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Abstract
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Control of Partial Differential Equations in the Presence of Saturated
Actuators and Perturbations

by Suha Shreim

The thesis investigates control problems for two types of partial differential equa-
tions. The first interest is the study of state-feedback boundary control design for
one-dimensional hyperbolic systems with an in-domain disturbance and a saturation
limitation imposed on the control law. Nonlinear semigroup theory is used to prove
well-posedness of the system and porve the existence and uniqueness of mild solu-
tion pairs to the abstract system. Sufficient conditions in the form of dissipation
inequalities are derived to establish global exponential stability for the origin of the
closed-loop system and input-to-state stability properties with respect to in-domain
disturbances. The control design problem is then recast as an optimization prob-
lem over linear matrix inequality constraints. Numerical analysis are carried out to
validate the effectiveness of the proposed control design.

The second interest is the study of the input-output stability (IOS) of a reaction-
diffusion equation with Dirichlet boundary output which admits a finite number of
unstable poles and is considered open-loop unstable. A finite-dimensional linear time-
invariant control system is designed to achieve global exponential input-output stabil-
ity. The control design problem consists of deriving sufficient conditions in the form of
linear matrix inequalities using Lyapunov methods and control synthesis algorithm.
Numerical simulations are presented to illustrate the efficiency of our approach.

The third interest is the study of the local exponential input-output stability
(IOS) of a reaction-diffusion equation with finite unstable poles using saturated dis-
tributed control and anti-windup compensators. It is the first work to deal with
anti-windup design on distributed parameter systems. Lyapunov functions and suf-
ficient conditions are used to estimate the regions of attraction and stability gains.
Numerical simulations are presented to illustrate the efficiency of our approach and
to highlight the positive role an anti-windup compensator plays in counteracting the
negative impacts that saturating actuators have on performance levels and regions of
attraction.

HTTPS://WWW.UNIV-GRENOBLE-ALPES.FR
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Resumé

La thèse étudie les problèmes de contrôle pour deux types d’équations aux dérivées
partielles. Le premier intérêt est l’étude de la conception d’un contrôle limite par
retour d’état pour des systèmes hyperboliques unidimensionnels avec une perturba-
tion dans le domaine et une limitation de saturation imposée à la loi de contrôle. La
théorie des semigroupes non linéaires est utilisée pour prouver que le système est bien
posé et pour prouver l’existence et l’unicité de paires de solutions douces au système
abstrait. du système abstrait. Des conditions suffisantes sous la forme d’inégalités de
dissipation sont dérivées pour établir la stabilité exponentielle globale pour l’origine
du système. stabilité exponentielle globale pour l’origine du système en boucle fer-
mée et des propriétés de stabilité d’entrée à l’état en ce qui concerne les perturbations
dans le domaine. Le problème de conception de la commande est alors refondu en
un problème d’optimisation sur des contraintes d’inégalités matricielles linéaires. Des
analyses numériques sont effectuées pour valider l’efficacité de la conception de con-
trôle proposée. l’efficacité de la conception de contrôle proposée.

Le deuxième intérêt est l’étude de la stabilité entrée-sortie (IOS) d’une équation
de réaction-diffusion avec sortie de frontière de Dirichlet qui admet un nombre fini de
pôles instables et est considérée comme instable en boucle ouverte. Un système de
contrôle linéaire invariant dans le temps à dimension finie est conçu pour atteindre
une stabilité globale exponentielle de l’entrée-sortie. Le problème de conception de
la commande consiste à dériver des conditions suffisantes sous la forme d’inégalités
matricielles linéaires en utilisant les méthodes de Lyapunov et l’algorithme de synthèse
de contrôle. Des simulations numériques sont présentées pour illustrer l’efficacité de
notre approche.

Le troisième intérêt est l’étude de la stabilité locale exponentielle entrée-sortie
(IOS) d’une équation de réaction-diffusion avec des pôles instables finis en utilisant
un contrôle distribué saturé et des compensateurs anti-windup. Il s’agit du premier
travail traitant de la conception anti-windup sur des systèmes à paramètres distribués.
Les fonctions de Lyapunov et les conditions suffisantes sont utilisées pour estimer
les régions d’attraction et les gains de stabilité. Des simulations numériques sont
présentées pour illustrer l’efficacité de notre approche et pour mettre en évidence
le rôle positif que joue un compensateur anti-windup en contrebalançant les impacts
négatifs que les actionneurs saturants ont sur les niveaux de performance et les régions
d’attraction.
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C1,1(U ,V ) the set of Lipschitz continuous functions f : U 7→ V
W p,k(U ,V ) subset of functions f ∈ Lp(U ,V ) such that f and

its weak derivatives up to order k have a finite Lp-
norm

Hp(U ,V ) W p,2(U ,V )

∥f∥L2(U) = (
∫

U ∥f∥2 dz)
1
2 L2-norm of function f on U ⊂ R

∥f∥H1(U) = (
∫

U ∥f∥2 + ∥fz∥2 dz)
1
2 H1-norm of function f on U ⊂ R

⟨u, v⟩ inner product of u, v ∈ V
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Chapter 1

Introduction and Problem
Motivation

Partial differential equations (PDEs) are mathematical expressions which are found
to be of great importance in the modeling of many physical systems that are described
simultaneously via spatial and temporal variables. Light propagation in optic fibers,
blood flow in the vessels, plasma in laser, liquid metals in cooling systems, road
traffic, acoustic waves, and electromagnetic waves are all examples of systems modeled
via PDEs that can be seen in civil, nuclear, mechanical, quantum, and chemical
engineering (see [10] and [39] for more examples). Thus, the importance of studying
the stability properties and control design of physical systems modeled via PDEs
is growing more and more in the community of automatic control. In fact, what
renders this topic challenging is the infinite-dimensional nature of the application. In
this thesis, we study three stability and control problems for hyperbolic and parabolic
systems in the presence of nonlinear controllers and perturbations.

1.1 Saturated Control
Control engineering is an engineering discipline that studies the problem of regulating
system behavior via some control devices. Those devices are usually electromechani-
cal actuators, proportional valves, electric circuits, power amplifiers, pumps, heaters,
and so on. These control inputs that are introduced to the modeled system as a form
of force, torque, thrust, stroke, voltage, etc are almost always limited in magnitude.
Those limitations, or constraints, are referred to as saturation. Saturation is a mag-
nitude limit that is present in practically all control systems due to physical or safety
constraints that may restrict the system performance. However, if control engineers
fail to take into consideration this limit when modeling the system, the closed-loop
system is most likely to perform poorly and dangerously in terms of steady-state er-
ror, oscillation, global stability and region of stability. In sensitive applications such
as nuclear power station or aircraft transport, neglecting control saturation leads
to disasters in a similar manner that a rain-saturated soil land leads to a deathly
flood. Thus, to protect against equipment malfunction, ensure a satisfactory system
behavior, guarantee safety regulations and provide better engineering choices for the
actuator capacities from an early stage, the study of saturated control systems is
necessary and constitutes a very attractive topic for researchers.

The main challenge when studying stability of saturated control systems is the
nonlinearity that appears in modeling the saturation function. Even though, in this
thesis, we focus on systems described by linear partial differential equations, the sat-
urated control input transforms the problem from linear to nonlinear control system.
Mathematically, for a control input u ∈ R, the saturation can be modeled using a
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general piece-wise function σ(u) given by

σ(u) :=


u if umin ≤ u ≤ umax

σ(u) = umax if u ≥ umax

σ(u) = umin if u ≤ umin

(1.1)

where umin is the lower saturation limit and umax is the upper saturation limit. Fig-
ure 1.1 shows the general saturation function in (1.1). In this thesis, we will use a

Figure 1.1: General saturation function

symmetric saturation function given as:

σ(u) := min(|u|,u0)sign(u) (1.2)

where u0 is the saturation limit. The graph of the symmetric saturation function
in (1.2) is shown in Figure 1.2. Researchers have been studying several methods
to tackle saturation problems in closed-loop systems as we can see in [72], [80] or
[67]. Some examples of extensions of those works are presented in [63] and [48].
Stability analysis of PDEs in the presence of saturation has been studied in the
math community [30], [2], but it is still an open research area, especially from an
automatic control viewpoint [79], [34]. To the best of our knowledge, the particular
problem of designing a boundary controller under the effect of saturation, to stabilize
hyperbolic systems, has not been studied in previous works and will be presented as
the first control problem in Chapter 2. Furthermore, we design a saturated boundary
controller for a parabolic system in Chapter 4. As we have seen in [59], a natural
approach to study the stability problem is to combine both Lyapunov theory and
cone-bounded sector conditions (see more about sector conditions in [38], [72], [16]).



1.2. Boundary vs In-domain Control 3

Figure 1.2: Symmetric saturation function

1.2 Boundary vs In-domain Control
There are mainly two approaches for controlling a system governed by a partial differ-
ential equation: distributed, or in-domain, control and boundary control. Distributed
or "in-domain" control is a configuration in which controllers or actuators are located
inside the domain or throughout the domain. This method is usually impractical and
in some cases impossible due to the inaccessibility to the interior part of the system.
For example, it is less intrusive to place a heat source at the walls of a heat exchanger
rather than inside it (see Figure 1.3). On the other hand, boundary controllers or
actuators are exclusively placed at the boundary of the domain or at given isolated
points. In a one-dimensional domain, this translates to placing the control input at
the start of the domain and/or at the end. Imagine for example the vibration of
a string by a rocking movement at one or both ends (see Figure 1.4). In another
application, the flow of water through pipes are controlled through the placement of
water pumps at the source of the water tank and a control valve at the exit. This
type of control placement becomes essential for sensitive and high risk applications,
such as magnetic control for Tokamak plasma for example, to avoid any intrusive
operations directed towards the fusion process taking place inside the domain of the
reactor. Thus, modeling the boundary conditions that governs the relationship be-
tween the system input and outputs, enables us to control the output through a
boundary input and it is widely used in the context of PDEs. Thus, we can find a
lot of research conducted on the topic of boundary control [39]. In particular, differ-
ent control strategies, from Lyapunov stability and stabilization methods [10], [74],
to backstepping control [61], [39] and frequency domain approaches [44] have been
applied on PDEs. Unfortunately, the nature of the boundary control sytems renders
the control problem hard because the input and output operators of the abstract
linear time invariant (LTI) model are unbounded operators. The mathematical dif-
ficulties generated in those applications makes the subject of boundary control for
PDEs difficult.
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Figure 1.3: Control of heat exchanger

1.3 Background View on Lyapunov Stability Analysis
Throughout this thesis, we will study the stability of PDE models using Lyapunov
theory as a stability tool. Let us first recall the definition of exponential stability as
classically presented in [38, Page 40] for an ordinary differential equation, given by:

Ẋ = AX (1.3)

with X ∈ Rn, a given matrix A ∈ Rn×n and n ∈ N∗. System (1.3) is said to be
exponentially stable at the equilibrium X = 0 if there exist k,α > 0 such that any
solution X to (1.3) satisfies

∥X(t)∥ ≤ ke−αt ∥X(0)∥ ∀t ≥ 0, (1.4)

where ∥·∥ denotes the appropriate Euclidean norm. This stability is said to be global
if (1.4) holds for any initial state X(0) and local when the initial state is bounded.
One way to test this stability is using the method of Lyapunov stability which states
that system (1.3) is exponentially stable if and only if for any positive definite matrix
Q ∈ Sn

p , there exist P ∈ Sn
p such that the following holds

PA+A⊤P = −Q (1.5)

The previous equality leads to defining a positive definite Lyapunov function

V (X) = X⊤PX ∀X ∈ Rn

such that its derivative along the solutions to (1.3), given by

V̇ (X) = −X⊤QX

is negative definite. The goal behind this method is to find P such that equation (1.5)
holds. This method can be extended to the infinite-dimensional case by rewriting the
PDE (for example) as an abstract model:

Ẋ = AX (1.6)
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Figure 1.4: Axially moving string under a right boundary control
force. [53]

where X is defined on a functional space and the unbounded linear operator A is
defined on that space.

1.4 Hyperbolic Systems
Hyperbolic equations are partial differential equations that find application in fluid
dynamics, aerodynamics, the theory of elasticity, optics, electromagnetic waves, the
road traffic, propagation of age-dependent epidemics, chromatography and the general
theory of relativity. By definition, an nth-order hyperbolic partial differential equation
in a neighborhood A has a well-posed Cauchy problem in the same neighborhood for
the first n− 1 derivatives. Although the dynamics of most applications exist in three
dimensional, it is some times practical and useful to express the system dynamics in
one-dimension and neglect the rest. Perhaps the most popular hyperbolic equation
is the wave equation, known as the equation of vibration of a string and is often
applied in elasticity, aerodynamics, acoustics, and electrodynamics. Let us consider
that u(t, z) is the state that represents the position of a vibrating string at time t
and position z ∈ (0, l) where l is the length of the string. Then, the wave dynamics
are expressed by

xtt(t, z) − cxzz(t, z) = 0 c > 0

where c can be the ratio of the tension or the linear density. To determine the motion
of the string, the initial value problem is solved with a known and sufficiently smooth
initial position and initial velocity:

x(0, z) = f(x), xz(0, z) = g(z)

A perturbation of the initial (or boundary) value of a hyperbolic equation is not
felt by all points in the domain simultaneously but rather in a "wave-like" manner.
We can solve the initial value problem using the method of characteristics. In this
thesis we are mainly interested in homogeneous first order, one-dimensional hyperbolic
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equations. In particular, we study the following transport equation

Xt(t, z) + ΛXz(t, z) = 0, t ∈ R≥0, z ∈ [0,L] (1.7)

where t and z are the two independent variables, time and space, respectively, and
X : [0,+∞) × [0, l] −→ Rn is the vector of state variables of dimension n. The term
Λ ∈ Dn×n corresponds to a matrix of real, constant eigenvalues or the characteristic
velocities denoted:

λ1,λ2, . . . λn.

We also assume that those eigenvalues positive.

1.4.1 Examples of Transport Equations

Transport systems are a specific type of hyperbolic equations that are widely used
to describe the flow of fluids in open or closed channels, the transport of electrical
energy and other physical systems. These systems undergo a time variation in one or
more of its states along a bounded space domain and balanced by its rate of flow per
unit length (flux) throughout this domain and its production or consumption inside
the domain ( [10], page 11). Take for instance the Saint-Venant equations, which de-
scribes the propagation of shallow water in open channels where the horizontal scale
is much bigger than the vertical (see Figure 1.5). The flow can be given by a system
of two nonlinear hyperbolic equations [71]:

Ht + (HV )z = 0
Vt + (V 2/2 + gH)z + (CV 2/H − gSb) = 0 (1.8)

where H(t, z) is the water depth, V (t, z) is the horizontal water velocity, Sb is the
constant slope, g is the gravity acceleration and C is a constant friction coefficient.
Another example is shown in Figure 1.6 of the telegrapher equations which describe

Figure 1.5: Lateral view of a pool of an open channel with constant
bottom slope and rectangular cross section. [10]

the propagation of current and voltage along electrical transmission lines see ( [10],
page 18).

(LlI)t + Vz +RlI = 0
(ClV )t + Iz +GlV = 0. (1.9)

where I is the current, V is the voltage, Ll is the line self inductance per unit length,
Cl is the line capacitance per unit length and Rl is the resistance per unit length.
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Figure 1.6: Transmission line connecting a power supply to a resis-
tive load RL.

We notice that the dynamics of these types of systems are represented by one di-
mensional equations instead of three dimensional ones. The reason behind this is
that the dominant dynamics of the system occur mostly in one direction or coordi-
nate, so it is simpler and efficient to neglect the evolution occurring on the other two
axes.
Controlling hyperbolic systems, like any other type of system, means that we have
to ensure stability of the steady state. The main focus is on designing a controller
to achieve exponential stability over a one-dimensional real line interval. To define
exponential stability, we may refer to the Lyapunov definition which states that if we
start from any initial condition, the origin of the system converges to the steady state
exponentially fast. This is translated to mathematically expressing the energy of the
system by an Lp-norm and deriving sufficient conditions for which the time-evolution
of this norm decreases exponentially. This process is challenging and not straight-
forward, especially when dealing with nonlinear systems because the well-posedness
is not guaranteed. The choice of the type of the norm might be ambiguous and we
should often conduct several stability analysis to determine the best one.

1.4.2 Problem Statement and Motivation for the Stabilization of
Hyperbolic Equations

Let Dn
p be the set of real diagonal positive definite matrices of dimension n. Let n

be the number of the states of the system and m be the number of control inputs.
Consider the one-dimensional linear hyperbolic system of the form:

Xt(t, z) + ΛXz(t, z) = 0 (1.10)

where z 7→ X(·, z) ∈ Rn is the state , Λ ∈ Dp
n, t ∈ R≥0 and z ∈ (0, 1) are the two

independent variables, respectively, time and space. The linear boundary condition
of this system is given by the following expression:

X(t, 0) = HX(t, 1) +Bu(t) ∀t ∈ R≥0 (1.11)

where H ∈ Rn×n and B ∈ Rm are given. In this section, we present the results
already discussed and stated in [10, Page 86]. In particular, we compare the stability
analysis of (1.10), (1.11) in open (u = 0) and closed loop. Then, we present the same
stability analysis with a saturation at the boundary control. Let us first give the
following definition which will be later used.
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Definition 1.1 let M be a symmetric positive definite matrix. A matrix A is said
to be Schur with respect to M if:

A⊤MA−M ≤ 0

⋄

1.4.2.1 Exponential Stability in Open Loop

Let P ∈ Dn
p ,µ ∈ R>0. Consider the Lyapunov functional candidate V given by:

V (X) =
∫ 1

0
e−µzX⊤PXdz (1.12)

The formal computation of the time derivative of the Lyapunov function along the
solutions to (1.10) yields:

V̇ (X) =
∫ 1

0
e−µz(X⊤

t PX +X⊤PXt)dz = −
∫ 1

0
e−µz(X⊤

z ΛPX +X⊤PΛXz)dz

Since P and Λ are two diagonal matrices, we have PΛ = ΛP . Then, using integration
by parts, we have

V̇ (X) = −
∫ 1

0
e−µz(X⊤PΛX)zdz = −e−µzX⊤PΛX|10 − µ

∫ 1

0
e−µzX⊤PΛXdz

= X⊤(t, 0)PΛX(t, 0) − e−µX(t, 1)⊤PΛX(t, 1) − µ

∫ 1

0
e−µzX⊤PΛXdz

Using the boundary condition (1.11), we obtain:

V̇ (X) = X⊤(t, 1)(H⊤PΛH)X(t, 1)−e−µX⊤(t, 1)PΛX(t, 1)−µ

∫ 1

0
e−µzX⊤PΛXdz

(1.13)
Since Λ is constant and known, we can upper-bound the integral part of (1.13) by
replacing the matrix Λ with its minimum eigenvalue λmin(Λ) > 0. Thus, we obtain
the following expression of the time derivative of the Lyapunov functional.

V̇ (X) ≤ X⊤(t, 1)(H⊤PΛH − e−µPΛ)X(t, 1) − µλmin(Λ)
∫ 1

0
X⊤PΛXdz (1.14)

Thus, we conclude the final inequality:

V̇ (X) ≤ −µλmin(Λ)V +X⊤(t, 1)(H⊤PΛH − e−µPΛ)X(t, 1) (1.15)

The term µλmin(Λ) is positive which means that if the expression H⊤PΛH − e−µPΛ
is negative semi-definite, then global exponential stability will be guaranteed.

According to Definition 1.1, since e−µ ≤ 1 and PΛ is symmetric positive definite,
in the case where H is a Schur matrix with respect to PΛ, we can write:

V̇ (X) ≤ −µλmin(Λ)V .
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Thus, the open-loop system (1.10) is globally exponentially stable if H is Schur with
respect to PΛ. For n = 2 and suppose that the initial condition is given by

X0(z) =

(
cos 4πz − 1
cos 2πz − 1

)

and H is given by

H = a

(
1 0
0 1

)
where a is an arbitrary constant. Figure 1.7 shows the time evolution of the L2-norm
of the state X(t, z) depending on the values of a, which corresponds to the eigenvalues
of H. We notice that the stability performance weakens as a increases. Figure 1.8
shows that this norm diverges once a > 1. However, in many cases, we do not

Figure 1.7: Time evolution of the L2-norm of the state X(t, z) for
a = 0.1 (in blue solid line), a = 0.5 (in red dashed line), and a = 0.9

(in green circle-line)

have this condition. Therefore, in the case where the system is unstable, we have to
introduce a controller in order to stabilize our system and relax our constraints.
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Figure 1.8: Time evolution of the L2-norm of the state X(t, z) for
a = 1.1

1.4.2.2 Exponential Stability of the Closed-Loop System with Unsatu-
rated Control Law

We now implement a linear, static controller depending on the boundary value of the
state X(t, 1). The controller is unsaturated so this section will serve as a reference
to our upcoming work and we will compare it with the open-loop system to see the
efficiency of the boundary controller.

Consider the same system given in Section 1.4.2. We assume that the plant is
controlled at the boundary z = 0 using a static control law t 7→ u(t) = KX(t, 1) with
K ∈ Rm×n. Consider the given initial condition X0 : [0, 1] −→ IRn. We also assume
that the boundary point X(., 1) is the only measurable point. We have the following
closed-loop plant:

Xt(t, z) + ΛXz(t, z) = 0 ∀(t, z) ∈ R>0 × (0, 1)
X(t, 0) = HX(t, 1) +BKX(t, 1) ∀t ∈ R≥0

X(0, z) = X0(z) ∀z ∈ (0, 1)
(1.16)

The goal here is to design K such that the closed-loop system (1.16) is globally
exponentially stable.

We will consider the same Lyapunov function in (1.12). The formal computation
of the time derivative of the Lyapunov functional along the solutions to (1.16) yields:

V̇ (X) = X⊤(t, 0)PΛX(t, 0) − e−µX(t, 1)⊤PΛX(t, 1) − µ

∫ 1

0
e−µzX⊤PΛXdz

Then, we have:

V̇ (X) = X⊤(t, 1)[(H +BK)⊤PΛ(H +BK) − e−µPΛ]X(t, 1)
−µ

∫ 1
0 e

−µzX⊤PΛXdz

Similarly as in Section 1.4.2.1, we obtain the following inequality

V̇ ≤ −µλmin(Λ)V +X⊤(t, 1)MX(t, 1) (1.17)
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where
M = (H +BK)⊤PΛ(H +BK) − e−µPΛ (1.18)

To prove that the origin of the closed-loop system is globally exponentially stable,
we need to design K such that M is negative semidefinite matrix. Unfortunately,
M is nonlinear in the terms P and K which renders the problem inconvenient from
a numerical standpoint. The next step is to reformulate the stability problem as a
linear matrix inequality.

1.4.2.3 Linear Matrix Inequalities

Linear matrix inequalities, or LMIs, are inequalities that involve matrix variables
with linear terms and usually exhibit convex regions of feasibility. It is a critical
tool in control theory that we will be using extensively throughout the thesis to
formulate and solve our stability conditions. Usually, we may try to apply the Schur
Complement lemma which transforms nonlinear inequalities into LMIs [81]. We recall
the definition of Schur Complement lemma from [81, Page 34]

Definition 1.2 For n,m > 0, let Q ∈ Sn, R ∈ Sm and S ∈ Rn×m. The following
equivalency holds: [

Q S
S⊤ R

]
< 0 ⇐⇒ Q < 0

R− S⊤Q−1S < 0

⋄

Using Definition 1.2, the following holds for (1.18):{
[(H +BK)⊤PΛ(H +BK) − e−µPΛ] < 0

P > 0
⇐⇒

[
−PΛ H +BK

H⊤ +K⊤B⊤ −e−µPΛ

]
< 0

(1.19)
The nonlinearity due to the term e−µ is dealt with by performing a line search on µ.
Thus, we obtain a linear matrix inequality in terms of P and K which can be solved
numerically.

By observing (1.19), we can conclude that global exponential stability of the origin
of the closed-loop system (1.16) holds, if K is chosen such that the term H +BK is
Schur. We conclude that the Lyapunov approach provides a sufficient condition for
global exponential stability regardless of the value of H and for any initial condition.

In Chapter 2, we design a boundary controller under the effect of saturation
that renders the open-loop-stable hyperbolic system globally exponentially stable
and guarantee input-to-state stability with respect to some in-domain disturbances.
Unfortunately, using the L2 Lyapunov function, it seems that the stability problem
for local exponential stability is still an unanswered challenging task.

