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Résumé en Français

Cette thèse porte sur l’analyse de problèmes paraboliques non linéaires apparaissants dans
des phénomènes biologiques, écologiques et plus généralement de dynamique des popula-
tions. Plus précisément, nous étudions l’existence, la régularité et la stabilité des solutions
d’équations aux dérivées partielles (EDPs) qui décrivent l’évolution de deux espèces qui
diffusent dans un environnement homogène et interagissent entre elles. Les EDPs que nous
considérons sont fortement couplées, c’est-à-dire couplées par des termes du second ordre du
point de vue des dérivées, et le système qu’elles forment appartient à une classe de systèmes
non linéaires de réaction-diffusion, appelés systèmes de diffusion croisée.

En 1979, Shigesada, Kawasaki et Teramoto proposent dans [81] un modèle de diffusion
croisée décrivant l’interaction entre deux populations. Le système s’écrit comme suit,


∂tu − ∆

(
u(du + d11u + d12v)

)
= u(ru − r11u − r12v), sur (0,+∞) ×Ω,

∂tv − ∆
(
v(dv + d21u + d22v)

)
= v(rv − r21u − r22v), sur (0,+∞) ×Ω,

(SKT)

où dorénavant Ω est un domaine ouvert, borné et regulier (classe C2) de RN ,N ∈ N, et les
inconnues u = u(t, x), v = v(t, x) sont deux quantités positives qui modélisent les densités de
deux populations, avec les coefficients de diffusion du, dv, di j, i, j = 1, 2 et les coefficients
de réaction ru, rv, ri j, strictement positifs. Plus précisément, ru, rv représentent les taux
de croissance intrinsèques linéaires des deux espèces et ri j, i, j = 1, 2 représentent les
coefficients de compétition. En particulier, rii est le taux de compétition intra-spécifique,
c’est-à-dire le taux des interactions négatives entre les individus de la même espèce, tandis
que ri j, i , j correspond au taux de compétition inter-spécifique qui gère les interactions
négatives entre les individus d’espèces différentes. Les termes de diffusion non linéaires
dans (SKT) décrivent les mouvements des individus dans l’environnement Ω. En particulier,
on reconnait les termes de diffusion linéaires ∆(duu), ∆(dvv) qui modélisent la diffusion
intrinsèque des individus dans le domain et les termes de diffusion non linéaires ∆

(
u(d11u +

d12v)
)
, ∆

(
v(d21u + d22v)

)
qui quantifient l’effet répulsif de l’interférence mutuelle. Plus

précisément, les termes d11u2, d22v2 sont dits d’autodiffusion et les termes non diagonaux
d12uv, d21uv sont dits de diffusion croisée. Un système de diffusion croisée (SKT) est dit
triangulaire lorsque d21 = 0, et on remarque que si la matrice de diffusion non linéaire est
nulle, c’est-à-dire di j = 0, i, j = 1, 2, alors on retrouve un système de réaction-diffusion
usuel de type Lotka-Volterra.
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Résumé en Français

Le système (SKT) a été introduit pour résoudre un problème de modélisation lié à
l’instabilité de Turing [85] et à la formation de pattern, par conséquence [5, 15, 46]. Néan-
mois, ce système s’est avéré être un objet mathématique extrémement riche pour lequel
plusieures questions mathématiques de nature différente se posent. Une liste non exaustive
concerne: existence locale et globale en temps des solutions, régularité (ou borne L∞) et
unicité des solutions, stabilité des équilibres et comportement asymptotique.

Dans cette thèse, nous nous intéressons à ces questions pour une classe de systèmes
de diffusion croisée triangulaires, issus de problèmes de modélisation en dynamique des
populations, différents de ceux conduisant à (SKT), et liés à des questions de diversification
de régime alimentaire des individus. Dans les paragraphes qui suivent, nous résumons
brièvement le contenu de chaque chapitre, les résultats obtenus et les techniques employées.

• Dans le Chapitre 1, nous étudions l’existence de solutions faibles et la stabilité linéaire
d’un système triangulaire de diffusion croisée avec les conditions de Neumann ho-
mogènes au bord. Pour ce qui concerne le résultat d’existence, on montre de manière
rigoureuse le passage d’un système de réaction-diffusion de type Lotka-Volterra (sys-
tème mésoscopique) vers un système de diffusion croisée (système macroscopique),
obtenu comme limite de réaction rapide. Le système mésoscopique modélise la com-
pétition de deux espèces, où une espèce a un régime alimentaire plus diversifié que
l’autre. À la limite, on trouve un système de diffusion croisée de type starvation

driven. Les outils principaux utilisés pour passer rigoureusement à la limite incluent
des estimations a priori, données par l’analyse d’une fonctionnelle d’entropie, et un
argument de compacité. De plus, nous étudions la stabilité linéaire des équilibres
homogènes en espace des systèmes macroscopique et mésoscopique et nous excluons
la possibilité de l’apparition d’une instabilité de Turing et de la formation de patterns.
En particulier, nous étudions la relation à la limite entre la stabilité linéaire de l’état
d’équilibre de coexistence à l’échelle mésoscopique et macroscopique. Des simula-
tions numériques sont également réalisées pour compléter les résultats théoriques. Le
contenu du Chapitre 1 est le résultat d’une collaboration avec L. Corrias, H. Dietert
et Y.-J. Kim et il a été publié dans Journal of Mathematical Biology sous le titre de
Evolution of dietary diversity and a starvation driven cross-diffusion system as its

singular limit [12].

• Dans le Chapitre 2, on montre l’existence des solutions faibles pour une vaste classe de
systèmes triangulaires de diffusion croisée avec les conditions de Neumann homogènes
au bord, en utilisant la dérivation mésoscopique, de manière similaire à celle du
Chapitre 1. Nous introduisons la généralisation naturelle du système mésoscopique
étudié dans le Chapitre 1 et nous obtenons à la limite une classe plus vaste de systèmes
de diffusion croisée triangulaires de type starvation driven. L’ingrédient principal
d’analyse est une famille de fonctionnelles d’entropie qui inclut la fonctionnelle
d’entropie utilisée dans le Chapitre 1. Afin d’avoir une compacité suffisante et ensuite
de passer à la limite, il suffit de considérer les premiers éléments de la famille de la
fonctionnelle d’entropie. Cependant, afin d’étudier la régularité de la solution, on peut
étudier l’évolution de l’entropie pour tout élément de la famille, en améliorant ainsi
les estimations a priori, à l’aide d’un argument de type bootstrap. La régularité des
solutions fait l’objet d’un travail à venir pour lequel nous renvoyons au Chapitre 4

pour plus de détails.

viii



Résumé en Français

• Dans le Chapitre 3, nous étudions l’existence, l’unicité et la régularité des solutions
fortes pour une classe générale de systèmes de diffusion croisée triangulaires avec les
conditions de Neumann homogènes au bord. Le terme solutions fortes signifie que
les équations du système sont satisfaites presque partout. La méthode utilisée pour
montrer le résultat d’existence diffère de celle employée dans les Chapitres 1, 2, où
le système de diffusion croisée a été dérivé par limite mésoscopique. La stratégie
présentée dans le Chapitre 3 est d’introduire un changement de variable approprié,
en utilisant de manière cruciale les propriétés de la fonction de diffusion du système
de diffusion croisée. Ce changement de variables conduit à un système parabolique
sous forme non divergence. Par conséquent, les méthodes analytiques classiques,
telles que les arguments de régularisation et de point fixe, nous permettent de montrer
l’existence d’une solution forte et le caractère borné, L∞((0,T ) × Ω) pour tout T > 0,
des solutions si la dimension de l’espace est N ≤ 3. Enfin, nous prouvons l’unicité de
la solution forte, un résultat de stabilité forte-faible et un résultat d’unicité forte-faible,
à condition que N ≤ 2.
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Notations

We denote

N spatial dimension,

x · y the Euclidean scalar product in RN between the vectors x, y ∈ RN ,

Ω a bounded, open and sufficiently smooth domain of RN ,

Ω̄ the closure of Ω,

|Ω| the Lebesgue measure of Ω,

ΩT the set (0,T ) ×Ω, with T > 0,

∂i derivative of first order with respect to the i−th variable,

∂i j derivative of second order with respect to the i−th and j−th variables,

Ck(Ω) set of functions with continuous k−th derivatives on Ω, with k ∈ N,

Lp(Ω) set of functions with p−power Lebesgue integrability in Ω, with p ∈ [1,+∞),

L∞(Ω) set of essentially bounded functions on Ω,

Wk,p(Ω) set of functions with the first k−th weak derivatives in Lp(Ω) and k ∈ N,
Hk(Ω) Hilbert space Wk,2(Ω), with k ∈ N,

Lp(0,T ; X
)

set of Lp functions on (0,T ) with values in X and p ∈ [1,∞],

Wk,p(0,T ; X
)

set of Wk,p functions on (0,T ) with values in X, with k ∈ N and p ∈ [1,∞],

Lp(ΩT ) Lp(0,T ; Lp(Ω)
)

with p ∈ [1,∞],

X+ set of functions u ∈ X such that u ≥ 0 almost everywhere.





Introduction

This thesis aims to present some recent results and advances in the analysis of nonlinear
parabolic problems arising in biology and ecology. More precisely, we study the existence,
regularity and stability of solutions to partial differential equations (PDEs), describing the
evolution of two species that diffuse in a homogeneous environment and interact with each
other. The PDEs we consider are strongly coupled, i.e. coupled through second-order
derivative terms, and the system they give rise to belongs to a class of nonlinear reaction-
diffusion systems, called cross-diffusion systems.

Introduction to population dynamics

Mathematical modeling represents an essential support to investigate biological and ecologi-
cal phenomena. By combining experimental data and theoretical analysis, several natural
events may be described. From a modeling point of view, many mathematical models have
been proposed to describe natural processes, in order to predict the outcomes. In particu-
lar, we are interested in population dynamics that focus on interactions of individuals or
concentrations, depending on biological and environmental conditions (cfr. [70, 72]). In
population dynamics, competition among individuals of the same or different species is
fundamental, especially if the ecosystems admit a limited amount of resources. A classical
system describing interactions has been simultaneously formulated by A. J. Lotka and V.
Volterra in 1925, in terms of ordinary differential equations (ODEs). This model describes
the evolution of two populations u = u(t), v = v(t) in competitive interactions and at this
level, spatial movements of individuals are neglected. Hence, the model writes as below,


∂tu = u(ru − r11u − r12v), t > 0,

∂tv = v(rv − r21u − r22v), t > 0,
(LV)

with the coefficients ru, rv, ri j > 0, i, j = 1, 2. More precisely, ru, rv are the linear intrinsic
growth rates whereas ri j, i, j = 1, 2 represent the competitive coefficients. In particular,
rii is the intra-specific competition rate, i.e. the rate of the negative interactions between
individuals of the same species, while ri j, i , j corresponds to the inter-specific competition
rate. We point out that the nature of the inter-specific interactions in (LV) changes if the
sign of the inter-specific rates is changed [7]. Indeed, by considering the more general
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Introduction to population dynamics

Lotka-Volterra reaction functions below, for all u, v ≥ 0 and θu, θv ∈ {−1, 0,+1}, we get

f
θu

(u, v) B u(ru − r11u + θur12v),

g
θv

(u, v) B v(rv + θvr21u − r22v),

with ru, rv, ri j > 0, i, j = 1, 2, so that different kinds of interactions can be modeled.

• θuθv = 1. This condition includes the case θu = θv = −1, giving the reaction functions
in (LV) and modeling the competition between the two species. The fitness of both
species (i.e. the reproductive success) is lowered by the presence of other species.
Conversely, the case θu = θv = 1 models a mutualistic relationship, i.e. a reciprocal
altruism where both populations benefit.

• θuθv = −1. This condition models predator-prey or parasitism interactions, meaning
that only one of the two species gains benefits from the interactions with the other
population. In particular, if θu = 1, θv = −1 (resp. θu = −1, θv = 1) then interactions
are advantageous for u (resp. v) and harmful for v (resp. u).

• θuθv = 0. This condition includes the case θu = θv = 0, describing a neutral relationship,
which means that individuals of different species don’t interact with each other and the
associated equations are uncoupled by the reaction functions. Otherwise, if only one
between θu, θv is zero, then one species does not take advantage and is not harmed.

A similar analysis can be performed for the intra-specific interactions, depending on the sign
of the intra-specific rates r11, r22.

We conclude the introduction of system (LV) by pointing out that it is possible to predict
the mutual exclusion or the coexistence of the species, depending on the parameter values.
The analysis concerns the nature of the equilibria of (LV) that we list below

(u1, v1) = (0, 0), (u2, v2) =

(
ru

r11
, 0

)
, (u3, v3) =

(
0,

rv

r22

)
, (0.0.1)

(u∗, v∗) =

(
rur22 − rvr12

r11r22 − r12r21
,

rvr11 − rur21

r11r22 − r12r21

)
. (0.0.2)

Thus, system (LV) admits the equilibrium of total extinction (u1, v1), partial extinction
(ui, vi)i=1,2 and the equilibrim of coexistence (u∗, v∗). We outline that the coexistence equilib-
rium is biologically meaningful (i.e. u∗ > 0, v∗ > 0) only in two cases.

• Weak inter-specific competition.

r12

r22
<

ru

rv

<
r11

r21
. (0.0.3)

Biologically speaking, the inter-specific competition is weaker than the intra-specific
one. In this case, one can prove that all the trivial or semi-trivial equilibria in (0.0.1)
are linearly unstable while the coexistence steady state in (0.0.2) is linearly stable.

• Strong inter-specific competition.

r11

r21
<

ru

rv

<
r12

r22
. (0.0.4)
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Introduction to population dynamics

Biologically speaking, the inter-specific competition is stronger than the intra-specific
one. Under this condition, one can prove that all the trivial or semi-trivial equilibria
in (0.0.1) are linearly stable while the coexistence steady state in (0.0.2) is linearly
unstable.

Furthermore, experimental observations show that the mutual interference between
individuals generates internal pressure that can affect the movements of species. Therefore,
it’s natural to consider the motility of individuals, i.e. their capacity to diffuse in space.
Biological observations point out the phenomenon of segregation in population dynamics,
which occurs between species in competition that try to avoid each other. In particular,
spatial segregation has been observed in birds [46], mammals [5], [76], amphibians [15],
[45], fishes and insects. Segregation may lead to pattern formation and is related to linear
stability analysis of spatially homogeneous equilibria of reaction-diffusion systems. In 1952,
Alan Turing first obtained pattern formation [85] in the context of morphogenesis. The
analysis yielded various (and sometimes unexpected) conclusions: firstly, a minimum of two
interacting chemicals are required to create pattern formation. Then, the diffusion effect in a
reactive chemical system can lead to a destabilization effect, unlike the common stabilizing
role of diffusion which reduces the spatial variations of a concentration field. Thus, the
diffusion-induced instability may give rise to structural growth at a particular wavelength.
This provides a possible mechanism for producing patterns like animal stripes. The final
insight concerns the diffusion coefficients (motility) that generally need to be substantially
different to lead to pattern formations.

From now on, we call linear diffusion quantities such as ∆ui, apprearing in the i-th
equation of a system in the unknowns ui, i = 1, . . . ,m, m ∈ N. Conversely, we call nonlinear

diffusion quantities such as ∆(uα
i
u
β

j
), with i , j and α, β > 0 and ∆uα

i
with α , 1 and

i, j = 1, . . . ,m, appearing in the i−th equation. In order to investigate pattern formation, we
introduce the simplest reaction-diffusion model of two populations in interaction, that is
frequently used to describe experimental situations in evolutionary dynamics. It writes as
follows 

∂tu − du∆u = f (u, v), in (0,+∞) ×Ω,
∂tv − dv∆v = g(u, v), in (0,+∞) ×Ω,

(0.0.5)

where from now on Ω is a bounded, smooth and open set Ω ⊂ RN ,N ≥ 1, modeling the
ecosystem. By considering in (0.0.5) the reaction functions f , g as the Lotka-Volterra type

f (u, v) = u(ru − r11u − r12v),

g(u, v) = v(rv − r21u − r22v),
(0.0.6)

we will refer to (0.0.5), (0.0.6) as the Lotka-Volterra reaction-diffusion system. System
(0.0.5), (0.0.6) has been widely studied [28, 61, 77]. It is worth noticing that Turing instability
does not occur, implying no segregation of species. In terms of stability of the spatially
homogeneous steady states: whatever the diffusion and reaction coefficients are, all spatially
homogeneous equilibria, which are linearly stable for the homogeneous system of (0.0.5),
(0.0.6) (that is the system without diffusion), remain linearly stable by considering the linear
diffusion effect in a convex domain [56]. Hence, system (0.0.5), (0.0.6) does not reproduce
natural ecosystems like patches of land in which one population is dominant with respect
to another and viceversa. More generally, it’s not obvious to get Turing instability with
linear diffusion and two reacting populations with quadratic reaction structure as (0.0.6).
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Introduction to population dynamics

In order to have a model with linear diffusion that reproduces pattern formation, one can
consider the Beddington-DeAngelis functional responses for predator-prey model [4, 26] or
cubic reaction terms, than often appear in chemistry models [70] or for chemotactic model
[44, 88].

A cross-diffusion system: the SKT model

In order to get Turing instability, and pattern formation as a consequence, Shigesada,
Kawasaki and Teramoto in 1979 had the intuition to modify the structure of the diffu-
sion terms in (0.0.5), (0.0.6), rather than the reaction functions. Hence, a cross-diffusion
system appeared in literature [81] to solve a modeling issue related to the segregation of
species. It writes as below


∂tu − ∆

(
u(du + d11u + d12v)

)
= u(ru − r11u − r12v), in (0,+∞) ×Ω,

∂tv − ∆
(
v(dv + d21u + d22v)

)
= v(rv − r21u − r22v), in (0,+∞) ×Ω,

(SKT)

where the unknowns u = u(t, x), v = v(t, x) are two nonnegative quantities, modeling the
densities of two populations, and all the coefficients du, dv, ru, rv, di j, ri j, i, j = 1, 2 are
strictly positive. In addition, we endow the system (SKT) with the Neumann boundary
conditions below,

∇u · σ = ∇v · σ = 0, in (0,+∞) × ∂Ω, (0.0.7)

where σ = σ(x) stands for the outward unit normal vector on the boundary ∂Ω at point
x. From the biological point of view, the boundary condition (0.0.7) models an isolated
ecosystem. The nonlinear diffusion terms in the l.h.s. of (SKT) describe the spatial movement
of individuals in the external environment Ω. More precisely, the linear terms ∆(duu) and
∆(dvv) represent the intrinsic diffusion growth with rates du, dv, while the nonlinear terms
∆
(
u(d11u + d12v)

)
, ∆

(
v(d21u + d22v)

)
indicate the repulsive effect of the mutual interference.

In particular, we refer to d11u2, d22v2 as the self-diffusion terms and we refer to the non-
diagonal terms d12uv, d21uv as the cross-diffusion terms. We denote by D = (di j)i, j=1,2 the
matrix of the diffusion coefficients,

D B

(
d11 d12

d21 d22

)
.

Then, if the matrix has a lower or upper triangular structure, i.e. d12 = 0 or d21 = 0,
respectively, then we say that system (SKT) is triangular (see the following section for more
details). Moreover, if all the non-diagonal entries are zero, i.e. D = diag{dii}, then only
self diffusion terms appear in (SKT) and the equations are uncoupled by the diffusion terms.
Finally, if all entries are zero di j = 0, i, j = 1, 2, system (SKT) reduces to the parabolic
reaction-diffusion system with linear diffusion (0.0.5).

System (SKT) describes a typical biological mechanism which lead to Turing instability
so that we refer to this phenomenon as cross-diffusion induced instability [9, 36, 42, 50, 84].
The structure of system (SKT) models the capacity of individuals to measure the density
of the same or of the other species and to increase their diffusion rate if the measured
density is large. Indeed in (SKT), the diffusion rate corresponding to u, i.e. the quantity
(du + d11u + d12v), is a function of u, v, depending on d11, d12. The diffusion coefficient d11

(resp. d12) measures the amount of extra diffusion rate if there are more individuals of species
u (resp. v) around. The same argument holds for the population v with the diffusion function
(dv + d21u + d22v).
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Multiscale description for ecological models

In order to understand the dynamic modelled by the cross-diffusion terms in (SKT), M.
Ida, M. Mimura and H. Ninomiya proposed in [50] an interpretation of the cross-diffusion
terms in the triangular case of (SKT). We will detail this interpretation in the following
section after a bref discussion on the multiscale description for ecological systems.

Multiscale description for ecological models

The hallmarked events in ecology concern the distribution of organisms in the environment
and the natural life processes such as adaptation, reproduction and interactions that can lead
to patterns in ecosystem processes. Moreover, living organisms are organized on a multiple
and interconnected scale. Therefore, multiscale modeling is a fundamental tool to describe
the spatio-temporal complexity, where the term scale refers to the unit of space and time
used to measure the ecological mechanism [47, 67]. The identification of a scale structure
also implies the existence of a hierarchical organization of the system. Therefore in any
complex system, descriptions at different spatial or temporal levels contribute to an overall
understanding of the system’s behavior. In particular, since the primary entities involved in
population dynamics are organisms, then multiscale methods describe the ecosystem from
the level of the single individual’s trajectories to the dynamic of the entire environment. More
precisely, we want to detail the microscopic, mesoscopic and macroscopic approaches. Each
formulation provides different information, depending on the scale at which the ecosystem is
analysed, thus all the different multiscale descriptions are not unrelated.

• The microscopic formulation outlines the dynamic of single components or a finite
number of particles. Both the probabilistic tools and the analytic approach are used
for the microscopic derivation (ex. stochastic processes or mean field limits, lattice
models or reaction-kinetics ODEs).

• The mesoscopic description is the intermediate scale and concerns the dynamic of
groups of individuals. The focus is on the evolution of the density of each group and
it is used not only to understand the macroscopic limit and how it is achieved but to
describe intrinsic phenomena that the macroscopic level does not outline. The typical
modeling approach is by reaction-diffusion equations.

• The macroscopic scale focuses on the total mass of the system or on the average
of variables of the mesoscopic description. It is formulated by reaction-diffusion
equations.

Cross-diffusion systems may be derived at a microscopic scale by random-walk lattice
models [73]. See [40, 52] for probabilistic approach. In the following subsection, we
detail the mesoscopic description of the cross-diffusion system (SKT) in the triangular case,
introduced by M. Ida, M. Mimura and H. Ninomiya in [50]. They formally approximated the
triangular (SKT) system at the mesoscopic scale by a reaction-diffusion system with linear
diffusion.
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Multiscale description for ecological models

A mesoscopic model related to the triangular SKT model

In [50], M. Ida, M. Mimura and H. Ninomiya proposed a formal derivation at the mesoscopic
scale of the cross-diffusion system (SKT) in the triangular case below,


∂tu − ∆

(
u(du + d12v)

)
= u(ru − r11u − r12v), in (0,+∞) ×Ω,

∂tv − dv∆v = v(rv − r21u − r22v), in (0,+∞) ×Ω,
(0.0.8)

where u = u(t, x), v = v(t, x) are the species of two populations living in the space domain
Ω ⊂ RN , N ∈ N. In order to understand the interpretation proposed in [50], we consider the
simpler case of the evolution of a single species n = n(t, x) that diffuse in a heterogeneous
environement. Thus, we consider the following problem,



∂tn = ∆ ((du + µP(x)) n) , (t, x) ∈ R+ × Ω,
∇n · σ = 0, (t, x) ∈ R+ × ∂Ω,

n(0, x) = n0(x) x ∈ Ω,
(0.0.9)

where no reaction terms are taken into account. The quantity du + µP(x) models the motility
of n in a neighborhood of x ∈ Ω, with the coefficients du, µ > 0, and P B P(x) in [0, 1]
models the local external pressure. More precisely, we assume that the place x is more
unfavourable for the population of density n where P(x) is larger. By the identity

(du + µP(x))n = du(1 − P(x))n + (du + µ)P(x)n,

it is natural to decompose n as below

n(t, x) = na(t, x) + nb(t, x), for all (t, x) in R+ × Ω,

with
na(t, x) B

(
1 − P(x)

)
n(t, x) and nb(t, x) B P(x) n(t, x).

For simplicity of notations, we denote na = na(t, x) and nb = nb(t, x) , therefore the first
equation of (0.0.9) becomes

∂t (na + nb) = ∆
(
du na + (du + µ)nb

)
.

The above equation suggests that the individuals of density n are divided into two subpopu-
lations na, nb with the low motility du and the hight motility du + µ, respectively. In other
words, each individual of density n has two different states: a less active state with motility du

and a more stressed state with highter motility du + µ. Therefore, we now construct a system
for na and nb according to the previous argument. We fix a small parameter ε > 0, then
locally around x, each individual can switch from the state a to b with probability pa→b(x),
in average time ετa→b. Conversely, we refer to pb→a(x) as the probability of the passage
from the state b to a in a transition time ετb→a. Biologically speaking, if x is an unfavorable
place then pa→b(x) is higher than pb→a(x) so that locally around x, individuals of density
na tend to migrate towards more suitable areas of the space domain. Then, by defining the
following quantities for all x ∈ Ω,

h(x) B
pa→b(x)
ετa→b

and k(x) B
pb→a(x)
ετb→a

,
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Multiscale description for ecological models

and assuming that the state transition is much faster than the random diffusion of na and nb

(i.e. ε � du), the dynamic becomes



∂t na = du∆na +
1
ε

[k(x)nb − h(x)na],

∂t nb = (du + µ)∆nb −
1
ε

[k(x)nb − h(x)na].
(0.0.10)

By conveniently choosing the transition functions h and k, then system (0.0.10) formally
approximates (0.0.9). Indeed, by computing the equation satisfied by n B na + nb, we end
up with

∂tn = du∆n + µ∆nb.

Thus, taking the limit in (0.0.10), as ε→ 0, formally one can expect,


h(x)na( · , x) = k(x)nb( · , x) ,

n(·, x) = na(·, x) + nb(·, x),

implying

na =
k(x)

h(x) + k(x)
n, nb =

h(x)
h(x) + k(x)

n.

Then, the equation satisfied by n becomes

∂t n = ∆

( (
du + µ

h(x)
h(x) + k(x)

)
n

)
,

where the ratio
h(x)

h(x) + k(x)
models the external pressure P(x) at the point x.

By analogy with the limiting procedure used to approximate the system (0.0.9), we end
up with a formal approximation of (0.0.8). We firstly remark that the environment Ω of the
reaction diffusion system (0.0.8) is homogeneous and the external pressure P(x) in (0.0.9) is
now depending on the presence of individuals of species v. We assume that the population
u is split into two substates ua and ub. Each individual converts its own state to the other
depending on the spatial distribution of the competitor v. We additionally assume that the
density v is bounded, i.e. there exists a constant M > 0 such that

0 ≤ v(t, x) ≤ M, a.e. in (0,+∞) ×Ω. (0.0.11)

It is worth noticing that since in the triangular cross-diffusion system (0.0.8) the density v

satisfies a heat equation, then the maximum principal gives an L∞ bound for v (assuming L∞

initial data), so that condition (0.0.11) is not restrictive. Then, identity below holds true,

(du + d21v)u = du

(
1 − v

M

)
u + (du + d12M)

v

M
u = du ua + (du + d12M)uB,

with
ua B

(
1 − v

M

)
u, ub B

v

M
u and u = ua + ub. (0.0.12)

Using the previous limiting argument, we describe the dynamic of two species, uε and vε

where uε in two sub-populations, uεa and uε
b
, associated to two states class: a moderately

mobile type and an highly mobile one, with the corresponding diffusive coefficients du and
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du + d12M. Therefore, taking into account the interpretation proposed in [50], the natural
approximation of (0.0.8) at the mesoscopic scale is the following



∂tu
ε
a = du∆uεa + uεa

(
ru − r11(uεa + uε

b
) − r12vε

)
+

1
ε

(
h(vε)uε

b
− k(vε)uεa

)
,

∂tu
ε
b
= (du + d12M)∆uε

b
+ uε

b

(
ru − r11(uεa + uε

b
) − r12vε

) − 1
ε

(
h(vε)uε

b
− k(vε)uεa

)
,

∂tv
ε = dv∆vε + vε

(
rv − r21(uεa + uε

b
) − r22vε

)
.

(0.0.13)
Then, taking ε→ 0 and using the decomposition uε B uεa + uε

b
, we formally obtain

ua =
k(v)

h(v) + k(v)
u, ub =

h(v)
h(v) + k(v)

u,

and thus 

∂tu = ∆
((

du + d12M
h(v)

h(v) + k(v)

)
u
)
+ (ru − r11u − r12v) u,

∂tv = dv∆v + (rv − r21 u − r22 v) v,

that corresponds to (0.0.8) if h and k satisfy

h(v)
h(v) + k(v)

M = v.

For example, the following choice is admissible,

h(v) =
v

M
, k(v) = 1 − v

M
. (0.0.14)

Following this interpretation, a certain number of cross-diffusion systems are obtained
as limit of a mesoscopic reaction-diffusion system. For example see [25] for the space
dimension N = 1 and [37]. See also [36] for a class of non triangular cross-diffusion systems
with Beddington–DeAngelis functional response.

State of the art

Reaction cross-diffusion models arise in many different fields of physics, such as respiratory
airways, chemical reactors or gaseous mixtures [8], in subfields of medicine, for that we
refer to [33] for a chemotaxis model of multiple sclerosis and to [51, 53] for tumor growth
models, and in many biological contests such as cell migration in tissues and chemosensitive
movements [74, 75] or population dynamics of multiple species [50] . This class of nonlinear
systems is also involved in various biological processes, such as the transport of ions in cells
[13] (volume filling model) and several applications in population dynamics. As already
mentioned, (SKT) was introduced for a modelling problem linked to the Turing instability.
However, (SKT) proved to be an extremely rich mathematical object from which many
natural questions arise, including existence, uniqueness and regularity of solutions, stability
of equilibria and asymptotic behavior.

The analysis of cross-diffusion systems is delicate and sometimes intricate. One of
the main difficulties is the strongly-coupled structure of the equations so that standard
parabolic theory such as the maximum principle or the classical regularity results generally
fail. Moreover, as previously mentioned, the unknowns of this class of systems represent
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concentrations, population densities or quantities that are typically expected to be nonnegative
or even bounded. Therefore, the nonnegativity and the L∞ boundedness of the solutions may
represent a challenging issue.

A fundamental theory for strongly coupled systems was developped by H. Amann in
[2, 3]. He showed the local in time existence of weak solutions in a certain Sobolev space
(W1,p) and proposed a criterion for their global in time extension, based on the boundedness
of the L∞ and Hölder norms. Then, the main difficulty relies in proving the bounds on the
solutions in suitable Sobolev spaces to prevent blowups. In this direction, several different
methods have been employed to get the L∞ boundedness of solutions. We refer to the
Moser-type or Alikakos-type method [1] in which the L∞ bondedness is obtained as the
limit for p → +∞ of the p−uniform Lp−norms control. We also mention the work of T.
Lepoutre et al in [60], where they obtained the existence of bounded solutions using spatially
regularization arguments and Hölder theory.

Concerning the existence result for the specific system (SKT), a certain number of
results are shown under restrictive hypothesis on the space dimension N, on the diffusion
coefficients in the nontriangular case (d12, d21 , 0) or on the initial data. As first, Kim [54]
proved the existence of global solutions assuming N = 1, du = dv and without self-diffusion
(d11 = d22 = 0). For N = 2, Yagi proved in [86, 87] the existence of global solutions under
the assumptions on the cross-diffusion coefficients 0 < d12 ≤ 8d11 and 0 < d21 ≤ 8d22.

This condition was weakened in [49] with d12d21 < 64d11d22 or 0 < d12d21 = 64d11d22. For
N = 2, Lou, Ni and Wu published in [64] the existence of global solution for the system
(SKT) with d12 > 0 and d21 = 0. For higher space dimension, we refer to Deuring in [38]
for the existence of global (in time) solutions, provided that d12, d21 are small coefficients
depending on the initial data, and to Choi in [22, 23], assuming smooth initial data.

An important progress for the existence of global in time solutions was made by Chen
and Jüngel in [17] (see also [16]). Indeed, they proved the existence of an entropy functional
for the system (SKT) (that is a Lyapunov functional if the reaction terms are neglected),
without any restrictions on the diffusion coefficients in the nontriangular case (d12, d21 , 0).
The entropy functional writes as follows for all u, v ≥ 0,

J(u, v) B d21

∫

Ω

(u ln u − u + 1)dx + d12

∫

Ω

(v ln v − v + 1)dx. (0.0.15)

The analysis of the evolution of J along the solution to (SKT) yields a priori estimates to
construct global in time weak solutions. This entropy structure was shown to be robust
enough to treat a generalization of the (SKT) system in [34]. Afterwards, many other works
deeply investigate the relation between the structure of systems involving cross-diffusion
terms and the existence of an entropy functional [19, 29, 59].

A fundamental tool, coming out of the reaction-diffusion theory and often referred to
in the literature as the Duality Lemma, has been set up by M. Pierre and D. Schmitt in [78],
giving an L2(ΩT ) a priori estimates on the solution. It is typically used to construct weak
solutions to reaction cross-diffusion systems where the diffusivity function depend on the
species [32]. For example of application, see [14, 34, 37, 59] and [83] for a class of triangular
cross-diffusion systems with possible self-diffusion.

In the following section, we present an overview of our results about existence of weak
and strong solutions, regularity and uniqueness, that enlarge the analysis of the class of
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cross-diffusion systems. However, many questions on this class of nonlinear systems are still
open, some of which are subjects of forthcoming works (see Chapter 4).

Overview

In this section, we present an overview of the thesis by summarizing our main contributions
and outlining the results in the literature that have been more relevant for our work.

• In Chapter 1, we study the existence of weak solutions and the linear stability of
a triangular cross-diffusion system. For the existence result, we rigorously prove
the passage from a Lotka-Volterra reaction-diffusion system (mesoscopic system)
towards a cross-diffusion system (macroscopic system) at the fast reaction limit. The
mesoscopic system models the competition of two species, when one species has a
more diverse diet than the other one. The resulting limit gives a cross-diffusion system
of a so called starvation-driven type. The main tools used to rigorously pass to the
limit consist in a priori estimates, given by the analysis of an entropy functional, and
in compactness arguments. Moreover, we investigate the linear stability of spatially
homogeneous equilibria of the macroscopic system and the mesoscopic one and
we rule out the possibility of Turing instability. In particular, we investigate the
relationship at the limit between the linear stability of the coexistence steady state at
the mesoscopic and macroscopic scale. Numerical simulations are also performed
to complement the abstract results. Chapter 1 is the result of a collaboration with
L. Corrias, H. Dietert and Y.-J. Kim and was published in Journal of Mathematical

Biology under the title Evolution of dietary diversity and a starvation driven cross-

diffusion system as its singular limit [12].

• In Chapter 2, we prove the existence of weak solutions for a general class of triangular
cross-diffusion systems, using a mesoscopic derivation, similarly as in Chapter 1. We
study a natural generalisation of the mesoscopic system introduced in Chapter 1 and
we obtain a wider class of triangular cross-diffusion systems of a starvation-driven
type at the fast reaction limit. The main tool used consists in studying a family of
entropy functionals that includes the one used in Chapter 1. In order to have enough
compactness and then to pass to the limit, it is sufficient to consider a subfamily of the
family of the entropy functionals. However, in order to investigate the regularity of the
solution, one can study the evolution of the entropy for all the family, thus improving
the entropy a priori estimates by a bootstrap argument. The regularity of the solutions
is the object of a forthcoming work. We refer to Chapter 4 for more details.

• In Chapter 3, we study the existence, uniqueness and regularity of strong solutions for
a general class of triangular cross-diffusion systems. The term strong means that the
equations of the system are satisfied almost everywhere. The method used to prove the
existence result is different from that employed in Chapter 1, 2, where we obtained
the cross-diffusion system as the limit of a mesoscopic system. Here, the main idea
is to introduce an appropriate change of variable that strongly uses the properties of
the diffusity function of the cross-diffusion system and that gives rise to a system in
a non divergence form. Classical analytic methods, such as regularization and fixed
point arguments, allow us to prove the existence of strong solutions. Moreover, the
L∞(ΩT ) boundedness of the solutions is proved if the space dimension N ≤ 3, and
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the uniqueness holds, provided that N ≤ 2. We conclude by showing a weak-strong

stability and a weak-strong uniqueness result.
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Chapter 1
Evolution of dietary diversity and a

starvation driven cross-diffusion

system as its singular limit

1.1 Introduction

We consider a semilinear reaction-diffusion system that models a competition dynamics
when two species have partially different diets. The population densities of the two species
are denoted by u = u(t, x) and v = v(t, x). The species u has a more diverse diet and is
divided into two substates ua = ua(t, x) and ub = ub(t, x) so that u = ua + ub. The system is
parametrized by a small parameter ε > 0 and written as



∂tu
ε
a = da∆uεa + fa(uεa) +

1
ε

Q(uεa, uε
b
, vε ), in (0,+∞) ×Ω,

∂tu
ε
b
= db∆uε

b
+ fb(uε

b
, vε) − 1

ε
Q(uεa, uε

b
, vε ), in (0,+∞) ×Ω,

∂tv
ε = dv∆vε + fv(uε

b
, vε), in (0,+∞) ×Ω,

(1.1.1)

where Ω ⊂ RN, N ≥ 1, is a bounded domain with a smooth boundary, and da, db and dv are
diffusivities for the three populations. The unknown solutions depend on the parameter ε
and we denote it expliciltly if needed. The above system is complemented with nonnegative
initial data

uεa(0, x) = uin
a (x) , uεb(0, x) = uin

b (x) , vε(0, x) = vin(x) , x ∈ Ω , (1.1.2)

and zero flux boundary conditions,

da∇uεa · σ = db∇uεb · σ = dv∇vε · σ = 0 , on (0,+∞) × ∂Ω , (1.1.3)

where σ denotes the outward unit normal vector on the boundary ∂Ω.

In this chapter, we want to see the effect of diet diversity in a competition context using
the system and the emergence of cross-diffusion triggered by such a difference through its
singular limit, as ε → 0. The competition dynamics is given in the reaction terms. The

1



1.1. Introduction

reaction terms of order one are given by

fa(ua) := ηaua

(
1 − ua

a

)
,

fb(ub, v) := ηbub

(
1 − ub + v

b

)
, (1.1.4)

fv(ub, v) := ηvv
(
1 − ub + v

b

)
,

where a, b > 0 are carrying capacities supported by two different groups of resources and
ηa, ηb, and ηv > 0 are the intrinsic growth rates of ua, ub, and v, respectively. The competition
of the two species, u and v, is for the resource b. However, the species u has a diverse diet
and can survive by consuming the other resource a without competition. In order to model
such a competition using a Lotka-Volterra type system, the species u is divided into two
substates ua and ub, depending on their diets. In the above reaction terms, ua takes a logistic
equation type reaction, and ub and v take Lotka-Volterra competition equations type reactions
as given in (1.1.4). Since competition exists only partially for the species u, the competition
is weak to u. However, the species v competes with u for all of its resources and hence the
competition is not weak in general and the competition result may depend on the parameter
ε (see Sections 1.4 and 1.5).

The individuals of the species u may freely change the type of food depending on the
availability, which is modeled by the fast reaction term of order ε−1,

1
ε

Q(ua, ub, v) :=
1
ε

[
φ
(ub + v

b

)
ub − ψ

(ua

a

)
ua

]
, ε > 0 . (1.1.5)

In this reaction term, ε−1 φ
(ub + v

b

)
is the conversion rate for individuals in the state ub

which switch to the other state ua, and ε−1 ψ
(ua

a

)
is the conversion rate in the other direction.

The conversion rate φ
(ub+v

b

)
is assumed as a function of the starvation measure ub+v

b
for the

populations ub and v. If the resource b dwindles or the population ub + v increases, the
resource b becomes scarce relatively, and more individuals of population ub will convert to
ua and consume the other resource a. Hence, we assume that φ is an increasing function of
the starvation measure (see [55] for more discussion on the starvation measure). In the same
way, the conversion rate ψ is a function of the starvation measure ua

a
for the population ua and

is assumed to be increasing. For this reason, it makes sense to call the conversion dynamics
given by (1.1.5) a starvation-driven conversion, which eventually results in the starvation-
driven cross-diffusion after taking the limit as ε→ 0 (see [21, 24]). More specifically, we
assume the following starvation-driven conversion hypothesis

• φ and ψ in (1.1.5) are increasing functions belonging to C1([0,+∞)); in addition, there
exist strictly positive constants δψ, δφ, Mφ′ , and Mψ′ such that, for all x ≥ 0,

ψ(x) ≥ δψ > 0, φ(x) ≥ δφ > 0, φ′(x) ≤ Mφ′ and ψ′(x) ≤ Mψ′ . (H1)

The main result of this chapter is that, as ε→ 0, the (unique) solution (uεa, u
ε
b
, vε) of the

initial boundary value problem (1.1.1) – (1.1.5) converges to a limit (ua, ub, v) and this limit
is a weak solution to the reaction cross-diffusion system


∂tu = ∆(daua + dbub) + fa(ua) + fb(ub, v), in (0,+∞) ×Ω,
∂tv = dv∆v + fv(ub, v), in (0,+∞) ×Ω,

(1.1.6)
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1.1. Introduction

where ua and ub are (uniquely) determined by the nonlinear system


ua + ub = u,

Q(ua, ub, v) = 0,
(1.1.7)

complemented by the initial data,

u(0, x) = uin(x) := uin
a (x) + uin

b (x) , v(0, x) = vin(x) , x ∈ Ω , (1.1.8)

and the zero flux boundary condition,

∇(daua + dbub) · σ = dv∇v · σ = 0 , in (0,+∞) × ∂Ω . (1.1.9)

Note that the zero flux boundary conditions in (1.1.3) are equivalent to the homogeneous
Neumann boundary conditions,

∇uεa · σ = ∇uεb · σ = ∇vε · σ = 0 , on (0,+∞) × ∂Ω ,

(see [50] for similar diffusion operator for a single species with two phenotypes). However,
after taking the singular limit, we obtain the zero flux boundary conditions (1.1.9), but not
the homogeneous Neumann boundary conditions. Moreover, the initial data (1.1.8) satisfy

uin
a , uin

b , vin ∈ C2(Ω̄) and ∇uin
a · σ = ∇uin

b · σ = ∇vin · σ = 0, on ∂Ω. (H2)

If da = db, the diffusion for the species u given in (1.1.6) is the homogeneous linear
diffusion. However, the diffusivity of a species usually depends on its food (or prey) and
da , db in general. In that case (da , db), the diffusion for the total population in (1.1.6)
contains cross-diffusion dynamics depending on the distribution of the three populations
groups, ua, ub and v, through the relations in (1.1.7). This explains the starvation-driven
diffusion for the specific case of the chapter, a concept formally introduced by Cho and Kim
[20]. Funaki et al. [41] derived a macroscopic cross-diffusion model from a system of two
phenotypes and a signaling chemical in the context of chemotaxis.

The proof of convergence as ε → 0 is rigorously obtained via a priori estimates for
uεa, u

ε
b
, and vε. The main tool is the energy (or entropy) functional

E(ua, ub, v) :=
∫

Ω

ha(ua) dx +

∫

Ω

hb(ub, v) dx , (1.1.10)

where

ha(ua) :=
∫ ua

0
ψ
( z

a

)
z dz, and hb(ub, v) :=

∫ ub

0
φ
(z + v

b

)
z dz . (1.1.11)

Notice here that the assumption (H1) implies that ha is positive, increasing, and convex,
and that hb is positive, increasing in both variables, and convex with respect to the first
variable. We refer to [27] and [37] for the use of such entropies in the context of triangular
cross-diffusion systems (that is, systems in which only one of the two equations includes
a cross-diffusion term). For more general systems, we refer to [17, 18, 30, 35, 52] among
other works.

Then, by invoking the Aubin-Lions Lemma, we pass to the limit along a subsequence and
conclude that the limit is a very weak solution to (1.1.6) – (1.1.9), in the sense of Theorem

1.2.1.
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Remark 1.1.

The regularity of the initial data (H2) guarantees the existence of classical solutions (uεa, u
ε
b
, vε)

to the system (1.1.1) - (1.1.5), for any fixed ε > 0. Furthermore, (H2) ensures the bound-
edness of E at t = 0 and allows us to get the ε−uniform estimates for ∂tv

ε, ∂i jv
ε,∇vε, i, j =

1, . . .N, thanks to the parabolic maximal regularity (see Lemma 1.3.1). On the other hand,
the initial data uin

a , u
in
b
, vin for the reaction diffusion system (1.1.1) do not satisfy a priori the

nonlinear equation Q(uin
a , u

in
b
, vin) = 0 in (1.1.7). Thus, the appearance of an initial layer is

expected (see also Section 1.5).

We conclude this introduction proposing a formal derivation of (1.1.1) out of a micro-
scopic system.

The rest of the chapter is organised as follows. Section 1.2 is devoted to the statement of
the existence result. In Section 1.3.1, we prove a priori estimates, which are the preliminary
ingredients for the proof of the existence result, obtained in Section 1.3.2. The chapter
concludes with the existence and linear stability analysis of trivial and non-trivial spatially
homogeneous steady states, in Section 1.4 and Appendix A.2, with a particular emphasis put
on the coexistence state. Some numerical tests in Section 1.5 illustrate the linear stability
analysis.

1.1.1 Formal derivation of the reaction-diffusion system with fast switching

We explain here how the mesoscopic scale model (1.1.1) is obtained at a formal level from a
microscopic scale model in which the resources inducing the competition explicitly appear.
Consider



∂t s1 =
1
δ

[
r1s1

(
1 − s1

A1

)
− p1s1U1

]
,

∂t s2 =
1
δ

[
r2s2

(
1 − s2

A2

)
− p2s2U2 − pV s2V

]
,

∂tU1 = D1∆U1 + k1 p1s1U1 +
1
ε

[
Φ
( p2U2 + pVV

s2

)
U2 − Ψ

( p1U1

s1

)
U1

]
,

∂tU2 = D2∆U2 + k2 p2s2U2 −
1
ε

[
Φ
( p2U2 + pVV

s2

)
U2 − Ψ

( p1U1

s1

)
U1

]
,

∂tV = DV∆V + kV pV s2V,

(1.1.12)

where δ > 0 is the microscopic reaction time scale and ε is the mesoscopic one (hence
δ � ε � 1). These equations describe the time evolution of a small ecosystem with two
prey population densities (or vegetal resources), s1 and s2, and two predator population
densities (or harvesters of the vegetal resources), U and V . Moreover, the population U

is composed of two subpopulations U1 and U2 depending on the prey they consume, i.e.,
s1 and s2, respectively. The prey species si follows the logistic dynamics with a carrying
capacity Ai and an intrinsic growth rate ri. The predator species consume a certain amount
of preys which is proportional to the prey density with proportionality factors p1, p2 and pV .
The harvested prey mass is converted to the predator mass with conversion rates k1, k2 and
kV . The subpopulations U1 and U2 convert to each other depending on the availability of the
prey. The two functions Φ and Ψ are the conversion rates which are respectively increasing
functions of the starvation measures p2U2+pV V

s2
and p1U1

s1
. The other species V consumes

only the second prey s2. Hence, the active competition is only between V and U2, while U1

4



1.1. Introduction

competes with V passively (via conversion). Finally, since the dispersal rate of a predator
species usually depends on the nature of its prey, D1 , D2 in general.

Remark 1.2. If the heterogeneity of prey densities s1 and s2 is considered, one needs to add
diffusion terms in the first two equations of (1.1.12) in order to include random migration of
prey species. However, the lack of the diffusion terms does not affect the formal derivation
of the mesoscopic system since we take δ→ 0 anyway.

Next, we make the asymptotic approximation as δ→ 0 with fixed ε > 0 for the prey (or
resources) densities s1, s2, and formally obtain a mesoscopic scale model. First, we have

s1

(
r1 −

r1s1

A1
− p1U1

)
= 0 =⇒ s1 = 0 or s1 = A1

(
1 − p1U1

r1

)
,

and

s2

[
r2

(
1 − s2

A2

) − p2U2 − pVV
]
= 0 =⇒ s2 = 0 or s2 = A2

(
1 − p2U2 + pVV

r2

)
.

Only the nontrivial case, s1 , 0 , s2, is meaningful (since s1 = 0 and s2 = 0 correspond to
unstable equilibria), and we obtain two relations

p1U1

s1
=

r1

s1
− r1

A1
and

p2U2 + pVV

s2
=

r2

s2
− r2

A2
.

Therefore, the last three equations in (1.1.12) turn into


∂tU1 = D1∆U1 + A1k1 p1U1
(
1 − p1U1

r1

)
+

1
ε

[
ΦU2 − ΨU1

]
,

∂tU2 = D2∆U2 + A2k2 p2U2
(
1 − p2U2+pV V

r2

) − 1
ε

[
ΦU2 − ΨU1

]
,

∂tV = DV∆V + A2kV pVV
(
1 − p2U2+pV V

r2

)
,

(1.1.13)

where the conversion rates Φ and Ψ read as

Φ = Φ
( r2

s2
− r2

A2

)
and Ψ = Ψ

( r1

s1
− r1

A1

)
,

and the Lotka-Volterra reaction dynamics of competition type naturally appears.

