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Preface 

This thesis is submitted in order to obtain the PhD degree from the GAIA Doctoral school from the 

University of Montpellier and Montpellier SupAgro/l’institut Agro. 

The work results from a joint collaboration between the National Research Institute for Agriculture, 

Food and Environment (INRAE) and the company BioEnTech, and was financially supported by the 

National Agency of Technology and Research (ANRT) through its CIFRE program (grant number 

2018/0461). Two laboratories from INRAE were involved in this project: the Laboratory of 

Biotechnology and Environment (LBE) in Narbonne (France) and the joint research unit Informations, 

Technologies for Agro-Processes (ITAP) in Montpellier (France). 

The research was co-directed by Dr. Jean-Philippe STEYER (LBE, INRAE) and Dr. Jean-Michel 

ROGER (ITAP, INRAE), and was co-supervised by Dr. Cyrille CHARNIER (BioEnTech), Dr. Eric 

LATRILLE (LBE, INRAE) and Dr. Ryad BENDOULA (ITAP, INRAE). 

The project lasted three years, from September 2018 to September 2021. 

This PhD work has been awarded by the Agreenium Internation Research School (EIR-A) label, in result 

of an international collaboration with Professor Roumiana TSENKOVA from the Laboratory of Bio-

measurement of Kobe University (Kobe, Japan). 

The present thesis is divided in two parts. In part I, seven chapters are presented: the Chapter I introduces 

the state of the art and the thesis’ research questions, the Chapter II to Chapter VI present the different 

contributions of this thesis and the Chapter VII provides general conclusions and perspectives. In part 

II, the associated published papers are presented. 

 

 

 

You can't trust water: Even a straight stick turns crooked in it. W. C. Fields 
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Résumé étendu 

La décarbonisation de la production d’énergie a été identifiée par le groupe d'experts 

intergouvernemental sur l'évolution du climat (GIEC) comme un levier d’action clé pour mitiger les 

risques associés au réchauffement climatique. La valorisation des déchets organiques à travers le 

procédé de digestion anaérobie (méthanisation) est une des solutions durables envisagées. Ce procédé 

biologique permet, dans des conditions anaérobies, de dégrader la matière organique et de produire du 

biogaz (mélange de méthane et gaz carbonique) ainsi qu’une boue résiduelle, appelée digestat, 

réutilisable en tant que fertilisant dans l’agriculture. Bien que les unités de méthanisation ont 

historiquement fonctionné avec un seul type de déchets (fumiers et lisiers, ou cultures énergetiques 

comme le maïs), le développement actuel de la filière passe par la co-digestion d’une plus grande 

diversité de déchets organiques tels que des déchets urbains (boues de station d’épuration, fraction 

fermentescible des ordures ménagères), et déchets de l’agro-alimentaire (drèches brassicoles, huiles et 

graisses). Cette co-digestion permet de fait une plus large valorisation des déchets organiques existants, 

mais également une meilleure stabilité du procédé et des rendements en biogaz accrus.  

Cependant, les digesteurs actuels souffrent d’une sous-optimisation de leur production de gaz, 

notamment dû à des difficultés pour rationaliser le choix de la recette d’alimentation. En effet, le type 

et la quantité de déchets organiques co-digérés sur un site peuvent varier quotidiennement en fonction 

des gisements de déchets locaux, des pratiques culturales, des périodes de l’année, du transport et du 

stockage. Or, une mauvaise décision sur la recette d’alimentation peut entrainer des inhibitions du 

procédé biologique pouvant aller jusqu’à provoquer l’arrêt complet du procédé sur plusieurs mois. Dans 

ce contexte, l’optimisation et le contrôle du procédé reposent sur trois éléments: un suivi en temps réel 

des caractéristiques des intrants, un suivi en temps réel de l’état biologique dans le réacteur, et enfin, 

une modélisation du procédé de digestion anaérobie qui permet de simuler et anticiper les performances 

en fonction des différents paramètres mesurés. Malheureusement, des solutions sur site qui permettent 

le suivi en temps réel des caractéristiques des intrants et qui sont adaptées à une diversité grandissante 

de matrices physiques et biochimiques semblent toujours faire défaut. 

Dans ce contexte, des technologies reposant sur l’intéraction de la lumière avec le milieu telles que la 

spectroscopie proche infra-rouge (SPIR) ont été proposées comme solutions rapides et fiables de 

caractérisation des déchets organiques. En effet, la SPIR est une technique non-destructive 

particulièrement adaptée à la caractérisation de matrices organiques complexes telles que les végétaux, 

les sols, les aliments et les déchets. Des développements ont permis d’utiliser la SPIR pour prédire 
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différentes caractéristiques importantes des déchets organiques telles que le potentiel biochimique 

méthanogène (BMP), les teneurs en lipides, glucides, protéines, la demande chimique en oxygène 

(DCO), ou encore la cinétique de production de méthane. Le coût d’analyse de l’ensemble de ces 

caractéristiques était jusqu’alors prohibitif, mais surtout très long (e.g., plus d’un mois pour le BMP). 

Aujourd’hui, l’analyse complète d’un déchet peut-être faite en quelques jours seulement. Cependant, 

des étapes de lyophilisation et de broyage sont nécessaires pour réduire les effets de l'eau et de la 

granulométrie sur le spectre mesuré. En pratique, cette préparation de la matière limite l’adoption de 

cette technologie sur site ou en ligne. Cela empêche donc de suivre en temps réel la composition des 

déchets et donc de raisonner le choix de la recette d’alimentation. D’autres contraintes associées à la 

préparation de matière peuvent être évoquées telles que la perte des composés volatils pendant le 

séchage (tels que les acides gras volatils (AGV)), ou encore l’échantillonnage et le transport de la matière 

jusqu’au laboratoire d’analyse. Fort de ce constat, il apparait nécessaire de trouver des moyens de 

s’affranchir des effets de l’eau en SPIR et ainsi permettre une caractérisation robuste et sur site des 

déchets bruts et humides. 

Dans ce contexte applicatif, cette thèse s’intéresse à (i) mieux caractériser les effets de l’eau sur la 

SPIR et (ii) proposer des stratégies de modélisation pour s’en affranchir. 

Pour répondre à ces objectifs, un dispositif expérimental a été conçu pour collecter de manière 

dynamique les spectres de réflectance ainsi que la teneur en eau de 90 substrats variés pendant leur 

séchage dans des conditions standard de température et de pression. Cela a permis de constituer une 

base de données unique de plus de 150 000 spectres proche-infrarouge qui couvrent une large gamme 

de matrices biochimiques (gras, sucres, fibres), et de teneurs en eau (de 1% à 99%). 

En exploitant ces données, cette thèse propose une évaluation des méthodes de chimiométrie qui 

permettent de rendre un modèle prédictif existant plus robuste par rapport à une grandeur d’influence 

(e.g., température, instrumentation, granulométrie, teneur en eau). Une synthèse des méthodes est ainsi 

présentée, en classant les méthodes selon l’élément de la chaine de modélisation concerné (les spectres, 

le modèle, les prédictions) et selon si les méthodes reposent sur des données supplémentaires sur la 

grandeur d’influence ou non. Plusieurs études montrent que ces méthodes ont permis d’améliorer avec 

succès la robustesse de modèles prédictifs dans différents contextes (sur du sol ou des végétaux), mais 

toujours sur des gammes restreintes de teneur en eau (<20%) et pour des types biochimiques homogènes. 

Diverses méthodes (projections orthogonales et obliques, normalisation, sélection de variable, 

enrichissement, pondération, et superposition de modèles) ont donc été évaluées dans le cadre de la 

caractérisation de déchets organiques humides et variés. Le but était de corriger un modèle de prédiction 
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du potentiel biochimique méthanogène (BMP) fonctionnant sur différents déchets organiques secs pour 

pouvoir l’appliquer sur des déchets humides couvrant une large gamme de teneur en eau (1% à 99%). 

Les résultats montrent que le modèle d’origine présente une erreur (RMSEP) de 65 mL(CH4).gTS-1 sur 

les substrats secs, et une erreur de 192 mL(CH4).gTS-1 sur les substrats humides. La plupart des 

méthodes employées ont permis de réduire fortement cette erreur sur les substrats humides jusqu’à une 

erreur de 93 mL(CH4).gTS-1 pour une méthode simple d’enrichissement de la base. Bien que cela soit 

encourageant, ces erreurs restent importantes et soulignent les limites d’une approche globale de 

correction des effets de l’eau dans le contexte de la caractérisation de déchets organiques variés. Par 

ailleurs, pour une même gamme de teneur en eau, l’erreur sur les prédictions diffère fortement selon le 

substrat. Cela nous indique que la sensibilité aux variations de teneur en eau et/ou le type d’effet de l’eau 

dépend de la nature du substrat, et donc qu’un modèle linéaire global ne permet pas d’aboutir à une 

robustesse suffisante. L’ensemble de ces résultats fait l’objet d’un article en cours de soumission. 

A travers l'analyse en composantes principales (ACP), les effets complexes de l'eau sur les spectres ont 

été détaillés, avec la mise en évidence d’effets à la fois physiques et chimiques. Une des conséquences 

de la grande diversité biochimique retrouvée dans les déchets organiques est que les propriétés 

physiques, et donc l’interaction de la lumière avec la matière, diffèrent fortement entre substrats. Ainsi, 

par exemple, des substrats liquides ou transparents comme de l’eau sucrée, du poisson ou du beurre, 

vont avoir tendance à présenter des niveaux de pseudo-absorbance globale (non spécifique à des régions 

spectrales) plus élevés (~2.5) que des substrats solides comme de la paille, du fumier, ou de la poudre 

de lait (~1.5). Ceci s’explique par des différences de niveaux de diffusion dans la matière. En observant 

l’évolution des scores sur la première composante de l’ACP, on a pu mettre en évidence que l’eau, en 

modifiant les propriétés physiques des substrats, modifiait ces niveaux globaux de pseudo-absorbance. 

La plupart des substrats présentent une augmentation de la pseudo-absorbance en fonction de la teneur 

en eau : au fur et à mesure du séchage, l’eau est remplacée par l’air ce qui provoque une augmentation 

des différences d’indices de réfraction et donc de la réflexion diffuse. Pourtant, certains substrats à forte 

teneur en lipides, présentent un comportement inverse  avec une diminution de la pseudo-absorbance en 

fonction de la teneur en eau. Dans ces systèmes, au cours du séchage, l’eau est remplacée par des 

éléments lipidiques et non de l’air, ce qui entraine au contraire une augmentation des indices de 

réfraction. Un premier comportement non-linéaire a pu donc être mis en évidence. De plus, l’évolution 

de ces changements de diffusion induits par l’eau n’est pas linéaire avec la teneur en eau. Par ailleurs, il 

a pu être mis en évidence que l’eau avait un effet chimique sur le spectre. En effet, le niveau d’absorption 

de la lumière par les liaisons OH (notamment à 1209 nm, 1456 nm et 1933 nm) est directement affecté 

par la présence d’eau dans le milieu. Ainsi, l’évolution de la signature spectrale des autres constituents 
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(lipides, sucres, protéines) évoluent directement avec la teneur en eau. Par ailleurs, certaines 

composantes de l’ACP nous ont permis de mettre en évidence que la teneur en eau modifie non 

seulement la quantité d’eau dans le système mais également l’état de l’eau. Ainsi, l’eau, selon le nombre 

de liaisons hydrogènes qu’elle forme, ne présente pas les mêmes signatures spectrales d’absorption. Des 

décalages de pics autour de 1430 nm peuvent notamment être observés. A travers cette étude, nous avons 

donc pu mettre en évidence la non-linéarité des effets de l’eau en SPIR, avec une dépendance selon le 

type biochimique, les propriétés physiques et la gamme de teneur en eau. L’ensemble de ces résultats a 

fait l’objet d’une publication dans le journal Waste Management [Mallet, A.; Charnier, C.; Latrille, É.; 

Bendoula, R.; Steyer, J. P.; Roger, J. M. Unveiling Non-Linear Water Effects in near Infrared 

Spectroscopy: A Study on Organic Wastes during Drying Using Chemometrics. Waste Manag. 2021, 

122, 36–48. https://doi.org/10.1016/j.wasman.2020.12.019]. 

Afin de mieux comprendre les effets physiques de l’eau sur la diffusion, un milieu modèle simple 

(composé d’aluminium mélangé à de l’eau) a été étudié au cours de son séchage. Le fait que l’aluminium 

réfléchit quasiment entièrement la lumière nous a permis d’étudier les effets de l’eau indépendamment 

de toute interaction chimique liée aux absorbants de la matière sèche. Dans le cadre de cette expérience, 

une modification de la loi de Bouguer-Beer-Lambert a été proposée pour les milieux humides diffusants 

où le trajet optique est directement relié à la teneur en eau par une fonction simple de puissance. Ainsi, 

plus on a d’eau dans le système, plus le trajet optique est allongé, et plus la probabilité d’absorption de 

la lumière par les molécules d’eau est importante. Différentes implications de cette loi sont discutées. 

Tout d’abord, ce modèle empirique est particulièrement intéressant dans le cadre d’études 

spectroscopiques de l’eau dans des milieux diffusants où la position et l’intensité relative des pics sont 

recherchées. En effet, cette loi nous permet d’identifier les coefficients purs d’absorptivité. Cela offre 

par exemple de nouvelles perspectives pour les recherches qui portent sur la compréhension de la 

structure de l’eau dans les milieux diffusants. Par ailleurs, cette loi nous confirme que la relation entre 

le signal mesuré et la teneur en eau est non-linéaire, et qu’elle est modélisable sur des milieux simples 

par une loi de puissance. Tout d’abord, cela permet de mieux comprendre les limites observées des 

méthodes d’algèbre linéaire classiquement utilisées en SPIR (telle que la régression par les moindres 

carrés partiels (PLS)) pour des milieux humides diffusants. Mais surtout, dans le cadre de la prédiction 

de matière sèche, nous montrons qu’en prenant en compte cette relation de puissance (e.g., en passant 

au logarithme), nous pourrions par exemple construire des modèles plus simples et donc plus robustes. 

L’ensemble de ces résultats a fait l’objet d’une publication dans le journal de Analytical Chemistry 

[Mallet, A.; Tsenkova, R.; Muncan, J.; Charnier, C.; Latrille, É.; Bendoula, R.; Steyer, J. P.; Roger, J. 

M. Relating Near-Infrared Light Path-Length Modifications to the Water Content of Scattering Media 

https://doi.org/10.1016/j.wasman.2020.12.019
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in Near-Infrared Spectroscopy: Toward a New Bouguer-Beer-Lambert Law. Anal. Chem. 2021, 93 (17), 

6817–6823. https://doi.org/10.1021/acs.analchem.1c00811]. 

En conclusion, nous évaluons une approche qui consiste à construire des modèles locaux basés sur des 

groupes d’échantillons aux comportements similaires vis-à-vis de l’eau. En particulier, la résolution de 

courbes multivariées (MCR-ALS) est proposée comme un outil pertinent pour identifier ces groupes. 

Dans le contexte applicatif de cette thèse, des travaux complémentaires ont porté sur la comparaison des 

performances de différents spectromètres portables appliqués aux déchets organiques, avec des modes 

de mesures innovants tels que la polarisation. Les résultats montrent le potentiel de ces outils pour la 
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Abstract (Français) 

La spectroscopie proche infra-rouge (SPIR) est aujourd’hui une technologie mature et fiable qui permet 

la caractérisation de matières organiques complexes tels que les végétaux, le sol ou les déchets 

organiques. En particulier, la SPIR a pu être utilisée pour caractériser des déchets organiques complexes 

et divers (tels que les fumiers/lisiers, les résidus de culture, les déchets de l'agro-alimentaire, ou les 

boues de stations d'épuration) qui peuvent être utilisés dans les procédés de digestion anaérobie 

(méthanisation). En revanche, des étapes de lyophilisation et de broyage sont aujourd'hui nécessaires 

pour éviter les effets de l'eau et de la granulométrie en SPIR, ce qui empêche toute utilisation sur site ou 

en ligne. Dans ce contexte, cette thèse s'intéresse aux effets de l'eau sur la SPIR. L'objectif est de mieux 

comprendre ces effets et de proposer des stratégies pour s'en affranchir. Différents aspects de 

l’étalonnage multivarié et des questions de robustesse sont ainsi discutés. Un dispositif expérimental a 

été conçu pour collecter de manière dynamique les spectres de réflectance ainsi que la teneur en eau de 

90 substrats variés pendant leur séchage. Cela a permis de constituer une base de données importante de 

150 000 spectres qui couvrent une large gamme de matrices biochimiques (gras, sucres, fibres), et de 

teneurs en eau (de 1% à 99%). A travers l'analyse en composantes principales, les effets complexes de 

l'eau ont été détaillés, avec des effets physiques et chimiques. La non-linéarité de ces effets a été mise 

en évidence, avec une dépendance selon le type biochimique, les propriétés physiques et la gamme de 

teneur en eau. Dans une deuxième étude, les effets physiques de l'eau sur la diffusion ont été étudiés. En 

se basant sur un système modèle (de l'aluminium mélangé à de l'eau), il a été démontré que les variations 

de teneur en eau provoquent des modifications du trajet optique de la lumière. Une modification de la 

loi de Bouguer-Beer-Lambert a ainsi été proposée pour les milieux humides diffusants où le trajet 

optique est directement relié à la teneur en eau par une fonction de puissance. Les implications sur les 

recherches menées sur la structure de l'eau dans la matière, ainsi que l'étalonnage quantitatif pour prédire 

la matière sèche par SPIR sont discutées. La dernière partie du travail consiste à présenter le potentiel 

de cette nouvelle loi sur des milieux complexes que sont les déchets organiques. La résolution de courbes 

multivariées (MCR-ALS) est notamment proposée comme un outil pertinent pour identifier différents 

groupes de substrats aux comportements similaires vis-à-vis de l'eau. 

Mots-clés : Digestion anaérobie ; Spectroscopie proche infra-rouge ; Effets de l’eau ; Robustesse. 
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Abstract (English) 

Near infrared spectroscopy (NIRS) is today a mature and reliable technology allowing the 

characterization of complex organic materials such as crops, soil, and organic waste. In particular, NIRS 

allows to characterize highly diverse and complex organic waste (such as animal manure, crop residues, 

food and catering waste, wastewater treatment sludge, etc.) that are used in the anaerobic digestion 

processes. However, the current freeze-drying and grinding steps that are required today to avoid water 

and particle size effects impede any on-site and online applications. In light of this, this thesis tackles 

the topic of water effects in NIRS. The objective is to better develop our understanding of these water 

effects in order to develop new strategies for building robust calibrations. Various aspects of multivariate 

modeling and robustness issues are therefore discussed. A dedicated experimental set-up was designed 

to collect dynamically and simultaneously the reflectance spectra of 90 various substrates during their 

drying with its estimated water content. This allowed us to constitute a unique dataset of 160 000 spectra 

covering a wide range of biochemical compositions (fat, carbohydrates, fibrous), physical properties 

(crystalline/amorphous, solid/liquid) and a wide range of moisture content (1% to 99%). The effects of 

water on the collected spectra were analyzed using principal components analysis (PCA) and shown to 

be both chemical and physical effects. This first study allowed us to unveil the complexity and non-

linearity of these effects, and to demonstrate its dependence on the biochemical composition, on the 

physical properties and on the range of moisture content. A local approach is proposed to account for 

these effects. In a second study, the physical effects of water on scattering were further investigated. 

Using a model system (aluminum pellets mixed with water), water variations were shown to induce 

path-length modifications. A modification of the Bouguer-Beer-Lambert law was thus proposed for wet 

scattering media where path-length was shown to be directly related to a power function of the moisture 

content. The implications of these results for research on water structure using NIRS, and moisture 

content determination using NIRS are discussed. The last part of the work consists in further 

investigating how this new law behaves in more complex systems such as organic waste. Multivariate 

curve resolution (MCR-ALS) is proposed as an appropriate methodology to explore the water effects in 

these different systems; and further define the classes of substrates with similar behaviors regarding 

water. 

Keywords : Anaerobic digestion ; Near infrared spectroscopy ; Water effects ; Robustness. 
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Chapter I. Introduction 

1. Motivation 

1.1 Valorization of organic waste through anaerobic digestion (AD)  

1.1.1 AD processes as part of a global energy production decarbonization strategy 

The last synthesis report consolidated by the Intergovernmental Panel on Climate Change (IPCC) 

confirms the unequivocal warming of the global climate system. It points out the recent anthropogenic 

emissions of greenhouse gases that have led to atmospheric concentrations of carbon dioxide, methane 

and nitrous oxide to unprecedented values in the last 800,000 years.1 Among other, the decarbonization 

of energy supply is a key response option for risk mitigation. Indeed, in the low-concentration 

stabilization scenarios, the share of low-carbon electricity supply (including renewable energy, nuclear 

energy and bio-energy) is expected to increase from the current share of 30% to 80% by 2050. While 

nuclear energy could appear today as the most decarbonized solution, the high safety risks and the high 

costs of radioactive waste management should make renewable energy and bio-energy part of the future 

energy supply. In renewable electrical energy (coming from solar panels, wind turbines, and hydrolic 

turbines), the energy storage is of high importance to balance the intermittent supply and demand. 

Today, both battery storage and the power-to-gas (P2G) concept are envisioned.2 The latter solution 

consists in producing hydrogen gas using electricity through the electrolysis of water; which can then 

be integrated in the natural gas grid directly as hydrogen gas (with some limitations in terms of 

concentration) or with a prior transformation in methane using carbon dioxide through the methanation 

process3. With this vision of gas as the future building block of energy storage, the development of low-

carbon gas production technologies is foreseen. Such processes include power-to-gas (P2G), carbon 

capture & storage (CCS), gasification, and the most mature in terms of industrialization, the anaerobic 

digestion (AD).4 

1.1.2 The AD process: principles 

The anaerobic digestion5,6 consists in a biological organic matter degradation process, in oxygen-free 

conditions, that produces both biogas and digestate. The biogas is primarily composed of methane (CH4) 

(from 50% to 75%) but also contains carbon dioxide (CO2), hydrogen sulfide (H2S) and water vapor. 

The biogas can be used to generate electricity and heat through combined heat and power (CHP) units, 
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but can also be purified using membrane technologies7 to generate natural gas that can be directly 

injected into the natural gas grid, compressed for vehicle fuel production8 or be used as chemical 

feedstock in the manufacture of plastics9 or other biochemicals. The digestate refers to the solid and 

liquid degraded materials which come out of the process. Under certain conditions, this co-product can 

be used as a soil amendment and fertilizer, or animal bedding.10 The biological process involves four 

main different steps (hydrolysis, acidogenesis, acetogenesis, and methanogenesis), each involving 

different microbial communities.11,12 

In terms of process design, though high-solid systems exist (with an influent substrate concentration of 

25% of total solids (TS)), the most conventional process design is the continuously stirred tank reactor 

(CSTR) where an influent substrate concentration of 1-15% total solids (TS) is added daily in a closed 

tank. Factors to be considered in the design of anaerobic digestion plants include the nature of digester, 

temperature, pH value, composition of feeding substrate, organic loading rate, retention time, mixing, 

waste particle size, carbon/nitrogen ratio (C/N), costs, moisture content.13 

A variety of organic materials can be integrated into the anaerobic digestion process: agricultural waste 

(animal manure, crop residues, energy crops), wastewater biosolids (municipal sewage sludge), food 

waste (household, restaurant, grocery, food production)14,15, or agro-industrial waste (spent brewery 

grain, fat/oil/grease16, crude glycerol). 

1.1.3 A clear trend towards anaerobic co-digestion (AcoD) processes calls for the 

development of fast and robust feedstock characterization methods 

According to the European Biogas Association (EBA)17, at the end of 2019, Europe was the largest 

biogas producer, with 18,943 anaerobic digestion plants in operation for a production of 167 TWh, and 

it is projected to increase to up to 467 TWh by 2030. In terms of biomethane production, France is 

leading the market development with over 1,000 biomethane injection projects. According to the latest 

report18, a clear trend can be observed in the feedstock usage starting 2013: energy crops are 

progressively abandoned towards the use of agricultural residues, municipal waste and sewage sludge. 

While mono-substrate digestion plants focusing on one type of organic waste is still common, especially 

in Germany with energy crops (such as maize)19,20, a growing number of AD installations mix two or 

more substrates together, a process known as anaerobic co-digestion (AcoD)21,22. Such co-digestion 

offers numerous advantages including a greater stability to the process23,24, with greater obtained 

methane yields ranging from 13% to 176%25. However, AcoD comes with new challenges in terms of 

process monitoring and optimization. These include questions on how to optimize the feeding substrate 
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recipe since random decisions often lead to process disturbances such as inhibitions by ammonia26, or 

acidification by volatile fatty acids (VFA). The choice of the feeding substrates proportions is mostly 

reasoned by the biochemical methane potential (BMP), but must also take into account factors such as 

the carbon/nitrogen ratio (C/N)27,28 to foster development of microbial communities29, the macro- and 

micro-nutrients22, the pH and alkalinity30,31, the inhibitors and toxic compounds32, and the biodegradable 

organic and dry matter33,34. In order to design the best feeding strategies and optimize AcoD plants, 

approaches involving the combination of feedstock characterization35,36 with process modeling37–39 have 

been proposed40,41 (Figure 1). By knowing the feedstock characteristics, and being able to simulate the 

AD process empirical performances, the choice of recipe can be optimized. 

 
Figure 1. The anaerobic digestion process monitoring. Process monitoring (modeling and control) are 

calibrated based on both feedstock characteristics and process state variables. 

Feedstock characteristics can include the determination of the biochemical methane potential (BMP)36, 

the chemical oxygen demand (COD), the biodegradability and bio-accessibility42, the total solids (TS) 

and volatile solids (VS), the biochemical composition (carbohydrates content, proteins content and 

lipids content), but also elementary composition (carbon (C), nitrogen (N), phospore (P) and sulfur (S)). 

Not only these feedstock characteristics vary according to the substrate type, but these properties may 

also vary along the year according to factors such as crop seasonality, transport or storage. Therefore, 

the main condition to being able to run a substrate feed control of anaerobic digestion plants is the 

development of fast and reliable characterization methods that are applicable on highly diverse organic 

waste43 and that can be deployed on-site for high-frequency measurements. Amongst the wide range of 

instrumentation that can benefit to the monitoring of anaerobic digestion process44, near infrared 

spectroscopy has appeared as the most promising technology for developing such robust and low-

maintenance online measurement systems.  
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1.2 Near infrared spectroscopy (NIRS) and chemometrics for bioprocess 

monitoring 

1.2.1 Introduction to NIRS and chemometrics 

1.2.1.1 NIRS and its founding principles 

Near infrared spectroscopy (NIRS) is a vibrational spectroscopy technique based on the interaction of 

near-infrared light with matter. While the existence of NIR light was reported by William Herschel in 

1800, its use for analytical applications was first explored by Karl Norris in the 1960s for the 

determination of moisture content in wheat flour, or fat in meat; then by Thomas Hirschfeld who 

developed more theoretical aspects on NIRS, and Philip Williams who used NIRS for protein 

determination in wheat to replace the conventional Kjeldahl method45,46. 

The principle of vibrational spectroscopy is that the different vibrational modes of a molecule (ways in 

which atoms vibrate together with the same frequency) may absorb light at specific wavelengths 

(corresponding to different energy levels). By quantifying this absorption, quantification of analytes in 

the material is therefore possible. In the NIR region, which is situated between 750 to 2,500 nm (13,300 

cm-1 to 4,000 cm-1), the photons energy is higher than the energy required to promote molecules to their 

fundamental vibrational transition mode (like in the mid infrared region), but lower than the energy that 

allows electron excitation in molecules (like in the visible, and ultraviolet region). The NIR region hosts 

the overtones and combination bands, which are in a first approximation, respectively multiples and 

sum/differences of fundamental vibration frequencies (mostly of O-H, C-H, N-H, and S-H bonds)47.  

In practice, NIRS consists in sending light photons at different wavelengths onto a sample, and 

measuring the transmitted or reflected light intensity in order to evaluate absorption intensity levels 

(Figure 2). The various modes of measurements allow the collection of different types of photons, which 

may lead to very different spectral information48. In the NIR region, the absorption intensities of 

overtones and combinations bands are between 10 to 1000 times lower than the absorption intensities 

of the corresponding fundamental bands (present in mid-infrared (MIR) region)49. While this results in 

highly convoluted spectra with broad features, this also allows light to go deeper into the materials than 

with mid-infrared (MIR) light. 
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Figure 2. Modes of measurements in NIRS with the corresponding light trajectories. Iincident represents the 

incident light source beam. In transmittance mode (Itransmittance), the direct and diffused transmitted photons are 

collected. In reflectance mode (Ireflectance), both the direct (specular) and diffused reflected photons are collected. 

In transflectance mode (Itransflectance), both the direct and diffused reflected photons are collected but a light 

reflector allows light to travel double more than in simple reflectance mode. In interactance mode (Iinteractance), a 

light barrier allows to collect mainly diffused reflected photons. 

The way light absorption is related to the analyte concentration has been first analyzed for simple 

systems that are homogeneous, isotropic and do not contain particles: this is known as the Bouguer-

Beer-Lambert (BBL) law50. By measuring such system in transmission through a distance 𝑳, the 

absorbance 𝑨(𝝀) is linearly related to the concentation 𝒄 of the attenuating specie with a specific 

extinction coefficient 𝜺(𝝀) (Eq. 1) (Figure 3). 

 𝑨(𝝀) = −𝒍𝒐𝒈(𝑻(𝝀)) =  −𝒍𝒐𝒈(𝑰𝟏(𝝀)/𝑰𝟎(𝝀)) = 𝜺(𝝀). 𝑳. 𝒄 (Eq. 1) 

 
Figure 3. The Bouguer-Beer-Lambert law set-up. 

It has been suggested that this law should be named “ideal absorption law”51 (in analogy with the “ideal 

gas law”), highlighting the fact that this law holds in very restrictive conditions. Indeed, in most systems 

where NIRS is applied, the BBL law does not strictly hold. For example, when measuring in reflectance 

mode (Figure 2), a pseudo-absorbance 𝑨(𝝀) = −𝐥𝐨𝐠(𝑹(𝝀)) is usally calculated, and supposed to be 

linear with concentration, but it is known that this reflectance signal 𝑹(𝝀) does not account exclusively 

for the pure chemical absorption but depends strongly on the scattering within the material. Indeed, from 
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the initial light that is sent on the material, part of it is directly reflected to the detector (the specular 

reflected light), part of it refracts multiple times before coming back to the detector (diffused reflected 

light), part of it may be transmitted and never come back to the detector (direct and diffused transmitted 

light), and of course, part of it may be absorbed (absorbed light). While the BBL law does not strictly 

hold, chemometrics allowed to leverage these measurements and develop quantitative calibrations using 

sound multivariate statistics. 

1.2.1.2 Chemometrics, or how to leverage multivariate spectroscopic data 

Linear algebra for multi-dimensional and collinear data 

As defined by Svante Wold, one of its founding member, chemometrics is “how to get chemically 

relevant information out of measured chemical data, how to represent and display this information, and 

how to get such information into data”51. In fact, such measured chemical data is in most cases complex 

and thus multivariate. As mentioned, the NIR region hosts the absorption related to overtones and 

combinations, which leads to measured spectra with very broad peaks, and with individual wavelength 

absorptions of poor chemical specificity and sensitivity. Therefore, in order to develop accurate 

quantitative calibrations, individual absorption variables from the whole spectral range are used in 

combination to build (latent) variables that are highly sensitive and specific to the predicted 

characteristic/phenomena. In order to build these combinations of highly collinear variables, 

multivariate statistics (linear algebra) are used and are at the basis of chemometrics science52. 

Dimension reduction and matrix decomposition, the building modeling block of chemometrics 

In chemometrics, the spectral data is represented as a matrix 𝑿(𝒏,𝒑), with 𝒏 rows representing the 

individual spectra (observations) and 𝒑 columns representing each wavelength absorptions (variables). 

Similarly, the reference data (characteristic to predict, group label) is represented as a matrix 𝒀(𝒏,𝒒) with 

𝒏 rows representing the individual observations and 𝒒 columns representing each characteristic to be 

predicted. For quantitative purposes, models that use 𝑿 to predict 𝒀 are built, which is known as the 

multivariate calibration process53. In most techniques, the aim is to decompose the 𝑿(𝒏,𝒑) matrix into a 

product of matrices with 𝒌 components (called principal components, latent variables, pure components) 

which can be interpreted: 

 𝑿(𝒏,𝒑) = 𝑻(𝒏,𝒌). 𝑷
𝑻
(𝒌,𝒑) +𝑬(𝒏,𝒑), (Eq. 2) 
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with 𝐓(𝒏,𝒌) matrix of scores/concentrations (projections of each spectra on these components), 𝐏(𝒑,𝒌) 

matrix of loadings/weights/pure spectra (contributions of original variables to the component), and 

𝑬(𝒏,𝒑) the residuals.   

What changes in the different methods is the way and the purpose for which these matrix decompositions 

are found. In a principal components analysis (PCA)54, for exploratory data analysis, the principal 

components correspond to orthogonal variables that explain most of the variance in 𝑿. In a partial-least 

square regression (PLS-R)55, the aim is to build a predictive model based on 𝑿 to predict 𝒀 variables: 

the latent variables are found so that they explain the most variance of 𝑿 while maximizing the 

correlation with the 𝒀 matrix to be predicted. In multivariate curve resolution alternating least squares 

(MCR-ALS)56, the aim is to find physically meaningful components (pure spectra and concentrations) 

that explain the most variance of 𝑿 using a variety of contraints (non-negativity, closure, unimodality, 

selectivity, correlation, asymmetry, kinetic modeling, smoothing, multi-set, etc.). In independent 

component analysis (ICA), for signal unmixing purposes, the components are found so that the 

loadings/signals have non-Gaussian distributions, assuming independence of these signals57. What is 

core to all these methods used in chemometrics is that a big place is given to the interpretability of the 

found components. 

Non-linear methods for heterogeneous and complex data 

While in most cases, linear approaches are sufficient in order to deal with spectroscopic data, the current 

explosion of spectroscopic measurements has led to the emergence of highly complex and 

hetereogenous datasets. This brings non-linearities in the dataset including both clusters (groups of 

spectra with very different characteristics) and curvatures (spectra which do not show a linear 

relationship with the variable of interest Y). For such cases, non-linear methods have been proposed.  

