H k (Ω)

Hilbert space W k,2 (Ω), with k ∈ N, L p 0, T ; X set of L p functions on (0, T ) with values in X and p ∈ [1, ∞],

W k,p 0, T ; X set of W k,p functions on (0, T ) with values in X, with k ∈ N and p ∈ [1, ∞],

X + set of functions u ∈ X such that u ≥ 0 almost everywhere.

. Indeed, by considering the more general xiii

Résumé en Français

Cette thèse porte sur l'analyse de problèmes paraboliques non linéaires apparaissants dans des phénomènes biologiques, écologiques et plus généralement de dynamique des populations. Plus précisément, nous étudions l'existence, la régularité et la stabilité des solutions d'équations aux dérivées partielles (EDPs) qui décrivent l'évolution de deux espèces qui diffusent dans un environnement homogène et interagissent entre elles. Les EDPs que nous considérons sont fortement couplées, c'est-à-dire couplées par des termes du second ordre du point de vue des dérivées, et le système qu'elles forment appartient à une classe de systèmes non linéaires de réaction-diffusion, appelés systèmes de diffusion croisée.

En 1979, Shigesada, Kawasaki et Teramoto proposent dans [START_REF] Shigesada | Spatial segregation of interacting species[END_REF] un modèle de diffusion croisée décrivant l'interaction entre deux populations. Le système s'écrit comme suit, où dorénavant Ω est un domaine ouvert, borné et regulier (classe C 2 ) de R N , N ∈ N, et les inconnues u = u(t, x), v = v(t, x) sont deux quantités positives qui modélisent les densités de deux populations, avec les coefficients de diffusion d u , d v , d i j , i, j = 1, 2 et les coefficients de réaction r u , r v , r i j , strictement positifs. Plus précisément, r u , r v représentent les taux de croissance intrinsèques linéaires des deux espèces et r i j , i, j = 1, 2 représentent les coefficients de compétition. En particulier, r ii est le taux de compétition intra-spécifique, c'est-à-dire le taux des interactions négatives entre les individus de la même espèce, tandis que r i j , i j correspond au taux de compétition inter-spécifique qui gère les interactions négatives entre les individus d'espèces différentes. Les termes de diffusion non linéaires dans (SKT) décrivent les mouvements des individus dans l'environnement Ω. En particulier, on reconnait les termes de diffusion linéaires ∆(d u u), ∆(d v v) qui modélisent la diffusion intrinsèque des individus dans le domain et les termes de diffusion non linéaires ∆ u(d 11 u + d 12 v) , ∆ v(d 21 u + d 22 v) qui quantifient l'effet répulsif de l'interférence mutuelle. Plus précisément, les termes d 11 u 2 , d 22 v 2 sont dits d'autodiffusion et les termes non diagonaux d 12 uv, d 21 uv sont dits de diffusion croisée. Un système de diffusion croisée (SKT) est dit triangulaire lorsque d 21 = 0, et on remarque que si la matrice de diffusion non linéaire est nulle, c'est-à-dire d i j = 0, i, j = 1, 2, alors on retrouve un système de réaction-diffusion usuel de type Lotka-Volterra.

vii Le système (SKT) a été introduit pour résoudre un problème de modélisation lié à l'instabilité de Turing [START_REF] Turing | The chemical basis of morphogenesis[END_REF] et à la formation de pattern, par conséquence [START_REF] Benson | Inter-specific territoriality in a canis hybrid zone: spatial segregation between wolves, coyotes, and hybrids[END_REF][START_REF] Cecere | Spatial segregation of home ranges between neighbouring colonies in a diurnal raptor[END_REF][START_REF] Hoi | Territorial spacing and interspecific competition in three species of reed warblers[END_REF]. Néanmois, ce système s'est avéré être un objet mathématique extrémement riche pour lequel plusieures questions mathématiques de nature différente se posent. Une liste non exaustive concerne: existence locale et globale en temps des solutions, régularité (ou borne L ∞ ) et unicité des solutions, stabilité des équilibres et comportement asymptotique.

Dans cette thèse, nous nous intéressons à ces questions pour une classe de systèmes de diffusion croisée triangulaires, issus de problèmes de modélisation en dynamique des populations, différents de ceux conduisant à (SKT), et liés à des questions de diversification de régime alimentaire des individus. Dans les paragraphes qui suivent, nous résumons brièvement le contenu de chaque chapitre, les résultats obtenus et les techniques employées.

• Dans le Chapitre 1, nous étudions l'existence de solutions faibles et la stabilité linéaire d'un système triangulaire de diffusion croisée avec les conditions de Neumann homogènes au bord. Pour ce qui concerne le résultat d'existence, on montre de manière rigoureuse le passage d'un système de réaction-diffusion de type Lotka-Volterra (système mésoscopique) vers un système de diffusion croisée (système macroscopique), obtenu comme limite de réaction rapide. Le système mésoscopique modélise la compétition de deux espèces, où une espèce a un régime alimentaire plus diversifié que l'autre. À la limite, on trouve un système de diffusion croisée de type starvation driven. Les outils principaux utilisés pour passer rigoureusement à la limite incluent des estimations a priori, données par l'analyse d'une fonctionnelle d'entropie, et un argument de compacité. De plus, nous étudions la stabilité linéaire des équilibres homogènes en espace des systèmes macroscopique et mésoscopique et nous excluons la possibilité de l'apparition d'une instabilité de Turing et de la formation de patterns. En particulier, nous étudions la relation à la limite entre la stabilité linéaire de l'état d'équilibre de coexistence à l'échelle mésoscopique et macroscopique. Des simulations numériques sont également réalisées pour compléter les résultats théoriques. Le contenu du Chapitre 1 est le résultat d'une collaboration avec L. Corrias, H. Dietert et Y.-J. Kim et il a été publié dans Journal of Mathematical Biology sous le titre de Evolution of dietary diversity and a starvation driven cross-diffusion system as its singular limit [START_REF] Brocchieri | Evolution of dietary diversity and a starvation driven cross-diffusion system as its singular limit[END_REF].

• Dans le Chapitre 2, on montre l'existence des solutions faibles pour une vaste classe de systèmes triangulaires de diffusion croisée avec les conditions de Neumann homogènes au bord, en utilisant la dérivation mésoscopique, de manière similaire à celle du Chapitre 1. Nous introduisons la généralisation naturelle du système mésoscopique étudié dans le Chapitre 1 et nous obtenons à la limite une classe plus vaste de systèmes de diffusion croisée triangulaires de type starvation driven. L'ingrédient principal d'analyse est une famille de fonctionnelles d'entropie qui inclut la fonctionnelle d'entropie utilisée dans le Chapitre 1. Afin d'avoir une compacité suffisante et ensuite de passer à la limite, il suffit de considérer les premiers éléments de la famille de la fonctionnelle d'entropie. Cependant, afin d'étudier la régularité de la solution, on peut étudier l'évolution de l'entropie pour tout élément de la famille, en améliorant ainsi les estimations a priori, à l'aide d'un argument de type bootstrap. La régularité des solutions fait l'objet d'un travail à venir pour lequel nous renvoyons au Chapitre 4 pour plus de détails.
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• Dans le Chapitre 3, nous étudions l'existence, l'unicité et la régularité des solutions fortes pour une classe générale de systèmes de diffusion croisée triangulaires avec les conditions de Neumann homogènes au bord. Le terme solutions fortes signifie que les équations du système sont satisfaites presque partout. La méthode utilisée pour montrer le résultat d'existence diffère de celle employée dans les Chapitres 1, 2, où le système de diffusion croisée a été dérivé par limite mésoscopique. La stratégie présentée dans le Chapitre 3 est d'introduire un changement de variable approprié, en utilisant de manière cruciale les propriétés de la fonction de diffusion du système de diffusion croisée. Ce changement de variables conduit à un système parabolique sous forme non divergence. Par conséquent, les méthodes analytiques classiques, telles que les arguments de régularisation et de point fixe, nous permettent de montrer l'existence d'une solution forte et le caractère borné, L ∞ ((0, T ) × Ω) pour tout T > 0, des solutions si la dimension de l'espace est N ≤ 3. Enfin, nous prouvons l'unicité de la solution forte, un résultat de stabilité forte-faible et un résultat d'unicité forte-faible, à condition que N ≤ 2.
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Introduction

This thesis aims to present some recent results and advances in the analysis of nonlinear parabolic problems arising in biology and ecology. More precisely, we study the existence, regularity and stability of solutions to partial differential equations (PDEs), describing the evolution of two species that diffuse in a homogeneous environment and interact with each other. The PDEs we consider are strongly coupled, i.e. coupled through second-order derivative terms, and the system they give rise to belongs to a class of nonlinear reactiondiffusion systems, called cross-diffusion systems.

Introduction to population dynamics

Mathematical modeling represents an essential support to investigate biological and ecological phenomena. By combining experimental data and theoretical analysis, several natural events may be described. From a modeling point of view, many mathematical models have been proposed to describe natural processes, in order to predict the outcomes. In particular, we are interested in population dynamics that focus on interactions of individuals or concentrations, depending on biological and environmental conditions (cfr. [START_REF] Murray | Mathematical biology: I. An introduction[END_REF][START_REF] Okubo | Diffusion and ecological problems: mathematical models[END_REF]). In population dynamics, competition among individuals of the same or different species is fundamental, especially if the ecosystems admit a limited amount of resources. A classical system describing interactions has been simultaneously formulated by A. J. Lotka and V. Volterra in 1925, in terms of ordinary differential equations (ODEs). This model describes the evolution of two populations u = u(t), v = v(t) in competitive interactions and at this level, spatial movements of individuals are neglected. Hence, the model writes as below,

       ∂ t u = u(r u -r 11 u -r 12 v), t > 0, ∂ t v = v(r v -r 21 u -r 22 v), t > 0, (LV) 
Lotka-Volterra reaction functions below, for all u, v ≥ 0 and θ u , θ v ∈ {-1, 0, +1}, we get f θu (u, v) u(r ur 11 u + θ u r 12 v), g θv (u, v) v(r v + θ v r 21 ur 22 v), with r u , r v , r i j > 0, i, j = 1, 2, so that different kinds of interactions can be modeled.

• θ u θ v = 1. This condition includes the case θ u = θ v = -1, giving the reaction functions in (LV) and modeling the competition between the two species. The fitness of both species (i.e. the reproductive success) is lowered by the presence of other species. Conversely, the case θ u = θ v = 1 models a mutualistic relationship, i.e. a reciprocal altruism where both populations benefit.

• θ u θ v = -1. This condition models predator-prey or parasitism interactions, meaning that only one of the two species gains benefits from the interactions with the other population. In particular, if θ u = 1, θ v = -1 (resp. θ u = -1, θ v = 1) then interactions are advantageous for u (resp. v) and harmful for v (resp. u).

• θ u θ v = 0. This condition includes the case θ u = θ v = 0, describing a neutral relationship, which means that individuals of different species don't interact with each other and the associated equations are uncoupled by the reaction functions. Otherwise, if only one between θ u , θ v is zero, then one species does not take advantage and is not harmed.

A similar analysis can be performed for the intra-specific interactions, depending on the sign of the intra-specific rates r 11 , r 22 .

We conclude the introduction of system (LV) by pointing out that it is possible to predict the mutual exclusion or the coexistence of the species, depending on the parameter values. The analysis concerns the nature of the equilibria of (LV) that we list below (0.0.2)

Thus, system (LV) admits the equilibrium of total extinction (u 1 , v 1 ), partial extinction (u i , v i ) i=1,2 and the equilibrim of coexistence (u * , v * ). We outline that the coexistence equilibrium is biologically meaningful (i.e. u * > 0, v * > 0) only in two cases.

• Weak inter-specific competition. r 12 r 22 < r u r v < r 11 r 21 .

(0.0.3)

Biologically speaking, the inter-specific competition is weaker than the intra-specific one. In this case, one can prove that all the trivial or semi-trivial equilibria in (0.0.1) are linearly unstable while the coexistence steady state in (0.0.2) is linearly stable. Biologically speaking, the inter-specific competition is stronger than the intra-specific one. Under this condition, one can prove that all the trivial or semi-trivial equilibria in (0.0.1) are linearly stable while the coexistence steady state in (0.0.2) is linearly unstable.

Furthermore, experimental observations show that the mutual interference between individuals generates internal pressure that can affect the movements of species. Therefore, it's natural to consider the motility of individuals, i.e. their capacity to diffuse in space. Biological observations point out the phenomenon of segregation in population dynamics, which occurs between species in competition that try to avoid each other. In particular, spatial segregation has been observed in birds [START_REF] Hoi | Territorial spacing and interspecific competition in three species of reed warblers[END_REF], mammals [START_REF] Benson | Inter-specific territoriality in a canis hybrid zone: spatial segregation between wolves, coyotes, and hybrids[END_REF], [START_REF] Palomares | Fine-scale habitat segregation between two ecologically similar top predators[END_REF], amphibians [START_REF] Cecere | Spatial segregation of home ranges between neighbouring colonies in a diurnal raptor[END_REF], [START_REF] Hoffman | Habitat segregation of ambystoma gracile and ambystoma macrodactylum in mountain ponds and lakes, mount rainier national park, washington, usa[END_REF], fishes and insects. Segregation may lead to pattern formation and is related to linear stability analysis of spatially homogeneous equilibria of reaction-diffusion systems. In 1952, Alan Turing first obtained pattern formation [START_REF] Turing | The chemical basis of morphogenesis[END_REF] in the context of morphogenesis. The analysis yielded various (and sometimes unexpected) conclusions: firstly, a minimum of two interacting chemicals are required to create pattern formation. Then, the diffusion effect in a reactive chemical system can lead to a destabilization effect, unlike the common stabilizing role of diffusion which reduces the spatial variations of a concentration field. Thus, the diffusion-induced instability may give rise to structural growth at a particular wavelength. This provides a possible mechanism for producing patterns like animal stripes. The final insight concerns the diffusion coefficients (motility) that generally need to be substantially different to lead to pattern formations.

From now on, we call linear diffusion quantities such as ∆u i , apprearing in the i-th equation of a system in the unknowns u i , i = 1, . . . , m, m ∈ N. Conversely, we call nonlinear diffusion quantities such as ∆(u α i u β j ), with i j and α, β > 0 and ∆u α i with α 1 and i, j = 1, . . . , m, appearing in the i-th equation. In order to investigate pattern formation, we introduce the simplest reaction-diffusion model of two populations in interaction, that is frequently used to describe experimental situations in evolutionary dynamics. It writes as follows        ∂ t ud u ∆u = f (u, v), in (0, +∞) × Ω, ∂ t vd v ∆v = g(u, v), in (0, +∞) × Ω, (0.0.5)

where from now on Ω is a bounded, smooth and open set Ω ⊂ R N , N ≥ 1, modeling the ecosystem. By considering in (0.0.5) the reaction functions f, g as the Lotka-Volterra type f (u, v) = u(r ur 11 ur 12 v), g(u, v) = v(r vr 21 ur 22 v), (0.0.6)

we will refer to (0.0.5), (0.0.6) as the Lotka-Volterra reaction-diffusion system. System (0.0.5), (0.0.6) has been widely studied [START_REF] Cosner | Stable coexistence states in the volterra-lotka competition model with diffusion[END_REF][START_REF] Leung | Equilibria and stabilities for competing-species reaction-diffusion equations with dirichlet boundary data[END_REF][START_REF] Pao | Coexistence and stability of a competition-diffusion system in population dynamics[END_REF]. It is worth noticing that Turing instability does not occur, implying no segregation of species. In terms of stability of the spatially homogeneous steady states: whatever the diffusion and reaction coefficients are, all spatially homogeneous equilibria, which are linearly stable for the homogeneous system of (0.0.5), (0.0.6) (that is the system without diffusion), remain linearly stable by considering the linear diffusion effect in a convex domain [START_REF] Kishimoto | The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains[END_REF]. Hence, system (0.0.5), (0.0.6) does not reproduce natural ecosystems like patches of land in which one population is dominant with respect to another and viceversa. More generally, it's not obvious to get Turing instability with linear diffusion and two reacting populations with quadratic reaction structure as (0.0.6).
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In order to have a model with linear diffusion that reproduces pattern formation, one can consider the Beddington-DeAngelis functional responses for predator-prey model [START_REF] Beddington | Mutual interference between parasites or predators and its effect on searching efficiency[END_REF][START_REF] Conforto | About reaction-diffusion systems involving the holling-type ii and the beddington-deangelis functional responses for predator-prey models[END_REF] or cubic reaction terms, than often appear in chemistry models [START_REF] Murray | Mathematical biology: I. An introduction[END_REF] or for chemotactic model [START_REF] Giunta | Pattern formation and transition to chaos in a chemotaxis model of acute inflammation[END_REF][START_REF] Yoon | Global existence and aggregation in a keller-segel model with fokkerplanck diffusion[END_REF].

A cross-diffusion system: the SKT model

In order to get Turing instability, and pattern formation as a consequence, Shigesada, Kawasaki and Teramoto in 1979 had the intuition to modify the structure of the diffusion terms in (0.0.5), (0.0.6), rather than the reaction functions. Hence, a cross-diffusion system appeared in literature [START_REF] Shigesada | Spatial segregation of interacting species[END_REF] to solve a modeling issue related to the segregation of species. It writes as below

       ∂ t u -∆ u(d u + d 11 u + d 12 v) = u(r u -r 11 u -r 12 v), in (0, +∞) × Ω, ∂ t v -∆ v(d v + d 21 u + d 22 v) = v(r v -r 21 u -r 22 v), in (0, +∞) × Ω, (SKT) 
where the unknowns u = u(t, x), v = v(t, x) are two nonnegative quantities, modeling the densities of two populations, and all the coefficients d u , d v , r u , r v , d i j , r i j , i, j = 1, 2 are strictly positive. In addition, we endow the system (SKT) with the Neumann boundary conditions below, ∇u • σ = ∇v • σ = 0, in (0, +∞) × ∂Ω, (0.0.7)

where σ = σ(x) stands for the outward unit normal vector on the boundary ∂Ω at point x. From the biological point of view, the boundary condition (0.0.7) models an isolated ecosystem. The nonlinear diffusion terms in the l. Then, if the matrix has a lower or upper triangular structure, i.e. d 12 = 0 or d 21 = 0, respectively, then we say that system (SKT) is triangular (see the following section for more details). Moreover, if all the non-diagonal entries are zero, i.e. D = diag{d ii }, then only self diffusion terms appear in (SKT) and the equations are uncoupled by the diffusion terms.

Finally, if all entries are zero d i j = 0, i, j = 1, 2, system (SKT) reduces to the parabolic reaction-diffusion system with linear diffusion (0.0.5).

System (SKT) describes a typical biological mechanism which lead to Turing instability so that we refer to this phenomenon as cross-diffusion induced instability [START_REF] Breden | On the influence of cross-diffusion in pattern formation[END_REF][START_REF] Desvillettes | Non-triangular cross-diffusion systems with predator-prey reaction terms[END_REF][START_REF] Gambino | Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion[END_REF][START_REF] Iida | Diffusion, cross-diffusion and competitive interaction[END_REF][START_REF] Tulumello | Cross-diffusion driven instability in a predator-prey system with cross-diffusion[END_REF]. The structure of system (SKT) models the capacity of individuals to measure the density of the same or of the other species and to increase their diffusion rate if the measured density is large. Indeed in (SKT), the diffusion rate corresponding to u, i. xvi In order to understand the dynamic modelled by the cross-diffusion terms in (SKT), M. Ida, M. Mimura and H. Ninomiya proposed in [START_REF] Iida | Diffusion, cross-diffusion and competitive interaction[END_REF] an interpretation of the cross-diffusion terms in the triangular case of (SKT). We will detail this interpretation in the following section after a bref discussion on the multiscale description for ecological systems.

Multiscale description for ecological models

The hallmarked events in ecology concern the distribution of organisms in the environment and the natural life processes such as adaptation, reproduction and interactions that can lead to patterns in ecosystem processes. Moreover, living organisms are organized on a multiple and interconnected scale. Therefore, multiscale modeling is a fundamental tool to describe the spatio-temporal complexity, where the term scale refers to the unit of space and time used to measure the ecological mechanism [START_REF] Holling | Cross-scale morphology, geometry, and dynamics of ecosystems[END_REF][START_REF] Maurer | Scale. In Encyclopedia of Ecology[END_REF]. The identification of a scale structure also implies the existence of a hierarchical organization of the system. Therefore in any complex system, descriptions at different spatial or temporal levels contribute to an overall understanding of the system's behavior. In particular, since the primary entities involved in population dynamics are organisms, then multiscale methods describe the ecosystem from the level of the single individual's trajectories to the dynamic of the entire environment. More precisely, we want to detail the microscopic, mesoscopic and macroscopic approaches. Each formulation provides different information, depending on the scale at which the ecosystem is analysed, thus all the different multiscale descriptions are not unrelated.

• The microscopic formulation outlines the dynamic of single components or a finite number of particles. Both the probabilistic tools and the analytic approach are used for the microscopic derivation (ex. stochastic processes or mean field limits, lattice models or reaction-kinetics ODEs).

• The mesoscopic description is the intermediate scale and concerns the dynamic of groups of individuals. The focus is on the evolution of the density of each group and it is used not only to understand the macroscopic limit and how it is achieved but to describe intrinsic phenomena that the macroscopic level does not outline. The typical modeling approach is by reaction-diffusion equations.

• The macroscopic scale focuses on the total mass of the system or on the average of variables of the mesoscopic description. It is formulated by reaction-diffusion equations.

Cross-diffusion systems may be derived at a microscopic scale by random-walk lattice models [START_REF] Ostrander | Macroscopic cross-diffusion models derived from spatially discrete continuous time microscopic models[END_REF]. See [START_REF] Fontbona | Non local lotka-volterra system with cross-diffusion in an heterogeneous medium[END_REF][START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF] for probabilistic approach. In the following subsection, we detail the mesoscopic description of the cross-diffusion system (SKT) in the triangular case, introduced by M. Ida, M. Mimura and H. Ninomiya in [START_REF] Iida | Diffusion, cross-diffusion and competitive interaction[END_REF]. They formally approximated the triangular (SKT) system at the mesoscopic scale by a reaction-diffusion system with linear diffusion.
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A mesoscopic model related to the triangular SKT model

In [START_REF] Iida | Diffusion, cross-diffusion and competitive interaction[END_REF], M. Ida, M. Mimura and H. Ninomiya proposed a formal derivation at the mesoscopic scale of the cross-diffusion system (SKT) in the triangular case below,

       ∂ t u -∆ u(d u + d 12 v) = u(r u -r 11 u -r 12 v), in (0, +∞) × Ω, ∂ t v -d v ∆v = v(r v -r 21 u -r 22 v), in (0, +∞) × Ω, (0.0.8)
where u = u(t, x), v = v(t, x) are the species of two populations living in the space domain Ω ⊂ R N , N ∈ N. In order to understand the interpretation proposed in [START_REF] Iida | Diffusion, cross-diffusion and competitive interaction[END_REF], we consider the simpler case of the evolution of a single species n = n(t, x) that diffuse in a heterogeneous environement. Thus, we consider the following problem,

             ∂ t n = ∆ ((d u + µP(x)) n) , (t, x) ∈ R + × Ω, ∇n • σ = 0, (t, x) ∈ R + × ∂Ω, n(0, x) = n 0 (x) x ∈ Ω, (0.0.9)
where no reaction terms are taken into account. The quantity d u + µP(x) models the motility of n in a neighborhood of x ∈ Ω, with the coefficients d u , µ > 0, and P P(x) in [0, 1] models the local external pressure. More precisely, we assume that the place x is more unfavourable for the population of density n where P(x) is larger. By the identity

(d u + µP(x))n = d u (1 -P(x))n + (d u + µ)P(x)n, it is natural to decompose n as below n(t, x) = n a (t, x) + n b (t, x), for all (t, x) in R + × Ω,
with n a (t, x) 1 -P(x) n(t, x) and n b (t, x) P(x) n(t, x).

For simplicity of notations, we denote n a = n a (t, x) and n b = n b (t, x) , therefore the first equation of (0.0.9) becomes

∂ t (n a + n b ) = ∆ d u n a + (d u + µ)n b .
The above equation suggests that the individuals of density n are divided into two subpopulations n a , n b with the low motility d u and the hight motility d u + µ, respectively. In other words, each individual of density n has two different states: a less active state with motility d u and a more stressed state with highter motility d u + µ. Therefore, we now construct a system for n a and n b according to the previous argument. We fix a small parameter ε > 0, then locally around x, each individual can switch from the state a to b with probability p a→b (x), in average time ετ a→b . Conversely, we refer to p b→a (x) as the probability of the passage from the state b to a in a transition time ετ b→a . Biologically speaking, if x is an unfavorable place then p a→b (x) is higher than p b→a (x) so that locally around x, individuals of density n a tend to migrate towards more suitable areas of the space domain. Then, by defining the following quantities for all x ∈ Ω, h(x) p a→b (x) ετ a→b and k(x) p b→a (x) ετ b→a , xviii and assuming that the state transition is much faster than the random diffusion of n a and n b (i.e. ε d u ), the dynamic becomes

           ∂ t n a = d u ∆n a + 1 ε [k(x)n b -h(x)n a ], ∂ t n b = (d u + µ)∆n b - 1 ε [k(x)n b -h(x)n a ]. (0.0.10)
By conveniently choosing the transition functions h and k, then system (0.0.10) formally approximates (0.0.9). Indeed, by computing the equation satisfied by n n a + n b , we end up with

∂ t n = d u ∆n + µ∆n b .
Thus, taking the limit in (0.0.10), as ε → 0, formally one can expect,

       h(x)n a (• , x) = k(x)n b (• , x) , n(•, x) = n a (•, x) + n b (•, x), implying n a = k(x) h(x) + k(x) n, n b = h(x) h(x) + k(x) n.
Then, the equation satisfied by n becomes

∂ t n = ∆ d u + µ h(x) h(x) + k(x) n ,
where the ratio

h(x) h(x) + k(x)
models the external pressure P(x) at the point x.

By analogy with the limiting procedure used to approximate the system (0.0.9), we end up with a formal approximation of (0.0.8). We firstly remark that the environment Ω of the reaction diffusion system (0.0.8) is homogeneous and the external pressure P(x) in (0.0.9) is now depending on the presence of individuals of species v. We assume that the population u is split into two substates u a and u b . Each individual converts its own state to the other depending on the spatial distribution of the competitor v. We additionally assume that the density v is bounded, i.e. there exists a constant M > 0 such that 0 ≤ v(t, x) ≤ M, a.e. in (0, +∞) × Ω. (0.0.11)

It is worth noticing that since in the triangular cross-diffusion system (0.0.8) the density v satisfies a heat equation, then the maximum principal gives an L ∞ bound for v (assuming L ∞ initial data), so that condition (0.0.11) is not restrictive. Then, identity below holds true,

(d u + d 21 v)u = d u 1 - v M u + (d u + d 12 M) v M u = d u u a + (d u + d 12 M)u B , with u a 1 - v M u, u b v M u and u = u a + u b . (0.0.12)
Using the previous limiting argument, we describe the dynamic of two species, u ε and v ε where u ε in two sub-populations, u ε a and u ε b , associated to two states class: a moderately mobile type and an highly mobile one, with the corresponding diffusive coefficients d u and xix d u + d 12 M. Therefore, taking into account the interpretation proposed in [START_REF] Iida | Diffusion, cross-diffusion and competitive interaction[END_REF], the natural approximation of (0.0.8) at the mesoscopic scale is the following

                   ∂ t u ε a = d u ∆u ε a + u ε a r u -r 11 (u ε a + u ε b ) -r 12 v ε + 1 ε h(v ε )u ε b -k(v ε )u ε a , ∂ t u ε b = (d u + d 12 M)∆u ε b + u ε b r u -r 11 (u ε a + u ε b ) -r 12 v ε - 1 ε h(v ε )u ε b -k(v ε )u ε a , ∂ t v ε = d v ∆v ε + v ε r v -r 21 (u ε a + u ε b ) -r 22 v ε .
(0.0.13) Then, taking ε → 0 and using the decomposition u ε u ε a + u ε b , we formally obtain

u a = k(v) h(v) + k(v) u, u b = h(v) h(v) + k(v) u,
and thus

           ∂ t u = ∆ d u + d 12 M h(v) h(v) + k(v) u + (r u -r 11 u -r 12 v) u, ∂ t v = d v ∆v + (r v -r 21 u -r 22 v) v,
that corresponds to (0.0.8) if h and k satisfy

h(v) h(v) + k(v) M = v.
For example, the following choice is admissible,

h(v) = v M , k(v) = 1 - v M . (0.0.14)
Following this interpretation, a certain number of cross-diffusion systems are obtained as limit of a mesoscopic reaction-diffusion system. For example see [START_REF] Conforto | Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross diffusions[END_REF] for the space dimension N = 1 and [START_REF] Desvillettes | New results for triangular reaction cross diffusion system[END_REF]. See also [START_REF] Desvillettes | Non-triangular cross-diffusion systems with predator-prey reaction terms[END_REF] for a class of non triangular cross-diffusion systems with Beddington-DeAngelis functional response.

State of the art

Reaction cross-diffusion models arise in many different fields of physics, such as respiratory airways, chemical reactors or gaseous mixtures [START_REF] Boudin | A mathematical and numerical analysis of the maxwellstefan diffusion equations[END_REF], in subfields of medicine, for that we refer to [START_REF] Desvillettes | Existence and regularity for a chemotaxis model involved in the modeling of multiple sclerosis[END_REF] for a chemotaxis model of multiple sclerosis and to [START_REF] Jackson | A mechanical model of tumor encapsulation and transcapsular spread[END_REF][START_REF] Jüngel | Entropy structure of a cross-diffusion tumor-growth model[END_REF] for tumor growth models, and in many biological contests such as cell migration in tissues and chemosensitive movements [START_REF] Painter | Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis[END_REF][START_REF] Painter | Volume-filling and quorum-sensing in models for chemosensitive movement[END_REF] or population dynamics of multiple species [START_REF] Iida | Diffusion, cross-diffusion and competitive interaction[END_REF] . This class of nonlinear systems is also involved in various biological processes, such as the transport of ions in cells [START_REF] Burger | Nonlinear cross-diffusion with size exclusion[END_REF] (volume filling model) and several applications in population dynamics. As already mentioned, (SKT) was introduced for a modelling problem linked to the Turing instability. However, (SKT) proved to be an extremely rich mathematical object from which many natural questions arise, including existence, uniqueness and regularity of solutions, stability of equilibria and asymptotic behavior.

The analysis of cross-diffusion systems is delicate and sometimes intricate. One of the main difficulties is the strongly-coupled structure of the equations so that standard parabolic theory such as the maximum principle or the classical regularity results generally fail. Moreover, as previously mentioned, the unknowns of this class of systems represent xx concentrations, population densities or quantities that are typically expected to be nonnegative or even bounded. Therefore, the nonnegativity and the L ∞ boundedness of the solutions may represent a challenging issue.

A fundamental theory for strongly coupled systems was developped by H. Amann in [START_REF] Amann | Dynamic theory of quasilinear parabolic equations. i. abstract evolution equations[END_REF][START_REF] Amann | Dynamic theory of quasilinear parabolic equations. ii. reaction-diffusion systems[END_REF]. He showed the local in time existence of weak solutions in a certain Sobolev space (W 1,p ) and proposed a criterion for their global in time extension, based on the boundedness of the L ∞ and Hölder norms. Then, the main difficulty relies in proving the bounds on the solutions in suitable Sobolev spaces to prevent blowups. In this direction, several different methods have been employed to get the L ∞ boundedness of solutions. We refer to the Moser-type or Alikakos-type method [START_REF] Alikakos | Lp bounds of solutions of reaction-diffusion equations[END_REF] in which the L ∞ bondedness is obtained as the limit for p → +∞ of the p-uniform L p -norms control. We also mention the work of T. Lepoutre et al in [START_REF] Lepoutre | Global well-posedness of a conservative relaxed cross diffusion system[END_REF], where they obtained the existence of bounded solutions using spatially regularization arguments and Hölder theory.

Concerning the existence result for the specific system (SKT), a certain number of results are shown under restrictive hypothesis on the space dimension N, on the diffusion coefficients in the nontriangular case (d 12 , d 21 0) or on the initial data. As first, Kim [START_REF] Kim | Smooth solutions to a quasi-linear system of diffusion equations for a certain population model[END_REF] proved the existence of global solutions assuming N = 1, d u = d v and without self-diffusion (d 11 = d 22 = 0). For N = 2, Yagi proved in [START_REF] Yagi | Global solution to some quasilinear parabolic system in population dynamics[END_REF][START_REF] Yagi | A priori estimates for some quasilinear parabolic system in population dynamics[END_REF] the existence of global solutions under the assumptions on the cross-diffusion coefficients 0 < d 12 ≤ 8d 11 and 0 < d 21 ≤ 8d 22 . This condition was weakened in [START_REF] Ichikawa | Some remarks on global solutions to quasilinear parabolic system with cross-diffusion[END_REF] [START_REF] Lou | On the global existence of a cross-diffusion system[END_REF] the existence of global solution for the system (SKT) with d 12 > 0 and d 21 = 0. For higher space dimension, we refer to Deuring in [START_REF] Deuring | An initial-boundary-value problem for a certain density-dependent diffusion system[END_REF] for the existence of global (in time) solutions, provided that d 12 , d 21 are small coefficients depending on the initial data, and to Choi in [START_REF] Choi | Existence of global solutions for the shigesada-kawasakiteramoto model with weak cross-diffusion[END_REF][START_REF] Choi | Existence of global solutions for the shigesada-kawasakiteramoto model with strongly coupled cross-diffusion[END_REF], assuming smooth initial data.

An important progress for the existence of global in time solutions was made by Chen and Jüngel in [START_REF] Chen | Analysis of a parabolic cross-diffusion population model without self-diffusion[END_REF] (see also [START_REF] Chen | Analysis of a multidimensional parabolic population model with strong cross-diffusion[END_REF]). Indeed, they proved the existence of an entropy functional for the system (SKT) (that is a Lyapunov functional if the reaction terms are neglected), without any restrictions on the diffusion coefficients in the nontriangular case (d 12 , d 21 0). The entropy functional writes as follows for all u, v ≥ 0,

J(u, v) d 21 Ω (u ln u -u + 1)dx + d 12 Ω (v ln v -v + 1)dx. (0.0.15)
The analysis of the evolution of J along the solution to (SKT) yields a priori estimates to construct global in time weak solutions. This entropy structure was shown to be robust enough to treat a generalization of the (SKT) system in [START_REF] Desvillettes | Entropy, duality, and cross diffusion[END_REF]. Afterwards, many other works deeply investigate the relation between the structure of systems involving cross-diffusion terms and the existence of an entropy functional [START_REF] Chen | When do cross-diffusion systems have an entropy structure[END_REF][START_REF] Daus | About the entropic structure of detailed balanced multi-species cross-diffusion equations[END_REF][START_REF] Lepoutre | Entropic structure and duality for multiple species cross-diffusion systems[END_REF].

A fundamental tool, coming out of the reaction-diffusion theory and often referred to in the literature as the Duality Lemma, has been set up by M. Pierre and D. Schmitt in [START_REF] Pierre | Blowup in reaction-diffusion systems with dissipation of mass[END_REF], giving an L 2 (Ω T ) a priori estimates on the solution. It is typically used to construct weak solutions to reaction cross-diffusion systems where the diffusivity function depend on the species [START_REF] Desvillettes | Global existence for quadratic systems of reaction-diffusion[END_REF]. For example of application, see [START_REF] Canizo | Improved duality estimates and applications to reaction-diffusion equations[END_REF][START_REF] Desvillettes | Entropy, duality, and cross diffusion[END_REF][START_REF] Desvillettes | New results for triangular reaction cross diffusion system[END_REF][START_REF] Lepoutre | Entropic structure and duality for multiple species cross-diffusion systems[END_REF]] and [START_REF] Trescases | On triangular reaction cross-diffusion systems with possible self-diffusion[END_REF] for a class of triangular cross-diffusion systems with possible self-diffusion.

In the following section, we present an overview of our results about existence of weak and strong solutions, regularity and uniqueness, that enlarge the analysis of the class of xxi Overview cross-diffusion systems. However, many questions on this class of nonlinear systems are still open, some of which are subjects of forthcoming works (see Chapter 4).

Overview

In this section, we present an overview of the thesis by summarizing our main contributions and outlining the results in the literature that have been more relevant for our work.

• In Chapter 1, we study the existence of weak solutions and the linear stability of a triangular cross-diffusion system. For the existence result, we rigorously prove the passage from a Lotka-Volterra reaction-diffusion system (mesoscopic system) towards a cross-diffusion system (macroscopic system) at the fast reaction limit. The mesoscopic system models the competition of two species, when one species has a more diverse diet than the other one. The resulting limit gives a cross-diffusion system of a so called starvation-driven type. The main tools used to rigorously pass to the limit consist in a priori estimates, given by the analysis of an entropy functional, and in compactness arguments. Moreover, we investigate the linear stability of spatially homogeneous equilibria of the macroscopic system and the mesoscopic one and we rule out the possibility of Turing instability. In particular, we investigate the relationship at the limit between the linear stability of the coexistence steady state at the mesoscopic and macroscopic scale. Numerical simulations are also performed to complement the abstract results. Chapter 1 is the result of a collaboration with L. Corrias, H. Dietert and Y.-J. Kim and was published in Journal of Mathematical Biology under the title Evolution of dietary diversity and a starvation driven crossdiffusion system as its singular limit [START_REF] Brocchieri | Evolution of dietary diversity and a starvation driven cross-diffusion system as its singular limit[END_REF].

• In Chapter 2, we prove the existence of weak solutions for a general class of triangular cross-diffusion systems, using a mesoscopic derivation, similarly as in Chapter 1. We study a natural generalisation of the mesoscopic system introduced in Chapter 1 and we obtain a wider class of triangular cross-diffusion systems of a starvation-driven type at the fast reaction limit. The main tool used consists in studying a family of entropy functionals that includes the one used in Chapter 1. In order to have enough compactness and then to pass to the limit, it is sufficient to consider a subfamily of the family of the entropy functionals. However, in order to investigate the regularity of the solution, one can study the evolution of the entropy for all the family, thus improving the entropy a priori estimates by a bootstrap argument. The regularity of the solutions is the object of a forthcoming work. We refer to Chapter 4 for more details.

• In Chapter 3, we study the existence, uniqueness and regularity of strong solutions for a general class of triangular cross-diffusion systems. The term strong means that the equations of the system are satisfied almost everywhere. The method used to prove the existence result is different from that employed in Chapter 1, 2, where we obtained the cross-diffusion system as the limit of a mesoscopic system. Here, the main idea is to introduce an appropriate change of variable that strongly uses the properties of the diffusity function of the cross-diffusion system and that gives rise to a system in a non divergence form. Classical analytic methods, such as regularization and fixed point arguments, allow us to prove the existence of strong solutions. Moreover, the L ∞ (Ω T ) boundedness of the solutions is proved if the space dimension N ≤ 3, and xxii Overview the uniqueness holds, provided that N ≤ 2. We conclude by showing a weak-strong stability and a weak-strong uniqueness result.

xxiii Chapter 1

Evolution of dietary diversity and a starvation driven cross-diffusion system as its singular limit

Introduction

We consider a semilinear reaction-diffusion system that models a competition dynamics when two species have partially different diets. The population densities of the two species are denoted by u = u(t, x) and v = v(t, x). The species u has a more diverse diet and is divided into two substates u a = u a (t, x) and u b = u b (t, x) so that u = u a + u b . The system is parametrized by a small parameter ε > 0 and written as

                 ∂ t u ε a = d a ∆u ε a + f a (u ε a ) + 1 ε Q(u ε a , u ε b , v ε ), in (0, +∞) × Ω, ∂ t u ε b = d b ∆u ε b + f b (u ε b , v ε ) - 1 ε Q(u ε a , u ε b , v ε ), in (0, +∞) × Ω, ∂ t v ε = d v ∆v ε + f v (u ε b , v ε ), in (0, +∞) × Ω, (1.1.1) 
where Ω ⊂ R N , N ≥ 1, is a bounded domain with a smooth boundary, and d a , d b and d v are diffusivities for the three populations. The unknown solutions depend on the parameter ε and we denote it expliciltly if needed. The above system is complemented with nonnegative initial data

u ε a (0, x) = u in a (x) , u ε b (0, x) = u in b (x) , v ε (0, x) = v in (x) , x ∈ Ω , (1.1.2)
and zero flux boundary conditions,

d a ∇u ε a • σ = d b ∇u ε b • σ = d v ∇v ε • σ = 0 , on (0, +∞) × ∂Ω , (1.1.3)
where σ denotes the outward unit normal vector on the boundary ∂Ω.

In this chapter, we want to see the effect of diet diversity in a competition context using the system and the emergence of cross-diffusion triggered by such a difference through its singular limit, as ε → 0. The competition dynamics is given in the reaction terms. The reaction terms of order one are given by

f a (u a ) := η a u a 1 - u a a , f b (u b , v) := η b u b 1 - u b + v b , (1.1.4) f v (u b , v) := η v v 1 - u b + v b ,
where a, b > 0 are carrying capacities supported by two different groups of resources and η a , η b , and η v > 0 are the intrinsic growth rates of u a , u b , and v, respectively. The competition of the two species, u and v, is for the resource b. However, the species u has a diverse diet and can survive by consuming the other resource a without competition. In order to model such a competition using a Lotka-Volterra type system, the species u is divided into two substates u a and u b , depending on their diets. In the above reaction terms, u a takes a logistic equation type reaction, and u b and v take Lotka-Volterra competition equations type reactions as given in (1.1.4). Since competition exists only partially for the species u, the competition is weak to u. However, the species v competes with u for all of its resources and hence the competition is not weak in general and the competition result may depend on the parameter ε (see Sections 1.4 and 1.5).

