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Abstract

The railway world is undergoing major changes. The advent of new technologies allows us to
rethink the train system, but also face new challenges. The autonomous train is a significant
advance in the field, but one must not forget all the ecological constraints that are now
accentuated by the increase in energy costs. These issues raise a question: how can one make a
train run autonomously while reducing its energy consumption? Several ideas can be explored
to answer this question. This thesis work focuses on the optimization of the driver’s command
to limit the energy consumption of the trains. This problem is difficult to solve mainly because
of the complexity of the railway system, the large amplitude of uncertainties attributed to the
different model parameters, likewise, the importance of the constraints in the optimization
problem. This thesis work is based on these three axes.

Firstly, the train is a complex system whose dynamic behavior can be difficult to predict. The
construction of a rigid body model allows for describing the elements constituting the train
and all their interactions, but it is expensive to solve for long journeys. For this reason, the
longitudinal dynamics is often preferred when it is sufficient. The energy consumed by the
train must carefully be estimated as it constitutes a key element of this work.

The second point focuses on the identification of the model parameters. This covers both
models describing the dynamics and the energy consumption. But all trains do not behave in
the same way. Therefore, the use of the probabilistic framework allows us to depict all these
behaviors as much as is possible. The use of the Bayesian inference on a set of measurements
performed on commercial trains brings the model closer to physical reality.

Finally, the optimization problem is complex to solve. The optimization variables and the search
domain must be carefully defined with respect to the physical framework. A set of constraints
ensures safety, punctuality, as well as passenger comfort. The cost function must be close to the
industrial objective. However, all these quantities are random variables. For this reason, a robust
strategy has been set up to be able to take into account all the uncertainty related to the train
system. The optimal solutions obtained are compared with measurements from commercial
trains.
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Résumé

Le monde ferroviaire est en pleine mutation. L’avènement de nouvelles technologies permet de
repenser le système du train mais aussi de faire face à de nouveaux enjeux. Le train autonome
est une avancée notable dans le domaine mais elle ne doit pas oublier l’ensemble des contraintes
écologiques qui sont aujourd’hui accentuées par l’augmentation des coûts de l’énergie. Ces
problématiques soulèvent une question: comment faire rouler un train de façon autonome
tout en réduisant sa consommation énergétique ? Plusieurs pistes peuvent être explorées pour
répondre à cette interrogation. Ce travail de thèse se penche sur l’optimisation de la commande
du conducteur pour économiser l’énergie consommée par les trains. Ce problème est difficile à
résoudre à cause de la complexité du système ferroviaire, de la grande amplitude d’incertitudes
attribuée aux différentes grandeurs du modèle, ou encore de l’importance des contraintes dans
le problème d’optimisation. Ce travail de thèse s’articule autour de ces trois axes.

Dans un premier temps, le train est un système complexe dont le comportement dynamique
peut s’avérer difficile à prévoir. La construction d’un modèle de corps rigides permet de
représenter les éléments constituant le train et l’ensemble de leurs interactions mais celui-ci
est coûteux à résoudre pour des trajets de grandes distances. Pour cette raison, la dynamique
longitudinale est souvent privilégiée lorsque celle-ci est suffisante. L’énergie consommée par
le train doit être estimée avec attention comme elle constitue un élément clé de cette recherche.

Le deuxième point se focalise sur l’identification des paramètres du modèle. Ceux-ci couvrent
à la fois des grandeurs décrivant la dynamique, mais aussi la consommation énergétique. Mais
les trains ne se comportent pas tous de la même façon. Aussi, l’utilisation du cadre probabiliste
permet de représenter autant que possible l’ensemble de ces comportements. L’utilisation
de l’inférence Bayésienne sur un ensemble de mesures réalisées sur des trains commerciaux
rapproche le modèle de la réalité physique.

Enfin, le problème d’optimisation est complexe à résoudre. Les variables d’optimisation
ainsi que le domaine de recherche doivent être définis avec attention pour respecter le cadre
physique. Un ensemble de contraintes assure la sécurité, la ponctualité et le confort des
passagers. La fonction coût doit s’approcher de l’objectif industriel. Cependant, toutes ces
grandeurs sont des variables aléatoires. Pour cette raison, une stratégie robuste a été mise en
place pour être capable de tenir compte de l’ensemble des incertitudes liées au système. Les
solutions optimales obtenues sont comparées avec des mesures de trains commerciaux.
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Glossary

Deterministic variable Lowercase letter: a.
Deterministic vector Lowercase bold letter: a.
Deterministic matrix Uppercase calligraphic letter between brackets: [A].
Deterministic functional Lowercase letter between curly bracket: {a}.
Random variable Uppercase letter: A.
Random vector Uppercase bold letter: A.

Max and min value Exponent max and min: amax and amin.
Optimal solution Exponent ∗: a∗.
Time derivative Dot: ȧ.
Variable perturbed by modeling error Exponent mod: amod.

E Mathematical expectation.
1D Indicator function over a set D.
det Determinant of a matrix.
Γ Gamma function.
argmax and argmin Argument of the maxima and minima.
∝ Proportionality relation.
d1 Distance associated with norm-1.
d2 Distance associated with norm-2.

T General characteristics of the running environment.
V General description of the vehicle.

r Curve radius.
θ Declivity of the track.
zalt Altitude of the track.
vmax Speed limitation on the track.

xP and yP Relative longitude and latitude of P in the spatial discretization.
v̄wP Mean part of the wind speed velocity vector at point P .
V turb
P Turbulence part of the wind speed velocity vector at point P .

V w
P Wind speed velocity vector at the point P .

αP Orientation of the wind at point P .
vw Wind speed projected on the longitudinal to the track axis.
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a Davis coefficients (static friction).
b Davis coefficients (dynamic friction).
c Davis coefficients (aerodynamic friction).
m Mass of the train.
m̄ Deterministic estimation of the train mass.
∆m Correction of the mass estimation.
pa Auxiliary power.
∆pa Variation of auxiliary power.
aη Traction efficiency coefficient (linear term).
bη Traction efficiency coefficient (constant term).
cη Braking efficiency coefficient (linear term).
dη Braking efficiency coefficient (constant term).

imes Measured current intensity.
umes Measured voltage.
ϕmes Measured phase shift.
fmes Measured energy.
δtmes Discretization time step for measurements.
Nmes Number of measured time sampling points.

X Uncertain parameters.
XD Uncertain dynamic parameters.
XE Uncertain energy consumption parameters.
x Mean value of the uncertain parameters.

U Admissible set for the driver’s command {u}.
{u} Functional driver’s command.
{u≤t} Functional driver’s command truncated at time t.
u Discretized driver’s command.
umes Experimental driver’s command (determined in inverse).
u Initial driver’s command respecting the constraints.
u∗

xk
Optimal driver’s command in the specific configuration xk.

u∆,κ One driver’s command vector kept for the PCA.
eκ Energy consumption of the train following driver’s command u∆,κ.
ûκ Normalized driver’s command.

y Train curvilinear position.
ẏ Train curvilinear speed.
ÿ Train curvilinear acceleration.
S Dynamic solution.
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fR Longitudinal friction force (Davis approximation).
fC Corrective term of the longitudinal friction force (in curve).
fW Projection of the weight on the longitudinal to the track axis.
fT Longitudinal traction force.
fB Longitudinal braking force.
fE Longitudinal electrodynamic braking force.
pT Electrical power during traction phases.
pB Electrical power during braking phases.
pE Total electrical power.
ηT Traction efficiency.
ηB Recovery braking efficiency.
F Energy consumption of the train along the journey.
∆F Variation of energy consumption.

t Current time.
s Curvilinear position on the track.
ts and tf Starting and final time.
ss and sf Starting and final position.
vs and vf Starting and final speed.
tmesj Measured time sampling points.
ti Simulated time sampling points.
∆t Simulated discretization time step.

g Gravitational acceleration.
kC Empiric coefficient for the corrective force applied in curve.
krot Corrective factor of the inertial term.

N Number of small discretization intervals.
N∆ Number of large discretization intervals.
NT Number of different running environments.
NU Number of driver’s commands selected for the PCA method.
NX Number of realizations used to estimate the expectation value FEX

.
N id Number of candidates x̄k.
N step Number of steps of the deterministic identification process.
NMH Number of MH iteration in one MwG iteration.
NMwG Number of MwG iterations.
Npop Number of points in one realization of CMA-ES.

L Size of the moving average filter.
wi Weighting of the moving average filter.
cT and cB Traction and braking factors used during the transformation T̃ .
TMA Moving average filter.
T̃ Transformation assuring the respect of the punctuality constraints.
T Complete transformation of the driver’s command.
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x̂ Central value for the random draw of candidate x̄k.
xk Candidate drawn for the deterministic identification process.
Fk Energy consumption associated with the candidate x̄k.

Z General random variable.
fZ Probability density function of Z.
SZ Support of the probability distribution of Z.
Z1|Z2 Conditional random variable Z1 given Z2.
z and σ2

Z Mode and variance of Z.
kZ and θZ Shape and scale hyperparameters of the Gamma random variable Z.[
CZ
]

Covariance matrix of Z.

εmod Random variable quantifying the modeling error.
εF Random variable quantifying the dynamic modeling error.
ε̃F Propagation of εF in the energy consumption model.
εP Random variable quantifying the energy modeling error.
σF Modeling error hyperparameter associated with εF .
σ̃F Modeling error hyperparameter associated with ε̃F .
σP Modeling error hyperparameter associated with εP .
σ Vector containing the values of σF and σP .
L Likelihood function.
fpriorX and fpostX Prior and posterior distributions of X .

[û] Normalized driver’s commands matrix.
[Cû] Covariance matrix of [û].
[λ] and [Φ] Eigenvalue and eigenvector matrices of [Cû].
[q] Orthogonal matrix used by the PCA method.
(m) Dimension reduction.[
û(m)

]
Reduced matrices of [û].[

q(m)
]
,
[
λ(m)

]
,
[
Φ(m)

]
Reduced matrices of [q], [λ], and [Φ].

fo Overtaking function (speed limitation constraint).
c General constraint function.
c Constraint vector gather c1, c2, and c3.
c1, c2, and c3 Speed limitation, final position, and final speed constraints.
p1, p2, and p3 Probability tolerance thresholds.
ε1 and ε2 Acceptability thresholds.
FEX

Expectation value of the energy consumption over X .
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Acronyms

CMA-ES Covariance Matrix Adaptation - Evolution Strategy
GS Gibbs Sampling
LGV Ligne à Grande Vitesse (French high-speed track)
MCMC Monte Carlo Markov Chain
MH Metropolis-Hastings
MwG Metropolis-within-Gibbs
PCA Principal Component Analysis
PDF Probability Density Function
PK Point kilométrique (kilometer point: curvilinear abscissa on the track)
RMSE Root Mean Square Error
SIMPACK® Multibody simulation software
SNCF Société Nationale des Chemins de fer Français (French railway company)
TER Train Express Régional (French regional train)
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Chapter I

Introduction

I.1 Industrial context and motivations
In recent decades, the world is facing new challenges. Among many, the environmental issue
is one of the most critical stakes. The transportation sector, as one of the largest energy
consumers, is particularly affected by these challenges. The demographic growth encourages
companies to modify their way of thinking concerning matters that involve transportation.
Momentum has further emerged as a credo. However, for this precept, it is difficult to comply
with the ecological challenges.

Railway transport is often associated with the top of the class due to its low-carbon emissions.
Still, the high-speed trains consume a large amount of electric energy compared with the
other types of trains. The recent skyrocket of the electric energy costs encourages the railway
companies to reduce their consumption. In this work, we focus on the running consumption of
trains. In order to limit it, three different levers can be activated.

First, the running environment of the train may be modified. Playing on the rail material,
protecting the vehicle from the wind, reducing the aerodynamic drag by creating an artificial
vacuum environment are few insights that could reduce the energy consumption. Nevertheless,
modifying the infrastructure on thousands kilometers does not appear to be a panacea due to
the important costs of constructing a new infrastructure.

Second, the vehicle itself can be redesigned. For instance, the shape of the train is slightly
transformed to reach better performance in terms of aerodynamics or traction chain efficiency
for instance. These modifications are not negligible but often limited due to the different
operational constraints.

Finally, the last levers is the driver’s behavior. This aspect seems to be relatively negligible
in appearance, but it has an impact on the energy consumption of the train as well. Indeed, a
previous work has shown that on the same high-speed line, energy consumption between the
different circulations could vary by up to 20 or 30%. Climatic conditions (wind, humidity)
can partly explain these differences in consumption, however, driving probably also plays an
important role. Thus, looking for the best driver’s command would be of great concern to
reduce the energy consumption of the trains.
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The industrial motivations are twofold. First, minimizing the energy consumption is an ecolog-
ical stake. Second, it leads to important costs reduction involving economical motivations.

I.2 Scientific objectives
As explained in the industrial context, the aim of this work is to build speed profiles minimiz-
ing energy consumption. However, the driver’s command only plays a role on the traction and
braking forces applied to the train system. Consequently, the speed cannot be directly imposed.
Therefore, in contrast to other research, this work seeks to directly identify the driver’s com-
mand for a given environment T and a specific vehicle V . The problem that will be solved in
this work is thus written as follows,

{u∗} = argmin
{u}∈U

c({u},T ,V)=0

F ({u} , T ,V) , (I.1)

with {u} the driver’s command, {F} the objective functional (linked to the energy consump-
tion), U the admissible set, c({u} , T ,V) the constraint for a given driver’s command {u}, and
{u∗} the optimal driver’s command.

Solving this problem presents several major scientific challenges. Firstly, the relation between
speed and the driver’s command that can be imposed on the dynamic system is complex. The
construction of a longitudinal dynamic model for high-speed trains has been developed to work
in concert with an energetic model. These models enable to calculate the train dynamics and its
energy consumption from the three entries:

• the environmental parameters, T , are deterministic and describe all the exterior factors
that have an impact on the train system.

• the model parameters, V , are associated with the vehicle dynamics and its energy con-
sumption.

• function {u} describes the driver’s command.

The models are summarized in Figure I.1.

Secondly, many sources of variability have an important impact on the train system (wind
velocity, temperature, humidity, number of passengers, wear state, ...). In particular, the model
parameters V are subject to uncertainty. An identification of the model parameters is necessary
for updating the simulation models.

Thirdly, the sought driver’s command are functional. Therefore, the optimization problem to
be solved is very high dimensional (several hundreds). To this extent, numerical methods are
introduced to reduce the dimension of the problem and to solve it.

Finally, punctuality and speed limits are nonlinear constraints that are very sensitive to the
model parameters, which are subject to uncertainties. In summary, the problem to be solved is
a probabilistic optimization problem under nonlinear constraints and is in very high dimension.
A robust strategy is proposed to overcome these difficulties.
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Figure I.1: High-speed train system: inputs, parameters, and outputs of the models.

I.3 State of the art
In the last decades, the optimization of the driver’s command has been studied from different
points of view. From the train-behavior modeling to the optimization of the driver’s command,
including the calibration of the models, numerous works have explored these railway fields.

Before trying to optimize the driver’s command, the train system has to be modeled properly.
Figure I.1 presents the train system. As it can be observed, the entries (inputs and parameters)
play a crucial role in the modeling, as listed below.

• The train is very sensitive to the environment. The track and the wind are essential fea-
tures of the high-speed train dynamic modeling. The first one is described from its geo-
metric design (larger scale), and its irregularities (smaller scale). P. Aknin et al describe
this formulation in [1]. The second one is decomposed into a mean part and a fluctuation
part for describing the turbulence. Both of them have different influences on the train
system depending on factors that want to be highlighted. Depending on the type of works
performed, the turbulence fluctuations are or not taken into account. In the context of
railway field, a wind model is proposed by H. Liu in [2].

• The second entry that cannot be neglected is the description of the vehicle. Few aspects
are discussed below, but it only represents a small proportion of all the complexity of the
train system. The design of the wheels is closely linked to the contact force. This force
is difficult to precisely measure on-track, that is why novel research focuses on their esti-
mation of by the use of force with neural networks [3] or random walk methods [4]. Each
of the two levels of suspensions have to be modeled precisely to monitor their behav-
ior [5]. In case of wear, this mechanical behavior is modified, but the wear has to remain
acceptable. The traction chain is composed of many different components that is diffi-
cult to individually model. When focusing on the energy consumption of the train, this
aspect must be considered. In general, in the context of the energy consumption studies,
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subjects such as the pantograph/catenary interaction or the acoustics are not taken into
account (we will use this assumption in our work).

• Finally, the driver’s command directly impacts the train dynamics. Two point of views can
be considered: the speed profile and the driver’s command. Both of them are connected
to the dynamic model. Estimating the speed profile from the driver’s command can be
achieved solving the train dynamics. On the contrary, determining the driver’s command
from the speed profile in inverse is much more difficult.

Once the entries are well defined, the train system can be modeled. Once again different
approaches can be highlighted. In railway domain, the multibody framework [6] allows us to
have a complete description of each component of the train. VAMPIRE® or SIMPACK® are
two examples of software, which are frequently used in railway dynamics. But this solution
might be relatively numerical time consuming as it results in solving six equations for each
rigid body. Another approach consists in observing the train system in the longitudinal to the
track axis. A complete overview is proposed by C. Cole in [7].

Obtaining measurements is often expensive and these data are sometimes replaced by sim-
ulations. Consequently, the identification of the model parameters is generally necessary. It
allows for having an efficient representation of the real system. Two types of uncertainties can
exist in the models: the model parameters uncertainties and the model uncertainties induced
by modeling errors. For this reason, the uncertainty quantification must be taken into account
(see for instance, [8, 9, 10, 11, 12, 13]). In the framework of railway systems, the Bayesian
inference has been used in [14, 15] to identify some parameters of prestressed concrete catenary
poles and of the suspension components. A. Dib et al proposed to use the Bayesian method for
predictive maintenance in [16].

Much works have studied the optimization of the driver’s command in railway field. From K.
Ichikawa [17], one of the first paper dedicated to this domain, different points of view have
been considered. For instance, several trains have been considered in [18], the uncertainties
are included in the optimization problem in [19], [20], and [21], multi-objectives are taken into
account in [22], [23], [24], and [25]. They aim to reduce the energy consumption of the train,
to assure the punctuality, to maximize the passenger’s comfort, or the rail and rolling stock
wear for example. All these points of view modify the optimization problem depending on
the objective. These optimization problems can be solved with many different methods like
evolutionary algorithms [26], dynamic programming [27], pseudo-spectral methods [28], or
the maximum principle [29] between others. The uncertainty also plays an important role in
the optimization under uncertainties and the use of general methods can be mandatory (see for
instance [30, 31, 32, 33, 34, 35, 36, 37]).

I.4 Positioning and novelty of the thesis work
The present work is innovative in several ways with respect to the state-of-the-art.

(i) First, the models are constructed to be as close as possible to the train system under
consideration. In particular, the use of the measured energy consumption has been favored
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instead of the electrical power. Indeed, it shows to be more performing due to the fact that the
models are constructed so as to estimate the energy and not the power. Many measurements
are involved to identify the model parameters of the inputs (track and wind) and of the vehicle.
These experimental data are processed to be usable by the models. For instance, an efficient
model of the traction and braking forces are constructed in order to well represent the real
capacities of the train. In particular, the energy efficiency model that allows for evaluating
the yield of the traction chain, has been constructed with the help of measurements. The ca-
pacity of the train to recover a part of the consumed energy is taken into account in an algorithm.

(ii) Second, the introduction of model parameter uncertainties is proposed for this railway
context. Two random vectors are introduced for representing model uncertainties induced by
modeling error. Their probability distributions are constructed by using the maximum entropy
principle from Information Theory. Their mean vectors and covariance matrices are calibrated
by using experiments.

(iii) Then, the model parameters are calibrated using a methodology in two steps: first,
deterministic identification of the model parameters is performed, followed by a Bayesian
inference for estimating their posterior distributions. These two steps also identify the driver’s
command in inverse from the measured train speed profile. Note that the prior distributions
are constructed using an available information given by the train constructor. Note also that
the Metropolis-within-Gibbs algorithm has been preferred due to the unequal influence of the
uncertain parameters on the train system.

(iv) The optimization method is also very different from the one encountered in previous pub-
lished works. The driver’s command has been privileged to the speed of the train as the opti-
mization variable. Moreover, the constraints are related to the imposed time of the train arrival,
given position in space, zero speed at arrival, and the curvilinear speed limitation on the track.
A complete time discretization of the driver’s command is performed from the initial to the
final time and is represented by a driver’s command vector. Since the optimization problem is
in high dimension, a reduced-order representation is constructed using a Principal Component
Analysis. Integrating the uncertainty in the optimization problem introduces important diffi-
culties. A given deterministic driver’s command vector cannot respect the constraints for all
realizations of the uncertain model parameters. Then, a method has thus been developed to deal
with this difficulty. It consists in looking for the optimal driver’s command vector that is easy
to transform in another driver’s command vector respecting the constraints. The transformed
driver’s command vectors minimize the statistical mean of the energy consumption with respect
to the model parameters uncertainties. Roughly speaking, this transformation allows for man-
aging the final time, arrival position, and arrival train speed. The use of the Covariance Matrix
Adaptation - Evolution Strategy (CMA-ES) algorithm is also innovative to solve this kind of
problem. Finally, all the optimal solutions obtained are compared with measurements carried
out on commercial trains. This allows for validating the models and the identification methods,
but also to verify the good quality of the optimal solution.
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I.5 Outline of the thesis
This thesis is divided into three parts. Each of them answers to a specific objective that will be
used in the following sections. Overall, the chapters aim to construct a framework that can be
used to solve the issue.

First of all, Chapter II focuses on the modeling of trains. A brief description of the environment,
the vehicle, and the driver’s command is given in Section II.1. The modeling of the high-speed
train dynamics is presented in Section II.2. Particular attention is paid to the modeling frame-
work. Section II.3 describes the energy consumption model. A sensitivity analysis is carried
out in Section II.4 and conclusions are drawn in Section II.5. A discussion on the modeling
choices is also given.

The third chapter deals with the identification of the model parameters. To this extent, two
different approaches introduced in Section I.4 are developed. The selection of the uncertain
parameters is performed in Section III.1. The identification of the experimental driver’s
command is realized in Section III.2. Sections III.3 and III.4 present the two steps of the
identification method evoked in Section I.4. The first one lies on the deterministic identification
of the mean value of each uncertain parameters. The second one estimates their posterior
distribution using a Bayesian inference method. Section III.5 concludes on this chapter.

Chapter IV gives a robust answer to what this thesis aims to address, that is to say the optimiza-
tion of the driver’s command to limit the energy consumption of the train under constraints
and uncertainties. Its high dimension imposes the use of reduction methods (as explained in
Section I.4) that are presented in Section IV.1. The impact of the uncertainties are described
in Section IV.2. The optimization problem is formulated in Section IV.3 before presenting
the methodology and the developed algorithms for solving it numerically in Section IV.4.
The optimal solution is illustrated in Section IV.5. Section IV.6 gives a conclusion on the
optimization problem.

Conclusions, perspectives, publications and communications related to this work are presented
in Chapter V followed by the references in the Bibliography section.

