
HAL Id: tel-04052444
https://theses.hal.science/tel-04052444

Submitted on 30 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lagrangian coherent motions to track particle
trajectories in turbulent flows

Ali Rahimi Khojasteh

To cite this version:
Ali Rahimi Khojasteh. Lagrangian coherent motions to track particle trajectories in turbulent flows.
Signal and Image Processing. Université de Rennes 1, 2022. English. �NNT : 2022REN1S084�. �tel-
04052444�

https://theses.hal.science/tel-04052444
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : «Signal, Image, Vision»

Par

Ali Rahimi Khojasteh
Lagrangian coherent motions to track particle trajectories
in turbulent flows

Thèse présentée et soutenue le 26 avril 2022
Unité de recherche : French National Institute for Agriculture, Food, and Environment 
(INRAE)

Rapporteurs avant soutenance :

Christian J. Kähler Professor, Universität der Bundeswehr München
Andrea Sciacchitano Assistant Professor, Technische Universiteit Delft

Composition du Jury :

Examinateurs : Andreas Schröder Professor, Brandenburg University of Technology, DLR
Mickaël Bourgoin Research Director, Ecole Normale Supérieure de Lyon, CNRS
Thomas Corpetti Research Director, LETG, CNRS
Katharina Zähringer Group leader, Otto-von-Guericke University of Magdeburg

Dir. de thèse : Dominique Heitz Senior research scientist, INRAE

Invité(s) :

Yang Yin Co-supervisor, research engineer, INRAE





RESUME EN FRANÇAIS

Les progrès récents en vélocimétrie par le suivi tridimensionnel et résolu en temps de
particules (4D-PTV) permettent d’explorer la turbulence lagrangienne le long des tra-
jectoires des particules. La présente étude vise à examiner les améliorations possibles
des estimations du mouvement lagrangien en ajoutant des éléments physiques significatifs
dans le processus de mesure 4D-PTV. Les méthodes telles que Shake-The-box (STB [1])
et Kernelized Lagrangian Particle Tracking (KLPT [2]) reposent sur quatre étapes princi-
pales : la reconstruction des particules, l’initialisation, la prédiction et l’optimisation. Les
positions 3D reconstruites doivent être initialisées correctement avant le début du proces-
sus de prédiction. Ensuite, les positions prédites sont transmises à l’étape d’optimisation
et de raffinement de la position, connue sous le nom de “shaking” dans STB. Il convient de
noter que ce processus d’optimisation tente de rechercher une position réelle candidate très
proche de la position prédite. Si une prédiction erronée se produit, peu importe le nombre
de fois que le processus d’optimisation est effectué, la position réelle n’est pas atteinte.
D’où l’importance de produire une initialisation appropriée et des prédictions précises.
Dans la présente étude, nous nous sommes principalement concentrés sur l’amélioration
de la robustesse et de la précision de l’initialisation et de la prédiction, pour une densité
élevée de particules (suivant la tendance observée dans la figure 1.4) et des mouvements
d’écoulements complexes.

Actuellement, les étapes d’initialisation et de prédiction des techniques PTV se con-
centrent sur une seule particule, alors que cette particule n’agit pas seule dans le champ
d’écoulement. Nous proposons d’améliorer cela en différenciant localement les mouve-
ments cohérents et non cohérents des particules voisines d’une particule considérée. Pour
ce faire, nous utilisons le concept de structures cohérentes lagrangiennes (LCS pour en
anglais Lagrangian Coherent Structures [3]), pour améliorer l’initialisation ainsi que la
précision de la prédiction. Les crêtes des LCS divisent le champ d’écoulement en dif-
férentes régions cohérentes agissant comme un squelette de l’écoulement. Grâce à des
approches de segmentation de particules, nous pouvons déterminer les crêtes des LCS
et qualifier les trajectoires voisines comme cohérentes ou non cohérentes. L’exposant de
Lyapunov en temps fini (FTLE [4]) est un paramètre bien établi que nous utilisons lo-
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calement sur les trajectoires lagrangiennes éparses. Avec cette approche, nous pouvons
déterminer les particules cohérentes voisines de la particule considérée, pour prédire son
comportement avec précision et éviter les erreurs d’estimation.

Aperçu des chapitres

Nous décrivons au chapitre 5 le développement de la nouvelle technique d’initialisation
de trajectoire lagrangienne et son principe de fonctionnement basé sur les trajectoires
voisines cohérentes. De plus, les évaluations de la technique proposée par rapport aux
études récentes disponibles sont discutées. Le chapitre 6 présente un aperçu des fonctions
de prédiction du point de vue de la minimisation. Nous décrivons une forme générique
de la fonction de prédiction, indépendante du cas et de Reynolds. La fonction proposée
(c’est-à-dire le prédicteur cohérent) a été évalué de manière détaillée pour trois cas tests
synthétiques de simulation numérique directe (DNS). Nous avons également effectué des
simulations de Monte Carlo pour quantifier le niveau d’incertitude des fonctions pré-
dicteurs. Le prédicteur cohérent a été étudié avec une expérience de mesure 4D-PTV
dans le sillage d’un cylindre lisse à un nombre de Reynolds égal à 3900. Les statistiques
lagrangiennes et eulériennes ont pu être calculées dans la zone de similitude du sillage. En-
fin, dans le chapitre 8, nous étudions l’application du concept de cohérence lagrangienne
dans les expériences classiques de PIV.

Principes fondamentaux de la vélocimétrie tridimensionnelle par
le suivi de particules

Dans le chapitre 2, nous donnons tout d’abord un aperçu général du processus 4D-
PTV en présentant son principe de fonctionnement basé sur quatre étapes majeures. Le
chapitre 3 traite de la manière de calculer une LCS et donne un aperçu des approches
actuelles pour calculer les particules voisines cohérentes spatialement et temporellement,
à partir de trajectoires lagrangiennes éparses. Les détails des cas d’essai expérimentaux
et numériques utilisés dans cette étude sont discutés au chapitre 4. Un nombre total de
sept cas d’essai, dont trois expériences, trois simulations synthétiques DNS et une source
de données provenant du 1er défi LPT challenge [5], ont été utilisés dans cette thèse pour
obtenir des résultats concluants pour les techniques proposées.
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Trajectoire cohérente et Initialisation

Au chapitre 5, nous avons proposé une nouvelle technique d’initialisation à quatre (ou
plusieurs) images en exploitant la cohérence temporelle et spatiale locale des trajectoires
voisines. La technique que nous proposons se nomme LCTI pour "Lagrangian Coherent
Track Initialisation" ([6]). L’idée est de contraindre la trajectoire possible d’une particule
par les mouvements cohérents limités par les crêtes des LCS, sachant que les trajectoires
lagrangiennes ne traversent pas ces crêtes. Il a été constaté que le processus 4D-PTV
échoue si le nombre de trajectoires vraies initialisées n’est pas suffisant, en particulier
dans les dynamiques d’écoulement complexes. Nous avons montré que les techniques
d’initialisation multi-frames perdent leur efficacité si les caractéristiques de l’écoulement,
l’échelle temporelle, la concentration de particules et le rapport de bruit, commencent
à augmenter. Trois cas d’essai, l’écoulement de sillage de cylindre, l’impact de jet, et
l’écoulement de sillage limité par la paroi, ont été employés pour évaluer qualitativement
et quantitativement la performance de la méthode proposée. Dans l’étude synthétique
du sillage derrière un cylindre, LCTI a montré un comportement robuste et précis en
détectant plus de trajectoires vraies avec moins de trajectoires non suivies et de mau-
vaises pistes. La technique d’initialisation proposée a également été examinée dans une
expérience 4D-PTV d’un jet impactant. Un tel cas contient de nombreuses structures
d’écoulements complexes depuis le moment où les particules quittent la buse jusqu’à ce
qu’elles rebondissent sur la paroi solide. Seules les positions reconstruites ont été utilisées
comme entrée pour l’évaluation de cette expérience. LCTI (sans prédiction ni optimisation
supplémentaires) a été capable de reconstruire les trajectoires. Des structures complexes
d’écoulement par impact de jet, telles que l’anneau tourbillonnaire autour du jet et les
tourbillons secondaires, ont été observés à partir de la reconstruction LCTI. Nous avons
conclu ce chapitre en notant que la notion de LCS peut aider l’algorithme de suivi à suivre
des structures cohérentes même en cas de gradient de vitesse élevé et de dynamique 3D
complexe.

Prédiction de la position des particules

Dans le chapitre 6, nous avons montré que les fonctions prédicteurs récentes en 4D-
PTV souffrent d’un manque d’informations pour prédire les positions des particules dans
les régions à fort gradient de vitesse. Le problème est que ces fonctions se basent unique-
ment sur l’historique des particules comme seul signal pour estimer la position de la par-
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ticule au prochain pas de temps. Dans l’esprit de l’utilisation des mouvements cohérents,
une nouvelle fonction de prédiction a été introduite, à savoir le prédicteur cohérent. À
cette fin, nous avons d’abord conçu une fonction de coût basée sur trois termes traitant de
l’historique, de la vitesse cohérente et de l’accélération cohérente. D’après l’étude synthé-
tique, la fonction de coût proposée a surpassé les fonctions de prédiction récentes avec une
erreur de biais plus faible, en particulier dans les régions complexes. Pour quantifier le
niveau d’incertitude de la fonction proposée, nous avons effectué des simulations de Monte
Carlo. Le prédicteur cohérent a montré une distribution d’incertitude de sortie étroite par
rapport au filtre de Wiener et aux prédicteurs polynomiaux de troisième ordre. Les per-
formances des fonctions prédicteurs mentionnées ont été examinées dans une expérience
de mesure 4D-PTV dans le sillage d’un cylindre. Les positions prédites par le prédicteur
cohérent ont montré une déviation minimale par rapport aux positions estimées par les
autres fonctions prédicteurs. Suite aux études synthétiques et expérimentales, on peut
dire que le processus de prédiction devient plus précis avec moins d’incertitude lorsque
l’on ajoute des valeurs cohérentes de vitesse et d’accélération.

Il est intéressant d’étendre la fonction de coût proposée au chapitre 6 à une forme
de prédiction générique. Nous avons donc introduit une fonction de coût non dimension-
nelle avec des termes pondérés. Les termes de position, de vitesse et d’accélération ont
été adimensionnés sur la base des échelles intégrales turbulentes. De cette manière, il
est possible de minimiser une fonction de coût générique applicable à divers écoulements
turbulents. Nous avons constaté que l’incertitude de mesure a un impact direct sur la so-
lution optimale de la fonction de coût du prédicteur minimisé. Nous avons utilisé deux cas
de turbulences synthétiques, une turbulence isotrope homogène 2D (HIT) et l’écoulement
dans le sillage d’un cylindre, avec les mêmes niveaux d’incertitude de mesure. La solution
optimale de la fonction de coût pour les deux cas a montré des configurations de pondéra-
tion similaires. Cela suggère que les paramètres de pondération peuvent être modélisés
comme une fonction des incertitudes de mesure. Nous avons donc réalisé d’autres études
paramétriques et quantifié un modèle qui tient compte des incertitudes de mesure pour
concevoir la fonction de coût optimale.

Les algorithmes de mesure 4D-PTV sont finalement conçus pour explorer la physique
des structures cohérentes, les statistiques et les caractéristiques fondamentales de la tur-
bulence dans un cadre lagrangien. Il est intéressant de noter que les récentes avancées dans
les expériences lagrangiennes ont ouvert de nouvelles possibilités pour étudier les relations
turbulentes fondamentales dans des expériences réelles. Par conséquent, nous avons effec-
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tué une analyse statistique lagrangienne de l’expérience d’écoulement de sillage dans le
chapitre 6. Nous avons stationnarisé les trajectoires lagrangiennes anisotropes sur la base
du flux moyen et de l’écart type local de la vitesse. L’objectif était d’obtenir des carac-
téristiques turbulentes et de les comparer aux propriétés autosimilaires de l’écoulement
de sillage. La décroissance calculée du taux de dissipation eulérien obtenu dans la partie
avale d’un écoulement de sillage est conforme avec les résultats des études fondamen-
tales menées pour un écoulement turbulent en cisaillement libre. Nous avons observé des
augmentations de l’échelle de longueur turbulente eulérienne, ce qui est cohérent avec
l’augmentation constante de la taille du sillage. Plus en aval dans le sillage, la fonction
de structure lagrangienne d’ordre deux a montré un bon accord avec les relations fonda-
mentales. Nous avons calculé la constante universelle lagrangienne C0 pour la dynamique
de la portée inertielle. Cette constante dans le cadre lagrangien joue un rôle similaire
à celui de la constante de Kolmogorov dans le cadre eulérien. En résumé, nous avons
fourni et validé les caractéristiques statistiques turbulentes eulériennes/lagrangiennes de
l’écoulement de sillage obtenues expérimentalement par la mesure 4D-PTV.

Application de la cohérence lagrangienne à la PIV

Dans le chapitre 8 nous avons examiné la possibilité d’ajuster la fenêtre d’interrogation
en fonction des mouvements cohérents locaux. Les crêtes LCS, également connues sous le
nom de squelette de l’écoulement, divisent le champ d’écoulement local en régions de mou-
vements cohérents. Nous avons façonné la fenêtre d’interrogation pour calculer les champs
vectoriels basés uniquement sur les mouvements cohérents. Nous avons examiné locale-
ment et globalement la méthode proposée à l’aide d’une simulation synthétique de PIV
2D HIT et de mesures expérimentals de PIV 2D dans l’écoulement de sillage d’un cylindre
circulaire. L’évaluation synthétique locale a révélé que la fenêtre d’interrogation ajustable
améliore les erreurs de vitesse RMS, angulaire et de vorticité dans les cas classiques tels
que les écoulements en vortex, cisaillés et au niveau des points selles. L’amélioration max-
imale concerne l’estimation de l’erreur angulaire, qui nécessite une fenêtre d’interrogation
précise. Les résultats globaux ont également montré des améliorations par rapport aux
fenêtres d’interrogation carrées classiques. La technique proposée a été étudiée dans une
expérience de PIV 2D. Nous avons observé des améliorations, en particulier dans les ré-
gions avec des tourbillons de petite échelle. Les résultats de ce chapitre suggèrent que
l’ajustement de la fenêtre d’interrogation basée sur les mouvements cohérents locaux con-
duit à une meilleure estimation du champ vitesse.
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Chapter 1

INTRODUCTION

Humans have created countless works of art to interpret nature through observation
and visualisation. In fluid mechanics, we can refer to Leonardo da Vinci’s artwork pieces,
all dated from 1452 to 1519. In one of his works, for example, the artist sketched how
flow behaves downstream of a wake, as shown in Figure 1.1. The flow became visible by
drawing hairlike streams with two motion categories, passing behind obstacles (see the
review by Marusic and Broomhall [7]). It was an astounding qualitative visualisation that
sparked detailed discussions on Leonardo’s thinking. Taylor [8] suggested that Leonardo
"seems to be thinking about ways to separate flow into steady and turbulent components,"
and Lumley [9] concluded that the text "seems to be a clear prefiguring of Reynolds
decomposition." All these discussions reveal that scientists have been trying to qualify
and quantify turbulent flows in nature for a long time. Essentially, better qualification
and quantification are necessary for a better interpretation of turbulent flows.