Non-linear methods: local strategies 

A first category of non-linear methods corresponds to local strategies, where models are built based on 

only a subset of the dataset. This subset can be chosen based on spectral characteristics, or using expert 

knowledge and metadata. In local methods based on spectra, there is the clustered PLS approach where 

a clustering method (k-means58, hierarchial clustering59, decision tree60) is used to identify groups on 

which to train PLS models. When predicting a new observation, it is assigned to its cluster based on a 

spectral distance (Euclidean or Mahalanobis), and the corresponding cluster’s model is used for 

prediction. In strictly speaking local approaches, such as the k-nearest neighbours locally-weighted PLS 

(knn-LW-PLSR)61, the subset is selected on-the-fly based on a spectral distance and the model based on 
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this subset is built on-the-fly. These local approaches are very suitable to account for non-linearities in 

data. However, the implementation of such methods can bring some challenges: 

- Expensive computation time. In knn-LW-PLSR, the hyperparameter tuning (number of 

neighbors and number of PLS latent variables) can be demanding in terms of calculations as 

there are as many models to build as there are predictions to make. But these limits can be 

overcome by optimizing the PLS model calculation62 (using the kernel trick), calculating the 

spectral distance on global PLS scores63, or optimizing the spectral distance calculation step 

using random projections and indexing64. 

- The nature of the spectral distance, or the criteria on which the clusters are made is of utmost 

importance and can be a difficult choice65. The Euclidean distance in high-dimensional data 

such as spectral data may be insufficient for finding the nearest neighbor; in fact, it can provide 

instead the farthest neighbors in high-dimensional data66. In NIR, this is partly resolved by the 

Euclidean distance on the scores of a PCA or PLS (Mahalanobis distance), with a more limited 

number of dimensions (usually between 5 and 15). However, in NIR data of complex matter 

such as waste, soil, food and crops, most of the information in the spectra comes from scattering 

and not absorption. Possibly, the local subset is found based on the physical properties of the 

samples instead of their chemical properties, which may lead to irrelevant localities. One way 

to overcome this is to use pre-processing steps to remove the variations related to scattering and 

therefore emphasize the variations related to chemical absorption67. 

Non-linear methods from the machine learning and deep learning communities 

A second category of non-linear methods suitable for highly complex and hetereogenous datasets comes 

from the machine learning and deep learning communities. These include regression trees68,69 and 

random forests (RF)70–72, support vector machines (SVM)73,74, and of course neural networks (NN)75 

including convolutional structures (CNN)76,77. All these methods have been shown to be highly flexible 

and suitable for modeling non-linear relationships, but appear difficult to train and prone to overfitting, 

especially with small datasets (<100 samples) which are usually obtained in NIRS due to expensive 

reference measurements. 

Pre-processing to account for scattering effects in NIR spectra of complex matter 

As already mentioned, in complex matter (such as crops, food, waste, soil), the measured NIR spectra 

are seldom only related to chemical absorption and usually contain information related to physical 

scattering. This results from the interaction of different factors such as the measurement mode (the way 

light is sent, filtered and collected) and the physical properties of the measured material (state of matter, 
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granulometry, structure). In order to enhance the sensitivity of the measured signal to the chemical 

absorption information and thus develop more predictive quantitative calibrations, a series of methods 

have been developed to transform 𝑿, a step referred as pre-processing78,79. A first set of pre-processing 

step includes simple transformations such as centering and scaling80, which can be both column-wise or 

row-wise as in the standard normal variate (SNV)81. Other transformations concentrate on baseline 

removal such as detrend (DT)81 which allows the removal of polynomial baselines of different orders, 

continuum removal (CR)82 which removes the convex hull baseline, or asymmetric least squares 

(ALS)83,84 which identifies more complex baselines using the Whittaker smoother and regularization85. 

Other pre-processing techniques include derivation to deconvolute the signal such as Savitzy-Golay 

derivation (SG)86 or discrete wavelet transform (DWT)87,88.  

Other techniques are based on a physical model of scattering effects: the hypothesis is that scattering 

effects are made of both multiplicative effects 𝒂 (due to the modification of light path-length 𝑳) and 

additive effects 𝒃 (due to the photons loss: photons which are transmitted and never come back to the 

detector) (Eq. 3). 

 𝑨𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅(𝝀) = 𝜺(𝝀). (𝒂. 𝑳). 𝒄 + 𝒃 (Eq. 3) 

These physical-model-based techniques attempt to identify these additive and multiplicative coefficients 

(𝒂 and 𝒃) to correct the spectra, such as optical path-length estimation and correction (OPLEC)89,90 or 

multiplicative scatter correction (MSC)91–93 and its extended versions (EMSC)94–96. Different extensions 

of MSC were proposed. A first approach consists in adding the modeling of quadratic terms in addition 

to the MSC’s linear terms (referred to as the basic EMSC model95,97). This approach successfully 

corrected for light scattering differences in MIRS reflectance measurements of soil98, and in NIRS 

transmittance measurements of powder mixtures97. In particular, it allowed to account for light scattering 

differences of sorghum grain samples due to weathering damages99. This has been extended with higher-

order polynomials than quadratic terms. For example, up to sixth order polynomial EMSC models have 

been used in Raman spectroscopy to correct baselines due to fluorescence phenomena94,100,101. In the 

same idea, a logarithmic wavelength-dependent term has been proposed102. A second approach relates 

to the addition of a constituent spectra other than the reference spectrum. This approach was successfully 

used to remove the influence of water on FT-IR data of meat products103: in the EMSC model, the 

difference spectra of meat product taken by FT-IR (MIRS) at low and high humidity levels was added, 

and successfully reduced the variations in the O-H stretching region between 3500 cm−1 and 3400 cm−1, 

and at the O-H bending vibration around 1640 cm−1. A broader extension of EMSC consists in adding a 

nuisance or constituent orthogonal subspace model. For example, between-replicates variations have 
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been reduced using this method. A principal components analysis is applied on mean-centered replicate 

spectra and a few components are selected and introduced into the EMSC model. Though this approach 

has originally been developed to reduce the between-replicate variation in FT-IR spectra of 

microorganisms104, it can be used to model any unwanted variations. Applications include blood glucose 

NIRS measurements105, modeling of Mie scattering for synchrotron based microscopy106, or Mie 

scattering for heterogeneous samples with cylindrical domains107. Recently, several improvements have 

been made to the Mie extinction EMSC108 and open-source codes have been made available109. A slight 

variant of this extension consists in having multiple reference spectra instead110,111. The only constraint 

regarding EMSC is that full rank of the model needs to be respected for the least squares estimation of 

the EMSC parameters94. In the framework with multiple reference spectra, QR-factorization is used for 

this purpose. 

A great advantage of the EMSC preprocessing is the fact that it is a model-based preprocessing method 

which implies that its parameters can be interpreted physically and chemically. This was first 

demonstrated for in vivo monitoring of a biological cell culture, where the dynamics of correction factors 

were interpreted and provided new insights on physical and chemical properties of the system. Later, 

these correction factors have been used on NIRS spectra for the prediction of ash content in woodchips 

and pellet samples respectively for the energy and feed sector. These factors proved to be as much 

predictive as EMSC corrected spectra, therefore showing how much prediction of ash content depended 

on physical properties (light scattering) and to a lesser extent on chemical information112. 

To avoid wavelength regions where the chemical absorbance variations might influence the estimation 

of the parameters, a weighted least-squares (WLS) estimation has been proposed95. Authors have 

proposed different methodologies to determine these weights, including the simple inverse of the mean 

spectra or, in a more sophisticated way, using RANSAC regression as in VSN113. In the same objective, 

a window-based implementation has been developed (PMSC114). Less elegant but simpler solutions have 

been proposed, where the “interference dominant region” (i.e., the spectral region where additive and 

multiplicative effects prevail) is found by applying an MSC or SNV based on different spectral regions 

and selecting the region with best predictive performance115. 

Another important aspect of EMSC framework is that the spectra should be colinear to the reference 

spectrum. Such issue can appear when shifting phenomena appear, for which a shift correction 

methodology  has been proposed116. Another solution to treat this problem is to apply MSC multiple 

times until stabilization of the reference spectrum (Loopy MSC117). As mentioned before, in the case of 

very different spectra, a framework with multiple reference spectra has been proposed94. 
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Other preprocessing techniques make use of decomposition techniques, potentially followed by filtering 

of certain unwanted components. This is the case in continuous wavelet transform (CWT)118,119 where a 

multi-scale decomposition is done, followed by a potential threshold filtering to remove certain features 

of given frequency. This filtering can be done quite similarly with components found by PCA120,121 or 

ICA122,123. Let 𝑸 represent a signal (a continuous wavelet, a loading from a PCA, an independent 

component from ICA, a pure spectrum from MCR-ALS) representing the unwanted information, the 

removal of variations related to this signal can be done by simply projecting 𝑿 orthogonally to this signal 

(Eq. 4): 

 𝑿𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 = 𝑿. (𝑰 − 𝑸. (𝑸
𝑻𝑸)

−𝟏
𝑸𝑻) (Eq. 4) 

However, the risk of removing such components is that these components rarely only contain unwanted 

variations, which may lead to a loss of information. 

Another noteworthy approach that is developed further (section 2.1.3) is to use external data that 

contains the unwanted variations in order to remove these from 𝑿. These approaches may downweigh 

the variables (also refered as pre-whitening or shrinkage) using generalized least square weighing 

(GLSW)124 or remove the variations through orthogonal projections like in external parameter 

orthogonalization (EPO)125, transfer by orthogonal projections (TOP)126 or dynamic orthogonal 

projection (DOP)127. These techniques use external data (for example an experimental design where 

spectra are collected at different levels of an influencing factor) to run the pre-processing. These have 

been successfully applied on soils to deal with moisture effects128 or sucrose solutions to deal with 

temperature effects129.  

Finally, all the pre-processing techniques may be combined together in a multi-block structure as in 

sequential pre-processing through orthogonalization (SPORT)130–132 or the parallel pre-processing 

through orthogonalization (PORTO)132 in order to leverage the complementary information provided by 

all the different techniques. These two approaches are compared on pharmaceutical tablets and both 

show improved prediction results133. 

While the choice of pre-processing technique should ideally be supported by theoretical grounds, in 

most cases, it is usually more pragmatically based on the model performances obtained after using cross-

validation for tuning the pre-processing technique hyperparameters. However, when the objective is to 

interpret the models and the spectral regions which are into play, the way pre-processing affects the 

signal needs to be carefully accounted for in order to make the correct spectral assignments134. 
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Although pre-processing appears as an important step in analyzing NIRS, this may also lead to the 

degradation of models due to a loss of information135. Some authors have argued that preprocessing is 

only here to compensate for small sample size in NIRS datasets136. Moreover, in some cases, the 

scattering information is highly correlated to the chemical information of interest112. For example, for 

dry matter content estimation, the baseline variations related to scattering have been found in fact very 

informative137. 

1.2.2 Application of NIRS to AD processes: where are we heading? 

1.2.2.1 NIRS for the fast characterization of feeding substrates 

The applications of NIRS to the monitoring of AD processes can be separated in two complementary 

approaches138: a NIR spectroscopic characterization of the process itself through the analysis of the 

digestate, or a NIR spectroscopic characterization of the input feedstock (the substrates) of the process.  

The use of NIRS to monitor the AD process was first demonstrated in an experiment with a reactor fed 

with a mixture of cellulose, albumin and minerals and exposed to an overload of glucose139. NIR spectra 

collected in-situ were shown adequate for the prediction of different constituents such as acetate 

(RMSEP=0.20 g.L-1, R2=0.88), proprionate (RMSEP=0.21 g.L-1, R2=0.93), glucose (RMSEP=0.6 g.L-1, 

R2=0.99) and phospholipid fatty acids (PLFAs)(RMSEP=9 nmol.mL-1, R2=0.98). A variety of 

studies138,140 further reported the use of NIRS to predict process variables including volatile fatty acids 

(VFA)141–147, total and volatile solids (TS and VS)142–144,147, nitrogen content (ammonia NH3 and 

ammonium NH4
+)142–144,146, alkalinity or total organic/inorganic carbon (TOC, TIC)144,145,147. Some 

developments aiming at optimizing the prediction performance include the use of different measurement 

modes (transflection142 or polarization146), or new modeling approaches (multi-block148). It appears from 

these studies that NIRS is a suitable technique for providing information on process state and potential 

instabilities. However, the quality of the prediction models (RMSE and R2) appears to vary significantly 

depending on the type of fed materials (municipal solid waste, maize silage, solid or liquid manure), the 

range of TS (i.e., below 5% or between 5% to 10%), and the range of the predicted parameter (i.e., VFA 

from 0.1-10 g.L-1 or 0.5-20 g.L-1). Therefore, the robustness of these systems still needs to be assessed144 

in AcoD processes where digestates are likely to cover a wider range of physical and biochemical states. 

As mentioned, another more indirect, or at least more upstream, monitoring approach of AD process 

consists in the use of NIRS for the characterization of the input feedstock. Such usage was largely 

inspired from the livestock community who used NIRS to assess the quality of plant/forage/feed tissue 

and predict diet quality from the corresponding feces149. In AD process, the biochemical methane 
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potential (BMP) is a crucial characteristic of a substrate: it corresponds to the volume of methane CH4 

gas that could be released in non-limiting AD conditions (usually expressed in mL(CH4).gVS-1). 

Depending on the substrate150, the reference measurement may last between 20 to 50 days as it consists 

in measuring the gas production during the substrate’s degradation151. Such cumbersome and expensive 

BMP assay led to the development of fast alternative methods152 including the use of NIRS-based 

models to assess BMP153 (see Table 1). Today, this allows to measure a BMP in less than 5 days 

(including transport, sample preparation and analysis). Though the benefits of using NIRS is clearer for 

BMP due to the time-consuming reference measurement, the use of NIRS has been extended to the 

prediction of biochemical composition components such as carbohydrates content, lipid content, 

nitrogen content, COD154, as well as methane fermentation kinetics41,155,156. Indeed, the biochemical 

composition has been shown to be a good indicator of the biodegradability and the methane potential of 

organic waste157,158. 

Table 1. A review of NIRS-based models for the characterization of solid organic waste. 

Type of sample Sample preparation Predicted 

characteristics 

Modeling 

approach 

Reference 

Municipal solid waste 

(MSW), green waste 

Freeze-drying + grinding 

(<2mm) 

BMP PLS M. Lesteur 

et al., 

2011159 

Fermented corn Oven-drying (55°C) + 

grinding (<1mm) 

BMP, kinetics PLS C. Grieder 

et al., 

2011155 

Meadow grasses Oven-drying (60°C/24h) + 

grinding (<0.8mm) 

BMP PLS C.S. Raju 

et al., 

2011160 

Energy crops Raw VS, COD PLS D. Wolf et 

al., 2011161 

Maize silage Raw BMP PLS H.F. 

Jacobi et 

al., 2012162 

Agro-industrial waste, 

MSW, Green waste, 

Wastewater Sewage 

sludge, Biowaste 

Oven-drying (40°C/48h) or 

Freeze-dried + grinding 

(<1mm) 

BMP PLS J. Doublet 

et al., 

2013163 

Reed canary grass Oven-drying (?°C) + 

grinding (<1mm) 

BMP, kinetics PLS T.P. 

Kandel et 

al., 2013156 

Maize silage Oven-drying (60°C/72h) + 

grinding (<1mm) 

Raw 

BMP PLS F. Mayer 

et al., 

2013164 

Plant biomasses Oven-drying (60°C) + 

grinding (<1mm) 

BMP PLS, PLS 

(on 

selection) 

J.M. Triolo 

et al., 

2014165 
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Grass, cereal residues 

(raw or silage) 

Oven-drying (60°C/72h) + 

grinding (<1mm) 

Raw 

BMP PLS, 

Local 

PLS 

B. Godin 

et al., 

2015166 

Crop residues, Grass Oven-drying (60°C/48h) + 

grinding (<0.8mm) 

BMP, Protein, 

Lignin, 

Cellulose, 

hemicellulose, 

NDF, ADF, 

carbon 

PLS R. Wahid 

et al., 

2015167 

Agro-industrial waste, 

MSW, Green waste, 

Wastewater Sewage 

sludge, Biowaste 

Freeze-drying + grinding 

(<1mm) 

BMP PLS S. Preys et 

al., 2015168 

Urban organic waste, 

Plant biomasses 

Freeze-drying + grinding 

(<1mm) 

BMP PLS, PLS 

(on 

selection) 

T. Fitamo 

et al., 

2017169 

Agro-industrial waste, 

MSW, Green waste, 

Wastewater Sewage 

sludge, Biowaste 

Freeze-drying + grinding 

(<1mm) 

Kinetics PLS C. 

Charnier et 

al., 201741 

Agro-industrial waste, 

MSW, Green waste, 

Wastewater Sewage 

sludge, Biowaste 

Freeze-drying + grinding 

(<1mm) 

Carbohydrates, 

Lipids, 

Nitrogen 

content, COD 

PLS C. 

Charnier et 

al., 2017154 

Agricultural residues, 

animal waste, MSW, 

agro-industrial waste 

Oven-drying (60°C) + 

grinding (<1mm) 

BMP PLS, PLS 

(on 

selection) 

P. 

Mortreuil 

et al., 

2018170 

Corn stover, livestock 

manure 

Oven-drying (60°C) + 

grinding (<0.85mm) 

BMP PLS, 

feature 

selection 

G. Yang et 

al., 2021171 

Corn stover, livestock 

manure 

Oven-drying (60°C) + 

grinding (<0.85mm) 

Cellulose, 

Hemi-

cellulose, 

Lignin 

PLS, 

SVM 

J. Liu et 

al., 2021172 

Agro-industrial waste, 

MSW, Green waste, 

Wastewater Sewage 

sludge, Biowaste 

Freeze-drying + grinding 

(<1mm) 

BMP, 

Carbohydrates, 

Nitrogen, 

Lipids, COD 

PLS A. Mallet 

et al., 

2021173 

 

In most cases, the samples are dried and ground to avoid the effects of water and particle size on NIRS 

(see section 1.3.1). Such preparation steps also reduce the high physical and chemical heterogeneity of 

most raw organic waste samples. The drying step is done in two ways: a freeze-drying process (freezing 

of the sample, lowering of pressure, then sublimation of ice into water vapor) or simple dehydration 

process (using oven-drying at about 60°C for about 48 hours). Furthermore, the grinding is mostly done 

on the dried sample (with the mesh size usually below 1mm). 
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Some studies show consistent BMP prediction results using NIR spectra taken directly on raw samples: 

using only corn silage162 or only plant biomass silage166. These studies offer great promises for the online 

supervision of input feedstock in mono-digestion plants174. However, these models appear to be built on 

substrates with limited biochemical composition ranges (only corn silage or only plant biomass silage), 

while the advantage of supervising the feeding substrates has been shown to be interesting mostly when 

the variability of biochemical composition is high162. 

It must be noted that other fast alternative methodologies to determine organic waste composition have 

also been developed using mid-infrared spectroscopy (MIRS)175 and in particular, for BMP 

determination176, using a photoacoustic measurement mode (FTIR-PAS) which allows measurements 

on dark and opaque samples177. The performances appear to be similar to NIRS, but MIRS suffers from 

lower spectral sampling capabilities which require cumbersome sample preparation steps (penetration 

of MIR light in organic materials is at the micron scale while the NIR light is at the millimeter/centimeter 

scale). 

1.2.2.2 Current limitations and opportunities 

Limitations of sample preparation to avoid water effects 

Today, NIRS-based characterization of feeding substrates appears as the most accurate and cost-

effective methodology178. However, the adoption of NIRS for on-line or at-site industrial applications is 

still very limited179. Different reasons may account for this low adoption. A first general reason is that 

NIRS involves a complex modeling and calibration process, with a regular maintenance of both the 

instrument and the calibrated model. But most importantly, as mentioned above, monitoring the feeding 

substrates appears most valuable when there is a high variability in the substrate type and quality162. 

Therefore, the system should be applicable on a wide variety of substrates. Currently, this has been 

shown possible, but still involves cumbersome, but necessary, sample preparation steps (drying and 

grinding) which makes the methodology unsuitable for on-line and at-site uses. Therefore, the samples 

are sent to the laboratory for analysis, which involves costs in logistics and precludes any real-time 

analysis. Another constraint related to the drying step is the fact that during this process, there is a loss 

of volatile compounds180 such as ammonia (NH3) or VFA, which may account for a high proportion of 

the methane potential (e.g., up to 30% of COD is lost in the case of spent apples)181. In order to 

compensate for this loss in some of the substrates, complementary reference analyses (COD, total 

nitrogen content) made on the raw substrate are sometimes required. Another constraint related to the 

current way substrates are analyzed (sent to a laboratory for analysis) concerns the potential errors that 

may arise from sampling and the lack of representativity (Figure 4), as described by the Theory of 
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Sampling (TOS)182. In fact, while it is important to reduce the analytical error itself (the NIRS system), 

the greatest variability of samples is often found in the first steps of the process, and may amount to 

100-1000 times this analytical error if not well controlled182.  

 
Figure 4. From a substrate to its predicted composition: the analytical pathway. For each steps of the analytical 

methodology, the state of the sample is provided, and the risks in terms of representativity errors are provided. 

Reducing the preparation steps and bringing the NIRS analysis directly online should certainly reduce 

the sampling steps and therefore mitigate the risk of obtaining biased and non-representative results due 

to unrepresentative sampling. 

It appears from this analysis, that while NIRS already provides tremendous advantages for the 

optimization of AD plants, there is a great need for the development of NIRS systems that enable an at-

site or online characterization of highly diverse organic waste types with cost-effective preparation steps. 

Opportunities provided by portable and low-cost spectrometers: an at-site and online use 

In the past few years, the use of NIRS has developed out of laboratories, thanks to important progress 

in the miniaturization of instruments183–185. In particular, handheld Fourier transform near infrared (FT-

NIR) micro spectrometers have appeared in the market, and make use of a micro-electro-mechanical 

systems-based (MEMS) Michelson interferometer186. While conventional Michelson interferometers are 

made of discrete elements (including the moving mirror actioned by a motor, the fixed mirror, and beam 

splitter), MEMS technology enables a monolithic integration of these elements on a single chip, with 

the particularity that the moving mirror is operated by an electrical signal. Amongst the spectrometers 

making use of this technology, the NeoSpectra instrument has shown good analytical performance 

results for soil organic and total carbon content characterization187,188, or authenticity screening in 

food189. These compact spectrometers allow the measurements to be performed on site, thanks to their 

compactness, robustness and cost. However, these compact portable spectrometers tend to have poorer 

instrument performances than laboratory spectrometer, with lower resolution, spectral range, and signal-

to-noise ratio184,185. Therefore, the suitability of such systems for the characterization of diverse organic 

waste still needs to be assessed. 
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Investigating the performances of low-cost, portable spectrometers, and the use of different 

measurement configurations including polarization, has been the object of an experiment presented in 

Paper IV – Fast at-line characterization of solid organic waste : Comparing analytical performance of 

different compact near infrared spectroscopic systems with different measurement configurations 

(published in Waste Management journal). In addition, the collected data has been published in an open 

access data paper published in Data in Brief journal (Paper V – On-site substrate characterization in the 

anaerobic digestion context: a dataset of near infrared spectra acquired with four different optical 

systems on freeze-dried and ground organic waste). Refer to the last section ‘Included Papers’ for the 

published versions and the full references. Results from this study demonstrated the suitability of low-

cost systems applied to dry organic waste samples. This makes one foresee even more an at-site and 

online use of NIRS on wet organic waste samples and further highlights the crucial need of finding ways 

to account for water effects. 

1.3 The effects of water on NIRS 

1.3.1 Moisture content effects on NIR spectra 

The effects of moisture content on near infrared spectra have been described for a wide variety of 

different matter types including soil190–196, crops197–201, food202, plants203, wood204, pharmaceuticals205, 

object models206–208, and water-dominant systems209. In addition, though not focused on the analysis of 

moisture content effects in NIRS, some studies used NIRS to monitor drying or hydration processes 

where moisture content varies210,211. 

Three broad OH absorbance bands 

The main water effect on NIRS that is described relates to the apparition of the three broad OH 

absorbance bands of water molecules (centered at about 1210 nm, 1450 nm and 1940 nm). These are 

attributed respectively to the combination of the first overtone of the O-H stretching and O-H bending 

band, the first overtone of the O-H stretching band and the combination of the O-H stretching band and 

O-H bending band of water209,212. 

Modifications due to changes in physical properties 

Other important effects described relate to changes of physical properties: pH, ionic strength, and 

differences in physical state (crystallinity/amorphicity) were all shown to change the observed spectra.208 

For example, while the spectra of dry crystalline solids (of single compounds such as sugars, amino 

acids) show sharp peaks, the wet amorphous solutions of these single compounds show broader peaks 
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like in polysaccharides such as cellulose and starch213. In addition to the modification of peak shapes, 

changes in moisture content have been shown to induce baseline modifications.191 

Modifications of hydrogen bonding and hydration state 

Finally, changes in moisture content modify the hydrogen bonding in the system, and have been shown 

to provoke peak shifts in the observed spectra.214–216 

1.3.2 Water, its model and current questions related to NIRS 

Although apparently a simple molecule (H2O), water shows complex behaviors and presents many 

physical anomalies compared to other liquids217,218. This is mostly explained by its dominating inter-

molecular hydrogen-bonding. However, as surprising as it may seem, the structure model of water is far 

from having reached a broad consensus219. In the past years, NIRS has been used to reveal details of the 

water structure and its functionalities in aqueous solutions, but very different models and interpretations 

of what constitutes the first overtone OH absorbance region in NIRS have been proposed. Using second 

derivative, up to 6 underlying water species were detected, and said to correspond to different water 

species : protonated water (Sr), and water with no, one, two, three, and four hydrogen bonds (S0-S4)220. 

Using non-linear fitting procedures, these authors fit six Gaussian peaks to reconstruct the observed 

spectra. This was later confirmed by other authors studying water-glucose solutions221. Though good 

reconstruction errors were obtained, these non-linear fitting procedures may suffer from user-guided 

hypothesis and initialization biases. In another study, using multivariate curve-resolution (MCR-ALS), 

three components were found best to explain water spectra at different temperatures222. Furthermore, it 

was shown that though water with salt showed the same trends, the position of these three components 

depended on the ionic strength of salts. The fact that the components were not forced to be Gaussian in 

this study could explain why a lower number of components was obtained. A two-state model (water 

species with weaker and stronger hydrogen bonds) has also been outlined using second derivatives, two-

dimensional correlation spectroscopy (2D-COS), and principal component analysis (PCA) applied on 

temperature-dependent NIRS223. Recently, this model was supported by new temperature-dependent 

data that suggests the presence of a coherent state224. In this experiment, an isosbestic point has been 

observed around 1438 nm which suggests the existence of an equilibrium between two 

populations/states of water, referred as the ‘mixture-model’225. Using second derivation, authors have 

found two negative subpeaks with stable positions under temperature variations (positioned at 1412 nm 

and at 1462 nm). However, the authors pointed out that the isosbestic point was not perfectly constant 

and could be dependent of temperature, as previously also observed by Gowen et al222, which seems to 
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be still an unresolved question today: is there a third population of vibration223? An interaction term? 

Baseline artefacts? A continuous distribution of hydrogen bond geometries226? 

A concept that has been developed in the recent years, called aquaphotomics227, deals with the water-

light interaction over the whole electromagnetic spectrum. It has been found that the first overtone OH 

region consists in 12 to 14 different water absorbance bands, each related to a given water structure209. 

Various water structures have been experimentally identified in various systems containing water and 

later found to be in agreement with theoretical calculations, such as, water solvation shells at 1364-1384 

nm, water molecules confined by ions with no hydrogen bonding at 1396-1403 nm228, free OH water 

with no hydrogen bonding like in water-vapor at 1403-1418 nm (S0), protein hydration shells at 1418-

1430 nm, water molecules with 1, 2, 3 or 4 hydrogen bonds (S1-S4) respectively at 1432-1454 nm, 

1458-1468 nm, 1472-1482 nm, 1482-1495 nm, and strongly bound water at 1506-1516 nm. Shao et al.88 

on the other hand, in the same region found 10 spectral components (Gaussian peaks) corresponding to 

9 different water molecular structures, using knowledge-based genetic algorithm.  

It appears from all these studies that the NIR spectra of wet materials hold information on the water state 

(which could allow to differentiate between substrates). However, the correct assignment of these bands 

to water states implies that the peaks truly correspond to absorbing species and are not due to scattering 

artefacts as introduced in Section 1.3.1. This makes it difficult to consolidate water state specific 

assignments in scattering materials. At least, the effects of scattering need to be taken into account before 

being able to do it. 

1.3.3 Moisture content effects on NIRS quantitative calibrations 

The various effects of moisture content on the NIR spectra that have been described result in a 

deleterious effect of moisture content variations on the quality of quantitative calibrations if not 

accounted for. For example, the accuracy of soil organic carbon (SOC) content NIRS-based predictions 

was evaluated with an R2 of 0.82 and RMSE of 1.65 g.100g-1 on dried samples (MC%<5%), while it 

declined to an R2 of 0.52 and RMSE of 7.75 g.100g-1 on wet samples (MC%=18%)128. For sorghum 

grain protein content NIRS-based predictions, the accuracy shifted from an R2 of 0.90 and an RMSE of 

0.42 g.100g-1 on dry samples (7.5%<MC%<12%) to an R2 of 0.72 and RMSE of 0.87 g.100g-1 on wet 

samples (7.5%<MC%<18%)229. This highlights the need to account for moisture content variations in 

the NIRS calibrations. However, even when models are built on wet samples, it appears the quality of 

the models remain low: for example, for silage analysis, the quality of models (evaluated by RMSE and 
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R2) built on intact fresh samples was shown not to match the quality of models built on dried 

samples166,230,231. 

This suggests there is a need to develop new methods that specifically take into account moisture content 

effects in order to build reliable quantitative calibrations which are robust to moisture content variations. 

2. Objectives 

2.1 Identified levers for building models robust to water effects 

Any given analytical system has a scope of action (i.e., conditions of functioning). While here the effect 

of moisture content will be studied, a variety of other influencing factors may influence the result of the 

analysis (material heterogeneity, temperature, humidity, operator, seasonality, instrument, etc.). In order 

to make the system robust towards this influencing factor (i.e., the results provided by the analysis do 

not vary according to the influencing factor), many different methods can be employed as illustrated 

(Figure 5). 

 
Figure 5. Strategies for robustifying a NIRS system. 

2.1.1 Sample preparation 

Drying steps 

Certainly the most easiest yet very time-consuming strategy to reduce water effects on NIRS is to control 

the moisture content range under a certain level (0%-5%) through a drying process. As mentioned 

earlier, this can be done through freeze-drying or simple dehydration (oven-drying at 60°C for 48h). 

This way of proceeding is today the most common way NIRS is applied in laboratories on crops, soils, 

food, waste, etc. The freeze-drying process appears as most suitable for drying organic waste which are 

thermally sensitive and prone to oxidation (Maillard reactions) since it operates at low temperatures and 

under high vacuum.Though the drying process allows to reduce strongly the moisture content range, 

residual moisture remains and may still have a significant impact on the multivariate calibrations232,233. 
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Grinding / Homogenizing / Filtering / Diluting / Centrifuging 

The choice of sample preparation for NIRS analysis should not be targeted to reduce exclusively one 

influencing factor, as there may be strong interactions with other factors. For example, the moisture 

content effects will themselves be affected by particle size or temperature. This is why, while a drying 

step will by definition reduce the moisture content effects, a grinding step may also reduce the moisture 

content effects by uniformizing the particle size. Indeed, particle size effects (grinding at 1 mm or 0.5 

mm) were evaluated on powders233, but also on wet substrates (homogenizing at 50 μm or 100 μm)234. 

Grinding complex and diverse physical matrices can be complicated, one way of doing is to use freeze-

grinding (dry ice grinding), as previously tested on silage samples231, but this process still appears 

cumbersome. 

Another strategy may consist in reducing the moisture content range (but not necessarily to very low 

levels like in drying), through filtration. Filtration through a 1 mm mesh filter applied to livestock slurry 

and digestate samples was shown to enhance the prediction of TKN, TAN, and VFA, thanks to a 

reduction of scattering effects234. Similarly, meat samples were centrifugated and filtered before NIRS 

analysis to discriminate frozen and unfrozen meat samples235. Of course, for quantification purposes, 

this requires to measure the filtered/unfiltered quantities to express the final quantity on a raw basis, just 

like dry matter content is required when drying. 

Dilution may also be used to reduce the moisture content range. For example, rewetting of dry soil 

samples was reported to enhance the SOC calibration in soil: one of the reason could be that it reduces 

the over-estimations of samples rich in sand236. The same results were obtained for clay content 

determination.237 

Additives: drying salts 

One way of “drying” a sample, is using drying solvents such as sulfate magnesium. These drying agents 

are used to purify alcoholic solutions for example. Unfortunately, it seems adapted to liquids only, as 

the subsequent separation of the dried organic solution from the drying salt is usually done by gravity 

filtration or decanting. 

Additives: plating agents 

One way to “structure” a sample is to use plating agents where water is encapsulated by nano-particles 

which gives the sample a powder aspect while being at high moisture content levels. This is the concept 

of dry water238,239. This has never been studied using NIRS, but it is highly probable that this structuring 

allows to modify the scattering. This could transform liquid samples into new samples that have 
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comparable levels of scattering to solid powders. Again, for quantification purposes, the mixing 

proportions of the plating agent and the substrate would need to be evaluated and accounted for. 

