
HAL Id: tel-04048943
https://theses.hal.science/tel-04048943v2

Submitted on 28 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uncertainty assessment in safety argument structure :
an approach based on Dempster-Shafer theory

Yassir Idmessaoud

To cite this version:
Yassir Idmessaoud. Uncertainty assessment in safety argument structure : an approach based on
Dempster-Shafer theory. Cryptography and Security [cs.CR]. Université Paul Sabatier - Toulouse III,
2022. English. �NNT : 2022TOU30263�. �tel-04048943v2�

https://theses.hal.science/tel-04048943v2
https://hal.archives-ouvertes.fr


THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ FÉDÉRALE
TOULOUSE MIDI-PYRÉNÉES

Délivré par :
l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 15/12/2022 par :
Yassir ID MESSAOUD

Uncertainty Assessment in Safety Argument Structure – An approach
based on Dempster-Shafer Theory

JURY
Frédéric PICHON Professeur des universités Rapporteur
Walter SCHON Professeur des universités Rapporteur
Sylvie LE HEGARAT Professeure des universités Examinatrice
Jean-Loup FARGES Maître de recherche ONERA Examinateur
Jérémie GUIOCHET Professeur des universités Directeur de thèse
Didier DUBOIS Directeur de recherche CNRS Directeur de thèse

École doctorale et spécialité :
EDSYS : Informatique 4200018

Unité de Recherche :
Laboratoire d’Analyse et d’Architecture des Systèmes

Directeur(s) de Thèse :
Jérémie GUIOCHET et Didier DUBOIS

Rapporteurs :
Frédéric PICHON et Walter SCHON





i

Acknowledgments

The work presented in this thesis has been realised in the Laboratory for Analysis
and Architecture of Systems (Laas), a laboratory depending from the French Na-
tional Center for Scientific Research (CNRS). I would like to thank, first of all, our
team head Madam Hélène WAESELYNCK and all the members of the team TSF
(Dependable Computing and Fault Tolerance) for having welcomed me to carry out
my work in this laboratory.

I would like furthermore express my sincere gratitude to my Ph.D supervisors,
Dr. Didier DUBOIS from IRIT (Institute of Research in Computer Science of
Toulouse) and Pr. Jérémie GUIOCHET from Laas-CNRS, my supervisors of the
Ph.D. thesis, for their tremendous support during these three years. I could not
have accomplished this ambitious mission without their advice, encouragement,
patience and the time devoted in regular exchanges. I feel honored to have had the
opportunity to work with both of them. I would also like to thank the rest of my
thesis defense committee:

• Pr. Frédéric PICHON, Artois University, Reviewer

• Pr. Walter SCHON, UTC, Reviewer

• Pr. Sylvie LE HEGARAT, Paris saclay university, Examiner

• Dr. Jean-Loup FARGES, ONERA, Examiner

I really appreciate their acceptance to review my work, as well as their insightful
feedback and interesting questions during my defense to improve the manuscript
and expand my research from various perspectives.

I am also very grateful to Dr. Claire PEGATTI from ONERA and Christophe
GABREAU from AIRBUS for their assistance on the case study used for the vali-
dation of our approach.

I would like to give my special thanks to the colleagues in TSF, especially the
doctoral students, with whom I went through these unforgeable three years of the
Ph.D. study. Specific appreciations are sent to my comrades: Yuxiao, Mohamed,
Florent, Cyrius, Raul and Luca.





Contents

List of figures vi

List of Tables viii

Introduction 1

1 General background and State of the art 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Argument structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 A definition of argument structures . . . . . . . . . . . . . . . 6
1.2.2 Forms of argument structures . . . . . . . . . . . . . . . . . . 7

1.3 An introduction to uncertainty theories . . . . . . . . . . . . . . . . 10
1.3.1 The concept of uncertainty . . . . . . . . . . . . . . . . . . . 10
1.3.2 Uncertainty modeling . . . . . . . . . . . . . . . . . . . . . . 11

1.4 DST applied to confidence propagation . . . . . . . . . . . . . . . . . 17
1.4.1 DS theory and logic . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Graphical representation of belief propagation . . . . . . . . . 18

1.5 Quantitative confidence propagation approaches in argument structure 19
1.5.1 Uncertainty theories in arguments . . . . . . . . . . . . . . . 19
1.5.2 Argument type and logic . . . . . . . . . . . . . . . . . . . . 19
1.5.3 Expert elicitation . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Uncertainty propagation model in argument structure 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Confidence measure in an argument structure . . . . . . . . . . . . . 28

2.2.1 Formal definition of uncertainty in premises . . . . . . . . . . 29
2.2.2 Formal definition of uncertainty in the support relation . . . 29

2.3 Confidence propagation models . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Simple argument type (S-Arg) . . . . . . . . . . . . . . . . . 30
2.3.2 Conjunctive argument type (C-Arg) . . . . . . . . . . . . . . 32
2.3.3 Disjunctive argument type (D-Arg) . . . . . . . . . . . . . . . 35
2.3.4 Hybrid argument type (H-Arg) . . . . . . . . . . . . . . . . . 37
2.3.5 Conflict mass for (n) premises . . . . . . . . . . . . . . . . . . 43

2.4 Argument types in literature - A comparison . . . . . . . . . . . . . 46
2.5 Models sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



iv Contents

3 Expert opinion elicitation 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Elicitation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Belief and disbelief elicitation of premises . . . . . . . . . . . . . . . 57
3.4 Belief elicitation for rules . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Argument type identification . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Pignistic transform Vs Shenoy transform . . . . . . . . . . . . . . . . 65
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Applying confidence assessment of an argument in GSN - Case
study 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Confidence assessment procedure . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Modelling phase: Rules elicitation . . . . . . . . . . . . . . . 70
4.2.2 Application phase: Premises elicitation and confidence prop-

agation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 An opening towards a pure qualitative approach 83
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Introduction to qualitative capacities . . . . . . . . . . . . . . . . . . 84
5.3 Qualitative confidence propagation models . . . . . . . . . . . . . . . 86

5.3.1 Simple argument (S-Arg) . . . . . . . . . . . . . . . . . . . . 86
5.3.2 Conjunctive argument (C-Arg) . . . . . . . . . . . . . . . . . 87
5.3.3 Disjunctive argument (D-Arg) . . . . . . . . . . . . . . . . . 88
5.3.4 Hybrid argument (H-Arg) . . . . . . . . . . . . . . . . . . . . 89
5.3.5 Conflict mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Qualitative elicitation models . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Qualitative assessment application to GSN arguments . . . . . . . . 93
5.6 Quantitative Vs Qualitative assessment procedure . . . . . . . . . . . 95
5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Conclusion 99

A Questionnaire for expert elicitation 105

Bibliography 117



List of figures

1.1 An example of a textual argument [Kelly 2004] . . . . . . . . . . . . 7
1.2 GSN main components . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 GSN example adapted from the Hazard Avoidance Pattern [Kelly 1997] 8
1.4 An example of a claim-argument-evidence (CAE) notation . . . . . . 9
1.5 Relation between uncertainty theories . . . . . . . . . . . . . . . . . 14
1.6 An example of a valuation network . . . . . . . . . . . . . . . . . . . 19
1.7 Argument type proposed by Annaheed et al. [Ayoub 2013] . . . . . . 20

2.1 Sources of uncertainty in GSN - A simple argument type (S-Arg)
example (Note that the arrow direction is not intuitive regarding the
implication p ⇒ C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 A conjunctive argument type (C-Arg) example . . . . . . . . . . . . 33
2.3 A disjunctive argument type (D-Arg) example . . . . . . . . . . . . . 35
2.4 A hybrid argument type (H-Arg) example . . . . . . . . . . . . . . . 37
2.5 Argument types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 Belief sensitivity for a C-Arg . . . . . . . . . . . . . . . . . . . . . . 50
2.7 Belief sensitivity for a D-Arg . . . . . . . . . . . . . . . . . . . . . . 50
2.8 Belief sensitivity for a H-Arg . . . . . . . . . . . . . . . . . . . . . . 50
2.9 Disbelief sensitivity for a C-Arg . . . . . . . . . . . . . . . . . . . . . 50
2.10 Disbelief sensitivity for a D-Arg . . . . . . . . . . . . . . . . . . . . . 50
2.11 Disbelief sensitivity for a H-Arg . . . . . . . . . . . . . . . . . . . . . 50
2.12 Uncertainty sensitivity for a C-Arg . . . . . . . . . . . . . . . . . . . 51
2.13 Uncertainty sensitivity for a D-Arg . . . . . . . . . . . . . . . . . . . 51
2.14 Uncertainty sensitivity for a H-Arg . . . . . . . . . . . . . . . . . . . 51
2.15 Conflict degree sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 51
2.16 Masses on rules and premises . . . . . . . . . . . . . . . . . . . . . . 53

3.1 The positioning of the uncertainty interval on the pair (Dec,Conf) . 57
3.2 Evaluation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Extreme assessments (black dot) . . . . . . . . . . . . . . . . . . . . 58
3.4 Evaluation matrix including Josang constraint . . . . . . . . . . . . . 59
3.5 Belief and disbelief elicitation of premises . . . . . . . . . . . . . . . 61
3.6 Belief elicitation of rules . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7 Responses from experts vs. Calculated results based on Complemen-

tary and Redundant argument types [Wang 2018b] . . . . . . . . . . 64
3.8 Pignistic (plain line) and Shenoy (dashed line) transforms constraint 66

4.1 Uncertainty assessment procedure . . . . . . . . . . . . . . . . . . . . 70
4.2 Modelling phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Disjunctive reverse rule elicitation . . . . . . . . . . . . . . . . . . . 72



vi List of figures

4.4 Disjunctive direct rule elicitation . . . . . . . . . . . . . . . . . . . . 72
4.5 Conjunctive reverse rule elicitation . . . . . . . . . . . . . . . . . . . 72
4.6 Conjunctive direct rule elicitation . . . . . . . . . . . . . . . . . . . . 72
4.7 Application phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.8 Premises elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.9 Architecture of the neural network based ACAS Xu [Damour 2021] . 76
4.10 ACAS Xu geometry [Katz 2017] . . . . . . . . . . . . . . . . . . . . . 76
4.11 Assurance Case - ML subsystem robustness [Damour 2021] . . . . . 77
4.12 Argument fragments according to their type . . . . . . . . . . . . . . 80
4.13 Decision sensitivity on the top goal G1 . . . . . . . . . . . . . . . . . 80
4.14 Confidence sensitivity on the top goal G1 . . . . . . . . . . . . . . . 80
4.15 Impact of changing the scale - example . . . . . . . . . . . . . . . . . 81

5.1 Evolution of certainty and information in pairs (belief, disbelief) . . 85
5.2 Schema of the assessment framework for safety argument . . . . . . 94
5.3 Evaluation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 GSN artificial example . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.1 Evaluation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.2 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.3 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.4 Assurance Case - ML subsystem robustness [Damour 2021] . . . . . 107



List of Tables

1.1 DS combination rule example . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Propagation formulas from [Cyra 2011] . . . . . . . . . . . . . . . . . 21
1.3 Propagation formulas from [Wang 2019] . . . . . . . . . . . . . . . . 22

2.1 Combination of direct (m⇒) and reverse (m⇐) rules for S-Arg . . . 31
2.2 Combination of the mass on premise (mp) with its rules (mr) for S-Arg 31
2.3 Combination of the masses on premises . . . . . . . . . . . . . . . . 32
2.4 Combination of elementary reverse rules for the C-Arg . . . . . . . . 33
2.5 Combination of direct and reverse rules for the C-Arg . . . . . . . . 33
2.6 Combination of masses of rules and premises for the C-Arg (part 1) 33
2.7 Combination of masses of rules and premises for the C-Arg (part 2) 34
2.8 Combination of elementary direct rules for the D-Arg . . . . . . . . 35
2.9 Combination of direct and reverse rules for the D-Arg . . . . . . . . 36
2.10 Combination of masses of rules and premises for the D-Arg (part 1) 36
2.11 Combination of masses of rules and premises for the D-Arg (part 2) 36
2.12 Combination of direct and reverse conjunctive rules for H-Arg . . . . 38
2.13 Combination of direct and reverse elementary rules for the H-Arg . . 38
2.14 Combination of premise (pi) with its elementary rules for H-Arg . . 38
2.15 Combination of premise (pi) with its elementary rules of two premises

(1 and 2) for H-Arg (part 1) . . . . . . . . . . . . . . . . . . . . . . . 38
2.16 Combination of premise (pi) with its elementary rules of two premises

(1 and 2) for H-Arg (part 2) . . . . . . . . . . . . . . . . . . . . . . . 39
2.17 Combination of premise (pi) with its rules for H-Arg . . . . . . . . . 40
2.18 Values of the 3-tuple (Bel, Disb, Uncer) resp. for C-Arg, D-Arg and

H-Arg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.19 Rules and premises basic values for the sensitivity analysis . . . . . . 49

3.1 Values from (Dec, Conf) to (Bel,Disb) couples on premises (see
figure 3.2 for symbol meaning) . . . . . . . . . . . . . . . . . . . . . 62

4.1 Decision items and their appropriate quantitative counterpart . . . . 75
4.2 Confidence items and their appropriate quantitative counterpart (see

figure 3.2 for symbols meaning) . . . . . . . . . . . . . . . . . . . . . 75
4.3 Elicited belief degrees on rules . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Basic assessment values of premises (Belp(Gi), Disbp(Gi), Uncerp(Gi)) 79
4.5 Belief and disbelief degrees of (sub-)goals calculation . . . . . . . . . 79
4.6 Impact of changing the decision scale on confidence assessment . . . 81

5.1 Combination of the focal sets of the premise (ρp) with its rules (ρr)
for S-Arg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



viii List of Tables

5.2 Combination of masses of rules and premises for the C-Arg (part 1) 87
5.3 Combination of masses of rules and premises for the C-Arg (part 2) 87
5.4 Combination of masses of rules and premises for the D-Arg (part 1) 88
5.5 Combination of masses of rules and premises for the D-Arg (part 2) 89
5.6 Combination of premise (pi) with its rules for H-Arg . . . . . . . . . 90
5.7 Values from (Dec, Conf) to (Bel,Disb) pairs on premises . . . . . . 93
5.8 Values of the belief degrees on rules . . . . . . . . . . . . . . . . . . 95
5.9 Pairs (decision, confidence) according to both qualitative (Qual.) and

quantitative (Quant.) methods for the example (see Fig. 5.3 for the
meaning of symbols) . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



Introduction

The trustworthiness of cyber-physical systems has become an important issue in
their development process involving many professionals in the industrial and re-
search sectors. Given its importance, many projects and initiatives, with consid-
erable budgets, are being launched to meet these demands. The development of
complex, autonomous and intelligent systems requires a significant effort to prove
their dependability to meet governments standards or convince skeptical consumers.
Indeed these systems, in particular the safety critical ones, usually operate in un-
certain environments and include new technologies not yet fully understood (e.g.,
those involving machine learning). Hence developing assessment tools for these new
types of systems is of paramount importance.

Many dependability techniques are useful to meet the requirements standards,
including failure probability calculations. These pre-established safety techniques
are well adapted to known contexts, but are insufficient to validate these new sys-
tems (e.g., autonomous vehicles), partly because they do not explicitly represent
uncertainty related to lack of information when standards are not applicable, or
when probability measures cannot be used. A new approach is under development
known as: structured arguments. They are proposed to justify the satisfaction of
a high-level property of a system. They are also called assurance cases. When
the property to defend is safety, they are usually called safety cases. These cases
could be based on structured languages even with graphical notations (e.g., GSN,
for Goal Structuring Notation). Basic elements such as goal or evidence are the
building blocks of a structure (an argument) in order to support a “top goal”, or
a conclusion (e.g., “the system is acceptably safe”). However, assurance cases only
provide a qualitative analysis, and no estimation of the uncertainties that may ex-
ist on the evidence could be specified. This is a serious drawback, particularly to
manage complexity, or to convince third parties (like certification bodies). In order
to provide solutions to quantify uncertainty/confidence, many works augment these
arguments (generally represented with graphical notations) with probabilistic mod-
els for confidence propagation. These models can properly deal with uncertainties
due to aleatory phenomena, but they poorly represent epistemic uncertainties due
to incomplete information. In addition, these methods are also very greedy in terms
of data, which requires much time to collect and process.

As a continuation of previous studies, reviewed in this manuscript, we develop
here a method for uncertainty assessment in argument structure based on Dempster-
Shafer Theory (DST). This theory offers resources to model and propagate both
aleatory and epistemic uncertainty. DST could be viewed as a generalisation of
probability theory, where metrics such as belief, disbelief and uncertainty on a
statement are explicitly quantified. This theory has been introduced in the 1960’s
as a mechanism for statistical reasoning under epistemic (knowledge) uncertainty
by Arthur Dempster and developed later in the 1970’s by Glenn Shafer with a more
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subjectivist spirit. Since then, an important work has been carried out to provide
mathematical tools to manipulate these DST metrics. Thus, in order to apply them
in assurance cases, three main challenges can be identified:

• Uncertainty/Confidence quantification
Identifying potential sources of uncertainty in an argument and quantify them
is a first important challenge. Two sources of uncertainty can be identified in
an assurance case. The first is related to the “evidence” collected for the case,
impacting their trustworthiness. The second source is related to the argument
structure itself. For instance, one may question the appropriateness of the
“evidence” to the “top goal”.
To address this challenge, we use propositional logic to formally represent the
relation between evidence and goal by means of “if-then rules”. Then we used
belief functions (presented in chapter 1) to quantify the uncertainty in the
evidence and in the rules.

• Propagation formulas
Once uncertainties in an argument are quantified (for all pieces of evidences
for instance), it is important to propagate the uncertainties to the “top goal”
in order to deduce the confidence in it.
A combination rule that will be applied to merge the uncertainties must be
defined. Indeed, in an argument the pieces of evidence may be redundant,
or complementary, which will be completely different in terms of uncertainty
propagation. This choice is based on several criteria. For example, the way
of managing a conflict situation when two contradictory pieces of information
needs to be merged. One may adopt an optimistic approach by assuming
that the truth lies in one of the two sources. In this case, we can consider
a disjunctive rule of combination. On the contrary, a more risky approach
might be adopted that rejects or ignores contradictory information. In this
case, we may consider conjunctive combination rules.
After quantifying the sources of uncertainty in the assurance case, we iden-
tified an appropriate combination rule to build our confidence propagation
model.

• Elicitation procedure
Once the confidence propagation model is built, we need to provide the inputs
to run it. Such inputs are often based on subjective judgements provided by
experts and expressed in natural language (e.g., high, moderate or low confi-
dence, etc). Hence the need to develop models to transform these judgments
into quantitative measures of confidence without altering them. A second is-
sue concerns the procedure for collecting these data. Questionnaires are often
used to collect testimonials. However, since we are handling subjective infor-
mation, it is crucial to be as explicit as possible when we survey experts so
that the information is consistent with our expectations.
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To deal with this challenge, we propose an expert judgment collection method
using a questionnaire. We also propose formulas for transforming these col-
lected judgments into quantitative measures of belief based on DST.

A fourth objective has been set during this thesis which aims at exploring the-
ories that propose tools for the modeling and propagation of qualitative measures
of confidence.

• Purely qualitative confidence assessment approach

In so-called quantitative approaches to confidence propagation in assurance
cases we often have to transform qualitative testimonies into numerical mea-
sures, in the [0, 1] scale, to be used by quantitative propagation models. This
transformation is somewhat arbitrary, especially when we approximate quan-
titative confidence in the “top goal” (after the propagation) with a qualitative
scale.

To address this issue, we outline an alternative to DST, known as Qualitative
Capacity Theory (QCT), to qualitatively assess and propagate confidence in
assurance cases.

We address in this thesis these four challenges with theoretical contributions
applied to artificial examples but also to a case study in the aeronautics field. This
thesis manuscript will be organised as follows:

In chapter 1, we present the theoretical background and review the bibliography
of the works related to the thesis. It is structured in four parts. First of all, we in-
troduce the concept of argument structure and present its different types and forms.
We also introduce some uncertainty theories, especially DST and its application to
confidence propagation. Finally, we review some so-called quantitative approaches
which use DST to assess confidence in argument structures.

In chapter 2, we present an approach to confidence propagation in GSN-modeled
argument structure based on previous works reviewed in chapter 1. Our approach,
uses propositional logic to express the logical relation between a conclusion and the
premise(s) supporting it for each argument type. Next, it uses DST to quantify
confidence in this support relation along with premises to calculate the overall
confidence in the conclusion. Then, we compare our argument types with those
reviewed in chapter 1. We also conduct a sensitivity analysis on these argument
type to study their behaviours.

In chapter 3, we present an expert opinion elicitation approach, that collects
assessments on argument structures and transform them into an appropriate form
in the setting of DST (belief degrees). We also justify the use of the “pignistic”
transform, introduced in chapter 1 and used in our elicitation model, by comparing
it with another transform.

In chapter 4, we present the overall confidence/uncertainty assessment and prop-
agation methodology in GSN-based argument structures. It uses the elicitation
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model (presented in chapter 3) to provide inputs to the propagation model (pre-
sented in chapter 2), and calculate the overall assessment in the top goal of the ar-
gument. Then, we present an application to a real system to validate this method.
Finally, we discuss the limitations of this approach in view of the case study results
and the sensitivity analysis conducted in the previous chapters.

In chapter 5, we present a new, purely qualitative method of assessing confi-
dence in argument structures. It uses a qualitative counterpart of belief functions
to quantify and propagate confidence in GSN. Thus, we propose new qualitative
confidence propagation formulas as well as a new elicitation model adapted to this
method. We also attempt a first comparison between qualitative and quantitative
confidence analysis methods.

In appendix A, we present a questionnaire for estimating uncertainties in assur-
ance cases. This questionnaire was used to collect assessment about the GSN used
as case study in chapter 4.
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1.1 Introduction

This thesis addresses the issue of confidence (or uncertainty, considered as two sides
of the same coin) assessment in an argument structure by its estimation and prop-
agation from the premises to the general conclusion. To simplify the understanding
and recovery of the formulas proposed in this manuscript, a definition of all the
theoretical concepts and tools used in this work is presented in this chapter. Thus,
we start in section (1.2) with a definition of argument structure and a presentation
of their different variants and the tools used to represent them. Then, in section
(1.3), we introduce theories used to model and propagate uncertainty, followed by
a presentation of some DST applications in confidence propagation in section (1.4).
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Finally, in section (1.5), we present some previous approaches to confidence model-
ing and propagation in argument structures, and we position our approach among
them.

1.2 Argument structures

Argument structures are commonly used to argue that a high-level property of
a system is satisfied. For instance, we talk about safety argument structure (or
safety case) when the property being considered is safety [Kelly 2004]. However,
it could be extended to more general concepts like dependability [Weinstock 2004,
Matsuno 2010] (which includes safety, security, reliability, etc.), trust [Górski 2005b,
Górski 2005a] (including both safety and security) or assurance (for any property)
cases.

1.2.1 A definition of argument structures

Any argument structure includes three essential elements [Rushby 2015]: A state-
ment (or a conclusion) which states the property to be satisfied (e.g, safety, security,
etc.), evidence about the system architecture carried by premises, and an argument
(also named warrant or inference, to differentiate it from an argument structure
which refers to the whole case) stating that the evidence is sufficient to establish
the statement. Several definitions of argument structures exist in the literature.
They may vary slightly according to the field of use (e.g, automotive, railway) or
the application (e.g, to safety, dependability). A common definition could be : “A
clearly represented collection of rational pieces of evidence (e.g, test or simulation
results, expert judgments, analysis reports, etc.) that a system reaches a required
property for a given application and environment” [Bishop 2000].

Safety arguments are not often explicitly mentioned in safety standards. Ac-
tually, most of safety standards provide a list of required pieces of evidence to
produce, to justify the safety of a system. This list is based on required integrity
levels. For instance, ISO 26262 [ISO 26262 2011] defines a risk classification sys-
tem for automotive vehicles known as Automotive Safety Integrity Level (ASIL). It
defines four levels of integrity from ASIL-A to ASIL-D (D being the highest class).
Each level is determined according to a risk calculation (mainly using severity and
likelihood). The greater the risk is, the higher the integrity level and, therefore, the
more critical are its requirements. The concept of classification in levels of integrity
is used in several industries, such as railway (CENELEC 50126/128/129) or ma-
chinery (ISO 13849), and with other names like DAL, Design Assurance Levels, in
avionics (ED-12/DO-178/DO-254). However, these standards (unlike safety cases)
do not define an explicit argument that links the required evidence (the list), to
the safety goal (the rationale is not provided), which makes them difficult to apply
to new technologies, or in context of use. It is worth mentioning that in the au-
tomotive standard ISO 26262 and in the railway standard CENELEC 50126, there
is a reference to the concept of safety case or safety argument, but it is mainly as



1.2. Argument structures 7

For hazards associated with warnings, the

assumptions of [7] Section 3.4 associated with

the requirement to present a warning when no

equipment failure has occurred are carried

forward. In particular, with respect to hazard

17 in section 5.7 [4] that for test operation,

operating limits will need to be introduced to

protect against the hazard, whilst further data

is gathered to determine the extent of the

problem.

Figure 1.1: An example of a textual argument [Kelly 2004]

a supporting tool to provide the list of evidence. The UK defence standard 00-56
[MoD 00-56 2007] is one of the non-presciptive standards that explicitly calls for an
argument-based approach to justify safety.

Hence, the argument-based approach is not fully integrated in the current stan-
dards, but it is becoming more popular, as it allows to deal with new technologies
or new context of use.

1.2.2 Forms of argument structures

The structure of the argument can be represented in natural language in the form
of well organized texts and tables in order to argue the respect of safety (for a
safety case) or other properties (security, dependability, etc.) requirements. How-
ever, such a representation presents certain problems highlighted by [Kelly 2004].
Indeed, intended to be produced and used in multicultural (global) environment
these arguments are often written in English. He points, [Kelly 2004], that not
all engineers responsible for producing safety cases write clear and well-structured
English, which may lead to misunderstandings. Thus, there is no guarantee that all
stakeholders involved share the same understanding of the argument. Also, the use
of cross-references can be confusing. The reader can easily get drowned in the text
(often long) and lose the thread of the argument’s objective. The example in figure
1.1, displays the issue of cross-references in a textual argument. To address these
issues, among others, Kelly proposed a Toulmin [Toulmin 1958] inspired graphical
language named “Goal Structuring Notation” (GSN).

Goal Structuring Notation

Goal structuring notation (GSN) is a graphical notation/language which represents
argument structures (i.e., safety and assurance cases) in the form of directed acyclic
graphs (directed trees or arborescences). Figure 1.2 displays its main components.

A GSN breaks down a top claim, called goal, into elementary sub-goals following
a specific strategy and in accordance with a particular context. The strategy com-
ponent, always associated with a goal, justifies its decomposition into other goals,
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G2

{Hazard Hn} has been 
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Justification

J

Elimination of 
all hazards 
assures the 
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Figure 1.2: GSN main components

Figure 1.3: GSN example adapted from the Hazard Avoidance Pattern [Kelly 1997]

while the context limits the scope of the argument to the information it provides.
This component is mostly related to strategies, but it can be also associated to other
components. Each sub-goal is associated with pieces of evidence, called solutions,
which support the conclusion. The assumption and justification components (resp.)
bring additional information necessary to (resp.) adopt and justify a strategy. The
diamond at the bottom of the goals indicates that they are not yet developed. This
representation offers two tools to link components with one another. The in context
of, represented by a blank tip arrow, links the context component to the others.
The supported by, represented by black tip arrow, links other components.

Figure 1.3 represents a typical hazard avoidance GSN pattern. To be considered
as “acceptably safe" (G1) all hazards (G2 to Gn) of the system (X), listed in the
context box (C1), should be provably handled (e.g, Sn1, Sn2, ...) following the
strategy (S1).
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Figure 1.4: An example of a claim-argument-evidence (CAE) notation

Other graphical representations

Beside GSN, other graphical notations exist which indeed have the same purpose,
but also use more or less the same concepts/components. For instance CAE (Claim-
Argument-evidence) is used to argue the fulfilment of claim (goal in GSN) by prov-
ing each of these elements, divided according to an argument (strategy in GSN),
by evidence (solution in GSN). Figure 1.4 represents an example of this notation.

