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Résumé

Le vieillissement de la population pose de nouveaux défis à notre société en termes de

services de soins aux personnes âgées. L’un des aspects est la prévention de la chute, dont la mise

en œuvre reste difficile. Dans ce contexte, l’intelligence artificielle peut aider à détecter un risque

accru. Pour atteindre cet objectif, il est possible de suivre le comportement du patient pour déceler

un changement indicateur d’une dégradation de la mobilité grâce à la reconnaissance d’activités

physiques. Notre approche repose sur l’utilisation d’une centrale inertielle embarquée dans des

lunettes intelligentes. Ce dispositif est moins invasif que d’autres appareils tels qu’un téléphone

mobile ou un appareil dédié, en particulier pour les personnes âgées qui portent souvent déjà des

lunettes. D’autre part, les réseaux de neurones profonds ont montré leur capacité à fournir un taux

de reconnaissance satisfaisant pour des tâches de classification telles que la reconnaissance

d’activités physiques, de mots clés ou de panneaux de signalisation routière. Pour des raisons de

confidentialité, de connectivité et de latence, le traitement des données est effectué directement

par l’électronique embarquée des lunettes. Cependant, le calcul intensif et la quantité de mémoire

requise pour le traitement des réseaux de neurones artificiels sont difficilement compatibles

avec les contraintes temps réel, mémoire et énergétique de ces appareils. Dans cette thèse, nous

étudions la faisabilité du déploiement de réseaux de neurones artificiels pour la reconnaissance

d’activités physiques sur le microcontrôleur embarqué dans les lunettes intelligentes, en mettant

en avant le compromis entre les performances de prédiction, la consommation énergétique

et l’occupation mémoire. Nous proposons un nouvel outil logiciel appelé MicroAI, publié sous

licence libre, dont le but est d’automatiser l’apprentissage, la quantification et le déploiement

d’un réseau de neurones artificiel sur microcontrôleur de bout en bout. Nous appliquons une

quantification sur 8 et 16 bits en virgue fixe pour plusieurs cas d’usages. Cette quantification

et l’exécution à virgule fixe permettent de réduire l’empreinte mémoire, le temps d’exécution et

donc l’énergie consommée. Nous fournissons des résultats comparatifs d’empreinte mémoire

et d’efficacité énergétique avec d’autre moteurs d’inférence sur différents microcontrôleurs. En

outre, nous présentons un nouveau jeu de données nommé UCA-EHAR collectées à partir des

lunettes de la société Ellcie Healthy. UCA-EHAR est composé de données brutes étiquetées

provenant de l’accéléromètre, du gyroscope et du baromètre des lunettes pour huit classes

d’activités physiques réalisées par vingt sujets. Ce jeu de données est utilisé pour entrainer un

réseau de neurones artificiels qui est par la suite déployé sur le microcontrôleur des lunettes

intelligentes grâce à notre outil MicroAI. Grâce à ce réseau de neurones artificiels, une application

de reconnaissance d’activités physiques à l’aide de lunettes intelligentes est réalisée. L’empreinte

mémoire, la consommation et l’autonomie résultante d’une telle application fonctionnant sur

les lunettes intelligentes Ellcie Healthy sont évaluées. Enfin, nous proposons l’utilisation d’une

méthode d’apprentissage non supervisée en ligne afin de spécialiser un réseau de neurones

artificiels pour la reconnaissance des activités d’un sujet en particulier. En effet, durant leur

durée de vie, les lunettes ne seront portées que par un unique sujet, il convient donc d’essayer

d’améliorer le taux de reconnaissance pour ce sujet. L’apprentissage non supervisé ne nécessite

pas que les données soient étiquetées, et l’apprentissage en ligne permet une adaptation continue

dans l’environnement d’utilisation.
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Abstract

With the growth of the senior population, elderly care becomes an important topic in the society.

One aspect of elderly care is fall prevention, which is still a challenging task depending on

the subject’s health condition. In this context, artificial intelligence can be leveraged to notify

about an increased risk. To achieve this goal, a solution consists in monitoring the subject’s

behaviour to detect some changes that could indicate a degradation of their mobility. Human

activity recognition (HAR) can be used for that purpose. Our approach is based on an inertial

measurement unit (IMU) embedded in smart glasses. Smart glasses are less invasive than some

other devices such as dedicated IMU devices or even smartphones, especially for elderly for

whom wearing glasses is common. On the other hand, deep neural networks have shown their

capability to provide good recognition accuracy for human activity recognition, among other

classification tasks such as keyword spotting or traffic sign recognition. However, embedding

deep neural networks onto low power devices remains a challenging task. Real-time, memory

and power constraints do not cope well with the heavy computation and memory requirements of

these algorithms. Therefore, in this thesis, we study the feasibility of deploying neural networks

on the smart glasses’ microcontroller for human activity recognition purposes, while optimizing

the compromise between prediction performance, power consumption and memory. To do so,

we propose a new open-source software framework, called MicroAI, for end-to-end deep neural

network training, quantization and deployment. We provide some comparative results using

different microcontrollers and alternative inference engines. Results are compared in terms

of memory footprint and energy efficiency for various artificial neural networks with different

accuracies. We propose to apply 8-bit and 16-bit quantization methods on multiple use cases in

order to perform the computation with fixed-point numbers. Fixed-point computation leads to a

reduction of the memory footprint, the execution time and therefore the energy consumption. It is

also then possible to use a microcontroller without a hardware floating-point unit. Furthermore,

we present a new dataset called UCA-EHAR with data collected from Ellcie Healthy’s smart

glasses. Our dataset provides labelled raw data collected from an accelerometer, a gyroscope

and a barometer for eight classes of activity performed by twenty subjects. Therefore, the

artificial neural network performing the classification task is executed on the smart glasses’

microcontroller using our MicroAI framework. This work is used as a foundation for a real-

world application of human activity recognition using smart glasses. Memory footprint, power

consumption and battery lifetime are analyzed for this application running on the Ellcie Healthy

smart glasses. Finally, we propose an unsupervised online learning method in order to specialize

a general model onto a specific subject in the context of human activity recognition. Indeed,

during their lifetime, the smart glasses are only worn by a single subject. Thus, our objective is

to improve the accuracy for this subject. Unsupervised learning does not make use of labels for

the training phase and online learning allows continuous adaptation in the environment.

Keywords: embedded systems; artificial intelligence; machine learning; artificial neural network;

embedded AI; unsupervised learning; quantization; power consumption; microcontrollers; human

activity recognition; smart glasses; wearable sensing; eHealth
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1.1. Artificial Intelligence with Neural Networks

With the growth of the senior population, elderly care becomes an important topic in the

society. Indeed, Figure 1.1 shows the trend of an increase of people aged 60 and older since the

1970s, while the share of people aged 59 and younger is decreasing. One aspect of elderly care

is fall prevention, which is still a challenging task according to the subject’s health condition. In

this context, artificial intelligence can be leveraged to notify about an increased risk of fall. To

do so, a solution consists in monitoring the subject’s behaviour to detect some changes that

could indicate a degradation of their mobility. Human activity recognition (HAR) can be used for

that purpose. Our approach is based on an inertial measurement unit (IMU) embedded in smart

glasses.
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Figure 1.1: Population per groups of age in France from 1949 to 2020 [1].

1.1 Artificial Intelligence with Neural Networks

Artificial intelligence is one of the main area of interest for the evolution of the society in the

2020s, whose goal is to emulate cognitive functions using machines. Machine learning is a field

of artificial intelligence about the methods and algorithms associated with the learning process

of an artificially intelligent system. More specifically, the goal is to solve a task or a set of tasks

by learning a transformation of the input data to the output data. Furthermore, it is generally

expected from the machine learning algorithm to be able to generalize the knowledge gained

from a set of training data to a set of previously unseen data. This allows solving various tasks

such as classification and clustering among others.

A machine learning problem can be solved by various type of algorithms such as decision

trees or support-vector machines. However, since the 2010s, artificial neural networks have

proved to be much more efficient to solve complex tasks in computer vision and natural lan-

guage processing. Artificial neural networks are inspired from the biological brain, providing a

computational model around the neuron. An artificial neuron processes multiple inputs through

a transfer function and produces an output.

More specifically, deep learning where an artificial neural network is built with multiple layers

of neurons has shown to be a versatile and powerful method to solve these complex tasks. Deep

neural networks are widely used to solve a range of problems, including classification. Deep

neural networks can classify all sorts of data such as audio, images or accelerometer samples

for tasks such as speech recognition, object recognition or human activity recognition. Deep

neural networks are often trained in a supervised manner, especially for classification purposes.
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1.2. Embedded Systems

Supervised learning requires providing labels for the input data, as opposed to unsupervised

learning which processes unlabelled data.

Both supervised learning and unsupervised learning are typically performed offline, with

direct access to the entire dataset, or at least a significant subset of it at a time. Online learning,

in contrast, processes the input vectors as they come sequentially, with the assumption that

previously seen vectors are not all permanently stored in memory and therefore cannot be

processed again. Online learning can enable an artificial neural network to adapt to a slightly

different distribution of the input data, without having to store all the collected data. Combined

with unsupervised learning, it does not require human intervention. Both of these characteristics

in turn enable on-target lifelong learning directly on the embedded system.

A well-known downside of artificial neural networks is their high energy consumption require-

ment. In particular, the training phase is usually based on a large amount of data processed

by costly algorithms. Although the inference phase requires less processing power, it is still a

costly process, especially for embedded systems. Therefore, high-performance systems often

perform such a computation in the cloud [2].

However, cloud computing requires transmitting the collected data to a network server to

process it and fetch the result, thus requiring permanent connectivity, causing privacy concerns

as well as non-deterministic latency. As an alternative to cloud computing, artificial neural

network computation can be done at the edge on the device itself. By doing so, data do not need

to be sent by the device to the cloud anymore. However, running artificial neural networks on

resource-constrained devices is still a challenging task [3, 4, 5].

1.2 Embedded Systems

Embedded systems are indeed characterized by tight constraints regarding memory, latency,

power consumption, cost and physical dimensions. Moreover, reliability and safety can also be

a concern for embedded systems. However, we do not take these aspects into account in this

work.

Such embedded systems can be architectured around various platforms containing em-

bedded CPUs (Central Processing Units), GPUs (Graphics Processing Units) or FPGAs (Field

Programmable Gate Arrays). However these components are often costly and do not always

target ultra-low power consumption.

Instead, MCUs (MicroController Units) are often the component of choice for low-power,

low-cost applications. Microcontrollers embed a processor core(s), memory and peripheral

interfaces in a single integrated circuit. With microcontrollers, the focus is not on the computing

performance, but rather on the cost and embeddability. As such, these devices only contain

a very low amount of memory and are much slower than a personal computer. Both of these

contraints are limitations to implementing artificial intelligence algorithms in embedded de-

vices. Furthermore, some of these devices are powered by batteries. In this case, the energy

consumption must be kept as low as possible.

Nonetheless, microcontrollers are found in many consumer and industrial electronics prod-

ucts. The demand continues growing and the global market size is expected to double in less

than a decade, reaching USD 58.20B by 2030 after being valued USD 25.75B in 2021 [6]. There-

fore, with both the growth of the microcontroller market and the growth of artificial intelligence

use cases, combining the two became a hot topic in the early 2020s. Wearables are one of the

product category designed around microcontrollers that could benefit from being augmented

with artificial intelligence.
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1.3 Smart Glasses and Wearable Devices

Wearable devices are a category of embedded devices designed to be worn by the user all day

long, as an accessory or even a cloth. In consequence, their physical shape and weight are very

constrained, thus limiting the size of the batteries that can be used. Miniaturization as well as

energy efficiency are key to ensure good wearability and autonomy of the device.

Wearable devices integrated into clothes are not yet popular. However accessories such as

smart watches have become common in the 2010s. Smart glasses are another type of wearable

accessory where the frame is equipped with electronics. Smart glasses are less invasive than

some other devices such as dedicated sensor devices or even smartphones, especially for

elderly for whom wearing glasses is common. The smart glasses can contain various sensors

such as an inertial measurement unit. They can also embed signaling devices such as a buzzer

and LEDs to report alerts to the user. As an example, Ellcie Healthy’s smart connected glasses

are shown in Figure 1.2.

Figure 1.2: Ellcie Healthy Smart Glasses.

Wearable devices have many applications related to entertainment or health, as well as having

a fashion aspect to them. In terms of health applications, they can typically provide information

related to physical activity such as steps walked and heart rate. The inertial measurement unit

found in most of these devices also enables more advanced applications such as human activity

recognition.

1.4 Human Activity Recognition

Human activity recognition is a classification problem trying to predict the activity performed by a

user among a set of known activities. Such activities can be activities of daily living, for example

walking, sitting or various self-care activities. Human activity recognition can then be used

to monitor a subject and their health condition. Indeed, statistics on the activities performed

throughout the day can, for example, indicate if a subject lacks physical activities. Furthermore,

an analysis over a longer period of time could help to detect a deterioration of the subject’s

mobility.

Human activity recognition can be performed from various modalities. It is possible to make

use of computer vision on data coming from cameras placed in the environment to recognize

the subject movements. However, this requires setting up the environment prior to performing

the recognition as well as a large amount of processing power.

Alternatively, body-worn sensors such as inertial measurement units can be used. Accelerom-

eters and gyroscopes are commonly embedded in smartphones, but they can also be found in

smart watches and smart glasses.
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1.5 Goals and Challenges

The main goal of this thesis is to propose a method to integrate artificial intelligence into

embedded systems. We focus on deploying artificial neural networks on microcontrollers for

inference, targeting the specific use-case of performing human activity recognition on smart

glasses. Existing works (presented in Chapter 2) have shown that running artificial neural

networks on microcontroller is possible. However, it is still a challenging task due to tight

embedded constraints being a hindrance to the deployment of large neural networks. The trade-

off between predicition performance, latency, power consumption and memory must therefore

be optimized.

Our objective is also to propose a solution to perform unsupervised on-device fine-tuning.

On-device learning is a step ahead on-device inference, and as of the early 2020s still has no

universal solution. The training of a deep neural network is indeed much more demanding

in terms of processing power and memory than the inference. Embedded fine-tuning can be

considered as a practicable solution since the neural network is not trained from scratch, and

fine-tuning can be applied to only a small part of the neural network. However, we add another

challenge which is unsupervised learning: the fine-tuning process should be able to work without

labels. So far, there is no universal solution to unsupervised learning either and existing methods

are known to perform worse than traditional supervised learning.

1.6 Contributions

In this thesis, we propose three main contributions.

• Quantization and deployment of deep neural networks on microcontrollers:

– the development of an open-source end-to-end software framework for deep neural

network training, quantization, and deployment on microcontrollers,

– an evaluation of deep neural networks quantization for three applications (human

activity recognition, keyword spotting, traffic-sign recognition),

– an evaluation of the embedded execution of these neural networks on microcontrollers

with memory footprint, inference time, and energy consumption metrics.

• Human activity recognition on smart glasses:

– the publication under an open-access policy of a dataset for human activity recognition

with smart glasses and under the authorization of Université Côte d’Azur Ethics

Committee,

– a prototype of live human activity recognition with smart glasses,

– an analysis of the memory footprint, energy consumption and autonomy when per-

forming live human activity recognition on the smart glasses.

• Semi-supervised learning and unsupervised fine-tuning:

– an evaluation of semi-supervised learning on human activity recognition datasets,

– an unsupervised fine-tuning method,

– an evaluation of subject-by-subject fine-tuning applied to human activity recognition

and keyword spotting datasets,

– an evaluation of self-organizing map quantization for human activity recognition.

– the implementation of on-device unsupervised learning on a microcontroller,

– an analysis of the memory footprint and inference time when performing on-device

unsupervised learning.
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1.7 Outline

In Chapter 2, an overview of the existing works regarding embedded artificial intelligence is

provided.

Then, in Chapter 3, we propose a new open-source software framework, called MicroAI,

for end-to-end deep neural network training, quantization and deployment. We provide some

comparative results using different microcontrollers and inference engines. Results are com-

pared in terms of memory footprint, latency and energy efficiency. Quantization of the artificial

neural network is performed to convert the real numbers to a fixed-point representation. This

quantization helps to lower the memory usage and to perform faster computation. The effect of

quantization on the accuracy is evaluated from a memory efficiency perspective.

In Chapter 4, we present a new dataset, called UCA-EHAR, with data collected from Ellcie

Healthy’s smart glasses. This dataset provides raw data collected from an accelerometer, a

gyroscope and a barometer for 8 classes of activity performed by 20 subjects. For privacy,

connectivity and latency reasons, all the data processing related to human activity recognition is

performed directly on the smart glasses. Therefore, the machine learning algorithm performing

the classification task is executed on the smart glasses’ microcontroller using our MicroAI

framework. This work is used as a foundation for a real-world application of human activity

recognition using smart glasses in the context of elderly care.

In Chapter 5 we propose an unsupervised online fine-tuning approach to specialize a general

model onto a specific subject in the context of human activity recognition. Unsupervised learning

does not make use of labels during the training phase and online learning allows continuous

adaptation in the environment.

Finally, Chapter 6 describes the implementation of the unsupervised online fine-tuning ap-

proach on a microcontroller, making it an on-device learning method. The cost of such a method

is evaluated in terms of memory and latency on a microcontroller.

Chapter 7 concludes this work and proposes new avenues to explore in order to improve on

the power consumption and the unsupervised on-device fine-tuning method.
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2.1. Introduction

2.1 Introduction

In this chapter, we present an overview of the main topics related to this thesis. First, artificial

neural networks are presented in Section 2.2 as the subfield of artificial intelligence we focus on

to perform various recognition tasks. Then, embedded systems are defined in Section 2.3 with

some examples, and the field of study is narrowed down to low-power microcontrollers. However,

the embedded constraints of low-power devices and the resource-intensive computation of

artificial neural network are often seen as incompatible. Therefore, in Section 2.4, we present

several existing methods and tools to enable the deployment of artificial neural networks on

low-power devices. In Section 2.5, smart glasses devices are described, and some human activity

recognition datasets and applications are presented. Lastly, in Section 2.6, we introduce the

concept of unsupervised on-device fine-tuning, and take a closer look at unsupervised learning

methods, online and continual learning, and on-device learning. Section 2.7 summarizes and

explains the positioning of our work.

2.2 Artificial Neural Networks

Artificial intelligence as a scientific field has already been studied for many decades, being put into

practice early into the 1950s thanks to the development of programmable digital computers [7].

In 1943, McCulloch and Pitts proposed a computational model for an artificial neuron used

to build a neural network, taking inspiration from the brain [8].

Similarly to a biological neuron, the artificial neuron is modeled as a unit that takes several

inputs through its dendrites, aggregate the inputs in its body through a given transfer function,

and produces an output through its axon. Artificial neurons are often bio-inspired rather than

biomimetic, meaning that some of their properties are inspired by the biological neuron. However,

they do not strive to behave identically. The computational models are a simplified representation

of what happens in the brain, for multiple reason. As we still do not fully understand how the brain

works, we are not able to reproduce it artificially. Furthermore, the complexity of the biological

processes would require a lot of processing power to simulate. In any case, it is not necessary

to reproduce all the properties of the biology to obtain the results sought for machine learning.

In the neuron modeled by McCulloch and Pitts, the inputs and the output are assumed to

be binary, while the transfer function is a treshold over the sum of the inputs (Figure 2.1a). An

input can be defined as inhibitory in order to prevent the neuron from activating when this input

is present.

The perceptron described by Rosenblatt in 1958 [9] is more flexible in that it allows real-valued

inputs and introduces real-valued weights to apply on the input (Figure 2.1b). A single perceptron

can act as a binary linear classifier over any set of inputs. However, instead of manually choosing

the threshold and the behaviour of the inputs, the perceptron can have its weights learnt by an

iterative algorithm in a supervised manner.
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(a) McCulloch and Pitts neuron.
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(b) Rosenblatt perceptron.

Figure 2.1: Early neuron models.
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However, the perceptron itself can only model a linear function. This can be overcome

by stacking multiple perceptron with an intermediate non-linear activation function. Instead

of mapping the inputs directly to the output neurons, additional hidden layers of neurons are

introduced inbetween the inputs and the output neurons. It is then possible to model any non-

linear function given enough neurons. This gives birth to the multi-layer perceptron, which is a

kind of deep neural network.

Training a multi-layer perceptron is significantly more difficult than simply adjusting the

coefficients of a linear equation. One solution to this problem is backpropagation [10]. The

backpropagation algorithm enables an efficient computation of the gradient of the cost function,

iterating backward through the layers of the deep neural network. Computing this gradient is

useful in applying gradient descent or derived optimization algorithms.

Backpropagation was then applied to convolutional neural networks. Convolutional neural

networks greatly reduce the amount of parameters and turn out to be more efficient than multi-

layer perceptrons to extract meaningful features of the input for the classification stage. Such a

method was applied to handwritten digits recognition by LeCun in 1989 [11].

At the core of backpropagation is a reverse automatic differentiation which can be computed

by a machine. This is the main component of modern deep learning software frameworks, such

as PyTorch [12], TensorFlow [13] and JAX [14] among others.

However, performing gradient descent to train deep neural networks is costly and in general

requires a large amount of data. For this reason, deep neural network training is typically

performed on high-performance computing infrastructures for large models, and at least on

a high-end computer for smaller ones. For the past decade, deep neural networks have been

trained using graphics processing units. Notably, the deep convolutional neural network winning

the ImageNet [15] image classification contest in 2012 participated in launching the modern era

of machine learning with results considerably better than previous methods [16]. The authors

explain that the size of the network is limited by the amount of video memory and the time

required for the training process. They suggest that the results could be improved simply by

using higher performance hardware to train bigger networks, which was not available at that

time. The authors were already using two of the near top-of-the-line graphics processing units

with a training time of five to six days for a model of 60 million parameters.

The following years will see larger and larger neural networks solving problems with increased

complexity as illustrated in Figure 2.2. One popular example is GPT-3 released in 2020. This

model makes use of 175 billion parameters to solve advanced natural language processing and

text generation tasks [17]. GPT-3 has been estimated to require around 1.287 GWh of energy for

training, and on the order of 400 Wh to generate 100 pages of text. These figures are far beyond

what can be expected in a low-power embedded system. Tasks of such complexity are out of

reach for constrained devices for now.

Figure 2.2: Parameter trend in machine learning [18].
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In the meantime, a vast amount of deep neural network models and applications have

surfaced, varying in complexity, memory and energy requirements [19, 20]. While there is a

major focus on training larger and larger models to solve more and more complex tasks of

computer vision or natural language processing, new deep neural network architectures as well

as training methods can also benefit smaller models for less complex tasks. Therefore, while

complex tasks cannot be tackled by embedded systems with strong constraints yet, smaller

deep neural networks can now be used for less complex tasks while satisfying memory and

power constraints.

2.3 Embedded Systems

Embedded systems are at the heart of many applications such as industrial control, home

appliances, automotive or aerospace. Embedded systems are tailored to a specific use-case,

and from this use-case arise various constraints. Many situations require an autonomous device

without a permanent source of power as well as a small form factor. Mobile phones, wearables,

remote sensors and satellites are examples of such devices for which the available energy is

heavily constrained. As a result, the power consumption must be reduced as much as possible.

This limits both the available processing power and memory. Consumer electronics also bring

the cost of the device into the equation.

2.3.1 Single-Board Computers and System on Chips

High-performance embedded systems such as the very popular Raspberry Pi or the more machine

learning-focused Nvidia Jetson lineup (Figure 2.3) come with an amount of RAM in the same

order of magnitude as a regular personal computer, having at least several gigabytes for the

recent models. Furthermore, while slightly less powerful than a personal computer, their central

processing unit can still run a desktop operating system and most day-to-day applications. These

systems mostly rely on system-on-chips architectured around general purpose ARM Cortex-A

cores. An embedded graphics processing unit is also present to accelerate some 3D or compute

tasks. As they come in a compact form-factor and embed most of the required components for

a computer to run, except peripherals for human-computer interaction, these systems are often

described as single-board computers.

Figure 2.3: Nvidia Jetson Nano 2 Development Kit [21].

However, all these characteristics also make them not suitable for very-low power purposes.

Indeed, in order to provide this level of performance, these systems need to draw several watts

of power [22]. Moreover, these systems introduce a non-negligible cost to the product they are

integrated in. Thefore, single-board computers are not suitable for embedded systems found in
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wearables, wireless sensor networks, satellites, small consumer electronic devices and other

type of devices. Instead, much less powerful systems such as microcontrollers must be used.

2.3.2 Microcontrollers

Many families of microcontroller exist. At the very low-end, we can find cost-effective solutions

such as the Microchip PIC10 family with only a few hundred bytes of ROM and few dozen bytes of

RAM running at up to a few megahertz to use for a single simple task [23]. On the contrary, there

are also many high-performance solutions offered by various vendors. The STMicroelectronics

STM32H7 family goes up to a megabyte of RAM and two megabytes of ROM, and the core runs

at several hundred megahertz [24]. The Ambiq Apollo3 is a slightly less powerful alternative,

running at 48 MHz with 384 KiB of RAM and 1 MiB of ROM, but with a focus on very low power

consumption. This integrated circuit also has a small form factor and can be seen mounted on

a SparkFun Edge development board in Figure 2.4 (green box).

Figure 2.4: SparkFun Edge board with an Ambiq Apollo3 microcontroller.

The memory is many times smaller but the power consumption is also much lower compared

to single-board computers. Power consumption can range from a few dozen microwatts to a

few hundred milliwatts when processing instructions, depending on the part and the operating

conditions, especially the chosen core frequency. Using sleep modes, power consumption can

be significantly reduced, under a few microwatts in some instances. Furthermore, thanks to

their design being much simpler than high-performance system-on-chips, entering and exiting

sleep modes is generally fast and not troublesome.

The significantly lower performance figures and the lack of a memory-management unit

means that microcontrollers cannot run desktop operating systems such as Linux. Instead,

they can be programmed in a bare-metal fashion: the instructions written by the programmer

are direclty directly on the core without intermediate layer, except for an optional but minimal

hardware-abstraction layer. Alternatively, a real-time operating system such as Zephyr [25] can be

used. The main purpose of a real-time operating system is to provide services for multi-tasking

and concurrency management. However, a real-time operating system is still not designed to run

high-level applications designed for desktop or servers. Therefore, deep learning frameworks

such as TensorFlow or PyTorch cannot be used directly on these platforms.

Performance of the microcontroller for specific tasks can be improved by implenting tiny

accelerators inside the core. These accelerators can be called using dedicated instructions in

the regular flow of the program. Therefore, communication and synchronization with an off-core

or off-chip accelerator are not required. However, extending the instrution set architecture is

not possible with an existing product. It rather requires designing a new integrated circuit or

implementing the instruction set architecture onto an FPGA.
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Most high-performance microcontroller series rely on Cortex-M cores designed and sold

by ARM. ARM only recently provided its customers with the ability to extend the Armv8-M

instruction set for select Cortex-M cores through its Arm Custom Instructions program [26].

As an alternative, the RISC-V instruction set architecture [27] has been gaining in popularity

since the late 2010s. Versatile but simple, RISC-V can be used to design multi-core CPUs for

high-performance computing down to ultra-low-power embedded microcontrollers. Being fully

open, it allows anyone to implement their own core based on the specifications, and extend it by

adding more features as needed. This is the approach chosen by [28] in order to accelerate the

processing of deep neural networks.

As the demand for such microcontrollers grows, we could see off-the-shelf products with a

specialized instruction set extension become available. In the meantime, dedicated accelerators

can be used when the main processor cannot meet the requirements of the application in terms

execution time.

2.3.3 FPGAs and ASICs

When the processing power of the main processor is not sufficient, embedded devices can

also rely on an external integrated circuit to speed up the computation, and possibly improve

the energy efficiency. In such a situation, a custom hardware design can be deployed onto an

FPGA (Field-Programmable Gate Array). An FPGA is a type of integrated circuit that can be

configured to perform a specific function after its manufacturing. Rather than a microprocessor

that would run a software compiled to a specific instruction set and decoded by the core, an

FPGA is configured as a set of logic blocks at a much lower level. Logic blocks can be a set of

logic gates, flip-flops or memory, enabling the implementation of most digital designs without

having to manufacture a dedicated integrated circuit. A hardware architecture deployed onto an

FPGA loses in flexibility and capabilities compared to a general-purpose processor programmed

with software. However, it can perform a specific task much more efficiently. That said, the cost

of FPGAs can be prohibitive in a consumer device. Moreover, their static power consumption is

often a drawback in the overall energy efficiency for very low-power devices.

Instead of using an FPGA, it is also possible to use an ASIC (Application-Specific Integrated

Circuit). With an ASIC, the design is set in stone since the layout of transistors and interconnect

are etched into the silicon at the fab. An ASIC provides the best power efficiency but it also pro-

vides the least flexibility. Furthermore, developping and manufacturing an ASIC is tremendously

costly especially with the more advanced node processes. The development of an ASIC can be

justified for low-cost products only with high volume.

ASICs have already been developped as accelerators for deep neural network applications.

The TPU (Tensor Processing Unit) from Google has been initally designed as a high-performance

integrated circuit to improve on the energy efficiency of their datacenter when handling deep

neural network workloads [29]. Initially put into production in 2015 for internal use, TPUs have

been available through Google’s cloud service since 2018, with a continuous improvement of

their design for better performance and energy efficiency, up to the current TPUv4 [30]. On top

of the inference, some of these TPUs were also able to perform training of deep neural networks.

However, these accelerators were not initially designed for embedded use and are not available

for sale to the general public. Instead, Google released the Edge TPU [31] for use with embedded

systems. Power consumption has been heavily reduced compared to the datacenter version.

While the inference time can be greatly reduced compared to running on a CPU, the peak power

consumption of 2 watts may still not be suitable for very low-power devices. The cost of the

Edge TPU module may also not fit a consumer device’s price.

Other high-performance accelerators exist such as Habana Lab’s Gaudi series [32]. However,

most of these accelerators cannot compete in the sub-100mW range [33].

Accelerators can also be integrated into existing system-on-chips like the Neural Engine from
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Apple found in all of their new offerings, or the neural processing units of the Samsung Exynos

system-on-chips. Once again, these devices are not part of the very low-power and low-cost class

of embedded devices. While not a very low-cost solution, the MAX7800 microcontroller from

Maxim Integrated embeds a convolutional neural network accelerator alongside a low-power

Cortex-M4 core.

2.4 Embedded Artificial Neural Networks

As previously explained, running deep neural networks on embedded devices is a challenging

task due to memory and energy constraints as well as unavailability of the popular software

frameworks such as TensorFlow and PyTorch. As a result, deep neural networks must be

optimized for a reduced memory footprint.

Additionally, a software specifically designed for microcontrollers must be designed to

process deep neural networks. This software may not possess all the features provided by

popular deep learning frameworks, but its footprint should also be significantly reduced. This

software would first focus on implementing the inference phase, while part of the training could

also be brought in later on.

2.4.1 Deep Neural Network Compression

In order for deep neural networks to be deployed on embedded systems with hard constraints

on memory, the memory usage must be reduced as much as possible while keeping the impact

on the prediction performance as low as possible. Various techniques can be used to reach a

memory footprint that fits both the target and the application, but there is always a trade-off

between memory footprint and prediction performance. Therefore, it is important to consider

the memory efficiency by comparing prediction performance to memory footprint. Apart from

memory, compression techniques can also impact energy efficiency, either by reducing or by

increasing the energy required during inference.

2.4.1.1 Neural Network Architectures

The most straightforward way to fit a given memory limit and power budget with a deep neural

network is to choose a small enough neural network that still provides good results on the

considered task. Deep neural network architectures are often popularized by achieving the best

results for complex computer vision or natural language processing tasks. However, these deep

neural networks are very large, with up to millions or even billions of parameters occupying

megabytes to gigabytes of memory, which is not available in small embedded devices. VGG-

11 [34], ResNet-18 [35] and ViT-Base [36], to only name a few, have 132.9 millions, 11.7 millions

and 86.6 millions parameters respectively when trained for ImageNet-1k, many times larger than

what a microcontroller can store.

Low-cost neural network architectures try to solve these problems with a reduced number of

parameters, often at the cost of a lower accuracy. This is notably the case of the SqueezeNet [37],

MobileNet [38], ShuffleNet [39], and EfficientNet [40] networks. These neural networks often

exhibit a lower accuracy, but the number of parameters as well as the number of operations

are many times lower than with neural networks providing state-of-the-art accuracy. Still, these

neural networks require several hundred kilobytes to a few megabytes of memory, so they are

not suitable for microcontrollers. They are rather designed for higher-performance devices such

as mobile phones. These networks are often tailored to solve computer vision problems such

as ImageNet classification, and are therefore not well suited for general use cases or simpler

problems.
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Finding a good neural network architecture for a given problem is difficult, and remains an

open issue even if hardware constraints are not taken into account. Indeed, the combinato-

rial explosion of hyperparameters makes the exploration of neural network architectures very

expensive. In practice, many applications use a simple generic neural network architecture

such as ResNet [35] and optimize it. Optimization can start with scaling down the deep neural

network. by making it narrower and shallower as needed. Making it shallower by reducing the

number of layers or narrower by reducing the number of neurons can decrease the number

of parameters and operations. However, at one point, the drop in accuracy may become an

obstacle to solving the given problem. Additionally, reducing the size of the input data and the

activations by downsampling using pooling layers decreases the number of operations. Such

scaling strategies are studied in [41] to improve ResNet’s accuracy and in [42] to improve its

execution time.

This is also the approach adopted in this work. The reason is that we want to easily make

use of the same deep neural network on different kinds of data (time series, audio spectrum and

image) and also simplify the implementation.

Instead of manually building and tweaking a deep neural network architecture, neural ar-

chitecture search [43] can be used to automate part of this process. Various metrics can be

taken into account, including the inference time of the model if real-time constraints need to be

met [44]. However, neural architecture search is a costly process. Methods to reduce the time

required to achieve good results exist, such as parameters sharing between models [45].

2.4.1.2 Pruning, Weight Sharing and Knowledge Distillation

Another solution is to start with a large deep neural network architecture and reduce its size

afterwards.

The number of parameters can be reduced by identifying parts of the network that are not

very useful for decision making. These parts can then be removed from the architecture. These

pruning techniques can considerably reduce the number of parameters. For example, in [46], the

authors managed to remove up to 90% of the parameters. However, unstructured pruning does

not allow for an efficient reduction of memory footprint or execution time. Unstructed pruning

attempts to remove weights without considering the structure of the neural network. Information

about missing weights must be encoded, and the computation also has to take possibly missing

weights into account. Recently, several works have structured pruning methods where an entire

filter or even a layer is removed [47, 48, 49, 50]. This way, the network can be reshaped with

complete removal of the filters or layers, removing all the associated memory, both weights and

activations, and all the related computation.

Another method consists in identifying similar parts at various points in the architectures in

order to factorize them. For example, in [51] weight sharing is implemented through clustering

in order to group similar weights together.

Finally, a smaller neural network can be trained under the supervision of a larger neural

network. This technique, called knowledge distillation, can help the smaller neural network

to achieve better performance compared to a standalone training. Knowledge distillation has

shown promising results, but it is a lengthly and costly process that requires many training

epochs for the student model on top of the training of the teacher model itself [52].

2.4.1.3 Quantization

The most popular method to reduce the memory footprint of a deep neural network for embedded

systems is quantization, which is the focus of our work. Quantization reduces the precision,

i.e., the number of bits used to represent a value in a deep neural network. Quantization can

also help changing the way the numbers are represented, e.g., from floating-point numbers
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to fixed-point numbers. Deep neural networks are often trained using floating-point numbers.

However, fixed-point numbers are less costly to process and require a less complex circuit. To

reduce the number of bits used to represent a value, quantization maps values from one set to

another smaller set. This smaller set can have a constant step between its elements, in which

case the quantization scheme is said to be uniform.

In [53] and [54] the authors present the common quantization techniques for deep neural

networks. Post-training quantization is performed after training the neural network. Quantization-

aware training takes into account quantization error during the training for the computation of

the loss function. However, during back-propagation, a straight-through estimator is generally

used [55, 56], meaning that the values are not quantized (see Figure 2.5).
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Figure 2.5: Forward and backward computation graph for quantization-aware training with

straight-through estimator assumption [53].

When performing quantization-aware training, an alternative to the straight-through estimator

is the Differentiable Soft Quantization (DSQ) method presented in [57]. The authors propose

to approximate the uniform quantizer by a function that relies on the hyperbolic tangent and

stays differentiable over the entire range. Additionally, its slope is adjusted over the training

process. It begins as being close to the identity function and progresses more and more towards

approximating the step function of the uniform quantizer as shown in Figure 2.6.
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Figure 2.6: Overview of Differentiable Soft Quantization [57]. © 2019 IEEE

The uniform quantization scheme is also described with variants relying on asymmetric

ranges for activations. The symmetric range is always centered around 0, while the asymmetric
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range can be off-center thanks to an offset value. Asymmetric activations range especially helps

after ReLU activations, since only the output values cannot be negative. In this case, the ReLU

activation has to be fused with the previous layer. Otherwise, the precision would already have

been lost before the ReLU activation since negatives values had to be encoded in the range.

Floating-point to fixed-point conversion requires determining a scale factor, so that the

floating-point number can be represented as an integer multiplied by a scale factor. In the

simplest case, the scale factor is a power of two so that it can be applied using only bit shifts.

An alternative consists in finding a scale factor that is not necessarily a power of two, but which

scales values within [−1; +1[. Using this technique, all the bits (except the sign bit) are used to

represent the fractional parts of numbers. As an example, there is the 𝑄1.15 format for 16-bit

numbers. This allows for a slightly lower quantization error since the quantization step is not

necessarily a power of two. The scale factor is also encoded using a fixed-point representation.

The choice of the scale factor (and associated step size and quantization range) can be more

fine-grained than a unique choice for the whole network. For example, it can be made different be-

tween layers or even between filters of convolutional layers. Although the quantization range can

be chosen from the maximum value of the distribution, advanced techniques such as minimizing

the Kullback-Leibler divergence metric can reduce the impact of quantization on the accuracy.

The authors of [53] present other advanced techniques such as minimizing the quantization

error through the mean-squared error metric or the cross entropy of the classification layer. It

is also possible to use statistics learnt during training and available in the batch normalization

layer to select the quantization range. The impact of the choice of the rounding method in the

quantization error is also discussed.

