2O and decreases when CH4 increases. Since some values are not or hardly repre-
sented in the training set for the worst case (see the comment in Section 2.2.4.4 for the variable
H2O) the humped-shaped dependence of CH4 to H2O in Figure 2.10 may be linked to poor MLP
learning in certain ranges of values. We found from the partial dependence analysis a positive
sensitivity of reconstructed CH4 to CO. For temperature and the pressure, we found a quadratic
shaped sensitivity for the worst case, with negative curvature for temperature and positive for
pressure.

Figure 2.10: Partial dependence plot for the best (blue) and worst (red) case and mean Partialdependence plot computed over the 50 periods (black), the shaded gray area is the uncertainty(1σ) for the 50 periods. The inputs of themodel were the Figaro 2611-C00 resistance, water vapormole fraction, CO, air temperature and pressure. Ticks on the x axes of the figures are the decilesof the input variables.

The bivariate partial dependence plots in Figure 2.11a show the dependence of the MLP-
reconstructed CH4 on the joint values of resistance and the other variables for the best test case
(see Figure 2.11b for the worst case). On this best case, we observe that there is a high depen-
dence to resistance of the MLP-reconstructed CH4 for values of H2O under 1.6%, whereas for
values between 1.6% and 1.8% the dependence flattens off. Considering CO and temperature,
we found that the MLP model is highly dependent of resistances for values under 0.15 ppm of



CO and temperature under 26.5 ◦C, for the best and the worst cases for CO. Finally, the model
seems to be sensitive to pressure when the resistance varies over 48 kΩ and under 44 kΩ.

Figure 2.11: Bivariate partial dependence plot for the TGS 2611-C00 sensor versusH2Omole frac-tion, CO, air temperature and pressure. (a) Partial Dependence Plot (PDP) for the model trainedin the best case scenario and (b) Partial Dependence Plot (PDP) for the worst case scenario. Tickson the x and y axes of the figures are the deciles of the input variables.

2.2.5 Discussion

Few studies have tried to usemachine-learningmodels to reconstruct the variability and the con-
centration of greenhouse gases from low cost sensors (Shahid et al., 2018). In thework of Spinelle
et al. (2015,?, 2017)) several field calibration methods for low cost sensors were explored: Linear
and multilinear regression and Artificial Neural Network (ANN), for five trace gases (O3, NO2, NO,
CO and CO2) measured by metal oxide, electrochemical and miniaturized infrared sensors over
five months. They concluded that the best calibration method was ANN and that the use of dif-
ferent types of sensors could help the ANN to solve the cross sensitivities. Here, we found that
only using Figaro® TGS sensors, even from different types, it was not possible to make a good



reconstruction of the signal without concurrentmeasurements of other environmental variables,
because the sensors had a high cross sensitivity to water vapor, aggravated by differences on the
distribution of the H2O density for the training and test set.

The study of Esposito et al. (2016) compared theperformance of feed forwardneural networks
(FFNN) with dynamical neural network (DNN) in the calibration of three trace gases (NOx, NO2

and O3) measured with low cost sensors over five weeks. They found that DNN was significantly
more accurate than FFNN in the reconstruction of high variations of concentrations. As explained
on Section 2.2.3, the high capacity problem in which the more complex models tend to overfit
needs to be treated carefully, thus we tested a series of combinations of number of units and
number of layers obtaining an architecture of 2 hidden layers the more adapted to this problem,
our limited dataset also restraints a more complex model.

Cordero et al. (2018) worked on a two-step calibration process of NO2, NO and O3 from low
cost sensors. They applied a first multilinear regression considering all the predictors, then the
error of the multilinear regression was introduced as an input, in addition to the others predic-
tors, to a supervised machine learning algorithm (Support Vector Machine—SVM, random forest
or ANN) to reconstruct the concentration of trace gases. They concluded that globally SVM and
ANN performed well in the reconstruction of the concentrations in all the cases over a threshold
(40 µg/m3). For data below that threshold, the random forest was the best model to reconstruct
the signal. As a universal approximator, we decided to use MLP in our study for the reconstruc-
tion of small variations of CH4 measurements at levels around ambient air values, and we did
not test the limits of this type of model in presence of high variations of our signal, such as CH4

spikes of several ppm encountered when measuring air at a point nearby an industrial site. This
question remains open for a future study with a specific dataset of CH4 that contains spikes.

Casey et al. (2019) compared the performance of direct linear models, inverse linear models
and ANN models over three months of data of ambient air in a region influenced by oil and
gas production. Their main results pointed that the ANN model, when applied to CH4 and CO
observations, gave better performance (RMSE = 0.13 ppm over a month) than the direct and
inverse linear models, due to the smaller dynamic range from their observations. For our study,



a linear model could not be applied due to nonlinear relationships between predictors with the
target CH4 signal. With a careful selection of the MLP model, our results indicate that the MLP
model provided performances that meet our target requirement of an error of 0.1 to 0.2 ppm
for hourly average CH4, except during periods when the distribution of training data was too
different from the one of the test data (80% on the last test period of the cross validation). This
illustrates the critical aspect for MLP and other machine learning models to use large datasets,
with all the space of predictors being covered by training datasets, to reach good cross validation
performance.

Eugster et al. (2020) conducted a long term evaluation of the Figaro® TGS 2600 over seven
years at Toolik Lake in Alaska; they proposed a multilinear model to calibrate the voltage signal
from the sensor including other environmental variables such as air temperature and absolute
humidity. The calibrationmethodswere assessed under summer andwinter conditions and com-
pared their proposedmodel with an ANN. Eugster et al. (2020) found satisfying agreement on 30
min average observations for themultilinearmodel (R2 = 0.424). They reported amore balanced
performance of the ANN on cold conditions (winter), but they not find a substantial difference
between their proposed model and the ANN. They concluded that ANN would outperform linear
models if other driving variables were included to the model.

Riddick et al. (2020) conducted an experiment to investigate the potential of Figaro® TGS 2600
to measure CH4 mixing ratios in ranges between 2 and 10 ppm, assess the long term measure-
ments over 3 months and estimate the emissions from a natural gas point source. Calibration
of the sensor was derived from a non linear relationship giving the best agreement with the ref-
erence measurements when computing the time averaged concentration with a uncertainty of
±0.01 ppm. The authors observed that reliably measurements of CH4 was in the range of 1.8 to
6 ppm and suggest that calibrations need to be derived for each individual sensor.

From the results of the sensitivity tests to removing predictors one at a time, and the partial
dependence plots providing the sensitivities of the MLP modeled CH4 to individual predictors
we could observe the importance of the water vapor as a critical input for the models. This is
mainly due to the high sensitivity for the TGS sensors toH2O confirmed by our experimental data.



Variations of H2O in the field are typically larger than the ones covered by our experiment and
they have an important impact on themodel’s performance. Refiningmodels to further separate
theH2O andCH4 signal will be needed tomeet the target error when increasing the range ofH2O

and CH4 variations in future experiments. For the temperature, pressure and CO we found that
those predictors have a lower influence on CH4 in our room air dataset, and for similar type of
data, they could be ignored as concurrent measurements. The influence of CO on the model
should be studied in depth as well as that of other cross-influencing compounds being electron
donors such as ethane, hydrogen or H2S, whose concentrations in industrial environments are
likely larger than the ones during our idealized experiments. This is the second critical topic that
we should address in our following assessments of low-cost tin-oxide sensors.

2.2.6 Conclusions

The theoretical contribution of this study is to demonstrate the potential of Artificial Neural Net-
works models for the reconstruction of atmospheric CH4 variations based on tin-oxide sensors
resistances, within a smallCH4 variation range aroundmean levels similar to current atmospheric
concentrations, achieving a target RMSE≤ 0.2 ppm. The selection of the training and test periods
was shown to be a critical factor to obtain good performance, because our dataset was relatively
short and some training periods included predictor distributions that strongly differ from that
of the test periods. The practical contribution of this study is a detailed characterization of CO
and H2O cross influences on tin-oxide sensors resistances, from laboratory tests. We also found
that adding different combinations of Figaro tin-oxide sensors versions did not produce better
results. Using only the TGS 2611-C00 sensor version led to better results in regard to the others
types.
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3.1 Summary of the publication

3.1.1 Introduction and motivation

CH4 emissions from oil and gas production accounts for 63% of the total fossil fuel production
(Saunois et al., 2020). Fugitive emissions can occur in all the chain of oil and gas productions, from
extraction, transport and stockage. Periodical campaigns of LDAR (Leak Detection And Repair)
have the intention of detecting and quantifying the sources of leaks. Nevertheless, they are not
sufficient to detect all the fugitive emissions due to the episodic and spatially variable nature of
leaks. Portability of instruments and accessibility of sites are some of the main problems that
occurs in this kind of campaigns.

Asmentioned on chapter 1, the deployment of a dense network of measurement sensors can
increase the coverage of an emitting area, and thus allowing to better detect and quantify leaks.
Current instruments used in surveys to detect leaks have high precision, but are too expensive to
deploy in a network of measurement nodes. Low cost sensors provide an alternative to deploy
such networks, but they have known issues, like cross-sensitivity to other VOC and environmental
parameters.

In this chapter we performed a second experiment that assessed the performance of two
types ofMOS sensors from Figaro®manufacturer to reconstruct CH4 enhancements (spikes) over
background conditions. The sensors are the TGS 2611-C00 and the TGS 2611-E00, which were
previously studied in chapter II for the reconstruction of room air CH4 variations. In this study
we addressed four questions: i) the performance of parametric and non-parametric calibration
models to reconstruct CH4 from TGS sensors and other variables, ii) the possibility of reducing
the training length of the models, iii) the reduction in performance linked to aging in the sensors
and iv) the possibility of use one calibration model across several sensors of the same type.



3.1.2 Design of the experiment

The experiment consisted of exposing four chambers, each containing three types of TGS to
high concentration CH4 enhancements generated over background conditions. This study was
limited to reconstruct CH4 enhancements from two out of the three TGS types. Indeed, TGS 2600
showed small signal enhancements to the spike CH4 signal respect to the baseline, and thus it
was excluded from this study. Each chamber included one version of TGS 2600, 2611-C00 and a
2611-E00. In addition, two sensors to monitor environmental variables (DHT22, SHT75 or SHT85
for relative humidity and temperature and BMP280 or BMP180 for temperature and pressure)
were also included. Sensors were placed inside an acrylic/glass chamber of 100 ml on a circuit
board that minimize heating influence from TGS on temperature sensors. The logging system
was controlled by a Raspberry PI 3b+ and the sampling frequency was of 0.5 Hz (2s). A high
precision instrument, Picarro G2401 CRDS, was used as a reference for the measurements.

3.1.2.1 Artificial spike experiment

CH4 enhancements (spikes) were generated during 130 days, from 28 October 2019 to 5 March
2020. The automatic system in charge of the artificial spikes generation consisted in adding pe-
riodically small amounts of CH4, from a cylinder containing 5% CH4 in argon, on the ambient
air flushed from the roof of the building. Spikes were produced automatically at least 3 times
a day. The magnitudes and duration of these CH4 spikes were predefined and controlled with
two mass flow controllers to be ranging from 3 to 24 ppm, with durations varying between 1 to
7 minutes. Two types of spikes were generated during the experiment: the first type, from 28
October 2019 to 9 December 2019, has amplitudes comprised between 20 to 24 ppm; and the
second type, from 9 December 2019 to 5 March 2020, has amplitudes comprised between 5 to
10 ppm and a higher number of peaks during a given period. A buffer effect was observed on
the measurements from the chamber despite setting a high flow rate through the chambers (2.5
L/min). In consequence, an exponential weighted moving average (EWMA) has been applied on
the Picarro G2401 CRDS data set in order to simulate the buffering effect from the chamber with



a time constant of 10s.

3.1.2.2 Separating CH4 spikes from background variations in ambient air

Being able to separate spike conditions from background variations is a pre-requisite for CH4 de-
tection and reconstruction from TGS. Here we summarize the three-step approach we followed
to achieve this goal. The first step consisted in removing the contribution of H2O variations to the
sensor voltage signals. We determined a linear relationship between H2O variation and TGS volt-
age from a 32 day period with no spikes in the dataset to derive H2O sensitivities of the voltage of
each TGS in mV/ppm H2O. Then, the linear model was applied to TGS voltage time series during
spike periods. The second step consisted in separating background and spike conditions from
voltage variations. We tested two methods. The first one consisted in applying a peak detection
algorithm that iteratively compared neighboring observations to assign voltage measurements
to spikes. The background signal is determined by a linear interpolation between non-spikes val-
ues at the start and at the end of each detected spike. The second method consisted in applying
the Robust Extraction of Baseline Signal (REBS) algorithm, in which the spike conditions are de-
fined as observations that are far away from a modelled background based on a threshold. This
background is determined by computing local regressions over small moving time windows. The
last step was to remove background observations and only keep data from spikes.

In this study we addressed four questions related to the reconstruction of CH4 concentra-
tions: TGS measurements, training of the models, aging effects and transfer of models between
chambers.

In first place, we assessed five models, which can be parametric and non-parametric (linear,
polynomial, random forest, hybrid random forest and multi-layer perceptron (MLP)), to recon-
struct the CH4 spikes. They were trained in two configurations of input variables (only TGS and
TGS + environmental variables) and for two training lengths (70% and 50% of the total observa-
tions).

Secondly, wewanted to reduce the length of the training setwhile keeping goodperformances
in the reconstruction of the spikes. This is done by a two-step approach: first we stratify the



data in different types of spikes with an unsupervised hierarchical clustering algorithm, then we
construct different training sets by randomly selecting spikes from each cluster.

Thirdly, we analyzed aging effect of the sensors by applying the two best models on a second
dataset generated six months after the first experiment under the same conditions and checking
if these models showed degraded performances after six months.

Finally, we looked at the possibility of applying a trained model for one TGS type from one
chamber to reconstruct CH4 for the same type of sensor in another chamber.

To assess the goodness of reconstruction we consider that an error under 10% of the ampli-
tude of the spikes we are interested in reconstructing as an acceptable target for TGS sensors.
This corresponds to a RMSE ≤ 2 ppm for spikes with amplitudes of 24 ppm.

3.1.3 Main results

3.1.3.1 Reconstruction of CH4 spikes

We compared the performances of five models using the mean square deviation (MSD) error
decomposition. The MSD is decomposed in three main components: errors linked to incorrect
reconstruction of magnitudes (SDSD), wrong reconstruction of phase or shape (LCS) and the bias
(SB). Our results showed that the selection of the sensors’ type was more critical than the selec-
tion of the model, and that the use of the TGS 2611-C00 produced the best reconstruction of the
spikes. Regardless the training set size, themain source of errors corresponds to incorrect phase
reconstruction (LCS) of the spikes, which increased when using TGS 2611-E00 sensors. Inclusion
of environmental parameters produced little effects in the performance of themodels. Themag-
nitude reconstruction, that is, the SDSD component of the MSD, was affected when reducing the
size of the training set, increasing the bias (SB) also for the non-parametric models, and it was
partially mitigated by the inclusion of the environmental variables. Regarding the reconstruction
models, better performances were observed when using the polynomial and MLPmodels (RMSE
= 0.88 ppm and 0.85 ppm respectively).



3.1.3.2 Parsimonious training

We obtained nine clusters after applying a hierarchical clustering based on similarity between
the spikes. The results of the training strategy using different sets of the data, on which we com-
pared the effect of favorizing one set of clusters with the others, provided interesting insights
in the performance of the training set. In first place, we observed that the smallest error ob-
tained frommodels did not correspond to the training configuration with the largest training set
configuration (accounting for 70% of the observations in the dataset). In addition, the most par-
simonious training set configuration (with only 10% of the observations in the dataset) did not
produce the best performances neither, although, it provided better performances than most of
the cases. This points to a redundancy of information introduced by some of the clusters. Train-
ing set configurations composed with spikes characterized by having complex shapes produced
the best performances allowing us to reduce the length of the training set size to 25% of the total
observations with an error of RMSE = 0.89 ppm.

3.1.3.3 Effect of ageing on the reconstruction of CH4 spikes

When reconstructing spikes on a second dataset generated sixmonths after the first experiment,
and based on the models established in the first experiment, we observed an increase in the
reconstruction error from 0.57 to 0.85 ppm. This reflects that a possible source of error in the
model after a long-time deployment of the sensors is caused by the drift on the sensors. An
interesting result was observed on TGS 2611-E00, on which its degradation over time is not as
large as on the TGS 2611-C00 type. In all configurations, the increase of the RMSE error was
less than 1 ppm after six months showing that even with aging, the proposed models meet our
requirement target.

3.1.3.4 Generalized models

We assessed the performance of two models, polynomial and MLP, for each type of TGS across
different chambers. For each chamber, the reconstruction error on the test data set from the
same chamber meet our requirement target. When reconstructing spikes from other chambers



we found that chambers that shared the same distribution of clusters, obtained good perfor-
mances meeting the requirement target error as well. However, the models trained on data
from one chamber that had less spike clusters than in the other chambers (due to a reduced
number of observations) did not perform well to reconstruct CH4 in other chambers. Regarding
the influence of the type of sensor in the transferability of the models, TGS 2611-C00 produced
better performances when reconstructing spikes from other chambers.



3.2 Publication in the journal of Atmospheric Measurement

Techniques (AMT)

3.2.1 Introduction

Methane (CH4) is a greenhouse gas 28 times more potent than carbon dioxide considering its
warming potential over 100 years (Travis et al., 2020). Anthropogenic CH4 emissions account for
60% of global emissions (Saunois et al., 2016). Fugitive leaks of natural gas at industrial facilities
also present a safety hazard. Emissions from such facilities need to be continuously monitored,
due to the episodic and spatially variable nature of leaks (Coburn et al., 2018). Leaks can be de-
tected and quantified by LDAR surveys (Leak Detection And Repair) to detect high concentrations
caused by a leak. Those surveys are periodical and have limitations related to the portability of
instruments or accessibility of sites.

A possible solution to overcome these limitations is to deploy a network of sensors that contin-
uouslymeasuremethane concentrations around an emitting area (Kumar et al., 2015). Deploying
such a network with highly precise instruments, using techniques such as cavity ring down spec-
trometry (CRDS) is, however, cost prohibitive. Low cost sensors such as low power metal oxide
semiconductor (MOS) sensors formethane are an alternative. Recent studies (Riddick et al., 2020;
Casey et al., 2019; Collier-Oxandale et al., 2018; Jørgensen et al., 2020; RiveraMartinez et al., 2021;
Eugster et al., 2020) tested the ability of MOS sensors to monitor methane concentrations in nat-
ural and controlled conditions and showed a fair agreement between the concentrations derived
from the sensors and those from high precision reference instruments. MOS sensors are com-
posed of a semiconducting metal oxide sensing element heated at a temperature between 200◦
to 400 ◦C (Özgür Örnek and Karlik, 2012; Barsan et al., 2007). When the semiconducting material
is in contact with an electron donor gas like CH4, a change in the conductivity occurs, measured
by an external electrical circuit (Özgür Örnek and Karlik, 2012). MOS sensors are known to be less
precise than CRDS to CH4 variations, although they can detect small variations in concentrations.
Most MOS sensors have cross-sensitivities to other electron donors and to environmental vari-



ables such as absolute humidity, pressure and temperature (Popoola et al., 2018) with non-linear
interactions (Rivera Martinez et al., 2021).

