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Résumé en Français

Cette section résume brièvement le contenu principal de ce livre, chapitre par chapitre, qui
sont énumérés ci-dessous:

Chapter 2: Background

Nous présentons les préliminaires essentiels à notre recherche principale, qui est l’approche
de contrôle hiérarchique dans les processus cryogéniques. Tout d’abord, nous introduisons la
méthode de décomposition qui est nécessaire pour séparer le système global en de nombreux
sous-systèmes interagissant entre eux via des signaux de couplage. Puisque le sujet de ce
livre est de proposer une méthode de contrôle pour les systèmes à grande échelle, le cadre
général de contrôle décentralisé basé sur des observateurs est décrit, ce qui sert de référence
pour être comparé à la méthode proposée tout au long de ce livre. Les contrôleurs locaux des
sous-systèmes de ce cadre peuvent être choisis comme la commande prédictive, bien connue
et largement utilisée, dont la formulation est ensuite rappelée. Enfin, le schéma d’observation
centralisé pour l’estimation d’état est décrit.

Chapter 3: Fixed-point-iteration-based hierarchical control

Nous présentons le cadre de contrôle hiérarchique basé sur le point fixe, qui consiste en deux
couches distinctes (Fig. 1). À la couche inférieure, les sous-systèmes interconnectés sont
contrôlés par des agents locaux, qui ont besoin de profils de couplage pour calculer leurs profils
de contrôle. À la couche supérieure, le coordinateur communique abondamment avec les
agents pour trouver les véritables profils de couplage associés à un point de consigne donné.
En outre, le coordinateur optimise un coût central par rapport aux points de consigne qui
seront envoyés aux agents. Ce problème d’opimisation est donné par l’équation ci-dessous:

𝑟opt = argmin
𝑟∈R

𝐽𝑐 (𝑟, v𝑖𝑛) (1)

subject to: v𝑖𝑛 = g𝑖𝑛 (𝑟, v𝑖𝑛) (2)

où R est l’ensemble admissible de 𝑟 et v𝑖𝑛 est le profil de couplage global des sous-systèmes.
Afin de re-formuler ce problème, le lecteur est renvoyé au chapitre 3. Il faut tenir compte du
fait que le coordinateur ne connaît pas les informations des sous-systèmes (ses modèles ou
ses contrôleurs). A partir des équations (1)- (2), nous pouvons voir que cela prend la forme

1
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S1 S2 S3

Coordinator

Agent 1
C1 Agent 2

Agent 3
C3

u1 u3

v1→2

v2→1

v2→3

v3→2

v3→1

v1→3

Figure 1: Structure hiérarchique appliquée à un réseau de trois sous-systèmes interconnectés. Les
lignes de tirets à double flèche représentent la communication entre le coordinateur et les agents.

d’un problème du point fixe. Pour résoudre ce problème, un algorithme est proposé dans le
chapitre 3.

Dans le travail original [1], ce cadre a été validé dans le cas où les agents locaux implé-
mentent uniquement des contrôleurs linéaires non contraints. Nous avons étendu ce travail
en remplaçant ces contrôleurs par des contrôleurs non linéaires contraints et en évaluant
l’efficacité du framework dans ce cas. En outre, le problème d’implémentation en temps réel
résultant de l’utilisation de contrôleurs non linéaires est également abordé en proposant une
technique qui consiste à répartir l’optimisation dans le temps. En additon, dans le travail
original, ce cadre de contrôle a été appliqué pour contrôler la boîte froide qui est décom-
posé en deux sous-système. Dans le travail présent, cette méthode est appliquée pour une
décomposition avec plus de deux sous-systèmes (quatre sous-systèmes pour être précis) afin
de évaluer la performance en termes de contrôle et le temps de calcul. Fig; 2 montre la boîte
froide (à gauche) et ses décompositions (à droite) intéressées par ce chapitre. Enfin, une série
de simulations montre l’efficacité du cadre proposé.

Chapter 4: On the use of fast-NMPC and deep learning approach in fixed-
point-iteration-based hierarchical control

Dans ce cadre, les problèmes MPC non linéaires contraints sont résolus de manière répétée
jusqu’à ce que la communication entre le coordinateur et l’agent local converge vers un
point fixe, ce qui augmente définitivement la charge de calcul. En effet, il y aura un goulot
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Figure 2: Two possible decompositions of the coldbox of the 400 W station.

d’étranglement pour la mise en œuvre en temps réel si le temps de calcul requis est éloigné
de la période de mise à jour. Afin de réduire le temps de calcul des contrôleurs locaux,
des techniques MPC non linéaires rapides telles que le solveur de gradient tronqué et le
contrôleur basé sur un réseau neuronal profond sont proposées. Tout d’abord, le solveur
basé sur descente de gradient est implémenté pour résoudre les problèmes d’optimisation des
commandes prédictives synthétisées pour le cycle Joule-Thomson et la turbine. Table 1

Table 1: Indice de performance du solveur Ipopt et du solveur basé sur le gradient tronqué.

NMPC of 𝑆1 NMPC of 𝑆4
Solver 𝑁max 𝜖tol 𝐽 [%] 𝑡maxcpt [s] 𝑁max 𝜖tol 𝐽 [%] 𝑡maxcpt [s]

Truncated gradient

descend

100 _ 100.2379 0.0499 100 _ 101.3418 0.011

50 _ 100.2395 0.0398 50 _ 101.3419 0.008

30 _ 100.2357 0.0322 30 _ 101.3418 0.0043

10 _ 101.29 0.0246 10 _ 101.3418 0.0014

Ipopt/Casadi
5 10−1 99.999 2.746 5 10−1 100 0.0589

10 10−1 100.002 3.756 10 10−1 100 0.0873

10 10−4 100 4.76 10 10−4 100 0.1720

Ensuite, après l’intégration de la commande prédictive dans le cadre de la commande
hiérarchique grâce à l’utilisation du solveur basé sur le gradient, elles sont approximées par
des réseaux de neurones afin de réduire davantage le temps de calcul et de rendre cetteméthode
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implémentable dans des automates industriels. Nous proposons la procédure de génération
de données suivante qui effectue une simulation hors ligne à l’aide du modèle de système
sous la loi de commande afin de collecter l’ensemble de formation D pertinent sur le plan
opérationnel :

1. Déterminer la plage opérationnelle des points de consigne désignée par [𝑟, 𝑟] et la plage
réaliste des perturbations désignée par [𝑤, 𝑤] :

2. Créer des signaux binaires pseudo-aléatoires (PRBS) de 𝑟 dans ses plages opéra-
tionnelles. Afin de capturer le comportement de suivi de la consigne du contrôleur,
l’amplitude du signal ne doit pas varier pendant une période de temps suffisante désignée
par Δ𝑡. La forme du signal de perturbation 𝑤 peut être choisie en fonction de son com-
portement réaliste. Dans notre application, la forme du signal 𝑤 et la période de temps
Δ𝑡 seront spécifiées dans la Seconde partie. 4.4.3.1.

3. Exécutez les simulations en boucle fermée qui mettent en œuvre la conception hiérar-
chique susmentionnée à certains états initiaux choisis avec les signaux PRBS créés.
Notez que les données sont collectées pendant les itérations à point fixe afin de capturer
la relation entre le profil de contrôle u et le triplet (𝑟, 𝑥, v𝑖𝑛).

Le réseau est entraîné pour minimiser le critère d’erreur quadratique moyenne ci-dessous:

𝐽𝑁𝑁 (𝜃) =
1
2

𝑁𝑡𝑟∑︁
𝑖=1
∥u(𝑖) − 𝐾𝑁𝑁 (𝜉 (𝑖) , 𝜃)∥2 (3)

où 𝑁𝑡𝑟 < 𝑁 est le nombre d’observations d’apprentissage et 𝑁 est le nombre d’observation
créées par le processus. En effet, avant le processus d’apprentissage, l’ensemble de données
passe par une série de techniques de préparation des données et est finalement séparé en deux
sous-ensembles qui contiennent 𝑁𝑡𝑟 échantillons et 𝑁𝑣𝑎𝑙 = 𝑁 − 𝑁𝑡𝑟 échantillons, qui servent
à entraîner et à valider le modèle de régression. Rappelons que le vecteur 𝜉 ( 𝑗) encapsule tous
les paramètres 𝑥 (𝑖) , v𝑖𝑛,(𝑖) , 𝑟 (𝑖) et w(𝑖) .

Il est également démontré qu’en procédant ainsi, la période de mise à jour du contrôle
peut être réduite de manière significative et les performances en boucle fermée grande-
ment améliorées. Ce chapitre peut donc être considéré comme une mise en œuvre concrète
et une validation de certaines idées clés dans la conception de NMPC distribués en temps réel.

Chapter 5: Application to a complete refrigerator and some development
in the foxed-point based hierarchical control method

Le cadre proposé est appliqué au système complet, qui se compose de huit sous-systèmes
avec des échelles de temps différentes. Figure. 3 montre la decomposition réalisée pour le
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réfrigérateur cryogénique de 1000 W à 4,4 K.
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Figure 3: L’interconnexion entre les sous-systèmes de l’installation cryogénique.

Nous pouvons voir que ce système est décomposé en huit sous-systèmes avec les différents
contrôleurs. Le cycle de Joule-Thomson est contrôlé par le contrôleur prédictif et les deux
turbines 𝑇1 et 𝑇2 sont contrôlées par le contrôleur PID. Ces trois sous-systèmes fonctionnent
avec le temps de mise à jour 𝜏𝑢 = 5𝑠. La station de compression (WCS), quant à elle, est
contrôlée par la méthode du split-range et fonctionne avec un temps de mise à jour plus
rapide 𝜏𝑢 = 1𝑠. Pour implémenter ce cadre de contrôle hiérarchisé, nous devons proposer une
hypothèse sur le fonctionnement des sous-systèmes qui sera présentée dans le chapitre 5.

Dans le travail précédent, la convergence de l’itération du point fixe est amélioré par
un filtre qui est synthétisé à partir des informations privées des sous-système. Cela viole
l’exigence de préservation de la confidentialité modulaire. Ainsi, une méthode itérative basée
sur les résidus, appelée méthode d’accélération d’Anderson, est mise en œuvre pour assurer
la convergence de la boucle interne traitée entre le coordinateur et les agents. Cette méthode
utilise uniquement l’information historique sur les résidus pendant l’itération pour améliorer
sa convergence. Dans la section de simulation, il est montré que la méthode avec le filtre
ne marche pas pour ce problème de contrôle, alors que la méthode d’Anderson améliore la
convergence de l’intération du point-fixe.

En outre, le problème devient complexe cars il y a plus de consignes à optimiser par le
coordinateur. Un solveur basé sur le gradient est mis en œuvre au niveau de la coordination
pour optimiser le coût central par rapport au point de consigne. Des simulations numériques
sont effectuées pour évaluer l’efficacité du cadre proposé.
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Chapter 1

General Introduction

AbstractThis chapter begins by presenting the energy context, where the importance of fusion
energy and the need for cryogenic applications in fusion energy production are described.
Later, the helium refrigerator and its subsystems are introduced. Several control strategies for
such cryogenic processes are carefully listed and described. Finally, the chapter concludes by
evoking the problem of these conventional control strategies.

1.1 Introduction

1.1.1 Motivation

About 1.5 million years ago, a spark ignited the first human-made fire and sparked a great
revolution for our species: an energy revolution. Our ancestor used wood to fuel fire for many
uses such as cooking and additional source of heat and light. In 300BCE, humans learned how
to harness the energy of flowing water. They used water wheels to draw water from river in
order to fill aqueducts, to irrigate farmland and to mill flour. In the 1800’s, humankind
saw it second energy revolution by discovering the use of fossil fuels. This discovery
spurred industrial revolution that transformed the world with new mechanical and electrical
technologies emerged from steam engines to electric turbines. At the same time, natural gas
was discovered and used in Britain and United States for addition lighting in the evenings.
This extended the human productivity deep into the night. After the discovery of electricity,
the human civilization has developed rapidly and obtained outstanding achievements over
the centuries. Clearly, the discovery of energy is one of the most radical transformations in
human history.

Nowadays, the development of society leads to a significant demand for energy for activ-
ities and production. Illustratively, Fig 1.1 shows the global energy production that increases
continuously from 1985 to 2020. However, more than a half of the energy produced comes
from fossil fuels, such as coal, natural gas, and oil, which are essentially limited resources
and considered as high emitters of greenhouse gases.

In the context of increasingly severe climate change, although the promotion of the
production and use of renewable energy increases strongly, the rate remains limited for

9
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Figure 1.1: World energy production by source from 1985 to 2020 [2]

apparent reasons such as territory footprint, pollution, storage problem, etc. Indeed, a 1000
Megawatt (MW) solar facility requires between 117 km2 and 194 km2 while a equivalent
nuclear energy facility requires 3.37 km2 [3]. In addition, the production of some photovoltaic
cells that are used in solar panels generates toxic substances that may contaminate water
resources. Furthermore, most of renewable energy is intermittent and it requires large batteries
in order to store any additional produced electricity. These reasons are barriers preventing
the spread of renewable energy.

Nuclear energy could be considered as a "clean" option as it produces fewer greenhouse
gas compared to other sources (Fig 1.2). Despite producing massive amount of carbon-free
power, nuclear energy produces more electricity on less land than any other clean-air source.
Unfortunately, after the catastrophes in Chernobyl (1986) and Fukushima (2011), the world
has changed its view on this energy because of safety reasons. Instead, a new type of energy
produced by the nuclear fusion reaction becomes an alternate option for future energy supply,
which possibly addresses all the discussed drawbacks of the existing energy sources.

In the next section, we will discuss the technology behind fusion reactors and how vital
that the use of cryogenic refrigerators is in the nuclear fusion context.

1.1.2 Principles of fusion reactors

Despite the fact that fusion is the most dominant reaction in our universe, the science of nu-
clear fusion only got more attention when British astrophysicist Arthur Eddington suggested
in 1920 that stars draw their energy from the fusion of hydrogen into helium [5].
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Figure 1.2: Life cycle greenhouse gas emission of selected electricity supply technologies [4].

Fusion reaction is a thermonuclear process where nuclei merge and fuse together, creat-
ing heavier nuclei and releasing energy in the process. It is also the energy that the scientists
want to harness. In order for this reaction to occur, a certain amount of kinetic energy must
be supplied to cause the particles to come together. It has been shown that the most probable
reaction is the one between deuterium and tritium [6]. Deuterium can be found in seawater
with an estimated concentration of 33 𝑔/𝑚3, while the tritium can be produced from lithium
presenting in hard rock and seawater (0.17 𝑔/𝑚3). With these isotopes (deuterium (𝐷) and
tritium (𝑇)), the following reactions may occur [7]:

𝐷 + 𝑇 → 4𝐻𝑒 + 𝑛(14𝑀𝑒𝑉)
𝐷 + 𝐷 → 3𝐻𝑒 + 𝑛(2.45𝑀𝑒𝑉)
𝐷 + 𝐷 → 𝑇 + 𝑝(3.02𝑀𝑒𝑉)

Since these nuclei are positively charged and therefore repel each other, high energy is re-
quired to overcome this repulsive force. In this context, this energy exists in the form of heat
of millions of degrees. When a gas is subjected to such extreme temperature, the electrons are
separated from the nuclei, and the gas turns into plasma, the fourth state of matter. Effectively,
plasma provides the environment where nuclei can fuse and generate energy.

Three conditions must be met to obtain fusion: a very high temperature (to cause high-
energy collisions), a sufficient density of plasma particles (to increase the probability of
collisions), and a sufficient confinement time (to maintain the plasma, which tends to expand).

Until now, there are two major research branches that study how to make plasmas hot enough
to fuse, namely:

• Magnetic confinement technology: In this technology, a doughnut-shaped chamber
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based on superconducting materials is constructed. Hydrogen fuel that contains deu-
terium and tritium is injected inside the chamber and is placed under extreme heat and
low pressure that turn it into plasma. The electrons produced by the fusion reaction in
the plasma can collide into the chamber and heat up the material, which can cause the
facility to stop. Since plasma is a mix of positively charged ions and negatively charged
electrons, a powerful electric current is passed through the superconducting materials
to create a magnetic field having the same shape of the container, which can confine the
plasma inside the chamber.

• Inertial confinement technology: This technology uses pulses from a high-power laser to
compress targets filled with fuel. The targets are small, pinhead-sized spherical pellets
typically containing a mixture of deuterium and tritium. The laser beams heat the outer
layer, which consequently explodes outward, producing a reaction force against the
remainder of the target. This reaction accelerates the outer layer inward and compresses
the fuel, making it explode and become hot and dense enough to fuse.

In the first technology, the plasma confinement chamber is based on the components made
from superconducting materials. These components require cryogenic refrigerators to cool
down their temperature to maintain their superconducting properties. The next section will
describe magnetic confinement reactors and why cryogenic refrigerators are essential.

1.1.3 Magnetic confinement reactors

As previously described, this type of fusion reactor uses a magnetic field technology to heat
and confine plasma in its chamber. More specifically, the plasma contains charged particles
that are directed by the magnetic field. In others words, the plasma can be confined by
creating a magnetic field in a particular shape. Fig. 1.3 shows field geometries that was
proposed: Tokamak and stellarator. In Tokamak, the plasma current generating a poloidal
magnetic field that is used, in combination with a toroidal field, to achieve the magnetic
confinement configuration. While in stellarators, coils are designed in complex geometries
to obtain magnetic confinement without plasma current.

In JET- the biggest operating tokamak in the world, copper electromagnets are used in or-
der to obtain magnetic fields, which require a power up to 150 MW. A portion of this power is
unintentionally decayed by the electrical resistivity in the material (Joule effect). This power
is considered as a consumption waste. Moreover, the heat produced during the operation is not
bearable, which can melt the cooper-based magnets. In order for the economics of fusion be
viable and for preventing material melting subjected to extreme heat, superconductor-based
magnets, which provide beneficial characteristics, are considered and used in many recently
constructed tokamaks. Unlike ordinary metallic magnets, the electrical resistance of a su-
perconductor drops abruptly to zero when its temperature is below the characteristic critical
one. In addition, the superconducting magnets are constantly maintained at low temperature,
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(a) Stellarator [8]
Inner Poloidal field coils

(primary transformer circuit)
Poloidal magnetic field Outer Poloidal field coils
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Plasma electric current
(secondary transformer circuit)

Resulting Helical Magnetic field

Toroidal magnetic field

Toroidal field coils

(b) Tokamak [9]

Figure 1.3: Magnetic confinement

the melting phenomena is prevented. All the large fusion reactors built since 1980s, such as
the LHD stellarator (Japan), the tokamak Tore Supra (France), EAST (China), are equipped
with superconducting magnets. Furthermore, under construction projects such as JT-60SA
(Japan) and ITER will also rely on superconducting material to carry higher current and
produce stronger magnetic field. It should be said that if the ITER’s magnet were made
from copper, a power of 800 MW is needed to supply them, whereas with superconducting
technology, a smaller amount of power (20 MW) is required for the cryogenic plant to cool
down the magnets.

In order for the superconductivity to occur, some conditions needs to be fulfilled, which
is: the material temperature (T), the magnetic field (B) applied to the magnet and the mag-
nitude of the current density (J) must be below some critical values. For instance, Fig. 1.4
illustrates the condition region, in which the niobium-titanium-alloy-based magnet, which
is used for the tokamak Tore Supra, the tokamak KSTAR and the tokamak ITER, becomes



14 Chapter 1. General Introduction

super conductor. It can be noted that this alloy becomes superconducting when the maxi-
mum temperature is below 10K. In order to satisfy this temperature requirement, cryogenic
plants are essentially dedicated to this objective. For instance, the magnets of ITER will

J (kA/mm2)

T (K)
B (T )

Figure 1.4: Critical surface of the niobium-titanium alloy expressed in the coordinate of current density
𝐽 (in 𝑘𝐴/𝑚2), temperature 𝑇 (in 𝐾), and magnetic field 𝐵 (in Tesla), under which the material has
superconducting state.

be cooled down by supercritical helium circulation at a temperature of 4.2 K. To do so, a
"cold production system" (cryoplant), located on the ITER platform, will produce the nec-
essary fluids and supply the installation through a complex network of "cold lines" (cryolines).

In the next section, cryogenic refrigerators and the physical principles for generating liq-
uid helium at atmospheric pressure are presented.

1.2 Helium Refrigerators

In order to cool superconducting magnets to a temperature at which gaseous helium liquefies,
a combination of compression cycles and expansion cycles are employed in a cryogenic
refrigerator. The sub-cycles that are implemented in a full refrigerator available at CEA,
which has a cooling power of 400 W at 1.8 K, are presented in the sub-sections below.

1.2.1 Reversed Carnot cycle

It is absolutely possible to reverse the Carnot cycle where two reversible isothermal processes
and two isentropic processes take place. Fig. 1.5 shows the synoptic view of the implemen-
tation and the temperature/specific entropy (T/s) diagram of the reversed Carnot cycle. The
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cycle consist of an isentropic expansion (4-1), an isothermal heat transfer (1-2), an isentropic
compression (2-3) and an isothermal heat rejection (3-4). The efficiency coefficient of this
cycle is defined by a ratio between the work 𝑄𝐿 needed for the system to extract a thermal
work 𝑄𝐻 from a temperature 𝑇𝐻 to 𝑇𝐶 , namely:

𝜂 =
𝑇𝐶

𝑇𝐻 − 𝑇𝐶

QH

QL

Turbine

Condenser

Evaporator

Compressor

1 2

34

Warm medium
at TH

Cold medium
at TL

(a)
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QL

T

s

1 2

34

(b)

Figure 1.5: Synoptic view of Carnot cycle (a) and T/s diagram of Carnot cycle (b)

The reversed Carnot cycle is the most efficient refrigeration cycle operating between two
specified temperature levels. However, this cycle cannot be implemented in practice because
of the friction of the moving engines and the irreservabilities in the heat exchangers, turbines,
compressors, etc. At present, the efficiency coefficient of the cryogenic refrigerator disposed
at CEA is roughly 20% compared to the reversed Carnot cycle.

1.2.2 Joule Thomson cycle

The Joule-Thomson cycle is used to liquefy helium gas by expanding the gaseous fluid through
a so-called Joule-Thomson (JT) valve. This cycle consists of a compression device, a heat
exchanger between 1 and 2, and between 4 and 5. Joule-Thomson expansion occurs between
2 and 3 through the JT valve. Fig. 1.6 shows the synoptic view and the temperature-specific
entropy (𝑇/𝑠) diagram of the cycle.
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Figure 1.6: Synoptic view of Joule-Thomson cycle (a) and T/s diagram of Joule-Thomson cycle (b)

However, it is essential to note that the helium fluid is not sufficiently cooled down when
passing through the JT valve. More precisely, if the helium gas is at a temperature higher
than the inversion one (40K), the isenthalpic expansion will heat the fluid. In addition, being
below this inversion temperature does not guarantee the production of liquid helium. For
instance, an expansion from 20 bars to 1 bars of helium gas at 10 K only produces helium at
6.3 K, which is not in the liquid state. Hence, it is often to combine the Joule-Thomson cycle
with some isentropic expansion cycles, which is presented in the following section.

1.2.3 Brayton cycle

In many large cryogenic refrigerators, several Brayton cycles can be placed in series to cool
down the helium before it is liquefied through the JT valve. More precisely, the Brayton cycle
consists of three components: a compressor, a turbine and a heat exchanger. Figure 1.7 shows
the synoptic view of the Brayton cycle and the 𝑇/𝑠 diagram of the thermodynamic process it
implements.

Compared to the Joule-Thomson cycle, the difference between these two cycles is the
process that takes place between 2 and 3. Indeed, the passage of the fluid through the turbine
causes the expansion process, which extracts energy from the fluid in the form of mechanical
work and leads to a decrease in the fluid temperature.

The following section will describe the warm compression station, which is used to close the
thermodynamic process of the cryogenic refrigerators.
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Figure 1.7: Synoptic view of Brayton cycle (a) and T/s diagram of Brayton cycle (b)

1.2.4 Warm compression station (WCS)

In cryogenic refrigerators, several cycles can be constructed in cascade order so that a certain
cooling power can be reached. This is also the case of the 400 W refrigerator available at
CEA, which will be presented in details in the next subsection. The operational pressures
required by the cycles are created by one or a series of compressors that can be placed on
top of the constructed sequence. Fig. 1.8 illustrates the WCS (without controlling valves) in
the configuration using one compressor and two compressors. Typically, this plant maintains
the helium gas pressure in two main lines, which are the high pressure pipeline and the low
pressure pipeline denoted by 𝑃𝐻 and 𝑃𝐿 , respectively.

Compressor

PL PH

(a)

Compressor 2

Compressor 1

PL PH

(b)

Figure 1.8: Synoptic views of the warm compression station using one compressor (a) and two
compressors placed in parallel (b).

At this stage, all the elementary components have been introduced. The complete process
that will be introduced in this study will be presented in the next section.
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1.2.5 Station 400 W

The cryoplant available at CEA is introduced in this paragraph. This station consists of a
Joule-Thomson cycle, a Brayton cycle, a pre-cooling stage with liquid nitrogen, and a warm
compression station.
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Figure 1.9: Synoptic view of the 400 W@ 1.8 K station available at CEA (a) (presented in the 400 W
@ 4.4 K configuration) and the associated T/s diagram (b)

In brief, this cryogenic refrigerator implements a closed thermodynamic cycle (Fig. 1.9b).
In this cycle, the helium gas fluid flows clockwise through two main lines, namely the high
pressure line (red line) and the low pressure line (blue line) shown in Fig. 1.9a. The cooling
power of the cryogenic refrigerator is generated by heat exchange in the fluid through a series
of heat exchangers denoted by NEF𝑥 , and also by thermal energy extraction using a turbine
denoted by T1 (in the Brayton cycle). The helium gas is partially liquefied after passing
through the valve denoted by CV155 and rests in the helium bath; the low-temperature gaseous
part exits the bath through the cold pipe. The main objective is to reject the disturbing thermal
power induced by the heat source designated by NCR22. Finally, the cycle is closed by the
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so-called warm compression station, where the N𝑐 compressors reside. It should be noted
that the synoptic view of the 400 W station presented in Fig. 1.9b is the configuration at 4.4
K, whereas the full configuration is at 1.8 K.

1.2.6 The pulsed thermal load

In the context of a tokamak application, the cooling power from a refrigerator is transferred to
the tokamak via a distribution system (Fig. 1.10). During tokamak operation, the dynamics
of the refrigerator are generally affected by pulsed charges from the tokamak magnets. The
sources of these pulsed heat charges are numerous and can be listed as follows: currents
flowing in the magnets (Joule effect in the magnet joints), AC losses, and neutron flux from
the fusion plasma. For example, in the Japanese tokamak JT-60SA, the cooling system is
expected to be affected by the pulsed load shown in Fig. 1.11.

Refrigerator Distribution system Tokamak

Figure 1.10: Synoptic view of the system of cooling power distribution.

Figure 1.11: Pulsed charge of Tokamak JT60-SA [10].

It is noted that the maximum value of expected pulsed loads experienced by the JT-60SA
tokamak refrigeration system reaches up to twice the average cooling capacity of the facility.
This typical disturbance can cause system instability or even exceeds the system capacity (e.g.
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exceed the compressor power).

1.3 Control design

In the previous section, the cryoplant used to cool some thermal loads was introduced.
However, these refrigerators are typically built to handle near-constant loads over a long
period of time. Many control methods have been developed and implemented to control the
cold box and WCS, which can be found in [11, 12, 13] (for WCS control) and [14, 15]. (for
the control of the cold box). In this section, some common methods that are widely used are
presented.

1.3.1 Control of the WCS

Warm compression station control is not a new topic in cryogenic control engineering. Many
effective approaches can be found in [11, 12, 13] . This paragraph will focus on some of the
most widespread and advanced approaches that are used to control this station.

Recall that theWCSmaintains the pressures of the incoming and outcoming fluids denoted
by P𝐿 and P𝐻 in Fig. 1.12, respectively. To do so, a set of controlling valves is used, which
are a bypass valve CV𝑏𝑝, a discharge valve CV𝑑𝑐ℎ and a charge valve CV𝑐ℎ.

For controlling the WCS, the best known strategy used to maintain the pressure P𝐻 of
the outgoing fluid is the split-range [16] method combined with a PI controller to control the
incoming fluid pressure P𝐿 . More precisely, this method consists of two single-variable PI
regulators, one for each pressure to be controlled (Fig. 1.12a). The first controller regulates
the low pressure P𝐿 via the bypass valve CV𝑏𝑝. For the high pressure P𝐻 , the valves CV𝑑𝑐ℎ
and CV𝑐ℎ are considered as a single actuator that is driven by the PI controller associated
with the high pressure P𝐻 . If the high pressure is too high, the discharge valve opens to
remove gas from the circuit, while on the contrary, if the high pressure is too low, the charge
valve opens to add gas to the circuit. The second method consists [17] of two multivariable
LQ controllers, each of which controls two actuators, either Cv𝑏𝑝 and Cv𝑑𝑐ℎ, or Cv𝑏𝑝 and
Cv𝑐ℎ, to control the high pressure and low pressure, respectively (Fig. 1.12b). Since only
two scenarios can occur, either a lack of gas or an excess of gas in the system, one of the two
controls for these regulators is selected. The principle of selection is based on the fact that the
allowed controller is the one that gives a positive value on the discharge valve or the charge
valve.
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Figure 1.12: Synoptic view of the warm compression station with the associated PI controllers (a) and
the LQ controllers (b).

1.3.2 Control of the Cold-box

The cold box combines two subsystems which are the Joule-Thomson cycle and the Brayton
cycle (Fig. 1.9a). The controlled outputs of this plant are the liquid helium level in the bath
Ltb131, the temperature at the inlet of the valve J-T Ttb108 and the temperature at the outlet
of the turbine Ttb130. The manipulated input are the control valve CV155, the heating power
NCR(𝑎)22 in the J-T cycle and the control valve CV156 in the Brayton cycle. Note that this plant
is subjected under a thermal disturbance NCR(𝑤)22 , which then contributes together with the
manipulated power NCR(𝑎)22 to the total heating power, namely, NCR22 = NCR

(𝑎)
22 + NCR

(𝑤)
22 .

Many methods are used to control the cold box: helium level control by heating actuator,
variable high pressure control, etc. This paragraph will present the PI controller approach
and the model predictive control approach that have been implemented on the 400 W station
at CEA.

In order to control the cold box of the refrigerator, the simplest way is to use several PI type
single-variable controllers. When the steady state of the system is established, the control
principle can be stated as follows: the temperature at the inlet of the JT valve is controlled
using a turbine. The output temperature of this turbine is controlled by a PI controller. Once
the inlet temperature of the JT valve is stable, the cooling power of the cryoplant is then
constant and always higher than the thermal load. Thus, a heating actuator is added in the
helium bath which is driven by another PI controller to regulate the level of liquid helium in
the bath.

In [18], a constrained model predictive controller is used to control the cold box. How-
ever, the computational burden associated with this type of controller makes it impractical in
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real-time implementation, especially when the control problem becomesmore complex due to
the increase of states and constraints to be considered. Therefore, the authors have proposed a
real-time solver that can be implemented in a programmable logic controller (PLC). In short,
this solver implements a gradient-based method to find the minimum of a quadratic function.
The efficiency of this solver has also been evaluated with different control updating periods,
demonstrating that the more frequently the control input is updated, the more efficient the
closed-loop performance obtained.

1.4 Context and problem statement

After discovering some of the methods used to control the cryogenic subsystems, these
techniques can be separated into two categories: centralized control and decentralized con-
trol. For instance, the system under a decentralized control structure is assumed to have
several interacting subsystems, each of which is controlled by a local controller. However,
strong interaction between subsystems can prevent the whole process from achieving stabil-
ity/performance. On the other hand, as long as MPC is involved, the approach that uses only
one particular controller for a global system is a centralized approach since it tries to solve a
large-scale problem in which the interactions between subsystems are considered.

Although centralized approaches with MPC have been used widely in real-life applications,
they also have many drawbacks that are listed below:

Problem 1: Solving the centralized problem
Solving the optimal control problem for a large-scale system at each constrained update pe-
riod is an extreme challenge. Indeed, the complexity of the control problem to be solved
increases with the complexity of the system, as does the relatively necessary computation.
Moreover, the computational resources available on the platform are not always adapted to
the complexity of the calculations, which prevents the control algorithm to be deployed.

Problem 2: Nonlinearity isolating
As soon as some nonlinear characteristics of a single subsystem is to be considered, the cen-
tralized MPC problem is obliged to be treated as a nonlinear one while the other subsystems
could be considered linear. Thus, this nonlinear subsystem can be considered the bottleneck
for any centralized framework as it makes modeling, control synthesis, and implementation
more difficult. Hence, the need of a control framework that allows to isolate the nonlinear
subsystem from the linear ones, while taking into account the coupling effects between them
is absolutely an emerging topic.

Problem 3: Flexibility of the control algorithm
In general, large-scale systems usually experience changes in their life cycle. These changes
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could be controller adjustment, actuator replacement, etc. Especially when centralized control
is employed, any change in local subsystems requires the overall performance to be assessed.

Problem 4: Different time scales
A large-scale system may be composed of several subsystems, among which different time
scales are encountered. Indeed, many systems are characterized by clearly distinguishable
slow and fast dynamics. For instance, the WCS is actively controlled with a sampling period
of 1 second, while the cold box’s sampling period of 5 seconds due to its slow dynamic
behavior. If the centralized approach is chosen, the targeted model should be based on the
faster sampling time constant, while the prediction horizon is chosen long enough so that the
stability of the slow dynamic subsystem is guaranteed. Consequently, the control problem
might not be successfully solved in that short period in order to control the system efficiently.

