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Abstract. Temporality is a critical aspect of live shows and art instal-
lations. Technical artifacts and processes participate in a rich network of
temporal interactions with the human performers and/or the audience. In
this context, technicians and artists need tools to plan and control the tem-
poral scenarios of their show or installation.

In this work we present Quadrant, a programming environment for de-
signing and performing temporal scenarios. Such scenarios can be used to
drive various technical aspects of live shows and art installations, such as
audio and video playback, lights, or mechatronics.

We explore an hybrid approach aimed at bridging the gap between a
programming language and a show controller. Our environment features a
structure editor operating on a syntax tree that combines textual tokens and
user interface widgets. This allows specifying scenarios algorithmically using
a domain specific language, while expressing continuous time transformations
using graphical curves.

Quadrant uses an imperative synchronous language to express concurrent
poly-temporal scenarios. Scenarios are compiled on-the-fly into a bytecode
that is run by a virtual machine. A temporal cooperative scheduler organizes
the execution of concurrent flows of that bytecode along multiple time axes,
using abstract dates and delays, much like a score uses symbolic positions
and durations (e.g. bars and beats) to describe musical time. Abstract time
is ultimately mapped onto wall-clock time through the use of time trans-
formations, specified as tempo curves, for which we provide a formalism in
terms of differential equations on symbolic position. Tempo curves can be
built from cubic Bézier curves.

The virtual machine feeds back execution informations to the structure
editor, which displays that information by highlighting executed statements
and displaying progress wheels and status icons directly in the code. This
allows an operator to easily monitor the progression and the temporality of
the scenarios.



A diferencia de Newton y de Schopenhauer, su antepasado
no creìa en un tiempo uniforme, absoluto. Creìa en un in-
finitas series de tiempos, en una red creciente y vertiginosa
de tiempos divergentes, convergentes y paralelos. Esa trama
de tiempos que se aproximan, se bifurcan, se cortan o que
secularmente se ignoran, abarca todas la posibilidades.

— Jorge Luis Borges, El jardìn de senderos que se bifurcan
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Résumé de la thèse en Français

Introduction

Le temps est un aspect fondamental de tout spectacle vivant, et de bon
nombre d’installations artistiques. Ces œuvres d’art font un usage créatif du
temps pour mettre en forme leur dramaturgie, dérouler leur action, créer des
contrastes et des climax. Pour une grande partie, l’art de l’interprète consiste
à jouer avec le temps : certaines actions doivent se produire à des moments
spécifiques, dans un certain ordre, à une vitesse donnée, ou doivent entretenir
des relations temporelles complexes avec d’autres actions et évènements. La
perception du temps est également de la plus haute importance, dans la
mesure où c’est elle qui permet de construire de l’anticipation, de produire
de la surprise, de créer des tensions et des résolutions.

Acteurs, musiciens, danseurs, comédiens, etc., interprètent des proces-
sus temporels abstraits décrits sous la forme de partitions ou de scénarios,
pour produire une action en temps réel, ou bien construisent directement la
progression temporelle du spectacle au travers de l’improvisation. Pour ce
faire, ils doivent continuellement construire un consensus autour d’une no-
tion commune du temps : en d’autres termes, ils doivent se synchroniser. Ce
consensus est sujet à un ajustement constant, et doit préserver leur liberté
d’interprétation. Par example, certaines parties de l’action peuvent diver-
ger et s’écouler indépendamment, avant de se rejoindre à un point ultérieur,
dont la date en temps réel n’est pas décidable a priori. Loin d’être réduc-
tible à une ligne temporelle déterminée d’avance, les scénarios temporels de
spectacles vivants sont composés de multiples flots temporels simultanés et
interdépendants, auxquels l’interprétations donne une réalisation temporelle
concrète.

Bien évidemment, les dispositifs techniques et leurs opérateurs sont éga-
lement pris dans les même flots temporels, et doivent se synchroniser et

1
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s’adapter en temps réel à la progression de l’action. Ceci est d’autant plus
vrai que les œuvres contemporaines impliquent un nombre croissant d’arte-
facts et de processus technologiques, à mesure que les artistes s’en saisissent
pour en tirer parti dans leur démarche créative. Les dispositifs de synthèse
audio ou vidéo, les processus de composition générative, le mapping vidéo
ou les écrans de LEDs, ou encore divers capteurs et dispositifs robotiques,
constituent quelques exemples d’outils qui peuvent désormais s’intégrer dans
un riche réseau d’interactions temporelles avec les interprètes et le public.

Quelques examples dans la musique contemporaine

Parmi les arts vivants, la musique a développé des constructions tempo-
relles particulièrement fines, utilisant diverses représentations symboliques
du temps, aussi bien continues que discrètes. Pour cette raison, la musique
présente des défis spécifiques et particulièrement intéressant au regard de la
composition et de l’interprétation des interactions humains-machines distri-
buées sur de multiples échelles de temps et flots temporels.

Ces problématiques sont particulièrement prégnantes dans la musique
mixte, un genre de la musique contemporaine qui se construit spécifique-
ment autour de l’interaction entre des musiciens humains et des processus
musicaux électroniques ou informatiques. Pour donner quelques examples, on
peut citer l’installation interactive Biotope de Jean-Luc Hervé, les œuvres de
musique mixte de Sasha Blondeau telles que Urphänomen, l’orchestre robo-
tique utilisés par Pedro García Velásquez dans La Selva Virgen, ou encore
l’opéra Like Flesh de Sivan Eldar.

Des scénarios temporels complexes impliquant des humains et des ma-
chines peuvent également s’inscrire dans un projet de Gesamtkunstwerk1.
C’est par example le cas pour l’opéra Donnerstag aus Licht de Karlheinz
Stockhausen. La figure 1 montre une photographie d’une répétition de cet
opéra par l’ensemble Le Balcon, et met en évidence les différents rôles et
postes de travail tenus par les nombreux participants, artistes ou techniciens.
L’exécution de cette œuvre implique en effet deux orchestres, des chanteurs,
un chœur, des danseurs, un dispositif de projection vidéo, un système de
sonorisation, un partie de musique électronique, des jeux de lumière, des dé-
cors, des sur-titres, etc. Les interactions et les dépendances temporelles entre
ces divers éléments sont elles-mêmes mises en œuvres à travers un certain

1Gesamtkunstwerk signifie “œuvre d’art totale”. Ce terme caractérise une esthétique
consistant à combiner délibérément de nombreuses formes d’art, telles que la musique, le
théâtre, la danse, l’architecture, etc., au sein d’une même œuvre d’art.
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nombre de canaux, tels que des signaux audio ou visuels, un système d’in-
tercoms, et des protocoles informatiques tels que MIDI ou OSC. Les flèches
indiquent ces canaux ainsi que le sens des dépendances temporelles : par
exemple, le chef d’orchestre donne la battue à l’orchestre et aux chanteurs,
tout en vérifiant son propre tempo par rapport à certaines séquences vidéo.
La musique est à son tour une source de synchronisation pour le topeur, la
personne en charge de suivre la partition et de donner les ’tops’ pour si-
gnaler différents évènements importants à l’équipe technique, en particulier
concernant les lumières, le son, ou la vidéo. Il existe évidement des boucles
de rétro-action implicites dans ce schéma, par example entre le chef et la vi-
déo, bien que les séquences vidéo ne prescrivent qu’un tempo approximatif,
tandis que le début des séquences vidéo est lui dicté de manière plus précise
par la musique (soit par l’intermédiaire du topeur, soit par l’utilisation d’une
“partition vidéo” jouée par un pianiste sur un clavier MIDI).

Ces quelques examples illustrent l’utilisation de l’interaction humains-
machines dans le spectacle vivant. Cependant, le degré auquel les artefacts
et processus technologiques peuvent être orchestrés pour jouer aux cotés
d’interprètes humains dans des scénarios temporels dynamiques détermine
largement leur potentiel en tant que dispositif créatif. Ceci présente des défis
complexes ayant trait à la composition, l’execution, le contrôle et le retour
d’informations en temps réel de ces outils.

Dans ce contexte, les concepteurs techniques ou les artistes ont besoin
d’outils pour planifier et contrôler les scénarios temporels de leurs spectacles
ou installations. Ces outils font face à des exigences multiples et parfois
contradictoires : ils doivent offrir un contrôle précis de la temporalité du
scénario, tout en restant suffisamment flexibles et ouverts pour permettre
l’exploration créatrice. Ils doivent donner un aperçu utile du spectacle à de
multiples échelles, depuis les grands mouvements de l’action jusqu’au détail
du mouvement d’un potentiomètre. Ils doivent être ergonomiques et aisément
contrôlables en situation de live, tout en permettant l’automatisation et le
design de processus complexes. Des compromis doivent être faits, et peuvent
l’être de multiples manières. De plus, il n’existe pas de solution unique qui
conviendrait à tous les artistes, pour n’importe quel type de spectacle. Le
champ de possibilités est donc assez vaste et appelle à l’exploration.
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Figure 1 : Dépendances temporelles et canaux de communication dans
Donnerstag aus Licht de K. Stockhausen. Produit par l’ensemble Le Balcon,
Novembre 2018. Photographie de Meng Phu.

Approche développée dans cette thèse

Dans ce travail, nous présentons un environnement de programmation tem-
porelle appelé Quadrant, qui vise à combler le fossé entre une approche de
type language de programmation, et un point de vue plus centré sur une in-
terface utilisateur interactive. Nous tentons d’atteindre cet objectif en com-
binant un éditeur structuré avec un language de programmation dédié, non
textuel, et exécuté par une machine virtuelle. Le “code source” est stocké et
manipulé sous forme d’arbre, dont les feuilles peuvent être des éléments aussi
bien symboliques (par exemple des identifiants textuels ou des nombres) que
figuratifs (par exemple des courbes continues). Ceci permet aux utilisateurs
d’écrire des scénarios temporels dans un language qui ressemble à un lan-
guage textuel, tout en intégrant des éléments d’interface graphique. De plus,
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l’intégration forte entre les différents composants de Quadrant, et la repré-
sentation structurée de scénarios temporels qu’ils partagent, permet d’im-
portantes améliorations de l’expérience utilisateur, tels que la mise en forme
automatique, le signalement d’erreurs en ligne, la suggestion de code, ainsi
que le retour d’information sur l’exécution du scénario en temps réel.

Approches et outils existants

Dans le chapitre 1 de la thèse, nous présentons quelques outils existants
pour la conduite de spectacle et la composition de séquences multimédia.
Nous identifions un certain nombre de métaphores temporelles utilisées par
ces outils :

• les timelines qui organisent les évènement sur des lignes temporelles
statiques ;

• les cuelists qui organisent les évènement en listes imbriquées disposant
de sémantiques temporelles spécifiques ;

• les métaphores spatiales, qui utilisent des représentations 2D ou 3D,
comme des objets et des trajectoires pour représenter des flux tempo-
rels ;

• les graphes temporels qui représentent le passage du temps ou des flux
de données à travers des graphes d’objets exécutant certaines actions ;

• les approches basées sur des languages de programmation disposant de
sémantiques temporelles propres.

Nous présentons également plusieurs interfaces de programmation, et
proposons de les replacer sur un axe allant d’une approches symbolique à une
approche figurative, distinction que nous jugeons plus fertile que la distinc-
tion traditionnelle entre programmation textuelle et programmation visuelle.
Nous proposons une identification des forces et faiblesses de chacune de ces
approches, et concluons en pointant le potentiel d’une approche hybride,
combinant un language temporel symbolique et des éléments d’interface gra-
phiques et de retour d’information figuratifs, rendue possible par un éditeur
structuré.

Travaux préliminaires

Dans le chapitre 2, nous présentons deux prototypes exploratoires ayant servi
à guider notre recherche. Le premier est un language de programmation tem-
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Figure 2 : Architecture de Quadrant

porel textuel, tandis que le second est un logiciel de conduite de spectacle
basé sur des listes de cues hiérarchiques. Nous explorons leur limitations
et observons que les idées pour pallier à ces limitations convergent vers
une approche hybride commune. D’une part, le besoin d’introduire des élé-
ments d’interface graphique figuratives dans le language textuel conduisent
à brouiller les frontières entre le language, son éditeur et son environnement
d’exécution. D’autre part, le fait de rendre plus modulaire et re-combinable
les blocs élémentaires du logiciel de conduite de spectacle suggèrent un mo-
dèle plus programmatique et symbolique.

Présentation de Quadrant

Au chapitre 3, nous présentons notre environnement de programmation tem-
porelle. Nous définissons les objectifs à l’origine de sa conception, et donnons
un aperçu de son architecture (figure 3.1).

Notre approche se fonde sur un format non textuel permettant de repré-
senter des scénarios temporels dans un language de programmation dédié.
L’environnement combine :
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• Un éditeur structuré qui est utilisé à la fois pour composer des scénarios
et contrôler et suivre leur exécution durant le spectacle.

• Un pipeline de compilation produisant un bytecode dédié à partir de
la représentation éditable du scénarios.

• Un environnement d’exécution consistant en une machine virtuelle et
un ordonnanceur temporel.

Deux chemins de retour d’information existent dans cette architecture.
Le premier opère au moment de l’édition et fournit un retour syntactique
et sémantique du compilateur vers l’éditeur, permettant d’implémenter les
fonctionnalités de l’éditeur telles que la mise en forme automatique, le signa-
lement d’erreurs et la suggestion de code. L’autre opère lors de l’exécution,
et fournit des informations sur le déroulement du scénario qui peuvent être
visualisées dans l’éditeur.

Nous concluons le chapitre en évoquant un certain nombre d’améliora-
tions possibles de l’interface utilisateur, ayant pour objectif de fournir aux
utilisateurs une vue aussi complète que possible du déroulement et de la
temporalité de leur scénarios.

Modèle temporel

Le chapitre 4 décrit le modèle temporel de Quadrant, et l’ordonnanceur tem-
porel qui implémente ce modèle. Notre modèle permet d’ordonnancer des
calculs et des actions le long d’axes temporels symboliques (ou référentiels
temporels) simultanés organisés de manière hiérarchique. Chaque référentiel
temporel est synchronisé à son parent à travers une transformation tempo-
relle, qui permet de convertir les unité de temps du référentiel dans celles
de son parent, comme montré dans la figure 4.1. Les transformations tem-
porelles peuvent être spécifiées par des courbes de tempo qui peuvent être
construites par morceaux à l’aide de courbes de Bézier cubiques.

Nous discutons des notions de référentiel temporel et de transforma-
tions temporelles et de la manière dont elles sont traitées dans un certain
nombre de travaux antérieurs. Nous donnons un formalisme des transforma-
tions temporelles basées sur des courbes de tempo, en termes d’équations
différentielles. Nous considérons des tempi constants et linéaires, que nous
résolvons analytiquement. Nous considérons également des tempi décrits par
des courbes paramétriques, pour lesquelles nous nous tournons vers des mé-
thodes numériques. Nous détaillons les spécificités de courbes de tempo spé-
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Figure 3 : Composition de transformations temporelles utilisant des courbes
de tempo.

cifiées par des courbes de Bézier cubiques, et détaillons l’implémentation
des courbes de tempo définies par morceau. Nous mentionnons le problème
de la synchronisation de phase (et non seulement de vitesse) et expliquons
comment nous l’abordons en utilisant des courbes de rattrapage temporel.
Nous présentons finalement l’interface de programmation de l’ordonnanceur
temporel et présentons les principaux aspects de son implémentation, fondée
sur l’utilisation de coroutines.

Language temporel

Au chapitre 5 nous présentons le language de programmation temporelle de
Quadrant. Il s’agit d’un language non textuel : bien que la représentation des
programmes soit principalement affichée comme du texte, elle est en réalité
constituée par des arbres pouvant contenir aussi bien des élément textuels
que des éléments d’interface graphique.

Comme la structure d’arbre est rendue explicite par l’éditeur, sous la
forme d’indentations et de parenthèses, son aspect peut rappeler le language
Lisp. La ressemblance s’arrête cependant ici, car Quadrant est en réalité
assez différent de la plupart des dialectes de Lisp. En effet, Quadrant est
un language impératif, procédural, statiquement typé, avec une gestion de la
mémoire principalement manuelle. Il dispose de primitives d’ordonnancement
coopératif fondé sur des coroutines. Le language est compilé sous la forme
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Figure 4 : Pipeline de compilation Quadrant

d’un bytecode exécuté par une machine virtuelle. Puisque le language est
statiquement typé, les valeurs ne sont pas encapsulées avec leurs informations
de type, et l’agencement mémoire des types est connu à la compilation, ce
qui permet à la machine virtuelle d’être assez simple et légère.

Implémentation du compilateur et de l’environnement d’exécution

Au chapitre 6, nous décrivons l’architecture du pipeline de compilation de
Quadrant et de son environnement d’exécution (figure 6.1).

Nous détaillons les différents étages du compilateur, et montrons com-
ment certaines constructions du language sont implémentées. Nous décri-
vons les mécanismes de traçage et de feedback permettant à l’environne-
ment d’exécution de communiquer des informations sur le déroulement du
scénario à l’éditeur. Nous montrons également comment l’éditeur utilise ces
informations pour afficher des indicateurs permettant à l’utilisateur de suivre
l’exécution du scénario.

Infrastructure environnante

Le chapitre 7 décrit plusieurs composants pouvant former l’embryon d’une in-
frastructure pour les interactions temporelles distribuées, permettant à Qua-
drant de piloter et communiquer avec d’autres logiciels et équipements. Nous
mentionnons quelques modules formant le début d’une “bibliothèque standar-
d” pour Quadrant et permettant par exemple de communiquer par paquets
udp et/ou d’utiliser le protocole OSC. Nous présentons ensuite plusieurs
services, qui peuvent aider à l’interopérabilité entre Quadrant et d’autres
systèmes. En particulier, nous décrivons un agent de découverte de service,
un protocole d’élection, et un protocole de synchronisation d’horloge.
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Finalement, nous relatons une collaboration artistique avec le composi-
teur Pedro García Velásquez, impliquant ces services d’interaction distribuée
pour piloter un orchestre de percussions robotiques.

Conclusion

Nous concluons la thèse en évoquant les limites et perspectives de ce travail :

• Eléments d’interface utilisateur dédiées : pour l’instant, le seul
élément d’interface utilisateur intégré au language est l’éditeur de courbes
de tempo (nous ignorons ici d’autres éléments d’interfaces présents
dans l’environnement, tels que le panneau de suggestion de code, ou
les roues de progression, car ils ne font pas à proprement parler par-
tie du language lui même mais plutôt de son éditeur). Une avancée
évidente serait d’offrir plus d’éléments d’interface graphique dédiés,
comme des sélecteurs de couleurs (par exemple pour générer des va-
leurs RGB à envoyer à des projecteurs LED), des sliders, des aperçus
de fichier audio ou d’images, etc. Permettre aux utilisateur eux-mêmes
de définir des éléments d’interface graphique à l’intérieur de l’environ-
nement (c’est à dire en utilisant le language de Quadrant lui-même)
constitue également une piste importante et ambitieuse.

• Debugging et profiling intégrés : la connaissance sémantique par-
tagée entre l’éditeur et l’environnement d’exécution ouvre des pistes qui
pourraient être d’avantage exploitées pour fournir des informations de
debugging et de profiling en continu dans l’éditeur. Ceci pourrait per-
mettre par exemple l’inspection du contenu de variables ou l’affichage
de traces d’exécution, ainsi que l’inspection des temps d’execution ou
du nombre d’itérations de chaque bloc de code.

• Contrôle et déclenchement : L’environnement pourrait offrir plus
de moyens pour contrôler et déclencher l’exécution de code, comme
par exemple lancer l’exécution de procédures à la volée depuis l’édi-
teur, suspendre ou reprendre manuellement l’exécution à des points
arbitraire du scénario, ou simplement exécuter les instructions du pro-
gramme pas à pas ou en avance rapide jusqu’à un point désigné.

• Développement d’un écosystème : Quadrant est pensé comme une
pièce centrale où est définie et exécutée le scénario du spectacle (de
manière analogue au concept de partition électronique centralisée du
compositeur José Miguel Fernandez). Ceci signifie que Quadrant doit
être capable de communiquer avec un grand nombre de logiciels ou
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équipements, tels que des capteurs, moteurs, consoles son ou lumière,
synthétiseurs, séquenceurs audio, etc. Ainsi, étendre l’infrastructure
d’interaction distribuée décrite au chapitre 7 constitue une part im-
portante du travail nécessaire à faire de Quadrant un outil utile.

• Live Coding : Dans ce travail, nous n’abordons pas la problématique
du live coding. Cette omission est délibérée, afin de ne pas disperser
nos efforts, mais aussi parce que Quadrant est d’avantage pensé comme
un outil permettant de concevoir au préalable des scénarios temporels,
et de les exécuter de manière stable pendant un concert, plutôt que
comme un instrument d’improvisation créatrice. Cependant, cette pra-
tique peut être très utile comme méthode d’exploration durant la phase
de création d’un spectacle, ou pendant les répétitions. L’introduction
du live coding dans l’architecture et le modèle temporel de Quadrant
pose de nombreux défis que nous mentionnons dans la conclusion, et
au sujet desquels nous donnons quelques pistes de réflexion.



Introduction

Temporality is a critical aspect of almost any live show and of a large number
of art installations. These artworks make creative use of time to shape their
dramaturgy, pace their action, create contrasts and climaxes. By and large,
the essence of performance is dealing with time: some events must happen
at a specific time, in some order, at some speed, or must maintain complex
temporal relationships with other events. Perception of time is also of utmost
importance, allowing to build anticipation, surprise, tension and resolution.

Performers interpret abstract temporal processes described in the form
of a score or scenario to produce a real-time action, or directly build the
temporal progression of the show through improvisation. In order to do so,
they must continuously form an agreement on some common notion of time:
they must synchronize. This agreement is subject to constant adjustment,
and must preserve interpretative freedom. For instance, some parts of the
action may diverge and flow independently before rejoining at some point,
whose absolute date is undecidable a priori. Far from being reducible to
a predetermined timeline, temporal scenarios of live shows are composed
of multiple concurrent and inter-related dynamic timeflows, to which the
performance gives a concrete, real-time realization.

Of course, technical devices (and their operators) are also caught in the
same timeflows, and must synchronize and adapt in real-time to the progres-
sion of the action. This is all the more true since live artworks increasingly
involve technological artifacts and processes, as artists take advantage of
them for creative purposes. Generative audio, shaders, video mapping, LED
arrays, various sensors and robotic devices, are a few of the elements that
can now participate in a rich network of temporal interactions with the per-
formers and the audience.

12
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A Few Examples in Contemporary Music

Among performing arts, music has developed particularly fine-grained tem-
poral constructs, using both continuous and discrete symbolic representa-
tions of time. As such, it presents specific and interesting challenges with
regard to the composition and interpretation of human-machine temporal
interactions at multiple scales, and across multiple independent time-flows.
This is especially emphasized in mixed music, a contemporary music genre
that specifically revolves around the interaction between human musicians
and computer-generated music. To give a few examples, we refer the reader
to the interactive installation Biotope by Jean-Luc Hervé, the mixed music
works of Sasha Blondeau such as Urphänomen, the robotic instruments used
by Pedro García Velásquez in La Selva Virgen, or to Sivan Eldar’s opera Like
Flesh.

Dynamic temporal scenarios involving humans and machines can also
manifest as part of a Gesamtkunstwerk2 project. This is for instance the
case of the opera Donnerstag aus Licht by Karlheinz Stockhausen. Figure 5
shows a photography of a rehearsal of this opera by the ensemble Le Bal-
con, highlighting the various positions held by the artists and running crew.
This work requires juggling many different medias and actors, including two
orchestras, singers, a choir, dancers, a video projection setup and a sound
reinforcement system, an electronic music part, light works, stage scenery,
subtitles, etc. Interactions and temporal dependencies between these ele-
ments are themselves carried over a number of channels, such as visual and
audio signals, intercoms, and computer protocols such as MIDI (MIDI Man-
ufacturers Association, 1982) or OSC (Wright, 2002). Arrows indicate these
channels and the direction of temporal dependencies: for example, the con-
ductor gives the beat to the orchestras and singers, while cross-checking his
timing relative to some of the video sequences. The music in turn is a syn-
chronization source for the show caller, who distributes relevant cues to the
lights, sound, and video operators. There are of course implicit feedback
loops in this scheme, for example between the conductor and the video, al-
though the video sequences loosely prescribe a tempo, whereas the onset of
the sequences are dictated by the music (either through the show caller, or by
the use of an explicit video score, played by a pianist on a MIDI keyboard).

2A term meaning “total artwork”. It characterizes the aesthetic ideals of deliberately
combining many art forms such as music, theater, dance, architecture, etc., in one work
of art.
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Figure 5: Temporal dependencies and communication channels in Don-
nerstag aus Licht, K. Stockhausen. Produced by the ensemble Le Balcon,
November 2018. Photography by Meng Phu.

These few examples illustrate the use of temporal human-machine inter-
actions in artworks. However, the degree to which technological artifacts
and processes can be orchestrated to play along human performers within
dynamic temporal scenarios largely determines their potential as a creative
tool. This presents complex challenges pertaining to authoring and compo-
sition, execution, control, and live feedback of these devices.

Towards a Temporal Programming Environment

In this context, technical designers or tech-savvy artists need tools to plan
and control the temporal scenario of their show or installation. Such tools
face somewhat opposed requirements: they must offer tight control over
the scenario’s timing, while remaining flexible and open enough to allow
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creative outcomes. They must provide a useful view of the show at multiple
levels, e.g. from the broad strokes of the plot down to the details of a fader’s
automation. They must be ergonomic and easily controllable in live, while
allowing the design and automation of complex processes. Tradeoffs are to
be made, and can be made in a variety of ways. Furthermore, there is no
one true solution that will work for all artists and every show. The design
space is thus quite large and calls for exploration.

In this work, we present a temporal programming environment called
Quadrant, that aims at bridging the gap between a programming language
approach and a more user-interface focused point of view. It does so by
combining a structure editor with a non-textual domain-specific language
run by a virtual machine. The “source code” is stored and edited as a tree
of tokens, which can be either symbolic or figurative. This allows users to
write temporal scenarios in a language that looks mostly textual, but can
include specialized graphical user interface elements. Furthermore, the tight
integration of Quadrant’s components, and the structured representation of
temporal scenarios they share, enables important user experience improve-
ments, such as auto-formatting, inline error signaling, code completion, and
live monitoring of the performance.