Thinking about quantifying fluid properties, velocity for example, we need to pick
fluid elements and measure their displacements for a specific time step. The fundamental
difficulty is that the flow field medium is transparent (i.e., invisible). To this end, scientists
have been attempting to introduce visible tracer fluid particles or smokes along with the
flow field to observe the motion. In fact, there is no term called fluid particles, and we
assume that the observed motion is representing the flow dynamics. Ludwig Prandtl
carried out one of the earliest flow visualisation experiments using tracer particles in the
late 1920s. He succeeded in qualitatively studying unsteady separated flows behind objects
in an open surface water channel. In this work, Prandtl integrated single recordings with
20 frames per second acquisition frequency to yield particle streak images. Figure 1.2.ab
visualises one of Prandtl’s works on vortex creation, introduced by moving an airfoil
from right to left [10], [11]. Around the 1980s, researchers were capable of analysing
recorded videos, thanks to the filming industry improvements, to obtain quantitative
velocity fields. The process was able to study around 10-20 frames using cross-correlation
based techniques. Since then, scientists have started visualising the flow problems using
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Figure 1.1 – Illustrations of the wake flow by Leonardo da Vinci (adapted from the Sheet
RCIN 912579r. Royal Collection Trust, Copyright Her Majesty Queen).

digital facilities. Visualisation can be two-dimensional (2D) or three-dimensional (3D),
mainly focusing on qualitative representations. For example, steam injections over a car
shape in a form of streamlines that can visualise the stream directions. However, we do
not know the velocity magnitudes from the streamlines unless we estimate the relative
magnitudes roughly based on the mass conversation hypothesis, which might result in
highly uncertain measurement. These visualisations can represent valuable qualitative
information, but it becomes complicated (somehow impossible) to estimate quantitative
parameters from visualisation in complex flow motions such as 3D unsteady flows. Due
to this reason, we need a quantitative approach for complex flows. In the Lagrangian
framework, a very early example of particle tracking velocimetry (PTV), additionally
known as Lagrangian Particle Tracking (LPT), was done by Utami and Uemo [12] using
the double-exposed image of particles. Utami and Uemo [12] tracked randomly located
split trajectories with a length of two time steps in a low particle concentration setup over
the boundary layer flow. Their tracking experiment failed to reconstruct close to the wall
motions since it was challenging to have enough resolution to cover the whole velocity
range. Moreover, their 2D measurements were unable to describe the 3D features of the
flow. In the 1990s, Digital Particle Image Velocimetry (DPIV [13]) was introduced using
CCD cameras. Even Prandtl’s recordings can now be recovered using quantitative DPIV
computations, as shown in figure 1.2.c [10]. For simplicity, the "D (stands for digital)"
letter from DPIV was omitted, and thenceforth the method was denoted as PIV. The
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a) b) c)

Figure 1.2 – Prandtl’s recording of the vortex behind an airfoil translated from right to
left. (a) Single frame of the recorded movie. (b) Particle streak image obtained from
an ensemble of five continuous frames. (c) Recovered velocity and vorticity fields using
DPIV (reprinted from Willert and Kompenhans [11]).

objective of using PIV is to obtain both statistics and instantaneous velocity distributions.
With the advances of PIV, it is now possible to measure volumetric regions [14]. PIV
mainly gives vector fields on 2D/3D regions with better spatially resolved visualisation
than smoke visualisation. PIV marks the fluid with particles and then measures their
motions. So the natural trend is to use small particles as marked signatures of flow and
track the motion.

1.1 Flow measurement from a single point to volu-
metric velocimetry

There is a development of spatial components in the evolution of flow measurement
techniques. The evolution started from Laser Doppler Anemometry (LDA/LDV) and
hot wire anemometry (HWA), which are typically pointwise measurements. LDV is well
established in capturing high intensity fluctuations, and HWA is capable of detecting low
intensity turbulent flows with high temporal resolution [16]. However, such techniques
are only sufficient for discrete flow measurements. To capture flow motions on 2D slices,
planar two-component (2D2D) PIV and stereo (3D2C) measurements were introduced by
utilising multi camera setups. Measurement of the third spatial component was introduced
in 3D-PTV techniques [17]. This was the first volumetric velocimetry technique that
succeeded in tracking a small number of Lagrangian particles. Over two decades after the
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Figure 1.3 – Evolution of the velocimetry techniques. (a) Spatial and temporal measured
components of laser velocimetry techniques (adapted from Scarano [15]). (b) The appear-
ance of experiments using the HWA, LDV, PIV, and PTV/LPT measurement techniques
mentioned in Google Books between 1960 and 2019 (adapted from Westerweel et al. [16]).

first 3D-PTV experiment, Tomographic PIV (known as Tomo-PIV) introduced by Elsinga
et al. [14], became a turning point in history of the volumetric velocimetry techniques.
This evolution from a pointwise technique to a fully volumetric laser velocimetry technique
has been shown in Figure 1.3.a. In practice, Tomo-PIV starts from voxels to make dense
object reconstruction by cross-correlating in 3D voxels to obtain the 3D Cartesian velocity
fields. However, it is computationally intensive at reconstruction and correlation steps.
The filtering associated with the window limits the Tomo-PIV spatial resolution. The
Tomo-PIV concept became hybridised by Novara and Scarano [18] in a technique called
Tomo-PTV. This technique still utilises voxels to reconstruct the object by computing
sparse particle tracks, but there is no need to have Eulerian domain discretisation in
individual voxels. So the data is only stored if a particle exists. Some studies also used
spatial information to produce pressure based on the momentum equation [19].

A study from Westerweel et al. [16] showed that the number of PIV experiments
jumped significantly compared with HWA and LDV measurement techniques since 1980.
Figure 1.3.b shows the number of mentions of velocimetry techniques in Google Books un-
til 2019. It can be emphasised that PIV has become the dominant velocimetry technique
in experimental fluid mechanics since mid 1990s. Accordingly, Tomo-PIV outperformed
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mentioned studies are listed in table 1.1. Grey dashed line shows the growing trend in
higher particle concentration cases.

classic 3D-PTV techniques in volumetric velocimetry [16]. While classic 3D-PTV tech-
niques were severely limited by the particle image seeding density and image quality,
Tomo-PIV succeeded in processing an order of magnitude higher densities from 0.005 to
0.05 particle image per pixel (ppp) with lower noisy reconstruction. The PIV/PTV re-
search community is consistently interested in a measurement technique that is applicable
in a variety of problems with highly accurate results [10]. Therefore, techniques tend to
improve spatial and temporal accuracies. In 2013, a novel iterative particle reconstruc-
tion (IPR) idea introduced by Wieneke [20] substantially improved the performance of
PTV techniques. IPR was then followed with predictive tracking functions in the form
of a method called Shake-The-Box (STB [1]). STB is a time-resolved three-dimensional
particle tracking velocimetry technique (known as 4D-PTV) that tries to predict particle
positions and optimise the discrepancy of the predicted position with the recorded images
under the process named "Shaking". Such a predictive tracking model pushed spatial and
temporal limitations of the classic 3D-PTV techniques. Since then, 4D-PTV surpassed
Tomo-PIV with less noisy reconstruction, higher spatial resolution and accuracy, and
significantly less computational demand.
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One of the main motivations of performing volumetric measurements is to characterise
Eulerian/Lagrangian coherent structures, statistics, spatial gradients, and measurement
of vorticity dynamics (transport, stretching, tilting) in turbulent flows. To capture the
spatial and temporal evolution of turbulent flows in experiments, we need to reach suffi-
cient spatial resolution to resolve coherent structures. The evolution of resolved spatial
resolution in PTV techniques are shown in figure 1.4 and table 1.1. Maximum achievable
particle image density is drastically improved by two order of magnitude from 0.001 ppp
in 1993 [17] to 0.2 ppp in 2020 [5] with less than 0.1 pixel position estimation error.

The other issue that needs to be addressed is the measurement size, which is lim-
ited by the imaging facility and the seeding system. Majority of volumetric experiments
were performed in a very small volumes (maximum 70 × 11 × 41 mm3 [40]) where the
tracer particles were not more than 1 µm. In general, based on a study from Scarano
[41], the higher acquisition frequency leads to the smaller measurement volume mainly
because the illumination becomes less powerful. Peak intensity received from a particle
is proportional to the amount of illumination energy, camera aperture, particle diameter,
depth of the measurement dimensions by assuming that the propagation direction is ne-
glected. Helium filled soap bubbles (HFSB) were introduced because pushing volumetric
measurement limits required larger seeding particles, higher particle intensity signals, and
appropriate response time [41]. Therefore, volumetric laser velocimetry techniques suc-
ceeded to increase the size of measurement from scale of 10 × 10 × 10 cm3 to large scale
of 200 × 200 × 200 cm3 [42].

1.2 Aim of the thesis

The present study seeks to investigate possible improvements in motion estimations
by adding meaningful Lagrangian physics into the velocimetry algorithms. Methods like
STB and Kernelized Lagrangian Particle Tracking (KLPT [2]) rely on four major steps,
particle reconstruction, initialisation, prediction, and optimisation. The reconstructed 3D
positions should be initialised properly before the prediction process starts. Then, the
predicted positions are passed to the optimisation step and position refinement, known
as "shaking" in STB. It should be noted that the "shaking" process tries to look for a
candidate true position very close to the predicted position. This implies that if a mis-
prediction happens, the true position is not achievable no matter how many times we
perform the "shaking" process. This explains the importance of producing appropriate
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Table 1.1 – Evolution of spatial resolution (ppp) improvements in PTV techniques.
Method Contributors Year ppp Type

1 Astigmatism, stereoscopic Fuchs et al. [21] 2014 0.0005 Experiment
2 Defocusing Fuchs et al. [22] 2016 0.0001 Experiment
3 IPR Wieneke [20] 2012 0.0300 Experiment
4 Scanning PTV Hoyer et al. [23] 2005 0.0047 Experiment
5 STB Novara et al. [24] 2016 0.0350 Experiment
6 STB Schanz et al. [1] 2016 0.0350 Experiment
7 Tomo-PTV Schneiders and Scarano [25] 2016 0.0700 Experiment
8 Tomo-PTV Fuchs et al. [26] 2016 0.0040 Experiment
9 KLPT Yang and Heitz [2] 2021 0.0300 Experiment
10 LCTI Khojasteh et al. [6] 2021 0.0300 Experiment
11 Open-LPT Tan et al. [27] 2020 0.0010 Experiment
12 STB Huhn et al. [28] 2018 0.0500 Experiment
13 STB Huhn et al. [29] 2017 0.0800 Experiment
14 Triangulation Maas et al. [17] 1993 0.0038 Experiment
15 Triangulation Shirsath et al. [30] 2015 0.0030 Experiment
16 Triangulation Kim et al. [31] 2016 0.0003 Experiment
17 Triangulation Janke et al. [32] 2017 0.0010 Experiment
18 Advanced IPR Jahn et al. [33] 2021 0.1400 Synthetic
19 DIH-PTV Toloui and Hong [34] 2015 0.0024 Synthetic
20 IPR Wieneke [20] 2013 0.0500 Synthetic
21 STB Schanz et al. [1] 2016 0.1250 Synthetic
22 Stereoscopic Guezennec et al. [35] 1994 0.0034 Synthetic
23 Stereoscopic ACO Panday et al. [36] 2011 0.0240 Synthetic
24 Tomo-PTV Doh et al. [37] 2012 0.0380 Synthetic
25 Triangulation with Tomo Fuchs et al. [26] 2016 0.0500 Synthetic
26 KLPT Yang and Heitz [2] 2021 0.1000 Synthetic
27 Open-LPT Tan et al. [27] 2020 0.0500 Synthetic
28 VT-STB Schanz et al. [38] 2020 0.2000 LPT challenge
29 KLPT Yang and Heitz [2] 2021 0.0800 LPT challenge
30 LCTI Khojasteh et al. [6] 2021 0.1200 LPT challenge
31 LaPIV Yang and Heitz [39] 2020 0.1200 LPT challenge
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initialisation and accurate predictions. We primarily focused on improving the initial-
isation and prediction robustness and accuracy for high particle density (following the
observed trend in figure 1.4) and complex flow motions. We argue that initialisation and
prediction steps in PTV techniques focus on a single particle individually, while this single
particle is not acting alone in the flow field. We propose to locally differentiate coherent
and non-coherent motions of neighbour particles around a single particle position using
the concept of Lagrangian Coherent Structures (LCS) to improve the initialisation and
prediction accuracies. LCS ridges divide the flow field into different coherent regions,
acting as a skeleton of flow. We can determine the LCS ridges with particle segmentation
approaches and quantify neighbour trajectories as coherent or non-coherent. Finite-time
Lyapunov exponent (FTLE) is a well-established parameter to be employed locally over
sparse Lagrangian trajectories. With this approach, we can share the information of co-
herent particles with each neighbour particle to predict its behaviour accurately and avoid
misestimations.

1.3 Outline of the thesis

We present here a study that attempts to improve velocimetry algorithms by using
the temporal and spatial coherency of Lagrangian particles. As Lagrangian tracer parti-
cles move and behave coherently with their neighbours, we constrained the algorithm to
comply with physics-based information. In order to determine local coherent motions of
turbulent flows, we utilised LCS over sparse Lagrangian trajectories. In 2D/3D flows, LCS
has line/surface ridges separating regions with dynamically different trajectories. Based
on LCS ridges, we can quantify coherent and non-coherent neighbour trajectories. Three
velocimetry algorithms are discussed in this thesis using the idea of local coherent mo-
tions of Lagrangian particles. We demonstrated how the track initialisation techniques in
4D-PTV can become more robust through coherent motions. This idea was then used to
improve prediction performance. We also explored how to apply this approach to classic
PIV algorithms.

We first provide a general overview of the 4D-PTV process with the introduction of its
working principle based on four major steps in Chapter 2. The following Chapter 3 ad-
dresses how to compute LCS and gives an overview of the current approaches to compute
spatially and temporally coherent neighbour particles from sparse Lagrangian trajecto-
ries. Details of experimental and numerical test cases used in this study are discussed in
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Chapter 4. A total number of seven test cases including three experiments, three Direct
Numerical Simulation (DNS) synthetic simulations, and one out-source data from the
1st LPT challenge [43] were employed in this thesis to reach conclusive results for the
proposed approach.