In the case of convolutional neural networks, the authors in [58] show that the weights of

convolutional layers typically follow a Gaussian distribution when weight decay is applied. More

generally, it has been shown that weights can closely fit Gaussian Mixture Models [59]. Therefore,

choosing a non-uniform quantization scheme that better matches the values of the non-uniform

distribution of weights would lead to a lower quantization error.

A non-uniform quantization scheme was implemented in [60] on an FPGA device. In this work,

instead of coding the value in a fixed-point format, only the nearest power of two is coded. Using

this approach, it is possible to obtain a better resolution compared to a fixed-point representation

for numbers near 0. This approach also allows large values to be represented, but at the cost of

a lower resolution. The quantization step is determined by minimizing the quantization error at

the output of the layer, thus balancing the precision and the dynamic range. Furthermore, the

computation can be done using bit shifts rather than multiplications since only base 2 exponents

are encoded. This solution has some benefits in terms of resource usage and latency for an

FPGA target. Additionally, results show that there is a slight degradation of accuracy when using

the proposed non-uniform quantization versus a uniform quantization. More recent results show

that quantization-aware training can help dampen the deterioration of accuracy [61].

Using lower-precision computation for deep neural networks has been explored in [62]. The

authors compare the test error rates on various image datasets for single-precision floating

point, half-precision floating point, 20-bit fixed point and their own dynamic fixed-point approach

using 10 bits for activations and 12 bits for weights. In their work, it is worth noting that the

training is also performed using lower-precision arithmetic. Training with fixed-point arithmetic

was presented in [63] with 16-bit weights and 8-bit inputs, causing an accuracy loss of a few

percent in the evaluation of text-to-speech, parity bit computation, protein structure prediction

and sonar signal classification problems. In [64], the authors have shown that on an Intel® E5640

microprocessor with an x86 architecture, using 8-bit integer instructions rather than floating-point

instructions provides an execution speedup of more than 2 without a loss of accuracy for a

speech recognition problem. In this case the training was performed using single-precision

floating-point arithmetic, and the evaluation was done after the network parameters quantization.

More recently, numerous works propose to use even less bits (i.e., 2 or 3 bits to quantize both
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weights and activations) and mitigate the accuracy loss with various techniques. PArameterized

Clipping acTivation (PACT) is a technique where a clipping parameter for the activation is learnt,

instead of being fixed to 6 in the ReLU6 for example [65]. Combined with Statistics-Aware Weight

Binning (SAWB) where the quantization range of the weights is chosen using the statistics of

the distribution, this can lead to a 2-bit quantized network with only a few percent accuracy loss

compared to the baseline [66]. The step size can also be learnt thanks to the Learned Step Size

Quantization (LSQ) [67] method, as well as the number of bits with BitPruning [68], or the step

size and the dynamic range [69].

In the extreme case, this amounts to binarizing the network parameters [70], leading to

drastic optimizations as only binary operations are used in XNOR-Net [71]. For example, up to

32× memory savings and 58× faster computation have been observed. However, binarization

also comes with substantial accuracy drop. In [71], when the XNOR-Net is applied to a ResNet-18,

a 18% accuracy drop compared to the baseline using single-precision floating-point numbers

has been observed with the ImageNet dataset. More recent works have shown that by carefully

choosing which part of the residual network to binarize, wisely selecting the quantization scheme

and performing other adjustments, a ResNet-50 can be modified into a PokeBNN with most

operations being binary and only a few being performed in fixed-point with 4- or 8-bit integers [72].

Such a quantized deep neural network exhibits a much higher accuracy than other binarized

neural networks (close to the baseline), while saving a considerable amount of computation and

memory.

However, these prior works about quantization and neural network compression in general

were mostly not concerned with embedded computing on microcontrollers. Running deep neural

networks on microcontrollers began to be popular in the last few years thanks to the rise of the

Internet of Things as well as the improved efficiency of deep neural networks.

2.4.2 Deep Neural Network on Microcontrollers

Deep neural networks have already been deployed on 8-bit microcontrollers several years ago.

One of the first solution was proposed in [73]. Although interesting, this method requires a lot

of work to implement pseudo-floating-point coding, a custom multiplication algorithm over 16

bits, as well as a hyperbolic tangent approximation for the activation function, all in assembly

language. Over the last few years, implementations have relied on 32-bit microcontrollers with

either a hardware floating-point unit or fixed-point computations. In addition, the Rectified Linear

Unit (ReLU) [74] has become widely used as an activation function. ReLU has the benefit of being

easily computed as a max between 0 and the layer’s output, thus being much less complex than

a hyperbolic tangent. In the meantime, neural network architectures and training methods have

continued to evolve, providing more and more efficient models. As a result, applications such

as spoken keyword spotting [75] can now be performed in real time on IoT devices relying on

low-power microcontrollers.

In [28], the authors emphasize that the instruction set architecture (ISA) of available mi-

crocontrollers can be a great limitation to running quantized neural networks. Indeed, most

microcontroller architectures do not exhibit any kind of SIMD instructions. On the other hand,

most microcontrollers rely on 32-bit registers. Thus, even if the neural network parameters and

the input data use a lower precision representation, operations have to be computed one by one

using 32-bit registers. Some more advanced microcontroller architectures offer instructions

able to handle 4 × 8-bit or 2 × 16-bit data packed in 32-bit registers. However, these architectures

do not allow working with intermediate or sub-byte precision, and not all arithmetic and logic

instructions are covered. Even though it helps further reducing the memory footprint, sub-byte

data must be manually packed and unpacked, thus inducing a noticeable computation overhead.

To overcome these limitations, the authors in [28] proposed an extension of the RISC-V

instruction set architecture, with instructions to handle sub-byte quantization. Unfortunately,
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microcontrollers implementing RISC-V are still scarce on the market, and not readily available

with the proposed extension. Thefore, this approach cannot be reasonably used to deploy

IoT devices since it would require manufacturing a custom microcontroller. Manufacturing a

custom microcontroller is hardly feasible when the goal is to release an IoT product on the

market, due to large costs, time and the required level of expertise. As a result, only off-the-shelf

microcontrollers using 8-, 16- or 32-bit precision are considered in this work.

2.4.3 Existing Embedded Deep Learning Frameworks

Several embedded machine learning frameworks are already available. Among them, the most

popular ones are TensorFlow Lite for Microcontrollers [76] and STM32Cube.AI [77]. Other

frameworks stemming from research projects also exist and are discussed in the following.

2.4.3.1 TensorFlow Lite for Microcontrollers

TensorFlow Lite for Microcontrollers (or TFLite Micro) is a project derived from TensorFlow

Lite. TensorFlow Lite is originally focused on deep neural network deployment on smartphones.

However, the Microcontrollers variant makes it available for microcontrollers. TFLite Micro

supports a wide range of operations [78], enabling the deployment of a variety of deep neural

networks such as multi-layer perceptrons and convolutional neural networks, including residual

neural networks. Deep neural networks are developed and trained using TensorFlow, usually with

the Keras interface [79], and can then be semi-automatically deployed onto a microcontroller.

TFLite Micro is intended to be generic enough to be deployed on any kind of 32-bit microcon-

troller. The inference library is therefore portable; however, there is no integration with specific

microcontroller families and vendor tools. While the trained deep neural network (topology and

weights) can be automatically converted into a format understandable by the inference library,

there are no tools to generate and deploy the application code. Moreover, the test application

must be written by hand. Nevertheless, a template source code for a few development boards

(e.g., the SparkFun Edge) as well as a few demo applications (e.g., keyword spotting) are avail-

able. Finally, TFLite Micro does not come with tools to measure metrics such as the inference

time or the RAM and ROM usage.

TFLite Micro supports computation in both single-precision floating-point format and fixed-

point numbers on 8-bit integers. The quantization technique uses a non-power-of-two scale

factor, a symmetric range for the weights and an asymmetric range for the activations. Biases

are quantized on 32-bit integers. Convolution operations can make use of a per-filter scale factor

and offset, while other operations use a per-tensor (i.e., per-layer) scale factor and offset [80, 81].

More recently, there has been ongoing work in adding support for 16-bit fixed-point activations.

Inference with fixed-point numbers can be accelerated using low-level optimizations provided

by the CMSIS-NN [4] library from ARM. Optimizations include loop unrolling, optimized register

allocation, optimized memory access, as well as using specialized instructions. The library

also offers acceleration using SIMD (Single Instruction, Multiple Data)-like instructions on some

targets. For example, the ARMv7E-M instruction set architecture of Cortex-M4 cores provides

an instruction to perform two multiply–accumulate (MACC) operations on 16-bit operands with

a single 32-bit accumulator in one cycle.

While being entirely free/open-source, the complexity of the software architecture makes it

quite difficult to manipulate and extend. This is a substantial drawback in a research environment,

and it also comes with additional overhead. The deep neural network topology is deployed as

a sort of microcode that is interpreted at runtime instead of being statically compiled. This

process makes it more difficult for the compiler to perform optimizations and causes a larger

memory usage.
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2.4.3.2 STM32Cube.AI

STM32Cube.AI is a software suite from STMicroelectronics that enables the deployment of

deep neural networks onto their STM32 family of microcontrollers. STM32Cube.AI supports

deployment of trained deep neural network models from several frameworks including Keras

and TensorFlow Lite. A wide range of operations are supported [82], allowing the deployment

of several deep neural network architectures, such as multi-layer perceptron and convolutional

neural networks, including residual neural networks.

STM32Cube.AI is a software suite fully integrated with other STMicroelectronics development

and deployment tools such as STM32CubeMX, STM32CubeIDE and STM32CubeProgrammer.

This provides a very straightforward and easy to use flow. Moreover, a test application is included

to evaluate the model on target with a real test dataset, without having to write a single line of

code This application provides metrics on inference time as well as ROM and RAM usage.

Like TFLite Micro, STM32Cube.AI supports computations in single-precision floating-point

format and fixed-point numbers on 8-bit integers. In fact, the quantization on 8-bit integers

comes from TFLite. There is no support for fixed-point numbers on 16-bit integers.

STM32Cube.AI also has an optimized inference engine that seems to be partially based on

CMSIS-NN. However, as the source code of the inference engine is not freely available, it is not

clear what is optimized and how.

The inference library is entirely proprietary and closed-source, therefore it is not possible to

manipulate and extend this library. This represents a major drawback in a research environment.

It is also not possible to use STM32Cube.AI on microcontrollers which are not part of the

STMicroelectronics portfolio. The inference process and optimizations are not detailed, but

unlike TFLite Micro, the network topology is compiled into a set of function calls to the closed-

source library rather than being interpreted at runtime.

Since 2021, STMicroelectronics provides an alternative proprietary paid solution called

NanoEdge AI [83] which also includes automated machine learning aspects.

2.4.3.3 N2D2

N2D2 [84] is software framework for end-to-end design and deployment of artificial neural

networks. Developped by the CEA-List, N2D2 is aimed at offering a European alternative to

overseas frameworks such as TensorFlow.

N2D2 provides post-training quantization [85] and quantization-aware training [86]. The

quantization scheme consists in a non-power-of-two scale factor, a symmetric range for weigths

and an asymmetric range for the activations, with a per-filter scale factor similar to what Tensor-

Flow Lite offers. Furthermore, N2D2 can optimize the chosen scale factor by minimizing the

quantization error using either the mean-squared error or the Kullback–Leibler divergence metric.

The quantization-aware training also includes support for the Learned Step size Quantization [87]

and the Scale-Adjusted Training [88] methods.

N2D2 supports various targets including CPUs, GPUs, and their own accelerator architecture

for FPGA called PNeuro. While STMicroelectronics STM32 microcontrollers family is supported,

the support for this target is proprietary and not publicly available. Details about this support are

scarse. Nevertheless, there are target-specific optimizations for ARM Cortex-M4 and Cortex-M7

cores.

The fact that N2D2’s STM32 target support is not publicly available does not make it suitable

for inclusion in our study. However, in the future, thanks to the Deep Green project [89], N2D2

will be extended to cover more targets and to improve interoperability with existing frameworks.

It is also planned that N2D2 becomes fully open-source.
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2.4.3.4 NNoM

NNoM (Neural Network on Microcontroller) [90] enables the deployment of a trained Keras

model to microcontrollers thanks to a portable C library for inference. It is in fact similar to

our proposition in Chapter 3, although we designed an end-to-end training and deployment

framework around our conversion tool, while NNoM is just a standalone conversion tool. The

design approach of the conversion tool is also slightly different. It proposes a more complete

and complex C library while the Python tool simply performs the quantization and generates the

configuration of the layers as C structures to call in the C library. We instead generate a simple

C code from templates of the layers with the configuration being written as constants or literals.

NNoM does not support PyTorch models. However, support for recurrent cells (such as

GRU and LSTM) was recently added, something we did not focus on yet. NNoM can optionally

make use of the CMSIS-NN library for target-specific optimizations. Furthermore, the included

non-optimized implementation of the layers’ operations is almost identical to CMSIS-NN non-

optimized code.

Post-training quantization can be used to run the inference with fixed-point numbers on 8-

or 16-bit integers. Similarly to N2D2, it can use the Kullbak-Leibler divergence metric to find

the scale factor for the quantization, or simply use the maximum value of the tensor as we

do. There is no support for quantization-aware training since NNoM does not interface with

any training capabilities of the deep learning framework. The quantization scheme relies on a

power-of-two scale factor and symmetric ranges. The non-optimized implementation can make

use of per-filter scale factor.

A short comparison between NNoM, STM32Cube.AI and TensorFlow Lite Micro is provided

in [91] and [92].

2.4.3.5 Other Frameworks

Some other frameworks have been developed as part of research projects. These frameworks

mainly focus on “classical” machine learning (SVM, Decision Tree, etc.), for example, emlearn [93]

and Micro-LM [94], or multi-layer perceptron, for example, Gravity [95] and FANN-on-MCU [96].

These frameworks do not support convolutional neural networks with residual connections.

MicroTVM [97] brings support for microcontrollers to TVM [98], a compiler framework focused

on deploying and optimizing deep learning models. At the time of this work, microTVM seems

less mature and less popular than TensorFlow Lite for Microcontrollers and STM32Cube.AI. It is,

therefore, not studied in this work.

Finally, apart from STM32Cube.AI from STMicroelectronics, other microcontroller vendors

have developped their in-house solution for embedded deep neural networks, such as e-AI from

Renesas [99] and eIQ from NXP [100] among others. Furthermore, many companies providing

solutions for embedded artificial intelligence have emerged in the past few years [101].

2.5 Smart Glasses and Human Activity Recognition

Among existing embedded systems, wearables mainly bring constraints on energy, physical

dimensions and cost. Other aspects such reliability and safety are often less critical in these

consumer devices. In this work, we are especially interested in smart glasses.

2.5.1 Smart Glasses Products and Applications

In smart glasses, the space used by the electronic circuits must be as small as possible since it

must fit in the branches of the glasses, including the battery. As a result, the battery can only
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contain a very small amount of energy, so the electronic circuits must be as efficient as possible

in order to obtain a reasonable battery life.

Smart glasses have many applications in the healthcare, entertainment or industrial fields

and their popularity have been steadily increasing in research environments for the past few

years [102]. Usually, smart glasses are associated with augmented reality, where a camera

captures the scene in front of the user to analyze the environment, and additional information

are overlayed on top of the environment through a display on the lens [103]. However, smart

glasses used for augmented reality are often heavy and bulky due to the processing power and

energy required by image processing and associated computer vision algorithms. Use-cases of

smart glasses are not limited to augmented reality. Various sensors such as a microphone, an

inertial measurement unit or even a GPS can be used to enhance the experience of the wearer.

For example, the SPIDERS+ system provides emotion sensing through an infrared camera, a

proximity sensor and an inertial measurement unit, as well as bio-signal acquisition with other

sensors [104].

Different smart glasses product are either available on the market or as research prototypes.

In this work, we rely on the Smart Connected Eyewear offered by Ellcie Healthy, a local company

developping smart glasses and associated applications. These glasses were initially used for

driver’s drownsiness detection through blink measurements [105]. The blink detection algorithm

performance was improved by making use of a convolutional neural network, deployed on the

smart glasses’ microcontroller using STM32Cube.AI [106]. Compared to products such as the

Microsoft Holo Lens 2 or a the Google Glass Enterprise Edition 2, Ellcie Healthy’s product embeds

a very low-power microcontroller rather than a high-performance system-on-chip. No camera or

display are present since it is not designed for augmented reality. Ellcie Healthy’s smart glasses

(Figure 2.7a) are similar to the JINS MEME smart glasses (Figure 2.7b). Although details about

the JINS MEME hardware are scarse, it also includes an inertial measurement unit and can be

used for blink measurement in a driver’s drowsiness detection application [107].

(a) Ellcie Healthy Smart Connected Eyewear. (b) JINS MEME [107]. © 2016 SAE International

Figure 2.7: Smart glasses products.

In [108, 109], the inertial measurement unit of Ellcie Healthy’s smart glasses has been used

for evaluation of sit-to-stand and gait movements, showing that the smart glasses can be used

for elderly care applications. Artificial neural networks have not been used for these evaluations

yet, and the data is processed on a computer after the recording.

In this thesis, we attempt to integrate artificial intelligence on Ellcie Healthy’s smart glasses

in order to handle a human activity recognition task.

Before building and deploying a deep neural network for human activity recognition, data

must be obtained for training and evaluation purposes.

2.5.2 Human Activity Recognition Datasets

Datasets for human activity recognition using various modalities have been flourishing for the

past decade [110]. Two sensor categories are mainly used for human activity recognition:
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vision-based and body-worn sensors. Vision-based sensing relies on cameras placed in the

environment to capture a video stream of a subject performing activities of daily living [111].

This requires external cameras and a considerable processing power, therefore vision-based

approaches are not suitable for embedding into a wearable device. In this work, we mainly focus

on body-worn sensors. Body-worn sensors rely on inertial measurement units (IMU), including

an accelerometer, a gyroscope and sometimes additional sensors (magnetometer, barometer,

etc.) to measure the subject movements.

The most iconic dataset for human activity recognition using an inertial measurement unit is

likely the Human Activity Recognition dataset hosted by the University of California Irvine, com-

monly dubbed UCI-HAR [112]. A total of 30 subjects participated in the experiments, performing

6 activities: WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING,

and LYING. 21 subjects are used for training while the other 9 are used for testing, representing

7352 and 2947 vectors, respectively. This dataset is built from a 3-dimensional accelerometer

and a 3-dimensional gyroscope sampled at 50 Hz, embedded into a smartphone attached to the

subject’s waist. The acceleration signal is filtered to create an additional signal without gravity.

Therefore, there is a total of nine channels of sensor data. The data are windowed over 2.56 s

with 50% overlap to create windows of 128 samples. The data are provided in two forms: vectors

of 128 samples for each of the nine sensor channels, and vectors of 561 features computed from

the 128 × 9 values. Despite providing a better classification accuracy, pre-computed features are

often generated using computationally expensive Fast Fourier Transforms (FFT). On the other

hand, feature extraction can be performed automatically through convolutional layers. However,

existing work show that in this case the accuracy decreases from 95.8% to 93.3% [113]. When

convolutional layers are used on top of pre-computed features, the accuracy can be improved up

to 97.5% in [114]. As it will be seen further, some aspects of our dataset are inspired by UCI-HAR

such as some classes and the window duration.

The UCI-HAR dataset was extended in [115] to provide the transitions between static activities:

STAND_TO_SIT, SIT_TO_STAND, SIT_TO_LIE, LIE_TO_SIT, STAND_TO_LIE, LIE_TO_STAND. This

SBHAR dataset was used to evaluate the Transition-Aware Human Activity Recognition [116]

system along with two other datasets: PAMAP2 and REALDISP.

Instead of using a single smartphone with an accelerometer and a gyroscope, the PAMAP2

dataset [117] rather uses dedicated IMU devices called Colibri Wireless from Trivisio. One device

is placed on the wrist, another one on the chest and a last one on the ankle. Each device contains

a 3-dimensional accelerometer, a 3-dimensional gyroscope and a 3-dimensional magnetometer,

along with a temperature sensor, all sampled at 100 Hz. Additionally, a heart-rate monitoring

device is sampled at 9 Hz. In this dataset, nine subjects perform 12 to 18 activities. This setup

is much more intrusive than UCI-HAR as multiple dedicated devices are used at specific location,

making this approach harder to use in real conditions for live human activity recognition.

The REALDISP [118] dataset has an even more complex setup, using 9 IMU devices from

Xsens sampled at 50 Hz, each with a 3-dimensional accelerometer, a 3-dimensional gyroscope, a

3-dimensional magnetometer. The IMU devices also provide orientation estimates in quaternion

format (4D) [119]. This dataset contains more classes and more subjects than PAMAP2: 33

classes and 17 subjects. Its purpose was to study the impact of sensor placement.

Other popular human activity recognition datasets include UniMiB SHAR [120] containing

accelerometer samples captured from a smartphone, Real-Life HAR [121] also collected from a

smartphone but focusing on real-life situations (for example inactive, active or driving) rather than

a laboratory setting, and OPPORTUNITY [122] that uses many sensors of different modalities.

Apart from these datasets using data collected from smartphones or specific devices, there

are few other datasets based on wearables available from the market. Let us cite WISDM [123]

using a combination of a smartphone and a smartwatch (LG G Watch) to collect data from 51

subjects performing 18 activities. Other datasets for human activity recognition, such as [124]

relying on a Microsoft Band 2, have been created from consumer smartwatches. However, these
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datasets have not been released so far.

More specifically, smart glasses are still not a popular device to use for human activity

recognition. Nonetheless, prior works have been done to build a dataset for smart devices

including smart glasses in [125]. This dataset makes use of JINS MEME smart glasses as well

as a smartphone and a smartwatch to collect data from different sensors. The smart glasses

provide data from an embedded IMU. This dataset has however some noticeable drawbacks.

First, only one subject participated in the experiment. Moreover, there is no well-defined set of

activities or well-defined protocol, which makes it difficult to evaluate or to extend.

Another work used JINS MEME smart glasses for human activity recognition. However the

dataset does not appear to be publicly available. Machine learning techniques such as Random

Forest were used on the data collected from the JINS MEME smart glasses while artificial neural

networks were not evaluated [126].

Some efforts have been made in [127] to develop a system for activity recognition using

smart glasses (Google Glass Explorer Edition XE 22). The authors compare the classification

performance of a Support Vector Machine (SVM) between data collected either from a smart-

phone or smart glasses for 4 activities (Biking, Jogging, Movie Watching, and Video Gaming).

This system can perform inference on the Android smartphone but not on the smart glasses.

However, and as it has been said in the introduction, each dataset has its own characteristics

depending on the device that has been used. The device itself and its position greatly impacts

the angle of the acceleration (both gravity and linear acceleration) as well as the signal shape

for some movements. Additionally, the sensors themselves can have varying sensitivity and

sampling rate. Therefore, using an existing dataset for a different device or application would

produce poor classification results. For this reason, we decided to build our own dataset for the

Ellcie Healthy’s smart glasses.

2.6 Unsupervised On-Device Fine-Tuning

Previous discussions on embedded deep neural network were mostly about inference, i.e., a

deep neural network pre-trained on a workstation and then deployed onto an embedded system,

without any modification of the deep neural network afterwards. However, performing domain

adaptation through online learning directly on the embedded system may help improving the

performance of the deep neural network without requiring a new offline training from scratch,

and especially a new deployment of the neural network model. Updating the neural network

model on the device once it is deployed in the field can indeed be difficult. It requires either

physical access with manual intervention from an operator, or over-the-air upgrade through a

wireless network, both with an associated downtime.

Instead, the neural network model could be updated continuously or as needed directly on the

target. Nevertheless, as previously discussed, training is usually a resource-intensive process

in terms of memory and computation. Additionally, once the device is deployed, it may not be

possible to provide labelled data for training. Therefore, alterative solutions to train a neural

network on-target in an unsupervised online fashion must be explored.

2.6.1 Unsupervised Learning

Unsupervised learning methods are used when no label is available for the input data. It is

usually required to label by hand a large amount of data to build an accurate model. Without

labels, it is difficult to train a deep neural network using backpropagation. The reason is that the

loss function usually measures the difference between the prediction of the deep neural network

and the label from the ground truth. Instead, either a different loss function, a different training

algorithm, or a different machine learning method altogether must be used.
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For example, the deep neural network can be designed as an autoencoder to learn an embed-

ding of the input called the latent space. The latent space is generally of a smaller dimension

than the input, but sometimes it can be larger [128]. An auto-encoder is built as an encoder

network followed by a decoder part, both typically constructed using convolutional layers, with

the encoder input and the decoder output being of the same dimension. The autoencoder can

be trained with backpropagation using a loss function minimizing the distance between the

input and the output. Therefore, the training only relies on unlabelled data. Autoencoders can

be used for data compression [129], denoising [130] and anomaly detection [131] among other

applications. Autoencoders cannot be directly used for clustering or classification purposes.

However, the encoder part can be used as a feature extractor which then feeds a clustering or

classification algorithm [132]. Nonetheless, features learnt by the autoencoder may not be of

the highest relevance for a clustering or classification problem since these features were learnt

for a good reconstruction of the input rather than a good separability of the clusters or classes.

In fact, it is possible to reuse a feature extractor such as a convolutional neural network trained

in a supervised manner to feed the features to an unsupervised algorithm. The feature extractor

can even be trained on a different dataset for a different but similar task in a transfer learning

fashion [133].

In the case of spiking neural networks, the Spike-Timing-Dependent Plasticity (STDP) learn-

ing rule [134] is also an unsupervised method which reinforces synapses for neurons with a

correlation in time. The learning rule is local and does not take into account the inputs or the

outputs of the neural network.

Apart from feedforward neural networks, other bio-inspired neural models can rely on an

unsupervised learning rule, such as the Self-Organizing Map [135]. The self-organizing map is

made of neurons arranged in a two-dimensional grid with each neuron connected to its four

neighbors (other arrangement with higher dimensions or different connectivity are also possible).

In a self-organizing map, the learning rule is local and depends on the inputs. Such an algorithm

can be described as a vector quantization algorithm. As a self-organizing map cannot be used

directly for a clustering or classification problem, another clustering method such as k-means or

a labelling method [136] can be applied on the neurons to get clusters or classes.

Outside of artificial neural networks, many clustering methods exist and can be used in

an unsupervised manner, such as k-means [137], DBSCAN [138], its hierarchical variant HDB-

SCAN [139], or OPTICS [140].

In order to solve a classification problem, labelling the clusters or the output neurons of the

artificial neural network is still required. This labelling could be performed manually by an expert,

or automatically using a small subset of labelled data from the training set. For example, the

number of required labels can be reduced down to 20% for human activity recognition [141]

or even only 1% for handwritten digit recognition [136]. Overall, this combination of methods

can be seen as a semi-supervised approachapproach since some data needs to be labelled

for classification purposes, whereas the training itself is unsupervised. Furthermore, active

learning [142] can be used to make a better choice of the data to label.

In the human activity recognition literature, unsupervised approaches have already been

evaluated several times [143], mostly with non-neural-based machine learning methods such as k-

means. The bio-inspired approaches such as the self-organizing map remain mostly unexplored

for human activity recognition with body-worn sensor, most of the prior works being about video

data [144]. The accuracy of several supervised or semi-supervised learning methods have been

already evaluated in the litterature on the UCI-HAR dataset as presented in Table 2.1 with two

types of input: raw data (designed by * on the table) or pre-computed features. The vast majority

of methods use pre-computed features that require to pre-process the signals.

Finally, unsupervised learning approaches make online learning possible when it is difficult

to label data as they come.
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Table 2.1: Mean accuracy (%) for various learning methods on UCI-HAR.

Method Accuracy

Neural Networks

Perceptron [145] 92.4

Recurrent neural network [145] 95.1

Multi-layer perceptron [145] 94.7

Deep convolutional neural network [146] 95.75

Stacked Autoencoder [147] 92.16

Denoising Autoencoder [147] 90.50

3-layers convolutional neural network * [148] 92.71

LSTM (Long Short-Term Memory) [148] 89.1

Bidirectional LSTM [148] 89.40

Multi-layer perceptron [148] 86.83

Convolutional neural network frequency domain [114] 97.50

3 layers LSTM [149] 97.4

Supervised Machine Learning

Nearest Neighbours [150] 91.0

Decision Tree [150] 87.4

Random Forest [150] 91.4

Support-Vector Machine (SVM) [150] 90.7

AdaBoost [150] 40.8

Naive Bayes [150] 88.9

Quadratic discriminant analysis [150] 90.0

Multi-Class SVM [112] 96

One-vs-one multiclass linear SVM with majority voting [151] 96.4

A sparse kernelized matrix learning vector quantization model [152] 96.23

Confidence-based boosting algorithm Conf-AdaBoost [153] 94.33

Two-Stage Continuous Hidden Learning Markov Models [154] 91.76

Semi-Supervised Methods

Recurrent Variational Autoencoders with Sparse Labels (1.4% of labels) [155] 63.0

Recurrent Variational Autoencoders with Sparse Labels (14% labels) [155] 83.9

Recurrent Variational Autoencoders with Sparse Labels (100% of labels) [155] 91.7

Transformation Prediction Network (0.4% of labels) [156] (f-score) 0.88

Transformation Prediction Network (4% of labels) [156] (f-score) 0.90

Transformation Prediction Network (100% of labels) [156] (f-score) 0.91

Learning to Predict Cross-Dimensional Motion (1% of labels) [157] (f-score) 0.80

Learning to Predict Cross-Dimensional Motion (100% of labels) [157] (f-score) 0.90

* Raw data.
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2.6.2 Online and Continual Learning

There are various aspects of machine learning associated with online learning such as incre-

mental learning, continual learning and the associated problem of catastrophic forgetting. First

and foremost, online learning is about a model learning from the data as they come, in a stream-

ing fashion. In contrast, the more traditional offline or batch learning techniques has access

to the entire dataset and can generally fetch data at random and multiple times [158]. A key

characteristic of online learning is that all the data cannot be stored in memory, as the stream of

data can be infinite. Therefore, the model should be able to learn input vectors one by one. As

mentioned, memory is the main limit to the implementation of a batch learning algorithm. It is

indeed required to store a large dataset. Online learning does not have this limitation and makes

it possible to implement deep neural network training on an embedded system.

Furthermore, online learning leads to another class of learning methods: continual, incre-

mental or lifelong learning. There is no clear consensus on the exact definition of these various

methods. In this work, we assume that continual, incremental and lifelong learning all refer to

the ability of a model to learn from new information on-the-fly, after the initial training is over,

without requiring a new training from the ground up. Additionally, there are mainly two different

learning scenarios: new instances, where the model learns new information for existing classes,

and new classes, where the model learns new information for previously unknown classes [159].

One of the main problem caused by continual learning which is studied extensively in the

litterature is catastrophic forgetting [160]. Catastrophic forgetting happens when a model learn

new information from the incoming data, but forgets the information previously learnt from data

that is not available anymore. For example, in a classification task, if the new data only contains

information about a few classes, the classes previously learnt may be forgotten and the model

may not be able to classify data into these classes correctly anymore. Similary, if a distribution

shift happened, the model may not be able to handle the original distribution anymore.

A common mitigation of catastrophic forgetting is to use replay or rehearsal methods: while

learning new information, a small part of old information is also made available to the training

algorithm [161]. This way, the model can learn the old information again, thus preventing it

from being forgotten. Rehearsal methods typically require additional memory to store part of

the information learnt previously. While this memory is many times smaller than a full offline

dataset, it can be substantial for an embedded system. Furthermore, if the new information also

has to be remembered, then it becomes difficult to dimension the memory and to select which

information needs to be recorded.

In [162], authors propose to use quantized latent replays to reduce the memory usage on

embedded systems. Latent replays use feature maps of a lower dimension than the input taken

at an intermediate layer and only train the remaining layers as shown in Figure 2.8. Another

approach is to generate data on-the-fly instead of using pre-recorded data, a kind of pseudo-

rehearsal. For example, in [163], the mean and standard deviation of the latent space for the

old tasks are recorded. Then during the learning of new tasks, features from the old tasks are

generated using these statistics as Gaussian distributions parameters. In [164], the authors

propose to use reverberating networks to fight against catastrophic forgetting with the process

illustrated in Figure 2.9. One network learns information from the new data and rehearses the

old information from data generated by the second network. This second network only requires

random input to generate data. The role of the networks can be exchanged for the second

network to also learn the new information.
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Figure 2.8: Continual Learning with Latent Replays [162]. © 2021 IEEE

Figure 2.9: Reverberating Networks [164]. © 1997 Elsevier Masson SAS

Despite training with an online learning method being less efficient than with an offline

mini-batch method, continual learning can make use of backpropagation. Backpropagation,

however, generally requires a supervised training. Some unsupervised learning methods can

also be adapted to work in an online learning setting. Self-organizing maps are initially not

suitable for online learning due to the convergence process relying on a finite time constant.

The Dynamic Self-Organizing Map (DSOM) [165] removes this time dependency to enable online

learning, where there is no end to the training process.

In order to evaluate the performance of continual learning and the associated catastrophic

forgetting, a dedicated dataset is required. However, not many are available and most of

them target computer vision. Additionally, they do not reflect a real-world use-case of continual

learning [166]. For example, the permutated MNIST dataset used in [167] is an artificially modified

MNIST dataset with different permutations of pixels. The CORe50 dataset [159] attempts to

propose an evaluation method for continual learning, by providing different sessions with diverse

settings for the same objects that must be learnt sequentially. Nonetheless, it is still targeted

towards computer vision and not really suitable for low-power embedded system evaluation.
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In fact, our goal is slightly different in the human activity recognition scenario, since we aim

to specialize the model for a new subject, after an initial training performed on multiple other

subjects. Therefore, our experiments mostly rely on datasets divided by subjects, where one

subject from the testing set is selected for continual learning. This is often the case for human

activity recognition datasets such as UCI-HAR, as well as our own dataset, but can sometimes

be found in other domains such as keyword spotting with the Heidelberg Digits [168] dataset.

Despite the Heidelberg spiking datasets being originally designed for spiking neural networks

evaluation, we use the raw audio data of the Heidelberg Digits dataset in non-spiking neural

networks.

2.6.3 On-Device Learning

One of the objective of this thesis is also to be able to perform the training directly on the

device, rather than on a remote server. As training requires even more resources, this is a bigger

challenge than inference.

In [169], the authors propose a system to perform on-device online learning on microcon-

trollers. The TinyOL system relies on an additional layer that can be updated on-the-fly, while the

rest of the pre-trained neural network is frozen. The layer gets updated using stochastic gradient

descent when new labelled data are presented to the neural network. Additionally, the authors

show that the system can also be used in an unsupervised learning setting, with a use-case of

anomaly detection using an autoencoder. In my opinion, the use case (anomaly detection on a

fan using an accelerometer) may be too simplistic to properly show the usefulness of such a

solution.

Similarly, the authors of [170] present the same use case, but with a slightly different method.

The additional layer is trained using OS-ELM (Online Sequential Extreme Learning Machine) [171],

and the data is pre-processed with a fast Fourier transform.

A more complex task to be solved by embedded deep neural networks is presented in [162].

Authors propose to perform continual learning for object recognition on-device thanks to a

high-performance multi-core processor. The software implementation is specifically optimized

for this custom processor, and leads to energy figures multiple times better than what can be

achieved on a conventional low-power STM32L476RG microcontroller.

The Tiny Training Engine presented in [172] enables transfer learning for a visual recognition

task in less than 256 KiB of RAM. This way, continual learning can be performed on an embedded

system. The authors achieve near state-of-the-art accuracy (89.1%) on the Visual Wake Words

dataset with a model pre-trained on ImageNet, the transfer learning being performed in 206 KiB of

RAM. The Tiny Training Engine provides a code generation tool with compile-time differentiation

in order to support backpropagation through multiple layers on the device in the lightest possible

way. Additionally, the backpropagation can take into account a partially pruned backward graph

in order to skip the processing of frozen layers or weights, thus significantly reducing the amount

of memory to perform the weights update.

Other works focus on making use of on-device learning for federated learning. Federated

learning is a technique to train a model in a decentralized manner, where multiple nodes contribute

to the training without requiring to centralize or even exchange the input data. At the edge, it

means that the data does not leave the device, while multiple devices connected together can

share their processing power to learn new information. In [173], a modification of the stochastic

gradient descent, called Lightweight Stochastic Gradient Descent (L-SGD) is proposed in order

to support deep neural network training on microcontrollers. The results show that L-SGD is

able to perform a faster training with less memory using the MNIST or the CogDist datasets with

only a small difference in accuracy. Despite this work discussing federated learning, it does not

provide an actual use-case. Additionally, the federated learning approach would still rely on a

remote server for knowledge aggregation. [174] presents a more concrete use-case of keyword
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spotting using 3 microcontroller devices, and a remote server to share the knowledge.

Train++ [175] is a simple perceptron that performs binary classification with a supervised

online learning rule to update its weights. While the learning rule is original as it does not rely

on gradient computation and it is executed on a microcontroller, the model is too simplistic to

perform realistic tasks requiring non-linear multiclass classification.

2.7 Conclusion

In this chapter, we presented existing works related to the three main topics that this thesis

focuses on: embedded artificial neural networks, human activity recognition with smart glasses,

and unsupervised on-device fine-tuning.

The first topic of embedded artificial neural networks covered the compression and the

deployment of deep neural networks on embedded devices. As of 2022, the scientific literature

covers many aspects of deep neural network compression with various methods that can be

applied to reduce the memory footprint or the execution time of deep neural networks. While we

do not contribute a new method to this field, we implement and evaluate quantization in several

use cases to provide an overview of the optimization of the resources for several applications

running on microcontrollers (human activity recognition, keyword spotting, and traffic-sign

recognition). However, at the beginning of the work on this thesis (late 2019), we identified

several shortcomings to the existing software frameworks for deep neural network deployment

on microcontrollers. This led us to the development of our own software framework, which we

released under an open-source license.

As for human activity recognition with smart glasses, existing works do not cover this

application well, and no usable dataset is available. Therefore, we decided to build our own

dataset and release it under an open access policy. We developed a prototype of live human

activity recognition on smart glasses using this data.