Biases affect CH4 measurements derived from low-cost sensors because of cross sensitivi-
ties to other gases, dependence to environmental factors and internal drifts e.g. due to aging.
Figaro Taguchi Gas Sensors (TGS) are a particular series of MOS capable of measuring CH4. In or-
der to limit biases of these sensors, several studies proposed a calibration model against a high
precision reference instrument. Casey et al. (2019) compared different calibration approaches
with inverse and direct linear models and artificial neural networks to quantify O3 from an SGX
Corporation MiCS-2611 sensor, CO from a Baseline Mocon PID sensor, CO2 from an ELT S-100
non-dispersive infrared (NDIR) sensor and CH4 from observations of a Figaro TGS 2600 sensors.
Collier-Oxandale et al. (2018, 2019) applied multilinear models, including interactions from envi-
ronmental variables, to predict CH4 concentrations and to detect and quantify VOCs from Figaro
TGS 2600 and TGS 2602MOS sensors at two sites with active oil and gas operations. Eugster et al.
(2020) used empirical functions andArtificial Neural Networks (ANN) to derive CH4 concentrations
from 6 years of data collected with Figaro TGS 2600 sensors at a field site in the Arctic. Riddick
et al. (2020) derived nonlinear empirical relationships for Figaro TGS 2600 sensors from three
experiments with durations varying from one day to one month. Rivera Martinez et al. (2021) re-
constructed CH4 concentrations variations in room air from Figaro TGS 2611-C00 sensors using
ANN models and co-variations of temperature, water mole fraction and pressure. Nevertheless,
those comparisons were limited by the choice of a specific reconstruction model and restricted
to only one type of sensor.

There is a need for amore thorough comparison of different calibration approaches for Figaro
MOS sensors applied to measure CH4. In addition, there is a need to assess the performances of
MOS sensors to detect and quantify CH4 spikes typical of industrial emission. This study aims to
compare several parametric (linear and polynomial) and non-parametric models (random forest,
hybrid random forest and ANN) applied to different combinations of Figaro TGS sensors to re-
construct the CH4 signals of repeated atmospheric spikes, based on the observed voltage of each
sensor and other variables. The CH4 signal we aim to reconstruct is representative of variations



observed in the atmosphere from leaks that occur within or close to an emitting industrial facil-
ity, i.e. short duration CH4 enhancements (spikes) lasting between 1 to 7 minutes and ranging
between 1 to several tenth of ppm above an atmospheric background concentration of around
2 ppm (Kumar et al., 2021). In this study, we performed a laboratory experiment where a CRDS
instrument and many TGS sensors of different types were exposed to a controlled air flow with
artificially created CH4 concentration spikes (section 2). The spikes were composed of pure CH4

and did not contain any VOCs, although those species could be present in natural gas leaks from
oil and gas facilities. The experiment lasted four months and provided 838 spikes, which give us
a dense and complex dataset to train and test different models for reconstructing CH4 variations.

For low-cost sensors, a collocation is often requiredwith a highly precise reference instrument
to train an empirical calibration model. This training phase should be as effective (parsimonious)
as possible. The strategy is to reduce the time and maintenance costs of having a reference in-
strument on site if the purpose is to bring it in the field for future studies where low-cost sensors
would have to be calibrated. We investigate the problem of ’parsimonious training’ by testing
different configurations (model and inputs) to establish the minimum amount of reference data
needed to obtain good performances with the low-cost sensors (section 3.2.3.2 and 3.2.3.3). Sec-
ondly, since the performance of low-cost sensors may change with time, it is important to under-
stand if their measurements could be affected by a drift of their sensitivity over time. We address
this problem of ’non-stationary training’ by comparing different calibration models for a second
spike experiment conducted six months after the first one (section 3.2.3.4). Thirdly, sensitivities
may vary from one sensor to another andmay require a sensor-specific calibrationmodel, which
becomes a problem when a large number of sensors are deployed. Finding a robust calibration
model that could be trained using data from one or several sensors and applied to others re-
mains an open question. We bring some insight to this problem of ’generalized calibration’ by
training models to reconstruct the CH4 signal from a group of sensors located in the same cham-
ber and applying them to other groups of sensors in a different chamber (section 3.2.3.5). To
assess the performance of the calibration models and particularly their capability to reconstruct
spikes of several ppm occurring upon a background CH4 level, we define here as an acceptable



performance to be an error less than the 10% of the maximum amplitude of the peaks we aim to
reconstruct. In our case, this requirement is an RMSE of 2 ppm between the reconstructed CH4

data from low cost sensors and the true data from a reference instrument at a time resolution
of 5 seconds.

3.2.2 Methods

3.2.2.1 Experimental set-up

Low-cost CH4 sensors

For the experiment, four independent sampling chambers were assembled. Each chamber con-
tained a Figaro TGS 2600, TGS 2611-C00 and TGS 2611-E00 sensor, alongside a relative humidity
and temperature sensor (DHT22 or Sensirion SHT75), and a temperature and pressure sensor
(Bosch BMP280, see Table 3.1 for details). Issues with the logger system produced gaps in envi-
ronmental variables data, thus observations information from an external chamber (E, see figure
3.1b and Table 3.1 for details) was used in the correction of the sensitivity across all chambers.
The sensors were disposed on a circuit board to minimise the direct heating influence of the TGS
sensors on temperaturemeasurements. The sampling chamber wasmade of acrylic/glass with a
gas inlet and outlet and a port for the electrical cables (Figure 3.1a). Each sensor was connected
in series with a high-precision load resistor which controlled sensitivity (Figaro®, 2005, 2013). The
voltage across each load resistor was recorded by an AB Electronics PiPlus ADC board, mounted
on a Raspberry Pi 3b+ logging computer, sampling at a frequency of 0.5 Hz (2s). This voltage
measurement was used in our characterisation algorithms, referred to hereafter as the sensor
voltage. We focus on the reconstruction of CH4 using only the TGS 2611-C00 and TGS 2611-E00
data.



Figure 3.1: (a) Example of a chamber with three sensors inside, (b) Scheme of the spike creationexperiment.

Table 3.1: Summary of the sensors included on each logger box.
Chamber Figaro TGS Temperature & Relative Temperature & Load ResistorHumidity sensor Pressure sensor

A TGS 2600 DHT22 BMP280 50 KΩTGS 2611-C00TGS 2611-E00
C TGS 2600 SHT75 BMP280 50 KΩTGS 2611-C00TGS 2611-E00
F TGS 2600 SHT75 BMP280 50 KΩTGS 2611-C00TGS 2611-E00
G TGS 2600 SHT85 BMP280 50 KΩTGS 2611-C00TGS 2611-E00
E TGS 2600* SHT75 & DHT22 BMP180 5 KΩTGS 2611-C00*TGS 2611-E00*
* Two sensors of this type

Generation of methane spikes on top of ambient air

The experiment lasted 130 days from 28 October 2019 to 5 March 2020. During this period, the
four chambers containing TGS sensors sampled ambient air pumped from the roof of the labo-
ratory. Relative humidity, air pressure and temperature were measured in the ambient air flux,
as well as CH4 , using a Picarro CRDS G2401 reference instrument. No calibration was considered
on the CRDS instrument during the experimental period due to its high precision and low drift
over time (less than 1 ppb per month; (Yver-Kwok et al., 2015)).



To expose the TGS sensor chambers to CH4 enhancements (spikes) of different durations and
amplitude comparable with typical enhancements observed around industrial sites (Kumar et al.,
2021), we designed an automatic system to add small amounts of CH4 on top of the ambient air
acquired from our roof. The system presented on figure 3.1b consists of an ambient air flow to
which was periodically added a small amount of a gas from a cylinder containing 5% of CH4 (in
argon), controlled by two mass flow controllers denoted MFC1 and MFC2 in Figure 3.1b.

The occurrences of the spikes were programmed to be automatically generated, with at least
three spikes each day. The duration andmagnitude of the spikes were predefined and controlled
by varying the flows of MFC1 andMFC2, the twomass flow controllers being programmed to add
an amount of CH4 to produce spikes of an expected amplitude ranging between 3 and 24 ppm.
Two different types of spikes were generated. The first type, with large amplitudes between
20 and 24 ppm, was generated from 28 October 2019 to 9 December 2019. The second type,
with smaller amplitudes ranging between 5 ppm and 10 ppm but with a higher number of spikes
during a given period of time, was generated from 9 December 2019 to 5March 2020. The typical
duration of the spikes of both types varied between 1 and 7 minutes, which is longer than the
known response time of the TGS sensors. Gas from the 5% CH4 cylinder that persisted on the
air flow after a spike in segment A-B (Fig. 1b) was expulsed though MFC2, preventing very high
CH4 concentrations to remain in the air flow following a spike. We verified that the amount of gas
with 5% of CH4 added to the air flowmeasured by the TGS sensors did not affect the air pressure,
temperature and relative humidity in the chambers.

The volume of each chamber is 100 ml and the flow rate through the chambers was fixed
to 2.5 L per minute. We did not test the effect of increasing the flow rate on the TGS measure-
ments. Instead, we decided to choose a high enough flow rate to reduce the buffering effect
of the chamber volume that would systematically smooth the CH4 spikes. Despite this set-up, a
buffering effect was still present in the chamber, evidenced by the fact that after stopping the
injection of air with 5% CH4 , the CH4 draw down in the chamber was observed to be smooth and
lagged the drawdown of the CRDS instrument by a time constant of 10s, consistent with previous
measurements on buffer volumes acting as a low-pass filter (Cescatti et al., 2016).



To determine the time constant (τ ) of the buffer effect of the chambers, we applied an expo-
nential weightedmoving average to the CRDS data with different values of τ and compared them
with the shape of the response of the TGS sensor (see Fig. B.1). A similar approach was employed
by (Jørgensen et al., 2020) to compensate for effects of micro turbulent mixing of subglacial air
with atmospheric observations. Before applying this temporal smoothing on the CRDS data, we
resampled both signals, the reference CRDS and the TGS, from their original time resolutions (1s
and 2s, respectively) to a common time resolution of 5s.

3.2.2.2 Separating CH4 spikes from background variations in ambient air

Different algorithms have been proposed to identify short term variations of atmospheric signals
(Ruckstuhl et al., 2012) from slower variations of background variations in atmospheric com-
position. These approaches were applied to low-cost sensors for the detection of local events
(Heimann et al., 2015), and for the removal of diurnal periodical signals to identify peaks of air
pollutants (Collier-Oxandale et al., 2020). In this study, we want to separate the background of
slowly varying CH4 in the outside air pumped from the laboratory roof from the signal of the CH4

spikes by using an algorithm.
We followed a three-step approach. The first step was to remove the impact of H2O variations

on the sensor voltage signals, given that H2O changes in the background air. Previous studies (Eu-
gster and Kling, 2012; Rivera Martinez et al., 2021) demonstrated a direct dependence between
the voltage/resistance of metal oxide sensors and H2O concentration. In order to determine this
relationship, we used the background H2Omole fraction and TGS voltage measurements in am-
bient air during a period of 32 days with no CH4 spikes, and regressed both variables to derive
the H2O-sensitivity of the voltage of each TGS sensor inmV per ppmH2O. This linearmodel of the
Voltage - H2O sensitivity was applied to voltage time series of the TGS sensors during the spike
measurement period.

The second step was to separate background and spike conditions from voltage variations
in the time series. We tested two approaches. The first approach applied the peak detection
algorithm of (Coombes et al., 2003) to detect the voltage associated to spikes and separate the



background signal by a linear interpolation between non-spikes values at the start and the end
of each spike. The second approach applied the Robust Extraction of Baseline Signal (REBS) al-
gorithm from Ruckstuhl et al. (2012) to separate voltage observations associated to background
from those during the spikes. The principle of REBS is to compute local regressions over the time
series on small moving time windows (60 minutes) and to iteratively identify outliers that are far
from themodelled background, based on a threshold. Here, the detected outliers are considered
to belong to a spike. The threshold or scale parameter, β, defines a range in number of standard
deviations around the modelled baseline. A value of β = 3.5 ppm was used. The third step was
to remove observations corresponding to baseline and keep only the data classified as spikes,
which form the signal of interest in this study.

3.2.2.3 Modelling CH4 spikes from TGS sensor voltages and environmental variables

The impact of different magnitudes of the variables used as predctors are prone to affect the
parameters of the models in the training stage. Thus, to reduce this impact we standardize the
inputs before training the models. We chose a robust scaler unaffected by outliers by removing
the median and scaling the data to a quantile range (Demuth et al., 2014). To reconstruct CH4

spikes from TGS sensor voltages, we applied linear and polynomial regressions, ANN and Ran-
dom Forest models, all trained using the CRDS measurements. We assessed the performance of
the different models using a k-fold cross validation, here with k = 20. A fraction of the data was
used for the training of each model and the rest for evaluation. We repeated this training and
evaluation process with a moving window to make a robust assessment of each model perfor-
mance considering all data available. We specified two cases for the relative sizes of the training
and evaluation (test) sets. The first case used training and test set fractions of 70% and 30% of
the observations, respectively, and the second one used 50% and 50%. We focus in the example
below on the spike data from one chamber (chamber A) using different models as test inputs: 1)
voltages of TGS C or E sensors separately, 2) voltages of a single sensor type and measurements
of H2O, temperature and pressure, 3) combined TGS C and E voltages, and 4) combined TGS C
and E voltages, plus H2O, temperature and pressure.



Linear and multilinear regression models

Linear regressions between dry air CH4 concentrations from the CRDS and TGS sensor voltages
are the simplestmodels, used in studies with similar low-cost sensors by others (Collier-Oxandale
et al., 2018; Casey et al., 2019; Cordero et al., 2018; Spinelle et al., 2015, 2017; Malings et al.,
2019). We derived linear regressions between the reference CH4 from the CRDS instrument and
the sensor voltage, as well as a multi-linear regression including voltage, H2O, air pressure and
temperature, as given by:

ŷCH4(x1 = VTGS) = β0x1 + β1 (3.1)

and

ŷCH4(x1 = VTGS, x2 = H2O, x3 = PAir, x4 = TAir) = α1x1 + α2x2 + α3x3 + α4x4 + α5 (3.2)

Where ŷCH4 is the predictedmethane concentration in ppm, VTGS the observed sensor voltage
in V, H2O is the water vapor mole fraction in %, PAir the air pressure in kPa and TAir is the air
temperature in ◦C.

Polynomial regression models

The second type ofmodels are seconddegree polynomials, forwhichwe considered as predictors
either TGS sensor voltage alone, or TGS voltage plus environmental variables, as given by:

ŷCH4(x1 = VTGS) = β0 + β1x1 + β2x
2
1 (3.3)

and



ŷCH4(x1 = VTGS, x2 = H2O, x3 = PAir, x4 = TAir) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x
2
1 + β6x1x2 + β7x1x3+

β8x1x4 + β9x
2
2 + β10x2x3 + β11x2x4 + β12x

2
3 + β13x3x4 + β14x

2
4

(3.4)

Random forest and hybrid random forest models

Random forest regressors (Breiman, 2001) are an ensemble learning method consisting of cre-
ating several decision trees to fit complex data. Each tree is composed of leaves defined hierar-
chically based on thresholds that group values of input variables, constructed from a subset of
predictors randomly chosen, a process known as ‘feature bagging’. The prediction is made by av-
eraging the outputs of all the trees. As a non-parametric method, the generalization of Random
Forests is limited by the range of values present in the training set. A methodology proposed by
Malings et al. (2019) to boost the generalization of random forest models is to ‘hybridize’ them
with a parametric model to be able to predict values that are out of those present in the train-
ing set. The principle of hybridization consists in training a random forest model with about 80
to 90% of the observations, and reserving 20 to 10% of the higher observations to train a linear
or polynomial model. This approach allows us to benefit, on one hand, from the capability to
derive nonlinear relationships from the inputs, while on the other hand boosting the prediction
outside of the range present in the training set, here with a linear or polynomial model. Here we
used both traditional and hybrid random forest models. For the hybrid models, we reserved, for
each cross-validation fold, the higher 10% concentrations to train a polynomial fit, the remain-
ing observations being fitted by the random forest. The same four cases of input combinations
explained in section 3.2.2.3 were used for the training of traditional and hybrid random forest
models.



Artificial neural networks (ANN)

In recent studies with low-cost sensors (Rivera Martinez et al., 2021; Casey et al., 2019) ANNmod-
els have proven to be powerful models to derive CH4 concentrations from sensor signals. We
chose here a Multilayer Perceptron (MLP) model due to its ability to provide a universal approxi-
mator (Hornik et al., 1989) and generalization capabilities (Haykin, 1998). No prior knowledge of
relationships between variables is required to produce model outputs. Our MLP is composed of
a series of units (neurons) arranged in fully connected layers, each unit being a weighted sum of
its inputs to which an activation function (tanh, ReLU) is applied. The last layer of the network
when used as a regressor usually has one unit and a linear activation function. As a supervised
learning algorithm, MLP requires examples (the training set) and an iterative learning algorithm
to adjust the weights of its connections. The main challenges for training an MLP are: 1) under-
fitting, when the model is not able to fit the training set and 2) overfitting, when the model is
not capable of generalizing new examples. Underfitting can be mitigated by increasing the com-
plexity of the MLP, and overfitting can be partly mitigated by weight decay regularization or early
stopping (Bishop, 1995a; Goodfellow et al., 2016).

We built differentMLPmodels using the BFGS algorithm (Bishop, 1995a). The optimal number
of layers and units was determined using a grid search technique (Géron, 2019), resulting in 1) 4
hidden layers when using the voltage from a single TGS sensor as input, with 2, 3, 5 and 2 units
per layer, 2) when using TGS sensor voltages and other variables, 4, 2, 5 and 5 units per layer,
3) 5 layers when combining both TGS sensor voltages together (5, 3, 5, 5 and 4 units), and 4) 4
layers when using both TGS sensor voltage types and other variables (5, 3, 5 and 5 units). The
ReLU activation function was used on units of the hidden layer and early stopping was used to
prevent overfitting.

3.2.2.4 Finding a parsimonious model training strategy

To determine the minimum number of training observations to obtain a model with satisfac-
tory performances, given our 2 ppm RMSE requirement posed in the introduction, we followed
a two-step approach. First, we stratified the data into different types of spikes using an unsuper-



vised hierarchical clustering algorithm (Johnson, 1967). Secondly, we constructed training sets
by randomly selecting spikes inside each cluster, in different proportions given in Table 3.2, and
evaluated our models against the remaining spikes used as a test set. This evaluation strategy
helped us to understand the clusters that have the most influential impact on to increase the
models performance. This allowed us to reduce the length of the training set by sampling the
training data preferentially in the most influential clusters.

The clusters of spikes were defined using the ward distance to determine a matrix measuring
the degree of similarity between spikes using Dynamic Time Warping (DTW) (Sakoe and Chiba,
1978), and to construct a dendrogram. A threshold on the dendrogramallowed us to determine 9
different clusters fromour dataset. For the second step, we defined 11 cases to construct training
sets. Cases 1 and 11 correspond to sampling 70% and 10% of the data for training, respectively,
equally distributed across the clusters. Cases 2 to 10 correspond to preferential sampling one
cluster over the others for training, by selecting 70% of the spikes in this cluster and 10% in all
others. The purpose of this stratified data selection is to determine the type of spikes that best
allows for reconstruction of the variations of CH4 when training a model. At this stage we are not
interested in the temporal dependency between observations since we train models with instant
values. On a practical application side, a parsimonious model training strategy will require users
to expose their sensors to specific type of ‘highly influential’ spikes on a shorter period from, e.g.,
a laboratory experiment like the one described above, then train the models upon those spikes
and apply them to data collected in the field.