Fast drying techniques 

In order to reduce the time-consuming freeze-drying step, fast drying systems have been proposed: 

DESIR system240–248 and SPOT244, with applications such as fungicide residues detection on intact 

lettuces249. It seems the biggest constraint for the system to work is that the sample should be very 

homogeneous, as there is little sampling of the matter since the quantity is of 0.5 mL to 1 mL. There is 

apparently also little reproducibility regarding the preparation and drying step. Moreover, the loss of 

volatiles pertains, as any drying step. Authors state the drying is fast enough for Maillard reactions not 

to take place; but nitrogen saturated environment could ensure this more. For all these reasons, the 

system seems very well adapted to liquid and homogeneous matrices such as milk, fruit juices, beer, 

wine, etc. For solid organic wastes, a centrifugation, followed by the characterization of the liquid part 

could be imagined, but, this means precisely quantifying solid/liquid proportions. Another possibility, 

is to make sure the sample is sufficiently homogenized, which is the purpose of SPOT system, where 

manual grinding of the sample is done in a mortar. 

In general, finding a common preparation methodology applicable to the diversity of organic waste is 

difficult. The way a straw, a milk solution, a glycerol solution or a syrup should be grinded, or dried will 

be different. It seems the solution can be found by using a combination of techniques, but this inevitably 

makes the preparation cumbersome. 

2.1.2 Measurement mode 

Other development efforts to increase the accuracy and robustness of NIR systems have rather focused 

on enhancing the measured signal directly. A promising ‘optical pre-processing’ method, based on 

polarized light spectroscopy250 has been proposed to improve the absorbance signal measurement on 

such scattering samples251–253. Such system has shown analytical performance improvements for soils254, 

and more recently, for digestate146, but has never been evaluated on solid organic waste. Still in the aim 

of enhancing the measured spectra, time-resolved spectroscopy shows a promising future: applied to 

pharmaceutical tablets, collected photons with a particular propagation time were shown to be most 

informative for quantification255,256. However, the cost of this technology still remains prohibitive for 

the organic waste management sector. Finally, the measurement mode (at distance or in contact, in 

reflectance or in interactance) also plays an important role in the final accuracy for estimating 

biochemical properties48,257,258. Though current used laboratory spectrometers make use of a distance 
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reflectance measurement, a contact immerged probe measurement has been shown to be useful for 

prediction of parameters on digestates146. Authors observe higher reflectance levels with less noise in 

the collected spectra, as well as new chemical features which were not apparent in a remote probe 

configuration. In light of this, it appears that the use of different measurement configurations could 

enable the calibration of more accurate and more robust NIRS models on diverse solid organic waste. 

2.1.3 Building robust model pipelines 

The last way of robustifying the NIRS-based analytical systems lies in the modeling pipeline itself. A 

summary of the methodologic levers allowing the robustification of a model pipeline in regards to 

external factor influences (moisture, temperature, seasonality, spectroscopic instrument, etc.) is 

provided in Table 2. This further consolidates the schema provided by Bellon-Maurel et al259. 

Robustification can happen at three levels: transforming the input spectra, transforming the model itself 

or transforming the output predictions. For each of these three levels, methods will differ depending on 

whether external data related to the external factor influence (noted as 𝑮) is used or not. For 

simplification, 𝑮 can correspond to the level of the external factor (temperature level, moisture content, 

spectrometer type) and/or to the spectra which span the external factor influence range (spectra acquired 

at different temperatures, spectra acquired at different moisture content levels, spectra acquired using 

different spectrometers). Indeed, methods may use only the external factor, only the external spectra, or 

both together. 

Without external (nuisance) data 

When not using external data, the robustification strategy consists in applying a classical chemometrics 

approach. If all the steps (pre-processing, modeling) are well optimized, the found model should be 

made simple and robust. This approach has already been detailed above (section 1.2.1.2). However, in 

most cases, the dataset does not contain the full range of levels that the external factor may cover in 

practice. Therefore, without the use of external data, it is most probable that the obtained model will be 

affected by the influencing factor. Amongst the simple but noteworthy approaches which are directly 

targeted to moisture content correction, there is the principle of manually cutting the water spectral 

regions (1300-1600 nm and 1800-2000 nm) which are expected not to hold any useful information196,260. 

With external (nuisance) data 

When using external (nuisance) data, it appears the most simple approach is to add the external nuisance 

data to the calibration model, a method refered as the exhaustive model, model augmentation or model 

update strategy229,261–263. Within these approaches, some methods make use of the quantified levels 
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(clustering approach based on the nuisance levels, like moisture-explicit DS264), and others don’t 

(clustering approach using a humidity index265–267). 

Most methods use a separate nuisance dataset with quantified levels of the interfering factor. Amongst 

these, the external orthogonalization parameter pre-processing (EPO)125,128,204,268–273 requires a targeted 

experimental design to identify the nuisance spectral subspace and then makes use of an orthogonal 

projection to this subspace to remove the related information. This method can be potentially combined 

with a prior OSC to remove in the nuisance data any variations related to the reference data y274. Other 

a priori methods try to model the transformation between the nuisance spectra and the reference spectra, 

like direct standardization (DS273,275,276 and its piecewise version PDS277,278), latent variable modeling 

such as PLS279 or local standardization approaches such as nearest neighbor spectral correction 

(NNSC)279. These methods are interesting due to the fact that they provide the dry spectra that can be 

studied for other purposes, but tend to be very sensible to noise (DS, PDS), or depend on a similarity 

distance (NNSC) which has unpredictable or biased behaviors in high-dimensional data such as NIRS. 

In addition, more simple methods make use of humidity indexes to correct the spectra from moisture 

effect193. Of course, a posteriori methods have also been proposed to correct the predictions using bias-

slope correction261,264, but this seems mostly suitable for simple interferences. 

Still in the case of a separately acquired nuisance dataset, some methods can cope with unquantified 

levels of the interfering factor. Amongst these, as reviewed by some authors78,280, there are orthogonal 

net analyte signal (NAS) pre-processing approaches (IIR281, DO282, EROS283, SBC284), generalized 

Tikhonov regularization (GTR) and augmentation approaches (repeatability file260,285–287, counter-

balanced distortions288) and generalized least squares (GLS) pre-processing approaches 

(GLSW124,289,290). More recently, domain adaptation methods such as domain adaptive PLS (DA-PLS)291 

and domain invariant PLS (DI-PLS)292 make use of regularization to make sure that the differences 

between the projected X and the projected nuisance X are low. Compensation of instrumental/seasonal 

and sensor temperature changes has been evaluated for NIR-based fruit quality assessment292,293. 

In all these approaches, a trade-off needs to be found between the complete removal of the interfering 

spectral subspace and the preservation of enough analyte information in the calibration dataset. 
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Table 2. Methodology for building robust models in regards to external factor influences. 

Model pipeline 

components/levels 

Use of external data (G) 

No Yes 

Input spectra 

 

𝒀∗ = 𝑿∗. 𝑏 
 

 

𝑿∗ = 𝒇(𝑿) 
 

- Centering/scaling (SNV) 

- Derivation (SG, DWT) 

- Baseline correction (DT, 

ALS, CR, MSC, EMSC, 

OPLEC, VSN) 

- Feature engineering (CWT, 

SPORT) 

- Feature selection (cut water 

bands) 

 

𝑿∗ = 𝒇(𝑿, 𝐆) 
 

- Orthogonal projections (EPO, 

TOP, DOP) 

- Transfer methods (PDS) 

- Add metadata (G) to X 

Model 

 

𝒀∗ = 𝑋. 𝒃∗  
 

 

𝒃∗ = 𝒇(𝑿,𝒀) 
 

- Feature selection (CovSel, 

VIP, iPLS) 

- Regularization (Tikhonov 

regularization, sparse 

methods) 

- Local approach (based on 

spectral distance) 

- Non-linear methods (RF, 

CNN, SVM) 

 

𝒃∗ = 𝒇(𝑿, 𝒀, 𝐆) 
 

- Model update (exhaustive 

model, conjoint model, 

repfile) 

- OSC-EPO-PLS 

- Local approach (based on 

expert knowledge, or on G) 

- Regularization (domain 

invariant methods) and 

skewing (GLSW) 

Output predictions 

 

𝒀∗ = 𝒇∗(𝑋. 𝑏) 

 

 

𝒀∗  = 𝒇(𝒀) 
 

- Deterministic transforms 

(log/power) 

 

𝒀∗ = 𝒇(𝒀, 𝐆) 
 

- Bias-Slope correction 

- More complex functions 

(quadratic, non-linear) 

 

2.1.4 Current progress and limitations in regards to correction of water effects 

Several methods have been used and compared to deal with water effects on simple materials such as 

pharmaceuticals205 and complex materials such as crops260,286,287, soil279,294–296, and food129,202,297,298. From 

these studies, it seems that EPO, GLSW and a priori PDS provide the best results for dealing with 

water’s interfering effects. Of course, extending the calibration model to wider conditions of 

applicability usually leads to poorer prediction results of the spectra for samples at original conditions 

(dry samples). But, in many cases, the model performance on the original conditions has been improved 

as well (meaning it allowed a better estimation of the net analyte signal). 
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However, in most of the successful cases, the moisture content range for which water effects are 

corrected remains very limited (moisture contents from 1% to 20%); and most importantly, the type of 

matter is very homogeneous (similar physical structure and biochemical type). The most similar field 

related to applying NIRS on organic waste is soil spectroscopy, where highly heterogeneous physical 

matrices may be found, and difficulties have been shown for applying correction methods globally237,299. 

2.2 Research questions, contributions and outline of the thesis 

2.2.1 Research questions 

As presented, in the last ten years, NIRS has proven to be a fast and reliable characterization system of 

organic waste materials with a wide range of biochemical and physical types. This general applicability 

has made it the perfect tool for characterizing the feeding substrates in bioprocesses such as anaerobic 

digestion. However, to avoid moisture content effects on NIRS, a drying step is today necessary. 

Unfortunately, this sample preparation step comes with several drawbacks. Chemical changes need to 

be taken into account such as the disappearance of volatile compounds during drying. Moreover, the 

cumbersome drying step limits any on-site and on-line application.  

As reviewed in Section 2.1, the most appealing strategy to avoid moisture content effects would rather 

consist in changing the way the models are built so that they become insensitive to moisture content 

variations. While some robustification methods have already been shown successful, it appears that 

these methods have been studied in restricted conditions with a limited range of moisture content levels 

and a limited range of biochemical composition type. This thesis work aims to tackle this challenge by 

(i) developing a better understanding of the moisture content effects on NIRS applied to a wide 

range of organic materials, and (ii) finding new ways of building models that are robust to moisture 

content effects. The underlying questions of each of these two topics can be further detailed as: 

1) Analysis of the complexity of moisture content effects: How does water affect the spectra? 

What are the chemical and physical effects? How do these effects differ from one substrate to 

another? How do these effects depend on moisture content? Can these effects be modeled? 

2) Evaluation and development of modeling strategies to deal with these moisture content 

effects on highly heterogeneous databases (organic waste): How do existing global correction 

methods deal with these effects? What strategy appears most suitable? 
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2.2.2 Contributions and outline of the thesis 

The next chapters are structured around the major contributions of the thesis work. These contributions 

can be summarized as: 

An experimental set-up for collecting the moisture content effects on NIRS on organic waste 

(presented in Chapter II) 

A comprehensive experimentation was designed to study the moisture content on NIRS at ambient 

conditions. This involves the design of a system that can acquire NIR spectra of various organic waste 

during their drying while estimating the moisture content. A unique database was constituted during the 

thesis and includes substrates that cover a very wide range of biochemical composition and physical 

properties. 

An evaluation of chemometrics global correction techniques (presented in Chapter III) 

An evaluation of global robustification techniques was done in the aim of avoiding moisture content 

effects in existing NIR models built on dry samples. A wide range of techniques were evaluated. 

A comprehensive analysis of water effects on NIRS (presented in Chapter IV) 

This thesis allowed to draw a generic picture of water effects on NIRS, thanks to the study of complex 

organic matrices covering a wide range of biochemical composition (sugar, proteins, carbohydrates) and 

physical properties (physical state, crystallinity, granulometry). The non-linearity of water effects is 

demonstrated. 

A new approach for modeling water effects on scattering media (presented in Chapter V) 

Through the study of a simple system composed of water and aluminum, the Bouguer-Beer-Lambert 

theoretical framework was modified to take into account the effects of moisture content on scattering. 

This holds promises for the spectral studies of wet systems, including the prediction of dry matter 

content. 

An advocacy for a knowledge-based local approach (presented in Chapter VI) 

This thesis allowed to identify groups of substrates with common moisture content influences. These 

groups can serve as a basis to build local predictive models, a strategy that is proposed to account for 

the non-linearity in water effects. 
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Chapter II. Materials & Methods: an experimental set-

up for collecting spectral variations related to moisture 

content variations 

This chapter covers the Materials & Methods presented in the Paper II  – Unveiling non-

linear water effects in near infrared spectroscopy: A study on organic wastes during 

drying using chemometrics  (published in Waste Management journal).  See section 

“Included Papers” for the full reference and published article.  

1. Introduction 

In order to better understand the water effects on NIRS, a spectral dataset consisting of organic waste at 

various moisture content levels was constituted. For this, a customized air-drying system with dynamic 

NIR acquisition and moisture content estimation was designed. This chapter presents the system and the 

dataset that was constituted. The reader is invited to refer to Paper I for full details on the Materials & 

Methods. 

2. Materials & Methods 

Dehydration vs. rehydration 

Most studies aiming at studying the moisture content effects on NIRS have operated by adding various 

amounts of water to a previously dried sample. On the opposite, here, we acquired spectral variations 

during drying experiments instead. Indeed, it is known that there is an hysteresis effect in organic matter: 

for example, the evolutions of water activity with dry matter content will be different during dehydrating 

(water desorption) or during hydrating (water absorption). In other words, drying a raw salad and 

rewetting it will probably not result in the same salad and therefore not the same measured NIR 

spectrum300. 

Dynamic NIR spectra acquisition and moisture content determination during drying 

For this purpose, a customized near infrared acquisition system was developed (Figure 6, detailed in 

Paper I), with dynamic highly-resolved simultaneous scanning of near infrared spectra and estimation 

of dry matter content during a drying process at ambient temperature. 89 organic waste substrates were 

measured using the system. Each drying experiment lasted between 12 hours and 72 hours depending 

on the substrate type. The substrates were chosen to represent a wide range of organic waste with 
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different chemical composition: fruits (banana, apple), vegetables (carrots, onions, salads, potato), farm 

residues (manure, silage, soya meal, grass), dairy products (cream, yoghurt, butter), meat products (beef, 

grilled/fresh meat, fish), food industry materials (sugar, sauces, fried potatoes, wheat flour) and various 

AD organic waste (water treatment sludge, digestate, dairy sludge). In order to provide control samples 

with simplified water effects due to limited water chemical interactions, a selection of packaging 

materials were also measured (wood, paper, aluminum, plastic). The obtained dataset consists of 

116,000 spectra of 89 substrates covering a wide range of moisture content (5% to 95%). In parallel, all 

the substrates were freeze-dried and ground to 1 mm, and the biochemical composition was determined 

using a previously calibrated NIRS model154. 

 

Figure 6. Experimental set-up for the collection of NIR spectral variations related to moisture content 

variations. The samples are put into a rotating quartz cup over an FT-NIR spectrometer (Buchi N-500) which 

automatically collects reflectance spectra (1000-2500 nm). The sample cup is plugged to a closed tube loop 

connected to a strong dessicant (sodium hydroxide) which captures the water present in the gas phase. A 

peristaltic pump generates an internal circulation of the air, leading to a progressive drying of the substrate. To 

evaluate the loss of water during drying (i.e., therefore the moisture content MC of the sample), the desiccant is 

weighed continuously using a precision balance. 

A dataset of highly diverse biochemical types which complexifies data structure 

Figure 7 presents the biochemical composition of the samples. All characteristics show non-Gaussian 

distributions, which illustrates the high diversity of biochemical types. This distribution impacts the 

structure of the data, and a special care must be taken when analyzing data. Indeed, for example, the fat 

content histogram clearly highlights two populations: one population with no or very low fat content 

levels (<0.2 g.gTS-1) and another population with very high fat content levels (>0.7 g.gTS-1). 

Unfortunately, such structuring is difficult to avoid, as intermediate compositions with 0.5 g.gTS-1 of fat 

content level results in biphasic systems. 
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Figure 7. The sample characteristics. Histograms of the reference values for the dried samples. 

A very wide range of moisture content 

Figure 8 presents for each substrate the range of moisture content over which spectra were obtained. 

The accuracy of moisture content determination was evaluated (detailed in Paper I) and a mean over-

estimation of +0.21% and a standard deviation of ± 2.30% were obtained. This appears marginal 

compared to the large range of moisture content studied. However, this does imply that drawing 

conclusions on spectral effects due to water over 2-3% of moisture content differences should be done 

carefully. Contrarily to many studies that focused on limited moisture content ranges (1% to 25%), a 

very wide range of moisture content was obtained (5% to 95%). However, substrates were not all 

measured along the same moisture content range (Figure 8). Several reasons explain this including 

differences in the initial moisture content (very high moisture contents like salad_1 or digestate_1, and 

very low moisture contents like butter_2, mayonnaise_1), drying inefficiency related to highly bound 

water or intra-cellular water (syrup_1, ketchup_1, banana_2, orangepulp_1) as well as simple 

experimental drying interruptions due mostly to electric failures (banana_1, crustbread_1, 

sunflowermeal_1, grass_1, weeds_3). Theses latter samples were still kept in the dataset because they 

still represented useful spectral variance related to moisture content variations. Two families of 

substrates can already be defined from these drying behaviors: hydrophobic substrates for which high 

moisture content levels are difficult to obtain (without having a biphasic sample) but are easily dried 

(like butter, sour cream, mayonnaise), and hydrophilic substrates in which water is more difficult to 

extract (like syrup, ketchup, banana, orange pulp). Within hydrophilic substrates, the final moisture 

content to which the substrate was dried relates to numerous factors and their complex interaction such 
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as the presence of gelling agents like pectin, or water soluble molecules like saccharides, as well as the 

interaction of proteins and starch controlling viscosity and swelling characteristics301. 

 
Figure 8. The range of moisture content covered for all substrates. 

The temperature variations during drying and its effects 

For each drying experiment, the temperature was monitored both inside the measurement cell and 

outside in the room. The mean temperature measured for all substrates is 28.3 °C, with a standard 

deviation of 1.8 °C. Such variations in temperature between each substrate drying experiment can be 

explained by the daily temperature differences from one experiment to another. Though the 

measurements were taken in a temperature controlled room, temperature differences were still observed. 

Moreover, the standard deviation of within-substrate temperature differences observed during drying is 
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1.15°C. Such sample temperature variations during drying can be explained by two factors: heating 

resulting from the spectrometer’s lamp, and heating resulting from the absorption of water by the 

desiccant. 

Unfortunately, variations of temperature may have a strong impact on the acquired spectra and may lead 

to the alteration of quantitative calibration models as many authors have shown125,261,263,297,302–304. Indeed, 

as temperature rises, proportions of molecular vibrations within each molecular vibrational energy levels 

change, which has a direct impact on the absorption of photons (i.e., the spectra). Visually, a horizontal 

shift of the broad absorbance bands can be observed in the spectra224, but in fact this relates to vertical 

absorption changes from the originating sub-bands. To have an idea of the magnitude of such changes, 

in the case of pure water at 22°C, it has been measured that at 1410 nm (free OH water peak), a +1°C 

temperature change increased the intensity of the absorbing peak by +0.8% (i.e., temperature coefficient 

of 0.8% °C-1)305,306. However, as these authors highlighted, because scattering has little if no temperature 

dependence, the temperature coefficient applies exclusively on the absorption coefficient and not on the 

scattering coefficient. Though these changes could indeed alter the exact assignment of bands, they are 

very limited compared to the spectral variations induced by moisture content changes. 

Water effects on NIR spectra: a combination of physical and chemical effects 

Figure 9 shows some examples of near infrared spectral evolutions during drying, representative of the 

main types of evolution observed (spectral evolutions for all other substrates are provided in Appendix 

C of Paper I). These effects are also showed after a second derivation using Savitzy-Golay which 

deconvolutes the broad absorbance peaks (Figure 10). Different effects can be observed. 

Firstly, water variation modifies strongly the global pseudo-absorbance level of the spectra: these 

baseline shifts probably relate to scattering modifications, as already reported91,92. Interestingly, for 

suspensions, the pseudo-absorbance level increases with water content increase, while for the emulsions 

(cream, butter, oil), it decreases. 

Secondly, for all substrates with intermediate and high moisture content levels (spectra in dark blue), 

well-known broad absorbance features due to OH vibrations are observed in the NIR spectra around 

1210 nm, 1450 nm and 1940 nm. These are attributed respectively to the combination of the first 

overtone of the O-H stretching and O-H bending band, the first overtone of the O-H stretching band and 

the combination of the O-H stretching band and O-H bending band of water209,212. 

During the drying process (from blue to red), new absorbance features in relation with chemical 

composition progressively appear (related to OH vibrations of sugars or fatty acids, NH vibrations of 



Chapter II 

34 

proteins, CH vibrations of alkanes, the C=C vibration of alkenes, and C=O vibrations of 

ketones/aldehydes). 

 
Figure 9. The raw pseudo-absorbance spectra colored by moisture content (blue for high MC, red for low MC). 

The spectral variations are presented for nine substrates representative of the diversity of biochemical 

compositions and physical properties (poultry manure, ramial chipped wood / rwc, fish, cooked steak, sugar, 

syrup, sour cream, aluminum and plastic bag). 
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Figure 10. The preprocessed spectra (Savitzy-Golay second derivation with polynomial order of three and 

window length of 21) colored by moisture content (blue for high MC, red for low MC). The spectral variations 

are presented for nine substrates representative of the diversity of biochemical compositions and physical 

properties (poultry manure, ramial chipped wood / rwc, fish, cooked steak, sugar, syrup, sour cream, aluminum 

and plastic bag). 

3. Opportunities 

The opportunities provided by this experimental design and the resulting dataset are numerous: 

- Drawing a generic picture of water effects on NIRS. Indeed, the wide range in moisture content and 

in biochemical types allows to provide a generic picture of water effects on NIRS. A variety of 

exploratory data analyses can be applied to describe the effects (e.g., PCA, ICA, MCR-ALS, 2D-COS).  

- Building a model for dry matter content prediction. This experimental design can be used simply 

for calibrating models for the prediction of dry matter content on organic waste. One of the advantage 

of the system is that the temperature remains stable and at ambient conditions (contrarily to other drying 

systems such as oven-drying or freeze-drying), which means that the built model can then be applied 

directly on measurements made in the laboratory or online. 

- Evaluating model correction methods. Using this experimental design the spectral variations related 

to moisture content variations are captured. This allows to build models robust to variations of moisture 
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content. Various robustification methods can be developed and tested (orthogonal projections, 

shrinkage, regularization, transfer) as reviewed in Section 2.1.3. 

- A new way of measuring substrates: adding the moisture content dimension. While the 

measurement in NIRS usually consists in a repeated measurement of a sample, the possibility of 

measuring the sample during its isothermic drying can be envisioned. Indeed, adding the moisture 

content dimension should provide richer information enabling the separation of substrates. In analogy, 

temperature-dependent spectra have been proposed where a substrate is scanned at various temperatures; 

which enables a better characterization of aqueous systems307–309. 

- The use of NIRS for better understanding the drying behaviours of food. The drying behaviours 

of food samples as well as pharmaceuticals is of particular interest for the design and control of drying 

processes. The use of NIRS can be used to identify the drying curves phases (both physical and chemical 

changes), as well as to determine the end of the drying process
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Chapter III. Limitations of global correction approaches 

for moisture content correction 

This chapter covers results that are not yet published, but a paper  (Paper I – Limitations 

of global correction approaches for moisture content correction in the context of 

organic waste characterization) is in preparation and will be submitted shortly.  

1. Introduction 

As reviewed in Section Chapter I.2.1.4., there is a wide range of global correction strategies that could 

be applied for accounting moisture content effects. However, these correction have never been assessed 

in the context of multiple organic waste (which implies diverse physical and biochemical characteristics) 

and on a wide range of moisture content. This chapter presents a study that addresses this issue by 

applying ten different global correction approaches in the aim of correcting an existing biochemical 

methane potential (BMP) prediction model trained on dry samples (MC%<5%). The following methods 

were employed: 

- Two simple approaches which do not require any external data: a spectral range selection 

approach where water bands are cut (the “cut water bands” approach)196,260; and an approach 

where the dataset is column scaled (the scaling approach)80. 

- The model update approach (also called “spiking”, “exhaustive model”, “data 

augmentation”)229,261–263, which consists in adding the nuisance data to the calibration dataset 

and building a model classically using PLSR. 

- The External Parameter Orthogonalization (EPO) approach125,128,204,268–273 which consists 

in projecting the calibration spectra orthogonally to the subspace spanned by the nuisance data. 

- The OSC-EPO approach274,310 which is a variant of EPO where the calibration spectra are also 

projected orthogonally to the subspace spanned by the nuisance data. However, the nuisance 

subspace is found by priorily removing the information that is related to the predicted 

characteristic of interest, using orthogonal signal correction (OSC). 

- The skewing approach using generalized least squares weighing (GLSW)124,289,290 which 

consists in down-weighing spectral regions of the calibration spectra depending on where and 

how much the nuisance spectra vary. 



Chapter III 

38 

- The repeatability file (REPFILE)260,285–287 approach which is a data augmentation strategy 

that consists in adding the nuisance spectra to the calibration spectra and setting the reference 

characteristic values to zero. Each of the two blocks (calibration and nuisance) are weighted 

according to its respective number of samples. 

- The transfer approach using piecewise direct standardization (PDS)277,278 which consists in 

building a linear model that transforms the spectra from the nuisance data into the calibration 

spectra. This methodology has been used successfully for instrument standardization. 

- Since each of these strategies may have their specific advantages and drawbacks, an ensemble 

correction approach is here proposed where the predictions made by all correction methods 

are stacked together using a PLS model. 

2. Materials & Methods 

All the methods were coded in Python, and were made available on 

https://framagit.org/AlexM/nirsmodelcorrection. 

In this study, the drying experiment dataset (presented in Chapter II Section 3) was used. Two datasets 

were defined: 

- The “calibration data” which corresponded to the spectra 𝑋𝑟𝑒𝑓 of freeze-dried and ground 

substrates, and their corresponding biochemical characteristics 𝑌𝑟𝑒𝑓. This dataset allowed to 

model the relationship between the spectral variations and the biochemical characteristic of 

interest (here, the BMP). 

- The “nuisance data” which corresponds to all the spectra 𝑋𝑛𝑢𝑖𝑠𝑎𝑛𝑐𝑒 acquired during the drying 

experiment on the 89 substrates, and their corresponding biochemical characteristics 𝑌𝑛𝑢𝑖𝑠𝑎𝑛𝑐𝑒.  

This dataset represents the spectral variations from which the model needs to be insensitive to. 

The methodology used to train and compare the correction strategies is presented in Figure 12. The train 

and test sets were defined for the calibration data using the Duplex algorithm311 applied on 𝑌𝑟𝑒𝑓. This 

allowed to ensure a good representativity in terms of BMP (Figure 11). The substrates’ spectra from the 

nuisance data were then attributed accordingly to train and test sets. This procedure ensured that no 

substrates were found both in train and test sets. 

 



Chapter III 

39 

 

 
Figure 11. Histograms of BMP values for the train and test set (respectively in blue and orange). 

The model correction comparison was run on raw spectra and preprocessed spectra using Savitsky-

Golay second derivation (SG2), or VSN. However, because similar results were obtained, only the 

results on SG2 spectra are provided here. 

With the train calibration and nuisance datasets, the model hyperparameters were tuned using a 5-fold 

cross-validation repeated 30 times. In the cross-validation process, each substrate’s spectra were kept in 

a unique fold to increase the requirement for robust models. The parameter or combination of parameters 

which minimized the RMSE-CV was selected. Nevertheless, the evolutions of other criteria such as the 

mean absolute error (MAE), the coefficient of determination (R2), the variance of b-coefficients and 

Durbin-Watson (DW) criteria applied to b-coefficients were also evaluated to adjust the final choice of 

the model parameters. Once the model parameters were selected, the model was trained on the 

calibration and nuisance train dataset, and predictions were made on the calibration and nuisance test 

datasets. 
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Figure 12. Flowchart for the comparison of moisture content correction strategies. 

The formulas of the different statistics used (root mean squared error (RMSE), mean absolute error 

(MAE), coefficient of determination (R2), squared Pearson’s correlation coefficient (r2), and bias (b)) 

are detailed below. Let 𝒚𝒊 be the observed reference variable, and 𝒇𝒊 the predicted reference variable for 

a given spectrum 𝒊. Let �̅� and 𝑓 ̅their respective mean values over the whole dataset (train or test set). 

 

𝑹𝑴𝑺𝑬 =  √
∑ (𝒚𝒊 − 𝒇𝒊)

𝟐𝒏
𝒊=𝟏

𝒏
 

(Eq. 5) 

 
𝑴𝑨𝑬 = 

∑ |𝒚𝒊 − 𝒇𝒊|
𝒏
𝒊=𝟏

𝒏
 

(Eq. 6) 

 
𝑹𝟐 = 𝟏 −

∑ (𝒚𝒊 − 𝒇𝒊)
𝒏
𝒊=𝟏

𝟐

∑ (𝒚𝒊 − �̅�)
𝟐𝒏

𝒊=𝟏

 
(Eq. 7) 

 

𝒓𝟐 =

(

 
∑ (𝒚𝒊 − �̅�)(𝒇𝒊 − �̅�)
𝒏
𝒊=𝟏

√∑ (𝒚𝒊 − �̅�)
𝟐𝒏

𝒊=𝟏 ∑ (𝒇𝒊 − �̅�)
𝟐𝒏

𝒊=𝟏 )

 

𝟐

 

(Eq. 8) 

 
𝒃 = 

∑ (𝒇𝒊 − 𝒚𝒊)
𝒏
𝒊=𝟏

𝒏
 

(Eq. 9) 
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3. Results & Discussion 

All the statistics (RMSE, MAE, R2) obtained for the cross-validation step (CV), the calibration step 

(train) and the validation step (test) are represented in Table 3.  

Looking at the performances of the control model (i.e., when only PLSR is used on dry spectra), it 

appears that an RMSE of 65 mL(CH4).gTS-1 is obtained on the independent validation set, which is 

slightly higher than the cross-validation RMSE of 52 mL(CH4).gTS-1. This level of error is coherent 

with the errors of the models found in the literature (as reviewed in Section Chapter I.1.2.2.1) which 

vary between 40 and 80 mL(CH4).gTS-1. As expected, the moisture content considerably affects the 

prediction accuracy. For this type of model, the error obtained on the nuisance data (i.e., when moisture 

content varies up to 95%) is more than three times more important with an RMSE of 198 mL(CH4).gTS-

1. 

All methods except the scaled pls approach (“SCALING-PLSR”) allowed to enhance the RMSE 

obtained on the nuisance data (wet form samples) compared to the control model (“PLSR”). Amongst 

the methods with the lowest errors, the simple cut water bands approach (“CWB-PLSR”) reached an 

error of 102 mL(CH4).gTS-1, and the model update approach (“UPDATED-PLSR”) reached an error of 

93 mL(CH4).gTS-1. Compared to the error made on the dry form, there is a 30% error difference. Of 

course, while these errors are important, these models can be applied on a very wide range of 

biochemical types, on a very wide moisture content range, and most importantly, with no sample 

preparation. Unfortunately, the obtained coefficients of determination R2 all show very low (and 

negative) values (<0.19). When R2 is negative, this means that the model is highly biased and is not even 

better than a model which would always predict the mean of the calibration dataset. This shows that the 

models are not satisfactory. To better investigate this, the prediction values are plotted against the 

observed values (in Figure 13). It appears that while most correction methods allow to reduce the range 

of predictions for substrates with different moisture content levels (i.e., the moisture content effect is 

reduced), some substrates still have a very wide range of predicted values for different moisture content 

levels. 
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Figure 13. Predicted vs. observed values for the ten correction methods. The dry calibration train set is plot in 

blue, the dry calibration test set is plot in orange, the nuisance train set is plot in green, the nuisance test set is 

plot in red. The statistics (RMSE, MAE, R2, r2, Bias) are provided for the dry calibration test set (p) and the wet 

nuisance test set (pn).
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4. Concluding remarks 

- To our knowledge, this was the first time that a global correction method was applied to NIRS 

calibration models built on solid organic waste. 

- The application of global correction methods appears to be rather limited for building robust 

calibration models on diverse organic waste. While these were succesful for reducing the 

influence of moisture content, the errors in prediction for one substrate at various moisture 

content levels remain very high. 

- In addition, the range of predictions for some substrates at equal ranges of moisture content 

appear to be very different. This may mean two things: (i) that the sensitivity to moisture content 

is different from one substrate to another, and/or (ii) that the moisture content effects are 

spectrally different from one substrate to another. 

- A deeper analysis of the water effects, and its dependency on the substrate type (biochemical 

composition and physical properties) remains to be assessed. 
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Chapter IV. Unveiling the non-linearity of moisture 

content effects in organic waste using principal 

components analysis (PCA) 

This chapter covers results presented in Paper II – Unveiling non-linear water effects in 

near infrared spectroscopy: A study on organic wastes during drying using chemometrics  

(published in Waste Management journal).  See section “Included Papers” for the full 

reference and published article.  

1. Introduction 

In Chapter III Section 4, it appeared that better understanding water effects and how they relate to the 

substrate properties could be key for the development of robust calibrations models on wet substrates. 

Indeed, groups could then be used for building local models, an approach which has been shown to be 

successful for BMP prediction on plant biomasses166.  

As mentioned in Chapter I Section 1.3.1, the effects of moisture content on near infrared spectra has 

been described for a wide variety of different matter types including soil190–196, crops197–201, food202, 

plants203, wood204, pharmaceuticals205, object models206–208, and water-dominant systems209. In addition, 

though not focused on the analysis of moisture content effects in NIRS, some studies use NIRS to 

monitor drying or hydration processes where moisture content varies210,211.  

However, no study has yet analyzed and compared moisture content effects in one comprehensive 

experiment with a wide variety of biochemical and physical types. In light of this, this chapter presents 

the analysis of the drying experiment dataset using PCA. The reader is invited to refer to Paper I for 

further details. 