We outline the development of the novel Lagrangian track initialisation technique and
its working principle based on coherent neighbour trajectories in Chapter 5. Moreover,
the assessments of the proposed technique compared with the recently available studies
are discussed. Chapter 6 presents an overview of prediction functions with a minimisa-
tion point of view. We outline a generic form of the predictor function, which is case
and Reynolds independent. The proposed function (i.e., the coherent predictor) was in-
tensively assessed for three DNS synthetic test cases. We also performed Monte Carlo
simulations to quantify the uncertainty level of predictor functions. The coherent pre-
dictor was studied with a 4D-PTV experiment of the wake behind a smooth cylinder at
a Reynolds number equal to 3900. In Chapter 7, we obtained Lagrangian and Eulerian
statistics of the wake flow as a self-similar turbulent case. In Chapter 8, application of
the Lagrangian coherency concept in classic PIV experiments is studied. We showed that
adjusting the interrogation window based on coherent motions of particles can locally and
globally improve the velocity estimation accuracy. In this way, the interrogation window
temporally and spatially changes to follow the flow motion instead of being fixed square
windows.
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Chapter 2

TIME-RESOLVED 3D PARTICLE

TRACKING VELOCIMETRY (4D-PTV)

Recent developments in the Shake-The-Box (STB [1]) approach have led to a renewed
attention on time-resolved three-dimensional Particle Tracking Velocimetry (4D-PTV) for
the study of turbulent flows. STB introduced a fast and efficient tracking idea based on
a particle position prediction step followed by an image space optimisation scheme solved
with "Shaking". STB was first initiated and shaped after the Iterative Particle Recon-
struction (IPR) concept proposed by Wieneke [20]. The 4D-PTV experiment essentially
can be done such as Tomo-PIV by adding tracer particles into the flow. Similarly, we il-
luminate the volumetric region of interest to record the projections of the tracer particles
on multi-camera images. These tracer particles can represent Lagrangian flow motions. If
we are able to extract the majority of trajectories of these particles, then we have valuable
Lagrangian data of the flow motion. It is desirable to have particles with high concen-
trations because more particles should lead to better-resolved flow structures. Earlier
techniques such as 3D-PTV [17] were severely limited by the seeding density of the ex-
periments. Tomo-PIV introduces spatial smoothening because of using cross-correlation
techniques. As mentioned in Chapter 1, the computation demand of Tomo-PIV is con-
siderably high. So it would be desirable to do PTV in high tracer concentrations. This
chapter addresses the 4D-PTV working principles, including particle reconstruction, track
initialisation, position prediction, and position optimisation.

2.1 4D-PTV working principle

A typical 4D-PTV technique comprises four recursive steps inspired by STB. These
steps are particle reconstruction, track initialisation, prediction, and optimisation, as
shown in figure 2.1. Particle reconstruction with triangulation is a process that converts
multi-view 2D particle images to particle positions in a 3D domain. However, the trian-
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IPR Initialisation Prediction + Optimisation

Residual images

New entry particles

t=1, 2, 3, 4 tn+1tn (n>4)

Triangulation

Figure 2.1 – 4D-PTV flowchart starting from particle reconstructions in four frames using
IPR [20] followed initialisation, prediction, and optimisation.

gulation only works for sparse particle concentrations lower than 0.001 particles per pixel
(ppp). Due to overlapping particles, the number of ghost particles drastically increases
in triangulation for higher particle concentrations. Hence, Wieneke [20] proposed IPR
with an additional step to overcome the triangulation inaccuracy. In IPR, the triangula-
tion is followed by an iterative optimisation procedure that searches for the best particle
position, minimising the intensity discrepancy between the original and the reprojected
particle image. The reconstructed 3D positions from IPR are thereafter fed into the ini-
tialisation part (see figure 2.1). After the tracklets of the first few frames are built, the
prediction function then estimates positions of the next time step (tn+1) using polynomial
or Wiener filter predictors [1], [27]. The optimisation takes part from the predicted po-
sitions until the optimal positions at tn+1 are found. During the prediction-optimisation
phase, particles continuously enter the domain. Those new entry trajectories must be fed
into the tracked poll; otherwise, there would eventually be no tracks left since all tracked
particles would have left the domain for a flow with the main advection. In complex
flow motions or with high particle concentrations, some particles lose their trajectories
due to optimisation failure. In this scenario, the lost particles are kept in the residual
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images, but their tracks will be removed from the tracked poll (see figure 2.1). It is vi-
tal to reconstruct those lost particles and build tracklets since an increasing number of
lost tracks will lead to the divergence of the tracking algorithm. To this end, the track
initialisation attempts to build tracklets for three types of particles, particles in the first
four/five frames, new entries, and lost particles. The following sections in this chapter
cover details of the mentioned steps in 4D-PTV.

2.2 Particle reconstruction

2.2.1 Particle triangulation

Triangulation is a method to determine 3D particle position from the projection of
the particle tracers on multi-camera images. We are searching for a point in 3D space
that lines of sights (LOS) of intensity peaks from the camera images to reach one point
(as shown in figure 2.2). Worth mentioning that the intensity peaks in each camera are
identified by an image processing algorithm called peak finder. A particle position is
reconstructed if these lines of sights reach together to a region that is below a certain
threshold (i.e., allowed triangulation error). This reconstruction approach is applicable
in low particle concentration cases. As a rule of thumb, the allowed triangulation error
should be less than one-pixel [20]. However, this approach fails if the number of particles
increases by creating more ghost particles as shown in figure 2.2. To reach higher particle
concentrations, we start reconstruction from a single camera image and try to find particle
intensity correspondences in other camera images [20], [44]. This means that we start from
one intensity peak (probably representing a true particle) on camera 0, as shown in figure
2.3. Then we follow the LOS of the red dot (i.e., peak intensity) through the volume to
have a line in 3D space (see figure 2.3). After that, the line is back-projected into the
camera 1, capturing the same volume of interest from another position. As shown in figure
2.3, the red line in the back projection of the LOS of the target intensity in camera 0.
This red line is known as the epipolar line. All the particle peaks around the epipolar line
with a specific search radius epsilon (allowed triangulation error) potentially represent
images of the same tracer particle (red dot in the camera 0 shows). We use images from
other cameras to further filter these potential candidates to precisely determine the 3D
intersection points by following the LOSs of candidates. The 3D intersection point is the
closest point in space to both cameras’ LOSs. Moreover, we can back-project on other
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Cam
era

 1Camera 2

True particle

Ghost particle

Line of sight (LOS)

Figure 2.2 – Particle triangulation for a stereo configuration. Grey peaks are recorded
by two cameras. The triangulation process gives two true (blue) and ghost (red) recon-
structions on the LOS intersections.

cameras (camera 2 and camera 3) from these 3D points. A potential 3D position of a
true particle is reconstructed only if there is a peak within a certain threshold (epsilon)
around the back-projected point in all cameras.

2.2.2 Ghost particles

Ghost particles result from false particle reconstruction in the triangulation step. As-
suming there are two particles in a stereo configuration, we are interested in triangulation.
As shown in figure 2.2, two particles are projected in two cameras, producing two peaks
on each camera. Ghost particles are created by triangulating these recorded peaks from
the camera images to the object space. The triangulation result contains real particles
and false reconstructions. The falsely reconstructed particles can get resolved if there is
an additional camera by reducing the ambiguity of candidates during the triangulation
process. Theoretically, additional cameras are needed if the particle concentration in-
creases. It should be noted that a ghost particle has no coherent motion and decorrelates
in time. Moreover, ghost particles have less intensity signals than true particles. It means
auxiliary image processing functions in supplement with an additional camera can reduce
false reconstructions.

26



Time-resolved 3D Particle Tracking Velocimetry (4D-PTV)

Cam
era

 1

Camera 2

Camera 3

Target particle

Line of sight (LOS) Projected LOS with uncertaintySearch zone
Reprojected particle

Figure 2.3 – Modified triangulation process, starting from a camera and looking for
possible matches on the other cameras.

2.2.3 Iterative Particle Reconstruction (IPR)

Iterative Particle Reconstruction (IPR [20]) is a method that works with two outer
and inner loops. The process has five main steps after taking measurement images. The
first step is to detect intensity peaks on the captured images using the peak finder func-
tion. With the intensity peaks, we can triangulate particles. The triangulated particles
are either true or ghost particles. Then we feed those particles into the state vector of
IPR. We can perform the position optimisation process "Shaking" with the state vector.
In the meantime, we want to remove ghost particles by knowing that typically the inten-
sity of a ghost particle is less than a true particle. So, IPR filters ghost particles by a
certain threshold of intensity. As shown in figure 2.4, IPR performs an iterative process
by returning to optimisation and shaking steps. This shaking and filtering iteration is
called the inner loop (or Shake iteration). The next step is to create the residual images
after finishing the inner loop. The residual images are rendered by back-projecting the
reconstructed positions using the optical transfer function (OTF). The image model em-
ployed in the tracking algorithm is a super-composition of OTF and the camera model.
This model translates the 3D positions of particle p at time k (Xk

p ) to the image local
patch as
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(5) Render residual images
Measurement

(1) Detect peaks

(2) Triangulate
(3) Optimise

(4) Filter ghosts

State vector

Figure 2.4 – IPR working principle, including two inner and outer loops (reprinted from
[20], [33]).
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p

(
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p , Ek
p

)
+ ϵk

p. (2.1)

Then we subtract the back-projected intensities with the original recorded images at
the same time step. These residual images are considered as the inputs for the next outer
loop IPR iteration. The IPR iteration process can be continued multiple times depending
on the seeding density. Wieneke [20] showed that IPR is at least as efficient as Tomo-PIV
in terms of the fraction of ghost particles for densities up to 0.05 ppp. Although IPR out-
performs the Tomo-PIV and classic 3D-PTV techniques for higher particle concentrations,
the fraction of ghost particles jumps quickly for densities higher than 0.05 ppp, resulting
in the tracking failure. Due to this major issue, Schanz [1] proposed STB technique with
additional steps to extend capabilities of IPR in higher densities. STB adds temporal
information to reduce the reconstruction complexities of each time step. In this thesis,
we employed IPR for all the image-based assessments.

28



Time-resolved 3D Particle Tracking Velocimetry (4D-PTV)

2.3 Track initialisation

4D-PTV methods like STB and Kernelized Lagrangian Particle Tracking (KLPT, [2])
require an appropriate and reliable number of initialised true tracks at every time step.
Otherwise, the tracking process fails to reconstruct trajectories for the majority of particles
[1], [6]. Such a failure illustrates the importance of implementing a robust multi-frame
track initialisation technique to prevent 4D-PTV divergence, particularly in dense and
complex situations.

The idea of initialising a possible track in four frames, known as four frame best esti-
mate (4BE), has been widely used in LPT/PTV studies [37], [45]–[48]. Four frame tracking
methods with simple nearest neighbour particle matching have been introduced for low
density and smooth flow behaviours [47]. However, the nearest neighbour fails to recon-
struct true trajectories in high particle concentrations if the length between neighbour
particles has the same order of their trajectory displacement within two time steps. New
studies recently improved four frame track initialisation performance, including four-frame
best estimate (4BE-NNI) method [45] by looking for the nearest neighbours in sequen-
tial frames until a unique solution is found or Enhanced Track Initialisation (4BE-ETI)
method [46] by looking for all track possibilities with an adjustable search volume (see
also [48]). Dou et al. [37] proposed initialising with two nearest candidates in a similar
spirit, then kept predicting and particle matching in the next two following time steps
(four frames in total) until a unique match is found. Cierpka et al. [49] have shown that
the four frame methodology could be extended to multi-frame tracking with the combi-
nation of neighbour possibility and temporal prediction in sequential steps. The most
straightforward prediction function is the linear predictor that can be calculated from the
position difference of every two possible matches. The use of a linear predictor improved
the probability of finding true tracks as well as reducing the computation time by having
a targeted search volume [49]. Some studies also suggest applying the prior PIV velocity
field as a predictor [1], [26], [50]. Although this idea is applicable to 2D and 3D studies,
extracting a 3D-PIV velocity field is expensive due to its spatial resolution, uncertainty,
and complex experimental issues.

For complex flow motions and experiments with high particle densities, a further step
for the track validity check is required to avoid false detection. Guezennec et al. [35] origi-
nated this validity check as a self-coherency algorithm with the concept of path coherence.
Their technique minimises a penalty function from all possibilities in five frames. In their
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study, a possible track is a coherent path if it is a smooth trajectory in position, velocity,
acceleration, and rate of acceleration. This spatial and temporal self-consistency penalty
function only focuses on a single track behaviour. Recent four frame based techniques
also performed similar self-consistency approaches. As an example, [37] checked if the
velocity differences between two frames exceed a certain threshold to validate a possible
track. With a comparative approach, [45] controlled the acceleration change instead of
velocity. Likewise, the self-consistency approach is used in two frame based tracking tech-
niques [51]. These treatments rely on spatial and temporal filtering of the trajectories
to avoid false tracks. However, as complex flows often feature high gradient motions,
over-smoothing dynamics could lead to a quality degeneration of the reconstructed field.
The degeneration problem is that there is no direct learning based on the physics of flow
included in the classical four frame schemes, which brings more challenges for complex
and high-density flow motions. In Chapter 5, we address a novel initialisation technique
based on learning from neighbour trajectories to increase its robustness and efficiency in
terms of particle concentration, temporal scale, and noise ratio.

2.4 Position prediction

The initialisation step is followed by the prediction function [52]–[54]. Briefly, it is
assumed that particle positions are known for n time steps (four to five). Afterwards, a
mathematical prediction function is implemented to estimate particle positions for time-
step n+1. The predicted particle positions are given to the optimisation process for further
corrections. The optimisation can deal with slight deviations between the predicted and
true positions. However, the optimisation fails to find the true position if the deviation is
large enough to have multi-candidates for a single particle at the next time step. On the
other hand, a small prediction error reduces the probability of picking the wrong particle
from the surroundings in the optimisation process of 4D-PTV. This shows the importance
of having an appropriate prediction in dense and complex motions. In Chapter 6, we
address how to predict the particle position at the next time step. We also discuss a novel
approach in particle position prediction over space and time based on coherent motions
of particles.
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2.5 Position optimisation

2.5.1 Shake-the-Box (STB)

STB employs an optimisation process called "Shaking" to correct the predicted posi-
tions based on recorded images. The objective of "Shaking" is to find 3D coordinates that
minimise the residual image matrices. So the STB cost function can be written as

J
(
Xk

p

)
= 1

2
∑

i

∥∥∥Ik,i
p − I i

p

(
Xk

p .Ek
p

)∥∥∥2
. (2.2)

The tracking issue is implicitly embedded in a predictor function to reach the min-
imised cost function. In the optimisation process, we just optimise the function J around
the predicted position, assuming that the predicted position is close to the true position.
So the problem is finding 3D coordinates that best fit recorded image data. STB algorithm
can be summarised in two main steps. The first one is IPR. As discussed in section 2.2,
IPR is a method that combines triangulations and subsequent position optimisation of
the triangulated particles ("shaking" the particles) in an iterative process. By using IPR
alone, it is possible to extend the range of processable seeding densities up to 0.05 ppp.
The next step in STB is utilizing the temporal information. This step helps to main-
tain tracks and increases the capability of tracking more densities. STB initialises tracks,
and then these particles are extended to the next time step by predicting their following
positions (see section 2.4). Since the prediction contains errors due to acceleration and
measurement uncertainties, the predicted positions need to be corrected by minimising
equation (2.2).

Another problem with triangulation is creation of ghost particles. A ghost particle is a
3D position that is falsely reconstructed. Therefore, we need IPR to improve reconstruc-
tion accuracy up to a specific limit. For triangulation, it is often the case that the 3D
position of the particle is slightly displaced with respect to the true particle position. This
might be due to the measurement noise or peak finder. For example, the peak finder can
introduce an error when there is an overlap between two particles, so the peak can not be
adequately identified. However, it is possible to optimise the position and the intensity
of particles by assessing the 3D position with the camera images. Figure 2.5 shows a
schematic view of particle position optimisation by image matching (i.e., "Shaking") for
a single camera. In the optimisation process, we back-project the reconstructed position
into cameras. Then we can compute the residual image by subtracting the recorded peak
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Figure 2.5 – Particle position optimisation. (a) Minimising residual of the recorded and
the reprojected intensities. (b) “Shaking” process in a single camera.