Now we consider the relationship between the variables in (1.1.1) and in (1.1.13). First,
we define

uεa := U1, uεb := U2, vε :=
pV

p2
V ,

and keep the same diffusivity coefficients

da := D1, db := D2, dv := DV .

Then, the coefficients in the Lotka-Volterra type competition dynamics, fa, fb and fv, are
given as

ηa := p1A1k1, ηb := p2A2k2, ηv := pV A2kV , a :=
r1

p1
, b :=

r2

p2
. (1.1.14)

Finally, the mesoscopic conversion rates are given as

φ(x) := Φ
( r2

A2

x

1 − x

)
, ψ(x) := Ψ

( r1

A1

x

1 − x

)
. (1.1.15)

After replacing the previous coefficients with the new ones, the system (1.1.13) becomes our
system (1.1.1).
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1.2. Statement of the main result

Remark 1.3.

(i) The conversion rates of the microscopic model, Φ and Ψ, are functions of the starvation
measures p2U2+pV V

s2
and p1U1

s1
, instead of simply U2+V

s2
and U1

s1
, in order to take into account

the difference in the harvesting rates p2 and pV .
(ii) The mesoscopic conversion rates φ and ψ in (1.1.15) are increasing functions, since Φ
and Ψ are chosen to be increasing functions.
(iii) It is worth noticing that the carrying capacities a and b for the predator species are
proportional to the growth rates ri’s of the prey species and that the prey carrying capacities
Ai’s are also involved in deciding φ and ψ (see (1.1.14) and (1.1.15)).
(iv) The macroscopic system reduces to the classical Lotka-Volterra system of competition
type with linear diffusion, whenever the conversion rates φ and ψ are both constant.

1.2 Statement of the main result

Before stating our main result in Theorem 1.2.1 below, we observe that, thanks to hypothesis
(H1), the function

q(ub; u, v) := Q(u − ub, ub, v) = φ
(ub + v

b

)
ub − ψ

(u − ub

a

)
(u − ub) , (1.2.1)

defined for ub ∈ [0, u], satisfies for given u ≥ 0, v ≥ 0

∂ub
q(ub, u, v) = φ

(ub + v

b

)
+

ub

b
φ′

(ub + v

b

)
+ ψ

(u − ub

a

)
+

u − ub

a
ψ′

(u − ub

a

)
> 0,

and for u > 0, v ≥ 0

q(0; u, v) < 0 , q(u; u, v) > 0 .

Hence, for any given (u, v) ∈ R2
+, there exists a unique u∗

b
(u, v) ∈ [0, u] zero of q, and thus a

unique solution to the nonlinear system (1.1.7) is well defined. Furthermore, the implicit
function theorem guarantees the continuity (and even the C1 character) of u∗

b
with respect to

(u, v).

Theorem 1.2.1.

Let Ω be a smooth bounded domain of RN, N ≥ 1. We assume (H1) and (H2). Then, the

unique positive classical solution (uεa, u
ε
b
, vε) of (1.1.1) - (1.1.5) converges for a.e. (t, x) ∈

(0,+∞) × Ω (up to extraction of a subsequence) towards a nonnegative triplet (u∗a, u
∗
b
, v), as

ε → 0. Moreover, for a.e. (t, x) ∈ (0,+∞) × Ω, the pair of function (u∗a, u
∗
b
) is the unique

solution to the nonlinear system (1.1.7), corresponding to u B u∗a + u∗
b

and v. Furthermore,

(u, v) is a very weak solution to the macroscopic system (1.1.6) – (1.1.9), in the sense that,

for all test functions ξ1, ξ2 ∈ C2
c

(
[0,+∞) × Ω̄)

, with ∇ξ1 · σ = ∇ξ2 · σ = 0 on [0,+∞) × ∂Ω,

it holds

−
∫ +∞

0

∫

Ω

(∂tξ1)u dxdt −
∫

Ω

ξ1(0, ·)uindx −
∫ +∞

0

∫

Ω

∆ξ1
(
dau∗a + dbu∗b

)
dxdt

=

∫ +∞

0

∫

Ω

ξ1
(
fa(u∗a) + fb(u∗b, v)

)
dx dt , (1.2.2)
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1.3. Proof of the main Theorem

and

−
∫ +∞

0

∫

Ω

(∂tξ2) v dxdt −
∫

Ω

ξ2(0, · ) vin dx − dv

∫ +∞

0

∫

Ω

∆ξ2 v dxdt

=

∫ +∞

0

∫

Ω

ξ2 fv(u∗b, v) dxdt . (1.2.3)

Finally, the following regularity holds true, for all T > 0

(i) u ∈ Lq(ΩT ) for q = 2 + 2
N

if N ≥ 3, q < 3 if N = 2 and q = 3 if N = 1, |∇u| ∈ L2(ΩT );

(ii) v ∈ L∞(ΩT ), |∇v| ∈ L2q(ΩT ); ∂xi,x j
v , ∂tv ∈ Lq(ΩT ), i, j = 1, . . . ,N, for the same

previous q.

1.3 Proof of the main Theorem

We first observe that for any ε > 0, there exists a unique global strong (for t > 0) solution
(uεa, u

ε
b
, vε) to system (1.1.1) – (1.1.3), under the assumption on the initial data of Theorem

1.2.1. We refer to Proposition 2.5.1 in Chapter 2 for the proof (see also [31, 80] for similar
results).

1.3.1 A priori estimates

In this section, we shall obtain a priori estimates on the subpopulation densities uεa, u
ε
b
, on

the total population densities uε B uεa + uε
b

and vε, and on Q(uεa, u
ε
b
, vε). More specifically,

we take advantage of the triangular structure of the system that gives us a priori estimates
on the density vε and its derivatives (see Lemma 1.3.1). The reaction functions fa and fb of
competition type allow us to control the total mass

∫
Ω

uε(t) dx, and to get an L2(ΩT ) estimate
on uε (see Lemma 1.3.2). The latter will be employed in Lemma 1.3.3 to obtain estimates
on ∇uεa, ∇uε

b
and Q(uεa, u

ε
b
, vε), through the use of the energy functional (1.1.10), (1.1.11).

In addition, the triplet (uεa, u
ε
b
, vε) will be shown to have finite energy E(T ) as well, for all

T > 0.

Hereafter, all constants C and CT are strictly positive and may depend on Ω, the initial
data uin

a , u
in
b
, vin, the coefficients in system (1.1.1), the transition functions φ, ψ and on T , but

never on ε. They may change also from line to line in the computations.

Lemma 1.3.1.

Let (uεa, u
ε
b
, vε) be the positive classical solution to (1.1.1) - (1.1.5). Then, the following

statements hold true

(i) there exists a constant C > 0 such that for all ε > 0

‖vε‖L∞((0,+∞)×Ω) 6 C ; (1.3.1)

(ii) for all q ∈ (1,+∞) there exists a constant C > 0 depending on q, vin,Ω, such that, for

all ε > 0, T > 0 and all i, j = 1, ..,N,

‖∂tv
ε‖Lq(ΩT ) + ‖∂xi,x j

vε‖Lq (ΩT ) 6 C(1 + ‖uεb‖Lq(ΩT )) ; (1.3.2)
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1.3. Proof of the main Theorem

(iii) for all q ∈ (1,+∞) there exists a constant C > 0 depending on q, vin,N,Ω, such that,

for all ε > 0 and all T > 0,

‖∇vε‖2q

L2q(ΩT )
≤ C

(
1 + T + ‖uεb‖

q

Lq(ΩT )

)
. (1.3.3)

Remark 1.4.

In the sequel, the value of q in (1.3.2), (1.3.3) will be first chosen equal to 2 (see Lemma 1.3.2),
and then to a different number after Corollary 1.3.4.

Proof.

It is easily seen that

0 6 vε(t, x) 6 K B max
{ ‖vin‖L∞(Ω) ; b

}
, for a.e. (t, x) ∈ (0,+∞) ×Ω . (1.3.4)

Indeed, by the existence result of strong solution for (1.1.1), we know that the nonnegativity
of vε is preserved in time. Concerning the upper bound in (1.3.4), it is obtained by multiplying
the equation for vε in (1.1.1) by (vε−K)+ := max{0, vε−K} and integrating over Ω, to obtain
for all t > 0, ∫

Ω

(vε(t) − K)2
+ dx ≤

∫

Ω

(vin,ε − K)2
+ dx = 0 .

Next, by the maximal regularity property of the heat equation (see Section A.1), for all
q ∈ (1,+∞) there exists a strictly positive constant C, which depends on q, vin and Ω, such
that for all i, j = 1, ..,N,

‖∂tv
ε‖Lq(ΩT ) + ‖∂xi,x j

vε‖Lq (ΩT ) ≤ C(1 + ‖ fv(uεb, v
ε)‖Lq (ΩT )

)

≤ C
(
1 + ‖uεb‖Lq(ΩT )

)
, (1.3.5)

so that estimate (1.3.2) holds. Then, thanks to the Gagliardo-Nirenberg inequality [71], for
all q ∈ (1,+∞), there exists a strictly positive constant C, depending on q,N,Ω such that, for
all t > 0 and i = 1, . . .N, we have

‖∂xi
vε(t)‖L2q(Ω) ≤ C

N∑

j=1

‖∂xi,x j
vε(t)‖1/2

Lq(Ω) ‖v
ε(t)‖1/2

L∞(Ω) +C‖vε(t)‖L∞(Ω) .

Integrating the above inequality over (0,T ) and using (1.3.1) and (1.3.5), we get estimate
(1.3.3). �

Lemma 1.3.2.

Let (uεa, u
ε
b
, vε) be the positive classical solution to (1.1.1) - (1.1.5). Then, for all T > 0, there

exists CT > 0 such that for all ε > 0 the following estimates hold:

sup
t ∈ [0,T ]

∫

Ω

(uεa + uεb)(t) dx ≤ CT and ‖uεa + uεb‖L2 (ΩT ) ≤ CT . (1.3.6)

Proof.

Adding the first two equations in (1.1.1) and using the positivity of uεa, u
ε
b
, vε, we get

∂t(u
ε
a + uεb) ≤ da∆uεa + db∆uεb + ηauεa

(
1 − uεa

a

)
+ ηbuεb

(
1 −

uε
b

b

)
(1.3.7)

≤ da∆uεa + db∆uεb +
1
4
(
aηa + bηb

)
. (1.3.8)
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1.3. Proof of the main Theorem

Then, integrating (1.3.8) over Ω, the inequality becomes

d

dt

∫

Ω

(
uεa + uεb

)
(t) dx ≤ C ,

implying, for all t in [0,T ], that

‖uεa(t) + uεb(t)‖L1(Ω) ≤ ‖uin
a + uin

b ‖L1(Ω) +C T . (1.3.9)

In order to obtain the L2(ΩT ) estimate for uεa + uε
b
, we integrate inequality (1.3.7) first

over Ω and then over (0, t), for t ∈ (0,T ), to obtain
∫

Ω

(uεa + uεb)(t) dx +
ηa

a

∫

Ωt

(uεa)
2

dx dt +
ηb

b

∫

Ωt

(uεb)
2

dx dt

≤ ‖uin
a + uin

b ‖L1(Ω) +C‖uεa + uεb‖L1(ΩT ) .

The second estimate in (1.3.6) follows, using the first one. �

Lemma 1.3.3.

Let (uεa, u
ε
b
, vε) be the positive classical solution to (1.1.1) - (1.1.5). Then, for all T > 0, there

exists CT > 0 such that, for all ε > 0, the global solution to (1.1.1) satisfies

E(uεa, u
ε
b, v

ε)(T ) +C‖∇uεa‖2L2(ΩT ) +C‖∇uεb‖2L2(ΩT ) +
1
ε
‖Q(uεa, u

ε
b, v

ε)‖2
L2(ΩT ) ≤ CT . (1.3.10)

Proof.

We shall analyse the evolution of E, along the trajectories of the solution to (1.1.1). Thus,
from the first equation in (1.1.1) and assumption (H1), we have

d

dt

∫

Ω

ha(uεa) dx =

∫

Ω

(∂tu
ε
a) uεa ψ

(uεa

a

)
dx

= − da

∫

Ω

[
ψ
(uεa

a

)
+

uεa

a
ψ′

(uεa

a

)]
|∇uεa|2 dx

+

∫

Ω

uεa fa(uεa)ψ
(uεa

a

)
dx +

1
ε

∫

Ω

uεa ψ
(uεa

a

)
Qε dx

≤ − daδψ

∫

Ω

|∇uεa|2 dx

+C

∫

Ω

(uεa)2
(
1 − uεa

a

)
1{uεa≤a}dx +

1
ε

∫

Ω

uεaψ
(uεa

a

)
Qεdx. (1.3.11)

Concerning the second term in the energy (1.1.10), we see that

d

dt

∫

Ω

hb(uεb, v
ε) dx =

∫

Ω

(∂tu
ε
b) uεb φ

( uε
b
+ vε

b

)
dx +

∫

Ω

(∂tv
ε)∂2hb(uεb, v

ε) dx (1.3.12)

C I1 + I2 .

Using the second equation in (1.1.1), I1 rewrites as follows

I1 ≤ −db

∫

Ω

|∇uεb|2
[
φ

(
uε

b
+ vε

b

)
+

uε
b

b
φ′

(
uε

b
+ vε

b

)]
dx

− db

∫

Ω

uε
b

b
φ′

(
uε

b
+ vε

b

)
∇uεb · ∇vε dx

+C

∫

Ω

(uεb)2
(
1 −

uε
b
+ vε

b

)
1{uε

b
+vε≤b} dx − 1

ε

∫

Ω

uεb φ

(
uε

b
+ vε

b

)
Qε dx .

(1.3.13)
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On the other hand, observing that

∂2hb(ub, v) =
∫ ub

0

z

b
φ′

(
z + v

b

)
dz = ubφ

(
ub + v

b

)
−

∫ ub

0
φ

(
z + v

b

)
dz , (1.3.14)

by the positivity of φ′, ∂2hb is positive as well and

∫

Ω

∂2hb(uεb, v
ε) fv(uεb, v

ε) dx ≤ ηv

∫

Ω

∂2hb(uεb, v
ε) vε

(
1 −

uε
b
+ vε

b

)
1{uε

b
+vε≤b} dx

≤ ηv

∫

Ω

uεbφ

(
uε

b
+ vε

b

)
vε

(
1 −

uε
b
+ vε

b

)
1{uε

b
+vε≤b} dx .

Therefore, we obtain

I2 ≤ − dv

∫

Ω

∂22hb(uεb, v
ε)|∇vε|2 dx − dv

∫

Ω

∂21hb(uεb, v
ε)∇uεb · ∇vε dx

+ ηv

∫

Ω

uεbφ

(
uε

b
+ vε

b

)
vε

(
1 −

uε
b
+ vε

b

)
1{uε

b
+vε≤b} dx .

(1.3.15)

Computing from (1.3.14)

∂21hb(ub, v) =
ub

b
φ′

(
ub + v

b

)
,

and plugging estimates (1.3.13) and (1.3.15) into (1.3.12), we end up with the estimate

d

dt

∫

Ω

hb(uεb, v
ε) dx ≤ − db

∫

Ω

[
φ

(
uε

b
+ vε

b

)
+

uε
b

b
φ′

(
uε

b
+ vε

b

)]
|∇uεb|2 dx

− dv

∫

Ω

∂22hb(uεb, v
ε)|∇vε|2 dx

− (db + dv)
∫

Ω

uε
b

b
φ′

(
uε

b
+ vε

b

)
∇uεb · ∇vε dx

+C

∫

Ω

(uεb)2
(
1 −

uε
b
+ vε

b

)
1{uε

b
+vε≤b} dx

+ ηv

∫

Ω

uεbφ

(
uε

b
+ vε

b

)
vε

(
1 −

uε
b
+ vε

b

)
1{uε

b
+vε≤b} dx

− 1
ε

∫

Ω

uεb φ

(
uε

b
+ vε

b

)
Qε dx .

(1.3.16)

Next, using the positivity of φ′ again, we estimate the third term in (1.3.16) with a weight
η > 0 as

− (db + dv)
∫

Ω

uε
b

b
φ′

(
uε

b
+ vε

b

)
∇uεb · ∇vε dx

≤ (db + dv)
η

2

∫

Ω

uε
b

b
φ′

(
uε

b
+ vε

b

)
|∇uεb|2 dx +

db + dv

2η

∫

Ω

uε
b

b
φ′

(
uε

b
+ vε

b

)
|∇vε|2 dx.

10



1.3. Proof of the main Theorem

Thus, choosing η ∈ (0, 2db(db + dv)−1), gives C(η) := (db − (db + dv) η2 ) > 0, and inequality
(1.3.16) becomes

d

dt

∫

Ω

hb(uεb, v
ε) dx ≤ − dbδφ

∫

Ω

|∇uεb|2 dx − dv

∫

Ω

∂22hb(uεb, v
ε)|∇vε|2 dx

−C(η)
∫

Ω

uε
b

b
φ′

(
uε

b
+ vε

b

)
|∇uεb|2 dx

+
(db + dv)

2η

∫

Ω

uε
b

b
φ′

(
uε

b
+ vε

b

)
|∇vε|2 dx

+C − 1
ε

∫

Ω

uεb φ

(
uε

b
+ vε

b

)
Qε dx .

(1.3.17)

Finally, by assumption (H1), the derivative

∂22hb(ub, v) =
ub

b
φ′

(
ub + v

b

)
−

[
φ

(
ub + v

b

)
− φ

(
v

b

)]
=

∫ ub+v

v

[
φ′

(
ub + v

b

)
− φ′

(
z

b

)]
dz

b
,

satisfies

|∂22hb(ub, v)| ≤ 2 Mφ′
ub

b
.

Therefore, adding (1.3.11) and (1.3.17), and using the boundedness of φ′ again, we arrive at
the following estimate for the time derivative of the energy

d

dt
E(uεa(t), uεb(t), vε(t)) ≤ − daδψ

∫

Ω

|∇uεa|2 dx − dbδφ

∫

Ω

|∇uεb|2 dx

−C(η)
∫

Ω

uε
b

b
φ′

(
uε

b
+ vε

b

)
|∇uεb|2 dx (1.3.18)

+C‖uεa + uεb‖L2(Ω)‖∇vε‖2
L4(Ω) −

1
ε

∫

Ω

(Qε)2dx +C.

Integrating in time over [0, T ] the latter inequality, estimate (1.3.10) is proved by the means
of Lemma 1.3.1 (with q = 2), Lemma 1.3.2 and the boundedness of the initial energy. �

We conclude this section by giving improved estimates from interpolation arguments.

Corollary 1.3.4.

Let (uεa, u
ε
b
, vε) be the positive classical solution to (1.1.1) - (1.1.5). Then, for all T > 0, the

following estimates hold

‖uεa + uεb‖L2
(
0,T ; H1(Ω)

) 6 CT , (1.3.19)

and

‖uεa + uεb‖Lq(ΩT ) 6 CT , (1.3.20)

where

q :=


2 + 2/N if N > 2 ;

3, if N = 1,
(1.3.21)

and q < 3, if N = 2.

11



1.3. Proof of the main Theorem

Proof.

The following argument is performed for the subpopulation uεa. It can be applied similarly to
uε

b
and thus to uεa + uε

b
.

Lemmas 1.3.2 and 1.3.3 give that uεa is bounded in L2(0,T ; H1(Ω)). Thus, by the Sobolev
embedding theorem, we have that uεa is bounded in L2(0,T ; LN∗(Ω)), with N∗ = 2N

N−2 if N > 2,
N∗ ∈ [2,+∞) if N = 2 and N∗ = ∞ if N = 1. Since we also know that uεa is bounded in
L∞(0,T ; L1(Ω)), by interpolation we obtain that uεa is bounded in Lq(ΩT ), with q as in
(1.3.21). �

Remark 1.5.

At this point, using Lemma 1.3.1 again, we see that ∂tv
ε and ∇∇vε are bounded in Lq(ΩT ).

1.3.2 End of the proof of the main result

End of the proof of Theorem 1.2.1.

The proof is divided in four steps and uses compactness to identify limits along subse-
quences. The first and the second one focus on the identification of the limit (as ε→ 0) of
the densities vε and uε = uεa + uε

b
, a.e. in [0,T ] × Ω, respectively. In the third step we obtain

the a.e. convergence of the subpopulation densities uεa, u
ε
b

and we identify the obtained limit
as the unique solution to the nonlinear system (1.1.7). The convergence argument is also
extended globally in time by a diagonal argument. Finally, the proof is concluded in the
fourth step, taking the limit as ε tends to zero, in the very weak formulation of the system
satisfied by uε = uεa + uε

b
and vε.

First step. Let T > 0 be arbitrarily fixed. Thanks to the control of the density vε given in
Lemma 1.3.1 and to the boundedness of uεa + uε

b
in L2(ΩT ) obtained in Lemma 1.3.2, we

have that (vε)ε is bounded in L4(0,T ; W1,4(Ω)) and (∂tv
ε)ε is bounded in L2(0,T ; L2(Ω)).

Therefore, by applying Rellich’s Theorem, there exists a subsequence, still denoted vε, and
v ∈ L4(ΩT ) such that, as ε→ 0,

vε(t, x) −→ v(t, x) , a.e. in ΩT . (1.3.22)

Moreover,
∇vε ⇀ ∇v in L4(ΩT ), (1.3.23)

and due to Lemma 1.3.1 again, v is nonnegative and belongs to L∞(ΩT ), while ∇v lies in
L4(ΩT ).

Second step. We rewrite the parabolic equation satisfied by the density uε = uεa + uε
b

as

∂tu
ε = ∆(da uεa + db uεb) + fa(uεa) + fb(uεb, v

ε) . (1.3.24)

Thanks to Corollary 1.3.4, we see that (uε)ε is uniformly bounded in L2(0,T ; H1(Ω))
and in L2+2δ(ΩT ) for some δ > 0, so that the reaction term in (1.3.24) is uniformly bounded
in L1+δ(ΩT ). Then (∂t(uεa + uε

b
))ε is uniformly bounded in L1+δ(0,T ; W−1,1+δ(Ω)). Thus,

Aubin-Lions’ Lemma (cf. [69]) yields a subsequence (still denoted uε), and a function
u ≥ 0, u ∈ L2(ΩT ), such that, as ε→ 0,

uε(t, x) = uεa(t, x) + uεb(t, x) −→ u(t, x) , a. e. in ΩT , (1.3.25)

12



1.3. Proof of the main Theorem

where the nonnegativity of u follows from that of uε. Furthermore,

∇uε ⇀ ∇u in L2(ΩT ) , (1.3.26)

and

‖u ‖
L

2 (ΩT ) = lim
ε→ 0
‖ uεa + uεb ‖L2 (ΩT ) 6 CT ,

‖∇u ‖
L

2 (ΩT ) ≤ lim inf
ε→ 0

‖ ∇uε ‖
L

2 (ΩT ) 6 CT .

Third step. The energy estimate (1.3.10) yields the estimate

wwwwwwφ
(uε

b
+ vε

b

)
uεb − ψ

(uεa

a

)
uεa

wwwwww
L2(ΩT )

≤
√
εCT . (1.3.27)

Therefore, Q(uεa, u
ε
b
, vε) converges to zero in L2(ΩT ), as ε → 0, and (up to extraction of a

subsequence)

φ
(uε

b
+ vε

b

)
uεb − ψ

(uεa

a

)
uεa −→ 0, a.e. in ΩT . (1.3.28)

It remains to prove the existence of the a.e. limit of subsequences of (uεa)ε, (uεb)ε and
to verify that this limit is the unique solution to (1.1.7), a.e. in ΩT , corresponding to the
functions u and v obtained in (1.3.25) and (1.3.22), respectively.

Let
(
u∗a(uε, vε), u∗

b
(uε, vε)

)
be the unique solution to (1.1.7), corresponding to (uε, vε).

Then, using the function q defined in (1.2.1), we get

Q(uεa, u
ε
b, v

ε) = Q(uεa, u
ε
b, v

ε) − Q(u∗a(uε, vε), u∗b(uε, vε), vε)

= q(uεb; uε, vε) − q(u∗b(uε, vε); uε, vε)

= ∂ub
q(ζ; uε, vε)(uεb − u∗b(uε, vε)) ,

with ζ ∈
(
min

{
uε

b
, u∗

b
(uε, vε)

}
,max

{
uε

b
, u∗

b
(uε, vε)

})
. Thus, thanks to hypothesis (H1) we

obtain
|Q(uεa, u

ε
b, v

ε)| ≥ (δφ + δψ)|uεb − u∗b(uε, vε)| .

Thus by (1.3.28), |uε
b
−u∗

b
(uε, vε)| → 0 as ε→ 0, a.e. in ΩT . Finally, the proved convergences

(1.3.22) and (1.3.25) and the continuity of u∗
b
, with respect to its arguments, yield the desired

result, i.e.

uεb → u∗b(u, v) , uεa = uε − uεb → u∗a(u, v) , ε→ 0 , a.e. in ΩT .

To conclude, let us remark that all the a.e. convergence results obtained so far have
been performed on [0,T ], for any arbitrary T > 0. Since (uεa, u

ε
b
, vε) is defined on [0,+∞),

by extracting subsequences, these arguments can be replicated in the time intervals [0, 2T ],
[0, 3T ] and so on. Then by Cantor’s diagonal argument, the convergences (1.3.22), (1.3.25)
and (1.3.28), and the convergence of the pair (uεa, u

ε
b
) towards the solution to (1.1.7) are

verified a.e. in (0,+∞) ×Ω.

Fourth step. We shall prove now that (u, v) is a weak solution to (1.1.6), in the sense of
Theorem 1.2.1. For this purpose, let us consider two test functions ξ1, ξ2 in C2

c , satisfying

13



1.4. Linear stability analysis

∇ξ1 · σ = ∇ξ2 · σ = 0, on [0,T ] × ∂Ω. Multiplying the equation satisfied by uεa + uε
b

by ξ1

and the third equation of (1.1.1) by ξ2 and integrating over (0,+∞) ×Ω, we get,

−
∫ ∞

0

∫

Ω

(∂tξ1) (uεa + uεb) dx dt −
∫

Ω

ξ1(0)
(
uin,ε

a + u
in,ε
b

)
dx

=

∫ ∞

0

∫

Ω

∆ξ1
(

dauεa + dbuεb
)

dx dt +

∫ ∞

0

∫

Ω

ξ1( fa(uεa) + fb(uεb, v
ε))dx dt ,

(1.3.29)

and

−
∫ ∞

0

∫

Ω

(∂tξ2 ) vε dx dt −
∫

Ω

ξ2(0) vin,ε dx

= dv

∫ ∞

0

∫

Ω

∆ξ2 vε dx dt +

∫ ∞

0

∫

Ω

ξ2 fv(uεb, v
ε) dx dt .

(1.3.30)

Concerning the equation (1.3.29), the convergence results obtained in the previous steps
and the estimates in (1.3.6) allow us to pass to the limit as ε → 0, in all the terms of the
equation, using Lebesgue’s dominated convergence theorem, thus obtaining (1.2.2).

The same conclusion holds for equation (1.3.30). Indeed, the boundedness of vε and its
convergence (1.3.22), together with the estimates in (1.3.6), allow us to pass to the limit in
all terms of (1.3.30), using Lebesgue’s dominated convergence theorem again, thus obtaining
(1.2.3). The proof of Theorem 1.2.1 is now completed. �

1.4 Linear stability analysis

In this section, we investigate the linear stability of spatially homogeneous steady states
of the macroscopic system (1.1.6) – (1.1.9), with reaction and fast reaction functions given
by (1.1.4) and (1.1.5), respectively. We shall also see the relationship between the linear
stability of the coexistence steady state at the mesoscopic and macroscopic scale, as ε→ 0.

Let ψ and φ be conversion rates satisfying assumption (H1). We introduce the following
few notations for later use,

ψ1 = ψ(1), φ1 = φ(1) ,

and the parameter providing a criterion for the linear stability (see Theorem 1.4.1 and
Proposition 1.4.2),

α B
ψ1

φ1

a

b
> 0 . (1.4.1)

The pair (ū, v̄) ∈ R2
+ is a spatially homogeneous steady state of the macroscopic system

if and only if ū = ūa + ūb and the triplet (ūa, ūb, v̄) satisfy the nonlinear system

fa(ūa) + fb(ūb, v̄) = fv(ūb, v̄) = Q(ūa, ūb, v̄) = 0 . (1.4.2)

Extinction of u. From Q(ūa, ūb, v̄) = 0 and the strict positivity of φ and ψ, we see that
ūa = 0 if and only if ūb = 0: no extinction of a single subpopulation of the species u is
admitted. Thus, for ūa = ūb = 0, we obtain the trivial and semi-trivial steady states

(ū1, v̄1) = (0, 0) and (ū2, v̄2) = (0, b) , (1.4.3)

14



1.4. Linear stability analysis

corresponding to the total extinction of the two species in the ecosystem and to a partial
extinction, respectively.

Survival of u and extinction of v. The other steady states with ūa , 0 and ūb , 0 are
of main interest. The first case is with v̄ = 0. Denoting ūa = λ a and ūb = σ b, λ, σ > 0,
system (1.4.2) reduces to

ηaa λ(1 − λ) + ηbbσ(1 − σ) = 0 ,
λψ(λ)
σφ(σ)

=
b

a
. (1.4.4)

Such a semi-trivial state always exists but the uniqueness is non-trivial. Indeed, the second
equation in (1.4.4) can be written equivalently as

σφ(σ)
φ1

= α
λψ(λ)
ψ1

. (1.4.5)

Due to assumption (H1), the functions Λ(λ) := λψ(λ)/ψ1 and Σ(σ) := σφ(σ)/φ1 are strictly
increasing functions from 0 to +∞. Hence, for every λ > 0 there exists a unique σ(λ) > 0
solving (1.4.5) and given by

σ(λ) = Σ−1(αΛ(λ)) . (1.4.6)

Plugging (1.4.6) into the left hand side equation in (1.4.4), the stationary states correspond
to the zeros of the function F below

F(λ) := ηaa λ(1 − λ) + ηbbσ(λ)(1 − σ(λ)) . (1.4.7)

Furthermore, by the competition structure, it follows that F is positive for small enough λ
and F(λ)→ −∞ as λ→ +∞. Thus, the macroscopic system (1.1.4) – (1.1.7) admits at least
one semi-trivial equilibrium

(ū3, v̄3) = (aλ + bσ, 0) , (1.4.8)

solution to system (1.4.4), with σ = σ(λ) uniquely determined by (1.4.6). Moreover, if the
equilibrium is unique, F is decreasing around the corresponding λ, i.e. F′(λ) < 0.

In general it is possible to have several semi-trivial states of type (1.4.8). As an example,
take

a = b = 1, ηa = 0.2, ηb = 1, φ ≡ 1, ψ(x) =


0.1 if x ≤ 1.6,

0.3 otherwise.
(1.4.9)

The corresponding F(λ) is shown in Figure 1.1, from where we see that there exist three
semi-trivial states.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2
−0.1

0
0.1
0.2

λ

F
(λ

)

Figure 1.1: Reaction term F(λ) for the example (1.4.9).
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We will discuss the uniqueness issue in Proposition 1.4.2, where a sufficient condition
for uniqueness of (1.4.8) is given, and Proposition 1.4.3, where we exhibit a family of
conversion rates functions φ, ψ for which uniqueness of (1.4.8) holds true.

Coexistence of u and v. Finally, if ūa , 0, ūb , 0, v̄ , 0, from fv(ūb, v̄) = 0 we get
ūb + v̄ = b and thus ūa = a. Then, from Q(ūa, ūb, v̄) = 0 and the definition of α it follows
that ūb = bα. Therefore, system (1.4.2) has a unique totally nontrivial solution given by

(ū4, v̄4) = (a + bα, b(1 − α)) , (1.4.10)

provided that α < 1.

We shall see in the following subsection (see Theorem 1.4.1) that the stationary states
(1.4.3) are unstable, so that the total extinction of the species u never occurs. The species
u always survives and its coexistence with the species v is conditioned by the switching
strategy that the subpopulations ua and ub adopt when both resources run out, quantified
through the parameter α. Indeed, the coexistence occurs if the switch from the state ub to the
state ua is faster than the opposite switch, i.e. α < 1. On the other hand, v goes extinct only
if α > 1.

The relationship between the linear stability of the mesoscopic and macroscopic coexis-
tence steady states, as ε→ 0, is seen in Subsection 1.4.3.

1.4.1 Linear stability analysis for the cross-diffusion system

Let us introduce the partial starvation measures

λ =
ūa

a
≥ 0 , σ =

ūb

b
≥ 0 , δ =

v̄

b
∈ {0, 1 − σ} ,

so that each of the above steady states can be identified with the triplet (λ, σ, δ) and written
as

P̄ = (ū, v̄) =
(
λa + σb, δb

)
. (1.4.11)

Linearizing around P̄ the ODEs system associated to (1.1.4) – (1.1.7), in the sense of
small perturbation τ, |τ| � 1, i.e.

ua = ūa + τ ũa and ub = ūb + τ ũb,

u = ua + ub = (ūa + ūb) + τ(ũa + ũb) = ū + τ ũ,

v = v̄ + τṽ,

(1.4.12)

we obtain 
˙̃u = ηa(1 − 2λ)ũa + ηb(1 − 2σ − δ)ũb − ηbσ ṽ + o(1),
˙̃v = −ηvδ ũb + ηv(1 − σ − 2δ)ṽ + o(1).

(1.4.13)

Moreover, from the linearization of Q(ua, ub, v) around (ūa, ūb, v̄), we have

∂1Q̄ ũa + ∂2Q̄ ũb + ∂3Q̄ ṽ + o(1) = 0, (1.4.14)

where ∂ jQ̄ = ∂ jQ(ūa, ūb, v̄) and

∂1Q̄ = −ψ(λ) − λψ′(λ) =: −β(λ) < 0 ,

∂2Q̄ = φ(σ + δ) + σφ′(σ + δ) =: γ(σ, δ) > 0 ,

∂3Q̄ = σφ′(σ + δ) =: θ(σ, δ) > 0 .

(1.4.15)
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Using ũ = ũa + ũb, from (1.4.14) we obtain ũa and ũb in terms of ũ and ṽ as follows

ũa =
1
r
γ(σ, δ) ũ +

1
r
θ(σ, δ) ṽ + o(1) , ũb =

1
r
β(λ) ũ − 1

r
θ(σ, δ) ṽ + o(1) , (1.4.16)

where r = r(λ, σ, δ) B ∂2Q̄ − ∂1Q̄ = β(λ) + γ(σ, δ) > 0. Thus, system (1.4.13) becomes

˙̃w = M̄ w̃ + o(1), w̃ B

(
ũ

ṽ

)
,

and the matrix M̄ = M(P̄) has the following entries

M11(P̄) =
ηa

r
(1 − 2λ)γ(σ, δ) +

ηb

r
(1 − 2σ − δ)β(λ) ,

M12(P̄) =
ηa

r
(1 − 2λ)θ(σ, δ) − ηb

r
(1 − 2σ − δ)θ(σ, δ) − ηbσ ,

M21(P̄) = −ηv

r
δ β(λ) ,

M22(P̄) =
ηv

r
δ θ(σ, δ) + ηv(1 − σ − 2δ) .

(1.4.17)

Next, for ua and ub as in (1.4.12), using (1.4.16) again, the linearization of the cross
diffusion operator in (1.1.6) reads as

∆
(
daua + dbub

)
= τ

(
da

γ(σ, δ)
r
+ db

β(λ)
r

)
∆ũ + τ(da − db)

θ(σ, δ)
r
∆ṽ + o(τ),

and the linearized cross-diffusion macroscopic system writes

∂tw̃ = J̄∆w̃ + M̄w̃ + o(1) ,

with

J̄ B


da

γ(σ,δ)
r
+ db

β(λ)
r

(da − db) θ(σ,δ)
r

0 dv

 .

Finally, denoting {λn}n the eigenvalues sequence associated to the operator −∆ with the
Neumann boundary condition (0 = λ0 < λ1 ≤ ... ≤ λn ≤ ...), the matrix to be analyzed for
the stability of the macroscopic system is N = −λn J̄ + M̄, i.e.

N B


− 1

r

(
da γ + dbβ

)
λn + M11 − 1

r
(da − db)θ λn + M12

M21 −dvλn + M22

 . (1.4.18)

We are now ready to prove the following stability result.

Theorem 1.4.1.

Let ψ and φ be conversion rates satisfying assumption (H1) and α > 0 defined as in (1.4.1).
Then, the following holds true.

(i) The trivial and semi-trivial steady states (ū1, v̄1) = (0, 0) and (ū2, v̄2) = (0, b) are

linearly unstable.
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1.4. Linear stability analysis

(ii) The family of semi-trivial steady states (ū3, v̄3) = (aλ + bσ, 0) satisfies

σ = λ = 1 , if α = 1 , (1.4.19)

0 < σ < 1 < λ <
1
2
+

1
2

√
1 +

bηb

aηa

, if α < 1 , (1.4.20)

and the swapped relation

0 < λ < 1 < σ <
1
2
+

1
2

√
1 +

aηa

bηb

, if α > 1 . (1.4.21)

Furthermore, they are linearly unstable if α ≤ 1, and if α > 1, they are linearly stable

if and only if the function F in (1.4.7) is strictly decreasing around λ, i.e. F′(λ) < 0.

(iii) If α < 1, there exists a unique strictly positive steady state given by (ū4, v̄4) =
(a + bα, b(1 − α)) and it is linearly stable.

Proof.

(i) From (1.4.17) and (1.4.15), we have

M(0, 0) = diag
{ηaφ(0) + ηbψ(0)

φ(0) + ψ(0)
, ηv

}
and M(0, b) =


ηaφ1

φ1+ψ(0) 0

− ηvψ(0)
φ1+ψ(0) −ηv

 ,

implying that the steady states (0, 0) and (0, b) are linearly unstable, both for the macroscopic
system and for the associated diffusion-less one, because of the zero eigenvalue of the
Laplacian.

(ii) In order to proceed with the investigation of the family of steady states (ū3, v̄3) =
(aλ + bσ, 0), let us observe that from the first equation in (1.4.4), we have

(1 − λ)(1 − σ) < 0 or λ = σ = 1 . (1.4.22)

Thus, according to the value of α, we get from (1.4.5): if α > 1, then λ ∈ (0, 1) and σ > 1,
i.e. ūa < a and ūb > b; if α < 1, then λ > 1 and σ ∈ (0, 1), i.e. ūa > a and ūb < b; if α = 1,
then λ = σ = 1 giving the optimal selection case ūa = a, ūb = b.

Next, let us rewrite the left equation in (1.4.4) as

σ(1 − σ) =
ηaa

ηbb
λ(λ − 1) =: K(λ) . (1.4.23)

If α > 1, as λ ∈ (0, 1), it follows that K( 1
2 ) ≤ K(λ) < 0 and σ is upper bounded by the

positive root of the above equation with λ = 1
2 . Hence, (1.4.21) follows. If α < 1, swapping

the role between λ and σ, we obtain (1.4.20).

Furthermore, the entries (1.4.17) of the matrix M(P̄) = M(aλ + bσ, 0) are now

M11(P̄) = ηa(1 − 2λ)
γ

r
+ ηb(1 − 2σ)

β

r
,

M12(P̄) =
(
ηa(1 − 2λ) − ηb(1 − 2σ)

)θ
r
− ηb σ ,

M21(P̄) = 0 ,

M22(P̄) = ηv(1 − σ) .
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1.4. Linear stability analysis

As M21 = 0, the steady state is linearly stable for the diffusionless macroscopic system if and
only if : M11 < 0 and M22 < 0. Hence, σ > 1 is a necessary condition for the linear stability,
and it holds only if α > 1.

In the case α = 1, giving the optimal selection case λ = σ = 1, M(a + b, 0) has a zero
eigenvalue, so that the equilibrium is a non hyperbolic equilibrium. Adding the contribution
of the cross diffusion term, it does not change the nature of the equilibrium because of the
zero eigenvalue of the Laplacian.

Let α > 1. The steady states under consideration satisfy Q(λa, σ(λ)b, 0) = 0, where σ(λ)
is defined in (1.4.6). Taking the derivative with respect to λ and using (1.4.15), we obtain

a∂1Q(λa, σ(λ)b, 0) + bσ′(λ)∂2Q(λa, σ(λ)b, 0) = −β(λ)a + γ(σ(λ), 0)bσ′(λ) = 0 .

Thus

σ′(λ) =
a

b

β(λ)
γ(σ(λ), 0)

.

Plugging σ′(λ) into the derivative of F

F′(λ) = ηaa(1 − 2λ) + ηbbσ′(λ)(1 − 2σ(λ)) , (1.4.24)

we now find

F′(λ) = ηaa(1 − 2λ) + ηba
β(λ)

γ(σ(λ), 0)
(1 − 2σ(λ)) =

a

γ(σ(λ), 0)
rM11(P̄).

Hence, M11 is negative if and only if F′(λ) is negative, which implies (ii) for the diffusionless
macroscopic system and for the cross-diffusion one.

(iii) Let α < 1. Since now (λ, σ, δ) = (1, α, 1 − α), from (1.4.17), we have

M(ū4, v̄4) = −1
r

[
ηaγ + ηbαβ ηaθ + ηbα(r − θ)
ηv(1 − α)β ηv(1 − α)(r − θ)

]
. (1.4.25)

As r − θ > 0, it holds
trM < 0 . (1.4.26)

By r = β + γ and γ − θ = φ1, we have

det M =
ηv(1 − α)

r2

[
(ηaγ + ηbαβ)(r − θ) − ηaθβ − ηbαβ(r − θ)]

=
ηaηv(1 − α)

r2

[
γ(r − θ) − θβ] = ηaηv(1 − α)

r
φ1 > 0, (1.4.27)

i.e. the equilibrium (ū4, v̄4) is stable for the diffusionless macroscopic system.

The expression form (1.4.25) for M implies for N, by (1.4.18), that

tr N < 0 ,

and
det N = Aλ2

n + Bλn +C ,
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1.4. Linear stability analysis

with

A B dv

daγ + dbβ

r
> 0,

B B
(da − db)θ

r
M21 −

daγ + dbβ

r
M22 − dvM11, (1.4.28)

C B det M > 0.

Furthermore, using the definition of r and the strict negativity of all the entries of M(ū4, v̄4),
we find for B in (1.4.28)

B = −(da − db)
ηvθβ(1 − α)

r2
+ (daγ + dbβ)

ηv(r − θ)(1 − α)

r2
− dvM11

=
ηv(1 − α)

r2

(
− daθβ + darγ − daθγ + dbrβ

)
− dvM11

=
ηv(1 − α)

r
(daφ1 + dbβ) − dvM11 > 0,

which implies that det N > 0, for all n ∈ N. Therefore, the equilibrium (ū4, v̄4) remains
linearly stable by adding the cross-diffusion terms. �

1.4.2 Uniqueness semi-trivial states with extinction of v

One possibility to ensure uniqueness of the steady state (ū3, v̄3) = (aλ + bσ, 0) is to impose,
in the case α > 1, that the net flux of the individuals of the species u goes from the state ub to
the state ua, when the population ub reached the capacity of its resource and the population ua

has only halved the capacity of its resource. When α < 1, the opposite switching mechanism
has to be imposed. A precise version is the following.

Proposition 1.4.2.

Consider Λ(λ) = λψ(λ)/ψ1 and Σ(σ) = σφ(σ)/φ1, with φ, ψ satisfying assumption (H1).
Assume that

αΛ(1/2) ≤ 1 , if α > 1 , (1.4.29)

and

α−1Σ(1/2) ≤ 1 , if α < 1 . (1.4.30)

Then, there exists a unique solution to (1.4.4). Furthermore, the corresponding steady state

(1.4.8) is linearly stable if α > 1, and unstable if α < 1.

Proof.

Let α > 1. For the proof recall the function λ 7→ σ(λ) from (1.4.6). Then, σ(0) = 0,
while the increasing behavior of Λ and Σ together with condition (1.4.29) imply that, for
λ ∈ (0, 1/2],

σ(λ) ≤ Σ−1(αΛ(1/2)) ≤ Σ−1(1) = 1 .

Hence, for λ ∈ (0, 1/2], the function F from (1.4.7) is strictly positive.

Now, let λ̄ be the smallest zero of F, so that (aλ̄ + bσ(λ̄), 0) is one of the steady states
under consideration. By the above argument λ̄ > 1/2, and by Theorem 1.4.1, α > 1 implies
that σ(λ̄) > 1. Therefore, the monotonicity of λ 7→ σ(λ) again implies that σ(λ) > 1, for any
λ ≥ λ̄.
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1.4. Linear stability analysis

Finally, we find from (1.4.24) that F′(λ) < 0, for all λ ≥ λ̄. Hence there exists a unique
stationary state and the claimed stability follows from Theorem 1.4.1.

The case α < 1 follows changing the role between the variables λ and σ and between
the functions Λ and Σ, i.e. defining λ(σ) := Λ−1(α−1Σ(σ)) and analyzing the behavior of
G(σ) := ηaaλ(σ)(1 − λ(σ)) + ηbbσ(1 − σ), instead of F(λ). The claimed instability follows
again by Theorem 1.4.1. �

Conditions (1.4.29) and (1.4.30) can be rephrased in terms of the ratio b
a
, respectively as

1
2ψ( 1

2 )

φ1
≤ b

a
<
ψ1

φ1
and

ψ1

φ1
<

b

a
≤ ψ1

1
2φ( 1

2 )
.

They are not necessary necessary conditions. Indeed, we provide below a family of conver-
sion rates ψ, φ, for which the uniqueness of the stationary states (1.4.8) holds true, whatever
is b

a
. For that family of conversion rates, some numerical test are shown in Section 1.5.

Since the population densities ua and ub are of the same species, it is natural to expect
that the conversion dynamics from ua to ub is similar to that from ub to ua. So, in order to be
consistent with the modelling considerations in Subsection 1.1.1, (see (1.1.15)), we choose

ψ(x) = ω1φ(ω2x), ω1 > 0 , ω2 ≥ 0 , (1.4.31)

and we prove the following.

Proposition 1.4.3.

Consider ψ as in (1.4.31) and

φ(x) = θ1x + θ2, θ1 ≥ 0 , θ2 > 0. (1.4.32)

Then, there exists a unique stationary state (ū3, v̄3) = (aλ + bσ, 0). It is linearly stable if
b
a
< ω1φ(ω2)/φ1, and unstable otherwise.

Proof.

Let σ(λ) be as in (1.4.6). As observed previously, the stationary states (1.4.8) corresponds to
the zeros of the function F(λ) in (1.4.7). Taking the second derivative of F, gives

F′′(λ) = b ηb

[
σ′′(λ) − 2(σ′(λ))2 − 2σ(λ)σ′′(λ)

] − 2a ηa . (1.4.33)

By (1.4.32) and (1.4.31), we have

σφ(σ)
φ1

= θ̄σ2 + (1 − θ̄)σ , θ̄ =
θ1

θ1 + θ2
,

and
λψ(λ)
ψ1

= ω̄λ2 + (1 − ω̄)λ , ω̄ =
ω2θ1

ω2θ1 + θ2
.

Hence, equation (1.4.5) reads as

θ̄σ2(λ) + (1 − θ̄)σ(λ) = α[ω̄λ2 + (1 − ω̄)λ] =: W(λ) , (1.4.34)

and

σ(λ) =
θ̄ − 1

2θ̄
+

1

2θ̄
[(θ̄ − 1)2 + 4θ̄W(λ)]

1
2 .
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1.4. Linear stability analysis

Furthermore, differentiating twice (1.4.34) with respect to λ, we obtain the identity

2(σ′(λ))2 + 2σ(λ)σ′′(λ) = 2α
ω̄

θ̄
+ (1 − 1

θ̄
)σ′′(λ) .

Plugging the latter into (1.4.33), we end up with

F′′(λ) =
b ηb

θ̄
σ′′(λ) − (2α

ω̄

θ̄
b ηb + 2a ηa) .

Finally, observing that W′2 − 2W W′′ = α2(1 − ω̄)2, we compute

σ′′(λ) =


W′(λ)

[(θ̄ − 1)2 + 4θ̄W(λ)]
1
2


′
=

W′′[(θ̄ − 1)2 + 4θ̄W] − 2θ̄W′2

[(θ̄ − 1)2 + 4θ̄W]
3
2

=
2αω̄(θ̄ − 1)2 − 2θ̄(W′2 − 2W W′′)

[(θ̄ − 1)2 + 4θ̄W]
3
2

= 2α
ω̄(1 − θ̄)2 − αθ̄(1 − ω̄)2

[(θ̄ − 1)2 + 4θ̄W(λ)]
3
2

.