The remaining of this work proceeds as follows. We first review existing
tools and try to delineate a few common patterns, both in term of tempo-
ral model and programming interfaces, in chapter 1. We then discuss our
preliminary work on two temporal scenarios authoring paradigms and their
limitations, which lead to Quadrant’s inception, in chapter 2. We introduce
the Quadrant environment and describe its user-facing interface in chap-
ter 3. Next we present the temporal model underlying Quadrant’s language
and runtime in chapter 4. In chapter 5 we describe the language used to
program temporal scenarios. The implementation of the runtime, including
visual feedback, is detailed in chapter 6. We finally discuss the small infras-
tructure surrounding Quadrant and allowing it to interface with the outside
world in chapter 7.



Chapter 1

Current Approaches and Tools

Software used to specify and control the temporal scenario of a show should
obviously present their users with some actionable notion of time. The wide
range of complex actions they must be able to express implies that they
also need to provide some programming capabilities. Additionally, these
tools must cater to an audience with varying levels of programming literacy,
including computer music designers and digital artists, as well as sound or
lighting engineers. Finally, production constraints (e.g. participating to the
creative process in sync with the artists during rehearsals and adapting to
frequently changing requirements) impose very fast iteration times and a
high level of programming flexibility.

In this chapter we first review a few tools used in the domain of live show
control, and attempt to delineate common temporal metaphors (section 1.1).
We then propose to analyze programming interfaces along a symbolic/fig-
urative spectrum instead of the often used textual/visual distinction, and
we discuss several of those interfaces, their advantages, and their drawbacks
(section 1.2).

1.1 Time Metaphors

A number of software tools are used or have been proposed in order to
enable the authoring and execution of temporal scenarios for various types
of media. Several approaches can be identified with respect to the metaphors
they present to users. However, most real-world tools use several of these
metaphors or blur the lines between them. For this reason, we first give a

16
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tentative and non-exhaustive classification below, and then give examples of
tools, and how they fit in this classification.

• Timelines organize events with absolute dates along a common time
axis. Timelines are often displayed as a fixed tape with a moving play
head, and events are laid out linearly with respect to their associated
dates. However, this is only one way of presenting them to users, and
in our tentative classification, a chronologically sorted list of events
with absolute dates equally falls under this category.

• Cuelists are ordered lists of cues, i.e. events pertaining to the techni-
cal aspects of the show and synchronized to the live action on stage.
A notable way cuelist differ from timelines is that cues don’t have a
predefined associated time: cues can be triggered manually or in re-
sponse to some external input (e.g. an MIDI message), individually or
in chained sequences. Cuelists can also often be nested to form hierar-
chies of sequences.

• Some approaches hybridize cuelists and timelines by inserting delays
between cues of a cuelist. This allows building timed sequences of
cues that resemble timelines. However, dates are relative rather than
absolute, and cues can always be triggered directly, independently of
the progression of a play head.

• Spatial metaphors can be used to represent time and temporal rela-
tionships. They allow positioning cues in some abstract space, which
maps to real time through the use of trajectories and spatial relation-
ships.

• Timed graphs can be used to represent the passage of time or mes-
sages as edges in a graph of cues. As such they can be used as highly
branching timelines. They can also easily express some temporal logic
within the scenario, e.g. block the passage of time until some condition
is met.

• Programmatic approaches tackle the problem by defining domain spe-
cific programming languages with temporal semantics. They mostly
treat time as an expandable symbolic ressource, that can be “con-
sumed” at some points of the program. This ressource can be viewed as
discrete in the case of reactive approaches where events are consumed
to produce a reaction, or as continuous in the case of timed approaches
that allow explicitly waiting for some amount of symbolic time. They
often dissociate the symbolic time of the scenario from the real time of
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the performance, and offer some mechanism to map the former to the
latter, as discussed in chapter 4.

1.1.1 Examples

We give some examples of tools used in production below, and attempt to
map them to time metaphors. Screenshots of some of these tools, illustrating
the variety of temporal metaphors, are also shown in Figure 1.1.

Digital Audio Workstations

Although not meant for that task, digital audio workstations such as Reaper
(Cockos, 2006) or Cubase (Steinberg, n.d.) can sometimes be used as a prim-
itive way of organizing audio clips along a single timeline. With the use of
markers, it is also possible to use them to trigger individual cues in a random
access fashion.

Live (Ableton, n.d.) offers some more flexibility by providing, a session
view in addition to the timeline. In this view, each track has a number
of slots to which clips can be assigned. Clips can then be triggered from
the interface or by an external controller in any order, irrespective of the
timeline’s play head. Clips in consecutive slots of the same track form a
group (meaning a track can have many groups, separated by empty slots).
A clip’s follow action determines what happens to other clips in the same
group when the clip finishes playing. Follow actions can start playing the
same clip again, start the next or previous clips, play a random clip in the
group, etc. Each clip actually has two follow actions, one of which is chosen
at random every time the clip finished playing. A slider allows selecting the
probability of choosing one clip over the other.

Show Controllers

Show Controllers are tools used by sound and lighting engineers to create and
run cuelists. They allow launching sound and video samples, control mixing
and lighting desks, operate motors for mechatronic stage props, and so on.
They are often structured arounds lists of named cues, which also feature
visual representations such as progress bars, icons, waveforms, etc. List can
have different actions when triggered, like starting their first child, starting
all children, or starting a random child, etc. The sequencing of actions inside
a cuelist can be determined by chaining them with follow actions and delays.
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Figure 1.1: Time Metaphors. From top to bottom and left to right: Reaper, Qlab, Iannix, Ossia Score, and ChucK.
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Most show controllers also feature timelines, but allow multiple timelines
to be triggered independently and run in parallel, and give more dynamic
control over the placement of cues along timelines. Examples of such software
include QLab (Figure 53, n.d.), Medialon (Medialon Ltd, 2019), or Smode
(Smode Tech, n.d.).

Timed Graphs

Ossia Score (Celerier et al., 2015) organizes cues on a 2D canvas where time
can flow from left to right along multiple timelines. However it also features
logic and reactive elements, and its underlying temporal model is inspired
by Petri nets formalism, which makes it closer to our timed graphs category.

Patching environments built around reactive dataflow graphs such as
Max (Cycling 74, 1997) or PureData (Puckette, 1996) are sometimes used
to encode complex temporal scenarios. Contrary to Ossia, they don’t explic-
itly represent time as part of the canvas display, but instead temporality is
encapsulated in delays and “sequencer” nodes (e.g. the qlist object).

Spatial Sequencers

Iannix (Coduys & Ferry, 2004) and Geosonnix (Graham, 2015) are spatial
sequencers that use an explicit 3D space metaphor where playhead objects
move along trajectories and trigger actions by colliding with other objects.
These can be viewed as extensions of the concept of timelines in more than
one dimension and with variable playback speed, allowing to somewhat de-
tach the real-time of the performance from the symbolic time of the scenario.

Graphics scores in PureData (Puckette, 1996) are an example of spatial
metaphor, where data structures are represented and manipulated as 2D
shapes in a canvas.

Programming Languages

Antescofo (Cont, 2008) is a score following system that couples a listen-
ing machine with a synchronous programming language (J. Echeveste et al.,
2013). It is based around an augmented score that interleaves expected
musical events such as notes, trills or chords, with temporal reactions that
execute concurrently in the time of the performance, and can span across
multiple logical instants. This model has proven useful for composing and
performing mixed music works, since it allows describing musical processes
that evolve over time and interact with the human player, rather than mere
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instantaneous reactions. Antescofo also allows composing independent ab-
stract times through the use of time scopes and tempo curves. Antescofo is
embedded in a runtime context such as Max or PureData, that handles the
multimedia synthesis aspect of the performance.

ChucK (Wang et al., 2015) is an audio synthesis environment where the
configuration and parameters of a node-graph synthesizer are driven by a
domain specific synchronous language.

Gibber (Roberts et al., 2014) relies on a general purpose scripting lan-
guage (Javascript) and notation conventions to build live-coded multimedia
performances.

1.1.2 Abstract Time and Poly-Temporality

Despite the variety of approaches, most tools lack an abstract notion of
time, as they directly map cues to clock-time dates or to external triggers
(a notable exception being Antescofo). Some of them provide ways to tweak
their playback speed and program discrete or continuous tempo changes.
However, this is still a global mapping from one single abstract time to
clock-time.

Musical time is often deployed throughout a work at different scales (e.g.
movements, phrases, cells, notes. . . ). Furthermore, not every scale is tied to
the same global tempo, e.g. ornaments such as grace notes and appogiatura
are not affected in the same way by a change of tempo as a main melody
line. Hence it would be more appropriate to allow the use of multiple ab-
stract timeframes. This aspect has been tackled early by FORMULA (An-
derson & Kuivila, 1990), a computer music performance system featuring
a Forth-based synchronous programming language. FORMULA’s programs
interleave actions and waiting primitives. The system allows applying inde-
pendent time deformations on groups of concurrent tasks. Time deforma-
tions are specified as sequences of coroutines that maintain a time position.
FORMULA also features automatic action buffering, allowing to perform
computations ahead of time, and thus absorb erratic computation delays
and maintain strict timing guarantees. Jaffe (1985) also proposed a recur-
sive scheduler for hierarchical timing control, using explicit time maps.

Ossia allows breaking the timeline into multiple branches and controlling
each branch’s playback speed with tempo curves. Antescofo has the notion
of temporal scopes that associates blocks of actions to hierarchical timelines,
similar to FORMULA (Giavitto et al., 2017). Time transformations are
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explicitly specified as tempo curves or implicitly controlled by the listening
machine using various synchronization strategies.

1.2 Programming Interfaces

Somewhat distinct from the temporal models exposed above, we can observe
a spectrum of programming concepts representations and interfaces, ranging
from symbolic to figurative approaches, in the sense specified below:

• In symbolic approaches, semantics are encoded in some kind of struc-
ture built on discrete static symbols. Entities in the program are con-
structed by combining symbols. They are also typically referenced
using symbols, which tends to dissociate locality of representation and
locality of effects, e.g. proximity of code segments can be irrelevant to
their temporal relationships or data dependencies. The representation
of symbols themselves don’t convey much information, what matters is
their association to the symbols they can combine with and the entities
they refer to.

• In figurative approaches, semantics are manifested and manipulated
through visual (and often conceptually continuous) entities such as
curves, progress bars, playheads, etc. Representations of entities that
maintain temporal or data dependencies are also generally related by
explicit visual elements or spatial layout.

We prefer this spectrum to the more obvious textual/visual dichotomy,
which we don’t find very operative. Beyond the ambiguity of the term visual
programming1 it doesn’t seem to yield much insight about specific properties

1As trivial as it may sound, most textual systems are still represented visually, with
glyphs displayed on a screen. Conversely, a lot of “visual” systems still convey a lot of
information textually. Burnett (1999) proposes a definition of visual programming that
seem to avoid these naive objections: “Visual programming is programming in which more
than one dimension is used to convey semantics.”.
However, this doesn’t seem to be a more actionable definition to us. For instance,

dimensionality is not really used to convey semantics in a node graph, nor in a spreadsheet:
these representations are just laid out in two dimension by necessity of being displayed on
a flat screen, as much as text representations.
Maybe dimensionality here is to be understood in a more conceptual sense, but con-

ceptually both text programs and node graphs really represent graphs. They don’t really
have a dimension before being projected onto a flat screen. In that context, the unidimen-
sionality of text only pertains to its underlying encoding, as a stream of bytes. But that
seems to conflate the medium with the message. And after all, the underlying encoding
of a node graph is also a unidimensional sequence of bytes!
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of the languages in each category. Indeed, among the “visual programming”
environments, we can observe a diversity of paradigms, some of which seem
really closer to the symbolic nature of textual languages than to other, more
figurative approaches. By contrast, symbolic and figurative means of con-
veying programming concepts can coexist in the same environment, but each
approach comes with its own set of practical tradeoffs.

We mention a few paradigms traditionally thought of as “visual” in the
following non exhaustive list and try to disentangle the symbolic and figu-
rative elements in each of them. Figure 1.2 also shows relevant screenshots
for each category.

• Patching Environments. In patching environments, or node graphs,
the basic operations are exposed as a set of black boxes nodes with
inputs and outputs. Programs are specified by building a graph of
nodes connected by patch cords on a 2D canvas. The patch cords (i.e.
the graph edges) can represent either data flow or control flow between
nodes.

Some examples in this category are: Max (Cycling 74, 1997), Pure-
Data (Puckette, 1996) for audio/video synthesis, OpenMusic (Bresson
et al., 2011) for computer aided composition, JangaFX’s EmberGen
(JangaFX, 2019) for fluid simulations, Blender’s node graphs (Blender
Foundation, 1998) for 3D modeling and shading, or Unreal Engines’
Blueprints (Epic Games, 2014) for games scripting.

Patching environments are often considered “visual”, because users in-
teract with the underlying node graph through a graphical represen-
tation. However, the spatial layout of most patching systems (i.e. the
position of boxes) doesn’t carry much information2. What matters is
the relations between the discrete nodes, whose semantics are mostly
specified using symbolic identifiers. Patch cords, which are the seman-
tically meaningful visual elements, only carry information as much as
they relate two symbolic nodes. As such, the visual nature of patching
environments isn’t of much significance. What distinguishes them from
textual programming languages is that the control and/or data flows
are conveyed figuratively rather than symbolically.

2Max makes the peculiar choice of using box positions on the horizontal axis to disam-
biguate the order of execution when an output is patched to several boxes: boxes execute
right to left. Patches can still be spatially rearranged in a large number of ways without
that having any effect on their semantics
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24Figure 1.2: Non-textual Programming Interfaces. From left to right and top to bottom: PureData, Blender shader
editor, Scratch, .werkkzeug, Demotivation, Hazel.
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The analogy with physically patching electronics modules and the ex-
plicit visualization of data or control flow between nodes makes these
environments intuitive for technical but non-programmer users such as
multimedia artists. They also generally offer a lot of domain-specific
functionalities out of the box, and can be extended by downloading
packages adding new nodes to the environment. Some drawbacks of
patching environments are the visual clutter produced by complex
graphs, and the unnecessary manual work of laying them out in 2D
and connecting boxes together. The irrelevant degree of freedom in
the box positions also means the exact same program can look vastly
different just by changing its layout.

• Operator Stacks. Some demoscene3 production tools, such as Far-
brausch’s .werkkzeug (Farbrausch, 2011) or Ferris’ Demotivation (Fer-
ris, 2017), address the node graphs drawbacks by stacking operators
with matching outputs and inputs on top of each other to create
pipelines, and snapping them to a fixed grid. Control and/or data
flow from top to bottom, with occasional jumps to other stacks to
implement a form of subroutine. This operator “sheet” typically ex-
ecutes each frame to produce a graphic output, and dynamic values
are controlled by a timeline or an external tracker4. The flat sequen-
tial structure of operator stacks and the jump-based control flow of
these demo tools feels surprisingly close to writing assembly for a very
specialized instruction set. Although they are “visual” in their presen-
tation and by the nature of their output, they seem less figurative than
node graphs and closer to the symbolic model of textual programming
languages.

• Structure editors. Structure editors let users view and edit struc-
tured data, using specific knowledge of the underlying format. This
is to contrast with text editors, which operate on mostly unstructured

3The demoscene is an informal computer art community that rallies around the pro-
duction and watching of demos, i.e. computer programs that generate audiovisual presen-
tations, often trying to push the boundaries of what is feasible under technical constraints.
Examples of such constraints include making demos of limited executable size, such as 4K
and 64K intros (i.e. executables whose size is less than 4 or 64 kibibytes), or targeting old
school platform such as the Commodore 64 or Amiga computers.

4A tracker is a software that is used to compose and play music using commands orga-
nized on a temporal grid. Commands include playing pre-computed samples or waveforms,
setting the volume, modifying the playback speed, applying pre-determined effects, etc.
Trackers are often used to produce chiptune, a musical genre whose aesthetics revolves
around chip-generated sounds and low-resolution samples.
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streams of bytes, even when those streams are meant to encode some
structure, such as a program. Word processors or cell sheets are good
examples of widely used structure editors. Although structure edi-
tors mostly gained wide adoption outside computer science academia5,
there is a long history of research into structural code editing:

– Early syntax-directed editors, such as MENTOR (Donzeau-Gouge
et al., 1980) or the Cornell Program Synthesizer (Teitelbaum &
Reps, 1981) present users with menus allowing them to select valid
language constructs to insert at each stage of the editing.

– Editor generators explored by the Gandalf Project(Habermann
& Notkin, 1986) were meant to automatically generate syntax di-
rected editors from language grammars. A modern descendant
of this approach is JetBrain’s MPS (JetBrains, n.d.), which al-
lows building custom code editors with language-aware features
like syntax highlighting and auto-formatting, and special-purpose
graphical user interface widgets.

– Cell sheets are ubiquitous in office work and arguably the most
successful (in terms of adoption) end-user programming paradigm.
People from a wide variety of professions and educational back-
grounds, but who are not primarily programmers, use cell sheets
to carry on their day-to-day tasks, sometimes creating fairly com-
plex mini-applications in the process.

– In block-based languages like Scratch (Scratch Foundation, 2003),
users can drag and drop blocks featuring jigsaw-puzzle-like tabs
and blanks from a block palette, and snap them with other match-
ing blocks in a coding area to form a program. These environ-
ments have been successful as teaching playgrounds, although the
drag and drop interaction can quickly get tedious for programs of
non-trivial size.

– Research rooted in type theory and functional programming has
lead to structured editing with “typed holes”, as demonstrated in
Hazel (Omar et al., 2017), or “tiled editing”, as proposed in Tylr
(Moon, 2022).

5In 2022, most computer science papers and theses, including this one, are still being
written in LateX.
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– Some structural editing research has lead to attempts at designing
general purpose structured formats such as Dion (Dion Systems,
n.d.) or Infra (Hall et al., 2017).

It is important to point out that some aspects of a tool could be consid-
ered figurative while other aspects of the same tool could be considered more
symbolic. For example, with regards to the notion of time, textual languages
and patching environments would fall on the symbolic side, whereas spatial
sequencers and show controllers would mostly fall on the figurative side, with
Ossia somewhat straddling the line between the two categories.

Purely symbolic approaches lack dedicated input affordances6 to manip-
ulate continuous processes and time transformations. They also generally
fail to convey the abstract temporality of the scenario, and lack live feedback
paths to inform users about the concrete temporality of the performance. By
contrast, figurative approaches can provide dedicated input methods, allow
better visual intuition at a glance, and can embody live feedback, through
animated spatial mappings (e.g. the arrangement of elements on a canvas
or 3D space, trajectories, sliders, function plots, playback cursors, progress
bars, etc.).

On the other hand, figurative approaches are usually locked into a nar-
row expressivity range. The abstraction floor is set by their basic visual
building blocks. This is somewhat constrained to be relatively high to avoid
an explosion in visual clutter (e.g. in node graphs) or interaction effort (e.g.
in drag and drop block-based languages).

There is also a relatively low expression ceiling because these approaches
generally have limited procedural abstraction mechanisms, precisely due to
their figurative nature. For instance, different parts of the program can’t
independently call into the same node and get a result, because the inputs
and outputs of that node must be wired to the different call sites. In a
pull model (where nodes that need to perform some computation pull their
inputs from upstream nodes), that would mean the called node would pull

6The term affordance was coined by James J. Gibson in the context of ecological
psychology (Gibson, 1977), to denote “what [the environment] offers to the animal, what
it provides or furnishes”. It was later borrowed and applied to design by Don Norman in
The Design of Everyday Things (Norman, 1988). In this context, it is used to designate
physical or virtual objects that offer and advertise some possibility of action to a user
(one can say that it affords that action). To take a classic example, a door plate is an
affordance because it suggests and makes possible the action of pushing the door (i.e. it
affords pushing). By contrast, a door handle affords both pushing and pulling, which can
be more confusing.
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data from all its upstream nodes. In a push model (where nodes push their
output to downstream nodes), the result would be pushed to all downstream
nodes.

Indeed, for some computation to happen in a given data (or control)
path, it has to be there in the path, figured by a box. This is to be contrasted
with the level of abstraction provided by a procedure, whose code is defined
outside any particular code path, and that can be called independently (in
term of data or control flow), from multiple places. Instead reusability is
usually carried out through creating multiple stateful instances of a template
object or patch.

The coarse granularity of primitives also limits the ability to build so-
lutions that tightly fit a problem by composition of building blocks alone.
Furthermore, extending the environment is often difficult or impossible short
of writing a new building block in a completely different language ecosystem.

1.3 Conclusion

In this chapter we reviewed several multimedia production tools and pro-
gramming environments, both in term of their temporal representations, and
their programming interfaces. We attempted to define a rough classification
of temporal metaphors, and showed how they are used and sometimes com-
bined in existing tools. We questioned the opposition between textual and
visual programming, and proposed to discuss programming environments in
terms of symbolic versus figurative interfaces, which in our opinion better
accounts for the diversity of approaches.

The survey of existing tools for the authoring and performance of live
show scenarios reveals some sparsity in the solution space. First, there aren’t
many tools that propose a robust notion of abstract time and poly-temporal
scenarios. Second, there seem to be a lacking bridge between traditional
programming languages, with their lack of input affordances and feedback
paths on one hand, and spatial or node graph approaches, with their vi-
sual clutter and abstraction issues on the other hand. Cuelist software, as a
third alternative, have the potential to provide a flexible non-linear tempo-
ral model, but have very limited programmability. These observations hint
at the potential of a hybrid solution coupling the benefits of the symbolic
approach of a programming language with specialized figurative interfaces
supported by a structural editor.
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Before venturing into that path, this review prompted us to explore the
solution space with two small prototypes, probing both ends of the symbol-
ic/figurative spectrum, which we discuss in the next chapter. This prelimi-
nary work in turn helped us refined the distinctions between the aforemen-
tioned approaches, and seeded some of the ideas which later developed into
the Quadrant environment.



Chapter 2

Preliminary Work

In this chapter we discuss some preliminary work we did on two proof of
concepts, each sitting on one end of the symbolic/figurative spectrum:

• An interpreted textual language with first-class concurrency and tem-
poral semantics, presented in section 2.1.

• A visual show-controller with hierarchical cuelists and tempo curves,
which we discuss in section 2.2.

These exploratory steps helped us shape the symbolic/figurative distinc-
tion, as well as clarify its tradeoffs. Ultimately, it determined us to explore
ways of combining the strengths of these two categories in a new environ-
ment. It also helped define the design goals of such an environment and test
ideas for its temporal language and user interface.

2.1 QScript: A Textual Temporal Scripting Lan-
guage

Our first explorative step was to build a textual language, dubbed QScript,
seeking to express open temporal scenarios using synchronous, concurrent
streams of execution and hierarchical symbolic time frames. Although the
Antescofo language (J. Echeveste et al., 2013) provides the constructs to
express such scenarios, we felt the need to depart from it in a few important
ways:

30
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• We wanted the language and its interpreter to be detached from the
concerns of score following, which is at the root of Antescofo’s design
choices.

• Much of the peculiarities of Antescofo’s syntax comes from the con-
straint of being compatible with Max messages syntax. We wanted to
lift that constraint and explore simpler, more consistent syntaxes.

• We wanted to favor static type checking over the dynamism of An-
tescofo.

2.1.1 Overview

QScript is built around the notion of cue group, which associates a lexical
scope and a symbolic time frame. Groups execute concurrently, and map
their symbolic time frame onto realtime using a simple scaling factor. Nested
groups inherit the combined scaling of their ancestors.

An example of of the language’s syntax is given in Listing 2.1.

def Note(msg: []char, note: i32, vol: f32)
{

PrintLine("Send OSC: ", outlet, msg, note + transpose, vol);
OscSend(outlet, msg, note + transpose, vol);

}

group
{

$> 0: "bar 0": group
{

$init let msg : []char = "/lead/note";
$> 0.25*beat: Note(msg, 59, 0.5);
$> 0.5*beat: Note(msg, 64, 0.5);
$> 0.75*beat: Note(msg, 66, 0.5);

}
//...

}

Listing 2.1: QScript statements example

The language statements (also called cues) are composed of three parts
tiers:

• An optional time expression consisting of a temporal connector and a
delay expression.
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• An optional label naming the cue.

• An instruction. Instructions can be simple instructions like affectations
or procedure calls, control flow instructions such as conditionals and
loops, or temporal groups that launch a new concurrent stream of
statements.

Informally, the delay in a time expression specifies a duration to wait
before the execution of the statement, and the temporal connector defines
an anchor point from which to start waiting. The anchor point is relative to
the execution of other cues, so in order to define the semantics of cues, we
first need to describe the a number of properties related to the temporality
of statements execution. We then define specific time points of interest in
the execution of a cue, and finally explain how time operators match the
anchor point of their cues with the execution of other cues.

2.1.2 Temporality of Statements

The execution of statements is normally “inserted” in the timeflow of their
parent group and participate to its execution time. However, if a statement
S is itself a group, the path of execution is forked and S is executed con-
currently with the other cues of the parent task. We say that the path that
executes S is the forked path, and that the one that continues executing
the following cues is the main path. We say that an executable “element”
(which can be a statement, a procedure, or an expression) is immediate if
no potential main path of execution of that element contains a time expres-
sion. In other words, no potential path of execution may contain a time
expression, unless after the execution of a group statement. We say that it
is temporal otherwise (although it may not always wait in the main path).
The important distinction here is that all instructions of the main path of
an immediate element are guaranteed to execute at the same logical instant.

Each cue has an anchor point, which is the time at which its delay ex-
pression is evaluated and the starting point of the wait. Each time operator
aligns the anchor point of its cue with some point of the previous cue, or of
the parent group. Table 2.1 shows the effect of each time operator on the
anchor point.
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$>
absolute
operator The delay starts from the beginning of the group.

|>
parallel
operator

The delay starts from the same point as the delay
of the previous cue.

:>
follow

operator
The delay starts from the end of the execution
of the previous cue’s statement.

=>
shallow
join

operator

The delay starts from the retirement of the group
launched by the previous cue’s statement.

+>
deep
join

operator

The delay starts from the completion of the
group launched by the previous cue’s statement.