The Appendix presents A the multibody approach for the train dynamic modeling, B the CMA-
ES optimization algorithm, and C another case that we have studied concerning the optimization
of the driver’s command for autonomous trains in a deterministic framework.
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Chapter II

Physics modeling of high-speed trains

This chapter presents the mathematical/physical models of high-speed trains, which have been
constructed in order to represent the train behavior in a specific rolling environment and for a
given driver’s command. Effectively, the choice of optimizing the driver’s command instead of
the train speed profile requires to know the impact of the driver’s command on the train system.
In other words, this chapter gives an answer to the following question: how does the driver’s
command interacts with the train behavior? Section II.1 describes the environmental inputs,
denoted by T , of the train system to have a better understanding on its whole complexity (green
box of Equation (II.1)). Then, the modeling has been separated into two phases. The first phase
details the scientific framework to construct the dynamic model in Section II.2. The second part
proposes an energy consumption model specific for high-speed trains in Section II.3. These
two models are useful for characterizing the constraints and the cost function (blue boxes of
Equation (II.1)). A sensitivity analysis is carried out on a set of model parameters in Section II.4.
Finally, Section II.5 concludes and discusses the modeling choices. For a fixed environment T
and a given vehicle V , the general optimization problem is given by:

{u∗} = argmin
{u}∈U

c ({u}, T ,V)=0

F
(
{u} , T ,V

)
. (II.1)

II.1 Description of the system characteristics
In the railway field, each "journey" is defined by a vehicle, moving in a specific environment,
with a determined driver’s command. Obviously, each type of vehicle has its own response to
an excitation track input. Effectively, a high-speed train will not behave as a regional or a fret
train. Moreover, each train of a given type has a proper mechanical behavior, which depends
on the wear state of the vehicle, the number of passengers, etc. The rolling environment also
plays an important role as it directly impacts the train dynamics. By rolling environment, we
can gather every element, which is exterior to the train system such as the wind or the track.
Without any doubt, the wind modifies the train dynamics especially for high-speed trains, for
which the aerodynamic forces play an important role. In the same way, the train behavior is
different if it moves on a high-speed track (designed with smooth curvature) compared to a
subway line. Finally, the driver’s command is chosen by the driver and defines if the motor or
the brakes are used. These three elements fully determine the entries of the train system.
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In the following sections, we describe each of these entries individually and the mathematical
representation we have proposed to model them. We particularly focus on the impact these
elements have on the train dynamics and on the associated energy consumption as these physical
quantities are crucial in this work.

II.1.1 Characterization of the rolling environment
The environment of the train plays an important role on its dynamic behavior. Clearly, the
wind has an impact on the aerodynamic forces applied to the train and the track modifies the
wheel/rail contact forces. For example, a strong headwind generates a higher resistant force
and thus increases the energy consumption of the train. In the same way, moving forward in a
positive track slope (or declivity) will impose to apply a higher traction force to compensate the
effect of gravity and consequently, the train will consume more energy. The environment of the
train also includes all the electric infrastructures. Indeed, the supply in electric energy may vary
from a track to another one depending on the position of the electric substations or simply on
the type of electric current provided (continuous or alternative). The three following paragraphs
present how each of these factors impacts the train system and how they are formally described.
The description of the whole rolling environment of the train is denoted by T .

Description of the track

First of all, the train dynamics is strongly related to the track geometry and irregularities.
As a matter of fact, the wheels are in direct contact with the rail and every default modifies
the train behavior. In order to be able to precisely characterize the contact, the wheel, the
rail, and the track have to be modeled with attention. Each track is described by its geometry
and the defaults (irregularities). The geometry contains the information characterizing the
position of the mean line and the cant (also called superelevation). The position of the mean
line is defined by the vertical curvature (linked to the declivity) and the horizontal curvature.
The track cant describes the elevation of a rail over the other. This degree of freedom aims to
compensate a part of the centrifugal acceleration by elevating the exterior rail in curve. With
these three quantities, we are able to describe every possible mean line. The geometry defaults
are of four types. A vertical or lateral alignment irregularity corresponds to a vertical or lateral
displacement of the two rails compared with the mean line. The gauge default is a modification
in the distance between the two rails and the cant deficiency defines a variation of the elevation
of one rail compared with the mean line superelevation. These four quantities entirely describe
all the possible defaults of the track. They are represented in Figure II.1. The defaults are
correlated as long as one irregularity often leads to others. They can be described by random
variables as it is proposed by R.H. Fries et al in [38]. Realistic tracks can even be modeled
by random fields as it has been developed by G. Perrin et al in [39]. The three quantities
defining the mean line and the four quantities characterizing the defaults are sufficient enough
to perfectly describe the track and its defaults. The defaults have an important impact on the
train dynamics, as it has been identified by G. Perrin et al in [40]. Moreover, they may vary
in time due to many factors. They have to be monitored with high precision as the dynamic
response of the train is very sensitive to their evolution [41], [42].
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Figure II.1: Representation of the four types of track defaults (irregularities).

The defaults are frequently controlled thanks to specific vehicles, which estimate all the defaults
owing to mechanical or optical measurements. The fine description of the defaults is very
important for safety and comfort reasons, but they have a relatively low influence on the energy
consumption of the train and on the quantities of interest that will be analyzed in this work.
For this reason, we choose to neglect the defaults and only consider the mean part of the track.
Denoting by s the curvilinear position on the track, the track is composed of the curvature,
defined by the curve radius r = {r (s) , s ∈ [ss, sf ]}, and the declivity, characterized by the
slope θ = {θ (s) , s ∈ [ss, sf ]} (quantifying the elevation distance of both rails per meter). A
curvilinear speed limitation is also defined on each track to assure the security of the journey.
It is written as a function vmax = {vmax(s), s ∈ [ss, sf ]} in the remaining part of the document.
This speed limitation, which depends on the curvilinear position on the track, is represented in
Figure II.2 for the French LGV Rhin-Rhone as an example.

We can observe that there are relatively few parts of the journey with a specific speed limitation
apart from the starting position of the line. The curvature, which is the inverse of the curve
radius, and the declivity (represented here by the altitude for more clarity) are much more
perturbed. For a track characterized by T , the altitude zalt = {zalt(s), s ∈ [ss, sf ]} can be
calculated from the slope θ thanks to the following equation,

zalt(s) =

∫ s

ss

θ (s̃, T ) ds̃+ zalt(ss) , (II.2)

in which zalt(ss) = 0 is the altitude at the starting point. They are discretized on 1-meter-long
intervals. This choice allows a good representation of the track geometry for the need of this
work.

Wind characterization

The second factor of the rolling environment that has an important influence on the train
system, and especially on the energy consumption, is the wind. It can be decomposed into two
quantities: the mean velocity vector v̄wP at point P (direction and amplitude) and the fluctuation
part [43] of the turbulence V turb

P at point P . Consequently, the total wind speed V w
P is written,

at time t, as
V w
P (t) = v̄wP (t) + V turb

P (t) . (II.3)

The mean part of the wind can be measured with accuracy and strongly impact the energy
consumption. It is specific at each position and time. Consequently, it has to properly be
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Figure II.2: Speed limitation, curvature, and declivity of the LGV Rhin-Rhone depending on
the position. In this thesis, most of the axes of the figures shown are hidden for confidentiality
purposes.

represented at each position on the track and at any time during the journey. As mentioned
in Chapter I, the turbulence part has no significant effect on the energy consumption, and
consequently its model is not necessary.

In this work, we have at our disposal predictions of the mean wind velocity in the region
concentrated around the French LGV Rhin-Rhone track. The wind speed profile is then defined
as the values of the mean wind velocity projected on the longitudinal track axis. These forecasts
are estimated by the French meteorologic Meteo-France company. They are performed once
every hour on a grid of 40 points for each longitude and latitude degree. For the studied area
(around the LGV Rhin-Rhone), it represents around 2 000 points. This grid is interpolated at
each needed track position as follows: at each point of the track P , four closest prediction points
are extracted. We call them PLL, PLR, PUL, and PUR, the first letter standing for the vertical or
latitude position (L for lower and U for upper) and the second for the horizontal or longitude
position (L for left and R for right). We write xP and yP the normalized relative longitude
and latitude of P . Both quantities take their values in [0, 1]. For example, {xP = 0, yP = 1}
corresponds to the point PUL. Schema II.3 represents the four selected prediction points and
the associated normalized coordinates xP and yP . With these notations, we have proposed to
interpolate spatially the mean wind at a current time t thanks to the following equation:

v̄wP (t) = (1− xP ) (1− yP ) v̄wPLL
(t) + xP (1− yP ) v̄wPLR

(t) + (1− xP ) yP v̄wPUL
(t)

+ xPyP v̄
w
PUR

(t) .
(II.4)
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Figure II.3: Scheme describing the interpolation - The red dots represent the track, and the black
dots represent the prediction points provided by Meteo France.

Equation (II.4) gives a linear approximation of the wind velocity along the track from the pre-
diction grid. The aerodynamic forces depend on the relative wind velocity. Consequently, we
have to project the wind velocity on the longitudinal track axis. To do so, we simply calculate
the rotation angle between the track referential and the Cartesian referential. As we only have
access to the longitudinal/latitude coordinates of the track, we propose to evaluate this rotation
angle αP at each point P on the track from the longitudinal/latitude of the previous and follow-
ing points P − 1 and P + 1. It is equal to 0 by default when the track is vertical through the
positive latitude. We write xP+1 and yP+1 the longitudinal and latitude coordinates of the point
P + 1. xP−1 and yP−1 are the longitudinal and latitude coordinates of the point P − 1. If the
track is perfectly horizontal, that is to say xP+1 = xP−1, two cases exist: if yP+1 > yP−1, we
define αP = 0, otherwise, αP = π. When the track is not horizontal, with xP+1 > xP−1, the
angle αP is given by:

αP = arctan

(
yP+1 − yP−1

xP+1 − xP−1

)
+
π

2
. (II.5)

In the other case, that is to say for xP+1 < xP−1, the angle αP is given by:

αP = arctan

(
yP+1 − yP−1

xP+1 − xP−1

)
+

3π

2
. (II.6)

Equations (II.5) and (II.6) give the angle αP for every point P on the track. It is included in the
interval [0, 2π]. Consequently, the wind speed at point P projected on the longitudinal to the
track axis vwP can be written

vwP (t) = ∥v̄wP (t)∥ sin (αP ) . (II.7)

With these notations, vwP (t) is a deterministic scalar variable attached to a specific point P and
it depends on time. It is positive for a tailwind and negative for a headwind. The lateral wind
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can also be estimated with the same method, but it will not be used in this work as it does not
impact the energy consumption in comparison to the longitudinal wind. Figure II.4 represents
the cartography of one prediction grid associated with a given time t provided by Meteo France
(in colors) and the projection on the track vwP (t) (in black and white).
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Figure II.4: Wind cartography and projection on the French LGV Rhin-Rhone track of its am-
plitude.

We can observe that the method presented before is efficient as the projection is positive when
the wind "pushes" the train and is negative when it acts as a resistant force. It is around zero
when the wind is perpendicular to the track. We also notice that the sign of the projection
can vary depending on the curvilinear position. In Figure II.4, it can be seen that it is mainly
positive at the beginning of the segment and is negative on the final segment.

Regarding the time discretization, we only have one prediction each hour. As the number of
time for which the forecast is available is very small, we choose not to interpolate in time as
we did spatially, because it would probably yield a nonrepresentative result. Consequently,
we prefer to select the closest time forecast and to consider it as constant during the journey.
In practice, with more forecasts, it is possible to give a better time description of the wind.
Therefore, the wind speed projected on the longitudinal track axis only depends on the position
on the track and not on time anymore. In the following sections, we prefer to denote the point
P in the rolling environment T by its curvilinear abscissa s, and thus vwP is rewritten vw(s, T )
along the track. This quantity can be used to estimate the aerodynamic forces applied to the
train, as it has been done in Section II.2.2.
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Electric energy supply

Between the electric transport network and the pantograph of the train, the electric energy
passes through a substation, which provides electricity to the catenary. The substation positions
are specific to every tracks. They have an impact on the available electric energy. Indeed, if
the train is far from the closest substations, less energy is available, which can result in the
limitation of the usable traction power. This constraint could have been implemented but, in
this work, we assume that the maximum traction power available is only limited by the motor
capacities.

In France, two types of electric energy supply are possible. On the one hand, the high-speed
tracks are all supplied by alternative current (voltage 25kV and frequency 50Hz). The same
electrification type is present in most of the "classic" (regional) tracks of the south of France.
On the other hand, many tracks of the north part of France are electrified with continuous
current (voltage 1 500V ). This organization results from the historic construction of French
railway tracks. Figure II.5 represents the organization of electrification of the French railway
network. In this work, we propose to study the TGV Dasye on the LGV Rhin-Rhone, which is
only supplied by alternative current.

Figure II.5: Map of the types of electrification of the French railway network.

These aspects (positions of the substations and type of electrification) are discussed by R.
Bosquet in [44] but will not be considered for reasons of simplicity.
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II.1.2 Description of the vehicle
Another entry of the train system is the vehicle. All vehicles do not have the same reaction
to a specific environment. It depends of course on the composition of the train but also on its
wear state. In fact, the train is a complex nonlinear system, and the slightest change can modify
its entire dynamic behavior. Most of commercial trains, and especially the high-speed train
TGV Dasye, are composed of three different components: the wheelsets, the bogies, and the
cars. All these components are linked to the others by nonlinear suspensions (spring, dampers,
bushes, bump stops, etc.). The suspension design plays a specific role to assure comfort and
security of the passengers. We can also dissociate the motor car from the other cars of the train.
In practice, a French TGV Dasye is composed of two motor cars (situated at each extremity of
the train), six passenger cars, four motor bogies (two for each motor cars), nine trailer bogies
(some of them being shared by two cars), eight motor wheelsets, and eighteen trailer wheelsets.
All these components and the suspensions have their own reactions to a given environment,
which is difficult for even the most precise prediction.

The dissociation between motor or trailer components is also important to describe the traction,
but also for the braking, as long as French high-speed trains have two different types of
brakes. The first one, called the mechanic (or pneumatic) brake, relies on the friction of
brake shoes on the braking discs present on the wheel axles. The second type of brake, the
electrodynamic (also called dynamic) brake, corresponds to the electric inversion of the motors,
which transforms the mechanic energy in electric energy (instead of the opposite in traction
mode). Consequently, it is able to recover a part of the energy lost during braking, which
will be reinjected in the catenary in order to be used by other trains. The maximum motor or
braking capacities of each wheelset depend on the train speed. They can be expressed thanks to
a torque applied to the wheelset, but in practice, we directly convert it in a longitudinal force,
positive for traction and negative for braking. This conversion is possible if we treat the entire
train as one element supposing that the forces are equally distributed to each type of wheelsets.
Figure II.6 represents the maximum longitudinal traction or braking forces that are available
for a given train speed.

We can observe in Figure II.6 that the motor and trailer wheelsets have their proper traction or
braking capacities. These maximum capacities are nonlinearly dependent on the train speed
and are specific to each type of train. For instance, the pneumatic braking of motor wheelsets
is equal to zero at high speed. These specific capacities should be taken into account in the
high-speed train dynamic model so as to have an accurate representation of the traction chain
and of the brakes. In practice, the traction or braking forces are equally distributed between all
types of wheelsets in order to limit the efforts between cars.

The train dynamics is moreover strongly linked to the wheel-rail contact. This contact is
very complex to model because of the shape of the two surfaces in contact. In France, the
most popular shape for the rail is the Vignole rail and it is inclined to 1/20. The wheel is not
cylindrical, as cars, but is slightly conical. This shape allows a good curve inscription and the
recentering of the wheelsets in the track.

Finally, the shape of the train has an influence on the aerodynamic forces and is thus designed to
reduce the drag force. The shape is however constrained by the gauge, different in each country.
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Figure II.6: Longitudinal forces available for the motors and the brakes in function of the train
speed for the French TGV Dasye.

This section was dedicated to the description of the main characteristics of the rolling stock.
They are not going to be defined in detail as they are not directly linked to the main matter of
the work, meanwhile understanding the complexity of the train system is unavoidable. In the
following sections, we write V all the parameters that describe the vehicle. Other parameters
(like the mass of the train) depend on V , but to simplify the notations, we propose to include
them as well in V . This is the case of the mass of the train, the auxiliary power, the three
Davis coefficients, and the four efficiency parameters that are going to be described in the next
sections. These parameters may be submitted to uncertainty, as we often do not know the exact
wear state of the train or the exact number of passengers for instance. Consequently, we can
consider that V gathers random variables to take into account these uncertainties.

II.1.3 Representation of the driver’s command
The traction and braking applied to the train system are chosen by the driver through the driver’s
command. It is a manipulator, which can take any value between the maximum traction or max-
imum braking torque. As these values depend on the speed of the train (as shown in Figure II.6),
we propose to normalize them and to write the driver’s command as a time-dependent variable
taking its value in the interval [−1, 1]. Consequently, −1 corresponds to the position of the ma-
nipulator, which represents the use of maximal braking torque. On the opposite side, 1 stands
for the position of the manipulator corresponding to the use of maximum traction torque. The
driver’s command is written {u} and is defined by:

{u} : [ts, tf ] → [−1, 1]
t 7→ u(t)

, (II.8)
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where ts and tf are the starting and final time. If u(t) < 0, the train is braking at current time t.
On the other hand, a positive value of u(t) is equivalent to the use of the motors for the traction
at current time t.

The train dynamics at a given instant t is dependent on the actual value of the driver’s command
u(t), but also on all the previous values {u≤t} as the state of the system is strongly dependent
on the previous states. For instance, braking when the train is already stopped does not have
the same effect that braking when the train is at full speed. The notation {u≤t} refers to the
values of the function {u} before time t. In other words, {u≤t} = {u(τ); ts ≤ τ ≤ t}.

As explained in Section II.1.2, we prefer to convert the traction and braking torques in traction
and braking longitudinal forces. To do so, we suppose the wheel radius constant. But the
wheels are conic and might be damaged. This simplification gives a good estimation if we
consider the mean over all the wheelsets. Consequently, u(t) corresponds to the proportion of
the maximum of longitudinal traction or braking force injected in the train system at time t.
Function {u} belongs to the space of continuously differentiable functions, since the physical
quantities associated with the driver’s command are also continuously differentiable.

II.2 Construction of the train dynamic model
Once the entries are properly represented, that is to say, when all the environmental factors are
well defined, when the vehicle is precisely described, and when the driver’s command has been
defined, the train has a deterministic dynamic behavior. This dynamic behavior is complex,
and the use of simplifications might be useful to model the train system. These simplifications
introduce a model error, which should be monitored in order to preserve the realistic character
of the representation.

The developed computational model has to be sufficiently precise and with a small numerical
cost, which allows the quantities of interest to be extracted. In this work, we take into account
the longitudinal traction and braking forces and the train speed in order to calculate the energy
consumption of the train (as it is the quantity we are going to minimize). Consequently, the next
sections propose a dynamic computational model to describe the train mechanical behavior. In
particular, Section II.2.1 focuses on the choice of modeling framework, as several points of view
can be adopted. The external forces are then presented in Section II.2.2. Finally, Section II.2.3
proposes an expression for the longitudinal dynamic equation that is going to be used in the rest
of the work. The train speed and its position are very important to estimate the constraints. For
instance, the punctuality constraints (defined in Section IV.2.1) verify if the train arrives at the
exact position, at a given final time, and with a given speed (that will be zero).

II.2.1 Choice of the modeling framework
The first step of the modeling is to choose an appropriate framework. Without any doubt,
we could model the entire train, take all the components apart, and choose complex models
to represent all the interactions between them. An overview of many dynamic phenomena is
proposed by G. Boschetti in [45]. Nevertheless, it is not always the best choice as it may lead
to an important calculation time. Essentially, calculating with a high precision the deformation
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of one wheelset may be useless if we focus on the energy consumed by the train. To this extent,
two approaches are frequently used in the literature.

For the first approach, the rigid body framework proposes to consider each component of the
train (cars, bogies, and wheelsets) as nondeformable bodies, and attention is only paid to the
internal interactions (suspensions) and to the external interactions (with the environment).
An example of this approach is given by N. Bosso et al in [46] to represent the whole train
dynamics. This point of view presents the advantage of neglecting the deformation of the
car bodies, the bogies, and the wheelsets (which are of little importance in this work), while
preserving a good precision by modeling the nonlinear suspensions. The dynamic equations
can directly be expressed from the Lagrangian equations. Some industrial software has
already been developed to solve these equations and are adapted to the railway system such as
VAMPIRE®. Nevertheless, the calculation time is around one minute for long journeys, which
is relatively important for solving the driver’s command optimization problem.

The second approach is to consider the train as one element. The internal interactions are con-
sidered constant and the whole train behaves as one rigid body. Consequently, the problem is
simplified as only the external interactions impact the train dynamics. This method is presented
by Q. Wu et al in [47]. This approach is linked to the previous one as it is demonstrated in
Appendix A. Moreover, understanding the connection between the two allows us to have a
better idea of the hypotheses that are necessary to proceed from one approach to the other. This
method considerably reduces the calculation costs as the dynamic behavior is summarized in
one longitudinal equation.

In this work we choose to use this second approach because it accelerates the calculation without
significantly affecting the estimation of the quantities of interest: energy consumption, speed
profile, and position of the train.

II.2.2 Description of the external forces
We take into consideration a train running in a rolling environment T , with a well described set
of parameters V , and a given driver’s command {u}. This train goes from a starting point ss to
a final point sf (position of the train stations). The departure and arrival times are denoted by ts
and tf (scheduled by the railway operator except if we consider the case of delayed journeys),
and the initial and final speeds are vs and vf (zero as the train arrives at a station).

We highlight here that, in this work, a duality exists between time and position as we mainly
work on the speed profile of the train. Some figures represent the speed profile of the train and
its energy consumption depending on time to verify the departure and arrival time, but others
represent the same solution plotted against position to compare the speed profile together with
the speed limitation. The two quantities are directly linked.

During the journey, the train moves along the track with a specific longitudinal position
y ({u} , T ,V), speed ẏ ({u} , T ,V), and acceleration ÿ ({u} , T ,V). These time dependent
functions depend not only on the actual value of the driver’s command, but also on the pre-
vious instants. At a given time t, the longitudinal position and speed are thus written as
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y (t) := y (t; {u≤t} , T ,V) , ẏ (t) := ẏ (t; {u≤t} , T ,V) . (II.9)

The complete dynamic solution is written as

S ({u} , T ,V) = {y ({u} , T ,V) , ẏ ({u} , T ,V) , ÿ ({u} , T ,V)} .

This dynamic solution is specific to the driver’s command, the rolling environment, and the
vehicle. With these notations, modeling the train longitudinal dynamics requires to estimate
all the forces applied to the train system. Some interactions are difficult to model, such as the
friction forces. The traction and braking forces are very important as they directly come from
the driver’s command. Finally, the weight of the train also has an important impact.

Friction forces

First, the aerodynamic forces are quite difficult to represent as the shape of the train is very
specific, especially for high-speed trains, for which the prediction with computational fluid
dynamics is not so easy. Some works focus on the wind effects such as X. Quost in [48], with
the intention of modeling the rollover of a train caused by strong wind.

In the same manner, the wheel-rail contact forces are nonlinear and difficult to model. The
Hertzian contact, proposed by H. Hertz in [49], combined with Kalker’s theory [50], estimates
the lateral contact forces, and is often used in the railway domain. These contact models need
the exact geometry of the rail as well as the wheel of the train, but also many other parameters
such as the air humidity and the friction coefficient between others. These models allows us to
have a precise idea of the wheel-rail tridimensional contact and of the associated efforts. An
example of the application of these theory applied to the railway system is given by B. Pecile
in [51].

As we have previously explained, we assume that only the mean speed of the wind has an
influence on the consumed energy for a complete journey. The average wind on the track is
estimated in Section II.1.1. Therefore, we do not model the tridimensional aerodynamic and
contact forces, but only the longitudinal drag and contact forces, as it fits with the chosen ap-
proach (longitudinal dynamics for the whole train). The Davis forces, first proposed by William
J. Davis in [52], are a well-known simplification often used in railway literature, which approx-
imate the longitudinal friction forces applied to the train with a relatively simple expression.
The longitudinal friction force fR applied to the train at a given time t is estimated by:

fR (ẏ (t) , vw (y (t) , T ) ,V) = a (V) + b (V) ẏ (t) + c (V) (ẏ (t)− vw (y (t) , T ))∣∣∣∣ẏ (t)− vw (y (t) , T ) ∣∣∣∣ . (II.10)

In this expression, vw is the mean wind speed, the coefficient c refers to an aerodynamic
coefficient, the coefficient b is associated with the dynamic friction, and the coefficient a refers
to the static friction. Thus, a and b correspond to the longitudinal contact force and c to the
longitudinal aerodynamic force applied to the train. These three coefficients are provided by
the train manufacturer for each type of vehicle. The friction force depends thus on V .
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The term ẏ (t) − vw (y (t) , T ) represents the longitudinal relative train speed with respect to
the wind speed. When the wind "pushes" the train at a position y (t), the associated average
wind speed vw (y (t) , T ) is positive (as explained in Section II.1.1). Hence, the square term of
Equation (II.10) is lower, that is to say the resistance force is lower. Finally, the aerodynamic
part of Equation (II.10) is written with only one absolute value of the relative speed, so that
this term can be negative in case of a train speed ẏ (t) smaller than the wind speed vw (y (t) , T ).