If ω̄(1 − θ̄)2 − αθ̄(1 − ω̄)2 ≤ 0, the function F is strictly concave and therefore has a unique
zero. If ω̄(1 − θ̄)2 − αθ̄(1 − ω̄)2 > 0, then σ′′(λ) is a strictly positive decreasing function that
converge to 0 as λ→ +∞, and consequently F has at most one inflection point and a unique
zero. Moreover, F is decreasing around its unique zero. So that it gives a stable stationary
point if α > 1. �

1.4.3 Linear stability analysis for the mesoscopic system

A triple (ūεa, ū
ε
b
, v̄ε) is a homogeneous stationary solutions to the mesoscopic scale problem

(1.1.1) if and only if

fa(ūεa) +
1
ε

Q(ūεa, ū
ε
b, v̄

ε) = fb(ūεb, v̄
ε) − 1

ε
Q(ūεa, ū

ε
b, v̄

ε) = fv(ūεb, v̄
ε) = 0.

If v̄ε = 0, then either ūεa = ūε
b
= 0, which gives the totally trivial steady state corresponding

to the trivial macroscopic one (ū1, v̄1), or ūεa , 0 and ūε
b
, 0. In the second case the triplet

(ūεa, ū
ε
b
, 0) satisfies the system



ηaūεa(1 − ūεa

a
) +

1
ε

[
φ(

ūε
b

b
) ūεb − ψ(

ūεa

a
) ūεa

]
= 0,

ηbūεb(1 −
ūε

b

b
) − 1

ε

[
φ(

ūε
b

b
) ūεb − ψ(

ūεa

a
) ūεa

]
= 0,

it can be non unique, as in the macroscopic case, and it converges to a macroscopic equilib-
rium (ū3, v̄3), in the limit ε→ 0.

If v̄ε , 0, then from fv(ub, v) = 0 we have ūε
b
+ v̄ε = b. Hence, for all ε > 0, fb(ūε

b
, v̄ε) =

Q(ūεa, ū
ε
b
, v̄ε) = 0 and we obtain the two stationary states (ūεa, ū

ε
b
, v̄ε) = (0, 0, b) and

(ūεa, ū
ε
b, v̄

ε) = (a, bα, b(1 − α)) , (1.4.35)

provided that α < 1. These equilibria do not depend on ε > 0, so that we shall drop the
ε exponent in the sequel. In the limit ε → 0, they correspond to the linearly unstable
equilibrium (ū2, v̄2) and to the positive linearly stable equilibrium (ū4, v̄4), respectively.
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Hereafter, we focus on the totally nontrivial spatially homogeneous steady (1.4.35),
and we see that, for all ε > 0, it is also stable for the mesoscopic system (1.1.1) and the
corresponding ODEs system. Indeed, setting

uεa = ūa + τũεa uεb = ūb + τũεb, vε = v̄ + τṽε, |τ| � 1,

the linearization of (1.1.1) around (ūa, ūb, v̄) writes as

∂tw̃
ε = diag{da, db, dv}∆w̃ε + Mεw̃ε + o(1), w̃ε

B
(
ũεa, ũ

ε
b, ṽ

ε)T
,

with

Mε
B



−ηa +
1
ε
∂1Q̄ 1

ε
∂2Q̄ 1

ε
∂3Q̄

− 1
ε
∂1Q̄ −ηbα − 1

ε
∂2Q̄ −ηbα − 1

ε
∂3Q̄

0 −ηv(1 − α) −ηv(1 − α)


.

Again, we need to analyse the stability of the matrix Mε above and Nε below

Nε
B −λndiag{da, db, dv} + Mε,

i.e.

Nε =



−daλn − ηa +
1
ε
∂1Q̄ 1

ε
∂2Q̄ 1

ε
∂3Q̄

− 1
ε
∂1Q̄ −dbλn − ηbα − 1

ε
∂2Q̄ −ηbα − 1

ε
∂3Q̄

0 −ηv(1 − α) −dvλn − ηv(1 − α)


.

For that, we apply the Routh-Hurwitz criterion [66] and we obtain the result below, proved
in Appendix A.2.

Proposition 1.4.4.

Under the assumption α < 1, for all ε > 0 and λn ≥ 0, the matrices Mε and Nε are stable,

i.e. all their eigenvalues have negative real part.

To complete the analysis, we shall see below how the previous linear stability property is
preserved in the limit as ε→ 0. Indeed, two eigenvalues of Nε converge to those of N, while
the third one goes to −∞.

Let us denote
Dε(µ) B Nε − µI3,

where I3 stands for the 3 × 3 identity matrix. The goal of the computations below is to
compute det Dε(µ), also denoted by |Dε|, (see also [50]).

First, adding the second row of Dε to the first one, we get

|Dε| =

∣∣∣∣∣∣∣∣∣∣∣∣

−(daλn + ηa + µ) −(dbλn + ηbα + µ) −ηbα

−1
ε
∂1Q̄ −(dbλn + ηbα + µ) − 1

ε
∂2Q̄ −ηbα − 1

ε
∂3Q̄

0 −ηv(1 − α) −(dvλn + ηv(1 − α) + µ
)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Then, using the identity

∂3Q̄ + (∂1Q̄ − ∂2Q̄)
αφ′1

r
= 0 ,
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and adding to the third column the difference between the first and the second column, both

multiplied by
αφ′1

r
, we obtain

|Dε| =

∣∣∣∣∣∣∣∣∣∣∣∣

−(daλn + ηa + µ) −(dbλn + ηbα + µ) N12

− 1
ε
∂1Q̄ −(dbλn + ηbα + µ) − 1

ε
∂2Q̄ d23

0 −ηv(1 − α) N22 − µ

∣∣∣∣∣∣∣∣∣∣∣∣
,

with

d23 := (dbλn + ηbα + µ)
αφ′1

r
− ηb α.

Furthermore, using
∂1Q̄(αφ′1 + φ1) + ∂2Q̄β = 0 ,

and adding the second column, multiplied by β

r
, to the first one, multiplied by

αφ′1+φ1

r
, we get

(1 − β
r

)|Dε| =

∣∣∣∣∣∣∣∣∣∣∣∣

N11 − µ −(dbλn + ηbα + µ) N12

−(dbλn + ηbα + µ)β
r
−(dbλn + ηbα + µ) − 1

ε
∂2Q̄ d23

N21 −ηv(1 − α) N22 − µ

∣∣∣∣∣∣∣∣∣∣∣∣
.

Finally, subtracting the first column to the second one, multiplied by β

r
, we have

β

r
(1 − β

r
)|Dε| =

∣∣∣∣∣∣∣∣∣∣∣∣

N11 − µ d12 N12

d21 − 1
ε

β

r
∂2Q̄ d23

N21 0 N22 − µ

∣∣∣∣∣∣∣∣∣∣∣∣
, (1.4.36)

with

d12 := µ
(
1 − β

r

)
− (

dbλn + ηbα
)β

r
− N11,

d21 := −(dbλn + ηbα + µ)
β

r
.

Thus, (1.4.36) rewrites as

β

r
(1 − β

r
) det(Dε(µ)) = −1

ε
β
(
1 − β

r

)
det(N − µ I2) + R(µ) ,

where

R(µ) = −β
r

(
1 − β

r

)
µ3 + p(µ) ,

with p(µ) a polynomial function of degree two that does not depend on ε. Consequently

det(Dε(µ)) = −µ3 − r

ε
det(N − µ I2) +

r2

β(r − β)
p(µ) , (1.4.37)

with
det(N − µ I2) = µ2 − (trN)µ + det N . (1.4.38)

24



1.5. Numerical simulations

Let γi, i = 1, 2 denote the eigenvalues of N and let µε
i

denote the eigenvalues of Nε,
i = 1, 2, 3. It has been shown that<(γi) < 0 and<(µε

i
) < 0. Moreover, observe that µε

i
is a

root of (1.4.37) if and only if it is a root of

−εµ3 − r det(N − µ I2) + ε
r2

β(r − β)
p(µ) . (1.4.39)

Plugging in (1.4.39) the simple asymptotic expansion in ε of µε
i
= νi

0 + εν
i
1 + ε

2νi
2 + · · · , the

zero order terms gives −r det(N − νi
0 I2) = 0. Therefore,

µεi = γi + O(ε) , i = 1, 2 , (1.4.40)

and

µε1 + µ
ε
2 = tr N + O(ε),

µε1µ
ε
2 = det N + O(ε) .

On the other hand, writing det(Dε(µ)) = −(µ − µε1)(µ − µε2)(µ − µε3), from (1.4.37), (1.4.38),
we deduce the identities below

µε1 + µ
ε
2 + µ

ε
3 = −

r

ε
+ O(1),

µε1µ
ε
2 + µ

ε
3(µε1 + µ

ε
2) = − r

ε
tr N + O(1),

µε1µ
ε
2µ

ε
3 = −

r

ε
det N + O(1) ,

so that,

µε3 = −
r

ε
+ O(1) .

1.5 Numerical simulations

For the numerical simulations, we consider the linear conversion rates

φ(x) = x + δ and ψ(x) = θx + γ , (1.5.1)

with δ = 0.5, θ = 5 and γ = 1, together with the growth rates

ηa = 3, ηb = 2, ηv = 40 . (1.5.2)

Depending on the choice of a and b, we consider two cases: the v extinction case

a = 1.5, b = 6, ⇒ α = 1, (1.5.3)

and the coexistence case
a = 1.5, b = 8, ⇒ α < 1. (1.5.4)

In the case of the ODE system associated to the mesoscopic system (1.1.1) with (1.1.4)
and (1.5.1), the numerical solution is illustrated in Figure 1.2 (α = 1) and Figure 1.4 (α < 1).
The expected initial layer for the subpopulations uεa and uε

b
can be observed in Figure 1.3

and 1.5 (see Remark 1.1).
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Chapter 2
Triangular cross-diffusion systems

driven by intra-specific survival

strategy

2.1 Introduction

In this chapter we consider the following reaction-diffusion system with fast reaction


∂tu
ε
a − da∆uεa = fa(uεa, u

ε
b
, vε) + 1

ε
Q(uεa, u

ε
b
, vε), in (0,T ) ×Ω,

∂tu
ε
b
− db∆uε

b
= fb(uεa, u

ε
b
, vε) − 1

ε
Q(uεa, u

ε
b
, vε), in (0,T ) ×Ω,

∂tv
ε − dv∆vε = fv(uεa, u

ε
b
, vε), in (0,T ) ×Ω,

(2.1.1)

where da, db, dv > 0, da , db, and the reaction functions are given for all ua, ub, v ≥ 0 by

fa(ua, ub, v) := ηaua

(
1 − aua − cv

)
− γauaub,

fb(ua, ub, v) := ηbub

(
1 − bub − dv

)
− γbuaub, (2.1.2)

fv(ua, ub, v) := η′vv
(
1 − aua − cv

)
+ η′′v v

(
1 − bub − dv

)
,

with a, b > 0, c, d ∈ R+, ηa, ηb > 0, η′v, η
′′
v , γa, γb ∈ R+, (cη′v, dη

′′
v ) , (0, 0) and

Q(ua, ub, v) := φ(bub + dv) ub − ψ(aua + cv) ua. (2.1.3)

In addition, Ω is a smooth bounded open set of RN , N ≥ 1, and system (2.1.1) - (2.1.3) is
supplemented with homogeneous Neumann boundary conditions

∇uεa · σ = ∇uεb · σ = ∇vε · σ = 0, on (0,T ) × ∂Ω, (2.1.4)

and the initial conditions

uεa(0, x) = uε,ina (x) B uin
a (x) ≥ C0,a > 0, x ∈ Ω,

uεb(0, x) = u
ε,in
b

(x) B uin
b (x) ≥ C0,b > 0, x ∈ Ω,

(2.1.5)

with the constants C0,a, C0,b > 0 not depending on ε, and

vε(0, x) = vε,in(x) B vin(x) ≥ 0, x ∈ Ω. (2.1.6)
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Remark 2.1.

The strict positivity of uεa(0, ·), uε
b
(0, ·) will be crucial to obtain strict positive dentities uεa, uε

b
,

for any fixed ε > 0, and thus get the a priori energy estimates (see Lemma (2.7.1)).

The mesoscopic system (2.1.1) is the natural generalisation of the mesoscopic system
introduced and analysed in Chapter 1. It is worth noticing that in the model considered in
Chapter 1, only ub was in direct competition with v and no intra-specific competition in the
population u was taken into account. In other words in Chapter 1, we considered the reaction
terms (2.1.2) with c = γa = γb = η

′
v = 0 and b = d.

As we did in Chapter 1, we can interpret ua and ub as two sub-populations of a population
of density u = ua + ub in competition with the population of density v. The individuals of the
populations of densities ua and ub switch between them. The conversion function is given by
(2.1.3) and ε > 0 is the average time for the sub-populations conversion into each other. In
addition, we consider here the conversion functions φ, ψ

ψ(x) B (A + x)α, φ(x) B (B + x) β, x ≥ 0, (H1)

and we assume
A > 0, B ≥ 0 and 0 < α ≤ β. (H2)

We observe that ψ, φ satisfy more general hypothesis than in Chapter 1. Unlike Chapter 1,
we assume only ψ to be lower bounded by a strictly positive constant and we don’t force
ψ, φ to have bounded first derivatives.

Remark 2.2. Due to the symmetry of the mesoscopic system (2.1.1) - (2.1.3), i.e. due to
the interchangeable role of uεa, u

ε
b
, it is possible to replace (H2) with

A ≥ 0, B > 0 and 0 < β ≤ α.

The main result of this chapter (see Theorem 2.5.2) is that, as ε → 0, the (unique)
solution (uεa, u

ε
b
, vε) of the initial boundary value problem (2.1.1) - (2.1.6) converges to a

limit (ua, ub, v) and this limit is a weak solution to the class of macroscopic cross-diffusion
systems, given by


∂tu − ∆(A(u, v)) = Fu(u, v), in (0,+∞) ×Ω,
∂tv − ∆(dvv) = Fv(u, v), in (0,+∞) ×Ω,

(2.1.7)

with
A(u, v) := dau∗a(u, v) + dbu∗b(u, v), (2.1.8)

and where u∗a, u
∗
b

are two positive maps from R2
+ to R+ such that, for all (u, v) ∈ R2

+, the pair
(u∗a(u, v), u∗

b
(u, v)) is the unique solution to the nonlinear system


ua + ub = u,

Q(ua, ub, v) = φ(bub + dv) ub − ψ(aua + cv) ua = 0,
(2.1.9)

with φ, ψ as in (H1), (H2) (see Section 2.3 for the uniqueness of (u∗a(u, v), u∗
b
(u, v)) and further

properties). Furthermore, the reaction terms Fu and Fv are

Fu(u, v) B fu(u∗a(u, v), u∗b(u, v), v),

Fv(u, v) B fv(u∗a(u, v), u∗b(u, v), v),
(2.1.10)
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2.2. A family of energy functionals

with
fu(ua, ub, v) := fa(ua, ub, v) + fb(ua, ub, v), (2.1.11)

and fa, fb, fv defined in (2.1.2). Finally, system (2.1.7) is supplemented with the no-flux
boundary conditions

∇A(u, v) · σ = ∇v · σ = 0, on (0,T ) × ∂Ω, (2.1.12)

and the initial data

u(0, x) = uin(x) = uin
a (x) + uin

b (x) ≥ C0,a +C0,b > 0, x ∈ Ω,
v(0, x) = vin(x) ≥ 0, x ∈ Ω.

(2.1.13)

The proof of convergence as ε → 0 is rigorously obtained via a priori estimates for
uεa, u

ε
b
, vε, satisfying (2.1.1) - (2.1.6). The main tool is the family of energy (or entropy)

functionals that we will introduce in the following section (see Lemma 2.7.1 for the a
priori-estimates). Then, by invoking the Aubin-Lions Lemma, we pass to the limit along a
subsequence and we conclude by verifying that the limit is a very weak solution to (2.1.7) –
(2.1.13) (see (2.5.1), (2.5.2)).

The rest of the chapter is organised as follows: in Section 2.2, we introduce a family of
energy functionals, in Section 2.3, we outline some properties of the macroscopic system
(2.1.7) - (2.1.11) and in Section 2.4, we give a formal derivation of (2.1.1) - (2.1.3), out
of a microscopic system. Section 2.5 is devoted to the statement of the existence results:
the existence of solutions to the mesoscopic system (2.1.1) - (2.1.6) and the existence of
solutions to the macroscopic system (2.1.7) - (2.1.13). Sections 2.6, 2.7 aim to prove the
ε−uniform a priori estimates. More precisely, in Section 2.6 we show some basic a priori
estimates and in Section 2.7 we prove the energy estimates. We conclude the chapter with
the proof of the existence results: in Section 2.8 we prove the existence to the mesoscopic
system and in Section 2.9 we prove the existence to the macroscopic system.

2.2 A family of energy functionals

We introduce the following family of energy (or entropy) functionals

Ep(ua, ub, v) :=
∫

Ω

ha,p(ua, v) dx +

∫

Ω

hb,p(ub, v) dx, p ≥ 1, (2.2.1)

with the energy densities ha,p and hb,p defined as

ha,p(ua, v) B
∫ ua

0
ψp−1(az + cv)zp−1dz,

hb,p(ub, v) B
∫ ub

0
φp−1(bz + dv)zp−1dz.

(2.2.2)

Assumptions (H1), (H2) imply that ha,p, hb,p are positive and increasing functions which are
convex with respect to the first variable. The evolutionary analysis of the energy functional,
along the solution to the mesoscopic system (2.1.1) - (2.1.6), is fundamental to get the
suitable a priori estimates. In order to do that, we introduce the additional hypothesis
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2.2. A family of energy functionals

concerning the values of α, β in (H1), (H2) and the regularity of the initial data (2.1.5),
(2.1.6),

0 < α ≤ β ≤ min

{
6
N
, (
√

7 + 2)α +
√

7 + 1

}
, (H3)

uin
a , uin

b , vin ∈ C2(Ω̄) and ∇uin
a · σ = ∇uin

b · σ = ∇vin · σ = 0, on ∂Ω. (H4)

Remark 2.3.

The regularity of the initial data (H4) guarantees to obtain the existence of classical solutions
(uεa, u

ε
b
, vε) to the system (2.1.1) - (2.1.6), for any fixed ε > 0. Furthermore, (H4) allows

us to get the ε−uniform estimates for ∂tv
ε, ∂i jv

ε,∇vε, i, j = 1, . . .N, thanks to the parabolic
maximal regularity (see Lemma 2.6.2). Finally, it is worth noticing that (H4) ensures the
boundedness of Ep at the initial time.

In order to have enough compactness from the energy functional and thus take the
ε−limit, it is sufficient to consider the following values of p

p = 1, p = 1 +
1

1 + β
, p = 1 +

1
1 + α

, p = 2. (2.2.3)

In the sequel, we outline the contribution that each energy Ep with p in (2.2.3) gives in
terms of regularity for uεa and uε

b
. Let us denote F := ( fa, fb, fv)T and define the total energy

density for all p ≥ 1
hp(ua, ub, v) := ha,p(ua, v) + hb,p(ub, v). (2.2.4)

The variation of Ep along the solutions to (2.1.1) is given by

d

dt
Ep(uεa, u

ε
b, v

ε) =
d

dt

∫

Ω

hp(uεa, u
ε
b, v

ε) dx

=

∫

Ω

(∂1hp∂tu
ε
a + ∂2hp∂tu

ε
b + ∂3hp∂tv

ε)dx

=

∫

Ω

(da∂1hp∆uεa + db∂2hp∆uεb + dv∂3hp∆vε)dx (2.2.5)

+

∫

Ω

∇hp · F dx +
1
ε

∫

Ω

(∂1hp − ∂2hp)Q dx (2.2.6)

C I
p

di f f
+ I

p
rea + I

p

f ast
, (2.2.7)

where for simplicity, we neglect the dependence on uεa, u
ε
b
, vε in ha,p, hb,p, and hp.

These entropy functionals are reminiscent of the functionals introduced in [37] to analyse
the triangular SKT system (SKT) without self-diffusion (i.e d12 > 0 and d11 = d22 = d21 = 0).
The interest in these functionals is twofold: firstly, Ep is not the sum of functionals of
the single densities of the system ([17], [52]). Secondly, they allow to easily handle the
contribution from the fast reaction term. Indeed, for all nonnegative φ and ψ and for all
p ≥ 1, we have

I
p

f ast
:=

1
ε

∫

Ω

(∂1hp − ∂2hp)Q(uεa, u
ε
b, v

ε, ) dx

= −1
ε

∫

Ω

[(
φ(buεb + dvε)uεb

)p−1 − (
ψ(auεa + cvε)uεa

)p−1]·
[
φ(buεb + dvε)uεb − ψ(auεa + cvε)uεa

]
dx ≤ 0, (2.2.8)
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2.2. A family of energy functionals

thanks to the following elementary inequality for p > 1,

(x − y)(xp−1 − yp−1) ≥ 0, for all x, y ∈ R+.

Therefore, by (2.2.8) we have from (2.2.7)

d

dt
Ep(uεa(t), uεb(t), vε(t)) ≤ I

p

di f f
+ I

p
rea.

Moreover, according to the values of p in (2.2.3), we obtain the results below.

(i) p = 1. The total energy density hp reads as

h1(ua, ub, v) = ua + ub.

So that I1
di f f
= I1

f ast
= 0 and (2.2.7) reduces to

d

dt

∫

Ω

(uεa + uεb)dx =

∫

Ω

fa(uεa, u
ε
b, v

ε) dx +

∫

Ω

fb(uεa, u
ε
b, v

ε) dx.

Then, we get the uniform control on the densities uεa, u
ε
b

in the Lebesgue spaces
L∞(0,T ; L1(Ω)) and L2(ΩT ), for any T > 0, using the quadratic structure of the
reaction functions in (2.1.2) (see Lemma 2.6.3).

(ii) p = pβ B 1 + 1
β+1 > 1. This case allows us to prove the L2(ΩT ) boundedness of ∇uε

b

and the L3(ΩT ) control of uε
b
, thus improving the obtained regularity in the case p = 1.

(iii) p = pα B 1 + 1
α+1 > 1. This case allows us to prove the L2(ΩT ) boundedness of ∇uεa

and the L3(ΩT ) control of uεa, thus improving the obtained regularity in the case p = 1.

(iv) p = 2. This case is crucial to get compactness for the fast reaction 1
ε
Q. Indeed if p = 2,

(2.2.8) reads as

I2
f ast = −

1
ε

∫

Ω

Q2(uεa, u
ε
b, v

ε) dx. (2.2.9)

The latter identity will allow us to prove that 1
ε
‖Q(uεa, u

ε
b
, vε)‖2

L2(ΩT )
is estimated by a

constant not depending on ε, using the obtained regularity in the previous cases (i) -

(iii).

We outline that assumptions (H2), (H3) are crucially used to get the energy estimates
in Lemma 2.7.1. In particular, A > 0 in (H2) and the upper bounds for α and β in (H3) are
fundamental to handle the diffusion term I

p

di f f
in (2.2.7) but not necessary to estimate the

I
p
rea term in (2.2.7). More precisely, the upper bound β ≤ (

√
7 + 2)α +

√
7 + 1 allows us

to handle the diffusion terms when p = pα, whereas α, β ≤ 6 (consequence of α, β ≤ 6/N)
enables to control the diffusion terms when p = 2.

To conclude, we observe that we can consider all values of p ≥ 1 in (2.2.1) to get
further ε-uniform a priori estimates, by performing a bootstrap argument and improving the
regularity of the solution (uεa, u

ε
b
, vε). This is the subject of a forthcoming work (see Chapter

4).
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2.3. Properties of the cross-diffusion

2.3 Properties of the cross-diffusion

The aim of this section is to outline the main properties of the cross-diffusion term in (2.1.7)
- (2.1.9). Firstly, we observe that by (H1), (H2), the nonlinear system (2.1.9) admits a unique
nonnegative solution (u∗a(u, v), u∗

b
(u, v)), for any u, v ≥ 0. Indeed, if u = 0, we have from

(2.1.9), for all v ≥ 0, 
ua + ub = 0,

Q(ua, ub, v) = 0,

giving the trivial solution u∗a(u, v) = u∗
b
(u, v) = 0. Otherwise, if u > 0, we consider the

function of the ub variable

q(ub; u, v) := Q(u − ub, ub, v) = φ (bub + dv) ub − ψ (a(u − ub) + cv) (u − ub). (2.3.1)

Thanks to the strictly increasing character of φ and ψ, the function q is strictly increasing in
ub and satisfies

q(0; u, v) < 0 , q(u; u, v) > 0.

Therefore, for any given v ≥ 0, there exists a unique zero ub ∈ (0, u) of q(ub; u, v) and thus a
unique solution to the nonlinear system (2.1.9).

Furthermore, the solution (u∗a(u, v), u∗
b
(u, v)) can be rewritten as

u∗a(u, v) B r∗a(u, v)u and u∗b(u, v) B r∗b(u, v)u, (2.3.2)

with
r∗a(u, v), r∗b(u, v) ∈ (0, 1), r∗a(u, v) + r∗b(u, v) = 1. (2.3.3)

More precisely, from the nonlinear system (2.1.9) we have


ua = u − ub,

φ(bub + dv)(u − ua) − ψ(aua + cv)ua = 0,

which is equivalent to


ua = u − ub,

ua =
φ(bub + dv)

φ(bub + dv) + ψ(aua + cv)
u,

thus giving

u∗a(u, v) B
φ∗

φ∗ + ψ∗
u and u∗b(u, v) B

ψ∗

φ∗ + ψ∗
u, (2.3.4)

with
ψ∗ = ψ(au∗a(u, v) + cv) , and φ∗ = φ(bu∗b(u, v) + dv).

Therefore, we obtain from (2.3.2), (2.3.4)

r∗a(u, v) :=
φ∗

φ∗ + ψ∗
∈ (0, 1), r∗b(u, v) :=

ψ∗

φ∗ + ψ∗
∈ (0, 1) , u, v > 0. (2.3.5)

We conclude by showing an explicit example of the triangular cross-diffusion system
(2.1.7) - (2.1.12) with the conversion functions φ, ψ defined below for all x > 0

φ(x) = x, ψ(x) = A + x, with A > 0,
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2.4. Formal derivation from a microscopic fast switching mechanism

corresponding to (H1), (H2) with α = β = 1 and B = 0. Therefore, we compute from the
nonlinear system (2.1.9)

(bub + dv)ub − (A + a(u − ub) + cv)(u − ub) = 0,

i.e.
(b − a)u2

b + (dv + A + 2au + cv)ub − (A + au + cv)u = 0.

In the particular case a = b, the computations above give the unique solution
(
u∗a(u, v), u∗

b
(u, v)

)

u∗b(u, v) =
A + au + cv

A + 2au + (d + c)v
u and u∗a(u, v) =

au + dv

A + 2au + (d + c)v
u.

2.4 Formal derivation from a microscopic fast switching

mechanism

This paragraph aims to propose a formal derivation of the mesoscopic scale model (2.1.1) -
(2.1.3), starting from a microscopic scale model where the ressources appear explicitly and
induce the competition. We consider the following system



∂t s1 =
1
δ

s1

(
r1 − a1s1 − p1u1 − p1

vv
)
,

∂t s2 =
1
δ

s2

(
r2 − a2s2 − p2u2 − p2

vv
)
,

∂tu1 = d1∆u1 + k1s1 p1u1 − γ1u1u2 +
1
ε

[
Φ
( p2u2 + p2

v v

s2

)
u2 − Ψ

( p1u1 + p1
v v

s1

)
u1

]
,

∂tu2 = d2∆u2 + k2s2 p2u2 − γ2u1u2 −
1
ε

[
Φ
( p2u2 + p2

v v

s2

)
u2 − Ψ

( p1u1 + p1
v v

s1

)
u1

]
,

∂tv = dv∆v + k1
v s1 p1

vv + k2
v s2 p2

vv,

(2.4.1)
where δ > 0 is the microscopic reaction time scale and ε is the mesoscopic one (hence
δ � ε � 1). Next, we make the asymptotic approximation δ → 0 with fixed ε > 0 for
the prey/ resources densities s1, s2. Since, only the nontrivial case, i.e. s1 , 0 , s2, is
meaningful (as the trivial cases s1 = 0 and s2 = 0 correspond to unstable equilibria), we
obtain at a formal level

si = (ri − piui − pi
vv)a−1

i , i = 1, 2.

Hence, the last three equations in (2.4.1) turn into



∂tu1 = d1∆u1 +
k1 p1
a1

u1(r1 − p1u1 − p1
vv) − γ1u1u2 +

1
ε
Q(u1, u2, v),

∂tu2 = d2∆u2 +
k2 p2
a2

u2(r2 − p2u2 − p2
vv) − γ2u1u2 − 1

ε
Q(u1, u2, v),

∂tv = dv∆v +
k1

v p1
v

a1
v(r1 − p1u1 − p1

vv) + k2
v p2

v

a2
v(r2 − p2u2 − p2

vv),

where

Q(u1, u2, v) = Φ

(
a2

(
p2u2 + p2

vv

r2 − (p2u2 + p2
vv)

))
u2 − Ψ

(
a1

(
p1u1 + p1

vv

r1 − (p1u1 + p1
vv)

))
u1.
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2.5. Statement of the existence results

Finally, renaming the variables u1 and u2 as ua and ub respectively, the diffusion coefficients
d1 and d2 as da and db respectively, the intra-specific coefficients γ1 and γ2 as γa and γb

respectively, defining the constants

ηa :=
k1 p1r1

a1
, a :=

p1

r1
, c :=

p1
v

r1
,

ηb :=
k2 p2r2

a2
, b :=

p2

r2
, d :=

p2
v

r2
,

η′v :=
k1

v p1
vr1

a1
, η′′v :=

k2
v p2

vr2

a2
,

and the conversion rate functions

φ(x) = Φ
(
a2

x

1 − x

)
, ψ(x) = Ψ

(
a1

x

1 − x

)
,

we end up with the mesoscopic system (2.1.1) - (2.1.3).

2.5 Statement of the existence results

This section is devoted to the statement of the main existence results.

Proposition 2.5.1.

Let Ω be a smooth bounded domain of RN, N ≥ 1. We assume (H1) - (H4). Then, for any

fixed ε > 0, the mesoscopic system (2.1.1) - (2.1.6) admits a unique classical positive (for

each component) solution (uεa, u
ε
b
, vε).

Theorem 2.5.2.

Let Ω be a smooth bounded domain of RN, N ≥ 1. We assume (H1) - (H4). Then, the

unique classical positive solution (uεa, u
ε
b
, vε) of (2.1.1) - (2.1.13) converges for a.e. (t, x) ∈

(0,+∞) × Ω (up to extraction of a subsequence) towards a nonnegative triplet (u∗a, u
∗
b
, v), as

ε → 0. Moreover, for a.e. (t, x) ∈ (0,+∞) × Ω, the pair of function (u∗a, u
∗
b
) is the unique

solution to the nonlinear system (2.1.9), corresponding to u B u∗a + u∗
b

and v. Furthermore,

(u, v) is a very weak solution to the macroscopic system (2.1.7) – (2.1.13), in the sense that,

for all test functions ξ1, ξ2 ∈ C2
c

(
[0,+∞) × Ω̄)

, with ∇ξ1 · σ = ∇ξ2 · σ = 0 on [0,+∞) × ∂Ω,

it holds

−
∫ +∞

0

∫

Ω

(∂tξ1)udxdt −
∫

Ω

ξ1(0, · )uindx −
∫ +∞

0

∫

Ω

∆ξ1

(
dau∗a(u, v) + dbu∗b(u, v)

)
dxdt

=

∫ +∞

0

∫

Ω

ξ1Fu(u, v) dx dt, (2.5.1)

and

−
∫ +∞

0

∫

Ω

(∂tξ2) v dxdt −
∫

Ω

ξ2(0, · ) vin dx − dv

∫ +∞

0

∫

Ω

∆ξ2 v dxdt

=

∫ +∞

0

∫

Ω

ξ2 Fv(u, v) dxdt. (2.5.2)

Finally, the following regularity holds true, for all T > 0
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2.6. Basic a priori-estimates

(i) u ∈ L∞
(
0,T ; L2+α(Ω)

) ∩ L3+α(ΩT ), |∇u| ∈ L2(ΩT );

(ii) v ∈ L∞(ΩT ), |∇v| ∈ L2(3+α)(ΩT ); ∂xi,x j
v , ∂tv ∈ L3+α(ΩT ), i, j = 1, . . . ,N.

We observe that all terms in (2.5.1), (2.5.2) are well-defined thanks to the regularity of
the solution (u, v). In particular, as the subpopulation densities u∗a, u

∗
b

satisfy (2.3.2), (2.3.3),
we have that u∗a, u

∗
b

belong to L3+α(ΩT ). Moreover, the logistic structure of the reaction
functions Fu, Fv involves at most quadratic nonlinearities, so that the integrals in (2.5.1),
(2.5.2), containing Fu, Fv are well-defined.

2.6 Basic a priori-estimates

In this section we shall obtain a priori estimates for the subpopulation densities uεa, u
ε
b

and
for the total population densities uε B uεa + uε

b
and vε. More specifically, we take advantage

of the triangular structure of the system that allows us to prove a priori estimates for the
density vε and its derivatives (see Lemmas 2.6.1, 2.6.2). The reaction functions fa and fb of
competition type allow us to control the total mass

∫
Ω

uε(t) dx, and to get an L2(ΩT ) estimate
on uε (see Lemma 2.6.3). The basic estimates shown in this section will be crucially used to
get the energy a priori estimates in Section 2.7.

Hereafter, all constants C and CT are strictly positive and may depend on Ω, the initial
data uin

a , u
in
b
, vin, the coefficients in system (2.1.1), the transition functions φ, ψ and on T , but

never on ε. They may change also from line to line in the computations. However, we can
also introduce strictly positive constant that depends on its explicit argument: for example
C(α, β, p) is a strictly positive constant depending on α, β, p.

In the following proofs, we shall drop the ε index for the sake of simplicity and we
denote

η B max{ηa, ηb}, η B min{aηa, bηb}, (2.6.1)

ηv B η′v + η
′′
v , rv B c η′v + d η′′v . (2.6.2)

We observe that the hypothesis on the reaction coefficients imply η̄, η, ηv, rv > 0.

Lemma 2.6.1.

Let (uεa, u
ε
b
, vε) be the positive classical solution to (2.1.1) - (2.1.6). Then, the following

estimates hold true, for all p ∈ (1,∞) and for all ε > 0,

‖vε‖L∞(0,+∞;Lp(Ω)) ≤ max

{
‖vin‖Lp(Ω),

ηv

rv

|Ω|
1
p

}
C Kp, (2.6.3)

and

‖vε‖L∞((0,+∞)×Ω) ≤ max

{
‖vin‖L∞(Ω),

ηv

rv

}
=: K∞. (2.6.4)

Proof.

By multiplying the equation for v in (2.1.1) by (v)p−1 with p > 1, integrating over Ω and
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using ua, ub > 0, v ≥ 0, we get

1
p

d

dt

∫

Ω

vp dx = dv

∫

Ω

vp−1∆vdx +

∫

Ω

vp−1 fv(ua, ub, v)dx

= −dv(p − 1)
∫

Ω

vp−2|∇v|2dx

+ η′v

∫

Ω

vp(1 − aua − cv
)
dx + η′′v

∫

Ω

vp(1 − bub − dv
)
dx

≤ −dv

4(p − 1)

p2

∫

Ω

|∇(vp/2)|2 dx + ηv

∫

Ω

vp dx − rv

∫

Ω

vp+1 dx, (2.6.5)

using the definitions (2.6.2). Neglecting the first intergral in the r.h.s. of (2.6.5) and using in
the last integral the Hölder’s inequality below,

∫

Ω

vp dx ≤
(∫

Ω

vp+1 dx

) p

p+1

|Ω|
1

p+1 ,

i.e.

−
∫

Ω

vp+1dx ≤ − 1

|Ω|
1
p

(∫

Ω

vpdx

)1+ 1
p

,

we end up with

d

dt

∫

Ω

vp dx ≤ ηv p

∫

Ω

vp dx − rv p

|Ω|1/p

(∫

Ω

vp dx

)1+ 1
p

,

which can be rewritten as a differential inequality in the unknown y(t) := ‖v(t)‖p
Lp(Ω). Thus,

we have for all t > 0
d

dt
y(t) ≤ ηv py(t) − rv p

|Ω|
1
p

y(t)1+ 1
p ,

that gives by integrating over [0, t],

y
1
p (t) ≤ ηv

rv

|Ω|
1
p

y
1
p (0)

y
1
p (0) +

(
ηv

rv
|Ω|

1
p − y

1
p (0)

)
e−ηvt

≤ max

{
y

1
p (0),

ηv

rv

|Ω|
1
p

}
= Kp,

i.e. for all t > 0

‖v(t)‖Lp(Ω) ≤ max

{
‖vin‖Lp(Ω),

ηv

rv

|Ω|
1
p

}
= Kp, (2.6.6)

implying (2.6.3). Taking p→ +∞ in (2.6.6) and the supremum in time, we get (2.6.4).

�

Lemma 2.6.2 (Maximal regularity for vε).
Let (uεa, u

ε
b
, vε) be the positive classical solution to (2.1.1) - (2.1.6). Then, the following

statements hold true

(i) for all p ∈ (1,+∞) there exists a constant C > 0 depending on p, vin,Ω, such that, for

all ε > 0, T > 0 and all i, j = 1, ..,N,

‖∂tv
ε‖Lp(ΩT ) + ‖∂xi,x j

vε‖Lp(ΩT ) 6 C(1 + ‖uεa + uεb‖Lp(ΩT )) ; (2.6.7)
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(ii) for all p ∈ (1,+∞) there exists a constant C > 0 depending on p, vin,N,Ω, such that,

for all ε > 0 and all T > 0,

‖∇vε‖2p

L2p(ΩT )
≤ C(1 + T + ‖uεa + uεb‖

p

Lp(ΩT )). (2.6.8)

For the proof of Lemma 2.6.2 we refer to the proof of Lemma 1.3.1.

Lemma 2.6.3.

Let (uεa, u
ε
b
, vε) be the positive classical solution to (2.1.1) - (2.1.6). Then, the following

estimates hold true for all ε > 0 and T > 0,

sup
t>0
‖uεa(t) + uεb(t)‖L1(Ω) ≤ max

{
‖uin

a + uin
b ‖L1(Ω), 2|Ω|ηη−1

}
:= K , (2.6.9)

and

‖uεa‖2L2(ΩT ) + ‖u
ε
b‖2L2(ΩT ) ≤ η

−1‖uin
a + uin

b ‖L1(Ω) + ηη
−1K T. (2.6.10)

Proof.

We integrate over Ω the equation satisfied by ua + ub in (2.1.1). Then, using the definition
(2.6.1), the boundary condition (2.1.4), the competition structure of the reaction functions
fa, fb and the nonnegativity of ua, ub, v, we obtain

d

dt

∫

Ω

(ua + ub)dx

=

∫

Ω

(da∆ua + db∆ub) dx +

∫

Ω

( fa(ua, ub, v) + fb(ua, ub, v)) dx

=

∫

Ω

(ηaua(1 − aua − cv) − γauaub) dx +

∫

Ω

(ηbub(1 − bub − dv) − γbuaub) dx

≤ η
∫

Ω

(ua + ub)dx − η
∫

Ω

(
u2

a + u2
b

)
dx (2.6.11)

≤ η
∫

Ω

(ua + ub)dx − η
2

∫

Ω

(
u2

a + u2
b

)
dx − η

∫

Ω

uaubdx

= η

∫

Ω

(ua + ub)dx − η
2

∫

Ω

(ua + ub)2dx, (2.6.12)

by the inequality 2xy ≤ x2 + y2 for all x, y ∈ R+. Then, we apply to the second integral in
(2.6.12) the Cauchy-Schwarz inequality below

‖ua + ub‖2L1(Ω) ≤ |Ω|‖ua + ub‖2L2(Ω),

to get

d

dt

∫

Ω

(ua + ub)dx ≤ η‖ua + ub‖L1(Ω) −
η

2|Ω| ‖ua + ub‖2L1(Ω),

that can be rewritten in terms of a differential inequality for y(t) = ‖ua(t) + ub(t)‖L1(Ω). Thus,
integrating the above inequality over [0, t] for all t > 0

y(t) ≤ y(0)
η

2|Ω|ηy(0) +
(
1 − η

2|Ω|ηy(0)
)
e−η t

≤ max

{
y(0),

2|Ω|η
η

}
,
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giving the uniform estimate (2.6.9).

In order to prove (2.6.10), we integrate (2.6.11) over (0,T ) and we obtain

η
(
‖ua‖2L2(ΩT ) + ‖ub‖2L2(ΩT )

)
≤ ‖uin

a + uin
b ‖L1(Ω) + η

∫

(0,T )
‖(ua + ub)(t)‖L1(Ω)dt

≤ ‖uin
a + uin

b ‖L1(Ω) + η̄TK ,

where we use in the last inequality the estimate (2.6.9). Thus, we conclude. �

2.7 Energy estimates

In this section, we will obtain the energy a priori estimates by studying the evolution of the
energy functional (2.2.1), (2.2.2) in the following three cases

p = pβ B 1 +
1

1 + β
∈ (1, 2), p = pα B 1 +

1
1 + α

∈ (1, 2), p = 2, (2.7.1)

with pβ ≤ pα, by assumption (H2). The case p = 1 has been analysed in Lemma 2.6.3. For
each value of p in (2.7.1), we will show ε−uniform a priori estimates by using the estimates
obtained in the previous step, i.e. in the case p = pβ we will use the a priori estimates of
Lemmas 2.6.1 - 2.6.3, the estimates for p = pα are obtained thanks to the estimates shown
for p = pβ and finally, in the case p = 2, we will use the obtained estimates in the cases
p = pβ and p = pα.

Before stating the main result of this section (see Energy Lemma 2.7.1 below), we
introduce the following quantities for all p ≥ 1,

q(p) B α(p − 1) + p ≥ 1 and r(p) B β(p − 1) + p ≥ 1, (2.7.2)

so that

q(pβ) =
α + 1
β + 1

+ 1 ∈ (1, 2] and r(pβ) = 2, (2.7.3)

q(pα) = 2 and r(pα) =
β + 1
α + 1

+ 1 ≥ 2, (2.7.4)

q(2) = α + 2 and r(2) = β + 2, (2.7.5)

and the following relation holds

q(pβ) − 1 =
1

r(pα) − 1
. (2.7.6)

Lemma 2.7.1 (Energy Lemma).
Let (uεa, u

ε
b
, vε) be the positive classical solution to (2.1.1) - (2.1.6). Then, there exists CT > 0,

such that the global strong solution to (2.1.1) - (2.1.6) satisfies, for all ε > 0,

Epβ(u
ε
a, u

ε
b, v

ε)(T ) +C

(
‖∇uεb‖2L2(ΩT ) + ‖u

ε
b‖3L3(ΩT ) + ‖u

ε
a‖

q(pβ)+1

L
q(pβ)+1(Ω)

)

≤ Epβ(u
ε
a, u

ε
b, v

ε)(0) +CT , (2.7.7)

Epα(uεa, u
ε
b, v

ε)(T ) +C

(
‖∇uεa‖2L2(ΩT ) + ‖u

ε
a‖3L3(ΩT ) + ‖u

ε
b‖

r(pα)+1
Lr(pα)+1(ΩT )

)

≤ Epα(uεa, u
ε
b, v

ε)(0) +CT , (2.7.8)
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and

E2(uεa, u
ε
b, v

ε)(T ) +C
(
‖∇(uεa)α/2+1‖2

L2(ΩT ) + ‖∇(uεb)β/2+1‖2
L2(ΩT )

)

+C

(
‖uεa‖3+αL3+α(ΩT ) + ‖u

ε
b‖

3+β
L3+β(ΩT )

)
+

1
ε
‖Q(uεa, u

ε
b, v

ε)‖2
L2(ΩT )

≤ E2(uεa, u
ε
b, v

ε)(0) +CT . (2.7.9)

Before starting the proof, we shall point out some comments and introduce some quanti-
ties that will be useful in the sequel. Firstly, we introduce the affine functions

θ(z, v) B A + az + cv, ω(z, v) B B + bz + dv. (2.7.10)

By (H1) and (2.7.10), the total energy density (2.2.1) – (2.2.4) reads now as

hp(ua, ub, v) = ha,p(ua, v) + hb,p(ub, v)

=

∫ ua

0
θ(z, v)α(p−1)zp−1dz +

∫ ub

0
ω(z, v)β(p−1)zp−1dz.

(2.7.11)

Thus, neglecting A, B, v in (2.7.10) and (2.7.11), we obtain for all p ≥ 1,

hp(ua, ub, v) ≥
∫ ua

0
(az)α(p−1)zp−1dz +

∫ ub

0
(bz)β(p−1)zp−1dz

≥ C(a, b, p, α, β)
(
u

q(p)
a + u

r(p)
b

)
.

Hence, any uniform in time upper bound of the energy Ep(t) over (0,T ) implies the bound-
edness of

‖ua‖L∞(0,T ;Lq(p)(Ω)) + ‖ub‖L∞(0,T ;Lr(p)(Ω)).

It is worth noticing that, thanks to the choice of φ and ψ in (H1), (H2), the integrals in
(2.7.11), defining the densities ha,p(ua, v) and hb,p(ub, v), are finite for all p ≥ 1. The same
holds true for

∇hp(ua, ub, v) =
(
∂1ha,p(ua, v), ∂1hb,p(ub, v), ∂2ha,p(ua, v) + ∂2hb,p(ua, v)

)
,

where

∂1ha,p(ua, v) = θ(ua, v)α(p−1)u
p−1
a ,

∂1hb,p(ub, v) = ω(ub, v)β(p−1)u
p−1
b

,
(2.7.12)

and

∂2ha,p(ua, v) = cα(p − 1)
∫ ua

0
θ(z, v)α(p−1)−1zp−1dz,

∂2hb,p(ub, v) = dβ(p − 1)
∫ ub

0
ω(z, v)β(p−1)−1zp−1dz.

(2.7.13)

Concerning the Hessian of hp, we have

Hess(hp) =



∂11hp 0 ∂13hp

0 ∂22hp ∂23hp

∂31hp ∂32hp ∂33hp



=



∂11ha,p 0 ∂12ha,p

0 0 0
∂21ha,p 0 ∂22ha,p

 +



0 0 0
0 ∂11hb,p ∂12hb,p

0 ∂21hb,p ∂22hb,p

 ,
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where

∂11ha,p(ua, v) = aα(p − 1)θ(ua, v)α(p−1)−1u
p−1
a + (p − 1)θ(ua, v)α(p−1)u

p−2
a ,

∂12ha,p(ua, v) = ∂21ha,p(ua, v) = cα(p − 1)θ(ua, v)α(p−1)−1u
p−1
a ,

(2.7.14)

and

∂11hb,p(ub, v) = bβ(p − 1)ω(ub, v)β(p−1)−1u
p−1
b
+ (p − 1)ω(ub, v)β(p−1)u

p−2
b

,

∂12hb,p(ub, v) = ∂21hb,p(ub, v) = dβ(p − 1)ω(ub, v)β(p−1)−1u
p−1
b

,
(2.7.15)

and finally

∂22ha,p(ua, v) = c2α(p − 1)(α(p − 1) − 1)
∫ ua

0
θ(z, v)α(p−1)−2zp−1dz,

∂22hb,p(ub, v) = d2β(p − 1)(β(p − 1) − 1)
∫ ub

0
ω(z, v)β(p−1)−2zp−1dz.

(2.7.16)

The derivatives ∂22ha,p, ∂22hb,p in (2.7.16) are well-defined if and only if p > pα and p > pβ,

respectively. Therefore, in order to estimate the evolution of the energy Ep in (2.2.7), with p

in (2.7.1), along the solution to (2.1.1) – (2.1.6), we will handle separately the first critical
case p = pβ, the second critical case p = pα and the super-critical case p = 2 > pα.

For the reader’s convenience, we rewrite here the decomposition (2.2.5) - (2.2.7) of the
evolution equation of the energy functional as following

d

dt
Ep(uεa, u

ε
b, v

ε) =
∫

Ω

(da∂1hp∆uεa + db∂2hp∆uεb + dv∂3hp∆vε)dx (2.7.17)

+

∫

Ω

∇hp · F dx (2.7.18)

+
1
ε

∫

Ω

(∂1hp − ∂2hp)Q dx (2.7.19)

C I
p

di f f
+ I

p
rea + I

p

f ast
. (2.7.20)

The following two subsections are devoted to estimate the reaction terms I
p
rea and the diffusion

terms I
p

di f f
, respectively, depending on the value of p in (2.7.1). For the sake of simplicity,

we will drop the ε index.

We conclude with the definitions below, for l,m ∈ R,

Xl(m) B


1, if m ≥ l,

0, if m < l.
(2.7.21)

2.7.1 A priori estimate for the reaction terms

This paragraph is devoted to estimate the reaction term I
p
rea :=

∫
Ω
∇hp · F dx in (2.7.18) with

p in (2.7.1). In order to do that, we use the competition form of the reaction term F and the
following technical lemma, whose proof is given in Section A.3.

Lemma 2.7.2.

For any γ > 0 and δ ∈ (0, 1), there exists C(γ, δ) > 0 such that for all λ > 0, η ≥ 0, it holds

ηγ(λ − η) ≤ C(γ, δ)λγ+1 − δηγ+1. (2.7.22)
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Moreover, the best constant in (2.7.22) is

C(γ, δ) =
1
γ

(
γ

γ + 1

)γ+1 (
1

1 − δ

)γ
.