Finally, unsupervised on-device fine-tuning is for the most part still unexplored. Apart from

the use-case of anomaly detection, most of the existing work focused on supervised learning.

This topic combines the aspects of unsupervised learning, online learning and on-device learning

which are all challenging. Furthermore, instead of exploring these aspects only on synthetic

data or simple datasets, we wanted to know if these approaches could work in a real-world

situation. Therefore, we propose an unsupervised fine-tuning method and evaluate it on human

activity recognition and keyword spotting datasets. Then, we implement it on a microcontroller

to provide an on-device learning method.
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Quantization and Deployment of Deep

Neural Networks on Microcontrollers
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3.1 Introduction

Microcontrollers have only a very small amount of Flash memory, often less than 1 MiB. They

also run deep neural network algorithms several orders of magnitude more slowly than GPUs or

even CPUs. The reason is that microcontrollers generally rely on a general-purpose processing

core that does not implement parallelization techniques such as thread-level parallelism or

advanced vectorization. Moreover, microcontrollers generally run at a much lower frequency

than GPUs (typically 8 MHz to 80 MHz compared to 1 GHz to 2 GHz). Their simpler design and

lower performance also allow them to run with a reduced power consumptions compared to

general purpose CPUs found in personal computers or GPUs for instance.

Table 3.1 gives examples of a microcontroller, a CPU and a GPU. The time taken to compute

one prediction is then compared for each of these devices in Table 3.2. These figures outline a

power consumption approximately 3000 times lower for the microcontroller compared to the

CPU or the GPU. However the microcontroller is also 2000 to 7000 times slower to compute a

prediction than the CPU, and up to 27 000 times slower than the GPU for the considered deep

neural networks.

Table 3.1: Microcontroller (STM32L452RE), CPU (Intel Core i7-8850H) and GPU (NVidia Quadro

P2000M) platforms. Power consumption figures for the GPU and the CPU are the TDP (Thermal

Design Power) values from the manufacturer and do not reflect the exact power consumption of

the device.

Platform Model Framework Power Consumption

MCU STM32L452RE STM32Cube.AI 0.016 W

CPU Intel Core i7-8850H TensorFlow 45 W

GPU NVidia Quadro P2000M TensorFlow 50 W

Table 3.2: Comparison of 32-bit floating-point inference time for a single input on the micro-

controller, the CPU and the GPU of Table 3.1. The neural network architecture is described in

Section 3.4 with the number of filters per convolution layer varying from 16 to 80. The dataset is

described in Section 3.4.1.1. For the CPU and the GPU, the inference batch size is set to 512

to exploit parallelism and the dataset is repeated 104 times to try to compensate for the large

startup overhead compared to the total inference time. Measurements are averaged over at

least 5 runs.

Inference Time (ms)
Platform

16 Filters 24 Filters 32 Filters 40 Filters 48 Filters 64 Filters 80 Filters

MCU 85 174 271 404 544 921 1387

CPU 0.0396 0.0552 0.0720 0.0937 0.1134 0.1538 0.2046

GPU 0.0227 0.0197 0.0223 0.0284 0.0317 0.0395 0.0515

Thanks to their low power consumption, microcontrollers can be powered from tiny battery

cells. Yet the power consumption must still be kept as low as possible in order for the batteries

to discharge as slow as possible. In some cases, when data are collected in remote areas for

instance, they cannot even be recharged in the field. Therefore, performing inference at the edge

faces major issues in terms of real-time constraints, power consumption and memory footprint.

To meet these constraints, the deployment of a deep neural network must respect an upper

48/183



3.1. Introduction

bound for one inference response time as well as for the number of parameters of the network.

As a result, a deep neural network must be limited in width and depth to be deployed on a

microcontroller. As it has been observed, deeper and/or wider networks are often able to solve

more complex tasks with better accuracy [40]. As such, there is always a trade-off between

memory footprint, response time, power consumption and accuracy of the model. Additionally,

compression techniques can be applied to a deep neural network in order to decrease the

memory footprint, and, in some cases, the energy required by the computation.

A technique that provides a significant decrease in the memory footprint is network quan-

tization. Quantization consists in reducing the number of bits used to encode each weight of

the model, so that the total memory footprint is reduced by the same factor. Quantization also

enables the use of fixed-point arithmetic rather than floating-point arithmetic. In other words,

operations can be performed using integer rather than floating-point data types.

This is interesting because integer operations require fewer computations on most processor

cores, including microcontrollers. Without a floating-point unit, floating-point instructions must be

emulated in software, creating a large overhead, as illustrated in [176]. In that study, a comparison

between software, hardware and custom hybrid floating-point unit implementations is provided.

Even if a hardware floating-point unit is available, operations can often be performed slightly

faster on the integer arithmetic and logic unit rather than the floating-point unit. For example,

the ARM Cortex-M4F core needs two clock cycles to perform an integer multiply-accumulate

instruction [177], or even just one cycle with the appropriate DSP (Digital Signal Processing)

instruction. In the meantime, the hardware floating-point unit needs three cycles to perform

a single-precision floating-point multiply-accumulate instruction [178]. Multiply-accumulate

instructions are at the heart of the deep neural network inference since the computation model

relies on multiplying the synaptic weights with the inputs and accumulating the result into the

neuron’s potential.

In this chapter, we present an open-source [179] framework, called MicroAI, to perform end-

to-end training, quantization and deployment of deep neural networks on microcontrollers. The

training phase relies on the well-known TensorFlow and PyTorch deep learning frameworks. Our

objective is to provide a framework that is easy to adapt and extend, while maintaining a good

compromise between accuracy, energy efficiency and memory footprint.

Results using two different microcontrollers (STMicroelectronics STM32L452RE and Ambiq

Apollo3) and three different inference engines (STM32Cube.AI, TensorFlow Lite for Microcon-

trollers, and our own, MicroAI) are provided. Results are compared in terms of memory footprint,

inference time and power efficiency.

Finally, we propose to apply 8- and 16-bit quantization methods on three datasets dealing

with different modalities: acceleration and angular velocity from body-worn sensors for UCI-HAR,

speech for Spoken MNIST and images for GTSRB. These datasets are light enough to be handled

by a deep neural network running on a microcontroller, but still relevant for applications relying

on embedded artificial intelligence.

Section 3.2 presents the methodology implemented in our MicroAI framework for deep

neural network quantization. Section 3.3 details our MicroAI framework and compares it to

existing solutions. In Section 3.4, some comparative results between our framework MicroAI and

two popular embedded neural network frameworks (TensorFlow Lite for Microcontrollers and

STM32Cube.AI) are provided for two microcontroller platforms (Nucleo-L452RE-P and SparkFun

Edge) in terms of memory footprint, inference time, and power efficiency. The impact of our

8- and 16-bit quantization methods for three different datasets (UCI-HAR, Spoken MNIST and

GTSRB) is also presented. In Section 3.5 the results obtained are discussed. Finally, Section 3.6

concludes this chapter.
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3.2 Deep Neural Network Quantization

3.2.1 Representation of Real Numbers

3.2.1.1 Floating-Point

In modern computation systems, real numbers typically use a floating-point representation.

Floating-point representation relies on the encoding of three different pieces of information:

the sign, the significand and the exponent. Coding the significand and the exponent separately

makes it possible to represent values with a very large dynamic range, while at the same time

providing increasing precision as the numbers approach 0.

Most floating-point implementations follow the IEEE754 [180] standard which defines how

the sign, significand and exponent are coded in a binary format. Floating-point numbers can be

coded in half, single or double precision requiring 16, 32 or 64 bits, respectively. Obviously, the

more bits allocated to code a value, the more precise it is. A higher number of bits allocated to

the exponent also allows for a larger dynamic range. In deep neural networks, single precision

is more than enough for training and inference. Double precision requires more computing

resources, so it is generally not used. Recently, it has been shown that half-precision can further

accelerate the training and inference without a significant drop in the accuracy [181].

However, the choice is much more restricted for low-power microcontrollers. When present,

the hardware floating-point unit usually supports single-precision computation only. Double-

precision computations must be performed in software and are therefore significantly slower than

single precision. Half-precision data are converted to single precision before the computation.

In 2019, ARM released the ARMv8.1-M instruction set architecture which includes instructions

for half-precision support. Even though the Cortex-M55 core is planned to implement these

instructions, there is so far no microcontroller with this core available on the market. As a result,

when floating point is used on a microcontroller, only single precision is considered.

The binary representation of single-precision floating-point numbers is called binary32 and

is represented with 1 bit for the sign, 8 bits for the exponent and 23 bits for the significand (see

Table 3.3). It allows a dynamic range of roughly [−1038, 1038], far beyond the values typically seen

in a deep neural network, while increasing the resolution for numbers close to 0. The closest

possible numbers to 0 are approximately ±1.4 × 10−45.

Table 3.3: Single-precision floating-point binary32 representation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sign exponent significand

3.2.1.2 Fixed-Point

Fixed-point is another way to represent real numbers. In this representation, the integer part

and the fractional part have a fixed length. As a result, the dynamic range and the resolution

are directly limited by the length of the integer part and of the fractional part, respectively. The

resolution is constant across the whole dynamic range. In binary, the 𝑄 notation is often used

to specify the number of bits associated with each part. 𝑄𝑚.𝑛 is a number where 𝑚 bits are

allocated to the integer part and 𝑛 bits to the fractional part [182]. It is important to note that

we consider signed numbers in two’s complement representation. The number of bits for the

integer part can be increased to obtain a larger dynamic range, but it will conversely reduce the

number of bits allocated to the fractional part, thus reducing the precision.

Given a 𝑄𝑚.𝑛 signed number, its dynamic range is [−2𝑚−1, 2𝑚−1 − 2−𝑛] and its resolution is 2−𝑛.
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As an example, in Table 3.4, a signed 𝑄16.16 number stored in a 32-bit register has 16 bits

for the integer part and 16 bits for the fractional part. This translates to a dynamic range of

[−32 768, 32 767.9999847], much smaller than the equivalent floating-point representation, and

a constant resolution of 1.5259×10−5 across the whole range, less precise than the floating-point

representation near 0.

Table 3.4: Fixed-point Q16.16 on 32-bit representation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

integer part fractional part

3.2.2 Floating-Point to Fixed-Point Quantization of a Deep Neural Network

In this work, the training is always performed using single-precision floating-point computation,

that is, in the binary32 format. As training is done offline on a workstation, there is no need to

perform it in fixed point. Despite this being feasible [62], it comes with additional challenges

regarding gradient computation and it is not supported by the major deep learning frameworks.

Since the training relies on floating-point computation, a conversion from a floating-point to

a fixed-point representation must be performed before the deep neural network is deployed

on the target. As the set of possible values is different between floating-point and fixed-point

representations, this requires quantizing the weights of the deep neural network.

3.2.2.1 Uniform and Non-Uniform

Similarly to the works presented in Section 2.4, we also observed in our experiments that

convolutional layer weights are close to Gaussian distributions, with a mean close to 0 when

inputs are normalized. Such a distribution of weights for a convolutional layer kernel is shown in

Figure 3.1. As a result, convolutional layer weights can be better represented using a non-uniform

distribution of numbers. This is what floating-point numbers originally do to get a better precision

around 0.
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Min=−0.6174291372299194

Figure 3.1: Example of the distribution of weights for a convolutional layer kernel.

However, as the goal is to perform fast computations, a uniform quantization is preferred.

Non-uniform quantization would require performing additional transformations before using

the microcontroller’s instructions. This overhead can be non-negligible and lead to quantization

performance lower than floating-point computations. To obtain a nonconstant quantization step,

a nonlinear function must be computed, either online, or offline to generate a lookup table where

operands for each operation are stored. In contrast, uniform quantization is based on a constant
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quantization step. Furthermore, the work previously presented in Section 2.4.1.3 does not bring

an improvement on Cortex-M4-based microcontrollers. Indeed, this non-uniform quantization

scheme encodes only the base 2 exponent of the weights [60]. Therefore, multiplications can be

replaced by bit shifts. However, on a Cortex-M4 core, both multiplications and bit shifts take a

single cycle. For these reasons, we rely on uniform quantization in this work.

3.2.2.2 Scale Factor

For simplicity’s sake, the scale factor is a positive or negative power of two so that it can be

computed using only left or right shifts. The scale factor is either selected manually (when it

provides a sufficiently large range and enough precision), or chosen to represent the whole range

of values (while avoiding data overflow), but at the cost of a lower precision for small numbers.

To reach the best quantization, the scale factor should in theory be chosen for each weight

value. However, storing a scale factor for each value is obviously not a reasonable approach since

it leads to an important memory overhead, defeating the purpose of implementing quantization

to reduce memory usage. On the other hand, using a scale factor for the whole network can be

too coarse to achieve a good overall quantization error. Instead, the scale factor can be made

different for each layer. Another solution consists in using a scale factor for each filter of each

layer. Although more complex to implement and introducing some overhead (scale factors of

the layers must be stored in memory), this approach can slightly decrease the quantization error.

So far, our implementation only allows a per-network and a per-layer scale factor. Inside a layer,

the scale factor for the parameters and the scale factor for the activations can be different,

however the weights and biases must use the same scale factor.

3.2.2.3 Conversion Method

To convert from floating-point to fixed-point, the method starts with finding the required number

of bits 𝑚 to represent the unsigned integer part:

𝑚 = 1 + ⌊log2(max
1≤𝑖≤𝑁

|𝑥𝑖|)⌋ (3.1)

where 𝑥𝑖 is an element of the floating-point vector 𝑥 of length 𝑁 (e.g., a weights or activations

matrix). A positive value of 𝑚 means that 𝑚 bits are required to represent the absolute value of

the integer part, while a negative value of 𝑚 means there is no integer part and that the fractional

part has 𝑚 leading unused bits. This enables a greater precision to be obtained for vectors with

numbers smaller than 2−1, since the leading unused bits can be replaced instead by more trailing

bits for precision.

From this we can compute the number of remaining bits 𝑛 for the fractional part:

𝑛 = 𝑤 − 𝑚 − 1 (3.2)

where 𝑤 is the data type width (e.g., 16 bits). In this equation, 1 is subtracted to take into account

the additional bit required to represent signed numbers. A positive value of 𝑛 means that 𝑛 bits

are available to represent the fractional part. A negative value of 𝑛 means that the fractional

part cannot be represented, and the integer part cannot be represented to its full precision.

An element 𝑥𝑓𝑖𝑥𝑒𝑑𝑖 of the fixed-point vector 𝑥𝑓𝑖𝑥𝑒𝑑 is computed from the element 𝑥𝑖 of the

floating-point vector 𝑥 as:

𝑥𝑓𝑖𝑥𝑒𝑑𝑖 = ⌊𝑥𝑖 × 2
𝑛⌋ (3.3)

And the scale factor 𝑠 is defined as:

𝑠 = 2−𝑛 (3.4)

Quantization can be performed either after or during the training phase of a deep neural

network. These methods are detailed in the following.

52/183



3.2. Deep Neural Network Quantization

3.2.2.4 Post-Training Quantization

In post-training quantization, the neural network is entirely trained using floating-point computa-

tion (a single-precision format is assumed here). Once the training is over, the neural network is

frozen, and the parameters are then quantized. The quantized neural network is then used to

perform the inference, without any adjustments of the parameters.

The quantization phase introduces a error on each parameter as well as on the input, thus

leading to a error on the activations. The accumulation of quantization errors at the output

of the neural network can cause an incorrect class prediction of the input data, creating an

accuracy drop compared to the non-quantized version. As the bit width of the values decreases,

the quantization error increases, and the resulting accuracy typically decreases as well. In some

situations, a slight increase in the quantization error can help the network generalize better over

new data, inducing a slight increase in the accuracy over test data.

3.2.2.5 Quantization-Aware Training

The objective of the quantization-aware training (QAT) is to compensate for the quantization

error by training a deep neural network using the quantized version during the forward pass. This

could help to mitigate the accuracy drop to some extent.

In this work we decided to perform all the computations using a floating-point representation

during the training phase. As shown in Figure 3.2, the inputs, weights and biases of each layer

are quantized and clamped before actually performing the layer’s computation. The layer’s

output is quantized and clamped after the computation, before reaching the next layer. The

quantization operation is done following the method presented above. During the training phase,

the range of values is reassessed each time to adjust the scale factor before performing the

layer’s computation. When doing inference only, the scale factor is frozen. However, due to

limitations of the deep learning frameworks, the values are kept in floating-point representation,

but discretized to emulate a fixed-point representation.

QuantizeQuantize

Inputs
(Previous layer outputs) Weights Bias

Layer operation (Convolution, FC…)

Outputs
(Next layer inputs)

Update scale factor

Update scale factorUpdate scale factor

Layer parameters

Quantized forward pass Non-quantized backward pass

if training:

if training:

Skipped during inference

Quantize

Figure 3.2: Quantization-aware training.

The backpropagation uses a straight-through estimator, which means that it still relies on

non-quantized values. However, the clamping to the maximum range that would be allowed by

the fixed-point representation stays effective.
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To stabilize the learning phase with the quantized version, and thus obtain better results on

average, the deep neural network can be pre-trained without quantization in order to initialize the

parameters to sensible values.

In the case of a convolutional neural network, the convolutional and fully connected layers

require a quantization-aware training for the weights. Please note that batch normalization layers

would also require quantization-aware training. However, quantization of batch normalization

layers has not been implemented yet. As an alternative, the batch normalization layer can be

fused with the previous convolutional layer [183], but then quantization-aware training will not

be able to take advantage of the statistics of the current batch.

Layers that do not contain weights but that may change the range of the outputs must

have their outputs quantized. For example, average pooling layers may reduce the range while

increasing the precision. In this case, one bit of precision can be added to the fractional part

while being removed from the integer part. For consistency’s sake, the max pooling layers

also have their outputs quantized, even though there is no need for additional precision on the

fractional part. Conversely, the element-wise addition layers requires quantization. The range of

their outputs can increase after adding two large numbers.

It is similar for the ReLU activation when it is considered as a separate layer. However, it can

also be fused with the previous layer, this is the case for our inference program deployed on the

target. While we do not use asymmetric quantization for activations and therefore we cannot

reclaim the sign bit for more precision after a ReLU activations, fusing the ReLU activation can

still reduce the dynamic range in case of negative values that are larger in absolute value than

the positive ones.

3.3 Proposed Framework for the Deployment of Deep Neural Networks

After the network has been trained and optionally quantized, the objective is to deploy it onto

a microcontroller to perform the inference on the target platform. The deep neural network

deployment involves the following phases:

• exporting the weights of the deep neural network and encoding them into a format suitable

for on-target inference,

• generating the C inference program according to the topology of the deep neural network,

• compiling the inference program for the target processor, and

• uploading the inference program with the weights onto the microcontroller’s ROM.

As mentioned in Section 2.4.3, existing tools for quantized neural networks had some draw-

backs that motivated the development of our own framework at the beginning of the work on

this thesis. This framework addresses the following issues:

• most open-source frameworks do not support non-sequential topologies,

• frameworks that support convolutional neural networks are proprietary or too complex to

be easily modified and extended,

• other frameworks do not provide 16-bit quantization (at the time of development, mainly in

2020, TensorFlow Lite for Microcontrollers did not support 16-bit activations),

• some frameworks are dedicated to a limited family of hardware targets,

• most frameworks do no support PyTorch models.
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In this work, we aim to provide a framework, called MicroAI, that is easy to extend and modify,

and that allows for a complete pipeline from the neural network training to the deployment and

evaluation on a microcontroller. Additionally, this framework must provide a lightweight runtime

on the microcontroller to reduce the memory and computation overhead. Finally, our objective

is to provide a level of a performance close to existing solutions. MicroAI is built in two parts:

1. a neural network training code that relies on Keras or PyTorch, and

2. a conversion tool that takes a trained Keras or PyTorch model and produces a portable C

code for the inference.

Both parts are written in Python since it is the most popular programming language to build

deep neural networks and it easily interfaces with existing frameworks, libraries and tools.

The initial public version (v1.0) of the open-source MicroAI software framework [179, 184]

was released in September 2021 and is available online at httpsa//bitbucket.org/

edge-team-leat/microai_public and archived in Zenodo at httpsa//doi.org/

10.5281/zenodo.5507396. The description of the software framework along with the

quantization and embedded execution results were published in the MDPI Sensors 2021 Volume

21(9) journal [185].

3.3.1 General Flow

As seen in Figure 3.3, MicroAI provides an interface to automatically train, deploy and evaluate

an artificial neural network model.

Data acquisition and preprocessing

float32 Training

int16 Post-training quantizationint8 Quantization-aware training with PyTorch

Code generation from PyTorch/Keras model

C inference library

Deployment on microcontroller

Evaluation on microcontroller

Figure 3.3: MicroAI general flow for neural network training, quantization and evaluation on

embedded target.

A configuration file written in TOML [186] is used to describe the whole flow of an experiment:

• the number of iterations for the experiment (for statistical purposes),

• the dataset to use for training and evaluation,

• the pre-processing steps to apply to the dataset,

• the framework used for training,

• the data augmentation transformations to apply during training,
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• the configuration of the various neural network models to train, deploy and evaluate,

• the configuration of the optimizer,

• the post-processing steps to apply to the trained model (including quantization),

• the target configuration for deployment and evaluation.

An example of a TOML configuration file is provided in Section A.1 of Appendix A along with

explanations about various aspects of the configuration in Section A.2.

The three main steps, training, deployment and evaluation, are described in the following.

The commands used to trigger them are available in Section A.3 of Appendix A

3.3.2 Training

For the training phase, MicroAI is simply a wrapper around Keras or PyTorch.

A dataset requires an importation module to be loaded into an appropriate data model.

Dataset importation modules for UCI-HAR, SMNIST and GTSRB (described in Section 3.4, among

others) are included and can easily be extended to new datasets.

To make use of a deep neural network architecture in the model configuration, it must be

first described according to the training framework API in use. The description of the model is a

template where parameters can be set by the user in the TOML configuration file.

MicroAI provides the following neural network architectures for both Keras and PyTorch:

• MLP: a multi-layer perceptron with a configurable number of layers and neurons,

• CNN: a 1D or 2D convolutional neural network with configurable number of layers, filters,

kernel and pool size, and number of neurons per fully connected layer for the classifier,

• ResNet: a 1D or 2D residual neural network (v1) with convolutional layers. The number of

blocks and filters per layer, stride, kernel size, and optional BatchNorm can be configured,

• DSOM: a single dynamic self-organizing map [165],

• DLSOM: a CNN or ResNet feature extractor followed by a dynamic self-organizing map,

described in Section 5.2.4 of Chapter 5.

The activation function used is the Rectified Linear Unit (ReLU) as it is one of the least

computationally intensive function and still provides the required non-linearity for a deep neural

network to approximate any function.

3.3.3 Deployment

MicroAI can deploy a trained model to perform inference on a target using either STM32Cube.AI,

TensorFlow Lite for Microcontrollers or our own code generation tool.

STM32Cube.AI can be used for all STM32 platforms, and support for the Nucleo-L452RE-P

with an STM32L452RE microcontroller is included. Support for other platforms using a STM32

microcontroller can be added by providing a sample STM32CubeIDE project including the X-

CUBE-AI package. STM32Cube.AI does not support microcontrollers outside the STM32 family.

TFLite Micro is a portable library that can be included in any project. Therefore, it could be

used for any 32-bit microcontroller. However, only integration with the SparkFun Edge platform

with an Ambiq Apollo3 microcontroller is included in our framework so far.

Similarly, our C code generation tool produces a portable library that can be included in any

project. So far, only support for the Nucleo-L452RE-P and the SparkFun Edge boards is included.
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Other platforms can be added by providing project files that call the inference code and a module

that interfaces with the build and deployment tools for that platform.

Please note that STM32Cube.AI and TFLite Micro cannot take a trained PyTorch model as an

input to deploy onto a microcontroller. The trained PyTorch model must therefore be converted

to a Keras model prior to the deployment. Our C code generation tool can take either a trained

Keras or a trained PyTorch model, thus this conversion is not required.

3.3.4 C Code Generation Tool from Trained Model

As part of MicroAI, we developed a C code generation tool. The tool can automatically generate

a portable C library for inference from a trained Keras or PyTorch model. It can also be used

independently of the training part of the MicroAI framework.

Both 1D and 2D models are supported, with the following layers:

• Add

• AveragePooling1d/2d

• BatchNormalization1d/2d

• Conv1d/2d

• FullyConnected: Dense (Keras)/Linear (PyTorch)

• Flatten

• MaxPooling1d/2d

• ReLU

• Softmax

• ZeroPadding1d/2d (Keras)

• DSOM

Layers can have multiple inputs such as the Add layer, thus allowing residual neural networks

(ResNet) to be built. Sequential convolutional neural networks or multi-layer perceptron models

are also supported.

3.3.5 C Code Generation Process

Torch FXKeras Graph API

Jinja2 Template Processing

Keras PyTorch ...

Internal Graph Representation

Graph Transformations

Code Generation

C Inference Library ...

Figure 3.4: Code generation process.
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The process for generating the inference code from a trained model is shown in Figure 3.4. The

“...” illustrates the possibility to add support for a different deep learning framework or a different

target by adding a graph translation module or code generation module, respectively.

This tool first parses the Keras model using Keras 2.6.0 API thanks to Keras’ graph repre-

sentation of the model, or the PyTorch model using the FX module [187] to trace the model and

build a graph of the layers. In both cases, an internal representation is generated as a graph with

generic layers, independent from the original training framework.

Then, a series of transformations is performed to produce a graph better suited for deploy-

ment on a microcontroller:

• remove Dropout layers, unused during inference,

• combine ReLU activation layers with the previous Conv1D, MaxPooling1D, Dense/Linear or

Add layer,

• Keras only: combine ZeroPadding1D layers with the next Conv1D layer,

• Keras only: convert BatchNorm [188] weights from the mean 𝜇, the variance 𝑉, the scale 𝛾,

the offsets 𝛽 and 𝜖 to a multiplicand 𝑤 and an addend 𝑏 using the following formula:

𝑤 =
𝛾
𝜎

(3.5)

𝜎 = √𝑉 + 𝜖 (3.6)

𝑏 = 𝛽 −
𝛾 × 𝜇
𝜎

(3.7)

so that the output of the batch normalization layer can be computed as 𝑦 = 𝑤 × 𝑥 + 𝑏.

Then, for each node in the graph, the weights of the layer go through the quantization and

conversion module if the conversion to fixed-point representation is enabled. The C inference

function is generated from a Jinja2 [189] template file using the layer’s configuration. Similarly,

the layer’s weights are converted into a C array from a Jinja2 template file. An example of a

Jinja2 C template file for a fully-connected layer is provided in Section A.5 of Appendix A. Code

generation is used to avoid runtime overhead of an interpreter such as the one used in TensorFlow

Lite for Microcontrollers. Additionally, it allows the compiler to perform better optimizations.

In fact, the layer’s configuration is generated as constants or literals in the code, allowing the

compiler to perform appropriate optimizations such as loop unrolling, using immediates when

relevant and doing better register allocation. By default, GCC’s -Ofast optimization level is

enabled. So far, no special effort has been made to further optimize the source code for faster

execution, except for the ability to make use of ARM’s CMSIS-NN library [4] which optimizes the

execution of some operations on some microcontrollers (see Section 3.3.7).

The allocator module aims to reduce RAM usage. To do so, it allocates the layer’s output

buffers in the smallest number of pools without conflicts (i.e., memory overlay). For each layer

of the model, its output buffer is allocated to the first pool that satisfies two conditions: it must

neither overwrite its input, nor the output of a layer that has not already been consumed. If there

is no such available pool, a new one is created. It is worth noting that the allocator module does

not yet try to optimize the allocation to minimize the size of each pool (this is a harder problem

to solve). In consequence, the total RAM usage is not optimized.

Finally, the main function cnn(...) is generated. This function only contains the allocation

of the buffers done by the allocator module and a sequence of calls to each of the layers’

inference functions. The correct input and output buffers are passed to each layer according to

the graph of the model. More details about the interface of the library are provided in Section

A.6 of Appendix A.
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3.3.6 Quantization and Fixed-Point Computation

The post-training quantization is performed by the quantization module itself. The scale factor

is found for each layer according to the method described in Section 3.2.2.3, but it can also

be specified manually for the whole network. The fixed-point coding used for all the weights

is computed according to the same method. The data type is converted from a floating-point

(float32) to an integer data type, either int8_t or int16_t for 8- or 16-bit quantization,

respectively.

When performing quantization-aware training or post-training quantization using MicroAI’s

QuantizationAwareTraining module, the scale factors are determined during the training

phase, according to the method presented in Section 3.2.2.3 as well. Therefore, the quantization

module reuses them during the code generation. However, the weights are still in floating-point

representation since the training phase only relies on floating-point computation. In consequence,

the quantization module must still perform data type conversion.

Once the model is deployed and running on the target, the fixed-point computation can be

done using an integer arithmetic and logic unit. The data type for the input and output of a layer

is the same as the one used to store the weights. To avoid overflows, computation is done using

a data type larger than the operands’ data type. For example, if the data type of the weights and

inputs is int16_t, then the intermediate results are computed and stored using an int32_t

data type. The result is then scaled back to the correct output scale factor before saturating and

converting it back to the original operands’ data type.

In case of an addition or a subtraction, operands must be represented with the same number

of fractional bits. This is not required for multiplication, but the number of bits allocated for

the fractional part of the result is the sum of the number of bits for the fractional part of the

two operands. Therefore, after a multiplication, the result must be scaled to the required output

format by shifting the result to the right by the appropriate number of bits.

In Table 3.5, the required number of operations for the main layers of a residual neural network

in our implementation are provided, along with the number of cycles taken for these operations.

Enabling compiler optimizations generates some ARMv7E-M instructions, namely SMLABB that

performs a multiply–accumulate operation in one cycle (instead of two cycles). However, the

compiler does not make use of the SSAT operation that could allow saturating in one cycle.

Instead, it uses the same instructions as a regular max operation, that is, a compare instruction

and a conditional move instruction, thus requiring two cycles [177].

Table 3.5: Number of arithmetic and logic operations for the main layers of a residual neural

network required to perform inference usnig fixed-point integers. 𝑓 is the number of filters (output

channels), 𝑠 is the number of input samples, 𝑐 is the number of input channels, 𝑘 is the kernel

size, 𝑛 is the number of neurons and 𝑖 is the number of input layers to the residual Add layer.

Conv1D is assumed to be without padding and with a stride of 1.

MACC (1 Cycle) Add (1 Cycle) Shift (1 Cycle) Max/Saturate (2 Cycles)

Conv1D 𝑓 × 𝑠 × 𝑐 × 𝑘 N/A 2 × 𝑓 × 𝑠 𝑓 × 𝑠

ReLU N/A N/A N/A 𝑐 × 𝑠

Maxpool N/A N/A N/A 𝑐 × 𝑠 × 𝑘

Add N/A 𝑠 × 𝑐 × (𝑖 − 1) 𝑠 × 𝑐 × 𝑖 𝑐 × 𝑠

FullyConnected 𝑛 × 𝑠 N/A 2 × 𝑛 𝑛
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3.3.7 Optimizations using CMSIS-NN

The ARM CMSIS-NN library [4] can further optimize the execution of deep neural network opera-

tions by:

• using specialized instructions,

• optimizing memory accesses,

• optimizing register allocation,

• statically unrolling important loops.

For example, when used on the Cortex-M4 core, the CMSIS-NN library makes use of the

ARMv7E-M instruction set extension, also called DSP (Digital Signal Processing) instructions.

These instructions provide optimized execution for some combined operations, and also provide

SIMD (Single Instruction, Multiple Data)-like execution by processing two 16-bit or four 8-bit

values from a 32-bit register at a time. In particular, the following single cycle instructions can

be leveraged to speed up the execution [177]:

• SMLAD: performs two 16-bit multiply-accumulate operations in a 32-bit register,

• SXTB16: extracts two 8-bit values and extends them to signed 16 bits,

• QSUB16: performs two 16-bit subtractions and saturates to signed 16 bits,

• QSUB8: performs four 8-bit subtractions and saturates to signed 8 bits,

• SSAT: signed saturation to any bit position (also present in the regular ARMv7-M instruction

set).

Section A.7 of Appendix A details the CMSIS-NN functions used in our framework and the

optimizations they provide when CMSIS-NN is enabled.

3.4 Results

All the results presented in this section rely on the same model architecture, a ResNetv1-6

network with the layers shown in Figure 3.5. While the number of filters per layer 𝑓 is the same

for all layers, it is modified to adjust the number of parameters of the model. The convolutional

and pooling layers are one-dimensional except for the GTSRB dataset. Image processing indeed

requires two-dimensional layers.

For each experiment, the residual neural network is initially trained using 32-bit floating-point

numbers (i.e., without quantization), and then evaluated over the testing set. This baseline

version is depicted as float32 in the figures shown in the following.

The float32 neural network is quantized with fixed-point on 16-bit integers and is then evalu-

ated without additional training. This version is depicted as int16 in the figures shown hereafter.

Quantization is performed using the Q7.9 format for the whole network, meaning the number of

bits 𝑛 for the fractional part is fixed to 9.

The float32 neural network is also trained and evaluated with 8-bit fixed-point integers using

quantization-aware training. This version is indicated as int8 in the figures. In this case the

choice of the fixed-point format can vary from layer to layer and is determined using the method

introduced in Section 3.2.2.3.
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Figure 3.5: ResNet model architecture.
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The SGD optimizer is used for all experiments. This choice has been motivated by the stability

of the SGD optimizer, especially for the quantization-aware training. Training parameters are

described below for each dataset. Additionally, training and testing sets are normalized using

the z-score of the training set. It is worth noting that the Mixup [190] data augmentation method

with 𝛼 = 1.0 is also used during training.

As it would require a large amount of time, the accuracy is not evaluated directly on the target.

Only the inference time for the UCI-HAR dataset is measured on the target.

In the figures, each point represents an average over 15 runs. The error bars represent the

the standard deviation for these runs.

3.4.1 Evaluation of the MicroAI Quantization Method

3.4.1.1 Human Activity Recognition dataset (UCI-HAR)

The University of California Irvine’s hosted Human Activity Recognition dataset (UCI-HAR) [112]

is a dataset of activities of daily living recorded using the accelerometer and gyroscope sensors

of a smartphone. In this experiment, we use the raw data from the sensors divided into fixed time

windows, rather than the precomputed features. The reason is that we want to perform real-time

embedded activity recognition. To do so, it is preferable to avoid the features computation

overhead for each inference before entering the deep neural network. Instead, the features are

extracted by the convolutional neural network itself.

The dataset is divided into a training set and a testing set of 7352 and 2947 vectors, re-

spectively. Each vector is a one-dimensional time series of 2.56 s composed of 128 samples

sampled at 50 Hz, with 50% overlap between vectors. Each sample has 9 channels: 3 axes

of total acceleration, 3 axes of angular velocity and 3 axes of body acceleration. Noise was

filtered out with a median filter and a 3rd order Butterworth filter at 20Hz. Body acceleration was

seperated using a Butterworth filter at 0.3Hz. Six different classes are available in the dataset:

walking, walking upstairs, walking downstairs, sitting, standing and lying.

The initial training without quantization is performed using a batch size of 64 over 300 epochs.

The initial learning rate is set to 0.05, the momentum is set to 0.9 and the weight decay is set to

5 × 10−4. In order to stabilize the training, the learning rate is multiplied by 0.13 at epochs 100,

200 and 250. The quantization-aware training for fixed-point on 8-bit integers uses the same

parameters.

As can be seen in Figure 3.6, for the UCI-HAR dataset, the same accuracy is obtained using a

16-bit quantization (UCI-HAR int16) or 32-bit floating-point (i.e., the baseline UCI-HAR float32),

whatever the number of filters per convolution.

On the other hand, we observe that the 8-bit quantization causes a drop in accuracy that

increases in magnitude up to 0.81% when the number of filters per convolution grows, even

though quantization-aware training is used to mitigate this issue.

In Figure 3.7, we observe that the accuracy obtained using 8-bit and 16-bit quantization is

similar only for deep neural networks that contains a reduced number of parameters, in other

words a low memory footprint. As an example, for 16 filters per convolution, an 8-bit quantization

leads to an accuracy of 92.41% while requiring 3958 memory bytes to store the parameters.

When a 16-bit quantization is used, an accuracy of 92.46% can be achieved, but at the cost of an

increase in the required memory for storing the parameters (7916 bytes).

As can be seen, when more than 24 filters per convolution are used, the 16-bit quantization

clearly exhibits the best accuracy vs. memory ratio. For more than 48 filters per convolution, the

8-bit quantization provides an even worse ratio than the baseline.
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Figure 3.6: Human Activity Recognition dataset (UCI-HAR): accuracy vs. filters.
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Figure 3.7: Human Activity Recognition dataset (UCI-HAR): accuracy vs. parameter memory.

During our experiments, it has also been observed that the 8-bit post-training quantization

of TensorFlow Lite achieved better results compared to the 8-bit quantization-aware training

provided by our framework. This is likely due to the combination of per-filter quantization,

asymmetric range and non-power-of-two scale factor, as well as optimizations of TensorFlow

Lite to avoid unnecessary truncation and thus loss of precision. We also observed that using

9 bits instead of 8 bits during the post-training quantization allows us to outperform the 8-bit

TensorFlow Lite quantization performance. Some results showing this improvement can be

seen in Figure 3.8. From these results, we can conclude that the slight additional precision

brought by the combination of per-filter quantization, asymmetric range and non-power of two

scale factor does in fact matter. In the future, implementing these methods in our framework

seems therefore required to further reduce the accuracy loss of our 8-bit quantization.
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Figure 3.8: Accuracy vs. filters for baseline (float32), 8-bit post-training quantization from

TensorFlow Lite (int8 TFLite PTQ), 8-bit quantization-aware training from our framework (int8

MicroAI QAT), and 9-bit post-training quantization from our framework (int9 MicroAI PTQ).

3.4.1.2 Spoken Digits Dataset (SMNIST)

Spoken MNIST is the spoken digits part of the written and spoken digits database for multi-modal

learning [191].