This approximation of the longitudinal friction force can be discussed as it is a very simpli-
fied model, but yet allows us to estimate this force without going through the use of complex
models. In practice, it has been observed that the friction force is higher in curve, where the
wheel-rail friction is higher. Consequently, we propose to use a corrective term also frequently
met in the railway literature. This corrective term depends on the mass of the train, as the fric-
tion force in the curve is not the same for heavy trains than for light ones, but it also depends
on the curve radius of the track r, as the friction is higher in tight curves. For this reason the
corrective term fC is conveyed depending on the specific curve radius at the train position. fC

is generally written

fC (y (t) , T ,V) = m (V) g kC (V)
r (y (t) , T )

, (II.11)

where m (V) is the mass of the train. It can be considered as a random variable because the
exact mass of the train is unknown due to the number of passengers, which is not precisely
known. The coefficient kC is estimated by the train manufacturer for each specific vehicle V , g
is the gravity acceleration, and r is the curve radius of the track.

Equations (II.10) and (II.11) give an estimation of the longitudinal friction force applied to
the train. Nevertheless, the friction is nonlinearly dependent on the train speed because of the
aerodynamic term. The Davis approximation and the choice of the values for the coefficient a,
b, and c is detailed by G. Boschetti et al in [53].

Traction and braking forces

The second group of forces, which has a great influence on the train dynamics, is the
traction and braking forces. These forces are applied by the motors and the brakes directly to
the motor or carrying wheelsets as a torque whose amplitude is defined by the driver. Here,
we suppose that all the motor torques are transmitted to the contact. Consequently, it can be
converted in a global longitudinal traction or braking force applied to the whole train system.

For a given train speed, the maximum traction or braking force available is specific to the vehicle
V . The forces for the French TGV Dasye are shown in Figure II.6. We write the maximum
traction (resp. braking) force available fT,max (ẏ (t) ,V) (resp. fB,max (ẏ (t) ,V)) and it simply
corresponds to the sum of the maximum traction (resp. braking force) available over each
motor (resp. brake). In this case, we need to call to mind that some trains have several types of
brakes. The TGV Dasye combines both mechanical and electrodynamic brakes. Consequently,
the maximum braking available is the sum of all the kind of brakes that can be found in the
train,

fB,max (ẏ (t) ,V) = fM,max (ẏ (t) ,V) + fE,max (ẏ (t) ,V) , (II.12)
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where fM,max and fE,max denote the maximum braking force available from mechanical and
electrodynamic brakes. As it is explained in Section II.1.2, the traction and braking forces are
equally distributed over each type of wheelsets to limit the efforts between cars. Thus, the
maximum traction, mechanical and electrodynamic braking forces are equivalent to the unitary
capacity available on one wheelset (which can be read in Figure II.6) multiplied by the number
of wheelsets having the ability to tract or to brake by mechanical or electrodynamic equipment.

The driver’s command is defined as the proportion of the maximum traction or braking
force used. At time t, if u(t) is positive, the braking force is equal to zero and only traction is
used. On the opposite, if it is negative, only braking is used, and the traction force is equal to
zero. With these notations, the longitudinal traction and braking forces fT and fB are given
(due to the normalization of u(t) in [−1, 1]) by:

fT (ẏ (t) , u(t),V) =
{
u(t)fT,max (ẏ (t) ,V) if u(t) > 0 ,
0 otherwise, (II.13)

fB(ẏ (t) , u(t),V) =
{

0 if u(t) > 0
u(t)fB,max (ẏ (t) ,V) otherwise. (II.14)
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Figure II.7: Longitudinal traction and braking forces applied to the train depending on the
driver’s command for several train speeds.

Figure II.7 represents the longitudinal traction or braking force applied to the train at a given
time t depending on the driver’s command u(t) for several specific train speeds (0, 100, 200,
and 300km/h). We can observe that the traction or braking force applied to the train is not
differentiable at u(t) = 0 for a constant train speed, because this driver’s command is the
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interface between the traction and the braking models. When the driver’s command is positive,
it quantifies the proportion of maximum traction used, whereas it describes the proportion
of maximum braking when negative. Moreover, if the speed of the train is not constant, the
maximum traction or braking available also changes, despite a constant driver’s command.
For u(t) = −1 or u(t) = 1, the equivalent longitudinal force is the sum of all the braking
or traction forces available at each wheelsets (represented in Figure II.6). The traction force
available decreases with the train speed, which is logical according to Figure II.6. The same
analysis with the braking force is not that simple. Indeed, some wheelsets are only equipped
with pneumatic braking and others with dynamic braking.

All these reasons highlight the fact that even if the mathematical representation of the driver’s
command is relatively simple (linear proportion of the maximum force available), the resulting
longitudinal force is quite complex. It essentially depends on the train speed and the force is
not differentiable.

Weight

With respect to the impact of the track declivity on the energy consumption, the weight of
the train has no impact on a flat track because it is perpendicular to the train movement. In case
of a ramp (positive declivity) or a slope (negative declivity), its projection on the longitudinal
axis is not equal to zero and has to be taken into account. In case of a ramp, the weight has a
negative resulting force once projected on the longitudinal to the track axis: it pulls the train
backwards. For a negative declivity (slope), the projection of the force is positive, and the
weight helps the train to move forwards. The projection of the weight on the longitudinal to the
track axis fW is given by:

fW (y (t) , T ,V) = −m (V) g sin (arctan (θ (y (t) , T ))) . (II.15)

For instance, if the track declivity is equal to 1 at a given curvilinear abscissa, that is to say a
ramp of 1 meter per meter advanced, the associated track angle has to be equal to arctan (1) =
π
4
. For such a declivity, the projection of the weight pulls the train backwards. Thus, the

projection of the weight has to be negative, (negative sign in Equation (II.15)). This equation
also shows that this force is dependent on the train position.

II.2.3 Longitudinal dynamics for high-speed trains
As we explained in the previous section, we only consider the train longitudinal dynamics of one
train. Details on the hypotheses and the developments used to extract the longitudinal dynamics
from the multi-body approach are provided in Appendix A. In this section, we only highlight
the resulting dynamic equation, which will be used in the next chapters, and which is written as

m (V) krotÿ (t) = fT (ẏ (t) , u(t),V)− fB(ẏ (t) , u(t),V)
− fR (ẏ (t) , vw (y (t) , T ) ,V)− fC (y (t) , T ,V) + fW (y (t) , T ,V) ,

(II.16)
for t ∈ [ts, tf ] and with initial Cauchy conditions. It is assumed that for given u, T , and V , and
without constraints, this nonlinear differential equation has a unique solution. The left-hand
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side of Equation (II.16) represents the inertial term, including the rotation of the wheels thanks
to the corrective factor krot. In the literature, we often find krot = 1.04 (the explanation of this
value is given in the development made in Appendix A). The right-hand side stands for the
external forces applied to the train. We recognize the forces previously listed, that is to say
the traction and braking forces (which depend on the driver’s command), the resistant force
(estimated thanks to the Davis equation (II.10)), the corrective term applied in curves, and the
weight of the train projected on the longitudinal track axis.

From the entries and driver’s command presented in Section II.1, Equation (II.16) allows us to
simulate the complete longitudinal dynamics of the train. In practice, we are mostly interested
in the train speed and the train position, as well as the traction and braking forces. Surely,
these quantities are the key to compute the energy consumed by the train, while verifying all
the constraints linked to the train system (which will be described in Section IV.2.1).

II.3 Definition of the energy consumption model for the train
Once the longitudinal dynamics of the train is defined, we have to construct an energy model to
compute the energy consumption of the train. It depends on the driver’s command and is directly
linked to the train dynamics. Therefore, the train speed is required to estimate the energy
consumption. In the next subsections, we propose to present the energy consumption model.
We begin by describing the auxiliary power in Section II.3.1, before presenting the energy-
efficiency models in Section II.3.2. Section II.3.3 focuses on the whole energy consumption
model.

II.3.1 Description of the auxiliary power
The electrical power transmitted to the train system has several distinct uses. Obviously, a major
part is used by the traction chain to assure the train motion, but a second part is transmitted to
the auxiliary equipment of the train. These equipment assure the security of the train by the use
of different air-cooling systems that guarantee the proper functioning of the traction chain. They
also assure the comfort of the passengers thanks to the combination of the air conditioning, the
provision of electrical outlets, the lights, etc. The electrical power transmitted to the auxiliary
equipment is called the auxiliary power and is denoted by pa. It depends on V . The electrical
power transmitted by the catenary is denoted by pE and is such that:

pE (ẏ (t) , u(t),V) = pT (ẏ (t) , u(t),V)− pB (ẏ (t) , u(t),V) + pa (V) , (II.17)

where pT is the electrical power estimated during traction phases, and pB is the electrical
power recovered by the braking (this explains the minus sign). The recovered energy returns
to the electrical network by the catenary. Consequently, we assume that the energy recovered
by the braking is fully used, that is why we simply remove it from the electrical power
(Equation (II.17)). During traction phases, the recovered energy is equal to zero and pB = 0
and during braking phases, the traction chain does not consume energy and pT = 0.

The term pa is not a constant, as it depends on the outside temperature (as it is linked to the use of
air conditioning), on the number of passengers (as it is linked to the use of the electrical outlets),
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and on the driver’s command (as it is related to the use of the air-cooling systems). Nevertheless,
in this work, we consider pa as a constant (variations sufficiently small). A first estimation of
the value of the auxiliary power is performed by estimating the energy consumption of the train
when it is stopped. This estimation does not include the electrical energy consumed by the air-
cooling systems. For this reason, we consider that pa is not perfectly known, and its uncertainty
will be taken into account in Chapter III.

II.3.2 Construction of models representing the energy efficiency
All the electrical power transmitted to the traction chain is not converted in mechanical power.
A part of it is lost due to the friction effects and the heat dissipation of the traction chain
components. In the same way, all the mechanical power lost by the electrodynamic brakes
is not recovered. More precisely, the traction efficiency, ηT , is defined by the proportion of
electrical power that is effectively converted into mechanical power during traction phases. On
the opposite side, the braking efficiency, ηB, describes the proportion of mechanical power that
is injected in the catenary. An example of a 2D-plot of traction efficiency of a French regional
train is given in Figure II.8.

Figure II.8: 2D-plot of the efficiency of the traction chain of a French regional train, according
to M. Debruyne [54].

We can notice that the efficiency is not constant. It depends on the train speed, but also on the
driver’s command itself. As we do not have access to the equivalent 2D-plot for high-speed
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trains and we do not have information on the braking efficiency, we propose to construct two
models, which is inspired from Figure II.8. Even if the traction chain is responsible for the
traction and braking efficiency as it converts electrical power into mechanical power (or vice
versa during braking), there is no reason for the two efficiencies to be equal. Nevertheless, we
consider that they can be approximated with the same model, but with different values for the
parameters. Regarding Figure II.8, we propose an affine function of pT and pB respectively for
ηT and ηB,

ηT (ẏ (t) , u(t),V) = aη (V) pT (ẏ (t) , u(t),V) + bη (V) , (II.18)

ηB (ẏ (t) , u(t),V) = cη (V) pB (ẏ (t) , u(t),V) + dη (V) , (II.19)

where aη, bη, cη, and dη are four parameters that have to be indirectly identified using informa-
tion on the electric energy, except that the global efficiencies are included in [0, 1]. As a first
approximation, we propose to define the values for these parameters by imposing the boundary
values of the 2D-plot in Figure II.8. With these values, the simulated 2D-plot is represented in
Figure II.9.

Figure II.9: 2D-plot of the efficiency of the traction chain simulated.

The 2D-plot boundary values are similar in the two figures. Even if the 2D-plot are not exactly
the same, we consider these models sufficient as a first approach. However, uncertainties will be
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implemented for these four parameters and will be identified in Chapter III. With these models,
we can estimate the electrical power pT and pB during traction and braking phases, which are
such that:

ηT (ẏ (t) , u(t),V) pT (ẏ (t) , u(t),V) = fT (ẏ (t) , u(t),V) ẏ (t) , (II.20)

pB (ẏ (t) , u(t),V) = ηB (ẏ (t) , u(t),V) fE(ẏ (t) , u(t),V) ẏ (t) , (II.21)

where fE is the longitudinal electrodynamic braking force. Note here that the traction and
braking efficiencies are defined by two different points of view. On the one hand, the traction
efficiency describes the quantity of electrical traction power converted into mechanical power.
On the other hand, the braking efficiency is defined in inverse, that is to say the quantity of
mechanical power that is injected in the catenary. For this reason, the inverse of the traction
efficiency is used in Equation (II.20), and the braking efficiency is directly used as it is in
Equation (II.21). This choice of notation is justified so that the efficiencies are always included
in [0, 1]. The electrical power is estimated multiplying the longitudinal force (traction fT or
braking fB) by the train speed ẏ (t) and applying the traction or braking efficiency presented in
Equations (II.18) and (II.19).

II.3.3 Energy consumption for high-speed trains
For a given driver’s command, we can solve the train dynamic equation, and estimate the as-
sociated train speed. From these quantities (train speed ẏ and driver’s command {u}), we can
estimate the traction and braking efficiencies (Equations (II.18) and (II.19)), which allow us
to calculate the traction and braking powers from Equations (II.20) and (II.21). Then, Equa-
tion (II.17) can be used to estimate the electrical power. The energy consumed by the train,
noted F in the following, is simply the integral over time of the electrical power. Consequently,
it is given by:

F (ẏ, {u} ,V) =
∫ tf

ts

pE (ẏ (t) , u(t),V) dt . (II.22)

As the train speed also depends on driver’s command {u}, rolling environment T , and vehicle
V , we propose to rewrite the energy consumption as a function of {u} and V: F (ẏ, {u} ,V) =
F ({u} , T ,V). This model allows for estimating the energy consumed by the train for a given
driver’s command {u}, a specific rolling environment T , and vehicle V .

II.4 Sensitivity analysis
The dynamic and energy models defined before are very sensitive to driver’s command {u},
rolling environment T , and the train characterized by V . The system scheme of the model is
summarized in Figure II.10. We propose to analyze the sensitivity of the two models for a
subset of the parameters gathered in V . These parameters include both dynamic parameters,
as train mass m, Davis coefficients a, b, and c, but also energy consumption parameters, like
auxiliary power pa, traction efficiency parameters aη and bη, and braking efficiency cη and dη.
Figures II.11 to II.19 represent the impact of a variation of ±20% over each model parameter
(taken one-by-one) on the dynamic model (on the left) and the energy consumption model (on
the right). Equations (II.16) and (II.22) are numerically solved for a given environment T (the
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French LGV Rhin-Rhone track), a specific vehicle characterized by V (the French Dasye high-
speed train), and a driver’s command {u} that is identified in inverse from the measurements
(see Section III.2). The associated speed profile and energy consumption simulated by the
models are plotted in Figures II.11 to II.19. We propose to describe the sensitivity of the models
first with respect to the dynamic parameters and then with respect to the energy consumption
parameters.

Figure II.10: System scheme of the model: inputs, driver’s command, and outputs.

II.4.1 Sensitivity to the dynamic coefficients
Obviously, mass m is an important parameter in the dynamic model described by Equa-
tion (II.16). Figure II.11 displays the speed profile and the consumed energy as a function of
m. It can be seen the importance of mass m in the model. Effectively, at the final time, the
variation of energy consumption is around 14% for a variation of mass of ±20%. This is quite
logical, as the energy consumption model is closely linked to the dynamic model as it uses the
output of the latter to estimate the energy consumed by the train along the journey. In practice,
variations of ±20% cannot be encountered in reality, as the mass of the train only varies around
±5% around a mean value.

The second group of model parameters gathers the three Davis parameters, a, b, and c (see
Equation (II.10)). A variation of their values has a different influence on the resistant force
(and in the same way on the longitudinal dynamics). We can see in Figure II.12 that the speed
profile is slightly modified by a variation of coefficient a. The associated energy consumption
is almost unchanged (less than 0.25% at the final time when applying ±20% variations).
Coefficient a does not have a significant impact on the high-speed train, because for the high
speed the square velocity term is dominant, which depends on c.

Figure II.13 represents the impact of a variation of coefficient b. As for coefficient a, coefficient
b has an important influence on the resistant force, and thus on the dynamic response (but has
higher influence at high speed because b is multiplied by the train speed). This impact can be
seen all along the journey but is more visible when the train speed is over 100km/h compared
with Figure II.12. The influence on the energy consumption model is still small (around 0.5%
at the final time when applying±20% variations) but is superior to the influence of coefficient a.
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Figure II.11: Sensitivity of the models to mass m.
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Figure II.12: Sensitivity of the models to Davis coefficient a.
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Figure II.13: Sensitivity of the models to Davis coefficient b.

Finally, the influence of coefficient c is represented in Figure II.14. It is associated with the
square of the train speed, and thus has an important influence at high speed. We can notice
that on the left figure, where the train speed profile is modified a lot, when the train speed is
around 150km/h. The influence of energy consumption is still relatively low (around 0.75% at
the final time when applying ±20% variations) and cannot be observed without any zoom. On
longer journeys, where higher speed is involved, the influence of these three parameters could
be more important.

The sensitivity analysis performed on the dynamic parameters has enhanced their influence on
the train dynamics and the energy consumption. We demonstrate that they mainly have an
impact on the dynamic model, as they are directly linked to it, but they also have an influence
on the energy consumption model, because the two models are directly linked. The sensitivity
to the energy consumption parameters is analyzed in the next section.

II.4.2 Sensitivity to the energy consumption parameters
A brief sensitivity analysis is also carried out for the energy consumption parameters. The
first one is auxiliary power pa that we have assumed to be a constant and is represented
in Figure II.15. This parameter has no influence on the train dynamics (as it only appears
in Equation (II.22)), but we can observe that perturbing it modifies the associated energy
consumption. This influence can be determined analytically. Effectively, it is simply added
to the traction and braking power to obtain the electrical power (Equation (II.17)) and is then
integrated over time to obtain the energy consumption (Equation (II.22)). Consequently, to

40



0 200 400 600 800
Time (s)

0

25

50

75

100

125

150

175

Sp
ee

d 
(k

m
/h

)

+20%
+10%
Mean value
-10%
-20%

0 200 400 600 800
Time (s)

0

100

200

300

400

En
er

gy
 c

on
su

m
ed

 (k
W

h)

+20%
+10%
Mean value
-10%
-20%

Sensitivity analysis CSensitivity analysis of 

Figure II.14: Sensitivity of the models to Davis coefficient c.

perturb the value of the auxiliary power as pa = p̄a + ∆pa is equivalent to modify the energy
consumption by ∆F (t) = (t− ts)∆pa. Therefore, ∆F is linear in (t− ts). This can be
observed in Figure II.15. Finally, the variation of energy consumption reaches 2.5% at the final
time for perturbation of ±20% of the value of parameter pa.

The other group of parameters contains the traction and braking efficiency parameters.
First, coefficients aη and bη used in Equation (II.18) only have an influence on the consumed
energy (and not on the dynamics) and only during traction phases, as they directly intervene in
the estimation of the traction efficiency. This can be viewed in Figure II.17, where the main
variation of the energy consumption occurs during the first part of the journey (when the train
accelerates to reach its maximum speed).

Coefficient bη is the constant part for the efficiency in Equation (II.18) (Figure II.17), whereas
aη (Figure II.16) models approximately its dependency on the train speed and the driver’s
command. The influence of coefficient aη on the total energy consumption is smaller (less than
2% for ±20% variations) than the influence of bη (33% for the same variations), because the
first one corresponds to a small adjustment of the efficiency model compared to the second one,
which has a higher sensitivity on the estimation of the value of the traction efficiency.

In the same way, we can compare the two other braking coefficients cη and dη (see Equa-
tion (II.19)). As it was aforementioned, those coefficients do not have any influence on the
dynamic model, and they only influence the estimation of the energy recovered, while braking.
We can observe this phenomenon in Figure II.19, where the consumed energy is slightly
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Figure II.15: Sensitivity of the models to auxiliary power pa.
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Figure II.16: Sensitivity of the models to traction efficiency coefficient aη.
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Figure II.17: Sensitivity of the models to traction efficiency coefficient bη.

modified on the last part of the journey. As it was previously stated, coefficient cη is a small
adjustment of the model and has a small sensitivity on the braking efficiency, compared with
coefficient dη. The variation of energy consumption at the final time is around 0.3% for
coefficient cη and 4.5% for coefficient dη. The influence of these parameters is relatively small
compared with the traction efficiency parameters because this journey is mainly composed of
traction phases. The opposite situation would have probably been observed in case of a journey
composed of large braking phases and only few traction phases.

The parameters related to the energy consumption model have no influence on the train dy-
namics, as they do not intervene in the dynamic model. They only modify the energy consumed
by the train. Many other parameters could have been studied, like corrective coefficient kC or
wind speed vw. We have chosen to only focus on parameters m, pa, a, b, c, aη, bη, cη, and dη, as
they are the most important.

II.5 Conclusion and discussion on the modeling choices
In this chapter, we have constructed a model to represent the train, its environment, and the
driver’s command. Particular attention has been paid to provide a precise definition of the
track and the wind, which have an important influence on the train dynamics. Then, a dynamic
model for the train has been developed, derived from a multi-body model, but simplified
in order to extract the longitudinal dynamics for the entire train. Additionally, an energy
consumption model has been proposed as a function of the auxiliary power, the traction and
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Figure II.18: Sensitivity of the models to braking efficiency coefficient cη.
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Figure II.19: Sensitivity of the models to braking efficiency coefficient dη.
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braking efficiencies. The chosen hypotheses have been carefully justified. Finally, a sensitivity
analysis has been carried out to quantify the influence of the most important model parameters
on the dynamic behavior and on the energy consumption of the train.

In Chapter III, the identification of these model parameters is performed. In fact, all trains
do not behave in the same way and the identification of parameter values for the train under
consideration is mandatory. The introduction of the uncertainty in the model parameters is
necessary in order to deal with the variations that exist between trains, and also the lack of
knowledge for every train.
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Chapter III

Identification of the random model
parameters

In order to calculate the train dynamics and its energy consumption, Chapter II have highlighted
the importance of precisely defining the entries of the train system and the driver’s command.
The driver’s command is well defined in Section II.1.3. What we have called entries are com-
posed of the rolling environment T (the definition of the track and wind), but also of the vehicle
description V . Even though the environment has well been defined in Section II.1.1, some vehi-
cle parameters are either not perfectly known (lack of knowledge, such as the energy efficiency)
or have intrinsic fluctuations (such as the mass depending on the number of passengers in the
train). These types of parameters are then considered as uncertain and are modeled by random
variables. Thus, this chapter focuses on the identification of the random parameters from mea-
surements carried out on commercial trains, which are grouped in the random vector X , while
the notation V gathers all the model parameters related to the vehicle. These model parameters
correspond to the red box of the optimization problem (see Equation (III.1))

{u∗} = argmin
{u}∈U

c({u},T , V )=0

F
(
{u} , T , V

)
. (III.1)

It should be noted that only a few works have been published concerning the iden-
tification problem of uncertain parameters in the context of the railway domain, see for
instance [55, 15, 56]. In this work, the followed methodology for identifying the uncertain
parameters is constituted of two steps. In a first step, the mean value x of the random vector X
is estimated using the least square method and the measurements of observations of the train
system. In a second step, we use a Bayesian inference for estimating the posterior probability
distributions of X , for which the prior model of X is controlled by x and by the variances of
the components of X that are fixed to sufficiently large values in order that the support of the
posterior probability distributions of X be consistent with the measurements. The likelihood
function (conditional probability function) is constructed using the following hypotheses.
The model uncertainties induced by the modeling errors are taken into account by the output
prediction error method, for which a Gaussian additive noise is introduced on the observations
of the train system. The multivariate Gaussian distribution of this noise is centered, and its co-
variance matrix is estimated by using the maximum likelihood method and the measurements.
The sampling of the posterior will be performed using MCMC algorithm. Concerning the
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available measurements, only the train speed profile and the energy consumption are measured
but the associated experimental driver’s command is unknown. Since we need the experimental
driver’s command for performing the statistical inverse problem, we have to identify it.