Hereafter, we will consider δ = 1
2 when applying Lemma 2.7.2 and we will denote

CL B C(γ, 1
2 ).

Recalling that F B ( fa, fb, fv)T , we compute from (2.7.18)

I
p
rea =

∫

Ω

∂1ha,p(ua, v) fa(ua, ub, v) dx +

∫

Ω

∂1hb,p(ub, v) fb(ua, ub, v) dx

+

∫

Ω

∂2ha,p(ua, v) fv(ua, ub, v) dx +

∫

Ω

∂2hb,p(ub, v) fv(ua, ub, v) dx

:= J
p

1 + J
p

2 + J
p

3 + J
p

4 . (2.7.23)

By (2.7.12) and recalling the reaction functions defined in (2.1.2), we get

J
p

1 :=
∫

Ω

θ(ua, v)α(p−1)u
p−1
a fa(ua, ub, v) dx

≤ ηa

∫

Ω

θ(ua, v)α(p−1)u
p−1
a ua(1 + A − θ(ua, v)) dx

= ηa

∫

Ω

u
p
a

(
θ(ua, v)α(p−1)(1 + A − θ(ua, v))

)
dx. (2.7.24)

Applying the inequality (2.7.22) in (2.7.24), using θ(ua, v) ≥ aua and the definition of q(p)
in (2.7.2), we obtain

J
p

1 ≤ ηa

∫

Ω

u
p
a

(
CL(1 + A)α(p−1)+1 − 1

2
θ(ua, v)α(p−1)+1

)
dx

≤ ηaCL(1 + A)α(p−1)+1
∫

Ω

u
p
a dx − 1

2
ηa aα(p−1)+1

∫

Ω

u
q(p)+1
a dx. (2.7.25)

Similarly, we have for J
p

2

J
p

2 :=
∫

Ω

ω(ub, v)β(p−1)u
p−1
b

fb(ua, ub, v) dx

≤ ηbCL(1 + B)β(p−1)+1
∫

Ω

u
p

b
dx − 1

2
ηb bβ(p−1)+1

∫

Ω

u
r(p)+1
b

dx. (2.7.26)

The terms J
p

3 and J
p

4 in (2.7.23) will be estimated in the critical cases p = pβ, p = pα
and in the super-critical case p = 2 in the next three paragraphs, respectively.
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• I
p
rea in the critical case p = pβ

Using θ(z, v) ≥ az and recalling that ηv = η
′
v + η

′′
v , we get

J
pβ

3 B cα(pβ − 1)
∫

Ω

(∫ ua

0
θ(z, v)α(pβ−1)−1zpβ−1dz

)
fv(ua, ub, v) dx

≤ (η′v + η
′′
v )

cα

β + 1

∫

Ω

v

(∫ ua

0
θ(z, v)

α
β+1−1

z
1
β+1 dz

)
dx

≤ ηv

c

a
1− α

β+1

α

β + 1

∫

Ω

v

(∫ ua

0

( z

zβ+1−α

) 1
β+1

dz

)
dx

= ηv

c

a
1− α

β+1

α

β + 1
β + 1
α + 1

∫

Ω

u
α+1
β+1
a v dx

= ηv

c

a
1− α

β+1

α

α + 1

∫

Ω

u
α+1
β+1
a v dx. (2.7.27)

Then, using the inequality

xγ ≤ 1 + x, ∀x ≥ 0 and 0 < γ ≤ 1, (2.7.28)

in (2.7.27) with γ = α+1
β+1 , we end up with

J
pβ

3 ≤ ηv

c

a
1− α

β+1
‖v‖L∞(Ω)(1 + ‖ua‖L1(Ω)). (2.7.29)

Concerning the term J
pβ

4 , using ω(z, v) ≥ bz, we get

J
pβ

4 B dβ(pβ − 1)
∫

Ω

(∫ ub

0
ω(z, v)β(pβ−1)−1zpβ−1dz

)
fv(ua, ub, v)dx

≤ (η′v + η
′′
v )

dβ

β + 1

∫

Ω

v

(∫ ub

0
ω(z, v)

β
β+1−1

z
1
β+1 dz

)
dx

≤ ηv

d

b
1
β+1

∫

Ω

v

(∫ ub

0
ω(z, v)

β
β+1−1

ω(z, v)
1
β+1 dz

)
dx

= ηv

d

b
1
β+1

∫

Ω

vub dx

≤ ηv

d

b
1
β+1

‖v‖L∞(Ω)‖ub‖L1(Ω). (2.7.30)

Therefore, taking p = pβ in (2.7.25), (2.7.26), recalling that r(pβ)+ 1 = 3 and gathering with
(2.7.29), (2.7.30), we obtain

I
pβ
rea ≤ ηaCL(1 + A)

α
β+1+1‖ua‖pβL

pβ (Ω)
− 1

2
ηa a

α
β+1+1‖ua‖q(pβ)+1

L
q(pβ)+1(Ω)

+ ηbCL(1 + B)
β
β+1+1‖ub‖pβL

pβ (Ω)
− 1

2
ηbb

β
β+1+1‖ub‖3L3(Ω)

+ ηv

c

a
1− α

β+1
‖v‖L∞(Ω)(1 + ‖ua‖L1(Ω)) + ηv

d

b
1
β+1

‖v‖L∞(Ω)‖ub‖L1(Ω). (2.7.31)
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• I
p
rea in the critical case p = pα

We estimate J
pα
3 similarly as we did for J

pβ

4 in (2.7.29), so that we have

J
pα
3 B cα(pα − 1)

∫

Ω

(∫ ua

0
θ(z, v)α(pα−1)−1zpα−1dz

)
fv(ua, ub, v)dx

≤ ηvc
α

α + 1

∫

Ω

v

(∫ ua

0
θ(z, v)−

1
α+1 z

1
α+1 dz

)
dx

≤ ηv

c

a
1
α+1

‖v‖L∞(Ω)‖ua‖L1(Ω). (2.7.32)

Concerning J
pα
4 , we get

J
pα
4 B dβ(pα − 1)

∫

Ω

(∫ ub

0
ω(z, v)β(pα−1)−1zpα−1dz

)
fv(ua, ub, v)dx

≤ dηv

β

α + 1

∫

Ω

v

(∫ ub

0
ω(z, v)

β
α+1−1z

1
α+1 dz

)
dx. (2.7.33)

To continue, we need to distiguish the cases β < 1 + α and β ≥ 1 + α, i.e. β

α+1 − 1 < 0 and
β

α+1 − 1 ≥ 0, respectively.

Case β < 1 + α. Using ω(z, v) ≥ bz, we compute

∫ ub

0
ω(z, v)

β
α+1−1z

1
α+1 dz =

∫ ub

0

z
1
α+1

ω(z, v)1− β
α+1

dz ≤ 1

b1− β
α+1

∫ ub

0
z
β+1
α+1−1dz ≤ 1

b1− β
α+1

u
β+1
α+1
b
.

Therefore, recalling (2.7.4), J
pα
4 is estimated as follows

J
pα
4 ≤

dηv

b1− β
α+1

‖v‖L∞(Ω)‖ub‖
β+1
α+1

L
β+1
α+1 (Ω)

=
dηv

b1− β
α+1

‖v‖L∞(Ω)‖ub‖r(pα)−1
Lr(pα)−1(Ω)

. (2.7.34)

Case β ≥ 1 + α. Using again ω(z, v) ≥ bz and recalling (2.7.4), we compute from (2.7.33)

J
pα
4 ≤ ηv

d

b
1
α+1

β

α + 1

∫

Ω

v

(∫ ub

0
ω(z, v)

β+1
α+1−1dz

)
dx

≤ ηv

d

b1+ 1
α+1

β

α + 1
α + 1
β + 1

∫

Ω

vω(ub, v)
β+1
α+1 dx

≤ ηv

d

b1+ 1
α+1

‖v‖L∞(Ω)‖ω(ub, v)‖r(pα)−1
Lr(pα)−1(Ω)

.

Since r(pα) − 1 ≥ 1, we can apply to ‖ω(ub, v)‖r(pα)−1
Lr(pα)−1(Ω)

in the above estimate the
inequality

(x + y)p ≤ CJ

(
xp + yp) , ∀ x, y ∈ R+ and p ≥ 1, (2.7.35)

with CJ > 0, to get

J
pα
4 ≤ ηvCJ

d

b1+ 1
α+1

‖v‖L∞(Ω)

(
‖B + dv‖r(pα)−1

Lr(pα)−1(Ω)
+ br(pα)−1‖ub‖r(pα)−1

Lr(pα)−1(Ω)

)
. (2.7.36)
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By gathering (2.7.34), (2.7.36) and using (2.7.21), we estimate J
pα
4 as follows

J
pα
4 ≤ (1 − Xα+1(β))

dηv

b1− β
α+1

‖v‖L∞(Ω)‖ub‖r(pα)−1
Lr(pα)−1(Ω)

+ Xα+1(β)ηvCJ

d

b1+ 1
α+1

‖v‖L∞(Ω)

(
‖B + dv‖r(pα)−1

Lr(pα)−1(Ω)
+ br(pα)−1‖ub‖r(pα)−1

Lr(pα)−1(Ω)

)
. (2.7.37)

Finally, taking p = pα in (2.7.25), (2.7.26), recalling that q(pα) + 1 = 3 and gathering with
(2.7.32), (2.7.37), we obtain

I
pα
rea ≤ ηaCL(1 + A)

α
α+1+1‖ua‖pαLpα (Ω) −

1
2
ηaa

α
α+1+1‖ua‖3L3(Ω)

+ ηbCL(1 + B)
β
α+1+1‖ub‖pαLpα (Ω) −

1
2
ηbb

β
α+1+1‖ub‖r(pα)+1

Lr(pα)+1(Ω)

+ ηv

c

a
1
α+1

‖v‖L∞(Ω)‖ua‖L1(Ω)

+ (1 − Xα+1(β))
dηv

b1− β
α+1

‖v‖L∞(Ω)‖ub‖r(pα)−1
Lr(pα)−1(Ω)

+ Xα+1(β)ηvCJ

d

b1+ 1
α+1

‖v‖L∞(Ω)

(
‖B + dv‖r(pα)−1

Lr(pα)−1(Ω)
+ br(pα)−1‖ub‖r(pα)−1

Lr(pα)−1(Ω)

)
. (2.7.38)

• I
p
rea in the super-critical case p = 2

Concerning J2
3 , we get

J2
3 B cα

∫

Ω

(∫ ua

0
θ(z, v)α−1z dz

)
fv(ua, ub, v)dx

≤ cαηv

∫

Ω

v

(∫ ua

0
θ(z, v)α−1z dz

)
dx. (2.7.39)

Thus, similarly as for J
pα
4 in (2.7.33), we distiguish the cases α < 1 and α ≥ 1.

Case α < 1. Using θ(z, v) ≥ az, we compute
∫ ua

0
θ(z, v)α−1z dz =

∫ ua

0

z

θ(z, v)1−α dz ≤ 1

a1−α

∫ ua

0
zαdz =

1

a1−α
uα+1

a

α + 1
.

Therefore, recalling (2.7.5), J2
3 is estimated as follows

J2
3 ≤

c

a1−α ηv‖v‖L∞(Ω)‖ua‖α+1
Lα+1(Ω)

=
c

a1−α ηv‖v‖L∞(Ω)‖ua‖q(2)−1
Lq(2)−1(Ω)

. (2.7.40)

Case α ≥ 1. Using θ(z, v) ≥ az again, we compute

J2
3 ≤

c

a
αηv

∫

Ω

v

(∫ ua

0
θ(z, v)αdz

)
dx

≤ cηv

α

α + 1

∫

Ω

v θ(ua, v)α+1dx

≤ cηv‖v‖L∞(Ω)‖θ(ua, v)‖q(2)−1
Lq(2)−1(Ω)

≤ cηvCJ‖v‖L∞(Ω)

(
‖A + cv‖q(2)−1

Lq(2)−1(Ω)
+ aα+1‖ua‖q(2)−1

Lq(2)−1(Ω)

)
, (2.7.41)

where we applied again (2.7.35) in the last estimate.
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By gathering (2.7.40), (2.7.41) and using (2.7.21), we estimate J2
3 as follows,

J2
3 ≤ (1 − X1(α))

c

a1−α ηv‖v‖L∞(Ω)‖ua‖q(2)−1
Lq(2)−1(Ω)

+ X1(α)cηvCJ‖v‖L∞(Ω)

(
‖A + cv‖q(2)−1

Lq(2)−1(Ω)
+ aα+1‖ua‖q(2)−1

Lq(2)−1(Ω)

)
. (2.7.42)

Concerning J2
4 , we have

J2
4 B dβ

∫

Ω

(∫ ub

0
ω(z, v)β−1z dz

)
fv(ua, ub, v)dx

≤ dβηv

∫

Ω

v

(∫ ub

0
ω(z, v)β−1z dz

)
dx.

By analogy with J2
3 in (2.7.39), we apply to J2

4 the same tools used to get the estimate
(2.7.42). Distinguishing the cases β < 1 and β ≥ 1, we obtain

J2
4 ≤ (1 − X1(β))

d

b1−β ηv‖v‖L∞(Ω)‖ub‖r(2)−1
Lr(2)−1(Ω)

+ X1(β)dηvCJ‖v‖L∞(Ω)

(
‖B + dv‖r(2)−1

Lr(2)−1(Ω)
+ bβ+1‖ub‖r(2)−1

Lr(2)−1(Ω)

)
. (2.7.43)

Finally, taking p = 2 in (2.7.25), (2.7.26) and gathering with (2.7.42), (2.7.43), we
obtain

I2
rea ≤ ηaCL(1 + A)α+1‖ua‖2L2(Ω) −

1
2
ηaaα+1‖ua‖q(2)+1

Lq(2)+1(Ω)

+ ηbCL(1 + B)β+1‖ub‖2L2(Ω) −
1
2
ηbbβ+1‖ub‖r(2)+1

Lr(2)+1(Ω)

+ (1 − X1(α))
c

a1−α ηv‖v‖L∞(Ω)‖ua‖q(2)−1
Lq(2)−1(Ω)

+ X1(α)cηvCJ‖v‖L∞(Ω)

(
‖A + cv‖q(2)−1

Lq(2)−1(Ω)
+ aα+1‖ua‖q(2)−1

Lq(2)−1(Ω)

)

+ (1 − X1(β))
d

b1−β ηv‖v‖L∞(Ω)‖ub‖r(2)−1
Lr(2)−1(Ω)

+ X1(β)dηvCJ‖v‖L∞(Ω)

(
‖B + dv‖r(2)−1

Lr(2)−1(Ω)
+ bβ+1‖ub‖r(2)−1

Lr(2)−1(Ω)

)
. (2.7.44)

2.7.2 A priori estimate for the diffusion terms

The estimate of the diffusion term I
p

di f f
in (2.7.17) will be done in such a way that we obtain

the L2 control on the gradient of uε
b
, in the case p = pβ, and the L2 control on the gradient

of uεa, in the case p = pα. It is worth noticing that we will use the assumption A > 0 to
handle the diffusion term I

p

di f f
, in the case p = pβ, more precisely to estimate the term K

pβ

1
in (2.7.47).

• I
p

di f f
in the critical case p = pβ
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From (2.7.17), we write I
pβ

di f f
as

I
pβ

di f f
=

∫

Ω

(da∂1hpβ∆ua + db∂2hpβ∆ub + dv∂3hpβ∆v)dx

= −da

∫

Ω

∂11ha,pβ |∇ua|2dx − da

∫

Ω

∂12ha,pβ∇ua · ∇vdx

− db

∫

Ω

∂11hb,pβ |∇ub|2dx − db

∫

Ω

∂12hb,pβ∇ub · ∇vdx

+ dv

∫

Ω

∂2ha,pβ∆v dx

+ dv

∫

Ω

∂2hb,pβ∆v dx

:= K
pβ

1 + K
pβ

2 + K
pβ

3 + K
pβ

4 , (2.7.45)

where the derivatives of the energy dentities ha,p, hb,p are defined in (2.7.12) - (2.7.15).

We compute for K
pβ

1

K
pβ

1 B −daaα(pβ − 1)
∫

Ω

θ(ua, v)α(pβ−1)−1u
pβ−1
a |∇ua|2 dx

− da(pβ − 1)
∫

Ω

θ(ua, v)α(pβ−1)u
pβ−2
a |∇ua|2dx

− dacα(pβ − 1)
∫

Ω

θ(ua, v)α(pβ−1)−1u
pβ−1
a ∇ua · ∇v dx,

and we apply Young’s inequality in the third integral to obtain

K
pβ

1 ≤ −
daa

2
α(pβ − 1)

∫

Ω

θ(ua, v)α(pβ−1)−1u
pβ−1
a |∇ua|2 dx

− da(pβ − 1)
∫

Ω

θ(ua, v)α(pβ−1)u
pβ−2
a |∇ua|2dx

+ da

c2

2a
α(pβ − 1)

∫

Ω

θ(ua, v)α(pβ−1)−1u
pβ−1
a |∇v|2 dx

= −da a

2
α

β + 1

∫

Ω

θ(ua, v)
α
β+1−1

u
1
β+1
a |∇ua|2 dx

− da

apβ−2

1
β + 1

∫

Ω

θ(ua, v)
α
β+1 (aua)

1
β+1−1|∇ua|2dx

+ da

c2

2apβ

α

β + 1

∫

Ω

θ(ua, v)
α
β+1−1(aua)

1
β+1 |∇v|2 dx. (2.7.46)

By neglecting the first and second integral in (2.7.46), observing that α
β+1 − 1 < 0 and using

the inequality θ(ua, v) ≥ A + aua, we arrive at

K
pβ

1 ≤
da

2
c2

apβ

∫

Ω

(
aua

(A + aua)β−α+1

) 1
β+1

|∇v|2dx. (2.7.47)

Finally, the assumption A > 0 implies

K
pβ

1 ≤
da

2
c2

apβ
CA

∫

Ω

|∇v|2dx, (2.7.48)
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with the constant CA > 0 depending on A, α, β > 0.

Concerning K
pβ

2 , we get

K
pβ

2 B −dbbβ(pβ − 1)
∫

Ω

ω(ub, v)β(pβ−1)−1u
pβ−1
b
|∇ub|2dx

− db(pβ − 1)
∫

Ω

ω(ub, v)β(pβ−1)u
pβ−2
b
|∇ub|2dx

− dbdβ(pβ − 1)
∫

Ω

ω(ub, v)β(pβ−1)−1u
pβ−1
b
∇ub · ∇vdx.

Proceeding as we did for K
pβ

1 in (2.7.46), we obtain

K
pβ

2 ≤ −
dbb

2
β(pβ − 1)

∫

Ω

ω(ub, v)β(pβ−1)−1u
pβ−1
b
|∇ub|2dx

− db(pβ − 1)
∫

Ω

ω(ub, v)β(pβ−1)u
pβ−2
b
|∇ub|2dx

+
db

2
d2

b
β(pβ − 1)

∫

Ω

ω(ub, v)β(pβ−1)−1u
pβ−1
b
|∇v|2dx. (2.7.49)

Neglecting the first integral in (2.7.49) and using ω(ub, v) ≥ bub in the other two, together
with the identity

β(pβ − 1) + pβ − 2 =
β

β + 1
+

1
β + 1

− 1 = 0,

we get

K
pβ

2 ≤ −db

b
β
β+1

β + 1

∫

Ω

|∇ub|2dx +
db

2
d2

b
1+ 1

β+1

∫

Ω

|∇v|2dx. (2.7.50)

Now, we estimate the terms K
pβ

3 and K
pβ

4 defined in (2.7.45). Thus, we compute

K
pβ

3 B dvcα(pβ − 1)
∫

Ω

(∫ ua

0
θ(z, v)α(pβ−1)−1zpβ−1dz

)
∆vdx

= dvc
α

β + 1

∫

Ω

(∫ ua

0
θ(z, v)

α
β+1−1

z
1
β+1 dz

)
∆vdx.

Similarly as we did to estimate J
pβ

3 in (2.7.29), using θ(z, v) ≥ aua, we get

K
pβ

3 ≤ dv

c

a
1− α

β+1

α

β + 1

∫

Ω

(∫ ua

0

(
z

zβ+1−α

) 1
β+1

dz

)
|∆v|dx

= dv

c

a
1− α

β+1

α

β + 1

∫

Ω

(∫ ua

0
z
α−β
β+1 dz

)
|∆v|dx

= dv

c

a
1− α

β+1

α

β + 1
1
α+1
β+1

∫

Ω

u
α+1
β+1
a |∆v|dx.

Using the inequality (2.7.28) with γ = α+1
β+1 together with Hölder’s inequality, we end up with

K
pβ

3 ≤ dv

c

a
1− α

β+1
‖1 + ua‖L2(Ω)‖∆v‖L2(Ω). (2.7.51)

49



2.7. Energy estimates

Concerning K
pβ

4 , using ω(z, v) ≥ bz it holds

K
pβ

4 B dvdβ(pβ − 1)
∫

Ω

(∫ ub

0
ω(z, v)β(pβ−1)−1zpβ−1dz

)
∆vdx

≤ dv

d

b
1
β+1

β

β + 1

∫

Ω

(∫ ub

0
ω(z, v)

β
β+1−1(bz)

1
β+1 dz

)
|∆v|dx

≤ dv

d

b
1
β+1

∫

Ω

ub|∆v|dx

≤ dv

d

b
1
β+1

‖ub‖L2(Ω)‖∆v‖L2(Ω). (2.7.52)

Finally, by gathering (2.7.48), (2.7.50), (2.7.51), (2.7.52), we end up with

I
pβ

di f f
≤ 1

2

(
da

c2

apβ
CA + db

d2

bpβ

)
‖∇v‖2

L2(Ω) − db

b
β
β+1

β + 1
‖∇ub‖2L2(Ω)

+ dv

(
c

a
1− α

β+1
+

d

b
1
β+1

) (
‖1 + ua‖L2(Ω) + ‖ub‖L2(Ω)

)
‖∆v‖L2(Ω). (2.7.53)

• I
p

di f f
in the critical case p = pα

From (2.7.17), we write I
pα
di f f

as

I
pα
di f f

= −da

∫

Ω

∂11ha,pα |∇ua|2dx − da

∫

Ω

∂12ha,pα∇ua · ∇vdx

− db

∫

Ω

∂11hb,pα |∇ub|2dx − (db + dv)
∫

Ω

∂12hb,pα∇ub · ∇vdx

+ dv

∫

Ω

∂2ha,pα∆v dx

− dv

∫

Ω

∂22hb,pα |∇v|2 dx

:= K
pα
1 + K

pα
2 + K

pα
3 + K

pα
4 . (2.7.54)

Concerning K
pα
1 , it holds

K
pα
1 B −daaα(pα − 1)

∫

Ω

θ(ua, v)α(pα−1)−1u
pα−1
a |∇ua|2 dx

− da(pα − 1)
∫

Ω

θ(ua, v)α(pα−1)u
pα−2
a |∇ua|2dx

− dacα(pα − 1)
∫

Ω

θ(ua, v)α(pα−1)−1u
pα−1
a ∇ua · ∇v dx.
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Similarly as we did for K
pβ

2 , we use Young’s inequality to get

K
pα
1 ≤ −

da a

2
α(pα − 1)

∫

Ω

θ(ua, v)α(pα−1)−1u
pα−1
a |∇ua|2 dx

− da

apα−2
(pα − 1)

∫

Ω

θ(ua, v)α(pα−1)(aua)pα−2|∇ua|2dx

+ da

c2

2apα
α(pα − 1)

∫

Ω

θ(ua, v)α(pα−1)−1(aua)pα−1|∇v|2 dx

= −da a

2
α

α + 1

∫

Ω

θ(ua, v)
α
α+1−1u

1
α+1
a |∇ua|2 dx

− da

apα−2

1
α + 1

∫

Ω

θ(ua, v)
α
α+1 (aua)−

α
α+1 |∇ua|2dx

+ da

c2

2apα

α

α + 1

∫

Ω

θ(ua, v)
α
α+1−1(aua)

1
α+1 |∇v|2 dx.

Thus, neglecting the first integral and using θ(ua, v) ≥ aua in the second and third integrals,
we obtain

K
pα
1 ≤ −daa

α
α+1

1
α + 1

∫

Ω

|∇ua|2dx +
da

2
c2

apα

∫

Ω

|∇v|2dx. (2.7.55)

Now, we estimate the term K
pα
2 in (2.7.54) by applying Young’s inequality to get

K
pα
2 B −dbbβ(pα − 1)

∫

Ω

ω(ub, v)β(pα−1)−1u
pα−1
b
|∇ub|2dx

− db(pα − 1)
∫

Ω

ω(ub, v)β(pα−1)u
pα−2
b
|∇ub|2dx

− (db + dv)dβ(pα − 1)
∫

Ω

ω(ub, v)β(pα−1)−1u
pα−1
b
∇ub · ∇vdx

≤ −db

2
bβ

α + 1

∫

Ω

ω(ub, v)β(pα−1)−1u
pα−1
b
|∇ub|2dx

− db

α + 1

∫

Ω

ω(ub, v)β(pα−1)u
pα−2
b
|∇ub|2dx

+
(db + dv)2

2db

d2

b

β

α + 1

∫

Ω

ω(ub, v)β(pα−1)−1u
pα−1
b
|∇v|2dx.

Neglecting the first and the second integral we obtain

K
pα
2 ≤

(db + dv)2

2db

d2

b

β

α + 1

∫

Ω

ω(ub, v)
β
α+1−1u

1
α+1
b
|∇v|2dx. (2.7.56)

Like for J
pα
4 in (2.7.33), we estimate K

pα
2 by distinguishing the cases β < 1+α and β ≥ 1+α,

i.e. β

α+1 − 1 < 0 and β

α+1 − 1 ≥ 0, respectively.

Case β < α + 1. Using ω(ub, v) ≥ bub, we compute

K
pα
2 ≤

(db + dv)2

2db

d2

b2− β
α+1

∫

Ω

u
β−α
α+1
b
|∇v|2dx,
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and by the inequality (2.7.28) with γ = β−α
α+1 , we end up with

K
pα
2 ≤

(db + dv)2

2db

d2

b2− β
α+1

∫

Ω

(
1 + ub

)|∇v|2dx

≤ (db + dv)2

2db

d2

b2− β
α+1

‖1 + ub‖L2(Ω)‖∇v‖2
L4(Ω). (2.7.57)

Case β ≥ α + 1. Using bub ≤ ω(ub, v), we get from (2.7.56)

K
pα
2 ≤

(db + dv)2

2db

d2

bpα

β

α + 1

∫

Ω

ω(ub, v)
β−α
α+1 |∇v|2dx.

The main tool used in the case β < α + 1 was the inequality (2.7.28) with γ < 1.
However, it holds that β−α

α+1 < 1 if and only if β < 2α + 1. This suggests to distinguish
the following two cases

β < 2α + 1 and β ≥ 2α + 1.

Using the inequality (2.7.28) in the case β < 2α + 1 and using (2.7.21), we end up
with

K
pα
2 ≤ Xα+1(β) (1 − X2α+1(β))

(db + dv)2

2db

d2

bpα

β

α + 1
‖1 + ω(ub, v)‖L2(Ω)‖∇v‖2

L4(Ω)

+ X2α+1(β)
(db + dv)2

2db

d2

bpα

β

α + 1

∫

Ω

ω(ub, v)
β−α
α+1 |∇v|2dx. (2.7.58)

By gathering the estimates (2.7.57), (2.7.58), we obtain

K
pα
2 ≤ (1 − Xα+1(β))

(db + dv)2

2db

d2

b2− β
α+1

‖1 + ub‖L2(Ω)‖∇v‖2
L4(Ω)

+ Xα+1(β) (1 − X2α+1(β))
(db + dv)2

2db

d2

bpα

β

α + 1
‖1 + ω(ub, v)‖L2(Ω)‖∇v‖2

L4(Ω)

+ X2α+1(β)
(db + dv)2

2db

d2

bpα

β

α + 1

∫

Ω

ω(ub, v)
β−α
α+1 |∇v|2dx. (2.7.59)

Now, we estimate the term K
pα
3 in (2.7.54).

K
pα
3 B dvcα(pα − 1)

∫

Ω

(∫ ua

0
θ(z, v)α(pα−1)−1zpα−1dz

)
∆vdx

= dv

c

a
1
α+1

α

α + 1

∫

Ω

(∫ ua

0
θ(z, v)

α
α+1−1(az)

1
α+1 dz

)
∆vdx

≤ dv

c

a
1
α+1

∫

Ω

(∫ ua

0

( az

θ(z, v)

) 1
α+1

dz

)
|∆v|dx

≤ dv

c

a
1
α+1

∫

Ω

ua|∆v|dx

≤ dv

2
c

a
1
α+1

(
‖ua‖2L2(Ω) + ‖∆v‖2

L2(Ω)

)
. (2.7.60)
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Concerning the term K
pα
4 , we have

K
pα
4 B −dvd2β(pα − 1) (β(pα − 1) − 1)

∫

Ω

(∫ ub

0
ω(z, v)β(pα−1)−2zpα−1dz

)
|∇v|2dx

= −dvd2 β

α + 1

(
β

α + 1
− 1

) ∫

Ω

(∫ ub

0
ω(z, v)

β
α+1−2z

1
α+1 dz

)
|∇v|2dx.

Observing that if β

α+1 − 1 ≥ 0, K
pα
4 is negative, we estimate K

pα
4 only when β < α + 1.

Recalling that r(pα) > 2 and definition (2.7.21), we get

K
pα
4 ≤ (1 − Xα+1(β)) dvd2 β

α + 1

(
1 − β

α + 1

) ∫

Ω


∫ ub

0

(
z

ω(z, v)2(α+1)−β

) 1
α+1

dz

 |∇v|2dx

≤ (1 − Xα+1(β))
dvd2

b2− β
α+1

∫

Ω

(∫ ub

0
z
β+1
α+1−2dz

)
|∇v|2dx

= (1 − Xα+1(β))
dvd2

b2− β
α+1

∫

Ω

(∫ ub

0
zr(pα)−3dz

)
|∇v|2dx

= (1 − Xα+1(β))
dvd2

b2− β
α+1

1
r(pα) − 2

∫

Ω

u
r(pα)−2
b

|∇v|2dx

≤ (1 − Xα+1(β))
dvd2

2b2− β
α+1

(∫

Ω

u
2(r(pα)−2)
b

dx +

∫

Ω

|∇v|4dx

)
, (2.7.61)

where we used Young’s inequality in the last estimate.

Finally by gathering (2.7.55), (2.7.59), (2.7.60), (2.7.61), we obtain

I
pα
di f f
≤ −daa

α
α+1

1
α + 1

‖∇ua‖2L2(Ω) +
da

2
c2

apα
‖∇v‖2

L2(Ω)

+ (1 − Xα+1(β))
(db + dv)2

2db

d2

b2− β
α+1

‖1 + ub‖L2(Ω)‖∇v‖2
L4(Ω)

+ Xα+1(β) (1 − X2α+1(β))
(db + dv)2

2db

d2

bpα

β

α + 1
‖1 + ω(ub, v)‖L2(Ω)‖∇v‖2

L4(Ω)

+ X2α+1(β)
(db + dv)2

2db

d2

bpα

β

α + 1

∫

Ω

ω(ub, v)
β−α
α+1 |∇v|2dx

+
dv

2
c

a
1
α+1

(
‖ua‖2L2(Ω) + ‖∆v‖2

L2(Ω)

)

+ (1 − Xα+1(β))
dvd2

2b2− β
α+1

(
‖ub‖2(r(pα)−2)

L2(r(pα)−2)(Ω)
+ ‖∇v‖4

L4(Ω)

)
. (2.7.62)

• I
p

di f f
in the super-critical case p = 2

As we are considering now the super-critical case p = 2, the hessian of hp in (2.7.14),
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(2.7.15) is well defined and we write I2
di f f

in (2.7.17) as

I2
di f f = −da

∫

Ω

∂11ha,2|∇ua|2dx − (da + dv)
∫

Ω

∂12ha,2∇ua · ∇vdx

− db

∫

Ω

∂11hb,2|∇ub|2dx − (db + dv)
∫

Ω

∂21hb,2∇ub · ∇vdx

− dv

∫

Ω

∂22ha,2|∇v|2 dx

− dv

∫

Ω

∂22hb,2|∇v|2 dx

C K2
1 + K2

2 + K2
3 + K2

4 . (2.7.63)

In order to estimate the term K2
1 in (2.7.63), we apply Young’s inequality to get

K2
1 B −daaα

∫

Ω

θ(ua, v)α−1ua|∇ua|2dx − da

∫

Ω

θ(ua, v)α|∇ua|2dx

− (da + dv)cα
∫

Ω

θ(ua, v)α−1ua∇ua · ∇vdx

≤ −da

2
aα

∫

Ω

θ(ua, v)α−1ua|∇ua|2dx − da

∫

Ω

θ(ua, v)α|∇ua|2dx

+
(da + dv)2

2da

c2α

a

∫

Ω

θ(ua, v)α−1ua|∇v|2 dx. (2.7.64)

Neglecting the first integral and using θ(ua, v) > aua in the second integral, we obtain

K2
1 ≤ −daaα

∫

Ω

uαa |∇ua|2dx +
(da + dv)2

2da

c2α

a

∫

Ω

θ(ua, v)α−1ua|∇v|2dx. (2.7.65)

Then recalling that q(2) = α + 2, we use the identity below in the first integral of (2.7.65)

uαa |∇ua|2 =
∣∣∣∣∣u

q(2)−2
2

a ∇ua

∣∣∣∣∣
2

=
4

q(2)2

∣∣∣∣∇
(
u

q(2)/2
a

)∣∣∣∣
2
=

4

(α + 2)2

∣∣∣∣∇
(
u

q(2)/2
a

)∣∣∣∣
2
, (2.7.66)

to get

K2
1 ≤ −

4daaα

(α + 2)2

∫

Ω

∣∣∣∣∇
(
u

q(2)/2
a

)∣∣∣∣
2

dx +
(da + dv)2

2da

c2α

a

∫

Ω

θ(ua, v)α−1ua|∇v|2 dx. (2.7.67)

Now, we estimate the second intergral in (2.7.67) with the tools used to handle the term
K

pα
2 in (2.7.56). We distinguish the cases α < 1 and α ≥ 1.

Case α < 1. Using θ(ua, v) ≥ aua and the inequality (2.7.28) with γ = α, we compute

(da + dv)2

2da

c2α

a

∫

Ω

ua

θ(ua, v)1−α |∇v|2 dx

≤ (da + dv)2

2da

c2

a2−α

∫

Ω

uαa |∇v|2 dx

≤ (da + dv)2

2da

c2

a2−α

∫

Ω

(1 + ua)|∇v|2dx

≤ (da + dv)2

4da

c2

a2−α

(
‖1 + ua‖2L2(Ω) + ‖∇v‖4

L4(Ω)

)
.
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Case α ≥ 1. Using θ(ua, v) ≥ aua, we get

(da + dv)2

2da

c2α

a

∫

Ω

θ(ua, v)α−1ua|∇v|2 dx ≤ (da + dv)2

2da

c2α

a2

∫

Ω

θ(ua, v)α|∇v|2 dx.

Therefore, we end up with the following estimate for K2
1 ,

K2
1 ≤ −

4daaα

(α + 2)2
‖∇(uq(2)/2

a

)‖2
L2(Ω)

+
(da + dv)2

2da

c2

a2−α
(
1 − X1(α)

) (‖1 + ua‖2L2(Ω) + ‖∇v‖4
L4(Ω)

)

+
(da + dv)2

2da

c2α

a2
X1(α)

∫

Ω

θ(ua, v)α|∇v|2 dx. (2.7.68)

From (2.7.63), we compute K2
2 similarly as we did for K2

1 in (2.7.64),

K2
2 B −dbbβ

∫

Ω

ω(ub, v)β−1ub|∇ub|2dx − db

∫

Ω

ω(ub, v)β|∇ub|2dx

− (db + dv)dβ
∫

Ω

ω(ub, v)β−1ub∇ub · ∇vdx

≤ −db

2
bβ

∫

Ω

ω(ub, v)β−1ub|∇ub|2dx − db

∫

Ω

ω(ub, v)β|∇ub|2dx (2.7.69)

+
(db + dv)2

2db

d2β

b

∫

Ω

ω(ub, v)β−1ub|∇v|2dx

≤ −dbbβ
∫

Ω

u
β

b
|∇ub|2dx +

(db + dv)2

2db

d2β

b

∫

Ω

ω(ub, v)β−1ub|∇v|2dx,

where in the last inequality, we neglected the first term in (2.7.69) and we use ω(ub, v) ≥ bub

in the second term. Then, by analogy with (2.7.65), (2.7.66) we rewrite the first term in the
last inequality as follows

K2
2 ≤ −

4dbbβ

(β + 2)2

∫

Ω

|∇(ur(2)/2
b

)|2dx +
(db + dv)2

2db

d2β

b

∫

Ω

ω(ub, v)β−1ub|∇v|2dx.

Similarly as we did in (2.7.67), we distinguish the cases β < 1 and β ≥ 1. Therefore, by
analogy with (2.7.68) we end up with

K2
2 ≤ −

4dbbβ

(β + 2)2
‖∇(ur(2)/2

b

)‖2
L2(Ω)

+
(db + dv)2

2db

d2

b2−β
(
1 − X1(β)

) (‖1 + ub‖2L2(Ω) + ‖∇v‖4
L4(Ω)

)

+
(db + dv)2

2db

d2β

b2
X1(β)

∫

Ω

ω(ub, v)β|∇v|2 dx. (2.7.70)

Now, we estimate the terms K2
3 and K2

4 defined in (2.7.63). We observe that ∂22ha,2, ∂22hb,2

have a sign which changes depending on the value of α, β. More precisely, by (2.7.16) it
holds ∂22ha,2 < 0 (resp. ∂22hb,2 < 0) if and only if α < 1 (resp. β < 1), so that we need to
estimate K2

3 (resp. K2
4 ) when α < 1 (resp. β < 1), otherwise K2

3 ≤ 0 (resp. K2
4 ≤ 0).
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Using θ(z, v) ≥ az and the inequality (2.7.28) with γ = α, we have

K2
3 B −dvc2α(α − 1)

∫

Ω

(∫ ua

0
θ(z, v)α−2z dz

)
|∇v|2dx

≤ (
1 − X1(α)

)
dv

c2

a
α(1 − α)

∫

Ω

(∫ ua

0
θ(z, v)α−2(az) dz

)
|∇v|2dx

≤ (
1 − X1(α)

)
dv

c2

a
α(1 − α)

∫

Ω

(∫ ua

0
θ(z, v)α−1 dz

)
|∇v|2dx

≤ (
1 − X1(α)

)
dv

c2

a2
(1 − α)

∫

Ω

θ(ua, v)α|∇v|2dx

≤ (
1 − X1(α)

)
dv

c2

a2
(1 − α)

∫

Ω

(
1 + θ(ua, v)

)|∇v|2dx

≤ (
1 − X1(α)

)
dv

c2

2a2
(1 − α)

(‖1 + θ(ua, v)‖2
L2(Ω) + ‖∇v‖4

L4(Ω)

)
. (2.7.71)

Concerning K2
4 , it holds

K2
4 B −dvd2β(β − 1)

∫

Ω

(∫ ub

0
ω(z, v)β−2z dz

)
|∇v|2dx

= dv

d2

b
β(1 − β)

∫

Ω

(∫ ub

0
ω(z, v)β−2(bz) dz

)
|∇v|2dx.

Thus, similarly as we did for K2
3 , we obtain

K2
4 ≤

(
1 − X1(β)

)
dv

d2

2b2
(1 − β)

(‖1 + ω(ub, v)‖2
L2(Ω) + ‖∇v‖4

L4(Ω)

)
. (2.7.72)

Finally, by gathering (2.7.68), (2.7.70), (2.7.71), (2.7.72), we end up with

I2
di f f ≤ −

4daaα

(α + 2)2
‖∇(uq(2)/2

a

)‖L2(Ω) −
4dbbβ

(β + 2)2
‖∇(ur(2)/2

b

)‖2
L2(Ω)

+
(da + dv)2

2da

c2

a2−α
(
1 − X1(α)

) (‖1 + ua‖2L2(Ω) + ‖∇v‖4
L4(Ω)

)

+
(da + dv)2

2da

c2α

a2
X1(α)

∫

Ω

θ(ua, v)α|∇v|2 dx

+
(db + dv)2

2db

d2

b2−β
(
1 − X1(β)

) (‖1 + ub‖2L2(Ω) + ‖∇v‖4
L4(Ω)

)

+
(db + dv)2

2db

d2β

b2
X1(β)

∫

Ω

ω(ub, v)β|∇v|2 dx

+
(
1 − X1(α)

)
dv

c2

2a2
(1 − α)

(‖1 + θ(ua, v)‖2
L2(Ω) + ‖∇v‖4

L4(Ω)

)

+
(
1 − X1(β)

)
dv

d2

2b2
(1 − β)

(‖1 + ω(ub, v)‖2
L2(Ω) + ‖∇v‖4

L4(Ω)

)
. (2.7.73)

2.7.3 Proof of the energy estimates

Hereafter, we combine the obtained estimates in Subsections 2.7.1, 2.7.2, together with
the basic estimates shown in Section 2.6, in order to control the evolution of the energy
functional Ep in (2.7.20) when p = pβ, p = pα, p = 2. From now on, we restore the index ε.
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• The critical case p = pβ

We put into (2.7.20) the estimate for the reaction term I
pβ
rea in (2.7.31) and the estimate for

the diffusion term I
pβ

di f f
in (2.7.53). Thus, recalling that I

p

f ast
≤ 0 (see (2.2.8)) and renaming

the constants, we obtain for all t ∈ (0,T )

d

dt
Epβ(u

ε
a,u

ε
b, v

ε)(t) + ‖uεa(t)‖q(pβ)+1

L
q(pβ)+1(Ω)

+ ‖uεb(t)‖3
L3(Ω) + ‖∇uεb(t)‖2

L2(Ω)

≤ C

(
‖uεa(t)‖pβ

L
pβ (Ω)
+ ‖uεb(t)‖pβ

L
pβ (Ω)
+ ‖vε(t)‖L∞(Ω)

(
1 + ‖(uεa + uεb

)
(t)‖L1(Ω)

))

+C
(
‖∇vε(t)‖2

L2(Ω) +
(‖uεa(t)‖L2(Ω) + ‖uεb(t)‖L2(Ω)

)‖∆vε(t)‖L2(Ω)

)
,

where the constant C > 0 depends on the diffusion and reaction coefficients, on α, β but not
on ε. Therefore, recalling that pβ < 2, integrating over t ∈ (0,T ) and using the estimates in
Lemmas 2.6.1 - 2.6.3, together with the assumption on the initial data (H4), we end up with
(2.7.7).

• The critical case p = pα

Now, we integrate in time over (0,T ) the inequality (2.7.62), we use r(pα) − 2 = β−α
α+1 and the

Hölder inequality when necessary, to obtain

∫

(0,T )
I

pα
di f f

dt ≤ −daa
α
α+1

1
α + 1

‖∇uεa‖2L2(ΩT ) +
da

2
c2

apα
‖∇vε‖2

L2(ΩT )

+ (1 − Xα+1(β))
(db + dv)2

2db

d2

b2− β
α+1

‖1 + uεb‖L2(ΩT )‖∇vε‖2
L4(ΩT )

+ Xα+1(β) (1 − X2α+1(β))
(db + dv)2

2db

d2

bpα

β

α + 1
‖1 + ω(uεb, v

ε)‖L2(ΩT )‖∇vε‖2
L4(ΩT )

+ X2α+1(β)
(db + dv)2

2db

d2

bpα

β

α + 1

∫

ΩT

ω(uεb, v
ε)r(pα)−2|∇vε|2dxdt

+
dv

2
c

a
1
α+1

(
‖uεa‖2L2(ΩT ) + ‖∆vε‖2

L2(ΩT )

)

+ (1 − Xα+1(β))
dvd2

2b2− β
α+1

(
‖uεb‖

2(r(pα)−2)
L2(r(pα)−2)(ΩT )

+ ‖∇vε‖4
L4(ΩT )

)
. (2.7.74)

Using in (2.7.74) that 2(r(pα) − 2) = 2(β−α)
α+1 < 2 if β < α + 1, we have

(1 − Xα+1(β)) ‖uεb‖L2(r(pα)−2)(ΩT ) ≤ (1 − Xα+1(β)) C‖uεb‖L2(ΩT ).

Then, together with the estimates in Lemmas 2.6.1 - 2.6.3, we end up with

∫

(0,T )
I

pα
di f f

dt ≤ −daa
α
α+1

1
α + 1

‖∇uεa‖2L2(ΩT ) +CT

+ X2α+1(β)
(db + dv)2

2db

d2

bpα

β

α + 1

∫

ΩT

ω(uεb, v
ε)r(pα)−2|∇vε|2dxdt. (2.7.75)
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Similarly, for the reaction term estimate (2.7.38), we have
∫

(0,T )
I

pα
readt ≤ ηaCL(1 + A)α(pα−1)+1‖uεa‖

pα
Lpα (ΩT ) −

1
2
ηaaα(pα−1)+1‖uεa‖3L3(ΩT )

+ ηbCL(1 + B)β(pα−1)+1‖uεb‖
pα
Lpα (ΩT ) −

1
2
ηbbβ(pα−1)+1‖uεb‖

r(pα)+1
Lr(pα)+1(ΩT )

+ ηv

c

a
1
α+1

‖vε‖L∞(ΩT )‖uεa‖L1(ΩT )

+ (1 − Xα+1(β))
dηv

b1− β
α+1

‖vε‖L∞(ΩT )‖uεb‖
r(pα)−1
Lr(pα)−1(ΩT )

+ Xα+1(β)ηvCJ

d

b1+ 1
α+1

‖vε‖L∞(ΩT )‖B + dvε‖r(pα)−1
Lr(pα)−1(ΩT )

+ Xα+1(β)ηvCJb
β
α+1−1d‖vε‖L∞(ΩT )‖uεb‖

r(pα)−1
Lr(pα)−1(ΩT )

.

Using that r(pα) − 1 = β+1
α+1 < 2, if β < α + 1, we have

(1 − Xα+1(β)) ‖uεb‖Lr(pα)−1(ΩT ) ≤ (1 − Xα+1(β)) C‖uεb‖L2(ΩT ).

Thus, using that pα < 2 and gathering with the estimates in Lemmas 2.6.1 - 2.6.3, we end up
with

∫

(0,T )
I

pα
readt ≤ −1

2
ηaaα(pα−1)+1‖uεa‖3L3(ΩT ) −

1
2
ηbbβ(pα−1)+1‖uεb‖

r(pα)+1
Lr(pα)+1(ΩT )

+CT + Xα+1(β)ηvCJb
β
α+1−1d‖vε‖L∞(ΩT )‖uεb‖

r(pα)−1
Lr(pα)−1(ΩT )

. (2.7.76)

We take p = pα in (2.7.20) and we use the estimates (2.7.75), (2.7.76), together with
I

pα
f ast
≤ 0 (see (2.2.8)). Then, integrating (2.7.20) in time over (0,T ), we obtain

Epα(uεa, u
ε
b, v

ε)(T ) +C
(
‖∇uεa‖2L2(ΩT ) + ‖u

ε
a‖3L3(ΩT )

)
+

1
2
ηbbβ(pα−1)+1‖uεb‖

r(pα)+1
Lr(pα)+1(ΩT )

(2.7.77)

≤ Epα(uεa, u
ε
b, v

ε)(0) +CT

+ X2α+1(β)
(db + dv)2

2db

d2

bpα

β

α + 1

∫

ΩT

ω(uεb, v
ε)r(pα)−2|∇vε|2dxdt (2.7.78)

+ Xα+1(β)ηvCJb
β
α+1−1d‖vε‖L∞(ΩT )‖uεb‖

r(pα)−1
Lr(pα)−1(ΩT )

, (2.7.79)

where the constant C > 0 in (2.7.77) depends on the diffusion and reaction coefficients, on
α, β but not on ε.

It remains to estimate the terms in (2.7.78) and (2.7.79).

In order to handle the term in (2.7.78) where β ≥ 2α + 1, we rename the constant as

R1 B
(db + dv)2

2db

d2

bpα

β

α + 1
.

For a pair of conjugate exponents (m,m′) to be chosen, we have by Young’s inequality

R1

∫

ΩT

ω(uεb, v
ε)r(pα)−2|∇vε|2dxdt

≤ 1
m

∫

ΩT

ω(uεb, v
ε)m(r(pα)−2)dxdt +

1
m′

Rm′
1

∫

ΩT

|∇vε|2m′dxdt. (2.7.80)

58



2.7. Energy estimates

As β ≥ 2α + 1, we have that r(pα) − 2 = β−α
α+1 ≥ 1. Then, we can choose m and m′ such that

1 ≤ m(r(pα) − 2) ≤ r(pα) + 1 and 1 ≤ m′ ≤ q(pβ) + 1,

i.e. using m′ = m
m−1

1 + q(pβ)

q(pβ)
≤ m ≤ r(pα) + 1

r(pα) − 2
. (2.7.81)

It is worth noticing that by assumption (H3), condition (2.7.81) is not empty. Indeed, by
(2.7.6), condition (2.7.81) is not empty if and only if

1 + q(pβ)

q(pβ)
(r(pα) − 2) =

1 + q(pβ)

q(pβ)

( 1
q(pβ) − 1

− 1
)
≤ r(pα) + 1 =

1
q(pβ) − 1

+ 2,

and the above inequality rewrites as

3q2(pβ) − 2q(pβ) − 2 ≥ 0 ⇐⇒ q(pβ) ≥
1 +
√

7
3

.