(original image) and the back-projected intensity (reprojected image). Due to subtrac-
tion, some positive and negative regions will be in the residual image. This residual image
should be minimised to reach accurate 3D position estimation. Sum over the magnitude
of two peaks (back-projected + recorded) indicates the deviation of two reconstructed
and original positions of the particle. This indication can be used as a cost function in
the minimisation problem. The more displaced reconstructed particle with respect to the
original position will cause more residuals and a higher sum of the magnitudes. In a
multi-camera measurement, the cost function should be the sum of the residual images
of all the cameras for each particle. Moreover, we have to find the direction in space to
move the reconstructed particle to minimise the cost function. This direction is given
by the gradient of the cost function (total residuals in figure 2.5.a). Furthermore, the
task is to determine the gradient. Wieneke [20] computed the gradient numerically by
displacing the reconstructed position in every direction in space and basically sampled the
cost function and then moved the particle in the direction of the minimum. Jahn et al.
[33] proposed an analytical solution for this optimisation problem. As mentioned earlier,
OTF is a process that links the camera images to the 3D space geometries. OTF plays a
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crucial role in the whole reconstruction procedure. It is essential to know what the shape
of particle images look like. Ideally, the particle should be imaged as a circle. However, it
might occur in an experiment that particles are astigmatically distorted, and there is more
ellipse shape. This problem should be tackled by the OTF calibration process; otherwise,
it will impact the residual optimisation process. In this way, it is possible to optimise the
particle’s position and simultaneously update the intensity of the optimised position.

Working principle of Shake-The-Box

STB requires a time-resolved series of camera images. STB receives the initialised
first four frame images. In the initialisation step, we apply IPR to each of the four
frames to reconstruct true and ghost particles. We know that true particles behave in
reasonable trajectories, while ghost particles appear in random places. Another point
about ghost particles is that they disappear or become uncorrelated in time. STB assumes
that particles with low deviations can be true particles to separate them with ghost
particles. In the next time step, we can predict the position of particles based on their
histories. Thereafter, the deviation between the predicted positions and the original
images caused by flow gradients or measurement noises should be optimised in further
steps. Similar to the IPR process, STB applies shaking to correct small displacements
of predicted particles. Now we end up with a particle distribution (tracked polls) that
already has the majority of particles without the necessity of doing the triangulation. This
improves the computation cost of the whole tracking process since primary triangulation
is only needed for the first few frames. This process continues over all time steps. The
same process applies to the new entry particles. As a result, STB extends the IPR
capabilities to densities over 0.2 ppp (40 times larger than classic 3D-PTV). Based on
synthetic analyses, the accuracy of STB was determined around 0.02 px which is 10 times
better than Tomo-PIV with 1/20 computation demand [1].

Variable time step Shake-the-Box

Variable Time step Shake-The-Box (VT-STB) is a novel additional processing loop of
the classic STB algorithm, particularly suited for flows with high dynamic velocity ranges.
If relative movements of particles are small (frozen motion domains), ghost particles also
keep staying in the same region. In such a condition, suppressing ghost particles would
be challenging since there are no significant motions of particles to be distinguished from
ghost particles. Except for the ghost elimination challenge, projection of close particles in

33



Time-resolved 3D Particle Tracking Velocimetry (4D-PTV)

the camera images creates overlapping intensities in such a region (quiescent flows), which
can bias the particle position estimation in the "Shaking" step. On the other hand, the
optimisation process can not determine the correct peak when two particle images over-
lap. To tackle the mentioned challenges, Schanz et al. [38] proposed adaptive timescale
selections in VT-STB. The adopted timescale should be optimal for different dynamic re-
gions. For example, for the cylinder wake flow case, the flow motion outside the cylinder
is relatively higher than inside the wake. In such a scenario, VT-STB starts tracking the
slowest particles by choosing large timescales. Thereafter, the iteration starts with a finer
temporal resolution. This process continues up to maximum acquired frequency when the
fastest particles are tracked. As a result, this method showed improved performance in
reducing the number of false trajectories by adding one more iterative loop on the original
STB and adopting the acquired timescale after each iteration.

2.5.2 Kernelized Lagrangian Particle Tracking (KLPT)

In 4D-PTV, we are interested in following the same particles at different acquisition
times over a series of particle images. There is no challenge if the particle concentra-
tion is low with a high acquisition frequency. However, Kernelized Lagrangian Particle
Tracking (KLPT [2]) was proposed to track particles with low temporal information and
high particle concentrations. KLPT computes objective matrices to reconstruct the tra-
jectories. Methods like STB need to minimise the kinematic measurement metrics, such
as acceleration change minimisation. KLPT proposed a tracking algorithm by detection
paradigm, which is a well-known term in the computer vision community. We first define
a backward nonlinear function f : Ip → Xp that maps local image patches from a series
of particle images to 3D coordinates. In KLPT, our objective is to find f that minimises
the regularised empirical risk (standard formulation in machine learning),

R(f) =
N∑

j=1
∥Xp − f (Ip)∥2 + λ∥f∥2

HK
, (2.3)

where the first term measures the discrepancy in terms of an approximated function over
N sample pairs. Each sample represents a possible state of the particle p. The second term
is regularisation on nonlinear function in reduced kernel hyperspace. Therefore, we can
learn f with N samples to compute the corresponding particle coordinate as X̂p = f

(
Irec

p∗

)
.

KLPT performs random sampling instead of dense sampling (like as Tomo-PIV) inspired
by ensemble data assimilation techniques due to its lower computation demand. So KLPT
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samples particle peaks in the object space (3D coordinate) to be predicted to the next
step. Then we obtain image local patches from OTF. With these sample pairs, we can
solve the empirical risk minimisation problem. The Representer theorem can obtain the
closed-form solution. So the nonlinear function f can be solved as a linear combination
of the Kernel functions (κ̄),

f(I) =
N∑
j

κ̄
(
Ij

p, I
)

α⃗j, (2.4)

where α⃗j is a weighting vector. The Kernel function compares similarities between a
sample Ij

p and another candidate (local image patches). The tracking problem in KLPT
is divided into two stages, learning weighting vector and detecting unknown particle po-
sitions. The weighting vector α⃗j is derived as

α⃗ =
(
K̄ + λIdN

)−1 [(
X1

p

)T
. . . . ,

(
XN

p

)T
]T

. (2.5)

So we have a linear optimisation problem by knowing f in equation (2.3) resulting in
particle reconstruction as

X̂p = f
(
Irec

p∗

)
. (2.6)

Worth mentioning that this solution is similar to ensemble data assimilation formula-
tions based on learning and detecting processes. Yang and Heitz [2] showed linear opti-
misation formulation in KLPT is a fast and robust algorithm if the temporal resolution
is sparse or complex turbulent motions such as the wake flow exists where the prediction
is uncertain. In general, KLPT is an adapted version of the original STB algorithm that
replaced the optimisation step. The rest of the process, including reconstruction, initiali-
sation, and prediction, follows the STB algorithm. It was found that KLPT can capture
longer tracks and provides more detailed flow reconstruction at highly turbulent regions
than STB [2].
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Chapter 3

LAGRANGIAN COHERENT STRUCTURES

(LCS)

We have known for a long time that the flow is featured by coherent structures.
Coherent structure detection techniques mainly focused on regions with high vortices in
the Eulerian framework. In contrast, Lagrangian Coherent Structures (LCS) introduced
by Haller and Yuan [55] are moving along the time in the Lagrangian framework. There
are all kinds of coherent structures in nature that appear in complex flow fields. For
example, the atmospheric flows passing around an island represent coherent structures
(see figure 3.1). The cloud visualisation allows the illustrating formation of von Kármán
vortex street downstream of the object.

Haller and Yuan [55] showed how to compute objective LCS (invariant manifolds) from
noisy velocity fields obtained from experiments. This finding led to more investigations
in applying classic nonlinear dynamical systems into fluid flows. Later on, Shadden [56]
studied how finite-time Lyapunov exponents (FTLE) ridges are the same as LCS material
lines and barriers of coherent motions. Application of using LCS to full three-dimensional
turbulent flow fields such as channel flows was performed by Green et al. [57]. Haller [3]
reviewed using LCS in classical dynamical systems such as saddle fixed point and chaos
for time-varying fluid flows. FTLE is a quantifiable value that determines how to extract
coherent structures in the Lagrangian framework. To start, we model the fluid flow as a
dynamical system as

d

dt
X = U(X, t), (3.1)

where U is unsteady fluid flow as a function of space and time, and X is the particle
position. We are interested in knowing how tracer particles move along the fluid with
FTLE. Tracer particle means that it is passive and neutrally buoyant, and all the inertial
effects are neglected. This chapter introduces how to compute the FTLE value and its
derivation based on sparse trajectories. Then we will discuss how to quantify coherent or
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Figure 3.1 – Lagrangian coherent structures (LCS). (a) Classical dynamical structures
representing a hyperbolic flow patterns. (b) Coherent Lagrangian patterns in nature,
Rishiri Island, Japan (reprinted from NASA STS-130 Mission).

non-coherent neighbour trajectories by locally computing FTLE values.

3.1 Finite Time Lyapunov Exponent

To compute FTLE, we assume that the local flow map is the particle trajectory in
finite time from t0 to t0 +T (in this study T ⩾ 4 ) in the Lagrangian framework. The flow
map takes an initial condition at time zero and maps it forward over the interval time to
the final position. In the Eulerian framework, particles are integrated along vector fields
to create the flow map. The starting positions of random synthetic particles would be the
initial condition at time zero. Then we can integrate the particles’ positions by numerical
time-stepping techniques such as forward Euler and Runge-Kutta integrators. In the
Lagrangian frame, we take the nearest neighbours around every single particle in the
domain of interest. After that, FTLE examines how flow maps of the nearest neighbours
deform in time. Therefore, the idea is simplified to analyse spatial displacements between
the target particle and its neighbours over time. In general, two neighbour trajectories
can extract (stretch), contract, or rotate in time. Worth mentioning that the area around
a group of neighbour trajectories at the starting point of the FTLE computation must
be the same area of their deformed shape at their final positions in incompressible flows.
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The flow map of a single particle can be formulated as

Φt0+T
t0 (x) : x(t0) → x(t0 + T ), (3.2)

where x(t0) is the starting position of the interval time T , and x(t0 + T ) is the final
position. Therefore, we compute flow maps of all particles through time. Schematically,
Lyapunov exponent is a term from classical dynamical systems that highlight regions with
the most stretches if the interval time is positive (forward). Differences between the flow
maps of the target particle Φt

t0 (xp
0) and its neighbour Φt

t0 (xn
0 ) would result in a vector

displacement as following

δx(t) = Φt
t0

(xp
0) − Φt

t0 (xn
0 ) . (3.3)

This vector displacement contains transformations between the initial and final posi-
tions of two particles. In classic dynamical systems, if we add a perturbation ϵ to the
starting position x0 of a particle, we can Taylor expand how the particle behaves forward
in time (T > 0). Then the final position of the perturbed particle will be the sum of its
original position and the amplification factor

Φ(x + ϵ) ≈ Φ(x) + DΦ(x) · ϵ, (3.4)

where the derivative of the flow map gives this amplification, the largest amplification
factor occurs in regions with the largest FTLE value. So, equation (3.4) can be linearized
by using the first term of the Taylor series of Φt

t0 (xn
0 ) expanded around xp

0

δx(t) ≈
∂Φt

t0 (xp
0)

∂x0
δx0, (3.5)

where δx0 = xp
0 −xn

0 . The state-transition matrix ∂Φt
t0 (xp

0) /∂x0 is also known as deforma-
tion gradient tensor ∇Φt

t0 (x0) [56]. The deformation tensor carries valuable information
including the rate of expansion, compression and rotation. The magnitude of δx(t) is

|δx(t)| =
√

δx(t)δx(t) =
√

(∇Φt
t0(x0)δx0)(∇Φt

t0(x0)δx0) =
√

δx0(∇Φt
t0(x0)∇Φt

t0(x0))δx0,
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t2 t3 t4t1

Target particle position            [t1,tn] Target trajectory

Coherent particles in cluster 3   [t1,tn] Cluster area 3   

Coherent particles in cluster 4   [t1,tn] Cluster area 4   

Cluster area 2   Coherent particles in cluster 2   [t1,tn]

Coherent particles in cluster 1   [t1,tn] Cluster area 1   

t1-t5

Figure 3.2 – Schematic of particle trajectories in 2D pair vortices starting from t1 to t5.
(t1) The target particle with coherent neighbour particles located in a clockwise vortex
(blue cluster), non-coherent particles belong to different clusters. (t2) The target particle
trajectory (dark blue line) approaches the particles in the red cluster. (t3) The target
particle separation with non-coherent particles in the red cluster and approaching to the
particles in the grey cluster. (t4) Separation of non-coherent particles in the grey cluster
with the target particle. (t1 − t5) Full trajectory view of the target particle alongside
coherent particles in the blue cluster.

where we define
∆ = ∇Φt

t0(x0)∇Φt
t0(x0). (3.6)

∆ is a symmetric positive definite matrix, also known as the right Cauchy-Green
deformation tensor [56] with three real and positive eigenvalues in a 3D domain over
finite time. As mentioned before, FTLE measures the stretching rate between the target
particle and its neighbour. The maximum eigenvalue (the largest singular value) of the
Cauchy-Green tensor λmax(∆) shows the maximum amount that can be possibly stretched
(expansion or separation) in finite time. On the other hand, these fields also represent
how the flow field is sensitive to perturbation. Furthermore, the eigenvector corresponding
to λmax(∆) represents the direction of the separation. Eventually, the magnitude of the
maximum displacement can be written as

|δx(t)max| =
√

δx0λmax (∆) δx0 =
√

λmax (∆)|δx0|, (3.7)
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and the FTLE value Λt
t0 is defined by scaling the magnitude of the maximum displacement

as
Λt

t0 = 1
|T |

√
λmax (∆) = 1

|T |
log

(
δx(t)
δx(t0)

)
. (3.8)

Forward-FTLE means that the interval time is positive, and we assess forward flow
maps. Moreover, negative interval time leads to backward-FTLE values, so particles that
stretch more in backwards time accumulate material in forwarding time. In experimen-
tal fluid mechanics, smoke visualisations that are very intuitive to human eyes illustrate
backward-FTLE structures by accumulating the smoke through thin lines in forwarding
time, theoretically stretching in backwards. Both backwards-forward values provide es-
sential information of the Lyapunov exponent field. Regions that stretch the most forward
and backward times determine stable and unstable manifolds over the computed time.
High values in the FTLE field show the existence of ridges that divide the local area into
different clusters of coherent particles. Particles that start on one side of a ridge tend to
stay on the same side. So the FTLE ridges are almost like invariant manifolds where the
particles are not able to pass through them. A lower FTLE value means the neighbouring
particle acts similarly, with no sign of separation from the target particle over the finite
time. So, the FTLE ridges provide a direct analogue of stable and unstable (see the figure
3.1.a) manifolds for classic dynamical systems. Stable and unstable manifolds are used to
understand nonlinear differential equations. Assuming a nonlinear differential equation,
we need to determine the fixed points to find eigenvalues and eigenvectors to check if they
are stable fixed points or saddle points. We can take the eigenvectors associated with
eigenvalues will show subspaces where the dynamics are invariant. Moreover, by contin-
uing along those subspaces, we sweep out these manifolds where if a point starts on one
side of the manifolds, it will stay on that side forever. It is a way of segmenting the phase
space into different coherent regions. FTLE gives determined time-varying information
of these stable and unstable manifolds in unsteady flow fields. This formulation makes
it possible to index a group of neighbour particles as coherent or non-coherent with the
target particle.

