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Abstract

The railway world is undergoing major changes. The advent of new technologies allows us to
rethink the train system, but also face new challenges. The autonomous train is a significant
advance in the field, but one must not forget all the ecological constraints that are now
accentuated by the increase in energy costs. These issues raise a question: how can one make a
train run autonomously while reducing its energy consumption? Several ideas can be explored
to answer this question. This thesis work focuses on the optimization of the driver’s command
to limit the energy consumption of the trains. This problem is difficult to solve mainly because
of the complexity of the railway system, the large amplitude of uncertainties attributed to the
different model parameters, likewise, the importance of the constraints in the optimization
problem. This thesis work is based on these three axes.

Firstly, the train is a complex system whose dynamic behavior can be difficult to predict. The
construction of a rigid body model allows for describing the elements constituting the train
and all their interactions, but it is expensive to solve for long journeys. For this reason, the
longitudinal dynamics is often preferred when it is sufficient. The energy consumed by the
train must carefully be estimated as it constitutes a key element of this work.

The second point focuses on the identification of the model parameters. This covers both
models describing the dynamics and the energy consumption. But all trains do not behave in
the same way. Therefore, the use of the probabilistic framework allows us to depict all these
behaviors as much as is possible. The use of the Bayesian inference on a set of measurements
performed on commercial trains brings the model closer to physical reality.

Finally, the optimization problem is complex to solve. The optimization variables and the search
domain must be carefully defined with respect to the physical framework. A set of constraints
ensures safety, punctuality, as well as passenger comfort. The cost function must be close to the
industrial objective. However, all these quantities are random variables. For this reason, a robust
strategy has been set up to be able to take into account all the uncertainty related to the train
system. The optimal solutions obtained are compared with measurements from commercial
trains.



Résumé

Le monde ferroviaire est en pleine mutation. L’avenement de nouvelles technologies permet de
repenser le systeme du train mais aussi de faire face a de nouveaux enjeux. Le train autonome
est une avancée notable dans le domaine mais elle ne doit pas oublier I’ensemble des contraintes
écologiques qui sont aujourd’hui accentuées par I’augmentation des colits de I’énergie. Ces
problématiques soulevent une question: comment faire rouler un train de facon autonome
tout en réduisant sa consommation énergétique ? Plusieurs pistes peuvent étre explorées pour
répondre a cette interrogation. Ce travail de these se penche sur I’optimisation de la commande
du conducteur pour économiser 1’énergie consommeée par les trains. Ce probleme est difficile a
résoudre a cause de la complexité du systeme ferroviaire, de la grande amplitude d’incertitudes
attribuée aux différentes grandeurs du modele, ou encore de I’importance des contraintes dans
le probleme d’optimisation. Ce travail de these s’articule autour de ces trois axes.

Dans un premier temps, le train est un systeme complexe dont le comportement dynamique
peut s’avérer difficile a prévoir. La construction d’'un modele de corps rigides permet de
représenter les éléments constituant le train et I’ensemble de leurs interactions mais celui-ci
est coliteux a résoudre pour des trajets de grandes distances. Pour cette raison, la dynamique
longitudinale est souvent privilégiée lorsque celle-ci est suffisante. L’énergie consommée par
le train doit €tre estimée avec attention comme elle constitue un élément clé de cette recherche.

Le deuxiéme point se focalise sur I’identification des parametres du modele. Ceux-ci couvrent
a la fois des grandeurs décrivant la dynamique, mais aussi la consommation énergétique. Mais
les trains ne se comportent pas tous de la méme facon. Aussi, I’utilisation du cadre probabiliste
permet de représenter autant que possible I’ensemble de ces comportements. L’utilisation
de I'inférence Bayésienne sur un ensemble de mesures réalisées sur des trains commerciaux
rapproche le modele de la réalité physique.

Enfin, le probleme d’optimisation est complexe a résoudre. Les variables d’optimisation
ainsi que le domaine de recherche doivent €tre définis avec attention pour respecter le cadre
physique. Un ensemble de contraintes assure la sécurité, la ponctualité et le confort des
passagers. La fonction coflit doit s’approcher de 1’objectif industriel. Cependant, toutes ces
grandeurs sont des variables aléatoires. Pour cette raison, une stratégie robuste a été mise en
place pour étre capable de tenir compte de I’ensemble des incertitudes liées au systeme. Les
solutions optimales obtenues sont comparées avec des mesures de trains commerciaux.
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Chapter 1

Introduction

I.1 Industrial context and motivations

In recent decades, the world is facing new challenges. Among many, the environmental issue
is one of the most critical stakes. The transportation sector, as one of the largest energy
consumers, is particularly affected by these challenges. The demographic growth encourages
companies to modify their way of thinking concerning matters that involve transportation.
Momentum has further emerged as a credo. However, for this precept, it is difficult to comply
with the ecological challenges.

Railway transport is often associated with the top of the class due to its low-carbon emissions.
Still, the high-speed trains consume a large amount of electric energy compared with the
other types of trains. The recent skyrocket of the electric energy costs encourages the railway
companies to reduce their consumption. In this work, we focus on the running consumption of
trains. In order to limit it, three different levers can be activated.

First, the running environment of the train may be modified. Playing on the rail material,
protecting the vehicle from the wind, reducing the aerodynamic drag by creating an artificial
vacuum environment are few insights that could reduce the energy consumption. Nevertheless,
modifying the infrastructure on thousands kilometers does not appear to be a panacea due to
the important costs of constructing a new infrastructure.

Second, the vehicle itself can be redesigned. For instance, the shape of the train is slightly
transformed to reach better performance in terms of aerodynamics or traction chain efficiency
for instance. These modifications are not negligible but often limited due to the different
operational constraints.

Finally, the last levers is the driver’s behavior. This aspect seems to be relatively negligible
in appearance, but it has an impact on the energy consumption of the train as well. Indeed, a
previous work has shown that on the same high-speed line, energy consumption between the
different circulations could vary by up to 20 or 30%. Climatic conditions (wind, humidity)
can partly explain these differences in consumption, however, driving probably also plays an
important role. Thus, looking for the best driver’s command would be of great concern to
reduce the energy consumption of the trains.

13



The industrial motivations are twofold. First, minimizing the energy consumption is an ecolog-
ical stake. Second, it leads to important costs reduction involving economical motivations.

I.2 Scientific objectives

As explained in the industrial context, the aim of this work is to build speed profiles minimiz-
ing energy consumption. However, the driver’s command only plays a role on the traction and
braking forces applied to the train system. Consequently, the speed cannot be directly imposed.
Therefore, in contrast to other research, this work seeks to directly identify the driver’s com-
mand for a given environment 7 and a specific vehicle V. The problem that will be solved in
this work is thus written as follows,

{u'} = argmin F({u},T,V), (LD

{uleu
c({u},T,V)=0

with {u} the driver’s command, {F} the objective functional (linked to the energy consump-
tion), U the admissible set, c({u}, T, V) the constraint for a given driver’s command {u}, and
{u*} the optimal driver’s command.

Solving this problem presents several major scientific challenges. Firstly, the relation between
speed and the driver’s command that can be imposed on the dynamic system is complex. The
construction of a longitudinal dynamic model for high-speed trains has been developed to work
in concert with an energetic model. These models enable to calculate the train dynamics and its
energy consumption from the three entries:

* the environmental parameters, 7, are deterministic and describe all the exterior factors
that have an impact on the train system.

* the model parameters, V), are associated with the vehicle dynamics and its energy con-
sumption.

* function {u} describes the driver’s command.

The models are summarized in Figure[[.1]

Secondly, many sources of variability have an important impact on the train system (wind
velocity, temperature, humidity, number of passengers, wear state, ...). In particular, the model
parameters )V are subject to uncertainty. An identification of the model parameters is necessary
for updating the simulation models.

Thirdly, the sought driver’s command are functional. Therefore, the optimization problem to
be solved is very high dimensional (several hundreds). To this extent, numerical methods are
introduced to reduce the dimension of the problem and to solve it.

Finally, punctuality and speed limits are nonlinear constraints that are very sensitive to the
model parameters, which are subject to uncertainties. In summary, the problem to be solved is
a probabilistic optimization problem under nonlinear constraints and is in very high dimension.
A robust strategy is proposed to overcome these difficulties.

14



Driver's command

Environmental —> Train dynamics

parameters Train system

——— Energy consumption

Model parameters

Figure 1.1: High-speed train system: inputs, parameters, and outputs of the models.

I.3 State of the art

In the last decades, the optimization of the driver’s command has been studied from different
points of view. From the train-behavior modeling to the optimization of the driver’s command,
including the calibration of the models, numerous works have explored these railway fields.

Before trying to optimize the driver’s command, the train system has to be modeled properly.
Figure |[.1| presents the train system. As it can be observed, the entries (inputs and parameters)
play a crucial role in the modeling, as listed below.

* The train is very sensitive to the environment. The track and the wind are essential fea-
tures of the high-speed train dynamic modeling. The first one is described from its geo-
metric design (larger scale), and its irregularities (smaller scale). P. Aknin et al describe
this formulation in [1]]. The second one is decomposed into a mean part and a fluctuation
part for describing the turbulence. Both of them have different influences on the train
system depending on factors that want to be highlighted. Depending on the type of works
performed, the turbulence fluctuations are or not taken into account. In the context of
railway field, a wind model is proposed by H. Liu in [2].