To carry out the identification, the available measurements are achieved a specific high-speed
line (LGV Rhin-Rhone) for a French high-speed train (TGV Dasye). Several journeys have been
used, during which the train longitudinal position smes and speed vmes, as well as the RMS (Root
Mean Square) values of the electrical current intensity imes, the voltage umes, and the phase
shift, ϕmes, are measured through the pantograph at each δtmes. In this chapter, the measured
time sampling points correspond to an under sampling of all the measured time sampling points
with a factor equal to 40. The number Nmes of measured time sampling points {tmesj , j =
1, . . . , Nmes} is smaller than the number N of time sampling points {ti, i = 1, . . . , N} used
for the simulations, but each tmesj coincides with a ti. The electrical power transmitted (positive
and negative) to the train (and consequently its energy consumption) can thus be estimated with
a great confidence. The energy consumed by the train, fmes, is written as

fmes (t, imes, umes, ϕmes) =

∫ t

ts

imes (τ)umes (τ) cos (ϕmes (τ)) dτ . (III.2)

Section III.1 defines the uncertain parameters that constitute the components of random
vector X . The identification of the experimental driver’s command from the experimental train
speed profile and the train model is presented in Section III.2. Section III.3 deals with the
identification of x using the least square method. In Section III.4, we present the Bayesian in-
ference and the sampling of the posterior probability model using an MCMC algorithm. Finally,
conclusions are drawn on the identification method in Section III.5.

III.1 Selection of the uncertain parameters
The accuracy of the prediction of the train model constructed in Chapter II strongly depends on
the vehicle parameters. These parameters vary from one train to another one, but differences
are also observed when comparing two trains of the same type, as long as they have undergone
different wear levels induced by different loadings or different running conditions.

Several parameters of the models defined in Chapter II are not well-known or are defined with
very little precision. We have selected nine of them as we observed that they have a strong
influence on the dynamic and energy consumption models: the mass m, the Davis coefficients
a, b, c, the auxiliary power pa, the traction and braking efficiencies aη, bη, cη, dη.

Measurements made with the same train on several journeys are available for the identification.
It is reasonable to assume that these parameters, apart the mass that may change according to
the occupancy, vary only slightly from one circulation to another. In order to take into account
this particularity related to the mass, the mass is written as

m (V) = m̄ (V) + ∆m. (III.3)

in which m̄ (V) is a deterministic nominal value, which is assumed to change from one journey
to another. This nominal value is estimated using Algorithm 1, while fixing all the other
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parameters to their nominal values. Parameter ∆m, called the mass error, is uncertain and will
simultaneously be identified with the other parameters in order to integrate the cross influences
of the mass with the other uncertain parameters on the train dynamics. Note that we have
chosen the representation defined by Equation (III.3) because, in the near future, m̄ could
directly be estimated by counting the number of passengers entering the train or by analyzing
the resulting forces applied to the vertical suspensions of the train between two stations. In
such a case, ∆m will appear as the error associated with this estimation.

The algorithm is based on the following method. We look for m̄ (V) such that the simulated
energy consumption is close to the energy consumption measurement. We apply a dichotomy
method starting from the possible minimum and maximum values of the mass, mmin andmmax,
until reaching the convergence associated with a given tolerance (100 kg). As the experimental
driver’s command is not available, and we need a driver’s command for estimating m̄. This
estimation is performed (as explained in Section III.2) using the experimental speed profile and
the train model for which all the parameters are fixed to their nominal values. Note that in this
algorithm, the nominal value of the mass, m̄, changes at each iteration of the dichotomy. This
algorithm allowing m̄ to be estimated is summarized in Algorithm 1.

48



Initialization:
• m1 ← mmin, m2 ← mmax

• Compute in inverse, u1 (m1) and u2 (m2)

• Compute the consumed energy F1 := F ({u1}, T ,V(m1)) and
F2 := F ({u2}, T ,V(m2))

while m2 −m1 > 100 do

• m3 = (m1 +m2)/2

• Compute in inverse u3 (m3)

• Compute the consumed energy F3 := F ({u3}, T ,V(m3))

if d2 (F1, f
mes) < d2 (F2, f

mes): then

• m2 ← m3

• u2 ← u3

• F2 ← F3

else if d2 (F2, f
mes) < d2 (F1, f

mes): then

• m1 ← m3

• u1 ← u3

• F1 ← F3

end
Return (m1 +m2)/2

Algorithm 1: Estimation of m̄ with a dichotomy method.

The distance d2 is defined by

d2 (f, g) =

√√√√Nmes∑
j=1

(
f
(
tmesj

)
− g

(
tmesj

))2
. (III.4)

Finally, the random variables (written with uppercase letters) can be divided into two
groups. We define XD = (∆M,A,B,C) the random variables modeling ∆m, a, b, c involved
in the dynamic model, XE = (P a, Aη, Bη, Cη, Dη) the random variables modeling pa, aη, bη,
cη, dη involved in the energy consumption model, and we define X such as X = (XD,XE)
that is the random vector to be identified. Note that all the random variables are normalized by
their nominal values before being estimated but we keep the same notations.
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Uncertain parameters associated with the dynamic model XD

By construction, m(V) = m̄(V) + ∆m is included in the interval [mmin,mmax], where
mmin is the mass of the empty train, and mmax is the mass for a train full of passengers. As we
mentioned before, parameter ∆m is considered uncertain.

The Davis coefficients are used to estimate the longitudinal friction forces (see Equation (II.10)).
Nominal values for these coefficients are given by the train manufacturer for each type of vehi-
cle. Nevertheless, the wear state of the wheels has an influence on the contact force, and thus on
coefficients a and b. In the same manner, the aerodynamic force is also very simplified and co-
efficient c also needs to be properly estimated. Therefore, these three parameters are considered
uncertain.

Definition of the uncertain parameters associated with the energy consumption model
XE

Auxiliary power pa describes the part of the electrical power that is not transmitted to the
traction chain. This electrical power can be decomposed in two contributions. A first part is
used by the comfort tools of the train, such as the air conditioning or the light, between others.
It should be possible to identify this first part when the train is stopped, but it appeared that
this value was underestimated, as all the tools are generally not used at stop. A second part
is distributed to the systems that ensure the safety of the journey (air-cooling motor systems).
This second part can only be measured when the train is in motion. The sum of these two
contributions may vary from one journey to another, depending on many variables such as the
air temperature, the number of passengers, and so on. Figure III.1 shows the electric power
measurement of the train as a red dotted line. It can be compared to the nominal value of the
auxiliary power provided by the manufacturer that is plotted in black solid line.

As explained in Chapter II, the traction and braking efficiencies depend on four parameters:
aη and bη for traction efficiency, cη and dη for braking efficiency. The nominal values of
parameters aη and bη have been chosen to be similar to the 2D plot shown in Figure II.8. The
simulated 2D plot (with nominal values) is shown in Figure II.9.

The nominal values of parameters cη and dη can also be estimated. We choose to keep the same
2D-plot than the one found for aη and bη because the same components of the train are involved
in the two phenomena. Nevertheless, the values of the braking efficiency parameters are slightly
smaller than the ones describing the traction efficiency. In practice, we know that the braking
efficiency is around 0.82 against 0.87 for the traction efficiency. Consequently, we propose to
reduce the nominal values of cη and dη of around 5% so that this proportion is respected.
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Figure III.1: Measured electrical power consumed by the train (red dotted line) and auxiliary
power estimation (black solid line).

III.2 Identification of the experimental driver’s command
from the experimental train speed profile and the train
model

As previously explained, for a given realization x of X , the first part of the identification
process aims to estimate in inverse the experimental discretized driver’s command is denoted
as umes, for each journey, so that the simulated speed profile is as close as possible to the
measured speed profile (tmes, vmes). As previously explained, the measurements are all
discretized on a Nmes-dimensional time grid with intervals δtmes = 8 s, each of them being
associated to a given time tmesj . The simulated discretized driver’s command is denoted by
u = (u1, ..., uN) with ui = u (ti). The same notations are used for the discretized position,
speed, and acceleration of the train.

With these notations, Equation (II.16) allows us to estimate the train acceleration at each time
ti using the position and the speed of the train as well as the simulated discretized driver’s
command,

ÿi =

∑
α

fα(yi, ẏi, ui,x, T )

mkrot
, 1 ≤ i ≤ N . (III.5)
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Here, fα gathers the traction and braking forces, the resistant force, the correction applied in
curves, and the weight of the train. Given the acceleration at time ti, we deduce the train position
and speed at the next time step ti+1 thanks to the Euler scheme,

ẏi+1 = ÿi∆t+ ẏi , yi+1 = ẏi∆t+ yi . (III.6)

In practice, the train dynamics is numerically computed according to Equations (III.5)
and (III.6). For the computation at point ti+1, the initial speed and position are ẏi and yi.
In Equation (III.5), the simulated discretized driver’s command ui is generated from umesj

using repetition. The distance d1 between the simulated speed and the measured one is then
calculated by,

d1 (f, g) =
Nmes∑
j=1

|f
(
tmesj

)
− g

(
tmesj

)
| . (III.7)

To find the experimental discretized driver’s command umesj ∈ [−1, 1], we minimize this dis-
tance using the Brent’s method. It uses the advantages of the bisection method, the secant
method, and the inverse quadratic interpolation, switching from one method to another to accel-
erate the convergence. It has been proposed by R. Brent in [57] from the base of the algorithm
developed by T. Dekker in [58]. The estimation process is summarized in Algorithm 2.

Initialization:
• Selection a value of x

for j = 1 : Nmes do

• Initialize the position and the speed with ymesj and ẏmesj

• Iterate Brent’s method to find umesj

while the convergence condition is not respected do

• Brent algorithm selects a candidate value umesj using the values of
distance d1 calculated at the previous iteration

• Solve the dynamic using Equations (III.5) and (III.6)

• Calculate distance d1 between the measured speed and its
corresponding simulated speed

end
end
Return umes(x)

Algorithm 2: Identification of umes(x) from experimental speed profile and model.

The quality of this identification is verified in Section III.3.2 (quality assessment).
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III.3 Identification of the mean values of the random param-
eters using the least-square method

III.3.1 Prediction of the energy consumption
Henceforth, the driver’s command is estimated, and we can try to evaluate the quality of the
energy-consumption prediction for a given value x of the parameters. Note that rather than
comparing powers, we compare simulated and measured energy consumption because the
model presented in Chapter II is constructed to precisely compute the energy. Therefore, we
propose to work on the energy consumed by the train on the given times defined by tmesj . This
last point is realized as a result of distance d2 presented in Equation (III.4).

At that time, we are able to quantify the quality of x. But the question is now: how can we
find the optimal value of x? Indeed, the dynamic and the energy consumption models both
depend on x and umes(x). This inter-dependency, coupled with the fact that there is no perfect
fit because of the model error, makes the problem not necessarily well posed, while being a
priori nonconvex and nonregular in x. In fact, a small modification of x undoubtedly conducts
to a modification of the driver’s command umes(x), and these two modifications both have an
impact on the consumed energy.

To circumvent this difficulty, a sample-based optimization method is used. It relies on the
evaluation of a certain number N id of values for {xk, k = 1, . . . , N id}, which are drawn
uniformly around a chosen value x̂ of the parameters (x̂ will be modified as a function of the
algorithm iteration). The support of the uniform distribution for the samples associated with
the component x̂l of x̂ is chosen as [0.9 x̂l, 1.1 x̂l], as a compromise between the volume of
the research domain and the reduction of the calculation time (many iterations is required to
explore a large volume). Number N id is chosen depending on the acceptable computational
time. For each realization xk, umesk (xk) is identified with Algorithm 2 in order to calculate the
simulated energy consumption before comparing it with the measurements.

Once all the iterations are completed, we extract the best candidate x∗ from the set of real-
izations {xk, k = 1, . . . , N id}. We iterate this process N step times, replacing x̂ by the best
candidate x∗ in the former procedure. If x∗ is far from x̂, the same support is kept for the
next iteration (because we have yet to explore the new domain). On the opposite, if the best
candidate is relatively well centered in the support, this support is reduced for the next iteration
to gain in precision. The complete procedure (which is iterated several times) is described in
Algorithm 3.
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Initialization:
• Choose N id and N step

• Choose x̂

for p = 1 : N step do
for k = 1 : N id do

• Draw a candidate xk centered on x̂

• Determine in inverse umesk (xk) with Algorithm 2

• Estimate the consumed energy Fk

• Calculate distance d2 between the simulated energy consumption and
the measured one

end

• Select the best candidate x∗

• Update x̂← x∗

• Potentially adapt the support

end
Return x∗.

Algorithm 3: Identification of the value x∗ of x.

At convergence, the best candidate x∗ is considered as a good approximation of the most likely
value of the vehicle parameters. This expected value can be used to describe the train vehicle
V in Equations (II.16) and (II.22). In order to make this estimate more robust, the comparisons
between the measured and simulated energy consumptions in the global cost function rely on
10 different journeys. This modification only enriches the right-hand side in the definition of d2.

Figures III.2 and III.3 show the comparison between the measurements and the simulations
for the train speed profile and the energy consumption for 2 (serie 1 and serie 2) of the 10
different journeys used in the identification process. In these figures, the simulations have been
performed using the estimated measured discretized driver’s command.

As a first comment, we can see in the left figures in Figures III.2 and III.3 that umes has very
well been identified. In addition, the simulated speed profile is well predicted comparing
to the measurements both for the values of x∗ and for that of x. We can observe the weak
effect of choosing a large value for δtmes yielding small differences between simulations and
measurements.
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Figure III.2: Speed profile of the train (left) and consumed energy (right) depending on the
position (i) for the identified values x∗ of the parameters (green), (ii) for their nominal values
(blue), and (iii) for the corresponding measurements (red) - Serie 1.

The second comment that should be given is that the identification performed with Algorithm 3
is efficient. Indeed, the energy consumed by the train computed with x∗ is closer to the
measurements than the one estimated with x. This means that, in spite of the difficulty of
solving the problem, we are able to find a value x∗ of x, which fits the measurements. A priori,
value x∗ could not be optimal. Nevertheless, we will see in Section III.3.2 that x∗ appears to
be satisfactory.

Finally, we can calculate the Root Mean Square Error (RMSE) between the simulations and the
measurements. With the nominal values, this error reaches 6.4%, and it is around 3.0% with
x∗. Consequently, Algorithm 3 allows for improving the quality of the models by finding more
adapted values of x.

III.3.2 Quality assessment of algorithms for the identification of the mean
values of the random parameters

The quality of the presented method is assessed on 10 other journeys that have not been used
by the identification algorithms. The value x∗ of the vehicle parameter is supposed to remain
identical for these 10 journeys because the same vehicle has been used to realize all the mea-
surements. The experimental discretized driver’s command umes is again determined in inverse
using Algorithm 2.
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Figure III.3: Speed profile of the train (left) and consumed energy (right) depending on the
position (i) for the identified values x∗ of the parameters (green), (ii) for their nominal values
(blue), and (iii) for the corresponding measurements (red) - Serie 2.

Figures III.4 and III.5 show the speed profile and the energy consumed by the train for two
journeys (series 12 and 18). Once again, we notice in the left figures that the proposed
algorithms yield a very good comparison. Likewise, the measured consumed energy in red
is better predicted using x∗ in green than using x in blue (see right figures). Consequently,
Algorithm 2 and 3 appear to be very interesting.

In a quantitative point of view, the RMSE over the 10 new journeys reaches 6.9% with x and is
reduced to 3.1% with x∗. The error values are slightly higher than the ones for the 10 journeys
used by the algorithms, which is coherent.

III.3.3 Discussion about the identification method
This first step of the identification that we have proposed already yields a good prediction of the
speed profile and of the energy consumption. However, this identification has been performed
without taking into account the uncertainty inherent in the system: parameter uncertainties such
as the mass, the auxiliary power, the Davis coefficients, and the energy efficiency and the model
uncertainties induced by modeling errors. The next section is devoted to the second step of the
identification. As previously explained, we present a probabilistic framework for performing
the second step of the parameters identification, for which the first step results will be used to
construct the prior probability distributions of the uncertain parameters.
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Figure III.4: Speed profile of the train (left) and consumed energy (right) depending on the
position (i) for the identified values x∗ of the parameters (green), (ii) for their nominal values
(blue), and (iii) for the corresponding measurements (red) - Serie 12.

III.4 Bayesian inference of the uncertain parameters
The Bayesian inference method that we have developed is based on general statistical tools
(see for instance [59, 60, 61, 62, 63, 64] for general aspects relative to Bayesian inference).

The method used has been summarized at the beginning of Chapter III. It is composed of three
steps. The first one is the construction of the prior distributions of the model parameters (Sec-
tion III.4.1), and the choice of a structure for the modeling error (Section III.4.2). The second
step deals with the construction of the likelihood function and is detailed in Section III.4.3.
The estimation of the posterior distribution constitutes the third step. Section III.4.4 deals with
the Markov Chain Monte Carlo (MCMC) method in order to infer this posterior distribution.
Finally, in Section III.4.5, we present the uncertainty propagation through the train dynamic
system and the energy consumption model. This propagation will be quantified in computing
the confidence regions.

III.4.1 Construction of the prior probability distributions
The prior distributions are mainly constructed in the framework of Information Theory and are
presented (i) for the Davis coefficients A, B, C, (ii) for the mass error ∆M , the auxiliary power
P a, the efficiency coefficientsBη,Dη, and (iii) for the efficiency coefficientsAη,Cη. Depending
on the characteristics of this available information, several constructions are proposed.
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Figure III.5: Speed profile of the train (left) and consumed energy (right) depending on the
position (i) for the identified values x∗ of the parameters (green), (ii) for their nominal values
(blue), and (iii) for the corresponding measurements (red) - Serie 18.

Davis coefficients A, B, and C

The prior probability distributions of the random variables A, B, and C are constructed as
follows. Let Z be the random variable representing anyone of these three random variables. The
available information for Z is positive-valued random variable, mean value and variance given.
Consequently, the use of the Maximum Entropy Principle [65, 66, 67, 68] under the constraints
defined by this available information, is a Gamma probability distribution. The hyperparameters
of such a distribution are the shape parameter kZ and the scale parameter θZ . The mean value
is z = kZθZ and the variance is σ2

Z = kZθ
2
Z . We choose to define the mean value as the value

extracted from x∗ and to fix the value of the variance. The probability density function (PDF)
of Z is then written as

fZ(z) =
zkZ−1e−z/θZ

Γ (kZ) θ
kZ
Z

1R+(z) , (III.8)

with k 7→ Γ(k) the Gamma function and x 7→ 1R+(x) the indicator function over R+. The
shape and scale hyperparameters are thus written{

kZ = z2/σ2
Z ,

θZ = σ2
Z/z .

(III.9)
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Mass error ∆M , auxiliary power P a, and efficiency coefficients Bη and Dη

We have previously mentioned in Section III.1 that the total mass of the train is decom-
posed in an approximated deterministic mass m̄ estimated by the devices of the trains, and a
mass error, denoted by ∆m, and modeled by a random variable ∆M . The available infor-
mation we have to define the probability distribution of ∆M is that ∆M is with values in
[−1 000, 1 000] kg. In addition, we have seen that the random total mass M of the train, is with
values in the interval [mmin,mmax]. Consequently, the support of the probability distribution of
∆M is

S∆M = [max(−1 000,mmin − m̄) , min(1 000,mmax − m̄)] .

With this available information, the use of the Maximum Entropy Principle yields a uniform
distribution for ∆M for which the support is S∆M .

Regarding the random auxiliary power P a, the available information is the support of its proba-
bility distribution (which is a positive interval) and which is centered on its mean value extracted
from x∗. Consequently, this probability distribution is uniform. We fix a large support in order
to well estimate its posterior distribution. Consequently, the support is written

SPa = [pa,min , pa,max] ⊂ R+ ,

with pa,min = 350 kW and pa,max = 650 kW .

Concerning the energy efficiency, Equations (II.18) and (II.19) can be rewritten as

ηT (pT ) = aηp
T + bη , ηB(pB) = cηp

B + dη ,

in which
pT ∈ [0 , pT,max] , ηT

(
pT
)
∈ [0.1 , 1] , (III.10)

pB ∈ [0 , pB,max] , ηB
(
pB
)
∈ [0.1 , 1] , (III.11)

where pT,max and pB,max are the available maximum traction and braking powers reached for a
traction and braking forces equal to fT,max or fB,max. Traction efficiency ηT (pT ) is modeled
by a random variable HT (pT ) and HB(pB) by a random variable HB(pB) that are written as

HT (pT ) = Aηp
T +Bη , HB(pB) = Cηp

B +Dη . (III.12)

It can be deduced that the support of the probability distributions of random variables Bη and
Dη are

SBη = [0.1 , 1] , SDη = [0.1 , 1] .

We only have information on the support of the probability distributions of Bη and Dη. Us-
ing the Maximum Entropy Principle yields a uniform distribution with support SBη and SDη ,
respectively. Note that the mean values are not imposed.
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Efficiency coefficients Aη and Cη

For Equations (III.10) to (III.12), it can be deduced that

HT (pT,max) = Aηp
T,max +Bη , HB(pB,max) = Cηp

B,max +Dη . (III.13)

The supports of the probability distributions of HT (pT,max) and HB(pB,max) are, respectively,

SHT (pT,max) = [0.1 , 1] , SHB(pB,max) = [0.1 , 1] . (III.14)

The probability distributions of the two last random parameters, Aη and Cη, are constructed as
follows. First from Equations (III.13) and (III.14), it can be deduced that, almost surely, we
have

(0.1−Bη)/p
T,max ≤0 ≤ Aη ≤ (1−Bη)/p

T,max ,

(0.1−Dη)/p
B,max ≤0 ≤ Cη ≤ (1−Dη)/p

B,max .
(III.15)

The constraints defined by Equation (III.15) have to be verified for any realization of Bη and
Dη. Let bη and dη be realizations of random variables Bη and Dη. We introduce the condi-
tional random variables Aη|{Bη = bη} and Cη|{Dη = dη}. The supports of these two random
variables are [0, 1 − bη] and [0, 1 − dη]. Using the Maximum Entropy Principle under the con-
straints defined by this available information yields conditional uniform distributions with these
supports.

Prior probability density function of random vector X

The prior probability density function fpriorX (x) of the R9-valued random variable X de-
fined in Section III.1 is directly deduced from the independent properties and the constructed
margin probability density functions related to the components.

Generators and graphs of the prior probability density functions of the random parame-
ters

Given the former prior probability distributions and using a random generator of realiza-
tions for each one of the prior probability distributions, we have estimated the prior probability
density functions using the Gaussian Kernel Density Estimation (see [69] and [70]). The graphs
of the prior PDFs of each one of the nine random parameters are shown in Figure III.6.

In these figures, it can be seen that the prior PDFs are consistent with respect to the knowledge
we had for these parameters. In particular, the support of the PDFs are well represented and the
mean values for the Davis random variables have correctly been adjusted.