3.1.1 FTLE ridge detection

To quantify a threshold for the FTLE ridge detection, we assessed the FTLE map for
the case of 2D homogeneous isotropic turbulence given by DNS. We found that values
above the threshold 0.25 are optimal criteria to estimate the FTLE ridge positions. This
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threshold was in agreement with studies using global FTLE ridge calculation in the range
of 50% − 80% of the maximum FTLE value [58]. Ridge detection algorithms search for
spatial places with zero derivatives and the highest curvature of the FTLE fields. There
are valuable studies in ridge detection algorithms with extensive computation costs that
can be employed instead of using a constant FTLE threshold (see, e.g., Shadden et al.
[56]).

3.2 Coherent and non-coherent clusters

In the present study, the ultimate goal of using LCS is to locally determine coherent
and non-coherent neighbour trajectories. We use FTLE, as it is the most commonly used
method of quantifying boundaries between separated regions [59]. A study from Had-
jighasem et al. [60] globally compared twelve techniques to detect coherent Lagrangian
structures in 2D flows. It was found that FTLE is a simple and objective algorithm
with suitable performance of capturing hyperbolic LCS. However, the technique becomes
unreliable in elliptic LCS structures. More research is needed to understand and track
clusters of coherent particles in real experiments. For further investigations, the FTLE
function can be replaced with advanced LCS detection algorithms (see, e.g., [61]) or other
coherent motion detection techniques such as Coherent Structure Colouring (CSC [62]).
In the following sections, we address three local segmentation techniques to be compared
locally.

3.2.1 Local segmentation by FTLE

This section explains segmenting the phase space into different coherent regions, know-
ing that every single particle is spatially and temporally coherent with a specific cluster
of other particles following the same behaviour [6]. Figure 3.2 shows a schematic of co-
herent and non-coherent groups of neighbour particles in different colours evolving by
time (t1 − t5). A particle can spatially meet a group of other particles in which there
is no coherency link between them. There are many available concepts to identify LCS
from looking for separatrix lines or surfaces which divide structures into different coherent
regions [3]. To use the benefits of the FTLE map, we need to quantify the deformation
matrix over sparse Lagrangian trajectories. In the Lagrangian frame, a derivate of flow
maps representing sensitivity to small perturbations can be approximated by the Jacobian

42



Lagrangian Coherent Structures (LCS)
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Figure 3.3 – Schematic of particle segmentation methods. (a) Density based spatial clus-
tering of applications with noise (DBSCAN). (b) Spectral clustering technique. The black
dashed line shows the solution (cut) of graph nodes with similarity, reprinted from Had-
jighasem et al. [63].

operator in time and space. Therefore, the spatial derivative of flow maps in 2D condition
will become

DΦT
0 ≈


∆x(T )
∆x(0)

∆x(T )
∆y(0)

∆y(T )
∆x(0)

∆y(T )
∆y(0)

 =


xi+1,j(T )−xi−1,j(T )
xi+1,j(0)−xi−1,j(0)

xi,j+1(T )−xi,j−1(T )
yi+1,1(0)−yi,j−1(0)

yi+1,j(T )−yi−1,j(T )
xi+1,j(0)−xi−1,j(0)

yi,j+1(T )−yi,j−1(T )
yj+1(0)−yi,j−1(0)

 . (3.9)

The Jacobian matrix computes the finite ∆X at the final time over ∆X at the initial
time. So it will become the spatial derivatives (deformations) from the starting to the final
points. Any stretching and deformation in flow will impact the Jacobian matrix. Similar
to the Eulerian framework, the eigenvectors and eigenvalues of this Jacobian of the flow
map represent the most stretching, contracting, or rotating directions. Worth mentioning
that the determinant of this matrix should be ideally one for incompressible flows. So for
every particle, we compute the finite difference derivative matrix to identify how much
trajectories stretch in finite time. This follows by computing the maximum stretching that
can occur between neighbour trajectories, resulting in the finite-time Lyapunov exponent
value. Finally, every single trajectory will be indexed by the FTLE value for further
processes.

To perform local segmentation, we defined a local Eulerian frame around each particle,
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Figure 3.4 – A local segmentation snapshot of 2D-HIT flow. (a) FTLE. (b) Spectral
clustering. (c) DSCAN.

while all neighbourhood particles inside this area must be classified as coherent or non-
coherent with the target particle. This frame is fixed during a series of time-steps that
provide an Eulerian view of the neighbourhood behaviour. Velocity values of the target
particle are used to quantify the Eulerian frame size in each direction. If 2D/3D velocity
values are equal in each direction, the shape would be a circle/sphere around the target
particle. All particles inside the Eulerian frame in the same phase or with phase delay
are considered neighbourhoods. A lower FTLE value means a neighbouring particle is
coherent and acts in the same behaviour with the target particle spatially over a specific
temporal scale. We introduced such a concept for the track initialisation in 4D-PTV
studies (see Chapter 5).

3.2.2 Density-based spatial clustering

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [64] detects
data outliers (clustered data) and arbitrarily shaped clusters (clustered data). DBSCAN
retrieves cluster indices and a vector indicating which observations are core points (points
inside clusters). There is no need to know the number of clusters beforehand, and clusters
are not necessarily spheroidal. In addition, DBSCAN can also be used to detect cluster-
free points because it finds those that are not associated with any cluster. A Lagrangian
particle must be associated with a cluster if it satisfies the condition that at least a
certain number of neighbours are present in its epsilon neighbourhood. In either case,
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the particle can be within the epsilon neighbourhood of another particle that satisfies
both the epsilon and the minimum number of neighbours requirements. The DBSCAN
algorithm can identify three kinds of core, border, and noise particles. A core particle
is a particle within a cluster with the minimum number of neighbours in its epsilon
neighbourhood. The border particle belongs to a cluster whose epsilon neighbourhood
contains fewer neighbours than the minimum. A noise particle is an outlier that does
not come from any cluster. For specified values of the neighbourhood epsilon and the
minimum number of neighbours required for a core point, the DBSCAN function can be
implemented. From the input data set of Lagrangian positions X, DBSCAN selects the
first unlabelled observation x1 as the current point, and initialises the first cluster label C

to 1. Then we find the set of points within the epsilon neighbourhood of the current point,
as showed in figure 3.3. If the number of neighbours is less than a certain threshold, the
algorithm labels the current point as a noise point (or an outlier). The process continues
until the first cluster is indexed to label the target particle as a core point belonging to
the cluster C1. DBSCAN is an iterative process over each neighbour particles until no
new neighbours are found that can be indexed as belonging to the current cluster.

3.2.3 Spectral clustering

Spectral clustering is a graph-based algorithm for partitioning data points, or obser-
vations, according to similarity between Lagrangian trajectories. The spectral cluster
requires specifying the number of clusters k [61], [63] . The technique involves represent-
ing the data in a low dimension where clusters are more widely separated, enabling to
use k-means or k-medoids clustering algorithms [65] . This low dimension is based on
the eigenvectors corresponding to the number of clusters, the smallest eigenvalues of a
Laplacian matrix. However, it is possible to estimate the number of clusters by count-
ing the number of zero eigenvalues of the Laplacian matrix. A Laplacian matrix is one
way of representing a similarity graph that models the local neighbourhood relationships
between data points as an undirected graph, as illustrated in figure 3.3.b. The spectral
clustering algorithm derives a similarity matrix of a similarity graph from the data, finds
the Laplacian matrix and uses the Laplacian matrix to find k eigenvectors for splitting
the similarity graph into k partitions. By default, the algorithm for spectral cluster com-
putes the normalised random-walk Laplacian matrix using the method described by Shi
and Malik [66] . The spectral cluster also supports the unnormalised Laplacian matrix
and the normalised symmetric Laplacian matrix, which uses the Ng-Jordan-Weiss method
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[67].

3.2.4 Local segmentation results

We examined local segmentations of FTLE, DBSCAN and spectral clustering tech-
niques for the synthetic 2D homogeneous isotropic turbulent (HIT) flow. Details of the
synthetic dataset are discussed in section 4.3. It was found that the DBSCAN technique
is severely sensitive to the search radius and the minimum number of neighbours, at least
in turbulent flows. However, it works fairly fast and is acceptable if it is well-tuned, which
can be challenging in real experiments. In the clustering approach, to estimate the num-
ber of clusters, we initialised the k value by 50, knowing that 2D-HIT has few small scale
clusters locally, to determine how many of the eigenvalues are nearly zero. This represents
the number of connected components in the similarity graph (see figure 3.3.b). Therefore,
the number of nearly zero eigenvalues in the optimal value for k. One snapshot of the
local clustering in shown in figure 3.4. Both spectral clustering and FTLE based functions
are almost robust compared with DBSCAN, but they still require optimal tunings which
is case dependent. As mentioned earlier, FTLE is the most straightforward technique to
detect LCS [59] and local segmentations results from FTLE were in agreement with the
global comparison from Hadjighasem et al. [60]. In this thesis, we employ FTLE for the
rest of assessments mainly because it is a well established technique.
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Chapter 4

EXPERIMENTAL AND NUMERICAL DATA

CREATION

We employed a series of numerical synthetic and experimental velocimetry measure-
ments to validate and assess our proposed methods in this thesis. A total number of
seven datasets are provided to be used as test cases of the following sections. The details
of these cases are shown in table 4.1. We address two 4D-PTV experiments of the jet
impingement and the wake behind a cylinder in section 4.1. These two experiments are
employed for tracking assessments in Chapters 5 and 6, respectively. In addition to the
assessment in Chapter 5, we examined our algorithms with the 4D-PTV data from the
LPT challenge [43] in which the performance results were provided by the challenge com-
mittee. The third experiment was 2D planar PIV of the cylinder wake flow (see section
4.3). To quantify the tracking performance, we created 2D and 3D synthetic datasets
obtained from Direct Numerical Simulation (DNS), discussed in section 4.3.

Table 4.1 – Test cases of the present study
Case Data type Reynolds Application

4D-PTV Cylinder wake flow experiment 3900 Chapter 6, 7
Jet impingement experiment 2500 Chapter 5
Wall bounded wake LPT challenge 4500 Chapter 5
Cylinder wake flow DNS numerical 3900 Chapters 5, 6
Cylinder wake flow DNS numerical 300 Chapter 6

2D-PTV HIT DNS numerical 3000 Chapters 6, 8
2D-PIV Cylinder wake flow experiment 3900 Chapter 8
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Maximum spatial resolution Optimal temporal scale

a) b)

Figure 4.1 – 4D-PTV experiment setup design. (a) Acquisition frequency selection as
a function of hardware facility and flow properties. Comparison was made with similar
volumetric experiments. (b) Desired particle concentration with respect to the turbulent
length scales.

4.1 4D-PTV experiments

A volumetric velocimetry experiment requires three major steps, experiment design,
data acquisition, data processing. This section addresses details of designing volumetric
experiments in a wind tunnel and introductory remarks on performing the experiment.
Then we discuss jet impingement and the cylinder wake flow setup designs and the acqui-
sition procedure. Processing of the acquired data will be discussed in later Chapters 5, 6
and 7.

4.1.1 Experiment setup design

The first parameter that needs to be defined before performing a volumetric exper-
iment is the acquisition frequency (i.e., temporal scale). The sampling rate is a crucial
parameter that must resolve minimum convective motion and be estimated in advance.
It is perpetually desirable to reach a higher sampling rate (i.e., the acquisition frequency)
to resolve higher temporal resolution in turbulent flows. Furthermore, the observation
time needs to be long enough to follow the dynamical evolution of structures. A large
number of observations might be necessary in the case of performing statistical analysis
or machine learning studies. As the Reynolds number increases, the particle displacement
jumps, and therefore, 4D-PTV algorithms fail after a limit depending on the maximum
available acquisition frequency (hardware limitation). This means that the temporal scale
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a) b)

Figure 4.2 – Velocimetry camera setting design. (a) Computation of the desired depth
of field based on camera properties. (b) Multi camera setup design.

and the mean particle displacement should be computed before starting any acquisition,
particularly in wind tunnel experiments. We designed an open-access software package in
Graphic User Interface (GUI) to roughly estimate the minimum parameters required to
perform an experiment. Figure 4.1.a shows one snapshot of optimising the temporal scale
in an experiment based on flow properties and recent similar experiments. The achievable
range for the temporal scale can be tuned as a function of the Reynolds number, turbulent
length scale and hardware acquisition facilities. The selected temporal scale should be in
the same range as similar volumetric studies, as shown in figure 4.1.a. The second param-
eter is to determine the maximum achievable spatial resolution. It is possible to compute
particle concentration based on a rough estimation of the volume of interest and number
of particles if we assume that the seeding particles are distributed homogeneously in the
domain. Figure 4.1.b shows of snapshot of particle concentration sizing as a function of
turbulent length scales. Average number of particles per volume of turbulent length scales
(Kolmogorov, for example) determines the maximum achievable spatial resolution of the
experiment. As a result, we can roughly estimate the optimal temporal scale and spatial
resolution to perform a volumetric measurement.

The next step is to compute the optical parameters. Depending on the type of cam-
era, the pixel size is known. Therefore, the magnification factor can be identified as a
function of camera distance to the domain of interest. The camera depth of focus must
be larger than the illumination depth to assure focused projections of the illuminated
particles. Therefore, we can adjust the optimal aperture, magnification factor, and focal
length to tune the depth of focus value as shown in figure 4.2.a. The particle image size
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Figure 4.3 – 3D schematic view of the jet impingement experimental, with snapshot of
the experiment in zoom balloon.

is another crucial parameter needs to be computed. The optimum particle image size
for such experiments should be around 2-3 pixels to avoid peak locking and having an
immense particle image size. We can obtain the estimated particle image size in pixel as
a function of camera aperture and magnification factor as shown in figure 4.2.a. 4D-PTV
algorithms need a minimum of three cameras to reconstruct true particles and suppress
ghost reconstructions (see section 2.2. The software package is a graphic calculator that
computes required optical parameters for a range of typical multi-camera setups, includ-
ing radial, X (double stereo in two sides), and arc configurations as shown in figure 4.2.b.
Eventually, we can design the experiment optical parameters based on available facilities
and the experiment geometry.
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4.1.2 Jet impingement experiments

We used the data from a volumetric experiment of liquid-liquid jet impingement on
a circular wall at a Reynolds number equal to 2500. Perpendicular impinging the jet
into the wall creates significant deceleration inside the jet core. The deceleration and
directional 3D motions of particles are featured by multi-vortex rings around the jet and
secondary vortex structures after the impingement. Figure 4.3 shows the schematic view
of the experiment setup. Four Phantom M310 cameras with 1200 × 800 resolution and
the maximum frequency of 3.26 kHz are empowered (see table 4.2). Nikon 105 mm macro
F2.8 (aperture was set to F22) lenses were adjusted by the double angle Scheimpflug
adaptors.

As shown in figure 4.3, two cameras were positioned in 24 degree with forward scatter
light, and the other two cameras were in backward scattering at 13 degree. 15 mJ LDY
300 laser and a mirror at the bottom of the water tank were set for the illumination with
0.5 kHz frequency (dt/τη = 2.18) and converted into the rectangular light volume. In
the water tank, prisms were used to reduce the distortion caused by the air-glass-water
interfaces. A mirror at the bottom of the tank back-reflected the laser beam throughout
the measurement volume. The measurement volume was 16 mm × 51 mm × 35 mm
(29 cm3). The distance between the nozzle exit and the ground was 24 mm (3D). The
seeding particles were hollow glass spheres with 9 − 13 µm diameter, and 1.1 g/cm3

density. The particle concentration was approximately 0.03 ppp that was equivalent to 2×
10−6 ppη3. The calibration error was less than 0.03 pixel. The measurement uncertainty
due to the displacement and global bias errors was estimated to be in 2.0 − 3.5 % of the
boundary layer in the wall jet region.