1.5 Parabolic Systems
Parabolic equations are partial differential equations which are widely used to math-
ematically describe the diffusion phenomena seen in heat conduction, population dy-
namics, electromagnetic waves and so on [40] [68] [42]. In particular, it models the
fluctuations in the density of materials undergoing movement generally from higher
concentration region to a lower one. This phenomena emerges to be of utmost im-
portance due to its presence in the fields of chemistry, physics, biology, economics,
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sociology and finance [50], [49], [29]. Whether we are studying the progressive heat-
ing of a slab, particles dissolving in a solvent, or pricing values, this gradient change
is modeled by parabolic systems. Those systems are represented by the following

Figure 1.9: Diffusion of particles in water.

equation:
wt(t, z) = (D(w(t, z)zw(t, z))z (1.20)

where w(t, z) is the density of the diffusing material through space z and time t and
D denotes the diffusion coefficient. Considering the diffusion coefficient is a constant
d independent of the density u, then we obtain Fick’s second law or the heat equation
in one-dimension (see Figure 1.10):

wt(t, r) = dwzz(t, z) (1.21)

The spatial operators that governs most parabolic equations usually admit a finite
number of slow, dominant eigenvalues and an infinite number of stable fast comple-
ment ones [28]. Thus, in the usual context of control of parabolic PDEs, a spec-
tral reduction approximates the system by a finite-dimensional ordinary differential
equation (see for example [4], [60], [43], [23]). Then, the ODE is used to design a
finite-dimensional controller. This is also called the Galerkin method for solving a
PDE [35].

1.5.1 Reaction-Diffusion Systems

In chemistry, the process in which chemical substances react together and spread
out over a common region is mathematically described by reaction-diffusion equa-
tions [70], [9]. This concept can also be applied in other scientific domains such
as ecology [36], physics [56], biology [27], population dynamics [50], Turing pattern
formation [8] and neural networks [41]. Recent applications on the spread of epi-
demics and viral diseases have captured universal interest for its application on the
Covid-19 epidemic [47], [46], [11], [15]. In this thesis, we are interested in the control
and stabilization theory of such systems. This topic has been a challenging problem
for control scientists and it has witnessed some major contributions using delayed
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Figure 1.10: One-dimensional heat conduction of a rod with a
boundary heat source.

boundary control methods [31] [43], and backstepping control [39], [17]. Let us intro-
duce the simple, one-dimensional reaction-diffusion equation with Dirichlet boundary
condition on the space z ∈ (0, l) with l > 0:

xt(t, z) = xzz(t, z) + qx(t, z)
x(t, 0) = 0 x(t, l) = 0
xz(t, 1) = x0(z)

(1.22)

where q is an arbitrary constant. When system (1.22) is in open-loop (u(t) = 0),
Lyapunov stability analysis conducted on the spectral projection of the PDE reveals
that the plant is unstable due to the presence of the term qx(z, t) with the number
of unstable eigenvalues dependent on how large is q. For an initial condition given by
x0(z) = z2, Figure 1.11 shows the unstable evolution of the H1-norm of the state
x(t, z) through time. Thus, an adequate controller needs to be designed to stabilize
system (1.22). In this work, we use the method of input-output feedback control that
will be further discussed.

1.5.2 Input-Output Feedback Control Problem

One of the most important problems in control theory is global stabilization by means
of output-feedback control. While the problem of the input-output stability (IOS)
property with respect to domain or boundary disturbances has been widely inves-
tigated in the general context of finite-dimensional linear time-invariant (LTI) con-
trol systems and is considered classical, its extension to distributed parameter sys-
tems is a challenge and is still an open problem. Recently, several works on the
IOS property extension to PDEs [77], [20] and output-feedback control extensions to
PDEs [76], [18], [78], [82] have been published.

From a practical point of view, there is an emphasized interest in designing
finite-dimensional feedback control for infinite-dimensional DPS mainly because the
controllers must be implemented by online digital computers with finite memory-
access time and finite wordlength. In past work, finite-dimensional approximations of
an infinite-dimensional system was obtained to design controllers on those so-called
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Figure 1.11: H1-norm of the state x(t, z) for an unstable open-loop
heat equation.

reduced-order models [5], [58], [54]. However, we cannot theoretically guarantee the
stability of the closed-loop system consisting of the actual DPS and the reduced or-
der controller. In contrast, the controller synthesis here is considered with respect
to a closed-loop system consisting of the infinite-dimensional system and the finite-
dimensional control system. In particular, we propose, for the first time, an output
feedback control design procedure to achieve the input-output stability (IOS) of a
reaction-diffusion system by means of a finite-dimensional, LTI control system.

1.6 Outline of the thesis
We now give an overview of the next four chapters presented in this thesis:

1.6.1 Chapter 2: Design of Saturated Boundary Control for Hyper-
bolic systems with in-domain disturbances

In Chapter 2, we focus on systems of one-dimensional conservation laws modeled as
a system of linear hyperbolic PDEs and study this class of hyperbolic systems in
the presence of nonlinear control laws [65] as well as an in-domain exogenous distur-
bance [25]. We consider a classical saturation function and we present a systematic
approach to design static boundary controllers to ensure closed-loop exponential sta-
bility and robustness with quantifiable margins with respect to in-domain energy
bounded disturbances. To achieve this goal, we first prove the existence and unique-
ness of solution to our closed-loop system. Then, we prove global exponential stability
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by using a sector condition and a suitable Lyapunov functional. The proposed con-
ditions are embedded into a convex optimization setup to enable the design of a
controller minimizing the effect of the disturbance on the closed-loop system.

The chapter is organized as follows. Section 2.1 illustrates the problem we solve
and defines the notion of solution we use. Section 2.2 tackles the well-posedness of
the closed-loop system using properties of non-accretive operators. Section 2.3 is
dedicated to Lyapunov analysis and provides the sufficient conditions for stability.
Furthermore, it presents the control design problem in the sense of an optimization
problem, which gives an optimal control gain. Section 2.4 validates the effectiveness
of the proposed design algorithm through a numerical example.

1.6.2 Chapter 3: Output Feedback Control of a Reaction-Diffusion
Equation with In-domain Disturbances

In Chapter 3, the considered reaction-diffusion plant, which is unstable, is modeled
by a Sturm-Liouville operator as classically introduced in the context of parabolic
partial differential equation (see [55]). We focus on a boundary control input along
with a Dirichlet boundary measurement and regulated output. This configuration is
interesting from a practical engineering perspective. This renders our problem more
challenging since it requires to deal with unbounded control operators. Further-
more, the disturbance is in-domain. The proposed control design strategy is based
on performing Lyapunov stability analysis on a closed-loop system consisting of the
partitioned reaction-diffusion equation and an output-feedback finite-dimension LTI
control system. It is important to note that when Dirichlet boundary conditions are
considered for the control input and to-be-regulated output respectively, the solu-
tions need to be sufficiently regular. However, our conditions do not need further
regularity than the one required by the existence results of classical solutions. The
main result of this chapter is a set of matrix inequalities, which constitutes sufficient
conditions for the input-output stability of the reaction-diffusion plant with respect
to in-domain disturbances. We use a predefined change of variable to linearize the
matrix inequalities and propose an algorithm to compute the control gain matrices.
Finally, we use numerical examples to assess the feasibility of the sufficient conditions
as a function of the order of the finite-dimensional controller.

The chapter is organized as follows. Section 3.1 presents the general properties
of the Sturm-Liouville operator. Section 3.2 introduces the reaction-diffusion plant
with Dirichlet measurement and Dirichlet regulated output. The spectral reduction
of the given plant is then partitioned into a stable finite-dimensional system and an
unstable infinite-dimensional system. Section 3.3 presents the general framework for
the output-feedback control problem by means of a finite-dimensional LTI control
system. The problem of input-output stability is explicitly stated. In Section 3.4,
the Lyapunov stability analysis is studied to derive sufficient conditions in the form
of matrix inequalities. Section 3.5 proposes a method to transform the results into
linear matrix inequalities and an optimization problem to minimize the effect of the
IOS gain on the dissipation inequality of the output. In Section 3.6, we propose a
numerical example that illustrates the efficiency and validity of our results.
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1.6.3 Chapter 4: Saturated Control Design for a Reaction-Diffusion
Equation with Anti-windup Compensator

In Chapter 4, we reconsider the same reaction-diffusion PDE presented in Chapter
3. We study the stabilizability problem of the unstable infinite-dimensional equa-
tion in the presence of in-domain disturbances using a distributed saturated control.
The general framework for the design of the control law is based on H1 Lyapunov
stability analysis of the closed-loop system composed by the reaction-diffusion plant
and a dynamic control plant where the output of the control plant is plugged into a
saturation function. Obviously, the saturation constraint leads to loss of the global
stability property derived in the previous chapter.

The first result is the design of a saturated output feedback dynamic controller
which locally exponentially stabilizes the unstable reaction-diffusion equation and
evaluation of the region of attraction for the closed-loop system. We also provide
input-output stability properties with respect to the in-domain disturbances. The
sufficient conditions needed for the estimation of the region of attraction and output
decay rates are derived in the form of linear matrix inequalities using Lyapunov
techniques.

The second result is the design of an anti-windup compensator, which is intro-
duced into the closed-loop system and evaluation of a new region of attraction for the
local exponential stability of the origin of the new system. This addition is done to
compensate for the negative impacts on the region of attraction and stability gains
caused by the saturation limitation. We note that this is the first work dealing with
anti-windup design on distributed parameter system.

The chapter is divided as follows: Section 4.1 presents the reaction-diffusion equa-
tion with the distributed controller, defines the saturation function, and provides
the spectral decomposition of the PDE into an unstable finite and stable infinite-
dimensional systems4.2 presents the closed-loop system layout with the dynamic
output feedback control system. An estimation of the region of attraction for the
finite closed-loop system is provided and used to conclude that of the overall infinite-
dimensional system. Sufficient conditions for the problem of input-output local ex-
ponential stability are derived. Lyapunov functions are used to come up with the
sufficient conditions as quadratic conditions. A control synthesis method is proposed
to transform the quadratic conditions into linear matrix inequalities which can be
exploited numerically. Finally, optimization problems are formulated to find optimal
region of attraction and optimal performance levels. Section 4.3 introduces the anti-
windup compensator to enhance the system behavior in closed-loop. Assuming the
control parameters are given from the previous section, we repeat all the steps done
in the previously to derive the appropriate Anti-windup parameters that renders the
closed-loop system locally exponentially stable. The numerical results in Section val-
idates the stability properties found and illustrates the efficiency of the anti-windup
approach in terms of enhancing the performance levels and enlarging the region of
attraction. Section 4.5 presents some concluding remarks.

1.6.4 Chapter 5: Conclusion and Perspectives

Chapter 5 offers a resume to the work done in this thesis and a general conclusion for
each chapter. Furthermore, it opens horizon and perspectives for possible extensions
and future research on the subject of control of partial differential equations.
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Chapter 2

Design of Saturated Boundary
control for Hyperbolic Systems
with in-domain Disturbances

Studies on the well-posedness of infinite-dimensional systems in the presence of non-
linearities have been presented in [7] [75], and [6] based on semigroup theory. In [32],
the authors make use of infinite-dimensional linear systems theory to rewrite a linear
PDE and interconnect it with a static nonlinearity. Only few papers study the well-
posedness of hyperbolic PDEs in the presence of saturated boundary nonlinearity.
More specifically, [59] considers the wave equation, whereas [22] analyses the stability
of BV solutions.

The aim of this chapter is to provide a boundary feedback control design for 1D
hyperbolic systems with an in-domain disturbance and a boundary feedback con-
troller under the effect of actuator saturation. Nonlinear semigroup theory is used
to prove well-posedness of mild solution pairs to the closed-loop system. Sufficient
conditions in the form of dissipation functional inequalities are derived to establish
global stability for the closed-loop system and L2-stability in presence of in-domain
disturbances. The control design problem is then recast as an optimization problem
over linear matrix inequality constraints. Numerical results are shown to validate the
effectiveness of the proposed control design. This chapter has been partially presented
at IFAC World Congress 2020 [65] and appeared in Automatica as a journal paper in
2022 [66].

2.1 Problem Statement

2.1.1 Problem setup

We consider the boundary feedback control of the following n linear 1-D hyperbolic
PDEs formally written as:

Xt(t, z) + ΛXz(t, z) = Nd(t, z) ∀(t, z) ∈ R≥0 × (0, 1)
X(t, 0) = HX(t, 1) +Bσ(u(t)) ∀t ∈ R≥0
X(0, z) = X0(z) ∀z ∈ (0, 1)

(2.1)

where t ∈ R≥0 and z ∈ (0, 1) are the two independent variables, respectively, time and
space, z 7→ X(·, z) ∈ Rn is the state, and z 7→ d(·, z) ∈ Rq is an exogenous in-domain
disturbance. We assume also that the matrices Λ ∈ Dn

p , H ∈ Rn×n, B ∈ Rn×m and
N ∈ Rn×q are given and that the state X(·, z) is measurable only at the boundary
point z = 1. Specifically, the measurable output of the system reads as y = X(·, 1).
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Let u := KX(·, 1) where K ∈ Rm×n is the control gain to be designed and the
function u 7→ σ(u) is the symmetric decentralized saturation function with saturation
levels u1,u2, . . . ,um ∈ R>0, whose components for each u ∈ Rm are defined as:

σ(u)i = σ(ui) := min(|ui|,ui)sign(ui) i = 1, 2, . . . ,m (2.2)

Our goal is to design the gain K to induce closed-loop stability with quantifiable
convergence rate and robustness margins with respect to the exogenous input d. For
convenience, we define the function u 7→ ϕ(u) which is the symmetric decentralized
dead-zone nonlinearity function given by the following expression (see [72, Page 40]):

ϕ(ui) := σ(ui) − ui (2.3)
where ϕ : Rm −→ Rm. By setting Hcl := H +BK, the closed-loop system turns into:

Xt(t, z) + ΛXz(t, z) = Nd(t, z) ∀(t, z) ∈ R>0 × (0, 1)
X(t, 0) = HclX(t, 1) +Bϕ(KX(t, 1)) ∀t ∈ R≥0
X(0, z) = X0(z) ∀z ∈ (0, 1)

(2.4)

2.1.2 Notion of the Solutions to the Closed-loop System
Before conducting the Lyapunov stability analysis to design a stabilizing control gain, one
must first check if the Cauchy problem (2.4) is well-posed. In other words, one must prove
that the solution X to (2.4) exists, is unique, and depends continuously on the initial value
X0 satisfying the compatibility conditions. As classically done in [19] and [57], we reformulate
the closed-loop system (2.4) as an abstract Cauchy problem.

Consider now the following operators defined, respectively, on the Hilbert spaces L2(0, 1; Rn)
and L2(0, 1; Rq) equipped with their respective standard inner products:

A :D(A) −→ L2(0, 1; Rn)

X 7→ −ΛXz(z)

N :L2(0, 1; Rq) −→ L2(0, 1; Rn)

d 7→ Nd

(2.5)

where
D(A) := {X ∈ H1(0, 1; Rn);X(0) = HclX(1) +Bϕ(KX(1))}

Then, the closed-loop dynamics can be formally written as the following abstract system with
state X ∈ L2(0, 1; Rn) and exogenous input d ∈ L2(0, 1; Rq)

Ẋ = AX + Nd (2.6)

If A is linear (ϕ(KX(t)) = 0), we can use the Lumer-Philips Theorem [57, Page 14] to prove
that A is an infinitesimal generator of a C0-semigroup of contractions on L2(0, 1; Rn) by
proving that A is dissipative and that there exists λ0 > 0 such that the range of (λ0I +A) is
equal to the state-space L2(0, 1; R). Referring to [57, Page 109, Theorem 2.9], one can deduce
the existence and uniqueness of a classical solution by imposing d ∈ C1([0,T ]; L2(0, 1; R)).

Unfortunately, due to the presence of saturation limitation at the boundary condition,
the Cauchy problem is considered nonlinear (or semi-linear) and we are forced to deal with
less regular notion of solution. In particular, as in [7], we focus on mild solution pairs to (2.1).
We recall the definition of a mild solution pair to (2.6) introduced in [7, Definition 4.3, Page
120]:
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Definition 2.1 A mild solution pair for the system (2.6), with the initial condition X(0, z) =
X0 is a pair (X, d) satisfying the following: functions X ∈ C1(domX; L2(0, 1; Rn)) and d ∈
L1(domd, L2(0, 1; Rq)) where 1domX = domd is an interval of R≥0 including zero. In addition,
for each ϵ > 0, there exists an ϵ-approximate solution2 ζ of the abstract system

Ẋ = AX + Nd

such that the following holds
∥X(t) − ζ(t)∥ ≤ ϵ

for all t ∈ domX. ⋄

In what follows, we use the shorthand notation L2
i instead of L2(0, 1; Ri) for simplification

purposes.
Now, we state the problem we solve in this chapter:

Problem 2.1 Given H ∈ Rn×n,B ∈ Rn×m, N ∈ Rn×q, and Λ ∈ Dn
p . Design K such

that for some κ, ω, γ ∈ R>0 and for each mild solution pair (X, d) to (2.6) one has, for all
t ∈ domX:

∥X(t)∥L2
n

≤ κe−ωt ∥X0∥L2
n
+ γ

√∫ t

0
∥d(θ)∥2

L2
q
dθ (2.7)

⋄

Inequality (2.7) corresponds to a classical input-to-state-stability (ISS) bound for the abstract
closed-loop system (2.6). Sufficient conditions to ensure ISS for infinite-dimensional systems
are given in [37] and [51]. The main contribution of this paper is to perform an optimal design
of the control design of the control gain K in order to minimize the ISS gain γ. In Section
2.3, we provide sufficient conditions to get an explicit estimate of the ISS gain γ.

2.2 Well-posedness of the Closed-Loop System

In this section, we state the well-posedness of the closed-loop system (2.6). Let us start by
defining the notion of non-accretive operator inspired by [7, Definition 3.1, Page 97]:

Definition 2.2 An operator A from D(A) to L2(0, 1; Rn) is said to be non-accretive with
respect to an inner product ⟨·, ·⟩ if for every pair (X1,X2) ∈ D(A) × D(A), the following
inequality holds:

⟨AX1 − AX2,X1 −X2⟩ ≤ 0 (2.8)

⋄

Inspired by [10, Appendix A, Page 224], let us introduce the following inner product on
L2(0, 1; Rn):

⟨X1,X2⟩µ :=
∫ 1

0
eµzX⊤

1 X2dz (2.9)

where µ > 0 will be selected later. It is noted that this inner product is equivalent to the
standard inner product in L2 since the function z 7→ eµz is bounded from below and above
on [0, 1]. We now use the previous definition to apply it on a suitable operator which will be
vital in proving the uniqueness and existence of mild solution pairs to (2.6).

Proposition 2.1 There exist µ > 0 and ρ ∈ R such that the operator A+ ρI is non-accretive
(with respect to the scalar product ⟨·, ·⟩µ). ⋄

Proof. Let X1,X2 ∈ D(A), X̃ = X1 −X2 ∈ D(A) and ϕ̃ = ϕ(KX1(1))−ϕ(KX2(1)) ∈ Rm.
Let us prove (2.8) for the operator A + ρI for a suitable choice of µ. First we can write the
following:

⟨(A + ρI)X̃, X̃⟩µ = ⟨AX̃, X̃⟩µ + ρ⟨X̃, X̃⟩µ

1domd and domX can be either [0, T ] or [0, ∞).
2The definition of ϵ-approximate solution is found in 2.4
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where
⟨AX̃, X̃⟩µ = −

∫ 1

0
eµzX̃⊤ΛX̃zdz

Using an integration by parts, we have:

⟨AX̃, X̃⟩µ = −1
2e

µzX̃⊤ΛX̃
∣∣∣1
0
+

1
2µ
∫ 1

0
eµzX̃⊤ΛX̃dz

Thanks to the boundary condition in (2.4), we have:

⟨AX̃, X̃⟩µ = −1
2

(
eµX̃(1)⊤ΛX̃(1) − (HclX̃(1) +Bϕ̃)⊤Λ(HclX̃(1) +Bϕ̃)

)
+

1
2µ⟨X̃, X̃⟩µ

(2.10)

We can rewrite the previous equation as:

⟨AX̃, X̃⟩µ =
1
2X ⊤

(
H⊤

cl ΛHcl − eµΛ H⊤
cl ΛB

∗ B⊤ΛB

)
X +

1
2µ⟨X̃, X̃⟩µ (2.11)

where X :=
(
X̃(1)
ϕ̃

)
. Hence, recalling that ϕ is 1-Lipschitz continuous 3, one has:

X ⊤
(

−K⊤K 0
∗ I

)
X ≤ 0

which by using, (2.11) gives:

⟨AX̃, X̃⟩µ ≤1
2X ⊤

(
H⊤

cl ΛHcl − eµΛ + τK⊤K H⊤
cl ΛB

∗ B⊤ΛB − τI

)
X +

1
2µ⟨X̃, X̃⟩µ (2.12)

for any τ > 0. Pick τ such that B⊤ΛB − τI ≤ −I. Thus, we can write

⟨AX̃, X̃⟩µ ≤1
2X ⊤

(
H⊤

cl ΛHcl − eµΛ + τK⊤K H⊤
cl ΛB

∗ −I

)
X +

1
2µ⟨X̃, X̃⟩µ (2.13)

Now, consider the following matrix:

Ω :=
(
H⊤

cl ΛHcl − eµΛ + τK⊤K H⊤
cl ΛB

∗ −I

)
From the Schur-complement lemma (see [81, Page 34, Theorem 1.12]), one has that Ω < 0 if
and only if the following conditions hold

H⊤
cl ΛHcl − eµΛ + τK⊤K < 0

−I − (B⊤ΛHcl)(H
⊤
cl ΛHcl − eµΛ + τK⊤K)−1(H⊤

cl ΛB) < 0 (2.14)

Pick µ such that:

µ > ln
(∥∥∥∥H⊤

cl ΛHclΛ−1 + τK⊤KΛ−1 +
∥∥∥H⊤

cl ΛB
∥∥∥2

Λ−1
∥∥∥∥) (2.15)

Thus, both conditions of (2.14) hold and Ω < 0. Finally, choose ρ < −1
2µ and thus, (2.8)

holds and the proof is concluded. □
Following the work of [7, Page 97], we now prove that the non-accretive operator A + ρI

enjoys the following property:

Proposition 2.2 There exists ρ ∈ R such that for all λ > 0, the following range property
holds

Ran(I + λ(A + ρI)) = L2(0, 1; Rn) (2.16)
3This follows from the fact ϕ is continuous and piecewise linear with a slope bounded by 1.
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where Ran stands for the range. ⋄

Proof. We know that
Ran(I + λ(A + ρI)) ⊂ L2(0, 1; Rn)

Let us prove that
Ran(I + λ(A + ρI)) ⊃ L2(0, 1; Rn) (2.17)

Pick any f ∈ L2(0, 1; Rn), we show that there exists X ∈ D(A) such that

(I + λ(A + ρI))X = f

The above statement is equivalent to checking the existence of solution to the following
boundary value problem:

IρX(z)−λΛXz(z) = f(z) ∀z ∈ (0, 1)
X(0) = HclX(1) +Bϕ(KX(1)) (2.18)

where Iρ := (1 + λρ)I. The solution for the first line of (2.18) is given by:

X(z) = e
1
λ Λ−1IρzX(0)−

∫ z

0
e

1
λ Λ−1Iρ(z−s) 1

λ
Λ−1f(s)ds ∀z ∈ (0, 1) (2.19)

In particular, one has:

X(1) =e
1
λ Λ−1IρX(0)−

∫ 1

0
e

1
λ Λ−1Iρ(1−s) 1

λ
Λ−1f(s)ds = : gλ(X(0))

Then, the boundary condition is rewritten as:

X(0) = Hclgλ(X(0)) +Bϕ(Kgλ(X(0)) (2.20)

Therefore, (2.18) has a solution if and only if there exists X(0) satisfying (2.20). Let us
introduce the following map:

T : Rn −→ Rn

c 7→ Hclgλ(c) +Bϕ(Kgλ(c))
(2.21)

Now, we show that this is the case by using Banach fixed point theorem [13, Page 138] to T .
In order to show that T is a contraction, let us first write that

gλ(c1) − gλ(c2) = e
1
λ Λ−1Iρ(c1 − c2) ∀c1, c2 ∈ Rn (2.22)

Since ϕ is a 1-Lipschitz continuous function, it follows that for all c1, c2 ∈ Rn:

|ϕ(Kgλ(c1)) − ϕ(Kgλ(c2))| ≤ |K(gλ(c1) − gλ(c2))|

which, using (2.22), gives:

|ϕ(Kgλ(c1)) − ϕ(Kgλ(c2))| ≤ |K(e
1
λ Λ−1Iρ(c1 − c2))| (2.23)

Using (2.21), (2.22), and (2.23), we get:

|T (c1) − T (c2)| = |Hclgλ(c1) +Bϕ(Kgλ(c1)) −Hclgλ(c2) −Bϕ(Kgλ(c2))|
≤ |Hcl(gλ(c1) − gλ(c2))| + |B(ϕ(Kgλ(c1)) − ϕ(Kgλ(c2)))|

≤ |Hcl(e
1
λ Λ−1Iρ(c1 − c2))| + |BK(e

1
λ Λ−1Iρ(c1 − c2))|

≤
(∥∥∥Hcle

1
λ Λ−1Iρ

∥∥∥+ ∥∥∥BKe 1
λ Λ−1Iρ

∥∥∥) |c1 − c2|
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Let α =
∥∥∥Hcle

1
λ Λ−1Iρ

∥∥∥+ ∥∥∥BKe 1
λ Λ−1Iρ

∥∥∥. We have:

α ≤(∥Hcl∥ + ∥BK∥)
∥∥∥e 1

λ Λ−1Iρ

∥∥∥ ≤ e
λρ

λmax(Λ)λ (∥Hcl∥ + ∥BK∥) (2.24)

where λmax(Λ) is the largest eigenvalue of the matrix Λ. Pick ρ ∈ R small enough, such that
e

ρ
λmax(Λ) (∥Hcl∥ + ∥BK∥) < 1. Then, we have that 0 < α < 1. The proof is concluded □

The main result of this section is presented in the following theorem where we show that
the system is well-posed.
Theorem 2.1 For every initial state X0 ∈ L2(0, 1; Rn), d ∈ L1(domd; L2(0, 1; Rq)), the
closed-loop system (2.4) admits a unique mild solution pair (X, d) ∈ C1(domX; L2(0, 1; Rn))×
L1(domd; L2(0, 1; Rq)) such that X(0, z) = X0. ⋄

Proof. The choice of X0 ∈ L2
µ(0, 1; Rn) is equivalent to X0 ∈ L2(0, 1; Rn) where L2

µ is
defined by the norm induced by the scalar product in (2.9). By means of Propositions 2.1
and 2.2, the operator A + ρI is m-non-accretive and thus, the Cauchy problem (2.4) has a
unique mild solution pair, (see [3, Theorem A.26, Page 286] and [7, Page 97]). □

Definition 2.3 In [7, Page 127], a strong solution pair to (2.6) is defined as a pair (X, d) ∈
(W 1,1(domX; L2(0, 1; Rn)) ∩ C1(domX; L2(0, 1; Rn))) × L1(domd; L2(0, 1; Rq)) such that

dX

dt
(t) + AX(t) = Nd(t) t ∈ domX,

X(z, 0) = X0

where X0 ∈ L2(0, 1; Rn) and with domX = domd. ⋄

In the remaining part of this section, we restrict the focus on the perturbation
d ∈ L2(domd; L2(0, 1; Rn)) which is instrumental for the derivation of stability results of
Section 2.3. The following proposition is crucial for the stability analysis Section 4.1, in
which the mild solution pair (X, d) can be approximated point-wise via a sequence of strong
solution pairs (2.6).
Proposition 2.3 Let (X, d) be a mild solution pair to (2.6) and t ∈ domX. There exists a
sequence of strong solution pair {(Xk, dk)}k∈N such that:

Xk(t)
L2(0,1;Rn)−−−−−−−→

k−→∞
X(t) (2.25)

dk L2(0,t;L2(0,1;Rq))−−−−−−−−−−−−→
k−→∞

d (2.26)

with domXk =]0, t] and for all k ∈ N. ⋄

Proof. Let (X, d) ∈ L2(0, t, L2(0, 1; Rn))× L2(0, t, L2(0, 1; Rq)) be a mild solution pair to
(2.6). Pick {dk}k∈N ⊂ C∞

c (0, t, L2(0, 1; Rq)) such that, one has:

dk L2(0,t;L2(0,1;Rq))−−−−−−−−−−−−→
k−→∞

d (2.27)

Since D(A) is dense in L2(0, 1; Rn), then there exists a sequence {Xk
0 }k∈N ⊂ D(A) such

that
Xk

0
L2(0,1;Rn)−−−−−−−→

k−→∞
X0 (2.28)

We know that a strong solution pair to (2.4) is also a mild solution pair. Moreover, A is
ρ-non-accretive, X0 ∈ D(A), and since (X, d), {(Xk, dk)}k∈N are mild solutions to (2.4).
Therefore, from [7, Theorem 4.1, Page 130], it holds:∥∥∥X(t) −Xk(t)

∥∥∥
L2

n

= eρt
∥∥∥X0 −Xk

0

∥∥∥
L2

n

+

∫ t

0
eρ(t−τ )[X(τ ) −Xk(τ ), d(τ ) − dk(τ )]sdτ
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where for functions x, y in real Banach spaces, [·, ·]s is the directional derivative of the function
x −→ ∥x∥ in the direction y, defined by

[x, y]s := lim
λ−→0

∥x+ λy∥ − ∥x∥
λ

Using [7, Proposition 3.7, (iv)], one has

−
∥∥∥d(τ ) − dk(τ )

∥∥∥
L2

q

≤ [X(τ ) −Xk(τ ), d(τ ) − dk(τ )]s ≤
∥∥∥d(τ ) − dk(τ )

∥∥∥
L2

q
(2.29)

Then using the previous statement, one has:∥∥∥X(t) −Xk(t)
∥∥∥

L2
n

≤ eρt
∥∥∥X0 −Xk

0

∥∥∥
L2

n

+

∫ t

0
eρ(t−τ )

∥∥∥d(τ ) − dk(τ )
∥∥∥

L2
q

dτ (2.30)

Since the term
∥∥d(τ ) − dk(τ )

∥∥
L2

q
is convergent as we can see in (2.27-(2.28), we have:

lim
k−→∞

∫ t

0
eρ(t−τ )

∥∥∥d(τ ) − dk(τ )
∥∥∥

L2
q

dτ ≤
∫ t

0
eρ(t−τ ) lim

k−→∞

∥∥∥d(τ ) − dk(τ )
∥∥∥

L2
q

dτ (2.31)

So taking the limit as k −→ ∞ in (2.30), one has:

lim
k−→∞

∥∥∥X(t) −Xk(t)
∥∥∥

L2
n

≤ eρt lim
k−→∞

∥∥∥X0 −Xk
0

∥∥∥
L2

n

+

∫ t

0
eρ(t−τ ) lim

k−→∞

∥∥∥d(τ ) − dk(τ )
∥∥∥

L2
q

dτ
(2.32)

Thus, from (2.27), (2.28), (2.31) and (2.32), we can infer that

lim
k−→∞

Xk(t)
L2(0,1;Rn)

= X(t) (2.33)

and the proof is concluded. □

2.3 Stability Analysis and Control Design

This section contains results on the L2-stability analysis to achieve closed-loop exponential
stability. This is done first by proposing sufficient conditions and then constructing a Lya-
punov functional to derive those sufficient conditions in the form of functional inequalities.

2.3.1 Sufficient Conditions
The following section presents the sufficient conditions for the solution to Problem 2.1 using
a dissipation inequality. This is done by proving the following proposition:

Proposition 2.4 Assume that there exists a Fréchet differentiable functional V : L2(0, 1; Rn) −→
R≥0 and c1, c2, c3,χ ∈ R>0 such that for each d ∈ L2(0, 1; Rq) and ζ ∈ D(A).

c1 ∥ζ∥2
L2

n
≤ V (ζ) ≤ c2 ∥ζ∥2

L2
n

(2.34)

DV (ζ)(Aζ + Nd) ≤ −c3V (ζ) + χ2 ∥d∥2
L2

q
(2.35)

Let (X, d) be a mild solution pair to (2.6). Then, for all t ∈ domX, one has:

∥X(t)∥L2
n

≤e− c3
2 t

(
c2
c1

) 1
2

∥X0∥L2
n
+

χ
√
c1

√∫ t

0
∥d(θ)∥2

L2
q
dθ (2.36)

⋄
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Proof. First we show that the above results hold for all strong solution pairs to (2.6).
More precisely, we consider solution pair domX ∋ t 7→ (X(t), d(t)) to (2.6) and assume that
X(0) ∈ D(A), d ∈ L1(domd; L2(0, 1; Rq)). Then, since, as shown in the proof of Proposition
2.1, A is ρ-non-accretive, one has that (X, d) is a strong solution pair (this is proved in
[7, Theorem 4.14]). More precisely, one has that X ∈ C1(domX, L2(0, 1; Rn)), and for all
t ∈ domX:

Ẋ(t) = AX(t) + Nd(t) (2.37)

where X(t) ∈ D(A). Now, consider the following function:

W : domX −→ R

t 7→ (V ◦X)(t)
(2.38)

Then, since V : L2(0, 1; Rn) −→ R≥0 is Fréchet differentiable everywhere and X : domX −→
L2(0, 1; Rn) is differentiable almost everywhere, it follows that for almost all t ∈ domX:

Ẇ(t) = DV (X)Ẋ(t)

which thanks to (2.37) yields for almost all t ≥ 0

Ẇ(t) = DV (X)(AX(t) + Nd(t))

Thus, using (2.35) one gets for almost all t ∈ domX

Ẇ(t) ≤ −c3W(t) + χ2 ∥d(t)∥2
L2

q

Therefore, since W is continuous on domX, from the comparison principle (see Definition 2.6)
we have that:

W(t) ≤ e−c3tW(0) + χ2
∫ t

0
e−c3(t−θ) ∥d(θ)∥2

L2
q
dθ

At this stage, notice that for all t ∈ domX, one has:∫ t

0
e−c3(t−θ) ∥d(θ)∥2

L2
q
dθ ≤

∫ t

0
∥d(θ)∥2

L2
q
dθ

which allows one to conclude that for all t ∈ domX

W(t) ≤ e−c3tW(0) + χ2
∫ t

0
∥d(θ)∥2

L2
q
dθ

Finally by using (2.34), it follows that for almost all t ∈ domX

∥X(t)∥L2
n

≤ e− c3
2 t

√
c2
c1

∥X0∥L2
n
+

χ
√
c1

√∫ t

0
∥d(θ)∥2

L2
q
dθ (2.39)

Now we conclude the proof by showing that the above bound holds also for mild solution
pairs to (2.6). Let (X, d) be any solution pair. By applying Proposition 3, there exists a
sequence of strong solution pairs {(Xk, dk)}k∈N such that (2.25) and (2.26) hold. Then, for
all k ∈ N, thanks to (2.39), one has for all t ∈ domX

∥∥∥Xk(t)
∥∥∥

L2
n

≤ e− c3
2 t

√
c2
c1

∥∥∥Xk
0

∥∥∥
L2

n

+
χ

√
c1

√∫ t

0

∥∥dk(θ)
∥∥2

L2
q
dθ

Taking the limit for k −→ ∞, due to (2.25)-(2.26), one has for all t ∈ domX

∥X(t)∥L2
n

≤ e− c3
2 t

√
c2
c1

∥X0∥L2
n
+

χ
√
c1

√∫ t

0
∥d(θ)∥2

L2
q
dθ

This concludes the proof. □
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Remark 2.1 Proposition 4 provides sufficient conditions for input-to-state stability for the
closed-loop system in the form of a functional inequality. This provides an elegant general-
ization to abstract dynamical systems of the well-known ISS dissipation inequality for finite-
dimensional nonlinear systems; see, e.g [69]. It is interesting to observe that the gradient of
V is replaced in (2.35) by the Fréchet derivative. ◦

2.3.2 Quadratic Conditions
Let us define the following global sector condition which will be useful in the upcoming
Lyapunov analysis computations.

Lemma 2.1 [72, Page 41] For all ν ∈ Rm, the nonlinearity ϕ(ν) satisfies the following
inequality:

ϕ(ν)⊤T (ϕ(ν) + ν) ≤ 0 (2.40)

for any diagonal matrix T ∈ Dm
p . ⋄

The following theorem provides sufficient conditions in the form of matrix inequalities under
which Problem 2.1 admits a feasible solution.

Theorem 2.2 If there exist P ∈ Dn
p , T ∈ Dm

p , µ,χ,α ∈ R>0, and Γ ∈ Sn
p such that the

following hold: (
H⊤

clPΛHcl − e−µPΛ H⊤
clPΛB −K⊤T

∗ B⊤PΛB − 2T

)
≤ 0 (2.41)(

Γ PN
∗ χ2I

)
≥ 0 (2.42)

P (αI − µΛ) + Γ ≤ 0 (2.43)

Then, K solves Problem 2.1 and in particular (2.7) holds with

ω = α
2 , κ =

√
λmax(P )
λmin(P )

e
µ
2 , γ = χ

λmin(P )
e

µ
2 (2.44)

⋄

Proof. Similarly as in [10], consider the following Lyapunov functional

V :L2(0, 1; Rn) −→ R

X 7→
∫ 1

0
e−µz⟨X(z),PX(z)⟩Rndz

(2.45)

with the same µ defined in (2.9) and observe that for each X ∈ L2(0, 1; Rn), one has

c1 ∥X∥2
L2

n
≤ V (X) ≤ c2 ∥X∥2

L2
n

(2.46)

where c1 := e−µλmin(P ) and c2 := λmax(P ) are strictly positive. As done in [26], for each
X ∈ D(A), d ∈ L2(0, 1; Rq) one has

DV (X)(AX + Nd) =

∫ 1

0
e−µz

(
−2Xz(z)

⊤ΛPX(z) + 2d(z)⊤N⊤PX(z)
)
dz

Since P , Λ ∈ Dn
p , one has that∫ 1

0
−2e−µzXz(z)

⊤ΛPX(z)dz = −
∫ 1

0
e−µz d

dz

(
X(z)⊤PΛX(z)

)
dz

Using integration by parts, the following holds

DV (X)(AX + Nd) = −e−µzX(z)⊤PΛX(z)
∣∣∣1
0

− µ

∫ 1

0
e−µzX(z)⊤PΛX(z)dz +

∫ 1

0
2e−µzd(z)⊤N⊤PX(z)dz
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Since X ∈ D(A), one gets

DV (X)(AX + Nd) =X ⊤
(
H⊤

clPΛHcl − e−µPΛ H⊤
clPΛB

∗ B⊤PΛB

)
X

+

∫ 1

0
e−µz

(
X(z)
d(z)

)⊤(−µPΛ PN
∗ 0

)(
X(z)
d(z)

)
dz

where X :=
(

X(1)
ϕ(KX(1))

)
. Similarly as in [65], after we introduce the global sector condition

found in (2.40) one has

DV (X)(AX + Nd) ≤X ⊤
(
H⊤

clPΛHcl − e−µPΛ H⊤
clPΛB −K⊤T

∗ B⊤PΛB − 2T

)
X

+

∫ 1

0
e−µz

(
X(z)
d(z)

)⊤(−µPΛ PN
∗ 0

)(
X(z)
d(z)

)
dz

where T ∈ Dm
p . From (2.42) one has

DV (X)(AX + Nd) ≤X ⊤
(
H⊤

clPΛHcl − e−µPΛ H⊤
clPΛB −K⊤T

∗ B⊤PΛB − 2T

)
X

+

∫ 1

0
e−µz

(
X(z)
d(z)

)⊤(−µPΛ + Γ 0
∗ χ2I

)(
X(z)
d(z)

)
dz

Finally, using (2.41) and (2.43) we have

DV (X)(AX + Nd) ≤ −αV (X) + χ2 ∥d∥2
L2

q
(2.47)

which reads as (2.35). Hence, the proof is concluded. □

Remark 2.2 We emphasize that the result presented in Theorem 2.2 is global. However,
the feasibility of (2.34) is not always guaranteed. This is commonly seen in the literature of
saturated control (see [72, Chapter 3]). ◦

2.3.3 Control Design
Theorem 2.2 enables to recast the solution to Problem 2.1 as the feasibility problem of some
matrix inequalities, i.e. (2.41)-(2.42)-(2.43). However, those conditions are nonlinear in the
variables P ,K,χ,µ and α. As such, Theorem 2.2 cannot be used directly to get a numerically
tractable solution to Problem 2.1. The result given next, provides sufficient conditions in a
form that is more advantageous from a numerical standpoint.

Corollary 2.1 If there exist Q ∈ Dn
p ,S ∈ Dm

p , Γ̂ ∈ Sn
p , µ,α ∈ R>0 and W ∈ Rm×n such

that −QΛ−1 HQ+BW BS

∗ −e−µΛQ −W⊤

∗ ∗ −2S

 ≤ 0 (2.48)

(
Γ̂ N
∗ I

)
≥ 0 (2.49)

Q(αI − µΛ) + Γ̂ ≤ 0 (2.50)

Then, K = WQ−1 solves Problem 2.1. In particular, (2.7) holds with ω and κ defined as in
(2.44) and

γ =
√
λmax(Q)e

µ
2 (2.51)

⋄
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Proof. Applying the Schur complement lemma to (2.41) gives−Λ−1P PH + PBK PB

∗ −e−µPΛ −K⊤T
∗ ∗ −2T

 ≤ 0

which is equivalent toP−1 0 0
∗ P−1 0
∗ ∗ T−1

⊤−Λ−1P PH + PBK PB

∗ −e−µPΛ −K⊤T
∗ ∗ −2T

P−1 0 0
∗ P−1 0
∗ ∗ T−1

 ≤ 0

which gives −P−1Λ−1 HP−1 +BKP−1 BT−1

∗ −e−µΛP−1 −P−1K⊤

∗ ∗ −2T−1

 ≤ 0

Then, by setting P−1 = Q, T−1 = S and W = KP−1, we have that the previous inequality
is equivalent to (2.48). In [26, Corollary 1], it is shown that (2.42) and (2.43) are respectively
equivalent to the linear inequalities (2.49) and (2.50) with P−1 = Q, Γ̂ = QΓQ, and χ = 1.

□

Remark 2.3 It can be easily shown that the conditions in Corollary 2.1 are actually equiva-
lent to those in Theorem 2.2 in terms of feasibility. As such, Corollary 2.1 does not introduce
any additional conservatism. ◦

In the formulation of Problem 2.1, no specific requirements on the scalar γ are considered.
On the other hand, it is obvious that to minimize the effect of the exogenous input d on
the closed-loop system, the controller gain K should be designed so that (2.7) holds with a
minimal γ. This goal can be achieved by considering the following optimization problem

inf
Q,W ,µ,α,c

c

s.t: (2.48), (2.49), (2.50),Q ∈ D
np
p ,µ > 0,α > 0,Q− cI ≤ 0.

(2.52)

It can be seen through equation (2.51) that the variable γ is directly proportional to the
square root of the maximum eigen value of matrix Q. Therefore, minimizing c is equivalent
to minimizing λmax(Q). One can note that (2.48), (2.49) and (2.50) are nonlinear in the
decision variables µ and α. In fact, we select the scalars µ and α via a grid search. In other
words,we set µ and α as arrays of appropriate values and resolution, and then running the
code to generate a 3-dimensional diagram representing the feasible regions of the solution
with respect to the pair (µ,α).

2.4 Numerical Analysis

2.4.1 Application on a Scalar System
In this section we consider that n = m = 1. In other words, the hyperbolic system is scalar.
We will also assume that there are no disturbances (d = 0) and that the matrix B is just the
identity matrix as our focus will be on the effect of the value of the matrix H on the region
of stability of the system. Thus we have the following closed-loop system:

Xt(t, z) + ΛXz(t, z) = 0 ∀(t, z) ∈ R≥0 × (0, 1)
X(t, 0) = (H +K)X(t, 1) + ϕ(KX(t, 1)) ∀t ∈ R≥0
X(0, z) = X0(z) ∀z ∈ (0, 1)

(2.53)

where Λ,H,K ∈ R. Let P ,T ∈ R, then the sufficient conditions for global exponential
stability given by (2.41), (2.42), (2.43) can be expressed through a single LMI (knowing that
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d = 0):

Ms =

(
(H +K)2PΛ − PΛ (H +K)PΛ −KT

∗ PΛ − 2T

)
≤ 0 (2.54)

Since Ms ∈ R2, then Ms ≤ 0 if and only if the determinant det(Ms) ≥ 0 and the trace
trace(Ms) ≤ 0. We now derive the expression of the determinant and trace of Ms and
deduct the conditions of H under which global stability is guaranteed. For simplicity of the
calculation, consider µ = 0. However, due to the continuity with respect to µ, we know that
if inequality (2.41) holds for µ = 0, then there exist ϵ such the that inequality also holds for
µ ∈ (0, ϵ).

Corollary 2.2 Inequality (2.54) admits a feasible solution if and only if −1 < H < 1. ⋄

Proof. The determinant of matrix Ms is given by:

det(Ms) = −2T (H2PΛ − PΛ) − (PΛ +KT )2 − 2PΛKT (H + 1) (2.55)

and the trace is given by
trace(Ms) = (H +K)2PΛ − 2T (2.56)

We use a numerical solver to show the variation of the region of stability. First we consider
that K and T are variables and we select several values for H and then find the region (K,T )
under which both conditions (2.55) and (2.56) are satisfied. We notice that once |H| ≥ 1,
there are no feasible solution for K and T . We also observe that as |H| approaches zero, the
region of feasible (K,T ) increases. This is showcased in a comparison between Figure 2.1
where H = 0.5 and Figure 2.2 where H = 0.99. □

Figure 2.1: Feasible Region of the pair (K,T ) for H = 0.5.
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Figure 2.2: Feasible Region of the pair (K,T ) for H = 0.99.

2.4.2 Numerical Example
To solve initial-boundary value problem for (2.4), numerical integration of hyperbolic PDEs
is performed via the use of the Lax-Friedrichs (Shampine’s two-step variant) scheme imple-
mented in Matlab by Shampine [64]. YALMIP package in Matlab is used to solve the LMIs
[45]. Consider the example presented in [65] modified to account for the presence of in-domain
disturbances. Specifically, we consider the following system for all (t, z) ∈ R≥0 × (0, 1):

Xt(t, z) +
(

1 0
0

√
2

)
Xz(t, z) =

(
1
1

)
d(t, z)

X(t, 0) =
(

0.25 0
−1 0.25

)
X(t, 1) +

(
1 0
0 1

)
u(t) ∀t ∈ R≥0

(2.57)

We consider the solution to Problem 2.1 obtained by solving (2.52), via a line search on the
scalars α and µ. Figure 2.3 represents the set of feasible values of (2.52) of the pair (µ,α).
As in [26], we have that the feasible values of µ decreases as α increases. Then, as seen in
the figure, we choose µ = 1, α = 0.5 in order to guarantee a feasible solution to our problem.
For this example, the solution to (2.52) yields:

Q =

(
12.5 0

0 82

)
, Γ =

(
4.07 0.2
0.19 36.3

)
,K =

(
−0.24 0
0.33 −0.08

)
Consider the following disturbance defined over t ∈ [0, 25]:

(t, z) 7→ d(t, z) := 5
(

sin(zt)
cos(zt)

)
(2.58)

the initial condition:
(0, 1) ∋ z 7→ X0(z) =

(
cos(4πz) − 1
cos(2πz) − 1

)



32 Chapter 2. Design of Saturated Boundary control for Hyperbolic Systems with
in-domain Disturbances
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0.5

1

1.5

2

Figure 2.3: Feasible (diamond) pairs (µ,α)

and the saturation level umax1 =

(
0.3
0.3

)
. In Figure 2.4, we report the evolution of the L2-

norm of the closed-loop system state compared to that of the open-loop (K = 0) in response
to the disturbance (2.58). As expected, the gain K designed via the proposed sufficient
conditions provides better disturbance reduction and convergence rate than that in the open-
loop case.

Consider again the same system (2.57) with a larger initial condition:

(0, 1) ∋ z 7→ X0(z) = 3 ∗
(

cos(4πz) − 1
cos(2πz) − 1

)

and a lower (more constraining) saturation level: umax2 =

(
0.15
0.15

)
. The same numerical

simulation is carried out and Figure 2.6 shows that the state norm manages to stabilize
successfully. Figure 2.7 shows the added saturation instances that appears with this case
and validates the good performance level of our control design. Finally, Figure 2.8 shows
the same time evolution of the L2- spatial norm of the closed-loop state X(t) in comparison
with that of the right-hand side of the dissipation inequality (2.36)

e− c3
2 t

(
c2
c1

) 1
2

∥X0∥L2
n
+

χ
√
c1

√∫ t

0
∥d(θ)∥2

L2
q
dθ

Looking at the plot, the formal computation is consistent with the stability result.

Remark 2.4 In Figure 2.5 and Figure 2.7, one can see the saturation levels of under
which our controller perform. Thus, those results are in fact reflecting the behavior of this
stabilizing design for the controller acting on the hyperbolic system (2.1). ◦

2.5 Conclusion
Well-posedness and the global exponential stability of a class of 1D hyperbolic equations have
been studied. The PDE under consideration was the result of a perturbed hyperbolic system
in the presence of an in-domain exogenous disturbance connected in a feedback loop with a
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Figure 2.4: Time-evolution of the spatial norm L2 of X(t, ·) in
closed-loop (solid-line) and open-loop (dashed-line)

Figure 2.5: Time-evolution of σ(K1X1(t, 1)) (solid-line) and
σ(K2X2(t, 1)) (dashed-line) with respect to time
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Figure 2.6: Time-evolution of the spatial norm L2 of X(t, ·) in
closed-loop (solid-line) and open-loop (dashed-line) for saturation level

0.15.

Figure 2.7: Time-evolution of σ(K1X1(t, 1)) (solid-line) and
σ(K2X2(t, 1)) (dashed-line) with respect to time for saturation level

0.15.

saturated nonlinear control law. The controller acted on the boundary condition. The well-
posedness was investigated under the techniques of nonlinear semi-group theory proving the
existence and uniqueness of a mild solution pair. Then, the approximation of this solution to
a strong solution pair was established. Furthermore, sufficient conditions for the exponential
stability have been derived in the form of linear matrix inequalities using Lyapunov theory
for infinite-dimensional systems. Semi-definite programming tools were used to design the
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Figure 2.8: Time-evolution of the left (solid-line) vs. right (dashed-
line)-hand side of dissipation inequality (35)

controller to minimize the effect of the disturbance and boundary nonlinearity on the L2-
norm of the state. Numerical simulations were used to illustrate the effectiveness of the
proposed control design strategy in an example.