Therefore, using the definition of q(pβ) in (2.7.3), the above condition holds if and only if

(
√

7 − 2)β ≤ 3α + 5 −
√

7 ⇐⇒ β ≤ (
√

7 + 2)α +
√

7 + 1,

which is guaranteed by (H3).

Hereafter, for the sake of simplicity, we denote rα B r(pα). Then, in order to estimate
the first term in (2.7.80), we first apply the inequality (2.7.35) and we get

1
m

∫

ΩT

ω(uεb, v
ε)m(rα−2)dxdt ≤ CJ

m
‖B + dvε‖m(rα−2)

Lm(rα−2)(ΩT )
+

CJbm(rα−2)

m
‖uεb‖

m(rα−2)
Lm(rα−2)(ΩT )

.

(2.7.82)

Furthermore, since 1 ≤ m(rα − 2) ≤ rα + 1, we use the inequality

xγ = xγ1{x≤C} + xγ1{x>C} ≤ Cγ−1x +Cγ−λxλ, (2.7.83)

for all x ≥ 0, C > 0 and 1 ≤ γ ≤ λ. Thus, for any σ > 0 to be chosen later as small as nedeed,
there exists a constant Cσ, not depending on uε

b
, such that

CJbm(rα−2)

m
‖uεb‖

m(rα−2)
Lm(rα−2)(ΩT )

≤ Cσ‖uεb‖L1(ΩT ) + σ‖uεb‖
rα+1
Lrα+1(ΩT )

.

Therefore, (2.7.82) becomes

1
m

∫

ΩT

ω(uεb, v
ε)m(rα−2)dxdt ≤ CJ

m
‖B + dvε‖m(rα−2)

Lm(rα−2)(ΩT )
+Cσ‖uεb‖L1(ΩT )

+ σ‖uεb‖
rα+1
Lrα+1(ΩT )

. (2.7.84)

Next, as m′ ≤ q(pβ) + 1 ≤ 3, we can use Lemma 2.6.2 and the estimates obtained in the
previous step (see (2.7.7)), in order to get, for the second term in (2.7.80),

1
m′

Rm′
1

∫

ΩT

|∇vε|2m′dxdt ≤ C(m′,N,R1)
(
1 + ‖uεa + uεb‖m

′

Lm′ (ΩT )

)
+C(m′,R1)T

≤ C(m′,N,R1,T,Ω)
(
1 + ‖uεa‖m

′

Lm′ (ΩT )
+ ‖uεb‖m

′

Lm′ (ΩT )

)
+C(m′,R1)T

≤ C(m′,N,R1,T,Ω)
(
Epβ(u

ε
a, u

ε
b, v

ε)(0) +CT

)
. (2.7.85)
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Finally, by gathering (2.7.80), (2.7.84), (2.7.85) and renaming the constants, the term in
(2.7.78) is estimated as below

X2α+1(β)R1

∫

ΩT

ω(uεb, v
ε)rα−2|∇vε|2dxdt

≤ X2α+1(β)CT

(
Epβ(u

ε
a, u

ε
b, v

ε)(0) + 1
)

+ X2α+1(β)
(
CJ

m
‖B + dvε‖m(rα−2)

Lm(rα−2)(ΩT )
+Cσ‖uεb‖L1(ΩT )

)

+ X2α+1(β)σ‖uεb‖
rα+1
Lrα+1(ΩT )

, (2.7.86)

for any σ > 0.

Now, we estimate the term in (2.7.79). As the term is positive if and only if β ≥ α + 1
and that in this case 1 < rα − 1 = β+1

α+1 ≤ rα + 1, we can proceed as before, i.e.

Xα+1(β)ηvCJb
β
α+1−1d‖vε‖L∞(ΩT )‖uεb‖

rα−1
Lrα−1(ΩT )

≤ Xα+1(β)
(
Cσ‖uεb‖L1(ΩT ) + σ‖uεb‖

rα+1
Lrα+1(ΩT )

)
,

(2.7.87)

where the constant Cσ depends on σ, ‖vε‖L∞(ΩT ) but not on uε
b
.

Finally, putting (2.7.86) and (2.7.87) into (2.7.77) - (2.7.79), we end up with

Epα(uεa, u
ε
b, v

ε)(T ) +C
(
‖∇uεa‖2L2(ΩT ) + ‖u

ε
a‖3L3(ΩT )

)

+

(
1
2
ηbbβ(pα−1)+1 − σ

(
Xα+1(β) + X2α+1(β)

))
‖uεb‖

r(pα)+1
Lr(pα)+1(ΩT )

≤ Epα(uεa, u
ε
b, v

ε)(0) +CT + X2α+1(β)CT

(
Epβ(u

ε
a, u

ε
b, v

ε)(0) + 1
)

+ X2α+1(β)
CJ

m
‖B + vε‖m(r(pα)−2)

Lm(r(pα)−2)(ΩT )

+
(
Xα+1(β) + X2α+1(β)

)
Cσ‖uεb‖L1(ΩT ).

Therefore, taking σ > 0 such that

0 ≤ σ
(
Xα+1(β) + X2α+1(β)

)
<

1
2
ηbbβ(pα−1)+1,

and using the estimates of Lemmas 2.6.1 - 2.6.3, we get (2.7.8).

• The super-critical case p = 2

Now, we integrate in time over (0,T ) the inequality (2.7.73) and we use α = q(2) − 2 and
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2.7. Energy estimates

β = r(2) − 2, to obtain
∫

(0,T )
I2
di f f dt ≤ − 4daaα

(α + 2)2
‖∇((uεa)q(2)/2)‖2

L2(ΩT ) −
4dbbβ

(β + 2)2
‖∇((uεb)r(2)/2)‖2

L2(ΩT )

+
(
1 − X1(α)

) (da + dv)2

2da

c2

a2−α

(
‖1 + uεa‖2L2(ΩT ) + ‖∇vε‖4

L4(ΩT )

)
(2.7.88)

+ X1(α)
(da + dv)2

2da

c2α

a2

∫

ΩT

θ(uεa, v
ε)q(2)−2|∇vε|2 dxdt

+
(
1 − X1(β)

) (db + dv)2

2db

d2

b2−β

(
‖1 + uεb‖2L2(ΩT ) + ‖∇vε‖4

L4(ΩT )

)
(2.7.89)

+ X1(β)
(db + dv)2

2db

d2β

b2

∫

ΩT

ω(uεb, v
ε)r(2)−2|∇vε|2 dxdt

+
(
1 − X1(α)

)dvc2

2a2
(1 − α)

(‖1 + θ(uεa, vε)‖2L2(ΩT ) + ‖∇vε‖4
L4(ΩT )

)
(2.7.90)

+
(
1 − X1(β)

)dvd2

2b2
(1 − β)

(‖1 + ω(uεb, v
ε)‖2

L2(ΩT ) + ‖∇vε‖4
L4(ΩT )

)
. (2.7.91)

Using in (2.7.88) - (2.7.91) the estimates in Lemmas 2.6.1 - 2.6.3, we end up with
∫

(0,T )
I2
di f f dt ≤ − 4daaα

(α + 2)2
‖∇((uεa)q(2)/2)‖2

L2(ΩT ) −
4dbbβ

(β + 2)2
‖∇((uεb)r(2)/2)‖2

L2(ΩT ) +CT

+ X1(α)
(da + dv)2

2da

c2α

a2

∫

ΩT

θ(uεa, v
ε)q(2)−2|∇vε|2 dxdt

+ X1(β)
(db + dv)2

2db

d2β

b2

∫

ΩT

ω(uεb, v
ε)r(2)−2|∇vε|2 dxdt. (2.7.92)

Similarly, for the reaction term estimate in (2.7.44), we use the Hölder inequality when
necessary, to obtain

∫

(0,T )
I2
readt ≤ ηaCL(1 + A)α+1‖uεa‖2L2(ΩT ) −

1
2
ηaaα+1‖uεa‖

q(2)+1
Lq(2)+1(ΩT )

+ ηbCL(1 + B)β+1‖uεb‖2L2(ΩT ) −
1
2
ηbbβ+1‖uεb‖

r(2)+1
Lr(2)+1(ΩT )

+ (1 − X1(α))
c

a1−α ηv‖vε‖L∞(ΩT )‖uεa‖
q(2)−1
Lq(2)−1(ΩT )

+ X1(α)cηvCJ‖vε‖L∞(ΩT )

(
‖A + cvε‖q(2)−1

Lq(2)−1(ΩT )
+ aα+1‖uεa‖

q(2)−1
Lq(2)−1(ΩT )

)

+ (1 − X1(β))
d

b1−β ηv‖vε‖L∞(ΩT )‖uεb‖
r(2)−1
Lr(2)−1(ΩT )

+ X1(β)dηvCJ‖vε‖L∞(ΩT )

(
‖B + dvε‖r(2)−1

Lr(2)−1(ΩT )
+ bβ+1‖uεb‖

r(2)−1
Lr(2)−1(ΩT )

)
.

(2.7.93)

As q(2) − 1 = α + 1 < 2, if α < 1, and r(2) − 1 = β + 1 < 2, if β < 1, we have

(1 − X1(α)) ‖uεa‖Lq(2)−1(ΩT ) ≤ (1 − X1(α)) C‖uεa‖L2(ΩT ),

and
(1 − X1(β)) ‖uεb‖Lr(2)−1(ΩT ) ≤ (1 − X1(β)) C‖uεb‖L2(ΩT ).
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Thus, using in (2.7.93) the estimates in Lemmas 2.6.1 - 2.6.3 , we end up with
∫

(0,T )
I2
readt ≤ −1

2
ηaaα+1‖uεa‖

q(2)+1
Lq(2)+1(ΩT )

− 1
2
ηbbβ+1‖uεb‖

r(2)+1
Lr(2)+1(ΩT )

+CT

+ X1(α)caα+1ηvCJ‖vε‖L∞(ΩT )‖uεa‖
q(2)−1
Lq(2)−1(ΩT )

+ X1(β)dbβ+1ηvCJ‖vε‖L∞(ΩT )‖uεb‖
r(2)−1
Lr(2)−1(ΩT )

. (2.7.94)

We take p = 2 in (2.7.20) and we use the estimates (2.7.92), (2.7.94) and (2.2.9). Then,
integrating (2.7.20) in time over (0,T ), we obtain

E2(uεa, u
ε
b, v

ε)(T ) +C
(
‖∇((uεa)q(2)/2)‖2

L2(ΩT ) + ‖∇
(
(uεb)r(2)/2)‖2

L2(ΩT )

)
(2.7.95)

+
1
ε

∫

ΩT

Q2(uεa, u
ε
b, v

ε)dxdt

+
1
2
ηaaα+1‖uεa‖

q(2)+1
Lq(2)+1(ΩT )

+
1
2
ηbbβ+1‖uεb‖

r(2)+1
Lr(2)+1(ΩT )

(2.7.96)

≤ E2(uεa, u
ε
b, v

ε)(0) +CT

+ X1(α)
(da + dv)2

2da

c2α

a2

∫

ΩT

θ(uεa, v
ε)q(2)−2|∇vε|2 dxdt (2.7.97)

+ X1(β)
(db + dv)2

2db

d2β

b2

∫

ΩT

ω(uεb, v
ε)r(2)−2|∇vε|2 dxdt (2.7.98)

+ X1(α)caα+1ηvCJ‖vε‖L∞(ΩT )‖uεa‖
q(2)−1
Lq(2)−1(ΩT )

(2.7.99)

+ X1(β)dbβ+1ηvCJ‖vε‖L∞(ΩT )‖uεb‖
r(2)−1
Lr(2)−1(ΩT )

, (2.7.100)

where the constant C > 0 in (2.7.95) depends on the diffusion and reaction coefficients, on
α, β but not on ε.

It remains to estimate the terms (2.7.97) - (2.7.100).

In order to estimate the term in (2.7.97), where α ≥ 1, by analogy with (2.7.78) we first
rename the constant

R2 B
(da + dv)2

2da

c2α

a2
.

Then, for a pair of conjugate exponents (m,m′) to be chosen, we have by Young’s inequality

R2

∫

ΩT

θ(uεa, v
ε)q(2)−2|∇vε|2 dxdt

≤ 1
m

∫

ΩT

θ(uεa, v
ε)m(q(2)−2)dxdt +

1
m′

Rm′
2

∫

ΩT

|∇vε|2m′dxdt. (2.7.101)

As α ≥ 1, we have that q(2) − 2 = α ≥ 1. Then, we can choose m and m′ such that

1 ≤ m
(
q(2) − 2

) ≤ q(2) + 1 and 1 ≤ m′ ≤ 3,

i.e. using m′ = m
m−1

3
2
≤ m ≤ α + 3

α
. (2.7.102)

It is worth noticing that thanks to the assumption α ≤ 6
N

in (H3), condition (2.7.102) is not
empty.
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In order to estimate the first integral in (2.7.101), recalling that 1 ≤ m
(
q(2)−2

) ≤ q(2)+1,
we first use the inequality (2.7.35) and then the inequality (2.7.83), to get

1
m

∫

ΩT

θ(uεa, v
ε)m(q(2)−2)dxdt ≤ CJ

m
‖A + cvε‖m(q(2)−2)

Lm(q(2)−2)(ΩT )
+Cσ‖uεa‖L1(ΩT ) + σ‖uεa‖

q(2)+1
Lq(2)+1(ΩT )

,

(2.7.103)

where the constant Cσ does not depend on uεa.

Next, as m′ ≤ 3, we can use Lemma 2.6.2 and the estimates of the previous steps (see
(2.7.7), (2.7.8)), in order to get, for the last term in (2.7.101),

1
m′

Rm′
2

∫

ΩT

|∇vε|2m′dxdt ≤ C(m′,N,R2)
(
1 + ‖uεa + uεb‖m

′

Lm′ (ΩT )

)
+C(m′,R2)T

≤ C(m′,N,R2,T,Ω)
(
1 + ‖uεa‖m

′

Lm′ (ΩT )
+ ‖uεb‖m

′

Lm′ (ΩT )

)
+C(m′,R2)T

≤ C(m′,N,R2,T,Ω)
(
Epα(uεa, u

ε
b, v

ε)(0) +CT

)
. (2.7.104)

Finally, by gathering (2.7.101), (2.7.103), (2.7.104) and renaming the constants, the term
in (2.7.97) is estimated as below

X1(α)R2

∫

ΩT

θ(uεa, v
ε)q(2)−2|∇vε|2 dxdt

≤ X1(α)CT

(
Epα(uεa, u

ε
b, v

ε)(0) + 1
)

+ X1(α)
(
CJ

m
‖A + cvε‖m(q(2)−2)

Lm(q(2)−2)(ΩT )
+Cσ‖uεa‖L1(ΩT )

)

+ X1(α)σ‖uεa‖
q(2)+1
Lq(2)+1(ΩT )

, (2.7.105)

for any σ > 0.

Now, we estimate the term in (2.7.98) where β ≥ 1. By analogy with the term in (2.7.97),
we apply the same tools used to get (2.7.105). Thus, we define

R3 B
(db + dv)2

2db

d2β

b2
.

For a pair of conjugate exponents (m,m′) to be chosen, we have by Young’s inequality

R3

∫

ΩT

ω(uεb, v
ε)r(2)−2|∇vε|2 dxdt

≤ 1
m

∫

ΩT

ω(uεb, v
ε)m(r(2)−2)dxdt +

1
m′

Rm′
3

∫

ΩT

|∇vε|2m′dxdt. (2.7.106)

As β ≥ 1, we have that r(2) − 2 = β ≥ 1. Then, we can choose m and m′ such that

1 ≤ m
(
r(2) − 2

) ≤ r(2) + 1 and 1 ≤ m′ ≤ 3,

i.e. using m′ = m
m−1

3
2
≤ m ≤ β + 3

β
. (2.7.107)

It is worth noticing that thanks to the assumption β ≤ 6
N

in (H3), condition (2.7.107) is not
empty.
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Furthermore, as 1 ≤ m
(
r(2) − 2

) ≤ r(2) + 1, using the same tools used to get (2.7.103)
and skipping the details, we end up with

1
m

∫

ΩT

ω(uεb, v
ε)m(r(2)−2)dxdt ≤ CJ

m
‖B + dvε‖m(r(2)−2)

Lm(r(2)−2)(ΩT )
+Cσ‖uεb‖L1(ΩT ) + σ‖uεb‖

r(2)+1
Lr(2)+1(ΩT )

,

(2.7.108)

for any σ > 0 and with the constant Cσ > 0 not depending on uε
b
.

Next, as m′ ≤ 3 and by analogy with (2.7.104), we can use Lemma 2.6.2 and the estimates
of the previous step, in order to get for the last term in (2.7.106)

1
m′

Rm′
3

∫

ΩT

|∇vε|2m′dxdt ≤ C(m′,N,R3,T,Ω)
(
Epα(uεa, u

ε
b, v

ε)(0) +CT

)
. (2.7.109)

Finally, by gathering (2.7.106), (2.7.108), (2.7.109) and renaming the constants, the term
in (2.7.98) is estimated as below

X1(β)R3

∫

ΩT

ω(uεb, v
ε)r(2)−2|∇vε|2 dxdt ≤ X1(β)CT

(
Epα(uεa, u

ε
b, v

ε)(0) + 1
)

+ X1(β)
(
CJ

m
‖B + dvε‖m(r(2)−2)

Lm(r(2)−2)(ΩT )
+Cσ‖uεb‖L1(ΩT )

)

+ X1(β)σ‖uεb‖
r(2)+1
Lr(2)+1(ΩT )

, (2.7.110)

for any σ > 0.

The estimates of the integrals in (2.7.99), (2.7.100) go similarly as before since q(2)−1 =
α + 1 ≥ 2, if α ≥ 1, and r(2) − 1 = β + 1 ≥ 2, if β ≥ 1. Therefore, skipping the details, for
any σ > 0, there exists Cσ > 0 such that

X1(α)caα+1ηvCJ‖vε‖L∞(ΩT )‖uεa‖
q(2)−1
Lq(2)−1(ΩT )

≤ X1(α)
(
Cσ‖uεa‖L1(ΩT ) + σ‖uεa‖

q(2)+1
Lq(2)+1(ΩT )

)
,

(2.7.111)

and

X1(β)dbβ+1ηvCJ‖vε‖L∞(ΩT )‖uεb‖
r(2)−1
Lr(2)−1(ΩT )

≤ X1(β)
(
Cσ‖uεb‖L1(ΩT ) + σ‖uεb‖

r(2)+1
Lr(2)+1(ΩT )

)
,

(2.7.112)

where the constant Cσ depends on σ, ‖vε‖L∞(ΩT ) but not on uεa and uε
b
.

Finally, by putting (2.7.105), (2.7.110), (2.7.111), (2.7.112) into (2.7.96) - (2.7.100), we
end up with

E2(uεa, u
ε
b, v

ε)(T ) +C
(
‖∇((uεa)q(2)/2)‖2

L2(ΩT ) + ‖∇
(
(uεb)r(2)/2)‖2

L2(ΩT )

)

+

(
1
2
ηaaα+1 − 2σX1(α)

)
‖uεa‖

q(2)+1
Lq(2)+1(ΩT )

+

(
1
2
ηbbβ+1 − 2σX1(β)

)
‖uεb‖

r(2)+1
Lr(2)+1(ΩT )

+
1
ε
‖Q(uεa, u

ε
b, v

ε)‖2
L2(ΩT )

≤ E2(uεa, u
ε
b, v

ε)(0) +CT (X1(α) + X1(β))
(
Epα(uεa, u

ε
b, v

ε)(0) + 1
)

+ X1(α)
(
CJ

m
‖A + cvε‖m(q(2)−2)

Lm(q(2)−2)(ΩT )
+ 2Cσ‖uεa‖L1(ΩT )

)

+ X1(β)
(
CJ

m
‖B + dvε‖m(r(2)−2)

Lm(r(2)−2)(ΩT )
+ 2Cσ‖uεb‖L1(ΩT )

)
.
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with C, Cσ > 0. Thus, taking σ > 0 such that

0 ≤ σX1(α) <
1
4
ηaaα+1 and 0 ≤ σX1(β) <

1
4
ηbbβ+1,

i.e.

0 < σ ≤ 1
4

min
{
ηaaα+1, ηbbβ+1

}
,

and using the estimates of Lemmas 2.6.1 - 2.6.3, we get (2.7.9).

2.8 The existence result to the mesoscopic system

Proof of Proposition 2.5.1.

We first start by showing that for any fixed ε > 0, the mesoscopic system (2.1.1) - (2.1.6)
has a very weak nonnegative (for each component) solution. Hereafter, we will drop the
subscript ε for readability.

In order to prove that, we introduce for any δ > 0 the approximated system


∂tu
δ
a − da ∆xuδa = fa(uδa, u

δ
b
, vδ) + 1

ε
Qδ(uδa, u

δ
b
, vδ), in (0,+∞) ×Ω,

∂tu
δ
b
− db ∆xuδ

b
= fb(uδa, u

δ
b
, vδ) − 1

ε
Qδ(uδa, u

δ
b
, vδ), in (0,+∞) ×Ω,

∂tv
δ − dv ∆xvδ = fv(uδa, u

δ
b
, vδ), in (0,+∞) ×Ω,

(2.8.1)

with homogeneous Neumann boundary conditions (2.1.4) and initial data (2.1.5), (2.1.6).
Here, the reaction functions are the same as those in (2.1.2) whereas Qδ is defined by the
formula

Qδ(u
δ
a, u

δ
b, v

δ) :=
φ(buδ

b
+ dvδ) uδ

b

1 + δ φ(buδ
b
+ dvδ) uδ

b

− ψ(auδa + cvδ) uδa

1 + δ ψ(auδa + cvδ) uδa
, (2.8.2)

and is therefore bounded when δ > 0 is fixed. As a consequence, taking into account that
the reaction functions fa, fb, fv are upper bounded over R3

+, there exists a positive (for each
component) classical solution to (2.8.1), (2.8.2), when δ > 0 is fixed.

Next, we observe that it is possible to reproduce the a priori estimates in Sections 2.6,

2.7, when Q is replaced by Qδ. Indeed, one can first check that by Lemma 2.6.1, it holds

||vδ||L∞((0,+∞)×Ω) ≤ K∞.

Then, using the definitions (2.2.1), (2.2.2) for Ep and ha,p, hb,p, hp, the computation of the
time derivative of Ep along the solutions (uδa, u

δ
b
, vδ) to (2.8.1), (2.8.2) is almost identical to

the one considered in (2.7.17) - (2.7.19), and gives the following result

d

dt
Ep(uδa, u

δ
b, v

δ) = I
p

di f f
+ I

p
rea + I

p

f ast,δ
,

with I
p

di f f
and I

p
rea as in (2.7.17) and (2.7.18), respectively, while I

p

f ast,δ
is given by

I
p

f ast,δ
=

1
ε

∫

Ω

(∂1hp − ∂2hp) Qδdx

= −1
ε

∫

Ω

(
[φ(buδb + dvδ) uδb]p−1 − [ψ(auδa + cvδ) uδa]p−1

)

×
( φ(buδ

b
+ dvδ) uδ

b

1 + δ φ(buδ
b
+ dvδ) uδ

b

− ψ(auδa + cvδ) uδa

1 + δ ψ(auδa + cvδ) uδa

)
dx.
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Moreover, as both functions x 7→ xp−1 and x 7→ x
1+δ x

are increasing on R+, it holds, for all
δ > 0 and p ≥ 1,

I
p

f ast,δ
≤ 0 .

As a consequence, we see that the proof of Energy Lemma 2.7.1 can be reproduced without
any changes, yielding the estimates for any T > 0

||uδa||L3+α(ΩT ) ≤ CT , ||uδb||L3+β(ΩT ) ≤ CT , (2.8.3)

where CT does not depend on δ. Therefore, up to the extraction of subsequences, we see that,
as δ→ 0,

uδa ⇀ ua , weakly in L3+α(ΩT ),

uδb ⇀ ub , weakly in L3+β(ΩT ),

vδ ⇀ v , weakly∗ in L∞(ΩT ).

(2.8.4)

Furthermore, we observe that thanks to the growing behavior of φ and ψ (see (H1)), there
exists C > 0, not depending on δ > 0, such that

φ(buδ
b
+ dvδ) uδ

b

1 + δ φ(buδ
b
+ dvδ) uδ

b

+
ψ(auδa + cvδ) uδa

1 + δ ψ(auδa + cvδ) uδa
≤ C

(
1 + (uδa)1+α + (uδb)1+β

)
. (2.8.5)

Thus, the estimate (2.8.3) gives

||Qδ(u
δ
a, u

δ
b, v

δ)||
L

3+β
1+β (ΩT )

≤ CT . (2.8.6)

As a consequence, thanks to the properties of the heat equation, we see that, for all T > 0,
uδa, uδ

b
and vδ converge in fact a.e. on ΩT , and that (uδa, u

δ
b
, vδ) is nonnegative (for each

component).

Using the estimates (2.8.3), (2.8.6), we get on the one hand

fa(uδa, u
δ
b, v

δ)→ fa(ua, ub, v) and fb(uδa, u
δ
b, v

δ)→ fb(ua, ub, v) in L1(ΩT ) , (2.8.7)

and on the other hand

Qδ(u
δ
a, u

δ
b, v

δ)→ Q(ua, ub, v) in L1(ΩT ) . (2.8.8)

Finally, since the linear parabolic operator passes to the limit (in the sense of distribu-
tions), we can pass to the limit as δ → 0 in all the terms of the (very weak form of the)
approximated system (2.8.1), (2.8.2) and get a very weak solution to the mesoscopic system
(2.1.1) - (2.1.6).

We now show, by a bootstrap technique, that this very weak solution is in fact a classical
solution. Indeed, we first observe that, thanks to the growing behavior (2.8.5) of Q, if the
solution satisfies, for r ≥ 1 + β,

‖uδa‖Lr(ΩT ) + ‖uδb‖Lr(ΩT ) ≤ CT ,

one has that
||Q(ua, ub, v)||

L
r

1+β (ΩT )
≤ CT .
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Then, thanks to the semigroup properties of the heat equation (cf. [33]), it holds that
uδa, u

δ
b
∈ Ls(ΩT ) for any s ≥ 1 such that 1

s
>

1+β
r
− 2

2+N
(note that the reaction term does not

lead to extra constraints since it is bounded from above).

We can now perform the bootstrap, starting from the estimate (2.8.3) (for the first step of
the bootstrap, we use moreover the fact that 3+α

1+α ≥
3+β
1+β , when α ≤ β). Defining by induction

S n+1 := (1 + β) S n −
2

2 + N
, S 0 :=

1
3 + β

,

we see that S n becomes strictly negative (for the first time) for some n > 0 under the condition
β ≤ 6/N, guaranteed by (H3). Stopping the induction for this n, we get that uδa, u

δ
b
∈ L∞(ΩT ).

Extra regularity leading to unique positive (for all components) classical solutions is then
easily deduced.

In order to conclude, we observe that all the convergence results obtained so far have
been performed on [0,T ], for any arbitrary T > 0. Since (uδa, u

δ
b
, vδ) is defined on [0,+∞),

by extracting subsequences, these arguments can be replicated in the time intervals [0, 2T ],
[0, 3T ], and so on. Then by Cantor’s diagonal argument, the convergences (2.8.4), (2.8.7),
(2.8.8) are verified in (0,+∞) ×Ω. �

2.9 The existence result to the macroscopic system

Proof of Theorem 2.5.2.

The proof is divided in four steps and uses compactness arguments to identify the limits
along subsequences. The first and second step focus on the identification of the limit (as
ε → 0) of the densities vε and uε B uεa + uε

b
, a.e. in ΩT , respectively. In the third step we

obtain the a.e. convergence of the subpopulation densities uεa, u
ε
b

and we identify the obtained
limit as the unique solution to the nonlinear system (2.1.9). Thus, the obtained convergence
result is extended globally in time by a diagonal argument. Finally, in the fourth step we
take the limit as ε tends to zero in the very weak formulation of the system satisfied by
uε = uεa + uε

b
and vε.

First step. Let T > 0 be arbitrarily fixed. Thanks to the control of the density vε given in
Lemmas 2.6.1, 2.6.2 and to the boundedness of uεa + uε

b
in L2(ΩT ) obtained in Lemma 2.6.3,

we have that (vε)ε is bounded in L4(0,T ; W1,4(Ω)) and (∂tv
ε)ε is bounded in L2((0,T ); L2(Ω)).

Therefore, Rellich’s Theorem implies the existence of a subsequence, still denoted vε, and
v ∈ L4(ΩT ) such that, as ε→ 0,

vε(t, x) −→ v(t, x) , a.e. in ΩT . (2.9.1)

Moreover, we have
∇vε ⇀ ∇v weakly in L4(ΩT ),

and by Lemmas 2.6.1, 2.6.2 again, v is nonnegative and belongs to L∞(ΩT ), whereas ∇v lies
in L4(ΩT ).

Second step. The parabolic equation satisfied by the density uε B uεa + uε
b

is

∂tu
ε = ∆(da uεa + db uεb) + fa(uεa) + fb(uεb, v

ε) . (2.9.2)
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Thanks to Lemma 2.7.1, we have that (uεa)ε, (uε
b
)ε are uniformly bounded in L2(0,T ; H1(Ω))∩

L3(ΩT ), so that the reaction term in (2.9.2) is uniformly bounded in L3/2(ΩT ). Then (∂t(uεa +
uε

b
))ε is uniformly bounded in L3/2(0,T ; W−1,3/2(Ω)). Thus, Aubin-Lions’ lemma (cf. [69])

yields a subsequence (still denoted uε), and a function u ≥ 0, u bounded in L3(ΩT ), such that,
as ε→ 0,

uε(t, x) = uεa(t, x) + uεb(t, x) −→ u(t, x) , a. e. in ΩT , (2.9.3)

where the nonnegativity of u follows from that of uε. Furthermore, we have

∇uε ⇀ ∇u weakly in L2(ΩT ).

Third step. The energy estimate (2.7.9) yields the estimate

wwwwwwφ
(
buεb + dvε

)
uεb − ψ

(
auεa + cvε

)
uεa

wwwwww
L2(ΩT )

≤
√
εCT .

Therefore, Q(uεa, u
ε
b
, vε) converges to zero in L2(ΩT ), as ε → 0, and (up to extraction of a

subsequence)

Q(uεa, u
ε
b, v

ε) = φ
(
buεb + dvε

)
uεb − ψ

(
auεa + cvε

)
uεa −→ 0, a.e. in ΩT . (2.9.4)

It remains to prove the existence of the a.e. limit of subsequences of (uεa)ε, (uεb)ε and
to verify that this limit is the unique solution to (2.1.9), a.e. in ΩT , corresponding to the
functions u and v obtained in (2.9.3) and (2.9.1), respectively.

Let
(
u∗a(uε, vε), u∗

b
(uε, vε)

)
be the unique solution to (2.1.9), corresponding to (uε, vε).

Then, we have

Q(uεa, u
ε
b, v

ε) = Q(uεa, u
ε
b, v

ε) − Q(u∗a(uε, vε), u∗b(uε, vε), vε)

C Iε1 + Iε2 ,

where

Iε1 = φ
(
buεb + dvε

)
uεb − φ

(
bu∗b(uε, vε) + dvε

)
u∗b(uε, vε),

and

Iε2 = ψ
(
au∗a(uε, vε) + cvε

)
u∗a(uε, vε) − ψ(auεa + cvε

)
uεa.

Then, whatever is B ≥ 0 and vε ≥ 0, there exists C(uε
b
, uε, vε) > 0 such that

Iε1 = C(uεb, u
ε, vε)

(
uεb − u∗b(uε, vε)

)
. (2.9.5)

Concerning Iε2 , as A > 0, we have for all ua, v ≥ 0

∂ua
(ψ(aua + cv)ua) = ψ(aua + cv) + ψ′(aua + cv)aua ≥ Aα > 0,

so that, whatever is vε ≥ 0, and for some ζ ≥ 0,

Iε2 =
(
∂ua

(
ψ(aua + cv)ua

))
(ζ, vε)

(
u∗a(uε, vε) − uεa

)

=
(
∂ua

(
ψ(aua + cv)ua

))
(ζ, vε)

(
uεb − u∗b(uε, vε)

)
. (2.9.6)
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Thus, by (2.9.5), (2.9.6) we have

|Q(uεa, u
ε
b, v

ε)| = |Iε1 + Iε2 |
=

(
C(uεb, u

ε, vε) +
(
∂ua

(
ψ(aua + cv)ua

))
(ζ, vε)

)
|uεb − u∗b(uε, vε)|

≥ Aα|uεb − u∗b(uε, vε)|.

Therefore, by (2.9.4) we get |uε
b
− u∗

b
(uε, vε)| → 0 as ε→ 0, a.e. in ΩT . Finally, the proved

convergence (2.9.3) and (2.9.1) and the continuity of u∗
b
(u, v) with respect to its arguments,

yields the desired result, i.e.

uεb → u∗b(u, v) , uεa = uε − uεb → u∗a(u, v) , ε→ 0 , a.e. in ΩT .

In order to conclude, we observe that all the a.e. convergence results obtained so far
have been performed on [0,T ], for any arbitrary T > 0. Since (uεa, u

ε
b
, vε) is defined on

[0,+∞), by extracting subsequences, these arguments can be replicated in the time intervals
[0, 2T ], [0, 3T ], and so on. Then by Cantor’s diagonal argument, the convergences (2.9.1),
(2.9.3) and (2.9.4), and the convergence of the pair (uεa, u

ε
b
) towards the solution to (2.1.9)

are verified a.e. in (0,+∞) ×Ω.

Fourth step. We will prove now that (u, v) is a very weak solution to (2.1.7) - (2.1.6), in
the sense of Theorem 2.5.2. For this purpose, let us consider two test functions ξ1, ξ2 in
C2

c

(
[0,+∞) × Ω̄)

, satisfying ∇ξ1 · σ = ∇ξ2 · σ = 0, on [0,∞) × ∂Ω. Multiplying by ξ1 the
equation satisfied by uεa + uε

b
and the third equation of (2.1.1) by ξ2 and integrating over

(0,+∞) ×Ω, we get

−
∫ ∞

0

∫

Ω

(∂tξ1) (uεa + uεb) dx dt −
∫

Ω

ξ1(0)
(
uin

a + uin
b

)
dx =

∫ ∞

0

∫

Ω

∆ξ1
(

dauεa + dbuεb
)

dx dt +

∫ ∞

0

∫

Ω

ξ1( fa(uεa, v
ε) + fb(uεb, v

ε))dx dt ,

(2.9.7)

and

−
∫ ∞

0

∫

Ω

(∂tξ2 ) vε dx dt −
∫

Ω

ξ2(0) vin dx =

dv

∫ ∞

0

∫

Ω

∆ξ2 vε dx dt +

∫ ∞

0

∫

Ω

ξ2 fv(uεb, v
ε) dx dt .

(2.9.8)

Concerning the equation (2.9.7), the convergence results obtained in the previous steps and
the estimates of Lemma 2.6.3 allow us to pass to the limit as ε→ 0, in all the terms of the
equation, using Lebesgue’s dominated convergence theorem, thus obtaining (2.5.1).

The same conclusion holds for equation (2.9.8). Indeed, the boundedness of vε and its
convergence (2.9.1), together with the estimates in Lemma 2.6.3, allow us to pass to the
limit in all terms of (2.9.8), using Lebesgue’s dominated convergence theorem again, thus
obtaining (2.5.2).

Finally, using the weak lower semicontinuity property of the Lp norm for p ∈ (1,+∞],
the obtained limit v verifies the estimates shown in Lemmas 2.6.1, 2.6.2, whereas the
estimates in Lemma 2.7.1 give the announced regularity of u B u∗a(u, v) + u∗

b
(u, v). More

precisely, in (2.7.9), the uniform control of E2(uεa, u
ε
b
, vε)(T ) gives the boundedness of u in
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L∞
(
0,T ; L2+α(Ω)

)
while the one of ‖uεa‖L3+α(ΩT ) and of ‖uε

b
‖L3+β(ΩT ) gives the boundedness

of u in L3+α(ΩT ), since 3 + α = min{3 + α, 3 + β}. Moreover, estimates (2.7.7) and (2.7.8)
imply that ∇u lies in L2(ΩT ). Therefore, we conclude that u, v satisfy (2.1.7) - (2.1.13), in
the sense of Theorem 2.5.2.

�
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Chapter 3
Existence and uniqueness of

strong solutions for a class of

triangular cross-diffusion systems

3.1 Introduction and main result

This chapter is devoted to the analysis of a class of triangular cross-diffusion systems where
the unknowns u = u(t, x) and v = v(t, x) represent the densities of two populations, the
nonlinear diffusion term is modelled by the diffusivity function A and the reaction functions
generalize the Lotka-Volterra competition interactions that we considered in Chapter 1, 2.
From now on, we denote ΩT B (0,T ) ×Ω where T > 0 is fixed and Ω is a smooth (say of
class C∞) bounded open set of RN , N ≥ 1. The system writes as


∂tu = ∆

(
A(u, v)

)
+ u f (u, v), on ΩT ,

∂tv = dv∆v + vg(u, v), on ΩT ,
(3.1.1)

where dv > 0 is a diffusion coefficient. We endow the system (3.1.1) with the zero flux
boundary conditions

∇(A(u, v)
) · σ = ∇v · σ = 0, on (0,T ) × ∂Ω, (3.1.2)

and the nonnegative initial data

u(0, x) = uin(x) ≥ 0, v(0, x) = vin(x) ≥ 0, x ∈ Ω. (3.1.3)

The hypothesis that we present below concern the regularity and the monotonicity of A and
the regularity of the reaction functions. The diffusivity function A is such that

A ∈ C2(R2
+,R+) and A(0, v) = 0, for all v ≥ 0, (D1)

there exist a0, a1, a2 > 0 such that for all u, v ≥ 0,

0 < a0 ≤ ∂1A(u, v) ≤ a1 and |∂2A(u, v)| ≤ a2, (D2)

and there exists a3 > 0 such that for all u, v ≥ 0,

|∂12A(u, v)| ≤ a3. (D3)
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Remark 3.1.

We observe that (D1) gives for all u, v ≥ 0

A(u, v) =
∫ 1

0
∂1A(θu, v)u dθ,

implying that there exists a function B ∈ C1(R2
+,R+) such that for all u, v ≥ 0,

A(u, v) = uB(u, v) with 0 < a0 ≤ B(u, v) ≤ a1, (3.1.4)

thanks to (D2). In addition, assumption (D3) implies for all u, v ≥ 0,

|∂2B(u, v)| ≤ a3. (3.1.5)

The functions f , g are C1(R2
+) and there exist the constants C f ,Cg,C

′
g > 0 such that for

all u, v ≥ 0

−C f (1 + u + v) ≤ f (u, v) ≤ C f ,

−Cg(1 + u + v) ≤ g(u, v) ≤ Cg,

|∂1g(u, v)|, |∂2g(u, v)| ≤ C′g.

(R1)

This chapter aims to prove the existence, regularity and uniqueness of strong solutions
of the system (3.1.1) - (3.1.3), where we refer to strong solutions as a class of solutions
satisfying the equations in (3.1.1) a.e. in ΩT and where the boundary and initial conditions
hold in the sense of traces. Our strategy for showing the existence result (see Theorem 3.1.1)
consists in introducing a convenient change of variable that strongly uses the monotonicity
of A in (D2) and gives rise to a parabolic system in a non divergence form.

Finally, we state the main existence result for (3.1.1) - (3.1.3), in Theorem 3.1.1 below. In
order to explain the idea of proof, we will give some heuristic computations in the remaining
Subsections 3.1.1, 3.1.2, 3.1.3. The rest of the chapter is structured as follows: Sections 3.2 -

3.6 are devoted to the existence result and a more detailed organization is given at the end of
this section. In Section 3.7, we prove a uniqueness result of strong solutions, provided that
the space dimension N ≤ 2. We conclude by showing a result of weak-strong stability and
weak strong uniqueness, in Section 3.8.

Theorem 3.1.1.

Let N ≥ 1. We assume (D1), (D2), (D3), (R1) and the initial data uin ∈
(
L4 ∩ H1)(Ω),

vin ∈
(
L∞ ∩H3)(Ω) compatible with Neumann boundary condition. Then, for all T > 0 there

exists a strong nonnegative solution (u, v) of (3.1.1) - (3.1.3), in the sense that

(i) u ∈ L∞
(
0,T ; L4(Ω)

)
, ∂xi

u ∈ L∞
(
0,T ; L2(Ω)

)
, ∂tu, ∂xi,x j

A(u, v) ∈ L2(ΩT ), i, j =

1, . . .N,

(ii) v ∈ L∞(ΩT ), ∂tv ∈ L4(ΩT ), ∂xi,x j
v ∈ L4(ΩT ), ∂xi

v ∈ L8(ΩT ), i, j = 1, . . .N, and

∂tv ∈ L2(0,T ; H2(Ω)
) ∩ H1(0,T ; L2(Ω)

)
,

(iii) the unknowns (u, v) satisfy the equations of (3.1.1) a.e., and the trace of (u, v)
on [0,T ] × ∂Ω satisfies a.e. the Neumann boundary conditions (note that since

∂xi,x j
A(u, v) ∈ L2(ΩT ) and ∂xi,x j

v ∈ L4(ΩT ), the quantities ∇A(u, v) and ∇v are well

defined in L2(ΩT ) and thus a.e on [0,T ]×∂Ω). Moreover the initial condition (3.1.3) is

satisfied by the trace of (u, v) on {0} ×Ω (note that this trace exists since ∂tu ∈ L2(ΩT )
and ∂tv ∈ L4(ΩT )).
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Moreover, if N ≤ 3 it holds

u ∈ L∞(ΩT ), ∂xi
u ∈ L4(ΩT ), ∂tv ∈ L2(0,T ; L∞(Ω)).

3.1.1 A truncated-regularized system

In order to prove Theorem 3.1.1, we introduce a truncated-regularized system that, at this
level, formally converges to (3.1.1), (3.1.3). For a given function ω = ω(u, v) and a given
M > 0, we define the truncated function

ωM(u, v) B


ω(u, v), if u < M,

ω(M, v), if u ≥ M.

For given functions ρ = ρ(t) defined on [0,T ] and z = z(x) defined on Ω, we also define the
extended functions

ρ̌(t) B



ρ(t), if t ∈ [0,T ],

ρ(0), if t < 0,

ρ(T ), if t > T,

and z̃(x) B


z(x), if x ∈ Ω,
0, if x < Ω.

(3.1.6)

Therefore, the truncated-regularized system writes as


∂tuε,M = ∆
(
A(uε,M, vε,M)

)
+ uε,M fM(uε,M, vε,M), on ΩT ,

∂tvε,M = dv∆vε,M + vε,Mgε,M(uε,M, vε,M), on ΩT ,

∇(A(uε,M, vε,M)
) · σ = ∇vε,M · σ = 0, on (0,T ) × ∂Ω,

(3.1.7)

where we define for a.e. (t, x) ∈ RN+1 and for all ε > 0

gε,M
(
uε,M(t, x), vε,M(t, x)

)
B

( ˇ̃
gM

(
uε,M(t, x), vε,M(t, x)

)) ∗t,x ϕε, (3.1.8)

where ∗t,x stands for the convolution operation in time and space variables and (ϕε)ε>0 is a
family of standard mollifiers on RN+1. Moreover, we complete the system (3.1.7), (3.1.8)
with the regularized initial conditions

uε,M(0, x) = uin,ε(x) =
(
ũin ∗x ψε

)
(x),

vε,M(0, x) = vin,ε(x) =
(
ṽin ∗x ψε

)
(x), ∀ x ∈ Ω,

(3.1.9)

where ∗x stands for the convolution operation in the space variable and (ψε)ε>0 is a family of
standard mollifiers on RN .

It is worth noticing that the regularization and truncation only affect the reaction part
in (3.1.7) and the initial conditions (3.1.9). In particular, we truncate the functions f and g

only with respect to u, while no truncation w.r.t. the v unknown is needed, by the properties
coming from the triangular structure of the system (3.1.7). Indeed, since vε,M satisfies a
linear heat equation, we find that the L∞−boundedness of the initial datum vin,ε is preserved
in time for a.e. t in (0,T ) (see (3.5.1)).

The main difficulty in showing the existence of solutions to the system (3.1.7) is the
presence of the nonlinear diffusion term in the equation for uε,M. Our strategy consists in
proving the existence for an auxiliary system in a non divergence form that is equivalent to
(3.1.7) - (3.1.9). The auxiliary system will be introduced in the following subsection, using
a convenient change of variable.
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3.1.2 The change of variable: an auxiliary system in non divergence form

The aim of this paragraph is to introduce a parabolic system which is, at this level, formally
equivalent to (3.1.7) - (3.1.9). The idea consists in replacing the first equation of (3.1.7)
with the equation satisfied by the nonlinearity A. By assumption (D2), we can define the
reciprocal U of A with respect to the first variable, that is for a given v ≥ 0

a = A(u, v) ⇐⇒ u = U(a, v). (3.1.10)

Using the change of variable (3.1.10), we can rewrite (3.1.1), (3.1.2) as a system in non
divergence form, satisfied by the pair of unknowns (a, v). Indeed, it holds

∂ta = ∂1A(u, v) ∂tu + ∂2A(u, v) ∂tv

= ∂1A(u, v)
(
∆
(
A(u, v)

)
+ U(a, v) f (U(a, v), v)

)
+ ∂2A(u, v)∂tv,

so that (3.1.1), (3.1.2) is formally equivalent to



∂ta = ∂1A
(
U(a, v), v

)
∆a

+∂1A
(
U(a, v), v

)
U(a, v) f

(
U(a, v), v

)
+ ∂2A

(
U(a, v), v

)
∂tv, on ΩT ,

∂tv = dv∆v + vg(U(a, v), v), on ΩT ,

∇a · σ = ∇v · σ = 0, on (0,T ) × ∂Ω,

with ain B A(uin, vin).

Then, for any fixed ε,M > 0, by defining

Aε,M B A(uε,M, vε,M), (3.1.11)

and using (3.1.10), we introduce the truncated system in non divergence form that is, at this
level, formally equivalent to (3.1.7) - (3.1.9)



∂taε,M = µ(aε,M, vε,M)∆aε,M + aε,M sM(aε,M, vε,M, ∂tvε,M), on ΩT ,

∂tvε,M = dv∆vε,M + vε,Mgε,M(U(aε,M, vε,M), vε,M), on ΩT ,

∇aε,M · σ = ∇vε,M · σ = 0, on (0,T ) × ∂Ω,
(3.1.12)

with
µ(a, v) B ∂1A(U(a, v), v), (3.1.13)

and for all a ≥ 0

sM

(
a, v, ∂tv

)
B

U(a, v)
a

[
fM

(
U(a, v), v

)
∂1A(U(a, v), v) + ∂2B

(
U(a, v), v

)
∂tv

]
, (3.1.14)

with B defined in (3.1.4). The system (3.1.12) is completed with the intial data

aε,M(0, x) = ain,ε(x) = A
(
uin,ε(x), vin,ε(x)

)
, x ∈ Ω,

vε,M(0, x) = vin,ε(x) = (ṽin ∗x ψε)(x), x ∈ Ω.
(3.1.15)

By (D1), (D2) we observe that from (3.1.13), it holds, for all a, v ≥ 0,

µ ∈ C(R2
+) and 0 < a0 ≤ µ(a, v) ≤ a1, (3.1.16)
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and by the L∞−boundedness of B in (3.1.4), we get for all a > 0 and v ≥ 0

0 <
1
a1
≤ U(a, v)

a
≤ 1

a0
. (3.1.17)

Moreover by (D1), the implicit function theorem guarantees the C1 character of U with for
all a, v ≥ 0

1
a1
≤ ∂1U(a, v) =

(
∂1A

(
U(a, v), v

))−1
=

1
µ(a, v)

≤ 1
a0
, (3.1.18)

using (3.1.13), (3.1.16), and

∂2U(a, v) = −∂2A
(
U(a, v), v

)

∂1A
(
U(a, v), v

) = −∂2A
(
U(a, v), v

)

µ(a, v)
, (3.1.19)

with
|∂2U(a, v)| ≤ a2

a0
.

Remark 3.2.