4.1.3 Cylinder wake flow experiments

Volumetric measurement

An experimental study of the cylinder wake flow at Reynolds number equal to 3900
(same value as the synthetic data) was performed. Experiments were carried out in the
wind tunnel equipped with a centrifugal fan, a diffuser, a plenum chamber with honeycomb
and grids, a contraction section decreasing by 4, and an area with transparent walls for
testing. With the aid of hot wire anemometry, the velocity profile at the wind tunnel
entrance was checked to ensure uniformity. The free-stream turbulence intensity level
was found to be less than 0.2 %. The cross-section of the testing zone is square, with
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Table 4.2 – Jet impingement experiment setup parameters.
Setup Value

Lenses 4× Nikon 105 mm
Cameras 4× Phantom M310
Resolution 1200 × 800
Pixel size 20 µm

Exposure time 250 µs

Illumination volume 16 mm × 51 mm × 35 mm
Acquisition frequency 0.5 kHz
Particle concentration 0.03 ppp
Number of images per experiments 2000 frames

a width of 28 cm and a length of 100 cm. It has a slightly tilted upper wall to reduce
longitudinal pressure gradients. It is possible to choose a continuous flow velocity of 1 to
8 m/s.

In this classic wake flow case, the complexity of the flow topology is captured by
preserving the areas where turbulence is produced. There are three such regions on
an obstacle: the boundary layer, the two shear layers at the limit of the recirculation
region, and the wake. We designed an experimental setup with four cameras as shown in
Figure 4.4.a. Four CMOS SpeedSense DANTEC cameras with a resolution of 1280 × 800
pixels and the maximum frequency of 3 kHz are empowered. Cameras are equipped with
Nikon 105 mm lenses. The first two cameras are positioned in backward light scattering,
while the second two cameras receive maximum intensity signal in forward scattering.
The calibration error was lower than 0.06 pixel and reduced to 0.04 after the volume
self-calibration. The volume of interest was 280 mm × 160 mm × 46 mm starting
from roughly 4D downstream of the cylinder, knowing that the vortex formation zone
ends at 4D. The aperture was set at 11 to achieve 46 mm depth of focus. We used an
LED system to illuminate this large volume. The acquisition was long enough to observe
dynamic evolutions of the von Kármán vortex streets downstream of the cylinder.

52



Experimental and Numerical Data Creation

a) b)

Figure 4.4 – Experiment setup design for the cylinder wake flow at Reynolds 3900. (a)
Schematic of the camera setup design. (b) One snapshot of HFSB tracer particles passing
downstream of the cylinder.

Seeding particles

As mentioned in Chapter 1, Helium Filled Soap Bubbles (HFSB) are key ingredients
of performing large-scale volumetric experiments in air. Soap bubbles are the only tracers
with a size significantly larger than 10 µm, leading to sufficient light scattering in the
Large-scale volumetric measurements. Smaller particles such as oil droplets can create
a very dense particle concentration and follow the flow accurately, but they scatter very
little light. For this reason, volumetric measurements using these small seeding particles
are restricted to small measurement volumes. Therefore, in the present experiment, the
seeding particles were HFSB, resulting in desired intensity signal with appropriate particle
size. In a similar experiment, Scarano et al. [41] studied application of using HFSB in
the wake flow past a cylinder in a volume of 20 × 20 × 12 cm3 (4800 cm3).

Based on a study carried out by Caridi et al. [68], HFSB was determined to have
roughly IB/Ifog ∼ (dB/dfog )2 ∼ 105 times more intensity compared with intensity of fog
droplets. Particle time-response τ p is a value that determines how particles follow the
flow with fidelity. Time-response is directly linked with the particle diameter and its mass
density discrepancy to the air in wind tunnel experiments. Due to this reason, large fog
droplets (> 10 − 20 µm) do not follow the flow with enough fidelity because of their poor
time-response value. However, the mass density discrepancy is close to zero since HFSB
particles are filled with Helium (lighter than air). As a result, the particle time-response
for HSFB becomes small enough to follow the flow with fidelity. Accordingly, Scarano et
al. [41] reported that the HFSB time-response is maintained well below 100 µs, which
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means that particles should adequately follow the flow in low-speed experiments. So,
large size particles with favourable time-response values provide the ability to perform
large-scale measurement volumes [19].

However, bubbles are limited by three main factors in the wind tunnel experiments,
including generation rate, lifetime, and image glare points. Due to these limitations,
HFSB for large scale volumetric measurements inside the wind tunnel leads to low particle
concentration (approximately 1 particle/cm3). One of the earliest studies of using HFSB
reported ppp < 0.01 for the seeding density, which could only resolve Karman vortices and
unable to capture turbulent small scales [41]. Improved particle density was achieved by
reserving particles in a chamber over time before running the acquisitions and releasing
them during the experiment (Caridi et al. [68]). In 2018, Gibeau and Ghaaemi [69]
reached to 1.6 particle/cm3 with the idea of having multi-wing seeding system. The
impact of the multi-wing generator on the flow stream is found to be at most 1.9 % of
the turbulence intensity with a negligible deficit on the mean flow. Gibeau et al. [70]
demonstrated to achieve 0.02 ppp over a volume of 20, 000 cm3 using full-scale HFSB
generator with 48 nozzles.

In the present study, we placed 50 bubble generator nozzles with airfoil-shaped struc-
tures inside the wind tunnel chamber. The nozzles were far upstream of the measurement
section (in the settling chamber) to ensure a sufficient number of bubbles were created,
and the main flow field was not disturbed by the existence of nozzles. The bubble lifetime
is very short (less than 2−3 minutes) inside the wind tunnel, mainly because they explode
by passing through honeycomb layers. To overcome this issue, we injected bubbles inside
the chamber for up to 5 minutes when the wind tunnel is off before starting the acqui-
sition. We found that particles larger than three pixels create two glare points on two
sides of the bubble when the illumination is LED. This requires more image treatments
before running the 4D-PTV algorithm to avoid false particle reconstruction. However,
the intensity of two glare points can diffuse and merge if the particle size is around two
pixels. Therefore, we adjusted the camera magnification to reach particles with two pixel
image sizes on average to surpass the glare point issue. Figure 4.4.a shows homogeneous
distribution of tracer particles during the experiment.
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4.2 2D-PIV experiments

We performed 2D-PIV experiments for the wake behind a smooth cylinder at the
same Reynolds number as the volumetric experiment in section 4.1.3. PIV measurements
were conducted at z = 0, just downstream of the circular cylinder. NewWave laser Solo3
based on neodymium-doped yttrium aluminium garnet (Nd: YAG) with an energy pulse
of 50 mJ was employed to illuminate the region of interest. The diameter of the seeded
particles is less than 10 µm (diluted Polyethylene glycol in water).

The Imager sCMOS camera (2560 × 2160 resolution) was equipped with a 50 mm
lens and an aperture of 5.6. The Reynolds number was set at 3900 by adjusting the free
stream velocity to 4.8 ms−1. With a time interval between two successive images of 25 µs,
5000 image pairs are obtained. The circular cylinder has a diameter of 12 mm and a
length of 280 mm. Two thin rectangular end plates are included, which meet Stansby’s
specifications [71]. In this case, the distance between the end plates is 240 mm, which
results in an aspect ratio of 20. The space between the walls and the endplates is about
20 mm, which is larger than the boundary layer thickness. It has a blockage ratio of 4.3%.
In the test zone, the circular cylinder is located horizontally at 3.5 D. Processing of the
acquired 2D-PIV images is discussed in Chapter 8.

4.3 Direct Numerical Simulations (DNS)

4.3.1 Cylinder wake flow numerical dataset

The PIV/PTV community consistently requires synthetic datasets to assess and vali-
date developed image-based methods. The EUROPIV Synthetic Image Generator (SIG)
developed a standardised synthetic dataset framework for the PIV/PTV community [72].
SIG targeted three objectives: algorithm performance assessment, algorithm sensitivity
analysis as a function of characteristic parameters, and algorithm comparison. Charac-
teristic parameters refer to particle concentration (i.e., density), temporal scale, and noise
ratio to determine how the synthetic dataset is similar to a real experiment. Since then,
by increasing capabilities of the PIV/PTV techniques, algorithm assessments constantly
require datasets of flows with relatively complex and high gradient regions associated with
3D directional dynamics. That was the motivation to generate a database of Eulerian ve-
locity and pressure fields with Lagrangian trajectories for the wake carrying complex flow
motions downstream of a smooth cylinder. Applications of the current dataset can be
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Figure 4.5 – Dimensions of two sub-domains from the flow over a smooth cylinder at
subcritical Reynolds number 3900.

summarised in table 4.3. In this section, We first describe the creation of the Lagrangian
data by transporting the synthetic particles in the Eulerian velocity volume. After that,
we discuss how to set characteristic parameters for the synthetic data, including 1- Particle
concentration, 2- Temporal scale, and 3- Noise level.

A highly-resolved DNS of the flow over a smooth cylinder at a subcritical Reynolds
number 3900 (based on the diameter D of the cylinder and the free-stream velocity) was
performed to generate the data. Double-precision Eulerian and Lagrangian fields for two
sub-domains were collected, as shown in Figure 4.5. The dimensions of Sub-domain 1
are 10D × 8D × 6D. Data were saved every 10 DNS time steps for Sub-domain 1 due
to online cloud storage limitation (saving every time step would have required roughly
30 Tb of storage per vortex shedding). 1000 snapshots were also collected for a smaller
sub-domain with dimensions of 4D × 2D × 2D (i.e., Sub-domain 2) for every DNS
time step. Sub-domain 2 is suitable for studies requiring the highest possible temporal
resolution. Details of two sub-domains can be found in table 4.4. One Eulerian snapshot
of the current wake flow is shown in Figure 4.6. Lagrangian trajectories are provided for
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Table 4.3 – Application of the current dataset in PIV / PTV community.
Dataset application Trajectories 3D velocity 2D velocity Pressure Target studies

4D-PTV algorithm ✓ ✗ ✗ ✗ [1], [6], [27]
Flow field reconstruction ✓ ✓ ✗ ✗ [25]
Pressure from PTV ✓ ✗ ✗ ✓ [73], [74]
Lagrangian physics ✓ ✗ ✗ ✗ [53], [62]
Machine learning ✓ ✗ ✓ ✗ [75], [76]
Eulerian physics ✗ ✓ ✓ ✗ -
Data assimilation ✓ ✓ ✗ ✓ [77]
CFD assessment ✗ ✓ ✗ ✓ -
2D2C-2D3C-PIV ✓ ✓ ✗ ✗ [14]
Tomo-PIV ✓ ✓ ✗ ✗ [14], [78]

roughly 200, 000 synthetic particles for both sub-domains. Reading tutorial of the dataset
is addressed in Appendix A.

Eulerian simulation and Lagrangian transport

The computations are carried out with the open-source flow solver named Incompact3d
[79], [80] based on sixth-order finite-difference compact schemes for the spatial discreti-
sation on a Cartesian grid. The simplicity of the Cartesian grid offers the ability to
implement higher order spectral schemes for spatial discretisation. For the current sim-
ulation, the time advancement was performed with an explicit third-order Adams Bash-
forth scheme. The governing equations are solved with a fractional step method to treat
the incompressibility constraint, which requires solving an additional projection step, the
Poisson equation. This Poisson equation is fully solved in spectral space using three-
dimensional Fast Fourier Transforms (FFTs). In the present work, the smooth cylinder
is modelled using a customised immersed boundary method (IMB) with an artificial flow
inside the cylinder to ensure the smoothness of the velocity field while imposing a no-slip
boundary condition at the cylinder. More details about the flow solver can be found in
Laizet and Lamballais [79]. Incompact3d is built with a powerful 2D domain decomposi-
tion for simulations on super-computers. The computational domain is split into a number
of sub-regions (pencils) which are each assigned to an MPI process. The derivatives and
interpolations in the x-direction (y-direction, z-direction) are performed in X-pencils (Y-
pencils, Z-pencils), respectively. The 3D FFTs required by the Poisson solver are also
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Table 4.4 – Specifications of two sub-domains from the flow over a smooth cylinder at
subcritical Reynolds number 3900.

Domain
Dimension Grid size Time step

Size
x y z nx ny nz dt (D/U∞)

Computation Domain 20D 20D 6D 1537 1025 256 0.00075 12.9 Gb
Sub-domain 1 (4-14)D (6-14)D 6D 769 777 256 0.00075 4.8 Gb
Sub-domain 2 (4-8)D (9-11)D (2-4)D 308 328 87 0.0075 256 Mb

Table 4.5 – Synthetic particle concentration selection in terms of particles per cubic
Kolmogorov and integral scales.

Case particles ppη3 ppD3

Low 2, 000 10−5 139
Moderate 20, 000 10−4 1386
High 200, 000 10−3 13861

broken down as a series of 1D FFTs computed in one direction at a time. Global trans-
positions to switch from one pencil to another are performed with the MPI command
MPI_ALLTOALL(V). Incompact3d can scale well with up to hundreds of thousands of MPI
processes for simulations with several billion grid nodes [80]. Inflow/outflow boundary
conditions are implemented along the streamwise direction with free-slip and periodic
boundary conditions along the vertical and spanwise directions, respectively. The simula-
tion was performed on nearly 4×1010 grid points (see table 4.4). The grid was uniform in
the streamwise and spanwise directions, while a non-uniform grid was used in the vertical
direction, with a grid refinement towards the centre of the cylinder. The finest grid size
in the vertical direction was ∆ymin = 0.00563D. The dimensional DNS time step was
0.00075 D/U∞ (where U∞ is the free-stream velocity). It takes 6667 DNS time steps to
simulate one vortex shedding. It should also be mentioned that 1333 DNS time steps
correspond to one integral temporal scale D/U∞.

Lagrangian transport accuracy

A comparison was made between the transport of particles at every 10 DNS time step
(i.e., temporal scale of Sub-domain 1) with the transport of particles at every DNS time
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a) Pressure Iso_Surface

Figure 4.6 – Snapshot view of Sub-domain 2. (a) Pressure iso-surface coloured by the
magnitude of pressure. (b) Lagrangian trajectories of 20, 000 particles after 1000 DNS
time step, coloured by the velocity magnitude. (c) Q criterion representation of the
Eulerian flow structures coloured by the vorticity magnitude.
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Figure 4.7 – 2D map of the non dimensional position error of Lagrangian transport com-
puted every 10 DNS time step after 1000 time steps and after an average in the spanwise
direction.

step in Sub-domain 2, to quantify the uncertainty level of trajectories in Sub-domain 1.
As a result, the mean deviation of the trajectories between two temporal scales after 1000
DNS time steps in the larger domain is equal to 3.28 η, with η the Kolmogorov spatial
scale. The standard deviation of position error is σϵ = 0.017 η. Figure 4.7 shows a 2D map
of the non-dimensional position deviation ϵ/η between two temporal scales averaged in
the spanwise direction. Therefore, it is recommended to use the data from Sub-domain 2
for studies requiring accurate trajectories inside the wake region, while the data from
Sub-domain 1 are better suited for studies focusing on large scale motions.

