
HAL Id: tel-04050361
https://theses.hal.science/tel-04050361v1

Submitted on 29 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep probabilistic models for recommender systems and
network clustering

Dingge Liang

To cite this version:
Dingge Liang. Deep probabilistic models for recommender systems and network clustering. Statistics
[math.ST]. Université Côte d’Azur, 2022. English. �NNT : 2022COAZ4083�. �tel-04050361�

https://theses.hal.science/tel-04050361v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
Modèles probabilistes profonds pour

les systèmes de recommandation et le
clustering de réseaux

Dingge LIANG

Centre Inria d’Université Côte d’Azur, Laboratoire Jean Alexandre Dieudonné

Présentée en vue de l’obtention

du grade de docteur en mathématiques ap-

pliquées

d’Université Côte d’Azur

Dirigée par : Charles BOUVEYRON, Profes-

seur, Université Côte d’Azur & Inria

Co-dirigée par : Pierre LATOUCHE, Profes-

seur, Université Clermont Auvergne

Co-encadrée par : Marco CORNELI, Chaire

de Professeur Junior, Université Côte d’Azur

Soutenue le : 15 décembre 2022

Devant le jury, composé de :
Pierre BARBILLON, Professeur, Université

Paris-Saclay

Monica BIANCHINI, Professeur, University

of Siena

Hervé DELINGETTE, Directeur de re-

cherche, Inria

Chloé FRIGUET, Maître de conférences,

Université de Bretagne Sud

Claire GORMLEY, Professeur, University

College Dublin

MODÈLES PROBABILISTES PROFONDS POUR LES SYSTÈMES DE

RECOMMANDATION ET LE CLUSTERING DE RÉSEAUX

Deep probabilistic models for recommender systems and network

clustering

Dingge LIANG

Jury :

Rapporteurs

Pierre BARBILLON, Professeur, Université Paris-Saclay

Monica BIANCHINI, Professeur, University of Siena

Examinateurs

Hervé DELINGETTE, Directeur de recherche, Inria

Chloé FRIGUET, Maître de conférences, Université de Bretagne Sud

Claire GORMLEY, Professeur, University College Dublin

Directeur de thèse

Charles BOUVEYRON, Professeur, Université Côte d’Azur & Inria

Co-directeur de thèse

Pierre LATOUCHE, Professeur, Université Clermont Auvergne

Co-encadrant de thèse

Marco CORNELI, Chaire de Professeur Junior, Université Côte d’Azur

Université Côte d’Azur

Dingge LIANG
Modèles probabilistes profonds pour les systèmes de recommandation et le cluste-

ring de réseaux
xiv+157 p.

Ce document a été préparé avec LATEX2e et la classe these-ISSS version v. 2.10.

Impression : sommaire.tex – 21/3/2023 – 2:31

v

Résumé

Cette thèse ponte sur de nouvelles méthodes d’analyse de trois types de données: ordinales,

d’interaction et textuelles. Avec le développement du numérique, les données ordinales, liées à

l’évaluation de produits ou services, sont omniprésentes sur des sites web tels qu’Amazon et Yelp.

En effet, les clients peuvent obtenir des informations précieuses sur les produits et les services à

partir de données de ce type, ce qui les aide à prendre des décisions. D’autre part, les données

d’interaction, qu’il s’agisse de médias sociaux, de communications par courrier électronique ou

d’interactions protéine-protéine, peuvent souvent être modélisés sous forme de graphes: des struc-

tures simples mais capables de modéliser des systèmes complexes. Enfin, avec le développement

d’Internet et la croissance des médias sociaux, des quantités massives de données textuelles sont

générées sous la forme de blogs, de tweets, de commentaires et d’enquêtes. Les trois types de

données illustrés jusqu’ici peuvent être utilisées individuellement, pour diverses tâches, mais elles

peuvent également être combinées, ce qui entraîne les problèmes typiques d’analyse des données

hétérogènes.

Dans cette thèse, nous analysons ces trois types de données à travers trois modèles génératifs

profonds, qui combinent la modélisation probabiliste et les techniques d’apprentissage profond.

Premièrement, nous introduisons un système de recommandation latent profond (deepLTRS) afin

de fournir aux utilisateurs des recommandations de haute qualité basées sur les évaluations obser-

vées des utilisateurs et les textes des critiques de produits. Notre approche adopte une architecture

d’auto-encodeur variationnel (VAE) comme modèle latent génératif profond pour une matrice or-

dinale codant les évaluations et une matrice de termes et documents codant les critiques. Des

expériences numériques sur des ensembles de données simulées et réelles démontrent que dee-

pLTRS surpasse l’état de l’art, en particulier dans le contexte d’une extrême rareté des données.

Le modèle de positions latentes profond (DeepLPM) est ensuite présenté comme une approche de

clustering génératif de bout en bout qui combine le modèle de position latente couramment utilisé

pour l’analyse de réseaux avec une stratégie d’encodage de réseau convolutif de graphes. Des ex-

périences numériques sur des scénarios simulés mettent en évidence ses capacités de clustering.

DeepLPM est ensuite appliqué à un réseau ecclésiastique de la Gaule mérovingienne et au réseau

de citations Cora pour illustrer l’intérêt pratique de l’exploration de grands réseaux complexes du

v

vi

monde réel. Enfin, nous proposons un encodeur de réseau convolutif de graphes basé sur la simi-

larité des documents (DS-GCN) pour combiner les réseaux convolutifs de graphes et les modèles

thématiques intégrés pour une représentation de réseaux riches en texte. En incluant une variable

d’appartenance à un groupe, nous construisons ainsi une méthode de regroupement de « bout en

bout » appelée GETM. La capacité de GETM à fusionner la structure topologique du graphe et

les modèles thématiques intégrés est démontrée par des expériences numériques sur trois réseaux

synthétiques, qui soulignent également ses performances en matière de clustering de nœuds.

Mots-clés: Modèles de variables latentes profondes, modélisation de sujets, systèmes de recom-

mandation, réseaux de neurones graphiques, analyse de réseau, regroupement de nœuds.

vi

vii

Abstract

This thesis focuses on new methods for analyzing three types of data: ordinal, interactive

and textual. With the advancement of the digital era, the ordinal data, related to the evaluation

of products or services, is ubiquitous on websites such as Amazon and Yelp. Indeed, customers

can gain valuable information about products and services from rating data, which helps them

make decisions. Besides, the interaction data, whether from social media, email communications

or protein-protein interactions, can often be modeled as graphs, because they are simple structures

yet are capable of modeling complex real-world systems. Moreover, with the development of the

Internet and the growth of social media, massive amounts of textual data are generated in the form

of blogs, tweets, comments, and surveys. The three types of data illustrated so far can be used

individually, for various tasks, but they can also be combined, leading to the typical problems of

heterogeneous data analysis.

In this thesis, we analyze these three types of data through three deep generative models,

which combine probabilistic modeling and deep learning techniques. First, we introduce a deep

latent recommender system (deepLTRS) in order to provide users with high quality recommen-

dations based on observed user ratings and texts of product reviews. Our approach adopts a va-

riational auto-encoder (VAE) architecture as a deep generative latent model for an ordinal matrix

encoding ratings and a document-term matrix encoding the reviews. Numerical experiments on

simulated and real-world data sets demonstrate that deepLTRS outperforms the state-of-the-art, in

particular, in the context of extreme data sparsity. The deep latent position model (DeepLPM) is

then introduced as an end-to-end generative clustering approach that combines the widely used

latent position model for network analysis with a graph convolutional network encoding strategy.

Numerical experiments on simulated scenarios highlight its clustering capabilities. DeepLPM is

further applied to an ecclesiastical network in Merovingian Gaul and to the citation network Cora

to illustrate the practical interest in exploring large and complex real-world networks. Finally, we

propose a document similarity-based graph convolutional network encoder (DS-GCN) to combine

graph convolutional networks and embedded topic models for a text-rich network representation.

By including a cluster membership variable, we thus build an end-to-end clustering method na-

med graph embedded topic model (GETM). The ability of GETM in fusing the graph topology

vii

viii

structure and the topic embeddings is demonstrated by numerical experiments on three synthetic

networks, which also emphasize its performance in node clustering.

Keywords: Deep latent variable models, Topic modeling, Recommender systems, Graph neural

networks, Network analysis, Node clustering.

viii

Remerciements

Tout d’abord, je tiens à remercier Charles, Pierre et Marco pour la qualité de votre encadrement

durant ma thèse. Cette thèse est à la fois une aventure humaine et scientifique, et vous m’avez

beaucoup aidé sur ces deux aspects. Ce manuscrit doit beaucoup à votre disponibilité, vos conseils,

vos idées, votre patience et votre confiance durant ces trois années.

Ensuite, merci pour la meilleure équipe Maasai, j’ai senti que nous étions comme une grande

famille chaleureuse. Je me souviendrai toujours des activités que nous avons faites ensemble, le

kayak, la randonnée... et toutes les conférences auxquelles nous avons participé ensemble sont de

très beaux voyages. Merci à Aude, Alessandro, Cedric, Célia, Davide, Giulia, Gabriele, Gianluigi,

Hugo, Kevin, Louis, Lucas, Mansour, Stéphane, Xuchun... vous n’êtes pas seulement des collèges

mais aussi de bons amis pour moi. J’ai eu beaucoup de chance de vous rencontrer tous. Et merci à

Fred, Pierre-Alexandre, Vincent, Damien, Michel... vous êtes de très bons professeurs, chercheurs

et j’ai beaucoup appris de vous tous.

Je veux aussi remercier tous mes amis, mon petit copain Mulin, mon petit chat Duff... Nous

avons passé tant de merveilleux moments ensemble, et j’ai senti votre soutien et votre attention

pendant les temps difficiles.

Pour ma famille en Chine, bien que nous soyons éloignés les uns des autres, je ressens toujours

votre soutien, votre attention et votre confiance. Sans vous, je ne pourrais pas arriver à ce stade.

Enfin, j’ai eu beaucoup de chance et de bonheur de terminer cette thèse. Et j’ai beaucoup

apprécié ces six années en France, à Nice, à Sophia-Antipolis. Ce sera un voyage inoubliable dans

ma vie. Merci pour tout !

Contents

Notations 1

1 Introduction 3

1.1 Recommender systems . 5

1.1.1 Rating data and examples . 5

1.1.2 What is a recommender system ? . 6

1.2 Network analysis . 8

1.2.1 Network data and examples . 8

1.2.2 Clustering in networks . 10

1.3 Text analysis . 11

1.3.1 Text data and examples . 11

1.3.2 Challenges in text analysis . 13

1.4 The need for methods to analyze heterogeneous data 14

1.4.1 Context . 14

1.4.2 The rise of deep probabilistic methods 15

1.5 Organization of the thesis . 17

2 Statistical and deep learning models for recommender systems and node clustering 19

2.1 Warmup : a few fundamental DLVMs . 21

2.1.1 Variational auto-encoders for continuous data 21

2.1.2 Topic modeling for count data . 24

2.2 Construction of recommender systems . 26

2.2.1 Matrix factorization models . 26

2.2.2 Latent factor models for recommender systems 27

2.2.3 Deep learning-based recommender systems 30

2.3 Network data analysis . 32

2.3.1 Probabilistic graphical models . 32

xi

xii CONTENTS

2.3.2 Graph neural networks . 34

2.3.3 Deep probabilistic models for node clustering 37

2.4 Clustering in heterogeneous information networks 40

3 DeepLTRS: a deep latent recommender system based on user ratings and reviews 45

3.1 Introduction . 47

3.1.1 Organization of the chapter . 48

3.2 A rating-and-review based recommender system 48

3.2.1 Framework and notations . 48

3.2.2 Generative model of deepLTRS . 49

3.3 Variational auto-encoding inference . 52

3.3.1 Variational lower bound (ELBO) . 52

3.3.2 Monte Carlo EM algorithm and mini-batching 54

3.4 Numerical experiments on simulated data . 57

3.4.1 Architecture and simulation setup . 57

3.4.2 DeepLTRS with and without text data 58

3.4.3 Benchmark and effect of data sparsity 61

3.5 Application on real-world data . 62

3.6 Conclusion and perspectives . 68

4 Clustering by deep latent position model with graph convolutional networks 69

4.1 Introduction . 73

4.1.1 Organization of the chapter . 75

4.2 Deep latent position model . 75

4.2.1 Notations . 75

4.2.2 Generative model . 75

4.3 Model inference . 77

4.3.1 Variational auto-encoding inference . 77

4.3.2 Links with related models . 78

4.3.3 Optimization . 79

4.3.4 Model selection . 83

4.4 Numerical experiments . 84

xii

CONTENTS xiii

4.4.1 Simulation setup . 84

4.4.2 Benchmark study . 85

4.4.3 Model selection . 88

4.5 Analysis of a medieval network . 90

4.5.1 Dataset . 90

4.5.2 Results without covariates . 91

4.5.3 Results with covariates . 93

4.6 Cora citation network . 96

4.6.1 Dataset . 96

4.6.2 Results without covariates . 97

4.6.3 Results with covariates . 99

4.7 Conclusion and perspectives . 104

5 The graph embedded topic model 107

5.1 Introduction . 109

5.1.1 Organization of the chapter . 110

5.2 The graph embedded topic model . 110

5.2.1 Notations . 110

5.2.2 Generative model . 111

5.3 Inference model . 113

5.3.1 Variational inference . 113

5.3.2 Document similarity-based GCN. 114

5.3.3 Optimization . 116

5.4 Numerical experiments . 119

5.4.1 Simulation setup . 120

5.4.2 Benchmark study . 121

5.4.3 A more detailed example . 122

5.4.4 Model selection . 126

5.5 Application on real-world network . 128

5.5.1 Model selection . 128

5.5.2 Visualisation and analysis . 130

xiii

xiv CONTENTS

5.6 Conclusion . 134

6 Conclusion and Perspectives 135

6.1 Summary of the contributions . 135

6.2 Perspectives . 136

6.2.1 Graph learning-based recommender systems 136

6.2.2 Generalized graph neural networks . 137

6.2.3 Clustering with heterogeneous graph neural networks 138

6.2.4 From topic modeling to intelligent document analysis techniques 139

Appendix

A Appendix for Chapter 4 . 144

A.1 Implementation details and computation time 144

B Appendix for Chapter 5 . 144

B.1 Implementation details and computation time 144

Bibliography 147

xiv

Notations

Variables

M,N number of observations

i, j observation indexes

P dimension of variables in a latent space

Z P -dimensional latent embeddings

Recommender systems

Y observed rating data in RM×N

W document-term matrix encoding text data

R,C user and product latent variables

Graph learning

G network/graph data

V set of nodes in a network

E set of edges in a network

F number of node features

U dimension of covariate between two nodes

A graph adjacency matrix in {0, 1}N×N

X node feature/attribute matrix in RN×F

D̂ graph degree matrix

Y edge feature matrix in R|E|×U

K number of clusters

Topic modeling

D number of documents

V number of words in a corpus

T number of topics

θ topic proportions

1

2

β word occurrence matrix whose entry is the probability that vocable v occurs

in topic t

L dimension of word and topic embeddings

ρ word embedding matrix

α topic embedding matrix

Distributions

p(·) data prior distribution

q(·) approximate variational distribution

N (µ, σ2) Gaussian distribution with mean µ and variance σ2

B(·) Bernoulli distribution

M(·) multinomial distribution

Operators

KL(q(·)||p(·)) Kullback-Leibler divergence between two distributions

σ(·) non-linear activation function

fτ (·) decoder parametrized by τ in an auto-encoder

gφ(·) encoder parametrized by φ in an auto-encoder

Ŵ weight matrix in neural networks

⊕ concatenation operator

� element-wise multiplication operator

CHAPTER 1
Introduction

In this thesis, we will go through three common types of data : ordinal data like ratings in

recommender systems, graph data with nodes and edges, and text data in count format. Each

data type has its own characteristics and potential range of applications. These data can be used

independently for a variety of purposes, but they can also be combined together, which leads to

the typical problems associated with heterogeneous data analysis.

Let us look at a few straightforward instances first to gain a better intuitive understanding of

these data and their applications. Real-world systems can often be modeled as networks, including

Figure 1.1 – Visualization of Twitter activity data†. Nodes correspond to users in the network,

edges represent actions like "follow" or "send to", and colors characterize various social commu-

nities.

†. source from https://www.touchgraph.com/news

3

https://www.touchgraph.com/news

4 CHAPITRE 1 — Introduction

social networks, biological networks and communication networks. The information from social

media, for example, might be seen as a network of friends and followers. They have a significant

impact on our lives, from sharing knowledge to influencing others. How we analyze and visualize

a network based on these connections and influences is therefore crucial. In Figure 1.1, a simple

visualization of a social network is given. By analyzing the connections between people, we may

cluster them into various groups, each of which being represented by a distinct color. With this

group information, we might be able to predict which person in the network will be followed by a

given user in the future, due to the "your friend is my friend" effect; Or for business purposes, if

we want to promote a product to a target user in a group, and we know that some members of that

group have positive feedbacks, then that user is quite likely to favor the product as well, as friends

typically share similar interests.

Moreover, since we regularly purchase goods, watch movies, or book hotels, we are overloaded

with e-commerce data in the modern world. This data also provides us a lot of useful information.

Figure 1.2 displays an example of the Amazon product review data containing the user ID, reviews

on the products, given ratings, item categories, etc. By exploiting the similarity between users and

products, recommendation systems are developed to provide recommendations. The system can

Figure 1.2 – Sample of Amazon product review data†. Each row corresponds to details about

a user-purchased item, including the user review and rating for the product, the user ID and the

product brand, etc.

†. source from https://data.world/datasets/amazon

https://data.world/datasets/amazon

1.1 – Recommender systems 5

analyze user preferences based on observed historical records, assisting the user in choosing the

appropriate product for future purchases. It also aids the item suppliers in delivering users with

proper products. Thus, 35% of Amazon sales are attributable to recommendations. Additionally,

it contributes to personalizing the contents, as the fact that most of the movies that people rent on

Netflix come from recommendations.

These are just a few of the applications we can imagine that involve these types of data. Since

there are many sources of data in the actual world, data analysis and its applications have emerged

as crucial research areas. In the following, we primarily concentrate on two tasks : the first is the

construction of a recommender system using both rating and textual data, and the second is the

clustering of nodes in networks.

1.1 Recommender systems

This section discusses rating data via a simple illustration, and offers a guideline for building

recommender systems with this type of data.

1.1.1 Rating data and examples

With the advancement of the Internet era, rating data is ubiquitous on websites such as Ama-

zon, TripAdvisor, or Yelp. Customers can gain valuable information about products and services

from rating data, which helps them make decisions. Companies and manufacturers can also ben-

efit from the data by analyzing users satisfaction in order to make product recommendations or to

detect functional weaknesses in their products.

In general, rating data involves three types of resources : users, products, and the users ratings

for products. Consider a dataset involving M users who are scoring N products. This type of data

structure is commonly formalized as an ordinal data matrix Y in RM×N , such that Yij corresponds

to the rating that the i-th user assigns to the j-th product in practice. This matrix is usually

extremely sparse (most of its entries are missing), corresponding to users not scoring nor reviewing

some products. Conversely, when a score is assigned, it takes values in {1, . . . ,H} with H > 1

(usually H = 5 or 10). Henceforth, we assume that an ordinal scale is consistently defined.

For instance, when customers evaluate products, 1 always means "very poor" and H is always

associated with "excellent" ratings. The assumption is necessary, otherwise the results obtained

6 CHAPITRE 1 — Introduction

Table 1.1 – An example of rating data for three users and five products. For instance, the user U1

gave the ratings 5, 4, 4 to products P1, P3 and P4, respectively.

Users

Products
P1 P2 P3 P4 P5

U1 5 4 4

U2 4 5

U3 3 3 2

when analyzing data would be completely misleading, therefore the analyst should take this point

into account when designing the data collection. The number of ordered levelsH is assumed to be

the same for all (not missing) Yij . If it is not the case, a scale conversion pre-processing algorithm

(see e.g. [Gilula et al., 2019]) can be employed to normalize the number of levels.

An example of rating data is described in Table 1.1. A total of M = 3 consumers and N = 5

products are present here. Specific user ratings on relevant items are in purple. The blank cells are

the missing ratings that we want to predict based on the observed historical information.

1.1.2 What is a recommender system ?

Using the observed rating data, it is natural to develop a recommender system that attempts to

forecast the rating that one user would give to an unrated product, allowing one to make relevant

product recommendations to the users. At the core of the research on recommendation systems,

we point out a widely adopted collaborative filtering (CF) approach [Su and Khoshgoftaar, 2009],

which relies on the similarities among the users ratings in the past. It operates by looking through

a large group of people and by identifying a smaller group of users who have similar preferences

to the target user. It then looks for products that similar users like and combines them to predict

a sorted list of recommendations for the target user. An illustration of a CF-based recommender

system is shown in Figure 1.3.

Next, by converting the list of users and products into a user-item interaction matrix, such as

the previously described ordinal matrix Y , a CF-based recommender system can be considered

as completing the missing values in the matrix based on observed entries [Ramlatchan et al.,

1.1 – Recommender systems 7

Figure 1.3 – Diagram of pipeline in recommender system. The system collects and examines

customer ratings for products before recommending new ones to a target user based on their simi-

larities.

2018]. Matrix factorization [Mnih and Salakhutdinov, 2007; Koren et al., 2009] is a well-known

and traditional CF technique for rating predictions, which has shown effectiveness in learning

representation of the data. The goal is to accurately profile users and items by breaking down

the user-item rating matrix into the user latent (non-observed) factors and item latent factors. For

instance, given a rating matrix Y ∈ RM×N , it aims at finding two latent factors R ∈ RM×P and

C ∈ RN×P , where P is the latent space dimension with P << min{M,N}. Then, a completed

matrix with predictions is obtained as Ŷ = RC>. Figure 1.4 shows an intuitive illustration of the

matrix factorization paradigm.

Figure 1.4 – An illustration of matrix factorization.

8 CHAPITRE 1 — Introduction

Finally, by minimizing a loss function between the observed values in Y and their predictions

in Ŷ (e.g., ||Y − Ŷ ||2), the predictions are forced to be closer to the actual ratings, and the user and

product latent factors are optimized as well as updated. Once we have well-learned representations

for users and products, values of predictive ratings are directly computed by multiplying the two

matrices R and C. In this way, the products with higher ratings are recommended to users, thus

achieving the goal of a recommender system.

In this thesis, when developing a recommender system, we make use of the user-item interac-

tion matrix, where each entry corresponds to a user rating of the product. A different approach,

on the other hand, considers users and products as nodes in a network or graph, with each link be-

tween nodes indicating an interaction between users and products. We will describe the network

data format and perform some analysis on this type of data in the section below.

1.2 Network analysis

Network data is introduced in this section, along with a brief overview of the data numerous

applications. Among these applications, we concentrate primarily on unsupervised node clustering

tasks: true labels of nodes are absent.

1.2.1 Network data and examples

Networks are employed in a wide range of applications, from social media and email commu-

nications [Palla et al., 2007] to protein-protein interactions [Barabasi and Oltvai, 2004], because

they are simple structures yet are capable of modeling complex systems.

Composed of nodes and edges connecting the nodes, a network or graph is denoted by G =

(V ;E), where V = {v1, v2, · · · , vn} represents the set of nodes and E = {e1, e2, · · · , em} repre-

sents the set of edges. Typically, nodes are also called vertices or intersections, and edges are also

referred to as links or arcs. The general graph representation is a quintuple : G(V,E,A,X,D).

AN×N represents the adjacency matrix of the graph, whereAij = 1 if there is a link between node

i and node j, 0 otherwise. XN×F denotes the feature matrix of nodes, for example, in a citation

network each node is associated with an article, thus, the matrix X can encode the words used

in each publication. DN×N is the degree matrix which contains information about the number of

edges attached to each vertex. N and F represent the number of nodes and the feature dimension

1.2 – Network analysis 9

(a) Graph (b) Adjacency matrix (c) Degree matrix

Figure 1.5 – From left to right : a graph G with six nodes and seven edges; the corresponding

adjacency matrix A; the corresponding degree matrix D.

of nodes, respectively. In some cases, the set of edges E can be associated with an additional

covariate information, collected into a matrix Y . The generic entry of Y |E|×U , denoted yij , is a

U -dimensional feature associated with the edge connecting i to j. For instance, yij could encode

the text that author i sends to author j in a communication network.

Graphs come in a variety of formats. They can be directed or undirected depending on whether

their edges have directions. The attributes of the edges are called weights. Depending on whether

an edge includes weights, a graph can be classified as weighted or unweighted. Additionally,

there are homogeneous and heterogeneous graphs. An example of an undirected, unweighted,

homogeneous graph is shown in Figure 1.5.

Graph-structured data has a wide range of applications in many fields [Wu et al., 2020]. De-

pending on the level, the graph data can be analyzed either at the node level or at the edge level.

Alternatively, we might have a collection of graphs, where one graph is considered as one ob-

servation. In this case, the analysis is performed at the graph level. Node classification [Bhagat

et al., 2011; Xiao et al., 2022] and node clustering [Aggarwal and Wang, 2010; Malliaros and

Vazirgiannis, 2013] are frequently employed applications at the node level. Classification is a

standard supervised task with predefined node labels, whilst clustering seeks to group unlabeled

nodes based on the node interactivity and features. At the edge level, we mention edge classifica-

tion [Aggarwal et al., 2016], edge clustering [Cui et al., 2008], and link prediction [Lichtenwalter

10 CHAPITRE 1 — Introduction

et al., 2010; Kumar et al., 2020], i.e. predicting the existence of a link between two nodes in a

network. At the graph level, researchers focus on graph classification [Kriege et al., 2020], graph

clustering [Bader et al., 2013] and graph similarity analysis [Koutra et al., 2011; Ma et al., 2021].

As mentioned, in contrast to node level applications, which only take into account the nodes in a

single graph, graph level applications accept a variety of graphs as input. From another perspec-

tive, depending on the field, applications can be classified into multiple categories, including phar-

maceutical medicine [Wang et al., 2020a], where biological networks modeling protein-protein

interactions, as well as disease networks describing relationships between diseases and biological

factors, play a significant role. Other important areas of research include image processing [Or-

tega et al., 2018], where each pixel in an image can be considered as a node, and natural language

processing [Vashishth et al., 2020], where each word in a document is one node and the whole

corpus can be modeled by a network.

In this thesis, we focus on node clustering applications. However, these various tasks share

some fundamental elements, making it simple to move from one task to another.

1.2.2 Clustering in networks

Unsupervised network analysis has emerged as a crucial sub-field of network analysis since

real-world networks may lack knowledge regarding the true labels of each node.

In this context, our interest lies in node clustering which attempts to partition the nodes of the

graph into different groups to extract patterns summarizing the data. Clustering is the process of

grouping together elements/entities that appear to be closer to each other (than to the remaining

elements) based on some similarity metric. In networks, the similarity measure is typically deter-

mined based on topological criteria, such as the graph structure, or according to the node locations.

Nodes that are regarded to be similar based on this similarity are grouped together into clusters.

Thus, each cluster consists of elements that share common characteristics. For instance, the graph

in Figure 1.5a can be separated into two clusters based on their node connections and locations,

as illustrated in Figure 1.6. The clusters are represented by different colors, and in each cluster,

nodes have more internal connections and less external connections.

A long series of statistical methods [Schaeffer, 2007; Snijders, 2011] have been developed

to discover the underlying communities in networks by learning the latent features of graph-

structured data. More recently, deep learning-based models have emerged as a promising approach

1.3 – Text analysis 11

Figure 1.6 – A partition of nodes into two clusters.

for analyzing large-scale networks and they have shown their abilities for representation learning

purposes on data with complex structures [Hamilton et al., 2017; Zhang et al., 2018]. Based on

the learned graph embeddings, numerous deep methods have been proposed to achieve node clus-

tering using external algorithms like K-means [Hartigan and Wong, 1979] or GMMs [Reynolds,

2009]. Furthermore, many efforts have been put in order to conduct the clustering in an end-to-end

manner. We will go through some state-of-the-art methodologies in the following chapter.

1.3 Text analysis

In addition to the rating or network data we have already discussed, textual data is also quite

prevalent in daily life. Both rating data as well as network data might be accompanied by textual

information. Indeed, with the development of the Internet and the growth of social media, massive

amounts of textual data are generated every day in the form of blogs, tweets, comments, and

surveys. Additionally, the majority of consumer transactions now take place digitally, creating

yet another enormous collection of texts. Most text information is unstructured and scattered

across the web. Valuable knowledge can be gained from the textual data if it is properly collected,

organized and analyzed.

1.3.1 Text data and examples

Let us look at some concrete examples : first, in recommender systems, many consumers also

use texts to express various opinions in addition to ratings. Compared to a single score, reviews

12 CHAPITRE 1 — Introduction

Table 1.2 – A sample of Amazon food data.

ReviewerID ProductID Rating ReviewText

A31N6KB160O508 B000G6RYNE 4 Pretty good tasting chip

A1CBNUBPZPWH5D B0016FY6H6 5 Flavorful and refreshing

A1XG5WYLFMRRX1 B001LG945O 1 Artificial tasting

AQ6SHOW0VMZGF B003VXFK44 2 Really disappointed

can contain crucial information from different aspects about the products. Table 1.2 demonstrates

a sample from the Amazon product data set [He and McAuley, 2016], which includes product

reviews and meta-data (users, products, ratings and texts) from Amazon. As we can see, a high

score corresponds to a text review containing positive words, whereas a low rating is associated

with some negative expression as "disappointed". Therefore, using these information can enhance

the system capacity for recommendations. Second, in citation networks where each node repre-

sents a publication, the networks also contain some text information such as the title and abstract

of each article. This additional textual data is a crucial source of information for graph learning

tasks.

Then, how to encode the text ? One option is to rely on the frequency counts, such as the

number of occurrences of distinct words in a corpus. For instance, the textual reviews described

above can be encoded as in Table 1.3, displaying a traditional bag-of-words representation in a

Table 1.3 – Review representation in bag-of-words models.

ReviewText pretty good tasting · · · disappointed

Pretty good tasting chip 1 1 1 · · · 0

Flavorful and refreshing 0 0 0 · · · 0

Artificial tasting 0 0 1 · · · 0

Really disappointed 0 0 0 · · · 1

1.4 – Text analysis 13

document-term matrix. Each review in the Amazon data is now represented as a vector of its word

counts.

A count variable is discrete because it consists of non-negative integers. Nonetheless, there

is not one specific probability distribution that fits all count data sets. In the statistical commu-

nity, count data is frequently subjected to probabilistic assumptions about the generative model:

Poisson [Coxe et al., 2009], negative-binomial models [Greene, 2008], etc. More recently, the

probabilistic treatment of data can be done via deep learning by using the neural networks to en-

code the latent parameters of probability distributions [Gan et al., 2015; Srivastava and Sutton,

2017] and fitting all of the weights through stochastic gradient descent [Bottou, 2010, 2012].