In the next chapter, we tackle another control problem of an infinite-dimensional system in
the presence of in-domain disturbances. In particular, we present the input-output stability
of a reaction-diffusion plant that admits a finite number of unstable poles using a finite-
dimensional controller.



36 Chapter 2. Design of Saturated Boundary control for Hyperbolic Systems with
in-domain Disturbances

Auxiliary Results for Chapter 2
The ϵ-approximate solution to the abstract system 2.6 is given in the following definition
found in [7, Definition 4.2, Page 129].

Definition 2.4 Let d ∈ L1(0,T , L2(0, 1; Rq)). Consider the partition on the time interval
[0, tN ] given by 0 ≤ t1 ≤ · · · ≤ tN and a finite sequence {dk}N

k=1 ⊂ L2(0, 1; Rq) such that

tk − tk−1 < ϵ k = 1, . . . N , T − ϵ < tN ≤ T ,

and
N∑

k=1

∫ tk

tk−1

∥f(s) − fi∥ ds < ϵ.

An ϵ-discretization solution to the abstract Cauchy problem 2.6 is a piecewise constant function
ζ : [0, tN ] −→ L2(0, 1; Rn) whose values ζk on (tk−1, tk] satisfy the finite difference equation

ζk − ζk−1
tk − tk−1

+ Aζk ∋ Ndk k = 1, . . . N .

The function ζ = {ζk}N
k=1 is called an ϵ-approximate solution to the abstract Cauchy Problem

2.6 if it further satisfies:
∥ζ(0) −X0∥ ≤ ϵ.

⋄

Definition 2.5 Let Y1 and Y2 be linear normed spaces, U be an open subset of Y1, f : U −→
Y2, and x ∈ U . We say that f is Fréchet differentiable at x if there exists L ∈ L(Y1,Y2) such
that

lim
h−→0

∥f(x+ h) − f(x) −Lh∥Y2

∥h∥Y1

= 0 (2.59)

In particular, L is the Fréchet derivative of f at x and is denoted by Df(x). When Y1 = R,
we denote ḟ(x) = limh−→0

f (x+h)−f (x)
h ⋄

Lemma 2.2 Let Φ ∈ C0(0, 1; R), P ∈ Dn
p and L2(0, 1; Rn) be endowed with its standard

inner product. Consider the following functional

V :L2(0, 1; Rn) −→ R

X 7→ V (X) :=
∫ 1

0
Φ(z)⟨PX(z),X(z)⟩dz

Then, V is Fréchet differentiable on L2(0, 1; Rn) and in particular, for each X,h ∈ L2(0, 1; Rn)

DV (X)h = 2⟨ΦPX,h⟩L2
n

⋄

Proof. For any X,h ∈ L2(0, 1; Rn), one has

V (X + h) − V (X) =

∫ 1

0
Φ(z)(⟨h(z),Ph(z)⟩Rn + 2⟨X(z),Ph(z)⟩Rn)dz

≤ λmax(P ) ∥Φ∥∞ ∥h∥2 + 2⟨ΦPX,h⟩L2
n

Thus, it follows that

lim
∥h∥L2

n
−→0

|V (X + h) − V (X) − 2⟨X, ΦPh⟩L2
n

|
∥h∥L2

n

= 0

This concludes the proof. □
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The following definition of the Comparison Lemma is found in [38, Page 102].

Definition 2.6 Consider the following differential equation

Ẏ (t) = f(t,Y ), Y (0) = Y0

where f is continuous and locally Lipschitz in Y on domY and for all Y ∈ J ⊂ R. Let W (t) be
a continous function whose Frèchet differential DV (W (t))Ẇ ≤ f(t,W (t)) with W (0) ≤ Y0
and Y (t) ∈ J on domY . Then, we have on domY that

W (t) ≤ Y (t).

where domY is the interval of time on which Y is defined. ⋄
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Chapter 3

Output Feedback Control of a
Reaction-Diffusion Equation
with In-domain Disturbances

The input-output stability (IOS) of a reaction-diffusion equation by means of a finite-dimensional
linear time-invariant control system is studied. The reaction-diffusion plant admits a finite
number of unstable poles and is open-loop unstable. The infinite-dimensional plant is put
in feedback with a dynamic controller to achieve output stability via a Dirichlet boundary
measurement and regulated output. The control design problem consists of deriving suffi-
cient conditions in the form of matrix inequalities which allows us to show that the order of
the finite-dimensional controller can be selected large enough to achieve IOS even when the
control design is not optimal. This work has been presented to and accepted by the CDC
2022.

3.1 General Properties of a Sturm-Liouville Operator
A Sturm-Liouville differential equation is given by a second ordered ordinary differential
equation:

− d

dz

[
p(z)

df

dz

]
+ q(z)f = λf (3.1)

where p(x) > 0 and for z ∈ (0, 1). The differential equation (3.1) is essentially an eigenvalue
problem since λ is not specified. Consider the mixed Dirichlet-Neumann boundary conditions

af(0) + bf ′(0) = 0
bf(1) + af ′(1) = 0

(3.2)

where a, b are real constants. Let the Sturm-Liouville operator A : D(A) ⊂ L2(0, 1) −→
L2(0, 1) be defined by

Af = −(pf ′)′ + qf

Let p ∈ C1([0, 1]) and q ∈ C0([0, 1]) with p, q > 0. In [12, Chapter 11], the authors solve
the Sturm–Liouville boundary value problem. In the particular case where a = 0, b = 1
(Neumann boundary conditions), the normalized boundary value problem is given by:

pΦ” + qλΦ = 0
Φ′(0) = 0, Φ(1) = 0

(3.3)

The eigenvalues λn,n ≥ 1 of A are simple, non-negative, and form an increasing sequence
with λn −→ +∞ as n −→ +∞. Moreover the associated unit eigenvectors Φn ∈ L2(0, 1) form
an orthonormal basis. The computation of the normalized eigenfunctions and eigenvalues for
problem 3.3 is straight forward and is given in [12, Chapter 11, Problem 11.2.2] by:

Φn(z) =
√

2cos((n− 1
2 )πz) (3.4)
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λn = (n− 1
2 )

2π2p+ q (3.5)

We also have
D(A) = {f ∈ H2(0, 1; R) :

∑
n≥1

|λn|2|⟨f , Φn⟩|2 < +∞}

and
Af =

∑
n≥1

λn⟨f , Φn⟩Φn.

Let p∗, p∗, q∗, q∗ ∈ R be such that 0 < p∗ ≤ p(z) ≤ p∗ and 0 < q∗ ≤ q(z) ≤ q∗ for all
z ∈ (0, 1), then it holds (see e.g [55]):

0 ≤ π2(n− 1)2p∗ + q∗ ≤ λn ≤ π2n2p∗ + q∗ (3.6)

for all n ≥ 1. Finally, one can check that for all f ∈ D(A)

⟨Af , f⟩ =
∑
n≥1

λn⟨f , Φn⟩2 =

∫ 1

0
p(x)f ′(x)2 + q(x)f(x)2dx. (3.7)

Moreover, for any f ∈ D(A), we have

f(x) =
∑
n≥1

⟨f , Φn⟩Φn(x)

and
f ′(x) =

∑
n≥1

⟨f , Φn⟩Φ′
n(x).

In [21], [33], one can find a proof that the Sturm-Liouville operator A is an infinitesimal
generator of a C0-semigroup contraction on Hilbert spaces.

3.2 Problem Statement
We consider the stabilization problem of a one-dimensional linear reaction-diffusion system
with Dirichlet boundary condition by means of a boundary control input u ∈ R t ≥ 0 and
z ∈ (0, 1):

xt(t, z) = (p(z)xz(t, z))z + (qc − q)x(t, z) +m(z)d(t)

xz(t, 0) = 0, x(t, 1) = u(t)

x(0, z) = x0(z)

y(t) = x(t, 0)

(3.8)

where p ∈ C1([0, 1]). Here qc ∈ R is a constant, u(t) ∈ R is the control input, y ∈ R is
a boundary measurement and the to-be-regulated output, x(t, ·) ∈ L2(0, 1; R) is the state,
x0 ∈ L2(0, 1; R) is the initial condition and d ∈ R is the disturbance with m ∈ C0([0, 1]). The
objective is to design a finite-dimensional controller to achieve input-output stability (IOS)
with respect to the in-domain disturbance.

As classically done in the context of boundary control systems (see [19, Page 481]), for
sufficiently smooth inputs, it is possible to reformulate boundary control problems on an
extended state space in such a way that we obtain the associated system of the abstract
inhomogeneous Cauchy problem on L2(0, 1; R):

ẇ(t) = Aw(t) + f(t)

where f ∈ C2([0,T ]; R). We are able to transform the boundary control system (3.8) into an
in-domain controlled equivalent system by introducing the change of variable

w(t, z) := x(t, z) − z2u(t). (3.9)



3.2. Problem Statement 41

For which we have

wt(t, z) = (p(z)wz(t, z))z + (qc − q(z))w(t, z) + a(z)u(t) + b(z)u̇(t) +m(z)d(t)

wz(t, 0) = 0, w(t, 1) = 0
y(t) = w(t, 0)

(3.10)

with a, b ∈ L2(0, 1; R) defined by a(z) = 2p(z) + 2xp′(z) + (qc − q(z))z2, and b(z) = −z2.
In addition, w0(z) = x0(z) − z2u(0). Considering that v(t) = u̇(t) is an auxiliary command
input, we obtain the abstract Cauchy problem

ẇ(t) = −Aw(t) + qcw(t) + au(t) + bv(t) +md(t)

u̇(t) = v(t)
(3.11)

with D(A) := {f ∈ H2(0, 1; R) : f ′(0) = f(1) = 0}.

3.2.1 Existence and Uniqueness of Classical Solution to the Cauchy
Problem.

Consider the definition of a classical solution pair to the inhomogeneous abstract Cauchy
problem found in [19, Page 189].

Definition 3.1 The functions (w(t), d(t)) is a classical solution pair of (3.11) on domw if
w(t) ∈ C1(domw; L2(0, 1; R)) ∈ D(A) and d(t) ∈ C1(domd; R) for domw = domd, the time
interval R≥0 and (w(t), d(t)) satisfies (3.11) for all 0 ≤ t ≤ T . ⋄

Proposition 3.1 Assume m ∈ L2(0, 1; R), d(t) ∈ C1([0,T ]; R) and w0 ∈ D(A). Then,
(3.11) has a unique classical solution pair (w(t), d(t)).

Proof. According to [21], [33], the Sturm-Liouville operator A is an infinitesimal genera-
tor of a C0-semigroup contraction on Hilbert spaces. In addition, functions a(z), b(z),m(z) ∈
L2(0, 1; R). Thus, the abstract inhomogeneous Cauchy problem (3.11) has a unique classical
solution pair for w0 ∈ D(A) and d(t) ∈ C1(domd; R) (see [19, Theorem 5.1.3, Page 189]).
Finally, referring to [19, Theorem 10.1.4, Page 481], for x0(z) = w0(z) + z2u(0) ∈ D(A), the
Cauchy problem (3.8) has a unique classical solution pair. □

3.2.2 Spectral Reduction of the Reaction-Diffusion System
We introduce the coefficients of projection wn = ⟨w(·), Φn⟩, an = ⟨a, Φn⟩, bn = ⟨b, Φn⟩ and
mn = ⟨m, Φn⟩. We have w(t) ∈ D(A) for all t ≥ 0 and for n ≥ 1

ẇn(t) = (−λn + qc)wn(t) + anu(t) + bnv(t) +mnd(t),
u̇(t) = v(t),

y(t) =
∑
i≥1

Φi(0)wi(t).
(3.12)

Let N0 ≥ 1 and δ > 0 be given such that −λn + qc < −δ < 0 for all n ≥ N0 + 1. We now
introduce an arbitrary integer N ≥ N0 which will be further constrained later. We design an
output feedback controller that will act on and modify the first N modes of the plant. First,
we introduce the following vectors:

WN (t) := (w1(t) . . . wN (t))⊤;
Au := (a1 . . . aN )⊤;
B1 := (b1 . . . bN )⊤;
B2 := (m1 . . .mN )⊤.
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P

K

v

d

y

Figure 3.1: Closed-loop system.

A0 :=


−λ1 + qc 0 · · · 0

0 −λ2 + qc
. . . ...

... . . . . . . 0
0 · · · 0 −λN + qc


and, we focus on the following finite-dimension truncation of (3.12) which will be later used
in the stability analysis:

ẆN (t) = A0W
N (t) +Auu(t) +B1v(t) +B2d(t)

u̇(t) = v(t).
(3.13)

Our objective is to design a finite-dimensional linear time invariant control system that renders
the closed-loop system (3.12) exponentially stable in the H1-norm while achieving a quadratic
performance specification on the controlled system. This controller serves to achieve IOS
for the infinite-dimensional system (3.8) with respect to the disturbance d. The general
framework of such a controller is given in the next section.

3.3 General Set-Up for the Output-Feedback Control
Problem

In this section, we present the general framework of the control problem using output mea-
surement feedback. This is presented in Figure 3.1 which conveys the problem of a feedback
interconnection of a plant P given by (3.11) and controller K with inputs d, u and regulated
output y.

We suppose that plant (3.12) is controlled by the following dynamic output feedback
controller K given below:

K :
(
Ẋc

v

)
=

(
Ac Bc

Cc Dc

)(
Xc

y

)
(3.14)

where Ac ∈ R(N+1)×(N+1),Bc ∈ R(N+1),Cc ∈ R1×(N+1) and Dc ∈ R are to be designed,
with N being the dimension of WN . Let

C := [Φ1(0) . . .ΦN (0)]⊤

ỹ :=
∑

i≥N+1
Φi(0)wi.
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Then, the closed-loop system dynamics (P, K) can be formally written as follows:

ẆN (t)
u̇(t)
Ẋc(t)

 =

A0 +B1DcC Au B1Cc

DcC 0 Cc

BcC 0 Ac

WN (t)
u(t)
Xc(t)

+

B1Dc

Dc

Bc

 ỹ(t) +

B2
0
0

 d(t)

ẇn(t) = (−λn + qc)wn + bnDcCW
N (t) + anu(t) + bnCcXc(t) + bnDcỹ(t) +mnd(t) n ≥ N + 1

y(t) = CWN (t) + ỹ
(3.15)

From now on, we denote ζ :=
(
w,u,Xc

)
and for all ζ ∈ D(A) × R × RN+1, we define the

following norm:
∥ζ∥H1

n
:=
√

∥w∥2
H1 + u2 +X⊤

c Xc. (3.16)

We will refer to this norm as the H1
n-norm.

We are now able to formally state the problem we solve in this chapter.
Problem 3.2 Given p ∈ C1([0, 1]), q ∈ C0([0, 1]) with p, q > 0 and qc ∈ R. Design the con-

trol parameters
(
Ac Bc

Cc Dc

)
such that the following properties hold for the closed-loop system

(3.11) with (3.14):
• the origin of the closed-loop system is zero-input globally exponentially stable;
• for some (solution independent) ρ,ψ, υ > 0, for each classical solution pair (ζ, d) to the

closed-loop system, the bound:

|y(t)| ≤ ψe−υt ∥ζ(0)∥H1
n
+ ρ

√∫ t

0
d(θ)2dθ (3.17)

holds for all t ≥ 0.
Inequality (3.17) corresponds to an input-output stability (IOS) bound for the closed-loop
system (3.8) with (3.14). The main contribution of this chapter is to design an optimal
controller K in order to minimize the effect of the gain ρ. In Section 3.4, we provide an
explicit estimate of the IOS gain ρ.

3.4 Input-Output Stability Results
In this section we provide sufficient for the solution to Problem 3.2. First, we propose sufficient
conditions for H1

n stability and then construct a Lyapunov functional to derive the sufficient
conditions in the form of quadratic inequalities.

3.4.1 Sufficient conditions
The following section presents sufficient conditions for the solution to Problem 3.2. The result
relies on a dissipation inequality. This is done by proving the following proposition:
Proposition 3.3 Assume there exist a Fréchet differentiable functional V : H1(0, 1; R)× R ×
RN+1 −→ R≥0 and c1, c2, c3,χ ∈ R>0 such that for each d ∈ R and ζ ∈ D(A) × R × RN+1

c1 ∥ζ∥2
H1

n
≤ V (ζ) ≤ c2 ∥ζ∥2

H1
n

, (3.18)

DV (ζ)ζ̇ ≤ −c3V (ζ) + χ2d2. (3.19)

Then, the origin of the closed-loop system (3.15) is zero-input globally exponentially stable
and (3.17) holds with

ψ =

√
2c2
c1

, υ =
c3
2 ,

ρ =
√

2 χ
√
c1

.
(3.20)
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Proof. First we consider a classical solution pair (ζ(t), d(t)), i.e, ζ ∈ D(A)× R × RN+1 and
d ∈ R for all t ∈ domζ where domζ is an interval of R≥0 including zero. Now, consider the
following function:

W : domζ −→ R

t 7→ (V ◦ ζ)(t) (3.21)

Then, since V : H1(0, 1; R) × R × RN+1 −→ R≥0 is Fréchet differentiable everywhere and
ζ : domζ −→ H1(0, 1; R) × R × RN+1 is differentiable everywhere, it follows that for all t ≥ 0:

Ẇ(t) = DV (ζ)ζ̇(t).

Thus we have for all t ∈ domζ

Ẇ(t) = DV (ζ)


−Aw(t, ·) + qcw(t, ·) + au(t)

+bv(t) +md(t)
v(t)

AcXc(t) +Bcy(t)


Using (3.19), one gets, for all t ∈ domζ,

Ẇ(t) ≤ −c3W(t) + χ2d(t)2.

Therefore, since W is continuous on domζ, from comparison lemma, we have:

W(t) ≤ e−c3tW(0) + χ2
∫ t

0
e−c3(t−θ)d(θ)2dθ, ∀t ∈ dom ζ.

This bound, thanks to (2.34), ensures that the origin of the closed-loop system is globally
exponentially stable with respect to the norm defined in (3.16) when d = 0. At this stage,
notice that for all t ∈ domζ, one has:∫ t

0
e−c3(t−θ)d(θ)2dθ ≤

∫ t

0
d(θ)2dθ

which allows one to conclude that for all t ∈ domζ

W(t) ≤ e−c3tW(0) + χ2
∫ t

0
d(θ)2dθ.

Finally by using (3.18), it follows that for all t ∈ domζ

∥ζ(t)∥H1
n

≤ e− c3
2 t

√
c2
c1

∥ζ(0)∥H1
n
+

χ
√
c1

√∫ t

0
d(θ)2dθ. (3.22)

Using the inequality (a+ b)2 ≤ 2a2 + 2b2 for all a, b ∈ R, we have

∥ζ(t)∥2
H1

n
≤ 2c2

c1
e−c3t ∥ζ(0)∥2

H1
n

χ2

c1

∫ t

0
d(t)2dt. (3.23)

Since y(t) = w(t, 0), and we know that since w(t, 1) = 0, we have

y(t)2 =

(∫ 1

0
wx(t, s)ds

)2
≤
∫ 1

0
w2

x(t, s)ds ≤ ∥w(t)∥2
H1 (3.24)

Then, since
∥w(t)∥2

H1 ≤ ∥ζ∥2
H1

n
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using (3.24) and (3.23), we get

y(t)2 ≤ 2c2
c1
e−c3t ∥ζ(0)∥2

H1
n
+
χ2

c1

∫ t

0
d(t)2dt. (3.25)

Since the terms
√

c2
c1
e− c3

2 t ∥ζ(0)∥H1
n
> 0 and χ√

c1

√∫ t
0 d(θ)

2dθ > 0, we can deduce the final
inequality:

∥ζ(t)∥H1
n

≤
√

2e− c3
2 t

√
c2
c1

∥ζ(0)∥H1
n
+

√
2 χ

√
c1

√∫ t

0
d(θ)2dθ. (3.26)

This concludes the proof. □

Remark 3.4 Inequality (3.22) in the proof corresponds to a classical input-to-state stability
(ISS) bound for the closed-loop system (3.15) with respect to the disturbance d. The ISS
asymptotic gain is equal to the IOS gain ρ =

√
2 χ√

c1
given in (3.20) to-be-minimized [69].

3.4.2 Construction of the functional V
Proposition 3.3 provides sufficient conditions for input-output stability (IOS) for the closed-
loop system in the form of functional inequality. In this section we provide a specific structure
for the functional V in Proposition 3.3, which allows one to cast the solution of Problem 3.2
in the solution to some matrix inequalities.

We define the following matrices which will be necessary for the proof of the next theorem.

A1 :=

A0 +B1DcC Au B1Cc

DcC 0 Cc

BcC 0 Ac

 ,

B11 :=

B1Dc

Dc

Bc

 , B12 :=

B2
0
0

 ,

A2 :=

4D2
cC

⊤C 0 0
∗ α ∥a∥2

L2 0
∗ ∗ 2α ∥b∥2

L2 C⊤
c Cc

 .

(3.27)

We also define the constant MΦ =
∑

n≥N+1
Φn(0)2

λn
which is finite when p ∈ C2([0, 1]) since

Φn(0) = O(1) as n −→ +∞ (see [55]) and (3.6) holds.

Theorem 3.5 Assume that p ∈ C2([0, 1]). Suppose there exist P ∈ S2N+2
p , Ac ∈ RN+1×N+1,Bc ∈

RN+1,Cc ∈ R1×N+1,Dc ∈ R and α,β,χ, η, γ ∈ R>0 such that:

Θ =

A3 PB12 PB11
∗ α ∥m∥2

L2 − χ2 0
∗ ∗ 2α ∥b∥2

L2 D2
c − β

 ≤ 0 (3.28)

where A3 := A⊤
1 P + PA1 +A2 + 2ηP .

Select N sufficiently large such that for all n ≥ N + 1

Γn := λn

(
−λn + qc + η+

3
α
+

β

2γMΦ

)
≤ 0. (3.29)

Then, the parameters Ac,Bc,Cc,Dc solve Problem 3.2. In particular (3.17) holds with:

ρ =
√

2χ√
min{λmin(P ),γp∗,γq∗} . (3.30)
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Proof. Let P ∈ S2N+2
p , γ > 0, and X1 := (WN ,u,Xc). Consider the following Fréchet

differentiable Lyapunov functional:

V : D(A) × R × RN+1 −→ R w
u
Xc

 7→ X⊤
1 PX1 + γ

∑
n≥N+1

λn⟨w, Φn⟩2.
(3.31)

The first term corresponds to the dynamics of the truncated model (3.13) and the con-
trol model (3.14) while the second term, which is related to the H1-norm of the PDE tra-
jectories as depicted in 3.30, is used to handle the modes wn for n ≥ N + 1. We have
c1 := min{λmin(P ), γp∗, γq∗} and c2 := max{λmax(P ), γp∗, γq∗} are strictly positive. Con-
sider the first term of the functional V :

V1(X1) := X1
⊤PX1 (3.32)

and the closed-loop system (3.15). Then,

DV1(X1)Ẋ1 =X⊤
1 (A⊤

1 P + PA1)X1 + ỹ⊤B⊤
11PX1 + d⊤B⊤

21PX1 +X⊤
1 PB11ỹ+X⊤

1 PB12d.
(3.33)

We obtain the computation of the time derivative of V1 along the solution pair to (3.12) and
(3.13):

DV1(X1)Ẋ1 =

X1
d
ỹ

⊤

Ω1

X1
d
ỹ

 (3.34)

where the matrix Ω1 is given by:

Ω1 =

A⊤
1 P + PA1 PB12 PB11

∗ 0 0
∗ ∗ 0

 .

Now, consider V2(w) := γ
∑

n≥N+1 λn⟨w, Φn⟩ with γ > 0. The time derivative of V2
along the solution pair to (3.12), (3.13) yields:

DV2(w)ẇ = 2γ
∑

n≥N+1
λn((−λn + qc)w

2
n + anuwn + bnvwn +mndwn). (3.35)

Thus, knowing that V = V1 + V2, we conclude the following expression:

DV (X1,w)
(
Ẋ1
ẇ

)
+ 2ηV =

X1
d
ỹ

⊤

Ω2

X1
d
ỹ

+

2γ
∑

n≥N+1
λn[(−λn + qc + η)w2

n + anuwn + bnvwn +mndwn]

(3.36)

and Ω2 = Ω1 +

2ηP 0 0
∗ 0 0
∗ ∗ 0

. Using Young’s inequality, we have:

2
∑

n≥N+1
λnanwnu ≤ 1

α

∑
n≥N+1

λ2
nw

2
n + α||a||2L2u

2

2
∑

n≥N+1
λnbnwnv ≤ 1

α

∑
n≥N+1

λ2
nw

2
n + α||b||2L2v

2
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2
∑

n≥N+1
λnmnwnd ≤ 1

α

∑
n≥N+1

λ2
nw

2
n + α||m||2L2d

2

for any α > 0. Recall that v = CcXc +Dc(CWN + ỹ). We have the following inequality:

v2 ≤ 2(XcC
⊤
c CcXc) + 2D2

c (CW
N + ỹ)2

≤ 2(XcC
⊤
c CcXc) + 4D2

c (CW
N ⊤

C⊤CWN ) + 4D2
c ỹ

2
(3.37)

Hence, using (3.37), (3.36) is bounded by:

DV (X1,w)
(
Ẋ1
ẇ

)
+ 2ηV ≤

X1
d
ỹ

⊤

Ω3

X1
d
ỹ


+ 2γ

∑
n≥N+1

λn(−λn + qc + η+
3
α
)w2

n

(3.38)

and Ω3 is given by:

Ω3 =

A⊤
1 P + PA1 +A2 PB12 PB11

∗ α ∥m∥2
L2 0

∗ ∗ 4α ∥b∥2
L2 D2

c


where

A2 =

4D2
cC

⊤C 0 0
∗ α ∥a∥2

L2 0
∗ ∗ 2α ∥b∥2

L2 C⊤
c Cc

 .