The individuals of the species u may freely change the type of food depending on the availability, which is modeled by the fast reaction term of order ε Hence, we assume that φ is an increasing function of the starvation measure (see [START_REF] Kim | Evolution of dispersal with starvation measure and coexistence[END_REF] for more discussion on the starvation measure). In the same way, the conversion rate ψ is a function of the starvation measure u a a for the population u a and is assumed to be increasing. For this reason, it makes sense to call the conversion dynamics given by (1.1.5) a starvation-driven conversion, which eventually results in the starvationdriven cross-diffusion after taking the limit as ε → 0 (see [START_REF] Choi | Diffusion of biological organisms: Fickian and fokker-planck type diffusions[END_REF][START_REF] Chung | Biological advection and cross-diffusion with parameter regimes[END_REF]). More specifically, we assume the following starvation-driven conversion hypothesis

-1 , 1 ε Q(u a , u b , v) := 1 ε φ u b + v b u b -ψ u a a u a , ε > 0 . ( 1 
• φ and ψ in (1.1.5) are increasing functions belonging to C 1 ([0, +∞)); in addition, there exist strictly positive constants δ ψ , δ φ , M φ , and M ψ such that, for all x ≥ 0,

ψ(x) ≥ δ ψ > 0, φ(x) ≥ δ φ > 0, φ (x) ≤ M φ and ψ (x) ≤ M ψ . ( H1 
)
The main result of this chapter is that, as ε → 0, the (unique) solution (u ε a , u ε b , v ε ) of the initial boundary value problem (1.1.1) -(1.1.5) converges to a limit (u a , u b , v) and this limit is a weak solution to the reaction cross-diffusion system

       ∂ t u = ∆(d a u a + d b u b ) + f a (u a ) + f b (u b , v), in (0, +∞) × Ω, ∂ t v = d v ∆v + f v (u b , v), in (0, +∞) × Ω, (1.1.6)
where u a and u b are (uniquely) determined by the nonlinear system

       u a + u b = u, Q(u a , u b , v) = 0, (1.1.7)
complemented by the initial data,

u(0, x) = u in (x) := u in a (x) + u in b (x) , v(0, x) = v in (x) , x ∈ Ω , (1.1.8)
and the zero flux boundary condition,

∇(d a u a + d b u b ) • σ = d v ∇v • σ = 0 , in (0, +∞) × ∂Ω .
(1.1.9)

Note that the zero flux boundary conditions in (1.1.3) are equivalent to the homogeneous Neumann boundary conditions, [START_REF] Iida | Diffusion, cross-diffusion and competitive interaction[END_REF] for similar diffusion operator for a single species with two phenotypes). However, after taking the singular limit, we obtain the zero flux boundary conditions (1.1.9), but not the homogeneous Neumann boundary conditions. Moreover, the initial data (1.1.8) satisfy

∇u ε a • σ = ∇u ε b • σ = ∇v ε • σ = 0 , on (0, +∞) × ∂Ω , (see
u in a , u in b , v in ∈ C 2 ( Ω) and ∇u in a • σ = ∇u in b • σ = ∇v in • σ = 0, on ∂Ω. (H2)
If d a = d b , the diffusion for the species u given in (1.1.6) is the homogeneous linear diffusion. However, the diffusivity of a species usually depends on its food (or prey) and d a d b in general. In that case (d a d b ), the diffusion for the total population in (1.1.6) contains cross-diffusion dynamics depending on the distribution of the three populations groups, u a , u b and v, through the relations in (1.1.7). This explains the starvation-driven diffusion for the specific case of the chapter, a concept formally introduced by Cho and Kim [START_REF] Cho | Starvation driven diffusion as a survival strategy of biological organisms[END_REF]. Funaki et al. [START_REF] Funaki | A link between microscopic and macroscopic models of self-organized aggregation[END_REF] derived a macroscopic cross-diffusion model from a system of two phenotypes and a signaling chemical in the context of chemotaxis.

The proof of convergence as ε → 0 is rigorously obtained via a priori estimates for u ε a , u ε b , and v ε . The main tool is the energy (or entropy) functional Notice here that the assumption (H1) implies that h a is positive, increasing, and convex, and that h b is positive, increasing in both variables, and convex with respect to the first variable. We refer to [START_REF] Conforto | About reaction-diffusion systems involving the holling-type ii and the beddington-de angelis functional responses for predator prey models[END_REF] and [START_REF] Desvillettes | New results for triangular reaction cross diffusion system[END_REF] for the use of such entropies in the context of triangular cross-diffusion systems (that is, systems in which only one of the two equations includes a cross-diffusion term). For more general systems, we refer to [START_REF] Chen | Analysis of a parabolic cross-diffusion population model without self-diffusion[END_REF][START_REF] Chen | Global existence analysis of cross-diffusion population systems for multiple species[END_REF][START_REF] Daus | Cross-diffusion systems and fast-reaction limits[END_REF][START_REF] Desvillettes | On the entropic structure of reactioncross diffusion systems[END_REF][START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF] among other works.

E(u a , u b , v) := Ω h a (u a ) dx + Ω h b (u b , v) dx , ( 1 
Then, by invoking the Aubin-Lions Lemma, we pass to the limit along a subsequence and conclude that the limit is a very weak solution to (1.1.6) -(1.1.9), in the sense of Theorem 1.2.1.

Remark 1.1. The regularity of the initial data (H2) guarantees the existence of classical solutions (u ε a , u ε b , v ε ) to the system (1.1.1) -(1.1.5), for any fixed ε > 0. Furthermore, (H2) ensures the boundedness of E at t = 0 and allows us to get the ε-uniform estimates for ∂ t v ε , ∂ i j v ε , ∇v ε , i, j = 1, . . . N, thanks to the parabolic maximal regularity (see Lemma 1.3.1). On the other hand, the initial data u in a , u in b , v in for the reaction diffusion system (1.1.1) do not satisfy a priori the nonlinear equation Q(u in a , u in b , v in ) = 0 in (1.1.7). Thus, the appearance of an initial layer is expected (see also Section 1.5).

We conclude this introduction proposing a formal derivation of (1.1.1) out of a microscopic system.

The rest of the chapter is organised as follows. Section 1.2 is devoted to the statement of the existence result. In Section 1.3.1, we prove a priori estimates, which are the preliminary ingredients for the proof of the existence result, obtained in Section 1.3.2. The chapter concludes with the existence and linear stability analysis of trivial and non-trivial spatially homogeneous steady states, in Section 1.4 and Appendix A.2, with a particular emphasis put on the coexistence state. Some numerical tests in Section 1.5 illustrate the linear stability analysis.

Formal derivation of the reaction-diffusion system with fast switching

We explain here how the mesoscopic scale model (1.1.1) is obtained at a formal level from a microscopic scale model in which the resources inducing the competition explicitly appear. Consider

                                           ∂ t s 1 = 1 δ r 1 s 1 1 - s 1 A 1 -p 1 s 1 U 1 , ∂ t s 2 = 1 δ r 2 s 2 1 - s 2 A 2 -p 2 s 2 U 2 -p V s 2 V , ∂ t U 1 = D 1 ∆U 1 + k 1 p 1 s 1 U 1 + 1 ε Φ p 2 U 2 + p V V s 2 U 2 -Ψ p 1 U 1 s 1 U 1 , ∂ t U 2 = D 2 ∆U 2 + k 2 p 2 s 2 U 2 - 1 ε Φ p 2 U 2 + p V V s 2 U 2 -Ψ p 1 U 1 s 1 U 1 , ∂ t V = D V ∆V + k V p V s 2 V, (1.1.12)
where δ > 0 is the microscopic reaction time scale and ε is the mesoscopic one (hence δ ε 1). These equations describe the time evolution of a small ecosystem with two prey population densities (or vegetal resources), s 1 and s 2 , and two predator population densities (or harvesters of the vegetal resources), U and V. Moreover, the population U is composed of two subpopulations U 1 and U 2 depending on the prey they consume, i.e., s 1 and s 2 , respectively. The prey species s i follows the logistic dynamics with a carrying capacity A i and an intrinsic growth rate r i . The predator species consume a certain amount of preys which is proportional to the prey density with proportionality factors p 1 , p 2 and p V . The harvested prey mass is converted to the predator mass with conversion rates k 1 , k 2 and k V . The subpopulations U 1 and U 2 convert to each other depending on the availability of the prey. The two functions Φ and Ψ are the conversion rates which are respectively increasing functions of the starvation measures p 2 U 2 +p V V s 2 and p 1 U 1 s 1 . The other species V consumes only the second prey s 2 . Hence, the active competition is only between V and U 2 , while U 1 competes with V passively (via conversion). Finally, since the dispersal rate of a predator species usually depends on the nature of its prey, D 1 D 2 in general.

Remark 1.2. If the heterogeneity of prey densities s 1 and s 2 is considered, one needs to add diffusion terms in the first two equations of (1.1.12) in order to include random migration of prey species. However, the lack of the diffusion terms does not affect the formal derivation of the mesoscopic system since we take δ → 0 anyway. Next, we make the asymptotic approximation as δ → 0 with fixed ε > 0 for the prey (or resources) densities s 1 , s 2 , and formally obtain a mesoscopic scale model. First, we have

s 1 r 1 - r 1 s 1 A 1 -p 1 U 1 = 0 =⇒ s 1 = 0 or s 1 = A 1 1 - p 1 U 1 r 1 ,
and

s 2 r 2 1 - s 2 A 2 -p 2 U 2 -p V V = 0 =⇒ s 2 = 0 or s 2 = A 2 1 - p 2 U 2 + p V V r 2 .
Only the nontrivial case, s 1 0 s 2 , is meaningful (since s 1 = 0 and s 2 = 0 correspond to unstable equilibria), and we obtain two relations

p 1 U 1 s 1 = r 1 s 1 - r 1 A 1 and p 2 U 2 + p V V s 2 = r 2 s 2 - r 2 A 2 .
Therefore, the last three equations in (1.1.12) turn into

                       ∂ t U 1 = D 1 ∆U 1 + A 1 k 1 p 1 U 1 1 -p 1 U 1 r 1 + 1 ε ΦU 2 -ΨU 1 , ∂ t U 2 = D 2 ∆U 2 + A 2 k 2 p 2 U 2 1 -p 2 U 2 +p V V r 2 - 1 ε ΦU 2 -ΨU 1 , ∂ t V = D V ∆V + A 2 k V p V V 1 -p 2 U 2 +p V V r 2 , (1.1.13) 
where the conversion rates Φ and Ψ read as

Φ = Φ r 2 s 2 - r 2 A 2 and Ψ = Ψ r 1 s 1 - r 1 A 1 ,
and the Lotka-Volterra reaction dynamics of competition type naturally appears.

Now we consider the relationship between the variables in (1.1.1) and in (1.1.13). First, we define

u ε a := U 1 , u ε b := U 2 , v ε := p V p 2 V ,
and keep the same diffusivity coefficients

d a := D 1 , d b := D 2 , d v := D V .
Then, the coefficients in the Lotka-Volterra type competition dynamics, f a , f b and f v , are given as

η a := p 1 A 1 k 1 , η b := p 2 A 2 k 2 , η v := p V A 2 k V , a := r 1 p 1 , b := r 2 p 2 . (1.1.14)
Finally, the mesoscopic conversion rates are given as

φ(x) := Φ r 2 A 2 x 1 -x , ψ(x) := Ψ r 1 A 1 x 1 -x . (1.1.15)
After replacing the previous coefficients with the new ones, the system (1.1.13) becomes our system (1.1.1). and p 1 U 1 s 1 , instead of simply U 2 +V s 2 and U 1 s 1 , in order to take into account the difference in the harvesting rates p 2 and p V . (ii) The mesoscopic conversion rates φ and ψ in (1.1.15) are increasing functions, since Φ and Ψ are chosen to be increasing functions. (iii) It is worth noticing that the carrying capacities a and b for the predator species are proportional to the growth rates r i 's of the prey species and that the prey carrying capacities A i 's are also involved in deciding φ and ψ (see (1.1.14) and (1.1.15)). (iv) The macroscopic system reduces to the classical Lotka-Volterra system of competition type with linear diffusion, whenever the conversion rates φ and ψ are both constant.

Statement of the main result

Before stating our main result in Theorem 1.2.1 below, we observe that, thanks to hypothesis (H1), the function

q(u b ; u, v) := Q(u -u b , u b , v) = φ u b + v b u b -ψ u -u b a (u -u b ) , (1.2.1) defined for u b ∈ [0, u], satisfies for given u ≥ 0, v ≥ 0 ∂ u b q(u b , u, v) = φ u b + v b + u b b φ u b + v b + ψ u -u b a + u -u b a ψ u -u b a > 0,
and for u > 0, v ≥ 0 q(0; u, v) < 0 , q(u; u, v) > 0 .

Hence, for any given (u, v) ∈ R 2 + , there exists a unique u * b (u, v) ∈ [0, u] zero of q, and thus a unique solution to the nonlinear system (1.1.7) is well defined. Furthermore, the implicit function theorem guarantees the continuity (and even the C 1 character) of u * b with respect to (u, v). Theorem 1.2.1.

Let Ω be a smooth bounded domain of R N , N ≥ 1. We assume (H1) and (H2). Then, the unique positive classical solution (u ε a , u ε b , v ε ) of (1.1.1) -(1.1.5) converges for a.e. (t, x) ∈ (0, +∞) × Ω (up to extraction of a subsequence) towards a nonnegative triplet (u * a , u * b , v), as ε → 0. Moreover, for a.e. (t, x) ∈ (0, +∞) × Ω, the pair of function (u * a , u * b ) is the unique solution to the nonlinear system (1.1.7), corresponding to u u * a + u * b and v. Furthermore, (u, v) is a very weak solution to the macroscopic system (1.1.6) -(1.1.9), in the sense that, for all test functions

ξ 1 , ξ 2 ∈ C 2 c [0, +∞) × Ω , with ∇ξ 1 • σ = ∇ξ 2 • σ = 0 on [0, +∞) × ∂Ω, it holds - +∞ 0 Ω (∂ t ξ 1 )u dxdt - Ω ξ 1 (0, •)u in dx - +∞ 0 Ω ∆ξ 1 d a u * a + d b u * b dxdt = +∞ 0 Ω ξ 1 f a (u * a ) + f b (u * b , v) dx dt , (1.2.2)
and

- +∞ 0 Ω (∂ t ξ 2 ) v dxdt - Ω ξ 2 (0, • ) v in dx -d v +∞ 0 Ω ∆ξ 2 v dxdt = +∞ 0 Ω ξ 2 f v (u * b , v) dxdt . (1.2.3)
Finally, the following regularity holds true, for all T > 0

(i) u ∈ L q (Ω T ) for q = 2 + 2 N if N ≥ 3, q < 3 if N = 2 and q = 3 if N = 1, |∇u| ∈ L 2 (Ω T ); (ii) v ∈ L ∞ (Ω T ), |∇v| ∈ L 2q (Ω T ); ∂ x i ,x j v , ∂ t v ∈ L q (Ω T ), i, j = 1, .
. . , N, for the same previous q.

Proof of the main Theorem

We first observe that for any ε > 0, there exists a unique global strong (for t > 0) solution (u ε a , u ε b , v ε ) to system (1.1.1) -(1.1.3), under the assumption on the initial data of Theorem 1.2.1. We refer to Proposition 2.5.1 in Chapter 2 for the proof (see also [START_REF] Desvillettes | About entropy methods for reaction-diffusion equations[END_REF][START_REF] Quittner | Superlinear parabolic problems[END_REF] for similar results).

A priori estimates

In this section, we shall obtain a priori estimates on the subpopulation densities u ε a , u ε b , on the total population densities u ε u ε a + u ε b and v ε , and on Q(u ε a , u ε b , v ε ). More specifically, we take advantage of the triangular structure of the system that gives us a priori estimates on the density v ε and its derivatives (see Lemma 1.3.1). The reaction functions f a and f b of competition type allow us to control the total mass Ω u ε (t) dx, and to get an L 2 (Ω T ) estimate on u ε (see Lemma 1.3.2). The latter will be employed in Lemma 1.3.3 to obtain estimates on ∇u ε a , ∇u ε b and Q(u ε a , u ε b , v ε ), through the use of the energy functional (1.1.10), (1.1.11). In addition, the triplet (u ε a , u ε b , v ε ) will be shown to have finite energy E(T ) as well, for all T > 0.

Hereafter, all constants C and C T are strictly positive and may depend on Ω, the initial data u in a , u in b , v in , the coefficients in system (1.1.1), the transition functions φ, ψ and on T , but never on ε. They may change also from line to line in the computations.

Lemma 1.3.1. Let (u ε a , u ε b , v ε ) be the positive classical solution to (1.1.1) -(1.1.5).
Then, the following statements hold true (i) there exists a constant C > 0 such that for all ε > 0

v ε L ∞ ((0,+∞)×Ω) C ; (1.3.1)
(ii) for all q ∈ (1, +∞) there exists a constant C > 0 depending on q, v in , Ω, such that, for all ε > 0, T > 0 and all i, j = 1, .., N,

∂ t v ε L q (Ω T ) + ∂ x i ,x j v ε L q (Ω T ) C(1 + u ε b L q (Ω T ) ) ; (1.3.2)
(iii) for all q ∈ (1, +∞) there exists a constant C > 0 depending on q, v in , N, Ω, such that, for all ε > 0 and all T > 0,

∇v ε 2q L 2q (Ω T ) ≤ C 1 + T + u ε b q L q (Ω T ) . (1.3.3) Remark 1.4.
In the sequel, the value of q in (1.3.2), (1.3.3) will be first chosen equal to 2 (see Lemma 1.3.2), and then to a different number after Corollary 1.3.4.

Proof.

It is easily seen that 

0 v ε (t, x) K max v in L ∞ (Ω) ; b ,
Ω (v ε (t) -K) 2 + dx ≤ Ω (v in,ε -K) 2 + dx = 0 .
Next, by the maximal regularity property of the heat equation (see Section A.1), for all q ∈ (1, +∞) there exists a strictly positive constant C, which depends on q, v in and Ω, such that for all i, j = 1, .., N,

∂ t v ε L q (Ω T ) + ∂ x i ,x j v ε L q (Ω T ) ≤ C(1 + f v (u ε b , v ε ) L q (Ω T ) ≤ C 1 + u ε b L q (Ω T ) , (1.3.5) 
so that estimate (1.3.2) holds. Then, thanks to the Gagliardo-Nirenberg inequality [START_REF] Nirenberg | An extended interpolation inequality[END_REF], for all q ∈ (1, +∞), there exists a strictly positive constant C, depending on q, N, Ω such that, for all t > 0 and i = 1, . . . N, we have

∂ x i v ε (t) L 2q (Ω) ≤ C N j=1 ∂ x i ,x j v ε (t) 1/2 L q (Ω) v ε (t) 1/2 L ∞ (Ω) + C v ε (t) L ∞ (Ω) .
Integrating the above inequality over (0, T ) and using (1.3.1) and (1.3.5), we get estimate (1.3.3).

Lemma 1.3.2.

Let (u ε a , u ε b , v ε ) be the positive classical solution to (1.1.1) -(1.1.5). Then, for all T > 0, there exists C T > 0 such that for all ε > 0 the following estimates hold:

sup t ∈ [0,T ] Ω (u ε a + u ε b )(t) dx ≤ C T and u ε a + u ε b L 2 (Ω T ) ≤ C T . (1.3.6)
Proof.

Adding the first two equations in (1.1.1) and using the positivity of u ε a , u ε b , v ε , we get

∂ t (u ε a + u ε b ) ≤ d a ∆u ε a + d b ∆u ε b + η a u ε a 1 - u ε a a + η b u ε b 1 - u ε b b (1.3.7) ≤ d a ∆u ε a + d b ∆u ε b + 1 4 aη a + bη b . (1.3.8)
1.3. Proof of the main Theorem Then, integrating (1.3.8) over Ω, the inequality becomes

d dt Ω u ε a + u ε b (t) dx ≤ C , implying, for all t in [0, T ], that u ε a (t) + u ε b (t) L 1 (Ω) ≤ u in a + u in b L 1 (Ω) + C T . (1.3.9)
In order to obtain the L 2 (Ω T ) estimate for u ε a + u ε b , we integrate inequality (1.3.7) first over Ω and then over (0, t), for t ∈ (0, T ), to obtain

Ω (u ε a + u ε b )(t) dx + η a a Ω t (u ε a ) 2 dx dt + η b b Ω t (u ε b ) 2 dx dt ≤ u in a + u in b L 1 (Ω) + C u ε a + u ε b L 1 (Ω T )
. The second estimate in (1.3.6) follows, using the first one.

Lemma 1.3.3. Let (u ε a , u ε b , v ε ) be the positive classical solution to (1.1.1) -(1.1.5).
Then, for all T > 0, there exists C T > 0 such that, for all ε > 0, the global solution to (1.1.1) satisfies

E(u ε a , u ε b , v ε )(T ) + C ∇u ε a 2 L 2 (Ω T ) + C ∇u ε b 2 L 2 (Ω T ) + 1 ε Q(u ε a , u ε b , v ε ) 2 L 2 (Ω T ) ≤ C T . (1.3.10)
Proof.

We shall analyse the evolution of E, along the trajectories of the solution to (1.1.1). Thus, from the first equation in (1.1.1) and assumption (H1), we have

d dt Ω h a (u ε a ) dx = Ω (∂ t u ε a ) u ε a ψ u ε a a dx = -d a Ω ψ u ε a a + u ε a a ψ u ε a a |∇u ε a | 2 dx + Ω u ε a f a (u ε a ) ψ u ε a a dx + 1 ε Ω u ε a ψ u ε a a Q ε dx ≤ -d a δ ψ Ω |∇u ε a | 2 dx + C Ω (u ε a ) 2 1 - u ε a a 1 {u ε a ≤a} dx + 1 ε Ω u ε a ψ u ε a a Q ε dx. (1.3.11)
Concerning the second term in the energy (1.1.10), we see that

d dt Ω h b (u ε b , v ε ) dx = Ω (∂ t u ε b ) u ε b φ u ε b + v ε b dx + Ω (∂ t v ε )∂ 2 h b (u ε b , v ε ) dx (1.
3.12)

I 1 + I 2 .
Using the second equation in (1.1.1), I 1 rewrites as follows

I 1 ≤ -d b Ω |∇u ε b | 2 φ u ε b + v ε b + u ε b b φ u ε b + v ε b dx -d b Ω u ε b b φ u ε b + v ε b ∇u ε b • ∇v ε dx + C Ω (u ε b ) 2 1 - u ε b + v ε b 1 {u ε b +v ε ≤b} dx - 1 ε Ω u ε b φ u ε b + v ε b Q ε dx . (1.3.13)
On the other hand, observing that

∂ 2 h b (u b , v) = u b 0 z b φ z + v b dz = u b φ u b + v b - u b 0 φ z + v b dz , (1.3.14)
by the positivity of φ , ∂ 2 h b is positive as well and

Ω ∂ 2 h b (u ε b , v ε ) f v (u ε b , v ε ) dx ≤ η v Ω ∂ 2 h b (u ε b , v ε ) v ε 1 - u ε b + v ε b 1 {u ε b +v ε ≤b} dx ≤ η v Ω u ε b φ u ε b + v ε b v ε 1 - u ε b + v ε b 1 {u ε b +v ε ≤b} dx .
Therefore, we obtain

I 2 ≤ -d v Ω ∂ 22 h b (u ε b , v ε )|∇v ε | 2 dx -d v Ω ∂ 21 h b (u ε b , v ε )∇u ε b • ∇v ε dx + η v Ω u ε b φ u ε b + v ε b v ε 1 - u ε b + v ε b 1 {u ε b +v ε ≤b} dx . (1.3.15)
Computing from (1.3.14)

∂ 21 h b (u b , v) = u b b φ u b + v b ,
and plugging estimates (1.3.13) and (1.3.15) into (1.3.12), we end up with the estimate

d dt Ω h b (u ε b , v ε ) dx ≤ -d b Ω φ u ε b + v ε b + u ε b b φ u ε b + v ε b |∇u ε b | 2 dx -d v Ω ∂ 22 h b (u ε b , v ε )|∇v ε | 2 dx -(d b + d v ) Ω u ε b b φ u ε b + v ε b ∇u ε b • ∇v ε dx + C Ω (u ε b ) 2 1 - u ε b + v ε b 1 {u ε b +v ε ≤b} dx + η v Ω u ε b φ u ε b + v ε b v ε 1 - u ε b + v ε b 1 {u ε b +v ε ≤b} dx - 1 ε Ω u ε b φ u ε b + v ε b Q ε dx . (1.3.16)
Next, using the positivity of φ again, we estimate the third term in (1.3.16) with a weight η > 0 as

-(d b + d v ) Ω u ε b b φ u ε b + v ε b ∇u ε b • ∇v ε dx ≤ (d b + d v ) η 2 Ω u ε b b φ u ε b + v ε b |∇u ε b | 2 dx + d b + d v 2η Ω u ε b b φ u ε b + v ε b |∇v ε | 2 dx. Thus, choosing η ∈ (0, 2d b (d b + d v ) -1 ), gives C(η) := (d b -(d b + d v ) η 2 ) > 0, and inequality (1.3.16) becomes d dt Ω h b (u ε b , v ε ) dx ≤ -d b δ φ Ω |∇u ε b | 2 dx -d v Ω ∂ 22 h b (u ε b , v ε )|∇v ε | 2 dx -C(η) Ω u ε b b φ u ε b + v ε b |∇u ε b | 2 dx + (d b + d v ) 2η Ω u ε b b φ u ε b + v ε b |∇v ε | 2 dx + C - 1 ε Ω u ε b φ u ε b + v ε b Q ε dx . (1.3.17)
Finally, by assumption (H1), the derivative

∂ 22 h b (u b , v) = u b b φ u b + v b -φ u b + v b -φ v b = u b +v v φ u b + v b -φ z b dz b , satisfies |∂ 22 h b (u b , v)| ≤ 2 M φ u b b .
Therefore, adding (1.3.11) and (1.3.17), and using the boundedness of φ again, we arrive at the following estimate for the time derivative of the energy

d dt E(u ε a (t), u ε b (t), v ε (t)) ≤ -d a δ ψ Ω |∇u ε a | 2 dx -d b δ φ Ω |∇u ε b | 2 dx -C(η) Ω u ε b b φ u ε b + v ε b |∇u ε b | 2 dx (1.3.18) + C u ε a + u ε b L 2 (Ω) ∇v ε 2 L 4 (Ω) - 1 ε Ω (Q ε ) 2 dx + C.
Integrating in time over [0, T ] the latter inequality, estimate (1.3.10) is proved by the means of Lemma 1.3.1 (with q = 2), Lemma 1.3.2 and the boundedness of the initial energy.

We conclude this section by giving improved estimates from interpolation arguments.

Corollary 1.3.4. Let (u ε a , u ε b , v ε ) be the positive classical solution to (1.1.1) -(1.1.5).
Then, for all T > 0, the following estimates hold

u ε a + u ε b L 2 0,T ; H 1 (Ω) C T , (1.3.19 
)

and u ε a + u ε b L q (Ω T ) C T , (1.3.20) 
where

q :=        2 + 2/N if N > 2 ; 3, if N = 1, (1.3.21) and q < 3, if N = 2.
Proof.

The following argument is performed for the subpopulation u ε a . It can be applied similarly to u ε b and thus to u ε a + u ε b . Lemmas 1.3.2 and 1.3.3 give that u ε a is bounded in L 2 (0, T ; H 1 (Ω)). Thus, by the Sobolev embedding theorem, we have that

u ε a is bounded in L 2 (0, T ; L N * (Ω)), with N * = 2N N-2 if N > 2, N * ∈ [2, +∞) if N = 2 and N * = ∞ if N = 1. Since we also know that u ε a is bounded in L ∞ (0, T ; L 1 (Ω))
, by interpolation we obtain that u ε a is bounded in L q (Ω T ), with q as in (1.3.21).

Remark 1.5. At this point, using Lemma 1.3.1 again, we see that ∂ t v ε and ∇∇v ε are bounded in L q (Ω T ).

End of the proof of the main result

End of the proof of Theorem 1.2.1.

The proof is divided in four steps and uses compactness to identify limits along subsequences. The first and the second one focus on the identification of the limit (as ε → 0) of the densities v ε and u ε = u ε a + u ε b , a.e. in [0, T ] × Ω, respectively. In the third step we obtain the a.e. convergence of the subpopulation densities u ε a , u ε b and we identify the obtained limit as the unique solution to the nonlinear system (1.1.7). The convergence argument is also extended globally in time by a diagonal argument. Finally, the proof is concluded in the fourth step, taking the limit as ε tends to zero, in the very weak formulation of the system satisfied by

u ε = u ε a + u ε b and v ε .
First step. Let T > 0 be arbitrarily fixed. Thanks to the control of the density v ε given in Lemma 1.3.1 and to the boundedness of

u ε a + u ε b in L 2 (Ω T ) obtained in Lemma 1.3.2, we have that (v ε ) ε is bounded in L 4 (0, T ; W 1,4 (Ω)) and (∂ t v ε ) ε is bounded in L 2 (0, T ; L 2 (Ω)).
Therefore, by applying Rellich's Theorem, there exists a subsequence, still denoted v ε , and v ∈ L 4 (Ω T ) such that, as ε → 0,

v ε (t, x) -→ v(t, x) , a.e. in Ω T . (1.3.22) Moreover, ∇v ε ∇v in L 4 (Ω T ), (1.3.23) 
and due to Lemma 1.3.1 again, v is nonnegative and belongs to L ∞ (Ω T ), while ∇v lies in L 4 (Ω T ).

Second step. We rewrite the parabolic equation satisfied by the density

u ε = u ε a + u ε b as ∂ t u ε = ∆(d a u ε a + d b u ε b ) + f a (u ε a ) + f b (u ε b , v ε ) . (1.3.24)
Thanks to Corollary 1.3.4, we see that (u ε ) ε is uniformly bounded in L 2 (0, T ; H 1 (Ω)) and in L 2+2δ (Ω T ) for some δ > 0, so that the reaction term in (1.3.24) 

is uniformly bounded in L 1+δ (Ω T ). Then (∂ t (u ε a + u ε b )) ε is uniformly bounded in L 1+δ (0, T ; W -1,1+δ (Ω)
). Thus, Aubin-Lions' Lemma (cf. [START_REF] Moussa | Some variants of the classical aubin-lions lemma[END_REF]) yields a subsequence (still denoted u ε ), and a function u ≥ 0, u ∈ L 2 (Ω T ), such that, as ε → 0,

u ε (t, x) = u ε a (t, x) + u ε b (t, x) -→ u(t, x) , a. e. in Ω T , (1.3.25) 
where the nonnegativity of u follows from that of u ε . Furthermore,

∇u ε ∇u in L 2 (Ω T ) , (1.3.26) 
and

u L 2 (Ω T ) = lim ε→ 0 u ε a + u ε b L 2 (Ω T ) C T , ∇u L 2 (Ω T ) ≤ lim inf ε→ 0 ∇u ε L 2 (Ω T ) C T .
Third step. The energy estimate (1.3.10) yields the estimate

φ u ε b + v ε b u ε b -ψ u ε a a u ε a L 2 (Ω T ) ≤ √ ε C T . (1.3.27) Therefore, Q(u ε a , u ε b , v ε ) converges to zero in L 2 (Ω T )
, as ε → 0, and (up to extraction of a subsequence)

φ u ε b + v ε b u ε b -ψ u ε a a u ε a -→ 0, a.e. in Ω T . (1.3.28)
It remains to prove the existence of the a.e. limit of subsequences of (u ε a ) ε , (u ε b ) ε and to verify that this limit is the unique solution to (1.1.7), a.e. in Ω T , corresponding to the functions u and v obtained in (1.3.25) and (1.3.22), respectively.

Let u * a (u ε , v ε ), u * b (u ε , v ε
) be the unique solution to (1.1.7), corresponding to (u ε , v ε ). Then, using the function q defined in (1.2.1), we get

Q(u ε a , u ε b , v ε ) = Q(u ε a , u ε b , v ε ) -Q(u * a (u ε , v ε ), u * b (u ε , v ε ), v ε ) = q(u ε b ; u ε , v ε ) -q(u * b (u ε , v ε ); u ε , v ε ) = ∂ u b q(ζ; u ε , v ε )(u ε b -u * b (u ε , v ε )) , with ζ ∈ min u ε b , u * b (u ε , v ε ) , max u ε b , u * b (u ε , v ε ) . Thus, thanks to hypothesis (H1) we obtain |Q(u ε a , u ε b , v ε )| ≥ (δ φ + δ ψ )|u ε b -u * b (u ε , v ε )| . Thus by (1.3.28), |u ε b -u * b (u ε , v ε )| → 0 as ε → 0, a.e. in Ω T .
Finally, the proved convergences (1.3.22) and (1.3.25) and the continuity of u * b , with respect to its arguments, yield the desired result, i.e.

u ε b → u * b (u, v) , u ε a = u ε -u ε b → u * a (u, v) , ε → 0 , a.e. in Ω T .
To conclude, let us remark that all the a.e. convergence results obtained so far have been performed on [0, T ], for any arbitrary ), by extracting subsequences, these arguments can be replicated in the time intervals [0, 2T ], [0, 3T ] and so on. Then by Cantor's diagonal argument, the convergences (1.3.22), (1.3.25) and (1.3.28), and the convergence of the pair (u ε a , u ε b ) towards the solution to (1.1.7) are verified a.e. in (0, +∞) × Ω.

T > 0. Since (u ε a , u ε b , v ε ) is defined on [0, +∞
Fourth step. We shall prove now that (u, v) is a weak solution to (1.1.6), in the sense of Theorem 1.2.1. For this purpose, let us consider two test functions ξ 1 , ξ 2 in C 2 c , satisfying

∇ξ 1 • σ = ∇ξ 2 • σ = 0, on [0, T ] × ∂Ω.
Multiplying the equation satisfied by u ε a + u ε b by ξ 1 and the third equation of (1.1.1) by ξ 2 and integrating over (0, +∞) × Ω, we get,

- ∞ 0 Ω (∂ t ξ 1 ) (u ε a + u ε b ) dx dt - Ω ξ 1 (0) u in,ε a + u in,ε b dx = ∞ 0 Ω ∆ξ 1 d a u ε a + d b u ε b dx dt + ∞ 0 Ω ξ 1 ( f a (u ε a ) + f b (u ε b , v ε ))dx dt , (1.3.29) 
and

- ∞ 0 Ω (∂ t ξ 2 ) v ε dx dt - Ω ξ 2 (0) v in,ε dx = d v ∞ 0 Ω ∆ξ 2 v ε dx dt + ∞ 0 Ω ξ 2 f v (u ε b , v ε ) dx dt . (1.3.30)
Concerning the equation (1.3.29), the convergence results obtained in the previous steps and the estimates in (1.3.6) allow us to pass to the limit as ε → 0, in all the terms of the equation, using Lebesgue's dominated convergence theorem, thus obtaining (1.2.2).

The same conclusion holds for equation (1.3.30). Indeed, the boundedness of v ε and its convergence (1.3.22), together with the estimates in (1.3.6), allow us to pass to the limit in all terms of (1.3.30), using Lebesgue's dominated convergence theorem again, thus obtaining (1.2.3). The proof of Theorem 1.2.1 is now completed.

Linear stability analysis

In this section, we investigate the linear stability of spatially homogeneous steady states of the macroscopic system (1.1.6) -(1.1.9), with reaction and fast reaction functions given by (1.1.4) and (1.1.5), respectively. We shall also see the relationship between the linear stability of the coexistence steady state at the mesoscopic and macroscopic scale, as ε → 0.

Let ψ and φ be conversion rates satisfying assumption (H1). We introduce the following few notations for later use,

ψ 1 = ψ(1), φ 1 = φ(1) ,
and the parameter providing a criterion for the linear stability (see Theorem 1.4.1 and Proposition 1.4.2),

α ψ 1 φ 1 a b > 0 . (1.4.1)
The pair (ū, v) ∈ R 2 + is a spatially homogeneous steady state of the macroscopic system if and only if ū = ūa + ūb and the triplet (ū a , ūb , v) satisfy the nonlinear system

f a (ū a ) + f b (ū b , v) = f v (ū b , v) = Q(ū a , ūb , v) = 0 . (1.4.2)
Extinction of u. From Q(ū a , ūb , v) = 0 and the strict positivity of φ and ψ, we see that ūa = 0 if and only if ūb = 0: no extinction of a single subpopulation of the species u is admitted. Thus, for ūa = ūb = 0, we obtain the trivial and semi-trivial steady states

(ū 1 , v1 ) = (0, 0) and (ū 2 , v2 ) = (0, b) , (1.4.3) 
corresponding to the total extinction of the two species in the ecosystem and to a partial extinction, respectively.

Survival of u and extinction of v. The other steady states with ūa 0 and ūb 0 are of main interest. The first case is with v = 0. Denoting ūa = λ a and ūb = σ b, λ, σ > 0, system (1.4.2) reduces to

η a a λ(1 -λ) + η b b σ(1 -σ) = 0 , λψ(λ) σφ(σ) = b a . (1.4.4)
Such a semi-trivial state always exists but the uniqueness is non-trivial. Indeed, the second equation in (1.4.4) can be written equivalently as

σφ(σ) φ 1 = α λψ(λ) ψ 1 . (1.4.5)
Due to assumption (H1), the functions Λ(λ) := λψ(λ)/ψ 1 and Σ(σ) := σφ(σ)/φ 1 are strictly increasing functions from 0 to +∞. Hence, for every λ > 0 there exists a unique σ(λ) > 0 solving (1.4.5) and given by σ(λ) = Σ -1 (αΛ(λ)) .

(1.4.6)

Plugging (1.4.6) into the left hand side equation in (1.4.4), the stationary states correspond to the zeros of the function F below

F(λ) := η a a λ(1 -λ) + η b b σ(λ)(1 -σ(λ)) . (1.4.7) 
Furthermore, by the competition structure, it follows that F is positive for small enough λ and F(λ) → -∞ as λ → +∞. Thus, the macroscopic system (1.1.4) -(1.1.7) admits at least one semi-trivial equilibrium (ū 3 , v3 ) = (aλ + bσ, 0) , (1.4.8)

solution to system (1.4.4), with σ = σ(λ) uniquely determined by (1.4.6). Moreover, if the equilibrium is unique, F is decreasing around the corresponding λ, i.e. F (λ) < 0.

In general it is possible to have several semi-trivial states of type (1.4.8). As an example, take

a = b = 1, η a = 0.2, η b = 1, φ ≡ 1, ψ(x) =        0.1 if x ≤ 1.6, 0.3 otherwise. (1.4.9)
The corresponding F(λ) is shown in Figure 1.1, from where we see that there exist three semi-trivial states. We will discuss the uniqueness issue in Proposition 1.4.2, where a sufficient condition for uniqueness of (1.4.8) is given, and Proposition 1.4.3, where we exhibit a family of conversion rates functions φ, ψ for which uniqueness of (1.4.8) holds true.
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Coexistence of u and v. Finally, if ūa 0, ūb 0, v 0, from f v (ū b , v) = 0 we get ūb + v = b and thus ūa = a. Then, from Q(ū a , ūb , v) = 0 and the definition of α it follows that ūb = bα. Therefore, system (1.4.2) has a unique totally nontrivial solution given by

(ū 4 , v4 ) = (a + bα, b(1 -α)) , (1.4.10) 
provided that α < 1.

We shall see in the following subsection (see Theorem 1.4.1) that the stationary states (1.4.3) are unstable, so that the total extinction of the species u never occurs. The species u always survives and its coexistence with the species v is conditioned by the switching strategy that the subpopulations u a and u b adopt when both resources run out, quantified through the parameter α. Indeed, the coexistence occurs if the switch from the state u b to the state u a is faster than the opposite switch, i.e. α < 1. On the other hand, v goes extinct only if α > 1.

The relationship between the linear stability of the mesoscopic and macroscopic coexistence steady states, as ε → 0, is seen in Subsection 1.4.3.

Linear stability analysis for the cross-diffusion system

Let us introduce the partial starvation measures

λ = ūa a ≥ 0 , σ = ūb b ≥ 0 , δ = v b ∈ {0, 1 -σ} ,
so that each of the above steady states can be identified with the triplet (λ, σ, δ) and written as P = (ū, v) = λa + σb, δb .

(1.4.11)

Linearizing around P the ODEs system associated to (1.1.4) -(1.1.7), in the sense of small perturbation τ, |τ| 1, i.e.

u a = ūa + τ ũa and u b = ūb + τ ũb , u = u a + u b = (ū a + ūb ) + τ(ũ a + ũb ) = ū + τ ũ, v = v + τṽ, (1.4.12) we obtain        u = η a (1 -2λ)ũ a + η b (1 -2σ -δ)ũ b -η b σ ṽ + o(1), v = -η v δ ũb + η v (1 -σ -2δ)ṽ + o(1). (1.4.13)
Moreover, from the linearization of Q(u a , u b , v) around (ū a , ūb , v), we have

∂ 1 Q ũa + ∂ 2 Q ũb + ∂ 3 Q ṽ + o(1) = 0, (1.4.14)
where

∂ j Q = ∂ j Q(ū a , ūb , v)
and

∂ 1 Q = -ψ(λ) -λψ (λ) =: -β(λ) < 0 , ∂ 2 Q = φ(σ + δ) + σφ (σ + δ) =: γ(σ, δ) > 0 , ∂ 3 Q = σφ (σ + δ) =: θ(σ, δ) > 0 .
(1.4.15)

Using ũ = ũa + ũb , from (1.4.14) we obtain ũa and ũb in terms of ũ and ṽ as follows

ũa = 1 r γ(σ, δ) ũ + 1 r θ(σ, δ) ṽ + o(1) , ũb = 1 r β(λ) ũ - 1 r θ(σ, δ) ṽ + o(1) , (1.4.16) where r = r(λ, σ, δ) ∂ 2 Q -∂ 1 Q = β(λ) + γ(σ, δ) > 0. Thus, system (1.4.13) becomes ẇ = M w + o(1), w ũ ṽ ,
and the matrix M = M( P) has the following entries

M 11 ( P) = η a r (1 -2λ)γ(σ, δ) + η b r (1 -2σ -δ)β(λ) , M 12 ( P) = η a r (1 -2λ)θ(σ, δ) - η b r (1 -2σ -δ)θ(σ, δ) -η b σ , M 21 ( P) = - η v r δ β(λ) , M 22 ( P) = η v r δ θ(σ, δ) + η v (1 -σ -2δ) .
(1.4.17)

Next, for u a and u b as in (1.4.12), using (1.4.16) again, the linearization of the cross diffusion operator in (1.1.6) reads as

∆ d a u a + d b u b = τ d a γ(σ, δ) r + d b β(λ) r ∆ũ + τ(d a -d b ) θ(σ, δ) r ∆ṽ + o(τ),
and the linearized cross-diffusion macroscopic system writes

∂ t w = J∆ w + M w + o(1) , with J         d a γ(σ,δ) r + d b β(λ) r (d a -d b ) θ(σ,δ) r 0 d v         .
Finally, denoting {λ n } n the eigenvalues sequence associated to the operator -∆ with the Neumann boundary condition (0 = λ 0 < λ 1 ≤ ... ≤ λ n ≤ ...), the matrix to be analyzed for the stability of the macroscopic system is N = -λ n J + M, i.e.

N         -1 r d a γ + d b β λ n + M 11 -1 r (d a -d b )θ λ n + M 12 M 21 -d v λ n + M 22         . (1.4.18)
We are now ready to prove the following stability result.

Theorem 1.4.1.

Let ψ and φ be conversion rates satisfying assumption (H1) and α > 0 defined as in (1.4.1).

Then, the following holds true.

(i) The trivial and semi-trivial steady states (ū 1 , v1 ) = (0, 0) and (ū 2 , v2 ) = (0, b) are linearly unstable.

(ii) The family of semi-trivial steady states (ū 3 , v3 ) = (aλ + bσ, 0) satisfies

σ = λ = 1 , if α = 1 , (1.4.19) 0 < σ < 1 < λ < 1 2 + 1 2 1 + bη b aη a , if α < 1 , (1.4.20)
and the swapped relation 

0 < λ < 1 < σ < 1 2 + 1 2 1 + aη a bη b , if α > 1 . ( 1 
M(0, 0) = diag η a φ(0) + η b ψ(0) φ(0) + ψ(0) , η v and M(0, b) =        η a φ 1 φ 1 +ψ(0) 0 -η v ψ(0) φ 1 +ψ(0) -η v        ,
implying that the steady states (0, 0) and (0, b) are linearly unstable, both for the macroscopic system and for the associated diffusion-less one, because of the zero eigenvalue of the Laplacian.

(ii) In order to proceed with the investigation of the family of steady states (ū 3 , v3 ) = (aλ + bσ, 0), let us observe that from the first equation in (1.4.4), we have

(1 -λ)(1 -σ) < 0 or λ = σ = 1 .
(1.4.22)

Thus, according to the value of α, we get from (1.4.5): if α > 1, then λ ∈ (0, 1) and σ > 1, i.e. ūa < a and ūb > b; if α < 1, then λ > 1 and σ ∈ (0, 1), i.e. ūa > a and ūb < b; if α = 1, then λ = σ = 1 giving the optimal selection case ūa = a, ūb = b.