Another type of representation known as SACM, standing for Structured
Assurance Case Meta-model, was build upon GSN [Kelly 2004] and CAE
[Bloomfield 2014] formalism. It is more expressive due to the extensive range of
features it offers. For instance, compared to a GSN, it offers more types of link be-
tween components (e.g, asserted, need-support, defeated, etc.). Moreover, it offers
the possibility of displaying counter-examples which describe (through evidence) the
situation where the claim is not fulfilled. [Selviandro 2020] discusses some differ-
ences between GSN, CAE and SACM. Different assurance cases modeling tools are
available with specific settings for each graphical notation [Wei 2019]. For instance,
D-Case Editor [Matsuno 2010] or AdvoCATE [Denney 2018].

In the context of our work, we focus in the following on argument structures
modeled with GSN formalism only. Indeed, we do not need all the expressiveness
of SACM for instance. Moreover our approach is focusing on the core concepts of
arguments and is thus applicable to all representations of arguments.

GSN applications

Categorized as a qualitative approach to logical argumentation [Duan 2014], GSN
is used in different industries, especially those which involve critical systems. For
instance, [Palin 2010, Habli 2010, Leppäaho 2021] use GSN to argue the safety of
automotive systems in accordance with the safety standard ISO26262. On the other
hand, [Gallina 2016] uses it to justify safety of rail vehicles.

Machine learning (ML) based systems, among others, also use GSN to
justify their safety [Picardi 2020, Gauerhof 2020, Porter 2022]. For example,
[Hawkins 2021] proposed a collection of safety cases and processes to be used to
establish a justified confidence in autonomous ML-based systems. Authors in
[Damour 2021], used a formalism close to GSN to prove the safety of a hybrid
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architecture of an anti-collision system based on neural network.
GSN is becoming popular in the safety case field and is even referenced in the

automotive safety standard ISO 26262 [ISO 26262 2011].

Discussion

Graphical notations, and GSN in particular, address the concerns raised above
by offering a clear, relatively short and well-structured representation, making it
more expressive and thus easier to comprehend. However, this symbol-based lan-
guage does not capture the uncertainty that may exist in the argument structure.
This uncertainty may be caused by the lack of specification of the nature of the
logical links between the goals in their support to the top one (e.g, link between
G1, G2, . . . Gn, in figure 1.3). Thus, one cannot properly formalize the uncertainty
propagation scheme. The uncertainty related to these links could be interpreted
as an indicator of the degree of confidence in the chosen strategy (S1, justifying
the decomposition into sub-goals). In the same way, a GSN does not indicate the
confidence that can be associated with the evidence (Sn1, Sn2 and Sn3). This
issue was highlighted in several works ([Bloomfield 2010], for example). So-called
quantitative approaches have been proposed to overcome these problems. Works of
[Duan 2014, Graydon 2017] stated and discussed some propositions that deal with
the issue of uncertainty.

1.3 An introduction to uncertainty theories

In order to deal with sources of uncertainty in GSN base assurance cases, this
section presents some theoretical background about the concept of uncertainty and
presents some tools to model and propagate it.

1.3.1 The concept of uncertainty

In the following, we define the concept of uncertainty and present some classifica-
tions of its sources.

Uncertainty definition

The term uncertainty refers to lack of certainty about the truth or falsity in a piece of
information (or a proposition). Information is either, objective (e.g, measurements
produced by a sensor) or subjective (e.g, observations or testimonies produced by
individuals). The attribute could also take a quantitative format (e.g, temperature
measurement or an age of a person) or a qualitative one (e.g, color or shape of an
object) expressed with a natural language. Finally, information could be singular
produced from particular event in the case of a testimony or an observation; or
generic resulting from a collection of situations (e.g, scientific laws, commonsense
knowledge or statistical models). This variation in types of information leads to
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several sources of uncertainty which can be represented either in quantitative or
qualitative terms.

Sources of uncertainty

There are as many classifications of uncertainty as there are of information. The
most common one distinguishes between: Aleatory uncertainty derived from ob-
jective or generic information and due to randomness of natural phenomena (e.g.,
rainfall in the Tropics or snowfall in Himalaya) or in games (e.g., dice rolling) mea-
sured by frequency. And epistemic uncertainty derived from subjective or singular
information and due to the lack of knowledge, e.g., “a crime suspect fled in a grey
car”. Notice that this information is not that sufficient to track down the suspect.
What kind of car was it? In which direction did he/she flee?

A second classification introduces a third category of uncertainty. In addition
to the uncertainty due to randomness (aleatory) and incompleteness (epistemic),
another source due to inconsistency was added. It represents contradiction (or
conflict) between pieces of evidence when too much information is available. Un-
raveling what is true from what is false seems then difficult and confusing (e.g, pro-
and anti-vaccine arguments/researches in a global pandemic situation).

A third classification introduced sources related to fuzziness and vagueness.
These two concepts are often confused. Their meanings are different. Vagueness
represents uncertainty of meaning. For example, TALL is a Boolean concept but
we do not know the limit between Tall and not Tall. While fuzziness is a concept
that applies to a degree. I know the height of John, 1.70m, but he is tall only to a
certain extent.

Another classification [Harmanec 1999] considers two sources of uncertainty.
Uncertainty due to non specificity which describes the inability of inferring the
truth from multiple possible scenarios, and another due to conflict which describes
inconsistency and disagreement in information.

1.3.2 Uncertainty modeling

A general representation of set of states of affaires viewed as a proposition can be ob-
tained using a function g(A) ∈ [0, 1], that quantifies the confidence in a proposition
A (which can be true or false) such that:{

g(∅) = 0, g(Ω) = 1
A ⊆ B ⇒ g(A) ≤ g(B) (monotonicity with respect to inclusion) (1.1)

Where ∅ represents the empty set (g(∅) is the confidence in the impossible event)
and Ω the universe of all possibilities (g(Ω) is the confidence in the fact that the
sure event happens).

Uncertainty, (i.e., lack of confidence), and confidence are inversely proportional
to each other. High confidence in a statement (or in its negation) means low un-
certainty about it, and vice versa.
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The function g is a probability function P , if it satisfies the additivity property:
P (A∪B) = P (A)+P (B), if A∩B = ∅. More functions, can be derived under some
assumptions. For instance, belief [Shafer 1976] (necessity, certainty) or plausibility
(possibility [Dubois 1988, Zadeh 1999]) functions. Despite the few differences that
may exist between these theories, each of them is designed to deal with specific
situations. For instance, possibility functions can deal with uncertainty represented
with qualitative values. However, they all serve the same purpose, which is to
quantify uncertainty and deal with it through the different tools (operations) they
offer. They are often used in applications as pairs such as (belief, disbelief), (belief,
plausibility) or (necessity, possibility).

Probability theory

It is known that probability properly deals with aleatory uncertainty (frequentist
approach), but fails to represent the epistemic one to some extent. To represent total
uncertainty, all elements ωi of the universe of possibility (Ω) get the same probability
value P (ωi) = 1

|Ω| , ωi ⊆ Ω. For instance, if a state of light in a room is unknown, it
is represented with P (light ON) = P (light OFF ) = 1

2 . Without any knowledge,
there is no reason to assign a different probability to one outcome rather than to
another. The same distribution (0.5, 0.5) is actually used when a lot of information
is provided equally for ON and OFF. Thus, with probability it is not possible to
make the difference between a completely unknown situation, and a well known
random situation. This vision is highly debated among uncertainty specialists.
Other counter-examples are proposed in the literature. For example, we can classify
the world outside the galaxy into two categories: there are living beings (L) or not
(NL). Hence, the probability of getting one or another is P1(L) = P1(NL) = 1

2 .
We can also decompose the living into incompatible events, for example, vegetable
only (V ) and animal (A) entities. So, the probability of getting one of these three
entities is P2(V ) = P2(A) = P2(NL) = 1

3 . Since living is a disjunction of vegetable
and animal, the distributions P1 and P2 are not consistent: P2(L) = P2(V ∪ A) =
P2(V ) + P2(A) = 2

3 ̸= P1(L) = 1
2 .

These drawbacks affect all probabilistic representations of subjective belief in
case of incomplete information, in particular Bayesian networks, which are never-
theless relevant for frequentist representations based on sufficient amounts of experi-
mental data. This approach is widely used in the context of confidence propagation.
But as illustrated in the paragraph before, it has limitations when representing epis-
temic uncertainties. Hence there is a need to exploit new theories like DST that
are more appropriate to model incomplete information.

Dempster-Shafer theory

As a generalization of probability theory, Dempster-Shafer theory [Shafer 1976]
(DST, known also as evidence theory) offers tools to model both aleatory and
epistemic uncertainty.
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A mass function, or basic belief assignment (BBA), is a probability distribution
over the power set of a set Ω, known as the frame of discernment (universe of
possibilities). Formally, a mass function m : 2Ω → [0, 1] is such that:∑

E⊆Ω
m(E) = 1, m(∅) = 0 (1.2)

Any subset E of Ω such as m(E) > 0 is called a focal set of m. m(E) quantifies the
probability that we only know that the truth lies in E; in particular m(Ω) quantifies
the amount of ignorance. Hence this approach handles incomplete information in
an unbiased way.

A mass assignment induces a so-called belief function Bel : 2Ω → [0, 1], defined
by:

Bel(A) =
∑

E⊆A, E ̸=∅
m(E) (1.3)

It represents the sum of all the masses supporting a statement A. Belief in the nega-
tion ¬A of the statement A is represented by: Disb(A) = Bel(¬A) called disbelief;
the value Uncer(A) = 1−Bel(A)−Disb(A) quantifies the lack of information about
A.

Mass functions also induce a so-called plausibility function Pl : 2Ω → [0, 1],
defined by:

Pl(A) =
∑

E∩A ̸=∅
m(E) (1.4)

Belief and plausibility functions are related: Pl(A) = Bel(A) + Uncer(A) = 1 −
Disb(A). They respectively represent the lower and upper limits of probability:
Bel(A) ≤ P (A) ≤ Pl(A). To get uncertainty in a proposition A, two pieces of
information are needed: (Bel(A), Pl(A)) which gives direct information about the
uncertainty range or (Bel(A), Disb(A)) which gives direct information about the
direction in which the truth is most likely to be: A, if Bel(A) > Disb(A) or ¬A if
Disb(A) > Bel(A).

Here are some particular cases of mass functions:

• When focal sets are singletons Ei = {ωi}, with Ω = {ω1, . . . ωn} : both the
plausibility and belief of an event A are equal to its probability: Bel(A) =
P (A) = Pl(A), because Ei ⊆ A is equivalent to Ei ∩A ̸= ∅ and ωi ∈ A.

• When focal sets are nested E1 ⊂ E2 ⊂ . . . En: Firstly, the plausibility of the
union of two events A and B is equal to the maximum plausibility of the
individual events. Hence, Pl(A∪B) = max[Pl(A), P l(B)]. Thus, plausibility
can be seen as a measure of possibility Pl(A) = Π(A).

Secondly, the necessity measure of the intersection of two events A and B

is equal to the minimum necessity of the individual events: N(A ∩ B) =
min[N(A), N(B)]. Thus, necessity can be seen as a measure of belief N(A) =
Bel(A).
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Figure 1.5: Relation between uncertainty theories

• A simple support function [Shafer 1976] shares a mass between a single subset
E of Ω (the frame of discernment) and Ω itself. It is relevant to model a
testimony from an unreliable source, where we assign a probability s to express
that the testimony is irrelevant, so that m(E) = 1 − s.

Figure 1.5 represents the relation between different uncertainty theories. We
can notice that imprecise probabilities represent a general frame for DST, while
both possibility-necessity and probability measures represent special cases. Im-
precise probability theory defines a lower P∗(A) and upper P ∗(A) probabilities
[Walley 1991] that restricts the probability of an event P (A). The width of the
interval [P∗(A), P ∗(A)] represents the degree of ignorance that an agent has about
a proposition A. When the latter is equal to the unit interval [0, 1], we can consider
that the agent has no information. In DST these upper and lower probabilities are
respectively plausibility and belief degrees.

DST offers tools for dealing with uncertainty, mainly those that allow combi-
nation of pieces of information, see [Sentz 2002, Smets 2007] for surveys. Here are
some operations that are useful in the context of our work:

• Discounting: used to mitigate information (testimonies) coming from unre-
liable sources. We distrust mass mΩ with probability v.

m∗
Ω(A) =

v ·mΩ(A), if A ̸= Ω
1 − v · [1 −mΩ(A)], if A = Ω

(1.5)

• Extension: used to manipulate two pieces of information that belong to
different frames of discernment (Ω1, Ω2) by extending it to a common one
(Ω = Ω1 × Ω2) without further information.

mΩ1↑Ω(A) =

mΩ(B), if A = B × Ω2, for some B ⊂ Ω1

0, otherwise
(1.6)

Where : Ω1 ↑ Ω denotes the cylindrical extension of Ω1 to Ω.
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• Projection: used to recover a piece of information from a general frame of
discernment (Ω = Ω1 × Ω2) to its original one (Ω1).

mΩ↓Ω1(A) =
∑

B⊂Ω,B↓Ω2=A

mΩ(B), ∀A ⊂ Ω2 (1.7)

Where : Ω1 ↓ Ω denotes the projection (known also as marginalization) of Ω to Ω1.

• Conjunctive rule of combination: used for uncertainty propagation. This
rule combines multiple pieces of evidence (represented by mass functions mi,
with i = 1, 2, ..., n) coming from independent sources of information. It is
m∩ = m1 ⊗m2 for n = 2, such that:

m∩(A) =
∑

E1∩E2=A, A ̸=∅
m1(E1) ·m2(E2) (1.8)

In DST, an additional step eliminates conflict that may exist by means of a nor-
malization factor (dividing m∩ by 1 − m∩(∅)). This is Dempster rule of combi-
nation [Shafer 1976]. The mass of the void m∩(∅) represents the conflict degree.
When it is small, this normalisation is meaningful: it eliminates the conflict and
proportionally increases the contradiction-free degrees m∩(A). On the contrary if
conflict is important (near 1), normalisation loses sense (division by 0). A possible
alternative is to consider the conflict as ignorance, hence we can add m∩(∅) to the
mass of the tautology m(Ω) (Yager’s rule [Yager 1987]).

Example 1. Let’s say that a group of ornithologists (bird experts) want to
conduct a study on falcons living in the “Occitanie, France” region. This region
is characterized mainly by the presence of two species Peregrine (P) and Kestrel
(K) falcons respectively recognisable by their gray and brown color. Ω1 = {F,¬F}
refers to the bird species mΩ1(F ) and mΩ1(¬F ) represent evidence respectively
supporting that the seen bird is a falcon or not. Ω2 = {Gr,Br,Bl} refers to the
bird color respectively grey (Gr), brown (Br) and black (Bl) seen during this study.
We assume that no black falcon specie lives in the studied region. So we have that
P = F ∧Br, K = F ∧Gr, where: P,K ∈ Ω and F ∧Bl = ∅. Each expert testimony
is attached a mass function on Ω = Ω1 × Ω2.

Lets suppose that an expert thinks that a group of birds are Peregrines falcons
with a belief of mΩ(P ) = 0.5 or Kestrel with a belief of mΩ(K) = 0.3. Hence,
we can deduce that his/her belief that the seen birds were falcons is (using the
projection operation):

mΩ1(F ) = mΩ↓Ω1(F )
= mΩ(P ) +mΩ(K)
= 0.5 + 0.3 = 0.8

Now, we suppose that another expert gives the following testimonies about
his/her observation.
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• mΩ1(F ) = 0.4, mΩ1(¬F ) = 0.2 and mΩ1(Ω1) = 0.4

• mΩ2(Br) = 0.3, mΩ2(Gr) = 0.1, mΩ2(Bl) = 0.4 and mΩ2(Ω2) = 0.2

Let us also consider that because of bad weather the experts observations may be
subject to reasonable doubts. Assuming that testimonies about the species could
only be trusted at 0.75%. Thus, the updated masses are (using the discounting
operation): mΩ1(F ) = 0.75×0.4 = 0.3, mΩ1(¬F ) = 0.75×0.2 = 0.15 and mΩ1(⊤) =
1 − 0.75 × (1 − 0.4) = 0.55. We can notice that due to this additional source of
uncertainty the belief in these testimonies decreases, while the uncertainty on them
increases. The same operation is applied to mΩ2 .

In order to illustrate how a DS combination rule works, we combine two mass
functions defined on Ω1 and Ω2, respectively. In fact we combine their extensions
on Ω. Table 1.1 presents all possible intersections of focal sets in the two frames of
discernment (Ω1 and Ω2). For instance F ∧Br stands for ({F}×Ω2)∩ (Ω1 ×{Br}).

Table 1.1: DS combination rule example
mΩ = mΩ2 ⊗mΩ1 mΩ1(F ) = 0.3 mΩ1(¬F ) = 0.15 mΩ1(Ω1) = 0.55
mΩ2(Br) = 0.225 P = F ∧Br ¬F ∧Br Br

mΩ2(Gr) = 0.075 K = F ∧Gr ¬F ∧Gr Gr

mΩ2(Bl) = 0.3 ∅ ¬F ∧Bl Bl

mΩ2(Ω2) = 0.4 F ¬F Ω

We can notice that we have an empty intersection which represents contradiction
(since there is no black falcon specie that lives in the studied region). Hence,
mΩ(∅) = mΩ1(F ) ×mΩ2(Bl) = 0.3 × 0.3 = 0.09.

Let us calculate the belief that the birds observed are not falcons and that
they have a brown color (the focal ¬F ∧ Br in grey in the table 1.1). If we do
not ignore the effect of the conflict on the value of the obtained belief, we obtain:
mΩ(¬F ∧ Br) = mΩ1(¬F ) × mΩ2(P ) = 0.15 × 0.225 = 0.03375. As seen, this
combination requires normalization dividing by 1 − mΩ(∅) to eliminate conflict.
Hence, mΩ(¬F ∧Br) = mΩ(¬F ∧Br)

1−mΩ(∅) ≈ 0.0371. We can notice that this normalization
increases the mass of mΩ(¬F ∧Br).

Examples of other combination rules

There are also several variants of Dempster rule of combination that could be used
in evidence fusion (e.g, Smets rule [Smets 2005] similar to the DS combination
rule but without normalisation, Inagaki’s [Inagaki 1991], Yager’s rule [Yager 1987]
or the weight average rule [Sentz 2002]). However, each method obeys certain
assumptions and describes some kind of situation. This is why it is necessary
to choose the most appropriate combination rule for our situation. Here, pieces
of evidence and rules are supposed to come from independent sources. If this
assumption is not satisfied, idempotent combination rules can be used as discussed
in [Denoeux 2008, Destercke 2011].
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Transformation from belief to probability

As pointed out above, many theories that deal with uncertainty exist. They either
are a particular case of a general one (e.g, probability and DS Theory) or have
common bases (e.g, Fuzzy sets and DST). Figure 1.5 illustrates this intersection. It
is therefore interesting to see how one can switch, if possible, from one uncertainty
measure to another.

In this paragraph we present two common transformation of mass (BBA) to
probability that will be used in the next chapters :

• Shenoy transform [Cobb 2006]: This transformation divides the plausibil-
ity of a singleton Pl(ω) (with ω ∈ Ω), by the sum of plausibility of all elements
Pl(ω′) (with ω′ ∈ Ω). But, it is inconsistent with uncertainty interval, namely
we may have PSh(A) /∈ [Bel(A), P l(A)], where:

PSh(ω) = Pl(ω)∑
ω′∈Ω Pl(ω′) (1.9)

• Pignistic probability transform [Smets 2005]: This transformation
turns a mass m on a set Ω into a probability, changing the focal sets into
uniform distributions. It represents a generalization of Laplace insufficient
reason principle and coincides with Shapley value in game theory.

BetP (ω) =
∑

E:ω∈E

m(E)
|E|

(1.10)

1.4 DST applied to confidence propagation

This paragraph presents and discusses some applications of uncertainty theories,
specially DST, to confidence propagation.

1.4.1 DS theory and logic

Logical reasoning and belief functions are not often put together. An approach
to reasoning with Dempster rule of combination was proposed by [Chatalic 1987a].
In this approach each formula in a knowledge base is viewed as a simple sup-
port function and combined with other formulas in the knowledge base. In
other works, [Banerjee 2014, Cholvy 2015, de Saint-Cyr 1994] explored the seman-
tic/interpretation side of belief function combination and its relation to modal
logic. DST can be also used to combine logic and probability as proposed by
[Cozman 2019].

In relation with our work, Wang [Wang 2016, Wang 2019] uses logic to de-
scribe the support of premises to a conclusion and DST to quantify confidence
in that support. This approach consider two sets (resp.) of n Boolean variables
Xi ∈ {xi,¬xi} and well-formed formulas KB = {ϕ1, . . . ϕn} in propositional logic
(knowledge base), and a formula C representing a conclusion that can be inferred
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from the knowledge base, such that KB ⊢ C. Assume each formula ϕi (a combi-
nation of Xi and {¬, ∧, ∨ } connectors) is a piece of evidence that comes from a
specific source independent of other ones. Uncertainty about the validity of each
formula can be represented by a mass function mi assigning some probabilities
to ϕi,¬ϕi and the tautology ⊤ summing to 1. Take for example the case of a
simple premise P and a rule in the form of an equivalence P ≡ C as in Wang.
One mass function will be assigned to the premise P in the form of three values
m1(P ), m1(¬P ) and m1(⊤) summing to 1, and another will be assigned to the
rule (m2(P ≡ C) +m2(⊤) = 1). Using an appropriate combination formula in the
setting of DST the belief in the conclusion C based on beliefs about premises and
rules ϕi is computed. Extending classical logic inference to this uncertain environ-
ment can be done by means of Dempster rule of combination [Chatalic 1987b], first
computing an overall mass function, m = m1 ⊗ · · · ⊗ mn and then computing the
degree of belief in the conclusion C as Bel(C) =

∑
ϕi⊢C m(ϕi).

1.4.2 Graphical representation of belief propagation

Like Bayesian networks, there are also graphical representations of beliefs. For
instance, valuation networks are graphical representation of valuation-based sys-
tem (VBS) introduced by [Shenoy 1989] used to propagate uncertainty using be-
lief functions. As defined by [Jiroušek 2014], a VBS is a graphical tool that al-
lows, in its static part, to represent knowledge through a finite set Φ of vari-
ables Φ = {D,G,B, . . . }. The knowledge encoded on a subset of variables, mod-
eled by BPA (or masses) when DST belief functions are used, is called valuation
Ψ = {δ, γ, β, . . . }. Any subset of Φ is represented by a lower-case Roman alphabets
(e.g, r, s, t, . . . ). For instance, δ is called a valuation for r, where r ⊆ Φ. It has also
a dynamic part that concerns the reasoning with knowledge which includes three
main operations (i.e, marginalization, combination and removal). These operations
are used to compute uncertainty.

Figure 1.6 represents an example of a valuation network, where circles repre-
sents variables and the diamonds represent the valuations related to each of these
variables. We notice that the semantics of an argument does not exist in this repre-
sentation and that the link between the variables is not explicit which discourages
its use for confidence assessment in an argument structure.

Uncertainty propagation can be addressed by standard existing belief function
software based on results in [Shenoy 1990] (e.g., the belief function machine imple-
mented in MatLab), but the GSNs we study have a particular tree-like structure
that enables an explicit symbolic calculation of the belief function on the conclusion
space. Explicit formulas, that can be obtained from approaches such as the one we
propose, make the calculation more efficient and we can predict the effect of chang-
ing selected inputs, thus better explaining the obtained results, and validating the
approach.
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Figure 1.6: An example of a valuation network

1.5 Quantitative confidence propagation approaches in
argument structure

In this section, we present main research works which focus on expressing confidence
in the safety case, using uncertainty theories.

1.5.1 Uncertainty theories in arguments

Several research works use probability theory to model uncertainty and propagate it
with Bayesian networks [Denney 2011, Hobbs 2012, Guiochet 2014]. For instance,
some authors [Nešić 2021] transform GSN into a Bayesian network (BBN) and
propagate probabilities accordingly. Due to the limited expressiveness of the prob-
abilistic framework, such approaches can properly deal with uncertainties due to
aleatory phenomena, but they poorly represent epistemic uncertainties due to in-
complete information. In addition, these methods are also very greedy in terms of
data, which requires a lot of time in order to collect and process it.

Other less common approaches are used for confidence propagation. For in-
stance, an approach based on Baconian probabilities (a variant of necessity mea-
sure) was proposed to identify and eliminate sources of uncertainty (defeaters) in
argument structures [Weinstock 2013]. Another one used subjective probability to
assess confidence in argument structures [Yuan 2017].

1.5.2 Argument type and logic

Managing uncertainty more effectively, several works used DST to model and prop-
agate confidence in GSN. They usually proposed different propagation formulas
for different identified types of arguments [Ayoub 2013, Cyra 2011, Wang 2019].
However, they poorly describe how premises interact to support the conclusion (ar-
gument types). For instance, Anaheed et al. [Ayoub 2013] explain these interaction
using Venn diagrams (see figure 1.7) which actually mixes the logical (conjunction,
disjunction, etc) and confidence (mass assignment) aspects of these types. This
approach is misleading. They use weighted average to describe complementarity
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Figure 1.7: Argument type proposed by Annaheed et al. [Ayoub 2013]

(disjoint argument, all premises are needed to support the conclusion), while they
use Dempster combination rule to represents redundancy (alternative argument,
each premise can support the conclusion alone). In situations, where there is a
combination between these two (alternative and disjoint) they also use a combina-
tion between Dempster rule and weighted average. For example, the formula below
is used to calculate the confidence in the conclusion (C) supported by two premises
(p1 and p2) for the overlap argument.

Bel(C) = ω1 ×Bel1(p1) + ω2 ×Bel2(p2) + ωOverlap × [Bel1(p1) ⊗Bel2(p2)]
ω1 + ω2 + ωOverlap

Where: ω1, ω2 and ωOverlap quantify respectively the degree of contribution of
premises p1, p2 and their overlap. These values are not confidence degree (ωi ∈ N∗).
This calculation supposes that the argument can be divided into disjoint and al-
ternative sub-arguments. For example, p1 justifies functions from 1 to 4, and p2
functions 2 to 7. Thus, we can assign the following values to ωi: ω1 = 4, ω2 = 6
and ωOverlap = 3. The overlapping parts are considered as an alternative argu-
ment type. After combination (using Dempster combination rule), the argument
is considered then as an disjoint argument with the remaining parts (to combine
using weighted average). We agree that their proposal is an argument type that
expresses a combination between complementarity (conjunction) and redundancy
(disjunction). However, we do not believe that this argument can always be broken
down into a complementary and a redundant part. Let us consider that a system
is acceptably safe (C) because the test results (p1) and formal verification (p2) are
satisfactory. This example represents a typical case of an overlapping argument,
which we cannot divide it into two sub-arguments (alternative and disjoint), and
therefore, the corresponding formula cannot be applied. Moreover, this work does
not propose formulas for the propagation of disbelief in the conclusion (Disb(C))
coming from the premises as defined in the DST setting (Bel,Disb, Uncer). This
information can be useful to differentiate the case where the system is not safe (low
value of Bel(C)) because of lack of information (high value of Uncer(C)) or because
the premises are not trustworthy (high value of Disb(C)).