$init>
init

operator
The cue is executed at the time the group is
launched, before other cues. Delay is ignored.

::
standby
operator

The delay starts from an event triggered from
the editor. It is not defined with respect to the
previous cue’s execution.

Table 2.1: Time operators.

2.1.3 Interfacing with Foreign Code and External Software

QScript also has a “foreign import” system that allows loading dynamic li-
braries and importing symbols, such that QScript programs could call foreign
functions as if they were QScript functions. This allows us to use OSC and
networking libraries, and to quickly expose their functionalities to QScript.
An example of using the foreign import directives is given in Listing 2.2.

We built a demo where we used a QScript program to drive a polyphonic
Max synthesizer via OSC messages and play the intro of a chiptune song,
using concurrent groups for each voice1.

2.1.4 Limitations

While this early experiment informed some later design decisions, we ulti-
mately chose to not push it further. It had become clear that it was bound

1https://youtu.be/j81_Z-i9Yb8

https://youtu.be/j81_Z-i9Yb8
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// loading a library and importing functions from it:
foreign "bin/corelib.dylib"
{

def OscOutletOpen(addr: []char, port: u16) -> u64
def OscOutletClose(outlet: u64) -> int
def OscSend(outlet: u64, pattern: []char, args: ..any) -> int

}

// foreign functions can be called as normal ones:
OscSend(out, "/voices/lead", pitch, gain);

Listing 2.2: QScript foreign system example.

to reproduce the same important issues as other textual languages in that
space, such as Antescofo (J. Echeveste et al., 2013), Chuck (Wang et al.,
2015), or Super Collider (McCartney, 1996).

As mentioned in Introduction, these languages lack both input affor-
dances and feedback paths tailored to their domain.

• These languages typically deal with conceptually continuous curves
(e.g. in the form of tempo curves, trajectories in some parameter space,
signals...). Text is obviously an awful affordance for specifying these
curves. Operators have to resort to external tools to draw these curves
and import textual parameters back into the language, either manually
or with often brittle text-replacement. Some of them opt to not use
the language curve specification constructs and instead send serialized
curve data from an external tool at runtime.

• These languages can’t offer any kind of feedback or live debugging
capabilities by themselves, again forcing users into devising ad-hoc
visualization solutions, often involving a lot of superfluous code instru-
mentation, message passing, and user interface work.

Domain specific programming environments have the opportunity to tai-
lor their user interface to their domain, which can not only improve the
productivity of code literate users, but also has the potential to empower
non-programmers to harness those tools in their creative endeavours. In the
specific use case of a show-control environment, operators should be able to
specify and manipulate tempo or other commonly used parameters through
specialized graphical user interfaces, like curve editors, sliders, color pickers,
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etc. The environment should also give them useful live feedback about the
running scenario, or the time remaining before the execution of a cue, or
which code paths are taken by the program. In this context it seemed like a
net loss to develop yet another textual programming language and miss the
opportunity to tackle these important problems.

2.2 QEd: A Cuelist Editor

In a second exploratory step, we developed a functional mockup of a visual
show-controller. This tools was built around hierarchical cuelists organized
by nested temporality.

2.2.1 Overview

The graphical interface of the cuelist editor can be seen in Figure 2.1. Each
group (cuelists surrounded by red rectangles) is associated with a timeframe.
Each cue represents an autonomous coroutine that executes in the time frame
of its parent group. Each type of cue was to be defined as a plug-in in the
form of a dynamically linked library calling into the show controller’s API.
We envisioned several types of cues:

• Audio/video cues for playing back media files at varying speeds.

• Light cues that could send DMX commands to dimmers.

• MIDI or OSC cues allowing message-based communication with other
audiovisual softwares.

• Script cues opening the possibilities of end-user programming.

Cues are positioned on their time scale using a delay (indicated by the
number displayed in front of the cue name), and operators that specify an
anchor point from which the delay is calculated:

• -> started the countdown from the launching of the preceding cue.

• => started the countdown at the end of the preceding cue.

• | indicated that cue was launched manually and didn’t depend on
preceding cues.

The bottom panel was destined to display the graphical interface of the
selected cue (e.g. for an audio cue, the path of the audio file, starting and
end timecodes, looping options, etc.).
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Figure 2.1: Graphical interface of our prototype show controller.

We implemented basic OSC cues and setup a simple scenario similar
to the one used in section 2.1, where a cuelist drove a polyphonic Max
synthesizer with several parallel groups2.

2.2.2 Limitations

In this model of cuelist-based show-controller, the focus is put on the tem-
poral layout of cues, and most actual computations and side-effects are pro-
duced by predefined closed-box cues. This is actually a great strength in
a vast majority of cases, where being able to quickly iterate on an eas-
ily manageable cuelist hierarchy is more important than a high degree of
programmability. However, it severely limits the compositional capabilities
of the environment, i.e. the ability to build larger processes by composing
smaller ones. Hence these tools can come short in situations where the set
of cues alone doesn’t quite cover the needs of the show.

The clear delineation between temporal organization and actual cues also
means programmatic tools offered to the user are mostly divorced from the
temporal features exposed by the environment. Save for some basic jumping

2https://youtu.be/R1JGkMWOwBY

https://youtu.be/R1JGkMWOwBY
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features (e.g. cues triggering other cues or cuelist), scenarios are intended to
be primarily defined in a visual and declarative way (by organizing cues in
cuelists or placing them on timelines) rather than a programmatic imperative
one. This can be a problem for highly interactive and/or non-linear scenarios.

In our show controller, cues interfaces and behaviors where to be written
as dynamic libraries, readily opening an avenue to extend the environment
with new primitives (i.e. new cues). However, this requires the extender-user
to deal with a completely separate toolchain and abstraction level. This ab-
straction frontier, which is faced by other visual programming environments
such as Max or PureData, precludes most users from extending the environ-
ment. Such environments typically work around this problem by providing
one or more script-embedding blocks (e.g. a scripting “node” in node-graphs
environments). These scripting blocks typically embed a completely sepa-
rate interpreter or VM for a textual scripting language like Javascript, Lua,
or Python. They also typically feature an in-line text editor and support
hot-reloading. We intended to support end-user programming in the same
way, through the use of script cues giving access to a dedicated temporal
scripting language inspired by QScript (section 2.1).

Although this approach is better than requiring to use a separate toolchain,
it still breaks the abstraction continuum by imposing a strong frontier be-
tween the concepts exposed by the scripting language and those being ma-
nipulated in the graphical environment. Furthermore, each piece of script is
encapsulated inside its own opaque block and can only communicate with
other scripts through the channels offered by the host environment, which
are typically at a higher level of abstraction.

Another problem arises from the temporality of those script cues. In
dataflow oriented or reactive environment, the script is run in response to
a (possibly recurring) event. In a show-controller, we expect the ability to
specify long-running tasks which can be paused and resumed according to a
predefined timeline or to external events. Mixing temporality as specified by
a long-running script with temporality as displayed and manipulated inside
a cuelist manager, in a non confusing way, is an interesting user interface
problem. When do the objects defined in a long running script "exist" and
can be accessed from the outside? Assuming scripts can share state or com-
municate in some way, how do we ensure lifetimes stay correct after moving
cues and reorganizing the cuelist? How is the internal progression of a script
reported in the cuelist user interface?
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While these concerns can certainly be addressed, imposing such a strong
conceptual barrier between scripts and the rest of the environment inevitably
leads to dissociated ways of handling them on each side of the barrier. This
creates a steep effort gradient around the point where users have to switch to
scripting: climbing down the “abstraction ladder” becomes a costly decision
that forces users to change their mental model of the tool. In our experience
this results in users trying to force their way with inadequately high-level
features, and only using scripting as a last resort, or ignoring scripting al-
together. We would prefer to have a much smoother effort-reward curve,
allowing users to gradually transform and extend the constructs they ex-
pressed in one level to another, should the need arise. In particular, this
mean we shouldn’t require them to abruptly switch between completely dif-
ferent mental representations of the objects they are manipulating.

2.3 Conclusion

The textual language prototype we presented at the beginning of the chap-
ter proved its limitations as soon as we started integrating tempo curves to
express time transformation. It also had the obvious drawback of not pro-
viding any avenue for live feedback in itself. Building a specialized editor to
support these features implies reimplementing a large part of the compiler
inside the editor, which leads to question the relevance of keeping them sep-
arate. At that point, making a round-trip between a textual source code
and a structured representation of the program adds processing stages while
providing little benefits.

Coming from the other side of the symbolic/figurative spectrum, our
attempts at a small cuelist-based show controller highlighted the limited
end-user programmability of such an approach. Straying from the “black
box” model of cues and exposing finer granularity constructs would yield
higher composability and soften the steps between higher and lower levels of
abstraction. In particular it would open the way to extend the environment
“from within”, without having to resort to a separate toolchain and pro-
gramming paradigm to create new cues. However, this would likely require
introducing ways to reuse and combine user-defined constructs through sym-
bolical means, veering away from the purely figurative nature of the original
model. It would also imply a change in the interaction model, since creating
complex scenarios from finer constructs via menus or shortcuts would be-
come impractical.
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The insights gathered during the development of these two prototypes
seem to converge on a common, hybrid approach. Blurring the lines be-
tween a programming language and a dedicated editor, would allow intro-
ducing custom input user interfaces and live monitoring into a symbolic
model. Conversely, breaking up the basic pieces of a show controller into
finer-grained building blocks and providing better support for composition
and abstraction would bring it closer to the flexibility of a programming lan-
guage.

The remaining of this work presents our attempt at defining and con-
cretizing such an hybrid approach through the development of Quadrant, a
programming environment tightly integrating a structurally edited temporal
language along with its compiler pipeline and runtime.



Chapter 3

Introducing Quadrant

In this chapter we introduce Quadrant, an integrated programming and run-
time environment for temporal scenarios1. Quadrant is written in C, on top
of a platform layer and user interface toolkit, called MilePost, also written
mostly in C. The source code is available in the following git repository:
https://forge-2.ircam.fr/fouilleul/thesis_quadrant. It has been developed
on an macOS 10.15 platform, and although no effort has been expended to
port it to other platforms yet, we tried to maintain a clear separation be-
tween platform-specific and platform-agnostic code.

In the introduction, we emphasized the importance of abstract time and
poly-temporality in live shows scenarios. The preliminary work presented in
chapter 2 informed our latter work on a temporal scheduling model support-
ing these notions. In addition to a review of existing tools and their temporal
metaphors, it also helped us shape our understanding of the distinction be-
tween symbolic and figurative approaches as it pertains to the authoring and
representation of temporal scenarios, as discussed in chapter 1. Assessing the
tradeoffs and limitations of both representations lead us to define goals for
a new approach that resulted in the Quadrant prototype:

• The new environment should give the fine granularity of control, com-
position capabilities and abstraction mechanisms of a programming
language.

1A quick overview of Quadrant is also available in video form here: https://www.
youtube.com/watch?v=6nC2M3NwDe8. This presentation was recorded for the Sound
and Music Computing Conference 2022, and includes a small demo of a scenario used to
generate note sequences and pilot a polyphonic synthesizer
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• It should allow expressing multiple abstract timeframes and time trans-
formations.

• Temporal constructs should be specified in the same language context
as other programming constructs, allowing to seamlessly flow between
timing and computation.

• It should include specialized input systems when necessary, e.g. to
describe continuous curves.

• It should provide visual and live feedback information directly in the
context where the scenario is specified.

• A secondary objective was to mitigate the cognitive cost of a language
based approach, especially for non-programmers, by providing an in-
tegrated environment with helper functionalities such as auto-layout,
online error messages and completion suggestions.

We first give an overview of the Quadrant environment in section 3.1.
We then present the Quadrant structure editor in section 3.2. We discuss
static feedback, and execution monitoring in section 3.3.

For the sake of clarity, we focus here on the user-facing part of Quadrant’s
design, and the improvements it could bring to temporal scenario authoring
and monitoring. We only briefly mention its underlying temporal model, its
custom language, its compiler pipeline and its runtime. These components
are presented in more detail in subsequent chapters.

3.1 Overview

Given the desired level of programmability, we thought a syntactic program
representation was best suited. However, in order to fullfill the requirements
of dedicated input and feedback paths, the user-facing scenario editor, the
underlying representation and the runtime engine have to closely cooper-
ate around a common understanding of the programming model. Thus it is
preferable to abandon the traditional text-based representation of program-
ming languages, and work at a more structured level.

Our approach revolves around a structured binary format used to encode
temporal scenarios in a domain specific programming language. The envi-
ronment combines a structure editor used to author and monitor scenarios,
a compiler pipeline targeting a custom bytecode, and a runtime consisting
of a virtual machine and a temporal scheduler. This general architecture is
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Figure 3.1: Quadrant Architecture

shown in Figure 3.1. The editor operates on a semi-structured representa-
tion of the program, which gets fed to the compiler. The compiler transforms
it into a bytecode program image and passes it to the runtime where it is
executed. There are two feedback paths in this architecture. One operates
at edit time and provides syntactic and semantic feedback in order to sup-
port language-aware editor features. The other operates at run time, and
provides execution feedback in order to support live monitoring within the
editor.

3.1.1 Interface and Example Program

Figure 3.2 shows an example scenario loaded in the Quadrant editor. A
Quadrant scenario can be composed of several modules. The top view of
the editor shows the currently edited module. The middle view is a console
into which a Quadrant program can log messages. The bottom bar features
two pop-up menus that allows selecting the currently edited module, as well
as the main module of the program (which recursively pulls in all other
modules).
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Figure 3.2: Example Program

The example program starts by importing the sync and fmt modules,
which provide procedures for respectively querying timing informations and
printing formatted data to the console. The program then defines a single
procedure named start, which is the entry point of the scenario. This
procedure immediately starts a concurrent child task with an associated
time transformation, controlled by a tempo curve editor. The task performs
a loop which prints a message containing the iteration number and the real
time, and sleeps for 1 unit of symbolic time between each iteration. The
outer procedure just waits for the task to finish, and then exits, terminating
the scenario.

The console displays the output of this scenario. As can be seen with
the timestamp of each iteration, the process accelerates, then decelerates,
following the specified tempo curve.
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We go into more detail about the temporal model and the use of tempo
curves in chapter 4, and about the language used in Quadrant in chapter 5.

3.2 Structure Editor

The goal of the Quadrant editor is to provide more ergonomic input and
figurative representations for the language, as well as useful feedback about
the execution of the program. However the editor should in some cases
preserve the feel of text editing. First, text is still an appropriate local model
for a lot of interactions (e.g. typing exact numeric values, simple arithmetic
expressions, and obviously, text strings). More fundamentally, the editor
should ease exploration of the user’s problem space and incremental progress
towards a solution. This sometimes implies relaxing structural requirements
and allowing the user to navigate through error states. This departs from
the insistence of most structure editors on making syntax or type errors
impossible, which in our opinion is the main contributor to their perceived
“stiffness” or lack of flexibility.

Quadrant’s editor is thus less structured than most structure editors,
and defers checking some of the structural constraint to later stages of the
compiler pipeline. The editor operates on a tree structure composed of cells.
Cells can be of a few different kinds:

• Numbers (integers of decimals).

• Textual identifiers.

• Operators such as +, -, etc.

• User interface widgets, e.g. curve editors.

• Lists of other cells:

– S-expressions, e.g. (+ a b).

– Attribute cells, e.g. @(foo).

– Array literals, e.g. [x y z].

3.2.1 User Interface Cells

The cell tree can contain visual user interface cells. Instead of having a
special shortcut or menu option for each widget, these cells can be created
by typing the # character, and providing a textual widget identifier. The
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editor recognizes the identifier and attaches the corresponding user interface
widget to the cell. This allows user interface cells to be added in the same
way as list or textual cells, without breaking the input model into several
methods depending on the kind of cells. This also makes provision for easily
adding future widgets by tying them to new names.

In the current state of the environment the only widget is a basic tempo
curve editor (Figure 3.3), which allows specifying the tempo of a block of
code with a piecewise function make of cubic Bézier curve pieces. This offers
both an easier input model and a better visualization of continuous curves
than a purely textual construct. The widget view is collapsed when the
cursor is not on the widget’s cell. This allows the specification of the curve
to stay close to its usage site, while not consuming screen real estate when
it is not in focus.

When the mouse is hovering the tempo curve widget, each piece’s end-
points are displayed as orange dots. Clicking one of them selects it (turning
it to red) and reveals neighboring intermediate control points and their cor-
responding tangents, in blue. Control points can be dragged around with
the mouse, and endpoints can be dissociated to create discontinuous curves.
Clicking on a curve splits it in two pieces with a common endpoint at the
position of the mouse pointer. Clicking an endpoint while holding the Alt
modifier removes it and joins the two curves on each side into one, preserving
their outer control points. While hovering the plotting area, a blue crosshair
is displayed and coordinates are reported at the bottom of the widget to help
precise positioning.

In the future, more widgets could be added, such as sliders for quickly
adjusting numbers, color pickers for sending RGB values to LED projectors,
piano rolls for generating MIDI notes sequences, etc.



CHAPTER 3. INTRODUCING QUADRANT 46

Figure 3.3: Quadrant Tempo Curve Editor

3.2.2 Navigation and Selection

The editor maintains a cursor which corresponds to a position inside the
tree. The cursor can be described by a triple (p, l, o), where p is the parent
cell under which the cursor lies, l is the children of p whose the cursor is
immediately left from (and l is null if the cursor is at the end of p’s children
list), and o is a text offset into the textual data of p, if any.

The cursor can be moved backwards or forwards in depth-first traversal
order using left and right arrow keys. It can also be moved to the position
that is visually upwards or downwards, using up and down arrow keys.

A unique visual position of the caret can correspond to multiple positions
of the cursor in the tree. To help distinguish these different cursor positions,
the editor displays the following visual hints: the parent cell is rendered
against a light gray background, and the cells left and right to the cursor are
indicated respectively by blue and green underlines.

Figure 3.4 illustrates cursor navigation. The cursor is moved one step left
between each image of the figure, adopting the following successive positions:

• The cursor starts between the s and the e characters of the set token,
i.e. at position (set, 0, 1). The set token is drawn on a lighter gray
background to indicate it is the cursor’s current parent cell.



CHAPTER 3. INTRODUCING QUADRANT 47

• Then the cursor is moved one step left, at the beginning of the set
token, which corresponds to position (set, 0, 0).

• Next the cursor is moved one step left again, which positions it directly
on the left of the set token, at position (set-form,set, 0). The
entire set s-expression is drawn on a lighter gray background, and the
cell directly right to the cursor (i.e. the set token) is underlined with
a green line. In this case there’s no child of the cursor’s parent on the
left of the cursor, so no blue underline is drawn.

• The cursor is then moved left by one step again, putting it directly
on the left of the set form, at position (def-form,set-form, 0). The
cell directly on the left of the cursor is underlined in blue, and the cell
directly on the right of the cursor is underlined in green.

• Finally, the cursor is move left by one step, descending into the pro-
cedure signature cell, directly on the right of the u64 token, which
corresponds to position (proc-signature, 0, 0). The cell on the left
of the cursor (i.e. the u64 token) is underline in blue. There is no cell
on the right of the cursor to be underlined in green.

A secondary cursor called the point is used to select parts of the tree.
The point normally follows the movement of the cursor, unless the shift
key is pressed, in which case it stays in place. To infer a selection from
the cursor and point, we first determine their closest common ancestor P.
The selected range is then the minimal forest of consecutive children of P,
which contains the point and the cursor (in other words, the first tree of the
selection contains the parent of the cursor (or mark), and the last subtree
contains the parent of the mark (or cursor)).

This allows growing and shrinking the selection to the next meaningful
syntactic boundary as the cursor moves towards or away from the point.

Figure 3.5 illustrates cursor selection2. The cursor follows the same path
as in the above navigation example, but the mark is left in place by holding
the shift key.

• After the first move, the cursor and mark still belong to the same
textual token. Hence this result in a text selection covering the s
character of the set token. This selection could be textually copied,
cut, or replaced by some other typed or pasted text.

2A video of this example is available here: https://youtu.be/rw3KNPb2Ix0

https://youtu.be/rw3KNPb2Ix0
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• Next, the cursor and mark are no longer in the same cell. The selection
becomes a range of sibling cells, comprising only the set token.

• Next, the selection moves one level up to contain the whole set form.

• Finally, the selection moves extends left to contain both the procedure
signature and the set form.

Implementation details. The qed_command structure, defined in
editor.cpp3, bundles cursor moves and actions (such as inserting or delet-
ing nodes) corresponding to a given keyboard shortcut. The QED_COMMANDS
buffer defines all the commands of the editor. When a shortcut is received,
the buffer is traversed, and if a match is found, the qed_run_command()
procedure is called, which triggers the moves and actions of that command.
Cursor moves are implemented by the qed_move_one() and
qed_move_vertical() procedures. Selection and navigation are both
implemented from moves, using a setMark flag in the qed_command struc-
ture, which specifies wether the mark must be set to the cursor after the
move.

3.2.3 Edition

Selections can be deleted, copied and pasted with standard shortcuts. In ad-
dition, when the cursor is not inside a string literal cell, the editor recognizes
some keystrokes as special editing shortcuts to allow editing the structure
of the tree: for instance, pressing the ( character creates a simple list cell,
while the shortcut Cmd + ( encloses the cell directly right to the cursor
into a new list cell. These actions are encoded in the action field of the
qed_command structure.

Otherwise, entering text replaces the current textual selection by the
input characters, much as in a standard text editor. If the cursor is not
inside a text cell, one is created at the cursors’ position beforehand. Once
the input characters have been inserted, the cell’s text is tokenized, which
may modify the current cell’s kind.

3https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/editor.cpp

https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/editor.cpp
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(a) Cursor is before the second character of the set token.

(b) Cursor is at the start of the set token.

(c) Cursor is on the left of the set token.

(d) Cursor is on the left of the set s-expression.

(e) Cursor is on the right of the u64 token.

Figure 3.4: Cell Tree Navigation.
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(a) Selection is empty.

(b) Selection contains the s character of the set token.

(c) Selection contains the set token.

(d) Selection contains the set s-expression.

(e) Selection contains the procedure signature and the set s-expression.

Figure 3.5: Cell Tree Selection.
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3.3 Feedback and Monitoring

As part of compiling a temporal scenario, the compiler pipeline parses and
type checks each module’s cell tree, which produces an abstract syntax tree
and an intermediate representation, including symbol tables and type infor-
mations. These syntactic and semantic data structures can then be queried
by the editor. It allows the editor to display inline errors, perform syntax
highlighting and automatic layout, to automatically create placeholder cells
for missing constructs, and to suggest auto-completion bases on the semantic
context at the position of the cursor.

While these features can be found in many IDEs and code editors, they
generally require deploying and interfacing with language servers, installing
editor plugins, or relying on ad-hoc support in the editor. This partially du-
plicates the effort spent on the toolchain, and increase the overall complexity
of such environments. Here, most of the smart editing feature come at a very
low cost, since the compiler and the editor share the same “understanding”
of language concepts and the same representations of the program.

Metadata produced by the compiler pipeline is also used to map bytecode
offsets to cells and enable execution monitoring in the editor.

3.3.1 Error Reporting and Placeholder Cells

Errors generated by the parser or the type checker are used to display a
squiggly red underline below the faulty cells. When the cursor is positioned
on a faulty cell, a contextual box shows a list of errors associated with that
cell. For instance, Figure 3.6 shows the error panel displaying a simple type
error.

Figure 3.6: Error Panel

Errors for missing cells, emitted from the parser, are used to create place-
holder cells to display the expected construct at that location, as shown in
Figure 3.74. When the children list of a cell are edited, the trailing place-

4A video showcasing placeholders is available here: https://youtu.be/e0JIp8048CM

https://youtu.be/e0JIp8048CM
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holders of that cell are removed before parsing. This ensures there are no
more placeholder than needed at the end of a cell.

Figure 3.7: Placeholder Cells

3.3.2 Auto-Layout

Before displaying the cell tree, the editor first applies a layout pass. The
qed_update_layout() procedure in editor.cpp5 is responsible for com-
puting the layout of a subtree. It queries the abstract syntax tree to retrieve
the language construct associated with a given cell. Each kind of language
construct has a set of associated layout options:

typedef struct cell_layout_options
{

cell_layout_orientation preferredOrientation;
i32 inlineCount;
i32 alignedGroupCount;
i32 alignedGroupSize;
i32 indentedGroupSize;
bool endGap;

} cell_layout_options;

The layout algorithm proceeds recursively as follows:

• The algorithm recurses into each children and computes its bounding
box. Children are laid out horizontally on a single line.

• If preferredOrientation is vertical, or the summed width of chil-
dren exceeds a set threshold, the algorithm proceeds to relayout chil-
dren vertically, as follows:

– A first group of inlineCount children are laid out horizontally
on the first line.

5https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/editor.cpp

https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/editor.cpp
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– The following children are laid out horizontally into a maximum
of alignedGroupCount groups of alignedGroupSize cells.
These groups are vertically aligned.

– The remaining children are laid out horizontally into groups of
indentedGroupSize cells. These groups are indented with re-
spect to the parent cell.

• If endGap is true, an empty line is skipped after the parent cell.

A special case is attribute cells, which are always laid out on the same
line as the previous cell. Two examples of cell layouts are given in Figure 3.8.

Figure 3.8: Examples of Cell Layouts

The tree is then rendered using a depth-first traversal. The abstract syn-
tax tree data associated with each cell is used to perform syntax highlighting.
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3.3.3 Code Completion

The abstract syntax tree, as well as the symbols and type representations
produced by the compiler pipeline, are both used to drive a simple completion
suggestion system.

In each abstract syntax node, the parser stores a “parse rule” identifier,
which corresponds to a set of alternative language productions that could
be found at that location. Each parse rule is associated with a number of
completion patterns, defined in completion.h6. A completion pattern can
directly encode a construct of the language, such as a for loop or an if
statement, or it can match a set of possible completions, for instance “all the
variables visible from the local scope”. For such sets it also encodes a type
pattern, that can match a single type or a set of types, such as “arrays” or
“slices”.

The completion system is activated by pressing the tab key. When ac-
tive, editing a text cell runs the qed_completion_update() procedure
defined in editor.cpp7 after the parsing and checking stages. This pro-
cedure is in charge of populating and filtering a list of possible completions
based on the user input. The completion can apply either to the text cell
being edited, or to its parent if the text cell is the head of a form cell. In the
following we refer to that cell as the completion cell.