2. Materials & Methods 

The choice of principal components analysis (PCA) 

In order to disentangle the water effects on NIR spectra, different exploratory data analysis methods 

could be used (as reviewed in Section 1.2.1.2). However, PCA appeared as the most suitable method for 
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the initial analysis of such data with no a priori knowledge. Indeed, PCA simply finds orthogonal 

components that explain most of the variance, and has the benefit of being a nested method, meaning 

that contrarily to ICA or MCR-ALS, they will provide the same components when adding new 

components to the model. However, other methods are more suitable for obtaining independent or pure 

components, with a flexible framework proposed in MCR-ALS where various constraints can be added 

(as further investigated in Chapter VI). 

Pretreatments 

Because NIR spectra contain both physical and chemical information, a wide variety of pre-processing 

techniques79 are often used to maximize the chemical information of interest in the spectra. However, 

the pre-processing steps may bring important artefacts and deport chemical information, which can make 

the assignment of bands more complicated 134. Because the database is highly heterogeneous, the 

baselines due to scattering are expected to be very different; so it appeared best to apply PCA directly 

on the raw spectra. In particular, this has the benefit of assessing the absolute amplitudes of the various 

sources of variations. 

3. Results & Discussion 

The high dimensionality of this dataset 

While only the first eight components were studied in depth, the information dimensionality of the 

dataset is much higher. Different criteria allow to assess this, including the cumulative explained 

variance, and the Durbin-Watson (DW) criterion312. This latter criterion is classically used to detect the 

presence of autocorrelation in prediction residuals from regression models and ranges between 0 and 4. 

However, it is used here to appreciate the structure of the loadings for each component: are the loadings 

noisy (with a high DW value) or are the loadings still showing NIR-like spectral information (with a 

low DW value)? The evolutions of these criteria according to the principal component number are 

presented in Figure 14. While the explained variance would suggest about 15 components as the suitable 

dimension, the DW criterion would suggest more about 30 components. Indeed, when plotting several 

loadings up to the 100th (left subplot of Figure 14), the loadings show NIR-like features up to at least 

the 25th component. This illustrates very well the high complexity of the acquired dataset presented in 

Chapter II. 
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Figure 14. The evolution of loadings (left subplot) and the evolutions of cumulative explained variance and the 

Durbin-Watson (DW) criterion, according to the principal component number (PC#). The blue curve is the DW 

criterion and the green curve is the cumulative explained variance. 

Analysis of scores’ kinetics and loadings 

In this study, the interpretation of the spectral regions contributing to each components (loadings) 

(Figure 16) and the analysis for each component of how each substrates’ scores evolve along drying 

(Figure 17) allowed to reveal the complexity of moisture content effects. The detailed analysis can be 

found in Paper II. 

Spectra reveal substrates with a wide range of physical properties (i.e., different scattering levels) 

The first component which accounts for more than 92 % of the total variance was shown to correspond 

to global pseudo-absorbance level differences which are unlated to specific spectral regions (i.e., specific 

chemical compound). Two groups were identified: substrates with high scores (Figure 17) such as sugar 

or raw fish exhibiting high pseudo-absorbance levels (~2.3-2.5); and substrates with low scores such as 

aluminum pellets or poultry manure exhibiting low pseudo-absorbance levels (~1.5-1.8). These two 

groups have very different physical properties which impact how light scatters within matter, and the 

resulting amount of reflecting light collected by the detector. Figure 15 presents the visual aspect of 

these samples to illustrate the physical differences: liquid samples (wet sucrose, syrup or dry sourcream) 

often show higher pseudo-absorbance levels than solid samples (dry poultry manure, ramial chipped 

wood). Indeed, a liquid state is often associated with a lower number of particle interfaces where light 

could be refracted, which implies that light travels deeper in the matter. 
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Figure 15. Visual aspect of substrates with low and high levels of pseudo-absorbance. Pictures were taken from 

above the NIRS measurement cell. 

Moisture content affects physical properties of substrates (which affects light scattering) 

What is interesting is how moisture content affects these physical properties. From looking at the scores 

of the first component (Figure 17), most samples show a global decrease of pseudo-absorbance as 

moisture content levels decrease. This means light is further reflected as moisture content decreases. 

The main reason are the changes along drying of the refractive index differences between particles (nwater 

≈ 1.33, nair ≈ 1.0, norganicmatter ≈ 1.4)313. Indeed, for most substrates, as drying occurs, water is replaced by 

air, which leads to increased number and intensity of refractive index differences. This leads to an 

increased scattering with higher reflectance levels (i.e., lower pseudo-absorbance levels). 

However, this was shown to be different for samples such as sour cream (but also butter, yoghurt, pork 

meat), which show increasing scores (Figure 17) as moisture content decreases. When looking at the 

visual aspect (Figure 15), it appears that the dried sour cream has turned biphasic, with a high-fat content 

liquid in which light is further transmitted. In these systems, as drying occurs, water is replaced by fat 

and not air, which leads to lower refractive index differences (nvegetableoil ≈ 1.47). 

Another important aspect found through this study concerns the non-linearity of the scores’ evolutions 

(first principal component in Figure 17). Most substrates do not show a linear relationship with moisture 

content. This suggests that linear models such as PLS will require several latent variables to approximate 

this relationship. This is further analyzed in Chapter V. 
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Moisture content affects chemical composition of substrates (which affects light absorption) 

By definition, moisture content affects the quantity of water in the system. This means that the level of 

light absorption is directly affected. In the second component, the loadings (Figure 16) show the three 

broad absorption peaks that can be found in pure water transmission spectra (at 1209 nm, 1456 nm, and 

1933 nm). Most substrates show scores (Figure 17) that decrease along drying which shows that 

moisture content directly affects the quantity of light absorbed by water. Similarly, the levels of organic 

matter (PC4), fat (PC5), or carbohydrates (PC6) all vary along the moisture content variations. 

Moisture content variations not only impacts the quantity of water in the system, but the state of water 

molecules. This means that the absorption pattern of water molecules, and more precisely of  the OH 

bond vibrations, is itself modified along drying. Two different spectral patterns related to water’s 

chemical interaction (i.e., water state) were identified in the third and eighth components. Indeed, it was 

shown in the third component that small differences between the first overtone absorbance band at 1430 

nm and the second combination absorbance band at 1940 nm is associated with the presence of simple 

carbohydrates or proteins, both of these molecules forming important interactions with water through 

hydrogen bonding. In addition, in the eighth component, as drying occurs, a shift of the OH absorbance 

bands from high energy vibrations to lower energy vibrations was highlighted for most substrates. While 

these chemical interactions and changes of water state certainly occur, they seem much more limited in 

terms of variance in comparison with the effects of moisture content on scattering. When analyzing 

datasets of complex materials with high differences in physical properties all together, these changes are 

difficult to assess. However, when analyzing each material separately, these effects become clearer. 
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Figure 16. Loadings of the first eight components. Explained variance percentage of each principal component 

is given in the title. For each component, the corresponding eigenvector of the between-substrate variance-

covariance matrix (see Eq. 8 in Paper I) is plot (in dashed black line), as well as the corresponding eigenvector 

of the within-substrate variance-covariance matrix (Eq. 9 in Paper I) (in dashed red line). 
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Figure 17. Evolutions of the first eight components’ scores along drying for nine representative substrates. 

Other substrates are colored in grey. 

Physico-chemical changes occurring during drying 

During drying, a wide variety of physico-chemical changes may occur such as sticking, caking, collapse, 

crystallization, agglomeration, loss of volatiles, browning and oxidation.314  All these changes are likely 

to modify the light scattering and these transitions certainly make the measured NIR signal prone to 

non-linearities. 
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4. Concluding remarks 

Through the use of PCA, the complexity of moisture content effects on NIRS were revealed. Moisture 

content effects were shown to affect both the biochemical composition and the physical properties of 

substrates. Such modifications directly impact the NIR signal that is measured: changes in physical 

properties affect the amount of light that is scattered and transmitted in the material, and changes in 

biochemical composition affect the amount and frequency of light that is absorbed by the material. 

In addition, it was shown that the main spectral variance (represented by the first and second component) 

showed a non-linear evolution with moisture content. To investigate this more theoretically, the effects 

on scattering and absorption need to be analyzed independently. 
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Chapter V. Modeling the influence of water content on 

scattering: towards a new Bouguer-Beer-Lambert law 

for wet scattering samples 

This chapter covers results presented in Paper III  – Relating Near-Infrared Light Path-

Length Modifications to the Water Content of Scattering Media in Near -Infrared 

Spectroscopy: Toward a New Bouguer − Beer − Lambert Law  (published in Analytical 

Chemistry journal). See section “Included Papers” for the full reference and published 

article.  

1. Introduction 

In Chapter IV, moisture content variations of substrates were shown to strongly modify the light 

scattering. This study aims to further understand these effects. In order to isolate these effects, a model 

system composed of aluminum paper pellets mixed with liquid water was analyzed using the drying 

system with NIR acquisition (presented in Chapter II). The advantage of this sample was that the 

absorption of NIR light by aluminum is insignificant, which removed any potential absorption 

interaction term. 

2. Results 

A new formulation of the Bouguer-Beer-Lambert law that takes into account path-length 

modifications 

For homogeneous isotropic media without particles, transmission measurements respect the Bouguer-

Beer-Lambert law50: 

 𝑨𝝀,𝒄 = −𝒍𝒐𝒈(𝑻𝝀,𝒄) = 𝜺𝝀. 𝑳. 𝒄 (Eq. 10) 

With 𝐴𝜆,𝑐 the absorbance, 𝑇𝜆,𝑐 the transmittance, 𝜀𝜆 the extinction coefficient, 𝐿 the light path-length 

and 𝑐 the concentration of the absorbing species. 
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In scattering media, two phenomena must be taken into account315: a modification of path-length 𝐿𝜆,𝑐, 

and a loss of photons 𝑓𝜆,𝑐: 

 𝑨𝝀,𝒄 = 𝜺𝝀. 𝑳𝝀,𝒄. 𝒄 + 𝒇𝝀,𝒄 (Eq. 11) 

In most studies interested in the multiplicative effects on NIR, 𝐿𝜆,𝑐 is modeled with a simple 

multiplicative constant 𝑘 not directly related to the analyte concentration96: 

 𝑳𝝀,𝒄 = 𝒌𝒍𝟎 (Eq. 12) 

with 𝑙0 a constant path-length. 

However, there are many cases where the absorptive species of interest is in fact directly responsible for 

the multiplicative effects. As discussed in Chapter IV water content variations during drying induce 

scattering modifications because of the increased number or intensity of refractive index differences 

between the gas phase, liquid phase and solid particles316. In such cases, it seems reasonable to relate 

the light path-length modifications (multiplicative effect) directly to the concentration of the absorptive 

species (water content). Because such relationship is expected to involve a geometrical relationship, it 

is here proposed that the path-length function is set as to be a simple power function of the water content 

concentration 𝑐: 

 𝑳𝝀,𝒄 = 𝒍𝟎. 𝒄
𝒂𝝀 (Eq. 13) 

with 𝑎𝜆 a power coefficient dependent of the wavelength 𝜆. Indeed, when looking at the absorption law 

as a probabilistic law, the more light is scattered through the media, the higher the chances for photons 

to be absorbed by the matter. It seems reasonable to suggest this direct relationship of path-length 

modifications to water content. 

Combining (Eq. 11) and (Eq. 13) yields a new formulation of the absorption law for scattering media: 

 𝑨𝝀,𝒄 = 𝜺𝝀. 𝒍𝟎. 𝒄
𝒂𝝀+𝟏 + 𝒇𝝀,𝒄 (Eq. 14) 

This additive baseline term 𝑓𝜆,𝑐 can be removed by a wide number of pretreatments, but in order to 

preserve spectroscopic relative amplitudes and positions, the extended multiplicative scatter correction 

(EMSC) framework was used. A pure water transmission spectrum acquired using a JASCO V560, was 

used as the reference spectrum (after transforming to absorbance using a logarithm). A constant, first-
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order and second-order polynomial was included as in the original EMSC96. An interferent pure 

spectrum was added as the measured spectrum of the fully dried aluminum. Finally, in order to evaluate 

the additive and multiplicative terms only in regions where water absorbance bands are known to 

interfere less, a weighted least-squares (WLS) was applied with weights set as the inverse of the pure 

water transmission spectrum. This resulted in the following EMSC model: 

 𝑨𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅,𝒊(𝝀) = 𝒂𝒊. 𝑨𝒑𝒖𝒓𝒆 𝒘𝒂𝒕𝒆𝒓(𝝀) + 𝒃𝒊 + 𝒄𝒊𝝀 + 𝒅𝒊𝝀
𝟐

+ 𝒆𝒊𝑨𝒑𝒖𝒓𝒆 𝒂𝒍𝒖𝒎𝒊𝒏𝒖𝒎(𝝀) 

(Eq. 15) 

Instead of correcting for both the additive and multiplicative effects, only additive effects were corrected 

for: 

 𝑨𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅,𝒊(𝝀) = 𝑨𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅,𝒊(𝝀)

− (𝒃𝒊 + 𝒄𝒊𝝀 + 𝒅𝒊𝝀
𝟐 + 𝒆𝒊𝑨𝒑𝒖𝒓𝒆 𝒂𝒍𝒖𝒎𝒊𝒏𝒖𝒎(𝝀)). 

(Eq. 16) 

This yielded spectra corrected only for additive effects: 

 𝑨𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅,𝒊(𝝀) =  𝑨𝝀,𝒄  −  𝒇𝝀,𝒄 = 𝜺𝝀. 𝒍𝟎. 𝒄
𝒂𝝀+𝟏 (Eq. 17) 

Applying the log-transform then results in the following formula: 

 𝒍𝒐𝒈(𝑨𝝀,𝒄  − 𝒇𝝀,𝒄) = 𝒍𝒐𝒈(𝜺𝝀. 𝒍𝟎) + (𝒂𝝀 + 𝟏). 𝒍𝒐𝒈(𝒄). (Eq. 18) 

For each wavelength 𝝀, an ordinary least squares (OLS) regression was applied between 

𝒍𝒐𝒈(𝑨𝝀,𝒄 − 𝒇𝝀,𝒄) and 𝒍𝒐𝒈(𝒄) to evaluate 𝒂𝝀 + 𝟏 (the slope) and 𝒍𝒐𝒈(𝜺𝝀. 𝒍𝟎) (the intercept). To evaluate 

goodness of fit, the coefficient of determination (R2) was calculated. 

In Figure 18, the results from this analysis are presented for a wavelength of 1450 nm where water OH 

bonds are known to absorb strongly. In Figure 18 (A) the raw absorbance at 1450 nm show non-linear 

evolutions with water content. Moreover, differences between absorbance values can be observed 

despite identical water content. These differences were well removed by the EMSC correction (as shown 

in Figure 18 (B)). 

Figure 18 (C) shows a very good fit (R2 = 0.995) between the log-transformed corrected absorbance 

values and the log-transformed water contents. This suggests that the path-length modifications induced 
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by water content at 1450 nm can be well modeled using a simple power law function of water content. 

The obtained slope of the regression line (1.524) is an estimation of (𝒂𝝀 + 𝟏) in eq.(5) and eq.(9). 

After running the same analysis to all wavelengths, it was shown that this law is valid for all wavelengths 

greater than 1150 nm (R2 > 0.9). 

 

Figure 18. Evolutions with water content % of (A) raw absorbance values, (B) corrected absorbance values, and 

(C) log-transformed corrected absorbance values are provided. The latter log-transformed corrected 

absorbance values are plot with log-transformed water content %, In the (C) subplot, the OLS regression line is 

plot in red, with the slope, intercept and coefficient of determination (R2). 

Implications for fundamental water structure studies 

By properly retrieving the additive and multiplicative effects, the real extinction coefficients (multiplied 

by a given factor 𝑙0) were obtained (𝜀𝜆. 𝑙0) (exponential of the green curve in Figure 19). This signal can 

be further analyzed to better understand the water structure, and in particular, to better understand what 

constitutes the broad first overtone OH band at 1450 nm (green curve in Figure 19). Indeed, by applying 

Savitzky-Golay second derivative (an effective deconvolution technique amongst others317), two clear 

negative sub peaks were identified at 1405 nm and 1469 nm (orange curve in Figure 19). The peak 

positions corresponded perfectly to the identified peaks in other studies on pure water 

measurements216,224. Other peaks at 1335 nm and 1537 nm may also be identified, and relate well to 

different water molecular conformations as described by aquaphotomics227.  

To summarize the point here, in highly diluted systems, the measured transmission spectra relate well 

with the chemical absorption, which allows to identify correctly the specific absorption bands by water 

components and structures. However, in scattering media, and reflectance measurements, these effects 

need to be taken into account, otherwise wrong assignments will be made. 
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Figure 19. The exponential of the fitted intercept values (𝜺𝝀. 𝒍𝟎) in eq.(9) (in green) and the corresponding 

Savitzky-Golay second derivative (in orange). 

Implications for quantitative calibrations 

It appeared that model calibration would benefit from using the observed power law relationship 

between the absorbance and water content. For example, a log transformation of both spectra 𝑋 and 

reference values 𝑦, would make the relationship between absorbance and water become linear again, 

therefore enabling better water content prediction models. To showcase this, a comparison of four 

models was provided in Figure 20, and showed that with one PLS latent variable, the lowest RMSEC 

was obtained by a model where 𝑋 was first corrected from additive effects using EMSC and then log-

transformation was applied on both 𝑋 and 𝑦 to linearize the relationship as in (Eq. 18)( red curves in 

Figure 20). This showed the strong effect of linearizing the relationship between absorbance and water 

content: the model was simpler and thus more robust. Indeed, in order to reach the same prediction error 

value (0.8% of water content) of the one latent variable model obtained with 

𝒍𝒐𝒈(𝑬𝑴𝑺𝑪𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆(𝑿))~𝒍𝒐𝒈(𝒚), the other models 𝑿~𝒚 (blue curve), 𝑬𝑴𝑺𝑪𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆(𝑿)~𝒚 (orange 

curve) and 𝑬𝑴𝑺𝑪𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆(𝑿)~𝒚 (green curve) needed respectively four, three and six more latent 

variables.  

Of course, with sufficient number of latent variables (greater than 15), the models without the log 

transform appeared to follow the same error of prediction as the log-transformed model. This illustrated 
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well how the PLS algorithm is capable of taking into account non-linear relationships, though it is 

probable that these models were overfitted. Interestingly, applying a complete EMSC with removal of 

both additive and multiplicative effects appeared very bad in this case for water content prediction (green 

curves in Figure 20). Indeed, by removing multiplicative effects, the strong relationship between water 

content and these effects was lost. Of course, it should be noted that, as discussed in other studies113, 

applying a logarithm to 𝑦 is not without consequences: the original distribution of 𝑦 value is deformed 

which may cause problems for regression. Moreover, one necessary condition is that the additive effects 

including the dry spectrum should be removed by pre-processing before applying the log transformation. 

However, it appeared clear from these results that taking into account the power law relationship 

between water content and light path-length allowed a significant improvement of predictive models. 

Moreover, it was shown that removing these scattering effects (the objective of 𝑬𝑴𝑺𝑪𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆(𝑿)~𝒚) 

to predict dry matter content may not be most effective, as it removes an information which is directly 

dependent of the moisture content. 

 
Figure 20. RMSEC curves obtained for four different models: X ~ y (in blue), EMSC_additive(X) ~ y (in 

orange), EMSC_complete(X) ~ y (in green), and log(EMSC_additive(X)) ~ log(y) (in red). 
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3. Concluding remarks 

The introduction of path-length modifications directly related to a power law of moisture content into 

the BBL law allowed us to fully explain the variations observed in aluminum mixed with water. In this 

scattering model system, the dry matter component (aluminum) did not absorb any light, which enabled 

us to identify exclusively the scattering modifications induced by moisture content differences.  

The implications of this new theoretical framework were discussed. Firstly, it should benefit 

fundamental water structure studies where the pure spectral features are of importance: the extinction 

coefficients were directly determined. Secondly, it was shown to benefit quantitative calibrations built 

on varying moisture content systems: models for dry matter content estimation are made simpler and 

therefore more robust. 

After having provided a clear qualification of scattering effects induced by moisture content, it appeared 

necessary to investigate this theory in more complex systems with biochemical absorptions. While these 

may lead to complex interactions, it can be hypothesized that other absorbing contributions in fact also 

follow a power law relationship with moisture content. The higher the moisture content level, the higher 

the photons penetrate in the matter, leading to a higher probability of photons to be absorbed, should it 

be by water or by the biochemical components. However, as showed in Chapter IV, this behavior differs 

amongst substrates. The use of this law could allow a better identification of groups of spectra with 

common moisture content effects, as investigated in Chapter VI.
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Chapter VI. A knowledge-based local approach to 

account for water effects in NIRS  

1. Introduction 

It appeared in Chapter III that global correction methods were not able to provide satisfactory models 

when applied to the whole range of biochemical types found in organic waste as well as with a wide 

range of moisture content. This observation was further explained by the non-linearity of water effects 

(Chapter IV). Indeed, with the use of PCA, the water effects were shown to be dependent of both 

physical and biochemical properties, as well as to the range of moisture content. From these results, one 

way of dealing with water effects that has been proposed relies on building local models (i.e., models 

based on subsets of the whole dataset for which the water effects can be linearly modeled). In this 

chapter, a practical methodology to define these groups is proposed and discussed.  

In Chapter 5, it was shown that water effects on scattering (in particular, path-length modifications) 

could be well modeled by a power law in simple systems such as aluminum. It seems that this new 

theoretical framework could be leveraged for answering two objectives: defining groups of samples with 

similar water effects, but also better identifying the spectral contributions of dry matter constituents 

within spectra. This chapter discusses these two possibilities. 

2. Building predictive models on a local subset of substrates 

with homogeneous moisture content effects 

2.1 Defining the local subset 

In Chapter IV, the evolutions of scores for the first component according to moisture content (Figure 

17) allow us to identify a first group of substrates with a common behavior towards moisture contents. 

Indeed, these substrates’ spectra all seem to follow a power relationship with moisture content levels, 

like in the aluminum sample. A new PCA was run on these selected samples (n=37) and the first 

component scores are presented in Figure 21. A non-linear least squares fitting procedure (Levenberg-

Marquardt algorithm)318 was used to fit the scores 𝑻𝟏  of the first component with the following power 

relationship with water content 𝒄: 
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 𝑻𝟏(𝒄) =  𝒌𝟏. 𝒄
𝒌𝟐  + 𝒌𝟑 (Eq. 19) 

The fitted values are presented in Figure 21 as dotted red lines, along with a boxplot of the R2 obtained 

for each of the substrates. The fitted values show a good adequacy with the observed values as confirmed 

by the very good R2 values (>0.95). This further validates the power law framework presented in Chapter 

3, by showing that moisture content effects on organic waste can be well-modeled by a power law 

relationship, and this even when the dry matter constituents absorb. However, it seems the parameters 

of this power law relationship (both the intercept, and the power constant) differ from one substrate to 

another. 

 
Figure 21. Scores kinetics for the first principal component of the identified subset with the fitted power laws in 

red dotted lines (left subplot). Boxplot of the R2 obtained for each fitted power law. 

Qualitatively, what relates all these substrates together appears to be that they all present stable poreous 

solid structures: when drying occurs, the water is simply replaced by air. Within substrates that do not 

belong to this group, there are substrates which were shown to turn biphasic during drying (with opposite 

baseline variations): butter, cheese, sour cream, yoghurt, pork, pesto, french fries. In addition, there are 

also substrates which are highly soluble in water and turn from liquid transparent solutions to crystalline 

solids during drying: sucrose, soya sauce, jam. In these samples, the signal at high moisture content level 

appears flat. For these substrates, one possibility is that instead of following a power relationship, they 

follow a power relationship followed by a plateau as modeled by logistic or Gompertz functions for 

example319. 
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2.2 Fitting the local model 

While the moisture content effects appear more homogeneous within this group, there is still the need 

to know how well models can cope with these effects. To answer this, different models were built to 

predict biochemical methane potential as done in Chapter III. While all the strategies that were used 

could be employed, only the simple PLSR approach and the model update approach were compared. 

Indeed, in Chapter III, these two methods provided the worst and best results so they are well suited for 

benchmarking the different model qualities. In addition, models were built on more restricted moisture 

content ranges (moisture content under 60%, under 40% and under 20%) to better evaluate whether the 

poor performances observed in Chapter III come from the differences of moisture content effects 

between substrates, or due to the magnitude of moisture content effects themselves. All the models were 

built following the same model calibration procedure presented in Chapter III. 

The predicted and observed values are presented for each of the obtained models in Figure 22. As 

expected, when the model is trained only on dry samples (left column), the prediction errors on the wet 

samples (nuisance data) are bad, with an RMSEPN of 196 mL(CH4).gTS-1 when using the full moisture 

content range (first line), and 124 mL(CH4).gTS-1 when using samples with moisture content under 20% 

(last line). Fortunately, correction methods such as the updated PLS-R help to reduce this error to 96 

mL(CH4).gTS-1 when using the full range (right column). However, this corresponds to the same RMSE 

level as the one which was obtained for models built with all the substrates (RMSEPN = 92 

mL(CH4).gTS-1 in Figure 13). This means that the moisture content effects, while being more 

homogeneous, still remain high. However, when building the same models on more limited moisture 

content ranges (below 60% as presented in the second line of Figure 22, below 40% as presented in the 

third line of Figure 22 and below 20% as presented in the fourth line of Figure 22), the quality of models 

appear much better with RMSEP of respectively 87 mL(CH4).gTS-1, 74 mL(CH4).gTS-1 and 42 

mL(CH4).gTS-1. This further confirms the potential of building local models based on both biochemical 

and physical properties, and on moisture content ranges. 
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Figure 22. Predictions vs observed values for models (PLS-R or updated PLS-R) built on the group with 

homogeneous moisture content effects, with four moisture content ranges considered: MC<99% (first line), 

MC<60% (second line), MC<40% (third line), MC<20% (fourth line). The dry calibration train set is plot in 

blue, the dry calibration test set is plot in orange, the nuisance train set is plot in green, the nuisance test set is 
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plot in red. The statistics (RMSE, MAE, R2, r2, Bias) are provided for the dry calibration test set (p) and the wet 

nuisance test set (pn). 

Different conclusions can be drawn from these results.  

- A first reason that explains the limited performance of the models when built on the full range 

of moisture content may be that the power relationship between the NIR spectra and 

moisture content cannot be well modeled by the PLS, even by adding multiple components. 

In such a case, it seems that new calibration strategies could be developed by leveraging the fact 

that the moisture content effects are well modeled by a power relationship. For example, log 

transformation of both spectra and reference characteristics could be done to linearize the 

relationship (as proposed in Chapter V). However, in order to do this, the differences in global 

pseudo-absorbance levels between each substrates would first need to be removed. While a 

Savitzky-Golay second derivation could well remove these additive baselines, it transforms too 

much the spectra, with negative parts (which does not go well with the log transformation). 

Other strategies could involve the use of EMSC (as done in Chapter 5), but it requires to know 

the dry spectra in order to integrate it in the model. 

- A second reason may be that the subset of substrates still does not have a homogeneous 

behavior regarding water. Indeed, while the evolutions of the first principal component scores 

are similar (power-like evolutions), score evolutions in other dimensions are still too different 

and cannot be taken into account by linear modeling approaches. This would require to further 

refine the local group. However, by reducing the number of substrates within the local group, 

the variability of the reference characteristic within this local group may end up being too low 

for the model to be built. 

- Another reason may be that the footprint of biochemical components is not sufficiently 

present in the spectra when moisture content levels are too high. The spectral variations 

related to moisture content variations are simply too important compared to spectral variations 

related to biochemical methane potential differences. In such case, results presented in Figure 

22 suggest that limiting to a range of moisture content below 40% can already provide 

satisfactory results. 
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3. Leveraging the model of moisture content effects on 

scattering to define classes of substrates with homogeneous 

effects 

3.1 Introduction 

As presented in the previous section, models built on a local subset of substrates which appeared to be 

affected in the same way by water content variations (e.g., global variations are related to moisture 

content variations by a power function) still show limited performances. One of the reason evoked may 

be that the evolutions of the spectral contribution of dry matter constituents still differs too much 

between substrates. In other words, the local subset chosen should be further refined. To better qualify 

these differences, it is proposed to use multivariate curve resolution alternating least squares (MCR-

ALS)320 to identify the spectroscopically-meaningful dry matter constituent contributions. In particular, 

the knowledge on the power-type relationship moisture content effect that has been proposed in Chapter 

V can be integrated in the analysis thanks to a hard-modeling constraint on the concentration profiles. 

This should enable a better resolution of the mixtures, and therefore a better knowledge of substrate 

behaviours towards moisture content. 

3.2 Materials & Methods 

Only some aspects of the MCR-ALS methodology are provided here for brevity, please refer to previous 

references for more details320. The method is a soft-modeling technique based on an alternating least 

squares (ALS) algorithm which iteratively calculates the concentrations C and the pure spectra ST 

matrices by solving the following equation (Eq. 20): 

 𝑿 =  𝑪𝑺𝑻 + 𝑬 (Eq. 20) 

The procedure consists of the following steps:  

1. Definition of the number of components. 

2. Initialization of pure spectra 𝑺𝑻 (or concentration profiles 𝑪). 

3. Application of a constrained least squares regression to determine 𝑪 knowing 𝑺𝑻 and 𝑿. 

4. Application of a constrained least squares regression to determine 𝑺𝑻 knowing 𝑪 and 𝑿. 
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5. Computation of 𝑪𝑺𝑻, and calculation of a reconstruction error. Repetition of steps 3, 4 and 5 

until convergence of the reconstruction error. 

MCR-ALS is a highly flexible procedure to solve mixture systems thanks to the constraints that can be 

added in steps 3 and 4. This allows to leverage the knowledge we have on the system to better resolve 

the observed mixture data. Constraints can be applied both to concentration profiles and pure spectra 

(and to all or part of them). Such constraints include non-negativity, smoothness321, symmetry, 

unimodality322,323, closure (mass balance condition), sparseness324, relationships with metavariables 

and/or between components (correlation constraints325, kinetic models326–329), local rank/selectivity330 

and multiset331. 

In this study, MCR-ALS is applied to the drying experiments of 2 substrates that are part of the group 

which was evaluated in section 2: a ligno-cellulosic substrate (wheat chaff [chaff is the envelope of 

cereal grains] mixed with water), a ligno-cellulosic substrate with soluble sugars (apple mixed with 

water). 

While a variety of methods can be used to determine the number of components, here, we reasoned this 

choice by analyzing PCA scores and based on the interpretability of solutions. Initial estimates of the 

spectra (𝑺𝑻) were found thanks to the SIMPLISMA algorithm which finds most distinct spectra within 

𝑿 as first approximates of pure spectra. Regarding the constraints used in this study, a non-negativity 

constraint was applied on both concentrations and spectra, a closure constraint (sum-to-one) was applied 

on concentrations, a unimodality constraint was applied on concentration profiles, and most importantly, 

a hard-modeling constraint was applied on the first component to fit a power model type as in (Eq. 19). 

This hard-modeling constraint was applied using a Levenberg-Marquardt fitting procedure318. 

Different metrics were calculated to evaluate the reconstruction error of the final solution (and to assess 

the convergence of the procedure), based on 𝒙𝒊𝒋 the elements of the observed data 𝑿 and 𝒙𝒊𝒋
∗  the elements 

of the reconstructed data 𝑪𝑺𝑻: 

 
𝑴𝒆𝒂𝒏 𝒔𝒒𝒖𝒂𝒓𝒆𝒅 𝒆𝒓𝒓𝒐𝒓 (𝑴𝑺𝑬) =  

∑ (𝒙𝒊,𝒋 − 𝒙𝒊,𝒋
∗ )𝟐𝒊,𝒋

𝒊𝒋
 

(Eq. 21) 

 
𝑭𝒓𝒐𝒃𝒆𝒏𝒊𝒖𝒔 𝒏𝒐𝒓𝒎 𝒓𝒂𝒕𝒊𝒐 =  

∑ 𝒙𝒊,𝒋
∗ 𝟐

𝒊,𝒋

∑ 𝒙𝒊,𝒋
𝟐

𝒊,𝒋
 

(Eq. 22) 
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𝑳𝒂𝒄𝒌 𝒐𝒇 𝒇𝒊𝒕 (𝑳𝑶𝑭)% =  𝟏𝟎𝟎 × √
∑ (𝒙𝒊,𝒋 − 𝒙𝒊,𝒋

∗ )𝟐𝒊,𝒋

∑ 𝒙𝒊,𝒋
𝟐

𝒊,𝒋
 

(Eq. 23) 

 
𝑬𝒙𝒑𝒍𝒂𝒊𝒏𝒆𝒅 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 % =  𝟏𝟎𝟎 × (𝟏 −

∑ (𝒙𝒊,𝒋 − 𝒙𝒊,𝒋
∗ )𝟐𝒊,𝒋

∑ 𝒙𝒊,𝒋
𝟐

𝒊,𝒋
) 

(Eq. 24) 

3.3 Results & Discussion 

A ligno-cellulosic substrate (wheat chaff) 

Figure 23 presents the results of the MCR-ALS decomposition applied to the drying of a ligno-cellulosic 

substrate (wheat chaff mixed with water). An optimal solution was found with three components and 

with an explained variance of 99.78% and low lack of fit of 1.89%. This adds further evidence to the 

validity of the proposed law. By applying the power function hard-modeling on C1 (represented in blue 

in the left middle subplot), it appears that the procedure allowed to correctly identify a pure water 

spectrum S1 (blue curve in right middle subplot). The second component (in orange) represents the 

absorption related to the dry matter constituents (as shown by the different peaks of S2 at 1750 nm, 2090 

nm, and 2330 nm). The concentration profile shows a non-linear behaviour, especially with a sharp drop 

when moisture content level exceeds about 65%. Indeed, the third component (in green) accounts for 

these different variations that can be found at moisture content levels above 65%. The pure spectrum S3 

appears to present only two peaks in the OH absorption regions. One possible interpretation can be found 

in the measurement mode: above 65% of moisture content, the wheat chaff floats above the liquid, which 

means most of the measured volume consists of pure water. This would lead to an increased transmission 

(i.e., higher loss of photons). From these observations, it appears clear that the spectra from these two 

moisture content ranges (below and above 65%) cannot be modeled well by a PLS if put in the same 

subset. 
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Figure 23. MCR-ALS results for the drying of ligno-cellulosic substrate (wheat chaff). The top subplot 

corresponds to the evolution of the reconstruction error (MSE) over the 40 iterations of MCR-ALS. The middle 

subplots corresponds to the concentration profiles (Coptimal) and the pure spectra (Soptimal) of the optimal solution 

found by MCR-ALS. The lower subplots corresponds to the observed raw spectra (Xobserved) and the reconstructed 

spectra from MCR-ALS decomposition (Xreconstructed). The red box presents the different errors of reconstruction 

(MSE, Frobenius Norm Ratio, Lack of Fit % (LOF%), and Explained Variance %). 