3.2.2.5 Assessing ageing effects of the sensors

To assess the effect of ageing sensors on the reconstruction of CH4, we conducted a 33-day ex-
periment from 11 August to 12 September 2020, six months after the first experiment described
in section 3.2.2.1. The spike generation systemwas the same. Between the two experiments, the
chambers containing TGS sensors had beenmeasuring ambient air pumped from our laboratory
roof. To assess the ageing effect on the TGS sensors during the six-month interval, we selected
the two models that gave the highest performance for the first experiment and applied them to



Table 3.2: Percentage of spikes in each cluster (C1 to C9) considered for training differentmodels.
C1 C2 C3 C4 C5 C6 C7 C8 C9 # Spikes in total % of data

in the training set
Case 1 70% 70% 70% 70% 70% 70% 70% 70% 70% 587 70.0%
Case 2 70% 10% 10% 10% 10% 10% 10% 10% 10% 122 12.5%
Case 3 10% 70% 10% 10% 10% 10% 10% 10% 10% 150 13.7%
Case 4 10% 10% 70% 10% 10% 10% 10% 10% 10% 147 14.5%
Case 5 10% 10% 10% 70% 10% 10% 10% 10% 10% 198 19.3%
Case 6 10% 10% 10% 10% 70% 10% 10% 10% 10% 105 17.8%
Case 7 10% 10% 10% 10% 10% 70% 10% 10% 10% 166 18.5%
Case 8 10% 10% 10% 10% 10% 10% 70% 10% 10% 150 16.7%
Case 9 10% 10% 10% 10% 10% 10% 10% 70% 10% 94 11.9%
Case 10 10% 10% 10% 10% 10% 10% 10% 10% 70% 124 24.5%
Case 11 10% 10% 10% 10% 10% 10% 10% 10% 10% 84 10.0%

simulate the spikes generated during the second experiment.

3.2.2.6 Finding generalized models that can be used for other sensors of the same type

We were interested in understanding to what extent a model trained with the outputs of a given
TGS sensor type in a given chamber could be applied to other sensors of the same type in other
chambers. The experiment consisted of training a model per sensor and chamber with the best
configuration subset based on the cluster classification outlined in section 3.2.2.4. The trained
model is then used to reconstruct the CH4 spikes using data from the TGS in other chambers
and compare their performances. For this, we used data from chambers A, C, F and G to train
chamber-specificmodels, and used each chamber-specificmodel to reconstruct CH4 spikes using
data from other chambers, as shown in Table 1. The four chambers have a load resistor of 50 kΩ
and contain three TGS sensors each. We did not use data from chamber D and E because it has
a load resistor of 5 kΩ and on the chamber E contains two of each TGS sensor.

3.2.2.7 Metrics for performance evaluation

The performance of the models to reconstruct the dry CH4 concentrations observed by the CRDS
instrument using TGS sensors was assessed using a decomposition of the mean squared devi-
ation (MSD) of the misfits between reconstructed and true CH4 (Kobayashi and Salam, 2000), to



separate the main source of errors when comparing different models. MSD was decomposed
into the sum of the Square Bias (SB), the difference in the magnitude fluctuation (SDSD) and the
lack of positive correlation weighted by the standard deviation (LCS). A large SDSD indicates an
incorrect reconstruction of CH4 spike magnitudes. A large LCS indicates an incorrect reconstruc-
tion of spike phase or shape. The equations for each error term according to Kobayashi and
Salam (2000) are given by:

SB = (ŷCH4 − yCH4)
2 (3.5)

SDSD = (σModel − σRef)
2 (3.6)

LCS = 2σModelσRef(1− ρ) (3.7)
MSD = SB + SDSD + LCS (3.8)

With ŷCH4 the mean of the prediction, yCH4 the mean of the reference observations, σModel the
standard deviation of the modelled CH4 time series, σRef the standard deviation of the reference
one and ρ their correlation coefficient. All results presented below are using metrics computed
for the test set only.

3.2.3 Results

3.2.3.1 Data pre-processing and baseline correction

Figure 3.2 shows the pre-processing steps of the dataset, with the identification and removal of
the background signal from the spikes in the time series. We removed outliers and the first 30
minutes of observations in case of a reboot of the data loggers of each chamber, i.e. during stabi-
lization of the sensors. The original observations on a time step of 2 s were resampled to means
of 5 s. Time shift due to incorrect clock synchronization between the reference CRDS instrument
and the loggers of the TGS sensors were partly corrected with a search of the maximum correla-
tion on non-overlapping windows of 6 hours and amanual inspection of the agreement between



TGS voltages and CH4 observations of the reference CRDS instrument.

Figure 3.2: Data pre-processing diagram, correction of H2O effects, and separation of the spikesfrom background data in the time series.

Environmental variables (H2O, temperature, pressure) were filtered using a low pass filter
(Press and Teukolsky, 1990) to remove high frequency noise from the sensors and circuit con-
nections. The water vapour mole fraction was calculated with Rankine’s formula (Eq. 9) from
relative humidity (RH) in % and temperature (T) in ◦C from the DHT22 sensors and pressure (P)
in Pa from the BMP180 sensors in each chamber, according to:

H2OMole Fraction = 100×

(
RH
100

× e
13.7−5120
T+273.15

P
100000

− RH
100

× e
13.7−5120
T+273.15

)
(3.9)

An example of several spikes obtained after the pre-processing and background signal re-
moval is shown in figure 3.3 (see also figure B.3). The entire spike dataset contains 838 spikes,
representing 1.6% (35536 5s observations) of the full dataset.



Figure 3.3: (top to bottom) Time series of reference CH4 signal from CRDS, voltage from TGSsensors, H2O, temperature and pressure during a period of 30 minutes, after removing from thetime series the variations of background signals, and applying the H2O correction to the voltagesignal of TGS sensors. Dots on panels represent actual observations and lines between dots aredrawn to show the shape of the signals.

3.2.3.2 Reconstruction of CH4 spikes

Figure 3.4 shows the reconstruction of several spikes by the linear, polynomial, random forest
(RF), random forest hybrid (RFH) andMLPmodels using data from the type C TGS sensor in cham-
ber A. Figure 5 shows the reconstruction results using data from the type E TGS sensor in chamber



A. In both figures, the model training set contains 70% of the total observations available. The
spikes reconstructed by the different models show good agreement with the reference CH4 sig-
nal for the type C sensors, but not for type E ones which are associated with phase errors and
greater noise in the reconstructed CH4. The linearmodel, RF and the RFHmodels broadly capture
the mean amplitude of spikes, but they are less capable of reconstructing small CH4 variations
on the top of the spikes. The RF and RFH models (the latter with a polynomial model) provided
very similar outputs, with a small enhancement of the amplitude for RFH during some spikes and
noise, especially with type E sensors (Fig. 3.5). The MLP model showed a constant underestima-
tion of the spike magnitudes and produced smoother spike shapes, presenting a low pass filter
behaviour. The polynomial fit models appeared to perform better. Despite the phase misfit of
models with type E sensors, for all the models, both type C and type E meets our requirement
target of an RMSE≤ 2 ppm (MSD≤ 4 ppm2). With a stricter requirement of an error less than the
5% of the maximum amplitude of the peaks (RMSE ≤ 1 ppm) only Type C is adequate.



Figure 3.4: Example of reconstruction of the CRDS reference CH4 signal on a time step of 5 s fora few spikes in the test set by (a) a Linear model, (b) a polynomial model, (c) a Random Forestmodel, (d) a Random Forest Hybrid model and (e) a Multi-Layer Perceptron model trained with70% of data and using as input data from the TGS 2611-C00 sensors only. The right panels showscatter plots between the reference CH4 signal and the modelled outputs. The colour code is thedensity of observations.



Figure 3.5: Same as Figure 3.4 but for data from the TGS 2611-E00 sensors only.

Figure 3.6 shows the distributions of the correlations (ρ) betweenmodelled and observed CH4

spikes for the 20-fold validations periods (test sets) for different models. We distinguished two
groups of models, based on median values of ρ. The first group corresponds to models trained
with type E sensors data only, characterized by ρMedian ≤ 0.93. The second group corresponds
to models trained with type C sensor data only, or with data from both types of sensors, char-



acterized by a higher ρMedian ≥ 0.96. Among the models in the first group, the Polynomial Model
gave the largest correlations (ρMedian = 0.92, interquartile range (IQ) = 0.001). Among the models
in the second group, the Polynomial Model also showed the largest correlation, especially with
both types of sensors, and a training set of 50% of the observations (ρMedian = 0.98, IQ = 0.004),
closely followed by the MLP model with the same inputs and the same training set size (ρMedian =
0.98, IQ range=0.006). The Random Forest, Random Forest Hybrid and MLP models also showed
high correlations when input data are from the type C sensors and the training uses 70% of the
observations (RF ρMedian = 0.982, RFH ρMedian = 0.983 andMLP ρMedian = 0.982). These threemodels
however had lower correlations when input data are from type E sensors (RF ρMedian = 0.893, RFH
ρMedian = 0.894 and MLP ρMedian = 0.92). Phase errors were reduced when training the models
with either type C sensor data or data from both sensors. The length of the training set had an
important impact on the spread of the correlations across the 20-fold periods. With 70% of ob-
servations in the training set, the IQ of the correlations increased, whereas for a smaller training
set, the IQ was smaller but the distribution of the correlations showed more outliers. The inclu-
sion of environmental variables (Fig. 3.6b) as input to models, in addition to voltages from TGS
sensors, reduced significantly the phase error in the Random Forest models but produced little
improvements in the results from other models.

Figure 3.7 shows the MSD error decomposition for the different models and for the two train-
ing set sizes of 70% and 50%, respectively. We observed that the LCS component of the MSD
(related to a phase misfit of the modelled series) is the principal source of error across the dif-
ferent models, regardless of the input used or the size of the training set, meaning that models
have more difficulties to reproduce the phase of the spikes than their amplitude. A systemati-
cally higher LCS error was obtained when data from type E sensors are used as input, and there
is also a larger SDSD error with this type of sensor. For example, the largest LCS error was found
with a training set of 70% for the Random Forest models (LCSRF = 4.67 ppm2, LCSRF=1.24 ppm2,
LCSRF=0.79 ppm2 with type E sensor data, type C sensor data and both types respectively) as well
as for the RFHmodels, when compared with other models. Additionally, the inclusion of environ-
mental variables had little effect on the model performance. This was clearly shown for the LCS



error of the polynomial model, for a training set of 70% of the data, which was identical with and
without environmental variables as input (LCSpoly=3.0 ppm2 for the type E sensor, LCSpoly=0.84
ppm2 for the Type C sensor and LCSpoly=0.7 ppm2 for both types). Reducing the size of the train-
ing set affected mostly the SDSD component, by slightly lowering the capability of models to
reconstruct the amplitude of the CH4 spikes. For the non-parametric models, reducing the size
of the training set also increased the bias error (SB), an effect that was partially mitigated with
the inclusion of environmental variables. Amongst the non-parametricmodels, theMLP obtained
similar performance than the parametric polynomial model (MSDMLP= 3.2 ppm2,MSDMLP=0.85
ppm2 andMSDMLP=0.7 ppm2 for type E sensors, type C sensor and both types together, respec-
tively). To summarize, the choice of the sensor type used to train the models affected more the
reconstruction error than the selection of themodel. The type C sensor data produced the lowest
error compared to type E, irrespective of the model used. Overall, the polynomial model gave
better performance than the non-parametric models. More detailed statistics are summarized
in tables B.1 and B.2.

3.2.3.3 Results of parsimonious training tests

Figure 3.8 shows the result of the spike clustering. Based on spike similarity, we found 9 clusters.
The peaks with short durations (under 50s) and containing only one spike were grouped into
cluster C1 (signal amplitude (sa) ≤ 6 ppm) and cluster C3 (6 ppm ≤ sa ≤ 12 ppm). Peaks with
longer duration (over 50 s) were grouped in clusters C2 (sa≤ 4 ppm) and C4 (4 ppm≤ sa≤ 8ppm).
Peaks with very long duration (between 50s to 1.5 min) were grouped in cluster C5. Peaks with
a small concentration at the beginning (around 6 ppm) followed by a larger peak (up to 12 ppm)
were grouped in cluster C6. Peaks with larger concentrations (≥ 12 ppm) and complex in shape
were grouped in clusters C7, C8 and C9, respectively. The cluster regrouping the largest number
of spikes (191) was C4, and the one with the smallest number of spikes (17) is C8.



Figure 3.8: Clustering of peaks using DTW on the reference instrument. On the title of eachplot the number inside the parentheses corresponds to the number of spikes attributed to eachcluster. Thin grey lines represent all the peaks inside each cluster and the black line is the meanof all the peaks corresponding to each class.

Figure 3.9 shows the error of the models against the test set, for each of the training cases
listed in Table 3.2, based on spikes chosen from different clusters for doing the training (see Sec-
tion 3.2.2.4). The results are summarized in Tables B.3 and B.4. First, the polynomial and MLP
models performed consistently better than the other models, the MLP being slightly better for
most of the cases. In contrast, the linear, random forest and random forest hybrid models had
the highest error, regardless of the sensor type or the addition of environmental variables. To
compare the performances of the models trained by spikes from different clusters (Table 3.2),
we ranked them by their error. The MLP model with type C sensor data as input, and training
with spikes from Case 10 (124 spikes) produced the smallest error (MSD = 0.79 ppm2), followed
by the samemodel for Case 8 (MSD = 0.85 ppm2, 150 spikes), Case 9 (MSD = 0.86 ppm2, 94 spikes)
and Case 11 (MSD = 0.87 ppm2, 84 spikes). For the MLP model, Case 4 (147 spikes), Case 1 (587



spikes) and Case 7 (166 spikes) performed slightly worse, with a MSD = 0.89 ppm2. Finally, Case
2 (MSD = 0.9 ppm2, 122 spikes), Case 3 (MSD = 0.91 ppm2, 150 spikes), Case 6 (MSD = 0.93 ppm2,
105 spikes) and Case 5 (MSD = 0.95 ppm2, 198 spikes) showed lower performances. From the
model ranking, we derived the following conclusions. Firstly, the smallest error did not corre-
spond to the most parsimonious training set (Case 11) but to a larger training set (Case 1, 70%
of the data). Nevertheless, we found that Case 11, which was constructed with an even selection
of spikes from all the clusters, each in a modest proportion (10% from each cluster) provided
better performance than most of the other training cases. This result shows that some clusters
introduce less information or have redundancy. Overall, the best performances corresponded
to Cases 10, 8 and 9, which all included spikes with complex shapes from clusters C7, C8 and C9.
Training models with a sample of those spikes thus ensured better model performances.



Figure 3.9: Performance of each model for the different configurations of training and test set(1 to 11 in the x-axis) considering the identified clusters. (a) Only Figaro TGS 2611-C00 data asinput. (b) Only TGS 2611-E00 data as input. (c) Both Figaro sensors data as input. (d) TGS 2611-C00 data and environmental variables. (e) TGS 2611-E00 and environmental variables. (f) BothTGS sensors and environmental variables. Note the different y-axis for the figure (b) and (e).

3.2.3.4 Results for possible ageing effect on model performance

To test for a possible ageing effect of the sensors, we selected the two best models (polynomial
regression and MLP) found in the previous section, and trained them following the best train-
ing configuration (Case 10). After being trained using data from the first experiment, these two
models were applied to reconstruct the spikes of the second experiment, six months later. A
summary of the results is presented on Table 3.3. We observed that after six months, the RMSE



error produced by the models increased from 0.57 to 0.85 ppm. The models trained with type
E sensor data showed a smaller degradation (higher RMSE) after six months compared to those
trained with the type C sensor data. Considering the amplitude of the peaks that we aim to re-
construct (∼ 24 ppm), a possible drift caused by ageing effects on the sensors appeared to be a
small source of error in the reconstruction of CH4 spikes during the second experiment. Assum-
ing that the error of the sensors increased linearly with time, we determined an error ‘drift rate’
by computing the ratio of the difference in the error from both experiments divided by the time
between them. We observed that for all the cases, the difference in the error is less than 1 ppm
after six months and the mean RMSE on the second experiment is less than 2 ppm in all cases,
except for the models trained with only the type E sensor. Thus, even with aging the type E sen-
sors would still meet our requirement of a RMSE smaller than 2 ppm. This shows the capability
of our models to reconstruct spikes despite possible ageing effects of the sensors.
Table 3.3: Comparison of error for reconstructing spikes in experiment 2, using the two bestmodels (polynomial and MLP) trained with the best training set configuration during experiment1.

Mean RMSE1* Mean RMSE2** Difference Monthly RMSE increase
(ppm) (ppm) (ppm) (ppmmonth−1)

Poly (C) 0.96 1.82 0.85 0.14
MLP (C) 0.95 1.75 0.80 0.13
Poly (E) 1.84 2.53 0.69 0.11
MLP (E) 1.84 2.41 0.57 0.09
Poly (C+E) 0.89 1.58 0.69 0.11
MLP (C+E) 0.86 1.51 0.64 0.10
* For spikes reconstructed during experiment 1.** For spikes of experiment 2 reconstructed with models trained on experiment 1.

3.2.3.5 Generalized models

In this section, we address the comparison of model performances when we train a model on a
subset of the sensor data from one chamber and reconstruct the spikes of the other chambers.
Table 3.4 presents a summary of the number of spikes, observations and clusters analysed for
each chamber. The number of clusters, as well the number of spikes, were not equally captured
by all the chambers. Only three chambers, A, F and G, shared the same number of clusters.



Chambers C had a more limited number of peaks, due to a reduced sampling period.

Table 3.4: Summary of spikes, observations and clusters detected following the procedure ex-plained on Section 3.2.2.4 for chambers A, C, F, and G.
Chamber Number of Observations Number of Spikes Number of Clusters
A 35536 836 9
C 35499 902 7
F 50089 861 9
G 50569 612 9

To illustrate the performance of models for their ability to be generalized from one chamber
to another, we selected the polynomial model with input data from the type C sensor (Fig. 3.10)
and from the type E sensor (Fig. 3.11). The same results with the MLPmodel are shown in figures
B.7 and B.8, respectively. The data in Figure 3.10 indicate that the error was lower for the test
set of the chamber on which the model was trained than for the test sets of other chambers, as
expected. In Figure 3.10a, c and d, we observed that themodels trainedwith the data from cham-
bers A, F or G produced good performances for reconstructing the spikes of another chamber,
and met the requirement target of an RMSE ≤ 2 ppm. The models trained with the data from
chamber C (fig 3.10b) however, performed poorly in reconstructing the spikes from the other
chambers and met the target requirement only when trained using data from the same cham-
ber. The performances of the MLPmodel were similar to those of the polynomial model in terms
of generalization from one chamber to another. When trained by data from the type E sensor,
our models were found to be less transferable from one chamber to another, meaning they had
a larger error for the test sets of another chamber than for the one used for training (Figure 3.11).
We inferred that the reconstruction of spikes frommodels of other chambers needs to be coher-
ent with the number of clusters of the chamber used for training in order to ensure transferability
of themodels. This is the case for chambers A, F and G for which nine clusters were detected and
the distribution of peaks within the clusters was similar (Figure 3.8, 3.9 and B.10). On the other
hand, if the clusters are not similar between chambers, the transferability of models is lower.



