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Résumé

Cette these ponte sur de nouvelles méthodes d’analyse de trois types de données: ordinales,
d’interaction et textuelles. Avec le développement du numérique, les données ordinales, liées a
I’évaluation de produits ou services, sont omniprésentes sur des sites web tels qu’ Amazon et Yelp.
En effet, les clients peuvent obtenir des informations précieuses sur les produits et les services a
partir de données de ce type, ce qui les aide a prendre des décisions. D’autre part, les données
d’interaction, qu’il s’agisse de médias sociaux, de communications par courrier électronique ou
d’interactions protéine-protéine, peuvent souvent étre modélisés sous forme de graphes: des struc-
tures simples mais capables de modéliser des systeémes complexes. Enfin, avec le développement
d’Internet et la croissance des médias sociaux, des quantités massives de données textuelles sont
générées sous la forme de blogs, de tweets, de commentaires et d’enquétes. Les trois types de
données illustrés jusqu’ici peuvent étre utilisées individuellement, pour diverses taches, mais elles
peuvent également étre combinées, ce qui entraine les problemes typiques d’analyse des données
hétérogenes.

Dans cette these, nous analysons ces trois types de données a travers trois modeles génératifs
profonds, qui combinent la modélisation probabiliste et les techniques d’apprentissage profond.
Premierement, nous introduisons un systeme de recommandation latent profond (deepLTRS) afin
de fournir aux utilisateurs des recommandations de haute qualité basées sur les évaluations obser-
vées des utilisateurs et les textes des critiques de produits. Notre approche adopte une architecture
d’auto-encodeur variationnel (VAE) comme modele latent génératif profond pour une matrice or-
dinale codant les évaluations et une matrice de termes et documents codant les critiques. Des
expériences numériques sur des ensembles de données simulées et réelles démontrent que dee-
pLTRS surpasse 1’état de I’art, en particulier dans le contexte d’une extréme rareté des données.
Le modele de positions latentes profond (DeepLLPM) est ensuite présenté comme une approche de
clustering génératif de bout en bout qui combine le modele de position latente couramment utilisé
pour I’analyse de réseaux avec une stratégie d’encodage de réseau convolutif de graphes. Des ex-
périences numériques sur des scénarios simulés mettent en évidence ses capacités de clustering.
DeepLPM est ensuite appliqué a un réseau ecclésiastique de la Gaule mérovingienne et au réseau

de citations Cora pour illustrer I’intérét pratique de I’exploration de grands réseaux complexes du
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monde réel. Enfin, nous proposons un encodeur de réseau convolutif de graphes basé sur la simi-
larité des documents (DS-GCN) pour combiner les réseaux convolutifs de graphes et les modeles
thématiques intégrés pour une représentation de réseaux riches en texte. En incluant une variable
d’appartenance a un groupe, nous construisons ainsi une méthode de regroupement de « bout en
bout » appelée GETM. La capacité de GETM a fusionner la structure topologique du graphe et
les modeles thématiques intégrés est démontrée par des expériences numériques sur trois réseaux

synthétiques, qui soulignent également ses performances en matiere de clustering de noeuds.

Mots-clés: Modeles de variables latentes profondes, modélisation de sujets, systémes de recom-

mandation, réseaux de neurones graphiques, analyse de réseau, regroupement de nceuds.

vi
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Abstract

This thesis focuses on new methods for analyzing three types of data: ordinal, interactive
and textual. With the advancement of the digital era, the ordinal data, related to the evaluation
of products or services, is ubiquitous on websites such as Amazon and Yelp. Indeed, customers
can gain valuable information about products and services from rating data, which helps them
make decisions. Besides, the interaction data, whether from social media, email communications
or protein-protein interactions, can often be modeled as graphs, because they are simple structures
yet are capable of modeling complex real-world systems. Moreover, with the development of the
Internet and the growth of social media, massive amounts of textual data are generated in the form
of blogs, tweets, comments, and surveys. The three types of data illustrated so far can be used
individually, for various tasks, but they can also be combined, leading to the typical problems of
heterogeneous data analysis.

In this thesis, we analyze these three types of data through three deep generative models,
which combine probabilistic modeling and deep learning techniques. First, we introduce a deep
latent recommender system (deepLTRS) in order to provide users with high quality recommen-
dations based on observed user ratings and texts of product reviews. Our approach adopts a va-
riational auto-encoder (VAE) architecture as a deep generative latent model for an ordinal matrix
encoding ratings and a document-term matrix encoding the reviews. Numerical experiments on
simulated and real-world data sets demonstrate that deepLTRS outperforms the state-of-the-art, in
particular, in the context of extreme data sparsity. The deep latent position model (DeepLPM) is
then introduced as an end-to-end generative clustering approach that combines the widely used
latent position model for network analysis with a graph convolutional network encoding strategy.
Numerical experiments on simulated scenarios highlight its clustering capabilities. DeepLPM is
further applied to an ecclesiastical network in Merovingian Gaul and to the citation network Cora
to illustrate the practical interest in exploring large and complex real-world networks. Finally, we
propose a document similarity-based graph convolutional network encoder (DS-GCN) to combine
graph convolutional networks and embedded topic models for a text-rich network representation.
By including a cluster membership variable, we thus build an end-to-end clustering method na-

med graph embedded topic model (GETM). The ability of GETM in fusing the graph topology

vii
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structure and the topic embeddings is demonstrated by numerical experiments on three synthetic

networks, which also emphasize its performance in node clustering.

Keywords: Deep latent variable models, Topic modeling, Recommender systems, Graph neural

networks, Network analysis, Node clustering.
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Notations

Variables

M, N number of observations

1,7 observation indexes

P dimension of variables in a latent space

Z P-dimensional latent embeddings
Recommender systems

Y observed rating data in RM <V

w document-term matrix encoding text data

R,C user and product latent variables
Graph learning

G network/graph data

\%4 set of nodes in a network

E set of edges in a network

F number of node features

U dimension of covariate between two nodes

A graph adjacency matrix in {0, 1}V*V

X node feature/attribute matrix in RV*¥

D graph degree matrix

Y edge feature matrix in RIZ/*V

K number of clusters
Topic modeling

D number of documents

|4 number of words in a corpus

T number of topics

0 topic proportions



I3 word occurrence matrix whose entry is the probability that vocable v occurs
in topic ¢
L dimension of word and topic embeddings

word embedding matrix

Q topic embedding matrix
Distributions
p(+) data prior distribution
q() approximate variational distribution
N(u,0?) Gaussian distribution with mean g and variance o
B(-) Bernoulli distribution
M) multinomial distribution
Operators

KL(q(-)||p(-)) Kullback-Leibler divergence between two distributions

o(+) non-linear activation function

() decoder parametrized by 7 in an auto-encoder
96 (*) encoder parametrized by ¢ in an auto-encoder
144 weight matrix in neural networks

53] concatenation operator

O] element-wise multiplication operator




CHAPTER 1

Introduction

In this thesis, we will go through three common types of data: ordinal data like ratings in
recommender systems, graph data with nodes and edges, and text data in count format. Each
data type has its own characteristics and potential range of applications. These data can be used
independently for a variety of purposes, but they can also be combined together, which leads to
the typical problems associated with heterogeneous data analysis.

Let us look at a few straightforward instances first to gain a better intuitive understanding of

these data and their applications. Real-world systems can often be modeled as networks, including

Figure 1.1 — Visualization of Twitter activity datat. Nodes correspond to users in the network,
edges represent actions like "follow" or "send to", and colors characterize various social commu-

nities.

1. source from https://www.touchgraph.com/news
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social networks, biological networks and communication networks. The information from social
media, for example, might be seen as a network of friends and followers. They have a significant
impact on our lives, from sharing knowledge to influencing others. How we analyze and visualize
a network based on these connections and influences is therefore crucial. In Figure 1.1, a simple
visualization of a social network is given. By analyzing the connections between people, we may
cluster them into various groups, each of which being represented by a distinct color. With this
group information, we might be able to predict which person in the network will be followed by a
given user in the future, due to the "your friend is my friend" effect; Or for business purposes, if
we want to promote a product to a target user in a group, and we know that some members of that
group have positive feedbacks, then that user is quite likely to favor the product as well, as friends
typically share similar interests.