• The procedure chooses the completion cell depending on the kinds of
the text cell and its parent.

• The procedure queries the abstract syntax node corresponding to the
completion cell.

• The procedure gathers the completion patterns for the parse rule stored
in the abstract syntax node.

• Fixed completion patterns that match the kind of the completion cell
are added to the completion list.

• If one of the completion patterns is a variable, the procedure gathers all
variable symbols visible from the local scope, and matches their type
against the type pattern of the completion entry. Matching variables
are added to the completion list.

6https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/completions.h
7https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/editor.cpp

https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/completions.h
https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/editor.cpp
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• If one of the completion patterns is a call, the procedure gathers all
procedure symbols visible from the current module and matches their
signature against the type pattern of the completion entry. Matching
procedures are added to the completion list.

The completion list is then filtered by the text of the edited text cell.
Currently, we only keep completions when the input text is a prefix of the
completion’s text, but one could implement more complex fuzzy matching
methods.

Figure 3.9: Completion Panel

The filtered list is then displayed in a completion panel under the comple-
tion cell using the qed_completion_gui() procedure in editor.cpp8.
The completion panel is shown in Figure 3.99. The user can navigate through
the completion list with up and down arrow keys. The selected completion
temporarily replaces the completion cell. Pressing the up arrow key while at
the beginning of the list goes back to the original completion cell. Comple-
tions can be accepted or dismissed with several shortcuts:

• The enter key accepts the selected completion and closes the com-
pletion system.

• The esc key reverts to the original completion cell and closes the
completion system.

• The tab key accepts the selected completion, moves the cursor to the
next cell, and updates the completion list for that cell.

8https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/editor.cpp
9A video showcasing code completion is also available here: https://youtu.be/

kjYfcrSrFKs

https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/editor.cpp
https://youtu.be/kjYfcrSrFKs
https://youtu.be/kjYfcrSrFKs
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3.3.4 Live Performance Monitoring

The execution of a Quadrant program can be monitored and paced from
within the editor, as shown in Figure 3.10. The following visual hints are
displayed by the editor:

• Blocks of code are highlighted with a fading green background as they
are being executed, as seen in Figure 3.10a. This allows quickly seeing
what code paths are executed and understanding the temporality of
execution at a glance.

• When a task is paused, the editor displays a progress wheel in front of
the pause instruction (Figure 3.10b). The fraction of the wheel colored
in green indicates the ratio of time elapsed in the pause over the total
pause time.

• The editor shows waiting icons when a task is waiting for another task
to complete (Figure 3.10c). The two green arcs spin as long as the task
is suspended.

• When a task is suspended by a standby instruction, the editor shows
a pulsing standby icon in front of that instruction. When the cursor is
positioned on that instruction, a shortcut can be used to resume the
suspended task from the editor.

Progress wheels, wait wheels and standby icons are also mirrored in front
of every call sites along the call stack of the suspended task. For instance,
if a procedure foo calls a procedure bar that uses a pause instruction, a
progress wheel will be displayed in front of the pause instruction, as well
as in front of the bar and foo calls.

We explain how runtime feedback and the triggering of standby tasks are
implemented in section 6.3.

3.4 Conclusion

In this chapter, we stated the design goals of Quadrant, as resulting from
our prior work on temporal scenarios authoring systems. We then gave
an overview of the environment’s architecture and its interface, and walked
through a simple example program. We then discussed the notion of struc-
tural editing, and presented Quadrant’s structure editor and non-textual
code representation. We finally described the static and runtime feedback
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(a) Flashing code blocks and progress wheel.

(b) Progress wheel.

(c) Waiting wheel.

(d) Standby icon.

Figure 3.10: Quadrant Execution Monitoring

paths of the environment, which comprises the language-aware editing fea-
tures of the editor, as well as its live monitoring capabilities.

We only implemented a few of the possibilities afforded by the proposed
architecture. Indeed, the tight collaboration of the structural editing, the
compiler pipeline, and the runtime around shared program representations
opens up a large space of user experience experimentations.

• Code completion could be extended with fuzzy matching. Another
improvement would be allowing user-defined completion snippets. For
instance, a user could select a code snippet containing holes, and copy
it to a user completion repertoire. This snippet would then show up
in the completion panel when its outer-most syntactical construct and
type would match the cursor location’s context.

• We already mentioned a few possible input affordances such as sliders,
color-pickers, music staff or piano roll editors, etc. An important and
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interesting challenge, that we didn’t attack here, would be to allow
users to define custom input widgets from within the environment,
using normal language constructs.

• These specialized widgets could also convey runtime feedback, such
as moving playheads. They could also serve as dynamic viewers for
program variables, as opposed to only being initializers, as is currently
the case.

• Live program monitoring could also be extended to include debugging
and inspection tools, not only as separate watch windows as in classical
debuggers, but as live inline tooltips. One could imagine displaying a
value inspector tooltip when hovering variables, or highlighting vari-
ables with a flashing background when their value is updated. Call
stacks could be shown when hovering a procedure’s call site.

• Profiling feedback could be displayed as code heat maps indicating
performance hot-spots, and performance counters tooltips could be
shown when hovering procedure names.

• The environment could record temporal traces of execution and dis-
play them as live-updating time plots, to give a visual overview of the
scenario’s temporality.

In the the following chapters we will go in more detail over temporal
and programming model of Quadrant, as well as its compiler pipeline and
runtime.



Chapter 4

Temporal Model

In this chapter we present the temporal model and the scheduling engine
that support Quadrant’s temporal features1. Our temporal model allows
scheduling computations along concurrent timeframes organized in a tempo-
ral hierarchy. Timeframes are related to their parent through time transfor-
mations. A time transformation can be specified by a tempo curve, either
as a function of time or as a function of symbolic position. Piecewise tempo
curves can be built from parametric curves such as Béziers curves, which
are both versatile and intuitive. The scheduler exposes an interface based
on fibers, that makes it easy to organize inter-dependant streams of related
events.

We first highlight the importance of symbolic time in musical applications
(section 4.1). We then cover the notion of time transformations, and give
a differential equation formulation to tempo curves (section 4.2). We then
show how we derive and solve tempo curves equations (section 4.3). Finally,
we present the symbolic time scheduler used by Quadrant (section 4.5).

1This section is based on a paper published in the proceedings of the 15th International
Symposium on Computer Music Multidisciplinary Research (Fouilleul et al., 2021). In
this paper, Quadrant’s scheduler was referred to as “Jiffy”, and conceived as a standalone
library. Since we moved to a more integrated environment, we dropped the name and
simply refer to it as Quadrant’s scheduler.

59
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4.1 Symbolic Timescales

Despite its importance in music and other performing arts, most show con-
trollers and computer music environments lack an abstract notion of musical
time, and directly map cues to wall-clock dates or to external triggers. How-
ever, musical time is a symbolic notion that can have many different concrete,
real time instantiations. For example, a musical score ascribes temporality
to musical events using symbolic dates and durations (e.g. beats and notes
values). Symbolic time is mapped to performance (real) time by the inter-
preter, following tempo indications, cultural conventions, and interpretative
choices. Furthermore, is often deployed throughout a work at different scales
(e.g. movements, phrases, cells, notes. . . ), and not every scale is tied to the
same global tempo, e.g. ornaments such as grace notes and appogiatura are
not affected in the same way by a change of tempo as a main melody line.
Hence, a temporal programming environment for live shows should allow
encoding and performing streams of actions embedded within multiple sym-
bolic musical times, or timeframes.

The notion of hierarchical symbolic timeframes has been tackled before by
computer music environments or score followers. For instance, FORMULA
(Anderson & Kuivila, 1990) allows applying independent time deformations
on groups of concurrent tasks. David A. Jaffe (Jaffe, 1985) proposed a re-
cursive scheduler for hierarchical timing control, using explicit time maps.
Antescofo (Cont, 2008) allows users to compose independent abstract times
through the use of time scopes and tempo curves.

In Quadrant, a timeframe is a data structure used to maintain a notion
of logical time, expressed as a rational number of symbolic time units2, and
to schedule events at specific logical dates. It is analogous in this respect
to a score, which organizes musical events in terms of a musical time, that
needs to be translated into wall-clock time by a musician according to tempo
indications and interpretative choices.

However, whereas the tempo indication of a score usually prescribes some
idealized mapping from musical-time to wall-clock time, a timescale’s logi-
cal time does not necessarily map directly to wall-clock time. Instead, each
timescale has a time source, which can be either the wall-clock time or an-

2We deliberately avoid the term beats here. We think it would bring some confusion
by conflating the notion of time unit with the notion of meter, and by suggesting that all
beats are of equal conceptual length. This is, in fact, rather a Western exception than a
universal norm.
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Figure 4.1: Composing time deformations using tempo curves.

other timescale. A timescale is also associated with a time transformation,
which maps its internal time to the time of its source. Thus, the scheduler
can handle multiple notions of logical time and map dates to wall-clock time
through a hierarchy of time transformations.

Figure 4.1 illustrates a time deformation between a timescale and its
source. The time map plots for each timescale show the position of the
timescale with respect to wall-clock time. The effect of the first tempo curve
(tempo 1) is to warp the time map of timescale 0 (which represents wall-clock
time) into that of timescale 1 (which represent some abstract musical time).
Timescale 1 is then transformed by another another tempo curve (tempo 2),
to produce the time map of timescale 2.

4.2 Time Transformations

Quadrant’s scheduler must be able to transform timescale-local positions to
and from wall-clock time. These time transformations can be specified as
time maps, which directly map the parent’s timeframe to the local timeframe.
The can also be expressed by the means of tempo curves, which describe the
speed of a timescale’s “playhead” with respect to the source time, much like
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tempo indications in a score prescribe an idealized conversion from durations
in beats to durations in wall-clock time3.

Tempo curves have been the subject of some controversy. Desain and
Honing (Desain & Honing, 1993) claimed that there is “no abstract tempo
curve in the music nor is there a mental tempo curve in the head of a per-
former or listener”. They even deemed tempo curves “harmful” and a “dan-
gerous notion”, basing their opinion on the fact that they are not sufficient
to accurately preserve musical timing of a piece under global speed transfor-
mations. Mazzola and Zahorka (Mazzola & Zahorka, 1994) firmly opposed
this position, arguing that “The problem is not the a priori concept of tempo
curves, but rather its elaboration for realistic application”.

From a practical standpoint, the debate on the existence of tempo curves
seems a little dubious to us. Tempo curves have proven to be of practical
use in virtually any music sequencing software. That they do not preserve
musical timing when arbitrarily stretched or compressed is not a rebuttal of
their adequacy as a compositional tool. In our opinion, a more interesting
take on this problem is given by Honing in (Honing, 2001), where he suggests
adjoining a time shift map to the tempo curve, in order to independently
capture timings that do not react linearly to global tempo changes.

Several methods have been proposed to represent time transformations
and to integrate tempo curves to map symbolic position to time. Jaffe (Jaffe,
1985) proposes to directly use time maps constructed from a collection of pre-
defined time warping functions. Berndt (Berndt, 2011) chooses to represent
tempo curves by potential functions of symbolic position, matching some
specified mean tempo condition. Timewarp (MacCallum & Schmeder, 2010)
is a tool that uses regularized beta functions to define tempo curves satisfying
polyrhythmic constraints. Antescofo uses a variety of tweening functions4 to
express tempo as a function of time, and uses closed form expressions to
compute time transformation based on tempo curves. When there is no ana-
lytical solution to a tempo curve integration, Antescofo samples the curve to
produce a piecewise linear approximation, which is then integrated analyti-
cally. Antescofo can also use arbitrary expressions to define tempo, although
these expressions are not integrated: they are reevaluated each time a vari-

3One difference, however, is that we use the word tempo here to refer to the ratio of
internal symbolic time units over source symbolic time units, rather than the number of
beats per minutes, since the latter could depend on the musical meter of the timescale.

4https://antescofo-doc.ircam.fr/Reference/compound_curve/

https://antescofo-doc.ircam.fr/Reference/compound_curve/
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able is updated, and considered constant between updates. As such, they
can only represent tempo as step functions.

In Quadrant’s scheduler, tempo curve can be specified either as a func-
tion of a timescale’s source time, or as a function of symbolic position (which
is closer to the way tempo is specified in a score). We use piecewise tempo
curves where each piece can be defined by parametric curves. Instead of
restricting tempo to predefined curves with known integrals, Quadrant uses
a variable-step numerical solver to integrate tempo curves when simple ana-
lytical solutions are not readily available. This allows us to construct tempo
functions from Bézier curves, which are more versatile than standard tween-
ers and allow easy tweaking of control points by a user through a graphical
interface.

4.2.1 Differential Equation Formulation

In the following we will use the variable p to denote the position in a
timescale, i.e. the logical time in this timescale’s reference frame. The vari-
able t will be used to denote the source time (or simply, time), i.e. the time in
the timescale’s parent reference frame (which could be the wall-clock time).

The function position function, P (t), transforms the source time into the
internal position of the timescale. The time function, T (p), transforms the
position into the source time. Obviously, P = T−1.

A tempo curve T can be either a function of time or position. It maps
its parameter to the value of the derivative of the position function at this
instant. In the following we will refer to a tempo curve defined as a function
of position as an autonomous tempo curve, whereas a tempo curve defined
as a function of time will be referred to as a non-autonomous tempo curve.
This naming stems from the formulation of the tempo curve as the right-
hand side of an autonomous or non-autonomous differential equation:

dP

dt
(t) = T (P (t)) (autonomous) ,

dP

dt
(t) = T (t) (non autonomous) ,

with initial condition P (0) = 0 .

(4.1)
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4.3 Tempo Curves Integration

Tempo curves in Quadrant are defined as piecewise functions. For the sake
of brevity, we may refer to an interval and its associated sub-function as
a tempo curve segment, or simply as a curve, where the meaning should
be clear from context. Each segment is defined by a start tempo and an
end tempo, a duration, an interpolation mode and optional interpolation
parameters. We implemented three interpolation modes, namely constant,
linear and parametric.

4.3.1 Integration of Constant and Linear Tempo Curves

Constant and linear tempo curves can be solved analytically. We show below
the differential equation of tempo, and the position and time functions for
each case. In this section, T0 and T1 denotes the tempo, respectively at the
beginning and at the end of the interval.

Constant Tempo.

T (p) = T 0 . (4.2)

T (p) =
p

T 0
,

P (t) = t× T 0 .
(4.3)

Autonomous Linear Tempo.

T (p) = T 0 + αp , where α =
T 1 − T 0

L
. (4.4)

P (t) =
T 0

α
(eαt − 1) ,

T (p) =
1

α
log(1 +

αp

T 0
) .

(4.5)

Non-autonomous Linear Tempo.

T (t) = T 0 + αt , where α =
T 1 − T 0

L
. (4.6)

P (t) = T 0t+
α

2
t2 ,

T (p) =

√
T 2

0 + 2αp− T 0

α
.

(4.7)
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Numerical Considerations

Some of the above time and position functions are indeterminate forms for
α → 0. To avoid that problem, we approximate these expressions by their
Maclaurin series expansions in α when |α| is smaller than a given threshold.
For instance, our approximation of the position function for the autonomous
case when is |α| < 10−9 is:

P (t) ≈ T 0(t+
α

2
t2 +

α2

6
t3 +

α3

24
t4 +

α4

120
t5) . (4.8)

4.3.2 Parametric tempo curves.

In this section we will give a definition of a parametric tempo curve, and
show the differential equations that need to be solved in order to compute the
time and position functions. These equations are then solved by a numerical
solver.

An autonomous (resp. non-autonomous) parametric tempo curve seg-
ment is defined as a function C of the position p (resp. of the time t), which
describes the same curve in the plane (p,T ) (resp. (t,T )) as a parametric
curve B(s) with components Bx(s) and By(s)5.

Autonomous Parametric Tempo.

The differential equation corresponding to an autonomous tempo curve can
be written as

dP

dt
(t) = C (P (t)) . (4.9)

Position function P (t). The derivative of the position with respect to time
is directly expressed by the autonomous tempo curve,

dP

dt
(t) = By(s) , where s = B−1x (P (t)) . (4.10)

Time function T (p). We operate the change of variable s = B−1x (p) on
Equation 4.9. Finding the time function is then a matter of solving the
differential equation6

dT̃

ds
(s) =

B′x(s)

By(s)
, with T̃ (s) = T (p) . (4.11)

5Textbooks usually choose the letter t to denote the parameter of parametric curves.
We instead choose the letter s to disambiguate it from time.

6Note that here we can find an equation in s. This is beneficial as it allows our numerical
solver to find the parameter s once, and then evaluate the Bézier curve and its derivatives
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Non-autonomous Parametric Tempo.

The definition of the non-autonomous parametric tempo curves can be writ-
ten as

dP

dt
(t) = C (t) . (4.12)

Position function P (t). Using the change of variable s = B−1x (t) and the
chain rule, we can write the differential equation for the position function as

dP̃

ds
(s) = By(s)B

′
x(s) , with P̃ (s) = P (t) . (4.13)

Time function T (p). Using the formula for the derivative of inverse func-
tions on Equation 4.12, we get

dT

dp
(p) =

1

C (T (p))
=

1

By(s)
, where s = B−1x (T (p)) . (4.14)

4.3.3 Bézier Tempo Curves.

The above formulation allows the use of any parametric curve, provided that
it describes a derivable, non null function. Our specific implementation uses
cubic Bézier curves, which are especially versatile, as they allow putting
constraints on both endpoints and their first derivative, while ensuring that
the curve remains contained inside its control points’ convex hull. They
are also intuitive to manipulate and map well to the curve-editing interfaces
commonly used in animation, audio, and video applications.

An autonomous (resp. non-autonomous) Bézier tempo curve segment is
defined by the parametric curve

B(s) = C3s
3 +C2s

2 +C1s+C0 , (4.15)

where the Ci are the power basis coefficients computed from the Bézier
curve’s control points as follows:

C0 = P0 ,

C1 = −3P0 + 3P1 ,

C2 = 3P0 − 6P1 + 3P2 ,

C3 = −P0 + 3P1 − 3P2 + P3 .

(4.16)

using only polynomials in s. The same change of variable is done in Equation 4.13. It is
unfortunately useless with Equation 4.10 and Equation 4.14, since s can’t be computed
directly from the independant variable.
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Monotonicity

In general, Bézier curves don’t represent functions (they can have multiple
points with the same abscissa, or even self-intersect), and thus can’t be used
to represent a tempo, which is a function of time.

To ensure that the curve describes a function, the cubic function Bx(s)
must be monotonically increasing on [0, 1]. Given end points P0 and P1

with with abscissae P0,x < P3,x, we want a condition on the abscissae of the
intermediate control points P1,x and P2,x for this property to hold.

Let α and β be the respective ratios of the derivatives B′x(0) and B′x(1)
at the end points over the slope of the the line segment joining Bx(0) and
Bx(1).

Fritsch and Carlson (1980) derived the monotonicity region M of values
(α, β) for which a cubic interpolant between two data points is monotonic
(Figure 4.2). It is the union of several sub-regions defined by the following
equations:

α+ β − 2 ≤ 0 ,

α+ β − 2 > 0 and 2α+ β − 3 ≤ 0 ,

α+ β − 2 > 0 and α+ 2β − 3 ≤ 0 ,

(α− 1)2 + (α− 1)(β − 1) + (β − 1)2 − 3(α+ β − 2) ≤ 0 .

(4.17)

Remark. The first three regions are delimited by straight lines. The last
region is the interior of the ellipse of center (2, 2) which is tangent to the
coordinates axes at points (3, 0) and (0, 3).

We now express α and β in terms of the Bézier control points:

α =
B′x(0)

Bx(1)−Bx(0)
=

3(P1,x − P0,x)

P3,x − P0,x
,

β =
B′x(1)

Bx(1)−Bx(0)
=

3(P3,x − P2,x)

P3,x − P0,x
.

(4.18)

Without loss of generality, we can map the end points P0,x and P3,x

respectively to 0 and 1. This gives us:
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Figure 4.2: Monotonicity Region M (Reproduced from Fritsch and Carlson,
1980).

α = 3P1,x ,

β = 3(1− P2,x) .
(4.19)

The corresponding monotonicity region for control points abscissae P1,x

and P2,x is shown in Figure 4.3. Note that the unit square is entirely con-
tained within the monotonicity region. This means that as long as the ab-
scissae of the intermediate control points lie between the abscissae of the end
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points, the Bézier curve can be used to specify a proper function. This for-
tunately lead to an intuitive user interface constraint: we can simply restrict
the abscissae of control points to the temporal extents of the curve segment
the user is editing.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
P1, x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

P2, x

Figure 4.3: Unit square and monotonicity Region M for control points
(P1,x, P2,x).

Bézier curves evaluation

We should stress out that, although each coordinate of the parametric Bézier
curve is cubic with respect to its parameter s, the second coordinate is not a
cubic function of the first, i.e. the tempo is not a cubic function of position
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(resp. time). Analytically finding the tempo for a given position (resp. time)
indeed requires solving a third order equation.

A faster method is to numerically find the parameter s for a given position
(resp. time), up to some desired precision, and then compute the tempo
from s. Our implementation first uses the Newton-Raphson root-finding
method up to a fixed number of iterations, and falls back to a bisection
algorithm if either the value of the derivative falls behind some threshold, or
the desired precision is not reached within the maximum iteration count.

Numerical resolution

Using Bézier curves, Equation 4.13 poses no difficulty and can be analytically
solved by integrating a 6th degree polynomial.

Bringing a symbolic calculus package to the rescue, one can find an an-
alytical solution for Equation 4.11, although it involves complex logarithms
and require computing the roots of the third degree polynomial By, as shown
in Equation 4.20. Likewise Equation 4.10 and Equation 4.14 have no simple
analytical solution.

3∑
k=1

ln(s− rk)(C1,x + 2C2,xrk + 3C3,xr
2
k)

C1,y + 2C2,yrk + 3C3,yr2k
,

with rkthe roots of C3,ys
3 + C2,ys

2 + C1,ys+ C0,y .

(4.20)

It is unclear at this point if there is a really compelling reason to favor
the analytical solutions. A number of corner cases would have to be con-
sidered when finding (or numerically approximating) the roots, and special
care would be necessary near singularities (much as discussed in subsubsec-
tion 4.3.1).

On the other hand, using a numerical solver has the advantage of allowing
us to control the tradeoff between accuracy and speed, and opens up the
possibility of supporting other arbitrary functions to define tempo curves.

We use the Cash-Karp (Cash & Karp, 1990) method to numerically solve
the Bézier tempo curve equations. It is an adaptive Runge-Kutta (Butcher,
1987) solver with orders 5 and 4. We follow the general architecture proposed
in (Press et al., 1992), and adapt it to our needs.
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Since the equations shown in subsection 4.3.2 are either autonomous or
directly integrable, we wrote two specialized step routines, autonomous_step()
and integrate_step(), that avoid much of the computation involved in
a general Cash-Karp step. Given the value of the solution at the previous
step, and a function pointer to compute the right-hand side of the equation,
these routines advance the solution over a single step of given size, and re-
turn the result along with an estimation of the local error.

These routines are used in controlled-step routines which either accept
the step, or adapt the step size and retry the step, depending on the local
error estimate. These controlled-step routines are in turn called by driver
routines that perform successive controlled steps across the desired interval.
The drivers also adapt the error criterion at each step to the amplitude of the
computed solution and its derivative, in order to achieve constant fractional
errors.

4.3.4 Multi-segment curves implementation

Time transformation curves are created from a structure called a curve de-
scriptor. This descriptor specifies the kind of curve (i.e. autonomous or
non-autonomous tempo, or time map), and a list of curve segments descrip-
tors.

A curve segment descriptor is a structure containing the duration of
the segment, the start value and end value, the interpolation mode and its
optional control parameters.

At creation time, the list of segments descriptor is processed to produce
a list of internal segments. These segments contain the precomputed values
of the slope α of linear segments or the power basis coefficients Ci of Bézier
segments. The value of the dependant variable (i.e. t for an autonomous
tempo curve, or p for a non-autonomous tempo curve) at the end of the
interval is also precomputed and stored in the tempo segment at creation
time.

Queries on tempo curves are then handled as follows:

• The input position (resp. time) is checked against the precomputed
positions (resp. times) at the breakpoints, in order to find the segment
within which the input parameter lies.

• If no segment is found, the tempo is curve is conceptually extended
with constant tempos on the left and on the right, corresponding to
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the start tempo of the first segment, and the end tempo of the last
segment.

• The output time (resp. position) is computed by solving the corre-
sponding differential equation on the selected curve segment, using
closed-form expression for constant and linear segments, or the numer-
ical solver for Bézier segments.
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Figure 4.4: Time map and beats trace for a tempo curve defined by two
Bézier curves.

An example of a time transformation produced by a tempo curve com-
posed of two Bézier segments is shown in Figure 4.4. The blue curve shows
position as a function of time. The orange stems mark the timeline symbolic
time units. The red curve shows the tempo curve, as a function of time. The
figure is produced by computing the positions corresponding to a regularly
spaced time grid.

4.4 Phase Synchronization

So far we only considered synchronizing relative clock frequencies, which is
more formally called syntonization. However, when dealing with ensemble
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music, the notion of synchronization is really about the relative phase of
each musician. It is also important to note that musical speed and phase are
understood in the context of musical structure.

The musical structuration of time, at a very basic level, usually consists
in a meter. Loosely speaking, a meter is a pattern describing a recurring
grouping of pulses, and the relative lengths and accentuation of those pulses.
The pulses are usually referred to as beats, and the groupings as bars. It is
useful to keep in mind that not all beats are of equal nature within a bar,
nor do they convey the same synchronization requirements.

To better highlight the fundamental difference between purely tempo-
based synchronization and phase synchronization, let’s imagine a DJ show
based around samples of measured music. Although the sequencer can main-
tain virtually perfect tempo relations between the samples, and even presum-
ing on the DJ’s mastery, there are still many occasions where the samples will
be slightly out of sync (input delay being the most obvious reason). Given
enough information on the audio file, modern software such as Ableton Live
(Ableton, n.d.) will already correct that asynchrony, by shifting and time-
stretching the sample to align its beats on a predefined click track. They can
even delay the triggering of a sample for it to happen on a bar boundary, a
feature called quantized launch in Live’s lingo.