Particle concentration

In most PIV/PTV studies, particle concentration refers to the number of particles
per pixel (ppp) that is principally an image-related parameter. The relation between
the particle concentration and the turbulence length scales determines the maximum
achievable spatial resolution. Therefore, it is crucial to address the number of particles
corresponding to Kolmogorov (η), Taylor (l), and Integral (D) length scales. To quantify
these relations, we used two volumetric metrics, namely, particles per cubic Kolmogorov
scale (ppη3) and particles per cubic Integral scale (ppD3), instead of ppp. We chose three
low, moderate, and high particle concentrations, respectively equal to 2, 000, 20, 000,
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Figure 4.8 – Schematic view of energy spectrum in turbulence. Resolved and unresolved
spatial resolutions of 2, 000, 20, 000, 200, 000 particles in blue lines with respect to integral
(D), Taylor (l) and Kolmogorov (η) length scales in red dash-lines.

and 200, 000 particles (see table 4.5). It is possible to assess cases with more particles
and reach the particle concentration up to the DNS spatial resolution numerically, but
very few PTV experimental studies have reached more than 200, 000 particles in practice
due to the PTV seeding and the 4D-PTV limitations. One limitation can be the IPR
reconstruction that fails for higher particle concentrations [20], and therefore the whole
4D-PTV process diverges. figure 4.8 shows the turbulence energy spectrum marked by the
three particle concentrations (blue lines) compared with the turbulence length scales (red
dash lines). We estimated the Kolmogorov length scale as D/η ∼ Re3/4 that is almost 2.8
times smaller than the average mesh size in the y-direction. Since the cylinder is inside
our domain, it is necessary to subtract the volume of the cylinder before computing ppη3.
Accordingly, the spatial resolution for the case with 2000 particles leads to unresolved
Taylor and Kolmogorov scales. However, there are enough particles to resolve the large
flow motions. Taylor length scales can be resolved by adding an order of magnitude
more particles, but the smallest scales are still unresolved with 10−4 ppη3. As shown in
figure 4.8, in our case, even 200, 000 particles with 10−3 ppη3 are not enough to resolve
the smallest turbulence length scale at Reynolds number equals to 3900.

61



Experimental and Numerical Data Creation

Cylinder or Sphere

Cube or Ahmed body

Jet impingement

Free jet or Vortex

14

16

138

7
10

15

15

4
29

11
1

3
6

12
3900

Reynolds

⁄
𝑑𝑡

𝑑𝑡
!
"
#

Figure 4.9 – Synthetic time scale selection with respect to recent similar wake flow
experimental studies and different Reynolds numbers. Each symbol represents a family
of flow configuration [14], [19], [28], [41], [81]–[91].

Temporal scale

Schanz et al. [1] computed the temporal scale as a function of the original experiment
time sampling rate, resulting in a mean 3D particle displacement of around 6 pixels for
the synthetic data analysis. However, the temporal scale selection requires satisfying
the real experiment condition and should be characterised by flow physics. We defined
the temporal resolution as a ratio of turbulence time scales. The non-dimensional form
of the temporal scales can be written as dt/dtDNS, dt/τη, and dt/TD, where dt is the
temporal scale for either synthetic or experiment study, and dtDNS, τη and TD are the
DNS, Kolmogorov and integral time scales, respectively. By defining TD = D/U∞, we
estimate the Kolmogorov time scale from ratio of the largest to the smallest time scales
as TD/τη ∼ Re1/2. To mimic the real experiment condition, we gathered similar wake
flow studies (mainly cylinder wake flows) and plotted the relations of dt/τη with their
Reynolds numbers in figure 4.9. It is shown that low Reynolds number experiments can
resolve the Kolmogorov time scale [81]. The achievable temporal scale increases with the
Reynolds number, mainly because the data acquisition frequency limits the experiments
with the order of 1 − 3 kHz for the majority of studies mentioned in figure 4.9. The DNS
time step is roughly 20 times smaller than the Kolmogorov time scale. Such a case with
every 10 DNS time step (dt/τη = 0.47) can resolve the Kolmogorov time scale, but it is
unlikely to achieve such a high acquisition rate in practice, particularly when the fluid is
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Table 4.6 – Synthetic time step selection in terms of DNS, Kolmogorov, and integral time
scales.

Case dt/dtDNS dt/τη dt/TD

Low 10 0.47 0.01
Moderate 50 2.34 0.04
High 100 4.68 0.08

air. Particle trajectories are very smooth with small displacements in this case. However,
according to figure 4.9, the temporal scale dt/τη stays relatively large, between 2.5 and 5
for studies close to a Reynolds number of 3900 that approximately equals to every 50 and
100 DNS time steps. As listed in table 4.6, we chose three low, moderate, and high time
steps starting from every 10, 50, and 100 DNS time steps. It is worth mentioning that
it takes 1333 and 6667 DNS time steps to reach one integral time scale and one vortex
shedding, respectively.

Noise ratio

In this paper, we created noise (i.e., false particles) in the vicinity of true positions. A
false particle is randomly distributed around the true position with a maximum displace-
ment radius. Noise ratio (NR) of 0.1 means 10% of true particles at every time step have
false particles in their vicinities. A false particle around a single track also impacts the
track detection accuracy for other neighbour tracks, particularly in dense and intersection
situations. In this study, we created three noise ratios, 0, 0.1, and 0.2.

4.3.2 2D Homogenous Isotropic Turbulent (HIT)

We transported synthetic particles for 2D Homogenous Isotropic Turbulent (HIT) flow
obtained from DNS at a Reynolds number equal to 3000. The Navier-Stokes equation
was solved using incompressible condition (∇ · u = 0). Tracer particles were transported
for every DNS time step using Euler transport as,

dx

dt
= up, (4.1)
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a) b)

Figure 4.10 – One snapshot of 2D homogenous isotropic turbulent (HIT) flow. (a)
Eulerian streamline. (b) Lagrangian trajectories.

where interpolation over four nearest mesh nodes were used to estimate the velocity of
tracer particles up. The square domain of interest 2π × 2π was discretized into 256 × 256
node elements with periodic boundary condition in four boundaries. This means that a
particle enters in one side of the domain if a particle leaves on the opposite side at the
same mirrored position. The non-dimensional DNS time step was set at 0.01 D/U . We
collected particle transport of 1000 DNS time steps. Figure 4.10 shows a snapshot of both
Eulerian streamline and Lagrangian trajectories. The current data set is used in further
assessments in Chapter 8.
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Chapter 5

COHERENT TRACK INITIALIZATION

This section seeks to increase the track initialisation accuracy and robustness in flows
with high particle concentration, large temporal scale, and noisy reconstruction featured
by complex motions such as high velocity and acceleration gradients. Therefore, we pro-
pose a novel Lagrangian Coherent Track Initialisation (LCTI) technique to find tracks in
four (or multi) frames belonging to clusters of coherent motions. We apply Lagrangian
Coherent Structures (LCS [3]) to distinguish coherent and non-coherent neighbour trajec-
tories. The LCS, also known as the skeleton of flow, determines separatrix lines or surfaces
that divide flow structures into different coherent regions. We use finite-time Lyapunov
exponent (FTLE), which is the most common method in quantifying these separatrices
boundaries [59].

We argue that when a track can not be reconstructed solely due to ambiguities caused
by overlapping and multiple possibilities, it is always beneficial to extract more infor-
mation from its neighbourhood. If the reconstructed tracks are available in the neigh-
bourhood, we can use this information to gain a better insight into the target particle’s
potential behaviour and eventually solve the ambiguity problematic associated with the
initialisation. As we are dealing with the fluid flow, assuming a constant solid local rigid
neighbourhood is naive and erroneous, it is essential to consider a coherent neighbourhood
where both the target particle and neighbour particles share the coherent motion.

We first applied the LCTI algorithm to synthetic data as an effective tool with three
specific objectives including, algorithm performance assessment, algorithm sensitivity
analysis as a function of characteristic parameters, and algorithm comparison [72]. This
approach has been utilised widely in recent algorithm developments of PIV/PTV stud-
ies [27], [46], [92], [93]. This section considers a set of synthetic data for the wake flow
downstream of a smooth cylinder. Performance of the proposed method based on three
characteristic parameters, temporal scale, particle concentration (i.e., density), and noise
ratio, showed robust behaviour in finding true tracks compared to the recent initialisation
algorithms. Sensitivity of LCTI to the number of untracked and wrong tracks are also
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Figure 5.1 – Schematic view of the LCTI algorithm when two possible four frame solutions
exist. (a) LCTI four frame algorithm considering all possible neighbour candidates at t2
followed by linear predictions (blue dash line arrows). Candidate matching at time step
t3 inside first search volume (blue circle r1). Second order prediction (red and black dash
line arrows) to match possible candidates at t4 inside second search volume (grey circle
r2). (b) Coherency check between two possible track matches and neighbour coherent
motion.

discussed. We address the capability of using the proposed method as a function of a 4D-
PTV scheme in the Lagrangian Particle Tracking (LPT) challenge for the wall-bounded
wake flow behind the cylinder [5]. We showed that LCTI prevents 4D-PTV divergence in
flows with high particle concentrations. Finally, the LCTI behaviour was demonstrated
in a jet impingement experiment. LCTI was found to be a reliable tracking tool in com-
plex flow motions, with a strength revealed for flows with high velocity and acceleration
gradients.

5.1 Track initialisation methodology

The current initialisation technique tries to find coherent tracklets in four frames as a
complementary part of 4D-PTV. It should be noted that particles of a cluster are coherent
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if they spatially behave together over a finite time. A starting step is required in LCTI
for the first time step t1, where there is no neighbour track information. It can be done by
a classic four-frame scheme with a narrow threshold to index the most reliable tracks. A
track is assumed to be reliable if it has relatively small velocity and acceleration standard
deviations in four time steps to avoid false tracks. The standard deviation of the particle
image intensity can also determine whether a possible track is reliable. In practice, the
LCTI steps can be listed as the following algorithm,

Algorithm 1: LCTI
1: Index possible candidates inside the search volume at t2;
2: Two consecutive predictions and candidate matching for t3 and t4;
3: Index possible tracks from t1 to t4;
4: Coherency check with neighbour tracks for each possible track;
5: Index the most coherent track.

Referring to the LCTI algorithm 1, we need to define the search volumes to index
possible candidates at each time step. Clark et al.[46] enhanced the probability of finding
true tracks by applying adjustable anisotropic search volumes as a function of mean
flow direction. Anisotropic means that if the mean flow (obtained from the predicted
velocity) is dominant in one direction, the search volume in that direction is larger than
in the other directions. Adjustable search volumes introduce local spatial motions (i.e.,
physics-based information) into four frame schemes, which can significantly tackle the high
gradient threshold issues. On the other hand, using the adjustable search volume limits
the number of possible candidates, avoiding non-coherent solutions by following the local
spatial motion. The search volume in LCTI is based on the local maximum displacement
map calculated from neighbour particles. Therefore, the first search volume is computed as
a function of neighbour maximum displacements in each spatial direction between t1 and
t2 as shown in figure 5.1.a. Then, every neighbour particle inside the search volume at t2 is
a candidate. These candidates are in one of the following categories: the true position of
the target particle at t2, the true position of other undetected tracks, and noise (i.e., false
particle). Afterwards, a linear predictor (blue dash line arrows in figure 5.1.a) between
the target particle at t1 and the possible candidate at t2 is performed for every possible
match. Similarly, the second search volume around the predicted position determines
which particles are more likely to be in the true position at t3. A possible track is removed
if there is no candidate inside the search volume. The process is repeated for the next time
step with a higher order prediction function (red and black dash line arrows in figure 5.1.a).
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Target Particle Position            [t1,tn]

Coherent Particles in Cluster 1   [t1,tn]

Coherent Particles in Cluster 2   [t1,tn]

Coherent Particles in Cluster 3   [t1,tn]

Coherent Particles in Cluster 4   [t1,tn]

Figure 5.2 – 2D schematic of particle motions inside vortices. Each colour belongs
to a group of coherent clusters. The target dark blue particle with coherent neighbour
particles is located in a clockwise vortex (blue cluster), while non-coherent particles belong
to different clusters. The target particle is non-coherent with neighbour particles in the
red cluster.

A unique four frame solution is expected for flows with low velocity and acceleration
gradients or low particle concentrations. When more than one solution exists, LCTI selects
the most coherent track to solve the ambiguities, as shown in figure 5.1.b. Otherwise, a
particle can spatially meet a group of other particles with no coherency link between them.
We recall that coherent refers to a group of particles with the same Lagrangian behaviour
spatially and temporally. A function is therefore required to determine coherent and non-
coherent clusters of particles locally. More details and principles on the coherent motion
of particles are discussed in Section 5.2.

5.2 Coherent track detection

Recently, LCSs have been applied in PIV/PTV experiments for flow structure analyses
[94]–[97]. However, to the best of our knowledge, previous studies have not yet combined
the LCS extraction with the velocimetry algorithms and primarily focused on using LCS as
a post-processing tool. Several methods have been proposed to identify LCS by looking for
separatrix regions in time [3], [63]. Separatrices exist in boundaries (i.e., ridges) between
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different structures. A schematic view of the boundaries between vortices in a 2D isotropic
homogeneous turbulent flow is shown in figure 5.2. Multi clusters of particles spatially
exist in the vicinity of the target particle (the dark blue particle in figure 5.2). All red
and blue particles are neighbours of the target particle. However, the trajectories of each
coloured cluster temporally evolve in separated directions. LCS can be used to determine
if a spatially neighbour particle is coherent or non-coherent over a temporal scale.

Suppose the flow is dominated by coherent structures such as in a 2D isotropic homoge-
neous turbulence illustrated in figure 5.2, the global LCS analysis can extract meaningful
boundaries between structures. However, difficulties in interpretation arise when the flow
carries 3D complex motions and numerous local structures. We, therefore, suggest local
coherent structure extractions instead of a global calculation for which only coherent clus-
ters and boundaries over neighbour trajectories are computed. Therefore, the complexity
of the global LCS view is simplified into a small number of clusters around the target
particle, such as in figure 5.2. In the local view, curve or surface boundaries divide the
local spatial area into discrete regions with different dynamic motions, and motions across
these boundaries are negligible [56]. Furthermore, the LCS boundaries can move, evolve,
and vanish in spatial space as the flow pattern changes temporally.

In the local Lagrangian frame, separatrices can be obtained from FTLE by measuring
the amount of stretching between the target particle and its neighbour particles over
finite time [4], [98]. Raben et al. [4] showed that the normalised average error and
normalised root-mean-squared (RMS) error of the FTLE map decreases with increased
particle concentration. This trend is favourable because ongoing PIV/PTV experiments
consistently succeed in achieving higher particle concentrations. Meanwhile, it is less likely
to have ambiguities due to multi possible solutions in low particle concentration cases.
As a result, there is no critical need for the coherency check in low particle concentration
cases. As discussed in section 5.1, if a possible track is coherent with its neighbour tracks,
it will be indexed into the tracked poll. As we discussed in section 5.1, the LCTI algorithm
checks if the Lagrangian coherency is valid for each possible four frame tracks to avoid
non-coherent reconstructions. Assuming two possible matches exist for the target particle
(see figure 5.1.b), we start by fitting a smooth curve over each known neighbour track
to reduce the noisy reconstruction effect on the coherency detection. Then LCTI locally
computes the FTLE map over the fitted tracks without considering two possible matches.
If the FTLE map shows local separations, neighbour tracks in the same cluster with the
target particle are classified as coherent neighbours. As illustrated in figure 5.2, the local
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Figure 5.3 – Comparison performances of three track initialisation techniques in terms
of fraction of true particle detection by changing each characteristic parameter. Particle
concentration is increasing from (a) to (c).

region is divided into two blue and red clusters. Only the neighbouring tracks inside
the blue cluster are coherent with the target particle. All neighbour tracks are coherent
neighbours if no separation is detected. After the coherent neighbour determination,
LCTI checks the FTLE value for each possible match and neighbours. Finally, the most
coherent match with the coherent neighbours will be indexed. This process continues
iteratively until no track is found to be coherent with the tracked poll.