Next, let us rewrite the left equation in (1.4.4) as Furthermore, the entries (1.4.17) of the matrix M( P) = M(aλ + bσ, 0) are now

σ(1 -σ) = η a a η b b λ(λ -1) =: K(λ) . (1.4.23) If α > 1, as λ ∈ (0, 1), it follows that K( 1 2 ) ≤ K(λ) < 0
M 11 ( P) = η a (1 -2λ) γ r + η b (1 -2σ) β r , M 12 ( P) = η a (1 -2λ) -η b (1 -2σ) θ r -η b σ , M 21 ( P) = 0 , M 22 ( P) = η v (1 -σ) .
As M 21 = 0, the steady state is linearly stable for the diffusionless macroscopic system if and only if : M 11 < 0 and M 22 < 0. Hence, σ > 1 is a necessary condition for the linear stability, and it holds only if α > 1.

In the case α = 1, giving the optimal selection case λ = σ = 1, M(a + b, 0) has a zero eigenvalue, so that the equilibrium is a non hyperbolic equilibrium. Adding the contribution of the cross diffusion term, it does not change the nature of the equilibrium because of the zero eigenvalue of the Laplacian.

Let α > 1. The steady states under consideration satisfy Q(λa, σ(λ)b, 0) = 0, where σ(λ) is defined in (1.4.6). Taking the derivative with respect to λ and using (1.4.15), we obtain

a∂ 1 Q(λa, σ(λ)b, 0) + b σ (λ)∂ 2 Q(λa, σ(λ)b, 0) = -β(λ)a + γ(σ(λ), 0)b σ (λ) = 0 . Thus σ (λ) = a b β(λ) γ(σ(λ), 0) . Plugging σ (λ) into the derivative of F F (λ) = η a a(1 -2λ) + η b b σ (λ)(1 -2σ(λ)) , (1.4.24) 
we now find

F (λ) = η a a(1 -2λ) + η b a β(λ) γ(σ(λ), 0) (1 -2σ(λ)) = a γ(σ(λ), 0) rM 11 ( P).
Hence, M 11 is negative if and only if F (λ) is negative, which implies (ii) for the diffusionless macroscopic system and for the cross-diffusion one.

(iii) Let α < 1. Since now (λ, σ, δ) = (1, α, 1α), from (1.4.17), we have

M(ū 4 , v4 ) = - 1 r η a γ + η b αβ η a θ + η b α(r -θ) η v (1 -α)β η v (1 -α)(r -θ) . (1.4.25) As r -θ > 0, it holds trM < 0 . (1.4.26) By r = β + γ and γ -θ = φ 1 , we have det M = η v (1 -α) r 2 (η a γ + η b αβ)(r -θ) -η a θβ -η b αβ(r -θ) = η a η v (1 -α) r 2 γ(r -θ) -θβ = η a η v (1 -α) r φ 1 > 0, (1.4.27) 
i.e. the equilibrium (ū 4 , v4 ) is stable for the diffusionless macroscopic system.

The expression form (1.4.25) for M implies for N, by (1.4.18), that tr N < 0 ,

and det N = Aλ 2 n + Bλ n + C , 1.4. Linear stability analysis with A d v d a γ + d b β r > 0, B (d a -d b )θ r M 21 - d a γ + d b β r M 22 -d v M 11 , (1.4.28) 
C det M > 0.

Furthermore, using the definition of r and the strict negativity of all the entries of M(ū 4 , v4 ), we find for B in (1.4.28)

B = -(d a -d b ) η v θβ(1 -α) r 2 + (d a γ + d b β) η v (r -θ)(1 -α) r 2 -d v M 11 = η v (1 -α) r 2 -d a θβ + d a rγ -d a θγ + d b rβ -d v M 11 = η v (1 -α) r (d a φ 1 + d b β) -d v M 11 > 0,
which implies that det N > 0, for all n ∈ N. Therefore, the equilibrium (ū 4 , v4 ) remains linearly stable by adding the cross-diffusion terms.

Uniqueness semi-trivial states with extinction of v

One possibility to ensure uniqueness of the steady state (ū 3 , v3 ) = (aλ + bσ, 0) is to impose, in the case α > 1, that the net flux of the individuals of the species u goes from the state u b to the state u a , when the population u b reached the capacity of its resource and the population u a has only halved the capacity of its resource. When α < 1, the opposite switching mechanism has to be imposed. A precise version is the following.

Proposition 1.4.2.

Consider Λ(λ) = λψ(λ)/ψ 1 and Σ(σ) = σφ(σ)/φ 1 , with φ, ψ satisfying assumption (H1).

Assume that αΛ(1/2) ≤ 1 , if α > 1 , (1.4.29) and α -1 Σ(1/2) ≤ 1 , if α < 1 . (1.4.30)
Then, there exists a unique solution to (1.4.4). Furthermore, the corresponding steady state (1.4.8) is linearly stable if α > 1, and unstable if α < 1.

Proof.

Let α > 1. For the proof recall the function λ → σ(λ) from (1.4.6). Then, σ(0) = 0, while the increasing behavior of Λ and Σ together with condition (1.4.29) imply that, for

λ ∈ (0, 1/2], σ(λ) ≤ Σ -1 (αΛ(1/2)) ≤ Σ -1 (1) = 1 .
Hence, for λ ∈ (0, 1/2], the function F from (1.4.7) is strictly positive. Now, let λ be the smallest zero of F, so that (a λ + bσ( λ), 0) is one of the steady states under consideration. By the above argument λ > 1/2, and by Theorem 1.4.1, α > 1 implies that σ( λ) > 1. Therefore, the monotonicity of λ → σ(λ) again implies that σ(λ) > 1, for any λ ≥ λ.

Finally, we find from (1.4.24) that F (λ) < 0, for all λ ≥ λ. Hence there exists a unique stationary state and the claimed stability follows from Theorem 1.4.1.

The case α < 1 follows changing the role between the variables λ and σ and between the functions Λ and Σ, i.e. defining λ(σ) := Λ -1 (α -1 Σ(σ)) and analyzing the behavior of G(σ) := η a aλ(σ)(1λ(σ)) + η b bσ(1σ), instead of F(λ). The claimed instability follows again by Theorem 1.4.1.

Conditions (1.4.29) and (1.4.30) can be rephrased in terms of the ratio b a , respectively as

1 2 ψ( 1 2 ) φ 1 ≤ b a < ψ 1 φ 1 and ψ 1 φ 1 < b a ≤ ψ 1 1 2 φ( 1 2 ) 
.

They are not necessary necessary conditions. Indeed, we provide below a family of conversion rates ψ, φ, for which the uniqueness of the stationary states (1.4.8) holds true, whatever is b a . For that family of conversion rates, some numerical test are shown in Section 1.5.

Since the population densities u a and u b are of the same species, it is natural to expect that the conversion dynamics from u a to u b is similar to that from u b to u a . So, in order to be consistent with the modelling considerations in Subsection 1.1.1, (see (1.1.15)), we choose

ψ(x) = ω 1 φ(ω 2 x), ω 1 > 0 , ω 2 ≥ 0 , (1.4.31)
and we prove the following.

Proposition 1.4.3. Consider ψ as in (1.4.31) and

φ(x) = θ 1 x + θ 2 , θ 1 ≥ 0 , θ 2 > 0. (1.4.32)
Then, there exists a unique stationary state (ū 3 , v3 ) = (aλ + bσ, 0). It is linearly stable if b a < ω 1 φ(ω 2 )/φ 1 , and unstable otherwise.

Proof.

Let σ(λ) be as in (1.4.6). As observed previously, the stationary states (1.4.8) corresponds to the zeros of the function F(λ) in (1.4.7). Taking the second derivative of F, gives

F (λ) = b η b σ (λ) -2(σ (λ)) 2 -2σ(λ)σ (λ) -2a η a . (1.4.33)
By (1.4.32) and (1.4.31), we have

σφ(σ) φ 1 = θσ 2 + (1 -θ)σ , θ = θ 1 θ 1 + θ 2 ,
and λψ(λ)

ψ 1 = ωλ 2 + (1 -ω)λ , ω = ω 2 θ 1 ω 2 θ 1 + θ 2 .
Hence, equation (1.4.5) reads as

θσ 2 (λ) + (1 -θ)σ(λ) = α[ ωλ 2 + (1 -ω)λ] =: W(λ) , (1.4.34) 
and 

σ(λ) = θ -1 2 θ + 1 2 θ [( θ -1) 2 + 4 θ W(λ)]
(σ (λ)) 2 + 2σ(λ)σ (λ) = 2α ω θ + (1 - 1 θ )σ (λ) .
Plugging the latter into (1.4.33), we end up with

F (λ) = b η b θ σ (λ) -(2α ω θ b η b + 2a η a ) .
Finally, observing that W 2 -2W W = α 2 (1 -ω) 2 , we compute

σ (λ) =       W (λ) [( θ -1) 2 + 4 θ W(λ)] 1 2       = W [( θ -1) 2 + 4 θ W] -2 θW 2 [( θ -1) 2 + 4 θ W] 3 2 = 2α ω( θ -1) 2 -2 θ(W 2 -2W W ) [( θ -1) 2 + 4 θ W] 3 2 = 2α ω(1 -θ) 2 -α θ(1 -ω) 2 [( θ -1) 2 + 4 θ W(λ)] 3 2 
.

If ω(1 -θ) 2 -α θ(1 -ω) 2 ≤ 0, the function F is strictly concave and therefore has a unique zero. If ω(1 -θ) 2 -α θ(1 -ω) 2 > 0, then σ (λ)
is a strictly positive decreasing function that converge to 0 as λ → +∞, and consequently F has at most one inflection point and a unique zero. Moreover, F is decreasing around its unique zero. So that it gives a stable stationary point if α > 1.

Linear stability analysis for the mesoscopic system

A triple (ū ε a , ūε b , vε ) is a homogeneous stationary solutions to the mesoscopic scale problem (1.1.1) if and only if

f a (ū ε a ) + 1 ε Q(ū ε a , ūε b , vε ) = f b (ū ε b , vε ) - 1 ε Q(ū ε a , ūε b , vε ) = f v (ū ε b , vε ) = 0.
If vε = 0, then either ūε a = ūε b = 0, which gives the totally trivial steady state corresponding to the trivial macroscopic one (ū 1 , v1 ), or ūε a 0 and ūε b 0. In the second case the triplet (ū ε a , ūε b , 0) satisfies the system

               η a ūε a (1 - ūε a a ) + 1 ε φ( ūε b b ) ūε b -ψ( ūε a a ) ūε a = 0, η b ūε b (1 - ūε b b ) - 1 ε φ( ūε b b ) ūε b -ψ( ūε a a ) ūε a = 0,
it can be non unique, as in the macroscopic case, and it converges to a macroscopic equilibrium (ū 3 , v3 ), in the limit ε → 0.

If vε 0, then from f v (u b , v) = 0 we have ūε b + vε = b. Hence, for all ε > 0, f b (ū ε b , vε ) = Q(ū ε a , ūε b , vε ) = 0 and we obtain the two stationary states (ū ε a , ūε b , vε ) = (0, 0, b) and (ū ε a , ūε b , vε ) = (a, bα, b(1 -α)) , (1.4.35) 
provided that α < 1. These equilibria do not depend on ε > 0, so that we shall drop the ε exponent in the sequel. In the limit ε → 0, they correspond to the linearly unstable equilibrium (ū 2 , v2 ) and to the positive linearly stable equilibrium (ū 4 , v4 ), respectively.

Hereafter, we focus on the totally nontrivial spatially homogeneous steady (1.4.35), and we see that, for all ε > 0, it is also stable for the mesoscopic system (1.1.1) and the corresponding ODEs system. Indeed, setting

u ε a = ūa + τũ ε a u ε b = ūb + τũ ε b , v ε = v + τṽ ε , |τ| 1,
the linearization of (1.1.1) around (ū a , ūb , v) writes as

∂ t wε = diag{d a , d b , d v }∆ wε + M ε wε + o(1), wε ũε a , ũε b , ṽε T , with M ε                 -η a + 1 ε ∂ 1 Q 1 ε ∂ 2 Q 1 ε ∂ 3 Q -1 ε ∂ 1 Q -η b α -1 ε ∂ 2 Q -η b α -1 ε ∂ 3 Q 0 -η v (1 -α) -η v (1 -α)                
.

Again, we need to analyse the stability of the matrix M ε above and N ε below

N ε -λ n diag{d a , d b , d v } + M ε , i.e. N ε =                 -d a λ n -η a + 1 ε ∂ 1 Q 1 ε ∂ 2 Q 1 ε ∂ 3 Q -1 ε ∂ 1 Q -d b λ n -η b α -1 ε ∂ 2 Q -η b α -1 ε ∂ 3 Q 0 -η v (1 -α) -d v λ n -η v (1 -α)                 .
For that, we apply the Routh-Hurwitz criterion [START_REF] Marcus | Applications of the theory of matrices (fb gantmacher)[END_REF] and we obtain the result below, proved in Appendix A.2.

Proposition 1.4.4.

Under the assumption α < 1, for all ε > 0 and λ n ≥ 0, the matrices M ε and N ε are stable, i.e. all their eigenvalues have negative real part.

To complete the analysis, we shall see below how the previous linear stability property is preserved in the limit as ε → 0. Indeed, two eigenvalues of N ε converge to those of N, while the third one goes to -∞.

Let us denote

D ε (µ) N ε -µI 3 ,
where I 3 stands for the 3 × 3 identity matrix. The goal of the computations below is to compute det D ε (µ), also denoted by |D ε |, (see also [START_REF] Iida | Diffusion, cross-diffusion and competitive interaction[END_REF]).

First, adding the second row of D ε to the first one, we get

|D ε | = -(d a λ n + η a + µ) -(d b λ n + η b α + µ) -η b α -1 ε ∂ 1 Q -(d b λ n + η b α + µ) -1 ε ∂ 2 Q -η b α -1 ε ∂ 3 Q 0 -η v (1 -α) -d v λ n + η v (1 -α) + µ .
Then, using the identity

∂ 3 Q + (∂ 1 Q -∂ 2 Q) αφ 1 r = 0 ,
and adding to the third column the difference between the first and the second column, both multiplied by αφ 1 r , we obtain

|D ε | = -(d a λ n + η a + µ) -(d b λ n + η b α + µ) N 12 -1 ε ∂ 1 Q -(d b λ n + η b α + µ) -1 ε ∂ 2 Q d 23 0 -η v (1 -α) N 22 -µ , with d 23 := (d b λ n + η b α + µ) αφ 1 r -η b α.
Furthermore, using

∂ 1 Q(αφ 1 + φ 1 ) + ∂ 2 Qβ = 0 ,
and adding the second column, multiplied by β r , to the first one, multiplied by

αφ 1 +φ 1 r
, we get

(1 - β r )|D ε | = N 11 -µ -(d b λ n + η b α + µ) N 12 -(d b λ n + η b α + µ) β r -(d b λ n + η b α + µ) -1 ε ∂ 2 Q d 23 N 21 -η v (1 -α) N 22 -µ .
Finally, subtracting the first column to the second one, multiplied by β r , we have

β r (1 - β r )|D ε | = N 11 -µ d 12 N 12 d 21 -1 ε β r ∂ 2 Q d 23 N 21 0 N 22 -µ , (1.4.36) 
with

d 12 := µ 1 - β r -d b λ n + η b α β r -N 11 , d 21 := -(d b λ n + η b α + µ) β r .
Thus, (1.4.36) rewrites as

β r (1 - β r ) det(D ε (µ)) = - 1 ε β 1 - β r det(N -µ I 2 ) + R(µ) ,
where

R(µ) = - β r 1 - β r µ 3 + p(µ) ,
with p(µ) a polynomial function of degree two that does not depend on ε. Consequently

det(D ε (µ)) = -µ 3 - r ε det(N -µ I 2 ) + r 2 β(r -β) p(µ) , (1.4.37) with det(N -µ I 2 ) = µ 2 -(trN)µ + det N . (1.4.38)
1.5. Numerical simulations Let γ i , i = 1, 2 denote the eigenvalues of N and let µ ε i denote the eigenvalues of N ε , i = 1, 2, 3. It has been shown that (γ i ) < 0 and (µ ε i ) < 0. Moreover, observe that µ ε i is a root of (1.4.37) if and only if it is a root of

-εµ 3 -r det(N -µ I 2 ) + ε r 2 β(r -β) p(µ) . (1.4.39)
Plugging in (1.4.39) the simple asymptotic expansion in ε of

µ ε i = ν i 0 + εν i 1 + ε 2 ν i 2 + • • • , the zero order terms gives -r det(N -ν i 0 I 2 ) = 0. Therefore,
µ ε i = γ i + O(ε) , i = 1, 2 , (1.4.40) 
and

µ ε 1 + µ ε 2 = tr N + O(ε), µ ε 1 µ ε 2 = det N + O(ε) .
On the other hand, writing det

(D ε (µ)) = -(µ -µ ε 1 )(µ -µ ε 2 )(µ -µ ε
3 ), from (1.4.37), (1.4.38), we deduce the identities below

µ ε 1 + µ ε 2 + µ ε 3 = - r ε + O(1), µ ε 1 µ ε 2 + µ ε 3 (µ ε 1 + µ ε 2 ) = - r ε tr N + O(1), µ ε 1 µ ε 2 µ ε 3 = - r ε det N + O(1) , so that, µ ε 3 = - r ε + O(1) .

Numerical simulations

For the numerical simulations, we consider the linear conversion rates

φ(x) = x + δ and ψ(x) = θx + γ , (1.5.1) 
with δ = 0.5, θ = 5 and γ = 1, together with the growth rates

η a = 3, η b = 2, η v = 40 . (1.5.2)
Depending on the choice of a and b, we consider two cases: the v extinction case

a = 1.5, b = 6, ⇒ α = 1, (1.5.3)
and the coexistence case

a = 1.5, b = 8, ⇒ α < 1. (1.5.4)
In the case of the ODE system associated to the mesoscopic system (1.1.1) with (1.1.4) and (1.5.1), the numerical solution is illustrated in Figure 1.2 (α = 1) and Figure 1.4 (α < 1). The expected initial layer for the subpopulations u ε a and u ε b can be observed in Figure 1.3 and 1.5 (see Remark 1.1).

Chapter 2

Triangular cross-diffusion systems driven by intra-specific survival strategy

Introduction

In this chapter we consider the following reaction-diffusion system with fast reaction

             ∂ t u ε a -d a ∆u ε a = f a (u ε a , u ε b , v ε ) + 1 ε Q(u ε a , u ε b , v ε ), in (0, T ) × Ω, ∂ t u ε b -d b ∆u ε b = f b (u ε a , u ε b , v ε ) -1 ε Q(u ε a , u ε b , v ε ), in (0, T ) × Ω, ∂ t v ε -d v ∆v ε = f v (u ε a , u ε b , v ε ), in (0, T ) × Ω, (2.1.1) 
where d a , d b , d v > 0, d a d b , and the reaction functions are given for all u a , u b , v ≥ 0 by 

f a (u a , u b , v) := η a u a 1 -au a -cv -γ a u a u b , f b (u a , u b , v) := η b u b 1 -bu b -dv -γ b u a u b , (2.1.2) f v (u a , u b , v) := η v v 1 -au a -cv + η v v 1 -bu b -dv , with a, b > 0, c, d ∈ R + , η a , η b > 0, η v , η v , γ a , γ b ∈ R + , (cη v , dη v ) (0, 0) and Q(u a , u b , v) := φ(bu b + dv) u b -ψ(au a + cv) u a . (2.1.3) In addition, Ω is a smooth bounded open set of R N , N ≥ 1,
∇u ε a • σ = ∇u ε b • σ = ∇v ε • σ = 0, on (0, T ) × ∂Ω, (2.1.4)
and the initial conditions

u ε a (0, x) = u ε,in a (x) u in a (x) ≥ C 0,a > 0, x ∈ Ω, u ε b (0, x) = u ε,in b (x) u in b (x) ≥ C 0,b > 0, x ∈ Ω, (2.1.5)
with the constants C 0,a , C 0,b > 0 not depending on ε, and

v ε (0, x) = v ε,in (x) v in (x) ≥ 0, x ∈ Ω. (2.1.6) Remark 2.1.
The strict positivity of u ε a (0, •), u ε b (0, •) will be crucial to obtain strict positive dentities u ε a , u ε b , for any fixed ε > 0, and thus get the a priori energy estimates (see Lemma (2.7.1)).

The mesoscopic system (2.1.1) is the natural generalisation of the mesoscopic system introduced and analysed in Chapter 1. It is worth noticing that in the model considered in Chapter 1, only u b was in direct competition with v and no intra-specific competition in the population u was taken into account. In other words in Chapter 1, we considered the reaction terms

(2.1.2) with c = γ a = γ b = η v = 0 and b = d.
As we did in Chapter 1, we can interpret u a and u b as two sub-populations of a population of density u = u a + u b in competition with the population of density v. The individuals of the populations of densities u a and u b switch between them. The conversion function is given by (2.1.3) and ε > 0 is the average time for the sub-populations conversion into each other. In addition, we consider here the conversion functions φ, ψ

ψ(x) (A + x) α , φ(x) (B + x) β , x ≥ 0, ( H1 
)
and we assume

A > 0, B ≥ 0 and 0 < α ≤ β. ( H2 
)
We observe that ψ, φ satisfy more general hypothesis than in Chapter 1. Unlike Chapter 1, we assume only ψ to be lower bounded by a strictly positive constant and we don't force ψ, φ to have bounded first derivatives.

Remark 2.2. Due to the symmetry of the mesoscopic system (2.1.1) -(2.1.3), i.e. due to the interchangeable role of u ε a , u ε b , it is possible to replace (H2) with

A ≥ 0, B > 0 and 0 < β ≤ α.
The main result of this chapter (see Theorem 2.5.2) is that, as ε → 0, the (unique) solution (u ε a , u ε b , v ε ) of the initial boundary value problem (2.1.1) -(2.1.6) converges to a limit (u a , u b , v) and this limit is a weak solution to the class of macroscopic cross-diffusion systems, given by

       ∂ t u -∆(A(u, v)) = F u (u, v), in (0, +∞) × Ω, ∂ t v -∆(d v v) = F v (u, v), in (0, +∞) × Ω, (2.1.7) with A(u, v) := d a u * a (u, v) + d b u * b (u, v), (2.1.8) 
and where u * a , u * b are two positive maps from R 2

+ to R + such that, for all (u, v) ∈ R 2 + , the pair (u * a (u, v), u * b (u, v)) is the unique solution to the nonlinear system        u a + u b = u, Q(u a , u b , v) = φ(bu b + dv) u b -ψ(au a + cv) u a = 0, (2.1.9)
with φ, ψ as in (H1), (H2) (see Section 2.3 for the uniqueness of (u * a (u, v), u * b (u, v)) and further properties). Furthermore, the reaction terms F u and F v are

F u (u, v) f u (u * a (u, v), u * b (u, v), v), F v (u, v) f v (u * a (u, v), u * b (u, v), v), (2.1.10) with f u (u a , u b , v) := f a (u a , u b , v) + f b (u a , u b , v), (2.1.11)
and f a , f b , f v defined in (2.1.2). Finally, system (2.1.7) is supplemented with the no-flux boundary conditions

∇A(u, v) • σ = ∇v • σ = 0, on (0, T ) × ∂Ω, (2.1.12)
and the initial data

u(0, x) = u in (x) = u in a (x) + u in b (x) ≥ C 0,a + C 0,b > 0, x ∈ Ω, v(0, x) = v in (x) ≥ 0, x ∈ Ω. (2.1.13)
The proof of convergence as ε → 0 is rigorously obtained via a priori estimates for

u ε a , u ε b , v ε , satisfying (2.1.1) -(2.1.6).
The main tool is the family of energy (or entropy) functionals that we will introduce in the following section (see Lemma 2.7.1 for the a priori-estimates). Then, by invoking the Aubin-Lions Lemma, we pass to the limit along a subsequence and we conclude by verifying that the limit is a very weak solution to (2.1.7) -(2.1.13) (see (2.5.1), (2.5.2)).

The rest of the chapter is organised as follows: in Section 2.2, we introduce a family of energy functionals, in Section 2.3, we outline some properties of the macroscopic system (2.1.7) -(2.1.11) and in Section 2.4, we give a formal derivation of (2.1.1) -(2.1.3), out of a microscopic system. Section 2.5 is devoted to the statement of the existence results: the existence of solutions to the mesoscopic system (2.1.1) -(2.1.6) and the existence of solutions to the macroscopic system (2.1.7) -(2.1.13). Sections 2.6, 2.7 aim to prove the ε-uniform a priori estimates. More precisely, in Section 2.6 we show some basic a priori estimates and in Section 2.7 we prove the energy estimates. We conclude the chapter with the proof of the existence results: in Section 2.8 we prove the existence to the mesoscopic system and in Section 2.9 we prove the existence to the macroscopic system.

A family of energy functionals

We introduce the following family of energy (or entropy) functionals

E p (u a , u b , v) := Ω h a,p (u a , v) dx + Ω h b,p (u b , v) dx, p ≥ 1, (2.2.1) 
with the energy densities h a,p and h b,p defined as

h a,p (u a , v) u a 0 ψ p-1 (az + cv)z p-1 dz, h b,p (u b , v) u b 0 φ p-1 (bz + dv)z p-1 dz. (2.2.2)
Assumptions (H1), (H2) imply that h a,p , h b,p are positive and increasing functions which are convex with respect to the first variable. The evolutionary analysis of the energy functional, along the solution to the mesoscopic system (2.1.1) -(2.1.6), is fundamental to get the suitable a priori estimates. In order to do that, we introduce the additional hypothesis concerning the values of α, β in (H1), (H2) and the regularity of the initial data (2.1.5), (2.1.6),

0 < α ≤ β ≤ min 6 N , ( √ 7 + 2)α + √ 7 + 1 , (H3) u in a , u in b , v in ∈ C 2 ( Ω) and ∇u in a • σ = ∇u in b • σ = ∇v in • σ = 0, on ∂Ω. (H4) Remark 2.3.
The regularity of the initial data (H4) guarantees to obtain the existence of classical solutions (u ε a , u ε b , v ε ) to the system (2.1.1) -(2.1.6), for any fixed ε > 0. Furthermore, (H4) allows us to get the ε-uniform estimates for ∂ t v ε , ∂ i j v ε , ∇v ε , i, j = 1, . . . N, thanks to the parabolic maximal regularity (see Lemma 2.6.2). Finally, it is worth noticing that (H4) ensures the boundedness of E p at the initial time.

In order to have enough compactness from the energy functional and thus take the ε-limit, it is sufficient to consider the following values of p p = 1,

p = 1 + 1 1 + β , p = 1 + 1 1 + α , p = 2. (2.2.3)
In the sequel, we outline the contribution that each energy E p with p in (2.2.3) gives in terms of regularity for u ε a and u ε b . Let us denote F := ( f a , f b , f v ) T and define the total energy density for all p ≥ 1

h p (u a , u b , v) := h a,p (u a , v) + h b,p (u b , v). (2.2.4) 
The variation of E p along the solutions to (2.1.1) is given by

d dt E p (u ε a , u ε b , v ε ) = d dt Ω h p (u ε a , u ε b , v ε ) dx = Ω (∂ 1 h p ∂ t u ε a + ∂ 2 h p ∂ t u ε b + ∂ 3 h p ∂ t v ε )dx = Ω (d a ∂ 1 h p ∆u ε a + d b ∂ 2 h p ∆u ε b + d v ∂ 3 h p ∆v ε )dx (2.2.5) + Ω ∇h p • F dx + 1 ε Ω (∂ 1 h p -∂ 2 h p )Q dx (2.2.6) I p di f f + I p rea + I p f ast , (2.2.7) 
where for simplicity, we neglect the dependence on u ε a , u ε b , v ε in h a,p , h b,p , and h p . These entropy functionals are reminiscent of the functionals introduced in [START_REF] Desvillettes | New results for triangular reaction cross diffusion system[END_REF] to analyse the triangular SKT system (SKT) without self-diffusion (i.e d 12 > 0 and d 11 = d 22 = d 21 = 0). The interest in these functionals is twofold: firstly, E p is not the sum of functionals of the single densities of the system ([17], [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF]). Secondly, they allow to easily handle the contribution from the fast reaction term. Indeed, for all nonnegative φ and ψ and for all p ≥ 1, we have

I p f ast := 1 ε Ω (∂ 1 h p -∂ 2 h p )Q(u ε a , u ε b , v ε , ) dx = - 1 ε Ω φ(bu ε b + dv ε )u ε b p-1 -ψ(au ε a + cv ε )u ε a p-1 • φ(bu ε b + dv ε )u ε b -ψ(au ε a + cv ε )u ε a dx ≤ 0, (2.2.8)
thanks to the following elementary inequality for p > 1, (xy)(x p-1y p-1 ) ≥ 0, for all x, y ∈ R + .

Therefore, by (2.2.8) we have from (2.2.7)

d dt E p (u ε a (t), u ε b (t), v ε (t)) ≤ I p di f f + I p rea .
Moreover, according to the values of p in (2.2.3), we obtain the results below.

(i) p = 1. The total energy density h p reads as

h 1 (u a , u b , v) = u a + u b . So that I 1 di f f = I 1 f ast = 0 and (2.2.7) reduces to d dt Ω (u ε a + u ε b )dx = Ω f a (u ε a , u ε b , v ε ) dx + Ω f b (u ε a , u ε b , v ε ) dx.
Then, we get the uniform control on the densities u ε a , u ε b in the Lebesgue spaces L ∞ (0, T ; L 1 (Ω)) and L 2 (Ω T ), for any T > 0, using the quadratic structure of the reaction functions in (2.1.2) (see Lemma 2.6.3).

(ii) p = p β 1 + 1 β+1 > 1. This case allows us to prove the L 2 (Ω T ) boundedness of ∇u ε b and the L 3 (Ω T ) control of u ε b , thus improving the obtained regularity in the case p = 1.

(iii) p = p α 1 + 1 α+1 > 1. This case allows us to prove the L 2 (Ω T ) boundedness of ∇u ε a and the L 3 (Ω T ) control of u ε a , thus improving the obtained regularity in the case p = 1.

(iv) p = 2. This case is crucial to get compactness for the fast reaction 1 ε Q. Indeed if p = 2, (2.2.8) reads as

I 2 f ast = - 1 ε Ω Q 2 (u ε a , u ε b , v ε ) dx. (2.2.9)
The latter identity will allow us to prove that 1

ε Q(u ε a , u ε b , v ε ) 2 L 2 (Ω T
) is estimated by a constant not depending on ε, using the obtained regularity in the previous cases (i) -(iii).

We outline that assumptions (H2), (H3) are crucially used to get the energy estimates in Lemma 2.7.1. In particular, A > 0 in (H2) and the upper bounds for α and β in (H3) are fundamental to handle the diffusion term I p di f f in (2.2.7) but not necessary to estimate the I p rea term in (2.2.7). More precisely, the upper bound β ≤ ( √ 7 + 2)α + √ 7 + 1 allows us to handle the diffusion terms when p = p α , whereas α, β ≤ 6 (consequence of α, β ≤ 6/N) enables to control the diffusion terms when p = 2.

To conclude, we observe that we can consider all values of p ≥ 1 in (2.2.1) to get further ε-uniform a priori estimates, by performing a bootstrap argument and improving the regularity of the solution (u ε a , u ε b , v ε ). This is the subject of a forthcoming work (see Chapter 4).

Properties of the cross-diffusion

The aim of this section is to outline the main properties of the cross-diffusion term in (2.1.7) -(2.1.9). Firstly, we observe that by (H1), (H2), the nonlinear system (2.1.9) admits a unique nonnegative solution (u * a (u, v), u * b (u, v)), for any u, v ≥ 0. Indeed, if u = 0, we have from (2.1.9), for all v ≥ 0,

       u a + u b = 0, Q(u a , u b , v) = 0, giving the trivial solution u * a (u, v) = u * b (u, v) = 0. Otherwise, if u > 0, we consider the function of the u b variable q(u b ; u, v) := Q(u -u b , u b , v) = φ (bu b + dv) u b -ψ (a(u -u b ) + cv) (u -u b ). (2.3.1)
Thanks to the strictly increasing character of φ and ψ, the function q is strictly increasing in u b and satisfies q(0; u, v) < 0 , q(u; u, v) > 0.

Therefore, for any given v ≥ 0, there exists a unique zero u b ∈ (0, u) of q(u b ; u, v) and thus a unique solution to the nonlinear system (2.1.9).

Furthermore, the solution (u * a (u, v), u * b (u, v)) can be rewritten as

u * a (u, v) r * a (u, v)u and u * b (u, v) r * b (u, v)u, (2.3.2) with r * a (u, v), r * b (u, v) ∈ (0, 1), r * a (u, v) + r * b (u, v) = 1. (2.3.3) 
More precisely, from the nonlinear system (2.1.9) we have

       u a = u -u b , φ(bu b + dv)(u -u a ) -ψ(au a + cv)u a = 0, which is equivalent to              u a = u -u b , u a = φ(bu b + dv) φ(bu b + dv) + ψ(au a + cv) u, thus giving u * a (u, v) φ * φ * + ψ * u and u * b (u, v) ψ * φ * + ψ * u, (2.3.4) 
with

ψ * = ψ(au * a (u, v) + cv) , and 
φ * = φ(bu * b (u, v) + dv). Therefore, we obtain from (2.3.2), (2.3.4) r * a (u, v) := φ * φ * + ψ * ∈ (0, 1), r * b (u, v) := ψ * φ * + ψ * ∈ (0, 1) , u, v > 0. (2.3.5)
We conclude by showing an explicit example of the triangular cross-diffusion system (2.1.7) -(2.1.12) with the conversion functions φ, ψ defined below for all x > 0

φ(x) = x, ψ(x) = A + x, with A > 0,
corresponding to (H1), (H2) with α = β = 1 and B = 0. Therefore, we compute from the nonlinear system (2.1.9)

(bu b + dv)u b -(A + a(u -u b ) + cv)(u -u b ) = 0, i.e. (b -a)u 2 b + (dv + A + 2au + cv)u b -(A + au + cv)u = 0.
In the particular case a = b, the computations above give the unique solution u

* a (u, v), u * b (u, v) u * b (u, v) = A + au + cv A + 2au + (d + c)v u and u * a (u, v) = au + dv A + 2au + (d + c)v u.

Formal derivation from a microscopic fast switching mechanism

This paragraph aims to propose a formal derivation of the mesoscopic scale model (2.1.1) -(2.1.3), starting from a microscopic scale model where the ressources appear explicitly and induce the competition. We consider the following system

                                             ∂ t s 1 = 1 δ s 1 r 1 -a 1 s 1 -p 1 u 1 -p 1 v v , ∂ t s 2 = 1 δ s 2 r 2 -a 2 s 2 -p 2 u 2 -p 2 v v , ∂ t u 1 = d 1 ∆u 1 + k 1 s 1 p 1 u 1 -γ 1 u 1 u 2 + 1 ε Φ p 2 u 2 + p 2 v v s 2 u 2 -Ψ p 1 u 1 + p 1 v v s 1 u 1 , ∂ t u 2 = d 2 ∆u 2 + k 2 s 2 p 2 u 2 -γ 2 u 1 u 2 - 1 ε Φ p 2 u 2 + p 2 v v s 2 u 2 -Ψ p 1 u 1 + p 1 v v s 1 u 1 , ∂ t v = d v ∆v + k 1 v s 1 p 1 v v + k 2 v s 2 p 2 v v, (2.4 
.1) where δ > 0 is the microscopic reaction time scale and ε is the mesoscopic one (hence δ ε 1). Next, we make the asymptotic approximation δ → 0 with fixed ε > 0 for the prey/ resources densities s 1 , s 2 . Since, only the nontrivial case, i.e. s 1 0 s 2 , is meaningful (as the trivial cases s 1 = 0 and s 2 = 0 correspond to unstable equilibria), we obtain at a formal level

s i = (r i -p i u i -p i v v)a -1 i , i = 1, 2.
Hence, the last three equations in (2.4.1) turn into

                     ∂ t u 1 = d 1 ∆u 1 + k 1 p 1 a 1 u 1 (r 1 -p 1 u 1 -p 1 v v) -γ 1 u 1 u 2 + 1 ε Q(u 1 , u 2 , v), ∂ t u 2 = d 2 ∆u 2 + k 2 p 2 a 2 u 2 (r 2 -p 2 u 2 -p 2 v v) -γ 2 u 1 u 2 -1 ε Q(u 1 , u 2 , v), ∂ t v = d v ∆v + k 1 v p 1 v a 1 v(r 1 -p 1 u 1 -p 1 v v) + k 2 v p 2 v a 2 v(r 2 -p 2 u 2 -p 2 v v),
where

Q(u 1 , u 2 , v) = Φ a 2 p 2 u 2 + p 2 v v r 2 -(p 2 u 2 + p 2 v v) u 2 -Ψ a 1 p 1 u 1 + p 1 v v r 1 -(p 1 u 1 + p 1 v v) u 1 .
Finally, renaming the variables u 1 and u 2 as u a and u b respectively, the diffusion coefficients d 1 and d 2 as d a and d b respectively, the intra-specific coefficients γ 1 and γ 2 as γ a and γ b respectively, defining the constants

η a := k 1 p 1 r 1 a 1 , a := p 1 r 1 , c := p 1 v r 1 , η b := k 2 p 2 r 2 a 2 , b := p 2 r 2 , d := p 2 v r 2 , η v := k 1 v p 1 v r 1 a 1 , η v := k 2 v p 2 v r 2 a 2 ,
and the conversion rate functions

φ(x) = Φ a 2 x 1 -x , ψ(x) = Ψ a 1 x 1 -x ,
we end up with the mesoscopic system (2.1.1) -(2.1.3).

Statement of the existence results

This section is devoted to the statement of the main existence results.

Proposition 2.5.1.

Let Ω be a smooth bounded domain of R N , N ≥ 1. We assume (H1) -(H4). Then, for any fixed ε > 0, the mesoscopic system (2.1.1) -(2.1.6) admits a unique classical positive (for each component) solution

(u ε a , u ε b , v ε ). Theorem 2.5.2.
Let Ω be a smooth bounded domain of R N , N ≥ 1. We assume (H1) -(H4). Then, the unique classical positive solution (u ε a , u ε b , v ε ) of (2.1.1) -(2.1.13) converges for a.e. (t, x) ∈ (0, +∞) × Ω (up to extraction of a subsequence) towards a nonnegative triplet (u * a , u * b , v), as ε → 0. Moreover, for a.e. (t, x) ∈ (0, +∞) × Ω, the pair of function (u * a , u * b ) is the unique solution to the nonlinear system (2.1.9), corresponding to u u * a + u * b and v. Furthermore, (u, v) is a very weak solution to the macroscopic system (2.1.7) -(2.1.13), in the sense that, for all test functions

ξ 1 , ξ 2 ∈ C 2 c [0, +∞) × Ω , with ∇ξ 1 • σ = ∇ξ 2 • σ = 0 on [0, +∞) × ∂Ω, it holds - +∞ 0 Ω (∂ t ξ 1 )udxdt - Ω ξ 1 (0, • )u in dx - +∞ 0 Ω ∆ξ 1 d a u * a (u, v) + d b u * b (u, v) dxdt = +∞ 0 Ω ξ 1 F u (u, v) dx dt, (2.5.1) 
and

- +∞ 0 Ω (∂ t ξ 2 ) v dxdt - Ω ξ 2 (0, • ) v in dx -d v +∞ 0 Ω ∆ξ 2 v dxdt = +∞ 0 Ω ξ 2 F v (u, v) dxdt. (2.5.2)
Finally, the following regularity holds true, for all T > 0

(i) u ∈ L ∞ 0, T ; L 2+α (Ω) ∩ L 3+α (Ω T ), |∇u| ∈ L 2 (Ω T ); (ii) v ∈ L ∞ (Ω T ), |∇v| ∈ L 2(3+α) (Ω T ); ∂ x i ,x j v , ∂ t v ∈ L 3+α (Ω T ), i, j = 1, . . . , N.
We observe that all terms in (2.5.1), (2.5.2) are well-defined thanks to the regularity of the solution (u, v). In particular, as the subpopulation densities u * a , u * b satisfy (2.3.2), (2.3.3), we have that u * a , u * b belong to L 3+α (Ω T ). Moreover, the logistic structure of the reaction functions F u , F v involves at most quadratic nonlinearities, so that the integrals in (2.5.1), (2.5.2), containing F u , F v are well-defined.

Basic a priori-estimates

In this section we shall obtain a priori estimates for the subpopulation densities u ε a , u ε b and for the total population densities u ε u ε a + u ε b and v ε . More specifically, we take advantage of the triangular structure of the system that allows us to prove a priori estimates for the density v ε and its derivatives (see Lemmas 2.6.1, 2.6.2). The reaction functions f a and f b of competition type allow us to control the total mass Ω u ε (t) dx, and to get an L 2 (Ω T ) estimate on u ε (see Lemma 2.6.3). The basic estimates shown in this section will be crucially used to get the energy a priori estimates in Section 2.7.

Hereafter, all constants C and C T are strictly positive and may depend on Ω, the initial data u in a , u in b , v in , the coefficients in system (2.1.1), the transition functions φ, ψ and on T , but never on ε. They may change also from line to line in the computations. However, we can also introduce strictly positive constant that depends on its explicit argument: for example C(α, β, p) is a strictly positive constant depending on α, β, p.

In the following proofs, we shall drop the ε index for the sake of simplicity and we denote η max{η a , η b }, η min{aη a , bη b }, (2.6.1)

η v η v + η v , r v c η v + d η v . (2.6.2)
We observe that the hypothesis on the reaction coefficients imply η, η, η v , r v > 0.

Lemma 2.6.1.

Let (u ε a , u ε b , v ε ) be the positive classical solution to (2.1.1) -(2.1.6). Then, the following estimates hold true, for all p ∈ (1, ∞) and for all ε > 0,

v ε L ∞ (0,+∞;L p (Ω)) ≤ max v in L p (Ω) , η v r v |Ω| 1 p K p , (2.6.3 
)

and v ε L ∞ ((0,+∞)×Ω) ≤ max v in L ∞ (Ω) , η v r v =: K ∞ .
(2.6.4)

Proof.

By multiplying the equation for v in (2.1.1) by (v) p-1 with p > 1, integrating over Ω and using u a , u b > 0, v ≥ 0, we get

1 p d dt Ω v p dx = d v Ω v p-1 ∆vdx + Ω v p-1 f v (u a , u b , v)dx = -d v (p -1) Ω v p-2 |∇v| 2 dx + η v Ω v p 1 -au a -cv dx + η v Ω v p 1 -bu b -dv dx ≤ -d v 4(p -1) p 2 Ω |∇(v p/2 )| 2 dx + η v Ω v p dx -r v Ω v p+1 dx, (2.6.5) 
using the definitions (2.6.2). Neglecting the first intergral in the r.h.s. of (2.6.5) and using in the last integral the Hölder's inequality below,

Ω v p dx ≤ Ω v p+1 dx p p+1 |Ω| 1 p+1 , i.e. - Ω v p+1 dx ≤ - 1 |Ω| 1 p Ω v p dx 1+ 1 p ,
we end up with 

d dt Ω v p dx ≤ η v p Ω v p dx - r v p |Ω| 1/p Ω v p dx
p (t) ≤ η v r v |Ω| 1 p y 1 p (0) y 1 p (0) + η v r v |Ω| 1 p -y 1 p (0) e -η v t ≤ max y 1 p (0), η v r v |Ω| 1 p = K p , i.e. for all t > 0 v(t) L p (Ω) ≤ max v in L p (Ω) , η v r v |Ω| 1 p = K p , 1 
implying (2.6.3). Taking p → +∞ in (2.6.6) and the supremum in time, we get (2.6.4).

Lemma 2.6.2 (Maximal regularity for v ε ).