This dataset is made of spoken digits extracted from the Google Speech Commands [192]

dataset. The audio signal sampled at 16 kHz has been preprocessed to obtain 12 MFCC (Mel-

Frequency Cepstral Coefficients) plus an energy coefficient using a window of 50 ms with 50%

overlap over the audio files of approximately 1 s each, generating one-dimensional series of 39

samples with 13 channels. The dataset is divided into training and testing sets of 34,801 and

4107 vectors, respectively. Some samples are duplicated to obtain 60,000 training vectors and

10,000 testing vectors. There are 10 different classes for each digit, from 0 to 9.

The initial training, without quantization, uses a batch size of 256 over 120 epochs. The initial

learning rate is set to 0.05, the momentum is set to 0.9 and the weight decay is set to 5 × 10−4.

The learning rate is multiplied by 0.1 at epochs 40, 80 and 100.

The quantization-aware training for fixed-point on 8-bit integers uses a batch size of 1024
over 140 epochs. Initial learning rate, momentum and weight decay are the same as for the

initial training. Learning rate is multiplied by 0.1 at epochs 40, 80, 100 and 120.

As can be observed in Figure 3.9 and regardless of the number of filters, the 16-bit quantiza-

tion (SMNIST int16) provides overall a similar accuracy compared to the floating-point baseline

(SMNIST float32). On the other hand, the accuracy drops by up to 1.07% when the 8-bit quantiza-

tion is used. However, the accuracy drop slightly decreases when 48 filters per convolution are

used, and then stays around 0.5% or 0.6% for a higher number of filters.

In Figure 3.10, we can see that the 16-bit quantization is still the best solution in terms of

memory footprint. Despite the fact that the 8-bit quantization stays closer to 16-bit quantization

on SMNIST than on UCI-HAR, the 8-bit quantization does not provide any benefit over 16-bit

quantization in terms of accuracy vs. memory ratio, even for small neural networks.
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Figure 3.9: Spoken digits dataset (SMNIST): accuracy vs. filters.
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Figure 3.10: Spoken digits dataset (SMNIST): accuracy vs. parameter memory.

3.4.1.3 The German Traffic Sign Recognition Benchmark (GTSRB)

The German Traffic Sign Recognition Benchmark (GTSRB [193]) is a dataset containing various

colour pictures of road signs. Image sizes vary between 15 × 15 to 250 × 250 pixels. In this

experiment, the two-dimensional images were scaled to 32×32 pixels using bilinear interpolation

and anti-aliasing, while keeping the 3 colour channels (red, green, blue). The dataset is divided

into training and testing sets of 39,209 and 12,630 vectors, respectively. There are 43 different

classes, one for each type of road sign in the dataset.

The initial training without quantization uses a batch size of 128 over 120 epochs. The initial

learning rate is set to 0.01, the momentum is set to 0.9 and the weight decay is set to 5 × 10−4.

The learning rate is multiplied by 0.1 at epochs 40, 80 and 100.
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The quantization-aware training for fixed-point on 8-bit integers uses a batch size of 512
over 120 epochs. The initial learning rate, momentum and weight decay are the same as for the

initial training. The learning rate is multiplied by 0.1 at epochs 20, 60, 80 and 100.

The accuracy results obtained for 8- and 16-bit quantization and the 32-bit floating-point

versions are shown in Figure 3.11 for different numbers of filters. As can be seen, the 16-bit

quantization (GTSRB int16) provides an accuracy similar to the one obtained with the baseline

(GTSRB float32). In the meantime, a drop in accuracy of up to 1.1% can be observed when the

8-bit quantization is used with this GTSRB dataset. However, as it has been observed with the

SMNIST dataset, the accuracy drop is less important when the network has more filters (a drop

of only 0.33% for 64 filters).

Moreover, even though the 8-bit quantization does not outperform the results obtained with

the 16-bit quantization, Figure 3.12 shows that the 8-bit quantization can represent an interesting

solution when a two-dimensional network is used on an image dataset.
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Figure 3.11: German Traffic Sign Recognition Benchmark: accuracy vs. filters.
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Figure 3.12: German Traffic Sign Recognition Benchmark: accuracy vs. parameter memory.
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3.4.2 Evaluation of Frameworks and Embedded Platforms

In our experiments, two different targets have been used to deploy a deep neural network on a

microcontroller: the SparkFun Edge and the Nucleo-L452RE-P. Both platforms are set to run at

48 MHz on a 3.3 V supply and their main specifications are summarized in Table 3.6.

Table 3.6: Embedded platforms main specifications.

Board Nucleo-L452RE-P SparkFun Edge

MCU STM32L452RE Ambiq Apollo3

Core Cortex-M4F Cortex-M4F

Max Clock 80 MHz 48 MHz (96 MHz “Burst Mode”)

RAM 128 kiB 384 kiB

Flash 512 kiB 1024 kiB

CoreMark/MHz 3.42 2.479

Run current @3.3 V, 48 MHz 4.80 mA 0.82 mA *

* After removing peripherals (Mic1&2, accelerometer …)

𝑉𝐷𝐷_𝑀𝐶𝑈 is set to 1.8 V for the Nucleo-L452RE-P platform and current measurement is taken

from the 𝐼𝐷𝐷 jumper (where the voltage is 3.3V regardless). It does not have any on-board

peripherals. On the SparkFun Edge board, the measure of the current is done using the power

input pin of the board (after the programmer). The built-in peripherals were unsoldered from the

board to eliminate their power consumption. The current consumption was measured using a

Brymen BM857s auto-ranging digital multimeter configured in max mode. The energy results

are based on this maximum observed current consumption and the supply voltage of 3.3 V.

As can be seen in Table 3.6, and even though both platforms are built around a Cortex-M4F

core running at the same frequency, the SparkFun Edge board consumes considerably less

power than the Nucleo-L452RE-P, while also having more Flash and RAM memory. Thi is due

to the subthreshold operation of the Ambiq Apollo3 microcontroller. However, results obtained

with the CoreMark benchmark show that the Ambiq Apollo3 microcontroller is slower than the

STM32L452RE. It is worth noting that the CoreMark results have been measured on the Ambiq

Apollo3 microcontroller, while they have been taken from the datasheet for the STM32L452RE

microcontroller.

The deep neural network used in our experiments is the ResNetv1-6 described in Section 3.4.

This network has been trained on the UCI-HAR dataset presented in Section 3.4.1.1. The inference

time is measured from 50 test vectors from the testing set of UCI-HAR on both microcontrollers.

TensorFlow Lite for Microcontrollers version 2.4.1 has been used to deploy the deep neural

network on the SparkFun Edge board, while STM32Cube.AI version 5.2.0 has been used to

deploy it on the Nucleo-L452RE-P board, both for the 32-bit floating-point and fixed-point on 8-bit

integers inference. Our MicroAI framework is used to deploy the deep neural network on both

platforms for 32-bit floating-point, fixed-point on 16-bit integers and fixed-point on 8-bit integer

inference. It is worth noting that optimizations for Cortex-M4F provided by CMSIS-NN are used

by all the frameworks for 8- or 16-bit inference. Our framework uses CMSIS-NN version 3.1.0

from the CMSIS 5.9.0 package. A comparison between enabling and disabling CMSIS-NN with

our framework is provided in Section 3.4.3. The main characteristics of the frameworks are

summarized in Table 3.7.
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Table 3.7: Embedded AI frameworks.

Framework STM32Cube.AI TFLite Micro MicroAI

Source Keras, TFLite, … Keras, TFLite Keras, PyTorch

Validation Integrated tools None Integrated tools

Metrics ROM/RAM footprint, None ROM/RAM footprint,

inference time, MACC inference time

Portability STM32 only Any 32-bit MCU Any 32-bit MCU

Built-in platform STM32 boards 32F746GDiscovery, SparkFun Edge,

support (Nucleo, …) SparkFun Edge, … Nucleo-L452RE-P

Sources Private Public Public

Data type float, int8_t float, int8_t float, int8_t, int16_t

Quantized data Weights, activations Weights, activations Weights, activations

Quantizer Uniform (from TFlite) Uniform Uniform

Quantized coding Offset and scale Offset and scale Fixed-point 𝑄𝑚.𝑛

To compare software and hardware platforms, only the results with 80 filters per convolution

are analyzed below. Nevertheless, detailed results with less than 80 filters are presented in the

tables of Appendix B to highlight how fast and efficient a small deep neural network can be when

deployed on a constrained embedded target.

In Figure 3.13, we can observe that TFLite Micro has a higher memory overhead than

STM32Cube.AI, while MicroAI exhibits a slightly lower memory overhead than STM32Cube.AI.

The inference time obtained for both platforms and the different deployment tools is illus-

trated in Figure 3.14. As can be seen, STM32Cube.AI with the 8-bit inference running on the

Nucleo-L452RE-P board provides the best solution as it requires only 352 ms for one inference.

Our framework comes very close at 368 ms and 356 ms when running on the SparkFun Edge and

the Nucleo-L452RE-P, respectively. In this configuration, TensorFlow Lite for Microcontrollers

requires 592 ms for one inference on the SparkFun Edge board.

When using fixed-point on 16-bit integers, our framework provides a slightly higher inference

execution time than with 8 bits. 16-bit integers indeed require more memory reads to fetch the

values. Moreover, the ReLU activation can only process two elements at a time as explained in

Section A.7. On the Nucleo-L452RE-P, we can observe that the inference time for one input is

403 ms and 404 ms when running on the SparkFun Edge and the Nucleo-L452RE-P, respectively.

As the other frameworks do not provide a full int16 execution mode, it is not possible to compare

them.

Figure 3.14 also shows that, whatever the tool and target, the 32-bit floating-point inference is

slower than with 16- or 8-bit quantization. Our framework requires 1561 ms and 1512 ms for one

inference on the SparkFun Edge and the Nucleo-L452RE-P boards, respectively. STM32Cube.AI

requires 1387 ms for one inference on the Nucleo-L452RE-P board. Our framework therefore

exhibits a comparable performance to STM32Cube.AI. Finally, we can see that TensorFlow Lite

for microcontrollers on the SparkFun Edge board provides lower performance, requiring 2087 ms

to perform one inference. It is important to remember that there is no optimization possible with

CMSIS-NN for floating-point operations.
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Figure 3.13: ROM footprint for TFLite Micro, STM32Cube.AI and MicroAI with 80 filters per

convolution.

TF
Lit

eM
icr

o 
Sp

ar
kF

un
Ed

ge
 fl

oa
t3

2

M
icr
oA
I S

pa
rk

Fu
nE

dg
e 

flo
at

32

M
icr
oA
I N

uc
le

oL
45

2R
EP

 fl
oa

t3
2

ST
M

32
Cu

be
.A

I N
uc

le
oL

45
2R

EP
 fl

oa
t3

2

M
icr
oA
I S

pa
rk

Fu
nE

dg
e 

in
t1

6

M
icr
oA
I N

uc
le

oL
45

2R
EP

 in
t1

6

TF
Lit

eM
icr

o 
Sp

ar
kF

un
Ed

ge
 in

t8

M
icr
oA
I S

pa
rk

Fu
nE

dg
e 

in
t8

M
icr
oA
I N

uc
le

oL
45

2R
EP

 in
t8

ST
M

32
Cu

be
.A

I N
uc

le
oL

45
2R

EP
 in

t8

0

250

500

750

1000

1250

1500

1750

2000

Re
sp

on
se

 ti
m

e 
(m

s)

float32
int16
int8

Figure 3.14: Inference time for 1 input for TFLite Micro, STM32Cube.AI and MicroAI with 80

filters per convolution.
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To conclude, and as outlined in Figure 3.15, we can say the SparkFun Edge board provides a

better power efficiency than the Nucleo-L452RE-P platform whatever the framework and the data

type. The reason is that the SparkFun Edge board power consumption is approximately 6 times

lower than the Nucleo-L452RE-P board. Our framework requires 0.276 µWh and 0.303 µWh on

the SparkFun Edge board for inference with fixed-point on 8-bit and 16-bit integers, respectively.

In contrast, using the SparkFun Edge board and TensorFlow Lite for Microcontroller with fixed-

point on 8-bit integers, one inference requires 0.445 µWh of energy consumption. When 32-bit

floating-point is used for inference on the SparkFun Edge board, our framework provides a better

energy efficiency than TensorFlow Lite for Microcontrollers as it requires 1.174 µWh instead of

1.569 µWh.
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Figure 3.15: Energy consumption for 1 input for TFLite Micro, STM32Cube.AI and MicroAI with

80 filters per convolution.

Concerning the energy consumed by the Nucleo-L452RE-P board, our framework requires

1.578 µWh, 1.794 µWh and 6.700 µWh for one inference using 8-bit and 16-bit fixed-point integers,

and 32-bit floating-point, respectively. In comparison, 6.146 µWh are required for one inference

when the STM32Cube.AI framework is used with 32-bit floating-point. Finally, we can see that the

required energy for one inference when using STM32Cube.AI with fixed-point on 8-bit integers is

1.560 µWh on the Nucleo-L452RE-P. This amount of energy is similar to the one obtained with

TensorFlow Lite for Microcontrollers on the SparkFun Edge board when performing floating-

point inference.
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3.4.3 Comparison Between Enabling and Disabling CMSIS-NN Optimizations with
MicroAI

Figure 3.16 shows that CMSIS-NN does not require a significant amount of additional ROM

to store the inference code. For example, on the SparkFun Edge board, the ROM occupation

increases from 202.699 kiB to 206.012 kiB for the 16-bit quantized network, only a 1.6% increase.

However, while it is not detailed here, the RAM usage grows when using CMSIS-NN since it

requires additional temporary buffers.

However, the inference time significantly decreases after enabling CMSIS-NN optimizations

as illustrated in Figure 3.17. As can be observed, the inference time decreases by 61.3% from

1042 ms to 403 ms on the SparkFun Edge board with the 16-bit quantized network. The same

improvement is also observed for the 8-bit quantized network on the SparkFun Edge board,

dropping from 1003 ms to 368 ms, a reduction of 63.3%. The results are similar with the Nucleo-

L452RE-P board, going from 1225 ms to 405 ms and 1034 ms to 356 ms for the 16- and 8-bit

quantized networks, respectively.

As a result, and as it can be seen in Figure 3.18, the energy decreases by the same factor.

The SparkFun Edge board still requires significantly less energy thanks to its much lower power

consumption.
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Figure 3.16: ROM footprint for MicroAI with and without CMSIS-NN with 80 filters per convolution.
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Figure 3.17: Inference time for 1 input for MicroAI with and without CMSIS-NN with 80 filters per

convolution.
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Figure 3.18: Energy consumption for 1 input for MicroAI with and without CMSIS-NN with 80 filters

per convolution.
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3.5 Discussion

First, a high variance is observable when we compare the accuracy results obtained on the

three datasets versus the model size. This variability makes it difficult to draw any definitive

conclusions. However, there is a trend in our results that provides some insights into the

performance for each experiment.

As it has been shown, execution using fixed-point on 8-bit and 16-bit integers provides a

significant decrease in the inference time, thus reducing the average power consumption as well.

As power consumption is key in embedded systems, shorter inference times are interesting as

they make reducing the microcontroller’s operating frequency or putting the microcontroller in

sleep mode for a longer period between two inferences possible. In addition, execution using

8-bit and 16-bit integers also provides a significant reduction in memory footprint. The memory

required for the model parameters is divided by 4 and 2 for for 8-bit and 16-bit quantization,

respectively. It is worth noting that the RAM usage, which is not illustrated here, is also reduced

since the activation buffers are also quantized on 8 or 16 bits.

Our results also show that performing inference using quantization with fixed-point on 16-

bit integers does not lead to an accuracy drop, whatever the considered test case. Moreover,

inference using 16 bits does not require quantization-aware training to achieve such results. As

both the power consumption and the memory footprint can be decreased, fixed-point quantization

on 16-bit integers is therefore always preferable to 32-bit floating-point inference.

Conversely, 8-bit quantization does not provide a substantial improvement over 16-bit quan-

tization. Moreover, 8-bit quantization requires performing quantization-aware training. It is

worth noting that 8-bit quantization-aware training introduces more variance in the results over

the baseline, and is also more sensitive to a change of training parameters. To reduce the

variance, it is preferable to use an optimizer such as SGD with conservative parameters, instead

of optimizers such as Adam or RAdam, to reduce the variance of the results, even though it may

reach a lower maximum accuracy.

Another benefit of 16- or 8-bit quantization is that SIMD instructions can be used with some

classes of microcontrollers. These instructions enable an improvement of the inference time and

thus further reduce the power consumption. For example, such instructions allow performing

2 multiply–accumulate operations with 16-bit operands and a common accumulator (SMLAD)

in a single cycle. Furthermore, a 16-bit quantization scheme can be used with our framework.

As shown in the results, 16-bit quantization provides a good compromise between accuracy,

inference time and memory footprint, without requiring additional work on quantization-aware

training.

The results obtained on inference time clearly show that both the software and hardware

platforms have a substantial impact on energy efficiency. STM32Cube.AI offers a well-optimized

inference engine in terms of execution time, both in floating-point and fixed-point on integers.

Our results show that TensorFlow Lite for Microcontrollers is slower than STM32Cube.AI in both

cases. For the floating-point inference, our framework is in between these two software platforms

and is only slightly slower than STM32Cube.AI. For fixed-point inference, our framework offers a

performance level similar to STM32Cube.AI.

The Ambiq Apollo3 microcontroller of the SparkFun Edge board is much more energy efficient

than the STM32L452RE microcontroller of the Nucleo-L452RE-P board. Running TensorFlow

Lite for Microcontrollers or our framework on the SparkFun Edge board provides better energy

efficiency figures than running STM32Cube.AI or our framework on the Nucleo-L452RE-P board.

In fact, our MicroAI framework running on the SparkFun Edge board achieves the best energy

figures.
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3.6 Conclusion

In this chapter, we presented MicroAI, a framework to perform quantization and then deployment

of deep neural networks on microcontrollers. This framework represents an alternative to the

STM32Cube.AI proprietary solution and TensorFlow Lite for Microcontrollers, an open-source

but complex environment. Inference time and energy efficiency measured on two different

embedded platforms demonstrated that our framework is a viable alternative to the aforemen-

tioned solutions to perform deep neural network inference. Our framework also introduces

a fixed-point on 16-bit integer post-training quantization which is not available with the two

other frameworks. We have shown that 16-bit fixed-point quantization provides an improvement

over a 32-bit floating-point inference, while being competitive with fixed-point on 8-bit integer

quantization-aware training. 16-bit fixed-point numbers provide a reduced inference time com-

pared to floating-point inference. Moreover, the memory footprint is divided by two while keeping

the same accuracy. The 8-bit quantization provides further improvements in terms of inference

time and memory footprint but at the cost of a slight decrease in accuracy and a more complex

implementation.

Work is still in progress to implement some optimization techniques for fixed-point on 8-bit

integer inference. Three optimizations are especially targeted: per-filter quantization, asymmetric

range and non-power-of-two scale factor. These optimizations would make our framework more

competitive in terms of accuracy compared to TensorFlow Lite for Microcontrollers for 8-bit

quantization. Another possible improvement for fixed-point inference consists in using 8-bit

quantization for the weights and 16-bit quantization for the activations. TensorFlow Lite for

Microcontrollers is currently in the process of implementing this technique. Mixed precision can

also provide a way to reduce the memory footprint of layers that do not need a high-precision

representation (using 8 bits for weights and activations), while keeping a higher precision

(16-bit representation) for layers that need it. The CMix-NN [194] library already provides an

implementation of convolution functions for various data type configurations (in 2, 4 and 8 bits).

To further improve power consumption and memory footprint, binary neural networks can also

be considered. However, to run them efficiently on microcontrollers, binary neural networks

would need to be implemented using bit-wise operations on 32-bit registers. This way, as many

as 32 computations could be performed in parallel.

Apart from quantization, other techniques can be used to improve the execution of deep neural

networks on embedded targets. One of these techniques is the big/LITTLE DNN approach [195]

where the inference is first done on a very small deep neural network. Then, if the confidence

of the prediction is too low, inference is done using a larger deep neural network to reduce

the confusion of the classification task. This technique allows a fast inference response time

for most inputs, thus lowering the power consumption. In fact, it has been shown that the

set of inputs that are difficult to classify, so requiring running the bigger deep neural network,

is small. However, this approach does not decrease the memory footprint. Other techniques

such as pruning can also be used to obtain a smaller deep neural network while keeping the

same accuracy. When structured pruning [196] is used, for instance, entire filters are completely

removed from the convolutional neural network model. This technique reduces both the memory

footprint and the power consumption. Finally, other optimization techniques also consider

new neural network architectures. One can cite for example the recently published MCUNet [3]

framework with its TinyNAS tool that aims to identify the neural network model that provides the

best trade-off between prediction performance and embedded constraints on a given target.

In the next chapter, the MicroAI framework will be used to train, quantize and deploy a deep

neural network for human activity recognition on the smart glasses. This requires building a

dataset from the smart glasses in order to train and evaluate the deep neural network.
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4.1. Introduction

4.1 Introduction

In this work, human activity recognition is solved as a machine learning problem that predicts

activities of daily living performed by a subject using sensors data. Various devices such as

smartphones [112], wearables [123] or application-specific devices [117] can be used to collect

data, some being more invasive than others. Our approach is based on an inertial measurement

unit embedded in smart glasses. Smart glasses are less invasive than some other devices such

as dedicated IMU devices or even smartphones, especially for elderly who often wear glasses.

However, and to the best of our knowledge, there is no available and usable dataset for human

activity recognition based on smart glasses. Moreover, data would vary from one device to

another due to sensors having different orientations, ranges, accuracy, and sampling rates.

In this chapter, we present a new dataset [197] called UCA-EHAR with data collected from Ell-

cie Healthy’s smart glasses [105]. Our dataset provides raw data collected from an accelerometer,

a gyroscope and a barometer for 8 classes of activity performed by 20 subjects.

For privacy, connectivity and latency reasons, all the data processing related to human

activity recognition is performed directly on the smart glasses. Therefore, the machine learning

algorithm performing the classification task is executed on the smart glasses’ microcontroller. In

Chapter 3, we presented our open-source MicroAI framework for end-to-end training, quantization

and deployment of deep neural networks on microcontrollers [185, 179]. In this work, MicroAI

is used to deploy a deep neural network model performing human activity recognition on the

smart glasses. Quantization with 8- and 16-bit fixed-point representations is used to optimize

the memory footprint and the inference time, thus reducing the power consumption as well.

Section 4.2 presents the smart glasses used for collecting data and performing live inference.

Section 4.3 details the dataset and the protocol used to collect and label the data. Section 4.4

describes the deep neural network architecture used to classify activities from our dataset as

well as the training phase. In Section 4.5, classification results using our dataset are given and

power consumption on the smart glasses is analysed. Section 4.6 showcases our human activity

recognition application running on the smart glasses. Finally, Section 4.7 concludes this work.

4.2 Ellcie Healthy Smart Glasses

Ellcie Healthy smart connected glasses are a multiple-purpose wearable device designed for

e-health and road safety applications such as driver drowsiness detection, fall detection for

elderly people or human activity recognition to prevent a fall. The Ellcie Healthy smart connected

glasses shown in Figure 4.1 contain infrared proximity sensors embedded inside the rims for

oculography purposes.

Figure 4.1: Ellcie Healthy Smart Glasses.

Other sensors such as a barometer, a thermometer, a triaxial accelerometer and a gyroscope

are integrated within the frame temples. The accelerometer and the gyroscope are located inside

the same inertial measurement unit component. The barometric sensor and the temperature

sensor are located in another component. The accelerometer provides a tree-dimensional
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acceleration vector along the orthogonal coordinate system shown in Figure 4.2. When the

glasses are placed onto a table for example, most of the acceleration vector modulus (i.e., the

gravity) is projected onto the Z axis, approximately giving 9.81 m⋅s−2. Depending on how the

subject is wearing the glasses, the shape of the nose and other physiological factors, the gravity

may not be perfectly projected onto the Z axis.

Figure 4.2: Accelerometer axes on Ellcie Healthy Smart Glasses.

The frame also includes a 32-bit microcontroller. The STM32L451RE microcontroller from

STMicroelectronics has been chosen for its low power consumption while still being versatile.

This microcontroller relies on a Cortex-M4F core running at 40 MHz in active mode and alongside

512 KiB of Flash memory and 160 KiB of SRAM. The microcontroller runs the Zephyr real-

time operating system to handle the various concurrent tasks. When no active application is

running, the microcontroller enters STOP2 mode after a timeout of a few seconds. This does

not happen while the human activity recognition application is running. However, if no higher

priority task is running, the Zephyr’s idle task runs and calls the WFI instruction, which causes

the microcontroller to enter a shallow sleep mode by turning off the core clock until an interrupt

occurs, while other clocks and peripherals stay active. A Bluetooth Low Energy (BLE) transceiver

is integrated inside the frame to enable wireless communication with a gateway (typically a

smartphone). Finally, a 350 mWh lithium polymer battery placed on the left temple of the frame

provides the energy to the whole system using a flat flexible cable. This cable allows energy and

data to flow back and forth through the bridge, the rims and the temples. Embedded algorithms,

signal processing and data collection can therefore be directly performed on the smart glasses

to provide health information to users. Alerts can be triggered when a risk event (e.g., driver

drowsiness) is detected.

4.3 Dataset for Human Activity Recognition on Smart Glasses

To address the lack of usable data for human activity recognition using smart glasses, we have

built a dedicated dataset called UCA-EHAR. To build the UCA-EHAR dataset, we have enrolled 20

adult subjects, 8 women and 12 men (30.6 y.o average; 12 y.o standard deviation). Adults or

children below 1.60 m of height as well as people with disabilities such as limping or backache

were not included in our dataset.

UCA-EHAR contains 8 distinct classes:

STANDING, SITTING, WALKING, LYING, WALKING_DOWNSTAIRS, WALKING_UPSTAIRS, RUN-

NING, and DRINKING. The choice of activities has been inspired by the UCI-HAR dataset presented

in Chapter 2. Additionally, these activities are simple to perform, common and relevant for elderly

activity monitoring.

STANDING, SITTING, and LYING are static activities where the subject stays in the same

position for a given duration. However, the subject does not need to stay completely still, but

rather be natural as long as they keep either a standing, sitting or lying position, respectively.
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WALKING, WALKING_DOWNSTAIRS, WALKING_UPSTAIRS and RUNNING are dynamic activi-

ties associated to mobility. The RUNNING activity is closer to walking fast than a sprint.

DRINKING is an activity that has been specifically added since we believe dehydration can

be a risk for the elderly. The DRINKING activity is performed by drinking from a glass or a bottle,

sip by sip, from a sitting position.

The composition of the dataset is detailed in Table 4.2.

The data presented in this study are openly available in Zenodo at Htpsa//doi.org/10.5

281/zenodo.5659336. All the published data are fully anonymized.

Informed consent was obtained from all subjects involved in the study. The study was

conducted in accordance with the Declaration of Helsinki, and approved by the Ethics Committee

of Université Côte d’Azur CER (Comité d’Ethique de la Recherche, approval identifier: 2022-033).

The data was handled according to the GDPR (General Data Protection Regulation) and registered

to Université Côte d’Azur DPO (Data Protection Officer, registration identifier: UCA-C22-091). The

description of the dataset along with the classification and embedded execution results were

published in the MDPI Applied Sciences 2022 Volume 12(8) journal [198].

4.3.1 Data Collection Protocol

Each subject was given a table stating the guidelines of the recording. One voice recording per

session was acquired in order to help in the labelling process. The entire signal recorded during

a session can contain multiple status and transition classes as shown in Table 4.1.

Each data recording corresponds to one session as described in the table. Each session is

described with 2 lines that must be read from left to right. The first line indicates the activity,

while the second line gives the expected activity duration. Each session is a succession of

activities. In order to provide a compact representation of sessions, an activity can be replaced

by “repeat x times”. In that case, no duration is indicated, it is rather replaced by the activity

number to start again from. Subjects did not necessarily repeat the activities as many times as

recommended due to time constraints or physical conditions.

It is well known that homogeneous classes can be of premium importance to reach a

good accuracy for some neural network family. As a transition is by nature shorter in time

compared to a status class, the number of transition signal samples is very small compared to

the status classes’ samples. Even tough transitions are labelled in the dataset (SIT_TO_STAND,

STAND_TO_SIT, SIT_TO_LIE, LIE_TO_SIT), they are not considered meaningful for classification

in this work and are therefore filtered out for classification results. Additional data for transitions

were recorded after the initial dataset was constructed thanks to a new TRANSITION session.

However these samples were not used in a classification experiment as the quantiy was deemed

still not to be enough. A DRIVING session has also been recorded where the subject drives a

car in an urban area for several minutes. However, most of the subjects were unable to perform

it. Therefore, the DRIVING session has not been used in the classification experiments. Both

the TRANSITION and the DRIVING sessions were not included as part of the published dataset.

However, they are used internally by Ellcie Healthy to develop future safety-related applications

on the smart glasses.

The recording process is performed by a smartphone, collecting the accelerometer, gyroscope

and barometer data sent by the smart glasses through a Bluetooth Low Energy connection. At

the same time, audio is recorded from the phone’s microphone in order to provide auditory cues

for labelling. The subject or the test assistant must pronounce the keyword corresponding to

the activity that the subject is currently performing.

Examples of recordings of approximately 20 s for each session are shown thereafter in

Figure 4.3a to Figure 4.3g. In each figure, the topmost graph shows the 3-axis data from the

accelerometer. The graph in the middle shows the 3-axis data from the gyroscope. The graph

on the bottom shows the corresponding activity.
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Table 4.1: Instructions for each session of activity recording.

Session Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 Activity 6 Activity 7 Activity 8 Activity 9 Activity 10

WALKING STANDING WALKING STANDING

5 s 240 s 5 s

RUNNING STANDING RUNNING STANDING

5 s 180 s 5 s

STANDING STANDING WALKING STANDING WALKING STANDING

5 s 6 s 180 s 6 s 5 s

SITTING STANDING STAND_TO_SIT SITTING SIT_TO_STAND Repeat once STANDING

5 s (no rush) 90 s (no rush) from Activity 1 5 s

LYING STANDING STAND_TO_SIT SITTING SIT_TO_LIE LYING LIE_TO_SIT SITTING SIT_TO_STAND Repeat once STANDING

5 s (no rush) 7 s (no rush) 90 s (no rush) 7 s (no rush) from Activity 1 5 s

STAIRS STANDING WALKING WALKING_ UPSTAIRS WALKING WALKING_ DOWNSTAIRS Repeat 7 times WALKING STANDING

5 s (5 to 6 steps) (15 to 25 stairs) (5 to 6 steps) (15 to 25 stairs) from Activity 2 (5 to 6 steps) 5 s

DRINKING SITTING DRINKING Repeat 29 times SITTING

5 s 1 sip/10 mL from Activity 1 5 s

DRIVING STANDING STAND_TO_SIT SITTING DRIVING SITTING SIT_TO_STAND STANDING

5 s (no rush) 10 s 7 x 60 s 10 s (no rush) 5 s

TRANSITION STANDING STAND_TO_SIT SITTING SIT_TO_LIE LYING LIE_TO_SIT SITTING SIT_TO_STAND Repeat 24 times STANDING

5 s (no rush) 5 s (no rush) 5 s (no rush) 5 s (no rush) from Activity 1 5 s
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(a) WALKING (b) RUNNING

(c) STANDING (d) SITTING

(e) LYING (f) STAIRS

Figure 4.3: 20 s extracted from each session of subject T1.
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(g) DRINKING (h) DRIVING

(i) TRANSITION

Figure 4.3: 20 s extracted from each session of subject T1. (continued)

4.3.2 Data Visualisation and Labelling

The dataset was initially manually labelled after capturing all the data with the help of the

audio recordings and a change point detection Matlab routine. However, this process was

time-consuming and prone to introducing errors.

To imrpove the data labelling process, we developped a custom graphical user interface,

called MicroAI-GUI, firstly to visualize time series data from the smart glasses sensors. A

screenshot of this software can be seen in Figure 4.9. Thanks to this visualization, it was

discovered that some activities were mislabelled, and in some cases the start time or the end

time were not accurate. For example, the DRINKING session contains a fast switching of a few

seconds between the DRINKING and SITTING activities. Therefore, a slight alignment issue can

cause one activity to contain a significant amount of data from the other.

The MicroAI-GUI tool was then extended to allow the modification of the existing labels, and

the labels were readjusted in case of inaccuracy. Additionally, in order to optimize the labelling

process, MicroAI-GUI can communicate with the smart glasses through Bluetooth Low Energy,

so that the collected data can be labelled in real time. This removes the need for a manual

labelling after the session is captured. However, MicroAI-GUI still captures the audio at the same

time in case an error is suspected in the labelling so that is can be corrected afterwards.
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MicroAI-GUI is originally a desktop application. However, in order to run on a tablet, MicroAI-

GUI has been ported to the Android operating system, thanks to the use of a portable graphics

toolkit (ImGui [199]) and portable C++ code. This way, it is possible to collect and label data

on the move. The subject can also perform the operation themselves, without the need of an

assistant.

4.3.3 Data Format

The accelerometer, gyroscope, and barometer have three values for acceleration, three values

for the angular velocity, and one atmospheric pressure value, respectively.

The full sensitivity range is ±2𝑔 (𝑔 = 9.81 m⋅s−2) for the accelerometer and ±2000 dps (degrees

per second) for the gyroscope. The Ellcie Healthy glasses used in this experiment sample the 6

signals from the accelerometer and the gyroscope at a rate of 26 Hz, whereas the barometer is

sampled at 6.66 Hz.

Before the labelling process, an interpolation routine has been executed in order to provide

the atmospheric pressure values interpolated for each accelerometer timestamp. The resulting

file contains a vector with seven elements for each timestamp, with no empty value. It is worth

noticing that the barometer, the gyroscope and the accelerometer share the same sampling time

origin. The values are provided in m⋅s−2 , rad⋅s−1 and hPa.

Files are provided in CSV format with a semicolon as the column delimiter. The files contain

one line every 40 ms approximately, with nine columns labelled “T” for the timestamp, “Ax”, “Ay”

and “Az” for the accelerometer, “Gx”, “Gy” and “Gz” for the gyroscope, “P” for the atmospheric

pressure and “CLASS” for the activity label. All numeric values are provided with 2 decimals.

Finally, the name of the file is a combination of the identifier of the subject and the session name.

The identifier of the subjects is numbered T1 to T21. However, T11 has been removed from the

dataset due to not having performed enough activities. Some recordings have been performed

in two sessions, in such a case “_1” or “_2” is appended to the filename.

An extract of the file for the DRINKING activity of subject T21 from timestamp 29 000 to

timestamp 30 000 is provided in Appendix C.

4.3.4 Train/Test Split

The dataset is split in two parts: one for training a machine learning algorithm and one for testing

the ability of the machine learning algorithm to generalize over previously unseen data. There

are 14 subjects in the training set and 6 subjects in the testing set, representing approximately

77% and 23% of the total number of samples, respectively. Subjects number 5, 15, 17, 18, 19,

and 20 have been chosen for the testing set since they have completed all activities. Moreover,

these subjects have the lowest standard deviation on the percentage of samples for each class

in the testing set. Therefore, and as can be observed at the bottom of Table 4.2, activities are

balanced as much as possible between the training and testing sets.

The total number of time samples in the training and the testing sets are 563,469 and 170,150,

respectively. After applying the windowing process described in Section 4.4.1, the total number

of vectors in the training and the testing sets are 35,213 and 10,631, respectively. The distribution

of time samples before windowing by subjects and activities for both the training set and the

testing set can be seen in Table 4.2.
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Table 4.2: Distribution of time samples across subjects and activities for training and testing sets.

Activities

Subject STANDING SITTING WALKING LYING WALKING_DOWNSTAIRS WALKING_UPSTAIRS RUNNING DRINKING TOTAL

Training set

T1 8620 12 021 9955 5712 1588 1701 4310 4543 48 450

T2 6198 15 617 11 245 2626 3368 3298 4555 4069 50 976

T3 4973 17 904 17 029 3539 3887 3917 5300 5287 61 836

T4 7568 8822 10 871 5578 3132 3496 4002 3754 47 223

T6 6152 16 560 10 144 3199 2420 2305 5464 5093 51 337

T7 2162 16 436 9120 1984 2701 3333 4465 1383 41 584

T8 5151 4024 9378 4289 2145 2156 4064 0 31 207

T9 5113 6074 9578 3276 2596 3399 4015 0 34 051

T10 5899 4954 12 354 4226 1893 1943 4793 0 36 062

T12 4614 8509 10 559 1681 2368 2469 4641 1314 36 155

T13 7444 9957 13 449 12 224 2789 3373 6064 0 55 300

T14 4474 3611 7160 3025 1128 1384 4122 0 24 904

T16 5501 3489 8542 2250 1880 1940 3162 0 26 764

T21 1558 6524 2870 1937 1139 1148 1563 881 17 620

Total 75 427 134 502 142 254 55 546 33 034 35 862 60 520 26 324 563 469

Testing set

T5 5587 8662 16410 3390 2276 2583 6016 1954 46 878

T15 1513 6295 3581 2388 1746 1490 1626 463 19 102

T17 4394 7749 7404 3227 1940 2611 3005 1683 32 013

T18 4684 7784 7110 2412 1299 1590 3210 1288 29 377

T19 1566 4780 3435 2401 1204 1564 1884 1011 17 845

T20 5495 7755 4150 2099 973 1177 1734 1552 24 935

Total 23 239 43 025 42 090 15 917 9438 11 015 17 475 7951 170 150

Set Distribution between sets

Training 76% 75% 77% 77% 77% 76% 77% 76% 76%

Testing 23% 24% 22% 22% 22% 23% 22% 23% 23%
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4.4 Machine Learning for Classification of Activities of Daily Living

In this section, a machine learning method to perform classification on the UCA-EHAR dataset

is presented. Our aim is to provide a baseline for classification performance, so that these

results can be used by other works for comparison. It is also the model used later on to perform

inference for live human activity recognition on the smart glasses.

4.4.1 Data Pre-Processing

As the objective is to perform live inference directly on the smart glasses, the amount of compu-

tation done before entering the artificial neural network must be minimized. In consequence, only

a windowing pre-processing task is performed. The neural network indeed requires time series,

in other words a context around each data point. The windowing process uses windows of 64
time samples, each time sample containing a value for the three accelerometer and gyroscope

axes. Each window overlaps by 25% over the previous one. Since data are sampled at 26 Hz,

each window has a duration of approximately 2.46 s. This is close to the choice made by the

authors of the UCI-HAR dataset [112]. The raw data from the dataset have one label per time

sample. Time samples in a window may therefore have different labels. During windowing,

the labels are reduced to one per window by selecting the label with the highest number of

occurrences in the window. Despite the barometer data being provided in the dataset, they

are not used in the embedded experiments since the barometer is not sampled at the same

rate as the accelerometer and gyroscope. To use the barometer data during live inference,

resampling the data coming from the sensor would have to be performed on the smart glasses.