Facing to these problems, this book tries to develop and implement a hierarchical control
approach that ensures stability and performance of the global system.

1.5 Book outline

This section briefly summarizes the main content of this book, chapter by chapter, which are
listed below:

• Chapter 2: Background

The essential preliminaries to our main research are presented, which is the hierar-
chical control approach in cryogenic processes. First, the decomposition method that
is required to separate the overall system into many subsystems interacting with each
other via coupling signals is introduced. Since the topic of this book is to propose a
control method for large-scale systems, the general observer-based decentralized control
framework is described, which is served as a baseline to be compared with the proposed
method throughout this book. The local controllers of the subsystems in the framework
can be chosen to be the well-known and widely used model predictive control, whose
formulation is then recalled. Finally, the centralized observation scheme for state esti-
mation is described.

• Chapter 3: Fixed-point-iteration-based hierarchical control

We present the fixed-point-based hierarchical control framework, which consists of two
distinct layers. At the lower layer, interconnected subsystems are controlled by local
agents, which require coupling profiles to compute their control profiles. At the top
layer, the coordinator communicates extensively with the agents to find the true cou-
pling profiles associated with a given setpoint. In addition, the coordinator optimizes a
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central cost with respect to the setpoints that will be sent to the agents. In the original
work [1], this framework was validated in the case where local agents implement only
unconstrained linear controllers. We extended this work by replacing these controllers
with constrained nonlinear controllers and evaluating the effectiveness of the frame-
work in this case. In addition, the real-time implementation problem resulting from
the use of nonlinear controllers is also addressed by proposing a technique that consists
of distributing the optimization over time. Finally, a series of simulations show the
effectiveness of the proposed framework.

• Chapter 4: On the use of fast-NMPC and deep learning approach in fixed-point-
iteration-based hierarchical control
In this framework, the constrained nonlinear MPC problems are solved repeatedly until
the communication between the coordinator and the local agent converges to a fixed
point, which definitely increases the computational load. Indeed, there will be a bot-
tleneck for real-time implementation if the required computation time is far from the
update period. In order to reduce the computation time of local controllers, fast nonlin-
ear MPC techniques such as truncated gradient solver and deep-neural-network-based
controller are proposed. It is also shown that by doing so, the control update period
can be significantly reduced, and the closed-loop performance greatly improved. This
chapter can thus be seen as a concrete implementation and validation of some key ideas
in the design of real-time distributed NMPCs.

• Chapter 5: Application to a complete refrigerator and some development in the fixed-
point based hierarchical control method
The proposed framework is applied to the complete system, which consists of eight
subsystems with different time scales. A residual-based iterative method, which is
called Anderson acceleration method, is implemented to ensure convergence the inner
loop processed between the coordinator and the agents. A gradient-based solver is
implemented at the coordination level to optimize the central cost with respect to the
set point. Numerical simulations are performed to evaluate the effectiveness of the
proposed framework.



Chapter 2

Background

Abstract In this chapter, we present the tools used for modeling, control law synthesis and
dynamic simulation of cryoplants. In the context of decentralized control of cryogenic pro-
cesses, a particular way to decompose the overall system is presented. Then, a decentralized
control schema is introduced, which will serves as a comparison base to the hierarchical
control framework presented in chapter 3. In addition, the MPC formulations which are
implemented to control the subsystems are also recalled. Finally, the observation method that
is used in both decentralized and hierarchical methods is described.

2.1 Modeling Tool

For system modeling and simulation, there are many tools, both homemade and commercial
versions, which are now available on the market, such as Cryolib [19], AspenHysys Dynamics
[20], GT-SUITE [21], etc. However, these tools are dedicated for simulating cryogenic
installations’ dynamic but not for control synthesis, the details are given below:

• With AspenHysys Dynamics, the derived model is very complex, deduced from the fact
that, according to the author, it takes two hours of calculation to simulate fifteen hours
of operation of the machine. This is due to the heat exchangers, which are modeled in
a very precise way with many differential equations. This model is not simple enough
to deduce a control law.

• The software Cryolib allows to modelize complexe cryogenic plants. It has been
validated by CERN (Switzerland) and has been playing an important role in many
applications. However, the complexity and the form of writing of the final model does
not make it compatible with the generation of control laws.

Recognizing the urgent need for a tool dedicated to the synthesis and validation of controls
specific to cryogenic systems, a library named Simcryogenics[22] was developed at CEA
(France).

Simcryogenics is a library developed within the Matlab/Simulink/Simscape environment
(Fig. 2.1). This library provides many standard cryogenic components such as: heat ex-

25
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pipe1d Fluid volume Cooler Pressure drop P/T source
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Figure 2.1: Example of components available in the Simcryogenics library [22]

changer, valve, compressor, phase separator, etc. Those components can be dragged and
dropped on a Simulink worksheet and connected together according to certain rules, to create
a complete functioning model.

The models generated by this library are not only simple enough but also ensure accu-
racy in system dynamics; any linear control law can be synthesized directly from the linear
dynamic equations obtained by using the Matlab linearize() subroutine combined with the
model created by this library.

All of the performed results showed in this book are obtained by using this library.

2.2 System decomposition

This book aims to present a hierarchical control approach, in which the system is controlled
by several local agents. It is therefore necessary to present the method used to decompose the
complete system into smaller subsystems that interact with each other.

Let’s take as an example a group of two cycles, which are the Joule-Thomson (J-T) cycle
and the Brayton cycle of the 400 W refrigerator described in 1.3.2. This system can be
decomposed in two possible ways: either by cycles or by elementary components. Fig. 2.2
shows the mentioned decompositions for this group of cryogenic cycles. More precisely, in
the 2-subsystem topology, the group is separated into its two natural cycles, which are the
J-T cycle and the Brayton cycle. In the 4-subsystem topology, except for the J-T cycle, the
Brayton cycle is separated into 3 elementary components which are NEF2, NEF34 and the
combination of the turbine T1 and the valve Cv156.

Intentionally, these decompositions attempt to separate the large system into a network
of smaller subsystems. In this network, the subsystems interact mutually with each other via
the coupling signals 𝑣𝑠→𝑠′, which represents the output of subsystem 𝑆 − 𝑠 that affects the
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Figure 2.2: Two possible decompositions of the coldbox of the 400 W station.

dynamic of subsystem 𝑆𝑠′.

In thermodynamics, the state of a fluid can be determined using 2 variables, namely, the
specific enthalpy and pressure. As cryogenic processes always operate with forced flows,
the flow rate is also to be taken in to account. However, as long as the phase of the fluid is
monophasic (in our case liquid or gaz) the specific enthalpy can be replaced by the temperature
as the information to determine the state of the fluid. Based on this, the coupling signals of
each subsystem are determined as follows:

• Counting from the helium bath, the upper heat exchangers impose pressures on their
lower neighbors, while the lower heat exchangers impose flow rates on their upper
neighbors.

• Meanwhile, the origin subsystem of the temperature is identified by the fluid direction
(the arrow line in the system scheme of Fig. 2.2); it belongs to the subsystem from
which the fluid exits.

• Finally, the actuators such as turbines and valves impose their outlet temperatures and
flow rates on the components connected to them.

Note that in the 2-subsystem and 4-subsystem topologies mentioned above, all the decoupling
positions are where the fluid is purely gaseous. Thus, the specific enthalpies could be replaced
by the temperatures.
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Table 2.1: The associated coupling vectors of 2-subsystems topology and 4-subsystems topology.

2-subsystem topology
Subsystem 𝑠 𝑣𝑠→𝑠′

J-T cycle 𝑣𝐽𝑇→𝐵𝑇 = [𝑀𝐻
𝐽𝑇→𝐵𝑇

, 𝑀𝐿
𝐽𝑇→𝐵𝑇

, 𝑇𝐿
𝐽𝑇→𝐵𝑇

]𝑇

Brayton cycle 𝑣𝐵𝑇→𝐽𝑇 = [𝑃𝐻
𝐵𝑇→𝐽𝑇

, 𝑃𝐿
𝐵𝑇→𝐽𝑇

, 𝑇𝐻
𝐵𝑇→𝐽𝑇

]𝑇

4-subsystem topology
J-T cycle 𝑣𝐽𝑇→𝑁𝐸𝐹2 = [𝑀𝐻

𝐽𝑇→𝑁𝐸𝐹2
, 𝑀𝐿

𝐽𝑇→]𝑇

NEF2

𝑣𝑁𝐸𝐹2→𝐽𝑇 = [𝑃𝐻
𝑁𝐸𝐹2→𝐽𝑇

, 𝑃𝐿
𝑁𝐸𝐹2→𝐽𝑇

, 𝑇𝐻
𝑁𝐸𝐹2→𝐽𝑇

]𝑇

𝑣𝑁𝐸𝐹2→𝑁𝐸𝐹34 = [𝑀𝐻
𝑁𝐸𝐹2→𝑁𝐸𝐹34

, 𝑀𝐿
𝑁𝐸𝐹2→𝑁𝐸𝐹34

, 𝑇𝐿
𝑁𝐸𝐹2→𝑁𝐸𝐹34

]𝑇

𝑣𝑁𝐸𝐹2→𝑇1 = 𝑃
𝐿
𝑁𝐸𝐹2→𝑇1

NEF34
𝑣𝑁𝐸𝐹34→𝑁𝐸𝐹2 = [𝑃𝐻

𝑁𝐸𝐹34→𝑁𝐸𝐹2
, 𝑃𝐿

𝑁𝐸𝐹34→𝑁𝐸𝐹2
, 𝑇𝐻

𝑁𝐸𝐹34→𝑁𝐸𝐹2
]𝑇

𝑣𝑁𝐸𝐹34→𝑇1 = [𝑃𝐻
𝑁𝐸𝐹34→𝑇1

, 𝑇𝐻
𝑁𝐸𝐹34→𝑇1

]𝑇

T1
𝑣𝑇1→𝑁𝐸𝐹34 = 𝑀

𝐻
𝑇1→𝑁𝐸𝐹34

𝑣𝑇1→𝑁𝐸𝐹2 = [𝑀𝐿
𝑇1→𝑁𝐸𝐹2

, 𝑇𝐿
𝑇1→𝑁𝐸𝐹2

]𝑇

To conclude, Tab. 2.1 summarizes the coupling signals associated to each decomposition.
The symbols 𝑇𝐻

𝑠→𝑠′, 𝑃
𝐻
𝑠→𝑠′ and 𝑀

𝐻
𝑠→𝑠′ / 𝑇

𝐿
𝑠→𝑠′, 𝑃

𝐿
𝑠→𝑠′ and 𝑀

𝐿
𝑠→𝑠′ represent the temperature,

the pressure and the flow rate at the high pressure / low pressure pipeline through which the
subsystem 𝑠 affects the subsystem 𝑠′.

2.3 Decentralized control and MPC

2.3.1 Decentralized control approach

In this book, we will focus on the decentralized approach and hierarchical approach to control
large-scale systems. These two approaches are eventually compared to each other to evaluate
their performances. First, the decentralized approach is presented in this section, while the
targeted hierarchical control method that is based on fixed-point iteration is presented in
chapter 3.

Before going any further, some notations that are extensively used in the sequel need to
be defined.

Notation For a sequence of vectors 𝑞𝑖1 , 𝑞𝑖2 , . . . , 𝑞𝑖𝑛 , the stacked vector 𝑞 that concatenates
this sequence elements is defined as follows:

𝑞 := col
𝑖∈I
(𝑞𝑖) = [𝑞𝑇𝑖1 , . . . , 𝑞

𝑇
𝑖𝑛
]𝑇 , with I := {𝑖1, . . . , 𝑖𝑛 |𝑖1 < · · · < 𝑖𝑛} (2.1)



2.3. Decentralized control and MPC 29

S1 S2 S3

C1 C3

u1 u3

v1→2

v2→1

v2→3

v3→2

v3→1

v1→3

Figure 2.3: Example of decentralized control structure. The instantiation of the sets corresponding
to this scenario are: N = {1, 2, 3}, N 𝑐𝑡𝑟 = {1, 3}, N𝑢𝑛𝑐 = {2}, N1 = {2, 3}, N2 = {1, 3} and
N3 = {1, 2}.

where col𝑖∈I (𝑞𝑖) is the concatenation operator. The bold-faced notation p denotes the profile
of a vector variable 𝑝 over a prediction horizon of length 𝑁 , namely:

p := [𝑝𝑇 (𝑘), . . . , 𝑝𝑇 (𝑘 + 𝑁 − 1)]𝑇 ∈ R𝑁 ·𝑛𝑝 (2.2)

Given a network of 𝑛𝑠 subsystems, the setN := {1, . . . , 𝑛𝑠} gathers all subsystem indices,
which is divided into two subsets N𝑢𝑛𝑐 and N 𝑐𝑡𝑟 . The indices that respectively belong to the
subsetN 𝑐𝑡𝑟 /N𝑢𝑛𝑐 refers to the subsystems that have / do not have control input, respectively.
Each of the controlled subsystem 𝑆𝑠∈N 𝑐𝑡𝑟 has a controller denoted by C𝑠∈N 𝑐𝑡𝑟 . Furthermore,
the subsystem 𝑆𝑠 affects the dynamic of the subsystems 𝑆𝑠′ through its output 𝑣𝑠→𝑠′, for
𝑠′ ∈ N𝑠 with N𝑠 denoting the set of neighbors of subsystem 𝑆𝑠. As an illustration, Fig. 2.3
shows a synoptic view of a typical decentralized architecture applied to an interconnecting
network of subsystems.

The mathematical models of the subsystems are given below:

• For all subsystems 𝑆𝑠 (𝑠 ∈ N ), the dynamic model is given by:

𝑥+𝑠 = 𝑓𝑠 (𝑥𝑠, 𝑢𝑠, 𝑤𝑠, 𝑣𝑖𝑛𝑠 ) (2.3)

where 𝑥𝑠 ∈ R𝑛
(𝑠)
𝑥 , 𝑢𝑠 ∈ R𝑛

(𝑠)
𝑢 and 𝑤𝑠 ∈ R𝑛

(𝑠)
𝑤 represent respectively the state vector,

the manipulated input and the disturbance input of the subsystem 𝑆𝑠. Note that for
uncontrolled subsystems 𝑆𝑠∈N𝑢𝑛𝑐

and subsystems that are not affected by any disturbance,
their control input 𝑢𝑠 and disturbance input 𝑤𝑠 do not exist in the above model equations,
i.e., 𝑢𝑠 = ∅ or 𝑤𝑠 = ∅. Furthermore, the coupling input 𝑣𝑖𝑛𝑠 concatenates all the coupling
signals that affect the dynamics of subsystem 𝑆𝑠, which is 𝑣𝑖𝑛𝑠 = col𝑠′ |𝑠∈N𝑠′ (𝑣𝑠′→𝑠).
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• The outgoing coupling signal 𝑣𝑠→𝑠′ that affects 𝑆𝑠′ is described by:

𝑣𝑠→𝑠′ = 𝑔𝑠→𝑠′ (𝑥𝑠, 𝑢𝑠, 𝑣𝑖𝑛𝑠 ) for 𝑠′ ∈ {𝑠′|𝑠 ∈ N𝑠′} (2.4)

with 𝑣𝑠→𝑠′ ∈ R𝑛
(𝑠→𝑠′)
𝑣 . Note that these variables can be gathered to form a vector

representing the outgoing coupling signals coming from 𝑆𝑠 denoted by:

𝑣𝑜𝑢𝑡𝑠 = col
𝑠′∈N𝑠

(𝑣𝑠→𝑠′) = 𝑔𝑜𝑢𝑡𝑠 (𝑥𝑠, 𝑢𝑠, 𝑣𝑖𝑛𝑠 ) (2.5)

• The output to be controlled is given by:

𝑦𝑠 = ℎ𝑠 (𝑥𝑠, 𝑢𝑠, 𝑣𝑖𝑛𝑠 ) (2.6)

with 𝑦𝑠 ∈ R𝑛
(𝑠)
𝑦 .

Decentralized control frameworks consist of having several local controllers (agents)
C𝑠∈N 𝑐𝑡𝑟 for the separable subsystems (Fig. 2.3). These agents operate independently of each
other, which means there is no communication between them, neither with any master level.
The design and the success of these local controllers is trivial when the coupling signals
are weak. However, it has been shown that the stability and / or good performance with
a decentralized framework may not be achievable due to strong interactions between the
subsystems [23, 24].

For literature reviews, reader is referred to classical textbooks [25, 26] on decentralized
control structure and stability. In addition, somemethods based on vector Lyapunov functions
[26], sequential design, specific decomposition or optimization are also available [27, 28, 29].
In the context of decentralized control, the survey papers such as [30, 31, 32] have recently
reported an up-to-date list of references.

In large-scale industrial applications, these local controllers can be of different types (e.g.,
PID, LQR, MPC, ...). With well-known controllers such as the PID type controller, the
P, I and D coefficients need to be carefully adjusted to handle the strong coupling between
subsystems. On the other hand, linear-quadratic regulator (LQR) andMPC are more andmore
popular nowadays because of their intrinsic multivariable nature. Furthermore, nonlinearity
and operating constraints can also be included in the optimization control problems of MPC
formulations. This is the reason why MPC formulations is recalled in the next section.

2.3.2 Model predictive control

2.3.2.1 MPC formulation

In the process control industry, model predictive control has been successfully applied in the
last two decades. Its popularity is due to the ability to incorporate the actual control objective
and operating constraints in the optimization control problem solved at each sampling time.
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Given an initial state vector 𝑥𝑠 (𝑘), an incoming coupling profile v𝑖𝑛𝑠 , a disturbance profile
w𝑠 and any control profileu𝑠 defined over the prediction horizon [𝑘, 𝑘+𝑁], the corresponding
nominal state trajectory is given by:

𝑥𝑠 (𝑘 + 𝑖 + 1) = 𝑓𝑠 (𝑥𝑠 (𝑘 + 𝑖), 𝑢𝑠 (𝑘 + 𝑖), 𝑣𝑖𝑛𝑠 (𝑘 + 𝑖),w𝑠 (𝑘 + 𝑖)) for 𝑖 = 0, . . . , 𝑁 − 1 (2.7)

The state profile x𝑠 over a horizon of length 𝑁 , can be defined by a straight-forward notation:

x𝑠 = f𝑠 (𝑥𝑠 (𝑘),u𝑠, v𝑖𝑛𝑠 ,w𝑠); (2.8)

Similarly, the output profile can be computed by using (2.6), namely:

y𝑠 (𝑖) = ℎ𝑠 (x𝑠 (𝑖),u𝑠 (𝑖), v𝑖𝑛𝑠 (𝑖)); for 𝑖 = 0, . . . , 𝑁 − 1 (2.9)

where x𝑠 (𝑖) refers to the prediction of state value in time-domain that is 𝑥𝑠 (𝑘 + 𝑖), and for the
sake of brevity it can also be written in the following form:

y𝑠 = h𝑠 (x𝑠,u𝑠, v𝑖𝑛𝑠 ); (2.10)

Besides, the outgoing coupling profile can be deduced as follows:

v𝑜𝑢𝑡𝑠 = g𝑜𝑢𝑡𝑠 (x𝑠,u𝑠, v𝑖𝑛𝑠 ); (2.11)

At every instant 𝑘 , the standard formulation of the optimal control problem are given by:

P𝑠 : min
u𝑠

𝐽
(𝑠)
MPC(𝑥𝑠 (𝑘),u𝑠, v

𝑖𝑛
𝑠 ,w𝑠, 𝑟𝑠) (2.12)

=

𝑁−1∑︁
𝑖=0
∥𝑥𝑠𝑝𝑠 − 𝑥𝑠 (𝑘 + 𝑖)∥2𝑄𝑠

+ ∥𝑢𝑠𝑝𝑠 − 𝑢𝑠 (𝑘 + 𝑖)∥2𝑅𝑠
(2.13)

subject to :
x𝑠 = f𝑠 (𝑥𝑠 (𝑘),u𝑠, v𝑖𝑛𝑠 ,w𝑠) (2.14)
u𝑠 ∈ U𝑠 (2.15)

where 𝑄𝑠 ∈ R𝑛
(𝑠)
𝑥 ×𝑛(𝑠)𝑥 and 𝑅𝑠 ∈ R𝑛

(𝑠)
𝑢 ×𝑛(𝑠)𝑢 are weighting matrices on the state and control

input. In the decentralized approach, the incoming coupling profile v𝑖𝑛𝑠 is considered constant
over the prediction horizon and equal to the estimated value given by the observer (see later).
Similarly, the disturbance profilew𝑠 (if any) has a constant value over the prediction horizon,
which is equal to the current disturbance value 𝑤𝑠 (𝑘).

The stationary state and input denoted respectively by 𝑥𝑠𝑝𝑠 and 𝑢
𝑠𝑝
𝑠 depend on the output

set-point 𝑟𝑠 and are computed by solving the following optimization problem:

P𝑠𝑝𝑠 : min
𝑥
𝑠𝑝
𝑠 ,𝑢

𝑠𝑝
𝑠

∥𝑦𝑠𝑝𝑠 − 𝑟𝑠∥2𝑄𝑠𝑝
𝑠
+ ∥𝑢𝑠𝑝𝑠 ∥𝑅𝑠𝑝

𝑠
(2.16)

subject to :
𝑦
𝑠𝑝
𝑠 = ℎ𝑠 (𝑥𝑠𝑝𝑠 , 𝑢𝑠𝑝𝑠 , 𝑣𝑒𝑛𝑑𝑠 ) (2.17)
𝑥
𝑠𝑝
𝑠 = 𝑓𝑠 (𝑥𝑠𝑝𝑠 , 𝑢𝑠𝑝𝑠 , 𝑤𝑠, 𝑣𝑒𝑛𝑑𝑠 ) (2.18)
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where 𝑣𝑒𝑛𝑑𝑠 := v𝑖𝑛𝑠 (𝑁 − 1) is the last vector of the incoming coupling profile v𝑖𝑛𝑠 , whereas
𝑄
𝑠𝑝
𝑠 ∈ R𝑛

(𝑠)
𝑦 ×𝑛(𝑠)𝑦 , 𝑅𝑠𝑝𝑠 ∈ R𝑛

(𝑠)
𝑢 ×𝑛(𝑠)𝑢 are respectively the weighting matrices on output and input.

Note that (2.18) is the stationary condition associated to the set-point 𝑟𝑠.

In practice, when the length of the prediction horizon 𝑁 is long enough for stability
to be achieved, the resulting computational burden and memory footprint can be extremely
challenging for real-time implementation. Therefore, it is preferable to parameterize the
vector of decision variables u𝑠 in the problem (2.13) to reduce the actual complexity of the
problem and thus reduce the computational time and memory requirements. This technique
will be introduced hereafter.

2.3.2.2 Parametrization

The parametrization consists in transforming the control profile by using a representation with
a lower degrees of freedom. Particularly, this is often obtained by approximating every control
decision in the full control sequence with a piece-wise constant function. More precisely,
the values of the elements in the control profile between two predefined decision instants are
defined by linear interpolation.

More precisely, given a vector denoted by 𝐼 ∈ N𝑛𝐼 that defines 𝑛𝐼 decision instants in the
prediction horizon of length 𝑁 , namely:

𝐼 = [𝐼1, 𝐼2, . . . , 𝐼𝑛𝐼 ] (2.19)

The parametrized vector u𝑠 ∈ R𝑛𝑢·𝑁 can be obtained by the following formula.

u𝑠 = Π𝐼
𝑠 · u

𝑝
𝑠 (2.20)

where u𝑝𝑠 is the new vector of decision variables and Π𝐼
𝑠 is the parametrization matrix given

by:

Π𝐼
𝑠 = (𝑎𝑖 𝑗 ) such that 𝑎𝑖 𝑗 =



I𝑛𝑢 if 𝐼 𝑗 = 𝑖

I𝑛𝑢
𝐼 𝑗+1 − 𝑖
𝐼 𝑗+1 − 𝐼 𝑗

if 𝑗 < 𝑛𝐼 and 𝐼 𝑗+1 > 𝑖 > 𝐼 𝑗

I𝑛𝑢
𝑖 − 𝐼 𝑗−1
𝐼 𝑗 − 𝐼 𝑗−1

if 𝑗 > 1 and 𝐼 𝑗 > 𝑖 > 𝐼 𝑗−1

0 otherwise

(2.21)

∀𝑖 ∈ [𝑖, 𝑁], ∀ 𝑗 ∈ [1, 𝑛𝐼].
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For instance, given the vector 𝐼 = [1 3 5 10 20] whose elements indicate the freedom
instants in the prediction horizon of length 𝑁 = 20 and a parametrized control profile
u𝑝 = [22 25 27 30 28] (for the purpose of illustration), the full control profile can be
computed by using (2.20). Fig. 2.4 illustrates the control profile u deduced from the given
parametrized vector u𝑝. .

Figure 2.4: Example of a parameterization with linear interpolation.

It is important to note that the disturbance profile and incoming coupling profile can
be similarly parametrized. Indeed, by defining the decision instants 𝑉 and 𝑊 , the resulted
parametrized disturbance and incoming coupling profiles are given below:

w𝑠 = Π𝑊
𝑠 ·w

𝑝
𝑠 and v𝑖𝑛𝑠 = Π𝑉𝑠 · v

𝑖𝑛,𝑝
𝑠 (2.22)

Then, the MPC problem stated in (2.16)-(2.18) becomes:

u
𝑝,𝑜𝑝𝑡
𝑠 = argmin

u
𝑝
𝑠

𝐽
(𝑠),𝑝
MPC (𝑥𝑠 (𝑘),u

𝑝
𝑠 , v

𝑖𝑛,𝑝
𝑠 ,w

𝑝
𝑠 , 𝑟𝑠) (2.23)

subject to: x𝑠 = f𝑝𝑠 (𝑥𝑠 (𝑘),u𝑝𝑠 , v𝑖𝑛,𝑝𝑠 ,w
𝑝
𝑠 ) (2.24)

y𝑠 = h𝑝𝑠 (x𝑠,u𝑝𝑠 , v𝑖𝑛,𝑝𝑠 ,w
𝑝
𝑠 ) (2.25)

u
𝑝
𝑠 ∈ U𝑠 (2.26)

Consequently, the optimal control profile can be deduced by:

u
𝑜𝑝𝑡
𝑠 = Π𝐼

𝑠 · u
𝑝,𝑜𝑝𝑡
𝑠 (2.27)

Once the optimal control profile u𝑜𝑝𝑡𝑠 is computed, the first control action, namely:

𝑢𝑠 (𝑘) := [I𝑛(𝑠)𝑢
,O

𝑛
(𝑠)
𝑢
, . . . ,O

𝑛
(𝑠)
𝑢
] · u𝑜𝑝𝑡𝑠 (2.28)

with I
𝑛
(𝑠)
𝑢
andO

𝑛
(𝑠)
𝑢
being respectively the identity and zero matrices of dimensions 𝑛(𝑠)𝑢 × 𝑛(𝑠)𝑢 ,

is applied to the system during the updating period [𝑘, 𝑘 + 1].

It is essential to note that the local agents can also implement any type of regulators.
Indeed, given the current state 𝑥𝑠 (𝑘), the control sequence u𝑠 over a prediction horizon of
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length 𝑁 of any type of controller other than MPC can also be computed by simulating the
corresponding controlled system’s dynamic.

2.4 State estimation

As far asmodel-based control methods are concerned, system states are necessary for updating
the control feedback. It should be recalled that the main objective is to have a complete
decentralized control scheme in which observation and control are designed individually for
each local subsystem. However, it is challenging to design such a framework specific to the
applications interested in this book. This is due to the fact that the subsystems are highly
coupled to each other and some of them do not have any available measurement to update
correctly their states. Therefore, in order to prevent the observation problem from becoming
the bottleneck of the whole idea, we decided to use the centralized observation framework,
in which a single observer is designed to estimate the states of the whole system and allocate
them to the corresponding subsystems. The reasons for choosing this solution are explained
as follows:

• The design of the centralized observer remains independent of the local controller as it is
based on the pair (𝑢, 𝑦) where 𝑢 results from whatever controller inside each subsystem
and 𝑦 is the measurement of output. In other words, the design of the observer remains
valid even if a change in the control design is operated.

• Designing a complete decentralized observer might be technically impossible because
of the available sensors at each local level.

• The proposed mixed scheme (hierarchical/decentralized for control and centralized for
the observer) remains more realistic than many works on decentralized or hierarchical
designs where the observation problem is completely ignored and a state measurement
is supposed to hold.

First, a simple centralized linear observer is introduced. By linearizing the total plant, the
linear dynamic model [disturbance-free] is obtained, namely:

𝑥+ = 𝐴 · 𝑥 + 𝐵 · �̃� (2.29)
�̃� = 𝐶 · 𝑥 (2.30)

where 𝑥 = col
𝑠∈N
(𝑥𝑠), �̃� = col

𝑠∈N 𝑐𝑡𝑟
(�̃�𝑠) and �̃� = col

𝑠∈N 𝑐𝑡𝑟
( �̃�𝑠) are vectors that group the deviations of

states, inputs and outputs from their operation values 𝑥𝑜𝑝𝑠 , 𝑢
𝑜𝑝
𝑠 and 𝑦

𝑜𝑝
𝑠 of all the subsystems.

Whereas, 𝐴 ∈ R𝑛𝑥×𝑛𝑥 , 𝐵 ∈ R𝑛𝑥×𝑛𝑢 and 𝐶 ∈ R𝑛𝑦×𝑛𝑥 are linearized matrices. Note that this
time the complete system is linearized and therefore the coupling signals no longer exist.
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S1 S2 S3

Observer

Agent 1
C1

Agent 3
C3

u1 u3

y1 y3

˜̂x1
˜̂x3

v1→2

v2→1

v2→3

v3→2

v3→1

Figure 2.5: Synoptic view of a observer-based decentralized control scheme. In this scenario, only 𝑆1
and 𝑆3 receive the state estimates to compute their control input in order to regulate the outputs.

Assuming that the pair (𝐴,𝐶) is observable, the Luenberger observation gain 𝐿 can be
computed by using the Matlab subroutine dlqr(). Consequently, the observer’s equation is
formulated as follows:

˜̂𝑥+ = (𝐴 − 𝐿 · 𝐶) · ˜̂𝑥 + 𝐵 · �̃� + 𝐿 · �̃� (2.31)

The estimated state ˜̂𝑥 ∈ R𝑛𝑥 is updated by (2.31). Note that 𝑥 is nothing but the concatenation
of all the individual local state ˜̂𝑥𝑠 (for 𝑠 ∈ N ). Therefore, the observer can allocate these
local estimates 𝑥𝑠 to the corresponding subsystem 𝑆𝑠. Fig. 2.5 illustrates an observer-based
decentralized control scheme where the centralized observer is synthesized and implemented
in order to estimate the states of the local subsystems.

If ever an agent needs to implement a nonlinear controller synthesized from amodel whose
states are not identical to those of the linear model, the corresponding extended Kalman
observer (also called extended Kalman filter (EKF)) is systematically added to estimate the
states of this nonlinear model. The addition of the EKF is due to the fact that the linear model
resulting from the use of the Simcryogenics library usually has a high number of states,
which is not practical to have the nonlinear model with the same number of states. Fig. 2.6
illustrate the scenario where a nonlinear controller and a corresponding EKF are integrated
in the control scheme. Note that the EKF need to receive the estimate of incoming coupling
signal �̂�𝑖𝑛3 in order to estimate the state 𝑥3.
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Figure 2.6: Synoptic view of a observer-based decentralized control scheme with nonlinear observer.
In this scenario, 𝑆3 implements a nonlinear observer EKF.



Chapter 3

Fixed-point iteration based hierarchical
control

Abstract This chapter presents an extension of a recently proposed hierarchical control
framework applied to control a cryogenic refrigerator. The original work has validated this
framework in the case where each subsystem is regulated by a local agent that implements
unconstrained linear controllers. Hence, The extension concerns the validation of the frame-
work in the presence of both nonlinear models and controls. It is also shown that real-time
handling of these features requires a specific complexity reduction technique. This technique
aims to perform the distribution of the optimization process over cyclically changed deci-
sion variables aiming at limiting the number of iterations per updating period. Numerical
simulations are proposed in order to show the impact of the parameter choices and to assess
the real-time implementability of the proposed framework. Moreover, numerical simulations
also demonstrate that the overall system is well coordinated by this approach in the case where
some of the subsystems are not regulated.

3.1 State of art

In order to address the problems that have been mentioned in Chapter 1, many works have
studied a considerable number of non-centralized control architectures [33, 34], from which
three typical structures can be derived:

• Decentralized control structure (Fig: 3.1a): The subsystems in this structure are
individually controlled by the agents. Since there is no communication between these
agents (or regulators), each of them attempts to optimize its local problem without
taking into account to the coupling effects they have on each other.

• Distributed control structure (Fig: 3.1b): In this kind of structure, the agents com-
municate with each other to find an optimal solution. The information transmitted
between subsystems can be either the predicted evolution of system states (x1 and x2)
or the predicted control actions (u1 and u2). In the former, the local agents only need to
know the subsystem dynamic under their direct control, while in the latter, the dynamic
models of the subsystems that influence their decisions are needed.

37
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Figure 3.1: Synoptic view of the non-centralized control architectures: decentralized (a), distributed
(b), hierarchical control structure (c).

• Hierarchical control structure (Fig: 3.1c): This approach is characterized by a two-
level structure. At the local level, the subsystems are linked by the outputs (coupling
signals) of each other and controlled by their corresponding agents according to the
received set-point. At the coordination level, the coordinator exchanges information
with these agents in order to optimize global performance while ensuring that the
coherence constraints on the coupling effects are respected.