A ligno-cellulosic substrate with soluble sugars (apple) 

Figure 24 presents the results of the MCR-ALS decomposition applied to the drying of a ligno-cellulosic 

substrate (apple mixed with water). An optimal solution was found with three components and with an 

explained variance of 99.33% and low lack of fit of 0.69%. The power law constraint could not be 

applied directly, due to a non-linearity for moisture content levels above 70%. Indeed, the third 

component S3 (in green) resembles the most to the pure water spectrum, and while the concentration 

profile could be well modeled by a power law until 70% of moisture content, a distinct spectral variation 
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represented by the first component S1 (in blue) is found above 70%. A flat region above 1880 nm (with 

a negative peak at the OH absorption band maximum at 1930 nm), which can be interpreted as a 

saturation of the signal. This type of flattening can be seen in various other substrates which are highly 

transmitting (ketchup, lactulose, sucrose, oil). 

 
Figure 24. MCR-ALS results for the drying of substrate with soluble carbohydrates (apple). The top subplot 

corresponds to the evolution of the reconstruction error (MSE) over the 40 iterations of MCR-ALS. The middle 

subplots corresponds to the concentration profiles (Coptimal) and the pure spectra (Soptimal) of the optimal solution 

found by MCR-ALS. The lower subplots corresponds to the observed raw spectra (Xobserved) and the reconstructed 

spectra from MCR-ALS decomposition (Xreconstructed). The red box presents the different errors of reconstruction 

(MSE, Frobenius Norm Ratio, Lack of Fit % (LOF%), and Explained Variance %). 

In these two examples, we have shown how MCR-ALS could be used to refine the moisture content 

regions in which moisture content effects are homogeneous. Further steps could include the use of a 
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multiset structure, where all the substrates are added together, but constraints are applied per set (per 

substrate), and most importantly, the absence or presence of each of the components can be defined for 

each substrate (local rank/selectivity constraints). This should make the curve resolution more robust 

(reduction of the rotational ambiguity)331. 

4. Concluding remarks 

In the first part of this chapter, it was shown that the new absorption law framework has allowed to 

better identify a group of substrates with common water influence. However, the local model built on 

this group does not show enhanced prediction performances. Only the reduction of moisture content 

range led to the obtention of significantly better prediction performances (up to a low error of 42 

mL(CH4).gTS-1). Three different hypothesis were proposed regarding this: firstly that the non-linear 

effects were not well modeled by the PLS method, secondly that the local subset did not correspond to 

sufficiently homogeneous behaviours to moisture content variations; and thirdly, that moisture content 

effects were too strong when taking the full range of moisture content and masked any spectral 

differences between substrates of different biochemical types. 

In the second part of this chapter, it was shown how the use of the new absorption law framework 

presented in Chapter V could provide a better resolution of the observed mixtures . Using MCR-ALS 

and a power law constraint, it was shown that the spectral components related to dry matter (which are 

of interest for quantification) could be better identified. This brings promises in better identifying the 

substrates behaviours to moisture content effects, and better defining subsets on which to build 

predictive models. 
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Chapter VII. General concluding remarks 

1. Summary of results 

Today, a great diversity of organic waste are valorized thanks to different bioprocesses such as anaerobic 

digestion. These organic waste are often co-digested with improved performances (both in yield and in 

stability). However, the wide range of biochemical and physical properties of these substrates brings 

important challenges for the optimization and control of the bioprocess. A continuous characterization 

of the feeding substrates appears as a necessary component of the monitoring system. In this context, 

the use of near infrared spectroscopy has been established as the most mature and cost-effective 

technology for characterizing these organic waste. However, for this technology to be more largely 

adopted (both by waste suppliers and energy producers), new developments need to be made regarding 

robustness issues. In particular, ways to overcome complex water effects on NIRS need to be found so 

as to apply the technology on raw materials directly on-site or online. 

In this thesis, different developments were made to answer the two following scientific objectives: (i) 

developing a better understanding of the moisture content effects on NIRS applied to a wide range 

of organic materials, and (ii) finding new ways of building models that are robust to moisture 

content effects. 

To answer the first objective, a unique and comprehensive experimental set-up was built with dynamic 

acquisition of near infrared spectra during the drying process of various substrates (Chapter II). This set-

up allowed to capture the NIR spectral variations related to moisture content variations. Using 

chemometrics, the moisture content effects were shown to be highly complex, with both physical and 

chemical effects (Chapter IV). Chemically-speaking, the OH bonds of water are shown to strongly 

absorb in the NIR region masking the signal of other OH/CH/NH bonds present in organic matter. But 

depending on the number and type of hydrogen bonds made with other water molecules or biomolecules 

(proteins), this absorption pattern can also be different. Physically-speaking, water changes the physical 

state of the material (liquid/solid, crystalinity/amorphousity) which modifies the scattering behavior of 

light. For all these reasons, water effects were shown to be dependent of the biochemical type, the 

physical properties of the substrate and the moisture content range. To further understand how moisture 

content affects light scattering, a simple model system (composed of aluminum pellets and water) was 

studied using the drying system (Chapter V). Thanks to an insignificant absorption of light by aluminum, 
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the effects of water on scattering could be studied independently from the absorption of dry matter 

constituents. A modification of the Bouguer-Beer-Lambert law, also refered as the “ideal absorption 

law”, was introduced, where the light path-length is directly related to moisture content with a simple 

power function. This new modeling framework for wet scattering media holds great promises for 

spectroscopic studies on water and was shown to allow building more robust and accurate models for 

the prediction of dry matter content. 

To answer the second objective, an evaluation of global correction methods was proposed. A variety of 

methods including skewing, orthogonal projection, feature selection, or data augmentation, were 

evaluated to correct existing models working on dry samples to be insensitive to moisture content effects 

(Chapter III). Results showed that several techniques allowed to successfully robustify the models (i.e., 

moisture content effects could be reduced up to ten-fold). However, in the context of biochemical 

methane prediction on diverse organic waste, the final prediction accuracy was not satisfactory (30% 

less compared to models on dried materials). These limited performances can be well explained by the 

complexity of water effects that was revealed with the drying experiment. For these reasons, it appears 

that adopting a local approach can enable a reduction of this complexity, and allow to build linear models 

within classes of same substrate types and moisture content ranges. This approach is demonstrated on a 

subset of samples which have a similar behavior with moisture content variations (Chapter VI). Indeed, 

the effects of moisture content on all these substrates appear to be well modeled by a power relationship 

as observed on the mixture of aluminum and water. Succesful models could be built on this subset when 

limiting the moisture content range below 40%. However, it appeared that this subset could be further 

refined. In particular, the way dry matter constituents’ absorption signatures evolve along moisture 

content levels differs between substrates. To better understand how the dry matter constituents’ 

signatures evolve when moisture content varies, multivariate curve resolution (MCR-ALS) was 

proposed as a tool to model moisture content effects. Within this framework, different constraints based 

on the knowledge of moisture content effects (such as the power-type relationship) could be included. 

2. Topics for future research 

A variety of research perspectives can be outlined from this work: 

- The proposed adaptation of the Bouger-Beer-Lambert for wet scattering media should be 

further investigated in more complex systems. In particular, it can be anticipated that this 

model does not only apply to water, but applies successfully to any other solvents. More 
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importantly, how does this model apply to systems where the dry matter constituents absorb? 

How to express this absorption? As already mentioned for example, while the global variations 

(related to scattering) due to moisture content variations have been modeled by a power 

function, it appears that for highly soluble substrates like sucrose, the signal flattens and 

saturates; which could be modeled by logistic or Gompertz functions. 

- Investigate furthermore the knowledge-based local approach strategy. Through the help of 

multivariate curve resolution, the moisture content effects can be further detailed for all 

substrates, and groups on which to build models can be defined accordingly. 

- Evaluate the potential of non-linear modeling strategies such as local PLS, SVM, 

regression trees, random forests or CNN. Of course, the fact that non-linear moisture content 

behaviours have been outlined suggests that non-linear modeling strategies could be more 

suitable. These have great potential for complex datasets composed of diverse organic materials 

and a wide range of moisture content. In particular, the calibration process can be more easily 

automatized. However, as already introduced, these methods have different drawbacks such as 

the necessary high number of samples, the high risks of overfitting, and the lack of 

interpretability of the obtained models. 

- Study the possibility of using the NIRS measurements of a substrate during drying as one 

single observation on which to predict. Since the spectral evolutions during drying have been 

shown to be specific to the substrate type (physical and biochemical characteristics), it is 

expected that by using all the spectra during drying as predictors, more accurate models could 

be built. In terms of modeling, this implies evaluating three-way methods such as N-PLS, 

PARAFAC or multi-way MCR-ALS. Of course, getting the spectra during the full drying could 

be difficult in operational conditions due to the drying time (1-3 days), but even the beginning 

of drying could be used as a predictor instead of one individual spectrum.   

- While this thesis focused on the modeling approach to tackle moisture content effects, 

investigating both sample preparation methods and the measurement configuration are 

certainly complementary pathways that could be leveraged to develop effective online and at-

site NIRS applications on raw organic waste. 

- Further developments should be done on the use of low-cost and handheld spectrometers 

applied to wet substrates. First investigations were done in this thesis (Paper IV) on dry 

samples, but they should be pursued on wet samples. 
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a b s t r a c t

In the context of organic waste management, near infrared spectroscopy (NIRS) is being used to offer a
fast, non-destructive, and cost-effective characterization system. However, cumbersome freeze-drying
steps of the samples are required to avoid water’s interference on near infrared spectra. In order to better
understand these effects, spectral variations induced by dry matter content variations were obtained for a
wide variety of organic substrates. This was made possible by the development of a customized near
infrared acquisition system with dynamic highly-resolved simultaneous scanning of near infrared spectra
and estimation of dry matter content during a drying process at ambient temperature. Using principal
components analysis, the complex water effects on near infrared spectra are detailed. Water effects
are shown to be a combination of both physical and chemical effects, and depend on both the character-
istics of the samples (biochemical type and physical structure) and the moisture content level. This
results in a non-linear relationship between the measured signal and the analytical characteristic of
interest. A typology of substrates with respect to these water effects is provided and could further be effi-
ciently used as a basis for the development of local quantitative calibration models and correction meth-
ods accounting for these water effects.

� 2020 Elsevier Ltd. All rights reserved.

1. Introduction

A growing number of solid organic waste treatment processes
such as anaerobic digestion, composting or pyrogaseification are
currently being developed and industrialized. Usually, organic
wastes cover a wide range of physical characteristics and bio-
chemical compositions, making substrate characterization a key
issue in optimizing any of these processes. Recently, near infrared
spectroscopy (NIRS) has been used to offer a fast, non-destructive,
and cost-effective waste characterization system in the anaerobic
digestion context (Charnier et al., 2016; Fitamo et al., 2017; Godin
et al., 2015; Lesteur et al., 2011; Mayer et al., 2013; Mortreuil
et al., 2018) and composting context (Albrecht et al., 2008;
Galvez-Sola et al., 2010; Vergnoux et al., 2009). However, a
freeze-drying step is always required, due to strong interferences
in the near infrared region related to the presence of water in the
substrates (Lobell and Asner, 2002;Williams, 2009). Not only is this

drying step cumbersome and impedes any online application, but
the volatilization process that takes place during drying makes
some characteristics (volatile fatty acids) impossible to predict
directly. Though some applications have been developed for the
characterization of liquid samples with the presence of water, these
are usually restricted to a limitedmoisture content range, as well as
one substrate type (Jacobi et al., 2009; Stockl and Lichti, 2018). In
fact, near infrared spectroscopy is sensitive to numerous factors
including the spectrometer lamp temperature (Sánchez et al.,
2003), sample presentation (Sørensen et al., 2014), light penetra-
tion depth (Padalkar and Pleshko, 2015), sample particle size distri-
bution (Igne et al., 2014), sample temperature (Sánchez et al.,
2003), and moisture content (Lobell and Asner, 2002). All these
interfering factors need to be accounted for in order to build robust
quantitative calibrations (Acharya et al., 2014; Zeaiter et al., 2004).
Furthermore, these factors may interact together, leading to more
complexity for their correction. Indeed, for example, a close rela-
tionship between moisture effects and temperature has been out-
lined (Renati et al., 2019; Wenz, 2018), leading to account for
both factors in conjunction (Hans et al., 2019).
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The effect of moisture content on near infrared spectra has been
described for a wide variety of different matter types including soil
(Bogrekci and Lee, 2006; Bowers and Hanks, 1965; Chang et al.,
2005; Knadel et al., 2014; Lobell and Asner, 2002; Sudduth and
Hummel, 1993; Wu et al., 2009), crops (Gaines and Windham,
1998; Gergely and Salgó, 2003; Peiris et al., 2016; Popineau
et al., 2005; Williams, 2009), food (Büning-Pfaue, 2003), plants
(Carter, 1991), wood (Giordanengo et al., 2008), pharmaceuticals
(Igne et al., 2014), object models (Reeves, 1995, 1994; Wenz,
2018), and water-dominant systems (Muncan and Tsenkova,
2019). In addition, though not focused on the analysis of moisture
content effects in NIRS, some studies use NIRS to monitor drying or
hydration processes where moisture content varies (Caponigro
et al., 2018; Raponi et al., 2017). However, no study has yet ana-
lyzed and compared moisture content effects in one comprehen-
sive experiment with a wide variety of biochemical and physical
types. Better understanding water effects and how they relate to
the substrate properties appears as key for the development of
robust calibrations models on wet substrates. Indeed, groups could
then be used for building local models, an approach which has
been shown to be successful for biochemical methane potential
(BMP) prediction on plant biomasses (Godin et al., 2015).

The main effect of moisture content variations on NIR spectra
usually put forward in studies relates to the apparition of three
broad OH absorbance bands (detailed further on); but one major
effect of water relates to physical effects (ie. changes in scattering).
This is why, when speaking about water effects, an important
aspect to have in mind concerns the measurement mode. For trans-
parent liquid samples such as pure water or clear suspensions,
transmission or transflexion mode is usually preferred (Pasquini,
2003), while for solid samples like powders, diffuse reflection
appears most suitable. When studying large moisture content vari-
ations, one substrate may cover various states from a clear suspen-
sion, to a sludge-type material, to a powder when fully dried.

Because near infrared spectra contain both physical information
(such as granulometry) and chemical information (compound con-
centration of interest), a pre-processing step is commonly used to
maximize the chemical information in the spectra. This is done by
getting rid of baseline effects due to scattering (referred to additive
and multiplicative effects), as well as using spectral derivation to
deconvolve the peaks. A wide variety of pre-processing techniques
are used (Rinnan et al., 2009; Zeaiter and Rutledge, 2009), some-
times even in combination (Roger et al., 2020). However, these
pre-processing steps may bring important artefacts (Rabatel
et al., 2019) in the spectra when applied inappropriately. As well,
some pre-processing steps such as derivation may deport the
chemical information on shifted peak positions which can make
the assignment of bands more complicated (Oliveri et al., 2019).
Nevertheless, such pre-processing steps will most likely remain
necessary when building quantitative models.

In the context of highly diverse matter types, water effects are
expected to vary at least according to the biochemical characteris-
tics. Exploring such differences in effects is the aim of this article. A
customized air-drying systemwas built, allowing the simultaneous
monitoring of samples’ moisture content and acquisition of near
infrared spectra during drying. Using this system, spectral varia-
tions related to moisture content variations were obtained for a
large variety of substrates. A principal component analysis was
used to explore the various effects. The aim of this global PCA
was to identify major groups of substrates in regards to water
effects. This was done by analyzing the scores’ kinetics of each sub-
strate during drying in relation with the interpretation of each
component loadings using band assignments (Williams and
Antoniszyn, 2019; Workman and Weyer, 2012). Because the aim
of the study was to explore the water effects, including baseline

modifications related to scattering effects, data analysis was done
on the raw spectra, without any prior pre-processing steps.

2. Materials and methods

2.1. Sample preparation

The study was conducted on c ¼ 89 substrates chosen to repre-
sent a wide range of organic wastes with different chemical com-
positions: fruits (banana, apple), vegetables (carrots, onions,
salads, potato), farm wastes (manure, silage, soya meal, grass),
dairy products (cream, yoghurt, butter), meat products (beef,
grilled/fresh meat, fish), as well as food industry materials (sugar,
sauces, fried potatoes, wheat flour). In order to provide control
samples with simplified water effects due to limited water chem-
ical interactions, a selection of packaging materials were also mea-
sured (wood, paper, aluminum, plastic). Because these packaging
materials were found dry at their original state, samples were wet-
ted artificially by adding water at the start of the experiment.

For each substrate, 50 g of fresh matter (initial mass before dry-
ing, M0) were sampled and manually ground (to obtain a mixture
with elements below 1 cm) for further drying and NIR analysis.
To determine dry matter content before and after drying (respec-
tively DM0 and DMf ), two replicate samples of 5–10 g were
weighed before and after 48 h of drying in a heat chamber at
105 �C.

2.2. Drying system

The drying system used (Fig. 1) was a customized system con-
sisting in a closed tube loop, with an internal circulation of air gen-
erated by a peristaltic pump (Masterflex N�77521-47 6-600 RPM,
with a head #7018-52) set at 500 RPM corresponding to a genera-
tion of a flow speed of 2000 ml min�1. A strong desiccant (sodium
hydroxide) was used to enable drying of the gas phase and there-
fore the substrate: indeed, sodium hydroxide allows to bring the
relative humidity at about 8% at 25 �C (Greenspan, 1976). The dry-
ing circuit was connected to a hermetic spectrometer sampling cup
in which the waste sample was placed. The sampling cup was
placed over the spectrophotometer for continuous automatic near
infrared acquisitions; and the desiccant was weighed continuously
using a precision balance (Ohaus Traveler TA502), to enable the
measurement of loss of water during drying. In addition, two tem-
perature probes were installed on the system to monitor both the
temperature inside the sample cup chamber and the room temper-
ature, for investigation of temperature-induced spectral variations.
Before closing the system and launching the acquisition, the circuit
was flushed with nitrogen gas to limit oxidative reactions on the
substrates. Using this drying system, substrates were dried during
time periods varying from 12 h to 72 h.

2.3. Near infrared spectroscopic acquisition system

During the drying process, a spectrum of the sample was
acquired from below every 90 s in reflectance mode over
10000–4000 cm�1 (1000–2500 nm) range with a resolution of
8 cm�1 (0.8–5 nm) by a BUCHI NIR-Flex N-500 solids spectropho-
tometer with a rotating add-on petri dish and high-performance
sample cup (Buchi, Flawil, Switzerland). Each measurement con-
sisted of an average of 96 scans acquired while rotating the sam-
ple at 360� to enhance sampling representativeness. In order to
compute reflectance spectra from these measurements, an inter-
nal Spectralon� reference was scanned every 10 min. All spectra

A. Mallet, C. Charnier, É. Latrille et al. Waste Management 122 (2021) 36–48

37



were transformed into pseudo-absorbance units using log
transformation:

PseudoAbsorbance ¼ �log10ðReflectanceÞ ð1Þ

2.4. Dry matter content estimation during the drying process

At a given time t during drying, the sample’s water loss on dry-
ing LODsðtÞ in g was measured by monitoring the weight of the des-
iccant MdðtÞ. Using the dry matter content measured before drying
DM0, the dry matter content of the measured sample during drying
DMsðtÞ was estimated from :

LODs tð Þ ¼ Md tð Þ �Md t ¼ 0ð Þ; ð2Þ

DMs tð Þ ¼ M0 � DM0= M0 � LODs t ¼ tfinal
� �� �

: ð3Þ
As mentioned, after drying, dry matter content was measured

classically (using 48 h oven-drying at 105 �C) to confirm the final
obtained dry matter content given by the system.

2.5. Biochemical characterization of substrates

All the substrates were freeze-dried (using a Cosmos 20 k
freeze-dryer (Cryotec, Saint-Gély-du-Fesc, France)) and ground to
1 mm (using an MF 10 basic Microfine grinder drive (IKA Works,
Staufen, Germany)), to be scanned in vials by the same near infra-
red spectrometer. A previously calibrated model (Charnier et al.,
2016) was applied to obtain carbohydrates content, lipid content,
nitrogen content, chemical oxygen demand with respective
obtained standard errors of prediction (RMSEP) of 53 mgO2.gTS-1,
3.2 * 10-2 g.gTS-1, 8.6 * 10-3 g.gTS-1, 83 mgO2.gTS-1.

2.6. Chemometrics

2.6.1. Data preparation
The dataset consists of 116 000 spectra of 89 substrates cover-

ing different dry matter content ranges. To facilitate interpretation,
spectra were then linearly interpolated on a common dry matter
content range from 1% to 95% with a 1% step; but of course left
to NaN values outside the measured dry matter content ranges.
Indeed, this allowed to compare spectra of different substrates at
strictly identical dry matter contents. This resulted in a matrix
Xðn; pÞ with n ¼ 5011 the number of spectra, and p ¼ 1501 the
number of wavelengths.

2.6.2. Data processing
All the data analysis was performed using Python 3.6.5: data

wrangling with Pandas 0.25.1, NumPy 1.17.3, SciPy 1.3.1, principal
component analysis with Scikit-learn 0.21.3, and plotting with
Matplotlib 2.2.2 (Hunter, 2007; McKinney, 2010; Oliphant, 2010;
Pedregosa et al., 2015; van Rossum and Drake, 2009; Virtanen
et al., 2019).

A global principal component analysis (PCA using the singular
value decomposition algorithm) was run with k ¼ 8 components
on the raw centered matrix

XC ¼ X � 1
n
JnX; ð4Þ

with Jn the all-ones square matrix of size n.
This provided Tðn; kÞ matrix of scores and Pðp; kÞ matrix of load-

ings so that

XC ¼ TPT þ E ð5Þ
with E matrix of residuals.

In some cases, for a given principal component q to be analyzed,
the raw spectra matrix deflated by the previous principal compo-
nents was computed to further support the interpretation of load-
ings and scores.

XC deflated½q� ¼ XC � Tq�1Pq�1
T : ð6Þ

In addition, the first eigenvectors of the within-substrate and
between-substrate variance–covariance matrices were computed
(Roger et al., 2005). For this, a matrix C of size ðn; cÞ was defined,
containing the substrate’s membership disjunctive encoding of
the individuals, i.e. yij ¼ 1 if the individual i belongs to the sub-
strate j and 0 if not. Let

T ¼ 1
n� 1

XC
TXC ; ð7Þ

be the full variance-covariance matrix,

B ¼ 1
n� 1

XC
TCðCTCÞ�1

CTXC ; ð8Þ

be the between-substrates variance-covariance matrix,

W ¼ T � B; ð9Þ
be the within-substrate variance-covariance matrix.

To evaluate autocorrelation (i.e. information content) in the sig-
nals (spectra or loadings), the Durbin-Watson statistic was used,
defined as:

DW ¼
Xn

i¼2
ðri � ri�1Þ2=

Xn

i¼1
ri2; ð10Þ

Fig. 1. Experimental set-up with: a NIRS acquisition under a quartz rotating sampling cup; a tube circuit with gas circulation, a desiccant weighed by a precision balance; the
whole system is automatized and controlled by RS-232 serial connection.
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with ri and ri�1 the successive values in a vector.
Let D be a matrix of size (n,1) with all the estimated dry matter

content (Eq. (3)) of each spectra from X; and DC its centered matrix
version (Eq. (4)). To evaluate the zones in the spectra that are most
correlated to dry matter content %, a correlation spectra was calcu-
lated, which corresponds to Pearson correlation coefficient calcu-
lated between each wavelength column of X and the dry matter
content levels in D.

CorrelationSpectra ¼ cov X1;Dð Þ
rX1rD

;
cov X2;Dð Þ
rX2rD

; � � � ; cov Xp;D
� �
rXprD

� �

¼ DC
TXC

diagðXC
TXCÞ1=2diagðDC

TDCÞ1=2Ip
:

ð11Þ

3. Results & discussion

3.1. Data overview

3.1.1. Biochemical characteristics
Fig. 2 presents the predicted characteristics obtained using the

near infrared spectroscopy calibrated model for freeze-dried and
ground samples. Samples (detailed in Section 2.1) cover a very
wide variety of biochemical types which is representative of the
variety of inputs possibly used in the anaerobic digestion process,
in particular in co-digestion plants. All biochemical characteristics
show non-Gaussian distributions, which will impact the structure
of the data. Some extreme samples will impact the variance in
the spectra related to biochemical characteristics. Indeed, for
example, the fat content histogram (Fig. 2) clearly highlights two
populations: one population with no or very low fat content levels
(<0.2 g.gTS-1) and another population with very high fat content
levels (>0.7 g.gTS-1). Unfortunately, such structuring is difficult to
avoid, as intermediate compositions with 0.5 g.gTS-1 of fat content
level results in biphasic systems.

3.1.2. Dry matter content ranges
Fig. 3 presents for each substrate the range of dry matter con-

tent over which spectra were obtained. Contrarily to many studies
that focused on limited dry matter content ranges (70–95%), a very
wide range of dry matter content was obtained here (5–95%). How-
ever, substrates were not all measured along the same dry matter
content range. Several reasons explain this including differences in
the initial dry matter content (very low dry matter contents like
salad_1 or digestate_1, and very high dry matter contents like but-
ter_2, mayonnaise_1), drying inefficiency related to highly bound
water or intra-cellular water (syrup_1, ketchup_1, banana_2, or-
angepulp_1) as well as simple experimental drying interruptions
due mostly to electric failures (banana_1, crustbread_1, sunflower-
meal_1, grass_1, weeds_3). Theses latter samples were still kept in
the dataset because they still represented useful spectral variance
related to moisture content variations. Two families of substrates
can already be defined from these drying behaviors: hydrophobic
substrates for which low dry matter content levels are difficult to
obtain but are easily dried (like butter, sour cream, mayonnaise),
and hydrophilic substrates in which water is more difficult to
extract (like syrup, ketchup, banana, orange pulp). Within hydrophi-
lic substrates, the final moisture content to which the substrate
was dried relates to numerous factors and their complex interac-
tion such as the presence of gelling agents like pectin, or water sol-
uble molecules like saccharides, as well as the interaction of
proteins and starch controlling viscosity and swelling characteris-
tics (Dehnad et al., 2016).

3.1.3. Experimental conditions
3.1.3.1. Dry matter content estimation validity. Validity of the dry
matter content monitoring system was evaluated as illustrated in
Fig. 4. Let

dfinalDM ¼ DMs t ¼ finalð Þ � DMf ; ð12Þ
the final dry matter content error, corresponding to the difference
between the final dry matter content obtained in the experiment,
and the one measured classically (using oven-drying). Fig. 4.1 and
Fig. 4.3 both reveal four apparent outliers: dairy fat sludge, orange
pulp, brewery yeast, and sunflower meal with respective dry matter

Fig. 2. Sample characteristics - Histograms of predicted characteristics: carbohydrate content (mgO2.gTS-1), fat content (g.gTS-1), nitrogen content (g.gTS-1), chemical oxygen
demand (mgO2.gTS-1).

A. Mallet, C. Charnier, É. Latrille et al. Waste Management 122 (2021) 36–48

39



estimation error values of �5.81 g.g�1, �6.82 g.g�1, �6.98 g.g�1 and
�7.63 g.g�1. These substrates were consequently withdrawn from
the dataset in the further analyses. Fig. 4.2 shows a good degree
of agreement between the measured dry matter and the estimated
dry matter using the system. Fig. 4.3 shows no obvious relationship
between the differences and the mean which confirms homoscedas-
ticity of the residuals. From the boxplot, it seems that the system
slightly underestimates the measured dry matter content
(�0.21%) with a standard deviation of ± 2.30% (Fig. 4.1). This
appears marginal compared to the large range of dry matter content
studied here. However, this does imply that drawing conclusions on
spectral effects due to water below 2–3% of dry matter content dif-
ferences should be done carefully.

3.1.3.2. Temperature variations during drying. Similarly to how it
was done on spectra (Eqs. (7)–(9)), temperature variations can be
separated into two components: the temperature differences
observed between each substrate drying experiment (between-
substrates temperature differences), and the temperature varia-
tions occurring during drying for each substrate (within-
substrates temperature differences). As shown in Fig. 5.1, the mean
temperature measured for all substrates is 28.3 �C, with a standard
deviation of 1.8 �C. Such variations in temperature between each
substrate drying experiment can be explained by the daily temper-
ature differences from one experiment to another. Though the
measurements were taken in a temperature controlled room, tem-
perature differences were still observed.

Fig. 3. Drying data: list of all samples with initial and final dry matter contents obtained in the experiment. Spectra were obtained within each of these ranges.
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Moreover, as shown in Fig. 5.2, the standard deviation of
within-substrate temperature differences observed during drying
is 1.15 �C. Such sample temperature variations during drying can
be explained by two factors: heating resulting from the spectrom-
eter’s lamp, and heating resulting from the absorption of water by
the desiccant.

Unfortunately, variations of temperature may have a strong
impact on the acquired spectra and may lead to the alteration
of quantitative calibration models as many authors have shown
(Campos et al., 2018; Cozzolino et al., 2007; Dvořák et al., 2017;
Golic and Walsh, 2006; Roger et al., 2003; Sun et al., 2020;
Wülfert et al., 1998). Indeed, as temperature rises, proportions
of molecular vibrations within each molecular vibrational energy
levels change, which has a direct impact on the absorption of
photons (ie. the spectra). Visually, a horizontal shift of the broad
absorbance bands can be observed in the spectra (Renati et al.,
2019), but in fact this relates to vertical absorption changes from
the originating sub-bands. To have an idea of the magnitude of
such changes, in the case of pure water at 22 �C, it has been mea-
sured that at 1410 nm (free OH water peak), a +1 �C temperature
change increased the intensity of the absorbing peak by +0.8% (i.e.
temperature coefficient of 0.8% �C�1) (Cumming, 2013; Kou et al.,
1993). However, as these authors highlighted, because scattering
has little if no temperature dependence, the temperature coeffi-
cient applies exclusively on the absorption coefficient and not
on the scattering coefficient. Though these changes could indeed
alter the exact assignment of bands, these changes are very lim-
ited compared to the spectral variations induced by dry matter
content changes.

3.1.4. Raw spectra analysis
Fig. 6 shows some examples of near infrared spectral evolutions

during drying, representative of the main types of evolution
observed (spectral evolutions for all other substrates are provided
in Appendix C). Different effects can be observed.

Firstly, water variation modifies strongly the global pseudo-
absorbance level of the spectra: these baseline shifts probably
relate to scattering modifications, as reported in (Ilari et al.,
1988; Isaksson and Naes, 1988). Interestingly, for suspensions,
the pseudo-absorbance level increases with water content
increase, while for the emulsions (cream, butter, oil) it decreases.
As explained in Section 3.2.1, this can be linked to different refrac-
tion modifications according to which component replaces water
along drying.

Secondly, for all substrates with intermediate and high mois-
ture content levels (spectra in dark blue in Fig. 6 below), well-
known broad absorbance features due to OH vibrations are
observed in the NIR spectra around 1210 nm, 1450 nm and
1940 nm. These are attributed respectively to the combination of
the first overtone of the OAH stretching and OAH bending band,
the first overtone of the OAH stretching band and the combination
of the OAH stretching band and OAH bending band of water (Luck,
1974; Muncan and Tsenkova, 2019).

During the drying process (spectra colored from blue to red on
Fig. 6), new absorbance features in relation with chemical compo-
sition progressively appear (related to OH vibrations of sugars or
fatty acids, NH vibrations of proteins, CH vibrations of alkanes,
the C@C vibration of alkenes, and C@O vibrations of ketones/alde-
hydes) and they will be further discussed in Section 3.2. Surpris-

Fig. 4. Experimental conditions: (1) boxplot of final dry matter content errors; (2) measured vs. estimated final dry matter content, and (3) difference against mean.

Fig. 5. Experimental conditions: boxplot of between-substrates temperature differences (1) and within-substrates temperature differences (2) during drying.
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ingly, the plastic bag’s dry state spectra appear flattened, but this
corresponds to a scale issue: when water is present, pseudo-
absorbance levels are very high (1.6–2.2), making low moisture
content spectra peaks more flat, but when plotting the plastic
bag spectra alone, typical peaks related to the polymeric structure
of heteroatomic bonds present in plastics are well present.

3.2. Principal component analysis

The cumulative total explained variance percentage (not shown
here, see Appendix A) reaches a plateau at the eighth component.
Therefore, the analysis of loadings and scores (Fig. 7 and Fig. 8)
was focused on these first eight components.

3.2.1. Analysis of the first component:
The first component’s loadings of the PCA are fully positive,

with a clear slope and no main absorbance peak can be identified
(Fig. 7). This suggests that the first component corresponds to glo-
bal additive variations of pseudo-absorbance level unrelated to
specific spectral regions (i.e. specific chemical compound). Such
observation is very common in near infrared spectroscopic data.
Indeed, the first component’s loadings usually resemble the mean
spectrum even when data is mean-centered, and relate to light
scattering differences between samples mostly due to physical dif-
ferences such as granulometry (Ilari et al., 1988; Isaksson and Naes,
1988). However here, the first component’s loadings do not look
like the mean spectrum (that shows broad peaks at 1450 and
1940 nm) but resemble the first eigenvector of the between-
substrates variance–covariance matrix (plot as a black dotted line
in Fig. 7). This suggests that the first component relates to global
light scattering differences observed between substrates.