Furthermore, a band-pass filter would need to be applied to remove the mean of the signal and

the high-frequency noise. This has not been implemented on the smartglasses yet and could

cause a computational overhead.

4.4.2 Data Augmentation

In order to mitigate overfitting and improve generalization, three different data augmentation

techniques have been used during training: time shifting, time warping and 3D rotations. Time

shifting performs a uniformly distributed random rotation over the time axis in order to shift the

centre of the window. Time warping performs a dilation over the time axis in order to speed

up or slow down the movement. The dilation scale factor is chosen randomly from a normal

distribution with a mean 𝜇 = 0 and a standard deviation 𝜎 = 0.15. 3D rotation performs a three-

dimensional rotation over the three accelerometer and gyroscope axes. The three rotation angles

are randomly chosen from a normal distribution with a mean 𝜇 = 0 and a standard deviation

𝜎 = 0.15.

4.4.3 Artificial Neural Network Architecture

A deep neural network is used as the machine learning algorithm. More specifically, the residual

neural network presented in Section 3.4 has been used here as well as it performed well on the

UCI-HAR dataset. Moreover, this type of network is easy to scale down for embedded hardware

by changing the number of filters per convolutional layer. All convolutional layers have the same

number of filters 𝑓.

The neural network is trained over 750 epochs using stochastic gradient descent (SGD) with

momentum set to 0.9 and weight decay set to 5 × 10−4 . The batch size is set to 768. The initial

learning rate is set to 0.025 and divided by 10 at epochs 200, 400, 600 and 675.
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4.5.1 Training and Prediction Results

The residual neural network is trained for 8, 16, 24, 32, 40, 48, 64, and 80 filters per convolution. It

is then quantized using the post-training quantization method described in Section 3.2.2. Results

are averaged over 15 runs for each number of filters. The detailed results for each number of

filters per convolution are reported in Table 4.3.

Table 4.3: Accuracy and parameters memory for each configuration of ResNetv1-6.

Filters Per Convolution Data Type Parameters Parameters Memory (B) Accuracy

8 float32 1096 4384 78.08%

16 float32 3848 15 392 78.99%

24 float32 8264 33 056 79.14%

32 float32 14 344 57 376 79.28%

40 float32 22 088 88 352 79.48%

48 float32 31 496 125 984 79.87%

64 float32 55 304 221 216 80.24%

80 float32 85 768 343 072 80.20%

8 int16 1096 2192 78.08%

16 int16 3848 7696 79.06%

24 int16 8264 16 528 79.28%

32 int16 14 344 28 688 79.21%

40 int16 22 088 44 176 79.50%

48 int16 31 496 62 992 79.79%

64 int16 55 304 110 608 79.97%

80 int16 85 768 171 536 80.16%

8 int8 1096 1096 75.83%

16 int8 3848 3848 77.69%

24 int8 8264 8264 78.58%

32 int8 14 344 14 344 77.90%

40 int8 22 088 22 088 77.78%

48 int8 31 496 31 496 77.94%

64 int8 55 304 55 304 77.71%

80 int8 85 768 85 768 78.27%

The results for the original 32-bit floating-point model (UCA-EHAR float32), the 16-bit fixed-

point quantized model with post-training quantization (UCA-EHAR 16-bit PTQ) and the 8-bit

fixed-point quantized model with post-training quantization (UCA-EHAR 8-bit PTQ) are shown in

Figure 4.4. As can be seen, 16-bit fixed-point quantization does not cause any accuracy loss

while 8-bit fixed-point quantization causes up to a 2.4% drop in accuracy.
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Figure 4.4: Accuracy vs. filters.

Concerning the memory used by the parameters, Figure 4.5 shows that the 16-bit fixed-point

model is the most efficient, as it uses half the memory of the 32-bit floating-point model without

any accuracy loss. On the other hand, the 8-bit fixed-point model is less efficient than the 32-bit

floating-point model since a noticeable loss of accuracy can be observed.
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Figure 4.5: Accuracy vs. parameters memory.

The confusion matrix, shown in Figure 4.6 and extracted from one training for 80 filters per

convolution, highlights the difficulty for an artificial neural network to differentiate the SITTING

and STANDING activities from the collected data. The reason is that the orientation of the smart
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glasses remains the same for both classes, and the signals mostly stay constant for both of

these motionless activities as observed in Figures 4.3c and 4.3d. It can be noted that a similar

confusion, albeit to a lesser extent, was already observed on the UCI-HAR dataset.
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Figure 4.6: Confusion matrix for 80 filters per convolution.

An evaluation per subject has also been performed and is reported in Figure 4.7. The training

set and the parameters are the same as the one used for the previous confusion matrix. However,

inference is evaluated using each subject of the testing set one by one.

It is important to note that since the classes are unbalanced, the accuracy in the “TOTAL”

column does not represent the average of each class’s accuracy. Instead, it is the accuracy over

all the test vectors of a given subject. Classes with more test vectors have a greater influence

on the resulting percentage of correct predictions. For example, for subject T20 the “TOTAL” of

75% is the most influenced by the “STANDING” activity, having much more samples than other

activities and bringing the accuracy down.

The same applies for the “TOTAL” line, since subjects do not all have the same number of

test vectors per class. The “TOTAL” line of Figure 4.7 therefore contains the same values as the

diagonal of the confusion matrix in Figure 4.6. The bottom right cell, at the intersection of the

“TOTAL” line and the “TOTAL” column, represents the accuracy over the entire testing set.

Results show a discrepancy between subjects for some activities such as WALKING_DOWN-

STAIRS, WALKING_UPSTAIRS and DRINKING, while other activities are more homogeneous.

However, the STANDING activity is hard to classify for all subjects. The reason is a large confusion

with the SITTING activity, as previously shown in the confusion matrix.
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Figure 4.7: Accuracy per class and per subject for 80 filters per convolution.

4.5.2 Deployment on Smart Glasses

The ResNetv1-6 neural network is integrated into Ellcie Healthy’s smart glasses firmware version

6.1.2 using the C inference library generated by our framework. A comparison is led between the

non-quantized (float32) network, the 16-bit quantized network and the 8-bit quantized network,

optionally with CMSIS-NN optimizations, both from a memory footprint and a power consumption

perspective.

4.5.2.1 Memory

In this firmware version, only 77 604 B of Flash (for the inference code and the weights) and

40 572 B of RAM (for the intermediate computation and the layers’ output buffers of the deep

neural network) can be used. Therefore, these memory limitations constrain the neural network

that can be executed on the microcontroller. For the 32-bit floating-point inference, the largest

ResNetv1-6 that can be deployed only contains 32 filters per convolution. Since the 16-bit fixed-

point quantization provides the best memory efficiency, we also deployed a 16-bit ResNetv1-6

with 48 filters per convolution to get the best possible accuracy on the smart glasses. It is worth

noting that the same deep neural network without quantization (i.e., using 32-bit floating point)

does not fit in Flash memory.

The memory footprint in Flash and the statically allocated RAM for each configuration is

summarized in Table 4.4.
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Table 4.4: Flash usage and static RAM allocation of the deep neural network (code and data).

Data Type Optimizations
Flash RAM

Accuracy
(Available: 77,604 B) (Available: 40,572 B)

32 filters

int8 CMSIS-NN 17 776 B 20 680 B 77.90%

int8 None 17 216 B 6 664 B 77.90%

int16 CMSIS-NN 31 440 B 26 192 B 79.21%

int16 None 32 720 B 13 328 B 79.21%

float32 N/A 60 336 B 23 200 B 79.28%

48 filters

int16 CMSIS-NN 65 736 B 38 512 B 79.79%

float32 N/A 128 952 B * 33 440 B 79.87%

* Memory overflow.

As expected, 8-bit and 16-bit quantizations allow reducing both the Flash and RAM usage.

Therefore, models with more parameters can be deployed compared to the original 32-bit floating-

point network. Using a 16-bit quantization, a network with 48 filters per convolution can indeed

be deployed on the smart glasses. For this network, almost all the available memory is used:

94.43% of Flash and 98.43% of statically allocated RAM. On the other hand, a maximum of 32

filters per convolution can be used for the 32-bit floating-point network. For this network, the

available memory is used as follows: 91.89% of Flash and 86.75% of statically allocated RAM.

4.5.2.2 Power consumption

The inference is performed each time a series of 64 samples is collected by the inertial mea-

surement unit (IMU) whose sampling rate is 26 Hz. As the barometer sampling rate is 6.66 Hz,

this sensor is not used in these experiments since resampling the signal would be required.

The power consumption of the smart glasses is measured using a Qoitech Otii Arc laboratory

power supply, supplying 3.75 V in place of the lithium polymer battery. Energy values are

computed by the Otii software from the current and voltage over a one minute window starting

from the beginning of an inference. Obtained measurements over one inference period is

shown in Figure 4.8 for 16-bit fixed-point inference with 48 filters per convolution and CMSIS-NN

optimizations. The graph on the top shows the current consumption in mA while the graph at

the bottom shows the voltage in V. The Δ time indicates the duration of the selection, and the

computed energy 𝐸 over the selection is shown in the top right corner. It is worth noting that

periodic spikes of current can be observed on the figure. Spikes at 20 Hz are related to the BLE

transmission, while the spikes at 26 Hz are caused by the IMU sampling.

In the Figure 4.8, the inference task starts at the very beginning of the measurement. After

173 ms of inference, 64 new samples are collected from the IMU. This figure clearly shows

that the inference task requires much less time than collecting 64 samples. Additionally, the

shallow sleep mode between inferences does not enable a significant reduction of the power

consumption. The average power consumption is 21.7 mW during inference, and 13.5 mW

between inferences, only a 37.8% reduction Therefore, in this configuration the inference time

does not have a significant impact on the overall energy consumption. Over one inference

period (i.e., approximately 2.6 s), 10 200 nWh represents the sum of the energy for the inference

(1120 nWh) and the energy to collect the samples (9100 nWh).
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Figure 4.8: Current and voltage captures over one inference period by Qoitech Otii software for

int16 model with 48 filters per convolution and CMSIS-NN optimizations.

Inference time and energy measurements have been collected for various configurations

and are shown in Table 4.5.

Table 4.5: Inference time and energy measurements on the smart glasses.

Data Type Optimizations Inference Time Energy for 1 Inference Energy over 1 Minute

32 filters

int8 CMSIS-NN 53 ms 387 nWh 220 μWh

int8 None 115 ms 722 nWh 231 μWh

int16 CMSIS-NN 88 ms 605 nWh 232 μWh

int16 None 130 ms 853 nWh 234 μWh

float32 N/A 140 ms 919 nWh 235 μWh

48 filters

int16 CMSIS-NN 173 ms 1120 nWh 237 μWh

Results show that quantization also helps to reduce inference time and therefore energy

consumption for one inference, especially when making use of CMSIS-NN optimizations. The

original 32-bit floating-point network requires 140 ms on average for one inference, while the 16-

bit quantized version only takes 88 ms for the same accuracy. Furthermore, the 8-bit quantized

version only requires 53 ms, but, as seen previously, with a noticeable degradation of accuracy.

However, the overall energy consumption over one minute does not significantly change with

quantization. The overall energy is reduced by at most 7% between the 32-bit floating-point

network and its 8-bit quantized version. As it has been observed in Figure 4.8, the inference time

is indeed small compared to the time required to collect data. For that reason, the impact of

inference over the overall energy consumption is small. Therefore, even if the largest network
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that fits in memory (48 filters per convolution with 16-bit quantization) is used, the autonomy

of the smart glasses would not be impacted as long as the inference execution time remains

small compared to the inference period. Hence, the energy consumption over one minute only

grows by 2% when a 16-bit quantized network is used with 48 filters per convolution rather than

32 filters per convolution.

Ellcie Healthy’s smart glasses embed a 350 mWh battery. Therefore, when the 16-bit quan-

tized network with 48 filters per convolution is used (this network consumes 237 μWh per

minute), the autonomy can reach 1476 min, i.e., 24.6 h. This estimated lifetime does not take

into account additional applications that could run concurrently as well as battery ageing.

The larger the neural network, the higher the memory footprint and the higher the energy

consumption. In our case study, the memory footprint is a more restrictive constraint than

energy consumption, primarily making artificial intelligence in the smart glasses a memory

bound problem.

4.6 Live Human Activity Recognition on Smart Glasses

The ResNetv1-6 model with 48 filters per convolution, 16-bit fixed-point quantization, and CMSIS-

NN optimizations has been integrated onto the smart glasses firmware to perform live human

activity recognition. Data are collected from the accelerometer and the gyroscope of the smart

glasses when worn by a subject. The smart glasses’ microcontroller performs the classification

and sends the label of the recognized activity to a computer for visualization through a Bluetooth

Low Energy communication. Additionally, the accelerometer and gyroscope data are also sent

for visualization, even though the classification is not performed on the computer. MicroAI-GUI is

used to provide a graphical visualization of the data as well as the predicted class. A 30-second

sample of such a live recognition has been extracted and can be seen in Figure 4.9. In this extract,

the following sequence of activities has been performed by the subject: walking downstairs,

walking upstairs, walking, stopping in a standing position and finally drinking a sip of water.

Figure 4.9: Live human activity recognition on smartglasses.

A video of a short human activity recognition session with various activities is available at
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httpa//3ia-demos.inria.fr/.

No quantitative evaluation of the live recognition performance has been done so far. However,

it can be said that qualitatively the performance follows the results presented in the confusion

matrix. Activities such as WALKING, WALKING_DOWNSTAIRS, WALKING_UPSTAIRS and DRINK-

ING are generally recognized properly, while the STANDING and SITTING activities cannot be

distinguished properly.

4.7 Conclusion

In this chapter, a novel dataset for human activity recognition called UCA-EHAR has been pre-

sented. This dataset gathers data collected from the accelerometer, the gyroscope and the

barometer of smart glasses. UCA-EHAR is the first publicly available dataset dedicated to human

activity recognition on activities of daily living using smart glasses. To provide a comparison

baseline for a classification task, we evaluated the performance of a residual neural network on

our dataset and we provided accuracy results as well as a confusion matrix. Using a floating-

point ResNetv1-6 with 80 filters per convolution, the accuracy for this dataset is 80.2%. However,

this floating-point implementation does not respect the smart glasses’ embedded constraints.

Therefore, the neural network has been quantized using 8-bit and 16-bit fixed-point numbers to

optimize the memory footprint and the inference time, thus the energy consumption. Obtained

results show that the 16-bit quantization provides the best accuracy vs. memory efficiency.

We deployed different configuations of deep neural networks onto the smart glasses using

our MicroAI framework. We then measured the current and voltage during a human activity

recognition task running on the smart glasses. Using the 16-bit quantized network with 48 filters

per convolution and CMSIS-NN optimizations, we have shown that human activity recognition

can be performed for up to 24 h on the smart glasses. Finally, the human activity recognition task

can run on the smart glasses’ microcontroller with live data collected from the smart glasses’

inertial measurement unit. The predicted activity is sent through Bluetooth Low Energy to a

computer or a tablet.
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5.1 Introduction

In Chapter 4, we presented the dataset we built for human activity recognition on smart glasses.

The effort of collecting, filtering and labelling the data is a tedious and time-consuming task.

More generally, labelling by hand the continuous flow of data coming from embedded sensors

is not always possible, unless systematically recording the data on remote servers to label

it manually afterwards. Supervised learning techniques can therefore turn out to be limited.

Moreover, unpredictable variations of the input distribution (such as a subject with a slightly

different behaviour) limit the use of representative pre-built datasets.

Unsupervised learning can therefore be used to learn from unlabelled data. As seen in Table

2.1, unsupervised learning methods generally lead to worse classification performance than

supervised learning methods. Without labels, it is indeed difficult to guide the training towards

the expected outcome. For example, supervised learning of deep neural networks often rely

on a loss function to minimize (such as the cross-entropy loss), comparing the prediction of

the model to the ground truth. In absence of labels, unsupervised learning must use a different

learning rule. Some of the existing unsupervised learning methods were presented in Section

2.6.1. Unsupervised and supervised learning can be combined to make use of labels when they

are available, but still learn from unlabelled data in a semi-supervised fashion. Such a method is

to use the convolutional layers of a convolutional neural network trained in a supervised manner

as a feature extractor to feed another model trained in an unsupervised manner.

Futhermore, unsupervised learning paves the way to online learning in the environment. For

example, when human activity recognition is performed by smartphones or wearables, the device

is often worn by only a single person throughout its lifetime. Due to a large variation across

users, being able to adapt the trained model to the person’s behaviour thanks to online learning

could improve the recognition performance. However, it is difficult to obtain labelled data as it

would require manual intervention, either by prompting the user or transmitting the data to an

operator to label it. Unsupervised online learning could try to adapt the model without needing

any label.

However, online learning methods suffer from a major issue: catastrophic forgetting. Catas-

trophic forgetting refers to the inability of a model to retain previous information when the model

is trained on new data without the old data being available. That said, catastrophic forgetting may

not be as catastrophic in our case, since it is not necessarily relevant to retain the information

from the original training which was used to generalize on many subjects.

To overcome the limitations of supervised approaches, we propose to explore unsupervised

and online learning methods and compare them to supervised learning methods, with the goal

of optimizing the predictions of human activity recognition. In this work, unsupervised learning

relies on Self-Organizing Maps (SOM) [135], while unsupervised online learning uses the Dynamic

Self-Organizing Maps (DSOM) [165]. As a self-organizing map cannot provide labels it has never

seen by itself, the supervised labelling method using few labels presented in [136] is applied

to be able to handle a classification task. A hybrid approach combining the supervised and

unsupervised methods is also presented: in order to improve the classification accuracy, features

learnt by a convolutional neural network in a supervised manner are used to train a self-organizing

map in an unsupervised manner.

The rest of this chapter is organized as follows. Section 5.2 describes the supervised,

unsupervised, and online learning methods as well as the hybrid approach. Section 5.3 details

our implementation of Self-Organizing map using the PyTorch framework for efficient training

on GPUs. Section 5.4 presents experiments and results for the different learning approaches on

several datasets: UCI-HAR, Heidelberg Digits, CORe50, and our own, UCA-EHAR. Finally section

5.5 concludes this chapter.
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5.2 Supervised, Unsupervised, Semi-Supervised and Online Learning

5.2.1 Supervised Learning with Convolutional Neural Networks

A deep neural network consists of an input and an output layer, connected through one or several

hidden layers. Artificial neural networks making use only of successive fully-connected layers are

called multi-layer perceptrons, whereas networks making use of convolutional layers are called

convolutional neural networks. A convolutional layer performs a convolution between the output

of the previous layer and a kernel (or filter). Convolutional layers are typically used for automatic

features extraction. Pooling layers usually follow convolutional layers to reduce feature maps

dimensions. The pooling process consists in computing the average or the maximum of a set of

values from the output of the previous layer. In a fully-connected layer, each neuron is connected

to all neurons from the previous layer, thus performing a matrix-vector product between the

synapses weights and the output of the previous layer. The final layer is the output layer which

is usually a fully-connected layer for a classification problem, with its output being the activity of

each class.

During the learning phase, the backpropagation process adjusts the trainable parameters

(weights and biases) of each layer. The goal of the backpropagation is to reduce the loss

computed between the ground truth (i.e., the labels) and the predictions, such as the cross-

entropy loss.

5.2.2 Unsupervised Learning with Self-Organizing Maps

Unsupervised learning is a useful method to detect potential hidden patterns within a dataset.

It also enables exploratory data analysis and clustering to understand relationships between

patterns.

There are different methods taking advantage of unsupervised learning with artificial neural

networks such as autoencoders, generative models and self-organizing maps. These methods

can be used for various applications with times series classification or data prediction [5].

However, these methods are usually not able to achieve a level of performance equivalent to

supervised methods. Nevertheless, having labels is increasingly difficult to comply with in

realistic applications, our objective is to to assess in which extent non-supervised approaches

can be used in the context of these applications.

Self-organizing maps allow a reduction of a multidimensional space into a lower-dimensional

space. In general, the target space is a 2-dimensional grid, but variants exist with more dimen-

sions or other types of lattices. As shown in Figure 5.1, the grid consists of several neurons

connected to each other through a synpase by a relative neighbourhood relationship. Neurons

have a weights vector of the same dimension as the observation space. Neurons weights evolve

progressively with time according to the learning algorithm. When learning is stabilized, the

organization of neurons reflects the vector organization of the input space as well as the proba-

bility density of the input data. Indeed, two similar data in the observation space correspond to

nearby regions on the map.

Using self-organizing maps, it is possible to use unlabelled samples for training, as opposed

to supervised learning. The learning rule does not attempt to optimize the set of parameters in

order for the predictions to match the ground truth. Instead, the learning rule tries to match the

neurons weights to the input distribution, with no knowledge of a possible expected output. The

self-organizing map can be thus seen as a vector quantization algorithm, as it will encode any

input vector to the position of a neuron on the grid. The codebook is the set of neurons position

on the grid associated with their weights vector.

Initially, all neuron weights are randomly initialized. An input vector is presented to the map.
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The Euclidean distance between each neuron and the input vector is computed as:

𝑑2(𝑣, 𝑤𝑖) = √

𝑛

∑
𝑗=0
(𝑤𝑖𝑗 − 𝑣𝑗)

2 (5.1)

with 𝑣 the input vector, 𝑤𝑖 the weights of the neuron 𝑖, and 𝑛 the dimension of the input vector.

The neuron the closest to the input vector (i.e., the smallest distance) is called the best

matching unit (BMU). It corresponds to the most representative neuron of the input data. The

neighbourhood of the best matching unit is defined by the Manhattan distance on the map

between each neuron and the best matching unit.

For a 2D map 𝑀 of neurons, the Manhattan distance between two points 𝑝𝑖 and 𝑝𝑗, with

respective coordinates (𝑋𝑝𝑖, 𝑌𝑝𝑖) and (𝑋𝑝𝑗, 𝑌𝑝𝑗) is defined by:

𝑑1(𝑝𝑖, 𝑝𝑗) = |𝑋𝑝𝑗 − 𝑋𝑝𝑖| + |𝑌𝑝𝑗 − 𝑌𝑝𝑖| (5.2)

All the neurons present in this neighbourhood have their weights changed in order to get

closer to the input vector. The weights 𝑤𝑖 of each neuron 𝑖 are moved toward the input vector 𝑣
according to the following learning rule [165] :

Δ𝑤𝑖 = 𝜖(𝑡)ℎ(𝑡, 𝑖, 𝑠)(𝑣 − 𝑤𝑖) (5.3)

where 𝑠 is the best matching unit and ℎ is a neighbourhood function of the form:

ℎ(𝑡, 𝑖, 𝑠) = 𝑒
−
𝑑1(𝑝𝑖, 𝑝𝑠)

2

2𝜃(𝑡)2 (5.4)

with 𝜖(𝑡) being the learning rate and 𝜃(𝑡) the size of the neighbourhood defined as:

𝜃(𝑡) = 𝜃𝑖 ∗ (
𝜃𝑓
𝜃𝑖
)
𝑡/𝑡𝑓

(5.5)

𝜖(𝑡) = 𝜖𝑖 ∗ (
𝜖𝑓
𝜖𝑖
)
𝑡/𝑡𝑓

(5.6)

with 𝜃𝑖 and 𝜃𝑓 being the size of the initial and final neighbourhood, 𝜖𝑖 and 𝜖𝑓 being the initial and

final learning rate. The learning function iterates between time 𝑡 = 0 and time 𝑡 = 𝑡𝑓.

A single learning step is illustrated in Figure 5.1. The best-matching unit (blue circle) is elected

as the closest neuron to the input data (green triangle). The largest weights update (longest red

arrow) is applied to the best-matching unit, since 𝑑1(𝑝𝑠, 𝑝𝑠) = 0 and therefore ℎ(𝑡, 𝑠, 𝑠) = 1. As

the Manhattan distance between a neuron and the best-matching unit increases from 0 to 3 in

this example, the magnitude of the weights update continues to decrease (shorted red arrows).
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Weights update

Input data

Neuron weights
BMU

BMU Best-Matching Unit1 0

1

1

22

2 33

0..3 Manhattan distance to BMU

Figure 5.1: A single step of the self-organizing map training.

In order to stabilize the self-organizing map, the learning rate and the neighbourhood width

are decreased during the training process.

The convergence of the training can be measured with the mean squared error (MSE) between

data sampled from the input distribution and the best-matching unit weights among other metrics.

This metric should decrease as the training progresses if the input distribution does not change.

The state of a 2-dimensional self-organizing map of 8×8 neurons (in black) at various learning

stages of 3 clusters of data (in orange) is illustrated in Figure 5.2. The self-organizing map

neurons are initialized following a uniform distribution, hence the regular grid at 𝑡 = 0. At 𝑡 = 1
(Figure 5.2a), some neurons on the edges already started to move towards the input data. At

𝑡 = 15 (Figure 5.2b), more and more neurons are attracted towards the input data by the effect

of the neighbourhood. At 𝑡 = 55 (Figure 5.2c), most neurons have converged towards the input

distribution.

(a) 𝑡 = 1 (b) 𝑡 = 15 (c) 𝑡 = 55

Figure 5.2: 8 × 8 self-organizing map learning 3 clusters [200].

The previous examples presented the learning of 2-dimensional data by a self-organizing map

for illustration purposes. However, self-organizing maps are not limited to learning 2-dimensional

data. They can learn from any kind of finite multi-dimensional vectors, for example time series

or feature vectors.
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5.2.3 Supervised Neuron Labelling With Few Labels

Self-organizing maps are trained in an unsupervised fashion, so without labels. In a classification

problem, self-organizing maps have no knowledge of the classes to recognize. Therefore, a

neuron labelling algorithm, initially proposed in [136], is used to extract meaningful classes for

each neuron.

In order to associate a class to a neuron, inputs are injected in the self-organizing map, then

for each neuron, its activity is accumulated separately for each class over all inputs. This creates

a two-dimensional table of neurons and classes, with the value in each cell being the activity for

a given class on a given neuron. After having injected enough inputs, each neuron is affected to

the class having the highest activity for this neuron. The activity can be measured using various

metrics, such as the dot product of the input and the neuron weights, the Euclidean distance

between the input and the neuron weights, or a Gaussian method. The Gaussian method seems

to give the best results. It applies an exponential function to the opposite of the Euclidean

distance 𝑑2 divided by a 𝜎 hyperparameter as shown in Equation 5.7:

𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑣, 𝑤𝑖) = 𝑒
−𝑑2(𝑣, 𝑤𝑖)

𝜎 (5.7)

with 𝑣 the input vector and 𝑤𝑖 the weights vector of the neuron 𝑖.
A method is also proposed in [136] to select the 𝜎 hyperparameter. While it can give a starting

point, it does not seem to provide a very good approximation of the optimal value in some cases.

𝜎 can instead be adjusted manually or found by hyperparameter research.

It is worth noticing that the labelling method is necessarily supervised as labels are required

to accumulate the activity for each class. However, the labelling method can be performed

using only a subset of the training set, in which case the training set does not need to be fully

labelled. Of course, all classes must be present in the labelled samples. The amount of required

labelled data depends on the complexity of the data. With the MNIST dataset, which is one of

the easiest multi-class classification dataset to tackle, it has been shown in [136] that using 1%

of the training set is enough.

5.2.4 Self-Organizing Maps Learning From Feature Maps

As convolutional layers are quite effective at improving the classification accuracy, we evaluated

the use of additional convolutional layers as the input of self-organizing map. The resulting

hybrid network is built by replacing the fully-connected layers of the convolutional neural network

with a self-organizing map. As the self-organizing map hyperparameters depend on the range of

the input, a min-max feature scaling layer is inserted between the last convolutional layer and

the self-organizing map. Moreover, as the range of the input is normalized between 0 and 1, the

self-organizing map can be initialized with a uniform distribution between 0 and 1. An example

of such a hybrid network is shown in Figure 5.3.

CNN

Input

Conv1D BatchNorm Dropout MaxPool Conv1D BatchNorm Dropout

Min-max Normalization

SOM

Figure 5.3: Self-organizing map learning from convolutional neural network feature maps

(CNN+SOM).
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This example is built around 2 convolutional layers. However, many other convolutional

neural network variants are possible. In particular, residual neural networks can also be used as

illustrated in Figure 5.4 with a simple ResNetv1 with one block. Residual neural networks may

be useful to extract features of higher quality with better separability.

Input

Normalization
(min-max)

SOM

ResNetv1

Conv BatchNorm ReLU
Conv

MaxPool

BatchNorm ReLU MaxPool Conv BatchNorm
+ ReLU GlobalMaxPool

Figure 5.4: Self-organizing map learning from residual neural network feature maps

(ResNet+SOM).

The training process of this hybrid network is as follows:

1. train the convolutional neural network in a supervised manner,

2. freeze the trainable parameters of the convolutional neural network,

3. replace the final fully-connected layer(s) by a self-organizing map,

4. train the hybrid network in an unsupervised manner,

5. label the self-organizing map neurons as described in Section 5.2.3.

Another advantage of feature extraction is that the dimension of the data at the input of the

self-organizing map can be greatly reduced. For example, a ResNet-18 applied on ImageNet with

an input resolution of 224 × 224 reduces the dimensions from 150 528 (224 × 224 × 3) to 512
after the final global pooling layer. Global pooling reduces the spatial dimensions to 1, therefore

the dimension of the output matches the number of filters of the previous convolutional layer.

This greatly reduces the memory required for the self-organizing map, since each neuron has to

store a vector of dimension 512 instead of 150 528. As an alternative to reducing the number of

neurons, the output dimension of the feature extractor can be adjusted in order to reduce the

memory footprint of the self-organizing map.

5.2.5 Adapting Unsupervised Learning to Online Learning

Self-organizing maps described in Section 5.2.2 are not able to perform online learning since the

learning hyperparameters decrease over time. However, self-organizing map can still learn in

an unsupervised manner. Therefore they can be fine-tuned without requiring labels. In order to

combine unsupervised and online learning, the original self-organizing map algorithm has to be

slightly modified to remove time dependency from the learning rule.

This modification was proposed in [165] as the Dynamic Self-Organizing Map (DSOM). In this

variant, the learning rate is a constant, and the neighbourhood width is replaced with an elasticity

parameter which is also a constant. In other words, there is no final learning boundary. For a

better convergence and stability of the algorithm, the neihbourhood function and the weights

update function are slightly modified.
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The learning function is thus modified as:

Δ𝑤𝑖 = 𝜖𝑑2(𝑣, 𝑤𝑖)ℎ(𝑖, 𝑠, 𝑣)(𝑣 − 𝑤𝑖) (5.8)

where 𝜖 is the constant learning rate. In this Equation 5.8, a new term appears compared to

Equation 5.3. This multiplication by the distance between the neuron and the input vector

enables the neurons to get close to the input data faster when they are far away from the input

distribution.

The neighbourhood function is also modified as follows:

ℎ(𝑖, 𝑠, 𝑣) = 𝑒
−
1
𝜂2
𝑑1(𝑝𝑖, 𝑝𝑗)

2

𝑑2(𝑣, 𝑤𝑠)2 (5.9)

where 𝜂 is the elasticity constant. If 𝑣 = 𝑤𝑠, then ℎ(𝑖, 𝑠, 𝑣) = 0.

In this Equation 5.9, modulating the neighbourhood by the distance between the best-

matching unit and the input vector means that other neurons learn less if the best-matching unit

is already close to the input data.

Using these learning and neighbourhood functions, the network can learn at any time from new

unlabelled input samples. The DSOM therefore enables online learning on top of unsupervised

learning.

A downside of the dynamic self-organizing map is that it is more sensitive to hyperparameters.

It has indeed a much higher chance to diverge than a self-organizing map with hyperparameters

decreasing over time. The dynamic range and the dimensions of the input as well as the size of the

map affect the choice of hyperparameter. Thus, it can be difficult to find an appropriate range of

hyperparameters to even avoid the training from diverging. Therefore, hyperparameter research,

for example with grid search, can help to narrow down a working range for the hyperparameters

for a given problem. That said, a rough range still has to be provided for the hyperparameter

research.

5.3 Custom PyTorch Layers for Self-Organizing Maps

Our first experiments were performed with TensorFlow using an extended version of the imple-

mentation of the self-organizing map from [201]. The algorithm has been encapsulated into

Keras layers for ease of use. We then decided to switch to the PyTorch training environment for

its better flexibility and popularity in the research community.

Therefore, the dynamic self-organizing map has been implemented in PyTorch to leverage

GPU acceleration, similarly to the work done in [201]. Making it a layer (a nn.Module in PyTorch’s

terms) enables both a standalone usage and the ability to combine it with other layers in a deep

neural network. In order to use the high parallelism of the GPU as much as possible, the

computation relies on the vectorized mathematical functions of PyTorch as much as possible.

However, the self-organizing map learning rule does not allow the processing of input vectors in

parallel. Since the modification of the weights can affect the choice of the best matching unit for

the next vector, input vectors must be processed sequentially and the weights must be updated

after receiving each vector.

In order to speed up the training process, batches of multiple input vectors have been used.

Batches can indeed be loaded more efficiently on the GPU’s memory. Processing performed

before the self-organizing map algorithm also benefits from this parallelism. In the self-organizing

map, however, the batch dimension is processed sequentially. Despite our efforts to parallelize

the processing of vectors inside a batch by using a map-reduce pattern, the deterioration of the

results was too important.

Futhermore, it is important to keep in mind that self-organizing maps do not rely on back-

propagation to update the weights, but rather on a local learning rule. Therefore, automatic
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differentiation for gradient computation is disabled for the entire processing of the self-organizing

map.

The labelling phase used to solve a classification problem is implemented as a separate

layer and based on the Gaussian labelling method proposed in [136]. Since labelling may not

be required for some tasks, this layer is optional. Without this layer, the position or the weights

vector of the best matching unit position can be used as the output of the self-organizing map.

5.4 Experiments and Results

As mentioned in the introduction, we are interested in a use case where the device is worn by a

single person throughout its lifetime. In our approach, we still rely on a general training phase

using a dataset representing various subjects. That way, the device is able to operate out of the

box in most situations. However, the general training will be less relevant than a specific training

for that person. In this work, we aim to leverage online learning properties to adjust the weights

of the model to a specific subject wearing the device. This fine-tuning is done after the initial

general training phase.

In this section, four different datasets are investigated, with different goals for each one of

them. Therefore, despite using the methods presented in Section 5.2, the experiments will differ

between the datasets.

The UCI-HAR dataset is used to perform an initial validation of unsupervised learning. The

supervised and unsupervised methods are briefly compared, and a preliminary experiment

with unsupervised online fine-tuning is provided. This dataset is split by subject, thus enabling

fine-tuning experiments for a specific subject.

Our own dataset, UCA-EHAR, is then used to validate whether unsupervised online learning

is feasible or not in the case of human activity recognition using smart glasses. Later on, the

unsupervised online learning system will be deployed onto the smart glasses. This dataset is

representative of the data that will be collected in the environment. Additionally, since we have

control over the collection, filtering and labelling process, more data for some subjects can be

provided. It is worth noting that the lack of data from the UCI-HAR dataset may be a problem

for fine-tuning. Results mainly focus on comparing the supervised and the unsupervised online

fine-tuning approaches with some specific subjects from the dataset.

Both the UCI-HAR and the UCA-EHAR datasets are designed for human activity recognition,

with data collected from body-worn sensors.

The Heidelberg Digits [168] brings a different kind of data since it is made of spoken digits

audio recording, split by subjects. Our objective is to reduce the bias that could come from

applying our methods on our own dataset. Additionally, this could be a starting point in order to

implement keyword spotting in the smart glasses in the future.

Results about catastrophic forgetting using the CORe50 dataset are provided in Appendix G,

since the problem is of a different nature.
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5.4.1 UCI-HAR

The UCI-HAR dataset [112], described in Section 3.4.1.1, is used for our initial validation. As a

reminder, UCI-HAR is a human activity recognition dataset with accelerometer and gyroscope

data captured from smartphones, with 30 subjects performing 6 activities. The pre-computed

features are not used in these experiments.

In this section, we set up a measurement platform to compare the supervised and unsuper-

vised learning methods. The supervised method is evaluated with various multi-layer perceptrons

and convolutional neural networks. Self-organizing maps and dynamic self-organizing maps of

various sizes are used for the unsupervised method comparison. Furthermore, the convolutional

layers of a convolutional neural network trained in a supervised manner are used to feed a

self-organizing map trained in an unsupervised manner as a hybrid network (CNN+SOM).

A summary of these results in terms of accuracy and number of parameters can be seen in

Figure 5.5, while detailed results are available in the following sections. Overall, the convolutional

neural network (CNN) provides the best accuracy. The multi-layer perceptron (MLP) does not

scale as good as the convolutional neural network, showing the importance of convolutional

layers. Both these supervised methods outperfom the self-organizing maps (SOM and DSOM)

trained in an unsupervised manner. The accuracy of the dynamic variant (DSOM) is slightly

lower than the regular self-organizing map (SOM) for the same number of parameters. The

self-organizing map learning from feature maps (CNN+SOM) provides a better accuracy than

the standalone self-organizing map but worse than the convolutional neural network. Moreover,

the standard deviation of the results can be quite large. However, this hybrid network can still be

useful in an online context when combined with a dynamic self-organizing map.
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Figure 5.5: Test accuracy vs. number of parameters for each model.

Then, we present an experiment of fine-tuning a dynamic self-organizing map in an unsuper-

vised manner on some data of a test subject.

While this chapter focuses on comparing the classification performance of the models

rather than embeddability, the models were chosen with memory footprint limitations in mind.

Therefore, the memory footprint of the models’ weights is kept below 1 MiB to fit in the ROM

of higher-end low-power microcontrollers. However, for online learning, the weights have to be
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stored in RAM in order to be modified. As RAM limitations are more restrictive than ROM, we

chose to target an upper limit of 384 KiB. Both these limits match the characteristics of the

Ambiq Apollo3 microcontroller presented in Section 3.4.2.

