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Résumé long
Désambiguı̈sation automatique des verbes du français

Cette thèse traite de la désambiguı̈sation du sens des mots, en anglais
Word Sense Disambiguation (WSD). Nous proposons plus précisément un
cadre de travail pour la désambiguı̈sation des verbes du français. La
tâche de WSD est une tâche du Traitement Automatique des Langues
(TAL) qui consiste à prédire automatiquement le sens d’un mot compte
tenu de son contexte et selon un inventaire de sens prédéfini. Prenons
l’exemple de la phrase suivante :

L’avion a volé près de 12 000 km avant d’être à court de carburant.

Étant donné le mot cible volé à désambiguı̈ser dans cette phrase et un
inventaire de sens volontairement simplifié qui ne décrirait que deux
sens (1) dérober quelque chose à quelqu’un et (2) se mouvoir dans l’air,
la tâche consiste alors pour un système à prédire automatiquement l’un
de ces deux sens en tenant compte du contexte. Bien que les humains
puissent résoudre de telles ambiguı̈tés de manière presque inconsciente,
cela reste une tâche difficile pour les ordinateurs, en particulier lorsqu’il
s’agit de la désambiguı̈sation des verbes (Raganato et al., 2017b).

La désambiguı̈sation du sens des mots est un problème intéressant
en soi, mais la résolution de cette tâche pourrait également profiter à
différentes applications du traitement automatique des langues, comme
la traduction automatique, la recherche d’informations ou les systèmes
de questions-réponses. Même si la tendance actuelle en TAL est d’utiliser
des méthodes de bout en bout basées sur des réseaux de neurones
plutôt que de mettre au point des ensembles de systèmes spécifiques par
tâche (étiquetage morpho-syntaxique, analyse syntaxique, co-référence,
WSD, etc), produire une désambiguı̈sation explicite présente l’avantage
d’apporter plus d’interprétabilité. Il s’agit là d’un aspect important en
TAL, d’autant plus que la plupart des modèles d’apprentissage profond,
souvent décrits comme des ”boı̂tes noires“, produisent des résultats qui
restent encore très difficiles à interpréter.

Le succès de la tâche WSD repose en grande partie sur la disponi-
bilité des données. Premièrement, il est nécessaire d’avoir accès à un
inventaire de sens de grande qualité (c’est-à-dire avec une bonne cou-
verture et des informations pertinentes) qui peut être facilement ma-
nipulé par les ordinateurs. Deuxièmement, les meilleurs systèmes de
désambiguı̈sation utilisent des méthodes d’apprentissage automatique
supervisées qui reposent sur des données annotées manuellement. De
part leur coût en temps et en ressources humaines, ces deux types de
ressources sont très difficiles à produire et, pendant des décennies, en
raison du manque de données annotées dans la plupart des langues,
la recherche en matière de WSD s’est essentiellement concentrée sur
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l’anglais, tirant parti de l’inventaire des sens de Wordnet (Miller et al.,
1990) et de SemCor (Miller et al., 1993) comme données annotées.

Dans cette thèse, nous proposons une méthode pour effectuer la dés-
ambiguı̈sation du sens des mots pour les langues dont les ressources en
WSD sont limitées, en prenant le français comme exemple. De plus,
nous avons choisi de nous concentrer sur les verbes pour plusieurs
raisons : Premièrement, parmi toutes les parties du discours, les verbes
restent les plus difficiles à désambiguı̈ser et nous voulons faire un pas en
avant vers la réussite de cette tâche. Deuxièmement, la désambiguı̈sation
des verbes soulève des questions linguistiques intéressantes, en partic-
ulier en ce qui concerne le rôle de la sous-catégorisation des verbes :
étant traditionnellement sous-catégorisés en fonction des caractéristiques
syntaxiques de leurs arguments, les verbes sont de bons candidats pour
étudier le rôle de la syntaxe dans la désambiguı̈sation. En effet, avant
l’émergence des réseaux de neurones, la théorie traditionnelle pour la
tâche de désambiguı̈sation des verbes, en anglais Verb Sense Disambigua-
tion (VSD), s’est principalement appuyée sur la structure argumentale
des verbes pour résoudre l’ambiguı̈té. Nous proposons dans cette thèse
une analyse contrastive de la corrélation entre la syntaxe et le sens d’une
part et les expériences avec les méthodes neuronales d’autre part.

Cette thèse s’organise en 4 chapitres. Les deux premiers chapitres ont
pour but de donner au lecteur une bonne connaissance de la tâche de
WSD et des différentes méthodes utilisées pour la résoudre tandis que
les deux derniers décrivent les expériences que nous avons réalisées.

Dans le chapitre 2, nous proposons une présentation générale de la
WSD. Le but étant d’introduire au lecteur le cadre de travail dans lequel
cette thèse a été écrite. Il présente à la fois le domaine et les motivations
qui ont mené à l’aboutissement de ce travail. Nous commençons par
introduire la tâche de désambiguı̈sation lexicale, l’objectif ici n’est pas
tant de rappeler tout l’historique et les méthodes de WSD mais plutôt
de proposer une vue générale de la tâche et de ses enjeux. La deuxième
partie de ce chapitre quant à elle se concentre sur l’objectif de cette thèse:
la désambiguı̈sation des verbes du français. Nous discutons du cas par-
ticulier de la tâche de désambiguı̈sation des verbes qui par ailleurs a
fait l’objet d’une étude à part entière. Enfin, nous abordons le problème
de la désambiguı̈sation des verbes pour le français. Nous donnons les
motivations qui nous ont poussé à travailler sur ce sujet mais aussi les
diverses difficultés auxquelles nous devons faire face.

Le chapitre 3 propose un état de l’art de la tâche de WSD. Cette tâche
s’appuyant grandement sur l’utilisation de ressources annotées, nous
commençons par faire le tour des ressources disponibles anglaises et
multilingues. Nous présentons deux types de ressources: D’un côté les
inventaires de sens avec Wordnet pour l’anglais et BabelNet(Navigli and
Ponzetto, 2010) pour le multilingue. D’un autre côté les données an-
notées en sens avec Semcor, WNGT, OMSTI(Taghipour and Ng, 2015a)
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pour l’anglais et Eurosense(Bovi et al., 2017) pour le multilingue. Par
ailleurs, nous détaillons également les différents jeux de données utilisés
pour l’évaluation de la tâche principalement issus des campagnes d’éval-
uation SensEval et SemEval. Pour chacune de ces ressources, nous ten-
tons de donner une description concise appuyée par des statistiques
afin de donner au lecteur une bonne appréciation des avantages et in-
convénients de chacune d’entre elles. Ensuite, nous nous concentrons
sur la représentation du contexte, un élément clé pour la résolution de
la tâche. Nous décrivons plusieurs méthodes de représentation du con-
texte principalement basées sur des réseaux neurones. La présentation
de ces méthodes se fait de manière progressive: nous commençons par
l’utilisation de ”simples“ word embeddings issus du modèle Word2vec
(Mikolov et al., 2013b) puis nous présentons les réseaux de neurones
récurrents de type RNN/LSTM (Hochreiter and Schmidhuber, 1997a)
qui permettent d’encoder la séquence d’une phrase. Nous terminons par
présenter les modèles de langues pré-entraı̂nés basés sur les transform-
ers (Vaswani et al., 2017; Devlin et al., 2018). Ces modèles très lourds
(à la fois en nombre de paramètres et en données d’apprentissage) ont
marqué un nouveau tournant (comme l’a pu être l’avènement des word
embeddings) dans le domaine du TAL. Ils ont en effet permis d’améliorer
de façon significative les performances dans la plupart des tâches, y
compris en WSD où les représentations contextuelles jouent un rôle
crucial. Néanmoins, ces modèles demeurent très opaques et il est as-
sez difficile de bien comprendre pourquoi ceux-ci fonctionnent si bien.
La fin de ce chapitre décrit les deux branches de méthodes les plus
utilisées pour résoudre la tâche: la désambiguı̈sation supervisée et la
désambiguı̈sation basée sur la connaissance. Pour chacune de ces bran-
ches nous décrivons le principe de la méthode et faisons le tour des
systèmes les plus performants.

Dans le chapitre 4, nous nous concentrons sur la désambiguı̈sation
des verbes, et en particulier sur l’interaction entre syntaxe et distinc-
tions de sens. Plus précisément, notre but est d’évaluer le rôle de la
structure argumentale des verbes dans la discrimination de leur sens.
Les ressources annotées à la fois avec des informations syntaxiques et
sémantiques étant très limitées dans la plupart des langues (ce qui est
le cas du français où celles-ci sont quasi-inexistantes), les expériences
réalisées dans ce chapitre portent sur l’anglais uniquement. La première
étape de cette investigation consiste en une étude statistique de corpus
dans laquelle nous étudions la corrélation entre la structure argumentale
des verbes et leur sens. Les résultats de cette analyse de corpus montrent
que la syntaxe seule ne suffit pas à faire la désambiguı̈sation des sens
des verbes. En revanche, la combinaison d’informations syntaxiques et
lexicales obtenues depuis les arguments syntaxiques des verbes semble
corréler avec la distinction des sens. Ensuite, nous abordons la question
de la syntaxe et de la désambiguı̈sation via l’utilisation de réseaux de
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neurones. Nous étudions en particulier les réseaux de neurones basés
sur des mécanismes d’attention et analysons leurs représentations in-
ternes afin de voir s’il existe une trace de l’encodage de la structure
argumentale des verbes. En pratique, il s’agit de voir si la structure
argumentale est représentée dans les poids d’attention. Nous utilisons
deux types de modèles. Tout d’abord, un modèle très simple constitué
d’une seule couche d’attention. L’objectif ici est d’utiliser un modèle qui
puisse être le plus intelligible possible. Les résultats de cette expérience
sont assez mitigés, il n’y pas de preuve significative que la structure
argumentale des verbes soit encodée dans les poids d’attention de ce
modèle. Nous comparons ensuite ces résultats à un modèle de type
BERT (Devlin et al., 2018) qui est bien plus sophistiqué et plus perfor-
mant mais également beaucoup plus difficile à analyser de par sa com-
plexité. Même si quelques fonctions syntaxiques relevant de la structure
argumentale (comme par exemple l’objet direct) semblent être bien iden-
tifiées, la plupart de ces fonctions capturées par le modèle sont en fait
corrélées à des patterns beaucoup plus simples comme l’adjacence des
mots.

Dans la dernière partie de ce chapitre, nous réalisons des expériences
dont le but est d’intégrer des informations syntaxiques directement dans
la représentation du contexte et d’évaluer son impact sur les perfor-
mances d’un classifieur de WSD. Pour cela, nous proposons Dag2vec, un
modèle qui apprend des représentations contextuelles à partir de struc-
tures syntaxiques via des réseaux de neurones récurrents de type LSTM
(Hochreiter and Schmidhuber, 1997a) adaptés pour pouvoir encoder des
graphes de dépendances. Après avoir entraı̂né Dag2vec sur un large cor-
pus annoté automatiquement en arbres de dépendances, nous testons
les représentations apprises sur la tâche de WSD. Nous n’observons au-
cune amélioration particulière sur les verbes (par rapport à un encodage
”linéaire“ classique). Toutes ces expériences nous ont mené à conclure
qu’il existait bien un lien entre la distinction des sens des verbes et leur
structure argumentale mais que l’encodage de celle-ci par un réseau de
neurones restait encore à être trouvé.

Le chapitre 5 traite du problème de la rareté des données en WSD
pour une langue autre que l’anglais, en prenant le cas du français comme
exemple. Nous commençons par explorer diverses ressources multi-
lingues qui ont été produites automatiquement. En particulier, nous
nous intéressons à BabelNet et Eurosense. À travers une petite évaluation
manuelle, nous avons conclu que celles-ci n’étaient pas en l’état exploita-
bles pour notre tâche. Nous proposons à la place d’utiliser Wiktionary,
la version dictionnaire multilingue de Wikipedia, qui offre à la fois un
inventaire de sens et des exemples annotés en sens manuellement et
ce pour un nombre substantiel de langues. Nous évaluons sa viabilité
pour la tâche de désambiguı̈sation des verbes du français à l’aide d’un
nouveau jeu de données d’évaluation que nous avons appelé FrenchSe-
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mEval (FSE) (Segonne et al., 2019). Ce corpus est une contribution de
cette thèse, il contient 3199 occurrences de verbes annotées manuelle-
ment avec les sens de l’inventaire de sens de Wiktionary. Nous avons
réalisé plusieurs expériences sur FSE, évaluant un classifieur supervisé
avec des représentations contextuelles différentes. En particulier, nous
avons évalué les représentations de plusieurs modèles de langue pré-
entrainés basés sur des transformers dont FlauBERT (Le et al., 2020),
une adaptation pour le français de modèle BERT, auquel nous avons
contribué. Les résultats, bien qu’encore en dessous d’un niveau accept-
able de désambiguı̈sation (environ 50% seulement des occurrences sont
correctement désambiguı̈sées), vont pouvoir servir de références pour
des travaux futurs.

Pour conclure, dans cette thèse nous nous sommes intéressés au pro-
blème de la désambiguı̈sation lexicale et plus particulièrement à la désa-
mbiguı̈sation lexicale des verbes du français. Nous avons été confrontés
à un sujet difficile puisque les recherches et les données pour cette tâche
étaient quasi-inexistantes. Tout au long de ce manuscrit, nous avons
abordé plusieurs aspects clés de la tâche de WSD: la représentation
du contexte, les algorithmes de désambiguı̈sation, le lien entre syn-
taxe et sens, la rareté des données annotées. Les contributions de cette
thèse sont multiples: Tout d’abord, nous avons produit des ressources,
un jeu de données d’évaluation pour la tâche de désambiguı̈sation des
verbes. Ce jeu de données distribué librement a trouvé sa place au sein
de Flue (Le et al., 2020), un corpus regroupant divers jeux de données
d’évaluation pour des tâches en lien avec la compréhension de la langue.
Nous avons par ailleurs contribué à l’élaboration de FlauBERT, un modèle
de langue pré-entraı̂né basé sur les transformers pour le français et
l’avons évalué sur notre jeu de données. Ensuite, nous avons fait une
étude poussée sur l’apport de la syntaxe pour la désambiguı̈sation des
verbes. Cette étude, reposant à la fois sur des analyses statistiques de
corpus et sur des expériences à base de réseaux de neurones a permis de
mettre en lumière un certain nombre de phénomènes et de mieux com-
prendre l’interaction entre syntaxe et distinction de sens des verbes. En-
fin, nous avons proposé une méthode qui, sans être complètement satis-
faisante, permet d’initier le travail de recherche sur la désambiguı̈sation
des verbes du français.

Mots clés: Traitement automatique des langues, TAL, désambiguı̈sation
lexicale, WSD, apprentissage automatique, apprentissage profond, cor-
pus, syntaxe, sémantique
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Résumé court
Désambiguı̈sation automatique des verbes du français

La désambiguı̈sation lexicale est une tâche du traitement automatique
des langues dont l’objectif est de prédire automatiquement le sens des
mots en contexte, à partir d’un inventaire de sens prédéfini. La réussite
de cette tâche repose en particulier sur l’utilisation de ressources lexi-
cales et de données annotées en sens. Par ailleurs, le récent essor des
méthodes d’apprentissage automatique par réseaux de neurones pro-
fonds a grandement amélioré les performances des systèmes de désambi-
guı̈sation.

Dans cette thèse, nous nous concentrons sur la désambiguı̈sation des
verbes du français, une langue qui ne dispose pas ou peu, à priori, de
données utilisables pour cette tâche. Pour commencer, nous faisons un
état de l’art des principales méthodes neuronales de représentation du
contexte ainsi que des méthodes de désambiguı̈sation.

Puis, nous nous intéressons à la question du rôle de la syntaxe pour la
désambiguı̈sation des verbes. Pour cela, nous commençons par étudier
en corpus la potentielle corrélation entre le sens et la structure argumen-
tale des verbes. Nous tentons ensuite de voir si la structure argumen-
tale des verbes est encodée dans les représentations contextuelles issues
de réseaux de neurones. Nous proposons également un modèle qui
apprend des représentations contextuelles étant données des structures
syntaxiques de phrases obtenues a priori par un analyseur syntaxique et
nous les testons sur la tâche de désambiguı̈sation.

Enfin, dans la dernière partie de cette thèse, nous abordons le probl-
ème de la disponibilité des données pour la tâche de désambiguı̈sation
dans une langue autre que l’anglais en prenant le français pour exem-
ple. Après avoir étudié diverses ressources produites automatiquement,
nous proposons d’utiliser Wiktionary, une ressource libre et collabora-
tive sur le modèle de Wikipédia, afin de produire FrenchSemEval, le pre-
mier corpus d’évaluation pour la tâche de désambiguı̈sation des verbes
du français. Nous testons plusieurs systèmes de désambiguı̈sation sur ce
jeu de données et obtenons les tout premiers résultats pour cette tâche.

Mots clés: Traitement automatique des langues, TAL, désambiguı̈sation
lexicale, WSD, apprentissage automatique, apprentissage profond, cor-
pus, syntaxe, sémantique
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Abstract
French Verb Sense Disambiguation

Word Sense Disambiguation (WSD) is a Natural Language Processing
(NLP) task which goal is to automatically predict the meaning of words
in context, based on a predefined inventory of word senses. The success
of this task relies on the use of lexical resources and sense annotated
data. Moreover, the recent development of contextual representations
based on learning with deep neural networks has greatly improved the
performance of disambiguation systems.

In this thesis, we focus on the disambiguation of verbs in French, a
language that has little or no viable data for this task. First, we review
the state of the art of neural net based contextual representations and
disambiguation methods.

Then, we investigate the role of syntax for the disambiguation of
verbs. To do so, we first perform a corpus study exploring the po-
tential correlation between the argument structures of verbs and their
senses. We then study whether the argument structure of verbs is en-
coded in contextual representations obtained from attention-based neu-
ral networks. We also propose a model that learns contextual repre-
sentations from syntactic structures of sentences provided a priori by a
parser and test them on the disambiguation task.

Finally, in the last part of this thesis, we address the problem of data
availability regarding the WSD task for any language other than English,
using French as an example. After studying various automatically pro-
duced resources, we propose to use Wiktionary, a free and collaborative
dictionary based on the Wikipedia model, and release FrenchSemEval,
the first evaluation corpus for the French verb disambiguation task. We
evaluate several disambiguation systems on this dataset and obtain the
very first results for this task.

keywords: Natural Language Processing, NLP, Word Sense Disambigua-
tion, WSD, machin learning, deep learning, corpus, syntax, semantics
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à l’Université de Paris et je tiens à saluer et remercier tous les mem-
bres du laboratoire qui font de celui-ci un cadre de travail exceptionnel.
En particulier, je remercie Olivier Bonami, directeur du LLF du temps
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Chapter 1

Introduction

This thesis deals with Word Sense Disambiguation (WSD). We propose
a framework that focuses on the disambiguation of French verbs. The
WSD task is a task in Natural Language Processing (NLP) which consists
in automatically predicting the meaning of a word given its context and
according to a predefined inventory of senses. Let’s take the following
sentence as an example:

I have run 20 kilometers every week for half of my life.

Given the target word run to be disambiguated in this sentence and
a voluntarily simplified sense inventory that would describe only two
senses (1) to cover a distance and (2) to operate a machine, then the task
is for a system to predict one of these two senses by taking the context
into account. Although humans can resolve such ambiguities mostly
unconsciously, it remains a challenging task for computers, particularly
when it comes to the disambiguation of verbs (Raganato et al., 2017b).

Word sense disambiguation is an interesting problem in itself, but
solving this task could also benefit downstream tasks in NLP such as ma-
chine translation, information retrieval, and question-answering. Even
though the current trend in NLP is to use neural net based end-to-end
methods rather than ensembles of task-specific systems (PoS-tagging,
parsing, coreference, WSD, etc), performing explicit WSD presents the
advantage of bringing more interpretability. This is an important as-
pect in NLP, especially given the fact that most deep learning models,
often described as ”black boxes”, produce results that still remain very
difficult to interpret.

The success of the WSD task relies heavily on the availability of data.
Firstly, it is necessary to have access to a sense inventory of high quality
(i.e with a good coverage and relevant information) that can be easily
manipulated by computers. Secondly, the best disambiguation systems
use supervised machine learning methods that rely on manually sense
annotated data. Due to their human and time cost, these two types of
resources are very difficult to produce and for decades, because of the
lack of annotated data in most of the languages, research in WSD has
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essentially focused on English taking advantage of the sense inventory
from Wordnet (Miller et al., 1990) and SemCor (Miller et al., 1993) as
annotated data.

In this thesis, we propose a solution to perform word sense disam-
biguation for languages with limited WSD resources, taking French as
an example. Moreover, we choose to focus on verbs for several reasons:
First, among all parts of speech, verbs remain the most difficult to dis-
ambiguate and we want to take a step forward for the success of this
task. Secondly, the disambiguation of verbs raises interesting linguistic
questions, in particular regarding the role of verbs’ subcategorization:
being traditionally subcategorized according to their arguments’ syn-
tactic characteristics, verbs are good candidates to investigate the role
of syntax for disambiguation. Indeed, the traditional VSD theory had
mostly relied on verbs’ argument structure to help performing their dis-
ambiguation, until the emergence of neural network-based WSD sys-
tems. We propose in this thesis a contrastive analysis of the correlation
between syntax and meaning on the one hand and experiments with
neural methods on the other hand.

This thesis is structured around 4 chapters which we briefly describe
in the following paragraphs.

In Chapter 2 we start by introducing a minimum background of the
word sense disambiguation task thus providing the knowledge neces-
sary to understand the issues at stake. First, we present a formal de-
scription of the WSD task and introduce several methods to solve it.
Having presented the general framework of the WSD task we then turn
to the subject of our concern, the disambiguation of French verbs. We
discuss with further details our motivations and the challenges that we
will be confronted with.

In Chapter 3, we present an overview of the state of the art for the
WSD task. Since WSD highly relies on data, we first present the most
prominent existing resources (English and multilingual) for WSD. Then,
we focus on context representation, a key element for success in this task.
We describe various neural net based methods to encode the context of
words starting from the simple use of word embeddings to the most
recent and sophisticated attention-based pre-trained language models.
Finally, we give details on the two most successful branches of disam-
biguation methods, namely knowledge-based and supervised methods.

Chapter 4 focuses on the disambiguation of verbs and in particular
on the interaction between syntax and sense distinctions. More pre-
cisely, we aim at asserting the role of the argument structure of verbs
in the discrimination of their senses. The first step consists in a corpus
study investigating the correlation between the argument structure and
the verbs’ senses. Then, we confront the results from the corpus study
to multiple experiments performed with neural networks. We focus on
attention-based models and investigate whether the argument structure
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is encoded within their inner representations (i.e if the argument struc-
ture of verbs is reflected in their attention weights). In the last part of this
chapter, we evaluate whether a syntax-infused contextual representation
can be beneficial to a WSD classifier. To do so, we propose Dag2vec,
a model which learns contextual representations from syntactic struc-
tures using recurrent neural networks adapted to process dependency
graphs. After training our model on a large corpus enriched with pre-
dicted dependency trees, we test the resulting syntax-based contextual
representations on the WSD task.

In Chapter 5 we address the issue of data scarcity for languages other
than English, studying the case of French. We first explore various mul-
tilingual resources that were automatically produced. We then investi-
gate and propose to use Wiktionary, a multilingual dictionary version
of Wikipedia, that can provide both a sense inventory and training an-
notated data, for a substantial number of languages. We assess its us-
ability for the French VSD task on a new evaluation corpus we called
FrenchSemEval (FSE) (Segonne et al., 2019) which consists of manual an-
notations of verb occurrences with senses from Wiktionary. We perform
several experiments on FSE, using various contextual representations to
provide the very first results on this dataset. In particular, we evalu-
ate several transformer-based pre-trained language models, including
FlauBERT (Le et al., 2020), an adaptation for French of the original BERT
model (Devlin et al., 2018), which we contributed to.

Some of the work and experiments presented in this thesis have been
previously published or submitted in the following articles:

• ”Using Wiktionary as a resource for WSD : the case of French verbs”
Segonne et al., IWCS 2019

• ”FlauBERT: Unsupervised Language Model Pre-training for French”
Le et al., LREC 2020

• ”Does Bert Encode The Argument Structure of Verbs ?” Segonne et
al., submitted.
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Chapter 2

Background

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Word Sense Disambiguation . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 WSD: A classification task . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 WSD: methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 French Verb Sense Disambiguation . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Verb Sense Disambiguation . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 French VSD: Motivations and challenges . . . . . . . . . . . . . 25

2.1 Introduction

The purpose of this chapter is to introduce the reader to the framework
within which this thesis was written. It presents both the field and the
motivations that led us to the completion of this work. In Section 2.2
we present the Word Sense Disambiguation (WSD) task. The intent here
is not to recall the whole history and methods of WSD, but rather to
propose a general overview of the task and the issues at stake. WSD is
now well documented and we highly advise the reader to explore the
complete survey written by Navigli (2009) for more details.

The second part of this chapter (Section 2.3) is an introduction to the
objective of this dissertation: the disambiguation of French verbs. We
shortly review the particularities of verbs and present the Verb Sense
Disambiguation (VSD) task (Section 2.3.1).