3.2.4 Discussion

Our results show that a pre-processing of the data to remove H2O effects and separate spikes
from ambient air CH4 variations, followed by a careful definition of the training set provides capa-
bilities for differentmodels to reconstruct the CH4 spikes on a 5 s time step, across a large range of
concentration variations and spike durations, meeting our requirement o a target error of RMSE
≤ 2 ppm. The TGS 2611-E00 (Type E) was the sensor with the poorest performance, regardless
of the model employed, or of the subset of data used to train models, as shown by our tests with
5 chambers, each containing 5 different sensors. The model performances for TGS 2611-E00
were thus always poorer than for TGS 2611-C00 (Type C), with a degradation in the reconstruc-
tion coming from the larger misfit of the phase of the spikes signal than with the TGS 2611-E00
sensors. This probably is related to the carbon filter that is integrated within this type of sensor,
to improve the selectivity. An additional step of the pre-processing algorithm could help to cor-
rect problems due to the carbon filter. TheMSD error decomposition showed that the sources of
error in the reconstruction weremainly from an inaccurate reconstruction of the phase, followed
by a misfit of the magnitude of the spikes. The inclusion of environmental variables reduced the
LCS component of the MSD, especially for non-parametric models. Nevertheless, for the Type E
sensor, adding environmental variables increased the error in the reconstruction of the magni-
tude. Finally, we found that the error always increased with the reduction of the length of the
training set, as previously shown by Rivera Martinez et al. (2021). This sensitivity to the training
set mainly affected the non-parametric models due to their limited capability of extrapolation
and their requirement of large datasets to keep good performances.

How do our approach and results compare with previous studies? Malings et al. (2019)
performed a comparison of different calibration approaches including linear, quadratic, Gaus-
sian models, clustering models, ANN and hybrid random forest models across low-cost sensors
measuring different species (CO2, CO, NO2, SO2 and NO) with the aim to calibrate Real-time Af-
fordable Multi-Pollutant monitors (RAMP) to assess the air quality within a city, using a network
of sensors. Their set of sensors included an NDIR CO2 sensor, an Alphasense photoionization



detector and an Alphasense electrochemical unit. They found that a quadratic regression and
a hybrid RF model produced the best performance across different pollutants for training sets
with durations between 21 and 28 days, and observations with a resolution of 15 minutes. Our
results showed that the hybrid random forest model did not perform as well as the polynomial
model or the MLP for the reconstruction of CH4 spikes using data from TGS sensors, and that
these models were sensitive to the length of the training set for the k-fold cross validation. An
improvement of our models’ performances could be achieved with a selection of the propor-
tion of observations used for the parametric model. Nevertheless, the polynomial model gave
consistently better results regardless of the inclusion of environmental variables.

Casey et al. (2019); Rivera Martinez et al. (2021) and Eugster et al. (2020) used ANNmodels to
derive CH4 concentration from observations of TGS sensors and obtained good performances.
Casey et al. (2019) suggested that the inclusion of correlated species (e.g. CO2) rather than the
type of sensor led to better performance for their MLP model to reconstruct CH4. The perfor-
mance of their ANN model to reconstruct CH4 variations provided an RMSE of 0.13 ppm for a
range of variation between 1.5 and 4.5 ppm. Eugster et al. (2020) also found that the inclusion
of other driving variables could increase the performance of ANN models. Their overall model
performances for seven years of continuous CH4 monitoring on ambient air in northern Alaska
(range of variation between 1.7 and 2.1 ppm) with a Figaro TGS2600 gave an RMSE of the residu-
als of 0.043 µmol mol−1 (0.69 ppm). Our results showed that different types of TGS sensors used
with the same model gave complementary information by reducing the error of the reconstruc-
tion and should be used, especially with non-parametric models. The performance of our best
model for CH4 spikes with concentrations much larger than those measured by Eugster et al.
(2020), produced under controlled laboratory conditions, provides a mean RMSE of 0.9 ppm for
a range of CH4 variation between 3 and 24 ppm, thus rather comparable results. Regarding the
calibration strategy, the clustering approach allowed us to determine nine clusters of spikes in
our dataset, with three of them regrouping the largest peaks with complex shapes. This classifi-
cation allowed us to understand the impact of each cluster in the training. Cluster 9, composed
with peaks of complex shape and a range of variation between 3 and 24 ppm was the one that



provided the best information for training the models, due to the fact that spikes present on this
cluster include information of larger and shorter peaks, medium peaks and larger peaks with
patterns on top of the peaks. With the parsimonious training using Case 10, corresponding to a
high proportion of peaks from cluster 9, we were able to reduce the length of the training dataset
from 70% to 25%while maintaining similar performance. This approach has a strong potential to
reduce the length of the training set by selecting only observations from specific clusters defined
from the data, and which represent the entire dataset.

Concerning the ageing effect of the sensors, after six months, we observed only small in-
creases in the RMSE of our models, between 0.6 to 0.8 ppm corresponding to an error increase
rate of 0.1 ppm per month. Our results also showed the capability to transfer the models from
one chamber to another, provided that the chamber used for testing contains data with the same
range of CH4 variations as the chamber used for training, which can be assessed by our clustering
analysis of the data.

3.2.5 Conclusions

We performed a systematic comparison of different parametric and non-parametric models to
reconstruct atmospheric CH4 spikes under laboratory conditions, based on the voltages recorded
by low cost metal oxide sensors. Other environmental variables such as temperature, pressure
andwater vapor were used. The true CH4 time series comes from a high precision instrument run
alongside the low-cost sensors. The best models were a 2nd-degree polynomial function and a
multi-layer-perceptronmodel. These twomodels bothmeet our requirements of a RMSE smaller
than 2 ppm. We found that the main limitation was the large fraction of data (70%) needed to
train themodel. This would limit the use of low-cost sensors in the field, as they would need to be
frequently trained with an expensive instrument at the same location. This limitation was partly
overcome by adopting a stratified training strategy, namely to perform the training on fewer but
more influential spikes selected into orthogonal clusters applied to the whole dataset. This par-
simonious training allows to use only 25% of the data to keep a model performance compliant
with our 2 ppm RMSE threshold. We also showed that sensors’ ageing effects after six months



did not degrade toomuch the performances of ourmodels. Finally TGS 2611C-00 was superior to
TGS 2611-E00 model. For this experiment we generated about 800 peaks with some predefined
shapes, future implementations should consider increase the diversity of shapes and durations
of the generated peaks. Regarding themodels employed, we assessed the performances ofmod-
els that considers no time dependency in the signal, more complex models that allows to include
the time dependence such as Recursive neural networks (RNN) should be tested.



Figure 3.6: Comparison of the Pearson correlation coefficient (ρ) distributions betweenmodels onthe test set for a 20-fold cross validation. The boxes are the inter-quartile of the distribution of ρ,the whiskers are the 5th and 95th percentiles, and the black line is the median (a) Models in whichthe inputs are only voltage from the Figaro TGS sensors, (b) Models in which the inputs includevoltage from low-cost sensors and environmental variables (H2O, Temperature and Pressure).‘Linear’ represents the linear or multilinear model, ‘Poly’ the polynomial model, ‘RF’ the randomforest model, ‘RF-h’ the random forest hybridized with a polynomial regression, and ‘MLP’ themultilayer perceptron. Under each model, labels denote which TGS sensor was used; ‘C’ is theTGS 2611-C00, ‘E’ the TGS 2611-E00 and ‘C & E’ both sensors at the same time. The red boxplotsrepresent the results ofmodels with a test set size of 30% of the total observations and the yellowones a test set size of 50%. Note that the y-axis was limited in a range to distinguish the differentmodels.



Figure 3.7: Comparison of theMean standard deviation (MSD) across the different models on thetest set for a 20-fold cross validation. (a) Models with only voltage of TGS sensors as input. (b)Models including environmental variables and voltage of TGS sensors in the input. Left panelsshow the performances on a train set size of 70% and right panels a train set size of 50% of thetotal observations. The stacked bars show the contribution of each component of the MSD tothe total error, the Lack of Positive Correlation weighted by σ (LCS) in red, the difference in themagnitude fluctuation (SDSD) in orange and the simulation bias (SB) in green. Notation for themodels is the same as for the figure 3.6.



Figure 3.10: Reconstruction error of the peaks for the polynomial model with TGS 2611-C00 asinput using the best stratified training case from (a) Chamber A, (b) Chamber C, (c) Chamber Fand (d) Chamber G to reconstruct the peaks from the other chambers (listed on the x-axis) withdata from the same type of sensor. Note the different ranges of the y-axis for the panels (b) and(c).



Figure 3.11: Reconstruction error of the peaks for the polynomial model with TGS 2611-E00 asinput using the best stratified training case on (a) Chamber A, (b) Chamber C, (c) Chamber F and(d) Chamber G to reconstruct the peaks from the other chambers with data from the same typeof sensor. Note the different ranges of the y-axis.
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4.1 Summary of the publication

4.1.1 Introduction and motivation

CH4 emissions can occur in all the chain of oil and gas production, from the extraction, trans-
portation, storage, distribution and use (Saunois et al., 2020). Atmospheric measurements are
usually used with local dispersion models to infer the source location and the emission rates of
CH4leaks at industrial facilities. Measurements are usually obtained from surveys as close as pos-
sible to the source location. Although these surveys are labor intensive and costly, they do not
provide a continuous monitoring of the sources (Travis et al., 2020). Deploying a permanent net-
work of sensors to continuouslymonitor CH4 leaks at industrial facilities would overcome current
limitations of surveys and provide more accurate estimates thanks to a continuous sampling of
the plumes.

Current surveys use research level instruments, such as CRDS. They are highly precise and
require low maintenance but they are costly, limiting the deployment of such networks. Metal
oxide semiconductors (MOS) are one of themost common technologies of low-cost sensors stud-
ied for the detection and quantification of CH4. They present some advantages, such as being
compact and suitable for long time deployment, making them very appropriate for deployments
of dense networks. However, they present low accuracy, low selectivity and they drift with time
requiring periodic calibrations.

In this chapter we report the results from the third experiment where we test the ability of
MOS sensors, specifically two versions of Figaro® TGS, to reconstruct an actual signal from a
source in open air corresponding to a series of controlled releases. We also assess the accuracy
of the emission estimates from the reconstructed CH4 concentrations of these sensors.

4.1.2 Design of the experiment

We participated in the TOTAL Energies® Anomaly Detection Initiative (TADI) campaign 2019 from
October 2nd to October 10th. It consisted of 41 controlled releases of CH4 and CO2 covering



emissions between 0.15 to 150 g CH4 s−1 and durations ranging between 25 to 75 minutes. The
site was equippedwith common elements that can be found in oil and gas facilities, such as, pipes
and valves, to simulate typical leaks in a real case scenario. Releases were emitted at different
heights and locations inside an ATEX zone of 40 m x 50 m.

We installed 16 sampling lines circling the ATEX zone. Only seven sampling lines were active
to measure each release and they were activated depending on wind conditions. This strategy
provides us with several measurement points within and outside the plume despite weather
conditions. Each active sampling line was connected to a high precision instrument, a CRDS or
a LGR MGGA, and to a chamber containing at least three types of TGS sensors (TGS 2600, 2611-
C00 and 2611-E00) and two sensors that measured environmental parameters, such as, relative
humidity, temperature and pressure.

From the 41 releases, eight releases are excluded from this study and correspond to one of
three cases: i) they were not measured by the TGS sensors, ii) the enhancements were too small
to be detected by TGS sensors or iii) the amplitude of peaks measured by the TGS sensors does
not allow to distinguish large peaks from medium and small ones.

Each release is characterized by a series of CH4 spikes at high frequency over the background
produced by the plume reaching and leaving the sampling inlet of the sensors due to the tur-
bulence and high frequency variations of the wind. Therefore, to separate the TGS voltage en-
hancements linked to the variations of the CH4 spikes from the reference signal, we used an
iterative algorithm. It considers neighboring observations to determine baseline conditions from
the spike ones.

The definition of the training and test sets used in the reconstructionmodels was constrained
by the number of releases available per chamber and the number of releases measured simulta-
neously by several chambers. These considerations led to a ratio of releases per chamber: 60%
in the training set, and 40% in the test set. Reconstructed concentrations of the test set were
used to feed the inverse modelling in order to estimate the rate and the emissions location.

For the reconstruction of CH4 concentrations, we assessed the performances of a 2nd degree
polynomial and aMultilayer perceptron (MLP) under three input configurations: i) using only TGS



2611-C00, ii) using only TGS 2611-E-00, and iii) using both sensors at the same time. In order to
evaluate the release signal reconstruction performance, we considered a notional target error
of an adjusted RMSE ≤ 0.1 ppm, computed by the RMSE and weighted by the inverse of the
maximum peak present in the release.

The inverse modeling framework used in this study relies on the framework developed by
Kumar et al. (2022). It uses a gaussian model and its adjoint to simulate the CH4 mole fraction
enhancement above the background at fixed measurement stations corresponding to a release
rate and location. The optimal horizontal and vertical location and rate are derived in terms of
misfits between the averages of the observed and simulated CH4 enhancements over the back-
ground. The optimal release location and rate is determined simultaneously by looping on a large
ensemble of potential locations and by identifying the optimal rate and location by the smallest
misfits. The ATEX zone is then discretized in a 3D grid (1 m x 1 m x 0.5 m) to define the poten-
tial locations. The bins of the measurements and of the simulated mole fractions correspond
to sectors of wind direction of equal ranges during the release. The computation of the inverse
modelling on the reference data was restrained to the station and time corresponding to the
available data from TGS sensors.

4.1.3 Main results

This study allowed to prove the capability of measurements from MOS sensors to produce esti-
mates of the emission rate and location from controlled CH4 releases, similar to typical leaks at
industrial facilities.

We were capable to derive a baseline signal, used to extract the voltage enhancements of
TGS linked to spike conditions, by using an iterative process of successive comparisons between
neighboring observations without information of environmental parameters. However, this ap-
proach is only useful for signals composed of spikes at high frequency produced by the plume
reaching and leaving the inlet tube of the sensors due to turbulence and wind conditions.

The two models assessed, a 2nd degree polynomial and MLP, to reconstruct CH4 concentra-
tions from voltage measurements of TGS sensors, show similar performances. However, some



differences are observed between them. In first place, the polynomial model produced a slightly
better reconstructionwith a small training set corresponding to observations on Chamber D. Sec-
ondly, the present noise in voltage observations on some releases was reduced using the MLP
models, but only when the input was the Type C sensor. Regarding the configuration of inputs
on the models, Type C sensor produced better reconstruction of the concentrations. The com-
bination of both sensors produced a similar reconstruction to the case using only type C sensor.
Only chamber H met our target error (0.03 ppm ≤ adjusted RMSE < 0.1 ppm).

Concerning the inversion of emission rates and locations, in general, we obtained good esti-
mates from inversion of reconstructed CH4 spikes from TGS data. The simulated gradients were
close to the observed and simulated gradients from the reference data, where observations were
restrained to the data availability from the TGS sensors. In most of the cases it produced an
emission rate error of 25% compared to 30% for the estimations using the reference data, and a
location error of 9.5 m for TGS data compared to 7.8 m using the reference.



4.2 Publication

4.2.1 Introduction

Fossil fuel anthropogenic methane (CH4) emissions related to the production, exploitation and
transport of coal, oil and natural gas, account for 35%of global anthropogenic emissions (Saunois
et al., 2020). Emissions from natural gas production occur along the chain from extraction, trans-
portation, storage, distribution and use. Emissions estimates reported by inventories rely on in-
formation from activity data and emission factors. Emission factors are different between sites,
technologies, operating modes and are not stationary, which makes the upscaling of fugitive CH4

emissions highly uncertain (Alvarez et al., 2018). For instance, emissions from the oil and gas sup-
ply chain in the US constrained from ground based and aircraft measurements were found to be
60% higher than the EPA inventory (Alvarez et al., 2018). More generally, the characterization of
CH4 emissions from complex processes based on static emission factors can be challenged when
the best practices are not followed by operators (Riddick et al., 2020).

Atmospheric measurements are increasingly used to detect and quantify CH4 leaks from in-
dustrial facilities. The measurements are often interpreted with local-scale dispersion models
using atmospheric inversion methods to infer the CH4 source location and emission rates, see
e.g. (Kumar et al., 2022). Current approaches generally consist in conducting atmospheric sur-
veys of the enriched concentration plume created by the emitting source. Difficulties are the
accessibility to sample the plumes from emitting locations, labor and instrument costs given that
surveys currently employ expensive high precision research-level CH4 instruments, such as Cav-
ity ring-down spectrometers (CRDS). Further, surveys do not provide continuous monitoring of
the sources (Travis et al., 2020). The deployment and functioning of mini-networks of continu-
ous monitoring sensors for CH4 mole fractions is an alternative to surveys, but the costs of each
instrument remain a limitation. Advances in the development of low-cost sensors facilitates the
deployment of dense sensors’ networks to increase the coverage of a site (Kumar et al., 2015;
Mead et al., 2013). Permanent deployment of a network of sensors can overcome limitations in



the quantification of leaks and help to better characterize the plumes by limiting the impact of at-
mospheric transport modelling uncertainties. In addition, the theoretical study of Chamberland
and Veeravalli (2006) proved that performance is improved in differentiation of known signals
from noise by increasing the sensor density in an area.

In later years, an increase in the interest in low cost and low power sensors to be used in
dense networks led to the study of different kinds of sensors to measure pollutants and trace
gases like CO2 or CH4. One of the most common low-cost sensors technologies for the detection
and quantification of CH4 emissions ismetal oxide semiconductors (MOS). MOS sensors are com-
posed of a metal oxide sensing material and a heater ensuring that the sensing material reaches
temperatures between 300 to 500 ◦C. A chemical reaction affects the electrical conductivity of the
sensing material in the presence of an electron donor gas such as CH4 (Özgür Örnek and Karlik,
2012). The advantages of MOS sensors are that they are compact and very well suited to long
time deployment due to their resilience to extreme weather conditions. However, their sensitiv-
ity is affected by environmental parameters (temperature and relative humidity) (Popoola et al.,
2018) and VOCs; they also present low accuracy and drift with time (in the form of a decrease
in the conductance of the sensing material), requiring periodic re-calibrations, and the need of
constant power supply due to the heater material.

The Taguchi Gas Sensors (TGS) commercial MOS from the Figaro®manufacturer, were widely
tested in different environments under controlled conditions and field deployment due to their
sensitivity to CH4 (Eugster et al., 2020; Eugster andKling, 2012; Riddick et al., 2020; Collier-Oxandale
et al., 2018; Bastviken et al., 2020; van den Bossche et al., 2017). The standard technique to derive
a calibration methodology is to collocate these MOS sensors with a high precision instrument
used as a reference, then apply empirical equations or data-driven approaches (Eugster et al.,
2020; Eugster and Kling, 2012; Casey et al., 2019; Bastviken et al., 2020; Collier-Oxandale et al.,
2018, 2019). In a previous work (Rivera Martinez et al., 2021) we have studied the possibility of
using Artificial neural Networks (ANN) to reconstruct the variations of CH4 mole fractions in room
air under controlled conditions from three types of Figaro sensors (TGS 2600, TGS 2611-C00 and
TGS 2611-E00). A following study (Rivera Martinez et al., 2022) analyzed the potential to recon-



struct spikes of CH4 generated on top of ambient air observations, that corresponded to typical
signals from leaks at industrial sites, employing two types of Figaro sensors (TGS 2611-C00 and
TGS 2611-E00). That study made a thorough comparison of the performance of five models for
the reconstruction of CH4.