5.4.1.1 Results with Supervised Learning

The different neural networks architectures used for this experiment are described in Table 5.1.

Supervised models are trained with the Adam optimizer with a learning rate of 1 × 10−3 and a

batch size of 32 for 120 epochs.

Table 5.1: Deep neural network architectures. Each layer can be 1D Conv(olutions) with f the

number of filters and ks the size of the kernel, MaxPool(ing) or FC (Fully-Connected) layer.

Name 1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer 6th Layer 7th Layer 8th Layer

Multi-layer perceptrons

M1 FC(10) ReLU FC(10) ReLU FC(6)

M2 FC(10) ReLU FC(10) ReLU FC(10) ReLU FC(6)

M3 FC(20) ReLU FC(20) ReLU FC(6)

M4 FC(100) ReLU FC(100) ReLU FC(120) ReLU FC(6)

Convolutional neural networks

C1 Conv(f=2, ks=2) ReLU MaxPool(2) Conv(f=2, ks=2) ReLU FC(6)

C2 Conv(f=5, ks=2) ReLU MaxPool(2) Conv(f=5, ks=2) ReLU FC(6)

C3 Conv(f=5, ks=3) ReLU MaxPool(2) Conv(f=3, ks=2) ReLU FC(6)

C4 Conv(f=5, ks=2) ReLU MaxPool(2) Conv(f=5, ks=2) ReLU FC(120) ReLU FC(6)

C5 Conv(f=10, ks=3) ReLU MaxPool(2) Conv(f=10, ks=3) ReLU FC(120) ReLU FC(6)

C6 Conv(f=20, ks=3) ReLU MaxPool(2) Conv(f=20, ks=3) ReLU FC(120) ReLU FC(6)

C7 Conv(f=48, ks=5) ReLU MaxPool(4) Conv(f=32, ks=3) ReLU FC(120) ReLU FC(6)

C8 Conv(f=64, ks=7) ReLU MaxPool(4) Conv(f=48, ks=5) ReLU FC(120) ReLU FC(6)

The results in Table 5.2 show that multi-layer perceptrons quickly reach an accuracy ceiling

and become much less efficient than convolutional neural networks in terms of number of

parameters for a given accuracy. The multi-layer perceptron M4 reaches an accuracy similar to

the convolutional neural network C4, but with 3.6× as many parameters. The feature extractor

formed by convolutional layers helps the classification stage to separate classes. Different

convolutional neural network architectures, inspired from [148], have been explored according

to various parameters (number of layers, filters per layers and filters size). Accuracy reaches

up to 92.88% with the largest convolutional neural network C8 presented here. However, with

170 110 parameters the memory footprint of the weights starts to be significant: around 664 kiB

of memory are needed with single-precision floating-point numbers.

103/183



5.4. Experiments and Results

Table 5.2: Results using supervised learning.

Name Parameters Accuracy (%)

Multi-layer perceptron

M1 11 706 84.87

M2 11 816 85.94

M3 23 606 88.03

M4 138 246 88.94

Convolutional neural network

C1 11 058 77.95

C2 26 784 87.11

C3 16 391 86.49

C4 38 196 88.40

C5 74 636 89.89

C6 149 026 91.46

C7 119 054 92.58

C8 170 110 92.88

5.4.1.2 Results with Unsupervised Learning of Self-Organizing Maps

The same measurements have been realized with our self-organizing maps implementation.

Training parameters of the self-organizing maps are listed in Table 5.3, and the labelling process

uses the Gaussian method with 𝜎 = 0.25.

Table 5.3: Self-organizing map architectures.

Name Grid size 𝜖𝑖 𝜖𝑓 𝜃𝑖 𝜃𝑓 Epochs

S1 8 × 8 0.4 0.001 5.00 0.01 25

S2 9 × 9 0.4 0.001 5.00 0.01 80

S3 10 × 10 0.4 0.001 5.00 0.01 100

S4 12 × 12 0.28 0.0005 5.00 0.01 80

S5 13 × 13 0.28 0.0005 5.00 0.01 82

S6 16 × 16 0.98 0.0005 5.00 0.01 65
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Table 5.4: Dynamic Self-organizing map architectures.

Name Grid Size Learning Rate Elasticity Epochs

D1 5 × 5 0.0034 0.050 30

D2 6 × 6 0.0034 0.055 30

D3 7 × 7 0.0034 0.057 30

D4 8 × 8 0.0034 0.058 30

It is commonly expected that the prediction accuracy of unsupervised learning methods is

lower than networks trained with supervised learning. Unsupervised learning method are not

guided to reach the best separability between classes as in supervised training of a deep neural

network. Using this dataset, and for a similar number of parameters, a 10% drop in accuracy has

been observed for a self-organizing map (Table 5.5) compared to a convolutional neural network

(Table 5.2).

As can be seen in Table 5.5, the self-organizing map can reach an accuracy up to 86.60%

with a 16 × 16 network. However, this model requires 1152 kiB of memory in single-precision

floating point to store its 294 912 parameters. In consequence, this model would not fit in

microcontrollers since most of them are limited to less than 1 MiB of ROM. Instead, a 13 × 13
self-organizing map reaching 84.82% of accuracy requires 760 kiB of memory (inference code

excluded) which is available on some low-power microcontrollers.

The accuracy of the dynamic self-organizing map is slightly worse than the one of the self-

organizing map. Using the same size of 8 × 8, the accuracy drops from 81.57% (S1) to 80.11%

(D4) when using the dynamic variant.

Table 5.5: Results using self-organizing maps.

Name Parameters Accuracy (%)

Self-organizing map

S1 73 728 81.57

S2 93 312 81.90

S3 115 200 83.20

S4 165 888 83.79

S5 194 688 84.82

S6 294 912 86.60

Dynamic self-organizing map

D1 28 800 75.90

D2 41 472 78.60

D3 56 448 79.59

D4 73 728 80.11

105/183



5.4. Experiments and Results

5.4.1.3 Results with Supervised Labelling after Unsupervised Learning

It is important to note that the labelling process is still supervised. The results presented in

Table 5.5 were obtained with 100% of labels from the training set. However, the labelling method

does not need a fully labelled dataset to achieve almost a top accuracy. As it can be seen in

Figure 5.6, only 10% of the labelled dataset is needed to almost reach the upper accuracy bound

for the self-organizing map S3 with a size of 10 × 10. A k-means clustering of the data with 100

clusters was also performed. The clusters were labelled using the same method. The k-means

method can reach a slightly higher accuracy than the self-organizing map with 10% of labels

or more, but falls below with less than 5% of labels. As a comparison, the convolutional neural

network C7 (similar in terms of number of parameters) has been trained with the same ratio of

data. The results are shown in the same Figure 5.6. As it can be observed, the convolutional

neural network exhibits a lower accuracy than the self-organizing map when less than 2.5% of

the labelled dataset is used.
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Figure 5.6: Accuracy vs. percentage of the training set used for labelling (SOM, k-means) or

learning (CNN).

5.4.1.4 Results with Self-Organizing Maps Learning from Feature Maps

In this experiment, the fully-connected layers of C5 to C8 from Table 5.1 are replaced with the

self-organizing map S1 from Table 5.3. To achieve stable learning and better results, it was

necessary to add batch normalization and dropout of 50% after each convolutional layer. The

accuracy of the original convolutional neural networks is slightly improved (+0.9% on average for

the considered models), but it especially seems to provide better features for the self-organizing

map to learn. This can lead to an accuracy increase of several percents compared to the self-

organizing map as shown in Table 5.6 compared to Table 5.5. In this instance, using larger

self-organizing maps does not improve accuracy.

A side effect of using feature maps as an input to a self-organizing map is that the dimension

of the weights vector can be smaller. Therefore, the number of parameters for the self-organizing

map is lowered as well. For example, the dimensions of the feature maps produced by the feature

extractor of C5 are (61, 10), while the dimensions of the raw data are (128, 8) (both channels

last). Therefore, each neuron of the self-organizing map has to store a vector of 61 × 10 = 610
dimensions, nearly half of the 128 × 9 = 1152 required for raw data. With a specially-crafted

feature extractor, this number could be further reduced. The number of parameters required for
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the feature extractor is small compared to the number of parameters for the self-organizing map.

The feature extractor of C5 only requires 630 parameters, while C8’s requires 19 728 parameters.

Table 5.6: Results using self-organizing maps learning from feature maps.

Name Parameters Accuracy (%)

C5+S1 39 670 78.16

C6+S1 79 940 82.09

C7+S1 66 400 85.47

C8+S1 99 600 86.44

5.4.1.5 Results with Unsupervised Fine-Tuning

In this section we evaluate how a dynamic self-organizing map can learn new patterns after

a first common learning phase. The largest dynamic self-organizing map from Table 5.4 that

fits in the RAM limit of 384 KiB, D4, is chosen for these experiments. D4 is of size 8 × 8 with a

total of 73 728 parameters, and therefore a memory footprint of 288 kiB with single-precision

floating-point numbers.

Following the experiment using feature maps as inputs of a self-organizing map in Section

5.2.4), the same method is also applied here. The dynamic self-organizing map D4 if fed with

feature maps from the convolutional neural network C6 of Table 5.1. Since the dynamic self-

organizing map input dimension and dynamic range change, learning rate and elasticity have

been set to 0.078 and 0.316 manually, respectively. As a reminder, the weights of the feature

extractor from the convolutional neural network are frozen. Therefore, they can be stored in

ROM.

The performance is compared to the convolutional neural network C6. We measured the

accuracy out of two different cases. This process is illustrated in Figure 5.7.

Both cases start with a general training using the 21 subjects of the original training set. The 9

testing subject are excluded. After the training phase, the neurons of the dynamic self-organizing

map are labelled using the method described in section 5.2.3. Then, a test subject is chosen

from the 9 test subjects, and its data are split in two to create subject-specific training and

testing sets. Half of the vectors are randomly chosen while keeping the classes balanced for

the subject-specific training set, and the other half is assigned to the subject-specific testing set.

Case n°1 stops there and the accuracy is evaluated on the subject-specific testing set.

In case n°2, an additional unsupervised learning phase with the unlabelled subject-specific

training set is performed. The accuracy is then evaluated on the subject-specific testing set.

The vertical lines in Figure 5.8 show the full original test set accuracies for the dynamic

self-organizing map D4 and the convolutional neural network C6.

Subject n°4 and subject n°10 have been chosen for their different behaviour. As it can be

seen in Figure 5.8 for case n°1, subject n°4 has overall a good accuracy and exhibits a behavior

similar to the subjects from the original training set. On the other hand, subject n°10 has one of

the worst accuracy and is thereby not well represented within the learning dataset. Subject n°4

has 154 training vectors and 148 testing vectors, while subject n°10 has 147 training vectors

and 141 testing vectors.
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Figure 5.7: Method for unsupervised fine-tuning on UCI-HAR.

Leveraging unsupervised fine-tuning, the dynamic self-organizing map reaches during case

n°2 an accuracy close to the original CNN for subject 4 (DSOM: 90.13%, CNN: 90.27%). Using

the feature maps as an input to the dynamic self-organizing map further improves the accuracy

(CNN+DSOM: 96.87%). However, fine-tuning is not as efficient for subject 10. The reason may be

that its behaviour is too far from the general training. Moreover, the reduced amount of available

data may not allow the model from adapting well to the different behaviour. The unsupervised

nature of the method also prevents adjusting the labels of the neuron if they do not match with

the original training.

(D4)

(D4)

(C6+D4)
(C6)

(C6)Case

Case

Case

Case

Figure 5.8: Accuracy of test subjects n°4 and n°10 of UCI-HAR with unsupervised fine-tuning.
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5.4.2 UCA-EHAR

In this section, our own UCA-EHAR dataset presented in Section 4.3 is used. As a reminder, it is

a human activity recognition dataset with data captured from smart glasses from 20 subjects

performing 8 activities.

For the following experiments, some subjects have performed additional recording sessions

to obtain more data. These subjects, T2, T3, T5 and T20, are used as the testing set while the

other subjects are used as the original training set. T2, T3, T5 and T20 were selected because

they had performed all of the activities. It was also difficult to obtain new data from the other

subjects, after the initial round of recording sessions was over.

Futhermore, in these experiments, the STANDING class was removed. Using only data from

an inertial measurement unit in the smart glasses, the confusion betweend the STANDING and

the SITTING class is difficult to solve and it would make the results look more confusing. In

consequence, 7 activities remain: SITTING, WALKING, LYING, WALKING_DOWNSTAIRS, WALK-

ING_UPSTAIRS, RUNNING, and DRINKING. The resulting distribution of samples for this extended

dataset can be seen in Table 5.7.

Figure 5.9 provides an overview of the experiments performed in this section. First, at step

n°1, a general supervised training of a ResNet is performed on the original training set. Then, at

step n°2, the method presented in Section 5.2.4 to train a dynamic self-organizing map from

feature maps is used. The feature maps are generated by a ResNet, still with the original training

set. The dynamic self-organizing map is labelled in a supervised manner as presented in 5.2.3.

Step n°3 is dedicated to the fine-tuning on a specific subject from the test set. The dynamic

self-organizing map is trained again in an unsupervised manner, but this time using 50% of the

one subject’s data. At step n°4, the neurons are relabelled using the original training set, in case

the fine-tuning caused the class of a neuron to change. Testing is performed on the remaining

50% of the subject’s data at the various steps. Labels from the subject’s data are not used for

training or labelling since it is assumed that they are not available.

Supervised Learning
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Original training set

Supervised Labelling
DSOM

Original training set

Supervised Labelling
DSOM

Original training set

Evaluation
Subject-specific testing set
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Subject-specific training set
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Supervised Learning
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(Using labels, back-propagation)

(No labels, DSOM learning rule) 

Supervised Labelling
(Using labels, labelling DSOM neurons)

Model

Dynamic Self-Organizing Map

ResNetv1

2. ResNet+DSOM

3. ResNet+DSOM
    Unsupervised Fine-Tuning

4. ResNet+DSOM
    Unsupervised Fine-Tuning
    Relabelled with original train set

1. ResNet

ResNet feature maps

Figure 5.9: Method for unsupervised fine-tuning on UCA-EHAR.
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Table 5.7: Distribution of time samples across subjects and activities for training and testing sets, extended dataset for the fine-tuning scenario.

Activities

Subject 0. SITTING 1. WALKING 2. LYING 3. WALKING_DOWNSTAIRS 4. WALKING_UPSTAIRS 5. RUNNING 6. DRINKING TOTAL

Training set

T1 12 021 9955 5712 1588 1701 4310 4543 39 830

T4 8822 10 871 5578 3132 3496 4002 3754 39 655

T6 16 560 10 144 3199 2420 2305 5464 5093 45 185

T7 16 436 9120 1984 2701 3333 4465 1383 39 422

T8 4024 9378 4289 2145 2156 4064 0 26 056

T9 6074 9578 3276 2596 3399 4015 0 28 938

T10 4954 12 354 4226 1893 1943 4793 0 30 163

T12 8509 10 559 1681 2368 2469 4641 1314 31 541

T13 9957 13 449 12 224 2789 3373 6064 0 47 856

T14 3611 7160 3025 1128 1384 4122 0 20 430

T15 6295 3581 2388 1746 1490 1626 463 17 589

T16 3489 8542 2250 1880 1940 3162 0 21 263

T17 7749 7404 3227 1940 2611 3005 1683 27 619

T18 7784 7110 2412 1299 1590 3210 1288 24 693

T19 4780 3435 2401 1204 1564 1884 1011 16 279

T21 6524 2870 1937 1139 1148 1563 881 16 062

Total 127 589 135 510 59 809 31 968 35 902 60 390 21 413 472 581

Testing set

T2 29 719 19 519 11 833 4588 4394 9653 5801 85 507

T3 30 989 27 715 12 457 6295 6490 9106 7513 100 565

T5 22 320 24 458 12 267 4736 5260 11173 4155 84 369

T20 28157 30651 14696 3549 4404 11631 5592 98 680

Total 111 185 102 343 51 253 19 168 20 548 41 563 23 061 369 121

Set Distribution between sets

Training 53% 56% 53% 62% 63% 59% 48% 75%

Testing 46% 43% 46% 37% 36% 40% 51% 43%
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The deep neural network used for the supervised learning is the ResNetv1-6 already presented

in Section 3.4, with 32 filters per convolutional layer. Additionally, a batch normalization layer is

introducted after each convolutional layer. The number of epochs for training is set to 350 and

the batch size is 768. The Adam optimizer is used with a learning rate of 5 × 10−3 and a weight

decay of 5 × 10−4. The learning rate is divided by 10 at epochs 100, 200, 250, 300, 325, and 335

The hyperparameters of the dynamic self-organizing map used for the unsupervised learning

were selected using grid search. The size of the map, the learning rate 𝜖, the elasticity 𝜂, the

𝜎 parameter for the labelling phase, and the number of epochs were all part of the parameter

research. The hyperparameter research ended up with the best results using the following

parameters: map size of 22 × 22, 𝜖 = 0.52, 𝜂 = 0.71, 𝜎 = 4.88, and 15 epochs. However, as it will

be explained in Section 5.4.2.1, 22 × 22 is much larger than necessary, with most neurons being

unused. Thus, a 8 × 8 self-organizing map is selected instead, with 𝜖 = 0.52, 𝜂 = 1.43, 𝜎 = 4.99,

and 15 epochs. The higher elasticity 𝜂 also helps to have more neurons from the map being

used.

A short analysis for each subject is provided in Appendix D to illustrate the possible outcomes

of the method. Statistical results for each subject are provided below in Section 5.4.2.3.

5.4.2.1 Results with Supervised Labelling after Unsupervised Learning

Figure 5.10 shows the ratio of labels required from the training set to achieve the maximum level

of performance for the ResNet+DSOM approach, with the 22 × 22 self-organizing map. As can

be seen, very few labels are required in this case. In fact, using more than 5% of labels does not

change the result. With 484 neurons in the self-organizing map, it seems unlikely to obtain a

correct labelling using only 41 labels (0.14% of the training set). However the accuracy reaches

almost 80%.
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Figure 5.10: Accuracy vs. percentage of the original training set (step n°2) used for labelling of

the 22 × 22 DSOM trained from ResNet feature maps.

This can be explained by looking at a t-SNE (t-distributed Stochastic Neighbor Embed-

ding) [202] visualization of the neurons weights in Figure 5.11. t-SNE is a dimensionality reduction

method often used for visualization purposes. The neurons of the self-organizing map have 32

dimensions since the ResNet outputs 32 feature maps of size 1 each. t-SNE reduces the 32

dimensions to 2 dimensions, enabling them to be plotted on a graph. Each point correponds

to a neuron, and the number next to it is the class it was assigned during the labelling phase

(matching with the order in Table 5.7). The colors correspond to an HDBSCAN clustering method,

but it is not relevant here. The distribution of the points looks as if no training was performed

on the self-organizing map, and the neurons are simply in their initial state after the uniform

initialization. The class n°2 (LYING) has been assigned to most neurons after labelling. However,

a few neurons towards the right (circled in magenta) stand out, and were assigned a different

class. In fact, the training phase only had an effect on this small group of neurons.
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Figure 5.11: t-SNE visualization of the 22 × 22 DSOM neurons prototype vector on UCA-EHAR

with labels after step n°2.

Looking at the 2-dimensional neurons grid in Figure 5.12, the neurons that were assigned to

a class other than class n°2 are all grouped in the center. We can deduce that the elasticity of

this self-organizing map is too small for the neighbourhood to have a significant effect on the

training. The neurons far away from the best-matching unit do not learn anything. As a reminder,

these parameters were found through parameter research, therefore the self-organizing map

performs well even though the size of the map is innapropriate.
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Figure 5.12: Labelled 22 × 22 DSOM 2-dimensional neurons grid on UCA-EHAR after step n°2.

Furthermore, a self-organizing map of size 4 × 4 can also perform well. In this case, even

with only 20 labels (0.07%), the self-organizing map could be labelled properly and using more

labels does not improve the performance as seen in Figure 5.13. A possible explanation is

that the feature extractor already provides a very good separability of the classes. Thus, the
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self-organizing map only requires very few neurons to represent these classes, as well as very

few labels to label them properly.
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Figure 5.13: Accuracy vs. percentage of the training set used for labelling of the 4 × 4 DSOM

trained from ResNet feature maps after step n°2.

It is important to remember that the feature extractor itself was trained with all the labels,

therefore this method is overall supervised. However, these results could mean that the dynamic

self-organizing map does not have a lot of leeway for fine-tuning, since the bulk of the data

separation has already been performed by the feature extractor. As a middle ground and in an

attempt to provide more capabilities for the dynamic self-organizing map to readjust itself, a size

of 8×8was chosen and the elasticity was increased. The T-SNE visualization for this map shows

in Figure 5.14 that this time, all neurons learnt the input data and were labelled accordingly. In

this configuration, only 41 labels (0.14%) were required to label the neurons. Nevertheless, all

labels were used for the initial labelling (step n°2) and the relabelling processes (step n°4) in the

following experiments.
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Figure 5.14: t-SNE visualization of the 8 × 8 DSOM neurons prototype vector on UCA-EHAR with

labels after step n°2.

5.4.2.2 Results with Supervised Learning and Self-Organizing Map Learning from Feature

Maps

First, we evaluate the supervised training of the ResNet with the new training set. Figure 5.15a

shows a confusion matrix similar to Figure 4.6 but without the STANDING class and using

subjects T2, T3, T5, and T20 for testing, while the other subjects are used for training. The

confusion matrices show the results for a single training only for illustration purposes.

The accuracy figures averaged over 15 runs are presented in Table 5.8. In these results, both

the micro accuracy and the macro accuracy are provided since the heavily unbalanced classes
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can affect both of these metrics in different way. The micro accuracy computes the accuracy

across all samples and classes, thus corresponding to the number of correct predictions divided

by the total number of predictions across the entire test dataset. The macro accuracy first

computes the accuracy for each class separately, then averages the per-class accuracies. The

difference is that a high error rate in a class with many samples has the same impact on the

macro accuracy as if it was in a class with few samples. However, the impact on the micro

accuracy is much more noticeable for a high error rate in a class with many samples than in a

class with few samples.

Most of the confusion is between the DRINKING and the SITTING activities. 18% of DRINKING

activities are predicted as SITTING and 4% of SITTING activities are predicted as DRINKING.

Other classes have much less mispredictions. Some confusion can be noted with the WALKING

class as 6% of the WALKING_UPSTAIRS and 5% of the WALKING_DOWNSTAIRS activities are

predicted as WALKING. There is also 4% of the LYING activities predicted as SITTING.

When using a DSOM as a classifier after the previous ResNet used as a feature extractor,

the confusion is mostly reversed between SITTING and DRINKING as seen in Figure 5.15b. The

other mispredictions are slightly worse than with the ResNet.
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Figure 5.15: Confusion matrices on UCA-EHAR without STANDING and using T2, T3, T5, T20 as

testing set.

Table 5.8: Micro and macro accuracy for subjects T2, T3, T5, and T20 of the extended UCA-EHAR

dataset with a ResNet and a ResNet+DSOM model.

Name Micro Accuracy Mean (%) Micro Accuracy Standard Deviation Macro Accuracy Mean (%) Macro Accuracy Standard Deviation

ResNet 94.16 1.28 92.44 0.70

ResNet+DSOM 89.90 1.88 90.80 1.25

5.4.2.3 Summary of Fine-Tuning on Subjects T2, T3, T5, and T20

Results provided in Appendix D presented a set of confusion matrices from one training, and

demonstrated the possible outcomes of the various steps of the method presented in Figure 5.9.

However, the variability of the trainings with different random initialization creates models that

do not all perform the same. Statistical results are difficult to provide with confusion matrices.

In this section, a compound metric averaged over 15 different trainings is used instead.
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Figure 5.16 presents the micro accuracy obtained for the four subjects at the various steps

of the method. Due to the high number of occurences of the SITTING and WALKING activities in

the dataset (as previously presented in Table 5.7), the other classes are underrepresented in

the micro accuracy. The ResNet+DSOM approach gives an accuracy generally worse than the

ResNet itself, and fine-tuning alone does not make up for the loss. It can even deteriorate the

result. Relabelling with the original dataset brings the accuracy back up, meaning that some

neurons indeed changed classes with the fine-tuning. However the accuracy after fine-tuning

and relabelling never exceeds the original ResNet.

Nonetheless, the macro accuracy results shown in Figure 5.17 are more encouraging. How-

ever, the standard deviation of the results is high. Therefore, depending on the training, the

outcome may not be as good as expected. Additionally, the relabelling requires the original

dataset to be available even after the original training and after fine-tuning on the subject. Since

the original labelling does not require all the labels, the relabelling step may not require all labels

either, but no experiment was done to confirm this so far.

Finally, the effect of catastrophic forgetting mentioned in Section 2.6.2 has not been evaluated.

Forgetting the original information after fine-tuning on the subject is not a major issue, since the

model is only evaluated on this subject afterwards. On the other hand, if the classes in the new

data are not shuffled but rather presented sequentially, then catastrophic forgetting would come

into play. As a result, the accuracy of a class not seen for a while may be impacted.
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Figure 5.16: Micro accuracy for the ResNet, ResNet+DSOM, Fine-Tuned ResNet+DSOM, and

Fine-Tuned and Relabelled ResNet+DSOM for subjects T2, T3, T5, and T20 of UCA-EHAR.
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Figure 5.17: Macro accuracy for the ResNet, ResNet+DSOM, Fine-Tuned ResNet+DSOM, and

Fine-Tuned and Relabelled ResNet+DSOM for subjects T2, T3, T5, and T20 of UCA-EHAR.

5.4.3 Heidelberg Digits

The Heidelberg Digits dataset is originally part of the Spiking Heidelberg Datasets [168], designed

for evaluation of spiking neural networks. However, the data before conversion to spikes are

also provided. The Heidelberg Digits dataset provides 48 kHz 16-bit mono PCM audio recordings

for English and German digits from 0 to 10. 12 subjects participated in the construction of the

dataset, and the subject number is present for each recording. It is therefore possible to study

each subject separately. Each subject recorded between 35 and 64 recordings for each digit

in each language. In our experiments, English and German languages are grouped under the

same class, so there are 10 classes in total, one for each digit. This is done in order to reduce

the number of classes for easier analysis.

The experiments presented in this section are similar to the ones presented in the previous

Section 5.4.2, albeit using a different dataset. A ResNetv1-8 with one more residual block than

the ResNetv1-6 presented in Section 3.4 is used. Other changes have been made to accomodate

the processing of raw audio data as illustrated in Figure 5.18. In particular, the first convolutional

layer of the model needs to have a large kernel size [203]. Input data is normalized with min-max

normalization and zero-padded to the largest recording (65 872 samples). The network is trained

for 175 epochs with a batch size of 192 using the Adam optimizer with an initial learning rate of

0.005 and weight decay set to 5 × 104. The learning rate is divided by 10 at epochs 50, 100, 125,

150, 165 and 170.

The dynamic self-organizing map hyperparameters are found through hyperparameter re-

search with grid search. The parameters used here are: grid side of 5×16, learning rate 𝜖 = 0.622,

elasticity 𝜂 = 1.29, 𝜎 = 0.127 for labelling, and 27 epochs.
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Figure 5.18: ResNetv1-8 for Heidelberg Digits.
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In order to select a relevant train and test split to see the effect of fine-tuning, each subject is

extracted from the dataset as a test subject, and the model is trained on the other subjects. The

resulting confusion matrix is then analyzed to select subjects with the highest confusion. The

confusion matrices for all of the 12 subjects are provided in Appendix E.

5.4.3.1 Results with Supervised and Self-Organizing Map Learning from Feature Maps

The first set of test subjects is made of subjects number 0, 2, and 11. The other subjects are

used as the training set. These subjects have the highest confusion among all subjects. A

confusion matrix for training of the ResNet for this set of three subjects is provided in Figure

5.19a. The accuracy for this training is of 85.39%. Then, features extracted from the Resnet

are used as inputs of a DSOM. Once the training phase is over, the DSOM neurons are labelled

with all the available labels. As can be seen in Figure 5.19b, the confusion increases for most

classes, with a resulting accuracy of 81.99%.
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Figure 5.19: Confusion matrices of Heidelberg Digits with subjects 0, 2, 11 as test set.

Similarly, confusion matrices are provided in Figure 5.20 when selecting subjects 3, 7, and

8 as a testing set, with the other subjects as the training set Subjects 3, 7, and 8 have more

accurate predictions than the first set with subjects 0, 2, and 11 overall. The accuracy for this

training of a ResNet is 91.54%, and decreases to 89.25% with the ResNet+DSOM model.
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Figure 5.20: Confusion matrices of Heidelberg Digits with subjects 3, 7, 8 as test set.
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5.4.3.2 Summary of Fine-Tuning

A short analysis of the fine-tuning method for subjects 0, 2 and 3 is provided in Appendix F to

illustrate the possible outcomes of the method on the Heidelberg Digits dataset.

Figure 5.21 presents the average accuracy over 15 trainings for the various steps of the

method on the 6 subjects (the first set of subjects 0, 2, and 11 and the second set of subjects 3,

7, and 8). Only the micro accuracy is presented since the classes are balanced. Unfortunately,

for these subjects of the Heidelberg Digits dataset, unsupervised fine-tuning using the subject’s

data does not provide an improvement over the original ResNet. Classification performance is

often even degraded. Unlike the UCA-EHAR dataset, the studied subjects from Heidelberg Digits

did not have additional data captured for this fine-tuning process. Only 380 to 525 vectors for

each subject of the Heidelberg Digits dataset have been used for fine-tuning. In comparison,

between 2635 and 3141 vectors for each subject of the UCA-EHAR dataset have been used for

fine-tuning. The lack of data could be a reason for the lower observed performance. Moreover,

the analysis of the behaviour of the training self-organizing map was less thorough with the

Heidelberg Digits dataset than with the UCA-EHAR dataset. A more in-depth analysis may reveal

a subobtimal configuration of the training as it was seen initially for the UCA-EHAR dataset.
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Figure 5.21: Micro accuracy for the ResNet, ResNet+DSOM, Fine-Tuned ResNet+DSOM, and

Fine-Tuned and Relabelled ResNet+DSOM for subjects 0, 2, 3, 7, 8, and 11 of Heidelberg Digits.

5.5 Conclusion

In this chapter, we presented a method leveraging dynamic self-organizing maps that can be

used to perform online fine-tuning in an unsupervised manner. In order to solve a classification

problem, some labels are still required to identify which class a neuron of the self-organizing

map corresponds to. In order to improve the classification results, the self-organizing map can

be preceded by a feature extractor previously trained in a supervised manner.
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An initial comparison between supervised training of convolutional neural networks, unsuper-

vised training of self-organizing maps, and the hybrid approach combining a feature extractor and

a self-organizing map was led on the UCI-HAR dataset. Despite this method still requiring some

labels, less than 20% can be used in this case without compromising on the accuracy. We also

showed that using a feature extractor to provide feature maps for learning to the self-organizing

map can increase the accuracy by 10%. While this is not useful in an offline context with the

original dataset since the feature extractor has to be trained in a supervised manner, it can

be used later with unsupervised online learning of a self-organizing map. For online learning,

the self-organizing map is replaced with a dynamic self-organizing map to remove the time

dependency. In the context of human activity recognition, unsupervised online learning is useful

to perform fine-tuning of the self-organizing map on a specific test subject. Results showed that

for one of the chosen subject, exhibiting a poor accuracy with a fully-supervised convolutional

neural network, unsupervised fine-tuning did not improve the performence. However, another

subject saw its accuracy improved by a few percents after fine-tuning, even exceeding the original

convolutional neural network.

The unsupervised fine-tuning method was then applied to our own dataset, UCA-EHAR, using

a residual neural network as a feature extractor. We found that this type of convolutional neural

network can provide a better accuracy and feature maps of smaller dimensions. Moreover, the

UCA-EHAR dataset was extended to get more data for some subjects. The results over four

subjects were also mixed, and the method may require relabelling at least with part of the original

dataset after fine-tuning. While the micro accuracy did not improve, the macro accuracy still

slightly increased on average, showing that the fine-tuning can at least improve the accuracy of

the classes with less occurences.

Then, we also experimented unsupervised fine-tuning on a different modality, using a keyword

spotting dataset, Heidelberg Digits. The deep neural network was also a residual neural network,

processing the raw audio data. With this dataset, the fine-tuning results were generally not

satisfactory. However, we observed in one case an improvement, and in the other cases the

accuracy was not far off from the supervised residual neural network. Therefore, while the

method still needs to be improved, it can be applied to various datasets.

In the case of keyword spotting, it could be possible to use a feature extractor trained on

a large dataset, e.g., Google Speech Commands [192], and then reuse it with a different set

of keywords in a transfer learning fashion. The training of the self-organizing map would be

performed in an unsupervised manner with these new keywords, and only a reduced number of

labels could be used to label the neurons. Later on, the model could be fine-tuned online without

requiring labels to a specific speaker.

In the next chapter, an implementation of this method in an embedded context will be

presented, along with memory, energy, and latency metrics on a microcontroller.
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6.1 Introduction

As seen in Chapter 3, it is possible to perform deep neural network inference on microcontrollers.

However, the deep neural network model still has to be trained on a workstation or in the

cloud. Indeed, the resources required for training a deep neural network largely exceed what a

microcontroller can provide, both in terms of memory and processing power.

As illustrated in Figure 6.1, the data have been collected from the device to build the UCA-

EHAR dataset as well as to perform live activity recognition in Chapter 4. In Chapter 5, we

presented the semi-supervised learning approaches along with the unsupervised fine-tuning

process, but performed on a workstation.

Nonetheless, fine-tuning a small part of a neural network in an online manner could be

performed on a resource-constrained device. Therefore, in this chapter, we study the feasibility

of implementing the unsupervised online fine-tuning process on a microcontroller as an on-device

learning (ODL) method.

Supervised learning

Semi-supervised learning

Unsupervised learning

Labelling

Onboard prediction

Can be performed on microcontroller

Performed on workstationData acquisition and windowing

Online fine-tuning

Figure 6.1: On-Device Steps for Embedded Neural Networks.

As a reminder, fine-tuning is applied onto a dynamic self-organizing map learning from the

feature maps of a convolutional neural network. To optimize the inference time and the memory

footprint, convolutional neural networks were already quantized and implemented with fixed-

point computation in Chapter 3. The dynamic self-organizing map also needs to be quantized in

order to benefit from a reduced memory footprint and faster computation. Unlike convolutional

neural networks, both the inference and the training of the dynamic self-organizing map have to

be implemented using fixed-point numbers. This requires implementing a fixed-point exponential

function in order to compute the neighbourhood function of Equation 5.9, copied below:

ℎ(𝑖, 𝑠, 𝑣) = 𝑒
−
1
𝜂2
𝑑1(𝑝𝑖, 𝑝𝑗)

2

𝑑2(𝑣, 𝑤𝑠)2 (5.9)

Finally, the dynamic self-organizing map is integrated in our MicroAI tool to enable seemless

integration in a deep neural network and automatic deployment on microcontrollers. The impact

on the memory footprint and energy consumption on the target can then be evaluated.

This chapter is organized as follows. First, Section 6.2 describes the integration of the

dynamic self-organizing map layer in our framework for quantization and deployment on micro-

controllers. Then, Section 6.3 details the method chosen for the exponential function computa-

tion in the learning rule of the dynamic self-organizing map with fixed-point numbers. Section

6.4 presents the memory footprint and latency results using this method. Finally, Section 6.5

concludes this chapter.

122/183



6.2. Quantization and Deployment of Self-Organizing Maps

6.2 Quantization and Deployment of Self-Organizing Maps

In order to automatically perform the training, quantization and deployment of the self-organizing

map and the hybrid network (a convolutional feature extractor and a self-organizing map classi-

fier), self-organizing maps support has been added to our MicroAI framework. As presented in

Section 5.3, the self-organizing map model has been implemented as a custom PyTorch layer

for the training phase performed on the workstation.

To reduce the memory footprint and support fixed-point computation on the target, self-

organizing maps can be quantized. The quantization is performed in the same way as typical deep

neural network layers such as convolutional layers. As a result, both post-training quantization

and quantization-aware training are supported. Inputs and weights are quantized as described

in Section 3.2.2. In order to support on-target online learning with fixed-point numbers, the

hyperparameters must also be quantized. Therefore, the learning rate and the elasticiy are

quantized alongside the weights. For the sake of simplicity, the same scale factor is used for

the hyperparameters and the weights.

Then, in order to perform the inference and the fine-tuning on a microcontroller, the dynamic

self-organizing map is also implemented as a portable C code. For inference, the processing

requires computing the Euclidean distances between the input vector and each neuron, and

finding the neuron with the smallest distance to the input vector. The computation of the

Euclidean distances (Equation 5.1) relies on accumulating the element-wise squared difference

between the input and the neuron vectors, and taking the square root of this accumulator. As

we only need to know the smallest distance, we can compare the squared distances directly,

without needing the square root computation:

(𝑑2(𝑣, 𝑤𝑖))
2 =

𝑛

∑
𝑗=0
(𝑤𝑖𝑗 − 𝑣𝑗)

2 (6.1)

Furthermore, in case of fixed-point computation, the accumulation of the squared differences

could be optimized with the use of the SMLAD instruction as described in Section 3.3.7. The

SMLAD instruction can perform two multiply-accumulate operations in a single cycle. However

this optimization is not yet implemented.

Fine-tuning also requires the learning rule of the dynamic self-organizing map presented in

Section 5.2.5 to be implemented. Despite this being straightforward with floating-point numbers,

the exponential function computation is challenging with fixed-point numbers.

6.3 Fixed-Point Computation of the Exponential Function

On-target fine-tuning requires implementing the learning rule of the self-organizing map (see

Equation 5.8). The learning rule relies on the computation of an exponential function in the

neighbourhood function (see Equation 5.9). Using floating-point computation, the standard C

math library can be used since it implements the float expf(float) function. However,

there is no standard implementation of a fixed-point exponential function. In fact, it is difficult to

find a portable implementation of such a function in C. When using 8-bit integers, it is possible

to pre-compute a lookup table, which would only requires 28 = 256 bytes of memory. However, a

16-bit lookup table would require 216 × 2 = 131 kiB of memory, which is not reasonable to embed

on a microcontroller. Therefore, it is necessary to find an algorithm to compute this function

with fixed-point numbers, without requiring a large lookup table or a conversion to floating point.