Finally, in Section 2.3.2 we discuss the motivations and challenges
that our approach entails.
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2.2 Word Sense Disambiguation

2.2.1 Introduction

The human language is naturally ambiguous. Yet, in the vast majority
of cases humans are able to solve that ambiguity based on context. At
the word level, the ambiguity is exhibited by the possibility for a single
word form to have multiple meanings according to the context of the
sentence. Here is a minimal example with the noun bass frequently cited
in the literature:

(1) a. He plays the bass in a rock band called Teacup Monster.
b. The bass of my new amplifier is way to loud!
c. I caught a bass in the lake early this morning.

In these sentences, the word bass is polysemous since it can refer to three
different meanings: (1a) refers to the music instrument, (1b) to the low
pitch and (1c) makes reference to a specific type of fish. Some senses
may be semantically connected, for examples looking at (1a) and (1b)
one can presume that both senses share a sort of common root sense
related to a ”low pitched sound”. On the contrary, other senses may
be completely unrelated, i.e we can not make any direct or indirect link
between them (see (1a) and (1c) for example). In the literature, this
latter case is usually referred to as homonymy. The ambiguity not only
concerns nouns but words from all open-class part-of-speech (PoS). In
fact, verbs are especially known to be highly polysemous (i.e with a high
number of senses). Here is another example of polysemy with the verb
get.

(2) a. Don’t worry, I get it. (understand)
b. Did you get the newspaper on your way ? (obtain)
c. Eventually they got scared and runaway. (become)
d. We need to get moving now! (begin, start)
e. This movie got me so depressed.. (cause state)
f. Can you get the call ? (respond telephone, doorbell)

The examples proposed in (2) show a non-exhaustive list of the multiple
meanings of the verb get. The number of senses, also called granularity
of senses, may differ from a sense inventory (dictionaries, ontologies,
thesaurus etc) to another. For example, the word “get” has 27 senses in
the Oxford dictionary, 11 in the Cambridge dictionary, 34 in the Collins
dictionary and 33 in Wiktionary (the dictionary version of Wikipedia).
This is mainly due to the fact that the notion of meaning is not well
defined, there is no simple, formal way to describe it. Linguistic tests
have been designed as sufficient or necessary conditions for positing
different senses (e.g. (Cruse, 2000)), but there is no consensus on these
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nor on how to delimit senses. Homonymy cases aside, it is very often
difficult to set boundaries between senses. In fact, the variation across
the ensemble of existing sense inventories illustrates the complexity of
the definition of senses.

The variation does not concern the granularity of senses only, cover-
age, i.e the vocabulary size, may differ from one resource to another. For
example the Oxford dictionary has 273.000 entries while Wordnet (Miller
et al., 1990) includes roughly 155.000 entries. These differences may be
explained by several factors: the means employed to build the resource
(private/academic/open-source projects), the type and features offered
by the resource (dictionary, wordnet, ontology) and the targeted applica-
tions (learner/expert/encyclopedic dictionaries, specific domains etc.).

The WSD task As early as the 1950’s Weaver (1955) with his primary
work on machine translation (MT) noticed that resolving the ambiguity
of words in an upstream process may help to perform better automatic
translations. He also observed that the context of an occurrence is key
to the success of the disambiguation of words. Since these observations
researchers have gotten more and more interested in this sub-problem,
which eventually led to the emergence of the Word Sense Disambigua-
tion (WSD) task. This task is part of the natural language processing
(NLP) field and aims at automatically identifying the correct sense of
a word occurrence in context, given a predefined sense inventory. Al-
though resolving the ambiguity of words is an interesting problem, it is
not an end in itself but rather a pre-process that can benefit downstream
tasks such as machine translation and other tasks like information re-
trieval (IR) or question-answering (QA).

There are several well identified obstacles that are inherent to the
WSD task. First, as mentioned earlier, the definition of the meaning of
a word is not consensual. As a result, the choice of the sense inventory
may have a significant impact on WSD, especially when it has rather ar-
bitrary sense distinctions. Secondly, the distribution of senses in natural
text is heterogeneous, some senses are over-represented whereas others
are very scarce. Besides, the frequency of the senses may vary depend-
ing on the corpus genre which may cause domain adaptation issues to
WSD systems.

Last but not least, the disambiguation of words requires an access to a
sophisticated linguistic knowledge with underlying semantic and world
knowledge which is still difficult to infuse into computers. Furthermore,
WSD has been formalized as an artificial intelligence problem (Mallery,
1988) and even if the task was identified almost 70 years ago, it still
remains unresolved at the present time.

20



2.2.1.1 WSD Versus WSI

Word Sense Induction (WSI) is a task whose aim is to induce the mean-
ings of words from unannotated data. It is strongly related to WSD
since both tasks deal with the disambiguation of words in context but
the methods differ drastically. For one thing, WSI does not assume the
pre-existence of a sense inventory, instead the goal is to infer the senses
directly from the data itself. This has two main benefits: Firstly, WSI
systems are adaptable to any domain, task or language at hand. Then,
because the senses are induced from the data, it is by nature represen-
tative of their natural distribution, thus avoiding some senses to be left
out (Brody and Lapata, 2009). WSI methods mainly rely on unsuper-
vised learning, they usually apply clustering algorithms to group up
similar contexts into classes which should be representative of the senses
The main disadvantage with WSI systems is their lack of interpretabil-
ity. Indeed, the clusters output by the systems are generally difficult to
understand for humans and, ironically, make no sense to us. Moreover,
the evaluation or comparison of different WSI systems is not as easy as
with WSD systems since they do not share the same set of classes. Two
evaluation campaigns were dedicated to this task (Agirre and Soroa,
2007; Manandhar et al., 2010) and the recent years have witnessed an
effort to improve the interpretability of the systems (Ruppert et al., 2015;
Panchenko, 2016; Panchenko et al., 2017). In this dissertation, we will
leave WSI aside to focus essentially on WSD.

2.2.2 WSD: A classification task

Word Sense Disambiguation is formally described as a classification task
(Yarowsky, 2000) where given an input x, the occurrence of a word in
context, the automatic system should predict the correct class y ∈ Y, a
set of senses from a specific sense inventory. Let us see an example of
such a configuration using the sentence from (2b):

x = “Did you get the newspaper on your way ?”

Y = {y1 : understand, y2 : obtain, y3 : become}
ŷ = classifyy∈Y(x)

In this toy configuration, x is the input, Y is the set of available senses
for the target word get which includes only three possible senses (y1, y2
and y3), y is the gold sense and ŷ is the prediction output by the sys-
tem. To resolve such a classification task, we usually proceed in two
steps: First, we extract features from the input. In our case, it means ex-
tracting features from the context of the target occurrence (often called
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context representation). For example, one of the simplest ways to repre-
sent the context is to select the co-occurring words on the left and right
of the target word. This is referred to as the context-window and has been
widely used in WSD. Other more sophisticated features may be based
on syntax, morphology, semantics etc. Then, given the obtained context
representation, a classifier assigns a class (i.e a sense) accordingly. As we
mentioned previously, the particularity of WSD is that the success of the
classification usually relies on underlying world knowledge that is em-
bedded in the meaning of lexical items, but capturing it in computerized
word meaning representations is still an open problem. This is why, as
humans, we can resolve this task very easily while it is much more diffi-
cult for computers since they do not own that world knowledge. Never-
theless, we will see in the part dealing with the state-of-the-art (chapter
3) that the recent breakthrough of deep neural net models, trained on
large amounts of data, leads the way to a better representation of the
context. These powerful contextual representations somehow seem to
capture this precious world knowledge and consequently improve the
quality of the disambiguation.

2.2.3 WSD: methods

2.2.3.1 Supervised and semi-supervised methods

As a classification task, WSD fits particularly well with supervised meth-
ods. In a standard supervised WSD configuration, the automatic sys-
tems are trained and evaluated on sense annotated data whose senses
(the classes to predict) are provided by a pre-defined sense inventory.
This is the most widely used approach and it is generally known to
outperform other methods (Navigli, 2009). Yet, the good results are ob-
tained at the expense of a strong dependency towards the data which
presents two major drawbacks: First, the resulting trained system is
completely reliant on the training data, hence it is dependent on its do-
main and on the sense inventory from which the senses were used to
annotate the training instances. As mentioned earlier, there is no con-
sensus as to which sense inventory is the most suited, it rather depends
on the targeted objective. Furthermore sense inventories can also evolve
over time, making the annotated data and trained systems obsolete. This
has been identified as the knowledge acquisition bottleneck in the liter-
ature (Gale et al., 1992).

Secondly, even if there was such thing as a consensual sense inven-
tory, WSD supervised systems are likely to suffer from data sparsity
since it is hardly reasonable to think, as a first approximation, that we
can manually annotate even a minimum number of examples for every
sense of every word from a given lexicon.

To overcome the problem of the scarcity of annotated data, some
works based on supervised systems attempted to integrate more un-
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labeled data. It opened up the way for a new branch in WSD supervised
methods called semi-supervised methods. The general process of these
methods is to automatically expand the senses from annotated data to
raw texts in order to build a larger semi-automatically sense annotated
corpus that can be used later on by supervised classifiers (Taghipour
and Ng, 2015b; Camacho-Collados et al., 2016; Raganato et al., 2016). In
various settings semi-supervised systems proved to perform as well as
supervised systems (Raganato et al., 2017b).

2.2.3.2 Knowledge based methods

In opposition to supervised methods, knowledge-based systems do not
rely on annotated data. Instead, they take advantage of manually cu-
rated lexical resources such as dictionaries or semantic networks to dis-
ambiguate words. Knowledge-based methods are not recent, Lesk (1986)
developed an algorithm, the Lesk’s algorithm, which performs word
sense disambiguation using the context of the words and dictionaries.
Very simply the algorithm compares the overlap between the words
from the context of the target word and the words from its definitions
found in a dictionary. Since then, several works have proposed more
sophisticated versions of Lesk’s algorithm (Banerjee, 2002; Basile et al.,
2012; Chen et al., 2014). More Recently Luo et al. (2018) proposed a hy-
brid system between supervised and knowledge-based methods using
deep neural networks to encode gloss definitions. Overall knowledge
based methods generally obtain lower performances than supervised
methods (Raganato et al., 2017b) but they have the serious advantage of
being independent from annotated data.

2.3 French Verb Sense Disambiguation

In this section, we present the French Verb Sense Disambiguation task, a
subpart of WSD focusing on verbs and applied to the French language.
After a short discussion on the place of verbs in NLP, we describe the
particularities of the Verb Sense Disambiguation (VSD) task. We then
explain the motivations and challenges in French VSD.

2.3.1 Verb Sense Disambiguation

2.3.1.1 The specific case of verbs

The meaning of a sentence is substantially conveyed by verbs, which
makes their disambiguation all the more necessary. Moreover, verbs
have a particular link with syntax and semantics as their different senses
are known to be related with their argument structures (i.g the number
of arguments, the syntactic realizations, the semantic roles etc.). This has
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been the subject of numerous works and has even led to the construc-
tion of dedicated lexical resources such as Verbnet (Kipper et al., 2005).
Because verbs are at the junction of the syntax-semantics interface they
hold a special place in NLP and a particular treatment may be bene-
ficial, especially to natural language understanding tasks (NLU) such
as Semantic Role Labeling (SRL), question-answering (QA), sentiment
analysis (SA) and for our concern WSD.

2.3.1.2 From WSD to VSD

Within the word sense disambiguation task, verbs have proven to be
very hard to disambiguate as WSD systems consistently reported poor
performances on several evaluation campaigns (Kilgarrif, 1998; Pradhan
et al., 2007). The main difficulty comes from the fact that verbs tend
to have a higher degree of polysemy than other PoS. For example, the
sense inventory from Wordnet (Miller et al., 1990) displays an average
polysemy (mean number of senses per word type) for verbs of 3.41 while
the second most polysemous words are nouns with an average of 2.79
senses. Furthermore, this phenomena is also reflected in natural texts,
Raganato et al. (2017b) estimated the level of ambiguity per PoS in sev-
eral WSD evaluation datasets and pointed out that verbs were much
more ambiguous than any other PoS. Consequently, making the distinc-
tion between senses is more subtle and more complex. To make things
even worse, some verbs with high polysemy degrees are also very fre-
quent, for example one may think of auxiliaries and light verbs like get.

The first automatic systems in WSD did not make any distinction
between the different part-of-speech, instead they disambiguate verbs
just like any other word, consequently leading them to obtain rather bad
results. To address this problem researchers working on WSD started to
treat the case of verbs apart, eventually conducting to the emergence
of a subpart in the WSD task called Verb Sense Disambiguation (VSD).
In this subtask, only verbs are the target of disambiguation. Influenced
by (Levin, 1993)’s classification of verbs, most of the traditional work in
VSD relied on verbs’ syntactic and semantic features of their arguments
(Dligach and Palmer, 2008; Roberts and Kordoni, 2012; Kawahara and
Palmer, 2014; Wagner et al., 2009). More recently the breakthrough of
very sophisticated deep neural networks such as BERT (Devlin et al.,
2018), successfully integrated into WSD systems (Luo et al., 2018; Du
et al., 2019; Vial et al., 2019), has drastically improved the quality of
disambiguation setting up a new state-of-the-art on the task, including
on verbs. However, these recent models are not verb specific and thus
question the need to favor special treatments for verbs.
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2.3.2 French VSD: Motivations and challenges

2.3.2.1 WSD: A matter of English only ?

Most WSD systems are based on supervised methods since they are
known to obtain the best results. Nevertheless, these methods strongly
rely on manually sense annotated corpora. Semcor (Miller et al., 1993)
is one of such corpus in which words are annotated with senses from
the sense inventory of Wordnet (Miller et al., 1990). It is still to this
day the most important manually built semantic resource for English.
It gathers more than 200,000 sense annotations from all open-class part-
of-speech. Because manually annotating the words of a corpus with
their senses is time, effort and money consuming (Navigli, 2009), not to
mention difficult, the vast majority of WSD works has essentially been
focused on Semcor. As a result, for a long time WSD has remained a
task restricted to the English language only.

2.3.2.2 French VSD Motivations and Challenges

As for French, the language of our concern in this dissertation, very little
work has been done on WSD, mainly due to the lack of annotated data.
French is a good example of languages which are rather well endowed in
terms of resources (certainly less than English or Chinese but much more
than Icelandic) and yet very poorly provided with sense annotated data
for WSD. Again, as mentioned, data scarcity is one key issue in WSD.

The major contributions regarding French annotated data appeared in
the multilingual WSD evaluation challenges (Navigli et al., 2013) which
provided a small evaluation dataset annotated with senses from Babel-
net (Navigli and Ponzetto, 2012), a multilingual semantic network (we
present this resource and discuss its usability for French in section 3.2.2).
Unfortunately only nouns were annotated and submitted for evaluation.
Moreover the campaign aimed at investigating multilingual WSD rather
than providing evaluation data for other languages than English.

The quasi non-existence of research in French WSD and particularly
on verbs motivated the project of this thesis. In particular, our objective
is three-fold: (1) Explore and compare the various multilingual resources
available for other languages than English and assert their suitability to
perform verb sense disambiguation taking French as an example. This
includes both the investigation of an appropriate sense inventory and
the development of training/validation data. (2) Investigate the role of
syntax for the disambiguation of verbs, especially its impact on the rep-
resentation of context. (3) Take advantage of state-of-the-art methods to
propose a large scale system capable of automatically producing verb
sense disambiguated data of good quality. These objectives are chal-
lenging given the difficulty of the task already proven on English and
the lack of references and data. Nonetheless, with this work we hope to
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increase the research interest in French WSD.
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Chapter 3

State of the Art
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3.1 Introduction

In this chapter, we propose an overview of the state-of-the-art for the
word sense disambiguation task. We start the chapter (Section 3.2)
by presenting the available resources for both English and multilingual
WSD. In this section we also present the various existing evaluation WSD
datasets used to evaluate and compare WSD systems.

In the second section (Section 3.3) we focus on the representation of
context, a key element to succeed in the WSD task. We review the major
state-of-the-art contributions from the emergence of the word embed-
dings (Bengio et al., 2003; Mikolov et al., 2013b) to the recurrent neural
networks (Elman, 1990; Hochreiter and Schmidhuber, 1997a) and finish
by presenting language-model-based architectures (Peters et al., 2018;
Devlin et al., 2018).
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Finally, the remaining of the chapter (Section 3.4) is dedicated to the
disambiguation methods which can be divided into two main branches:
the knowledge-based methods, relying on external semantic resources,
and the supervised methods based on sense annotated data. This will
be a good opportunity to present the most recent state-of-the-art WSD
systems.

3.2 Data

We can distinguish two main kinds of resources for the WSD task: on
the one hand, lexical resources which offer the sense inventory from
which sense labels are extracted, e.g electronic dictionaries, ontologies,
semantic networks etc. On the other hand, sense annotated corpora used
both as training data for supervised systems and as evaluation data for
testing. The success of the task depends on the availability and the good
quality of these two types of resources.

Now, these resources exist for English, in particular Semcor (Miller
et al., 1993), a manually sense annotated corpus with senses from the lex-
ical database Wordnet (Miller, 1995). For other languages on the other
hand, such high-quality resources are very rare or even non-existent.
This is mainly due to the fact that both the manual construction of se-
mantic resources and the annotation of corpora with senses are expen-
sive and very difficult to obtain on a large scale. As a consequence,
given these difficulties, researchers turned to automatic approaches to
build multilingual lexical databases and large-scale multilingual disam-
biguated texts.

This section aims at presenting the major resources used by state-of-
the-art systems. First, we focus on the main English resources, that is
Wordnet and Semcor. We also introduce OMSTI (Taghipour and Ng,
2015b), an English, automatically built corpus containing one million
sense annotations.

Then, in a second part dedicated to multilingual resources, we present
Babelnet (Navigli and Ponzetto, 2012), a vast multilingual semantic net-
work, and Eurosense (Bovi et al., 2017), a multilingual corpus automati-
cally annotated with Babelnet’s senses.

Finally, we describe the available WSD evaluation datasets used to
compare and evaluate WSD systems.

3.2.1 English Resources

For decades, most of the WSD research has been focusing on the English
language because of the availability of high quality resources. Indeed,
on the one hand, the construction of Wordnet (Miller et al., 1990), a
computationally efficient lexical knowledge database based on psycho-
linguistic theories, has benefited knowledge-based WSD methods. On
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the other hand, the good quality and relative large size of SemCor
(Miller et al., 1993), a corpus manually annotated with Wordnet’s senses,
allowed the development of supervised methods which have proven to
obtain best results on the WSD task. Consequently, these two resources
have been most widely used and are still the de facto reference resources
for the English WSD task today.

In this section we first give a brief presentation of Wordnet. Then, we
introduce three sense disambiguated corpora used by state-of-the-art-
systems. In order to compare these corpora we sum up several statistics
in Table 3.3.

3.2.1.1 Wordnet

Wordnet (Miller et al., 1990) is an English online lexical database which
groups up verbs, nouns, adjectives and adverbs into sets of synonyms
(called synsets) representing underlying meaning concepts. The resource
is structured as a hierarchical semantic network in which synsets may be
linked together through semantic and lexical relations such as antonymy,
hyponymy, hyperonymy etc. Each synset is provided with a gloss def-
inition and one or several examples. In Figure 3.1 we illutrate an ex-
ample of an entry found in Wordnet (the latest version 3.0) for the verb
help. For the sake of readibility we only show two of the many synsets
(help.v.01 and help.v.02 in the example) it is related to. If we take a look
at the synset help.v.01, it gathers multiple word forms including (but not
exhaustively) aid, assist and help. Word forms belonging to the same
synset are considered synonyms. In the figure, the synset is linked to
other synsets support.v.1 and care.v.1 through relations of hyperonymy
and hyponymy respectively.

Statistics Wordnet is still today the most important manual resource
of its kind for English. It collects more than 150,000 word entries for
a little less than 120,000 synsets showing thus a good lexical coverage
that approximates that of standard dictionaries. Table 3.1 1 details the
number of word entries along with the number of synsets per part-of-
speech in Wordnet. Statistics about polysemy is given in table 3.2. From
a disambiguation perspective, one can notice that verbs, our primary
concern, exhibit a higher degree of polysemy than the other part-of-
speech whether or not we include monosemous words.

3.2.1.2 Semcor

SemCor (Miller et al., 1993) is the largest manually sense tagged corpus
for English. It is composed of sentences from the Brown Corpus (Kucera

1We report the statistics provided by Princeton’s wordnet official website: https://wordnet.princeton.

edu/documentation/wnstats7wn
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Figure 3.1: Example of an entry for the verb help in Wordnet.

pos word entry synsets word-sense pairs

Noun 117798 82115 146312

Verb 11529 13767 25047

Adjective 21479 18156 30002

Adverb 4481 3621 5580

Totals 155287 117659 206941

Table 3.1: Statistics per part-of-speech in Wordnet.

et al., 1967; Francis et al., 1982) in which open-class word forms (i.e verbs,
nouns, adjectives and adverbs) were annotated with Wordnet’s senses.
Because of its size (226,040 sense annotations) and its quality (manual
annotations), Semcor has imposed itself as the standard reference train-
ing corpus for English WSD.
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POS Average Polysemy
including monosemous excluding monosemous

Noun 1.24 2.79

Verb 2.17 3.57

Adjective 1.40 2.71

Adverb 1.25 2.50

Table 3.2: Average Polysemy per part-of-speech in Wordnet.

3.2.1.3 Princeton Annotated Gloss Corpus

As we’ve seen, Wordnet offers definitions and examples to describe the
senses present in the resource. Since the word forms that compose the
definitions, called ”glosses”, are manually linked to the appropriate con-
text sense in Wordnet, they can thus be considered as disambiguated
text. The Princeton Annotated Gloss Corpus (also often referred to as the
WordNet Gloss Corpus (WNGT)) is a corpus, available since the 3.0 ver-
sion of Wordnet, composed of the synset definitions found in Wordnet
and in which word forms were manually or semi-automatically sense an-
notated with Wordnet senses. WNGT has 117,659 disambiguated glosses
which represents 496,776 annotations. Although the corpus is of specific
genre, as it is only composed of definition-like sentences, it has proven
to boost up supervised trained WSD systems when combined with other
sense annotated data such as SemCor (Vial et al., 2019; Bevilacqua and
Navigli, 2019) .

3.2.1.4 OMSTI

Since manually sense annotating words is a fastidious task, researchers
looked for various ways to automatically or semi-automatically pro-
duce sense annotated data with sufficient quality (Diab, 2004; Kübler
and Zhekova, 2009; Zhong and Ng, 2009). One Million Sense-Tagged
Instances (denoted OMSTI) (Taghipour and Ng, 2015a) is a corpus semi-
automatically sense annotated with Wordnet’s sense inventory. The cor-
pus was built using a WSD method based on word alignment (Chan and
Ng, 2005) and applied to a large English-Chinese parallel corpus (Eisele
and Chen, 2010). Experiments with WSD supervised systems trained on
OMSTI have shown competitive results on several WSD benchmarks de-
spite the fact that the resource has been constructed semi-automatically
(Taghipour and Ng, 2015a; Iacobacci et al., 2016).
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Corpus Tokens Sentences Annotations Sense types Word types

SemCor 802,443 37,176 226,036 33,362 22,436

WNGT 1,621,129 117,659 458,825 59,250 55,561

OMSTI 813,798 30,441,386 911,134 3,730 1,149

Table 3.3: Statistics of the three major sense annotated corpus for English
WSD.

3.2.2 Multilingual Resources

Semantic resources like Wordnet and Semcor are very profitable for the
WSD task. Nevertheless, they are extremely costly to produce and sim-
ilar resources for other languages are very scarce or simply do not ex-
ist. There were various attempts to create manual multilingual lexical
databases following Wordnet’s design (Vossen, 1998; Pianta et al., 2002;
Atserias et al., 2004) but the cost of building such resources (which has to
be repeated for each language) is high and makes it difficult to be manu-
ally maintained in the long term. Besides, they often offer a poorer cov-
erage. These difficulties urged researchers to use automatic techniques
to obtain these resources. In this section we present two multilingual
WSD resources built with such methods: BabelNet and EuroSense. The
former is a vast multilingual semantic networks based on Wikipedia
and Wordnet, and the latter is a collection of parallel texts automatically
sense annotated with BabelNet’s sense inventory.

3.2.2.1 BabelNet

BabelNet (Navigli and Ponzetto, 2012) is a very large multilingual se-
mantic network, built automatically, which combines multiple resources
such as Wikipedia and Wordnet into sets of concepts called babel synsets.
The original version of BabelNet only mapped Wikipedia pages to Word-
net synsets and the mapping was essentially based on the comparison
of context information retrieved from both the Wikipedia pages (sense
labels, links, categories) and the Wordnet senses (synonyms, gloss etc.).
Once English Wikipages are linked to Wordnet senses, the babel synsets
are translated into other languages using the context of inter-language
links from the wikipedia pages, sentences from Semcor and a state-of-
the-art machine translation systems. We report in Figure 3.2 the illustra-
tion of a babel synset from (Navigli and Ponzetto, 2012). Since the first
released version of Babelnet, more resources have been added (such as
Wiktionary, VerbNet, FrameNet 2) and BabelNet now accounts for more
than 800 million babel synsets.