* The second entry that cannot be neglected is the description of the vehicle. Few aspects
are discussed below, but it only represents a small proportion of all the complexity of the
train system. The design of the wheels is closely linked to the contact force. This force
is difficult to precisely measure on-track, that is why novel research focuses on their esti-
mation of by the use of force with neural networks [3]] or random walk methods [4]. Each
of the two levels of suspensions have to be modeled precisely to monitor their behav-
ior [5]. In case of wear, this mechanical behavior is modified, but the wear has to remain
acceptable. The traction chain is composed of many different components that is diffi-
cult to individually model. When focusing on the energy consumption of the train, this
aspect must be considered. In general, in the context of the energy consumption studies,

15



subjects such as the pantograph/catenary interaction or the acoustics are not taken into
account (we will use this assumption in our work).

* Finally, the driver’s command directly impacts the train dynamics. Two point of views can
be considered: the speed profile and the driver’s command. Both of them are connected
to the dynamic model. Estimating the speed profile from the driver’s command can be
achieved solving the train dynamics. On the contrary, determining the driver’s command
from the speed profile in inverse is much more difficult.

Once the entries are well defined, the train system can be modeled. Once again different
approaches can be highlighted. In railway domain, the multibody framework [6] allows us to
have a complete description of each component of the train. VAMPIRE® or SIMPACK® are
two examples of software, which are frequently used in railway dynamics. But this solution
might be relatively numerical time consuming as it results in solving six equations for each
rigid body. Another approach consists in observing the train system in the longitudinal to the
track axis. A complete overview is proposed by C. Cole in [[7].

Obtaining measurements is often expensive and these data are sometimes replaced by sim-
ulations. Consequently, the identification of the model parameters is generally necessary. It
allows for having an efficient representation of the real system. Two types of uncertainties can
exist in the models: the model parameters uncertainties and the model uncertainties induced
by modeling errors. For this reason, the uncertainty quantification must be taken into account
(see for instance, [8} 9, (10, [11} [12} [13]]). In the framework of railway systems, the Bayesian
inference has been used in [14,[15] to identify some parameters of prestressed concrete catenary
poles and of the suspension components. A. Dib et al proposed to use the Bayesian method for
predictive maintenance in [16].

Much works have studied the optimization of the driver’s command in railway field. From K.
Ichikawa [17], one of the first paper dedicated to this domain, different points of view have
been considered. For instance, several trains have been considered in [18]], the uncertainties
are included in the optimization problem in [[19]], [20], and [21]], multi-objectives are taken into
account in [22], [23], [24], and [25)]. They aim to reduce the energy consumption of the train,
to assure the punctuality, to maximize the passenger’s comfort, or the rail and rolling stock
wear for example. All these points of view modify the optimization problem depending on
the objective. These optimization problems can be solved with many different methods like
evolutionary algorithms [26], dynamic programming [27], pseudo-spectral methods [28], or
the maximum principle [29]] between others. The uncertainty also plays an important role in
the optimization under uncertainties and the use of general methods can be mandatory (see for
instance [30, 31} 132, 33],134, 35,136} 137]).

1.4 Positioning and novelty of the thesis work

The present work is innovative in several ways with respect to the state-of-the-art.

(i) First, the models are constructed to be as close as possible to the train system under
consideration. In particular, the use of the measured energy consumption has been favored
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instead of the electrical power. Indeed, it shows to be more performing due to the fact that the
models are constructed so as to estimate the energy and not the power. Many measurements
are involved to identify the model parameters of the inputs (track and wind) and of the vehicle.
These experimental data are processed to be usable by the models. For instance, an efficient
model of the traction and braking forces are constructed in order to well represent the real
capacities of the train. In particular, the energy efficiency model that allows for evaluating
the yield of the traction chain, has been constructed with the help of measurements. The ca-
pacity of the train to recover a part of the consumed energy is taken into account in an algorithm.

(i1) Second, the introduction of model parameter uncertainties is proposed for this railway
context. Two random vectors are introduced for representing model uncertainties induced by
modeling error. Their probability distributions are constructed by using the maximum entropy
principle from Information Theory. Their mean vectors and covariance matrices are calibrated
by using experiments.

(iii)) Then, the model parameters are calibrated using a methodology in two steps: first,
deterministic identification of the model parameters is performed, followed by a Bayesian
inference for estimating their posterior distributions. These two steps also identify the driver’s
command in inverse from the measured train speed profile. Note that the prior distributions
are constructed using an available information given by the train constructor. Note also that
the Metropolis-within-Gibbs algorithm has been preferred due to the unequal influence of the
uncertain parameters on the train system.

(iv) The optimization method is also very different from the one encountered in previous pub-
lished works. The driver’s command has been privileged to the speed of the train as the opti-
mization variable. Moreover, the constraints are related to the imposed time of the train arrival,
given position in space, zero speed at arrival, and the curvilinear speed limitation on the track.
A complete time discretization of the driver’s command is performed from the initial to the
final time and is represented by a driver’s command vector. Since the optimization problem is
in high dimension, a reduced-order representation is constructed using a Principal Component
Analysis. Integrating the uncertainty in the optimization problem introduces important diffi-
culties. A given deterministic driver’s command vector cannot respect the constraints for all
realizations of the uncertain model parameters. Then, a method has thus been developed to deal
with this difficulty. It consists in looking for the optimal driver’s command vector that is easy
to transform in another driver’s command vector respecting the constraints. The transformed
driver’s command vectors minimize the statistical mean of the energy consumption with respect
to the model parameters uncertainties. Roughly speaking, this transformation allows for man-
aging the final time, arrival position, and arrival train speed. The use of the Covariance Matrix
Adaptation - Evolution Strategy (CMA-ES) algorithm is also innovative to solve this kind of
problem. Finally, all the optimal solutions obtained are compared with measurements carried
out on commercial trains. This allows for validating the models and the identification methods,
but also to verify the good quality of the optimal solution.
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I.5 Outline of the thesis

This thesis is divided into three parts. Each of them answers to a specific objective that will be
used in the following sections. Overall, the chapters aim to construct a framework that can be
used to solve the issue.

First of all, Chapter [ focuses on the modeling of trains. A brief description of the environment,
the vehicle, and the driver’s command is given in Section [[I.T] The modeling of the high-speed
train dynamics is presented in Section Particular attention is paid to the modeling frame-
work. Section describes the energy consumption model. A sensitivity analysis is carried
out in Section and conclusions are drawn in Section A discussion on the modeling
choices is also given.

The third chapter deals with the identification of the model parameters. To this extent, two
different approaches introduced in Section are developed. The selection of the uncertain
parameters is performed in Section The identification of the experimental driver’s
command is realized in Section Sections and present the two steps of the
identification method evoked in Section[[.4l The first one lies on the deterministic identification
of the mean value of each uncertain parameters. The second one estimates their posterior
distribution using a Bayesian inference method. Section |[II.5|concludes on this chapter.

Chapter[[V] gives a robust answer to what this thesis aims to address, that is to say the optimiza-
tion of the driver’s command to limit the energy consumption of the train under constraints
and uncertainties. Its high dimension imposes the use of reduction methods (as explained in
Section that are presented in Section The impact of the uncertainties are described
in Section The optimization problem is formulated in Section before presenting
the methodology and the developed algorithms for solving it numerically in Section
The optimal solution is illustrated in Section Section gives a conclusion on the
optimization problem.

Conclusions, perspectives, publications and communications related to this work are presented
in Chapter [V]followed by the references in the Bibliography section.

The Appendix presents[A]the multibody approach for the train dynamic modeling, [B|]the CMA-

ES optimization algorithm, and [Clanother case that we have studied concerning the optimization
of the driver’s command for autonomous trains in a deterministic framework.
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Chapter 11

Physics modeling of high-speed trains

This chapter presents the mathematical/physical models of high-speed trains, which have been
constructed in order to represent the train behavior in a specific rolling environment and for a
given driver’s command. Effectively, the choice of optimizing the driver’s command instead of
the train speed profile requires to know the impact of the driver’s command on the train system.
In other words, this chapter gives an answer to the following question: how does the driver’s
command interacts with the train behavior? Section describes the environmental inputs,
denoted by 7, of the train system to have a better understanding on its whole complexity (green
box of Equation (II.T))). Then, the modeling has been separated into two phases. The first phase
details the scientific framework to construct the dynamic model in Section The second part
proposes an energy consumption model specific for high-speed trains in Section These
two models are useful for characterizing the constraints and the cost function (blue boxes of
Equation (IL.1))). A sensitivity analysis is carried out on a set of model parameters in Section|[I.4
Finally, Section concludes and discusses the modeling choices. For a fixed environment 7
and a given vehicle V), the general optimization problem is given by:

(w}Y= argmin |F ({u}, T ,v) . (IL1)

{u}eu

[l T Jv)=0

II.1 Description of the system characteristics

In the railway field, each "journey" is defined by a vehicle, moving in a specific environment,
with a determined driver’s command. Obviously, each type of vehicle has its own response to
an excitation track input. Effectively, a high-speed train will not behave as a regional or a fret
train. Moreover, each train of a given type has a proper mechanical behavior, which depends
on the wear state of the vehicle, the number of passengers, etc. The rolling environment also
plays an important role as it directly impacts the train dynamics. By rolling environment, we
can gather every element, which is exterior to the train system such as the wind or the track.
Without any doubt, the wind modifies the train dynamics especially for high-speed trains, for
which the aerodynamic forces play an important role. In the same way, the train behavior is
different if it moves on a high-speed track (designed with smooth curvature) compared to a
subway line. Finally, the driver’s command is chosen by the driver and defines if the motor or
the brakes are used. These three elements fully determine the entries of the train system.
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In the following sections, we describe each of these entries individually and the mathematical
representation we have proposed to model them. We particularly focus on the impact these
elements have on the train dynamics and on the associated energy consumption as these physical
quantities are crucial in this work.