We observe that the function (a, v) 7→ U(a,v)
a

is C0(R2
+). Indeed from (3.1.10), the implicit

function theorem gives (a, v) 7→ U(a, v) in C1(R2
+) by the regularity of A in (D1), and thus

(a, v) 7→ U(a,v)
a

in C1 for all a > 0 and v ≥ 0. We conclude by proving that the function

(a, v) 7→ U(a,v)
a

can be continuously extended at a = 0, for any v ≥ 0. Indeed, for any v ≥ 0 it
holds

U(a, v) =
∫ 1

0
∂1U(θa, v)a dθ = a

∫ 1

0
∂1U(θa, v)dθ,

where (a, v) 7→
∫ 1

0
∂1U(θa, v) dθ clearly belongs to C0(R2

+).

The strategy of proof of the existence of solutions to (3.1.12) is based on a fixed point
argument. In order to do that, we introduce in the following subsection an additional
regularization to (3.1.12), concerning the diffusion coefficient µ. We conclude the paragraph
with the following remark.

Remark 3.3.

The order of the truncation-regularization procedures, used to construct the approximating
system (3.1.12) - (3.1.15) on the pair of unknowns (aε,M, vε,M), is fundamental. We outline
it in the figure below.

Divergence form Non divergence form

Starting from the cross-diffusion system (3.1.1) in the unknowns u, v and following the
continuous arrows in the figure above, we first introduce the truncated-regularized system
(3.1.7) in (uε,M, vε,M) and then we use the change of variables (3.1.10) to get (aε,M, vε,M)
satisfying (3.1.12). Indeed, this is the approximation used in order to prove the existence
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of (u, v) : firstly we show the existence of (aε,M, vε,M), then the equivalence with the system
satisfied by (uε,M, vε,M) (see Lemma 3.4.2) and finally we take the limit as ε → 0 and
M → +∞. On the other hand from the system satisfied by (u, v), following the dotted arrows
we could first use the change of variables and then regularise and truncate the obtained
system. However, it is not easy to justify the passage back from the (a, v) formulation of the
system to the (u, v) formulation of the system, and further estimates for u.

3.1.3 Regularization of the system in non divergence form

Let ε,M > 0 be fixed, we introduce the approximating system below for all δ > 0 (we only
indicate the dependence of the unknowns a, v with respect to δ since ε and M are fixed),



∂taδ =
(
µ(aδ, vδ) ∗x ϕδ

)
∆aδ + aδsM(aδ, vδ, ∂tvδ), on ΩT ,

∂tvδ = dv∆vδ + vδ gε,M(U(aδ, vδ), vδ), on ΩT ,

∇aδ · σ = ∇vδ · σ = 0, on (0,T ) × ∂Ω,
(3.1.20)

where, slightly abusing notations, µ(aδ, vδ) is identified to its extension by 0 defined on
[0,T ] × RN . Then we denote (ϕδ)δ as a standard mollifier. Finally, sM, gε,M are defined in
(3.1.14), (3.1.8) respectively and the nonnegative initial data are defined as in (3.1.15)

aδ(0, x) = ain,ε(x) ≥ 0, vδ(0, x) = vin,ε(x) ≥ 0. (3.1.21)

Sections 3.2 - 3.6 aim to show the existence result, stated in Theorem 3.1.1, and are
organized as follows: in Section 3.2, we prove the existence of solutions to system (3.1.20),
(3.1.21) for any δ, ε, M > 0 fixed (see Proposition 3.2.1). In Section 3.3, we take the limit as
δ→ 0, for any fixed ε,M > 0 and thus we prove the existence for system (3.1.12) - (3.1.15)
(see Proposition 3.3.1). Section 3.4 is devoted to the proof of the equivalence between
the system in non divergence form (3.1.12) - (3.1.15) and the original (regularized) system
(3.1.7) - (3.1.9). We conclude with some ε,M−uniform a priori estimates in Section 3.5 and
with the proof of Theorem 3.1.1 in Section 3.6, by taking the limit as ε→ 0,M → +∞.

3.2 Existence for the regularized system in non divergence form

The goal of this section is to prove the existence of solutions to (3.1.20), (3.1.21). In all this
section, the parameters ε,M > 0 are fixed so that we explicitly indicate only the dependence
with respect to δ of the unknowns (a, v). Thus, we state the following result

Proposition 3.2.1 (Existence of (aδ, vδ)).
We assume (D1), (D2), (D3), (R1) and we consider the initial data (3.1.21). Then, for any

δ > 0 there exists a solution (aδ, vδ) : ΩT → R2
+ satisfying the system (3.1.20), (3.1.21) in

the sense that

(i) there exist two constants C(T ),C(M,T ) > 0 independent on δ (and ε) such that

‖vδ‖L∞(ΩT ) ≤ C(T ) and ‖aδ‖L∞(ΩT ) ≤ C(M,T ), (3.2.1)

(ii) there exist two strictly positive constants C1(ε,M,T ), C2(ε, M,T ) independent on δ,

such that for all i, j = 1, . . . ,N and δ > 0

‖∂tvδ‖L∞(ΩT ) + ‖∂xi x j
vδ‖L∞(ΩT ) + ‖∂xi

vδ‖L∞(ΩT ) ≤ C1(ε,M,T ), (3.2.2)
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and

‖∂taδ‖L2(ΩT ) + ‖∂xi x j
aδ‖L2(ΩT ) + ‖∂xi

aδ‖L4(ΩT ) ≤ C2(ε,M,T ), (3.2.3)

(iii) the unknowns (aδ, vδ) satisfy the first two equations of (3.1.20), a.e. in ΩT . Moreover,

the boundary conditions in (3.1.20) and the initial conditions (3.1.21) hold in the

sense of traces.

The key ingredients of the proof of Proposition 3.2.1 are Schauder’s fixed point theorem
[39] and the following existence result for a linear parabolic equation in a non divergence

form, whose proof is presented in Section A.4.

Proposition 3.2.2.

We consider the following linear parabolic problem



∂tb − γ(t, x)∆b = r(t, x)b, on ΩT ,

∇b · σ = 0, on (0,T ) × ∂Ω,
b(0, x) = bin(x) ≥ 0, on Ω,

(3.2.4)

where

(i) γ : ΩT → R+, γ lies in W1,∞(ΩT ) and there exist two constants γ0, γ1 > 0 s.t.

0 < γ0 ≤ γ(t, x) ≤ γ1, a.e. in ΩT , (3.2.5)

(ii) r : ΩT → R, r lies in L2(ΩT ) and there exists a constant R > 0 s.t.

r(t, x) ≤ R a.e. in ΩT , (3.2.6)

(iii) bin : Ω→ R+ is s.t

bin ∈
(
L∞ ∩ H1)(Ω). (3.2.7)

Then, there exists a nonnegative solution b in the sense that

(i) for all t ∈ (0,T ), b satisfies

‖b(t, ·)‖L∞(Ω) ≤ ‖bin‖L∞(Ω) e

∫ t

0 sup
x∈Ω

r(s,·)ds

, (3.2.8)

so that

‖b‖L∞(ΩT ) ≤ ‖bin‖L∞(Ω)e
RT , (3.2.9)

(ii) there exist two constants C1,C2 > 0 such that

‖∂tb‖2L2(ΩT ) + ‖∇b‖2
L∞(0,T ;L2(Ω)) + γ0‖∆b‖2

L2(ΩT )

≤ C1‖∇bin‖2L2(Ω) +C2‖rb‖2
L2(ΩT ), (3.2.10)

with

C1 B 2
γ2

1

γ0
+ 1 and C2 B 2

(γ1

γ0

)2
+

1
γ0
+ 2,
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(iii) the unknown b satisfies the first equation of (3.2.4) a.e. in ΩT , while the Neumann

boundary and initial conditions in (3.2.4) are verified in the sense of traces.

Proof of Proposition 3.2.1.

Let ε > 0 and M > 0 fixed. We prove the existence to (3.1.20), (3.1.21) by applying
Schauder’s fixed point theorem. In this regard, we introduce the Banach space

E B L∞
(
0,T ; L2(Ω)

)
,

and its closed bounded convex subset

BQ B BL∞(ΩT )(0,Q)+ = {w ∈ E s.t. 0 ≤ w ≤ Q},

where Q > 0 is a constant to be determined later. Then, we consider the map

Φ : (aδ, vδ) ∈ E2 → (āδ, v̄δ), (3.2.11)

where v̄δ satisfies



∂tv̄δ = dv∆v̄δ + v̄δgε,M
(
U(aδ, vδ), vδ

)
, in ΩT ,

∇v̄δ · σ = 0, in (0,T ) × ∂Ω,
v̄δ(0, x) = vin,ε ≥ 0, in Ω,

(3.2.12)

and āδ solves



∂tāδ =
(
µ(aδ, v̄δ) ∗x ϕδ

)
∆āδ + āδsM(aδ, v̄δ, ∂tv̄δ), in ΩT

∇āδ · σ = 0, in (0,T ) × ∂Ω,
āδ(0, x) = ain,ε ≥ 0, in Ω.

(3.2.13)

We shall underline the key role of the truncations and the regularizations in (3.2.12), (3.2.13)
that allow to satisfy the assumptions of Schauder’s fixed point theorem. Indeed, the truncation-
regularization of the reaction term in (3.2.12) is fundamental to improve the regularity of the
solution v̄δ of the linear parabolic equation, namely to prove the L∞−boundedness of ∂tv̄δ
(see Lemma 3.2.4). This regularity result is crucial to get the L∞−boundedness of sM which
in turn implies the L∞−bound of āδ in (3.2.27) (note that sM depends on ∂tv̄δ). Finally, the
L∞−boundedness of āδ and the regularization of µ are strongly used to prove the continuity
of the map Φ in Subsection 3.2.3.

The rest of the proof aims to show that the map Φ satisfies the hypothesis of Schauder’s
fixed point theorem (see Subsections 3.2.1, 3.2.2, 3.2.3 ).

3.2.1 Well-posedness of the map Φ

In this paragraph, we prove that the map Φ is well defined and satisfies the property below.

Lemma 3.2.3.

Let the map Φ be defined by (3.2.11) - (3.2.13). There exists a constant Q > 0 depending on

ε,M,T,Cg such that the following inclusion holds,

Φ(BQ × BQ) ⊂ BQ × BQ.
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• The equation satisfied by v̄δ

By Proposition 3.2.2 the problem (3.2.12), being a linear heat equation, admits a unique
solution so that v̄δ is well-defined. Moreover, the nonnegativity of v̄δ follows from the
nonnegativity of the initial datum vin,ε (see (A.5.1)). Finally v̄δ satisfies the following
estimates

(i) similarly as in Subsection A.4.2, it holds for all δ > 0

‖v̄δ‖L∞(ΩT ) ≤ eCgT ‖vin‖L∞(Ω), (3.2.14)

(ii) for all p ∈ (1,+∞) there exists a constant C(p,M,T ) > 0 such that for all δ, ε > 0 and
i, j = 1, . . . ,N [58]

‖∂tv̄δ‖Lp(ΩT ) + ‖∂xi,x j
v̄δ‖Lp(ΩT ) ≤ C(p,T )

(‖v̄δ gε,M‖Lp(ΩT ) + ‖vin,ε‖Lp(Ω)
)

≤ C(p,M,T )
(
1 + ‖vin‖L∞(Ω)

)
, (3.2.15)

using the boundedness of gε,M and (3.2.14),

(iii) by the Gagliardo-Nirenberg inequality [71] and (3.2.14), (3.2.15), for all p ∈ (1,+∞)
there exist C(p,M) > 0 such that for all δ, ε > 0

‖∇v̄δ‖pLp(Ω) ≤ C(p,M)
(
‖∇∇v̄δ‖p/2Lp(Ω)‖v̄δ‖

p/2
Lp(Ω) + ‖v̄δ‖

p

Lp(Ω)

)
.

Thus, by integrating in time over (0,T ) we get

‖∇v̄δ‖pLp(ΩT ) ≤ C(p,M)
(
‖∇∇v̄δ‖

p/2
Lp(ΩT )‖v̄δ‖

p/2
L∞(0,T,Lp(Ω)) + ‖v̄δ‖

p

Lp(ΩT )

)

≤ C(p,M,T ). (3.2.16)

We conclude with the following regularity result.

Lemma 3.2.4.

Let v̄δ be the solution to (3.2.12), satisfying (3.2.14) - (3.2.16). There exists a strictly

positive constant C(ε,M,T ) not depending on δ, such that for all p ∈ (1,+∞) it holds for all

i, j = 1, . . . ,N,

‖∂2
t v̄δ‖Lp(ΩT ) + ‖∂xi

∂tv̄δ‖Lp(ΩT ) + ‖∂tv̄δ‖L∞(ΩT ) ≤ C(ε, M,T ), (3.2.17)

and

‖∂xi
v̄δ‖L∞(ΩT ) + ‖∂xi x j

v̄δ‖L∞(ΩT ) ≤ C(ε,M,T ). (3.2.18)

Proof.

The key ingredient of the proof is the following continuous Sobolev embedding [39]

Wk,p(ΩT ) ⊂ C
k−1−

[
N+1

p

]
,γ(ΩT ), (3.2.19)

with k ∈ N, k > N+1
p

and γ such that

γ =



[N+1
p

]
+ 1 − N+1

p
, if N+1

p
< N,

any γ in (0, 1), if N+1
p
∈ N.

(3.2.20)
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In order to prove the estimate (3.2.17), we recall the definition (3.1.8) and we differentiate
(weakly) in time the equation satisfied by v̄δ in (3.2.12), to get

∂2
t v̄δ − dv∂t∆v̄δ = (∂tv̄δ)gε,M + v̄δ

( ˇ̃gM ∗t,x ∂tϕε
)
. (3.2.21)

Thus by assumption (R1) and inequalities (3.2.14), (3.2.15), the r.h.s. of the above equation is
bounded in Lp(ΩT ) for all p ∈ [1,∞), uniformly in δ. Then, thanks to the maximal regularity
and the Gagliardo-Nirenberg inequality, we see that there exists a constant C(ε,M,T ) > 0
s.t. for all i, j = 1, . . . ,N

‖∂2
t v̄δ‖Lp(ΩT ) + ‖∂t∂xi

v̄δ‖Lp(ΩT ) + ‖∂t∂xi x j
v̄δ‖Lp(ΩT ) ≤ C(ε,M,T ), (3.2.22)

for all p ∈ (1,+∞), where C(ε,M,T ) does not depend on δ. Therefore, ∂tv̄δ is bounded in
W1,p(ΩT ) and thus in L∞(ΩT ), using (3.2.19), (3.2.20) with k = 1.

In order to prove (3.2.18), we show that v̄δ is bounded in W3,p(ΩT ) for all p ∈ [1,+∞),
for any fixed ε,M > 0 and then we conclude using (3.2.19), (3.2.20) with k = 3. By
differentiating (weakly) in time (3.2.21) and recalling (3.1.8), we obtain

∂3
t v̄δ − dv∂

2
t ∆v̄δ = (∂2

t v̄δ) gε,M + 2∂tv̄δ
( ˇ̃gM ∗t,x ∂tϕε

)
+ v̄δ

( ˇ̃gM ∗t,x ∂2
t ϕε

)
. (3.2.23)

Then, we use (3.2.14), (3.2.15), (3.2.22) to prove that the r.h.s. is bounded in Lp(ΩT ) for
all p ∈ (1,+∞), uniformly in δ. Therefore, ∂3

t v̄δ and ∂2
t ∂xi

v̄δ are bounded in Lp(ΩT ) for all
p ∈ (1,+∞) and for a given ε,M, by the maximal regularity and the Gagliardo-Nirenberg
inequality, respectively. Finally, it remains to prove that ∂xi,x j,xl

v̄δ is bounded in Lp(ΩT ) for
all i, j, l = 1, . . . ,N. In order to do that, we take the (weak) space derivative in the equation
(3.2.12), to get

∂xi
∂tv̄δ − dv∂xi

∆v̄δ = (∂xi
v̄δ)gε,M + v̄δ

( ˇ̃gM ∗t,x ∂xi
ϕε

)
. (3.2.24)

Therefore using (3.2.14), (3.2.16), the maximal regularity implies

‖∂xi,x j,xl
v̄δ‖Lp(ΩT ) ≤ C(ε,M,T ),

for all i, j, l = 1, . . . ,N, so that v̄δ bounded in W3,p(ΩT ). Then, (3.2.19), (3.2.20) with k = 3
allows to conclude. �

Remark 3.4.

We can improve Lemma 3.2.4 by showing

v̄δ ∈ Cm(ΩT ), ∀m ∈ N, uniformly in δ. (3.2.25)

We get the result by induction on k in (3.2.19). Indeed, we take the (weak) time and space
derivatives in the equation (3.2.12) to get the suitable Wk,p control. Then, we use the maximal
regularity and the Gagliardo-Nirenberg inequality to conclude.

• The equation satisfied by āδ

Recalling the definition of sM in (3.1.14) and using (R1), (3.1.5), (3.2.17), then there
exists a constant S (ε,M,T ) > 0 depending on ε, M,T but not on δ, such that

|sM(t, x)| ≤ S (ε,M,T ), a.e. in ΩT . (3.2.26)
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3.2. Existence for the regularized system in non divergence form

Therefore thanks to Proposition 3.2.2 and the uniqueness proven in Subsection A.4.4, the
problem (3.2.13) admits a unique nonnegative solution so that āδ is well defined. Moreover
by Proposition 3.2.2 again, āδ verifies the following estimates (which are uniform in δ)

‖āδ‖L∞(ΩT ) ≤ eTS (ε,M,T )‖ain,ε‖L∞(Ω), (3.2.27)

and

‖∂tāδ‖2L2(ΩT ) + ‖∇āδ‖2L∞(0,T ;L2(Ω)) + a0‖∆āδ‖2L2(ΩT )

≤ ‖∇ain,ε‖2L2(Ω) +C‖sMāδ‖2L2(ΩT ), (3.2.28)

where the constant C > 0 depends on a0, a1, ε.

Proof of Lemma 3.2.3.

By (3.2.14), (3.2.27) we get the result with

Q B eT max{Cg, S (ε,M,T )}max
{
‖ain,ε‖2L∞(Ω), ‖vin,ε‖2L∞(Ω)

}
. (3.2.29)

�

3.2.2 Compactness of the map Φ

• The compactness of v̄δ
The compactness of v̄δ in E follows from (3.2.14), (3.2.15) using the Rellich-Kondrakov
theorem [11].

• The compactness of āδ
In order to prove the compactness of āδ in E, we use the Aubin-Lions Lemma [69], stating
that

W =
{
w ∈ L∞

(
0,T ; H1(Ω)

) | ∂tw ∈ L2(0,T ; (H1)′(Ω)
)}

is compactly embedded into L∞
(
0,T ; L2(Ω)

)
. Then, (3.2.27), (3.2.28) allow to conclude.

3.2.3 Continuity of the map Φ

The aim of this paragraph is to prove the continuity of Φ : E2 → E2. In order to do that, we
consider any sequence (an)n, (vn)n ∈ E such that an → a in E and vn → v in E, as n→ +∞.

For the sake of simplicity, we neglect in this paragraph the subscript δ in aδ, vδ, āδ, v̄δ and
the notations of the time-space extension of gM. Hence, we introduce the notations below for
all n ∈ N,

µn B µ(an, v̄n), µ B µ(a, v̄),

sM,n B sM(an, v̄n, ∂tv̄n), sM B sM(a, v̄, ∂tv̄), gM,n B gM(U(an, vn), vn),

and v̄n, ān satisfy respectively

∂tv̄n = dv∆v̄n + v̄n(gM,n ∗t,x ϕε), ∇v̄n |(0,T )×∂Ω · σ = 0, v̄n(0, x) = vin,ε(x),

and
∂tān = (µn ∗x ϕδ)∆ān + ānsM,n, ∇ān|(0,T )×∂Ω

· σ = 0, ān(0, x) = ain,ε(x).
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3.2. Existence for the regularized system in non divergence form

• The equation satisfied by v̄n − v̄

We multiply by v̄n − v̄ the equation satisfied by v̄n − v̄ and we integrate on Ω. Hence, it holds

1
2

d

dt

∫

Ω

(v̄n − v̄)2dx + dv

∫

Ω

|∇(v̄n − v̄)|2dx =

∫

Ω

(
v̄n

(
gM,n ∗t,x ϕε

) − v̄
(
gM ∗t,x ϕε

))
(v̄n − v̄)dx

C Irea.

Then, we get

Irea =

∫

Ω

(gM,n ∗t,x ϕε)(v̄n − v̄)2dx +

∫

Ω

v̄
(
(gM,n − gM) ∗t,x ϕε

)
(v̄n − v̄)dx

≤
(
‖gM,n ∗t,x ϕε‖L∞(Ω) +

1
2
‖v̄‖2L∞(Ω)

)
‖v̄n − v̄‖2

L2(Ω) +
1
2
‖(gM,n − gM) ∗t,x ϕε‖2L2(Ω).

Therefore, we conclude for all t ∈ (0,T )

d

dt
‖(v̄n − v̄)(t)‖2

L2(Ω) ≤
(
2‖(gM,n ∗t,x ϕε)(t)‖L∞(Ω) + ‖v̄(t)‖2L∞(Ω)

)
‖(v̄n − v̄)(t)‖2

L2(Ω)

+ ‖((gM,n − gM) ∗t,x ϕε
)
(t)‖2

L2(Ω). (3.2.30)

By denoting for the sake of simplicity

α(t) B 2‖(gM,n ∗t,x ϕε)(t)‖L∞(Ω) + ‖v̄(t)‖2L∞(Ω) ≥ 0,

for all t ∈ (0,T ), and using Gronwall’s lemma in (3.2.30), we get

‖(v̄n − v̄)(t)‖2
L2(Ω)

≤ e
∫ t

0 α(s)ds‖(v̄n − v̄)(0)‖2
L2(Ω)

+ e
∫ t

0 α(s)ds

∫ t

0
‖((gM,n − gM) ∗s,x ϕε

)
(s)‖2

L2(Ω) e−
∫ s

0 α(z)dzds

≤ e t‖α‖L∞(0,t)‖(v̄n − v̄)(0)‖2
L2(Ω) + e

∫ t

0 α(s)ds‖(gM,n − gM) ∗t,x ϕε‖2L2(Ωt)

≤ e T‖α‖L∞(0,T )
(
‖(v̄n − v̄)(0)‖2

L2(Ω) + ‖(gM,n − gM) ∗t,x ϕε‖2L2(ΩT )

)
, (3.2.31)

with

‖α‖L∞(0,T ) ≤ 2‖gM,n ∗t,x ϕε‖L∞(ΩT ) + ‖v̄‖2L∞(ΩT )

≤ 2‖gM,n‖L∞(ΩT )‖ϕε‖L1(RN+1) + ‖v̄‖2L∞(ΩT )

≤ 2 sup
n∈N
‖gM,n‖L∞(ΩT ) + ‖v̄‖2L∞(ΩT ) C C(M,T ).

Thus, taking the supremum in time in the l.h.s. of (3.2.31) we obtain

‖v̄n − v̄‖2
L∞(0,T ;L2(Ω)) ≤ eTC(M,T )

(
‖(v̄n − v̄)(0)‖2

L2(Ω)

+ ‖(gM,n − gM) ∗t,x ϕε‖2L2(ΩT )

)
,

= eTC(M,T )‖(gM,n − gM) ∗t,x ϕε‖2L2(ΩT ), (3.2.32)
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3.2. Existence for the regularized system in non divergence form

where the second term in (3.2.32) is estimated as follows

‖(gM,n − gM) ∗t,x ϕε‖2L2(ΩT )

≤ ‖gM,n − gM‖2L2(RN+1)‖ϕε‖
2
L1(RN+1)

= ‖gM,n − gM‖2L2(ΩT )

≤ C1

(
‖U(an, vn) − U(a, v)‖2

L2(ΩT ) + ‖vn − v‖2
L2(ΩT )

)
, (3.2.33)

with C1 = max{|∂1gM |2, |∂2gM |2} by (R1). Recalling that U is of class C1(R2
+), (3.2.33)

becomes

‖(gM,n − gM) ∗t,x ϕε‖2L2(ΩT ) ≤ C2

(
‖an − a‖2

L2(ΩT ) + ‖vn − v‖2
L2(ΩT )

)
,

with

C2 = C1 max{|∂1U |2, |∂2U |2 + 1}.

Finally, (3.2.32) becomes

‖v̄n − v̄‖2
L∞(0,T ;L2(Ω)) ≤ C2eTC(M,T )

(
‖an − a‖2

L2(ΩT ) + ‖vn − v‖2
L2(ΩT )

)
, (3.2.34)

which converges to zero in L∞
(
0,T ; L2(Ω)

)
, as n→ ∞.

• The equation satisfied by ān − ā

We multiply by ān − ā the equation satisfied by ān − ā and we integrate on Ω. Thus it holds

1
2

d

dt

∫

Ω

(ān − ā)2dx =

∫

Ω

(
(µn ∗x ϕδ)∆ān − (µ ∗x ϕδ)∆ā

)
(ān − ā)dx

+

∫

Ω

(
ānsM,n − āsM

)
(ān − ā)dx

C Idi f f + Irea. (3.2.35)

Firstly, we observe that the diffusion coefficient µn ∗x ϕδ satisfies (3.1.16), uniformly in n, δ,

for all t ∈ [0,T ] and a.e. in Ω

0 < a0 = a0‖ϕδ‖L1(RN ) ≤
(
µn ∗x ϕδ

)
(t, x) ≤ a1‖ϕδ‖L1(RN ) = a1. (3.2.36)

We additionally remark that (3.2.27) and the L2− boundedness of ∆ā in (3.2.28) imply the
L4(ΩT ) control of ∇ā, by the Gagliardo-Nirenberg inequality. Indeed, there exists a constant
C(T ) > 0 such that

‖∇ā‖L4(ΩT ) ≤ C(T )
(
‖∇∇ā‖1/2

L2(ΩT )
‖ā‖1/2

L∞(ΩT ) + ‖ā‖L∞(ΩT )

)
. (3.2.37)
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Then we compute

Idi f f =

∫

Ω

(µn ∗x ϕδ)∆(ān − ā)(ān − ā)dx +

∫

Ω

(
(µn − µ) ∗x ϕδ

)
∆ā(ān − ā)dx

= −
∫

Ω

∇(µn ∗x ϕδ) · ∇(ān − ā)(ān − ā)dx −
∫

Ω

(µn ∗x ϕδ)|∇(ān − ā)|2dx

−
∫

Ω

∇((µn − µ) ∗x ϕδ
) · ∇ā (ān − ā)dx −

∫

Ω

(
(µn − µ) ∗x ϕδ

)∇ā · ∇(ān − ā)dx

≤ 1
4

∫

Ω

(µn ∗x ϕδ)|∇(ān − ā)|2dx +
1
a0

∫

Ω

|∇(µn ∗x ϕδ)|2|ān − ā|2dx

−
∫

Ω

(µn ∗x ϕδ)|∇(ān − ā)|2dx +
1
2

∫

Ω

|(µn − µ) ∗x ∇(ϕδ)|2|∇ā|2dx

+
1
2

∫

Ω

|ān − ā|2dx +
1
4

∫

Ω

(µn ∗x ϕδ)|∇(ān − ā)|2dx

+
1
a0

∫

Ω

|(µn − µ) ∗x ϕδ|2 |∇ā|2dx

= −1
2

∫

Ω

(µn ∗x ϕδ)|∇(ān − ā)|2dx +
1
a0
‖∇ϕδ‖2L1(Ω)‖µn‖2L∞(Ω)‖ān − ā‖2

L2(Ω)

+
1
2
‖∇ā‖2

L4(Ω)‖(µn − µ) ∗x ∇ϕδ‖2L4(Ω) +
1
2
‖ān − ā‖2

L2(Ω)

+
1
a0
‖∇ā‖2

L4(Ω)‖(µn − µ) ∗x ϕδ‖2L4(Ω)

≤
( 1
a0
‖∇ϕδ‖2L1(Ω)‖µn‖2L∞(Ω) +

1
2

)
‖ān − ā‖2

L2(Ω) +
1
2
‖∇ā‖2

L4(Ω)‖∇ϕδ‖
2
L4/3(Ω)‖µn − µ‖2L2(Ω)

+
1
a0
‖∇ā‖2

L4(Ω)‖ϕδ‖
2
L4/3(Ω)‖µn − µ‖2L2(Ω),

by Young’s convolution inequality and Hölder’s inequality.

Concerning the reaction term in (3.2.35), we have

Irea =

∫

Ω

sM,n(ān − ā)2dx +

∫

Ω

ā(sM,n − sM)(ān − ā)dx

≤
(
‖sM,n‖L∞(Ω) +

1
2
‖ā‖L∞(Ω)

)
‖ān − ā‖2

L2(Ω) +
1
2
‖ā‖L∞(Ω)‖sM,n − sM‖2L2(Ω).

Therefore, by gathering the obtained estimates we end up with

d

dt
‖ān − ā‖2

L2(Ω) ≤ C1‖µn − µ‖2L2(Ω) +C2‖ān − ā‖2
L2(Ω) + ‖ā‖L∞(Ω)‖sM,n − sM‖2L2(Ω), (3.2.38)

with

C1 = ‖∇ā‖2
L4(Ω)

(
‖∇ϕδ‖2L4/3(Ω) +

2
a0
‖ϕδ‖2L4/3(Ω)

)
,

C2 =
(2 a2

1

a0
‖∇ϕδ‖2L1(Ω) + 1

)
+

(
2S (ε,M,T ) + ‖ā‖L∞(Ω)

)
.

Therefore, by Gronwall’s Lemma and taking the supremum in time for t ∈ (0,T ) we get

‖ān − ā‖2
L∞

(
0,T ;L2(Ω)

) ≤ CT

(
‖(ān − ā)(0)‖2

L2(Ω) + ‖µn − µ‖2L2(ΩT )

+ ‖sM,n − sM‖2L2(ΩT )

)
. (3.2.39)

Before taking the limit in the previous estimate, we claim the result below.
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Claim 3.1.

By the assumptions of Proposition 3.2.1, taking the limit as n→ +∞ it holds

‖µn − µ‖L2(ΩT ) → 0 and ‖sM,n − sM‖L2(ΩT ) → 0.

Thus using the Claim 3.1 in (3.2.39), we conclude that the map Φ is continuous in E

thanks to (3.2.34), (3.2.39). �

Proof of the Claim 3.1.

By assumptions µ is in C(R2
+) and n−uniformly bounded. Thus by (3.2.32) and up to

extraction of subsequences, still denoted an, v̄n, we have

µ(an, v̄n) −→ µ(a, v̄), a.e. in ΩT =⇒ µ(an, v̄n)→ µ(a, v̄), in L2(ΩT ),

as n → +∞, by the dominated convergence theorem. Similarly, by the definition of sM

in (3.1.14) we have sM ∈ C(R2
+ × R,R) and U ∈ C(R2

+). Moreover by Lemma 3.2.4 and
Kolmogorov–M. Riesz–Fréchet Theorem [11], it holds

∂tv̄n −→ ∂tv̄, in L2(ΩT ).

Finally, by the dominated convergence theorem again we get (up to subsequences) as
n→ +∞

sM

(
an, v̄n, ∂tv̄n

) −→ sM

(
a, v̄, ∂tv̄

)
, in L2(ΩT ).

�

End of proof of Proposition 3.2.1.

By the Subsections 3.2.1 - 3.2.3, the map Φ defined in (3.2.11) verifies the hypothesis of
Schauder’s fixed point theorem. Therefore, there exists at least one solution (aδ ≥ 0, vδ ≥ 0)
satisfying (3.1.20), (3.1.21) in the sense of (iii) in Proposition 3.2.1. Moreover, the estimates
(3.2.14) - (3.2.16), (3.2.18), (3.2.27), (3.2.28), (3.2.37) are still verified by the fixed point
(aδ, vδ), giving (3.2.1) - (3.2.3).

�

3.3 δ−uniform estimates and δ− limit

The aim of this section is to prove the existence of (aε,M, vε,M), satisfying (3.1.12) - (3.1.15).
The idea is to take the limit as δ→ 0 in (3.1.20), (3.1.21), thanks to the δ−uniform a priori
estimates (3.2.1) - (3.2.3) shown in Proposition 3.2.1. We conclude by verifying that the
limit satisfies (3.1.12) - (3.1.15) in the strong sense.

Proposition 3.3.1 (Existence of (aε,M, vε,M)).
We assume (ain, vin) ∈ (

H1 × L∞
)
(Ω). Then, for any fixed ε,M > 0, there exists a solution

(aε,M, vε,M) of (3.1.12) - (3.1.15) in the sense that

(i) aε,M ∈ L∞(ΩT ), ∂taε,M, ∂xi,x j
aε,M ∈ L2(ΩT ), ∂xi

aε,M ∈ L4(ΩT ), for all i, j = 1, . . . ,N,

(ii) vε,M, ∂tvε,M, ∂xi x j
vε,M, ∂xi

vε,M ∈ L∞(ΩT ), for all i, j = 1, . . . ,N,
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(iii) the unknowns (aε,M, vε,M) satisfy the first two equations of (3.1.12), a.e. in ΩT .

Moreover, the boundary conditions in (3.1.12) and the initial conditions (3.1.15) hold

in the sense of traces.

Proof of Proposition 3.3.1.

Let the solution (aδ, vδ), satisfying the system (3.1.20), (3.1.21) in the sense of Proposition

3.2.1. Using the δ−uniform estimates achieved in Proposition 3.2.1, we take the weak
limit in L1(ΩT ) as δ → 0 in (3.1.20), (3.1.21). Firstly, by (3.2.1) - (3.2.3) we get (up to
subsequences) for some a, v ∈ L∞(ΩT ),

aδ → a and vδ → v a. e. in ΩT , (3.3.1)

and
∂taδ ⇀ ∂ta, ∆aδ ⇀ ∆a,∇aδ ⇀ ∇a, weakly in L2(ΩT ), (3.3.2)

and for all p ∈ [1,+∞)

∂tvδ ⇀ ∂tv, ∆vδ ⇀ ∆v,∇vδ ⇀ ∇v, weakly in Lp(ΩT ). (3.3.3)

Considering the equation satisfied by aδ in (3.1.20), we obtain by (3.3.2) that the l.h.s.
converges weakly in L2(ΩT ) to ∂ta, as δ→ 0. Concerning the diffusion term, we first observe
that by the C0(R2

+) character of µ together with (3.3.1), we get

µ(aδ, vδ) → µ(a, v), a.e. in ΩT , as δ→ 0.

Then, recalling the boundedness of µ in (3.1.16) and using the result in Proposition A.6.1,
we end up with

µ(aδ, vδ) → µ(a, v), strongly in Lp(ΩT ), ∀p < ∞, as δ→ 0, (3.3.4)

implying the strong Lp convergence below

µ(aδ, vδ) ∗x ϕδ → µ(a, v), strongly in Lp(ΩT ), ∀p < ∞, as δ→ 0. (3.3.5)

Indeed, from (3.3.4) we have µ(a, v) ∈ Lp(ΩT ) and using the regularization by convolution,
it holds (abusing notations, we denote by µ(a, v) the extended by zero function in the space
variable x of the function defined in (3.1.13))

µ(a, v) ∗x ϕδ → µ(a, v), strongly in Lp(ΩT ), ∀p < ∞, as δ→ 0, (3.3.6)

then, we compute

‖µ(aδ, vδ) ∗x ϕδ − µ(a, v)‖Lp(ΩT )

≤ ‖(µ(aδ, vδ) − µ(a, v)
) ∗x ϕδ‖Lp(ΩT ) + ‖µ(a, v) ∗x ϕδ − µ(a, v)‖Lp(ΩT )

≤ ‖ϕδ‖L1(RN )‖µ(aδ, vδ) − µ(a, v)‖Lp(ΩT ) + ‖µ(a, v) ∗x ϕδ − µ(a, v)‖Lp(ΩT )

= ‖µ(aδ, vδ) − µ(a, v)‖Lp(ΩT ) + ‖µ(a, v) ∗x ϕδ − µ(a, v)‖Lp(ΩT ), (3.3.7)

giving (3.3.5) by the obtained convergences in (3.3.4), (3.3.6). Therefore, by combining with
the weak L2(ΩT ) convergence of ∆aδ in (3.3.2), recalling the L∞ bound for µ(aδ, vδ) ∗x ϕδ :

0 ≤ µ(aδ, vδ) ∗x ϕδ ≤ a1‖ϕδ‖L1(RN ) ≤ a1, a.e. in ΩT ,
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and taking p = 2 in (3.3.5), then Proposition A.6.2 implies

(
µ(aδ, vδ) ∗x ϕδ

)
∆aδ ⇀ µ(a, v)∆a, weakly in L1(ΩT ), as δ→ 0. (3.3.8)

Concerning the reaction term, we recall the definition of sM in (3.1.14)

sM(aδ, vδ, ∂tvδ) =
U(aδ, vδ)

aδ
fM

(
U(aδ, vδ), vδ

)
∂1A(U(aδ, vδ), vδ)

+
U(aδ, vδ)

aδ
∂2B

(
U(aδ, vδ), vδ

)
∂tvδ C Iδ + IIδ. (3.3.9)

Since (a, v) 7→ U(a,v)
a

, ∂1A and fM are C0(R2
+) functions (see Remark 3.2), then it holds by

(3.3.1)

U(aδ, vδ)
aδ

→ U(a, v)
a

, a.e. in ΩT , ∂1A
(
U(aδ, vδ), vδ

)→ ∂1A
(
U(a, v), v

)
, a.e. in ΩT ,

and
fM(U(aδ, vδ), vδ)→ fM(U(a, v), v), a.e. in ΩT ,

and thus

Iδ → U(a, v)
a

fM(U(a, v), v)∂1A
(
U(a, v), v

)
, a.e. in ΩT .

In addition, (a, v) 7→ U(a,v)
a

, fM and ∂1A are δ−uniformly bounded by (3.1.17), (D2), imply-
ing

‖Iδ‖L∞(ΩT ) ≤ C, (3.3.10)

where C > 0 does not depend on δ. Therefore, by Proposition A.6.1 we end up with

Iδ −→
U(a, v)

a
fM

(
U(a, v), v

)
∂1A(U(a, v), v), strongly in Lp(ΩT ), for all p < ∞, (3.3.11)

in particular, weakly in Lp(ΩT ), for all p < ∞. Concerning the second term in (3.3.9), from
the continuity of (a, v) 7→ U

a
, U, ∂2B, we obtain

U(aδ, vδ)
aδ

∂2B
(
U(aδ, vδ), vδ

) → U(a, v)
a

∂2B
(
U(a, v), v

)
, a.e. in ΩT ,

and using (3.1.5), (3.1.17), we get the L∞(ΩT ) boundedness below

∥∥∥∥
U(aδ, vδ)

aδ
∂2B

(
U(aδ, vδ), vδ

)∥∥∥∥
L∞(ΩT )

≤ C.

Thus, Proposition A.6.1 again implies

U(aδ, vδ)
aδ

∂2B(U(aδ, vδ), vδ) → U(a, v)
a

∂2B(U(a, v), v), strongly in Lp(ΩT ),

for all p ∈ [1,∞). However, the weak convergence of ∂tvδ in (3.3.3) gives by Proposition

A.6.2

IIδ ⇀ U(a, v)∂2B(U(a, v), v)∂tv, weakly in Lp(ΩT ), for all p < ∞. (3.3.12)

Hence, by gathering (3.3.9), (3.3.11) and (3.3.12), we conclude

sM(aδ, vδ, ∂tvδ) ⇀ sM(a, v, ∂tv), weakly in Lp(ΩT ), for all p < ∞. (3.3.13)
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Finally, the L∞ boundedness of aδ in (3.2.1) and the a.e. convergence in (3.3.1) give by
Proposition A.6.1,

aδ −→ a, strongly in Lp(ΩT ), ∀p < ∞,

that, together with (3.3.13), implies (by Proposition A.6.2)

aδsM(aδ, vδ, ∂tvδ) → asM(a, v, ∂tv), weakly in Lp(ΩT ), as δ→ 0. (3.3.14)

Similarly, we take the limit in the equation satisfied by vδ. From (3.3.3), the evolution term
∂tvδ and the diffusion term ∆vδ converge weakly in Lp(ΩT ) for all p ∈ [1,∞). Concerning
the reaction term vδgε,M

(
U(aδ, vδ), vδ

)
, from the C0(R2

+) character of U and gε,M and using
the a.e. convergences in (3.3.1), we get (for any fixed ε,M > 0) as δ→ 0,

gε,M
(
U(aδ, vδ), vδ

) → gε,M
(
U(a, v), v

)
, a.e. in ΩT .

Therefore, by (3.3.1) it holds

vδ gε,M
(
U(aδ, vδ), vδ

) → v gε,M
(
U(a, v), v

)
, a.e. in ΩT .

Moreover, (3.2.1) gives the L∞ boundedness of gε,M, i.e.

‖gε,M
(
U(aδ, vδ), vδ

)‖L∞(ΩT ) ≤ C =⇒ ‖vδ gε,M
(
U(aδ, vδ), vδ

)‖L∞(ΩT ) ≤ C.

Therefore, Proposition A.6.1 implies

vδgε,M
(
U(aδ, vδ), vδ

) → v gε,M
(
U(a, v), v

)
, strongly in Lp(ΩT ), ∀ p ∈ [1,∞),

(3.3.15)
and, in particular weakly in Lp(ΩT ), for any p ∈ [1,∞). Thus, we take the weak limit in
L1(ΩT ) as δ→ 0, in the first two equations of (3.1.20), using (3.3.2), (3.3.3) (for the evolution
terms), (3.3.8), (3.3.3) (for the diffusion terms) and (3.3.14), (3.3.15) (for the reaction terms).
Finally, we pass to the limit in the boundary condition of (3.1.20) using the weak convergence
of ∆aδ,∆vδ in (3.3.2), (3.3.3) and the continuity of the trace operator Tr : H2(Ω) → H1(∂Ω).
Hereafter, we restore the ε,M−dependences notations so that we refer to the a.e limit of
aδ, vδ as aε,M, vε,M, respectively, and the weak limit of ∂taδ,∆aδ,∇aδ and ∂tvδ,∆vδ,∇aδ as
∂taε,M,∆aε,M,∇aε,M and ∂tvε,M,∆vε,M,∇vε,M, respectively. Finally, using the weak lower
semicontinuity property of the Lp(ΩT ) norm for p ∈ (1,+∞] and estimates (3.2.1) - (3.2.3),
we conclude that aε,M, vε,M satisfy points (i), (ii), (iii) of Proposition 3.3.1. �

3.4 Existence for the truncated-regularized system in the

variables (u, v)

In this section, we prove the existence of strong solutions to the truncated-regularized system
(3.1.7) - (3.1.9) for the unknowns (uε,M, vε,M) (see Proposition 3.4.1). The crucial result is
the Lemma 3.4.2 below, proving the equivalence between the system in a non divergence

form (3.1.12) - (3.1.15), satisfied by (aε,M, vε,M), and the system (3.1.7) - (3.1.9), satisfied by
(uε,M, vε,M). In other words, taking a solution (aε,M, vε,M) of (3.1.12) - (3.1.15) in the sense
of Proposition 3.3.1, there exists a solution to (3.1.7) - (3.1.9) in the sense of Proposition

3.4.1, according to the change of variable (3.1.10).
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Proposition 3.4.1 (Existence of (uε,M, vε,M)).
We assume (D1), (D2), (D3), (R1) and we consider the initial data uin ∈

(
L4 ∩ H1)(Ω),

vin ∈
(
L∞ ∩ H3)(Ω) compatible with Neumann boundary condition. Then, for any fixed

ε,M > 0 there exists a nonnegative solution (uε,M, vε,M) for the system (3.1.7) - (3.1.9), in

the sense that

(i) uε,M ∈ L∞(ΩT ), ∂tuε,M, ∂xi,x j
A(uε,M, vε,M) ∈ L2(ΩT ), ∂xi

uε,M ∈ L4(ΩT ),

(ii) vε,M, ∂tvε,M, ∂xi,x j
vε,M, ∂xi

vε,M ∈ L∞(ΩT ), i, j = 1, . . . ,N,

(iii) the unknowns (uε,M, vε,M) satisfy the equations of (3.1.7) a.e. in ΩT while the trace of

(uε,M, vε,M) on [0,T ] × ∂Ω satisfies a.e. the Neumann boundary conditions. Moreover,

the initial conditions (3.1.9) are satisfied by the traces of (uε,M, vε,M) on {0} ×Ω.

Lemma 3.4.2.

Let (aε,M, vε,M) be a solution to (3.1.12) - (3.1.15) given by Proposition 3.3.1. Then,

(uε,M, vε,M) satisfies the system (3.1.7) - (3.1.9) in the sense of Proposition 3.4.1, with

uε,M B U(aε,M, vε,M).

Proof of Lemma 3.4.2.

For the sake of simplicity, in this proof we neglect the subscripts ε,M in aε,M, vε,M since ε
and M are fixed.

For any ε,M fixed, let (a, v) be a solution to (3.1.12) - (3.1.15) given by Proposition

3.3.1. Then, we can find by density a sequence (an, vn)n∈N in C∞c (ΩT ) such that

an → a, ∂tan → ∂ta, ∂xi
an → ∂xi

a, ∂xi x j
an → ∂xi x j

a,

vn → v, ∂tvn → ∂tv, ∂xi
vn → ∂xi

v,

strongly in L2(ΩT ) for any i, j = 1, . . . ,N, as n→ +∞.

Then we set un = U(an, vn) and u = U(a, v) and recall that (D2), (3.1.10) imply the C1

character of U. Hence, we find for any ξ ∈ C∞c
(
(0,T ) ×Ω)

∫

ΩT

u∂tξdxdt = lim
n→∞

∫

ΩT

un∂tξdxdt

= lim
n→∞
−

∫

ΩT

(
∂1U(an, vn)∂tan + ∂2U(an, vn)∂tvn

)
ξdxdt

= −
∫

ΩT

(
∂1U(a, v)∂ta + ∂2U(a, v)∂tv

)
ξdxdt,

implying that u has the weak time derivative

∂tu = ∂1U(a, v)∂ta + ∂2U(a, v)∂tv, (3.4.1)

which is bounded in L2(ΩT ). Likewise, we find that u has the weak ∂xi
derivative bounded in

L4(ΩT ) and given by

∂xi
u = ∂1U(a, v)∂xi

a + ∂2U(a, v)∂xi
v, ∀i = 1, . . .N. (3.4.2)

Thus the claimed bounds for ∂tu and ∂xi
u are shown. Note also that ∂xi x j

A(u, v) = ∂xi x j
a.

Then, since (a.e. in ΩT ) we have

∂ta − µ∆a = U(a, v) fM

(
U(a, v),v

)
∂1A(U(a, v), v) + ∂2A

(
U(a, v), v

)
∂tv,
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we see that
1
µ
∂ta −

1
µ
∂2A∂tv − ∆a = U(a, v) fM

(
U(a, v), v

)
,

and using (3.4.1) (and ∂1A(u, v) ∂1U(A(u, v), v) = 1), we end up with (a.e. in ΩT )

∂tu − ∆(A(u, v)) = u fM(u, v).

Moreover, the trace of ∇a on [0,T ] × ∂Ω is the trace of ∇(A(u, v)
)
, so that the Neumann

boundary condition in (3.1.7) is satisfied. The same holds for the initial conditions. Finally,
the equation, boundary condition and initial condition related to v are identical in the system
satisfied by (a, v) and in the system satisfied by (u, v) (when U(a, v) is replaced by u in the
equations). �

Proof of Proposition 3.4.1.

It follows as a consequence of Proposition 3.3.1 and identity (3.4.2). In particular, (uε,M, vε,M)
satisfies (i), (ii) thanks to the regularity of (aε,M, vε,M) shown in (i), (ii) of Proposition 3.3.1

and identity (3.4.2), using (D2), (3.1.10), (3.1.17). �

3.5 ε,M−uniform estimates and ε,M− limit

In Lemma 3.5.1 below, we prove some ε,M−uniform estimates satisfied by (uε,M, vε,M),
in order to pass to the limit and show Theorem 3.1.1. Hereafter, we will denote C(T ) as
a strictly positive constant which depends on T and may change from line to line in the
computations.

Lemma 3.5.1 (ε,M−uniform estimates).
Let (uε,M, vε,M) be given by Proposition 3.4.1 and recall that ∇uin ∈ L2(Ω). Then, the

following estimates hold uniformly in ε and M,

(i) there exists a constant C1(T ) > 0 such that for all ε,M > 0,

‖vε,M‖L∞(ΩT ) ≤ C1(T ), (3.5.1)

(ii) there exists a constant C2(T ) > 0 such that for all ε,M > 0,

‖uε,M‖L∞(0,T ;L4(Ω)) ≤ C2(T ), (3.5.2)

(iii) there exists a constant C3(T ) > 0 such that for all i, j = 1, . . . ,N and ε,M > 0

‖∂tvε,M‖L4(ΩT ) + ‖∂xi x j
vε,M‖L4(ΩT ) + ‖∂xi

vε,M‖L8(ΩT ) ≤ C3(T ), (3.5.3)

and

‖∂xi
vε,M‖L∞(0,T ;L2(Ω)) ≤ C3(T ), (3.5.4)

(iv) there exists a constant C4(T ) > 0 such that for all i, j = 1, . . . ,N and ε,M > 0

‖∂tuε,M‖L2(ΩT ) + ‖∂xi
uε,M‖L∞(0,T ;L2(Ω)) + ‖∂xi

(A(uε,M, vε,M))‖L∞(0,T ;L2(Ω))

+ ‖∂xi x j
(A(uε,M, vε,M))‖L2(ΩT ) ≤ C4(T ),

(3.5.5)
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(v) there exists a constant C5(T ) > 0 such that

‖∂tvε,M‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) ≤ C5(T ), (3.5.6)

and if N ≤ 3
‖∂tvε,M‖L2(0,T ;L∞(Ω)) ≤ C5(T ), (3.5.7)

and

‖uε,M‖L∞(ΩT ) + ‖∂xi
uε,M‖L4(ΩT ) ≤ C5(T ). (3.5.8)

Proof.