Moreover, since we regularly purchase goods, watch movies, or book hotels, we are overloaded
with e-commerce data in the modern world. This data also provides us a lot of useful information.
Figure 1.2 displays an example of the Amazon product review data containing the user ID, reviews
on the products, given ratings, item categories, etc. By exploiting the similarity between users and

products, recommendation systems are developed to provide recommendations. The system can

review_title v | # reviewrating Vv | [ review date Vv v brand v

Best Natural Deodorant!! 5.0 2020-03-06 Schmidt's Deodorant

2 Schmidt's Charcoal Deodorant is the b Schmidt's Deodorant
Beware. Defective or counterfeit. Schmidt's Deodorant
4 Good for infrequent shavers in cooler Schmidt's Deodorant
5 This isn’t the true product and will Schmidt's Deodorant
A good choice for deodorant Schmidt's Deodorant
Nice Smell Schmidt's Deodorant
8 Works OK but stains clothes 2.0 Schmidt's Deodorant
My skin hated it Schmidt's Deodorant
@ My go to Schmidt's Deodorant

Yum Sir Kensingtons

Yummy ! Sir Kensingtons

one of the best ones 02-17 AFFLAVXOKYKYQ4XUB6RRU44VUJVZA Sir Kensingtons

Figure 1.2 — Sample of Amazon product review dataf. Each row corresponds to details about
a user-purchased item, including the user review and rating for the product, the user ID and the

product brand, etc.

1. source from https://data.world/datasets/amazon
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analyze user preferences based on observed historical records, assisting the user in choosing the
appropriate product for future purchases. It also aids the item suppliers in delivering users with
proper products. Thus, 35% of Amazon sales are attributable to recommendations. Additionally,
it contributes to personalizing the contents, as the fact that most of the movies that people rent on
Netflix come from recommendations.

These are just a few of the applications we can imagine that involve these types of data. Since
there are many sources of data in the actual world, data analysis and its applications have emerged
as crucial research areas. In the following, we primarily concentrate on two tasks: the first is the
construction of a recommender system using both rating and textual data, and the second is the

clustering of nodes in networks.

1.1 Recommender systems

This section discusses rating data via a simple illustration, and offers a guideline for building

recommender systems with this type of data.

1.1.1 Rating data and examples

With the advancement of the Internet era, rating data is ubiquitous on websites such as Ama-
zon, TripAdvisor, or Yelp. Customers can gain valuable information about products and services
from rating data, which helps them make decisions. Companies and manufacturers can also ben-
efit from the data by analyzing users satisfaction in order to make product recommendations or to
detect functional weaknesses in their products.

In general, rating data involves three types of resources: users, products, and the users ratings
for products. Consider a dataset involving M users who are scoring /N products. This type of data
structure is commonly formalized as an ordinal data matrix Y in RM*¥ such that Y, corresponds
to the rating that the ¢-th user assigns to the j-th product in practice. This matrix is usually
extremely sparse (most of its entries are missing), corresponding to users not scoring nor reviewing
some products. Conversely, when a score is assigned, it takes values in {1,..., H} with H > 1
(usually H = 5 or 10). Henceforth, we assume that an ordinal scale is consistently defined.
For instance, when customers evaluate products, 1 always means "very poor" and H is always

associated with "excellent" ratings. The assumption is necessary, otherwise the results obtained
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Table 1.1 — An example of rating data for three users and five products. For instance, the user Uy

gave the ratings 5, 4, 4 to products P;, P53 and Py, respectively.

Products
P | P | P3| Py Ps
Users
Uy 5 4 4
U, 4 5
Us 3 3 2

when analyzing data would be completely misleading, therefore the analyst should take this point
into account when designing the data collection. The number of ordered levels H is assumed to be
the same for all (not missing) Y;;. If it is not the case, a scale conversion pre-processing algorithm
(see e.g. [Gilula et al., 2019]) can be employed to normalize the number of levels.

An example of rating data is described in Table 1.1. A total of M = 3 consumers and N = 5
products are present here. Specific user ratings on relevant items are in purple. The blank cells are

the missing ratings that we want to predict based on the observed historical information.

1.1.2 What is a recommender system ?

Using the observed rating data, it is natural to develop a recommender system that attempts to
forecast the rating that one user would give to an unrated product, allowing one to make relevant
product recommendations to the users. At the core of the research on recommendation systems,
we point out a widely adopted collaborative filtering (CF) approach [Su and Khoshgoftaar, 2009],
which relies on the similarities among the users ratings in the past. It operates by looking through
a large group of people and by identifying a smaller group of users who have similar preferences
to the target user. It then looks for products that similar users like and combines them to predict
a sorted list of recommendations for the target user. An illustration of a CF-based recommender
system is shown in Figure 1.3.

Next, by converting the list of users and products into a user-item interaction matrix, such as
the previously described ordinal matrix Y, a CF-based recommender system can be considered

as completing the missing values in the matrix based on observed entries [Ramlatchan et al.,
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[opNe] \ )
—O Productl Rating Data Recommendationl
pre-processing
Users Product2 Rating i Recommendation2

Product3 Rating Compute - Recommendation3
> —> similarities R =

Product4 Rating

Prediction
qoN @)
- SO |
-'.'- ) Similar users Target user Q

Figure 1.3 — Diagram of pipeline in recommender system. The system collects and examines
customer ratings for products before recommending new ones to a target user based on their simi-

larities.

2018]. Matrix factorization [Mnih and Salakhutdinov, 2007; Koren et al., 2009] is a well-known
and traditional CF technique for rating predictions, which has shown effectiveness in learning
representation of the data. The goal is to accurately profile users and items by breaking down
the user-item rating matrix into the user latent (non-observed) factors and item latent factors. For

RMXN it aims at finding two latent factors R € RM*F and

instance, given a rating matrix ¥ €
C € RV*P where P is the latent space dimension with P << min{M, N'}. Then, a completed
matrix with predictions is obtained as ¥ = RC'". Figure 1.4 shows an intuitive illustration of the

matrix factorization paradigm.

)

Q
=
1
X

Figure 1.4 — An illustration of matrix factorization.
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Finally, by minimizing a loss function between the observed values in Y and their predictions
inY (e.g., ||Y —Y|[?), the predictions are forced to be closer to the actual ratings, and the user and
product latent factors are optimized as well as updated. Once we have well-learned representations
for users and products, values of predictive ratings are directly computed by multiplying the two
matrices R and C'. In this way, the products with higher ratings are recommended to users, thus
achieving the goal of a recommender system.

In this thesis, when developing a recommender system, we make use of the user-item interac-
tion matrix, where each entry corresponds to a user rating of the product. A different approach,
on the other hand, considers users and products as nodes in a network or graph, with each link be-
tween nodes indicating an interaction between users and products. We will describe the network

data format and perform some analysis on this type of data in the section below.

1.2 Network analysis

Network data is introduced in this section, along with a brief overview of the data numerous
applications. Among these applications, we concentrate primarily on unsupervised node clustering

tasks: true labels of nodes are absent.

1.2.1 Network data and examples

Networks are employed in a wide range of applications, from social media and email commu-
nications [Palla et al., 2007] to protein-protein interactions [Barabasi and Oltvai, 2004], because
they are simple structures yet are capable of modeling complex systems.

Composed of nodes and edges connecting the nodes, a network or graph is denoted by G =
(V; E), where V= {v1, v, - , vy} represents the set of nodes and £ = {e1, e, - , e, } repre-
sents the set of edges. Typically, nodes are also called vertices or intersections, and edges are also
referred to as links or arcs. The general graph representation is a quintuple: G(V, E, A, X, D).
ANXN represents the adjacency matrix of the graph, where A; j = lif there is a link between node
i and node 7, 0 otherwise. X VX" denotes the feature matrix of nodes, for example, in a citation
network each node is associated with an article, thus, the matrix X can encode the words used

in each publication. D™V*¥ is the degree matrix which contains information about the number of

edges attached to each vertex. IV and F' represent the number of nodes and the feature dimension
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(a) Graph (b) Adjacency matrix (c) Degree matrix

Figure 1.5 — From left to right: a graph G with six nodes and seven edges; the corresponding

adjacency matrix A; the corresponding degree matrix D.

of nodes, respectively. In some cases, the set of edges E can be associated with an additional
covariate information, collected into a matrix Y. The generic entry of y|El xU " denoted Yij» 1S a
U-dimensional feature associated with the edge connecting ¢ to j. For instance, y;; could encode
the text that author ¢ sends to author j in a communication network.

Graphs come in a variety of formats. They can be directed or undirected depending on whether
their edges have directions. The attributes of the edges are called weights. Depending on whether
an edge includes weights, a graph can be classified as weighted or unweighted. Additionally,
there are homogeneous and heterogeneous graphs. An example of an undirected, unweighted,
homogeneous graph is shown in Figure 1.5.