Knowing that

ỹ2 =

 ∑
i≥N+1

Φi(0)wi

2

and MΦ =
∑

i≥N+1
Φi(0)2

λi
is finite and

∑
i≥N+1 λiw

2
i is finite due to (3.7), we use the

generalization of the Cauchy-Schwarz inequality [14] to obtain the following

ỹ2 ≤
∑

i≥N+1

Φi(0)2

λi

∑
i≥N+1

λiw
2
i

Hence, for any β > 0,

βMΦ
∑

i≥N+1
λiw

2
i − βỹ2 ≥ 0 (3.39)

Combining (3.38) and (3.39), we obtain

DV (X1,w)
(
Ẋ1
ẇ

)
+ 2ηV ≤

X1
d
ỹ

⊤

Ω4

X1
d
ỹ


+ 2γ

∑
n≥N+1

λn

(
−λn + qc + η+

3
α
+

β

2γMΦ

)
w2

n

(3.40)

where Ω4 is given by:

Ω4 =

A⊤
1 P + PA1 +A2 PB12 PB11

∗ α ∥m∥2
L2 0

∗ ∗ 2α ∥b∥2
L2 D2

c − β
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and A2 is given in (3.27).
The latter implies that, for all d ∈ R, (w,u,Xc) ∈ D(A) × R × RN+1, we have

DV (X1,w)
(
Ẋ1
ẇ

)
− χ2d⊤d ≤ −2ηV (X1,w) +

X1
d
ỹ

⊤

Θ

X1
d
ỹ

+ 2γ
∑

n≥N+1
Γnw

2
n (3.41)

where Θ = Ω4 −

0 0 0
∗ χ2I 0
∗ ∗ 0

. At this stage, notice that (3.28), (3.29) state that Θ ≤ 0

and Γn ≤ 0 for sufficiently large N ; therefore, (3.41) implies that

DV (X1,w)
(
Ẋ1
ẇ

)
≤ −2ηV (X1,w) + χ2d⊤d

The previous equation reads as (3.19) and the proof is complete. □
Notice that the sufficient condition (3.28) is a nonlinear matrix inequality in the deci-

sion variables P ,Ac,Bc,Cc, and Dc. Therefore (3.28) is hard to exploit from a numerical
standpoint for the design of the controller. To overcome this drawback, next we provide
sufficient conditions in the form of linear matrix inequalities. To achieve this, we adapt the
approach introduced in [62] for the design of dynamical output feedback controllers. This is
the objective of the upcoming section.

3.5 Control Synthesis
To simplify our approach and avoid nonlinearities in what follows, we enforce Dc = 0. This is
not restrictive and leads to strictly proper controllers that can be more appealing in practice.

Let X,Y ∈ SN+1
p and U ,V ∈ R(N+1)×(N+1) be nonsingular matrices such that Y X +

V U⊤ = I. Let Y =

(
Y I

V ⊤ 0

)
and P =

(
X U

U⊤ •

)
where “•” denotes “don’t care” symmetric

positive definite matrix. Under the considered assumptions Y is nonsingular and a simple
congruence transformation shows that

Θ ≤ 0 ⇐⇒ Σ ≤ 0

with

Σ :=

Y⊤A3Y Y⊤PB12 Y⊤PB11
α ∥m∥2

L2 − χ2 0
∗ ∗ −β


We define the following matrices:

Â :=
(
A0 Au

0 0

)
, B̂1 :=

(
B1
1

)
,

B̂2 :=
(
B2
0

)
, Ĉ :=

(
C 0

)
.

At this stage, as in [62], we consider the following invertible change of variables:(
K L
M 0

)
=

(
XÂY 0

0 0

)
+

(
U XB̂1
0 I

)(
Ac Bc

Cc 0

)(
V ⊤ 0
ĈY I

)
(3.42)

This transforms the old variables (P ,Ac,Bc,Cc) into the new variables ν = (X,Y ,K,L,M ).
Using the change of variable (3.42), applying the Schur complement lemma [81] and by fol-
lowing [62], one can show that Σ ≤ 0 is equivalent to the following linear matrix inequalities:

X(ν) > 0 (3.43)
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and 
A(ν)⊤ +A(ν) B1(ν) B2(ν)⊤ C(ν)

∗ α ∥m∥2
L2 − χ2 0 0

∗ ∗ −β 0
∗ ∗ ∗ −S−1

 ≤ 0 (3.44)

where
X(ν) =

(
Y I
I X

)
,

A(ν) =

(
ÂY + B̂1M Â

K XÂ+ LĈ

)
,

B1(ν) =

(
0
L

)
, B2(ν) =

(
B̂2
XB̂2

)
,

C(ν) =

Y
(

0
I

)
V C⊤

c(
0
I

)
0

 , S =

(
α ∥a∥2

L2 0
∗ 2α ∥b∥2

L2

)
.

If conditions (3.43), (3.44) are feasible for certain K,L,M , one can use equation (3.42) to
deduce the values of Ac,Bc,Cc that satisfy condition (3.28).

In the formulation of Problem 3.2, no specific requirements on the scalar ρ are considered.
On the other hand, it is obvious that to minimize the effect of the disturbance d on the closed-
loop system, the control parameters should be designed so that (3.17) holds with a minimal
ρ. This goal can be achieved by choosing γ = β, α = 3 and considering the following
optimization problem

sup
P ,c

c

s.t: (3.43), (3.44) hold P ∈ S2N+2
p ,P − cI > 0.

(3.45)

The optimization problem (3.45) is equivalent to finding a maximal c such that

Y⊤(P − cI)Y > 0

We apply the Schur complement lemma [81] on the latter nonlinear inequality to obtain the
equivalent condition: 1

c I Y V
∗ Y I
∗ ∗ X

 > 0 (3.46)

which is linear in µ = 1
c . Problem (2.52) can now be seen as designing minimal µ such that

(3.46) holds.

3.5.1 Control Design Algorithm
We present the following algorithm to design the dynamic output feedback controller given
in (3.14).
Input: Specify the values of the system parameters p(z), q(z) and qc.
Step 1: Calculate the value of N0, the minimum value of n for which −λn + qc < 0.
Step 2: Calculate the value of N ≥ N0, the minimum value of n for which (3.29) holds. This
N exists due to the fact that λn is positive definite and increasing. This will be the dimension
of the dynamic controller.
Step3: Use a numerical solver to find a feasible solution X,Y ,K,L,M ,N , c under which
(3.43), (3.44), (3.45) hold.
Step4: Derive the control parameters Ac,Bc,Cc,Dc using (3.42).
Output: The designed control parameters are given by Ac,Bc,Cc,Dc and ρ given by (3.30)
is computed.
In the next section, we use a numerical example to showcase our method.
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3.6 Numerical Analysis
In this section, we use the YALMIP package in Matlab to solve linear matrix inequalities.
We illustrate the result of this chapter using a modal approximation that captures the 50
dominant modes of the reaction-diffusion plant with an in-domain disturbance given by:

d(t) = 0.1 sin(2t)

We set p = 1, q = 1, m = 1, and qc = 4 for which the open-loop plant is unstable. We select
δ = 0, and we obtain that N0 = 1 and N = 2, which is the minimum n for which (3.29)
holds. We choose the dimension of WN to be N = 3. The following control matrices renders
(3.43), (3.44) and (3.45) feasible.

Ac =


−15.24 11.9 −6.47 14.62
−4.84 −24.87 −25.51 −2.25
145.35 −73.53 −126.97 −49.13
−36.28 −3.48 −5.86 −14.43



Bc =


5.46
0.32

−29.98
0.66


Cc =

(
6.91 −0.45 −0.57 8.8

)
Dc = 0

(3.47)

We solve inequality (3.28) for the designed control parameters {Ac,Bc,Cc,Dc} and notice that
we do in fact have a feasible solution. The initial condition of the reaction-diffusion system
described by (3.8) is x0(z) = x2. We simulate the closed-loop system (3.15) for the first 50
modes. Thus, we can deduce the time-evolution of the state x(z, t) in closed-loop system
and it is depicted in Figure 3.2 which showcases a convergence to a neighborhood of the
origin as predicted in Theorem 3.5 and one can observe the effect of the disturbance at steady
state. Similarly, Figure 3.3 shows the time and space evolution of the state w(t, z). Finally,
Figure 3.4 demonstrates the decay in the output y(t) verifying the dissipation inequality in
Proposition 3.3 with ρ = 1.8.

3.7 Conclusion

The design of a finite-dimensional linear time-invariant (LTI) control system is proposed
in order to achieve the input-output stability (IOS) of a reaction-diffusion equation with a
Dirichlet regulated output and in-domain disturbance. Sufficient conditions in the form of
matrix inequalities are derived to solve the control design problem. Control Synthesis method
proposed by [62] is applied to the nonlinear matrix inequality to derive a suitable LMI. A
control design algorithm is proposed to provide a solution to the sufficient conditions. Finally,
a numerical example is presented to showcase the effectiveness and validity of our method.

In the next chapter, we investigate the problem of saturated distributed control of a
reaction diffusion equation to achieve local exponential stability results. We also design an
anti-windup compensator to enhance the system behavior under constrained controller.
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Chapter 4

Saturated Control and
Anti-windup Design for a
Reaction-Diffusion Equation
with In-domain disturbances

We design a saturated dynamic output feedback control law which locally stabilizes a lin-
ear reaction-diffusion equation with in-domain disturbance. As in the previous chapter, the
reaction-diffusion plant admits finite unstable poles. This chapter is divided into two parts.
The first part, found in Section 4.2, studies the input-output stabilization problem of the
infinite-dimensional system in closed loop with the finite-dimensional saturated control sys-
tem. The second part, found in Section 4.3, studies the input-output stabilization problem
of the infinite-dimensional system in closed loop with the saturated control system and an
anti-windup compensator. With the control system parameters designed and known thanks
to the studies done in the first part, we design an anti-windup compensator which locally
stabilizes the partial differential equation under consideration to ensure better performance
levels and bigger regions of stability. Using Lyapunov methods, dead-zone nonlinearities and
associated sector conditions, we tackle two main issues for each part. The first is estimating
the region of attraction for the closed-loop systems given in terms of linear matrix inequali-
ties when the in-domain exogenous signal is considered to be null. The second is evaluating
the performance level of each system by estimating the IOS gain when the in-domain exoge-
nous signal is different than zero and is energy-bounded. In the process of achieving those
two goals, two optimization problems for the two control problems in question are presented
which allow the optimization of the regions of stability and the stability gains. Finally, the
efficiency of the proposed methods is illustrated using numerical simulations which clearly
demonstrates the benefits of the anti-windup compensator in a saturated control problem.

4.1 Problem Statement
We consider the stabilizability problem of a one-dimensional linear reaction-diffusion equation
by means of a distributed control input u ∈ R. The system model is given for all t ≥ 0 and
for z ∈ (0, 1):

wt(t, z) = (p(z)wz(t, z))z + (qc − q(z))w(t, z) + b(z)u(t) +m(z)d(t)

wz(t, 0) = w(t, 1) = 0
y(t) = w(t, 0).

(4.1)

We assume that the state-space of this system is L2(0, 1; R) and p ∈ C2([0, 1]; R), q ∈
C0([0, 1]; R), qc ∈ R and b,m ∈ L2(0, 1; R). Suppose that the input controller u(t) is a
nonlinear saturated controller subject to symmetric magnitude limitation ūl such that:

− ūl ≤ u ≤ ūl, ūl > 0. (4.2)
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We can express the controller u(t) by the saturation nonlinearity defined by:

u := σ(v) = min(|u|, ūl)sign(u)

where the input signal v is given by the output of the control system dynamics which will be
defined later.

4.1.1 Existence and Uniqueness of Strong Solution Pairs to the
Cauchy Problem.

Recall the Sturm-Liouville operator defined in Chapter 3:

A :D(A) −→ L2(0, 1; R)

w 7→ −(p(z)wz)z + qw(z)
(4.3)

where the domain of the operator A is given by D(A) := {f ∈ H2(0, 1; R) : f ′(0) = f(1) =
0}. Then, abstract Cauchy problem is given by:

wt(t) = −Aw(t) + qcw(t) + bu(t) +md(t) (4.4)

Proposition 4.1 Assume b,m ∈ L2(0, 1; R), and w0 ∈ L2(0, 1; R). Then, (4.4) has a unique
mild solution pair (w(t), d(t)) ∈ C1(domw; L2(0, 1; R)) × L1(domd; R) where domd = domw is
a time interval of R≥0.

Proof. Since σ(v(t)) is 1-Lipschitz continuous on domw, then, according to [57, Definition
2.3, Page 106], there exists a unique mild solution pair (w(t), d(t)) ∈ C1(domw; L2(0, 1; R))×
L1(domd; R) of the inhomogeneous Cauchy problem (4.4). □

By imposing further constraints on d, we can obtain strong solution pairs to the Cauchy
problem which will be useful later in the Lyapunov analysis. Strong solutions are similar to
classical solutions used in the previous chapter (see Definition 3.1). The following definition
of a strong solution pair of (4.4) is found in [57, Definition 2.8, Page 109].

Definition 4.1 A function w which is differentiable almost everywhere on domw such that
ẇ ∈ L1(domw; L2(0, 1; R)) is called a strong solution of the abstract Cauchy problem (4.4) if
w(0) = w0 and ẇ(t) = Aw(t) + qcw(t) + bu(t) +md(t) almost everywhere on domw. ⋄

Proposition 4.2 Assume b,m ∈ L2(0, 1; R), w0 ∈ D(A), and d is Lipschitz continuous on
domd. Then, (4.4) has a unique strong solution pair (w(t), d(t)) ∈ C1(domw; L2(0, 1; R)) ×
C1,1(domd; R) where domd = domw is an interval of R≥0.

Proof. Since the state space L2(0, 1; R) is a reflexive Banach space, and σ(v(t)) is 1-Lipschitz
continuous on domw, then, according to [57, Corollary 2.11, Page 109], for every w0 ∈ D(A),
the abstract Cauchy problem (4.4) has a unique strong solution pair (w, d) on domw. □

4.1.2 Partition of the System into Stable and Unstable parts
As seen in Section 3.1, A consists of isolated increasing eigenvalues with finite multiplicity
given in (3.5). Now, introduce the coefficients of projection wn = ⟨w(·), Φn⟩, bn = ⟨b, Φn⟩
and mn = ⟨m, Φn⟩ for n ∈ N∗. We have for all w(t, ·) ∈ D(A) and for all t ≥ 0 and for
n ∈ N∗:

ẇn(t) = (−λn + qc)wn(t) + bnu(t) +mnd(t),

y(t) =
∑
i≥1

Φi(0)wi(t). (4.5)

Let LN and HN be the subspaces of L2(0, 1; R) and H1(0, 1; R) spanned by (Φj(·))N
j=1

respectively. Let L⊥
N and H⊥

N be the orthogonal complement of LN and HN in L2(0, 1; R)
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and H1(0, 1; R) respectively. Let ι : Rn −→ HN be the isomorphism defined by ι(Φj) = Φj(·),
where (Φj)j=1,··· ,N is an orthonormal basis of RN . We will use the isometric representation of
L2(0, 1; R) as ℓ2(N∗, R) and H1(0, 1; R) as h̄1(N∗, R) obtained by the isomorphism induced
by Φj(·) 7→ Φj , where

ℓ2(N∗, R) := {(wn)n∈N∗ ∈ RN∗
:

∞∑
n=1

|wn|2 < ∞},

and

h̄1(N∗, R) := {(wn)n∈N∗ ∈ RN∗
:

∞∑
n=1

λn|wn|2 < ∞}

where Φj , j ∈ N∗ are the standard basis vectors in ℓ2(N∗, R) and h̄1(N∗, R) and we use
the standard norm on those spaces. We also denote the decomposition Let "

⊕
" be the

orthogonal sum of subspaces. ℓ2(N∗, R) = RN
⊕
ℓ2j≥N+1 corresponding to the decompo-

sition L2(0, 1; R) = LN
⊕
L⊥

N where ℓ2j≥N+1 is the set of sequences in ℓ2(N∗, R) which
are zeros in the first N entries. Similary, h̄1(N∗, R) = RN

⊕
h̄1

j≥N+1 corresponds to
H1(0, 1; R) = HN

⊕
H⊥

N .
Let N0 ≥ 1 and δ > 0 be given such that −λn + qc < −δ < 0 for all n ≥ N0 + 1. We now

introduce an arbitrary integer N ≥ N0 which will be further constrained later. We design an
output feedback controller that will act on and modify the first N modes of the plant. First,
we introduce the following vectors:

WN (t) := (w1(t) . . . wN (t))⊤,
B1 := (b1 . . . bN )⊤,
B2 := (m1 . . .mN )⊤,

A0 :=


−λ1 + qc 0 · · · 0

0 −λ2 + qc
. . . ...

... . . . . . . 0
0 · · · 0 −λN + qc

 ,

and we focus on the following unstable finite-dimension truncation of (4.5):

ẆN (t) = A0W
N (t) +B1u(t) +B2d(t). (4.6)

Assumption 4.1 The pair (A0,B1) is controllable. ⋄

Assumption 4.2 Consider that the Lipschitz continuous exogenous disturbance d(t) is en-
ergy bounded such that it belongs to the following set of functions:

S = {d : [0, ∞) −→ R;
∫ ∞

0
d(s)2ds ≤ ξ−1}

for some ξ > 0. The energy of d(t) is now said to be bounded by ξ−1. ⋄

Our first objective is to design a finite-dimensional linear time-invariant control system under
the effect of saturation that renders the origin of the closed-loop system (4.5) locally expo-
nentially stable in the H1-norm while achieving a quadratic performance specification on the
controlled system. The second objective is to introduce an anti-windup compensator to the
system that allows for better system performance and larger region of attraction. The general
framework of the dynamic control law is given in the next section.
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Figure 4.1: Closed-loop system (P, Kc) with saturation limitation.

4.2 General Set-Up for the Output-Feedback Control
Problem

Given N ≥ N0, consider the following state space representation for the continuous-time
linear plant P:

ẆN (t) = A0W
N (t) +B1σ(v(t)) +B2d(t),

ẇn(t) = (−λn + qc)wn(t) + bnσ(v(t)) +mnd(t) n ≥ N + 1,

y =
∑
i≥1

Φi(0)wi(t).
(4.7)

We assume the following LTI dynamic output feedback controller Kc:

Ẋc(t) = AcXc(t) +Bcy(t)

Yc(t) = CcXc(t)
(4.8)

where Xc ∈ RN is the state of the controller and Ac ∈ RN×N ,Bc ∈ RN and Cc ∈ R1×N are
to be designed, with N being the dimension of WN . The dead-zone nonlinearity is denoted
by

ϕ(v) := σ(v) − v

and let
C := (Φ1(0) . . .ΦN (0))⊤

ỹ :=
∑

i≥N+1
Φi(0)wi,

The general closed-loop system between (4.1) and (4.8) is given by:
ẇ(t) = Aw(t) + qcw(t) + bσ(Yc(t)) + bu(t) +md(t)

y(t) = w(t, 0)
Ẋc(t) = AcXc(t) +Bcy(t)

Yc(t) = CcXc(t).

(4.9)

Let ζc =

(
w
Xc

)
∈ D(A) × RN , and the H1

c -norm is defined by

∥ζc∥H1
c

:=
√

∥w∥2
H1 +X⊤

c Xc (4.10)
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The projected closed-loop dynamics (P, Kc) of the plant (4.7) with the output feedback
control (4.8) (as seen in Figure 4.1) can be formerly written as:

(
ẆN (t)
Ẋc(t)

)
=

(
A0 B1Cc

BcC Ac

)(
WN (t)
Xc(t)

)
+

(
B1
0

)
ϕ(Yc(t)) +

(
B2
0

)
d(t) +

(
0
Bc

)
ỹ(t)

ẇn(t) = (−λn + qc)wn(t) + bnCcXc(t) + bnϕ(Yc(t)) +mnd(t) n ≥ N + 1

Yc(t) =
(
0 Cc 0

)(WN (t)
Xc(t)

)
y(t) =

(
C 0 0

)(WN (t)
Xc(t)

)
+ ỹ

(4.11)
Inspired by the work done in [52], we prove that the exponential input-output stability of the
infinite-dimensional closed-loop system (4.11) boils down to studying the exponential input-
output stability of the unstable finite-dimensional system in closed loop with the defined
control plant. In the next section, we define the finite-dimensional closed-loop system and
then present the local exponential stability analysis which will help us later in Section 4.2.2.
We are now able to formally state the first problem we solve in this chapter.

Problem 4.3 Given p ∈ C2([0, 1]), q ∈ C0([0, 1]) with p, q > 0 and qc ∈ R. Design the con-

trol parameters
(
Ac Bc

Cc 0

)
such that the following properties hold for the closed-loop system

(4.9):

• the origin of the closed-loop system is zero-input locally exponentially stable with region
of attraction Rc,

• for some (solution independent) ψc, υc, ρc > 0, for each strong solution pair (ζc, d) to
the closed-loop system, the bound:

|y(t)| ≤ ψce
−υct ∥ζc(0)∥H1

c
+ ρc

√∫ t

0
d(θ)2dθ (4.12)

holds for all t ∈ R≥0.

Inequality (4.12) corresponds to an input-output stability (IOS) bound for the closed-loop
system (4.11). The first contribution of this chapter is to design an optimal controller Kc in
order to minimize the effect of the gain ρc for d ̸= 0 and maximize the region of attraction
Rc for d = 0. In Section 4.2.2.1, we provide an explicit estimate of the IOS gain ρc and the
region of attraction Rc.

4.2.1 Local Stabilization and Estimation of the region of attraction
for the Finite-dimensional Truncation System

Consider the closed-loop system of (4.6) with (4.8):
(
ẆN (t)
Ẋc(t)

)
=

(
A0 B1Cc

BcC Ac

)(
WN (t)
Xc(t)

)
+

(
B1
0

)
ϕ(Yc(t)) +

(
B2
0

)
d(t)

Yc(t) =
(
0 Cc

)(WN (t)
Xc(t)

) (4.13)

The goal of this section is to evaluate the region of attraction for the zero-input exponen-
tial stability of finite-dimensional unstable system (4.13) in order to later find the region of
attraction for the zero-input exponential stability of the whole system (4.11).

Definition 4.2 Assume Ac,Bc,Cc are chosen such that (4.13) is zero-input exponentially
stable. The set E(Pfc, 1) is said to be a region of attraction if

• 0 ∈ intE(Pfc, 1),
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• for any (WN (0),Xc(0)) ∈ E(Pfc, 1), the corresponding solution of (4.13) satisfies
(WN (t),Xc(t)) −→ 0 as t −→ ∞,

• for any (WN (0),Xc(0)) ∈ E(Pfc, 1), it holds that (WN (t),Xc(t)) ∈ E(Pfc, 1) for all
t ≥ 0 (forward invariant property).

The maximal region of attraction, or the domain of stability, is the largest set with the above
properties satisfied. It is also uniquely defined. ⋄

As classically done in the subject of local exponential stability using saturated control, the
system states are constrained into a polyhedral set with the help of quadratic Lyapunov
functions. Usually, the Lyapunov function defines the state domain as an ellipsoidal level set
defined below.

Definition 4.3 Consider the finite state X ∈ Rm,m ∈ N∗ belonging to an ellipsoidal level
set domain. Then, X belongs the following set

E(R,κ) := {X ∈ Rm : X⊤RX ≤ κ−1} (4.14)

for some κ > 0 and R ∈ Sm
p . ⋄

In the next proposition, we prove that the region of attraction for the local exponential
stability of the origin of (4.13) is given by an ellipsoidal domain.

4.2.1.1 Input-Output Stability Analysis for the Finite-dimensional Sys-
tem

In this section, we use the quadratic Lyapunov function in order to solve the local exponential
stability analysis problem with respect to the energy-bounded exogenous input d for system
(4.13). Let us define the generalized sector condition found in [72, Page 43] which will be
later used in the calculations of the Lyapunov stability conditions.

Lemma 4.1 For all v1, v2 ∈ R such that −ūl ≤ v1 − v2 ≤ ūl, the nonlinearity ϕ(v1) satisfies
the following inequality:

ϕ(v1)T (ϕ(v1) + v2) ≤ 0 (4.15)

for any T ∈ R>0. ⋄

We define the following matrices which will be used in the proof of the next proposition.