II.1.1 Characterization of the rolling environment

The environment of the train plays an important role on its dynamic behavior. Clearly, the
wind has an impact on the aerodynamic forces applied to the train and the track modifies the
wheel/rail contact forces. For example, a strong headwind generates a higher resistant force
and thus increases the energy consumption of the train. In the same way, moving forward in a
positive track slope (or declivity) will impose to apply a higher traction force to compensate the
effect of gravity and consequently, the train will consume more energy. The environment of the
train also includes all the electric infrastructures. Indeed, the supply in electric energy may vary
from a track to another one depending on the position of the electric substations or simply on
the type of electric current provided (continuous or alternative). The three following paragraphs
present how each of these factors impacts the train system and how they are formally described.
The description of the whole rolling environment of the train is denoted by 7.

Description of the track

First of all, the train dynamics is strongly related to the track geometry and irregularities.
As a matter of fact, the wheels are in direct contact with the rail and every default modifies
the train behavior. In order to be able to precisely characterize the contact, the wheel, the
rail, and the track have to be modeled with attention. Each track is described by its geometry
and the defaults (irregularities). The geometry contains the information characterizing the
position of the mean line and the cant (also called superelevation). The position of the mean
line is defined by the vertical curvature (linked to the declivity) and the horizontal curvature.
The track cant describes the elevation of a rail over the other. This degree of freedom aims to
compensate a part of the centrifugal acceleration by elevating the exterior rail in curve. With
these three quantities, we are able to describe every possible mean line. The geometry defaults
are of four types. A vertical or lateral alignment irregularity corresponds to a vertical or lateral
displacement of the two rails compared with the mean line. The gauge default is a modification
in the distance between the two rails and the cant deficiency defines a variation of the elevation
of one rail compared with the mean line superelevation. These four quantities entirely describe
all the possible defaults of the track. They are represented in Figure [[I.1, The defaults are
correlated as long as one irregularity often leads to others. They can be described by random
variables as it is proposed by R.H. Fries et al in [38]]. Realistic tracks can even be modeled
by random fields as it has been developed by G. Perrin et al in [39]. The three quantities
defining the mean line and the four quantities characterizing the defaults are sufficient enough
to perfectly describe the track and its defaults. The defaults have an important impact on the
train dynamics, as it has been identified by G. Perrin et al in [40]. Moreover, they may vary
in time due to many factors. They have to be monitored with high precision as the dynamic
response of the train is very sensitive to their evolution [41]], [42].
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Figure II.1: Representation of the four types of track defaults (irregularities).

The defaults are frequently controlled thanks to specific vehicles, which estimate all the defaults
owing to mechanical or optical measurements. The fine description of the defaults is very
important for safety and comfort reasons, but they have a relatively low influence on the energy
consumption of the train and on the quantities of interest that will be analyzed in this work.
For this reason, we choose to neglect the defaults and only consider the mean part of the track.
Denoting by s the curvilinear position on the track, the track is composed of the curvature,
defined by the curve radius » = {r (s),s € [ss, sf|}, and the declivity, characterized by the
slope § = {6 (s),s € [ss, sf]} (quantifying the elevation distance of both rails per meter). A
curvilinear speed limitation is also defined on each track to assure the security of the journey.
It is written as a function v = {v™*(s), s € [s, s¢]} in the remaining part of the document.
This speed limitation, which depends on the curvilinear position on the track, is represented in
Figure [[T.2]for the French LGV Rhin-Rhone as an example.

We can observe that there are relatively few parts of the journey with a specific speed limitation
apart from the starting position of the line. The curvature, which is the inverse of the curve
radius, and the declivity (represented here by the altitude for more clarity) are much more
perturbed. For a track characterized by 7T, the altitude 2" = {2%(s),s € [s,s;]} can be
calculated from the slope # thanks to the following equation,

2 (5) = /S 6 (5,7)d5+ 2" (s,), (IL.2)

in which 2%!(s,) = 0 is the altitude at the starting point. They are discretized on 1-meter-long

intervals. This choice allows a good representation of the track geometry for the need of this
work.

Wind characterization

The second factor of the rolling environment that has an important influence on the train
system, and especially on the energy consumption, is the wind. It can be decomposed into two
quantities: the mean velocity vector ¥ at point P (direction and amplitude) and the fluctuation
part [43] of the turbulence V*® at point P. Consequently, the total wind speed V¥ is written,
at time ¢, as

VY (t) = % () + V(1) . (I1.3)

The mean part of the wind can be measured with accuracy and strongly impact the energy
consumption. It is specific at each position and time. Consequently, it has to properly be
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Figure I1.2: Speed limitation, curvature, and declivity of the LGV Rhin-Rhone depending on
the position. In this thesis, most of the axes of the figures shown are hidden for confidentiality
purposes.

represented at each position on the track and at any time during the journey. As mentioned
in Chapter [, the turbulence part has no significant effect on the energy consumption, and
consequently its model is not necessary.

In this work, we have at our disposal predictions of the mean wind velocity in the region
concentrated around the French LGV Rhin-Rhone track. The wind speed profile is then defined
as the values of the mean wind velocity projected on the longitudinal track axis. These forecasts
are estimated by the French meteorologic Meteo-France company. They are performed once
every hour on a grid of 40 points for each longitude and latitude degree. For the studied area
(around the LGV Rhin-Rhone), it represents around 2 000 points. This grid is interpolated at
each needed track position as follows: at each point of the track P, four closest prediction points
are extracted. We call them Py, Prr, Py, and Pyg, the first letter standing for the vertical or
latitude position (L for lower and U for upper) and the second for the horizontal or longitude
position (L for left and R for right). We write zp and yp the normalized relative longitude
and latitude of P. Both quantities take their values in [0, 1]. For example, {zp = 0,yp = 1}
corresponds to the point F;. Schema represents the four selected prediction points and
the associated normalized coordinates xp and yp. With these notations, we have proposed to
interpolate spatially the mean wind at a current time ¢ thanks to the following equation:

op (1) = (1 —xp) (1 —yp) Op,, (t) +2p (1 = yp) Op,, (1) + (1 — zp) ypvi,, ()

—w (I1.4)
+ xpypop, . (t) .
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Figure I1.3: Scheme describing the interpolation - The red dots represent the track, and the black
dots represent the prediction points provided by Meteo France.

Equation gives a linear approximation of the wind velocity along the track from the pre-
diction grid. The aerodynamic forces depend on the relative wind velocity. Consequently, we
have to project the wind velocity on the longitudinal track axis. To do so, we simply calculate
the rotation angle between the track referential and the Cartesian referential. As we only have
access to the longitudinal/latitude coordinates of the track, we propose to evaluate this rotation
angle ap at each point P on the track from the longitudinal/latitude of the previous and follow-
ing points P — 1 and P + 1. It is equal to O by default when the track is vertical through the
positive latitude. We write xp, ;1 and yp; the longitudinal and latitude coordinates of the point
P+ 1. xp_4 and yp_, are the longitudinal and latitude coordinates of the point P — 1. If the
track is perfectly horizontal, that is to say xp,; = xp_1, two cases exist: if ypy 1 > yp_1, we
define ap = 0, otherwise, ap = m. When the track is not horizontal, with xp,; > xp_1, the
angle ap is given by:

ap = arctan (M) + T . (I1.5)
Tpy1 — Tpoy 2
In the other case, that is to say for zp.1 < zp_1, the angle ap is given by:
—Yp_ 3
ap = arctan (M> + on . (I1.6)
Tpy1 — Tpo1 2

Equations and give the angle ap for every point P on the track. It is included in the
interval [0, 27r|. Consequently, the wind speed at point P projected on the longitudinal to the
track axis v can be written

| b= Iop @llsinGar) . | )

With these notations, v!(t) is a deterministic scalar variable attached to a specific point P and
it depends on time. It is positive for a tailwind and negative for a headwind. The lateral wind
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can also be estimated with the same method, but it will not be used in this work as it does not
impact the energy consumption in comparison to the longitudinal wind. Figure [[T.4]represents
the cartography of one prediction grid associated with a given time ¢ provided by Meteo France
(in colors) and the projection on the track v}5(¢) (in black and white).
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Figure I1.4: Wind cartography and projection on the French LGV Rhin-Rhone track of its am-
plitude.

We can observe that the method presented before is efficient as the projection is positive when
the wind "pushes"” the train and is negative when it acts as a resistant force. It is around zero
when the wind is perpendicular to the track. We also notice that the sign of the projection
can vary depending on the curvilinear position. In Figure [[[.4] it can be seen that it is mainly
positive at the beginning of the segment and is negative on the final segment.