(i) Estimate (3.5.1) follows from the first inequality of (3.2.1).

(ii) Firstly, we prove the L2(ΩT ) boundedness of ∇vε,M, implying the L2(ΩT ) boundedness
of uε,M, uniformly in ε,M. Then, we get (3.5.2).

We multiply by vε,M the second equation of (3.1.7) and we integrate on Ω to get,

1
2

d

dt

∫

Ω

v2
ε,M dx + dv

∫

Ω

|∇vε,M |2dx =

∫

Ω

v2
ε,Mgε,Mdx,

thus, by integrating in time for t ∈ (0,T ) and using (3.1.9), (3.5.1), we get

1
2

∫

Ω

vε,M(t)dx + dv

∫

Ωt

|∇vε,M |2dxds ≤ 1
2

∫

Ω

v2
ε,M(0)dx +Cg‖ϕε‖L1(RN+1)

∫

ΩT

v2
ε,Mdxdt

≤ C(T ),

where C(T ) does not depend on ε. Therefore, taking the supremum in time we end up with
the uniform estimate

‖∇vε,M‖L2(ΩT ) ≤ C(T ). (3.5.9)

Next, in order to prove the L2(ΩT ) boundedness of uε,M, we multiply by uε,M the first
equation of (3.1.7) and we integrate on ΩT . Thus, recalling notation (3.1.11) we have

1
2

d

dt

∫

Ω

(uε,M)2dx = −
∫

Ω

∂1Aε,M |∇uε,M |2dx −
∫

Ω

∂2Aε,M∇uε,M · ∇vε,Mdx +

∫

Ω

u2
ε,M fMdx

≤ −1
2

∫

Ω

∂1Aε,M |∇uε,M |2dx +
1
2

∫

Ω

|∂2Aε,M |2
∂1Aε,M

|∇vε,M |2dx +C f

∫

Ω

u2
ε,M dx

≤
a2

2

2a0

∫

Ω

|∇vε,M |2dx +C f

∫

Ω

u2
ε,M dx,

by (D2), i.e.
d

dt

∫

Ω

u2
ε,Mdx − 2C f

∫

Ω

u2
ε,Mdx ≤

a2
2

a0

∫

Ω

|∇vε,M |2dx. (3.5.10)

Thus, we multiply the inequality (3.5.10) by e−2C f t, for t ∈ [0,T ] to get

d

dt

(
e−2C f t

∫

Ω

u2
ε,Mdx

)
≤

a2
2

a0
e−2C f t

∫

Ω

|∇vε,M |2dx,

and integrating over (0, t) for t ∈ (0,T ), we obtain

e−2C f t‖uε,M(t)‖2
L2(Ω) ≤ ‖uε,M(0)‖2

L2(Ω) +
a2

2

a0

∫

Ωt

e−2C f s|∇vε,M(s)|2dxds,
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so that

‖uε,M(t)‖2
L2(Ω) ≤ e2C f t‖uε,M(0)‖2

L2(Ω) +
a2

2

a0
e2C f t‖∇vε,M(t)‖2

L2(Ωt)
.

Finally, taking the supremum in time we end up with

‖uε,M‖2L∞(0,T ;L2(Ω)) ≤ CT

(
‖uε,M(0)‖2

L2(Ω) + ‖∇vε,M‖2L2(ΩT )

)
≤ CT , (3.5.11)

using (3.5.9) and the regularity of the initial datum uin ∈ L2(Ω).

Thanks to (3.5.1), (3.5.11), gε,M is bounded in L2(ΩT ) uniformly in ε,M, so that the r.h.s.
of the equation of vε,M in (3.1.7) has an L2(ΩT ) norm which is uniformly bounded in ε,M.
Thus, we get by the maximal regularity

‖∂tvε,M‖L2(ΩT ) + ‖∂xi x j
vε,M‖L2(ΩT ) ≤ C3 (T ) , (3.5.12)

and by the Gagliardo-Nirenberg inequality

‖∇vε,M‖L4(ΩT ) ≤ C′‖∆vε,M‖1/2L2(ΩT )
‖vε,M‖1/2L∞(ΩT ) +C′′‖vε,M‖1/2L∞(ΩT ) ≤ C(T ), (3.5.13)

uniformly in ε,M.

In order to get the uniform bound of uε,M in L∞
(
0,T ; L4(Ω)

)
, we multiply the first

equation of (3.1.7) by u3
ε,M

and we integrate on Ω

1
4

∫

Ω

∂t(u
4
ε,M)dx = −

∫

Ω

∇(Aε,M
)∇(u3

ε,M)dx +

∫

Ω

u4
ε,M fM(uε,M, vε,M)dx

C Idi f f + Irea. (3.5.14)

Then, we compute

Idi f f = −3
∫

Ω

(
∂1Aε,M∇uε,M + ∂2Aε,M∇vε,M

)
· ∇uε,M(u2

ε,M)dx

= −3
∫

Ω

∂1Aε,M(u2
ε,M)|∇uε,M |2dx − 3

∫

Ω

∂2Aε,M(u2
ε,M)∇uε,M · ∇vε,M dx

≤ −3
∫

Ω

∂1Aε,M(u2
ε)|∇uε,M |2dx +

3
2

∫

Ω

∂1Aε,M(u2
ε,M)|∇uε,M |2dx

+
3
2

∫

Ω

|∂2Aε,M |2
∂1Aε,M

u2
ε,M |∇vε,M |2dx

≤ 3
4

a2
2

a0

∫

Ω

u4
ε,M dx +

3
4

a2
2

a0

∫

Ω

|∇vε,M |4dx,

using (D2). Using (R1), the reaction term is estimated as follows

Irea =

∫

Ω

u4
ε,M fM(uε,M, vε,M)dx ≤ C f

∫

Ω

u4
ε,M dx,

so that (3.5.14) becomes

1
4

d

dt

∫

Ω

u4
ε,Mdx ≤

(3
4

a2
2

a0
+C f

) ∫

Ω

u4
ε,M dx +

3
4

a2
2

a0

∫

Ω

|∇vε,M |4dx,
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i.e.
d

dt

∫

Ω

u4
ε,Mdx − α

∫

Ω

u4
ε,Mdx ≤

3a2
2

a0

∫

Ω

|∇vε,M |4dx, (3.5.15)

with

α B
3a2

2

a0
+ 4C f > 0.

Thus, we multiply the inequality (3.5.15) by e−αt, for t ∈ [0,T ] to get

d

dt

(
e−αt

∫

Ω

u4
ε,Mdx

)
≤

3a2
2

a0
e−αt

∫

Ω

|∇vε,M |4dx,

Finally, we integrate in time for t ∈ (0,T ) to get

e−αt‖uε,M(t)‖4
L4(Ω) ≤ ‖uε,M(0)‖4

L4(Ω) +
3a2

2

a0

∫

Ωt

e−αs|∇vε,M |4dxds,

so that

‖uε,M(t)‖4
L4(Ω) ≤ eαt‖uε,M(0)‖4

L4(Ω) +
3a2

2

a0
eαt‖∇vε,M‖4L4(Ωt)

,

thus, taking the supremum in time we end up with

‖uε,M‖4L∞(0,T ;L4(Ω)) ≤ CT

(
‖uε,M(0)‖4

L4(Ω) + ‖∇vε,M‖4L4(ΩT )

)
≤ CT , (3.5.16)

using (3.5.13).

(iii) Thanks to (3.5.1), (3.5.2), gε,M is bounded in L4(ΩT ) uniformly in ε,M, so that the r.h.s.
of the equation of vε,M in (3.1.7) has an L4(ΩT ) norm which is uniform in ε,M. Thus, we
get (3.5.3) by the maximal regularity and the Gagliardo-Nirenberg inequality. The estimate
(3.5.4) follows multiplying by −∆vε,M the equation satisfied by vε,M, using the Cauchy-
Schwarz inequality and recalling that vε,Mgε,M has an L2(ΩT ) norm which is bounded in
ε,M.

(iv) Since by Lemma 3.4.2 the system (3.1.7) is equivalent to (3.1.12), the idea consists in
proving (3.5.5) for aε,M and then to use the change of variable (3.1.10) to get the suitable
control for uε,M.

The inequalities (3.5.2), (3.1.17) imply that aε,M is bounded in L∞
(
0,T ; L4(Ω)

)
uniformly

in ε,M. On the other hand, the estimates (3.5.2), (3.5.3) show that sM is bounded in L4(ΩT )
uniformly in ε,M, so that the r.h.s. of the equation for aε,M in (3.1.12) has an L2(ΩT ) norm
which is bounded in ε,M. Therefore, as in (3.2.10) we define

C′4 B 2
a2

1

a0
+ 1 and C′′4 B 2

(a1

a0

)2
+

1
a0
+ 2,

to get

‖∂taε,M‖2L2(ΩT ) + ‖∇aε,M‖2L∞(0,T ;L2(Ω)) + a0‖∆aε,M‖2L2(ΩT )

≤ C′4‖∇ain‖2L2(Ω) +C′′4 ‖aε,M sM‖2L2(ΩT )

≤ C4(T ), (3.5.17)
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uniformly in ε,M. Recalling that by (3.1.10) we have in the weak sense

∂1Aε,M∂tuε,M = ∂taε,M − ∂2Aε,M∂tvε,M,

then it holds using (D2)

‖∂tuε,M‖2L2(ΩT ) ≤
2

a2
0

‖∂taε,M‖2L2(ΩT ) + 2
(a2

a0

)2‖∂tvε,M‖2L2(ΩT ) ≤ C(T ), (3.5.18)

uniformly in ε,M thanks to (3.5.12), (3.5.17). Similarly, it holds

∇(A(uε,M, vε,M)) = ∂1Aε,M∇uε,M + ∂2Aε,M∇vε,M, (3.5.19)

so that using (D2) again

‖∇uε,M‖2L∞(0,T ; L2(Ω)) ≤
2

a2
0

‖∇aε,M‖2L∞(0,T ; L2(Ω)) + 2
(a2

a0

)2‖∇vε,M‖2L∞(0,T ; L2(Ω))

≤ C(T ), (3.5.20)

thanks to (3.5.4), (3.5.17). Finally, estimates (3.5.17) - (3.5.20) imply (3.5.5).

(v) In order to prove (3.5.6), we take the weak time derivative in the second equation of
(3.1.7)

∂t(∂tvε,M) − dv∆(∂tvε,M) = (∂tvε,M)gε,M + vε,M∂1gε,M∂tuε,M + vε,M∂2gε,M∂tvε,M, (3.5.21)

thus the r.h.s. of (3.5.21) is bounded in L2(ΩT ), uniformly in ε,M. Indeed, the first term
has an L2(ΩT ) uniform control because gε,M and ∂tvε,M are uniformly bounded in L4(ΩT )
by (3.5.1), (3.5.2) and (3.5.3), respectively. The last two terms have an L2(ΩT ) norm which
is uniformly bounded in ε,M by (R2), (3.5.1), (3.5.2). Therefore, using the assumption
vin ∈ H3(Ω), by the maximal regularity applied to (3.5.21) and by the Gagliardo Nirenberg
inequality, we get the estimate below uniformly in ε,M

‖∂2
t vε,M‖L2(ΩT ) + ‖∇∇ (∂tvε,M)‖L2(ΩT ) + ‖∇(∂tvε,M)‖L2(ΩT ) ≤ C(T ),

implying the following uniform in ε,M inequality, using (3.5.12)

‖∂tvε,M‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) ≤ C(T ),

we get thus (3.5.6). Moreover by the continuous injection H2(Ω) ↪→ L∞(Ω) if N ≤ 3, we
end up with

‖∂tvε,M‖L2(0,T ; L∞(Ω)) ≤ C(T ), if N ≤ 3, uniformly in ε,M, (3.5.22)

giving (3.5.7). The inequality above gives aε,M bounded in L∞(ΩT ), uniformly in ε,M. Then,
using the equivalence of the systems (3.1.7) and (3.1.12) we obtain the L∞− boundedness of
uε,M, that is (3.5.8). Indeed, by the definition of sM in (3.1.14), the estimate (3.5.22) implies

∫ T

0
sup
x∈Ω
|sM(t, x)| ≤ C(T ), if N ≤ 3, uniformly in ε,M,

so that by similar computations as in (3.2.27), using (3.5.22) we get uniformly in ε,M

‖aε,M‖L∞(ΩT ) ≤ C(T ), if N ≤ 3, (3.5.23)
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giving the first part of (3.5.8). Concerning the L4(ΩT )−boundedness of ∂xi
uε,M for all

i = 1, . . .N, we first prove the L4(ΩT )−boundedness of ∂xi
A(u, v) by the Gagliardo-Nirenberg

inequality. Indeed, taking the fourth power we get for all i, j = 1, . . . ,N, with N ≤ 3

‖∂xi
aε,M‖4L4(Ω) ≤ C1‖∂xi x j

aε,M‖2L2(Ω)‖aε,M‖
2
L∞(Ω) +C2‖aε,M‖4L∞(Ω).

Then, by integrating in time over (0,T ) and using the Hölder’s inequality we obtain

‖∂xi
aε,M‖4L4(ΩT ) ≤ C1‖∂xi x j

aε,M‖2L2(ΩT )‖aε,M‖
2
L∞(ΩT ) +C2‖aε,M‖4L4(0,T,L∞(Ω))

≤ C(T ),

which is uniform in ε,M, using the estimates (3.5.17), (3.5.23). Finally, using (3.5.3),
(3.5.19), (D2) and the above inequality we end up for all i = 1, . . . ,N and N ≤ 3,

‖∂xi
uε,M‖4L4(ΩT ) ≤ C(a0, a2)

(‖∂xi
aε,M‖4L4(ΩT ) + ‖∂xi

vε,M‖4L4(ΩT )

) ≤ C(a0, a2,T ).

�

3.6 Proof of the main result

In this section we prove Theorem 3.1.1. Before proceeding, we introduce the notations below
for any ε,M > 0 and uε,M, vε,M, u, v ≥ 0,

Aε,M B A(uε,M, vε,M), Bε,M B B(uε,M, vε,M), A B A(u, v), B B B(u, v).

Proof of Theorem 3.1.1.

By the ε,M−uniform estimates in Lemma 3.5.1, we get for some u ∈ L∞(0,T ; L4(Ω)) and
v ∈ L∞(Ω) (up to subsequences)

uε,M → u, vε,M → v, a.e. in ΩT as ε→ 0, M → +∞, (3.6.1)

and

∂tuε,M ⇀ ∂tu, weakly in L2(ΩT ),

∂tvε,M ⇀ ∂tv, ∆vε,M ⇀ ∆v, weakly in L4(ΩT ),

∇vε,M ⇀ ∇v, weakly in L8(ΩT ).

(3.6.2)

In addition, we claim

A(uε,M, vε,M)→ A(u, v), strongly in L1(ΩT ). (3.6.3)

Indeed, (3.6.1) and estimates (3.5.1), (3.5.2) give by Proposition A.6.1

uε,M → u, vε,M → v, strongly in L2(ΩT ). (3.6.4)

However, the C0(R2
+) character of A and B (with B defined by (3.1.4)) implies

Aε,M → A and Bε,M → B, a.e. in ΩT , (3.6.5)

and by (3.1.4) we have (see Proposition A.6.1)

B(uε,M, vε,M)→ B(u, v), strongly in L2(ΩT ).
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Thus, we compute

‖Aε,M − A‖L1(ΩT ) ≤ ‖(Bε,M − B)uε,M‖L1(ΩT ) + ‖B(uε,M − u)‖L1(ΩT )

≤ ‖uε,M‖L2(ΩT )‖Bε,M − B‖L2(ΩT ) + a1‖uε,M − u‖L1(ΩT ),

where for the first term we used Cauchy-Schwarz inequality and the ε,M−uniformly bound-
edness of uε,M in L2(ΩT ), by (3.5.16). Therefore, we get (3.6.3) which implies

∆A(uε,M, vε,M)→ ∆A(u, v), in D′(ΩT ),

where D′(ΩT ) stands for the space of distributions on ΩT . On the other hand, the inequality
(3.5.5) implies the existence of ω ∈ L2(ΩT ) s.t. (up to subsequences)

∆A
(
uε,M, vε,M

)
⇀ ω, weakly in L2(ΩT ), (3.6.6)

so that by uniqueness of the limit in D′(ΩT ), we identify

ω = ∆A(u, v), in L2(ΩT ). (3.6.7)

Moreover if N ≤ 3, (uε,M, vε,M) does not depend on M for M large enough, by the Sobolev
embedding H2(Ω) ⊂ L∞(Ω).

Now, we take the D′(ΩT ) limit as ε → 0, M → +∞, if N > 3 and as ε → 0 if N ≤ 3,
in (3.1.7) - (3.1.9). From the obtained convergences (3.6.1) - (3.6.7), it remains to prove
the D′(ΩT ) limit of the reaction terms uε,M fM(uε,M, vε,M) and vε,Mgε,M(uε,M, vε,M). By the
a.e. convergence of uε,M, vε,M in (3.6.1) and recalling the C0(R2

+) character of f , we see
that for N ≤ 3, fM(uε,M, vε,M) = f (uε, vε) converges a.e. towards f (u, v), as ε tends to zero.
Otherwise, if N > 3, for a given (t, x) ∈ ΩT (outside of a zero measure set), because of
(3.6.1), it holds for M large enough

fM(uε,M, vε,M) = f (uε,M, vε,M) → f (u, v), as ε→ 0, M → +∞,

so that (still using (3.6.1))

uε,M fM(uε,M, vε,M) → u f (u, v), as ε→ 0, M → +∞. (3.6.8)

Moreover, by assumption (R1) and estimates (3.5.2), (3.5.1) we end up with

‖uε,M fM(uε,M, vε,M)‖L2(ΩT ) ≤ CT ,

which gives using (3.6.8) (see Proposition A.6.1)

uε,M fM(uε,M, vε,M) → u f (u, v), strongly in L1(ΩT ), as ε→ 0, M → +∞,

and thus in D′(ΩT ). Finally, it remains to treat the reaction term vε,Mgε,M(uε.M, vε,M),
where gε,M is defined in (3.1.8). Recalling the C0(R2

+) character of g, it holds for N ≤ 3,
gM(uε,M,vε,M ) = g(uε, vε) which converges a.e. in ΩT towards g(u, v), as ε goes to zero.
Otherwise, for a given (t, x) ∈ ΩT (outside of a zero measure set), because of (3.6.1), it holds
for M large enough

gM(uε,M, vε,M) = g(uε,M, vε,M) → g(u, v), as ε→ 0, M → +∞.
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Moreover, by assumption (R1) and estimates (3.5.1), (3.5.2), we get for any N ≥ 1

‖gM(uε,M, vε,M)‖L4(ΩT ) ≤ CT ,

giving (by Proposition (A.6.1)) as ε→ 0, M → +∞,

gM(uε,M, vε,M) → g(u, v), strongly in Lr(ΩT ), r < 4. (3.6.9)

By the same argument as in (3.3.7), we have from the regularization with standard mollifiers
(abusing notations for the extended by zero function in the variables (t, x)),

g(u, v) ∗t,x ϕε → g(u, v), strongly in Lr(ΩT ), r < 4, (3.6.10)

and

‖gM(uε,M, vε,M) ∗t,x ϕε − g(u, v)‖Lp(ΩT )

≤ ‖gM(uε,M, vε,M) − g(u, v)‖Lp(ΩT ) + ‖g(u, v) ∗t,x ϕε − g(u, v)‖Lp(ΩT ),

giving by (3.6.9), (3.6.10)

gM(uε,M, vε,M) ∗t,x ϕε → g(u, v), strongly in Lr(ΩT ), r < 4,

and thus, by (3.6.1) (up to subsequences)

vε,M
(
gM(uε,M, vε,M) ∗t,x ϕε

) → v g(u, v), a.e. in ΩT .

Moreover, by assumption (R1), estimates (3.5.1), (3.5.2) and Young’s inequality for convo-
lution we get

‖vε,MgM(uε,M, vε,M) ∗t,x ϕε‖L4(ΩT ) ≤ ‖vε,M‖L∞(ΩT )‖gM(uε,M, vε,M)‖L4(ΩT )‖ϕε‖L1(RN+1) ≤ CT .

Therefore, by Proposition A.6.1 we end up with

vε,MgM(uε,M, vε,M) ∗t,x ϕε → v g(u, v), strongly in Lr(ΩT ), r < 4,

and thus in D′(ΩT ). Then, using the obtained convergence above, all the terms in the first two
equations of (3.1.7) converge in D′(ΩT ). We conclude by taking the limit in the boundary
conditions of (3.1.7), using the continuity of the trace operator and the weak convergence
of ∆A(uε,M, vε,M), ∆vε,M in (3.6.2), (3.6.6), (3.6.7). Finally, using the lower semicontinuity
property of the Lp(ΩT ) norm for p ∈ (1,+∞] we conclude that u, v satisfy (3.1.1) - (3.1.3),
in the sense of Theorem 3.1.1. �

3.7 Uniqueness

This section is devoted to the uniqueness of the solution to (3.1.1) - (3.1.3) when N ≤ 2 (see
Theorem 3.7.1). Before doing that, we show a corollary of Theorem 3.1.1 concerning the
regularity of the solution when N ≤ 2.

Corollary 3.1.

Let (u, v) be the solution given by Theorem 3.1.1. There exists a constant C > 0 such that

‖∇v‖L2(0,T ;L∞(Ω)) ≤ C, if N ≤ 2, (3.7.1)

and

‖∇u‖L2(0,T ;L∞(Ω)) ≤ C, if N = 1. (3.7.2)
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Proof.

We show (3.7.1) using Sobolev inequality (3.2.19), (3.2.20) . Thanks to the boundedness of
v in L4(0,T ; W2,4(Ω)) for any N ≥ 1, shown in Theorem 3.1.1, and the Sobolev embedding
(3.2.19), (3.2.20), there exists a constant C > 0 such that for all t ∈ (0,T )

‖v(t, ·)‖C1,γ(Ω̄) ≤ C(γ,N,Ω)‖v(t, ·)‖W2,4(Ω), with γ = 1 − N

4
, N ≤ 2.

The inequality above together with the boundednees of v in L4(0,T ; W2,4(Ω)) imply that ∇v

is bounded in L2(0,T ; L∞(Ω)) when N ≤ 2.

Similarly, in order to prove (3.7.2) we use the L2(0,T ; H2(Ω)
)−boundedness of A, shown

in Theorem 3.1.1, and the Sobolev inequality (3.2.19), (3.2.20) when N = 1 . Thus, there
exists a constant C(Ω) > 0 such that for any t ∈ (0,T )

‖A(t, ·)‖C1,1/2(Ω̄) ≤ C(Ω)‖A(t, ·)‖H2(Ω),

implying the L2(0,T ; W1,∞(Ω)
)−boundedness of A. Then, by computing ∇A in the weak

sense, for any t ∈ (0,T ) we end up with

‖∂1A(t, ·)∇u(t, ·)‖L∞(Ω) ≤ ‖∇A(t, ·)‖L∞(Ω) + ‖∂2A(t, ·)∇v(t, ·)‖L∞(Ω),

thus taking the square in the above inequality, integrating in time over (0,T ) and using (D2),
(3.7.1), we conclude

a2
0‖∇u‖2

L2(0,T ;L∞(Ω)) ≤ ‖∇A‖2
L2(0,T ;L∞(Ω)) + a2

2‖∇v‖2
L2(0,T ;L∞(Ω)) ≤ C.

�

Before stating the uniqueness result, we introduce some notations and definitions. For
w, z ∈ Lq(0,T ; Lp(Ω)), p, q ∈ [1,+∞], we define

M(t)(p,w,z) B max{‖w(t)‖Lp(Ω), ‖z(t)‖Lp(Ω)}, a.e. t ∈ (0,T ) , (3.7.3)

and for h = h(u, v), k = k(u, v) with u, v ≥ 0 and s.t.

sup
u,v≥ 0

h, sup
u,v≥ 0

k < +∞,

we denote
S (h, k) B max{ sup

u,v≥ 0
h, sup

u,v≥ 0
k}. (3.7.4)

Moreover, we denote the Jacobian matrix of the application (u, v) 7→ ( f (u, v), g(u, v)), as (for
all u, v ≥ 0)

J(u, v) B

[
∂1 f (u, v) ∂2 f (u, v)
∂1g(u, v) ∂2g(u, v)

]
, (3.7.5)

and we consider the following matrix norm

∀ P ∈Mm,n(R), N(P) B max
1≤i≤m

∑

1≤ j≤n

|Pi j|, m, n ∈ N. (3.7.6)

We are now ready to prove the uniqueness for system (3.1.1) - (3.1.3) that is obtained as
an immediate consequence of the stability result below.
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Theorem 3.7.1 (Uniqueness).
Let N ≤ 2. We assume (D1), (D2), (D3), (R1) and the following additional hypothesis:

(i) the diffusivity function A is such that

sup
u,v≥ 0
N(

Hess(A(u, v))
)
< +∞, (U1)

where Hess(A) stands for the Hessian matrix of A;

(ii) the Jacobian matrix (3.7.5) satisfies

sup
u,v≥ 0
N(

J(u, v)
)
< +∞. (U2)

Then, taking two solutions (ui, vi), i = 1, 2 of (3.1.1), (3.1.2), corresponding to the nonnega-

tive initial data (ui, in, vi, in), i = 1, 2, in the sense of Theorem 3.1.1, there exists a constant

Cuniq > 0, depending on Ω, T, a0, a2, dv, C f , Cg, on

sup
u,v≥ 0
N(

Hess(A(u, v))
)
, sup

u,v≥ 0
N(

J(u, v)
)
, ‖u2‖L∞(ΩT ), ‖v2‖L∞(ΩT ),

and on ‖∇v2‖L2(0,T ;L∞(Ω)), ‖∇u2‖Lp(0,T ;Lq(Ω)) with

(p, q) =


(2,∞), if N = 1,

(4, 4), if N = 2,
(3.7.7)

such that

‖u1 − u2‖2L∞(0,T ;L2(Ω))∩ L2(0,T ;H1(Ω)) + ‖v1 − v2‖2L∞(0,T ;L2(Ω))∩ L2(0,T ;H1(Ω))

≤ Cuniq

(‖u1,in − u2,in‖2L2(Ω) + ‖v1,in − v2,in‖2L2(Ω)

)
. (3.7.8)

Finally, if u1,in = u2,in and v1,in = v2,in for a.e. x ∈ Ω, then

u1(t, x) = u2(t, x) and v1(t, x) = v2(t, x), a.e. (t, x) ∈ ΩT ,

so that the uniqueness holds for (3.1.1) - (3.1.3).

Remark 3.5.

We prove the stability inequality (3.7.8) only for N ≤ 2, otherwise a further regularity on ∇ui

is needed, with respect to the regularity obtained in Theorem 3.1.1. In particular if N = 3, by
applying the same tools used to get (3.7.8), we need ∇ui bounded in L8(0,T ; L4(Ω)) (see
(3.7.22)).

Proof.

For a better readability, we first introduce the notations

Ai B A(ui, vi), fi B f (ui, vi), gi B g(ui, vi), i = 1, 2,

∂1Ai B ∂1A(ui, vi), ∂2Ai B ∂2A(ui, vi), i = 1, 2,

and

NJ B sup
i, j=1,2; ui,v j≥ 0

N(
J(ui, v j)

)
, NH B sup

i, j=1,2; ui,v j≥ 0
N(

Hess(A(ui, v j))
)
.
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Now, we compute the equations satisfied by u1 − u2 and v1 − v2 and we multiply by u1 − u2

and λ(v1 − v2), respectively, where the parameter λ > 0 will be chosen later. Then, we
integrate over Ω and we add the obtained formulations to get

1
2

d

dt

( ∫

Ω

|u1 − u2|2dx + λ

∫

Ω

|v1 − v2|2dx
)

= −
∫

Ω

(
∂1A1∇u1 + ∂2A1∇v1

) · ∇(u1 − u2)dx

+

∫

Ω

(
∂1A2∇u2 + ∂2A2∇v2

)
· ∇(u1 − u2)dx

− dvλ

∫

Ω

|∇(v1 − v2)|2dx

+

∫

Ω

(
u1 f (u1, v1) − u2 f (u2, v2)

)
(u1 − u2)dx,

+ λ

∫

Ω

(
v1g(u1, v1) − v2g(u2, v2)

)
(v1 − v2)dx

C Idi f f + Irea. (3.7.9)

It is worth noticing that as N ≤ 2, the solutions are bounded in both components. The
reaction part is then estimated as below

Irea =

∫

Ω

f1|u1 − u2|2dx +

∫

Ω

u2( f1 − f2)(u1 − u2)dx

+ λ

∫

Ω

g1|v1 − v2|2dx + λ

∫

Ω

v2(g1 − g2)(v1 − v2)dx

≤ S ( f1, g1)
( ∫

Ω

|u1 − u2|2dx + λ

∫

Ω

|v1 − v2|2dx
)

+ M(t)(∞,u2,v2)

( ∫

Ω

|∂1 f (ξu, v1)||u1 − u2|2dx + λ

∫

Ω

|∂2g(u2, ξv)||v1 − v2|2dx
)

+ M(t)(∞,u2,v2)

∫

Ω

(
|∂2 f (u2, ξv)| + λ|∂1g(ξu, v1)|

)
|u1 − u2||v1 − v2|dx, (3.7.10)

with from now on ξu ∈
(

min{u1, u2},max{u1, u2}
)
, ξv ∈

(
min{v1, v2},max{v1, v2}

)
and M, S

defined in (3.7.3), (3.7.4), respectively. Then, we have

∫

Ω

|∂1 f (ξu, v1)||u1 − u2|2dx + λ

∫

Ω

|∂2g(u2, ξv)||v1 − v2|2dx

≤ NJ

∫

Ω

|u1 − u2|2dx + λNJ

∫

Ω

|v1 − v2|2dx,
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and using Young’s inequality, we estimate the last integral in (3.7.10) as
∫

Ω

|∂2 f (u2, ξv)||u1 − u2||v1 − v2|dx + λ

∫

Ω

|∂1g(ξu, v1)||u1 − u2||v1 − v2|dx

≤ 1
2

∫

Ω

|∂2 f (u2, ξv)|
(1
λ
|u1 − u2|2 + λ|v1 − v2|2

)
dx

+
1
2

∫

Ω

|∂1g(ξu, v1)|
(
λ|u1 − u2|2 + λ|v1 − v2|2

)
dx

≤ NJ

(1
2
(
λ +

1
λ

) ∫

Ω

|u1 − u2|2dx + λ

∫

Ω

|v1 − v2|2dx
)
.

Therefore, the estimate (3.7.10) becomes

Irea ≤ Crea(t)
(
‖u1 − u2‖2L2(Ω) + λ‖v1 − v2‖2L2(Ω)

)
, (3.7.11)

with, for all t ∈ [0,T ],

Crea(t) B 2 max
{
f1, g1,NJ

}(
1 + M(t)(∞,u2,v2)

(
1 +

1
2
(
λ +

1
λ

)))
. (3.7.12)

Concerning the diffusion part, it holds, using the Young inequality and (D2),

Idi f f = −
∫

Ω

∂1A1|∇(u1 − u2)|2dx − dvλ

∫

Ω

|∇(v1 − v2)|2dx

−
∫

Ω

∂1(A1 − A2)∇u2 · ∇(u1 − u2)dx −
∫

Ω

∂2A1∇(v1 − v2) · ∇(u1 − u2)dx

−
∫

Ω

∂2
(
A1 − A2

)∇v2 · ∇(u1 − u2)dx

≤ −1
4

∫

Ω

∂1A1|∇(u1 − u2)|2dx − dvλ

∫

Ω

|∇(v1 − v2)|2dx

+

∫

Ω

|∇u2|2
∂1A1

|∂1(A1 − A2)|2dx +

∫

Ω

|∂2A1|2
∂1A1

|∇(v1 − v2)|2dx

+

∫

Ω

|∇v2|2
∂1A1

|∂2(A1 − A2)|2dx

≤ −a0

4

∫

Ω

|∇(u1 − u2)|2dx − (
dvλ −

a2
2

a0

) ∫

Ω

|∇(v1 − v2)|2dx

+

∫

Ω

|∇u2|2
∂1A1

|∂1(A1 − A2)|2dx +

∫

Ω

|∇v2|2
∂1A1

|∂2(A1 − A2)|2dx. (3.7.13)

Now, we focus on the two integrals in (3.7.13). The second one is estimated, for N = 1, 2,
using (3.7.1) in Corollary 3.1, as follows

∫

Ω

|∇v2|2
∂1A1

|∂2(A1 − A2)|2dx

≤ 2
a0
‖∇v2‖2L∞(Ω)

∫

Ω

(
|∂21A(ξu, v1)|2|u1 − u2|2 + |∂22A(u2, ξv)|2|v1 − v2|2

)
dx

≤ 2
a0

max
{
1,

1
λ

}
N2

H ‖∇v2‖2L∞(Ω)

∫

Ω

(
|u1 − u2|2 + λ|v1 − v2|2

)
dx. (3.7.14)
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As the first integral in (3.7.13) is estimated depending on the value of N, to continue the
proof we treat the cases N = 1 and N = 2 separately, in the following two paragraphs.

• The case N = 1

Similarly as (3.7.14), the hypothesis (U1) and (3.7.2) imply
∫

Ω

|∇u2|2
∂1A1

|∂1(A1 − A2)|2dx

≤ 2
a0
‖∇u2‖2L∞(Ω)

∫

Ω

(
|∂11A(ξu, v1)|2|u1 − u2|2 + |∂12A(u2, ξv)|2|v1 − v2|2

)
dx

≤ 2
a0

max
{
1,

1
λ

}
‖∇u2‖2L∞(Ω)N2

H

∫

Ω

(
|u1 − u2|2 + λ|v1 − v2|2

)
dx. (3.7.15)

Therefore, using (3.7.14), (3.7.15) the term Idi f f is estimated as below when N = 1

Idi f f ≤ −
a0

4
‖∇(u1 − u2)‖2

L2(Ω) −
(
dvλ −

a2
2

a0

)‖∇(v1 − v2)‖2
L2(Ω)

+C1(t)
(
‖u1 − u2‖2L2(Ω) + λ‖v1 − v2‖2L2(Ω)

)
, (3.7.16)

with, for all t ∈ [0,T ],

C1(t) B
4
a0

max
{
1,

1
λ

}
M2(t)(∞,|∇u2 |,|∇v2 |)N2

H , (3.7.17)

with M(t) defined in (3.7.3).

Finally, plugging (3.7.11), (3.7.16) into (3.7.9) we end up with

1
2

d

dt

(
‖u1 − u2‖2L2(Ω) + λ‖v1 − v2‖2L2(Ω)

)

≤ −a0

4
‖∇(u1 − u2)‖2

L2(Ω) −
(
dvλ −

a2
2

a0

)‖∇(v1 − v2)‖2
L2(Ω)

+
(
C1(t) +Crea(t)

)(‖u1 − u2‖2L2(Ω) + λ‖v1 − v2‖2L2(Ω)

)
, (3.7.18)

i.e.
d

dt

(‖u1 − u2‖2L2(Ω) + λ‖v1 − v2‖2L2(Ω)

)
+Cdi f f ,1

(
‖∇(u1 − u2)‖2

L2(Ω) + ‖∇(v1 − v2)‖2
L2(Ω)

)

≤ 2
(
C1(t) +Crea(t)

)(‖u1 − u2‖2L2(Ω) + λ‖v1 − v2‖2L2(Ω)

)
, (3.7.19)

where λ is chosen in such a way that λ >
a2

2
a0dv

, and

Cdi f f ,1 B 2 min
{a0

4
, dvλ −

a2
2

a0

}
> 0. (3.7.20)

• The case N = 2

In order to estimate the first integral in (3.7.13), we use (D2), the Cauchy-Schwarz
inequality and the L4(ΩT ) boundedness of ∇u2, given by Corollary 3.1, to get

∫

Ω

|∇u2|2
∂1A1

|∂1(A1 − A2)|2dx

≤ 2
a0

∫

Ω

|∇u2|2
(
|∂11A(ζu, v1)|2|u1 − u2|2 + |∂12A(u2, ζv)|2|v1 − v2|2

)
dx

≤ 2
a0
N2

H‖∇u2‖2L4(Ω)

(
‖u1 − u2‖2L4(Ω) + ‖v1 − v2‖2L4(Ω)

)
. (3.7.21)
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Then, the Gagliardo-Nirenberg inequality allows us to estimate the L4 norm of (u1 − u2)
(resp. (v1 − v2)) in terms of the L2 norm of (u1 − u2) (resp. (v1 − v2)) and ∇(u1 − u2) (resp.
∇(v1 − v2)), as follows

‖∇u2‖2L4(Ω)‖u1 − u2‖2L4(Ω)

≤ 2CGN‖∇u2‖2L4(Ω)

(‖∇(u1 − u2)‖L2(Ω)‖u1 − u2‖L2(Ω) + ‖u1 − u2‖2L2(Ω)

)

≤ δCGN‖∇(u1 − u2)‖2
L2(Ω) +

CGN

δ
‖∇u2‖4L4(Ω)‖u1 − u2‖2L2(Ω)

+ 2CGN‖∇u2‖2L4(Ω)‖u1 − u2‖2L2(Ω)

≤ δCGN‖∇(u1 − u2)‖2
L2(Ω)

+CGN max
{
2,

1
δ

}
‖∇u2‖2L4(Ω)(1 + ‖∇u2‖2L4(Ω))‖u1 − u2‖2L2(Ω)

≤ δCGN‖∇(u1 − u2)‖2
L2(Ω) +CGN max

{
2,

1
δ

}
(1 + ‖∇u2‖2L4(Ω))

2‖u1 − u2‖2L2(Ω)

≤ δCGN‖∇(u1 − u2)‖2
L2(Ω) +CD(t)‖u1 − u2‖2L2(Ω), (3.7.22)

with, for all t ∈ (0,T ),

CD(t) B 2CGN max
{
2,

1
δ

}(
1 + ‖∇u2(t)‖4

L4(Ω)

)
, (3.7.23)

where we denote CGN the best constant involved in the Gagliardo-Nirenberg inequality and
with δ > 0 to be chosen later.

Similarly, it holds

‖∇u2‖2L4(Ω)‖v1 − v2‖2L4(Ω) ≤ δCGN‖∇(v1 − v2)‖2
L2(Ω) +CD(t)‖v1 − v2‖2L2(Ω),

so that (3.7.21) is estimated as
∫

Ω

|∇u2|2
∂1A1

|∂1(A1 − A2)|2dx

≤ 2δ
a0

CGNN2
H

(
‖∇(u1 − u2)‖2

L2(Ω) + ‖∇(v1 − v2)‖2
L2(Ω)

)

+
2
a0
N2

HCD(t)
(‖u1 − u2‖2L2(Ω) + ‖v1 − v2‖2L2(Ω)

)

≤ 2δ
a0

CGNN2
H

(
‖∇(u1 − u2)‖2

L2(Ω) + ‖∇(v1 − v2)‖2
L2(Ω)

)

+
2
a0

max
{
1,

1
λ

}
N2

HCD(t)
(‖u1 − u2‖2L2(Ω) + λ‖v1 − v2‖2L2(Ω)

)
. (3.7.24)

Therefore, by (3.7.14), (3.7.24), the term Idi f f is estimated as below when N = 2,

Idi f f ≤ −
(a0

4
− 2δ

a0
CGNN2

H

)
‖∇(u1 − u2)‖2

L2(Ω) −
(
dvλ −

a2
2

a0
− 2δ

a0
CGNN2

H

)
‖∇(v1 − v2)‖2

L2(Ω)

+C2(t)
(‖u1 − u2‖2L2(Ω) + λ‖v1 − v2‖2L2(Ω)

)
, (3.7.25)

with, for any t ∈ [0,T ],

C2(t) B
2
a0

max
{
1,

1
λ

}
N2

H

(
CD(t) + ‖∇v2(t)‖2L∞(Ω)

)
, (3.7.26)

103



3.7. Uniqueness

and CD(t) defined in (3.7.23).

Finally, plugging (3.7.11), (3.7.25) into (3.7.9) we end up with

1
2

d

dt

(
‖u1 − u2‖2L2(Ω) + λ‖v1 − v2‖2L2(Ω)

)

≤ −
(a0

4
− 2δ

a0
CGNN2

H

)
‖∇(u1 − u2)‖2

L2(Ω) −
(
dvλ −

a2
2

a0
− 2δ

a0
CGNN2

H

)
‖∇(v1 − v2)‖2

L2(Ω)

+
(
C2(t) +Crea(t)

)(‖u1 − u2‖2L2(Ω) + λ‖v1 − v2‖2L2(Ω)

)
. (3.7.27)

Now, we choose δ > 0 such that

a0

4
− 2δ

a0
CGNN2

H > 0 ⇐⇒ 0 < δ <
a2

0

8CGNN2
H

, (3.7.28)

and we choose λ > 0 such that, for δ > 0 given above,

dvλ −
a2

2

a0
− 2δ

a0
CGNN2

H > 0 ⇐⇒ λ >
a2

2 + 2δCGNN2
H

a0dv

.

Taking into account the admissible values of δ in (3.7.28), the above inequality is satisfied if

λ >
a2

2

a0dv

+
a0

4dv

. (3.7.29)

Therefore we obtain

d

dt

(‖u1 − u2‖2L2(Ω) + λ‖v1 − v2‖2L2(Ω)

)

+Cdi f f ,2‖∇(u1 − u2)‖2
L2(Ω) + ‖∇(v1 − v2)‖2

L2(Ω)

≤ 2(C2(t) +Crea(t))
(‖u1 − u2‖2L2(Ω) + λ‖v1 − v2‖2L2(Ω)

)
, (3.7.30)

with

Cdi f f ,2 B 2 min
{a0

4
− 2δ

a0
CGNN2

H , dvλ −
a2

2

a0
− 2δ

a0
CGNN2

H

}
> 0. (3.7.31)

To conclude, we define for all t ∈ [0,T ] and N = 1, 2

ĈN(t) B 2(CN(t) +Crea(t)), (3.7.32)

y(t) B ‖(u1 − u2)(t, ·)‖2
L2(Ω) + λ‖(v1 − v2)(t, ·)‖2

L2(Ω),

ω(t) B ‖∇((u1 − u2)(t, ·))‖2
L2(Ω) + ‖∇((v1 − v2)(t, ·))‖2

L2(Ω),

with Crea(t) and CN(t) defined in (3.7.12), (3.7.17), (3.7.26). Then, in both cases N = 1, 2,
the inequalities (3.7.19), (3.7.30) rewrite, for all t ∈ [0,T ], as

d

dt
y(t) +Cdi f f ,N ω(t) ≤ ĈN(t) y(t). (3.7.33)

Thus, we multiply (3.7.33) by e−
∫ t

0 ĈN (s)ds to get

d

dt

(
y(t)e−

∫ t

0 ĈN (s)ds
)
+Cdi f f ,N w(t)e−

∫ t

0 ĈN (s)ds ≤ 0.
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Then by integrating in time, we obtain

y(t) +Cdi f f ,N e
∫ t

0 ĈN (s)ds

∫ t

0
w(s)e−

∫ s

0 ĈN (σ)dσds ≤ y(0)e
∫ t

0 ĈN (s)ds.

Finally, taking the supremum in t ∈ (0,T ) we conclude

‖y(t)‖L∞(0,T ) +Cdi f f ,N

∫ T

0
ω(s)ds ≤ e

∫ T

0 ĈN (s)ds‖y(0)‖L∞(0,T ), (3.7.34)

giving (3.7.8) with Cuniq that depends on Cdi f f ,N and CN(t) for t ∈ (0,T ) and N = 1, 2. �

Remark 3.6.

It is worth noticing that the constant Cuniq in (3.7.8) does not depend on the solution (u1, v1),
since the constants Cdi f f ,N and CN(t), defined in (3.7.20), (3.7.31), (3.7.32), do not depend
on (u1, v1), for N ≤ 2. This will be fundamental to obtain the weak-strong stability result in
Theorem 3.3 (see Section 3.8).

3.8 Weak-strong stability and uniqueness

The aim of this section is twofold. On the one hand we will prove that, under slightly stricter
assumptions, the cross-diffusion system (2.1.7) - (2.1.13), in Chapter 2, is included in the
class of cross-diffusion systems (3.1.1) - (3.1.3) analysed in this chapter, i.e. it satisfies
(D1), (D2), (D3), (R1) and (U1), (U2). Therefore, if the initial data satisfy the hypothesis of
Theorem 3.1.1, the system (2.1.7) - (2.1.13) admits a strong solution, in the sense of Theorem

3.1.1. Moreover, this solution is unique when N ≤ 2, thanks to the uniqueness result in
Theorem 3.7.1 (see Theorem 3.2).

On the other hand, we will show that, if in addition α ≥ 1 (and thus, β ≥ 1), the stability
estimate (3.7.8) turns into a weak-strong stability result, when N ≤ 2 (see Theorem 3.3). A
direct consequence of the latter result is the weak-strong uniqueness of the solution to (2.1.7)
- (2.1.13) (see Corollary 3.8.1). We refer to [6, 48] for further weak-strong stability results
applied to cross-diffusion systems.

Before proceeding, for the reader’s convenience, we recall here the system (2.1.7) -
(2.1.11), i.e. 

∂tu − ∆(A(u, v)) = Fu(u, v), in (0,+∞) ×Ω,
∂tv − ∆(dvv) = Fv(u, v), in (0,+∞) ×Ω,

(3.8.1)

with
A(u, v) := dau∗a(u, v) + dbu∗b(u, v), (3.8.2)

and where
(
u∗a(u, v), u∗

b
(u, v)

)
satisfies the nonlinear system


ua + ub = u,

Q(ua, ub, v) B φ(bub + dv) ub − ψ(aua + cv) ua = 0.
(3.8.3)

Moreover, the reaction functions are given by

Fu(u, v) B fu(u∗a(u, v), u∗b(u, v), v),

Fv(u, v) B fv(u∗a(u, v), u∗b(u, v), v),
(3.8.4)
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where fu and fv are defined in (2.1.2), (2.1.11) and the transition functions φ, ψ are the same
transition functions considered in Chapter 2 (see (H1)). However, we assume now that both
φ and ψ are lower bounded by a strictly positive constant, i.e. we assume,

ψ(x) B (A + x)α, φ(x) B (B + x) β, ∀ x ≥ 0, (H1)

with

A > 0, B > 0, (H2’)

and

0 < α ≤ β ≤ min

{
6
N
, (
√

7 + 2)α +
√

7 + 1

}
. (H3)

Thanks to (H1), (H2’), as shown in Section 2.3, for all u, v ≥ 0, there exists a unique
(u∗a(u, v), u∗

b
(u, v)) solution to the nonlinear system (3.8.3). It can be written as

u∗a(u, v) = r∗a(u, v)u and u∗b(u, v) = r∗b(u, v)u, (3.8.5)

with

r∗a(u, v), r∗b(u, v) ∈ (0, 1), r∗a(u, v) + r∗b(u, v) = 1. (3.8.6)

Moreover, thanks to the strict positivity of A and B in (H2’), we will see in Subsection 3.8.2

that u∗a(u, v) and u∗
b
(u, v) are two differentiable maps, from R2

+ to R+, and that the diffusivity
function A(u, v) in (3.8.2) is a C2(R2

+,R+) function. This will be fundamental to obtain
Theorem 3.2 (see Subsection 3.8.2).

Assuming in addition that α ≥ 1 (and thus, β ≥ 1), we have that u lies in L4(ΩT ) (see
point (i) of Theorem 2.5.2) so that Fu belongs to L2(ΩT ). Therefore, thanks to the regularity
of ∇A(u, v), we have also that ∂tu belongs to L2(0,T ; (H1(Ω))′) and the very weak solution,
given by Theorem 2.5.2, is in fact a weak solution, i.e. it satisfies, for all T > 0 and for all
test functions ξ1, ξ2 ∈ L2(0,T ; H1(Ω)) ∩ H1(0,T ; L2(Ω)),

−
∫ T

0

∫

Ω

(∂tξ1)udxdt −
∫

Ω

ξ1(0, · )uindx +

∫ T

0

∫

Ω

∇ξ1 · ∇
(
dau∗a(u, v) + dbu∗b(u, v)

)
dxdt

=

∫ T

0

∫

Ω

ξ1Fu(u, v) dxdt,

and

−
∫ T

0

∫

Ω

(∂tξ2) v dxdt −
∫

Ω

ξ2(0, · ) vin dx + dv

∫ T

0

∫

Ω

∇ξ2 · ∇v dxdt

=

∫ T

0

∫

Ω

ξ2 Fv(u, v) dxdt.