In the first component’s score plot (Fig. 8), substrates with high
scores include sugar, syrup or plastic bag; and substrates with low
scores include aluminum, poultry manure or ramial chipped wood.
Indeed, the former substrates exhibit high general pseudo-
absorbance levels (~2.3–2.5); while the latter substrates exhibit
low general pseudo-absorbance levels (~1.5–1.8). These differences
in pseudo-absorbance levels can be explained by different physical
properties of the substrates: sugar in solution is transparent and
reflects less light, aluminum reflects most of light. But the different
chemical compositions also play a role: substrates like sugar, syrup
with high contents in simple carbohydrates absorb more light than
manure or wood which contain mostly complex carbohydrates like
cellulose or lignin. Indeed, chemical composition and physical
properties are intrinsically linked, as for example simple carbohy-
drates are more soluble and susceptible to form liquid transparent
systems; while cellulose and lignin allow better formation of por-
ous materials with multiple refractive interfaces. Therefore, the
first component relates to global differences in pseudo-
absorbance levels between substrates, both due to physical and
chemical differences between substrates.

In addition, substrates show different scores’ kinetics (Fig. 8).
Most of the substrates (like sugar, fish, manure or aluminum) show
decreasing scores along drying which means that the general
pseudo-absorbance level decreases along drying. However, some
substrates such as sour cream (but also butter, mayonnaise or greek
yoghurt not shown here) show opposite scores’ kinetics, with
increasing scores along drying. These variations in the global
pseudo-absorbance level along drying are due to changes in the
refractive index differences between particles along drying
(nwater ’ 1:33, nair ’ 1:0, norganiccompounds � 1:4) (Polyanskiy, 2008).
For most substrates, as drying occurs, water is replaced by air,
which leads to increased refractive index differences. As index dif-

Fig. 6. Raw pseudo-absorbance spectra colored by moisture content (%) for nine substrates representative of the diversity of biochemical compositions and physical
properties (poultry manure, ramial chipped wood / rcw, fish, cooked steak, sugar, syrup, sour cream, aluminum and plastic bag).
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ferences increase in number or intensity, scattering increases, lead-
ing to higher reflectance levels (ie. lower pseudo-absorbance
levels). On the contrary, for substrates containing high levels of
fat, water is replaced by fat and not air; leading to lower refractive
index differences (nvegetableoil ’ 1:47) (Polyanskiy, 2008), and there-
fore, an increasing global pseudo-absorbance level. In datasets
which include these two groups of substrates, with opposite base-
line evolutions in relation with moisture content, scatter correction
pretreatments appear necessary.

Finally, the first component accounts for up to 93% of the total
spectral variance. As determined above, the first component relates
to global variations of pseudo-absorbance due to light scattering

differences between substrates, both related to their physical prop-
erties and chemical compositions. Moreover, these light scattering
differences are shown to vary along drying. One of the outcomes
from this result is that the main effect of moisture content varia-
tions on near infrared spectra is a physical one : global variations
of pseudo-absorbance. More generally, this illustrates how much
very little specific chemical-related information is present in raw
near infrared spectra compared to physical-related information
(Martens et al., 2003). Some authors have leveraged this observa-
tion by focusing on the baseline variations for online prediction
of dry matter content instead of attempting scatter correction pre-
treatments as commonly done (Bogomolov et al., 2018). Though

Fig. 7. Loadings from PCA of Xc (Eqs. (4) and (5)) with peak detection and chemical attributions (positive peaks annotated in black, and negative peaks in grey). Abscissa axis
correspond to wavelengths (in nm). Explained variance percentage of each principal component is given in the title. For each component, the corresponding eigenvector of the
between-substrate variance–covariance matrix (Eq. (8)) is plot (in dashed black line), as well as the corresponding eigenvector of the within-substrate variance–covariance
matrix (Eq. (9)) (in dashed red line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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this achieved promising results, it was shown here that these glo-
bal levels of pseudo-absorbance are highly dependent of chemical
properties; and that applying such a methodology on samples with
different biochemical compositions would not be sufficient.

3.2.2. Analysis of second component:
The second component’s loadings (Fig. 7) match well with the

first eigenvector of the within-substrate variance–covariance
matrix (plotted as a red dotted line in Fig. 7) which suggests it
relates to the main spectral variations that occur during each sub-
strate’s drying. Three broad peaks can be found at 1209 nm,
1456 nm and 1933 nm (Fig. 7) which are attributed to pure water
OH bonds’ broad absorption bands. This means that the second
component relates to the varying expression of pure water spec-
trum during drying. In accordance, most scores (Fig. 8) show a
decrease along drying, with an overall linear relationship with
dry matter content. Unlike in the first component, high fat content
substrates like sourcream also show decreasing scores along drying.

However, some samples such as sugar (but other samples not
shown here like lactulose, soya sauce or eggwhite) show bell-
curve-like-shape (increasing then decreasing) scores along drying.
This can be explained by an excessive level of forward scattering
for these substrates over certain levels of moisture content. Indeed,
forward scattering is at such a high level, that the measured reflec-
tance is similarly low for all wavelengths, and therefore, water’s
OH absorbance peaks appear low. One outcome of this observation
is that though a linear relationship of the pure water spectrum
component with dry matter content seems valid for many sub-
strates, this remains true only within a certain range of dry matter
content and depends on the substrate’s scattering properties (ie.
how ‘transparent’ the sample is in the near infrared region).

Another important characteristic of these loadings is the posi-
tive slope. During drying, not only the water’s OH absorbance
bands height vary according to the moisture content, but also the
general slope of the spectra is modified. As explained, most scores
show a decrease along drying, which means that at high moisture

Fig. 8. Scores from PCA of Xc - All abscissa axes correspond to moisture content (%). Representative substrates were selected and plotted. See all other substrates scores in
Appendix D.
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content ranges, the spectra have higher absorbance levels at high
wavelengths (1700 nm and above) than at low wavelengths (below
1700 nm); and as moisture content decreases these differences are
diminished. These slope modifications are again, due to changes in
the physical structure of the substrates as moisture content varies.

3.2.3. Analysis of third component:
The third component’s loadings show no slope and contain the

same two broad peaks (as in the second component’s loadings) sit-
uated at 1454 nm and 1935 nm that can be attributed to water OH
absorbance bands (Fig. 7). However, their relative importance is
very different: the peak at 1935 nm is much higher than the peak
at 1454 nm (absolute value of 0.06 compared to 0.01). In Fig. 8, two
groups of substrates can be distinguished based on the third com-
ponent scores: substrates showing positive decreasing scores along
drying (aluminum, ramial chipped wood, or poultry manure); and
substrates showing negative increasing scores along drying (syrup,
sugar, steak, fish). Referring to the upper interpretation of the load-
ings, this means that for the former group, as drying occurs, the
peak at 1935 nm decreases relatively more than the peak at
1454 nm; while for the latter group of substrates, the peak at
1935 nm decreases relatively less than the peak at 1454 nm. Such
differences in the relative expression of the two OH broad absor-
bance bands is related to chemical water interactions as some
authors have suggested (Gorretta et al., 2019). Indeed, the latter
group gathers substrates with high content levels in carbohydrates
or proteins which are known to interact with water through non-
covalent H-bonding (Laage et al., 2017).

3.2.4. Analysis of fourth component:
The fourth component’s loadings exhibit two sharp negative

peaks at 1407 and 1897 nm related to water OH absorbance bands;
as well as several sharp positive peaks at 1211, 1359, 1725, 2166
and 2281 nm (Fig. 7), all of them being related to bands present
in organic matter (CH/CH2/NH). For this component, all the sub-
strates exhibit increasing scores along drying (in particular sugar,
steak or sour cream) (Fig. 8), with a clear linear relationship with
moisture content (ie. dry matter content). To confirm this, the
Pearson correlation spectra with dry matter content (Eq. (11))
was plot (see Appendix B), and the exact same shape is obtained.
This implies that the bands associated to free water molecules
may be formally identified here as the negative peaks in these
loadings at 1407 nm and 1897 nm.

Though the majority of the fourth component’s scores show an
increase throughout the drying process (Fig. 8), some samples such
as plasticbag, aluminum (or digested sludge not shown here) show
almost flat score evolutions along drying. In these substrates,
organic matter levels are very low, if not inexistent (for aluminum).
As near infrared photons are absorbed for the most part by organic
molecular bonds, it is expected that the dry matter fingerprint
(near infrared spectrum related to dry matter) for these substrates
is nearly inexistent. Though some information may still indeed be
present due to interactions between minerals and OH as some
authors in mineral chemistry have outlined (van der Meer, 2018),
the fingerprint should be very limited. As a consequence, the fourth
component is related to the organic matter content (per fresh
mass) rather than the dry matter content.

Furthermore, though all the rest of the substrates show an
increase along drying, the rates of increase vary along the substrate
types. Some substrates such as sugar, syrup, or sour cream show
much larger and steeper variations than others. What gathers these
substrates is their liquid structure. In these substrates, light pene-
trates more in the matter, which means that the measured volume
is higher, and therefore the absorbance differences due to the
moisture content differences are more marked.

3.2.5. Analysis of fifth component:
The fifth component’s loadings exhibit positive very sharp

peaks situated at 1211, 1391, 1727, 1761, 1891, 2306, and
2347 nm (Fig. 7) which relate to CH, CH2 and CH3 combination
bands. Moreover, the fifth component’s scores separate very clearly
the substrates rich in lipids from the ones rich in simple carbohy-
drates (Fig. 8). Indeed, a first group constituted by sour cream (and
butter, pesto, mayonnaise, or egg yolk not shown here) exhibits
highly increasing scores, while a second group constituted by
sugar, syrup (and ketchup, fermented apple not shown here) exhibits
highly decreasing scores. Between these two groups, a third inter-
mediate group exhibits close-to-zero fluctuations in the scores:
fish, rcw (salad, grass or soya meal not shown here). This suggests
that the fifth component relates to high fat content substrates,
and in particular, to the CH/CH2/CH3 bonds that are highly concen-
trated in fatty acids and triglycerides, and where combination
bands are therefore expected to be active. Furthermore, these
two groups of substrates can be easily distinguished even at very
high levels of moisture content (at least for moisture contents up
to 60%). This is a promising outcome in regards to the feasibility
of building fat content predictive models on fresh wastes, as there
is still information allowing to distinguish substrates based on
their fat content.

3.2.6. Analysis of sixth component:
The sixth component’s loadings consist of various peaks related

to combination bands such as OH combinations (1594, 1935 or
2092 nm), and CH combinations (2283 and 2317) (Fig. 7). Scores
exhibit two groups (Fig. 8): increasing scores for samples such as
sugar, syrup, (and chocolate powder, or apricot yoghurt not shown
here), and decreasing scores for samples such as fish (chicken not
shown here).

What distinguishes these groups chemically is the presence or
absence of carbohydrates, may it be simple carbohydrates (glucose,
sucrose) or complex carbohydrates (starch, cellulose). This sug-
gests that the sixth component is specific to the expression of car-
bohydrates. Indeed, the band at 2092 has been specifically
assigned to combinations of OH vibrations in substrates with high
content in starch and cellulose. However, it seems here that such
OH combination bands are also expressed in simpler sugars such
as glucose and sucrose (sugar, syrup). One of the outcomes from
this is that the sixth component is a good indicator of the total level
of carbohydrates in a substrate.

3.2.7. Analysis of seventh component:
The seventh component’s loadings show the same sharp peaks

related to CH2 at 1725, 1762 and 2304, and 2347 nm (Fig. 7) that
were already found in the fifth component loadings. Therefore, as
expected, substrates with high fat content levels like sour cream
(and butter, mayonnaise not shown here) all exhibit high scores
(Fig. 8). However, the sugar substrate also exhibits very high scores
compared to the rest which implies that the bands at 1725, 1762,
2304 and 2347 nm are also expressed in sugar spectra for low
moisture content levels (<10%). This suggests that the bands that
allowed a clear separation in the fifth component between sugar
and the substrates rich in fat, are the other bands at 1391 nm
and 1891 nm.

Compared with the fifth component’s loadings (Fig. 7), two new
peaks are identified: a very sharp peak at 1438 nm, as well as the
same OH combination band (2101 nm) that was assigned to the
presence of carbohydrates in the sixth component. As pointed
out by some authors (Williams, 2009), peaks in the 1430 nm region
may not always relate to water’s OH bonds. Indeed, OH is present
in many different molecules such as within hydroxyl groups in
alcohols and carbohydrates or carboxylic groups in fatty acids.
However, other authors have assigned the 1438 nm band to be
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specifically related to water molecules forming one hydrogen bond
(Muncan and Tsenkova, 2019), which is the case of water mole-
cules surrounding sucrose for example. Further investigations
would be required to be able to conclude on the specific
assignment.

3.2.8. Analysis of eighth component:
In the eighth component’s loadings (Fig. 7), negative and posi-

tive peaks are positioned on each side of the two main water OH
absorbance bands’ maximums: a negative peak at 1397 nm and a
positive peak at 1467 nm; together with a negative peak at
1874 nm and a positive peak at 1939 nm. In addition, all substrates
show increasing scores along drying (Fig. 8), particularly in the
high moisture content range (60–100%). These negative and posi-
tive peaks represent shifts of the OH-bond absorbance bands that
occur from lower wavelengths to higher wavelengths along drying.
This shift of the OH-bond absorbance bands has been explained by
some authors by the change of the water population types: from
free to bound water (from free water molecules to water molecules
forming dimers, trimers, quadrimers as well as hydration shells)
(Kuroki et al., 2019; Maeda et al., 1995). Of course, at low moisture
content ranges (<20%), most substrates show decreasing scores,
which suggests that such bound water absorbance bands are dis-
appearing as drying occurs.

3.2.9. Summary of principal components’ meanings in regards to water
effects

It was shown that one of the main effects of water on near infra-
red spectra concerns global changes in scattering due to water’s
crucial role in biomolecules’ structure and the resulting physical
properties of the substrates. Indeed, the first two components
accounting for almost 99% of the total variance relate to the
appearance of global additive baselines, as well as a multiplicative
effect shown by the modification of spectra slope. As seen, these
scattering modifications due to modifications of physical proper-
ties vary according to the chemical composition of substrates. For
example, the presence of fat may form emulsions leading to
decreased scattering levels during drying, while suspensions or
porous media formed by solid ligno-cellulosic component show
increased scattering levels during drying. As well, the presence of
soluble components such as sucrose may lead to transparent solu-
tions with important forward scattering levels. A complex interac-
tion between chemical composition and physical scattering
properties has therefore been outlined.

Secondly, a strong overlap of water OH absorbance bands has
been highlighted and shown in the second and third components,
masking other more minor OH absorbance bands present in carbo-
hydrates, fatty acids, or alcohols.

Thirdly, two different spectral patterns related to water’s chem-
ical interaction (ie. water state) were identified in the third and
eighth components. Indeed, it was shown in the third component
that small differences between the first overtone absorbance band
at 1430 nm and the second combination absorbance band at
1940 nm is associated with the presence of simple carbohydrates
or proteins, both of these molecules forming important interac-
tions with water. In addition, in the eighth component, as drying
occurs, a shift of the OH absorbance bands from high energy vibra-
tions to lower energy vibrations was highlighted for most
substrates.

Fourthly, the fourth component was found linearly dependent
of dry matter content in most substrates. However, it was shown
that the rate of this dependence differed over substrates depending
on its physical properties.

Finally, different components related to the substrates’ chemi-
cal composition were found. Indeed, the fifth, sixth and seventh
components differentiated substrates based on carbohydrates

levels, as well as fat content levels. This is promising in regards
to the possibility of developing calibrations on high moisture con-
tent substrates as there is still information related to the chemical
composition: wet substrates spectra are not ‘‘just water spectra”.

4. Conclusion

The present study investigated the complexity of water effects
in near infrared spectroscopy and highlighted the close depen-
dency with the biochemical and physical characteristics of
samples.

A customized acquisition system allowed to obtain a unique
dataset comprising NIR spectral variations related to water content
modifications in standard conditions (ambient temperature/hu-
midity) with no heating nor chemical altering (oxidation, Maillard
reactions). Such water spectral variations were obtained on a very
wide variety of biochemical types (including carbohydrate sub-
strates, protein substrates, fat substrates as well as packaging
materials), allowing a comprehensive analysis of the water effects
in near infrared spectroscopy.

A detailed analysis of the dataset using principal component
analysis revealed water’s complex effects, combining both physical
and chemical effects. The fact that water effects depend both on
the dry matter content range and the nature of the substrates (both
biochemical composition, and physical structure) leads to impor-
tant challenges for its correction in the context of organic waste
characterization. These results encourage future research on the
correction of water effects to focus on the development of local
and clustered approaches, to correct water effects within groups
of substrates with common physical properties and dry matter
content range.
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ABSTRACT: In near-infrared spectroscopy (NIRS), the linear
relationship between absorbance and an absorbing compound
concentration has been strictly defined by the Bouguer−Beer−
Lambert law only for the case of transmission measurements of
nonscattering media. However, various quantitative calibrations have
been successfully built both on reflectance measurements and for
scattering media. Although the lack of linearity for scattering media
has been observed experimentally, the sound multivariate statistics
and signal processing involved in chemometrics have allowed us to
overcome this problem in most cases. However, in the case of samples
with varying water content, important modifications of scattering
levels still make calibrations difficult to build due to nonlinearities.
Moreover, even when calibration procedures are successfully
developed, many preprocessing methods used do not guarantee correct spectroscopic assignments (in the sense of a pure
chemical absorbance). In particular, this may prevent correct modeling and interpretation of the structure of water. In this study,
dynamic near-infrared spectra acquired during a drying process allow the study of the physical effects of water content variations,
with a focus on the first overtone OH absorbance region. A model sample consisting of aluminum pellets mixed with water allowed
us to study this specifically, without any other absorbing interaction terms related to the dry mass-absorbing constituents. A new
formulation of the Bouguer−Beer−Lambert law is proposed, by expressing path length as a power function of water content.
Through this new formulation, it is shown that a better and simpler prediction model of water content may be developed, with more
precise and accurate identification of water absorbance bands.

■ INTRODUCTION

Although apparently a simple molecule (H2O), water shows
complex behaviors and presents many physical anomalies
compared to other liquids.1,2 This is mostly explained by its
dominating intermolecular hydrogen bonding. As surprising as
it may seem, its structure model is far from having reached a
broad consensus.3 One of the analytical techniques used to
reveal details of the water structure and its functionalities in
aqueous solutions is near-infrared (NIR) spectroscopy.
However, very different models and interpretations of what
constitutes the first overtone OH absorbance region in NIR
have been proposed. Using second derivative, up to six
underlying water species were detected and said to correspond
to different water species: protonated water (Sr), and water
with no, one, two, three, and four hydrogen bonds (S0−S4).4
Using nonlinear fitting procedures, these authors fit six
Gaussian peaks to reconstruct the observed spectra. This was
later confirmed by other authors studying water-glucose
solutions.5 Though good reconstruction errors were obtained,

these nonlinear fitting procedures may suffer from user-guided
hypothesis and initialization biases. In another study, using
multivariate curve-resolution-asymmetric least squares (MCR-
ALS), three components were found best to explain water
spectra at different temperatures.6 Furthermore, it was shown
that though water with salt showed the same trends, the
position of these three components depended on the ionic
strength of salts. The fact that the components were not forced
to be Gaussian in this study could explain why a lower number
of components were obtained. A two-state model (water
species with weaker and stronger hydrogen bonds) has also
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been outlined using second derivatives, two-dimensional
correlation spectroscopy (2D-COS), and principal component
analysis (PCA) applied on temperature-dependent NIR
spectroscopy (NIRS).7 Recently, this model was supported
by new temperature-dependent data that suggest the presence
of a coherent state.8 In this experiment, an isosbestic point has
been observed around 1438 nm, which suggests the existence
of an equilibrium between two populations/states of water,
referred to as the “mixture-model”.9 Using second derivation,
the authors have found two negative subpeaks with stable
positions under temperature variations (positioned at 1412
and 1462 nm). However, they pointed out that the isosbestic
point was not perfectly constant and could be dependent on
temperature, as previously also observed by Gowen et al,6

which seems to be still an unresolved question today: is there a
third population of vibration?7 An interaction term? Baseline
artifacts? A continuous distribution of hydrogen bond
geometries?10

A concept that has been developed in the recent years, called
aquaphotomics,11 deals with the water−light interaction over
the whole electromagnetic spectrum. It has been found that the
first overtone OH region consists of 12−14 different water
absorbance bands, each related to a given water structure.12

Various water structures have been experimentally identified in
various systems containing water and later found to be in
agreement with theoretical calculations, such as water solvation
shells at 1364−1384 nm, water molecules confined by ions
with no hydrogen bonding at 1396−1403 nm,13 free OH water
with no hydrogen bonding like in water vapor at 1403−1418
nm (S0), protein hydration shells at 1418−1430 nm, water
molecules with one, two, three, or four hydrogen bonds (S1−
S4), respectively, at 1432−1454, 1458−1468, 1472−1482, and
1482−1495 nm, and strongly bound water at 1506−1516 nm.
Shao et al.,14 on the other hand, in the same region found 10
spectral components (Gaussian peaks) corresponding to nine
different water molecular structures, using knowledge-based
genetic algorithm. However, the correct assignment of these
bands to water states implies that the peaks truly correspond to
absorbing species and are not due to scattering artifacts. While
this seems fully respected in pure water or diluted solution
measurements, the Bouguer−Beer−Lambert law remains
unobeyed for scattering media (such as suspensions and
powders).15 This makes it difficult to consolidate water-state-
specific assignments in scattering media.
To solve this, a variety of preprocessing algorithms have

been proposed, based on the hypothesis that scattering
provokes additive and multiplicative effects. These effects
come from factors such as particle size16 or water content.17

To remove additive effects, detrend18 is a simple preprocessing
algorithm allowing the removal of polynomial baselines of
different orders. To remove multiplicative effects, one strategy
is to apply logarithm to transform the multiplicative effect into
an additive one. Other algorithms allow us to correct additive
and multiplicative effects together: standard normal variate
(SNV),18 multiplicative scatter correction (MSC),19−21

extended multiplicative scatter correction (EMSC),22−24 or
optical path-length estimation and correction (OPLEC).25,26

One concern regarding the application of these methods is
that the additive and multiplicative effects may be strictly
identified only in some regions (where no or very little
chemical absorbance is present). This led to further develop-
ments and extensions of these methods to be applied on
specific wavelengths regions only. For example, the normalized

spectral ratio (NSR),27 which can be seen as a more restricted
SNV, assumes that in a spectrum, there is a wavelength
subjected to only an additive effect and another wavelength
subjected to only a multiplicative effect. The robust normal
variate (RNV)28 extends the SNV as well, by calculating the
mean and standard deviation only on a percentile of the
spectrum. Similarly, probabilistic quotient normalization
(PQN)29 has been proposed in the field of 1H NMR analysis
to avoid spectral regions where single endogenous or drug
metabolites absorb and negatively influence the classical
integral normalization. In the EMSC framework, a weighted
least-squares (WLS) estimation of the multiplicative and
additive coefficients has been proposed.23 Authors have
proposed different methodologies to determine these weights,
including the simple inverse of the mean spectra, or in a more
sophisticated way using a robust regression method such as
random sample consensus (RANSAC)30 as proposed in the
variable sorting for normalization (VSN) algorithm.31

Another noteworthy approach to deal, more generally, with
the influence of an interference is prewhitening using
generalized least-squares weighing (GLSW)32 or orthogonal
projections like in external parameter orthogonalization
(EPO).33 These have been successfully applied on soils to
deal with moisture effects34 or sucrose solutions to deal with
temperature effects.35

Finally, some other algorithms coming from the signal
processing community have been used, such as Savitsky−
Golay derivation (usually first or second),36 continuum
removal (CR),37 asymmetric least squares (ALS), or discrete
and continuous wavelet transforms (DWT and CWT,
respectively).14,38 It can be noted that when the preprocessing
is part of a calibration modeling pipeline, these may be
combined.39−41 Though these latter algorithms undoubtedly
allow successful calibration models to be developed, a
drawback is that spectroscopic interpretation of the resulting
signal is more difficult than former physics-based models such
as EMSC.42 In particular, this comes as an important aspect
when looking for specific assignments of water structure in
NIR spectra: the chemical extinction coefficients’ relative
intensity and positions are of importance. Furthermore, this
task is made more difficult by the fact that absorptivity of
overtones in the near-infrared spectral region (10 000−4000
cm−1) is about 10 times less intense than the absorptivity of
fundamentals in the infrared spectral region (4000−1000
cm−1).
The present paper proposes a new phenomenological

equation relating light path-length modifications to water
content for scattering media containing water. Such equation is
illustrated in a model medium composed of aluminum paper
pellets and water, and demonstrated through the use of the
extended multiplicative scatter (EMSC) correction framework.
This equation could lead to further developments of
preprocessing algorithms that take into account this relation-
ship specifically. Better understanding of the water content
effects in the samples containing water could also lead to a
more precise determination of which regions in the NIR
spectra are specific to water state information.

■ MATERIALS AND METHODS
Experimental Setup. Aluminum paper pellets of 5 mm

diameter and with a density of 0.21 g cm−3 were mixed with
water, and 50 g was sampled. The initial dry matter content
was measured classically by taking two replicate samples of 10
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g, which were weighed before and after 48 h of drying in a heat
chamber at 105 °C. The samples were then placed individually
into a custom-built air-drying system with simultaneous online
acquisition of NIR spectra and determination of moisture
content. For full details on the materials and methods, see
Mallet et al. (2021).43 The drying system consisted of a closed-
tube loop with a 2000 mL min−1 internal flow of air generated
by a peristaltic pump. A strong desiccant (sodium hydroxide)
was used to maintain the gas-phase relative humidity at about
8%, and the drying circuit was connected to a hermetic
spectrometer sampling cup in which the aluminum sample was
placed. The thickness of the sample in the spectroscopic
measurement chamber was 3 cm. The sampling cup was placed
over a Fourier transform−NIR (FT-NIR) spectrophotometer
(Buchi NIR-Flex N-500) with a tungsten halogen lamp source
and an extended-range InGaAs detector for continuous
automatic NIR reflectance acquisitions. No level of zero filling
was used before applying the Fourier transform. In addition to
the spectral measurements, the desiccant was weighed
continuously using a precision balance (Ohaus Traveler
TA502) to enable the measurement of loss of water during
drying. The temperature of the sample was monitored using a
temperature-logging module (DTM5080 LKMelectronic), and
the mean temperature was 25.9 °C with a standard deviation of
0.4 °C. The temperature dependence of light absorption by
water was shown to be maximal at 1410 nm, with a
temperature coefficient of 0.8% °C−1.44 This means that the
maximum absorbance variation due to temperature that could
be expected in this experimental setup is of only 0.34% of the
absorbance, which is negligible.
The dataset consisted of 573 reflectance spectra from 4000

to 10 000 cm−1 (4 cm−1 resolution) covering a range of water
content from 0.02 to 67%. This resulted in a matrix X(n, p)
with number of spectra n = 573 and number of wavelengths p
= 1501.
All of the data analyses were performed using Python 3.6.5:

data wrangling with NumPy 1.17.3, signal processing with
SciPy 1.3.1, and plotting with Matplotlib 2.2.2.45−48

Theory and Data Analysis. For homogeneous isotropic
media without particles, transmission measurements respect
the Bouguer−Beer−Lambert law15

ε=− = · ·λ λ λA T L clog( ),c ,c (1)

with Aλ,c the absorbance, Tλ,c the transmittance, ελ the
extinction coefficient, L the light path length, and c the
concentration of the absorbing species.
In scattering media, two phenomena must be taken into

account:49 a modification of path length Lλ,c and a loss of
photons fλ,c

ε= · · +λ λ λ λA L c f,c ,c ,c (2)

In most studies interested in the multiplicative effects on NIR,
Lλ,c is modeled with a simple multiplicative constant k not
directly related to the analyte concentration24

=λL kl,c 0 (3)

with l0 a constant path length.
However, there are many cases where the absorptive specie

of interest is in fact directly responsible for the multiplicative
effects. It has been shown, for example, that water content
variations during drying induce scattering modifications
because of the increased number or intensity of refractive

index differences between the gas phase, liquid phase, and solid
particles.43 In such cases, it seems reasonable to relate the light
path-length modifications (multiplicative effect) directly to the
concentration of the absorptive species (water content).
Because such relationship is expected to involve a geometrical
relationship, it is here proposed that the path-length function is
set as to be a simple power function of the water content
concentration c

= ·λ
λL l ca

,c 0 (4)

with aλ a power coefficient dependent on the wavelength λ.
Combining eqs 2 and4 yields a new formulation of the

absorption law for scattering media

ε= · · +λ λ λ
+λA l c fa

,c 0
1

,c (5)

As already reviewed, the additive baseline term fλ,c can be
removed by a wide number of pretreatments. To preserve
spectroscopic relative amplitudes and positions, the extended
multiplicative scatter correction (EMSC) framework was used.
A pure water transmission spectrum acquired using a JASCO
V560 was used as the reference spectrum (after transforming
to absorbance using a logarithm). A constant, first-order and
second-order polynomial was included as in the original
EMSC.24 An interferent pure spectrum was added as the
measured spectrum of the fully dried aluminum. Finally, to
evaluate the additive and multiplicative terms only in regions
where water absorbance bands are known to interfere less, a
weighted least-squares (WLS) was applied with weights set as
the inverse of the pure water transmission spectrum. This
resulted in the following EMSC model

λ λ λ λ

λ

= · + + +

+

A a A b c d

e A

( ) ( )

( )

i i i i i

i

observed, pure water
2

pure aluminum (6)

Instead of correcting for both the additive and multiplicative
effects, only additive effects were corrected for

λ λ λ λ

λ

= − + +

+

A A b c d

e A

( ) ( ) (

( ))

i i i i i

i

corrected, observed,
2

pure aluminum (7)

This yielded spectra corrected only for additive effects. Thus,
eq 5 can be rewritten as such

ε− = · ·λ λ λ
+λA f l ca

,c ,c 0
1

(8)

Applying the log transform then results in the following
formula

ε− = · + + ·λ λ λ λA f l a clog( ) log( ) ( 1) log( ),c ,c 0 (9)

For each wavelength λ, an ordinary least-squares (OLS)
regression was applied between log(Aλ,c − fλ,c) and log(c) to
evaluate aλ + 1 (the slope) and log(ελ·l0) (the intercept). To
evaluate goodness of fit, the coefficient of determination (R2)
was calculated.
To investigate the impact of such a new relationship on the

development of calibration models, a comparison of different
models is proposed, with different preprocessing of spectra (X)
and water content values (y). A first model was built on raw X
and raw y. A second model was built on additive-only EMSC-
corrected X (as in eq 7) and raw y. A third model was built on
a complete EMSC-corrected X (with both additive and
multiplicative terms corrected for) and raw y. Finally, a fourth
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model was built on log-transformed additive-only EMSC-
corrected X and log-transformed y. All models were calibrated
using a partial least-squares regression (PLS1-R) with NIPALS
algorithm50,51 with up to 10 latent variables. Models were fit
on a training set representing 30% of the dataset, obtained by
the Duplex algorithm52 on y or log(y), to obtain a uniform
distribution. To evaluate the performance of these models, the
root-mean-square error of calibration (RMSEC) was calcu-
lated.

■ RESULTS AND DISCUSSION

Raw Absorbance Spectra and Correction for Additive
Effects. The near-infrared spectral evolutions observed during
drying of aluminum are shown in Figure 1. Raw spectra (A)
present strong variations of the global absorbance level with
water content variations. Such global variations relate to
scattering modifications due to changes in intensity or number
of the differences in refraction indices between the different
phases, as previously reported.19,20,43

Moreover, well-known broad absorbance features due to OH
vibrations around 1190, 1450, and 1940 nm are clearly
observed in the NIR spectra when water is present (water

content superior to 5%). These are attributed, respectively, to
the combination of the first overtone of the O−H stretching
and O−H bending band, the first overtone of the O−H
stretching band and the combination of the O−H stretching
band and O−H bending band of water.12,53 A shoulder peak
can as well be noticed at 1790 nm as observed by other
authors.54 In the corrected spectra (Figure 1B), the variations
at 1000 nm are absent, just like they are absent in the
transmission spectra of pure water.
Figure 2 presents the extended multiplicative scatter

correction (EMSC) model components defined in eq 6.
Though aluminum is a high reflective material, its dry
spectrum (as presented in the lower plot of Figure 2) is not
fully flat. For example, a small absorption band at 2220 nm can
be observed. As some authors have highlighted, this band
could arise from an association between OH groups and the
silicon of the quartz sample cell window, as also seen in soil
spectra rich in silicate.54 In addition, the dry aluminum
spectrum shows a clear negative slope, especially between 1000
and 1300 nm. Indeed, this region is particularly affected by
scattering events, as from a theoretical standpoint, scattering
occurs when the particle size is greater than the wavelength of
the radiation. It can be concluded that the pure aluminum

Figure 1. (A) Raw absorbance spectra of aluminum pellets during drying and (B) absorbance spectra corrected for additive effects using the EMSC
framework as detailed in eq 6. Spectra are colored by water content (%) from red (low water content) to blue (high water content). For better
representation, a subset of spectra is displayed (72 spectra uniformly sampled).