Graph-structured data has a wide range of applications in many fields [Wu et al., 2020]. De-
pending on the level, the graph data can be analyzed either at the node level or at the edge level.
Alternatively, we might have a collection of graphs, where one graph is considered as one ob-
servation. In this case, the analysis is performed at the graph level. Node classification [Bhagat
et al., 2011; Xiao et al., 2022] and node clustering [Aggarwal and Wang, 2010; Malliaros and
Vazirgiannis, 2013] are frequently employed applications at the node level. Classification is a
standard supervised task with predefined node labels, whilst clustering seeks to group unlabeled
nodes based on the node interactivity and features. At the edge level, we mention edge classifica-

tion [Aggarwal et al., 2016], edge clustering [Cui et al., 2008], and link prediction [Lichtenwalter
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et al., 2010; Kumar et al., 2020], i.e. predicting the existence of a link between two nodes in a
network. At the graph level, researchers focus on graph classification [Kriege et al., 2020], graph
clustering [Bader et al., 2013] and graph similarity analysis [Koutra et al., 2011; Ma et al., 2021].
As mentioned, in contrast to node level applications, which only take into account the nodes in a
single graph, graph level applications accept a variety of graphs as input. From another perspec-
tive, depending on the field, applications can be classified into multiple categories, including phar-
maceutical medicine [Wang et al., 2020a], where biological networks modeling protein-protein
interactions, as well as disease networks describing relationships between diseases and biological
factors, play a significant role. Other important areas of research include image processing [Or-
tega et al., 2018], where each pixel in an image can be considered as a node, and natural language
processing [Vashishth et al., 2020], where each word in a document is one node and the whole
corpus can be modeled by a network.

In this thesis, we focus on node clustering applications. However, these various tasks share

some fundamental elements, making it simple to move from one task to another.

1.2.2 Clustering in networks

Unsupervised network analysis has emerged as a crucial sub-field of network analysis since
real-world networks may lack knowledge regarding the true labels of each node.

In this context, our interest lies in node clustering which attempts to partition the nodes of the
graph into different groups to extract patterns summarizing the data. Clustering is the process of
grouping together elements/entities that appear to be closer to each other (than to the remaining
elements) based on some similarity metric. In networks, the similarity measure is typically deter-
mined based on topological criteria, such as the graph structure, or according to the node locations.
Nodes that are regarded to be similar based on this similarity are grouped together into clusters.
Thus, each cluster consists of elements that share common characteristics. For instance, the graph
in Figure 1.5a can be separated into two clusters based on their node connections and locations,
as illustrated in Figure 1.6. The clusters are represented by different colors, and in each cluster,
nodes have more internal connections and less external connections.

A long series of statistical methods [Schaeffer, 2007; Snijders, 2011] have been developed
to discover the underlying communities in networks by learning the latent features of graph-

structured data. More recently, deep learning-based models have emerged as a promising approach
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N

Figure 1.6 — A partition of nodes into two clusters.

for analyzing large-scale networks and they have shown their abilities for representation learning
purposes on data with complex structures [Hamilton et al., 2017; Zhang et al., 2018]. Based on
the learned graph embeddings, numerous deep methods have been proposed to achieve node clus-
tering using external algorithms like K-means [Hartigan and Wong, 1979] or GMMs [Reynolds,
2009]. Furthermore, many efforts have been put in order to conduct the clustering in an end-to-end

manner. We will go through some state-of-the-art methodologies in the following chapter.

1.3 Text analysis

In addition to the rating or network data we have already discussed, textual data is also quite
prevalent in daily life. Both rating data as well as network data might be accompanied by textual
information. Indeed, with the development of the Internet and the growth of social media, massive
amounts of textual data are generated every day in the form of blogs, tweets, comments, and
surveys. Additionally, the majority of consumer transactions now take place digitally, creating
yet another enormous collection of texts. Most text information is unstructured and scattered
across the web. Valuable knowledge can be gained from the textual data if it is properly collected,

organized and analyzed.

1.3.1 Text data and examples

Let us look at some concrete examples: first, in recommender systems, many consumers also

use texts to express various opinions in addition to ratings. Compared to a single score, reviews
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Table 1.2 — A sample of Amazon food data.

ReviewerID ProductID | Rating ReviewText
A3IN6KB1600508 | BOOOG6RYNE 4 Pretty good tasting chip
A1CBNUBPZPWHSD | BO016FY6H6 5 Flavorful and refreshing
AIXG5SWYLFMRRX1 | BOOILG9450 1 Artificial tasting
AQ6SHOWOVMZGF | BO03VXFK44 2 Really disappointed

can contain crucial information from different aspects about the products. Table 1.2 demonstrates
a sample from the Amazon product data set [He and McAuley, 2016], which includes product
reviews and meta-data (users, products, ratings and texts) from Amazon. As we can see, a high
score corresponds to a text review containing positive words, whereas a low rating is associated
with some negative expression as "disappointed”. Therefore, using these information can enhance
the system capacity for recommendations. Second, in citation networks where each node repre-
sents a publication, the networks also contain some text information such as the title and abstract
of each article. This additional textual data is a crucial source of information for graph learning
tasks.

Then, how to encode the text ? One option is to rely on the frequency counts, such as the
number of occurrences of distinct words in a corpus. For instance, the textual reviews described

above can be encoded as in Table 1.3, displaying a traditional bag-of-words representation in a

Table 1.3 — Review representation in bag-of-words models.

ReviewText pretty | good | tasting | --- | disappointed
Pretty good tasting chip 1 1 1 e 0
Flavorful and refreshing 0 0 0 e 0

Artificial tasting 0 0 1 e 0
Really disappointed 0 0 0 e 1
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document-term matrix. Each review in the Amazon data is now represented as a vector of its word
counts.

A count variable is discrete because it consists of non-negative integers. Nonetheless, there
is not one specific probability distribution that fits all count data sets. In the statistical commu-
nity, count data is frequently subjected to probabilistic assumptions about the generative model:
Poisson [Coxe et al., 2009], negative-binomial models [Greene, 2008], etc. More recently, the
probabilistic treatment of data can be done via deep learning by using the neural networks to en-
code the latent parameters of probability distributions [Gan et al., 2015; Srivastava and Sutton,

2017] and fitting all of the weights through stochastic gradient descent [Bottou, 2010, 2012].

1.3.2 Challenges in text analysis

Text analysis refers to the representation, processing and modeling of text data in order to
derive useful insights. This can be very challenging in practical applications. One challenge of
text analysis lies in the high dimensionality of the data, another in the fact that text is primarily
unstructured data. As a result, high-dimensional unstructured text must be carefully processed so
that it has a specific structure for future analysis. Common text analysis techniques include content
analysis [Stemler, 2000; Grimmer and Stewart, 2013], bag-of-words representation [Zhang et al.,
2010] and natural language processing (NLP) [Chowdhary, 2020]. Content analysis and other
dictionary-based methods are often performed by counting the frequency of words/phrases in a
particular text. Following this approach, text data is compressed into phrase frequencies, and the
index can be used to respond to more quantitatively focused research queries. Bag-of-words rep-
resentation is a simple and common approach widely used in text analysis problems. It represents
a document as a set of words, thereby transforming the document into a high-dimensional vector
indicating the presence/absence of each word in the document. Last but not least, text analysis that
uses natural language processing is frequently the most automated since this approach simulates
how humans understand and process language. In contrast to bag-of-words, other NLP strategies
considers word order to be important. In this thesis, we focus on the bag-of-words representation
to transform the observed textual data into a document-term matrix, since it is a straightforward

and typical method in text analysis and is simple to manipulate in numerous applications.
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1.4 The need for methods to analyze heterogeneous data

As we saw in previous sections, different types of data exist and might occur simultaneously
in applications. In this section, we discuss the rise of heterogeneous data and the necessity for

techniques to analyze them.

1.4.1 Context

Heterogeneity is a key characteristic of modern data sets. Any data set with high variability
of data types and formats (ordinal, categorical, count, etc.) is considered heterogeneous. The
heterogeneous data, which originates from various and different sources, naturally possesses a
wide range of categories and representational patterns. For example, scientific citation networks
typically contain the following information: the paper ID and its category, the citation relationship
with other papers, as well as a document that includes content about each article such as titles and
abstracts. Figure 1.7 provides an illustration of a citation network consisting of three different
sources of information. The citation relationships can be modeled as links in a graph, each article

is associated with a document containing textual contents, and papers are also assigned a category

Paper

paper_id
Y category_label

B\
\ / citing_paper_id document (title, abstract, etc.)