1.3.2 Challenges in text analysis

Text analysis refers to the representation, processing and modeling of text data in order to

derive useful insights. This can be very challenging in practical applications. One challenge of

text analysis lies in the high dimensionality of the data, another in the fact that text is primarily

unstructured data. As a result, high-dimensional unstructured text must be carefully processed so

that it has a specific structure for future analysis. Common text analysis techniques include content

analysis [Stemler, 2000; Grimmer and Stewart, 2013], bag-of-words representation [Zhang et al.,

2010] and natural language processing (NLP) [Chowdhary, 2020]. Content analysis and other

dictionary-based methods are often performed by counting the frequency of words/phrases in a

particular text. Following this approach, text data is compressed into phrase frequencies, and the

index can be used to respond to more quantitatively focused research queries. Bag-of-words rep-

resentation is a simple and common approach widely used in text analysis problems. It represents

a document as a set of words, thereby transforming the document into a high-dimensional vector

indicating the presence/absence of each word in the document. Last but not least, text analysis that

uses natural language processing is frequently the most automated since this approach simulates

how humans understand and process language. In contrast to bag-of-words, other NLP strategies

considers word order to be important. In this thesis, we focus on the bag-of-words representation

to transform the observed textual data into a document-term matrix, since it is a straightforward

and typical method in text analysis and is simple to manipulate in numerous applications.

14 CHAPITRE 1 — Introduction

1.4 The need for methods to analyze heterogeneous data

As we saw in previous sections, different types of data exist and might occur simultaneously

in applications. In this section, we discuss the rise of heterogeneous data and the necessity for

techniques to analyze them.

1.4.1 Context

Heterogeneity is a key characteristic of modern data sets. Any data set with high variability

of data types and formats (ordinal, categorical, count, etc.) is considered heterogeneous. The

heterogeneous data, which originates from various and different sources, naturally possesses a

wide range of categories and representational patterns. For example, scientific citation networks

typically contain the following information : the paper ID and its category, the citation relationship

with other papers, as well as a document that includes content about each article such as titles and

abstracts. Figure 1.7 provides an illustration of a citation network consisting of three different

sources of information. The citation relationships can be modeled as links in a graph, each article

is associated with a document containing textual contents, and papers are also assigned a category

(a) A citation network example (b) Information from the network

Figure 1.7 – Each node in a citation network represents a scientific paper, and the different colors

indicate various categories. Each paper is associated with a document including its title, abstract,

etc. Three different sources of information reflect paper categories, citation relationships between

articles and text content.

1.4 – The need for methods to analyze heterogeneous data 15

label. Furthermore, in some recommender system applications, numerical ratings are usually given

by users on products along with textual reviews. Under this context, it is important but challenging

to combine different kinds of data to meet specific requirements. As a consequence, how to process

and integrate the heterogeneous data has emerged as a critical issue in data analysis.

1.4.2 The rise of deep probabilistic methods

Heterogeneous data is frequently complex and multidimensional. Traditional data analysis ap-

proaches are sometimes ineffective as they can only model very simple data distributions. Recent

achievements have been made by deep latent variable models (DLVMs) which combine proba-

bilistic modeling and deep learning techniques. A deep probabilistic model should be capable of

identifying the underlying structure of the data, such as hidden patterns or presence of clusters,

and of generating new data with similar distributions to the observed ones. In the following are

some examples of problems that we aim at tackling in this thesis :

— Consider some data collected from an e-commerce system like Amazon, we may want

to create a recommender system that takes into account both the ordinal ratings of the

products and textual reviews given by the users. A deep generative model can be used

to discover the underlying communities of customers who share similar interests and to

predict the missing ratings.

— Given a scientific citation network that includes the citation links between papers as well

as the content of each publication, we may want to discover the latent topics that emerged

from the documents and to divide the papers into several groups depending on the hidden

features, with the aid of a deep probabilistic model.

These are simply a few illustrations. These types of data analysis are common in many scien-

tific, economic, and industrial sectors, and deep probabilistic methods have been widely employed

to address them. In the following part, we first discuss latent variable models (LVMs) and then

explore how deep neural networks (DNNs) can be incorporated to estimate their parameters.

Latent variable models (LVMs) [Bishop, 1998] are a flexible tool for exploring data hetero-

geneity and have been widely used for jointly modeling mixed data based on latent patterns sum-

marized from the observed data [Blei, 2014]. Given a set of high-dimensional data points x,

learning the complicated distribution p(x) is a challenging task in machine learning. Rather than

directly modeling p(x), we can introduce an unobserved latent variable z and define a conditional

16 CHAPITRE 1 — Introduction

Figure 1.8 – Architecture of a neural network.

distribution p(x|z) for the data. The posterior p(z|x) for real-world data is typically intractable,

and traditional statistical methods rely on Markov Chain Monte Carlo (MCMC) to sample from

this distribution. Despite this, these models require substantial computational costs and are diffi-

cult to scale to large data sets.

Many recent works extend LVMs with deep neural networks (DNNs) due to the difficulty in the

inference procedure and the limitation of linearity in probabilistic models. By combining the sta-

tistical basis of generative models with the approximation capabilities of deep learning techniques,

deep latent variable models (DLVMs) enable us to handle massive and complex data accounting

for non-linearity, in many fields. What exactly is the magic of deep learning ? In general, deep

learning is a branch of machine learning that uses artificial neural network as the architecture to

perform representation learning of data. Neural networks are composed of multiple neuron layers,

including an input layer, one or more hidden layers, and an output layer. Each layer contains a

number of artificial neurons. Figure 1.8 depicts the architecture of a simple neural network : it has

four neurons at the input layer, two hidden layers are equipped with six neurons each and there are

three neurons at the output layer. The number of neurons and the depth of layers can be modified

depending on the task. Then, how do neural networks work ? Mathematically, the operation of

passing messages through l layers can be thought of as a combination of multiple non-linear func-

tions, where F = σ(f1) ◦ σ(f2) ◦ · · · ◦ σ(fl). The function σ is a non-linear activation function,

such as ReLU (σ(x) = max(0, x)) or Sigmoid (σ(x) = 1/(1 + e−x)). The non-linear factor

1.5 – Organization of the thesis 17

Figure 1.9 – An illustration of the operation of artificial neurons.

added by the activation function can overcome the limitation of insufficient expression ability of

the linear model when the data structure is complicated. An illustration of the operation of neu-

rons is shown in Figure 1.9. A simple activation is chosen in this network, which performs binary

classification to output either a value of 1 or 0.

DLVMs rely on variational inference (VI) [Blei et al., 2017] to approximate the intractable

probability through optimization. The main idea behind VI is to produce an approximation q(z) as

close to the true posterior p(z|x) as possible by minimizing the Kullback-Leibler divergence (de-

noted by KL) [Csiszár, 1975] between the two distributions. Furthermore, it is generally assumed

that q(z) comes from a family of tractable distributions. For example, it is defined as a Gaus-

sian distribution N (z;µ, σ2I) in variational auto-encoders (VAEs) [Kingma and Welling, 2014b,

2019], where the mean µ and the variance σ2 of the approximate posterior are parametrized by

an encoding neural network. The optimization of parameters is carried out automatically through

stochastic gradient descent [Bottou, 2012; Kingma and Ba, 2014]. The use of DNNs accelerates

the inference process and scales up to massive and complex data. More details about the inference

procedure in DLVMs are described in Section 2.1.

1.5 Organization of the thesis

The structure of this thesis is :

— Chapter 2 reviews some basis of DLVMs and state-of-the-art models relevant to the prob-

lems;

18 CHAPITRE 1 — Introduction

— Chapter 3 presents our recommendation algorithm that takes into account both user ratings

and textual reviews on products;

— Chapter 4 describes our approach to achieve an end-to-end node clustering and to better

preserve the network topology;

— Chapter 5 proposes a document similarity-based graph convolutional network and intro-

duces our methodology which combines word embeddings, topic modeling, and graph

topology structure to accomplish clustering;

— Chapter 6 summarizes our contributions and leads to perspectives for the future work.

CHAPTER 2
Statistical and deep
learning models for

recommender systems
and node clustering

This chapter reviews some fundamentals of deep latent variable models (DLVMs) and

state-of-the-art methods related to the problems we mentioned in the previous chapter.

19

20
CHAPITRE 2 — Statistical and deep learning models for recommender systems and node

clustering

2.1 Warmup : a few fundamental DLVMs 21

2.1.1 Variational auto-encoders for continuous data 21

2.1.2 Topic modeling for count data 24

2.2 Construction of recommender systems 26

2.2.1 Matrix factorization models 26

2.2.2 Latent factor models for recommender systems 27

2.2.2.1 Rating-based recommender systems 27

2.2.2.2 Rating-with-text based recommender systems . . 28

2.2.3 Deep learning-based recommender systems 30

2.3 Network data analysis . 32

2.3.1 Probabilistic graphical models 32

2.3.2 Graph neural networks . 34

2.3.3 Deep probabilistic models for node clustering 37

2.4 Clustering in heterogeneous information networks 40

2.1 – Warmup : a few fundamental DLVMs 21

2.1 Warmup : a few fundamental DLVMs

In this section, we will introduce a few crucial DLVMs whose understanding is important in

order to fully appreciate our contributions.

2.1.1 Variational auto-encoders for continuous data

We now introduce an important class of deep generative models : the variational auto-encoders

(VAEs) [Kingma and Welling, 2014a; Rezende et al., 2014]. We first recall some basic facts about

variational inference in mixture models before introducing the usage of neural networks in VAEs.

Variational inference in mixture models. Assume that x = {x1, · · · , xm}, with xi ∈ RN

are observations and z = {z1, · · · , zm}, with zi ∈ RP are hidden variables. The main goal of

variational approaches is to select a family of distributions q(z) over the latent variables to approx-

imate the true posterior p(z|x) when it is not tractable. The closeness of the two distributions is

measured by the Kullback-Leibler (KL) divergence, coming from information theory [Kullback,

1997]. The KL divergence is defined as :

KL(q(z)||p(z|x)) = Eq(z)
[
log q(z)

p(z|x)

]
. (2.1)

It can easily be shown that minimizing Eq. (2.1) with respect to q(z) is equivalent to maximize the

evidence lower bound (ELBO), obtained by applying the Jensen’s inequality to the log-likelihood

of the observed data :

log p(x) = log
∫
z
p(x, z)dz

= log
∫
z
p(x, z)q(z)

q(z)dz

= logEq(z)
[
p(x, z)
q(z)

]
≥ Eq(z)[p(x, z)]− Eq(z)[q(z)]︸ ︷︷ ︸

ELBO

.

(2.2)

Indeed, if we develop the KL divergence further, we get :

KL(q(z)||p(z|x)) = Eq(z)[log q(z)]− Eq(z)[log p(z|x)]

= Eq(z)[log q(z)]− Eq(z)[log p(x, z)] + log p(x)

= −(Eq(z)[p(x, z)]− Eq(z)[q(z)]) + log p(x),

(2.3)

22
CHAPITRE 2 — Statistical and deep learning models for recommender systems and node

clustering

which is the negative ELBO plus the log marginal probability of x, not depending on q(z). Thus,

the log-likelihood for the observed data x could be written as :

log p(x) = Eq(z)
[
log p(x, z)

q(z)

]
+KL(q(z)||p(z|x)), (2.4)

and the ELBO can be further developed as :

ELBO := Eq(z)[log p(x, z)]− Eq(z)[log q(z)]

= Eq(z)[log p(x|z)] + Eq(z)[log p(z)]− Eq(z)[log q(z)]

= Eq(z)[log p(x|z)]−KL(q(z)||p(z)),

(2.5)

where the first term of ELBO aims at maximizing the reconstruction likelihood, the second term

encourages the learned distribution q(z) to be similar to the prior distribution p(z) and acts as a

regularization term.

Generative model for VAEs. VAEs make some additional assumptions on p(x|z) and q(z), that

we now detail. Firstly, the latent variables are assumed to be drawn from Gaussian distributions :

p(zi) = N (0, IP), (2.6)

where IP denotes the identity matrix in RP . However, other choices are of course possi-

ble [Makhzani et al., 2016; Rolfe, 2017].

Next, VAEs also suppose that :

p(x|z) =
m∏
i=1

h(xi; fτ (z)), (2.7)

where h(·) denotes here a generic probability distribution function with parameters obtained via

fτ (·), which is a fully-connected neural network, parametrized by τ . A graphical representation

of the generative model can be seen in Figure 2.1.

x

z

τ

m

Figure 2.1 – Graphical representation of the generative model for VAEs.

2.1 – Warmup : a few fundamental DLVMs 23

Lastly, in order to maximize the ELBO, it is further assumed that :

q(zi) = N (zi;µi, σ2
i IP), (2.8)

where [µi, σ2
i] = gφ(xi) is the output of another neural network gφ(·), parametrized by φ.

With all assumptions (2.6)-(2.7)-(2.8), the ELBO in Eq. (2.5) can be further developed as :

ELBO := Eq(z)[log(p(x|z)]−KL(q(z)||p(z))

=
m∑
i=1

[
Eq(z)[log h(xi; fτ (z))]−KL

(
N (zi;µi, σ2

i IP)||N (zi; 0P , IP)
)]
.

(2.9)

From the deep learning perspective. VAEs can be seen as an encoder-decoder architecture

from the standpoint of deep learning, where the encoder compresses the input x ∈ RN into a

latent variable z ∈ RP sampled from the variational probability distribution and lying in a low-

dimensional latent space. Then, the decoder maps the latent component back into a reconstructed

output y, as shown in Figure 2.2.

Figure 2.2 – A deep-learning view of VAEs.

To perform the optimization, the training loss is equivalent to the negative ELBO where the

first term in Eq. (2.5) is a traditional reconstruction loss and the second term is a regularization

loss. The neural nets parameters φ and τ are optimized through stochastic gradient descent.

VAEs are flexible architectures since they can be designed to conduct a variety of encoding-

decoding tasks by properly choosing the prior and the observed data distributions. In Chapters 3

to 5, we will introduce three original generative models based on the VAE structure and demon-

strate their applicability.

24
CHAPITRE 2 — Statistical and deep learning models for recommender systems and node

clustering

2.1.2 Topic modeling for count data

Topic modeling is a statistical analysis technique for revealing the underlying semantic struc-

ture in a collection of documents. The hidden groups of words are referred to as "topics," and

each word in a document is associated with one or more topics. In the following, we review three

commonly used probabilistic approaches for topic modeling.

Latent Dirichlet allocation. Latent Dirichlet allocation model (LDA) [Blei et al., 2003] is a

well-known probabilistic model on which many methodologies have been built. Being an un-

supervised learning approach, it does not require a manually labeled data set for training. A

collection of documents and a specified number of topics are only needed. LDA assumes that the

words in a document are sampled from a mixture distribution over latent topics. Consider a corpus

of D documents {w1, · · · , wD}, it posits T topics β1:t with a vocabulary that includes V unique

terms. Let wdm ∈ {1, · · · , V } denote the m-th word in the d-th document, the generative process

of LDA is :

— Draw the topic proportions θd ∼ Dirichlet(α),with α ∈ R+,T ;

— For the m-th word in the d-th document :

(i) Sample its topic zdm ∼M(1, θd);

(ii) Sample word wdm ∼M(1, βzdm),with βt = (βt1, · · · , βtv)>,
V∑
v=1

βtv = 1, βtv > 0.

The marginal likelihood for the document wd which contains Md words can be developed as :

p(wd|α, β) =
∫
θd

(
Md∏
m=1

T∑
zdm=1

p(wdm|zdm, β)p(zdm|θd))p(θd|α)dθd. (2.10)

Sampling techniques, such as collapsed Gibbs sampling [Teh et al., 2006], and variational tech-

niques [Srivastava and Sutton, 2017] are the main inference tools for LDA. A graphical represen-

tation of LDA is shown in Figure 2.3.

wzθ

β

α

M

D

Figure 2.3 – Graphical representation of LDA.

2.1 – Warmup : a few fundamental DLVMs 25

Latent Dirichlet allocation with products of experts. Due to the difficulty in working with

discrete variables like zdm, Srivastava and Sutton [2017] proposed to collapse zdm in Eq. 2.10

and simplifying the formulas into :

p(wd|α, β) =
∫
θd

(
Md∏
m=1

p(wdm|β, θd))p(θd|α)dθd, (2.11)

where the variable zdm is summed out and the distribution p(wdm|β, θd) becomes a mixture of

multinomialM(1, βθd). However, this assumption may lead to the appearance of some topics that

are of poor quality, which is a drawback shared by all mixture models [Hinton and Salakhutdinov,

2009].

To tackle this problem, Srivastava and Sutton [2017] also introduced a novel topic model

called ProdLDA. ProdLDA develops a logistic normal variational distribution over θd with diago-

nal covariance during the inference procedure, where the mean µd = fµ(wd, φ) and the diagonal

covariance Σd = diag(fΣ(wd, φ)) are obtained by two neural networks fµ and fΣ, parametrized

by φ. Contrary to LDA, the topic proportions are generated from q(θd) by sampling δd ∼ N (0, I)

and computing θd = σ(µd + Σ
1
2
d δd), with σ(·) a softmax function. Furthermore, by replacing

the mixture assumption at the word level in LDA with a weighted product of experts, it posits a

likelihood :

wdm|β, θd ∼M(1, σ(βθd)), (2.12)

where the topic proportions θd lie in the simplex, whereas the constraint on the topic-word proba-

bility matrix β is relaxed, yielding a considerable improvement in topic coherence.

Embedded topic model. The embedded topic model (ETM) [Dieng et al., 2020] is a recent

development that combines traditional topic modeling with word embeddings to discover the latent

semantic structure of documents while also learning a good representation for the vocabulary. It

includes two latent dimensions. First, it represents each document in terms of T latent topics,

as in LDA. Second, it embeds words in the vocabulary in a L-dimensional latent space as word

embeddings. The generative process for ETM is :

— Draw the topic proportions θd ∼ LN (0, IT), independently, for each document in the

corpus;

— For the m-th word in the d-th document :

(i) Sample its topic zdm ∼M(1, θd);

26
CHAPITRE 2 — Statistical and deep learning models for recommender systems and node

clustering

(ii) Sample word wdm ∼M(1, σ(ρ>αzdm)),

whereLN denotes the logistic-normal distribution and a draw θd from this distribution is produced

as :

δd ∼ N (0, IT), θd = softmax(δd).

Additionally, ρ is a L × V word embedding matrix where V is the total number of words in

the vocabulary. The t-th topic embedding in the semantic space of words is indicated by the

vector αt ∈ RL, with t ∈ {1, · · · , T}. β = σ(ρ>αt) is a matrix whose entry βtv represents the

probability that word v occurs in topic t, where σ(·) denotes a softmax function so that
V∑
v=1

βtv =

1. Given a corpus of documents where the d-th document is a collection ofMd words, the marginal

log-likelihood of ETM is described as :

L(α, ρ) =
D∑
d=1

log p(wd|α, ρ). (2.13)

The marginal likelihood of each document, p(wd|δ, α, ρ), is intractable since it involves a difficult

integral over the topic proportions :

p(wd|α, ρ) =
∫
p(δd)

Md∏
m=1

p(wdm|δd, α, ρ)dδd. (2.14)

In addition, the likelihood of the m-th word in the d-th document is :

p(wdm|δd, α, ρ) =
T∑
t=1

θdtβtwdm . (2.15)

Finally, ETM adopts a variational inference to estimate the ELBO and optimize the model param-

eters α and ρ through stochastic gradient descent.

2.2 Construction of recommender systems

In this section, we review some popular state-of-the-art techniques to produce recommender

systems, that were introduced, in very general terms in Section 1.1.

2.2.1 Matrix factorization models

Matrix factorization [Koren et al., 2009] is widely employed in collaborative filtering to de-

termine "possible connection" between users and items in recommender systems. Assume for

2.2 – Construction of recommender systems 27

instance that we want to forecast how a user would evaluate a product based on both the ratings

that other users give to the product and the ratings that he gives to other products. Then, given a

user-item rating matrix Y ∈ RM×N with M the number of users and N the number of items, it

could be factorized into a latent-user matrix R ∈ RM×P and a latent-product matrix C ∈ RN×P ,

where P << min{M,N} is the latent factor size. Through these two matrices, rating predictions

are obtained by Ŷ = RC>. The objective function is defined by minimizing the mean squared

error between predicted scores Ŷ and actual ratings Y :

argmin
R,C

 M∑
i=1

N∑
j=1

(Yij − Ŷij)2
1{Yij observed}

 . (2.16)

If the rating Yij is missing, the imputation is performed via Ŷij . In addition, the number of latent

factors P is a hyperparameter that need to be tuned properly to obtain optimal matrices R and C.

On the one hand, matrix factorization acts as a dimensionality reduction technique. On the

other hand, it can effectively address the issue of matrix sparseness brought on by an excessive

number of users and items. A long series of methods based on matrix factorization have been pro-

posed, we cite here for example, non-negative matrix factorization (NMF) [Lee and Seung, 1999,

2000], and probabilistic matrix factorization (PMF) [Mnih and Salakhutdinov, 2007; Salakhutdi-

nov and Mnih, 2008], etc.

2.2.2 Latent factor models for recommender systems

Considering the data types used to develop recommender systems, we briefly categorize exist-

ing latent factor methods into two groups : rating-based and rating-with-text based.

2.2.2.1 Rating-based recommender systems

Most algorithms that have been proposed in the literature only rely on the available ratings.

For instance, hierarchical Poisson matrix factorization (HPF) [Gopalan et al., 2015] assumes that

the observed rating matrix is drawn from a Poisson distribution :

Ŷij |Ri, Cj ∼ Poisson(R>i Cj), (2.17)

where user and item latent factors are modeled by a Gamma prior distribution. Once the posterior

p(R1:M , C1:N |Y) has been fitted using variational inference, user ratings for unconsumed products

28
CHAPITRE 2 — Statistical and deep learning models for recommender systems and node

clustering

can be estimated via the posterior expectation E[R>i Cj |Y]. We notice that HPF is a variant of

probabilistic matrix factorization, but with positive weights for each user and item and a Poisson

distribution in place of a Gaussian distribution.

Similar to HPF, hierarchical compound Poisson factorization (HCPF) [Basbug and Engelhardt,

2016] adopts the conjugated Gamma-Poisson structure to model latent factors. Contrary to HPF,

HCPF introduces a zero-truncated compound Poisson random variable to account for sparsity in

the data. Moreover, HCPF allows the user to select the response model from a variety of additive

exponential dispersion models (EDMs), which includes Normal, gamma, inverse Gaussian, Pois-

son, binomial, negative binomial, and zero truncated Poisson (ZTP) distributions. The generative

process in HCPF is :

— Sample count nij ∼ Poisson(R>i Cj),

— Sample the response Ŷij ∼ pΦ(θij , nijk) when nij 6= 0,

where pΦ(θij , nij) is an additive EDM choosing from one of the seven distributions above, θ and

k are two model parameters.

However, HCPF assumes that the natural parameter θij is the same for all observations. There-

fore, the data-generating model is a fixed distribution. As an extension, coupled compound Poisson

factorization (CCPF) [Basbug and Engelhardt, 2017] was introduced recently by coupling HPF

with an arbitrary data-generating model among three different methods : mixture models, linear

regression and matrix factorization. The generative process in CCPF is :

— Sample count nij ∼ Poisson(R>i Cj),

— if nij is 0, then Ŷij is missing,

— else

(i) Sample the parameter θij from the data-generating model,

(ii) Sample the observation Ŷij ∼ pΦ(θij , φ(nij)k), with φ a linkage function.

In particular, one possible linkage function is exponential. Setting φ(nij) = 1 − c + cnij with

c > 0 implies that, as the probability of non-missingness increases, we expect a greater dispersion.

Fixing c = 1, we get a standard HCPF model.

2.2.2.2 Rating-with-text based recommender systems

Since the product ratings are usually paired with text reviews, another set of recommender

systems exploit both ratings and texts to improve the predictions. For example, CTR [Wang and

2.2 – Construction of recommender systems 29

Blei, 2011] relies on probabilistic matrix factorization (PMF) to generate ratings, and LDA [Blei

et al., 2003] is used to model the topics in reviews. Standard PMF is as follows :

— Draw user latent vector Ri ∼ N (0, λ−1
R I),

— Draw item latent vector Cj ∼ N (0, λ−1
C I),

— Draw the response Ŷij ∼ N (R>i Cj , c−1
ij),

where λR and λC are regularization parameters, cij is the precision parameter that acts as a rating

confidence, a larger value indicates we trust Ŷij more.

Finally, to combine collaborative filtering and topic modeling, CTR assumes that the item

latent vector is generated by :

Cj = εj + θj , with εj ∼ N (0, λ−1
C I), (2.18)

where θj denotes the topic proportions in LDA. Finally, a predicted rating is drawn from Ŷij ∼

N (R>i Cj , c−1
ij) using this new item factor.

In the estimation procedure, CTR first determines the topic proportions θ via traditional LDA

inference method, then PMF parameters are optimized depending on the outcomes θ. In order

to conduct the estimations of the LDA and the PMF parts simultaneously, the online Bayesian

inference algorithm for CTR model (obi-CTR) [Liu et al., 2017] realizes a joint optimization

with an online approach where the two components can reinforce each other during learning.

Nonetheless, neither of these models formulates any relationship between the user latent factor

and latent topics.

The hidden factors topic model (HFT) [McAuley and Leskovec, 2013] integrates latent rating

factors γi ∈ RT (similar to Ri) with latent review topics θi in dimension T by specifying a

transformation :

θit = exp(kγit)
T∑
t′=1

exp(kγit′)
, (2.19)

where the parameter k determines the "peakiness" of the transformation intuitively. A large value

of k indicates that users only discuss the most important topic, whereas a small value means that

users discuss all topics evenly. The objective function of HFT was then defined with the first

term accounting for the rating reconstruction error and a penalization term involving the corpus

likelihood. However, HFT is constrained by the requirement that the dimension of latent factors

30
CHAPITRE 2 — Statistical and deep learning models for recommender systems and node

clustering

should be equal to the number of latent topics T . This one-to-one correspondence relationship

may not be ideal and restricts the flexibility of the approach.

The aspect-aware latent factor model (ALFM) [Cheng et al., 2018] breaks this limitation by

associating latent factors with different aspects and each aspect is represented as a probability

distribution of latent topics. For instance, for the "food" aspect, a related latent topic could be

"breakfast" or "Italian cuisine". The overall rating is computed through a linear combination of all

the aspect ratings :

Ŷij =
∑
a

ρijaYija + bi + bj + b0, (2.20)

where ρija denotes the importance of each aspect a, aspect rating Yija reflects the satisfaction of a

user i towards an item j on the aspect a. Then, b0 is the average rating, bi and bj are the user and

item biases, respectively. Unfortunately, it turns out that the performance of ALFM is affected by

a dispersed data distribution, it only functions properly when the data is concentrated around the

mean, as a result of the addition of the average score b0.

2.2.3 Deep learning-based recommender systems

Deep learning-based approaches have recently shown a remarkable potential on feature rep-

resentations learning and have been extensively explored in the literature of recommender sys-

tems [Khan et al., 2021]. Among the state-of-the-art techniques, the deep cooperative neural

network (DeepCoNN) [Zheng et al., 2017] relies on two convolutional neural networks (CNNs)

to learn latent representations of users and products from user review text and item review text,

respectively :

Ri = CNNR(texti),

Cj = CNNC(textj),
(2.21)

where the latent factor of the i-th user is based on the text that he used, and the latent factor of

the j-th item is depending on the text that it received. The ratings Ŷij are then generated by a

concatenation (denoted by the symbol ⊕) of the two latent representations and feeding them into

a factorization machine (FM) [Rendle, 2010] :

Zij = Ri ⊕ Cj ,

Ŷij = FM(Zij).
(2.22)

2.3 – Construction of recommender systems 31

DeepCoNN assumes that for each user, the review of a target item is always available. How-

ever in real-world contexts, a product is recommended to a user before they have experienced it.

To overcome this limitation, TransNet was introduced in Catherine and Cohen [2017] with two

networks : a source network based on DeepCoNN, and a target network. The target network pro-

cesses the target review textij which denotes the review written by the user i for the item j. The

target rating Ŷ target
ij is predicted as follows :

Ztargetij = CNNtarget(textij),

Ŷ target
ij = FMtarget(Ztargetij).

(2.23)

The source network is similar to the DeepCoNN model with two CNN text processors, for the

purpose of obtaining two user-latent and item-latent representations :

Ri = CNNR(texti − textij), use reviews by user i without textij ,

Cj = CNNC(textj − textij), use reviews for item j without textij .
(2.24)

The source rating Ŷ source
ij is then generated through a concatenation operation, an additional trans-

form layer, and a factorization machine, respectively :

Zsourceij = Ri ⊕ Cj ,

Ztransformij = TRANSFORM(Zsourceij),

Ŷ source
ij = FMsource(Ztransformij).

(2.25)

The training phase of TransNet consists of three stages. In the first step, it trains the target network

on the actual reviews by minimizing the loss between the target ratings Ŷ target and the actual rat-

ings Y . Secondly, it learns the transform layer by reducing the loss ||Ztransform − Ztarget||2.

Finally, it trains the FM predictor through reducing the difference between the actual ratings Y

and the predictions Ŷ source, based on the learned transformed representation Ztransform. Addi-

tionally, the transform layer enables the model to generate approximate reviews during test phase

when textij is unavailable, and enhances the prediction performance.

We point out that in the two previous models, latent factors are solely obtained by learning

reviews, without taking into account the observed ratings during the generative phase. Therefore,

we propose a novel strategy that employs both ratings and reviews as model inputs to gain more

information. We further introduce a user-majoring and a product-majoring encoders that simulta-

neously capture the user and product preferences, as detailed in Chapter 3.

32
CHAPITRE 2 — Statistical and deep learning models for recommender systems and node

clustering

2.3 Network data analysis

A number of probabilistic and deep learning approaches have been proposed for network anal-

ysis, some of the most popular among them are described in this section.

2.3.1 Probabilistic graphical models

This section reviews two major model-based approaches for network analysis: the stochastic

block model (SBM) [Wang and Wong, 1987; Nowicki and Snijders, 2001] and the latent position

model (LPM) [Hoff et al., 2002].

SBM is widely used to detect communities or more general clusters of nodes. It assumes that

the nodes of a network (or graph) are spread into K different latent clusters and that the connec-

tion probability between each pair of nodes depends exclusively on their group memberships. The

SBM introduced by Nowicki and Snijders [2001] assigns a latent vector Zi, following a multino-

mial distribution, to each vertex i of the network :

Zi ∼M(1, α = {α1, α2, · · · , αk}), (2.26)

where α denotes the vector of cluster proportions. In more detail, the vector Zi has all its compo-

nents equal to zero except one such that Zik = 1 if vertex i belongs to cluster k. Moreover,

K∑
k=1

αk = 1, with αk > 0,∀k. (2.27)

Finally, edges between two nodes are drawn from independent Bernoulli distributions, given Z.