2https://babelnet.org/about
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Figure 3.2: Illustration of a Babel synset (Navigli and Ponzetto, 2010)

3.2.2.2 EuroSense

EuroSense (Bovi et al., 2017) is a multilingual corpus automatically sense
annotated with Babelnet synsets and based on the joint disambiguation
of the parallel corpus EuroParl (Koehn, 2005), a collection of parallel
texts from the proceedings of the European Parliament which was ini-
tially designed to serve as training data for the automatic machine trans-
lation task. Unlike previous works which treated the disambiguation
of sentences in isolation (Taghipour and Ng, 2015a), (Bovi et al., 2017)
fully took advantage of the parallel texts by performing the disambigua-
tion of the sentences and their translations at the same time. This was
made possible thanks to Babelfy (Moro et al., 2014), a graph-based mul-
tilingual system which performs both WSD and entity linking (EL) and
Nasari (Camacho-Collados et al., 2016), a language-independant vector
representation of concepts, to refine the annotations. Two versions of
the corpus were released, a full version and a refined version where
only annotations with a certain level of confidence were kept based on
a coherence score. Overall, the corpus accounts for 21 languages. We
report statistics for 4 languages in Table 3.4.

EN FR DE SP

Full
Annotations 26 455 574 22 214 996 16 888 108 21 486 5
Lemma types 60 853 30 474 66 762 43 892
Sense Types 138 115 65301 75 008 74 214

Refined
Annotations 15 441 667 12 955 469 9 165 112 12 193 260
Lemma Types 42 947 23 603 50 681 31 980
Sense Types 86 881 49 189 52 425 52 859

Table 3.4: Statistics for (full and refined versions) English, French, Ger-
man and Spanish in EuroSense.

To measure the quality of the automatic annotations, intrisic and ex-
trinsic evaluations were performed. The intrinsic evaluation was carried
out through a manual evaluation of the annotation on four languages
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(English, French, German and Spanish). Fifty sentences present in all
four languages were randomly sampled and manually evaluated both
before and after the refinement step. The results showed a good inter-
annotator agreement, as the judges agreed 85% of the time and the aver-
age Kappa score (Cohen, 1968) was 67.7 %, and an improvement of the
precision of the annotation after refinement at the expense of a lower
coverage.

As for the extrinsic evaluation, Bovi et al. (2017) made experiments
using EuroSense (the refined version only) as additional training data
for supervised WSD systems evaluated on two standard English WSD
evaluation datasets (SemEval-2013 task 12 (Navigli et al., 2013) and the
SemEval-2015 task 13 (Moro and Navigli, 2015), see next section for more
details). The authors compared results of the It Make Sense (IMS) system
(Zhong and Ng, 2010) when trained on SemCor alone versus SemCor
augmented with examples sampled from the high precision Eurosense
corpus (up to 500 additional training examples per sense). They report a
slight improvement in the latter case, the Fscore rising from 65.3 to 66.4
on SemEval-2013, and from 69.3 to 69.5 on SemEval-2015.

3.2.3 WSD Evaluation Datasets

The first initiative to evaluate WSD systems was proposed in the late
1990’s leading up to the organization of a dedicated workshop called
Senseval. At that time, there were many different programs capable of
disambiguating words but no means to make a fair comparison between
them, to analyse their strengths and weaknesses. The Senseval competi-
tion was created to address this need. It proposed a WSD framework in
which participants were all given the same resources and were expected
to evaluate their system on the task. Since then, with the success of the
first Senseval workshop, several following challenges have been orga-
nized and each time the number of target languages has grown as well
as the number of participants, showing the interest for the task. Over the
years, other semantic tasks (such as lexical substitution, semantic role la-
beling, sentiment analysis) were integrated in the evaluation campaigns,
and the Senseval competiton, which was originally WSD specific, has
evolved to become Semeval, a more generic semantic evaluation compe-
tition.

These evaluation campaigns led to the construction of multiple manu-
ally sense annotated WSD datasets, each one with different features. We
give a brief description of these datasets in the following paragraphs:

Senseval2 (Edmonds and Cotton, 2001). It was the second interna-
tional WSD evaluation campaign and the first time that Wordnet was
used as sense inventory. Three other languages than English were sub-
mitted for evaluation: Czech, Dutch and Estonian. It contains sense
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annotations for nouns, verbs, adjectives and adverbs.

Senseval-3 task 1 (Snyder and Palmer, 2004). This dataset contains
sense annotations of sentences extracted from the Penn Treebank (Mar-
cus et al., 1993) and with specific genres: editorial, fiction and news.

SemEval-07 task 17 (Pradhan et al., 2007). This is the smallest dataset
of the challenges. Sentences were extracted from the Wall Street Journal
and the Brown Corpus and annotated with Wordnet 2.1.

SemEval-13 task 12 (Navigli et al., 2013). This dataset was built for
multilingual WSD evaluation purposes. It uses BabelNet as sense in-
ventory and the texts cover different domains from sports to financial
news.

SemEval-15 task 13 This is the most recent WSD evaluation exercise.
The goal of this evaluation was to promote the research towards multi-
lingual disambiguation jointly with the entity linking task on a specific
domain (biomedical).

Even if these datasets were all constructed to evaluate systems on
the same task, they suffer from heterogeneity especially in terms of for-
mat, construction guidelines and sense inventories. For example the
Senseval-3 task 1 and SemEval-07 task 7 datasets both share the com-
mon sense inventory of Wordnet but with different versions, respec-
tively 1.7 and 2.1. Raganato et al. (2017b) have proposed a unified WSD
framework gathering all the datasets presented above into a single stan-
darized one. They use a pipeline which ensures that all the datasets
are annotated with the latest version of Wordnet (3.0) and undergo the
same pre-processing. Besides the framework also includes SemCor and
OMSTI as training corpora. Not only does this framework make the
comparisons between systems more reliable, but it also allows a direct
quantitative confrontation since all systems can now be evaluated on all
datasets at once.

We have seen in this section the main existing resources used in the
WSD task. We will now turn to the presentation of state-of-the-art meth-
ods and start in the next section by the introduction of the context rep-
resentation methods.

3.3 Context representations

As mentioned in the introduction, the meaning of a word depends on
the context of the sentence it occurs in. Firth, particularly known for
his work in distributional semantics, illustrated this phenomena with a
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famous quotation: ”You shall know a word by the company it keeps”.
Since the context of a word is crucial to determine its meaning, its repre-
sentation should be of prime concern. In fact, Weaver (1955) noticed the
importance of the representation of the context early on and since the
first works in WSD, the algorithms have highly relied on cues found in
the context of an occurrence to perform its disambiguation. Over the last
two decades, we have witnessed several major breakthroughs in terms
of word and sentence representations.

In this section, we propose to gradually review state-of-the-art con-
text representation methods from the simplest to the most sophisticated
ones. Our starting point is the introduction of word embeddings (Ben-
gio et al., 2003; Mikolov et al., 2013a) (Section 3.3.1) which efficiently en-
code words on dense vectors while preserving some semantic features
of words. While word embeddings can be directly combined to build
context representations, they have furthermore greatly participated in
the rise of neural networks in NLP as they provide a useful encoding of
symbols to be used as input of the networks.

In Section 3.3.2, we take a step further towards context representation
and present recurrent neural networks (RNN). Unlike word embeddings
which give the same representations of words independently from the
context, the RNNs are able to provide different representations of words
given the context they occur in, which can be viewed as representations
of full sequences.

Finally, we dedicate the last part of this section to the description of
ELMO (Peters et al., 2018) and BERT (Devlin et al., 2018), two recent
state-of-the-art models based on the language model objective, trained
on large amounts of data in an unsupervised manner and fine-tuned
on NLP downstream tasks. These models output contextual representa-
tions which have shown impressive results in several NLP benchmarks,
including WSD.

3.3.1 Word Embeddings

Word embeddings are distributed representations of words in a real-
value vector space. The key idea is to enable word similarity modeling
in a vector space, instead of considering atomic word symbols. Ide-
ally, these representations should reflect the natural semantic features of
words. Bengio et al. (2003) were the first to propose a neural network for
the language model task that provided word vector representations as
a by-product. Yet, word embeddings were widely popularized later by
Mikolov et al. (2013a)’s Word2vec methods which allowed to learn these
representations more efficiently on large corpora. Word2vec consists in
two different neural net models, namely Skip-gram and CBOW, which
both aim at learning word embeddings but with different structural ob-
jective functions. The training objective of the Skip-gram model is to
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predict the words of the context of a target word in a sentence while
the CBOW model does the exact opposite, i.e to predict the target word
given the words occurring in its context. We report the illustrations of
the two models from (Mikolov et al., 2013b) in Figure (3.3). Yet, neural

Figure 3.3: Mikolov’s Skip-gram and CBOW models objectives.

networks outputing a probability distribution over a large vocabulary
face computational challenges. The efficiency of the word2vec’s meth-
ods comes from the introduction of a variant of the Negative Contrastive
Estimation (Gutmann and Hyvärinen, 2012; Mnih and Teh, 2012), called
Negative Sampling, as objective function to train the model. Instead
of predicting a word from the whole vocabulary, the model is trained
to distinguish true examples from artificially built noise using logistic
regression resulting in a considerable speed up of the training process.
The word embeddings learnt with the word2vec methods have proven to
exhibit interesting semantic and syntactic word relationships (Mikolov
et al., 2013b) and have become de facto standard word representations in
NLP.

3.3.1.1 Context Representation Through Word Embedding Linear Com-
bination

As for the WSD task, pre-trained word embeddings can be either con-
sidered as inputs for more sophisticated context representation models
such as RNN (see Section 3.3.2), used as features for WSD classifiers or
they can be directly combined to build context representations. Iacobacci
et al. (2016) investigated different methods to combine the word embed-
dings of the words occurring in the context window of a target word
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(see Figure 3.4). A context window of size n for a target word at posi-
tion i in a sentence is defined as the n-words on the left and the n-words
on the right found in the immediate surroundings of the target word.
In the examples below we give an illustration of such context window
of size 3 (marked with brackets) for two target words (underlined) in
context. Words colored in red (resp. blue) are part of the immediate left
(resp. right) context. Notice that the target word is not included in the
context window. Besides, the context window depends on the sentence
boundaries which can result in asymmetrical left and right context size.
For example, looking at examples (7) one can observe that, within the
context window, there are three words on the left side of the target word
and only two on its right.

(3) [The little boy plays an instrument loudly] enough to shake the
walls .

(4) In the end we shall make thoughtcrime literally impossible, be-
cause there will be no words [in which to express it .]3

Among the various methods explored by Iacobacci et al. (2016), a simple
and intuitive method to build a context representation of a target word
consists in averaging the embeddings of the words found in its context
window. Formally, this means computing the centroı̈d of the word vec-
tor representations (Eq. 3.1).

ei =
i+W

∑
j=i−W

wj

2W
(3.1)

Where wj is the vector of the jth word in the sentence. I is the position in
the sentence of the target word and W is the size of the context window.
This is referred to as Average Word Embeddings (AWE) and is often
used as baseline due to its simplicity (Melamud et al., 2016).

Another approach explored by Iacobacci et al. (2016) relies on decay
functions. The main idea is to weight the importance of a word vector
representation based on its distance from the target word in the sen-
tence. The closer a word in a context window is to the target word,
the more importance it should have on the context representation. The
Exponential decay strategy is based on that principle and weights the
words of close context exponentially. It is defined as follows:

ei =
l+W

∑
j=I−W

wij(1− α)|I−j|−1 (3.2)

3Quotation extracted from 1984, Georges Orwell
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Figure 3.4: Building context representation using word embeddings. The
context representation of the target word ”plays” is obtained by combin-
ing the vector representations of the words in its context window of size
2 using a composition function f .

Where α = 1− 0.1(W−1)−1
is a decay parameter which controls to which

extend close words in the context window contribute to the context rep-
resentation. Among all composition functions presented in (Iacobacci
et al., 2016), the strategies based on decay functions have proven to be
the most efficient on the WSD task.

While building context representation through composition of word
embeddings is of relative computational simplicity, Iacobacci et al. (2016)
have shown that they obtain quite good results in the WSD task. Nev-
ertheless, one of the main flaws of this method is that word order in
the context representation is completely ignored. We present in the next
section recurrent models whose main benefit is precisely to encode se-
quences.

3.3.2 Recurrent Neural Net Encoder

In this section we introduce recurrent neural network encoders designed
to encode sequential information. We first present the original version
of the RNN proposed by Elman (1990) and then describe two variants
of the RNN: the LSTM (Hochreiter and Schmidhuber, 1997a) and the
bi-directionnal LSTM.

In the last paragraph we present Context2vec (Melamud et al., 2016),
a model derived from a bi-directionnal LSTM which learns word and
contextual representations from a large corpus.
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Recurrent Neural Net A Recurrent Neural Network (RNN) encoder is
a neural net architecture capable of providing a fixed size vector rep-
resentation from an arbitrary length sequential input, i.g a sequence of
words in a sentence. In opposition to word embeddings which encode
the input symbols independently, RNNs are able to encode the order
of the sequence. The neural network initializes internal state vectors
(called hidden states) and updates them while processing the input iter-
atively over the sequence. The input to an RNN is a sequence of vectors
v1, v2, v3 · · · vn. e.g static word embeddings. The simplest version of an
RNN, originally proposed by Elman (1990), is composed of a simple hid-
den state vector h initialized at the begining of the sequence and updated
recursively at each time step t of the sequence following the update rule
:

ht = g (U · ht−1 + W · vt + b) (3.3)

Where W, U (weight matrices) and b (a bias) are parameters to learn
through backpropagation and g is a non-linear activation function. The
matrices W and U make connections respectively for the input to the
hidden state at timestep t and for the hidden state at time t− 1 to the
hidden state at time t. An illustration of such recursive cell is proposed
in Figure 3.5. The output of the neural net are the hidden states at each

Figure 3.5: Illustration of the recursion of a RNN.4

time step t. Therefore, given a sequence of length n, the hidden state hn
output at time step n encodes the representation of the whole sequence.
This early version of an RNN is efficient to encode small sequences.
However, the training of such neural net becomes more difficult over
long sequences as the repeated multiplications during backpropagation
make the gradient vector either decay or explode exponentially. This
problem is known as the vanishing or exploding gradient (Hochreiter,
1998; Bengio et al., 1994) and prevents simple RNNs from learning long-
distance dependencies.

Long-Short Term Memory Hochreiter and Schmidhuber (1997a) pro-
posed a more sophisticated version of Elman (1990)’s network called

4The illustration was adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long-Short Term Memory (LSTM) to address the problem of the vanish-
ing gradient. The LSTM is based on the original RNN architecture but
introduces an additional structure called a memory cell whose aim is to
maintain the internal state for longer periods of time. The general idea
of the LSTM unit is to use the memory cell as a way to let the informa-
tion flow through the iterations. The amount of information at each time
step to be let through is regulated by four neural layers called gates com-
posed of activation functions and point-wise operations. Following (Tai
et al., 2015a) we present the recursive definition of an LSTM as follows:

it = σ
(

W(i)vt + U(i)ht−1 + b(i)
)

ft = σ
(

W( f )vt + U( f )ht−1 + b( f )
)

ot = σ
(

W(o)vt + U(o)ht−1 + b(o)
)

ut = tanh
(

W(u)vt + U(u)ht−1 + b(u)
)

ct = it � ut + ft � ct−1

ht = ot � tanh (ct)

(3.4)

Where c is the memory cell and i, f , o, u are the interactive gates. Each
of the gates has a specific purpose: i, the input gate, first selects which
values from the input vector should be let through while u computes
new candidate values from the input using the tangent hyperbolic (tanh)
activation function. The point-wise multiplication of i and u allows to
control how much of the new information from the input should be
stored in the cell state. The forget gate f selects the information to be
left out from the previous state ht−1. Finally o, the output gate, regulates
the exposure of the memory cell. The illustration of the LSTM recur-
sion is presented below in Figure 3.6. The LSTM unit is a powerful

Figure 3.6: Illustration of the recursion of a LSTM.5

tool to encode sequence information. However, it can only encode in-
formation that has been seen prior to the current position. In the next
paragraph, we present the bi-directional LSTM, a variant of the LSTM
which addresses this problem.

5The illustration was adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Bidirectional-LSTM A Bidirectional LSTM (bi-LSTM) is an architec-
ture made of two LSTM units which computes the sequential inputs in
parallel (but with separated parameters): one in the natural order of
the sequence and the other in the exact reversed order. The output of
the bi-LSTM is the concatenation of the hidden layers of the two LSTM
units at timestep t. Let us see an example with the encoding of a sen-
tence. Given a sequence of words wi and their corresponding vector
representations vi where i is the position of the word in the sequence.
Then, given a bi-LSTM composed of two LSTMs, the first one (denoted
lLS) runs the input sequence v1, v2, v3 · · · vn from left-to-right and the
second one from right-to-left (denoted rLS). The representation of the
target word at position i is thus defined as :

biLS(i) = hL
i ⊕ hR

i (3.5)

Where hL
i (resp.R) is the hidden vector at position i output by the lLS

(resp. rLS) recurrent unit and ⊕ is the concatenation operation. In
WSD, the context representations provided by bi-directional LSTMs have
proven to be particularly efficient (Raganato et al., 2017a). This is mainly
due to their ability to capture information anywhere in a sentence. It is
an important feature since the clues for the disambiguation of a target
word in a sentence may be found either before or after the target word.

Figure 3.7: Illustration of a bi-LSTM.

Context2vec Context2vec (Melamud et al., 2016) is a neurnal network
that learns a context representation function from large unlabeled cor-
pora. The model is based on a bi-LSTM to represent sentential contexts
and use word2vec’s negative sampling objective function to learn both
the word and context vector representations (Figure 3.8). Given a sen-
tence s and a target word wi where i is the position of the word in s, the
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context vector representation c for wi is computed in two steps. First the
bi-LSTM is run on the input sentence and the outputs of the forward
and backward are concatenated in such a way that the target word at
position i is not part of the concatanated representation:

biLS(i) = hl
i−1 ⊕ hr

i+1 (3.6)

Notice that this is different from eq. 3.5 where wi is included in the
representation. Then a Multi-Layered Perceptron (MLP) projects the con-
catenated output into the word embedding vector space:

MLP(x) = L2 (ReLU (L1(x))) (3.7)

Where Li(x) are fully connected linear operations and ReLU is the Rec-
tifier Linear Unit function activation. Thus c is defined as follows:

c = MLP(biLS(i)) (3.8)

The projection of the sentential context output by the Bi-LSTM into the
word vector space allows the model to learn its parameters through the
negative sampling objective function (Eq. 4.7) adapted from (Mikolov
et al., 2013a) .

S = ∑
t,c

(log σ(e(t) ·~c) +
k

∑
j=1

log σ(−e(tj) ·~c)) (3.9)

Where e(t) is the non-contextual word embedding of target word t, t1 ...
tn are the negative samples and c is the context vector representation of
t in the sentence. The summation goes over all the tokens of the training
corpus.

3.3.3 Language-model-based Contextual Representations

Language modeling consists in building a model to estimate the prob-
ability of a sentence (or sequence). The seminal work of (Bengio et al.,
2003) is the first neural language model, in which a neural network mod-
els the probability of words given a context. Since then, the primary use
of language models has shifted towards obtaining vector representations
of the contexts and has eventually led to interest into and massive use of
the transfer learning paradigm. Indeed, the task of predicting a word
given a context does not suffer from data scarseness since ”labeled”
examples can be trivially extracted from tokenized texts. Thus, a net-
work can be learned on very large corpora with a context-based word
prediction objective, and its parameters are therefore good representa-
tions of this context. It appears that these contextual representations are
very good starting points for representing the context of other language-
related tasks. The pre-trained network can be used as the first block of a
network for a downstream task, and the pre-trained context representa-
tions can be fine-tuned for that task. In this section we will present two
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Figure 3.8: Illustration of the Context2vec model architecture. (Melamud
et al., 2016)

popular models which fully take advantage of that paradigm: ELMo
(Peters et al., 2018) and BERT (Devlin et al., 2018). The former uses
bi-LSTMs while the latter relies on more recent attention-based trans-
formers architectures (Vaswani et al., 2017).

3.3.3.1 ELMo

Embeddings from language models (ELMo) (Peters et al., 2018) are word
vector representations which are functions of the whole input sentence.
The ELMo model provides context vector representations of words ac-
cording to the sentence they occur in. To learn these representations,
Peters et al. (2018) proposed an architecture based on a Bi-LSTM pre-
trained on large text corpora using a language model objective to be
then interpolated in downstream NLP tasks. Except for the encoding
of input words, based on a character convolution neural network (Kim
et al., 2015), and the output token classification layer (Softmax layer),
the parameters of the Bi-LSTM are kept separated. What makes ELMo
particularly powerful is the fact that, while jointly trained with a super-
vised NLP tasks, the model learns linear combinations of the internal
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states of the bi-LSTM, hence called deep contextual representations. Fur-
thermore, Peters et al. (2018) among others (Dai and Le, 2015; Howard
and Ruder, 2018; Radford et al., 2018) proved that pre-training mod-
els on large general-domain data and finetuning them on downstream
tasks could be extremely beneficial. They pave the way towards the de-
velopment of transfer learning, a paradigm that has been largely taken
advantage of by the very recent and now prevalent transformer-based
architectures.

3.3.3.2 BERT

The Bidirectional Encoder Representations from Transformers (BERT)
proposed by (Devlin et al., 2018) is a language model based on mul-
tiple stacked layers of transformers, an architecture using self-attention
mechanism allowing massive parallelization. The model is inherently bi-
directional thanks to the use of a cloze task: predicting a masked word
within a left and right context, instead of combining two uni-directional
objectives (predicting each word given previous ones on the left (resp.
on the right)). This is a major difference from the ELMo configuration
where the parameters of the bi-LSTM are kept seperated. The BERT
model was pre-trained on extremely large corpora (more than 3 billion
words) to be finetuned on downstream tasks. In many NLP benchmarks
such as GLUE (Wang et al., 2018) or SQUAD (Rajpurkar et al., 2018), the
use of the contextualized representations (finetuned or not) from BERT
allowed to outperform previous state-of-the-art models by a large mar-
gin, exhibiting once more the efficiency of transfer learning. As for WSD,
using the BERT contextualised representations as input for WSD models
has also shown outstanding results (Du et al., 2019; Huang et al., 2019;
Vial et al., 2019; Scarlini et al., 2020). The following paragraphs aim at
progressively presenting the transformer (the core unit of BERT) from
the original attention mechanism introduced by Bahdanau et al. (2014)
to the fully transformer block proposed in Vaswani et al. (2017).

Attention mechanism The attention mechanism was first integrated
by (Bahdanau et al., 2014) in RNN encode-decoder models (Cho et al.,
2014b; Sutskever et al., 2014) for the automatic machine translation task
to cope with the problem of long sentences. Indeed, even LSTM have dif-
ficulties maintaining the information flow over very long sentences (Cho
et al., 2014a). To address this problem, Bahdanau et al. (2014) proposed
an extension (now called attention) of the RNN encoder-decoder which
builds a context vector at each time step t of the sequence using all the
hidden states output by the RNN. The underlying intuition of the atten-
tion function was to help the decoder generate the next translated word
by relying on the most probable aligned word in the source sentence. To
this end, the model builds a contextualised vector representation ct of
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the sequence at time t based on the weighted sum of the hidden states hi
of the RNN encoder, i.e the vector representation of the positions in the
input sequence. The weights represent association scores between the
previous state st−1 of the model and the hidden states hi of the encoder.
Formally, the context vector ct is computed as follows:

ct =
Tx

∑
j=1

αtjhj (3.10)

Where Tx is the length of the input sequence and αtj are the weights
at time step t for each position j in the sequence. The αtj are probabilities
resulting from the application of the so f tmax function over the attention
scores at,j for each vector hj. Bahdanau et al. (2014) proposed to use a
feed forward neural net as attention function :

at,j = A
(
st−1, hj

)
= vT tanh

(
W

[
st−1
hj

]
+ b

)
(3.11)

Where v and W are parameters to learn. While the attention mechanism
was originally applied in machine translation, its formulation has been
generalized and has been applied successfully in many NLP tasks. For
example, in WSD (Raganato et al., 2017a) implemented a Bi-LSTM with
an attention mechanism and outperformed most previous state-of-the
art WSD models at the time.