AN
Cites Content

cited_paper_id paper_id

(a) A citation network example (b) Information from the network

Figure 1.7 — Each node in a citation network represents a scientific paper, and the different colors
indicate various categories. Each paper is associated with a document including its title, abstract,
etc. Three different sources of information reflect paper categories, citation relationships between

articles and text content.
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label. Furthermore, in some recommender system applications, numerical ratings are usually given
by users on products along with textual reviews. Under this context, it is important but challenging
to combine different kinds of data to meet specific requirements. As a consequence, how to process

and integrate the heterogeneous data has emerged as a critical issue in data analysis.

1.4.2 The rise of deep probabilistic methods

Heterogeneous data is frequently complex and multidimensional. Traditional data analysis ap-
proaches are sometimes ineffective as they can only model very simple data distributions. Recent
achievements have been made by deep latent variable models (DLVMs) which combine proba-
bilistic modeling and deep learning techniques. A deep probabilistic model should be capable of
identifying the underlying structure of the data, such as hidden patterns or presence of clusters,
and of generating new data with similar distributions to the observed ones. In the following are
some examples of problems that we aim at tackling in this thesis:

— Consider some data collected from an e-commerce system like Amazon, we may want
to create a recommender system that takes into account both the ordinal ratings of the
products and textual reviews given by the users. A deep generative model can be used
to discover the underlying communities of customers who share similar interests and to
predict the missing ratings.

— Given a scientific citation network that includes the citation links between papers as well
as the content of each publication, we may want to discover the latent topics that emerged
from the documents and to divide the papers into several groups depending on the hidden
features, with the aid of a deep probabilistic model.

These are simply a few illustrations. These types of data analysis are common in many scien-
tific, economic, and industrial sectors, and deep probabilistic methods have been widely employed
to address them. In the following part, we first discuss latent variable models (LVMs) and then
explore how deep neural networks (DNNs) can be incorporated to estimate their parameters.

Latent variable models (LVMs) [Bishop, 1998] are a flexible tool for exploring data hetero-
geneity and have been widely used for jointly modeling mixed data based on latent patterns sum-
marized from the observed data [Blei, 2014]. Given a set of high-dimensional data points x,
learning the complicated distribution p(z) is a challenging task in machine learning. Rather than

directly modeling p(z), we can introduce an unobserved latent variable z and define a conditional
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Input layer Hidden layers Output layer

Figure 1.8 — Architecture of a neural network.

distribution p(z|z) for the data. The posterior p(z|x) for real-world data is typically intractable,
and traditional statistical methods rely on Markov Chain Monte Carlo (MCMC) to sample from
this distribution. Despite this, these models require substantial computational costs and are diffi-
cult to scale to large data sets.

Many recent works extend LVMs with deep neural networks (DNNs) due to the difficulty in the
inference procedure and the limitation of linearity in probabilistic models. By combining the sta-
tistical basis of generative models with the approximation capabilities of deep learning techniques,
deep latent variable models (DLVMs) enable us to handle massive and complex data accounting
for non-linearity, in many fields. What exactly is the magic of deep learning ? In general, deep
learning is a branch of machine learning that uses artificial neural network as the architecture to
perform representation learning of data. Neural networks are composed of multiple neuron layers,
including an input layer, one or more hidden layers, and an output layer. Each layer contains a
number of artificial neurons. Figure 1.8 depicts the architecture of a simple neural network : it has
four neurons at the input layer, two hidden layers are equipped with six neurons each and there are
three neurons at the output layer. The number of neurons and the depth of layers can be modified
depending on the task. Then, how do neural networks work ? Mathematically, the operation of
passing messages through [ layers can be thought of as a combination of multiple non-linear func-
tions, where F' = o(f1) o o(fz2) o --- o o(f;). The function o is a non-linear activation function,

such as ReLU (o(x) = max(0,x)) or Sigmoid (¢(z) = 1/(1 + e~*)). The non-linear factor
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one neuron operation in hidden layers
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Figure 1.9 — An illustration of the operation of artificial neurons.

added by the activation function can overcome the limitation of insufficient expression ability of
the linear model when the data structure is complicated. An illustration of the operation of neu-
rons is shown in Figure 1.9. A simple activation is chosen in this network, which performs binary
classification to output either a value of 1 or 0.

DLVMs rely on variational inference (VI) [Blei et al., 2017] to approximate the intractable
probability through optimization. The main idea behind VT is to produce an approximation ¢(z) as
close to the true posterior p(z|x) as possible by minimizing the Kullback-Leibler divergence (de-
noted by L) [Csiszar, 1975] between the two distributions. Furthermore, it is generally assumed
that ¢(z) comes from a family of tractable distributions. For example, it is defined as a Gaus-
sian distribution A (z; i1, 021) in variational auto-encoders (VAEs) [Kingma and Welling, 2014b,
2019], where the mean p and the variance o of the approximate posterior are parametrized by
an encoding neural network. The optimization of parameters is carried out automatically through
stochastic gradient descent [Bottou, 2012; Kingma and Ba, 2014]. The use of DNNs accelerates
the inference process and scales up to massive and complex data. More details about the inference

procedure in DLVMs are described in Section 2.1.

1.5 Organization of the thesis

The structure of this thesis is:
— Chapter 2 reviews some basis of DLVMs and state-of-the-art models relevant to the prob-

lems;
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— Chapter 3 presents our recommendation algorithm that takes into account both user ratings
and textual reviews on products;

— Chapter 4 describes our approach to achieve an end-to-end node clustering and to better
preserve the network topology;

— Chapter 5 proposes a document similarity-based graph convolutional network and intro-
duces our methodology which combines word embeddings, topic modeling, and graph
topology structure to accomplish clustering;

— Chapter 6 summarizes our contributions and leads to perspectives for the future work.



CHAPTER 2

Statistical and deep
learning models for
recommender systems

and node clustering

This chapter reviews some fundamentals of deep latent variable models (DLVMs) and

state-of-the-art methods related to the problems we mentioned in the previous chapter.
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2.1 Warmup: a few fundamental DLVMs

In this section, we will introduce a few crucial DLVMs whose understanding is important in

order to fully appreciate our contributions.

2.1.1 Variational auto-encoders for continuous data

We now introduce an important class of deep generative models: the variational auto-encoders
(VAESs) [Kingma and Welling, 2014a; Rezende et al., 2014]. We first recall some basic facts about

variational inference in mixture models before introducing the usage of neural networks in VAEs.

Variational inference in mixture models. Assume that + = {1, -+ ,z,,}, with z; € RV
are observations and z = {z1,--- , 2}, with z; € R are hidden variables. The main goal of
variational approaches is to select a family of distributions ¢(z) over the latent variables to approx-
imate the true posterior p(z|z) when it is not tractable. The closeness of the two distributions is
measured by the Kullback-Leibler (KL) divergence, coming from information theory [Kullback,

1997]. The KL divergence is defined as:

q(2) ] .

KL(q(2)[lp(z]x)) = Eq(2) [log p(z|z)

2.1

It can easily be shown that minimizing Eq. (2.1) with respect to ¢(z) is equivalent to maximize the
evidence lower bound (ELBO), obtained by applying the Jensen’s inequality to the log-likelihood

of the observed data:

logp(z) =log | p(z,2)dz

) [p(:p, z)} 2.2)

ELBO

Indeed, if we develop the KL divergence further, we get:
KL(q(2)|lp(z]x)) = Eq()[log ¢(2)] — Eg(») [log p(z]z)]
= IE:’q(z) [lOg q(z)] - ]Eq(z) [log p(ﬂj‘, Z)] + log p(l‘) (2.3)

= _(Eq(z) [p(.l‘, z)] - IEq(z) [Q(Z)]) + logp(:n),
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which is the negative ELBO plus the log marginal probability of x, not depending on ¢(z). Thus,

the log-likelihood for the observed data x could be written as:

p(z,2)
q(2)

logp(s) = By [lo 27 | + KL Ip(elo)) 4
and the ELBO can be further developed as:
ELBO := E(,)[log p(, 2)] — Ey(»)[log q(2)]
= Ey(z)[log p(z|2)] + Ey(2)[log p(2)] — Eq(z)[log q(2)] (2.5)

= By [log p(z|2)] — KL(q(2)[p(2)),
where the first term of ELBO aims at maximizing the reconstruction likelihood, the second term
encourages the learned distribution ¢(z) to be similar to the prior distribution p(z) and acts as a

regularization term.