Regarding the time discretization, we only have one prediction each hour. As the number of
time for which the forecast is available is very small, we choose not to interpolate in time as
we did spatially, because it would probably yield a nonrepresentative result. Consequently,
we prefer to select the closest time forecast and to consider it as constant during the journey.
In practice, with more forecasts, it is possible to give a better time description of the wind.
Therefore, the wind speed projected on the longitudinal track axis only depends on the position
on the track and not on time anymore. In the following sections, we prefer to denote the point
P in the rolling environment 7 by its curvilinear abscissa s, and thus v'3 is rewritten v* (s, T)
along the track. This quantity can be used to estimate the aerodynamic forces applied to the
train, as it has been done in Section |I1.2.
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Electric energy supply

Between the electric transport network and the pantograph of the train, the electric energy
passes through a substation, which provides electricity to the catenary. The substation positions
are specific to every tracks. They have an impact on the available electric energy. Indeed, if
the train is far from the closest substations, less energy is available, which can result in the
limitation of the usable traction power. This constraint could have been implemented but, in
this work, we assume that the maximum traction power available is only limited by the motor
capacities.

In France, two types of electric energy supply are possible. On the one hand, the high-speed
tracks are all supplied by alternative current (voltage 25kV and frequency 50H z). The same
electrification type is present in most of the "classic" (regional) tracks of the south of France.
On the other hand, many tracks of the north part of France are electrified with continuous
current (voltage 1500V"). This organization results from the historic construction of French
railway tracks. Figure [[L.5| represents the organization of electrification of the French railway
network. In this work, we propose to study the TGV Dasye on the LGV Rhin-Rhone, which is
only supplied by alternative current.
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Figure I1.5: Map of the types of electrification of the French railway network.

These aspects (positions of the substations and type of electrification) are discussed by R.
Bosquet in [44] but will not be considered for reasons of simplicity.
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II.1.2 Description of the vehicle

Another entry of the train system is the vehicle. All vehicles do not have the same reaction
to a specific environment. It depends of course on the composition of the train but also on its
wear state. In fact, the train is a complex nonlinear system, and the slightest change can modify
its entire dynamic behavior. Most of commercial trains, and especially the high-speed train
TGV Dasye, are composed of three different components: the wheelsets, the bogies, and the
cars. All these components are linked to the others by nonlinear suspensions (spring, dampers,
bushes, bump stops, etc.). The suspension design plays a specific role to assure comfort and
security of the passengers. We can also dissociate the motor car from the other cars of the train.
In practice, a French TGV Dasye is composed of two motor cars (situated at each extremity of
the train), six passenger cars, four motor bogies (two for each motor cars), nine trailer bogies
(some of them being shared by two cars), eight motor wheelsets, and eighteen trailer wheelsets.
All these components and the suspensions have their own reactions to a given environment,
which is difficult for even the most precise prediction.

The dissociation between motor or trailer components is also important to describe the traction,
but also for the braking, as long as French high-speed trains have two different types of
brakes. The first one, called the mechanic (or pneumatic) brake, relies on the friction of
brake shoes on the braking discs present on the wheel axles. The second type of brake, the
electrodynamic (also called dynamic) brake, corresponds to the electric inversion of the motors,
which transforms the mechanic energy in electric energy (instead of the opposite in traction
mode). Consequently, it is able to recover a part of the energy lost during braking, which
will be reinjected in the catenary in order to be used by other trains. The maximum motor or
braking capacities of each wheelset depend on the train speed. They can be expressed thanks to
a torque applied to the wheelset, but in practice, we directly convert it in a longitudinal force,
positive for traction and negative for braking. This conversion is possible if we treat the entire
train as one element supposing that the forces are equally distributed to each type of wheelsets.
Figure represents the maximum longitudinal traction or braking forces that are available
for a given train speed.

We can observe in Figure that the motor and trailer wheelsets have their proper traction or
braking capacities. These maximum capacities are nonlinearly dependent on the train speed
and are specific to each type of train. For instance, the pneumatic braking of motor wheelsets
is equal to zero at high speed. These specific capacities should be taken into account in the
high-speed train dynamic model so as to have an accurate representation of the traction chain
and of the brakes. In practice, the traction or braking forces are equally distributed between all
types of wheelsets in order to limit the efforts between cars.

The train dynamics is moreover strongly linked to the wheel-rail contact. This contact is
very complex to model because of the shape of the two surfaces in contact. In France, the
most popular shape for the rail is the Vignole rail and it is inclined to 1/20. The wheel is not
cylindrical, as cars, but is slightly conical. This shape allows a good curve inscription and the
recentering of the wheelsets in the track.

Finally, the shape of the train has an influence on the aerodynamic forces and is thus designed to
reduce the drag force. The shape is however constrained by the gauge, different in each country.
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Figure 11.6: Longitudinal forces available for the motors and the brakes in function of the train
speed for the French TGV Dasye.

This section was dedicated to the description of the main characteristics of the rolling stock.
They are not going to be defined in detail as they are not directly linked to the main matter of
the work, meanwhile understanding the complexity of the train system is unavoidable. In the
following sections, we write V' all the parameters that describe the vehicle. Other parameters
(like the mass of the train) depend on ), but to simplify the notations, we propose to include
them as well in V. This is the case of the mass of the train, the auxiliary power, the three
Davis coefficients, and the four efficiency parameters that are going to be described in the next
sections. These parameters may be submitted to uncertainty, as we often do not know the exact
wear state of the train or the exact number of passengers for instance. Consequently, we can
consider that )V gathers random variables to take into account these uncertainties.

II.1.3 Representation of the driver’s command

The traction and braking applied to the train system are chosen by the driver through the driver’s
command. It is a manipulator, which can take any value between the maximum traction or max-
imum braking torque. As these values depend on the speed of the train (as shown in Figure [[I.6)),
we propose to normalize them and to write the driver’s command as a time-dependent variable
taking its value in the interval [—1, 1]. Consequently, —1 corresponds to the position of the ma-
nipulator, which represents the use of maximal braking torque. On the opposite side, 1 stands
for the position of the manipulator corresponding to the use of maximum traction torque. The
driver’s command is written {u} and is defined by:

{u} = [ts, 1]

%
IR (IL.8)
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where ¢, and ¢, are the starting and final time. If u(¢) < 0, the train is braking at current time ¢.
On the other hand, a positive value of u(t) is equivalent to the use of the motors for the traction
at current time ¢.

The train dynamics at a given instant ¢ is dependent on the actual value of the driver’s command
u(t), but also on all the previous values {u<;} as the state of the system is strongly dependent
on the previous states. For instance, braking when the train is already stopped does not have
the same effect that braking when the train is at full speed. The notation {u<;} refers to the
values of the function {u} before time ¢. In other words, {u<;} = {u(7);ts < 7 < t}.

As explained in Section we prefer to convert the traction and braking torques in traction
and braking longitudinal forces. To do so, we suppose the wheel radius constant. But the
wheels are conic and might be damaged. This simplification gives a good estimation if we
consider the mean over all the wheelsets. Consequently, u(t) corresponds to the proportion of
the maximum of longitudinal traction or braking force injected in the train system at time ¢.
Function {u} belongs to the space of continuously differentiable functions, since the physical
quantities associated with the driver’s command are also continuously differentiable.

IL.2 Construction of the train dynamic model

Once the entries are properly represented, that is to say, when all the environmental factors are
well defined, when the vehicle is precisely described, and when the driver’s command has been
defined, the train has a deterministic dynamic behavior. This dynamic behavior is complex,
and the use of simplifications might be useful to model the train system. These simplifications
introduce a model error, which should be monitored in order to preserve the realistic character
of the representation.

The developed computational model has to be sufficiently precise and with a small numerical
cost, which allows the quantities of interest to be extracted. In this work, we take into account
the longitudinal traction and braking forces and the train speed in order to calculate the energy
consumption of the train (as it is the quantity we are going to minimize). Consequently, the next
sections propose a dynamic computational model to describe the train mechanical behavior. In
particular, Section[[I.2.1]|focuses on the choice of modeling framework, as several points of view
can be adopted. The external forces are then presented in Section Finally, Section
proposes an expression for the longitudinal dynamic equation that is going to be used in the rest
of the work. The train speed and its position are very important to estimate the constraints. For
instance, the punctuality constraints (defined in Section verify if the train arrives at the
exact position, at a given final time, and with a given speed (that will be zero).

II.2.1 Choice of the modeling framework

The first step of the modeling is to choose an appropriate framework. Without any doubt,
we could model the entire train, take all the components apart, and choose complex models
to represent all the interactions between them. An overview of many dynamic phenomena is
proposed by G. Boschetti in [45]. Nevertheless, it is not always the best choice as it may lead
to an important calculation time. Essentially, calculating with a high precision the deformation
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of one wheelset may be useless if we focus on the energy consumed by the train. To this extent,
two approaches are frequently used in the literature.