This will be fundamental when we apply Theorem 3.7.1, in order to obtain the weak-strong
stability in Theorem 3.3, stated in the following subsection.

We are now ready to state the announced results.
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3.8.1 Statements of the main results

Theorem 3.2 (Existence and uniqueness of strong solutions).
Let N ≥ 1. We assume (H1), (H2’), (H3) and we consider nonnegative initial data satisfying

uin ∈
(
L4∩H1)(Ω), vin ∈

(
L∞∩H3)(Ω). Then, for all T > 0 there exists a strong nonnegative

(for each component) solution (u, v) of (3.8.1) - (3.8.4), in the sense of Theorem 3.1.1. In

addition, if N ≤ 2, the strong solution is unique.

Theorem 3.3 (Weak-strong stability).
Let N ≤ 2. We assume (H1), (H2’), (H3), α ≥ 1 and we consider a pair of initial data

(uw,in, vw,in) satisfying (2.1.13), (H4), and a pair of nonnegative initial data (us,in, vs,in)
satisfying us,in ∈

(
L4 ∩ H1)(Ω), vs,in ∈

(
L∞ ∩ H3)(Ω). Let (uw, vw) be a weak solution to

(3.8.1) - (3.8.4), corresponding to (uw,in, vw,in), given by Theorem 2.5.2, and (us, vs) be the

unique strong solution, corresponding to (us,in, vs,in), given by Theorem 3.2. Then, there

exists a constant Cws > 0 depending on Ω, T, a0, a2, dv, C f , Cg, on

sup
u,v≥ 0
N(

Hess(A(u, v))
)
, sup

u,v≥ 0
N(

J(u, v)
)
, ‖us‖L∞(ΩT ), ‖vs‖L∞(ΩT ),

with N defined in (3.7.6), and on ‖∇vs‖L2(0,T ;L∞(Ω)), ‖∇us‖Lp(0,T ;Lq(Ω)), with

(p, q) =


(2,∞), if N = 1,

(4, 4), if N = 2,
(3.8.7)

such that

‖uw − us‖2L∞(0,T ;L2(Ω))∩ L2(0,T ;H1(Ω)) + ‖vw − vs‖2L∞(0,T ;L2(Ω))∩ L2(0,T ;H1(Ω))

≤ Cws

(
‖uw,in − us,in‖2L2(Ω) + ‖vw,in − vs,in‖2L2(Ω)

)
, (3.8.8)

Corollary 3.8.1 (Weak-strong uniqueness).
Under the assumptions of Theorem 3.3, if uw,in = us,in and vw,in = vs,in, for a.e. x ∈ Ω, we

have

uw(t, x) = us(t, x) and vw(t, x) = vs(t, x), for a.e. (t, x) ∈ ΩT ,

so that the weak solution is a strong solution.

As announced, these results follow as soon as we prove that the system (3.8.1) - (3.8.4)
satisfies (D1), (D2), (D3), (R1) and (U1), (U2). This is the goal of the next subsection.

3.8.2 Proof of the main results

We start by showing that, assuming (H1), (H2’), (H3), the diffusivity function A(u, v) is a
C2(R2

+,R+) function. As A(0, v) = 0, for all v ≥ 0, assumption (D1) will follow. Then, we
will show that A(u, v) satisfies also (D2) and (U1). Assumption (D3) is then a consequence
of (U1). From the definition of A(u, v), this corresponds to analyse the properties of u∗a(u, v)
and u∗

b
(u, v).

We first observe that, thanks to the assumption (H2’), the transition functions φ, ψ are
C∞(R+,R+). Moreover, we know that u∗

b
(u, v) is the unique zero of the increasing function
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q(ub; u, v) defined in (2.3.1). Then, the implicit function theorem guarantees the C1 character
of u∗

b
with respect to (u, v), and thus of u∗a(u, v) = u − u∗

b
(u, v).

Next, we proceed by computing the gradient of u∗a, u
∗
b
. By differentiating (3.8.2), we

obtain
∂iA(u, v) = da∂iu

∗
a(u, v) + db∂iu

∗
b(u, v), i = 1, 2. (3.8.9)

Let us denote
ψ∗ B ψ(au∗a(u, v) + cv), φ∗ B φ(bu∗b(u, v) + dv),

∂iQ
∗
B ∂iQ(u∗a(u, v), u∗b(u, v), v) , ∂i jQ

∗
B ∂i jQ(u∗a(u, v), u∗b(u, v), v) , i, j = 1, 2, 3 ,

and
u∗a B u∗a(u, v), u∗b B u∗b(u, v) .

By differenting the identity Q
(
u∗a, u

∗
b
, v

)
= 0, with respect to u and v and using u = u∗a + u∗

b
,

we get

∂1u∗a ∂1Q∗ + (1 − ∂1u∗a) ∂2Q∗ = 0,

∂2u∗a ∂1Q∗ − ∂2u∗a ∂2Q∗ + ∂3Q∗ = 0,

that implies

∂1u∗a =
∂2Q∗

∂2Q∗ − ∂1Q∗
= 1 − ∂1u∗b, (3.8.10)

∂2u∗a =
∂3Q∗

∂2Q∗ − ∂1Q∗
= −∂2u∗b. (3.8.11)

We compute now the gradient of the conversion function Q(ua, ub, v) in (2.1.3) and we
obtain, thanks to the positivity of φ, ψ, φ′, ψ′, for all ua, ub, v ≥ 0,

∂1Q(ua, ub, v) = −ψ(aua + cv) − auaψ
′(aua + cv) < 0,

∂2Q(ua, ub, v) = φ(bub + dv) + bubφ
′(bub + dv) > 0,

(3.8.12)

and
∂3Q(ua, ub, v) = dubφ

′(bub + dv) − cuaψ
′(aua + cv). (3.8.13)

As Q is a C∞(R3
+,R) function and since it holds ∂2Q(ua, ub, v) − ∂1Q(ua, ub, v) > 0, for all

ua, ub, v ≥ 0, we see by (3.8.10), (3.8.11), that ∂iu
∗
a, ∂iu

∗
b
, i = 1, 2, are differentiable, so that

A(u, v) ∈ C2(R2
+,R+). Therefore, the assumption (D1) is satisfied.

In order to prove (D2), we have to estimate the gradient of u∗a, u
∗
b
. From (3.8.12), it holds

for all ua, ub, v ≥ 0,

−1 <
∂1Q

∂2Q − ∂1Q
< 0 and 0 <

∂2Q

∂2Q − ∂1Q
< 1. (3.8.14)

Moreover, by (3.8.13) we have

− cuaψ
′

φ + ψ + bubφ′ + auaψ′
≤ ∂3Q

∂2Q − ∂1Q
≤ dubφ

′

φ + ψ + bubφ′ + auaψ′
,

giving

− c

a
≤ ∂3Q

∂2Q − ∂1Q
≤ d

b
. (3.8.15)
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Therefore, using (3.8.14) in (3.8.10), we get

∂1u∗a ∈ (0, 1) and ∂1u∗b ∈ (0, 1), (3.8.16)

while using (3.8.15) in (3.8.11), we obtain

− c

a
≤ ∂2u∗a ≤

d

b
and − d

b
≤ ∂2u∗b ≤

c

a
. (3.8.17)

Finally, from (3.8.9), we get on the one hand, using ∂1u∗a + ∂1u∗
b
= 1,

0 < min{da, db} ≤ ∂1A(u, v) ≤ max{da, db},

and on the other hand, using (3.8.17)

|∂2A(u, v)| ≤ da|∂2u∗a| + db|∂2u∗b| ≤ (da + db)

(
c

a
+

d

b

)
.

Therefore, A(u, v) satisfies (D2) by taking

a0 B min{da, db}, a1 B max{da, db}, a2 B (da + db)

(
c

a
+

d

b

)
.

In order to verify (U1), we need to compute the hessian of A(u, v) in (3.8.2), i.e. to
compute the hessian of u∗a and u∗

b
. Observing that ∂i ju

∗
a = −∂i ju

∗
b
, for i, j = 1, 2, and that

∂12u∗a = ∂21u∗a, by the regularity of u∗a, we will compute only ∂11u∗a, ∂12u∗a, ∂22u∗a.

From (3.8.10), it holds

∂11u∗a =
∂u (∂2Q∗)

∂2Q∗ − ∂1Q∗
− ∂2Q∗ (∂u (∂2Q∗) − ∂u (∂1Q∗))

(∂2Q∗ − ∂1Q∗)2

=
−∂u (∂2Q∗) ∂1Q∗ + ∂u (∂1Q∗) ∂2Q∗

(∂2Q∗ − ∂1Q∗)2
.

Then, using (3.8.14), (3.8.16) and ∂12Q = ∂21Q = 0, we get

|∂11u∗a| ≤
|∂u (∂2Q∗) | + |∂u (∂1Q∗) |

∂2Q∗ − ∂1Q∗

≤
|∂22Q∗|∂1u∗

b
+ |∂11Q∗|∂1u∗a

∂2Q∗ − ∂1Q∗

≤ |∂22Q∗|
∂2Q∗ − ∂1Q∗

+
|∂11Q∗|

∂2Q∗ − ∂1Q∗
. (3.8.18)

Similarly, from (3.8.10) again, it holds

∂12u∗a =
∂v (∂2Q∗)

∂2Q∗ − ∂1Q∗
− ∂2Q∗ (∂v (∂2Q∗) − ∂v (∂1Q∗))

(∂2Q∗ − ∂1Q∗)2

=
−∂v (∂2Q∗) ∂1Q∗ + ∂v (∂1Q∗) ∂2Q∗

(∂2Q∗ − ∂1Q∗)2
,
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and using (3.8.14), (3.8.17), we get

|∂12u∗a| ≤
|∂v (∂2Q∗) | + |∂v (∂1Q∗) |

∂2Q∗ − ∂1Q∗

≤
∣∣∣∂22Q∗∂2u∗

b
+ ∂23Q∗

∣∣∣
∂2Q∗ − ∂1Q∗

+

∣∣∣∂11Q∗∂2u∗a + ∂13Q∗
∣∣∣

≤
( c

a
+

d

b

)( |∂22Q∗| + |∂11Q∗|
∂2Q∗ − ∂1Q∗

)
+
|∂23Q∗| + |∂13Q∗|
∂2Q∗ − ∂1Q∗

. (3.8.19)

Finally, we compute ∂22u∗a from (3.8.11) and we obtain

∂22u∗a =
∂v (∂3Q∗)

∂2Q∗ − ∂1Q∗
− ∂3Q∗ (∂v (∂2Q∗) − ∂v (∂1Q∗))

(∂2Q∗ − ∂1Q∗)2
.

Using (3.8.15), we have

|∂22u∗a| ≤
|∂v (∂3Q∗)|
∂2Q∗ − ∂1Q∗

+
|∂v (∂2Q∗)| + |∂v (∂1Q∗)|

∂2Q∗ − ∂1Q∗

(
d

b
+

c

a

)
.

Recalling that ∂12Q∗ = ∂21Q∗ = 0 and using (3.8.17), we end up with

|∂22u∗a| ≤
|∂31Q∗| |∂2u∗a| + |∂32Q∗| |∂2u∗

b
| + |∂33Q∗|

∂2Q∗ − ∂1Q∗

+
|∂22Q∗| |∂2u∗

b
| + |∂23Q∗| + |∂11Q∗| |∂2u∗a| + |∂13Q∗|

∂2Q∗ − ∂1Q∗

(
d

b
+

c

a

)

≤ |∂33Q∗|
∂2Q∗ − ∂1Q∗

+
|∂31Q∗| + |∂32Q∗|
∂2Q∗ − ∂1Q∗

(
d

b
+

c

a

)

+
|∂23Q∗| + |∂13Q∗|
∂2Q∗ − ∂1Q∗

(
d

b
+

c

a

)
+
|∂22Q∗| + |∂11Q∗|
∂2Q∗ − ∂1Q∗

(
d

b
+

c

a

)2

. (3.8.20)

Therefore, in order to estimate (3.8.18) - (3.8.20), we need to estimate the ratios
|∂i jQ|

∂2Q−∂1Q
,

i, j = 1, 2, 3.

From (3.8.12), the Hessian of Q is given by

Hess(Q) =



−2aψ′ − a2uaψ
′′ 0 −cψ′ − acuaψ

′′

0 2bφ′ + b2ubφ
′′ dφ′ + bdubφ

′′

−cψ′ − acuaψ
′′ dφ′ + bdubφ

′′ d2ubφ
′′ − c2uaψ

′′

 . (3.8.21)

Then, for φ, ψ in (H1), (H2’) and for all x ≥ 0, we have

∣∣∣∣∣
ψ′(x)
ψ(x)

∣∣∣∣∣ =
ψ′(x)
ψ(x)

=
α(A + x)α−1

(A + x)α
≤ α

A
, (3.8.22)

∣∣∣∣∣
ψ′′(x)
ψ′(x)

∣∣∣∣∣ =
|ψ′′(x)|
ψ′(x)

=
α|α − 1|(A + x)α−2

α(A + x)α−1
≤ |α − 1|

A
, (3.8.23)

∣∣∣∣∣
φ′(x)
φ(x)

∣∣∣∣∣ =
φ′(x)
φ(x)

=
β(B + x)β−1

(B + x)β
≤ β

B
, (3.8.24)

∣∣∣∣∣
φ′′(x)
φ′(x)

∣∣∣∣∣ =
|φ′′(x)|
φ′(x)

=
β|β − 1|(B + x)β−2

β(B + x)β−1
≤ |β − 1|

B
. (3.8.25)
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Using (3.8.21) and the strict positivity of ψ, φ, ψ′φ′, we have

|∂11Q|
∂2Q − ∂1Q

≤ 2aψ′ + a2ua|ψ′′|
φ + ψ + auaψ′ + bubφ′

≤ 2a
ψ′

ψ
+ a
|ψ′′|
ψ′
≤ 2aα

A
+

a|α − 1|
A

. (3.8.26)

Similarly, it holds

|∂22Q|
∂2Q − ∂1Q

≤ 2bφ′ + b2ub|φ′′|
φ + ψ + auaψ′ + bubφ′

≤ 2b
φ′

φ
+ b
|φ′′|
φ′
≤ 2bβ

B
+

b|β − 1|
B

, (3.8.27)

and

|∂33Q|
∂2Q − ∂1Q

≤ d2ub|φ′′| + c2ua|ψ′′|
φ + ψ + auaψ′ + bubφ′

≤ d2

b

|φ′′|
φ′
+

c2

a

|ψ′′|
ψ′
≤ d2|β − 1|

bB
+

c2|α − 1|
aA

. (3.8.28)

Next, we get

|∂13Q|
∂2Q − ∂1Q

≤ cψ′ + acua|ψ′′|
φ + ψ + auaψ′ + bubφ′

≤ c
ψ′

ψ
+ c
|ψ′′|
ψ′
≤ cα

A
+

c|α − 1|
A

, (3.8.29)

and

|∂23Q|
∂2Q − ∂1Q

≤ dφ′ + bdub|φ′′|
φ + ψ + auaψ′ + bubφ′

≤ d
φ′

φ
+ d
|φ′′|
φ′
≤ dβ

B
+

d|β − 1|
B

. (3.8.30)

To conclude, thanks to (3.8.26) - (3.8.30) and recalling Q12 = Q21 = 0, the ratios
|∂i jQ|

∂2Q−∂1Q
, i, j = 1, 2, 3, and the derivative ∂i ju

∗
a = −∂i ju

∗
b

are bounded, i.e. A(u, v) satisfies
(U1).

It remains to show that assumptions (R1) and (U2) are satisfied by the reaction functions
(3.8.4). In order to do that, we first observe that, using (3.8.5), (3.8.6), the functions Fu and
Fv can be written as competition reaction functions with non constant coefficients, i.e.

Fu(u, v) = u f (u, v) and Fv(u, v) = ug(u, v) ,

with

f (u, v) := f1(u, v) − u f2(u, v) − v f3(u, v),

g(u, v) := g1(u, v) − ug2(u, v) − vg3(u, v),
(3.8.31)

and fi, gi, i = 1, 2, 3, such that

f1(u, v) = ηar∗a(u, v) + ηbr∗b(u, v),

f2(u, v) = ηaa r∗a(u, v)2 + ηbb r∗b(u, v)2 + (γa + γb)r∗a(u, v) r∗b(u, v) ,

f3(u, v) = ηac r∗a(u, v) + ηbd r∗b(u, v) ,

(3.8.32)
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and

g1(u, v) = η′v + η
′′
v ,

g2(u, v) = η′va r∗a(u, v) + η′′v b r∗b(u, v),

g3(u, v) = η′vc + η′′v d.

(3.8.33)

Then, by (3.8.6), we see that f and g satisfy the growing behaviour in assumption (R1).

Next, by computing the gradient of f , defined in (3.8.31), (3.8.32), for all u, v ≥ 0, we
get

∂1 f (u, v) = ∂1 f1(u, v) − f2(u, v) − u∂1 f2(u, v) − v∂1 f3(u, v),

∂2 f (u, v) = ∂2 f1(u, v) − u∂2 f2(u, v) − f3(u, v) − v∂2 f3(u, v),
(3.8.34)

with, for i = 1, 2,

∂i f1 = ηa∂ir
∗
a + ηb∂ir

∗
b,

∂i f2 = 2ηaar∗a∂ir
∗
a + 2ηbbr∗b∂ir

∗
b + (γa + γb)(r∗a∂ir

∗
b + r∗b∂ir

∗
a),

∂i f3 = ηac∂ir
∗
a + ηbd∂ir

∗
b.

(3.8.35)

Thus, we need to estimate ∂ir
∗
a and ∂ir

∗
b
, i = 1, 2. By differentiating r∗a in (2.3.5) with respect

to u, using the identity r∗a + r∗
b
= 1 and denoting

(ψ′)∗ := ψ′(au∗a(u, v) + cv) , (φ′)∗ := φ′(bu∗b(u, v) + dv) ,

we get

∂1r∗a = −∂1r∗b =
b(φ′)∗∂1u∗

b
ψ∗ − aφ∗∂1u∗a(ψ′)∗

(φ∗ + ψ∗)2
.

Thanks to the positivity of φ, ψ, φ′, ψ′ and to the bounds of ∂1u∗a, ∂1u∗
b

in (3.8.16), we obtain

−a(ψ′)∗

ψ∗
≤ ∂1r∗a ≤

b(φ′)∗

φ∗
.

Thus, (3.8.22) and (3.8.24) give

−aα

A
≤ ∂1r∗a ≤

bβ

B
and − bβ

B
≤ ∂1r∗b ≤

aα

A
. (3.8.36)

Similarly, for ∂2r∗a and ∂2r∗
b

we differentiate r∗a in (2.3.5) with respect to v, to get

∂2r∗a = −∂2r∗b =
(φ′)∗(b∂2u∗

b
+ d)

φ∗ + ψ∗
−
φ∗

(
(φ′)∗(b∂2u∗

b
+ d) + (ψ′)∗(a∂2u∗a + c)

)

(φ∗ + ψ∗)2

=
ψ∗(φ′)∗(b∂2u∗

b
+ d) − φ∗(ψ′)∗(a∂2u∗a + c)

(φ∗ + ψ∗)2
, (3.8.37)

and

− (ψ′)∗

ψ∗
(
a∂2u∗a + c

) ≤ ∂2r∗a(u, v) ≤ (φ′)∗

φ∗
(
b∂2u∗b + d

)
.

Thus, using (3.8.17), (3.8.22), (3.8.24), we obtain the following bounds for ∂2r∗a, ∂2r∗
b
,

−α
A

(
ad

b
+ c

)
≤ ∂2r∗a ≤

β

B

(
bc

a
+ d

)
, (3.8.38)
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and

− β
B

(
bc

a
+ d

)
≤ ∂2r∗b ≤

α

A

(
ad

b
+ c

)
. (3.8.39)

Finally, by differentiating the identities in (3.8.5) with respect to u, we obtain

∂1u∗a = r∗a + u∂1r∗a, ∂1u∗b = r∗b + u∂1r∗b,

so that, thanks to (3.8.6), (3.8.16), the following bound holds

|u∂1r∗a|, |u∂1r∗b| ≤ 1. (3.8.40)

On the other hand, by differentiating the identities in (3.8.5) with respect to v, it holds

∂2u∗a = u∂2r∗a and ∂2u∗b = u∂2r∗b,

so that, (3.8.17) implies

− c

a
≤ u∂2r∗a ≤

d

b
and − d

b
≤ u∂2r∗b ≤

c

a
. (3.8.41)

To conclude, all terms in (3.8.34), (3.8.35) are bounded thanks to the bounds of r∗a, r
∗
b

in (3.8.6), the bounds of ∂ir
∗
a, ∂ir

∗
b

in (3.8.36), (3.8.38), (3.8.39), the bounds of u∂ir
∗
a, u∂ir

∗
b

in (3.8.40), (3.8.41), the boundedness of v, shown in Theorem 2.5.2, and the bounds of fi
defined in (3.8.32).

The gradient of g, defined in (3.8.31), (3.8.33), is also bounded because of (3.8.6)
(3.8.40), (3.8.41). Thus, we conclude that the reaction functions of the cross-diffusion
system (3.8.1) - (3.8.4) satisfy the assumptions (R1) and (U2).
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Chapter 4
Perspectives

The results of this thesis suggest natural extensions and future directions of research.

As a possible perspective, I’m interested in the linear stability analysis of the spatially
homogeneous equilibria of the system (3.8.1) - (3.8.4), in order to yield Turing instability.
Moreover, we recall that the system (3.8.1) - (3.8.4) is the natural generalization of the
cross-diffusion system (1.1.6) - (1.1.9), introduced in Chapter 1 and for which we proved
that no segregation of species occurs. Therefore, it is natural to investigate how the presence
of the cross-diffusion terms and the competitive reaction terms in (3.8.1) - (3.8.4) influence
the pattern formation and if Turing instability occurs (see [9, 10]). Moreover, by following
the works in [68, 82], one could also explore the bifurcation structure of the system to
understand how it changes, depending on the values of the parameters.

A forthcoming work concerns the regularity of the solution to the cross-diffusion system
(2.1.7) - (2.1.13), obtained by the mesoscopic approach (see Chapter 2). It is based on a
priori estimates shown by the analysis of the energy functional below and by a bootstrap
argument,

Ep(ua, ub, v) :=
∫

Ω

ha,p(ua, v) dx +

∫

Ω

hb,p(ub, v) dx, p > 2, (4.0.1)

(see (2.2.1), (2.2.2)). We recall that in Chapter 2, we considered a subfamily of {Ep}p≥1, in
order to get enough compactness and then to pass to the limit. More specifically, in Lemma

2.7.1 we obtained the energy estimates for the following values of p

p = 1, p = 1 +
1

β + 1
, p = 1 +

1
α + 1

, p = 2.

Now, the idea is to estimate uniformly in ε the evolution of Ep for any p > 2. This
improves the regularity of the solution (uεa, u

ε
b
, vε) to the mesoscopic system (2.1.1) - (2.1.6)

and thus, the regularity of the solution (u B u∗a + u∗
b
, v) to the macroscopic system (2.1.7) -

(2.1.13), obtained as ε → 0. Then, we perform a bootstrap argument, i.e. we estimate the
evolution of Ep, using the estimates from the evolution of Ep−1.

A third research project consists on studying the existence of non-homogeneous sta-
tionary solutions to a class of cross-diffusion systems, including the system (3.1.1) - (3.1.3)
considered in Chapter 3, and its asymptotic behavior. This is the subject of a current work in
collaboration with E. Montefusco and it is detailed below.

115



4. Perspectives

Following the work of Lou et al. in [62, 63, 65], we study the existence of non-
homogeneous stationary solutions to a class of full cross-diffusion systems of two equations,
i.e. when both equations include cross-diffusion terms. The system we are interested in
generalises the system introduced in Chapter 3 and writes as below



∂tu − ∆
(
A(u, v)

)
= u f (u, v), in ΩT ,

∂tv − ∆
(
B(u, v)

)
= vg(u, v), in ΩT ,

∇(A(u, v)) · σ = ∇(B(u, v)) · σ = 0, on (0,T ) × ∂Ω.

We want to study the asymptotic behavior of the system above, which entails analysing the
existence, uniqueness and regularity of the nonnegative solutions to the following elliptic
cross-diffusion system,



−∆(A(u, v)
)
= u f (u, v), in Ω,

−∆(B(u, v)
)
= vg(u, v), in Ω,

∇(A(u, v)) · σ = ∇(B(u, v)) · σ = 0, on ∂Ω.

(4.0.2)

The strategy for studying the existence to (4.0.2) consists in adapting the tools used to
prove the existence of strong solutions to the triangular parabolic cross-diffusion system
(3.1.1) - (3.1.3), in Theorem 3.1.1. The uniqueness and the qualitative properties of the
solutions to the system (4.0.2) will be treated thereafter, in order to complement the analysis.

We point out that in Chapter 3, we took advantage of the triangular structure of the
system (3.1.1), (3.1.2), that allowed us to apply the maximal regularity in the equation
satisfied by v. On the contrary, since the system (4.0.2) is a full cross-diffusion system, we
cannot apply the classical results of elliptic theory. However, here we take advantage of the
absence of the evolutionary terms ∂tu, ∂tv.

As in Chapter 3, the main difficulty in studying (4.0.2) comes from the nonlinear diffusion
terms ∆

(
A(u, v)

)
and ∆

(
B(u, v)

)
. The key ingredient that we use to handle this difficulty is

the introduction of a suitable change of variable. In order to do that, we make the following
assumptions on system (4.0.2): the diffusivity functions A, B are such that

A, B ∈ C2(R2
+,R+) with A(0, v) = 0, and B(0, v) = 0, for all v ≥ 0. (E1)

There exist a0, a1, a2 > 0 such that for all u, v ≥ 0,

0 < a0 ≤ ∂1A(u, v) ≤ a1 and |∂2A(u, v)| ≤ a2. (E2)

There exist b0, b1, b2 > 0 such that for all u, v ≥ 0,

0 < b0 ≤ ∂2B(u, v) ≤ b1 and |∂1B(u, v)| ≤ b2. (E3)

There exist a3, b3 > 0 such that for all u, v ≥ 0,

|∂12A(u, v)| ≤ a3 and |∂21B(u, v)| ≤ b3. (E4)

The functions f , g are C1(R2
+) and there exist the constants C f ,Cg,C

′
g > 0 such that for all

u, v ≥ 0

−C f (1 + u + v) ≤ f (u, v) ≤ C f ,

−Cg(1 + u + v) ≤ g(u, v) ≤ Cg,

|∂1g(u, v)|, |∂2g(u, v)| ≤ C′g.

(R1)
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4. Perspectives

The change of variable that we propose is the natural generalization of the one introduced
in (3.1.10) in Chapter 3. By strongly using the assumptions (E2), (E3), it writes as follows


a = A(u, v),

b = B(u, v),
⇐⇒


u = U(a, b),

v = V(a, b),
(4.0.3)

so that at a formal level, (a, b) satisfies


−∆a = a r(a, b), in Ω,

−∆b = b s(a, b), in Ω,

∇a · σ = ∇b · σ = 0, on ∂Ω,

(4.0.4)

where for all a, b ≥ 0

r(a, b) B
U(a, b)

a
f (U(a, b),V(a, b)),

s(a, b) B
V(a, b)

b
g(U(a, b),V(a, b)).

(4.0.5)

As in Chapter 3, we observe that assumptions (E2), (E3) imply for all a > 0 and b ≥ 0

0 <
1
a1
≤ U(a, b)

a
≤ 1

a0
, (4.0.6)

and for all a ≥ 0 and b > 0

0 <
1
b1
≤ V(a, b)

b
≤ 1

b0
. (4.0.7)

Thus, (4.0.6), (4.0.7), together with (R1), imply the following upper bounds

r(a, b) ≤ R and s(a, b) ≤ S , (4.0.8)

where R, S are strictly positive constants depending on the parameters involved in (E2), (E3),
(R1).

Thanks to the change of variable (4.0.3), the existence of strong solutions to the system
(4.0.2) follows from the existence of strong solutions to (4.0.4) - (4.0.8). Thus, it remains to
show the existence of strong solutions to (4.0.4) - (4.0.8), assuming (E1) - (E4), (R1). We
hope to be able to use for that Schauder’s fixed point theorem.

We introduce the Hilbert space H1(Ω) and its closed bounded convex subset

BQ B BH1(Ω)(0,Q) = {w ∈ H1(Ω) s.t. ‖w‖2
H1(Ω) ≤ Q}, (4.0.9)

with the constant Q > 0. Then, denoting z+ the nonnegative part of z, we consider the map

Φ : (a, b) ∈
(
H1(Ω) × H1(Ω)

)
→ (ā, b̄), (4.0.10)

where ā, b̄ satisfy 
−∆ā + kaā = a+

(
r(a, b) + ka

)+
, in Ω,

∇ā · σ = 0, in ∂Ω,
(4.0.11)

and 
−∆b̄ + kbb̄ = b+

(
s(a, b) + kb

)+
, in Ω,

∇b̄ · σ = 0, in ∂Ω,
(4.0.12)

where the reaction functions r, s are defined in (4.0.5) and ka, kb are two nonnegative
constants to be determined in such a way that it is possible to apply Schauder’s fixed point
theorem. Then, by classical results of elliptic equations (see [43]) and using (4.0.6), (4.0.7),
we hope to prove that the map Φ satisfies Schauder’s fixed point theorem.
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Appendix A
Appendix

A.1 The parabolic maximal regularity estimate

In this section we state the following classical result for the heat equation (see [79]).

Proposition A.1.1. We consider the problem below, with T > 0 and Ω ⊂ RN a smooth

bounded domain 

∂tv − d∆v = g, on ΩT ,

∇v · σ = 0, on (0,T ) × ∂Ω,
v(0, x) = vin(x) ≥ 0, on Ω,

(A.1.1)

with the diffusion coefficient d > 0. We assume that ∇vin lies in Lq(Ω) and g in Lq(ΩT ) with

q ∈ (1, 2], then there exists a constant C > 0, only depending on d, q,Ω such that the strong

solution v of (A.1.1) satisfies

‖∂tv‖Lq(ΩT ) + ‖∇∇v‖Lq(ΩT ) ≤ C
(‖g‖Lq(ΩT ) + ‖∇vin‖Lq(Ω)

)
.

Moreover, if ∇∇vin belongs to Lq(Ω) and g to Lq(ΩT ) with q ∈ (2,+∞), then there exists a

constant C > 0, only depending on d, q,Ω such that v satisfies

‖∂tv‖Lq(ΩT ) + ‖∇∇v‖Lq(ΩT ) ≤ C
(‖g‖Lq(ΩT ) + ‖∇∇vin‖Lq(Ω)

)
.

A.2 Chapter 1 : Proof of Proposition 1.4.4

Proof. The Routh matrix associated to Mε writes as (see [66])

RMε B



1 det2 Mε

−trMε − det Mε

(det2 Mε)(trMε) − det Mε

trMε
0

− det Mε 0



,

with
det2 Mε

B [Mε]11 + [Mε]22 + [Mε]33,
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A.2. Chapter 1 : Proof of Proposition 1.4.4

and where [Mε]ii are the following minors:

[Mε]11 B

∣∣∣∣∣∣
Mε

22 Mε
23

Mε
32 Mε

33

∣∣∣∣∣∣ , [Mε]22 B

∣∣∣∣∣∣
Mε

11 Mε
13

Mε
31 Mε

33

∣∣∣∣∣∣ , [Mε]33 B

∣∣∣∣∣∣
Mε

11 Mε
12

Mε
21 Mε

22

∣∣∣∣∣∣ .

By the Routh-Hurwitz criterion [66], Mε is stable if and only if there are no sign variations
in the first column entries of RMε , i.e., if and only if Mε satisfies



trMε < 0,

(det2 Mε)(trMε) − det Mε < 0,

det Mε < 0.

(A.2.1)

From the expression of Mε, we get

tr Mε = −ηa − ηbα − ηv(1 − α) − r

ε
< 0,

and

[Mε]11 = ηv

1 − α
ε

φ1 > 0,

[Mε]22 = ηv(1 − α)
(
ηa +

β

ε

)
> 0,

[Mε]33 = ηaηbα +
1
ε
ηa(r − β) +

1
ε
ηbαβ > 0,

which imply
det2 Mε > 0.

Furthermore,

det Mε =
(
− ηa +

1
ε
∂1Q̄

)
[Mε]11 −

ηv

ε
∂1Q̄

1 − α
ε

(∂2Q̄ − ∂3Q̄) = −ηaηvφ1

ε
(1 − α) < 0 .

It remains to check the second inequality in (A.2.1), that is a consequence of the previous
computations and of the identity

det Mε = −ηa[Mε]11 .

Indeed,

(det2 Mε)(tr Mε)− det Mε =
(
[Mε]11 + [Mε]22 + [Mε]33

)
tr Mε + ηa[Mε]11

=
(
[Mε]22 + [Mε]33

)
tr Mε − [Mε]11

(
ηbα + ηv(1 − α) +

r

ε

)
< 0 .

Thus, Mε is stable for all ε > 0.

Concerning the matrix Nε, we define the quantities

D1 B da + db + dv > 0 , D2 B dadv + dbdv + dadb > 0 , D3 B dadbdv , (A.2.2)

and

A B da(Mε
22 + Mε

33) + db(Mε
11 + Mε

33) + dv(Mε
11 + Mε

22) < 0,

B B dbdvMε
11 + dadvMε

22 + dadb Mε
33 < 0,

C B da [Mε]11 + db[Mε]22 + dv[Mε]33 > 0 .

(A.2.3)
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A.3. Chapter 2 : Proof of Lemma (2.7.2)

Thus, using the previous computations, we obtain

tr Nε = tr Mε − D1λn < 0 ,

det2 Nε = det2 Mε + D2 λ
2
n − A λn > 0,

and
det Nε = det Mε − D3 λ

3
n + Bλ2

n −C λn < 0 .

To conclude, it remains to check the sign of the quantity below:

(det2 Nε)(tr Nε) − det Nε = (det2 Mε)(tr Mε) − det Mε

+ λ3
n(−D1D2 + D3) + λ2

n(D2tr Mε + AD1 − B)

+ λn(−D1 det2 Mε − A tr Mε +C) .

The latter is indeed strictly negative, using again the negativity of the entries of Mε, the
positivity of the minors [Mε]ii, definitions (A.2.2) and (A.2.3) and

−D1D2 + D3 < 0 , AD1 − B < 0 , −D1 det2 Mε +C < 0 .

Then, by the Routh-Hurwitz criterion again, Nε is stable for all strictly positive ε. �

A.3 Chapter 2 : Proof of Lemma (2.7.2)

Proof of Lemma 2.7.2.

In order to show (2.7.22), we observe that it is equivalent to prove that for any γ > 0, δ ∈ (0, 1)
and λ > 0, there exists C(γ, δ) > 0

(η
λ

)γ(
1 − η

λ

)
≤ C(γ, δ) − δ

(η
λ

)γ+1
, η ≥ 0, (A.3.1)

with the optimal constant

C(γ, δ) =
1
γ

(
γ

γ + 1

)γ+1 (
1

1 − δ

)γ
. (A.3.2)

The idea to prove (A.3.1) is to show the nonnegativity of the following polynomial for any
η ≥ 0,

P(η) B (1 − δ)
(η
λ

)γ+1 −
(η
λ

)γ
+C(γ, δ),

provided (A.3.2). By analysing the monotonicity of P, we get

P′(η) =
(1
λ

)γ
ηγ−1

(
(1 − δ)(1 + γ)

η

λ
− δ

)
,

which admits a unique local minimum

ηmin B
γλ

(1 − δ)(1 + γ)
> 0.

Therefore, observing that P(0) = C(γ, δ) > 0 we compute

P(ηmin) = (1 − δ)
( γ

(1 − δ)(1 + γ)

)γ+1 −
( γ

(1 − δ)(1 + γ)

)γ
+C(γ, δ),

which is nonnegative iff

C(γ, δ) ≥ 1
γ

(
γ

γ + 1

)γ+1 (
1

1 − δ

)γ
.

Thus, the regularity of P allows to conlcude.

�
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A.4 Chapter 3 : Existence and estimates for a non divergence

linear parabolic problem

This section aims to show Proposition 3.2.2. The strategy of proof is based on a density
argument: firstly, we consider a regularized version of (3.2.4) which admits a pointwise and
unique solution by the classical parabolic theory. Then, we prove some uniform a priori
estimates for this regularized system in order to taking the limit and finally end up with the
estimates for the solutions to equation (3.2.4).

Proof of Proposition 3.2.2.

By density there exist (γn)n, (rn)n ∈ C∞c (RN+1) satisfying (3.2.5),(3.2.6) and (bin,n)n ∈
C∞c (RN) such that

γn|ΩT

→ γ, rn|ΩT

→ r, bin,n|Ω
→ bin, a.e. as n→ +∞, (A.4.1)

up to subsequences still denoted γn, rn, bin,n (e.g. regularization by convolution with standard
mollifiers). For any fixed n ∈ N we consider the problem



∂tbn − γn(t, x)∆bn = rn(t, x)bn, on ΩT ,

∇bn · σ = 0, on (0,T ) × ∂Ω,
bn(0, x) = bin,n(x) ≥ 0, on Ω,

(A.4.2)

where the uniform bounds hold

0 < γ0 ≤ γn(t, x) ≤ γ1, a.e. in ΩT , (A.4.3)

and

‖rn‖L2(ΩT ) + ‖bin,n‖L∞(Ω) + ‖∇bin,n‖L2(Ω) ≤ C, (A.4.4)

with C not depending on n. According to [57] there exists a solution bn to the system (A.4.2)
s.t. for any n ∈ N

bn(t, x) ∈ C
(
[0,T ]; H2(Ω)

) ∩C1((0,T ]; L2(Ω)
)
, (A.4.5)

and bn(t, x) satisfies (A.4.2) pointwise. The following paragraphs are devoted to prove some
n−uniform estimates and properties of bn in order to take the limit in (A.4.2) as n→ +∞.

A.4.1 Nonnegativity of bn

In order to prove the nonnegativity of bn a.e. in R+ × Ω, we multiply the first equation of
(A.4.2) by the test function −(bn)− B −min{0, bn} ≥ 0 and then we integrate on Ω. We
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A.4. Chapter 3 : Existence and estimates for a non divergence linear parabolic problem

remark that all the integrals below are well defined.

1
2

d

dt

∫

Ω

(b−n )2dx =

∫

Ω

∇(bn) · ∇(γnb−n
)
dx +

∫

Ω

rn(b−n )2dx

=

∫

Ω

b−n∇(bn) · ∇γndx +

∫

Ω

γn∇bn · ∇(b−n ) +
∫

Ω

rn(b−n )2dx

= −
∫

Ω

b−n∇(b−n ) · ∇γndx −
∫

Ω

γn|∇(b−n )|2dx +

∫

Ω

rn(b−n )2dx

≤ 1
2

∫

Ω

γn|∇(b−n )|2dx +
1
2

∫

Ω

1
γn

(b−n )2|∇γn|2dx

−
∫

Ω

γn|∇(b−n )|2dx +

∫

Ω

rn(b−n )2dx

≤
( 1
2γ0
‖∇γn‖2L∞(Ω) + R

) ∫

Ω

(b−n )2dx.

Thus by Gronwall’s Lemma and the nonnegativity of bin,n, we conclude that for any n ∈ N

b−n (t, x) = 0, a.e in R+ ×Ω =⇒ bn(t, x) ≥ 0, a.e in R+ ×Ω.

A.4.2 L∞(ΩT ) bound of bn

We define for all (t, x) ∈ ΩT and n ∈ N,

βn(t, x) B bn(t, x) e
−

∫ t

0 sup
x∈Ω

rn(s,x)ds

≥ 0, a.e in ΩT .

Thus, we compute

∂tβn − γn∆βn = (∂tbn)e
−

∫ t

0 sup
x∈Ω

rn(s,x)ds

− bn

(
sup
x∈Ω

rn

)
e
−

∫ t

0 sup
x∈Ω

rn(s,x)ds

− γn∆(bn)e
−

∫ t

0 sup
x∈Ω

rn(s,x)ds

= γn∆(bn)e
−

∫ t

0 sup
x∈Ω

rn(s,x)ds

+ rnbne
−

∫ t

0 sup
x∈Ω

rn(s,x)ds

− bn

(
sup
x∈Ω

rn

)
e
−

∫ t

0 sup
x∈Ω

rn(s,x)ds

− γn∆(bn)e
−

∫ t

0 sup
x∈Ω

rn(s,x)ds

= βn

(
rn − sup

x∈Ω
rn

) ≤ 0,

by the nonnegativity of βn. Therefore βn satisfies


∂tβn − γn∆βn ≤ 0, in ΩT ,

∇βn · σ = ∇bn · σ = 0, in (0,T ) × ∂Ω,
βn(0, x) = bin,n(x), in Ω,

so that by the maximum principle (see [11]) we get for all t ∈ (0,T ) and n ∈ N,

‖βn(t, ·)‖L∞(Ω) ≤ ‖βn(0, ·)‖L∞(Ω),

i.e.

‖bn(t, ·)‖L∞(Ω) ≤ eRT ‖bin,n‖L∞(Ω). (A.4.6)
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A.4.3 Extra n−uniform estimates

The aim of this paragraph is to prove the inequality (3.2.10). In order to do that, we multiply
the first equation of (A.4.2) by −∆bn and we integrate on Ω to get

1
2

d

dt

∫

Ω

|∇bn|2dx = −
∫

Ω

γn(∆bn)2dx −
∫

Ω

rnbn∆bndx

≤ −1
2

∫

Ω

γn(∆bn)2dx +
1
2

∫

Ω

1
γn

(rnbn)2dx

≤ −1
2

∫

Ω

γn(∆bn)2dx +
1

2γ0

∫

Ω

(rnbn)2dx,

using the strictly positive lower bound of γn in (3.2.5). Finally integrating in time and taking
the supremum for t ∈ (0,T ), we end up with

‖∇bn‖2L∞(0,T ;L2(Ω)) + γ0‖∆bn‖2L2(ΩT ) ≤ ‖∇bin,n‖2L2(Ω) +
1
γ0
‖rnbn‖2L2(ΩT ). (A.4.7)

Next, in order to get the L2−boundedness of ∂tbn we multiply the first equation of (A.4.2)
by ∂tbn and we integrate on ΩT to obtain

∫

ΩT

(∂tbn)2dxdt =

∫

ΩT

γn∆bn∂tbn dxdt +

∫

ΩT

rnbn∂tbn dxdt

≤ 1
2
‖∂tbn‖2L2(ΩT ) + γ

2
1‖∆bn‖2L2(ΩT ) + ‖rnbn‖2L2(ΩT ),

i.e.
‖∂tbn‖2L2(ΩT ) ≤ 2γ2

1‖∆bn‖2L2(ΩT ) + 2‖rnbn‖2L2(ΩT ). (A.4.8)

Finally using (A.4.4) in (A.4.6), (A.4.7),(A.4.8), up to subsequences we have for some
b ∈ L∞(ΩT ),

bn → b a. e. in ΩT , (A.4.9)

and
∂tbn ⇀ ∂tb, ∆bn ⇀ ∆b, ∇bn ⇀ ∇b, weakly in L2(ΩT ). (A.4.10)

Therefore, it remains to take the weak limit as n→ +∞, in system (A.4.2), using the obtained
limits (A.4.9), (A.4.10). The weak L2(ΩT ) convergence of the evolutionary term follows
directly from (A.4.10). Concerning the diffusion part, we observe that γn and ∆bn satisfies
the assumptions of Proposition A.6.2 with p = q = 2, by (A.4.1), (A.4.3), (A.4.10). Thus,
we get

γn|ΩT

∆bn ⇀ γ∆b, weakly in L1(ΩT ).

About the reaction term rnbn, we have by (A.4.10)

rn|ΩT

bn → rb, a.e. in ΩT .

Moreover, by the n−uniform estimates (A.4.6), (A.4.4) we get

‖rnbn‖L2(ΩT ) ≤ C,

giving (up to subsequences) by the uniqueness of the a.e. limit

rn|ΩT

bn ⇀ rb, weakly in L2(ΩT ).

We conclude by taking the limit in the boundary condition of (A.4.2), using the continuity of
the trace operator and the weak convergence of ∆bn in (A.4.10). Finally, b satisfies (3.2.4)
in the sense of (iii) in Proposition 3.2.2 and the weak lower semicontinuity of the Lp norm
gives (3.2.9), (3.2.10). �
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A.4.4 Uniqueness of āδ

In this subsection, we prove the uniqueness of āδ in L∞(0,T ; L2(Ω)), satisfying (3.2.13)
in the sense of Proposition 3.2.2. Let ā1, ā2 two solutions to (3.2.13) with the initial data
ain,1, ain,2, respectively. Then, we multiply by ā1 − ā2 the equation satisfied by ā1 − ā2 and
we integrate on Ω. We have

∫

Ω

(ā1 − ā2)∂t(ā1 − ā2)dx =

∫

Ω

(µ(t, x) ∗x ϕδ)(ā1 − ā2)∆(ā1 − ā2)dx

+

∫

Ω

sM(t, x)(ā1 − ā2)2dx,

thus,

1
2

d

dt

∫

Ω

(ā1 − ā2)2dx = −
∫

Ω

(µ(t, x) ∗x ϕδ)|∇(ā1 − ā2)|2dx

−
∫

Ω

(ā1 − ā2)∇(µ(t, x) ∗x ϕδ) · ∇(ā1 − ā2)dx

+

∫

Ω

sM(t, x)(ā1 − ā2)2dx

≤ −1
2

∫

Ω

(µ(t, x) ∗x ϕδ)|∇(ā1 − ā2)|2dx

+
1
2
‖∇(µ(t, x) ∗x ϕδ)‖2L∞(Ω)

∫

Ω

(ā1 − ā2)2

(µ(t, x) ∗x ϕδ)
dx

+ S (ε,M,T )
∫

Ω

(ā1 − ā2)2dx

≤
( a2

1

2a0
‖∇ϕδ‖2L1(RN ) + S (ε,M,T )

) ∫

Ω

(ā1 − ā2)2dx.

Therefore, we obtain

d

dt
‖ā1 − ā2‖2L2(Ω) ≤

(a2
1

a0
‖∇ϕδ‖2L1(RN ) + 2S (ε,M,T )

)
‖ā1 − ā2‖2L2(Ω),

implying by Gronwall’s Lemma and taking the supremum for t ∈ (0,T ),

‖ā1 − ā2‖2L∞(0,T ;L2(Ω)) ≤ C
(
δ, ε,M,T

)‖āin,1 − āin,2‖2L2(Ω), (A.4.11)

implying the uniqueness of the solution in L∞(0,T ; L2(Ω)).

A.5 Chapter 3 : Extra computations

A.5.1 Nonnegativity of v̄δ

Let v̄δ be the solution to (3.2.12) with the initial datum vin,ε as in (H4). Then, we prove the
nonnegativity of v̄δ by multiplying the first equation on (3.2.12) by −v̄−

δ
B −min{0, v̄δ} ≥ 0

and by integrating on Ω

1
2

d

dt

∫

Ω

(v̄−δ )2dx = −dv

∫

Ω

|∇v̄−δ |2dx +

∫

Ω

(v̄−δ )2gε,M dx ≤ Cg

∫

Ω

(v̄−δ )2dx.

Then, we integrate in time and we use the nonnegativity of vin,ε to get

v̄−δ (t, x) = 0, a.e in R+ ×Ω =⇒ v̄δ(t, x) ≥ 0, a.e in R+ ×Ω.
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A.6 Chapter 3 : Useful functional analysis results

In this section, we state two useful functional analysis results (which can easily be deduced
from properties stated in [11]). In particular, Proposition A.6.1 gives a criterion of strong Lp

convergence, while Proposition A.6.2 is a result of weak convergence for a product of two
sequences.

Proposition A.6.1.

Let U ⊂ RN ,N ∈ N a smooth bounded open set with |U | < ∞. We consider a sequence

{ fn}n∈N ⊂ Lp(U) with 1 < p < ∞ s.t.

fn(x) → f (x), a.e. on U, (A.6.1)

{ fn}n∈N is bounded uniformly in n ∈ N, i.e. there exists a constant C > 0 not depending on

n ∈ N s.t.

‖ fn‖Lp(U) ≤ C. (A.6.2)

Then, it holds

fn → f , strongly in Lq(U), ∀ q < p. (A.6.3)

Proposition A.6.2.

Let U ⊂ RN ,N ∈ N a smooth bounded open set with |U | < ∞. Let { fn}n∈N ∈ Lp(U) with

1 ≤ p < ∞ and {gn}n∈N ∈ Lq(U) with 1 ≤ q < ∞ s.t.

fn → f , strongly in Lp(U), (A.6.4)

and

gn ⇀ g, weakly in Lq(U). (A.6.5)

Then, it holds

fn gn ⇀ f g, weakly in Lr(U). (A.6.6)

with 1
r
= 1

p
+ 1

q
.
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