Generative model for VAEs. VAEs make some additional assumptions on p(x|z) and ¢(z), that

we now detail. Firstly, the latent variables are assumed to be drawn from Gaussian distributions :
p(zz) - N(Oa IP)? (2.6)

where Ip denotes the identity matrix in R”. However, other choices are of course possi-
ble [Makhzani et al., 2016; Rolfe, 2017].

Next, VAEs also suppose that:
m
plalz) = [] Mass £(2)), 2.7
i=1

where h(-) denotes here a generic probability distribution function with parameters obtained via
fr(+), which is a fully-connected neural network, parametrized by 7. A graphical representation

of the generative model can be seen in Figure 2.1.

@h_ .

m

Figure 2.1 — Graphical representation of the generative model for VAEs.
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Lastly, in order to maximize the ELBO, it is further assumed that:
q(zi) = N (255 pi, 07 Ip), (2.8)

where [11;,02] = g4(z;) is the output of another neural network g4(+), parametrized by ¢.

With all assumptions (2.6)-(2.7)-(2.8), the ELBO in Eq. (2.5) can be further developed as:

ELBO := Eq(.) [log(p(z[2)] — KL (q(2)|[p(2))
2.9
= Z [Eq(z) [log h(a:i; fT(Z))] - KL <N(Zi; iy O'?IP)HN(ZZ‘; Op, Ip))} .

=1

From the deep learning perspective. VAEs can be seen as an encoder-decoder architecture
from the standpoint of deep learning, where the encoder compresses the input 2z € R into a
latent variable z € R? sampled from the variational probability distribution and lying in a low-
dimensional latent space. Then, the decoder maps the latent component back into a reconstructed

output y, as shown in Figure 2.2.

X Encoder 7z Decoder
9 q(zlx) p(x|2) f; y
input data encoded data decoded data
in space RN in latent space in space RN
RP (P<<N)

Figure 2.2 — A deep-learning view of VAE:s.

To perform the optimization, the training loss is equivalent to the negative ELBO where the
first term in Eq. (2.5) is a traditional reconstruction loss and the second term is a regularization
loss. The neural nets parameters ¢ and 7 are optimized through stochastic gradient descent.

VAE:s are flexible architectures since they can be designed to conduct a variety of encoding-
decoding tasks by properly choosing the prior and the observed data distributions. In Chapters 3
to 5, we will introduce three original generative models based on the VAE structure and demon-

strate their applicability.
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2.1.2 Topic modeling for count data

Topic modeling is a statistical analysis technique for revealing the underlying semantic struc-
ture in a collection of documents. The hidden groups of words are referred to as "topics," and
each word in a document is associated with one or more topics. In the following, we review three

commonly used probabilistic approaches for topic modeling.

Latent Dirichlet allocation. Latent Dirichlet allocation model (LDA) [Blei et al., 2003] is a
well-known probabilistic model on which many methodologies have been built. Being an un-
supervised learning approach, it does not require a manually labeled data set for training. A
collection of documents and a specified number of topics are only needed. LDA assumes that the

words in a document are sampled from a mixture distribution over latent topics. Consider a corpus

of D documents {wy, -+ ,wp}, it posits T topics 1. with a vocabulary that includes V' unique
terms. Let wg,, € {1,---,V} denote the m-th word in the d-th document, the generative process
of LDA is:

— Draw the topic proportions 4 ~ Dirichlet(a), with o € R
— For the m-th word in the d-th document:

(i) Sample its topic zgy, ~ M(1,604);

(i) Sample word wgy, ~ M(1, B, ), with By = (B4, - 75tv)T, {:1 B =1, By > 0.
The marginal likelihood for the document w; which contains My wordsvgan be developed as:

My T
plwda,) = [ (TI 32 plwanlzam: B)pCanl00)p(Olc)dt. (2.10)

d m=1 de:1

Sampling techniques, such as collapsed Gibbs sampling [Teh et al., 2006], and variational tech-
niques [Srivastava and Sutton, 2017] are the main inference tools for LDA. A graphical represen-

tation of LDA is shown in Figure 2.3.

OO

M

D

Figure 2.3 — Graphical representation of LDA.
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Latent Dirichlet allocation with products of experts. Due to the difficulty in working with
discrete variables like zg,,, Srivastava and Sutton [2017] proposed to collapse zg, in Eq. 2.10

and simplifying the formulas into:

Mg
p(wala, B) = / (T] 2(wam|B. 00))p(6alc)dba, @.11)

d m=1
where the variable zg,, is summed out and the distribution p(wg,|5,64) becomes a mixture of
multinomial M (1, 564). However, this assumption may lead to the appearance of some topics that
are of poor quality, which is a drawback shared by all mixture models [Hinton and Salakhutdinov,
2009].

To tackle this problem, Srivastava and Sutton [2017] also introduced a novel topic model
called ProdLDA. ProdLDA develops a logistic normal variational distribution over §; with diago-
nal covariance during the inference procedure, where the mean 1y = f,,(wq, ¢) and the diagonal
covariance ¥4 = diag(fx(wgq, ¢)) are obtained by two neural networks f,, and fx, parametrized
by ¢. Contrary to LDA, the topic proportions are generated from ¢(6;) by sampling 6, ~ N (0, I)
and computing 6; = o(ug + Eé d4), with o(-) a softmax function. Furthermore, by replacing
the mixture assumption at the word level in LDA with a weighted product of experts, it posits a

likelihood :
wdm’ﬁaed ~ M(170(/89d))7 (212)

where the topic proportions 6, lie in the simplex, whereas the constraint on the topic-word proba-

bility matrix ( is relaxed, yielding a considerable improvement in topic coherence.

Embedded topic model. The embedded topic model (ETM) [Dieng et al., 2020] is a recent
development that combines traditional topic modeling with word embeddings to discover the latent
semantic structure of documents while also learning a good representation for the vocabulary. It
includes two latent dimensions. First, it represents each document in terms of 7' latent topics,
as in LDA. Second, it embeds words in the vocabulary in a L-dimensional latent space as word
embeddings. The generative process for ETM is:

— Draw the topic proportions 65 ~ LN(0, IT), independently, for each document in the

corpus;
— For the m-th word in the d-th document:

(i) Sample its topic zgy, ~ M(1,604);
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(ii) Sample word Wy, ~ M(1,0(p" sz, ),
where LN denotes the logistic-normal distribution and a draw 6 from this distribution is produced
as:

dq ~ N (0, I), 04 = softmax(dg).

Additionally, p is a L x V word embedding matrix where V' is the total number of words in
the vocabulary. The ¢-th topic embedding in the semantic space of words is indicated by the
vector oy € RE, witht € {1,---,T}. 3 = o(p'ay) is a matrix whose entry 3, represents the
probability that word v occurs in topic ¢, where o(+) denotes a softmax function so that {: By =
1. Given a corpus of documents where the d-th document is a collection of My words, thevrjllarginal

log-likelihood of ETM is described as:

D

L(a, p) = log p(wala, p). (2.13)
d=1

The marginal likelihood of each document, p(wy|d, @, p), is intractable since it involves a difficult
integral over the topic proportions:

My
p(wdla, p) = /p(5d) 11 p(wamlda, o, p)dda. (2.14)

m=1

In addition, the likelihood of the m-th word in the d-th document is:

T
P(Wam|0a, @, p) =D Oat By, - (2.15)
t=1

Finally, ETM adopts a variational inference to estimate the ELBO and optimize the model param-

eters a and p through stochastic gradient descent.

2.2 Construction of recommender systems

In this section, we review some popular state-of-the-art techniques to produce recommender
systems, that were introduced, in very general terms in Section 1.1.
2.2.1 Matrix factorization models

Matrix factorization [Koren et al., 2009] is widely employed in collaborative filtering to de-

termine "possible connection" between users and items in recommender systems. Assume for
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instance that we want to forecast how a user would evaluate a product based on both the ratings
that other users give to the product and the ratings that he gives to other products. Then, given a

RMXN with M the number of users and N the number of items, it

user-item rating matrix ¥ €
could be factorized into a latent-user matrix R € R and a latent-product matrix C € RV*F,
where P << min{M, N} is the latent factor size. Through these two matrices, rating predictions
are obtained by Y = RCT. The objective function is defined by minimizing the mean squared

error between predicted scores Y and actual ratings Y :

M N
argmin | Y > (Y;; — Vi;)?1{Y;; observed} | . (2.16)
RO i=1j=1

If the rating Y;; is missing, the imputation is performed via YW In addition, the number of latent
factors P is a hyperparameter that need to be tuned properly to obtain optimal matrices R and C'.