Let (u ε a , u ε b , v ε ) be the positive classical solution to (2.1.1) -(2.1.6). Then, the following statements hold true (i) for all p ∈ (1, +∞) there exists a constant C > 0 depending on p, v in , Ω, such that, for all ε > 0, T > 0 and all i, j = 1, .., N,

∂ t v ε L p (Ω T ) + ∂ x i ,x j v ε L p (Ω T ) C(1 + u ε a + u ε b L p (Ω T ) ) ;
(2.6.7)

(ii) for all p ∈ (1, +∞) there exists a constant C > 0 depending on p, v in , N, Ω, such that, for all ε > 0 and all T > 0,

∇v ε 2p L 2p (Ω T ) ≤ C(1 + T + u ε a + u ε b p L p (Ω T ) ).
(2.6.8)

For the proof of Lemma 2.6.2 we refer to the proof of Lemma 1.3.1.

Lemma 2.6.3.

Let (u ε a , u ε b , v ε ) be the positive classical solution to (2.1.1) -(2.1.6). Then, the following estimates hold true for all ε > 0 and T > 0,

sup t>0 u ε a (t) + u ε b (t) L 1 (Ω) ≤ max u in a + u in b L 1 (Ω) , 2|Ω|ηη -1 := K, (2.6.9 
)

and u ε a 2 L 2 (Ω T ) + u ε b 2 L 2 (Ω T ) ≤ η -1 u in a + u in b L 1 (Ω) + ηη -1 K T.
(2.6.10)

Proof.

We integrate over Ω the equation satisfied by u a + u b in (2.1.1). Then, using the definition (2.6.1), the boundary condition (2.1.4), the competition structure of the reaction functions f a , f b and the nonnegativity of u a , u b , v, we obtain

d dt Ω (u a + u b )dx = Ω (d a ∆u a + d b ∆u b ) dx + Ω ( f a (u a , u b , v) + f b (u a , u b , v)) dx = Ω (η a u a (1 -au a -cv) -γ a u a u b ) dx + Ω (η b u b (1 -bu b -dv) -γ b u a u b ) dx ≤ η Ω (u a + u b )dx -η Ω u 2 a + u 2 b dx (2.6.11) ≤ η Ω (u a + u b )dx - η 2 Ω u 2 a + u 2 b dx -η Ω u a u b dx = η Ω (u a + u b )dx - η 2 Ω (u a + u b ) 2 dx, (2.6.12) 
by the inequality 2xy ≤ x 2 + y 2 for all x, y ∈ R + . Then, we apply to the second integral in (2.6.12) the Cauchy-Schwarz inequality below

u a + u b 2 L 1 (Ω) ≤ |Ω| u a + u b 2 L 2 (Ω) , to get d dt Ω (u a + u b )dx ≤ η u a + u b L 1 (Ω) - η 2|Ω| u a + u b 2 L 1 (Ω) ,
that can be rewritten in terms of a differential inequality for y(t) = u a (t) + u b (t) L 1 (Ω) . Thus, integrating the above inequality over [0, t] for all t > 0

y(t) ≤ y(0) η 2|Ω|η y(0) + 1 -η 2|Ω|η y(0) e -η t ≤ max y(0), 2|Ω|η η ,
giving the uniform estimate (2.6.9).

In order to prove (2.6.10), we integrate (2.6.11) over (0, T ) and we obtain

η u a 2 L 2 (Ω T ) + u b 2 L 2 (Ω T ) ≤ u in a + u in b L 1 (Ω) + η (0,T ) (u a + u b )(t) L 1 (Ω) dt ≤ u in a + u in b L 1 (Ω)
+ ηT K, where we use in the last inequality the estimate (2.6.9). Thus, we conclude.

Energy estimates

In this section, we will obtain the energy a priori estimates by studying the evolution of the energy functional (2.2.1), (2.2.2) in the following three cases

p = p β 1 + 1 1 + β ∈ (1, 2), p = p α 1 + 1 1 + α ∈ (1, 2), p = 2, (2.7.1) 
with p β ≤ p α , by assumption (H2). The case p = 1 has been analysed in Lemma 2.6.3. For each value of p in (2.7.1), we will show ε-uniform a priori estimates by using the estimates obtained in the previous step, i.e. in the case p = p β we will use the a priori estimates of Lemmas 2.6.1 -2.6.3, the estimates for p = p α are obtained thanks to the estimates shown for p = p β and finally, in the case p = 2, we will use the obtained estimates in the cases p = p β and p = p α . Before stating the main result of this section (see Energy Lemma 2.7.1 below), we introduce the following quantities for all p ≥ 1,

q(p) α(p -1) + p ≥ 1 and r(p) β(p -1) + p ≥ 1, (2.7.2) 
so that

q(p β ) = α + 1 β + 1 + 1 ∈ (1, 2] and r(p β ) = 2, (2.7.3) q(p α ) = 2 and r(p α ) = β + 1 α + 1 + 1 ≥ 2, (2.7.4) q(2) = α + 2 and r(2) = β + 2, (2.7.5) 
and the following relation holds

q(p β ) -1 = 1 r(p α ) -1 . (2.7.6) Lemma 2.7.1 (Energy Lemma). Let (u ε a , u ε b , v ε ) be the positive classical solution to (2.1.1) -(2.1.6).
Then, there exists C T > 0, such that the global strong solution to (2.1.1) -(2.1.6) satisfies, for all ε > 0,

E p β (u ε a , u ε b , v ε )(T ) + C ∇u ε b 2 L 2 (Ω T ) + u ε b 3 L 3 (Ω T ) + u ε a q(p β )+1 L q(p β )+1 (Ω) ≤ E p β (u ε a , u ε b , v ε )(0) + C T , (2.7.7) 
E p α (u ε a , u ε b , v ε )(T ) + C ∇u ε a 2 L 2 (Ω T ) + u ε a 3 L 3 (Ω T ) + u ε b r(p α )+1 L r(pα)+1 (Ω T ) ≤ E p α (u ε a , u ε b , v ε )(0) + C T , (2.7.8) 
and

E 2 (u ε a , u ε b , v ε )(T ) + C ∇(u ε a ) α/2+1 2 L 2 (Ω T ) + ∇(u ε b ) β/2+1 2 L 2 (Ω T ) + C u ε a 3+α L 3+α (Ω T ) + u ε b 3+β L 3+β (Ω T ) + 1 ε Q(u ε a , u ε b , v ε ) 2 L 2 (Ω T ) ≤ E 2 (u ε a , u ε b , v ε )(0) + C T .
(2.7.9)

Before starting the proof, we shall point out some comments and introduce some quantities that will be useful in the sequel. Firstly, we introduce the affine functions 

θ(z, v) A + az + cv, ω(z, v) B + bz + dv. ( 2 
h p (u a , u b , v) = h a,p (u a , v) + h b,p (u b , v) = u a 0 θ(z, v) α(p-1) z p-1 dz + u b 0 ω(z, v) β(p-1) z p-1 dz. ( 2 
h p (u a , u b , v) ≥ u a 0 (az) α(p-1) z p-1 dz + u b 0 (bz) β(p-1) z p-1 dz ≥ C(a, b, p, α, β) u q(p) a + u r(p) b
.

Hence, any uniform in time upper bound of the energy E p (t) over (0, T ) implies the boundedness of

u a L ∞ (0,T ;L q(p) (Ω)) + u b L ∞ (0,T ;L r(p) (Ω)) .
It is worth noticing that, thanks to the choice of φ and ψ in (H1), (H2), the integrals in (2.7.11), defining the densities h a,p (u a , v) and h b,p (u b , v), are finite for all p ≥ 1. The same holds true for

∇h p (u a , u b , v) = ∂ 1 h a,p (u a , v), ∂ 1 h b,p (u b , v), ∂ 2 h a,p (u a , v) + ∂ 2 h b,p (u a , v) ,
where

∂ 1 h a,p (u a , v) = θ(u a , v) α(p-1) u p-1 a , ∂ 1 h b,p (u b , v) = ω(u b , v) β(p-1) u p-1 b ,
(2.7.12) and

∂ 2 h a,p (u a , v) = cα(p -1) u a 0 θ(z, v) α(p-1)-1 z p-1 dz, ∂ 2 h b,p (u b , v) = dβ(p -1) u b 0 ω(z, v) β(p-1)-1 z p-1 dz.
(2.7.13) Concerning the Hessian of h p , we have

Hess(h p ) =           ∂ 11 h p 0 ∂ 13 h p 0 ∂ 22 h p ∂ 23 h p ∂ 31 h p ∂ 32 h p ∂ 33 h p           =           ∂ 11 h a,p 0 ∂ 12 h a,p 0 0 0 ∂ 21 h a,p 0 ∂ 22 h a,p           +           0 0 0 0 ∂ 11 h b,p ∂ 12 h b,p 0 ∂ 21 h b,p ∂ 22 h b,p           ,
where

∂ 11 h a,p (u a , v) = aα(p -1)θ(u a , v) α(p-1)-1 u p-1 a + (p -1)θ(u a , v) α(p-1) u p-2 a , ∂ 12 h a,p (u a , v) = ∂ 21 h a,p (u a , v) = cα(p -1)θ(u a , v) α(p-1)-1 u p-1 a ,
(2.7.14) and

∂ 11 h b,p (u b , v) = bβ(p -1)ω(u b , v) β(p-1)-1 u p-1 b + (p -1)ω(u b , v) β(p-1) u p-2 b , ∂ 12 h b,p (u b , v) = ∂ 21 h b,p (u b , v) = dβ(p -1)ω(u b , v) β(p-1)-1 u p-1 b ,
(2.7.15) and finally

∂ 22 h a,p (u a , v) = c 2 α(p -1)(α(p -1) -1) u a 0 θ(z, v) α(p-1)-2 z p-1 dz, ∂ 22 h b,p (u b , v) = d 2 β(p -1)(β(p -1) -1) u b 0 ω(z, v) β(p-1)-2 z p-1 dz.
(2.7.16)

The derivatives ∂ 22 h a,p , ∂ 22 h b,p in (2.7.16) are well-defined if and only if p > p α and p > p β , respectively. Therefore, in order to estimate the evolution of the energy E p in (2.2.7), with p in (2.7.1), along the solution to (2.1.1) -(2.1.6), we will handle separately the first critical case p = p β , the second critical case p = p α and the super-critical case p = 2 > p α .

For the reader's convenience, we rewrite here the decomposition (2.2.5) -(2.2.7) of the evolution equation of the energy functional as following (2.7.20)

d dt E p (u ε a , u ε b , v ε ) = Ω (d a ∂ 1 h p ∆u ε a + d b ∂ 2 h p ∆u ε b + d v ∂ 3 h p ∆v ε )dx (2.7.17) 
+ Ω ∇h p • F dx (2.7.18) + 1 ε Ω (∂ 1 h p -∂ 2 h p )Q dx (2.
The following two subsections are devoted to estimate the reaction terms I p rea and the diffusion terms I p di f f , respectively, depending on the value of p in (2.7.1). For the sake of simplicity, we will drop the ε index.

We conclude with the definitions below, for l, m ∈ R,

X l (m)        1, if m ≥ l, 0, if m < l.
(2.7.21)

A priori estimate for the reaction terms

This paragraph is devoted to estimate the reaction term I p rea := Ω ∇h p • F dx in (2.7.18) with p in (2.7.1). In order to do that, we use the competition form of the reaction term F and the following technical lemma, whose proof is given in Section A.3. Lemma 2.7.2. For any γ > 0 and δ ∈ (0, 1), there exists C(γ, δ) > 0 such that for all λ > 0, η ≥ 0, it holds

η γ (λ -η) ≤ C(γ, δ)λ γ+1 -δη γ+1 .
(2.7.22)

Moreover, the best constant in (2.7.22) is C(γ, δ) = 1 γ γ γ + 1 γ+1 1 1 -δ γ .
Hereafter, we will consider δ = 1 2 when applying Lemma 2.7.2 and we will denote C L C(γ, 1 2 ). Recalling that F ( f a , f b , f v ) T , we compute from (2.7.18)

I p rea = Ω ∂ 1 h a,p (u a , v) f a (u a , u b , v) dx + Ω ∂ 1 h b,p (u b , v) f b (u a , u b , v) dx + Ω ∂ 2 h a,p (u a , v) f v (u a , u b , v) dx + Ω ∂ 2 h b,p (u b , v) f v (u a , u b , v) dx := J p 1 + J p 2 + J p 3 + J p 4 .
(2.7.23) By (2.7.12) and recalling the reaction functions defined in (2.1.2), we get

J p 1 := Ω θ(u a , v) α(p-1) u p-1 a f a (u a , u b , v) dx ≤ η a Ω θ(u a , v) α(p-1) u p-1 a u a (1 + A -θ(u a , v)) dx = η a Ω u p a θ(u a , v) α(p-1) (1 + A -θ(u a , v)) dx. (2.7.24) 
Applying the inequality (2.7.22) in (2.7.24), using θ(u a , v) ≥ au a and the definition of q(p) in (2.7.2), we obtain

J p 1 ≤ η a Ω u p a C L (1 + A) α(p-1)+1 - 1 2 θ(u a , v) α(p-1)+1 dx ≤ η a C L (1 + A) α(p-1)+1 Ω u p a dx - 1 2 η a a α(p-1)+1 Ω u q(p)+1 a dx.
(2.7.25)

Similarly, we have for 

J p 2 J p 2 := Ω ω(u b , v) β(p-1) u p-1 b f b (u a , u b , v) dx ≤ η b C L (1 + B) β(p-1)+1 Ω u p b dx - 1 2 η b b β(p-1)+1 Ω u r(p)+1 b dx. ( 2 
v = η v + η v , we get J p β 3 cα(p β -1) Ω u a 0 θ(z, v) α(p β -1)-1 z p β -1 dz f v (u a , u b , v) dx ≤ (η v + η v ) cα β + 1 Ω v u a 0 θ(z, v) α β+1 -1 z 1 β+1 dz dx ≤ η v c a 1-α β+1 α β + 1 Ω v u a 0 z z β+1-α 1 β+1 dz dx = η v c a 1-α β+1 α β + 1 β + 1 α + 1 Ω u α+1 β+1 a v dx = η v c a 1-α β+1 α α + 1 Ω u α+1 β+1
a v dx.

(2.7.27)

Then, using the inequality 

x γ ≤ 1 + x, ∀x ≥ 0 and 0 < γ ≤ 1, ( 2 
J p β 3 ≤ η v c a 1-α β+1 v L ∞ (Ω) (1 + u a L 1 (Ω) ).
(2.7.29)

Concerning the term J p β 4 , using ω(z, v) ≥ bz, we get 

J p β 4 dβ(p β -1) Ω u b 0 ω(z, v) β(p β -1)-1 z p β -1 dz f v (u a , u b , v)dx ≤ (η v + η v ) dβ β + 1 Ω v u b 0 ω(z, v) β β+1 -1 z 1 β+1 dz dx ≤ η v d b 1 β+1 Ω v u b 0 ω(z, v) β β+1 -1 ω(z, v) 1 β+1 dz dx = η v d b 1 β+1 Ω vu b dx ≤ η v d b 1 β+1 v L ∞ (Ω) u b L 1 (Ω) . ( 2 
I p β rea ≤ η a C L (1 + A) α β+1 +1 u a p β L p β (Ω) - 1 2 η a a α β+1 +1 u a q(p β )+1 L q(p β )+1 (Ω) + η b C L (1 + B) β β+1 +1 u b p β L p β (Ω) - 1 2 η b b β β+1 +1 u b 3 L 3 (Ω) + η v c a 1-α β+1 v L ∞ (Ω) (1 + u a L 1 (Ω) ) + η v d b 1 β+1 v L ∞ (Ω) u b L 1 (Ω) .
(2.7.31)

• I p rea in the critical case p = p α We estimate J p α 3 similarly as we did for J p β 4 in (2.7.29), so that we have

J p α 3 cα(p α -1) Ω u a 0 θ(z, v) α(p α -1)-1 z p α -1 dz f v (u a , u b , v)dx ≤ η v c α α + 1 Ω v u a 0 θ(z, v) -1 α+1 z 1 α+1 dz dx ≤ η v c a 1 α+1 v L ∞ (Ω) u a L 1 (Ω) .
(2.7.32)

Concerning J p α 4 , we get

J p α 4 dβ(p α -1) Ω u b 0 ω(z, v) β(p α -1)-1 z p α -1 dz f v (u a , u b , v)dx ≤ dη v β α + 1 Ω v u b 0 ω(z, v) β α+1 -1 z 1 α+1 dz dx. (2.7.33)
To continue, we need to distiguish the cases β < 1 + α and β ≥ 1 + α, i.e. β α+1 -1 < 0 and

β α+1 -1 ≥ 0, respectively. Case β < 1 + α. Using ω(z, v) ≥ bz, we compute u b 0 ω(z, v) β α+1 -1 z 1 α+1 dz = u b 0 z 1 α+1 ω(z, v) 1-β α+1 dz ≤ 1 b 1-β α+1 u b 0 z β+1 α+1 -1 dz ≤ 1 b 1-β α+1 u β+1 α+1 b .
Therefore, recalling (2.7.4), J p α 4 is estimated as follows

J p α 4 ≤ dη v b 1-β α+1 v L ∞ (Ω) u b β+1 α+1 L β+1 α+1 (Ω) = dη v b 1-β α+1 v L ∞ (Ω) u b r(p α )-1 L r(pα)-1 (Ω) .
(2.7.34)

Case β ≥ 1 + α. Using again ω(z, v) ≥ bz and recalling (2.7.4), we compute from (2.7.33)

J p α 4 ≤ η v d b 1 α+1 β α + 1 Ω v u b 0 ω(z, v) β+1 α+1 -1 dz dx ≤ η v d b 1+ 1 α+1 β α + 1 α + 1 β + 1 Ω vω(u b , v) β+1 α+1 dx ≤ η v d b 1+ 1 α+1 v L ∞ (Ω) ω(u b , v) r(p α )-1 L r(pα)-1 (Ω) . Since r(p α ) -1 ≥ 1, we can apply to ω(u b , v) r(p α )-1
L r(pα)-1 (Ω) in the above estimate the inequality (x + y) p ≤ C J x p + y p , ∀ x, y ∈ R + and p ≥ 1, (2.7.35) with C J > 0, to get 

J p α 4 ≤ η v C J d b 1+ 1 α+1 v L ∞ (Ω) B + dv r(p α )-1 L r(pα)-1 (Ω) + b r(p α )-1 u b r(p α )-1 L r(pα)-1 (Ω) . ( 2 
J p α 4 ≤ (1 -X α+1 (β)) dη v b 1-β α+1 v L ∞ (Ω) u b r(p α )-1 L r(pα)-1 (Ω) + X α+1 (β)η v C J d b 1+ 1 α+1 v L ∞ (Ω) B + dv r(p α )-1 L r(pα)-1 (Ω) + b r(p α )-1 u b r(p α )-1 L r(pα)-1 (Ω) .
(2.7.37) Finally, taking p = p α in (2.7.25), (2.7.26), recalling that q(p α ) + 1 = 3 and gathering with (2.7.32), (2.7.37), we obtain

I p α rea ≤ η a C L (1 + A) α α+1 +1 u a p α L pα (Ω) - 1 2 η a a α α+1 +1 u a 3 L 3 (Ω) + η b C L (1 + B) β α+1 +1 u b p α L pα (Ω) - 1 2 η b b β α+1 +1 u b r(p α )+1 L r(pα)+1 (Ω) + η v c a 1 α+1 v L ∞ (Ω) u a L 1 (Ω) + (1 -X α+1 (β)) dη v b 1-β α+1 v L ∞ (Ω) u b r(p α )-1 L r(pα)-1 (Ω) + X α+1 (β)η v C J d b 1+ 1 α+1 v L ∞ (Ω) B + dv r(p α )-1 L r(pα)-1 (Ω) + b r(p α )-1 u b r(p α )-1 L r(pα)-1 (Ω) .
(2.7.38)

• I p rea in the super-critical case p = 2 Concerning J 2 3 , we get

J 2 3 cα Ω u a 0 θ(z, v) α-1 z dz f v (u a , u b , v)dx ≤ cαη v Ω v u a 0 θ(z, v) α-1 z dz dx. (2.7.39) 
Thus, similarly as for J p α 4 in (2.7.33), we distiguish the cases α < 1 and α ≥ 1.

Case α < 1. Using θ(z, v) ≥ az, we compute

u a 0 θ(z, v) α-1 z dz = u a 0 z θ(z, v) 1-α dz ≤ 1 a 1-α u a 0 z α dz = 1 a 1-α u α+1 a α + 1 .
Therefore, recalling (2.7.5), J 2 3 is estimated as follows

J 2 3 ≤ c a 1-α η v v L ∞ (Ω) u a α+1 L α+1 (Ω) = c a 1-α η v v L ∞ (Ω) u a q(2)-1 L q(2)-1 (Ω) .
(2.7.40)

Case α ≥ 1. Using θ(z, v) ≥ az again, we compute 

J 2 3 ≤ c a αη v Ω v u a 0 θ(z, v) α dz dx ≤ cη v α α + 1 Ω v θ(u a , v) α+1 dx ≤ cη v v L ∞ (Ω) θ(u a , v) q(2)-1 L q(2)-1 (Ω) ≤ cη v C J v L ∞ (Ω) A + cv q(2)-1 L q(2)-1 (Ω) + a α+1 u a q(2)-1 L q(2)-1 (Ω) , (2 
J 2 3 ≤ (1 -X 1 (α)) c a 1-α η v v L ∞ (Ω) u a q(2)-1 L q(2)-1 (Ω) + X 1 (α)cη v C J v L ∞ (Ω) A + cv q(2)-1 L q(2)-1 (Ω) + a α+1 u a q(2)-1 L q(2)-1 (Ω) .
(2.7.42)

Concerning J 2 4 , we have

J 2 4 dβ Ω u b 0 ω(z, v) β-1 z dz f v (u a , u b , v)dx ≤ dβη v Ω v u b 0 ω(z, v) β-1 z dz dx.
By analogy with J 2 3 in (2.7.39), we apply to J 2 4 the same tools used to get the estimate (2.7.42). Distinguishing the cases β < 1 and β ≥ 1, we obtain 

J 2 4 ≤ (1 -X 1 (β)) d b 1-β η v v L ∞ (Ω) u b r(2)-1 L r(2)-1 (Ω) + X 1 (β)dη v C J v L ∞ (Ω) B + dv r(2)-1 L r(2)-1 (Ω) + b β+1 u b r(2)-1 L r(2)-1 (Ω) . ( 2 
I 2 rea ≤ η a C L (1 + A) α+1 u a 2 L 2 (Ω) - 1 2 η a a α+1 u a q(2)+1 L q(2)+1 (Ω) + η b C L (1 + B) β+1 u b 2 L 2 (Ω) - 1 2 η b b β+1 u b r(2)+1 L r(2)+1 (Ω) + (1 -X 1 (α)) c a 1-α η v v L ∞ (Ω) u a q(2)-1 L q(2)-1 (Ω) + X 1 (α)cη v C J v L ∞ (Ω) A + cv q(2)-1 L q(2)-1 (Ω) + a α+1 u a q(2)-1 L q(2)-1 (Ω) + (1 -X 1 (β)) d b 1-β η v v L ∞ (Ω) u b r(2)-1 L r(2)-1 (Ω) + X 1 (β)dη v C J v L ∞ (Ω) B + dv r(2)-1 L r(2)-1 (Ω) + b β+1 u b r(2)-1 L r(2)-1 (Ω) .
(2.7.44)

A priori estimate for the diffusion terms

The estimate of the diffusion term I p di f f in (2.7.17) will be done in such a way that we obtain the L 2 control on the gradient of u ε b , in the case p = p β , and the L 2 control on the gradient of u ε a , in the case p = p α . It is worth noticing that we will use the assumption A > 0 to handle the diffusion term I p di f f , in the case p = p β , more precisely to estimate the term K p β 1 in (2.7.47).

• I p di f f in the critical case p = p β From (2.7.17), we write

I p β di f f as I p β di f f = Ω (d a ∂ 1 h p β ∆u a + d b ∂ 2 h p β ∆u b + d v ∂ 3 h p β ∆v)dx = -d a Ω ∂ 11 h a,p β |∇u a | 2 dx -d a Ω ∂ 12 h a,p β ∇u a • ∇vdx -d b Ω ∂ 11 h b,p β |∇u b | 2 dx -d b Ω ∂ 12 h b,p β ∇u b • ∇vdx + d v Ω ∂ 2 h a,p β ∆v dx + d v Ω ∂ 2 h b,p β ∆v dx := K p β 1 + K p β 2 + K p β 3 + K p β 4 , (2.7.45) 
where the derivatives of the energy dentities h a,p , h b,p are defined in (2.7.12) -(2.7.15).

We compute for K

p β 1 K p β 1 -d a a α(p β -1) Ω θ(u a , v) α(p β -1)-1 u p β -1 a |∇u a | 2 dx -d a (p β -1) Ω θ(u a , v) α(p β -1) u p β -2 a |∇u a | 2 dx -d a cα(p β -1) Ω θ(u a , v) α(p β -1)-1 u p β -1 a ∇u a • ∇v dx,
and we apply Young's inequality in the third integral to obtain

K p β 1 ≤ - d a a 2 α(p β -1) Ω θ(u a , v) α(p β -1)-1 u p β -1 a |∇u a | 2 dx -d a (p β -1) Ω θ(u a , v) α(p β -1) u p β -2 a |∇u a | 2 dx + d a c 2 2a α(p β -1) Ω θ(u a , v) α(p β -1)-1 u p β -1 a |∇v| 2 dx = - d a a 2 α β + 1 Ω θ(u a , v) α β+1 -1 u 1 β+1 a |∇u a | 2 dx - d a a p β -2 1 β + 1 Ω θ(u a , v) α β+1 (au a ) 1 β+1 -1 |∇u a | 2 dx + d a c 2 2a p β α β + 1 Ω θ(u a , v) α β+1 -1 (au a ) 1 β+1 |∇v| 2 dx. (2.7.46)
By neglecting the first and second integral in (2.7.46), observing that α β+1 -1 < 0 and using the inequality θ(u a , v) ≥ A + au a , we arrive at

K p β 1 ≤ d a 2 c 2 a p β Ω au a (A + au a ) β-α+1 1 β+1 |∇v| 2 dx.
(2.7.47)

Finally, the assumption A > 0 implies

K p β 1 ≤ d a 2 c 2 a p β C A Ω |∇v| 2 dx, (2.7.48) 
with the constant C A > 0 depending on A, α, β > 0.

Concerning K p β 2 , we get

K p β 2 -d b bβ(p β -1) Ω ω(u b , v) β(p β -1)-1 u p β -1 b |∇u b | 2 dx -d b (p β -1) Ω ω(u b , v) β(p β -1) u p β -2 b |∇u b | 2 dx -d b dβ(p β -1) Ω ω(u b , v) β(p β -1)-1 u p β -1 b ∇u b • ∇vdx.
Proceeding as we did for K p β 1 in (2.7.46), we obtain

K p β 2 ≤ - d b b 2 β(p β -1) Ω ω(u b , v) β(p β -1)-1 u p β -1 b |∇u b | 2 dx -d b (p β -1) Ω ω(u b , v) β(p β -1) u p β -2 b |∇u b | 2 dx + d b 2 d 2 b β(p β -1) Ω ω(u b , v) β(p β -1)-1 u p β -1 b |∇v| 2 dx. (2.7.49)
Neglecting the first integral in (2.7.49) and using ω(u b , v) ≥ bu b in the other two, together with the identity

β(p β -1) + p β -2 = β β + 1 + 1 β + 1 -1 = 0, we get K p β 2 ≤ -d b b β β+1 β + 1 Ω |∇u b | 2 dx + d b 2 d 2 b 1+ 1 β+1 Ω |∇v| 2 dx. (2.7.50) 
Now, we estimate the terms K p β 3 and K p β 4 defined in (2.7.45). Thus, we compute

K p β 3 d v cα(p β -1) Ω u a 0 θ(z, v) α(p β -1)-1 z p β -1 dz ∆vdx = d v c α β + 1 Ω u a 0 θ(z, v) α β+1 -1 z 1 β+1 dz ∆vdx.
Similarly as we did to estimate J p β 3 in (2.7.29), using θ(z, v) ≥ au a , we get

K p β 3 ≤ d v c a 1-α β+1 α β + 1 Ω u a 0 z z β+1-α 1 β+1 dz |∆v|dx = d v c a 1-α β+1 α β + 1 Ω u a 0 z α-β β+1 dz |∆v|dx = d v c a 1-α β+1 α β + 1 1 α+1 β+1 Ω u α+1 β+1 a |∆v|dx.
Using the inequality (2.7.28) with γ = α+1 β+1 together with Hölder's inequality, we end up with

K p β 3 ≤ d v c a 1-α β+1 1 + u a L 2 (Ω) ∆v L 2 (Ω) .
(2.7.51)

Concerning K p β 4 , using ω(z, v) ≥ bz it holds K p β 4 d v dβ(p β -1) Ω u b 0 ω(z, v) β(p β -1)-1 z p β -1 dz ∆vdx ≤ d v d b 1 β+1 β β + 1 Ω u b 0 ω(z, v) β β+1 -1 (bz) 1 β+1 dz |∆v|dx ≤ d v d b 1 β+1 Ω u b |∆v|dx ≤ d v d b 1 β+1 u b L 2 (Ω) ∆v L 2 (Ω) .
( 

I p β di f f ≤ 1 2 d a c 2 a p β C A + d b d 2 b p β ∇v 2 L 2 (Ω) -d b b β β+1 β + 1 ∇u b 2 L 2 (Ω) + d v c a 1-α β+1 + d b 1 β+1 1 + u a L 2 (Ω) + u b L 2 (Ω) ∆v L 2 (Ω) .
(2.7.53)

• I p di f f in the critical case p = p α From (2.7.17), we write

I p α di f f as I p α di f f = -d a Ω ∂ 11 h a,p α |∇u a | 2 dx -d a Ω ∂ 12 h a,p α ∇u a • ∇vdx -d b Ω ∂ 11 h b,p α |∇u b | 2 dx -(d b + d v ) Ω ∂ 12 h b,p α ∇u b • ∇vdx + d v Ω ∂ 2 h a,p α ∆v dx -d v Ω ∂ 22 h b,p α |∇v| 2 dx := K p α 1 + K p α 2 + K p α 3 + K p α 4 .
(2.7.54)

Concerning K p α 1 , it holds K p α 1 -d a a α(p α -1) Ω θ(u a , v) α(p α -1)-1 u p α -1 a |∇u a | 2 dx -d a (p α -1) Ω θ(u a , v) α(p α -1) u p α -2 a |∇u a | 2 dx -d a c α(p α -1) Ω θ(u a , v) α(p α -1)-1 u p α -1 a ∇u a • ∇v dx.
Similarly as we did for K p β 2 , we use Young's inequality to get

K p α 1 ≤ - d a a 2 α(p α -1) Ω θ(u a , v) α(p α -1)-1 u p α -1 a |∇u a | 2 dx - d a a p α -2 (p α -1) Ω θ(u a , v) α(p α -1) (au a ) p α -2 |∇u a | 2 dx + d a c 2 2a p α α(p α -1) Ω θ(u a , v) α(p α -1)-1 (au a ) p α -1 |∇v| 2 dx = - d a a 2 α α + 1 Ω θ(u a , v) α α+1 -1 u 1 α+1 a |∇u a | 2 dx - d a a p α -2 1 α + 1 Ω θ(u a , v) α α+1 (au a ) -α α+1 |∇u a | 2 dx + d a c 2 2a p α α α + 1 Ω θ(u a , v) α α+1 -1 (au a ) 1 α+1 |∇v| 2 dx.
Thus, neglecting the first integral and using θ(u a , v) ≥ au a in the second and third integrals, we obtain 

K p α 1 ≤ -d a a α α+1 1 α + 1 Ω |∇u a | 2 dx + d a 2 c 2 a p α Ω |∇v| 2 dx. ( 2 
K p α 2 -d b bβ(p α -1) Ω ω(u b , v) β(p α -1)-1 u p α -1 b |∇u b | 2 dx -d b (p α -1) Ω ω(u b , v) β(p α -1) u p α -2 b |∇u b | 2 dx -(d b + d v )dβ(p α -1) Ω ω(u b , v) β(p α -1)-1 u p α -1 b ∇u b • ∇vdx ≤ - d b 2 bβ α + 1 Ω ω(u b , v) β(p α -1)-1 u p α -1 b |∇u b | 2 dx - d b α + 1 Ω ω(u b , v) β(p α -1) u p α -2 b |∇u b | 2 dx + (d b + d v ) 2 2d b d 2 b β α + 1 Ω ω(u b , v) β(p α -1)-1 u p α -1 b |∇v| 2 dx.
Neglecting the first and the second integral we obtain 2 by distinguishing the cases β < 1 + α and β ≥ 1 + α, i.e. β α+1 -1 < 0 and β α+1 -1 ≥ 0, respectively.

K p α 2 ≤ (d b + d v ) 2 2d b d 2 b β α + 1 Ω ω(u b , v) β α+1 -1 u 1 α+1 b |∇v| 2 dx. ( 2 
Case

β < α + 1. Using ω(u b , v) ≥ bu b , we compute K p α 2 ≤ (d b + d v ) 2 2d b d 2 b 2-β α+1 Ω u β-α α+1 b |∇v| 2 dx,
and by the inequality (2.7.28) with γ = β-α α+1 , we end up with

K p α 2 ≤ (d b + d v ) 2 2d b d 2 b 2-β α+1 Ω 1 + u b |∇v| 2 dx ≤ (d b + d v ) 2 2d b d 2 b 2-β α+1 1 + u b L 2 (Ω) ∇v 2 L 4 (Ω) .
(2.7.57)

Case β ≥ α + 1. Using bu b ≤ ω(u b , v), we get from (2.7.56)

K p α 2 ≤ (d b + d v ) 2 2d b d 2 b p α β α + 1 Ω ω(u b , v) β-α α+1 |∇v| 2 dx.
The main tool used in the case β < α + 1 was the inequality (2.7.28) with γ < 1. However, it holds that β-α α+1 < 1 if and only if β < 2α + 1. This suggests to distinguish the following two cases

β < 2α + 1 and β ≥ 2α + 1.
Using the inequality (2.7.28) in the case β < 2α + 1 and using (2.7.21), we end up with

K p α 2 ≤ X α+1 (β) (1 -X 2α+1 (β)) (d b + d v ) 2 2d b d 2 b p α β α + 1 1 + ω(u b , v) L 2 (Ω) ∇v 2 L 4 (Ω) + X 2α+1 (β) (d b + d v ) 2 2d b d 2 b p α β α + 1 Ω ω(u b , v) β-α α+1 |∇v| 2 dx. (2.7.58) 
By gathering the estimates (2.7.57), (2.7.58), we obtain 

K p α 2 ≤ (1 -X α+1 (β)) (d b + d v ) 2 2d b d 2 b 2-β α+1 1 + u b L 2 (Ω) ∇v 2 L 4 (Ω) + X α+1 (β) (1 -X 2α+1 (β)) (d b + d v ) 2 2d b d 2 b p α β α + 1 1 + ω(u b , v) L 2 (Ω) ∇v 2 L 4 (Ω) + X 2α+1 (β) (d b + d v ) 2 2d b d 2 b p α β α + 1 Ω ω(u b , v) β-α α+1 |∇v| 2 dx. ( 2 
d v cα(p α -1) Ω u a 0 θ(z, v) α(p α -1)-1 z p α -1 dz ∆vdx = d v c a 1 α+1 α α + 1 Ω u a 0 θ(z, v) α α+1 -1 (az) 1 α+1 dz ∆vdx ≤ d v c a 1 α+1 Ω u a 0 az θ(z, v) 1 α+1 dz |∆v|dx ≤ d v c a 1 α+1 Ω u a |∆v|dx ≤ d v 2 c a 1 α+1 u a 2 L 2 (Ω) + ∆v 2 L 2 (Ω) . ( 2 
K p α 4 -d v d 2 β(p α -1) (β(p α -1) -1) Ω u b 0 ω(z, v) β(p α -1)-2 z p α -1 dz |∇v| 2 dx = -d v d 2 β α + 1 β α + 1 -1 Ω u b 0 ω(z, v) β α+1 -2 z 1 α+1 dz |∇v| 2 dx.
Observing that if β α+1 -1 ≥ 0, K p α 4 is negative, we estimate K p α 4 only when β < α + 1. Recalling that r(p α ) > 2 and definition (2.7.21), we get

K p α 4 ≤ (1 -X α+1 (β)) d v d 2 β α + 1 1 - β α + 1 Ω         u b 0 z ω(z, v) 2(α+1)-β 1 α+1 dz         |∇v| 2 dx ≤ (1 -X α+1 (β)) d v d 2 b 2-β α+1 Ω u b 0 z β+1 α+1 -2 dz |∇v| 2 dx = (1 -X α+1 (β)) d v d 2 b 2-β α+1 Ω u b 0 z r(p α )-3 dz |∇v| 2 dx = (1 -X α+1 (β)) d v d 2 b 2-β α+1 1 r(p α ) -2 Ω u r(p α )-2 b |∇v| 2 dx ≤ (1 -X α+1 (β)) d v d 2 2b 2-β α+1 Ω u 2(r(p α )-2) b dx + Ω |∇v| 4 dx , (2.7.61) 
where we used Young's inequality in the last estimate.

Finally by gathering (2.7.55), (2.7.59), (2.7.60), (2.7.61), we obtain

I p α di f f ≤ -d a a α α+1 1 α + 1 ∇u a 2 L 2 (Ω) + d a 2 c 2 a p α ∇v 2 L 2 (Ω) + (1 -X α+1 (β)) (d b + d v ) 2 2d b d 2 b 2-β α+1 1 + u b L 2 (Ω) ∇v 2 L 4 (Ω) + X α+1 (β) (1 -X 2α+1 (β)) (d b + d v ) 2 2d b d 2 b p α β α + 1 1 + ω(u b , v) L 2 (Ω) ∇v 2 L 4 (Ω) + X 2α+1 (β) (d b + d v ) 2 2d b d 2 b p α β α + 1 Ω ω(u b , v) β-α α+1 |∇v| 2 dx + d v 2 c a 1 α+1 u a 2 L 2 (Ω) + ∆v 2 L 2 (Ω) + (1 -X α+1 (β)) d v d 2 2b 2-β α+1 u b 2(r(p α )-2) L 2(r(pα)-2) (Ω) + ∇v 4 L 4 (Ω) .
(2.7.62)

• I p di f f in the super-critical case p = 2 As we are considering now the super-critical case p = 2, the hessian of h p in (2.7.14), (2.7.15) is well defined and we write I 2 di f f in (2.7.17) as

I 2 di f f = -d a Ω ∂ 11 h a,2 |∇u a | 2 dx -(d a + d v ) Ω ∂ 12 h a,2 ∇u a • ∇vdx -d b Ω ∂ 11 h b,2 |∇u b | 2 dx -(d b + dv) Ω ∂ 21 h b,2 ∇u b • ∇vdx -d v Ω ∂ 22 h a,2 |∇v| 2 dx -d v Ω ∂ 22 h b,2 |∇v| 2 dx K 2 1 + K 2 2 + K 2 3 + K 2 4 .
(2.7.63)

In order to estimate the term K 2 1 in (2.7.63), we apply Young's inequality to get

K 2 1 -d a aα Ω θ(u a , v) α-1 u a |∇u a | 2 dx -d a Ω θ(u a , v) α |∇u a | 2 dx -(d a + d v )cα Ω θ(u a , v) α-1 u a ∇u a • ∇vdx ≤ - d a 2 aα Ω θ(u a , v) α-1 u a |∇u a | 2 dx -d a Ω θ(u a , v) α |∇u a | 2 dx + (d a + d v ) 2 2d a c 2 α a Ω θ(u a , v) α-1 u a |∇v| 2 dx. (2.7.64)
Neglecting the first integral and using θ(u a , v) > au a in the second integral, we obtain

K 2 1 ≤ -d a a α Ω u α a |∇u a | 2 dx + (d a + d v ) 2 2d a c 2 α a Ω θ(u a , v) α-1 u a |∇v| 2 dx. (2.7.65) 
Then recalling that q(2) = α + 2, we use the identity below in the first integral of (2.7.65)

u α a |∇u a | 2 = u q(2)-2 2 a ∇u a 2 = 4 q(2) 2 ∇ u q(2)/2 a 2 = 4 (α + 2) 2 ∇ u q(2)/2 a 2 ,
(2.7.66) to get

K 2 1 ≤ - 4d a a α (α + 2) 2 Ω ∇ u q(2)/2 a 2 dx + (d a + d v ) 2 2d a c 2 α a Ω θ(u a , v) α-1 u a |∇v| 2 dx. (2.7.67)
Now, we estimate the second intergral in (2.7.67) with the tools used to handle the term K p α 2 in (2.7.56). We distinguish the cases α < 1 and α ≥ 1.