Self-attention Self-attention is a specific case of attention introduced in
the machine translation field and popularized by (Vaswani et al., 2017)
as the main part of the transformer architecture. The aim of the self-
attention model is to compute contextualized vectors c1, c2 · · · cn by re-
lating all positions in a single sentence of words w1, w2 · · ·wn. Attention
can be generalized as a function to weight the association of a query q
to a set of keys k and values v pairs. In self-attention, the vector of the
target word wt is the query q and all the words wt′ (including wt) and
their corresponding vector representations are used both as keys kt and
values vt. In opposition with the attention mechanism used in machine
translation such as presented previously, in self-attention all the queries,
keys and values come from the same input. In practice, the queries, keys
and values can be packed together into matrices denoted respectively Q,
K and V. Using (Vaswani et al., 2017)’s scale dot product attention func-
tion, one can define the attention in a more compact notation:

Attention (Q, K, V) = softmax
(

QKT
√

dk

)
V (3.12)

Where dk is the dimension of the queries, keys and values vectors. The
scaling factor

√
dk is essentially used to prevent gradient vanishing dur-

ing training. Using Eq. 3.12, we can compute in a single step the en-
semble of the context vectors c1, c2 · · · cn (packed into a single matrix C)
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corresponding to the target words w1, w2 · · ·wn:

C = softmax
(

QKT
√

dk

)
V (3.13)

Multihead attention The multihead attention (Vaswani et al., 2017) is
an ensemble version of the attention mechanism defined above. The idea
is to use h additional parameter matrices, called heads, to project linearly
the queries, keys and values into separated d-dimensional vector spaces
respectively dq, dk and dv. Then instead of performing a single atten-
tion function, we use the projected values to operate multiple attention
functions in parallel. Thus, the output of each headi is defined as:

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(3.14)

Finally the output from all the headi is concatenated and then projected
one last time using a fusion matrix WO. The multihead attention is
therefore described as:

MultiHeadAttention (Q, K, V) = Concat ( head 1, . . . , head h)WO

(3.15)
The use of multiple heads while performing attention allows the model
to attend information from different subspace vector representations
since each head’s parameters are initialized independently.

Transformer The transformer architecture (Vaswani et al., 2017) is a
model whose purpose is to map a sequence of word embeddings to a
sequence of contextualized (transformed) embeddings. It is composed
of two sub layers (Fig. 3.9) : a multi-head attention and a fully connected
feed forward neural network (i.e a MLP as described in Eq. 3.7). Besides,
each sub layer uses residual connections (He et al., 2016) followed by a
layer normalization (Ba et al., 2016). The layer normalization prevents
exploding or vanishing gradients and allows the model to stack multiple
layers on top of each other. Let c be a contextualized vector output
by a multi-head attention function then its normalization c(z) can be
described as follows:

c(z) = LayerNorm(c) = γ
c− µ

σ
+ b (3.16)

Where µ and σ are respectively the mean and standard deviation values
in c. The scaling factor γ and b are parameters to learn. Now given X,
a sequence of vectors compacted into a matrix, the transformer model is
defined as:

Transformer(X) = LayerNorm
(

F + C(z)

)
F = MLP

(
C(z)

)
C(z) = LayerNorm(C + X)

C = MultiHeadAttention(Q, K, V)

(3.17)
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Figure 3.9: Illustration of Transformer block. The block is made of two
sub-layers: a multihead attention and a feed forward neural network.
Both sub-layers use a residual connection and layer normalization.

3.4 WSD methods

3.4.1 Introduction

Among the various methods proposed to resolve the task of WSD, we
can distinguish roughly two main branches: on the one hand the meth-
ods based on external lexical resources named knowledge-based meth-
ods and on the other hand the supervised methods which highly rely
on sense annotated data. In the first part of this section we briefly men-
tion the most representative knowledge-based methods (Section 3.4.2).
Then, we focus on supervised methods by first introducing the Knn-
classifier and its application to WSD (Section 3.4.3.1). Finally we present
classifiers following supervised learning approaches (Section 3.4.3.2): a
svm-based classifier and neural network based classifiers .

3.4.2 Knowledge-based methods

The Knowledge-based (KB) WSD systems perform disambiguation by
taking advantage of external manually-curated lexical database. As op-
posed to supervised methods, these techniques are independent from
sense tagged corpora. KB methods are not recent, Lesk (1986) devel-
oped an algorithm, the Lesk’s algorithm, which performs word sense
disambiguation using the context of the words and dictionaries. Very
simply the algorithm compares the overlap between the words from the
context of the target word and the words from its definitions found in a
dictionary. Since then, several works have proposed more sophisticated
versions of the Lesk’s algorithm (Banerjee, 2002; Basile et al., 2012; Chen
et al., 2014). In a parallel branch, researchers proposed other KB meth-
ods making use of semantic graphs provided by lexical resources. These
methods benefit from the structural particularities of the graphs and ap-
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ply graph-based algorithms (Agirre and Soroa, 2009; Agirre et al., 2010;
Ponzetto and Navigli, 2010; Guo and Diab, 2010; Agirre et al., 2014). Ba-
bely (Moro et al., 2014) is an example of such a method. The system
makes use of the multilingual semantic network BabelNet and performs
jointly the tasks of disambiguation and entity linking thanks to graph al-
gorithms such as Random Walk with Restart (Tong et al., 2006). Babelfy
was in particular used to produce Eurosense (see Section 3.2.2).

Very recently, Scarlini et al. (2020) proposed an approach to unify the
expressive power of the pre-trained language model BERT and the vast
knowledge contained in the semantic network BabelNet. Their method
achieved state-of-the-art results or even outperformed most of recent
supervised neural methods in the English WSD task. However, the ex-
periments were carried out on nouns only.

3.4.3 Supervised Methods

3.4.3.1 Knn-based classifier

The k-nearest neighbors (Knn) algorithm is a supervised method used
to solve both regression and classification problems. The algorithm is
based on the assumption that similar objects should be close in a vector
space. From a WSD perspective, this means that the occurrences of a
given lemma sharing the same sense label should have similar vector
representations. In a generic classification setting, the algorithm labels
a test instance with the majority class of its k-closest neighbors from
the training dataset where k > 0 is a hyperparameter. Since WSD is
a classication task, the algorithm is fitted to address this problem and
processes as follows: First it fetches every instance of the target word in
the training dataset. Then, the Knn classifier tags the test instance with
the sense of the training example whose context vector representation is
the closest based on vector similarity (i.g cosine similarity or euclidean
distances). This is the simplest implementation of the Knn algorithm
with k = 1 also referred to as a One-nn classifier (Melamud et al., 2016;
Scarlini et al., 2020).

A variant of this classifier consists in comparing the test instance to
sense representations, also called sense embeddings. For example, Yuan
et al. (2016) computed sense vector representations by averaging the con-
text vector of the training examples belonging to the same sense label.
A more sophisticated method consists in using clustering techniques to
gather sense annotated data into sense clusters (Van de Cruys and Apid-
ianaki, 2011; Erk and Padó, 2008). Representing the meaning through
vector representations has been the subject of many works and further
details can be found in Camacho-Collados and Pilehvar (2018)’s sur-
vey dedicated to sense embeddings. Once the sense representations are
computed, the prediction then follows the same principle but instead
of comparing the test instance to each of its related training examples,
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x

y

??

I got a 4-strings bass.

The bass lives in the lake.

The bass has no known predator.

I caught a bass earlier this morning.

Bass guitar is an instrument.

I caught a bass earlier this morning.

He plays the bass, what a rockstar!

Figure 3.10: Illustration of the Knn classifier applied to WSD. In this
examples, the points are vector representations of the occurrences of the
words bass. The instance to tag is displayed with a question mark and the
training examples are labeled with two senses: s1 the music instrument
(red triangle) and s2 the fish (blue circle). The dotted green circle shows
the closest training instance to the target instance and thus indicates that
it will be tagged with s1.

it is compared to the sense representations and is finally sense tagged
accordingly.

3.4.3.2 Supervised Learning methods

The WSD systems based on supervised learning methods train a classi-
fier on manually sense annotated data. Over the years they have proven
to achieve the best result on the task (Raganato et al., 2017b) but at the ex-
pense of a strong dependency towards the availability and good quality
of annotated data. Now, we can identify two categories of WSD models:
those that are lemma-specific, i.e each lemma has its own classifier, and
those handling all lemmas at once using a single classifier. The former
approach has the advantage of making the disambiguation easier for the
classifier since it searches through a restricted number of classes. This
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is particularly fitted for highly polysemous words such as verbs where
finer distinction between senses is required. The second method on the
other hand shares the parameters among all lemmas which allows a bet-
ter generalization over the data and offers some interesting properties.
First, the models is able to predict the same sense for two different words
which could be seen as a way to induce synonymy. Then, since the clas-
sification is not based on particular words, it is possible to tag words
which have not been seen during the training or even words which are
not part of the sense inventory (one may think of neologisms, spelling
mistakes etc..) (Vial et al., 2019).

We propose in the next paragraphs to describe some of the most pop-
ular state-of-the-art models.

SVM-based classifiers Zhong and Ng (2010) proposed a supervised
framework for WSD called ”It Makes Sense” (IMS) which integrates
different modules for pre-processing, feature extractions and classifiers.
The original implementation of IMS was based on a linear support vec-
tor machines (SVM) as classifier and used three types of features as in-
put: the PoS tags of the surrounding words, the surrounding words
themselves and local collocations. The framework was designed to be
very flexible so that anyone can integrate their own modules into the
framework from the pre-processing to the machine learning classifiers.
For example, Iacobacci et al. (2016) integrated word embeddings as in-
put features into the framework and use the linear classifier to perform
WSD. Although the linear classifier has been recently outperformed by
transformer-based models, it has still proven to perform well in WSD,
especially when combined with word embeddings, despite its simplicity.

Neural-net-based classifier Exploiting neural networks into WSD su-
pervised architectures has become a standard to achieve state-of-the-art
results (Raganato et al., 2017a). The typical configuration consists in
adding a linear classifier on top of a neural network and train the whole
model in a supervised manner: for each target word of a given sense an-
notated corpus, the model outputs a probability distribution over the
senses through a softmax activation function and predicts the sense
whose probability is the highest. During the training process, the learn-
ing of the model parameters is done by minimizing the cross-entropy
loss between the true sense label and the distribution of probabilities,
iterating over all the examples of the training data.

Bi-LSTM based architectures K\aagebäck and Salomonsson (2016) were
the first to train a bi-LSTM specifically on the WSD task. Their model
consists in three components, a word embedding layer to encode the
input words (they used the Glove pre-trained word embeddings (Pen-
nington et al., 2014)) which is used as input to feed a second layer made
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of a bi-LSTM. The last layer is a linear classifier which, given the output
of the bi-LSTM, outputs probabilities over senses.

Another approach proposed by Raganato et al. (2017a) considered
the WSD classification task as a sequence learning problem. Instead of
making distinct predictions on target words independently, they choose
to handle the classification at the sentence level and use a single model
to cope with all the predictions. To this end, the authors proposed three
bi-LSTM-based WSD taggers. The first model is the simpler version of
the three and is very similar to (K\aagebäck and Salomonsson, 2016).
There are two main differences: first, instead of using a single bi-LSTM
layer, they use multiple stacked bi-LSTM layers. Secondly, the model
uses a single classifier to make predictions over all words of the training
data (i.e labeled and unlabeled words). The second model is the same as
the first one but enhanced with attention mechanism such as described
in (Bahdanau et al., 2014). The last model is based on a encoder-decoder
architecture inspired by (Sutskever et al., 2014), adapted for sequence-to-
sequence WSD and where the encoder and decoder are both composed
of bi-LSTMs. The three models were trained in a multitask learning set
up (Caruana, 1997) with two auxiliary tasks, POS tagging and Coarse-
grained semantic labeling. The results of the experiments showed an
advantage to the use of the bi-LSTM with attention mechanism which
indicates (1) the usefulness of attention mechanism in WSD and (2) that
seq-to-seq architectures may be sub-optimal for the WSD task.

Transformer-based architectures The most recent state-of-the-art mod-
els include the use of transformers in the WSD architectures. Du et al.
(2019) proposed to finetune the pre-trained BERT model on the WSD
task. To this end, they use BERT as an encoder to obtain contextualized
representations of the target words and use these representations as in-
put for a 2-layer MLP classifier which second layer is lemma-specific.

Vial et al. (2017) pushed the use of transformers even further by build-
ing an architecture similar to (Raganato et al., 2017a) with two key differ-
ences: they replace the word embedding layer by the BERT encoder and
instead of using a bi-LSTM layer, the replace it with a stacked transform-
ers layer. Overall the transformer-based architectures are at the time of
this writing the new state-of-the-art for the WSD task.

3.5 Conclusion

In this chapter we have presented a state-of-the-art of the Word Sense
Disambiguation task. We have first introduced the data used by state-
of-the-art method to perform WSD. While for decades most of the re-
sources were only available for English, the construction of BabelNet,
a large multilingual semantic network, made possible new approaches

52



to build multilingual sense annotated data such as EuroSense. We will
see in chapter 5 that while these resources seem promising at first, we
eventually haven’t found it suitable in our work on French VSD.

In the meantime, the rapid development of neural nets and especially
the shift towards the transfer learning paradigm pushed further and
further the limits of the representations of context, a key element to a
successful disambiguation. In particular, the recent transformer-based
architectures such as BERT have obtained outstanding results on the
task. Nevertheless, the success of these models remains unclear due to
their high complexity and there is still much to investigate to understand
what these models actually learn.
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4.1 Introduction

In this chapter we address the question of the role of syntax for verb
sense disambiguation, starting from the traditional hypothesis that syn-
tax is a key element to the disambiguation of words.
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Former VSD sytems took advantage of the argument structure of
verbs to perform their disambiguation (Dligach and Palmer, 2008; Roberts
and Kordoni, 2012; Kawahara and Palmer, 2014). In practice, it con-
sisted in representing the context of verbs by extracting features from
the words within the sentence which were considered as their syntactic
arguments. This is based on the hypothesis that the syntactic behaviour
of verbs is strongly correlated to their senses.

Then, with the arrival of more sophisticated neural networks, first
the RNNs and now the transformers, context representations based on
the argument structure of verbs have been left aside in favor of new
representations capable of encoding a broader context. In fact, the task of
VSD itself took a backseat as most WSD systems context representations
all take the same form, independently from the parts-of-speech of the
target word to disambiguate. Nevertheless, as powerful as these new
representations are, they still remain quite unintelligible and it is very
unclear what kind of features are indeed encoded.

In this chapter, we put syntax back on the table and investigate its
impact on VSD through three angles: in Section 4.3, we analyse the
correlation between argument structure and verb sense through a corpus
study. In Section 4.4, we focus on attention-based neural models and
study whether they do encode argument structure of verbs. Finally, in
Section 4.5, we propose a model to learn contextual representations from
syntactic trees and assess its use for WSD.

Before detailing these three sections, we start by presenting the data
(Section 4.2) on which our experiments were performed.

4.2 Data

To study the role of syntax for the disambiguation of verbs it is neces-
sary to have at one’s disposal data that is both annotated with senses
and syntactic features. Since we will focus on the argument structure
of verbs, we chose to use dependency tree representations, from which
head-argument relations are easy to extract. Besides, in order to make
viable experiments, these annotations must be in sufficient quantity and
with the highest possible quality. To our knowledge, such corpus that
gathers manual annotations for these semantic and syntactic features
does not exist, most likely because of the expensiveness of manual an-
notations. Therefore, we decided to use an existing manually sense an-
notated corpus, namely SemCor (Miller et al., 1993), and parsed it with
a state-of-the-art dependency parser.

In this section, we first present the corpus and the selection of the
data. We give some statistics regarding the distribution of verbs and
senses in the extracted dataset and further describe a method to balance
the distribution of senses. Finally, we provide syntactic details on the
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parsing of the data.

4.2.1 Corpus

As mentioned in Chapter 3, SemCor (Miller et al., 1993) is the most im-
portant manually sense annotated corpus in use, it has imposed itself as
standard resource for the WSD task on English. Hence, it was naturally
the best candidate as support data for our experiments. With more than
200 000 manual annotations, the corpus fills both the quantitative and
qualitative requirements for the experiments. Moreover, the corpus was
included in (Raganato et al., 2017b) ’s WSD framework, making it very
handy to use and process.

Data selection Since our objective is to study the role of the argument
structure of verbs for their disambiguation, we only kept the verb lem-
mas having at least two distinct annotated senses in corpus, the monose-
mous ones being irrelevant for the experiments. Yet, compared with
nouns or adjectives, verbs are mostly polysemous and the filtering of the
monosemics only removed around 10% of the annotations. We present
in Table 4.1 some statistics about the filtered dataset.

Corpus # Annotations # Target Verbs
Mean number of examples
per sense per lemma

SemCor 80109 1859 12.6 43.0

Table 4.1: Several statistics on the polysemous verbs in SemCor.

Verbs distribution We represented in Figure 4.1 the distribution of the
number of verb occurrences. As one can see, the distribution is rela-
tively heterogeneous, all verbs do not have quite the same number of
annotated occurrences. For example, most of the verbs have between
10 and 50 occurrences while very few (roughly 50 of them) occur more
than 200 times. Therefore, depending on the number of examples, the
difficulty of the task may vary across verbs.

Sense distribution Let us have a look at the distribution of the senses
in the data. First, we are interested in the distribution of senses among
verbs. This is shown in Figure 4.2 and Figure 4.3. The former displays
the number of verbs per number of senses while the latter reports the
number of occurrences of verbs per number of senses. As we can see,
the vast majority of verbs roughly have between two and four different
senses and are also the most frequent in the data1. The figures also reveal

1The over representation of verbs with 11 senses is due to the verb ”be” which for obvious reasons is very

frequent in the data.
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Figure 4.1: Distribution of polysemous verbs frequencies in SemCor.
Each bin gathers verbs which have at most n occurrences. For example,
the second bin on the left shows that there are roughly 800 verb lemmas
that occur at least 10 times.

Figure 4.2: Distribution of verbs per number of senses in SemCor. For
instance, more than 800 verbs have only 2 different senses as shown by
the very first bar on the left. At the extreme opposite, only few verbs
have 35 senses.

the fine level of granularity that can be found in Wordnet. Indeed, some
verbs can have up to 35 senses. Nevertheless, as shown in Figure 4.3,
the most polysemous verbs very scarcely occur in the data which makes
them even harder to disambiguate. This reinforces the previous claim
that the difficulty of the disambiguation is highly heterogeneous among
verbs.

Finally, if we have a closer look at how senses are distributed among
occurrences per lemma (Figure 4.4), the most striking observation is the
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Figure 4.3: Distribution of verbs occurrences per number of senses. For
example, there are roughly 5,000 occurrences whose verbs have 8 distinct
senses (fourth bar from the left).

consistent prevalence of a sense over the others, no matter what the
degree of polysemy is. This actually reflects a well known phenomenon,
which has led to a very strong baseline dubbed ”most frequent sense”,
consisting in simply systematically tagging a verb occurrence with its
most frequent sense.

Balancing As shown in the previous paragraph, the distribution of
senses shows a certain level of heterogeneity and highlights the predom-
inance of the most frequent sense pattern. Observations made using the
natural sense distribution of the data will mix syntactic and frequency
effects. In order to better pinpoint the disambiguating power of syntactic
features, we will systematically provide observations both on the origi-
nal corpus, with the ”natural” sense distribution, and on a ”balanced”
corpus, in which the senses per verbs are equally distributed.

The balancing was performed using a method described in Algorithm
1. The main idea is to calculate a target number N of instances per
sense (for a given lemma) and then to over/sub-sample the occurrences
of the senses to fit that number. The oversampling was performed by
randomly duplicating existing instances of the target sense. As for the
subsampling we did quite the opposite and removed random instances
of the target sense from the dataset.

In our experiments we selected N for a given verb as the integer por-
tion of the division of the total number of its instances by the number of
its senses. Note that due to the selection of N, which is based on a floor
division, the number of annotations may very slightly differ between the
original and the balanced distribution of the dataset. In the remaining
of this chapter, we will refer to the original dataset as SemcorNatural and
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Figure 4.4: Distribution of senses per polysemy degree in SemCor. We
have gathered in groups the verbs by their number of senses (x-axis) and
averaged then normalized the distribution of senses within groups (y-
axis) where each color represents a sense. For example, among the verbs
having two senses annotated in the corpus, the average proportion of
their most frequent sense is approx. 70.

to its balanced version as SemcorBalanced.

4.2.2 Syntactic details

Parsing The SemCor corpus contains sense annotations only and was
not initially provided with syntactic annotations. We therefore applied a
state-of-the-art dependency parser to obtain dependency trees. We used
the en core web lg2 model from SpaCy3, an industrial API providing
state-of-art and easy to deploy NLP tools. We provide an example of an
output parse in Figure 4.5.

Argument functions Spacy’s English models are trained on depen-
dency trees converted from constituency trees, with labels from the
NLP4J project4. From this particular set of labels, we introspectively
selected a restricted list of syntactic functions that may correspond to

2https://spacy.io/models/en#en_core_web_lg
3https://spacy.io/
4https://emorynlp.github.io/nlp4j/
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Algorithm 1: Sense Balancing
Result: balanced data
foreach lemma L do

N = integer portion of (total number of instances of L /
number of senses s of L) ;

foreach sense s ∈ L do
n = number of instances of s ;
if n < N then

oversample(s)
else if n > N then

subsample(s)
else

continue
end

end
end

syntactic arguments of verbs. We present a concise description of these
syntactic functions in Table 4.2.

It is worth mentioning that we have included the ”prep” label al-
though the parser does not reliably distinguish between adjunct and ar-
gumental prepositional phrases. Furthermore, we bypassed the preposi-
tion, considering direct arcs from verbs to the object of the preposition,
and concatenating the preposition to the label name. Hence for instance

in Figure 4.5, the two arcs stole
prep−−→ at

pobj−−→ school would be collapsed

into a single stole
prep at−−−→ school arc. The result of such modification is

illustrated in Figure 4.6.

Function Description

nsubj Nominal subject
csubj Clausal subject
dobj Direct Object

ccomp Clausal complement
attr Attribute

acomp Adjectival complement
xcomp Open clausal complement

expl Expletive
dative Dative

prt Verb particle
prep X Prepositional modifier or argument

Table 4.2: List of syntactic functions potentially corresponding to syn-
tactic arguments.
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Figure 4.5: Example of dependency parsing obtained with the
en core web lg from SpaCy.

Figure 4.6: Example of the modified dependency parsing obtained with
the bypassing of the prepositions.

4.3 Does argument structure discriminate verb senses?

In this section, we try to quantify to which extent the argument structure
of verbs allows their sense disambiguation. Our intuition let us think
that, to some degree at least, some verb senses can be potentially disam-
biguated based on their syntactic realization. This idea has inspired
traditional work on verb sense disambiguation (Dligach and Palmer,
2008; Roberts and Kordoni, 2012; Kawahara and Palmer, 2014). Here
is a simple illustration with two occurrences of the verb ”run” exhibit-
ing two different meanings and syntactic configurations. In (5) the verb
is intransitive while (6) the argument structure exhibits a subject and an
object.

(5) Everyday Sarah runs at 8 o’clock.

(6) They ran twenty blood tests on me and they still don’t know
what’s wrong.

Of course this is not systematic, there are pairs of examples where two
different senses share a common syntactic structure. For example, let us
take another example with the verb run:

(7) I ran the whole race without being short of breath.
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Now, comparing (6) and (7) one can easily observe that it is the lexicon
rather than the syntax which allows to interpret the different meaning
of the verb run.

While these examples were drawn from pure introspection, we now
provide a study of the sense discrimination achievable when represent-
ing verbs through their argument structure.

To this end, we first designed two vector representations to encode the
argument structure of a verb in context. The first one is based on syntax
only while the second one integrates syntactic and lexical features. Both
versions are described in Section 4.3.1.

We then use these argument structure representations for two inves-
tigations: in Section 4.3.2 we measure to which extent a (dis)similarity
of the argument structure of two verb occurrences correlates with the
(dis)similarity of their annotated sense. In Section 4.3.3, we further in-
vestigate the performance of purely supervised VSD classification when
the sole input representation of the verb is its argument structure.

4.3.1 Argument structure vector representations

We propose two different ways to encode the argument structure of an
occurrence of a verb by means of real valued vectors. The first one relies
on syntactic features only while the second one combines syntactic and
lexical information into the same vector representation. In what follows,
we will refer to these vector representations of the argument structure
as ”syntax-based argument vector” and ”lexical-based argument vector”
(although the latter is also syntactic).

Syntax-based argument vector The vector is built using binary values
(1 or 0) which stands for the fulfillment (or lack thereof) of an argument
of the verb in context. It is of size n, the number of possible syntactic
functions as verb arguments, and where each dimension corresponds to
a given function. An example of such representations is given in Figure
4.8

Lexical-based argument vector The lexical-based argument vector (which
is actually lexico-syntactic) makes use of pre-trained word embeddings.
It is constructed the same way as the syntax-based argument vector, but
instead of binary values, we use the word embeddings of the syntactic
head words of the arguments. More precisely, if a verb has a certain de-
pendent d labeled with an argumental label l, then the portion of input
for label l is the word embedding of d, otherwise it is the null vector. Its
size is therefore n× d where d is the size of the word embeddings. In-
jecting word embeddings into the argument vector representation allows
to combine both syntactic and lexical information in the same represen-
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Figure 4.7: Illustration of the syntax-based argument vector. For the
”gave” instance, only nsubj, dobj and dative are present in the argument
structure. Therefore, the values corresponding to these syntactic func-
tions are set to 1 and all the others to 0.

tation. An illustration of the lexical-based argument vector is shown in
Figure 4.8.