For the first approach, the rigid body framework proposes to consider each component of the
train (cars, bogies, and wheelsets) as nondeformable bodies, and attention is only paid to the
internal interactions (suspensions) and to the external interactions (with the environment).
An example of this approach is given by N. Bosso et al in [46] to represent the whole train
dynamics. This point of view presents the advantage of neglecting the deformation of the
car bodies, the bogies, and the wheelsets (which are of little importance in this work), while
preserving a good precision by modeling the nonlinear suspensions. The dynamic equations
can directly be expressed from the Lagrangian equations. Some industrial software has
already been developed to solve these equations and are adapted to the railway system such as
VAMPIRE®. Nevertheless, the calculation time is around one minute for long journeys, which
is relatively important for solving the driver’s command optimization problem.

The second approach is to consider the train as one element. The internal interactions are con-
sidered constant and the whole train behaves as one rigid body. Consequently, the problem is
simplified as only the external interactions impact the train dynamics. This method is presented
by Q. Wu et al in [47]. This approach is linked to the previous one as it is demonstrated in
Appendix |Al Moreover, understanding the connection between the two allows us to have a
better idea of the hypotheses that are necessary to proceed from one approach to the other. This
method considerably reduces the calculation costs as the dynamic behavior is summarized in
one longitudinal equation.

In this work we choose to use this second approach because it accelerates the calculation without
significantly affecting the estimation of the quantities of interest: energy consumption, speed
profile, and position of the train.

I1.2.2 Description of the external forces

We take into consideration a train running in a rolling environment 7, with a well described set
of parameters V), and a given driver’s command {u}. This train goes from a starting point s to
a final point s (position of the train stations). The departure and arrival times are denoted by 7
and t (scheduled by the railway operator except if we consider the case of delayed journeys),
and the initial and final speeds are v and v (zero as the train arrives at a station).

We highlight here that, in this work, a duality exists between time and position as we mainly
work on the speed profile of the train. Some figures represent the speed profile of the train and
its energy consumption depending on time to verify the departure and arrival time, but others
represent the same solution plotted against position to compare the speed profile together with
the speed limitation. The two quantities are directly linked.

During the journey, the train moves along the track with a specific longitudinal position
y({u},T,V), speed y ({u},T,V), and acceleration 3 ({u},7T,V). These time dependent
functions depend not only on the actual value of the driver’s command, but also on the pre-
vious instants. At a given time ¢, the longitudinal position and speed are thus written as

29



y(t) =y t{uat, T.V) 9 (t) =gt {u}, T, V) (IL9)

The complete dynamic solution is written as

S{u}, T,V) ={y({u}, T,V), 5 ({u}, T.V), 4 ({u}, T, V)} .

This dynamic solution is specific to the driver’s command, the rolling environment, and the
vehicle. With these notations, modeling the train longitudinal dynamics requires to estimate
all the forces applied to the train system. Some interactions are difficult to model, such as the
friction forces. The traction and braking forces are very important as they directly come from
the driver’s command. Finally, the weight of the train also has an important impact.

Friction forces

First, the aerodynamic forces are quite difficult to represent as the shape of the train is very
specific, especially for high-speed trains, for which the prediction with computational fluid
dynamics is not so easy. Some works focus on the wind effects such as X. Quost in [48]], with
the intention of modeling the rollover of a train caused by strong wind.

In the same manner, the wheel-rail contact forces are nonlinear and difficult to model. The
Hertzian contact, proposed by H. Hertz in [49], combined with Kalker’s theory [S0]], estimates
the lateral contact forces, and is often used in the railway domain. These contact models need
the exact geometry of the rail as well as the wheel of the train, but also many other parameters
such as the air humidity and the friction coefficient between others. These models allows us to
have a precise idea of the wheel-rail tridimensional contact and of the associated efforts. An
example of the application of these theory applied to the railway system is given by B. Pecile
in [51]].

As we have previously explained, we assume that only the mean speed of the wind has an
influence on the consumed energy for a complete journey. The average wind on the track is
estimated in Section Therefore, we do not model the tridimensional aerodynamic and
contact forces, but only the longitudinal drag and contact forces, as it fits with the chosen ap-
proach (longitudinal dynamics for the whole train). The Davis forces, first proposed by William
J. Davis in [52], are a well-known simplification often used in railway literature, which approx-
imate the longitudinal friction forces applied to the train with a relatively simple expression.
The longitudinal friction force f applied to the train at a given time ¢ is estimated by:

R0 (), 7),V)=aV) +0(V)§ () +c(V) (5 () — v (y (1), T))

) (I1.10)
yt)—v"(y (), T)
In this expression, v is the mean wind speed, the coefficient ¢ refers to an aerodynamic
coefficient, the coefficient b is associated with the dynamic friction, and the coefficient a refers
to the static friction. Thus, a and b correspond to the longitudinal contact force and c to the
longitudinal aerodynamic force applied to the train. These three coefficients are provided by
the train manufacturer for each type of vehicle. The friction force depends thus on V.
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The term y (t) — v* (y (t),T) represents the longitudinal relative train speed with respect to
the wind speed. When the wind "pushes" the train at a position y (¢), the associated average
wind speed v" (y (t),T) is positive (as explained in Section . Hence, the square term of
Equation (II.10) is lower, that is to say the resistance force is lower. Finally, the aerodynamic
part of Equation (II.T0) is written with only one absolute value of the relative speed, so that
this term can be negative in case of a train speed y (¢) smaller than the wind speed v* (y (t), 7).

This approximation of the longitudinal friction force can be discussed as it is a very simpli-
fied model, but yet allows us to estimate this force without going through the use of complex
models. In practice, it has been observed that the friction force is higher in curve, where the
wheel-rail friction is higher. Consequently, we propose to use a corrective term also frequently
met in the railway literature. This corrective term depends on the mass of the train, as the fric-
tion force in the curve is not the same for heavy trains than for light ones, but it also depends
on the curve radius of the track r, as the friction is higher in tight curves. For this reason the
corrective term ¢ is conveyed depending on the specific curve radius at the train position. f¢
is generally written

K (V)
ry(t),T)
where m (V) is the mass of the train. It can be considered as a random variable because the
exact mass of the train is unknown due to the number of passengers, which is not precisely
known. The coefficient k© is estimated by the train manufacturer for each specific vehicle V, g
is the gravity acceleration, and r is the curve radius of the track.

fFCy@), T,V)=m(V)g (IL11)

Equations and give an estimation of the longitudinal friction force applied to
the train. Nevertheless, the friction is nonlinearly dependent on the train speed because of the
aerodynamic term. The Davis approximation and the choice of the values for the coefficient a,
b, and c is detailed by G. Boschetti et al in [S3]].

Traction and braking forces

The second group of forces, which has a great influence on the train dynamics, is the
traction and braking forces. These forces are applied by the motors and the brakes directly to
the motor or carrying wheelsets as a torque whose amplitude is defined by the driver. Here,
we suppose that all the motor torques are transmitted to the contact. Consequently, it can be
converted in a global longitudinal traction or braking force applied to the whole train system.

For a given train speed, the maximum traction or braking force available is specific to the vehicle
V. The forces for the French TGV Dasye are shown in Figure We write the maximum
traction (resp. braking) force available 7™ (y (¢),V) (resp. f2™ (y(t),V)) and it simply
corresponds to the sum of the maximum traction (resp. braking force) available over each
motor (resp. brake). In this case, we need to call to mind that some trains have several types of
brakes. The TGV Dasye combines both mechanical and electrodynamic brakes. Consequently,
the maximum braking available is the sum of all the kind of brakes that can be found in the
train,

FEmT (g (), V) = A (G (t), V) 4+ 5 (g (1), V) (IL.12)
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where fMmar and fPma* denote the maximum braking force available from mechanical and
electrodynamic brakes. As it is explained in Section the traction and braking forces are
equally distributed over each type of wheelsets to limit the efforts between cars. Thus, the
maximum traction, mechanical and electrodynamic braking forces are equivalent to the unitary
capacity available on one wheelset (which can be read in Figure [[1.6)) multiplied by the number
of wheelsets having the ability to tract or to brake by mechanical or electrodynamic equipment.

The driver’s command is defined as the proportion of the maximum traction or braking
force used. At time ¢, if u(t) is positive, the braking force is equal to zero and only traction is
used. On the opposite, if it is negative, only braking is used, and the traction force is equal to
zero. With these notations, the longitudinal traction and braking forces f7 and f? are given
(due to the normalization of u(t) in [—1, 1]) by:

T u(t) fmee (4 (1), V) ifu(t) >0,
13 t = . I1.13
.. ={ § o 13
_ 0 if u(t) > 0
B
t t = . . .14
PR @), u(), V) { u(t) fBmar (4 (), V) otherwise. L1
= Traction and braking forces (0 km/h) Lestt
7 Traction and braking forces (100 km/h) | LT
- Traction and braking forces (200 km/h) | | L.nt ket
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Figure II.7: Longitudinal traction and braking forces applied to the train depending on the
driver’s command for several train speeds.