In general, distributed and hierarchical control approaches can address some problems
mentioned in Chapter 1. Although the distributed one is mainly applied in the large-scale
system control domain because of its simplicity [35, 36, 37], it is often implemented for
applications where the subsystems are weakly coupled, which is not valid for cryogenic sys-
tems. Besides, if fully distributed control (connections between all subsystems) is considered,
the implied network traffic will become complicated when there are too many subsystems
communicating with each other, which makes the implementation of this method much more
challenging.

On the contrary, the communication traffic issue implied by the hierarchical framework
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is lightened because the information is only exchanged between the coordinator and the local
layer. The well-known communication protocol between the two layers is the iterative "price
coordination" method [38, 39]. In this method, the coordinator sets the prices as the Lagrange
multipliers of the coherence constraints in the global optimization problem imposed by the
information (states, inputs, and outputs profiles) sent by the local agents. Upon receiving
these optimal prices, the local agents recompute the control profile and the corresponding
profiles of states and outputs. The iterations are stopped when the coherence constraint on
the coupling signals is satisfied. However, this method encounters some disadvantages, as
shown below:

• In most works, it is assumed that the coordination layer is built based on the MPC
decentralized scheme, which is not generally true in real-life applications. Indeed, in
cryoplants, most of the subsystems are controlled by classical controllers such as PID
or LQR.

• As long as MPCs are concerned in the local layer, the coordination layer is added to re-
trieve the equivalent centralized optimal solution by incorporating the interaction effects
in the local optimization problems. Their control problems are generally synthesized
with a fixed set of weighting matrices. These parameters are rarely modified since it
will induce a complete change in the overall framework. The defined optimization prob-
lem might not be compatible with the system operation, especially when the controlled
system has several modes that require different weighting matrices. Hence, the need for
a framework that allows to switch flexibly between the different modes is an emerging
topic.

In order to address these drawbacks, a method employing the hierarchical structure, which
has been developed by [1], is briefly described below:

The targeted hierarchical control scheme is constructed by basing on the existing decen-
tralized control layer, in which the local controllers receive appropriate set-points 𝑟𝑠 from the
coordinator that minimizes a central cost 𝐽𝑐. Furthermore, the proposed framework satisfies
the hierarchical requirements that are defined below:

• The agents in the network communicate exclusively with the coordinator.

• The coordinator does not know any information concerning the mathematical models
of the subsystems and the details of their controllers, which is exactly the modular
privacy-preserving requirement.

• The different operation modes (which will be clarified in the next section) are handled
by adjusting some coefficients of the central cost disposed at the coordination layer
without changing the local controllers.
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Although the method proposed by [1] has been successfully tested for a cryogenic appli-
cation, there are still some challenges that need to be addressed, which are given below:

1. The original work is only proved to be valid where the local agents implement un-
constrained linear MPCs. However, there are cases where the non-linearities of the
subsystems and the actuator constraints are required to be incorporated into the control
problem in order to ensure control performance. Adding these two terms (actuator con-
straints and non-linearities) increases significantly the computation burden that could
make the implementation unfeasible. To address this issue, this chapter and the next
chapter will propose some techniques that are to be considered when this type of issues
arises.

2. In addition, the inner-loop, which is the communication between the coordinator and
the local agents, is only proved to converge when unconstrained linear controllers are
involved in the local layer. This convergence is achieved thanks to an innovative filter
synthesized by using themathematical information of the local agents, which violates the
modular privacy-preserving requirement. Also, the communication can diverge if the
filter is not compatible with the constrained nonlinear versions of the local controllers.
Hence, a model-free method, which colorgreenenhances the convergence of the inner
loop, will be introduced in Chapter 5.

The next section will recall the fixed-point iteration based control method introduced in
[1], which is the key topic of this book.

3.2 Fixed-point-iteration based hierarchical control formulation

Let’s take an example where the proposed hierarchical control framework is applied to a
network of three interacting subsystems 𝑆𝑠∈N illustrated by Fig. 3.2. The definition of the
controlled / uncontrolled subsystem subset N 𝑐𝑡𝑟 / N𝑢𝑛𝑐 , the neighbor subset N𝑠, and the
coupling signals 𝑣𝑠→𝑠′ are also reused in this scenario.

With a slight abuse of notation, 𝑥𝑠, 𝑢𝑠, 𝑣𝑠→𝑠′, and 𝑦𝑠 are used to express respectively
the deviations from the operating points 𝑥𝑜𝑝𝑠 , 𝑢

𝑜𝑝
𝑠 , 𝑣

𝑜𝑝

𝑠→𝑠′ and 𝑦
𝑜𝑝
𝑠 . In addition, the operation

described in this section is processed during an updating period [𝑘, 𝑘 + 1], the initial state
𝑥𝑠 (𝑘) is thus frozen and dropped in all equations that are concerned.

Let v𝑖𝑛𝑠 and v𝑜𝑢𝑡𝑠 represent the incoming and outgoing coupling profile into and from the
subsystem 𝑆𝑠, respectively. Their equations are given below:

v𝑖𝑛𝑠 := col
𝑠′∈N𝑠

(v𝑠′→𝑠); v𝑜𝑢𝑡𝑠 := col
𝑠′ |𝑠∈N𝑠′

(v𝑠→𝑠′) (3.1)
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S1 S2 S3

Coordinator

Agent 1
C1 Agent 2

Agent 3
C3

u1 u3

v1→2

v2→1

v2→3

v3→2

v3→1
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Figure 3.2: Hierarchical structure applied to a network of three interconnecting subsystems. The
defined sets correspond to this example are: N = {1, 2, 3}, N 𝑐𝑡𝑟 = {1, 3}, N𝑢𝑛𝑐 = {2}, N1 = {2, 3},
N2 = {1, 3} and N3 = {1, 2}. The double-arrow dash lines represent the communication between the
coordinator and the agents.

In this hierarchical framework, some assumptions regarding the process occurring at the
local layer need to be introduced:

Assumption

Each subsystem 𝑆𝑠, when given

• a presumed incoming profile v𝑖𝑛𝑠 and

• a given individual set-point 𝑟𝑠 (required if 𝑠 ∈ N 𝑐𝑡𝑟),

can compute what would be:

• Its control profile u𝑠 (if it has),

• Its resulting outgoing profile v𝑜𝑢𝑡𝑠 ,

• Its contribution 𝐽𝑠 to the central cost.

The central cost is assumed to be of the form:

𝐽𝑐 (𝑟, v𝑖𝑛) :=
∑︁
𝑠∈N

𝐽𝑠 (𝑟, v𝑖𝑛𝑠 ) (3.2)
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where 𝑟 := col𝑠∈N 𝑐𝑡𝑟 (𝑟𝑠) and v𝑖𝑛 := col𝑠∈N (v𝑖𝑛𝑠 ). From the coordinator’s point of view, the
local costs contributed by the uncontrolled subsystems to the coordinator should be considered
as the functions of the given set-point 𝑟 and the local incoming coupling profile v𝑖𝑛𝑠 .

The local agents that have outputs to be regulated implement the controllers denoted by C𝑠,
for 𝑠 ∈ N 𝑐𝑡𝑟 . For any set-points 𝑟𝑠 and incoming coupling profiles v𝑖𝑛𝑠 sent by the coordinator,
the local agents can compute the corresponding control profile, namely:

u𝑠 = C𝑠 (𝑟𝑠, v𝑖𝑛𝑠 ), ∀𝑠 ∈ N 𝑐𝑡𝑟 (3.3)

It should be recalled that the subsystem’s state 𝑥𝑠 is omitted in (3.3). The global outgoing
coupling profiles are also dependent on the given set-point 𝑟 := col𝑠∈N (𝑟𝑠), as shown below:

v𝑜𝑢𝑡 := col
𝑠∈N
(v𝑜𝑢𝑡𝑠 ), with v𝑜𝑢𝑡𝑠 := g𝑜𝑢𝑡𝑠 (u𝑠, v𝑖𝑛𝑠 ) (3.4)

where g𝑜𝑢𝑡𝑠 (·) (∀𝑠 ∈ N ) are the local functions that compute the local outgoing coupling
profile v𝑜𝑢𝑡𝑠 . Note that for 𝑠 ∈ N𝑢𝑛𝑐, the control profiles u𝑠 appearing in (3.4) are simply
considered to have null size, i.e, u𝑠 = ∅.

Similarly, let v𝑖𝑛 denote the vector that gathers the incoming coupling signals of all the
subsystems, namely:

v𝑖𝑛 = col
𝑠∈N
(v𝑖𝑛𝑠 ) (3.5)

It should be noted that the elements of the outgoing coupling profile v𝑜𝑢𝑡 are also those of the
incoming coupling profile v𝑖𝑛 but arranged in a different order. Indeed, both v𝑖𝑛 and v𝑜𝑢𝑡 are
composed of all the profiles of the form v𝑠→𝑠′. There is a permutation matrix 𝐺𝑖𝑛 such that:

v𝑖𝑛 := 𝐺𝑖𝑛 · v𝑜𝑢𝑡 (3.6)

Then, injecting (3.4) into (3.6) yields the following so-called coherence constraint:

v𝑖𝑛 = 𝐺𝑖𝑛 · col
𝑠∈N
(v𝑜𝑢𝑡𝑠 ) = 𝐺𝑖𝑛 · col

𝑠∈N
(g𝑜𝑢𝑡𝑠 (u𝑠, v𝑖𝑛𝑠 )) = g𝑖𝑛 (𝑟, v𝑖𝑛) (3.7)

which governs the interaction dynamic of the overall system specified to the given set-point
𝑟.

As long as the coherence constraint is satisfied, the output profiles associated to the given
set-point 𝑟 can be computed, namely:

y𝑠 = h𝑠 (u𝑠, v𝑖𝑛𝑠 ,w𝑠) (3.8)

At this stage, the central problem at the coordination level can be defined:

𝑟opt = argmin
𝑟∈R

𝐽𝑐 (𝑟, v𝑖𝑛) (3.9)

subject to: v𝑖𝑛 = g𝑖𝑛 (𝑟, v𝑖𝑛) (3.10)
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where R is the admissible set of 𝑟, namely:

R = {𝑟 | 𝑟min ≤ 𝑟 ≤ 𝑟max} (3.11)

with 𝑟min, 𝑟max ∈ R𝑛𝑟 being the priori defined bounds on possible values of the set-points.

The central cost 𝐽𝑐 (𝑟, v𝑖𝑛) is the sum of the local contributions 𝐽𝑠 of the subsystems,
namely:

𝐽𝑐 (𝑟, v𝑖𝑛) :=
∑︁
𝑠∈N

𝐽𝑠 (𝑟, v𝑖𝑛𝑠 ) (3.12)

The local contribution cost can either express the economic cost or the constraint violation
cost as follows:

• For economic cost:

𝐽𝑠 (𝑟, v𝑖𝑛𝑠 |𝑟𝑑𝑠 ) = ∥y𝑠 − 𝑟𝑑𝑠 ∥2𝑄 (𝑠)𝑐

+ ∥u𝑠∥2
𝑅
(𝑠)
𝑐

(3.13)

where 𝑟𝑑𝑠 ∈ R𝑛𝑦𝑠 is the desired set-point of the subsystem 𝑆𝑠.

• For constraint violation cost

𝐽𝑠 (𝑟, v𝑖𝑛𝑠 |y𝑠, y𝑠) = ∥max(y𝑠 − y𝑠, 0)∥
2
𝑄
(𝑠)
𝑐𝑠𝑡𝑟

+ ∥max(y
𝑠
− y𝑠, 0)∥2

𝑄
(𝑠)
𝑐𝑠𝑡𝑟

(3.14)

where y
𝑠
∈ R𝑛𝑦𝑠 / y𝑠 ∈ R𝑛𝑦𝑠 is the minimum value/maximum value on the output y𝑠 of

the subsystem 𝑆𝑠.

The operation modes mentioned in the previous section can be taken into account by
using different set-points and different weighting matrices in the centralized cost. The role
of the coordinator is to control the system through two operation modes which are described
hereafer:

1. In the first mode, the objective is to regulate the system around the nominal point 𝑥 = 0
in spite of the unmeasured disturbances (disturbance-rejection mode). This is the main
objective of the cryogenic refrigerator.

2. In the second mode, the coordinator can temporarily drive the system to a different
steady-state corresponding to a new set-point �̃� ≠ 0. For instance, the operator might
decide to change the liquid helium level in the bath or some temperatures at some
specific locations.

•! Attention
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It is essential to note that the defined central cost (3.12) is a combination of the elementary
local costs 𝐽𝑠 representing the economic and security indicators related to a given set of
setpoints 𝑟. In fact, the desired setpoint given by the operator may not be the optimal
one considering these two aspects. Hence, the key idea is that the coordinator solves the
optimization problem (3.9)-(3.10) for the optimal set-point 𝑟opt, while guarantying the defined
hierarchical requirement.

Based on that, to solve (3.9)-(3.10), the coordinator can implement an algorithm that is
separated into two procedures, namely:

Overview of the fixed-point based hierarchical control method

Estimating central cost 𝐽𝑐 (𝑟, v𝑖𝑛): For any set-points 𝑟𝑠∈N 𝑐𝑡𝑟 sent by the coordinator to the
agents, there is a communication process between the coordinator and the agents in order to
find the central cost 𝐽𝑐 (𝑟, v𝑖𝑛) consistent with the coherence constraint.

Optimizing the central cost: Having the process to estimate the central cost 𝐽𝑐 for any
set-point sent by the coordinator, any derivative-free optimization algorithm can be used to
find the optimal set-point 𝑟opt, such as BOBYQA [40], genetic algorithm [41], etc. This
chapter proposes a simple but efficient solver for solving optimization problems based on
quadratic approximation.

The next sections will describe the mentioned procedures.

3.3 Estimating the central cost

3.3.1 Fixed-point iteration based communication:

At this time, we have seen that for a given set-point 𝑟 , there exists the corresponding local
cost by which the agents contribute to the central cost, namely:

𝐽𝑐 (𝑟, v𝑖𝑛) =
∑︁
𝑠∈N

𝐽𝑠 (𝑟, v𝑖𝑛𝑠 ) subject to v𝑖𝑛 = g𝑜𝑢𝑡 (𝑟, v𝑖𝑛) (3.15)

These local contributions 𝐽𝑠 depend on the output and input profiles of the subsystems, which
can be easily computed if the agents have the exact relevant incoming coupling profiles v𝑖𝑛𝑠 that
satisfy the coherence constraint (3.7). Moreover, this condition clearly exhibits a fixed-point
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like function 𝑝 = 𝐺 (𝑝) that can be solved by fixed-point iteration for the exact v𝑖𝑛 associated
to 𝑟.

To do so, the coordinator can begin with some initial guesses:

v𝑖𝑛,(𝜎=0)𝑠 , ∀ 𝑠 ∈ N (3.16)

that are sent to the agents. Then, they can compute the corresponding estimates of out-coming
coupling profiles that will be sent back to the coordinator.

v̂𝑜𝑢𝑡,(𝜎)𝑠 = g𝑜𝑢𝑡𝑠 (C𝑠 (𝑟𝑠, v
𝑖𝑛,(𝜎)
𝑠 ), v𝑖𝑛,(𝜎)𝑠 ) ∀ 𝑠 ∈ N 𝑐𝑡𝑟 (3.17)

v̂𝑜𝑢𝑡,(𝜎)𝑠 = g𝑜𝑢𝑡𝑠 (∅, v
𝑖𝑛,(𝜎)
𝑠 ) ∀ 𝑠 ∈ N𝑢𝑛𝑐 (3.18)

After receiving these new estimates, the coordinator gathers all the individual vector v̂𝑜𝑢𝑡,(𝜎)𝑠

into v̂𝑜𝑢𝑡 (𝜎) . Note that the coordination can reconstruct the estimate of the incoming coupling
profile v̂𝑖𝑛 by using the permutation matrix 𝐺𝑖𝑛 in (3.6), that is:

v̂𝑖𝑛,(𝜎) = 𝐺𝑖𝑛 · v̂𝑜𝑢𝑡,(𝜎) (3.19)

Then, this version is updated it by using a filter, namely:

v𝑖𝑛,(𝜎+1) = (I − Π) · v𝑖𝑛,(𝜎) + Π · v̂𝑖𝑛,(𝜎)𝑠 (3.20)

where Π is the filter matrix that enhances the convergence of the iteration. The synthesis
of this matrix will be discussed in the next subsection. As a matter of fact, the coordinator
can split the updated version of the outgoing coupling profile v𝑖𝑛,(𝜎+1) into the individual
incoming coupling profiles v𝑖𝑛,(𝜎+1)𝑠 that will be sent to the local agents.

Upon receiving the new incoming coupling profile, the local agents can repeat the de-
scribed procedure until the iteration converges toward some fixed-point v𝑖𝑛,(∞) , equivalently:

lim
𝜎→∞

v𝑖𝑛,(𝜎) = v𝑖𝑛,(∞) (3.21)

In practice, the iteration can be stopped if the termination criteria |v𝑖𝑛,(𝜎+1) − v𝑖𝑛,(𝜎) | < 𝜖max
or 𝜎 ≤ 𝜎max are satisfied. Upon the convergence, the agents can compute its local costs
𝐽𝑠∈N and send them to the coordinator, by which the coordinator computes the central cost
𝐽𝑐 (𝑟, v𝑖𝑛,(∞)).

3.3.2 Designing the filter matrix Π

The previous section has described the fixed-point based-iteration protocolwhose convergence
is enhanced by using the filter matrix Π. This section will describe the method to synthesize
the mentioned filter.
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Assume that all subsystem models are linear time-invariant and that subsystems having
control inputs implement classical linear control laws such as PID-based control design,
LQR, or unconstrained linear MPC type. Therefore, the control profiles u𝑠 (∀𝑠 ∈ N 𝑐𝑡𝑟) are
expressed as linear (disturbance-free) equations presented below, given the current guess of
the incoming coupling signal profiles v𝑖𝑛𝑠 at the fixed-point iteration number 𝜎:

u(𝜎)𝑠 := 𝐾 (𝑥)𝑠 · 𝑥𝑠 (𝑘) + 𝐾 (𝑟)𝑠 · 𝑟𝑠 + 𝐾 (𝑣)𝑠 · v𝑖𝑛,(𝜎)𝑠 (3.22)

On the other hand, the estimate of the outgoing coupling profiles can be derived from the
linear dynamic equations by using the above control profiles (3.22):

v̂𝑜𝑢𝑡,(𝜎)𝑠 := Φ
(𝑥)
𝑠 · 𝑥𝑠 (𝑘) +Φ(𝑢)𝑠 · u𝑠 +Φ(𝑣)𝑠 · v𝑖𝑛,(𝜎)𝑠 (3.23)

with 𝑠 ∈ N 𝑐𝑡𝑟 . Note that for the subsystems 𝑆𝑠 with 𝑠 ∈ N𝑢𝑛𝑐, the term Φ
(𝑢)
𝑠 · u𝑠 does not

exist.

Combining (3.23) and (3.22), the following equation of the coupling profile is obtained:

v̂𝑜𝑢𝑡,(𝜎)𝑠 := Ψ
(𝑥)
𝑠 · 𝑥𝑠 (𝑘) + Ψ(𝑣)𝑠 · v𝑖𝑛,(𝜎)𝑠 + Ψ(𝑟)𝑠 · 𝑟𝑠 (3.24)

By following similarly the steps that has been explained in section 3.2, the estimate of the
global incoming coupling profile can be expressed by the following equation:

v̂𝑖𝑛,(𝜎+1) = 𝑀
(𝑣) · v𝑖𝑛,(𝜎) + 𝑀 (𝑥) · 𝑥(𝑘) + 𝑀 (𝑟) · 𝑟 (3.25)

with v̂𝑖𝑛 = col𝑠∈N (v̂𝑖𝑛𝑠 ) and 𝑥 = col𝑠∈N (𝑥𝑠). The matrices 𝑀
(𝑣) , 𝑀 (𝑥) and 𝑀 (𝑟) are coming

from the matrices of the linear models of the subsystems. Equation (3.25) could be seen as
dynamical equation of the fixed-point iteration and it does not necessarily converge.

In order to enforce the convergence of the fixed-point iteration, [1] proposed an advanced
filter (which is also called mixing method [42, 43]) to update the incoming coupling profile,
namely:

v𝑖𝑛,(𝜎+1) = (I − Π) · v𝑖𝑛,(𝜎) + Π · v̂𝑖𝑛,(𝜎+1) (3.26)

The convergence condition for a choice of Π will be determined thereafter. By injecting
(3.25) in (3.26), we obtain:

v𝑖𝑛,(𝜎+1) =
[
I − Π · (I − 𝑀 (𝑣))

]
v𝑖𝑛,(𝜎) + Π ·

[
𝑀
(𝑥) · 𝑥(𝑘) + 𝑀 (𝑟) · 𝑟

]
(3.27)

This clearly shows that the convergence of the fixed-point iteration is conditioned by the
spectrum radius of the matrix

[
I − Π · (I − 𝑀 (𝑣))

]
. More precisely, the fixed-point iteration

converges if and only if:
𝜌

( [
I − Π · (I − 𝑀 (𝑣))

] )
< 1 (3.28)

where 𝜌(𝑍) denotes the spectrum radius of the matrix 𝑍 , namely:

𝜌(𝑍) := max
𝑖
|𝜆𝑖 (𝑍) | (3.29)
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with 𝜆 being the eigenvalues of matrix 𝑍 .

The condition (3.28) can be satisfied if the pair
(
I, [I − 𝑀 (𝑣)]𝑇

)
is controllable. If this

is the case, the appropriate matrix Π can be obtained by using the discrete linear quadratic
design tools (such as the subroutine matlab’s dlqr utility). The whole process that estimates
the central cost associated to a given set-point by using the mixing method is described in
Algorithm 1.

Algorithm 1 Mixing method for fixed-point iteration for evaluating the central cost associated to a
given set-point 𝑟𝑠∈N𝑐𝑡𝑟

1: Initialize:
𝑟 = col𝑠∈N𝑐𝑡𝑟 𝑟𝑠, v𝑖𝑛, (0)

𝑠 ← 0, 𝑠 = 1, . . . , 𝑛, 𝜎 ← 0; 𝜖 ←∞;
2: Coordinator sends 𝑟𝑠 and v𝑖𝑛, (0)

𝑠 to the subsystems;
3: while (𝜎 ≤ 𝜎max) and (𝜖 ≤ 𝜖max) do
4: for 𝑠 ∈ N do ⊲ Parallel operation performed by the subsystems
5: Subsystem 𝑆𝑠 computes v̂𝑜𝑢𝑡, (𝜎)

𝑠 and sends to coordinator;
6: end for
7: Coordinator concatenates v̂𝑜𝑢𝑡, (𝜎)

𝑠 into v̂𝑜𝑢𝑡, (𝜎) ;
8: Coordinator computes v̂𝑖𝑛, (𝜎+1) := 𝐺𝑖𝑛 · v̂𝑜𝑢𝑡, (𝜎) ;
9: Coordinator computes the filtered version v𝑖𝑛, (𝜎+1) by (3.26);
10: Coordinator distributes v𝑖𝑛, (𝜎+1)

𝑠 to the subsystems 𝑆𝑠, for 𝑠 ∈ N ;
11: 𝜎 ← 𝜎 + 1;
12: 𝜖 ← max( |v̂𝑖𝑛, (𝜎+1) − v̂𝑖𝑛, (𝜎) |);
13: end while
14: for 𝑠 ∈ N do
15: Subsystem 𝑆𝑠 computes ŷ𝑠 then 𝐽𝑠 and sends 𝐽𝑠 to the coordinator;
16: end for
17: Coordinator computes 𝐽𝑐 (𝑟, v𝑖𝑛, (𝜎) ) by (3.12);

Tips

If the considered subsystems employ the nonlinear models, the filter matrix Π can be
computed from their linearized model around the operating points (𝑥𝑜𝑝𝑠 , 𝑦𝑜𝑝𝑠 ). Indeed, the
convergence is only proved if their equations can be expressed as such linear functions.
However, it is essential to note that the stability of the iterations holds locally, and the
efficiency of this method in cases other than linear settings can be verified a posteriori.

•! Attention
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The synthesis of the filter matrix Π violates the modular privacy-preserving requirement.
Clearly, it uses the information of the underlying dynamics that are condensed in the definition
of the matrices 𝑀 (𝑥) and 𝑀 (𝑣) invoked in (3.25).

3.4 Optimizing the central cost

The previous section has described the fixed-point-iterations based method that allows the
coordinator to compute the central cost for a given set-point 𝑟. Recall, however, that the
role of the coordinator is to optimize the choice of the auxiliary set-points so that the central
cost can be minimized. This can be done by using any derivative-free optimization algorithm
such as BOBYQA [40], genetic algorithm [41], etc. However, using these algorithms can
increase the computational burden that makes the whole algorithm unfeasible in real-time
implementations. Instead, this section explains how the coordinator can use successive
evaluations of the central cost for different candidate auxiliary set-points to construct a
quadratic approximation of the central cost (as a function of the auxiliary set-points at the
current sampling time 𝑘) in order to derive a candidate optimal auxiliary set-point 𝑟opt.

3.4.1 Approximating the central cost

Using the fixed-point iteration, the coordinator can compute for each auxiliary set-point 𝑟 the
corresponding value of the central cost:

𝐽𝑐 (𝑟) (3.30)

after convergence of the fixed-point iteration.

The central problem in the coordination layer can now be recalled:

𝑟opt = argmin
𝑟∈R

𝐽𝑐 (𝑟) (3.31)

In order to solve (3.31), the central cost (3.30) will be approximated by a quadratic function,
namely:

𝐽𝑐 =
1
2
𝑟𝑇𝑄𝑟 + 𝑓 𝑇𝑟 + 𝑐 (3.32)

where 𝑄 ∈ R𝑛𝑟×𝑛𝑟 , 𝑓 ∈ R𝑛𝑟 and 𝑐 ∈ R, with 𝑛𝑟 being the dimension of vector 𝑟.

These unknown parameters can be identified if the coordinator disposes of the values of
the central cost at, at least (𝑛𝑟 + 1) (𝑛𝑟 + 2)/2 different auxiliary set-points. The remaining
part of this section is devoted to explaining the way this is done by the coordinator. Note that
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this is a single possibility among many other possibilities of optimizing a black-box given
function through different evaluations of its values at a set of possible points within its domain
of definition. This is linked to the general domain of derivative-free optimization.

The approximation can be achieved by evaluating the central cost at every candidate set-
point 𝑟 in a moving grid denoted by G(𝑘). More precisely, this grid is constructed around
the suboptimal solution found at the last instant 𝑟opt(𝑘 − 1) and is bounded by a so-called
trust-region size 𝜌(𝑘). Depending on the relevance of quadratic approximation, the size 𝜌
of the trust-region is modified, which will be described in section 3.4.2. At each sampling
instant 𝑘 , the gridG(𝑘) of auxiliary set-points for the evaluation of the central cost is defined
around the previous optimal value 𝑟opt(𝑘 − 1) as follows:

G(𝑘) := Pr
(
𝑟opt(𝑘 − 1) + Δ(𝜌(𝑘 − 1)),R

)
(3.33)

where

• R is an admissible set of 𝑟, namely:

R = {𝑟 | 𝑟min ≤ 𝑟 ≤ 𝑟max} (3.34)

where 𝑟min, 𝑟max ∈ R𝑛𝑟 are a priori defined bounds on possible values of the set-points.

• for a discrete subset D ⊂ R𝑛𝑟 , the notation Pr (D,R) denotes the discrete set obtained
by projecting all the elements of D on the hypercube R.

• 𝜌 ∈ R+ is strictly positive real (size of the trust regionwhere the quadratic approximation
is presumably relevant).

• Δ(𝜌) is a discrete set of displacements in R𝑛𝑟 defined around 0 with distances that
are proportional to 𝜌 so that 𝑟opt(𝑘 − 1) + Δ(𝜌) represent the set of different auxiliary
set-points around the previous optimal value to be visited and where the cost is to be
evaluated). More precisely, the subset Δ(𝜌) ⊂ R𝑛𝑟 is defined by:

Δ(𝜌) :=
{
− (𝑚 − 1)

2
𝜌, . . . ,−𝜌, 0, 𝜌, . . . , (𝑚 − 1)

2
𝜌

}𝑛𝑟
(3.35)

where 𝑚 is supposed to be odd so that (𝑚−1)2 is a natural number. The trust region size 𝜌 is
updated at each instant 𝑘 , which will be described later. Recall that the identifiability of the
quadratic form coefficients is possible provided that 𝑚𝑛𝑟 ≥ (𝑛𝑟 + 1) (𝑛𝑟 + 2)/2.

Based on the above definitions, the grid G(𝑘) is constructed by using (3.33), the evalua-
tion of the central cost 𝐽𝑐 (·) at every set-point 𝑟 ∈ G(𝑘) is performed by using the fixed-point
methodology introduced in section 3.3.2. Note that the number of set-points to be evaluated
𝑛𝑒𝑣 can be chosen to be equal to the sufficient number (𝑛𝑟 + 1) (𝑛𝑟 + 2)/2. The values

𝐽𝑐 (𝑟 ( 𝑗)), 𝑗 = 1, . . . , 𝑛𝑒𝑣 ≤ 𝑚𝑛𝑟
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enable to compute the parameters of the quadratic form:

(Coordinator) min
𝑄, 𝑓 ,𝑐

𝑛𝑒𝑣∑︁
𝑗=1

����𝐽𝑐 (𝑟 ( 𝑗)) − [
1
2
∥𝑟 ( 𝑗) ∥2𝑄 + 𝑓

𝑇𝑟 ( 𝑗) + 𝑐
] ���� (3.36)

Once𝑄, 𝑓 and 𝑐 are available, a candidate optimal set-point 𝑟opt𝑐 (that minimizes the quadratic
approximation) can be computed. Note, however, that since the central cost is not necessarily
quadratic, this candidate optimal cost does not necessarily induce a decrease in the central
cost. This can happen when the trust-region parameter 𝜌 is too large for the quadratic
approximation to be relevant. In such case, the size 𝜌 should be reduced. This mechanism is
discussed in the next section.

3.4.2 Trust region updating law of 𝜌

As mentioned previously, the parameter 𝜌 defines the size of the neighborhood of the current
desired set-point 𝑟𝑑 over which the better value is computed based on the current quadratic
approximation of the cost function. On one hand, 𝜌 must be sufficiently high to ensure a rapid
decrease of the cost value. On the other hand, small values of 𝜌 might be required in order
for the quadratic approximation to be relevant. Hence, 𝜌 should be updated accordingly: 𝜌
is increased if the quadratic approximation induces a decrease of the cost function while 𝜌 is
decreased otherwise.

Concretely, the following quadratic problem is first solved to obtain the candidate value
𝑟𝑐 (𝑘)

𝑟
opt
𝑐 (𝑘) = argmin

𝑟∈𝒫(𝑘)
𝐽𝑐 (𝑟) (3.37)

where𝒫(𝑘) is given by:

𝒫(𝑘) := Conv{Pr (𝑟𝑑 (𝑘) + Δ(𝜌(𝑘 − 1)),R)} (3.38)

Once the candidate 𝑟opt𝑐 (𝑘) is obtained, the corresponding cost is computed by executing the
algorithm 1 to obtain 𝐽𝑐 (𝑟opt𝑐 ). The quadratic approximation is said to be relevant if it meets
the condition below:

𝐽𝑐 (𝑟opt𝑐 ) < min{𝐽𝑐 (𝑟 ( 𝑗)) | 𝑟 ( 𝑗) ∈ G(𝑘)} (3.39)
Therefore, the trust-region size 𝜌 is updated according to:

𝜌(𝑘) :=
{
𝛽+ · 𝜌(𝑘 − 1) if (3.39) is satisfied
𝛽− · 𝜌(𝑘 − 1) otherwise

(3.40)

where 𝛽+ ≥ 1 and 𝛽− ∈ (0, 1) denote respectively the expansion and the contraction factors.
Finally, the updating law for 𝑟opt is given by:

𝑟opt(𝑘) :=
{
𝑟
opt
𝑐 (𝑘) if (3.39) is satisfied
𝑟opt(𝑘 − 1) otherwise

(3.41)
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where 𝑟opt(𝑘 − 1) is the solution found at the previous instant 𝑘 − 1. The so adopted set-point
𝑟opt(𝑘) is then sent to the subsystems with an end-of-iterations flag, which allows the agents to
compute their corresponding control profiles. Finally, the first action in each control profile,
namely:

𝑢𝑠 (𝑘) := [I𝑛𝑢𝑠 ,O𝑛𝑢𝑠 , . . . ,O𝑛𝑢𝑠 ]u
opt
𝑠 (𝑘) (3.42)

withuopt𝑠 (𝑘) = C𝑠 (𝑟opt𝑠 (𝑘) |v𝑖𝑛,(∞)𝑠 ) (∀𝑠 ∈ N 𝑐𝑡𝑟), is applied to subsystem 𝑆𝑠 during the sampling
period [𝑘, 𝑘 + 1].

Initialization

Coordinator constructs
a grid G of auxiliary set-points

Fixed-point Iteration
Coordinator evaluates Jc
for each set-point r ∈ G

Optimization
1. Approximate Jc by Ĵc

2. Compute ropt = minr∈R
(
Ĵc

)

Finalization

Coordinator sends ropt to the subsystems
for them to compute the control

to be applied on the plant.

Communication
between the coordinator
and the subsystems.

G
r

J(r)

r, J(r)

ropt

Figure 3.3: block diagram of the hierarchical control algorithm.

To conclude, Fig. 3.3 summarizes the whole hierarchical control algorithm.