III.4.2 Choice of the structure for the modeling error
As explained at the beginning of Chapter III, for the computation of the random energy con-
sumption, the model uncertainties induced by the modeling errors are taken into account by the
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Figure III.6: Prior probability density function of each one of the uncertain parameters. From
top left to bottom right (line-by-line): Mass error ∆M , auxiliary power P a, Davis coefficients
A, B, C, and traction and braking efficiency parameters Aη, Bη, Cη, and Dη.

introduction of an additive noise. Using measurements time sampling tmesj , j = 1, . . . , Nmes,
we define the additive noise εmod by the equality of the RNmes-valued random vectors,

Fmod(u, T ,X,σ) = F(u, T ,X) + εmod(X,σ) , (III.16)

in which σ is a hyperparameter vector that will be presented below. The components of each
random vectors correspond to their values at time tmesj . We define the conditional random
vector εmod(X,σ)|{X = x}, simply denoted as εmod(x,σ). Under adapted hypotheses,
we prove below that random vector εmod(x,σ) is a RNmes-valued centered Gaussian random
vector with covariance matrix [Cmod(x)] whose structure will be defined and will be identified
using the maximum likelihood on measurements.

The Bayesian inference is going to be applied using measurements fmes associated with Fmod.
Note that there are two sources of modeling errors: the first one, εF , is related to the train-
dynamics model and the other one, εP , to the energy consumption model.
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Error related to the train-dynamics model

The train-dynamics model is responsible for the first source of modeling error. This error
results from various simplifications (such as the use of the Davis model for the friction forces),
from the use of the longitudinal model instead of the 3D one (see Appendix A), but also from
the use of the experimental driver’s command presented in Section III.2.

The dynamic equation (Equation (II.16)) is used to compute the traction and the braking forces
in order to identify in inverse the experimental driver’s command associated with a given speed
profile. In this equation, all the quantities may be subjected to a modeling error that is repre-
sented by the RNmes-valued centered Gaussian random variable εF . For each time tmesj , we
have {

F T,mod
j

(
u≤j, T ,X, σF

)
= fTj (u≤j, T ,X) + εFj (σ

F ) if uj > 0 ,

FB,mod
j

(
u≤j, T ,X, σF

)
= fBj (u≤j, T ,X) + εFj (σ

F ) otherwise.
(III.17)

It is assumed that the components of random vector εF are not correlated, and consequently, are
statistically independent. Therefore, the covariance matrix

[
CF
]

of εF is diagonal. In addition,
the train-dynamics modeling errors do not depend on time. Thus, the variance (σF )2 is chosen
independent of time. We then have

[
CF
]
=
(
σF
)2
1Nmes , where σF is a hyperparameter that

has to be estimated from the measurements.

Error related to the energy consumption model

Without modeling error, at time sampling tmesj , Equation (II.17) yields the vectorial random
equation,

pEj (u≤j, T ,X) = pTj (u≤j, T ,X)− pBj (u≤j, T ,X) + pa(X) , (III.18)

where pTj and pBj are given (see Equations (II.20) and (II.21)) by

pTj (u≤j, T ,X) ηTj (u≤j, T ,X) = fTj (u≤j, T ,X) ẏj (u≤j, T ,X) , (III.19)

pBj (u≤j, T ,X) = ηBj (u≤j, T ,X) fBj (u≤j, T ,X) ẏj (u≤j, T ,X) . (III.20)

For the modeling error induced by the simplification of the efficiency model, the second source
error for the energy consumption model is related to the electrical power and is represented by
the RNmes-valued centered Gaussian random variable εP that is assumed to be independent of
εF . Let σ = (σF , σP ) be the vector in R2 whose components are σF and σP . Similarly to
Equation (III.18), for each time tmesj , we have

PE,mod
j (u≤j, T ,X,σ) = P T,mod

j

(
u≤j, T ,X, σF

)
−PB,mod

j

(
u≤j, T ,X, σF

)
+pa(X)+εPj (σ

P ) ,
(III.21)

where P T,mod
j and PB,mod

j (inspired of Equations (II.20) and (II.21)) are such that

P T,mod
j

(
u≤j, T ,X, σF

)
ηTj (u≤j, T ,X) = F T,mod

j

(
u≤j, T ,X, σF

)
ẏj (u≤j, T ,X) , (III.22)

PB,mod
j

(
u≤j, T ,X, σF

)
= ηBj (u≤j, T ,X)FB,mod

j

(
u≤j, T ,X, σF

)
ẏj (u≤j, T ,X) . (III.23)
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It should be noted that, in Equations (III.22) and (III.23), we have used ηTj (u≤j, T ,X),
ηBj (u≤j, T ,X), and ẏj (u≤j, T ,X) instead of their corresponding random values that would
take into account modeling errors, in order to avoid an implicit complex formulation. This
hypothesis is justified by the fact that these three quantities are low sensitive to εF .

As for εF , the components of random vectors εP are not correlated, its covariance ma-
trix

[
CP
]

is thus diagonal, and the variance (σP )2 is chosen independent of time. We then
have

[
CP
]
=
(
σP
)2
1Nmes , where σP is a hyperparameter that has to be estimated from the

measurements.

III.4.3 Definition of the likelihood function for the Bayesian inference
The likelihood function is the conditional probability density function of the observed random
variable (vector-valued random energy consumption) given X = x. As mentioned, we will
prove below that the random variable εmod(x,σ) is Gaussian and consequently, is defined by
its mean vector and its covariance matrix depending on x. From Equations (III.21) to (III.23),
it can be deduced that

P T,mod
j

(
u≤j, T ,X, σF

)
=
fTj (u≤j, T ,X) + εFj (σ

F )

ηTj (u≤j, T ,X)
ẏj (u≤j, T ,X) , (III.24)

PB,mod
j

(
u≤j, T ,X, σF

)
= ηBj (u≤j, T ,X)

(
fBj (u≤j, T ,X) + εFj (σ

F )
)
ẏj (u≤j, T ,X) ,

(III.25)
PE,mod
j (u≤j, T ,X,σ) = pEj (u≤j, T ,X) + ε̃Fj

(
u≤j, T ,X, σF

)
+ εPj (σ

P ) , (III.26)

in which

ε̃Fj
(
u≤j, T ,X, σF

)
=
(
1/ηTj (u≤j, T ,X)− ηBj (u≤j, T ,X)

)
ẏj (u≤j, T ,X) εFj (σ

F ) .
(III.27)

Note that the conditional random vector ε̃F |{X = x} remains a RNmes-valued centered Gaus-
sian random vector. Using time sampling {tmesj , j = 1, . . . , Nmes} for discretizing the integral
in time of the electrical power, the random energy consumption Fmodj that takes into account
modeling error, is written as

Fmodj (u≤j, T ,X,σ) =

j∑
k=1

(
pEk (u≤k, T ,X) + ε̃Fk

(
u≤k, T ,X, σF

)
+ εPk (σ

P )
)
δtmes .

(III.28)
Comparing Equations (III.16) and (III.28) yields

εmodj (X,σ) =

j∑
k=1

(
ε̃Fk
(
u≤k, T ,X, σF

)
+ εPk (σ

P )
)
δtmes . (III.29)

Since ε̃Fk (X) is a linear function of εFk , it can be seen that the conditional random variable
εmodj (x,σ) for X = x is effectively Gaussian and centered.
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Since ε̃F (x,σ) and εP are independent and centered, for all j and j′ in {1, . . . , Nmes}, the entry
[Cmod (x;u, Tn,σ)]jj′ of the covariance matrix of the random vector εmod(x,σ) is written as

[Cmod (x;u, Tn,σ)]jj′ = (δtmes)2
min(j,j′)∑
k=1

((
σ̃Fk
(
u≤k, T ,x, σF

))2
+
(
σPk
)2)

. (III.30)

In addition, since σPk and σFk are independent of k, simply rewritten as σP and σF , Equa-
tion (III.30) yields

[Cmod (x;u, Tn,σ)]jj′ = (δtmes)2
min(j,j′)∑
k=1

((
σ̃Fk
(
u≤k, T ,x, σF

))2
+
(
σP
)2)

, (III.31)

in which

σ̃Fk
(
u≤k, T ,x, σF

)
=
(
1/ηTk (u≤k, T ,x)− ηBk (u≤k, T ,x)

)2
(ẏk (u≤k, T ,x))2 (σF )2 .

(III.32)
For a given rolling environment Tn, let Ln(fmod;x,u, Tn,σ) be the likelihood function de-
fined as the conditional probability density function of the RNmes-valued random variable
Fmod(u, Tn,x) given X = x at any point fmod in RNmes . Since εmod(x,σ) is a Gaussian
centered random variable with values in RNmes , with covariance matrix [Cmod (x;u, Tn,σ)],
we have

Ln(fmod;x,u, Tn,σ) = gεmod(x,σ)(f
mod −F(u, Tn,x)) , (III.33)

in which gεmod(x,σ) is the multivariate Gaussian probability density function with zero mean
vector and with covariance matrix [Cmod (x;u, Tn,σ)] (note that it can be verified that this
covariance matrix is invertible for all x and Tn).

For each rolling environment Tn, there is an associated measurement vector fmes,n ∈ RNmes .
In the application, the given set {T1, . . . , TNT } of NT is composed of 30 rolling environments.
Concerning the identification of vector-valued hyperparameter σ, we use the maximum likeli-
hood method, that we write as:

(x∗,σ∗) = argmax
x,σ

NT∑
n=1

log (Ln(fmes,n;x,u, Tn,σ)) . (III.34)

For solving this optimization problem, the Basin-hopping algorithm, conceptualized by David
J. Wales and Jonathan Doye in [71], is used due to its robustness and its ability not to be blocked
in a local minimum. As a result, we obtain the optimal value σ∗ of σ and the optimal value
x∗ of x, which maximize the likelihood. Optimal value σ∗ will be injected in the likelihood
function (Equation (III.33)) in the formulation of the Bayesian inference and x∗ will be used as
a starting point for the MCMC algorithm for sampling the posterior probability distribution of
X .
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III.4.4 Bayesian inference for estimating the posterior distribution
Using the prior probability density function defined in Section III.1 and the likelihood function
defined in Equation (III.33), the Bayes rule allows us to derive the a posteriori probability
distribution of the model parameters:

fpostX (x) ∝

NT∏
n=1

Ln(fmes,n;x,u, Tn,σ∗)

 fpriorX (x) . (III.35)

In order to sampling the posterior probability distribution, we use a Markov Chain Monte Carlo
(MCMC) approach. Among these methods, the Metropolis-Hastings (MH) algorithm (first
described in [72] before being completed in [73]) relies on the initialization of a random walk,
which evolves in the support of PDF fpriorX uncertain parameters domain. At each iteration, a
candidate is proposed, and it is accepted or rejected according to a specific acceptation rate,
which depends on the prior distributions and the likelihood function.

In our case, random vector X has 9 components that have different sensitivity on the posterior
(see Section II.4). Because of this, the MH algorithm shows a relatively low efficiency. Effec-
tively, the acceptation of the candidate, which is randomly drawn, is going to be determined
almost solely by the most influent random component of X . A large number of iterations
are likely to be needed to correctly estimate the less influent random component of X . For
instance, the braking efficiency parameters only have an influence on the braking part of the
journey, and the influence of these parameters may be hidden by the influence of the other
parameters in the new candidate.

For this reason, the Metropolis-within-Gibbs (MwG) algorithm has been used. It combines the
classic Metropolis-Hastings algorithm with the Gibbs Sampling (GS) presented by S. and D.
Geman in [74]. The main idea is that at each iteration k, the value xk of a single component Xk

changes according to several iterations of the classic MH algorithm. Hence, all the components
of X are considered one-by-one, and their influences do not interfere (more details on the
algorithm are given in [75]).

As all the MCMC algorithms, the MwG algorithm needs to be correctly initialized in order
to observe a fast convergence and we have chosen the optimal value x∗ estimated in Sec-
tion III.4.3. First of all, we need to choose, at each iteration k + 1, the new value xk of
component of Xk to be modified. We just propose to select them at random uniformly.

Second it is necessary to choose a transition probability for drawing the candidates of the
random walk. As generally done in the literature, we have chosen to use the normal distribution
for this task. The variance of this normal distribution is a key parameter for the convergence of
the MCMC algorithm. Indeed, a low variance favors the observation of candidates close to the
current one. In that case, the exploration, by the random walk, of the parameter domain will be
slow. On the contrary, a high value for the variance results in value proposals that can be very
different from the current point. A large proportion of them are likely to be rejected and the
random walk may also have difficulties to converge.

65



In this work, the chosen proposal distribution is Gaussian, and we have adapted the variance to
each component of X in order to get an acceptation rate close to 50%. We have also chosen
NMH = 5 meaning that each MwG iteration relies on 5 MH iterations (which seemed to be a
good compromise for the considered numerical application).

For each candidate, we need to compute the likelihood function, which requires the simulation
of the dynamic and energy models for NT = 30 different journeys. As these calculations are
completely independent and are thus performed in parallel computing.

In order to assess the convergence of the method, we estimate E{∥X∥2}. Its value remains
relatively stable after NMwG iterations. This means that the random walk has entered in its
stationary state. Keeping the iterations following the NMwG-th iteration allows us to gather
points that are approximately distributed according to the posterior probability distribution of
X . Finally, the posterior probability distribution of X can be reconstructed from these samples
thanks to a KDE method.

The application to the train system is presented in Figure III.7 and Figure III.8. The number of
iterations needed for reaching convergence (abscissa axis) varies between the different graphs
in Figure III.7 because the number of MwG iterations is not the same for all the component of
X .

In Figure III.8, we notice that the posterior probability distributions of random variables A,
B and C remain relatively close to their prior ones. This means that the nominal values used
for constructing the prior probability distributions were well adapted. This is not the case for
the posterior probability distributions of mass error ∆M , auxiliary power P a, and the four
efficiency coefficients Aη, Bη, Cη, and Dη, which are very different from the prior ones, due to
the fact that we had only little information for constructing the priors. In that case, the energy
measurements allow us for better characterizing the posterior distributions.

III.4.5 Propagation of parameter uncertainties
In this section, we propose to quantify the impact of the residual variability associated with
the posterior probability distribution of X on the energy consumption model. To this end,
we use realizations of the posterior distributions generated by the MCMC algorithm during
the Bayesian inference process. The dynamic equation and the energy consumption equation
are solved for these realizations, and we rebuilt the PDFs of the random train speed and the
random energy consumption thanks to the use of the Gaussian KDE method. In this section, we
propose to only construct the energy-consumption probability distribution, as it involves both
dynamic and energy consumption models, and we can directly compare it with measurements.

Figures III.9 and III.10 display (i) some realizations of the random energy consumption
generated with the posterior distributions, (ii) its mean value, (iii) the realizations including
the modeling error εmod, and (iv) the envelops of the confidence regions for the 95% quantiles.
The PDFs of (i) and (iii) are plotted at three given times. Finally, the energy measurements are
plotted.
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Figure III.7: Second-order moment of component of X as a function of the number of iterations.
From top left to bottom right: ∆M , P a, A, B, C, Aη, Bη, Cη, and Dη. Iteration number NMwG

is represented by a vertical dashed line in each figure.

The results displayed in Figure III.9 correspond to one of the 30 journeys used for the Bayesian
inference. In this case the measurements are very close to the mean value estimated with
the posterior probability distributions. In general, most of the energy consumption of the 30
journeys used in the Bayesian inference are well described by the blue envelop, but some of
them are slightly outside (but never outside the green envelop). In other words, the estimated
posterior probability distribution correctly characterizes the variability encountered during the
30 measured journeys. Without surprise, the envelop is growing over time as the uncertainty
accumulates along the journey.

We also propose to assess the quality of the posterior probability distribution by plotting
the statistics of the random energy consumption for journeys that have not been used for
carrying out the Bayesian inference. These statistics are shown in Figure III.10 using the same
conventions that the one used in Figure III.9.

Once again, the blue envelop is sufficient to describe the measurements, but in a slightly higher
number of journeys, we observe measurements that are outside this blue envelope while remain-
ing inside the green envelope. This justifies the introduction of σF and σP to properly quantify
the modeling errors. The posterior probability distributions seem well adjusted because they are
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Figure III.8: PDF of the priors (blue) and posteriors (orange) for each uncertain parameter.
From top left to bottom right (line-by-line): Mass error ∆M , auxiliary power P a, Davis coeffi-
cients A, B, C, and the traction and braking efficiency parameters Aη, Bη, Cη, and Dη.

Figure III.9: (i) Realization of the random energy consumption generated with the posterior
distributions (in blue), (ii) its mean value (in black), (iii) the realizations including the modeling
error εmod (the green curves), and (iv) the envelops of the confidence regions for the 95% quan-
tiles. The PDFs of (i) and (iii) are plotted at three given times. Finally, the energy measurements
are plotted with a red dotted line - Serie 5
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Figure III.10: (i) Realization of the random energy consumption generated with the posterior
distributions (in blue), (ii) its mean value (in black), (iii) the realizations including the modeling
error εmod (the green curves), and (iv) the envelops of the confidence regions for the 95% quan-
tiles. The PDFs of (i) and (iii) are plotted at three given times. Finally, the energy measurements
are plotted with a red dotted line - Serie 10

able to capture the observed variability among the trains responses, even for rolling environment
T that have not been used during the Bayesian inference method.

III.5 Conclusion on the identification of the model parame-
ters

Two different steps for the identification of the model parameters have been proposed in this
chapter. The first step estimates punctual values for these model parameters. We look for
experimental driver’s commands associated with the measured speed of the train. Then, we
search the train parameters that make the measured and simulated energy consumptions be as
close as possible.

A Bayesian inference method has been proposed as a second identification step. After intro-
ducing the modeling errors, the posterior probability distributions of the model parameters have
been sampled using a Metropolis-within-Gibbs algorithm. This algorithm has been selected to
accelerate the convergence of the parameters having a lower influence on the model.

Using the developments presented in Chapter II and in this chapter, we can now perform the
optimization of the driver’s command in order to minimize the energy consumption of the train,
while respecting constraints. This optimization is presented in Chapter IV.
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Chapter IV

Optimization of the driver’s command
under constraints and uncertainty

The entries of the train system and the models are defined (in Chapter II) and the model pa-
rameters are identified (in Chapter III). This chapter focuses on the optimization of driver’s
command {u}, in order to minimize energy consumption F , while ensuring punctuality (final
position, final time, and final train speed) and traffic safety (curvilinear speed limitation on the
track), all these constraints being gathered in Equation c({u} , T ,V) = 0. The optimization
problem is defined by Equation (IV.1), but we have to keep in mind that model parameters V
may be subjected to uncertainties (see Chapter III),

{u∗} = argmin
{u}∈U

c({u},T ,V)=0

F ({u} , T ,V) . (IV.1)

Solving this problem raises several difficulties, which are at the core of this work. We highlight
below the main difficulties, and we present the methodology and the algorithms that we have
implemented for solving this optimization problem.

• The admissible space U is in infinite dimension due to the definition of the driver’s com-
mands as functional. Then, its discretization will be in high dimension. The calculation
costs become rapidly very high, that is why a reduced representation of the discretized
driver’s command has been implemented using a Principal Component Analysis. Con-
cerning the discretization of the driver’s command, we use larger intervals than the one
used for solving the dynamic equations in order to reduce the numerical cost while the
quality of the approximation is preserved. Then, the discretized driver’s command are
searched around an initial driver’s command, which complies with the constraints.

• Due to the use of a probabilistic model of uncertainties, the optimization problem is for-
mulated probabilistic framework. An appropriate methodology is introduced to inte-
grate the constraints and to define the objective function. The MCMC is used for generat-
ing samples of random quantities for which probability distributions are given, allowing
for estimating different mathematical expectations. The constraints are sensitive to un-
certainties, and a robust strategy with respect to uncertainties is proposed.
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• The optimization problem is very difficult due to its a priori nonconvexity. In particular,
the constraints and cost function are nonlinear. The dynamic and energy consumption
models are treated as black boxes.

• The fact that the dynamics verifies a chronology, we have to impose constraints that de-
pend on the past and on the future inside the time interval [ts, tf ], which is the major
difficulty and strongly impacts the complexity of the algorithm that will be proposed.

To overcome these difficulties, the resolution algorithm has been chosen carefully. To solve the
dynamic problem, the work is decomposed in several steps. Section IV.1 details the choice of
the optimization variable and the admissible set, emphasizing the methods that has been imple-
mented to reduce the dimension of the search space that is originally very large. Section IV.2
describes the impact of the uncertainty on the optimization problem and proposes robust solu-
tion to take them into account. The optimization problem is then formulated in Section IV.3 and
it is solved numerically in Section IV.4. The optimal solution is shown in Section IV.5. Finally,
Section IV.6 draws conclusions of the chapter.

IV.1 Dimension reduction of the admissible set
As mentioned before, the admissible set of the optimization problem presented in Equa-
tion (IV.1) is in infinite dimension due to the definition of the driver’s command as a functional.
This first section aims reducing this dimension with two methods: a finite approximation
followed by the use of a Principal Component Analysis (PCA).

IV.1.1 Finite approximation of the driver’s command
The driver’s command {u} is a function that is assumed to belong to the space C1([ts, tf ])
of the continuously differentiable functions defined in [ts, tf ] with values in [−1, 1] ⊂ R (see
Chapter II). The problem is then to construct a finite approximation {uapx} ∈ C1([ts, tf ]) of {u}.
Taking into account the available information, there are several possibilities for constructing
such a finite approximation. The one retained consists in approaching the continuous function
by a step function, and then to regularize the step function (piecewise constant function) by
filtering to obtain a regularized function in C1([ts, tf ]).

Discretization of the driver’s command

As explained, in a first step, we approximate the driver’s command with a piecewise con-
stant function. The driver’s command becomes a vector, u ∈ RN , with a finite number of
components, made up of the values attached to each discretized interval. The discretization
step size ∆t is chosen constant. Note that a small size implies a large number of discretization
intervals, and consequently a large dimension N of vector u that has to be optimized. On the
other hand, a large step size means that the driver’s command is discretized with a small value
ofN . The precision would then be rough, and we might miss a best solution of the optimization
problem, which could not be represented by such a discretization (see Chapter III).
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Regularization by filtering of the discretized driver’s command

After the discretization step, driver’s command function {u} is represented by a finite vector
u ∈ RN . From u, we have now to rebuild uapx, which is the sampling of length N associated
with a continuously differentiable function {uapx}. We have used the following discrete linear
filter that we directly present in the discrete form without given the underlying continuous linear
one. Several types of discrete filters could be constructed. We have chosen the moving average
discrete filter, denoted by TMA and such that:

TMA (u, i) =
1

L+ 1

L/2∑
n=−L/2

wnui+n for n = L/2, ..., N − L/2 , (IV.2)

with L+ 1 the size of the moving average window (L is chosen as an even integer). A window
covering 5 discretization intervals, which is equivalent to L+1 = 201 points, is a good compro-
mise between smoothing the data, and preserving information. We complete the missing values
with 1 at the beginning (as the train has to accelerate) and −1 at the end (as the train needs to

stop). The weight coefficients wn have to verify the condition
L/2∑

n=−L/2
wn = 1. They are chosen

to favor the central points. A parabolic profile is chosen, and the coefficients are such that:

wn =
−6
L3

(n− L/2) (n+ L/2) , n ∈ {−L/2, . . . , 0, . . . , L/2} . (IV.3)

The weight coefficients are shown in Figure IV.1. An example of the discretized driver’s com-
mand and its regularization is given in Figure IV.2. The regularization driver’s command is well
in C1 without losing information.

IV.1.2 Reduction of the admissible search using a PCA
While the finite approximation uapx (regularization of the discretization) of the driver’s com-
mand {u} will be used in the dynamic and energy consumption models, the PCA is performed
using the discretized driver’s command u. The covariance matrix for this PCA is estimated with
a finite family of vector-valued solutions (u∗

∆,k)k of a family of optimization problems, which
are constructed in this section.