Case α < 1. Using θ(u a , v) ≥ au a and the inequality (2.7.28) with γ = α, we compute

(d a + d v ) 2 2d a c 2 α a Ω u a θ(u a , v) 1-α |∇v| 2 dx ≤ (d a + d v ) 2 2d a c 2 a 2-α Ω u α a |∇v| 2 dx ≤ (d a + d v ) 2 2d a c 2 a 2-α Ω (1 + u a )|∇v| 2 dx ≤ (d a + d v ) 2 4d a c 2 a 2-α 1 + u a 2 L 2 (Ω) + ∇v 4 L 4 (Ω) .
Case α ≥ 1. Using θ(u a , v) ≥ au a , we get

(d a + d v ) 2 2d a c 2 α a Ω θ(u a , v) α-1 u a |∇v| 2 dx ≤ (d a + d v ) 2 2d a c 2 α a 2 Ω θ(u a , v) α |∇v| 2 dx.
Therefore, we end up with the following estimate for K 2 1 ,

K 2 1 ≤ - 4d a a α (α + 2) 2 ∇ u q(2)/2 a 2 L 2 (Ω) + (d a + d v ) 2 2d a c 2 a 2-α 1 -X 1 (α) 1 + u a 2 L 2 (Ω) + ∇v 4 L 4 (Ω) + (d a + d v ) 2 2d a c 2 α a 2 X 1 (α) Ω θ(u a , v) α |∇v| 2 dx.
(2.7.68)

From (2.7.63), we compute K 2 2 similarly as we did for K 2 1 in (2.7.64),

K 2 2 -d b bβ Ω ω(u b , v) β-1 u b |∇u b | 2 dx -d b Ω ω(u b , v) β |∇u b | 2 dx -(d b + d v )dβ Ω ω(u b , v) β-1 u b ∇u b • ∇vdx ≤ - d b 2 bβ Ω ω(u b , v) β-1 u b |∇u b | 2 dx -d b Ω ω(u b , v) β |∇u b | 2 dx (2.7.69) + (d b + d v ) 2 2d b d 2 β b Ω ω(u b , v) β-1 u b |∇v| 2 dx ≤ -d b b β Ω u β b |∇u b | 2 dx + (d b + d v ) 2 2d b d 2 β b Ω ω(u b , v) β-1 u b |∇v| 2 dx,
where in the last inequality, we neglected the first term in (2.7.69) and we use ω(u b , v) ≥ bu b in the second term. Then, by analogy with (2.7.65), (2.7.66) we rewrite the first term in the last inequality as follows

K 2 2 ≤ - 4d b b β (β + 2) 2 Ω |∇ u r(2)/2 b | 2 dx + (d b + d v ) 2 2d b d 2 β b Ω ω(u b , v) β-1 u b |∇v| 2 dx.
Similarly as we did in (2.7.67), we distinguish the cases β < 1 and β ≥ 1. Therefore, by analogy with (2.7.68) we end up with 

K 2 2 ≤ - 4d b b β (β + 2) 2 ∇ u r(2)/2 b 2 L 2 (Ω) + (d b + d v ) 2 2d b d 2 b 2-β 1 -X 1 (β) 1 + u b 2 L 2 (Ω) + ∇v 4 L 4 (Ω) + (d b + d v ) 2 2d b d 2 β b 2 X 1 (β) Ω ω(u b , v) β |∇v| 2 dx. ( 2 
K 2 3 -d v c 2 α(α -1) Ω u a 0 θ(z, v) α-2 z dz |∇v| 2 dx ≤ 1 -X 1 (α) d v c 2 a α(1 -α) Ω u a 0 θ(z, v) α-2 (az) dz |∇v| 2 dx ≤ 1 -X 1 (α) d v c 2 a α(1 -α) Ω u a 0 θ(z, v) α-1 dz |∇v| 2 dx ≤ 1 -X 1 (α) d v c 2 a 2 (1 -α) Ω θ(u a , v) α |∇v| 2 dx ≤ 1 -X 1 (α) d v c 2 a 2 (1 -α) Ω 1 + θ(u a , v) |∇v| 2 dx ≤ 1 -X 1 (α) d v c 2 2a 2 (1 -α) 1 + θ(u a , v) 2 L 2 (Ω) + ∇v 4 L 4 (Ω) .
(2.7.71)

Concerning K 2 4 , it holds K 2 4 -d v d 2 β(β -1) Ω u b 0 ω(z, v) β-2 z dz |∇v| 2 dx = d v d 2 b β(1 -β) Ω u b 0 ω(z, v) β-2 (bz) dz |∇v| 2 dx.
Thus, similarly as we did for K 2 3 , we obtain 

K 2 4 ≤ 1 -X 1 (β) d v d 2 2b 2 (1 -β) 1 + ω(u b , v) 2 L 2 (Ω) + ∇v 4 L 4 (Ω) . ( 2 
I 2 di f f ≤ - 4d a a α (α + 2) 2 ∇ u q(2)/2 a L 2 (Ω) - 4d b b β (β + 2) 2 ∇ u r(2)/2 b 2 L 2 (Ω) + (d a + d v ) 2 2d a c 2 a 2-α 1 -X 1 (α) 1 + u a 2 L 2 (Ω) + ∇v 4 L 4 (Ω) + (d a + d v ) 2 2d a c 2 α a 2 X 1 (α) Ω θ(u a , v) α |∇v| 2 dx + (d b + d v ) 2 2d b d 2 b 2-β 1 -X 1 (β) 1 + u b 2 L 2 (Ω) + ∇v 4 L 4 (Ω) + (d b + d v ) 2 2d b d 2 β b 2 X 1 (β) Ω ω(u b , v) β |∇v| 2 dx + 1 -X 1 (α) d v c 2 2a 2 (1 -α) 1 + θ(u a , v) 2 L 2 (Ω) + ∇v 4 L 4 (Ω) + 1 -X 1 (β) d v d 2 2b 2 (1 -β) 1 + ω(u b , v) 2 L 2 (Ω) + ∇v 4 L 4 (Ω) .
(2.7.73)

Proof of the energy estimates

Hereafter, we combine the obtained estimates in Subsections 2.7.1, 2.7.2, together with the basic estimates shown in Section 2.6, in order to control the evolution of the energy functional E p in (2.7.20) when p = p β , p = p α , p = 2. From now on, we restore the index ε. 

d dt E p β (u ε a ,u ε b , v ε )(t) + u ε a (t) q(p β )+1 L q(p β )+1 (Ω) + u ε b (t) 3 L 3 (Ω) + ∇u ε b (t) 2 L 2 (Ω) ≤ C u ε a (t) p β L p β (Ω) + u ε b (t) p β L p β (Ω) + v ε (t) L ∞ (Ω) 1 + u ε a + u ε b (t) L 1 (Ω) + C ∇v ε (t) 2 L 2 (Ω) + u ε a (t) L 2 (Ω) + u ε b (t) L 2 (Ω) ∆v ε (t) L 2 (Ω) ,
where the constant C > 0 depends on the diffusion and reaction coefficients, on α, β but not on ε. Therefore, recalling that p β < 2, integrating over t ∈ (0, T ) and using the estimates in Lemmas 2.6.1 -2.6.3, together with the assumption on the initial data (H4), we end up with (2.7.7).

• The critical case p = p α Now, we integrate in time over (0, T ) the inequality (2.7.62), we use r(p α ) -2 = β-α α+1 and the Hölder inequality when necessary, to obtain (0,T )

I p α di f f dt ≤ -d a a α α+1 1 α + 1 ∇u ε a 2 L 2 (Ω T ) + d a 2 c 2 a p α ∇v ε 2 L 2 (Ω T ) + (1 -X α+1 (β)) (d b + d v ) 2 2d b d 2 b 2-β α+1 1 + u ε b L 2 (Ω T ) ∇v ε 2 L 4 (Ω T ) + X α+1 (β) (1 -X 2α+1 (β)) (d b + d v ) 2 2d b d 2 b p α β α + 1 1 + ω(u ε b , v ε ) L 2 (Ω T ) ∇v ε 2 L 4 (Ω T ) + X 2α+1 (β) (d b + d v ) 2 2d b d 2 b p α β α + 1 Ω T ω(u ε b , v ε ) r(p α )-2 |∇v ε | 2 dxdt + d v 2 c a 1 α+1 u ε a 2 L 2 (Ω T ) + ∆v ε 2 L 2 (Ω T ) + (1 -X α+1 (β)) d v d 2 2b 2-β α+1 u ε b 2(r(p α )-2) L 2(r(pα)-2) (Ω T ) + ∇v ε 4 L 4 (Ω T ) . (2.7.74) Using in (2.7.74) that 2(r(p α ) -2) = 2(β-α) α+1 < 2 if β < α + 1, we have (1 -X α+1 (β)) u ε b L 2(r(pα)-2) (Ω T ) ≤ (1 -X α+1 (β)) C u ε b L 2 (Ω T ) .
Then, together with the estimates in Lemmas 2.6.1 -2.6.3, we end up with (0,T )

I p α di f f dt ≤ -d a a α α+1 1 α + 1 ∇u ε a 2 L 2 (Ω T ) + C T + X 2α+1 (β) (d b + d v ) 2 2d b d 2 b p α β α + 1 Ω T ω(u ε b , v ε ) r(p α )-2 |∇v ε | 2 dxdt. (2.7.75)
Similarly, for the reaction term estimate (2.7.38), we have (0,T )

I p α rea dt ≤ η a C L (1 + A) α(p α -1)+1 u ε a p α L pα (Ω T ) - 1 2 η a a α(p α -1)+1 u ε a 3 L 3 (Ω T ) + η b C L (1 + B) β(p α -1)+1 u ε b p α L pα (Ω T ) - 1 2 η b b β(p α -1)+1 u ε b r(p α )+1 L r(pα)+1 (Ω T ) + η v c a 1 α+1 v ε L ∞ (Ω T ) u ε a L 1 (Ω T ) + (1 -X α+1 (β)) dη v b 1-β α+1 v ε L ∞ (Ω T ) u ε b r(p α )-1 L r(pα)-1 (Ω T ) + X α+1 (β)η v C J d b 1+ 1 α+1 v ε L ∞ (Ω T ) B + dv ε r(p α )-1 L r(pα)-1 (Ω T ) + X α+1 (β)η v C J b β α+1 -1 d v ε L ∞ (Ω T ) u ε b r(p α )-1 L r(pα)-1 (Ω T ) . Using that r(p α ) -1 = β+1 α+1 < 2, if β < α + 1, we have (1 -X α+1 (β)) u ε b L r(pα)-1 (Ω T ) ≤ (1 -X α+1 (β)) C u ε b L 2 (Ω T )
. Thus, using that p α < 2 and gathering with the estimates in Lemmas 2.6.1 -2.6.3, we end up with (0,T ) 

I p α rea dt ≤ - 1 2 η a a α(p α -1)+1 u ε a 3 L 3 (Ω T ) - 1 2 η b b β(p α -1)+1 u ε b r(p α )+1 L r(pα)+1 (Ω T ) + C T + X α+1 (β)η v C J b β α+1 -1 d v ε L ∞ (Ω T ) u ε b r(p α )-1 L r(pα)-1 (Ω T ) . ( 2 
E p α (u ε a , u ε b , v ε )(T ) + C ∇u ε a 2 L 2 (Ω T ) + u ε a 3 L 3 (Ω T ) + 1 2 η b b β(p α -1)+1 u ε b r(p α )+1 L r(pα)+1 (Ω T ) (2.7.77) ≤ E p α (u ε a , u ε b , v ε )(0) + C T + X 2α+1 (β) (d b + d v ) 2 2d b d 2 b p α β α + 1 Ω T ω(u ε b , v ε ) r(p α )-2 |∇v ε | 2 dxdt (2.7.78) + X α+1 (β)η v C J b β α+1 -1 d v ε L ∞ (Ω T ) u ε b r(p α )-1 L r(pα)-1 (Ω T ) , (2.7.79) 
where the constant C > 0 in (2.7.77) depends on the diffusion and reaction coefficients, on α, β but not on ε.

It remains to estimate the terms in (2.7.78) and (2.7.79).

In order to handle the term in (2.7.78) where β ≥ 2α + 1, we rename the constant as

R 1 (d b + d v ) 2 2d b d 2 b p α β α + 1 .
For a pair of conjugate exponents (m, m ) to be chosen, we have by Young's inequality

R 1 Ω T ω(u ε b , v ε ) r(p α )-2 |∇v ε | 2 dxdt ≤ 1 m Ω T ω(u ε b , v ε ) m(r(p α )-2) dxdt + 1 m R m 1 Ω T |∇v ε | 2m dxdt.
(2.7.80)

As β ≥ 2α + 1, we have that r(p α ) -2 = β-α α+1 ≥ 1. Then, we can choose m and m such that 

1 ≤ m(r(p α ) -2) ≤ r(p α ) + 1 and 1 ≤ m ≤ q(p β ) + 1, i.e. using m = m m-1 1 + q(p β ) q(p β ) ≤ m ≤ r(p α ) + 1 r(p α ) -2 . ( 2 
+ q(p β ) q(p β ) (r(p α ) -2) = 1 + q(p β ) q(p β ) 1 q(p β ) -1 -1 ≤ r(p α ) + 1 = 1 q(p β ) -1 + 2,
and the above inequality rewrites as

3q 2 (p β ) -2q(p β ) -2 ≥ 0 ⇐⇒ q(p β ) ≥ 1 + √ 7 3
.

Therefore, using the definition of q(p β ) in (2.7.3), the above condition holds if and only if

( √ 7 -2)β ≤ 3α + 5 - √ 7 ⇐⇒ β ≤ ( √ 7 + 2)α + √ 7 + 1,
which is guaranteed by (H3).

Hereafter, for the sake of simplicity, we denote r α r(p α ). Then, in order to estimate the first term in (2.7.80), we first apply the inequality (2.7.35) and we get 1

m Ω T ω(u ε b , v ε ) m(r α -2) dxdt ≤ C J m B + dv ε m(r α -2) L m(rα-2) (Ω T ) + C J b m(r α -2) m u ε b m(r α -2) L m(rα-2) (Ω T ) .
(2.7.82)

Furthermore, since 1 ≤ m(r α -2) ≤ r α + 1, we use the inequality

x γ = x γ 1 {x≤C} + x γ 1 {x>C} ≤ C γ-1 x + C γ-λ x λ , (2.7.83)
for all x ≥ 0, C > 0 and 1 ≤ γ ≤ λ. Thus, for any σ > 0 to be chosen later as small as nedeed, there exists a constant C σ , not depending on u ε b , such that

C J b m(r α -2) m u ε b m(r α -2) L m(rα-2) (Ω T ) ≤ C σ u ε b L 1 (Ω T ) + σ u ε b r α +1 L rα+1 (Ω T ) . Therefore, (2.7.82) becomes 1 m Ω T ω(u ε b , v ε ) m(r α -2) dxdt ≤ C J m B + dv ε m(r α -2) L m(rα-2) (Ω T ) + C σ u ε b L 1 (Ω T ) + σ u ε b r α +1 L rα+1 (Ω T ) . (2.7.84)
Next, as m ≤ q(p β ) + 1 ≤ 3, we can use Lemma 2.6.2 and the estimates obtained in the previous step (see (2.7.7)), in order to get, for the second term in (2.7.80), 

1 m R m 1 Ω T |∇v ε | 2m dxdt ≤ C(m , N, R 1 ) 1 + u ε a + u ε b m L m (Ω T ) + C(m , R 1 )T ≤ C(m , N, R 1 , T, Ω) 1 + u ε a m L m (Ω T ) + u ε b m L m (Ω T ) + C(m , R 1 )T ≤ C(m , N, R 1 , T, Ω) E p β (u ε a , u ε b , v ε )(0) + C T . ( 2 
X 2α+1 (β)R 1 Ω T ω(u ε b , v ε ) r α -2 |∇v ε | 2 dxdt ≤ X 2α+1 (β)C T E p β (u ε a , u ε b , v ε )(0) + 1 + X 2α+1 (β) C J m B + dv ε m(r α -2) L m(rα-2) (Ω T ) + C σ u ε b L 1 (Ω T ) + X 2α+1 (β)σ u ε b r α +1 L rα+1 (Ω T ) , (2.7.86)
for any σ > 0.

Now, we estimate the term in (2.7.79). As the term is positive if and only if β ≥ α + 1 and that in this case 1 < r α -1 = β+1 α+1 ≤ r α + 1, we can proceed as before, i.e. 

X α+1 (β)η v C J b β α+1 -1 d v ε L ∞ (Ω T ) u ε b r α -1 L rα-1 (Ω T ) ≤ X α+1 (β) C σ u ε b L 1 (Ω T ) + σ u ε b r α +1 L rα+1 (Ω T ) , ( 
E p α (u ε a , u ε b , v ε )(T ) + C ∇u ε a 2 L 2 (Ω T ) + u ε a 3 L 3 (Ω T ) + 1 2 η b b β(p α -1)+1 -σ X α+1 (β) + X 2α+1 (β) u ε b r(p α )+1 L r(pα)+1 (Ω T ) ≤ E p α (u ε a , u ε b , v ε )(0) + C T + X 2α+1 (β)C T E p β (u ε a , u ε b , v ε )(0) + 1 + X 2α+1 (β) C J m B + v ε m(r(p α )-2) L m(r(pα)-2) (Ω T ) + X α+1 (β) + X 2α+1 (β) C σ u ε b L 1 (Ω T ) .
Therefore, taking σ > 0 such that

0 ≤ σ X α+1 (β) + X 2α+1 (β) < 1 2 η b b β(p α -1)+1 ,
and using the estimates of Lemmas 2.6.1 -2.6.3, we get (2.7.8).

• The super-critical case p = 2 Now, we integrate in time over (0, T ) the inequality (2.7.73) and we use α = q(2) -2 and

β = r(2) -2, to obtain (0,T ) I 2 di f f dt ≤ - 4d a a α (α + 2) 2 ∇ (u ε a ) q(2)/2 2 L 2 (Ω T ) - 4d b b β (β + 2) 2 ∇ (u ε b ) r(2)/2 2 L 2 (Ω T ) + 1 -X 1 (α) (d a + d v ) 2 2d a c 2 a 2-α 1 + u ε a 2 L 2 (Ω T ) + ∇v ε 4 L 4 (Ω T )
(2.7.88)

+ X 1 (α) (d a + d v ) 2 2d a c 2 α a 2 Ω T θ(u ε a , v ε ) q(2)-2 |∇v ε | 2 dxdt + 1 -X 1 (β) (d b + d v ) 2 2d b d 2 b 2-β 1 + u ε b 2 L 2 (Ω T ) + ∇v ε 4 L 4 (Ω T )
(2.7.89)

+ X 1 (β) (d b + d v ) 2 2d b d 2 β b 2 Ω T ω(u ε b , v ε ) r(2)-2 |∇v ε | 2 dxdt + 1 -X 1 (α) d v c 2 2a 2 (1 -α) 1 + θ(u ε a , v ε ) 2 L 2 (Ω T ) + ∇v ε 4 L 4 (Ω T )
(2.7.90) 

+ 1 -X 1 (β) d v d 2 2b 2 (1 -β) 1 + ω(u ε b , v ε ) 2 L 2 (Ω T ) + ∇v ε 4 L 4 (Ω T ) . ( 2 
I 2 di f f dt ≤ - 4d a a α (α + 2) 2 ∇ (u ε a ) q(2)/2 2 L 2 (Ω T ) - 4d b b β (β + 2) 2 ∇ (u ε b ) r(2)/2 2 L 2 (Ω T ) + C T + X 1 (α) (d a + d v ) 2 2d a c 2 α a 2 Ω T θ(u ε a , v ε ) q(2)-2 |∇v ε | 2 dxdt + X 1 (β) (d b + d v ) 2 2d b d 2 β b 2 Ω T ω(u ε b , v ε ) r(2)-2 |∇v ε | 2 dxdt. (2.7.92)
Similarly, for the reaction term estimate in (2.7.44), we use the Hölder inequality when necessary, to obtain (0,T )

I 2 rea dt ≤ η a C L (1 + A) α+1 u ε a 2 L 2 (Ω T ) - 1 2 η a a α+1 u ε a q(2)+1 L q(2)+1 (Ω T ) + η b C L (1 + B) β+1 u ε b 2 L 2 (Ω T ) - 1 2 η b b β+1 u ε b r(2)+1 L r(2)+1 (Ω T ) + (1 -X 1 (α)) c a 1-α η v v ε L ∞ (Ω T ) u ε a q(2)-1 L q(2)-1 (Ω T ) + X 1 (α)cη v C J v ε L ∞ (Ω T ) A + cv ε q(2)-1 L q(2)-1 (Ω T ) + a α+1 u ε a q(2)-1 L q(2)-1 (Ω T ) + (1 -X 1 (β)) d b 1-β η v v ε L ∞ (Ω T ) u ε b r(2)-1 L r(2)-1 (Ω T ) + X 1 (β)dη v C J v ε L ∞ (Ω T ) B + dv ε r(2)-1 L r(2)-1 (Ω T ) + b β+1 u ε b r(2)-1 L r(2)-1 (Ω T ) . (2.7.93) As q(2) -1 = α + 1 < 2, if α < 1, and r(2) -1 = β + 1 < 2, if β < 1, we have (1 -X 1 (α)) u ε a L q(2)-1 (Ω T ) ≤ (1 -X 1 (α)) C u ε a L 2 (Ω T ) , and (1 -X 1 (β)) u ε b L r(2)-1 (Ω T ) ≤ (1 -X 1 (β)) C u ε b L 2 (Ω T ) .
Thus, using in (2.7.93) the estimates in Lemmas 2.6.1 -2.6.3 , we end up with (0,T )

I 2 rea dt ≤ - 1 2 η a a α+1 u ε a q(2)+1 L q(2)+1 (Ω T ) - 1 2 η b b β+1 u ε b r(2)+1 L r(2)+1 (Ω T ) + C T + X 1 (α)ca α+1 η v C J v ε L ∞ (Ω T ) u ε a q(2)-1 L q(2)-1 (Ω T ) + X 1 (β)db β+1 η v C J v ε L ∞ (Ω T ) u ε b r(2)-1 L r(2)-1 (Ω T ) .
(2.7.94)

We take p = 2 in (2.7.20) and we use the estimates (2.7.92), (2.7.94) and (2.2.9). Then, integrating (2.7.20) in time over (0, T ), we obtain

E 2 (u ε a , u ε b , v ε )(T ) + C ∇ (u ε a ) q(2)/2 2 L 2 (Ω T ) + ∇ (u ε b ) r(2)/2 2 L 2 (Ω T )
(2.7.95)

+ 1 ε Ω T Q 2 (u ε a , u ε b , v ε )dxdt + 1 2 η a a α+1 u ε a q(2)+1 L q(2)+1 (Ω T ) + 1 2 η b b β+1 u ε b r(2)+1 L r(2)+1 (Ω T )
(2.7.96)

≤ E 2 (u ε a , u ε b , v ε )(0) + C T + X 1 (α) (d a + d v ) 2 2d a c 2 α a 2 Ω T θ(u ε a , v ε ) q(2)-2 |∇v ε | 2 dxdt (2.7.97) + X 1 (β) (d b + d v ) 2 2d b d 2 β b 2 Ω T ω(u ε b , v ε ) r(2)-2 |∇v ε | 2 dxdt (2.7.98) + X 1 (α)ca α+1 η v C J v ε L ∞ (Ω T ) u ε a q(2)-1 L q(2)-1 (Ω T )
(2.7.99)

+ X 1 (β)db β+1 η v C J v ε L ∞ (Ω T ) u ε b r(2)-1 L r(2)-1 (Ω T ) , (2.7.100) 
where the constant C > 0 in (2.7.95) depends on the diffusion and reaction coefficients, on α, β but not on ε.

It remains to estimate the terms (2.7.97) -(2.7.100).

In order to estimate the term in (2.7.97), where α ≥ 1, by analogy with (2.7.78) we first rename the constant

R 2 (d a + d v ) 2 2d a c 2 α a 2 .
Then, for a pair of conjugate exponents (m, m ) to be chosen, we have by Young's inequality

R 2 Ω T θ(u ε a , v ε ) q(2)-2 |∇v ε | 2 dxdt ≤ 1 m Ω T θ(u ε a , v ε ) m(q(2)-2) dxdt + 1 m R m 2 Ω T |∇v ε | 2m dxdt. ( 2 

.7.101)

As α ≥ 1, we have that q(2) -2 = α ≥ 1. Then, we can choose m and m such that

1 ≤ m q(2) -2 ≤ q(2) + 1 and 1 ≤ m ≤ 3, i.e. using m = m m-1 3 2 ≤ m ≤ α + 3 α . (2.7.102)
It is worth noticing that thanks to the assumption α ≤ 6 N in (H3), condition (2.7.102) is not empty.

In order to estimate the first integral in (2.7.101), recalling that 1 ≤ m q(2)-2 ≤ q(2)+1, we first use the inequality (2.7.35) and then the inequality (2.7.83), to get

1 m Ω T θ(u ε a , v ε ) m(q(2)-2) dxdt ≤ C J m A + cv ε m(q(2)-2) L m(q(2)-2) (Ω T ) + C σ u ε a L 1 (Ω T ) + σ u ε a q(2)+1 L q(2)+1 (Ω T ) , (2.7.103)
where the constant C σ does not depend on u ε a . Next, as m ≤ 3, we can use Lemma 2.6.2 and the estimates of the previous steps (see (2.7.7), (2.7.8)), in order to get, for the last term in (2.7.101), 

1 m R m 2 Ω T |∇v ε | 2m dxdt ≤ C(m , N, R 2 ) 1 + u ε a + u ε b m L m (Ω T ) + C(m , R 2 )T ≤ C(m , N, R 2 , T, Ω) 1 + u ε a m L m (Ω T ) + u ε b m L m (Ω T ) + C(m , R 2 )T ≤ C(m , N, R 2 , T, Ω) E p α (u ε a , u ε b , v ε )(0) + C T . ( 2 
X 1 (α)R 2 Ω T θ(u ε a , v ε ) q(2)-2 |∇v ε | 2 dxdt ≤ X 1 (α)C T E p α (u ε a , u ε b , v ε )(0) + 1 + X 1 (α) C J m A + cv ε m(q(2)-2) L m(q(2)-2) (Ω T ) + C σ u ε a L 1 (Ω T ) + X 1 (α)σ u ε a q(2)+1 L q(2)+1 (Ω T ) , (2.7.105) 
for any σ > 0. Now, we estimate the term in (2.7.98) where β ≥ 1. By analogy with the term in (2.7.97), we apply the same tools used to get (2.7.105). Thus, we define

R 3 (d b + d v ) 2 2d b d 2 β b 2 .
For a pair of conjugate exponents (m, m ) to be chosen, we have by Young's inequality

R 3 Ω T ω(u ε b , v ε ) r(2)-2 |∇v ε | 2 dxdt ≤ 1 m Ω T ω(u ε b , v ε ) m(r(2)-2) dxdt + 1 m R m 3 Ω T |∇v ε | 2m dxdt. (2.7.106) As β ≥ 1, we have that r(2) -2 = β ≥ 1.
Then, we can choose m and m such that

1 ≤ m r(2) -2 ≤ r(2) + 1 and 1 ≤ m ≤ 3, i.e. using m = m m-1 3 2 ≤ m ≤ β + 3 β . (2.7.107)
It is worth noticing that thanks to the assumption β ≤ 6 N in (H3), condition (2.7.107) is not empty.

Furthermore, as 1 ≤ m r(2) -2 ≤ r(2) + 1, using the same tools used to get (2.7.103) and skipping the details, we end up with

1 m Ω T ω(u ε b , v ε ) m(r(2)-2) dxdt ≤ C J m B + dv ε m(r(2)-2) L m(r(2)-2) (Ω T ) + C σ u ε b L 1 (Ω T ) + σ u ε b r(2)+1 L r(2)+1 (Ω T ) , (2.7.108)
for any σ > 0 and with the constant C σ > 0 not depending on u ε b . Next, as m ≤ 3 and by analogy with (2.7.104), we can use Lemma 2.6.2 and the estimates of the previous step, in order to get for the last term in (2.7.106) 

1 m R m 3 Ω T |∇v ε | 2m dxdt ≤ C(m , N, R 3 , T, Ω) E p α (u ε a , u ε b , v ε )(0) + C T . ( 2 
X 1 (β)R 3 Ω T ω(u ε b , v ε ) r(2)-2 |∇v ε | 2 dxdt ≤ X 1 (β)C T E p α (u ε a , u ε b , v ε )(0) + 1 + X 1 (β) C J m B + dv ε m(r(2)-2) L m(r(2)-2) (Ω T ) + C σ u ε b L 1 (Ω T ) + X 1 (β)σ u ε b r(2)+1 L r(2)+1 (Ω T ) , (2.7.110)
for any σ > 0.

The estimates of the integrals in (2.7.99), (2.7.100) go similarly as before since q(2)-

1 = α + 1 ≥ 2, if α ≥ 1, and r(2) -1 = β + 1 ≥ 2, if β ≥ 1.
Therefore, skipping the details, for any σ > 0, there exists C σ > 0 such that

X 1 (α)ca α+1 η v C J v ε L ∞ (Ω T ) u ε a q(2)-1 L q(2)-1 (Ω T ) ≤ X 1 (α) C σ u ε a L 1 (Ω T ) + σ u ε a q(2)+1 L q(2)+1 (Ω T ) , (2.7.111)
and 

X 1 (β)db β+1 η v C J v ε L ∞ (Ω T ) u ε b r(2)-1 L r(2)-1 (Ω T ) ≤ X 1 (β) C σ u ε b L 1 (Ω T ) + σ u ε b r(2)+1 L r(2)+1 (Ω T ) , (2 
E 2 (u ε a , u ε b , v ε )(T ) + C ∇ (u ε a ) q(2)/2 2 L 2 (Ω T ) + ∇ (u ε b ) r(2)/2 2 L 2 (Ω T ) + 1 2 η a a α+1 -2σX 1 (α) u ε a q(2)+1 L q(2)+1 (Ω T ) + 1 2 η b b β+1 -2σX 1 (β) u ε b r(2)+1 L r(2)+1 (Ω T ) + 1 ε Q(u ε a , u ε b , v ε ) 2 L 2 (Ω T ) ≤ E 2 (u ε a , u ε b , v ε )(0) + C T (X 1 (α) + X 1 (β)) E p α (u ε a , u ε b , v ε )(0) + 1 + X 1 (α) C J m A + cv ε m(q(2)-2) L m(q(2)-2) (Ω T ) + 2C σ u ε a L 1 (Ω T ) + X 1 (β) C J m B + dv ε m(r(2)-2) L m(r(2)-2) (Ω T ) + 2C σ u ε b L 1 (Ω T ) .
with C, C σ > 0. Thus, taking σ > 0 such that

0 ≤ σX 1 (α) < 1 4 η a a α+1 and 0 ≤ σX 1 (β) < 1 4 η b b β+1 , i.e. 0 < σ ≤ 1 4 min η a a α+1 , η b b β+1 ,
and using the estimates of Lemmas 2.6.1 -2.6.3, we get (2.7.9).

The existence result to the mesoscopic system

Proof of Proposition 2.5.1.

We first start by showing that for any fixed ε > 0, the mesoscopic system (2.1.1) -(2.1.6) has a very weak nonnegative (for each component) solution. Hereafter, we will drop the subscript ε for readability.

In order to prove that, we introduce for any δ > 0 the approximated system Here, the reaction functions are the same as those in (2.1.2) whereas Q δ is defined by the formula

             ∂ t u δ a -d a ∆ x u δ a = f a (u δ a , u δ b , v δ ) + 1 ε Q δ (u δ a , u δ b , v δ ), in (0, +∞) × Ω, ∂ t u δ b -d b ∆ x u δ b = f b (u δ a , u δ b , v δ ) -1 ε Q δ (u δ a , u δ b , v δ ), in (0, +∞) × Ω, ∂ t v δ -d v ∆ x v δ = f v (u δ a , u δ b , v δ ), in (0, +∞) × Ω, ( 
Q δ (u δ a , u δ b , v δ ) := φ(bu δ b + dv δ ) u δ b 1 + δ φ(bu δ b + dv δ ) u δ b - ψ(au δ a + cv δ ) u δ a 1 + δ ψ(au δ a + cv δ ) u δ a , (2.8.2) 
and is therefore bounded when δ > 0 is fixed. As a consequence, taking into account that the reaction functions f a , f b , f v are upper bounded over R 3 + , there exists a positive (for each component) classical solution to (2.8.1), (2.8.2), when δ > 0 is fixed.

Next, we observe that it is possible to reproduce the a priori estimates in Sections 2.6, 2.7, when Q is replaced by Q δ . Indeed, one can first check that by Lemma 2.6.1, it holds

||v δ || L ∞ ((0,+∞)×Ω) ≤ K ∞ .
Then, using the definitions (2.2.1), (2.2.2) for E p and h a,p , h b,p , h p , the computation of the time derivative of E p along the solutions (u δ a , u δ b , v δ ) to (2.8.1), (2.8.2) is almost identical to the one considered in (2.7.17) -(2.7.19), and gives the following result

d dt E p (u δ a , u δ b , v δ ) = I p di f f + I p rea + I p f ast,δ ,
with I p di f f and I p rea as in (2.7.17) and (2.7.18), respectively, while I p f ast,δ is given by

I p f ast,δ = 1 ε Ω (∂ 1 h p -∂ 2 h p ) Q δ dx = - 1 ε Ω [φ(bu δ b + dv δ ) u δ b ] p-1 -[ψ(au δ a + cv δ ) u δ a ] p-1 × φ(bu δ b + dv δ ) u δ b 1 + δ φ(bu δ b + dv δ ) u δ b - ψ(au δ a + cv δ ) u δ a 1 + δ ψ(au δ a + cv δ ) u δ a dx.
Moreover, as both functions x → x p-1 and x → x 1+δ x are increasing on R + , it holds, for all δ > 0 and p ≥ 1, I p f ast,δ ≤ 0 . As a consequence, we see that the proof of Energy Lemma 2.7.1 can be reproduced without any changes, yielding the estimates for any T > 0

||u δ a || L 3+α (Ω T ) ≤ C T , ||u δ b || L 3+β (Ω T ) ≤ C T , (2.8.3) 
where C T does not depend on δ. Therefore, up to the extraction of subsequences, we see that, as δ → 0,

u δ a u a , weakly in L 3+α (Ω T ), u δ b u b , weakly in L 3+β (Ω T ), v δ v , weakly * in L ∞ (Ω T ).
(2.8.4)

Furthermore, we observe that thanks to the growing behavior of φ and ψ (see (H1)), there exists C > 0, not depending on δ > 0, such that

φ(bu δ b + dv δ ) u δ b 1 + δ φ(bu δ b + dv δ ) u δ b + ψ(au δ a + cv δ ) u δ a 1 + δ ψ(au δ a + cv δ ) u δ a ≤ C 1 + (u δ a ) 1+α + (u δ b ) 1+β . (2.8.5) 
Thus, the estimate (2.8.3) gives

||Q δ (u δ a , u δ b , v δ )|| L 3+β 1+β (Ω T ) ≤ C T . (2.8.6) 
As a consequence, thanks to the properties of the heat equation, we see that, for all T > 0, u δ a , u δ b and v δ converge in fact a.e. on Ω T , and that (u δ a , u δ b , v δ ) is nonnegative (for each component).

Using the estimates (2.8.3), (2.8.6), we get on the one hand

f a (u δ a , u δ b , v δ ) → f a (u a , u b , v) and f b (u δ a , u δ b , v δ ) → f b (u a , u b , v) in L 1 (Ω T ) , (2.8.7) 
and on the other hand

Q δ (u δ a , u δ b , v δ ) → Q(u a , u b , v) in L 1 (Ω T ) . (2.8.8) 
Finally, since the linear parabolic operator passes to the limit (in the sense of distributions), we can pass to the limit as δ → 0 in all the terms of the (very weak form of the) approximated system (2.8.1), (2.8.2) and get a very weak solution to the mesoscopic system (2.1.1) -(2.1.6).

We now show, by a bootstrap technique, that this very weak solution is in fact a classical solution. Indeed, we first observe that, thanks to the growing behavior (2.8.5) of Q, if the solution satisfies, for r ≥ 1 + β,

u δ a L r (Ω T ) + u δ b L r (Ω T ) ≤ C T , one has that ||Q(u a , u b , v)|| L r 1+β (Ω T ) ≤ C T .
Then, thanks to the semigroup properties of the heat equation (cf. [START_REF] Desvillettes | Existence and regularity for a chemotaxis model involved in the modeling of multiple sclerosis[END_REF]), it holds that u δ a , u δ b ∈ L s (Ω T ) for any s ≥ 1 such that 1 s > 1+β r -2 2+N (note that the reaction term does not lead to extra constraints since it is bounded from above).

We can now perform the bootstrap, starting from the estimate (2.8.3) (for the first step of the bootstrap, we use moreover the fact that 3+α 1+α ≥ 3+β 1+β , when α ≤ β). Defining by induction

S n+1 := (1 + β) S n - 2 2 + N , S 0 := 1 3 + β ,
we see that S n becomes strictly negative (for the first time) for some n > 0 under the condition β ≤ 6/N, guaranteed by (H3). Stopping the induction for this n, we get that u δ a , u δ b ∈ L ∞ (Ω T ). Extra regularity leading to unique positive (for all components) classical solutions is then easily deduced.

In order to conclude, we observe that all the convergence results obtained so far have been performed on [0, T ], for any arbitrary T > 0. Since (u δ a , u δ b , v δ ) is defined on [0, +∞), by extracting subsequences, these arguments can be replicated in the time intervals [0, 2T ], [0, 3T ], and so on. Then by Cantor's diagonal argument, the convergences (2.8.4), (2.8.7), (2.8.8) are verified in (0, +∞) × Ω.

The existence result to the macroscopic system

Proof of Theorem 2.5.2. The proof is divided in four steps and uses compactness arguments to identify the limits along subsequences. The first and second step focus on the identification of the limit (as ε → 0) of the densities v ε and u ε u ε a + u ε b , a.e. in Ω T , respectively. In the third step we obtain the a.e. convergence of the subpopulation densities u ε a , u ε b and we identify the obtained limit as the unique solution to the nonlinear system (2.1.9). Thus, the obtained convergence result is extended globally in time by a diagonal argument. Finally, in the fourth step we take the limit as ε tends to zero in the very weak formulation of the system satisfied by

u ε = u ε a + u ε b and v ε .
First step. Let T > 0 be arbitrarily fixed. Thanks to the control of the density v ε given in Lemmas 2.6.1, 2.6.2 and to the boundedness of

u ε a + u ε b in L 2 (Ω T ) obtained in Lemma 2.6.3, we have that (v ε ) ε is bounded in L 4 (0, T ; W 1,4 (Ω)) and (∂ t v ε ) ε is bounded in L 2 ((0, T ); L 2 (Ω)).
Therefore, Rellich's Theorem implies the existence of a subsequence, still denoted v ε , and v ∈ L 4 (Ω T ) such that, as ε → 0,

v ε (t, x) -→ v(t, x) ,
a.e. in Ω T .

(2.9.1)

Moreover, we have ∇v ε ∇v weakly in L 4 (Ω T ), and by Lemmas 2.6.1, 2.6.2 again, v is nonnegative and belongs to L ∞ (Ω T ), whereas ∇v lies in L 4 (Ω T ).

Second step. The parabolic equation satisfied by the density

u ε u ε a + u ε b is ∂ t u ε = ∆(d a u ε a + d b u ε b ) + f a (u ε a ) + f b (u ε b , v ε ) . (2.9.2) 
Thanks to Lemma 2.7.1, we have that (u ε a ) ε , (u ε b ) ε are uniformly bounded in L 2 (0, T ; H 1 (Ω))∩ L 3 (Ω T ), so that the reaction term in (2.9.2) is uniformly bounded in L 3/2 (Ω T ). Then (∂ t (u ε a + u ε b )) ε is uniformly bounded in L 3/2 (0, T ; W -1,3/2 (Ω)). Thus, Aubin-Lions' lemma (cf. [START_REF] Moussa | Some variants of the classical aubin-lions lemma[END_REF]) yields a subsequence (still denoted u ε ), and a function u ≥ 0, u bounded in L 3 (Ω T ), such that, as ε → 0,

u ε (t, x) = u ε a (t, x) + u ε b (t, x) -→ u(t, x) , a. e. in Ω T , (2.9.3) 
where the nonnegativity of u follows from that of u ε . Furthermore, we have

∇u ε ∇u weakly in L 2 (Ω T ).
Third step. The energy estimate (2.7.9) yields the estimate

φ bu ε b + dv ε u ε b -ψ au ε a + cv ε u ε a L 2 (Ω T ) ≤ √ ε C T . Therefore, Q(u ε a , u ε b , v ε ) converges to zero in L 2 (Ω T )
, as ε → 0, and (up to extraction of a subsequence)

Q(u ε a , u ε b , v ε ) = φ bu ε b + dv ε u ε b -ψ au ε a + cv ε u ε a -→ 0, a.e. in Ω T . (2.9.4) 
It remains to prove the existence of the a.e. limit of subsequences of (u ε a ) ε , (u ε b ) ε and to verify that this limit is the unique solution to (2.1.9), a.e. in Ω T , corresponding to the functions u and v obtained in (2.9.3) and (2.9.1), respectively.

Let u * a (u ε , v ε ), u * b (u ε , v ε
) be the unique solution to (2.1.9), corresponding to (u ε , v ε ). Then, we have

Q(u ε a , u ε b , v ε ) = Q(u ε a , u ε b , v ε ) -Q(u * a (u ε , v ε ), u * b (u ε , v ε ), v ε ) I ε 1 + I ε 2 ,
where

I ε 1 = φ bu ε b + dv ε u ε b -φ bu * b (u ε , v ε ) + dv ε u * b (u ε , v ε ), and 
I ε 2 = ψ au * a (u ε , v ε ) + cv ε u * a (u ε , v ε ) -ψ au ε a + cv ε u ε a . Then, whatever is B ≥ 0 and v ε ≥ 0, there exists C(u ε b , u ε , v ε ) > 0 such that I ε 1 = C(u ε b , u ε , v ε ) u ε b -u * b (u ε , v ε ) . (2.9.5) 
Concerning I ε 2 , as A > 0, we have for all u a , v ≥ 0

∂ u a (ψ(au a + cv)u a ) = ψ(au a + cv) + ψ (au a + cv)au a ≥ A α > 0,
so that, whatever is v ε ≥ 0, and for some ζ ≥ 0,

I ε 2 = ∂ u a ψ(au a + cv)u a (ζ, v ε ) u * a (u ε , v ε ) -u ε a = ∂ u a ψ(au a + cv)u a (ζ, v ε ) u ε b -u * b (u ε , v ε ) .
(2.9.6) Thus, by (2.9.5), (2.9.6) we have

|Q(u ε a , u ε b , v ε )| = |I ε 1 + I ε 2 | = C(u ε b , u ε , v ε ) + ∂ u a ψ(au a + cv)u a (ζ, v ε ) |u ε b -u * b (u ε , v ε )| ≥ A α |u ε b -u * b (u ε , v ε )|.
Therefore, by (2.9.4) we get

|u ε b -u * b (u ε , v ε )| → 0 as ε → 0, a.e.
in Ω T . Finally, the proved convergence (2.9.3) and (2.9.1) and the continuity of u * b (u, v) with respect to its arguments, yields the desired result, i.e.

u ε b → u * b (u, v) , u ε a = u ε -u ε b → u * a (u, v) , ε → 0 , a.e. in Ω T .
In order to conclude, we observe that all the a.e. convergence results obtained so far have been performed on [0, T ], for any arbitrary T > 0. Since (u ε a , u ε b , v ε ) is defined on [0, +∞), by extracting subsequences, these arguments can be replicated in the time intervals [0, 2T ], [0, 3T ], and so on. Then by Cantor's diagonal argument, the convergences (2.9.1), (2.9.3) and (2.9.4), and the convergence of the pair (u ε a , u ε b ) towards the solution to (2.1.9) are verified a.e. in (0, +∞) × Ω.

Fourth step. We will prove now that (u, v) is a very weak solution to (2.1.7) -(2.1.6), in the sense of Theorem 2.5.2. For this purpose, let us consider two test functions

ξ 1 , ξ 2 in C 2 c [0, +∞) × Ω , satisfying ∇ξ 1 • σ = ∇ξ 2 • σ = 0, on [0, ∞) × ∂Ω.
Multiplying by ξ 1 the equation satisfied by u ε a + u ε b and the third equation of (2.1.1) by ξ 2 and integrating over (0, +∞) × Ω, we get

- ∞ 0 Ω (∂ t ξ 1 ) (u ε a + u ε b ) dx dt - Ω ξ 1 (0) u in a + u in b dx = ∞ 0 Ω ∆ξ 1 d a u ε a + d b u ε b dx dt + ∞ 0 Ω ξ 1 ( f a (u ε a , v ε ) + f b (u ε b , v ε ))dx dt , (2.9.7) 
and

- ∞ 0 Ω (∂ t ξ 2 ) v ε dx dt - Ω ξ 2 (0) v in dx = d v ∞ 0 Ω ∆ξ 2 v ε dx dt + ∞ 0 Ω ξ 2 f v (u ε b , v ε ) dx dt .
(2.9.8)

Concerning the equation (2.9.7), the convergence results obtained in the previous steps and the estimates of Lemma 2.6.3 allow us to pass to the limit as ε → 0, in all the terms of the equation, using Lebesgue's dominated convergence theorem, thus obtaining (2.5.1).

The same conclusion holds for equation (2.9.8). Indeed, the boundedness of v ε and its convergence (2.9.1), together with the estimates in Lemma 2.6.3, allow us to pass to the limit in all terms of (2.9.8), using Lebesgue's dominated convergence theorem again, thus obtaining (2.5.2).

Finally, using the weak lower semicontinuity property of the L p norm for p ∈ (1, +∞], the obtained limit v verifies the estimates shown in Lemmas 2.6.1, 2.6.2, whereas the estimates in Lemma 2.7.1 give the announced regularity of u u * a (u, v) + u * b (u, v). More precisely, in (2.7.9), the uniform control of E 2 (u ε a , u ε b , v ε )(T ) gives the boundedness of u in L ∞ 0, T ; L 2+α (Ω) while the one of u ε a L 3+α (Ω T ) and of u ε b L 3+β (Ω T ) gives the boundedness of u in L 3+α (Ω T ), since 3 + α = min{3 + α, 3 + β}. Moreover, estimates (2.7.7) and (2.7.8) imply that ∇u lies in L 2 (Ω T ). Therefore, we conclude that u, v satisfy (2.1.7) -(2.1.13), in the sense of Theorem 2.5.2.