We denote by A the N × N adjacency matrix, where Aij = 1 if there is a link between nodes i

and j, 0 otherwise. Then,

Aij |(ZikZjl = 1) ∼ B(Πkl), (2.28)

where B(·) denotes the Bernoulli distribution and Π is a K × K matrix whose entry Πkl is the

connection probability between any node in cluster k and any node in cluster l.

Based on SBM, many extensions looking for overlapping clusters have been proposed [Lee and

Wilkinson, 2019]. For instance, the mixed-membership stochastic blockmodel (MMSB) [Airoldi

et al., 2008] introduces a mixing weight vector πi drawn from a Dirichlet distribution for each

vertex i, where πik denotes the probability of node i belonging to cluster k. The connection

2.3 – Network data analysis 33

probability between node i and node j is then modeled as:

Aij |Zi→j , Zi←j ∼ B(Z>i→jΠZi←j) (2.29)

where Π still is a K × K connection probability matrix, similar to SBM, and the membership

indicator Zi→j ∼ M(1, πi) describes the class membership of vertex i in relation to vertex j.

Similarly, the class membership of vertex j in reference to vertex i is represented by the member-

ship indicator for the receiver Zi←j ∼ M(1, πj). Each vertex can therefore belong to a different

cluster depending on its relationships with other vertices.

In the overlapping stochastic blockmodel (OSBM) [Latouche et al., 2011], each node is also

allowed to belong to multiple clusters. Indeed, OSBM assumes that each node is associated with

a binary latent vector drawn from a product of Bernoulli distributions :

Zi ∼
K∏
k=1
B(Zik;αk) =

K∏
k=1

αZikk (1− αk)1−Zik . (2.30)

The edges are then generated as :

Aij |Zi, Zj ∼ B(σ(Z>i ΠZj + Z>i U + V >Zj + b)), (2.31)

where σ(·) is a logistic sigmoid function, Π is a K ×K matrix, U and V are K-dimensional vec-

tors. The first term Z>i ΠZj accounts for the interaction probability between two nodes, whereas

the second termZ>i U models the overall probability that node i connects to other nodes and V >Zj

captures the global tendency of node j to receive an edge connection. Lastly, b is a bias term.

All models discussed so far deal with binary-edged graphs. Other variants consider weighted

graphs whose edges can be discrete [Mariadassou et al., 2010], categorical [Jernite et al., 2014]

or textual [Bouveyron et al., 2018]. Moreover, some extensions [Xu and Hero, 2014; Matias and

Miele, 2017; Corneli et al., 2019] focus on time-evolving networks, namely dynamic network

analysis.

Whereas stochastic block models aim at clustering the nodes of a graph, other approaches

look for likely positions of the nodes of the graph in a latent space, to better visualize the network.

Originally proposed by Hoff et al. [2002], the latent position model (LPM) supposes that each

node has an unknown position in a P -dimensional latent space and that the probability of a specific

link between two nodes is modeled by some function of their positions. The following describes

34
CHAPITRE 2 — Statistical and deep learning models for recommender systems and node

clustering

the generative process. Firstly, for each node i, a latent position is sampled from a Gaussian

distribution :

Zi ∼ N (0, IP). (2.32)

Next, based on the distance between the latent positions of two nodes, a connection is sampled

from a Bernoulli distribution independently, for each pair :

Aij |Zi, Zj ∼ B(σ(α+ βYij − |Zi − Zj |)), (2.33)

where σ(·) is a logistic sigmoid function, Yij is a covariate accounting for additional information

about the edge connecting i with j, if available, and α as well as β are two model parameters.

Afterwards, the latent position cluster model (LPCM) [Handcock et al., 2007] was introduced

to incorporate a clustering structure into LPM by considering that the latent position of each node

is drawn from a Gaussian mixture model (GMM) :

Zi ∼
K∑
k=1

πkN (µk, σ2
kIP), (2.34)

where πk is the probability that a node belongs to the group k. Then, similarly to the original

LPM, LPCM links the probability of an edge between nodes to their latent positions.

As a side note, we recall that in the last decades, several efforts have been made in order

to extend LPMs to dynamic networks [Xu and Zheng, 2009; Sewell and Chen, 2017]. Further

developments of LPMs exist and the reader is referred to Raftery [2017] for an extensive review.

The generative models described so far, often require a challenging inference procedure that

primarily relies on variational approximations MCMC, which unavoidably results in high compu-

tational complexity. Scalability and adaptation to complex networks are major concerns for the

researchers in the field. A more general overview of statistical models for clustering network data

can be explored in Bouveyron et al. [2019, Chapter 10].

2.3.2 Graph neural networks

The methods described so far are widely used for clustering the nodes of a graph. Another

challenging task consists in clustering the graphs themselves. Ad hoc deep learning techniques

have been developed in recent years. Among various classes of deep learning techniques, graph

neural networks (GNNs) are a type of neural networks that operates directly on graph structured

2.3 – Network data analysis 35

data, which have demonstrated effectiveness in representation learning on graphs. Since the semi-

nal work of Scarselli et al. [2008], GNNs adopt a neighborhood aggregation (or message passing)

scheme in which the representation vector of a node is computed by recursively aggregating and

transforming the feature vectors of its neighbors. Mathematically, given the node feature matrix

X , the l-th layer of a multi-layer GNN operates as follows :

N
(l+1)
i = AGGREGATE(l+1)

({
H

(l)
j : j ∈ N(i)

})
,

H
(l+1)
i = COMBINE(l+1)

(
H

(l)
i , N

(l+1)
i

)
,

(2.35)

where H(l)
i is the feature vector of node i at the l-th iteration with an initialization of H(0)

i =

X . The neighborhood of nodes adjacent to i is denoted by the symbol N(i). Different GNN

versions emerge from various choices for the function AGGREGATE(·) and COMBINE(·) [Xu

et al., 2019]. For node clustering, the node representation H(l+1)
i of the final iteration is used with

an external clustering algorithm like K-means. For graph clustering, node features from the final

iteration are gathered to obtain the entire graph representation:

HG = READOUT(H(l+1)
i , i ∈ G), (2.36)

where READOUT can be a simple summation or a more complicated pooling function [Ying

et al., 2018b]. In this thesis, we only concentrate on node-level clustering approaches, however by

including a READOUT function, tasks at the graph level can be envisaged.

GCN. The graph convolutional networks (GCN) [Kipf and Welling, 2017] is a multi-layer con-

volutional neural network that works directly on graph data. GCN fuses the AGGREGATE and

COMBINE phases in Eq. (5.15) to learn latent representation for each node. Thus, the (l + 1)-th

layer of a multi-layer GCN looks like :

H(l+1) = σ(D̂−
1
2 ÂD̂−

1
2H(l)Ŵ (l)), (2.37)

where the i-th row of H(l+1) is the latest representation of node i at layer l + 1, Â = A + IN

is the adjacency matrix of the undirected graph G with an added identity matrix IN representing

self-connections, D̂ii =
∑
j Âij is the degree matrix and Ŵ (l) is a weight matrix of learnable

parameters of l-th layer. σ(·) denotes an activation function such as ReLU or Sigmoid. H(l)

signifies the integrated representation in layer l, with H(0) = X is the node features matrix.

36
CHAPITRE 2 — Statistical and deep learning models for recommender systems and node

clustering

GraphSAGE. Most existing architectures, including GCN, are fundamentally "transductive":

they require that every node of the graph is present during the training phase. GraphSAGE [Hamil-

ton et al., 2017] introduces a general inductive framework to efficiently generate node embeddings

for previously unseen nodes with the use of node features information. This technique operates by

sampling a fixed-size neighborhood of each node, uniform drawn from the full neighborhood set,

and then applying a specific aggregator to :

N
(l+1)
i = AGGREGATE(l+1)({H(l)

j : j ∈ N(i)}),

H
(l+1)
i = σ(Ŵ (l+1) · (H(l)

i ⊕N
(l+1)
i)),

(2.38)

where GraphSAGE concatenates the node current representation H(l)
i with the aggregated neigh-

borhood vector N (l+1)
i , and this concatenated vector is fed through a fully connected layer with

non-linear activation function σ(·). A number of aggregator structures can be used to aggregate

the neighbor representations. GraphSAGE examined three aggregation functions: mean aggrega-

tor, LSTM aggregator, and max-pooling aggregator, respectively.

GAT. All of the aforementioned approaches integrate the nodes representation equally with all

of its neighbors. However, in order to measure the importance of distinct neighbors, the graph

attention networks (GATs) [Veličković et al., 2018] assign different weights to neighbors of a

node. For a single graph attentional layer, the attention coefficient αij that indicates the importance

of the neighbor node j to node i is calculated as :

αij = exp(LeakyReLU(a[Ŵhi ⊕ Ŵhj]))∑
r∈N(i) exp(LeakyReLU(a[Ŵhi ⊕ Ŵhr]))

, (2.39)

where hi and hj are attribute vectors associated with node i and j, a is the attention mechanism

modeled by a single-layer neural network parametrized by a weight vector ~a, Ŵ is a weight matrix

of learnable parameters and LeakyReLU is a non-linear activation function (:= 1{x<0}(bx) +

1{x≥0}(x), b is a small constant). Once obtained, the attention coefficients and the weight matrix

are used to compute the final output features for every node :

ĥi = σ

 ∑
j∈N(i)

αijŴhj

 , (2.40)

where σ(·) denotes a non-linearity function. To stabilize the learning process, a multi-head atten-

tion mechanism is introduced. Specifically, the final output after applying L independent attention

2.3 – Network data analysis 37

mechanisms is :

ĥi = σ(1
L

L∑
l=1

∑
j∈N(i)

α
(l)
ij Ŵ

(l)hj). (2.41)

GIN. The graph isomorphism network (GIN) [Xu et al., 2019] generalizes the Weisfeiler-

Lehman (WL) test to address the challenging graph isomorphism problem [Weisfeiler and Leman,

1968] and thereby achieves maximum discriminative power among GNNs. In particular, GIN

updates nodes representations as :

H
(l+1)
i = MLP((1 + ε(l))H(l+1)

i +
∑

j∈N (i)
H

(l)
j), (2.42)

where ε is a learnable parameter or a fixed scalar, MLP stands for multi-layer perceptron.

MGAE. The marginalized graph auto-encoder (MGAE) [Wang et al., 2017] is developed based

on GCN. MGAE proposes a marginalization mechanism by adding random noises to the content

information. The model first arbitrarily removes some features (setting them to 0) from node

features matrix X to get a corrupted version of the original node contents, referred to as X̃ . Next,

the adjacency matrix Â and the corrupted node content X̃ are used as inputs to train a GCN. Then,

a latent representation Z(1) is obtained by minimizing the error between the output of GCN and

the initial X :

||X − D̂−
1
2 ÂD̂−

1
2 X̃Ŵ (0)||2 + λ||Ŵ (0)||2, (2.43)

where Ŵ (0) is a learnable weight matrix at the first layer, ||Ŵ (0)||2 is a regularization term with

a trade-off coefficient λ, and Z(1) = D̂−
1
2 ÂD̂−

1
2 X̃Ŵ (0). By stacking multiple single-layer GCN

encoders, the final representation is obtained as Z(l+1) = D̂−
1
2 ÂD̂−

1
2Z(l)Ŵ (l). Lastly, a spectral

clustering is applied to the final representation of nodes to produce clusters.

2.3.3 Deep probabilistic models for node clustering

In this subsection, we focus on deep latent variable models that generalize the VAE structure

to deal with graph data. Since these models are able to learn meaningful representations of the

nodes of a graph in a latent space, they are often used for node clustering purposes. Also they

can produce new data samples based on the latent features that they have learnt in the embedded

space. We stress that variational auto-encoding is an entirely unsupervised learning approach that

can be used in contexts like clustering where label information is unavailable.

38
CHAPITRE 2 — Statistical and deep learning models for recommender systems and node

clustering

The first approach that we consider is the variational graph auto-encoder (VGAE) [Kipf and

Welling, 2016]. In VGAE, a GCN encoder is introduced in order to compress the network data

into a low-dimensional representation in a latent space. A simple inner product decoder is then

used to transfer the latent component into a rebuilt graph matrix. For more detail, VGAE first

assumes that :

p(Z) =
N∏
i=1

p(zi) =
N∏
i=1
N (zi|0, IP), (2.44)

whereZ is a P -dimensional latent matrix where the i-th rowZi represents the i-th node. A random

edge between two nodes is sampled through :

p(Aij |zi, zj) = σ(z>i zj), (2.45)

where A is the graph adjacency matrix and σ(·) is a logistic sigmoid function. The term σ(z>i zj)

can be viewed as the decoder network in VGAE. The inference model is parametrized by a two-

layer GCN :

q(Z|X,A) =
N∏
i=1

q(zi|X,A) =
N∏
i=1
N (zi|µi, diag(σ2

i)). (2.46)

Here, X is the node feature matrix, µ = GCNµ(X,A) is the matrix of mean vectors µi,

similarly log σ = GCNσ(X,A). The two-layer GCN encoder is defined as GCN(X,A) =

ÃReLU(ÃXŴ0)Ŵ1, where Ã = D̂−
1
2 ÂD̂−

1
2 is the normalized adjacency matrix. As in VAE,

the optimization is then performed by maximizing the variational lower bound L :

L = Eq(Z|X,A)[log p(A|Z)]−KL(q(Z|X,A)||p(Z)). (2.47)

Whereas variational auto-encoding based methods learn meaningful latent positions of the

nodes relying on the minimization of the KL divergence between the approximate variational and

the true posterior distribution of those positions, an alternative approach consists in using genera-

tive adversarial networks (GAN) [Goodfellow et al., 2020]. By incorporating an adversarial model

into the generative process, the adversarially regularized graph auto-encoder (ARVGA) [Pan et al.,

2018] enforces the latent representation to match a prior distribution. The adversarial model serves

as a discriminatorD to determine whether a latent factor is from the prior p(Z) = N (Z|0, I) (pos-

itive) or from the output of graph encoder GCN(X,A) (negative). The embedding will finally be

regularized and enhanced during the training phase by minimizing the cross-entropy cost for the

binary classifier :

− 1
2 Ez∼p(z)[logD(Z)]− 1

2 Ex∼p(x)[log(1−D(GCN(X,A)))]. (2.48)

2.3 – Network data analysis 39

After obtaining the optimal latent positions of the nodes, ARVGA performs node clustering on the

learned embeddings using the K-means algorithm.

In order to allow nodes to belong to multiple clusters, the deep generative latent feature rela-

tional model (DGLFRM) [Mehta et al., 2019] combines OSBM [Latouche et al., 2011] with GCN

by positing each node of the graph to have an embedding modeled by a sparse vector :

zi = bi � ri, (2.49)

where � denotes an element-wise multiplication, bi ∈ {0, 1}K is a binary vector with a stick-

breaking process prior with a parameter α :

vk ∼ Beta(α, 1), k = 1, · · · ,K,

τk =
k∏
j=1

vj , bik ∼ B(τk),
(2.50)

and ri ∈ RK is a real-valued vector with a Gaussian prior :

ri ∼ N (0, σ2I), (2.51)

In particular, bik ∈ {0, 1} and rik ∈ R indicate whether or not node i belongs to cluster k and the

membership strength to the same cluster k, respectively. The VAE decoder then computes the link

probabilities as :

p(Aij |zi, zj) = σ(f(zi)>f(zj)), (2.52)

where f(·) is a deep neural network equipped with a LeakyReLU activation in each hidden layer.

Considering the inference model, the variational distributions are :

qφ(vik) = Beta(cik, dik),

qφ(bik) = B(πik),

qφ(ri) = N (µi, diag(σ2
i)),

(2.53)

where {ck, dk, πk, µk, σk}Ni=1 = GCN(X,A). These parameters are all the outputs of a GCN.

All of the aforementioned and other existing approaches [Tian et al., 2014; Nie et al., 2017;

Zhang et al., 2019b] adopt a two-step clustering procedure, simply relying on external cluster-

ing algorithms (e.g. K-means) to group the embedded nodes, independently from the generative

model. To tackle this problem, a self-training clustering strategy that enables the simultaneous

40
CHAPITRE 2 — Statistical and deep learning models for recommender systems and node

clustering

optimization of graph embeddings and clusters was developed in the deep attentional embed-

ded graph clustering model (DAEGC) [Wang et al., 2019a]. DAEGC builds a graph attentional

encoder based on GAT and utilizes an inner product decoder. Apart from calculating the recon-

struction error Lr between the original and rebuilt graph adjacency matrices, it also suggested a

self-optimizing clustering module that minimizes the following objective :

Lc =
∑
i

∑
k

pik log pik
qik

, (2.54)

where the target distribution pik is defined as :

pik = q2
ik/
∑
i qik∑

k(q2
ik/
∑
i qik)

, (2.55)

and qik measures the similarity between node embedding zi and the cluster center embedding µk :

qik = (1 + ||zi − µk||2)−1∑
r(1 + ||zi − µr||2)−1 . (2.56)

It can be viewed as a soft clustering assignment distribution of each node. One may obtain the

estimated label for each node i using argmax
k

qik. The initial cluster centers µ are first initialized by

applying K-means to the embedding matrix Z. Then they are optimized together with the latent

embeddings through SGD. Finally, a total objective function is designed as follows to jointly

optimize the graph embeddings and perform clustering of the nodes :

L = Lr + λLc, (2.57)

with a coefficient λ that regulates the balance in between.

Despite the good achievements, all of the methods discussed above employ an inner-product-

based decoder, whereas we argue that a different solution, accounting for the Euclidean distance

between each pair of nodes in the latent space might be more suited. More details are provided in

Chapter 4. As a side note, we also point out variants that made use of alternative decoder structures

in Park et al. [2019]; Li et al. [2020].

2.4 Clustering in heterogeneous information networks

Heterogeneous mixed-type data is a common component in real-world networks. In a scien-

tific article citation network, for example, textual information such as paper titles and abstracts

2.4 – Clustering in heterogeneous information networks 41

is included in addition to paper-paper interactions. How to incorporate this valuable information

under the graph structure is crucial since it affects the quality of the latent embeddings. Most

GNNs for heterogeneous information networks typically encode the two informations, the graph

adjacency matrix A and the node attributes X , in a simple way. For instance, in GCN, the con-

volution operation is like ÃXŴ (recall that Ã = D̂−
1
2 ÂD̂−

1
2 , Ŵ is a learnable weight matrix),

which results in the loss of information and limits the ability to represent graph topology. This

fact is demonstrated in Chapter 5 in detail.

AM-GCN. To overcome this problem, an adaptive multi-channel graph convolutional networks

(AM-GCN) was proposed by Wang et al. [2020b]. The authors showed that the fusion capability

of GCNs on network topological structures and node attributes is inadequate. The main concept of

AM-GCN is that node embedding is simultaneously learned based on node features, topological

structures, and their combinations. First, in order to capture the underlying structure of nodes in

a feature space, a k-nearest neighbor (kNN) graph Gf = (Af , X) is built based on node feature

matrix X , where Af is the adjacency matrix of Gf . The l-th layer output can then be expressed as

follows using the input graph (Af , X) :

H
(l+1)
f = σ(D̂−

1
2

f Âf D̂
− 1

2
f H

(l)
f Ŵ

(l)
f), (2.58)

where Âf = Af + If , D̂f is the diagonal degree matrix of Âf , σ(·) is the ReLU activation

function, the initial H(0)
f = X and Ŵ (l)

f is the learnable weight matrix of the l-th layer in GCN. In

this way, the model learns the node embedding Zf that captures the specific information in feature

space. As for the graph topology, the model takes the original input graph Gt = (At, X) (t stands

for "topology"), and a GCN produces the latent embedding Zt as the output.

Additionally, to extract the common information shared by the two spaces, a common-GCN

adopts a parameter sharing strategy. First, the node embedding Zct from topology graph Gt is

obtained by :

H
(l+1)
ct = σ(D̂−

1
2

t ÂtD̂
− 1

2
t H

(l)
ct Ŵ

(l)
c), (2.59)

where H(0)
ct = X and Ŵ (l)

c is the l-th layer learnable weight matrix of common-GCN. Then, by

using the same weight matrix Ŵ (l)
c , the node embedding Zcf from feature graph Gf is produced :

H
(l+1)
cf = σ(D−

1
2

f ÂfD
− 1

2
f H

(l)
cf Ŵ

(l)
c). (2.60)

42
CHAPITRE 2 — Statistical and deep learning models for recommender systems and node

clustering

Next, the common embedding Zc of the two spaces is determined as the barycenter of the two

output embeddings from common-GCN :

Zc = (Zct + Zcf)/2. (2.61)

A final embedding Z is obtained by :

Z = αtZt + αcZc + αfZf , (2.62)

where αt, αc, αf ∈ RN×1 indicate the attention values of N nodes with embeddings Zt, Zc, Zf ,

respectively.

BiTe-GCN. An alternative approach based on the GCN architecture was introduced to inves-

tigate the word semantic structures in BiTe-GCN [Jin et al., 2021]. This model initially con-

verts the original text-rich network into a bi-typed network with two sorts of nodes, namely the

real nodes (e.g., document nodes in the original network) and the entity nodes (e.g., phrases or

words extracted form documents). Afterwards, it generates three different kinds of edges : edges

between real nodes, such as paper citations, edges between real nodes and entity nodes that re-

flect their inclusion relationships, and edges between entity nodes which indicate the semantic

structure information in the documents. In particular, BiTe-GCN introduces a document network

GD = (VD, ED) and another word network GW = (VW , EW). Each node in GD is associated

with a document di that describes it, and in GW . The nodes VW is a collection of all representa-

tive words or phrases extracted form the corpus. EW is the edges connecting word pairs (wi, wj).

Based on these two networks, a bi-typed network is constructed as :

GDW = (VD ∪ VW , EDW), (2.63)

with

EDW = {(d,w)|w ∈ d,∀w ∈ VW , ∀d ∈ VD}. (2.64)

Three networks introduced above are then combined to form the entire network G :

G = GD ∪GDW ∪GW = (VD ∪ VW , ED ∪ EDW ∪ EW). (2.65)

BiTe-GCN finally performs convolution to enable message passing within the same kind of sub-

network :

H
(l+1)
t = GCNt(H(l)), ∀t ∈ {D,W,DW}, (2.66)

2.4 – Clustering in heterogeneous information networks 43

here three different GCNs are adopted, following by an aggregation for each sort of sub-networks :

H(l+1) = AGGREGATE(H(l+1)
t), ∀t ∈ {D,W,DW}. (2.67)

AS-GCN. As an extension of BiTe-GCN, an adaptive semantic architecture of GCNs, namely

AS-GCN [Yu et al., 2021] was developed. It combines a GCN module with a neural topic model

(NTM) that extracts word and topic semantics from raw text. Based on the VAE framework,

NTM learns the latent topics through an encoding-decoding procedure. Specifically, a latent topic

embedding Z is defined as :

Z ∼ N (µ, σ2IT), (2.68)

where µ and σ2 are obtained by a neural network encoder fe. The topic proportions are then

obtained as :

θ = softmax(Z). (2.69)

The predicted words Wd in the document d are generated by using the topic distribution θ as

follows :

Wd ∼ softmax(β>θd), (2.70)

where each entry βtv represents the probability that the vocable v occurs in the t-th topic.

Subsequently, using words retrieved from raw text and distributions obtained from NTM, AS-

GCN transforms the initial text-rich network into a tri-typed heterogeneous network. It includes

three types of nodes : real nodes (e.g., document nodes in the original network), topic nodes (e.g.,

topics obtained from NTM) and entity nodes (e.g. words extracted from raw text) and four types

of edges : edges between real nodes, edges between real nodes and topic nodes reflecting the topic

distribution in documents, edges between topic nodes and entity nodes representing the word

distribution in topics, as well as edges between entity nodes indicating the local word semantics.

Finally, the augmented tri-typed network can be defined as :

G = (VD ∪ VT ∪ VW , ED ∪ EDT ∪ ETW ∪ EW). (2.71)

The convolution and aggregation processes of AS-GCN are similar to those in BiTe-GCN. The

main difference is that AS-GCN requires the calculation of an additional loss term for the NTM

part.

44
CHAPITRE 2 — Statistical and deep learning models for recommender systems and node

clustering

Inspired by the combination of topic modeling and graph embeddings, as well as the capabil-

ity to preserve graph topology with a latent position-based decoder developed in Chapter 4, we

further proposed a new method to account for all these components. In our approach, a specialized

document similarity-based graph convolutional network is used to encode both the graph topology

structure and semantics in textual data. Two decoders are then employed to reconstruct both the

graph adjacency matrix and the document-term matrix. More details on graph learning ability and

node clustering performance are stated in Chapter 5.

CHAPTER 3
DeepLTRS: a deep

latent recommender
system based on user

ratings and reviews

45

46
CHAPITRE 3 — DeepLTRS: a deep latent recommender system based on user ratings and

reviews

We introduce a deep latent recommender system named deepLTRS in order to provide

users with high quality recommendations based on observed user ratings and texts of

product reviews. Our approach adopts a variational auto-encoder (VAE) architecture as

a deep generative latent model for an ordinal matrix encoding ratings and a document-

term matrix encoding the reviews. Moreover, a user-majoring encoder and a product-

majoring encoder are constructed to jointly capture user and product preferences. Due

to the specificity of the model structure, an original row-column alternated mini-batch

optimization algorithm is proposed to deal with user-product dependencies and compu-

tational burden. Numerical experiments on simulated and real-world data sets demon-

strate that deepLTRS outperforms the state-of-the-art, in particular in contexts of ex-

treme data sparsity.

This Chapter is related with one accepted communication in an international workshop,

Missing rating imputation based on product reviews via deep latent variable models,

ICML Workshop on the Art of Learning with Missing Values (Artemiss), (2020), and

one accepted journal version, DeepLTRS: A deep latent recommender system based on

user ratings and reviews, Pattern Recognition Letters, vol. 152, pp. 267-274 (2021).

3.1 Introduction . 47

3.1.1 Organization of the chapter 48

3.2 A rating-and-review based recommender system 48

3.2.1 Framework and notations 48

3.2.2 Generative model of deepLTRS 49

3.3 Variational auto-encoding inference 52

3.3.1 Variational lower bound (ELBO) 52

3.3.2 Monte Carlo EM algorithm and mini-batching 54

3.4 Numerical experiments on simulated data 57

3.4.1 Architecture and simulation setup 57

3.4.2 DeepLTRS with and without text data 58

3.4.3 Benchmark and effect of data sparsity 61

3.5 Application on real-world data 62

3.6 Conclusion and perspectives . 68

3.1 – Introduction 47

3.1 Introduction

As discussed in Chapter 1.1, in the current era of information explosion, recommendation sys-

tems have become central tools in a wide range of applications ranging from e-commerce [Huang

et al., 2007] to the global positioning of IoT devices [Gao et al., 2019]. Examples of recommended

objects include movies, songs, books, hotels, as well as restaurants to name just a few. At the core

of the research on recommendation systems, we point out a widely adopted collaborative filtering

(CF) approach [Su and Khoshgoftaar, 2009], which relies on similarities among user historical

preferences on a set of items. Generally, by converting the list of users and products into a user-

item rating matrix, a CF-based recommender system can be considered as completing the rating

matrix based on observed entries [Ramlatchan et al., 2018].

While most users only ranked few products, the rating matrix is usually large and extremely

sparse due to massive amounts of missing values. Considering that many consumers also use texts

to express various opinions along with the scores, reviews can contain crucial information from

different aspects about the products, compared to a single rating. Therefore, efforts have been

recently put in developing algorithms capable of dealing not only with ratings but also with other

sources of information like text reviews to address the matrix completion problem in the case of

high data sparseness [Chen et al., 2015]. A long series of techniques have been proposed in the

literature for recommendations and we discussed some of them in Section 2.2.

In order to both improve the robustness to data sparsity and the interpretability of recom-

mendations, we introduce here a deep latent recommender system (deepLTRS), which takes into

account both observed ratings and the textual information collected in product reviews as the

model input. DeepLTRS extends the Probabilistic matrix factorization (PMF) by relying on recent

auto-encoding extensions. Considering the review part, we use the ProdLDA model introduced

in Section 2.1.2 to obtain higher quality topics with respect to a standard LDA. Our goal here is

to show that, regardless the parsimony of our model, we are still able to improve performance

compared to the state-of-the-art techniques. Our approach has the following key-features:

— a variational auto-encoder (VAE) architecture is used as a generative latent model for both

an ordinal matrix encoding ratings and a document-term matrix encoding reviews;

48
CHAPITRE 3 — DeepLTRS: a deep latent recommender system based on user ratings and

reviews

— since the connection between latent factors and the review data is difficult to formulate,

we adopt a neural network to capture the relationship between latent representations and

latent topics;

— one user-majoring encoder and another product-majoring encoder are constructed to jointly

capture user and product preferences. Then, two different decoders are designed for ratings

and reviews separately;

— due to the specific model structure, an original strategy of alternating rows and columns in

mini-batch optimization is proposed to deal with user-product dependencies and to reduce

the computational costs. We further provide a theoretical proof of the unbiasedness of our

empirical loss estimator.

3.1.1 Organization of the chapter

This chapter is organized as follows. In Section 3.2, the generative model of deepLTRS for

both ratings and reviews is described. Section 3.3 details the auto-encoding variational inference

procedure along with an original row-column alternated mini-batch strategy allowing us to reduce

the computational burden. Our approach is then applied in Section 3.4 on simulated data sets

to highlight its main features. DeepLTRS is also compared in this section with other state-of-

the-art approaches in the contexts of extreme data sparsity. Section 3.5 presents a benchmark

of deepLTRS and most efficient alternatives on real-world data sets from e-commerce systems.

Finally, some conclusive remarks and possible further works are proposed in Section 3.6.

3.2 A rating-and-review based recommender system

In this section, we describe the deepLTRS accounting for both ratings and reviews for recom-

mendations.

3.2.1 Framework and notations

We consider data sets involving M users who are scoring and reviewing N products. Such

data sets can be encoded by two matrices: an ordinal data matrix Y accounting for the scores that

users assign to products and a document-term matrix (DTM) W encoding the reviews that users

write about products.

3.2 – A rating-and-review based recommender system 49

Ordinal data. The ordinal data matrix Y in NM×N is such that Yij corresponds to the score

that the i-th user assigns to the j-th product. This matrix is usually extremely sparse in practice

(most of its entries are missing) corresponding to users not scoring nor reviewing some products.