3.4.3 Distributing the optimization over time

There are cases where the presence of nonlinearities and constraints, which are incoporated
in the MPC problem, increase the computational burden. In other words, the computation of
the 𝑛𝑒𝑣 necessary evaluations for central cost approximation might require a computation time
that goes beyond the available sampling time 𝑇𝑠. This section proposes a method to reduce
the computation time with a rather little impact on the quality of the resulting closed-loop
performance. Since using constrained nonlinear MPC induces a significant increase in the
computation time, it might be impossible to compute a solution 𝑟opt (following the scheme of
the previous section) for the next sampling period in the presence of limited computational
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resources. To overcome this potential issue, this section proposes a technique inspired by [44]
which is based on the idea of distributing the optimization over time. In order to facilitate the
following explanations, the notation 𝑘 and 𝑘 + 1 are used to refer to instants 𝑘𝜏𝑢 and (𝑘 + 1)𝜏𝑢
with 𝜏𝑢 being the control updating period, namely, the time during which the computation of
a new optimal open-loop sequence is recomputed to implement the MPC feedback. Note that
𝜏𝑢 is not necessarily equal to the sampling time 𝑇𝑠. The process described in this section will
be executed during the updating period [𝑘, 𝑘 + 1] as long as the computation time does not
exceed 𝜏𝑢.

Recall that the approximation of the cost function 𝐽𝑐 (𝑟) needs the evaluation of 𝐽𝑐 at
𝑛𝑒𝑣 ≥ (𝑛𝑟 +1) (𝑛𝑟 +2)/2 values of the auxiliary set-points. By reducing the number of degrees
of freedom (DOF) of vector 𝑟 to be optimized from 𝑛𝑟 to 𝑛𝑧 < 𝑛𝑟 , only (𝑛𝑧 + 1) (𝑛𝑧 + 2)/2 re-
alizations would be needed, which accordingly leads to a decrease of the computation burden
per updating period.

More precisely, a change in the decision variable is cyclically operated by defining a re-
duced dimensional parameterization of 𝑟 of the form:

𝑟 = 𝑀𝑟 + 𝐷𝑧 (3.43)

where 𝑟 ∈ R𝑛𝑟 , 𝑀 ∈ R𝑛𝑟×𝑛𝑟 and 𝐷 ∈ R𝑛𝑟×𝑛𝑧 . Moreover, the transformation matrices 𝑀 and
𝐷 are changed in a cyclic way in order to explore all the degrees of freedom of 𝑟 after a finite
number of successive iterations. This is explained in a more detailed way in the remainder of
this section.

At the beginning of each updating period 𝑘 , the optimization problem to be solved is given
by:

𝑧★(𝑘) = argmin
𝑧

𝐽𝑐 (𝑀 ( 𝑗𝑘)𝑟★(𝑘 − 1) + 𝐷 ( 𝑗𝑘)𝑧) (3.44)

where the transformation defined by the matrices 𝑀 ( 𝑗𝑘) and 𝐷 ( 𝑗𝑘) is defined in order to
assign some components of the vector 𝑟 to be equal to the corresponding components of the
previous solution 𝑟★(𝑘 −1) while leaving as degrees of freedom the 𝑛𝑧 remaining components
that define the reduced dimensional decision variable 𝑧. Note that the definition of the
transformation matrices depends on the updating instant 𝑘 through the upper index 𝑗𝑘 , which
is a cyclic variable defined by:

𝑗𝑘 = ( 𝑗𝑘−1 + 1) mod 𝑛𝑟 (3.45)

In the numerical investigation, the following two configurations are tested in order to
illustrate the proposed methodology:
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Configuration 1: 𝑛𝑧 = 1, 𝑛𝑟 = 3

𝑀 (0) =


0 0 0
0 1 0
0 0 1

 𝐷 (0) =

1
0
0

 (3.46)

𝑀 (1) =


1 0 0
0 0 0
0 0 1

 𝐷 (1) =

0
1
0

 (3.47)

𝑀 (2) =


1 0 0
0 1 0
0 0 0

 𝐷 (2) =

0
0
1

 (3.48)

Configuration 2: 𝑛𝑧 = 2, 𝑛𝑟 = 3

𝑀 (0) =


0 0 0
0 0 0
0 0 1

 𝐷 (0) =

1 0
0 1
0 0

 (3.49)

𝑀 (1) =


0 0 0
0 1 0
0 0 0

 𝐷 (1) =

1 0
0 0
0 1

 (3.50)

𝑀 (2) =


1 0 0
0 0 0
0 0 0

 𝐷 (2) =

0 0
1 0
0 1

 (3.51)

Note that the same methodology explained before regarding the definition of the grid of
points is adopted with 𝑟 and 𝑛𝑟 respectively replaced by 𝑧 and 𝑛𝑧. The only difference is that
the number of degrees of freedom to be considered at the beginning of each updating period
is reduced, and the significance of the degrees of freedom in terms of the components of 𝑟
changes at each updating period.

When a sub-optimal solution 𝑧★(𝑘) to (3.44) is obtained (after the allowed number of it-
erations), the corresponding candidate sub-optimal auxiliary set-point 𝑟★𝑐 (𝑘) is given by

𝑟★𝑐 (𝑘) = 𝑀 ( 𝑗𝑘)𝑟★(𝑘 − 1) + 𝐷 ( 𝑗𝑘)𝑧★(𝑘) (3.52)
𝑗𝑘 = ( 𝑗𝑘−1 + 1) mod 𝑛𝑟

This candidate value is then used to update the size of the trust region in a similar way as
explained above. The method can be simply sketched by Algorithm 2 for a given updating
cycle involving 𝑛𝑑 iterations. More precisely, for-loop in Algorithm 2 allows to perform 𝑛𝑑

iterations within the updating period. Indeed, if the computation time does not exceed the
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updating period [𝑘𝑇𝑠, (𝑘 + 1)𝑇𝑠], the whole process mentioned in this section can be repeated
in order to improve the sub-optimal candidate auxiliary set-point 𝑟★𝑐 (𝑘).

Algorithm 2 Pseudo code for the distributed-in-time optimization
1: for 𝑙 ← 1, ..., 𝑛𝑑 do
2: Coordinator defines a grid of auxiliary set-points G(𝑀 ( 𝑗𝑘)𝑟★(𝑘 − 1) + 𝐷 ( 𝑗𝑘)Δ(𝜌(𝑘 − 1)),R);
3: Coordinator evaluates the cost function for each element 𝑟 in the grid G(𝑀 ( 𝑗𝑘)𝑟★(𝑘 − 1) +
𝐷 ( 𝑗𝑘)Δ(𝜌(𝑘 − 1)),R);

4: Coordinator computes the quadratic approximation 𝐽𝑐 (𝑧) of 𝐽 (𝑧);
5: Coordinator finds 𝑧★(𝑘) by solving (3.44)
6:
7: Coordinator computes the candidate auxiliary set-point 𝑟★𝑐 (𝑘) according to (3.52);
8: Coordinator updates 𝜌 and 𝑟★(𝑘) using (3.40) and (3.41);
9: end for
10: Coordinator sends 𝑟★(𝑘) to the subsystems;

3.5 Simulation results

3.5.1 Investigated system description and parameters setting

3.5.1.1 Description of the investigated system

The system that is chosen to validate the method is the cold box described in chapter 1. Fig.
3.4 shows a block diagram of the cold box system consisting of a Joule-Thomson cycle and a
Brayton cycle. The Brayton cycle consists of two heat exchangers, which are NEF2, NEF34
and a turbine T1. The helium flow is cooled down using the cryogenic turbine T1 to extract
thermal energy from the fluid and by exchanging the heat power through a series of heat
exchangers (NEF𝑥). A part of the helium gas is liquefied by the valve CV155 through the
isenthalpic process and fall into the bath, while the gaseous part returns to the cycle via the
cold pipeline.

The manipulated inputs and regulated outputs of this system are introduced as follows:

The Manipulated Inputs: There are three control inputs that are defined below:

1. CV155 ∈ [0, 100] %: This valve is situated at the inlet of the helium bath.

2. NCR(𝑎)22 : This heating actuator is located inside the helium bath (𝑆1). The value of
NCR(𝑎)22 is in the range of [0, 55] W. Note that the variable NCR22 in Fig. 3.4 is
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Figure 3.4: Block diagram of the cold box plant.

decomposed into two terms:

NCR22 := NCR(𝑎)22 + NCR
(𝑤)
22 (3.53)

where NCR(𝑤)22 represents the disturbance coming from the heat source.

3. ΔP156 ∈ [0, 12] bar: The pressure drop between the inlet pressure and outlet pressure of
the valve CV156. It should be noted that the valve CV156 is used to control the pressure
drop ΔP156 between its inlet and outlet pressure. To do so, the local NMPC of the
turbine T1 computes and sends an appropriate value of the pressure drop ΔP156 to the
PID controller, which acts on the opening position of the valve CV156 (Fig. 3.4). This
PID controller is used to hide the nonlinearity of the valve CV156.

The Regulated Outputs: There are three regulated outputs and one constrained output (see
Figure 3.4. for the notation):

1. Ltb131: The helium liquid level (%). The set-point is chosen by the operator. In the
usual operation, it is set at Ltb𝑠𝑝131 = 60.5 %.

2. Ttb108: The temperature at the inlet of the J-T valve must be tightly controlled in order
to ensure the efficiency of the liquefaction of the helium. The setpoint for this output is
Ttb𝑠𝑝108 = 5.24 𝐾 .

3. Ttb130: The temperature at the turbine T1’s outlet. The setpoint for this output is
Ttb𝑠𝑝108 = 12.23 𝐾 .
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4. M𝑜𝑢𝑡 : The output flow rate that enters the warm compression station. This flow rate
𝑀𝑜𝑢𝑡 is not regulated but is limited below 70 𝑔/𝑠, which is the allowable flow rate that
can be handled by the warm compression station.

In Chapter 2, it has been shown that the cold box can be decomposed into either two
subsystems or four subsystems. The subsystems of these two decomposition strategies are
indexed as shown in Fig. 3.5 and described below:

S1

J-T cycle

S2

NEF2

S3

NEF34

S4

T1+ Cv156

v1→2

v2→1

v2→4v4→2

v2→
3

v3→
2

(a)

S1

J-T cycle
S234

Brayton cyclev1→234

v234→1

(b)

Figure 3.5: Two possible decomposition of the Cold box: 4-subsystem topology (a) and 2-subsystem
topology (b).

Four-subsytem topology (4ss strategy): This decomposition consists of the Joule-
Thomson cycle (S1), the heat exchanger NEF2 (S2), the heat exchanger NEF34 (S3) and
the turbine T1 (𝑆4). In this network, the turbine employs a nonlinear static model while the
heat exchangers and the Joule-Thomson cycle employ linearized dynamic models. With a
slight abuse of notation, 𝑥𝑠, 𝑢𝑠, 𝑣𝑠→𝑠′, and 𝑦𝑠 are used to represent respectively the deviations
from the operating points 𝑥𝑜𝑝𝑠 , 𝑢

𝑜𝑝
𝑠 , 𝑣

𝑜𝑝

𝑠→𝑠′ and 𝑦
𝑜𝑝
𝑠 . Note that only the turbine T1 and Joule-

Thomson cycle are controlled by NMPC and MPC, respectively, while the other subsystems
are impacted by their decisions. Finally, Their mathematical models are listed below:

Subsystem S1: The Joule-Thomson cycle:

𝑥+1 = 𝐴1𝑥1 + 𝐵1𝑢1 +
∑︁
𝑠′∈N1

𝐺𝑠′→1𝑣𝑠′→1 + 𝐹1𝑤1, (3.54)

𝑦1 = 𝐶1𝑥1, (3.55)
𝑣1→𝑠′ = 𝐶

𝑣
1→𝑠′𝑥1, ∀𝑠

′ ∈ N1 (3.56)

where 𝑥1 ∈ R30 is the state vector of subsystem S1 and𝑤1 = [NCR(𝑤)22 ] indicate the disturbance
vector. The output vector and manipulated input vector are respectively represented by
𝑦1 = [Ltb131,Ttb108]𝑇 and 𝑢1 = [CV155,NCR(𝑎)22 ]

𝑇 .



3.5. Simulation results 57

Subsystem S2 and 𝑆3 : The heat exchangers NEF2 and NEF34, respectively:

𝑥+𝑠 = 𝐴𝑠𝑥𝑠 +
∑︁
𝑠′∈N𝑠

𝐺𝑠′→𝑠𝑣𝑠′→𝑠 ∀𝑠 ∈ {2, 3}, 𝑠′ ∈ N𝑠 (3.57)

𝑦𝑠 = 𝐶𝑠𝑥𝑠, for 𝑠 = 3, 𝑠′ ∈ N𝑠 (3.58)
𝑣𝑠→𝑠′ = 𝐶

𝑣
𝑠→𝑠′𝑥𝑠 ∀𝑠 ∈ {2, 3}, 𝑠′ ∈ N𝑠 (3.59)

where 𝑥2 ∈ R34 and 𝑥3 ∈ R32 are the state vectors of subsystem S2 and S3, respectively. Note
that these two subsystems do not have any control input while their dynamic is affected by
other subsystems’ coupling signals 𝑣𝑠′→𝑠. Concerning the outputs, the subsystem 𝑆3 has one
which is 𝑦3 = 𝑀𝑜𝑢𝑡 . Since the subsystem 𝑆2 does not have any output, its related equation 𝑦2
does not exist.

Subsystem S4 : Turbine T1:

𝑦4 = ℎ4(𝑢4, 𝑣𝑖𝑛4 ) (3.60)
𝑣4→𝑠′ = 𝑔4(𝑢4, 𝑣𝑖𝑛4 ), 𝑠′ ∈ N4 (3.61)

where 𝑣𝑖𝑛4 := col𝑠′∈N4 (𝑣𝑠′→4). The output vector and manipulated input vector are respectively
𝑦4 = Ttb130 and 𝑢4 = ΔP156. Note that the subsystem S4 is only a static function of control
input 𝑢4 and the incoming coupling signal 𝑣𝑖𝑛4 .

Two-subsystems-decomposition (2ss strategy): This decomposition consists of two
subsystems that are the Joule-Thomson cycle (𝑆1) and the Brayton cycle (𝑆2) as already
depicted in Fig. 3.4. Note that the turbine 𝑇1 and the two heat exchangers (NEF2 and NEF34)
are now combined to become a larger subsystem 𝑆234 that represents the Brayton cycle. These
two subsystems, in this decomposition, are regulated, which follows the assumption made in
previous work [1]. The model equation of Joule-Thomson cycle is kept unchanged, while
the state-space representation of the Brayton cycle can be easily obtained by combining the
equations of S2, S3 and S4, which yields the following nonlinear model:

𝑥+234 = 𝑓234(𝑥234, 𝑢234, 𝑤234, 𝑣𝑖𝑛234) (3.62)
𝑦234 = ℎ234(𝑥234, 𝑢234) (3.63)

𝑣234→1 = 𝑔234(𝑥234, 𝑢234) (3.64)

where

𝑥234 = [𝑥𝑇2 , 𝑥
𝑇
3 ]
𝑇 ; 𝑢234 = 𝑢4; 𝑤234 = 𝑤3; (3.65)

𝑣𝑖𝑛234 = 𝑣1→2; 𝑦234 = [𝑦𝑇4 , 𝑦
𝑇
3 ]
𝑇 ; 𝑣234→1 = 𝑣2→1 (3.66)

are states, control inputs, disturbance input, incoming coupling signal, regulated outputs and
outgoing coupling signals with appropriate dimensions of the new subsystem, respectively.

•> Important
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It is essential to note that in this new subsystem S234, the nonlinearity of the turbine makes the
whole model become a large-scale nonlinear system despite the fact that the heat exchanger
parts are linear.

Table 3.1: The inputs, outputs and the coupling variables of the 4-subsystems topology and the 2-
subsystems topology. The notations 𝑇𝐿 , 𝑀𝐿 and 𝑃𝐿 / 𝑇𝐻 , 𝑀𝐻 and 𝑃𝐻 represent the temperature, the
flow rate and the pressure of the low pressure / high pressure pipeline, respectively.

4-subsystem topology

Subsystem 𝑢𝑠 𝑤𝑠 𝑦𝑠 𝑣𝑠→𝑠′

𝑆1
NCR(𝑎)22
CV155

NCR(𝑤)22
Ltb131
Ttb108

𝑣1→2 = [𝑀1→2𝐻
, 𝑀1→2

𝐿
, 𝑇1→2

𝐿
]𝑇

𝑆2 _ _ _
𝑣2→1 = [𝑇2→1𝐻

, 𝑃2→1
𝐻

, 𝑃2→1
𝐿
]𝑇

𝑣2→3 = [𝑀2→3𝐻
, 𝑀2→3

𝐿
, 𝑇2→3

𝐿
]𝑇

𝑣2→4 = [𝑃2→4𝐶
]

𝑆3 _ _ 𝑀𝑜𝑢𝑡

𝑣3→2 = [𝑇3→2𝐻
, 𝑃3→2

𝐻
, 𝑃3→2

𝐿
]𝑇

𝑣3→4 = [𝑇3→4𝐻
, 𝑃3→4

𝐻
]𝑇

𝑆4 ΔP156 _ Ttb130
𝑣4′→2′ = [𝑀4→2𝐿

, 𝑇4→2
𝐿
]𝑇

𝑣4→3 = [𝑀4→3𝐻
]

2-subsystem topology

Subsystem 𝑢𝑠 𝑤𝑠 𝑦𝑠 𝑣𝑠→𝑠′

𝑆1
NCR(𝑎)22
CV155

NCR(𝑤)22
Ltb131
Ttb108

𝑣1→2 = [𝑀1→2𝐻
, 𝑀1→2

𝐿
, 𝑇1→2

𝐿
]𝑇

𝑆234 ΔP156 _
Ttb(𝑎)130
𝑀𝑜𝑢𝑡

𝑣2→1 = [𝑇2→1𝐻
, 𝑃2→1

𝐻
, 𝑃2→1

𝐿
]𝑇

To summarize, Table 3.1 shows the inputs 𝑢𝑠, outputs 𝑦𝑠, disturbance inputs 𝑤𝑠, and the
coupling signal 𝑣𝑠→𝑠′ of these two decomposition strategies.

3.5.1.2 Parameters setting

Central cost parameters: The role of the coordinator is to control the system through two
operation modes which are recalled hereafter:

1. In the first mode, the objective is to regulate the system around the nominal point 𝑥 = 0
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in spite of the unmeasured disturbances (disturbance-rejection mode).

2. In the second mode, the coordinator can temporarily drive the system to a different
steady-state corresponding to a new set-point 𝑦 ≠ 0. For instance, the operator might
decide to change the level Ltb131 of liquid helium in the bath or the temperature Ttb108.
This corresponds to a change in the corresponding set-points.

These two modes can be taken into account by using different weighting matrices in the
local cost that contributes to the central cost function. These local costs will be introduced
hereafter.

For 𝑆1 and 𝑆4 that need to track the desired set-points 𝑟𝑑𝑠 :

𝐽𝑠 (𝑟 |𝑟𝑑𝑠 ) =
𝑁−1∑︁
𝑖=0
∥𝑦𝑠 (𝑘 + 𝑖) − 𝑟𝑑𝑠 ∥2𝑄 (𝑠)𝑐

+ ∥𝑢𝑠 (𝑘 + 𝑖)∥2
𝑅
(𝑠)
𝑐

(3.67)

where 𝑄 (𝑠)𝑐 and 𝑅
(𝑠)
𝑐 , for 𝑠 ∈ {1, 4} are chosen to be positive semidefinite matrices, namely:

✓ Mode 1: For disturbance rejecting scenario:

𝑄
(1)
𝑐 =

[
104 0
0 104

]
, 𝑅

(1)
𝑐 =

[
0 0
0 0

]
(3.68)

𝑄
(4)
𝑐 = 104, 𝑅

(4)
𝑐 = 0 (3.69)

✓ Mode 2: For set-point tracking scenario:

𝑄
(1)
𝑐 =

[
106 0
0 0.1

]
, 𝑅

(1)
𝑐 =

[
0 0
0 0

]
(3.70)

𝑄
(4)
𝑐 = 104, 𝑅

(4)
𝑐 = 0 (3.71)

For 𝑆3 that has output 𝑀𝑜𝑢𝑡 to be constrained, the constraint violation cost is defined,
namely:

𝐽3(𝑟 |𝑦3) =
𝑁−1∑︁
𝑖=0
∥max(𝑦3(𝑘 + 𝑖) − 𝑦3, 0)∥2

𝑄
(3)
𝑐𝑠𝑡𝑟

(3.72)

where 𝑦3 = 0.07 𝑘𝑔/𝑠 and 𝑄
(3)
𝑐𝑠𝑡𝑟 = 109 are fixed in the two mentioned modes.

For 𝑆2 that does not have any contribution to the central cost, its cost is simply defined by
𝐽2(𝑟) = 0.

The local costs for the 2-subsystems topology can simply be deduced from the previous
choices so that the resulting central cost is identical.
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•! Attention

It is essential to note that these local costs are different from the control costs implemented
by the local NMPC/MPC of the subsystems, which are presented hereafter.

Local MPC and NMPC parameters: Recall that the agents implement MPC (for 𝑆1) and
NMPC (for 𝑆4) in order to control their corresponding local subsystems. The penalty matrices
for these local MPCs/NMPCs are fixed as below:

𝑄1 = 𝐶
𝑇
1 ·

[
10 0
0 100

]
· 𝐶1 𝑅1 =

[
1 0
0 1

]
𝑄4 = 103 𝑅4 = 1

Similarly, the weighting matrices for the NMPCs/MPCs in 2-subsystems-topology can be
deduced by basing on the above choices. More precisely, the weighting matrices for 𝑆1 𝑄1
and 𝑅1 are kept unchanged, while 𝑄234 and 𝑅234 are defined as below:

𝑄234 = 𝐶
𝑇
234 · 𝑄4 · 𝐶234 = 𝐶

𝑇
234 · 10

3 · 𝐶234 𝑅234 = 1; (3.73)

where the matrix𝐶234 is the partial derivative of ℎ234(𝑥234, 𝑢234) in (3.63) with respect to 𝑥234
at an operating point (𝑥𝑜𝑝234, 𝑢234).

•> Important

In contrast to the central penalty matrices 𝑄 (𝑠)𝑐 , 𝑄
(𝑠)
𝑐𝑠𝑡𝑟 , 𝑅

(𝑠)
𝑐 , which can be modified freely

according the different operation modes, the local penalty matrices 𝑄𝑠 and 𝑅𝑠 are hard-fixed
and are not allowed to be changed during their operation.

The prediction horizon 𝑁 is chosen to have a length of 𝑁𝑇𝑠 (where 𝑁 = 100 and 𝑇𝑠 = 5
s). This corresponds roughly to 8 minutes. This setting is currently used at CEA/IRIG/DSBT
and is also the one that has been used in many previous studies involvingMPC control design.

Fixed-point iteration parameters: The termination criteria on convergence error 𝜖𝑚𝑎𝑥 and
the maximum number of iteration described in section 3.3.1 are set at 𝜖𝑚𝑎𝑥 = 10−5 and
𝜎𝑚𝑎𝑥 = 30, respectively. For the updating rules of the trust region size, the parameters 𝛽−, 𝛽+
are set to 0.7 and 1.25, respectively.

Performance index: Indeed, a cost index is necessary in order to evaluate and compare
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the performances in terms of closed-loop costs associated to the different framework settings.
The commonly used closed-loop central cost will be adopted, namely:

𝐽𝑠𝑖𝑚 =
1
𝑁𝑠𝑖𝑚

∑︁
𝑠∈N

𝑁𝑠𝑖𝑚∑︁
𝑖=1

[
∥𝑦𝑠𝑖𝑚𝑠 (𝑖) − 𝑟𝑑𝑠 (𝑖)∥𝑄 (𝑠)𝑐

+ ∥𝑢𝑠𝑖𝑚𝑠 (𝑖)∥𝑅 (𝑠)𝑐
(3.74)

+∥max(𝑦𝑠𝑖𝑚𝑠 (𝑖) − 𝑦𝑠, 0)∥𝑄 (𝑠)𝑐𝑠𝑡𝑟

]
(3.75)

where 𝑁𝑠𝑖𝑚 is the length of the simulation (in terms of sampling periods 𝑇𝑠 = 5 s). The
regulated outputs 𝑦𝑠𝑖𝑚𝑠 (𝑖) and manipulated inputs 𝑢𝑠𝑖𝑚𝑠 (𝑖) are system behavior obtained during
a simulation under the presented configurations and the two specific system’s decompositions.
The weighting matrices 𝑄 (𝑠)𝑐 , 𝑄

(𝑠)
𝑐𝑠𝑡𝑟 𝑅

(𝑠)
𝑐 are the penalty matrices previously defined in the

local costs (3.67)-(3.72).

In addition, in order to supervise the convergence of the processed fixed-point iterations,
the maximum terminal error is monitored at every time step, namely:

𝜖 (𝑘) := 𝑛𝑒𝑣max
𝑖=1
(𝜖 (𝑖)
𝑒𝑛𝑑
) (3.76)

where 𝜖 (𝑖)
𝑒𝑛𝑑
(∀𝑖 ∈ {1, . . . , 𝑛𝑒𝑣}) are the terminal convergence errors resulted from every central

cost evaluation.

State observation: In order to estimate the states 𝑥𝑠 to be used for updating theMPC/NMPC’s
laws, the centralized observer described in the last chapter is implemented. The observer not
only estimates the states 𝑥𝑠 but also estimates the exogenous inputs 𝑣𝑠 (extended observer),
which is used when the hierarchical coordination is not activated. More precisely, the ex-
ogenous signals 𝑣𝑠 (𝑘) are supposed to remain constant over the prediction horizon in the
decentralized settings (without the coordinator). However, it should be noted that if each
local subsystem has output measurements, which makes it observable, the decentralized ob-
servation strategy can be made, which means that each of them can have its own observer to
estimate their states.

3.5.2 Numeric simulation results:

In this section, the decomposition strategies that are mentioned previously are employed to
conduct a series of simulations in order to verify several aspects.
The 2-subsystem-decomposition strategy will be employed to validate:

• The benefit from using nonlinear models,

• The benefit from hierarchical design,

• Impact of the distributed-in-time setting’s parameters,
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• Checking modularity: controlling the system by only tuning the central cost’s definition.

• Impact of 4-subsystem-decomposition strategy on computation time.

The 4-subsystem-decomposition strategy will be employed to validate the impact of 4-
subsystem-decomposition strategy on the computation time and the control performance.

3.5.2.1 The benefit from using nonlinear models

Figure 3.6: Closed-loop behaviors when using the hierarchical approach with nonlinear MPC (solid
blue line) and with linear MPC (dash-dot green line). The first row presents the outputs, and the
second one presents the inputs of the system.

To start, the set-point tracking on Ttb130 scenario is conducted. As illustrated in Fig. 3.6, the
set-point of Ttb130 (subfigure(1,3)) is changed to be far from the operation point by which
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the Brayton cycle model (𝑆234) is linearized. Consequently, the system behavior given by
the coordination with linear MPC is highly oscillatory, while the one with nonlinear MPC is
stabilized. In addition, subfigure(3,2) also shows that the convergence error is assured below
the defined limit 𝜖max.

3.5.2.2 The benefit from hierarchical design

In this section, the disturbance rejection mode is simulated. The closed-loop cost of the
proposed hierarchical framework is compared to the one obtained under the extended observer-
based decentralized approach. More precisely, two scenarios , in which the limitation on the
available computation time is respectively enforced or not, are simulated with the disturbance
profile (Fig. 3.7) .

Figure 3.7: Disturbance profile of NCR(𝑤)22

• In the scenario where the constraint on computation time is not taken into account,
the corresponding 𝑢𝑜𝑝𝑡𝑠 (𝑘) is implemented even if its computation time exceeds the
available time within the sampling period.

• Meanwhile, in the scenario where the cpu-constraint (𝜏𝑢 ≤ 𝑇𝑠) on the available compu-
tation time is enforced, the subsystems apply the previous control 𝑢opt𝑠 (𝑘 − 1) each time
the computation time exceeds the available computation time 𝑇𝑠. Indeed, in this case,
the master cannot dispose of the needed information in order to update the approxima-
tion of the cost function, which is needed to update the value of the auxiliary set-point
and the associated coupling signals that are needed to compute the updated control to
be applied.

Fig. 3.8 shows the system behavior of the two scenarios, comparing with the decentralized
control approach. It shows that without taking into account the computation time constraint,
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the coordinator drives the system so that the flow rate𝑀𝑜𝑢𝑡 (subfigure(3,1)) returns to be lower
than the acceptable value 𝑀𝑜𝑢𝑡 , in this case, the valve CV156 is closed in order to decrease
the fluid passing through it. However, using nonlinear MPC in the proposed framework
increases the computation burden since the optimal control problems are solved repeatedly in
the fixed-point iteration. Probably, the coordination performance worsens if the constraint on
the computation time is enforced, which is shown by the non-stabilized regulated outputs due
to non-appropriately updated control. Finally, the subfigure(3,3) compares the performance
index 𝐽𝑠𝑖𝑚 of the scenarios, which shows that the control under coordination gives better
performance compared to the control without coordination. Nevertheless, it also shows
that the performance of the coordination can be worse if the computation time constraint is
considered.
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Figure 3.8: Closed-loop behavior with ideal coordination (solid blue line), without coordination (dash-
dot green line), and coordination in taking into account the computation limit (solid purple line). The
first row presents the outputs, and the second one presents the inputs of the system. The hierarchical
control method gives a better cost 𝐽𝑠𝑖𝑚 than the decentralized method (closed-loop cost decreased by
56%). Moreover, note in particular how the control of the liquid helium level Ltb131 visibly deteriorates
when the computation time limit is considered.

Fig. 3.9 shows the associated histogram of the computation time of the subsystems 𝑆1 and
𝑆234. It can be realized that the computation time of 𝑆234 exceeds the control updating period
[𝑘, 𝑘 + 1]𝜏𝑢 (with 𝜏𝑢 = 5𝑠).
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Figure 3.9: Histogram of the computation time of the JT cycle 𝑆1 and the Brayton cycle 𝑆234.

In the next section, the possibility to partially recover the optimal performance through
the distributed-in-time optimization scheme proposed in section 3.4.3 is investigated.

3.5.2.3 Impact of the distributed-in-time setting’s parameters

Different configurations of the distributed-in-time optimization parameters (𝑛𝑧, 𝑛𝑑 and 𝜏𝑢)
are simulated, and the corresponding closed-loop costs 𝐽normsim (normalized cost index) are
reported in order to give a flavour of the impact of each choice on the results. More precisely,
the testing scenario of a periodic heating disturbance (Fig. 3.7) is simulated again with the
distributed-in-time optimization framework being implemented in the hierarchical framework.

Fig. 3.10 shows the comparison of the behaviors of the process in three different scenario:
1) using the hierarchical control combinedwith optimization distribution, 2)with coordination
(not taking into account the time limit constraint) and 3) without coordination. It shows that
the optimization distribution technique can give a similar performance compared to the
one given by the ideal coordination (without taking into account time limit constraint) (see
subfigure(3,3)).
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Figure 3.10: Comparison of the closed-loop behavior under the proposed hierarchical framework
with two different settings: 1) with distributed-in-time optimization being implemented, 2) with
coordination but not taking into account the time limitation constraint and 3) without coordination.
The first row presents the outputs and the second one presents the inputs of the system. The choice of
parameters 𝑛𝑧 = 2, 𝑛𝑑 = 1 and 𝜏𝑢 = 5𝑠 are used in the distributed-in-time optimization framework.
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Figure 3.11: Histogram of computation time of different choices of 𝑛𝑧 and 𝑛𝑑 . Note that the compu-
tation time of each configuration is always lower than the updating time 𝜏𝑢.

Fig. 3.11 shows the computation time for different configuration of 𝑛𝑧 and 𝑛𝑑 . By using
the optimization distribution technique with the appropriately chosen parameters 𝑛𝑧 and 𝑛𝑑 ,
the feasibility of the whole framework is ensured, which means the computation time is lower
than the updating time constant 𝜏𝑢.

Finally, table 3.2 shows the associated closed-loop cost for the different configurations of
the distributed-in-time optimization scheme. It comes out that the setting corresponding to
𝑛𝑧 = 2, 𝑛𝑑 = 1 enables to get closer to the ideal cost index drop (44%) corresponding to the
non constrained computation time simulation while being fully real-time compatible.

Table 3.2: The normalized cost 𝐽𝑛𝑜𝑟𝑚
𝑠𝑖𝑚

for different configurations 𝑛𝑧 , 𝑛𝑑 and 𝜏𝑢 of the distributed-in-
time optimization.

𝑛𝑧 𝑛𝑑 𝜏𝑢 𝑡𝑚𝑎𝑥 𝐽normsim

Decentralized method _ _ _ _ 100%

Without distribution

(with computation time limit)
_ _ _ _

270.12%

Hierarchical method 1 1 3s 2.85s 33.97%

With distribution 1 2 5s 4.84s 33.99%

2 1 5s 4.76s 33.7%

Without distribution

(without computation time limit)
_ _ _ _ 22.45%
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3.5.2.4 Checking modularity: controlling the system by only tuning the central cost’s definition

One of the claims of this contribution concerns the possibility of keeping the local controllers
unchanged (in terms of penalty) while changing the penalties of the central cost (by the
coordinator) in order to achieve different behaviors of the closed-loop system. Here, it is
assumed that the operator needs to change the set-point of the helium liquid level Ltb131, for
example, in order to embed a test facility below the liquid level. Thus, the reference tracking
scenario is simulated. More precisely, the closed-loop behavior is compared under the two
different modes defined in section 3.5.1.2. This is done in order to illustrate the fact that the
results can be affected in the desired direction by only modifying the central cost’s definition
while keeping the local controllers unchanged.