Figure 4.8: Illustration of the lexical-based argument vector. The vector
is composed of n slots dedicated to the n argument functions. Each slot
is filled with a word vector corresponding to the lexicalisation of the
argument function. In this example, the slots specific to the nsubj/dobj
and dative syntactic functions contains the word vectors for ”girl”,”boy”
and ”book” respectively. All other slots (that is unfullfilled argument
functions) are set with zero vectors.

4.3.2 Corpus study: correlation between argument structure similar-
ity and sense annotation

Now that we have defined a method to encode the argument structure,
we propose two experiments based on vector similarity whose aim is
to measure to what extent these representations can discriminate verb
senses.

The first experiment, referred to as ”inter-sense test” measures, given
a verb lemma, how dissimilar pairs of senses are from the point of view
of argument structure. The more dissimilar pairs of senses are, the more
the argument structure is actually a discriminant feature for verb senses.
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The second experiment denoted ”intra-sense test” measures the qual-
ity of the clusters provided by the annotation of verbs’ senses. More pre-
cisely, it measures to what extent the set of occurrences of a verb sense
is more homogeneous with respect to argument structure representation
than the set of all occurrences of that verb.

Both experiments are described in the next two sections.

4.3.2.1 Notations

In the following we denote an occurrence of verb as o, its lemma as
lemma(o), and its annotated sense as sense(o). We denote the set of
annotated senses of a lemma l as senses(l).

We will note vo for the argument structure vector of o (either syntax-
based or lexical-based). By extension, we will note vxxx the average
vector of all the occurrences matching xxx, so vs is the average vector of
all occurrences annotated with sense s, and vl is the average vector of all
the occurrences of the lemma l.

4.3.2.2 Inter-Sense Test

This test will allow us to measure the similarity of the senses of the
same lemma, through the prism of the argument vectors. Our hypoth-
esis for this test is that the more argument vectors of distinct senses are
dissimilar, the more syntactic information actually helps to discriminate
between senses.

Method For every verb lemma l of our dataset, we calculate the cosine
similarity between each pair of senses si, sj of l. The result is a distri-
bution of cosine similarity values for every pair of senses of the same
lemma.

In this experiment, we compared the syntax-based and the lexical-
based argument vectors on both SemcorNatural and SemcorBalanced datasets,
giving rise to four configurations.

Results The results of the inter-sense test are given in Figure 4.9. They
are several histograms representing the similarity distributions in the
different configurations.

Our first observation concerns the balancing of the data. As we can
see, it doesn’t seem to affect the experiment since the figures on the top
and bottom rows are pretty much alike showing no significant differ-
ence.

Now turning to the analysis of the similarity distributions, the results
show two interesting trends. On the one hand, the distribution obtained
using the syntax-based argument vectors shows that syntax alone is not
sufficient to discriminate verb senses. Indeed, most pairs have a cosine
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Figure 4.9: Distribution of the cosine similarity values of pairs of senses
resulting from the inter-sense experiment. Columns gather the experi-
ments per argument vector types and rows show the datasets on which
they were performed. For example, the figure in the top left corner
displays the results of the inter-sense experiment on the SemcorNatural
dataset using the syntax-based argument vector representations .

similarity close to 1 indicating that they have very similar syntax-based
argument vectors. On the other hand, the distribution is reversed with
the lexical-based argument vector, the similarities greatly decrease, with
very few pairs having a cosine close to 1, and a lot more pairs having a
cosine below 0.5.5. This suggests that the lexical content of arguments
does discriminate between verb senses.

4.3.2.3 Intra-Sense Test

This second test broaches in a different way the question of the discrim-
ination of the meanings of verbs by their argument structure. In this
experiment we aim at observing the quality of the clustering induced by
sense annotations in the corpus with regard to the argument structure
of verbs. The main idea is to look at whether the argument vector of an
occurrence is closer to its sense vector than to its lemma vector.

5Note that in the lexical case, since word embeddings may have negative values, the cosine is valued in

[-1,1]. On the other hand, the syntax-based argument vector is made of binary values which thus constraints

the cosine values into the 0,1 range.
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Argument vector Natural Balanced
cos S cos L cos S cos L

Syntax-based 0.87 0.84 0.89 0.82
Lexical-based 0.47 0.41 0.59 0.43

Table 4.3: Results of the intra-sense experiment on the SemcorNatural and
SemcorBalanced datasets for the syntax-based and lexical-based argument
vectors. The score cosS denotes the average cosine similarities between
occurrences and their senses while cosL is the average similarities be-
tween the occurrences and a more global vector based on the lemma
occurrences.

Method To perform this test, we compare (i) the average similarity
between an occurrence vector and its sense vector, with (ii) the average
similarity between an occurrence vector and its lemma vector. More
precisely we compute cosS and cosL defined as:

cosS =
1

|corpus| ∑
o∈corpus

cos(vo, vsense(o))

cosL =
1

|corpus| ∑
o∈corpus

cos(vo, vlemma(o))

We compare cosS to cosL using the syntax-based and the lexical-based
arguments vectors, and using the natural and the balanced sets of occur-
rences, hence leading to four settings.

Results The results are presented in Table 4.3. In all configurations, we
can see that cosS is higher than cosL, which is the expected result should
argument structure be helpful to discriminate between senses. Yet, the
difference is much smaller when using the syntax-based argument struc-
ture than with the lexical-based representation. This strongly suggests
that differences in pure syntax do not explain much of the sense dis-
tinctions. This supports the results obtained in the previous experiment
and highlights once again the importance of the lexical information in
the representation of the meaning of verbs. Moreover, the differences
between cosS and cosL are smaller when using the natural corpus than
when using the balanced data. This suggests that argument structure is
less discriminating in the case of frequent senses than in the general
case.

4.3.3 Supervised VSD using argument vectors only

The last two experiments revealed that the verb sense distinctions cor-
relate much better with argument structures representations when these
encode not only the grammatical functions of the arguments but also
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their lexical semantics. While these experiments were based on corpus
statistics, we are now interested in testing the argument vectors as sole
input representation in a supervised VSD setup as a way to confront
the previous results. To this end, we trained a neural net based classi-
fier for the VSD task using the argument vectors as input features and
compared the performances to simpler bag of words representations. In
what follows, we first expose the experimental protocol and then present
and discuss the results of the experiment.

4.3.3.1 Experimental protocol

Model For this experiment we used, for each lemma, a single linear
layer with softmax output. The model takes argument vectors as in-
put and outputs a probability distribution over the senses of the target
lemma. The predicted sense is the one with the highest probability.

Data We used the natural and balanced versions of SemCor in our
experiments. For each lemma, we made a 75/25 split for the training
and validation datasets respectively. Statistics on the datasets are given
in Table 4.4.

Distribution Dataset # Annotations
Mean number of examples
per sense per lemma

SemCorNatural
Train 62893 9.02 21.06
Dev 20976 5.83 10.92

SemCorBalanced
Train 64754 9.28 21.68
Dev 21986 5.81 11.45

Table 4.4: Statistics on the train/dev splits for the natural and balanced
version of SemCor.

Experiments In our experiments, we trained the model using the syntax-
based and lexical-based argument vectors as input vectors. We com-
pared our model to the most frequent sense baseline for the experiment
on SemcorNatural and to a random prediction baseline on SemcorBalanced.
We also compared the argument vector representations to a standard
bag-of-word (denoted BOWall) representation where we computed the
sum of the word embeddings of all words in the sentence. Furthermore
we experimented a specific version of the BOW representation in which
we only considered the argument of the verbs denoted BOWarg.

In every experiment implicating word embeddings, we used the GloVe
(Pennington et al., 2014) pre-trained word embeddings which we kept
fixed during the training. All models were trained for 50 epochs using
Adadelta with a learning rate of 0.5. At each epoch we performed an
evaluation on the validation dataset.
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4.3.4 Results

The results are shown in 4.5. Let us first analyze results in the balanced
corpus. The first observation is that lexical-based argument vectors are
the best inputs (acc=44.7, a 28 point increase over the random baseline),
while the syntax-based argument vectors are the worst (acc=36.8), which
supports the observations made in section 4.3.2: purely syntactic argu-
ment vectors are much less effective than lexico-syntactic ones. Interest-
ingly enough though, results when using BOWall and BOWarg as input
suggest that it is the combination of lexical and syntactic information
that is the most effective: there is an almost 5-point drop when switch-
ing from lexical-based argument vectors to BOWarg vectors.
The picture is a bit blurred when looking at results on the natural corpus.
Unsurprisingly, sense distribution helps the classifiers, hence all results
are higher. While the lexical-based vectors still yield the best results,
all three other settings do perform better than the most frequent sense
baseline. This suggests that the contribution of argument structure to
VSD is less crucial, but still useful, when the natural sense distribution
is kept.

Vectors Accuracy
Natural Balanced

Syntax-based 62.3 36.8
Lexical-based 65.5 44.7

BOWall 60.1 39.8
BOWarg 63.1 40.0

MFS 57.0 -
Random - 27.0

Table 4.5: VSD accuracies on the development split of Semcor.

4.4 Syntax in attention-based models

In this section we continue our investigation on the role of the argu-
ment structure of verbs in the VSD task from another angle: we seek the
presence of the argument structure encoding in attention-based models.

Attention mechanism, since originally proposed in (Bahdanau et al.,
2014), has been successfully integrated in many NLP systems and has
set a new state-of-the-art in a wide range of tasks. At the time of writing
of this thesis, the best WSD models are based on attention mechanism
(Raganato et al., 2017b; Vial et al., 2019). Self-attention, in particular, has
been used to build the Transformer (Vaswani et al., 2017), a neural net
architecture which is the core of the BERT (Devlin et al., 2018) model,
the new NLP standard for sentence and token encoding.
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Not only do attention mechanisms appear very efficient, but they
also have a very interesting interpretability capacity. By looking at the
weights put on the words of the sentence we can have an insight on what
words are important to solve the targeted task (Clark et al., 2019; Voita
et al., 2019; Htut et al., 2019).

We want to make use of this interpretability to assess the role of
the argument structure in verb sense disambiguation by using attention
based models on the VSD task. Our hypothesis is that if the argument
structure is indeed decisive to disambiguate verbs, then we should ex-
pect it to be significantly attended to in the model.

We conducted two experiments to investigate this hypothesis. First,
we trained a simple VSD classifier based on a single self-attention layer
and studied the output attention weights. Secondly, we used a state-of-
the-art WSD model based on the pre-trained Bert (Devlin et al., 2018)
model and following previous works, we looked for particular heads
that would focus on the argument structure. Both experiments are pre-
sented in the next two sections.

4.4.1 Simple attention-based VSD

The aim of this experiment is to see whether a simple self-attention
based VSD model can obtain satisfactory results, and if so, to observe
the amount of attention paid to the argument structure by the model.
We voluntarily seek for the model to be as simple as possible since we
are not so much interested in performance as in intelligibility.

Model architecture Our model architecture is composed of three com-
ponents (illustrated in Figure 4.10):

• An embedding layer : converts the words wi of a sentence into d-
dimensional real value vectors vi. We used the GloVe (Pennington
et al., 2014) pre-trained word embeddings as input word vectors
which we kept fixed during the training process.

• An attention layer : a self-attention mechanism as proposed in
(Vaswani et al., 2017) which computes contextualized vector ~ci for
each vi based on the weighted sum of all the vj. Following (Vaswani
et al., 2017) we used three parameters matrices of size |d| × |d| to
project the input vi into the query, key and value vector spaces.
More details on self-attention formulas can be found in Chapter
3-Section 3.3.3.2.

• A lemma-specific fully connected linear layer with softmax activa-
tion function to turn the output vector~ci into a distribution of prob-
ability over the senses of the target lemma. The model predicts the
sense which has the highest probability.
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Note that, parameter matrices aside, the context representation output
by the self-attention mechanism can be seen as a weighted bag of words
representation.

Figure 4.10: Illustration of the architecture of our simple attention-based
VSD model.

Experiments The model was trained for 50 epochs using Adadelta as
optimizer with a 0.5 learning rate and we kept the parameters of the
model that provided the lowest loss on the development set during
training. We first compare the level of performance obtained by our
attention-based classifier with a simple BOW model.

We then calculated the proportion of the attention weight put on the
argument structure (using the dependency tree) as follows: for each
instance to disambiguate, we summed the attention weights of syntactic
heads belonging to the argument structure and then averaged the overall
sum by the total number of instances. We compared this proportion with
weights of randomly selected tokens in the sentence following the same
process. We also considered the proportion of attention weights put on
the whole span of the argument structure instead of the heads alone and
similarly compared with random weights accordingly.

Results The performance of the attention-based model is shown in Ta-
ble 4.6. Firstly, the attention model outperformed the MFS and Random
baseline as well as the model based on the BoW representation in all
configurations highlighting the efficiency of the self-attention mecha-
nism despite its relative simplicity.

Secondly, we represented the proportion of attention weights on the
argument structure in Figure 4.11. The weights on the heads tokens of
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Model Accuracy
natural balanced

Attention 62.7 39.8
BOW 60.1 35.1

MFS 57.0 -
Random - 27.0

Table 4.6: Performance (accuracy) of the simple attention-based VSD
classifiers on both configurations (natural and balanced) of the develop-
ment dataset.

the argument structure remained relatively low since it only concentrates
12% of the attention. When using the whole span of the argument struc-
ture, the proportion of attention is significantly higher reaching nearly
40%. We can observe that the weights of the argument structure com-
pared with randomly selected weights are superior when selecting ei-
ther heads or spans of arguments. Nevertheless, when we constrained
the random selection to tokens that share the same PoS with the tokens
of the argument structure, the margin becomes much smaller (shown
as the green bars in Figure 4.11). This indicates that the increase in at-
tention proportion for argument heads / spans is actually due to the
distribution of POS in argument heads / spans, and not to the argument
status.

Considering the fact that the proportion of attention on the heads of
the argument structure remains quite low and that the random weight
proportion is very close to the one of the argument structure, we can de-
duce that the model does not particularly attend to the argument struc-
ture to succeed in the task. Therefore, the role of the argument structure
remained very limited in this configuration.

4.4.2 Syntax in transformers-based VSD models

In the previous section, we initiated our investigation of the role of syn-
tax in attention-based models using a minimal architecture example. We
now continue our study further and focus on much more sophisticated
attention-based models. In particular, we are interested in the study of
BERT(Devlin et al., 2018), a pre-trained language model based on the
transformer architecture (Vaswani et al., 2017) which optimally takes
advantage of the attention mechanism. BERT has been successfully in-
tegrated into WSD models achieving outstanding results(Du et al., 2019;
Vial et al., 2019).

Since traditional work has shown the importance of argument struc-
ture for VSD (Dligach and Palmer, 2008; Roberts and Kordoni, 2012;
Kawahara and Palmer, 2014) , we may wonder whether transformer-
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Figure 4.11: Proportion of attention weights on the argument structure
per heads and span compared with random words in the sentences. The
green bar indicates the proportion of attention for randomly selected
tokens which share the PoS found in the argument structure of the verb
occurrence.

based pre-trained language models also encode it in some way.
Several results suggested that syntactic features are captured by some

attention heads at least (Clark et al., 2019; Voita et al., 2019; Htut et al.,
2019). In particular, some of the heads pay maximal attention to specific
syntactic relations, some of which correspond to arguments of verbs.
Yet, comparing most-attended-to words to syntactic dependents only
gives a partial picture: a head paying maximal attention to subjects may
also attend to simpler but correlated patterns.

In this section, we first experiment the finetuning of BERT on the
VSD task. We then investigate the most-attended-to word classification
method (Clark et al., 2019), in the context of verb sense disambiguation
data. Finally, as a contribution we show that simultaneously looking
at how a given head attends to syntactic, lexical and positional patterns
reveals a much more contrasted picture concerning the syntactic abilities
of attention heads.

4.4.2.1 Finetuning BERT on the VSD task

BERT is a multi-layer transformer based model trained on the masked
language modeling and next sentence prediction tasks. Although the
model provides powerful contextual representations from its pre-training,
best results on various NLP tasks were achieved by finetuning, that is to
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say adding a classifier on top of the pre-trained model and training both
the classifier and BERT as a whole model on the task.

In our first experiment we finetuned BERT on the VSD task and com-
pared the results with keeping BERT’s parameters fixed. We found that
the finetuning did not significantly improve the performance of the clas-
sifier. The next paragraphs describe the experimental protocol and the
results.

Setup The finetuning was performed using a simple classifier similar
to the one described in Section 4.4.1 replacing the two first layers with
the BERT model. We trained and evaluated the model on the same data
as specified in 4.3.3.

We trained both versions of the model for 50 epochs and used Adadelta
as optimizer with learning rates of 0.5 and 0.005 for the pre-trained and
finetuned models respectively.

Model Precision
Natural Balanced

Bert f rozen 73.4 58.5
Bert f inetuned 73.3 57.3

MFS 57.0 -
Random - 27.0

Table 4.7: Performances (precision) of the Bert model (finetuned and
frozen) on the development dataset in the natural and balanced config-
urations.

Results The results are presented in Table 4.7. They reveal no signif-
icant difference of performance between the pre-trained and the fine-
tuned models on the verb sense disambiguation task. We are not aware
of any research in WSD which has studied the impact of finetuning on
this task to support this observation.

Our hypothesis is that the disambiguation task is very similar to the
masked language model task and it is possible that most of the features
may have been already learnt during the pre-training of the model but
this remains to be further investigated.

Given these results and for the sake of efficiency, we decided to use
the non-finetuned version of BERT for the attention study that follows.

4.4.2.2 Extracting Attention Maps

We ran the model on the data and extracted for each verb occurrence v
the self-attention weight vector of each attention head in each layer. In
the remaining of this section, we will refer to a particular head as L-H
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with L the layer number, and H the head number in L, e.g. 7-1 denotes
the first head of the seventh layer.

BERT tokenizes words into tokens (subwords). We follow Clark et al.
(2019) in order to recover word-word attention weights from token-token
weights: for attention to a split word, we sum the attention weights over
its tokens. For attention from a split word, we average the weights over
its tokens. This ensures that the attention from a word sums to 1.

4.4.2.3 Maximum Attention Classifier

Before detailing the method, let us first define how we will designate
some of the positions in the verb context, hereafter called ”patterns”.
For a target verb occurrence v, we denote its absolute position as i and
the absolute position of its direct dependents in the parse tree by the
name of the dependent’s dependency label: for instance nsubj denotes
the absolute position of the verb’s nominal subject.

For relative positions, we write p± k to target the position p with a
shift of k tokens. Thus i+1 denotes the position right after the verb, and
the nsubj 6=i-1 pattern designates the nsubj, for instances in which it is
not right before the verb.

Method For each verb instance v and each attention head h, we con-
sider the head’s prediction as being the word that received the most
attention from v, apart from v itself6. Then for each syntactic label l,
we define the accuracy of head h for label l as the proportion of verbal
instances for which the most-attended-to word equals the dependent7

labeled l (the proportion being computed among the instances having
such a dependent). Finally, we keep the best predicting head ĥ(l) for
each label l. For instance in Table 4.8, head 8-1 is the best at identi-
fying nominal subjects: for 74.9% of the verb instances having a nsubj
dependent, the most-attended-to word by head 8-1 is the nsubj.

For each label l, we compare the accuracy obtained by ĥ(l) with that
obtained by a relative position baseline classifier. More precisely, for a
relative position p = i± k, we count among the verb instances having a
dependent labeled l, how often that dependent is at position p. We let k
vary from 1 to 5 and retain the best relative position accuracy as baseline
for label l. For instance, a majority of nominal subjects are at position
i-1, hence i-1 is the baseline for the nsubj label.

Results As previously observed (e.g. (Kovaleva et al., 2019)), the first
striking result when studying BERT’s self-attention weights is that in
many cases, attention heads put most of their attention to the [CLS] and

6We also excluded BERT’s [CLS] and [SEP] special tokens to focus on inter-words relations
7Since our prime interest is the representation of verbs, we only considered the verb→dependent direction

and the 10 labels for syntactic arguments of verbs.
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Label Head Acc. Baseline ∆

expl 3-2 98.1 81.0 (-1) +21%
acomp 6-7 88.9 61.4 (1) +45%

prt 2-4 84.5 87.1 (1) -3%
dative 6-5 77.9 60.2 (1) +29%

attr 7-5 76.5 37.2 (2) +105%
nsubj 8-1 74.9 58.2 (-1) +27%
dobj 7-5 69.9 38.8 (2) +80%

xcomp 7-9 59.2 60.7 (2) -2%
csubj 6-4 38.7 14.2 (-4) +173%

ccomp 7-5 21.8 15.2 (3) +43%

Table 4.8: For each syntactic label: best head ( ˆh(l)) using the maximal
attention method, accuracy of the best head, accuracy of the best relative
position, and best relative position (within brackets).

[SEP] special tokens used as classification token and sentence separator.
Indeed, we calculated that roughly half of the attention heads put more
than 30% attention on these tokens.

Turning to the predicted syntactic dependencies, only 25 out of the
144 heads obtained results superior to 20% of the relative position base-
line. In other words, most of the attention heads either attend to BERT’s
special tokens or to the tokens in the close context of the target word, as
already observed

The best performing heads for the syntactic dependency prediction
task are presented in Table 4.8. Some of those heads beat the relative
position baselines by a large margin. In particular, the heads special-
ized in predicting nominal subjects (nsubj), direct objects (obj), adjectival
complements (acomp) and attributes (attr) achieved high performances.
These results seem to support the claim that some heads are indeed good
at tracking syntactic relations and thus exhibit BERT’s ability to capture
syntax from self supervision only.

4.4.2.4 Attention study

While the previous experiment informs us about the heads’ capacity to
capture syntactic behaviors, it doesn’t plainly reveal how the heads dis-
tribute their attention among all the words of the sentence, and among
the different patterns. For instance, Table 4.8 shows that head 7-5 is good
at identifying direct objects, but firstly it is also good at identifying attr
dependents, and secondly, it is unclear yet whether other, non syntactic,
patterns are also attended to, although not with maximal attention.
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Average attention proportions To refine the analysis, we compute the
average attention proportion for a given pattern p and a given attention
head: for the n(p) verbal instances for which p exists (e.g. verbs having
a nsubj), we sum the attention to p and normalize by n(p). We computed
the attention proportions for all heads, and for various patterns, includ-
ing syntactic dependencies, relative positions, the special tokens [CLS]
and [SEP], plus patterns targeting the correlation between syntax versus
adjacency, such as nsubj 6=i-1. We provide the results as a heatmap in
Figure 4.12.

Figure 4.12: For each attention head, percentage of attention paid to
certain patterns, when the pattern is instantiated for the verb instance.
We only showed the heads having at least one pattern (other than CLS /
SEP) holding 50% or more of the attention, and we excluded the patterns
that did not receive more than 15% in any of the heads.

Relative position heads Some of the heads are strictly bound to rel-
ative positions. For example, heads 2-12 and 3-4 both highly attend to
i+1 which, for verbs, matches the predominant positions of e.g. particles
(prt) and adjectival complements (acomp). But when these dependents
are not at position i+1, the attention proportion drastically drops (for
instance for head 2-12, the attention proportion is 95% when prt=i+1
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but drops to 0.12% for prt 6=i+1). This assesses that this attention head
remains fixed on a specific relative position.

Lexical heads Some of the syntactic patterns seem to be well predicted
by some heads, but prove to exhibit a low lexical diversity. This is the
case for instance for the expl dependent and head 3-2. The expl label is
used to label the dependency between there and the verb be, hence its
predominant position is i-1. When expl is present in the verb’s context,
the head puts 76% of its attention on it, while overall, the i-1 position
receives little attention (22%). Yet, given the lexical specificity of expl,
it is likely that the 3-2 head has learned a lexical rather than syntactic
pattern.

The head 6-7, obtained good results on the prediction of the adjecti-
val complement (cf. 88.9% for acomp in Table 4.8). Moreover, the atten-
tion proportions for various patterns also suggest that this head is able
to capture the acomp syntactic dependency: the attention proportion is
high on the acomp pattern (58%), while its baseline position i+1 remains
overall relatively little attended to in the general case (11%). Further-
more, the 6-7 head consistently focuses on acomp even when it is not
at i+1 (51% of the attention goes to acomp for the pattern acomp 6= i+1).
Yet, verbs having a acomp dependent have low lexical diversity, with be
representing 86% of the instances. Hence, it seems that the head has
learned to focus on i+1 specifically when the verb is stative or be. And
indeed, when the verb is be, the attention proportion to acomp is 58%.

Subject We now investigate to what extent the model does more than
learning a shallow positional heuristic for locating subjects. The 8-1 head
performs very well at predicting the nominal subject (accuracy is 74.9 in
Table 4.8, a +27% increase over the i-1 positional baseline). Yet, firstly,
the attention proportion drastically drops when the subject does not oc-
cupy its baseline position (from 63% for nsubj=i-1 to 25% for nsubj 6=i-1
in Figure 4.12).

Secondly, as shown in Table 4.9, the 8-1 head fails to predict the sub-
ject unless it is at i-1 or i-2: accuracy drops to 29.3% when the subject
is neither at i-1 nor i-2. The only syntactic ability of the head over the
positional baseline seems to be the relatively high accuracy when the
subject is at i-2 (59.8%). Note though that for these instances, the at-
tention proportion on the i-1 position remains high: for the nsubj=i-2
instances, 8-1 head pays 37% of its attention to the i-2 position (hence to
the subject), but still 29% on the i-1 position (Figure 4.13). Furthermore,
in the nsubj=i-2 instances, the i-1 position mostly corresponds to modals,
auxiliaries or adverbs, which exhibit a rather low lexical diversity.