The next logical step is to test the performances of the same sensors to reconstruct CH4 from
real leaks, and to use the reconstructed mole fractions to quantify emission rates. To our knowl-
edge, only one study attempted to do so. Riddick et al. (2020) quantified emissions of a gas
terminal using a Figaro TGS 2600 included in a logger system controlled by an Arduino Uno.
The logging system was located 1.5 m from a point source. To reconstruct CH4 mole fractions
from voltage observations, Riddick et al. (2020) developed an empirical equation considering the
measured voltage, temperature and the humidity. Then, a Gaussian plume model was used to
quantify the emission rate using information from the reconstructed CH4mole fractions andwind
information from a nearby meteorological station. Their estimates of the emissions rates had an
average value of 9.6 g CH4 s−1 and reached a maximum of 238 g CH4 s−1, given corresponding to
enhancements of the CH4 mole fractions between 2 ppm to 5.4 ppm within the plume. Their es-
timates based on a Figaro sensor were not confronted with high precision instruments nor with
an independent knowledge of emission rate.

In this study, we test the ability of a network of several Figaro sensors to reconstruct the CH4

atmospheric enhancements from a series of controlled releases of known magnitudes and du-
ration in open air at a facility called TADI (see Methods), and to infer the emission rate of each
release by an inverse modeling approach. The accuracy of the CH4 reconstruction is evaluated
against collocated accurate CH4 measurements from high precision CRDS instruments. The ac-
curacy of the inverted emission locations and rates is evaluated against the known (controlled)
location and magnitude using the inversion model of Kumar et al. (2022)

For 33 controlled releases at the TADI facility, we utilized fixed-point measurements from
CRDS instruments and low-cost TGS. A large fraction of the TGS measurements were used for
training models to reconstruct CH4 mixing ratios from measured TGS resistance and other vari-
ables. We pose a target minimum accuracy for CH4 reconstruction models equal to 15% of the



amplitude of the largest observed excess within a release. This corresponds to accuracies going
from 0.3 ppm for a release causing a maximum excess of 2.4 ppm, to 18 ppm for a maximum
excess of 120 ppm. This accuracy is consistent with the accuracy requirement set in our previous
studywherewe used TGS sensors to reconstruct spikes of CH4 created in a laboratory experiment
(Rivera Martinez et al., 2022).

The plan of the study is as follows. Section 4.2.2 presents the TADI 2019 controlled releases
campaign, the logger systems, the models employed to reconstruct CH4 from TGS data, and the
atmospheric inversion approach. The data treatment, comparison of the models for the recon-
struction of CH4 and the inversion results for rates and locations of different releases are analyzed
in section 4.2.3. Results are discussed in Section 4.2.4, and conclusion are given in section 4.2.5.

4.2.2 Methods

4.2.2.1 Sampling strategy at the TADI-2019 campaign

In October 2019, TotalEnergies® conducted an experiment with multiple controlled releases at
the TotalEnergies Anomaly Detection Initiative (TADI), to investigate the capability of detection
and quantification of different technologies for local emissions produced on industrial facilities.
The TADI test site is designed and operated by TotalEnergies® to test different technologies and
methodologies of detection and quantification of gas leaks in an industrial environment, such
as oil and gas production facilities. The platform is located northwest of Pau, France, with an
approximate area of 200 m × 200 m. The site is equipped with a series of pipes, valves, tanks, ,
and other equipment commonly found on oil and gas facilities to simulate ‘realistic’ leaks. The
terrain is flat but includes different obstacles that can affect the dispersion of the gases released
to the atmosphere. This experiment consisted of 41 controlled releases of CH4 and CO2 covering
a wide range of emissions between 0.15 and 150 g CH4 s−1 and durations ranging between 25
to 75 minutes. We participated to this experiment to develop and test inverse modelling frame-
works within the TRAcking Carbon Emissions (TRACE, https://trace.lsce.ipsl.fr/) program
for the estimation of emission location and rates based on CH4 mole fractions from high preci-

https://trace.lsce.ipsl.fr/


sion instruments (Kumar et al., 2022). We presented the inversion results for 26 releases from
single point sources based on two inversion approaches, one relying on fixed-point measure-
ments, and the other one on mobile near-surface measurements (the latter had already been
documented in (Kumar et al., 2021)). In both cases, the estimates of the emissions relied on CH4

mole fractions from high precision instruments, and on a Gaussian plumemodel to simulate the
local atmospheric dispersion of CH4. The results from Kumar et al. (2022) proved to be relatively
good, with an error in the release rate estimates from fixed-point measurements between ∼23
to∼30 % and an error in the location of the point sources (within a 40m × 50m area) of between
8 and 10 m.

The controlled releases were emitted at different heights up to 6 m above the ground, and
inside the 40 m × 50 m ATEX zone of the TADI facility (see Fig. 4.1). More information on the site
infrastructure and on these experiments in October 2019 are presented respectively in Kumar
et al. (2021) and Kumar et al. (2022).

Themultiple controlled releases experiment was conducted fromOctober 2, 2019, to October
10, 2019. Our atmospheric sampling configuration for measuring CH4 is shown in figure 2. It
consisted of placing 16 sampling lines on the ground connected on one end to air intakes in
tripods at heights between 2.75 to 3.50 m around the ATEX zone and on the other end to a pump
flushing at 6 LPM (KNF N811 with PTFE diaphragm). The lengths of the sampling lines varied
from 10 m to 100 m connecting each tripod air intake to CH4 measurement instruments located
inside a tent. The pump was connected upstream from the high precision instruments (Picarro
CRDS or LGR), a chamber containing a series of TGS CH4 sensors, and other sensors measuring
environmental parameters such as relative humidity, pressure and temperature. Tomaintain the
inline pressure at atmospheric pressure, a vent was also connected to each sampling line (Fig.
4.2).

Table 4.1 summarizes the species measured, and the identifiers of the reference high preci-
sion instruments. All reference instruments measured H2O to provide dry mole fractions of the
species. The analyzers’ sampling frequency ranges between 0.3 to 1 Hz. In a previous study by
Yver-Kwok et al. (2015), it was proven that those analyzers ensure high precision measurements



and a low drift over time, less than one ppb per month. Yet, two calibrations were conducted
before and after the campaign. On average 6-7 sampling lines were active for each release, each
active line being connected to a high precision instrument and a TGS chamber. The lines were ac-
tivated depending on wind direction. The strategy behind the distribution of the tripods around
the emitting area and for the inversionwas to acquire continuously severalmeasurements points
within the plume generated by each release, in addition to one or fewmeasurements points out-
side the plume (to characterize the background level upon which plumes enhancements can be
assessed) for each release regardless of the wind conditions (Kumar et al., 2022).

Figure 4.1: Diagram of the experimental setup on top of a satellite image of the TADI platform(source: Google Earth©). The locations of the releases are inside the red rectangle (ATEX zone).The locations of the 16 tripods are presented as black symbols and denoted with a Tx where xis the index of the tripod from 1 to 16. The blue rectangle indicates the tent location. Examplesof the sampling lines connecting the tripods to the tent are shown as dashed lines, only showing7 of 16 in total. The white symbol shows the location of the Meteorological station installed byTotalEnergies® .



Figure 4.2: Diagram of the measurement stations and their connection to the sampling lines.
Table 4.1: Summary of the species measured by each reference instrument.

Serial number / Code Identifier Species measuredCFKADS2286 / Picarro 1 Picarro CRDS G2401 CH4, CO2, COCFKADS2301 / Picarro 2 Picarro CRDS G2401 CH4, CO2, COCFKADS2194 / Picarro 3 Picarro CRDS G2401 CH4, CO2, COCFKADS2131 / Picarro 4 Picarro CRDS G2401 CH4, CO2, COCFIDS2067 / Picarro 5 Picarro CRDS G2201-i Isotopic 13CH4, 12CH4, 13CO2, 12CO2CFIDS2072 / Picarro 6 Picarro CRDS G2201-i Isotopic 13CH4, 12CH4, 13CO2, 12CO2LGR MGGA Los Gatos Micro-portable Greenhouse gas analyzer CH4, CO2

Low-cost CH4 sensors logger system

Seven chambers were assembled for the campaign. Table 4.2 shows the sensors included in each
chamber, the environmental variable sensors included, and the type of chamber. Each chamber
contained at least three TGS with voltage measurements sensitive to CH4 and two sensors other
sensors measuring relative humidity/temperature and pressure/temperature. All these sensors
were inserted inside an acrylic/glass or steel/glass chamber with volumes of 100 ml and 120
ml, respectively. The sensitivity of TGS was controlled by a load resistor connected in series to
the sensor (Figaro®, 2013, 2005), two values of resistor were used, 5KΩ and 50KΩ (see table
4.2 for details). And AB Electronics PiPlus ADC board mounted on a Raspberry Pi 3B+ recorded
the voltage on the load resistor providing observations every 2s. This voltage is used for the
characterization and reconstruction of the CH4 signal. Consistency was observed between the



two TGS 2611-E00 sensors installed on chamber E, and only one sensor of this type is used in this
study.

Measurements of environmental parameters from the other chambers, besides chamber E,
had data gaps for extended periods or bad recordings occurring at releases and were not in-
cluded. This study focuses on reconstructing CH4 using data from TGS 2611-C00 and TGS 2611-
E00 from chambers A, C, D, E, F, and H. Data from TGS 2600 were discarded since this sensor did
not respond to most of the CH4 peaks during the releases (see Figure C.1).
Table 4.2: Summary of the specifications of the chambers, the tripods towhich each chamberwasconnected, the captured releases and the reference instrument collocated with each chamber.
Chamber Figaro TGS Load resistor Other sensors Chamber type Tripod # of measured Reference

sensors (Ω) releases instrument

A 2600 50K DHT22 Acrylic/glass 1, 4, 6 28 Picarro CFKADS22862611-C00 BMP280 8, 9, 102611-E00 11, 14, 15
C 2600 50K SHT75 Acrylic/glass 2, 7, 9 24 Picarro CFIDS20722611-C00 BMP280 14, 15, 162611-E00
D 2600 5K SHT75 Steel/glass 2, 3, 9 14 Picarro CFKADS23012611-C00 BMP280 10, 11, 122611-E00 13, 16
E 2600* 5K DHT22 Steel/glass 1, 3, 4 24 Picarro CFKADS21312611-C00* SHT75 5, 10, 112611-E00* BMP180 12, 13, 16
F 2600 50K SHT75 Acrylic/glass 2, 3, 4 25 Picarro CFKADS21942611-C00 BMP280 10, 11, 122611-E00 13, 14, 15
H 2600 50K SHT75 Acrylic/glass 4, 5, 6 22 LGR MGGA2611-C00 BMP180 7, 12, 132611-E00 14, 15

* Two versions of each type.

TADI controlled releases and meteorological data

A total of 41 controlled releases were conducted during the seven days of experiment, with re-
lease durations varying between 25 minutes to 75 minutes. Because low wind conditions (Ur <
0.6 m s−1) are not suitable for the atmospheric inverse modelling, six releases corresponding to
such low wind conditions have been excluded for the inversion modelling here such as in Kumar
et al. (2022). However, they are used in the training of the CH4 reconstruction models. There was
no TGS measurements during the five releases corresponding to the last day of the campaign.
Two largest releases produced high CH4 mole fraction plumes that affected the amplitude mea-



sured by the TGS sensors on which it was not possible to distinguish large spikes from medium
and small ones on the measured voltage (see fig C.3) and they are removed from the study. One
release was aborted due to technical problems at the site and is as well removed from this work.
This study is thus focused on 33 out of the 41 controlled releases. A summary of these releases
is presented in table C.1, where is marked with an ‘x’ where data measured by the chambers are
invalid due to some releases yielded small peaks over the background signal (with enhancements
of less than 4 ppm) and TGS sensors were not able to detect such small variations.

The protocol followed in the selection of the releases used in the training and test set for the
reconstructionmodels is explained in section 2.2.2. A meteorological station was installed on the
TADI platform by TotalEnergies® with a sonic 3D anemometer at 5 m height above the ground
surface (see Fig. 4.1), providing 1-minute averages ofwind speed (Ur), wind direction (θ) and of the
standard deviation of wind speed on the three axes (σu, σv and σw) amongst other parameters.
The data of turbulence andmeteorological conditions are used in the dispersionmodel. Table 4.3
gather general information for each of the 33 controlled release during which we have valid TGS
measurements: the duration of the release, the actual release rate, the average wind speed over
the duration of the release and an indication showing if it was selected for the inverse modelling.

4.2.2.2 Reconstruction of spikes in CH4 mixing ratios caused by the releases

The chambers full of TGS sensors captured different portions of the plumewith variations at high
frequencies due to the distribution of the tripods with regards to the variable wind direction and
due to the turbulence. The typical signal measured by the chambers is a series of spikes, ranging
between 1 and 15 minutes, corresponding to the plume lying over a slowly varying background
signal associated to remote emissions. The targeted signal is that of the difference between the
spikes and the background (Kumar et al., 2022). As an example, Figure 4.3 shows 1-minute aver-
ages CH4 mole fractions measured by the reference instruments and the voltage from the TGS
2611-C00 at six tripods during release 25 (Qs = 5 g s−1). We can observe that CH4 of the refer-
ence instrument and TGS voltage show good consistency at this temporal resolution. Chamber
A, C and D were in the trajectory of the plume or very close to it measuring peaks up to 30 ppm,



Table 4.3: Summary of the information for the controlled releases with single CH4 point sourcesduring the TADI 2019 campaign. Rows in gray shows the releases with lowwind speed conditions.
Release Duration Emission rate Average wind speed Used in the atmospheric
number (hh:mm) (Qs (g s−1)) (Ur (m s−1)) inverse modelling1 00:58 CH4: 10 2.76 No2 00:32 CH4: 1 3.31 Yes3 00:33 CH4: 0.5 3.56 No4 00:33 CH4: 5 3.91 No5 00:35 CH4: 3, CO2: 85 0.65 Yes6 00:39 CH4: 0.5 0.45 No7 00:46 CH4: 5.0 0.80 No8 00:50 CH4: 0.5 & 0.75 & 0.5 * 1.41 No9 00:38 CH4: 1, C2H6: 0.5 1.46 Yes10 00:38 CH4: 0.5 2.17 Yes11 00:30 CH4: 0.16 2.39 No12 00:46 CH4: 1 0.93 Yes13 00:44 CH4: 0.2 0.26 No14 00:55 CH4: 0.5 & 1.0 * 0.07 No15 01:01 CH4: 2 3.50 No16 00:44 CH4: 2 1.83 No17 00:50 CH4: 4 1.45 No18 00:48 CH4: 0.3 0.13 No19 00:40 CH4: 2.0 0.41 No20 00:58 CH4: 2 & 4 * 0.47 No21 00:44 CH4: 1 1.31 Yes22 00:33 CH4: 1, C2H6: 0.2 1.11 No23 00:50 CH4: 2 1.84 No24 00:43 CH4: 150 2.63 No25 00:35 CH4: 5 3.12 Yes26 00:48 CH4: 0.4 2.73 Yes27 00:37 CH4: 0.5 3.12 No28 00:45 CH4: 0.5 & 0.5 * 1.04 No29 00:44 CH4: 0.6 1.07 Yes30 00:44 CH4: 1 1.51 No31 00:24 CH4: 2 1.70 No32 00:34 CH4: 4 3.58 Yes33 00:45 CH4: 2 2.49 Yes
* Multiple source releases.



chambers E and F only captured one peak of∼10 ppm and chamber H one large peak of 30 ppm.
The mean wind speed during this release was of 3.12 m s−1 and the wind direction had little
variations, ranging between 270◦ to 272◦.

Figure 4.3: An example of 1-minute averaged CH4 mole fraction (ppm) and voltage (V) measure-ments respectively measured by six high precision instruments and one type of TGS sensor (TGS2611-C00) for release 25 (Qs = 5 g s−1). CH4 measurements from the high precision instrumentsare denoted as ‘CH4’ and the voltage measurements from TGS sensor are denoted as ‘2611C’.The top panel shows the 1-minute averaged wind speed (Ur) and wind direction (θ) measured bythe 3D sonic anemometer.

TGS sensors are known to be sensitive to variations of H2O and T, affecting mainly the re-
construction of CH4 baseline, and thus the characterization of peaks above this baseline (Rivera
Martinez et al., 2021, 2022). Two approaches can be used to correct the effect of variable H2O
and T on the TGS signals baseline and separate the spikes from the baseline data in the time
series. The first one is the use of information from H2O and T to correct the TGS baseline sig-
nals correspond to these drivers. The second approach is to detect the voltage peaks associated
to CH4 spikes and derive a baseline with a linear interpolation on non-peak voltages. For some
chambers due to logging system faults, we lost H2O and T data and the corresponding gaps in the
H2O and T time series prevent us from defining a correction model. Therefore, in this study we
have employed the second approach. To justify our choice, we have trained a multilinear regres-
sion model to determine a baseline signal on TGS 2611-C00 from Chamber E corresponding to



H2O and T. The regression model was trained on using observations frommidnight to 6:00 in the
morning on the first day andwe attempted to reconstruct baseline variations of TGS voltage from
observations comprised between 18:00 to midnight on the same day. The results of the multilin-
earmodel are presented on Figure C.2 (in addition to the derived baseline when using the second
approach). The second approach which produce a better detection of the baseline signal is also
shown (see Fig C.2) where we do not need a training set or environmental variables because it
consists in the detection of peaks based on an iterative process on fixed rolling windows and a
comparison with neighboring observations.

To reconstruct CH4 mole fraction, we calibrated empirical models that derive relationships
between TGS voltage and other input variables and true CH4 observed by the high-precision in-
struments. The models are calibrated (training) and evaluated (testing) using two independent
subsets of the data. Following the widespread practice in the training of data-driven models to
standardize the input variables to prevent difference in the range of magnitudes from condition-
ing the determination of model parameters, we applied a robust transformation consisting in
removing the median and dividing the observations by their 1-99th quantile range. We selected
the two reconstruction models that gave the best performances in our previous study (Rivera
Martinez et al., 2022), namely a polynomial regression and a Multilayer Perceptron (MLP) model,
described below.

Second-degree polynomials have proven to be robust to derive relationships between the
TGS voltage signal related to spikes and the corresponding CH4 concentration (Rivera Martinez
et al., 2022). Its formulation is of the form:

ŷCH4(x1) = β0 + β1x1 + β2x
2
1 (4.1)

Where ŷCH4 is the predicted CH4 concentration, x1 is the Corrected voltage of the TGS after
removing the effects of the baseline.

Artificial neural networks have been widely used to derive non-linear relationships between
predictors and independent variables in many applications, as a universal approximator method
(Hornik et al., 1989) and for their generalization capabilities (Haykin, 1998). In previous studies



(Casey et al., 2019; Rivera Martinez et al., 2021, 2022) ANN was employed to derive CH4 concen-
trations from TGS observations on different sampling configurations (field and laboratory condi-
tions) with good agreement between the reference observations and the outputs produced from
the models.

The simplest architecture of an ANN is themulti-layer perceptron (MLP), conformed of a series
of units (neurons) in fully connected layers. The inputs of any unit will be the weighted sum of
the outputs of the previous layer, to which an activation function (ReLU, tanh, etc.) is applied.
As a machine learning approach, it requires a training basis to learn the relationships, adjusting
the weights of its connections, between the inputs and outputs using an iterative process known
as optimization. Problems of MLP models are either underfit of data, producing a high error on
the train set which can be mitigated with a sufficiently large network, or overfitting, producing a
high test error when they cannot generalize to new examples. Regularizations terms and early
stopping techniques are helpful to prevent overfitting (Bishop, 1995a; Goodfellow et al., 2016).

Here, we have trained theMLPmodel using the Adamoptimizer (Kingma and Ba, 2014; Géron,
2019) resulting in 50, 10 and 5 units per layer with ReLU as the activation function for the hidden
units. A regularization factor of α=0.05 and early stopping was used to prevent overfitting.Three
configurations of the input variables were tested: i) only with the TGS 2611-C00, ii) only with the
TGS 2611-E00, and iii) with both TGS sensors at the same time. The results are shown in section
4.2.3.2.