Conversely, when a score is assigned, it takes values in {1, . . . ,H} with H > 1. Henceforth,

we assume that an ordinal scale is consistently defined. For instance, when customers evaluate

products, 1 always means "very poor" and H is always associated with "excellent" reviews. The

number of ordered levels H is assumed to be the same for all (not missing) Yij . If it is not the

case, a scale conversion pre-processing algorithm (see e.g. [Gilula et al., 2019]) can be employed

to normalize the number of levels.

Text data. By considering all the available reviews, it is possible to store all the different voca-

bles employed by the users into a dictionary of size V . Thenceforth, we denote by W (i,j) a row

vector of size V encoding the review by the i-th user to the j-th product. The v-th entry of W (i,j),

denoted by W (i,j)
v , is the number of times (possibly zero) that the word v of the dictionary appears

into the corresponding review. The document-term matrix W is obtained by concatenation of all

the row vectors W (i,j). For the sake of clarity, we assume that the review W (i,j) exists if and only

if Yij is observed. Note that, since each row in W corresponds to one (and only one) not missing

entry in Y , the number of rows in the DTM is the same as the number of observed non-missing

values in Y .

3.2.2 Generative model of deepLTRS

It is now assumed that each user i and product j have latent representationsRi and Cj , respec-

tively, in a low-dimensional space RP , with P � min{M,N}.

Ratings. The following generative model is adopted for the ratings

Yij = 〈Ri, Cj〉+ bui + bpj + εij , ∀i = 1, . . . ,M,∀j = 1, . . . , N, (3.1)

where 〈·, ·〉 is the standard scalar product and bui , bpj are two unknown real parameters accounting

for biases specific to users and products respectively. Finally, the residuals εij are assumed to be

i.i.d. normally distributed random variables: εij ∼ N (0, η2).

50
CHAPITRE 3 — DeepLTRS: a deep latent recommender system based on user ratings and

reviews

In the following, Ri and Cj are seen as random vectors with zero mean and the identity matrix

of dimension P as the variance, such that

Ri
i.i.d∼ N (0, IP), ∀i,

Cj
i.i.d∼ N (0, IP), ∀j,

(3.2)

with Ri and Cj assumed independent. The unbiased version of this model (i.e. with bui = bpj = 0)

is the well known PMF. Note that, due to rotational invariance of PMF, the choice of isotropic

prior distributions for Ri and Cj is in no way restrictive.

Proof.

From Eqs.(3.1)-(3.2), it easily follows that

Yij ∼ N (bui + bpj , P + η2). (3.3)

Now, instead of assuming isotropic prior distributions for Ri and Cj , we set

Ri
i.i.d∼ N (0,ΣR), ∀i

Cj
i.i.d∼ N (0,ΣC), ∀j

with ΣR and ΣC being symmetric positive definite matrices. Then

ΣR = QRΛRQ>R,

with ΛR being the diagonal matrix with the eigenvalues of ΣR on the main diagonal and QR the

orthogonal matrix of the corresponding eigenvectors. Similarly

ΣC = QCΛCQ>C .

Then, the two random vectors Ri := Λ−
1
2

R Q>RRi and Cj := Λ−
1
2

C Q>CCj are independent and

follow an isotropic Gaussian distribution each. Thus, if we set

Yij = 〈Ri, Cj〉+ bui + bpj + εij ,

we recover the marginal distribution in Eq. (3.3).

�

3.3 – A rating-and-review based recommender system 51

Reviews. We now extend the generative model outlined in the previous section to account for

the document-term matrix W . Following the LDA model, each document W (i,j) is drawn from a

mixture distribution over a set of T latent topics. In deepLTRS, topic proportions in the document

W (i,j) are denoted by θij , a vector lying in the T − 1 simplex, i.e. θij ∈ [0, 1]T , such that∑T
t=1 θij = 1. Moreover, we assume that

θij = σ(fγ (Ri, Cj)), ∀i, j, (3.4)

where fγ : R2P → RT is a continuous function approximated by a neural network parametrized

by γ to capture the relationship between latent factors and latent topics, σ : RT → RT denotes the

softmax function defined by (σ(z))t = exp(zt)∑T

l=1 exp(zl)
, t ∈ 1, . . . , T, where (σ(z))t is the t-th entry

of vector σ(z) ∈ [0, 1]T and z denotes here a generic vector in RT .

As in LDA, each document W (i,j) is seen as a vector in NV (we recall that V is the dictionary

size) obtained as

W (i,j)|θij ∼ Multinomial(Lij , βθij), ∀i, j, (3.5)

where Lij is the number of words in the review W (i,j) and β ∈ [0, 1]V×T is a matrix whose entry

βvt is the probability that vocable v occurs in topic t. By construction,
∑V
v=1 βvt = 1,∀t. In

addition, conditionally to vectors θij , all the reviews {W (i,j)}i,j are independent random vectors.

A graphical representation of the generative model described so far can be seen in Figure 5.1.

Yij

θij

Ri Cj

η2, bui , b
p
j

γ

W (i,j)β

M N

MN

Figure 3.1 – Graphical representation of the generative model for deepLTRS (variational param-

eters are not included).

52
CHAPITRE 3 — DeepLTRS: a deep latent recommender system based on user ratings and

reviews

3.3 Variational auto-encoding inference

This section now details the auto-encoding variational inference procedure and proposes an

original row-column alternate mini-batch strategy to reduce the computational burden.

3.3.1 Variational lower bound (ELBO)

Let us denote by Θ = {η2, γ, β, bu, bp} the set of the model parameters introduced so far. A

natural inference procedure associated with the proposed generative model would consist in look-

ing for Θ̂ maximizing the (integrated) log-likelihood of the observed data (Y,W). Unfortunately,

this quantity is not directly tractable and we rely on a variational lower bound to approximate it.

Let us consider a joint distribution q(·) over the pair (R,C) of all (Ri)i and (Cj)j . Thanks to the

Jensen inequality, it holds that

log p(Y,W |Θ) ≥Eq(R,C)

[
log p(Y,W,R,C|Θ)

q(R,C)

]
=Eq(R,C)

[
log p(W,Y |R,C,Θ) + log p(R,C)

q(R,C)

]
=Eq(R,C) [log p(W |R,C, β)]

+Eq(R,C)
[
log p(Y |R,C, γ, η2, bu, bp)

]
−KL(q(R,C)||p(R,C)),

(3.6)

where KL denotes the Kullback-Leibler divergence between the variational posterior distribution

of the latent row vectors (Ri)i, (Cj)j and their prior distributions. The above inequality holds

for every joint distribution q(·) over the pair (R,C). In order to deal with a tractable family of

distributions, the following mean-field assumption is made

q(R,C) = q(R)q(C) =
M∏
i=1

N∏
j=1

q(Ri)q(Cj). (3.7)

Moreover, since Ri and Cj follow Gaussian prior distributions (Eq. (3.2)), q(·) is assumed to

be as follows

q(Ri) = g(Ri;µRi := h1,φ(Yi,W (i,·)), SRi := h2,φ(Yi,W (i,·))), (3.8)

and

q(Cj) = g(Cj ;µCj := l1,ι(Y j ,W (·,j)), SCj := l2,ι(Y j ,W (·,j))), (3.9)

3.3 – Variational auto-encoding inference 53

Figure 3.2 – A deep-learning-like model view of deepLTRS.

where g(·;µ, S) is the pdf of a Gaussian multivariate distribution with mean µ and variance S.

The two matrices SRi and SCj are assumed to be diagonal matrices with P elements. In addition,

Yi (respectively Y j) denotes the i-th row (column) of Y , W (i,·) :=
∑
jW

(i,j) corresponds to a

document concatenating all the reviews written by user i and W (·,j) :=
∑
iW

(i,j) corresponds

to all the reviews about the j-th product. The functions h1,φ and h2,φ encode elements of RN+V

to elements of RP . Similarly, l1,ι and l2,ι encode elements of RM+V to elements of RP . These

functions are known as the network encoders parametrized by φ and ι, respectively.

Thanks to Eqs. (3.1)-(3.5)-(3.7)-(3.8)-(3.9) and by computing the KL divergence in Eq. (3.6),

the evidence lower bound (ELBO) on the right hand side of Eq. (3.6) can be further developed as

ELBO(Θ) =
∑
i,j

(
Eq(Ri,Cj)

[
−1

2

(
(Yij − (R>i Cj + biu + bjp))2

η2 + log η2
)])

+
∑
i,j

(
Eq(Ri,Cj)

[(
W (i,j)

)>
log (βσ(fγ(Ri, Cj)))

])

−
∑
i

[
−1

2
(
tr(SRi) + (µRi)>µRi − P − log |SRi |

)]
−
∑
j

[
−1

2
(
tr(SCj) + (µCj)>µCj − P − log |SCj |

)]
+ ξ

(3.10)

where now Θ := {η2, γ, β, bu, bp, φ, ι} denotes the set of generative model and variational param-

eters, ξ is a constant term that includes all the elements not depending on Θ.

VAE structure. The deep view of deepLTRS is shown in Figure 3.2. We point out that, in the

deep learning literature, the term encoder denotes a neural network that maps the observed data

54
CHAPITRE 3 — DeepLTRS: a deep latent recommender system based on user ratings and

reviews

into a lower dimension space [Kingma and Welling, 2019]. This is precisely what the functions

h1,φ, h2,φ and l1,ι, l2,ι do, by mapping the observed data from RN+V and RM+V , respectively,

to the variational parameters in RP . Symmetrically, the term decoder denotes a neural network

that maps the "compressed" data from the lower dimension space to the original dimension. In

deepLTRS, this role is played by

— RCT , the matrix product of R and C, that maps the lower dimension representations to

the reconstructed ordinal data matrix Ŷ ;

— β, which maps the topic proportions from RT into vectors in RV (the "reconstructed" rows

of Ŵ).

Unconstrained β. From a practical point of view, when optimizing the ELBO with respect to

Θ, we remove the constraint on the columns of β, that have no longer to lie on the V − 1 simplex.

This assumption corresponds to the ProdLDA model. In order to obtain consistent parameters for

the multinomial distribution followed by W (i,j), a softmax function σ(·) is applied to the product

βθij instead of θij only.

3.3.2 Monte Carlo EM algorithm and mini-batching

The maximization of ELBO(Θ) in Eq. (3.10) can be performed by means of a Monte Carlo

EM algorithm that alternates a sampling step, to numerically approximate the expectations, with

a maximization step to update the value of the parameters Θ. This algorithm was adopted pre-

viously for standard variational auto-encoders (VAEs) in Kingma and Welling [2014a]; Rezende

et al. [2014]. As in those papers (and in contrast with what happens in simpler latent variable

models), there is no close formula for the maximization step and gradient descent algorithms are

employed to maximize the (Monte Carlo) lower bound with respect to Θ ∗. Performing mini-

batch optimization paired with stochastic gradient descent algorithms [Bottou, 2010] is necessary

to reduce the computational burden when working with large data sets. However, there is a sub-

stantial difference between the model we adopt and standard VAEs. Whereas in a standard VAE

the ELBO can be written as the sum of as many terms as the number of observations, ELBO(Θ)

in Eq. (3.10) does not factorize over the number of observations. In more detail, the model sees

∗. We point out that maximizing ELBO(Θ) with respect to Θ is the same as minimizing −ELBO(Θ) and this is

why we mention gradient descent algorithms.

3.3 – Variational auto-encoding inference 55

the pair (Yij ,W (i,j)) as one observation. Assuming for simplicity that there is no missing data,

the total number of observations is MN . The ELBO in Eq. (3.10) is unfortunately not the sum

of MN terms due to the graphical structure of the generative model in Figure 5.1. Nevertheless,

stochastic gradient descent can still be performed in our case thanks to what follows.

Let us define

zi :=−KL(q(Ri) ‖ p(Ri))

+ Eq(Ri,C)
[
log p(Yi|Ri, C,Θ) + log p(W (i,.)|Ri, C,Θ)

]
,

(3.11)

for all i ∈ {1, . . . ,M}, with Yi, Ri and W (i,.) previously defined. We now introduce a new

random variable Z such that

π := P {Z = zi} = 1
M
. (3.12)

A sample of Z corresponds to a uniformly at random extraction of one row in Y .

The proposition below states that the gradient of MZ with respect to all parameters but ι

(the product encoder parameter) is an unbiased estimator of the ELBO’s gradient with respect to

the same parameters.

Proposition 1. For the random variable Z, whose probability mass function is defined in

Eq. (3.12), it holds that

Eπ
[
∇(η2,γ,β,φ,bu,bp) (MZ)

]
= ∇(η2,γ,β,φ,bu,bp)

(
ELBO(Θ)

)
, (3.13)

where∇x(f) denotes the gradient of a function f(·) with respect to the variable(s) x.

Proof.

First, let us notice that, due to the definition of zi and the assumption in Eq. (3.7), it holds that

∇(η2,γ,β,φ,bu,bp)zi = ∇(η2,γ,β,φ,bu,bp)
[
−KL(q(Ri) ‖ p(Ri))

+
P∑
j=1

(Eq(Ri,Cj)[log p(Yij |Ri, Cj ,Θ)])

+
P∑
j=1

(Eq(Ri,Cj)[log p(W (i,j))|Ri, Cj ,Θ)])
]
.

(3.14)

Then, Eq. (3.12) leads to

Eπ
(
∇(η2,γ,β,φ,bu,bp)MZ

)
=

M∑
i=1
∇(η2,γ,β,φ,bu,bp)zi,

56
CHAPITRE 3 — DeepLTRS: a deep latent recommender system based on user ratings and

reviews

and replacing Eq. (3.14) into the above equation we obtain Eq. (3.13), recalling that

∇(η2,γ,β,φ,bu,bp)(·) does not include the partial derivative with respect to ι. Thus

∇(η2,γ,β,φ,bu,bp) (−KL(q(Cj) ‖ p(Cj)) = 0.

�

Similarly, the quantity

wj :=−KL(q(Cj) ‖ p(Cj))

+ Eq(R,Cj)
[
log p(Y j |R,Cj ,Θ) + log p(W (.,j)|R,Cj ,Θ)

]
,

(3.15)

can be used to introduce an unbiased estimator of ∇(η2,γ,β,ι,bu,bp)(ELBO(Θ)), where the partial

derivative of the lower bound with respect to φ (the user encoder parameter) is now not taken into

account.

The above proposition justifies a maximization of the ELBO which alternates rows and

columns mini-batching. First, rows of Y are extracted uniformly at random, with re-injection,

in such a way that we obtain a collection of random variables Z1, Z2, . . . , Zn, . . . , being i.i.d.

copies of Z. Hence, each Zn is used to update all the model parameters but ι. Moreover, when

1: ESTIM (Y,W)

2: (R,C)← INIT(N (0, 1)) /* Initialize with Gaussian distribution */

3: Initialization parameters Θ

4: while log p
(
Y,W |R,C,Θ

)
increases do

5: for all i: /* Row-majoring mini-batch */

6: Ri ∼ N (h1,φ, h2,φ) /* Sampling users */

7: Θ−ι = OPTIM
(
log p(Y,W |Ri, C, η2, γ, β, bu, bp, φ)

)
8: for all j: /* Column-majoring mini-batch */

9: Cj ∼ N (l1,ι, l2,ι) /* Sampling products */

10: Θ−φ = OPTIM
(
log p(Y,W |R,Cj , η2, γ, β, bu, bp, ι)

)
11: end while

12: return R,C,Θ

Algorithm 3.1 – Mini-batch estimation of deepLTRS

3.4 – Numerical experiments on simulated data 57

performing row mini-batch, the current value of the whole matrix C is used, as well as all columns

in Y and all the reviews by products. Conversely, when performing column mini-batch, the whole

matrixR is used, as well as all rows of Y and all the reviews by users. In this case, the optimization

is performed with respect to all the model parameters but φ. The pseudo code in Algorithm 4.1

summarizes the procedure of estimation detailed so far for deepLTRS.

3.4 Numerical experiments on simulated data

Before to go further, let us firstly describe the architecture of deepLTRS and the simulation

setup that will be used later in this section.

3.4.1 Architecture and simulation setup

Architecture of deepLTRS. Our architecture involves three neural networks: two encoders, and

an internal neural net working in the low dimensional space. The first encoder (user encoder)

models hφ in Eq. (3.8). It has two hidden layers, with 50 neurons each, equipped with a softplus

activation function and followed by a dropout with a ratio of 0.2 and batch normalization. The

second encoder (product encoder) models lι in Eq. (3.9). It also has two hidden layers, the number

of neurons and subsequent operations are the same as the user encoder. The internal neural net

models fγ in Eq. (3.4). It has one hidden layer equipped with 80 neurons and a softmax activation

function. In deepLTRS, the decoding phase is managed in a simpler way: i) ratings: a scalar

product between R and C, followed by the intercepts summation decodes the ratings; ii) reviews:

a linear map, involving the decoding matrix β, is followed by a softmax function in order to

produce the probabilities of word occurrences. We stress that the decoding of reviews, from θ to

the reconstructed matrix W , can be seen as a simple neural net with no hidden layers.

Simulation setup. An ordinal data matrix Y with M = 750 rows and N = 600 columns is sim-

ulated according to a latent continuous cluster model. The rows and columns of Y are randomly

assigned to two latent groups, in equal proportions. Then, for each pair (i, j) corresponding to an

entry of Y , the sampling of a Gaussian random variable Zij is detailed in Table 3.1a. In addition,

the following thresholds t0 = −∞, t1 = 1.5, t2 = 2.5, t3 = 3.5, t4 = +∞ are used to sample the

58
CHAPITRE 3 — DeepLTRS: a deep latent recommender system based on user ratings and

reviews

Table 3.1 – Simulation of ratings and reviews

(a) Score assignments.

cluster 1 cluster 2

cluster 1 ∼ N (2, 1) ∼ N (3, 1)

cluster 2 ∼ N (3, 1) ∼ N (2, 1)

(b) Topic assignments.

cluster 1 cluster 2

cluster 1 A B

cluster 2 C D

note Yij ∈ {1, ..., 4} as

Yij =
4∑

k=1
k1(Zij)]tk−1,tk[. (3.16)

Next, regarding the simulation of text reviews, four different texts from the BBC news are used to

build a message for each note Yij according to the scheme summarized in Table 3.1b. One text is

about the birth of Princess Charlotte, the second one is about black holes in astrophysics, the third

one focus on British politics and the last one is about cancer diseases in medicine (denoted by A,

B, C, D respectively).

Thus, when the user i in cluster X(R)
i = 2 rates the product j in cluster X(C)

j = 1, a random

variable Zij ∼ N (3, 1) is sampled, then Yij is calculated via Eq. (3.16) and the review W (i,j) is

built by random extraction of words from message C. All the sampled messages have an average

length of 100 words. Finally, in order to introduce some noise, only 80% of words are extracted

from the main topics, while the remaining 20% are extracted from the other topics uniformly at

random.

The time complexity of deepLTRS is linearly affected by the number of users, products and

the vocabulary. For instance, for data with M = 750, N = 600, V = 1034, the training time of

20 epochs is 1111.57s, while with V = 558, the execution takes 637.96s.

3.4.2 DeepLTRS with and without text data

A first experiment highlights the interest of using the reviews to make more accurate rating

predictions. To do so, 10 data sets are simulated according to the above simulation setup, with

sparsity rates of Y (i.e. proportion of missing data over MN entries) varying in the interval

[0.5, 0.99]. The ratios of training set, validation set and test set are 80%, 10% and 10% of the

observed (i.e. not missing) simulated data. Two versions of deepLTRS are fitted to the simulated

3.4 – Numerical experiments on simulated data 59

data, the first one accounting for both ordinal and text data (corresponding to the generative model

described in Section 3.2) and the second one not using text, based on the PMF in Eq. (3.1). For

the sake of simplicity, in both versions, as well as in all the experiments shown in this paper, bu

and bp are fixed (and not estimated) to the average rating by users and products, respectively.

0.5 0.6 0.7 0.8 0.9 1.0
Rate of sparsity

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Te
st

 R
M

SE

deepLTRS
deepLTRS (no texts)

Figure 3.3 – Comparison of deepLTRS with and without text information.

Figure 3.3 shows the evolution of the test RMSE of deepLTRS, with and without using text data

for rating forecasts, versus the data sparsity level. We can observe that, even though both models

suffer from the high data sparsity (increasing RMSE), the use of the text greatly helps deepLTRS

to maintain a high prediction accuracy for data sets with many missing values. Furthermore, the

use of text reviews tends to reduce the variance of the deepLTRS predictions.

More intuitively, the visualization of user and product embeddings of deepLTRS with and

without text data is provided as following. Figure 3.4 and Figure 3.5 show the t-SNE represen-

tations of Ri and Cj for deepLTRS with and without text data, respectively, with data sparsity of

0.99. We note that the two (row and column) clusters are well separated despite the large degree

of sparsity in Figure 3.4, which is well representative of the simulation setup. However, without

text data, the model does not capture well the structure of simulated data, as shown in Figure 3.5.

The visualization effects demonstrate that the addition of text information is important and useful

for deepLTRS.

60
CHAPITRE 3 — DeepLTRS: a deep latent recommender system based on user ratings and

reviews

30 20 10 0 10 20 30

40

30

20

10

0

10

20

30

User
Product

Figure 3.4 – Visualization of user and product embeddings of deepLTRS with text data (sparsity

of 0.99).

40 20 0 20 40 60

20

10

0

10

20

30
User
Product

Figure 3.5 – Visualization of user and product embeddings of deepLTRS without text data (sparsity

of 0.99).

3.5 – Numerical experiments on simulated data 61

3.4.3 Benchmark and effect of data sparsity

In this part, we benchmark deepLTRS by comparing with some state-of-the-art methods, in

condition of high data sparsity. The same experimental setup was used to benchmark deepLTRS

(from now on, always accounting for text data). Our model is here compared to HFT, HPF, CCPF

and ALFM, introduced in Section 2.2. Since for CCPF, many combinations of sparsity and re-

sponse models exist, we select the pair of models having the best performance.

Figure 3.6 shows the evolution of the test RMSE for deepLTRS and its competitors. We

first remark that, although HFT accounts for the text reviews, it does not perform very well in

our simulated scenario and turns out to be very sensitive to the data sparsity. Second, HPF also

appears to be quite sensitive to the data sparsity and it always performs worse than CCPF, ALFM

and deepLTRS. Finally, although CCPF and ALFM present less sensitivity to the data sparsity, as

the changes in the RMSE are small along with the sparsity level, generally HFT performs better

than them when the sparsity is less than a certain threshold. In addition, even if the sparsity reaches

0.99, deepLTRS still outperforms all other models. Let us recall that the simulation setup does not

follow the deepLTRS generative model and therefore does not favor any method here.

0.5 0.6 0.7 0.8 0.9 1.0
Rate of sparsity

1.0

1.5

2.0

2.5

Te
st

 R
M

SE

HFT
HPF
CCPF-PMF
ALFM
deepLTRS

Figure 3.6 – Test RMSE of models with different sparsity level on simulated data.

62
CHAPITRE 3 — DeepLTRS: a deep latent recommender system based on user ratings and

reviews

3.5 Application on real-world data

We now consider applying deepLTRS to real-world datasets consisting of different product re-

views from Amazon † ‡. The data includes reviews (ratings, text), product metadata (descriptions,

category, price, brand and image features) and links. In this section, deepLTRS is compared with

previously mentioned models: HFT, HPF, CCPF, ALFM and TransNet.

Data pre-processing. In the pre-processing step, we kept records including user and product

information, ratings and a plain-text review. For Amazon Fine Food dataset, we only considered

users with more than 20 reviews and products reviewed by more than 50 users to obtain more

meaningful information; for other three categories of Amazon product data, we used the reduced

5-core version where each of the remaining users and items have at least five reviews. Retained

data were processed by removing all punctuations, numbers and stop words, then we deleted the

words that appeared less than three times in the entire vocabulary for all data sets. The statistics

of the processed data sets are given in Table 3.2.

Table 3.2 – Statistics of evaluation data sets.

Dataset #users #items #reviews #total_words #rest_words sparsity

Fine Foods 1643 1733 32811 5743 3047 98.85%

Musical Instruments 1429 900 10254 15050 5846 99.20%

Patio 1686 962 13258 22441 8746 99.18%

Automotive 2928 1835 20467 20113 7737 99.62%

Settings. Five independent runs of the algorithm were performed. For each run, we randomly

selected 80% of the data as the training set, 10% samples for validation and the remaining 10%

data as the test set. We trained our model for 100 epochs. As a method for stochastic optimization,

we adopted an Adam optimizer [Kingma and Ba, 2014], with a learning rate of 2e−3. The RMSE

is calculated on both the validation and test set. Reported test RMSE is obtained when the RMSE

on the validation set was the lowest, as for all methods.

†. https://snap.stanford.edu/data/web-FineFoods.html
‡. https://jmcauley.ucsd.edu/data/amazon/

https://snap.stanford.edu/data/web-FineFoods.html
https://jmcauley.ucsd.edu/data/amazon/

3.5 – Application on real-world data 63

Rating prediction. Table 3.3 presents the test RMSE for deepLTRS and its competitors on the

predicted ratings for Amazon data sets. Since HFT is restricted by the fact that the numbers of

latent factors and topics should be equal, we set D = T = 50. First of all, HPF and CCPF

only considered the user rating information. By replacing the single Poison distribution in HPF

with a mixture model, CCPF has made great improvements in RMSE. Next, the remaining four

methods all consider both ratings and reviews. Among them, TransNet and deepLTRS are deep-

learning based models. It can be seen that, in general, ALFM and deepLTRS always have better

performance than HFT and TransNet.

It is worth mentioning that deepLTRS outperforms ALFM on two data sets, Fine food and

Patio, while ALFM has better performance on the other two data sets since when the data has many

positive ratings, ALFM setup benefits from this configuration. Indeed, in the score generation

phase, ALFM introduces the average of all ratings to the formula, which leads the predictions

to a higher ranking level. When most of the scores of the experimental data are very positive,

for example, a lot of scores are equal to 4 in Amazon data, ALFM can achieve very good results

thanks to this average bias parameter. Nevertheless, when the score distribution of the data is more

dispersed, ALFM cannot perform well, as seen in the following analysis.

Table 3.3 – Test RMSE on Amazon data sets.

Data sets HFT HPF CCPF-PMF

Fine Food 1.4477 (±0.0465) 2.9528 (±0.0144) 1.2913 (±0.0105)

Musical Instruments 1.3505 (±0.0061) 4.0926 (±0.0164) 1.1151 (±0.0242)

Patio 1.2183 (±0.0096) 3.8782 (±0.0051) 1.1353 (±0.0174)

Automotive 1.0844 (±0.0084) 4.3252 (±0.0041) 1.0105 (±0.0186)

Average 1.2752 (±0.3729) 3.8122 (±0.5220) 1.1381 (±0.1020)

64
CHAPITRE 3 — DeepLTRS: a deep latent recommender system based on user ratings and

reviews

Data sets ALFM TransNet deepLTRS

Fine Food 1.0705 (±0.0014) 1.3783 (±0.0012) 0.9788 (±0.0215)

Musical Instruments 0.8929 (±0.0013) 1.0912 (±0.0057) 0.9702 (±0.0143)

Patio 1.0219 (±0.0027) 1.0589 (±0.0009) 0.9855 (±0.0319)

Automotive 0.8797 (±0.0016) 1.0649 (±0.0012) 0.9299(±0.0511)

Average 0.9663 (±0.0819) 1.1483(±0.1334) 0.9661 (±0.0392)

Analysis of the predictions. We analyze the differences between the prediction of ALFM and

deepLTRS with the real ratings on the simulated data (discussed in 3.4.1) with the sparsity of

0.9. It is worth mentioning that, here we only compared ALFM with deepLTRS since ALFM has

achieved significant performance on the Amazon data sets.

Table 3.4 – Statistics of the predictions

Data set Models Min. Max. Mean

Simulated data_0.9
ALFM 1.8843 3.1557 2.5075

deepLTRS 0.6013 4.3340 2.5638

Table 3.4 demonstrates the statistics of the predictions. Different from ALFM that all pre-

dicted ratings are concentrated in the range of [2, 3], the scores predicted by deepLTRS are well

distributed in the interval [1, 4], which is consistent with our initial setup. Moreover, Figures 3.7-

3.8 illustrate the comparisons of the predictions and actual ratings, for ALFM and deepLTRS,

respectively. It can be seen that the method used to calculate the predicted ratings in ALFM makes

all predictions concentrated near the average. Thus, when the distribution of scores is very dis-

persed (as in the simulated data), the test RMSE will become very large. While many scores in the

Amazon data are equal to 4, ALFM can achieve very good results.

3.5 – Application on real-world data 65

1.0 2.0 3.0 4.0
real rating

2.0

2.2

2.4

2.6

2.8

3.0

3.2
AL

FM
 p

re
di

ct
io

n

Figure 3.7 – Comparisons of the predictions of ALFM and actual ratings.

1.0 2.0 3.0 4.0
real rating

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

de
ep

LT
RS

 p
re

di
ct

io
n

Figure 3.8 – Comparisons of the predictions of deepLTRS and actual ratings.

66
CHAPITRE 3 — DeepLTRS: a deep latent recommender system based on user ratings and

reviews

Interpretability on Amazon Fine Food. Figure 3.9 further presents a visualization with t-SNE

of the high-dimensional latent representations (P = T = 50) of the users and products for the

Amazon Fine food data. The overlapping regions of user and product representations correspond

to users that are likely to comment on the corresponding products.

75 50 25 0 25 50 75 100

30

20

10

0

10

20

30

40

50

User
Product

Figure 3.9 – Projection with t-SNE of user and product latent representations for the Amazon Fine

Food data set.

In order to deeper understand the latent representations meaning, we provide in Figure 3.10

and 3.11 the visualization of user latent positions on two specific latent variables (variable 3 and

11) that can be easily interpreted according to average ratings and numbers of reviews the users

give to products. Indeed, it clearly appears that variable 11 captures the rating scale of Fine food

users whereas variable 3 seems to encode the user activity (number of reviews).

3.6 – Application on real-world data 67

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−0.8

−0.4

0.0

0.4

0.0 0.5 1.0 1.5
V3

V
11

Avg. rating

●

●

●

●

●

1

2

3

4

5

Figure 3.10 – Latent representation of users on variable 3 according to average ratings.

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−0.8

−0.4

0.0

0.4

0.0 0.5 1.0 1.5
V3

V
11

Review nb

●

●

●

high (>30)

low (<=5)

medium

Figure 3.11 – Latent representation of users on variable 11 according to numbers of reviews they

give to products.

68
CHAPITRE 3 — DeepLTRS: a deep latent recommender system based on user ratings and

reviews

3.6 Conclusion and perspectives

We introduced the deepLTRS model for rating recommendation using both the ordinal and

text data available. Our approach adopted a VAE architecture as the deep generative latent model

for both an ordinal matrix encoding the ratings, and a document-term matrix encoding the re-

views. DeepLTRS presents the advantage to jointly learn representations of users and products

through the alternated mini-batch optimization and a neural network was introduced to capture

the relationship between latent factors and latent topics. Even with a simple topic model for the

text part, we are still able to improve performance compared to the state-of-the-art techniques.