Construction of the family of optimization problems and their solutions

For given train parameters (drawn from the posterior distributions of X), the optimization
problem is written as

u∗
∆,k = argmin

u∆∈[−1,1]N∆

c(T (u∆,xk),T ,xk)=0

F (T (u∆,xk) , T ,xk) , (IV.4)

where T is derived from TMA(u) = (1, . . . , TMA(u, L/2), . . . , TMA(u, N − L/2), . . . ,−1)
for which the constraints are taken into account (see Section IV.2.1) and where N∆ is the
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Figure IV.1: Weight coefficients of the moving average filter.

number of components of u without repetition, the reduced vector obtained being denoted by
u∆. This optimization problem is deterministic, as the uncertain vector is no longer involved
(but only its realizations). The constraints and the objective function are deterministic as
well. In this paragraph, we show the different steps that allowed the construction of the
solutions of the studied problem. First, since the problem is very sensitive to the constraints,
we propose to start the optimization process with a value u of discretized driver’s command
u, which respects the constraints. Second, the constraints and objective function can directly
be defined from the deterministic models (see Equations (IV.23), (IV.24), and (IV.25) for the
constraints, and Equation (IV.36) for the cost function). Finally, this constrained optimization
problem is difficult to solve because the constraints are a nonlinear mapping of u. For
that, we first transform this constrained optimization problem in an unconstrained optimiza-
tion problem thanks to the use of Lagrange multipliers. Second, the resulting unconstrained
optimization problem is solved using the CMA-ES algorithm [76] and presented in Appendix B.

For each realization xk, there is an associated optimization problem defined by Equa-
tion (IV.4). The optimal solutions are noted u∗

∆,k and are gathered in what we call the family
of solution

(
u∗

∆,k

)
k
. The solutions u∗

∆,k are optimal in specific configurations xk, which are
representative of the whole variability of trains (if enough realizations are drawn). About 100
different configurations have been drawn and the associated optimization problems have been
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Figure IV.2: Discretized driver’s command (in blue) and regularized driver’s command (in red)
as a function of time.

solved. The optimal speed profiles of the different solutions are shown in Figure IV.3. The
measurements are shown in red, and the initial speed profile and energy consumption associated
with the initial point of CMA-ES algorithm is plotted in green. The speed limitation is in blue.

We can notice that the energy consumption of the train with the optimal driver’s command is
28% lower than the measured trajectory. The solution highlights that reducing the maximal
speed of the train also reduces the resistant force applied to the train (especially the aerody-
namic force at high-speed). Moreover, the maximum speed of the optimal trajectory is adapted
to the track layout. Indeed, it is not efficient to use a lot of traction when the declivity is positive
as a higher part of the energy will be injected in the track. As a consequence, the optimal
result saves energy, but it also implies delays. As a consequence, the optimal speed profile
compensates for the delay accumulated in the middle part of the journey by braking later, in
order to remain on time. With this process, all the constraints are verified by the optimal solu-
tion. Figure IV.4 presents the same quantities as Figure IV.3 but plotted as a function of time to
have a better idea of the time arrival constraint. We also add the driver’s command in this figure.
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Figure IV.3: Speed profiles (left) and energy consumption (right) associated with the different
optimal driver’s command, u∗

∆,k, for the configuration xk depending on the position. The mea-
surements are shown in red, and the initial speed profile and energy consumption associated
with the initial point of CMA-ES algorithm is plotted in green. The speed limitation is in blue.

Configuration xk under consideration has a significant influence on the dynamic solution
and its energy consumption. Effectively, between the best and the worst configuration, the
variation of the consumed energy reaches 8% during the complete journey. The quantile
envelope has not the same size all along the journey. In some parts of the journey (close to
the speed-limitation modification, at the starting and final time of the journey), the optimal
trajectories have the same speed. This is due to the fact that these parts have an important
impact on the energy consumption of the train. Modifying the speed at these positions may
drastically reduce the quality of the solution in terms of energy saving. On the contrary, some
parts of the journey allow more flexibility depending on configuration xk. In first part of the
journey (until the modification of speed limitation), the optimal solution get advance (around
20 seconds) compared to the measurements even if it does not directly reduce the consumed
energy. This advance allows for modifying the second part of the journey, which has a higher
impact on the energy consumption. All the energy saved by the optimal solution is on the
second part of the journey, but it also results in the choices made in the first part.

We can also observe in the center graph of Figure IV.4 that limiting the use of braking allows
for saving energy. The optimal driver’s command u∗

∆,k has an important variability on some
specific parts of the journey. This means that on some parts of the journey, the optimal driver’s
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Figure IV.4: Speed profiles (left), driver’s command (middle), and energy consumption (right)
associated with the different optimal driver’s command, u∗

∆,k, for the configuration xk depend-
ing on time. The measurements are shown in red, and the initial speed profile and energy
consumption associated with the initial point of CMA-ES algorithm is plotted in green.

command is similar regardless of the train configuration. The PCA will use this property, as
it may be useless to consider these parts in the optimization because the optimal solutions are
identical whatever the configuration xk.

The driver cannot know which one of the optimal solution in the family of solutions should be
used to minimize the consumed energy due to the fact that the configuration xk of the train is
unknown at the beginning of the journey. Therefore, we are going to construct one deterministic
driver’s command that the driver will be able to use.

Principal Component Analysis as a tool for constructing a reduced representation of the
discretized driver’s command

The use of the terminology Principal Component Analysis is, in this case, equivalent to the
terminology "data compression". The family of solutions computed in the previous paragraph
is going to be used in the PCA. The optimal driver’s commands u∗

∆,k correspond to the final
iterations of the CMA-ES algorithm that generates driver’s commands u∆,κ for which the con-
straints are not always satisfied. However, many of them are very similar to each other (as the
algorithm has a small amplitude of exploration when it is close to be converged). For this reason,
we only keep the driver’s command u∆,κ generated just before the convergence. For instance,
a population of 30 points is kept, each 50 CMA-ES iteration (so that the driver’s command are
not too similar), for the last 500 iterations (so that the constraints are almost respected), for each
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of the 100 optimization calculations run in the family of optimal solutions. The subset of kept
driver’s commands are denoted by:

u∆,κ, κ = 1, . . . , Nu . (IV.5)

In order to favor the driver’s commands associated with a small energy consumption, we pro-
pose to divide the kept driver’s commands u∆,κ by their associated energy consumption eκ.
This operation is possible because u∆,κ is never associated with an energy consumption equal
to zero. We then introduce the following first normalization,

ũκ =
u∆,κ

eκ
. (IV.6)

The empirical mean vector and the empirical variance of each component are computed by:

ũ =
1

Nu

Nu∑
κ=1

ũκ , σj
2 =

1

Nu − 1

Nu∑
κ=1

(
ũκj − ũj

)2
. (IV.7)

Then, we introduce a second normalization denoted by ũκ such as its components are written
as

ûκj =
ũκj − ũj
σj

. (IV.8)

All the normalized driver’s commands ûκ are gathered in the normalized driver’s command
matrix [û],

[û] =
[
û1, . . . , ûNu

]
. (IV.9)

This matrix is composed of Nu = 30 000 normalized driver’s commands, each of them being a
vector of a size close to 200. The PCA is then applied to matrix [Cû] = (1/Nu) [û] [û]

T . The
first step is solving the eigenvalue problem for matrix [Cû],

[Cû]Φ
i = λiΦ

i , (IV.10)

where λi and Φi are respectively the eigenvalues and eigenvectors. Let [λ] be the diagonal
matrix of the eigenvalues sorted in descending order and let [Φ] be the matrix of the eigenvectors
sorted in the same order than the eigenvalues. The normalized driver’s command matrix [û] is
such that:

[û] = [Φ] [λ]1/2 [q] , (IV.11)

where [q] is a rectangle matrix with 200 rows and Nu columns. The second step of the method
is to keep the dominant eigen subspace of dimension (m) < 200 in order to obtain a reduced
representation of [û] (or its compression). The dimension of the optimization problem is then
reduced to (m) instead of 200. The value of (m) is chosen regarding the relative truncation
error that is written as

∥[û]−
[
û(m)

]
∥F

∥[û]∥F
≤ ε , (IV.12)

where ε is small enough and
[
û(m)

]
is given by:

[
û(m)

]
=
[
Φ(m)

] [
λ(m)

]1/2 [
q(m)

]
. (IV.13)
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The matrix [q(m)] can then be computed as the following projection of [û] as[
q(m)

]
=
[
λ(m)

]−1/2 [
Φ(m)

]T [
û(m)

]
. (IV.14)

In Figure IV.5, we have represented 1 − ε. We have chosen (m) = 60 corresponding to a
truncated error of 1%.
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Figure IV.5: Cumulative explained variance depending on the number of principal axes con-
served.

Consequently, in the optimization algorithm based on the use of the CMA-ES algorithm, in-
stead of drawing a value of matrix [û], we draw a value of matrix [q(m)] and then we compute
the associated value of [û] ≃ [û(m)] using the Equation (IV.13) and then processing the back nor-
malization defined by Equation (IV.8) and (IV.6) in order to compute u∆,κ for κ = 1, . . . , Nu.
We verify that the chosen ε is such that the values of the components of u∆,κ belongs to interval
[−1, 1]. Finally, the discrete filter is applied.

IV.2 Formulation of the optimization problem under uncer-
tainties

In Chapter III, we have identified the posterior distributions of random vector X in order to
be able to take into account uncertainties. The integration of uncertainties in the model is
performed in the probabilistic framework. Consequently, we have to adapt the formulation of
the constraints to this framework. As a matter of fact, the constraints and the cost function
introduced in Equation (IV.1) have to be adapted and are presented in next two subsections.
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IV.2.1 Deterministic aspects of the constraints
We begin presenting the deterministic aspects associated with the constraints before adapting
them to the probabilistic framework. As we already know, the optimal solution needs to verify a
set of constraints. These constraints assure the security, the train punctuality, and the passenger
comfort. Note that proposing an optimal solution that would not verify the security criteria
would completely be inadmissible. On the opposite, proposing a solution for which the train
arrives few seconds earlier in the train station or which slightly overtake the passenger comfort
criteria during a short part of the journey is a second priority. This is the reason why, in order to
help the convergence of the optimization algorithm, a small tolerance will be added concerning
the punctuality. Consequently, we choose to decompose the set of constraints into two groups
(two subsets). The security constraints that are a first priority. The comfort and punctuality
constraints are a second priority. In particular, the comfort constraint is not restrictive in the
longitudinal track axis. It would be more important in the lateral axis, this is why the comfort
constraints are always considered as verified (the motor capacity already limits the longitudinal
acceleration and jerk).

Searching for a solution, which does not verify the set of constraints is an absurdity. For exam-
ple, "if we are looking for a solution that minimizes the consumed energy during the journey, a
naive solution would be to brake and do not advance, as it does not consume energy at all. Nev-
ertheless, this solution is not interesting, as it does not bring the passengers to their destination".
In this problem, the optimal solution is mainly driven by the constraints.

Deterministic formulation of the constraints

In this paragraph, we formulate the constraints for a given realization x of the random
vector X (subscript k has been removed). It is a deterministic formulation in the sense that
we give only one realization of the train system. We begin describing the security constraints
before highlighting the punctuality constraints.

In longitudinal dynamics, the security constraints are assumed to be verified as long as the
train speed is smaller than the curvilinear speed limitation vmax all along the journey. This
curvilinear speed limitation is fixed to the commercial running speed but can decrease on spe-
cific part of the journey due to a high-curve radius, a tunnel, a switch, and a well identified state
of the track deterioration. The curvilinear speed limitation {vmax(s), s ∈ [ss, sf ]} is attached to
a track and depends on its curvilinear abscissa s. Overtaking this value yields the automatic stop
of the train, which has an important impact on the consumed energy, but also on the dynamics
of the train that follows. The speed limitation constraints can be expressed by:

for ts ≤ t ≤ tf , ẏ (t; {u≤t} , T ,x) ≤ vmax (y (t; {u≤t} , T ,x)) . (IV.15)

This inequality imposes that, at any time t, the train speed ẏ (t; {u≤t} , T ,x) does not ex-
ceed the speed limitation vmax (y (t; {u≤t} , T ,x)), which is defined at the actual train position
y (t; {u≤t} , T ,x). As mentioned before, the driver’s command is discretized and regularized
thanks to the use of T (see Section IV.1.2) but adapted to the use of q(m). Using the time-
sampling notation introduced in Equation (IV.2), Equation (IV.15) becomes, for n = 1, ..., N ,

ẏ
(
ti;T

(
q(m),x

)
≤ti

, T ,x
)
≤ vmax

(
y
(
ti;T

(
q(m),x

)
≤ti

, T ,x
))

, (IV.16)
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where q(m) is the candidate driver’s command proposed by the CMA-ES algorithm. It can
be seen that the security gathers N inequality constraints. This high number N of constraints
may slow down the convergence of the optimization algorithm. We propose to combine all the
inequalities in only one equality, which is written as

N∑
i=1

fo

(
ti;T

(
q(m),x

)
≤ti

, T ,x
)
= 0 , (IV.17)

where fo is "an overtake function" that, for a given time ti, yields the exceeding of the train
speed,

fo

(
ti;T

(
q(m),x

)
≤ti

, T ,x
)
=

{
0 if ẏ(ti) ≤ vmax (y(ti)) ,
ẏ(ti)− vmax (y(ti)) otherwise, (IV.18)

where the notation y(ti) is used instead of y
(
ti;T

(
q(m),x

)
≤ti

, T ,x
)

and ẏ(ti) is used instead

of ẏ
(
ti;T

(
q(m),x

)
≤ti

, T ,x
)

.

Note that, replacing the N inequalities by only one equality constraint, which is satisfied
when each term is zero, can induce a larger number of iterations than the case for which
N inequalities would be imposed. Nevertheless, the numerical experiments that we have
performed show that this formulation is faster.

Concerning the punctuality constraints, neglecting the final speed constraint would yield
an optimal solution that would not be associated with a driver’s command imposing to brake
on the final part of the journey for two reasons. On the one hand, braking is dissipating
energy (even if a part is recovered). On the other hand, if we do not reduce the speed to
stop at the end of the journey, we may arrive at the final position in advance (as the speed
is higher). In this situation, the optimal solution is going to reduce the maximum speed to
arrive on time (and respect the final position constraint) while reducing the energy consumption.

These constraints impose a specific arrival destination sf for the train, with an appropriate speed
vf , and a given time tf . The destination is often chosen as the train station and the final speed
as 0, but any value may be chosen. The final time could be the exact arrival time, but it could
also be smaller to simulate a departure delay for the journey. The two punctuality constraints
(one on the final position, one on the final speed) can be expressed by:∫ tf

ts

ẏ (t, {u≤t} , T ,x) dt = sf − ss , (IV.19)

∫ tf

ts

ÿ (t, {u≤t} , T ,x) dt = vf − vs . (IV.20)

Once again, we discretize the driver’s command and apply the regularization T described in
Section IV.1.2. The two constraints are simplified by approaching the integrals by sums,

N∑
i=1

ẏ
(
ti;T

(
q(m),x

)
≤ti

, T ,x
)
∆t ≃ sf − ss , (IV.21)

80



N∑
i=1

ÿ
(
ti;T

(
q(m),x

)
≤ti

, T ,x
)
∆t ≃ vf − vs . (IV.22)

Thus, only two equalities are necessary to verify the punctuality constraints. For more clarity,
we note c1, c2, and c3 the speed-limitation function (see Equation (IV.17)), the final-speed func-
tion (see Equation (IV.21)), and the final-position function (see Equation (IV.22)), respectively.
These are function of q(m) and depend on configuration x and rolling environment T because
the speed and acceleration of the train also depend on these quantities,

c1
(
T
(
q(m),x

)
, T ,x

)
:=

N∑
i=1

fo

(
ti,T

(
q(m),x

)
≤ti

, T ,x
)
, (IV.23)

c2
(
T
(
q(m),x

)
, T ,x

)
:=

N∑
i=1

ẏ
(
ti;T

(
q(m),x

)
≤ti

, T ,x
)
∆t− sf + ss , (IV.24)

c3
(
T
(
q(m),x

)
, T ,x

)
:=

N∑
i=1

ÿ
(
ti;T

(
q(m),x

)
≤ti

, T ,x
)
∆t− vf + vs . (IV.25)

These three functions completely describe the constraints of the train system. For a fixed value
of q(m), the constraints are verified if the values of the three functions c1, c2, and c3 at point
q(m) are zero. We note c the function such that:

c = (c1, c2, c3) . (IV.26)

Adaptation of the deterministic formulation of the constraints to the probabilistic frame-
work

Considering uncertainties, the physical quantities (train speed, position) attached to the
train dynamics are random variables, and the formulation of the constraints function defined
by Equations (IV.26) with Equations (IV.23) to (IV.25) has to be adapted. For the security
constraint, Equation (IV.15) is replaced by the following one,

for ts ≤ t ≤ tf , P

(
Ẏ (t) ≤ vmax (Y (t))

)
≥ p1 , (IV.27)

where the notations Y (t) and Ẏ (t) are defined in Equation (II.9) that is adapted to the prob-
abilistic case. The constant p1 is a tolerance threshold. The security constraints being a first
priority, we choose for p1 a value close to 1.

The deterministic formulations of the punctuality constraints (Equations (IV.19)
and (IV.20)) are also adapted to the probabilistic framework induced by the uncertainty.
Since, taking the mathematical expectation of the random constraints is not sufficient, we
formulate it in term of probability inequalities,

P

(∣∣∣∣∫ tf

ts

ẏ (t, {u≤t} , T ,X) dt− sf + ss

∣∣∣∣ ≤ ε1

)
≥ p2 , (IV.28)
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P

(∣∣∣∣∫ tf

ts

ÿ (t, {u≤t} , T ,X) dt− vf + vs

∣∣∣∣ ≤ ε2

)
≥ p3 , (IV.29)

where ε1 and ε2 are two acceptability thresholds. For instance, the train can arrive at few meters
from the exact final position. In practice, we propose to set ε1 = 5m and ε2 = 0.3m/s. These
values might be different depending on the sensitivity of the train system. Finally, p2 and p3
have to be very close to 1. For a given configurations x, we cannot tolerate that the train does
not arrive within the acceptance interval defined before.

Sensitivity of the constraints to the uncertain parameters

Before continuing to define the different items of the optimization problem, we have to ver-
ify the plausibility of the constraints definition. Indeed, we seek for one deterministic optimal
driver’s command, which is robust to uncertainties. Does this solution exist? The answer is not
easy. For example, if the identified mass is responsible for variations in the final position of
more than 5 meters, we cannot find one unique deterministic driver’s command, which verifies
the constraints regarding all the possible configurations. Figure IV.6 displays the probability
density functions of cj (u, T ,X) , j = 1, 2, 3, which show the influence of the randomness
of X on the speed limitation, on the final position, and on the final speed constraints for a
given driver’s command u. These PDF are estimated using the KDE method on the simulated
realizations.

Figure IV.6: Probability density function of cj (u, T ,X) , for j = 1 (left), j = 2 (middle), and
j = 3 (right) for a given driver’s command u.

It can be observed on the middle figure that the final position constraint seems to be respected in
mean (centered around 0) but the uncertainties are responsible for a wide variability in the final
position: this given driver’s command yields an arrival position that is located at 500 meters
before or after the train station. Most of the realizations x of X satisfy the final speed con-
straint (right graph), but a significant number of realizations exceed the tolerance value defined
by 0.3m/s. Consequently, the problem is not well-posed, and the probabilistic formulation
proposed in the previous paragraph cannot be kept and must be improved. Effectively, the ran-
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dom vector X has a too high influence on the constraints, and a single deterministic driver’s
command cannot verify the constraints for all the possible configurations of the train.

Transformation of the driver’s command to be robust to uncertainties

As it has been proven in the previous paragraph, the optimization problem defined by
Equation (IV.1) is not well-posed in the defined probabilistic framework: it is not possible
to find a deterministic driver’s command that verifies almost surely the constraints. For
this reason, we propose to slightly modify the formulation of the problem. We search for a
deterministic driver’s command that is easy to transform into a new driver’s command, which
verifies the constraints, in order to minimize the energy consumption of the train. But what
does this transformation refer to? The security and punctuality constraints have two different
impacts on the train system. Consequently, the transformation is composed of two major steps
each of one being attached to a type of constraints.

First, the security constraints have to be strictly verified. For a given realization x of X , the
corresponding realization of random mass M being denoted by m and for a given rolling envi-
ronment T (we remove x and T dependency in the notations of the next equations), if driver’s
command u does not respect the speed limitation constraint at the current time ti+1, we directly
modify the driver’s command value at that current time. The modified driver’s command corre-
sponds to the one allowing for reaching the speed limitation vmax (y(ti+1)) without overtaking
it. We can find this value using Equation (II.16) as follows. For this realization x of X , and
for the traction case, the traction force is written, using the notation yi := y(ti), ẏi := ẏ(ti),
ÿi := ÿ(ti), and ui := u(ti) as

fT (ẏi, ui) =

(
fR (ẏi, v

w (yi)) + fC (yi)− fW (yi) +mkrot
vmax (yi)− ẏi

∆t

)
. (IV.30)

For the braking case, the braking force is written

fB(ẏi, ui) =

(
−fR (ẏi, v

w (yi))− fC (yi) + fW (yi)−mkrot
vmax (yi)− ẏi

∆t

)
. (IV.31)

The current acceleration ÿi is replaced by (vmax (yi)− ẏi)/∆t. This adaptation assures that the
speed ẏi+1 is equal to vmax (yi) (it this time, this constraint is saturated). For the traction and
the braking cases, using Equations (II.13) and (II.14), we can estimate the driver’s command as

ui =
fT (ẏi, ui)

fT,max (ẏi)
, ui > 0 , (IV.32)

ui =
fB(ẏi, ui)

fB,max (ẏi)
, ui < 0 . (IV.33)

Sometimes, it is necessary to modify the driver’s command by taking into account several time
steps ti+1, ti+2, etc. In this case, the algorithm sets the value of the driver’s command to −1 at
these time steps (equivalent to braking with maximum amplitude) until the train speed be below
the speed limitation. Anyway, as braking is equivalent to a loss of energy, these candidates are
not selected by the algorithm. The results of this modification on several driver’s commands
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Figure IV.7: Train speed profile of several transformed driver’s commands zoomed around a
severe speed limitation area (in blue) depending on the position.

are shown in Figure IV.7.

We can see that this transformation exactly reacts as we have designed it. The train speed
profiles verify the constraints, and a braking is instantaneously applied as soon as the speed
limitation is exceeded. We could add a margin to the speed limitation to assure that the train
will have the time to slow down, but once again these solutions should not be selected by the
algorithm, as they are not efficient in term of energy saving.

Regarding the punctuality constraints, the second step of the transformation aims to
modify very slightly the driver’s command by multiply it by two constants. One constant
cT multiplies the driver’s command on traction parts of the journey, and the second one cB
multiplies the driver’s command on braking parts. To find these constants, we use the two
graphs constructed and shown in Figure IV.8, which quantify the influence of cT and cB on
the punctuality constraints. Note that cB has only a small influence, as the journey is mainly
constituted of traction phases. These graphs are derived from the initial driver’s command u.
Driver’s command u has to carefully be chosen, as the influence of cT and cB is dependent on u.