On the one hand, matrix factorization acts as a dimensionality reduction technique. On the
other hand, it can effectively address the issue of matrix sparseness brought on by an excessive
number of users and items. A long series of methods based on matrix factorization have been pro-
posed, we cite here for example, non-negative matrix factorization (NMF) [Lee and Seung, 1999,
2000], and probabilistic matrix factorization (PMF) [Mnih and Salakhutdinov, 2007; Salakhutdi-
nov and Mnih, 2008], etc.

2.2.2 Latent factor models for recommender systems
Considering the data types used to develop recommender systems, we briefly categorize exist-
ing latent factor methods into two groups: rating-based and rating-with-text based.

2.2.2.1 Rating-based recommender systems

Most algorithms that have been proposed in the literature only rely on the available ratings.
For instance, hierarchical Poisson matrix factorization (HPF) [Gopalan et al., 2015] assumes that

the observed rating matrix is drawn from a Poisson distribution :
Yij|Ri, C; ~ Poisson(R, C}), (2.17)

where user and item latent factors are modeled by a Gamma prior distribution. Once the posterior

p(R1.a, C1:n|Y") has been fitted using variational inference, user ratings for unconsumed products
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can be estimated via the posterior expectation B[R, C;]Y’]. We notice that HPF is a variant of
probabilistic matrix factorization, but with positive weights for each user and item and a Poisson
distribution in place of a Gaussian distribution.

Similar to HPF, hierarchical compound Poisson factorization (HCPF) [Basbug and Engelhardt,
2016] adopts the conjugated Gamma-Poisson structure to model latent factors. Contrary to HPF,
HCPF introduces a zero-truncated compound Poisson random variable to account for sparsity in
the data. Moreover, HCPF allows the user to select the response model from a variety of additive
exponential dispersion models (EDMs), which includes Normal, gamma, inverse Gaussian, Pois-
son, binomial, negative binomial, and zero truncated Poisson (ZTP) distributions. The generative
process in HCPF is:

— Sample count n;; ~ Poisson(R; C}),

— Sample the response l?;j ~ pa (05, nijk) when n;; # 0,
where pg (65, n4;5) is an additive EDM choosing from one of the seven distributions above, 6 and
k are two model parameters.

However, HCPF assumes that the natural parameter 6;; is the same for all observations. There-
fore, the data-generating model is a fixed distribution. As an extension, coupled compound Poisson
factorization (CCPF) [Basbug and Engelhardt, 2017] was introduced recently by coupling HPF
with an arbitrary data-generating model among three different methods: mixture models, linear
regression and matrix factorization. The generative process in CCPF is:

— Sample count n;; ~ Poisson(R, Cj),

— if n;; 1s 0, then }A/ij is missing,

— else

(i) Sample the parameter 6;; from the data-generating model,

(ii) Sample the observation Yij ~ pa(0i;, d(ni;)k), with ¢ a linkage function.
In particular, one possible linkage function is exponential. Setting ¢(n;;) = 1 — ¢ + cn;; with
c > 0 implies that, as the probability of non-missingness increases, we expect a greater dispersion.

Fixing ¢ = 1, we get a standard HCPF model.

2.2.2.2 Rating-with-text based recommender systems

Since the product ratings are usually paired with text reviews, another set of recommender

systems exploit both ratings and texts to improve the predictions. For example, CTR [Wang and
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Blei, 2011] relies on probabilistic matrix factorization (PMF) to generate ratings, and LDA [Blei
et al., 2003] is used to model the topics in reviews. Standard PMF is as follows:

— Draw user latent vector R; ~ N'(0,\5'T),

— Draw item latent vector C;; ~ N (0, )\61]),

— Draw the response Y;; ~ N (R C;, ;')
where A and A\¢ are regularization parameters, ¢;; is the precision parameter that acts as a rating
confidence, a larger value indicates we trust Yij more.

Finally, to combine collaborative filtering and topic modeling, CTR assumes that the item

latent vector is generated by :
Cj=¢j+0;, with €; ~ N(0,A\5'1), (2.18)

where ¢; denotes the topic proportions in LDA. Finally, a predicted rating is drawn from ?ij ~
N(R!C;, c;jl) using this new item factor.

In the estimation procedure, CTR first determines the topic proportions @ via traditional LDA
inference method, then PMF parameters are optimized depending on the outcomes . In order
to conduct the estimations of the LDA and the PMF parts simultaneously, the online Bayesian
inference algorithm for CTR model (obi-CTR) [Liu et al., 2017] realizes a joint optimization
with an online approach where the two components can reinforce each other during learning.
Nonetheless, neither of these models formulates any relationship between the user latent factor
and latent topics.

The hidden factors topic model (HFT) [McAuley and Leskovec, 2013] integrates latent rating
factors 7; € RT (similar to R;) with latent review topics 6; in dimension 7" by specifying a

transformation :
exp(kvit)

T
2 exp(kvyy)
t =1

Oit = ) (2.19)
where the parameter k£ determines the "peakiness" of the transformation intuitively. A large value
of k indicates that users only discuss the most important topic, whereas a small value means that
users discuss all topics evenly. The objective function of HFT was then defined with the first
term accounting for the rating reconstruction error and a penalization term involving the corpus

likelihood. However, HFT is constrained by the requirement that the dimension of latent factors
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should be equal to the number of latent topics I'. This one-to-one correspondence relationship
may not be ideal and restricts the flexibility of the approach.

The aspect-aware latent factor model (ALFM) [Cheng et al., 2018] breaks this limitation by
associating latent factors with different aspects and each aspect is represented as a probability
distribution of latent topics. For instance, for the "food" aspect, a related latent topic could be
"breakfast" or "Italian cuisine". The overall rating is computed through a linear combination of all
the aspect ratings:

Vii =Y pijaYija + bi + bj + bo, (2.20)
a

where p;j, denotes the importance of each aspect a, aspect rating Y}, reflects the satisfaction of a
user 7 towards an item j on the aspect a. Then, by is the average rating, b; and b; are the user and
item biases, respectively. Unfortunately, it turns out that the performance of ALFM is affected by
a dispersed data distribution, it only functions properly when the data is concentrated around the

mean, as a result of the addition of the average score by.

2.2.3 Deep learning-based recommender systems

Deep learning-based approaches have recently shown a remarkable potential on feature rep-
resentations learning and have been extensively explored in the literature of recommender sys-
tems [Khan et al., 2021]. Among the state-of-the-art techniques, the deep cooperative neural
network (DeepCoNN) [Zheng et al., 2017] relies on two convolutional neural networks (CNNs)
to learn latent representations of users and products from user review text and item review text,
respectively :

R; = CNNg(text;),
(2.21)
Cj = CNNc¢(text;),
where the latent factor of the ¢-th user is based on the text that he used, and the latent factor of
the j-th item is depending on the text that it received. The ratings Yi-j are then generated by a
concatenation (denoted by the symbol @) of the two latent representations and feeding them into
a factorization machine (FM) [Rendle, 2010]:
Zij = R; & Cy,

) (2.22)
Yij = FM(Zy;).
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DeepCoNN assumes that for each user, the review of a target item is always available. How-
ever in real-world contexts, a product is recommended to a user before they have experienced it.
To overcome this limitation, TransNet was introduced in Catherine and Cohen [2017] with two
networks: a source network based on DeepCoNN, and a target network. The target network pro-
cesses the target review text;; which denotes the review written by the user i for the item j. The

A

target rating Y;'}‘"g et

is predicted as follows:

Z;tjqrget _ CNNtarget (teaftij),

(2.23)
At t t t
Y;jarge — FMtarget(Zi]{l?“S]e )

The source network is similar to the DeepCoNN model with two CNN text processors, for the

purpose of obtaining two user-latent and item-latent representations :

R; = CNNg(text; — text;j), use reviews by user i without text;;,
(2.24)

Cj = CNN¢ (text; — text;;), use reviews for item j without text;;.
The source rating }A/Z-jou’”ce is then generated through a concatenation operation, an additional trans-

form layer, and a factorization machine, respectively :
ZijOUT‘CE — Rz @ C],

fransform — TRANSFORM(Z;0"), (2.25)

}A/;L;ource — FMsource(ZZ‘ansform) )

The training phase of TransNet consists of three stages. In the first step, it trains the target network
on the actual reviews by minimizing the loss between the target ratings Ytarget and the actual rat-
ings Y. Secondly, it learns the transform layer by reducing the loss || Ztransform _ ztarget||2,
Finally, it trains the FM predictor through reducing the difference between the actual ratings Y
and the predictions ysource pased on the learned transformed representation Zensform - Addi-
tionally, the transform layer enables the model to generate approximate reviews during test phase
when text;; is unavailable, and enhances the prediction performance.