Chapter 3

Existence and uniqueness of strong solutions for a class of triangular cross-diffusion systems

Introduction and main result

This chapter is devoted to the analysis of a class of triangular cross-diffusion systems where the unknowns u = u(t, x) and v = v(t, x) represent the densities of two populations, the nonlinear diffusion term is modelled by the diffusivity function A and the reaction functions generalize the Lotka-Volterra competition interactions that we considered in Chapter 1, 2. From now on, we denote Ω T (0, T ) × Ω where T > 0 is fixed and Ω is a smooth (say of class C ∞ ) bounded open set of R N , N ≥ 1. The system writes as

       ∂ t u = ∆ A(u, v) + u f (u, v), on Ω T , ∂ t v = d v ∆v + vg(u, v), on Ω T , (3.1.1) 
where d v > 0 is a diffusion coefficient. We endow the system (3.1.1) with the zero flux boundary conditions

∇ A(u, v) • σ = ∇v • σ = 0, on (0, T ) × ∂Ω, (3.1.2) 
and the nonnegative initial data

u(0, x) = u in (x) ≥ 0, v(0, x) = v in (x) ≥ 0, x ∈ Ω. (3.1.3) 
The hypothesis that we present below concern the regularity and the monotonicity of A and the regularity of the reaction functions. The diffusivity function A is such that

A ∈ C 2 (R 2 + , R + ) and A(0, v) = 0, for all v ≥ 0, (D1) 
there exist a 0 , a 1 , a 2 > 0 such that for all u, v ≥ 0,

0 < a 0 ≤ ∂ 1 A(u, v) ≤ a 1 and |∂ 2 A(u, v)| ≤ a 2 , (D2) 
and there exists a 3 > 0 such that for all u, v ≥ 0,

|∂ 12 A(u, v)| ≤ a 3 . (D3)
and by the L ∞ -boundedness of B in (3.1.4), we get for all a > 0 and v ≥ 0 0 < 1

a 1 ≤ U(a, v) a ≤ 1 a 0 . (3.1.17) 
Moreover by (D1), the implicit function theorem guarantees the C 1 character of U with for all a, v ≥ 0 1

a 1 ≤ ∂ 1 U(a, v) = ∂ 1 A U(a, v), v -1 = 1 µ(a, v) ≤ 1 a 0 , (3.1.18) 
using (3.1.13), (3.1.16), and

∂ 2 U(a, v) = - ∂ 2 A U(a, v), v ∂ 1 A U(a, v), v = - ∂ 2 A U(a, v), v µ(a, v) , (3.1.19) 
with

|∂ 2 U(a, v)| ≤ a 2 a 0 . Remark 3.2.
We observe that the function (a, v)

→ U(a,v) a is C 0 (R 2 + ). Indeed from (3.1.10), the implicit function theorem gives (a, v) → U(a, v) in C 1 (R 2 +
) by the regularity of A in (D1), and thus (a, v) → U(a,v) a in C 1 for all a > 0 and v ≥ 0. We conclude by proving that the function (a, v) → U(a,v) a can be continuously extended at a = 0, for any v ≥ 0. Indeed, for any v ≥ 0 it holds

U(a, v) = 1 0 ∂ 1 U(θa, v)a dθ = a 1 0 ∂ 1 U(θa, v)dθ, where (a, v) → 1 0 ∂ 1 U(θa, v) dθ clearly belongs to C 0 (R 2 + ).
The strategy of proof of the existence of solutions to (3.1.12) is based on a fixed point argument. In order to do that, we introduce in the following subsection an additional regularization to (3.1.12), concerning the diffusion coefficient µ. We conclude the paragraph with the following remark.

Remark 3.3. The order of the truncation-regularization procedures, used to construct the approximating system (3.1.12) -(3.1.15) on the pair of unknowns (a ε,M , v ε,M ), is fundamental. We outline it in the figure below.

Divergence form Non divergence form

Starting from the cross-diffusion system (3.1.1) in the unknowns u, v and following the continuous arrows in the figure above, we first introduce the truncated-regularized system (3.1.7) in (u ε,M , v ε,M ) and then we use the change of variables (3.1.10) to get (a ε,M , v ε,M ) satisfying (3.1.12). Indeed, this is the approximation used in order to prove the existence of (u, v) : firstly we show the existence of (a ε,M , v ε,M ), then the equivalence with the system satisfied by (u ε,M , v ε,M ) (see Lemma 3.4.2) and finally we take the limit as ε → 0 and M → +∞. On the other hand from the system satisfied by (u, v), following the dotted arrows we could first use the change of variables and then regularise and truncate the obtained system. However, it is not easy to justify the passage back from the (a, v) formulation of the system to the (u, v) formulation of the system, and further estimates for u.

Regularization of the system in non divergence form

Let ε, M > 0 be fixed, we introduce the approximating system below for all δ > 0 (we only indicate the dependence of the unknowns a, v with respect to δ since ε and M are fixed),

             ∂ t a δ = µ(a δ , v δ ) * x ϕ δ ∆a δ + a δ s M (a δ , v δ , ∂ t v δ ), on Ω T , ∂ t v δ = d v ∆v δ + v δ g ε,M (U(a δ , v δ ), v δ ), on Ω T , ∇a δ • σ = ∇v δ • σ = 0, on (0, T ) × ∂Ω, (3.1.20) 
where, slightly abusing notations, µ(a δ , v δ ) is identified to its extension by 0 defined on [0, T ] × R N . Then we denote (ϕ δ ) δ as a standard mollifier. Finally, s M , g ε,M are defined in (3.1.14), (3.1.8) respectively and the nonnegative initial data are defined as in (3.1.15)

a δ (0, x) = a in,ε (x) ≥ 0, v δ (0, x) = v in,ε (x) ≥ 0. (3.1.21)
Sections 3.2 -3.6 aim to show the existence result, stated in Theorem 3.1.1, and are organized as follows: in Section 3.2, we prove the existence of solutions to system (3.1.20), (3.1.21) for any δ, ε, M > 0 fixed (see Proposition 3.2.1). In Section 3.3, we take the limit as δ → 0, for any fixed ε, M > 0 and thus we prove the existence for system (3.1.12) -(3.1.15) (see Proposition 3.3.1). Section 3.4 is devoted to the proof of the equivalence between the system in non divergence form (3.1.12) -(3.1.15) and the original (regularized) system (3.1.7) -(3.1.9). We conclude with some ε, M-uniform a priori estimates in Section 3.5 and with the proof of Theorem 3.1.1 in Section 3.6, by taking the limit as ε → 0, M → +∞.

Existence for the regularized system in non divergence form

The goal of this section is to prove the existence of solutions to (3.1.20), (3.1.21). In all this section, the parameters ε, M > 0 are fixed so that we explicitly indicate only the dependence with respect to δ of the unknowns (a, v). Thus, we state the following result Proposition 3.2.1 (Existence of (a δ , v δ )). We assume (D1), (D2), (D3), (R1) and we consider the initial data (3.1.21). Then, for any δ > 0 there exists a solution (a δ , v δ ) :

Ω T → R 2 + satisfying the system (3.1.20), (3.1.21) in the sense that (i) there exist two constants C(T ), C(M, T ) > 0 independent on δ (and ε) such that v δ L ∞ (Ω T ) ≤ C(T ) and a δ L ∞ (Ω T ) ≤ C(M, T ), (3.2.1) 
(ii) there exist two strictly positive constants C 1 (ε, M, T ), C 2 (ε, M, T ) independent on δ, such that for all i, j = 1, . . . , N and δ > 0

∂ t v δ L ∞ (Ω T ) + ∂ x i x j v δ L ∞ (Ω T ) + ∂ x i v δ L ∞ (Ω T ) ≤ C 1 (ε, M, T ), (3.2.2) 
and

∂ t a δ L 2 (Ω T ) + ∂ x i x j a δ L 2 (Ω T ) + ∂ x i a δ L 4 (Ω T ) ≤ C 2 (ε, M, T ), (3.2.3) 
(iii) the unknowns (a δ , v δ ) satisfy the first two equations of (3.1.20), a.e. in Ω T . Moreover, the boundary conditions in (3.1.20) and the initial conditions (3.1.21) hold in the sense of traces.

The key ingredients of the proof of Proposition 3.2.1 are Schauder's fixed point theorem [START_REF] Evans | Partial differential equations[END_REF] and the following existence result for a linear parabolic equation in a non divergence form, whose proof is presented in Section A.4. Proposition 3.2.2. We consider the following linear parabolic problem

             ∂ t b -γ(t, x)∆b = r(t, x)b, on Ω T , ∇b • σ = 0, on (0, T ) × ∂Ω, b(0, x) = b in (x) ≥ 0, on Ω, (3.2.4) 
where

(i) γ : Ω T → R + , γ lies in W 1,∞ (Ω T )
and there exist two constants γ 0 , γ 1 > 0 s.t.

0 < γ 0 ≤ γ(t, x) ≤ γ 1 , a.e. in Ω T , (3.2.5) 
(ii) r : Ω T → R, r lies in L 2 (Ω T ) and there exists a constant R > 0 s.t.

r(t, x) ≤ R a.e. in Ω T , (3.2.6) 
(iii) b in : Ω → R + is s.t b in ∈ L ∞ ∩ H 1 (Ω). (3.2.7)
Then, there exists a nonnegative solution b in the sense that

(i) for all t ∈ (0, T ), b satisfies b(t, •) L ∞ (Ω) ≤ b in L ∞ (Ω) e t 0 sup x∈Ω r(s,•)ds , (3.2.8) 
so that b L ∞ (Ω T ) ≤ b in L ∞ (Ω) e RT , (3.2.9) 
(ii) there exist two constants C 1 , C 2 > 0 such that ∂ t b 2 L 2 (Ω T ) + ∇b 2 L ∞ (0,T ;L 2 (Ω)) + γ 0 ∆b 2 L 2 (Ω T ) ≤ C 1 ∇b in 2 L 2 (Ω) + C 2 rb 2 L 2 (Ω T ) , (3.2.10) 
with 

C 1 2 γ 2 1 γ 0 + 1 and C 2 2 γ 1 γ 0 2 + 1 γ 0 + 2, (iii) 
E L ∞ 0, T ; L 2 (Ω) ,
and its closed bounded convex subset

B Q B L ∞ (Ω T ) (0, Q) + = {w ∈ E s.t. 0 ≤ w ≤ Q},
where Q > 0 is a constant to be determined later. Then, we consider the map

Φ : (a δ , v δ ) ∈ E 2 → (ā δ , vδ ), (3.2.11) 
where vδ satisfies

             ∂ t vδ = d v ∆v δ + vδ g ε,M U(a δ , v δ ), v δ , in Ω T , ∇v δ • σ = 0, in (0, T ) × ∂Ω, vδ (0, x) = v in,ε ≥ 0, in Ω, (3.2.12) 
and āδ solves

             ∂ t āδ = µ(a δ , vδ ) * x ϕ δ ∆ā δ + āδ s M (a δ , vδ , ∂ t vδ ), in Ω T ∇ā δ • σ = 0, in (0, T ) × ∂Ω, āδ (0, x) = a in,ε ≥ 0, in Ω. (3.2.13) 
We shall underline the key role of the truncations and the regularizations in (3.2.12), (3.2.13) that allow to satisfy the assumptions of Schauder's fixed point theorem. Indeed, the truncationregularization of the reaction term in (3.2.12) is fundamental to improve the regularity of the solution vδ of the linear parabolic equation, namely to prove the L ∞ -boundedness of ∂ t vδ (see Lemma 3.2.4). This regularity result is crucial to get the L ∞ -boundedness of s M which in turn implies the L ∞ -bound of āδ in (3.2.27) (note that s M depends on ∂ t vδ ). Finally, the L ∞ -boundedness of āδ and the regularization of µ are strongly used to prove the continuity of the map Φ in Subsection 3.2.3.

The rest of the proof aims to show that the map Φ satisfies the hypothesis of Schauder's fixed point theorem (see Subsections 3.2.1, 3.2.2, 3.2.3 ).

Well-posedness of the map Φ

In this paragraph, we prove that the map Φ is well defined and satisfies the property below. 

.13).

There exists a constant Q > 0 depending on ε, M, T, C g such that the following inclusion holds,

Φ(B Q × B Q ) ⊂ B Q × B Q .
• The equation satisfied by vδ By Proposition 3.2.2 the problem (3.2.12), being a linear heat equation, admits a unique solution so that vδ is well-defined. Moreover, the nonnegativity of vδ follows from the nonnegativity of the initial datum v in,ε (see (A.5.1)). Finally vδ satisfies the following estimates (i) similarly as in Subsection A.4.2, it holds for all δ > 0

vδ L ∞ (Ω T ) ≤ e C g T v in L ∞ (Ω) , (3.2.14) 
(ii) for all p ∈ (1, +∞) there exists a constant C(p, M, T ) > 0 such that for all δ, ε > 0 and i, j = 1, . . . , N [58] . Thus, by integrating in time over (0, T ) we get ). There exists a strictly positive constant C(ε, M, T ) not depending on δ, such that for all p ∈ (1, +∞) it holds for all i, j = 1, . . . , N,

∂ t vδ L p (Ω T ) + ∂ x i ,x j vδ L p (Ω T ) ≤ C(p, T ) vδ g ε,M L p (Ω T ) + v in,ε L p (Ω) ≤ C(p, M, T ) 1 + v in L ∞ (Ω) , (3.2 
∇v δ p L p (Ω T ) ≤ C(p, M) ∇∇v δ p /2 L p (Ω T ) vδ p /2 L ∞ (0,T,L p (Ω)) + vδ p L p (Ω T ) ≤ C(p, M, T ). ( 3 
∂ 2 t vδ L p (Ω T ) + ∂ x i ∂ t vδ L p (Ω T ) + ∂ t vδ L ∞ (Ω T ) ≤ C(ε, M, T ), (3.2.17) 
and

∂ x i vδ L ∞ (Ω T ) + ∂ x i x j vδ L ∞ (Ω T ) ≤ C(ε, M, T ). (3.2.18)
Proof.

The key ingredient of the proof is the following continuous Sobolev embedding [39] ) for all p ∈ (1, +∞) and for a given ε, M, by the maximal regularity and the Gagliardo-Nirenberg inequality, respectively. Finally, it remains to prove that ∂ x i ,x j ,x l vδ is bounded in L p (Ω T ) for all i, j, l = 1, . . . , N. In order to do that, we take the (weak) space derivative in the equation (3.2.12), to get

W k,p (Ω T ) ⊂ C k-1-N+1 p ,γ (Ω T ), ( 3 
∂ x i ∂ t vδ -d v ∂ x i ∆v δ = (∂ x i vδ )g ε,M + vδ ˇ g M * t,x ∂ x i ϕ ε . (3.2.24)
Therefore using (3.2.14), (3.2.16), the maximal regularity implies

∂ x i ,x j ,x l vδ L p (Ω T ) ≤ C(ε, M, T ),
for all i, j, l = 1, . . . , N, so that vδ bounded in W 

āδ L ∞ (Ω T ) ≤ e T S (ε,M,T ) a in,ε L ∞ (Ω) , (3.2.27) 
and

∂ t āδ 2 L 2 (Ω T ) + ∇ā δ 2 L ∞ (0,T ;L 2 (Ω)) + a 0 ∆ā δ 2 L 2 (Ω T ) ≤ ∇a in,ε 2 
L 2 (Ω) + C s M āδ 2 L 2 (Ω T ) , (3.2.28) 
where the constant C > 0 depends on a 0 , a 1 , ε. 

Q e T max{C g , S (ε,M,T )} max a in,ε 2 
L ∞ (Ω) , v in,ε 2 
L ∞ (Ω) . (3.2.29)

Compactness of the map Φ

• The compactness of vδ The compactness of vδ in E follows from (3.2.14), (3.2.15) using the Rellich-Kondrakov theorem [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF].

• The compactness of āδ In order to prove the compactness of āδ in E, we use the Aubin-Lions Lemma [START_REF] Moussa | Some variants of the classical aubin-lions lemma[END_REF], stating that

W = w ∈ L ∞ 0, T ; H 1 (Ω) | ∂ t w ∈ L 2 0, T ; (H 1 ) (Ω)
is compactly embedded into L ∞ 0, T ; L 2 (Ω) . Then, (3.2.27), (3.2.28) allow to conclude.

Continuity of the map Φ

The aim of this paragraph is to prove the continuity of Φ : E 2 → E 2 . In order to do that, we consider any sequence (a n ) n , (v n ) n ∈ E such that a n → a in E and v n → v in E, as n → +∞.

For the sake of simplicity, we neglect in this paragraph the subscript δ in a δ , v δ , āδ , vδ and the notations of the time-space extension of g M . Hence, we introduce the notations below for all n ∈ N,

µ n µ(a n , vn ), µ µ(a, v), s M,n s M (a n , vn , ∂ t vn ), s M s M (a, v, ∂ t v), g M,n g M (U(a n , v n ), v n ),
and vn , ān satisfy respectively

∂ t vn = d v ∆v n + vn (g M,n * t,x ϕ ε ), ∇v n| (0,T )×∂Ω • σ = 0, vn (0, x) = v in,ε (x),
and

∂ t ān = (µ n * x ϕ δ )∆ā n + ān s M,n , ∇ā n | (0,T )×∂Ω • σ = 0, ān (0, x) = a in,ε (x).
• The equation satisfied by vnv

We multiply by vnv the equation satisfied by vnv and we integrate on Ω. Hence, it holds 1 2

d dt Ω (v n -v) 2 dx + d v Ω |∇(v n -v)| 2 dx = Ω vn g M,n * t,x ϕ ε -v g M * t,x ϕ ε (v n -v)dx I rea .
Then, we get

I rea = Ω (g M,n * t,x ϕ ε )(v n -v) 2 dx + Ω v (g M,n -g M ) * t,x ϕ ε (v n -v)dx ≤ g M,n * t,x ϕ ε L ∞ (Ω) + 1 2 v 2 L ∞ (Ω) vn -v 2 L 2 (Ω) + 1 2 (g M,n -g M ) * t,x ϕ ε 2 L 2 (Ω) .
Therefore, we conclude for all t ∈ (0, T )

d dt (v n -v)(t) 2 L 2 (Ω) ≤ 2 (g M,n * t,x ϕ ε )(t) L ∞ (Ω) + v(t) 2 L ∞ (Ω) (v n -v)(t) 2 L 2 (Ω) + (g M,n -g M ) * t,x ϕ ε (t) 2 L 2 (Ω) . (3.2.30)
By denoting for the sake of simplicity

α(t) 2 (g M,n * t,x ϕ ε )(t) L ∞ (Ω) + v(t) 2 L ∞ (Ω) ≥ 0,
for all t ∈ (0, T ), and using Gronwall's lemma in (3.2.30), we get

(v n -v)(t) 2 L 2 (Ω) ≤ e t 0 α(s)ds (v n -v)(0) 2 L 2 (Ω) + e t 0 α(s)ds t 0 (g M,n -g M ) * s,x ϕ ε (s) 2 L 2 (Ω) e -s 0 α(z)dz ds ≤ e t α L ∞ (0,t) (v n -v)(0) 2 L 2 (Ω) + e t 0 α(s)ds (g M,n -g M ) * t,x ϕ ε 2 L 2 (Ω t ) ≤ e T α L ∞ (0,T ) (v n -v)(0) 2 L 2 (Ω) + (g M,n -g M ) * t,x ϕ ε 2 L 2 (Ω T ) , (3.2.31) 
with

α L ∞ (0,T ) ≤ 2 g M,n * t,x ϕ ε L ∞ (Ω T ) + v 2 L ∞ (Ω T ) ≤ 2 g M,n L ∞ (Ω T ) ϕ ε L 1 (R N+1 ) + v 2 L ∞ (Ω T ) ≤ 2 sup n∈N g M,n L ∞ (Ω T ) + v 2 L ∞ (Ω T ) C(M, T ).
Thus, taking the supremum in time in the l.h.s. of (3.2.31) we obtain

vn -v 2 L ∞ (0,T ;L 2 (Ω)) ≤ e TC(M,T ) (v n -v)(0) 2 L 2 (Ω) + (g M,n -g M ) * t,x ϕ ε 2 L 2 (Ω T ) , = e TC(M,T ) (g M,n -g M ) * t,x ϕ ε 2 L 2 (Ω T ) , (3.2.32) 
where the second term in (3.2.32) is estimated as follows

(g M,n -g M ) * t,x ϕ ε 2 L 2 (Ω T ) ≤ g M,n -g M 2 L 2 (R N+1 ) ϕ ε 2 L 1 (R N+1 ) = g M,n -g M 2 L 2 (Ω T ) ≤ C 1 U(a n , v n ) -U(a, v) 2 L 2 (Ω T ) + v n -v 2 L 2 (Ω T ) , (3.2.33) 
with

C 1 = max{|∂ 1 g M | 2 , |∂ 2 g M | 2 } by (R1). Recalling that U is of class C 1 (R 2 + ), (3.2.33) becomes (g M,n -g M ) * t,x ϕ ε 2 L 2 (Ω T ) ≤ C 2 a n -a 2 L 2 (Ω T ) + v n -v 2 L 2 (Ω T ) ,
with

C 2 = C 1 max{|∂ 1 U| 2 , |∂ 2 U| 2 + 1}. Finally, (3.2.32) becomes vn -v 2 L ∞ (0,T ;L 2 (Ω)) ≤ C 2 e TC(M,T ) a n -a 2 L 2 (Ω T ) + v n -v 2 L 2 (Ω T ) , (3.2.34) 
which converges to zero in L ∞ 0, T ; L 2 (Ω) , as n → ∞.

• The equation satisfied by ānā

We multiply by ānā the equation satisfied by ānā and we integrate on Ω. Thus it holds 1 2

d dt Ω (ā n -ā) 2 dx = Ω (µ n * x ϕ δ )∆ā n -(µ * x ϕ δ )∆ā (ā n -ā)dx + Ω ān s M,n -ās M (ā n -ā)dx I di f f + I rea . (3.2.35)
Firstly, we observe that the diffusion coefficient µ n * x ϕ δ satisfies (3.1.16), uniformly in n, δ, for all t ∈ [0, T ] and a.e. in Ω

0 < a 0 = a 0 ϕ δ L 1 (R N ) ≤ µ n * x ϕ δ (t, x) ≤ a 1 ϕ δ L 1 (R N ) = a 1 . (3.2.36)
We additionally remark that (3.2.27) and the L 2 -boundedness of ∆ā in (3.2.28) imply the L 4 (Ω T ) control of ∇ā, by the Gagliardo-Nirenberg inequality. Indeed, there exists a constant C(T ) > 0 such that

∇ā L 4 (Ω T ) ≤ C(T ) ∇∇ā 1/2 L 2 (Ω T ) ā 1/2 L ∞ (Ω T ) + ā L ∞ (Ω T ) . (3.2.37)
Then we compute

I di f f = Ω (µ n * x ϕ δ )∆(ā n -ā)(ā n -ā)dx + Ω (µ n -µ) * x ϕ δ ∆ā(ā n -ā)dx = - Ω ∇(µ n * x ϕ δ ) • ∇(ā n -ā)(ā n -ā)dx - Ω (µ n * x ϕ δ )|∇(ā n -ā)| 2 dx - Ω ∇ (µ n -µ) * x ϕ δ • ∇ā (ā n -ā)dx - Ω (µ n -µ) * x ϕ δ ∇ā • ∇(ā n -ā)dx ≤ 1 4 Ω (µ n * x ϕ δ )|∇(ā n -ā)| 2 dx + 1 a 0 Ω |∇(µ n * x ϕ δ )| 2 |ā n -ā| 2 dx - Ω (µ n * x ϕ δ )|∇(ā n -ā)| 2 dx + 1 2 Ω |(µ n -µ) * x ∇(ϕ δ )| 2 |∇ā| 2 dx + 1 2 Ω |ā n -ā| 2 dx + 1 4 Ω (µ n * x ϕ δ )|∇(ā n -ā)| 2 dx + 1 a 0 Ω |(µ n -µ) * x ϕ δ | 2 |∇ā| 2 dx = - 1 2 Ω (µ n * x ϕ δ )|∇(ā n -ā)| 2 dx + 1 a 0 ∇ϕ δ 2 L 1 (Ω) µ n 2 L ∞ (Ω) ān -ā 2 L 2 (Ω) + 1 2 ∇ā 2 L 4 (Ω) (µ n -µ) * x ∇ϕ δ 2 L 4 (Ω) + 1 2 ān -ā 2 L 2 (Ω) + 1 a 0 ∇ā 2 L 4 (Ω) (µ n -µ) * x ϕ δ 2 L 4 (Ω) ≤ 1 a 0 ∇ϕ δ 2 L 1 (Ω) µ n 2 L ∞ (Ω) + 1 2 ān -ā 2 L 2 (Ω) + 1 2 ∇ā 2 L 4 (Ω) ∇ϕ δ 2 L 4/3 (Ω) µ n -µ 2 L 2 (Ω) + 1 a 0 ∇ā 2 L 4 (Ω) ϕ δ 2 L 4/3 (Ω) µ n -µ 2 L 2 (Ω)
, by Young's convolution inequality and Hölder's inequality.

Concerning the reaction term in (3.2.35), we have

I rea = Ω s M,n (ā n -ā) 2 dx + Ω ā(s M,n -s M )(ā n -ā)dx ≤ s M,n L ∞ (Ω) + 1 2 ā L ∞ (Ω) ān -ā 2 L 2 (Ω) + 1 2 ā L ∞ (Ω) s M,n -s M 2 L 2 (Ω)
. Therefore, by gathering the obtained estimates we end up with

d dt ān -ā 2 L 2 (Ω) ≤ C 1 µ n -µ 2 L 2 (Ω) + C 2 ān -ā 2 L 2 (Ω) + ā L ∞ (Ω) s M,n -s M 2 L 2 (Ω) , (3.2 

.38) with

C 1 = ∇ā 2 L 4 (Ω) ∇ϕ δ 2 L 4/3 (Ω) + 2 a 0 ϕ δ 2 L 4/3 (Ω) , C 2 = 2 a 2 1 a 0 ∇ϕ δ 2 L 1 (Ω) + 1 + 2S (ε, M, T ) + ā L ∞ (Ω)
. Therefore, by Gronwall's Lemma and taking the supremum in time for t ∈ (0, T ) we get ānā 2 

L ∞ 0,T ;L 2 (Ω) ≤ C T (ā n -ā)(0) 2 L 2 (Ω) + µ n -µ 2 L 2 (Ω T ) + s M,n -s M 2 L 2 (Ω T ) . ( 3 
µ(a δ , v δ ) → µ(a, v), strongly in L p (Ω T ), ∀p < ∞, as δ → 0, (3.3.4) 
implying the strong L p convergence below µ(a δ , v δ ) * x ϕ δ → µ(a, v), strongly in L p (Ω T ), ∀p < ∞, as δ → 0.

(3.3.5) Indeed, from (3.3.4) we have µ(a, v) ∈ L p (Ω T ) and using the regularization by convolution, it holds (abusing notations, we denote by µ(a, v) the extended by zero function in the space variable x of the function defined in (3.1.13))

µ(a, v) * x ϕ δ → µ(a, v), strongly in L p (Ω T ), ∀p < ∞, as δ → 0, (3.3.6) 
then, we compute 

µ(a δ , v δ ) * x ϕ δ -µ(a, v) L p (Ω T ) ≤ µ(a δ , v δ ) -µ(a, v) * x ϕ δ L p (Ω T ) + µ(a, v) * x ϕ δ -µ(a, v) L p (Ω T ) ≤ ϕ δ L 1 (R N ) µ(a δ , v δ ) -µ(a, v) L p (Ω T ) + µ(a, v) * x ϕ δ -µ(a, v) L p (Ω T ) = µ(a δ , v δ ) -µ(a, v) L p (Ω T ) + µ(a, v) * x ϕ δ -µ(a, v) L p (Ω T ) , (3.3 
s M (a δ , v δ , ∂ t v δ ) = U(a δ , v δ ) a δ f M U(a δ , v δ ), v δ ∂ 1 A(U(a δ , v δ ), v δ ) + U(a δ , v δ ) a δ ∂ 2 B U(a δ , v δ ), v δ ∂ t v δ I δ + II δ . (3.3.9)
Since (a, v) → U(a,v) a , ∂ 1 A and f M are C 0 (R 2 + ) functions (see Remark 3.2), then it holds by (3.3.1)

U(a δ , v δ ) a δ → U(a, v) a , a.e. in Ω T , ∂ 1 A U(a δ , v δ ), v δ → ∂ 1 A U(a, v), v , a.e. in Ω T , and 
f M (U(a δ , v δ ), v δ ) → f M (U(a, v), v), a.e. in Ω T ,
and thus

I δ → U(a, v) a f M (U(a, v), v)∂ 1 A U(a, v), v , a.e. in Ω T .
In addition, (a, v) → U(a,v) a , f M and ∂ 1 A are δ-uniformly bounded by (3.1.17), (D2), implying

I δ L ∞ (Ω T ) ≤ C, (3.3.10) 
where C > 0 does not depend on δ. Therefore, by Proposition A.6.1 we end up with

I δ -→ U(a, v) a f M U(a, v), v ∂ 1 A(U(a, v), v), strongly in L p (Ω T ), for all p < ∞, (3.3.11) 
in particular, weakly in L p (Ω T ), for all p < ∞. Concerning the second term in (3.3.9), from the continuity of (a, v) → U a , U, ∂ 2 B, we obtain

U(a δ , v δ ) a δ ∂ 2 B U(a δ , v δ ), v δ → U(a, v) a ∂ 2 B U(a, v), v ,
a.e. in Ω T , and using (3.1.5), (3.1.17), we get the L ∞ (Ω T ) boundedness below

U(a δ , v δ ) a δ ∂ 2 B U(a δ , v δ ), v δ L ∞ (Ω T ) ≤ C.
Thus, Proposition A.6.1 again implies We assume (D1), (D2), (D3), (R1) and we consider the initial data u in ∈ L 4 ∩ H 1 (Ω), v in ∈ L ∞ ∩ H 3 (Ω) compatible with Neumann boundary condition. Then, for any fixed ε, M > 0 there exists a nonnegative solution (u ε,M , v ε,M ) for the system (3.1.7) -(3.1.9), in the sense that Proof of Lemma 3.4.2.

U(a δ , v δ ) a δ ∂ 2 B(U(a δ , v δ ), v δ ) → U(a, v) a ∂ 2 B(U(a, v), v), strongly in L p (Ω T ), for all p ∈ [1, ∞).
(i) u ε,M ∈ L ∞ (Ω T ), ∂ t u ε,M , ∂ x i ,x j A(u ε,M , v ε,M ) ∈ L 2 (Ω T ), ∂ x i u ε,M ∈ L 4 (Ω T ), (ii) v ε,M , ∂ t v ε,M , ∂ x i ,x j v ε,M , ∂ x i v ε,M ∈ L ∞ (Ω T ), i, j = 1, . . . , N, (iii 
For the sake of simplicity, in this proof we neglect the subscripts ε, M in a ε,M , v ε,M since ε and M are fixed.

For any ε, M fixed, let (a, v) be a solution to (3.1.12) - (3.1.15) given by Proposition 3.3.1. Then, we can find by density a sequence (a

n , v n ) n∈N in C ∞ c (Ω T ) such that a n → a, ∂ t a n → ∂ t a, ∂ x i a n → ∂ x i a, ∂ x i x j a n → ∂ x i x j a, v n → v, ∂ t v n → ∂ t v, ∂ x i v n → ∂ x i v,
strongly in L 2 (Ω T ) for any i, j = 1, . . . , N, as n → +∞.

Then we set u n = U(a n , v n ) and u = U(a, v) and recall that (D2), (3.1.10) imply the C 1 character of U. Hence, we find for any

ξ ∈ C ∞ c (0, T ) × Ω Ω T u∂ t ξdxdt = lim n→∞ Ω T u n ∂ t ξdxdt = lim n→∞ - Ω T ∂ 1 U(a n , v n )∂ t a n + ∂ 2 U(a n , v n )∂ t v n ξdxdt = - Ω T ∂ 1 U(a, v)∂ t a + ∂ 2 U(a, v)∂ t v ξdxdt,
implying that u has the weak time derivative

∂ t u = ∂ 1 U(a, v)∂ t a + ∂ 2 U(a, v)∂ t v, (3.4.1) 
which is bounded in L 2 (Ω T ). Likewise, we find that u has the weak ∂ x i derivative bounded in L 4 (Ω T ) and given by

∂ x i u = ∂ 1 U(a, v)∂ x i a + ∂ 2 U(a, v)∂ x i v, ∀i = 1, . . . N. (3.4.2)
Thus the claimed bounds for ∂ t u and ∂ x i u are shown. Note also that ∂ x i x j A(u, v) = ∂ x i x j a.

Then, since (a.e. in Ω T ) we have

∂ t a -µ∆a = U(a, v) f M U(a, v),v ∂ 1 A(U(a, v), v) + ∂ 2 A U(a, v), v ∂ t v, we see that 1 µ ∂ t a - 1 µ ∂ 2 A∂ t v -∆a = U(a, v) f M U(a, v), v ,
and using (3.4.1) (and

∂ 1 A(u, v) ∂ 1 U(A(u, v), v) = 1)
, we end up with (a.e. in Ω T )

∂ t u -∆(A(u, v)) = u f M (u, v).
Moreover, the trace of ∇a on [0, T ] × ∂Ω is the trace of ∇ A(u, v) , so that the Neumann boundary condition in (3.1.7) is satisfied. The same holds for the initial conditions. Finally, the equation, boundary condition and initial condition related to v are identical in the system satisfied by (a, v) and in the system satisfied by (u, v) (when U(a, v) is replaced by u in the equations).

Proof of Proposition 3.4.1.

It follows as a consequence of Proposition 3.3.1 and identity (3.4.2). In particular, (u ε,M , v ε,M ) satisfies (i), (ii) thanks to the regularity of (a ε,M , v ε,M ) shown in (i), (ii) of Proposition 3.3.1 and identity (3.4.2), using (D2), (3.1.10), (3.1.17).

3.5 ε, M-uniform estimates and ε, M-limit

In Lemma 3.5.1 below, we prove some ε, M-uniform estimates satisfied by (u ε,M , v ε,M ), in order to pass to the limit and show Theorem 3.1.1. Hereafter, we will denote C(T ) as a strictly positive constant which depends on T and may change from line to line in the computations.

Lemma 3.5.1 (ε, M-uniform estimates). Let (u ε,M , v ε,M ) be given by Proposition 3.4.1 and recall that ∇u in ∈ L 2 (Ω). Then, the following estimates hold uniformly in ε and M, (i) there exists a constant C 1 (T ) > 0 such that for all ε, M > 0,

v ε,M L ∞ (Ω T ) ≤ C 1 (T ), (3.5.1) 
(ii) there exists a constant C 2 (T ) > 0 such that for all ε, M > 0,

u ε,M L ∞ (0,T ;L 4 (Ω)) ≤ C 2 (T ), (3.5.2) 
(iii) there exists a constant C 3 (T ) > 0 such that for all i, j = 1, . . . , N and ε, M > 0

∂ t v ε,M L 4 (Ω T ) + ∂ x i x j v ε,M L 4 (Ω T ) + ∂ x i v ε,M L 8 (Ω T ) ≤ C 3 (T ), (3.5.3) and ∂ x i v ε,M L ∞ (0,T ;L 2 (Ω)) ≤ C 3 (T ), (3.5.4) 
(iv) there exists a constant C 4 (T ) > 0 such that for all i, j = 1, . . . , N and ε, M > 0

∂ t u ε,M L 2 (Ω T ) + ∂ x i u ε,M L ∞ (0,T ;L 2 (Ω)) + ∂ x i (A(u ε,M , v ε,M )) L ∞ (0,T ;L 2 (Ω)) + ∂ x i x j (A(u ε,M , v ε,M )) L 2 (Ω T ) ≤ C 4 (T ), (3.5.5) 
(v) there exists a constant C 5 (T ) > 0 such that (ii) Firstly, we prove the L 2 (Ω T ) boundedness of ∇v ε,M , implying the L 2 (Ω T ) boundedness of u ε,M , uniformly in ε, M. Then, we get (3.5.2).

∂ t v ε,M L 2 (0,T ;H 2 (Ω))∩H 1 (0,T ;L 2 (Ω)) ≤ C 5 (T ), (3.5.6) and if N ≤ 3 ∂ t v ε,M L 2 (0,T ;L ∞ (Ω)) ≤ C 5 (T ), (3.5.7) and u ε,M L ∞ (Ω T ) + ∂ x i u ε,M L 4 (Ω T ) ≤ C 5 (T ). ( 3 
We multiply by v ε,M the second equation of (3.1.7) and we integrate on Ω to get, 1 2

d dt Ω v 2 ε,M dx + d v Ω |∇v ε,M | 2 dx = Ω v 2 ε,M g ε,M dx,
thus, by integrating in time for t ∈ (0, T ) and using (3.1.9), (3.5.1), we get

1 2 Ω v ε,M (t)dx + d v Ω t |∇v ε,M | 2 dxds ≤ 1 2 Ω v 2 ε,M (0)dx + C g ϕ ε L 1 (R N+1 ) Ω T v 2 ε,M dxdt ≤ C(T ),
where C(T ) does not depend on ε. Therefore, taking the supremum in time we end up with the uniform estimate

∇v ε,M L 2 (Ω T ) ≤ C(T ). (3.5.9) 
Next, in order to prove the L 2 (Ω T ) boundedness of u ε,M , we multiply by u ε,M the first equation of (3.1.7) and we integrate on Ω T . Thus, recalling notation (3.1.11) we have 1 2 

d dt Ω (u ε,M ) 2 dx = - Ω ∂ 1 A ε,M |∇u ε,M | 2 dx - Ω ∂ 2 A ε,M ∇u ε,M • ∇v ε,M dx + Ω u 2 ε,M f M dx ≤ - 1 2 Ω ∂ 1 A ε,M |∇u ε,M | 2 dx + 1 2 Ω |∂ 2 A ε,M | 2 ∂ 1 A ε,M |∇v ε,M | 2 dx + C f Ω u 2 ε,M dx ≤ a 2 2 2a 0 Ω |∇v ε,M | 2 dx + C f Ω u 2 ε,M dx, by (D2), i.e. d dt Ω u 2 ε,M dx -2C f Ω u 2 ε,M dx ≤ a 2 2 a 0 Ω |∇v ε,M | 2 dx. ( 3 
d dt e -2C f t Ω u 2 ε,M dx ≤ a 2 2 a 0 e -2C f t Ω |∇v ε,M | 2 dx,
and integrating over (0, t) for t ∈ (0, T ), we obtain

e -2C f t u ε,M (t) 2 L 2 (Ω) ≤ u ε,M (0) 2 L 2 (Ω) + a 2 2 a 0 Ω t e -2C f s |∇v ε,M (s)| 2 dxds, so that u ε,M (t) 2 L 2 (Ω) ≤ e 2C f t u ε,M (0) 2 L 2 (Ω) + a 2 2 a 0 e 2C f t ∇v ε,M (t) 2 L 2 (Ω t ) .
Finally, taking the supremum in time we end up with

u ε,M 2 
L ∞ (0,T ;L 2 (Ω)) ≤ C T u ε,M (0) 2 L 2 (Ω) + ∇v ε,M 2 L 2 (Ω T ) ≤ C T , (3.5 
.11) using (3.5.9) and the regularity of the initial datum u in ∈ L 2 (Ω).

Thanks to (3.5.1), (3.5.11), g ε,M is bounded in L 2 (Ω T ) uniformly in ε, M, so that the r.h.s. of the equation of v ε,M in (3.1.7) has an L 2 (Ω T ) norm which is uniformly bounded in ε, M. Thus, we get by the maximal regularity

∂ t v ε,M L 2 (Ω T ) + ∂ x i x j v ε,M L 2 (Ω T ) ≤ C 3 (T ) , (3.5.12) 
and by the Gagliardo-Nirenberg inequality

∇v ε,M L 4 (Ω T ) ≤ C ∆v ε,M 1/2 L 2 (Ω T ) v ε,M 1/2 L ∞ (Ω T ) + C v ε,M 1/2 L ∞ (Ω T ) ≤ C(T ), (3.5.13) 
uniformly in ε, M.

In order to get the uniform bound of u ε,M in L ∞ 0, T ; L 4 (Ω) , we multiply the first equation of (3.1.7) by u 3 ε,M and we integrate on Ω

1 4 Ω ∂ t (u 4 ε,M )dx = - Ω ∇ A ε,M ∇(u 3 ε,M )dx + Ω u 4 ε,M f M (u ε,M , v ε,M )dx I di f f + I rea . (3.5.14) 
Then, we compute

I di f f = -3 Ω ∂ 1 A ε,M ∇u ε,M + ∂ 2 A ε,M ∇v ε,M • ∇u ε,M (u 2 ε,M )dx = -3 Ω ∂ 1 A ε,M (u 2 ε,M )|∇u ε,M | 2 dx -3 Ω ∂ 2 A ε,M (u 2 ε,M )∇u ε,M • ∇v ε,M dx ≤ -3 Ω ∂ 1 A ε,M (u 2 ε )|∇u ε,M | 2 dx + 3 2 Ω ∂ 1 A ε,M (u 2 ε,M )|∇u ε,M | 2 dx + 3 2 Ω |∂ 2 A ε,M | 2 ∂ 1 A ε,M u 2 ε,M |∇v ε,M | 2 dx ≤ 3 4 a 2 2 a 0 Ω u 4 ε,M dx + 3 4 a 2 2 a 0 Ω |∇v ε,M | 4 dx, using ( 
D2). Using (R1), the reaction term is estimated as follows The inequalities (3.5.2), (3.1.17) imply that a ε,M is bounded in L ∞ 0, T ; L 4 (Ω) uniformly in ε, M. On the other hand, the estimates (3.5.2), (3.5.3) show that s M is bounded in L 4 (Ω T ) uniformly in ε, M, so that the r.h.s. of the equation for a ε,M in (3.1.12) has an L 2 (Ω T ) norm which is bounded in ε, M. Therefore, as in (3.2.10) we define

I rea = Ω u 4 ε,M f M (u ε,M , v ε,M )dx ≤ C f Ω u 4 ε,M dx, so that (3.5.14) becomes 1 4 d dt Ω u 4 ε,M dx ≤ 3 4 a 2 2 a 0 + C f Ω u 4 ε,M dx + 3 4 a 2 2 a 0 Ω |∇v ε,M | 4 dx, i.e. d dt Ω u 4 ε,M dx -α Ω u 4 ε,M dx ≤ 3a 2 2 a 0 Ω |∇v ε,M | 4 dx, (3.5 
u ε,M 4 
L ∞ (0,T ;L 4 (Ω)) ≤ C T u ε,M (0) 4 L 4 (Ω) + ∇v ε,M 4 
L 4 (Ω T ) ≤ C T , (3.5 
C 4 2 a 2 1 a 0 + 1 and C 4 2 a 1 a 0 2 + 1 a 0 + 2, to get ∂ t a ε,M 2 L 2 (Ω T ) + ∇a ε,M 2 
L ∞ (0,T ;L 2 (Ω)) + a 0 ∆a ε,M 2 L 2 (Ω T ) ≤ C 4 ∇a in 2 L 2 (Ω) + C 4 a ε,M s M 2 L 2 (Ω T )
≤ C 4 (T ), (3.5.17) uniformly in ε, M. Recalling that by (3.1.10) we have in the weak sense

∂ 1 A ε,M ∂ t u ε,M = ∂ t a ε,M -∂ 2 A ε,M ∂ t v ε,M ,
then it holds using (D2)

∂ t u ε,M 2 L 2 (Ω T ) ≤ 2 a 2 0 ∂ t a ε,M 2 L 2 (Ω T ) + 2 a 2 a 0 2 ∂ t v ε,M 2 L 2 (Ω T ) ≤ C(T ), (3.5.18) 
uniformly in ε, M thanks to (3.5.12), (3.5.17). Similarly, it holds

∇(A(u ε,M , v ε,M )) = ∂ 1 A ε,M ∇u ε,M + ∂ 2 A ε,M ∇v ε,M , (3.5.19) 
so that using (D2) again

∇u ε,M 2 
L ∞ (0,T ; L 2 (Ω)) ≤ 2 a 2 0 ∇a ε,M 2 
L ∞ (0,T ; L 2 (Ω)) + 2 a 2 a 0 2 ∇v ε,M 2 L ∞ (0,T ; L 2 (Ω))
≤ C(T ), (3.5.20) thanks to (3.5.4), (3.5.17). Finally, estimates (3.5.17) -(3.5.20) imply (3.5.5).