Figure 3.12: Set-point tracking scenario: closed-loop responses under coordination, using distributed-
in-time optimization in two differentmode for the centralized cost on one hand andwithout coordination
on the other hand. The first row presents the outputs, and the second one presents the inputs of the
system. The set-point on 𝐿𝑡𝑏131 is increased. Two configurations of 𝑄𝑐 and 𝑅𝑐 of Mode 1 and Mode
2 are tested. Mode 2 (corresponding to higher penalty on Ltb131 deviations) allows better reference
tracking while mode 1 which is dedicated to disturbance rejection and not especially to track set-point
on the level. With the set of parameters 𝑛𝑧 = 2, 𝑛𝑑 = 1 and 𝜏𝑢 = 5𝑠. Note that both hierarchical design
with distributed optimization are real-time compatible.

For the tracking set-point mode, Fig. 3.12 shows the comparison of the behavior of the
process between using hierarchical control combined with optimization distribution and using
decentralized control.



70 Chapter 3. Fixed-point iteration based hierarchical control

3.5.2.5 Impact of 4-subsystem-decomposition strategy on computation time

In this section, we will verify whether the application of the proposed framework is valid for
the case where some of the subsystems are not controlled. More precisely, the coordinator
will be applied on the same cryoplant (cold box) that is decomposed into four subsystems:
J-T cycle (𝑆1), two heat exchangers (𝑆2 and 𝑆3), and turbine T1 (𝑆4) as described in 3.5.1.1.
Recall that in this decomposition, the Joule-Thomson cycle and the turbine T1 are respectively
controlled by MPC and NMPC, while the two heat exchangers are not regulated but impacted
by their neighbor dynamics.

Fig. 3.14 compares the two decomposition strategies (2-subsystem-decomposition and
4-subsystem-decomposition) in the same disturbance scenario; It can be seen that the two
strategies give similar performance indexes.

Figure 3.13: Computation time of 𝑆234 and 𝑆4

Fig. 3.13 shows the computation time of the subsystems that implement the relative
nonlinear MPC. It shows that the 4-subsystems decomposition strategy is implementable
in real-time implementation, while the other is not implementable (without considering
distributing optimization in time), which has been shown previously. This demonstration
showed the ability of the proposed framework to solve a bottleneck problem where the
nonlinearity attached to larger entity results in a computational burden.

3.6 Conclusion

This chapter presents a recently proposed hierarchical control framework based on fixed-
point iteration with an application to the control of a cryogenic refrigerator. It is successfully
demonstrated that incorporating nonlinearity and constraints into local controls can be an
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Figure 3.14: Comparison of the closed-loop behavior under the proposed hierarchical framework
with two different strategies: 1) with 2-subsystem-decomposition strategy and 2)with 4-subsystem-
decomposition strategy. The same disturbance profile on NCR(𝑤)22 that is used in the previous simula-
tions is employed.

effective way to improve control quality. Furthermore, it is also shown that (in this example)
locally proven convergence of the fixed point iteration is assured with such incorporation.
Furthermore, a dedicated optimization distribution technique is proposed and validated, which
allows to recover a large loss of optimality induced by the infeasibility of the control algorithm
in a limited computational time. It is also shown the choice of the decomposition might help
isolating the nonlinearity into small subsystem and reducing the bottleneck in terms of CPU.





Chapter 4

On the use of fast-NMPC and deep
learning approach in fixed-point-based

hierarchical control

Abstract The last chapter described a framework based on fixed-point iteration. This frame-
work is dedicated to the control of a network of interconnected subsystems such as those
describing cryogenic processes or power plants, by coordinating local controllers to optimize
a global objective. Previous results have shown that dealing with constraints and nonlin-
earities can challenge the real-time feasibility of the approach. This chapter investigates
and combines two interesting directions, namely the use of truncated fast gradient and deep
neural network based controller modeling, to reduce the computation time of the most critical
subsystem. It is also shown that by doing so, the control updating period can be significantly
reduced and the closed loop performance can be greatly improved. This chapter can therefore
be seen as a concrete implementation and validation of some key ideas in the design of
real-time distributed NMPCs. All concepts are validated using the realistic and challenging
example of a real cryogenic refrigerator.

4.1 Introduction

The last chapter showed that incorporating nonlinearities into local control problems can
improve the performance of the overall framework. However, it can lead to losses of control
performance if the computation becomes too complex and infeasible within the allowed
computation time due to limited computational resources. This fact has been demonstrated
by numerical simulations with the use of NMPC for the Brayton cycle in Chap. 3. In fact,
the method consisting in distributing the optimization over the real-life time is only valid
if the computation time resulted from the distribution is compatible with some predefined
updating periods [𝑘, 𝑘 + 1]𝜏𝑢. Furthermore, finding a finer decomposition would be not a
feasible choice if the aimed nonlinearity is not condensed and not separable from the larger
subsystem.

One can realize that the computational burden is due to the resolution of local nonlinear
MPC problems being repeated over the fixed-point iterations and for several set-points.

73
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This computational bottleneck is induced by using powerful but computationally expensive
solvers such as Casadi [45] or Acado [46]. Based on this observation, this chapter proposes
two directions that could be used if the computational time problem is encountered when
implementing the proposed framework.

In order to replace such powerful but non-integrable optimization solvers, the simplest
way is to use a sub-optimal solver. Indeed, in [47], a well-known gradient-based iterative
solver is proposed to solve linear optimization control problem, by providing a technique to
define lower iteration bound. This has prompted much works regarding the implementation
aspect of MPC in embedded applications [48, 49, 50].

Another way to reduce the computation time is to approximate the control laws by piece-
wise affine functions (PWA) defined on a polyhedral partition of the feasible states [51, 52,
53]. This method is also called explicit MPC. However, this property is only true if there is no
nonlinearity present in the objective function or constraints. Besides, the complexity of the
state space regions over which the control law is defined grows exponentially as the number
of states increases, which makes this approach impractical for large-scale systems. Moreover,
in the conventional explicit MPC method, only the first action of the control sequence is ap-
proximated, whereas, in our proposed framework, the entire control sequence u𝑠 is required
for the fixed-point iteration.

Instead of approximating the nonlinearMPC by PWA functions, deep learning has become
a popular choice due to its universal approximation property. Moreover, many works have
demonstrated the effectiveness of these methods in many embedded applications [54, 55, 56,
57]. Hence, this section attempts to address the computation time issue by following the track
described below:

• First, a fast gradient-based algorithm is proposed to be used instead of using the time-
consuming one in order to reduce the computation time. The performance of this solver
is compared to available generic toolkits (such as Casadi/IPOPT ). This solver will then
be shown to be integrable into the fixed-point-based hierarchical control framework,
making the whole algorithm feasible in real-time implementation.

• For embedded applications, deep learning approach has been demonstrated in several
studies. More precisely, a feed-forward deep neural network is used to approximate the
control laws computed by the proposed solver to further reduce the computation time
of the most CPU-critical local controller.

• Finally, we will show that the reduction in computation time allows the control inputs
to be updated more frequently, thus improving the closed-loop performance.

The next section will describe the Truncated gradient-based algorithm that is used to solve
nonlinear optimal control problems.
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4.2 Truncated gradient method for solving NMPC problem

In the previously described framework, the resolution of the local NMPC problems is pro-
ceeded in parallel, the real-time feasibility of the framework depends on the critical subsystem
requiring the highest computation efforts. Although many toolkits for solving optimization-
based control problems, such as ACADO [46] or CasADi [45] are widely used because of
their ease of implementation, the relative complexity of the solvers associated to these toolkits
can exceed the available computational resources. Furthermore, it has been shown in [58]
that when a limited (computation time)/(hardware performance) is present, a truncated fast
gradient might be beneficial to closed-loop performances. That is why this algorithm is
briefly recalled here as it is the heart of the forthcoming development.

Recall that each subsystem 𝑆𝑠, 𝑠 ∈ N 𝑐𝑡𝑟 solves an optimization problem upon receiving a
pair of (𝑟𝑠, v𝑖𝑛𝑠 ) from the coordinator, combiningwith the estimated state 𝑥𝑠 and the disturbance
profile w𝑠:

P𝑠 : u∗𝑠 = argmin
u𝑠∈U𝑠

𝐽NMPC𝑠 (u𝑠, 𝜉𝑠) (4.1)

where 𝐽NMPC𝑠 is the NMPC cost and U𝑠 is the admissible set of control profiles u𝑠. The
vector 𝜉𝑠 encapsulates all parameters such as the estimated state 𝑥𝑠, the set-point 𝑟𝑠 and the
incoming coupling profile v𝑖𝑛𝑠 . These variables are considered frozen during the resolution
of (4.1) and will be dropped in this section for a sake of compactness.

The implementation of the fast gradient method requires the gradient of the cost func-
tion at 𝐽NMPC𝑠 with respect to u𝑠, which can be easily obtained by modeling the cost with
CasADi and then computing its gradient ∇𝐽NMPC𝑠 = 𝜕𝐽NMPC𝑠 /𝜕𝑢𝑠 by using the subroutine
jacobian(𝐽NMPC𝑠 ,u𝑠). The algorithm that is used to solve (4.1) is given by the following
updating rule:

z (𝑖+1)𝑠 = u(𝑖)𝑠 − 𝛾 (𝑖+1) · ∇𝐽NMPC𝑠 (u(𝑖)𝑠 ) (4.2)

u(𝑖+1)𝑠 = Pr(z (𝑖+1)𝑠 + 𝑐 · (z (𝑖+1)𝑠 − z (𝑖)𝑠 ),U𝑠) (4.3)

where z (𝑖+1)𝑠 is the updated vector variable and 𝑐 ∈ (0, 1) is the design variable. Pr(𝑝,U𝑠) is
the projection of vector 𝑝 on the admissible set U𝑠. The variable 𝛾 is the adaptive step size
that is computed by using Barzilai-Borwein formula proposed in [59]:

𝛾 (𝑖+1) =
∥(u(𝑖+1)𝑠 − u(𝑖)𝑠 )𝑇 · (∇𝐽NMPC𝑠 (u(𝑖+1)𝑠 ) − ∇𝐽NMPC𝑠 (u(𝑖)𝑠 ))∥

∥∇𝐽NMPC𝑠 (u(𝑖+1)𝑠 ) − ∇𝐽NMPC𝑠 (u(𝑖)𝑠 )∥2
(4.4)

In [60], the authors showed that the convergence of the algorithm could be improved when
a restart mechanism is included. More precisely, the variable u𝑠 is restarted every 𝑛𝑟𝑠𝑡
iteration, but it is noted that the frequency of restarts should depend on the cost function. This
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mechanism is expressed as below:

z (𝑖+1)𝑠 = u(𝑖)𝑠 − 𝛾 (𝑖+1) · ∇𝐽NMPC𝑠 (u(𝑖)𝑠 );
if mod(𝑖, 𝑛𝑟𝑠𝑡𝑟) == 0 then
u𝑠 = Pr(z (𝑖+1) ,U𝑠);

else

u𝑠 = Pr(z (𝑖+1)𝑠 + 𝑐 · (𝑧(𝑖+1)𝑠 − 𝑧(𝑖)𝑠 ),U𝑠);
end

Finally, this method is summarized by Algorithm 3. The algorithm is stopped when the
number of iterations reaches 𝑁max

Algorithm 3 Truncated gradient-based solver
1: Initialize:

𝑖 ← 0; 𝑐 ∈ (0, 1); 𝛾 (𝑖) ∈ (0, 1); 𝑛𝑟𝑠𝑡𝑟 ∈ N
u(𝑖)𝑠 ← 0; z (𝑖)𝑠 ← 0

2:
3: for 𝑖 ← 1, . . . , 𝑁max do
4: z (𝑖+1)𝑠 = u𝑖

𝑠 − 𝛾 (𝑖) · ∇𝐽𝑙𝑜𝑐𝑠 (u
(𝑖)
𝑠 );

5: if mod(𝑖, 𝑛𝑟𝑠𝑡𝑟 ) == 0 then ⊲ check for restart
6: u(𝑖+1)𝑠 = Pr(z (𝑖+1)𝑠 ,U𝑠);
7: else
8: u(𝑖+1)𝑠 = Pr(z (𝑖+1)𝑠 + 𝑐 · (z (𝑖+1)𝑠 − z (𝑖)𝑠 ),U𝑠);
9: end if
10: Compute 𝛾 (𝑖+1) by (4.4);
11: end for

4.3 Neural-network-based NMPC

In this section, the objective is to derive a regression model that predicts the values of u∗𝑠 by
basing on a learning data set in which the algorithm 3 is involed. The central idea here is to
replace the implicitly defined control profile (4.1) by an explicit representation of the form
u∗𝑠 = 𝐾𝑠 (𝜉𝑠, 𝜃∗𝑠), where 𝜃∗𝑠 is the parameters that minimize the objective function given below:

𝜃∗𝑠 = argmin
𝜃𝑠

1
𝑁𝑠

𝑁𝑠∑︁
𝑖=1
∥𝑢∗,(𝑖)𝑠 − 𝐾𝑠 (𝜉 (𝑖)𝑠 , 𝜃𝑠)∥2 (4.5)

where {(𝜉 (1)𝑠 ,𝑢
∗,(1)
𝑠 ),. . . ,(𝜉 (𝑁𝑠)

𝑠 ,𝑢∗,(𝑁𝑠)
𝑠 )} is the set of 𝑁𝑠 training data. In this section, only one

subsystem is considered, the subscript 𝑠 is thus omitted for the sake of simplicity.
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Table 4.1: Comparison of different machine learning algorithms with the preferred properties being
highlighted.

Algorithm Function Multivariate Dimensions
GLM Linear Yes High
VAR Linear Yes High
RF PW constant Yes High
SVM Nonlinear No Moderate
NLR Nonlinear No High
DNN Nonlinear Yes High

Among possible approaches, machine learning-based approach have become a popular
choice to approximate the functional form𝐾𝑀𝐿 (𝜉, 𝜃) because of their universal approximation
property. In the context of approximating MPC under constraints, [61] has listed a bunch
of machine learning algorithms along with their characteristics, which are summarized in
Table. 4.1. The algorithms that are compared are: generalized linear models (GLM),
nonlinear regression (NLR), random forest (RF), support vector machines (SVM), deep
neural networks (DNN) and vector autoregressive model (VAR). The properties that are used
in the comparison are: the nature of the regressor function (e.g linear, nonlinear, piecewise
constant); the multivariable target handling ability; and finally the ability to handle high
dimension learning dataset with many samples. Since the NMPC problem formulations
involve nonlinearities in the objective function and in the constraints, it is required to choose
themodel with nonlinear nature for the sake of versatility and flexibility. Moreover, themodels
that can handle multivariate target and high dimensional data are required since the whole
control profiles u∗𝑠 are to-be predicted with the parameter vectors 𝜉𝑠 considerably large. After
considering all these aspect, DNNs appear to be the appropriate choice as regression model.
Furthermore, DNNs could be easily implemented in any programmable logic controllers
(PLCs), whose computational capabilities are not suitable for high-level solver.

A feed-forward neural network consists of several hidden layers, each layer contains many
neurons. Fig. 4.1 shows a feed-forward neural network with 𝐿 hidden layers and 𝐻 (𝑙) nodes
for 𝑙 ∈ {1, . . . , 𝐿} per each (a) and a neural nodes (b). The 𝑖𝑡ℎ neuron in layer 𝑙 takes outputs
of the neurons in the preceding layer 𝑙 − 1 to produce a single binary output, namely:

𝑝
(𝑙)
𝑖

= 𝛽
(𝑙)
𝑖
(𝛼(𝑙)
𝑖
) (4.6)

𝛼
(𝑙)
𝑖
(𝑝 (𝑙−1)) = 𝑏 (𝑙)

𝑖
+
𝐻 (𝑙−1)∑︁
𝑗=1

𝑤
(𝑙)
𝑖 𝑗
· 𝑝 (𝑙−1)

𝑗
(4.7)

where 𝑤𝑖 𝑗 are the weighting coefficients and 𝑏 (𝑙)𝑖 is the bias of the 𝑖
𝑡ℎ neuron in 𝑙𝑡ℎ layer. The

function 𝛽(𝑙)
𝑖
represents nonlinear activation function associated to the 𝑖𝑡ℎ neuron in the 𝑙𝑡ℎ

layer. These functions can be rectified linear units (RELU), sigmoid, hyperbolic tangent, etc,
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Figure 4.1: (a) A feed forward neural network of 𝐿 hidden layers and (b) synoptic view of the 𝑖𝑡ℎ

neuron in the 𝑙𝑡ℎ layer, whose output 𝑝 (𝑙)
𝑖
is the result of the computations of the functions 𝛼 (𝑙)

𝑖
(·) and

𝛽
(𝑙)
𝑖
(·).

which are critical for ensuring the universal approximation property of neural networks.

It can be noted that before passing through the activation functions 𝛽(𝑙)
𝑖
, each hidden layer

involves only affine transformation of the output of its previous layer,namely:

𝛼(𝑙) (𝑝 (𝑙−1)) = 𝑊 (𝑙) · 𝑝 (𝑙−1) + 𝑏 (𝑙) (4.8)

in which 𝑝 (𝑙−1) ∈ R𝐻 (𝑙−1) for 𝑙 ∈ {2, . . . , 𝐿 + 1} and 𝑝 (0) = 𝑧. The weighting matrix𝑊 (𝑙) and
the bias vector 𝑏 (𝑙) , for 𝑙 ∈ {1, . . . , 𝐿} , gather all weighting coefficients and the biases related
to the 𝑙𝑡ℎ layer, namely:

𝑊
(𝑙)
𝑖 𝑗

= 𝑤
(𝑙)
𝑖 𝑗

for 𝑖 ∈ {1, . . . , 𝐻 (𝑙)}, and 𝑗 ∈ {1, . . . , 𝐻 (𝑙−1)} (4.9)

𝑏 (𝑙) = [𝑏 (𝑙),𝑇1 , 𝑏
(𝑙),𝑇
2 , . . . , 𝑏

(𝑙),𝑇
𝐻 (𝑙)
]𝑇 (4.10)
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Then, the deep neural with 𝐿 layers can be defined as an parametrized function given below:

𝐾𝑁𝑁 (𝑧; 𝜃) = 𝛼(𝐿+1) ◦ 𝛽(𝐿) ◦ 𝛼(𝐿) ◦ · · · ◦ 𝛽(1) ◦ 𝛼(1) (𝑧) (4.11)

𝛽(𝑙) (·) = [𝛽(𝑙)1 (·), · · · , 𝛽
(𝑙)
𝐻 (𝑙)
(·)]𝑇 (4.12)

where the parameter vector 𝜃 = {𝑊 (1) , 𝑏 (1) , . . . ,𝑊 (𝐿+1) , 𝑏 (𝐿+1)} gathers all weights𝑊 (𝑙) and
biases 𝑏 (𝑙) in the network with appropriate dimension.

Assuming that the data D := {(𝜉 (𝑖) ,u∗,(𝑖))}𝑁
𝑖=1, with 𝑁 being the number of observations

in the data, are available, any parametrized 𝐾𝑁𝑁 (𝜉, 𝜃) can be trained by minimizing some
loss function such as the mean squared error:

𝜃∗ = argmin
𝜃

1
𝑁

𝑁∑︁
𝑖=1
∥u∗,(𝑖) − 𝐾𝑁𝑁 (𝜉 (𝑖) , 𝜃)∥2 (4.13)

Once the network architecture is trained, the approximate DNN-based NMPC law 𝐾𝑁𝑁 (𝑧, 𝜃∗)
can be used online to cheaply evaluate the optimal control input.

4.3.1 Data generation

There are two common data-generation strategies, namely open-loop and closed-loop. In
open-loop data generation, the set Z ⊂ X × V𝑖𝑛 × R × W of possible states, incom-
ing coupling profiles, disturbances and set-points could be created and the corresponding
control profile u computed that will be added together to establish a set of data D =

{(𝑥 (𝑖) , v𝑖𝑛,(𝑖) , 𝑟 (𝑖) ,w(𝑖) ,u(𝑖))}𝑁
𝑖=1. Although very simple, this strategy can result in non phys-

ically realistic instances being included in the training data. Closed-loop strategy, on the
contrary, gathers data while running a closed-loop simulation under randomly drawn physi-
cally meaningful initial states. Indeed, the majority of large-scale cryogenic systems operate
under a relatively small number of regimes or operating scenarios. Each operational scenario
is characterized by a few regulated and/or constrained outputs and a few large magnitude
disturbances that may frequently change, while the set-points are kept unchanged for a long
period of time. Hence, we propose the following data generation procedure that performs
off-line simulation using the system model under the control law to collect the operationally
relevant training set D:

1. Determine the operational range of the set-points denoted by [𝑟, 𝑟] and the realistic
range of the disturbances denoted by [𝑤, 𝑤]:

2. Create pseudo-random binary signals (PRBS) of 𝑟 in its operational ranges. In order to
capture the controller’s setpoint tracking behavior, the amplitude of the signal must not
vary for a sufficient period of time denoted by Δ𝑡. The shape of the disturbance signal
𝑤 can be chosen according to its realistic behavior. In our application, the shape of the
signal 𝑤 and the time period Δ𝑡 will be specified in Sect. 4.4.3.1.
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3. Run the closed-loop simulations that implement the above discussed hierarchical design
at some chosen initial stateswith the created PRBS signals. Note that the data is collected
during the fixed-point iterations in order to capture the relationship between the control
profile u and the triplet (𝑟, 𝑥, v𝑖𝑛).

The network is trained to minimize the mean squared error criteria below:

𝐽𝑁𝑁 (𝜃) =
1
2

𝑁𝑡𝑟∑︁
𝑖=1
∥u(𝑖) − 𝐾𝑁𝑁 (𝜉 (𝑖) , 𝜃)∥2 (4.14)

where 𝑁𝑡𝑟 < 𝑁 is the number of training observations. Indeed, Before the training process,
the data set is passed through a series of data preparation techniques and finally separated
into two subsets that contain 𝑁𝑡𝑟 samples and 𝑁𝑣𝑎𝑙 = 𝑁 − 𝑁𝑡𝑟 samples, which serve to train
and validate the regression model. Recall that the vector 𝜉 ( 𝑗) encapsulates all the parameters
𝑥 (𝑖) , v𝑖𝑛,(𝑖) , 𝑟 (𝑖) and w(𝑖) .

4.4 Numerical results

4.4.1 Comparison between truncated fast MPC and Casadi/IPOPT

First, we compare the control performance given by the truncated fast gradient solver presented
in Sect. 4.2 and IPOPT solver of Casadi. The 4-subsystem-decomposition described in Sect.
3.5.1.1 is reused to conduct the simulation presented in this chapter. In addition, the local
controllers for the Joule-Thomson cycle (𝑆1) and the turbine 𝑇1 (𝑆4) are nonlinear MPCs.

The performance of the Ipopt (CasADi) solver and the truncated gradient solver used to
solve the local optimal control problems of 𝑆1 and 𝑆4 are compared together. This can be done
by evaluating the open-loop performance indicated by 𝐽NMPC𝑠 (u∗𝑠), where u∗𝑠 is the solution
of (4.1). The evaluation process is described below:

1. Create realistic set of state 𝑥𝑠, set-point 𝑟𝑠 andvin𝑠 denoted byDsolver := {(𝑥
(𝑖)
𝑠 , 𝑟

(𝑖)
𝑠 , v

(𝑖)
𝑠 )}𝑁𝑑𝑡𝑎

𝑖=1 .
Since the initial state vectors and coupling profiles are hard to be created, the data set
can be obtained by following the procedure described in 4.3.1.

2. Solve the problem (4.1) by using solver Ipopt and truncated gradient at triplets (𝑥 (𝑖)𝑠 , 𝑟 (𝑖)𝑠 , v (𝑖)𝑠 )
(for 𝑖 = 1, . . . , 𝑁𝑑𝑡𝑎). For the configuration, several choices of maximum number of
iteration 𝑁max and tolerance error 𝜖tol of the terminal criteria for the two solvers are
chosen in order to analize their effects on the computation time and the optimization
performance;

3. The open-loop performances 𝐽NMPC,(𝑖)𝑠 (u∗,Ipopt𝑠 ) and 𝐽NMPC,(𝑖)𝑠 (u∗,grd𝑠 ) of the solver Ipopt
and truncated gradient are computed. Then, the average of performance ratio 𝐽 between
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the two solvers is deduced, namely:

𝐽 =
1
𝑁𝑑𝑡𝑎

𝑁𝑑𝑡𝑎∑︁
𝑖=1

𝐽
NMPC,(𝑖)
𝑠 (u∗,solver𝑠 )
𝐽
NMPC,(𝑖)
𝑠 (u∗,base𝑠 )

× 100% with solver := {grd, Ipopt} (4.15)

The performance in terms of optimization and computation time is analyzed. Table
4.2 shows the maximum computation time and the open-loop performance 𝐽 for several
configuration of 𝜖tol and 𝑁max. For the computation of 𝐽, the local costs 𝐽NMPC,(𝑖)𝑠 (u∗,base𝑠 )
appearing at the denominator in (4.15) is chosen to be the ones resulted by using the IPOPT
solver with the configuration of 𝜖tol = 10−4 and 𝑁max = 10. The computation time resulted
by using the truncated gradient-based solver is significantly reduced, while the optimization
performance is not drastically effected. This can be realized by the fact that the computation
time given by the choice of 𝜖 = 10−4 and 𝑁max = 10 is reduced from 4.76s to 0.0499s by
using gradient-based solver with 𝑁max = 100, whereas the performance index 𝐽 is not too
much changed.

Table 4.2: Performance index of Ipopt solver and truncate gradient based solver

NMPC of 𝑆1 NMPC of 𝑆4
Solver 𝑁max 𝜖tol 𝐽 [%] 𝑡maxcpt [s] 𝑁max 𝜖tol 𝐽 [%] 𝑡maxcpt [s]

Truncated gradient

descend

100 _ 100.2379 0.0499 100 _ 101.3418 0.011

50 _ 100.2395 0.0398 50 _ 101.3419 0.008

30 _ 100.2357 0.0322 30 _ 101.3418 0.0043

10 _ 101.29 0.0246 10 _ 101.3418 0.0014

Ipopt/Casadi
5 10−1 99.999 2.746 5 10−1 100 0.0589

10 10−1 100.002 3.756 10 10−1 100 0.0873

10 10−4 100 4.76 10 10−4 100 0.1720

Indeed, the computation time can be reduced by parametrizing the optimization vector so
that its degree of freedom is reduced. Table 4.3 shows the maximum computation time and
the open-loop performance 𝐽 associated to the parametrization 𝑖𝑑 = [1 5 10 30 50 100] (see
Sect. 2.3.2.2) for several configurations of 𝜖tol and 𝑁max. Although the degree of freedom is
reduced to 6 with this parametrization, the computation time of the solver Ipopt (for 𝜖tol = 5
and 𝑁max = 5) is still impractical to be integrated in our framework.

Furthermore, the real computation time with respect to the allowable maximum iteration
𝑁max when using fast-NMPC solver in this hierarchical control framework should be analyzed.
Fig. 4.2 shows the evolution of the computation time t 𝑓 𝑖𝑛𝑎𝑙1 required by 𝑆1 to compute
the optimal setpoint 𝑟opt and the associated control profile u1. It can be noted that the
computation time is reduced with the decrease of 𝑁max until 𝑁max is lower than 10. The
increase in computation time as 𝑁max decreases from 20 can be explained by the fact that the
performance of the solver is significantly deteriorated, which prevents the convergence of the
fixed-point iterations. For the simulation, 𝑁max = 30 is chosen for both NMPCs of 𝑆1 and 𝑆4.
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Table 4.3: Performance index of Ipopt solver and truncate gradient based solver with parametrization
𝑖𝑑 = [1 5 10 30 50 100]

NMPC of 𝑆1 NMPC of 𝑆4
Solver 𝑁max 𝜖tol 𝐽 [%] 𝑡maxcpt [s] 𝑁max 𝜖tol 𝐽 [%] 𝑡maxcpt [s]

Truncated gradient

descend

100 _ 100.4967 0.0328 100 _ 100 0.0117

50 _ 100.649 0.0234 50 _ 100 0.005

30 _ 100.655 0.0149 30 _ 100 0.004

10 _ 114.349 0.0068 10 _ 100 0.002

Ipopt/Casadi
5 10−1 100.166 0.691 5 10−1 100 0.0783

10 10−1 100.036 0.987 10 10−1 100 0.0868

10 10−4 100 1.499 10 10−4 100 0.2002

4.4.2 Benefit of using nonlinear MPC for controlling the J-T cycle

Although the benefit in terms of control performance when employing nonlinear MPC in
our proposed framework has been demonstrated in Chap. 3 with the use of the NMPC at
the Brayton cycle or the turbine T1, we would like also to compare the control performance
associated to the two configurations under the hierarchical control coordination that are: the
configuration where two NMPCs for 𝑆1 (J-T cycle) and 𝑆4(turbine T1) are implemented, and
the configuration where the MPC for 𝑆1 and the NMPC for 𝑆4 are employed. The truncated
gradient-based solver are used to solve the optimal control problem of the NMPCs in both
configurations.

Fig. 4.3 shows the systems behaviors of two mentioned configurations for the scenarios
where the charge NCR(𝑤)22 increases to 650 𝑊 , which overpass the nominal power of the
refrigerator. It can be seen that by employing the NMPC at 𝑆1 the constraint on the flow
rate 𝑀𝑜𝑢𝑡 is more satisfied. Furthermore, by using the truncated gradient-based solver, the
hierarchical control algorithm is feasible since the computation time of each subsystems is
smaller than the updating period 𝜏𝑢 = 5 𝑠 (Fig. 4.4).

4.4.3 Approximate NMPC by neural network

4.4.3.1 Data preparation and learning assessment

In this subsection, the most time-consuming NMPC, which is the one of the J-T cycle (𝑆1),
will be approximated by a deep neural network. The approach described in Sect. 4.3 is
proceeded by beginning with the data preparation step. Then, many deep neural network
structures are used to approximate the control law based on the collected data.

There are two types of scenarios that the NMPC of the J-T cycle can meet, which are
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Figure 4.2: Evolution of computation time of 𝑆1 needed for computing the optimal set-point 𝑟opt and
the associated control profile u1.

set-point tracking on helium level Ltb131 and the disturbance rejection on NCR(𝑤)22 . The PRBS
profile of set-point Ltb𝑠𝑝131 is created so that period Δ𝑡 is long enough for the outputs to be
stabilized, in our case Δ𝑡 is chosen to be 1500s (Fig.4.5a). For the disturbance rejection
scenario, the profile of disturbance NCR(𝑤)22 is created so that the disturbance has the form as

shown in Fig. 4.5b. The values NCR
(𝑤)
22 and NCR

(𝑤)
22 are randomly generated from period to

period and in the operation range. Indeed, the disturbance can be assumed to have a specific
form since it depend on operation modes of tokamaks as shown in Sect. 1.2.6.

Then, the system is simulated in closed-loop with the created profiles of 𝑟1 and 𝑤1,
separately, under the hierarchical control algorithm described in Chap. 3. The tuples
{(𝑥 (𝑖)1 , v

𝑖𝑛,(𝑖)
1 , 𝑟

(𝑖)
1 ,w

(𝑖)
1 ,u

(𝑖)
1 )}

𝑁𝑠

𝑖=1 are collected in fixed-point iterations in order to capture
all the relation between the control profiles and the relating parameters.

After the data are gathered, the data-preprocessing techniques are proceeded:

1. Data balancing: one of the important rules in machine learning is to balance out the
data set. In our case, there are only two scenarios which are set-point tracking and
disturbance rejection, thus, the data can be balanced by taking the same number of
observations of each scenario into the data set.

2. Data normalization: This step normalizes the data so that all the features have smaller
scale (e.g [-1,1]). This is necessary because the gradient descent (for training neural
network) converges faster when the features in the observations haves similar value
ranges.

3. Data Shuffling and data splitting: In order to reduce variance of the data set and to
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Figure 4.3: Comparison of the system behaviors given by the two configurations: using NMPC (blue)
and MPC (pink) for 𝑆1.

reduce the risk of overfitting, the collected data that are ordered temporally needs to be
shuffled. The data set can be separated into 𝑛𝑝𝑎𝑐𝑘 packs, each contains 𝑛𝑜𝑏𝑠 observations
(such that 𝑛𝑝𝑎𝑐𝑘 ∗ 𝑛𝑜𝑏𝑠 = 𝑁𝑠). Then, the packs are shuffled between them. Finally, the
processed data set is then split into two smaller data set which serve to train and validate
the model. In our case, the data set is split such that 80% is for training data set and
20% is for validation data set.

After the data is ready, three feed-forward neural networks are trained. These configu-
rations are set up so that each DNN has a different number of hidden layers, ranging from
1 to 3 layers, with each layer having the same number of nodes, i.e., 25 nodes, denoted
by NN-1-25, NN-2-25, and NN-3-25, respectively. The activation function at each node is
the sigmoid function (other activation functions have been used but do not give any better
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Figure 4.4: Computation time of the agents in the configuration that implement the NMPCs(𝑆1,𝑆4)

performance). Concretely, each structure is trained for 10000 epochs with the prepared data
set and is validated with the validation data set. The resilient back-propagation (RPROP)
algorithm is used to train the neural network. Table 4.4 presents the learning performance
for three DNN structures. The structure NN-2-25, which has the lowest mean squared error
(MSE) is chosen to conduct the next simulation.

Table 4.4: The learning performance of several configuration of DNNs.