Numerical experiments on simulated and real-world data sets show that our model outperforms

other competitors in the context of high data sparsity.

We finally outline some research perspectives. First, although we mainly focused on the rating

matrix, by exploiting the document-term matrix, the further ability of deepLTRS to predict the top

words used by reviewers to comment products could be inspected in future works. Furthermore,

in order to improve the modeling of text, we might replace LDA by a deep latent generative

model, possibly involving RNNs [Agarap and Grafilon, 2018] or BERT [Xu et al., 2020] for review

prediction. Moreover, the inference of the model parameters could be fine-tuned by means of the

particle swarm optimization algorithm [Trelea, 2003] for self-adaptation of the hyper-parameters

and some recent researches [Luo et al., 2019a,b, 2020] focusing on computational efficiency in the

context of high-dimensional and sparse matrices in recommender systems could be considered in

order to speed-up the learning process.

CHAPTER 4
Clustering by deep

latent position model
with graph

convolutional networks

69

70 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

In this chapter, we introduce the deep latent position model (DeepLPM), an end-to-end

generative clustering approach which combines the widely used latent position model

(LPM) for network analysis with a graph convolutional network (GCN) encoding strat-

egy. Moreover, an original variational inference procedure is introduced to explicitly

optimize the posterior clustering probabilities and to implicitly optimize the other model

parameters of encoder/decoder using stochastic gradient descent. Numerical experi-

ments on simulated scenarios highlight the ability of DeepLPM to self-penalize the evi-

dence lower bound for selecting the intrinsic dimension of the latent space and the num-

ber of clusters, demonstrating its clustering capabilities compared to state-of-the-art

methods. Finally, DeepLPM is further applied to an ecclesiastical network in Merovin-

gian Gaul and to the citation network Cora to illustrate the interest of our methodology

to explore large and complex real-world networks.

This Chapter is related with one accepted communication in an international confer-

ence, Deep latent position model for node clustering in graphs, Proceedings of the 30th

European Symposium on Artificial Neural Networks (2022), and a submitted journal ver-

sion, Clustering by Deep Latent Position Model with Graph Convolutional Network,

Preprint HAL-03629104 (2022).

4.0 – 71

4.1 Introduction . 73

4.1.1 Organization of the chapter 75

4.2 Deep latent position model . 75

4.2.1 Notations . 75

4.2.2 Generative model . 75

4.3 Model inference . 77

4.3.1 Variational auto-encoding inference 77

4.3.2 Links with related models 78

4.3.3 Optimization . 79

4.3.4 Model selection . 83

4.4 Numerical experiments . 84

4.4.1 Simulation setup . 84

4.4.2 Benchmark study . 85

4.4.3 Model selection . 88

4.5 Analysis of a medieval network 90

4.5.1 Dataset . 90

4.5.2 Results without covariates 91

4.5.3 Results with covariates . 93

4.6 Cora citation network . 96

4.6.1 Dataset . 96

4.6.2 Results without covariates 97

4.6.3 Results with covariates . 99

4.7 Conclusion and perspectives . 104

4.1 – Introduction 73

4.1 Introduction

Networks are employed in a wide range of applications, from social media and email com-

munications to protein-protein interactions, because they are simple structures yet are capable of

modeling complex systems. In this context, vertex clustering is a key branch of clustering which

attempts to partition the nodes of the graph into different groups to extract patterns summarizing

the data. We consider the task of clustering the nodes of a network in this chapter.

As discussed in Section 2.3.1, a long series of statistical methods have been developed to dis-

cover the underlying communities in networks by learning the latent features of graph-structured

data. More recently, deep learning-based models have emerged as a promising approach for an-

alyzing large-scale networks and they have shown their abilities for representation learning pur-

poses on data with complex structures, as shown in Section 2.3.2. The existing approaches for

vertex clustering in networks can be split into two categories: probabilistic graphical models and

deep latent variable models. We refer to Section 2.3 for a review of these methods.

In order to overcome the limitations of the methods described in that section, while exploring

their benefits, we introduce a new deep latent position model (DeepLPM) for network data, al-

lowing to simultaneously learn vertex representations and obtain node partitions. The LPM (see

Section 2.3.1) assumes that a connection between two nodes depends on the distance between

their positions in a latent space, which is intuitive and easy to understand. By combining a GCN

encoder with a LPM-based decoder, our model aims at capturing the best of both worlds described

so far: it is a flexible representation learning tool based on the deep learning architecture, yet com-

prehensive and interpretable thanks to the adopted statistical model. DeepLPM, that we propose

here, has the following key-features:

— a LPM-based decoder models the probability of interactions between a pair of nodes as

a function of the distance between them in a latent space. Compared with a standard

inner-product-based decoder, this choice better preserves the network topology in different

scenarios (see Figure 4.1);

— DeepLPM performs an end-to-end clustering of the nodes by estimating the posterior prob-

abilities for cluster memberships. Thus, the inference procedure can automatically assign

each node to a group without using any additional algorithms;

74 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

1.50 1.25 1.00 0.75 0.50 0.25 0.00 0.25

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Latent Embeddings of DeepLPM

2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0
0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Latent Embeddings of DeepLPM

4 2 0 2 4 6
6

4

2

0

2

4

6

Latent Embeddings of DeepLPM

0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10

1.0

0.5

0.0

0.5

1.0

1.5
Latent Embeddings of VGAE

0.07 0.06 0.05 0.04 0.03

0.08

0.07

0.06

0.05

0.04

0.03

Latent Embeddings of VGAE

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

Latent Embeddings of VGAE

Figure 4.1 – Simulated networks and learned embeddings in three scenarios. From top to bottom:

the original simulated graphs, the latent embeddings learned by DeepLPM and latent embeddings

learned by VGAE (see Section 2.1.1). To facilitate the visualization, the latent dimension is here

set to 2.

— an original estimation algorithm is designed to integrate the expectation maximization of

the posterior clustering probabilities (explicit) and the stochastic gradient descent opti-

mization for graph reconstruction (implicit);

— by combining the substantial representations learned by GCN with the position informa-

tion, we point out the self-penalizing capability of DeepLPM in selecting the number of

clusters and the latent space dimensionality, and demonstrate its effectiveness in perform-

ing different clustering tasks.

4.2 – Deep latent position model 75

4.1.1 Organization of the chapter

In Section 4.2, we introduce the generative model DeepLPM. The variational inference and the

original optimization algorithm are discussed in Section 4.3. Numerical experiments are provided

in Section 4.4, highlighting the main features of our proposed approach and validating its self-

penalization ability in model selection. An application to a real-world network coming from the

Medieval history of Europe is presented in Section 4.5 and an analysis of the citation network Cora

is described in Section 4.6. Section 4.7 finally concludes with a summary of this chapter.

4.2 Deep latent position model

In this section, the DeepLPM for end-to-end node clustering and network representation is

first introduced.

4.2.1 Notations

In this work, networks are modeled as undirected, unweighted graphs G = (V ;E) with N =

|V | nodes. We introduce an N ×N adjacency matrix A, where Aij = 1 if there is a link between

node i and node j, 0 otherwise. The set of edges E can be associated with an additional covariate

information, collected into matrix Y ∈ R|E|×U . The generic entry of Y , denoted yij , is a U -

dimensional feature associated with the edge connecting i to j. For instance, yij could encode

the text that author i sends to author j in a communication network. We aim at learning well-

represented, latent, node embeddings Z in a lower dimension P and to partition the nodes into K

clusters.

4.2.2 Generative model

As in LPM, we assume that each node i = {1, · · · , N} has an unknown position zi ∈ RP in

a latent space and that the edges in the network are sampled independently given these positions.

Moreover, the probability of a link between two individuals is modeled as a function of the distance

between the two nodes, in the latent space. The generative process is as follows.

76 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

ci cj

zi zj

yij

π

µk, σ
2
k

A α, β

Figure 4.2 – Graphical representation of DeepLPM (variational parameters are not included).

First, each node is assigned to a cluster via a random variable ci encoding its cluster member-

ship

ci
i.i.d∼M(1, π), with π ∈ [0, 1]K ,

K∑
k=1

πk = 1. (4.1)

Then, conditionally to its cluster membership, a latent embedding vector zi is generated

zi|cik = 1 ∼ N (µk, σ2
kIP), with σ2

k ∈ R+∗, (4.2)

independently for each node, where µk and σ2
k denote the mean and variance for each cluster, IP

denotes an identity matrix in RP .

Finally, the probability of a connection between nodes i and j, as represented by adjacency

matrix entry Aij , is modeled through a Bernoulli random variable related with the distance be-

tween the corresponding latent positions

Aij |zi, zj ∼ B(fα,β(zi, zj)), (4.3)

with

fα,β(zi, zj) = σ(α+ β>yij − ||zi − zj ||2), (4.4)

where fα,β can be seen as a decoding, one-layer, neural network parametrized by α and β. More-

over, σ(·) is the logistic sigmoid function and yij is the covariate of the edge connecting i with j.

A graphical representation of the generative model described so far can be seen in Figure 5.1.

4.3 – Model inference 77

4.3 Model inference

This section details the variational auto-encoding inference procedure and proposes an original

estimation method which combines the explicit optimization of the posterior clustering probabili-

ties and the implicit optimization of the neural network parameters.

4.3.1 Variational auto-encoding inference

Before getting into the details of the inference, we first denote by Θ = {π, µk, σ2
k, α, β} the

set of the model parameters introduced so far. A natural procedure would consist in maximizing

the integrated log-likelihood of the observed data A with respect to Θ (and, possibly, Y , which is

omitted to keep the notation uncluttered)

log p(A|Θ) = log
∫
Z

∑
C

p(A,Z,C|Θ)dZ. (4.5)

Unfortunately, Eq. (5.9) is not tractable and we have to rely on a variational approach to

approximate it

log p(A|Θ) = L(q(Z,C); Θ) +KL(q(Z,C)||p(Z,C|A,Θ)), (4.6)

where KL denotes the Kullback-Leibler divergence between the true and approximate posterior

distributions of (Z,C) given the data and model parameters. Then, in order to deal with a tractable

family of distributions, q(Z,C) is assumed to fully factorize (mean-field assumption)

q(Z,C) = q(Z)q(C) =
N∏
i=1

q(zi)q(ci). (4.7)

Moreover, to benefit from the representational learning capabilities of GCN, we assume

q(zi) = N (zi; µ̃φ(Ã)i, σ̃2
φ(Ã)iIP), (4.8)

where µ̃φ(·) : RN×N 7→ RN×P (respectively σ̃2
φ(·) : RN×N 7→ R+∗) is the function mapping the

normalized adjacency matrix Ã = D̂−
1
2 (A+ IN)D̂−

1
2 (we denote the degree matrix as D̂ here to

distinguish it from the edge feature dimension D) into the matrix of the variational means (and

standard deviations). In the above equation, µ̃φ(Ã)i denotes the i-th row of µ̃φ(Ã), correspond-

ing to the variational mean for the latent position zi (similarly for σ̃2
φ(Ã)i). We assume that the

functions µ̃φ(·) and σ̃2
φ(·) are parametrized by the GCN encoder gφ.

78 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

Figure 4.3 – A deep-learning-like model view of DeepLPM.

Finally, a standard assumption is made for the variational clustering probabilities

q(C) =
N∏
i=1
M(ci; 1, γi), (4.9)

where γik represents the variational probability that node i is in cluster k, with
K∑
k=1

γik = 1, ∀k =

1, · · · ,K.

Model architecture. The variational structure of DeepLPM is shown in Figure 4.3. Within the

framework of VAE, first the graph adjacency matrix A is taken as the model input and normal-

ized; then, through the two-layer GCN encoder, we obtain the mean and variance of each node

embedding; next, by minimizing the Kullback-Leibler divergence between the variational and the

posterior distributions, we get the learned latent representations; finally, through the LPM-based

decoder, we can reconstruct the matrix A via A′ and obtain the cluster probability matrix γ̂.

4.3.2 Links with related models

At this point, DeepLPM can be linked with the following models and therefore be seen as a

generalization of theses approaches:

— In LPCM, a multivariate Gaussian prior distribution for the parameters denoted β is intro-

duced, and the estimation is conducted using MCMC sampling. Conversely in DeepLPM,

we introduce a decoding neural network fα,β , where the two parameters α and β are auto-

matically optimized though stochastic gradient descent.

— Both VGAE and DeepLPM rely on the VAE architecture. However, instead of using a

simple inner product decoder as in VGAE, DeepLPM involves a latent position-based fα,β

4.3 – Model inference 79

decoding strategy, which makes intuitive and understandable sense given that two nodes

are more likely to connect if they are close in the latent space. DeepLPM also integrates

the cluster memberships to achieve an end-to-end clustering.

— Both VaDE [Jiang et al., 2016] and DeepLPM model the data generative procedure with a

Gaussian Mixture Model and a deep neural network, whereas in VaDE, both the decoder

and the encoder are convolutional neural networks, limiting the model to image data. The

decoding network fα,β in DeepLPM is based on latent positions, while the encoder gφ is a

two-layer GCN that allow to model graph-structured data.

4.3.3 Optimization

In this part, we focus on maximizing the evidence lower bound (ELBO)

L(A|Θ) =
∫
Z

∑
C

q(Z,C) log p(A,Z,C|Θ)dZ
q(Z,C) (4.10)

with respect to the model parameters Θ and the variational parameters φ. Thanks to Equa-

tions (5.11)-(4.8)-(5.14), Eq. (5.16) can be further developed as

L =
∫
Z

∑
C

q(Z,C) log p(A|Z,α, β)p(Z|C, µk, σ2
k)p(C|π)dZ

q(Z,C)

= E [log p(A|Z,α, β)] + E
[
log p(Z|C, µk, σ2

k

]
+ E [log p(C|π)]− E [log q(Z|A)]− E [log q(C)]

= E [log p(A|Z,α, β)] + E
[
log p(Z|C, µk, σ

2
k)

q(Z)

]

+ E
[
log p(C|π)

q(C)

]

= E

∑
i 6=j

Aij log ηij + (1−Aij) log(1− ηij)

−

N∑
i=1

K∑
k=1

γikKL(N (µ̃φ(Ã)i, σ̃2
φ(Ã)iIP)||N (µk, σ2

kIP))

+
N∑
i=1

K∑
k=1

γik log(πk
γik

),

where ηij = σ(α+ β>yij − ||zi− zj ||2), KL(·) denotes the KL divergence and the expectation is

taken with respect to the variational probability q(·).

80 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

Explicit optimization. On the one hand, an explicit optimization of the ELBO with respect to

the parameters γik, πk, µk and σk can be performed via Proposition 3.

Proposition 2. The following variational updates can be obtained:

γ̂ik = πke−KLik
K∑
l=1

πle−KLil
, (4.11)

where KLik = 1
2

{
log (σ2

k)P

(σ̃2
φ

(Ã)i)P
− P + σ̃2

φ(Ã)i
σ2
k

+ 1
σ2
k
||µk − µ̃φ(Ã)i||2

}
.

Then

π̂k =
N∑
i=1

γik/N, (4.12)

µ̂k =
N∑
i=1

µ̃φ(Ã)iγik/
N∑
i=1

γik, (4.13)

and

σ̂2
k =

N∑
i=1

γik(σ2
φ(Ã)i + ||µk − µ̃φ(Ã)i||2)

P
N∑
i=1

γik

. (4.14)

Proof.

Detailed derivations are given as follows. Under the equality constraint
K∑
k=1

γik = 1,∀k, we

use the method of Lagrange multipliers. Firstly, we introduce a Lagrange multiplier λi

L̃ = L −
N∑
i=1

λi

(
K∑
k=1

γik − 1
)
,

then, we derive L̃ according to γik

∂L̃
∂γik

= log πk − log γik −
γik
γik
−KLik − λi = 0,

thus, we have

log γik = log πk − 1−KLik − λi,

γik = e{log πk−1−KLik−λi} = e{log πk−KLik}

e{1+λi}
.

(4.15)

4.3 – Model inference 81

By using the constraint on
K∑
k=1

γik, we can get

K∑
k=1

γik =

K∑
k=1

e{log πk−KLik}

e{1+λi}
= 1

log
K∑
k=1

e{log πk−KLik} = log e{1+λi}

λi = log
K∑
k=1

e{log πk−KLik} − 1.

After putting the value of λi into Eq. 5.22

γik = e{log πk−KLik}

e
{1+log

K∑
k=1

e{logπk−KLik}−1}
= e{log πk−KLik}

K∑
k=1

e{log πk−KLik}
.

Finally, we obtain

γ̂ik = πke−KLik
K∑
l=1

πle−KLil
. (4.16)

Similarly, since
K∑
k=1

πk = 1, ∀k, we introduce another Lagrange multiplier, let us say τ

L̃ = L − τ
(

K∑
k=1

πk − 1
)
,

then, we derive L̃ according to πk

∂L̃
∂πk

=
N∑
i=1

γik
πk
− τ = 0,

next, we use the equality constraint to find the value of τ

K∑
k=1

N∑
i=1

γik =
K∑
k=1

πkτ

τ = N,

and finally, we have

π̂k =
N∑
i=1

γik/N. (4.17)

82 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

Lastly, we need to calculate the derivatives for µk and σ2
k. We start by deriving L̃ according to

µk

∂L̃
∂µk

= −1
2

N∑
i=1

γik{
1
σ2
k

(2µk − 2µ̃φ(Ã)i} = 0,

then, we obtain

µk

N∑
i=1

γik =
N∑
i=1

µ̃φ(Ã)iγik,

µ̂k =

N∑
i=1

µ̃φ(Ã)iγik
N∑
i=1

γik

,

(4.18)

and finally for σ2
k, we have

∂L̃
∂σ2

k

= −1
2

N∑
i=1

γik{
P

σ2
k

− 1
σ4
k

(σ2
φ(Ã)i + ||µk − µ̃φ(Ã)i||2)} = 0

P
N∑
i=1

γik
σ2
k

=
N∑
i=1

γik
σ4
k

(σ2
φ(Ã)i + ||µk − µ̃φ(Ã)i||2)

P
N∑
i=1

γikσ
2
k =

N∑
i=1

γik(σ2
φ(Ã)i + ||µk − µ̃φ(Ã)i||2)

σ̂2
k =

N∑
i=1

γik(σ2
φ(Ã)i + ||µk − µ̃φ(Ã)i||2)

P
N∑
i=1

γik

.

(4.19)

�

Implicit optimization. On the other hand, the implicit optimization of the encoder parameter

φ and decoder parameters α, β is performed via stochastic gradient descent. In this work, it is

implemented using the Adam optimizer [Kingma and Ba, 2014].

Algorithm. In the estimation process, we first conduct a pre-training step to avoid the model get-

ting stuck in a local minima or a saddle point at the beginning of training. Then, the initial weights

and biases after pre-training are saved for use in the training phase. Once we obtain the mean

µ̃φ(Ã)i and variance σ̃2
φ(Ã)i of each node, we use them to update the cluster information γik by

minimizing the KL divergence between the variational and the posterior distributions of each node.

4.4 – Model inference 83

Input: adjacency matrix A, edge features Y

pretrain_model = pretrain(A, 50 epochs) /* pre-training to initialize encoder/decoder weights */

while L increases do

µ̃φ, σ̃
2
φ = GCN(Ã)

update γ̂ik by Equation (5.18) /* explicit optimization */

update π̂k, µ̂k, σ̂2
k by Equations (5.19)-(5.20)-(5.21) /* explicit optimization */

calculate the training loss (negative ELBO) −L

update encoder parameter φ and decoder parameters α, β /* implicit optimization */

end while

return reconstructed graph A′, cluster probability matrix γ̂

Algorithm 4.1 – Estimation of DeepLPM

Next, we adjust the mixture component πk, mean µk and variance σk for each cluster according to

the previous steps. Finally, the total loss is computed and the parameters of the encoder/decoder

are optimized via stochastic gradient descent. More details are reported in Algorithm 4.1.

4.3.4 Model selection

The ELBO introduced in the previous section allows the estimation of the posterior law of

(Z,C) for a fixed value of the latent dimension P and a fixed number of clusters K. If we vary

these two parameters, the model can be considered as completely different. Therefore, choosing

appropriate values for P and K is a crucial model selection task.

We emphasize that the self-regularization property of VAEs has already been observed in a

number of studies [Kingma et al., 2016; Dai et al., 2017]. In the following Section 4.4, we conduct

several experiments to show that DeepLPM does indeed benefit in practice from this property and

that it induces a penalization on the ELBO in both the latent space variable (Z) and the clustering

variable (C), thus allowing us to select the intrinsic dimension P of the latent space as well as the

number K of clusters.

84 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

4.4 Numerical experiments

This section aims at emphasizing the effectiveness of this work on three synthetic datasets and

at proving the validity of the estimation algorithm proposed in the previous Section 5.3.3.

4.4.1 Simulation setup

In order to simplify the characterization and to facilitate the reproducibility of the experiments,

we designed three types of synthetic networks based on the generative models LPCM, SBM and

from circle data, respectively:

— scenario A simulates data according to LPCM [Handcock et al., 2007]. 3 communities are

considered and edges are generated based on the distance between each node position in

dimension P = 2. We set a parameter δ ∈ [0.2, 0.95] to represent the rate of proximity

between the clusters where a larger δ means that the three clusters are better separated. In

this experiment, we set the mean of each cluster to
µ1 = [0, 0]

µ2 = [1.5 ∗ δ, 1.5 ∗ δ]

µ3 = [−1.5 ∗ δ, 1.5 ∗ δ]

— scenario B simulates data according to SBM [Nowicki and Snijders, 2001]. It consists of

one cluster with large probability of external connectivity and two communities that have

a higher tendency to link within subset than across subsets. The connection probabilities

are

Π =

b a a

a a b

a b a

where a = 0.25, b = 0.01 + (1− δ′)∗ (a−0.01). We set another parameter δ

′ ∈ [0.4, 1.0]

to measure the degree of closeness where a larger δ
′

means less overlap among the three

clusters.

— scenario C considers networks created from 3 circular-structured data positions in dimen-

sion 2. Three circles have the same center and the different radius are 1, 5, and 10, respec-

tively. Links are then generated based on the distance between node positions.

4.4 – Numerical experiments 85

By varying the values of δ and δ
′

in scenario A (assortative) and scenario B (dissortative),

we can model the proximity between each cluster and thus test the robustness of our model in

both simple and difficult cases. Then, contrary to standard communities, with strong transitivity

(your-friend-is-my-friend effect), scenario C describes the construction of three groups of nodes

with little transitivity in each.

4.4.2 Benchmark study

In this part, we aim at benchmarking DeepLPM with SBM [Nowicki and Snijders, 2001],

LPCM [Handcock et al., 2007], VGAE [Kipf and Welling, 2016] and ARVGA [Pan et al., 2018]

on simulated datasets in three scenarios. To facilitate the experiments, we do not consider the

covariate information Y in simulated data, thus β in Eq. (4.4) is set to 0.

Datasets. In the "Easy" situation, scenario A was used with δ = 0.95 and data from scenario B

was created with δ
′ = 0.9. For the "Hard 1" situation, the values of δ and δ

′
were set to be 0.6 for

both scenario A and B. The value 0.4 was chosen in the situation "Hard 2". The number of nodes

for scenario A and B were fixed to 300 and 600, respectively. Finally, in scenario C we simulated

networks with 300 nodes.

Results. For each situation, we generated ten different networks and calculated the averaged

adjusted rand index (ARI) [Hubert and Arabie, 1985]. Experimental results of clustering are shown

in Table 5.1.

Table 4.1 – Experimental clustering results on 7 datasets.

Method

Easy Hard 1

Sc.A Sc.B Sc.A Sc.B

SBM 0.945±0.03 1.000±0.00 0.683±0.06 0.950±0.09

LPCM 0.922±0.03 0.769±0.15 0.613±0.06 0.540±0.04

VGAE 0.935±0.03 0.999±0.01 0.481±0.07 0.754±0.03

ARVGA 0.884±0.04 0.993±0.00 0.278±0.07 0.792±0.06

DeepLPM 0.959±0.01 1.000±0.00 0.730±0.03 0.984±0.01

86 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

Method

Hard 2

Sc.A Sc.B Sc.C

SBM 0.305±0.04 0.644±0.08 0.443±0.00

LPCM 0.324±0.07 0.345±0.03 0.415±0.20

VGAE 0.206±0.05 0.386±0.09 0.610±0.03

ARVGA 0.065±0.01 0.239±0.08 0.631±0.04

DeepLPM 0.373±0.04 0.857±0.02 0.625±0.03

First, focusing on scenario A, we can see that although the networks are simulated according

to the LPCM model, LPCM does not exhibit the best performance. It only outperforms ARVGA

in the simple cases; in Hard 1, it has better performance than VGAE; and in the more difficult

Hard 2 case, it outperforms SBM. The ARVGA always obtains the worst performance in scenario

A, which means it is not adaptive to assortative networks. Instead, DeepLPM always outperforms

other competitors with different rate of proximity δ.

Second, considering scenario B, SBM is expected to have good performance in all models

since the networks are simulated according to SBM. Indeed, it shows better performance than

LPCM, VGAE and ARVGA in three situations. As a matter of fact, LPCM cannot find clusters

on dissortative network structures and VGAE as well as ARVGA only work well in the simple

situation. Again, DeepLPM shows the best performance in all cases with high ARI values.

Lastly, on the circular-structured data, all deep learning-based methods perform better than the

ones based on statistical models. ARVGA presents the highest ARI compared to the other deep

models. DeepLPM and VGAE have a slightly lower ARI. As networks based on the simulation

of scenario C contains data from three circular structures, we cannot separate them linearly. Since

deep learning-based models introduce non-linearity in the learning process, three deep models are

more capable of clustering the nodes in scenario C than two statistical models.

Robustness. To further demonstrate the robustness of DeepLPM compared to other competitors,

we varied the parameter δ from 0.2 to 0.95 and δ
′

from 0.4 to 1 to compare the clustering perfor-

mances for all models. Figure 4.4 illustrates the evolution of the clustering ARI in scenario A.

DeepLPM consistently surpasses its competitors with different values of δ. VGAE and ARVGA,

the other two deep models, perform worse than SBM and LPCM, the other two relying on statis-

4.4 – Numerical experiments 87

tical modeling. Then, Figure 4.5 shows the evolution of the ARI in scenario B. As we can see,

when δ
′

is greater than 0.6, both DeepLPM and SBM can recover the true node partitions perfectly

(ARI=1), whereas SBM cannot maintain its robustness when δ
′

is less than 0.6. LPCM is unsuit-

able for this type of data, performing worse than VGAE and ARVGA. Additionally, DeepLPM

has the highest ARI with a small variance in all situations. Finally, Figure 4.6 provides the embed-

dings learned by ARVGA, VGAE and DeepLPM with latent dimension equal to 2 in scenario C. It

is clear that, different from the other two deep models, DeepLPM preserves the network topology

of the three circular structures more effectively, by employing a latent position-based decoding

strategy.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rate of proximity ()

0.0

0.2

0.4

0.6

0.8

1.0

Cl
us

te
rin

g
AR

I

SBM
DeepLPM
VGAE
LPCM
ARVGA

Figure 4.4 – Clustering ARI with different proximity rate δ in Sc.A on ten generated networks for

each value of δ and averaged the values of ARI obtained.

88 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Rate of proximity (′)

0.2

0.4

0.6

0.8

1.0

Cl
us

te
rin

g
AR

I

SBM
DeepLPM
VGAE
LPCM
ARVGA

Figure 4.5 – Clustering ARI with different proximity rates δ
′

in Sc.B on ten generated networks

for each value of δ
′

and averaged the values of ARI obtained.

1.00 0.75 0.50 0.25 0.00 0.25 0.50

1.5

1.0

0.5

0.0

0.5

1.0

Latent embeddings of ARVGA

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Latent embeddings of VGAE

4 2 0 2 4

6

4

2

0

2

4

6
Latent embeddings of DeepLPM

Figure 4.6 – From left to right: embeddings learned by ARVGA, VGAE and DeepLPM with latent

dimension equal to 2 in Sc.C.

4.4.3 Model selection

A key element of an unsupervised learning technique such as DeepLPM is to be able to auto-

matically determine both the latent dimension (P) and the number of clusters (K). We highlight

here the ability of our methodology to auto-penalize the ELBO for selecting both the intrinsic

dimension of the latent space and the number of groups appropriately.

4.4 – Numerical experiments 89

Figure 4.7 shows the averaged training loss (negative ELBO) and ARI on 50 networks simu-

lated according to scenario B (δ
′ = 0.5) with different latent dimensions (P ∈ {2, 4, 8, 16, 32}).

We fixed the number of clusters to the actual value K = 3. As we can see, DeepLPM shows a

minimal value of the negative ELBO when P = 16, which is also associated with the highest ARI.

Similarly, by varying the number of clusters from 2 to 6, Figure 4.8 illustrates how the training

loss can also be used to find the appropriate number of clusters. In this experiment, we trained

another 50 synthetic data in scenario B (δ
′ = 0.5) with the latent dimension P = 16. The results

show that when K = 3, the training loss is minimal, thus recovering the actual value of K for the

simulation setting.

5 10 15 20 25 30
Latent dimension

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Cl
us

te
rin

g
AR

I

5 10 15 20 25 30
Latent dimension

44550

44600

44650

44700

44750

44800

Tr
ai

ni
ng

 lo
ss

Figure 4.7 – Averaged training loss (negative ELBO) and ARI with different latent dimensions on

50 networks based on scenario B. When P = 16, a clear minimum of the negative ELBO can be

noticed, corresponding to the highest averaged ARI.

90 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Number of clusters

44375

44380

44385

44390

44395

44400

44405

44410

Tr
ai

ni
ng

 lo
ss

Figure 4.8 – Averaged training loss (negative ELBO) with different number of clusters on 50

synthetic data in scenario B. DeepLPM was able to estimateK = 3 by displaying a clear minimum

of the negative ELBO, which recovered the actual number of clusters.

4.5 Analysis of a medieval network

As an illustration of the practical application of DeepLPM, it is first applied on a real-world

dataset coming from historical science in this section.

4.5.1 Dataset

We consider the data set proposed by Jernite et al. [2014], which reports the ecclesiastical

councils that took place in Merovingian Gaul during the 5th and 6th centuries. A council is an

ecclesiastical meeting, usually called by a bishop, where issues regarding the church or the faith

are addressed. The composition of these councils is known thanks to the acts written at the end

of the meeting, and which were signed by all the attending members. The network contains

N = 1287 individuals who held one or several offices in Gaul between the years 480 and 614,

and who either have been related or have at least met during their lifetime. The number of edges

is equal to 33,384. Figure 4.9 shows a visualization of the network highlighting the importance of

the temporality in the relationships.