Now, if our hypothetical show were to feature several DJs, there would be
a need to synchronize multiple sequencers on shared beats and bars bound-
aries. Ableton Link (Goltz, 2018) allows sharing a common notion of play-
back transport and beat-based synchronization. Each connected software
can control the transport and set its speed. Each application also chooses
a beat quantum. Two applications sharing the same beat quantum value
will be beat-aligned modulo that quantum. An application A with a beat
quantum being a multiple of another application B’s beat quantum will also
be synchronized on B’s boundaries.

Link offers an elegant model to select a subset of beats of A and a subset
of beats of B to align. It certainly has the merits of being simple, easy to
grasp from a user’s point of view, and well-suited to regular meters. However,
this model induces some limitations:

• This model implies a shared tempo. Pieces with multiple tempos, such
as Charles Ives’ The Unanswered Question, Stockhausen’s Gruppen, or
Steve Reich’s Piano Phase, would be impractical to author and perform
in such a model.
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• Polyrhythms can also benefit from the ability to use several pulses,
instead of the lowest common multiple of all groupings, which rapidly
becomes difficult. For instance, exactly synchronizing a quintuplet over
a septuplet would require counting 35 beats in this model, which would
incur the use of an impractically high tempo.

• This model implies beats of equal lengths. Thus it is difficult to express
additive meters without resorting, once again, to a common subdivi-
sion.

• The notion of a beat quantum implies that the only beats considered for
boundary alignment are congruent to 0 modulo the beat quantum. In
other word, alignment always happen at the beginning of the recurring
group. But let’s imagine a simple scenario, in which we have a kick
sampleK which must be aligned on 4 beat bars. Then we have a sample
S of on-beats snare hits, that we want to shift by one beat in order
to align it on the off-beats of K. This would call for the possibility of
specifying arbitrary remainders in addition to the beat quantum: in
our minimal example, the on-beats of S must be aligned to beats of K
which are congruent to 1 or 3 modulo 4. One can certainly contemplate
much more intricate scenarios, which would need manually specifying
desired synchronization points altogether.

More generally, we think a meter-centric alignment model like Link’s
shouldn’t be conflated with the more general notion of date alignment. In
particular, the primitive of the system shouldn’t be built around the assump-
tion of congruent beat quanta, lest it be hampered by the shortcomings dis-
cussed above. Instead, at the most basic level, the synchronization system
should only be concerned with aligning a future date and tempo of a process
A to a a given target, in a given amount of time. This goal can be stated as
follow:

Given a processes A and date t0 in its parent’s timeframe, corresponding
to position p0 in A’s local timeframe; Given T 0 the tempo of A at t0; We
want to apply a time transformation to A such that at date t1 = t0 + δ, A
reaches a given position p1 and a given tempo T 1.

The target (t1, p1,T 1) can then be chosen to align some beats of A onto
some beats of another measured process B. It can also be used to track a
variably paced process B, such as the output of a score follower inferring
position and tempo values from a human player. This is similar to the
dynamic target synchronization strategy used in Antescofo (J.-M. Echeveste,
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2015), although we use a different catch-up curve. The target can also be
used to smear the timing of A based on irregular or punctual commands, not
necessarily tied to a listening machine, such as “skip two beats over the next
10 seconds”. Note that this doesn’t precludes the use of a simpler, meter-
centric interface built on top of this basic capability.

4.4.1 Catch-Up Curves

Our scheduler itself doesn’t directly handle date alignment. Instead, this is
achieved by computing a catch-up time map curve and applying it to the task
to be aligned. We want the time map to satisfy the following constraints:

C (t0) = P0 ,

C ′(t0) = T 0 ,

C (t1) = P1 ,

C ′(t1) = T 1 .

(4.21)

This ensure C is a smooth transition without sudden jumps or acceler-
ations. Fortunately, Bézier curves allows us to control both endpoints and
derivatives. The constraints implies the following equations on the Bézier
curve control points:

P0 = (t0, p0) ,

P1 = (t0 + δ1, p0 + T 0δ1) ,

P2 = (t1 − δ2, p1 − T 1δ2) ,

P3 = (t1, p1) ,

(4.22)

Remark. This means that P1 (resp. P2) must lie on the tangent to C at P0

(resp. P3).

Furthermore, the Bézier curve must define a monotonically increasing
function. This means both Bx(s) and By(s) cubics must be monotonic. This
can readily be enforced by applying the constraints shown in subsection 4.3.3,
but this time both on the abscissae and ordinates of the intermediate control
points P1 and P2.
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4.5 Scheduler

Quadrant’s poly-temporal model relies on concurrent tasks (implemented as
stackful coroutines, or fibers) managed by a cooperative scheduler. Each task
represents a sequence of interleaved computations and delays happening in
a given timeframe.

Computations are predictably ordered and are considered to happen in-
stantaneously with respect to symbolic time. This makes Quadrant’s model
similar to that of synchronous languages (Halbwachs, 1993), with a few dif-
ferences that we detail below.

Strictly speaking, most synchronous languages don’t have an inbuilt no-
tion of time, and can only react to signals. This does not pose theoretical
difficulties but does make some scenarios cumbersome, since one must rely
on introducing and counting external “clock” signals. This downside is dis-
cussed in Von Hanxleden et al. (2017), which also proposes extending the
host context of Esterel to allow a program to schedule its own wakeup time
when returning from its step function. We use a somewhat similar approach
in Quadrant, where tasks can pause for a requested amount of symbolic time.

We allow temporarily removing some task from the synchronous schedul-
ing mechanism to have them executed in a background task pool. This
permits graceful handling of blocking or asynchronous operations, such as
input/output, without stalling the scheduler.

Finally, while most synchronous languages are concerned with providing
hard real-time guarantees, we are mostly interested in providing a predictable
yet flexible concurrency model, and only consider soft real-time goals on a
best-effort basis.

API design discussion

The API of a scheduler essentially determines how a user will feed code
fragments into the scheduler, to be executed later at a specified time. There
are several important parameters to consider here: what constitutes a code
fragment? How is a piece of data passed along with a fragment that operates
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on it? Are these fragments executed in the same context7 as the code that
provided them to the scheduler?

A common approach to that problem is to expose a callback mechanism,
where the user can register functions to be called by the scheduler at a later
date. This is the approach adopted, among others, by Max clock API8,
by the musical objects scheduler developed for OpenMusic in (Bouche &
Bresson, 2015), or in a number of Web APIs such as (Schnell et al., 2015)
and (Roberts et al., 2017). In this model, the unit of code that can be
provided to the scheduler is a function, and is usually executed in a different
context that the code that registered it. Thus, the registering mechanism
must also provide a way to capture some data for the callback.

Although this approach is relatively straightforward and well suited to
the scheduling of independent actions, it has a number of shortcomings. In
particular, when it comes to organizing streams of related actions in time, the
callback model compels the user to break down the control flow of its code
into lots of little distinct functions. Not only does it obfuscate the logical
relationship of actions as well as their sequentiality, but it also puts on the
user the unnecessary burden of passing a shared context around, ensuring its
consistency and managing its lifetime. Sequential streams of actions would
be better expressed by sequential code executed within the same context.

Another approach is to design the scheduler to run user code in fibers9.
In this approach, the fragments of code provided to the scheduler by the user
are not constrained to be self-contained callbacks, and sequential or logically
related actions can be grouped within a straightforward control flow, and
share the same local context.

Fibers fundamentally differ from threads in that they implement a coop-
erative scheduling model: the scheduler API exposes functions to explicitly
yield and reschedule the calling code to a future date. In their simplest form,
they provide concurrency, but not parallelism. This is what we need in our

7The word context here is left intentionally broad. It could encompass the thread-
ing model, the data lifetime, the nature of the execution environment (e.g. native code
scheduling interpreted code and vice versa), or even the machine on which the code is
executed.

8See https://cycling74.com/sdk/max-sdk-7.3.3/html/chapter_scheduler.html
9The notions of fiber, coroutine, or green thread are very closely related, and the dis-

tinction between them, if any, is amenable to debate. One could argue that green thread
is more appropriate in the context of a virtual machine or runtime environment, while
coroutine originates from programming language design. The term fiber may capture a
more general view of the concept, but more importantly it happens to be shorter to type.

https://cycling74.com/sdk/max-sdk-7.3.3/html/chapter_scheduler.html
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case, since we want to interleave computations in a deterministic way, under
the control of user code10.

A fiber-based scheduling API can feature mechanisms to wait for other
fibers to complete, thus allowing to express dependencies between differ-
ent workloads and execute them in the correct order, something which is
impractical to implement with a callback API as it would require the con-
struction of an explicit dependency graph beforehand. Another advantage
of this model is that a fiber can easily be migrated between thread, which
allows a very streamlined way to handle blocking calls without hanging the
scheduler. Finally, callback semantics are readily emulated by spawning a
new fiber that doesn’t yield until it terminates. Hence, if considered strictly
from the point of view of the usage code, this API design is strictly superior
to the callback-based one. Its cost is a slightly higher complexity on the im-
plementation side, which has to maintain and swap fiber contexts as needed.
Another downside of fibers is the weaker support for visualization and line
stepping of fiber code in most debuggers. That said, a callback-based API
is also hard to debug due to the disrupted control flow and the non-obvious
sharing of data across callbacks.

4.5.1 Scheduler API

Since our objective is to provide ways to specify and organize highly interde-
pendent computations into complex temporal scenarios, we decided to base
our scheduler architecture on the fiber approach. This is also the type of
architecture adopted by FORMULA and Antescofo. However, FORMULA
constitutes a whole operating system and its fibers are really more akin to
system-level cooperative processes, while Antescofo is an interpreted lan-
guage whose fibers are implemented at the interpreter level. On the other
hand, Quadrant features user-level, native code fibers.

The API declaration is summarized in (Listing 4.1). The scheduler sys-
tem is initialized by a call to sched_init() and shut down with sched_end().
User code can then interact with the scheduler by operating on fiber handles.
A fiber represents the execution context of a piece of user code associated
with a given timeframe. Fibers are organized in a parent-children relation-
ship.

10Doing this with thread is of course possible, but ill-advised. Indeed, we would have
to pay the cost of synchronization primitives to essentially undo the parallelism and pre-
emptive scheduling properties of threads.
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// Initialization and shutdown
void sched_init();
void sched_end();

// fiber creation
sched_fiber sched_fiber_create(sched_fiber_proc proc, void* userPointer);
sched_fiber sched_fiber_create_detached(sched_fiber_proc proc,

void* userPointer);

sched_fiber sched_fiber_create_for_parent(sched_fiber parent,
sched_fiber_proc proc,
void* userPointer);

// fibers' timescales
void sched_fiber_timescale_set_scaling(sched_fiber fiber, f64 scaling);
void sched_fiber_timescale_set_tempo_curve(sched_fiber fiber,

sched_curve_descriptor* desc);

// Scheduling
void sched_wait(sched_steps steps);
void sched_suspend();
void sched_cancel();

void sched_fiber_suspend(sched_fiber fiber);
void sched_fiber_cancel(sched_fiber fiber);
void sched_fiber_resume(sched_fiber fiber);

sched_wakeup_code sched_wait_for_task(sched_object_handle handle,
sched_object_signal signal,
sched_steps timeout);

// Handles management
void sched_handle_release(sched_object_handle handle);
sched_object_handle sched_handle_duplicate(sched_object_handle handle);

// Background jobs
void sched_background();
void sched_foreground();

Listing 4.1: Quadrant’s scheduler internal API.

Fiber creation. User code can create and schedule a new fiber by calling
one of the sched_fiber_create_XXX() functions. The default version
creates a new fiber as a children of the current fiber. The detached version
creates a new fiber synchronized to the clock-time. The third version creates
a new fiber as a children of another fiber. Once the fiber is picked by the
scheduler to be run, it will start executing the entry procedure passed in the
proc parameter, passing it the value of userPointer. The fiber creation
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functions return a fiber handle, which can subsequently be used to operate
on the fiber or query its properties.

Time transformations. The timescale associated with a fiber can be con-
figured to apply a specified transformation to its source time, by using one
of the sched_fiber_timescale_set_XXX() functions. The transfor-
mation can be specified as a simple tempo scaling or as a tempo curve (see
section 4.2).

Wait, suspend, resume, cancel. At any point in the execution of a fiber,
user code can call sched_wait() to yield to the scheduler and reschedule
the fiber in steps units of time. A call to sched_suspend() suspends the
calling fiber, which can be resumed by a call to sched_fiber_resume().
A call to the function sched_fiber_suspend() suspends a fiber, which
means that the timescale associated with the fiber is no longer updated and
its playhead stops advancing. A suspended fiber can be resumed by calling
the function sched_fiber_resume(). A fiber can be canceled by a call
to sched_fiber_cancel().

Fibers lifecycles. Fibers can be running, suspended, retired, or completed.
Figure 4.5 shows a how fibers transition between running, suspended, retired
and terminated states. A fiber is running until it returns from its entry pro-
cedure or it is canceled, at which point it will be marked as retired. If it has
no children, or all its children are completed, it will be marked as completed.
Most resources associated with fibers are recycled as part of the retirement
and completion stages, but a minimal set of resources is kept alive until
all handles to the fiber are closed by a call to sched_fiber_release().
This is done so that handles can still be queried for some properties (such as
status or exit codes) after the object they reference is completed. Handles
can be duplicated by a call to sched_handle_duplicate(), should the
object’s lifetime be dynamically extended across multiple use-sites.

Waiting on handles. A fiber can wait until another fiber is retired or
completed, by calling one of the waiting functions on its handle. The most
generic version waits on a handle for a specified signal (i.e. retirement or
completion), or until a specified timeout has elapsed. All these functions
return a wakeup code, which indicates the condition on which the wait was
ended.

Background jobs. A fiber should never hang the scheduler and prevent
other fibers from progressing by failing to yield in a timely fashion. In fact
we have plans for a watchdog mechanism that will interrupt and cancel such
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Figure 4.5: Scheduler fibers state diagram

ill-behaved fibers. In order to comply with this rule, fibers that must call a
blocking routine or perform untimed, lengthy computations, should request
to be put on a background thread by calling sched_background(). Once
their blocking work is done, they can reintegrate the normal scheduling flow
by making a call to sched_foreground().

4.5.2 Scheduler’s operation

The functions of the scheduler and the integration of tempo curves are respec-
tively defined in the scheduler.cpp11 and sched_curves.cpp12 files,

11https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/scheduler.cpp
12https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/sched_curves.

cpp

https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/scheduler.cpp
https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/sched_curves.cpp
https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/sched_curves.cpp
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and their corresponding header files. The native fiber switching logic is im-
plemented by a few lines of inline x64 assembly in x64_sysv_fibers.cpp13.

Main loop

Fibers are organized as a collection of trees corresponding to the synchro-
nization relationships of their timescales: root fibers are synchronized on the
real-time clock, and every other fiber is synchronized on its parent timeframe.
The scheduler also maintains a list of all running fibers, each associated with
their date of next execution.

The scheduler’s role is to execute actions at the clock-time corresponding
to their logical date. In order to do so it must maintain the timescales’s
playheads consistent with the clock-time, through the time transformations,
pick the next fiber to execute, sleep until its real time due date is reached,
and execute it. It also has to handle control messages that may interrupt
a sleep. The main scheduler algorithm, implemented by the sched_run()
procedure, is a loop whose general outline is given in Listing 4.2.

There is a subtlety in how the playheads are advanced: if the sleep
was interrupted by an external message, the effective duration of the sleep
timeSlept is used to advance the playhead. But if the process wakes-up
due to the sleep’s timeout, the duration used to advance the playheads is
the logical duration of the sleep, i.e. the value of nextDelay. This could
well be different from the effective duration of the sleep, but the scheduler
maintains the illusion of a perfectly accurate sleep timing. This is done so
to avoid accumulating errors when action results in the scheduling of new
events, relative to the current date. To preserve the absolute timing accu-
racy, the scheduler maintains a accumulator of nextDelay - timeSlept,
which is added to the timeout just before passing it to the sleep call.

Another measure that we take in order to improve timing accuracy is
what we call Zeno sleeping. It stems from the observation that on our target
operating systems, the accuracy of waiting calls is somewhat proportional
to the timeout parameter. Thus, we wrap our sleep calls in a loop, with
each iteration using a timeout equal to a fraction of the timeout residue
from the previous iteration. The loop exits when the residue falls below the
desired accuracy (or if the sleep duration is too small to be measured on the
system). This allows us to achieve sub-millisecond accuracies with very few

13https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/x64_sysv_
fibers.cpp

https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/x64_sysv_fibers.cpp
https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/x64_sysv_fibers.cpp
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START:

FOR EACH timescale:
Translate the date of the first event from logical time to
clock-time. Set nextFiber to point to the event with the
earliest date.

Store the distance between the date of the selected event and the current
clock-time in fiberDelay.

Compute how much time we can sleep before the next event.

Sleep during the amount of time computed above. The sleep can be
interrupted by an external message, e.g. to schedule new events.

Wakeup from the sleep. Advance the playheads over the duration slept,
applying the necessary time transformations.

IF the sleep was interrupted by a message:
Handle this message.

ELSE:
remove nextFiber from the queue and switch execution to this fiber.

Go back to START.

Listing 4.2: Scheduler algorithm outline

loop iterations even for long sleeps. Better accuracies can be achieved, but
it is of course a tradeoff between desired accuracy and CPU usage.

Waiting operations

A fiber whose user code calls sched_wait() simply yields back to the
scheduler, and is put back into list of running fibers according to the duration
passed to the waiting call.

Besides maintaining a list of running fibers, the scheduler also has a list
of suspended fibers. When a fiber is suspended, it is simply moved from
the running list to the suspended list. If the calling fiber happens to be the
one that is suspended in the process, it also yields back to the scheduler.
Resuming is simply a matter of moving the object back to the running list.

A fiber whose user code calls one of the “wait” functions is also moved to
the suspended list. Additionally, the expected signal is stored inside the fiber
structure, and the fiber is added to a list of waiting fibers inside the waited
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object. When a fibers is retired or completed, its list of waiting fibers is
traversed and all fibers whose expected signal matches the current operation
are put back to the running list, with their wakeup code set to the constant
SCHED_WAKEUP_SIGNALED.

A special case is fibers which are waiting on a handle with a timeout.
These are put in the running list like normal running fibers, but a status
flag in the fibers structure indicates that it is in a waiting state. If the
object is signaled before the timeout elapses, the status is simply set back to
running. On the other hand, if the fiber is picked by the scheduler to be
run before its waited object is signaled, it is first removed from the waiting
list of said object, its status is set back to running, and its wakeup code is
set to the constant SCHED_WAKEUP_TIMEOUT.

Background jobs

The scheduler uses a thread pool to handle background jobs. The thread
pool consists of a queue of fibers, a mutex Mbg and a condition variable Cbg,
and a number of worker threads. In order for the job system to pass fibers
back to the main scheduler thread, the scheduler also has a message queue
protected by a mutexMm and a condition variable Cm. Sleeping in the main
scheduler loop is implemented by waiting on Cm, which allows the sleep to
be interrupted by the arrival of messages posted by the job system.

A call to sched_background() sets the status flag of the running
fiber to background, puts it in the suspended list, and yields back to the
scheduler. The scheduler then detects the status change, locks the mutex
Mbg, pushes the fiber in the job queue, signals the condition variable Cbg
and unlocks the mutex.

Worker threads mostly sit idle waiting on the condition variable Cbg.
When the condition variable is signaled, one worker thread wakes up, pops
a fiber off the queue and switches to it. It continues executing fibers until
there are no more fibers in the queue, at which points it goes back to sleep.
When a background fiber calls sched_foreground(), it yields back to
the main routine of the worker thread. This routine then locks Mm, puts a
message containing the fiber in the message queue, signals Cm and unlocks
Mm. This message will in turn be picked by the scheduler main loop, which
will put the fiber back to the running list.
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Buffered Actions

The goal of a computer music system or a multimedia show controller is
ultimately to output some data to the outside world in order to provoke
some action (e.g. audio samples to be converted into sound, or commands
sent to external synthesizers, etc.). The operators are most concerned by
the precise timing of the perceptible effects. However the system allows
specifying the dates at which computations must happen, which is only a
proxy for specifying the dates of actions: delay and jitter are induced by
computations leading to the output. As such, it is useful to distinguish code
that almost immediately result in an action (such as outputting an OSC
packet), from code that actually computes the data to be sent out (such
as computing the OSC parameters and formatting them into a well-formed
message). The first category should always be strictly scheduled with respect
to real time. Ideally, it should even be latency compensated to correct the
delay between each individual system’s output and its real-world effect. The
second category can (and should) be scheduled as soon as feasible, in order
to avoid delaying the actions that depend on their result.

The ability to make that distinction in the timing specification of the sys-
tem is what FORMULA calls action buffering (Anderson & Kuivila, 1990).
Processes in the system are executed ahead of time, and generate actions
that are buffered and only executed when the real time clock reaches their
due date. This prevents the timing variability of normal computation to
create hiccups and jitter in the timed sequence of actions, because a compu-
tation running a little longer than usual will still be done in time to generate
the desired action before its due date. However, the difference between the
real time clock and the ahead-of-time clock induces an input delay, since
inputs to the system can only modify the course of actions after the current
ahead-of-time date. Thus there is a tradeoff between the stability of the
output timings, and the reactivity of the system.

We explored the potential of action buffering in Quadrant by using a
root logical clock that ran as fast as possible within a fixed look-ahead real-
time window. Actions generated by internal computations were placed in
a special real time queue and served at the specified real-time date. Sleeps
only occur when the next event is outside the look-ahead window. The
resulting scheduler loop is given in Listing 4.3 (compare with the simpler
loop of Listing 4.2).
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START:
Get the next action and its delay from the action queue.
Store them in nextAction and actionDelay.

FOR EACH timescale:
Translate the date of the first event from logical time to clock-time.
Set nextFiber to point to the event with the earliest date.

Store the distance between the date of the selected event and the current
clock-time in fiberDelay.

Set nextEvent to nextFiber or nextAction, whichever comes first.

Compute how much time we can sleep before nextEvent.

IF nextEvent is a fiber:
Increase the look-ahead to reach the fiber date. We only need to sleep
if fiberDelay is outside the maximum look-ahead window.

ELSE:
nextEvent is an action, we need to sleep until we reach the action
real time due date.

Sleep during the amount of time computed above. The sleep can be
interrupted by an external message, e.g. to schedule new events.

Wakeup from the sleep. Advance the playheads over the duration slept,
applying the necessary time transformations. Decrease next action delay
by the time slept. Update the look-ahead depending on the time slept.

IF the sleep was interrupted by a message:
Handle this message.

ELSE:
IF nextEvent is an action:

Remove it from the queue and execute its callback.
ELSE:

nextEvent is a fiber, remove it from the queue and switch
execution to this fiber.

Go back to START.

Listing 4.3: Scheduler algorithm with buffered actions.

Although Quadrant’s current implementation only schedules code within
a single OS process, it is desirable to allow future synchronization of user
code across multiple processes and machines, effectively implementing a form
of distributed scheduling. In light of this objective, an additional nuance
has to be made regarding the nature of outputs: some messages represent
real outputs reaching outside the scheduler system, while others might be
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sent to remote parts of the (distributed) scheduler in order to influence its
operations. The first category should be handled as before. However the
second category shouldn’t be buffered, and should in fact be timestamped
with the logical, ahead-of-time clock, and sent as soon as possible.

A difficult problem arises when such an internal message is received by
a local system whose ahead-of-time clock is already past the timestamp of
the message. On the one hand, the system can overwrite the message’s
timestamp with the current date, at the cost of some internal inconsistency
that might render the scheduling much less predictable. On the other hand,
the system could prevent this situation from ever happening by mandating
such interacting sub-systems to always work in lock-step, but this could
create unnecessarily long latency chains, which would defeat the purpose
of action buffering. A third avenue to attack this problem, would be to
implement a form of selective backtracking when an old message that would
have changed the flow of the local scheduler is received.

Regardless of the possible solutions to the above problems, their common
flaw is to lock tradeoffs at a coarse grain level, without knowledge of the
“semantics” of scheduled events. However, it is not unusual that within the
same scenario, several strategies must be applied to deal with latency and
jitter depending on the intended effects of the events being generated. Some
events might need to be processed with very low latency, whereas some might
need tight synchronization. Some might rely on strict ordering whereas some
might be handled on a first-come first serve basis. Some might be ignored
altogether as soon as a new event comes in and over-rules previous events. It
might also well be the case that in most situations, where the granularity of
computational tasks is less than the accepted timing inaccuracy threshold,
buffering is completely unnecessary.

As such, our opinion is that dealing with latency and jitter is much better
left to ad-hoc, context-aware solutions. For that reason, we removed buffered
actions from Quadrant’s scheduler and stuck with the run loop shown in
Listing 4.2.



Chapter 5

Quadrant’s Temporal Language

Quadrant provides a custom language to specify temporal scenarios1. As
discussed in section 3.2, it is a non-textual language: although programs
source representations are mostly displayed as text, they are in fact trees of
cells containing tokenized data or user interface widgets.

Since the tree structure is rendered explicit by the editor, in the form
of indentations and parenthesis and through the use of s-expressions, the
appearance of the source is quite reminiscent of the Lisp programming lan-
guage. This is however the end of the similarity, since Quadrant has very
different characteristics than typical Lisp dialects. Indeed, Quadrant is an
imperative, statically typed language with (mostly) unmanaged memory. It
has built-in cooperative concurrency and temporal primitives based on fibers.
It is compiled to a bytecode run by a virtual machine. Since the language is
statically typed, values are unboxed and memory layouts are known ahead
of time, which means that the virtual machine can be fairly lightweight.

We first describe the basic programming constructs of the language (sec-
tion 5.1), before describing its temporal features (section 5.2).

1Throughout the remainder of this work, we may simply refer to it as “Quadrant”, as
it should be clear from context if we are referring to the language or to the environment
as a whole.