Structure NN architecture MSE Training time

NN-1-25 [25 25 12] 0.3192 2h47

NN-2-25 [25 25 25 12] 0.2726 3h15

NN-3-25 [25 25 23 25 12] 0.2996 3h50

4.4.3.2 Simulation result

In order to facilitate the result interpretation, some previously defined performance indicators
in the last chapter will be needed. First, the closed-loop performance indicator 𝐽𝐶𝐿𝑐 is recalled,
namely:

𝐽𝑠𝑖𝑚 =
1
𝑁𝑠𝑖𝑚

∑︁
𝑠∈N

𝑁𝑠𝑖𝑚∑︁
𝑖=1

[
∥𝑦𝑠𝑖𝑚𝑠 (𝑖) − 𝑟𝑑𝑠 (𝑖)∥𝑄 (𝑠)𝑐

+ ∥𝑢𝑠𝑖𝑚𝑠 (𝑖)∥𝑅 (𝑠)𝑐
(4.16)

+∥max(𝑦𝑠𝑖𝑚𝑠 (𝑖) − 𝑦𝑠, 0)∥𝑄 (𝑠)𝑐𝑠𝑡𝑟

]
(4.17)

where the weighting matrices 𝑄 (𝑠)𝑐 , 𝑅
(𝑠)
𝑐 are chosen as followed:
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(a)

(b)

Figure 4.5: PRBS profile of Ltb𝑠𝑝131 (a) and NCR
(𝑤)
22 (b) that are used to generate the data for training

neural networks.

✓ Mode 1: For disturbance rejecting scenario:

𝑄
(1)
𝑐 =

[
103 0
0 103

]
, 𝑅

(1)
𝑐 =

[
0 0
0 0

]
(4.18)

𝑄
(3)
𝑐𝑠𝑡𝑟 = 5 · 109 (4.19)

𝑄
(4)
𝑐 = 103, 𝑅

(4)
𝑐 = 0 (4.20)

✓ Mode 2: For set-point tracking scenario:

𝑄
(1)
𝑐 =

[
106 0
0 0.1

]
, 𝑅

(1)
𝑐 =

[
0 0
0 0

]
(4.21)

𝑄
(3)
𝑐𝑠𝑡𝑟 = 5 · 109 (4.22)

𝑄
(4)
𝑐 = 104, 𝑅

(4)
𝑐 = 0 (4.23)
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Then, the maximum terminal error is also recalled, namely:

𝜖 (𝑘) := 𝑛𝑒𝑣max
𝑖=1
(𝜖 (𝑖)
𝑒𝑛𝑑
) (4.24)

where 𝜖 (𝑖)
𝑒𝑛𝑑
are the terminal convergence errors resulted from every central cost evaluation

processes.

Eventually, the numerical results can be investigated. First, two configurations under the
hierarchical coordination will be compared, which are the combination of two NMPCs of
𝑆1 and 𝑆4, and the combination of the neural-network-based NMPC of 𝑆1 and the NMPC of
𝑆4. Fig. 4.6 shows the system behaviors associated to these configurations in the scenarios
of pulsed charge. It can be realized that the neural network can mimic the MPC actions
in taking into account the coupling signals. The convergence error (subplot (3,3,9)) of two
configurations are ensured to be lower than the predefined threshold 𝜖max.

Figure 4.6: Comparison of the system behaviors when using NMPC and NN-based NMPC for 𝑆1 in
hierarchical control.
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The main advantages of the machine learning controller are in the implementation burden
and computational efforts. Instead of solving the optimization problem several times in the
fixed-point iterations, for several set-points to be evaluated and at each sampling instants, the
NN-based controller only needs to evaluate the function u∗𝑠 = 𝐾 (𝜖, 𝜃∗). Consequently, the
computation time resulted by the implementation of NN-based controller is reduced as shown
in Fig. 4.7. It can be noted that the computation time imposed by the truncated gradient-based
solver is reduced by factor 12 (themaximum computation timeswhen using the gradient-based
solver and the trained NN are 3.27 𝑠 and 0.27 𝑠, respectively). Furthermore, this approach is
applicable on typical low-level hardware, such as PLCs, since non advanced software libraries
are required and the trained NN can be easily implemented with a low memory footprint.
In order to take advantage of this benefit, the control input can be updated more frequently,
which will improve the control performance as demonstrated in Sect. 3.5.2.3.

Figure 4.7: Computation time of the agents in the configuration that implement the NMPCs (𝑆1,𝑆4)

Fig. 4.8 shows the output behaviors and the closed-loop control performance associated to
the previous set-up of the local controllers, under the control updating period 𝜏𝑢 = 5 𝑠, and the
one given by using the NN-based controller at 𝑆1 under 𝜏𝑢 = 2 𝑠. In the comparison between
the NN-based controller and the NMPC controller with the same updating period 𝜏𝑢 = 5 𝑠,
the cumulative performance is dropped by 18 % (at time instant t= 1600 𝑠 of subfigure (5,1)).
However, this performance is recovered and even improved approximately 50 % (at t = 1600
𝑠) when the updating period is feasibly set to be at 𝜏𝑢 = 2 𝑠 thanks to the use of NN-based
controller.
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Figure 4.8: Output behaviors of the system in the case of disturbance rejecting under the coordination
, in which NMPC and NN-based controller are implemented by 𝑆1. The updating period is chosen to
be 𝜏𝑠 = 5𝑠 and 𝜏𝑠 = 2𝑠 in order to compare the control performance.

Finally, the use of NN-based controller is validated in the set-point tracking scenario
illustrated in Fig. 4.9. It can be seen that the system behavior under the hierarchical control
method with NN-based controller and with NMPC are similar. The NN-based controller can
also mimic the behavior of the NMPC of 𝑆1 in the set-point tracking case, which results the
same system behaviors with less computation efforts.
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Figure 4.9: Output behaviors of the system in the case of set-point tracking under the coordination, in
which NMPC and NN-based controller are implemented by 𝑆1. The updating period is chosen to be
𝜏𝑠 = 5 𝑠 and 𝜏𝑠 = 2 𝑠 in order to compare the control performance.
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4.5 Conclusion

In this chapter, two methods have been proposed to reduce the computation time for solving
the constrained nonlinear optimization problem at the local layer of the hierarchical control
framework. The numerical results have demonstrated the effectiveness of the two approaches.
More precisely, the computation time is reduced drastically by using the Truncated gradient
method. Then, the control law is approximated by a deep neural network. Finally, the
two approaches are then compared in terms of computation time and control performance,
showing that the deep learning approach successfully approximates local control laws and
allows for more frequent control updates. On-goingwork aims to validate the control structure
with a full cryogenic facility.





Chapter 5

Application to a complete refrigerator
and further developments regarding the
fixed-point-iteration based hierarchical

control framework

AbstractThe objective of this chapter is to present advances in the hierarchical controlmethod
for cryogenic processes, which is previously described in Chap. 3. These advances concern
the application of this framework to a more complex scenario, where more subsystems,
different time scales and different types of local controllers are considered. In addition,
a residual-based iterative method is integrated to enhance the convergence of the invoked
fixed-point iterations between the coordinator and the local subsystems. Facing to a more
complex optimization problem in terms of optimizing vector’s size, a subgradient-based solver
is implemented to replace the quadratic approximation based solver (described in Chap. 3).
The efficiency of the development is finally assessed through simulation-based studies.

5.1 Introduction

This chapter is an extension of the original work described in Chap. 3. While the original work
has been validated by using a rather simple system (compared to real grand refrigerators), the
proposed hierarchical control framework will be now applied to a more challenging control
problem where the target system has more subsystems with different time scales. To achieve
this goal, some contributions that need to be made are presented as follows:

• The proposed framework has been validated for both a linear case [1] and a nonlinear
case under actuator constraints (see Chap. 3). Nevertheless, the same validation
scheme is used, in which only two controlled cryogenic subprocesses are involved,
which seems conservative. In this chapter, the framework is applied to the control of a
more complex cryoplant consisting of four cryogenic subprocesses (one Joule-Thomson
cycle, twoBrayton cycles and a compressor station), which can be decomposed into eight
subsystems. These subsystems can be either controlled or uncontrolled. Furthermore,

93
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the controlled subsystems operate on different time scales due to the difference in the
their behavior characteristic times. The proposed framework is demonstrated for such
an application in this chapter.

• The first development that is done in the framework concerns the method that is used
to enhance the convergence of the fixed-point iteration. Recall that [1] proposed an
innovative method that uses a filter to make the communication between the subsystems
and the coordinator converge to a fixed-point. This method has been shown to be
effective in the case where nonlinearities and actuator constraints are considered [62],
if the coefficients of the local controllers are carefully tuned. However, the synthesis
of this filter involves the local information that depend on the linearized models of
the subsystems. This violates the modular privacy preservation requirement that was
made in the original work [1]. Therefore, this chapter presents a residual-based iterative
method that uses only the historical data to ensure convergence of the fixed-point
iteration; thus, no local information is needed, making the entire framework directly
implementable without going through the filter synthesis process.

• The second development concerns the resolution of the optimal setpoint, which is related
to the central optimization problem at the coordination layer. In Chap. 3, a solver that
is based on quadratic approximation is implemented to solve the global optimization
problem with respect to the setpoints sent to the subsystems. This method is simple to
use but its performance degrades if the dimension of the optimization vector (which is the
setpoint vector) becomes larger. Indeed, the performance of this solver depends on the
quality of the central cost approximation. If the complexity of the optimization problem
increases, the quadratic approximation will be influenced and thus the performance of
the optimization. Hence, a subgradient-based solver that is used to optimize the central
cost is implemented and tested in the numerical simulation section.

This chapter is organized as follows: Sect. 5.2 introduces a 1000 W at 4.4 K refrigerator.
Section 5.3 recalls the fixed-point based hierarchical control algorithm and introduces some
assumptions regarding the process scheduling in this application. Section 5.5 presents some
development in order to apply efficiently the method to this specific system, while Sect. 5.6
presents the simulation results.

5.2 Description of the 1000 W at 4.4 K refrigerator

This section describes the cryogenic system studied in this chapter. Figure 5.1 shows the
schematic view of the 1000 W refrigerator at 4.4 K, which consists of four main cryogenic
sub-processes: a Joule-Thomson cycle, a Brayton cycle, a pre-cooling Brayton cycle and a
warm compression station (WCS).
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Figure 5.1: synoptic view of the cryogenic refrigerator of 1000 W at 4.4 K. Note that this refrigerator
is not existing but realistic.
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Briefly speaking, the gaseous helium flows clockwise in two main pipelines, which are the
high-pressure pipeline (red line) and the low-pressure pipeline (blue line). The cooling power
of the cryogenic refrigerator is generated by exchanging heat power in the fluid through a
series of heat exchangers denoted by NEF𝑥 and also by extracting thermal energy by using two
turbines denoted by T1 (in the Brayton cycle) and T2 (in the precooling Brayton cycle). The
gaseous helium is partially liquefied by the expansion after passing through the valve CV155
and falls into the helium bath. The low-temperature gaseous part and the evaporated part
leave the bath and returns to the cycle via the low-pressure pipeline. The plant is subjected
to a heating power induced by the heating source denoted by NCR22. Finally, the cycle is
closed by the so-called warm compression station (WCS), where the compressor 𝐶1 resides.
In addition, a group of valves is used to regulate the pressure at the inlet and outlet of the
compressor 𝐶1, denoted by P𝐿 and P𝐻 . However, it should be noted that this refrigerator
is not existing but realistic since the existing refrigerators at CERN are more complex with
more than 4 Brayton cycles. This refrigerator is considered as a simplified version in order to
demonstrate the performance of the proposed framework.

The entire refrigerator can be decomposed into an interconnecting network of eight sub-
systems, as shown in Fig. 5.2. In this topology, there exist a set of subsystem indices denoted
by N = {1, ..., 𝑛𝑠 = 8}, which is divided into two subsets N 𝑐𝑡𝑟 and N𝑢𝑛𝑐. The indices that
belong to the subset N 𝑐𝑡𝑟 refer to the controlled subsystems, whereas the indices that belong
to the subset N𝑢𝑛𝑐 refer to the uncontrolled subsystems. The controlled subsystems are the
Joule-Thomson cycle, two turbines T1 and T2 and the WCS, while the other subsystems are
uncontrolled. In addition, each subsystems 𝑆𝑠 affects their neighbors 𝑆𝑠′ through the coupling
signals denoted by 𝑣𝑠→𝑠′ with 𝑠′ ∈ N𝑠 (where N𝑠 represents the set that contains the indices
of all the neighbors of the subsystem 𝑆𝑠). The method that is used to identify the coupling
signals of each local subsystem can be found in Sect. 2.2.
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Figure 5.2: The interconnection between the subsystems of the cryogenic plant. The introduced set
corresponding to this decomposition topology are N := {1, . . . , 8}; N 𝑐𝑡𝑟 := {1, 4, 7, 8}; N𝑢𝑛𝑐 :=
{2, 3, 5, 6}; N1 := {2}; N2 := {1, 3, 4}; N3 := {2, 4, 5}; N4 := {2, 3}; N5 := {3, 6, 7}; N6 := {5, 7, 8};
N7 := {5, 6}; N8 := {6}.
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In order to fully understand the control context stated in this chapter, the manipulated
inputs, the regulated outputs as well as the controllers implemented by the local agents are
defined in the following subsections.

5.2.1 The Manipulated Inputs

There are five control inputs that are defined below (see Fig. 5.1 for the notation):

1. CV155 ∈ [0, 100] (%): This valve is situated at the inlet of the helium bath.

2. NCR(𝑎)22 ∈ [0, 100] (W): This heating actuator is located inside the helium bath (𝑆1).
The value of NCR(𝑎)22 is in the range of [0, 55] W. Note that the variable NCR22 in Fig.
3.4 is decomposed into two terms (as explained in Sect. 3.5.1.1):

NCR22 := NCR(𝑎)22 + NCR
(𝑤)
22 (5.1)

where NCR(𝑤)22 represents the disturbance coming from the heat source.

3. ΔP156 ∈ [0, 12] (bar): The pressure drop between the inlet pressure and outlet pressure
of the valve CV156. It should be noted that the valve CV156 is used to control the pressure
drop ΔP156 between its inlet and outlet pressure. To do so, the first local PI controller
of the turbine T1 computes and sends an appropriate value of the pressure drop ΔP156
to the second PI controller, which acts on the opening position of the valve CV156 (Fig.
5.1). This type of controller is used to hide the nonlinearity of the valve CV156.

4. ΔP157 ∈ [0, 12] (bar): Similarly to ΔP156, this is the pressure drop of the valve CV157
and is manipulated using the same logic with two PI controllers as for ΔP156.

5. Cv𝑐ℎ ∈ [0, 100] (%): This valve is situated in the WCS and is used to charge helium
fluid in to the circuit from the helium storage.

6. Cv𝑑𝑐ℎ ∈ [0, 100] (%): This valve is situated in the WCS and is used to remove helium
fluid from the circuit into the helium storage.

7. Cv𝑏𝑝 ∈ [0, 100] (%): This valve is situated in the WCS and is used to by-pass the
helium fluid from the 𝑃𝐻 pipeline to the 𝑃𝐿 pipeline.

5.2.2 The Regulated Outputs

There are six regulated outputs (see Fig. 5.1 for the notation):

1. Ltb131 (%): The helium liquid level. The set-point for this output is chosen by the
operator
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2. Ttb108 (K): The temperature at the inlet of the J-T valve must be tightly controlled in
order to ensure the efficiency of the liquefaction of the helium.

3. Ttb130 (K): The temperature at the turbine T1’s outlet.

4. Ttb137 (K): The temperature at the turbine T1’s outlet.

5. P𝐿 (bar): The pressure at the compressor 𝐶1’s inlet in the WCS. This output is also
constrained in the operational range of [1, 1.1] bar.

6. P𝐻 (bar): The pressure at the compressor 𝐶1’s outlet in the WCS. This output is also
constrained in the operational range of [12, 18] bar.

In the usual operation, the set-points for these regulated outputs are chosen by the operator
and are presented in Table. 5.1.

Table 5.1: The operational set-points of the regulated outputs

Ltb131 Ttb108 Ttb130 Ttb137 P𝐿 P𝐻

60.5 % 4.74 K 10.69 K 30.2 K 1.05 bar 16 bar

5.2.3 The local controllers

In this configuration, the subsystems are controlled individually with different time-scales.
For the J-T cycle and the turbines T1 and T2, their control inputs are updated every 𝜏slow𝑢 = 5
𝑠, whereas, the control action of the warm compression station, which has fast dynamic, is
updated every 𝜏fast𝑢 = 1 𝑠. The choices for their local controllers are listed below:

• The J-T cycle implements a linear MPC described in Chap. 2 with the updating period
𝜏slow𝑢 = 5 𝑠.

• Turbine 𝑇1 and 𝑇2 implement PI controllers, while taking into account the saturation
constraint on the actuators ΔP156 and ΔP157 . Note that the nonlinear models of the
turbines can also be employed in order to simulate the control profilesu𝑠 (for 𝑠 ∈ {4, 7}).

• TheWCS is controlled by using the split-range method that has been described in Chap.
2 and will be recalled mathematically in the relating section below. This method is
chosen in order to ensure offset-free tracking performance. The WCS operates with a
fast control updating period 𝜏fast𝑢 = 1 s compared to the other controlled subsystems,
while the resolution of the optimal set-point 𝑟opt takes approximately 3.5 s. During
the period [𝑘, 𝑘 + 1]𝜏slow𝑢 , the other subsystems are not available to cooperate with
subsystem 𝑆8 in order to compute the control action to be updated every 𝜏fast𝑠 = 1 s. In
order to solve this problem, an assumption on the operation of the 𝑆8 subsystem will
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be presented in Sect. 5.4. In addition, the choice of the local controller for 𝑆8 is also
crucial. The split-range method is chosen to ensure that the first control action 𝑢8(𝑘) can
be easily computed using only the output measurement and the current optimal setpoint
𝑟
opt
8 (𝑘) without needing the coupling profile v

in
8 , while satisfying the offset-free setpoint

tracking requirement.

The following subsections will describe how to compute the control profile associated to
the local controllers listed above.

5.2.3.1 The MPC of Joule-Thomson cycle

The J-T cycle (𝑆1) is modeled by a linear state-space representation presented in Sect. 3.5.1.1;
and is controlled by the linear MPC whose formulation is described previously in Sect. 2.3.2.
Therefore, its control profile can be denoted by:

u1 = CMPC1 (𝑥1, 𝑟1, v𝑖𝑛1 ) (5.2)

where 𝑥1, 𝑟1 and v𝑖𝑛1 are the states, set-point and incoming coupling profile of 𝑆1. Finally, at
every 𝜏slow𝑢 = 5 𝑠, the control action is updated to the subsystem.

In Chap. 2, it has been shown that the coupling profile of the JT cycle can be computed
by using the initial state the control profile, namely:

v𝑜𝑢𝑡1 = g𝑜𝑢𝑡1 (𝑥1,u1, v
𝑖𝑛
1 ) (5.3)

where 𝑣𝑜𝑢𝑡1 = col𝑠′∈N1 (𝑣1→𝑠′) and 𝑣𝑖𝑛1 = col𝑠′ |1∈N𝑠′ (𝑣𝑠′→1).

The next section presents the PI controllers to control the turbines.

5.2.3.2 The PI controllers of the turbines T1 and T2

The turbines are modeled by the nonlinear functions given below:

𝑦𝑠 (𝑘) = ℎ𝑠 (𝑢𝑠 (𝑘), 𝑣𝑖𝑛𝑠 (𝑘)) for 𝑠 ∈ {4, 7} (5.4)

Having the output measurement, their control actions with respect to the PI controller law
are compute as follows:

𝑒𝑠 (𝑘) = 𝑟𝑠 − 𝑦𝑠 (𝑘) (5.5)
𝑒int𝑠 (𝑘 + 1) = 𝑒𝑠 (𝑘) + 𝑒int𝑠 (𝑘) (5.6)

𝑢𝑠 (𝑘) = Pr(𝐾𝑝𝑠 · 𝑒𝑠 (𝑘) + 𝐾𝑖𝑠 · 𝑒int𝑠 (𝑘 + 1),U𝑠) (5.7)
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where 𝑟𝑠 is the set-point of the outputs, while 𝑒𝑠 and 𝑒int𝑠 are error and error integrator
variables. The coefficients 𝐾𝑝𝑠 and 𝐾𝑖𝑠 are the controller’s design parameters.

Their control profiles can be computed by updating the dynamic of the subsystems over a
prediction horizon of length 𝑁 with respect to the PI control updating laws. More precisely,
the control action at each instant in the future (e.g 𝑢(𝑘), 𝑢(𝑘+1), . . . , 𝑢(𝑘+𝑁−1)) is computed
by performing Function 4:

Function 4 Computation of u𝑠 (for all 𝑠 ∈ {4, 7})
1: Input: 𝑟𝑠, 𝑦𝑠 (𝑘), v𝑖𝑛

𝑠 , 𝑒int𝑠 (𝑘);
2: Output: u𝑠

3: for 𝑖 ← 0, . . . , 𝑁 do
4:

\\Compute control action for charge valve and discharge valve
5: 𝑒𝑠 (𝑘 + 𝑖) ← 𝑟𝑠 − 𝑦𝑠 (𝑘 + 𝑖);
6: 𝑒int𝑠 (𝑘 + 𝑖 + 1) ← 𝑒𝑠 (𝑘 + 𝑖) + 𝑒int𝑠 (𝑘 + 𝑖);
7: 𝑢𝑠 (𝑘 + 𝑖) ← Pr(𝐾𝑝𝑠 · 𝑒𝑠 (𝑘 + 𝑖) + 𝐾𝑖𝑠 · 𝑒int𝑠 (𝑘 + 𝑖 + 1),U𝑠);
8:

\\Simulate the system dynamic for the next iterate
9: 𝑦𝑠 (𝑘 + 𝑖) ← ℎ𝑠 (𝑢𝑠 (𝑘 + 𝑖), 𝑣𝑖𝑛𝑠 (𝑘 + 𝑖))
10: end for

For the sake of brevity, the control profiles u𝑠 = [𝑢𝑇𝑠 (𝑘), . . . , 𝑢𝑇𝑠 (𝑘 + 𝑁 − 1)]𝑇 (for
𝑠 ∈ {3, 4}) are simply defined by a function of the set-point, the output measurement, the
incoming coupling profile and the error integrator, namely:

u𝑠 = CPI𝑠 (𝑟𝑠, 𝑦(𝑘), v𝑖𝑛𝑠 , 𝑒int𝑠 (𝑘)) for 𝑠 ∈ {4, 7} (5.8)

As mentioned previously, control actions of these subsystems are updated at every 𝜏slow𝑢 = 5
𝑠.

As stated in Sect. 3.5.1.1, the coupling profile of these turbines can be computed by
simulating their dynamics with the control profiles, which can be expressed briefly as follows:

v𝑜𝑢𝑡𝑠 = g𝑜𝑢𝑡𝑠 (𝑥𝑠,u𝑠, v𝑖𝑛𝑠 ) (5.9)

with 𝑣𝑜𝑢𝑡𝑠 = col𝑠′∈N𝑠
(𝑣𝑠→𝑠′) and 𝑣𝑖𝑛𝑠 = col𝑠′ |𝑠∈N𝑠′ (𝑣𝑠′→𝑠), for 𝑠 ∈ {4, 7}.

The next section presents the split-range control method to control the warm compression
station.

5.2.3.3 The split-range control of the Warm compression station

The warm compression station has two outputs (high pressure P𝐻 and low pressure P𝐿)
to be regulated by means of three actuators (Cv𝑐ℎ, Cv𝑑𝑐ℎ and Cv𝑏𝑝). Comparing to other
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subsystems, the dynamic of the WCS is relatively fast, which requires the control action to be
updated more frequently at every 𝜏𝑢 = 1 𝑠.

In order for the first action in the control profile to be computed regardless the current
coupling signal, the split-range method (Fig. 5.3) is specifically chosen to control this
subsystem and to be integrated into the hierarchical framework. The split-range method
constitutes of two PI controllers, one for each regulated output. The first PI controller
regulate the low pressure P𝐿 by the means of by-pass valve Cv𝑏𝑝. To regulate the high
pressure P𝐻 , the principle is: the couple of valves Cv𝑐ℎ and Cv𝑑𝑐ℎ is considered to be one
actuator, which is manipulated by the second PI controller. If the pressure P𝐻 is too high, the
discharge valve Cv𝑑𝑐ℎ is opened to add more gas from tge stockage into the circuit, otherwise,
if the pressure P𝐻 is too low, the charge valve Cv𝑐ℎ is opened to reject gas from the circuit.
The state-space representation of the WCS is given as follows:

Compressor

Cvbp

Cvch Cvdch

PI

PI

PL PH

PL,ref

PH,ref

Figure 5.3: Synoptic view of split-range control method applied to the WCS.

𝑥+8 = 𝐴8 · 𝑥8 + 𝐵8 · 𝑢8 + 𝐺8 · 𝑣
𝑖𝑛
8 (5.10)

𝑦8 = 𝐶8 · 𝑥8 (5.11)
𝑣8→𝑠′ = 𝐶𝑣8→𝑠′ · 𝑥8 for 𝑠′ ∈ N8 (5.12)

where 𝑥8 ∈ R2 is the states vector, 𝑢 = [𝐶𝑣𝑐ℎ, 𝐶𝑣𝑑𝑐ℎ, 𝐶𝑣𝑏𝑝]𝑇 ∈ U8 is the control input vector
and 𝑣𝑖𝑛8 ∈ R

3 is the incoming coupling signal. According to the previously mentioned control
principle, the manipulated inputs can be computed by the following equations:
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• For controlling the high pressure P𝐻:

𝑒𝑃𝐻 (𝑘) = 𝑟𝑃𝐻 − 𝑃𝐻 (𝑘) (5.13)
𝑒int
𝑃𝐻 (𝑘 + 1) = 𝑒𝑃𝐻 (𝑘) + 𝑒int

𝑃𝐻 (𝑘) (5.14)

𝑢𝑃𝐻 (𝑘) = 𝐾𝑝8,𝑃𝐻 · 𝑒𝑃𝐻 (𝑘) + 𝐾𝑖8,𝑃𝐻 · 𝑒int
𝑃𝐻 (𝑘 + 1) (5.15)

𝐶𝑣𝑐ℎ (𝑘) = min(max(𝑢𝑃𝐻 (𝑘), 0), 100) (5.16)
𝐶𝑣𝑑𝑐ℎ (𝑘) = min(max(−1 · 𝑢𝑃𝐻 (𝑘), 0), 100) (5.17)

where 𝑟𝑃𝐻 is the set-point of the high pressure P𝐻 . The actual error and error integrator
are respectively presented by 𝑒𝑃𝐻 and 𝑒int

𝑃𝐻 . The equations (5.16)-(5.17) project the
values on their admissible set which is [0,100] %. The coefficients 𝐾𝑝8,𝑃𝐻 and 𝐾𝑖8,𝑃𝐻

are the controller’s design parameters.

• For controlling the low pressure P𝐻:

𝑒𝑃𝐿 (𝑘) = 𝑟𝑃𝐿 − 𝑃𝐿 (𝑘) (5.18)
𝑒int
𝑃𝐿 (𝑘 + 1) = 𝑒𝑃𝐿 (𝑘) + 𝑒int

𝑃𝐿 (𝑘) (5.19)

𝑢𝑃𝐿 (𝑘) = 𝐾𝑝8,𝑃𝐿 · 𝑒𝑃𝐿 (𝑘) + 𝐾𝑖8,𝑃𝐿 · 𝑒int
𝑃𝐿 (𝑘 + 1) (5.20)

𝐶𝑣𝑏𝑝 (𝑘) = min(max(𝑢𝑃𝐿 (𝑘), 0), 100) (5.21)

where 𝑟𝑃𝐿 is the set-point of the low pressure P𝐿 . The actual error and error integrator
are respectively presented by 𝑒𝑃𝐿 and 𝑒int

𝑃𝐿 . Similarly, the equation (5.21) projects the
value on its admissible set which is [0,100] %. The coefficients 𝐾𝑝8,𝑃𝐿 and 𝐾𝑖8,𝑃𝐿 are
the controller’s design parameters.

Note that the model expressed by (5.10)-(5.12) is obtained by discretizing the continuous-
time model with the time constant 𝜏slow𝑢 = 1 𝑠. Thus, the horizon length 𝑁slow · 𝜏slow𝑢 of the
prediction profiles of the subsystem 𝑆8 does not necessarily have the same length as the one
of the slow subsystems (𝑆1, 𝑆4 and 𝑆7), which is 𝑁 · 𝜏fast𝑢 . In order to have the same horizon
length between the subsystems, the length of the prediction profile of theWCS can be deduced
as follows:

𝑁slow = 𝑁 ·
𝜏fast𝑢

𝜏slow𝑢

= 5 · 𝑁 (5.22)

It can be seen that the control profile of 𝑆8 does not have the same length as the control
profiles of 𝑆1, 𝑆4 and 𝑆7, that is:

u8 = [𝑢8(𝑘)𝑇 , 𝑢8(𝑘 + 1)𝑇 , 𝑢8(𝑘 + 2)𝑇 , . . . , 𝑢8(𝑘 + 𝑁slow − 1)𝑇 ]𝑇 (5.23)

Given the set-point vector 𝑟8 = [𝑟𝑃𝐻 , 𝑟𝑃𝐿 ]𝑇 , the current output measurement 𝑦8 =

[𝑃𝐻 (𝑘), 𝑃𝐿 (𝑘)]𝑇 of the high pressure and low pressure and the incoming coupling pro-
file v𝑖𝑛8 , the control profile u8 associated to the split-range method defined over a prediction
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horizon of length 𝑁slow can be computed by simulating the subsystem dynamic with respect
to the split-range control method as shown in Function 5. Similarly, the control profile can
be presented briefly by:

uslow8 = Csplit-range8 (𝑟8, 𝑦8(𝑘), v𝑖𝑛8 , 𝑒
int
8 (𝑘)) (5.24)

Function 5 Computation of u8
1: Input: 𝑟8 = [𝑟𝑃𝐻 , 𝑟𝑃𝐿 ], 𝑦8(𝑘) = [𝑃𝐻 (𝑘), 𝑃𝐿 (𝑘)]𝑇 , v𝑖𝑛

8 , 𝑒
int
8 (𝑘);

2: Output: u8
3: for 𝑖 ← 0, . . . , 𝑁slow do
4:

\\Compute control action for charge valve and discharge valve
5: 𝑒𝑃𝐻 (𝑘 + 𝑖) ← 𝑟𝑃𝐻 − 𝑃𝐻 (𝑘 + 𝑖);
6: 𝑒int

𝑃𝐻 (𝑘 + 𝑖 + 1) ← 𝑒𝑃𝐻 (𝑘 + 𝑖) + 𝑒int
𝑃𝐻 (𝑘 + 𝑖);

7: 𝑢𝑃𝐻 (𝑘 + 𝑖) ← 𝐾𝑝 · 𝑒𝑃𝐻 (𝑘 + 𝑖) + 𝐾𝑖 · 𝑒int
𝑃𝐻 (𝑘 + 𝑖 + 1);

8: 𝐶𝑣𝑐ℎ (𝑘 + 𝑖) ← max(𝑢𝑃𝐻 (𝑘 + 𝑖), 0);
9: 𝐶𝑣𝑑𝑐ℎ (𝑘 + 𝑖) ← max(−1 · 𝑢𝑃𝐻 (𝑘 + 𝑖), 0);
10:

\\Compute control action for by-pass valve
11: 𝑒𝑃𝐿 (𝑘 + 𝑖) ← 𝑟𝑃𝐿 − 𝑃𝐿 (𝑘 + 𝑖);
12: 𝑒int

𝑃𝐿 (𝑘 + 𝑖 + 1) ← 𝑒𝑃𝐿 (𝑘 + 𝑖) + 𝑒int
𝑃𝐿 (𝑘 + 𝑖);

13: 𝐶𝑣𝑏𝑝 (𝑘 + 𝑖) ← 𝐾𝑝 · 𝑒𝑃𝐿 (𝑘 + 𝑖) + 𝐾𝑖 · 𝑒int
𝑃𝐿 (𝑘 + 𝑖 + 1);

14:
\\Project on admissible set

15: u8(𝑘) = Pr( [𝐶𝑣𝑐ℎ (𝑘 + 𝑖), 𝐶𝑣𝑑𝑐ℎ (𝑘 + 𝑖), 𝐶𝑣𝑏𝑝 (𝑘 + 𝑖)]𝑇 ,U8);
16:

\\Simulate the system dynamic for the next iterate
17: 𝑥8(𝑘 + 𝑖 + 1) ← 𝐴8 · 𝑥8(𝑘 + 𝑖) + 𝐵8 · 𝑢8 + 𝐺8 · 𝑣𝑖𝑛8 ;
18: 𝑦8(𝑘 + 𝑖) ← 𝐶8 · 𝑥8(𝑘 + 𝑖 + 1)
19: 𝑃𝐻 (𝑘 + 𝑖) ← 𝑦8,1(𝑘 + 𝑖)
20: 𝑃𝐿 (𝑘 + 𝑖) ← 𝑦8,2(𝑘 + 𝑖)
21: end for

Note that the above control profile is the prediction over the horizon length of 𝑁slow · 𝜏slow𝑢 .
In order to be compatible with the prediction profiles of the slow subsystems, the final control
profile can be computed by:

u8 = Πslow · Csplit-range8 (𝑟8, 𝑦8(𝑘), v𝑖𝑛8 , 𝑒
int
8 (𝑘)) (5.25)

where Πslow ∈ R3·𝑁×3·𝑁slow is the matrix that selects the elements 𝑢8(𝑘), 𝑢8(𝑘 +5), 𝑢8(𝑘 +10),
. . . , 𝑢8(𝑘 + 5 · (𝑁slow − 1)).