4.5 – Analysis of a medieval network 91

before 500

501−524

525−549

550−575

575−599

after 600

Figure 4.9 – Visualization of the ecclesiastical network, highlighting the temporality of the rela-

tionships. People living in distinct time periods during the 5th and 6th centuries are represented

by different colors.

In addition to the interaction data, the data set also contains information about the individuals:

period of activity, type of position and location. From this covariate information, we were able

to build a 3-dimensional tensor Y encoding the similarities and differences between individuals.

Thus, Y (1)
ij is equal to the number of years for which i and j have been active at the same time

or, alternatively, the negative time lag (in years) between their period of activity; Y (2)
ij = 1 if i

and j were in the same region, −1 otherwise; Y (3)
ij = 1 if i and j held a similar position (noble,

ecclesiastical or other), −1 otherwise. As a result, those who share a greater number of active

years, live in the same location, or hold similar positions are more likely to interact.

4.5.2 Results without covariates

We first analyze hereafter the clustering results without taking into account the covariate in-

formation encoded in Y . DeepLPM was applied to this network for various numbers of groups K

(varying from 2 to 10) and a fixed number of latent space dimensions (P = 16). When we ignore

the covariate information, the evolution of the training loss shows a clear minimum at K = 9.

Figure 4.10 depicts the visualization of node partitioning into 9 groups found by DeepLPM

without the use of covariates. It is worth noticing that DeepLPM has not been influenced by

the temporality since it was able to detect communities that played a similar role in the network

92 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

at different periods. For instance, the groups #3 and #5 gather people who lived at different

and not overlapping time periods. In Figure 4.11, we also show the distributions in each group

when personal roles are taken into consideration. In particular, we can notice that the group #5

is essentially made of ecclesiastics contrary to all the other clusters. We also point out that most

nobles (in proportion) were found in the group #4. In addition, it can be seen that citizens played

a significant role in the group #2.

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Grp 7

Grp 8

Grp 9

Figure 4.10 – Node partitions without the covariate information on medieval data. Nine clusters are

represented in different colors. DeepLPM was able to find communities at multiple time periods

without being influenced by the network temporality; groups #3 (dark green), #4 (cyan), and #5

(dark blue) in particular are clusters that share the same color while lying in distinct periods.

4.5 – Analysis of a medieval network 93

Figure 4.11 – Distributions in each group based on personal roles on medieval data. Nobles are

generally found in groups #4 and #9, ecclesiastics play a large role in group #5, and civilians

predominate in group #2.

4.5.3 Results with covariates

To demonstrate the interest of taking into account the covariates, we integrated the covariates

encoded in a 3-dimensional vector Y into DeepLPM and performed clustering on this network.

The number of groups also varied between 2 to 10, with a same intrinsic dimension equals to 16.

When edge features are added to the methodology, the number of groups is estimated to be K = 8

with minimal loss. Compared to previous Section 4.5.2, the number of groups is reduced by one.

Confusion matrix. We first plot the confusion matrix between the predicted labels at K = 9

without covariates and K = 8 with covariates to investigate the fusion or dispersion between

multiple clusters, as shown in Figure 5.10. We can see that, by introducing the covariate, the

cluster N1 (for new #1) gathers people from clusters O3 (for old #3 without covariates), O6 and

O8 together; then, it separates the individuals from O8 into N1, N3 and N6; and all the people

in N5 and N8 come from O4 and O9, respectively. Therefore, the exploitation of the covariate

information results in personnel switching between groupings and a reduction in the number of

clusters, allowing DeepLPM to focus on patterns that are not explained by the covariates alone.

94 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

O1 O2 O3 O4 O5 O6 O7 O8 O9
Cluster partition without covariate Y

N1
N2

N3
N4

N5
N6

N7
N8

Cl
us

te
r p

ar
tit

io
n

wi
th

 c
ov

ar
ia

te
 Y

0 0 116 0 0 50 0 27 0

3 0 0 722 12 0 10 0 1

0 53 0 0 0 0 0 20 0

74 0 0 0 0 3 2 0 0

0 0 0 68 0 0 0 0 0

0 0 0 3 0 0 44 12 0

0 0 0 5 27 0 0 0 8

0 0 0 0 0 0 0 0 27
0

150

300

450

600

Figure 4.12 – Confusion matrix between cluster partitions with and without covariate. Individuals

from O3 (for old #3 without covariates), O6, and almost half of O8 congregated in N1 (for new

#1 with covariates), reducing one cluster.

Visualization and analysis. Figures 4.13 shows the clustering visualization obtained by

DeepLPM for 8 groups with covariates. We can see that DeepLPM was able to detect communities

that played a similar role in the network at different periods. Indeed, the groups N1 (black), N2

(red), N3 (green), N5 (cyan), N6 (pink) and N7 (yellow), all gather people who lived at different

and not overlapping time periods. The red group N2 is particularly representative of this since it

covers the whole period (480-614 of our era).

In addition, distributions within each group based on personal functions are also shown in

Figure 4.14. Firstly, we can observe that the majority of people in groups N3 and N8 were

civilians; then, it can be noticed that ecclesiastics was a significant component of the group N7;

Furthermore, we point out that groups N2 and N8 included individuals from all strata of society.

Comparisons of results without and with Y . We further analyze the results by comparing the

partitions without and with covariates in Figures 4.10 and 4.13. Firstly, we can see that the group

N1 (black) in Figure 4.13 extracted some individuals from groups O6 (for old #6) and O8 in

4.5 – Analysis of a medieval network 95

Figure 4.10 and kept people in the group O3. Combining with Figures 4.11 and 4.14, the group

N1 in Figure 4.13 is specific since it only gathers people from clergy and civilians, who were

probably discussing some central questions about the faith during different periods. Then, the

group N3 (green) retained individuals from cluster O2 and retrieved some civilians from cluster

O8, indicating that they were possibly addressing civilian issues. Similarly, the group N6 (pink)

kept the majority of its members in O7 while also bringing in people from O4 and O8. They

may share religious concerns in relation to their positions. Likewise, the group N5 (cyan) in

Figure 4.13 is specially separated from the big group O4 in Figure 4.10, which is made of a

relatively significant proportion of nobles, in particular kings and queens, implying that this group

was discussing political or nobility matters.

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Grp 7

Grp 8

Figure 4.13 – Visualization of cluster partitions with covariates on medieval data. Eight clusters are

represented in different colors. DeepLPM was able to find communities at multiple time periods

without being influenced by the network temporality; groups N1, N2, N3, N5, N6 and N7, for

example, are clusters with the same colors but located at different times.

96 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

Figure 4.14 – Distributions in each group based on personal roles on medieval data. Civilians are

generally found in groups N3 and N8, ecclesiastics play a large role in group N7, and all social

classes are represented in groups N2 and N5.

4.6 Cora citation network

In this section, we also conduct an unsupervised analysis on a widely used scientific citation

network.

4.6.1 Dataset

The Cora dataset † has been analyzed with several embedding and clustering (deep) methods.

The dataset contains 2,708 scientific publications classified in seven classes: case based, genetic

algorithms, neural networks, probabilistic methods, reinforcement learning, rule learning and

theory. The citation network consists of 5,429 links and each publication is described by a 0/1-

valued word vector indicating the absence/presence of the corresponding word from a dictionary.

†. https://relational.fit.cvut.cz/dataset/CORA

https://relational.fit.cvut.cz/dataset/CORA

4.6 – Cora citation network 97

Most related works [Pan et al., 2018; Mehta et al., 2019] assume that the number of clusters is

equal to the number of classes used in supervised classification tasks, whereas we argue that the

class labels might not be in a one-to-one relation with the detected communities in unsupervised

clustering. Instead, an appropriate cluster number should be obtained through model selection.

Thus, we decided to use the class membership of each paper to build a tensor Y of dimension

D = 7 × 7 encoding the similarities and differences between articles. For each pair of papers i

and j with category labels si and sj , Ysisj = 1 indicates that paper i belongs to the class si and j

belongs to the class sj , 0 otherwise.

4.6.2 Results without covariates

We first performed clustering without considering the covariate information. DeepLPM was

fitted to this network for different numbers of groups, ranging between 5 and 11, and fixed latent

dimension (P = 16) for the latent space. The number of groups is estimated to be K = 9 with

minimum loss.

A visualization of the latent embeddings learned by DeepLPM is shown in Figure 4.15. We

can see that even though groups #4 and #5 are very close to each other, and there are some overlaps

between groups #2 and #9, DeepLPM globally produces discriminant embeddings. Then, to get an

idea of the composition of each group, the distribution of the papers in the nine clusters according

to the seven categories is given in Figure 4.16. In particular, groups #1, #4, #6, #7 and #8 focus

on subjects related to neural networks, theory, probabilistic methods, case based and genetic

algorithms, respectively; the group #9 is mainly based on reinforcement learning.

Without considering covariates, it is clear that most clusters, such as #1, #4, #6, #7, #8 and #9

contain primarily one category of papers, which coincides with the known supervised information.

However, we also see groups #2, #3 and #5 containing more categories. This is not surprising.

Indeed, when looking at papers from some peculiar categories (e.g. neural nets, probabilistic

methods or theory) we discover that they cover topics from other categories. For instance, several

probabilistic approaches are build upon neural networks, or some theoretical papers can refer to

neural network-based techniques. The clusters containing papers from different categories, clearly

account for this "contaminations". Therefore, we want to give DeepLPM the known class labels

and let the model dig for more information hidden behind them.

98 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Grp 7

Grp 8

Grp 9

Figure 4.15 – Visualization of the clustered embeddings without covariates on Cora. Nine clusters

are represented in different colors.

Figure 4.16 – Partitions without covariates taking into account the classes in each group on Cora.

Most groups consist primarily of one type of paper, while a few groups include multiple cate-

gories. Here CB: Case_Based, GA: Genetic_Algorithms, NN: Neural_Networks, PM: Probabilis-

tic_Methods, RL1: Reinforcement_Learning, RL2: Rule_Learning, T: Theory.

4.6 – Cora citation network 99

4.6.3 Results with covariates

To show the impact of the covariate information, we now adopt the covariates Y . The model

selection was also conducted by varying the number of clusters from 5 to 11, with the dimension-

ality of the latent space equal to 16. Based on the evolution of the training loss, the number of

groups was estimated to be K = 6. Thus, with this additional covariate, the clusters number is

reduced by three.

Confusion matrix. We first plot the confusion matrix between the predicted labels at K = 9

(without covariates) and K = 6 (with covariates) to investigate the fusion or dispersion between

multiple clusters, as shown in Figure 4.17. As we can see, the cluster N1 (for new #1) extracted

papers from 9 different clusters O1 (for old #1) to O9, especially from O4 and O9; N2 assembled

publications mainly from clusters O1 and O2; besides, most of the items in N3 and N5 come

from O7 and O3, respectively; finally, N4 consists of quantitative papers from O1, O2 and O8,

N6 is mainly composed of articles of O2, O5 and O6. The fact that each cluster now contains

multiple categories of publications demonstrates that the addition of covariates helps to reveal

hidden patterns behind supervised class information when performing clustering.

O1 O2 O3 O4 O5 O6 O7 O8 O9
Cluster partition without covariate Y

N1
N2

N3
N4

N5
N6

Cl
us

te
r p

ar
tit

io
n

wi
th

 c
ov

ar
ia

te
 Y

23 32 18 103 47 63 21 28 117

254 76 26 12 51 2 22 46 48

16 3 20 0 0 0 95 4 1

72 106 16 0 16 31 26 282 27

4 21 388 52 20 0 1 31 32

11 108 6 61 127 96 0 28 18

0

80

160

240

320

Figure 4.17 – Confusion matrix between the estimated clusters with and without covariates. The

previous nine clusters are reduced to six with the addition of covariates.

100 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

Visualization and analysis. The visualization of the latent embeddings learned by DeepLPM

is shown in Figure 4.18. Figure 4.19 shows the paper distributions when considering the class

labels for six groups. In contrast to Figure 4.16 where each group contains principally one or

two different classes, it is clear that, due to the introduction of paper labels as covariates new

similarities between papers in different categories emerge.

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Figure 4.18 – Visualization of the clustered embeddings with covariates on Cora. Six clusters are

represented in distinct colors.

4.6 – Cora citation network 101

Figure 4.19 – Partitions with covariates taking into account classes in each group on Cora. Each

group now contains a variety of categories that represent the hidden patterns discovered through

the addition of covariates.

Next, to better understand the clustering results, more analysis on the obtained clusters are

performed. We first plotted the latent positions learned by DeepLPM using PCA with a projection

of the first two principal eigenvectors in Figure 4.20, highlighting nodes with degrees higher than

10. Those papers are more often cited by other papers and can be more representative. Based on

the publications ID, we selected several articles with relatively large degree from each group and

reported the information in Table 4.2. According to paper titles, it can first be seen that group

N1 (red) focuses on dynamic or temporal learning algorithms using probabilistic methods or rein-

forcement learning; group N2 (green) then discusses different aspects of neural networks, such as

self-organization, adjusting or rules; in group N3 (blue), the papers are largely based on the anal-

ysis and development of case studies; next, group N4 (cyan) contains articles on applications of

genetic algorithms and neural networks; while in group N5 (purple), papers consist of rule learn-

ing and inductive methods; finally, group N6 (yellow) typically involves statistical and machine

learning models.

Interestingly, when looking at Figure 4.20 from left to right, the content is changing from

applied research to more theoretical learning, and then from bottom to top, the topic of the articles

102 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

is changing from case-based methods and reinforcement learning to genetic algorithms, and finally

to neural networks and statistical models.

Latent space learned by deepLPM

15

42

67

75

77

85

110

130

137 146

158

164189
220

251

259

295

343

345

360

379

416

427

428

431

439

454

466

478

479

480

520

524

539

553

559

563566

567 570

571

577

592

612

636

637

639

641

650

673

687739

746

748
773

794

810

882

911

966

968

996 1004

1017

1137

1154

1179
1219

1241

1291

1329

1334

1336

1355

1379

1460

1485

1499

1521

1528

1551

1570

1596

1645

1688

1697

1714

1719

1911

2154

2176

2221

2335

2422

2424
2500

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Figure 4.20 – Learned hidden space (PCA compression on the first two principal components),

highlighting the nodes with degrees higher than 10.

Table 4.2 – Inspection of some nodes/documents having large degree

Groups Node IDs Paper titles Degrees

Grp 1

#524 Studies in machine learning using the game of

checkers

30

#553 Learning to act using real-time dynamic pro-

gramming

42

#566 Learning to predict by the methods of temporal

differences

78

#567 Integrated architectures for learning, planning,

and reacting based on approximating dynamic

programming

32

4.6 – Cora citation network 103

#673 Cryptographic limitations on learning boolean

formulae and finite automata

21

Grp 2

#130 Evolving networks: using the genetic algorithm

with connection learning

15

#295 Neuronlike adaptive elements that can solve dif-

ficult learning control problems

32

#746 Self-organized formation of topologically cor-

rect feature maps

33

#748 Self-organization and associative memory 74

#810 Self-adjusting dynamic logic module 14

#882 Proben1 | A set of neural network benchmark

problems and benchmarking rules

14

Grp 3
#137 Theory refinement combining analytical and em-

pirical methods

19

#1499 Inferential theory of learning: developing foun-

dations for multistrategy learning

12

Grp 4

#164 Genetic algorithms in search, optimization and

machine learning

168

#428 Introduction to the theory of neural computation 65

#571 A new learning algorithm for blind signal sepa-

ration

19

#1355 The structure-mapping engine: algorithm and

examples

23

#1521 Adaptive nonlinear PCA algorithms for blind

source separation without prewhitening

18

Grp 5

#345 Learning logical relations from definitions 31

#379 An empirical comparison of selection measures

for decision-tree induction

26

#431 Irrelevant features and the subset selection prob-

lem

36

#636 Learning with many irrelevant features 21

#911 Learning sequential decision rules using simula-

tion models and competition

22

104 CHAPITRE 4 — Clustering by deep latent position model with graph convolutional networks

Grp 6

#15 Hidden Markov models in computational

biology: applications to protein modeling

19

#42 Markov chain Monte Carlo convergence

diagnostics: a comparative review

14

#75 Hierarchical mixtures of experts and the EM al-

gorithm

40

#77 A view of the EM algorithm that justifies incre-

mental, sparse, and other variants

16

#454 How to use expert advice 23

#794 A survey of evolution strategies 23

We close this section emphasizing once more that, in unsupervised problems, we cannot deter-

mine the number of clusters solely based on the number of the classes that are used in supervised

tasks. Conversely, when selecting the number of clusters via model selection (that VAEs seem to

perform intrinsically), we are able to discover interesting new similarities between the nodes of a

graph.

4.7 Conclusion and perspectives

We introduced DeepLPM to perform node clustering on network data in an end-to-end manner

with covariates (if available). By integrating the GCN encoder with the LPM-based decoder, we

retain the interpretability of the statistical model while also enjoying the excellent performance

of neural networks in representation learning. An original estimation procedure combined the ex-

plicit optimization via variational inference and the implicit optimization using stochastic gradient

descent. Numerical experiments show that DeepLPM outperforms state-of-the-art methods and

highlight its capabilities in terms of model selection. Real-world applications on a historical net-

work and a scientific citation network were also proposed to illustrate the interest of the method

for unsupervised analysis.

4.7 – Conclusion and perspectives 105

In this chapter, we treat edge features as a type of covariates used in the decoding phase. For

future work, inspired by Bouveyron et al. [2018], we are interested in analyzing textual edges by

incorporating topic modeling into the generative process.

CHAPTER 5
The graph embedded

topic model
Most of existing graph neural networks (GNNs) developed for the prevalent text-rich

networks typically treat texts as node attributes. This kind of approach unavoidably

results in the loss of important semantic structures and restricts the representational

power of GNNs. In this chapter, we introduce a document similarity-based graph con-

volutional network (DS-GCN) encoder to combine graph convolutional networks and

embedded topic models for text-rich network representation. Then, a latent position-

based decoder is used to reconstruct the graph while preserving its topology. Similarly,

the document matrix is rebuilt using a decoder that takes both topic and word embed-

dings into account. By including a cluster membership variable, we thus develop an

end-to-end clustering technique relying on a new deep probabilistic model called graph

embedded topic model (GETM). Numerical experiments on three simulated scenarios

emphasize the ability of GETM in fusing the graph topology structure and the document

embeddings, and highlight its node clustering performance. Moreover, an application

on the Cora-enrich citation network is conducted to demonstrate the effectiveness and

interest of GETM in practice.

This Chapter is related with a submitted journal version, The graph embedded topic

model, Preprint HAL-03942487 (2023).

107

108 CHAPITRE 5 — The graph embedded topic model

5.1 Introduction . 109

5.1.1 Organization of the chapter 110

5.2 The graph embedded topic model 110

5.2.1 Notations . 110

5.2.2 Generative model . 111

5.3 Inference model . 113

5.3.1 Variational inference . 113

5.3.2 Document similarity-based GCN. 114

5.3.3 Optimization . 116

5.4 Numerical experiments . 119

5.4.1 Simulation setup . 120

5.4.2 Benchmark study . 121

5.4.3 A more detailed example 122

5.4.4 Model selection . 126

5.5 Application on real-world network 128

5.5.1 Model selection . 128

5.5.2 Visualisation and analysis 130

5.6 Conclusion . 134

5.1 – Introduction 109

5.1 Introduction

Heterogeneous mixed-type data is a common component of real-world networks. In a scientific

article citation network, for example, textual information such as paper titles and abstracts are

included in addition to paper-paper interactions as well as the category of each article. The way

to incorporate these valuable information under the graph structure is crucial and would affect

the quality of the network representation through latent embeddings. Currently available graph

neural networks (see Section 2.3.2) for heterogeneous information networks typically treat these

knowledge as node attributes, which inevitably results in the loss of node feature characteristics

and restricts the representation ability on graph topological structure [Wang et al., 2020b].

This chapter focuses on the modeling and clustering of ubiquitous text-rich networks, where

each node in the graphs is associated with a document that contains textual information about

that node. Recently, numerous efforts have been made to combine graph embedding learning

with text analysis techniques like word embedding and topic modeling (see Section 2.4). Even

though these well-established techniques yield satisfactory results, they merely discover various

ways to mix document and graph embeddings without modifying the structure of GNNs. To date,

these joint convolutions are carried out using standard graph convolutional networks (GCNs).

For instance, BiTe-GCN [Jin et al., 2021] and AS-GCN [Yu et al., 2021] directly apply GCN on

the augmented bi-typed (document nodes with word nodes) and tri-typed (document, topic and

word nodes) networks, while AM-GCN [Wang et al., 2020b] introduces a shared weight matrix of

learnable parameters in the proposed common-GCN for feature and graph spaces without changing

the GCN structure, as discussed in Section 2.4.

In this chapter, we propose a graph embedded topic model (GETM) to integrate graph embed-

dings, topic modeling and node clustering approach in an end-to-end manner. Then, we examine

the ability of GCNs in fusing graph topological structure and node features, and further introduce

a new document similarity-based GCN to better account for these two aspects and improve the

performance of node clustering in networks.

The main contributions of the GETM that we propose here include:

— a document similarity-based GCN (DS-GCN) encoding approach is presented to address

the information loss that occurs when merely considering documents as node attributes;

110 CHAPITRE 5 — The graph embedded topic model

— a latent position-based decoder is employed to preserve the graph topology and to recon-

struct the graph adjacency matrix more accurately;

— another embedded topic model(ETM)-based decoder is proposed to combine topic model-

ing and word embeddings for more efficient reconstruction of the document-term matrix;

— a joint optimization is carried out for both document embedding learning and graph topol-

ogy learning based on the VAE architecture;

— an end-to-end node clustering procedure is performed by estimating the posterior proba-

bilities for cluster memberships. Thus, the inference procedure can automatically assign

each node to its group without using any additional algorithms.

5.1.1 Organization of the chapter

In Section 5.2, the generative model behind GETM is introduced firstly. Then, a variational

inference strategy and an optimization algorithm are discussed in Section 5.3, as well as an intro-

duction about the novel structure of DS-GCN. Numerical experiments are reported in Section 5.4,

highlighting the main features of our methodology and validating its ability in exploiting both the

graph topology and topic modeling for node clustering in simulated networks. An application on

a real-world network Cora-enrich is presented in Section 5.5. Finally, Section 5.6 provides some

concluding remarks and future work.

5.2 The graph embedded topic model

The two building blocks of our GETM are GCN and ETM. The reader is referred to the Sec-

tions 2.1.2 and 2.3.2 for a review of these models. In our proposed GETM, we combine the repre-

sentations learned by a document similarity-based GCN and the document analysis capability of

ETM to obtain a joint embedding that takes both the graph topology and document semantics into

account, and to further perform an end-to-end clustering of the nodes.

5.2.1 Notations

In this chapter, each network is modeled as an undirected, unweighted, graphG withN nodes.

We introduce an N × N adjacency matrix A to encode the network topology, where Aij = 1 if

there is a link between node i and node j, 0 otherwise. In addition, each node is associated with

5.2 – The graph embedded topic model 111

a specific document. We introduce a corpus of N documents with a vocabulary that contains V

unique terms. For clarity, we set the number of documents denoted by D in ETM to D = N (the

number of nodes) since each node is assumed to be associated with a single document. W is a

document-term matrix where each vector Wi, i ∈ {1, · · · , N} encodes the document of node i

containing a collection of Mi words. Wiv, where v ∈ {1, · · · , V }; counts the number of times

that the vocable v in the dictionary appears in the i-th document.

We aim at learning latent, joint, node/document embeddings Z in a lower dimension P . Then,

using this learned embedding Z, our goal is to convert it into a graph embedding in dimension

F and a document embedding in dimension T , which allow us to in turn reconstruct the graph

adjacency and the document-term matrices, as well as to partition the nodes of the network into K

clusters. We emphasize that GETM is capable of simultaneously performing node clustering and

embedding construction.

5.2.2 Generative model

The generative process for GETM is now detailed. First, each node is assumed to be assigned

to a cluster via a random variable ci encoding its cluster membership

ci
i.i.d∼M(1, π), with π ∈ [0, 1]K ,

K∑
k=1

πk = 1. (5.1)

Then, conditionally to its cluster membership, a latent, joint embedding zi is generated as

zi|(cik = 1) ∼ N (µk, σ2
kIP), with σ2

k ∈ R+∗ and µk ∈ RP , (5.2)

independently for each node i = {1, · · · , N}.

Based on this joint embedding, a graph topology embedding is generated as

ηi = h(G)
ι (zi), (5.3)

where h(G)
ι (·) is a neural network with parameters ι to map the P -dimensional vector zi into

dimension F .

Next, the probability of a connection between nodes i and j is modeled by a distance function

between two graph topology embeddings

Aij = 1|ηi, ηj ∼ B(fτ (ηi, ηj)), (5.4)

112 CHAPITRE 5 — The graph embedded topic model

ci cj

zi zj

ηi ηjδi δj

Wi Wj

π

µk, σ
2
k

Aij τα, ρ

Figure 5.1 – Graphical representation of GETM (variational parameters are not included).

with

fτ (ηi, ηj) = σ(τ − ||ηi − ηj ||2), (5.5)

where σ(·) denotes a logistic sigmoid function. Here fτ (·) can be seen as the graph decoder

parametrized by τ , which encodes the prior probability to connect.

Similarly, a document embedding is assumed to be generated based on zi

δi = h(T)
ν (zi), (5.6)

where h(T)
ν (·) is a neural network with parameter ν to map the P -dimensional vector zi into

dimension T . The topic proportions of each document i are then obtained as

θi = softmax(δi). (5.7)

Finally, each document is assumed to be drawn from

Wi|θi ∼M(Mi; θ>i β), with β = softmax(α>ρ). (5.8)

As in ETM, α is a topic embedding representing topics in an L-dimensional space and ρ is a L×V

word embedding matrix obtained typically via word2vec [Mikolov et al., 2013a] or any other

word embedding approach. Moreover, the product θ>β can be viewed as a document decoder

to map the topic and word embeddings into a reconstructed document-term matrix. A graphical

representation of the generative model described so far can be seen in Figure 5.1.

5.3 – Inference model 113

5.3 Inference model

In this section, we detail the developed variational inference and the optimization algorithm,

and introduce the proposed document similarity-based graph convolutional network (DS-GCN).

5.3.1 Variational inference

Before getting into the details of the inference, we first denote by Θ = {π, (µk, σ2
k)k, ι, ν, τ, α, ρ}

the set of the model parameters introduced so far. A natural procedure would consist in maximiz-

ing the integrated log-likelihood of the observed data A and W with respect to Θ

log p(A,W |Θ) = log
∫
Z

∑
C

p(A,W,Z,C|Θ)dZ. (5.9)

Unfortunately, Eq. (5.9) is not tractable and we rely on a variational approach to approximate

it

log p(A,W |Θ) = L(q(Z,C); Θ) +KL(q(Z,C)||p(Z,C|A,Θ)), (5.10)

where KL denotes the Kullback-Leibler divergence between the true and approximate posterior

distributions of (Z,C) given the data and model parameters. Then, in order to deal with a tractable

family of distributions, q(Z,C) is assumed to fully factorize (mean-field assumption)

q(Z,C) = q(Z)q(C) =
N∏
i=1

q(zi)q(ci). (5.11)

Moreover, to benefit from the representational learning capabilities of graph neural networks,

our inference strategy relies on a two-layer DS-GCN to encode the graph adjacency matrix and

the document-term matrix into a joint embedding

q(zi|A,W) = N (zi;µi, σ2
i IP), (5.12)

where µi : RN×N 7→ RN×P (respectively σ2
i : RN×N 7→ R+∗) is the function mapping the

normalized adjacency matrix Ã = D̂−
1
2 ÂD̂−

1
2 into the matrix of variational means (and standard

deviations), parametrized by a two-layer DS-GCN defined as gφ :

H(1) = σ(Ã� (W̃W̃>)Ŵ (0)),

H(2) = Ã� (H(1)H(1)>)Ŵ (1),
(5.13)

114 CHAPITRE 5 — The graph embedded topic model

Figure 5.2 – Model architecture of GTEM.

where W̃ is the normalized document-term matrix, obtained via W̃ = W
|W | . Ŵ

(·) are learnable

weight matrices and σ(·) denotes a ReLU activation function. Here gφ can be seen as the encoder

that transforms two input matrices into latent, joint embeddings. The motivation and details of our

proposal for such a structure are described in the following Section 5.3.2.

Finally, a standard assumption is made for variational cluster probabilities

q(C) =
N∏
i=1
M(ci; 1, γi), with

K∑
k=1

γik = 1, (5.14)

where γik represents the variational probability that node i is in cluster k.

Model architecture. From a deep learning view, the model architecture can be seen in Fig-

ure 5.2. GETM takes the graph adjacency matrix A and the document-term matrix W as model

inputs. Through the DS-GCN encoder gφ, we obtain a combined embedding Z containing infor-

mation about both graph topology and latent topics. Then, a latent position-based graph decoder

fτ is developed to map the joint embedding into a reconstructed graph matrix, and another docu-

ment decoder θ>β is used to rebuild the document-term matrix. Additionally, by including latent

cluster variables C, we are also able to explicitly optimize and eventually output a matrix γ̂ that

represents the clustering probabilities, and, as a result, achieve end-to-end clustering.

5.3.2 Document similarity-based GCN.

In this section, we detail the motivation for proposing the structure of DS-GCN. Despite having

shown proficiency in representation learning tasks, attributed GCNs will inevitably neglect crucial

semantic information in text-rich networks when simply considering texts as node attributes.

5.3 – Inference model 115

An introductory example. In order to illustrate the rationale behind our approach, we begin

with a straightforward introductory example in which the network has three nodes, each node rep-

resenting a document. In addition, suppose that the data has five distinct words in the vocabulary,

divided into two topics. Such data set will be thus characterized by the following matrices

Â =

1 1 0

1 1 0

0 0 1

 , W =

1 1 0 0 0

0 0 0 1 1

0 1 1 0 0

 ,

where Â shows two connection structures: the first two nodes strongly interact and the third node is

not connected. Moreover, there are two types of texts inW : the first and the third node use similar

words while words used by the second node completely differs. Therefore, when considering both

the link relationships and the text information, it is more natural to conclude that there are three

distinct clusters in this instance. Notice if we would have used the convolution operation as in

GCN, we would obtain

ÃH(0) =

0.5 0.5 0 0.5 0.5

0.5 0.5 0 0.5 0.5

0 1 1 0 0

 , with D̂ =

2 0 0

0 2 0

0 0 1

 ,

where Ã = D̂−
1
2 ÂD̂−

1
2 , H(0) = W at the first layer. This operation ignores the semantic content

of texts and only retains the network structure. As a result, it is unable to distinguish between

the first and second nodes into two groups. To overcome this restriction, we develop a new GNN

structure that takes into account the document similarities, as described below.