In Cyra and Gorski’s works [Cyra 2011] the pair (belief,plausibility) is used to
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Table 1.2: Propagation formulas from [Cyra 2011]
Argument type formulas

C-Argument
{
Bel(C) = Bel(W ) × k1×Bel1(p1)+k2×Bel2(p2)

k1+k2

Pl(C) = 1 −Bel(W ) × (1 − k1×P l1(p1)+k2×P l2(p2)
k1+k2

)

NSC-argument
{
Bel(C) = Bel(W ) ×Bel1(p1) ×Bel2(p2)
Pl(C) = 1 −Bel(W ) × [1 − Pl1(p1) × Pl2(p2)]

SC-argument
{
Bel(C) = Bel(W ) ×Bel1(p1) ×Bel2(p2)
Pl(C) = 1

quantify uncertainty in argument structures. They also use natural language to
describe their argument types, which make it difficult to identify (from the for-
mulas) the rationale that leads to them. Thus, we cannot reproduce all of them.
To illustrate this issue, we present some propagation formulas (see table 1.2) to
discuss. These formulas calculate the confidence in a conclusion (C) supported
by two premises (p1 and p2). In this table, C-Argument stands for Complemen-
tary argument, NSC for Necessary and Sufficient Condition list argument and SC
for Sufficient Condition list argument. Bel(W ) quantifies the belief in the strat-
egy, and ki represents the weight of each premise. We cannot determine whether
ki is a coefficient (as in the case of Anaheed et al.) or a degree of confidence
(as in Wang et al.). Note that all argument types defined in Cyra and Gorski’s
work (NSC, SC, C arguments, etc.) will be discussed in detail later in chapter
2. Saying that a conclusion (C) is supported by complementary (C-Argument)
premises means that they are all needed to infer the conclusion. However, Cyra
and Gorski present three different formulas the describe the same notion. C-
Argument uses a weighted average (same as the disjoint argument with Anaheed
et al.) attenuated by the belief on the strategy Bel(W ). While NSC argument
uses the product of premises belief and a sort of probabilistic sum of disbelief
(Disb(C) = 1 − Bel(W ) × [1 − (1 − Disb(p1)) × (1 − Disb(p2)]) both attenuated
by the belief on the strategy. The SC-argument represent a particular case of the
NSC-argument type where Disb(C) = 0 (Pl(C) = 1). Thus, one can question the
interest of defining such an argument.

In Wang et al. works [Wang 2018a, Wang 2018b] partially based on Cyra and
Gorski, which are close to ours, a separation between the logic (argument type
definition) and confidence (mass assignment) was made, which facilitates the repro-
duction of their formulas. They use a mix between conjunction and disjunction to
model their types and logical equivalence to link premises to the conclusion. In this
work, they actually use logical equivalence to express inference (logical inferences
will be defined and named “rules” later in chapter 2) between premises and the con-
clusion. Using equivalence for inference, means that we assume that true premises
lead to a true conclusion. Conversely, if the premises are false, the conclusion is
also false. However, in an argument, false premises does not necessarily means that
the conclusion is false. Moreover, such confidence propagation models usually rely
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Table 1.3: Propagation formulas from [Wang 2019]
Argument formulas

C-Arg


Bel(C) = ω1 ·Bel1(p1) + ω2 ·Bel2(p2)

+(1 − ω1 − ω2) ·Bel1(p1) ·Bel2(p2)
Disb(C) = ω1 ·Disb1(p1) + ω2 ·Disb2(p2)

+[1 − (1 − ω1 − ω2) · (1 −Disb1(p1)) · (1 −Disb2(p2))]

R-Arg


Bel(C) = ω1 ·Bel1(p1) + ω2 ·Bel2(p2)

+[1 − (1 − ω1 − ω2) · (1 −Bel1(p1)) · (1 −Bel2(p2))]
Disb(C) = ω1 ·Disb1(p1) + ω2 ·Disb2(p2)

+(1 − ω1 − ω2) ·Disb1(p1) ·Disb2(p2)

on experts to provide the belief degrees of the premises necessary to run them (this
issue will be detailed in the next subsection). In practice, one may find a situation
where an expert can only judge whether the conclusion is true or not and nothing
else. The models presented in this work do not consider this case where a single
type of information on the conclusion (for or against) is provided.

On the other hand, in Wang et al. they assign all inference expressions (ωi),
defining the argument types, to a single mass function (

∑
ωi = 1). For instance,

m(ωi) in the case of the complementary argument type, we get the following in-
ference expressions (for an argument with two premises): m(p1 ≡ C) + m(p2 ≡
C) + m([p1 ∧ p2] ≡ C) + m(⊤) = 1. The first and second terms respectively
quantify the support coming from the premises p1 and p2, while the third term
(m([p1 ∨ p2] ≡ C) for the redundant argument type) quantifies the support of the
conjunction (resp, disjunction) of the two premises. The last term (mass on the
tautology) quantifies the amount of ignorance. This choice makes the confidence
in one premise dependent on confidence in the others. The more confidence in one
premise is high, the less confidence in the others should be. Having one mass func-
tion for each logical formula allows the assessment of each premise independently
from the others and reveal the presence of conflicts where we have opposite assess-
ment about different premises supporting the same conclusion. Table 1.3 presents
propagation formulas of the complementary (C-Arg) and redundant (R-Arg) argu-
ment types. Where: ωi = m(pi ≡ C) and, 1 −

∑n
i=1 ωi = m([p1 ∧ p2] ≡ C) for

the C-Arg or m([p1 ∨ p2] ≡ C) for the R-Arg (n = 2, the number of premises).
They also define three other argument types which can be considered as particu-
lar case of these two: Full complementary (FC-Arg), full redundant (FR-Arg) and
disparate argument type (D-Arg). Notice that that all formulas take the form of
a sum of products. This is due to the use of a single mass function for all rules.
Furthermore, we notice that the belief formulas of C-Arg and the disbelief one of
R-Arg take the same pattern. The same is true for the two remaining formulas. For
example, when ω1 = ω2 = 0, the belief formula for C-Arg takes a conjunctive form
(Bel(C) = Bel1(p1) · Bel2(p2)) and disbelief take a disjunctive one (probabilistic
sum: Disb(C) = 1 − [1 − Disb1(p1)] · [1 − Disb2(p2)]). Similarly for the R-Arg.
This results is consistent with the definition of the argument types. Thus, unlike
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the formulas proposed in Cyra and Gorski, and Annaheed et al. works (mainly
those that use the weighted average) one can always figure out what they express
by looking at the forms they take (product for conjunction, and the probabilistic
sum for disjunction).

We also notice that none of approaches that we have seen considers the case of
conflict (opposite assessments for the same conclusion). In this case the mass of
the conflict m(∅) takes a positive value. This mass is calculated from the empty
intersection between logical expressions. Yet, in practice, this situation is common.

1.5.3 Expert elicitation

Building such a confidence model relies on input values, usually provided by experts
in qualitative form, and transformed into quantitative values. Hence, there is a need
of developing an “Expert opinion elicitation" approach. This method is more often
used with probabilistic models. For instance, in [De Persis 2019], authors used an
expert elicitation procedure for a risk assessment approach in fault trees. However,
it can also be used in evidence theory. Ben Yaghlane et al. [Yaghlane 2008], generate
belief functions from a preference relation between events provided by experts.
In relation to our framework, few authors augmented their confidence assessment
method by such a data elicitation procedure in order to provide quantitative values
for their models. Only some authors such as [Cyra 2011, Nair 2015, Wang 2018a]
used an elicitation method that transforms expert opinions, about premises, given
in the form of qualitative values, into quantitative ones.

Cyra and Gorski proposed a formulas that turn numerical values associated to
the decision (in qualitative format) about a premise (between “acceptance” and
“rejection”) and confidence degree associated to it (from “lack of confidence” to
“for sure”) into belief, disbelief and uncertainty values, which were reused in Wang
et al. works. See the formulas below:

Conf = Bel +Disb, Conf ∈ [0, 1]

{
Dec = Bel

Bel+Disb , if Conf ̸= 0
Dec = 1 (0 : in Wang et al. approach), if Conf = 0

This elicitation approach uses a linear scale for both decision and confidence with
respectively four and six equidistant items. However, in case of total ignorance
(Conf = 0) [Cyra 2011] adopted an optimistic point of view by accepting the
conclusion (Dec = 1), while [Wang 2018b] choose a more conservative approach by
rejecting the conclusion (Dec = 0). These choices seems arbitrary since based on
no evidence. It would be better to take a neutral position because no evidence is
provided to justify taking a side. Moreover, to switch back from quantitative values
of decision and confidence when Bel = Disb ̸= 0 (conflict situation), the decision
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numerical value takes the midpoint of the interval (Dec = 1/2) which makes the
choice of the appropriate qualitative decision (whether to accept or reject) very
difficult.

Concerning the collect of mass on rules (ωi), Wang et al. choose to use iden-
tification techniques. For that, they ask experts to give their assessments about
the conclusion (outputs) according to predefined assessment of premises (inputs).
Then, using Non linear least square method they identify the values of the rule
weight (ωi). However, we notice that this method could lead to values outside the
interval [0, 1], which makes no sense. Moreover, asking the expert to give his assess-
ment of the conclusion according to predefined inputs (i.e, Supposing that we have
“tolerable, with high confidence” and “opposable, with low confidence” assessment
on premises, what this your assessment on the conclusion ?) can be disturbing and
difficult, specially if you have several premises.

Transforming expert opinions, in the form of decisions and their associated de-
gree of confidence, about the premises into qualitative values of belief and disbelief,
and then qualitative values about the conclusion into decision and confidence can
also be a source of uncertainty. Indeed, these elicitation approaches numerically
encode qualitative values using an arbitrarily chosen equidistant scale.

1.6 Conclusion

In this chapter, we have defined argument structures and pointed out the interest of
using graphical formats such as GSN. We have also highlighted the main issue with
these representations, namely the inability to capture the uncertainty that may ex-
ist in such structures. In order to address this issue, we presented some so-called
quantitative approaches compared to the GSN method which is categorized as a
qualitative confidence assessment method. These quantitative approaches are built
on argument structures to provide models of confidence propagation from premises
to an overall conclusion. DST seems today the best option in order to take into
account aleatory and epistemic uncertainties, but recent works using DST for argu-
ment evaluation have strong limitations regarding their application or justification.
Moreover, we have seen that in order to calculate belief degrees, qualitative data
is required from experts. This approach is known as Expert Opinion Elicitation.
Few works address this issue which is mandatory to have an applicable approach.
Hence, we first present in the next chapter a confidence propagation model that
addresses the issue raised in works mentioned in this chapter. We will then present
in the following chapters :

1. A confidence propagation models that address the issues of argument defini-
tion, mass assignment and combination rules mentioned above.

2. An elicitation model which collects and transforms expert opinions about the
argument structure and used them to feed our propagation models.
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3. A complete confidence assessment procedure that integrates both propagation
and elicitation models.

4. A purely qualitative model of confidence propagation which propagates qual-
itative belief and disbelief values to address the issue of uncertainty caused
by qualitative-quantitative transformation.
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2.1 Introduction

In arguments like safety cases, the main objective is to take a decision regarding
the top goal. For that, we argue that a confidence estimation should be specified.
However, this confidence should be propagated from all branches of the argument
to the top goal.

Confidence propagation models are built upon an argument structure in order to
assess the overall confidence in the top goal. Many works [Ayoub 2013, Cyra 2011,
Wang 2019], presented in chapter 1, define several types of argument structure,
which describe the relation between premises in support of a top-goal, and propose
confidence (belief and disbelief) propagation formulas accordingly. As discussed
before, these types are mostly informally defined, and fail to describe this relation
(which is essential to define uncertainty propagation formulas). Therefore some
authors (e.g, [Graydon 2017]) state that these approaches are not yet sufficiently
developed to be applied to real cases.
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In the previous chapter, we highlighted the importance of formally defining the
argument types, often expressed in natural language, which can be open to various
interpretations, in order to avoid any confusion. We also pointed out the benefits of
using Dempster-Shafer theory to quantify and propagate confidence/uncertainty in
these structures. In the continuity of Wang et al. works [Wang 2018a], we improve
this framework by defining more accurate argument types and confidence propa-
gation formulas using resp. logic and DST (since we mostly deal with epistemic
uncertainty due to the lack of information). Most of the work has been published
in [Idmessaoud 2020, Idmessaoud 2021a].

This chapter is structured as follows. First of all we define the argument types
and present the confidence propagation formulas for each one. Then, we com-
pare our argument types with those already proposed in the literature. Finally,
we conduct a sensitivity analysis of these types to identify the characteristics and
behaviours of each one.

In all that follows, we refer to the top-goal in a GSN as conclusion (C) and the
goal(s) supporting it as premise(s) (pi). The propagation formulas shall be designed
on the basis of reduced examples, one (p) or two premises (p1, p2) supporting the
same conclusion (C) and then generalized for multiple ones (n). These examples
will also represent safety cases where the property to verify is safety. However, this
approach can be extended to all dependability properties (i.e., security, reliability,
etc.) or others.

2.2 Confidence measure in an argument structure

Confidence is opposite to the degree of uncertainty. The higher the measure of
confidence in a statement, the lower the value of the uncertainty and vice versa. To
properly deal with uncertainty, one should first locate its sources in an argument. As
presented in figure 2.1, [Wang 2019] focuses on two sources of uncertainty in GSN
based argument structure. The first, related to goals, quantifies the uncertainty
in premise(s) “p” and the conclusion “C”, commonly known as trustworthiness.
While the second quantifies the uncertainty in the support between premise(s) and
the conclusion, commonly known as appropriateness. The later can be related to
the Strategy component of GSN (see chapter 1), which gives justification of goal
decomposition is sub-goals.

The other GSN components can also be a source of uncertainty, like Assumption
or Context components. These components can also be viewed as sources of infor-
mation that condition the confidence in goals (premises or conclusion). Hence, we
can mitigate the confidence related to them with a DST discounting factor (equation
1.5). On the other hand, we can assume that the evaluation given to the premises
takes into account all assumptions, justifications and contexts.

In Wang et al. [Wang 2018a] they apply a discounting operation to the conclu-
sion. In DST, this operation is often used when the testimony of an expert is not so
reliable. However, since all DST based propagation formulas we previously reviewed
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The system X is 
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premise (p)

Uncertainty in (p) 

supporting (C)

Figure 2.1: Sources of uncertainty in GSN - A simple argument type (S-Arg) exam-
ple (Note that the arrow direction is not intuitive regarding the implication p ⇒ C)

in this manuscript rely on the testimonies of experts ([Cyra 2011, Wang 2019]), we
can assume that the information comes from highly reliable sources

In follows, we focus only on uncertainties related to premises and conclusions,
displayed in figure 2.1.

2.2.1 Formal definition of uncertainty in premises

This parameter is designed to quantify confidence in premises. For instance, in the
example of figure 2.1, it answers the question: “How much these test results are
reliable ?”

It is modeled as a mass function on each premise of the argument, i.e.:
m1

p, ...,m
n
p . mi

p, the ith mass function on the premises, assigns a mass to the premise
pi, one on its negation (¬pi) and one on the tautology1 (⊤, representing ignorance)
summing to 1, i.e.: mi

p(pi) +mi
p(¬pi) +mi

p(⊤) = 1.

2.2.2 Formal definition of uncertainty in the support relation

The support relation between premise(s) and conclusion is translated into a logical
expression, that we name a “rule”. It designates any statement that can be expressed
by a proposition: If “p”, then “c” or formally by a material implication: (p ⇒
c) ≡ (¬p ∨ c). This rule is designed to quantify the confidence in the claim that
the evidence supports the conclusion by evaluating the impact of premises on a
conclusion. In the example of figure 2.1, it answer the question: “Are test results
sufficient to guarantee the safety of the system X ? ”

To model it, we associate a simple support function [Shafer 1976] to each rule
r∗ (defined in the following) of the argument type. Each simple support function
consists in assigning a mass mr(r∗) = s to the rule and another one mr(⊤) = 1 − s

to the tautology, these weights summing to 1, i.e.: mr(r∗) +mr(⊤) = 1.
We do not consider herem(¬r∗), because it supposes that we consider exceptions

to the rules where a conclusion is false even if the premises leading to it are true
1Also noted m(Ω) commonly used by safety community. According to the set theory syntax,

[⊤] = Ω.
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or vise-versa. A more detailed explanation will be presented in the next section
(“Remarks” paragraph).

2.3 Confidence propagation models

In order to propagate confidence in a GSN pattern, the relation between the
premises and the conclusion (which is not formally specified in GSN representa-
tions) needs to be modeled first. Logical expressions (i,e. implication, conjunction,
disjunction) are chosen for this. We call these logical expression “rules”. Each one
of these rules will be assigned a mass function. These mass functions along with
others on premises, will be used to calculate a confidence propagation model using
combination tools proposed in DST. Looking through the literature, four common
argument types were identified. In the following, we present and explain how con-
fidence is propagated in each case.

2.3.1 Simple argument type (S-Arg)

As indicated in its name, this argument describes the simplest pattern that one can
encounter, a conclusion (C) supported by a single premise (p). If the premise is
true, then so is the conclusion. Material implication is used to express this rule,
called direct rule : p ⇒ C (which can be also represented with a negation and
logical disjunction: [p ⇒ C] ≡ [¬p ∨ C]). However, implication can only infer
the acceptance of the conclusion (when p holds, Modus ponens pattern: {p, p ⇒
C} ⊢ C). If p is false, ¬C cannot be concluded. And since we work in a three-state
paradigm : belief, disbelief and uncertainty, an additional rule, called reverse rule in
opposition to the first one, is used to infer the rejection of the conclusion: ¬p ⇒ ¬C.
Direct and reverse rules are designed (resp.) to propagate belief and disbelief of the
premises to the conclusion. This proposal is a first major difference with previous
works which only consider p ⇒ C or p ≡ C. Figure 2.1 presents an example of
a simple argument. In this case, the conclusion “The system is acceptably safe”
is achieved, only if the premise “The test results are conclusive” is true (direct
rule). Otherwise, the conclusion is false (reverse rule). For each rule (direct and
reverse), we assign resp. a simple support mass function (m⇒ and m⇐) which puts
on each a mass on the rule and another on the tautology (⊤) summing to 1, i.e.:
m⇒(p ⇒ C) + m⇒(⊤) = 1 and m⇐(¬p ⇒ ¬C) + m⇐(⊤) = 1. We also assign
an other function to the premise (mp), which puts a mass on the premise (p), its
negation (¬p) and the tautology (⊤) summing to 1, i.e.: mp(p)+mp(¬p)+mp(⊤) =
1. Using the conjunctive rule of combination (equation 1.8) to merge the mass on
rules (in table 2.1), then its result (mr = m⇒ ⊗m⇐) with the mass on the premise
(mp) in table 2.2, we obtain the propagation formulas for an S-Arg, in equation
2.1 (mC = mr ⊗ mp). Some calculation explanations are given after here in the
“Remarks” paragraph.



2.3. Confidence propagation models 31

Table 2.1: Combination of direct (m⇒) and reverse (m⇐) rules for S-Arg
mr = m⇒ ⊗ m⇐ m⇒(p ⇒ C) m⇒(⊤)
m⇐(¬p ⇒ ¬C) p ≡ C ¬p ⇒ ¬C

m⇐(⊤) p ⇒ C ⊤

Table 2.2: Combination of the mass on premise (mp) with its rules (mr) for S-Arg
m = mp ⊗ mr mr(p ≡ C) mr(p ⇒ C) mr(¬p ⇒ ¬C) mr(⊤)

mp(p) p ∧ C p ∧ C p p

mp(¬p) ¬p ∧ ¬C ¬p ¬p ∧ ¬C ¬p

mp(⊤) p ≡ C p ⇒ C ¬p ⇒ ¬C ⊤

To calculate the belief degree of the conclusion, we sum the masses of all elements
that trigger the conclusion (C) noted in green from table 2.2.

BelC(C) =
∑

ϕ:ϕ⊢C, ϕ̸=∅
m(ϕ) = m(p ∧ C)

= mp(p) ×mr(p ≡ C) +mp(p) ×mr(p ⇒ C)
= mp(p) · [mr(p ≡ C) +mr(p ⇒ C)]
= mp(p) · [m⇒(p ⇒ C) ×m⇐(¬p ⇒ ¬C) +m⇒(p ⇒ C) × (1 −m⇐(¬p ⇒ ¬C))]
= mp(p) ·m⇒(p ⇒ C) = Belp(p) ·Bel⇒(p ⇒ C)

To calculate the disbelief degree of the conclusion, we sum the masses of all
elements that trigger its negation (¬C) noted in red from table 2.2.

DisbC(C) =
∑

ϕ:ϕ⊢¬C, ϕ̸=∅
m(ϕ) = m(¬p ∧ ¬C)

= mp(¬p) ×mr(p ≡ C) +mp(¬p) ×mr(¬p ⇒ ¬C)
= mp(¬p) · [mr(p ≡ C) +mr(¬p ⇒ ¬C)]
= mp(¬p) · [m⇒(p ⇒ C) ×m⇐(¬p ⇒ ¬C) +m⇐(¬p ⇒ ¬C) × (1 −m⇒(p ⇒ C))]
= mp(¬p) ·m⇐(¬p ⇒ ¬C) = Disbp(p) ·Bel⇐(¬p ⇒ ¬C)

So, we conclude for the uncertainty propagation in simple argument:

S-Arg :
{
BelC(C) = Belp(p) ·Bel⇒(p ⇒ C)
DisbC(C) = Disbp(p) ·Bel⇐(¬p ⇒ ¬C) (2.1)

Remarks :

• Since, we work on a two states frame of discernment for premises Ωp =
{pi,¬pi}, the conclusion ΩC = {C,¬C} and rules, masses and (dis-)belief
degrees in this case are equal. For instance, mC(C) = BelC(C) and
mC(¬C) = BelC(¬C) = DisbC(C).
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• In table 2.2, only the belief in the rules (direct and reverse) was taken into
account. Indeed, we decide to not assign a mass on p ∧ ¬C (equivalent to
¬(p ⇒ C)) and ¬p ∧ C because they are not rules (cannot be expressed with
an If-then proposition). Unlike other types of representation (e.g., defeaters in
RESSAC graphical notation [Damour 2021]), GSN does not offer the possibil-
ity to represent exceptions where one may have a true (resp. false) conclusion
despite having a false (resp. true) premise. However, it is allowed to chal-
lenge the truth of the premise for valid reasons (e.g, expert cannot trust the
experiment because test conditions are not reliable), which is more likely to
occur. Therefore, we restrict ourselves only to those rules that can propagate
belief and disbelief in the premises.

Notice that in order to calculate the propagation formulas, all masses (on rules
and premises) were combined. However, the belief in the conclusion depends only
on the direct rule and the belief on the premise (the same remarks are valid on the
disbelief in the conclusion). Indeed, reverse rules and the masses on (¬pi) cannot
infer the acceptance of the conclusion (C) and vise-versa.

Moreover, with complex systems, it is more likely to find goals supported by
more than one piece of evidence. In these cases, it is necessary to consider the
relationship between the premises that support the same conclusion. The argument
types below describe these situations. All the general formulas will be deduced from
the calculation based on a case of a conclusion (C) supported by two premises (p1)
and (p2).

2.3.2 Conjunctive argument type (C-Arg)

This argument type describes the case when all premises are needed to support
the conclusion. The direct rule is obtained by translating this definition into a
logical expression: (∧n

i pi) ⇒ C. On the other hand, the reverse one is obtained by
reversing the direct one: ¬(∧n

i pi) ⇒ ¬C, which is equivalent to ∧n
i (¬pi ⇒ ¬C), a

conjunction of simple rules.
For instance, in the example of figure 2.2 both risks (listed in the Context box,

Ctx) should be treated to guarantee the safety of the battery (m⇒([p1 ∧ p2] ⇒
C),m⇒(⊤)). However, if at least one premise (i = 1, 2) is not treated, the system is
no longer safe (mi

⇐(¬pi ⇒ ¬C),mi
⇐(⊤)). To get propagation formulas, the mass on

rules with those on premises are combined using the conjunctive rule of combination
(equation 1.8): mC = mp ⊗ mr (tables 2.6 and 2.7) where: mp = m1

p ⊗ m2
p (table

2.3) and mr = m⇒ ⊗m1
⇐ ⊗m2

⇐ (tables 2.4 and 2.5).

Table 2.3: Combination of the masses on premises
mp = m1

p ⊗ m2
p m2

p(p2) m2
p(¬p2) m2

p(⊤)
m1

p(p1) p1 ∧ p2 p1 ∧ ¬p2 p1

m1
p(¬p1) ¬p1 ∧ p2 ¬p1 ∧ ¬p2 ¬p1

m1
p(⊤) p2 ¬p2 ⊤
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Figure 2.2: A conjunctive argument type (C-Arg) example

Table 2.4: Combination of elementary reverse rules for the C-Arg
m12

⇐ = m1
⇐ ⊗ m2

⇐ m2
⇐(¬p2 ⇒ ¬C) m2

⇐(⊤)
m1

⇐(¬p1 ⇒ ¬C) [¬p1 ∨ ¬p2] ⇒ ¬C ¬p1 ⇒ ¬C

m1
⇐(⊤) ¬p2 ⇒ ¬C ⊤

Notice that: [(¬p1 ∨ ¬p2) ⇒ ¬C] ≡ [¬(p1 ∧ p2) ⇒ ¬C] (De Morgan’s laws)

Table 2.5: Combination of direct and reverse rules for the C-Arg
mr = m⇒ ⊗ m12

⇐ m12
⇐(¬[p1 ∧ p2] ⇒ ¬C) m12

⇐(¬p1 ⇒ ¬C) m12
⇐(¬p2 ⇒ ¬C) m12

⇐(⊤)
m⇒([p1 ∧ p2] ⇒ C) [p1 ∧ p2] ≡ C F1 F2 [p1 ∧ p2] ⇒ C

m⇒(⊤) ¬[p1 ∧ p2] ⇒ ¬C ¬p1 ⇒ ¬C ¬p2 ⇒ ¬C ⊤

Where:

• F1 = [(p1 ∧ p2) ⇒ C] ∧ [¬p1 ⇒ ¬C].

• F2 = [(p1 ∧ p2) ⇒ C] ∧ [¬p2 ⇒ ¬C].

Table 2.6: Combination of masses of rules and premises for the C-Arg (part 1)
mC = mp ⊗ mr mr([p1 ∧ p2] ≡ C) mr([p1 ∧ p2] ⇒ C) mr(¬[p1 ∧ p2] ⇒ ¬C) mr(¬p1 ⇒ ¬C)

mp(p1 ∧ p2) p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C - -
mp(¬p1 ∧ p2) ¬p1 ∧ p2 ∧ ¬C - ¬p1 ∧ p2 ∧ ¬C ¬p1 ∧ p2 ∧ ¬C

mp(p1 ∧ ¬p2) p1 ∧ ¬p2 ∧ ¬C - p1 ∧ ¬p2 ∧ ¬C -
mp(¬p1 ∧ ¬p2) ¬p1 ∧ ¬p2 ∧ ¬C - ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C

mp(p1) - - - -
mp(¬p1) ¬p1 ∧ ¬C - ¬p1 ∧ ¬C ¬p1 ∧ ¬C

mp(p2) - - - -
mp(¬p2) ¬p2 ∧ ¬C - ¬p2 ∧ ¬C -
mp(⊤) - - - -

For a better visualization, we have chosen to replace by (-) the focal elements
that do not trigger the conclusion (C) or its negation (¬C) in the tables 2.6 and
2.7.
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Table 2.7: Combination of masses of rules and premises for the C-Arg (part 2)
mC = mp ⊗ mr mr(¬p2 ⇒ ¬C) mr(F1) mr(F2) mr(⊤)

mp(p1 ∧ p2) - p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C -
mp(¬p1 ∧ p2) - ¬p1 ∧ p2 ∧ ¬C - -
mp(p1 ∧ ¬p2) p1 ∧ ¬p2 ∧ ¬C - p1 ∧ ¬p2 ∧ ¬C -

mp(¬p1 ∧ ¬p2) ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C -
mp(p1) - - - -

mp(¬p1) ¬p1 ∧ ¬C ¬p1 ∧ ¬C - -
mp(p2) - - - -

mp(¬p2) ¬p2 ∧ ¬C - ¬p2 ∧ ¬C -
mp(⊤) - - - ⊤

To calculate the belief degree of the conclusion, we sum the masses of all elements
that trigger the conclusion (C) noted in green from tables 2.6 and 2.7.