A11 :=
(
A0 B1Cc

BcC Ac

)
, B11 :=

(
B1
0

)
,

B12 :=
(
B2
0

)
, Xfc :=

(
WN

Xc

)
,

K :=
(
0 Cc

)
.

(4.16)

The following proposition is an already published result in [72, Page 137]

Proposition 4.4 Suppose there exist Pfc ∈ S2N
p ,Tfc ∈ R>0, G ∈ R1×2N , Ac ∈ RN×N ,Bc ∈

RN ,Cc ∈ R1×N and τ1, τ2,µ ∈ R>0 such that:A⊤
11Pfc + PfcA11 + τ1Pfc PfcB11 − G⊤Tfc PfcB12

∗ −2Tfc 0
∗ ∗ −τ2

 ≤ 0 (4.17)

(
Pfc K⊤ − G⊤

∗ ū2
l

)
≥ 0 (4.18)

− τ2ξ + τ1 ≤ µ (4.19)

Then, we have the following:
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• for d = 0, the ellipsoid E(Pfc, 1) is a region of attraction for the local exponential
stability of the origin of the saturated system (4.13).

• for any d ∈ S and Xfc(0) ∈ E(Pfc, 1), the trajectories of the saturated system (4.13)
do not leave the ellipsoid E(Pfc, 1).

Proof. Let Pfc ∈ S2N
p and consider the quadratic Lyapunov function defined as

Vf = X⊤
fcPfcXfc (4.20)

Following the procedure done in [72, Chapter 3], we want to prove that V̇f ≤ µVf for µ < 0
along the trajectories of the saturated system (4.13) for any Xfc such that X⊤

fcPfcXfc < 1
and for any d ∈ S. This translates to proving the following inequalities:

V̇f (Xfc) + τ1X
⊤
fcPfcXfc − τ2d

2 < 0 (4.21)

− τ1 + τ2ξ
−1 ≤ µ (4.22)

The informal computation of the derivative of Vf along the trajectories of the saturated finite
system (4.13) gives:

V̇f (Xfc) =X
⊤
fc(A

⊤
11Pfc + PfcA11)Xfc + ϕB⊤

11PfcXfc + d⊤B⊤
21PfcXfc +X⊤

fcPfcB11ϕ

+X⊤
fcPfcB12d

(4.23)

where A11,B11 and B12 are defined in (4.16). We rewrite (4.23) as:

V̇f (Xfc) =

Xfc

ϕ
d

⊤A⊤
11Pfc + PfcA11 PfcB11 PfcB12

∗ 0 0
∗ ∗ 0

Xfc

ϕ
d

 (4.24)

We have that
ϕ(Yc) = ϕ(KXfc)

and let G =
(
G1 G2

)
∈ R1×2N . We can apply Lemma 4.1 by choosing v1 = KXfc and

v2 = GXfc for any Xfc ∈ G := {Xfc ∈ R2N ; |KXfc − GXfc| ≤ ūl} which is satisfied if (4.18)
is satisfied. Thus the dead-zone nonlinearity ϕ(KXfc) satisfies:

ϕ(KXfc)
⊤Tfc(ϕ(KXfc) + GXfc) ≤ 0

Then, we have the following inequality

V̇f (Xfc) − τ2d
⊤d+ τ1Vf (Xfc) ≤ V̇f (Xfc) − τ2d

⊤d+ τ1Vf (Xfc) − 2ϕTfc(ϕ(KY ) + GY ).
(4.25)

Thus, we obtain

V̇f (Xfc) − τ2d
⊤d+ τ1Vf (Xfc) ≤Xfc

ϕ
d

⊤A⊤
11Pfc + PfcA11 + τ1Pfc PfcB11 − G⊤T PfcB12

∗ −2T 0
∗ ∗ −τ2

Xfc

ϕ
d

 (4.26)

Thus, if (4.17) is satisfied, the previous inequality implies

V̇f (Xfc) − τ2d
⊤d+ τ1Vf (Xfc) ≤ 0 (4.27)

and the proof is concluded. □
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4.2.2 Local Stabilization and Estimation of the region of attraction
for the Overall Infinite-Dimensional System

We prove in the next proposition that the region of attraction for the asymptotic stability
of the overall system (4.11) depends mainly on the knowledge of the region of attraction
E(Pfc, 1) given by Proposition 4.4.

Proposition 4.5 Assume Ac,Bc,Cc are chosen such that the origin of the finite-dimensional
system (4.13) is zero-input locally exponentially stable with region of attraction E(Pfc, 1) given
in Proposition 4.4. Then:

• the origin of system (4.11) is zero-input locally exponentially stable with region of at-
traction E(Pfc, 1) × h̄1

j≥N+1.

• the origin of system (4.9) is zero-input locally exponentially stable with region of at-
traction H⊥

N × ι(E(Pfc, 1)).

• for any d ∈ S and ζc(0) ∈ H⊥
N × ι(E(Pfc, 1)), the trajectories of the saturated system

(4.11) do not leave the region Rc.

• There exist three positive values M , a and ρ1 such that for any initial condition w(0, ·) ∈
int(H⊥

N × ι(E(Pfc, 1))), the following IOS inequality holds.

|y(t)| ≤ Me−at ∥ζc(t, 0)∥H1
c
+ ρ1

√∫ t

0
d(θ)2dθ. (4.28)

Proof. Since we prove that the origin of (4.13) is zero-input locally exponentially stable with
region of attraction E(Pfc, 1), it follows from Proposition 4.4 and inequality (4.27) that for
any Xfc(0) ∈ intE(Pfc, 1) (or a compact subset of intE(Pfc, 1)), the following holds

|Xfc(t)| ≤

√
λmax(Pfc)

λmin(Pfc)
e

−τ1t
2 |Xfc(0)| +

√
τ2

λmin(Pfc)

√∫ t

0
d(θ)2dθ, t ≥ 0.

Let M1 =

√
λmax(Pfc)
λmin(Pfc)

, a1 = τ1
2 and M2 =

√
τ2

λmin(Pfc)
. From equation (4.7), we derive

that for j ≥ N + 1, for any t ≥ 0, for any (wN+1(0),wN+2(0), · · · ) ∈ h̄1
j≥N+1 and d ∈ S:

wj(t) = e(−λj+qc)twj(0) + bj

∫ t

0
e(−λj+qc)(t−θ)σ(KXfc(θ))dθ+mj

∫ t

0
e(−λj+qc)(t−θ)d(θ)dθ

Since the saturation function σ is 1-Lipschitz continuous, it holds that

|σ(KXfc)| ≤ |KXfc| ≤ ∥K∥ |Xfc|.

Thus, exploiting Assumption 4.2 and Proposition 4.5, we obtain for all j ≥ N + 1 and for all
t ≥ 0 the following

|wj(t)| ≤ e−a2jt|wj(0)| + |bj | ∥K∥
∫ t

0
e−a2j (t−θ)|Xfc(θ)|dθ+ |mj |

∫ t

0
e−a2j (t−θ)|d(θ)|dθ

≤ e−a2jt|wj(0)| +M1|bj | ∥K∥
∫ t

0
e−a2j (t−θ)−a1θ|Xfc(0)|dθ

+M2|bj | ∥K∥
∫ t

0
(e−a2j (t−θ)

√∫ t

0
d(θ)2dθ)dθ+ |mj |

√∫ t

0
d(θ)2dθ

≤ e−a2jt|wj(0)| +
M1|bj | ∥K∥
a2j − a1

(e−a1t − e−a2jt)|Xfc(0)| + (|mj | +M2|bj | ∥K∥ t)
√
ξ−1.

where a2j = λj − qc. Using the inequality (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R, and the square
summability of |wj(0)|, |bj | and |mj |, it follows that

∑∞
j=N+1 |wj(t)|2 decays exponentially
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with respect to the input-to-state stability gain. Hence, if the origin of (4.13) is zero-input
exponentially stable with region of attraction E(Pfc, 1), then the origin of the overall system
(4.11) is zero-input asymptotically stable with region of attraction

E(Pfc, 1) × h̄1
j≥N+1.

At this point, system (4.11) is seen as a cascade interconnection of a locally exponentially
stable system and an ISS system. For a ζc in a closed, bounded subset of int(ι(H⊥

N ×
E(Pfc, 1))), the previous computations yield:

∥ζc(t)∥H1
c

≤ Me−at ∥ζc(0)∥ + ρ1

√∫ t

0
d(θ)2dθ

for suitable constants M , a and ρ1. Since y(t) = w(t, 0) and w(t, 1) = 0, we have

y(t)2 =

(∫ 1

0
wx(t, s)ds

)2
≤
∫ 1

0
w2

x(t, s)ds ≤ ∥w(t)∥2
H1 ≤ ∥ζc∥2

H1
c

. (4.29)

Thus, we can obtain (4.28), and the proof is concluded. □

Remark 4.1 If we are exclusively looking to prove input-to-state stability, the region of at-
traction is relaxed. In particular, the region of attraction for the asymptotic stability of (4.11)
becomes E(Pfc, 1)× ℓ2(j≥N+1) and that of (4.9) becomes L⊥

n × ι(E(Pfc, 1)). See [52] for more
results on ISS stability. ◦

In the next section, we propose a second Lyapunov method to derive sufficient conditions for
local exponential stability of the origin of the infinite-dimensional closed-loop system.

4.2.2.1 Input-Output Lyapunov Stability Analysis for the Overall System
with Saturated Control

In this section we perform Lyapunov stability analysis on the infinite-dimensional system to
design a solution to Problem 4.3. First, we propose sufficient conditions for H1

c - stability
and then construct a Lyapunov functional to derive the sufficient conditions in the form of
quadratic inequalities.

4.2.2.1.1 Sufficient Conditions
The following section presents sufficient conditions for the solution to Problem 4.3. The result
relies on a dissipation inequality. This is done by proving the following proposition:

Proposition 4.6 Assume there exist a Fréchet differentiable functional V : H1(0, 1; R) ×
RN −→ R≥0 and c1, c2, c3,χ ∈ R>0 such that for each d ∈ S and ζc ∈ Rc ⊂ D(A), a
sublevel set of V , such that:

c1 ∥ζc∥2
H1

c
≤ V (ζc) ≤ c2 ∥ζc∥2

H1
c

, (4.30)

DV (ζc)ζ̇c ≤ −c3V (ζc) + χ2d2. (4.31)

Then, the origin of the closed-loop system (4.9) is zero-input locally exponentially stable with
region of attraction R and (4.12) holds with

ρc =
χ

√
c1

(4.32)

Proof. First we consider a strong solution pair (ζc(t), d(t)); i.e, ζc ∈ Rc and d ∈ S ∩
C1,1(domd; R) for all t ∈ domζc where domζc is an interval of R≥0 including zero. Now, con-
sider the following function:

W : domζc −→ R

t 7→ (V ◦ ζc)(t)
(4.33)
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Then, since V : H1(0, 1; R) × RN −→ R≥0 is Fréchet differentiable everywhere and ζc :
domζc −→ H1(0, 1; R) × RN is differentiable almost everywhere, it follows that for almost
all t ≥ 0:

Ẇ(t) = DV (ζc)ζ̇c(t).

Thus we have for almost all t ∈ domζc

Ẇ(t) = DV (ζc)

(
−Aw(t, ·) + qcw(t, ·) + bu(t) +md(t)

AcXc(t) +Bcy(t)

)
Using (4.31), one gets, for all t ∈ domζc,

Ẇ(t) ≤ −c3W(t) + χd(t)2.

Therefore, since W is continuous on domζc, from comparison lemma [38, Page 102], we have:

W(t) ≤ e−c3tW(0) + χ2
∫ t

0
e−c3(t−θ)d(θ)2dθ, ∀t ∈ domζc.

This bound, thanks to (4.30), ensures that the origin of the closed-loop system is locally
exponentially stable with respect to the H1

c -norm and with a region of attraction R when
d = 0. At this stage, notice that for all t ∈ domζc, one has:∫ t

0
e−c3(t−θ)d(θ)2dθ ≤

∫ t

0
d(θ)2dθ

which allows one to conclude that for all t ∈ domζc

W(t) ≤ e−c3tW(0) + χ2
∫ t

0
d(θ)2dθ.

Finally by using (4.30), it follows that for all t ∈ domζc

∥ζc(t)∥H1
c

≤ e− c3
2 t

√
c2
c1

∥ζc(0)∥H1
c
+

χ
√
c1

√∫ t

0
d(θ)2dθ. (4.34)

Since y(t) = w(t, 0) and w(t, 1) = 0, we have

y(t)2 =

(∫ 1

0
wx(t, s)ds

)2
≤
∫ 1

0
w2

x(t, s)ds ≤ ∥w(t)∥2
H1 . (4.35)

Then, since
∥w(t)∥2

H1 ≤ ∥ζc∥2
H1

c

using (4.34) and (4.35), we get

|y(t)| ≤ e− c3
2 t

√
2c2
c1

∥ζc(0)∥H1
c
+

√
2 χ

√
c1

√∫ t

0
d(θ)2dθ, (4.36)

which reads as (4.12). This concludes the proof. □

4.2.2.1.2 Construction of the Functional Vc

Next, we define the following matrices which will be used for the proof of the next theorem:

B13 =

(
0
Bc

)
,

A12 =

(
0 0
0 α1 ∥b∥2 C⊤

c Cc

) (4.37)
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Let the constant Mϕ =
∑

n≥N+1
Φn(0)2

λn
which is finite when p ∈ C2([0, 1]) since Φn(0) =

O(1) as n −→ +∞ (see [55]) and (3.6) holds.

Theorem 4.7 Suppose there exist P ∈ S2N
p ,T ∈ R>0, G ∈ R1×2N , Ac ∈ RN×N ,Bc ∈

RN ,Cc ∈ R1×N and α1,β1, , γ,µ ∈ R>0 such that:
A⊤

11P + PA11 +A12 + τ1P PB11 − G⊤T PB12 PB13
∗ α1 ∥b∥2

L2 − 2T 0 0
∗ ∗ α1 ∥m∥2

L2 − τ2 0
∗ ∗ ∗ −β1

 ≤ 0 (4.38)

(
P K⊤ − G⊤

∗ ū2
l

)
≥ 0 (4.39)

− τ2ξ
−1 + τ1 < µ (4.40)

Select N sufficiently large such that for all n ≥ N + 1

λn

(
−λn + qc + τ1 +

3
α1

+
β1
2γMϕ

)
≤ 0. (4.41)

Then, the parameters Ac,Bc,Cc solve Problem 4.3. In particular (4.12) holds with:

ρ =
√

2τ2√
min{λmin(P ),γp∗,γq∗} . (4.42)

and the region of attraction Rc is given by H⊥
N × ι(E(P , 1)).

Proof. Let P ∈ S2N
p , γ > 0, and Xfc := (WN ,Xc). Consider the following Fréchet differen-

tiable Lyapunov functional:

V : H1(0, 1; R) × RN −→ R(
w
Xc

)
7→ X⊤

fcPXfc + γ
∑

n≥N+1
λn⟨w, Φn⟩2. (4.43)

The first term corresponds to the dynamics of the truncated model and the control model while
the second term, which is related to the H1-norm of the PDE trajectories, is used to handle
the modes wn for n ≥ N . We have that (4.30) holds for c1 := min{λmin(P ), γp∗, γq∗} and
c2 := max{λmax(P ), γp∗, γq∗} are strictly positive. Consider the first term of the functional
V :

V1(Xfc) := Xfc
⊤PXfc (4.44)

For the finite-dimensional part of the Lyapunov functional, the stability analysis is similar to
the proof of Proposition 4.4. We have

DV1(Xfc)Ẋfc =X
⊤
fc(A

⊤
11P + PA11)Xfc + ϕB⊤

11PXfc +X⊤
fcPB11ϕ

+ d⊤B⊤
12PXfc + ỹ⊤B⊤

13PXfc +X⊤
fcPB12d+X⊤

fcPB13ỹ
(4.45)

where A11,B11,B12 are defined in (4.16) and B13 is defined in (4.37). We obtain the compu-
tation of the time derivative of V1 along the system trajectories:

DV1(Xfc)Ẋfc =


Xfc

ϕ
d
ỹ


⊤

A⊤
11P + PA11 PB11 PB12 PB13

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0



Xfc

ϕ
d
ỹ

 (4.46)

As done for the proof of Proposition 4.4, let G =
(
G1 G2

)
∈ R1×2N . We can apply Lemma

4.1 by choosing v1 = KXfc and v2 = GXfc for any Xfc ∈ G = {Xfc ∈ R2N ; |KXfc −
GXfc| ≤ ūl} which is guaranteed by the satisfaction of condition (4.39). Thus, the dead-zone
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nonlinearity ϕ(KXfc) satisfies:

ϕ(KXfc)
⊤T (ϕ(KXfc) + GXfc) ≤ 0

Then, we have the following inequality

DV1(Xfc)Ẋfc − τ2d
⊤d ≤ DV1(Xfc)Ẋfc − τ2d

⊤d− 2ϕTfc(ϕ(KY ) + GY ). (4.47)

Thus, we obtain

DV1(Xfc)Ẋfc ≤


Xfc

ϕ
d
ỹ


⊤

A⊤
11P + PA11 PB11 − G⊤T PB12 PB13

∗ −2T 0 0
∗ ∗ −τ2 0
∗ ∗ ∗ 0



Xfc

ϕ
d
ỹ

 (4.48)

Now, consider V2(w) := γ
∑

n≥N+1 λn⟨w, Φn⟩ with γ > 0. The time derivative of V2 along
the system trajectories (4.11) yields:

DV2(w)ẇ = 2γ
∑

n≥N+1
λn((−λn + qc)w

2
n + bnσ(Yc)wn +mndwn). (4.49)

Thus, knowing that V = V1 + V2, we conclude the following expression:

DV (w,Xc)

(
ẇ
Ẋc

)
+ τ1V (w,Xc) =

Xfc

ϕ
d
ỹ


⊤

A⊤
11P + PA11 + τ1P PB11 −G⊤

1 T PB12 PB13
∗ −2T 0 0
∗ ∗ −τ2 0
∗ ∗ ∗ 0



Xfc

ϕ
d
ỹ


+ 2γ

∑
n≥N+1

λn[(−λn + qc + τ1)w
2
n + bnKXfcwn + bnϕ(KXfc)wn +mndwn]

(4.50)

Using Young’s inequality, we have:

2
∑

n≥N+1
λnbnwnKXfc ≤ 1

α1

∑
n≥N+1

λ2
nw

2
n + α1||b||2L2X

⊤
fcK⊤KXfc

2
∑

n≥N+1
λnbnwnϕ ≤ 1

α1

∑
n≥N+1

λ2
nw

2
n + α1||b||2L2ϕ

2

2
∑

n≥N+1
λnmnwnd ≤ 1

α1

∑
n≥N+1

λ2
nw

2
n + α1||m||2L2d

2

for any α1 > 0. We have that K⊤K =

(
0 0
0 C⊤

c Cc

)
. Furthermore, knowing that

ỹ2 =

 ∑
i≥N+1

Φi(0)wi

2

and MΦ =
∑

i≥N+1
Φi(0)2

λi
is finite and

∑
i≥N+1 λiw

2
i is finite due to (3.7), we use the

generalization of the Cauchy-Schwarz inequality [14] to obtain the following

ỹ2 ≤
∑

i≥N+1

Φi(0)2

λi

∑
i≥N+1

λiw
2
i
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Hence, for any β1 > 0,

β1MΦ
∑

i≥N+1
λiw

2
i − β1ỹ

2 ≥ 0 (4.51)

Combining (4.50) with Young’s inequality and (4.51), we obtain

DV (w,Xc)

(
ẇ
Ẋc

)
+ τ1V (w,Xc) − τ2d

⊤d ≤

Xfc

d
ỹ

⊤

Θc

Xfc

d
ỹ


+ 2γ

∑
n≥N+1

λn

(
−λn + qc + τ1 +

3
α1

+
β1
2γMΦ

)
w2

n

(4.52)

there has been a change in the formula here where Θc is given by:

Θc =


A⊤

11P + PA11 + α1 ∥b∥L2 K⊤K + τ1P PB11 − G⊤T PB12 PB13
∗ α1 ∥b∥2

L2 − 2T 0 0
∗ ∗ α1 ∥m∥2

L2 − τ2 0
∗ ∗ ∗ −β1


If the conditions (4.38) and (4.41) are satisfied, then (4.31) holds for ρc given in (4.32). In
addition, if conditions (4.38), (4.39), (4.40), (4.41) are satisfied the origin of closed-loop system
(4.11) is zero-input locally exponentially stable with region of attraction E(P , 1) × h̄1

j≥N+1,
and consequently, the origin of (4.1) in feedback with (4.8) is zero-input locally exponentially
stable with region of attraction H⊥

N × ι(E(P , 1)). □

Remark 4.2 In the case where the control input Yc is not constrained (ϕ(Yc) = 0), the
origin of the closed-loop system (4.11) is said to be zero-input globally exponentially stable.
If the open-loop system is stable, and the previous inequalities hold for K = G which provide
conditions for global exponential stability. ◦

4.2.3 Control Synthesis and Optimization Problems
The quadratic conditions derived in Theorem 4.7 constitute sufficient conditions used to solve
Problem 4.3. We notice that the matrix Θc in the inequality (4.38) is nonlinear with respect
to P ,Ac,Bc,Cc, G and T . Thus, as done in the previous chapter, we propose a linearization
method [62] , [72] that allows us to exploit the quadratic condition from a numerical standpoint
and therefore derive the values of the control parameters that solve Problem 4.3.

4.2.3.1 Derivation of Linear Matrix Inequalities

Let S = T−1 and let X,Y ∈ SN
p and U ,V ∈ R(N×N ) be nonsingular matrices such that

Y X + V U⊤ = I. Let Y =

(
Y I

V ⊤ 0

)
and P =

(
X U

U⊤ •

)
where “•” denotes “don’t care”

symmetric positive definite matrix. Under the considered assumptions Y is nonsingular and
a simple congruence transformation gives:

Y 0 0 0
∗ S 0 0
∗ ∗ I 0
∗ ∗ ∗ I


⊤

Θc


Y 0 0 0
∗ S 0 0
∗ ∗ I 0
∗ ∗ ∗ I

 < 0
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implies that
Y⊤(A⊤

11P + PA11 +A12 + τ1P )Y Y⊤PB11S − Y⊤G⊤ Y⊤PB12 Y⊤PB13
∗ α1 ∥b∥2

L2 S2 − 2S 0 0
∗ ∗ α1 ∥m∥2

L2 − τ2 0
∗ ∗ ∗ −β1

 < 0

(4.53)
We consider the following change of variable [62]:(

K L
M 0

)
=

(
XA0Y 0

0 0

)
+

(
U XB1
0 I

)(
Ac Bc

Cc 0

)(
V ⊤ 0
CY I

)
(4.54)

This transforms the old variables (P ,Ac,Bc,Cc) into the new variables ν = (X,Y ,K,L,M ).
Using the change of variable (4.54), it follows that:

Y⊤(A⊤
11P + PA11)Y = A(ν)⊤ +A(ν);

A(ν) :=
(
A0Y +B1M A0

K XA0 + LC

)
X(ν) := Y⊤PY =

(
Y I
I X

)
;

B1(ν) := Y⊤PB11S =

(
B1S
XB1S

)
;

B2(ν) := Y⊤PB12 =

(
B2
XB2

)
;

B3(ν) := Y⊤PB13 =

(
0
L

)
;

Z(ν) := Y⊤G⊤ =

(
Y G⊤

1 + V G⊤
2

G1

)
=:
(
Z⊤

1
Z⊤

2

)
.

We can rewrite Y⊤A12Y as Π⊤
1 Ã12Π1 where

Ã12 = α ∥b∥L2 , Π1 =

(
M⊤

0

)
.

Thus, inequality (4.53) implies
A(ν)⊤ +A(ν) + Π⊤

1 Ã12Π1 + τ1X(ν) B1(ν) − Z(ν) B2(ν) B3(ν)
∗ α1 ∥b∥L2 S2 − 2S 0 0
∗ ∗ α1 ∥m∥2

L2 − τ2 0
∗ ∗ ∗ −β1

 < 0.

(4.55)
Applying the Schur complement lemma [81] on (4.55), we say that (4.55) holds if

X(ν) > 0 (4.56)

and 
A(ν)⊤ +A(ν) + τ1X(ν) B1(ν) − Z(ν)⊤ B2(ν) B3(ν) Π1

∗ −2S 0 0 S

∗ ∗ α1 ∥m∥2
L2 − τ2 0 0

∗ ∗ ∗ −β1 0
∗ ∗ ∗ ∗ −Ã−1

12

 < 0.

(4.57)
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Finally, multiplying (4.39) by Y⊤ on the left and Y on the right, we obtain the following
linear matrix inequality written in the new variables (4.54):X I M⊤ −Z⊤

1
I Y −Z⊤

2
∗ ∗ ū2

l

 ≥ 0 (4.58)

Notice that the matrix in (4.57) is nonlinear in the terms X,Y , τ1 and S. The nonlinear
terms τ1X, τ1Y are considered linear if we fix τ1 by performing a line search on τ1 ∈ R≥0. In
addition, we fix α1 by performing a line search on R>0 and therefore the last diagonal element
is now linear. Looking at (4.41), it is obvious that α1 needs to be chosen sufficiently large
to satisfy the inequality. The last inconvenient nonlinearity is dealt with in [72] by adding a
static anti-windup input Ecϕ(Yc) to the control dynamics such that only the matrix B11 is
modified and becomes

B̄11 =

(
B1
Ec

)
.