The outcoming coupling profile of the WCS can also be deduced, namely:

v𝑜𝑢𝑡8 = Π𝑣
slow · g

𝑜𝑢𝑡
8 (𝑥8,u8, v

𝑖𝑛
8 ) (5.26)
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Table 5.2: The manipulated inputs 𝑢𝑠, disturbance input 𝑤𝑠 ,regulated outputs 𝑦𝑠 and controller type
of the controlled subsystems.

Subsystem 𝑢𝑠 𝑤𝑠 𝑦𝑠 Controller type

𝑆1
NCR(𝑎)22
CV155

NCR(𝑤)22
Ltb131

Ttb108
MPC

𝑆4 ΔP156 _ Ttb130 PI

𝑆7 ΔP157 _ Ttb137 PI

𝑆8

Cv𝑐ℎ

Cv𝑑𝑐ℎ

Cv𝑏𝑝

_
P𝐻

P𝐿
split-range

where Π𝑣
slow ∈ R

3·𝑁×3·𝑁slow is the matrix that selects the elements 𝑣𝑜𝑢𝑡8 (𝑘), 𝑣
𝑜𝑢𝑡
8 (𝑘 + 5), 𝑣

𝑜𝑢𝑡
8 (𝑘 +

10), . . . , 𝑣𝑜𝑢𝑡8 (𝑘 + 5 · (𝑁slow − 1)).

To conclude Sect. 5.2.3, Table 5.2 summarizes the the manipulated inputs 𝑢𝑠, disturbance
input 𝑤𝑠, regulated outputs 𝑦𝑠 and controller type of the controlled subsystems.

5.3 Recall on Fixed-point-iteration based hierarchical control

Recall that there is a central problem that is solved in the coordination layer, namely:

𝑟opt = argmin
𝑟

𝐽𝑐 (𝑟, v𝑖𝑛) (5.27)

subject to: v𝑖𝑛 = g𝑜𝑢𝑡 (𝑟, v𝑖𝑛) (5.28)

The fixed-point-iteration based algorithm described in Chap. 3 could be separated in to two
sub-processes, namely:

Estimate central cost 𝐽𝑐 (𝑟, v𝑖𝑛): For given setpoints 𝑟𝑠,𝑠∈N𝑐𝑡𝑟
sent by the coordinator to

the subsystems, the process below is launched:

1. Step 1: The coordinator sends an initial guess v𝑖𝑛,(𝜎=0)𝑠 ;

2. Step 2: The subsystems 𝑆𝑠,𝑠∈N evaluate the corresponding outgoing coupling profiles
v̂𝑜𝑢𝑡,(𝜎)𝑠 and send them to the coordinator;

3. Step 3: The coordinator constitutes the resulting incoming coupling profile v̂𝑖𝑛,(𝜎)𝑠 and
updates it into v𝑖𝑛,(𝜎+1)𝑠 for the next iteration.
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4. Step 4: The algorithm stops when the conditions on the convergence error or on
the maximum iteration number, namely, 𝜖 := max(∥v𝑖𝑛,(𝜎+1) − v𝑖𝑛,(𝜎) ∥) ≤ 𝜖max and
𝜎 ≥ 𝜎max are reached, if not, iterate 𝜎 := 𝜎 + 1 and repeat from step 1.

The consensus constraint (5.28) is satisfied if the fixed-point iteration converges to a value
v𝑖𝑛,(∞) . In practice, the iteration stops as soon as the termination criteria 𝜖 := max( |v𝑖𝑛,(𝜎+1)−
v𝑖𝑛,(𝜎) |) ≤ 𝜖max is reached. After the convergence of fixed-point iteration, the subsystems can
compute their local costs 𝐽𝑠 and send them to the coordinator, which allow the coordinator to
compute the central cost 𝐽𝑐 (𝑟, v𝑖𝑛,(∞)).

In Chap. 3, the fixed-point iterations convergence is enhanced by the mixing method de-
scribed in Sect. 3.3.2. However, this method requires the local subsystem information in
order to synthesize the matrix filter Π, which violates the predefined modular privacy preser-
vation requirement. In Sect. 5.5.1, a residual-based iterative method is described to replace
the mixing method and make the whole framework more modular.

Optimizing the central cost: In order to optimize the problem (5.27)-(5.28), any derivation-
free optimization algorithm can be used to find the optimal setpoint 𝑟opt, such as BOBYQA
[40], the genetic algorithm [41],... In Chap. 3, an algorithm based on quadratic approximation
is proposed to solve the central optimization problem in order to find the optimal set point
𝑟opt. However, this algorithm is not suitable for the target problem of this chapter where
more than three setpoints need to be optimized (there are six setpoints to consider) because
the candidate setpoint grid for the approximation needs to be selected appropriately. In Sect.
5.5.2, an optimization solver based on the gradient descent method is introduced to replace
the last solver.

As mentioned in the introduction section, the proposed framework will be applied to
a more complex system where there are multiple controlled outputs and different updating
control periods to be considered. The following section will present an assumption that is
needed for the feasibility of this framework to operate in a two-time-scale environment, where
the slow control updating period 𝜏slow𝑢 associated to the slow behaving subsystems (e.g. the
JT cycle and the Brayton cycle) and the fast one 𝜏fast𝑢 associated to the fast behaving subsystem
such as the compression station exist simultaneously.

5.4 Assumption of two-updating-period operation

In the configuration where MPC/NMPCs are exclusively implemented to control the sub-
systems, the entire hierarchical control algorithm need to be successfully executed within
a control updating period [𝑘, 𝑘 + 1]𝜏𝑢 in order to guarantee the closed-loop performance.
Furthermore, the control action resulted from solving the MPC problem requires the coupling
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profile v, which involves the fixed-point iteration communication between the subsystems,
making the integration of this method in our system more complex. In this application, there
are two control updating periods under which the subsystems operate, which are 𝜏fast𝑢 = 1
𝑠 and 𝜏slow𝑢 = 5 𝑠. By choosing the local controllers as described previously, i.e, the PI
controllers to control the turbines and the WCS and the MPC for controlling the J-T cycle,
the following assumptions is needed:

Assumption

The computation of the optimal set-point and the control actions of the subsystems follows
the assumptions described below:

• The computation of the optimal set-point 𝑟𝑜𝑝𝑡 is performed at every instant 𝑘 · 𝜏slow𝑢

(with 𝑘 ∈ N). Consequently, the control actions of the J-T cycle and the turbines with
respect to their controller types and to the computed optimal set-point are updated at
every 𝜏slow𝑢 = 5 𝑠.

• The WCS is assumed to have two processors that are 𝑆(1)8 and 𝑆
(2)
8 . These processors

operate under two different control updating periods 𝜏slow𝑢 and 𝜏fast𝑢 . Each processor
has its own task. The first processor 𝑆(1)8 participates in the resolution of the central
problem to compute the optimal setpoint 𝑟opt, whose computation is needed to be within
the slow control updating period [𝑘, 𝑘 + 1]𝜏slow𝑢 . The second processor 𝑆(2)8 computes
the control input following the PI control laws and associated to the current optimal
set-point 𝑟opt(𝑘). The computation of such control action is executed at every 𝜏fast𝑢 = 1
s. Note that by choosing the PI controllers as local controllers for the 𝑆8 subsystem, the
control input can be easily computed by 𝑆(2)8 using only the current output measurement
and the setpoint without needing the coupling profile as using MPC at each instant
𝑘 · 𝜏slow𝑢 + 𝑗 · 𝜏fast𝑢 (∀𝑘, 𝑗 ∈ N). Figure 5.4 illustrates the task schedule of the processors
of the subsystems.

This section has presented an assumption needed for the subsystem 𝑆8 to be integrated in
the proposed control framework. The next sections will present some advances mentioned
in Sect. 5.3, which concern a new method to converge the fixed-point iterations and a
gradient-based optimization solver to solve the central problem.



5.5. Some development in fixed-point-iteration based control algorithm 107

Compute ropt(k + 1)

ropt(k) ropt(k + 1)

τ fastu

k · τ slowu
(k + 1) · τ slowu (k + 2) · τ slowu

t

t

S1, S4,

S7, S
(1)
8

S
(2)
8

Compute u8((k + 1) · τ slowu + τ fastu )

Figure 5.4: Task schedule of the processors of the subsystems.

5.5 Some development in fixed-point-iteration based control algorithm

5.5.1 Anderson method for fixed-point iteration

The Anderson method (AM) [63] is a residual-based iterative method that is used in order to
enhance the convergence of any fixed-point iteration. In order to introduce the principle of
the AM, let’s rewrite (5.28) as a general fixed-point equation:

v𝑖𝑛 = 𝐺 (v𝑖𝑛) (5.29)

AM aims to enhance the convergence of any fixed-point iteration by only using information
from the most recent 𝑚𝜎 values v𝑖𝑛,(𝜎) . More precisely, the ideal AM update at the 𝜎-th
iteration is given by:

v𝑖𝑛,(𝜎+1) = 𝐺
(
v𝑖𝑛,(𝜎)

)
−
𝑚𝜎∑︁
𝑗=1
𝛾
(𝜎)
𝑗
·
[
𝐺

(
v𝑖𝑛,(𝜎−𝑚𝜎+ 𝑗)

)
− 𝐺

(
v𝑖𝑛,(𝜎−𝑚𝜎+ 𝑗−1)

)]
(5.30)

The function 𝐺 (·) is kept locally at the local subsystems and is not informed to the coordi-
nator. The coordinator thus receives the estimates of the coupling profiles computed by the
subsystems following the process described below.

First, the subsystems compute the outgoing coupling profile given the incoming coupling
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profile v𝑖𝑛,(𝜎) , namely:
v̂𝑜𝑢𝑡,(𝜎) = g𝑜𝑢𝑡

(
v𝑖𝑛,(𝜎)

)
(5.31)

Then, the estimation of the incoming coupling profile can be computed by the coordinator by
rearranging the elements of v̂𝑜𝑢𝑡,(𝜎) by using matrix 𝐺𝑖𝑛, namely:

v̂𝑖𝑛,(𝜎) = 𝐺𝑖𝑛 · v̂𝑜𝑢𝑡,(𝜎) (5.32)

Note that by combining the equations (5.31) and (5.32) we obtain the same fixed-point
equation (5.29) by defining:

𝐺 (·) = 𝐺𝑖𝑛 · g𝑜𝑢𝑡 (·) (5.33)

Let us define the residual function by:

𝑔𝜎 := 𝑔(v𝑖𝑛,(𝜎)) = 𝐺
(
v𝑖𝑛,(𝜎)

)
− v𝑖𝑛,(𝜎)

= v̂𝑖𝑛,(𝜎) − v𝑖𝑛,(𝜎) (5.34)

The updating rule becomes:

v𝑖𝑛,(𝜎+1) =v𝑖𝑛,(𝜎) + 𝑔𝜎 −
𝑚𝜎∑︁
𝑗=1
𝛾
(𝜎)
𝑗
·
[ (
v𝑖𝑛,(𝜎−𝑚𝜎+ 𝑗) − v𝑖𝑛,(𝜎−𝑚𝜎+ 𝑗−1)

)
−

(
𝑔𝜎−𝑚𝜎+ 𝑗 − 𝑔𝜎−𝑚𝜎+ 𝑗−1

) ]
(5.35)

Let’s define the matrices below:

V𝜎 =

[
v𝑖𝑛,(𝜎−𝑚𝜎+1) − v𝑖𝑛,(𝜎−𝑚𝜎) . . .v𝑖𝑛,(𝜎) − v𝑖𝑛,(𝜎−1)

]
G𝜎 =

[
𝑔𝜎−𝑚𝜎+1 − 𝑔𝜎−𝑚𝜎

. . . 𝑔𝜎 − 𝑔𝜎−1
]

The equation (5.35) becomes:

v𝑖𝑛,(𝜎+1) = v𝑖𝑛,(𝜎) + 𝑔𝜎 − (V𝜎 + G𝜎) · 𝛾 (𝜎) (5.36)

The optimal vector 𝛾 (𝜎)
𝑗
are chosen in order to minimize the distance between 𝑔(v𝑖𝑛,(𝜎)) and

the linear combination of the differences
∑𝑚𝜎

𝑗=1 [𝑔𝜎−𝑚𝜎+ 𝑗 − 𝑔𝜎−𝑚𝜎+ 𝑗−1] · 𝛾
(𝜎)
𝑗
, namely:

𝛾 (𝜎) = argmin
𝛾∈R𝑚𝜎

∥𝑔𝜎 − G𝜎 · 𝛾∥2 (5.37)

Note that (5.37) is nothing more than a quadratic optimization problem and its solution is
expressed by:

𝛾 (𝜎) = (G𝑇𝜎 · G𝜎)−1 · G𝑇𝜎 · 𝑔𝜎 (5.38)

Note also that periodic restarts can be included in the Anderson algorithm, meaning that the
scheme is restarted periodically using only the information from the most recent iterations.
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Such restarting mechanism is well known in the numerical analysis literature concerning
conjugate gradient and quasi-Newton iterations to cite but few examples [64, 40].

In the following investigations, following the proposition made by [65], the original AM
algorithm is modified to include systematic restarts instead of adaptive restarts. Specifically,
at some iterations at the beginning of the algorithm, columns are added to the V𝜎 and G𝜎
matrices, while their allowed number of columns 𝑚𝜎 is incremented over iterations. Until
𝑚𝜎 reaches the maximum number of columns defined by 𝑚, the algorithm is restarted using
only the one-column version ofV𝜎 and G𝜎 in the next iteration and the matricesV𝜎 and G𝜎
continue to be filled in until they reach the maximum number of columns 𝑚. The process of
building the one-column to 𝑚-column V𝜎, G𝜎 matrices can be considered a single "cycle"
and after reaching the end of the cycle, this process is restarted. This modified AM scheme
to include systematic restarts is detailed in Algorithm 6.

This subsection has presented an algorithm that is used to enhance the convergence of the
fixed-point iteration for a given set-point sent by the coordinator. In order to find the optimal
set-point, the following section will describe a gradient based method for the coordinator to
iteratively find the optimal solution of the central problem expressed by (5.27)-(5.28).

5.5.2 Gradient-based solver for the coordination problem

In Chap. 3, a solver that is based on quadratic approximation has been proposed. Recall
that this method involves the construction of a grid of auxiliary set-points, for which the
corresponding central costs are evaluated. Then, a quadratic approximation is performed
in order to obtain an analytical form, from which the optimal set-point can be computed.
However, the drawback of this method is that this approach becomes cumbersome when the
dimension of the set-point vector 𝑟 increases. Hence, the objective of this section is to propose
a simpler solver that is based on gradient descend method.

This method is basically similar to the one that is described in Sect. 4.2. However, in
order to ensure that this chapter is self-contained, we would like to reformulate this solver for
this particular problem. Hence, let us recall the central optimization problem residing at the
coordination layer.

𝑟opt = argmin
𝑟∈R

𝐽𝑐 (𝑟) (5.39)

where R is the admissible domain of set-points. In the gradient-based method, the problem
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Algorithm 6 Anderson method with restarts. In the description of the algorithm, 𝑔(v𝑖𝑛, (𝜎) ) =

𝐺 (v𝑖𝑛, (𝜎) − v𝑖𝑛, (𝜎) , Δv𝑖𝑛, (𝑖) = v𝑖𝑛, (𝑖+1) − v𝑖𝑛, (𝑖) , 𝑔𝑖 = 𝑔(v𝑖𝑛, (𝑖) ), Δ𝑔𝑖 = 𝑔𝑖+1 − 𝑔𝑖 , V𝑖 =[
Δv𝑖𝑛, (𝑖−𝑚𝜎) , ...,Δv𝑖𝑛, (𝑖−1) ] and G𝑖 = [

Δ𝑔𝑖−𝑚𝜎
, ...,Δ𝑔𝜎−1

]
1: Initialize:

v𝑖𝑛, (0)
𝑠 ;← 0, 𝑠 = 1, . . . , 𝑛;
𝑚 > 0; 𝜎 ← 0;𝑐 ← 0; 𝜖 ←∞;

2: Coordinator sends 𝑟𝑠 to the subsystems;
3: while (𝜎 ≤ 𝜎max) and (𝜖 ≤ 𝜖max) do
4: for 𝑠← 1, . . . , 𝑛𝑠 do ⊲ Parallel operation performed by the subsystems
5: Subsystem 𝑠 computes v̂𝑜𝑢𝑡

𝑠 and sends to coordinator;
6: end for

⊲ The operations below are performed by the coordinator
7: Coordinator forms up v̂𝑜𝑢𝑡, (𝜎) := col

𝑠∈N
v̂𝑜𝑢𝑡, (𝜎)
𝑠 ;

8: 𝑚𝜎 = min(𝑚, 𝑐);
9: v̂𝑖𝑛, (𝜎) = 𝐺𝑖𝑛 · v̂𝑜𝑢𝑡, (𝜎) ;
10: 𝑔𝜎 = v̂𝑖𝑛, (𝜎) − v𝑖𝑛, (𝜎) ;
11: if 𝜎 == 0 then
12: v𝑖𝑛, (𝜎+1) = v̂𝑖𝑛, (𝜎) ;
13: Δv𝑖𝑛, (𝜎) = v𝑖𝑛, (𝜎+1) − v𝑖𝑛, (𝜎) ;
14: else
15: Δ𝑔𝜎 = 𝑔𝜎 − 𝑔𝜎−1;
16: G𝜎 = [Δ𝑔𝜎−𝑚𝜎

, . . . ,Δ𝑔𝜎−1];
17: V𝜎 =

[
Δv𝑖𝑛, (𝜎−𝑚𝜎) , ...,Δv𝑖𝑛, (𝜎−1) ] ;

18: Coordinator gets 𝛾 (𝜎) by solving (5.37);
19: v𝑖𝑛, (𝜎+1) = v𝑖𝑛, (𝜎) + 𝑔𝜎 − (V𝜎 + G𝜎) · 𝛾 (𝜎) ;
20: Δv𝑖𝑛, (𝜎) = v𝑖𝑛, (𝜎+1) − v𝑖𝑛, (𝜎) ;
21: end if
22:
23: if 𝑐 == 𝑚 then ⊲ check for restart
24: 𝑐 ← 1;
25: else
26: 𝑐 ← 𝑐 + 1;
27: end if
28: 𝜎 ← 𝜎 + 1;
29: 𝜖 ← max( |v𝑖𝑛, (𝜎+1) − v𝑖𝑛, (𝜎) |, 0);
30: end while
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(5.39) is iteratively optimized using the following updating rule:

𝑝 (𝑖+1) = 𝑟 (𝑖) − 𝛾 (𝑖) · Δ𝐽𝑐
(
𝑟 (𝑖)

)
(5.40)

𝑟 (𝑖+1) = Pr
(
𝑝 (𝑖+1) + 𝑐 ·

(
𝑝 (𝑖+1) − 𝑝 (𝑖)

)
,R𝑡𝑟𝑢𝑠𝑡

)
(5.41)

with R𝑡𝑟𝑢𝑠𝑡 = {𝑟 |𝜌
𝑟
≤ 𝑟 ≤ 𝜌𝑟} being the trust-region of the updated set-point. The gradient of

the central costwith respect to 𝑟 can be computed by using the finite difference approximations,
namely:

∇𝐽𝑐 (𝑟 (𝑖)) =

𝛿𝐽𝑐

(
𝑟 (𝑖)

)
𝛿𝑟
(𝑖)
1

, . . . ,

𝛿𝐽𝑐

(
𝑟 (𝑖)

)
𝛿𝑟
(𝑖)
𝑛𝑟


𝑇

(5.42)

𝛿𝐽𝑐 (𝑟 (𝑖))
𝛿𝑟
(𝑖)
𝑗

≈
𝐽𝑐

(
𝑟 (𝑖) + ℎ( 𝑗)

)
− 𝐽𝑐

(
𝑟 (𝑖)

)
ℎ

∀ 𝑗 = 1, . . . , 𝑛𝑟 (5.43)

with a slight abuse of notation, the subscript 𝑗 indicates the 𝑗 𝑡ℎ element of the vector 𝑟 (𝑖) .
The differentiation step is denoted by ℎ ≪ 1. The vectors ℎ( 𝑗) ∈ R𝑛𝑟 contain the elements
such that its 𝑗-th element is ℎ, while the others are 0.

The variable 𝛾 in (5.40) is updated by using the Barzilai-Borwein formula given below:

𝛾 (𝑖+1) =
∥(𝑟 (𝑖+1) − 𝑟 (𝑖)) · (∇𝐽𝑐 (𝑟 (𝑖+1)) − ∇𝐽𝑐 (𝑟 (𝑖)))∥

∥∇𝐽𝑐 (𝑟 (𝑖+1)) − ∇𝐽𝑐 (𝑟 (𝑖))∥2
(5.44)

Finally, the algorithm 7 summarizes the entire solver described in this sub-section that is
used to solve the central optimization problem.

5.6 Simulation-based results

5.6.1 Parameter setting

Recall that the central cost is the sum of all the local costs contributed by the local subsystems,
namely:

𝐽𝑐 (𝑟) =
∑︁
𝑠∈N

𝐽𝑠 (𝑟) (5.45)

where 𝐽𝑠 (𝑟) are the local cost of the subsystem.

For 𝑆𝑠 with 𝑠 ∈ {1, 4, 7} that have outputs to track the desired set-points 𝑟𝑑𝑠 :

𝐽𝑠 (𝑟 |𝑟𝑑𝑠 ) =
𝑁−1∑︁
𝑖=0

𝑦𝑠 (𝑘 + 𝑖) − 𝑟𝑑𝑠 𝑄 (𝑠)𝑐
+ ∥𝑢𝑠 (𝑘 + 𝑖)∥2

𝑅
(𝑠)
𝑐

(5.46)
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Algorithm 7 Gradient-descent-based solver for solving the central optimization problem
1: Initialize:

𝑟 (1) is warm-started by using the previous solution of the last resolution
2:
3: for 𝑖 ← 1, . . . , 𝑛centralmax do
4: 𝐽𝑐 (𝑟 (𝑖) ) ← Coordinator computes the corresponding central cost of 𝑟 (𝑖)

\\Compute the gradient at the current optimizing vector
5: for 𝑗 ← 1, . . . , 𝑛𝑟 do
6: 𝐽𝑐 (𝑟 𝑖) ← Coordinator computes the corresponding central cost of 𝑟 tmp

7: 𝛿𝐽𝑐 (𝑟 (𝑖) )
𝛿𝑟
(𝑖)
𝑗

← 𝐽𝑐 (𝑟 (𝑖)+ℎ ( 𝑗) )−𝐽𝑐 (𝑟 (𝑖) )
ℎ

8: end for

9: ∇𝐽𝑐 (𝑟 (𝑖) ) ←
[
𝛿𝐽𝑐 (𝑟 (𝑖) )
𝛿𝑟
(𝑖)
1

, . . . ,
𝛿𝐽𝑐 (𝑟 (𝑖) )
𝛿𝑟
(𝑖)
𝑛𝑟

]𝑇
10:
11: \\Update optimizing set-point vector
12: 𝑝 (𝑖+1) = 𝑟 (𝑖) − 𝛾 (𝑖) · Δ𝐽𝑐 (𝑟 (𝑖) )
13: 𝑟 (𝑖+1) = Pr(𝑝 (𝑖+1) + 𝑐 · (𝑝 (𝑖+1) − 𝑝 (𝑖) ),R𝑡𝑟𝑢𝑠𝑡 )
14:
15: \\Compute the updating step for the next iterate
16: 𝛾 (𝑖+1) = ∥ (𝑟

(𝑖+1)− 𝑟 (𝑖) ) · (∇𝐽𝑐 (𝑟 (𝑖+1) )−∇𝐽𝑐 (𝑟 (𝑖) )) ∥
∥∇𝐽𝑐 (r (𝑖+1) )−∇𝐽𝑐 (𝑟 (𝑖) ) ∥2

17: end for
18: \\Project the terminal optimizing vector on its admissible set
19: 𝑟𝑜𝑝𝑡 = Pr(𝑟𝑜𝑝𝑡 ,R)
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where 𝑄 (𝑠)𝑐 ∈ R𝑛
(𝑠)
𝑦 and 𝑅(𝑠)𝑐 ∈ R𝑛

(𝑠)
𝑢 are central-cost-related weighting matrices on outputs

and inputs, which are listed below:

𝑄
(1)
𝑐 =

[
104 0
0 5 · 104

]
𝑅
(1)
𝑐 =

[
0 0
0 0

]
(5.47)

𝑄
(4)
𝑐 = 105 𝑅

(4)
𝑐 = 0 (5.48)

𝑄
(7)
𝑐 = 5 · 103 𝑅

(7)
𝑐 = 0 (5.49)

For 𝑆8 that has outputs not only to track its desired set-points 𝑟𝑑8 but also to satisfy the
operational constraints which are 1 bar ≤ P𝐿 ≤ 1.1 bar and 12 bar ≤ P𝐻 ≤ 18 bar, its local
cost is defined as follows:

𝐽8(𝑟 |𝑟𝑑8 , 𝑦8, 𝑦8) =
𝑁−1∑︁
𝑖=0

𝑦8(𝑘 + 𝑖) − 𝑟𝑑8 𝑄 (8)𝑐
+ ∥𝑢8(𝑘 + 𝑖)∥2

𝑅
(8)
𝑐

+
max(𝑦8(𝑘 + 𝑖) − 𝑦8, 0)𝑄 (8)𝑐𝑠𝑡𝑟

(5.50)

+
max(𝑦

8
− 𝑦8(𝑘 + 𝑖), 0)


𝑄
(8)
𝑐𝑠𝑡𝑟

where the weighting matrices are given below:

𝑄
(8)
𝑐 =

[
106 0
0 5 · 103

]
𝑅
(8)
𝑐 =


0 0 0
0 0 0
0 0 0

 𝑄
(8)
𝑐𝑠𝑡𝑟 =

[
108 0
0 108

]

The other subsystems 𝑆𝑠 with 𝑠 ∈ {2, 3, 5, 6} do not have any special operational criteria,
their local costs are set to be null:

𝐽𝑠 (𝑟) = 0 (5.51)

For the local controller configuration. Table 5.3 summarizes the controller coefficients
and the control updating constant 𝜏𝑢 of the involved subsystems.

In order to facilitate the result interpretation, some previously defined performance indi-
cators in the last chapter will be needed. First, the closed-loop performance indicator 𝐽𝐶𝐿𝑐 is
recalled, namely:

𝐽𝑠𝑖𝑚 =
1
𝑁𝑠𝑖𝑚

∑︁
𝑠∈N

𝑁𝑠𝑖𝑚∑︁
𝑖=1

[𝑦𝑠𝑖𝑚𝑠 (𝑖) − 𝑟𝑑𝑠 (𝑖)𝑄 (𝑠)𝑐
+

𝑢𝑠𝑖𝑚𝑠 (𝑖)𝑅 (𝑠)𝑐

+
max(𝑦𝑠𝑖𝑚𝑠 (𝑖) − 𝑦𝑠, 0)𝑄 (𝑠)𝑐𝑠𝑡𝑟

(5.52)

+
max(𝑦

𝑠
− 𝑦𝑠𝑖𝑚𝑠 (𝑖), 0)


𝑄
(𝑠)
𝑐𝑠𝑡𝑟

]



114 Chapter 5. Application and some developments of the hierarchical control framework

Table 5.3: Coefficients of the local controllers of the subsystems.

Subsystem Controller type Coefficients 𝜏
(𝑠)
𝑢

𝑆1 MPC
𝑄 = diag( [100 100])
𝑅 = diag( [1 1])

5 s

𝑆4 PI
𝐾4𝑝 = 3
𝐾4
𝑖
= 0.1

5 s

𝑆7 PI
𝐾7𝑝 = 1
𝐾7
𝑖
= 0.05

5 s

𝑆8 Split range + PI

𝐾
8,𝑃𝐿

𝑝 = 100
𝐾
8,𝑃𝐿

𝑖
= 10

𝐾
8,𝑃𝐻

𝑝 = 50
𝐾
8,𝑃𝐻

𝑖
= 1

1 s

where the weighting matrices 𝑄 (𝑠)𝑐 , 𝑅
(𝑠)
𝑐 are chosen to be identical to the weighting matrices

defined for the central local costs. The maximum terminal error is also recalled, namely:

𝜖 (𝑘) := 𝑛𝑒𝑣max
𝑖=1
(𝜖 (𝑖)
𝑒𝑛𝑑
) (5.53)

where 𝜖 (𝑖)
𝑒𝑛𝑑
are the terminal convergence errors resulted from every central cost evaluation

processes.

Finally, the terminal criteria on maximum iteration 𝜎max and 𝜖max are respectively set at
𝜎max = 200 and 𝜖max = 1 · 10−7.

5.6.2 Numerical results

In this subsection, the results will be presented in order to evaluate:

• The efficiency of the Anderson acceleration method,

• The efficiency of the fixed-point based hierarchical control in the full cryogenic plant.

5.6.2.1 On the use of Anderson acceleration method in the fixed-point iteration

The convergence rate of the fixed-point iteration resulted from the communication between the
coordinator and the subsystems is depicted in Fig. 5.5. This figure compares the convergence
rates resulted by using the mixingmethod described in Chap. 3 and the Anderson acceleration
method described in 5.5.1. The subfigure (1,1) shows that the mixing method can not ensure
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the convergence of the fixed-point iteration since the synthesized filtering matrix Π is not
compatiblewith the actual controller information, which take into account the nonlinearities of
themodels and saturation constraints in their formulations. On the other hand, the convergence
of the fixed-point iterations are enhanced, which is illustrated by subfigure (1,2), subfigure
(2,1) and subfigure (2,2) for several memory length 𝑚. Crucially, the Anderson method
makes the whole framework more modular since no apriori information of the subsystems is
required for the coordinator to converge the fixed-point iteration.
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(a) (b)

(c) (d)

Figure 5.5: convergence error of the fixed-point iterations resulted by using the mixing method
described in Chap. 3 and the Anderson method for several choices of memory length m. It can be
seen that the fixed-point iterations can not converge with the mixing method, while the AM method
improves the convergence.

5.6.2.2 Closed-loop performance of the fixed-point-based hierarchical control method

The closed-loop performance of the framework will be presented in this section. Figure
5.6 shows the output behaviors of the system under the hierarchical control and the de-
centralized control as well as their closed-loop performance indices 𝐽𝑠𝑖𝑚 and the terminal
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convergence error 𝜖 . These strategies are simulated in a realistic scenario where the distur-
bance NCR(𝑤)22 (subfigure (3,1)) is applied to the plant. It can be noted that the liquid helium
level Ltb131(subfigure (1,1)), temperature Ttb130 (subfigure (1,2)) and the low pressure P𝐿
(subfigure (2,2)) are better controlled than those given by the decentralized control, as their
chosen weights on these outputs is higher than the others. Note that the high pressure P𝐻
(subfigure (2,3)) is decreased by the coordinator to reduce the flowrate passing through the
valves Cv157 and Cv156, which will eventually prevent the increase of low pressure P𝐿 . The
closed-loop performance 𝐽𝑠𝑖𝑚 is illustrated in the subfigure (3,3). Furthermore, terminal
convergence error 𝜖 of the fixed-point iterations processed in the algorithm are enhanced by
the AM method to be less than the defined limit 𝜖max.

Figure 5.6: Comparison of the output behaviors of the system under the coordination and without the
coordination.

For the actuators, Fig. 5.7 shows the manipulated input behaviors of the plant under the
coordination and without the coordination in the same disturbance scenario. It can be seen
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that to satisfy the constraint on the low pressure P𝐿 , the valves Cv156 and Cv157 are closed
(corresponding to the increase of the pressure drop) under the coordination. The decharge
valve Cv𝑑𝑐ℎ is opened to decrease the high pressure P𝐻 , which will also reduce the flow rate
passing through the valves Cv156 and Cv157 at the inlets of the turbines.

Figure 5.7: Manipulated input behaviors of the system under the coordination and without the coordi-
nation.

Finally, Fig. 5.8 shows the computation time of the subsystems that have controllers.
Recall that the subsystem 𝑆8 is assumed to have two processors that operate under two
different updating periods and for two distinct tasks. The computation times shown in Fig.5.8
are the processor times of the subsystem involved in the resolution of the central problem,
which do not exceed the update period 𝜏slow𝑢 = 5 𝑠. The processor time associated to the
computation of the control input of 𝑆(2)8 at every updating control instant 𝑘 · 𝜏

fast
𝑢 (with 𝑘 ∈ N

and 𝜏fast𝑢 = 1 𝑠) is negligible since the PI controller, whose computation involves only basic
mathematical operations, is used.
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Figure 5.8: Computation time of the subsystems that have controllers.

5.7 Conclusion

In this chapter, the hierarchical control framework is applied to a more complex system where
the number of subsystems is eight and the coupling topology is more complicated. Some
developments of the algorithm have been made. To make the method modular, a residual-
based iterative method, called Anderson acceleration, has been implemented to converge the
fixed-point iteration by using only historical information during the iterations. In addition,
a gradient-based optimization solver has been also implemented at the coordination layer
to replace the quadratic approximation-based method described in Chap. 3 to find the
optimal set point. Finally, the performance given by the method and by the developments is
evaluated via numerical simulations, which shows that the hierarchical approach outperforms
the decentralized one.