Metrics for evaluation of the reconstruction

To assess the performance of themodels to provide dry CH4 concentration enhancements (above
the background) from voltage observations of the low-cost sensors we use a normalized root
mean square error (NRMSE) per release, including information from the spikes and the back-
ground occurring in the duration of the release, defined in equation 4.2, the RMSE beingweighted
by the inverse of the maximum peak present in the release:



NRMSE =

√∑
(yi − ŷi)

2

n
hmax

(4.2)
where yi is the actual concentrations (provided by the high precision instrument),ŷi the pre-

dicted concentration, n the number of observations present in the release andhmax the amplitude
of the maximum peak present in the release after removing the background. The normalization
allows to compare the performances across the different releases.

As mentioned earlier in section 4.2.2.2, the target signal on this study is of CH4 enhancements
above the atmospheric background. We obtain this signal by subtracting the raw signal of the
release from an inferred baseline computed using the pic detection algorithm and a linear inter-
polation. We consider as an acceptable notional target error for the reconstruction models to be
under the 15% of the amplitude of the maximum peak inside the release, this error corresponds
to a NRMSE ≤ 0.15 ppm.

Selection of the training and test subsets for the reconstruction of CH4 mole fractions as

input of the atmospheric inversion of emissions

Defining the appropriate training set is important to allow reconstruction models to derive suf-
ficient information to generalize and obtain good performances in the test set. As well, the test
set should be chosen to allow evaluating the performances of themodels under a wide variety of
conditions. Regarding the inverse modelling, in order to provide a meaningful assessment of the
estimation of emission rates and locations, inversion should be conducted using reconstructed
CH4 mole fractions that are not from the training data set to avoid introducing bias in the eval-
uations of errors. Furthermore, depending on magnitude of release rates, the atmospheric tur-
bulence, and the locations/distances of the downwind active tripods from the emission sources,
the six chambers did not measure CH4 mole fractions in all the releases, therefore a separate
training and test set needs to be defined for each chamber.

The previous considerations constrain the selection of the training and test sets from the data
of each chamber. The test set of the releases for inversions was defined based on two criteria:



1) the releases which have the reconstructed CH4 mole fractions by at least three chambers si-
multaneously, and 2) the releases corresponding to the more favorable wind speed conditions
(Ur ≥ 1.4 m s−1) for inversions. We determined seven releases that meet these considerations:
release #2, #9, #10, #25, #26, #32 and #33. Because this test set was not sufficiently large for all
the chambers, we decided to increase it by data from four more releases with low wind speed
conditions (0.65 ≤ Ur ≤ 1.31) (release #5, #12, #21 and #29). This selection led to a test set of
40% of the releases. All remaining data were used as a training set (Table 4.4). The reconstruction
models are trained and tested only once per chamber following the distribution of the releases
from table 4.4.
Table 4.4: Summary of the releases included in the training set and test set of the CH4 reconstruc-tion models. The mixing ratios modelled for the test set are also used as input of the inversionmodel to infer the emission rate of CH4 and their location.
Chamber Releases in the Releases in the Number of releases in the Number of releases in the Percentage of releses in the

training set test set training set test set training/test set

A 6, 7, 8, 11, 14, 2, 5, 9, 15 9 62.5 % / 37.5 %15, 16, 17, 18, 19, 10, 21, 25,20, 24, 27, 28, 30 26, 29, 32
C 14, 15, 17, 18, 9, 10, 21, 12 8 60 % / 40 %19, 20, 22, 24, 25, 26, 29,27, 28, 30, 31 32, 33D 6, 7, 8, 13, 14 5, 9, 12, 25 5 4 55.5 % / 44.5 %
E 3, 4, 6, 7, 2, 5, 9, 11 9 55.5 % / 44.5 %8, 13, 14, 19, 12, 21, 25,20, 22, 23 26, 32, 33
F 3, 4, 6, 7, 8, 2, 5, 9, 13 8 62 % / 38 %13, 14, 15, 18, 10, 12, 21,19, 20, 22, 24 25, 29
H 1, 3, 4, 13, 2, 21, 25, 12 7 63 % / 37 %14, 18, 19, 20, 26, 29, 32,23, 24, 28, 30 33

4.2.2.3 Atmospheric inversion of the release locations and emission rates

Our derivation of the release location and rates relies on the inversion framework developed
and tested by Kumar et al. (2022) on the measurements of the high precision instruments. This
framework uses adjoint of a gaussian plume model to simulate the sensitivity of the CH4 mole
fraction enhancements above the background at a measurement location to the emissions at all
potential source locations. For each release, the optimal horizontal and vertical location and rate
are derived based on the minimization of the root sum square (RSS) misfits between averages of
the observed and simulated CH4 mole fraction enhancements above the background. The bins



of themeasurements and of the simulatedmole fractions for the averages correspond to sectors
of wind directions of equal ranges during the release. The optimal release location and rates are
searched simultaneously, looping on a finite but large ensemble of potential locations, using an
analytical formulation of the problem to derive the optimal rate and corresponding RSS misfits
for each potential location and then identifying the optimal location and rate providing the small-
est RSS misfits. The 40 m × 50 m (horizontally) × 8 m (vertically) volume above the ATEX zone is
discretized with a high resolution (1 m × 1 m horizontally and 0.5 m vertically) 3D grid to define
the finite ensemble of potential locations. The inversion exploits the change of wind direction
during a release and the corresponding variations and spatial gradients in average mole frac-
tions respectively at and between the different measurement locations crossed by the plumes
to triangulate the release location. The amplitude of the enhancements directly constrains the
release rate estimate.

The Gaussian model and its adjoint are driven by averaged wind directions and averaged
turbulence parameters derived from 3D sonic measurements, using the same bins for these av-
erages as for the mole fractions. Those bins are defined during each release based on 1-min
averaged wind directions. These bins partition the lower and upper range of potential wind di-
rections, and they have equal width in terms of range of wind directions. The total number of bins
during this initial partition is defined as the rounding integer of the division of the release dura-
tion (in min) by approximately 7 min. However, only bins gathering at least four 1-min averages
are retained. The aim is that the mole fraction and meteorological averages are representative
of a timescale that is long enough for use in or comparison to the Gaussian model. Depending
on the releases, the number of bins ranges between 2 and 7.

Here, we slightly revise the reference computations of release location and rate estimates
based on the high precision instruments from Kumar et al. (2022). Indeed, in order to compare
the release location and rate estimates from such a reference and the one derived here based on
the TGS sensors, we restrain the set of high precision observations that are used in the reference
computation to the station and time corresponding to the data availability from the TGS sensors.



4.2.3 Results

4.2.3.1 Pre-processing of the data from the low-cost CH4 sensors

Original observations with a time step of 2 s were resampled to 5 s. We corrected the time offset
corresponding to delays of the air travel through the air intake from the tripods to the instru-
ments, time delay from synchronization between analyzers and chambers. Also, we removed
invalid data produced by the logging system on each chamber. The baseline correction was then
applied for each sensor chamber considering the entire campaign. As an illustration of the impact
of the baseline correction Figure 4.4 shows the signal corresponding to one release for the cham-
ber A after these pre-processing steps. The corrected signal in the TGS voltage measurements
showed better agreement with the reference between the occurrences of spikes and phases.

Figure 4.4: Comparison of the voltage signal for one release (#8) from Chamber A before (Uncor-rected) and after (Corrected) the baseline correction on (b) TGS 2611-C00 and (c) TGS 2611-E00,on which it is appreciated the correction of the offset preserving the amplitude enhancementslinked to CH4 variations. (a) Reference CH4 mole fractions, also corrected using the spike correc-tion algorithm.

4.2.3.2 Reconstruction of CH4 mole fractions

Due to the diversity of the releases, environmental conditions, distribution of the tripods and
selection of the training and test sets for each chamber, there is no single release that can be
viewed as representative for the test set across the chambers. Yet, we chose release #25 as
an example of the signal measured across the chambers and the reconstructed signal for each
chamber using the MLP model (Figure 4.5) and the 2nd order polynomial model (Figure 4.6), for



each chamber we shown the reconstructed CH4 mole fractions estimated using only the type C
sensors (red), the type E sensor (yellow) and both sensors used as inputs for the models at the
same time (green).

We found that the MLP and 2nd degree polynomials gave similar performances across the re-
leases regardless of the chamber used for the CH4 reconstruction. For two releases on chamber
A (release #10 and #26, see Fig C.6 and C.9 for MLP model and C.11 and C.12 for the polyno-
mial model respectively) where amplitudes are below 10 ppm, the polynomial model provides
a noisy signal as output regardless the configuration of the inputs used. There were however
some cases on which the polynomial model produced better outputs than the MLP, for example
the four releases on chamber D where MLP model produced a systematic underestimation of
the reconstructed CH4 on the three configurations of inputs.

Regarding the TGS types, the type C sensor gave better reconstructions than the type E or
both types used as the same time as inputs for the model. The reconstruction of CH4 with the
type E sensor shows phasing errors in the form of a slow decay after large spikes. In addition,
there are some cases where type E sensors showed a response whereas no spikes were mea-
sured by the reference instrument. For example, release #9 (Figure C.5 and C.10, for the MLP
and the polynomial model respectively) of chamber D shows few spikes between 10 to 30 ppm
reconstructed from data of the type E sensor with the polynomial model which are not present
on the reconstructed data from the type C sensor. Using Type C and E sensors at the same time
as training data for models produced outputs closer to models trained only with type C sensor.
Some cases of reconstruction with MLP model produced a saturation of the outputs (release #9,
#12 and #25 for chamber D (Figure C.5, C.7 and 4.5), release #21 for chamber H (Figure C.8)) or a
systematic bias (releases #2, #10 and #26, see Figure C.4, C.6 and C.9). For releases with peaks’
amplitudes above 40 ppm a systematic underestimation is observed regardless themodel or the
sensor’s type used as input.



Figure 4.5: Example of reconstruction of release #25 using an MLP model. On left panels areshown the reconstructed CH4 mole fractions for each chamber that captured the release, wepresent the reference signal (black dotted line), the reconstructed CH4 mole fractions when themodel has as input the TGS 2611-C00 sensor (red), the TGS 2611-E00 (yellow) or both types at thesame time (green). The right panels show the 1:1 plot of the reference against the output of themodel for the three configurations of inputs. Note the difference in the x-axis for Chamber F.



Figure 4.6: Example of reconstruction of release #25 using a Polynomial model. Notations arethe same as in Figure 4.5.



On figure 4.7, we present a summary of the performance of the reconstruction of the signal
on the test set, given the NRMSE error defined in eq. (3). All chambers have reached our target
error of NRMSE ≤ 0.15 ppm, except for Chamber A with the polynomial model using as input
the type E sensor and the MLP model for chambers A and C as well for the type E sensor. With a
stricter target requirement of NRMSE≤ 0.1 ppm, only Chamber Hmet the target error regardless
of the model or sensor used. Performances are similar when using the type C sensor as input
regardless the model across all the chambers. When used both types at the same time as input,
the 2nd degree polynomial provide better reconstruction than the MLP specially on chambers
C, D and H (NRMSE = 0.09, 0.09 and 0.04 ppm for the polynomial model and 0.11, 0.13 and 0.07
ppm for the MLP). Chamber D, where there is little training data available, produced a systematic
lower error with the polynomial model than with the MLP regardless the input variable used.

In summary, the model used in the reconstruction is important only for the cases where little
information is available for the training. This was the case for chamber D where the polynomial
model provides better performances than the MLP model. We also found that Type C sensors
produced a better reconstruction of CH4 spikes than Type E ones, and a combination of data
from both types of sensors did not improve the reconstruction producing similar outputs than
the other types.

4.2.3.3 Release rate and location estimates based on the observations from the TGS sen-

sors

Averages of mole fractions enhancements above the background and their spatial gradients are
displayed for release #25 in figure 4.8. The figure compares the values of reconstructions from
the low-cost sensors (with the MLPmodel; see figure ?? for the values corresponding to the poly-
nomial model), with the high precision measurements, and of the simulations resulting from the
inversions assimilating either the reference high precision data or the reconstructions from the
low-cost sensors. Since the best reconstruction performances were obtained when using the
type C sensor, the inversion results presented here are based on the reconstructions from those
sensors only. For the release #25, used as an example here, the procedure to define average



Figure 4.7: Comparison of the mean NRMSE of the two types of models trained with the threeconfigurations of the inputs. The 2nd degree polynomials are denoted as ‘Poly’ and themultilayerperceptron as ‘MLP’. The three input configurations are denoted inside parentheses, ‘C’ when themodel’s input was only the TGS 2611-C00, ‘E’ for the TGS 2611-E00 and ‘CE’ when both sensorswere used as inputs at the same time. The color code of the bars corresponds to the chambers.

values per wind sectors has resulted in four bins of wind sectors with an approximate size of
10◦. Average mole fractions are derived from the six chambers. To simplify the numbering when
mentioning the reference instrument or the TGS, we refer to the chamber identifier X (REF-X and
TGS-X respectively, with X the name of the chamber).

In general, the observed spatial CH4 gradients between the different stations are similar when
considering the reference measurements and the estimates of the TGS, except for few cases
where the reference is more consistent to the expected signal. For example for release 25 (see
Fig. 4.8) observed gradient from TGS-D data underestimate the actual gradients given by REF-D
for θ = 308.3◦ and overestimate them for θ = 279.2◦, where θ is the average direction of the wind
sector.

The modelled average mole fractions enhancements and thus the modelled gradients assim-
ilating reference data are very close, in general, to the ones from these reference data, although
some discrepancies can occur, e.g., for release #25, for REF-Hwith θ = 279.2◦, REF-Cwith θ =301.4◦
and θ =289.1◦ and REF-A with θ =301.4◦ and 308.3◦. For most of the cases, themodelled gradients
assimilating the TGS data are closer to the modelled gradients assimilating the reference data
than to the observed TGS ones. In addition, the observed TGS data, for some cases, is closer to



the observed reference one than to the modelled gradients assimilating either reference or TGS
data, highlighting the higher impact of the model error on the inversion than the reconstruction
error of CH4 mole fractions.

Figure 4.8: Observed andmodelled average CH4mole fractions from the reference, denoted ‘REF’,and low-cost sensor, denoted TGS, corresponding to the release #25. The reconstructed CH4 wascomputed using the MLPmodel. The index of the tripods is denoted as T-x and the average winddirection (θ) for the binning of wind sectors is shown on the top right of each panel in red.

Figure 4.9 shows the comparison of the emission rate estimates with corresponding errors,
and of the location errors for the different inversions across the eleven releases. In this figure,
estimates assimilating CH4 mole fractions from the TGS using the reconstruction with the MLP
models (see Figure C.14 for the results when assimilating the reconstruction based on the 2nd
degree polynomial model).

Regarding the release rate estimates, those from inversions assimilating the reference mole
fractions bear an average error of 30% and those from the inversion assimilating data from the
TGS sensors bear an average error of 25%.

In the case of the estimation of the release location, the assimilation of the reference data
produces a slightly smaller average error location of 7.86 m (σ = 5.47 m) compared to 9.49 m (σ
= 4.58 m) from the assimilation of TGS data. For five releases (#2, #10, #12, #25 and #26) the
assimilation of reference data yields a better estimate of the location and for one release (#21)
both inversions yield similar location errors.

In general, estimates of the emission rate (see fig 4.9a) from reference data and TGS data are



similar. For three releases (#12, #25 and #32), we observe large errors in the estimate of the
release rate. Inversion assimilating TGS data or reference data highly underestimate the rate for
release #5 (1.41 and 1.34 g CH4 s−1 respectively, with an actual emission rate of 3.0 g CH4 s−1)
and strongly overestimate the rate for release #32 (5.14 and 6.55 g CH4 s−1 respectively, with an
actual emission rate of 4.0 g CH4 s−1). Reference data provide a slightly better estimation of the
location of releases than the TGS. Only for releases #29 and #33, the inversion assimilating TGS
observations provide a slightly better location of the source. Conversely, for releases #2, #12,
#25 and #26, the location error from the inversion assimilating TGS observations is almost dou-
ble than the one of the reference. The errors on the emission rate estimate from both inversions
was smaller than 30% for most of the releases, except on four cases, where errors reached 80%
for the inversion assimilating TGS data and 65% for the inversion assimilating reference data,
respectively. There were two cases, the release #26 and #33, when the inversion assimilating
TGS observations produced a much lower error (2.5% and 5.3% respectively) in the quantifica-
tion of the emission rate than the inversion assimilating reference observations (20.9% and 22.7%
respectively). The fact that the assimilation of the TGS reconstructed CH4 data can yield better
results thanwhen using accurate CH4mole fractionsmeasured by the reference instrument high-
lights the impact of the transport model error (associated to the simulation of the average mole
fractions with the Gaussian model) in the inversion process. These errors dominate the resulting
errors in the estimates of the release rate and location when assimilating the reference data Ku-
mar et al. (2022). They appear to have a weight larger than that of the errors in the reconstructed
mole fraction from TGS data when assimilating these data.

4.2.4 Discussion

Our study showed the capability of the signal from metal oxide sensors to produce estimates of
the emission rate and location from controlled CH4 releases typical of those expected from leaks
in industrial facilities. The used baseline correction algorithm allows to extract the variations of
voltages from the TGS signal related to the high frequency variation of the plumeacross the differ-
ent sensors’ inlets. We compared the performances of two models, 2nd degree polynomials and



Figure 4.9: Comparison of the emission rate estimate (Qe) (a), of the location error (El) (b) and ofthe relative error in the emission rate estimate (c) from the inversions assimilating the Referencedata (in red) and the reconstruction of the CH4 mole fraction from the TGS sensors (in orange).The reconstructed CH4mole fractions used in these inversions are computedwith theMLPmodel

MLP, to reconstruct CH4 mole fractions during the controlled releases for three configurations
of inputs. The reconstructed CH4 mole fractions were used as input to an inversion modelling
framework to estimate the emission rate and location for each release. Results of inversions
assimilating TGS data were compared with those assimilating reference (CRDS) data.