DS-GCN. In contrast to standard GCNs, we here assume a new GNN structure named DS-GCN,

with the following per-layer propagation rule

H(l+1) = σ(Ã� (H(l)H(l)>)Ŵ (l)), (5.15)

where Ã = D̂−
1
2 ÂD̂−

1
2 , σ(·) denotes the ReLU activation, and � is an element-wise multi-

plication. H(l) encodes the learned representation in layer l, with H(0) = W̃ the normalized

document-term matrix, and Ŵ (l) is the learnable weight matrix of the l-th layer. Returning to the

116 CHAPITRE 5 — The graph embedded topic model

illustration example, we have in the top layer

Ã� (W̃W̃>) =

0.5 0 0

0 0.5 0

0 0 1

 ,

where the dot product W̃W̃> can be viewed as the similarity between documents, typically used

in NLP. The obtained product represents features containing both node connections and docu-

ment similarities information. As a result, GETM is able to divide the data into three clusters, as

expected. More experiments are conducted in the next section to show the validity of DS-GCN.

5.3.3 Optimization

In this part, we focus on maximizing the evidence lower bound (ELBO)

L(q(Z,C); Θ) =
∫
Z

∑
C

q(Z,C) log p(A,W,Z,C|Θ)dZ
q(Z,C) (5.16)

with respect to the model parameters Θ and the variational parameters. Thanks to Equa-

tions (5.12)-(5.13)-(5.14), the evidence lower bound (ELBO) denoted by L can be further de-

veloped as

L =
∫
Z

∑
C

q(Z,C) log p(A,W |Z, ι, ν, τ, α, ρ)p(Z|C, µk, σ2
k)p(C|π)dZ

q(Z,C)

=
∑
i 6=j

Eq(Z|A,W) [log p(A|ι, τ, ηi, ηj)] +
N∑
i=1

Mi∑
m=1

Eq(Z|A,W) [log p(Wim|ν, δi, α, ρ)]

+ E
[
log p(Z|C, µk, σ

2
k)

q(Z|A,W)

]
+ E

[
log p(C|π)

q(C)

]

=
∑
i 6=j

Eq(Z|A,W) [log p(A|ι, τ, ηi, ηj)] +
N∑
i=1

Mi∑
m=1

Eq(Z|A,W) [log p(Wim|ν, δi, α, ρ)]

−
N∑
i=1

K∑
k=1

γikKL(N (µi, σ2
i IP)||N (µk, σ2

kIP)) +
N∑
i=1

K∑
k=1

γik log(πk
γik

).

(5.17)

The first term of the ELBO calculates the difference between the reconstructed and original graph

adjacency matrices. The second term accounts for the reconstruction error between the document-

term matrices of the input and output. The third term considers the KL divergence (denoted by

KL(·)) between the approximate posterior distribution of node i, obtained with the encoder, and

5.3 – Inference model 117

the prior distribution of component k. Finally, the last term takes into consideration the clustering

probabilities.

On the one hand, an explicit optimization of the ELBO with respect to the parameters

γik, πk, µk and σk can be performed via Proposition 3.

Proposition 3. The following variational updates can be obtained:

γ̂ik = πke−KLik
K∑
l=1

πle−KLil
, (5.18)

where KLik = 1
2

{
log (σ2

k)P

(σ̃2
φ

(A)i)P
− P + σ̃2

φ(A)i
σ2
k

+ 1
σ2
k
||µk − µ̃φ(A)i||2

}
.

Then

π̂k =
N∑
i=1

γik/N, (5.19)

µ̂k =
N∑
i=1

µ̃φ(Ã)iγik/
N∑
i=1

γik, (5.20)

and

σ̂2
k =

N∑
i=1

γik(σ2
φ(Ã)i + ||µk − µ̃φ(Ã)i||2)

P
N∑
i=1

γik

. (5.21)

Proof.

Detailed derivations are given as follows. Under the equality constraint
K∑
k=1

γik = 1,∀k, we

use the method of Lagrange multipliers. Firstly, we introduce a Lagrange multiplier λi

L̃ = L −
N∑
i=1

λi

(
K∑
k=1

γik − 1
)
,

then, we derive L̃ according to γik

∂L̃
∂γik

= log πk − log γik −
γik
γik
−KLik − λi = 0,

thus, we have

log γik = log πk − 1−KLik − λi,

γik = e{log πk−1−KLik−λi} = e{log πk−KLik}

e{1+λi}
.

(5.22)

118 CHAPITRE 5 — The graph embedded topic model

By using the constraint on
K∑
k=1

γik, we can get

K∑
k=1

γik =

K∑
k=1

e{log πk−KLik}

e{1+λi}
= 1

log
K∑
k=1

e{log πk−KLik} = log e{1+λi}

λi = log
K∑
k=1

e{log πk−KLik} − 1.

After putting the value of λi into Eq. 5.22

γik = e{log πk−KLik}

e
{1+log

K∑
k=1

e{logπk−KLik}−1}
= e{log πk−KLik}

K∑
k=1

e{log πk−KLik}
.

Finally, we obtain

γ̂ik = πke−KLik
K∑
l=1

πle−KLil
. (5.23)

Similarly, since
K∑
k=1

πk = 1,∀k, we introduce another Lagrange multiplier, let us say ζ

L̃ = L − ζ
(

K∑
k=1

πk − 1
)
,

then, we derive L̃ according to πk

∂L̃
∂πk

=
N∑
i=1

γik
πk
− ζ = 0,

next, we use the equality constraint to find the value of ζ

K∑
k=1

N∑
i=1

γik =
K∑
k=1

πkζ

ζ = N,

and finally, we have

π̂k =
N∑
i=1

γik/N. (5.24)

5.4 – Numerical experiments 119

Lastly, we need to calculate the derivatives for µk and σ2
k. We start by deriving L̃ according to

µk

∂L̃
∂µk

= −1
2

N∑
i=1

γik{
1
σ2
k

(2µk − 2µ̃φ(Ã)i} = 0,

then, we obtain

µk

N∑
i=1

γik =
N∑
i=1

µ̃φ(Ã)iγik,

µ̂k =

N∑
i=1

µ̃φ(Ã)iγik
N∑
i=1

γik

,

(5.25)

and finally for σ2
k, we have

∂L̃
∂σ2

k

= −1
2

N∑
i=1

γik{
P

σ2
k

− 1
σ4
k

(σ2
φ(Ã)i + ||µk − µ̃φ(Ã)i||2)} = 0

P
N∑
i=1

γik
σ2
k

=
N∑
i=1

γik
σ4
k

(σ2
φ(Ã)i + ||µk − µ̃φ(Ã)i||2)

P
N∑
i=1

γikσ
2
k =

N∑
i=1

γik(σ2
φ(Ã)i + ||µk − µ̃φ(Ã)i||2)

σ̂2
k =

N∑
i=1

γik(σ2
φ(Ã)i + ||µk − µ̃φ(Ã)i||2)

P
N∑
i=1

γik

.

(5.26)

�

On the other hand, the implicit optimization of the encoder parameter φ, two neural networks

parameters ι and ν, graph decoder parameter τ as well as document decoder parameters α and

ρ, is performed via stochastic gradient descent. In this work, the implicit optimization is imple-

mented using the Adam optimizer [Kingma and Ba, 2014]. We also point out that during the

estimation, a reparameterization trick as in Kingma and Welling [2014a] is used for the terms

Eq(Z|A,W)[log p(A|ι, τ, ηi, ηj)] and Eq(Z|A,W)[log p(Wim|ν, δi, α, ρ)].

5.4 Numerical experiments

This section aims at testing the effectiveness of GETM, including a DS-GCN encoder, a latent

position-based graph decoder and a ETM-based document decoder, on three types of synthetic

120 CHAPITRE 5 — The graph embedded topic model

Figure 5.3 – Three scenarios to simulate synthetic networks.

networks, and to demonstrate the validity of the estimation algorithm proposed in the previous

section.

5.4.1 Simulation setup

We first generate three different types of synthetic networks, each of which having three groups

of nodes. The connections between nodes are obtained by a stochastic block model [SBM, Now-

icki and Snijders, 2001]. Each node in the network is then associated with a document, where

each word is picked at random from three articles from BBC news, denoted by D1, D2 and D3,

respectively. The first document discusses the birth of Princess Charlotte. The second text is about

black holes in astrophysics. The last article focuses on UK politics. Three scenarios are described

in detail as follows, with an illustration provided in Figure 5.3.

— Scenario A simulates a graph according to SBM, where edges between two nodes are

drawn from independent Bernoulli distributions

Aij |(ZikZjl = 1) ∼ B(Πkl),

with Zik being 1 if node i is in cluster k, 0 otherwise. The connection probabilities are

defined as

Π =

0.8 0.8 0.2

0.8 0.8 0.2

0.2 0.2 0.2

 ,
where each entry Πkl denotes the probability that a node in group k and a node in group l

connect. Thus, the third group has low inter and intra connection probabilities and differs

from the other two groups, which are more likely to connect. Additionally, we assign a

5.4 – Numerical experiments 121

document to each node and the words used in the three document groups are randomly

extracted from text D1, D2 and D3, respectively (see Figure 5.3). If we solely analyze

the network topology structure, the first two groups are likely to be clustered together.

However, if we look at the text information that each node in this network is concerned

with, the actual number of clusters is three.

— In Scenario B, networks are also simulated according to SBM, with connection probabili-

ties given by

Π =

0.8 0.2 0.2

0.2 0.8 0.2

0.2 0.2 0.8

 ,
corresponding to a clear community structure. It is simple to detect three clusters by just

considering the network topology. However, group 1 and group 3 adopt words from D1,

whereas words in group 2 are extracted from D2 (see Figure 5.3). Therefore, there are two

clusters if we only take the document information into account.

— Scenario C has the same connection probabilities as in Scenario A and the texts assign-

ments are the same as in Scenario B. In this situation, focusing solely on the graph topol-

ogy or the textual data would lead to the discovery of two clusters, whereas the actual

group numbers is three when the two types of information are considered simultaneously.

5.4.2 Benchmark study

We now aim at benchmarking the clustering performance of GETM with the following com-

petitors in the three simulated scenarios.

— ETM [Dieng et al., 2020] is a document generative model that combines traditional topic

models with word embeddings and is intended only for textual data.

— SBM [Nowicki and Snijders, 2001] is a widely used generative model in network analysis

for clustering of nodes and is designed for graph data only.

— VGAE [Kipf and Welling, 2016] encodes the adjacency matrix and the node/document

feature matrix by a GCN, and adopts an inner-product decoder for graph reconstruction.

— AM-GCN [Wang et al., 2020b] is a GCN-based method which performs graph convolution

both accounting for the network topology and the node features space.

122 CHAPITRE 5 — The graph embedded topic model

Table 5.1 – Experimental clustering results on 3 simulated scenarios.

Scenario A Scenario B Scenario C

ETM 1.000±0.00 0.552±0.02 0.540±0.02

SBM 0.630±0.05 1.000±0.00 0.608±0.05

VGAE 0.459±0.00 0.773±0.07 0.460±0.00

AM-GCN 1.000±0.00 0.892±0.03 0.961±0.02

GETM 0.990±0.01 1.000±0.00 0.998±0.00

For each scenario, we randomly generated 15 networks with 900 nodes, 3 clusters, and calculated

the averaged adjusted rand index [ARI, Hubert and Arabie, 1985] for node clustering comparisons.

The results are reported in Table 5.1.

As can be observed, ETM showed excellent results in Scenario A due to the fact that each

group is associated with a distinct topic. However, in Scenario B and C, only two types of doc-

uments are considered, ETM has a poor ARI since it cannot exploit the connectivity between

nodes/documents. SBM only achieved great results in Scenario B, which contains three groups

in the graph topological structure. However, SBM failed to detect three clusters in Scenario A

and C since it cannot exploit the textual interaction. VGAE treats text data as node attributes to

perform clustering. Due to the constraints in fusing the graph topology and the word semantics

in GCN, VGAE shows the worst performance in all situations. AM-GCN constructs a k-nearest

neighbor graph based on the node feature matrix to capture the underlying document semantics.

As a result, AM-GCN was able to identify three clusters in different scenarios. Nevertheless, its

performance in Scenario B was unsatisfactory in comparison to Scenario A and C. Finally, GETM

consistently displayed strong clustering performance with high ARI values in all situations, which

demonstrates its capability in both representation learning and node clustering.

5.4.3 A more detailed example

We now focus on Scenario C, which is the primary emphasis of this work. In the initial

configuration, both the graph topology structure and topic subjects are divided into two categories,

making it difficult to find the actual number of clusters.

5.4 – Numerical experiments 123

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

Reconstruction loss (graph)

0 50 100 150 200 250 300
500

520

540

560

580

600

620

Recontruction loss (text)

0 50 100 150 200 250 300

2000

4000

6000

8000

10000

12000

14000
Training loss in total

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

ARI for clustering

Figure 5.4 – The training loss for graph and texts reconstruction, the overall loss and the evolution

of ARI during training.

We first run GETM on a synthetic network with 900 nodes, generated according to Scenario

C, and then visualize the learned joint embeddings, graph embeddings and document embeddings,

respectively. After training for 600 epochs, we plot the reconstruction loss for graph and text, the

total loss (negative ELBO), and display the evolution of the ARI during training (Figure 5.4). All

types of loss have converged and the ARI value (equal to 1.0) highlights the clustering capability

of GETM as well.

124 CHAPITRE 5 — The graph embedded topic model

4 2 0 2 4 6

3

2

1

0

1

2

3

Figure 5.5 – PCA visualisation of the joint embedding Z (P = 128) in Scenario C. Each cluster

is represented by a distinct color. Three black points are the estimated cluster centers µk.

Then, we visualize the latent embeddings learned by GETM. First, Figure 5.5 displays the

combined embeddings Z using PCA. Three groups with distinct colors can be distinguished by

GETM, which demonstrates the ability of DS-GCN to exploit the network topology and the textual

information. Then, regarding the graph topological embeddings η in Figure 5.6, two groups with

different topologies are well preserved. As we can see, there are two clusters with a high prob-

ability of intra connections (positions are relatively closed) and one cluster is separated, which

is coherent with our initial configuration. In addition, two latent topics are successfully detected

based on the document embeddings θ, as shown in Figure 5.7. One document cluster is far away,

whereas the other two clusters are very close, recovering the simulation setup in Scenario C.

5.4 – Numerical experiments 125

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Figure 5.6 – PCA visualisation of η (F = 128) in Scenario C. The green group is far away,

whereas the orange and blue groups are relatively close, showing two different topologies.

0.2 0.0 0.2 0.4 0.6 0.8

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure 5.7 – PCA visualisation of θ (T = 16) in Scenario C. The blue group is far away, whereas

the green and orange groups are relatively close, showing two different topics.

Moreover, we also illustrate the top-10 words selected from two topics in Table 5.2. As we can

see, words associated with the first topic are related to the birth of Princess Charlotte, and vocables

126 CHAPITRE 5 — The graph embedded topic model

Table 5.2 – Top-10 words obtained from two topics.

Topic 1 "princess" "charlotte" "birth" "queen" "duchess"

"duke" "cambridge" "granddaughter" "great" "palace"

Topic 2 "hole" "black" "see" "gravity" "light"

"one" "event" "horizon" "around" "disc"

in the second topic are about black holes in astrophysics, which recovers the simulation setup for

texts.

To conclude, all previous results indicate that GETM is capable of learning representations

and performing node clustering in heterogeneous information networks.

5.4.4 Model selection

A key element of an unsupervised learning technique such as GETM is to be able to automat-

ically determine the number of clusters (K). We highlight here the ability of our methodology to

auto-penalize the ELBO for selecting the number of groups appropriately, which is made possi-

ble by the self-regularization ability of variational auto-encoders, also reported in Kingma et al.

[2016]; Dai et al. [2017].

Number of clusters. Letting the number of clusters vary from 2 to 7, Figure 5.8 illustrates

how the training loss (negative ELBO) can be used to estimate the number of clusters. In this

experiment, for each value of the number of clusters, we generated five synthetic networks from

Scenario C and trained GETM with the latent, joint embedding dimension P = 16, the graph

embedding dimension F = 16 as well, and the dimension of document embedding equal to the

number of topics T = 2. It can be seen that when K = 3, the training loss (negative ELBO) is

minimal, thus recovering the actual value of K for the simulation setting.

5.5 – Numerical experiments 127

2 3 4 5 6 7
Number of clusters

992

994

996

998

1000

Tr
ai

ni
ng

 lo
ss

 (-
EL

BO
)

Figure 5.8 – Averaged training loss (negative ELBO) with different number of clusters on 30

synthetic networks in Scenario C. GETM was able to estimate K = 3 by displaying a clear

minimum of the negative ELBO.

Dimension for latent topics. We further evaluated the model selection ability with different

number of latent topics. In this experiment, we generated five synthetic networks from Scenario

C and trained GETM with the latent, joint embedding dimension P of 128, the graph embedding

dimension F of 128, and the document embedding dimension T of {2, 16, 128}, respectively. In

Table 5.3, we examine the training loss (negative ELBO) for various number of clusters K ∈

{1, · · · , 6}. The capacity of GETM to choose the proper cluster numbers is highlighted by the

fact that the minimal training loss (negative ELBO) is discovered when K = 3, with varying

dimensions of latent topics.

Table 5.3 – Averaged training loss (negative ELBO) with different number of clusters and latent

topic dimension in Scenario C.

K=2 K=3 K=4 K=5 K=6

T=2 1048.11 1028.74 1038.37 1037.69 1037.17

T=16 1040.65 1026.58 1027.36 1027.66 1028.89

T=128 1027.88 1026.60 1028.44 1027.27 1028.14

128 CHAPITRE 5 — The graph embedded topic model

5.5 Application on real-world network

In this section, GETM is fitted on a text-rich citation network Cora-enrich ∗ as an illustration

of its practical use. The original Cora † dataset contains 2,708 scientific publications classified

in seven categories: case based, genetic algorithms, neural networks, probabilistic methods, re-

inforcement learning, rule learning and theory. It consists of 5,429 links and 1,433 vocabulary.

Each publication is described by a 0/1-valued word vector indicating the absence/presence of the

corresponding word from a dictionary. Recently, Ganguly and Pudi [2017] enriched the text infor-

mation by collecting the titles, abstracts and all sentences from a paper containing citations, which

leads to 25,955 vocables in Cora-enrich network. This dataset shares the same papers, categories

and citation relationships with Cora.

Most related works [Pan et al., 2018; Mehta et al., 2019; Jin et al., 2021; Yu et al., 2021] assume

that the number of clusters is equal to the number of classes used in supervised node classification

tasks, whereas we argue that the class labels (thematic categories) might not be in a one-to-one

relation with the detected clusters in unsupervised node clustering. Instead, an appropriate cluster

number should be obtained through model selection.

5.5.1 Model selection

As the model selection ability of GETM is demonstrated in Section 5.4.4, GETM is also fitted

to the Cora-enrich network for different numbers of clusters, ranging between 4 and 10, with fixed

dimensions (P, F, T = 128) for three latent spaces. The evolution of the training loss (negative

ELBO) with various cluster numbers is shown in Figure 5.9. The reported result is the lowest value

obtained after running GETM 10 times for each cluster number. Finally, the estimated number of

clusters is K = 6 by displaying a clear minimum of the negative ELBO.

Confusion matrix. We also plot the confusion matrix between six estimated cluster partitions

and seven thematic categories to investigate the fusion or dispersion between multiple classes, as

shown in Figure 5.10. As we can see, the majority of publications on reinforcement learning (T3),

rule learning (T5) and genetic algorithms (T6) are extracted into clusters C3, C5 and C1, respec-

tively. The two clusters C2 and C6 constitute the primary division between articles about neural

∗. http://zhang18f.myweb.cs.uwindsor.ca/datasets/
†. https://relational.fit.cvut.cz/dataset/CORA

http://zhang18f.myweb.cs.uwindsor.ca/datasets/
https://relational.fit.cvut.cz/dataset/CORA

5.5 – Application on real-world network 129

4 5 6 7 8 9 10
Number of clusters

5274

5276

5278

5280

5282

5284
Tr

ai
ni

ng
 lo

ss
 (-

EL
BO

)

Figure 5.9 – Training loss (negative ELBO) with different number of clusters on Cora-enrich.

GETM estimates K = 6 by clearly showing the minimum of the negative ELBO.

T1 T2 T3 T4 T5 T6 T7
Thematic categories

C1
C2

C3
C4

C5
C6

Cl
us

te
r p

ar
tit

io
ns

11 35 20 8 42 353 49

200 5 4 43 3 12 245

107 168 181 26 30 27 37

54 0 1 145 0 0 11

51 75 3 128 105 12 59

3 15 8 1 0 14 417

0

80

160

240

320

400

Figure 5.10 – Confusion matrix between six estimated clusters and seven thematic categories (T1:

probabilistic methods, T2: case based, T3: reinforcement learning, T4: theory, T5: rule learning,

T6: genetic algorithms, T7: neural networks).

networks (T7). Theoretical publications (T4) are mainly grouped into C4 and C5 clusters. Case

based papers (T2) are separated into clusters C3 and C5. The articles that address probabilistic

approaches (T1) are divided into the clusters C2, C3, C4, and C5.

130 CHAPITRE 5 — The graph embedded topic model

Grp 1
Grp 2
Grp 3
Grp 4
Grp 5
Grp 6

Figure 5.11 – Visualization of Cora-enrich. Six clusters are represented in distinct colors.

Based on these results, we stress that the number of clusters cannot be determined solely

based on the number of the thematic classes. Conversely, when selecting the number of clusters

via model selection, we are able to discover interesting new similarities between the nodes of a

graph.

5.5.2 Visualisation and analysis

We further visualize the latent embeddings discovered by GETM in Figure 5.11. The standard

network visualization tool gplot within the sna library in R is used. Six clusters are represented in

distinct colors with a layout using a variant of Fruchterman and Reingold force-directed placement

algorithm by default. It can be seen that, GETM was able to detect different communities on Cora-

enrich, where nodes from various clusters are gathered. Moreover, Figure 5.12 shows the paper

distributions in six groups when seven thematic categories are taken into account.

5.5 – Application on real-world network 131

PM CB RL1 Th RL2 GA NN

Group 1

0
50

10
0

15
0

20
0

25
0

30
0

35
0

PM CB RL1 Th RL2 GA NN

Group 2

0
50

10
0

15
0

20
0

PM CB RL1 Th RL2 GA NN

Group 3

0
50

10
0

15
0

PM CB RL1 Th RL2 GA NN

Group 4

0
20

40
60

80
10

0
12

0
14

0

PM CB RL1 Th RL2 GA NN

Group 5

0
20

40
60

80
10

0
12

0

PM CB RL1 Th RL2 GA NN

Group 6

0
10

0
20

0
30

0
40

0

Figure 5.12 – Partitions taking into account thematics in each cluster on Cora-enrich (PM: prob-

abilistic methods, CB: case based, RL1: reinforcement learning, Th: theory, RL2: rule learning,

GA: genetic algorithms, NN: neural networks).

— The Grp 1 in red, in particular, collects the majority of publications on genetic algorithms.

It makes sense because genetic techniques is a specialized topic of research that is distinct

from other themes. Since many neural network models are constructed using probabilis-

tic principles and it is common for them to strengthen proposed models based on theory

background.

— Grp 2 in green extracts many publications from neural networks, probabilistic approaches,

and some theoretical articles. This is expected given that theory papers or probabilistic

methods can serve as the foundation for neural network models.

— Because many reinforcement learning models are created for a particular case study and

may rely on some probabilistic basis, the Grp 3 (blue) includes practically almost all of the

132 CHAPITRE 5 — The graph embedded topic model

reinforcement learning publications, a significant number of case-based articles, and some

probabilistic methods.

— Similarly, a number of probabilistic or neural network-based models are gathered specifi-

cally in the Grp 4 (pink) together with the majority of theory articles.

— Since rule learning can be used in a variety of domains, Grp 5 in yellow contains the

majority of rule learning publications along with many other types of papers.

— Finally, the Grp 6 in black captures the other neural network publications that are solely

informatics-related.

Additionally, we also visualize the graph topological embedding and analyze the link connec-

tions between nodes. Figure 5.13 illustrates the latent embedding η of graph topology. As we can

see, there is a small community of nodes in Grp 1 (red) that are exclusively interconnected, these

could represent publications on specific genetic algorithms. The relationships for the other groups

are not very evident from this figure, so we go further into them by computing the community

memberships quantitatively for each cluster (number of links within each cluster). The results are

reported in Table 5.4. It is clear that all of the diagonal values are quite large, highlighting the

community structure: nodes are more likely to interact within their communities.

5.5 – Application on real-world network 133

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Figure 5.13 – Visualization of the graph topology embedding η.

Table 5.4 – Number of links within each cluster.

Grp

Grp
1 2 3 4 5 6

1 1794 207 393 74 111 218

2 207 1032 79 106 117 119

3 393 79 1480 7 114 51

4 74 106 7 568 46 0

5 111 117 114 46 1312 29

6 218 119 51 0 29 1030

134 CHAPITRE 5 — The graph embedded topic model

We close this section emphasizing once more that, in unsupervised problems, we cannot deter-

mine the number of clusters solely based on the number of the classes that are used in supervised

tasks. These classes are simply assigned based on the article thematics, without taking into account

the citation relationships. Conversely, when selecting the number of clusters via model selection

(that VAEs seem to perform intrinsically), we are able to discover interesting new similarities be-

tween the nodes of a graph by combining the graph topology structure with latent thematics in

textual information.

5.6 Conclusion

We propose the document similarity-based graph convolutional network (DS-GCN) to account

for both the network topology structure as well as word and topic semantics from the textual in-

formation. Then, two different decoding networks are introduced to reconstruct both the graph

adjacency matrix and the document-term matrix. In addition, an end-to-end node clustering is

performed using the graph embedded topic model (GETM) by estimating the posterior probabil-

ities for cluster memberships. Numerical experiments on simulated scenarios demonstrate that

GETM is capable of learning representations in heterogeneous information network. Moreover,

the performance of GETM in node clustering is highlighted by the benchmark study with other

competitors based on three different simulations. We further conduct a model selection to test

the ability of our methodology to auto-penalize the ELBO for choosing the number of clusters

appropriately. Finally, an unsupervised network analysis is conducted on the Cora-enrich network

to emphasize the model selection ability and the interest to discover hidden patterns behind the

thematics.

Here we considered networks that include mixed-type information, but each node and link

have the same kind of properties and relationships. For instance, each node is associated with a

textual document and links are all undirected and unweighted. For future works, we could deal

with more complex real-world networks, including nodes with various characteristics.

CHAPTER 6
Conclusion and

Perspectives
6.1 Summary of the contributions

In both statistics and deep learning, dealing with high-dimensional and heterogeneous data is

challenging. The performance of learning methods is directly impacted by how mixed-type data is

incorporated. Moreover, labeling data is costly and prone to human annotator errors or biases. In

this situation, understanding the underlying structure to extract data patterns and then generating

new data based on the encoded information becomes a crucial approach, accomplished via deep

latent variable models. Chapter 3 demonstrated that the predictability of our proposed deep latent

recommender system could benefit from the integration of user ratings and textual reviews on

products. Chapter 4 presented a latent position-based generative model to perform node clustering

where, apart from the network data, additional covariate information can be incorporated into

the model during the decoding phase to reveal more of the hidden patterns. Chapter 5 focused

on networks with text data, where a document similarity-based graph convolutional network is

developed to combine the graph topological structure with topic modeling and word embeddings.

Numerical experiments on simulated scenarios as well as on real-world data demonstrated the

validity of these three generative models along with their inference procedures.

These contributions led to the production of several scientific articles, among which one has

been published in an international peer-reviewed journal :

— DeepLTRS: A deep latent recommender system based on user ratings and reviews,

D., Liang, M., Corneli, C., Bouveyron and P., Latouche, Pattern Recognition Letters, vol.

152, pp. 267-274 (2021).

135

136 CHAPITRE 6 — Conclusion and Perspectives

One paper was published in the proceedings of an international peer-reviewed conference :

— Deep latent position model for node clustering in graphs, D., Liang, M., Corneli, C.,

Bouveyron and P., Latouche, Proceedings of the 30th European Symposium on Artificial

Neural Networks (2022).

One preprint is currently under review in a journal :

— Clustering by Deep Latent Position Model with Graph Convolutional Network, D.,

Liang, M., Corneli, C., Bouveyron and P., Latouche, Preprint HAL-03629104 (2022).

The work in Chapter 5, is submitted to a journal :

— The graph embedded topic model, D., Liang, M., Corneli, C., Bouveyron and P., La-

touche, Preprint HAL-03942487 (2023).

6.2 Perspectives

Eventually, we outline several perspectives on extensions of the work described in this thesis

as well as further research directions.

6.2.1 Graph learning-based recommender systems

The deepLTRS model we proposed in Chapter 3 is based on the traditional collaborative fil-

tering approach, where the user-product interactions (ratings, reviews, etc.) are viewed as the

encoded matrices. However, with the rapid development of graph learning techniques, graph

learning-based recommender systems have emerged as a popular topic in the last couple of

years [Wang et al., 2021]. In this context, users and items could be represented as nodes in a

graph and the relations between them such as purchases or reviews could be viewed as edges. A

demonstration of a graph learning-based recommender system is illustrated in Figure 6.1.

At the beginning, we could initially assess the performance of graph-based recommendations

by modifying the model structures proposed in Chapters 4 and 5. Instead of performing node

clustering, one possible approach is to adapt our methods to the link prediction task. For instance,

we could construct a bipartite graph G = (V, E), consisting of a set of user nodes ui ∈ Vu with

i ∈ {1, · · · ,M} and item nodes vj ∈ Vv with j ∈ {1, · · · , N}, such that V = Vu ∪ Vv. The

interactions between them, e.g. purchases, could be represented as edges in E. Based on these

information, we could be able to construct a graph adjacency matrix A, where Aij = 1 if user i

6.2 – Perspectives 137

Figure 6.1 – A demonstration of graph learning=based recommender systems†.

purchased item j, 0 otherwise. Each edge could be associated with a weight to indicate the rat-

ing value. Moreover, each purchase is frequently accompanied by a text review. Hence, we may

convert this textual data into a node features matrix X , where Xi contains all reviews written by

the user i, similarly, Xj includes all reviews that the item j received. Once we obtained these

two matrices, we could learn the link predictions using either of the graph neural networks dis-

cussed in Section 2.3.2. The system could then recommend the products to users if there are links

between them. We point out here a number of related work, including the graph convolutional

matrix completion [Berg et al., 2017] based on graph auto-encoders, the multi-graph convolu-

tional neural networks [Monti et al., 2017] based on GCN, and the inductive graph-based matrix

completion [Zhang and Chen, 2020] based on GraphSAGE.