Figure 2. Extended multiplicative scatter correction (EMSC) model components as detailed in eq 6: coefficients (upper plots) and pure spectra
(lower plot). The pure spectra were mean-centered and reduced as in a standard normal variate for better visual comparison of spectra shapes.
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spectrum is in fact representative of the full instrumental setup
condition: a reflectance measurement of scattering aluminum
paper pellets through a quartz cell window.
The coefficients of the proposed EMSC model (upper plots

of Figure 2) show different evolutions with water content.
While additive baselines (constant bconstant, first-order cλ, and
second-order dλ2 polynomials, and the dry aluminum signature
ealuminum) show linear evolutions with water content, the pure
water coefficient (apure water) exhibits a nonlinear evolution
investigated in the following section.
Relating Path-Length Modifications to Water Con-

tent. In Figure 3A, the evolutions of raw absorbance at 1450
nm show nonlinear evolutions with water content. Moreover,
differences between absorbance values can be observed despite
identical water content. These differences were well removed
by the EMSC correction (Figure 3B).
Figure 3C shows a very good fit (R2 = 0.995) between the

log-transformed corrected absorbance values and the log-
transformed water contents. This suggests that the path-length
modifications induced by water content at 1450 nm can be
well modeled using a simple power law function of water
content. The obtained slope of the regression line (1.524) is an
estimation of (aλ + 1) in eqs 5 and 9.
After running the same analysis to all wavelengths (Figure

4), it can be shown that this law is valid for all wavelengths
greater than 1150 nm (R2 > 0.9) (red curve in Figure 4A). The
reason why the model does not fit in the region below 1150
nm is that the signal-to-noise ratio is too low. The slope values
for all regressions (blue curve in Figure 4B) appear to be
constant for wavelengths greater than 1350 nm, which allows
us to provide a global estimate of (aλ + 1) in eqs 4 and 9: (aλ +
1) ≈ 1.6.
Implications for Spectroscopic Assignments on

Water Structure. Hence, by properly retrieving the additive
and multiplicative effects, the real extinction coefficients
(multiplied by a given factor l0) are obtained (ελ·l0)
(exponential of the green curve in Figure 4). This signal can
be further analyzed to better understand the water structure,
and in particular, to better understand what constitutes the
broad first overtone OH band at 1450 nm (green curve in
Figure 5). Indeed, by applying the Savitzky−Golay second
derivative (an effective deconvolution technique among

others55), two clear negative subpeaks are identified at 1405
and 1469 nm (orange curve in Figure 5). The peak positions
correspond perfectly to the identified peaks in other studies on
pure water measurements.8,56 Other peaks at 1335 and 1537
nm may also be identified and relate well to different water
molecular conformations as described by aquaphotomics.11

Implications for Model Calibration with Varying
Water Content Samples. It appears that model calibration
would benefit from using the observed power law relationship
between the absorbance and water content. For example, a log
transformation of both spectra X and reference values y would

Figure 3. Evolutions with water content % of (A) raw absorbance values, (B) corrected absorbance values, and (C) log-transformed corrected
absorbance values. The latter log-transformed corrected absorbance values are plotted with log-transformed water content %. In the (C) subplot,
the OLS regression line is plotted in red, with the slope, intercept, and coefficient of determination (R2).

Figure 4. Log−log regression fit results for all wavelengths is
presented with (A) the obtained coefficient of determination (R2),
(B) the fitted slope (corresponding to (aλ + 1) in eq 9), and (C) the
fitted intercept (corresponding to log(ελ·l0) in eq 9).
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make the relationship between absorbance and water become
linear again, therefore enabling better water content prediction
models. To showcase this, a comparison of four models is
provided in Figure 6 and shows that with one PLS latent

variable, the lowest RMSEC are obtained by a model where X
is first corrected from additive effects using EMSC and then
log transformation is applied on both X and y to linearize the
relationship as in eq 9 (red curves in Figure 6). This shows the
strong effect of linearizing the relationship between absorbance
and water content: the model is simpler and thus more robust.
Indeed, to reach the same prediction error value (0.8% of
water content) of the one latent variable model obtained with
log(EMSCadditive(X)) − log(y), the other models X−y (blue
curve) , EMSCadd i t i v e (X)−y (orange curve) , and
EMSCcomplete(X)−y (green curve) need, respectively four,
three, and six more latent variables. With sufficient number
of latent variables (greater than 15), the models without the
log transform appear to follow the same error of prediction as
the log-transformed model. This illustrates well how the PLS
algorithm is capable of taking into account nonlinear
relationships, though it is probable that these models are
overfitted. Interestingly, applying a complete EMSC with
removal of both additive and multiplicative effects appears very
bad in this case for water content prediction (green curves in
Figure 6). Indeed, by removing multiplicative effects, the
strong relationship between water content and these effects is

lost. Of course, it should be noted that, as discussed in other
studies,31 applying a logarithm to y is not without
consequences: the original distribution of y value is deformed,
which may cause problems for regression. However, it appears
clear from these results that taking into account the power law
relationship between water content and light path length
allows a significant improvement of predictive models.

■ CONCLUSIONS
In most drying experiments, the presence of the dry matter’s
chemical absorption signature makes it difficult to study
independently the scattering modifications induced by water
content. By studying the drying of a mixture of aluminum
pellets and water, the physical effects induced by water content
could be well isolated. A new modeling of path length is
proposed in the Bouguer−Beer−Lambert law and consists of
relating the path length directly to a power of water content. As
shown through the simple use of logarithm to linearize the
relationship, this new phenomenological equation could lead
to significant enhancements of NIR calibrations on wet
scattering media and to further developments of preprocessing
algorithms that take specifically into account this relationship.
Better consideration of the water content effects in samples
containing water could as well lead to a more accurate
determination of what regions in NIR spectra are specific to
water state information.
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a b s t r a c t

Fast characterization of solid organic waste using near infrared spectroscopy has been successfully
developed in the last decade. However, its adoption in biogas plants for monitoring the feeding substrates
remains limited due to the lack of applicability and high costs. Recent evolutions in the technology have
given rise to both more compact and more modular low-cost near infrared systems which could allow a
larger scale deployment. The current study investigates the relevance of these new systems by evaluating
four different Fourier transform near-infrared spectroscopic systems with different compactness
(laboratory, portable, micro spectrometer) but also different measurement configurations (polarized
light, at distance, in contact). Though the conventional laboratory spectrometer showed the best
performance on the various biochemical parameters tested (carbohydrates, lipids, nitrogen, chemical
oxygen demand, biochemical methane potential), the compact systems provided very close results.
Prediction of the biochemical methane potential was possible using a low-cost micro spectrometer with
an independent validation set error of only 91 NmL(CH4).gTS-1 compared to 60 NmL(CH4).gTS-1 for a
laboratory spectrometer. The differences in performance were shown to result mainly from poorer
spectral sampling; and not from instrument characteristics such as spectral resolution. Regarding the
measurement configurations, none of the evaluated systems allowed a significant gain in robustness.
In particular, the polarized light system provided better results when using its multi-scattered signal
which brings further evidence of the importance of physical light-scattering properties in the success
of models built on solid organic waste.

� 2021 Elsevier Ltd. All rights reserved.

1. Introduction

In anaerobic digestion processes, different organic waste are
often co-digested to enhance the production of both biogas and
fertilizers (Hagos et al., 2017). A tremendous diversity of waste is
concerned by these bioprocesses such as agricultural residues (an-
imal manure, crop stems/stalks, silage), food industry waste (brew-
ery, sugar refinery), urban solid waste, meat waste or catering
waste. This implies that these waste cover a large range of bio-
chemical composition and physical properties. Moreover, such

properties may fluctuate according to factors such as crop
seasonality, transport or storage. This brings important challenges
for ensuring the stability of the process and the efficiency of biogas
production in digesters (Wu et al., 2019). To answer this, online
monitoring of the feeding substrate quality could allow the direct
adaptation of the feeding strategy to the feeding substrate quality
(Jacobi et al., 2011). However, up to today, this has only been
shown to be possible on digesters fed with a single type of sub-
strate (like maize silage), while the usefulness of such system
appears greater with important variations of substrate type and
quality (Jacobi et al., 2012). In light of this, for co-digestion plants,
there is a need for the development of fast and reliable character-
ization methods that are applicable on highly diverse organic
waste.
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Near infrared spectroscopy (NIRS), coupled with multivariate
analysis techniques (Næs and Martens, 1984), has been success-
fully used as a fast and robust characterization method of solid
organic waste (Skvaril et al., 2017). In the composting process, NIRS
was used to monitor the degradation phases of compost (Albrecht
et al., 2008), or to predict biochemical characteristics such as the
carbon/nitrogen ratio (Vergnoux et al., 2009). In the anaerobic
digestion process, the technology was initially used for in-situ
monitoring of dry solids (DS), volatile solids (VS), chemical oxygen
demand (COD) and volatile fatty acids (VFA) in digesters (Jacobi
et al., 2009; Lomborg et al., 2009; Stockl and Lichti, 2018; Wolf
et al., 2011). NIRS was then proposed for the determination of bio-
chemical methane potential (BMP) on municipal solid waste
(Lesteur et al., 2011), and has since been extended to other types
of waste (Doublet et al., 2013; Fitamo et al., 2017; Godin et al.,
2015; Triolo et al., 2014; Yang et al., 2021). Today, NIRS appears
the most suitable method for predicting BMP on various organic
substrates (Rodrigues et al., 2019). More recently, NIRS was used
to estimate complementary characteristics such as carbohydrates
content, lipid content, nitrogen content, COD, and kinetic parame-
ters (Charnier et al., 2017). In terms of process monitoring, these
developments allow time-consuming reference measurements
(which last typically one to two months for a characteristic like
BMP) to be available in less than five days. Today, what limits
the adoption of NIRS in full-scale biogas plants is its low applicabil-
ity and high costs (Wu et al., 2019). Indeed, freeze-drying and
grinding steps are necessary to avoid water and particle size effects
in NIRS (Mallet et al., 2021), which currently limits the online
applicability of such system. Moreover, the high costs of the spec-
trometer and the logistics involved in sending the sample at the
laboratory still limits a regular and exhaustive analysis of the feed-
ing substrates. Whether NIRS is applied directly on fresh waste or
with a prior freeze-drying step, there is a need to develop cheap
and reliable instruments which can be used on a wide range of sub-
strate types in order to promote a greater adoption of NIRS in co-
digestion plants. This could be addressed by an at-site use of
low-cost and compact near infrared (NIR) systems.

In the past few years, the use of NIRS has developed out of lab-
oratories, thanks to important progress in the miniaturization of
instruments. In particular, handheld Fourier transform near infra-
red (FT-NIR) micro spectrometers have appeared in the market,
and make use of a micro-electro-mechanical systems-based
(MEMS) Michelson interferometer (Beć et al., 2021). While conven-
tional Michelson interferometers are made of discrete elements
(including the moving mirror actioned by a motor, the fixed mirror,
and beam splitter), MEMS technology enables a monolithic inte-
gration of these elements on a single chip, with the particularity
that the moving mirror is operated by an electrical signal. Amongst
the spectrometers making use of this technology, the NeoSpectra
instrument has shown good analytical performance results for soil
organic and total carbon content characterization (Sharififar et al.,
2019; Tang et al., 2020), or authenticity screening in food (McVey
et al., 2021). These compact spectrometers allow the measure-
ments to be performed on site, thanks to their compactness,
robustness and cost. However, these compact portable spectrome-
ters tend to have poorer instrument performances than laboratory
spectrometer, with lower resolution, spectral range, and signal-to-
noise ratio (Beć et al., 2020; Crocombe, 2018). Therefore, the suit-
ability of such systems for the characterization of diverse organic
waste still needs to be assessed.

Another aspect of these compact systems concerns their modu-
larity and the possibility of testing different measurement config-
urations, in order to enhance the measured signal. Indeed, in
complex matter such as solid organic waste, the Bouguer-Beer-
Lambert law does not hold due to important light scattering
(Dahm and Dahm, 2004). To answer this, spectral pre-processing

has been proposed to remove both additive and multiplicative
effects (Rabatel et al., 2020; Rinnan et al., 2009; Zeaiter et al.,
2005) and thus, make the problem linear again. However, other
developments have rather focused on enhancing the measured sig-
nal directly. A promising optical pre-processing method, based on
polarized light spectroscopy (Backman et al., 1999) has been pro-
posed to improve the absorbance signal measurement on such
scattering samples (Bendoula et al., 2015; Gobrecht et al., 2015;
Xu et al., 2019). Such system has shown analytical performance
improvements for soils (Gobrecht et al., 2016), and more recently,
for digestate (Awhangbo et al., 2020), but has never been evaluated
on solid organic waste. Still in the aim of enhancing the measured
spectra, time-resolved spectroscopy shows a promising future :
applied to pharmaceutical tablets, collected photons with a partic-
ular propagation time were shown to be most informative for
quantification (Alayed and Deen, 2017; Johansson et al., 2002).
However, the cost of this technology still remains prohibitive for
the organic waste management sector. Finally, the measurement
mode (at distance or in contact, in reflectance or in interactance)
also plays an important role in the final accuracy for estimating
biochemical properties (Hemrattrakun et al., 2021;
Khodabakhshian et al., 2019; Schaare and Fraser, 2000). Though
current used laboratory spectrometers make use of a distance
reflectance measurement, a contact immerged probe measurement
has been shown to be useful for prediction of parameters on diges-
tates (Awhangbo et al., 2020). Authors observe higher reflectance
levels with less noise in the collected spectra, as well as new chem-
ical features which were not apparent in a remote probe configura-
tion. In light of this, it appears that the use of different
measurement configurations could enable the calibration of more
accurate and more robust NIRS models on diverse solid organic
waste.

As mentioned, the applicability of compact and low-cost spec-
troscopic systems remains to be assessed for biochemical charac-
terization of highly diverse solid organic waste. Moreover, the
modularity offered by such compact systems is a unique opportu-
nity to evaluate whether the use of different measurement config-
urations can help build more robust models. This study aims to
assess these two matters by comparing the analytical perfor-
mances of four different NIRS systems: a standard laboratory spec-
trometer, a portable spectrometer with two measurement
configurations (contact mode and polarized mode), and a micro-
spectrometer. For this purpose, measurements were acquired with
each system on a selection of solid organic waste. Then, for each
spectroscopic system, prediction models for five biochemical char-
acteristics (carbohydrates, lipids, nitrogen, COD and BMP) were
calibrated and their performances were compared.

2. Materials and methods

2.1. Sample preparation and reference analyses

Thirty-three substrates were selected amongst various waste
types that have been collected in rural, territorial and industrial
anaerobic digestion plants in France. These substrates cover a wide
range of biochemical and physical properties: solid cellulosic waste
(like silage, cereals and corn cobs), liquid cellulosic suspensions
(such as manure), liquid fat suspensions (catering waste or bio-
waste), sweet emulsions (such as lactoserum), or protein and fat
solid pastes (such as egg waste or cacao butter). The visual aspect
of some of these substrates in raw form is presented in Appendix A.

For spectral measurements, each substrate sample was freeze-
dried and ground to 1 mm. The dataset is fully described in a data
paper and available online [https://doi.org/10.15454/SQQTUU].
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Biochemical characterization of substrates was obtained by
using a NIRS calibrated model (Charnier et al., 2017), with errors
on independent test sets of 53 mg(O2).gTS-1 for carbohydrates con-
tent, 3.2*10-2 g.gTS-1 for lipids content, 8.6 mg.gTS-1 for nitrogen
content, and 83 mg(O2).gTS-1 for COD. The histograms of obtained
prediction values are presented in Fig. 1.

2.2. Spectroscopic systems

The four spectroscopic systems compared in this study are pre-
sented below. In addition, spectral measurement protocols are
compared in Table 1.

2.2.1. Laboratory spectroscopic system
The laboratory spectroscopic system consists of a NIR-Flex N-

500 solids FT-NIR spectrophotometer with a vial accessory (Buchi,
Flawil, Switzerland), scanning in reflectance mode with a spectral
range of 4 000 cm�1 to 10 000 cm�1 (1000–2500 nm) and a resolu-
tion of 4 cm�1. An external white reference (Spectralon�) signal
I0 kð Þis automatically taken every 10 min. For each sample, an
intensity signal I kð Þ was collected, and the pseudo-absorbance sig-
nal Alab kð Þ was computed:

Alab kð Þ ¼ �log10 Rlab kð Þð Þ ¼ �log10
I kð Þ
I0 kð Þ

� �
: ðEq:1Þ

2.2.2. Portable spectrometer with immersed contact probe
The immersed contact probe system consists of a FT-NIR Rocket

spectrometer (Arcoptix, Neuchatel, Switzerland) scanning in
reflectance mode with a spectral range of 3 800 cm�1 to 11
000 cm�1 (900–2500 nm) and a resolution of 4 cm�1. The spec-
trometer was connected to two optical fibers (for illumination
and signal collection) of 1000 lm core diameter and numerical
aperture of 0.39 (BFY1000, Thorlabs). A tungsten-halogen source
(Ocean Optics HL-200-FHSA) was used for illumination. For each
sample, the intensity I kð Þ was collected. A white reference
(SRS99, Spectralon�) was scanned every hour during the measure-
ments resulting in I0 kð Þ. Finally, a dark current signal In kð Þ corre-
sponding to the instrumental noise was recorded and subtracted
to all spectra. A pseudo-absorbance signal Aip kð Þ was thus
calculated:

Aip kð Þ ¼ �log10 Rip kð Þ� � ¼ �log10
I kð Þ � In kð Þ
I0 kð Þ � In kð Þ

� �
: ðEq:2Þ

2.2.3. Portable spectrometer with polarized light spectroscopy
The polarized light system consists of the same elements (spec-

trometer, light source, optical fibers) as the immersed contact
probe system, however, measurements were made at a distance
of 5 cm from the samples, and a polarized light component
(Awhangbo et al., 2020) was connected to the spectrometer.
This component consisted in a wire-grid polarizer (Thorlabs
WP25L-UB) to s-polarize the incident light; and a calcite Wolaston
polarizer (Thorlabs WP10P) to split the reflected light in an
s-polarized and p-polarized image, corresponding to parallel Ik kð Þ
and perpendicular I? kð Þ light signals. As in the previous system,
both the dark current signal In kð Þ, and a white reference signal
I0 kð Þ ¼ Ik kð Þ0 þ I? kð Þ0 were collected. Three signals were then cal-
culated following Bendoula et al. (2015) formula (Bendoula et al.,
2015): the single scattering reflectance Rss kð Þ, the multiple scatter-
ing reflectance Rms kð Þ, and the total backscattering reflectance
Rbs kð Þ:

Rss kð Þ ¼ Ik kð Þ � In kð Þ� �� I? kð Þ � In kð Þð Þ
I0 kð Þ � In kð Þ : ðEq:3Þ

Rms kð Þ ¼ 2 I? kð Þ � In kð Þð Þ
I0 kð Þ � In kð Þ : ðEq:4Þ

Rbs kð Þ ¼ Ik kð Þ � In kð Þ� �þ I? kð Þ � In kð Þð Þ
I0 kð Þ � In kð Þ : ðEq:5Þ

2.2.4. Handheld micro spectrometer
The micro spectrometer system consists of a MEMS FT-NIR

NeoSpectra spectrometer (Si-Ware, Cairo, Egypt) scanning in
reflectance mode with a spectral range of 3 921 cm�1 to
7 407 cm�1 (1350–2550 nm) and a resolution of 66 cm�1. A white
reference (SRS99, Spectralon�) signal I0 kð Þwas collected before
each measurement. For each sample, an intensity signal I kð Þ was
collected and the pseudo-absorbance signal Al kð Þ was computed:

Al kð Þ ¼ �log10 Rl kð Þ� � ¼ �log10
I kð Þ
I0 kð Þ

� �
: ðEq:6Þ

2.3. Data analysis: Model calibration

All the data analysis was performed using Python 3.6.5: data
wrangling with Pandas 0.25.1, NumPy 1.17.3, SciPy 1.3.1, Scikit-
learn 0.21.3, and plotting with Matplotlib 2.2.2 (Harris et al.,
2020; Hunter, 2007; McKinney, 2010; Pedregosa et al., 2015; van
Rossum and Drake, 2009; Virtanen et al., 2020).

Measurements of the 33 substrates on the four spectroscopic
configurations yielded six different matrices : the absorbance sig-
nal Alab from the laboratory spectrometer, the absorbance signal
Aip from the immerged contact probe system, the three reflectance
signals Rss, Rms and Rbs (respectively single scattered, multiple scat-
tered, total back-scattered) from the polarized system, and finally
the absorbance signal Al from the micro spectrometer system.

For noise reduction and baseline correction, a selection of seven
pretreatments that have proven to be efficient in previous studies
on organic waste (Charnier et al., 2017; Lesteur et al., 2011) have
been used: the standard normal variate (Barnes et al., 1989)
(SNV), the first-order detrend (Barnes et al., 1989) (DT1), the
first-order Savitzky-Golay (Savitzky and Golay, 1964) derivation
(SG1), the second-order Savitzky-Golay derivation (SG2), combina-
tions of SNV and first-order Savitzky-Golay derivation (SNV + SG1
or SG1 + SNV) and finally, a weighted EMSC with variable sorting
for normalization (VSN) (Rabatel et al., 2020). The raw signal was
used directly as well, which resulted overall in testing eight differ-
ent preprocessing conditions.

In order to evaluate the models built on each spectroscopic sys-
tem, a validation test set was constituted. With the aim of produc-
ing a representative validation test set, the Duplex algorithm (Snee,
1977) was run for each reference characteristic (carbohydrates
content, lipid content, total nitrogen content, COD, BMP). This
resulted in a training set of 22 substrates, and a validation test
set of 11 substrates. To assess the representativeness of the valida-
tion test set in terms of spectral variability, a principal components
analysis (Cordella, 2012) was done, and obtained scores were plot
in Fig. 2 and Appendix C.

Models were built using a partial least squares regression
(PLS1-R) with NIPALS algorithm (Næs and Martens, 1984; WOLD,
1973). To determine the number of latent variables, a cross-
validation was done using a repeated randomized group-k-fold
cross-validation with k ¼ 5 the fold number and n repeats ¼ 30
the repetition number. Sample triplicates were always kept within
one fold to ensure independence. For each cross-validation run,
various metrics were then calculated: the root-mean-square error
(RMSE), the mean absolute error (MAE) (Willmott and Matsuura,
2005), the coefficient of determination (R2), and B-coefficients
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metrics which are the Durbin-Watson statistic (DW) and the
variance (Rutledge and Barros, 2002). The choice of the number
of latent variables was made by analyzing all these metrics

together (i.e. choosing the minimal number of latent variables
while minimizing RMSE and MAE, maximizing R2, and detecting
rate increase of DW and variance of B-coefficients).

Fig. 1. Histograms of reference characteristics. Both train and test sets (respectively in blue and in orange) obtained by a Duplex split are presented. Respective mean (labeled
as l) and standard deviation (labeled as r) are presented for train and test sets (respectively in blue, and in orange). Dotted lines represent respective mean values. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Spectral measurement protocol characteristics.

Laboratory
spectrometer

Immersed contact probe Polarization system Micro spectrometer

Measurement replicates 3 3 3 3
Number of scans per measurement 96 scans 10 scans 10 scans 28 s scan time
Measurement sampling method (measured

area per scan)
360� rotation
(~5 cm2)

Fixed point
(~0.05 cm2)

Fixed point
(~1 cm2)

Fixed point
(~25 cm2)

Protocol between replicates Mix the whole
sample

Change the measured surface
position

Change the measured surface
position

Change the measured surface
position

Fig. 2. Principal component analysis (PCA) score plots of train and test sets (respectively in blue triangles, and in orange squares) for each signal type (from the four
spectroscopic configurations). Each subplot represents the scores of the first and second principal components (PC1 and PC2). The percentage of explained variance is
provided in the labels. The train and test split was obtained by a Duplex split based on the carbohydrates content levels. Score plots for other reference characteristics are
shown in Appendix C. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Spectral range was also optimized for each of the signal types.
This was done by calibrating a first model, analyzing its B-
coefficients (available in Appendix E), and shrinking the spectral
range adequately before recalibrating the model.

The final performances of the obtained models were evaluated
on the validation test set, based on the root-mean-square error
(RMSE) and the coefficient of determination (R2).

To assess prediction repeatability of a given model, the variance
of each sample’s triplicate spectra predictions was calculated:

s2r ¼
X3

i¼1
byi � �by� �2

ðEq:7Þ

and the global prediction repeatability standard deviation was
calculated as the quadratic mean of each sr:

Sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn test samples

i¼1
s2r i

r
ðEq:8Þ

3. Results & discussion

3.1. Data overview

3.1.1. Training set and validation test set
For each reference characteristic, train and test set distributions

(respectively in blue and orange) are presented as histograms in
Fig. 1. Very similar distributions (same mean, same standard devi-
ation) for all characteristics show that the Duplex algorithm suc-
ceeded in obtaining a representative test set in terms of
biochemical composition. To complete this analysis, the represen-
tativeness in terms of signal is assessed by looking at the scores of
train and test sets for each signal type in Fig. 2 (only the first and
second component scores are displayed, but scores up to the tenth
component were checked). As shown, the test set signals (in
orange) cover most of the range covered by train set signals. How-
ever, in some cases, the variability of train set signals is not fully
well represented in the test set. For example, in the upper left score
plot representing the laboratory spectrometer configuration signal
Alab, no test set signal (orange square) is found in the far right plot
where there are two train set signals (blue triangles). This is consis-
tent with the fact that the Duplex algorithm was run on the refer-
ence values and not on the spectral values, so there is no guarantee
for test set spectral representativeness. Although this is not opti-
mal for evaluating calibration models alone, such methodology
appeared to be the best to compare different spectroscopic systems
on identical samples without bias.

3.1.2. Raw spectra analysis
Fig. 3 presents the raw reflectance signals obtained with each

spectroscopic system. In all signals, the main peaks found in
organic waste were apparent: the CH, CH2 and CH3 combination
bands particularly present in fat (1731 nm, 1764 nm, 2310 nm,
2350 nm), the OH bands present in simple sugars (1436 nm,
1932 nm), the OH combination bands in starch or cellulose
(2092 nm), and the NH combination bands present in proteins
(2180 nm) (Williams and Antoniszyn, 2019; Workman and
Weyer, 2012). However, the relative amplitude of these peaks
seems to differ. For example, in the micro spectrometer signal
(Rl) the CH2 combination bands at 2310 nm and 2350 nm seem
much less sharp than in the laboratory spectrometer signal (Rlab).
This can be well explained by the lower resolution of the micro-
spectrometer (66 cm�1) compared to the laboratory spectrometer
(4 cm�1). A consequence of this is that the models built on compact
systems such as the micro spectrometer will be based on more
simple features, which could lead them to be less accurate models
but potentially also more robust.

In addition, the sensitivity with respect to the spectral range
appears to differ from one spectrometer to another. For the micro
spectrometer, the measured signal below 1600 nm seems much
noisier than in other systems. Such sharp peaks are not, a priori,
expected in NIR spectra of complex matter. Similarly, for the
immersed probe contact (Rip) or polarized signals (Rss, Rms, Rbs),
it seems the measured signals below 1200 nm and over 2240 nm
are as well very noisy. For this reason, these spectral regions were
later removed from the calibration of the built models.

Another point of comparison concerns the observed reflectance
levels (Fig. 4). The reflectance levels of Rlab, Rbs, and Rl are much
higher (with 75% of the values that range respectively between
0.46 and 0.73, 0.43 and 0.66, and 0.60 and 0.90), than the reflec-
tance levels of Rip (with 75% of the values that range between
0.15 and 0.35). This is mostly related to the way the signal is
acquired (i.e. the measurement configuration). Indeed, reflectance
levels are the result of both the absorption level (dependent of
chemical composition) and the scattering level (modifications of
light optical path-length, and photon leakage (Gobrecht et al.,
2014)). Therefore, the chosen measurement configuration might
favour one or the other, leading to differences in the measured
reflectance levels. Results show here that the distant mode systems
(i.e. Rlab, Rbs, and Rl) collect much more scattering photons than
the contact mode system (i.e. Rip). Regarding the advantage of
one measurement mode over the other, this will mostly be depen-
dent on the characteristic to be predicted, and its dependency on
physical properties.

In the polarized light system, a clear difference of reflectance
level can also be observed: 75% of the values of the multiple scat-
tering signal Rms range between 0.52 and 0.76, against 0.05 and
0.11 for the single scattering signal Rss. This is consistent with
the sole principle of polarized spectroscopy where Rss corresponds
to single scattering photons with low penetration in the media
while Rms corresponds to multiple scattering photons with a longer
optical path length in the media due to refraction events. This fur-
ther confirms the efficiency of polarized spectroscopy as an optical
method to remove the scattering effects in the measured signal
(Bendoula et al., 2015; Gobrecht et al., 2016). However, the impacts
on the subsequent models built on such signals remain to be
studied.

3.2. Model performances

For the five reference characteristics that were studied, the best
selected models obtained on each of the six signals are presented
in Table 2.

For prediction models built using the laboratory spectrometer
system, the errors obtained on the test set (RMSEP) were of
0.108 g.gTS-1 for carbohydrates content, 5.8 mg.gTS-1 for nitrogen
content, 0.034 g.gTS-1 for lipids content, 0.060 NL(CH4).gTS-1 for
BMP, and 136.4 mg(O2).gTS-1 for COD. These are all consistent to
the performances of reference models (Charnier et al., 2017). The
slightly lower performances obtained can be explained by the
more limited number of samples on which these models were built
(22 samples) compared to the original models (about 80 samples).

For all predicted characteristics, the laboratory system (Alab)
showed better analytical performance results than the compact
systems (Aip, Al, Rss, Rms, Rbs). However, in many cases, these latter
systems showed similar performances to the laboratory system.
For example, for BMP prediction, the prediction error (RMSEP) of
the model obtained with the laboratory spectrometer signal Alab

was 60 mL(CH4).gTS-1. In comparison, for the polarized system sig-
nals Rss, Rms, Rbs, the model prediction errors were of respectively
115 mL(CH4).gTS-1, 111 mL(CH4).gTS-1 and 100 mL(CH4).gTS-1 ,
while for the micro spectrometer signal Al the model’s error was
of only 91 mL(CH4).gTS-1. Similarly, for carbohydrates content
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prediction, while the prediction error for the laboratory
spectrometer was 0.108 g.gTS-1, the errors for the micro-
spectrometer and the immersed probe system were of only
0.134 g.gTS-1 and 0.104 g.gTS-1. Such observation can be made

for all the other characteristics studied. This is very promising
because these models have acceptable errors compared to the lab-
oratory spectrometer. This means that the models built on organic
waste rely on sufficiently simple features so that the lower spectral
resolution of compact spectrometers does not affect too much the
performances. Such result is consistent with similar studies on
low-cost compact NIR spectrometers with limited spectral range
that are applied to herbaceous feedstock such as corn stover or sor-
ghum (Wolfrum et al., 2020). Knowing that these spectrometers
are low-cost (while the laboratory spectrometer costs about
50 000€, the immersed contact probe and polarized systems each
cost about 20 000€ and the micro spectrometer only costs about
3 000 €), and can be used at-site, this holds great promises regard-
ing an increased adoption of NIRS for robust solid organic waste
characterization in anaerobic digestion plants.

Models built on the three signals Rss, Rms, Rbs obtained using the
polarized spectroscopy system show different performances.
While Rbs is a signal very similar to those obtained from the other
set-ups because it includes information from all the backscattering
light, Rss and Rms differ in terms of type of photons that are cap-
tured by the spectrometer (respectively single scattering photons,
and multiple scattering photons). For all characteristics, models
built on Rbs signal show better performances than models built
on the Rss and Rms signals. For example, for COD prediction, while
the prediction error (RMSEP) of the model using the total back-
scattering signal (Rbs) is of 129.2 mg(O2).gTS-1, it is of 147.8 mg
(O2).gTS-1 using Rms and 273.9 mg(O2).gTS-1 using Rss. This suggests
that the use of polarized spectroscopy for predicting these charac-
teristics on organic waste may not be particularly recommended.

Fig. 3. Raw reflectance spectra of each spectroscopic system (Rlab: laboratory spectrometer, Rip: immersed probe system, Rl: micro-spectrometer, Rss: single scattered signal
of polarized system, Rms: multiple scattered signal of polarized system, Rbs: total back-scattered signal of polarized system). Each spectrum corresponds to the mean of the
triplicate measurements.

Fig. 4. Boxplots of raw reflectance spectra values for each signal type (Rlab:
laboratory spectrometer, Rip: immersed probe system, Rl: micro-spectrometer, Rss:
single scattered signal of polarized system, Rms: multiple scattered signal of
polarized system, Rbs: total back-scattered signal of polarized system). Each boxplot
was obtained on the flattened matrix (reflectance values for all samples and for all
wavelengths). Median values are presented with orange lines. The box limits
represent the first and third quartile values (respectively Q1 and Q3), and the lines
that extend from the box show the lowest and largest data points excluding any
outliers (respectively Q1� 1:5� Q3� Q1ð Þ and Q1� 1:5� Q3� Q1ð Þ). Outliers are
presented in empty black circles. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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In fact, for lipids content, COD and nitrogen content, the models
built with Rss signals show much greater errors than models built
with Rms signals (respectively 0.124 g.gTS-1 greater than 0.068 g.
gTS-1, 273.9 mg(O2).gTS-1 greater than 147.8 mg(O2).gTS-1, and
21.4 mg.gTS-1 greater than 12.1 mg.gTS-1). This came as a surprise,
as the single scattering signal is theoretically supposed to be more
related to absorbing constituents and less impacted by scattering
effects (Gobrecht et al., 2015). This can be explained by the fact
that for a dataset with such diverse solid organic substrates, the
biochemical composition is closely related to the physical proper-
ties. For example, high lipid content substrates (which also corre-
spond to substrates with high COD) tend to form liquid
transparent solutions (like oil), which transmit light much more
than low lipid content substrates which usually form highly scat-
tering porous media. This relatively poor performance obtained
with the single scattering signal is consistent with results obtained
on digestates where physical structure appeared determinant
(Awhangbo et al., 2020). One additional reason can be found in
the measurement technique itself: the intensity captured for the
single scattering signal is much more limited than a classical total
backscattering signal, leading to higher signal-to-noise ratios. Fur-
ther investigations could concentrate on the use of a multi-block
approach combining these three complementary signals, as pro-
posed on digestates (Awhangbo et al., 2020).

Apart from the single scattering signal, all signals allowed to
build satisfactory models for the biochemical characterization of
organic waste. However, no spectroscopic system allowed to sur-
pass the analytical performance of the laboratory spectrometer
system. Fig. 5 presents the observed and prediction plots for each
signal for the prediction of biochemical potential. In Alab (upper left
subplot), the predictions for each of the three replicate spectra do
not differ (for one observed value, the prediction values are over-
laid on the graph); while for the other spectroscopic systems, the

predictions for each of the three replicate spectra are very
different. For example, the sample with a BMP of 0.63 NL(CH4)g.
TS-1 has predictions that vary for Alab between 0.869 NL(CH4)g.
TS-1 and 0.870 NL(CH4)g.TS-1, while the predictions for Aip and Al
vary respectively between 0.863 NL(CH4)g.TS-1 and 0.940 NL
(CH4)g.TS-1 and between 0.709 NL(CH4)g.TS-1 and 0.771 NL(CH4)
g.TS-1. This is observed for all the other characteristics as shown
in Appendix D. It appears that in all the compact systems, the repli-
cate spectra vary much more from each other than with the labo-
ratory spectrometer. This could explain the greater errors obtained
using the compact systems. The following result may be investi-
gated more quantitatively by calculating the global repeatability
standard deviations as presented in Fig. 6. Indeed, for all character-
istics, the compact systems show much higher repeatability stan-
dard deviations than the laboratory spectrometer (in red). Such
differences are due to the way the spectral measurements are
acquired. As detailed in Table 1, the systems do not have the same
number of scans and sampling surface. While for one measure-
ment, the laboratory spectrometer collects scans during a full rota-
tion of the sampling cup, the other systems only collect scans on a
fixed point of the sample’s surface. This means that in

compact systems the spectral measurement is much less repre-
sentative of the total sample. It appears that the performance of
compact systems could be enhanced by optimizing the way the
spectra are taken: increasing the number of scans and the number
of replicates to ensure a better stability of the measurements.