Figure [II.7| represents the longitudinal traction or braking force applied to the train at a given
time ¢ depending on the driver’s command u(t) for several specific train speeds (0, 100, 200,
and 300km/h). We can observe that the traction or braking force applied to the train is not
differentiable at u(f) = 0 for a constant train speed, because this driver’s command is the
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interface between the traction and the braking models. When the driver’s command is positive,
it quantifies the proportion of maximum traction used, whereas it describes the proportion
of maximum braking when negative. Moreover, if the speed of the train is not constant, the
maximum traction or braking available also changes, despite a constant driver’s command.
For u(t) = —1 or u(t) = 1, the equivalent longitudinal force is the sum of all the braking
or traction forces available at each wheelsets (represented in Figure [[I.6). The traction force
available decreases with the train speed, which is logical according to Figure The same
analysis with the braking force is not that simple. Indeed, some wheelsets are only equipped
with pneumatic braking and others with dynamic braking.

All these reasons highlight the fact that even if the mathematical representation of the driver’s
command is relatively simple (linear proportion of the maximum force available), the resulting
longitudinal force is quite complex. It essentially depends on the train speed and the force is
not differentiable.

Weight

With respect to the impact of the track declivity on the energy consumption, the weight of
the train has no impact on a flat track because it is perpendicular to the train movement. In case
of a ramp (positive declivity) or a slope (negative declivity), its projection on the longitudinal
axis is not equal to zero and has to be taken into account. In case of a ramp, the weight has a
negative resulting force once projected on the longitudinal to the track axis: it pulls the train
backwards. For a negative declivity (slope), the projection of the force is positive, and the
weight helps the train to move forwards. The projection of the weight on the longitudinal to the
track axis f" is given by:

Yy ), T,V)=—m(V)gsin (arctan (6 (y (t), T))) . (II.15)

For instance, if the track declivity is equal to 1 at a given curvilinear abscissa, that is to say a
ramp of 1 meter per meter advanced, the associated track angle has to be equal to arctan (1) =
7. For such a declivity, the projection of the weight pulls the train backwards. Thus, the
projection of the weight has to be negative, (negative sign in Equation (IL.15])). This equation

also shows that this force is dependent on the train position.

I1.2.3 Longitudinal dynamics for high-speed trains

As we explained in the previous section, we only consider the train longitudinal dynamics of one
train. Details on the hypotheses and the developments used to extract the longitudinal dynamics
from the multi-body approach are provided in Appendix |Al In this section, we only highlight
the resulting dynamic equation, which will be used in the next chapters, and which is written as

m(V) kmty (t) = fT(y (t> ,u(t),V) - fB(y (t),u(t),V)
— @), @), T),V) =y @), T,V)+ Yy, T,V),

(I1.16)
for t € [t4,t/] and with initial Cauchy conditions. It is assumed that for given u, 7, and V, and
without constraints, this nonlinear differential equation has a unique solution. The left-hand
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side of Equation represents the inertial term, including the rotation of the wheels thanks
to the corrective factor k™. In the literature, we often find £"°* = 1.04 (the explanation of this
value is given in the development made in Appendix [A). The right-hand side stands for the
external forces applied to the train. We recognize the forces previously listed, that is to say
the traction and braking forces (which depend on the driver’s command), the resistant force
(estimated thanks to the Davis equation (II.10)), the corrective term applied in curves, and the
weight of the train projected on the longitudinal track axis.

From the entries and driver’s command presented in Section Equation allows us to
simulate the complete longitudinal dynamics of the train. In practice, we are mostly interested
in the train speed and the train position, as well as the traction and braking forces. Surely,
these quantities are the key to compute the energy consumed by the train, while verifying all
the constraints linked to the train system (which will be described in Section [V.2.T).

I1.3 Definition of the energy consumption model for the train

Once the longitudinal dynamics of the train is defined, we have to construct an energy model to
compute the energy consumption of the train. It depends on the driver’s command and is directly
linked to the train dynamics. Therefore, the train speed is required to estimate the energy
consumption. In the next subsections, we propose to present the energy consumption model.
We begin by describing the auxiliary power in Section before presenting the energy-
efficiency models in Section Section focuses on the whole energy consumption
model.

I1.3.1 Description of the auxiliary power

The electrical power transmitted to the train system has several distinct uses. Obviously, a major
part is used by the traction chain to assure the train motion, but a second part is transmitted to
the auxiliary equipment of the train. These equipment assure the security of the train by the use
of different air-cooling systems that guarantee the proper functioning of the traction chain. They
also assure the comfort of the passengers thanks to the combination of the air conditioning, the
provision of electrical outlets, the lights, etc. The electrical power transmitted to the auxiliary
equipment is called the auxiliary power and is denoted by p®. It depends on V. The electrical
power transmitted by the catenary is denoted by p* and is such that:

P (@ () ut), V) =p" (5 (t),ul),V) —p” G (), u(t), V) +p" (V) , (IL.17)

where p’ is the electrical power estimated during traction phases, and p? is the electrical
power recovered by the braking (this explains the minus sign). The recovered energy returns
to the electrical network by the catenary. Consequently, we assume that the energy recovered
by the braking is fully used, that is why we simply remove it from the electrical power
(Equation ([[.17)). During traction phases, the recovered energy is equal to zero and p? = 0
and during braking phases, the traction chain does not consume energy and p? = 0.

The term p® is not a constant, as it depends on the outside temperature (as it is linked to the use of
air conditioning), on the number of passengers (as it is linked to the use of the electrical outlets),
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and on the driver’s command (as it is related to the use of the air-cooling systems). Nevertheless,
in this work, we consider p® as a constant (variations sufficiently small). A first estimation of
the value of the auxiliary power is performed by estimating the energy consumption of the train
when it is stopped. This estimation does not include the electrical energy consumed by the air-
cooling systems. For this reason, we consider that p® is not perfectly known, and its uncertainty
will be taken into account in Chapter [TI]

I1.3.2 Construction of models representing the energy efficiency

All the electrical power transmitted to the traction chain is not converted in mechanical power.
A part of it is lost due to the friction effects and the heat dissipation of the traction chain
components. In the same way, all the mechanical power lost by the electrodynamic brakes
is not recovered. More precisely, the traction efficiency, n’, is defined by the proportion of
electrical power that is effectively converted into mechanical power during traction phases. On
the opposite side, the braking efficiency, n”, describes the proportion of mechanical power that
is injected in the catenary. An example of a 2D-plot of traction efficiency of a French regional

train is given in Figure

=

Force (kN)

0.78

Speed (km/h)

Figure I1.8: 2D-plot of the efficiency of the traction chain of a French regional train, according
to M. Debruyne [54]).

We can notice that the efficiency is not constant. It depends on the train speed, but also on the
driver’s command itself. As we do not have access to the equivalent 2D-plot for high-speed
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trains and we do not have information on the braking efficiency, we propose to construct two
models, which is inspired from Figure [I.§] Even if the traction chain is responsible for the
traction and braking efficiency as it converts electrical power into mechanical power (or vice
versa during braking), there is no reason for the two efficiencies to be equal. Nevertheless, we
consider that they can be approximated with the same model, but with different values for the
parameters. Regarding Figure we propose an affine function of p” and p? respectively for
n” and n?,

0" (1), ut), V) =a, V)p" (§t),ut),V)+b, V), (IL.18)

7 (G (), u(t),V) = ¢, V) p” (1) ,ut), V) +dy (V) | (IL.19)

where a,, b, ¢, and d,, are four parameters that have to be indirectly identified using informa-
tion on the electric energy, except that the global efficiencies are included in [0, 1]. As a first
approximation, we propose to define the values for these parameters by imposing the boundary
values of the 2D-plot in Figure [[L.§] With these values, the simulated 2D-plot is represented in
Figure

Approximated efficiency

0.88

Force (kM)

076

Speed (km/h)

Figure I1.9: 2D-plot of the efficiency of the traction chain simulated.

The 2D-plot boundary values are similar in the two figures. Even if the 2D-plot are not exactly
the same, we consider these models sufficient as a first approach. However, uncertainties will be
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implemented for these four parameters and will be identified in Chapter [Tl With these models,
we can estimate the electrical power p? and p? during traction and braking phases, which are
such that:

' (G (), ult), V)p (5 (), ult), V) = (5 ), ult), V)5 1), (I1.20)
p? (5 () u(t), V) = 0" (5 (t) ,u(t), V) fE(5 (8) ,u(t), V)5 (¢) (IL.21)

where f¥ is the longitudinal electrodynamic braking force. Note here that the traction and
braking efficiencies are defined by two different points of view. On the one hand, the traction
efficiency describes the quantity of electrical traction power converted into mechanical power.
On the other hand, the braking efficiency is defined in inverse, that is to say the quantity of
mechanical power that is injected in the catenary. For this reason, the inverse of the traction
efficiency is used in Equation (II.20), and the braking efficiency is directly used as it is in
Equation (I.21)). This choice of notation is justified so that the efficiencies are always included
in [0, 1]. The electrical power is estimated multiplying the longitudinal force (traction f7 or
braking f?) by the train speed ¢ (#) and applying the traction or braking efficiency presented in

Equations (LI.18) and (1I.19).

I1.3.3 Energy consumption for high-speed trains

For a given driver’s command, we can solve the train dynamic equation, and estimate the as-
sociated train speed. From these quantities (train speed y and driver’s command {u}), we can
estimate the traction and braking efficiencies (Equations and ([I.19))), which allow us
to calculate the traction and braking powers from Equations (I[.20) and (IT.21). Then, Equa-
tion (IL.17/) can be used to estimate the electrical power. The energy consumed by the train,
noted F in the following, is simply the integral over time of the electrical power. Consequently,
it is given by:

F(y,{u},V) = /t ' P (y (), u(t),V)dt. (I1.22)

As the train speed also depends on driver’s command {u}, rolling environment 7, and vehicle
V, we propose to rewrite the energy consumption as a function of {u} and V: F (y,{u},V) =
F ({u},T,V). This model allows for estimating the energy consumed by the train for a given
driver’s command {u}, a specific rolling environment 7, and vehicle V.