6.3.1 Method

Our solution is based on a library providing the implementation of various fixed-point mathemati-

cal functions in the Solidity programming language [204].
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This method computes an exponential function with a real-valued exponent without using

a full lookup table and without using a polynomial approximation. All the computations are

performed in fixed-point so a common intermediate scale factor has to be used. The number of

bits for the fractional part is chosen as the maximum between the number of bits for the fractional

part of the weights and the input of the layer. Futhermore, all intermediate computation use a

long_number_t type as defined in Section 3.3.4, larger than the data type used to quantize the

weights and activations in order to reduce the possibility of overflows.

There are two main ideas:

• compute a power-of-two with a real-valued exponent instead of the exponential function

by changing the exponentiation base,

• compute the power-of-two of the fractional part of the exponent by multiplying by n-th

roots of 2.

Changing the exponentiation base can be done since:

𝑒𝑥 = 2𝑥 log2 𝑒 (6.2)

log2 𝑒 is a constant and can be pre-computed then converted to a fixed-point number.

The integer part of the exponent of the power-of-two is extracted by shifting to the right by

the number of bits allocated to the fractional part. The integer part is computed first then the

fractional part, since:

2𝑎+𝑏 = 2𝑎 × 2𝑏 (6.3)

The computation of the integer part of the power-of-two’s exponent is trivial since it simply

requires shifting 1 by the integer part of the exponent, to the left if the exponent is positive or to

the right if the exponent is negative. In the case of the DSOM neighbourhood function (Equation

5.9), the exponent is always negative.

The computation of the fractional part is an iterative process, successively multiplying n-th

roots of two since:

22−𝑛 = 2𝑛√2 (6.4)

In a fixed-point number, the most significant bit of the fractional part has a weight of 2−1. Subse-

quent bits have decreasing weights of 2−(1+𝑚), with 𝑚 the distance to the most significant bit.

Therefore, for every bit set to 1 in the fractional part, the temporary value of the power-of-two

computation is multiplied by the 21+𝑚-th root of 2. After each multiplication, the fixed-point result

is scaled back to the same number of bits for the fractional part as the operands in order to

avoid overflow. If a bit is set to 0, the value stays unmodified.

An example of the fixed-point exponential function computation is provided in Appendix H.

The n-th roots of 2 are pre-computed and converted to fixed-point numbers. For a more

accurate computation, the fixed-point conversion of these constants rounds to the nearest

instead of rounding down. The number of n-th roots of 2 to pre-compute and store is equal to the

number of bits allocated to the fractional part. It also corresponds to the number of conditional

operations in this iterative process.

If the function that computes the power of two receives a number that is too small and could

cause an underflow, 0 is returned early. Similarly, if the number is too large and could cause an

overflow, a very large number is returned.

6.3.2 Precision of the Fixed-Point Exponential Function

To analyze the error, the exponential function computed with 32-bit fixed-point numbers is

compared to an exponential function computed with single-precision floating-point numbers to

analyze the error. The fixed-point implementation is the one described previously with a Q23.9
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format, while the floating-point implementation is the expf() function of the GNU C library.

Results with a fixed-point polynomial approximation using the first 10 terms of the Maclaurin

series for the exponential function are also provided.
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Figure 6.2: Fixed-point and floating-point exponential functions for 𝑥 ∈ [−6, 9[.

Figure 6.2a shows that our implementation of the exponential function with fixed-point

numbers matches well with the floating-point reference, while the Maclaurin series becomes

less accurate for larger numbers above 𝑥 = 6 with only 10 terms. The computation of the

Maclaurin series overflows above 𝑥 = 8.85. The logarithmic scales in Figure 6.2b reveals that

our fixed-point implementation starts to significantly deviate below 𝑥 = −3. The reason is that

the precision given by a Q23.9 format leads to a quantization step of approximately 0.002. The

Maclaurin series with 10 terms significantly drops below both our fixed-point implementation

and the floating-point reference also at around 𝑥 = −3. Furthermore, for our implementation in

Q23.9 format, below 𝑥 = −6.24 the result drops to 0 since 𝑒−6.24 < 2−9, and above 𝑥 = 9.02 the

computation would overflow so the result is capped at 8192 instead. This is the reason for the

choice of the [−6, 9[ range to plot the functions.

Our approach can require more computation than a Maclaurin series with few terms if many

bits of the fractional part of the power-of-two exponent are set to 1, however it stays more

accurate at the beginning and at the end of the range. In the case of dynamic self-organizing

maps, the upper end of the range is not relevant, but high precision at the lower end of the range

is important. The exponential function is indeed computed only with negative exponents in

Equation 5.9.

To compute small and large exponents with the Maclaurin series, more terms could be used

to obtain a better precision. This is the choice made by libfixmath [205] where up to 30 terms are

computed for a 16-bit fixed point number. In this case, early exit is used to stop the computation

if computing a new term does not significantly change the precision. Alternatively, lookup tables

can be used to assist in the computation of some parts of the exponent. This is for example the

approach chosen by the neuromorphic multiprocessor system SpiNNaker [206].
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6.4 Results

The following results focus first on evaluating the possible negative effect of self-organizing map

quantization on the classification performances. Then, the memory footprint and the inference

time after the deployment of self-organizing maps on a microcontroller are analyzed.

Some of the datasets and neural network configurations presented in Section 5.4 are reused

here. In particular, the evaluation is performed on the UCI-HAR and the UCA-EHAR datasets.

6.4.1 Quantization of Self-Organizing Maps

In this section, the effect of quantization on self-organizing maps is shown. The quantization

method of Section 3.2 is applied to self-organizing maps as described in Section 6.2.

6.4.1.1 UCI-HAR dataset

The UCI-HAR dataset is first used to show the effect of quantizing a self-organizing map learning

from raw data. The dynamic self-organizing maps of Table 5.4 are quantized on 16 bits and 8

bits. The 16-bit quantization uses Post-Training Quantization (PTQ), while the 8-bit quantization

uses either Post-Training Quantization or Quantization-Aware Training (QAT).

As seen in Figure 6.3, the 16-bit quantization (int16 PTQ) keeps an accuracy very close to

the baseline (float32). The difference in accuracy for the D4 model is only of 0.2%. The 8-bit

post-training quantization (int8 PTQ) has a slightly lower accuracy than the baseline overall.

However, the difference is at most of 0.5% for the D2 model. Quantization-aware training with 8

bits (int8 QAT) was also performed to evaluate if the accuracy can be improved compared to

post-training quantization. As can be observed, quantization-aware training does not improve

the accuracy.

Nevertheless, Figure 6.4 shows that the 8-bit quantization is the most efficient since the

accuracy drop is very low. It is worth noting that the accuracy was already poor for the non-

quantized model when learning from raw data (float32).

30000 40000 50000 60000 70000
Parameters

0.74

0.75

0.76

0.77

0.78

0.79

0.80

Ac
cu

ra
cy

D1

D2

D3

D4

D1

D2

D3
D4

D1

D2

D3
D4

D1

D2

D3

D4

DSOM float32
DSOM int8 PTQ
DSOM int16 PTQ
DSOM int8 QAT

Figure 6.3: Accuracy vs. number of parameters for dynamic self-organizing maps on UCI-HAR.
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Figure 6.4: Accuracy vs. memory footprint of the parameters for dynamic self-organizing maps

on UCI-HAR.

6.4.1.2 UCA-EHAR dataset

The UCA-EHAR dataset is used to evaluate the effect of quantization in a hybrid network, using a

residual neural network as a feature extractor and a dynamic self-organizing map as a classifier

(ResNet+DSOM). The residual neural network is a ResNetv1-6 with 32 filters per convolution.

Batch normalization layers are present after each convolutional layer. However, batch normaliza-

tion layers are fused to the preceeding convolutional layer after training the feature extractor,

before performing an optional quantization-aware training step and before training the dynamic

self-organizing map. The dynamic self-organizing map is of size 8 × 8. The extended UCA-EHAR

dataset with subjects T2, T3, T5 and T20 as testing set is used here. This configuration was

used for the experiments of Section 5.4.2 on unsupervised fine-tuning as well.

The results for the different quantization configurations are presented in Table 6.1. First, the

ResNet is quantized with post-training quantization on 16 and 8 bits. While the 16-bit quantization

does not degrade the accuracy, the 8-bit quantization decreases the accuracy from 94.16% to

66.88%. This substantial drop can be mitigated using quantization-aware training to obtain an

accuracy of 93.96%, only 0.2% away from the baseline.

Similarly, there is no degradation of the accuracy when quantizing the ResNet+DSOM model

on 16 bits. However, if 8-bit post-training quantization is applied to both the ResNet and the

DSOM parts of the neural network, the accuracy drops to 54.59%. Indeed, the 8-bit post-training

quantization already causes a substantial accuracy degradation of the ResNet, so the feature

maps are not of great quality. By applying quantization-aware training to the ResNet first, the

accuracy only drops to 86.12%. Applying 8-bit quantization-aware training to both the ResNet

and the DSOM only increases the accuracy up to 86.80%. This 3.10% difference from the

ResNet+DSOM baseline is not negligible, thus justifying 16-bit quantization. As a side note, 8-bit

quantization also introduces a higher variability in the accuracy across different trainings as

shown by the increase standard deviation.
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Table 6.1: Quantization of a ResNetv1-6 with 32 filters per convolution (ResNet), and the same

ResNet used as a feature extractor for a 8 × 8 dynamic self-organizing map (ResNet+DSOM)

trained on extended UCA-EHAR with subjects T2, T3, T5, and T20 as testing set.

Name Quantization Data type Micro Accuracy (%) Standard Deviation

ResNet None float32 94.16 1.28

ResNet PTQ int16 94.18 1.29

ResNet PTQ int8 66.88 11.23

ResNet QAT int8 93.96 0.65

ResNet+DSOM None float32 89.90 1.88

ResNet+DSOM PTQ int16 89.94 1.89

ResNet+DSOM PTQ int8 54.59 12.53

ResNet+DSOM QAT (ResNet), PTQ (DSOM) int8 86.12 3.59

ResNet+DSOM QAT int8 86.80 3.00

6.4.2 Embedded Execution of Self-Organizing Maps

The embedded execution of self-organizing maps is evaluated on the SparkFun Edge board. As

a reminder (see Table 3.6), the Ambiq Apollo3 microcontroller on this board embeds 1024 KiB of

Flash memory (ROM) 384 KiB of RAM. CMSIS-NN optimizations are enabled for the convolutional

feature extractor of the hybrid networks. In order to deploy these networks on the SparkFun

Edge board, the MicroAI tool presented in Chapter 3 is used to generate the C code both for the

feature extractor and the self-organizing map.

6.4.2.1 UCI-HAR dataset

First, the inference time and the ROM footprint are reported in Figure 6.5 for each of the self-

organizing maps and dynamic self-organizing maps of Table 5.3 and Table 5.4, respectively.

Inference is performed with single-precision floating-point numbers (float32), 16-bit fixed-point

numbers (int16), and 8-bit fixed-point numbers (int8). Since the online learning of dynamic

self-organizing maps is disabled for this experiment, the inference phase is the same as the

self-organizing maps. Therefore, the inference time is also the same between the SOM and

the DSOM for a given size of the map. Similarly, the ROM footprint is the same between a

self-organizing map and its dynamic variant. This is why S1 and D4 have the same inference

time and ROM footprint since both are of size 8 × 8. Although not illustrated here, if the dynamic

self-organizing map is used for online learning, the weights would also need to be stored in RAM.

Since the inference phase computes the distance between all neurons and the input, the

inference time scales linearly with the number of neurons. The ROM footprint also scales linearly

with the number of neurons since they all contain a vector of the same size as the input. However,

inference using 16-bit fixed-point numbers is slightly slower than using single-precision floating-

point numbers. For 8-bit fixed-point numbers, the inference time is below the implementation

using floating-point numbers as expected.

A possible reason for the low performance of the 16-bit fixed-point inference is the number

of scaling operations required for the distance computation. In some instances, the scale factor

could be different between the input and the weights. In this case, it is necessary to scale one or

the other before computing the difference. Furthermore, to avoid overflows, the result of the
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square is scaled back before accumulating into the distance variable. Both these operations

require a shift for each element of the input.

Figure 6.5: Inference time for quantized and non-quantized SOM and DSOM models for UCI-HAR

running on the SparkFun Edge board.

In Figure 6.6, the convolutional neural networks (CNN) of Table 5.1 and the hybrid networks

(CNN+SOM) using the feature extractor of C5 to C8 and the self-organizing map S1 are compared.

Both fully-connected layers of 120 and 6 neurons of the convolutional neural networks C5 to C8

are removed and replaced by a single self-organizing map of size 8 × 8. This explains the lower

memory usage of the CNN+SOM models when compared to the CNN models. For the CNN+SOM

models, the inference is also slightly faster than the CNN models with floating-point numbers.

However, the inference of the CNN+SOM models is slightly slower than the CNN models with

fixed-point numbers. This is due to the slower computation of the self-organizing map. Indeed,

deep neural networks make use of the optimized CMSIS-NN library while self-organizing maps

do not.

Figure 6.6: Inference time for quantized and non-quantized CNN and CNN+SOM models for

UCI-HAR running on the SparkFun Edge board.
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Figure 6.7 compares the SOM and the CNN+SOM models. Since the input dimensions of the

self-organizing map at the end of the CNN+SOM model are smaller than the raw data processed

by a standalone SOM, the memory footprint is also reduced. Furthermore, the convolutional

layers use the same set of weights inside a kernel over the entire dimension of the input. However,

the SOM models have a shorted processing time than the convolutional layers.

Figure 6.7: Inference time for quantized and non-quantized SOM and CNN+SOM models for

UCI-HAR running on the SparkFun Edge board.

6.4.2.2 UCA-EHAR dataset

In this section, the ResNet+DSOM model used for unsupervised fine-tuning on the UCA-EHAR

dataset is analyzed when deployed on a microcontroller. Inference time, Flash and RAM memory

footprint are provided for the original ResNet, the ResNet+DSOM with on-device learning (ODL)

disabled, and the ResNet+DSOM with on-device learning enabled. All these results are largely

dominated by the memory and processing of the ResNet feature extractor.

As shown in Figure 6.8, the ResNet+DSOM Flash memory footprint is a few percents higher

than the ResNet model. The reason is that the fully-connected classifier of 7 neurons is replaced

by a dynamic self-organizing map of 8 × 8 neurons. When on-device learning is enabled, the

Flash memory footprint slightly increases as well. Additional memory is required to store the

instructions for the learning process. Furthermore, the quantization on 16 or 8 bits reduces

the memory footprint compared to the 32-bit floating-point models. However, it does not scale

linearly down to 8 bits since this measurement also includes the instructions which are not

affected by the quantization of the weights.

As shown in Figure 6.9, the processing of the ResNet+DSOM model does not require more

RAM than the ResNet model when on-device learning is disabled. Indeed, the input and output

dimensions are the same between the fully-connected layer and the dynamic self-organizing

map, so no additional memory is required in the activation buffers. However, and as expected,

when on-device learning is enabled, the RAM requirements increase. Indeed, the weights of the

dynamic self-organizing map need to be loaded into RAM in order to be modified during the

training process. Nonetheless, since the size of the self-organizing map is kept small, only a few

percents of additional RAM is required. With 32-bit floating point numbers, the RAM footprint

increases from 62 kB for the ResNet model to 71 kB for the ResNet+DSOM ODL model (with

on-device learning enabled).

130/183



6.4. Results

float32 int16 int8
40

50

60

70

80

90

100

ResNet

ResNet+DSOM

ResNet+DSOM ODL

R
O

M
 F

oo
tp

rin
t (

kB
)

Figure 6.8: Flash memory usage for a ResNet and ResNet+DSOM (with and without on-device

learning) models for UCA-EHAR deployed on the SparkFun Edge board with and without quanti-

zation.
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Figure 6.9: RAM usage for a ResNet and ResNet+DSOM (with and without on-device learning)

models for UCA-EHAR deployed on the SparkFun Edge board with and without quantization.

As it was the case for the Flash memory, the RAM usage is reduced with 8- or 16-bit quantiza-

tion. In this case, it is important to note that a large receive buffer for the serial communication

(32 kiB) is used to store the input data before the fixed-point conversion. This fixed amount of

memory explains why the RAM usage does not scale down well for 8-bit quantization.

Figure 6.10 shows that the ResNet+DSOM model latency overhead with on-device learning

disabled is negligible compared to the ResNet model. Enabling on-device learning significantly in-

creases the processing time of the self-organizing map: +4.52ms from ResNet to ResNet+DSOM

ODL, compared to +0.53ms from ResNet to ResNet+DSOM. However, the main part of the pro-

cessing time is spent in the feature extractor, so the overhead of on-device learning remains

low (from 118.31 ms to 122.30 ms for the ResNet and ResNet+DSOM ODL models respectively).

Using fixed-point numbers with CMSIS-NN optimizations for the feature extractor improves

tremendously the inference time down to 41 ms for the 16-bit ResNet+DSOM ODL model. As

mentioned previously, the dynamic self-organizing map does not make use of the optimizations
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provided by the DSP instructions of the Cortex-M4 core. However, since the input dimension of

the self-organizing map and its number of neurons are small, the amount of processing required

is also small compared to the processing needed for the feature extractor.

As a reminder, for our application of live human activity recognition, an inference is per-

formed with windows of approximately 2.46 s. Therefore, real-time constraints are met since the

inference finishes in less than 2.46 s, even when on-device learning is enabled. Furthermore, the

difference in processing time between a ResNet and a ResNet+DSOM with on-device learning

using 16-bit fixed point numbers is 2.28m s, less than 0.1% of the inference period. As a result,

the increase in energy consumption is very small.
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Figure 6.10: Inference time for a ResNet and ResNet+DSOM (with and without on-device learning)

models for UCA-EHAR deployed on the SparkFun Edge board with and without quantization.

Overall, the embedded footprint of the ResNet+DSOM model remains very close to the original

ResNet model, even with on-device learning enabled for the DSOM layer. Detailed results are

provided in Table 6.2.

Table 6.2: Embedded execution of a ResNetv1-6 with 32 filters per convolution (ResNet), and the

same ResNet used as a feature extractor for a 8×8 dynamic self-organizing map (ResNet+DSOM)

trained on extended UCA-EHAR with subjects T2, T3, T5, and T20 as testing set.

Name Data type On-Device Learning Time per Inference (ms) ROM Footprint (kB) RAM Footprint (kB)

(2462 ms max) (Ambiq Apollo3: 1048 kB max) (Ambiq Apollo3: 393 kB max)

ResNet float32 N/A 117.78 85.292 62.088

ResNet int16 N/A 39.13 58.012 51.204

ResNet int8 N/A 35.03 47.148 44.284

ResNet+DSOM float32 Disabled 118.31 93.348 62.352

ResNet+DSOM int16 Disabled 39.85 62.068 51.668

ResNet+DSOM int8 Disabled 35.57 49.164 44.484

ResNet+DSOM float32 Enabled 122.30 94.948 70.544

ResNet+DSOM int16 Enabled 41.41 64.068 55.764

ResNet+DSOM int8 Enabled 36.83 49.484 46.532
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6.5 Conclusion

In the previous chapter (Chapter 5), we proposed an unsupervised fine-tuning method for human

activity recognition. In this chapter, we implemented this method on a microcontroller to enable

on-device learning. In order to reduce the memory footprint and the inference time, self-organizing

maps have also been quantized. Results showed that the 16-bit quantization did not degrade

the accuracy of the self-organizing maps, both for a standalone self-organizing map and for

a self-organizing map learning from feature maps. 8-bit quantization applied to a standalone

self-organizing map only slightly degraded the accuracy, although the accuracy was already low

before quantization. However, when 8-bit quantization is appleid to a ResNet+DSOM model, the

accuracy dropped by several percents, thus justifying the use of 16-bit quantization.

Then, the memory footprint and the latency for the inference of self-organizing map models

were measured on a microcontroller. Measurements performed with a standalone self-organizing

map on UCI-HAR revealed that the fixed-point implementation did not provide a significant

improvement in terms of inference time compared to a floating-point implementation. The

additional scaling operations and the lack of specific optimizations using the Cortex-M4 DSP

instructions can explain this limited improvement. Nonetheless, results showed that the impact

of a ResNet+DSOM model was small compared to a ResNet model for the UCA-EHAR dataset.

This is due to the small dimension of the DSOM layer input (since this ResNet feature extractor

produces 32 feature maps of dimension 1) as well as the small number of neurons of the DSOM

layer.

Finally, the dynamic self-organizing map learning rule was implemented on-device using both

floating-point and fixed-point numbers. For fixed-point numbers, this required implementing a

method to compute an exponential function in fixed point, since a lookup table would be too

heavy for 16-bit numbers. Enabling on-device learning with the ResNet+DSOM model increased

the processing time and the RAM footprint of the self-organizing map. However, the overall

impact remained low since most of the processing and memory footprint is due to the feature

extractor.

In our approach, only the last layer of a deep neural network is fine-tuned. Fine-tuning an

entire network would put a much higher strain on the embedded constraints. As no fine-tuning

of the feature extractor can be performed, the quality of the features generated by the frozen

feature extractor is highly important.
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7.1 Conclusion

In this thesis, we studied the integration of artificial intelligence onto low-power embedded

devices and its impact on embedded constraints. As a real-world use-case, we focused on

human activity recognition using smart glasses. The purpose is to monitor the behaviour of a

subject in the context of elderly care. While we have not specifically evaluated the efficiency

of our system in terms of preventing fall or detecting a degradation of mobility, which is the

focus of other ongoing related works [108, 109], we showed that human activity recognition can

be successfully performed for several classes of activities of daily living directly on the smart

glasses. Performing the computations on a microcontroller was a requirement for the system to

be autonomous and to respect privacy. Indeed, data do not need to be transmitted to another

device or possibly to a remote server. This also provides a more deterministic latency to the

recognition process.

The field of artificial intelligence on microcontrollers only emerged in the late 2010s as the

literature presented in Chapter 2 can attest. Before that, it was believed that the computation

and memory requirements would be far beyond the capabilities of such embedded devices. The

past few years have shown that with modern design and training of artificial neural networks, it

is possible to tackle certain prediction tasks on microcontrollers using deep neural networks.

That said, not many applications actually make use of embedded deep neural networks yet.

Furthermore, the lack of tooling and comparative studies makes it difficult to evaluate the

possibilities of such a feat.

Therefore, in Chapter 3, we presented our open-source end-to-end software framework for

training, quantization and deployment of deep neural networks on microcontrollers. This software

framework enables the deployment of various kinds of common feedforward neural networks for

evaluation on a microcontroller, using a C code generation tool to create the embedded inference

library. Additionally, quantization was performed to reduce both the memory footprint and the

inference time. Quantization indeed enables computation using fixed-point point numbers which

are less expensive than floating-point numbers. The impact of quantization was evaluated on

three different datasets for potential embedded artificial intelligence applications: keyword

spotting, traffic-sign recognition and human activity recognition. We provided accuracy results

for different size of models in order to demonstrate the memory efficiency of each. 8- and

16-bit fixed-point quantizations were compared to the single-precision floating-point baseline.

16-bit quantization divided by two the memory compared to the non-quantized models without

compromising on the accuracy. The memory footprint and the inference time were compared to

existing inference engines. Our tool achieved similar or better figures compared to STM32Cube.AI

and TensorFlow Lite Micro. Finally, the energy consumption of two different microcontrollers,

STM32L452RE-P and Ambiq Apollo3, were compared using the three different inference engines.

The results showed that using our inference engine in combination with the Ambiq Apollo3

microcontroller, for which STM32Cube.AI is not available, provides the best energy efficiency.

The main takeaway of this result is the importance of hardware-software codesign. This

is further confirmed by the work of the authors in [28], showing that a custom design of the

hardware with software correctly using it provides substantial improvements in terms of memory

efficiency. In the future, sizing the hardware and the software that runs on it hand-in-hand

may become a key aspect of energy efficiency for embedded artificial intelligence. Therefore,

interdisciplinary curriculum will need to be developed to provide engineers with knowledge and

skills to look at both aspects of the problem.

With this powerful tool in hands, we tackled the specific case of human activity recognition

on smart glasses in Chapter 4. While many datasets for human activity recognition are available,

smart glasses are very rarely used for this kind of application and the few attempts did not

provide data usable for our use case. For these reasons, we created our own dataset from

different subjects performing various activities of daily living while wearing the smart glasses.
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This datased, called UCA-EHAR, has been published under an open-access policy. Using this

dataset, we trained deep neural networks to provide an accuracy baseline with an analysis of the

confusion matrix. The quantization methods were applied to the deep neural network models

to optimize the memory footprint and find the best model that could fit on the smart glasses.

To perform live human activity recognition, we then deployed the model onto the smartglasses

microcontroller by integrating it into the existing firmware. Energy was analyzed to demonstrate

that the impact of the deep neural network inference was low. The latency was also measured

to make sure real-time constraints are met for this use-case.

In Chapter 5, we studied the feasibility of unsupervised online learning to fine-tune our model

for a specific subject. As the smart glasses will typically be worn by one subject throughout their

lifetime, we want to optimize the recognition for this person. Additionally, for the same reason

we perform the inference directly on the smart glasses, we want to execute the fine-tuning on the

device as well. To support unsupervised learning, we replaced the supervised classification layer

of a deep neural network with a self-organizing map. The upstream layers are frozen and act as

a feature extractor for the self-organizing map. While the training of the self-organizing map

is unsupervised, the training of the feature extractor remains supervised. If a different dataset

with labelled input data using the same encoding is available, transfer learning can be leveraged

so that the target dataset labels are not required. However, for a classification problem, the

neurons of the self-organizing map still need to be labelled. The labelling method can rely on a

reduced amount of labels, making the overall process semi-supervised. Self-organizing maps

do not allow for online learning since the convergence process relies on a finite time constant.

Therefore, dynamic self-organizing maps are used instead when performing online learning.

Finally, both the inference and the training of the dynamic self-organizing map were imple-

mented on a microcontroller in Chapter 6. Our software framework was adapted to support the

quantization and deployment of this hybrid network. As it was done for the inference of the deep

neural network, memory footprint and energy consumption were analyzed for this on-device

learning method, showing that the overhead can be kept under control. While the overall im-

provements of this unsupervised online fine-tuning process to classification performance are

mixed, on-device unsupervised fine-tuning on microcontrollers has been shown to be viable.

7.2 Perspectives

During this thesis, we highlighted several paths to explore to further improve the embedded

execution of neural networks as well as refine unsupervised online fine-tuning. Furthermore, the

method and tools presented in this thesis can be applied to other use cases.

Some improvements and experimentations can be done in the short term with specific

additions to our work, while others require medium-term projects. We also propose new paths

and opportunities as longer-term perspectives.

7.2.1 Short-Term Tasks

Use barometer signals for live human activity recognition.

As explained in Section 4.4.1, our UCA-EHAR dataset includes data from the barometer,

but the barometer is not used to perform live activity recognition. To use the barometer, an

interpolation function has to be used to resample the barometer data to the accelerometer data

so that each new sample contains data from both. Linear interpolation or even duplicating the

sample could be enough but this has yet to be evaluated. Furthermore, the barometer data

contains high-frequency noise and a low-frequency component that may need to be filtered out.

Deploy the unsupervised on-device fine-tuning method on the smart glasses.
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The unsupervised fine-tuning has not yet been implemented on smart glasses either, even

though the MicroAI software is able to generate the approriate C code. The smart glasses

firmware needs to be updated and then the impact of unsupervised online fine-tuning can be

evaluated in a live human activity recognition scenario.

Provide a better diversity of subjects (e.g., elderly) in the UCA-EHAR dataset.

To further analyze the possible benefits of this fine-tuning, the dataset should be extended

to include more diverse subjects, outside the age range considered originally. Especially, data

should be collected from the elderly and from people with disabilities using the existing data

collection protocol and tools. Both the generalization capabilities of the deep neural network

and the improvements brought by fine-tuning could therefore be tested with data further away

from the training distribution than the testing sets used until now.

Evaluate re-labelling with few labels.

When performing unsupervised fine-tuning, and as the results in Section 5.4.2.3 have shown,

a relabelling step using the original dataset can improve the accuracy. In those experiments,

the entire dataset was still used for relabelling. However, we have shown that only a few labels

were necessary for the first labelling step, before fine-tuning. Thus, the relabelling step after

fine-tuning may not require many labels either. If this step is also implemented in a low-power

embedded device, using only a small amount of labels would significantly reduce the memory

usage and the processing time.

Deploy a keyword spotting application with MicroAI.

Outside of human activity recognition, other applications could be augmented with embedded

deep neural networks. For example, leveraging the MicroAI software framework as well as the

deep neural networks designed for use with Spoken MNIST or Heidelberg Digits, keyword spotting

could be implemented on smart glasses or other wearables equipped with a microphone. A

first prototype for such a use-case has been developed on a custom board with a low-power

microcontroller.

7.2.2 Medium-Term Projects

Experiment with semi-supervised transfer learning and unsupervised fine-tuning for keyword

spotting datasets.

Keyword spotting can also be a great use-case for semi-supervised transfer learning and

unsupervised fine-tuning. A large dataset such as Google Speech Commands [192] can be used

to train a supervised feature extractor. Then, a target dataset such as Heidelberg Digits would be

used in a transfer learning fashion. This feature extractor would feed a dynamic self-organizing

map for unsupervised learning. Finally, only a reduced number of labels from the target dataset

would be needed to apply labels to the dynamic self-organizing map. The overall method would

be semi-supervised, and could also perform unsupervised online fine-tuning to adapt to a speaker

with a different voice.

Perform other tasks with MicroAI. Apart from classification tasks, MicroAI can also be used to

deploy neural networks to solve other tasks. For example, works are ongoing to study the energy

consumption reduction in wireless sensor networks using MicroAI to deploy a convolutional

neural network for sensor data prediction [207].

Implement and evaluate advanced quantization techniques in MicroAI.

During our study of deep neural networks deployment on microcontrollers, we took a look at

compressing the neural network to reduce the memory footprint. However, while we implemented

a simple quantization method, we did not investigate the more advanced techniques available in

the litterature and presented in Section 2.4.1.3. Furthermore, several other compression tech-

niques exist such as pruning and knowledge distillation, shortly introduced in 2.4.1.2. Therefore,
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implementing and evaluating these methods could be a major factor to further optimize deep

neural networks deployment on microcontrollers.

Implemented automated machine learning techniques in MicroAI.

Using our software framework, the process of training, quantization and deployment is mostly

automated. However, selecting and configuring the deep neural networks to evaluate still needs

to be done by hand. Implementing automated machine learning techniques such as neural

architecture search could be useful, especially if constraints such as memory and latency are

taken into account.

Integrate human activity recognition profiles into an energy analysis tool for the smart glasses.

In Chapter 4 we analyzed the energy consumption during inference on the smart glasses.

While the human activity recognition was running on top of the original firmware, we did not take

into account other possible applications running concurrently as well as the aging of the battery.

The impact of the various hardware and software components on the autonomy of the device

still needs to be investigated. In [208], a software tool was proposed in order to perform such

an analysis and provide an estimation of the autonomy during different scenarios. The energy

consumption of the human activity recognition application could be integrated into this energy

analysis tool to provide insights on how to optimize the energy consumption.

Add support for RISC-V platforms to MicroAI.

Another way to reduce the energy consumption of neural networks is to use hardware

accelerators. As the authors of [28] have shown, hardware acceleration can be implemented in

the form of custom instructions in the processor core. Moving to a more open ecosystem such

as RISC-V-based cores enables a more in-depth control of the hardware. We would be able to

perform hardware-software codesign to further optimize the execution of deep neural networks.

Extend MicroAI to support spiking neural networks and neuromorphic hardware.

Other computing paradigms such as neuromorphic computing exhibited in spiking neural

networks can also provide significant energy savings leveraging mechanisms inspired by the

brain. To do so, specific hardware has to be designed and produced. Software must also

be adapted to work with both the theoretical models of spiking neurons and the hardware

implementation. Software frameworks such as SpikingJelly [209], a deep learning framework for

spiking neural network based on PyTorch, provide the necessary tools to design and train spiking

neural networks, with good results in simulation [210]. However, existing experiments rarely go

all the way to execution on real hardware, both due to a lack of hardware implementation and a

lack of automated deployment flows. Some hardware implementation such as SPLEAT [211]

support the execution of spiking convolutional neural networks, but the model still has to be

ported manually. Our MicroAI framework could therefore be extended to fill this gap: provide a

tool that takes a spiking neural network trained with SpikingJelly and generate the appropriate

configuration for the SPLEAT architecture, then perform the deployment on the target and

evaluate the execution as we did on microcontrollers. Since the hardware architecture performs

the computation with fixed-point numbers, quantization would also have to be applied. Thus, the

effect of quantization in the case of spiking neural networks needs to be evaluated.

7.2.3 Long-Term Propositions

Evaluate the benefits provided by binary neural networks on microcontrollers.

Quantization can be pushed even further to binarize deep neural networks. Training binary

neural networks to obtain a good accuracy is still challenging. However, as presented in Section

2.4.1.3, recent advances have shown that by carefully crafting the neural network architecture,

minimal accuracy loss can be obtained after binarizing most of the network. Still, binary neural

networks are rarely deployed on embedded devices for real-world applications. A framework to
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generalize the binarization process needs to be designed, and binarized neural networks have to

be evaluated on several different use cases to prove their relevance. The training process also

needs to be optimized to be less time-consuming. Binary neural networks could provide a lower

memory footprint as well as faster execution on microcontrollers. However, the accumulation

operation implemented as a bitwise operation requires counting the number of bits set to 1 in

a register. Without a specific instruction, often called popcount, this can be a costly process.

In most of the available microcontrollers, this instruction is not implemented. The RISC-V Bit

Manipulation extensions (including the cpop instruction for this purpose) has been ratified in

November 2021, but silicon implementing it will take some time to be manufactured.

Design an accelerator for dynamic self-organizing maps.

Apart from deep neural networks hardware accelerators, the unsupervised online learning

method presented in Chapter 5 could also benefit from a hardware accelerator to scale to

more complex problems. In the SOMA (Self-Organizing Machine Architecture) project [212], an

FPGA-based hardware platform for execution of self-organizing models has been developed.

Even though a self-organizing map hardware implementation is not yet available, a preliminary

design of a neural processing unit for execution of self-organizing map models has been created.

The neural processing unit is intended for use in a many-core processor to perform parallel

processing of the neurons. Several tools have been developed to simulate the models and the

hardware [213, 214]. As a simpler alternative, a custom processing unit could accelerate some

of the computation. For example, a custom instruction for the fixed-point exponential function

computation for on-device learning would significantly reduce the processing time.

Use out-of-distribution detection to detect subjects and activities far from the training dataset.

For unsupervised online learning, the results showed that the outcome depends on the

subject and the class (i.e., the activity for a human activity recognition task). Out-of-distribution

detection could be used to find out which class may not be properly recognized for a subject.

Implement reinforcement learning and multi-modal learning to improve fine-tuning.

Furthermore, even though it requires an input from the user or an operator, reinforcement

learning could be implemented sparingly to guide the online learning algorithm towards a better

prediction. Embedded keyword spotting could be leveraged for the user to provide the label

without having to interact with a mechanical input device. Spoken labels are indeed easier to

provide while in motion than pressing a button.

Fight against catastrophic forgetting.

Finally, dynamic self-organizing maps do not provide any mitigation against catastrophic

forgetting since they are designed to follow a drifting input distribution. However, the impact

of catastrophic forgetting depends on the task and the training conditions. In our case, losing

part of the initial information that helped the network generalize on multiple subjects is not a

problem. However, mechanisms should be implemented to avoid forgetting classes if they do

not occur regularly. In other cases, catastrophic forgetting needs to be taken into account in the

design of the online learning method. Several promising methods exist as presented in Section

2.6.2. However, the results still depend on the dataset and the use case, therefore the problem

remains open.
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A.1 Example TOML Configuration File

Listing A.1: uci-har_cnn.conf
[bench]
name = "UCI-HAR_CNN"
first_run = 1
last_run = 15 # Perform 15 different trainings

[learningframework]
kind = 'PyTorch'

[deploy]
target = 'SparkFunEdge' # Target system for deployment and evaluation
converter = 'KerasCNN2C' # MicroAI code generation tool
quantize = ['int16'] # Fixed-point conversion using 16-bit integers

[dataset]
kind = "UCI_HAR"
params.variant = "raw" # Use raw data rather than pre-computed features
params.path = "data/UCI HAR Dataset/"

[[preprocessing]]
kind = "DatamodelConverter" # Convert subject/activities (HARDataModel) to input data and label matrices (RawDataModel)

[[preprocessing]]
kind = "Class2BinMatrix" # Convert class number to one-hot targets

[[postprocessing]]
kind = "FuseBatchNorm" # Fuse batchnorm layers with preceeding conv layers after training

[[postprocessing]]
kind = "QuantizationAwareTraining" # Quantize model after training
params.width = 16 # 16-bit fixed-point quantization
params.epochs = 0 # Post-Training Quantization: no quantized training performed
params.model.params.batch_norm = false # Disable batchnorm: fused previously and not supported for quantization
export = true # Save the resulting model

[model_template]
kind = "CNN"
epochs = 120
batch_size = 32
params.batch_norm = true # Enable batchnorm layers after each conv layer

[model_template.optimizer]
kind = "Adam"

[[model]]
name = "uci-har_cnn_48_5-32_3_120" # CNN model C7
params.filters = [48, 32] # Number of filters for each conv layer
params.kernel_sizes = [5, 3] # Kernel size for each conv layer
params.fc_units = [120] # Add a fully-connected layer before the final layer
params.pool_sizes = [4, 0] # Pooling size after each conv layer

[[model]]
name = "uci-har_cnn_64_7-48_5_120" # CNN model C8
params.filters = [64, 48]
params.kernel_sizes = [7, 5]
params.fc_units = [120]
params.pool_sizes = [4, 0]

A.2 Explanations About Configuration File

The training process expects a RawDataModel instance, which gathers the training and test

sets. This instance contains numpy arrays for the data and the labels. A higher-level data

model HARDataModel is also available for human activity recognition in order to process

subjects and activities more easily. This model is then converted to a RawDataModel using

the DatamodelConverter in the pre-processing phase. The pre-processing phase can also

include transformations such as normalization.