Therefore, the matrix B1(ν) is replaced by:

B̄1(ν) =

(
B1S

XB1S + UEcS

)
=:
(
B1S
Q

)
In conclusion, if there exist X,Y ∈ SN

p ,K ∈ RN×N ,L ∈ RN ,M1×N ,Z1 ∈ R1×N ,Z2 ∈
R1×N ,Q ∈ RN and β1, γ, τ2 ∈ R>0 such that (4.56), (4.57) (modified), (4.58), (4.41) hold,
then the solution (Ac,Bc,Cc) to Problem 4.3 is derived using the change of variable in (4.54).

Obviously, the same change of variable can be used to transform (4.17), (4.18) into linear
matrix inequalities as done in [72]. Following that method, since S here is scalar, we can
perform a line search on S and avoid the addition of a static anti-windup term. However,
this might not give feasible solutions to the exponential stability of the infinite-dimensional
system since S here is constrained due to the second diagonal element in (4.55).

4.2.3.2 Optimization Problems

In the formulation of Problem 4.3, no specific requirements on the scalar ρc or on the size of
the region of attraction are considered. For d ̸= 0, it is obvious that to minimize the effect
of the disturbance d on the closed-loop system, the control parameters should be designed so
that (4.12) holds with a minimal ρc. This goal can be achieved by fixing τ1, and considering
the following optimization problem

sup
P ,r1

r1

s.t: (4.57), (4.56), (4.58), (4.41) hold P ∈ S2N
p ,P − r1I > 0.

(4.59)

The optimization problem (4.59) is equivalent to finding a maximal r1 such that

Y⊤(P − r1I)Y > 0

We apply the Schur complement lemma [81] on the latter nonlinear inequality to obtain the
equivalent condition:  1

r1
I Y V

∗ Y I
∗ ∗ X

 < 0 (4.60)

which is linear in µ1 = 1
r1

. Problem (4.59) can now be seen as designing minimal µ1 such
that (4.60) holds along with (4.57), (4.56), (4.58).

On the other hand, for d = 0, to maximize the region of attraction, the control parameters
should be designed so that Rc is maximal which implies that E(Pfc, 1) should be maximal.
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This goal can be achieved by fixing α1, choosing γ = β1 and considering the following opti-
mization problem

inf
P ,r2

r2

s.t: (4.57), (4.56), (4.58), (4.41) hold P ∈ S2N
p ,P − r2I < 0.

(4.61)

In the next section, we consider the design problem of an anti-windup compensator that helps
achieve better performmance levels for the input-output stability and enlarges the region of
attraction evaluated in this section.

4.3 General Set-Up for the Anti-Windup Compensator
Synthesis

We introduce an anti-windup compensator to the overall system such that the output of the
anti-windup plant is plugged into the dynamics of the control state Xc. Thus, we add an
input vx to system (4.8) for the anti-windup purposes:

Ẋc = AcXc +Bcy+ vx

Yc = CcXc.
(4.62)

The extra input vx is given in the following simplified direct anti-windup system Ka presented
in [72, Chapter 7] called the direct linear anti-windup design:

Ẋaw = Aawxaw +Baw(σ(Yc) − Yc)

vx = CawXaw +Daw(σ(Yc) − Yc).
(4.63)

where Xaw ∈ R2N is the anti-windup state such that the dimension of the anti-windup state
Xaw is the same as that of Xfc and the output of the anti-windup plant Yaw is injected
into the dynamics of the controller state (Yaw = vx). The goal is to design suitable anti-
windup parameters Aaw ∈ R2N×2N ,Baw ∈ R2N ,Caw ∈ RN×2N and Daw ∈ RN so that
the origin of system (4.1) in closed loop with (4.62), (4.63) achieves input-output stability

with smaller IOS gain and larger region of attraction. Let ζa =

 w
Xc

Xaw

 such that for all

ζa ∈ D(A) × RN × R2N , the H1
a-norm is defined by

∥ζa∥H1
a

:=
√

∥w∥2
H1 +X⊤

c Xc +X⊤
awXaw (4.64)

The configuration of the closed-loop dynamics of (4.7), (4.62) and (4.63) can be seen in
Figure 4.2 and is formerly written as (P, Kc, Ka):

ẆN (t)
Ẋc(t)
Ẋaw

 =


A0 B1Cc 0
BcC Ac Caw

0 0 Aaw

0 bnCc 0


WN (t)
Xc(t)
Xaw(t)

+

 B1
Daw

Baw

ϕ(Yc(t))

+

B2
0
0

 d(t) +

 0
Bc

0

 ỹ(t)

ẇn(t) = (−λn + qc)wn(t) + bnCcXc(t) + bnϕ(Yc(t)) +mnd(t) n ≥ N + 1
Yc(t) = CcXc(t)

y(t) = CWN (t) + ỹ

(4.65)

There are two main issues to tackle in system (4.65) with the anti-windup compensator. The
first issue is in the case when d = 0 where the goal is to enlarge the region of attraction of
the resulting closed-loop system. The second issue is in the case when the energy bounded



4.3. General Set-Up for the Anti-Windup Compensator Synthesis 69

Figure 4.2: Closed-loop system (P, Kc, Ka) with anti-windup com-
pensator.

exogenous signal d ̸= 0 where the goal is to enhance the performance level regarding the
input-output stability property discussed before. Mainly, we aim to minimize the IOS gain
obtained before as ρc. Following the steps done in Section 4.2, we start by estimating the
region of attraction and IOS gain for the origin of the finite-dimensional closed-loop system
in order to conclude that of the infinite-dimensional system.

We are now able to formally state the second problem we solve in this chapter.

Problem 4.8 Given p ∈ C2([0, 1]), q ∈ C0([0, 1]) with p, q > 0 and qc ∈ R. Given the

control parameters
(
Ac Bc

Cc 0

)
that solves Problem 4.3. Design the anti-windup parameters

Aaw,Baw,Caw,Daw such that the following properties hold for system (4.1) in closed loop
with (4.62) and (4.63):

• the origin of the closed-loop system is zero-input locally exponentially stable with region
of attraction Ra,

• for some (solution independent) ψa, υa, ρa > 0, for each strong solution pair (ζa, d) to
the closed-loop system, the bound:

|y(t)| ≤ ψae
−υat ∥ζa(0)∥H1

a
+ ρa

√∫ t

0
d(θ)2dθ (4.66)

holds for all t ∈ R≥0.

Inequality (4.66) corresponds to an input-output stability (IOS) bound for the closed-loop
system (4.67). The second contribution of this chapter is to design an anti-windup system
Ka in order to further minimize the effect of the gain ρa for d ̸= 0 and further maximize the
region of attraction Ra for d = 0. In the next section, we provide an explicit estimate of the
IOS gain ρa and the region of attraction Ra.
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4.3.1 Local Stabilization and Estimation of the region of attrac-
tion for the Finite-Dimensional Truncation System with Anti-
Windup Compensator

Consider the closed-loop finite-dimensional system of (4.6) with output feedback control (4.62)
and anti-windup compensator (4.63) such that the first input for the control system (4.62) is

now known and given by y = Y N = CWN . Let the finite state be Xfa :=

WN

Xc

Xaw

. Then,

the closed-loop is given as follows:

Ẋfa(t) = A21Xfa(t) +B21ϕ(Yc(t)) +B22d(t)

Yc(t) = KaXfa(t)
∀t ≥ 0 (4.67)

where

A21 =

 A0 B1Cc 0
BcC Ac Caw

0 0 Aaw

 B21 =

 B1
Daw

Baw


B22 =

B2
0
0

 Ka =
(
0 Cc 0

)
.

(4.68)

The goal of this section is to evaluate the region of attraction for the zero-input exponential
stability of the origin of finite-dimensional unstable system (4.67) in order to later find the
region of attraction for the zero-input exponential stability of the origin of the whole infinite-
dimensional system (4.65).

4.3.1.1 Input-Output Stability Analysis for the Finite-dimensional Sys-
tem

The next proposition is an already published result in [72, Chapter 7, Page 294].

Proposition 4.9 Suppose there exist Pfa ∈ S4N
p ,T ∈ R>0, Ga ∈ R1×4N , Aaw ∈ R2N×2N ,Baw ∈

R2N ,Caw ∈ RN×2N ,Daw ∈ RN and τ3, τ4,µ ∈ R>0 such that:A⊤
21Pfa + PfaA21 + τ3Pfa PfaB21 − G⊤T PfaB22

∗ −2T 0
∗ ∗ −τ4

 ≤ 0 (4.69)

(
Pfa K⊤

a − G⊤
a

∗ ū2
l

)
≥ 0 (4.70)

− τ4ξ
−1 + τ3 < µ (4.71)

Then, we have the following:

• for d = 0, the ellipsoid E(Pfa, 1) is a region of attraction for the local exponential
stability of the origin of the saturated system (4.13).

• for any d ∈ S and Xfa(0) ∈ E(Pfa, 1), the trajectories of the saturated system (4.13)
do not leave the ellipsoid E(Pfa, 1).

Proof. We follow the same proof provided for Proposition 4.4 □

4.3.2 Local Stabilization and Estimation of the region of attrac-
tion for the Overall Infinite-Dimensional System with Anti-
Windup compensator

As done in Section 4.2, we prove that the region of attraction of the infinite-dimensional
equation in closed loop with the control dynamics and the anti-windup compensator boils
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down to the estimation of the region of attraction for the finite unstable system (4.67). This
is guaranteed in the next proposition.

Proposition 4.10 Assume Aaw,Baw,Caw,Daw are chosen such that the the origin of finite-
dimensional system (4.67) is zero-input locally exponentially stable with region of attraction
E(Pfc, 1) given in Proposition 4.12. Then:

• the origin of system (4.65) is zero-input locally asymptotically stable with region of
attraction E(Pfa, 1) × h̄1

j≥N+1,

• the origin of system (4.1) with feedback (4.62) and (4.63) is zero-input locally asymp-
totically stable with region of attraction H⊥

N × ι(E(Pfa, 1)),

• for any d ∈ S and ζa(0) ∈ H⊥
N × ι(E(Pfa, 1)), the trajectories of the saturated system

(4.11) do not leave the region.

Proof. We follow the same proof provided for Proposition 4.5. □

We propose a second Lyapunov method to solve Problem 4.8.

4.3.2.1 Input-Output Lyapunov Stability Analysis for the Overall System
with Saturated Control and Anti-windup compensator

4.3.2.1.1 Sufficient Conditions
The following section presents sufficient conditions for the solution to Problem 4.8. The
result relies on an exponential dissipation inequality. This is done by proving the following
proposition:

Proposition 4.11 Assume there exist a Fréchet differentiable functional V : H1(0, 1; R) ×
RN × R2N −→ R≥0 and c1, c2, c3,χ ∈ R>0 such that for each d ∈ S and ζa ∈ Ra ⊂ D(A), a
sublevel set of V , then the following hold:

c1 ∥ζa∥2
H1

a
≤ V (ζc) ≤ c2 ∥ζa∥2

H1
a

, (4.72)

DV (ζa)ζ̇a ≤ −c3V (ζa) + χ2d2. (4.73)

Then, the origin of the closed-loop system (4.67) is zero-input locally exponentially stable with
region of attraction Ra and (4.66) holds with

ρa =
χ

√
c1

(4.74)

Proof. We follow the proof provided for Proposition 4.6. □

4.3.2.1.2 Construction of the functional Va

The next theorem provides the sufficient conditions for local exponential stability under the
form of quadratic matrix inequalities. Let

B23 =

 0
Bc

0



A22 =

0 0 0
0 α2 ∥b∥2 C⊤

c Cc 0
0 0 0
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Theorem 4.12 Suppose there exist Pa ∈ S4N
p ,Ta ∈ R>0, Ga ∈ R1×4N , Aaw ∈ R2N×2N ,Baw ∈

R2N ,Caw ∈ R1×2N and α2,β2, , γ,µ ∈ R>0 such that:
A⊤

21Pa + PaA21 + τ3Pa +A22 PaB21 − G⊤
a Ta PaB22 PaB23

∗ α2 ∥b∥2
L2 − 2Ta 0 0

∗ ∗ α2 ∥m∥2
L2 − τ4 0

∗ ∗ ∗ −β2

 ≤ 0 (4.75)

(
Pa K⊤

a − G⊤
a

∗ ū2
l

)
≥ 0 (4.76)

− τ4ξ
−1 + τ3 < µ (4.77)

Select N sufficiently large such that for all n ≥ N + 1

Γn := λn

(
−λn + qc + τ3 +

3
α2

+
β2
2γMϕ

)
≤ 0. (4.78)

Then, the parameters Aaw,Baw,Caw,Daw solve Problem 4.8. In particular, (4.66) holds with:

ρa =
√

2τ4√
min{λmin(Pa),γp∗,γq∗} . (4.79)

The region of attraction Ra is given by H⊥
N × ι(E(Pa, 1)).

Proof. Consider P ∈ S4N
p , γ > 0, and Xfa := (WN ,u,Xc). Consider the following Fréchet

differentiable Lyapunov functional:

Va : H1(0, 1; R) × RN × R2N −→ R w
Xc

Xaw

 7→ X⊤
faPaXfa + γ

∑
n≥N+1

λn⟨w, Φn⟩2.
(4.80)

The first term corresponds to the dynamics of the truncated model (4.6), the control model
(4.62) and the anti-windup model (4.63), while the second term, which is related to the H1-
norm of the PDE trajectories, is used to handle the modes wn for n ≥ N . Condition (4.72)
holds for c1 := min{λmin(Pa), γp∗, γq∗} and c2 := max{λmax(Pa), γp∗, γq∗} which are strictly
positive. Consider the first term of the functional Va:

V1(Xfa) := Xfa
⊤PaXfa (4.81)

Derive the Lyapunov functional V1(Xfa) along the trajectories of the closed-loop system
(4.65). Then, we obtain

DV1(Xfa)Ẋfa =X⊤
fa(A

⊤
21Pa + PaA21)Xfa + ϕ⊤B⊤

21PaXfa + d⊤B⊤
22PaXfa +X⊤

faPaB21ϕ+X⊤
faPaB22d

+ ỹ⊤B⊤
23PaXfa +X⊤

faPaB23ỹ.
(4.82)

We obtain the computation of the time derivative of V1 along the solution to (4.7):

DV1(Xfa)Ẋfa =


Xfa

d
ỹ
ϕ


⊤

A⊤
21Pa + PaA21 PaB21 PaB22 PaB23

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0



Xfa

d
ỹ
ϕ

 . (4.83)

Let Ga =
(
G3 G4

)
∈ R2N × R2N . We can apply lemma 4.1 by choosing v1 = KaXfa and

v2 = GaXfa for any Xfa ∈ Ga = {Xfa ∈ R4N ; |KaXfa − GaXfa| ≤ ūl} which is guaranteed
by the satisfaction of condition (4.76). Thus, the dead-zone nonlinearity ϕ(KaXfa) satisfies:

ϕ(KaXfa)
⊤T (ϕ(KaXfa) + GaXfa) ≤ 0
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Then, we have the following inequality

DV1(Xfa)Ẋfa − τ4d
⊤d ≤ DV1(Xfa)Ẋfa − τ4d

⊤d− 2ϕT (ϕ(KaXfa) + GaXfa). (4.84)

The rest of the proof mimics the proof of Theorem (4.7). Thus, we obtain that Frechét
differential of the Lyapunov functional (4.80) satisfies the following inequality:

DV (Xfa,w)
(
Ẋfa

ẇ

)
+ τ3V (Xfa,w) − τ4d

⊤d ≤

Xfa

d
ỹ

⊤

Θa

Xfa

d
ỹ


+ 2γ

∑
n≥N+1

λn

(
−λn + qc + τ3 +

3
α2

+
β2
2γMΦ

)
w2

n

(4.85)

where Θa is given by the matrix in (4.75). If the conditions (4.75) and (4.78) are satisfied, then
(4.31) holds. In addition, if conditions (4.75), (4.77), (4.77), (4.78) are satisfied, the origin
of the system (4.1) in closed loop with (4.62) and (4.63) is zero-input locally exponentially
stable with region of attraction H⊥

N × ι(E(Pa, 1)). □

4.3.3 Control Synthesis and Optimization Problems
The quadratic conditions derived in Theorem 4.12 constitute sufficient conditions used to solve
Problem 4.8. We notice that the matrix Θa in the inequality (4.75) is nonlinear with respect
to Pa,Aaw,Baw,Caw, Ga and Ta. Thus, we repeat the same procedure done in Section 4.2.3
to transform the quadratic conditions found in Theorem 4.12 into linear matrix inequalities
that can be exploited numerically in order to calculate the anti-windup parameters.

4.3.3.1 Derivation of Linear Matrix Inequalities

Let Sa = T−1
a and let Xa ∈ S2N

p ,Ya ∈ S2N
p and Ua,Va ∈ R(2N×2N ) be nonsingular matrices

such that YaXa + VaU
⊤
a = I. Let Ya =

(
Ya I

V ⊤
a 0

)
and Pa =

(
Xa Ua

U⊤
a •

)
. Under the

considered assumptions Ya is nonsingular and a simple congruence transformation gives:
Ya 0 0 0
∗ Sa 0 0
∗ ∗ I 0
∗ ∗ ∗ I


⊤

Θa


Ya 0 0 0
∗ Sa 0 0
∗ ∗ I 0
∗ ∗ ∗ I

 < 0

implies that
Y⊤

a (A⊤
21Pa + PaA21 +A22 + τ3Pa)Ya Y⊤

a PaB21S − Y⊤
a G⊤

a Y⊤
a PaB22 Y⊤

a PaB23
∗ α2 ∥b∥2

L2 S2
a − 2Sa 0 0

∗ ∗ α2 ∥m∥2
L2 − τ4 0

∗ ∗ ∗ −β2

 < 0

(4.86)
Consider the following change of variable [62]:(

Ka La
Ma Ea

)
=

(
XaA11Ya 0

0 0

)
+

(
Ua XaB̄
0 I

)(
Aaw Baw

Caw Daw

)(
V ⊤

a 0
0 I

)
(4.87)

where B̄ =

(
0
I

)
. In other words:

Ka = XA11Y + UAawV
⊤ +XB̄CawV

⊤;
La = UaBaw +XaB̄Daw;
Ma = CawV

⊤;
Ea = Daw.
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This transforms the old variables (Pa,Aaw,Baw,Caw,Daw) into the new variables ν = (Xa,Ya,Ka,La,Ma,E).
Using the change of variable (4.87), it follows that:

Y⊤
a (A⊤

21Pa + PaA21)Ya = Â(ν)⊤ + Â(ν);

Â(ν) :=
(
A11Ya + B̄Ma A11

Ka XaA11

)
;

X̂(ν) := Y⊤
a PaYa =

(
Ya I
I Xa

)
;

B̂1(ν) := Y⊤
a PaB21Sa =

(
B̄Daw

XB̄Daw + UaBaw

)
Sa =

(
B̄EaSa

LaSa

)
=:
(
B̄Q1
Q2

)
;

B̂2(ν) := Y⊤
a PaB22 =

(
B12

XaB12

)
;

B̂3(ν) := Y⊤
a PaB23 =

(
B13

XaB13

)
;

Z(ν) := Y⊤
a G⊤

a =

(
Y G⊤

3 + V G⊤
4

G⊤
3

)
=:
(
Z3
Z4

)
.

Thus, inequality (4.86) implies
X̂(ν) > 0 (4.88)

and
Â(ν)⊤ + Â(ν) +A22 + τ3X(ν) B̂1(ν) − Z(ν) B̂2(ν) B̂3(ν) 0

−2S 0 0 S

∗ ∗ α2 ∥m∥2
L2 − τ4 0 0

∗ ∗ ∗ −β2 0
∗ ∗ ∗ ∗ −Ã−1

12

 < 0.

(4.89)
Finally, multiplying (4.76) by Y⊤

a on the left and Ya on the right, we obtain the following
linear matrix inequality written in the new variables (4.87):X I Y C⊤

2 −Z3
I Y C⊤

2 −Z⊤
4

∗ ∗ ū2
l

 ≤ 0 (4.90)

where C2 =
(
0 Cc

)
. Notice here also that the matrix in (4.89) is nonlinear in the terms

Xa,Ya, τ3, Ã−1
12 . As done previously, the nonlinear terms τ3Xa, τ3Ya and Ã−1

12 are considered
linear if τ3 and α2 are fixed by performing a line search on τ3,α2 ∈ R≥0.

In conclusion, if there exist Xa,Ya ∈ S2N
p ,Ka ∈ R2N×2N ,La ∈ R2N ,MN×2N

a ,Ea ∈
RN ,Z1 ∈ R1×2N ,Z2 ∈ R1×2N and β2, γ ∈ R such that (4.88), (4.89), (4.90), (4.77), (4.78)
hold, then the solution (Aaw,Baw,Caw,Daw) to Problem 4.8 is derived using the change of
variable in (4.87).

4.3.3.2 Optimization Problems

As done for Section 4.2.3.2, the minimization problem of the effect of the external perturba-
tions on system (4.1) in closed loop with (4.62) and (4.63) boils down to solving the following
convex optimization problem:

inf
Pa,µ2

µ2

s.t: (4.89), (4.88), (4.90), (4.78) hold

µ2I Ya Va

∗ Ya I
∗ ∗ Xa

 < 0
(4.91)

On the other hand, for d = 0, the maximization problem of the size of the region of attraction
for the local exponential stability of the origin of (4.1) in closed loop with (4.62) and (4.63)
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boils down to solving the following convex optimization problem:

inf
Pa,r3

r3

s.t: (4.89), (4.88), (4.90), (4.78) hold Pa − rI < 0
(4.92)

4.4 Numerical Simulation
In this section, we use the YALMIP package in Matlab to solve the linear matrix inequalities
(4.41), (4.56), (4.57), (4.58) and derive a feasible solution to Problem 4.3. The simulation
of the closed loop system without anti-windup (4.11) is presented to graphically display the
time evolution of the H1-norm of the state w(t, z) and the norm of the output y(t) in order
to validate the ISS and IOS properties proven in this chapter.

Consider (4.1) with b(z) = m(z) = p(z) = q(z) = 1 in closed loop with (4.8). We
illustrate the result of Section 4.2 using a modal approximation that captures the 50 dominant
modes of the reaction-diffusion plant with an in-domain disturbance given by:

d(t) = 0.1 sin(2t)

The saturation limit ūl = 2. Choose qc = 4 such that the open-loop plant is unstable with
N0 = 1 and select the dimension of the finite-dimensional controller N = 3. Fix α1 = α2 = 1.
The following control matrices renders (4.41), (4.56), (4.57), (4.58) feasible with optimization
goal (4.60).

Ac =

−29 −26 −33
−4 −29 27
80 83 −70


Bc =

−17
−3
51


Cc =

(
5.7 3.6 −1.35

)
(4.93)

The initial condition of the reaction-diffusion system described by (4.1) is w0(z) = x2. For
d ̸= 0, the time-evolution of the states ∥w(z, t)∥H1 and ∥ζc∥H1

c
are depicted in Figure 4.3

and Figure 4.4 which showcases a convergence to a neighborhood of the origin as predicted
in Proposition 4.6 and one can observe the effect of the disturbance at steady state. FIGURE
4.5 demonstrates the decay in the output y(t) verifying the dissipation inequality describing
the input-output stability property in Proposition 4.6 with ρc = 3.9. Finally, Figure 4.6
shows the time evolution of the control input u(t) (in blue) under the effect of saturation
limitation in comparison with the unsaturated signal Yc(t) (in red).
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Figure 4.3: Time evolution of the H1- norm of the state w in the
case without anti-windup.
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Figure 4.4: Time evolution of the H1
c -norm of the state ζc in the

case without anti-windup.
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Figure 4.5: Time evolution of the output y in the case without anti-
windup.
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Figure 4.6: Time evolution of the saturated control signal u (in blue)
vs. the unsaturated control signal Yc(t) (in red) in the case without

anti-windup.
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Figure 4.7: Output decay for increasing dimension N of the control
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Now that (Ac,Bc,Cc) are computed, the anti-windup parameters are derived such that
(4.78), (4.88), (4.89), (4.90) are satisfied with with optimization goal (4.91):

Aaw =


0.53 0.01 −0.18 5.17 3.32 −1.37

−0.02 −22 5.05 −1.87 −1.2 0.83
−0.25 1.36 −149 1.65 1.12 1.34
−7.42 9.23 −24 −1.4 −24.6 −33.65
−0.38 18.1 −24.7 24.4 −1.5 29

4.8 6.5 −0.35 34 −27 −4.6



Baw =


−81
−14
34

−195
−123
0.46


Caw =

−18 −34 −12 −28 −2 0.68
−4 −23 15 −29 0.25 1
67 72 161 46 112 −72


Daw =

197
124
−49



(4.94)

For the same initial conditions and saturation limit, the time-evolution of the states ∥w∥H1

and ∥ζa∥H1
c

are depicted in Figure 4.8 and Figure 4.9 which showcases a convergence to
a neighborhood of the origin as predicted in Proposition 4.11 and one can observe the effect
of the disturbance at steady state. FIGURE 4.10 demonstrates the decay in the output
y(t) verifying the dissipation inequality describing the input-output stability property in
Proposition 4.11 with ρa = 1.3. Finally, Figure 4.6 shows the time evolution of the control
input u(t) coinciding with the unsaturated signal Yc(t) (in red).