Direct Object For direct objects we find a head that apparently learns
a more sophisticated pattern. The head 7-5 outperforms the direct ob-
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Pattern Head Accuracy #occ

nsubj (all) 8-1 74.9 44261
nsubj 6= i-1 8-1 43.4 18651
nsubj 6= i-1/-2 8-1 29.3 10029
nsubj = i-2 8-1 59.8 8625

Table 4.9: Accuracy of the best head for nsubj using the maximal at-
tention method (8-1), computed on instances for which the subject is in
various positions.

Figure 4.13: Attention proportions of head 8-1 for verb instances show-
ing pattern1 (lines), for various patterns (columns). For instance: among
the verb instances such as nsubj=i-2, 29% of the attention goes to i-1.

ject baseline (i+2) by a very large margin (69.9 vs 38.8). Moreover, the
baseline is relatively low, indicating that direct objects can be found in
multiple positions relative to the verb.

Indeed, the attention percentages for that head in Figure 4.12 show
that the attention is distributed homogeneously among the relative po-
sitions at the right of the verb rather than focused on a single position.
Furthermore, as shown in Figure 4.14, the proportion of attention varies
according to the position of the dobj. Finally, contrary to the subject head,
the 7-5 head succeeds in predicting direct objects, even when these are
not in their baseline position as shown in Table 4.10. This confirms its
ability to track the verb-object dependency.

Relation Head Accuracy #occ

dobj (all) 7-5 69.9 25288
dobj == 2 7-5 77.1 9652
dobj ! = 2 7-5 64.9 15636
dobj == 1 7-5 64.6 7105
dobj == 3 7-5 72.8 4698
dobj > 3 7-5 56.0 3833

Table 4.10: Accuracy of the best head for dobj using the maximal atten-
tion method (7-5), computed on instances for which the direct object is
in various positions
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Figure 4.14: Attention proportions of head 7-5 for verb instances show-
ing pattern1 (lines), for various patterns (columns). For instance: among
the verb instances such as dobj>3, 27% of the attention goes to i+4.

4.4.2.5 Conclusion

We have taken advantage of the interpretability of attention mechanisms
to evaluate the importance of argument structure for verb disambigua-
tion.

To do so, we first evaluated a VSD classifier based on standard word
vector representations with a self attention layer. While the model out-
performed several baselines, the study of its attention weights did not
reveal any particular interest to the argument structure. Indeed, the
weights put on the argument structure remained close to those dis-
tributed among random selected words. Besides, selecting either the
heads or the whole span did not seem to change the results.

We also analyzed BERT’s attention heads on contextualized represen-
tations of verbs to assess the ability of the model to capture syntactic
dependencies related to verbs’ argument structures. Our results sug-
gest that although some heads are good predictors of specific syntactic
relations, a closer look reveals that some of them are in fact strongly
correlated to simpler patterns such as adjacency or recurrent lexical pat-
terns. Actually, we found that among the dependency labels for verb
arguments, only the head specialized in picking the direct object seems
to capture a true syntactic dependency.

Given the results of these two experiments, it remains unclear to what
extend the argument structure plays a role within attention-based mod-
els. It might be the case that, to some degree, some syntactic functions
such as direct objects contribute to the context representations of verbs,
but our results suggest that there must be some other features at stake
as well.
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4.5 Learning Contexual Representations from Structured

Data

In this last section, we investigate whether providing structural infor-
mation (obtained à priori) to a WSD system can be beneficial. More
precisely, as a contribution we propose a new model we called Dag2vec
which learns contextual representations from syntax-driven graph based
structure of sentences and test it as input representations for WSD. The
model is inspired from Context2vec (Melamud et al., 2016) and makes
use of recurrent neural models adapted to tree structure input obtained
from external parsers.

We first introduce our notations for direct acyclic graphs (DAGs) (Sec-
tion 4.5.1). Then, we propose a method based on Tree-LSTM (Tai et al.,
2015b) to encode the DAG (Section 4.5.2) and give a formal definition of
the Dag2vec model (Section 4.5.3).

In Section 4.5.4 we evaluate the model on the WSD task using a simple
Knn classifier and compare its results with state-of-the art models.

Finally, we discuss both the computational and theoretical limitations
of Dag2vec in Section 4.5.5.

4.5.1 Directed Acyclic Graphs

In this work, we are interested in taking advantage of structured in-
put, in particular syntactic structures. Instead of plain trees though, we
will generalize our formalization using Directed Acyclic Graphs (DAG)
structures, so that the bottom-up and top-down traversals of the struc-
ture be symetric. These structures can encode a syntactic dependency
tree but also semantico-syntactic dependency graphs. In what follows
we will thus consider Directed Acyclic Graphs (DAGs).

A DAG is a finite directed graph composed of vertices and directed
egdes such that it’s impossible to start from node v and follow a se-
quence of edges that loops back to v (i.e a cycle). Every node i in a DAG
may have zero, one or several dependents as well as governors. We will
note Deps(i) the immediate dependents of i, and Govs(i) its immediate
governors of i. Finally edges between nodes may or may not have labels.

Our interest is in the DAG representation of sentences. To obtain
these representations, we make use of dependency trees8, a specific form
of DAG. In that configuration, given a sentence S and G its associated
DAG, we will denote wi:n the words of S in linear order and vi:n its as-
sociated nodes in G. Furthermore, we will add two artificial non-lexical
nodes namely dLeaf and dRoot as opposed to lexical nodes (i.e nodes
associated to one token). Any node i has either at least one lexical gover-

8Our formalization below works for any DAG and thus could be used for semantic dependency graphs,

but we leave this for future work.
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nor node (resp. dependent node) or is attached to dLeaf (resp. dRoot)9.
Finally, the labeled edges of the DAG are directly derived from the de-
pendency tree of the sentence. In Figure 4.15 is an illustration of the
DAG representation for the sentence ”The little dog sleeps peacefully.”

dLeaf

1

The

2

little

3

dog

4

sleeps

5

peacefully

6
.

dRoot

nsubj
mod

det mod

punct

Figure 4.15: An example of DAG representation for the sentence ”the
little dog sleeps peacefully.”

4.5.2 DAG Encoding

We now consider the problem of encoding structural contextual hidden
vectors on DAG nodes. For any lexical node i, we note e(wi) the non-
contextual word embedding for word wi.

Our encoding of the context of a node i in the DAG will make use
of two hidden vectors, hB

i and hT
i , computed in a bottom-up and in a

top-down recursive fashion respectively.
The recursive computation of hB

i starts from the dLeaf node, to which
we associate a null hidden vector (Eq. 4.1)

hB
dLea f = 0 (4.1)

The recurrence is then the following:

hB
i = φ(e(wi), Deps(i))

9Though not strictly necessary, these dummy nodes simplify the recursive definitions that we will use

below.
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The computation of hT
i uses the same function φ, but traverses the nodes

starting from dRoot, and then from heads to their dependents:

hT
dRoot = 0 (4.2)

hT
i = φ(e(wi), Govs(i))

There are multiple candidates to fill the φ function. In the next sec-
tion, we propose and describe one possible solution which makes use of
recurrent neural networks.

4.5.2.1 Tree-LSTM

The proposed recursive definitions recall the recurrent encoding of con-
text offered by well-known existing neural nets such as RNNs and LSTMs
(more detail on these neural nets can be found in Chapter 3). Let us first
recall the equations of the LSTM (Hochreiter and Schmidhuber, 1997b)
(Eq. 4.3).

it = σ
(

W(i)vt + U(i)ht−1 + b(i)
)

ft = σ
(

W( f )vt + U( f )ht−1 + b( f )
)

ot = σ
(

W(o)vt + U(o)ht−1 + b(o)
)

ut = tanh
(

W(u)vt + U(u)ht−1 + b(u)
)

ct = it � ut + ft � ct−1

ht = ot � tanh (ct)

(4.3)

As one can observe from the equations, we cannot directly use the LSTM
as such for the encoding of our DAG representations since it is to be
run on linear sequence input. The model needs to be adapted to take
structured data as input.

Tai et al. (2015b) proposed two variants of the LSTM that process trees
as input. The first one, called the N-ary Tree-LSTM is used in tree struc-
tures where the branching factor is stable and where children nodes are
ordered. This is not well suited to our dependency tree representations
since the number of children can vary greatly (i.g there is no theoretical
limit to the number of modifiers). The second version of the Tree-LSTM
is called the Child-sum Tree-LSTM (denoted further as CSTL) and is de-
scribed by the authors as particularly fitted to encode dependency trees.
The particularity of the CSTL model is that it computes the hidden state
of any node i based on the sum of the hidden states of its dependents
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(thus child-sum). We report the equation transitions in Eq. 4.4

h̃B
j = ∑

k∈Deps(j)
hB

k ,

ij = σ
(
W(i)e(wj) + U(i)h̃B

j + b(i)
)
,

f jk = σ
(
W( f )e(wj) + U( f )hB

k + b( f )),

oj = σ
(
W(o)e(wj) + U(o)h̃B

j + b(o)
)
,

uj = tanh
(
W(u)e(wj) + U(u)h̃B

j + b(u)
)
,

cj = ij � uj + ∑
k∈Deps(j)

f jk � ck,

hB
j = oj � tanh(cj)

(4.4)

Where σ denotes the logistic sigmoid function, and � denotes element-
wise multiplication. Note that the forget gate ( f jk in Eq. 4.4) is applied
to every child of the current node. This can be seen as a way to filter the
information from the children nodes. This is different from the standard
RNN cell where the forget gate impacts the hidden representation of the
sentence at the t− 1 step.

4.5.2.2 Dependency labels

We propose a variant of the CSTL recursive function such that depen-
dency labels are taken into account. To do so, we modify the hidden
representation of a child k of j, using the dependency label between j
and k, (leading to a representation hB′

kj depending both on k and j)

hB′
kj = tanh(W(d)e(dj,k) + U(d)hB

k + b(d))

and, in Eq 4.4, instead of :

h̃B
j = ∑

k∈Deps(j)
hB

k

we use:
h̃B

j = ∑
k∈Deps(j)

h
′B
kj

4.5.3 Dag2vec

We now present Dag2vec, a variant of the Context2vec model (presented
in Section 3.3.2) which aims at learning context vector representations
from DAGs instead of linear input (Figure 4.16 ). We replaced the biL-
STM of the original Context2vec model with two CSTL encoders (which
we further note as a ”biCSTL”) computed in a bottom-up and top-down
fashion. Given a sentence w1:n and its associated dependency graph
G1:n the context vector representation~c for wi is defined as the following
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vector concatenation:

biCSTL(i) = ∑
j∈Deps(i)

hB
j ⊕∑

k∈Govs(i)

hT
j (4.5)

Following Melamud et al. (2016) we obtain a final vector representa-
tion c of the context of i by applying an MLP to the biCSTL representa-
tion, in order for the final vector c to have the same dimensionality as
the lexical embeddings:

~c = MLP(biCSTL(i)) (4.6)

Figure 4.16: Illustration of the Dag2vec encoding. In this illustration,
the contextual vector for the word ”dog” is obtained merging the output
representations of the bottom-up and top-down CSTL encoders through
a multi layered perceptron.

It is important to note that the identity of the word i itself is not used
to compute biCSTL(i). Only the nodes from i to DLeaf and from i to
DRoot are used. This trait will allow to train these contextual repre-
sentations in a self-supervised way, in which the objective is to predict
whether a pair (c, t) is actually a context, target pair.
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4.5.3.1 Training Dag2vec with Negative Sampling

As Context2vec, the Dag2vec model can be trained on large corpora
using the negative sampling objective function, itself inspired by the
skip-gram with negative sampling word2vec model. More precisely, the
objective function to maximize, for a given target word t, its context c
and n words t1, ..., tn sampled to form negative examples:

S = ∑
t,c

log σ(~t ·~c) +
k

∑
i=1

log σ(−~ti ·~c) (4.7)

Where e(t) is the non-contextual word embedding of target word t, t1 ...
tn are the negative samples and ~c is the context vector representation of
t output by the Dag2vec model.

4.5.4 Evaluating Dag2vec on WSD

We evaluated the Dag2vec model on the word sense disambiguation
task. To do so, we first trained the model on a large corpus to learn
generic contextual representations using the negative sampling objec-
tive function defined in Equation 4.7. Once the model was trained, we
evaluated its contextual representations on the WSD task using a simple
Knn classifier. As a way of comparison we performed the same evalu-
ation using contextual representations obtained from Context2vec and
BERT.

4.5.4.1 Training setup

The model was trained using the same set up as the original Context2vec
model proposed in (Melamud et al., 2016). We trained the model on the
ukWaC corpus, a two billion words British English corpus gathering
texts from the .uk web domain. To speed up the training process, sen-
tences with lengths higher than 64 were discarded removing roughly
10% of the original sentences. As the Dag2vec model takes DAGs as
input, the corpus was parsed with the en core web lg model from the
spaCy API10. The vocabulary of the model is based on the word fre-
quence distribution of the corpus. We lowercased all texts and kept only
the tokens whose frequencies were higher than 100, the remaining were
considered as unknown words. Sentences were gathered by lengths and
the training took approximatively 40 hours using batches of 500 sen-
tences on a single GPU GTX 1080 ti. The training hyper-parameters are
given in 4.11.

10https://spacy.io/models/en. Spacy actually outputs dependency trees. We leave as future work to

test the system using predicted dependency graphs.
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Hyper-parameters

optim Adam
lr 0.0001
emb dim 300
hid dim 600
out dim 600

Table 4.11: Training hyper-parameters of the Dag2V model on the
ukWaC corpus where emb dim corresponds to the size of the word em-
beddings, hid dim the hidden units size of the CSTL encoders and out dim
is the size of the resulting contextual embedding output by the MLP.

4.5.4.2 WSD evaluation

The evaluation was made on the English all-words WSD task available in
the unified WSD evaluation framework (Raganato et al., 2017b). We con-
sidered SemCor as training data, performed development on SemEval-
2007 (Pradhan et al., 2007), and made the evaluation on the remaining
datasets: Senseval2 (Edmonds and Cotton, 2001), Senseval3 (Snyder and
Palmer, 2004), SemEval-2013 (Navigli et al., 2013), SemeEval-2015 (Moro
and Navigli, 2015).

Method To assess our model, we used a Knn classifier such as de-
scribed in Section 3.4.3.1, more precisely a 1-NN (other k values revealed
detrimental): The method basically consists in (1) computing sense vec-
tor representations from the training data (2) comparing the vector rep-
resentation of an example with the sense representations and selecting
the one whose cosine similarity is the highest (3) Evaluating the predic-
tions using standard precision, recall, f-score metrics.

We compared the contextual representations of the Dag2vec model
with those of Context2vec and BERT.

Results The results of the evaluations are shown in Table 4.12. First,
we can see that the Dag2vec model substantially outperformed the most
frequent sense baseline in all datasets.

Then, we observe that the contextual representations of BERT con-
sistently achieved the highest performances in all configurations, some-
times by a large margin (e.g more than 6 points in SE13 dataset).

Focusing on the comparison between Dag2vec and Context2vec, both
models roughly obtained the same results although overall the latter
performed slightly better. Interestingly enough, Dag2vec is better at
disambiguating adjectives and adverbs and the reasons for this success
remain unclear to us.

Finally, one would have expected Dag2vec to perform better on verbs
since the model integrates syntactic features which were traditionally
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used in verb sense disambiguation but the results contradict this hy-
pothesis. Indeed, Dag2vec and Context2vec obtained the exact same
results on the disambiguation of verbs. Furthermore, we briefly made a
comparison of error analysis on verbs between the two models and we
could not draw any significant conclusions.

Dev Test Datasets All Test Datasets per PoS

SE07 SE2 SE3 SE13 SE15 Nouns Verbs Adj. Adv. All

Dag2vec 62.5 70.9 68.6 65.4 70.5 70.8 57.4 77.3 87.7 68.9

Context2vec 61.3 71.8 69.1 64.7 71.9 71.2 57.4 75.2 82.7 69.6

BERT 65.7 74.8 71.5 71.9 74.2 75.8 60.3 78.8 89.7 73.1

MFS 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5

Table 4.12: F-score results of the evaluation of the Dag2vec model on the
WSD English All-words task. The table also includes the performances
of the Context2vec and BERT models as well as the most frequent sense
baseline (MFS) for comparison.

4.5.5 Limitations

We identified several limitations to the Dag2vec model which are of dif-
ferent types. First of all, there are computational difficulties inherent to
the use of structured data. Indeed, the model requires the access to de-
pendency parsed sentences implying a preprocess step of the data. This
is time and memory consuming depending on the size of the corpus and
the speed of the parser in use. Besides, even though recent state-of-the-
art models provide high quality parsing, there remains an error rate that
can propagate through the data and affect the training of the Dag2vec
model in fine.

Another computational limitation concerns the training of the model
itself. As mentioned earlier, because of the inherent dependency tree
representation, the number of dependents per node is highly variable
which makes the batching of the data difficult. To face this problem, one
can either perform additional operations or use padding to insure that
the inputs within batches share the same size. Either way, this makes the
training process slower than it is with more standard recurrent neural
net based models.

Moreover, there are theoretical limitations to the encoding provided
by the Dag2vec model, which may explain the absence of performance
improvement in the WSD downstream task. First, the function to aggre-
gate the children nodes potentially has a great impact on the resulting
representations. Due to time restrictions we could only experiment with
one function, namely the sum of the children nodes, but other functions
(i.g average, neural nets) could work as well and should be explored in
future work. Secondly, while in linear bidirectional recurrent represen-
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tations, all sentence tokens participate to the encoding of a token i, this
is not the case in Dag2vec. Indeed, because of the structure of the input
and the bottom-up and top-down encoding methods, a whole part of the
DAG may be ignored: the context of a node i only includes the nodes
intervening in paths from i to DRoot and from i to DLeaf: nodes shar-
ing the same parent or ancestor as i are ignored. For instance, consider
the encoding of ”dog” in the sentence given in Figure 4.16, its contex-
tual representation completely discards both the final punctuation and
the word ”peacefully”. This could be intensified in real world sentences
where structures are much more complex. It could explain the disap-
pointing results on the WSD task where wider context may be necessary
to succeed in the task.

4.6 Conclusion

In this chapter we have investigated the potential role of syntax for the
disambiguation of verbs through multiple perspectives. First of all, we
put a focus on the argument structure of verbs and intended to under-
stand to what extent it plays a part in the representation of their context.
Our study based on corpus concludes that sole syntax does not allow
proper sense disambiguation of verbs but a combination of syntax and
lexical content of syntactic arguments does correlate well with sense dis-
tinctions.

Secondly, we tackled the question of the encoding of the argument
structure within attention-based models. We first performed experi-
ments using a minimal attention-based architecture and although it ob-
tained satisfactory results on the task, we could not find any significant
evidence of emphasis on the argument structure within the attention
weights. Then, we took a step further and made experiments with BERT,
a state-of-the-art attention-based pre-trained model, checking whether
a given BERT head does specialize to attend to specific grammatical
functions. While very few argumental functions, such as direct object,
seemed to be well identified, most syntactic functions captured by the
model were in fact biased towards simpler patterns such as adjacency.

Finally, we proposed Dag2vec, a model that builds contextual repre-
sentations from syntactic structures of sentences provided a priori. We
tested these representations on the WSD task and could not observe any
significant improvement, over a linear encoding of contexts, especially
on verbs.

All these observations lead us to conclude that, while the argument
structure of verbs does correlate with sense distinctions when augmented
with lexical content, the optimal way to encode it in neural networks still
remains to be found.
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Chapter 5

Verb Sense Disambiguation for

French
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5.1 Introduction

In this chapter, we investigate to what extent we can create a verb sense
disambiguation framework for a language other than English that does
not have any sense annotated data. In particular, we take the example
of French, a language for which WSD data is almost non-existent.

We start by exploring several resources that could potentially be used
for the French verb disambiguation task (Section 5.2). Our first step is to
investigate Eurosense (Bovi et al., 2017), a multilingual corpus, including
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a subpart in French, automatically sense annotated with synsets from the
BabelNet (Navigli and Ponzetto, 2010) semantic network. Our goal is to
check whether this resource can be viable to perform supervised WSD
even though it was obtained through automatic methods. While investi-
gation came up inconclusive, it led us to explore other resources starting
with sense inventories. Indeed, senses inventories generally come with
examples, which can serve as annotated data, albeit the resulting anno-
tated corpus does not respect the natural distribution of senses.

In Section 5.2.2 we explore and compare two of them for our task: (1)
Babelnet (Navigli and Ponzetto, 2010), a multilingual semantic network
based on Wordnet (Miller, 1995) aggregating several semantic resources
via automatic translation methods, and (2) Wiktionary, an open source
and collaborative multilingual dictionary owned by the Wikimedia foun-
dation. Due to its reasonable granularity and presence of annotated ex-
amples, the latter appeared to us as the best candidate for our task.

Having selected Wiktionary as sense inventory and the Wiktionary
examples as training corpus, we still needed an evaluation corpus for
the verb disambiguation task. We thus developed as a contribution the
FrenchSemEval dataset (FSE), the first evaluation dataset for the French
verb disambiguation task. FSE gathers occurrences of verbs manually
annotated with Wiktionary senses, while preserving the natural sense
distribution of these verbs. We present FSE in Section 5.3: we first
present the data selection, then we describe the annotation process.
Based on a descriptive study, we also propose a comparison with the
WSD English datasets.

Finally in Section 5.4, we investigate the usability of Wiktionary for
the French VSD task. To do so, we evaluate a Knn-based WSD system
on the FSE dataset using the examples from Wiktionary as training data
providing thus the very first results on the task. Moreover, in our ex-
periments we use various context representations including those from
French pre-trained language models based on the BERT model (Devlin
et al., 2018).

5.2 Exploring suitable resources for French VSD

Manually sense annotated data is very rare, especially for languages
other than English. This is mainly due to the fact that semantic anno-
tation is a difficult and costly task. As for French, the very little data
of that kind can be found in the SemEval-10 (Lefever and Hoste, 2010)
and SemEval-13 (Navigli et al., 2013) evaluation datasets. Yet, because
these datasets were meant to be used for evaluation only, they are very
small. Besides, only nouns were annotated which makes them unusable
for our verb sense disambiguation task. Thus, we place ourselves in a
configuration where there is no manual data available at all. This section
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aims at presenting our search for solutions to the problem of the lack of
data.

In Section 5.2.1 we first investigate the use of Eurosense for the French
verb disambiguaion task.

Since Eurosense’s quality proved too low to serve as the sole source of
training data, we then investigated whether sense inventories examples
could be a useful source of supervision. In particular, we explored two
potential candidates: Babelnet and Wiktionary (Section 5.2.2).

5.2.1 Investigating EuroSense as annotated data

Building a manually sense annotated corpus such as SemCor (Miller
et al., 1993) for other languages is hardly conceivable. Indeed it would
require too much energy and time and the task would need to be re-
peated for all languages. One way to get around this issue may be
to translate the corpus into the desired language. However, we can
find two main drawbacks (at least) to this method. First, the process
is highly dependent on the quality of the automatic translation and the
word alignment (since a sense label should be attached to a particular
word). Secondly, it necessarily implies using an English sense inventory,
namely Wordnet.

For these reasons, using automatically or semi-automatically sense
tagged corpora might be a preferable path to follow. EuroSense (Bovi
et al., 2017) is a corpus of that kind: it is a multilingual corpus automat-
ically sense annotated with Babelnet synsets (more details on Eurosense
and Babelnet are provided in Chapter 3). It seemed promising for many
reasons: First of all, Babelnet is multilingual. For many languages (500
in the latest version1) the lexicon size is substantial, hence if the inves-
tigation reveals effective for French, it is likely to be a viable solution
for many other languages too. Secondly, the Eurosense corpus is of
consequent size and offers very good coverage. Thirdly, the sense an-
notations are of rather good quality. Indeed, the authors performed a
manual evaluation (called ”intrinsic” evaluation) of the annotations on
randomly selected sentences from the corpus for four languages (includ-
ing French). It revealed a good inter-annotator agreement (they agreed
85% of the time) as well as a good Kappa score (67.7% on average). We
report results of the evaluation for English and French in Table 5.1.

Finally, experiments on English WSD showed that using EuroSense
as additional training data on top of SemCor slightly increased WSD
performance.

Nevertheless, as for our French VSD task, these results have to be
tempered since (i) the precision of the annotations are lower on French
than on English, (ii) the disambiguation of verbs has proven to be more
difficult than any other part of speech (indeed, Raganato et al. (2017b)’s

1https://babelnet.org/statistics
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EN FR

Prec. Cov. Prec. Cov.