88
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5.1 Basic Constructs

5.1.1 Variables and Expressions

The following form declares a variable name with type typeSpec is the
current scope, and initializes it with the expression initExpr:

(var name typeSpec initExpr)

A variable can be assigned a new value of its type using the set form:

(set name val)

Common operators can be used in prefix notation to compute numeric
or boolean expressions, such as

(and foo (< bar (* 3.2 baz)))

5.1.2 Control Flow

Quadrant has the usual basic control flow constructs like if conditionals,
for and while loops, and lexical scoping with a do form:

(if condition
branchIfTrue
branchIfFalse)

(for initStatement
conditionExpression
iterationExpression

body)

(while condition
body)

(do
body)
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5.1.3 Named Types

A named type can be defined by associating a name to a type specification,
using the form:

(type typeName typeSpec)

where typeName is an identifier and typeSpec is a type specification.
Quadrant predefines a number of primitive named types:

• A empty type, void.

• Sized unsigned integers u8, u16, u32, u64.

• Sized signed integers i8, i16, i32, i64.

• Floating point numbers f32 and f64.

• Boolean b8.

• An boxed type, any.

A type specification can be a named type or a compound type specifica-
tion using one of the following type constructors: array, slice, struct,
ptr, or future.

5.1.4 Arrays and Slices

An array is fixed-size container of contiguous elements of the same type. An
array type is specified using this form:

(array count typeSpec)

A slice is a reference to a contiguous range of elements of an array. Its
number of elements need not be known at compile time. Its type is specified
using this form:

(slice typeSpec)

Slices can be made from an array or another slice by specifying an index
range with an inclusive low bound and an exclusive high bound:
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(slice low high arrayOrSlice)

Array and slices elements can be accessed by index with the at form:

(at index arrayOrSlice)

The element count of an array or slice can be accessed with the len
form:

(len arrayOrSlice)

5.1.5 Structures

A structure is a collection of named fields, each with their own type. A
struct type is specified using the form

(struct
name1 typeSpec1
name2 typeSpec2
...)

5.1.6 Pointers

A pointer is an address of a value of a given type. A pointer type is specified
using the form:

(ptr typeSpec)

The ref form takes the address of an addressable operand (e.g. a vari-
able, a structure field, or an array element). The unref form allows access-
ing a pointer’s underlying value:

(ref addressableOperand)
(unref pointer)



CHAPTER 5. QUADRANT’S TEMPORAL LANGUAGE 92

5.1.7 Conversions

Literal numeric values are either integers or floating point and use the largest
representation (i.e. u64 or f64). Literal arithmetic expressions (i.e. expres-
sion only involving literal values) can be implicitly cast in the following cases:

• The destination type is a size variant of the source type.

• The source type is an integer type and the destination type is a floating-
point type.

Numeric values are implicitly converted to boolean in some constructs
(such as conditions of branches and loops), where the 0 value is converted
to false and non-zero values are converted to true.

Other values and types require an explicit cast:

(cast typeSpec expr)

This converts the operand expr to type typeSpec. The following con-
versions are valid:

• Casting numeric values to other numeric values. Downcasts (from
larger to smaller variant) may overflow. Casts between same size signed
and unsigned values keep the bit-level representation unchanged (i.e.
values may wrap around). Floating point to integer casts are truncat-
ing.

• Casting between different pointer types. The pointed address remains
unchanged.

The type of arithmetic operations is determined by the type of their
operands. If operands are not of the same type, and one is literal, the
checker attempts to perform an implicit cast of the literal operand to the
other operand’s type. If both operands are literal and both are integers or
both are floating point, the checker attempts to perform an implicit cast to
the largest variant one. If one is an integer and one is a floating point, the
conversion is performed on the integer operand towards the floating point
type.

5.1.8 Any Type

The type specification any can be used for boxed values. Any value can be
implicitly cast to a value of type any. This effectively creates a boxed copy



CHAPTER 5. QUADRANT’S TEMPORAL LANGUAGE 93

of the cast value. The compiler generate runtime type information for the
effective type of the any value, which can be queried with an internal API.
This is essentially used to pass boxed values to foreign code that needs this
type information, such as type-generic logging routines.

5.1.9 Procedures

Procedures can be defined using the def form:

(def procName (param1 typeSpec1
param2 typeSpec2
...
-> returnTypeSpec)

body)

A procedure returns values using the return form:

(return val)

The type of val must be consistent with the return type specification of the
procedure definition.

A procedure is called using its name followed by arguments:

(procName arg1 arg2 ...)

5.1.10 Variadic Procedures

Typed variadic procedures can be defined using the varg parameter speci-
fier:

(def procName (param1 typeSpec1
param2 typeSpec2
...
paramN (varg typeSpecN)
-> returnTypeSpec

body)

Inside the body of the procedure, paramN is typed as a slice of type
typeSpecN. At call sites, the parameter paramN can be passed 0 or more
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arguments of type typeSpecN. These arguments are collected into a slice
that is passed to the procedure.

5.1.11 Polymorphic Procedures

Quadrant supports generic procedures, i.e. procedures that can be applied to
different types2. Generic types are denoted by polymorphic identifier, which
are identifiers prefixed by the $ character. When a polymorphic procedure
is called, polymorphic identifiers are assigned a concrete type, as we detail
below. For each polymorphic procedure, a unique variant is instantiated for
each set of concrete types with which it is called. Call sites are redirected to
the correctly typed variant.

Implicit Polymorphism

Procedures can have polymorphic parameter types. A procedure parame-
ter has a polymorphic type if its type specification contains one or more
polymorphic identifiers. Polymorphic identifiers declared in the procedure
parameter list can then be used in the return type specification and in the
procedure’s body.

(def sort (s (slice $T) -> (slice $T))
// sort s using elements of type $T
...)

Call arguments’ types are matched against polymorphic parameter types,
and match results are assigned to the polymorphic identifiers. For instance,
calling the above procedure it with an argument s of type i32 would fail as
i32 isn’t a slice type. Called it with an argument s of type (slice i32)
would succeed and assign type i32 to the polymorphic identifier $T.

Explicit Polymorphism

Procedures can also have explicit type parameters, which are parameters
whose name is a polymorphic identifier and whose type specification is the
keyword typeid. Type parameter names can then be used in the return
type specification and in the procedure’s body.

2Variadic and Polymorphic procedures are also covered in this video: https://youtu.
be/AmO9hczGkYU.

https://youtu.be/AmO9hczGkYU
https://youtu.be/AmO9hczGkYU
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(def alloc ($T typeid -> (ptr $T))
// allocate an element of type $T
...)

When calling the procedure, a type specification must be explicitly passed
to each type parameter. This type specification is then assigned to the type
parameter polymorphic identifier. For instance, one can the above procedure
to allocate memory for value of type FooType and store the result in a
pointer foo as follows:

(var foo (ptr FooType) (alloc FooType))

This would assign type FooType to polymorphic identifier $T for this
instantiation of procedure foo.

5.1.12 Module System

AQuadrant program can consist of multiple modules3 that can reference each
other’s definitions. During checking, each module has a checking context,
which consists of the symbols it can access. By default, the checking context
is populated with the symbols defined in this module. The import directive
can be used to imports the top-level symbols of another module into the
local checking context.

(import moduleName)

moduleName is an identifier designating the module to import. Quad-
rant will try to find a file named moduleName.ql, load that file and check
it.

Users select amain module, where the checking process begins. Imported
modules are checked before the local definitions of the importing module, in
the order of appearance of import directives. Modules are checked once and
cached in case they’re imported multiple times. Cyclic imports are forbidden
and result in a checking error.

3Modules currently map to single files, but could be extended to map to several files.
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Name Spaces

Symbols are imported under a given name space, which is by default the
name of the imported module. These symbols can then be accessed in the
importing module by prefixing them with the name space followed by a colon.

(moduleName:someProcedure x y z)

The name space can be changed using the @(as) attribute as follow:

(import moduleName @(as nameSpace))

Import paths

When importing a module Quadrant first looks for the module file in the
same directory as the main module. If the imported module is not found
there, it looks for the file in a list of predefined global search paths.

5.1.13 Foreign Blocks

A foreign block is used to import procedures from a foreign library (e.g.
written in C). It uses the following form:

(foreign "Name"
proc1
proc2
...)

The foreign block imports the library from the file named libName.dylib
and loads each of the declared procedures proc1, proc2, etc. from the li-
brary. Each foreign procedure declaration in a foreign block has the form:

(def procName (param1 typeSpec1
param2 typeSpec2
...))
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The attribute @(linkname symbol) can be used after a foreign proce-
dure name to use a different symbol than procName to lookup the procedure
in the library.

Quadrant uses the same search paths as for modules to look for the library
file. The special string "_runtime_" can be used to import symbols from
the Quadrant executable itself. This is used to import internal Quadrant
APIs to interact with the virtual machine, such as the memory allocation
routines or the synchronization APIs.

5.2 Temporal Features

Quadrant provides dedicated temporal constructs and built-in instructions
to create and manage concurrent tasks and control their scheduling according
to the temporal model described in chapter 4.

5.2.1 Pause

A task can request to be paused for a given duration and yield to the sched-
uler using the pause instruction:

(pause duration)

where duration is a numeric value specifying the duration of the pause in
the symbolic timeframe of the current task.

5.2.2 Standby

The (standby) instruction suspends the execution of the current task and
informs the editor to show a pulsing standby icon in front of the instruction
and its callers. The user can put the cursor in front of a standby instruction
and hit a keyboard shortcut to resume the suspended task.

5.2.3 Flow and Futures

The flow form launches a new task to execute its body, and yields to the
scheduler.

(flow
body)
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A flow block can refer to variables from its outer scopes. In this case, it
captures those variables, and the activation frames in which these variables
live are kept valid at least until the block ends or returns.

The @(tempo) attribute can be used right after the flow keyword to
attach a time transformation to the flow. The attribute’s parameter should
be a #tempo_curve token4. The tempo curve is then used to map the
timeframe of the task running the flow block statements to and from its
parent task’s timeframe.

(flow @(tempo #tempo_curve)
...)

A flow block may contain return statements, which must all be of
the same type. Otherwise it is considered to return void after the last
statement.

In the calling task, the flow form evaluates to a future, which is a typed
handle to the new task concurrently executing the flow statements. The
type specification of a future is:

(future typeSpec)

where typeSpec is the specification of the type returned by the flow block.

The wait form suspends the current task until a given flow block re-
turns. The calling task is then resumed and the wait form evaluates to the
value returned by the flow block.

(wait someFuture)

The timeout form suspends the current task until a given flow block
returns, or a given local timeout expires, whichever is the earliest. It evalu-
ates to a boolean value which is true if the flow block has returned.

(timeout someFuture maxDuration)

4Although this is currently the only accepted parameter to the tempo attribute, this
construct makes provision for passing other expressions as tempo specifications (e.g. a
scalar tempo or a curve variable).
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wait and timeout forms can use the @(recursive) attribute to re-
cursively wait for a flow block and all the flow blocks it launched to have
returned.

Tasks are reference-counted to keep the associated data alive after the
task has terminated, for instance to retrieve the returned value. wait and
timeout forms automatically decrement that reference count if a result is
returned. However, programmers can explicitly manage task’s lifetimes by
using the fdup, which creates of copy of a future and increments the refer-
ence count of the underlying task, and the fdrop form, which decrements
the reference count.

(fdup someFuture)
(fdrop someFuture)

5.2.4 Background Pool

The (background) form pulls the current task out of the temporal schedul-
ing pool and puts it in a background thread pool. It continues to execute the
children statements of the background block without blocking other tasks,
until it reaches the end of the block, at which point the task is moved back in
the temporal scheduling pool. It is an error to call other temporal primitives
while in the background pool.

5.2.5 Phase Synchronization

The phase synchronization features (section 4.4) can be accessed through
the sync module. This module exposes procedures to get the current task’s
position, parent’s time, and tempo, and allows tracking an external synchro-
nization source using the sync:beat procedure:

(import sync)
...
(sync:beat sourcePos sourceTempo)

This procedure steers the calling task to catch-up with a process currently
executing position sourcePos with tempo sourceTempo.

The catch-up duration is currently proportional to the offset between the
calling task’s current position and sourcePos. The alignment date at the
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end of the catch-up is inferred from sourcePos by assuming sourceTempo
stays constant. Future finer models could infer a variable tempo, taking into
account the history of past calls to sync:beat.

5.3 Example Program

This section presents a small example program that generates polyphonic
random walks in a pentatonic scale to pilot a windpipes synthesizer. It was
used in a presentation of Quadrant given at the Sound and Music Computing
Conference 20225.

Figure 5.1 shows imports and helper procedures that are used by the sce-
nario. The program first imports packages used to manage memory, serialize
OSC messages and send them as a UDP packet.

The prngState local variable and the prng procedure define a simple
pseudo-random number generator. It is used in the nextNote procedure
to select a displacement from the dispTable slice. That displacement is
used to move from the current note, described by the state argument, to
the next note, using a pentatonic scale specified by the scale slice.

The playNote procedure generates a note using the nextNote proce-
dures, builds an “note on” OSC message, and sends it to the synthesizer. It
then pauses for the duration of the note, builds an “note off” OSC message
and send its to the synthesizer.

Figure 5.2 shows the entry point of the program. First the start proce-
dure opens a socket to send UDP messages to the synthesizer and initializes
the backing memory for the OSC messages. It then creates a main flow,
that creates two children, each corresponding to a voice. Each voice walks
its random note sequence in a specified octave range, by repeatedly calling
playNote in a loop. The main flow waits for the two futures of its children,
and the start procedure waits for the main flow. The main flow also has a
tempo attributes, which controls the playback tempo of both voices.

5The recording of this presentation can be seen here: https://www.youtube.com/
watch?v=6nC2M3NwDe8.

https://www.youtube.com/watch?v=6nC2M3NwDe8
https://www.youtube.com/watch?v=6nC2M3NwDe8
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Figure 5.1: Quadrant demo program - helpers procedures
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Figure 5.2: Quadrant demo program - entry point



Chapter 6

Compiler and Runtime
Implementation

Temporal scenarios written in the Quadrant editor are compiled to a byte-
code representation, and run in a virtual machine. The execution generates
feedback data that is used to monitor the progression of the scenario inside
the editor.

We describe the compiler pipeline in section 6.1. We then cover the
implementation of the virtual machine in section 6.2. Finally, in section 6.3,
we explain the execution tracking mechanisms, and how this information is
used to implement various live monitoring indicators.

6.1 Compiler Pipeline

Modules are processed by several pipelined stages to produce a program that
can be executed by the virtual machine (Figure 6.1).

• The parsing stage syntactically validates cell trees and produce an
untyped abstract syntax tree.

• The checking stage checks types and symbols, producing a typed in-
termediate representation along with symbol tables.

• The generating stage lays out types and variables, and assembles mod-
ules into an bytecode image that can be loaded by the virtual machine.

103
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Figure 6.1: Quadrant Pipeline

6.1.1 Modules Handling

Quadrant programs are made of modules, which currently correspond to one
cell tree. From an implementation point of view, each module is a bundle of
resources that include code representations at each stage of the pipeline (i.e.
a module “contains” the cell tree, as well as the abstract syntax tree and the
intermediate representation associated with it).

The workspace is a container that holds modules currently loaded in the
editor, as well as modules loaded as a result of the execution of an import
directive during a prior compilation cycle. Modules can be backed by files
or be transient modules, only existing in the workspace.

The user can select a “main” module, which is the module where checking
starts, recursively loading all imported modules into the workspace. The
workspace maintains a build list, which is a list of all modules used in the
current program. When a module is edited, it is re-parsed in order to provide
up-to-date syntactic information to the editor (e.g. for auto-layout or syntax
highlighting). If that module is in the build list, the program is then re-
checked, and if there is no errors, a new image is generated.

6.1.2 Parser

The first stage consists of a hand-written recursive descent parser operating
on cell trees, defined in parser.cpp1. The parser traverses cells hierarchies,
checks the syntactical soundness of the forms defined by the language and
produces an abstract syntax tree.

The parser is “forgiving”, in the sense that it will generate placeholders or
error nodes for constructs that are absent or faulty, in a form that still allows

1https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/parser.cpp

https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/parser.cpp
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further processing of the code. The error nodes also record what construction
was expected at this location, in order for the editor to generate placeholder
cells and auto-completion suggestions.

The parser also updates each cell it traverses to point to its resulting
AST node, if any. This association is used by the editor to query syntactic
properties of cells, in order to perform auto-layout and syntax highlighting.

6.1.3 Checker

The checker is defined in checker.cpp2. It traverses and type checks the
abstract syntax tree to create an intermediate representation of the module’s
code, as well as symbol scopes. A symbol scope is a hash maps of symbols
associated to a lexical scope of the program. A symbol refers to an entity
such as a variable, a procedure, a type definition, or an imported module.

Checking Order

Due to module imports, the parsing and checking stages are actually inter-
twined. A module is processed in the following order:

• The module is first parsed.

• For each import directive in the AST, the associated modules are
loaded and processed.

• The rest of the AST is then checked.

The compiler starts this recursive process at the main module, which is
a module selected by the user as the “root” of their program.

Checking inside each module happens in that order:

• The checker first checks type definitions and registers symbols for them
in the global scope.

• It then checks signatures of foreign procedure declarations and registers
procedure symbols for them in the global scope.

• Next, global variables are checked and registered in the global scope.

• Finally procedures are checked:
2https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/checker.cpp

https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/checker.cpp
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– Procedure signatures are checked first, and procedure symbols are
created.

– Bodies of non polymorphic procedures are checked and attached
to the procedure’s symbol.

This process is driven by the parse_and_check_recursive() pro-
cedure found in workspace.cpp3.

Polymorphic Procedures Instantiation

As well as checking code, the checker is responsible for generating concrete
procedure instances from polymorphic procedures and arguments concrete
types. Polymorphic procedures’ symbols are created normally as part of
checking all procedure’s definitions, but only the signature is checked. The
procedure symbol is associated with the body’s untyped abstract syntax tree.

When a call to a polymorphic procedure is encountered, the checker calls
a pattern-matching function to map each polymorphic identifier used in the
procedure’s signature to a concrete type. The checker then looks for an
existing instance of the polymorphic procedure with the same list of bindings.
If it is not found, a new instance symbol is created and the body is checked
using the bindings’ concrete types in place of the polymorphic identifiers.
The call is then bound to the found or newly instantiated procedure symbol.

Checking Flow Blocks

Flow blocks create an anonymous procedure symbol. The return type of the
block is inferred and wrapped in a future type. The block is checked as
the procedure’s body, and the invocation site of the flow block in its parent
procedure is replace by a task call instruction referencing the anonymous
procedure.

If the flow block uses a local symbol from its parent procedure, that
procedure is marked as captured. A capture pointer symbol is created in
the the flow’s scope, pointing to the captured symbol (which can itself be a
capture pointer, etc.). Eventually the chain of capture pointers leads to the
captured variable. All capture pointer variables are kept in a list to allow
the generator to output code to store the address of the original variable in
the capture reference variable when entering the task’s procedure.

3https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/workspace.
cpp

https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/workspace.cpp
https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/workspace.cpp


CHAPTER 6. COMPILER AND RUNTIME IMPLEMENTATION 107

Checking Tempo Curve Editors

The checker automatically registers a few built-in types representing the
layout of the curve structure in memory. In order to be able to modify the
memory representation of a tempo curve while the program is running4, the
checker actually creates two symbols when checking a curve editor:

• An anonymous global variable is created to hold a pointer to the curve
data.

• A widget symbol is created to refer to both the curve editor and the
global pointer.

These two symbols are used later by the generator and the runtime to
allow updating the curve data while running (see subsubsection 6.1.4 and
subsection 6.3.4). The checker then creates an intermediate representation
node for the anonymous curve pointer and returns it to the parent expression.

Errors Logs

The parser and the checker also produce an error log, with each error at-
tached to the range of cells from which it originates. This error log is used
by the editor to draw error underlines and display a pop-up panel with error
messages when the cursor is positioned on a faulty cell.

6.1.4 Generator

When the program has been successfully parsed and checked, the genera-
tor, defined in generator.cpp5, uses the intermediate representation to
generate a serialized representation which can be loaded and executed by
the virtual machine. The program image produced by the code generator
contains several sections:

• foreign table: this section contains a list of foreign libraries to
load and symbols to import from those libraries.

4Currently the time transformation specified by a tempo curve is applied when the
associated task starts. Allowing the tempo curve to change while the task is running is
possible, but creates a discrepancy between the actual (time, position) coordinates of the
task and those same coordinates according to the tempo curve. This discrepancy could
be resolved by silently offsetting either the tempo curve or the current task’s position so
that those coordinates match, as we do for catch-up curves.

5https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/generator.cpp

https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/generator.cpp
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• rodata: this section contains static data such as string literals or
runtime type informations.

• bss: this 8 bytes integer stores the size of the bss section, which is a
zero-initialized section of the runtime program’s memory.

• widgets: this section contains static data for editor widgets such as
tempo curves.

• code: this section contains the bytecode of the program’s procedures.

• modules: this section contains module names.

• locations: this section contains location entries, which associate
bytecode offsets to module indices and cells identifiers.

• target blocks: this section contains block entries, which associate
target offsets to a start and end code location. These are used by the
editor to highlight portions of the source when they are executed by
the virtual machine

The generator first first generates static data and runtime type informa-
tion for types that are involved in boxing operations. Finally, it generates
procedures bytecode, allocating local variables addresses inside the proce-
dure’s stack frame according to their size and alignment.

Types Memory Layout

Types memory layout are actually computed beforehand during checking.
The generator then lays out variables in their respective stack frames using
the types’ sizes and alignments. Memory layout follows a set of alignment
and padding rules:

• Primitive types are aligned on their size.

• Compound types are aligned on the largest alignment of all their mem-
bers.

• Compound types members are laid out in the order of declaration,
starting at offset 0.

• Compound types are padded to fit in the smallest possible multiple of
their alignment.
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These match the alignment rules of common C compilers6, which makes
it easier to pass objects to and from foreign code.

Generating Flow Blocks

Flow blocks are generated as a call to an anonymous procedure, but use a
task_call instruction instead of a call instruction. The flow’s anony-
mous procedure itself is generated as a normal procedure, except for a pream-
ble that is in charge of setting up pointers to the variables captured by the
flow.

For each captured variable, the generator pushes the address of the cap-
ture pointer, and emits a capture instruction with two immediates, namely
the number of frames to climb back in the call stack to find the captured
variables, and the offset of the captured variable in its stack frame. It then
emit a store instruction to store the address of the captured variable in
the local capture pointer.

Regular procedures whose stack frame can be captured by a flow block
are also called using the task_call instruction, and are treated much like
flows from the runtime’s point of view. This is to allow these procedures to
outlive their caller while their stack frame is being capture by a child flow.

Generating Tempo Curves

When a flow block has a tempo attribute, the generator first pushes the
task instruction, then pushes a dup instruction to duplicate the task handle
produced by the task instruction. The generator then pushes the address of
the tempo curve’s global pointer, followed by a tempo instruction. This will
instruct the virtual machine to apply the tempo curve to the newly created
task. The curve data itself is serialized and added to the widgets section
of the program image.

6Although the C specification doesn’t mandate these rules as such, and compiler at-
tributes can modify these rules, they naturally arise from the constraints of aligning mem-
ory accesses and minimizing structures size.
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6.2 Virtual Machine

The virtual machine of Quadrant is a fairly simple stack machine whose
design draws some inspiration from the Quake III Arena VM by Id Software7.
The bytecode format is defined in bytecode.h8 and the virtual machine’s
operations are defined in vm.cpp9.

6.2.1 Instructions Encoding

Code is segregated from program data. Instructions consists of a one byte
opcode, followed by zero to three immediate operands. The size of each
operand is encoded in the opcode and can be 1, 2, 4, or 8 bytes. Along with
standard operations such as loads and stores, arithmetics, comparisons, logic,
conversions, and jumps, the instruction set includes specialized opcodes to
manage tasks and control time flow.

6.2.2 Program Loading

Upon launching the virtual machine, the following steps are performed:

• The loader traverses the foreign table and loads the required libraries.
For each library, it imports procedures symbols and prepares the for-
eign function interfaces needed to call them.

• The loader copies the rodata section into VM’s memory and allocate
and zero-initializes the bss section.

• The loader allocates memory in the VM heap for widgets structures,
copies static widgets data, and sets widgets global pointers to point to
their respective heap-allocated representations. It also builds a widget
map linking the module index and cell identifier of each widget to the
address of its global pointer.

• The editor builds a map of source locations and target blocks keyed by
bytecode offsets.

7https://github.com/id-Software/Quake-III-Arena/blob/master/code/qcommon/
vm_interpreted.c

8https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/bytecode.h
9https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/vm.cpp

https://github.com/id-Software/Quake-III-Arena/blob/master/code/qcommon/vm_interpreted.c
https://github.com/id-Software/Quake-III-Arena/blob/master/code/qcommon/vm_interpreted.c
https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/bytecode.h
https://forge-2.ircam.fr/fouilleul/thesis_quadrant/-/blob/master/src/vm.cpp
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6.2.3 Address Space Layout

Tasks share the same linear address space, which is reserved through the op-
erating system’s virtual memory API at load-time and committed as needed
on a page-by-page basis. Data loads and stores are confined to this fixed, con-
tiguous region of memory, which is divided in several sections (Figure 6.2):

• rodata: this section is initialized at VM load-time with the static
program data generated by the compiler pipeline, such as string literals
and tempo curve descriptors.

• bss: this section is initialized to zero at VM load-time, and holds the
program’s global variables.

• stack pool: this uninitialized section is used to allocate fixed-size
stacks for the tasks, using a pool allocator.

• heap: this uninitialized section is used to allocate objects of different
sizes and lifetimes using a general purpose allocator. In the current
implementation we use dlmalloc (Lee, 1996), which allows allocating
from a user-specified memory block (using its mspace API).

Figure 6.2: Quadrant Address Space Layout

6.2.4 Task Structure

The runtime counterpart of a flow (a language-level concept) is an entity
called a task. Each task is executed by the virtual machine in its own sched-
uler fiber (see section 4.5). When a task execution reaches a suspending
instruction such as a pause or wait, its fiber yields to the scheduler, which
then picks the next fiber (and thus the next task) to resume.
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The runtime keeps track of tasks with a list of vm_task structures allo-
cated from a dedicated pool. A generational index maps future values to
vm_task structures. A vm_task structure holds the task’s scheduling data
and registers. It also has a slot to hold the return value of the task. If the
task returns a structure, this slot holds a pointer to the return value, which
is allocated on the heap.