One can obviously see a better performance level for the Input-output stability gain after
the anti-windup compensator to the closed-loop system when comparing Figure 4.5 with
Figure 4.10. This is validated also by:

ρa < ρc.

For d = 0, we re-do the simulations for the optimization goals (4.61) and (4.92) respec-
tively. The numerical results gives:

λmax(P ) = 30 > λmax(Pa) = 25

Thus, the region of attraction for the local exponential stability of the origin of the closed-loop
system without anti-windup is smaller than that with anti-windup.

Therefore, the addition of the dynamic anti-windup clearly benefits the system require-
ments in terms of performance level and region of attraction.
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Figure 4.8: Time evolution of the H1- norm of the state w(t, ·) in
the case with anti-windup.
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Figure 4.9: Time evolution of the H1
a- norm of the state ζa(t, ·) in

the case with anti-windup.
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Figure 4.10: Time evolution of the output y(t) in the case without
anti-windup.
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Figure 4.11: Time evolution of the saturated control signal u(t) and
unsaturated control signal Yc(t) (coincide) in the case anti-windup.
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Consider now another example where N = 3, ūl = 1 and the initial condition w0(z) =
4(cos(z) + 1). Figure 4.12 shows that the output y(t) diverges when there is no anti-windup
compensator. Figure 4.13 shows a converging output y(t) when anti-windup is considered
with control input u(t) given in Figure 4.14. This further illustrates the importance of using
such configuration when we have saturation limitations.
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Figure 4.12: Output y(t) with no anti-windup.

Figures 4.15, 4.16, 4.17 shows the different output and control responses for different
dimensions of controllers.
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Figure 4.13: Output y(t) with anti-windup.

4.5 Conclusion
In this chapter, the stabilization problem of a linear unstable reaction-diffusion equation has
been studied using Lyapunov stability theory. The control input is under saturation limitation
and an output feedback dynamic control system has been introduced to drive the origin of the
closed-loop system into local exponential stability. The region of attraction of the closed-loop
infinite-dimensional system has been evaluated by proving that it basically depends on the
region of attraction of the finite-dimensional system consisting of the finite unstable truncation
model in closed loop with the output feedback control dynamics. Sufficient conditions in the
form of linear matrix inequalities have been found for the design of the appropriate control
parameters.

After the control parameters were designed and given, an anti-windup compensator has
been added to the closed-loop system in order to improve the performance level of the overall
system. The stability analysis is done again to derive the new sufficient conditions and region
of attraction for the local exponential stability of the origin of the new closed-loop system.

The efficiency and interest in the anti-windup approach have been illustrated in numerical
results which clearly shows the decrease in the input-output stability gain and the increase
in the size of the region of attraction after introducing an anti-windup compensator.

In the next chapter, we present a summary for the whole thesis and offer some perspective
for future research extensions.
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Figure 4.14: Control input u(t) with anti-windup.
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Figure 4.15: Output y(t) for different dimensions of controller.
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Figure 4.16: u(t) and Yc(t) for N = 3
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Figure 4.17: u(t) and Yc(t) for N = 6
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Chapter 5

Conclusion and Perspectives

The thesis investigated the stabilization and control design problems of partial differential
equations using control signals that might be subjected to saturation constraints. The various
problems we solved are: well-posedness Cauchy problem, boundary control design, distributed
control design, and anti-windup design problems; all in the context of infinite dimensional
systems. The main tools used to solve those problems are nonlinear semigroup theories,
Lyapunov stability theory and linear matrix inequality techniques. The applications of the
presented approaches are interesting from a practical and theoretical point of views.

In all chapters, we have tackled issues related to ensuring system stability (either input-
to state stability or input-output stability) using state feedback or output feedback control
laws. The magnitude constraints imposed on the boundary and distributed controls under
the form of saturation functions led to stability problems. In particular, saturated control
not only restricts the initial conditions of the system state into being close to zero but also
threatens the well-posedness of the boundary value problem. We used nonlinear semigroup
theories to prove the existence and uniqueness of solutions to the partial differential equation
with the nonlinear saturation function at the boundary. We have used Lyapunov methods to
ensure exponential decay of the energy of the system over time. We have used both L2 and
H1 Lyapunov functional to mathematically provide sufficient conditions for the exponential
decay of the system state or of the regulated output. In this thesis, when we talk about global
stability results, either the system is open-loop stable or the control is not constrained. For
local stability results, we used local sector conditions and Lyapunov functions to derive the
appropriate region of attraction for the stability of the system. Finally, for all the systems
studied, we presented ISS or IOS stability gains with respect to the in-domain disturbances.
In what follows, we summarize the problems solved in each chapter and provide future insight
and perspectives to the topics presented.

5.1 Main Contributions and Perspectives for Hyperbolic
Systems

The first chapter solves two problems. We focused on the study of an open-loop stable one-
dimensional transport equation with a saturation at the boundary and perturbation in the
domain.

The first problem is proving that the boundary value problem is well-posed. We proved
that the unbounded operator that governs the system is non-accretive and that its range is
equal to the space on which the state is defined. By using the general theory of nonlinear
m-accretive operators in Banach spaces, we deduced the existence of mild solution pairs to
the Cauchy problem. The second challenge solved was proving that the mild solution pair
can be approximated by a sequence of strong solution pairs in order to be able to carry out
the Lyapunov stability analysis.

At this point we were able to solve the second problem in this chapter. The sufficient
conditions for the global exponential stability of the origin of the system were derived using
Lyapunov stability theory. This analysis revealed an input-to-state stability bound to the
closed-loop state. By the help of the global sector condition, an L2 Lyapunov functional,
and Schur complement lemma, the sufficient conditions were rewritten under the form of
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linear matrix inequalities, which led to numerically affordable tests. Finally, an optimization
problem was solved in order to reduce the effect of the disturbance on the ISS property.

For the numerical analysis, we presented an application on a scalar system of the transport
equation. We prove that the satisfaction of the sufficient conditions, which were derived with
an L2 Lyapunov function, requires the open-loop stability property. Finally, some numerical
simulations were carried out to illustrate the efficiency and interest of our approach and
display the input-to-state stability result.

5.1.1 Perspectives
Chapter 2 opens the horizon for some interesting questions. In particular, one can extend
the research towards other classes of Lyapunov functions, as those considered in [1] and
to compare the consequent constraints with those present in Theorem 2.2. One can also
consider the extension of this application to the design of an observer and an anti-windup
compensator. Another interesting extension is introducing uncertainties in the domain or
boundary and design a control strategy with robust properties. Finally, one can consider
other class of nonlinearity such as backlash operator as considered in [73].

5.2 Main Contributions and Perspectives for Parabolic
Systems

5.2.1 Unconstrained Control Problem
The third chapter solves the output feedback boundary control problem for a reaction-diffusion
equation with Dirichlet boundary conditions to achieve input-output stability results globally.
In this chapter, the control input was not saturated. The main interest was considering an
open-loop unstable plant. In particular, the system in question admitted a finite number
of unstable poles, which is not usually considered in the literature of controlling reaction
diffusion equations (where marginal stability holds for open-loop systems). In addition, the
system was assumed to be affected by an in-domain disturbance. Through a standard change
of variable, the system was transformed into a homogeneous parabolic partial differential
equation. The proposed control design strategy was based on a partition of the overall
system into a unstable finite ODE system and an stable infinite-dimensional system using
eigenfunction projections. Then, the partitioned systems were put in closed loop with a finite-
dimensional linear time-invariant control plant whose output is plugged into the boundary of
the system. Using Lyapunov stability methods, sufficient conditions in the form of matrix
inequalities for input-output stability of the reaction-diffusion plant with respect to in-domain
disturbances, were derived. Using an appropriate change of variable, we provided LMIs and
an appropriate algorithm to effectively choose the dimension of the controller and to design
the control parameters required to solve the problem defined. A numerical example was
presented to illustrate the effectiveness of our approach and to highlight the strategic choice
of the dimension of the controller.

5.2.2 Constrained Control Problem
The first problem that was solved in Chapter 4 was the stabilization problem of a linear
unstable reaction-diffusion equation using a saturated distributed control. As done in the
previous chapter, coefficients of projections were used to rewrite the system into a finite
unstable part and an infinite stable part. The control input signal was given by the output
feedback dynamic control system which was designed to achieve closed-loop local exponential
stability of the origin. The region of attraction of the closed-loop infinite dimensional system
has been evaluated by proving that it mainly depends on the region of attraction of the
projected finite dimensional system in closed loop with the output feedback control dynamics.
Using Lyapunov stability theory, sufficient conditions in the form of matrix inequalities have
been presented for local exponential input-output stability of the origin of the closed-loop
system.
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The second problem we solved in this chapter, was the design of an anti-windup com-
pensator for the infinite dimensional system, which was the first time done in the context
of distributed parameter systems. The intention behind this addition was to maintain the
previous local stability properties and enhance the performance levels as well as enlarge the
region of attraction of the closed-loop system. Stability analysis was carried out to derive new
sufficient conditions and an estimate of the region of attraction for local exponential stability
of the origin of the new closed-loop system.

The efficiency and interest in the anti-windup approach have been illustrated in numerical
results, which clearly show the decrease in the input-output stability gain and the increase
in the size of the region of attraction after introducing an anti-windup compensator. It also
highlights the strategic choice of the order of the finite dimensional controller and that of the
anti-windup to deal with the suboptimal control design issues.

5.2.3 Perspectives
It would be interesting to consider other classes of Lyapunov functions than the ones consid-
ered in this study and to compare the associated regions of attractions and stability gains. It
also opens extension to saturated boundary control design for the local input-to-state stabil-
ity problem. In addition, the observer design problem for the reaction diffusion system with
distributed saturated control is a possible future research topic. Finally, one can study the
problem of limited information control as considered in [24], for example.





91

Bibliography

[1] Mohamadreza Ahmadi, Giorgio Valmorbida, and Antonis Papachristodoulou. Dissipa-
tion inequalities for the analysis of a class of pdes. Automatica, 66:163–171, 2016.

[2] Fatiha Alabau-Boussouira. On some recent advances on stabilization for hyperbolic
equations. Control of partial differential equations, pages 1–100, 2012.

[3] Fuensanta Andreu-Vaillo, Vicent Caselles, and José M Mazón. Parabolic quasilinear
equations minimizing linear growth functionals, volume 223. Springer Science & Business
Media, 2004.

[4] Mark J Balas. Feedback control of linear diffusion processes. International Journal of
Control, 29(3):523–534, 1979.

[5] Mark J Balas. Finite-dimensional control of distributed parameter systems by galerkin
approximation of infinite dimensional controllers. Journal of mathematical analysis and
applications, 114(1):17–36, 1986.

[6] Viorel Barbu. Nonlinear semigroups and differential equations in Banach spaces.
Springer, 1976.

[7] Viorel Barbu. Nonlinear differential equations of monotone types in Banach spaces.
Springer Science & Business Media, 2010.

[8] Blake Barker, Soyeun Jung, and Kevin Zumbrun. Turing patterns in parabolic systems
of conservation laws and numerically observed stability of periodic waves. Physica D:
Nonlinear Phenomena, 367:11–18, 2018.

[9] G Barles, C Georgelin, and PE Souganidis. Front propagation for reaction–diffusion
equations arising in combustion theory. Asymptotic Analysis, 14(3):277–292, 1997.

[10] Georges Bastin and Jean-Michel Coron. Stability and boundary stabilization of 1-d hy-
perbolic systems, volume 88. Springer, 2016.

[11] Mostafa Bendahmane and Michel Langlais. A reaction-diffusion system with cross-
diffusion modeling the spread of an epidemic disease. Journal of Evolution Equations,
10(4):883–904, 2010.

[12] William E Boyce, Richard C DiPrima, and Douglas B Meade. Elementary differential
equations and boundary value problems. John Wiley & Sons, 2021.

[13] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations.
Springer Science & Business Media, 2010.

[14] DK Callebaut. Generalization of the cauchy-schwarz inequality. Journal of mathematical
analysis and applications, 12(3):491–494, 1965.

[15] V Capasso and Lucia Maddalena. Convergence to equilibrium states for a reaction-
diffusion system modelling the spatial spread of a class of bacterial and viral diseases.
Journal of Mathematical Biology, 13(2):173–184, 1981.

[16] Eugênio B Castelan, Sophie Tarbouriech, and Isabelle Queinnec. Control design for a
class of nonlinear continuous-time systems. Automatica, 44(8):2034–2039, 2008.

[17] Juan Chen, Baotong Cui, and YangQuan Chen. Backstepping-based boundary control
design for a fractional reaction diffusion system with a space-dependent diffusion coeffi-
cient. ISA transactions, 80:203–211, 2018.



92 BIBLIOGRAPHY

[18] Panagiotis D Christofides and James Baker. Robust output feedback control of quasi-
linear parabolic pde systems. Systems & Control Letters, 36(5):307–316, 1999.

[19] Ruth Curtain and Hans Zwart. Introduction to infinite-dimensional systems theory: a
state-space approach, volume 71. Springer Nature, 2020.

[20] Ruth F Curtain. Equivalence of input-output stability and exponential stability for
infinite-dimensional systems. Mathematical systems theory, 21(1):19–48, 1988.

[21] Cédric Delattre, Denis Dochain, and Joseph Winkin. Sturm-liouville systems are riesz-
spectral systems. International Journal of Applied Mathematics and Computer Science,
13(4):481–484, 2003.

[22] Mathias Dus, Francesco Ferrante, and Christophe Prieur. On L∞ stabilization of di-
agonal semilinear hyperbolic systems by saturated boundary control. ESAIM: Control,
Optimisation and Calculus of Variations, 26:23, 2020.

[23] Nael H El-Farra, Antonios Armaou, and Panagiotis D Christofides. Analysis and control
of parabolic pde systems with input constraints. Automatica, 39(4):715–725, 2003.

[24] Francesco Ferrante, Frédéric Gouaisbaut, Ricardo G Sanfelice, and Sophie Tarbouriech.
State estimation of linear systems in the presence of sporadic measurements. Automatica,
73:101–109, 2016.

[25] Francesco Ferrante and Christophe Prieur. Boundary control design for conservation
laws in the presence of measurement disturbances. Mathematics of Control, Signals, and
Systems, 33:49–77, 2020.

[26] Francesco Ferrante and Christophe Prieur. Boundary control design for linear 1-d balance
laws in the presence of in-domain disturbances. In proceedings of the 2019 18th European
Control Conference (ECC), pages 2412–2417, Napoli, Italy, 2020.

[27] SC Ferreira Jr, ML Martins, and MJ Vilela. Reaction-diffusion model for the growth of
avascular tumor. Physical Review E, 65(2):021907, 2002.

[28] MENAHEM FRIEDMAN and YAAKOV YAVIN. On the random rotational motion of a
ship with a two position automatic pilot. INTERNATIONAL JOURNAL OF SYSTEMS
SCIENCE, 7(4):425–434, 1976.

[29] FR Guarguaglini and R Natalini. Global existence and uniqueness of solutions for multi-
dimensional weakly parabolic systems arising in chemistry and biology. Communications
on Pure & Applied Analysis, 6(1):287, 2007.

[30] Alain Haraux. Nonlinear vibrations and the wave equation. Springer, 2018.

[31] Tomoaki Hashimoto and Miroslav Krstic. Stabilization of reaction diffusion equations
with state delay using boundary control input. IEEE Transactions on Automatic Control,
61(12):4041–4047, 2016.

[32] Anthony Hastir, Federico Califano, and Hans Zwart. Well-posedness of infinite-
dimensional linear systems with nonlinear feedback. Systems & Control Letters, 128:19–
25, 2019.

[33] Anthony Hastir, Judicaël Mohet, and Joseph J Winkin. Sturm-liouville systems on a
class of hilbert spaces. arXiv preprint arXiv:2207.09802, 2022.

[34] Birgit Jacob, Felix L Schwenninger, and Lukas A Vorberg. Remarks on input-to-state
stability of collocated systems with saturated feedback. Mathematics of Control, Signals,
and Systems, 32(3):293–307, 2020.

[35] Simon Jones and Mathias Legrand. The wavelet-galerkin method for solving pde’s with
spatially dependent variables. In 19th International Congress on Sound and Vibration
(ICSV19), 2012.

[36] Yuki Kaneko and Yoshio Yamada. A free boundary problem for a reaction-diffusion
equation appearing in ecology. Advances in Mathematical Sciences and Applications,
21(2):467, 2011.



BIBLIOGRAPHY 93

[37] Iasson Karafyllis and Miroslav Krstic. Input-to-state stability for PDEs. Springer, 2019.

[38] H. Khalil. Nonlinear Systems. Pearson Education. Prentice Hall, 2002.

[39] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs: A course on
backstepping designs, volume 16. SIAM, 2008.

[40] Ding Lee, Allan D Pierce, and Er-Chang Shang. Parabolic equation development in the
twentieth century. Journal of Computational Acoustics, 8(04):527–637, 2000.

[41] Yanfang Lei and Junmin Li. Robust adaptive neural networks control for a class of
time-delay parabolic systems with nonlinear periodic time-varying parameter. Journal
of the Franklin Institute, 2022.

[42] Mireille Levy. Parabolic equation methods for electromagnetic wave propagation. Num-
ber 45. IET, 2000.

[43] Hugo Lhachemi, Christophe Prieur, and Emmanuel Trélat. Pi regulation of a reaction–
diffusion equation with delayed boundary control. IEEE Transactions on Automatic
Control, 66(4):1573–1587, 2020.

[44] Xavier Litrico and Vincent Fromion. Modeling and control of hydrosystems. Springer
Science & Business Media, 2009.

[45] Johan Lofberg. YALMIP: A toolbox for modeling and optimization in matlab. In
proceedings of the 2004 IEEE international conference on robotics and automation (IEEE
Cat. No. 04CH37508), pages 284–289, 2004.

[46] Latifa Ait Mahiout, Nikolai Bessonov, Bogdan Kazmierczak, Georges Sadaka, and Vi-
taly Volpert. Infection spreading in cell culture as a reaction-diffusion wave. ESAIM:
Mathematical Modelling and Numerical Analysis, 56(3):791–814, 2022.

[47] Youcef Mammeri. A reaction-diffusion system to better comprehend the unlockdown:
Application of seir-type model with diffusion to the spatial spread of covid-19 in france.
Computational and Mathematical Biophysics, 8(1):102–113, 2020.

[48] Swann Marx, Vincent Andrieu, and Christophe Prieur. Cone-bounded feedback laws for
m-dissipative operators on hilbert spaces. Mathematics of Control, Signals, and Systems,
29(4):1–32, 2017.

[49] Ana-Maria Matache, Christoph Schwab, and Thomas P Wihler. Fast numerical solution
of parabolic integrodifferential equations with applications in finance. SIAM Journal on
Scientific Computing, 27(2):369–393, 2005.

[50] Johan A Metz and Odo Diekmann. The dynamics of physiologically structured popula-
tions, volume 68. Springer, 2014.

[51] Andrii Mironchenko and Christophe Prieur. Input-to-state stability of infinite-
dimensional systems: recent results and open questions. SIAM Review, 62(3):529–614,
2020.

[52] Andrii Mironchenko, Christophe Prieur, and Fabian Wirth. Local stabilization of an
unstable parabolic equation via saturated controls. IEEE Transactions on Automatic
Control, 66(5):2162–2176, 2020.

[53] Quang Hieu Ngo, Quoc Chi Nguyen, and Keum-Shik Hong. Adaptive boundary control
of an axially moving string under the effect of boundary disturbance. pages 304 – 309,
09 2009.

[54] Mark R Opmeer, Fred W Wubs, and Simon van Mourik. Model reduction for controller
design for infinite-dimensional systems: theory and an example. In Proceedings of the
44th IEEE Conference on Decision and Control, pages 2469–2474, Seville, Spain, 2005.

[55] Yury Orlov. On general properties of eigenvalues and eigenfunctions of a sturm–liouville
operator: comments on “ISS with respect to boundary disturbances for 1-d parabolic
PDEs”. IEEE Transactions on Automatic Control, 62(11):5970–5973, 2017.



94 BIBLIOGRAPHY

[56] Andrew G Osborne and Mark R Deinert. Stability instability and hopf bifurcation in
fission waves. Cell Reports Physical Science, 2(10):100588, 2021.

[57] Amnon Pazy. Semigroups of linear operators and applications to partial differential
equations, volume 44. Springer Science & Business Media, 2012.

[58] Sebastian Peitz and Stefan Klus. Koopman operator-based model reduction for switched-
system control of PDEs. Automatica, 106:184–191, 2019.

[59] Christophe Prieur, Sophie Tarbouriech, and João Manoel Gomes da Silva Jr. Wave
equation with cone-bounded control laws. IEEE Transactions on Automatic Control,
61(11):3452–3463, 2016.

[60] W HARMON RAY. Advanced process control, 1982.

[61] David L Russell. Controllability and stabilizability theory for linear partial differential
equations: recent progress and open questions. SIAM Review, 20(4):639–739, 1978.

[62] Carsten Scherer, Pascal Gahinet, and Mahmoud Chilali. Multiobjective output-feedback
control via lmi optimization. IEEE Transactions on automatic control, 42(7):896–911,
1997.

[63] Thomas I Seidman and Houshi Li. A note on stabilization with saturating feedback.
Discrete & Continuous Dynamical Systems-A, 7(2):319, 2001.

[64] Lawrence F Shampine. Solving hyperbolic pdes in matlab. Applied Numerical Analysis
& Computational Mathematics, 2(3):346–358, 2005.

[65] Suha Shreim, Francesco Ferrante, and Christophe Prieur. Design of saturated boundary
control for hyperbolic systems. In proceedings of the IFAC World Congress, Berlin,
Germany, 2020.

[66] Suha Shreim, Francesco Ferrante, and Christophe Prieur. Design of saturated boundary
control for hyperbolic systems with in-domain disturbances. Automatica, 142:110346,
2022.

[67] Marshall Slemrod. Feedback stabilization of a linear control system in hilbert space with
an a priori bounded control. Mathematics of Control, Signals and Systems, 2(3):265–285,
1989.

[68] Andrey Smyshlyaev and Miroslav Krstic. Adaptive control of parabolic PDEs. Princeton
University Press, 2010.

[69] Eduardo D Sontag. Input to state stability: Basic concepts and results. In Nonlinear
and optimal control theory, pages 163–220. Springer, 2008.

[70] Ivar Stakgold. Reaction-diffusion problems in chemical engineering. Nonlinear diffusion
problems, pages 119–152, 1986.

[71] Theodor Strelkoff. Numerical solution of saint-venant equations. Journal of the Hy-
draulics division, 96(1):223–252, 1970.

[72] Sophie Tarbouriech, Germain Garcia, João Manoel Gomes da Silva Jr, and Isabelle
Queinnec. Stability and stabilization of linear systems with saturating actuators. Springer
Science & Business Media, 2011.

[73] Sophie Tarbouriech, Isabelle Queinnec, and Christophe Prieur. Nonstandard use of anti-
windup loop for systems with input backlash. IFAC Journal of Systems and Control,
6:33–42, 2018.

[74] Ngoc-Tu Trinh, Vincent Andrieu, and Cheng-Zhong Xu. Design of integral controllers
for nonlinear systems governed by scalar hyperbolic partial differential equations. IEEE
Transactions on Automatic Control, 62(9):4527–4536, 2017.

[75] Marius Tucsnak and George Weiss. Observation and control for operator semigroups.
Springer Science & Business Media, 2009.



BIBLIOGRAPHY 95

[76] Ji Wang and Miroslav Krstic. Output-feedback control of an extended class of sandwiched
hyperbolic pde-ode systems. IEEE Transactions on Automatic Control, 66(6):2588–2603,
2021.

[77] George Weiss and Richard Rebarber. Optimizability and estimatability for infinite-
dimensional linear systems. SIAM Journal on Control and Optimization, 39(4):1204–
1232, 2000.

[78] Huai-Ning Wu and Jun-Wei Wang. Static output feedback control via pde boundary and
ode measurements in linear cascaded ode–beam systems. Automatica, 50(11):2787–2798,
2014.

[79] Cheng-Zhong Xu and Gen Qi Xu. Saturated boundary feedback stabilization of a linear
wave equation. SIAM Journal on Control and Optimization, 57(1):290–309, 2019.

[80] Luca Zaccarian and Andrew R Teel. Modern anti-windup synthesis: control augmentation
for actuator saturation, volume 36. Princeton University Press, 2011.

[81] Fuzhen Zhang. The Schur complement and its applications, volume 4. Springer Science
& Business Media, 2006.

[82] Yang Zhu, Miroslav Krstic, and Hongye Su. Adaptive output feedback control for uncer-
tain linear time-delay systems. IEEE Transactions on Automatic Control, 62(2):545–560,
2016.