(v) In order to prove (3.5.6), we take the weak time derivative in the second equation of (3.1.7) 

∂ t (∂ t v ε,M ) -d v ∆(∂ t v ε,M ) = (∂ t v ε,M )g ε,M + v ε,M ∂ 1 g ε,M ∂ t u ε,M + v ε,M ∂ 2 g ε,M ∂ t v ε,M , (3.5 
∂ 2 t v ε,M L 2 (Ω T ) + ∇∇ (∂ t v ε,M ) L 2 (Ω T ) + ∇(∂ t v ε,M ) L 2 (Ω T ) ≤ C(T )
, implying the following uniform in ε, M inequality, using (3.5.12)

∂ t v ε,M L 2 (0,T ;H 2 (Ω))∩H 1 (0,T ;L 2 (Ω)) ≤ C(T ),
we get thus (3.5.6). Moreover by the continuous injection H 

2 (Ω) → L ∞ (Ω) if N ≤ 3, we end up with ∂ t v ε,M L 2 (0,T ; L ∞ (Ω)) ≤ C(T ), if N ≤ 3, uniformly in ε, M, (3.5 
v(t, •) C 1,γ ( Ω) ≤ C(γ, N, Ω) v(t, •) W 2,4 (Ω) , with γ = 1 - N 4 , N ≤ 2.
The inequality above together with the boundednees of v in L 4 (0, T ; W 2,4 (Ω)) imply that ∇v is bounded in L 2 (0, T ; L ∞ (Ω)) when N ≤ 2.

Similarly, in order to prove (3.7.2) we use the L 2 0, T ; H 2 (Ω) -boundedness of A, shown in Theorem 3.1.1, and the Sobolev inequality (3.2.19), (3.2.20) when N = 1 . Thus, there exists a constant C(Ω) > 0 such that for any t ∈ (0, T )

A(t, •) C 1,1/2 ( Ω) ≤ C(Ω) A(t, •) H 2 (Ω) ,
implying the L 2 0, T ; W 1,∞ (Ω) -boundedness of A. Then, by computing ∇A in the weak sense, for any t ∈ (0, T ) we end up with

∂ 1 A(t, •)∇u(t, •) L ∞ (Ω) ≤ ∇A(t, •) L ∞ (Ω) + ∂ 2 A(t, •)∇v(t, •) L ∞ (Ω) ,
thus taking the square in the above inequality, integrating in time over (0, T ) and using (D2), (3.7.1), we conclude

a 2 0 ∇u 2 L 2 (0,T ;L ∞ (Ω)) ≤ ∇A 2 L 2 (0,T ;L ∞ (Ω)) + a 2 2 ∇v 2 L 2 (0,T ;L ∞ (Ω)) ≤ C.
Before stating the uniqueness result, we introduce some notations and definitions. For w, z ∈ L q (0, T ; L p (Ω)), p, q ∈ [1, +∞], we define M(t) (p,w,z) max{ w(t) L p (Ω) , z(t) L p (Ω) }, a.e. t ∈ (0, T ) , Moreover, we denote the Jacobian matrix of the application (u, v) → ( f (u, v), g(u, v)), as (for all u, v ≥ 0)

J(u, v) ∂ 1 f (u, v) ∂ 2 f (u, v) ∂ 1 g(u, v) ∂ 2 g(u, v) , (3.7.5) 
and we consider the following matrix norm

∀ P ∈ M m,n (R), N(P) max 1≤i≤m 1≤ j≤n |P i j |, m, n ∈ N. (3.7.6)
We are now ready to prove the uniqueness for system (3.1.1) -(3.1.3) that is obtained as an immediate consequence of the stability result below. Theorem 3.7.1 (Uniqueness). Let N ≤ 2. We assume (D1), (D2), (D3), (R1) and the following additional hypothesis:

(i) the diffusivity function A is such that sup u,v≥ 0 N Hess(A(u, v)) < +∞, (U1) 
where Hess(A) stands for the Hessian matrix of A;

(ii) the Jacobian matrix (3.7.5) satisfies sup u,v≥ 0

N J(u, v) < +∞. (U2)
Then, taking two solutions (u i , v i ), i = 1, 2 of (3.1.1), (3.1.2), corresponding to the nonnegative initial data (u i, in , v i, in ), i = 1, 2, in the sense of Theorem 3.1.1, there exists a constant

C uniq > 0, depending on Ω, T, a 0 , a 2 , d v , C f , C g , on sup u,v≥ 0 N Hess(A(u, v)) , sup u,v≥ 0 N J(u, v) , u 2 L ∞ (Ω T ) , v 2 L ∞ (Ω T ) ,
and on ∇v 2 L 2 (0,T ;L ∞ (Ω)) , ∇u 2 L p (0,T ;L q (Ω)) with

(p, q) =        (2, ∞), if N = 1, (4, 4), if N = 2, (3.7.7 
) Proof.

such that u 1 -u 2 2 L ∞ (0,T ;L 2 (Ω)) ∩ L 2 (0,T ;H 1 (Ω)) + v 1 -v 2 2 L ∞ (0,T ;L 2 (Ω)) ∩ L 2 (0,T ;H 1 (Ω)) ≤ C uniq u 1,in -u 2,in 2 
L 2 (Ω) + v 1,in -v 2,in 2 
L 2 (Ω) . ( 3 
For a better readability, we first introduce the notations

A i A(u i , v i ), f i f (u i , v i ), g i g(u i , v i ), i = 1, 2, ∂ 1 A i ∂ 1 A(u i , v i ), ∂ 2 A i ∂ 2 A(u i , v i ), i = 1, 2,
and

N J sup i, j=1,2; u i ,v j ≥ 0 N J(u i , v j ) , N H sup i, j=1,2; u i ,v j ≥ 0 N Hess(A(u i , v j )) .
Now, we compute the equations satisfied by u 1u 2 and v 1v 2 and we multiply by u 1u 2 and λ(v 1v 2 ), respectively, where the parameter λ > 0 will be chosen later. Then, we integrate over Ω and we add the obtained formulations to get 1 2

d dt Ω |u 1 -u 2 | 2 dx + λ Ω |v 1 -v 2 | 2 dx = - Ω ∂ 1 A 1 ∇u 1 + ∂ 2 A 1 ∇v 1 • ∇(u 1 -u 2 )dx + Ω ∂ 1 A 2 ∇u 2 + ∂ 2 A 2 ∇v 2 • ∇(u 1 -u 2 )dx -d v λ Ω |∇(v 1 -v 2 )| 2 dx + Ω u 1 f (u 1 , v 1 ) -u 2 f (u 2 , v 2 ) (u 1 -u 2 )dx, + λ Ω v 1 g(u 1 , v 1 ) -v 2 g(u 2 , v 2 ) (v 1 -v 2 )dx I di f f + I rea . (3.7.9)
It is worth noticing that as N ≤ 2, the solutions are bounded in both components. The reaction part is then estimated as below

I rea = Ω f 1 |u 1 -u 2 | 2 dx + Ω u 2 ( f 1 -f 2 )(u 1 -u 2 )dx + λ Ω g 1 |v 1 -v 2 | 2 dx + λ Ω v 2 (g 1 -g 2 )(v 1 -v 2 )dx ≤ S ( f 1 , g 1 ) Ω |u 1 -u 2 | 2 dx + λ Ω |v 1 -v 2 | 2 dx + M(t) (∞,u 2 ,v 2 ) Ω |∂ 1 f (ξ u , v 1 )||u 1 -u 2 | 2 dx + λ Ω |∂ 2 g(u 2 , ξ v )||v 1 -v 2 | 2 dx + M(t) (∞,u 2 ,v 2 ) Ω |∂ 2 f (u 2 , ξ v )| + λ|∂ 1 g(ξ u , v 1 )| |u 1 -u 2 ||v 1 -v 2 |dx, (3.7.10) 
with from now on

ξ u ∈ min{u 1 , u 2 }, max{u 1 , u 2 } , ξ v ∈ min{v 1 , v 2 }, max{v 1 , v 2 } and M, S defined in (3.7.
3), (3.7.4), respectively. Then, we have

Ω |∂ 1 f (ξ u , v 1 )||u 1 -u 2 | 2 dx + λ Ω |∂ 2 g(u 2 , ξ v )||v 1 -v 2 | 2 dx ≤ N J Ω |u 1 -u 2 | 2 dx + λN J Ω |v 1 -v 2 | 2 dx,
and using Young's inequality, we estimate the last integral in (3.7.10) as

Ω |∂ 2 f (u 2 , ξ v )||u 1 -u 2 ||v 1 -v 2 |dx + λ Ω |∂ 1 g(ξ u , v 1 )||u 1 -u 2 ||v 1 -v 2 |dx ≤ 1 2 Ω |∂ 2 f (u 2 , ξ v )| 1 λ |u 1 -u 2 | 2 + λ|v 1 -v 2 | 2 dx + 1 2 Ω |∂ 1 g(ξ u , v 1 )| λ|u 1 -u 2 | 2 + λ|v 1 -v 2 | 2 dx ≤ N J 1 2 λ + 1 λ Ω |u 1 -u 2 | 2 dx + λ Ω |v 1 -v 2 | 2 dx .
Therefore, the estimate (3.7.10) becomes

I rea ≤ C rea (t) u 1 -u 2 2 L 2 (Ω) + λ v 1 -v 2 2 L 2 (Ω) , (3.7.11) 
with, for all t ∈ [0, T ],

C rea (t) 2 max f 1 , g 1 , N J 1 + M(t) (∞,u 2 ,v 2 ) 1 + 1 2 λ + 1 λ . ( 3 
.7.12)

Concerning the diffusion part, it holds, using the Young inequality and (D2),

I di f f = - Ω ∂ 1 A 1 |∇(u 1 -u 2 )| 2 dx -d v λ Ω |∇(v 1 -v 2 )| 2 dx - Ω ∂ 1 (A 1 -A 2 )∇u 2 • ∇(u 1 -u 2 )dx - Ω ∂ 2 A 1 ∇(v 1 -v 2 ) • ∇(u 1 -u 2 )dx - Ω ∂ 2 A 1 -A 2 ∇v 2 • ∇(u 1 -u 2 )dx ≤ - 1 4 Ω ∂ 1 A 1 |∇(u 1 -u 2 )| 2 dx -d v λ Ω |∇(v 1 -v 2 )| 2 dx + Ω |∇u 2 | 2 ∂ 1 A 1 |∂ 1 (A 1 -A 2 )| 2 dx + Ω |∂ 2 A 1 | 2 ∂ 1 A 1 |∇(v 1 -v 2 )| 2 dx + Ω |∇v 2 | 2 ∂ 1 A 1 |∂ 2 (A 1 -A 2 )| 2 dx ≤ - a 0 4 Ω |∇(u 1 -u 2 )| 2 dx -d v λ - a 2 2 a 0 Ω |∇(v 1 -v 2 )| 2 dx + Ω |∇u 2 | 2 ∂ 1 A 1 |∂ 1 (A 1 -A 2 )| 2 dx + Ω |∇v 2 | 2 ∂ 1 A 1 |∂ 2 (A 1 -A 2 )| 2 dx. (3.7.13)
Now, we focus on the two integrals in (3.7.13). The second one is estimated, for N = 1, 2, using (3.7.1) in Corollary 3.1, as follows

Ω |∇v 2 | 2 ∂ 1 A 1 |∂ 2 (A 1 -A 2 )| 2 dx ≤ 2 a 0 ∇v 2 2 L ∞ (Ω) Ω |∂ 21 A(ξ u , v 1 )| 2 |u 1 -u 2 | 2 + |∂ 22 A(u 2 , ξ v )| 2 |v 1 -v 2 | 2 dx ≤ 2 a 0 max 1, 1 λ N 2 H ∇v 2 2 L ∞ (Ω) Ω |u 1 -u 2 | 2 + λ|v 1 -v 2 | 2 dx. (3.7.14)
As the first integral in (3.7.13) is estimated depending on the value of N, to continue the proof we treat the cases N = 1 and N = 2 separately, in the following two paragraphs.

• The case N = 1 Similarly as (3.7.14), the hypothesis (U1) and (3.7.2) imply 

Ω |∇u 2 | 2 ∂ 1 A 1 |∂ 1 (A 1 -A 2 )| 2 dx ≤ 2 a 0 ∇u 2 2 L ∞ (Ω) Ω |∂ 11 A(ξ u , v 1 )| 2 |u 1 -u 2 | 2 + |∂ 12 A(u 2 , ξ v )| 2 |v 1 -v 2 | 2 dx ≤ 2 a 0 max 1, 1 λ ∇u 2 2 L ∞ (Ω) N 2 H Ω |u 1 -u 2 | 2 + λ|v 1 -v 2 | 2 dx. ( 3 
I di f f ≤ - a 0 4 ∇(u 1 -u 2 ) 2 L 2 (Ω) -d v λ - a 2 2 a 0 ∇(v 1 -v 2 ) 2 L 2 (Ω) + C 1 (t) u 1 -u 2 2 L 2 (Ω) + λ v 1 -v 2 2 L 2 (Ω) , (3.7.16) 
with, for all t ∈ [0, T ], 

C 1 (t) 4 
a 0 max 1, 1 λ M 2 (t) (∞,|∇u 2 |,|∇v 2 |) N 2 H , (3.7 
d dt u 1 -u 2 2 L 2 (Ω) + λ v 1 -v 2 2 L 2 (Ω) ≤ - a 0 4 ∇(u 1 -u 2 ) 2 L 2 (Ω) -d v λ - a 2 2 a 0 ∇(v 1 -v 2 ) 2 L 2 (Ω) + C 1 (t) + C rea (t) u 1 -u 2 2 L 2 (Ω) + λ v 1 -v 2 2 L 2 (Ω) , (3.7.18) 
i.e.

d dt u 1 -u 2 2 L 2 (Ω) + λ v 1 -v 2 2 L 2 (Ω) + C di f f,1 ∇(u 1 -u 2 ) 2 L 2 (Ω) + ∇(v 1 -v 2 ) 2 L 2 (Ω) ≤ 2 C 1 (t) + C rea (t) u 1 -u 2 2 L 2 (Ω) + λ v 1 -v 2 2 L 2 (Ω) , (3.7.19) 
where λ is chosen in such a way that λ > a 2 2 a 0 d v , and

C di f f,1 2 min a 0 4 , d v λ - a 2 2 a 0 > 0. (3.7.20) • The case N = 2
In order to estimate the first integral in (3.7.13), we use (D2), the Cauchy-Schwarz inequality and the L 4 (Ω T ) boundedness of ∇u 2 , given by Corollary 3.1, to get

Ω |∇u 2 | 2 ∂ 1 A 1 |∂ 1 (A 1 -A 2 )| 2 dx ≤ 2 a 0 Ω |∇u 2 | 2 |∂ 11 A(ζ u , v 1 )| 2 |u 1 -u 2 | 2 + |∂ 12 A(u 2 , ζ v )| 2 |v 1 -v 2 | 2 dx ≤ 2 a 0 N 2 H ∇u 2 2 L 4 (Ω) u 1 -u 2 2 L 4 (Ω) + v 1 -v 2 2 L 4 (Ω) . (3.7.21)
Then, the Gagliardo-Nirenberg inequality allows us to estimate the L 4 norm of (u

1 -u 2 ) (resp. (v 1 -v 2 )) in terms of the L 2 norm of (u 1 -u 2 ) (resp. (v 1 -v 2 )) and ∇(u 1 -u 2 ) (resp. ∇(v 1 -v 2 )), as follows ∇u 2 2 L 4 (Ω) u 1 -u 2 2 L 4 (Ω) ≤ 2C GN ∇u 2 2 L 4 (Ω) ∇(u 1 -u 2 ) L 2 (Ω) u 1 -u 2 L 2 (Ω) + u 1 -u 2 2 L 2 (Ω) ≤ δC GN ∇(u 1 -u 2 ) 2 L 2 (Ω) + C GN δ ∇u 2 4 L 4 (Ω) u 1 -u 2 2 L 2 (Ω) + 2C GN ∇u 2 2 L 4 (Ω) u 1 -u 2 2 L 2 (Ω) ≤ δC GN ∇(u 1 -u 2 ) 2 L 2 (Ω) + C GN max 2, 1 δ ∇u 2 2 L 4 (Ω) (1 + ∇u 2 2 L 4 (Ω) ) u 1 -u 2 2 L 2 (Ω) ≤ δC GN ∇(u 1 -u 2 ) 2 L 2 (Ω) + C GN max 2, 1 δ (1 + ∇u 2 2 L 4 (Ω) ) 2 u 1 -u 2 2 L 2 (Ω) ≤ δC GN ∇(u 1 -u 2 ) 2 L 2 (Ω) + C D (t) u 1 -u 2 2 L 2 (Ω) , (3.7.22) 
with, for all t ∈ (0, T ),

C D (t) 2C GN max 2, 1 δ 1 + ∇u 2 (t) 4 L 4 (Ω) , (3.7.23) 
where we denote C GN the best constant involved in the Gagliardo-Nirenberg inequality and with δ > 0 to be chosen later.

Similarly, it holds

∇u 2 2 L 4 (Ω) v 1 -v 2 2 L 4 (Ω) ≤ δC GN ∇(v 1 -v 2 ) 2 L 2 (Ω) + C D (t) v 1 -v 2 2 L 2 (Ω) , so that (3.7.21) is estimated as Ω |∇u 2 | 2 ∂ 1 A 1 |∂ 1 (A 1 -A 2 )| 2 dx ≤ 2δ a 0 C GN N 2 H ∇(u 1 -u 2 ) 2 L 2 (Ω) + ∇(v 1 -v 2 ) 2 L 2 (Ω) + 2 a 0 N 2 H C D (t) u 1 -u 2 2 L 2 (Ω) + v 1 -v 2 2 L 2 (Ω) ≤ 2δ a 0 C GN N 2 H ∇(u 1 -u 2 ) 2 L 2 (Ω) + ∇(v 1 -v 2 ) 2 L 2 (Ω) + 2 a 0 max 1, 1 λ N 2 H C D (t) u 1 -u 2 2 L 2 (Ω) + λ v 1 -v 2 2 L 2 (Ω) . (3.7.24)
Therefore, by (3.7.14), (3.7.24), the term I di f f is estimated as below when N = 2,

I di f f ≤ - a 0 4 - 2δ a 0 C GN N 2 H ∇(u 1 -u 2 ) 2 L 2 (Ω) -d v λ - a 2 2 a 0 - 2δ a 0 C GN N 2 H ∇(v 1 -v 2 ) 2 L 2 (Ω) + C 2 (t) u 1 -u 2 2 L 2 (Ω) + λ v 1 -v 2 2 L 2 (Ω) , (3.7.25) 
with, for any t ∈ [0, T ], Therefore we obtain Assuming in addition that α ≥ 1 (and thus, β ≥ 1), we have that u lies in L 4 (Ω T ) (see point (i) of Theorem 2.5.2) so that F u belongs to L 2 (Ω T ). Therefore, thanks to the regularity of ∇A(u, v), we have also that ∂ t u belongs to L 2 (0, T ; (H 1 (Ω)) ) and the very weak solution, given by Theorem 2.5.2, is in fact a weak solution, i.e. it satisfies, for all T > 0 and for all test functions ξ 1 , ξ 2 ∈ L 2 (0, T ; H 1 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)), This will be fundamental when we apply Theorem 3.7.1, in order to obtain the weak-strong stability in Theorem 3.3, stated in the following subsection.

C 2 (t) 2 a 0 max 1, 1 λ N 2 H C D (t) + ∇v 2 (t) 2 L ∞ (Ω) , (3.7 
d dt u 1 -u 2 2 L 2 (Ω) + λ v 1 -v 2 2 L 2 (Ω) ≤ - a 0 4 - 2δ a 0 C GN N 2 H ∇(u 1 -u 2 ) 2 L 2 (Ω) -d v λ - a 2 2 a 0 - 2δ a 0 C GN N 2 H ∇(v 1 -v 2 )
d dt u 1 -u 2 2 L 2 (Ω) + λ v 1 -v 2 2 L 2 (Ω) + C di f f,2 ∇(u 1 -u 2 ) 2 L 2 (Ω) + ∇(v 1 -v 2 )
We are now ready to state the announced results. 

∂ 1 u * a ∂ 1 Q * + (1 -∂ 1 u * a ) ∂ 2 Q * = 0, ∂ 2 u * a ∂ 1 Q * -∂ 2 u * a ∂ 2 Q * + ∂ 3 Q * = 0, that implies ∂ 1 u * a = ∂ 2 Q * ∂ 2 Q * -∂ 1 Q * = 1 -∂ 1 u * b , (3 
.8.10)

∂ 2 u * a = ∂ 3 Q * ∂ 2 Q * -∂ 1 Q * = -∂ 2 u * b . (3.8.11) 
We compute now the gradient of the conversion function Q(u a , u b , v) in (2.1.3) and we obtain, thanks to the positivity of φ, ψ, φ , ψ , for all u a , u b , v ≥ 0, As Q is a C ∞ (R 3 + , R) function and since it holds ∂ 2 Q(u a , u b , v) -∂ 1 Q(u a , u b , v) > 0, for all u a , u b , v ≥ 0, we see by (3.8.10), (3.8.11), that ∂ i u * a , ∂ i u * b , i = 1, 2, are differentiable, so that A(u, v) ∈ C 2 (R 2 + , R + ). Therefore, the assumption (D1) is satisfied. In order to prove (D2), we have to estimate the gradient of u * a , u * b . From (3.8.12), it holds for all u a , u b , v ≥ 0, In order to verify (U1), we need to compute the hessian of A(u, v) in (3.8. 

-1 < ∂ 1 Q ∂ 2 Q -∂ 1 Q < 0 and 0 < ∂ 2 Q ∂ 2 Q -∂ 1 Q < 1. ( 3 
- cu a ψ φ + ψ + bu b φ + au a ψ ≤ ∂ 3 Q ∂ 2 Q -∂ 1 Q ≤ du b φ φ + ψ + bu b φ + au a ψ , giving - c a ≤ ∂ 3 Q ∂ 2 Q -∂ 1 Q ≤ d b . ( 3 
∂ 11 u * a = ∂ u (∂ 2 Q * ) ∂ 2 Q * -∂ 1 Q * - ∂ 2 Q * (∂ u (∂ 2 Q * ) -∂ u (∂ 1 Q * )) (∂ 2 Q * -∂ 1 Q * ) 2 = -∂ u (∂ 2 Q * ) ∂ 1 Q * + ∂ u (∂ 1 Q * ) ∂ 2 Q * (∂ 2 Q * -∂ 1 Q * ) 2 .
Then, using (3.8.14), (3.8.16) and ∂ 12 Q = ∂ 21 Q = 0, we get

|∂ 11 u * a | ≤ |∂ u (∂ 2 Q * ) | + |∂ u (∂ 1 Q * ) | ∂ 2 Q * -∂ 1 Q * ≤ |∂ 22 Q * |∂ 1 u * b + |∂ 11 Q * |∂ 1 u * a ∂ 2 Q * -∂ 1 Q * ≤ |∂ 22 Q * | ∂ 2 Q * -∂ 1 Q * + |∂ 11 Q * | ∂ 2 Q * -∂ 1 Q * .
(3.8.18)

Similarly, from (3.8.10) again, it holds

∂ 12 u * a = ∂ v (∂ 2 Q * ) ∂ 2 Q * -∂ 1 Q * - ∂ 2 Q * (∂ v (∂ 2 Q * ) -∂ v (∂ 1 Q * )) (∂ 2 Q * -∂ 1 Q * ) 2 = -∂ v (∂ 2 Q * ) ∂ 1 Q * + ∂ v (∂ 1 Q * ) ∂ 2 Q * (∂ 2 Q * -∂ 1 Q * ) 2 ,
and using (3.8.14), (3.8.17), we get 

|∂ 12 u * a | ≤ |∂ v (∂ 2 Q * ) | + |∂ v (∂ 1 Q * ) | ∂ 2 Q * -∂ 1 Q * ≤ ∂ 22 Q * ∂ 2 u * b + ∂ 23 Q * ∂ 2 Q * -∂ 1 Q * + ∂ 11 Q * ∂ 2 u * a + ∂ 13 Q * ≤ c a + d b |∂ 22 Q * | + |∂ 11 Q * | ∂ 2 Q * -∂ 1 Q * + |∂ 23 Q * | + |∂ 13 Q * | ∂ 2 Q * -∂ 1 Q * . ( 3 
∂ 22 u * a = ∂ v (∂ 3 Q * ) ∂ 2 Q * -∂ 1 Q * - ∂ 3 Q * (∂ v (∂ 2 Q * ) -∂ v (∂ 1 Q * )) (∂ 2 Q * -∂ 1 Q * ) 2 .
Using (3.8.15), we have

|∂ 22 u * a | ≤ |∂ v (∂ 3 Q * )| ∂ 2 Q * -∂ 1 Q * + |∂ v (∂ 2 Q * )| + |∂ v (∂ 1 Q * )| ∂ 2 Q * -∂ 1 Q * d b + c a .
Recalling that ∂ 12 Q * = ∂ 21 Q * = 0 and using (3.8.17), we end up with Then, for φ, ψ in (H1), (H2') and for all x ≥ 0, we have Using (3.8.21) and the strict positivity of ψ, φ, ψ φ , we have 

|∂ 22 u * a | ≤ |∂ 31 Q * | |∂ 2 u * a | + |∂ 32 Q * | |∂ 2 u * b | + |∂ 33 Q * | ∂ 2 Q * -∂ 1 Q * + |∂ 22 Q * | |∂ 2 u * b | + |∂ 23 Q * | + |∂ 11 Q * | |∂ 2 u * a | + |∂ 13 Q * | ∂ 2 Q * -∂ 1 Q * d b + c a ≤ |∂ 33 Q * | ∂ 2 Q * -∂ 1 Q * + |∂ 31 Q * | + |∂ 32 Q * | ∂ 2 Q * -∂ 1 Q * d b + c a + |∂ 23 Q * | + |∂ 13 Q * | ∂ 2 Q * -∂ 1 Q * d b + c a + |∂ 22 Q * | + |∂ 11 Q * | ∂ 2 Q * -∂ 1 Q * d b + c a 2 . ( 3 
ψ (x) ψ(x) = ψ (x) ψ(x) = α(A + x) α-1 (A + x) α ≤ α A , ( 3 
|∂ 11 Q| ∂ 2 Q -∂ 1 Q ≤ 2aψ +
|∂ 13 Q| ∂ 2 Q -∂ 1 Q ≤ cψ + acu a |ψ | φ + ψ + au a ψ + bu b φ ≤ c ψ ψ + c |ψ | ψ ≤ cα A + c|α -1| A , (3.8.29) 
and It remains to show that assumptions (R1) and (U2) are satisfied by the reaction functions (3.8.4). In order to do that, we first observe that, using (3.8.5), (3.8.6), the functions F u and F v can be written as competition reaction functions with non constant coefficients, i.e. Then, by (3.8.6), we see that f and g satisfy the growing behaviour in assumption (R1).

|∂ 23 Q| ∂ 2 Q -∂ 1 Q ≤ dφ +
Next, by computing the gradient of f , defined in (3.8.31), (3.8.32), for all u, v ≥ 0, we get

∂ 1 f (u, v) = ∂ 1 f 1 (u, v) -f 2 (u, v) -u∂ 1 f 2 (u, v) -v∂ 1 f 3 (u, v), ∂ 2 f (u, v) = ∂ 2 f 1 (u, v) -u∂ 2 f 2 (u, v) -f 3 (u, v) -v∂ 2 f 3 (u, v), (3.8.34) 
with, for i = 1, 2, The gradient of g, defined in (3.8.31), (3.8.33), is also bounded because of (3.8.6) (3.8.40), (3.8.41). Thus, we conclude that the reaction functions of the cross-diffusion system (3.8.1) -(3.8.4) satisfy the assumptions (R1) and (U2).

∂ i f 1 = η a ∂ i r * a + η b ∂ i r * b , ∂ i f 2 =
Following the work of Lou et al. in [START_REF] Lou | Diffusion, self-diffusion and cross-diffusion[END_REF][START_REF] Lou | Diffusion vs cross-diffusion: an elliptic approach[END_REF][START_REF] Lou | On a limiting system in the lotka-volterra competition with cross-diffusion[END_REF], we study the existence of nonhomogeneous stationary solutions to a class of full cross-diffusion systems of two equations, i.e. when both equations include cross-diffusion terms. The system we are interested in generalises the system introduced in Chapter 3 and writes as below

             ∂ t u -∆ A(u, v) = u f (u, v), in Ω T , ∂ t v -∆ B(u, v) = vg(u, v),
in Ω T , ∇(A(u, v)) • σ = ∇(B(u, v)) • σ = 0, on (0, T ) × ∂Ω.

We want to study the asymptotic behavior of the system above, which entails analysing the existence, uniqueness and regularity of the nonnegative solutions to the following elliptic cross-diffusion system, The strategy for studying the existence to (4.0.2) consists in adapting the tools used to prove the existence of strong solutions to the triangular parabolic cross-diffusion system (3.1.1) -(3.1.3), in Theorem 3.1.1. The uniqueness and the qualitative properties of the solutions to the system (4.0.2) will be treated thereafter, in order to complement the analysis.

             -∆ A(u, v) = u f (u, v), in Ω 
We point out that in Chapter 3, we took advantage of the triangular structure of the system (3.1.1), (3.1.2), that allowed us to apply the maximal regularity in the equation satisfied by v. On the contrary, since the system (4.0.2) is a full cross-diffusion system, we cannot apply the classical results of elliptic theory. However, here we take advantage of the absence of the evolutionary terms ∂ t u, ∂ t v.

As in Chapter 3, the main difficulty in studying (4.0.2) comes from the nonlinear diffusion terms ∆ A(u, v) and ∆ B(u, v) . The key ingredient that we use to handle this difficulty is the introduction of a suitable change of variable. In order to do that, we make the following assumptions on system (4.0. The functions f, g are C 1 (R 2 + ) and there exist the constants C f , C g , C g > 0 such that for all u, v ≥ 0

-C f (1 + u + v) ≤ f (u, v) ≤ C f , -C g (1 + u + v) ≤ g(u, v) ≤ C g , |∂ 1 g(u, v)|, |∂ 2 g(u, v)| ≤ C g . (R1)
and where [M ε ] ii are the following minors:

[M ε ] 11 M ε 22 M ε 23 M ε 32 M ε 33 , [M ε ] 22 M ε 11 M ε 13 M ε 31 M ε 33 , [M ε ] 33 M ε 11 M ε 12 M ε 21 M ε 22 .
By the Routh-Hurwitz criterion [START_REF] Marcus | Applications of the theory of matrices (fb gantmacher)[END_REF], M ε is stable if and only if there are no sign variations in the first column entries of R M ε , i.e., if and only if M ε satisfies

             trM ε < 0, (det 2 M ε )(trM ε ) -det M ε < 0, det M ε < 0. (A.2.1)
From the expression of M ε , we get

tr M ε = -η a -η b α -η v (1 -α) - r ε < 0,
and

[M ε ] 11 = η v 1 -α ε φ 1 > 0, [M ε ] 22 = η v (1 -α) η a + β ε > 0, [M ε ] 33 = η a η b α + 1 ε η a (r -β) + 1 ε η b αβ > 0,
which imply det 2 M ε > 0.

Furthermore,

det M ε = -η a + 1 ε ∂ 1 Q [M ε ] 11 - η v ε ∂ 1 Q 1 -α ε (∂ 2 Q -∂ 3 Q) = - η a η v φ 1 ε (1 -α) < 0 .
It remains to check the second inequality in (A.2.1), that is a consequence of the previous computations and of the identity

det M ε = -η a [M ε ] 11 .
Indeed,

(det 2 M ε )(tr M ε )-det M ε = [M ε ] 11 + [M ε ] 22 + [M ε ] 33 tr M ε + η a [M ε ] 11 = [M ε ] 22 + [M ε ] 33 tr M ε -[M ε ] 11 η b α + η v (1 -α) + r ε < 0 .
Thus, M ε is stable for all ε > 0.

Concerning the matrix N ε , we define the quantities The latter is indeed strictly negative, using again the negativity of the entries of M ε , the positivity of the minors [M ε ] ii , definitions (A.2.2) and (A.2.3) and

-D 1 D 2 + D 3 < 0 , AD 1 -B < 0 , -D 1 det 2 M ε + C < 0 .
Then, by the Routh-Hurwitz criterion again, N ε is stable for all strictly positive ε.

A.3 Chapter 2 : Proof of Lemma (2.7.2)

Proof of Lemma 2.7.2.

In order to show (2.7.22), we observe that it is equivalent to prove that for any γ > 0, δ ∈ (0, 1) and λ > 0, there exists C(γ, δ) > 0 Therefore, observing that P(0) = C(γ, δ) > 0 we compute

P(η min ) = (1 -δ) γ (1 -δ)(1 + γ) γ+1 - γ (1 -δ)(1 + γ) γ + C(γ, δ), which is nonnegative iff C(γ, δ) ≥ 1 γ γ γ + 1 γ+1 1 1 -δ γ .
Thus, the regularity of P allows to conlcude.

  Introduction xiii Introduction to population dynamics . . . . . . . . . . . . . . . . . . . . . . . . xiii

  ∂ t u -∆ u(d u + d 11 u + d 12 v) = u(r ur 11 ur 12 v), sur (0, +∞) × Ω, ∂ t v -∆ v(d v + d 21 u + d 22 v) = v(r vr 21 ur 22 v), sur (0, +∞) × Ω, (SKT)

  spatial dimension, x • y the Euclidean scalar product in R N between the vectors x, y ∈ R N , Ω a bounded, open and sufficiently smooth domain of R N , Ω the closure of Ω, |Ω| the Lebesgue measure of Ω, Ω T the set (0, T ) × Ω, with T > 0, ∂ i derivative of first order with respect to the i-th variable, ∂ i j derivative of second order with respect to the i-th and j-th variables, C k (Ω) set of functions with continuous k-th derivatives on Ω, with k ∈ N, L p (Ω) set of functions with p-power Lebesgue integrability in Ω, with p ∈ [1, +∞), L ∞ (Ω) set of essentially bounded functions on Ω, W k,p (Ω) set of functions with the first k-th weak derivatives in L p (Ω) and k ∈ N,

(u 1 , v 1 )

 11 , v * ) = r u r 22r v r 12 r 11 r 22r 12 r 21 , r v r 11r u r 21 r 11 r 22r 12 r 21 .

  h.s. of (SKT) describe the spatial movement of individuals in the external environment Ω. More precisely, the linear terms ∆(d u u) and ∆(d v v) represent the intrinsic diffusion growth with rates d u , d v , while the nonlinear terms ∆ u(d 11 u + d 12 v) , ∆ v(d 21 u + d 22 v) indicate the repulsive effect of the mutual interference. In particular, we refer to d 11 u 2 , d 22 v 2 as the self-diffusion terms and we refer to the nondiagonal terms d 12 uv, d 21 uv as the cross-diffusion terms. We denote by D = (d i j ) i, j=1,2 the matrix of the diffusion coefficients, D d 11 d 12 d 21 d 22 .

  e. the quantity (d u + d 11 u + d 12 v), is a function of u, v, depending on d 11 , d 12 . The diffusion coefficient d 11 (resp. d 12 ) measures the amount of extra diffusion rate if there are more individuals of species u (resp. v) around. The same argument holds for the population v with the diffusion function (d v + d 21 u + d 22 v).

.1. 5 )

 5 In this reaction term, ε -1 φ u b + v b is the conversion rate for individuals in the state u b which switch to the other state u a , and ε -1 ψ u a a is the conversion rate in the other direction. The conversion rate φ u b +v b is assumed as a function of the starvation measure u b +v b for the populations u b and v. If the resource b dwindles or the population u b + v increases, the resource b becomes scarce relatively, and more individuals of population u b will convert to u a and consume the other resource a.

  and h b (u b , v)

Figure 1 . 1 :

 11 Figure 1.1: Reaction term F(λ) for the example (1.4.9).

  and σ is upper bounded by the positive root of the above equation with λ = 1 2 . Hence, (1.4.21) follows. If α < 1, swapping the role between λ and σ, we obtain (1.4.20).

21 1. 4 .

 214 Linear stability analysis Furthermore, differentiating twice(1.4.34) with respect to λ, we obtain the identity 2

  rewritten as a differential inequality in the unknown y(t) := v(t) p L p (Ω) . Thus, we have for all t > 0 d dt y(t) ≤ η v py(t)integrating over [0, t], y

  critical case p = p β Using θ(z, v) ≥ az and recalling that η

  the unknown b satisfies the first equation of (3.2.4) a.e. in Ω T , while the Neumann boundary and initial conditions in (3.2.4) are verified in the sense of traces. Proof of Proposition 3.2.1. Let ε > 0 and M > 0 fixed. We prove the existence to (3.1.20), (3.1.21) by applying Schauder's fixed point theorem. In this regard, we introduce the Banach space

Lemma 3 . 2 . 3 .

 323 Let the map Φ be defined by (3.2.11) -(3.2

  ) the unknowns (u ε,M , v ε,M ) satisfy the equations of (3.1.7) a.e. in Ω T while the trace of (u ε,M , v ε,M ) on [0, T ] × ∂Ω satisfies a.e. the Neumann boundary conditions. Moreover, the initial conditions (3.1.9) are satisfied by the traces of (u ε,M , v ε,M ) on {0} × Ω. Lemma 3.4.2. Let (a ε,M , v ε,M ) be a solution to (3.1.12) -(3.1.15) given by Proposition 3.3.1. Then, (u ε,M , v ε,M ) satisfies the system (3.1.7) -(3.1.9) in the sense of Proposition 3.4.1, with u ε,M U(a ε,M , v ε,M ).

  Estimate (3.5.1) follows from the first inequality of (3.2.1).

.5. 10 )

 10 Thus, we multiply the inequality (3.5.10) by e -2C f t , for t ∈ [0, T ] to get

(

  iii) Thanks to (3.5.1), (3.5.2), g ε,M is bounded in L 4 (Ω T ) uniformly in ε, M, so that the r.h.s. of the equation of v ε,M in (3.1.7) has an L 4 (Ω T ) norm which is uniform in ε, M. Thus, we get (3.5.3) by the maximal regularity and the Gagliardo-Nirenberg inequality. The estimate (3.5.4) follows multiplying by -∆v ε,M the equation satisfied by v ε,M , using the Cauchy-Schwarz inequality and recalling that v ε,M g ε,M has an L 2 (Ω T ) norm which is bounded in ε, M.(iv) Since by Lemma 3.4.2 the system (3.1.7) is equivalent to (3.1.12), the idea consists in proving (3.5.5) for a ε,M and then to use the change of variable (3.1.10) to get the suitable control for u ε,M .

. 21 )

 21 thus the r.h.s. of (3.5.21) is bounded in L 2 (Ω T ), uniformly in ε, M. Indeed, the first term has an L 2 (Ω T ) uniform control because g ε,M and ∂ t v ε,M are uniformly bounded in L 4 (Ω T ) by (3.5.1), (3.5.2) and (3.5.3), respectively. The last two terms have an L 2 (Ω T ) norm which is uniformly bounded in ε, M by (R2), (3.5.1), (3.5.2). Therefore, using the assumption v in ∈ H 3 (Ω), by the maximal regularity applied to(3.5.21) and by the Gagliardo Nirenberg inequality, we get the estimate below uniformly in ε, M

( 3 . 7 . 3 )

 373 and for h = h(u, v), k = k(u, v) with u, v ≥ 0 and s.t.

.7. 15 )

 15 Therefore, using (3.7.14), (3.7.15) the term I di f f is estimated as below when N = 1

  H1), (H2'), as shown in Section 2.3, for all u, v ≥ 0, there exists a unique (u * a (u, v), u * b (u, v)) solution to the nonlinear system (3.8.3). It can be written asu * a (u, v) = r * a (u, v)u and u * b (u, v) = r * b (u, v)u, (3.8.5) with r * a (u, v), r * b (u, v) ∈ (0, 1), r * a (u, v) + r * b (u, v) = 1. (3.8.6) Moreover, thanks to the strict positivity of A and B in (H2'), we will see in Subsection 3.8.2 that u * a (u, v) and u * b (u, v) are two differentiable maps, from R 2 + to R + , and that the diffusivity function A(u, v) in (3.8.2) is a C 2 (R 2 + , R + ) function. This will be fundamental to obtain Theorem 3.2 (see Subsection 3.8.2).

(∂ t ξ 2 )ξ 2 F

 22 ξ 1 )udxdt -Ω ξ 1 (0, • )u in dx + T 0 Ω ∇ξ 1 • ∇ d a u * a (u, v) + d b u * b (u, v) dxdt = T 0 Ω ξ 1 F u (u, v) dxdt, v dxdt -Ω ξ 2 (0, • ) v in dx + d v (u, v) dxdt.

q

  (u b ; u, v) defined in(2.3.1). Then, the implicit function theorem guarantees the C 1 character of u * b with respect to (u, v), and thus of u * a (u, v) = uu * b (u, v). Next, we proceed by computing the gradient of u * a , u * b . By differentiating (3.8.2), we obtain∂ i A(u, v) = d a ∂ i u * a (u, v) + d b ∂ i u * b (u, v), i = 1, 2.(3.8.9)Let us denoteψ * ψ(au * a (u, v) + cv), φ * φ(bu * b (u, v) + dv), ∂ i Q * ∂ i Q(u * a (u, v), u * b (u, v), v) , ∂ i j Q * ∂ i j Q(u * a (u, v), u * b (u, v), v) , i, j = 1, 2, 3 , v). By differenting the identity Q u * a , u * b , v = 0, with respect to u and v and using u = u * a + u * b , we get

∂ 1 Q

 1 (u a , u b , v) = -ψ(au a + cv)au a ψ (au a + cv) < 0,∂ 2 Q(u a , u b , v) = φ(bu b + dv) + bu b φ (bu b + dv) > 0, (3.8.12) and ∂ 3 Q(u a , u b , v) = du b φ (bu b + dv)cu a ψ (au a + cv). (3.8.13)

  (3.8.9), we get on the one hand, using∂ 1 u * a + ∂ 1 u * b = 1, 0 < min{d a , d b } ≤ ∂ 1 A(u, v) ≤ max{d a , d b },and on the other hand, using (3.8.17)|∂ 2 A(u, v)| ≤ d a |∂ 2 u * a | + d b |∂ 2 u * b | ≤ (d a + d b )Therefore, A(u, v) satisfies (D2) by takinga 0 min{d a , d b }, a 1 max{d a , d b }, a 2 (d a + d b ) c a + d b .