BelC(C) =
∑

ϕ:ϕ⊢C, ϕ̸=∅
m(ϕ)

= mC(p1 ∧ p2 ∧ C)
= m1

p(p1) ·m2
p(p2) ·m⇒([p1 ∧ p2] ⇒ C)

= Bel1p(p1) ·Bel2p(p2) ·Bel⇒([p1 ∧ p2] ⇒ C)

To calculate the disbelief degree of the conclusion, we sum the masses of all
elements that trigger its negation (¬C) noted in red from tables 2.6 and 2.7.

DisbC(C) =
∑

ϕ:ϕ⊢¬C, ϕ̸=∅
m(ϕ)

= mC(¬p1 ∧ p2 ∧ ¬C) +mC(p1 ∧ ¬p2 ∧ ¬C) +mC(¬p1 ∧ ¬p2 ∧ ¬C)
+mC(¬p1 ∧ ¬C) +mC(¬p2 ∧ ¬C)

= m1
p(¬p1) ·m1

⇐(¬p1 ⇒ ¬C) +m2
p(¬p2) ·m2

⇐(¬p2 ⇒ ¬C)
− [m1

p(¬p1) ·m1
⇐(¬p1 ⇒ ¬C)] · [m2

p(¬p2) ·m2
⇐(¬p2 ⇒ ¬C)]

= 1 − [1 −m1
p(¬p1) ·m1

⇐(¬p1 ⇒ ¬C)] · [1 −m2
p(¬p2) ·m2

⇐(¬p2 ⇒ ¬C)]
= 1 − [1 −Disb1

p(p1) ·Bel1⇐(¬p1 ⇒ ¬C)] · [1 −Disb2
p(p2) ·Bel2⇐(¬p2 ⇒ ¬C)]

To compute belief and disbelief degrees of a C-Arg for n premises, we deduce
the following formulas (2.2):

C-Arg :
{
BelC(C) = Bel⇒([∧n

i=1pi] ⇒ C) ·
∏n

i=1Belp(pi)
DisbC(C) = 1 −

∏n
i=1[1 −Disbi

p(pi) ·Beli⇐(¬pi ⇒ ¬C)] (2.2)

We can notice from the equations in (2.2), that the belief formula takes the
form of a general conjunction (the product of belief degrees in premises weighted
by the mass on the conjunctive rule). On the other hand, the disbelief formula takes
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Figure 2.3: A disjunctive argument type (D-Arg) example

the form of a general disjunction. For example, when n = 2 premises, we get the
probabilistic sum of: 1−(1−Disb1

C(C)) ·(1−Disb2
C(C)) = Disb1

C(C)+Disb2
C(C)−

Disb1
C(C)·Disb2

C(C), where: Disbi
C(C) = Disbi

p(pi)·Beli⇐(¬pi ⇒ ¬C) the disbelief
degree in the conclusion induced by the failure of one premise pi. This argument
type favors the propagation of the premise with the least strength (minimal belief
due to the product of values between 0 and 1, and maximal disbelief due to the
probabilistic sum).

2.3.3 Disjunctive argument type (D-Arg)

This argument type describes the case when the truth of one premise is enough to
support the whole conclusion. The corresponding rules are: ∧n

i (pi ⇒ C) (direct),
and (∧n

i ¬pi) ⇒ ¬C (reverse).
In the example of figure 2.3, each premise (digit code or fingerprint recognition

systems) can guarantee the security of the safe-deposit box (direct rules: mi
⇒(pi ⇒

C),mi
⇒(⊤)). Their conjunction does not, in any case, improve the degree of support

in the conclusion (C). When both premises p1 and p2 are false, then the conclusion
is also false, hence the reverse rules: m⇒([¬p1 ∧ ¬p2] ⇐ ¬C),m⇐(⊤). To get
propagation formulas, the mass on rules with those on premises are combined using
the conjunctive rule of combination (equation 1.8): mC = mp ⊗mr (tables 2.10 and
2.11) where: mp = m1

p ⊗m2
p (table 2.3) and mr = m1

⇒ ⊗m2
⇒ ⊗m⇐ (tables 2.8 and

2.9).

Table 2.8: Combination of elementary direct rules for the D-Arg
m12

⇒ = m1
⇒ ⊗ m2

⇒ m2
⇒(p2 ⇒ C) m2

⇒(⊤)
m1

⇒(p1 ⇒ C) [p1 ∨ p2] ⇒ C p1 ⇒ C

m1
⇒(⊤) p2 ⇒ C ⊤

Notice that: [(¬p1 ∧ ¬p2) ⇒ ¬C] ≡ [¬(p1 ∨ p2) ⇒ ¬C] (De Morgan’s laws)
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Table 2.9: Combination of direct and reverse rules for the D-Arg
mr = m⇒ ⊗ m12

⇒ m12
⇒([p1 ∨ p2] ⇒ C) m12

⇒(p1 ⇒ C) m12
⇒(p2 ⇒ C) m12

⇒(⊤)
m⇐(¬[p1 ∨ p2] ⇒ ¬C) [p1 ∨ p2] ≡ C F ′

1 F ′
2 ¬[p1 ∨ p2] ⇒ ¬C

m⇒(⊤) [p1 ∨ p2] ⇒ C p1 ⇒ C p2 ⇒ C ⊤

Where:

• F ′
1 = [¬(p1 ∧ p2) ⇒ ¬C] ∧ [p1 ⇒ C].

• F ′
2 = [¬(p1 ∧ p2) ⇒ ¬C] ∧ [p2 ⇒ C].

Table 2.10: Combination of masses of rules and premises for the D-Arg (part 1)
mC = mp ⊗ mr mr([p1 ∨ p2] ≡ C) mr([p1 ∨ p2] ⇒ C) mr(¬[p1 ∨ p2] ⇒ ¬C) mr(p1 ⇒ C)

mp(p1 ∧ p2) p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C - p1 ∧ p2 ∧ C

mp(¬p1 ∧ p2) ¬p1 ∧ p2 ∧ C ¬p1 ∧ p2 ∧ C - -
mp(p1 ∧ ¬p2) p1 ∧ ¬p2 ∧ C p1 ∧ ¬p2 ∧ C - p1 ∧ ¬p2 ∧ C

mp(¬p1 ∧ ¬p2) ¬p1 ∧ ¬p2 ∧ ¬C - ¬p1 ∧ ¬p2 ∧ ¬C -
mp(p1) p1 ∧ C p1 ∧ C - p1 ∧ C

mp(¬p1) - - - -
mp(p2) p2 ∧ C p2 ∧ C -

mp(¬p2) - - - -
mp(⊤) - - - -

Table 2.11: Combination of masses of rules and premises for the D-Arg (part 2)
mC = mp ⊗ mr mr(p2 ⇒ C) mr(F ′

1) mr(F ′
2) mr(⊤)

mp(p1 ∧ p2) p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C -
mp(¬p1 ∧ p2) ¬p1 ∧ p2 ∧ C - ¬p1 ∧ p2 ∧ C -
mp(p1 ∧ ¬p2) - p1 ∧ ¬p2 ∧ C - -

mp(¬p1 ∧ ¬p2) - ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C -
mp(p1) - p1 ∧ C - -

mp(¬p1) - - - -
mp(p2) p2 ∧ C - p2 ∧ C -

mp(¬p2) - - - -
mp(⊤) - - - ⊤

To calculate the belief degree of the conclusion, we sum the masses of all elements
that trigger the conclusion (C) noted in green from tables 2.10 and 2.11.

BelC(C) =
∑

ϕ:ϕ⊢C, ϕ̸=∅
m(ϕ)

= mC(p1 ∧ p2 ∧ C) +mC(¬p1 ∧ p2 ∧ C) +mC(p1 ∧ ¬p2 ∧ C) +mC(p1 ∧ C) +mC(p2 ∧ C)
= m1

p(p1) ·m1
⇒(p1 ⇒ C) +m2

p(p2) ·m2
⇒(p2 ⇒ C)

− [m1
p(p1) ·m1

⇒(p1 ⇒ C)] · [m2
p(p2) ·m2

⇒(p2 ⇒ C)]
= 1 − [1 −m1

p(p1) ·m1
⇒(p1 ⇒ C)] · [1 −m2

p(p2) ·m2
⇒(p2 ⇒ C)]

= 1 − [1 −Bel1p(p1) ·Bel1⇒(p1 ⇒ C)] · [1 −Bel2p(p2) ·Bel2⇒(p2 ⇒ C)]
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Figure 2.4: A hybrid argument type (H-Arg) example

To calculate the disbelief degree of the conclusion, we sum the masses of all
elements that trigger its negation (¬C) noted in red from tables 2.10 and 2.11.

DisbC(C) =
∑

ϕ:ϕ⊢¬C, ϕ̸=∅
m(ϕ)

= mC(¬p1 ∧ ¬p2 ∧ ¬C)
= m1

p(¬p1) ·m2
p(¬p2) ·m⇒(¬[p1 ∨ p2] ⇒ ¬C)

= m1
p(¬p1) ·m2

p(¬p2) ·m⇒([¬p1 ∧ ¬p2] ⇒ ¬C)
= Disb1

p(p1) ·Disb2
p(p2) ·Bel⇐([¬p1 ∧ ¬p2] ⇒ ¬C)

To compute belief and disbelief degrees of a D-Arg for n premises, we get the
following formulas (2.3):

D-Arg :
{
BelC(C) = 1 −

∏n
i=1[1 −Belip(pi) ·Beli⇒(pi ⇒ C)]

DisbC(C) = Bel⇐([∧n
i=1¬pi] ⇒ ¬C) ·

∏n
i=1Disb

i
p(pi)

(2.3)

In opposition to the C-Arg, the belief (resp. disbelief) formula in (2.3) expresses
a general disjunction (resp. conjunction). This argument (D-Arg) favors the prop-
agation of the premise with the greatest strength (maximal belief and minimal
disbelief).

2.3.4 Hybrid argument type (H-Arg)

This argument type describes the case where each premise supports the conclusion
to some extent ∧n

i (pi ⇒ C), but their conjunction does it to a larger extent (∧n
i pi) ⇒

C (direct rules). This rule type could be considered as a general type which includes
the two previous ones. In fact, conjunctive and disjunctive types correspond to
limit cases of the hybrid one. In the example of figure 2.4, the premise “Test results
were conclusive” supports the conclusion to some point. Since, evidence on formal
verification was also provided, which allows to identify some unsafe states that the
system will never reach, experts usually conduct limited tests (which are limited by
issues such as cost, feasibility, etc). On the other hand, tests can cover issues that
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formal verification might not capture. Unlike the D-Arg, the conjunction of these
two premises improves the support degree in the conclusion. To get propagation
formulas in 2.4, we combine the mass on rules (elementary and conjunctive, direct
and reverse) with those on premises using the conjunctive rule of combination, i.e:
mC = mp ⊗mr (tables 2.16, 2.16 and 2.17) where: mp = m1

p ⊗m2
p (table 2.3) and

mr = m⇐ ⊗m1
⇐ ⊗m2

⇐ ⊗m⇒ ⊗m1
⇒ ⊗m2

⇒ (tables 2.12, 2.13, 2.14).

Table 2.12: Combination of direct and reverse conjunctive rules for H-Arg
m′

r = m⇒ ⊗ m⇐ m⇒([¬p1 ∧ ¬p2] ⇒ ¬C) m⇒(⊤)
m⇒([p1 ∧ p2] ⇒ C) Fc = ([p1 ∧ p2] ⇒ C) ∧ ([¬p1 ∧ ¬p2] ⇒ ¬C) [p1 ∧ p2] ⇒ C

m⇒(⊤) [¬p1 ∧ ¬p2] ⇒ ¬C ⊤

Table 2.13: Combination of direct and reverse elementary rules for the H-Arg
mi

r = mi
⇒ ⊗ mi

⇐ mi
⇒(pi ⇒ C) mi

⇒(⊤)
mi

⇐(¬pi ⇒ ¬C) pi ≡ C ¬pi ⇒ ¬C

mi
⇐(⊤) pi ⇒ C ⊤

Table 2.14: Combination of premise (pi) with its elementary rules for H-Arg
mi = mi

p ⊗ mi
r mi

r(pi ≡ C) mi
r(pi ⇒ C) mi

r(¬pi ⇒ ¬C) mi
r(⊤)

mi
p(pi) pi ∧ C pi ∧ C pi pi

mi
p(¬pi) ¬pi ∧ ¬C ¬pi ¬pi ∧ ¬C ¬pi

mi
p(⊤) pi ≡ C pi ⇒ C ¬pi ⇒ ¬C ⊤

Table 2.15: Combination of premise (pi) with its elementary rules of two premises
(1 and 2) for H-Arg (part 1)

m12 = m1 ⊗ m2 m2(p2 ∧ C) m2(¬p2 ∧ ¬C) m2(p2) m2(¬p2)
m1(p1 ∧ C) p1 ∧ p2 ∧ C ∅ p1 ∧ p2 ∧ C p1 ∧ ¬p2 ∧ C

m1(¬p1 ∧ ¬C) ∅ ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C

m1(p1) p1 ∧ p2 ∧ C p1 ∧ ¬p2 ∧ ¬C p1 ∧ p2 p1 ∧ ¬p2

m1(¬p1) ¬p1 ∧ p2 ∧ C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ p2 ¬p1 ∧ ¬p2

m1(p1 ⇒ C) p2 ∧ C ¬p1 ∧ ¬p2 ∧ ¬C p2(p1 ⇒ C) ¬p2(p1 ⇒ C)
m1(¬p1 ⇒ ¬C) p1 ∧ p2 ∧ C ¬p2 ∧ ¬C p2(¬p1 ⇒ ¬C) ¬p2(¬p1 ⇒ ¬C)

m1(p1 ≡ C) p1 ∧ p2 ∧ C ¬p1 ∧ ¬p2 ∧ ¬C p2(p1 ≡ C) ¬p2(p1 ≡ C)
m1(⊤) p1 ∧ C ¬p2 ∧ ¬C p2 ¬p2
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Table 2.16: Combination of premise (pi) with its elementary rules of two premises
(1 and 2) for H-Arg (part 2)

m12 = m1 ⊗ m2 m2(p2 ⇒ C) m2(¬p2 ⇒ ¬C) m2(p2 ≡ C) m2(⊤)
m1(p1 ∧ C) p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C p1 ∧ C p1 ∧ C

m1(¬p1 ∧ ¬C) ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬C

m1(p1) p1(p2 ⇒ C) p1(¬p2 ⇒ ¬C) p1(p2 ≡ C) p1

m1(¬p1) ¬p1(p2 ⇒ C) ¬p1(¬p2 ⇒ ¬C) ¬p1(p2 ≡ C) ¬p1

m1(p1 ⇒ C) (p1 ⇒ C)(p2 ⇒ C) (p1 ⇒ C)(¬p2 ⇒ ¬C) (p1 ⇒ C)(p2 ≡ C) (p1 ⇒ C)
m1(¬p1 ⇒ ¬C) (p2 ⇒ C)(¬p1 ⇒ ¬C) (¬p2 ⇒ ¬C)(¬p1 ⇒ ¬C) (p2 ≡ C)(¬p1 ⇒ ¬C) ¬p1 ⇒ ¬C

m1(p1 ≡ C) (p1 ≡ C)(p2 ⇒ C) (p1 ≡ C)(¬p2 ⇒ ¬C) (p1 ≡ C)(p2 ≡ C) (p1 ≡ C)
m1(⊤) p2 ⇒ C ¬p2 ⇒ ¬C p2 ≡ C ⊤
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Table 2.17: Combination of premise (pi) with its rules for H-Arg
mC = m12 ⊗ m′

r mr(Fc) mr([p1 ∧ p2] ⇒ C) mr([¬p1 ∧ ¬p2] ⇒ ¬C) mr(⊤)
m12(p1 ∧ p2 ∧ C) p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C

m12(¬p1 ∧ p2 ∧ C) ¬p1 ∧ p2 ∧ C ¬p1 ∧ p2 ∧ C ¬p1 ∧ p2 ∧ C ¬p1 ∧ p2 ∧ C

m12(p1 ∧ ¬p2 ∧ C) p1 ∧ ¬p2 ∧ C p1 ∧ ¬p2 ∧ C p1 ∧ ¬p2 ∧ C p1 ∧ ¬p2 ∧ C

m12(p1 ∧ C) p1 ∧ C p1 ∧ C p1 ∧ C p1 ∧ C

m12(p2 ∧ C) p2 ∧ C p2 ∧ C p2 ∧ C p2 ∧ C

m12(¬p1 ∧ ¬p2 ∧ ¬C) ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C

m12(¬p1 ∧ p2 ∧ ¬C) ¬p1 ∧ p2 ∧ ¬C ¬p1 ∧ p2 ∧ ¬C ¬p1 ∧ p2 ∧ ¬C ¬p1 ∧ p2 ∧ ¬C

m12(p1 ∧ ¬p2 ∧ ¬C) p1 ∧ ¬p2 ∧ ¬C p1 ∧ ¬p2 ∧ ¬C p1 ∧ ¬p2 ∧ ¬C p1 ∧ ¬p2 ∧ ¬C

m12(¬p1 ∧ ¬C) ¬p1 ∧ ¬C ¬p1 ∧ ¬C ¬p1 ∧ ¬C ¬p1 ∧ ¬C

m12(¬p2 ∧ ¬C) ¬p2 ∧ ¬C ¬p2 ∧ ¬C ¬p2 ∧ ¬C ¬p2 ∧ ¬C

m12(p1 ∧ p2) p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C - -
m12(¬p1 ∧ ¬p2) ¬p1 ∧ ¬p2 ∧ ¬C - ¬p1 ∧ ¬p2 ∧ ¬C -

. . . . . . . . . . . . . . .

m12(∅) ∅ ∅ ∅ ∅
m12(⊤) Fc [p1 ∧ p2] ⇒ C [¬p1 ∧ ¬p2] ⇒ ¬C ⊤

In table 2.17, we have chosen not to represent all the focal elements resulting from the tables 2.15 and 2.16 which does not
trigger the conclusion or its negation to reduce the size of the table.
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To calculate the belief degree of the conclusion, we sum the masses of all elements that trigger the conclusion (C) noted in green
from table 2.17:

BelC(C) = mC(p1 ∧ p2 ∧ C) +mC(¬p1 ∧ p2 ∧ C) +mC(p1 ∧ ¬p2 ∧ C) +mC(p1 ∧ C) +mC(p2 ∧ C) −mC(∅)
= {m1

p(p1) ·m1
⇒(p1 ⇒ C) +m2

p(p2) ·m2
⇒(p2 ⇒ C) − [m1

p(p1) ·m1
⇒(p1 ⇒ C)] · [m2

p(p2) ·m2
⇒(p2 ⇒ C)]}

+ {m1
p(p1) ·m2

p(p2) ·m⇒([p1 ∧ p2] ⇒ C) · [1 −m1
⇒(p1 ⇒ C)] · [1 −m2

⇒(p2 ⇒ C)]} −mC(∅)
= {1 − [1 −m1

p(p1) ·m1
⇒(p1 ⇒ C)] · [1 −m2

p(p2) ·m2
⇒(p2 ⇒ C)]}

+ {m1
p(p1) ·m2

p(p2) ·m⇒([p1 ∧ p2] ⇒ C) · [1 −m1
⇒(p1 ⇒ C)] · [1 −m2

⇒(p2 ⇒ C)]} −mC(∅)
= {1 − [1 −Bel1p(p1) ·Bel1⇒(p1 ⇒ C)] · [1 −Bel2p(p2) ·Bel2⇒(p2 ⇒ C)]}

+ {Bel1p(p1) ·Bel2p(p2) ·Bel⇒([p1 ∧ p2] ⇒ C) · [1 −Bel1⇒(p1 ⇒ C)] · [1 −Bel2⇒(p2 ⇒ C)]} −mC(∅)

To calculate the disbelief degree of the conclusion, we sum the masses of all elements that trigger its negation (¬C) noted in red
from table 2.17:

DisbC(C) = mC(¬p1 ∧ ¬p2 ∧ ¬C) +mC(¬p1 ∧ p2 ∧ ¬C) +mC(p1 ∧ ¬p2 ∧ ¬C) +mC(¬p1 ∧ ¬C) +mC(¬p2 ∧ ¬C) −m(∅)
= {m1

p(¬p1) ·m1
⇐(¬p1 ⇒ ¬C) +m2

p(¬p2) ·m2
⇐(¬p2 ⇒ ¬C) − [m1

p(¬p1) ·m1
⇐(¬p1 ⇒ ¬C)] · [m2

p(¬p2) ·m2
⇐(¬p2 ⇒ ¬C)]}

+ {m1
p(¬p1) ·m2

p(¬p2) ·m⇐([¬p1 ∧ ¬p2] ⇒ ¬C) · [1 −m1
⇐(¬p1 ⇒ ¬C)] · [1 −m2

⇐(¬p2 ⇒ ¬C)]} −mC(∅)
= {1 − [1 −m1

p(¬p1) ·m1
⇐(¬p1 ⇒ ¬C)] · [1 −m2

p(¬p2) ·m2
⇐(¬p2 ⇒ ¬C)]}

+ {m1
p(¬p1) ·m2

p(¬p2) ·m⇐([¬p1 ∧ ¬p2] ⇒ ¬C) · [1 −m1
⇐(¬p1 ⇒ ¬C)] · [1 −m2

⇐(¬p2 ⇒ ¬C)]} −mC(∅)
= {1 − [1 −Disb1

p(p1) ·Bel1⇐(¬p1 ⇒ ¬C)] · [1 −Disb2
p(p2) ·Bel2⇐(¬p2 ⇒ ¬C)]}

+ {Disb1
p(p1) ·Disb2

p(p2) ·Bel⇐([¬p1 ∧ ¬p2] ⇐ ¬C) · [1 −Bel1⇐(¬p1 ⇐ ¬C)] · [1 −Bel2⇐(¬p2 ⇒ ¬C)]} −mC(∅)
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To calculate the mass of conflict for two premises, we sum the masses of all elements that trigger the empty set (∅) noted in blue
from table 2.17:

mC(∅) = m12(∅)
= m1(¬p1 ∧ ¬C) ·m2(p2 ∧ ¬C) +m2(¬p2 ∧ ¬C) ·m1(p1 ∧ ¬C)
= m1

p(¬p1) ·m1
⇐(¬p1 ⇒ ¬C) ·Bel2p(p2) ·m2

⇒(p2 ⇒ C) +m2
p(¬p2) ·m2

⇐(¬p2 ⇒ ¬C) ·m1
p(p1) ·Bel1⇒(p1 ⇒ C)

= Disb1
p(p1) ·Bel1⇐(¬p1 ⇒ ¬C) ·Bel2p(p2) ·Bel2⇒(p2 ⇒ C) +Disb2

p(p2) ·Bel2⇐(¬p2 ⇒ ¬C) ·Bel1p(p1) ·Bel1⇒(p1 ⇒ C)
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To compute belief and disbelief degrees of a H-Arg for n premises, we get the
following formulas (2.4):

H-Arg :


BelC(C) = Bel⇒([∧n

i=1pi] ⇒ C) ×
∏n

i=1Bel
i
p(pi) · [1 −Beli⇒(pi ⇒ C)]

+{1 −
∏n

i=1[1 −Belip(pi) ·Beli⇒(pi ⇒ C)]} −m
(n)
C (⊥)

DisbC(C) = Bel⇐([∧n
i=1¬pi] ⇒ ¬C) ×

∏n
i=1Disb

i
p(pi) · [1 −Beli⇐(¬pi ⇒ ¬C)]

+{1 −
∏n

i=1[1 −Disbi
p(pi) ·Beli⇐(¬pi ⇒ ¬C)]} −m

(n)
C (⊥)

(2.4)

Where the mass m(n)
C (⊥) represents the conflict degree for (n) premises. This mass

will be defined in the next section
We can notice that the formulas in (2.4), have the same form. They sum

two parts. A first one which expresses the conjunctive component of this type,
weighted by the uncertainty on direct elementary rules (1 − Beli⇒(pi ⇒ C), resp.
the reverse one). The second part represent its disjunctive component. To deduce
the formulas of a C-Arg from H-Arg, all you need is to set the elementary rules
(Beli⇒(pi ⇒ C)) and the reverse conjunctive one (Bel⇐([∧n

i=1¬pi] ⇒ ¬C)) to zero.
Conversely, if we set to zero the masses of the direct conjunctive rule and those of
the reverse elementary rules, we get the formulas of a D-Arg. Finally, in the case
of a conclusion supported by one premise both masses of the direct and reverse
conjunctive rules are equal to zero. Thus, we also deduce the formula of an S-Arg.

Remark : The hybrid type presented in this paper, also represents a spe-
cial case of a situation where one or more premises can support the conclusion to
a certain degree, and their conjunction does it to a higher degree. For example,
in the case of a conclusion (C) supported by three premises (p1, p2 and p3) we
will have seven direct rules ({p1; p2; p3; p1 ∧ p2; p1 ∧ p3; p2 ∧ p3 and p1 ∧ p2 ∧ p3}
implies C) and seven more for the reverse rules. The formulas of such an argument
can be calculated following the same method as above. Despite the computational
difficulty (more focal sets to combine), such a calculation is feasible. However, the
resulting model will require more information (belief degrees) which are difficult
to obtain. This issue will be put into perspective for future work, where it will be
interesting to know if this trade-off between rigorous modeling of argument types
and the complexity of collecting data was worth it.

2.3.5 Conflict mass for (n) premises

A conflict situation represents the case when one or more premises lead to
opposite assessments of the conclusion (e.g., a premise pi supports a conclusion
C, while another premise pj supports its negation). Formally, it always takes the
form of a combination of four items : pi, pi ⇒ C, ¬pj and ¬pj ⇒ ¬C, which
trigger empty intersections (noticeable if we combine the masses of elementary
rules and those on the premises, e.g. 2.15 and 2.16). In the case of the C-Arg
and D-Arg this combination never occurs. Indeed, since the definition of a
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C-Arg (resp. D-Arg) does not define direct (resp. reverse) elementary rules that
combine with the reverse (resp. direct) elementary rules will trigger an empty in-
tersection. Thus we can say that the value of m(n)

C (⊥) is always zero for these types.

Example: Let us consider two premises pi and pj with opposite assessments
(Belip(pi) = 0, Disbi

p(pi) = 1) and (Beljp(pj) = 1, Disbj
p(pj) = 0).

1. In the case of a C-Arg for n premises with maximal beliefs of rules, we obtain:
BelC(C) = Bel1p(p1) × · · · ×Belip(pi) × · · · ×Belnp (pn) = 0, Belip(pi) = 0
DisbC(C) = 1 − [1 −Disb1

p(p1)] × · · · × [1 −Disbj
p(pj)] × · · · × [1 −Disbn

p (pn)]
= 1 − 0 = 1

2. In the case of a D-Arg for n premises with maximal beliefs of rules, we obtain:{
BelC(C) = 1 −

∏n
k=1[1 −Belkp(pk)] = 1, when k = i, Beljp(pj) = 1

DisbC(C) =
∏n

k=1Disb
k
p(pk) = 0, when k = j, Disbj

p(pj) = 0

Facing a conflict situation, when we have opposite assessment on premises sup-
porting the same goal, the conjunctive type (1) adopts a cautious behavior in favor
of the propagation of the premises that does not support the conclusion. On the
contrary, the disjunctive type (2) takes a more optimistic view, which favors the
propagation of the premises that support the conclusion.