The correction of baseline in TGS sensors assumes that the targeted signal measured by the
sensors corresponds to a series of spikes at high frequency produced by the plume reaching
and leaving the inlet tube of the sensors, due to the atmospheric turbulence and high frequency
variations of the wind. Our approach of deriving a baseline signal from observations surround-
ing the spikes in an iterative process, offers a suitable alternative to correct the TGS observations
when little or insufficient information is available to derive a baseline correctionmodel (e.g. from
observations of H2Oand temperature). This approach is interesting for conditions when the envi-
ronmental parameters are highly variable or models does not dispose of sufficient observations
to derive robust relationships to correct the effects of environmental variables on the sensors’
baseline signal. This corresponds well with the measurements presented in this study. How-
ever, in some cases, the plume can touch the inlet tube of the sensors during a prolonged period
producing a signal not only having high frequency spikes but also continuous varying enhance-
ments above the background. For those cases, this method would not be able to distinguish the



Table 4.5: Comparison of the emission rate estimates (Qe), location error (El) and relative erroron the rate estimates for the inversions assimilating the reference data and the reconstructionof the CH4 from the TGS low-cost sensor based on the MLP model
Release Actual emission Reference TGS

N◦ (g CH4 s
−1) Qe (g CH4 s

−1) El (m) error (%) Qe (g CH4 s
−1) El (m) error (%)2 1.0 1.10 5.26 10.8 0.89 12.40 10.15 3.0 1.34 21.57 55.2 1.41 19.55 52.89 1.0 0.88 14.29 11.9 1.11 12.78 11.810 0.5 0.40 9.29 18.9 0.42 10.80 14.812 1.0 0.34 3.08 65.7 1.84 7.15 84.921 1.0 0.63 3.61 36.1 0.66 3.61 33.825 5.0 4.61 4.57 7.8 5.41 10.02 8.226 0.4 0.31 5.10 20.9 0.39 10.10 2.529 0.6 0.45 3.40 24.5 0.43 2.34 28.332 4.0 6.55 10.55 63.8 5.14 10.28 28.633 2.0 2.45 5.77 22.7 2.10 5.37 5.3

Average error 7.86 30.7 9.49 25.5
σerror 5.47 20.3 4.58 23.6

enhancements on sensors’ voltage corresponding to the CH4 plume from the background and
then we need to reconsider the derivation of a baseline based on environmental parameters
(H2O and T). Regarding the type of sensor used in the reconstruction of CH4 mole fractions, we
obtain best performances using only with Type C sensor as input for the models. The fast decay
observed on the reconstructed CH4 after the spikes was attributed to the response time of the
TGS sensor. The slow decay observed on Type E sensors was probably due to a combination of
the response time and the carbon filter added on top of the sensitive material to improve the
selectivity of gases. Concerning the reconstruction models, the polynomial and the MLP mod-
els in general produced equivalent results with few differences. It confirms our previous study
(Rivera Martinez et al., 2022) in which we observed that the performances of models to recon-
struct CH4 mole fractions were mainly driven by the type of used sensor, rather than from the
model chosen for the reconstruction. With a low content of information (only few spikes, lim-
ited range and variability of the spike magnitude, frequency and duration) in the training set (e.g.
when reconstructing the CH4 mole fractions of chamber D), the 2nd degree polynomial provides
more accurate estimates than the MLP. This is probably due to the distribution of the data in the
training set that MLP used to compute its parameters, which does not represent the same range
of variations than the one in the test set. For spikes with enhancements under 5 ppm, the MLP



model with the Type C sensor signal as input, produced a more accurate reconstruction than
the Type E or both sensor’s types when used as inputs at the same time. The noise present in
the voltage signal on some releases, for example release #26 on chamber A, were not correctly
removed in the reconstruction with the Polynomial model. However for the type C sensor, the
MLP model reduces the noise on the signal producing a more accurate reconstruction.

Regarding the inversion of emission rates and locations using the gaussian plume model
framework developed by Kumar et al. (2022), we obtained good estimates and performances
with the reconstructed timeseries of CH4 spikes from voltage measurements of TGS sensors and
the results are comparable to those obtainedwhen assimilating the reference data. We observed
that the simulated gradients of the gaussian model assimilating observation from the TGS cham-
berswere close to the simulated gradients of the reference inversions (assimilating high precision
measurements), even if the observed gradients were sometimes in a different direction. In most
cases errors from both inversions ranges between 2.5% and 55% except for release #12 and
#32 where error reached 65% and 63% for simulated gradients assimilating the reference data
respectively and release #12 with an error of 85% for simulated gradients assimilating the TGS
data. The overall inversion performance assimilating TGS data and reference data are good and
consistent. The slightly better average performance in the release rate estimates using TGS data
(25% error) than the estimates using reference data (30% error) is not significant in regards of the
variability of the results. It highlights the weight of the model errors associated to the simulation
of the average mole fraction with a Gaussian model. The results demonstrate that the errors in
the release rate and location estimations from inversions using both reference and TGS data are
dominated by these model errors. The errors in the reconstruction of the CH4 spikes from the
TGS data are thus sufficiently low for use in the inverse modelling problem analyzed here. One
should note that, as mentioned on section 4.2.2.3, in this study, the reference inversions rely on
a restrained subset of the reference data that match the available data from TGS sensors. Re-
sults from Kumar et al. (2022) considering the full dataset available on the reference instruments
obtained highly better results.



4.2.5 Conclusions

This study presents different techniques to reconstruct CH4 mole fractions from the voltage sig-
nal measured by metal oxide low cost TGS sensors deployed downwind an area of points of
controlled releases during a campaign at TADI in 2019. The data from this reconstruction are
assimilated in an inverse modelling framework to quantify the rate (ranging from 0.4 to 5 g CH4

s−1) and location of these controlled release. The approach employed to extract the baseline
signal on TGS voltage measurements based on surrounding observations allowed us to derive
and successfully correct the baseline signal on TGS sensors without the need of using other en-
vironmental parameters. The reconstruction of CH4 mole fraction from voltage observations
measured during controlled releases showed good agreement with observed CH4 mole fractions
from the reference instruments. The reconstruction was consistently better with TGS 2611-C00
sensor regardless the reconstruction model used. Both models had met our requirement target
of NRMSE of reconstructed CH4 lower than 0.15 ppm across all chambers when trained with the
TGS 2611-C00 sensor. Emission rate and source location estimates using an inversion based on
a gaussian plume model produced similar results using reconstructed CH4 mole fraction from
TGS sensors data to those obtained with high precision instruments, with an average estimate
rate error of 25.5% and a mean source location error of 9.5 m from TGS data. In this study, the
reconstruction of the CH4 mole fractions was conducted independently from the inversion mod-
elling. The estimation error could probably be reduced with a better understanding of inverse
modelling sensitivity to the misfits from the reconstruction models. In consequence, a sensitivity
study is encouraged to determine the best approach for the reconstruction of the observations
from TGS sensors.





Chapter 5

Conclusions and perspectives

5.1 Conclusions

This PhD thesis aimed to determine a calibration strategy for CH4 using MOS low-cost sensors in
the laboratory, specifically TGS from the manufacturer Figaro®, as well as, to provide estimates
of source rate and location from reconstructed CH4 variations based on measurements of these
sensors in the field. Controlled laboratory experiments presented in Chapters 2 and 3 allowed
to test the capability of TGS sensors to measure near background variations and CH4 enhance-
ments of several ppm over background. The controlled release experiment of Lacq allowed to
evaluate the source rate and location estimates from reconstructed signal measured by TGS and
to compare with estimates from high precision instruments on similar conditions.

5.1.1 Reconstruction of room air variations of CH4 and sensitivities to CO

and H2O

The first study of this thesis was dedicated to develop and apply a machine learning model to
reconstruct CH4 variations in room air under controlled conditions and to determine the sen-
sitivities of three types of TGS to CO and H2O. Our assessment of sensitivities to CO and H2O
showed a nonlinear relationship of Figaro® TGS. A multilinear quadratic function explained the
contribution of CO variations to voltage measured by the sensors. The H2O sensitivity test re-
vealed the high influence of H2O in the sensors in presence of high H2Omole fractions reducing
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its sensitivity to CH4. These results are in line with previous works (Ionescu et al., 1999; Wang
et al., 2010; Tischner et al., 2008) and they explained the competition of CH4 and H2O molecules
in reacting with oxygen, which affects the sensitivity of the sensor. TGS 2611-E00 sensor, which
included a carbon filter to improve selectivity, provided a slight nonlinear response to H2O vari-
ations, although sensitivity to CH4 was equally reduced across the different H2O levels. On the
other hand, TGS 2600 and 2611-C00 types presented a pronounced nonlinear relationship where
CH4 sensitivity was higher for lower H2O levels.

The sensitivity test derived from the modelled CH4 and the training removing one predictor
at a time, confirmed the importance of H2O as a predictor. In the case of CO, our models found
a lower influence in the reconstruction of CH4 levels. This can be explained by the controlled
conditions of the environment where concentrations are lower that on industrial environments,
and thus it does not reflect a real case scenario. The inclusions of different types of sensors as
predictors to the models reduced the MLP performances, contrary to what was expected. This
behavior can be explained by the introduction of inconsistent information from other sensor
types due to different sensitivities and response time, especially for TGS 2611-E00 type.

Regarding the reconstruction of CH4 concentrations from TGS resistance variations, the MLP
model provided good agreement between the simulated signal and the reference, meeting our
target requirement of RMSE≤ 0.2 ppm for nearly all the cross-validation periods. The length and
selection of the training period was a key element to ensure good performances from the MLP
model, and only similar distribution of the training and test periods led to better reconstruction
of CH4 concentrations. A low-pass filter behavior of the MLP was also observed through our test
where the approximation of low frequencies is favorized in the learning process of the model.
Clearly, a very long training period and the need to choose representative variations to ensure a
good accuracy would be a strong limit for a user who would like to “install and forget” sensors in
the field and let them record CH4 variations.



5.1.2 Baseline correctionand reconstructionof CH4 enhancements (spikes)

over background variations

In the second study we evaluated the performance of two TGS types to reconstruct CH4 spikes
generated over background variations on laboratory conditions, tomimic typical variations of CH4

in the vicinity of industrial leaks. An automatic artificial spike generation systemwas developed in
order to produce such ‘realistic’ CH4 enhancements over background. We have developed a two-
step baseline correction algorithm that corrected the cross-sensitivities of H2O to environmental
parameters on the TGS voltage measurements.

The first test consisted in a systematic comparison of parametric and non-parametric models
to reconstruct the CH4 spikes generated in laboratory. We obtained the best performances from
the 2nd degree polynomial regressor and the MLP model, meeting our error requirement of an
RMSE≤ 2 ppm. These performances were obtained with a large training set consisting of 70% of
the observations in the dataset, which is not very appealing for a user who aims to minimize the
training length.

In the second test, we evaluated a stratified training strategy aiming to keep the performance
of the models with a reduced training set. We define a new training set composed of a selection
of the most influential spikes previously regrouped into clusters based on its similarity. The pro-
posed parsimonious training allowed to reduce the length of the training set size from 70% to
25% of the data keeping our target error requirement. This is clearly more encouraging for any
future ‘operational’ applications of the TGS sensors.

Ageing effects of TGS were studied in the third test. We observed a slight decrease in the
performances after six months of continuous functioning of the sensors, although the degraded
performances when we applied a model that was trained six months before still met our target
error requirement.

Finally, the capability of transfering a trained model per sensor and per chamber into other
sensors of the same type from other chambers was assessed. We observed that the use of gen-
eralized models is possible when the target signal, CH4 spikes in our case, varies in the same



range that the one used during the training of the model. In the same line of the previous as-
sessment of TGS in chapter 2, the TGS 2611-C00 type showed better performance in detecting
and quantifying CH4 variations than the TGS 2611-E00 one.

5.1.3 Reconstruction of CH4 spikes during controlled releases and source

rate and location estimation

The third study of this thesis consisted in the reconstruction of CH4 concentrations and the esti-
mation of the release rate and location from voltage measurements of TGS sensors during the
TADI 2019 campaign. This campaign consisted of a series of 41 controlled gas releases, from
which we focused on 33. We deployed 16 sampling lines in the field, from which only 7 were
active for each release, around a 40x50 m ATEX zone where releases were emitted. Each ac-
tive sampling line was connected to a high precision instrument and a chamber containing three
types of TGS. This study focused on two types of TGS (TGS 2611-C00 and TGS 2611-E00) due to
low sensitivity of CH4 enhancements on TGS 2600.

We assessed the performance to reconstruct CH4 concentrations of a parametric and a non-
parametric model on 11 controlled releases measured by six chambers including two types of
TGS. Those releases were used later to estimate the source emission rate and location, and for
this we used an atmospheric inversion model. Then, they were compared to estimations from
high precision instruments and the actual rates and location. Although I did not develop myself
the inversion model, I adapted it, tuned it and ran it to invert emissions rates and their locations.

The first part of the studywas dedicated to the preprocessing of the signal and the reconstruc-
tion of CH4 concentrations. We employed the automatic spike detection algorithmof Chapter 3 to
derive and correct the baseline signal on voltagemeasurements fromTGS sensors, that are highly
influenced by environmental parameters, such as, H2O and T. Concerning the reconstruction
models, similar performances are seen in general for the polynomial and MLP model, although
in configurations with a reduced training set size, the 2nd degree polynomials produced slightly
better performances. The configuration of the inputs of the reconstruction models showed to
be of much greater importance than the model itself. TGS 2611-C00 produced the lowest errors



in general across the chambers where the training set was sufficiently large. The combination of
both types as inputs increased the error for most of the chambers and on few cases it produced
an output similar to TGS 2611-C00. Only one of the assembled chambers (H) meet our require-
ment error target. Nevertheless the distribution of peaks inside the releases measured by this
chamber could have diluted the summary statistics.

The results obtained from the inverse modelling showed good agreement between TGS and
the inversion using the same dispersion model with CRDS data and obtaining an average emis-
sion rate error of 25% and 30% respectively. Regarding the estimation of the source location,
the TGS performed worse than the reference inversion with CRDS data, with an average location
error of 9.5 m compared to 7.8 m obtained from the reference inversion. Simulated CH4 gradi-
ents from the TGS data were closer to the observed and simulated gradients of the reference
even if observed gradients from TGS data were on some cases in opposite direction. The way
errors from the observed/reconstructed TGS data are considered from the inverse modelling is
still unknown and requires further analysis. Overall, this result led us to be optimistic about the
use of TGS sensors for monitoring leaks in the field, but CRDS data will be still needed for training
(at least at the beginning) and for ensuring robust inversion results.

5.2 Perspectives

This PhD thesis aimed to improve the knowledge of MOS low-cost sensors in the detection and
quantification of CH4 emissions. It remains an open research area to explore the capabilities and
limitations of these sensors. Here we present some perspectives for future research involving
MOS sensors.

5.2.1 Cross sensitivity to other species and environmental parameters

When we conducted the sensitivity analysis under laboratory conditions in the first experiment,
we found nonlinear relationships between CO, H2O and the resistance measurements from TGS
sensors. Previous studies (Tischner et al., 2008; Kolmakov et al., 2005) showed that relative hu-



midity and temperature affects directly the sensitivity of MOS sensors. It is necessary to conduct
a more thorough assessment of the influence of environmental parameters on the sensitivity of
TGS, especially for temperature and H2O.

The sensitivity analysis on the MLP model trained with room air variations showed that the
contribution of CO was not of importance to derive a calibration model on TGS. This is counterin-
tuitive since CO is also an electron donor gas and should competewith CH4 affecting its sensitivity.
More tests should be conducted under real conditions to determine the real contribution of CO
to the calibration model.

The idea of adding metallic particles as a membrane, known as catalyst, over the sensing
material of MOS sensors acting as a filter to other compounds is an alternative to increase the
selectivity of the sensors. For example, thework of Zhao et al. (2021) developed a Pt-Al2O3 catalyst
film that was printed on top of Pd-In2O3 sensors acting as a filter reducing cross-sensitivities to
VOCs without affecting the sensing mechanism. The use of catalyst is recommended when work-
ing with MOS sensors, due to their high cross sensitivities to other VOC. Our past experiments
comparedmainly two types of TGS, one of them including a carbon filter, on which a degradation
of the sensitivity is observed as a tradeoff for an increase of the selectivity to CH4. Therefore, two
main considerations need to be studied. In the first place, the selection of the adapted materials
for the catalyst considering the final application of the sensors, since harsh environments like oil
and gas facilities could produce a fast degradation in the material of the catalyst. Secondly, the
effect on the sensitivity and the response time of the catalyst on the sensors.

5.2.2 Calibration models

All the calibration models developed for the three experiments considered instantaneous mea-
surements from the sensors to estimate CH4 concentrations. The inclusion of temporal relation-
ships into the reconstructionmodels would provide insights on the evolution of the signal, hence
this will result in robust models. Recursive neural networks (RNN) are a type of neural networks
that proved to be useful in derive relationships on sequential data. For MOS sensors we recom-
mend to study one special type of RNN called Long-short term memory (LSTM) that allows to



provide outputs considering values of inputs of several steps past in time.
Autoencoders are another special type of artificial neural network which are trained to copy

the inputs onto its outputs. They are composed by two main structures the encoder and the
decoder. Autoencoders are designed to produce an approximative representation of the inputs
forcing them to prioritize the learning of useful properties of the data (Goodfellow et al., 2016).
Several tests can be conducted using autoencoders, such as: i) exploiting their feature to encode
the data to a latent space, and then applying some transformations, like filtering variables to
remove the noise component of the TGS signal, and decoding the transformed data into a rep-
resentation in the original domain; ii) correcting the cross-sensitivities or drifting directly in the
latent space (Yan and Zhang, 2016); iii) defining relationships between the predictors and the tar-
get variables in this restricted representation of the data and retrieving the reconstructed signal
applying the decoder.

LSTM networks and autoencoders are powerful tools that can help to improve the quality of
the reconstructed CH4 concentrations from TGS. However, they need large amounts of data to
train themodels to prevent overfitting and to determine the relationships between the variables.
Therefore, before implementing such models, it is important to provide large and good quality
datasets to train the models.

5.2.3 Considerations in the deployment of network of sensors

Low cost metal oxide semiconductors are an alternative to high precision instruments to be de-
ployed in dense network of sensors. The work of Chamberland and Veeravalli (2006) tackled the
problematic of designing a network of sensors for the detection, and they specifically studied the
effect on the performance of increasing the density of sensors in a finite space. Nevertheless,
their assessment was based on theoretical data. Therefore, an evaluation for a real deployment
should be studied. This specially brings questions about themaintenance of the network, the op-
timal distribution and the number of low-cost nodes that are required to provide good detection
and reliable information of the fugitive emissions in a site.

Those networks should be designed considering the optimal calibration approaches for the



network, since recalibration of each node together with a high precision instrument become
more inefficient as the network increases. Two calibration techniques are of particular inter-
est for dense networks. The first was approached by the work of Malings et al. (2019) for elec-
trochemical sensors. It consisted in determining the calibration model considering a subset of
measurements of a cluster of nodes deployed in the same region. Information from different
sensors were treated as a ‘virtual instrument’ and amodel was trained. The study reported a big-
ger decrease in the performances of the calibration than using individualized models by nodes.
This tradeoff in performance could be acceptable for larger clusters of nodes. The second calibra-
tion technique tested on MOS sensors for O3 by Okorn and Hannigan (2021) is called ‘multi-hop
calibration’. Developed for mobile sensors, it consisted in having only one low-cost sensor collo-
cated with a high precision reference instrument on which it will be defined a calibration model.
This first step is called ‘one-hop’. The calibrated sensor will be the reference for a second sensor
and a new calibration model will be defined. This process will be repeated chaining all the sen-
sors in the network. This methodology has its own challenges, being the most important one the
propagation of errors.

5.2.4 Source rate and location estimation

Regarding the inverse modelling, our reconstruction and inverse models were computed inde-
pendently in different stages. The next step would be the definition of calibration models that
optimize the reconstruction of the signal for this inversion modelling. Therefore, it is important
to understand the way misfits from the reconstructed signal affect the computation of gradients
in the inverse model.

The work of Travis et al. (2020) showed the possibility to provide estimations of the release
rate and location from measurements from the sensors. They used MIR sensors with artificial
neural networks. The experiment provided information of CH4 enhancements from several sen-
sors together with environmental parameters to a multilayer perceptron model. This model had
two units as output which provided the estimation of the release rate and location respectively.