6.2.2 Generalized graph neural networks

Regarding the generative models developed in Chapters 4 and 5, the encoding process is car-

ried out based on the graph convolutional networks (GCNs). Even though GCNs have demon-

strated good representation learning ability, the entire graph is needed as input for training. Indeed,

GCNs take into account all of the neighbor nodes information during the aggregation, which could

be computationally expensive in large networks. However, as discussed in Section 2.3.2, Graph-

SAGE learns an aggregation function that generates embeddings by sampling and aggregating

features from a local neighborhood of nodes. With the inductive framework of GraphSAGE, it is

†. source from Wang et al. [2021]

138 CHAPITRE 6 — Conclusion and Perspectives

not necessary to retrain the entire graph whenever a new node is added because the learnt function

could be used to generate new embeddings. Moreover, the idea behind GraphSAGE [Hamilton

et al., 2017] would allow us to perform mini-batch operations on huge data sets, which accelerates

the training process in real-world applications.

PinSAGE [Ying et al., 2018a], which is incorporated into the recommendation engine of Pin-

terest, is a direct continuation of GraphSAGE. PinSAGE is applied in a very large graph (3 billion

nodes and 18 billion edges) and generates higher-quality recommendations than comparable deep

learning and graph-based alternatives.

Due to the high performance of GraphSAGE, we could first change the GCN-based encoder in

our models to GraphSAGE to obtain preliminary findings. Moreover, because of the flexible archi-

tecture of VAE, the encoding-decoding process can be modified for different purposes. Therefore,

in order to enhance our models, one possible way is to randomly choose the encoders from vari-

ous GNNs (GCN, GraphSAGE, GIN, etc.) according to specific problems, which could bring us a

more generalized model structure.

6.2.3 Clustering with heterogeneous graph neural networks

In this thesis, we considered networks that may include mixed-type information, but each node

and link have the same kinds of properties and relationships. For instance, each node is associated

with a textual document and links are all undirected and unweighted, while in more complex real-

Figure 6.2 – A complex network where neighbors and node contents are heterogeneous†.

†. source from Zhang et al. [2019a]

6.2 – Perspectives 139

world networks, we could come across nodes with various characteristics, as seen in Figure 6.2.

In this illustration, the network consists of three different types of nodes, where the first type of

nodes carries text information, the second type contains image data, etc.

To overcome this problem, recent advancements have been made with heterogeneous graph

neural networks (HGNNs) [Zhang et al., 2019a; Wang et al., 2019b]. More precisely, in Zhang

et al. [2019a], a heterogeneous graph is defined as G = (V, E ,OV ,RE) with multiple types of

nodes in V and links in E . OV and RE indicate the set of object types and that of relation types.

For different node attributes, the text features are extracted by Par2Vec [Mikolov et al., 2013b],

the image features are obtained using CNN, and a pooling operation is used to integrate all types

of features. Due to the efficiency and practical interest of HGNNs in carrying out various graph

learning tasks, this is another subject that we plan to investigate in the future.

At first sight, one possibility might be changing the aggregation processes between nodes and

their neighbors in our proposed models. Assume we have three sorts of nodes: nodes with text

data, nodes with image data, and those with both forms of data. We could use Par2vec to extract

text features, and use CNN to extract image features. For nodes with two types of content, we

might conduct these two procedures and aggregate the resulting features using concatenation or

summation. The attention mechanism, as in GAT (see Section 2.3.2), could then be used to model

the importance of the neighbor nodes. If two nodes have the same type of attributes, we may give

them a large weight, otherwise, we may give them a small weight.

6.2.4 From topic modeling to intelligent document analysis techniques

In this thesis, the bag-of-words representation has been used to model the text information

into a document-term matrix without taking into account the ordering, semantics, or relationships

between individual words. We are considering using more deep oriented techniques for document

analysis, such as doc2vec [Le and Mikolov, 2014], to convert the documents directly into vectors.

However, as the length of the texts might vary in doc2vec, the vector size is different for each

document. The integration of a document vector with a range of sizes into the graph structure is

challenging yet interesting.

Furthermore, in order to improve the modeling ability of text, we might replace LDA-based

models by other NLP models, possibly involving RNNs [Agarap and Grafilon, 2018] or BERT [Xu

et al., 2020], etc.

Appendix

Appendices

143

144 ANNEXE

A Appendix for Chapter 4

A.1 Implementation details and computation time

In DeepLPM, the GCN encoder has 64 neurons in the first hidden layer, equipped with a

RelU activation function and 16 neurons in the second hidden layer. The decoder is a one-layer

neural network which maps the latent embeddings into a reconstructed graph adjacency matrix,

following by a sigmoid activation function. Adam optimizer with a learning rate equal to 2e-3 is

used to update network parameters. The computation time on the ecclesiastical network with 1,287

nodes and 33,384 edges is about 0.12s/epoch, for a total of 107s, for 800 epochs on a GeForce

RTX 2070 GPU. On the same GPU, training on the citation network Cora with 2,708 nodes and

5,429 edges takes about 0.18s/epoch and a total of 444.37s for 2,000 epochs.

In this chapter, LPCM is implemented by VBLPCM pakage in R, SBM, VGAE and

ARVGA are conducted using the available Python code in github: https://github.com/

Remi-Boutin/SBM_package, https://github.com/DaehanKim/vgae_pytorch

and https://github.com/GRAND-Lab/ARGA, respectively.

B Appendix for Chapter 5

B.1 Implementation details and computation time

In GETM, the DS-GCN encoder gφ has 512 neurons in the first hidden layer and 128 neurons in

the second hidden layer, respectively, equipped with a Relu activation for the first layer. The neural

networks h(G)
ι and h(T)

ν are one-layer linear networks with 128 and 16 neurons, respectively. The

graph decoder fτ is a one-layer neural network, following with a sigmoid function, which maps

the latent graph topology embeddings η into a reconstructed graph. The document decoder θ>β

maps the topic and word embeddings in dimension L = 300 into a reconstructed document-term

matrix.

Adam optimizer is used to update network weights. On the simulated networks, the learning

rate for the graph part is 5e−3, and 0.02 for the document part. On the Cora-enrich network, the

learning rate for two parts are 5e−3, and 0.01, respectively.

The computation time on the simulated network with 900 nodes, 558 (Scenario B and C) or

721 words (Scenario A) is about 0.03s/epoch, for a total of 9.18s for 300 epochs on a GeForce

https://github.com/Remi-Boutin/SBM_package
https://github.com/Remi-Boutin/SBM_package
https://github.com/DaehanKim/vgae_pytorch
https://github.com/GRAND-Lab/ARGA

ANNEXE 145

RTX 2070 GPU. On the same GPU, training on the citation network Cora-enrich with 2,708 nodes

and 25,955 words takes about 0.10s/epoch and a total of 28.50s for 300 epochs.

For more details, our code is available in: https://github.com/ldggggg/

GraphETM. In this paper, SBM is implemented by sparsebm package in Python, ETM,

VGAE and AM-GCN are conducted using the available Python code in github: https:

//github.com/lffloyd/embedded-topic-model, https://github.com/

DaehanKim/vgae_pytorch and https://github.com/zhumeiqiBUPT/AM-GCN,

respectively.

https://github.com/ldggggg/GraphETM
https://github.com/ldggggg/GraphETM
https://github.com/lffloyd/embedded-topic-model
https://github.com/lffloyd/embedded-topic-model
https://github.com/DaehanKim/vgae_pytorch
https://github.com/DaehanKim/vgae_pytorch
https://github.com/zhumeiqiBUPT/AM-GCN

Bibliography

A. F. Agarap and P. Grafilon. Statistical analysis on e-commerce reviews, with sentiment clas-

sification using bidirectional recurrent neural network (rnn). arXiv preprint arXiv:1805.03687,

2018.

C. Aggarwal and H. Wang. A survey of clustering algorithms for graph data. In Managing and

mining graph data, pages 275–301. Springer, 2010.

C. Aggarwal, G. He, and P. Zhao. Edge classification in networks. In 2016 IEEE 32nd Interna-

tional Conference on Data Engineering (ICDE), pages 1038–1049. IEEE, 2016.

E. M. Airoldi, D. Blei, S. Fienberg, and E. Xing. Mixed membership stochastic blockmodels.

Advances in neural information processing systems, 21, 2008.

D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. Graph partitioning and graph cluster-

ing, volume 588. American Mathematical Society Providence, RI, 2013.

A.-L. Barabasi and Z. N. Oltvai. Network biology: understanding the cell’s functional organiza-

tion. Nature reviews genetics, 5(2):101–113, 2004.

M. Basbug and B. Engelhardt. Hierarchical compound poisson factorization. In International

Conference on Machine Learning, pages 1795–1803, 2016.

M. Basbug and B. Engelhardt. Coupled compound poisson factorization. arXiv preprint

arXiv:1701.02058, 2017.

R. v. d. Berg, T. N. Kipf, and M. Welling. Graph convolutional matrix completion. arXiv preprint

arXiv:1706.02263, 2017.

S. Bhagat, G. Cormode, and S. Muthukrishnan. Node classification in social networks. In Social

network data analytics, pages 115–148. Springer, 2011.

C. M. Bishop. Latent variable models. In Learning in graphical models, pages 371–403.

Springer, 1998.

D. M. Blei. Build, compute, critique, repeat: Data analysis with latent variable models. Annual

Review of Statistics and Its Application, 2014.

147

148 BIBLIOGRAPHY

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of machine

Learning research, 3:993–1022, 2003.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.

Journal of the American Statistical Association, 112(518):859–877, apr 2017.

L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of

COMPSTAT’2010, pages 177–186. Springer, 2010.

L. Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages

421–436. Springer, 2012.

C. Bouveyron, P. Latouche, and R. Zreik. The stochastic topic block model for the clustering of

vertices in networks with textual edges. Statistics and Computing, 28(1):11–31, 2018.

C. Bouveyron, G. Celeux, T. B. Murphy, and A. E. Raftery. Model-based clustering and clas-

sification for data science: with applications in R, volume 50. Cambridge University Press,

2019.

R. Catherine and W. Cohen. Transnets: Learning to transform for recommendation. In Proceed-

ings of the eleventh ACM conference on recommender systems, pages 288–296, 2017.

L. Chen, G. Chen, and F. Wang. Recommender systems based on user reviews: the state of the

art. User Modeling and User-Adapted Interaction, 25(2):99–154, 2015.

Z. Cheng, Y. Ding, L. Zhu, and M. Kankanhalli. Aspect-aware latent factor model: Rating

prediction with ratings and reviews. In Proceedings of the 2018 world wide web conference,

pages 639–648, 2018.

K. Chowdhary. Natural language processing. Fundamentals of artificial intelligence, pages 603–

649, 2020.

M. Corneli, C. Bouveyron, P. Latouche, and F. Rossi. The dynamic stochastic topic block model

for dynamic networks with textual edges. Statistics and Computing, 29(4):677–695, 2019.

S. Coxe, S. G. West, and L. S. Aiken. The analysis of count data: A gentle introduction to poisson

regression and its alternatives. Journal of personality assessment, 91(2):121–136, 2009.

I. Csiszár. I-divergence geometry of probability distributions and minimization problems. The

annals of probability, pages 146–158, 1975.

BIBLIOGRAPHY 149

W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge clustering for graph visu-

alization. IEEE transactions on visualization and computer graphics, 14(6):1277–1284, 2008.

B. Dai, Y. Wang, J. Aston, G. Hua, and D. Wipf. Hidden talents of the variational autoencoder.

arXiv preprint arXiv:1706.05148, 2017.

A. B. Dieng, F. J. Ruiz, and D. M. Blei. Topic modeling in embedding spaces. Transactions of

the Association for Computational Linguistics, 8:439–453, 2020.

Z. Gan, C. Chen, R. Henao, D. Carlson, and L. Carin. Scalable deep poisson factor analysis for

topic modeling. In International Conference on Machine Learning, pages 1823–1832. PMLR,

2015.

S. Ganguly and V. Pudi. Paper2vec: Combining graph and text information for scientific paper

representation. In European conference on information retrieval, pages 383–395. Springer, 2017.

H. Gao, Y. Xu, Y. Yin, W. Zhang, R. Li, and X. Wang. Context-aware qos prediction with

neural collaborative filtering for internet-of-things services. IEEE Internet of Things Journal, 7

(5):4532–4542, 2019.

Z. Gilula, R. E. McCulloch, Y. Ritov, and O. Urminsky. A study into mechanisms of attitudi-

nal scale conversion: A randomized stochastic ordering approach. Quantitative Marketing and

Economics, 17(3):325–357, 2019.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and

Y. Bengio. Generative adversarial networks. Communications of the ACM, 63(11):139–144,

2020.

P. Gopalan, J. M. Hofman, and D. M. Blei. Scalable recommendation with hierarchical poisson

factorization. In UAI, pages 326–335, 2015.

W. Greene. Functional forms for the negative binomial model for count data. Economics Letters,

99(3):585–590, 2008.

J. Grimmer and B. M. Stewart. Text as data: The promise and pitfalls of automatic content

analysis methods for political texts. Political analysis, 21(3):267–297, 2013.

W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs.

In Proceedings of the 31st International Conference on Neural Information Processing Systems,

pages 1025–1035, 2017.

150 BIBLIOGRAPHY

M. S. Handcock, A. E. Raftery, and J. M. Tantrum. Model-based clustering for social networks.

Journal of the Royal Statistical Society: Series A (Statistics in Society), 170(2):301–354, 2007.

J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm. Journal of

the royal statistical society. series c (applied statistics), 28(1):100–108, 1979.

R. He and J. McAuley. Ups and downs: Modeling the visual evolution of fashion trends with

one-class collaborative filtering. In proceedings of the 25th international conference on world

wide web, pages 507–517, 2016.

G. E. Hinton and R. R. Salakhutdinov. Replicated softmax: an undirected topic model. Advances

in neural information processing systems, 22, 2009.

P. Hoff, A. Raftery, and M. Handcock. Latent space approaches to social network analysis.

Journal of the American Statistical Association, 97(460):1090–1098, 2002.

Z. Huang, D. Zeng, and H. Chen. A comparison of collaborative-filtering recommendation algo-

rithms for e-commerce. IEEE Intelligent Systems, 22(5):68–78, 2007.

L. Hubert and P. Arabie. Comparing partitions. Journal of classification, 2(1):193–218, 1985.

Y. Jernite, P. Latouche, C. Bouveyron, P. Rivera, L. Jegou, and S. Lamassé. The random subgraph

model for the analysis of an ecclesiastical network in merovingian gaul. The Annals of Applied

Statistics, 8(1):377–405, 2014.

Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou. Variational deep embedding: An unsupervised

and generative approach to clustering. In International Joint Conference on Artificial Intelligence

(IJCAI-2017), 2016.

D. Jin, X. Song, Z. Yu, Z. Liu, H. Zhang, Z. Cheng, and J. Han. Bite-gcn: A new gcn architecture

via bidirectional convolution of topology and features on text-rich networks. In Proceedings of

the 14th ACM International Conference on Web Search and Data Mining, pages 157–165, 2021.

Z. Y. Khan, Z. Niu, S. Sandiwarno, and R. Prince. Deep learning techniques for rating prediction:

a survey of the state-of-the-art. Artificial Intelligence Review, 54(1):95–135, 2021.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. Proceedings of the 3rd

International Conference on Learning Representations (ICLR), 2014.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. International conference on

Learning Representations, 2014a.

BIBLIOGRAPHY 151

D. P. Kingma and M. Welling. Stochastic gradient vb and the variational auto-encoder. In Second

International Conference on Learning Representations, volume 19, page 121, 2014b.

D. P. Kingma and M. Welling. An introduction to variational autoencoders. Foundations and

Trends R© in Machine Learning, 12(4):307–392, 2019. ISSN 1935-8237.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improved

variational inference with inverse autoregressive flow. Advances in neural information processing

systems, 29:4743–4751, 2016.

T. N. Kipf and M. Welling. Variational graph auto-encoders. In NeurIPS Workshop on Bayesian

Deep Learning (NeurIPS-16 BDL), 2016.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.

In 5th International Conference on Learning Representations (ICLR-17), 2017.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.

Computer, 42(8):30–37, 2009.

D. Koutra, A. Parikh, A. Ramdas, and J. Xiang. Algorithms for graph similarity and subgraph

matching. In Proc. Ecol. inference conf, volume 17. Citeseer, 2011.

N. M. Kriege, F. D. Johansson, and C. Morris. A survey on graph kernels. Applied Network

Science, 5(1):1–42, 2020.

S. Kullback. Information theory and statistics. Courier Corporation, 1997.

A. Kumar, S. S. Singh, K. Singh, and B. Biswas. Link prediction techniques, applications, and

performance: A survey. Physica A: Statistical Mechanics and its Applications, 553:124289,

2020.

P. Latouche, E. Birmelé, and C. Ambroise. Overlapping stochastic block models with application

to the french political blogosphere. The Annals of Applied Statistics, pages 309–336, 2011.

Q. Le and T. Mikolov. Distributed representations of sentences and documents. In International

conference on machine learning, pages 1188–1196. PMLR, 2014.

C. Lee and D. J. Wilkinson. A review of stochastic block models and extensions for graph

clustering. Applied Network Science, 4(1):1–50, 2019.

D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.

Nature, 401(6755):788–791, 1999.

152 BIBLIOGRAPHY

D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. Advances in neural

information processing systems, 13, 2000.

J. Li, J. Yu, J. Li, H. Zhang, K. Zhao, Y. Rong, H. Cheng, and J. Huang. Dirichlet graph varia-

tional autoencoder. Advances in Neural Information Processing Systems, 33:5274–5283, 2020.

R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla. New perspectives and methods in link

prediction. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 243–252, 2010.

C. Liu, T. Jin, S. C. Hoi, P. Zhao, and J. Sun. Collaborative topic regression for online recom-

mender systems: an online and bayesian approach. Machine Learning, 106(5):651–670, 2017.

X. Luo, Y. Yuan, M. Zhou, Z. Liu, and M. Shang. Non-negative latent factor model based on

β-divergence for recommender systems. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 2019a.

X. Luo, M. Zhou, S. Li, D. Wu, Z. Liu, and M. Shang. Algorithms of unconstrained non-negative

latent factor analysis for recommender systems. IEEE Transactions on Big Data, 2019b.

X. Luo, W. Qin, A. Dong, K. Sedraoui, and M. Zhou. Efficient and high-quality recommenda-

tions via momentum-incorporated parallel stochastic gradient descent-based learning. IEEE/CAA

Journal of Automatica Sinica, 8(2):402–411, 2020.

G. Ma, N. K. Ahmed, T. L. Willke, and P. S. Yu. Deep graph similarity learning: A survey. Data

Mining and Knowledge Discovery, 35(3):688–725, 2021.

A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. Adversarial autoencoders. Inter-

national Conference on Learning Representations (ICLR-16), 2016.

F. D. Malliaros and M. Vazirgiannis. Clustering and community detection in directed networks:

A survey. Physics reports, 533(4):95–142, 2013.

M. Mariadassou, S. Robin, and C. Vacher. Uncovering latent structure in valued graphs: a

variational approach. The Annals of Applied Statistics, 4(2):715–742, 2010.

C. Matias and V. Miele. Statistical clustering of temporal networks through a dynamic stochastic

block model. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(4):

1119–1141, 2017.

BIBLIOGRAPHY 153

J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding rating dimensions

with review text. In Proceedings of the 7th ACM conference on Recommender systems, pages

165–172, 2013.

N. Mehta, L. C. Duke, and P. Rai. Stochastic blockmodels meet graph neural networks. In

International Conference on Machine Learning, pages 4466–4474. PMLR, 2019.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in

vector space. International Conference on Learning Representations, 2013a.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations

of words and phrases and their compositionality. Advances in neural information processing

systems, 26, 2013b.

A. Mnih and R. R. Salakhutdinov. Probabilistic matrix factorization. Advances in neural infor-

mation processing systems, 20, 2007.

F. Monti, M. Bronstein, and X. Bresson. Geometric matrix completion with recurrent multi-graph

neural networks. Advances in neural information processing systems, 30, 2017.

F. Nie, W. Zhu, and X. Li. Unsupervised large graph embedding. In Thirty-first AAAI conference

on artificial intelligence, 2017.

K. Nowicki and T. Snijders. Estimation and prediction for stochastic blockstructures. Journal of

the American Statistical Association, 96(455):1077–1087, 2001.

A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst. Graph signal process-

ing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5):808–828, 2018.

G. Palla, A.-L. Barabási, and T. Vicsek. Quantifying social group evolution. Nature, 446(7136):

664–667, 2007.

S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang. Adversarially regularized graph autoen-

coder for graph embedding. In International Joint Conference on Artificial Intelligence (IJCAI-

18), pages 2609–2615, 2018.

J. Park, M. Lee, H. J. Chang, K. Lee, and J. Y. Choi. Symmetric graph convolutional autoencoder

for unsupervised graph representation learning. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 6519–6528, 2019.

154 BIBLIOGRAPHY

A. E. Raftery. Comment: Extending the latent position model for networks. Journal of the

American Statistical Association, 112(520):1531–1534, 2017.

A. Ramlatchan, M. Yang, Q. Liu, M. Li, J. Wang, and Y. Li. A survey of matrix completion

methods for recommendation systems. Big Data Mining and Analytics, 1(4):308–323, 2018.

S. Rendle. Factorization machines. In 2010 IEEE International conference on data mining, pages

995–1000. IEEE, 2010.

D. A. Reynolds. Gaussian mixture models. Encyclopedia of biometrics, 741(659-663), 2009.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and variational infer-

ence in deep latent gaussian models. In International conference on machine learning, volume 2,

page 2. Citeseer, 2014.

J. T. Rolfe. Discrete variational autoencoders. International Conference on Learning Represen-

tations (ICLR-17), 2017.

R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain

monte carlo. In Proceedings of the 25th international conference on Machine learning, pages

880–887, 2008.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network

model. IEEE transactions on neural networks, 20(1):61–80, 2008.

S. E. Schaeffer. Graph clustering. Computer science review, 1(1):27–64, 2007.

D. K. Sewell and Y. Chen. Latent space approaches to community detection in dynamic networks.

Bayesian analysis, 12(2):351–377, 2017.

T. A. Snijders. Statistical models for social networks. Annual review of sociology, 37:131–153,

2011.

A. Srivastava and C. Sutton. Autoencoding variational inference for topic models. International

Conference on Learning Representations (ICLR-17), 2017.

S. Stemler. An overview of content analysis. Practical assessment, research, and evaluation, 7

(1):17, 2000.

X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Advances in

artificial intelligence, 2009, 2009.

BIBLIOGRAPHY 155

Y. Teh, D. Newman, and M. Welling. A collapsed variational bayesian inference algorithm for

latent Dirichlet allocation. Advances in neural information processing systems, 18:1353–1360,

2006.

F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu. Learning deep representations for graph cluster-

ing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 28, 2014.

I. C. Trelea. The particle swarm optimization algorithm: convergence analysis and parameter

selection. Information processing letters, 85(6):317–325, 2003.

S. Vashishth, N. Yadati, and P. Talukdar. Graph-based deep learning in natural language process-

ing. In Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, pages 371–372. 2020.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention

networks. International Conference on Learning Representations (ICLR-18), 2018.

C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In

Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 448–456, 2011.

C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang. Mgae: Marginalized graph autoencoder for

graph clustering. In Proceedings of the 2017 ACM on Conference on Information and Knowledge

Management, pages 889–898, 2017.

C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang. Attributed graph clustering: a deep

attentional embedding approach. In Proceedings of the 28th International Joint Conference on

Artificial Intelligence, pages 3670–3676, 2019a.

F. Wang, P. Cui, J. Pei, Y. Song, and C. Zang. Recent advances on graph analytics and its

applications in healthcare. In Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pages 3545–3546, 2020a.

S. Wang, L. Hu, Y. Wang, X. He, Q. Sheng, M. Orgun, L. Cao, F. Ricci, and P. Yu. Graph learn-

ing based recommender systems: A review. In Proceedings of the Thirtieth International Joint

Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence

Organization, 2021.

X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu. Heterogeneous graph attention

network. In The world wide web conference, pages 2022–2032, 2019b.

156 BIBLIOGRAPHY

X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, and J. Pei. Am-gcn: Adaptive multi-channel graph

convolutional networks. In Proceedings of the 26th ACM SIGKDD International conference on

knowledge discovery & data mining, pages 1243–1253, 2020b.

Y. J. Wang and G. Y. Wong. Stochastic blockmodels for directed graphs. Journal of the American

Statistical Association, 82(397):8–19, 1987.

B. Weisfeiler and A. Leman. The reduction of a graph to canonical form and the algebra which

appears therein. NTI, Series, 2(9):12–16, 1968.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on graph

neural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24, 2020.

S. Xiao, S. Wang, Y. Dai, and W. Guo. Graph neural networks in node classification: survey and

evaluation. Machine Vision and Applications, 33(1):1–19, 2022.

A. Xu and X. Zheng. Dynamic social network analysis using latent space model and an integrated

clustering algorithm. In 2009 Eighth IEEE International Conference on Dependable, Autonomic

and Secure Computing, pages 620–625. IEEE, 2009.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In

International Conference on Learning Representations (ICLR-19), 2019.

K. S. Xu and A. O. Hero. Dynamic stochastic blockmodels for time-evolving social networks.

IEEE Journal of Selected Topics in Signal Processing, 8(4):552–562, 2014.

S. Xu, S. E. Barbosa, and D. Hong. Bert feature based model for predicting the helpfulness

scores of online customers reviews. In Future of Information and Communication Conference,

pages 270–281. Springer, 2020.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph convolutional

neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD

international conference on knowledge discovery & data mining, pages 974–983, 2018a.

Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec. Hierarchical graph represen-

tation learning with differentiable pooling. Advances in neural information processing systems,

31, 2018b.

Z. Yu, D. Jin, Z. Liu, D. He, X. Wang, H. Tong, and J. Han. As-gcn: Adaptive semantic ar-

chitecture of graph convolutional networks for text-rich networks. In 2021 IEEE International

Conference on Data Mining (ICDM), pages 837–846. IEEE, 2021.

BIBLIOGRAPHY 157

C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla. Heterogeneous graph neural net-

work. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discov-

ery & data mining, pages 793–803, 2019a.

D. Zhang, J. Yin, X. Zhu, and C. Zhang. Network representation learning: A survey. IEEE

transactions on Big Data, 6(1):3–28, 2018.

M. Zhang and Y. Chen. Inductive matrix completion based on graph neural networks. In Inter-

national Conference on Learning Representations, 2020.

X. Zhang, H. Liu, Q. Li, and X.-M. Wu. Attributed graph clustering via adaptive graph convolu-

tion. arXiv preprint arXiv:1906.01210, 2019b.

Y. Zhang, R. Jin, and Z.-H. Zhou. Understanding bag-of-words model: a statistical framework.

International journal of machine learning and cybernetics, 1(1):43–52, 2010.

L. Zheng, V. Noroozi, and P. S. Yu. Joint deep modeling of users and items using reviews for

recommendation. In Proceedings of the tenth ACM international conference on web search and

data mining, pages 425–434, 2017.

Modèles probabilistes profonds pour les systèmes de

recommandation et le clustering de réseaux

Dingge LIANG

	Notations
	1 Introduction
	1.1 Recommender systems
	1.1.1 Rating data and examples
	1.1.2 What is a recommender system ?

	1.2 Network analysis
	1.2.1 Network data and examples
	1.2.2 Clustering in networks

	1.3 Text analysis
	1.3.1 Text data and examples
	1.3.2 Challenges in text analysis

	1.4 The need for methods to analyze heterogeneous data
	1.4.1 Context
	1.4.2 The rise of deep probabilistic methods

	1.5 Organization of the thesis

	2 Statistical and deep learning models for recommender systems and node clustering
	2.1 Warmup2mu-:6muplus1mua few fundamental DLVMs
	2.1.1 Variational auto-encoders for continuous data
	2.1.2 Topic modeling for count data

	2.2 Construction of recommender systems
	2.2.1 Matrix factorization models
	2.2.2 Latent factor models for recommender systems
	2.2.3 Deep learning-based recommender systems

	2.3 Network data analysis
	2.3.1 Probabilistic graphical models
	2.3.2 Graph neural networks
	2.3.3 Deep probabilistic models for node clustering

	2.4 Clustering in heterogeneous information networks

	3 DeepLTRS: a deep latent recommender system based on user ratings and reviews
	3.1 Introduction
	3.1.1 Organization of the chapter

	3.2 A rating-and-review based recommender system
	3.2.1 Framework and notations
	3.2.2 Generative model of deepLTRS

	3.3 Variational auto-encoding inference
	3.3.1 Variational lower bound (ELBO)
	3.3.2 Monte Carlo EM algorithm and mini-batching

	3.4 Numerical experiments on simulated data
	3.4.1 Architecture and simulation setup
	3.4.2 DeepLTRS with and without text data
	3.4.3 Benchmark and effect of data sparsity

	3.5 Application on real-world data
	3.6 Conclusion and perspectives

	4 Clustering by deep latent position model with graph convolutional networks
	4.1 Introduction
	4.1.1 Organization of the chapter

	4.2 Deep latent position model
	4.2.1 Notations
	4.2.2 Generative model

	4.3 Model inference
	4.3.1 Variational auto-encoding inference
	4.3.2 Links with related models
	4.3.3 Optimization
	4.3.4 Model selection

	4.4 Numerical experiments
	4.4.1 Simulation setup
	4.4.2 Benchmark study
	4.4.3 Model selection

	4.5 Analysis of a medieval network
	4.5.1 Dataset
	4.5.2 Results without covariates
	4.5.3 Results with covariates

	4.6 Cora citation network
	4.6.1 Dataset
	4.6.2 Results without covariates
	4.6.3 Results with covariates

	4.7 Conclusion and perspectives

	5 The graph embedded topic model
	5.1 Introduction
	5.1.1 Organization of the chapter

	5.2 The graph embedded topic model
	5.2.1 Notations
	5.2.2 Generative model

	5.3 Inference model
	5.3.1 Variational inference
	5.3.2 Document similarity-based GCN.
	5.3.3 Optimization

	5.4 Numerical experiments
	5.4.1 Simulation setup
	5.4.2 Benchmark study
	5.4.3 A more detailed example
	5.4.4 Model selection

	5.5 Application on real-world network
	5.5.1 Model selection
	5.5.2 Visualisation and analysis

	5.6 Conclusion

	6 Conclusion and Perspectives
	6.1 Summary of the contributions
	6.2 Perspectives
	6.2.1 Graph learning-based recommender systems
	6.2.2 Generalized graph neural networks
	6.2.3 Clustering with heterogeneous graph neural networks
	6.2.4 From topic modeling to intelligent document analysis techniques

	Appendix
	A Appendix for Chapter 4
	A.1 Implementation details and computation time

	B Appendix for Chapter 5
	B.1 Implementation details and computation time

	Bibliography