An example to illustrate this procedure is given below. We solve the dynamic equation for a
candidate regularized driver’s command and eventually modifying it if this candidate does not
verify the security constraints. It turns out that this candidate does not verify the punctuality
constraints. If the final position constraint is not verified, we use the value cT given by the
graph in left Figure IV.8, which imposes the train to arrive at the exact position. For instance,
if the candidate driver’s command makes the journey stopping 5 km after the train station, we
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Figure IV.8: Graphs of the influence of the constants cT and cB on the final position constraint
(left) and on the final speed constraint (right).

modify the driver’s command so that the final position is 5 km before. Thus, we can use the
value cT = 0.85 given by the graph of the left figure. This value of cT is tested on the candidate
regularized driver’s command. The result might be slightly different from what is predicted
by this graph, as it is calculated from u. If necessary, the procedure is iterated until the final
position constraint be respected regarding the acceptable tolerance (in general after less than 5
iterations). Secondly, the final speed constraint is analyzed. If it is already verified, we do not
modify constant cB. If not, we increase its value until the constraint be verified. This could
have an influence on the final position constraint, but in general, the modification of cB only has
a small influence on the train system, as it only perturbs the braking parts of the journey. This
transformation, T̃ , is written as

T̃ (u,x) = cT (x)max (u,0)− cB(x)max (−u,0) , (IV.34)

where 0 is the null vector and max is applied to each component of the vectors. To further
simplify the notation, T is introduced to represent the complete transformation: discretization,
regularization, and transformation to satisfy the constraints. The system scheme of this
transformation T is shown in Figure IV.9. Note that due to the use of the PCA reduction, u is
replaced by the reduced vector q(m).

The probability density functions of cj (u, T ,X) for j = 1, 2, 3 are plotted in Figure IV.10 for
the transformed driver’s command (the KDE method is used for the PDF estimations). It can
be seen that the final position constraint is verified, as whatever the realization, the train arrives
close to the station with a deviation of few meters that is lower than the acceptance tolerance of
5m. In the same way, the final speed constraint is verified because it is lower close to 0, and it
does not exceed the tolerance for all the tested realizations. The energy consumption remains
highly dependent on X .
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Figure IV.9: Scheme of the different steps of the transformation T .

Figure IV.10: Probability density function of cj (u, T ,X) for j = 1 (left), j = 2 (middle), and
j = 3 (right) for the transformed driver’s command. The probability density function of the
energy consumption is represented on the left.

Finally, in order to assure that transformation T is well used by the algorithm, we have to get
sure that it does not impact too much the exploration performed by the algorithm. Otherwise, the
algorithm risks to be stuck in a specific subset in which all the candidate driver’s commands are
always transformed in a same driver’s command. In this case, the algorithm cannot continue its
exploration. An example of the regularized driver’s command and its transformation is shown
in Figure IV.11. We can see that both driver’s commands are very close to each other (in fact
superimposed).
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Figure IV.11: Regularized driver’s command and its transformation depending on time, which
are superimposed.

IV.2.2 Deterministic aspects of the objective function
Deterministic formulation of the objective function

The objective function describes the energy consumption of the train along its journey. For
a given realization x of X , Equation (II.22) describes the energy consumption of the train,

F ({u} , T ,x) =
∫ tf

ts

pE ({u≤τ} , T ,x) dτ . (IV.35)
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Similarly to the formulation performed for the constraints, transformation T is applied to the
driver’s command and Equation (IV.35) yields

F
(
T
(
q(m),x

)
, T ,x

)
≃

N∑
i=1

pE
(
T
(
q(m),x

)
≤ti

, T ,x
)
∆t . (IV.36)

Adaptation of the deterministic formulation of the objective function to the probabilistic
framework

The energy consumption of the train becomes a random variable due to the random vector
X . For defining the objective function, several choices are possible depending on the strategy
we want to set up: do we want to control the extreme values (min or/and max) of the random
energy consumption (so controlling the best or the worse), do we want to minimize the mean
value of the random energy consumption, etc. We have chosen to construct the objective func-
tion as a mathematical expectation of the random energy consumption because it is assumed
that its coefficient of variation is not too large, and the PDF is approximately symmetric with
respect to its maximum. If we note FEX

the expected value of the energy consumption of the
train, we have

FEX
({u} , T ) =

∫ tf

ts

E
X

[
PE ({u≤τ} ,X, T )

]
dτ . (IV.37)

As aforementioned, the driver’s command is transformed by T and Equation (IV.37) becomes

FEX

(
q(m), T

)
=

N∑
i=1

E
X

[
PE
(
T
(
q(m),X

)
≤ti

,X, T
)]

∆t . (IV.38)

The stochastic solver used for estimating the objective function as a mathematical expectation
of a random quantity is a Monte Carlo method generating random realizations of X . Since
the posterior probability distribution of X is not represented by a parameterized algebraic ex-
pression (See Chapter III), the realizations of X is performed using an MCMC as explained in
Chapter III. For each candidate proposed by the CMA-ES algorithm, NX = 30 new indepen-
dent realizations of X are used. The objective function is written as

FEX

(
q(m), T

)
≃ 1

NX

NX∑
k=1

N∑
i=1

E
X

[
PE,mod

(
T
(
q(m),X

)
≤ti

,X, T
)]

∆t . (IV.39)

IV.3 Optimization problem under uncertainty
The optimization problem under uncertainty is different from the one for the deterministic
framework. We optimize vector q(m) in order to minimize the objective function defined by
Equation (IV.39) for a given rolling environment T . The optimal value q∗ (T ) of q(m) is writ-
ten as

q∗ (T ) = argmin
q(m)∈Q

FEX

(
q(m), T

)
, (IV.40)
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where Q ⊂ R(m) is the admissible set for q(m) (see SectionIV.1.2) associated with the general-
ized coordinates. Note that the applied transformation allows the constraints to be verified, that
is why the formulated optimization problem under uncertainties is unconstrained. The Lagrange
multipliers are no longer necessary.

IV.4 Numerical solution of the optimization problem
Many methods can be used to solve this a priori nonconvex nonlinear optimization problem un-
der uncertainties and under nonlinear probabilistic constraints. In this context of minimization
of the energy consumption and without taking into account uncertainties, that is to say for the
deterministic optimization problem, some optimization solvers has been used for many authors,
the optimization problem being formulated with respect to the driver’s command or the train
speed profile. We give below a few representative methods used by these authors in this field.

• Pontryagin’s maximum principle (L. Cesari [77]) is an analytic optimization method that
has been used. It is well suited to find the optimal driver’s command of a dynamical
system under control or state constraints. I.A. Asnis et al proposed the use of this method
in the railway field in [78] before being completed by E. Khmelnitsky in [79] or R.R.
Liu et al in [29] between others. The limitation of the maximum principle method is its
difficulty to find a solution in case of nonlinear functions used to describe the traction,
braking, and the friction forces.

• The dynamic programming (R. Bellman et al [80]) was also widely used for solving this
deterministic optimization problem. It relies on the discretization of the speed trajectory
as a function of the curvilinear position and on the evaluation of the objective function on
the lattice points to find the optimal trajectory for the train. For example, H. Ko et al [27]
and V. Calderaro et al [81] applied this method to solve the optimization problem.

• Another method is the sequential quadratic programming (I.M. Nejdawi et al [82]). It is
an iterative method, which searches for the optimal direction by looking in the neighbor-
hood of a given point (changing at each iteration). For instance, this method was used by
M. Miyatake et al [83] and [84].

• The mixed integer linear programming is a variant as it proposes to convert the problem
in a complete linear optimization problem. An application for this railway optimization
problem was proposed by Y. Wang et al [85].

• Evolutionary algorithms are recent alternatives to the previous methods. In particular,
swarm particle optimization presented by J. Kennedy et al [86] (used by X.H. Zhao et
al [87]), ant colony optimization proposed by M. Dorigo et al [88] (applied in railway
field by B.R. Ke et al [89] and in [90]), genetic algorithm (employed in [91] by S. Lu et
al). We were the first to use the Covariance Matrix Adaptation-Evolution Strategy (CMA-
ES) [76] in [92]), which belongs to the class of the evolutionary algorithms, for solving
this optimization problem in the deterministic framework (that we reuse for solving it in
the probabilistic framework in the present work).

• The pseudo-spectral method (D. Dutykh [28]) was used in [93] but for a simplified for-
mulation of the optimization problem.
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For the optimization problem under uncertainties that we are considering, all these methods
could have advantages and would have drawbacks. They would all be able to integrate the
probabilistic nonlinear constraints. The optimization problem under consideration has specific
characteristics, for which CMA-ES seems well adapted (and which will prove to be very
effective). First, despite efforts to reduce the size of the optimization variable, the search space
remains large (dimension will be 60). Second, the problem is strongly nonlinear and a priori
nonconvex. Note that the use of the CMA-ES algorithm requires many evaluations of the
physical model. Hopefully, one evaluation is relatively fast (10 seconds for a journey of 50
kilometers) and in addition, the CMA-ES algorithm can be parallelized.

The CMA-ES algorithm draws a small population of new search points function of an ampli-
tude depending on the iteration and following a multivariate Gaussian distribution, for which
its mean vector and its covariance matrix are also re-estimated at each iteration. At each point,
the objective function is evaluated (we recall that the optimization problem under uncertainty
and constraints has been reformulated in an unconstrained optimization problem). The method
is detailed in Appendix B.

The CMA-ES algorithm uses hyperparameters that are related to the amplitude, the mean
vector, and the covariance matrix of the multivariate Gaussian distribution. The initial value of
the mean vector is chosen as q(m) associated with the driver’s command u. The initial value of
the amplitude is chosen to 0.1, in order that the algorithm explores a relatively large range of
possible solutions. The initial value of the covariance matrix is defined as the identity matrix,
not to favor a specific direction. The size of the population of new search points is an important
hyperparameter that has to carefully be defined. A large size allows for precisely exploring the
neighborhood of the central point defined by the mean vector, but it also induces a more CPU
time to evaluate all those points. A small size limits the exploration of the admissible set. In
our case, we choose to keep the semi-empirical population size proposed by N. Hansen [76],
which is equal to 4 + 3 log ((m)). For (m) = 60, the population size reaches Npop = 16 points.
As they are independently chosen, we can parallelize the evaluation of the cost function.

Finally, a termination criterion has to be defined. The maximum number of iterations could
be defined but a good convergence would not be guaranteed. We choose to use two different
termination criteria. The first one verifies if the updated amplitude of the new search steps is
small (with respect to a given tolerance). In that case, we may consider that all the new search
points drawn have similar quality (in terms of the optimization problem), and therefore the
optimal solution is assumed to be obtained. The second one is related to the values of the cost
function of the population of new search points. If they have approximately the same magnitude
(with respect to a given tolerance), the optimal solution is also assumed to be obtained. The
tolerances are defined by numerical experiments before running the algorithm. The algorithm
is summarized below.
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Initialization:
• i = 0

• Initiate q0 by q(m)

• Choose a population size, Npop

• Define the termination criteria

while the termination criteria are not overtaken do

• i = i+ 1

• Draw a population qi of q(m) with an amplitude σi−1 and from a multivariate
Gaussian distribution with mean vector νi−1 and covariance matrix [Ci−1]

for j = 1 : Npop do

• Draw NX = 30 independent realizations xk of X

• Estimate the energy consumption for realization xk

end

• Estimate the cost function from Equation (IV.39),

• σi−1 ← σi

• νi−1 ← νi

• [Ci−1]← [Ci]

end
Return q∗(T ).

Algorithm 4: CMA-ES algorithm adapted to optimization under uncertainties.

By starting the iterations close to the optimal solutions found in Section IV.1.2 (family of solu-
tions), we also reduce the number of iterations necessary to reach the convergence. If solving
the dynamic equation only takes few seconds, solving it for each of the NX = 30 realizations,
for all the Npop = 16 points, and for all the CMA-ES iterations might be significant. For
5 000 iterations to converge, dynamic equations are solved 2 400 000 times. With a 30 cores
parallelization and 4 seconds for solving one dynamic equation, the elapsed time is about 3.5
days.
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IV.5 Optimal solution under uncertainty
When the CMA-ES algorithm has finished, that is to say when one of the termination criteria
is reached, a computed optimal solution under uncertainty is obtained. First of all, we plot the
values of the cost function depending on the iteration number (see Figure IV.12). This gives us
information on the convergence speed of the algorithm.

Figure IV.12: Convergence of the cost function evaluated for qi as a function of iteration number
i: mean value over the population (black solid line), standard deviation envelop of the popula-
tion (grey envelop).

After one thousand iterations, the mean value of the cost function evaluated for qi decreases
rapidly with i. The convergence is stabilized around a value associated with the optimal solu-
tion. Note that the width on the region defined by the upper and lower envelop would decrease
if NX was increasing, but in increasing the elapsed time. Consequently, we consider that the
calculation has converged for i = 4000, and we propose that the mean of the populations of
the last 500 iterations correspond to the optimal value.

This optimal driver’s command can be considered as the one computed offline before the
train departure. Now, we could imagine analyzing the impact of this optimal driver’s command
q∗ under uncertainty by plotting the confidence regions of the random speed profile and the
random energy consumption. However, as explained in Section IV.2.1 the constraints would
not be verified. The analysis of the impact of the use of the optimal driver’s command is
then performed as follows. The optimal driver’s command can be adapted to the realization
xk thanks to the use of transformation T (in order to verify the constraints). In practice,
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we can assume an online updating of the model parameters along the way. Consequently,
the transformed driver’s command can be replaced by its online updating T (q∗,xk) and the
constraints remain verified.

Using this online updating, the optimal driver’s command q∗ is used to compute the optimal
speed profile from the dynamic equation and the associated energy consumption. For the
optimal driver’s command u∗, Figure IV.13 displays the quantile of the random speed profile,
the speed limitation, and the quantile of the random energy consumption. This optimal solution
is compared to the measurements. It can be seen that the energy consumption computed
with the online updated optimal driver’s command is smaller than the energy consumption
associated with the driver’s command that was used by the measured train. Thus, it seems that
the online updated robust optimization allows for obtaining a significant gain for the analyzed
journey under consideration, for which measurements were available.

Figure IV.13: Quantile of the random speed profile (left) and quantile of the random energy
consumption (right) associated with the online updated optimal driver’s command u∗. Their
mean values are in black, and the grey envelopes stand for the quantile intervals. The initial
driver’s command u is in green. The measurements are plotted in red, and the speed limitation
is in blue.

The variability introduced by random vector X has an impact on the transformed optimal
driver’s command T (q∗,X), and thus on the variability of physical quantities (see Fig-
ure IV.13). This variability is smaller on the train speed than on the energy consumption.

The most surprising is that in spite of the variability of the train configurations, the optimal
speed profile has a variance very close to zero (few km/h), the optimal speed almost seems
to be deterministic. An explanation of this small value of the variance is that the transformed
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driver’s command is adapted to the realization xk of X . Whatever the configuration xk is
drawn, the driver’s command is transformed so that the speed of the train remains approxi-
mately constant.

We can also observe that the optimal speed profile is very close to the one presented in
Figure IV.3, which is logical as they come from two different formulations of optimization
problems that come from the same case study. The consumed energy is also very similar, but
it appears to be slightly higher for the second approach (Figure IV.13). Indeed, this approach
searches for a general solution easy to adapt to the configuration xk, contrary to the first
approach, which looks for the optimal solution for random vector X . For this reason, the first
approach is slightly more efficient in terms of energy saving, but as we explained before, it
is more difficult to operate by the drivers as they cannot know which configuration should be
considered.

One of the objectives of this work is to help drivers having an optimal behavior in term of
energy saving. In that case, providing them the optimal speed profile is interesting as they could
adapt the driver’s command to the configuration in order to follow the same speed profile, just
like we proposed to do in the second approach. The associated energy consumption will vary,
as shown in Figure IV.13 but should be minimized in average.

IV.6 Conclusion on the optimization method
To put it in a nutshell, thanks to the dynamic and energy consumption models presented in
Chapter II, and to the identification of the parameters performed in Chapter III, we have been
able to propose a robust strategy to solve the industrial objective, that is to say to minimize the
energy consumed by a train during its journey.

Due to the variability existing between trains, we had to solve a constrained optimization prob-
lem under uncertainty. The solution of this problem is not easy, and a first step has consisted in
solving a deterministic problem associated with the given train configuration xk. But it should
be noted by the family of optimal solutions u∗

k obtained from these deterministic problems
are not easy to operate for the drivers, as the drivers cannot know which solution should be used.

For this reason, we have proposed a second step in the methodology, for which the optimization
problem is modified. It consists in searching the deterministic optimal driver’s command,
whose transformation (associated with each realization xk) minimizes in mean the energy
consumption of the train. Several tools have been proposed to reduce the dimension of the
problem, to take into account uncertainty, and to solve it numerically. The optimal solution
shows interesting improvements in terms of energy saving and usability by the drivers.

The transformed driver’s command has been replaced by its online updating T (q∗,xk), which
allows the constraints to remain verified.
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Chapter V

Conclusion and perspectives

V.1 Conclusion
In this thesis, we have explored several domains linked to the railway dynamics, the stochastic
identification, and the driver’s command optimization under uncertainty. These topics are
often encountered in engineering sciences, as they are closely related to industrial stakes. For
reducing the energy consumed by high-speed trains, a methodology has been proposed in this
work. Each chapter is devoted to a main part of the development.

The first part (Chapter II) focuses on the construction of a dynamic model and of an energy
consumption model. The 3D train dynamics based on a 3D rigid body formulation for the whole
train, is projected on the longitudinal track axis in order to obtain the longitudinal dynamic
model. The position, speed, acceleration of the train, as well as the traction and braking forces,
are estimated solving the dynamic equation. Then, the energy consumption is simulated from
the time integral of the electric power, which is itself computed from the train speed, the
traction forces, the braking forces, the auxiliary power, and the energy efficiency. The dynamic
model and the energy consumption model quantify all the physical quantities related to the
optimization problem. Afterwards, the sensitivity analysis of the model parameters has been
carried out.

The second part (Chapter III) aims to identify the model parameters taking into account
uncertainty. A probabilistic framework has been retained for modeling the uncertainties, which
complicates the identification of parameters that are random variables. For this reason, we have
proposed two different approaches. The first one only relays on the identification of the mean
value of the uncertain parameters. The driver’s command is then estimated in inverse from the
distance between the simulated speed and the measured speed. Finally, the distance between
the measured energy consumption and the simulated one is quantified using the Root Mean
Square Error. The mean values of the uncertain parameters are identified as the minimum of
this distance. The second ingredient consists in the using the Bayesian inference method to
identify the posterior distribution of each parameter. After collecting the available information
for constructing the prior distributions, as well as after defining the likelihood function, we
have applied the Metropolis-within-Gibbs algorithm. The identified results of both approaches
have been validated using data measurements that have not been used for the identification.
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The last part (Chapter IV) details the optimization problem, for which we have proposed an
innovative formulation and solver. After optimizing several deterministic problems associated
with several realizations of the posterior distributions (that correspond to several configurations
of the train), we have proposed a robust strategy with respect to uncertainties. The deterministic
optimization problems have been replaced by an optimization problem under uncertainty: find
the optimal driver’s command, which is easy to transform in a new driver’s command that
verifies the constraints, in order to minimize in mean the energy consumed by all the possible
configurations of trains. We then obtain an unconstrained optimization problem under uncer-
tainty. Attention has been paid to develop a methodology that is adapted to the high dimension
of the problem and the use of a probabilistic formulation. More specifically, the discretization
of the driver’s command and the introduction of a PCA of the driver’s command have allowed
for drastically reducing the dimension of the optimization problem without altering the quality
of the prevision. The optimization algorithm has carefully been developed. The online updated
optimal driver’s command has been compared to the consumption of commercial trains for
which measurements were available.

All the developments that have been presented in this work have been implemented in a Soft-
ware written in Python.

V.2 Perspectives
The constructed methodology proposed for calculating an online-updated optimal driver’s
command can directly be used by the drivers for minimizing the energy consumption while
verifying the constraints (speed limitation, final position, final speed, and final time). However,
such an approach requires to get, in quasi real-time, information from the train and its envi-
ronment along the way. The experimental test on a real train of the developed algorithm is in
progress. Some details on that are given in Appendix C.

This work presents the advantage of being adaptable to many real cases and the software
developed is flexible. Any kind of trains and any rolling environments can be considered by
the method. The only requirements are the knowledge of the wind and track descriptions, and
some measurements are necessary to identify the model parameters. The constraints can also
be modified to add a starting delay, a new speed limitation in case of a weaken part of the track,
or specific crossing points to respect the train timetabling.

Further directions might be explored to extend this work. The first one would consist in a direct
continuation of the presented method. The numerical cost generated by solving the dynamic
equation could be reduced using a parameterized surrogate model, which is not so easy taking
into account the very high dimension of the dynamic model. Such a surrogate model is certainly
necessary for considering online updating along the way.
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Referred journal publications
• Julien Nespoulous, Christian Soize, Christine Funfschilling, Guillaume Perrin. Optimi-

sation of train speed to limit energy consumption. Vehicle System Dynamics, (60) 10,
3540-3557,2022.

• Julien Nespoulous, Christian Soize, Christine Funfschilling, Guillaume Perrin. Bayesian
inference for high-speed train dynamics and optimization under uncertainty for energy
saving using computational stochastic nonlinear dynamics and statistics. Journal of Com-
putational Physics, Elsevier, submitted.

Conferences with proceeding
• Julien Nespoulous, Christian Soize, Christine Funfschilling, Guillaume Perrin. Driver’s

control optimization under uncertainties to reduce energy consumption of high-speed
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tainty quantification for high-speed train dynamics modeling and optimization under un-
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Conferences with poster
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Appendix A

Multibody approach

Notations
We consider a train composed of N rigid bodies (NC cars, NB bogies, and NW wheelsets).
Let R0 be the global Cartesian frame of reference (ex, ey, ez) and Rα be the local frame
of reference (eαx , e

α
y , e

α
z ) attached to the rigid body α. The translation and rotation vectors

between these two frames of reference are denoted by ζα and Θα, respectively. The train
system is summarized in Figures A.1 and A.2.

Figure A.1: Scheme of the multibody structure (lateral view).
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Figure A.2: Scheme of the multibody structure (front view).

The environmental inputs (track curvature, declivity, wind direction and amplitude) is denoted
by T , the wheel/rail contact (rail and wheel shape, etc.) is described by C and V describes the
vehicle. We define the curvilinear position and speed of the train with s and v, respectively, the
first car C1 being the reference,

v(t) =< ζ̇C1(t), eTrackx > , (A.1)

s(t) =

∫ t

ts

v(τ)dτ . (A.2)

In order to simplify the comprehension, we use in this appendix a set of colors for denoting
each type of rigid bodies (cars, bogies, wheelsets), but also the contact points. A red box is
drawn around the simplifications induced by the longitudinal hypotheses.

F Force applied on cars
F Force applied on bogies
F Force applied on wheelsets
F Force applied at the contact point
F Analytic longitudinal simplifications

The letter C refers to the different cars, B to the bogies, W to the wheelsets, and I to the
contact points. If the sum limits are not precised in the following equations, index i browses
all cars, index j all the bogies, index k all the wheelsets, and index l all the contact points.
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Particular attention is paid to not counting twice the shared bogies.