While the suitability of the compact and low-cost spectrome-
ters has been demonstrated, some challenges remain. Though
models could be calibrated on the compact systems’ signals
directly as in this study, it is most probable that models will
remain being built and maintained on standard laboratory spec-
trometers, with transfer functions being built between the labora-
tory spectrometer (referred as the ‘‘master” spectrometer) and the

Table 2
Descriptive statistics of the calibrated models. For each predicted reference measurement (carbohydrates, nitrogen, lipids, BMP, COD), the retained model for each spectroscopic
system signal (Alab, Aip, Al, Rss, Rms, Rbs) is presented. The optimized parameters are provided (the spectral range, the pretreatment and the number of latent variables) along with
the different performance metrics (RMSEC, RMSECV, RMSEP, R2C, R2P).

Experiment Optimized parameters Performance metrics
Reference Signal Spectral range (nm) Pretreatment #LV RMSEC RMSECV RMSEP R2

C R2
P

Carbohydrates
g.gTS-1

Alab 1400–2240 SNV + SG1 2 0.143 0.192 0.108 0.78 0.83
Aip 1450–2240 SNV 2 0.188 0.169 0.104 0.82 0.84
Au 1400–2500 SNV + SG1 3 0.146 0.137 0.134 0.75 0.88
Rss 1200–2240 SNV 2 0.259 0.296 0.207 0.28 0.37
Rms 1200–2240 Raw 4 0.121 0.185 0.112 0.82 0.82
Rbs 1300–2300 SNV + SG1 3 0.119 0.158 0.130 0.74 0.91

Nitrogen
mg.gTS-1

Alab 1200–2240 SNV + SG1 10 3.6 15.0 5.8 0.98 0.89
Aip 1200–2240 SNV + SG1 5 9.9 18.4 7.5 0.87 0.83
Au 1400–2500 SNV 5 10.1 20.7 13.1 0.85 0.51
Rss 1200–2240 SG2 3 17.2 23.1 21.4 0.62 �0.4
Rms 1200–2240 SNV + SG1 5 12.6 22.6 12.1 0.80 0.54
Rbs 1300–2300 SG1 + SNV 4 10.7 17.6 11.7 0.83 0.61

Lipids
g.gTS-1

Alab 1400–2240 SNV 6 0.025 0.056 0.034 0.99 0.98
Aip 1200–2240 VSN 9 0.057 0.066 0.066 0.99 0.93
Au 1400–2500 SG1 + SNV 6 0.039 0.081 0.067 0.98 0.92
Rss 1200–2240 Raw 5 0.084 0.110 0.124 0.91 0.74
Rms 1200–2240 SG2 5 0.029 0.059 0.068 0.99 0.92
Rbs 1200–2480 SG2 6 0.029 0.066 0.066 0.99 0.93

BMP
NL(CH4).gTS-1

Alab 1400–2240 SNV + SG1 9 0.020 0.078 0.060 0.99 0.90
Aip 1200–2240 SG1 2 0.088 0.115 0.110 0.77 0.73
Au 1600–2500 SG2 2 0.102 0.109 0.091 0.74 0.82
Rss 1200–2240 SG1 4 0.085 0.115 0.115 0.79 0.71
Rms 1350–2240 SG1 3 0.087 0.115 0.111 0.78 0.73
Rbs 1300–2300 SG1 6 0.046 0.120 0.100 0.94 0.78

COD
mg(O2).gTS-1

Alab 1400–2240 SNV 6 63.0 186.8 136.4 0.97 0.94
Aip 1450–2240 SNV + SG1 7 106.2 228.3 160.2 0.93 0.90
Au 1400–2500 SG1 + SNV 3 180.4 303.1 196.9 0.81 0.85
Rss 1200–2240 SG2 4 192.0 247.4 273.9 0.78 0.72
Rms 1350–2240 SG1 3 112.5 151.4 147.8 0.92 0.92
Rbs 1200–2480 SG1 + SNV 4 128.1 237.6 129.2 0.90 0.94
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compact spectrometers (referred as the ‘‘slave” spectrometers).
This transfer approach has already been proven to be successful
between a laboratory spectrometer and an online spectrometer
for in situ monitoring of anaerobic digestion (Krapf et al., 2013).
However, the robustness of these transfer functions applied to
compact systems still needs to be assessed.

4. Conclusions

Results have shown that compact and low-cost systems includ-
ing a hand-held micro spectrometer are suitable for online charac-
terization of diverse solid organic waste. However, the use of new
measurement configurations such as the polarized mode was not

shown to be an effective way to enhance the quality of predictive
models. This suggests that the physical scattering properties of
the substrates are the main determinant of analytical performance
of NIRS calibration models built on such highly diverse solid
organic waste. Keys for the improvement of the compact systems
appear to lie in further optimization of the sampling protocol.
These results set the path to a new era of low-cost and on-site NIRS
analysis of the feeding substrates in co-digestion plants.
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Beć, K.B., Grabska, J., Siesler, H.W., Huck, C.W., 2020. Handheld near-infrared
spectrometers: Where are we heading?. NIR news 31 (3-4), 28–35. https://doi.
org/10.1177/0960336020916815.

Bendoula, R., Gobrecht, A., Moulin, B., Roger, J.-M., Bellon-Maurel, V., 2015.
Improvement of the chemical content prediction of a model powder system
by reducing multiple scattering using polarized light spectroscopy. Appl.
Spectrosc. 69 (1), 95–102. https://doi.org/10.1366/14-07539.

Charnier, C., Latrille, E., Jimenez, J., Lemoine, M., Boulet, J.C., Miroux, J., Steyer, J.P.,
2017. Fast characterization of solid organic waste content with near infrared
spectroscopy in anaerobic digestion. Waste Manag. 59, 140–148. https://doi.
org/10.1016/j.wasman.2016.10.029.

Cordella, C.B.Y., 2012. PCA: The Basic Building Block of Chemometrics, in: Krull, I.S.
(Ed.), Analytical Chemistry. IntechOpen, pp. 1–46. https://doi.org/10.5772/
51429

Crocombe, R.A., 2018. Portable Spectroscopy. Appl. Spectrosc. 72 (12), 1701–1751.
https://doi.org/10.1177/0003702818809719.

Dahm, K.D., Dahm, D.J., 2004. Relation of representative layer theory to other
theories of diffuse reflection. J. Near Infrared Spectrosc. 12 (3), 189–198. https://
doi.org/10.1255/jnirs.426.

Doublet, J., Boulanger, A., Ponthieux, A., Laroche, C., Poitrenaud, M., Cacho Rivero, J.
A., 2013. Predicting the biochemical methane potential of wide range of organic
substrates by near infrared spectroscopy. Bioresour. Technol. 128, 252–258.
https://doi.org/10.1016/j.biortech.2012.10.044.

Fitamo, T., Triolo, J.M., Boldrin, A., Scheutz, C., 2017. Rapid biochemical methane
potential prediction of urban organic waste with near-infrared reflectance

spectroscopy. Water Res. 119, 242–251. https://doi.org/10.1016/j.
watres.2017.04.051.

Gobrecht, A., Bendoula, R., Roger, J.M., Bellon-Maurel, V., 2016. A new optical
method coupling light polarization and Vis-NIR spectroscopy to improve the
measurement of soil carbon content. Soil Tillage Res. 155, 461–470. https://doi.
org/10.1016/j.still.2015.06.003.

Gobrecht, A., Bendoula, R., Roger, J.M., Bellon-Maurel, V., 2015. Combining linear
polarization spectroscopy and the Representative Layer Theory to measure the
Beer-Lambert law absorbance of highly scattering materials. Anal. Chim. Acta
853, 486–494. https://doi.org/10.1016/j.aca.2014.10.014.

Gobrecht, A., Roger, J.M., Bellon-Maurel, V., 2014. Major Issues of Diffuse
Reflectance NIR Spectroscopy in the Specific Context of Soil Carbon Content
Estimation. A Review., Advances in Agronomy. https://doi.org/10.1016/B978-0-
12-420225-2.00004-2

Godin, B., Mayer, F., Agneessens, R., Gerin, P., Dardenne, P., Delfosse, P., Delcarte, J.,
2015. Biochemical methane potential prediction of plant biomasses: Comparing
chemical composition versus near infrared methods and linear versus non-
linear models. Bioresour. Technol. 175, 382–390. https://doi.org/10.1016/j.
biortech.2014.10.115.

Hagos, K., Zong, J., Li, D., Liu, C., Lu, X., 2017. Anaerobic co-digestion process for
biogas production: Progress, challenges and perspectives. Renew. Sustain.
Energy Rev. 76, 1485–1496. https://doi.org/10.1016/j.rser.2016.11.184.

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe, M., Peterson, P.,
Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke,
C., Oliphant, T.E., 2020. Array programming with NumPy. Nature 585 (7825),
357–362. https://doi.org/10.1038/s41586-020-2649-2.

Hemrattrakun, P., Nakano, K., Boonyakiat, D., Ohashi, S., Maniwara, P., Theanjumpol,
P., Seehanam, P., 2021. Comparison of Reflectance and Interactance Modes of
Visible and Near-Infrared Spectroscopy for Predicting Persimmon Fruit Quality.
Food Anal. Methods 14 (1), 117–126. https://doi.org/10.1007/s12161-020-
01853-w.

Hunter, J.D., 2007. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9 (3),
90–95. https://doi.org/10.1109/MCSE.2007.55.

Jacobi, H.F., Moschner, C.R., Hartung, E., 2011. Use of near infrared spectroscopy in
online-monitoring of feeding substrate quality in anaerobic digestion.
Bioresour. Technol. 102 (7), 4688–4696. https://doi.org/10.1016/j.
biortech.2011.01.035.

Jacobi, H.F., Moschner, C.R., Hartung, E., 2009. Use of near infrared spectroscopy in
monitoring of volatile fatty acids in anaerobic digestion. Water Sci. Technol. 60,
339–346. https://doi.org/10.2166/wst.2009.345.

Jacobi, H.F., Ohl, S., Thiessen, E., Hartung, E., 2012. NIRS-aided monitoring and
prediction of biogas yields from maize silage at a full-scale biogas plant
applying lumped kinetics. Bioresour. Technol. 103 (1), 162–172. https://doi.org/
10.1016/j.biortech.2011.10.012.

Johansson, J., Folestad, S., Josefson, M., Sparén, A., Abrahamsson, C., Andersson-
Engels, S., Svanberg, S., 2002. Time-resolved NIR/vis spectroscopy for analysis of
solids: Pharmaceutical tablets. Appl. Spectrosc. 56 (6), 725–731. https://doi.org/
10.1366/000370202760077676.

Khodabakhshian, R., Emadi, B., Khojastehpour, M., Golzarian, M.R., 2019. A
comparative study of reflectance and transmittance modes of Vis/NIR
spectroscopy used in determining internal quality attributes in pomegranate
fruits. J. Food Meas. Charact. 13 (4), 3130–3139. https://doi.org/10.1007/
s11694-019-00235-z.

Krapf, L.C., Nast, D., Gronauer, A., Schmidhalter, U., Heuwinkel, H., 2013. Transfer of
a near infrared spectroscopy laboratory application to an online process
analyser for in situ monitoring of anaerobic digestion. Bioresour. Technol.
129, 39–50. https://doi.org/10.1016/j.biortech.2012.11.027.

Lesteur, M., Latrille, E., Maurel, V.B., Roger, J.M., Gonzalez, C., Junqua, G., Steyer, J.P.,
2011. First step towards a fast analytical method for the determination of
Biochemical Methane Potential of solid wastes by near infrared spectroscopy.
Bioresour. Technol. 102 (3), 2280–2288. https://doi.org/10.1016/j.
biortech.2010.10.044.

Lomborg, C.J., Holm-Nielsen, J.B., Oleskowicz-Popiel, P., Esbensen, K.H., 2009. Near
infrared and acoustic chemometrics monitoring of volatile fatty acids and dry
matter during co-digestion of manure and maize silage. Bioresour. Technol. 100
(5), 1711–1719. https://doi.org/10.1016/j.biortech.2008.09.043.

Mallet, A., Charnier, C., Latrille, É., Bendoula, R., Steyer, J.-P., Roger, J.-M., 2021.
Unveiling non-linear water effects in near infrared spectroscopy: A study on
organic wastes during drying using chemometrics. Waste Manag. 122, 36–48.
https://doi.org/10.1016/j.wasman.2020.12.019.

McKinney, W., 2010. Data Structures for Statistical Computing in Python, in. In:
Proceedings of the 9th Python in Science Conference, pp. 56–61.

McVey, C., McGrath, T.F., Haughey, S.A., Elliott, C.T., 2021. A rapid food chain
approach for authenticity screening: The development, validation and
transferability of a chemometric model using two handheld near infrared
spectroscopy (NIRS) devices. Talanta 222, 121533. https://doi.org/10.1016/
j.talanta.2020.121533.

Næs, T., Martens, H., 1984. Multivariate calibration. II. Chemometric methods.
Trends Anal. Chem. 3 (10), 266–271. https://doi.org/10.1016/0165-9936(84)
80044-8.

Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., Mueller, A., 2015.
Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 19 (1), 29–33.

Rabatel, G., Marini, F., Walczak, B., Roger, J.M., 2020. VSN: Variable sorting for
normalization. J. Chemom. 34, 1–16. https://doi.org/10.1002/cem.3164.

A. Mallet, M. Pérémé, L. Awhangbo et al. Waste Management 126 (2021) 664–673

672

https://doi.org/10.1016/j.wasman.2021.03.045
https://doi.org/10.3390/s17092115
https://doi.org/10.3390/s17092115
https://doi.org/10.1016/j.biortech.2006.12.019
https://doi.org/10.1016/j.chemolab.2019.103905
https://doi.org/10.1016/j.chemolab.2019.103905
https://doi.org/10.1109/2944.796325
https://doi.org/10.1366/0003702894202201
https://doi.org/10.1002/chem.v27.510.1002/chem.202002838
https://doi.org/10.1002/chem.v27.510.1002/chem.202002838
https://doi.org/10.1177/0960336020916815
https://doi.org/10.1177/0960336020916815
https://doi.org/10.1366/14-07539
https://doi.org/10.1016/j.wasman.2016.10.029
https://doi.org/10.1016/j.wasman.2016.10.029
https://doi.org/10.1177/0003702818809719
https://doi.org/10.1255/jnirs.426
https://doi.org/10.1255/jnirs.426
https://doi.org/10.1016/j.biortech.2012.10.044
https://doi.org/10.1016/j.watres.2017.04.051
https://doi.org/10.1016/j.watres.2017.04.051
https://doi.org/10.1016/j.still.2015.06.003
https://doi.org/10.1016/j.still.2015.06.003
https://doi.org/10.1016/j.aca.2014.10.014
https://doi.org/10.1016/j.biortech.2014.10.115
https://doi.org/10.1016/j.biortech.2014.10.115
https://doi.org/10.1016/j.rser.2016.11.184
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/s12161-020-01853-w
https://doi.org/10.1007/s12161-020-01853-w
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1016/j.biortech.2011.01.035
https://doi.org/10.1016/j.biortech.2011.01.035
https://doi.org/10.2166/wst.2009.345
https://doi.org/10.1016/j.biortech.2011.10.012
https://doi.org/10.1016/j.biortech.2011.10.012
https://doi.org/10.1366/000370202760077676
https://doi.org/10.1366/000370202760077676
https://doi.org/10.1007/s11694-019-00235-z
https://doi.org/10.1007/s11694-019-00235-z
https://doi.org/10.1016/j.biortech.2012.11.027
https://doi.org/10.1016/j.biortech.2010.10.044
https://doi.org/10.1016/j.biortech.2010.10.044
https://doi.org/10.1016/j.biortech.2008.09.043
https://doi.org/10.1016/j.wasman.2020.12.019
http://refhub.elsevier.com/S0956-053X(21)00187-2/h0160
http://refhub.elsevier.com/S0956-053X(21)00187-2/h0160
https://doi.org/10.1016/j.talanta.2020.121533
https://doi.org/10.1016/j.talanta.2020.121533
https://doi.org/10.1016/0165-9936(84)80044-8
https://doi.org/10.1016/0165-9936(84)80044-8
http://refhub.elsevier.com/S0956-053X(21)00187-2/h0175
http://refhub.elsevier.com/S0956-053X(21)00187-2/h0175
https://doi.org/10.1002/cem.3164


Rinnan, Å., Berg, F.V.D., Engelsen, S.B., 2009. Review of the most common pre-
processing techniques for near-infrared spectra. TrAC - Trends Anal. Chem. 28
(10), 1201–1222. https://doi.org/10.1016/j.trac.2009.07.007.

Rodrigues, R.P., Rodrigues, D.P., Klepacz-Smolka, A., Martins, R.C., Quina, M.J., 2019.
Comparative analysis of methods and models for predicting biochemical
methane potential of various organic substrates. Sci. Total Environ. 649,
1599–1608. https://doi.org/10.1016/j.scitotenv.2018.08.270.

Rutledge, D.N., Barros, A.S., 2002. Durbin-Watson statistic as a morphological
estimator of information content. Anal. Chim. Acta 454 (2), 277–295. https://
doi.org/10.1016/S0003-2670(01)01555-0.

Savitzky, A., Golay, M.J.E., 1964. Smoothing and Differentiation of Data by Simplified
Least Squares Procedures. Anal. Chem. 36 (8), 1627–1639. https://doi.org/
10.1021/ac60214a047.

Schaare, P.N., Fraser, D.G., 2000. Comparison of reflectance, interactance and
transmission modes of visible-near infrared spectroscopy for measuring
internal properties of kiwifruit (Actinidia chinensis). Postharvest Biol.
Technol. 20 (2), 175–184. https://doi.org/10.1016/S0925-5214(00)00130-7.

Sharififar, A., Singh, K., Jones, E., Ginting, F.I., Minasny, B., 2019. Evaluating a low-
cost portable NIR spectrometer for the prediction of soil organic and total
carbon using different calibration models. Soil Use Manag. 35, 607–616. https://
doi.org/10.1111/sum.12537.

Skvaril, J., Kyprianidis, K.G., Dahlquist, E., 2017. Applications of near-infrared
spectroscopy (NIRS) in biomass energy conversion processes: A review. Appl.
Spectrosc. Rev. 52 (8), 675–728. https://doi.org/10.1080/
05704928.2017.1289471.

Snee, R.D., 1977. Validation of Regression Models: Methods and Examples.
Technometrics 19 (4), 415–428. https://doi.org/10.1080/
00401706.1977.10489581.

Stockl, A., Lichti, F., 2018. Near-infrared spectroscopy (NIRS) for a real time
monitoring of the biogas process. Bioresour. Technol. 247, 1249–1252. https://
doi.org/10.1016/j.biortech.2017.09.173.

Tang, Y., Jones, E., Minasny, B., 2020. Evaluating low-cost portable near infrared
sensors for rapid analysis of soils from South Eastern Australia. Geoderma Reg.
20, e00240. https://doi.org/10.1016/j.geodrs.2019.e00240.

Triolo, J.M., Ward, A.J., Pedersen, L., Løkke, M.M., Qu, H., Sommer, S.G., 2014. Near
Infrared Reflectance Spectroscopy (NIRS) for rapid determination of
biochemical methane potential of plant biomass. Appl. Energy 116, 52–57.
https://doi.org/10.1016/j.apenergy.2013.11.006.

van Rossum, G., Drake, F.L., 2009. Python 3 Reference Manual, CreateSpace. Scotts
Valley, CA. https://doi.org/10.5555/1593511

Vergnoux, A., Guiliano, M., Le Dréau, Y., Kister, J., Dupuy, N., Doumenq, P., 2009.
Monitoring of the evolution of an industrial compost and prediction of some
compost properties by NIR spectroscopy. Sci. Total Environ. 407 (7), 2390–2403.
https://doi.org/10.1016/j.scitotenv.2008.12.033.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M.,
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E.,
Carey, C.J., Polat, _I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J.,
Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.

H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A.P., Rothberg, A.,
Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C.,
Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik,
D.V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young,
G., Price, G.A., Ingold, G.L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.
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a b s t r a c t 

The near infrared spectra of thirty-three freeze-dried and 

ground organic waste samples of various biochemical com- 

position were collected on four different optical systems, 

including a laboratory spectrometer, a transportable spec- 

trometer with two measurement configurations (an im- 

mersed probe, and a polarized light system) and a micro- 

spectrometer. The provided data contains one file per spec- 

troscopic system including the reflectance or absorbance 

spectra with the corresponding sample name and wave- 

lengths. A reference data file containing carbohydrates, lipid 

and nitrogen content, biochemical methane potential (BMP) 

and chemical oxygen demand (COD) for each sample is also 

provided. This data enables the comparison of the optical 

systems for predictive model calibration based for example 
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on Partial Least Squares Regression (PLS-R) [1] , but could be 

used more broadly to test new chemometrics methods. For 

example, the data could be used to evaluate different trans- 

fer functions between spectroscopic systems [2] . This dataset 

enabled the research work reported by Mallet et al. 2021 [3] . 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

Specifications Table 

Subject VIS-NIR Spectroscopy 

Specific subject area Optical system comparison, organic waste characterization 

Type of data Table 

Figure 

Script 

How data were acquired Data was acquired on the following FT-NIR spectrometers: 

- NIRFlex N-500 FT-NIR (BUCHI, France) 

- Immersed probe consisting of two fibers (one for illumination, the other 

for signal collection) plugged to a Rocket FTNIR-L1–025–2TE (Arcoptics, 

Switzerland) 

- Polarized light system (PoLiS) plugged to a Rocket FTNIR-L1–025–2TE 

(Arcoptics, Switzerland) 

- Neospectra-micro + Raspberry-Pi (Si-Ware, Egypt) 

Data format Raw 

Analyzed 

Presented as .tab files (table) and .py files (script) 

Parameters for data collection 33 solid organic waste substrates of different biochemical composition were 

analyzed on four different optical systems: a benchtop laboratory spectrometer, 

a compact spectrometer with two measurement configurations (contact 

immersed probe and polarized light system), and a micro spectrometer. 

Description of data collection 33 solid organic waste samples were freeze-dried and ground, and scanned on 

four different optical systems. 

Depending on the optical system, absorbance or reflectance values are 

provided. For each sample, triplicate (x3) spectra were acquired to enhance 

spectral representativeness. 

In parallel, a characterization method based on NIRS allowed to obtained 

reference values for each of these samples: carbohydrates content, lipids 

content, nitrogen content, chemical oxygen demand (COD), and biochemical 

methane potential (BMP) 

Data source location Institution: LBE, INRAE 

City/Town/Region: Narbonne 

Country: France 

Data accessibility Repository name: Data Inrae (Dataverse) 

Dataset name: On-site substrate characterization in the anaerobic digestion 

context: a dataset of near infrared spectra acquired with four different optical 

systems on freeze-dried and ground organic wastes 

Data identification number: 10.15454/SQQTUU 

Direct URL to data: https://doi.org/10.15454/SQQTUU 
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Value of the Data 

• Near infrared spectroscopy provides a fast and non-destructive methodology to character- 

ize solid organic waste substrates involved in bioprocesses such as anaerobic digestion or 

composting. 

• This unique dataset allows to compare the analytical performance of different compact spec- 

troscopic systems for organic waste characterization including a handheld micro spectrome- 

ter, and two potential at-line systems with an immersed probe or polarized light system [4] . 

These spectroscopic systems can be compared to a laboratory spectrometer considered as the 

standard instrument of reference. 

• The dataset could be used as well for instrument standardization [2] to test different strate- 

gies for building transfer models between instruments such as piecewise direct standardiza- 

tion (PDS) [5] , or transfer by orthogonal projection (TOP) [6] . The instrument standardization 

from benchtop spectrometers to portable spectrometers is of high interest for researchers 

wishing to use calibration models on the field [7] . 

• Researchers in chemometrics or bioprocesses can benefit from this data, as it allows to build 

predictive models on organic waste. These models could find their application in anaerobic 

digestion monitoring. 

1. Data Description 

Data provided in this article consists of near infrared spectra of 33 organic waste sam- 

ples of various biochemical composition, acquired on four different optical systems: an FT- 

NIR laboratory spectrometer (NIRFlex N-500, Buchi), a FT-NIR compact spectrometer (Rocket, 

Arcoptics) with two configurations (a contact immersed probe and a polarized light sys- 

tem PoLiS), and an FT-NIR micro spectrometer (Neospectra-micro, Si-Ware) based on MEMS 

FT-NIR technology. Each sample was scanned in triplicates on each optical system. De- 

pending on the system, absorbance or reflectance spectra were obtained ( Fig. 1 ). Each col- 

lected signals type was put into a separate file: the signals from the laboratory spectrome- 

ter (“lab_spectrometer_spectra_absorbance_nm.tab ”), the signals from the compact spectrometer 

with the immersed probe (“immersed_probe_spectra_absorbance_nm.tab ”), the three signals from 

the compact spectrometer with the PoLiS system (“Polis_Rbs_spectra_reflectance_nm.tab ”, “Po- 

lis_Rss_spectra_reflectance_nm.tab ”, “Polis_Rms_spectra_reflectance_nm.tab ”), and the signals from 

the micro-spectrometer (“microspectrometer_spectra_absorbance_nm.tab ”). In each of these files, 

the first column corresponds to the name of the substrate, and the first row header corresponds 

to the wavelengths in nm. 

In addition, a reference data file containing chemical information about each sam- 

ple (carbohydrate, lipid and Nitrogen content, biochemical methane potential and chemi- 

cal oxygen demand) is provided, as shown in Fig. 2 . The reference data is consolidated 

into one file called “reference_data.tab ”, with the first column that corresponds to substrate 

names, and the first row header that corresponds to the reference variable name (including 

its unit). 

Finally, a python script is provided to show how a partial least squares regression (PLS-R) 

can be applied on this data. The script runs a train/test random split, followed by a k-fold cross- 

validation on train dataset to find optimal latent variable number of the PLS model and finally 

plots predictions and observed values on test set to evaluate obtained model performance. The 

python script name is “data_usage_example.py ”, and a documentation on how to use this script 

can be found in the text file “README.md ”. 
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Fig. 1. Raw spectra obtained on the 33 organic waste samples with A) the laboratory spectrometer (absorbance, in nm, 

referred as A lab ), B) the compact spectrometer with an immersed probe (absorbance, in nm, referred as A ip ), C) the micro 

spectrometer (absorbance, in nm, referred as A μ), and the spectra obtained using the compact spectrometer plugged to 

the polarized light system PoLiS with D) the single scattered signals (reflectance, in nm, referred as R ss ), E) the multi- 

scattered signal (reflectance, in nm, referred as R ms ) and F) the total backscattered signal (reflectance, in nm, referred as 

R bs ). 

2. Experimental Design, Materials and Methods 

2.1. Samples and reference data 

The 33 freeze-dried and ground samples were gathered from different anaerobic digestion 

plant in France ( Fig. 3 ). The substrates cover a wide range of waste types including animal ma- 

nure, animal waste, crop residues, food waste, and wastewater treatment plant waste ( Table 1 ). 

Reference chemical data were obtained using a characterization method based on NIRS as de- 

scribed in Charnier et al. [8] . The standard errors of prediction evaluated on an independent 

test set were 53 mgO 2 .gTS −1 for carbohydrates content, 3.2 × 10 −2 g.gTS −1 for lipid content, 

8.6 × 10 −3 g.gTS −1 for nitrogen content and 83 mgO 2 .gTS −1 for chemical oxygen demand. 

2.2. Near infrared spectra acquisition 

2.2.1. Laboratory spectrometer 

For the laboratory spectrometer reference, freeze-dried and ground samples were scanned 

in reflectance over 12,500 - 4000 cm 

−1 (1000–2500 nm), with a resolution of 8 cm 

−1 , using 

a BUCHI NIR-Flex N-500 solids spectrophotometer fitted with a vial accessory (Buchi, Flawil, 
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Fig. 2. Histograms of reference values obtained on the 33 organic waste samples using NIRS prediction model. For each 

subplot, both the mean value ( μ) and standard deviation value ( σ ) are provided; and the dashed line represents the 

mean. 

Fig. 3. Map (focused on France) showing the positions of the anaerobic digestion plants from where the substrates were 

collected. 

Switzerland). Each sample was measured three times and shaken between each replicate. Fur- 

thermore, each measurement consisted of an average of 96 scans performed during vial rotation 

to obtain a representative measurement. White reference background signal I 0 (λ) was collected 

on a Spectralon 

® (99% reflectance). Measurements I(λ) were obtained and absorbance A lab (λ) 

was calculated. 

A lab ( λ) = − lo g 10 

(
I ( λ) 

I 0 ( λ) 

)
. (1) 

2.2.2. Compact spectrometer with immersed probe 

Both the immersed probe ( Section 2.2.2 ) and PoLiS ( Section 2.2.3 ) measurements were 

acquired using a compact Arcoptix FT-NIR Rocket spectrometer and an Ocean Optics’ HL- 
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Table 1 

Substrate characteristics (name, waste type and origin). 

Substrate name Waste type Origin 

goat_manure Animal manure Plant 7 

chicken_manure Animal manure Plant 7 

cow_manure Animal manure Plant 10 

pig_slurry Animal manure Plant 8 

horse_manure Animal manure Plant 5 

dairy_sludge Animal waste Plant 1 

duck_slurry Animal waste Plant 1 

charcuterie_grease_tank Animal waste Plant 1 

slaughterhouse_sludge Animal waste Plant 1 

gelatinous_water Animal waste Plant 1 

corn_waste Crop residues Plant 5 

grape_marc Crop residues Plant 5 

wheat_derivative Crop residues Plant 8 

corn_derivative Crop residues Plant 8 

sunflower_derivative Crop residues Plant 8 

clover_silage Crop residues Plant 9 

straw Crop residues Plant 9 

overpressed_beet_pulp Crop residues Plant 9 

egg Food waste Plant 6 

food_industrie_waste Food waste Plant 11 

ready_meal_grease Food waste Plant 1 

biscuit_dough Food waste Plant 1 

ready_meal_waste Food waste Plant 1 

lactoserum Food waste Plant 5 

vegetables Food waste Plant 4 

chocolate Food waste Plant 4 

vegetables_hydrolysis Food waste Plant 3 

lemon_pulp Food waste Plant 1 

water_treatment_plant_grease_tank Wastewater treatment Plant 1 

sewage_sludge Wastewater treatment Plant 2 

paper_mill_waste Wastewater treatment Plant 9 

water_treatment_plant_flotting_sludge Wastewater treatment Plant 3 

20 0 0 halogen lamp as light source. Samples were scanned in reflectance mode over 3800 to 

11,0 0 0 cm 

−1 (90 0–250 0 nm) with a resolution of 4 cm 

−1 . Each sample was measured on three 

different spots, and each measurement is an average of ten scans. The dark current (signal re- 

covered without light) I n ( λ) is recorded at the beginning of the measurement session and au- 

tomatically subtracted from the measured intensity. A white reference (SRS99, Spectralon 

®) was 

used as a reference I 0 (λ) to standardize spectra from non-uniformities of all components of the 

instrumentation (light source, fibers, spectrometer) every hour. 

The reflected light intensity I(λ) was recorded and the absorbance signal A ip (λ) was 

computed: 

A ip ( λ) = −lo g 10 

(
I ( λ) − I n ( λ) 

I 0 ( λ) − I n ( λ) 

)
. (2) 

2.2.3. Compact spectrometer with polis system 

For the PoLiS measurements, the incident light cone was s-polarized using a wire-grid po- 

larizer (Thorlabs WP25L-UB). The reflected light was split into an s-polarized image and a p- 

polarized image with a calcite Wollaston polarizer (Thorlabs WP10P) providing respectively par- 

allel I II ( λ) and perpendicular I ⊥ ( λ) light intensities. 

The system resulted in three different signals: the single scattering reflectance R ss (λ) , the 

multiple scattering reflectance R ms (λ) , and the total backscattering reflectance R bs (λ) : 

R ss ( λ) = 

( I ‖ ( λ) − I n ( λ) ) − ( I ⊥ ( λ) − I n ( λ) ) 

I 0 ( λ) − I n ( λ) 
. (3) 
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R ms ( λ) = 

2 ( I ⊥ ( λ) − I n ( λ) ) 

I 0 ( λ) − I n ( λ) 
. (4) 

R bs ( λ) = 

( I ‖ ( λ) − I n ( λ) ) + ( I ⊥ ( λ) − I n ( λ) ) 

I 0 ( λ) − I n ( λ) 
(5) 

While the immersed probe is a contact probe (sample is placed directly in contact with probe), 

the PoLiS system is a distant measurement system placed at 5 cm from the sample. 

2.2.4. Micro spectrometer 

Finally, the samples were analyzed using a micro spectrometer Neospectra-micro (Si-Ware, 

Egypt) mounted on a Raspberry Pi single-board computer. The instrument was controlled us- 

ing a connection to a PC and the SpectraMOST software was used. Samples were scanned in 

reflectance mode over 3921 cm 

−1 to 7407 cm 

−1 (1350–2550 nm) and a resolution of 66 cm 

−1 . 

Each sample was measured on three different spots, and each measurement was obtained with 

a scan time of 28 s. A white reference (SRS99, Spectralon 

®) signal I 0 (λ) was collected before 

each measurement. For each sample, the intensity signal I(λ) was collected and the absorbance 

signal A μ(λ) was computed: 

A μ( λ) = − lo g 10 

(
I ( λ) 

I 0 ( λ) 

)
. (6) 
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