Standing between these two limit cases, the value of m(n)
C (⊥)2 for the hybrid

type (H-Arg) may have a positive value.
We propose in the following a recursive formula to calculate conflict mass for

n ≥ 2 premises:

m
(n)
C (⊥) = Bel

(n−1)
C (C) ×mn(¬pn ∧ ¬C) +Disb

(n−1)
C (C) ×mn(pn ∧C) +m

(n−1)
C (⊥)

(2.5)
Where :

m
(1)
C (⊥) = 0

Bel
(n−1)
C (C) = {1 −

∏n−1
i=1 [1 −Belip(pi) ·Beli⇒(pi ⇒ C)]} −m

(n−1)
C (∅)

Disb
(n−1)
C (C) = {1 −

∏n−1
i=1 [1 −Disbi

p(pi) ·Beli⇐(¬pi ⇒ ¬C)]} −m
(n−1)
C (∅)

mi(pi ∧ C) = Belip(pi) ·Beli⇒(pi ⇒ C)
mi(¬pi ∧ ¬C) = Disbi

p(pi) ·Beli⇐(¬pi ⇒ ¬C)

Proof : Let us enumerate all conflicting combinations of 4 formulas when
merging mass functions on premises and rules.

For n = 2, we get two contradictory combinations p1 ∧ (p1 ⇒ C)∧¬p2 ∧ (¬p2 ⇒
¬C) and ¬p1 ∧ (¬p1 ⇒ ¬C) ∧ p2 ∧ (p2 ⇒ C). So, we calculate the mass on the

2Also, noted m(∅) according to the set theory syntax : [⊥] = ∅.
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conflict:

m12(⊥) = m1(p1 ∧ C) ×m2(¬p2 ∧ ¬C) +m1(¬p1 ∧ ¬C) ×m2(p2 ∧ C)
= Bel1p(p1) ·Bel1⇒(p1 ⇒ C) ×m2(¬p2 ∧ ¬C)

+Disb1
p(p1) ·Bel1⇐(¬p1 ⇒ ¬C) ×m2(p2 ∧ C)

= BelC(C) ×m2(¬p2 ∧ ¬C) +DisbC(C) ×m2(p2 ∧ C)

For n = 3, we can calculate m123 = m1 ⊗ m2 ⊗ m3 directly but we have to
calculate 8 × 8 × 8 intersections and select the contradictory conjunctions. We can
also calculate more easily:

m123(⊥) =
∑

i ̸=j;i,j=1,2,3
mi(pi ∧ C) ·mj(¬pj ∧ ¬C)

= m12(⊥) +m13(⊥) +m23(⊥)

However, this calculation counts contradictory terms several times. Thus, we
may find that this mass (m123(⊥)) is greater than 1. Note the contradictory term
m1(p1 ∧ C) · m2(¬p2 ∧ ¬C) · m3(¬p3 ∧ ¬C) with 12̄3̄, etc. We have m1(p1 ∧ C) ·
m2(¬p2 ∧ ¬C) ·

∑
ϕ∈Ω3 m3(ϕ), with

∑
ϕ∈Ω3 m3(ϕ) = 1. Hence, the term m1(p1 ∧

C) ·m2(¬p2 ∧ ¬C) of m12(⊥) includes 12̄3̄ and 12̄3. Similarly, we get the remaining
duplicate terms (in bold):

• m1(¬p1 ∧ ¬C) ·m2(p2 ∧ C) includes 1̄23̄ et 1̄23.

• m1(¬p1 ∧ ¬C) ·m3(p3 ∧ C) includes 1̄23 et 1̄2̄3.

• m1(p1 ∧ C) ·m3(¬p3 ∧ ¬C) includes 123̄ et 12̄3̄.

• m2(p2 ∧ C) ·m3(¬p3 ∧ ¬C) includes 123̄ et 1̄23̄.

• m2(¬p2 ∧ ¬C) ·m3(p3 ∧ C) includes 12̄3 et 1̄2̄3.

hence, the sum m12(⊥) + m13(⊥) + m23(⊥) counts twice the product of three
terms. There are 12 such terms, so we have to delete 6 of them (the ones in bold).
Thus we prove that:

m123(⊥) = m12(⊥) +m1(p1 ∧ C)m3(¬p3 ∧ ¬C)[1 −m2(¬p2 ∧ ¬C)]
+m1(¬p1 ∧ ¬C)m3(p3 ∧ C)[1 −m2(p2 ∧ C)]
+m2(p2 ∧ C)m3(¬p3 ∧ ¬C)[1 −m1(p1 ∧ C) −m1(¬p1 ∧ ¬C)]
+m2(¬p2 ∧ ¬C)m3(p3 ∧ C)[1 −m1(p1 ∧ C) −m1(¬p1 ∧ ¬C)]

= m12(⊥) +m3(p3 ∧ C) ·Disb(2)
C (C) +m3(¬p3 ∧ ¬C) ·Bel(2)

C (C)

Where:
Bel

(2)
C (C) = 1 − [1 −Bel1p(p1)Bel1⇒(p1 ⇒ C)] · [1 −Bel2p(p2)Bel2⇒(p2 ⇒ C)]

Disb
(2)
C (C) = 1 − [1 −Disb1

p(p1)Bel1⇐(¬p1 ⇒ ¬C)] · [1 −Disb2
p(p2)Bel2⇐(¬p2 ⇒

¬C)]
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This calculation can be extended to n > 1 premises. Hence, we get∑n−1
i=1 C

i
n−1(2i − 1) focal sets inducing the conclusion C ({Ωp1 × ... × Ωpn} ∧ C)

and others of the same count inducing its negation ¬C ({Ωp1 × ... × Ωpn} ∧ ¬C).
Combining these focal sets respectively with (¬pn ∧ ¬C) and (pn ∧ C) trigger an
empty intersection. Summing the masses of these focal sets gives the general for-
mula of conflict m(n)(⊥) (equation 2.5).

Notice that conjunctive rules [∧n
i=1pi] ⇒ C and [∧n

i=1¬pi] ⇒ ¬C were not
involved in this calculation because they don’t trigger empty intersection (e.g.,
([p1 ∧ p2] ⇒ C) ⊗ ¬p1 = ¬p1).

In the case of a minor conflict (m(⊥) small) normalising by the conflict degree
(1−m(⊥)) as proposed in the usual DS rule of combination will eliminate the conflict
and proportionally increase the contradiction-free degrees of the belief BelC(C) and
disbelief DisbC(C) in a misleading way. While in a case of full conflict, this mass is
equal to 1 making this normalisation meaningless (division by zero). Keeping m(⊥)
provides additional information in the sense that it may show that the system is
not so safe because of the presence of a conflict (proof for Vs proof against).

Since the H-Arg represent a general form for the S-Arg, C-Arg and D-Arg, in the
following we are going to use only the propagation formulas of the hybrid argument
type to calculate all belief and disbelief degrees in the conclusion.

2.4 Argument types in literature - A comparison

As seen in chapter 1, most argument types proposed in literature (e.g., [Cyra 2011,
Wang 2018a]) are built around three concepts: conjunction (logical AND), disjunc-
tion (logical OR) and a mix between the two. However, the difference between these
works, which lead to different uncertainty propagation formulas, resides in several
aspects.

Formal definition of arguments

The first is the formal definition of each argument type. Several authors (e.g.,
[Cyra 2011, Ayoub 2013]) simply give informal definitions expressed in natural lan-
guage. This type of definition gives indeed a general picture of the propagation
schema in those argument types, but it is not sufficient to build accurate propa-
gation models. In Wang et al. works [Wang 2018b, Wang 2019], logical conjunc-
tion and disjunction are used to express the relation between premises and logical
equivalence (≡) is used to express the relation between premises and the conclusion.
Compared to our work, we choose to replace this equivalence with an implication
(⇒). This choice is justified by the fact that equivalence provides information on
both belief and disbelief, but the provider of such information (e.g., an expert of
the filed) may not know one of the two which cannot be separated. Moreover, an
agent (or a client) can be only interested in one side of the assessment (generally
the belief side to validate a system, or in some cases the disbelief side for an internal
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evaluation of a system). Implication offers the possibility to use both sides (belief
and disbelief) separately or together.

Combination rule and mass assignment

The second difference is the choice of a combination rule and mass assignment. Most
works we encountered, used weighted average [Ayoub 2013] and Dempster rule of
combination to merge the masses on rules and premises. We choose to use only
the conjunctive rule of combination because it is simple to apply and consistent
with the definitions of our argument types (a conjunction of rules). For instance,
a conjunction of [∧n

i=1pi] ⇒ C and ∧n
i=1[¬pi ⇒ ¬C] for the C-Arg. On the other

hand, we choose to assign one mass function per rule and premise because otherwise
they become dependent on each other (

∑
E⊆Ωm(E) = 1). In Wang et al. works the

mass of the conjunction ([∧n
i=1pi] ≡ C) and disjunction ([∨n

i=1pi] ≡ C) is calculated
based on elementary rules (∧n

i=1[pi ≡ C]). If the mass of one rule is maximal, the
masses on the other rules are automatically minimal. Therefore, the effect of all
the premises on the conclusion (rules) is neglected in favour of the one with the
highest weight. Moreover, this configuration (one mass function for all rules) does
not reveal the conflict that may exist in an argument (empty intersections do not
appear in the calculation, see [Wang 2018a]).

H-Arg a general argument type

The H-Arg might include, in theory, all argument types carrying the notions of
conjunction (logical “AND”) and/or disjunction (logical “OR”). Using the informal
definition of the argument types given in [Cyra 2011, Ayoub 2013] and the formal
one in [Wang 2019], we placed those types according to ours in figure 2.5. We can
notice that each work presents a version of pure conjunctive type and a pure dis-
junctive one. The rest of the types can be consider as a special case of the hybrid
(H-Arg) one. Some are close to the C-Arg, while others are closer to the D-Arg.
The complementary and alternative combination type (closer to the H-Arg defini-
tion), proposed by Cyra and Gorski [Cyra 2011], is not closer to C-Arg than to
D-Arg. However, authors decided to consider it as a alternative type or comple-
mentary according to each situation instead of proposing formulas that gather the
two. We also believe that the redundant argument defined in Wang et al works has
no interest since the concept of disjunction could be carried by the complementary
argument type when the conjunction of premises does not bring more confidence to
the conclusion m([∧n

i=1pi] ≡ C) = max(m(∧n
i=1[pi ≡ C])). In this situation, we can

set m([∧n
i=1pi] ≡ C) to 0, because the conjunction of elementary rules m(pi ≡ C)

can express the redundancy concept (each premise can lead to the validation of the
conclusion alone).
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Wang et al.
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Wang et al.
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Wang et al.
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Figure 2.5: Argument types

Table 2.18: Values of the 3-tuple (Bel, Disb, Uncer) resp. for C-Arg, D-Arg and
H-Arg

Premise/Conclusion
Values Belief Disbelief Uncertainty

p1 1 0 0
p2 0 1 0

C for a C-Arg 0 1 0
C for a D-Arg 1 0 0
C for a H-Arg 0 0 1

2.5 Models sensitivity analysis

In order to illustrate the claims mentioned above about how belief, disbelief and
uncertainty propagate in GSN patterns, three examples of conclusions C, each
supported by two premises p1 and p2 each are proposed. Each one represents an
argument type (C-Arg, D-Arg and H-Arg). We suppose that the mass values on
rules according to each argument type (direct, reverse, conjunctive and disjunctive)
are maximal (= 1). We also, assign opposite values to both premises p1 : Bel1p(p1) =
1 and p2 : Disb2

p(p2) = 1 (keep in mind: Beli(pi) +Disbi(pi) + Unceri(pi) = 1).
Table 2.18 groups the propagation results of the 3-tuples (Bel, Disb, Uncer)

for the three argument types (C-Arg, D-Arg and H-Arg) when the premises p1 =
(1, 0, 0) and p2 = (0, 1, 0). We can, indeed, confirm the statements made regarding
the formulas (2.2), (2.3) and (2.4). We can notice that C-Arg and D-Arg propagate
(resp.) the premise with the least (minimal belief and maximal disbelief) and the
greatest (maximal belief and minimal disbelief) assessment. On the other hand,
we notice that the H-Arg delivers a maximal degree of uncertainty to show that it
cannot take a side (resp. p1 fully in favor or p2 fully against of C). Having opposite
information (assessments) is the same as having none, since no useful assessment
about the conclusion can be inferred from it. On the other hand, notice that both
C-Arg and D-Arg have conflict free values (we always have: mC(⊥) = 0).

Next, we set the masses on rules and premises to new values in table 2.19. Then,
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Table 2.19: Rules and premises basic values for the sensitivity analysis

Premise/Rules
Values Belief Disbelief Uncertainty

(p1 ∧ p2) ⇒ C 1 - 0
(¬p1 ∧ ¬p2) ⇒ ¬C 1 - 0
p1 ⇒ C, p2 ⇒ C 0.75 - 0.25

¬p1 ⇒ ¬C, ¬p2 ⇒ ¬C 0.75 - 0.25
p1 0.75 0.25 0
p2 0.25 0.75 0

we vary one parameter at a time from its maximal value (Bel = 1, Disb = 0) to its
minimal one (Bel = 0, Disb = 1), while we fix all weight of the rest to their base
values. For each type, we present the sensitivity of the conclusion C (belief, disbelief
and uncertainty). The results are presented in box-plots of figures 2.6 to 2.14 below.
In theses figures: “Bel_dr”, “Bel_dr1” and “Bel_rr2” resp. stand for belief of the
conjunctive direct rule, elementary rule from the premise 1 and elementary reverse
rule from the premise 2. We also present the sensitivity of mC(⊥) the conflict degree
in figure 2.15.
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First of all, we can notice that all of belief, disbelief, uncertainty and conflict
degree belong to the interval [0, 1]. We also find an opposite range of variability
in premises between C-Arg and D-Arg. This is a first validation of the calculation
of the conflict that we proposed. For instance, when the premise belief in (resp.
disbelief) of p1 has a tight (resp. large) range of variability in one argument type,
the belief (resp. disbelief) on p2 has a large (resp. tight) one in the other, and vice-
versa. This result is due to the product used to calculate the belief (resp. disbelief)
in C-Arg (resp. D-Arg). Hence, a tight range of values obtained. Conversely,
probabilistic sum is used to calculate disbelief (resp. belief) in D-Arg (resp. C-
Arg). Hence, a large range of values obtained.

We can notice that conjunctive rules (direct “Bel_dr” and reverse “Bel_rr”)
have no impact on conflict degree. On the other hand, disjunctive rules (di-
rect “Bel_dr”1, “Bel_dr2” and reverse “Bel_rr1”, “Bel_rr2”) and the premises
“Bel_p1, “Bel_p2” influence the conflict mass value. This observation is expected
because only masses on rules and the disjunctive rules are involved in the calculation
of m(⊥), see equation 2.5.

We notice that p1 the premise the with the highest assessment has the most
impact, in the case of a D-Arg, on the conclusion C. While with C-Arg, the premise
with the lowest assessment p2 has the most influence on the conclusion C (figure
2.15). On the other hand, for the H-Arg both premises (with a slight difference in
favor of p2) influence the assessment on the conclusion. So, to improve the results,
one needs to reconsider the evidence provided in p1 for the D-Arg, p2 for the D-Arg
and both for H-Arg.

2.6 Conclusion

In this chapter we defined two parameters to quantify confidence/uncertainty in
GSN patterns. The first quantifies the confidence in premises, while the second
quantifies the confidence in the rule leading to the conclusion. Then, we identify
four argument types that one can encounter in argument structures. To each type
of argument, we associate a formula for the propagation of belief and disbelief.
We notice that the so-called H-Arg represents a general frame from which we can
deduce the formulas of the other types. The C-Arg and D-Arg represent limit cases
of the latter (see figure 2.5).

Figure 2.16 represents the information (masses) needed to compute the confi-
dence (belief and disbelief) in the conclusion. To get these values two pieces of
information are needed. The belief values of conjunctive and elementary (disjunc-
tive) rules and the belief and disbelief values on premises. In the next chapter we
propose an approach to expert opinions elicitation, which aims to collect assess-
ments about premises and rules in qualitative form and transform them to belief
and disbelief values to feed the propagation models presented above (see figure
2.16).



2.6. Conclusion 53

Figure 2.16: Masses on rules and premises
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3.1 Introduction

Confidence propagation models based on argument structures, particularly those
based on the GSN representation, are designed on the basis of two parameters. The
first represents the confidence in premises, where evidence provided may be ques-
tionable. They may be either accepted or rejected based on reasonable documented
justifications (solutions in GSN formalism, see figures 1.2 and 1.3) made available
to peer (expert) reviewers. For instance, an expert may doubt the validity of a test
because the experimental protocol was not followed or because the sample studied
is not representative. The second one represents confidence in rules (that can be
assimilated to strategy component in GSN formalism). It measures the impact of
the premises on the conclusion according to a defined context.

In order to use this confidence propagation model, it is necessary to provide it
with the inputs to run it, i.e. the degrees of belief in premises and rules. These
values will be collected from a questionnaire presented to an expert who will evaluate
the argument. However, it is quite challenging, even for an expert, to give these
values in term of belief and disbelief. Instead, it is more convenient to use a natural
language assessment (e.g. high, medium or low confidence) and then transform it
into an appropriate format (e.g., belief and disbelief degrees).

In this chapter, we present an improved version of the elicitation approach pro-
posed by Cyra and Gorski [Cyra 2011] and reused by Wang et al. [Wang 2018a]. It
consists in collecting expert opinions on premises in a qualitative form and transform
them to quantitative belief (Belip) and disbelief (Disbi

p) values. We also present a
procedure for belief elicitation values on rules (Bel⇐, Bel⇒, Beli⇐, Beli⇒). Next, we
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discuss the issue of argument type identification, and then compare two formulas
for transforming belief functions into probability measures that can be used in the
elicitation model.

3.2 Elicitation model

To evaluate a proposition (premises or rules), we choose to use two pieces of infor-
mation provided by an expert:

• Decision: a qualitative scale which describes a trend from acceptance (max-
imal belief) to rejection (maximal disbelief) of a proposition. Each item of
this scale (in qualitative format Di, see figure 3.2) corresponds to a numerical
value, which can be understood as the acceptance probability of a proposition
x. For instance, Dec(x) = 1 indicates full certainty on the truth of x. On the
other hand, Dec(x) = 0 indicates full certainty on its falsity. And, when for
some reason the expert cannot take sides, Dec(x) = 1/2. Formally, decision is
defined as the Pignistic transform [Smets 2005] that turns a mass function m
on a set Ωx (the frame of discernment) into a probability, changing the focal
sets into uniform distributions. When Ωx = {x,¬x} has two possible states,
Dec(x) is the midpoint of uncertainty interval between belief and plausibility
(Pl(x) = 1 −Disb(x)) of x.

Dec(x) = 1 +Bel(x) −Disb(x)
2 (3.1)

Note that when Bel(x) = Disb(x) (especially for 0), we get Dec(x) = 1/2.

• Confidence: a qualitative scale which describes the amount of information
an expert possesses that can justify his/her decision. When Conf(x) = 1,
it means that the expert has full information supporting his/her choice of
Dec(x). While, when Conf(x) = 0, it means that (s)he has no information
to accept or deny (x). Formally, confidence is defined as summation of be-
lief (evidence in favor of the proposition) and disbelief (evidence against the
proposition) degrees. Confidence gives the range of the uncertainty interval :
Uncer(x) = 1 − Conf(x), where:

Conf(x) = Bel(x) +Disb(x) (3.2)

In figure 3.1, we can notice that with both decision and confidence measures,
the uncertainty interval can be defined.

Choosing scales for (Conf,Dec) and translating such pairs into numerical de-
grees is not trivial, we thus make the equidistance assumption for simplicity (there
is no apparent reason to use a particular scale) and to be comparable to previous
works [Cyra 2011, Wang 2018b].

To summarize, in order to assess a proposition, an expert is asked to give his/her
decision and the confidence associated to it. Both pieces of information are collected
using an evaluation matrix. In figure 3.2, each dot of this matrix correspond to
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Figure 3.1: The positioning of the uncertainty interval on the pair (Dec,Conf)

Figure 3.2: Evaluation matrix

linguistic a pair (Dec, Conf). The numerical values associated to each qualitative
item of these two scales are used to calculate (using equations 3.1 and 3.2) a 3-tuple
(Bel, Disb, Uncer) necessary to run the uncertainty propagation model defined in
the previous chapter. This operation (including the reverse transformation from
(Bel, Disb, Uncer) to (Dec, Conf)) is called elicitation.

In Figure 3.3, we present four extreme expert assessments (see the black dot).
The upper matrices represent the case of total confidence. The assessor rejects
(resp. accepts) the claim in Figure 3.3.a (resp. 3.3.b). It corresponds to a maximal
disbelief (resp. belief). In contrast, the lower matrices represent resp. the cases of
total conflict (Figure 3.3.c) and ignorance (Figure 3.3.d). In both cases, the expert
cannot make a clear decision either because (s)he has as a lot of information both
to support and reject the claim (Conf = 1), or because (s)he has no information
(Conf = 0). In contrast to other works [Cyra 2011, Wang 2019], we allow the
assessor to use a midpoint value (Dec(A) = 1/2) to show full hesitancy.

3.3 Belief and disbelief elicitation of premises

As presented above, each pair (Dec, Conf) provided by an expert is converted
into a 3-tuple (Bel, Disb, Uncer) using elicitation formulas (equations 3.1 and
3.2) in order to be used in the propagation model. This means that the expert
is free to choose any value from the evaluation matrix presented in the previous
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Figure 3.3: Extreme assessments (black dot)
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Figure 3.4: Evaluation matrix including Josang constraint

subsection. However, a constraint known as “Josang constraint" [Jøsang 2016] needs
to be respected to get usable values. Indeed, we notice that choosing dots outside
the triangle in the evaluation matrix (figure 3.4) leads to negative belief (black dots)
or disbelief (grey dots) values, which make no sense. This constraint relates Conf(p)
and Dec(p): (3.2) and (3.1) imply 1 − Conf(p) ≤ min(2Dec(p), 2(1 −Dec(p)). To
fix this problem, we can express the range of Dec(p) for a given confidence level as:

1 − Conf(p)
2 ≤ Dec(p) ≤ 1 + Conf(p)

2 (3.3)
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Proof:
There are:{

Dec(x) = 1+Bel(x)−Disb(x)
2

Uncer(x) = 1 −Bel(x) −Disb(x)

Hence, we get:{
2 ·Dec(x) = 1 +Bel(x) −Disb(x) ≤ 2
Uncer(x) = 1 −Bel(x) −Disb(x) ≥ 0

By summing and subtracting respectively these two equations,
we obtain:{

2 ·Dec(x) − Uncer(x) = 2 ·Bel(x) ≥ 0, (0 ≤ 2 ·Bel(x) ≤ 2)
2 ·Dec(x) + Uncer(x) = 2 · [1 −Disb(x)] ≤ 2, (0 ≤ 2 · [1 −Disb(x)] ≤ 2)

So, {
Uncer(x) ≤ 2 ·Dec(x)
Uncer(x) ≤ 2 · (1 −Dec(x))

We therefore conclude that:

Uncer(x) ≤ min(2 ·Dec(p), 2 · (1 −Dec(p))

When an expert makes a strong decision (acceptance with Dec(p) = 1, or
rejection with Dec(p) = 0) the confidence must be maximal (Conf(p) = 1),
otherwise his/her assessment will have no grounds. The closer you get to the
midpoint value (Dec(p) = 1/2, no decision), the larger the confidence interval can
be. (Dec = 1/2, Conf = 0) means that the expert cannot take a side because he
has no information (total ignorance), while (Dec = 1/2, Conf = 1) means that
he/she cannot take a side because he/she has as much evidence in favor of the
premise as against (total conflict). So, when the pair (Dec(p), Conf(p)) is situated
outside the triangle, and Dec(p) < 1−Conf(p)

2 (rejection: black dots on figure
3.2), we set Dec(p) = 1−Conf(p)

2 . On the other hand, when Dec(p) > 1+Conf(p)
2

(acceptance: grey dots on figure 3.2), we set Dec(p) = 1+Conf(p)
2 .

Example 1. Suppose a conclusion (C) supported with two premises (p1) and
(p2). Each of these premises is associated with one or more pieces of evidence
(Sni). Figure 3.5 summarizes the elicitation procedure of belief and disbelief of
these premises. Firstly, based on the evidence provided for each premise the expert
needs to give his/her assessment of each premise by choosing a pair (Dec,Conf),
using the evaluation matrices. Assuming the expert gives the assessments below:

• p1: Opposable with high confidence (Dec(p1) = 0.25, Conf(p1) = 0.6).
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Figure 3.5: Belief and disbelief elicitation of premises

• p2: Acceptable with very high confidence (Dec(p2) = 1, Conf(p2) = 0.8).

The second step is to calculate Bel(pi) and Disb(pi). To do this, we use the numer-
ical values Dec(pi) and Conf(pi) associated to each assessment and the following
formulas: Bel(p) = Conf(p)−1

2 + Dec(p), Disb(p) = Conf(p)+1
2 − Dec(p) (deduced

from equations 3.1 and 3.2).
We can notice that the assessment for p1 is inside the triangle in the matrix

(figure 3.2). We can therefore claim that there is no need to adjust the values:
Bel(p1) = 0.6−1

2 + 0.25 = 0.05, Disb(p1) = 0.6+1
2 − 0.25 = 0.55 and Uncer(p1) =

1 −Bel(p1) −Disb(p1) = 0.4.
On the other hand, the assessment for p2 is situated outside the triangle. In

this case, we can be sure that decision degree must be adjusted in accordance with
the confidence value to get correct inputs. Before adjustment, we find a negative
value of disbelief, which does not make sense: Bel(p2) = 0.8−1

2 + 1 = 0.9 and
Disb(p2) = 0.8+1

2 − 1 = −0.1. Following the description above, we set Dec(p2) =
1+Conf(p2)

2 = 1+0.8
2 = 0.9. Then we find that Bel(p2) = 0.8, Disb(p2) = 0 and

Uncer(p2) = 1 −Bel(p2) −Disb(p2) = 0.2.
In table 3.1, we grouped all possible pairs (Dec, Conf) on premises with their

appropriate (Bel, Disb) counterparts. For this first work we stick to the chosen
values for (Dec,Conf) in the previous subsection. The degree of uncertainty can
easily be deduced (Uncer(p) = 1 − Bel(p) − Disb(p)). We can notice an anti-
symmetry between belief and disbelief degree regarding the central column (D3:
No decision). We also notice that when no information is available (C1: Lack of
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Table 3.1: Values from (Dec, Conf) to (Bel,Disb) couples on premises (see figure
3.2 for symbol meaning)

Conf
Dec D1 (0) D2 (0.25) D3 (0.5) D4 (0.75) D5 (1)

C1 (0) (0,0) (0,0) (0,0) (0,0) (0,0)
C2 (0.2) (0,0.20) (0,0.20) (0.10,0.10) (0.20,0) (0.20,0)
C3 (0.4) (0,0.40) (0,0.40) (0.20,0.20) (0.40,0) (0.40,0)
C4 (0.6) (0,0.60) (0.05,0.55) (0.30,0.30) (0.55,0.05) (0.60,0)
C5 (0.8) (0,0.80) (0.15,0.65) (0.40,0.40) (0.65,0.15) (0.80,0)
C6 (1) (0,1) (0.25,0.75) (0.50,0.50) (0.75,0.25) (1,0)

confidence), no matter what choice is made the degree of uncertainty is maximal
(Uncer(p) = 1). On the other hand, in the case of a fully informed expert (C6:
For sure) the decision value varies from rejection to acceptance, which follows the
restrictions imposed by “Josang constraint”.

3.4 Belief elicitation for rules

In the previous subsection, we presented how to estimate (Bel,Disb, Uncer) of a
premise. In this subsection we study how to estimate (Bel, Uncer) for the rules
(keep in mind that disbelief on rules is not defined, see chapter 2) in order to
propagate the confidence in the GSN.