We point out that in the two previous models, latent factors are solely obtained by learning
reviews, without taking into account the observed ratings during the generative phase. Therefore,
we propose a novel strategy that employs both ratings and reviews as model inputs to gain more
information. We further introduce a user-majoring and a product-majoring encoders that simulta-

neously capture the user and product preferences, as detailed in Chapter 3.
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2.3 Network data analysis

A number of probabilistic and deep learning approaches have been proposed for network anal-

ysis, some of the most popular among them are described in this section.

2.3.1 Probabilistic graphical models

This section reviews two major model-based approaches for network analysis: the stochastic
block model (SBM) [Wang and Wong, 1987; Nowicki and Snijders, 2001] and the latent position
model (LPM) [Hoff et al., 2002].

SBM is widely used to detect communities or more general clusters of nodes. It assumes that
the nodes of a network (or graph) are spread into K different latent clusters and that the connec-
tion probability between each pair of nodes depends exclusively on their group memberships. The
SBM introduced by Nowicki and Snijders [2001] assigns a latent vector Z;, following a multino-

mial distribution, to each vertex ¢ of the network :
ZiNM(]‘7a:{a17a27"' 7ak})7 (226)

where o denotes the vector of cluster proportions. In more detail, the vector Z; has all its compo-

nents equal to zero except one such that Z;;, = 1 if vertex ¢ belongs to cluster k. Moreover,
K
=1, with oy > 0, Vk. (2.27)
k=1

Finally, edges between two nodes are drawn from independent Bernoulli distributions, given Z.
We denote by A the N x N adjacency matrix, where A;; = 1 if there is a link between nodes %
and j, 0 otherwise. Then,

Aij|(ZinZjs = 1) ~ B(I), (2.28)

where B(-) denotes the Bernoulli distribution and IT is a K x K matrix whose entry ITj; is the
connection probability between any node in cluster k£ and any node in cluster [.

Based on SBM, many extensions looking for overlapping clusters have been proposed [Lee and
Wilkinson, 2019]. For instance, the mixed-membership stochastic blockmodel (MMSB) [Airoldi
et al., 2008] introduces a mixing weight vector 7; drawn from a Dirichlet distribution for each

vertex ¢, where m;; denotes the probability of node ¢ belonging to cluster k. The connection
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probability between node ¢ and node j is then modeled as:

Aij| Zisj, Ziej ~ B(ZL, TTZ;, ) (2.29)

1—)

where II still is a ' X K connection probability matrix, similar to SBM, and the membership
indicator Z;_,; ~ M(1,m;) describes the class membership of vertex 7 in relation to vertex j.
Similarly, the class membership of vertex j in reference to vertex ¢ is represented by the member-
ship indicator for the receiver Z;.; ~ M(1,7;). Each vertex can therefore belong to a different
cluster depending on its relationships with other vertices.

In the overlapping stochastic blockmodel (OSBM) [Latouche et al., 2011], each node is also
allowed to belong to multiple clusters. Indeed, OSBM assumes that each node is associated with

a binary latent vector drawn from a product of Bernoulli distributions:

K K
Zi ~ [ B(Ziws ew) = [] af* (1 — ) =%, (2.30)
k=1 k=1

The edges are then generated as:
Aij|Zi, Zj ~ B(o(Z; Z; + Z] U + V" Z; + b)), (2.31)

where o(+) is a logistic sigmoid function, ITis a K x K matrix, U and V are K -dimensional vec-
tors. The first term ZZT I1Z; accounts for the interaction probability between two nodes, whereas
the second term ZZ-T U models the overall probability that node ¢ connects to other nodes and VTZ]-
captures the global tendency of node j to receive an edge connection. Lastly, b is a bias term.

All models discussed so far deal with binary-edged graphs. Other variants consider weighted
graphs whose edges can be discrete [Mariadassou et al., 2010], categorical [Jernite et al., 2014]
or textual [Bouveyron et al., 2018]. Moreover, some extensions [Xu and Hero, 2014; Matias and
Miele, 2017; Corneli et al., 2019] focus on time-evolving networks, namely dynamic network
analysis.

Whereas stochastic block models aim at clustering the nodes of a graph, other approaches
look for likely positions of the nodes of the graph in a latent space, to better visualize the network.
Originally proposed by Hoff et al. [2002], the latent position model (LPM) supposes that each
node has an unknown position in a P-dimensional latent space and that the probability of a specific

link between two nodes is modeled by some function of their positions. The following describes
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the generative process. Firstly, for each node 7, a latent position is sampled from a Gaussian
distribution:

Z; ~ N(0,Ip). (2.32)

Next, based on the distance between the latent positions of two nodes, a connection is sampled

from a Bernoulli distribution independently, for each pair:
Aijl Zi, Zj ~ Blo(a + pYi; — | Zi = Zj])), (2.33)

where o (+) is a logistic sigmoid function, Y;; is a covariate accounting for additional information

about the edge connecting ¢ with j, if available, and « as well as 3 are two model parameters.
Afterwards, the latent position cluster model (LPCM) [Handcock et al., 2007] was introduced

to incorporate a clustering structure into LPM by considering that the latent position of each node

is drawn from a Gaussian mixture model (GMM):

K
Zi ~ Y N (a0 dp), (2.34)
k=1

where 7y is the probability that a node belongs to the group k. Then, similarly to the original
LPM, LPCM links the probability of an edge between nodes to their latent positions.

As a side note, we recall that in the last decades, several efforts have been made in order
to extend LPMs to dynamic networks [Xu and Zheng, 2009; Sewell and Chen, 2017]. Further
developments of LPMs exist and the reader is referred to Raftery [2017] for an extensive review.

The generative models described so far, often require a challenging inference procedure that
primarily relies on variational approximations MCMC, which unavoidably results in high compu-
tational complexity. Scalability and adaptation to complex networks are major concerns for the
researchers in the field. A more general overview of statistical models for clustering network data

can be explored in Bouveyron et al. [2019, Chapter 10].

2.3.2 Graph neural networks

The methods described so far are widely used for clustering the nodes of a graph. Another
challenging task consists in clustering the graphs themselves. Ad hoc deep learning techniques
have been developed in recent years. Among various classes of deep learning techniques, graph

neural networks (GNNs) are a type of neural networks that operates directly on graph structured
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data, which have demonstrated effectiveness in representation learning on graphs. Since the semi-
nal work of Scarselli et al. [2008], GNNs adopt a neighborhood aggregation (or message passing)
scheme in which the representation vector of a node is computed by recursively aggregating and
transforming the feature vectors of its neighbors. Mathematically, given the node feature matrix
X, the [-th layer of a multi-layer GNN operates as follows:

N = AGGREGATEY ({H - j e N()}) .

(2.35)
H"Y = coMBINE! (", NIT),

where H i(l) is the feature vector of node ¢ at the [-th iteration with an initialization of HZ-(O) =
X. The neighborhood of nodes adjacent to ¢ is denoted by the symbol N(i). Different GNN
versions emerge from various choices for the function AGGREGATE(-) and COMBINE(+) [Xu
et al., 2019]. For node clustering, the node representation H Z-(ZH) of the final iteration is used with
an external clustering algorithm like K-means. For graph clustering, node features from the final

iteration are gathered to obtain the entire graph representation:

Hg = READOUT(H!"™Y i € @), (2.36)

where READOUT can be a simple summation or a more complicated pooling function [Ying
et al., 2018b]. In this thesis, we only concentrate on node-level clustering approaches, however by

including a READOUT function, tasks at the graph level can be envisaged.