The data used in the training on the MLP model comes from simulated data from a LES model.
This approach is interesting because it opens the possibility to generate a large set of examples
to train the models under different configurations of receptors and environmental conditions,
increasing the generalization of the models. Models trained with simulated data and fine-tuned
with data from controlled releases or measurement campaigns could improve their accuracy. It
is important to consider that complex topography needs to be introduced on LES simulations to
provide useful data for the ANN models.
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Table A.1: Mean MSD and RMSE for the 50 training and test periods of the sensitivity test.
Mean MSD (ppm2) Mean RMSE (ppm)Reference 0.001352331 0.036774055W/O Pressure 0.002216097 0.047075444W/O Temperature 0.001535907 0.039190651

W/O H2OMole Fraction 0.002176811 0.046656307Training set W/O CO 0.002071878 0.045517882W/O Figaro 0.001626768 0.0403332163xTGS 26xx types 0.001183233 0.034398159TGS 2600 & TGS 2611-C00 0.001441292 0.0379643572xTGS 2611-C00 0.001723121 0.04151049Reference 0.014911814 0.122113937W/O Pressure 0.012041034 0.109731645W/O Temperature 0.014275558 0.119480365
W/O H2OMole Fraction 0.018681443 0.136680075Test set W/O CO 0.015550217 0.124700508W/O Figaro 0.015273629 0.1235865233xTGS 26xx types 0.0224715 0.14990497TGS 2600 & TGS 2611-C00 0.0178823 0.1337247192xTGS 2611-C00 0.01768717 0.132993119

165



Figure A.1: Comparison between the raw (green) and the filtered signal (gray) over one day.



Figure A.2: Diagram showing the process of training and evaluation of the model with 50 trainingand test sets covering the entire time series.

Figure A.3: Density distribution of the training (red) and test (blue) set for the worst case (50).



Figure A.4: Density distribution of the training (red) and test (blue) set for the best case (7).

Figure A.5: Output of the model for a smoothed signal of 12 h (a) and 24 h (b).



Figure A.6: Partial correlation (r) matrix (upper triangular) and standard deviation of correlationfor bins of 3 days previously smoothed at an hourly scale (lower triangular).





Appendix B

Appendix Chapter 3

171



Figure B.1: Different time constant values of the exponential weighted moving average (EWMA)applied to the reference instrument. The reference instrument in red dotted lines, the appliedsmoothing for three values of time constant (5s, 10s, and 20s) denoted ’EWMA’ for one peak andthe TGS 2611-C00 voltage from logger A to compare the smoothing effect in yellow dotted.

Figure B.2: Derived contribution and correction of water vapor for the Figaro TGS 2611-C00. (a)The raw voltage signal (gray) and the derived cross-sensitivities to H2O (blue). (b) The cross-sensitivity corrected signal.



Figure B.3: Example of the baseline extraction and correction for the Figaro TGS 2611-C00 over15 days. (a) Raw signal (gray) and detected baseline with the spike detection algorithm (red). (b)Voltage signal with the corrected baseline.



Figure B.4: Time series of the reference CH4 signal, Figaro® TGS sensor, and environmental vari-ables for the entire experiment.



Figure B.5: Dendrogram constructed from the distance matrix computed using the DWT metric.Red dotted line represents the threshold used to determine the clusters. Each color under thethreshold line represents one cluster of peaks. Note that y-axis was rescaled to the logarithm ofthe ‘ward’ distance to appreciate better the threshold and the clusters.



Figure B.6: Reconstruction error of the peaks for the MLP model with the TGS 2611-C00 as inputand using the best stratified training on the (a) Chamber A, (b) Chamber C, (c) Chamber F and(d) Chamber G. The first column on each panel is the reconstruction error on the test set of thechamber onwhich the training wasmade, the other columns are the reconstruction on the wholedataset for that chamber on the same sensor. Note the different ranges of the y-axis.



Figure B.7: Reconstruction error of the peaks for the MLP model with the TGS 2611-E00 as inputand using the best stratified training on the (a) Chamber A, (b) Chamber C, (c) Chamber F and(d) Chamber G. The first column on each panel is the reconstruction error on the test set of thechamber onwhich the training wasmade, the other columns are the reconstruction on the wholedataset for that chamber on the same sensor. Note the different ranges of the y-axis.



Figure B.8: Clustering of peaks using DTW on the reference instrument for the same spikes de-tected by sensors on Chamber C. On the title of each plot the number inside the parenthesescorrespond to the number of spikes attributed to each cluster. Thin gray lines represent all thepeaks inside each cluster and the black line is the mean of all the peaks corresponding to eachclass.



Figure B.9: Clustering of peaks using DTW on the reference instrument for the same spikes de-tected by sensors on Chamber F. On the title of each plot the number inside the parenthesescorrespond to the number of spikes attributed to each cluster. Thin gray lines represent all thepeaks inside each cluster and the black line is the mean of all the peaks corresponding to eachclass.



Figure B.10: Clustering of peaks using DTW on the reference instrument for the same spikesdetected by sensors on Chamber G. On the title of each plot the number inside the parenthesescorrespond to the number of spikes attributed to each cluster. Thin gray lines represent all thepeaks inside each cluster and the black line is the mean of all the peaks corresponding to eachclass.



Table B.1: MSD decomposition for the different configurations and both test set sizes consideringonly Figaro® TGS sensors as input. Letters inside parentheses indicates the sensor used: TGS2611-E00 denoted ‘E’, TGS2611-C00 denoted ‘C’ and both sensors as input denotes ‘C&E’
Test set size Model MSD (ppm2) LCS (ppm2) SDSD (ppm2) SB (ppm2)

30%

Linear (E) 3.51 3.17 0.326 0.013Poly (E) 3.23 3.06 0.155 0.014RF (E) 4.74 4.67 0.061 0.011RF-h (E) 4.67 4.60 0.057 0.010MLP (E) 3.24 3.07 0.163 0.011Linear (C) 1.24 1.00 0.229 0.015Poly (C) 0.88 0.84 0.016 0.021RF (C) 1.27 1.24 0.014 0.012RF-h (C) 1.21 1.19 0.012 0.011MLP (C) 0.85 0.82 0.014 0.014Poly (C&E) 0.73 0.70 0.010 0.023RF (C&E) 0.81 0.79 0.009 0.009RF-h (C&E) 0.78 0.76 0.008 0.009MLP (C&E) 0.71 0.69 0.009 0.011

50%

Linear (E) 3.59 3.09 0.457 0.042Poly (E) 3.24 3.00 0.218 0.022RF (E) 5.16 4.64 0.415 0.103RF-h (E) 4.59 4.46 0.115 0.014MLP (E) 3.64 3.06 0.481 0.097Linear (C) 1.39 1.04 0.304 0.050Poly (C) 0.92 0.84 0.047 0.025RF (C) 1.49 1.27 0.164 0.054RF-h (C) 1.37 1.20 0.127 0.040MLP (C) 1.11 0.86 0.192 0.063Poly (C&E) 0.79 0.71 0.051 0.030RF (C&E) 1.07 0.85 0.158 0.054RF-h (C&E) 2.34 1.78 0.314 0.243MLP (C&E) 0.91 0.71 0.144 0.059



Table B.2: MSD decomposition for the different configurations and both test set sizes consideringFigaro® TGS sensors and environmental variables as input. Notation is the same as on Table B.1
Test set size Model MSD (ppm2) LCS (ppm2) SDSD (ppm2) SB (ppm2)

30%

Linear (E) 3.59 3.09 0.45 0.042Poly (E) 3.24 3.00 0.21 0.022RF (E) 5.16 4.64 0.41 0.103RF-h (E) 4.59 4.46 0.11 0.014MLP (E) 3.64 3.07 0.48 0.097Linear (C) 1.39 1.04 0.30 0.050Poly (C) 0.92 0.84 0.04 0.025RF (C) 1.49 1.27 0.16 0.054RF-h (C) 1.37 1.20 0.12 0.040MLP (C) 1.11 0.86 0.19 0.063Poly (C&E) 0.79 0.71 0.05 0.030RF (C&E) 1.07 0.85 0.15 0.054RF-h (C&E) 2.34 1.78 0.31 0.243MLP (C&E) 0.91 0.71 0.14 0.059

50%

Linear (E) 3.60 3.09 0.46 0.045Poly (E) 3.28 2.98 0.26 0.034RF (E) 4.02 3.30 0.62 0.094RF-h (E) 4.41 4.11 0.26 0.032MLP (E) 3.56 2.97 0.50 0.077Linear (C) 3.60 3.09 0.46 0.045Poly (C) 0.79 0.74 0.03 0.020RF (C) 1.19 0.94 0.20 0.051RF-h (C) 2.92 2.61 0.25 0.049MLP (C) 0.96 0.77 0.15 0.035Poly (C&E) 0.69 0.64 0.02 0.023RF (C&E) 1.07 0.82 0.19 0.056RF-h (C&E) 33933.88 566.99 33319.58 47.296MLP (C&E) 0.81 0.67 0.11 0.031



Table B.3: RMSE in ppm for the different configurations of subsetting based on the selectedclusters of peaks. Only Figaro® sensors were used to compute this errors. Each configurationis denoted ‘CX’ with X the number of the configuration. On each row the models are denotedwith a letter inside parentheses to indicate the sensors used. ‘C’ for the TGS 2611-C00, ‘E’ for theTGS 2611-E00 and ‘C&E’ for both sensors.
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11Linear (C) 1.121 1.115 1.126 1.119 1.163 1.141 1.142 1.105 1.098 1.074 1.105Poly (C) 0.962 0.966 0.972 0.963 0.988 0.982 0.970 0.943 0.952 0.902 0.957RF (C) 1.140 1.135 1.149 1.137 1.176 1.158 1.136 1.111 1.123 1.075 1.128RF-h (C) 1.118 1.113 1.127 1.113 1.152 1.136 1.112 1.088 1.101 1.061 1.106MLP (C) 0.943 0.951 0.957 0.943 0.976 0.964 0.948 0.926 0.928 0.893 0.937Linear (E) 1.971 1.932 1.951 1.926 1.988 1.972 1.947 1.838 1.887 1.772 1.909Poly (E) 1.899 1.861 1.874 1.852 1.909 1.896 1.870 1.764 1.817 1.703 1.838RF (E) 2.277 2.229 2.261 2.207 2.261 2.251 2.184 2.264 2.233 2.230 2.235RF-h (E) 2.263 2.214 2.245 2.192 2.243 2.235 2.165 2.249 2.218 2.221 2.219MLP (E) 1.898 1.861 1.874 1.853 1.910 1.895 1.869 1.764 1.816 1.705 1.838Linear (C&E) 1.121 1.115 1.126 1.121 1.164 1.142 1.144 1.105 1.098 1.074 1.105Poly (C&E) 0.872 0.890 0.895 0.885 0.904 0.911 0.891 0.869 0.881 0.844 0.886RF (C&E) 0.887 0.943 0.951 0.931 0.978 0.936 0.938 0.919 0.936 0.914 0.938RF-h (C&E) 0.878 0.929 0.940 0.917 0.964 0.925 0.927 0.906 0.924 0.907 0.924MLP (C&E) 0.861 0.948 0.875 0.874 0.970 0.958 0.871 0.841 0.862 0.820 0.935



TableB.4:RMSEinppmforthedifferentconfigurationsofsubsettingbasedontheselectedclustersofpeaks.Figaro ®sensors
andenvironmentalvariableswereusedtocomputethiserrors.NotationisthesameasonTableB.3.

C1
C2

C3
C4

C5
C6

C7
C8

C9
C10

C11
Linear(C)1.115

1.111
1.118

1.112
1.155

1.143
1.136

1.106
1.095

1.075
1.101

Poly(C)0.915
0.920

0.928
0.913

0.928
0.935

0.919
0.887

0.898
0.872

0.912
RF(C)0.941

0.988
0.997

0.980
1.010

0.988
0.967

0.937
0.950

0.905
0.977

RF-h(C)0.925
2721.300

2738.400
2752.600

2842.700
2800.200

2827.700
2788.600

0.949
0.902

2681.000
MLP(C)0.899

0.918
0.914

0.905
0.944

0.926
0.905

0.872
0.884

0.854
0.894

Linear(E)1.971
1.932

1.951
1.926

1.988
1.972

1.948
1.839

1.888
1.773

1.910
Poly(E)1.897

1.863
1.879

1.856
1.910

1.897
1.874

1.763
1.820

1.704
1.842

RF(E)1.979
1.963

1.978
1.951

2.003
2.000

1.959
1.874

1.939
1.834

1.951
RF-h(E)1.969

1370.000
13792.900

13864.300
14317.900

14103.900
14242.700

14045.700
1.932

1.830
13506.000

MLP(E)1.897
1.865

1.879
1.860

1.914
1.898

1.875
1.801

1.826
1.706

1.844
Linear(C&E)1.115

1.111
1.118

1.114
1.156

1.143
1.139

1.106
1.095

1.076
1.101

Poly(C&E)0.833
0.851

0.858
0.842

0.851
0.864

0.850
0.824

0.836
0.828

0.849
RF(C&E)0.817

0.886
0.891

0.888
0.920

0.864
0.874

0.855
0.867

0.847
0.885

RF-h(C&E)0.811
0.914

0.924
0.925

0.951
0.902

0.911
0.893

0.893
0.856

0.913
MLP(C&E)0.833

0.858
0.880

0.850
0.864

0.883
0.857

0.814
1.524

0.811
0.848



Appendix C

Appendix Chapter 4

Table C.1: Distribution of the releases by chamber. For each chamber is denoted with an ‘o’ thereleases for which the TGS sensors produced validmeasurements andwith an ‘x’ the invalid ones.
Release Chamber Release Chamber
number A C D E F H number A C D E F H1 - - - x x o 19 o o - o o o2 o - - o o o 20 o o - o o o3 - - - o o o 21 o o - o o o4 - - - o o o 22 - o - o o -5 o - o o o - 23 - - - o - o6 o - o o o - 24 o o x - o o7 o - o o o - 25 o o o o o o8 o - o o o - 26 o o x o - o9 o o o o o - 27 o o - - - x10 o o x x o - 28 o o - - - o11 o x - - - - 29 o o - - o o12 x x o o o - 30 o o - - - o13 - x o o o o 31 - o - - - -14 o o o o o o 32 o o - o - o15 o o - - o - 33 x o - o - o16 o - - x - -17 o o - - - x18 o o - - o o
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Table C.2: Comparison of the emission rate estimates (Qs), location error (Le) and percentage oferror of the rate estimates (Qe) for the reference instrument and the TGS low-cost sensor fromreconstructed CH4 of the 2nd degree polynomial model.
Release Actual emission Reference TGS

N◦ (g CH4 s
−1) Qe (g CH4 s

−1) El (m) error (%) Qe (g CH4 s
−1) El (m) error (%)2 1.0 1.10 5.26 10.8 1.19 12,40 19,15 3.0 1.34 21.57 55.2 1.53 19,55 48,89 1.0 0.88 14.29 11.9 1.03 13,60 2,910 0.5 0.40 9.29 18.9 0.34 7,74 30,712 1.0 0.34 3.08 65.7 2.99 9,55 199,221 1.0 0.63 3.61 36.1 0.64 3,61 35,725 5.0 4.61 4.57 7.8 6.50 10,02 30,026 0.4 0.31 5.10 20.9 0.43 10,04 9,129 0.6 0.45 3.40 24.5 0.41 2,34 30,832 4.0 6.55 10.55 63.8 5.42 10,28 35,633 2.0 2.45 5.77 22.7 2.11 5,37 5,5

Average error 7.86 30.7 9.5 40.6
σerror 5.46 20.3 4.6 51.9

Table C.3: Summary of the tripods that were connected to each chamber.
Chamber Tripod N◦

A 1, 4, 6, 8, 9, 10, 11, 14, 15C 2, 7, 9, 14, 15, 16D 2, 3, 9, 10, 11, 12, 13, 16E 1, 3, 4, 5, 10, 11, 12, 13, 16F 2, 3, 4, 10, 11, 12, 13, 14, 15H 4, 5, 6, 7, 12, 13, 14, 15

Table C.4: Comparison between TGS sensors included on the low-cost logging systems duringthe TADI 2019 campaign.
Type Target gas Approximate price Comments2600 C2H5OH, C4H10, CO, H2, CH4 15 $us Designed as a smoke detector.2611-C00 CH4, C2H5OH, C4H10, CO, H2 20 $us Designed for CH4 detection. Fast response.
2611-E00 CH4, H2 20 $us Designed for CH4 detection.Increased selectivity due to a carbon filter installedon top of the sensing material.2602 C7H8, H2S, C2H5OH, NH3, H2 17 $us High sensitive to VOC and odor gases.



Figure C.1: Comparison of the voltagemeasurements from three types of TGS included on cham-ber A. Upper plot shows the reference CH4 observations measured from the reference instru-ment. Lower plot shows the voltage observations from TGS 2611-C00, 2600 and 2611-E00.

Figure C.2: Comparison of the performance in deriving a baseline signal for the TGS 2611-C00(red) of Chamber E between a function of H2O and Temperature (yellow) and a spike detectionalgorithm (green). Themultilinearmodel derived baselinewas trained on six hours of non-releaseperiods at the start of the first day of the campaign and evaluated on the last eight hours of thesame day (shown in the figure). The Spike detection algorithm, an iterative function, does notneed any prior training and detects the baseline based on neighboring observations and fixedparameters.



Figure C.3: Comparison of the response of the TGS 2611-C00 and TGS 2611-E00 sensors with CH4measurements from the reference instrument for the release #2 which contains spikes with highconcentration. The spikes observed on the TGS sensors corresponding fromamplitudes between100 ppm to more than 200 ppm are not distinguishable from spikes with amplitudes lower than50 ppm.



Figure C.4: Reconstruction of release #2 using a MLP model. On left panels are shown the re-constructed CH4 mole fractions for each chamber that captured the release, we present the ref-erence signal (black dotted line), the reconstructed CH4 mole fractions when the model has asinput the TGS 2611-C00 sensor (red), the TGS 2611-E00 (yellow) or both types at the same time(green). The right panels show the 1:1 plot of the reference against the output of the model forthe three configurations of inputs. Note the difference in the x-axis for the chambers.



Figure C.5: Reconstruction of release #9 using a MLP model. Notations are the same as in FigureC.4. Note the difference in the x-axis for the chambers.



Figure C.6: Reconstruction of release #10 using aMLPmodel. Notations are the same as in FigureC.4. Note the difference in the x-axis for the chambers.



Figure C.7: Reconstruction of release #12 using aMLPmodel. Notations are the same as in FigureC.4. Note the difference in the x-axis for the chambers.



Figure C.8: Reconstruction of release #21 using aMLPmodel. Notations are the same as in FigureC.4. Note the difference in the x-axis for the chambers.



Figure C.9: Reconstruction of release #26 using aMLPmodel. Notations are the same as in FigureC.4. Note the difference in the x-axis for the chambers.



Figure C.10: Reconstruction of release #9 using 2nd degree polynomials. Notations are the sameas in Figure C.4. Note the difference in the x-axis for the chambers.



Figure C.11: Reconstruction of release #10 using 2nd degree polynomials. Notations are thesame as in Figure C.4. Note the difference in the x-axis for the chambers.



Figure C.12: Reconstruction of release #26 using 2nd degree polynomials. Notations are thesame as in Figure C.4. Note the difference in the x-axis for the chambers.



Figure C.13: Observed and modelled average CH4 mole fractions from the reference, denoted‘REF’, and low-cost sensor, denoted TGS, corresponding to the release #25. The reconstructedCH4was computedusing the polynomialmodel of 2nddegree. The index of the tripods is denotedas T-x and the average wind direction (θ) for the binning of wind sectors is shown on the top rightof each panel in red.

Figure C.14: Comparison of the emission rate estimates (Qe), location error (El) and relative erroron the rate estimates for the inversions assimilating the reference data and the reconstructionof the CH4 from the TGS low-cost sensor based on the Polynomial model of 2nd degree.
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