Before presenting the details of the belief estimation procedure of the rules, we
draw your attention to an observation made on the propagation model presented in
chapter 2. The whole procedure is based on this observation. Assuming clear-cut
knowledge about some (or all) premises (Belip(pi), Disbi

p(pi) ∈ {0, 1}) and total
ignorance about the others (Unceri

p(pi) = 1), BelC(C) and DisbC(C) can take
(resp.) the belief values of direct and reverse rules. For example, in the case of a
conclusion (C) supported by two premises (p1) and (p2), assuming total acceptance
of these two premises with maximal confidence, i.e. Bel1p(p1) = Bel2p(p2) = 1 then:
BelC(C) = Bel⇒([p1 ∧ p2] ⇒ C) using equation (2.2). While assuming total reject
with maximal confidence of (p1), i.e Disb1

p(p1) = 1 and total ignorance about (p2),
i.e. Uncer2

p(p2) = 1 then: DisbC(C) = Bel⇐(¬p1 ⇒ ¬C) using equation (2.2).
We propose a procedure for collecting belief of rules based on the elicitation

model (as for the premises) and the observation of the paragraph above where we
assume that the GSN pattern to be assessed is a C-Arg (resp. D-Arg) to estimate
the values of Bel⇒([∧n

i=1pi] ⇒ C) and Beli⇐(¬pi ⇒ ¬C) (resp. Beli⇒(pi ⇒ C) and
Bel⇐([∧n

i=1¬pi] ⇒ ¬C)). Thus, from the expert assessment of the conclusion for
predefined premises assessments (Bel,Disb, Uncer), we conclude the belief values
of the rules. These values can be used afterwards to calculate the confidence of a
conclusion for all values of the premises.

Moreover, as presented in subsection 2.2, the disbelief of the rule is not defined
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Figure 3.6: Belief elicitation of rules

which is the same as assuming that it has a value equal to zero. This constraint
impacts the allowed pairs (Dec, Conf) for the expert. The latter is constrained to
choose only a decision on the positive side (from “no decision” to “acceptable”)
for direct rules. On the contrary, (s)he can only choose negative decision (from
“rejectable” to “no decision”) for the reverse rules. Formulas in (3.2) and (3.1) are
used to derive the degrees of belief on rules.

Example 2. Suppose the case of a conclusion (C) supported by one premise
(p). Figure 3.6 describes the procedure of rules elicitation. To get the belief on its
direct rule R1 : p ⇒ C and reverse one R2 : ¬p ⇒ ¬C, we ask an expert to give
his/her assessment about the conclusion respectively when Belp(p) = 1 (which is
equivalent to (Dec(p) = 1, Conf(p) = 1) for R1, and then when Disbp(p) = 1
(which is equivalent to (Dec(p) = 0, Conf(p) = 1) for R2. Suppose the expert
gives the following assessments:

• Direct rule (R1 : p ⇒ C): Assuming (Dec(p) = 1, Conf(p) = 1), the expert
assigns “Tolerable, with high confidence” to the conclusion (C): Dec(C) =
0.75, Conf(C) = 0.6

• Reverse rule (R2 : ¬p ⇒ ¬C): Assuming (Dec(p) = 0, Conf(p) = 1), the
expert assigns “Opposable, with very high confidence” to the conclusion (C):
Dec(C) = 0.25, Conf(C) = 0.8

We can notice in this example that both cases respect the Josang constraint
(3.3). Hence, there is no need to adjust the decision value. Using equations (3.2)
and (3.1) for the direct rule R1: Bel⇒(R1) = BelC(C) = (0.6)−1

2 + (0.75) = 0.55
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Figure 3.7: Responses from experts vs. Calculated results based on Complementary
and Redundant argument types [Wang 2018b]

and we set Bel⇒(¬R1) = 0. In the same way, for the reverse rule R2: Bel⇐(R2) =
DisbC(C) = (0.8)+1

2 − (0.25) = 0.65 and we set Bel⇐(¬R2) = 0.
We note that the results obtained for these two rules are consistent with our

expectations. Indeed, starting from high confidence values, we find that the belief
value of these rules is indeed higher than the uncertainty value.

3.5 Argument type identification

In our approach H-Arg encompasses C-Arg and D-Arg, but it might be useful to
identify if we have an extreme case (C-Arg or D-Arg). Wang et al. [Wang 2018b]
use a theoretical data plot of all possible values of the masses on the rules (appro-
priateness ωi), where they assume that the assessed argument is a complementary
one and then a redundant one (the main types defined in their work, the others rep-
resent special cases of these two), and cross them with the data collected from the
experts. The chosen argument type is the one with the most intersection between
expert opinion and theoretical data, see figure 3.7.

In our case, this step is not required since we propose a general formula that
propagates the confidence in the three types we defined. Remember that the con-
junctive (C-Arg) and disjunctive (D-Arg) argument types represent the limit cases
of a general case that we named hybrid argument type (H-Arg). Thus, it is enough
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to observe the values of the elicited rules to know if the studied GSN pattern rep-
resents an extreme case (D-Arg or C-Arg) or not. Indeed, let us recall that if all
direct elementary rules (pi ⇒ C) and the reverse conjunctive one ([∧n

i=1¬pi] ⇒ ¬C)
take the value zero for GSN pattern, we can deduce that this studied GSN pat-
tern corresponds to a C-Arg. Conversely, if the conjunctive rule [∧n

i=1pi] ⇒ C)
and reverse elementary rules (¬pi ⇒ ¬C) take the value zero, we can say that the
pattern corresponds to a D-arg. To maintain better consistency with the definition
of D-Arg, the conjunctive rule is set two zero when it does not bring additional
confidence to the conclusion (Bel⇒([∧n

i=1pi] ⇒ C) = max(Beli⇒(pi ⇒ C)). Apart
from these two cases, we consider that the pattern corresponds to an H-Arg.

To summarize, here are the rules for argument type identification:

• If Beli⇒(pi ⇒ C) = 0, GSN 7→ C-Arg.

• If max(Beli⇒(pi ⇒ C)) = Bel⇒([∧n
i=1pi] ⇒ C), Bel⇒([∧n

i=1pi] ⇒ C) = 0 and
GSN 7→ D-Arg.

• If Bel⇒([∧n
i=1pi] ⇒ C) > max(Beli⇒(pi ⇒ C)) > 0, GSN 7→ H-Arg.

Since the argument type is based on the values taken by the beliefs on the direct
rules and that the inverse rules are deduced from the direct ones, we expect that
when Beli⇒(pi ⇒ C) = 0, then Bel⇐([∧n

i=1¬pi] ⇒ ¬C) = 0 for the C-Arg; and
when Bel⇒([∧n

i=1pi] ⇒ C) = 0, then Beli⇐(¬pi ⇒ ¬C) = 0 for the D-Arg.

3.6 Pignistic transform Vs Shenoy transform

In this section, we study an alternative to our decision formula 3.1, which uses the
Pignistic transform, to make a comparison.

In the literature, there are formulas other than the Pignistic transform
that transforms degrees of belief, degrees of possibility, etc. into probabilities
Among these, an interesting alternative presented in chapter 1 known as Shenoy
[Cobb 2006] transform can be used to define the decision parameter.

Using Shenoy transform on a two-state frame of discernment Ωx = {x,¬x}, we
get the following decision formula:

Dec(x) = Pl(x)
Pl(x) + Pl(¬x) = 1 −Disb(x)

2 − (Bel(x) +Disb(x)) (3.4)

The confidence formula remains the same Conf(x) = Bel(x)+Disb(x). From these
two equations (Conf and Dec), we deduce belief and disbelief expression:{

Disb(x) = 1 −Dec(x) · [2 − Conf(x)]
Bel(x) = Conf(x) −Disb(x) (3.5)

To avoid getting negative belief and disbelief degrees for some decision and confi-
dence values a constraint that frames each decision between two confidence values
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needs to be respected.

1
2 − Conf(x) ≤ Dec(x) ≤ 1 − Conf(x)

2 − Conf(x) (3.6)

Proof:
There are:{

Disb(x) = 1 −Dec(x) · [2 − Conf(x)] ≥ 0
Bel(x) = Conf(x) −Disb(x) ≥ 0

By replacing Disb by its expression in the second equation, we
obtain:{

Disb(x) = 1 −Dec(x) · [2 − Conf(x)] ≥ 0
Bel(x) = Conf(x) − 1 +Dec(x) · [2 − Conf(x)] ≥ 0

Hence, we get (∀x ∈ [0, 1], Conf(x) ≤ 1):{
Dec(x) ≤ 1

2−Conf(x)
Dec(x) ≥ 1−Conf

2−Conf(x)

Figure 3.8 presents the aeras from which transformation formulas (triangle for Pig-
nistic 3.3 and curvy inner triangle for Shenoy 3.6) give negative belief and disbelief
values (before adjustment).
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Figure 3.8: Pignistic (plain line) and Shenoy (dashed line) transforms constraint

We notice that the usable values (not requiring adjustment) represented by the
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area inside the two triangles is larger in the case where we use the Pignistic transform
(triangle with plain edges) than in the Shenoy case (curvy triangle with dashed
edges). This observation represents a first argument in favor of using the Pignistic
transform. The second argument in favor of the Pignistic transform, consists in what
it brings as information. Indeed with the confidence formula, it gives, respectively,
the midpoint value of the uncertainty interval and its length which is natural, but
the Shenoy transform does not.

3.7 Conclusion

In this chapter, we defined two parameters used to express assessments of experts
regarding a GSN pattern in natural language, and then transform them to belief and
disbelief values required to compute the uncertainty propagation model proposed
in chapter 2. Each assessment is collected in terms of decision about a proposal
(from reject to accept) and degree of confidence the expert can associate to it (from
lack of confidence, to for sure). To do so, we provided a new elicitation model that
takes into consideration the situations of total ignorance, where in the previous
works an arbitrary decision value is given. It also considers the case of indecision
by introducing a neutral item (“no decision”) in the decision scale which is very
important in the evaluation process of the rules. Unlike previous work, we also use
our elicitation model to collect beliefs of rules.

This elicitation method is very important in the process of assessing confidence
in an argument because it provides all the inputs needed to use the propagation
model. Thus the following chapter will a present complete confidence assessment
procedure that integrates both propagation and elicitation models. Followed by an
application on a case study.
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4.1 Introduction

Building an uncertainty/confidence assessment procedure in GSN pattern requires
reliable methods of elicitation and propagation. The elicitation step should produce
inputs in usable format (belief and disbelief degrees) for the propagation step. The
latter should propagate uncertainties related to premises to the conclusion, while
respecting the specificity of each argument structure (how premises interact to sup-
port the conclusion). Then the results should be expressed in a meaningful format
for users.

In the previous chapter, we proposed an approach that
(i) collects uncertainty assessments about premises and rules, appearing in the

GSN structure. This is done in a qualitative format, in terms of decisions for or
against the acceptance of the involved statements (e.g., high level safety require-
ments coverage is achieved) and the degree of confidence justifying each of them.

(ii) expresses the qualitative data in a quantitative format then translated into
belief and disbelief degrees.

We also proposed an approach (presented in chapter 2) that takes elicitation
results (belief and disbelief) and propagate them to the conclusion.
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Figure 4.1: Uncertainty assessment procedure

In this chapter, we detail this procedure. We also present a case study to
which we apply this approach and raise any possible issues to be addressed, see its
limitations and finally validate it.

4.2 Confidence assessment procedure

Figure 4.1 summarizes the evaluation procedure structured in two phases. The
first one is called modeling phase. It provides the beliefs on the rules. The second
is called the application phase. It provides the beliefs on the premises and then
propagates them with the beliefs on the rules, using the propagation model, up to
the conclusion.

4.2.1 Modelling phase: Rules elicitation

The modeling phase collects expert opinions on rules, expressed with qualitative
scores (Dec,Conf), and translates them into numerical mass assignments to rules.
Figure 4.2 illustrate this phase.

It will be conducted by asking (2n + 2) questions to the assessor using the
evaluation matrices, n being the number of premises. The first (2n) questions
concern masses on elementary rules (direct and reverse). For instance, to get (resp.)
the values of Bel1⇐(¬p1 ⇒ ¬C) and Bel1⇒(p1 ⇒ C) the expert will be asked the
following questions (in the case n = 2):

1. Supposing no knowledge about the premise p2: (Dec = 0.5, Conf = 0) and
total reject (rejectable for sure) of p1: (Dec = 0, Conf = 1), what is your
Decision/Confidence in the conclusion (see figure 4.3)?

2. Supposing no knowledge about the premise p2: (Dec = 0.5, Conf = 0) and
total acceptance (acceptable for sure) p1 : (Dec = 1, Conf = 1), what is your
Decision/Confidence in the conclusion (see figure 4.4)?

The additional two questions concern the conjunctive rules (resp. reverse and
direct):
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Figure 4.2: Modelling phase

3. Supposing total reject of both premises p1, p2 : (Dec = 0, Conf = 1), what is
your Decision/Confidence in the conclusion (see figure 4.5)?

4. Supposing total acceptance of both premises p1, p2 : (Dec = 1, Conf = 1),
what is your Decision/Confidence in the conclusion (see figure 4.6) ?
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It is important to mention that the expert can only select pairs (Dec,Conf)
from the positive side of the evaluation matrix (“no decision” to “acceptable”) while
assessing direct rules. Conversely, he/she can only select negative assessment for
the reverse rules (“rejectable” to “no decision”). For instance in figure 4.4, choosing
a pair from this forbidden zone (shaded) will assign a mass to Bel1⇒(¬[p1 ⇒ C])
which is not a rule (see, previous chapters). Even if we set all the positive masses
of this kind (disbelief on rules) to zero, we prefer not to allow the expert access
to this area to keep consistency with the rules definition. The implication used to
define rules can only infer one side of the assessment at a time.

Once the masses on rules are obtained, one can deduce the argument type of
the assessed GSN pattern (C-Arg, D-Arg or H-Arg). The case of C-Arg is simple
to identify, since verification of one premise (i.e., true) cannot infer the conclusion
C alone. Thus, Beli⇒(pi ⇒ C) = 0. Conversely, the denial of one premise (i.e.,
false) infers the conclusion denial ¬C. However, it is not the same for D-Arg. If
a premise p1 supports the conclusion C, then p1 ∧ p2 also supports it even if p2
cannot. To keep consistency with the definition of D-Arg, we set the mass of the
direct conjunction and the reverse elementary ones to zero (Bel⇒([∧n

i=1pi] ⇒ C) =
Beli⇐(¬pi ⇒ ¬C) = 0), if at least the mass on one elementary rule is equal to the
one on the conjunction. In this case, we can say that the conjunction of premises
does not bring additional support to the conclusion.

Then, once the masses of the rules are acquired and the propagation formula is
specified, we can proceed to the next step of this assessment procedure by following
the instructions below, for the considered system.

4.2.2 Application phase: Premises elicitation and confidence prop-
agation

The application phase concerns the collection of expert data on premises and prop-
agate them, along with data on rules, to the conclusion. Figure 4.7 illustrate this
phase.

One question per premise is then formulated to the experts to collect data about
premises:

• Considering the knowledge on the pieces of evidence (also called solutions in
GSN formalism), what is your “Decision” and “Confidence” in the premise pi

(see figure 4.8)?

Grouped in a questionnaire, these (3n+2) questions, the assessor will be asked to
choose a pair from the evaluation matrix (some matrices being pre-filled, for rules,
see Figure 4.7). Then, these values (on rules and premises) are used to calculate
the belief/disbelief in the conclusion (equations ??).

This procedure will be iterated for each node consisting of a conclusion (goal in
GSN formalism) supported by its premises (sub-goals), starting from the bottom of
the GSN, up to the top goal.
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Figure 4.7: Application phase

The low-level requirements 
coverage is achieved

(P1) ?

Functional testing 
reports

(Sn1)
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Table 4.1: Decision items and their appropriate quantitative counterpart

Dec
Qual. Rej (D1) Opp (D2) ND (D3) Tol (D4) Acc (D5)
Qnt. [0, 0.125[ [0.125, 0.375[ [0.375, 0.625[ [0.625, 0.875[ [0.875, 1[

Table 4.2: Confidence items and their appropriate quantitative counterpart (see
figure 3.2 for symbols meaning)

Conf
Qual. C1 C2 C3 C4 C5 C6
Qnt. [0, 0.1[ [0.1, 0.3[ [0.3, 0.5[ [0.5, 0.7[ [0.7, 0.9[ [0.9, 1[

Finally, we may transform the resulting 3-tuple (Belief, Disbelief, Uncertainty),
of the conclusion, to a pair (Decision, Confidence) using formulas (3.2) and (3.1) and
approximate them by choosing the qualitative values, of the closest pair (Dec,Conf)
to their corresponding numerical values. To simplify, tables 4.1 and 4.2 present
(resp.) the corresponding qualitative (Dec,Conf) values for the conclusion out-
come interval. For instance, If Dec = 0.3, the decision will be “Opposable”. The
value Dec = 0.3 is closer to the decision “Opposable”, for which the corresponding
numerical value is (0.25), than “no decision” (0.5).

4.3 Case study

In this section, we use a part of an argument proposed in [Damour 2021] to test
and validate our confidence propagation approach. This study proposed an archi-
tecture of a collision avoidance system for drones, Urban Air Mobility and present
a complete argument (assurance case) of it. The studied system is named ACAS-X
(Next-Generation Airborne Collision Avoidance System). It replaces a set of lookup
tables (LUTs) (that provide anti-collision maneuvering guidance according to the
speed of the two aircrafts (vown, vint), their relative positions (θ, ψ and ρ), the
time until the loss of vertical separation occurs (τ) and the previous advisory (pa),
see figures 4.9 and 4.10) by a neural network (NN) of much smaller size. From five
different maneuvers (CoC: clear of conflict, WL: weak left, SL: strong left, WR:
weak right and SR; strong right), the system delivers the one with the least cost
(i.e, probability to have a collision).

In addition to the NN-based controller, this architecture (figure 4.9) includes a
safety net which contains a portion of LUTs (already established as safe) for unsafe
areas (where the NN may give results different from those of the LUTs), and a check
module which controls the switch between these two sub-systems (NN and LUTs).
The authors built an assurance case for the top goal “ Real-world situations where
the MLM (Machine learning Model) is not robust are identified and mitigated”. The
strategy is to agree that the proposed system will always detect situations when
the NN cannot perform its task with full guaranties and will manage it. They use a
graphical adaptation of Toulmin notation proposed by the RESSAC project. This
notation shares many features with the GSN. Thus, it is possible to switch from
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Figure 4.9: Architecture of the neural network based ACAS Xu [Damour 2021]

Figure 4.10: ACAS Xu geometry [Katz 2017]

one notation to the other. Figure 4.11 presents the assurance case that we encoded
with GSN formalism in order to apply to it our confidence assessment method. To
demonstrate this claim, the top goal (G1) is broken down into two sub-goals (G2)
and (G3). (G2) ensures that the property was correctly defined to identify all unsafe
situations (G4) and formally checked (G6) in each of the areas (noted “li” and called
p-boxes) into which the input space was correctly decomposed (G5). This property
is satisfied when the set of reachable advisories (CoC, SL, WL, WR, SR) of the NN
is included in the set of reachable advisories of the LUT, i.e:

decisions NN(li) ⊆ decisions LUT (li)

We consider, in this situation, that a NN behaves similarly to the LUT on a p-box
(li) .
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Figure 4.11: Assurance Case - ML subsystem robustness [Damour 2021]
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Table 4.3: Elicited belief degrees on rules
Goal (Gi) Belief degree on rules

G1
(i = 2, n = 3)

Bel⇒([∧n
i Gi] ⇒ G1) = 1

Bel⇐([∧n
i ¬Gi] ⇒ ¬G1) = 0 (originally equal to 1)

Bel⇒(Gi ⇒ G1) = 0
Bel⇐(¬Gi ⇒ ¬G1) = 1

G2
(i = 4, n = 6)

Bel⇒([∧n
i Gi] ⇒ G2) = 1

Bel⇐([∧n
i ¬Gi] ⇒ ¬G2) = 0 (originally equal to 1)

Bel⇒(Gi ⇒ G2) = 0
Bel⇐(¬Gi ⇒ ¬G2) = 1

G3
Bel⇒(G7 ⇒ G3) = 1

Bel⇐(¬G7 ⇒ ¬G3) = 1

In order to apply our method to this case study, we worked with two authors
of this work (Gabreau, C. and Pagetti, C) to validate the GSN and to ask them
as experts to provide values for assessment. This case study is mainly a proof of
concept, because of the small number of experts, and also because they were also
the developers of the system.

Modeling phase

Following the assessment procedure above, we use a questionnaire to ask safety
experts to give their opinions on the system, see Appendix section A. Table 4.3
groups the degrees of belief on the rules involved in this case. As stated in chapters
above, the belief in the conjunctive reverse rule (in the form of Bel⇐([∧n

i=1¬pi] ⇒
C)) were set to zero (see the table), because they do not provide more confidence
to their goals (G1 and G2). We can notice that all direct conjunctive rules receive
maximal weights and the elementary rule weights for (G1) and (G2) are null. Thus,
we deduce that this GSN involves two conjunctive argument types (arguments 1
and 2 in figure 4.12) where all premises are needed to support the conclusion and
a simple one (argument 3 in figure 4.12).

Application phase

We also asked the expert, using the same questionnaire, to give their opinion about
premises. The results are displayed in table 4.4.

As seen in chapter 2, C-Arg tends to propagate the premises that support the
conclusion with the least weight, increasing along with it the uncertainty level.
Thus, we can explain why we go from acceptable premises with very high confidence
(G6, G7), high confidence (G5) and for sure (G4), see table 4.4 for the appropriate
3-tuple (Bel,Disb, Uncer) corresponding values, to a tolerable top goal (G1) with
low confidence (Dec = 1+0.384−0

2 = 0.692, Conf = 0.384 + 0 = 0.384, see table 4.5
for belief and disbelief calculation details).
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Table 4.4: Basic assessment values of premises (Belp(Gi), Disbp(Gi), Uncerp(Gi))
Goal G4 G5 G6 G7
Value (1,0,0) (0.6,0,0.4) (0.8,0,0.2) (0.8,0,0.2)

Table 4.5: Belief and disbelief degrees of (sub-)goals calculation
Belief, disbelief degrees

BelC(G2) = Belp(G4) ·Belp(G5) ·Belp(G6) = 1 × 0.6 × 0.8 = 0.48
DisbC(G2) = 1 − [1 −Disbp(G4)] · [1 −Disbp(G5)] · [1 −Disbp(G6)] = 0

BelC(G3) = Belp(G7) = 0.8
DisbC(G3) = Disbp(G7) = 0

BelC(G1) = Belp(G2) ·Belp(G3) = 0.48 × 0.8 = 0.384
DisbC(G1) = 1 − [1 −Disbp(G2)] · [1 −Disbp(G3)] = 1 − 1 = 0

Sensitivity analysis

Graphs in figures 4.13 and 4.14 present, respectively, the sensitivity of decision
and confidence degrees of the conclusion (G1) to the sub-goals (G4), (G5), (G6)
and (G7). To determine the latter, we vary the assessment of a premise from its
minimal (Disbp(Gi) = 1) to its maximal (Belp(Gi) = 1) value, while we keep the
values of the other premises to their base values. We can notice that all values,
are indeed included in the interval [0,1]. We can also notice that the pair (decision,
confidence) on the goal (G1) varies from “Rejectable for sure” (Dec = 0, Conf = 1),
when Belp(Gi) = 0, i = {4, 5, 6, 7}, to “Tolerable with high confidence” (Dec =
0.82, Conf = 0.64), when Belp(G5) = 1. The sub-goal (G4) has the lowest influence
on decision and the highest influence on confidence; the opposite applies for sub-goal
(G5).
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Figure 4.15: Impact of changing the scale - example

Table 4.6: Impact of changing the decision scale on confidence assessment

Dec. scale
Argument C-Arg D-Arg

|Dec| = 4 Dec = 0.4489, Conf = 1 Dec = 0.5511, Conf = 1
Opposable, for sure Tolerable, for sure

|Dec| = 5 Dec = 0.5625 Dec = 0.4375
No decision, for sure No decision, for sure

4.4 Discussion

We can notice from this case study that both decision and the degree of confidence
associated to it strongly depend on the choice of the numerical scale used. Indeed,
changing the scale could lead to different results, particularly when we approxi-
mate the numerical value of the pair (Dec,Conf) by its corresponding qualitative
values. In the following example, we present two situations where the impact of
changing the decision scale is clearly visible on the outcomes. Let’s consider the
two arguments C-Arg and D-Arg of the figure 4.15. The conclusion (C) is sup-
ported by two premises to which we assign the assessment “opposable, for sure” for
both. Similarly, the conclusion (C ′) is supported by two premises (P ′

1, P
′
2) with

the assessments “tolerable, for sure”. Supposing that all belief in rules are maxi-
mal and two different equidistant decision scale of respectively four and five items,
lets calculate the confidence in the conclusions C and C ′. Table 4.6 groups the
result of the confidence (in quantitative and qualitative form) in the conclusions C
and C ′ when |Dec| = 4 and |Dec| = 5. In the case of a five-item decision scale
(“rejectable”, “opposable”, “no decision”, “tolerable” and “acceptable”), the result
for both arguments (C-Arg and D-Arg) is no decision, for sure suggesting that the
evidence provided by the premises contains both elements supporting and refuting
the conclusions, which is not the case in this situation. On the other hand, using
a four-item decision scale (without “no decision” item) the expected outcomes are
obtained, i.e. opposable, for sure for (C-Arg) and tolerable, for sure for (D-Arg).
Keep in mind that C-Arg and D-Arg respectively propagate the premise with the
least and the highest strength. However, the use of an odd decision scale (e.g.,
|Dec| = 5) is important in our assessment procedure for two reasons. First of all,
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this central element highlights both the situation of total ignorance and the pres-
ence of conflict, as we have seen in the previous chapters, which is impossible with
a even scale (e.g., |Dec| = 4). Secondly, this item is essential to the elicitation
procedure which use ignorance on some premises to deduce beliefs on simple rules.

Moreover, through the various argument structures (safety, assurance cases, etc.)
that we were able to review, we noticed that most of these cases corresponded to
conjunctive argument types (C-Arg). This observation may cast doubt on the utility
of having a disjunctive (D-Arg) and a hybrid (H-Arg) argument type, although
these have been defined in several works [Cyra 2011, Ayoub 2013, Guiochet 2014,
Wang 2018a]. We assume two reasons for this situation. The first may be related
to the design of the argument structure. The argument designer proposes only
minimal evidence to prove that the system is, for instance, acceptably safe and
does not try to add more evidence that could improve its safety level. A second
possible explanation may be related to the assessor. Indeed, it can be assumed
that experts take a cautious approach in their assessment. Hence, they tend to
give extreme values when evaluating an argument by rejecting it when a piece of
evidence seems less credible and do not accept a conclusion until all the evidence
seems more credible. The second explanation seems more likely, especially since in
our argument assessment method we put the expert in extreme situations in order
to deduce the (dis-)belief in the rules. The latter can indirectly influence the expert
judgment.

4.5 Conclusion

In this chapter, we presented a case study on which we applied our confidence assess-
ment procedure for GSN. A questionnaire was used to elicited both rules (modelling
phase) and premises. The elicited data was transformed to belief degrees in order to
compute the confidence in the top goal (conclusion), then translated back to qual-
itative assessment (application phase). The results of the sensitivity analysis con-
ducted on this case were in agreement with our expectation. Thus, we can deduce
that our approach is valid. However, we notice that the qualitative/quantitative
transformation can lead to inconsistent results according to choice of the numerical
assessment scales (i.e, decision and confidence). Especially, when approximating
the degrees of belief on the conclusion (Bel,Disb, Uncer) to the pair (Dec,Conf).
Hence there is a need to improve our elicitation model. An interesting approach,
which consists in replacing this quantitative approach by a purely qualitative one,
will be explored in the next chapter.
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5.1 Introduction

In the previous chapter, we presented a quantitative method of uncertainty assess-
ment in GSN -based argument structures. This approach uses Dempster-Shafer
theory to build on top of the argument a formal model of confidence/uncertainty
propagation from premises to the conclusion expressed with logical operators (con-
junction, disjunction, and negation). The confidence values, used to feed the
propagation model, are quantified using belief functions in the form of a 3-tuple
(Bel,Disb, Uncer) on rules and premises.