EuroSenseFull 80.3 100 67.9 100

EuroSenseRe f ined 81.5 75.0 71.8 63.5

Table 5.1: Results of EuroSense intrinsic evaluation on English and
French presented in (Bovi et al., 2017). EuroSenseFull is the original cor-
pus with all sense annotations. EuroSenseRe f ined is a version where only
the annotations predicted with a score superior to a confidence thresh-
old were kept. The evaluation was measured by two metrics: the pre-
cision (Prec.) of the automatic annotations compared with the manual
annotations considered as gold standard. The coverage (Cov.) which
compares the number of actual annotations, assuming that each word in
the sampled sentences are targets to be disambiguated.

evaluation framework consistently reports a lowest score on verbs) , (iii)
the WSD experiments only concerned English and moreover EuroSense
would be used as primer corpus and not additional data for French since
no other resource is available.

To have a better idea of EuroSense’s usability for our task, we made
a manual evaluation of the quality of the automatic sense tagging. The
evaluation, which we describe in the next paragraph, is similar to that
of Bovi et al. (2017) but it focuses on French verbs.

Evaluation of EuroSense’s French verbs We followed the process as
described in (Bovi et al., 2017)’s intrinsic evaluation. First, we sampled 50
sentences from the French version of the EuroSense corpus. We selected
the high coverage version of the corpus because the gain of precision
was too weak (less than 3 points absolute) compared with the loss of
coverage (from 100% to 63.5%) (see Table 5.1). We then extracted the
non-auxiliary occurrences (160) from the sampled sentences and split
them into three sets. Each set was individually annotated by two judges
and adjudicated by the third one. The judges were asked to answer
”correct” if the sense tag seemed appropriate, even if another sense tag
from the BabelNet sense inventory could be more precise. Notice that
this is a binary task which is easier than (Bovi et al., 2017)’s original
evaluation where annotators were asked to find the adequate sense tag
among all available tags. Yet, although the Kappa-cohen score was 0.67,
the agreement score of the judges was lower (0.72) than the evaluation
performed originally on English. This highlights the difficulty for the
judges to decide whether the automatically sense tags were correct.

More importantly, the evaluation revealed that the judges found the
annotations correct in only 44% of all 160 verbal occurrences. In the light
of these results, we concluded that using EuroSense as sole resource for
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French VSD wouldn’t be suitable for the rate of correct annotations is too
low and does not allow to perform supervised WSD with good quality.

5.2.2 Exploring Potential Sense Inventories

During the evaluation of Eurosense, our annotators encountered some
difficulties related to Babelnet which raised the question of the choice
of sense inventory for our task. Unlike English, French does not has at
its disposal a high quality resource such as Wordnet. The WOLF (Sagot
and Fišer, 2008) is the resource that comes closest for French. It was
automatically built from Wordnet, using translation techniques. Never-
theless, the coverage is rather low (roughly 30,000 synsets overall in the
WOLF versus more than 115,000 in Wordnet) and moreover it has been
partly manually validated (only 100 lemmas were manually evaluated).
In what follows, we first describe the problems we encountered with the
BabelNet sense inventory during the evaluation of Eurosense. Then we
introduce Wiktionary and discuss to what extent it could be suitable for
the French verb sense disambiguation task.

5.2.2.1 BabelNet

While evaluating Eurosense, we were able to have a better idea of the
usability of BabelNet’s sense inventory for the task of French VSD. Even
though we acknowledged the effort to aggregate multiple multilingual
semantic resources in one single network, allowing thus an access to a
very vast semantic and lexical knowledge, we found two major obstacles
to use it for our purpose.

First, the sense inventory comprises many senses. Indeed, we mea-
sured that the number of senses per verb type occurring in the samples
sentences used for our evaluation of Eurosense is high (15,5 on average).

Secondly, on a more qualitative level, we found that the boundary
between the various senses was often very difficult to grasp. Indeed,
the gloss of the senses are often blurry, either made of synonyms or
translations which does not help the description of the sense.

Let us illustrate these problems with the verb affecter. The entry in
BabelNet (v5)2 for this verb is composed of 14 different senses where
only two are drawn from existing resources (Figure 5.1), the remaining
being the results of machine translations. Following the order, the first
sense (identified as bn:00082426v) occuring in the list is described by an
English gloss extracted from Wordnet Have an effect upon and a single
synonym toucher. As one can see, this is a relatively poor description of
that particular meaning of affecter. Furthermore, one needs to be able to
read English to understand that sense. On the contrary, the second sense

2https://babelnet.org/search?word=affecter&lang=FR
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(bn:00082858v) is much more explicit since it provides a full definition
in French and two synonyms.

Figure 5.1: The first two senses of the entry for affecter in BabelNet.

Now turning to the senses obtained through machine translations
(Figure 5.2), some may be easier to understand than others, as long as
one can read English. For example, the sense bn:00082429v shows an
English gloss, multiple French synonyms and a picture which as whole
helps for the description of the meaning. But then, on the one hand
there are cases such as bn:00082428v where it is very difficult if not im-
possible to guess the meaning of the entry based on the sole English
gloss. Moreover, there are different senses with very similar descrip-
tions (i.g bn:00086745v and bn:00086746v) which makes them difficult
to tell apart.

Overall, even if we discard the senses resulting from machine transla-
tion, the obvious lack of intelligibility for the descriptions of the senses
made us doubt the usability of BabelNet as sense inventory for our task.

5.2.2.2 Wiktionary

Once we realized that BabelNet would not be suitable for our task we
decided to explore the sense inventory provided by Wiktionary, a dictio-
nary version of Wikipedia.

Wiktionary is a collaboratively edited, open-source multilingual on-
line dictionary, hosted by the Wikimedia Foundation. It is an interesting
open-source resource and several studies already showed its usefulness
for various NLP tasks (e.g. lemmatization (Liebeck and Conrad, 2015)),
especially in the lexical semantic field, for extracting or improving the-
sauri (Navarro et al., 2009; Henrich et al., 2011; Miller and Gurevych,
2014).

Wiktionary’s main advantages are that it is entirely open-source, mul-
tilingual and has a good coverage for a substantial number of languages
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Figure 5.2: Senses obtained from machine translations in BabelNet for
the verb affecter.

(according to current Wiktionary statistics3, 22 languages have more
than 50, 000 Wiktionary entries each). Each entry consists of a defini-
tion and one or several examples, either attested or created, each exam-
ple being a potential sense-annotated example for the lemma at hand.
Definitions and examples point to other Wiktionary pages, which can be
useful, although not as useful as if links to Wiktionary senses (not pages)
were provided. Furthermore, the structured nature of Wiktionary makes
it possible to extract word networks rather easily (as was done for En-
glish, German and French by (Sérasset, 2012), in the RDF format).

These advantages come at the cost of Wiktionary’s main potential
drawback, namely its crowd-sourced nature. Firstly, this means that it
is constantly evolving, since any user can edit pages at any time (un-
less pages that users with more editing rights might have protected).
Indeed, new pages are created every day while already existing pages
are deleted, modified, merged (note though that every change occurring
in the resource is kept in track). Secondly, this means that the resource
is not curated by skilled lexicographers only, and the “guidelines” are

3https://en.wiktionary.org/wiki/Wiktionary:Statistics
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themselves collaboratively built. Despite this potential disadvantage,
several features of Wiktionary (good coverage, sound granularity, man-
ual examples provided with sense definition) seemed particularly suit-
able for the task of WSD and this, combined with the fact that sense-
annotated data for French verbs are non-existent, makes it a serious can-
didate for a new resource of WSD.

Wiktionary for French VSD Our interest for Wiktionary rose after
studying random verbal entries for French: we could observe that in
general the granularity level is rather “natural” and that the sense dis-
tinctions are easy to grasp. Let us have look at the Wikionary page 4

for the verb affecter to compare it with BabelNet. It displays 10 different
senses, all of them described by a French explicit definition. The words
of the definitions can also be hyperlink to other Wiktionary pages (al-
tough not disambiguated). For example the first word Destiner of the
first sense redirects to its own page in Wiktionary. Furthermore, some
definitions may be introduced by a topic word which helps even more
to understand the sense (i.g Programmation in the definition shown in
Figure 5.4). Finally, each sense may be illustrated by one or several ex-
amples.

Figure 5.3: The first three senses found on the Wiktionary page for the
verb affecter. Each sense is described by a definition and one or several
examples.

4https://fr.wiktionary.org/wiki/affecter
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Figure 5.4: The 10th sense of the verb affecter in Wiktionary. The defini-
tion is introduced by a topic, Programmation.

On the quantitative level, we report in Table 5.2 several statistics for
the French Wiktionary, in which it can be seen that the resource is large
(we will see in the next section that the coverage in corpus is good in-
deed).

POS Nb of entries Nb of senses
Mean nb of senses

per entry
Nb of examples

Noun 81099 112428 1.39 1511517

Verb 27271 41207 1.51 55206

Adj 25865 33732 1.30 46212

Adv 5904 6012 1.29 5904

Table 5.2: Statistics from French Wiktionary of the 04-20-2018 dump
available via the tool of Sérasset (2012)

After a few manual investigations, double-blind manual annotation
would help us quantifying Wiktionary’s quality, by checking whether
wiktionary’s inventory has sufficient coverage and is sound enough to
allow for consistent annotation. We conducted such manual annotation
and found that Wiktionary was indeed viable to be used for verb sense
annotation. The result of this annotation process is a new evaluation
resource for the French verb disambiguation task which we present in
the next section.

5.3 FrenchSemEval: A New Evaluation Corpus for French

VSD

Since the first Senseval evaluation series in 1998 (Kilgarrif, 1998), a vari-
ous number of evaluation frameworks have been proposed to assess dif-
ferent WSD tasks, but only a few include French test datasets (Lefever
and Hoste, 2010; Navigli et al., 2013) and unfortunately these only fo-
cus on nouns. In this section we present FrenchSemEval, a new French
dataset in which verb occurrences were manually annotated with Wik-
tionary senses. Our objective was to find out whether Wiktionary’s sense
inventory is operational for humans to sense-annotate a corpus, and if
so, to use it as evaluation data for WSD experiments.

This section is structured as follows: we first describe the selection of
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data (Section 5.3.1), the annotation process (Section 5.3.2) and we pro-
vide several statistics about the resulting dataset and the quality of the
annotations. Then we compare the sense distribution characteristics of
FSE, a lexicographic dataset FSE, with that of SemCor, a ”natural text”
corpus.

5.3.1 Selection of data: A lexical selection

To build FrenchSemEval, we chose to focus on verbs neither too rare nor
too frequent, and neither monosemous nor too polysemous. Rare verbs
are often monosemous, and very frequent verbs tend to be very polyse-
mous and extremely difficult to disambiguate (we thus left these out for
future work). FrenchSemEval was built using the following steps: we
first selected a vocabulary of verbs based on their frequency in corpus.
We selected verbs appearing between 50 and 1000 times on the French
Wikipedia (dumped on 2016-12-12 hereafter fr-Wikipedia), which con-
tains a little more than 45 million sentences.

To get a sense of the performed filtering, we provide in Table 5.3 some
statistics about verb occurrences on the French Wikipedia.

Frequence number of verb lemmas

n < 50 14363

50 > n < 1000 9929

n > 1000 2521

Table 5.3: Number of verb lemmas per frequence on the French
Wikipedia. These numbers have to be taken with precaution given
the fact that PoS-tagging was automatically performed and hence might
have propagated errors.

Secondly, we extracted from this pre-selected list of verbs those hav-
ing a number of senses comprised between two and ten in Wiktionary’s
sense inventory in order to discard the monosemics and leave out those
that are too polysemous (hence more difficult) for future work. We
chose to randomly extract 50 occurrences primarily from corpora com-
prising other annotations (the French TreeBank (FTB) (Abeillé and Bar-
rier, 2004)) and the Sequoia Treebank (Candito and Seddah, 2012), sup-
plementing the corpus when necessary by occurrences sampled from
fr-Wikipedia, in order to reach 50 occurrences per verb.

5.3.2 Annotation process

The annotation was performed by three students over a period of nearly
one month. We used WebAnno (Yimam et al., 2014; de Castilho et al.,
2016), an open-source adaptable annotation tool. Sentences had already
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Number of sentences 3121

Number of annotated verb tokens 3199

Number of annotated verb types 66

Mean number of annotations per verb type 48.47

Mean number of senses per verb type 3.83

Table 5.4: Among the 3121 sampled sentences, 71% comes from the FTB
and Sequoia corpora and 29% from the French Wikipedia.

been pre-processed into CoNLL format (Nivre et al., 2007) with the Mind
The Gap (MTG) parser (Coavoux and Crabbé, 2017) and were plugged
in WebAnno. We were thus able to provide files (one file per verb) con-
taining sentences in which occurrences of the specific verb were marked
for annotation. The annotators were asked to annotate only the marked
occurrences. We integrated in WebAnno the sense inventory from Wik-
tionary, including definitions and examples of senses, and added two
extra tags: ”OTHERPOS” and ”MISSINGSENSE”. The former was to
use when an occurrence was wrongly tagged as verb, and the latter was
to use when the sense of an occurrence did not exist in the sense inven-
tory. As Wiktionary is constantly evolving through time, we used the
04-20-2018 dump available via Dbnary (Sérasset, 2012). The annotation
was performed in double annotation and curation.

Resulting resource Table 2 reports various statistics about the resulting
dataset. It contains 3199 occurrences for 66 different verbs, which means
nearly 50 annotated instances per verb (about 100 OTHERPOS occur-
rences were discarded). The annotators agreed more than 70% of the
time and obtained a Kappa score of 0.68 which is good according to the
literature (a Kappa between 0.61 and 0.80 indicates a strong agreement).
We believe that these metrics indicate an annotation quality which may
not be extremely high but still sufficient to validate the coherence of the
Wiktionary sense inventory, definitions and examples, despite its non-
expert crowd-sourced nature. Finally, 111 occurrences were annotated
with the tag ”MISSINGSENSE” which indicates a good coverage of the
sense inventory.

5.3.3 Comparing English and French Datasets through a Descriptive
Study

The best-suited data for training a supervised WSD system is a corpus
with sense tags for all content words. Training on such a corpus benefits
from basic frequency information found in the corpus. This is particu-
larly striking for WSD, as the “most frequent sense” baseline is known
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to be very high. In the case of French, as for the majority of languages,
we lack such a corpus, and turn to the Wiktionary examples to serve
as training examples for a significant portion of the lexicon. Yet, be-
cause senses’ distribution differ in the lexicographic examples found in
Wiktionary with respect to natural text, we first provide some statis-
tics for a running text sense-annotated corpus such as SemCor (for En-
glish) versus a lexicographic training set such as Wiktionary examples
(for French).

5.3.3.1 Comparison of the sense distribution in training examples

We study here the distribution of the annotated senses in training data,
namely SemCor for English and Wiktionary for French. We first summed
up in Table 5.5 general statistics on the two datasets.

Semcor Fr-Wiktionary

Nb of sentences 35398 55206

Nb of annotated tokens 88334 55206

Number of annotated verb types 4665 27271

Mean number of annotations per verb type 18.9 1.51

Table 5.5: Comparison of general statistics on verbs between SemCor
and FR-Wiktionary.

Now when looking at the number of training examples per sense, we
obtain an average of 9.6 and a mean absolute deviation of 11.9 for Sem-
Cor, whereas the average is only 1.4 for FR-Wiktionary, and the mean
absolute deviation is 1.0. This highlights the lexicographic aspect of the
Wiktionary resource where the average number of examples per sense is
small but more stable compared with SemCor where it may highly vary
because of the natural distribution of the corpus.

5.3.3.2 Evaluation of the task difficulty: comparison of ambiguity
rates

We now turn to comparing the difficulty of the WSD task, when tested
on English SenseEval datasets versus on FrenchSemEval. Note that per-
formance of WSD systems cannot be used for that purpose, given that
it is not comparable across languages and datasets. For a corpus, that is
a list of tokens t1 . . . tN, we rather compute the average ambiguity rate
that a WSD system has to face, in two settings:

• token AMBIG fullSI: the ambiguity rate per token, using the full
sense inventory:

1
N

N

∑
i=1

n senses(ti)
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AMBIG trainSI AMBIG fullSI

Language Corpus (# annotations) type token type token

English SemCor (88334) 1.97 7.91 3.24 10.94

SenseEval2 (517) 4.90 6.7 7.58 10.28

SemEval 2007 (296) 5.15 6.89 7.78 10.17

SenseEval 2015 (251) 5.69 6.25 8.48 9.16

French Wiktionary (55206) 1.66 5.49 1.74 5.68

FSE (3199) 6.02 6.74 6.15 6.91

Table 5.6: Ambiguity rates for verbs, in the English usual training set
(SemCor) and usual evaluation sets, and in the French training set (Wik-
tionary) and evaluation set (FSE). AMBIG trainSI corresponds to using
for the number of senses the sense inventory in the corresponding train-
ing corpus, whereas AMBIG fullSI corresponds to using the full sense
inventory.

• token AMBIG trainSI: the ambiguity rate per token, using the sense
inventory found in the training corpus

1
N

N

∑
i=1

attested n senses(ti)

For further information, although not directly measuring the corpus
WSD difficulty, we also provide the ambiguity rate per verb type, both
using the full inventory or that attested in the training set (shown in the
“type” columns in Table 5.6).

We report these metrics in Table 5.6. When studying the difference
between the “fullSI” versus “trainSI” modes, namely when using the full
sense inventory versus that found in the training set, we have a different
trend for the English corpora (containing natural text) and the French
ones: for SemCor and the English evaluation sets, there is a drop of
ambiguity in trainSI mode. For example, the ambiguity rate in Sem-
Cor drops from 10.94 to 7.91 when passing from the fullSI to the trainSI
mode. As for the English evaluation datasets the trend is similar with a
drop of roughly 3 points in average. This illustrates the usual difficulty
to cover rare senses in a corpus of natural, but at the same time this
bias towards non rare senses will improve supervised WSD overall per-
formance. Note though that for the French corpora, based on the Wik-
tionary inventory, there is almost no difference between the two modes
of computation (i.g from 5.68 to 5.49 in Wiktionary and from 6.91 to 6.74
in FSE). , illustrating that almost all senses have examples in Wiktionary.
This is an interesting feature since sense coverage is an important part
of the difficulty of the task. It is indeed very difficult to combine quality
and coverage in the same resource.
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When comparing, for each language, the figures for the training cor-
pora (SemCor and Wiktionary examples) and for the evaluation datasets,
it can be noted that the average ambiguity per token is similar for the
training and evaluation datasets, but the average ambiguity per type is
much smaller for the training corpora (3.24 for SemCor, and 1.74 for
Wiktionary). This is because the lexicon covered in the training corpora
is much larger, and contains many more monosemic verbs.

As far as training corpora are concerned, it can be seen that the over-
all average ambiguity is higher for SemCor than for Wiktionary (e.g.
in fullSI mode, 10.94 per token ambiguity for SemCor, versus 5.68 for
Wiktionary). It shows that the sense inventory for Wiktionary is less
ambiguous than Wordnet’s (both for the senses found in SemCor, and
overall).

5.4 Assessment of Wiktionary’s usability

To investigate the suitability of using Wiktionary for supervised WSD on
French verbs, we evaluated several supervised WSD systems on FrenchSe-
mEval, considering the examples of Wiktionary’s senses as training data.
In our experiments, the supervised WSD systems consist in (1) an en-
coding method for the context representation and (2) a 1Knn classifier
to perform the disambiguation.

In this section, we first describe the various methods we used to ob-
tain the context representations of the verbs’ instances and provide de-
tails on the disambiguation algorithm (Section 5.4.1). We then propose
two sets of experiments (Section 5.4.3): in the first one we evaluate the
performance of our WSD systems on FSE using the examples from Wik-
tionary. In the second row of experiments, we performed ”in-domain”
training, that is directly using examples from FSE as training instances
in order to investigate both quantitatively and qualitatively the impact
of the training examples. Finally, we present and discuss the results of
these experiments in Section 5.4.4.

5.4.1 Context representations

The difference between the various WSD systems we employed in our
experiments is the type of contextuals representations. As it was high-
lighted in this thesis, the representation of the context is a key element in
the disambiguation process and has a great impact on the performance
of a WSD system. In our experiments, we explored several methods to
encode the context of verbs (whether they are taken from training or
evaluation instances) ranging from simple word embeddings (Mikolov
et al., 2013b) to state-of-the-art transformer based pre-trained language
models like BERT (Devlin et al., 2018). In what follows we describe and
give relevant details on these methods.
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5.4.1.1 Average Word Embeddings

We implemented a simple model for the context representation that we
use as baseline. We first trained a word2vec (Mikolov et al., 2013b)
model on fr-Wikipedia5 to obtain non contextual word vectors. Hyper-
parameters training details are provided in Table 5.7. We then represent
the context of an occurrence by averaging the vectors of the words found
in its context window, which we defined as the 5 words on the left and
5 words on the right of the target word.

Training hyper-parameters

Optimizer SGD

Learning rate 1.0

Embedding dim 50

Window size 5

Negative samples 10

NS power 0.75

Table 5.7: Hyper-parameters for the training of the word2vec model on
the French Wikipedia corpus.

5.4.1.2 Context2vec

Context2vec(Melamud et al., 2016) is a recurrent neural model that learns
a function mapping the context around a target word to a vectorial
representation using Mikolov’s Negative Sampling objective function
(Mikolov et al., 2013a). The Context2vec model represents the context
using a bi-directional recurrent neural network (Hochreiter and Schmid-
huber, 1997a) that allows to take the sequence of words of the sentence
into account, thus contrasting with AWE. The model’s architecture was
previously presented in the earlier chapters hence we invite the reader
to consult Chapter 3 for further details.

All codes and implementations are available publicly so we only
adapted them and trained the model on the fr-Wikipedia. Following
Melamud et al. (2016), we performed a pre-process step on the train-
ing corpus, lowercasing all texts and filtering all sentences whose length
was superior to 64 words. We also restrained the model’s vocabulary
based on words frequency keeping only those that have a at least 100
occurrences in the training corpus. Training details are provided in Ta-
ble 5.8. Once the model was trained on the fr-Wikipedia, we then ran
the learnt model on the Wiktionary and FSE data to obtain contextual
representations of the target verb occurrences.

5We used the fr-Wikipedia dump of 10-20-2017
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Training hyper-parameters

Optimizer Adagrad

Learning rate 1e-3

Embedding dim 300

Hidden dim 600

Output dim 300

Table 5.8: Hyper-parameters for the training of the Context2vec model
on the French Wikipedia corpus.

5.4.1.3 Transformer-based Pre-trained Language Models

As mentioned in the previous chapter, pre-trained transformer-based
language models have become the current leading standard in many
NLP tasks, including WSD (Luo et al., 2018; Du et al., 2019; Vial et al.,
2019). The BERT model (Devlin et al., 2018) has proven to achieve state-
of-the-art whether being finetuned on the task (Du et al., 2019) or used
to produce contextual representations which serve for a Knn classifier
(Scarlini et al., 2020). The latter method is particularly interesting for
our VSD framework as the number of training instances is relatively low
which would not allow a proper finetuning.

Given the impact of the BERT model on NLP downstream tasks in En-
glish, several works have recently released pre-trained models based on
a similar architecture for other languages such as Arabic (Antoun et al.,
2020), Dutch (de Vries et al., 2019; Delobelle et al., 2020), Finnish (Virta-
nen et al., 2019), Italian (Polignano et al., 2019), Portuguese (Souza et al.,
2019), Russian (Kuratov and Arkhipov, 2019), Spanish (Cañete et al.,
2020), and Vietnamese (Nguyen and Nguyen, 2020). As for French, two
models were proposed: CamemBERT and FlauBERT (Le et al., 2020). In
our experiments on FSE, we used these two French models as well as
the multilingual version of the BERT model since it integrated French
texts during its pre-training. The following paragraphs provide details
on these three pre-trained language models and present a sum up com-
parison in Table 5.9

FlauBERT The FlauBERT project, which we contributed to6, was led
by the team of the Université Grenoble Alpes with the collaboration of
several researchers from various organizations 7. The aim of the project
was to train a BERT model for French using the new CNRS Jean Zay su-

6Although we did not programmatically take part in the training of the model, we participated in the

project in multiple ways: providing data, discussing training issues, evaluating the model on the verb dis-

ambiguation task, contributing to the writing of the paper.
7Université Paris Diderot, E.S.P.C.I, CNRS LAMSADE, PSL Research University
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percomputer8. The project also led to the creation of FLUE (Le et al.,
2018), a benchmark similar to the GLUE (Wang et al., 2018) English
dataset that gathers several French NLP comprehension tasks, includ-
ing the FSE dataset for the verb disambiguation task. All models and
data were released publicly9. Due to the complexity of the model and
because deep learning libraries such as HuggingFace10 were not as de-
veloped as they are now, training and evaluating such model was not
an easy task at the time. In what follows, we give brief details on the
FlauBERT model that are relevant to the understanding of the issues of
our experiments. Nevertheless, for further details we invite the reader
to refer to the article on FlauBERT (Le et al., 2020).

The FlauBERT French training corpus consists of 24 sub-corpora gath-
ered from different sources, covering diverse topics and writing styles,
ranging from formal and well-written text (e.g Wikipedia and books) 11

to random text crawled from the Internet (e.g Common Crawl).12. All
texts were tokenized with the Moses tokenizer (Koehn et al., 2007).