.8. 20 )

 20 Therefore, in order to estimate(3.8.18) -(3.8.20), we need to estimate the ratios|∂ i j Q| ∂ 2 Q-∂ 1 Q , i, j = 1, 2, 3.From (3.8.12), the Hessian of Q is given byHess(Q) =           -2aψa 2 u a ψ 0 -cψacu a ψ 0 2bφ + b 2 u b φ dφ + bdu b φ -cψacu a ψ dφ + bdu b φ d 2 u b φc 2 u a ψ           . (3.8.21) 

  φ (x) = |φ (x)| φ (x) = β|β -1|(B + x) β-2 β(B + x) β-1

30 )

 30 bdu b |φ | φ + ψ + au a ψ + bu b φ To conclude, thanks to (3.8.26) -(3.8.30) and recalling Q 12 = Q 21 = 0, the ratios|∂ i j Q| ∂ 2 Q-∂ 1 Q , i, j = 1,2, 3, and the derivative ∂ i j u * a = -∂ i j u * b are bounded, i.e. A(u, v) satisfies (U1).

F

  u (u, v) = u f (u, v) and F v (u, v) = ug(u, v) , with f (u, v) := f 1 (u, v)u f 2 (u, v)v f 3 (u, v), g(u, v) := g 1 (u, v)ug 2 (u, v)vg 3 (u, v), (3.8.31) and f i , g i , i = 1, 2, 3, such that f 1 (u, v) = η a r * a (u, v) + η b r * b (u, v), f 2 (u, v) = η a a r * a (u, v) 2 + η b b r * b (u, v) 2 + (γ a + γ b )r * a (u, v) r * b (u, v) , f 3 (u, v) = η a c r * a (u, v) + η b d r * b (u, v) ,(3.8.32)andg 1 (u, v) = η v + η v , g 2 (u, v) = η v a r * a (u, v) + η v b r * b (u, v), g 3 (u, v) = η v c + η v d.(3.8.33) 

2 .ψ

 2 2η a ar * a ∂ i r * a + 2η b br * b ∂ i r * b + (γ a + γ b )(r * a ∂ i r * b + r * b ∂ i r * a ), ∂ i f 3 = η a c∂ i r * a + η b d∂ i r * b .(3.8.35)Thus, we need to estimate ∂ i r * a and ∂ i r * b , i = 1, 2. By differentiating r * a in (2.3.5) with respect to u, using the identity r * a + r * b = 1 and denoting (ψ) * := ψ (au * a (u, v) + cv) , (φ ) * := φ (bu * b (u, v) + dv) , we get ∂ 1 r * a = -∂ 1 r * b = b(φ ) * ∂ 1 u * b ψ *aφ * ∂ 1 u * a (ψ ) * (φ * + ψ * )Thanks to the positivity of φ, ψ, φ , ψ and to the bounds of∂ 1 u * a , ∂ 1 u * b in (3.8.16), we obtain a(ψ ) * ψ * ≤ ∂ 1 r * a ≤ b(φ ) * φ * .Thus, (3.8.22) and (3.8.24) give -∂ 2 r * a and ∂ 2 r * b we differentiate r * a in (2.3.5) with respect to v, to get∂ 2 r * a = -∂ 2 r * b = (φ ) * (b∂ 2 u * b + d) φ * + ψ * -φ * (φ ) * (b∂ 2 u * b + d) + (ψ ) * (a∂ 2 u * a + c) (φ * + ψ * ) 2 = ψ * (φ ) * (b∂ 2 u * b + d)φ * (ψ ) * (a∂ 2 u * a + c) (φ * + ψ * ) 2 , * a∂ 2 u * a + c ≤ ∂ 2 r * a (u, v) ≤ (φ ) * φ * b∂ 2 u * b + d .Thus, using (3.8.17),(3.8.22),(3.8.24), we obtain the following bounds for ∂ 2 r * a , ∂ 2 r * b , differentiating the identities in (3.8.5) with respect to u, we obtain∂ 1 u * a = r * a + u∂ 1 r * a , ∂ 1 u * b = r * b + u∂ 1 r * b ,so that, thanks to (3.8.6),(3.8.16), the following bound holds|u∂ 1 r * a |, |u∂ 1 r * b | ≤ 1. (3.8.40) On the other hand, by differentiating the identities in (3.8.5) with respect to v, it holds ∂ 2 u * a = u∂ 2 r * a and ∂ 2 u * b = u∂ 2 r * b , To conclude, all terms in (3.8.34), (3.8.35) are bounded thanks to the bounds of r * a , r * b in (3.8.6), the bounds of ∂ i r * a , ∂ i r * b in (3.8.36), (3.8.38), (3.8.39), the bounds of u∂ i r * a , u∂ i r * b in (3.8.40), (3.8.41), the boundedness of v, shown in Theorem 2.5.2, and the bounds of f i defined in (3.8.32).

  , -∆ B(u, v) = vg(u, v),in Ω,∇(A(u, v)) • σ = ∇(B(u, v)) • σ = 0, on ∂Ω.

  2): the diffusivity functions A, B are such thatA, B ∈ C 2 (R 2+ , R + ) with A(0, v) = 0, and B(0, v) = 0, for all v ≥ 0. (E1)There exist a 0 , a 1 , a 2 > 0 such that for all u, v ≥ 0,0 < a 0 ≤ ∂ 1 A(u, v) ≤ a 1 and |∂ 2 A(u, v)| ≤ a 2 . (E2) There exist b 0 , b 1 , b 2 > 0 such that for all u, v ≥ 0, 0 < b 0 ≤ ∂ 2 B(u, v) ≤ b 1 and |∂ 1 B(u, v)| ≤ b 2 . (E3)There exist a 3 , b 3 > 0 such that for all u, v ≥ 0,|∂ 12 A(u, v)| ≤ a 3 and |∂ 21 B(u, v)| ≤ b 3 . (E4)

D 1

 1 d a + d b + d v > 0 , D 2 d a d v + d b d v + d a d b > 0 , D 3 d a d b d v , (A.2.2) and A d a (M ε 22 + M ε 33 ) + d b (M ε 11 + M ε 33 ) + d v (M ε 11 + M ε 22 ) < 0, B d b d v M ε 11 + d a d v M ε 22 + d a d b M ε 33 < 0, C d a [M ε ] 11 + d b [M ε ] 22 + d v [M ε ] 33 > 0 .

3 .

 3 Chapter 2 : Proof of Lemma (2.7.2) Thus, using the previous computations, we obtaintr N ε = tr M ε -D 1 λ n < 0 , det 2 N ε = det 2 M ε + D 2 λ 2 n -A λ n > 0, and det N ε = det M ε -D 3 λ 3 n + B λ 2 n -C λ n < 0 .To conclude, it remains to check the sign of the quantity below:(det 2 N ε )(tr N ε ) -det N ε = (det 2 M ε )(tr M ε ) -det M ε + λ 3 n (-D 1 D 2 + D 3 ) + λ 2 n (D 2 tr M ε + AD 1 -B) + λ n (-D 1 det 2 M ε -A tr M ε + C) .

2 )+

 2 The idea to prove (A.3.1) is to show the nonnegativity of the following polynomial for any η ≥ 0,P(η) (1 -C(γ, δ), provided (A.3.2). By analysing the monotonicity of P, we getP (η) = 1 λ γ η γ-1 (1δ)(1 + γ) η λ δ ,which admits a unique local minimumη min γλ (1δ)(1 + γ) > 0.

  with d 12 d 21 < 64d 11 d 22 or 0 < d 12 d 21 = 64d 11 d 22 . For N = 2, Lou, Ni and Wu published in

  .4.21) Furthermore, they are linearly unstable if α ≤ 1, and if α > 1, they are linearly stable if and only if the function F in (1.4.7) is strictly decreasing around λ, i.e. F (λ) < 0.

(iii) If α < 1, there exists a unique strictly positive steady state given by (ū 4 , v4 ) = (a + bα, b(1α)) and it is linearly stable.

Proof.

(i) From (1.4.17) and (1.4.15), we have

  .7.11) Thus, neglecting A, B, v in (2.7.10) and (2.7.11), we obtain for all p ≥ 1,

  We observe that ∂ 22 h a,2 , ∂ 22 h b,2 have a sign which changes depending on the value of α, β. More precisely, by (2.7.16) it holds ∂ 22 h a,2 < 0 (resp. ∂ 22 h b,2 < 0) if and only if α < 1 (resp. β < 1), so that we need to estimate K 2

	.7.70)
	Now, we estimate the terms K 2 3 and K 2 4 defined in (2.7.63).

3 (resp. K 2 4 ) when α < 1 (resp. β < 1), otherwise K 2 3 ≤ 0 (resp. K 2 4 ≤ 0). 55 2.7. Energy estimates Using θ(z, v) ≥ az and the inequality (2.7.28) with γ = α, we have

•

  The critical case p = p β We put into (2.7.20) the estimate for the reaction term I

	the diffusion term I the constants, we obtain for all t ∈ (0, T ) p β di f f in (2.7.53). Thus, recalling that I	p β rea in (2.7.31) and the estimate for p f ast ≤ 0 (see (2.2.8)) and renaming

  Finally, putting (2.7.86) and (2.7.87) into (2.7.77) -(2.7.79), we end up with

2.7.87) 

where the constant C σ depends on σ, v ε L ∞ (Ω T ) but not on u ε b .

  In order to prove the estimate (3.2.17), we recall the definition(3.1.8) and we differentiate (weakly) in time the equation satisfied by vδ in (3.2.12), to get∂ 2 t vδd v ∂ t ∆v δ = (∂ t vδ )g ε,M + vδ ˇ g M * t,x ∂ t ϕ ε . (3.2.21)Thus by assumption (R1) and inequalities (3.2.14), (3.2.15), the r.h.s. of the above equation is bounded in L p (Ω T ) for all p ∈ [1, ∞), uniformly in δ. Then, thanks to the maximal regularity and the Gagliardo-Nirenberg inequality, we see that there exists a constant C(ε, M, T ) > 0 s.t. for all i, j = 1, . . . , N∂ 2 t vδ L p (Ω T ) + ∂ t ∂ x i vδ L p (Ω T ) + ∂ t ∂ x i x j vδ L p (Ω T ) ≤ C(ε, M, T ), (3.2.22) for all p ∈ (1, +∞), where C(ε, M, T ) does not depend on δ. Therefore, ∂ t vδ is bounded in W 1,p (Ω T ) and thus in L ∞ (Ω T ), using (3.2.19), (3.2.20) with k = 1. In order to prove (3.2.18), we show that vδ is bounded in W 3,p (Ω T ) for all p ∈ [1, +∞), for any fixed ε, M > 0 and then we conclude using (3.2.19), (3.2.20) with k = 3. By differentiating (weakly) in time (3.2.21) and recalling (3.1.8), we obtain∂ 3 t vδd v ∂ 2 t ∆v δ = (∂ 2 t vδ ) g ε,M + 2∂ t vδ ˇ g M * t,x ∂ t ϕ ε + vδ ˇ g M * t,x ∂ 2 t ϕ ε . (3.2.23) Then, we use (3.2.14), (3.2.15), (3.2.22) to prove that the r.h.s. is bounded in L p (Ω T ) for all p ∈ (1, +∞), uniformly in δ. Therefore, ∂ 3 t vδ and ∂ 2 t ∂ x i vδ are bounded in L p (Ω T

				.2.19)
	with k ∈ N, k > N+1 p and γ such that	
	γ =	      	N+1 p any γ in (0, 1), + 1 -N+1 p , if N+1 p if N+1 p ∈ N. N,	(3.2.20)

  We get the result by induction on k in(3.2.19). Indeed, we take the (weak) time and space derivatives in the equation (3.2.12) to get the suitable W k,p control. Then, we use the maximal regularity and the Gagliardo-Nirenberg inequality to conclude. Therefore thanks to Proposition 3.2.2 and the uniqueness proven in Subsection A.4.4, the problem (3.2.13) admits a unique nonnegative solution so that āδ is well defined. Moreover by Proposition 3.2.2 again, āδ verifies the following estimates (which are uniform in δ)

		3,p (Ω T ). Then, (3.2.19), (3.2.20) with k = 3
	allows to conclude.		
	Remark 3.4.		
	We can improve Lemma 3.2.4 by showing		
	vδ ∈ C m (Ω T ),	∀ m ∈ N, uniformly in δ.	(3.2.25)
	• The equation satisfied by āδ Recalling the definition of s M in (3.1.14) and using (R1), (3.1.5), (3.2.17), then there
	exists a constant S (ε, M, T ) > 0 depending on ε, M, T but not on δ, such that
	|s M (t, x)| ≤ S (ε, M, T ),	a.e. in Ω T .	(3.2.26)

  .2.39) Before taking the limit in the previous estimate, we claim the result below.(iii) the unknowns (a ε,M , v ε,M ) satisfy the first two equations of (3.1.12), a.e. in Ω T .Moreover, the boundary conditions in (3.1.12) and the initial conditions (3.1.15) hold in the sense of traces.Proof of Proposition 3.3.1. Let the solution (a δ , v δ ), satisfying the system (3.1.20), (3.1.21) in the sense of Proposition 3.2.1. Using the δ-uniform estimates achieved in Proposition 3.2.1, we take the weak limit in L 1 (Ω T ) as δ → 0 in (3.1.20), (3.1.21). Firstly, by (3.2.1) -(3.2.3) we get (up to subsequences) for some a, v ∈ L ∞ (Ω T ), a δ → a and v δ → v a. e. in Ω T , Considering the equation satisfied by a δ in (3.1.20), we obtain by (3.3.2) that the l.h.s. converges weakly in L 2 (Ω T ) to ∂ t a, as δ → 0. Concerning the diffusion term, we first observe that by the C 0 (R 2 + ) character of µ together with (3.3.1), we get µ(a δ , v δ ) → µ(a, v), a.e. in Ω T , as δ → 0. Then, recalling the boundedness of µ in (3.1.16) and using the result in Proposition A.6.1, we end up with

					(3.3.1)
	and and for all p ∈ [1, +∞) ∂ t a δ	∂ t a, ∆a δ	∆a, ∇a δ	∇a, weakly in L 2 (Ω T ),	(3.3.2)
	∂ t v δ	∂ t v, ∆v δ	∆v, ∇v δ	∇v, weakly in L p (Ω T ).	(3.3.3)

  T ) convergence of ∆a δ in (3.3.2), recalling the L ∞ bound for µ(a δ , v δ ) * x ϕ δ : 0 ≤ µ(a δ , v δ ) * x ϕ δ ≤ a 1 ϕ δ L 1 (R N ) ≤a 1 , a.e. in Ω T , and taking p = 2 in (3.3.5), then Proposition A.6.2 implies µ(a δ , v δ ) * x ϕ δ ∆a δ µ(a, v)∆a, weakly in L 1 (Ω T ), as δ → 0. (3.3.8) Concerning the reaction term, we recall the definition of s M in (3.1.14)

	.7)
	giving (3.3.5) by the obtained convergences in (3.3.4), (3.3.6). Therefore, by combining with
	the weak L 2 (Ω

  However, the weak convergence of ∂ t v δ in (3.Proposition 3.4.1 (Existence of (u ε,M , v ε,M )).

				3.3) gives by Proposition
	A.6.2			
	II δ	U(a, v)∂ 2 B(U(a, v), v)∂ t v, weakly in L p (Ω T ), for all p < ∞.	(3.3.12)
	Hence, by gathering (3.3.9), (3.3.11) and (3.3.12), we conclude
	s M (a δ , v δ , ∂ t v δ )	s M (a, v, ∂ t v),	weakly in L p (Ω T ), for all p < ∞.	(3.3.13)

  .[START_REF] Choi | Existence of global solutions for the shigesada-kawasakiteramoto model with weak cross-diffusion[END_REF] giving (3.5.7). The inequality above gives a ε,M bounded in L ∞ (Ω T ), uniformly in ε, M. Then, using the equivalence of the systems (3.1.7) and (3.1.12) we obtain the L ∞ -boundedness of u ε,M , that is (3.5.8). Indeed, by the definition of s M in (3.1.14), the estimate (3.5.22) implies We show (3.7.1) using Sobolev inequality (3.2.19),(3.2.20) . Thanks to the boundedness of v in L 4 (0, T ; W 2,4 (Ω)) for any N ≥ 1, shown in Theorem 3.1.1, and the Sobolev embedding (3.2.19),(3.2.20), there exists a constant C > 0 such that for all t ∈ (0, T )

	T			
	0	sup x∈Ω	|s M (t, x)| ≤ C(T ),	if N ≤ 3, uniformly in ε, M,
	so that by similar computations as in (3.2.27), using (3.5.22) we get uniformly in ε, M
			a ε,M L	

∞ (Ω T ) ≤ C(T ), if N ≤ 3,

(3.5.23)

Proof.

  Taking into account the admissible values of δ in (3.7.28), the above inequality is satisfied if

										2 L 2 (Ω)
	+ C 2 (t) + C rea (t) u 1 -u 2	2 L 2 (Ω) + λ v 1 -v 2	2 L 2 (Ω) .	(3.7.27)
	Now, we choose δ > 0 such that		
	a 0 4	-	2δ a 0	C GN N 2 H > 0	⇐⇒	0 < δ <	a 2 0 8C GN N 2 H	,	(3.7.28)
	and we choose λ > 0 such that, for δ > 0 given above,
	d v λ -	a 2 2 a 0	-	2δ a 0	C GN N 2 H > 0		⇐⇒	λ >	a 2 2 + 2δC GN N 2 H a 0 d v	.
								λ >	a 2 2 a 0 d v	+	a 0 4d v	.	(3.7.29)

  u 2 )(t, •) 2 L 2 (Ω) + λ (v 1v 2 )(t, •) 2 L 2 (Ω) , ω(t) ∇((u 1u 2 )(t, •)) 2 L 2 (Ω) + ∇((v 1v 2 )(t, •)) 2 L 2 (Ω), with C rea (t) and C N (t) defined in (3.7.12), (3.7.17),(3.7.26). Then, in both cases N = 1, 2, the inequalities (3.7.19), (3.7.30) rewrite, for all t ∈ [0, T ], as -t 0 ĈN (s)ds + C di f f,N w(t)e -t 0 ĈN (s)ds ≤ 0.where f u and f v are defined in (2.1.2),(2.1.11) and the transition functions φ, ψ are the same transition functions considered in Chapter 2 (see (H1)). However, we assume now that both φ and ψ are lower bounded by a strictly positive constant, i.e. we assume, ψ(x) (A + x) α , φ(x) (B + x) β ,

	2 L 2 (Ω) L 2 (Ω) + λ v 1 -v 2 2 H , d v λ -≤ 2(C 2 (t) + C rea (t)) u 1 -u 2 C di f f,2 2 min a 0 4 -2δ a 0 C GN N 2 a 2 2 a 0 -2δ a 0 C GN N 2 2 L 2 (Ω) , H > 0. To conclude, we define for all t ∈ [0, T ] and N = 1, 2 with ĈN (t) 2(C N (t) + C rea (t)), y(t) (u 1 d dt y(t) + C di f f,N ω(t) ≤ ĈN (t) y(t). Thus, we multiply (3.7.33) by e -t 0 ĈN (s)ds to get d dt with A > 0, B > 0, and y(t)e ∀ x ≥ 0, 0 < α ≤ β ≤ min 6 N , ( √ 7 + 2)α + √ 7 + 1 .	(3.7.30) (3.7.31) (3.7.32) (3.7.33) (H1) (H2')

  .8.14) Moreover, by (3.8.13) we have

  2), i.e. to compute the hessian of u * a and u * b . Observing that ∂ i j u * a = -∂ i j u * b , for i, j = 1, 2, and that ∂ 12 u * a = ∂ 21 u * a , by the regularity of u * a , we will compute only ∂ 11 u * a , ∂ 12 u * a , ∂ 22 u * a . From (3.8.10), it holds

  .8.19) Finally, we compute ∂ 22 u * a from (3.8.11) and we obtain

  a 2 u a |ψ | φ + ψ + au a ψ + bu b φ Q -∂ 1 Q ≤ d 2 u b |φ | + c 2 u a |ψ | φ + ψ + au a ψ + bu b φ

		≤ 2a	ψ ψ	+ a	|ψ | ψ	≤	2aα A	+	a|α -1| A	.	(3.8.26)
	Similarly, it holds											
	|∂ 22 Q| ∂ 2 Q -∂ 1 Q	≤ ≤ 2b φ + ψ + au a ψ + bu b φ 2bφ + b 2 u b |φ | φ φ + b |φ | φ ≤ 2bβ B +	b|β -1| B	,	(3.8.27)
	and											
	|∂ 33 Q| ∂ 2 ≤	d 2 b	|φ | φ	+	c 2 a	|ψ | ψ	≤	d 2 |β -1| bB	+	c 2 |α -1| aA	.	(3.8.28)
	Next, we get											

in (2.7.23) will be estimated in the critical cases p = p β , p = p α and in the super-critical case p = 2 in the next three paragraphs, respectively.

Remark 3.1. We observe that (D1) gives for all u, v ≥ 0

implying that there exists a function B ∈ C 1 (R 2 + , R + ) such that for all u, v ≥ 0, A(u, v) = uB(u, v) with 0 < a 0 ≤ B(u, v) ≤ a 1 , (3. 1.4) thanks to (D2). In addition, assumption (D3) implies for all u, v ≥ 0,

The functions f, g are C 1 (R 2 + ) and there exist the constants C f , C g , C g > 0 such that for all u, v ≥ 0

This chapter aims to prove the existence, regularity and uniqueness of strong solutions of the system (3.1.1) - (3.1.3), where we refer to strong solutions as a class of solutions satisfying the equations in (3.1.1) a.e. in Ω T and where the boundary and initial conditions hold in the sense of traces. Our strategy for showing the existence result (see Theorem 3.1.1) consists in introducing a convenient change of variable that strongly uses the monotonicity of A in (D2) and gives rise to a parabolic system in a non divergence form.

Finally, we state the main existence result for (3.1.1) - (3.1.3), in Theorem 3.1.1 below. In order to explain the idea of proof, we will give some heuristic computations in the remaining Subsections 3.1.1, 3.1.2, 3.1.3. The rest of the chapter is structured as follows: Sections 3.2 -3.6 are devoted to the existence result and a more detailed organization is given at the end of this section. In Section 3.7, we prove a uniqueness result of strong solutions, provided that the space dimension N ≤ 2. We conclude by showing a result of weak-strong stability and weak strong uniqueness, in Section 3.8. Theorem 3.1.1. Let N ≥ 1. We assume (D1), (D2), (D3), (R1) and the initial data u in ∈ L 4 ∩ H 1 (Ω), v in ∈ L ∞ ∩ H 3 (Ω) compatible with Neumann boundary condition. Then, for all T > 0 there exists a strong nonnegative solution (u, v) of (3.1.1) -(3. 1.3), in the sense that

(iii) the unknowns (u, v) satisfy the equations of (3.1.1) a.e., and the trace of (u, v) on [0, T ] × ∂Ω satisfies a.e. the Neumann boundary conditions (note that since ∂ x i ,x j A(u, v) ∈ L 2 (Ω T ) and ∂ x i ,x j v ∈ L 4 (Ω T ), the quantities ∇A(u, v) and ∇v are well defined in L 2 (Ω T ) and thus a.e on [0, T ]×∂Ω). Moreover the initial condition (3.1.3) is satisfied by the trace of (u, v) on {0} × Ω (note that this trace exists since ∂ t u ∈ L 2 (Ω T ) and ∂ t v ∈ L 4 (Ω T )).

Moreover, if N ≤ 3 it holds u ∈ L ∞ (Ω T ), ∂ x i u ∈ L 4 (Ω T ), ∂ t v ∈ L 2 (0, T ; L ∞ (Ω)).

A truncated-regularized system

In order to prove Theorem 3.1.1, we introduce a truncated-regularized system that, at this level, formally converges to (3.1.1), (3.1.3). For a given function ω = ω(u, v) and a given M > 0, we define the truncated function

For given functions ρ = ρ(t) defined on [0, T ] and z = z(x) defined on Ω, we also define the extended functions

Therefore, the truncated-regularized system writes as

where we define for a.e. (t, x) ∈ R N+1 and for all ε > 0

where * t,x stands for the convolution operation in time and space variables and (ϕ ε ) ε>0 is a family of standard mollifiers on R N+1 . Moreover, we complete the system (3.1.7), (3.1.8) with the regularized initial conditions

where * x stands for the convolution operation in the space variable and (ψ ε ) ε>0 is a family of standard mollifiers on R N .

It is worth noticing that the regularization and truncation only affect the reaction part in (3.1.7) and the initial conditions (3.1.9). In particular, we truncate the functions f and g only with respect to u, while no truncation w.r.t. the v unknown is needed, by the properties coming from the triangular structure of the system (3.1.7). Indeed, since v ε,M satisfies a linear heat equation, we find that the L ∞ -boundedness of the initial datum v in,ε is preserved in time for a.e. t in (0, T ) (see (3.5.1)).

The main difficulty in showing the existence of solutions to the system (3.1.7) is the presence of the nonlinear diffusion term in the equation for u ε,M . Our strategy consists in proving the existence for an auxiliary system in a non divergence form that is equivalent to (3.1.7) -(3.1.9). The auxiliary system will be introduced in the following subsection, using a convenient change of variable.

The change of variable: an auxiliary system in non divergence form

The aim of this paragraph is to introduce a parabolic system which is, at this level, formally equivalent to (3.1.7) -(3.1.9). The idea consists in replacing the first equation of (3.1.7) with the equation satisfied by the nonlinearity A. By assumption (D2), we can define the reciprocal U of A with respect to the first variable, that is for a given v ≥ 0 2) as a system in non divergence form, satisfied by the pair of unknowns (a, v). Indeed, it holds

Then, for any fixed ε, M > 0, by defining

and using (3.1.10), we introduce the truncated system in non divergence form that is, at this level, formally equivalent to (3.1.7) -(3.1.9)

and for all a ≥ 0

with B defined in (3.1.4). The system (3.1.12) is completed with the intial data 

Finally, by the dominated convergence theorem again we get (up to subsequences) as

End of proof of Proposition 3. 

δ-uniform estimates and δ-limit

The aim of this section is to prove the existence of (a ε,M , v ε,M ), satisfying (3.1.12) - (3.1.15). The idea is to take the limit as δ → 0 in (3.1.20) 

Then, for any fixed ε, M > 0, there exists a solution (a ε,M , v ε,M ) of (3.1.12) -(3.1.15) in the sense that

Finally, the L ∞ boundedness of a δ in (3.2.1) and the a.e. convergence in (3.3.1) give by Proposition A.6.1,

that, together with (3.3.13), implies (by Proposition A.6.2)

Similarly, we take the limit in the equation satisfied by v δ . From (3.3.3), the evolution term ∂ t v δ and the diffusion term ∆v δ converge weakly in L p (Ω T ) for all p ∈ [1, ∞). Concerning the reaction term v δ g ε,M U(a δ , v δ ), v δ , from the C 0 (R 2 + ) character of U and g ε,M and using the a.e. convergences in (3.3.1), we get (for any fixed ε, M > 0) as δ → 0,

Therefore, by (3.3.1) it holds

Moreover, (3.2.1) gives the L ∞ boundedness of g ε,M , i.e.

Therefore, Proposition A.6.1 implies

.15) and, in particular weakly in L p (Ω T ), for any p ∈ [1, ∞). Thus, we take the weak limit in L 1 (Ω T ) as δ → 0, in the first two equations of (3.1.20), using (3. Finally, we pass to the limit in the boundary condition of (3.1.20) using the weak convergence of ∆a δ , ∆v δ in (3.3.2), (3.3.3) and the continuity of the trace operator Tr : H 2 (Ω) → H 1 (∂Ω). Hereafter, we restore the ε, M-dependences notations so that we refer to the a.e limit of a δ , v δ as a ε,M , v ε,M , respectively, and the weak limit of ∂ t a δ , ∆a δ , ∇a δ and ∂ t v δ , ∆v δ , ∇a δ as ∂ t a ε,M , ∆a ε,M , ∇a ε,M and ∂ t v ε,M , ∆v ε,M , ∇v ε,M , respectively. Finally, using the weak lower semicontinuity property of the L p (Ω T ) norm for p ∈ (1, +∞] and estimates (3.2.1) -(3.2.3), we conclude that a ε,M , v ε,M satisfy points (i), (ii), (iii) of Proposition 3.3.1.

Existence for the truncated-regularized system in the variables (u, v)

In this section, we prove the existence of strong solutions to the truncated-regularized system giving the first part of (3.5.8). Concerning the L 4 (Ω T )-boundedness of ∂ x i u ε,M for all i = 1, . . . N, we first prove the L 4 (Ω T )-boundedness of ∂ x i A(u, v) by the Gagliardo-Nirenberg inequality. Indeed, taking the fourth power we get for all i, j = 1, . . . , N, with N ≤ 3

. Then, by integrating in time over (0, T ) and using the Hölder's inequality we obtain

which is uniform in ε, M, using the estimates (3.5.17), (3.5.23). Finally, using (3.5.3), (3.5. [START_REF] Chen | When do cross-diffusion systems have an entropy structure[END_REF]), (D2) and the above inequality we end up for all i = 1, . . . , N and N ≤ 3,

Proof of the main result

In this section we prove Theorem 3.1.1. Before proceeding, we introduce the notations below for any ε, M > 0 and

Proof of Theorem 3.1.1.

By the ε, M-uniform estimates in Lemma 3.5.1, we get for some u ∈ L ∞ (0, T ; L 4 (Ω)) and v ∈ L ∞ (Ω) (up to subsequences)

and

In addition, we claim 

Thus, we compute

where for the first term we used Cauchy-Schwarz inequality and the ε, M-uniformly boundedness of u ε,M in L 2 (Ω T ), by (3.5.16). Therefore, we get (3.6.3) which implies

where D (Ω T ) stands for the space of distributions on Ω T . On the other hand, the inequality (3.5.5) implies the existence of ω ∈ L 2 (Ω T ) s.t. (up to subsequences)

so that by uniqueness of the limit in D (Ω T ), we identify

Now, we take the D (Ω T ) limit as ε → 0, M → +∞, if N > 3 and as ε → 0 if N ≤ 3, in (3.1.7) -(3.1.9). From the obtained convergences (3.6.1) -(3.6.7), it remains to prove the D (Ω T ) limit of the reaction terms

Otherwise, if N > 3, for a given (t, x) ∈ Ω T (outside of a zero measure set), because of (3.6.1), it holds for M large enough

as ε → 0, M → +∞, so that (still using (3.6.1))

Moreover, by assumption (R1) and estimates (3.5.2), (3.5.1) we end up with

which gives using (3.6.8) (see Proposition A.6.1)

and thus in D (Ω T ). Finally, it remains to treat the reaction term v ε,M g ε,M (u ε.M , v ε,M ), where g ε,M is defined in (3.1.8). Recalling the C 0 (R 2 + ) character of g, it holds for N ≤ 3, g M (u ε,M,v ε,M ) = g(u ε , v ε ) which converges a.e. in Ω T towards g(u, v), as ε goes to zero. Otherwise, for a given (t, x) ∈ Ω T (outside of a zero measure set), because of (3.6.1), it holds for M large enough

Moreover, by assumption (R1) and estimates (3.5.1), (3.5.2), we get for any N ≥ 1

giving (by Proposition (A.6.1)) as ε → 0, M → +∞,

(3.6.9)

By the same argument as in (3.3.7), we have from the regularization with standard mollifiers (abusing notations for the extended by zero function in the variables (t, x)), g(u, v) * t,x ϕ ε → g(u, v), strongly in L r (Ω T ), r < 4, (3.6.10) and

giving by (3.6.9), (3.6.10)

and thus, by (3.6.1) (up to subsequences)

Moreover, by assumption (R1), estimates (3.5.1), (3.5.2) and Young's inequality for convolution we get

Therefore, by Proposition A.6.1 we end up with

and thus in D (Ω T ). Then, using the obtained convergence above, all the terms in the first two equations of (3.1.7) converge in D (Ω T ). We conclude by taking the limit in the boundary conditions of (3.1.7), using the continuity of the trace operator and the weak convergence of ∆A(u ε,M , v ε,M ), ∆v ε,M in (3.6.2), (3.6.6), (3.6.7). Finally, using the lower semicontinuity property of the L p (Ω T ) norm for p ∈ (1, +∞] we conclude that u, v satisfy (3.1.1) -(3.1.3), in the sense of Theorem 3.1.1.

Uniqueness

This section is devoted to the uniqueness of the solution to (3. Finally, taking the supremum in t ∈ (0, T ) we conclude 

Weak-strong stability and uniqueness

The aim of this section is twofold. On the one hand we will prove that, under slightly stricter assumptions, the cross-diffusion system (2.1.7) -( 2 On the other hand, we will show that, if in addition α ≥ 1 (and thus, β ≥ 1), the stability estimate (3.7.8) turns into a weak-strong stability result, when N ≤ 2 (see Theorem 3.3). A direct consequence of the latter result is the weak-strong uniqueness of the solution to (2.1.7) -(2.1.13) (see Corollary 3.8.1). We refer to [START_REF] Berendsen | Uniqueness of strong solutions and weak-strong stability in a system of cross-diffusion equations[END_REF][START_REF] Huo | Weak-strong uniqueness for maxwell-stefan systems[END_REF] for further weak-strong stability results applied to cross-diffusion systems.

Before proceeding, for the reader's convenience, we recall here the system (2.1.7) -(2.1.11), i.e.

with

and where

Moreover, the reaction functions are given by

.4)

Statements of the main results

Theorem 3.2 (Existence and uniqueness of strong solutions).

Let N ≥ 1. We assume (H1), (H2'), (H3) and we consider nonnegative initial data satisfying

Then, for all T > 0 there exists a strong nonnegative (for each component) solution (u, v) of (3.8.1) -(3.8.4), in the sense of Theorem 3.1.1. In addition, if N ≤ 2, the strong solution is unique.

Theorem 3.3 (Weak-strong stability).

Let N ≤ 2. We assume (H1), (H2'), (H3), α ≥ 1 and we consider a pair of initial data (u w,in , v w,in ) satisfying (2.1.13), (H4), and a pair of nonnegative initial data (u s,in , v s,in ) 

with N defined in (3.7.6), and on ∇v s L 2 (0,T ;L ∞ (Ω)) , ∇u s L p (0,T ;L q (Ω)) , with Under the assumptions of Theorem 3.3, if u w,in = u s,in and v w,in = v s,in , for a.e. x ∈ Ω, we have u w (t, x) = u s (t, x) and v w (t, x) = v s (t, x), for a.e. (t, x) ∈ Ω T , so that the weak solution is a strong solution.

As announced, these results follow as soon as we prove that the system (3.8.1) -(3.8.4) satisfies (D1), (D2), (D3), (R1) and (U1), (U2). This is the goal of the next subsection.

Proof of the main results

We start by showing that, assuming (H1), (H2'), (H3), the diffusivity function

As A(0, v) = 0, for all v ≥ 0, assumption (D1) will follow. Then, we will show that A(u, v) satisfies also (D2) and (U1). Assumption (D3) is then a consequence of (U1). From the definition of A(u, v), this corresponds to analyse the properties of u * a (u, v) and u * b (u, v). We first observe that, thanks to the assumption (H2'), the transition functions φ, ψ are C ∞ (R + , R + ). Moreover, we know that u * b (u, v) is the unique zero of the increasing function Chapter 4

Perspectives

The results of this thesis suggest natural extensions and future directions of research.

As a possible perspective, I'm interested in the linear stability analysis of the spatially homogeneous equilibria of the system (3.8.1) - (3.8.4), in order to yield Turing instability. Moreover, we recall that the system (3.8.1) -(3.8.4) is the natural generalization of the cross-diffusion system (1.1.6) -(1.1.9), introduced in Chapter 1 and for which we proved that no segregation of species occurs. Therefore, it is natural to investigate how the presence of the cross-diffusion terms and the competitive reaction terms in (3.8.1) -(3.8.4) influence the pattern formation and if Turing instability occurs (see [START_REF] Breden | On the influence of cross-diffusion in pattern formation[END_REF][START_REF] Breden | Global bifurcation diagrams of steady states of systems of pdes via rigorous numerics: a 3-component reaction-diffusion system[END_REF]). Moreover, by following the works in [START_REF] Mimura | Spatial segregation in competitive interaction-diffusion equations[END_REF][START_REF] Soresina | Hopf bifurcations in the full skt model and where to find them[END_REF], one could also explore the bifurcation structure of the system to understand how it changes, depending on the values of the parameters.

A forthcoming work concerns the regularity of the solution to the cross-diffusion system (2.1.7) -(2.1.13), obtained by the mesoscopic approach (see Chapter 2). It is based on a priori estimates shown by the analysis of the energy functional below and by a bootstrap argument,

(see (2.2.1), (2.2.2)). We recall that in Chapter 2, we considered a subfamily of {E p } p≥1 , in order to get enough compactness and then to pass to the limit. More specifically, in Lemma 2.7.1 we obtained the energy estimates for the following values of p p = 1,

Now, the idea is to estimate uniformly in ε the evolution of E p for any p > 2. This improves the regularity of the solution (u ε a , u ε b , v ε ) to the mesoscopic system (2.1.1) -(2.1.6) and thus, the regularity of the solution (u u * a + u * b , v) to the macroscopic system (2.1.7) -(2.1.13), obtained as ε → 0. Then, we perform a bootstrap argument, i.e. we estimate the evolution of E p , using the estimates from the evolution of E p-1 .

A third research project consists on studying the existence of non-homogeneous stationary solutions to a class of cross-diffusion systems, including the system (3.1.1) -(3.1.3) considered in Chapter 3, and its asymptotic behavior. This is the subject of a current work in collaboration with E. Montefusco and it is detailed below.

The change of variable that we propose is the natural generalization of the one introduced in (3.1.10) in Chapter 3. By strongly using the assumptions (E2), (E3), it writes as follows

so that at a formal level, (a, b) satisfies

where for all a, b ≥ 0

(4.0.5)

As in Chapter 3, we observe that assumptions (E2), (E3) imply for all a > 0 and b ≥ 0

and for all a ≥ 0 and b > 0

, together with (R1), imply the following upper bounds

where R, S are strictly positive constants depending on the parameters involved in (E2), (E3), (R1).

Thanks to the change of variable (4.0.3), the existence of strong solutions to the system (4.0.2) follows from the existence of strong solutions to (4.0.4) -(4.0.8). Thus, it remains to show the existence of strong solutions to (4.0.4) -(4.0.8), assuming (E1) -(E4), (R1). We hope to be able to use for that Schauder's fixed point theorem.

We introduce the Hilbert space H 1 (Ω) and its closed bounded convex subset

with the constant Q > 0. Then, denoting z + the nonnegative part of z, we consider the map

where ā, b satisfy

and

where the reaction functions r, s are defined in (4.0.5) and k a , k b are two nonnegative constants to be determined in such a way that it is possible to apply Schauder's fixed point theorem. Then, by classical results of elliptic equations (see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]) and using (4.0.6), (4.0.7), we hope to prove that the map Φ satisfies Schauder's fixed point theorem.

Appendix

A.1 The parabolic maximal regularity estimate

In this section we state the following classical result for the heat equation (see [START_REF] Prüss | Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time[END_REF]).

Proposition A.1.1. We consider the problem below, with T > 0 and Ω ⊂ R N a smooth bounded domain

with the diffusion coefficient d > 0. We assume that ∇v in lies in L q (Ω) and g in L q (Ω T ) with q ∈ (1, 2], then there exists a constant C > 0, only depending on d, q, Ω such that the strong solution v of (A.1.1) satisfies ∂ t v L q (Ω T ) + ∇∇v L q (Ω T ) ≤ C g L q (Ω T ) + ∇v in L q (Ω) .

Moreover, if ∇∇v in belongs to L q (Ω) and g to L q (Ω T ) with q ∈ (2, +∞), then there exists a constant C > 0, only depending on d, q, Ω such that v satisfies

A.2 Chapter 1 : Proof of Proposition 1.4.4

Proof. The Routh matrix associated to M ε writes as (see [START_REF] Marcus | Applications of the theory of matrices (fb gantmacher)[END_REF])

A.4 Chapter 3 : Existence and estimates for a non divergence linear parabolic problem

This section aims to show Proposition 3.2.2. The strategy of proof is based on a density argument: firstly, we consider a regularized version of (3.2.4) which admits a pointwise and unique solution by the classical parabolic theory. Then, we prove some uniform a priori estimates for this regularized system in order to taking the limit and finally end up with the estimates for the solutions to equation (3.2.4).

Proof of Proposition 3.2.2.

By density there exist ( 

where the uniform bounds hold 0 < γ 0 ≤ γ n (t, x) ≤ γ 1 , a.e. in Ω T , (A.4.3) and

with C not depending on n. According to [START_REF] Ladyženskaja | Linear and quasi-linear equations of parabolic type[END_REF] there exists a solution b n to the system (A. 

Thus by Gronwall's Lemma and the nonnegativity of b in,n , we conclude that for any n

We define for all (t, x) ∈ Ω T and n ∈ N,

Thus, we compute 

in Ω, so that by the maximum principle (see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]) we get for all t ∈ (0, T ) and n ∈ N,

A.4.3 Extra n-uniform estimates

The aim of this paragraph is to prove the inequality (3.2.10). In order to do that, we multiply the first equation of (A.4.2) by -∆b n and we integrate on Ω to get 1 2

using the strictly positive lower bound of γ n in (3.2.5). Finally integrating in time and taking the supremum for t ∈ (0, T ), we end up with

Next, in order to get the L 2 -boundedness of ∂ t b n we multiply the first equation of (A.4.2) by ∂ t b n and we integrate on Ω T to obtain Therefore, it remains to take the weak limit as n → +∞, in system (A.4.2), using the obtained limits (A.4.9), (A.4.10). The weak L 2 (Ω T ) convergence of the evolutionary term follows directly from (A.4.10). Concerning the diffusion part, we observe that γ n and ∆b n satisfies the assumptions of Proposition A.6.2 with p = q = 2, by (A. We conclude by taking the limit in the boundary condition of (A.4.2), using the continuity of the trace operator and the weak convergence of ∆b n in (A.4.10). Finally, b satisfies (3.2.4) in the sense of (iii) in Proposition 3.2.2 and the weak lower semicontinuity of the L p norm gives (3.2.9), (3.2.10).

A.4.4 Uniqueness of āδ

In this subsection, we prove the uniqueness of āδ in L ∞ (0, T ; L 2 (Ω)), satisfying (3.2.13) in the sense of Proposition 3.2.2. Let ā1 , ā2 two solutions to (3.2.13) with the initial data a in,1 , a in,2 , respectively. Then, we multiply by ā1 -ā2 the equation satisfied by ā1 -ā2 and we integrate on Ω. We have Ω (ā 1 -ā2 )∂ t (ā 1 -ā2 )dx = Ω (µ(t, x) * x ϕ δ )(ā 1 -ā2 )∆(ā 1 -ā2 )dx 

Then, we integrate in time and we use the nonnegativity of v in,ε to get vδ (t, x) = 0, a.e in R + × Ω =⇒ vδ (t, x) ≥ 0, a.e in R + × Ω.

A.6 Chapter 3 : Useful functional analysis results

In this section, we state two useful functional analysis results (which can easily be deduced from properties stated in [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]). In particular, Proposition A.6.1 gives a criterion of strong L p convergence, while Proposition A.6.2 is a result of weak convergence for a product of two sequences.

Proposition A.