GCN. The graph convolutional networks (GCN) [Kipf and Welling, 2017] is a multi-layer con-
volutional neural network that works directly on graph data. GCN fuses the AGGREGATE and
COMBINE phases in Eq. (5.15) to learn latent representation for each node. Thus, the (I 4+ 1)-th

layer of a multi-layer GCN looks like :

S

U+ — o‘(ﬁ_%AD_%H(Z)W(l)), (2.37)

where the i-th row of H(+1) is the latest representation of node i at layer [ + 1, A=A+1Iy
is the adjacency matrix of the undirected graph G with an added identity matrix Iy representing
self-connections, ﬁii = Zj flij is the degree matrix and WO is a weight matrix of learnable
parameters of [-th layer. o(-) denotes an activation function such as ReLU or Sigmoid. H *)

signifies the integrated representation in layer I, with H(®) = X is the node features matrix.
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GraphSAGE. Most existing architectures, including GCN, are fundamentally "transductive":
they require that every node of the graph is present during the training phase. GraphSAGE [Hamil-
ton et al., 2017] introduces a general inductive framework to efficiently generate node embeddings
for previously unseen nodes with the use of node features information. This technique operates by
sampling a fixed-size neighborhood of each node, uniform drawn from the full neighborhood set,

and then applying a specific aggregator to:

N = AGGREGATE D ({HY" : j € N(i)}),

7

) (2.38)
D — (i) (Hi(l) o N@-(Hl)))a

)

where GraphSAGE concatenates the node current representation I, i(l) with the aggregated neigh-
borhood vector NZ»(ZH), and this concatenated vector is fed through a fully connected layer with
non-linear activation function o(-). A number of aggregator structures can be used to aggregate
the neighbor representations. GraphSAGE examined three aggregation functions: mean aggrega-

tor, LSTM aggregator, and max-pooling aggregator, respectively.

GAT. All of the aforementioned approaches integrate the nodes representation equally with all
of its neighbors. However, in order to measure the importance of distinct neighbors, the graph
attention networks (GATs) [Velickovic et al., 2018] assign different weights to neighbors of a
node. For a single graph attentional layer, the attention coefficient cv;; that indicates the importance
of the neighbor node j to node i is calculated as:

exp(LeakyReLU(a[Wh; & Whi]))
2 oreNG) exp(LeakyReLU(a[Wh; & Wh,]))’

(2.39)

Oéij =

where h; and h; are attribute vectors associated with node 7 and j, a is the attention mechanism
modeled by a single-layer neural network parametrized by a weight vector &, Wisa weight matrix
of learnable parameters and LeakyReLU is a non-linear activation function (:= 1,0 (bz) +
I¢z>01(2), b is a small constant). Once obtained, the attention coefficients and the weight matrix

are used to compute the final output features for every node:
hi=o ( > %Whj) 7 (2.40)
JEN()
where o(-) denotes a non-linearity function. To stabilize the learning process, a multi-head atten-

tion mechanism is introduced. Specifically, the final output after applying L independent attention
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mechanisms is:

Z 3 ol Wwn, (2.41)

L 1 jEN(4)

GIN. The graph isomorphism network (GIN) [Xu et al., 2019] generalizes the Weisfeiler-
Lehman (WL) test to address the challenging graph isomorphism problem [Weisfeiler and Leman,
1968] and thereby achieves maximum discriminative power among GNNs. In particular, GIN
updates nodes representations as:
B =MLP((1+ D) ETY + 3 B (2.42)
JEN (i)

where € is a learnable parameter or a fixed scalar, MLP stands for multi-layer perceptron.

MGAE. The marginalized graph auto-encoder (MGAE) [Wang et al., 2017] is developed based
on GCN. MGAE proposes a marginalization mechanism by adding random noises to the content
information. The model first arbitrarily removes some features (setting them to 0) from node
features matrix X to get a corrupted version of the original node contents, referred to as X . Next,
the adjacency matrix A and the corrupted node content X are used as inputs to train a GCN. Then,
a latent representation Z () is obtained by minimizing the error between the output of GCN and
the initial X :

1X — D2 AD 2 XWO 12 4 \|W©O)2, (2.43)
where TW(© is a learnable weight matrix at the first layer, ||/ (?)||2 is a regularization term with
a trade-off coefficient ), and Z(1) = D2 AD 2 XWO. By stacking multiple single-layer GCN
encoders, the final representation is obtained as Z(+1) = D=3 AD=3 7O, Lastly, a spectral

clustering is applied to the final representation of nodes to produce clusters.

2.3.3 Deep probabilistic models for node clustering

In this subsection, we focus on deep latent variable models that generalize the VAE structure
to deal with graph data. Since these models are able to learn meaningful representations of the
nodes of a graph in a latent space, they are often used for node clustering purposes. Also they
can produce new data samples based on the latent features that they have learnt in the embedded
space. We stress that variational auto-encoding is an entirely unsupervised learning approach that

can be used in contexts like clustering where label information is unavailable.
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The first approach that we consider is the variational graph auto-encoder (VGAE) [Kipf and
Welling, 2016]. In VGAE, a GCN encoder is introduced in order to compress the network data
into a low-dimensional representation in a latent space. A simple inner product decoder is then
used to transfer the latent component into a rebuilt graph matrix. For more detail, VGAE first

assumes that:

N N
p(Z) =[] p(z) = [[N(zl0, Ip), (2.44)

i=1 i=1
where Z is a P-dimensional latent matrix where the i-th row Z; represents the ¢-th node. A random

edge between two nodes is sampled through:

p(Aijlzi, 25) = o (2] 2)), (2.45)

T

where A is the graph adjacency matrix and o (-) is a logistic sigmoid function. The term o (z;' z;)

can be viewed as the decoder network in VGAE. The inference model is parametrized by a two-

layer GCN':

N N
9(Z|1X, A) = [T a(zil X, A) = T N (zilpi, diag(07)). (2.46)
i=1 i=1
Here, X is the node feature matrix, 4 = GCN,(X, A) is the matrix of mean vectors /i,

similarly logo = GCN, (X, A). The two-layer GCN encoder is defined as GCN(X, A) =
ZlReLU(le Wo)Wl, where A = D=2 AD~3 is the normalized adjacency matrix. As in VAE,

the optimization is then performed by maximizing the variational lower bound £ :
L =Eyzx,1)llogp(A|Z)] — KL(q(Z| X, A)||p(Z)). (2.47)

Whereas variational auto-encoding based methods learn meaningful latent positions of the
nodes relying on the minimization of the KL divergence between the approximate variational and
the true posterior distribution of those positions, an alternative approach consists in using genera-
tive adversarial networks (GAN) [Goodfellow et al., 2020]. By incorporating an adversarial model
into the generative process, the adversarially regularized graph auto-encoder (ARVGA) [Pan et al.,
2018] enforces the latent representation to match a prior distribution. The adversarial model serves
as a discriminator D to determine whether a latent factor is from the prior p(Z) = N (Z|0, I) (pos-
itive) or from the output of graph encoder GCN(X, A) (negative). The embedding will finally be
regularized and enhanced during the training phase by minimizing the cross-entropy cost for the

binary classifier:

1 1
- 5 IE’zwp(z) [log D<Z>] - 5 Exwp(x) [log(l - D(GCN(Xv A)))] (2.43)
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After obtaining the optimal latent positions of the nodes, ARVGA performs node clustering on the
learned embeddings using the K-means algorithm.

In order to allow nodes to belong to multiple clusters, the deep generative latent feature rela-
tional model (DGLFRM) [Mehta et al., 2019] combines OSBM [Latouche et al., 2011] with GCN

by positing each node of the graph to have an embedding modeled by a sparse vector:
zi = b; © 1y, (2.49)

where © denotes an element-wise multiplication, b; € {0, l}K is a binary vector with a stick-

breaking process prior with a parameter o:

v ~ Beta(a, 1), k=1,--- K,

k (2.50)
= [lvi,  ba~B(m),
j=1
and r; € R¥ is a real-valued vector with a Gaussian prior:
ri ~ N(0,0%1), (2.51)

In particular, b;, € {0,1} and r;; € R indicate whether or not node 7 belongs to cluster & and the
membership strength to the same cluster k, respectively. The VAE decoder then computes the link

probabilities as:
P(Aijlzi 25) = o (f(2:) T f(25)), (2.52)

where f(-) is a deep neural network equipped with a LeakyReLU activation in each hidden layer.

Considering the inference model, the variational distributions are:

q¢(vir,) = Beta(cik, dir,),
qe(bir) = B(mir,), (2.53)

qo(ri) = N (i, diag(7)),

where {cy., dy, Tk, pi, ok 1 = GCN(X, A). These parameters are all the outputs of a GCN.

All of the aforementioned and other existing approaches [Tian et al., 2014; Nie et al., 2017,
Zhang et al., 2019b] adopt a two-step clustering procedure, simply relying on external cluster-
ing algorithms (e.g. K-means) to group the embedded nodes, independently from the generative

mod