In addition to the task structure, the runtime also allocates a fixed size
block from the stack pool for each task. This block is further split into
two stacks: an operand stack, and a control stack.

For each task the runtime maintains two reference counts: the number of
future objects used to reference that task, as counted by fdup and fdrop

forms, and the number of other active tasks capturing that task’s control
stack. When the number of captures drops to zero, the task’s stacks can be
recycled by the stack pool. When the active future count drops to zero,
the memory allocated to hold the return value (if any) can be released to
the heap. When both counts drop to zero, the runtime can recycle the task
structure.

6.2.5 Registers and Stacks

Each task has the following set of registers:

• ip (instruction pointer): this register points to the next instruction to
execute.

• osp (operand stack pointer): this register points to the top of the
operand stack.

• csp (control stack pointer): this register points to the top of the control
stack.

• bp (frame base pointer): this register points to the base of the current
activation frame.

• sr (status register): this register holds status flags used by comparison
and conditional jumps.

The operand stack consists of 8-byte aligned operands. Instructions that
push or pop values of smaller size respectively zero-extend or mask those
values.
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The control stack consists of activation frames that contain the local
variables of the task’s active procedures (Figure 6.3). After the local vari-
ables, two 8-byte slots are reserved to store the bp and ip registers when
calling a procedure. The marshalling zone after these slots corresponds to
the location of the local variables in the next activation frame, and is used
for passing arguments to procedures and new tasks.

Figure 6.3: Control Stack Layout

6.2.6 Calling Convention

Regular Procedure Calls

When calling a procedure, the generator outputs opcodes to evaluate argu-
ments on the operand stack, and then move them to the marshalling zone. If
the procedure returns a structure, a return pointer is generated and passed
as a hidden first argument. The call opcode itself copies the current frame
base pointer and the instruction pointer to their respective slots at the end
of the frame, then jumps to the address of the procedure. The procedure’s
code starts with a enter opcode that adjusts the bp and csp registers to
the new activation frame.

Task Calls

A new task is created either for a flow block or for a regular procedure
whose frame is captured by flow blocks. If necessary, the generator inserts
an opcode to allocate memory for the return value prior to the call. The
arguments are then evaluated and collected to the marshalling zone the same
way as a normal call. The task opcode then creates a child task. It allocates
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a new operand and control stacks for that task and copies the arguments from
the marshalling zone to the control stack of the new task. It then creates a
future value for the new task and puts it on the caller’s operand stack. The
virtual machine also creates a new native fiber to run the task, and allocates
a native stack for that fiber. The caller then yields to the scheduler to pass
execution to the new fiber.

In case the task had a tempo attribute, a dup instruction will first du-
plicate the new task’s future at the top of the operands stack. The curve’s
global pointer address is then pushed to the operand stack. The tempo
instruction then dereferences the pointer to get the curve data address, and
applies the tempo curve to the task.

Returns

Upon return, the csp register is reset to the bp register. If the csp register
then points to the base of the control stack, the VM pops the return value
from the operand stack, stores it in the task’s structure return field, and
terminates the task. Otherwise, the previous bp and ip registers are popped
from the control stack, which will return to the caller with the return value
still on top of the operand stack.

Foreign Calls

The generator associates an integer index to each foreign procedures, and
generates a listing of foreign dependencies and symbols, including type in-
formation describing each procedure’s interface. At load time, the VM loads
foreign libraries and symbols, and prepares the data structures used by the
underlying FFI library (libffi10) into an array.

A foreign call starts by the same argument evaluation sequence as reg-
ular calls. The ffi_call opcode then populates an argument buffer with
pointers to the arguments inside the marshalling zone, obtains the FFI data
using the procedure index, and uses the FFI API to make the call.

6.3 Execution Monitoring and Control

Execution monitoring is achieved by running the virtual machine and the
editor in separate threads and have them communicate via message passing

10https://github.com/libffi/libffi

https://github.com/libffi/libffi
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using a pair of wait-free ring buffers. The control buffer is used to pass
commands from the editor to the virtual machine, and the feedback buffer
is used to pass feedback informations from the virtual machine to the editor.

6.3.1 Execution Blocks

An execution block is a contiguous, uninterrupted block of bytecode (i.e.
containing no jumps and yields) that maps to a contiguous range of cells.
The generator produces a table pairing the start offsets of execution blocks
to the range of cells they originate from. When loading the program, the
editor processes this table to produce a map for fast retrieval of cell ranges
from bytecode offsets.

When executing a jump or a yielding instruction, the virtual machine
sends a trace message to the editor, containing the target offset of the
jump. The editor then uses the blocks map lookup the corresponding range
of executed cells, and displays a flashing background behind those cells.

Execution may fall back from one execution block to another without
a jump or yielding instruction. This is e.g. the case when joining from the
false branch of an if form to the next execution block. It can also happen
when the generator reorders instructions compared to how they appear in the
source. In these cases, the generator inserts a trace opcode at the beginning
of the second execution block, which explicitly instructs the virtual machine
to emit a trace message.

6.3.2 Progress Reports

The scheduler runs a special fiber called vm_progress_report_task()
at a fixed frequency to monitor the progress of runtime tasks.

For each such task, the monitoring fiber collects a call stack by walking
back the task’s control stack and recording the saved instruction pointer for
each stack frame (which corresponds to the the bytecode offset immediately
following the call-site for that frame). The monitoring fiber forms progress
message containing the status of the task, the time remaining, and the call
stack, and sends it to the editor. The editor then uses the code map to
display progress wheels, spinning wheels or standby icons next to all call
sites along the call stack of a suspended task.
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6.3.3 Standby Triggers

When the cursor is inside or on the left of a standby form, and the user hits
the Ctrl+Space shortcut, the editor uses the code map to send a trigger

message with the bytecode offset corresponding to the standby form to
the virtual machine. The virtual machine then resumes every task that is
on standby at that particular bytecode location. This provides a way to
manually pace the progress of the scenario from within the editor.

6.3.4 Updating Tempo Curves

When a tempo curve is modified in a curve editor while the scenario is run-
ning, the editor sends an update_tempo message containing the serialized
curve data, along with the module index and cell index of the editor, to the
runtime. Upon receiving this message, the runtime uses the widget map to
get the global pointer of the curve. It then frees the memory allocated to
the old curve, and allocates a new block of memory to hold the new curve
data. The runtime curve representation is deserialized into this new block.
Finally, the curve’s global pointer is updated to point to the new block.

6.4 Conclusion

We described the architecture of the compiler pipeline and some aspects of
its implementation. We then explained how the runtime executes compiled
programs. We finally detailed the feedback mechanisms which allow live
monitoring inside the editor.

Currently, the whole program is re-parsed and re-checked when a modi-
fication is done (with the exception of curve editors). This isn’t a problem
for moderately sized programs, because the absence of a lexing pass and the
simplicity of the language grammar and type system allow sufficiently fast
compilation times. However, the structured nature of program representa-
tion could enable fine grained incremental compilation (for instance, directly
at the form level). This would allow larger scenarios to be edited with the
same immediate semantics-aware feedback as smaller ones.

Incremental compilation would also open the way to hot patching running
scenarios. Hot patching could be done easily at the procedure level, by
appending the byte code for the new version of a procedure at the end of the
byte code section, and overwriting the start of the old version with a jump to
the new version. This is sufficient for procedures that execute atomically, but
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can lead to unexpected behaviour for long-lived tasks that get suspended and
resumed, since the new version is executed only the next time the procedure
is entered.

Patching smaller grained areas, such as execution blocks, may be tractable
in the same way but raise issues regarding the consistency of the procedure’s
stack frame layout. For instance, inserting a variable declaration at the be-
ginning of the procedure should impact all variable address computations in
subsequent execution blocks. A dependency analysis could determine which
blocks need to be re-generated, but the old stack frame would also need to
be marshalled into the new layout. This would require an understanding
of high-level data semantics to be baked in the runtime: for instance, the
patching mechanism would need to know if a given variable holds a pointer
to another variable in the frame, in order to patch it. Variable captures only
complicate this picture.

Hot patching at either procedure or basic execution block level, or even
at the module level, raise the same issue regarding the consistency of global
data addressing. Additionally, it is unclear how a change in a data type
definition should be handled with regards to existing variables of this type
(e.g. should added fields be initialized to a default value? should renamed
fields loose or preserve their value? etc.).

We didn’t tackled these challenges in this work, but hot patching would
obviously be a keystone in allowing a really tight feedback loop during cre-
ation and rehearsal of temporal scenarios. It would also open up the en-
vironment to live coding use cases. However, we must acknowledge that
combining the conflicting requirements of live coding with those of a stati-
cally typed language compiled to a low-level virtual machine, may require a
reassessment of the design decisions underpinning Quadrant’s architecture.
This is of course an important avenue for future work.



Chapter 7

Surrounding Infrastructure

In order to produce actions impacting the show, such as dimming a light
or playing a sound, Quadrant must be able to connect and communicate
with various devices and software. In this chapter we discuss our work on
some components of a distributed temporal interaction infrastructure. These
are not all part of Quadrant per se, but are meant to form the basis of a
surrounding ecosystem aimed at easing the orchestration of the multiple
software and technical artifacts used in live performances and installations.

We first describe the core modules currently available in Quadrant, and
detail the workings of some of them (section 7.1). We then detail the external
services composing our early interaction ecosystem. These include a service
discovery agent (section 7.2), a leader election protocol (section 7.3), and a
clock synchronization service (section 7.4). Finally, we present an artistic
application of these components, that was conducted to inform and drive
their development (section 7.5).

7.1 Core Modules

Quadrant currently comes with several “core” modules, that can be seen as
the embryo of a standard library.

• The mem module implements memory allocators.

• The strings module provides helpers for manipulating strings.

• The fmt module provides a formatted logging API.

118
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• The net module gives access to network sockets.

• The osc module allows composing and parsing OSC messages.

• The sync module wraps the internal phase synchronization API of
Quadrant’s scheduler.

We detail some of these modules below.

7.1.1 Memory

The mem module provides memory allocators. It imports two foreign proce-
dures from the runtime, qvm_alloc() and qvm_free(), that respectively
allocate and free memory from the virtual machine heap, using dlmalloc.

On top of this internal API, the module provides typed allocation helpers
for single objects and slice allocations, taking advantage of Quadrant’s ex-
plicit polymorphic procedures (Listing 7.1).

(def alloc (size u64 -> (ptr u8)))
(def free (ptr u8))
(def alloc_obj ($T typeid -> (ptr $T)))
(def free_obj (ptr $T))
(def alloc_slice (count u64 $T typeid -> (slice $T)))
(def free_slice (s (slice $T)))

Listing 7.1: Typed object and slice allocators.

The module also provides an API to create and allocate from memory
arenas1 (Listing 7.2).

7.1.2 OSC

The osc module implements procedures for composing and parsing OSC
messages.

Data Interchange Discussion

Although we settled on OSC as a first data interchange format to implement,
several formats where considered:

1An arena, bump allocator, or linear allocator, is a simple and fast allocator that allows
pushing heterogeneous objects or arrays one by one, and clearing them all at once.
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(def arena_create (size u64 -> Arena))
(def arena_destroy (arena Arena))
(def arena_alloc (arena (ptr Arena)

size u64
-> (ptr u8)))

(def arena_alloc_obj (arena (ptr Arena)
$T typeid
-> (ptr $T)))

(def arena_alloc_slice (arena (ptr Arena)
count u64
$T typeid
-> (slice $T)))

(def arena_clear (arena Arena))

Listing 7.2: Arena allocator.

• Textual formats such as XML (Bray et al., 2008) or JSON (Bray,
2014) have the advantage of being human-readable with a simple text
editor. They however require more complex parsers and are generally
less performant than binary formats.

• Interface definition languages such as OMG IDL (Open Management
Group, 2018) or Google Protocol Buffers (Google, 2008) allow more
performant implementations, and automatically generate serialization
and deserialization code. However they require interface description
files to be kept in sync between modules, and changing these specifica-
tions include a build step. In the context of a creative process where
these specifications can change very often, this can be impractical.

• Domain specific protocol such as MIDI (MIDI Manufacturers Associ-
ation, 1982) or OSC (Wright, 2002) are often used in musical applica-
tions. The MIDI protocol seems to specific to instrument control to
be used as a general-purpose data interchange format. OSC affords
a simple and somewhat extensible solution. It has the advantage of
being very widespread in audio application and musical controllers.

OSC does have some drawbacks, especially when it comes to exchanging
structured data. In fact it was designed to control musical application by
sending commands along with typed parameters, and thus models function
calls rather than structured data. This manifests in several ways:
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• The only way of expressing hierarchical data is through the notion of
bundle, which is a collection of messages. This could allow expressing
key-value structures (such as C structures of Python dictionaries), by
having each message in a bundle being keyed by its address pattern.
However, this doesn’t allow nesting key-value structures, since a bundle
itself has no address pattern2. Thus constructing complex structures
requires additional wrapping messages, which quickly become tedious.

• OSC lacks a proper notion of arrays, and only has begin and end
markers that can delineate collections of heterogeneous objects. In
particular, this does not afford random access to an element of an
array.

Additionally, despite its claims of flexibility, the OSC design is not actu-
ally amenable to clean extension and ascending compatibility. For example,
an OSC message doesn’t embed the size of the arguments it contains, and
the protocol relies on the tag to implicitly encode this information. As such,
an argument of unknown type can’t be skipped. In practice most imple-
mentations simply bail out when they encounter unknown type tags. The
protocol is simultaneously underspecified in a number of ways, for example
as it pertains to temporality, the semantics of bundles, and the semantics of
its timetag type (Freed & Schmeder, 2009).

Finally, the encoding of OSC messages makes composing messages by
adding successive arguments inefficient, since the location of arguments in
the serialized buffer isn’t known before the whole message is composed. The
use of zero-terminated, 4 bytes-aligned strings and the choice of big-endian
encoding also contribute to make it a sub-optimal data interchange format.

Despite its flaw, it relative ease of use for simple scenarios, and its ubiq-
uitous adoption in music softwares makes it a good first protocol to add to
the Quadrant core library.

2Libo (McCallum, 2015) is an implementation of OSC that extends the protocol with a
bundle type for messages arguments. It is used in Odot (Maccallum et al., 2015), a toolkit
that heavily relies on such nesting to build a computing model on top of OSC structures.
However, we think that embedding bundles as message arguments is not exactly the same
as having simple key-value structures, since the arguments themselves have no names, and
thus multiple bundle arguments can only be keyed by the name of their parent message.



CHAPTER 7. SURROUNDING INFRASTRUCTURE 122

Implementation And Performance

We evaluated several existing libraries, namely libo (McCallum, 2015),
liblo (Harris & Sinclair, 2004), oscpack (Bencina, 2013) and rtosc
(McCurry, 2018). They exhibit widely different feature sets, but to various
degrees, they all conflate notions related to the data format (parsing and
composing messages), the notions related to the transport protocol (sending
and receiving messages), and those related to the semantics (dispatching mes-
sages and matching them to function calls). To the exception of oscpack,
their design and/or API choices also has performance costs.

Since we only needed a lightweight and fast way of marshalling OSC
messages from and to byte buffers, we ultimately decided to write our own
internal C library, nicknamed blitz. The oscmodule leverages that library
through the foreign system.

Our implementation composes and parses messages and bundles in-place,
using memory buffers provided by client code. Structures exposed by the API
only contain pointers to particular slots into these buffers and do not “own”
memory. This way the library completely avoid memory allocations, which
was instrumental in achieving good performance.

The library affords two APIs for building OSC elements (i.e. messages
or bundles). The push API (Listing 7.3) allows composing elements step-
by-step, by successively pushing typed arguments. The format API (List-
ing 7.4) allows creating OSC elements in one go, using a format string and
variable arguments, similar to printf. This is useful when all arguments
are immediately

OscErrCode OscBeginMessage(osc_element* elt,
const char* addressPattern);

OscErrCode OscEndMessage(osc_element* elt);
OscErrCode OscPushInt32(osc_element* elt, int32 i);
OscErrCode OscPushFloat(osc_element* elt, float f);
OscErrCode OscPushString(osc_element* elt, const char* s);
//...

Listing 7.3: Blitz Push API (excerpt).

Likewise, parsing can be done in two different ways. The iterator API
(Listing 7.5) uses an iterator type which allows traversing the structure of
an OSC packet and extracting address patterns and arguments. The scan
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OscErrCode OscFormat(osc_element* elt,
uint32 size,
char* buffer,
const char* pattern,
const char* typeTags,
...);

//...

Listing 7.4: Blitz Format API (excerpt).

API (Listing 7.6) allow checking and extracting arguments of a message in
one go using a format string, similar to scanf.

OscErrCode OscParseMessage(osc_msg* msg,
int32 size,
const char* packet);

osc_arg_iterator OscArgumentsBegin(osc_msg* msg);
osc_arg_iterator* OscArgumentNext(osc_arg_iterator* arg);
OscErrCode OscAsInt32(osc_arg_iterator* arg, int32* i);
OscErrCode OscAsFloat(osc_arg_iterator* arg, float* f);
OscErrCode OscAsString(osc_arg_iterator* arg, const char** s);
//...

Listing 7.5: Blitz Iterator API (excerpt).

OscErrCode OscScan(osc_msg* elt,
const char* address,
const char* typeTags,
...);

//...

Listing 7.6: Blitz Scan API (excerpt).

We carried out a benchmark comprising our implementation and the
aforementioned OSC libraries. We measured the following tasks:

• Composing an OSC message.

• Composing an OSC bundle containing two messages.
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• Parsing an OSC message and extracting its address pattern, type tags
and arguments.

• Parsing an OSC bundle containing two messages, and extracting their
address pattern, type tags and arguments.

The message we used had the address pattern /foo/bar, the arguments
"Hello, world !", followed by a 64 bits integer and a 64 bits floating
point number. Each library was compiled from sources with -O3 optimiza-
tion level, and statically linked to the test program. Tasks were repeated a
hundred million times in a loop and the total execution time was recorded.

Table 7.1 shows the benchmark results. For each task, we give the total
execution time, the number of task iteration per seconds, the mean duration
of one iteration, and the speed-up ratio compared to the slowest implementa-
tion. We also mention the speed-up factor of our implementation compared
to the fastest alternative (which was oscpack in all cases). liblo doesn’t
have a way of directly parsing bundles, so it doesn’t appear for this partic-
ular task.

It is worth remembering that libo and liblo have a widely more ver-
satile feature set, allowing to arbitrarily insert and deletes elements from
messages. In the case of libo, the library is meant to support a full ex-
pression language based on OSC bundles (Maccallum et al., 2015). These
wide and generic feature sets are paid in performance cost, which might be
a reasonable tradeoff for their intended use-case.

7.2 Service Discovery

Service discovery allows locating available resources on a network, such as
shared files or printers, without needing manual configuration. The basic
idea behind service discovery is that processes or devices providing a service
can register themselves under a known name, and that processes needing
a given service can query it by name and somehow map that name to its
physical location.

Several dedicated protocols have been designed for service discovery, such
as SSDP (Albright et al., 1999), WSSD (OASIS, 2009), or NetBios (NetBIOS
Working Group, 1987). Another widespread strategy is to use the mDNS
records of a domain name server (Cheshire & Krochmal, 2013). For exam-
ple, DNS-based service discovery was originally implemented by the Bonjour
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Implementation time (s) Op length
(µs)

Throughput
(op/s)

Speedup
vs. slowest

Speedup
vs. oscpack

composing 1× 108 messages
Blitz push 4.38 0.044 22823059 30.11 1.52
Blitz format 4.14 0.041 24154397 31.86 1.61
oscpack 6.68 0.067 14980604 19.76 1.00
rtosc 7.97 0.080 12549376 16.55 0.84
liblo 75.68 0.757 1321303 1.74 0.09
libo 131.91 1.319 758065 1.00 0.07

Composing 1× 108 bundles
Blitz push 10.26 0.103 9745841 24.92 1.40
Blitz format 9.89 0.099 10107700 25.85 1.45
oscpack 14.36 0.144 6964290 17.81 1.00
rtosc 34.58 0.346 2892121 7.40 0.42
liblo 235.76 2.358 424164 1.08 0.06
libo 255.74 2.557 391028 1.00 0.06

Parsing 1× 108 messages
Blitz iterator 2.94 0.029 34013826 20.49 1.44
Blitz scan 3.14 0.031 31875865 19.20 1.35
oscpack 4.22 0.042 23689203 14.27 1.00
rtosc 13.18 0.132 7584987 4.57 0.32
liblo 60.24 0.602 1660161 1.00 0.07
libo 30.69 0.307 3258812 1.96 0.14

Parsing 1× 108 bundles
Blitz iterator 7.74 0.077 12918467 6.44 1.35
Blitz scan 8.52 0.085 11732967 5.85 1.23
oscpack 10.44 0.104 9574139 4.77 1.00
rtosc 34.76 0.348 2876787 1.43 0.30
libo 49.85 0.499 2005921 1.00 0.21

Table 7.1: Comparison of performances of several OSC libraries.
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protocol (Apple, 2003) in Apple products and has been adopted by a number
of other vendors.

While adopting an existing protocol such as Bonjour seems like an obvi-
ous choice, it necessitates a pre-existing infrastructure, namely a DNS server.
We would prefer a system that doesn’t force users to setup and configure such
a server for small installations. Furthermore, using mDNS records imposes
the use of unique service names, whereas relaxing this constraints allows us
to very easily implement publication/subscription message passing schemes.
We hence opted for an ad hoc service discovery system, without precluding
the future addition of a Bonjour implementation as an extension module.

7.2.1 Discovery, publication, and revocation

A services is identified across the network by a service descriptor, which
consists of a name, a type, an globally unique identifier, and an address at
which this service can be contacted. A process can use the service discovery
API to spawn a “service discovery agent”, which is run in a separate thread.
It can then publish or request service descriptors through its agent, and can
also request to be notified by the agent when a particular service appears or
disappears from the network.

The exchange of messages between agents proceeds as follow:

• After being launched, it joins a multicast group to send and receive
requests, and opens an ephemeral UDP port to receive responses from
other agents. It then sends a series of discovery requests on the multi-
cast address. These requests consist of an OSC message with address
pattern /hello, and the agent’s response port as an argument.

• When an agent receives a /hello message, it sends back a series
of responses, one for each locally registered service. These responses
consist of an OSC message with address pattern /publish, whose
arguments are the fields of the service descriptor.

• When a process publishes a service to its service discovery agent, the
latter sends a series of /publish messages for this service on its mul-
ticast address.

• When a process stops providing a service, it can revoke its service de-
scriptor from its service discovery agent. The latter then multicasts a
series of /revoke OSC messages with the service’s identifier as argu-
ment.
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7.2.2 Congestion reduction

Discovery service messages are sent as a series of redundant messages, in
order to account for a reasonable probability of packet loss or agents’ tem-
porary downtime. In order to avoid network congestion peaks, especially
when a lot of service discovery agents are spawned all at once, the interval
at which these messages are sent follows a geometric series with a random
initial delay. Publication and revocation messages are send a limited num-
ber of time. Discovery messages are sent according to the geometric series,
and then at a regular interval past a given threshold. This ensures discovery
agents keep an up to date list of the services available on the network (up to
a certain temporal granularity), even if they are temporarily disconnected
and miss an entire series of publication or revocation messages.

7.2.3 Expiration

In the case where a process is terminated abruptly, it is possible that the
services it published previously are not revoked. Processes that query their
discovery agent for a service must hence handle the case where they get back
a descriptor associated with an unresponsive service. However, it is desirable
to limit the number of such inactive service descriptors in the tables of service
discovery agents, because detecting and handling inactive services can be
wasteful. For this reason, a service discovery agent attaches an expiration
date to each descriptor. This expiration date is postponed each time the
agent receives a /publish message for this service. When the expiration
date is reached, the descriptor is silently dropped from the agent’s services
table.

7.3 Leader Election

Many distributed applications need to select a particular process to coor-
dinate the actions of other processes. For example, clock synchronization
protocols may need to elect a clock server on which other processes syn-
chronize. Manually selecting this leader clock server is an additional burden
on users. Moreover, statically assigning a leader isn’t a robust solutions in
the face of network hiccups, or when the composition of the network must
be allowed to frequently change. This is why we describe in what follows
a leader election protocol, which allows processes to automatically reach a
consensus on the selection of a leader process. We latter use that protocol
to designate a leader clock in our clock synchronization system.
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Our election protocol must account for lost or delayed messages, as well
as fallible processes that can abruptly join or leave the election quorum. We
build our protocol on the ideas exposed in (Kim & Belford, 1996). However
in our use case, we assume that after the election, processes depend only on
knowing the elected master, and do not need to know about the active or
inactive status of other peers. We thus don’t need to broadcast an activity
table to all peers. Another difference is that we leverage the discovery service
module described in section 7.2 in order to build a list of peers each time an
election is started, rather than assuming a pre-established knowledge of all
potential peers.

A peer can be in one of the following states:

• LEADER: The election round has concluded and the peer has been
elected leader.

• NORMAL: The election round has concluded and the peer is in agree-
ment with the other peers about the elected leader.

• CANDIDATE: The peer has announced its candidacy.

• COHORT: The election round is in progress and the peer has chosen a
candidate, but it can still amend this choice if it receives a message
from a better candidate.

• CLAIM: The peer is a candidate and has received enough support
(given its knowledge of other peers) to claim victory.

• CONFIRM: The peer is confirming its support for its selected candidate
after the latter has claimed victory.

When an election is carried through to its end, one and only one peer is
in the LEADER state and all other peers are in the NORMAL state.

Each peer Pi is associated with an address Ai and a unique score Si.
Each peer also maintains a variable B storing the tuple (Ab, Sb) designating
the current best candidate from its point of view. Each peer also has a timer
Ti. A peer in the state CANDIDATE maintains a list of peers, which indicates
for each peer its address, its active or inactive status, and wether this peer
accepted the candidate as a leader.
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Figure 7.1: Simplified state diagram of the leader election protocol.

Messages exchanged between peers consists of OSC messages whose argu-
ments are tuples of the form (Aj , Sj). For each state, we describe below the
possible events or inbound messages and how a peer Pi must react to them.
Figure 7.1 shows a state diagram summarizing these transitions. For the
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sake of legibility, the diagram has been simplified by omitting some inbound
messages that don’t trigger a transition, as well as outbound messages sent
during each transition.