Regarding the model architecture, FlauBERT is very similar to BERT
(Devlin et al., 2018), whose core is a multi-layer bidirectional Trans-
former (Vaswani et al., 2017). Following Devlin et al. (2018). Two ver-
sions of the model were released:

• FlauBERTbase: L = 12, H = 768, A = 12,

• FlauBERTlarge: L = 24, H = 1024, A = 16,

where L, H and A respectively denote the number of Transformer blocks,
the hidden size, and the number of self-attention heads. FlauBERT’s vo-
cabulary is made of 50k sub-word units obtained through the Byte Pair
Encoding (BPE) algorithm (Sennrich et al., 2016). Finally, the training
was performed using the masked language model (MLM) objective, a
task in which the model learns to predict randomly masked tokens. The
original BERT model added a next sentence prediction task to the train-
ing objectives where basically the goal is to predict if a sentence (B)
actually follows a given sentence (A). Yet, recent studies showed that re-
moving this task does not affect the performance of the model on down-
stream tasks (Yang et al., 2019; Lample and Conneau, 2019; Liu et al.,
2019) and hence it was not included in the training of the FlauBERT
model.

CamemBERT CamemBERT (Martin et al., 2020) is an alternative model
to FlauBERT proposed by the Facebook AI, Inria and Almanach research
teams. It is a monolingual transformer-based language model for French
based on the RoBERTa architecture (Liu et al., 2019), a variant of the

8http://www.idris.fr/jean-zay/jean-zay-presentation.html
9https://github.com/getalp/Flaubert

10https://huggingface.co/transformers/
11http://www.gutenberg.org
12http://data.statmt.org/ngrams/deduped2017
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original BERT (Devlin et al., 2018) model. It was trained on the French
subpart of the multilingual OSCAR corpora (Suárez et al., 2019) which
is composed of texts extracted from Common crawl, an open repository
of web data.

While CamemBERT and FlauBERT are similar in their architectures,
there are nevertheless some key differences between the two models: (1)
the type of data used for the training of the models - CamemBERT is
trained exclusively on random text crawled from the internet while the
training corpora of the FlauBERT models also include different sources
with diverse topics and writing styles. Besides, the size of the training
data for CamemBERT is almost twice as big as FlauBERT’s. (2) Camem-
BERT uses SentencePiece for tokenization and Whole-word masking
(WWM) as pre-training objective, that is to say masking whole words in-
stead of subwords only, as it is the case in FlauBERT. The WWM method
was proposed in (Joshi et al., 2020) and has proven to improve the per-
formances of the pre-trained models which implemented it.

Although multiple versions of the CamemBERT model have now been
released (i.g including different model sizes), we performed the exper-
iments with the CamemBERT base version as it was the only available
model at the time.

Multilingual BERT In opposition to language-specific models, another
trend considers one model estimated for several languages at once with
a shared vocabulary. The release of multilingual BERT pioneered this
approach.13. This multilingual version of BERT is based on the same
architecture as the original model and follows the same training ob-
jectives (i.e the MLM and NSP tasks). The only difference is that is
has been pre-trained on a collection of multilingual corpora. More pre-
cisely, the model has been trained on the first 104 top languages with the
largest Wikipedia data, including French. Yet, because the sizes of the
Wikipedia corpora vary greatly across languages, and in order to keep
a certain balance in terms of language representation within the model,
the data has been sampled using exponentially smooth weighting with
respect to the Wikipedia data sizes. As a result, over-represented lan-
guages such as English (with the largest Wikipedia overall) were sub-
sampled while languages with smaller Wikipedia data (i.g Icelandic)
were oversampled.

5.4.2 Supervised disambiguation algorithm

All our WSD systems used the same method to perform the disambigua-
tion which relies on a 1-NN classifier. We replicated the supervised WSD
method used in (Yuan et al., 2016): a sense representation is learned from

13https://github.com/google-research/bert
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Multilingual BERT CamemBERT FlauBERTbase/ FlauBERTlarge

Training data N/A 138 GB† 71 GB‡

Pre-training objectives NSP/MLM MLM MLM

Total parameters 110M 110 M 138 M/ 373 M

Tokenizer WordPiece 30k SentencePiece 32K BPE 50K

Masking strategy Static + Sub-word masking Dynamic + Whole-word masking Dynamic + Sub-word masking
†, ‡: 282 GB, 270 GB before filtering/cleaning.

Table 5.9: Comparison between FlauBERT, CamemBERT and multilin-
gual BERT.

the training data by averaging the context vector representation of its in-
stances, in our case the examples taken from Wiktionary or from FSE in
the ”in-domain” experiments. Then each test instance is sense tagged
with the sense whose representation is the closest, based on cosine sim-
ilarity, hence the 1-NN classifier.

5.4.3 Experiments

We now describe the experiments we performed on the disambiguation
of French verbs using Wiktionary and FrenchSemEval.

5.4.3.1 Wiktionary experiment

Our first experiment aimed at assessing the suitability of using Wik-
tionary in a supervised configuration for the French verb disambigua-
tion task. To do so, we used the annotated examples of the senses in the
Wiktionary sense inventory as training data and then, using the different
context representations described in Section 5.4.1, we evaluated the per-
formance of our disambiguation algorithm on the evaluation examples
in the FSE dataset.

5.4.3.2 In domain experiments

In order to better identify the potential error sources, we also performed
experiments with “in-domain” training instances, namely instances di-
rectly taken from FSE. To evaluate the impact of the number of training
examples per sense, a property that is quite different for a lexicographic
training set and for a corpus-based training set, we performed experi-
ments on different sets, using Nmax a varying maximum number of ex-
amples per sense. More precisely, for each verb we sampled respectively
1, 2, 5 and 10 maximum training examples per sense from the dataset
and evaluated the disambiguation on the remaining examples.
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5.4.4 Results and Analysis

Results of the Wiktionary experiment The results of our experiments
using Wiktionary’s sense annotated examples as training data are pre-
sented in Table 5.10.

Model Accuracy

AWE 40.0

C2V 43.0

mBERT 49.83

CamemBERT 50.02

FlauBERTbase 43.92

FlauBERTlarge 50.48

MFS 0.30

Table 5.10: Accuracy scores (%) on the FSE evaluation dataset using
Wiktionary’s sense annotated examples as training data.

We compared our multiple WSD systems with a Most Frequent Sense
baseline (MFS) which is computed in a supervised manner, tagging each
test instance with the most frequent sense found in the training data.
Because of the natural distribution of the senses in corpus, the MFS
has been known to be a rather challenging baseline for the WSD task
(Raganato et al., 2017b) (i.g 49% F-score on English verbs). Indeed, as
seen in Chapter 4, our corpus study performed on SemCor (Miller et al.,
1993) has shown that very often a particular sense tends to be over-
represented in the distribution of senses, which explains why the MFS
baseline is difficult to beat. Besides, many occurrences in the English
WSD datasets are easy to disambiguate since they are monosemous14.
Now, the result of the MFS baseline in the Wiktionary experiment is
relatively low (with only 30% accuracy) and to understand why MFS is
a rather weak predictor in our setup , we have to recall that contrary
to Semcor and the Senseval/Semeval evaluation datasets, FSE is built
following a particular perspective: the sentences are sampled in a non-
natural way and monosemic words in particular were excluded, hence
the poor result of the MFS.

Turning to the performances of the different WSD systems, we can
observe that they all outperformed the MFS baseline, sometimes by a
large margin.

First, comparing the C2V and AWE context representations, we can
see the gain when using recurrent neural net based models (43% for C2V
versus 40% for AWE) even though the performance on the French verbs

14The MFS on verbs decrease from 49% to 43% F-score when we only consider the polysemous ones.
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remains modest15. It supports Melamud et al. (2016)’s observations, es-
pecially regarding the fact that Context2vec succeeds better in capturing
context information than the common averaging of word vector repre-
sentations.

Now, focusing on the transformer-based contextual representations,
all models except FlauBERTbase

16 significantly widened the gap with
C2V and AWE since they roughly improved the performance by 7 points.
In particular, CamemBERT and FlauBERTlarge obtained similar results,
the latter achieving a new state-of-the-art on the French verb disam-
biguation task with an accuracy of 50.48%. Finally, it is worth men-
tioning that the multilingual BERT model has also more than honorably
succeeded on the task, keeping up with the French monolingual models.
This is particularly interesting since it demonstrates the effectiveness of
multilingual transformer-based models and reinforces the prospect of
using these models for languages with smaller resources.

Yet, as powerful as the transformer-based pre-trained language model
can be, using only Wiktionary examples to perform supervised disam-
biguation on verbs remains a rather adversarial setup since, at best, only
one out of two verb occurrences are correctly disambiguated. We be-
lieve that apart from the lack of training examples, a potential source
of error may come from the fact that very often Wiktionary’s examples
are either complex sentences taken from the literary genre or very short
definition-like sentences (an example of such discrepancy is given in
Figure 5.5 with the verb affecter), which may cause some trouble to the
WSD systems when facing instances taken from other domains such as
newspapers as it is the case in FSE.

Figure 5.5: Description of one of the senses for the verb affecter. Some
sentences are very brief and look like definitions or imply the use of
pronouns (first and third examples) while other are much more complex
taken from the literary genre (second example).

15Although the English and French WSD setups can not be comparable, for information purposes only,

the results for supervised WSD for English verbs are around 0.55 in the benchmark of Raganato et al. (2017b)
16We were not able to explain why it did not perform as well as the other BERT models and further

investigation should be made.
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Results of the ”in domain” experiments In these experiments we in-
vestigated two potential ways to leverage the difficulty of the initial
setup: the size of the training data and domain adaptation. To study
the effect of the amount of training instances, since Wiktionary is lim-
ited in terms of number of examples per sense, we switched to using FSE
both for training and testing. We used a variable number of maximum
training examples per sense from Nmax = 1 to Nmax = 10 and we used
the remaining examples as test set17. Due to time restrictions we only
experimented the C2V and AWE context representations, although we
think that using other models for context representations may reveal the
same trends. The results of these experiments are summarized in Table
5.11 and illustrated in Figure 5.6 .

Models Nmax = 1 Nmax = 2 Nmax = 3 Nmax = 5 Nmax = 10

MFS 0.32 0.38 0.45 0.52 0.70

AWE 0.44 0.53 0.58 0.64 0.70

C2V 0.5 0.57 0.62 0.68 0.74

Mean nb of training

ex. per sense
1 1.81 2.61 3.86 6.30

Mean nb training ex.

per verb
3.83 6.95 9.81 14.8 24.15

Mean nb test ex.

per verb
44.63 41.51 38.65 33.66 24.31

Table 5.11: Training on FSE examples, with varying maximum number
of examples per sense (Nmax).
Top: WSD accuracies. Bottom: training / test sets statistics.

Let us observe first the impact of the amount of training data. The
mean number of examples in Wiktionary for the verbs occurring in FSE
is Navg = 3.1 and the results show that all classifiers dramatically im-
prove when the available training examples per verb increases up to
Nmax = 10. Actually, the results suggest that performance would con-
tinue to improve as Nmax grows, but performance begins to be accept-
able even with Nmax=10. This means that if we were able to expand
with absolute certainty the small amount of examples in Wiktionary, we
could get a much higher disambiguation performance.

Secondly, using the same setup we can compare the behaviour of the
classifiers when predicting out of domain (Table 5.10) with in domain
predictions (Table 5.11). It is worth recalling that Wiktionary examples
are often either long literary sentences or very concise examples whereas
the test instances are sampled from Le Monde newspaper or Wikipedia.

17We say that we use Nmax as a maximum number of training examples because some senses may have

only K < Nmax annotated instances in the whole data set. The actual average number of senses for each

Nmax is provided in table 5.11
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Figure 5.6: Illustration of the results reported in table 5.11. On the left,
an histogram that represent the sizes of the training and test data given
N, the maximum number of selected training examples. On the right,
the accuracies of the models with respect to N.

Again as Wiktionary has Navg ≈ 3 training examples per sense we can
see that the domain adaptation effect is worth roughly 20 points in ac-
curacy. Indeed, when comparing the results of the wiktionary and in-
domain experiments with the context2vec model, one can observe an
improvement from 0.43 to 0.62 points. This observation gives us an in-
teresting lead to follow for future improvement as the gain regarding
the domain adaptation is significant.

5.4.5 Conclusion

Our experiments using the annotated examples of Wiktionary as train-
ing data to perform supervised VSD on FSE led to modest but encour-
aging results. Keeping in mind that the examples are provided freely
from Wiktionary users, we believe this is a proof that Wiktionary exam-
ples are a valuable source of supervision for VSD. We were also able to
quantify the gain in performance that could be obtained by adding a
moderate number of seed instances which may be an interesting lead to
follow. As for now, we will consider these results as a first baseline for
FSE dataset.

5.5 Conclusion

In this chapter we have proposed a method to create a verb sense disam-
biguation framework for languages with limited or non-existent sense
annotated data.

We first explored Eurosense as a resource for sense annotated data.
Our study showed us that it is not, in its current state, suitable for
our task since our manual evaluation revealed that the automatic sense-
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tagging was not accurate enough (less than 50%). Moreover, Babelnet,
the sense inventory used in Eurosense’s annotations, turned out to be
either unintelligible (sense distinctions proved quite difficult to draw in
an annotation experiment) or too redundant due to the automatic trans-
lation methods employed.

Instead, we proposed to use Wiktionary for three reasons: (1) It is
open source and multilingual, it exists with substantial size for a large
number of languages (2) the granularity of the sense inventory is more
reasonable and (3) its contains sense manually annotated examples that
can be used as training data for VSD supervised systems.

As a contribution, we created FrenchSemEval, the first manually sense
annotated dataset for the evaluation of French verbs. It is a corpus com-
posed of 3199 verb occurences manually annotated with senses from
Wiktionary. It has been built in order to evaluate VSD supervised sys-
tems on the French verb sense disambiguation task.

Using FSE, we were then able to assess the usability of Wiktionary’s
annotated examples as training data for our task. We experimented a
WSD system based on contextual representations and a 1-NN disam-
biguation algorithm, providing the first results for the French verb dis-
ambiguation task with the FSE dataset. Furthermore, we participated
in the development of FlauBERT, a pre-trained transformer-based lan-
guage model for French and performed an evaluation on FSE. We also
compared FlauBERT with two other transformer-based models, namely
CamemBERT and Multilingual BERT. Overall, the results of our experi-
ments made FlauBERT the new state-of-the-art on the French VSD task
and highlighted the efficiency of transformer-based contextual represen-
tations.

Finally, in the course of ”in domain” experiments we evaluated the
impact of the training examples both on a quantity and quality level and
found that minimally supplementing the Wiktionary examples with spe-
cific domain-adapted examples would lead to significant improvements.
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José Camacho-Collados, Mohammad Taher Pilehvar, and Roberto Nav-
igli. 2016. Nasari: Integrating explicit knowledge and corpus statistics
for a multilingual representation of concepts and entities. Artificial
Intelligence, 240:36–64. Publisher: Elsevier.
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Maximin Coavoux and Benoit Crabbé. 2017. Incremental Discontinuous
Phrase Structure Parsing with the GAP Transition. In Proceedings of
the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers, pages 1259–1270,
Valencia, Spain. Association for Computational Linguistics.

D Alan Cruse. 2000. Aspects of the micro-structure of word meanings.
Polysemy: Theoretical and computational approaches, pages 30–51.

Tim Van de Cruys and Marianna Apidianaki. 2011. Latent semantic
word sense induction and disambiguation. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages 1476–1485. Associa-
tion for Computational Linguistics.

Andrew M. Dai and Quoc V. Le. 2015. Semi-supervised sequence learn-
ing. In Advances in neural information processing systems, pages
3079–3087.

Pieter Delobelle, Thomas Winters, and Bettina Berendt. 2020. Robbert: a
dutch roberta-based language model. arXiv preprint arXiv:2001.06286.

115

https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
http://www.aclweb.org/anthology/E17-1118
http://www.aclweb.org/anthology/E17-1118


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.

Mona Diab. 2004. Relieving the data acquisition bottleneck in word sense
disambiguation. In Proceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics (ACL-04), pages 303–310.

Dmitriy Dligach and Martha Palmer. 2008. Novel semantic features for
verb sense disambiguation. In Proceedings of ACL-08: HLT, Short
Papers, pages 29–32.

Jiaju Du, Fanchao Qi, and Maosong Sun. 2019. Using bert for word sense
disambiguation. arXiv preprint arXiv:1909.08358.

Philip Edmonds and Scott Cotton. 2001. SENSEVAL-2: overview.
In Proceedings of SENSEVAL-2 Second International Workshop on
Evaluating Word Sense Disambiguation Systems, pages 1–5.

Andreas Eisele and Yu Chen. 2010. MultiUN: A Multilingual Cor-
pus from United Nation Documents. In Proceedings of the Seventh
International Conference on Language Resources and Evaluation
(LREC’10), Valletta, Malta. European Language Resources Association
(ELRA).

Jeffrey L. Elman. 1990. Finding structure in time. Cognitive science,
14(2):179–211. Publisher: Wiley Online Library.
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119

http://www.aclweb.org/anthology/P15-2068
http://www.aclweb.org/anthology/P15-2068
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004


Benoı̂t Sagot. 2020. CamemBERT: a tasty French language model.
In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7203–7219, Online. Association for
Computational Linguistics.

Oren Melamud, Jacob Goldberger, and Ido Dagan. 2016. context2vec:
Learning generic context embedding with bidirectional lstm. In
Proceedings of the 20th SIGNLL conference on computational natural
language learning, pages 51–61.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a.
Efficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff
Dean. 2013b. Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing
systems, pages 3111–3119.

George A Miller. 1995. WordNet: a lexical database for English.
Communications of the ACM, 38(11):39–41. Publisher: ACM.

George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross,
and Katherine J. Miller. 1990. Introduction to WordNet: An on-line
lexical database. International journal of lexicography, 3(4):235–244.
Publisher: Oxford University Press.

George A. Miller, Claudia Leacock, Randee Tengi, and Ross T. Bunker.
1993. A Semantic Concordance. In Human Language Technology:
Proceedings of a Workshop Held at Plainsboro, New Jersey, March
21-24, 1993.

Tristan Miller and Iryna Gurevych. 2014. Word-
Net—Wikipedia—Wiktionary: Construction of a Three-way Align-
ment. In LREC, pages 2094–2100.

Andriy Mnih and Yee Whye Teh. 2012. A fast and simple algorithm
for training neural probabilistic language models. arXiv preprint
arXiv:1206.6426.

Andrea Moro and Roberto Navigli. 2015. Semeval-2015 task 13: Mul-
tilingual all-words sense disambiguation and entity linking. In
Proceedings of the 9th international workshop on semantic evaluation
(SemEval 2015), pages 288–297.

Andrea Moro, Alessandro Raganato, and Roberto Navigli. 2014. En-
tity linking meets word sense disambiguation: a unified approach.
Transactions of the Association for Computational Linguistics, 2:231–
244. Publisher: MIT Press.

120

https://www.aclweb.org/anthology/2020.acl-main.645
https://www.aclweb.org/anthology/H93-1061


Emmanuel Navarro, Franck Sajous, Bruno Gaume, Laurent Prévot,
Hsieh ShuKai, Kuo Tzu-Yi, Pierre Magistry, and Huang Chu-Ren.
2009. Wiktionary and NLP: Improving synonymy networks. In
Proceedings of the 2009 Workshop on The People’s Web Meets NLP:
Collaboratively Constructed Semantic Resources, pages 19–27. Associ-
ation for Computational Linguistics.

Roberto Navigli. 2009. Word sense disambiguation: A survey. ACM
computing surveys (CSUR), 41(2):1–69. Publisher: ACM New York,
NY, USA.

Roberto Navigli, David Jurgens, and Daniele Vannella. 2013. Semeval-
2013 task 12: Multilingual word sense disambiguation. In Second Joint
Conference on Lexical and Computational Semantics (* SEM), Volume
2: Proceedings of the Seventh International Workshop on Semantic
Evaluation (SemEval 2013), pages 222–231.

Roberto Navigli and Simone Paolo Ponzetto. 2010. BabelNet: Building
a Very Large Multilingual Semantic Network. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics,
pages 216–225, Uppsala, Sweden. Association for Computational Lin-
guistics.

Roberto Navigli and Simone Paolo Ponzetto. 2012. BabelNet: The au-
tomatic construction, evaluation and application of a wide-coverage
multilingual semantic network. Artificial Intelligence, 193:217–250.

Dat Quoc Nguyen and Anh Tuan Nguyen. 2020. Phobert: Pre-trained
language models for vietnamese. arXiv preprint arXiv:2003.00744.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nils-
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Benoı̂t Sagot and Darja Fišer. 2008. Building a free French wordnet from
multilingual resources. In OntoLex.

Bianca Scarlini, Tommaso Pasini, and Roberto Navigli. 2020. SensEm-
BERT: Context-Enhanced Sense Embeddings for Multilingual Word
Sense Disambiguation. In AAAI, pages 8758–8765.

Vincent Segonne, Marie Candito, and Benoı̂t Crabbé. 2019. Using
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naissances. In 24ème Conférence sur le Traitement Automatique des
Langues Naturelles.

Loı̈c Vial, Benjamin Lecouteux, and Didier Schwab. 2019. Sense vocab-
ulary compression through the semantic knowledge of wordnet for
neural word sense disambiguation. arXiv preprint arXiv:1905.05677.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma, Juhani Luoto-
lahti, Tapio Salakoski, Filip Ginter, and Sampo Pyysalo. 2019. Multi-
lingual is not enough: Bert for finnish. arXiv preprint arXiv:1912.07076.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov.
2019. Analyzing Multi-Head Self-Attention: Specialized Heads Do
the Heavy Lifting, the Rest Can Be Pruned. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics,
pages 5797–5808, Florence, Italy. Association for Computational Lin-
guistics.

Piek Vossen. 1998. Introduction to eurowordnet. In EuroWordNet:
A multilingual database with lexical semantic networks, pages 1–17.
Springer.

Wietse de Vries, Andreas van Cranenburgh, Arianna Bisazza, Tommaso
Caselli, Gertjan van Noord, and Malvina Nissim. 2019. Bertje: A dutch
bert model. arXiv preprint arXiv:1912.09582.

124

https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580


Wiebke Wagner, Helmut Schmid, and S. Schulte Im Walde. 2009. Verb
sense disambiguation using a predicate-argument-clustering model.
In Proceedings of the CogSci Workshop on Distributional Semantics
beyond Concrete Concepts, pages 23–28.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2018. Glue: A multi-task benchmark and
analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461.

Warren Weaver. 1955. Translation. Machine translation of languages,
14:15–23. Publisher: Cambridge: Technology Press, MIT.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan
Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized autoregres-
sive pretraining for language understanding. In Advances in neural
information processing systems.

David Yarowsky. 2000. Word Sense Disambiguation. In The Handbook
of Natural Language Processing.

Seid Muhie Yimam, Chris Biemann, Richard Eckart de Castilho, and
Iryna Gurevych. 2014. Automatic annotation suggestions and cus-
tom annotation layers in WebAnno. In Proceedings of 52nd Annual
Meeting of the Association for Computational Linguistics: System
Demonstrations, pages 91–96.

Dayu Yuan, Julian Richardson, Ryan Doherty, Colin Evans, and Eric Al-
tendorf. 2016. Semi-supervised word sense disambiguation with neu-
ral models. arXiv preprint arXiv:1603.07012.

Zhi Zhong and Hwee Tou Ng. 2009. Word sense disambiguation for
all words without hard labor. In Twenty-First International Joint
Conference on Artificial Intelligence.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense: A wide-coverage
word sense disambiguation system for free text. In Proceedings of the
ACL 2010 system demonstrations, pages 78–83.

125


	Introduction
	Background
	Introduction
	Word Sense Disambiguation
	Introduction
	WSD: A classification task
	WSD: methods

	French Verb Sense Disambiguation
	Verb Sense Disambiguation
	French VSD: Motivations and challenges


	State of the Art
	Introduction
	Data
	English Resources
	Multilingual Resources
	WSD Evaluation Datasets

	Context representations
	Word Embeddings
	Recurrent Neural Net Encoder
	Language-model-based Contextual Representations

	WSD methods
	Introduction
	Knowledge-based methods
	Supervised Methods

	Conclusion

	Syntax for Verb Sense Disambiguation
	Introduction
	Data
	Corpus
	Syntactic details

	Does argument structure discriminate verb senses?
	Argument structure vector representations
	Corpus study: correlation between argument structure similarity and sense annotation
	Supervised VSD using argument vectors only
	Results

	Syntax in attention-based models
	Simple attention-based VSD
	Syntax in transformers-based VSD models

	Learning Contexual Representations from Structured Data
	Directed Acyclic Graphs
	DAG Encoding
	Dag2vec
	Evaluating Dag2vec on WSD
	Limitations

	Conclusion

	Verb Sense Disambiguation for French
	Introduction
	Exploring suitable resources for French VSD
	Investigating EuroSense as annotated data
	Exploring Potential Sense Inventories

	FrenchSemEval: A New Evaluation Corpus for French VSD
	Selection of data: A lexical selection
	Annotation process
	Comparing English and French Datasets through a Descriptive Study 

	Assessment of Wiktionary's usability
	Context representations 
	Supervised disambiguation algorithm
	Experiments
	Results and Analysis
	Conclusion

	Conclusion