II.4 Sensitivity analysis

The dynamic and energy models defined before are very sensitive to driver’s command {u},
rolling environment 7, and the train characterized by V. The system scheme of the model is
summarized in Figure We propose to analyze the sensitivity of the two models for a
subset of the parameters gathered in V. These parameters include both dynamic parameters,
as train mass m, Davis coefficients a, b, and ¢, but also energy consumption parameters, like
auxiliary power p“, traction efficiency parameters a,, and b,, and braking efficiency ¢, and d,,.
Figures to represent the impact of a variation of £20% over each model parameter
(taken one-by-one) on the dynamic model (on the left) and the energy consumption model (on
the right). Equations ([I.16]) and (II.22)) are numerically solved for a given environment 7 (the

37



French LGV Rhin-Rhone track), a specific vehicle characterized by V (the French Dasye high-
speed train), and a driver’s command {u} that is identified in inverse from the measurements
(see Section [[IL.2)). The associated speed profile and energy consumption simulated by the
models are plotted in Figures [[I.TT|to[[I.T9] We propose to describe the sensitivity of the models
first with respect to the dynamic parameters and then with respect to the energy consumption
parameters.

{u} {u}

Y

J

Y

Train dynamic model Energy consumption model

Y
h 4

yyy

Y

Figure I1.10: System scheme of the model: inputs, driver’s command, and outputs.

I1.4.1 Sensitivity to the dynamic coefficients

Obviously, mass m is an important parameter in the dynamic model described by Equa-
tion (IL.T6). Figure [[I.T]displays the speed profile and the consumed energy as a function of
m. It can be seen the importance of mass m in the model. Effectively, at the final time, the
variation of energy consumption is around 14% for a variation of mass of +-20%. This is quite
logical, as the energy consumption model is closely linked to the dynamic model as it uses the
output of the latter to estimate the energy consumed by the train along the journey. In practice,
variations of +20% cannot be encountered in reality, as the mass of the train only varies around
+5% around a mean value.

The second group of model parameters gathers the three Davis parameters, a, b, and c (see
Equation (IL.10)). A variation of their values has a different influence on the resistant force
(and in the same way on the longitudinal dynamics). We can see in Figure that the speed
profile is slightly modified by a variation of coefficient a. The associated energy consumption
is almost unchanged (less than 0.25% at the final time when applying +20% variations).
Coefficient a does not have a significant impact on the high-speed train, because for the high
speed the square velocity term is dominant, which depends on c.

Figure|ll. 13|represents the impact of a variation of coefficient b. As for coefficient a, coefficient
b has an important influence on the resistant force, and thus on the dynamic response (but has
higher influence at high speed because b is multiplied by the train speed). This impact can be
seen all along the journey but is more visible when the train speed is over 100km /h compared
with Figure [I.12] The influence on the energy consumption model is still small (around 0.5%
at the final time when applying +20% variations) but is superior to the influence of coefficient a.
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Figure II.11: Sensitivity of the models to mass m.
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Figure I1.12: Sensitivity of the models to Davis coefficient a.
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Figure II.13: Sensitivity of the models to Davis coefficient b.

Finally, the influence of coefficient ¢ is represented in Figure It is associated with the
square of the train speed, and thus has an important influence at high speed. We can notice
that on the left figure, where the train speed profile is modified a lot, when the train speed is
around 150km /h. The influence of energy consumption is still relatively low (around 0.75% at
the final time when applying +20% variations) and cannot be observed without any zoom. On
longer journeys, where higher speed is involved, the influence of these three parameters could
be more important.

The sensitivity analysis performed on the dynamic parameters has enhanced their influence on
the train dynamics and the energy consumption. We demonstrate that they mainly have an
impact on the dynamic model, as they are directly linked to it, but they also have an influence
on the energy consumption model, because the two models are directly linked. The sensitivity
to the energy consumption parameters is analyzed in the next section.

I1.4.2 Sensitivity to the energy consumption parameters

A brief sensitivity analysis is also carried out for the energy consumption parameters. The
first one is auxiliary power p® that we have assumed to be a constant and is represented
in Figure [I[I.15 This parameter has no influence on the train dynamics (as it only appears
in Equation ([1.22))), but we can observe that perturbing it modifies the associated energy
consumption. This influence can be determined analytically. Effectively, it is simply added
to the traction and braking power to obtain the electrical power (Equation (IL.17)) and is then
integrated over time to obtain the energy consumption (Equation (II.22])). Consequently, to
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Figure I1.14: Sensitivity of the models to Davis coefficient c.

perturb the value of the auxiliary power as p® = p® + Ap® is equivalent to modify the energy
consumption by AF (t) = (t —t5) Ap®. Therefore, AF is linear in (t —¢5). This can be
observed in Figure Finally, the variation of energy consumption reaches 2.5% at the final
time for perturbation of +20% of the value of parameter p.

The other group of parameters contains the traction and braking efficiency parameters.
First, coefficients a, and b, used in Equation only have an influence on the consumed
energy (and not on the dynamics) and only during traction phases, as they directly intervene in
the estimation of the traction efficiency. This can be viewed in Figure 1.1/ where the main
variation of the energy consumption occurs during the first part of the journey (when the train
accelerates to reach its maximum speed).

Coefficient b, is the constant part for the efficiency in Equation (Figure [[.17), whereas
a, (Figure models approximately its dependency on the train speed and the driver’s
command. The influence of coefficient a,, on the total energy consumption is smaller (less than
2% for £20% variations) than the influence of b, (33% for the same variations), because the
first one corresponds to a small adjustment of the efficiency model compared to the second one,
which has a higher sensitivity on the estimation of the value of the traction efficiency.

In the same way, we can compare the two other braking coefficients ¢, and d, (see Equa-
tion (IL.19)). As it was aforementioned, those coefficients do not have any influence on the
dynamic model, and they only influence the estimation of the energy recovered, while braking.
We can observe this phenomenon in Figure where the consumed energy is slightly
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Figure II.15: Sensitivity of the models to auxiliary power p“.
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Figure II.17: Sensitivity of the models to traction efficiency coefficient b,,.

modified on the last part of the journey. As it was previously stated, coefficient c,, is a small
adjustment of the model and has a small sensitivity on the braking efficiency, compared with
coefficient d,. The variation of energy consumption at the final time is around 0.3% for
coefficient ¢, and 4.5% for coefficient d,. The influence of these parameters is relatively small
compared with the traction efficiency parameters because this journey is mainly composed of
traction phases. The opposite situation would have probably been observed in case of a journey
composed of large braking phases and only few traction phases.

The parameters related to the energy consumption model have no influence on the train dy-
namics, as they do not intervene in the dynamic model. They only modify the energy consumed
by the train. Many other parameters could have been studied, like corrective coefficient k¢ or
wind speed v*. We have chosen to only focus on parameters m, p*, a, b, ¢, a,, b, ¢,, and d,, as
they are the most important.

IL.5 Conclusion and discussion on the modeling choices

In this chapter, we have constructed a model to represent the train, its environment, and the
driver’s command. Particular attention has been paid to provide a precise definition of the
track and the wind, which have an important influence on the train dynamics. Then, a dynamic
model for the train has been developed, derived from a multi-body model, but simplified
in order to extract the longitudinal dynamics for the entire train. Additionally, an energy
consumption model has been proposed as a function of the auxiliary power, the traction and
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braking efficiencies. The chosen hypotheses have been carefully justified. Finally, a sensitivity
analysis has been carried out to quantify the influence of the most important model parameters
on the dynamic behavior and on the energy consumption of the train.

In Chapter [[II] the identification of these model parameters is performed. In fact, all trains
do not behave in the same way and the identification of parameter values for the train under
consideration is mandatory. The introduction of the uncertainty in the model parameters is
necessary in order to deal with the variations that exist between trains, and also the lack of
knowledge for every train.
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Chapter I1I

Identification of the random model
parameters

In order to calculate the train dynamics and its energy consumption, Chapter [l have highlighted
the importance of precisely defining the entries of the train system and the driver’s command.
The driver’s command is well defined in Section What we have called entries are com-
posed of the rolling environment 7 (the definition of the track and wind), but also of the vehicle
description V. Even though the environment has well been defined in Section|[I.1.1] some vehi-
cle parameters are either not perfectly known (lack of knowledge, such as the energy efficiency)
or have intrinsic fluctuations (such as the mass depending on the number of passengers in the
train). These types of parameters are then considered as uncertain and are modeled by random
variables. Thus, this chapter focuses on the identification of the random parameters from mea-
surements carried out on commercial trains, which are grouped in the random vector X, while
the notation )V gathers all the model parameters related to the vehicle. These model parameters
correspond to the red box of the optimization problem (see Equation (IIL.1)))

{u*} = argmin ]-"({u},T, )% ) . (I11.1)

{u}el
c{u}, 7V h=0

It should be noted that only a few works have been published concerning the iden-
tification problem of uncertain parameters in the context of the railway domain, see for
instance [S5} [15, 56]. In this work, the followed methodology for identifying the uncertain
parameters is constituted of two steps. In a first step, the mean value x of the random vector X
is estimated using the least square method and the measurements of observations of the train
system. In a second step, we use a Bayesian inference for estimating the posterior probability
distributions of X, for which the prior model of X is controlled by  and by the variances of
the components of X that are fixed to sufficiently large values in order that the support of the
posterior probability distributions of X be consistent with the measurements. The likelihood
function (conditional probability function) is constructed using the following hypotheses.
The model uncertainties induced by the modeling errors are taken into account by the output
prediction error method, for which a Gaussian additive noise is introduced on the observations
of the train system. The multivariate Gaussian distribution of this noise is centered, and its co-
variance matrix is estimated by using the maximum likelihood method and the measurements.
The sampling of the posterior will be performed using MCMC algorithm. Concerning the
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available measurements, only the train speed profile and the energy consumption are measured
but the associated experimental driver’s command is unknown. Since we need the experimental
driver’s command for performing the statistical inverse problem, we have to identify it.