However this quantification of confidence is often problematic, when it relies on
expert assessments. In many cases, experts supply qualitative assessments using
linguistic values like for sure, high confidence, low confidence, etc., which are then
translated into numbers on the [0, 1] scale (elicitation approach, in chapter 3). This
translation is somewhat arbitrary. So, a legitimate question is whether a purely
qualitative approach to uncertainty, that would be a counterpart to the belief func-
tion approach, could be promising. The idea is to avoid the quantitative encoding
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of qualitative estimates. It makes all the more sense as numerical degrees of belief
obtained via uncertainty propagation are often translated back to the qualitative
scale, so as to make the results more palatable. So it is legitimate to investigate a
qualitative approach.

This chapter presents a first step in this direction. It presents theoretical back-
ground on qualitative capacities that can be viewed as a qualitative counterpart of
belief functions, based on [Dubois 2022a]. Then, it presents a modified version of
confidence propagation and elicitation models using qualitative capacities. Finally,
a preliminary comparison of qualitative and quantitative uncertainty propagation
is proposed via an example.

5.2 Introduction to qualitative capacities

A capacity (or fuzzy measure), proposed by [Zadeh 1999], is a set function g : 2Ω →
[0, 1] which respect assumptions in (1.1), especially monotonicity with respect to
inclusion. Hence:

g(A ∪B) ≥ max(g(A), g(B)) (5.1)

g(A ∩B) ≤ min(g(A), g(B)) (5.2)

When equation (5.1) is made an equality g(A∪B) = max(g(A), g(B)), then we talk
about a possibility measure (named Π). In a finite setting, possibility is formally
defined by a function π : Ω → [0, 1] such that:

Π(A) = max
ω∈A

π(ω). (5.3)

On the other hand, when equation (5.2) is forced into an equality g(A ∩ B) =
min(g(A), g(B)), then we talk about necessity measure (named N). Similarly to
belief and plausibility functions (Pl = 1 −Disb), necessity can be formally defined
by duality as:

N(A) = min
ω /∈A

(1 − π(ω)) = 1 − Π(¬A) (5.4)

When g respects the additivity property: g(A∪B) = g(A)+g(B), where A∩B = ∅,
g = P we talk about a probability measure.

A qualitative capacity (q-capacity, for short) is a function that maps the power
set of Ω to a finite totally ordered symbolic (or Linguistic) set L instead of the unit
interval. Namely: {

γ(∅) = 0, γ(Ω) = 1
A ⊆ B ⇒ γ(A) ≤ γ(B) (5.5)

Any q-capacity can be put in a form similar to that of a belief function:

γ(A) = max
B⊆A ̸=∅

ρ(B), ∀A ⊆ W, (5.6)

where ρ is called a basic possibility assignment (BΠA) [Dubois 2019] since formally,
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the function ρ : 2W → L is such that maxS⊆W ρ(S) = 1 and ρ(∅) = 0. The value
ρ(B) is the strength of the piece of evidence B, contrary to the numerical case γ
does not induce a unique ρ. We can always assume ρ(W ) = 1.

The linguistic set L can take different formats (Tall - Short; high level - low
level; (α, δ, λ); 0 - 1, etc.). The value γ(A) (resp. γ(¬A)) qualifies the support
in favor of (resp. against) A, i.e. belief (resp. disbelief) in A using an element in
the qualitative scale L. The pair (γ(A), γ(¬A)) thus describes our epistemic stance
with respect to A in terms of belief and disbelief.

Figure 5.1 presents the credibility and information orderings on pairs (belief,
disbelief) including extreme cases. A proposition A is at least as credible as B if
γ(A) ≥ γ(B) and γ(¬A) ≤ γ(¬B) (solid arrows), thus ranging from certainty of
falsity (0, 1) up to certainty of truth (1, 0). A proposition A is at least as informed as
B if γ(A) ≥ γ(B) and γ(¬A) ≥ γ(¬B) (dotted arrows), thus ranging from ignorance
((0, 0), no information) up to conflict ((1, 1), full contradictory information). In
this situation, the amount of evidence supporting the conclusion is equal to the one
rejecting it. The set L×L is then equipped with a bilattice structure [Ciucci 2019].
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Figure 5.1: Evolution of certainty and information in pairs (belief, disbelief)

In order to combine pieces of information (evidence) represented by BΠAs (ρ1,
ρ2, ... ρn), an alternative to Dempster rule of combination (equation 1.8) is given
as: ρ∩ = ρ1 ⊙ ρ2 such that:

ρ∩(A) = max
E1∩E2=A

min[ρ1(E1)), ρ2(E2)] (5.7)

This is like the unnormalized Dempster rule of combination, changing product into
min and sum into max.
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Table 5.1: Combination of the focal sets of the premise (ρp) with its rules (ρr) for
S-Arg

ρ = ρp ⊙ ρr ρr(p ≡ C) ρr(p ⇒ C) ρr(¬p ⇒ ¬C) ρr(⊤)
ρp(p) p ∧ C p ∧ C p p

ρp(¬p) ¬p ∧ ¬C ¬p ¬p ∧ ¬C ¬p

ρp(⊤) p ≡ C p ⇒ C ¬p ⇒ ¬C ⊤

5.3 Qualitative confidence propagation models

In this paragraph, we use the same argument types (modelled by rules, in chapter
2) to build purely qualitative propagation models. To run such models, we use
an elicitation method adapted to qualitative assessments on premises and rules
(presented in the next section).

5.3.1 Simple argument (S-Arg)

This argument describes the case of a conclusion (C) supported by a single premise
(p). To model this argument, we associate to each rule (direct and reverse one) a
simple BΠA’s (resp., ρ⇒ and ρ⇐), and a BΠA on the premise space ρp, assigning
a mass to its truth ρp(p), its falsity ρp(¬p) and the tautology ρp(⊤) = 1 of which
their maximum is 1. Then, using a combination rule in (formula 5.7), we merge
the BΠAs on rules (ρr = ρ⇒ ⊙ ρ⇐) with the one on the premise (ρp), see table
5.1. Similarly to the quantitative formulas, γC(C) = ρC(C), γp(p) = ρp(p) and
γr(r) = ρr(r), ∀r (conjunctive, disjunctive, direct or reverse), since we work on a
two state frame of discernment Ωx = {x,¬x}.

γC(C) = max
ϕ:ϕ⊢C,ϕ̸=∅

ρ(ϕ)

= max min[ρp(p), ρr(p ≡ C), ρr(p ⇒ C)]
= min[ρp(p), ρ⇒(p ⇒ C)]

Where: max min[ρr(p ≡ C), ρr(p ⇒ C)] = max[min(ρ⇒, ρ⇐),min(ρ⇒)] = ρ⇒.

γC(¬C) = max
ϕ:ϕ⊢¬C,ϕ̸=∅

ρ(ϕ)

= max min[ρp(¬p), ρr(p ≡ C), ρr(¬p ⇒ ¬C)]
= min[ρp(¬p), ρ⇐(¬p ⇒ ¬C)]

So, we conclude for the uncertainty propagation in simple argument:

S-Arg :
{
γC(C) = min[γp(p), γ⇒(p ⇒ C)]
γC(¬C) = min[γp(¬p), γ⇐(¬p ⇒ ¬C)] (5.8)
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We can notice that the belief γC(C) only depends on the direct rule and the belief
of the premise, while the disbelief γC(¬C) only depends on the reverse rule and the
disbelief of the premise.

5.3.2 Conjunctive argument (C-Arg)

This argument type describes the situation when two premises or more are jointly
needed to support a conclusion. We formally defined its direct and reverse rules
(resp.) by: (∧n

i=1pi) ⇒ C and ∧n
i=1(¬pi ⇒ ¬C). Following the same reasoning as

for the previous argument type, we put a simple BΠA on each rule (ρ⇒ and ρi
⇐),

and a function BΠA on each premise: ρi
p, which assigns one mass on the truth

of (pi), its negation (¬pi) and the tautology (⊤) such ρi
p(⊤) = 1. Then, using

the combination rule in 5.7, we deduce γC(C) and γC(¬C) from the combination:
ρC = ρp ⊙ ρr (tables 5.2 and 5.3). Where: ρp = ρ1

p ⊙ ρ2
p and ρr = ρ⇒ ⊙ ρ1

⇐ ⊙ ρ2
⇐.

Table 5.2: Combination of masses of rules and premises for the C-Arg (part 1)
ρ = ρp ⊙ ρr ρr([p1 ∧ p2] ≡ C) ρr([p1 ∧ p2] ⇒ C) ρr(¬[p1 ∧ p2] ⇒ ¬C) ρr(¬p1 ⇒ ¬C)
ρp(p1 ∧ p2) p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C - -

ρp(¬p1 ∧ p2) ¬p1 ∧ p2 ∧ ¬C - ¬p1 ∧ p2 ∧ ¬C ¬p1 ∧ p2 ∧ ¬C

ρp(p1 ∧ ¬p2) p1 ∧ ¬p2 ∧ ¬C - p1 ∧ ¬p2 ∧ ¬C -
ρp(¬p1 ∧ ¬p2) ¬p1 ∧ ¬p2 ∧ ¬C - ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C

mp(p1) - - - -
ρp(¬p1) ¬p1 ∧ ¬C - ¬p1 ∧ ¬C ¬p1 ∧ ¬C

ρp(p2) - - - -
mp(¬p2) ¬p2 ∧ ¬C - ¬p2 ∧ ¬C -

ρp(⊤) - - - -

Table 5.3: Combination of masses of rules and premises for the C-Arg (part 2)
ρ = ρp ⊙ ρr ρr(¬p2 ⇒ ¬C) ρr(F1) ρr(F2) ρr(⊤)
ρp(p1 ∧ p2) - p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C -

ρp(¬p1 ∧ p2) - ¬p1 ∧ p2 ∧ ¬C - -
ρp(p1 ∧ ¬p2) p1 ∧ ¬p2 ∧ ¬C - p1 ∧ ¬p2 ∧ ¬C -

ρp(¬p1 ∧ ¬p2) ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C -
ρp(p1) - - - -

ρp(¬p1) ¬p1 ∧ ¬C ¬p1 ∧ ¬C - -
ρp(p2) - - - -

mp(¬p2) ¬p2 ∧ ¬C - ¬p2 ∧ ¬C -
ρp(⊤) - - - ⊤

Where:

• F1 = [(p1 ∧ p2) ⇒ C] ∧ [¬p1 ⇒ ¬C].

• F2 = [(p1 ∧ p2) ⇒ C] ∧ [¬p2 ⇒ ¬C].

For a better visualization, we have chosen to replace by (-) the focal elements
that do not trigger the conclusion (C) or its negation (¬C) in the tables 5.2 and
5.3.
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From the combination of q-capacity functions in tables 5.2 and 5.3, we deduce
the belief degree in the conclusion γC(C) :

γC(C) = max
ϕ:ϕ⊢C, ϕ̸=∅

ρ(ϕ)

= min[ρ1
p(p1), ρ2

p(p2), ρ⇒([p1 ∧ p2] ⇒ C)]

From the combination of q-capacity functions in tables 5.2 and 5.3, we deduce
the disbelief degree in the conclusion γC(¬C) :

γC(¬C) = max
ϕ:ϕ⊢¬C, ϕ̸=∅

ρ(ϕ)

= max[min(ρ1
p(¬p1), ρ1

⇐(¬p1 ⇒ ¬C)),min(ρ2
p(¬p2), ρ2

⇐(¬p2 ⇒ ¬C)]

Generalizing the calculations above to n premises, we get the following qualita-
tive confidence propagation formulas for a C-Arg:

C-Arg :
{
γC(C) = min{minn

i=1 γ
i
p(pi), γ⇒([∧n

i pi] ⇒ C)}
γC(¬C) = maxn

i=1{min[γi
p(¬pi), γi

⇐(¬pi ⇒ ¬C)]} (5.9)

In the formulas of the quantitative approach (formulas in Section 2.2) they use
probabilistic sum (a+b−ab) and the product (ab) instead of max,min, highlighting
the similarity between the results obtained in both models. In fact, we can better
see with min-max operators that the C-Arg favors the propagation of the premise
with the least strength (minimal belief, with a maximal disbelief degree).

5.3.3 Disjunctive argument (D-Arg)

In this situation, each premise can support alone the whole conclusion. Formally, the
direct and reverse rules are defined as follows: ∧n

i=1(pi ⇒ C) and (∧n
i=1¬pi) ⇒ ¬C.

The calculation of γC(C) and γC(¬C) is identical to the one above, swapping the
two expressions (ρC = ρp ⊙ ρr, where ρr = ρ1

⇒ ⊙ ρ2
⇒ ⊙ ρ⇐, tables 5.4 and 5.5).

Table 5.4: Combination of masses of rules and premises for the D-Arg (part 1)
ρ = ρp ⊙ ρr mr([p1 ∨ p2] ≡ C) ρr([p1 ∨ p2] ⇒ C) ρr(¬[p1 ∨ p2] ⇒ ¬C) ρr(p1 ⇒ C)
ρp(p1 ∧ p2) p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C - p1 ∧ p2 ∧ C

ρp(¬p1 ∧ p2) ¬p1 ∧ p2 ∧ C ¬p1 ∧ p2 ∧ C - -
ρp(p1 ∧ ¬p2) p1 ∧ ¬p2 ∧ C p1 ∧ ¬p2 ∧ C - p1 ∧ ¬p2 ∧ C

ρp(¬p1 ∧ ¬p2) ¬p1 ∧ ¬p2 ∧ ¬C - ¬p1 ∧ ¬p2 ∧ ¬C -
ρp(p1) p1 ∧ C p1 ∧ C - p1 ∧ C

ρp(¬p1) - - - -
ρp(p2) p2 ∧ C p2 ∧ C -

ρp(¬p2) - - - -
ρp(⊤) - - - -
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Table 5.5: Combination of masses of rules and premises for the D-Arg (part 2)
ρ = ρp ⊙ ρr ρr(p2 ⇒ C) ρr(F ′

1) ρr(F ′
2) ρr(⊤)

ρp(p1 ∧ p2) p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C -
ρp(¬p1 ∧ p2) ¬p1 ∧ p2 ∧ C - ¬p1 ∧ p2 ∧ C -
ρp(p1 ∧ ¬p2) - p1 ∧ ¬p2 ∧ C - -

ρp(¬p1 ∧ ¬p2) - ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C -
ρp(p1) - p1 ∧ C - -

ρp(¬p1) - - - -
ρp(p2) p2 ∧ C - p2 ∧ C -

ρp(¬p2) - - - -
ρp(⊤) - - - ⊤

Where:

• F ′
1 = [¬(p1 ∧ p2) ⇒ ¬C] ∧ [p1 ⇒ C].

• F ′
2 = [¬(p1 ∧ p2) ⇒ ¬C] ∧ [p2 ⇒ C].

From the combination of q-capacity functions in tables 5.4 and 5.5, we deduce
the belief degree in the conclusion γC(C):

γC(C) = max
ϕ:ϕ⊢C, ϕ̸=∅

ρ(ϕ)

= max[min(ρ1
p(p1), ρ1

⇒(p1 ⇒ C),min(ρ2
p(p2), ρ2

⇒(p2 ⇒ C))]

From the combination of q-capacity functions in tables 5.4 and 5.5, we deduce
the disbelief degree in the conclusion γC(C):

γC(¬C) = max
ϕ:ϕ⊢¬C, ϕ̸=∅

ρ(ϕ)

= min[ρ1
p(¬p1), ρ2

p(¬p2), ρ⇐([¬p1 ∧ ¬p2] ⇒ ¬C)]

Generalizing the calculations above to n premises, we get the following qualita-
tive confidence propagation formulas for a D-Arg:

D-Arg :
{
γC(C) = maxn

i=1{min[γi
p(pi), γi

⇒(pi ⇒ C)]}
γC(¬C) = min{minn

i=1 γ
i
p(¬pi), γ⇐([∧n

i ¬pi] ⇒ ¬C)} (5.10)

We can notice that this model, as its quantitative counterpart (formulas in 2.3),
favors the propagation of the premise with the greatest strength (maximal belief
and minimal disbelief degree).

5.3.4 Hybrid argument (H-Arg)

This argument type describes the situation where each premise supports the con-
clusion to some degree, but their conjunction does it to a larger one. Therefore,
all conjunctive and elementary rules will be used in this argument type. Thus, we
obtain: γC = ρ1

p ⊙ ρ2
p ⊙ ρ⇒ ⊙ ρ1

⇒ ⊙ ρ2
⇒ ⊙ ρ⇐ ⊙ ρ1

⇐ ⊙ ρ2
⇐ (table 5.6).
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Table 5.6: Combination of premise (pi) with its rules for H-Arg
ρ = ρ12 ⊙ ρr ρr(Fc) ρr([p1 ∧ p2] ⇒ C) ρr([¬p1 ∧ ¬p2] ⇒ ¬C) ρr(⊤)

ρ12(p1 ∧ p2 ∧ C) p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C

ρ12(¬p1 ∧ p2 ∧ C) ¬p1 ∧ p2 ∧ C ¬p1 ∧ p2 ∧ C ¬p1 ∧ p2 ∧ C ¬p1 ∧ p2 ∧ C

ρ12(p1 ∧ ¬p2 ∧ C) p1 ∧ ¬p2 ∧ C p1 ∧ ¬p2 ∧ C p1 ∧ ¬p2 ∧ C p1 ∧ ¬p2 ∧ C

ρ12(p1 ∧ C) p1 ∧ C p1 ∧ C p1 ∧ C p1 ∧ C

ρ12(p2 ∧ C) p2 ∧ C p2 ∧ C p2 ∧ C p2 ∧ C

ρ12(¬p1 ∧ ¬p2 ∧ ¬C) ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C ¬p1 ∧ ¬p2 ∧ ¬C

ρ12(¬p1 ∧ p2 ∧ ¬C) ¬p1 ∧ p2 ∧ ¬C ¬p1 ∧ p2 ∧ ¬C ¬p1 ∧ p2 ∧ ¬C ¬p1 ∧ p2 ∧ ¬C

ρ12(p1 ∧ ¬p2 ∧ ¬C) p1 ∧ ¬p2 ∧ ¬C p1 ∧ ¬p2 ∧ ¬C p1 ∧ ¬p2 ∧ ¬C p1 ∧ ¬p2 ∧ ¬C

ρ12(¬p1 ∧ ¬C) ¬p1 ∧ ¬C ¬p1 ∧ ¬C ¬p1 ∧ ¬C ¬p1 ∧ ¬C

ρ12(¬p2 ∧ ¬C) ¬p2 ∧ ¬C ¬p2 ∧ ¬C ¬p2 ∧ ¬C ¬p2 ∧ ¬C

ρ12(p1 ∧ p2) p1 ∧ p2 ∧ C p1 ∧ p2 ∧ C - -
ρ12(¬p1 ∧ ¬p2) ¬p1 ∧ ¬p2 ∧ ¬C - ¬p1 ∧ ¬p2 ∧ ¬C -

. . . . . . . . . . . . . . .

ρ12(∅) ∅ ∅ ∅ ∅
ρ12(⊤) Fc [p1 ∧ p2] ⇒ C [¬p1 ∧ ¬p2] ⇒ ¬C ⊤

Where:

• ρ12 = (ρ1
p ⊙ ρ1

⇒ ⊙ ρ1
⇐) ⊙ (ρ2

p ⊙ ρ2
⇒ ⊙ ρ2

⇐)

• ρr = ρ⇒ ⊙ ρ⇐

• Fc = ([p1 ∧ p2] ⇒ C) ∧ ([¬p1 ∧ ¬p2] ⇒ ¬C).
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From the combination of q-capacity functions in table 5.6, we deduce the belief
degree in the conclusion γC(C):

γC(C) = max
ϕ:ϕ⊢C, ϕ̸=∅

ρ(ϕ)

= max{min[ρ1
p(p1), ρ2

p(p2), ρ⇒([p1 ∧ p2] ⇒ C)],
min[(ρ1

p(p1), ρ1
⇒(p1 ⇒ C)),min(ρ2

p(p2), ρ2
⇒(p2 ⇒ C)]}

From the combination of q-capacity functions in table 5.6, we deduce the dis-
belief degree in the conclusion γC(C):

γC(¬C) = max
ϕ:ϕ⊢¬C, ϕ̸=∅

ρ(ϕ)

= max{min[ρ1
p(¬p1), ρ2

p(¬p2), ρ⇐([¬p1 ∧ ¬p2] ⇒ ¬C)],
min[(ρ1

p(¬p1), ρ1
⇐(¬p1 ⇒ ¬C)),min(ρ2

p(¬p2), ρ2
⇐(¬p2 ⇒ ¬C)]}

Generalizing the calculations above to n premises, we get the following qualita-
tive confidence propagation formulas for a H-Arg:

H-Arg :


γC(C) = max{min[minn

i=1 γ
i
p(pi), γ⇒([∧n

i=1pi] ⇒ C)],
maxn

i=1(min[γi
p(pi), γi

⇒(pi ⇒ C)]}
γC(¬C) = max{min[minn

i=1 γ
i
p(¬pi), γ⇐([∧n

i=1¬pi] ⇒ ¬C)],
maxn

i=1 min[γi
p(¬pi), γi

⇐(¬pi ⇒ ¬C)]}
(5.11)

We can notice, as expected (analogy to quantitative formulas), that formulas
of H-Arg (5.11), presents a combination between C-Arg formulas (5.9), and D-
Arg (5.10). Assuming a maximal belief (= 1) (resp. disbelief) on premises, it is
enough that the simple direct rules take a null value (resp. the reversed conjunctive
one) to get the conjunctive argument type. And conversely, to get the disjunctive
argument type, put null values on direct conjunctive and simple reversed rules. The
S-Arg, represents a special case when only one premise is available (n = 1). In the
following, only the H-Arg will be used since it covers the four types.

5.3.5 Conflict mass

The C-Arg and D-Arg argument type are conflict-free. They respectively propagate
the premise with lowest and highest assessments. However, it is not the same for
H-Arg. Indeed, merging BΠA’s ρi

p (on pi, ¬pi and ⊤), ρi
⇒ , ρi

⇐, i = 1, . . . n, as in its
quantitative counterpart, the BΠA pertaining to the conclusion C obtained from
this fusion may assign a mass to the contradiction. Conflict always appears when
four items are merged of the form: pi and pi ⇒ C with ¬pj and ¬pj ⇒ ¬C, j ̸= i,
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whose conjunction is a contradiction ∅ with mass:

ρij
C(∅) = min[ρi

C(pi ∧ C), ρj
C(¬pj ∧ ¬C)]

= min[ρi
p(pi), ρi

⇒(pi ⇒ C), ρj
p(¬pj), ρj

⇒(¬pj ⇒ ¬C)]]

The final capacity on contradiction for n premises takes the form ρC(∅) =
maxi ̸=j(ρij

C(∅)). Besides, this capacity on contradiction does not affect the final
results of belief and disbelief since γC(C) and γC(¬C) are greater than γC(∅).
For instance, for n = 2: ρC(∅) = max(ρ12

C (∅), ρ21
C (∅)). Using (5.6) we get:

γC(C) = max[ρC(p1 ∧ C), ρC(p2 ∧ C)] ≥ ρC(∅) and γC(¬C) = max[ρC(¬p1 ∧
¬C), ρC(¬p2 ∧ ¬C)] ≥ ρC(∅). Notice that: ρC(pi ∧ C) = min(ρi

p(pi), ρi
⇒(pi ⇒ C)

and ρC(¬pi ∧ ¬C) = min(ρi
p(¬pi), ρi

⇐(¬pi ⇒ ¬C).

5.4 Qualitative elicitation models

In order to elicit qualitative capacities, we reuse a modified version of the quan-
titative one proposed in chapter 3. Thus, the same types of information will be
collected to assess the GSN pattern:

• The decision index denoted by Dec(A), describes which side the assessor leans
towards, i.e., acceptance or rejection of A. It is associated with a bipolar scale
D = {0D = d−n, dn−1, . . . , d0 = e, d1, . . . dn = 1D} with 2n + 1 values, the
bottom of which (0D) expressing rejection, the top (1D) acceptance, and the
midpoint (e) a neutral position. Here we assume n = 2.

• The confidence index denoted by Conf(A) reflects the amount of information
an assessor possesses to support the decision. It uses a positive uni-polar scale
with n + 1 values C = {0C = c0, c1, . . . , cn = 1C} (the top 1C expresses full
confidence, the bottom 0C is neutral- no information). For n = 2: lack of
confidence, moderate confidence and full confidence.

To make decision and confidence scales compatible with the transformation for-
mulas presented below, we consider that:

(i) The bipolar scale D is equipped with an order-reversing map νD such that
νD(d−i) = di. Especially we have that νD(Dec(A)) = Dec(¬A).

(ii) The unipolar scale C is isomorphic to the positive part of D, and is equipped
with an order-reversing map ν such that: ν(ci) = cn−i.

In order to switch from a pair (Dec(A), Conf(A)) to a pair of capacity values
(ρ(A), ρ(¬A)), we define transformation formulas that map D × C to the belief-
disbelief scale L × L containing pairs (γ(A), γ(¬A)). The scale L has the same
number of elements as C (i.e., 3 here). The mapping f : D × C → L × L: must
satisfy some conditions [Dubois 2022b]:

• If the expert declares lack of confidence, the result is f(Dec(A), 0) = (0, 0),
whatever the trend expressed on the decision scale.
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Table 5.7: Values from (Dec, Conf) to (Bel,Disb) pairs on premises

Conf
Dec

d−2 (Rej) d−1 (Opp) d0(ND) d1 (Tol) d2 (Acc)

c0 (Lack of conf.) (0,0) (0,0) (0,0) (0,0) (0,0)
c1 (Moderate conf.) (0,λ) (λ,λ) (λ,λ) (λ,λ) (λ,0)

c2 (For sure) (0,1) (λ,1) (1,1) (1,λ) (1,0)

• If the expert is fully confident, then f(1, 1) = (γ(A), γ(¬A)) = (1, 0), f(0, 1) =
(0, 1), f(e, 1) = (1, 1). Indeed, for the latter, there is a total conflict: the
expert is maximally informed, and cannot decide between A and its negation.

• max(γ(A), γ(¬A)) = Conf(A): the belief in A or its negation cannot be
stronger than the confidence.

• if Dec(A) is the midpoint of D, then γ(A) = γ(¬A)(= Conf(A)) (no reason
to take side).

• if Dec(A) is less than the midpoint of D, then γ(A) < γ(¬A) = Conf(A),
and the smaller D(A), the smaller γ(A).

• if Dec(A) is greater than the midpoint of D, then γ(A) = Conf(A) > γ(¬A),
and the greater D(A), the smaller γ(¬A).

These conditions lead to propose the following translation formulas :

if Dec(A) < e, γ(A) = min[νC(Dec(¬A)), Conf(A)] and γ(¬A) = Conf(A)
if Dec(A) > e, γ(A) = Conf(A) and γ(¬A) = min[νC(Dec(A)), Conf(A)]
if Dec(A) = Dec(¬A) = e, γ(A) = γ(¬A) = Conf(A)

In table 3.1, we grouped all possible (Dec, Conf) pairs on premises with their
appropriate (γ(A), γ(¬A)) counterparts, using the formulas above. We can notice
an anti-symmetry between belief and disbelief degrees with respect to the central
column (d0: No clear decision). We also notice that when no information is available
(c0: Lack of confidence), no matter what choice is made, the degrees of belief and
disbelief take the minimal value. On the other hand, in the case of a fully informed
expert (c2: For sure) the decision value varies from rejection to acceptance and is
reflected by the pair (γ(A), γ(¬A)). We can see that the values in the table respect
the conditions imposed above.