NORMAL or LEADER

• Election start, or detected failure of the current leader: Pi asks its
service discovery agent a list of potential peers. It sends to each peer
a message /candidate(Ai, Si), starts a timer, then switches to state
CANDIDATE.

• /candidate(Aj , Sj): if Sj < Si, Pi starts an election by sending a
candidate message as described above. Otherwise it stores (Aj , Sj) as
its best candidate, and responds with the message /ack(Ai, Si), starts
its timer, and switches to state COHORT.

CANDIDATE

• /candidate(Aj , Sj): if Sj < Si, the candidate Pi replies with a
message /reject(Ai, Si). Otherwise it stores (Aj , Sj) in Bi as its
best candidate, replies with the message /ack(Ai, Si), starts its timer
and switches to state COHORT.

• /reject(Aj , Sj): the candidate stores (Aj , Sj) in Bi as its best can-
didate, replies with the message /ack(Ai, Si), starts its timer, and
switches to state COHORT.

• /ack(Aj , Sj): the candidate marks Pj as active in its list of peers.

• Ti timeout: the candidate sends the message /claim(Ai, Si) to all the
active peers in its peer list, starts a timer and switches to state CLAIM.

CLAIM

• /accept(Aj , Sj): the candidate Pi marks that peer Pj accepted its
candidacy. If all active peers accepted Pi as a leader, Pi sends the
message /finish(Ai, Si) to all its active peers, and switches to state
LEADER.

• Ti timeout: if any of the active peers hasn’t accepted Pi as a leader
yet, the election is restarted.

COHORT
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• /candidate(Aj , Sj): if Sj < Sb, Pi responds with a /reject(Aj , Sj)
message. Otherwise it stores (Aj , Sj) in Bi as its best candidate, reini-
tializes its timer, and responds with the message /ack(Ai, Si).

• /claim(Aj , Sj): if j = b, Pi responds with the message /accept(Ai, Si),
starts its timer and switches to state CONFIRM. Otherwise, the mes-
sage is ignored.

• Ti timeout: if Pi hasn’t received any /claim(Ab, Sb) message when its
timer expires, the best candidate is considered failing and the election
must be restarted.

CONFIRM

• /finish(Aj , Sj): if j = b, Pi switches to state NORMAL. Otherwise,
the election is restarted.

• Ti timeout: if Pi has not received a /finish(Aj , Sj) message when its
timer expires, the best candidate is considered failing and the election
must be restarted.

7.4 Clock Synchronization

Many messages exchanged between software components of a live artistic
performance are time sensitive or carry temporal information. As such, it
is particularly important to maintain a consistent notion of time among all
participating processes. The distribution of a common clock is not a trivial
problem and simple approaches such as (Cristian & Fetzer, 2003; Gusella &
Zatti, 1989) don’t provide sufficient precision and robustness.

In the field of computer music, this problem is often side-stepped on the
grounds that the human ear can’t generally distinguish rhythmic displace-
ments or latencies inferior to 10 ms (Friberg & Sundberg, 1993; Jack et al.,
2018). We consider this argument moot for several reasons:

• It ignores the fact that small latencies, although not perceived as rhyth-
mic displacements, nevertheless induce phase shifts that audibly man-
ifest as comb filtering, or as spatialization artifacts such as Haas effect
(Haas, 1972).

• If care is not taken to compensate them, small instantaneous temporal
errors can accumulate over the duration of a show (or even over several
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weeks of an art installation exhibition) and result in perceptible timing
differences.

• Simple approaches are vulnerable to clock latency and jitter peaks,
which can lead to significant errors.

• The psycho-acoustics argument simply isn’t relevant in some cases,
e.g. control messages that need to be timestamped in order to evaluate
them in order.

We think that maintaining a distributed clock with a better precision is
an important feature of distributed show-control system. Whereas this seems
to have been an under-explored topic in the domain of computer music, it
is a well studied problem in networks and distributed systems, and we can
benefit from these prior works.

The most widespread standard for clock synchronization in NTP. It has
been continuously refined, from its conception (Mills, 1988) until the fourth
and current version (Mills et al., 2010), and has proven remarkably robust
and precise for a great number of applications. It allows distributing a clock
with a few milliseconds precision across the internet, and usually reaches sub-
millisecond precision on local area networks (Mills, 2006). An NTP network
is an self-organizing hierarchy of client and server clocks. Each node can
synchronize as a client on several servers, and redistribute its clock to clients
lower in the hierarchy. Clients use several mitigation techniques to correct
errors due to the latency, jitter and delay asymmetry of the network.

SNTP (Mills, 1996) is a simplified version of NTP dedicated to peers
that have a unique synchronization source and don’t redistribute their clock
to clients. It only computes an estimation of the phase offset between the
server and the client using only the messages exchanged between them, and
isn’t required to use any kind of mitigation algorithm.

PTP (IEEE, 2008) is dedicated to high precision measures in control
systems, and can reach sub-microseconds precisions. It uses a combination
of dedicated software and hardware to estimate latency and jitter errors and
directly correct the timestamps of messages as they flow across the network.

7.4.1 Custom Clock Synchronization Protocol

We built our clock synchronization system on the estimation and mitigation
techniques of NTP. However, as in the case of service discovery, using an
off-the-shelf implementation isn’t very practical, as it requires a pre-existing
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infra-structure (separate NTP servers and clients processes) that must be
launched and configured manually by users. Furthermore we wanted to be
able to tweak some parts of the protocol to make it more suitable to our use
case, as discussed in the following paragraphs.

We ignore the aspects of the protocol that pertain to authentication and
encryption. We also ignore the stratum hierarchy of NTP, in favour of a
simpler scheme where all clients synchronize on a unique clock leader. Since
we have a unique leader, we don’t need to use the selection, clustering and
combining algorithms of NTP, since they deal with producing combined es-
timates from multiple clock servers. We leverage our service discovery and
leader election protocols to designate the clock leader. This makes our cus-
tom clock synchronization mechanism tolerant to frequent reconfigurations
of the network, and to possible failures of the leader.

For each synchronized process, our protocol maintains user clock, derived
from the system’s clock of the platform on which the process executes. The
clock synchronization protocol only adjusts the parameters of this user clock,
not the system’s clock. Hence, it doesn’t require administrative priviledges
and doesn’t interferes with other processes using the system clock.

We noticed that some consumer routers go into a low-power mode when
no packets are transmitted for some amount of time. The first packet to
wake-up the router exhibit a substantially larger delay than subsequent pack-
ets. This induces large and inconsistent round-trip time asymmetry, that
makes it harder for the algorithms to correctly estimate clock offset and fre-
quency. To alleviate this problem, we modified the on-wire protocol to send
scout messages before a standard request-response exchange. This wakes-
up the routers along the packet’s path, before the synchronization exchange
takes place.

We don’t use the exact same clock filter discipline algorithms as the
NTP specification. We instead use a linear regression method, similar to the
implementation of the chrony time client (Curnow & Lichvar, n.d.). This
has the advantage of producing both an offset and a frequency estimate,
yields a better asymmetry correction, and simplifies the clock discipline state
machine.

7.4.2 Clock Synchronization Simulator

We built a simulator to test and assess the performance of our protocol. The
simulator runs offline using virtual clocks and simulates message exchanges
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between a clock leader and a client. It uses virtual clocks and inserts virtual
delays in the messages transmissions using a pre-recorded trace of delays
as measured on a real network. Figure 7.2 and Figure 7.3 show the delay
distribution and clock errors, respectively for a trace recorded on a WiFi
network, and for a trace recorded on a wired LAN network.
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Figure 7.2: Clock Synchronization Simulation for WiFi Delays.
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7.5 An Artistic Application

In parallel to Quadrant’s development, we bundled the aforementioned pro-
tocols as a “distributed interaction” toolbox, in the form of a C library with
Python bindings, as well as externals for the Max and PureData audiovi-
sual programming environments. We used the toolbox for a project with
composer Pedro Garcia Velasquez, set designer Marion Flament and the en-
semble Le Balcon. This project involves a group of robotic arms playing
percussion instruments and glass and stone sculptures, along with a cham-
ber ensemble of human musicians (Figure 7.4 and Figure 7.5).

Figure 7.4: Robotic arms used in La Selva Virgen, en La Selva Oscura,
Marimba de Chonta and Glass Sculptures.

7.5.1 Architecture

Robotic arms are moved by servo-motors, which are controlled by Rasp-
berry Pi micro-controllers connected to a WiFi or Ethernet network. Each
micro-controller has a Python daemon that handles service discovery, clock
synchronization and processes incoming messages. The daemon also loads
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Figure 7.5: Robotic arms used in La Selva Virgen, en La Selva Oscura, Bowls
and Crotales.

a dictionary of gestures, which are timed sequences of servo-motor control
signals.

Moves can be triggered by OSC messages sent from a Live sequencer
and/or a MIDI keyboard via a MIDI to OSC translation patch. A Max4Live
plug-in built around our toolbox externals is responsible for discovering
micro-controllers and dispatching OSC messages to the correct robots.

Figure 7.6 shows a diagram of the architecture of the robotic ensemble.
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Figure 7.6: Robotic Ensemble Architecture.

7.5.2 Gestures

The gesture dictionary is a Python dictionary whose keys are OSC address
patterns, and whose elements are lists of commands (Listing 7.7). A com-
mand is a list starting with the command name, and followed by arguments:

• ['servo', servoNum, servoPercent] sets servo-motor servoNum
to the position servoPercent.

• ['delay', duration] sleeps for duration (in seconds).

• ['complete'] waits for previous servo commands to complete (ie.
automatically compute the delay).

• ['align'] sets the alignment point in the gesture (see subsection 7.5.3).

• ['gesture', name] executes another gesture named ’name’.
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gestures = {

'/golpeBolPeque':

[['servo', 7, 40],

['delay', 0.15],

['align'],

['servo', 7, 32]],

'/golpeCymbal2':

[['servo', 0, 49],

['servo', 1, 25],

['servo', 2, 99],

['delay', 0.24],

['align'],

['servo', 2, 77]],

# ...
}

Listing 7.7: Robot Gesture Dictionary Example.

7.5.3 Latency Alignment

When the robots are played from a MIDI keyboard, network delays induce
variable latency between the actuation of a key and the movement of the
robot. The movement itself also incur a delay which varies depending on
the robot’s previous position. A skilled player can easily adapt to fairly
large (e.g. a few tens of milliseconds) but constant latencies. However,
variable latencies dramatically impedes their ability to play in time as well
as synchronize with other musicians. Likewise, it is possible to compensate
latency for pre-recorded MIDI sequences only if said latency is constant and
predictible.

In order to make our system playable given variable latency constraints,
incoming OSC messages were buffered and their execution delayed such that
the time of impact of each gesture (specified by the align command) was
aligned to the maximum expected latency. Despite being counter-intuitive
in way, since we increased the total latency, this alignment made the to-
tal latency constant. A musician could train themselves to anticipate their
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gestures so that the time of impact of the robots’ sticks on their percussive
instruments would match the desired target3.

7.5.4 Productions

This project lead to three productions, involving different aspects of the
system:

• In Un vaso de dicha, created at Fondation Singer-Polignac, the robot
ensemble was played alone, controlled by a MIDI sequencer.

• La Selva Virgen, en la Selva Oscura, prélude et interlude au Chant de la
Terre, was created in the Basilica of Saint-Denis. In these two pieces
robots were played both by a sequencer and by a human musician,
along with a human ensemble. The latency alignment mechanism de-
scribed above was instrumental in providing a constant delay allowing
the keyboard player to adapt its playing and synchronize with other
musicians.

• The project was adapted as an autonomous installation in the hall of
Fondation Singer-Polignac. The installation self-configured and played
pre-programmed sequences at set times of day. Our leader-election
protocol was used to select a “conductor” among the micro-controllers.
This conductor ran a PureData patch that loaded MIDI sequences and
translated them to OSC, and then dispatched OSC messages to the
correct robots.

Video clips from this work can be seen at the following addresses:
https://youtu.be/PyJs_NrceY8 and https://youtu.be/vwnz1vBO6zg.

3It is worth noting that such training phase was remarkably small, as several musicians
were able to play the robots orchestra in time after just a few minutes. We would like to
take the opportunity afforded by this remark to thank all musicians of the ensemble Le
Balcon for putting up with the constraints of our system!

https://youtu.be/PyJs_NrceY8
https://youtu.be/vwnz1vBO6zg


Chapter 8

Conclusion

In this work, we highlighted the importance of human-machine temporal
interaction scenarios in live shows and art installations, and the need for
tools to help artists and engineers to design and play such scenarios. We
presented our contribution to the tooling space, a temporal programming
environment called Quadrant, built around a structure editor, a temporal
language, and a symbolic-time, polytemporal scheduling model.

8.1 Summary

Current Approaches And Tools. In chapter 1, we mentioned some ex-
isting tools and identified a number of metaphors they use to convey the
notion of time. We also discussed several programming interfaces, and pro-
posed to position them on a spectrum ranging from symbolic to figurative, a
distinction that we find more fruitful than the textual versus visual classifica-
tion. We proposed an identification of the strengths and weaknesses of each
of these approaches, and concluded on the potential of a hybrid approach
coupling a symbolic temporal language with figurative user interface widgets
and feedback, supported by a structure editor.

PreliminaryWork. In chapter 2, we discussed our work on two exploratory
prototypes: a textual temporal programming language, and a show controller
based on hierarchical cuelists. We explored their limitations and observed
that the ideas for mitigating them converged to a common, hybrid approach.
On one hand, the need for introducing domain-specific user interface widgets
into the textual language would lead to blurr the lines between the language
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and its dedicated editor and runtime. On the other hand, breaking down the
cues of the show controller into smaller, recombinable building blocks hinted
at a more symbolic programming model.

Introducing Quadrant. In chapter 3, we introduced our temporal pro-
gramming environment. We defined leading goals for its design, and gave an
overview of its architecture. We presented its user-facing features, namely its
structure editor, its semantic feedback, and its execution monitoring capabil-
ities. We concluded with a number of possible user interface enhancements
aimed at giving users a comprehensive view of their scenario’s execution and
temporality.

Temporal Model. In chapter 4, we presented the temporal model of Quad-
rant, and the scheduler supporting that model. We discussed the notion of
symbolic, hierarchical timescales and time transformations, and how it has
been handled in a number of previous works. We then gave a formalism
for time transformations represented by tempo curves, in terms of differen-
tial equations. We considered contant and linear tempo, which have simple
analytical solutions, as well as parametric tempo curves, which we solve by
numerical methods. We detailed the specifics of Bézier curves, and described
our implementation of piecewise tempo curves. We touched on phase syn-
chronization and explained how we implement it using catch-up time maps
built from Bézier curves. We finally presented the temporal scheduler’s API
and its main implementation aspects.

Quadrant’s Temporal Language. In chapter 5, we presented Quadrant’s
temporal language. We gave an overview of the type system and the basic
constructs of the language, and covered some more advanced features such
as polymorphic procedures, modules and foreign blocks. We then presented
its temporal features, which allow interacting with Quadrant’s scheduler to
organize computations along concurrent hierarchical time flows and control
their tempo.

Compiler and Runtime Implementation. In chapter 6, we covered the
architectures of the Quadrant’s compiler pipeline and runtime, and gave some
implementations details on how specific language features are implemented.
We also described the execution tracking and feedback mechanisms that
allows the runtime to communicate execution informations to the editor, and
how the editor uses these informations to display live monitoring indicators.

Surrounding Infrastructure. In chapter 7, we described several compo-
nents that could form the basis for a distributed temporal interaction in-
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frastructure around Quadrant, allowing it to communicate and interact with
external software and devices. We mentioned some core modules of the
Quadrant language pertaining to networking, message passing and beat syn-
chronization, or general language support like logging and memory manage-
ment. We then presented services, that could help interoperability between
Quadrant and other systems. These include a service discovery agent, a
leader election protocol, and a clock synchronization protocol. We finally
gave an account of an artistic production involving these distributed inter-
action services, and served to guide their development.

Quadrant is written in approximately 17000 lines of C code, on top
of a 14000 lines platform layer and user interface toolkit called Milepost,
also mostly in C (some ObjectiveC and metal shading language are used in
the platform layer). Quadrant is available in a git repository here: https:
//forge-2.ircam.fr/fouilleul/thesis_quadrant. The source code for the com-
ponents of the infrastructure described in chapter 7 and their various bind-
ings can be accessed here: https://forge-2.ircam.fr/fouilleul/thesis_blitz.

8.2 Limitations and Perspectives

Custom Interface Tokens. Currently the only user interface token in the
language is the tempo curve editor (we don’t count other user interface el-
ements such as the completion panel or the progress wheels, since they are
not a defining part of the program itself). One obvious avenue for progress
in the editor is to develop a collection of specialized input widgets. We can
mention sliders, color pickers, piano rolls, image or video previews, or audio
meters, as a few examples of useful widgets in the context of multimedia
shows.

Allowing users to define their own edit-time widgets could potentially
benefit to a wide number of specialized use-cases. One example is that
user could define data viewers or editors for custom data formats used to
communicate with other devices, such as sensors or motors. Another one
is extending standard widgets provided by the environment, for example
adding custom looping modes on top of a standard audio player.

In order to support user-defined widgets, the environment would have
to include some kind of edit-time execution: for instance, it would need to
run user-defined procedures to draw the widget’s interface and react to user
input, which would in turn modify program data. We should also avoid
creating a strong abstraction barrier between user-defined widgets and the

https://forge-2.ircam.fr/fouilleul/thesis_quadrant
https://forge-2.ircam.fr/fouilleul/thesis_quadrant
https://forge-2.ircam.fr/fouilleul/thesis_blitz
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rest of the language, which would hamper the use of user-defined widgets
in the same way the abstraction barrier between patching and regular pro-
gramming hampers the creation of user-defined boxes in most node graph
environments. For this reason, we would want to provide the same language
features and execution model for both edit-time and runtime parts of a the
program.

These considerations hint at a even tighter integration between the run-
time and the editor: essentially, the “runtime” (perhaps better called “execu-
tion engine” in this incarnation) would always be online, executing parts of
the program and communicating back and forth with the editor. The editor
would in turn delegate the implementation of a wide range of its features to
the execution engine.

Integrated Debugging and Profiling. The semantic “knowledge” shared
between the editor and the runtime could be leveraged more extensively to
provide live debugging and profiling tools. For instance, the editor could
display tooltips showing the contents of variables or the stack traces of sus-
pended procedures on mouse-over. It could display different profiling “heat
maps” or overlays over the program, surfacing information such as coverage,
time spent in each block, or number of read/writes operations for each vari-
able.

Temporal traces could be shown as live time plots similar to railways
timetable graphs, along with time trajectories predicted from tempo curves
and catch-up time-maps. This would give a bird eye’s view of running tasks,
how they branch off or join back, and the speed at which they progress.
Hovering over a trace with the mouse could highlight the associated flows
in the editor, and clicking a specific point of the curve could show the basic
execution block that was run at that point.

The ability to record traces and replay them later can also be of great
value, for example to enable partial rehearsals where some of the performers
would work their part along with a partial trace of a previous execution, or
with a pre-recorded trace of other performers.

Trigger and Control. In its current incarnation, the environment’s control
features are quite lacking. The only way to manually pace the execution of
statements is by inserting standby instructions and resuming execution from
the editor. Other than that, users have to rely on external ways of triggering
actions, such as listening to incoming OSC messages in a background task.
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One could for instance build a “dashboard” in PureData that would send
messages to control the execution of the scenario.

Clearly, we need to match the monitoring strengths of the environment
with equally useful trigger and control features, for instance:

• Launching arbitrary procedures in new tasks from the editor would be
an obvious way of triggering bundles of actions.

• Manually suspending, resuming or terminating a task could also be
useful, both as a safeguard and as a pacing tool.

• Manually stepping through statements one by one would implement
sequential cuelists.

• Skipping suspending instructions until a specified statement could be
used to enable a form of fast-forward playback to a given point the
scenario.

It would also be desirable for the cursor to follow the execution of trig-
gered tasks, unless manually repositioned elsewhere. This way, for instance,
the cursor would automatically jump to the next standby instruction after
the current one resumes, which would allow users to manually unfold the
scenario with just one shortcut, similar to the “go” button of a show con-
troller.

This kind of on-demand, incremental execution, also calls for an online
execution engine to which code could be uploaded at a finer granularity than
a whole program image.

Developing an Ecosystem. Quadrant was thought of as a central place
where the temporal scenario of the show is specified, and which drives and re-
acts to all other components of the technical setup. This is akin to the notion
of “centralized electronic score” developed in (Fernandez, 2021). This means
that Quadrant must be able to interact with various devices and software,
such as sensors, dimmers, motors, mixing and lighting desks, synthesizers,
digital audio workstations, media servers, etc. As such, expanding on the
primitive distributed interaction infrastructure described in chapter 7 is an
important part of the effort needed to make Quadrant a useful tool.

Live Coding. In this work, we didn’t touched on live coding. This was
in part to avoid spreading the effort over too many aspects, and in part
due to our own perspective as a former sound engineer (as opposed to, for
example, the perspective of a digital artist). Our past personal experience is
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that of someone who was in charge of designing technical setups for complex
shows and operating them reliably. Live coding isn’t a sustainable bet in this
context, and this certainly colored our vision of Quadrant. In particular, we
designed it more as a tool for technical users rather than as an instrument
for digital creators.

This personal bias pushed us, at the start of the project, to favor live
monitoring over live coding, and to opt for a statically typed, compiled lan-
guage. Other choices of course erred more on the unsafe side, in the name
of efficiency or simplicity (such as raw pointer and manual memory manage-
ment), but these risks can be mitigated by debugging and testing prior to
the show, whereas live coding will always be fraught with the peril of live
bugs.

However, from our perspective, live coding can be extremely useful as an
exploratory method, during the creation phase and the rehearsals of a show.
Also, as we’ve seen above, there seems to be a natural development slope
towards an online execution engine able to run pieces of code on demand.

Introducing live coding in Quadrant’s programming model presents some
challenges. In contrast to patching environments, which only expose self-
contained swappable pieces of code and data, a language like Quadrant ex-
poses data and code definitions at a much more granular level. Code expects
data to follow a specific schema (in our case, a specific memory layout), and
data that persists across type definition changes will be handled incorrectly.
This is a problem that is faced by every hot-reloading system for compiled
languages, such as Live++ (Molecular Matters, 2011). These systems either
don’t support data model changes, or they rely on users specifying data mi-
gration callbacks, or serializing and deserializing their data on each side of
the reload point, which can be tedious and error-prone.

The problem gets even more complicated when considering hot-patching
of long-lived code. Generally, live-coding systems work within the context
of a run loop, where procedures are called repeatedly or in response to an
event, and run immediately to completion. Thus these system generally hot
patch procedures in an atomic fashion: the new version of a procedure is
only used starting from the next time the procedure is entered. This isn’t as
useful for long-lived coroutines, that can pause and resume, and that might
never be re-entered. The expectation here is that if a change occurs during
a pause, the new version will be used when the coroutine resumes. This isn’t
as easy as it sounds, though, mainly for two reasons: first, this extends the
problem of data consistency to the coroutine’s local variables. Second, the
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resume location might have been moved by the change, or might even have
disappeared altogether!

One possible way to mitigate the risk of faulty migration code or breaking
assumptions across reloads could be to run user-defined test procedures on
new data and code, before committing them to the execution environment.
If on of these tests failed, code and data could be reverted to their previous
state and the errors could be reported in the editor. Using type introspection
to generate default migration code may also lighten the burden on users in
most scenarios. However, liberal use of pointers might restrict the usefulness
of default migration code, or require it to trace and patch references to every
piece of data that has been moved in the migration process. Restricting the
use of pointers and replacing them with handles, whose underlying data can
be moved without breaking references, could be a solution, at a performance
and complexity cost.

Changing the code of a task that is suspended in a yielding instruc-
tion does not only only require patching the instruction pointer of the task,
but potentially all return pointers along the call stack (in case a caller was
edited). Matching such return points could use a simple cell identity heuris-
tic, meaning a procedure which was suspended in a given cell must resume
or return to the (new) next cell. If one of the call cells along the call stack
doesn’t exist anymore, we could just bail out and terminate the task early.

This may be an acceptable limitation, because even if we had a heuristic
to match points between old and new versions of code in a more general way,
it would create a “Ship of Theseus” problem: after multiple edits through
invalid (non-compiling) stages, we could well reach a valid state where all
parts of the code have been replaced, and trying to match the old and new
versions becomes a pointless pursuit.

8.3 Closing Thoughts

Despite Quadrant’s inherent limitations as a prototype, we believe the ap-
proach developed in this work contributes to the practical exploration of the
problem space along two dimensions, namely temporality and programming
interface design.

Temporal Model. The temporal model proposed here borrows the concept
of hierarchical symbolic timeframes to prior works, in particular FORMULA
(Anderson & Kuivila, 1990) and Antescofo (Giavitto et al., 2017). However,
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it strays from these works in its handling of time transformations. Our model
uses cubic Bézier tempo curves, which provide more control than common
tweening functions and map directly to flexible and intuitive user interfaces.
Importantly, it considers Bézier curves as a continuous abstraction, and does
not rely on prior sampling and piecewise interpolation, instead introducing
an adaptive numerical solver, which has better accuracy and less dead reck-
oning issues. We also show how synchronization to external sources can be
decoupled from the concerns of score following, and how catch-up time maps
can be built from Bézier curves to match both the initial and target tempos.

Programming Interfaces. We think this work makes a case for the hy-
bridization of symbolic and figurative programming interfaces through the
use of semi-structured program representations and the close integration of
editing and runtime environments. This approach lends itself to a number of
user experience improvements and allows easily representing and manipulat-
ing continuous objects such as tempo curves, without sacrificing the abstrac-
tive and combinatorial power of a symbolic programming language. It also
enables novel features in live execution monitoring and debugging. This is
especially important when dealing with highly concurrent and dynamic tem-
poral scenarios, which are made possible by the temporal model proposed in
this thesis.

In conclusion, we think this work both points at a large range of valu-
able potential features, and calls for further work, taking advantage of the
insights gained during our research journey. In particular, malleability and
liveliness concerns, such as live coding, may need a reassessment of some de-
sign decisions made at early stages of the project. We believe, however, that
tackling those issues should be easier now that the path has been treaded
once.
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