To carry out the identification, the available measurements are achieved a specific high-speed
line (LGV Rhin-Rhone) for a French high-speed train (TGV Dasye). Several journeys have been
used, during which the train longitudinal position s™¢° and speed v, as well as the RMS (Root
Mean Square) values of the electrical current intensity :"“°, the voltage u™¢°, and the phase
shift, ¢™¢*, are measured through the pantograph at each §¢™*. In this chapter, the measured
time sampling points correspond to an under sampling of all the measured time sampling points
with a factor equal to 40. The number N™** of measured time sampling points {t7***,j =
1,..., N} is smaller than the number N of time sampling points {¢;,i = 1,..., N} used
for the simulations, but each ¢7"“* coincides with a ¢;. The electrical power transmitted (positive
and negative) to the train (and consequently its energy consumption) can thus be estimated with
a great confidence. The energy consumed by the train, f™¢°, is written as

t
meS (t, Z‘mes’ umes7 ¢mes) — / Z'mes (,7_) umes (7_) CcoS (ques (7_)) dT . (III'Z)
ls

Section defines the uncertain parameters that constitute the components of random
vector X . The identification of the experimental driver’s command from the experimental train
speed profile and the train model is presented in Section Section deals with the
identification of & using the least square method. In Section |[I1.4] we present the Bayesian in-
ference and the sampling of the posterior probability model using an MCMC algorithm. Finally,
conclusions are drawn on the identification method in Section

III.1 Selection of the uncertain parameters

The accuracy of the prediction of the train model constructed in Chapter I strongly depends on
the vehicle parameters. These parameters vary from one train to another one, but differences
are also observed when comparing two trains of the same type, as long as they have undergone
different wear levels induced by different loadings or different running conditions.

Several parameters of the models defined in Chapter |l are not well-known or are defined with
very little precision. We have selected nine of them as we observed that they have a strong
influence on the dynamic and energy consumption models: the mass m, the Davis coefficients
a, b, c, the auxiliary power p“, the traction and braking efficiencies a,,, b,, ¢, d,,.

Measurements made with the same train on several journeys are available for the identification.
It is reasonable to assume that these parameters, apart the mass that may change according to
the occupancy, vary only slightly from one circulation to another. In order to take into account
this particularity related to the mass, the mass is written as

m (V) =m (V) + Am. (II1.3)

in which m (V) is a deterministic nominal value, which is assumed to change from one journey
to another. This nominal value is estimated using Algorithm I, while fixing all the other
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parameters to their nominal values. Parameter Am, called the mass error, is uncertain and will
simultaneously be identified with the other parameters in order to integrate the cross influences
of the mass with the other uncertain parameters on the train dynamics. Note that we have
chosen the representation defined by Equation because, in the near future, m could
directly be estimated by counting the number of passengers entering the train or by analyzing
the resulting forces applied to the vertical suspensions of the train between two stations. In
such a case, Am will appear as the error associated with this estimation.

The algorithm is based on the following method. We look for /m (V) such that the simulated
energy consumption is close to the energy consumption measurement. We apply a dichotomy
method starting from the possible minimum and maximum values of the mass, m™" and m™?<,
until reaching the convergence associated with a given tolerance (100 k£g). As the experimental
driver’s command is not available, and we need a driver’s command for estimating /m. This
estimation is performed (as explained in Section using the experimental speed profile and
the train model for which all the parameters are fixed to their nominal values. Note that in this
algorithm, the nominal value of the mass, m, changes at each iteration of the dichotomy. This
algorithm allowing /n to be estimated is summarized in Algorithm I}
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Initialization:

o My mM™", My < MM
» Compute in inverse, u; (m;) and ug (m2)

» Compute the consumed energy F; := F ({u}, T,V(my)) and
Foi= f({UQ}a T> V(mQ))

while m,; — m; > 100 do

®* Mm3g = (m1 —1—m2)/2
» Compute in inverse usz (mg)

» Compute the consumed energy F3 := F ({us}, T, V(ms))

if dy (F1, [°°) < dy (Fa, [°): then

® Mo < M3y
® U < U3
‘fz%fg

Ise if dy (Fa, f°°) < dy (F1, f™°°): then

[¢2)

® My < M3
® Uy < U3

‘./_"1%./_"3

end
Return (m; + ms)/2

Algorithm 1: Estimation of m with a dichotomy method.

The distance ds is defined by

Nmes

dy (f, g) = (f (t7es) — g (t7es))”. (I11.4)

J=1

Finally, the random variables (written with uppercase letters) can be divided into two
groups. We define Xp = (AM, A, B, C') the random variables modeling Am, a, b, ¢ involved
in the dynamic model, Xy = (P*, A,, B,, C,, D,)) the random variables modeling p°, a,,, b,,
¢y, dy, involved in the energy consumption model, and we define X such as X = (Xp, Xg)
that is the random vector to be identified. Note that all the random variables are normalized by
their nominal values before being estimated but we keep the same notations.
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Uncertain parameters associated with the dynamic model X p

By construction, m(V) = m(V) + Am is included in the interval [m™", m™**|, where
m™" is the mass of the empty train, and m™ is the mass for a train full of passengers. As we
mentioned before, parameter Am is considered uncertain.

The Davis coefficients are used to estimate the longitudinal friction forces (see Equation (II.10))).
Nominal values for these coefficients are given by the train manufacturer for each type of vehi-
cle. Nevertheless, the wear state of the wheels has an influence on the contact force, and thus on
coefficients a and b. In the same manner, the aerodynamic force is also very simplified and co-
efficient c also needs to be properly estimated. Therefore, these three parameters are considered
uncertain.

Definition of the uncertain parameters associated with the energy consumption model
XE

Auxiliary power p® describes the part of the electrical power that is not transmitted to the
traction chain. This electrical power can be decomposed in two contributions. A first part is
used by the comfort tools of the train, such as the air conditioning or the light, between others.
It should be possible to identify this first part when the train is stopped, but it appeared that
this value was underestimated, as all the tools are generally not used at stop. A second part
is distributed to the systems that ensure the safety of the journey (air-cooling motor systems).
This second part can only be measured when the train is in motion. The sum of these two
contributions may vary from one journey to another, depending on many variables such as the
air temperature, the number of passengers, and so on. Figure [lI.1| shows the electric power
measurement of the train as a red dotted line. It can be compared to the nominal value of the
auxiliary power provided by the manufacturer that is plotted in black solid line.

As explained in Chapter |lI} the traction and braking efficiencies depend on four parameters:
a, and b, for traction efficiency, ¢, and d,, for braking efficiency. The nominal values of
parameters a,, and b, have been chosen to be similar to the 2D plot shown in Figure The
simulated 2D plot (with nominal values) is shown in Figure [[1.9

The nominal values of parameters ¢, and d,, can also be estimated. We choose to keep the same
2D-plot than the one found for a,, and b, because the same components of the train are involved
in the two phenomena. Nevertheless, the values of the braking efficiency parameters are slightly
smaller than the ones describing the traction efficiency. In practice, we know that the braking
efficiency is around 0.82 against 0.87 for the traction efficiency. Consequently, we propose to
reduce the nominal values of ¢, and d,, of around 5% so that this proportion is respected.
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Figure III.1: Measured electrical power consumed by the train (red dotted line) and auxiliary
power estimation (black solid line).

III.2 Identification of the experimental driver’s command
from the experimental train speed profile and the train
model

As previously explained, for a given realization & of X, the first part of the identification
process aims to estimate in inverse the experimental discretized driver’s command is denoted
as u'™, for each journey, so that the simulated speed profile is as close as possible to the
measured speed profile (¢ v™¢). As previously explained, the measurements are all
discretized on a N™“*-dimensional time grid with intervals 6t = 8 s, each of them being
associated to a given time ¢7*“*. The simulated discretized driver’s command is denoted by
u = (uy,...,un) With u; = wu(¢;). The same notations are used for the discretized position,
speed, and acceleration of the train.

With these notations, Equation allows us to estimate the train acceleration at each time
t; using the position and the speed of the train as well as the simulated discretized driver’s

command, '
Z fa(yia