5.5 Qualitative assessment application to GSN argu-
ments

Similarly to the quantitative assessment procedure, this procedure is also structured
in two phases as presented in figure 5.2. A modeling phase where collected expert
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Figure 5.2: Schema of the assessment framework for safety argument

opinions about rules expressed with qualitative scores (Dec,Conf), are translated
to qualitative belief and disbelief values (λi). We benefit from an observation made
on the quantitative model (formulas 2.4). Namely, we notice that under some
assumptions on the premises, the value of the conclusion is the value of the rule. For
instance, assuming full support (resp. positive or negative) on all premises gives the
value of the conjunctive rule (resp. direct and reversed): γC(C) = γ⇒([∧n

i=1pi] ⇒
C) or γC(¬C) = γ⇐([∧n

i=1¬pi] ⇒ ¬C). On the other hand, assuming a total
support (resp. positive or negative) on one premise (pi) and total ignorance on the
others gives the value of the appropriate disjunctive rule: γC(C) = γi

⇒(pi ⇒ C) or
γC(¬C) = γi

⇐(¬pi ⇒ ¬C).

So, we will use the same Table 5.7 to transform the assessment on rules. How-
ever, to avoid the negation of rules, the assessor can again only choose between the
positive decision levels (from “no decision" to “acceptable") for direct rules; only
negative decisions (from “rejectable" to “no decision") for the reversed ones. In-
deed, we have seen that rules can only infer uncertainty on one side of the decision
scale.

Next, comes the application phase where assessments about premises are col-
lected according to the same elicitation method on rules. This time the expert is
free to choose any value of the evaluation matrix. Once the beliefs about the rules
and premises are collected and transformed into an appropriate form, we calculate
the degree of belief and disbelief of the conclusion.
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Table 5.8: Values of the belief degrees on rules
Goal (Gi) Belief degree on rules in quantitative (qualitative)

G
Bel⇒([G1 ∧G2] ⇒ G) = Bel⇐([¬G1 ∧ ¬G2] ⇒ ¬G) = 1 (1)

Bel⇒(G1 ⇒ G) = Bel⇒(G2 ⇒ G) = 0.75 (λ)
Bel⇐(¬G1 ⇒ ¬G) = Bel⇐(¬G2 ⇒ ¬G) = 0.75 (λ)

G1
Bel⇒([P1 ∧ P2] ⇒ G1) = 1 (1)

Bel⇐(¬P1 ⇒ ¬G1) = Bel⇐(¬P2 ⇒ ¬G1) = 1 (1)

G2
Bel⇒(P3 ⇒ G2) = Bel⇒(P4 ⇒ G2) = 1 (1)

Bel⇐([¬P3 ∧ ¬P4] ⇒ ¬G2) = 1 (1)

Figure 5.3: Evaluation matrix

G

G1 G2

P1 P2 P3 P4

H-Arg

C-Arg D-Arg

Figure 5.4: GSN artificial example

5.6 Quantitative Vs Qualitative assessment procedure

On an artificial example (Figure 5.4) that displays three argument types (C-Arg,
D-Arg and H-Arg), we apply our approach in order to see how each type affects
the propagation of uncertainty from premises to the overall goal (conclusion). We
also apply the quantitative approach presented in chapter 4 on this artificial case
study. To compare results from both approaches, we will use the same decision and
confidence scales presented in figure 5.3.

The example in Figure 5.4, presents a top-goal (G) supported by two sub-goals
(G1) and (G2) through a hybrid argument type (H-Arg). Each one of them is also
supported, respectively, by two premises. Goal (G1) is supported by the premises
(P1) and (P2) related by a conjunctive argument type (C-Arg). On the other hand,
goal (G2) is supported by the premises (P3) and (P4) related by a disjunctive
argument type (D-Arg). For simplicity, we set all masses on rules of C-Arg, D-Arg,
and the conjunctive ones of H-Arg to their maximal values (“acceptable for sure”),
see table 5.8. While we set disjunctive rule masses of H-Arg to “tolerable, for sure”.
Then, we use four settings with different premise values and compute the confidence
in the top goal.

The procedure described in section 5.4 was used to transform the assessments
into q-capacities for the qualitative case. The formulas in 3.2 and 3.1 were used to
get belief and disbelief for the quantitative one.

In general, we can see from Table 5.9 that both approaches give close results
which fit well with our expectations. The only difference is in the confidence values.
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Table 5.9: Pairs (decision, confidence) according to both qualitative (Qual.) and
quantitative (Quant.) methods for the example (see Fig. 5.3 for the meaning of
symbols)

Meth. 1st 2nd 3th 4th

P1 - (Opp,c2) (Tol,c2) (Tol,c2) (Opp,c2)
P2 - (Tol,c2) (Tol,c2) (Tol,c2) (Opp,c2)
P3 - (Tol,c2) (Tol,c2) (Tol;c2) (Opp;c2)
P4 - (Tol,c2) (Opp,c2) (Tol,c2) (Opp,c2)

G
Quant. (ND;c1) (Tol;c1) (Tol;c1) (Opp;c1)
Qual. (λ, λ) ≡ (ND;c1) (Tol;c2) (Tol;c2) (Opp;c2)

We can say that, in this case the qualitative approach gives results with higher
levels of confidence (more optimistic) than the quantitative one.

Indeed, we notice that the first test case gives a “no decision” for the quantitative
case. In the qualitative one, the formulas gives the following result: γC(C) =
γC(¬C) = λ. This result corresponds to three assessment values (see table 4.4):
“opposable”, “no decision” and “tolerable” with moderate confidence. Since we
end up with two opposite judgments in the H-Arg (conflict situation, for both
qualitative and quantitative cases) due to C-Arg that propagates the premise with
least strength (opposable) to G1 (G2: tolerable), the decision value of the conclusion
G will take also “no decision”. On the contrary, in the 2nd column, we get a
“tolerable" decision, because the D-Arg favors the propagation of the premise with
the greatest weight (tolerable) to G2 (G1: tolerable). In the 3th and 4th columns
we can notice, as expected, that the top goal keeps the same decision as premises
respectively: “tolerable" and “opposable".

The difference in the degree of confidence between qualitative and quantitative
approaches is due to the nature of the operations used. For example, the C-Arg
favors the propagation of the weakest premise (weaker belief and stronger disbelief).
In the quantitative setting, we use the product and the probabilistic sum. And in
the qualitative case, we use min and max, which does not model attenuation or
reinforcement effects in case of independent pieces of information. This is one
limitation of the qualitative approach.

5.7 Discussion

It is reasonable to assume that the more evidence we get from an argument struc-
ture, the more confidence we have in the system it supports. Hence the interest to
develop an hybrid argument type.. This argument increases the confidence in the
supported system to the acceptance or rejection of the conclusion according to the
evidence provided (resp. for or against). It also decreases the confidence in case
of lack of evidence or contradictory evidence. As we have seen from the definition
of the H-Arg, this argument takes into consideration both effects of conjunction
and disjunction of premises on the conclusion. However, in the end it delivers the
confidence induced by the most dominant argument type C-Arg or D-Arg. This ob-
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servation is more visible in the qualitative case where the “max” operator is applied
between conjunctive and disjunctive formulas (see, equations 5.11). In the quan-
titative case, the confidence induced by the C-Arg and D-Arg are added together
(see, equations 2.4).

To summarize, we can state that the main asset of this qualitative approach
is that there is no need to transform the expert assessments, on the argument
structure, into numerical values in order to propagate the uncertainty that may
pervade it. The choice of a linear scale proposed in the quantitative approach (used
for simplicity) may not be suitable for all types of systems. For instance in nuclear
safety applications, it is common to use a logarithmic scale for severity or likelihood
measures. A legitimate question that may arise in this case is whether the elicitation
formulas remain appropriate for all types of scales? On the other hand, when the
elicitation procedure relies on a single expert to assess the argument, it is safer to
assume that the sources of information are not independent, hence the advantage
of the qualitative method which, unlike the DST-based method, does not assume
the independence of the sources.

In contrast, we can say that the main weakness of the qualitative approach
is its lack of accuracy. Indeed, due to the limitation related to the scale choice
(|Conf | = n + 1 and |Dec| = 2n + 1)1, we end up with same belief and disbelief
value for different assessments. Like in the example above (for n = 2, see table
5.7) the value (λ, λ) corresponds to three different assessments “opposable”, “no
decision” and “tolerable” with “moderate confidence”, which can be quite confusing.
In simple cases, one can deduce the correct pair (Dec,Conf) on the conclusion by
looking at the premises that led to the conclusion (e.g., first column in table 5.9).
Yet, in complex cases with more than two premises, it may be hard to deduce the
correct conclusion. With the quantitative approach such a problem does not exist.
However, in order to give the final assessment on the conclusion, we will need to
approximate the qualitative value of the pair (Dec,Conf), which as we seen can
also lead to unsatisfying results (based on the choice of scale).

Finally, the last point concerns the effects of reinforcement due to use of prob-
abilistic sum (a + b − ab) and attenuation due to the product (a · b) encountered
in the quantitative approach. According to the results obtained from the example
above, despite the few limitations that were raised, we can assume that the qual-
itative approach seems more promising than the quantitative one. Indeed, even if
we generally get the same decision between these two approaches, maintaining a
relatively high level of confidence in the qualitative case tips the balance in its favor.
However, several tests on real cases will be necessary to assert this hypothesis.

5.8 Conclusion

In this chapter, we proposed a purely qualitative method of confidence/uncertainty
assessment in GSN based argument structure. This procedure includes two mod-

1Note that beyond n = 3, it becomes quite challenging for the expert to make a choice.
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els. A first model of confidence propagation that defines qualitative propagation
formulas based on logic and the qualitative capacity theory to quantify and prop-
agate confidence accordingly. Then a second model that transforms the collected
assessments about the argument structure into belief and disbelief values used as
inputs for the propagation model. A preliminary experimentation was conducted
on a generic example to validate and compare this approach with its quantitative
counterpart. The preliminary results showed similarities between the two, which
allowed us to validate the purely qualitative approach. However, more experiments
on real case studies are needed to determine the best method.



Conclusion

In this thesis, we studied the issue of assessing uncertainty (or confidence) in argu-
ment structures modeled using “Goal Structuring Notation” (GSN), in particular
the one focusing on the safety of systems known as “safety cases”. Thus, based
on previous works from the literature, we proposed a method that exploits assess-
ments, elicited from experts, of the evidence supporting the argument, and trans-
forms them into degrees of belief and disbelief that are propagated to the top claim
(to be supported) in order to validate it.

We conclude this thesis by recalling the different steps that we followed to elabo-
rate such a method, while pointing out the novelties that it proposes in comparison
with the existing approaches. We also discuss our perspectives for future work.

Summary

Argument structures are proposed to justify some high-level properties (e.g., safety,
security, etc.) of critical system. Some safety standards (e.g., the railway standard
EN50129) even request the use of a safety argument structure, also known as a
“safety case”, to demonstrate compliance with safety requirements. However, the
evidence used to justify these high-level properties can be open to doubt, notably
when it is provided by unsuitable professionals or conducted under unsuitable condi-
tions. On the other hand, even if we assume that the evidence provided is trustful,
one can always question its relevance for supporting the claim it supports (e.g.,
safety). Hence there is a need to build a confidence propagation model in par-
allel to the argument structure in order to assess the level of confidence one can
attribute to it. An argument with a high level of uncertainty can hinder effective
decision-making.

In the first chapter, we introduced some theoretical background related to this
thesis. We first defined argument structures and pointed out the benefits of using
graphical notation like GSN to model them. Then, we presented some uncertainty
theories with a focus on Dempster-Shafer Theory (DST) for its effective handling of
uncertainties due to lack of information often encountered in argument structures.
We also explored the state of the art of approaches that apply DST to quantify and
propagate uncertainty, particularly in argument structures. We conclude that DST
is a good candidate to model and propagate uncertainty in GSN. However, we also
explain why the few current approaches from the literature should be improved

In the second chapter, we identified the two main sources of uncertainty in
GSN-based arguments. The first quantifies confidence in premises, while the sec-
ond quantify the support relation between those premises and the conclusion. We
identify three types of support relation, named argument types: conjunctive (C-
Arg), disjunctive (D-Arg) and hybrid argument type (H-Arg). We used logical
expression (logical-AND, logical-OR and implication) to formally define them. We
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named this formal definition of argument types “rules”. Then we use belief func-
tions and Dempster rule of combination to build confidence propagation formulas.
A sensitivity analysis was conducted on these argument types to study their be-
haviours.

In the third chapter, we presented an expert elicitation approach to collect and
transform assessments on the argument structure into belief degrees. These values
can be used by the propagation model to compute the overall confidence in the
conclusion. These assessments are collected in the form of a decision (from accep-
tance of the claim to its rejection), and the confidence that can be associated to it.
The numerical values associated to each of these qualitative items (decision, con-
fidence) are then transformed into 3-tuples: belief, disbelief and uncertainty. The
model also allows the inverse transformation to recover the assessment of the con-
clusion. Finally, we compared some transformation formulas from belief functions
to probabilities to justify the use of our elicitation model.

In the fourth chapter we proposed a confidence assessment process for GSN-
based argument structures. This process uses the elicitation approach by launching
a questionnaire (for experts) to provide degrees of belief for rules. These elicited
values are used in the propagation model. This model can then be used for any
values of belief in the premises (evidence), also collected from experts, to compute
the overall confidence in the conclusion. We also presented an application on a case
study.

In the fifth chapter, we have presented a new, purely qualitative method of
assessing confidence in argument structures. It uses a qualitative counterpart of
belief functions, known as qualitative capacities theory, to quantify and propagate
confidence in GSN. Thus, we proposed new propagation formulas, adapted to this
new tool, for the three argument types we defined in the second chapter. This
approach uses min-max operators to propagate qualitative belief values to the con-
clusion. Since it is no longer necessary to transform the assessments of the argument
structure into numerical values, we use the same questionnaire to collect these as-
sessments. We closed this chapter with a comparison between the quantitative and
qualitative methods.

Main contributions

The main contributions of our research work are listed as follows:

1. Formal definition of argument types and new rigorously established confidence
propagation formulas using DST:

We formally define argument types using logical expressions. Unlike previous
works, in particular those Wang et al. [Wang 2019], we chose to use the
logical implication to express the support relation between premises and the
conclusion. This choice allowed us to assess the belief side of the argument
alone, generally to validate a system in order to integrate it into a larger
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system, to obtain certification or authorization to launch production, etc. On
the other hand, it enables to assess the disbelief side alone for an internal
evaluation to identify, for example, weaknesses in the adopted safety strategy
or potential directions for improvement. When both types of information
inducing belief and disbelief are available, which is not always the case, the
system can be assessed from both sides using two implications.

We also use a single confidence propagation formula to compute the confidence
in the conclusion for the three types of arguments we have defined. Thus, we
no longer need to use a method to identify the type of argument in order to
choose the appropriate formula to apply. Keep in mind that the conjunctive
(C-Arg) and the disjunctive (D-Arg) argument type represent limit cases of
the hybrid (H-Arg). According to the values taken by the degrees of belief
of the rules (direct and inverse), the type is easily identifiable. This allows
for easy implementation and fast execution of this model for possible future
applications.

2. Consideration of conflict situations in the calculation of confidence in the
conclusion:

Unlike previous works, our propagation model takes in consideration con-
flict situations where an expert gives two opposite assessments of at least
two different premises. This is characterized by the appearance of an empty
intersection with a strictly positive mass in the calculation.

3. A new model of elicitation:

We formally define decision as a “Pignistic transform” and add a neutral
position to its scale (“ND”, where Dec = 1/2) to address the weaknesses of
the previous models which give an arbitrary result in case of full ignorance
(Dec = 1/2, Conf = 0) and did not take into consideration the situation of
full conflict (Dec = 1/2, Conf = 1).

We also proposed a questionnaire to collect beliefs about the rules in ad-
dition to those about the premises, to replace the approach of Wang et al.
[Wang 2018a] which can lead to masses outside the unit interval [0, 1].

4. A new purely qualitative confidence assessment in GSN based argument struc-
tures:

We proposed a new purely quantitative confidence assessment method which
propagates qualitative belief and disbelief from the premises to the conclu-
sion. This approach avoids the need for transforming expert assessments from
natural language (e.g., acceptable for sure, opposable with high confidence,
etc.) into numerical values which seems arbitrary and can also be seen as a
source of uncertainty. Moreover, the numerical degrees of belief obtained are
often brought back to natural language, so as to be more palatable, which can
lead to additional errors.
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Limitations and Future work

The use of DST to quantify and propagate confidence in graphical models of argu-
ment structure such as GSN is not widespread and is relatively new compared to
Bayesian approaches. However, the main problem to overcome (for both Bayesian
and DST bases approaches) lies in the elicitation procedure. Most of the works we
encountered stop after giving the propagation formulas, which makes them inappli-
cable in real cases. Nevertheless, other open questions still need to be investigated
and developed. In this subsection we point out these issues to a possible improve-
ments.

• Argument types formal definition:

The hybrid argument type that we present as a general type to calculate the
degrees of belief and disbelief of different argument patterns does not take into
account all the possible interactions between the premises and the conclusion.
For instance in the case of a conclusion (C) supported by three premises (p1,
p2 and p3), we only consider rules (belief side): p1 ⇒ C, p2 ⇒ C, p3 ⇒ C and
(p1 ∧ p2 ∧ p3) ⇒ C; while we ignore the other possibilities: (p1 ∧ p2) ⇒ C,
(p1 ∧ p3) ⇒ C and (p2 ∧ p3) ⇒ C. This choice was imposed because of the
complexity of obtaining the corresponding masses. Thus, more experiments
need to be run to find out if this compromise between a rigorous modeling of
argument types and the complexity of the elicitation procedure was effective.
Hence, we plan to improve the hybrid argument type to express more faith-
fully the relationship between premises and conclusion; and compare it to the
formulas that we proposed.

• Elicitation procedure:

The elicitation model for both the quantitative and qualitative approach need
improvements. On one hand, the choice of a linear scale for decision and
confidence was only taken for simplicity purposes since their is no apparent
reasons to choose a specific type of scale. It is important to develop specific
scales calibrated to real assurance cases and verify that the results given by the
elicitation model are still correct. On the other hand, it seems that the way in
which the questions are asked in the questionnaire we proposed encourages the
experts to give extreme assessments. This leads to extreme types of arguments
(often C-Arg). Thus, it is also necessary to develop the questionnaire by
improving, for instance, the way in which the questions are asked.

• Further validation:

Most case studies we encountered only involved the conjunctive argument
type, proposed in this manuscript. We suggested some hypotheses that might
explain this situation. However, for a robust validation of our approach, more
experiments on general cases must be conducted for both quantitative and
qualitative assessment methods.
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Conducting more experiments would also be useful to compare the quantita-
tive assessment method and the qualitative one, since the latter was only a
preliminary step to know if the two models had the same behavior, but it is
not enough to determine which one gives better results. Hence, we plan to
run more experiments to eventually to determine the best one.

• Extension to other graphical formalisms
The approach we propose only takes into account the components existing
in the GSN formalism (goal, strategy, solutions, context, etc). Thus, it is
not always easy to switch from one notation to another. By integrating
other components our approach will become more generic. An interesting
proposal is to take into account exceptions to rules (represented by the strat-
egy component), by considering mass on the negation of rules we defined (i.e.,
Bel⇒(¬[p ⇒ C]) = Bel⇒([p ∧ ¬q]) = Disb⇒(p ⇒ C)). The component
representing these exceptions is known as defeater.
Hence, we plan to extend our approach to other types of notations like CAE
or SACM. We also plan to improve the elicitation approach accordingly to
assess the additional information requested by these notations.





Appendix A

Questionnaire for expert
elicitation

Context

The objective of this assessment is to quantify the confidence in an assurance case
or a safety case as it was studied at LAAS [Idmessaoud 2020, Idmessaoud 2021a,
Idmessaoud 2021b, Idmessaoud 2022]. In this questionnaire, we ask an expert to
provide her/his judgment regarding some specific situations. Her/his answers will
be then integrated in a quantitative framework which is not presented here.

How to play

In order to assess confidence in an assurance case, an assessor needs to evaluate all
goal that leads to the overall claim. We adopt an evaluation matrix (figure A.1) to
assess each goal by two criteria:

• Decision: In a scale of 5 equidistant items, it describes which side the expert
leans towards, from the rejection of the claimed goal to its acceptance.

• Confidence: It reflects the amount of information an assessor possesses that
can justify her/his decision. There are 6 equidistant levels of the confidence
scale. From “Lack of confidence" to “For sure".

Figure A.1: Evaluation Matrix
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By analogy, this is comparable to the classical conference paper reviewing where
reviewers have to provide a decision (strongly reject to strongly accept) and a level
of confidence associated with it (low to expert).

Examples

In the first example (figure A.2), the assessor accept the statement in goal (G1)
with a very high level of confidence. This decision and its corresponding degree of
confidence is based on the simulation report given as evidence (or solution in GSN
nomination).

Figure A.2: Example 1

In the second example (figure A.3) the opinion about (G1) is conditioned by
initial opinions on sub-goals (G2) and (G3). In this case, the assessor should give
his or her decision and its corresponding level of confidence of (G1) according to
the decision and confidence provided in the goals (G2) and (G3).

We can notice that the assessor is opposable to this statement with high level
of confidence. This opinion could be explained by the fact that the sub-claim (G3)
cannot support (G1) alone. To give a favorite opinion more information about the
other sub-claim (G2) is needed.

The argument structure to assess

Figure A.4 represent an extract of the assurance case form the paper [Damour 2021],
which aim to demonstrate that a Machine Learning (ML) based system meets its
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Figure A.3: Example 2

system and safety requirements. This extract shows through different pieces of
evidence that the statement (G1) : “The real world situations where the machine
learning model (MLM) is not robust are identified and mitigated" is achieved. This
statement is supported by two pieces of evidence (G2) and (G3). Each of them is
respectively supported by three (S1, S2 and S3) and one (S4) pieces of evidence.

Real-world situations where the MLM is 
not robust are identified and mitigated

(G1)

Ensure that all unsafe situations are 
correctly identified and mitigated

(ST)

All unsafe situations are identified
(G2) (G3)

All unsafe situations identified are 
mitigated

(G7)
Architecture mitigation (switch to the 

LUT when appropriate)
The LUT property is 

correctly defined

(G4)
The LUT property is 

checked in each p-box

(G6)
The input space (ODD) is correctly 

decomposed to p-boxes

(G5)

Certified 
development 

process DO178

(S4)
Formal verification 

results

(S3)The validation is trivial (it 
consists of mathematical 

decomposition on the 
whole 3D input space)

(S2)

The validation of this 
property is trivial

(S1)

Figure A.4: Assurance Case - ML subsystem robustness [Damour 2021]
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Part 1 : Elicitation of the opinions on G2

Please read the arguments bellow and give your opinion about the claim (G1) by
taking into consideration the initial opinions for sub-goals (G4), (G5) and (G6). To
do so, please select the couples (decision, confidence) in the goal (G2) evaluation
matrix of each case. It is forbidden to choose couples in the grey area (couples
situated in the median are not included).
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All unsafe situations are identified
(G2)

The LUT property is 
correctly defined

(G4)
The LUT property is 

checked in each p-box

(G6)
The input space (ODD) is correctly 

decomposed to p-boxes

(G5)

?
All unsafe situations are identified
(G2)

The LUT property is 
correctly defined

(G4)
The LUT property is 

checked in each p-box

(G6)
The input space (ODD) is correctly 

decomposed to p-boxes

(G5)

?

All unsafe situations are identified
(G2)

The LUT property is 
correctly defined

(G4)
The LUT property is 

checked in each p-box

(G6)
The input space (ODD) is correctly 

decomposed to p-boxes

(G5)

?
All unsafe situations are identified
(G2)

The LUT property is 
correctly defined

(G4)
The LUT property is 

checked in each p-box

(G6)
The input space (ODD) is correctly 

decomposed to p-boxes

(G5)

?
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ppendix
A

.
Q

uestionnaire
for

expert
elicitation

All unsafe situations are identified
(G2)

The LUT property is 
correctly defined

(G4)
The LUT property is 

checked in each p-box

(G6)
The input space (ODD) is correctly 

decomposed to p-boxes

(G5)

?
All unsafe situations are identified
(G2)

The LUT property is 
correctly defined

(G4)
The LUT property is 

checked in each p-box

(G6)
The input space (ODD) is correctly 

decomposed to p-boxes

(G5)

?

All unsafe situations are identified
(G2)

The LUT property is 
correctly defined

(G4)
The LUT property is 

checked in each p-box

(G6)
The input space (ODD) is correctly 

decomposed to p-boxes

(G5)

?
All unsafe situations are identified
(G2)

The LUT property is 
correctly defined

(G4)
The LUT property is 

checked in each p-box

(G6)
The input space (ODD) is correctly 

decomposed to p-boxes

(G5)

?
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Part 2 : Elicitation of opinions on G3

The confidence in (G3) can be deduced from the sub-goal (G7). Please read the
arguments bellow and give your opinion about the goal (G3) by taking into con-
sideration the initial opinions on the sub-goal (G7). To do so, please select the
couples (decision, confidence) in the goal (G3) evaluation matrix in each case. It
is forbidden to choose couples in the grey area (couples situated in the median are
not included).

(G3)
All unsafe situations identified are 

mitigated

(G7)
Architecture mitigation (switch to the 

LUT when appropriate)

?

(G3)
All unsafe situations identified are 

mitigated

(G7)
Architecture mitigation (switch to the 

LUT when appropriate)

?
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Part 3 : Elicitation of opinions on G1

The confidence in the top goal (G1) can be deduced from these premises. Please
read the arguments bellow and give your opinion about the goal (G1) by taking
into consideration the initial opinions for sub-goals (G2) and (G3). To do so, please
select the couples (decision, confidence) in the goal (G1) evaluation matrix in each
case. It is forbidden to choose couples in the grey area (couples situated in the
median are not included).



113

Real-world situation where the MLM is 
not robust are identified and mitigated

(G1)

All unsafe situations are identified
(G2) (G3)

All unsafe situations identified are 
mitigated

?
Real-world situation where the MLM is 
not robust are identified and mitigated

(G1)

All unsafe situations are identified
(G2) (G3)

All unsafe situations identified are 
mitigated

?

Real-world situation where the MLM is 
not robust are identified and mitigated

(G1)

All unsafe situations are identified
(G2) (G3)

All unsafe situations identified are 
mitigated

?
Real-world situation where the MLM is 
not robust are identified and mitigated

(G1)

All unsafe situations are identified
(G2) (G3)

All unsafe situations identified are 
mitigated

?
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Real-world situation where the MLM is 
not robust are identified and mitigated

(G1)

All unsafe situations are identified
(G2) (G3)

All unsafe situations identified are 
mitigated

?

Real-world situation where the MLM is 
not robust are identified and mitigated

(G1)

All unsafe situations are identified
(G2) (G3)

All unsafe situations identified are 
mitigated

?
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Part 4 : Elicitation of confidence and decision about premises.

In this final section, you have to give your opinion about the premises directly from
the evidence provided in each argument. To do so, please read the argument below
and choose the appropriate couple (decision, confidence) in each case.

?

?

?

?
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Abstract:
Structured assurance cases are use to justify high-level properties (e.g.

safety, security, etc.) of critical systems. Goal structuring notation (GSN)
is a graphical notation used to model these cases. However, assurance cases
do not include the representation of uncertainties that may affect arguments.
Several works extend this framework using uncertainty propagation methods.
The ones based on Dempster-Shafer Theory (DST) are of interest as DST
can model incomplete information. However, few works relate this approach
with a logical representation of relations between elements of GSN, which
is actually required to justify the chosen uncertainty propagation schemes.
Moreover, the approaches used to provide inputs for these propagation mod-
els rely on expert judgements to assess the arguments. These assessments
are collected in natural languages and transformed to numerical values. This
transformation is somewhat arbitrary. In this thesis, we first improve previous
proposals including a logical formalism added to GSN, and an elicitation pro-
cedure for obtaining uncertainty information from expert judgements. Next,
we propose a second confidence assessment approach which is based on a
purely qualitative propagation model fed by a qualitative elicitation method
too. These approaches are validated using artificial examples and a case study
from aerospace.

Keywords: Assurance cases, Safety cases, Dempster-Shefer Theory (DST),
Confidence propagation, Expert elicitation, Goal Structuring Notation (GSN),
Qualitative Capacity Theory (QCT).