Conclusion and perspectives

Conclusion

The cryogenics process are often composed of several modules that span over a large area
and are controlled individually with basic knowledge of the coupling effects between them.
For instance, the grand refrigerator at CEA, which has a cooling power of 400 W at 1.8 K,
has a warm compression station and a cold box. Each of them is controlled by at least one
local controller, which could be seen as a classic decentralized control method, in which these
local controllers operate individually. This method is often easy to be implemented but do
not achieve high stability and optimal economic performance.

Regarding of this fact, this book has proposed and promoted by simulation results a
hierarchical control framework, which is based on fixed-point iterations, in order to control
the 400W @ 1.8 K refrigerator at CEA. In this framework, there exist two layers which
are the coordination layer and the local layer. In the lower layer, the local controllers are
implemented in order to control the controlled subsystems. In the coordination layer, the
coordinator is designed in order to pilot the local controllers by sending the set-points that
optimize some defined operation cost. To do so, an algorithm that is based on fixed-point
iteration is proposed. More precisely, for a given set-point sent from the coordinator to the
subsystems, the local controllers communicate extensively with the coordinator by sending
the estimated coupling profiles over a prediction horizon, which will then be updated by the
coordinator and be sent back to the subsystems. The associated operation cost to the given
set-point can be computed if the communication iterations between the coordinator and the
subsystems converge to a set of coupling profiles. Having an algorithm that is capable of
estimating the global cost for any given set-points, while taking into account the coupling
effects, a simple optimization algorithm that is based on quadratic approximation is used to
iteratively find the optimal set-point.

Chapter 3 recalled the mentioned hierarchical control framework and applied it to the
control of the large refrigerator, where nonlinearities and real-time implementation are con-
sidered. Specifically, local controllers, which take into account actuator saturation constraints
and subsystem model nonlinearities, are incorporated into the framework. The control per-
formance was compared using simulations, which showed that nonlinear controllers can be
integrated into this framework and give better performance than using linear controllers.
However, the use of nonlinear controllers can increase the computational load and make the
entire framework inapplicable in real-time applications. Therefore, an optimization distribu-
tion method is proposed to reduce the computational burden, which must be performed in a
single control updating period. Specifically, by cyclically updating the optimization variable
(setpoint variable) over time, the number of costs to be evaluated can be reduced, and thus the

121
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computation time. The simulation results showed that the performance obtained with the pro-
posed optimization distribution method is better than that given by the decentralized control
method and is not seriously degraded when compared to the full optimization approach.

Chapter 4 proposed some avenues to follow when using NMPCs poses a computational
time problem. First, it is proposed to use a simple optimization solver based on the gradient
descent method instead of a high-performance solver, but with a higher computational cost.
Second, machine learning approaches should be considered when the controlled process
operates only in certain operating regimes. Specifically, deep neural networks are used to
approximate the NMPC laws, thus reducing the computational burden. As a result, control
actions can be updated more frequently and control performance can be improved.

Chapter 5 described some advances that are needed in order to apply the proposed frame-
work to more complex cryogenic systems and to satisfy the modular privacy preservation
requirement, which was defined as a design criterion from the beginning. The first advance
aims to replace the model-based filter with an algorithm that relies solely on historical residual
data to converge the fixed-point iterations. The second advance is to use a simple optimization
solver based on the gradient descent method to solve the central problem delivering the opti-
mal set-point. The effectiveness of the proposed hierarchical control framework, combined
with these advances, is assessed by simulation results and found to be better than the full
decentralized control, while being real-time implementable.

Perspectives

In the future, the proposed framework will be applied on an even more complicated cryogenic
refrigerator at CERN. In this study, the computation of the coordination layer and the local
layer is handled on a single computer, which is not the intention of this framework. Indeed,
local control in real life should be implemented in a distributive way and correspond to their
subsystems, which means there should be an individual processor computing the control pro-
files and the coupling profiles for each subsystem. The effects induced by the communication
between the local agents and the coordinator such as delays, information loss, etc. should be
taken into account for a real implementation.

The proposed framework could also bemodified. Indeed, at the local layer, each subsystem
which have decision variable 𝑢𝑠 is controlled by a controller. Then, the coordinator tries to
solve the central optimization problem recalled as follows:

𝑟𝑜𝑝𝑡 = argmin
𝑟

𝐽𝑐 (𝑟, v𝑖𝑛) (5.54)

subject to:v𝑖𝑛 = 𝐺𝑖𝑛 · g𝑜𝑢𝑡 (𝑟, 𝑣𝑖𝑛) (5.55)

where the optimizing variable is the set-point vector 𝑟.
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Keeping the same spirit of the previous works, another hierarchical control framework can
be developed while keeping the assumption that the coordinator ignores all the mathematical
models of the subsystems. Let us re-define the process for this framework.

Assumption 1
Each subsystem 𝑆𝑠 receive from the coordinator:

• a presumed incoming profile v𝑖𝑛𝑠 and

• a given control profile u𝑠 (required if 𝑠 ∈ N 𝑐𝑡𝑟),

so that 𝑆𝑠 can process an algorithm to compute what would be:

• Its resulting outgoing profile v𝑜𝑢𝑡𝑠 and

• Its contribution 𝐽𝑠 to the central cost

The central cost is assumed to be of the form:

𝐽𝑐 (u, v𝑖𝑛) :=
∑︁
𝑠∈N 𝑐𝑡𝑟

𝐽𝑠 (u𝑠, v𝑖𝑛𝑠 ) +
∑︁

𝑠∈N𝑢𝑛𝑐

𝐽𝑠 (v𝑖𝑛𝑠 )

where u := col
𝑠∈N 𝑐𝑡𝑟

u𝑠 and v𝑖𝑛 := col
𝑠∈N

v𝑖𝑛𝑠

Consequently, the optimization problem that the coordinator needs to solve is redefined
below:

u𝑜𝑝𝑡 = argmin
u

𝐽𝑐 (u, v𝑖𝑛)

subject to:v𝑖𝑛 = 𝐺𝑖𝑛 · g𝑜𝑢𝑡 (u, 𝑣𝑖𝑛)

Indeed, the above problem can be considered as amodular orientedNMPCproblem. However,
this approach simplifies the modeling step for large-scale systems, especially for the large-
scale cryogenic refrigerator where the subsystems are strongly coupled with their neighbors.

The proposed framework should not be limited to cryogenic applications. It could be
developed to be easily applied to general cases such as electrical systems or water supply
systems. Further developments could start to investigate and implement a method capable
of decomposing the overall system into many subsystems with coupling signals. Indeed, in
our study, we do not need such a method to decompose the refrigerator since the physical
principles of coupling effects between subsystems are known. However, to make the proposed
frameworkmore generic, a systemdecompositionmethod is needed. Moreover, the framework
can be developed to be dedicated to cases where controllers such as PID, LQR, MPC and the
coordinator can be generated automatically, which makes this method user-friendly.





Appendix A

Modeling Turbine and Joule-Thomson
cycle

A.1 Turbine

In this section, the mathematical model of a turbine will be described. Fig. A.1 shows the
input and outputs of a cryogenic turbine. The model express the output temperature 𝑇𝐻𝑜𝑢𝑡 ,
the input flow rate 𝑀𝐻

𝑜𝑢𝑡 and the output flow rate 𝑀𝐿
𝑜𝑢𝑡 of the turbine in the function of the

thermodynamic of the input fluid defined by the input temperature 𝑇𝐻
𝑖𝑛
, the high pressure 𝑃𝐻

𝑖𝑛

and the low pressure 𝑃𝐿
𝑖𝑛
.
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Figure A.1: Synoptic view of a turbine with its input and output variables denoted respectively by the
grandeurs with exponent 𝑖𝑛 and 𝑜𝑢𝑡.

It is assumed that the turbine does not stock gas and mass and it does not have any thermal
capacity or inertia. According to [66], the flow rate through a cryogenic turbine can be
expressed as below:

𝑀𝑡𝑏 = 𝑀
𝐻
𝑜𝑢𝑡 = 𝑀

𝐿
𝑜𝑢𝑡 =

𝐶 · 𝑃𝐻
𝑖𝑛
· 𝐴√︄

𝑍 · 𝑅 · 𝑇𝐻
𝑖𝑛

𝑀ℎ𝑒

, 𝐶 =

√√√√
𝛾 ·

(
2

𝛾 + 1

) 𝛾 + 1
𝛾 − 1 (A.1)
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in which 𝐶 denotes a constant depending on atomic proprieties of the fluid, 𝐴 represents the
section of the collar, 𝑍 represents the compressibility factor of the helium, 𝑅 represents the
perfect gas constant, 𝑀ℎ𝑒 is the molar mass of helium and finally 𝛾 is the ratio of the specific
heat.

The turbine produces cold with energy extraction. This cooling power is proportional to
the enthalpy drop that occurs between the inlet and the outlet the outlet:

𝑄 = 𝑀𝑡𝑏 · (ℎ𝐻 − ℎ𝐿) (A.2)

where ℎ𝐻 and ℎ𝐿 denote the enthalpies of the fluids at the inlet and outlet of the turbine.
The enthalpy of the input fluid can be computed by using the bibliography Hepak’s function:
ℎ𝐻 = ℎ𝑒𝑐𝑎𝑙𝑐(′𝐻′, 𝑃𝐻

𝑖𝑛
, 𝑇𝐻
𝑖𝑛
). On the other hand, if there is no friction in the turbine, the

enthalpy of the fluid at the outlet could be computed similarly by using the pressure 𝑃𝐿
𝑖𝑛
and

the input entropy 𝑠𝐻 , but it is not the case.

Let us consider an isentropic efficiency 𝜂. The extracted power is then written :

𝑄 = 𝑀𝑡𝑏 · 𝜂 · (ℎ𝐻 − ℎ𝐿) (A.3)

where ℎ𝐿 represents the enthalpy of the fluid at the turbine’s outlet if the expansion is
isentropic. It could be computed by using the functions of Hepak as shown below:

𝑠𝐻 = ℎ𝑒𝑐𝑎𝑙𝑐(′𝑆′, 𝑃𝐻𝑖𝑛, 𝑇𝐻𝑖𝑛 ) (A.4)
ℎ𝐿𝑖𝑠 = ℎ𝑒𝑐𝑎𝑙𝑐(′𝐻′, 𝑃𝐿𝑖𝑛, 𝑠𝐿 = 𝑠𝐻) (A.5)

Then, the enthalpy at the outlet is computed as follows:

ℎ𝐿 = ℎ𝐻 (1 − 𝜂) − 𝜂ℎ𝐿𝑖𝑠 (A.6)

Finally, the temperature at the outlet of the turbine is compute by using a Hepak’s function:

𝑇 𝐿𝑜𝑢𝑡 = ℎ𝑒𝑐𝑎𝑙𝑐(′𝑇 ′, ℎ𝐿 , 𝑃𝐿𝑖𝑛) (A.7)

For the implementation, all the variables that are computed by the Hepak’s functions could
be approximated by some polynomial functions in interested ranges of involved parameters.
Finally, the output of the turbine can be expressed as an equation below:

𝑦𝑡𝑏 = 𝑔𝑡𝑏 (𝑣𝑖𝑛𝑡𝑏) with 𝑦𝑡𝑏 =

𝑇 𝐿𝑜𝑢𝑡
𝑀𝐿
𝑜𝑢𝑡

𝑀𝐻
𝑜𝑢𝑡

 and 𝑣𝑖𝑛𝑡𝑏 =

𝑇𝐻
𝑖𝑛

𝑃𝐻
𝑖𝑛

𝑃𝐿
𝑖𝑛

 (A.8)

where 𝑦𝑡𝑏 and 𝑣𝑖𝑛𝑡𝑏 represent represent the output vector and limit condition of the turbine.
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A.2 Joule-Thomson cycle

A.2.1 J-T Valve

The controlled valves are used in order to control pressures, flow rates or even to control the
process. The valves that are modeled are the proportional valves that are used in order to
control the flow rate.

Assuming that the fluid is not stocked in the valve and the time to position the needle is
negligible. The process occurs in the valve is assumed to be completely isenthalpic. These
assumptions allow to model the valve as an static function.

pos
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Figure A.2: Synoptic view of a valve with its input and output variables denoted by the grandeurs with
subscripts 𝑖𝑛 and 𝑜𝑢𝑡 respectively.

Fig. A.2 shows the input and output of the modeling function. The model expresses
the inlet flow rate, the outlet flow rate and the outlet temperature as a function of the inlet
temperature, the inlet pressure and the outlet pressure.

The inlet and outlet flow rates are assumed to be equal because the valve does not store
the fluid.

𝑀 = 𝑀𝐻
𝑜𝑢𝑡 = 𝑀

𝐿
𝑜𝑢𝑡 (A.9)

where 𝑀 denotes the flow rate passing through the controlled valve. According to [67],
this flow rate can be computed as follows:

𝑀 = 7.59 · 10−3 · 𝐶𝑉 ·
(
1 − 𝑋

3 · 𝑋𝐶

) √︃
𝜌𝐻
𝑖𝑛
· 𝑃𝐻

𝑖𝑛
· 𝑋 (A.10)

𝐶𝑉 =
𝐶𝑉max

𝑅𝑣

(
exp

( 𝑝𝑜𝑠
100
log𝑅𝑉

)
−

(
1 − 𝑝𝑜𝑠
100

))
(A.11)

𝑋 = min

(
𝑃𝐻
𝑖𝑛
− 𝑃𝐶

𝑖𝑛

𝑃𝐻
𝑖𝑛

, 𝑋𝐶

)
, 𝑋𝐶 =

𝛾

1.4
𝑋𝑡 (A.12)

where 𝛾 denotes the specific heat ratio and 𝜌𝐻
𝑖𝑛
denotes the volumic mass of the inlet fluid.

𝐶𝑉max and 𝑅𝑉 are the dimensional constants of the valve, which are respectively the flow rate
coefficient and the rangeability. 𝑋𝑡 is a design constant given by the supplier and 𝑝𝑜𝑠 is the
opening position of the valve.
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Indeed, the process occurs in the valve is isenthalpic, the enthalpy of the fluid at the inlet
and outlet of the valve are equal and computed by the Hepak’s function, namely:

ℎ𝐿 = ℎ𝐻 = ℎ𝑒𝑐𝑎𝑙𝑐(′𝐻′, 𝑇𝐻𝑖𝑛 , 𝑃𝐻𝑖𝑛) (A.13)
(A.14)

It is essential to note that the variables, which are computed by using theHepak’s functions,
can be approximated by some polynomial functions in the interested range of corresponding
parameters, namely:

ℎ𝐿 = ℎ𝐻 = 𝑓 𝐻𝑣 (𝑇𝐻𝑖𝑛 , 𝑃𝐻𝑖𝑛) (A.15)
(A.16)

Finally, all the output of the modeling function are described. The equation form of the
valve is given below:

𝑦𝑣𝑙𝑣 = 𝑔𝑣𝑙𝑣 (𝑢𝑣𝑙𝑣, 𝑣𝑖𝑛𝑣𝑙𝑣) with 𝑦𝑣𝑙𝑣 =

𝑀𝐻
𝑜𝑢𝑡

𝑀𝐿
𝑜𝑢𝑡

ℎ𝐿

 and 𝑣𝑖𝑛𝑣𝑙𝑣 =

𝑇𝐻
𝑖𝑛

𝑃𝐻
𝑖𝑛

𝑃𝐿
𝑖𝑛

 𝑢𝑣𝑙𝑣 = 𝑝𝑜𝑠 (A.17)

A.2.2 Helium bath

The helium bath is where the helium fluid is partially liquefied and rests in the bath, while
the gaseous part leaves and returns to the cycle. Fig. A.3 shows the input and output of
the function modeling the helium bath. The model expresses the helium level, the outlet
temperature, the inlet and outlet pressure as a function of the inlet pressure, the inlet flow rate
and the inlet temperature.

Let’s assume that the total mass of the fluid (gas + liquid) is punctual. This type of
assumption implicates that the physique phenomena related to the non-uniformity of the fluid
properties in the bath such as the stratification or the natural convection are not modelized.

The thermodynamic state of the fluid contained in the bath can be derived by using the
conservation laws of energy and mass, namely:

¤𝜌 =

∑
𝑀𝐻
𝑖𝑛
−∑

𝑀𝐿
𝑖𝑛

𝑉𝑜𝑙
(A.18)

¤𝑢 =

∑
𝜑𝐻
𝑖𝑛
−∑

𝜑𝐿
𝑖𝑛
+∑

𝑃

𝜌 · 𝑉𝑜𝑙 − 𝑢 · ¤𝜌
𝜌

(A.19)
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Figure A.3: Synoptic view of a helium bath with its input and output variables denoted by the grandeurs
with subscripts 𝑖𝑛 and 𝑜𝑢𝑡 respectively.

where 𝜌 denotes the volumic mass, 𝑉𝑜𝑙 denotes the total volume of the bath,
∑
𝑀𝐻
𝑖𝑛
and∑

𝑀𝐿
𝑖𝑛
represent respectively the sums of the incoming and the outgoing flow rates.

∑
𝜑𝐻
𝑖𝑛
and∑

𝜑𝐿
𝑖𝑛
represent respectively the sums of the incoming and the outgoing enthalpy fluxes of the

bath (
∑
𝜑𝐻
𝑖𝑛
= 𝑀𝐻

𝑖𝑛
· ℎ𝐻

𝑖𝑛
and

∑
𝜑𝐿
𝑖𝑛
= 𝑀𝐿

𝑖𝑛
· ℎ𝐿

𝑖𝑛
). Finally,

∑
𝑃 denotes the sum of the thermal

charges received by the bath. In our configuration, this variable is the sum of the power of
the heating actuator 𝑁𝐶𝑅(𝑎)22 and the heating disturbance 𝑁𝐶𝑅

(𝑤)
22 .

The pressure at the outlet of the bath is computed by the Hepak’s function, namely:

𝑃𝐿𝑜𝑢𝑡 = ℎ𝑒𝑐𝑎𝑙𝑐(′𝑃′, 𝑢, 𝜌) (A.20)

Let’s assume that there is one way for the gaseous helium to exit the bath and return to the
cycle.

While the incoming enthalpy flux is imposed on the bath, the outgoing enthalpy flux
imposed by the bath is computed by using the Hepak’s function:

ℎ𝑜𝑢𝑡 = ℎ𝑒𝑐𝑎𝑙𝑐(′𝐻′, 𝑃𝐿𝑜𝑢𝑡) (A.21)

The helium level in the bath can be computed by the equation below:

ℎ𝑙𝑖𝑞 =

(
(1 − 𝑞) · 𝜌

𝜌𝑙𝑖𝑞
· 𝑧max

𝑝𝑜𝑠max − 𝑝𝑜𝑠min
− 𝑝𝑜𝑠min

𝑝𝑜𝑠max − 𝑝𝑜𝑠min

)
· 100% (A.22)

where 𝑧max is themaximum height of the bath, 𝑝𝑜𝑠max and 𝑝𝑜𝑠min are respectively the position
of the upper and lower ends of the level detector. The density of the liquid helium can be
deduced via the pressure in the bath by using the Hepak’s function, namely:

𝜌𝑙𝑖𝑞 = ℎ𝑒𝑐𝑎𝑙𝑐(′𝜌′, 𝑃𝐿𝑜𝑢𝑡 ,′ 𝑆𝐿′) (A.23)

The helium quality 𝑞 appearing in (A.22) is derived in the equation below:

𝑞 =
𝜌𝑔𝑎𝑠

𝜌
·
𝜌𝑙𝑖𝑞 − 𝜌
𝜌𝑙𝑖𝑞 − 𝜌𝑔𝑎𝑧

(A.24)
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with the density of the gaseous helium being computed by:

𝜌𝑔𝑎𝑠 = ℎ𝑒𝑐𝑎𝑙𝑐(′𝜌′, 𝑃𝐿𝑜𝑢𝑡 ,′ 𝑆𝑉 ′) (A.25)

Finally, the dynamic of this component can be expressed by the equations below:

¤𝑥𝑠𝑝 = 𝑓𝑠𝑝 (𝑥𝑠𝑝, 𝑢𝑠𝑝, 𝑤𝑠𝑝, 𝑣𝑖𝑛𝑠𝑝) (A.26)
𝑦𝑠𝑝 = 𝑔𝑠𝑝 (𝑥𝑠𝑝) (A.27)

with

𝑥𝑠𝑝 =

[
𝜌

𝑢

]
, 𝑤𝑠𝑝 = 𝑁𝐶𝑅

(𝑤)
22 , 𝑢𝑠𝑝 = 𝑁𝐶𝑅

(𝑎)
22 , (A.28)

𝑣𝑖𝑛𝑠𝑝 =


𝑀𝐻
𝑖𝑛

𝑀𝐿
𝑖𝑛

𝐻𝐻
𝑖𝑛

 , 𝑦𝑠𝑝 =


𝑃𝐿𝑜𝑢𝑡
𝑃𝐻
𝑖𝑛

𝑇 𝐿𝑜𝑢𝑡
ℎ𝑙𝑖𝑞

 (A.29)

A.2.3 Heat exchanger

In order to modelize the heat exchanger, some assumptions need to be made:

1. channels with the same origin/termination will be considered as one:

2. only one spatial coordinate will be considered, which is the fluid direction;

3. the pressures will be considered linearly decreasing in the direction of the fluid;

4. the walls of the exchanger are considered adiabatic;

5. the longitude thermal conductivity will be considered null;

6. only one state variable will be considered per branch.

These assumptions have been validated in [68] by experimental results.

The interested heat exchanger in this study is the exchanger with two fluids in counterflow.
The model expresses the temperatures, flow rates and pressures at the outlet in function of
the temperatures, flow rates and pressures at the inlet of the heat exchanger. The behavior of
the heat exchanger can be approximated by the spatial discretization as proposed in [69, 70,
71]. Indeed, the heat exchanger can be decomposed in 𝑁 elementary components. Each zone
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is affected by the parameters corresponding to the current state of the fluid.(
𝜌𝐻𝐶𝑝𝐻

𝑖
𝑉𝐻 +M𝑎𝑙𝐶𝑝𝑎𝑙/2

𝑁

)
¤𝑇𝐻𝑖 = 𝑀𝐻𝐶𝑝𝐻𝑖 (𝑇𝐻𝑖−1 − 𝑇

𝐻
𝑖 ) −𝑄𝑖 (A.30)(

𝜌𝐿𝐶𝑝𝐿
𝑖
𝑉 𝐿 +M𝑎𝑙𝐶𝑝𝑎𝑙/2

𝑁

)
¤𝑇 𝐿𝑖 = 𝑀𝐿𝐶𝑝𝐿𝑖 (𝑇 𝐿𝑖−1 − 𝑇

𝐿
𝑖 ) +𝑄𝑖 (A.31)

𝑄𝑖 = ℎ

(
𝑇𝐻
𝑖−1 + 𝑇

𝐻
𝑖

2
−
𝑇 𝐿
𝑖−1 + 𝑇

𝐿
𝑖

2

)
(A.32)

where 𝜌𝐻/ 𝜌𝐿 and 𝐶𝑝𝐻/𝐶𝑝𝐿 𝑉𝐻 denote the densities and specific heat capacities in heat ex-
changer’s pipes under high pressure and low pressure, whose volumes are denoted by𝑉𝐻/𝑉 𝐿 ,
respectively. M𝑎𝑙 and 𝐶𝑝𝑎𝑙 represent the mass and the specific heat capacity of aluminum
used to make the heat exchanger. 𝑇𝐻

𝑖
and𝑇 𝐿

𝑖
denotes respectively the temperatures under high

pressure and low pressure at the limit of each zone. The distribution of these temperatures
is illustrated in Fig.A.4. 𝑄𝑖 is the heat exchanged between the high pressure pipeline and
low pressure pipeline, which is the difference between the mean temperatures of each zone
multiplied by the heat exchange coefficient ℎ.

The flow rates in each zone are considered to be given by:

𝑀𝐻 = 𝐾𝐻 · (𝑃𝐻0 − 𝑃
𝐻
𝑁 ) (A.33)

𝑀𝐿 = 𝐾𝐿 · (𝑃𝐿0 − 𝑃
𝐿
𝑁 ) (A.34)

where 𝐾𝐻 and 𝐾𝐿 are respectively the pressure loss coefficients of the high pressure and low
pressure pipelines. if the heat exchanger is connected to the helium bath, the low pressure 𝑃𝐿0
is computed by:

The dynamic of the pressure at the outlet of the high pressure branch is given by:
¤𝑃𝐻𝑁 = 𝐾𝑝𝐻 · (𝑀𝐻 − 𝑀𝐻

𝑖𝑛 ) (A.35)

where 𝐾𝑝 is the loss coefficient and 𝑀𝐻
𝑖𝑛
is the flow rate imposed at the inlet of the high

pressure branch.

Finally, the dynamic of the heat exchanger can be expressed by the following equations:

¤𝑥𝑒𝑥 = 𝑓𝑒𝑥 (𝑥𝑒𝑥 , 𝑣𝑖𝑛𝑒𝑥) (A.36)
𝑦𝑒𝑥 = 𝑔𝑒𝑥 (𝑥𝑒𝑥 , 𝑣𝑖𝑛𝑒𝑥) (A.37)

where

𝑥𝑒𝑥 =



𝑇𝐻1
𝑇 𝐿
𝑁
...

𝑇𝐻
𝑁

𝑇 𝐿1
𝑃𝐻
𝑁


, 𝑣𝑖𝑛𝑒𝑥 =



𝑇𝐻0
𝑇 𝐿0
𝑀𝐻
𝑖𝑛

𝑃𝐻0
𝑃𝐿0
𝑃𝐿
𝑁


, 𝑦𝑒𝑥 =


𝑇𝐻
𝑁

𝑇 𝐿
𝑁

𝑀𝐻

𝑀𝐿

𝑃𝐻
𝑁


(A.38)
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Figure A.4: Synoptic view of a heat exchanger with its input and output variables denoted by the
grandeurs with subscripts 𝑖𝑛 and 𝑜𝑢𝑡 respectively. Equivently, 𝑇𝐻

0 = 𝑇𝐻
𝑖𝑛
, 𝑇𝐿
0 = 𝑇𝐿

𝑖𝑛
, 𝑇𝐻

𝑜𝑢𝑡 = 𝑇𝐻
𝑁
,

𝑇𝐿
𝑜𝑢𝑡 = 𝑇

𝐿
𝑁
.

Note that the heat exchanger used in Chap. 4 is modelled with 𝑁 = 1/

A.2.4 Model of Joule-Thomson cycle

At this stage, the three components of the J-T cycle have been modeled, which are now
assembled in order to constitute the complete system. The components connect with each
other following the rule depicted in Fig. A.5.

Then, the final model of the J-T cycle can be expressed by the following equations:

¤𝑥 𝑗 𝑡 = 𝑓 𝑗 𝑡 (𝑥 𝑗 𝑡 , 𝑢 𝑗 𝑡 , 𝑤 𝑗 𝑡 , 𝑣𝑖𝑛𝑗𝑡) (A.39)

𝑦 𝑗 𝑡 = 𝑔 𝑗 𝑡 (𝑥 𝑗 𝑡 , 𝑢 𝑗 𝑡 , 𝑤 𝑗 𝑡 , 𝑣𝑖𝑛𝑗𝑡) (A.40)

where 𝑥 𝑗 𝑡 gathers the state vectors, 𝑢 𝑗 𝑡 gathers the actuator, 𝑤 𝑗 𝑡 gathers the disturbance and
𝑣𝑖𝑛
𝑗𝑡
denotes the limit condition given by the previous subsystem, namely:

𝑥 𝑗 𝑡 =

[
𝑥𝑒𝑥

𝑥𝑝𝑠

]
𝑢 𝑗 𝑡 = 𝑢𝑣𝑙𝑣 𝑤 𝑗 𝑡 = 𝑤𝑝𝑠 (A.41)

Meanwhile, 𝑦 𝑗 𝑡 gathers the measured outputs which are the liquid helium level in the phase
separator and the temperature at the oulet of the J-T valve, namely:

𝑦 𝑗 𝑡 =

[
ℎ𝑙𝑖𝑞

𝑇𝑜𝑢𝑡
𝑣𝑙𝑣

]
(A.42)

As long as the model predictive controller is concerned, the system need be to discretized.
The simplest method is the Runge-Kutta 4th method. However, in our case, the differential
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Figure A.5: Synoptic view of the J-T cycle with the variables connections. The coupling signal input
𝑣𝑖𝑛 of a component is placed opposite with the output 𝑦 of the component by which it is coupled. The
upper script indicates the elements of the vector. In this figure, the variables 𝑇𝐻

𝑖
𝑛 and 𝑇𝐻

𝑜𝑢𝑡 / 𝑇𝐿
𝑖
𝑛 and

𝑇𝐿
𝑜𝑢𝑡 are respectively 𝑇𝐻

0 and 𝑇
𝐻
𝑁
/ 𝑇𝐿
0 and 𝑇

𝐿
𝑁
in the analytic model (A.30)-(A.32)

equations (A.39) are stiff, which needs an discretizing step relatively small in comparing to
the sampling time 𝑇𝑠 = 5𝑠 and the prediction horizon 𝑁 · 𝑇𝑠 (with 𝑁 = 100). Effectively,
this small discretizing step can overcome the divergence resulted from using the Runge-Kutta
method, but induces some computational burdens.

Instead of using the Runge-Kutta method, an implicit solver is proposed to be used, whose
formulation is given below:

𝑥+𝑗 𝑡 = 𝑥 𝑗 𝑡 +
I − 𝑇𝑠 · ∇𝑥 𝑗𝑡 𝑓 𝑗 𝑡 (𝑥 𝑗 𝑡 , 𝑢 𝑗 𝑡 , 𝑤 𝑗 𝑡 , 𝑣𝑖𝑛𝑗𝑡)

𝑇𝑠 · 𝑓 𝑗 𝑡 (𝑥 𝑗 𝑡 , 𝑢 𝑗 𝑡 , 𝑤 𝑗 𝑡 , 𝑣𝑖𝑛𝑗𝑡)
(A.43)

= 𝑓 𝑑𝑠𝑐𝑡𝑗 𝑡 (𝑥 𝑗 𝑡 , 𝑢 𝑗 𝑡 , 𝑤 𝑗 𝑡 , 𝑣𝑖𝑛𝑗𝑡) (A.44)

where I is the identity matrix with appropriate dimension and ∇𝑥 𝑗𝑡 𝑓 𝑗 𝑡 (𝑥 𝑗 𝑡) is the jacobian
matrix of 𝑓 𝑗 𝑡 (𝑥 𝑗 𝑡) with respect to 𝑥 𝑗 𝑡 .
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Résumé — Les réfrigérateurs cryogéniques des grands instruments de recherche (par exemple,
le LHC au CERN et le JT60SA au Japon, ITER en France) exigent une fiabilité de plus en
plus grande dans les différentes phases de fonctionnement, notamment dans les phases transi-
toires ou en présence de charges thermiques variables. Ces systèmes se composent de plusieurs
sous-processus cryogéniques qui sont contrôlés par des régulateurs locaux (normalement des
régulateurs PID). Une telle stratégie décentralisée est suffisante tant que le système reste toujours
autour des points nominaux. De plus, le couplage de la dynamique des contrôleurs ainsi que
l’absence d’anticipation rendent ce type de contrôle peu adapté lors des phases transitoires ou en
présence de charges thermiques très variables. Dans cette thèse, un cadre de contrôle hiérarchique
récemment proposé sera développé pour le réfrigérateur de 400W à 1,8 K du CEA (France). Dans
ce cadre, un coordinateur est développé pour coordonner les contrôleurs locaux afin d’optimiser
la performance globale. Ce cadre est démontré en étant appliqué au contrôle du réfrigérateur de
400 W à 1,8 K, dans lequel les modèles non linéaires, les contraintes d’actionnement et la mise
en œuvre en temps réel sont pris en compte. Des approches de Fast-NMPC et d’apprentissage
profond sont également étudiées et mises en œuvre au niveau des contrôleurs locaux afin de
réduire le temps de calcul et de rendre le cadre proposé réalisable en temps réel. Enfin, ce cadre
est appliqué pour contrôler un réfrigérateur plus complexe. Pour ce faire, certains développe-
ments, qui concernent une méthode qui converge la communication entre le coordinateur et les
sous-systèmes et un solveur d’optimisation pour le coordinateur, sont mis en œuvre.

Mots clés : Contrôle décentralisé, contrôle hiérarchique, MPC, NMPC, itération à point fixe,
réfrigérateur cryogénique.

Abstract — The cryogenic refrigerators in the grand research instruments (e.g. LHC in CERN
and JT60SA in Japan, ITER in France) require more and more reliability in the various operating
phases, especially in transient phases or in the presence of variable thermal loads. Such systems
consists of several cryogenic sub-processes which are controlled by the local controllers (normally
PID controllers). Such decentralized strategy is sufficient as long as the system always stay around
the nominal points. In addition, the coupling of the dynamics of the controllers as well as the
absence of anticipation make this type of control not very suitable during transient phases or in
the presence of highly variable thermal loads. In this thesis, a recently proposed hierarchical
control framework will be developed for the 400 W at 1.8 K refrigerator at CEA (France). In this
framework, an coordinator is developed to coordinate the local controllers in order to optimize the
global performance. Such framework is demonstrated by being applied to control the 400 W at
1.8 K refrigerator, in which nonlinear models, actuator constraints and real-time implementation
are considered. Fast-NMPC and deep learning approaches are also studied and implemented at
the local controllers in order to reduce the computation time and make the proposed framework
feasible in real-time. Finally, this framework is applied to control a more complex refrigerator. To
make this happen, some developments, which concerns an method that converges the communi-
cation between the coordinator and the subsystems and an optimization solver for the coordinator,
are implemented.

Keywords: Decentralized control, hierachical control, MPC, NMPC, fixed-point iteration,
cryogenic refrigerator.
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