In the configuration file, several model settings can be described, each inside their own

[[model]] block. Each model will be trained sequentially. A common configuration for all the

models can be specified in a [model_template] block. Model configuration also includes

optimizer configuration and other parameters such as the batch size and the number of epochs.

Once the model is trained, some post-processing can be applied. It is for instance possible

to remove the SoftMax layer for Keras models with the RemoveKerasSoftmax module. This

layer is indeed useless for classification when only the inference is performed. In the case of

PyTorch models, the batch normalization layers can be fused with the previous convolutional
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layer using the FuseBatchNorm module. PyTorch’s FX module [187] is used to automatically

detect the Conv/BatchNorm layer pairs and replace them with a single convolutional layer with

merged parameters.

The quantization-aware training described in Section 3.2.2.5 is also included for PyTorch

as a post-processing step in the QuantizationAwareTraining module, even though it also

performs model training. The actual training step before post-processing is seen as a general

training, before optionally performing post-training quantization or quantization-aware training.

The quantization-aware training can be seen as a fine-tuning on top of the more general training

(which can also be skipped if necessary). This conversion is instead performed by the C code

generation tool.

A.3 MicroAI Commands to Run for Automatic Training and Deployment

of Deep Neural Networks

Data can be preprocessed (e.g., to apply normalization) from the source dataset and serialized

to an intermediate dataset file with the following command:

microai <config.toml> preprocess_data

The training phase is started by running the following command:

microai <config.toml> train

Before being deployed and evaluated, the appropriate code must be generated and built for

the targeted platform by running the following command:

microai <config.toml> prepare_deploy

Once the binaries are generated, they can be deployed, and the model can be evaluated on

the target by running the following command:

microai <config.toml> deploy_and_evaluate

A.4 Example Commands for UCI-HAR on Nucleo-L452RE-P with 16-bit

Quantization

The UCI-HAR dataset is first downloaded and extracted in the data/ directory.

Run the various pre-processing steps in the configuration and generate serialized numpy

arrays in out/data/UCI_HAR_raw/:

microai conf/uci-har/ResNetv1_float32_train.toml preprocess_data

Train 7 different networks 15 times in a row according to the configuration:

microai conf/uci-har/ResNetv1_float32_train.toml train

Perform Post-Training Quantization for int16, generate the source code for the C infer-

ence library in out/kerascnn2c_fixed/, and build the firmware for Nucleo-L452RE-P in

out/deploy/NucleoL452REP/:

microai conf/uci-har/ResNetv1_KerasCNN2C_NucleoL452REP_int16.toml prepare_deploy

Deploy the firmware onto the Nucleo-L452RE-P board connected to the computer and send

vectors from the test dataset for evaluation:

microai conf/uci-har/ResNetv1_KerasCNN2C_NucleoL452REP_int16.toml deploy_and_evaluate
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A.5. Fully-Connected Jinja2 C Template File for MicroAI

A.5 Fully-Connected Jinja2 C Template File for MicroAI

Listing A.2: fc.cc
#define INPUT_SAMPLES {{ node.input_shape[-1] }} // Dimension of the input
#define FC_UNITS {{ node.layer.units }} // Number of neurons
#define ACTIVATION_{{ node.layer.activation.name | upper }}

// For fixed point quantization
#define WEIGHTS_SCALE_FACTOR {{ node.weights_scale_factor }}
#define INPUT_SCALE_FACTOR {{ node.innodes[0].output_scale_factor }} // Output scale factor of previous layer
#define OUTPUT_SCALE_FACTOR {{ node.output_scale_factor }}

typedef number_t {{ node.layer.name }}_output_type[FC_UNITS];

static inline void {{ node.layer.name }}(
const number_t input[INPUT_SAMPLES],

const number_t kernel[FC_UNITS][INPUT_SAMPLES],
const number_t bias[FC_UNITS],
number_t output[FC_UNITS]) {

unsigned short k, z;
long_number_t output_acc;

for (k = 0; k < FC_UNITS; k++) {
output_acc = scale_number_t((long_number_t)bias[k], -INPUT_SCALE_FACTOR);
for (z = 0; z < INPUT_SAMPLES; z++)
output_acc = output_acc + ((long_number_t)kernel[k][z] * (long_number_t)input[z]);

// Activation function
#ifdef ACTIVATION_LINEAR // Linear (i.e., none)

output_acc = scale_number_t(output_acc, INPUT_SCALE_FACTOR + WEIGHTS_SCALE_FACTOR - OUTPUT_SCALE_FACTOR);
output[k] = clamp_to_number_t(output_acc);

#elif defined(ACTIVATION_RELU) // ReLU
if (output_acc < 0) {
output[k] = 0;

} else {
output_acc = scale_number_t(output_acc, INPUT_SCALE_FACTOR + WEIGHTS_SCALE_FACTOR - OUTPUT_SCALE_FACTOR);
output[k] = clamp_to_number_t(output_acc);

}
#endif
}

}

A.6 MicroAI C Library Interface

The generated library exposes a function in the model.h header to run the inference process

with the following signature:

v o i d cnn (

const i n p u t _ t i n p u t ,

number_t output [ MODEL_OUTPUT_SAMPLES ] ) ;

whereinput_t is a type defined in the generatedmodel.h corresponding to a multi-dimensional

array of dimensions (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) for 1D input or (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) for 2D input

with a value type of number_t. number_t is the data type used during inference defined in the

number.h header, and MODEL_OUTPUT_SAMPLES is the dimension of the output defined in the

generated model.h header. The input and output arrays must be allocated by the caller.

The model inference function does not proceed to the conversion of the input from floating-

point to fixed-point representation when using a fixed-point inference code. The caller must

perform the conversion before feeding the buffer to the model inference function (see Section

3.3.6).

To this aim, a floating-point number x_float can be converted to a fixed-point number

x_fixed with the following call:

number_t x _ f i x e d = clamp_to_number_t (

( long_number_t ) f l o o r ( x _ f l o a t * (1 << MODEL_INPUT_SCALE_FACTOR ) ) ) ;

where long_number_t is a type twice the size of number_t and clamp_to_number_t satu-

rates and converts to number_t. Both are defined in the number.h header.

MODEL_INPUT_SCALE_FACTOR is the scale factor for the first layer, defined in the model.h

header.
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The output array corresponds to the output of the model’s last layer, which is typically a fully

connected layer when solving a classification problem. If the purpose is to predict a single class,

the caller must find the index of the largest element in the output array.

A.7 CMSIS-NN Functions Used in MicroAI

The following instructions from the ARMv7E-M instruction set are used to optimize some aspects

of deep neural network inference in CMSIS-NN:

• SMLAD: performs two 16-bit multiply-accumulate operations in a 32-bit register,

• SXTB16: extracts two 8-bit values and extends them to signed 16 bits,

• QSUB16: performs two 16-bit subtractions and saturates to signed 16 bits,

• QSUB8: performs four 8-bit subtractions and saturates to signed 8 bits,

• SSAT: signed saturation to any bit position (also present in the regular ARMv7-M instruction

set).

Our framework can optionally make use of the following functions from the CMSIS-NN library

with 8-bit quantization.

• arm_convolve_HWC_q7_basic_nonsquare(…): a generic convolution operation mak-

ing use of the SMLAD instruction for the multiply-accumulate operations. The inner loop

is partially unrolled to process up to 16 multiply-accumulate in one iteration. Two or four

operands are loaded into registers at a time and expanded from 8 bits to 16 bits two at a

time with the SXTB16 instruction. The intermediate 32-bit results are saturated to 8 bits

with the SSAT instruction before being converted back to an 8-bit data type.

• arm_convolve_HWC_q7_fast_nonsquare(…): compared to the basic variant, this

function requires the input channels to be a multiple of 4 and output channels to be a

multiple of 2 to further optimize memory accesses.

• arm_fully_connected_q7(…): a fully-connected layer operation that makes use of

the SMLAD instruction for the multiply-accumulate operations. The inner loop is partially

unrolled to process eight elements at a time: four input samples and two neurons. Two or

four operands are loaded into registers at a time and expanded from 8 bits to 16 bits two

at a time with the SXTB16 instruction. The intermediate 32-bit results are saturated to 8

bits with the SSAT instruction before being converted back to an 8-bit data type.

• arm_relu_q7(…): a rectified linear unit activation function that does not use conditional

branches or conditional operations. Instead, a mask is generated by extracting the sign

bit from the input and subtracting it from 0 with the QSUB8 instruction, four elements at a

time.

With 16-bit quantization, the q15 variants are used instead, with the following differences.

• arm_convolve_HWC_q15_basic_nonsquare(…): the inner loop is partially unrolled

to process up to 4 multiply-accumulate operations in one iteration. Operands are always

loaded two at a time but they do not need to be extended to 16 bits, results are saturated

to 16 bits.

• arm_convolve_HWC_q15_fast_nonsquare(…): compared to the basic variant, this

function requires the input and output channels to be multiples of 2, so that the loop can

be further unrolled to perform 8 multiply-accumulate in a single iteration.

145/183



A.7. CMSIS-NN Functions Used in MicroAI

• arm_fully_connected_q15(…): operands are always loaded two at time but they do

not need to be extended to 16-bit, results are saturated to 16 bits.

• arm_relu_q15(…): the QSUB16 instruction is used instead, processing two elements at

a time.

The nonsquare variants of the functions allow using width and height dimensions that

can be different, both for the input and the kernel. This is required in order to implement one-

dimensional convolutions. Further improvements for 2D networks could be achieved by using the

more optimized variant for square dimensions when possible, but this has not been implemented

in our framework. The basic variants (as oppposed to the fast variants) allows for odd

dimensions of the channels while the fast variants have requirements over the input and output

channels. Therefore, a single network may use a combination of the basic variant for layers

with odd channels and fast variants when the conditions are fulfilled.

The arm_convolve_HWC_q15_basic_nonsquare(...) is not included in the original

CMSIS-NN library. We implemented it taking inspiration from the existing functions.

CMSIS-NN also offers s8 and s16 variants (instead of q7 and q15) tailored for TensorFlow

Lite quantization. These functions indeed use a per-channel quantization with a non-power-

of-two scale factor and an asymmetric range for activations. However, we do not use these

variants since MicroAI performs a per-layer quantization with a power-of-two scale factor and a

symmetric range for activations.

Furthermore, CMSIS-NN offers other functions for deep neural networks such as pooling

functions and element-wise addition (used in residual layers). These functions do not seem

to offer a significant execution time improvement on Cortex-M4 and are therefore not used in

our framework. As a side note, while this is not directly a feature provided by CMSIS-NN, when

CMSIS-NN is enabled, the SSAT instruction is also used to saturate the results of the Add and

MaxPooling layers.

CMSIS-NN does not offer optimizations for floating-point computation since they are neces-

sarily performed by the FPU in single precision, i.e., 32-bit operations on 32-bit registers.
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Appendix B

Detailed Results of Frameworks and

Embedded Platforms Evaluation

The detailed results provided in Table B.1 highlight a higher overhead for very small neural

networks especially for TensorFlow Lite for Microcontrollers compared to our framework. For

example, for a non-quantized network (float32) with 16 filters per convolution built for the

SparkFun Edge board, our framework requires 54.316 kiB of ROM to store both the inference

code and the weights, while TensorFlow Lite for Microcontrollers requires more than twice as

much at 116.520 kiB. Concerning STM32Cube.AI, the memory overhead is only slightly higher

than our framework at 61.965 kiB. The trend is similar for quantized networks, but the memory

footprint increases more slowly since the initial overhead of the inference code is more important

than the memory used to store the weights. When the number of filters per convolution increases,

most of the ROM is used by the model’s weights. However, the inference code overhead of

the framework can still make a significant difference in the results. The memory footprint for

a non-quantized network with 80 filters per convolution built for the SparkFun Edge board is

indeed 18% higher using TFLite Micro than our framework.

Table B.1: ROM footprint vs. filters for TFLite Micro, STM32Cube.AI and MicroAI.

ROM Footprint (kiB)

Framework Target Data Type 16 Filters 24 Filters 32 Filters 40 Filters 48 Filters 64 Filters 80 Filters

TFLiteMicro SparkFunEdge float32 116.520 133.988 157.957 188.426 225.395 318.926 438.363

MicroAI SparkFunEdge float32 54.316 67.066 91.035 121.512 158.473 251.863 371.332

MicroAI Nucleo-L452RE-P float32 55.770 68.145 92.129 122.582 159.559 253.004 372.434

STM32Cube.AI Nucleo-L452RE-P float32 61.965 79.449 103.410 133.898 170.859 264.289 383.742

MicroAI (no CMSIS-NN) SparkFunEdge int16 46.952 50.629 62.629 77.832 96.355 142.973 202.699

MicroAI (no CMSIS-NN) Nucleo-L452RE-P int16 48.129 51.629 63.613 78.855 97.340 144.051 203.770

MicroAI (CMSIS-NN) SparkFunEdge int16 43.548 50.220 62.492 78.092 97.020 144.852 206.012

MicroAI (CMSIS-NN) Nucleo-L452RE-P int16 47.364 53.948 66.236 81.836 100.764 148.612 209.764

TFLiteMicro SparkFunEdge int8 111.051 117.066 124.691 133.957 144.832 171.473 204.613

MicroAI (no CMSIS-NN) SparkFunEdge int8 43.256 42.249 48.229 55.854 65.089 88.343 118.202

MicroAI (no CMSIS-NN) Nucleo-L452RE-P int8 45.038 43.474 49.464 57.078 66.322 89.683 119.541

MicroAI (CMSIS-NN) SparkFunEdge int8 41.314 44.600 50.724 58.532 67.984 91.900 122.486

MicroAI (CMSIS-NN) Nucleo-L452RE-P int8 45.212 48.492 54.636 62.436 71.892 95.796 126.380

STM32Cube.AI Nucleo-L452RE-P int8 72.742 77.746 84.336 92.582 102.430 126.996 158.098

Similary, the inference times detailled in Table B.2 can also suffer from an important over-
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head. For a non-quantized network (float32) with 16 filters per convolution, TensorFlow Lite

for Microcontroller is more than three times slower (180 ms) than our framework (53 ms),

both on the SparkFun Edge board. Interestingly, STM32Cube.AI is also initially slightly slower

(85 ms) than our framework (56 ms) on the Nucleo-L452RE-P board. When the number of

filters per convolution increases, this overhead is less significant For non-quantized networks,

STM32Cube.AI leads in terms of inference time at 80 filters per convolution. However, for 8-bit

quantized networks with CMSIS-NN optimizations, the inference times between STM32Cube.AI

and our framework are very similar. This is mainly a result of using the CMSIS-NN library.

Table B.2: Inference time for one input vs. filters for TFLite Micro, STM32Cube.AI and MicroAI.

Response Time (ms)

Framework Target Data Type 16 Filters 24 Filters 32 Filters 40 Filters 48 Filters 64 Filters 80 Filters

TFLiteMicro SparkFunEdge float32 180 294 439 624 861 1407 2087

MicroAI SparkFunEdge float32 53 154 259 394 570 1017 1561

MicroAI Nucleo-L452RE-P float32 56 152 259 396 559 977 1512

STM32Cube.AI Nucleo-L452RE-P float32 85 174 271 404 544 922 1387

MicroAI (no CMSIS-NN) SparkFunEdge int16 41 113 191 288 389 668 1042

MicroAI (no CMSIS-NN) Nucleo-L452RE-P int16 45 120 205 318 460 796 1224

MicroAI (CMSIS-NN) SparkFunEdge int16 35 57 83 117 156 272 403

MicroAI (CMSIS-NN) Nucleo-L452RE-P int16 38 64 94 130 173 276 405

TFLiteMicro SparkFunEdge int8 93 131 173 225 281 418 592

MicroAI (no CMSIS-NN) SparkFunEdge int8 39 102 173 260 376 658 1003

MicroAI (no CMSIS-NN) Nucleo-L452RE-P int8 43 108 181 273 384 660 1034

MicroAI (CMSIS-NN) SparkFunEdge int8 25 46 73 105 146 242 368

MicroAI (CMSIS-NN) Nucleo-L452RE-P int8 25 46 73 105 143 238 356

STM32Cube.AI Nucleo-L452RE-P int8 32 54 80 112 146 242 352

The energy figures presented in Table B.3 follow a similar pattern, since the energy depends

on the inference time. However, the power consumption of the Nucleo-L452RE-P board is much

higher than the SparkFun Edge board. Therefore, the energy efficiency is significantly better for

the SparkFun Edge board, even though STM32Cube.AI is always faster than TensorFlow Lite

Micro, and sometimes faster than our framework.
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Table B.3: Energy consumption for 1 input for TFLite Micro, STM32Cube.AI and MicroAI.

Energy (µWh)

Framework Target Data Type 16 Filters 24 Filters 32 Filters 40 Filters 48 Filters 64 Filters 80 Filters

TFLiteMicro SparkFunEdge float32 0.135 0.221 0.330 0.469 0.647 1.058 1.569

MicroAI SparkFunEdge float32 0.040 0.116 0.195 0.297 0.428 0.765 1.174

MicroAI Nucleo-L452RE-P float32 0.247 0.675 1.148 1.753 2.478 4.327 6.700

STM32Cube.AI Nucleo-L452RE-P float32 0.378 0.771 1.202 1.789 2.412 4.083 6.146

MicroAI (no CMSIS-NN) SparkFunEdge int16 0.031 0.085 0.144 0.216 0.293 0.502 0.783

MicroAI (no CMSIS-NN) Nucleo-L452RE-P int16 0.199 0.533 0.910 1.410 2.038 3.528 5.421

MicroAI (CMSIS-NN) SparkFunEdge int16 0.026 0.043 0.063 0.088 0.118 0.204 0.303

MicroAI (CMSIS-NN) Nucleo-L452RE-P int16 0.168 0.283 0.416 0.576 0.765 1.223 1.794

TFLiteMicro SparkFunEdge int8 0.070 0.098 0.130 0.169 0.211 0.314 0.445

MicroAI (no CMSIS-NN) SparkFunEdge int8 0.030 0.076 0.130 0.195 0.283 0.495 0.754

MicroAI (no CMSIS-NN) Nucleo-L452RE-P int8 0.191 0.477 0.801 1.209 1.700 2.924 4.581

MicroAI (CMSIS-NN) SparkFunEdge int8 0.019 0.035 0.055 0.079 0.110 0.182 0.276

MicroAI (CMSIS-NN) Nucleo-L452RE-P int8 0.111 0.206 0.322 0.467 0.635 1.055 1.578

STM32Cube.AI Nucleo-L452RE-P int8 0.143 0.239 0.356 0.495 0.647 1.072 1.560

149/183



Appendix C

Extract of CSV File for DRINKING Activity

of UCA-EHAR Subject T1

Listing C.1: DRINKING_T1_1.csv

T;Ax;Ay;Az;Gx;Gy;Gz;P;CLASS

29019.00;-0.06;-0.77;10.28;0.04;-0.09;-0.08;1005.65;SITTING

29058.00;-0.10;-0.71;10.30;0.04;-0.08;-0.09;1005.65;SITTING

29101.00;-0.14;-0.70;10.24;0.03;-0.08;-0.08;1005.66;SITTING

29140.00;-0.13;-0.74;10.33;0.02;-0.09;-0.06;1005.66;SITTING

29179.00;-0.06;-0.71;10.41;0.05;-0.10;-0.06;1005.69;SITTING

29218.00;-0.02;-0.70;10.22;0.06;-0.10;-0.06;1005.68;SITTING

29257.00;-0.02;-0.68;10.20;0.07;-0.08;-0.05;1005.66;SITTING

29296.00;-0.09;-0.75;10.31;0.07;-0.07;-0.05;1005.65;SITTING

29339.00;-0.14;-0.84;10.39;0.10;-0.08;-0.05;1005.62;SITTING

29378.00;-0.09;-0.90;10.28;0.15;-0.09;-0.05;1005.62;SITTING

29418.00;-0.17;-0.94;10.27;0.15;-0.09;-0.03;1005.62;SITTING

29457.00;-0.16;-0.76;10.38;0.19;-0.10;-0.03;1005.62;SITTING

29500.00;0.01;-0.77;10.22;0.23;-0.11;-0.04;1005.61;SITTING

29539.00;0.03;-0.59;10.20;0.27;-0.10;-0.06;1005.61;SITTING

29578.00;-0.09;-0.50;10.31;0.23;-0.08;-0.09;1005.62;DRINKING

29617.00;-0.27;-0.46;10.40;0.27;-0.11;-0.09;1005.63;DRINKING

29660.00;-0.21;-0.35;10.41;0.30;-0.13;-0.07;1005.64;DRINKING

29699.00;-0.19;-0.28;10.46;0.32;-0.15;-0.04;1005.64;DRINKING

29738.00;-0.14;-0.15;10.61;0.40;-0.17;0.00;1005.64;DRINKING

29777.00;-0.03;-0.11;10.60;0.51;-0.18;0.04;1005.63;DRINKING

29816.00;0.06;0.09;10.45;0.60;-0.19;0.07;1005.63;DRINKING

29859.00;0.16;0.32;10.29;0.66;-0.19;0.09;1005.63;DRINKING

29898.00;0.24;0.49;10.28;0.69;-0.16;0.09;1005.63;DRINKING

29937.00;0.24;0.94;10.33;0.67;-0.16;0.08;1005.62;DRINKING

29980.00;0.25;1.22;10.18;0.67;-0.17;0.08;1005.63;DRINKING
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Appendix D

Fine-Tuning for Subjects T2, T3, T5, and

T20 of UCA-EHAR
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D.1. Results with Fine-Tuning on Subject T2

Subjects T2, T3, T5 and T20 of UCA-EHAR are analyzed separately to illustrate the possible

outcomes of the method presented in Section 5.4.2. The confusion matrices provided below

show the results for a single training only for illustration purposes.

D.1 Results with Fine-Tuning on Subject T2

When subject T2 is selected for evaluation, the ResNet shows a high percentage of DRINKING

activities predicted as SITTING in Figure D.1a. A high misprediction rate on WALKING_UPSTAIRS

and WALKING_DOWNSTAIRS can also be noted. With a dynamic self-organizing map learning

from the ResNet feature maps in Figure D.1b, some DRINKING mispredicted as SITTING shift to

SITTING mispredicted as DRINKING. There is still a high misprediction rate on WALKING_UP-

STAIRS and WALKING_DOWNSTAIRS. The fine-tuning does not seemingly change the results in

Figure D.1c. Relabelling the neurons in Figure D.1d helps decreasing the rate of WALKING_UP-

STAIRS mispredicted as RUNNING. Overall, the confusion between WALKING_UPSTAIRS and

RUNNING has decreased after fine-tuning and relabelling compared to the ResNet.
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(a) Step n°1 ResNet
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(b) Step n°2 ResNet+DSOM
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(c) Step n°3 ResNet+DSOM Fine-tuned on subject T2.
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(d) Step n°4 ResNet+DSOM Fine-tuned on subject T2

and relabelled with original training set

Figure D.1: Confusion matrices for subject T2 of UCA-EHAR without STANDING.
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D.2. Results with Fine-Tuning on Subject T3

D.2 Results with Fine-Tuning on Subject T3

With subject T3, a high number of samples labelled LYING are predicted as SITTING in Figure

D.2a for the ResNet at step n°1, with also some confusion between DRINKING and SITTING.

At step n°2 (Figure D.2b), the ResNet+DSOM model shows an ever higher confusion between

LYING and SITTING. At step n°3 (Figure D.2c), the fine-tuning reduces the misprediction rate of

LYING. Relabelling at step n°4 also reduces the misprediction rate of LYING as shown in Figure

D.2d. Overall, the confusion is mostly the same after fine-tuning and relabelling compared to the

ResNet, although the accuracy for some activities increased ever so slightly.
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(a) Step n°1 ResNet
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(b) Step n°2 ResNet+DSOM
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(c) Step n°3 ResNet+DSOM Fine-tuned on subject T3.
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(d) Step n°4 ResNet+DSOM Fine-tuned on subject T3

and relabelled with original training set

Figure D.2: Confusion matrices for subject T3 of UCA-EHAR without STANDING.
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D.3. Results with Fine-Tuning on Subject T5

D.3 Results with Fine-Tuning on Subject T5

If we take a look at the results of the ResNet on subject T5 in Figure D.3a, several activities

have a high misprediction rate: LYING predicted as SITTING, WALKING_UPSTAIRS predicted

as WALKING, and DRINKING predicted as SITTING. When using a DSOM classifier after the

ResNet feature extractor in Figure D.3b, the confusion on the LYING class gets worse. When

learning part of the subject data in an unsupervised manner in Figure D.3c, the confusion

on LYING, WALKING_UPSTAIRS, and DRINKING is slightly reduced. Relabelling the neurons

afterwards allows solving the confusion between LYING and SITTING as seen in Figure D.3d.

Overall, comparing the original ResNet and the fine-tuned and relabelled ResNet+DSOM, the

confusion between LYING and SITTING has been completely solved while the confusion on

WALKING_UPSTAIRS has decreased.
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(a) Step n°1 ResNet
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(b) Step n°2 ResNet+DSOM
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(c) Step n°3 ResNet+DSOM Fine-tuned on subject T5.
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(d) Step n°4 ResNet+DSOM Fine-tuned on subject T5

and relabelled with original training set

Figure D.3: Confusion matrices for subject T5 of UCA-EHAR without STANDING.
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D.4. Results with Fine-Tuning on Subject T20

D.4 Results with Fine-Tuning on Subject T20

Figure D.4a shows confusion between DRINKING and SITTING similar to the other subjects.

There is also some confusion with WALKING_DOWNSTAIRS and WALKING_UPSTAIRS predicted

as WALKING by the ResNet. When using the ResNet+DSOM model, the confusion decreases

overall in Figure D.4b. Figure D.4c shows that the confusion decreases even further after

the fine-tuning process. However, relabelling the neurons (Figure D.4d) brings the confusion

on WALKING_DOWNSTAIRS and DRINKING back. Overall, after fine-tuning and relabelling,

the confusion betwen WALKING_UPSTAIRS and WALKING decreased, while the confusion on

WALKING_DOWNSTAIRS and DRINKING slightly increased. For this subject, if no relabelling is

performed, the confusion also decreases for WALKING_DOWNTAIRS and DRINKING.
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(a) Step n°1 ResNet
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(b) Step n°2 ResNet+DSOM
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(c) Step n°3 ResNet+DSOM Fine-tuned on subject T20.
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(d) Step n°4 ResNet+DSOM Fine-tuned on subject T20

and relabelled with original training set

Figure D.4: Confusion matrices for subject T20 of UCA-EHAR without STANDING.
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Appendix E

Heidelberg Digits Subjects
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(f) Subject 5

Figure E.1: Confusion matrices for each subject of Heidelberg Digits.
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(l) Subject 11

Figure E.1: Confusion matrices for each subject of Heidelberg Digits. (continued)
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Appendix F

Fine-Tuning for Subjects 0, 2 and 3 of
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F.1. Results with Fine-Tuning on Subject 0

In the following experiments, a single subject of the test set is selected, and the model is

tested on 50% of its data chosen randomly. The ResNet is still trained on the training set. The

ResNet+DSOM is also originally trained on the training set in an unsupervised manner, with

supervised labelling using all of the training set’s labels. For subjects 0 and 2, the ResNet and the

ResNet+DSOM are trained on all subjects except subjects 0, 2, and 11. For subject 3, the ResNet

and the ResNet+DSOM are trained on all subjects except subjects 3, 7, and 8. The fine-tuning is

performed with the remaining 50% of the selected subject’s data.

F.1 Results with Fine-Tuning on Subject 0

Let us analyze the results obtained for subject 0. For the ResNet, a high rate of misprediction

is observed in Figure F.1a for class 9 predicted as class 0 (48%). The ResNet+DSOM model

provides similar results in Figure F.1b. Unfortunately, fine-tuning the DSOM in an unsupervised

manner on the other 50% of the subject’s data does not improve the classification performance

as can be seen in Figure F.1c. Labelling the neurons again with the original training set does not

help either as shown in Figure F.1d.
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(b) ResNet+DSOM
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(c) ResNet+DSOM fine-tuned on half of subject 0
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(d) ResNet+DSOM fine-tuned on half of subject 0 and rela-

belled with original training set

Figure F.1: Confusion matrices for half of subject 0 of Heidelberg Digits trained with subjects 0,

2, 11 excluded from the train set
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F.2. Results with Fine-Tuning on Subject 2

F.2 Results with Fine-Tuning on Subject 2

The results are even less encouraging with subject 2. Fine-tuning the DSOM creates even more

confusion (Figure F.2c) compared to the ResNet+DSOM model without fine-tuning (Figure F.2b),

which was itself worse than the original ResNet (Figure F.2a). Relabelling the DSOM with the

original training set slightly recovers accuracy (Figure F.2d). Neverthless, the accuracy after

relabelling is still lower than the accuracy of the original ResNet.
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(b) ResNet+DSOM
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(c) ResNet+DSOM fine-tuned on half of subject 2
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(d) ResNet+DSOM fine-tuned on half of subject 2 and rela-

belled with original training set

Figure F.2: Confusion matrices for half of subject 2 of Heidelberg Digits with subjects 0, 2, 11

exluded from the train set.
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F.3. Results with Fine-Tuning on Subject 3

F.3 Results with Fine-Tuning on Subject 3

With a different testing set composed of subjects 3, 7, and 8, the predictions were already of

better quality than subjects 0, 2 and 11. In this case, the results can be slightly more promising.

Subject 3 exhibits slightly less confusion with a ResNet+DSOM (Figure F.3b) than with the ResNet

(Figure F.3a) on class 5. The fine-tuning also helps to reduce the confusion between class 0 and

5 (Figure F.3c). However, relabelling after fine-tuning creates confusion between class 5 and 7

that was not present before (Figure F.3d).
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(b) ResNet+DSOM
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(c) ResNet+DSOM fine-tuned on half of subject 3
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(d) ResNet+DSOM fine-tuned on half of subject 3 and rela-

belled with original training set

Figure F.3: Confusion matrices for half of subject 3 of Heidelberg Digits with subjects 3, 7, 8

exluded from the train set.
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Appendix G

Catastrophic Forgetting with CORe50
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G.1. Introduction

G.1 Introduction

A different experiment has been performed with CORe50 [159], an image dataset for object

recognition. Using this dataset, the task to solve is different from the previous datasets’ task.

The purpose is to challenge a continual learning method on its robustness towards catastrophic

forgetting. There is no subject behaviour to study and the goal is different from what we want to

achieve with unsupervised online learning. Nonetheless, the CORe50 dataset is popular in the

litterature and can provide insights on the characteristics of an online learning method. Since

our intent is to learn from new data of the same classes rather than add new classes, we are

mainly interested in the New Instances scenario.

CORe50 consists of 50 different objects grouped in 10 categories (5 objects per category)

recorded with a camera, 300 frames per object for each session. Both the object and the camera

can move during the capture. A given recording session is taken with one background and

lighting conditions. There are 11 sessions with different background and lighting conditions.

Among these sessions, session 3, 7 and 10 are used for testing.

G.2 Experiments and Results

In these experiments, ResNet-18 model from the torchvision [215] package pre-trained on the

ImageNet-1K dataset is used as a feature extractor. A dynamic self-organizing map is placed

after the feature extractor, and trained in an unsupervised manner. Grid search is used to optimize

the following hyperparameters of the dynamic self-organizing map: dimensions of the grid of

neurons, learning rate 𝜖, elasticity 𝜂, 𝜎 for labelling, and the number of epochs. The selected

parameters are: 16 × 19 grid size, 𝜖 = 0.00379, 𝜂 = 1.59, 𝜎 = 3.78, and 32 epochs.

The labels used are those of the 10 object categories rather than the 50 objects, so there are

10 classes in total.

Figure G.1 presents a t-SNE [202] visualization of the prototype vector of each neuron of the

self-organizing map, after training with session 1. The numbers next to the point correspond

to the label of the neuron, from 0 to 9 for each of the 10 object categories. All the labels from

session 1 were used for labelling. Colors correspond to a HDBSCAN [139] clustering method

and can be ignored. As can be observed, this t-SNE visualization is significantly different from

the one presented for the UCA-EHAR dataset in Section 5.4.2. The hyperparameter research

also converged towards a large number of neurons (16 × 19 = 304), but this time the training

actually affected all the neurons. Additionally, the neurons for a given class are close to each

other, meaning that the features learnt by the neurons for a given class are similar. Some labels

have two distinct group of neurons such as the group in the center and the group towards the

bottom for the label 9. This can be caused by samples from the same class having distinct

sets of features, since different objects belong to the same category in the CORe50 dataset.

Some neurons, such as the neuron labelled 0 towards the middle-right of the figure (circled in

magenta), have a label that do not match any of their neighbors. This could be a source of

misclassifications.

Figure G.2 illustrates the 2-dimensional neurons grid of the same self-organizing map, with

numbers and colors having the same meaning as the t-SNE visualization. The labels show that

the neurons are mostly grouped relative to their labels, meaning that similar features were indeed

learnt by neurons close to each other in the grid, as expected from a self-organizing map. For

some classes, two disjoint groups of neurons can be observed such as a group of neurons

labelled 9 towards the bottom right-hand corner of the grid and another one near the center

of the grid (circled in green). This is however consistant with the observation from the t-SNE

visualization. The labelling inconsistancies with the neuron labelled 0 towards the bottom of the

grid (circled in magenta) and some others can also be observed on Figure G.2.
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G.2. Experiments and Results

Figure G.1: t-SNE visualization of the DSOM neurons prototype vector on CORe50 with labels.

Figure G.2: Labelled DSOM 2-dimensional neurons grid on CORe50.

Figure G.3 illustrates the proportion of data from the training dataset needed for labelling.

This result is also significantly different from the one obtained for UCA-EHAR in Section 5.4.2.

For CORe50, many labelled data are required. In fact it is not possible to obtain the highest

accuracy unless all labelled data are used. This dataset is much more complex and more neurons

are being used in the self-organizing map. Additionally, the feature extractor was trained on a

different, larger and even more complex dataset.
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Figure G.3: Accuracy vs. percentage of data used from CORe50 training set for labelling DSOM

neurons.

In order to simulate a continual learning situation, session 1 is always used for an initial

training, then the other sessions are learnt sequentially in a random order.

The expected result of this sort of learning is that as more and more sessions are learnt, the

accuracy on the test set increases. For that, the learning method should be able to consolidate

its knowledge using the new data, without forgetting the previously learnt information. There-

fore, without a mitigation against catastrophic forgetting, the accuracy would not progessively

increase with new sessions being learnt.

This is illustrated in Figure G.4. As it can be seen, the sequential learning of the CORe50

sessions does not provide an increase in accuracy on the test dataset. The reason is that the

dynamic self-organizing map is not designed to remember old information on long-term, but

rather continuously follow the changes in the input distribution. In this experiment, 32 epochs

were used to train the self-organizing map with the first session, and 1 epoch for the subsequent

sessions. Using more epochs for the subsequent sessions does not change the interpretation

of the results. Colors correspond to a session number in the legend. Neurons were relabelled

after learning a new session with all the data from this session. Therefore, while the training of

the dynamic self-organizing map is unsupervised, the method is overall supervised.
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Figure G.4: Accuracy over the test set vs. session learnt.
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G.3 Conclusion

We evaluated the problem of catastrophic forgetting using a dedicated dataset from the litterature,

CORe50. As expected, results were poor since the dynamic self-organizing map is not designed

to prevent this problem. However, the catastrophic forgetting was evaluated in a different manner

from the use-case we consider. In the case of human activity recognition, the neural network is

trained with several subjects, then fine-tuned and evaluated on another subject. Thus, it does

not matter much if the original subjects are forgotten. However, catastrophic forgetting can still

be an issue with the new subject if the classes are seen in a sequential order. In this case, there

is a risk of forgetting classes that were not seen in a long time. Latent replay [162] could be

implemented to mitigate this problem.

The experiment with CORe50 also showed a situation where transfer learning was used: the

feature extractor was trained in a supervised manner on the ImageNet dataset, rather than on

the CORe50 dataset. It was then used to feed a self-organizing map trained in an unsupervised

manner. However, with only a few percents of accuracy loss, less than 25% of labels could be

used, making this approach a true semi-supervised method.
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Appendix H

Example Computation of Fixed-Point

Exponential Function

For example, the value 1.875 encoded as fixed-point number on 8 bits in Q4.4 format (4 bits for

the fractional part) is 0001 1110 in binary. log2 𝑒 with in Q4.4 format is 0001 0111 in binary, or

1.4375 in decimal. To compute 𝑒1.875, first the exponentiation base is changed from 𝑒 to 2:

𝑒1.875 = 21.875×log2 𝑒 = 21.875×1.4375 = 22.6953125 (H.1)

After the multiplication, the result now has 8 bits for the fractional part. Thus, it is scaled back to

4 bits for the fractional part, 0010 1011 or 2.6875 in decimal.

The power-of-two is first computed for the integer part after removing the fractional part.

The integer part is 2 in decimal or 0010 in binary, producing a result of 22 = 4 in decimal or 0100
in binary. Putting back an empty 4-bit fractional part, the intermediate result is now 0100 0000
in Q4.4 format. These operations can be implemented with a bit shift to the left.

Then, the intermediate result is multiplied by the n-th roots of 2. For the fractional part of

1011, the n-th roots are
21√2,

23√2, and
24√2. After converting to fixed-point numbers (round to the

nearest), they are 1.4375, 1.0625 and 1.0625 in decimal, respectively. This conversion rounds to

the nearest. So the result is:

22.6875 = ((22 × 21√2) × 23√2) × 24√2 (H.2)

≈ ((4 × 1.4375) × 1.0625) × 1.0625
= 5.75 × 1.0625 × 1.0625
= 6.109375 × 1.0625
≈ 6.0625 × 1.0625
= 6.44140625
≈ 6.4375

which is encoded as 0110 0111 in Q4.4 format. The intermediate results are rounded down

when scaling back the fixed-point number after each multiplication.

With floating-point numbers, the expf() function would give a result of 6.520819. This

example is given with 8-bit numbers for illustration purposes, however the actual implementation

is used with 32-bit numbers.
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