Ci i-th car
Bi
j j-th bogie of the i-th car

W i,j
k k-th wheelset of the j-th bogie of the i-th car

I i,j,kl l-th contact point of the k-th wheelset, j-th bogie and i-th car

The mass, inertia, stiffness and damping matrices are denoted as follows:

[M ]α mass matrix of the α-th rigid body
[I]α inertia matrix of the α-th rigid body
[K]α/β stiffness matrix between the bodies α and β
[C]α/β damping matrix between the bodies α and β

Forces and moments
The forces are of two types. A first group of forces is composed of all the external forces, they
are listed below:

• Aerodynamic forces applied on the car bodies (neglected on the other rigid bodies):
F Ai(ζ̇Ci ,vw(s(t), T ))

• Aerodynamic moments applied on the car bodies (neglected on the other rigid bodies):
MAi(ζ̇Ci ,vw(s(t), T ))

• Traction moments applied on the motor wheelsets: MT i,j
k (ζW

i,j
k , v(t), u(t))

• Dynamic braking moments applied on the motor wheelsets: MP i,j
k (ζW

i,j
k , v(t), u(t))

• Pneumatic braking moments applied on the passenger wheelsets: MDi,j
k (ζW

i,j
k , v(t), u(t))

• Contact forces applied on the wheels at the contact points: F Ii,j,kl

(
ζI

i,j,k
l , ζ̇I

i,j,k
l , T , C

)
• Contact moments applied on the wheels at the contact points: M Ii,j,kl

(
ζI

i,j,k
l , ζ̇I

i,j,k
l , T , C

)
• Weight applied on all the rigid bodies: [M ]αg (with g = −9.81ez the gravity accelera-

tion)

The second group of forces is composed of all the internal forces, that is to say all the forces
applied by one rigid body on another one. It includes all the suspension elements (primary and
secondary) and the interactions between cars.
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Lagrangian
The kinetic energy Tα associated with each of the rigid body α is written as follows,

Tα(ζ̇α, Θ̇α) =
1

2
< [M ]αζ̇α, ζ̇α > +

1

2
< [I]αΘ̇α, Θ̇α > . (A.3)

Therefore, the total kinetic energy T is the sum of the kinetic energy of all the rigid bodies
(Equation (A.3)),

T (ζ̇, Θ̇) =
∑
i

TCi(ζ̇Ci , Θ̇Ci) +
∑
i,j

TB
i
j(ζ̇B

i
j , Θ̇Bi

j) +
∑
i,j,k

TW
i,j
k (ζ̇W

i,j
k , Θ̇W i,j

k ) . (A.4)

where ζ̇ and Θ̇ gather the velocities and the rotational velocities of all the rigid bodies. The
potential energy of each rigid body is composed of two groups. The first group comes from the
gravity. For each rigid body α, the gravity potential energy is given by:

V α(ζα) =< [M ]αg, ζα > . (A.5)

Therefore, the total gravity potential energy for all the rigid bodies is expressed by the following
expression,

V G(ζ) =
∑
i

V Ci(ζCi) +
∑
i,j

V Bi
j(ζB

i
j) +

∑
i,j,k

V W i,j
k (ζW

i,j
k ) . (A.6)

where ζ gathers the positions of all the rigid bodies. The second group comes from the stiffness
elements of the suspensions. These elements are situated between cars, between the cars and the
bogies, and between the bogies and the wheelsets. Between rigid bodies α and β, the stiffness
potential energy is such as

V α/β(ζα, ζβ) =
1

2
< [K]α/β

(
ζβ − ζα − l

α/β
0

)
, ζβ − ζα − l

α/β
0 > . (A.7)

where l
α/β
0 is the equilibrium position of β in Rα. The train suspensions are also composed of

nonlinear elements (pinlinks, bumpstops, etc.). Their mechanical behavior is considered well
known such that the stiffness potential energy is modified as

Ṽ α/β(ζα, ζβ) = V α/β(ζα, ζβ) + V NL,α/β(ζα, ζβ) . (A.8)

The total stiffness potential energy is the sum of the potential energy of all the rigid bodies,

V S(ζ) =
∑
i

Ṽ Ci/Ci+1(ζCi , ζCi+1)+
∑
i,j

Ṽ Ci/B
i
j(ζCi , ζB

i
j)+

∑
i,j,k

Ṽ Bi
j/W

i,j
k (ζB

i
j , ζW

i,j
k ) . (A.9)

Finally, the total potential energy is the sum of the gravity potential energy and the stiffness
potential energy (Equations (A.6) and (A.9)),

V (ζ) = V S(ζ) + V G(ζ) . (A.10)

The Lagrangian of the train system is written L. It depends on the kinetic energy (Equa-
tion (A.4)) and the total potential energy (Equation (A.10)),

L(ζ, ζ̇, Θ̇) = T (ζ̇, Θ̇)− V (ζ) . (A.11)
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Generalized forces
We write qαγ one degree of freedom of the train system, with α the rigid body under consider-
ation, and γ the rotation or translation degree of freedom. For example, qC5

y is the translation
degree of freedom of the 5-th car in the y direction. With these notations, we have

ζα = qαxe
α
x + qαy e

α
y + qαz e

α
z , (A.12)

Θα = qαϕe
α
x + qαχe

α
y + qαψe

α
z . (A.13)

The total nonpotential force applied on the cars is the sum of the forces between cars, the forces
between cars and bogies, and the aerodynamic forces. Note that the first and last cars only
interact with one neighboring car,

F totC
α,γ (ζ̇,vw(s, T )) =< F CNC−1/CNC (ζ̇CNC , ζ̇CNC−1),

∂ζCNC

∂qαγ
> − < F C1/C2(ζ̇C1 , ζ̇C2),
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>

+

NC−1∑
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−
∑
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< F Ci/B
i
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i
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+
∑
i

< F Ai(ζ̇Ci ,vw(s, T )), ∂ζ
Ci

∂qαγ
> +

∑
i

<MAi(ζ̇Ci ,vw(s, T )), ∂Θ
Ci

∂qαγ
> .

(A.14)

The bogies are only submitted to forces between bogies and cars and forces between bogies and
wheelsets as follows,

F totB
α,γ (ζ̇) =

∑
i,j

< F Ci/B
i
j(ζ̇Ci , ζ̇B

i
j),

∂ζB
i
j
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j/W

i,j
k (ζ̇B

i
j , ζ̇W

i,j
k ),

∂ζB
i
j

∂qαγ
> .

(A.15)

The forces applied on the wheelsets gather the forces between wheelsets and bogies, the pneu-
matic braking torques, the dynamic braking torques, and the traction torques. These three
torques come from the driver’s command and are only applied on a specific type of cars (motor
or passenger cars),

F totW
α,γ (ζ̇, v(t), u(t)) =

∑
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< FBi
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i,j
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i
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(A.16)
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Finally, the contact forces are applied on the wheelsets at each contact points,

F totI
α,γ (ζ, ζ̇, T , C) =

∑
i,j,k,l

< F Ii,j,kl

(
ζI

i,j,k
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i,j,k
l , T , C

)
,
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i,j,k
l
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>
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∑
i,j,k,l

<M Ii,j,kl

(
ζI

i,j,k
l , ζ̇I

i,j,k
l , T , C

)
,
∂ΘIi,j,kl

∂qαγ
> .

(A.17)

The total generalized forces, denoted Qα,γ , is the sum of all the generalized forces applied on
each rigid body. An expression is deduced from Equations (A.14) to (A.17),

Qα,γ(ζ, ζ̇, v(t), u(t), T , C) = F totC
α,γ (ζ̇,vw(s, T )) + F totB

α,γ (ζ̇) + F totW
α,γ (ζ̇, v(t), u(t))

+ F totI
α,γ (ζ, ζ̇, T , C) .

(A.18)

Lagrangian equation
From the Lagrangian (Equation (A.11)) and the generalized forces (Equation (A.18)), the La-
grangian equations are written for all the rigid bodies (α ∈ {Ci, Bi

j,W
i,j
k , I i,j,kl }) and for all the

degrees of freedom (γ ∈ {x, y, z, ϕ, χ, ψ}),

d

dt

(
∂L

∂q̇αγ
(ζ, ζ̇, Θ̇)

)
− ∂L

∂qαγ
(ζ, ζ̇, Θ̇) = Qα,γ(ζ, ζ̇, v(t), u(t), T , C) . (A.19)

By replacing L by the expression of the kinetic energy (Equations (A.3) and (A.4)) and the
expression of the potential energy (Equations (A.5) to (A.10)), and Qα,γ by the detailed expres-
sions (Equations (A.14) to (A.18)), the dynamic equations for the whole train are obtained from
the sum over all the rigid bodies. The formulation for the whole train is given by:
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(A.20)

111



Longitudinal dynamics
In our case, the system is composed of more than 40 rigid bodies, each of them having 6
degrees of freedom. Consequently, Equations (A.20) gather around 240 dynamic equations.
Solving all of them seems far too computational costly, especially when we know that the
dynamic equations are solved 2 400 000 by the CMA-ES algorithm. For this reason, we propose
to extract from Equation (A.20) the longitudinal dynamics of the train.

(i) We remind that Equation (A.20) is valid for all the degrees of freedom of all the rigid bodies.
In our case, we propose to only extract the longitudinal equation, that is to say replace qαγ by
the longitudinal degree of freedom qαx . Only translation qαx and rotation qαχ (wheels rotation)
are involved in longitudinal dynamics. Aerodynamic and contact moments are equal to zero
because their effects are negligible in these directions. The green boxes of Equation (A.20) are
not kept.

(ii) We assume that the rotation of the cars and the bogies have a small influence on the kinetic
energy. For this reason, the associated terms are neglected in Equation (A.20) and the blue
boxes are removed.

(iii) We can suppose that the longitudinal speed of all the rigid bodies is approximately equal:
ẏeTrackx ≃ ζ̇α. This signifies that all rigid bodies behave like one. We define qx the translation
degree of freedom common to all rigid bodies. If we assume that all the rigid bodies translate
in the longitudinal track axis, we have

∂ζα

∂qx
= eTrackx . (A.21)

These hypotheses also implies that the stiffness potential terms (red box of Equation (A.20))

compensate each other. Indeed, for all the rigid bodies α and β, we have
∂(ζCi+1−ζCi)

∂qx
=

eTrackx − eTrackx = 0. For the same reason, all the nonpotential forces (yellow boxes of
Equation (A.20)) have opposite signs and compensate each other. The red and yellow boxes
are also simplified to zero.

With these simplifications, Equation (A.20) is simplified such as
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(A.22)

Hypothesis (iii) also allow us to gather all the terms of the blue box of Equation (A.22) as they
have the same speed. The blue box is thus equivalent to the total mass of the train M (as we
sum the mass over all the rigid bodies) multiplied by the train speed ẏ.

The red box of Equation (A.22) cannot be omitted as the rotations of the wheelsets are not
negligible. If we consider that there is no slip between wheels and rail, we can link the rotation
speed of the wheels and the longitudinal train speed. With rm the mean radius of the wheels,
we assume that

Θ̇
W i,j

k
y ≃ ζ̇

W i,j
k

x

rm
=

ẏ

rm
,

∂Θ̇W i,j
k

∂q̇x
≃ 1

rm

∂ζ̇
W i,j

k
x

∂q̇x
=

1

rm
eTrackx . (A.23)

Thus, the yellow box is approximated to be equal to the number of wheelsets NW multiplied
by the y diagonal component of the inertia matrix IWy (considered equal for all wheelsets) and
multiplied to the train speed divided by the mean radius of the wheels. This quantity can be
expressed depending on the total mass of the train M ,

NW IWy v/(rm)
2 ≃ 0, 04M v . (A.24)

We recognize the correction factor krot = 1, 04 that is defined in order to consider the inertia of
wheelsets exposed in Equation (II.16). The terms of the green box can be gathered to obtain the
complete weight of the train. The projection of the vertical gravity vector on the longitudinal
track axis is equal to the sinus of the declivity angle of the track (Equation (II.15)).
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The yellow box represent the friction forces. In train longitudinal dynamics, these forces are
approximated with the Davis forces (Equation (II.10)). We often complete this approximation
with a corrective term (Equation (II.11)).

Finally, the purple boxes of Equation (A.22) represent the traction and braking torques applied
by the driver. These torques can be projected into the longitudinal to the track axis and sum in
order to estimate the equivalent traction and braking forces for the whole train. With all these
simplifications, the analytic equation becomes

M (V) krotŸ (t) = F T
(
Ẏ (t) , u(t),V

)
− FB

(
Ẏ (t) , u(t),V

)
− FR

(
Ẏ (t) , vw (Y (t) , T ) ,V

)
− FC (Y (t) , T ,V) + FW (Y (t) ,V , T ) .

(A.25)
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Appendix B

CMA-ES optimization algorithm

The CMA-ES method has first been developed by Nikolaus Hansen in [76]. This optimization
method uses an iterative random search algorithm that can be applied to nonlinear, nonconvex
functions. In our case, CMA-ES is applied to the driver’s command q(m). To further sim-
plify the notation, the exponent (m) has been removed. After initializing a starting point ν0,
an initial standard deviation σ0, a population size Npop, boundary conditions on the optimiza-
tion variables, an initial direction to explore by defining a specific initial covariance matrix [C0]
(identity matrix by default), termination conditions, and learning rates for example. The number
of points Npop inside this population is an hyperparameter chosen by the user but it is recom-
mended to adapt it from the dimension of the optimization problem m. The population size can
also be modified at each iteration to be adapted to the current state of the algorithm [94]. In
practice, the value of Npop is often chosen constant with Npop = 4 + ln(m). Then, once the
algorithm is initialized properly, the algorithm iterates several steps. We describe bellow the
steps of the i-th iteration.

Sampling a population of search points
The first step of the algorithm is to draw a population of search points (qi1, · · · , qiNpop). This
search points are drawn in a direction that has appeared to be interesting during the previous
steps. To do so, we use the mean νi−1, the standard deviation σi−1 and the covariance matrix
[Ci−1] obtained in the previous iteration,

qik = νi−1 + σi−1N
(
0,
[
Ci−1

])
k = 1, · · · , Npop . (B.1)

Selection and Recombination: Update the mean
The second step aims to update the mean value of the search distribution. This mean value is
adapted from the search points population. After evaluating the cost functionF (which could be
eventually penalized to include constraints), we propose to sort the population depending on the
quality of the search points. If the problem aims to minimizeF , the sorted search points are such
that: F(qi1) < · · · < F(qiNpop). The algorithm only conserves the µ best points regarding the
objective (selection step). Finally, a recombination is applied to extract the information of the
best selected points to update the mean. In practice, the choice of the µ > 1 conserved points
is often defined as Npop/2 (half of the points are conserved) and the recombination positive
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weights (w1, · · · , wµ) needs to verify
µ∑
k=1

wk = 1. For instance, the weights can be defined by

wk =
2

µ(µ+1)
(µ− k + 1) , k = 1, · · · , µ such as

νi = νi−1 + cm

µ∑
k=1

wk
(
qik − νi−1

)
, (B.2)

where cm ≤ 1 is an hyperparameter defining the learning rate associated with the mean. It can
be chosen by the user but is usually set to 1.

Search an interesting direction: Update the covariance matrix
The covariance matrix also needs to be updated as it gives information on interesting direc-
tions to explore. In fact, from previous search population, we want to orientate the explo-
ration through a direction which seems to minimize the cost function (eventually penalized).
The update of the covariance matrix can be directly estimated from the previous population
of points. Nevertheless, this estimation is relatively imprecise for small populations and two
other methods are proposed. The first method is called the rank-µ update. If we call q̃ik =
(qik − νi−1) /σi−1, the covariance matrix adapted from the rank-µ-method is written

[
Ci
]
=

(
1− cµ

Npop∑
k=1

wk

)[
Ci−1

]
+ cµ

Npop∑
k=1

wkq̃
i
kq̃

i
k
T , (B.3)

with cµ a learning rate associated with the rank-µ update method. The second method is called
the rank-one update and only uses one point at each iteration. We define pic the evolution path,
which is initialized at 0. At the i-th iteration, it can be determined from

pic = (1− cc)pi−1
c + (cc (2− cc)µeff)

1/2ν
i − νi−1

σi
, (B.4)

where cc the learning rate associated with the cumulation for the rank-one update and µeff =(
µ∑
k=1

wk
2

)−1

the variance effective selection mass for the mean. The covariance estimated with

this method is defined by: [
Ci
]
= (1− c1)

[
Ci−1

]
+ c1p

i
cp

i
c

T
, (B.5)

with c1 a learning rate for the rank-one update method. Finally, the combination of the rank-
µ update and the rank-one update methods gives a more precise estimation of the covariance
matrix. It is obtained from Equations (B.3) and (B.5),

[
Ci
]
=

(
1− c1 − cµ

Npop∑
k=1

wk

)[
Ci−1

]
+ c1p

i
cp

i
c

T
+ cµ

Npop∑
k=1

wkq̃
i
kq̃

i
k
T . (B.6)
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Amplitude of the exploration: Update the standard deviation
The amplitude of exploration of the i-th iteration is given by the standard deviation σi. Its
estimation depends on an evolution path piσ, which is initialized at 0 such as

piσ = (1− cσ)pi−1
σ + (cσ (2− cσ)µeff)

1/2
(
[C]i−1

)−1/2 νi − νi−1

σi−1
, (B.7)

where cσ is a learning rate associated with the standard deviation. Then, the updated value for
the standard deviation is given by:

σi = σi−1 exp

(
cσ
dσ

(
∥piσ∥

E∥N (0,1)∥
− 1

))
, (B.8)

with dσ is a damping parameter assuring the convergence on the standard deviation, N (0,1)
is a multivariate centered normal distribution with unity covariance matrix, ∥.∥ is the Euclidian
norm, and E designs the expectation operator.

Conclusion of the method
Once the mean, covariance matrix, and standard deviation are updated, the algorithm starts a
new iteration until the convergence tolerance is reached. This method proves good results for
nonlinear optimization problem with nonconvex, noisy functions. The constraints are imple-
mented with a Lagrangian penalization of the cost function. Moreover, the algorithm can be
easily parallelized as the evaluation of the search points are independent to each other. This
section has presented an outline of the method, but more details can be found in [76]. The
algorithm steps are summarized below.

Initialization: initial point, standard deviation, covariance matrix, hyperparameters
(population size, convergence tolerance, learning rates)

for i = 1 : N it do
• Generate randomly a population of Npop search points qik (Equation (B.1))

• Select and recombine the search points

• Update mean value νi (Equation (B.2))

• Update covariance matrix [Ci] (Equation (B.6))

• Update standard deviation σi (Equation (B.8))

end
Return the computed optimal value.

Algorithm 5: CMA-ES algorithm.

Figure B.1 shows an example of the application of the CMA-ES method. We can see the
adaptability of the algorithm and understand how it behaves to estimate an optimal value of the
cost function.
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Figure B.1: Illustration of an application of the CMA-ES method on a 2D example [95]. Sev-
eral iterations of population are shown with the associated covariance. The cost function is
represented with the background color intensity.
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Appendix C

Case study: optimization of the driver’s
command for autonomous trains

The deterministic method used in Section IV.1.2 has been applied to an industrial case study
that aims to test some technologies and advances to prepare the development of the autonomous
train. The track considered is referenced as 242, 000. Specifically, the portion of the track
between the cities of Busigny and Aulnoye-Aymeries in northeastern France is studied. This
journey is composed of four intermediate stops in the stations of Le Cateau, Ors, Landrecies,
Hachette before finally stopping in Aulnoye-Aymeries for a total length of 35, km. The
environment is described in Figure C.1, with the speed limitation and the declivity (or the
altitude see Equation (II.2)). The track curvature and wind are not considered due to the lack
of information in this case study. The departure and arrival times are set to match the actual
journey that takes about 30 minutes.
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Figure C.1: Rolling environment as a function of the position (speed limitation on the left and
altitude on the right).
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The measurement vehicle is a well-known French regional train (TER). This train is not
equipped with electrodynamic braking, and therefore does not recover energy during braking.
The model parameters have been determined relatively accurately for experimental purposes.
For this reason, we propose to use the deterministic representation of the model parameters
proposed in Section III.3, combined with the deterministic optimization problem presented in
Section IV.1.2. The model has been validated from the speed profile measurements performed
(see Figure C.2).
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Figure C.2: Validation of the model: Simulated and measured speed profile as a function of
time.

The initial driver’s command injected in the optimization method is the one realized by the
measurement train. This driver’s command is determined by a previous coarse optimization
algorithm that is used today by SNCF. This coarse algorithm does not consider the wind,
and only takes into account the track gradient. Since the journey is relatively short with
small variations in gradient, the method does not have many degrees of freedom to reduce
energy consumption. Nevertheless, the method presented in this thesis still shows significant
improvements. The optimization algorithm is applied to each of the 5 parts of the journey,
separately. After several thousand iterations, the algorithm has reached convergence. The
journey being short, the computational time is lower than the one of the previous examples in
Chapter IV (only one hour is needed). The convergence of the algorithm is shown in Figure C.3
for the first part of the journey.
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Figure C.3: Convergence of the method. The energy consumption (top left), the speed limitation
constraint (top right), the final speed constraint (bottom left), and the final position constraint
(bottom right) are plotted against the number of iterations.

After 50 iterations, an interesting direction to explore is discovered, and the energy consump-
tion starts to decrease. The energy consumed by the train starts to stabilize around 500 iterations
due to the increasing importance of the constraints. The Lagrange multipliers penalize the cost
function, and the algorithm cannot ignore them anymore. After 7 000 iterations, the algorithm
has reached convergence and the optimal solution respects the constraints. Several iterations
have been drawn in Figures C.4 to C.8 to better understand how CMA-ES algorithm works.

The second use of traction just before braking (see Figure C.4) is gradually attenuated because
it does not correspond to an efficient behavior in terms of energy saving. It has completely
disappeared after 250 iterations. The first and last part of the journey are also heavily modified
to verify the constraints. The middle part of the journey varies a lot during the first few
iterations, but it seems logical that braking for no reason is equivalent to energy lost. For this
reason, the driver’s command is close to zero in this part of the journey. The dispersion of the
points is very significant at the beginning and decreases with the number of iterations until
being very narrow when the algorithm is close to reach convergence. We stop the calculation
few hundred meters before the train station due to the fact that the new speed limitation is very
difficult to integrate for the algorithm. The last 200 meters are added manually to finish the
journey and to be able to compare the optimal solution with the measurements.

When the calculation is performed on each of the 5 parts of the path, the optimal solutions
are concatenated. The optimal driver’s command is shown in Figure C.9.
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Figure C.4: Speed profile (left) and driver’s command (right) depending on the position for
the population of points drawn at iteration 0 of CMA-ES algorithm. The consumed energy is
represented in color in the right figure.

Figure C.5: Speed profile (left) and driver’s command (right) depending on the position for the
population of points drawn at iteration 100 of CMA-ES algorithm. The consumed energy is
represented in color in the right figure.
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Figure C.6: Speed profile (left) and driver’s command (right) depending on the position for the
population of points drawn at iteration 250 of CMA-ES algorithm. The consumed energy is
represented in color in the right figure.

Figure C.7: Speed profile (left) and driver’s command (right) depending on the position for the
population of points drawn at iteration 750 of CMA-ES algorithm. The consumed energy is
represented in color in the right figure.
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Figure C.8: Speed profile (left) and driver’s command (right) depending on the position for the
population of points drawn at iteration 7 000 of CMA-ES algorithm. The consumed energy is
represented in color in the right figure.
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Figure C.9: Optimal driver’s command (black), smoothed optimal driver’s command (blue),
and initial driver’s command (red) depending on time.
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The optimal solution is plotted in black. The smoothed optimal driver’s command (in blue) is
directly computed from the optimal driver’s command. When the optimal driver’s command is
close to zero, we set it to zero to limit the effect of noise, without impacting the solution too
much. We can observe that the optimal solution is relatively close to the initial solution on the
second part of the journey. This means that the algorithm used by the SNCF is already efficient.
On the other hand, the optimal solution is very different from the initial solution on the first
section. We can observe the impact of these modifications on the train dynamics in Figure C.10.
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Figure C.10: Speed profile associated with the optimal driver’s command (black), the smoothed
optimal driver’s command (blue), and the initial driver’s command (red) depending on the po-
sition. The speed limitation is in green.

Undoubtedly, the speed profile associated with the optimal driver’s command and with the
initial driver’s command are very close on the second part of the journey. However, on the
first part, the initial driver’s command proposes to use motors a second time (just before final
brake). This proposal does not seem to be interesting from the energy saving point of view
and the optimization algorithm has found a different optimal solution. The maximum speed is
slightly reduced on the part three and four of the journey. This is possible due to the fact that
the driver’s command is higher at the beginning of these sections (see Figure C.9). Finally, the
energy consumption is shown in Figure C.11.

We can notice that the optimal solution reduces the energy consumption by about 7% compared
to the driver’s command provided by the previous algorithm. This reduction reaches about 8%
with the smoothed driver’s command. The major difference is in the first part of the journey.
The energy consumptions are equivalent in the second part of the journey. Despite the small
number of degrees of freedom, the algorithm manages to reduce the energy consumption.
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Figure C.11: Energy consumption associated with the optimal driver’s command (black), the
smoothed optimal driver’s command (blue), and the initial driver’s command (red) depending
on the position.
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