5.3 Evaluation and sensitivity analyses

In this section, the performance of the LCTI is assessed and compared against ETI
and 4BE-NNI methods. Quantitative accuracy and sensitivity analyses are performed for
different particle concentrations, temporal scales, and noise ratios compared to the ground
truth trajectories. After the initialisation step, the trajectory of each particle is classified
as either untracked, wrong, or true track. A dominant number of true tracks would ease
the 4D-PTV process to converge within short time steps. It is worth mentioning that a
4D-PTV process is converged if all particles inside the domain are tracked.

Figure 5.3 compares the ratio of detected true tracks obtained from LCTI, ETI, and
4BE-NNI techniques with different characteristic parameters of ppη3, dt/τη, and NR.
We assessed each technique based on 3 × 3 × 3 scenarios representing low, moderate

70



Coherent Track Initialization

and high levels of each characteristic parameter (see table 4.5 and table 4.6). The 3D
view of particle trajectories for the current assessment is shown in figure 5.8.c. All three
techniques performed equally well for low particle concentration and small temporal scale
by reconstructing over 95% of true tracks (see figure 5.3.a). Tracking is not difficult under
such scenarios characterised by small particle displacement with a relatively large spatial
distance between neighbour tracks. By increasing dt/τη in low particle concentration
cases, the ratio of detected true tracks drops down to approximately 90% and 75% in
ETI and 4BE-NNI techniques, respectively, whereas LCTI remains stable. Due to low
particle concentration, the large relative distance between neighbour trajectories reduces
the ambiguity in finding possible tracks. Results of low particle concentration cases for all
three techniques show that the 4D-PTV process has to recover less than 25% of remaining
untracked particles to converge in the worst case; thereafter, a short convergence time is
expected. The ratio of true tracks drops linearly by increasing the noise ratio (NR) for all
techniques with approximately the same order of magnitude. We found that the drop in
the detected true tracks caused by the noise ratio (NR) is nearly independent of the other
two characteristic parameters. Comparing the three characteristic parameters reveals that
the temporal scale has the most deterministic impact on the detected true tracks for all
techniques. If dt/τη stays low, all techniques can cover over 95% of true tracks, regardless
of the noise ratio and the particle concentration. Low temporal scale value means that
particle displacements are minimal. Even two frame nearest neighbour techniques can
reconstruct the majority of true tracks. However, in more realistic conditions, when
the temporal scale dt/τη is high, LCTI performed significantly better than the other
two techniques. Particle concentration also plays an essential role in the initialisation
performance. The ratio of detected true tracks for LCTI stays consistently above 95%
in particle concentrations of 10−4ppη3 (see figure 5.3.b). In a worse scenario, when the
particle concentration is 10−3ppη3 associated with large temporal scale, LCTI still can
recover over 75% of true tracks that is considerably higher than ETI and 4BE-NNI with
roughly 50% and 25% true tracks, respectively (see figure 5.3.c).

The synthetic data evaluation showed that LCTI systematically outperforms other
competing techniques. However, it should be mentioned that the cost of this achievement
is expensive because it computes the coherency for every possible tracklet. We found
that LCTI requires roughly 4 times more computation time on a single CPU core than
a classic four frame based initialisation technique without any post-treatment. To this
end, an appropriate initialisation technique should be chosen depending on the measure-
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Figure 5.4 – Sensitivity analysis of (a) LCTI, (b) ETI, and (c) 4BE-NNI compared with
DNS ground truth by increasing temporal scale, particle concentrations, and noise level
from top to bottom. Tracks in blue and red colour represent untracked and wrong trajec-
tories, respectively. Grey tracks are true trajectories that the algorithm built (numbers
of grey tracks are scaled down for having a clear view of red and blue tracks).
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Figure 5.5 – Sensitivity of the 4D-PTV convergence to the number of initialised tracks
for the LPT challenge high-density case at 0.12 ppp over first 30 time steps. The number
of initialised tracks after the first four frames varies from ∼ 12, 000 to ∼ 60, 000.
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Figure 5.6 – LCTI trajectory results for the LPT challenge wake flow at 0.12 ppp ([86],
[99]). (a) slice view in y direction of particle trajectories in grey and the target track in
red. (b) A cluster of coherent tracks with the target track in red.

ment condition. As an example, there is no need to perform a sophisticated initialisation
technique if the temporal scale (i.e., sampling rate) and the particle concentration are
low in comparison with the turbulence scales. It is important to note that using sophis-
ticated initialisation techniques such as LCTI is crucial to prevent 4D-PTV failure in
challenging cases with a large temporal scale and high particle concentration. Apart from
the initialisation performance based on the number of true tracks, we performed further
parametric analyses on each technique to determine how untracked and wrong trajecto-
ries are sensitive to the characteristic parameters. We started LCTI from a base case
with 10−4 ppη3 particle concentration, dt/τη = 2.34, and zero noise ratio. Afterwards,
we increased each parameter separately until the fraction of true tracks dropped down to
80%. The remaining 20% is a mix of untracked and wrong trajectories. Then we per-
formed the same parameters on 4BE-NNI and ETI techniques. Lagrangian flow maps for
increasing each characteristic parameter are shown in figure 5.4. If we increase the tem-
poral scale, both untracked and wrong tracks increase as the number of true tracks drops.
Under such a scenario, the particle displacements are large and comparable with local
distances between the neighbour particles. Therefore, less information between two-time
steps is available, which drastically increases the possibility of having untracked particles.
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Depending on the region of the flow, the majority of untracked trajectories (blue colour
in figure 5.4) exist around the two high shear sides of the wake region. Although the
number of untracked trajectories dominates the whole Lagrangian flow map, more wrong
tracks (red colour in figure 5.4) than untracked trajectories are observed inside the wake
region. By increasing the particle concentration, both untracked and wrong trajectories
raise homogeneously with nearly the same proportion through the Lagrangian flow map
for all three techniques. Interestingly, the number of wrong tracks is still comparably
larger than the number of untracked particles inside the wake region. It shows that re-
gional flow behaviours can directly impact the initialisation performance. The impact of
increasing the noise ratio is also shown in figure 5.4. We found a dominated number of
wrong tracks in all regions with an increased noise ratio. In this study, we created the
noise (i.e., false particles) in the vicinity of true particles that causes more initialisation
ambiguities. Due to this reason, LCTI yields more wrong trajectories with an increased
noise ratio. Besides, wrong indexing of a track takes away at least one true or false particle
that may propagate the wrong detection to another neighbour track too. In practice, for
4D-PTV, wrong initialised tracks increase the failure risk and need to be appropriately
eliminated in a subsequent prediction-optimisation step. The untracked particles, on the
other hand, require more iteration and convergence time.

Sensitivity analysis in figure 5.4.a implies that LCTI is likely to have more wrong
tracks inside the wake region with increased noise ratio, particle concentration, and tem-
poral scale. However, different behaviours have been seen depending on the characteristic
parameters in overall. The high turbulence intensity level at Reynolds 3900 creates small
flow structures inside the wake region. Consequently, particles inside this region are coher-
ent with a small number of neighbours and quickly change to different coherent clusters.
This behaviour brings more complexity for the coherency detection, which might be the
reason for having a dominating number of wrong tracks, despite relatively small particle
displacements. Schanz et al. [38] observed a similar issue when particles of a specific
region move slowly compared to the rest of the domain. One approach for improving
trajectory in such regions is performing temporal filtering schemes by adjusting the tem-
poral scale to track the slowest particles [38]. Comparing the LCTI sensitivity with the
other two techniques shows that both 4BE-NNI and ETI have similar behaviours to each
characteristic parameter with higher proportions of untracked and wrong trajectories (see
figure 5.4.b.c). The reason for having a higher mix of untracked and wrong trajectories
can be found in figure 5.3. A drop in the number of true tracks with increased character-

74



Coherent Track Initialization
V

elocity (m
/s)

x (mm)

y 
(m

m
)

Figure 5.7 – Side view of the trajectories, coloured by their velocity magnitudes at
0.03 ppp. Low-velocity tracks away from the jet core are filtered for clear qualitative view
thanks to the colour bar.

istic parameters leads to more untracked and wrong trajectories, which is in agreement
with findings of figure 5.4.

5.3.1 LPT challenge

LCTI was implemented into KLPT [2] to run the whole 4D-PTV process (see fig-
ure 2.1). KLPT featured by LCTI (KLPT-LCTI) was examined on the time-resolved
data from the LPT challenge [86], [99] at four particle densities (i.e., concentrations) from
0.005 ppp up to 0.08 ppp. The challenge cases were obtained from the wall-bounded
wake flow behind a cylinder at a momentum thickness Reynolds number Reθ of around
4500. In terms of turbulence length scales, particle concentration of the mentioned four
cases varied between 2 × 10−7 ppη3 and 3 × 10−6 ppη3. The domain of interest was set
at 100 mm × 50 mm × 30 mm downstream of the cylinder. The image acquisition rate
was equal to 600 µs, resulting in dt/τη = 2.68 temporal scale. At the lowest ppp, the pro-
posed method managed to reconstruct over 99% of true particles accurately. Percentage
of true particles maintained over 99% for higher densities (i.e., 0.025, 0.05, and 0.08 ppp).
Accordingly, missed and ghost particles were less than 1%. The case studies of the LPT
challenge revealed that the positional Root-Mean-Square error (RMSE) of KLPT-LCTI
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increased linearly with ppp, but it remained below 0.0041 mm for all four particle den-
sities. This illustrates the reliable performance of the LCTI at particle densities lower
than 0.08 ppp, knowing that most of the 4D-PTV real experiments perform at 0.05 ppp
particle density or lower.

For densities higher than 0.08 ppp, a more accurate initialisation technique could pre-
vent the 4D-PTV algorithm from failing or improve its convergence speed. We highlighted
that KLPT featuring LCTI succeeded in reconstructing tracks at the density of 0.12 ppp
while KLPT featuring NNI failed to converge. figure 5.6 shows an example of coherent
motion detection by LCTI at the density of 0.12 ppp. The particle trajectories obtained
from the proposed method are shown in figure 5.8.a. Questions have been raised about the
4D-PTV sensitivity to the number of initialised particles at the beginning. We illustrated
this issue in the LPT challenge case with 0.12 ppp and over 120, 000 particles. As shown
in figure 5.5, the KLPT-LCTI process reaches no more than 85, 000 (i.e., 70%) final tracks
if the process starts with any number below 30, 000 initialised tracks. However, starting
with 60, 000 initialised tracks leads to cover over 99% of final trajectories after 30 time
steps at 0.12 ppp. The evidence from this study indicates that the number of initialised
tracks is one deterministic contributor to the 4D-PTV convergence at high-density sce-
narios. Without a proper track initialisation algorithm, a 4D-PTV scheme would not be
able to recover the majority of tracks eventually.

5.4 Experiment demonstration

In this section, we performed the 4D-PTV process without prediction and optimisation
parts to particularly demonstrate the LCTI performance. Therefore, the reconstructed
particle positions with 1 pixel allowed triangulation error by IPR were employed in 20
consecutive time steps followed by multi four-frame LCTI processes. Trajectory results
obtained from LCTI are shown in figure 5.7 and figure 5.8.b. Away from the jet im-
pingement region, the trajectories are relatively smooth with small displacements. As
explained earlier in section 5.3, there is no critical issue in such regions, and a simple
initialisation technique can track the majority of particles. Small trajectories away from
the jet, therefore, are omitted in figure 5.7 to concentrate on the most complex regions.
As the jet impinges on the wall, trajectories decelerate highly, turn alongside the wall,
but still tend to keep their coherent local motions. The proposed method effectively de-
tected these coherent trajectories, although complex behaviours exist. We found that the
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Figure 5.8 – 3D view of particle trajectories. (a) The LPT challenge downstream trajecto-
ries of the wall bounded flow in the wake of a cylinder at ppp = 0.12. (b) Jet impingement
experiment case study. (c) Synthetic case for the wake behind a smooth cylinder.
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trajectories around the jet tend to circulate (see the zoom balloon in figure 5.7). This re-
veals strong evidence of the particle coherent motions impacted by the vortex rings. Near
wall trajectory reconstructions show signatures of the secondary vortices where particles
bounce back. The results of this experiment test case support the idea that each particle
can temporally and spatially behave in coherence with a group of other neighbour parti-
cles. The second significant finding was that the proposed initialisation technique could
cover most tracks in complex and high gradient regions associated with 3D directional
dynamics.

5.5 Conclusions

We proposed a novel technique to reconstruct tracklets from four (or multi) frames by
leveraging temporal and local spatial coherency of neighbour tracks. These tracks should
be consistent with the neighbour coherent motions bounded by LCS ridges. To assess the
LCTI performance in various conditions, we have created an open-access synthetic dataset
for the wake flow downstream of a smooth cylinder obtained from DNS at a Reynolds
number equal to 3900. Future studies by interested readers should focus on using the
current open access Eulerian velocity and pressure data as well as synthetic Lagrangian
trajectories for algorithm evaluation purposes (see Chapter 4). We transported particles
using the trilinear spatial interpolation scheme followed by the fourth order Runge Kutta
temporal integration. In the current dataset, temporal and spatial scales are reported
based on turbulence length and time scales. As a result of the parametric study in section
5.3, we found that a 4D-PTV process requires more sophisticated initialisation techniques
if either one of the following conditions meets:

— Particle displacements between two time steps are relatively large (i.e. dt/τη >

2.34) due to either sparse temporal acquisition frequency or high dynamic gradients
of particles (velocity and accelerations);

— The particle concentration is high enough to have a length between neighbour
particles with the same order of their trajectory displacement lengths that can be
quantified as ppη3 > 10−3 in this study;

— The reconstructed particle field is noisy (NR> 0.2).
Under these conditions, LCTI tends to detect more true tracks than recent ETI and
4BE-NNI techniques. We found that the temporal scale severely impacts the true track
detection yielded by any initialisation techniques. We also analysed the proportions of
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untracked and wrong trajectories. The main results indicate that the noise ratio creates
more wrong tracks, the particle concentration homogeneously increases both untracked
and wrong tracks, and finally, the temporal scale causes more untracked trajectories. Re-
gardless of the characteristic parameters, we found more wrong trajectories than untracked
particles inside the wake region.

We also applied LCTI to the time-resolved dataset in the LPT challenge after inte-
grating LCTI to a 4D-PTV scheme, KLPT. Our KLPT-LCTI scheme has achieved state-
of-the-art performance. The positional Root-Mean-Square error (RMSE) of the proposed
method stayed between 0.0020 mm and 0.0041 mm for particle densities of 0.005 ppp up
to 0.08 ppp [86], [99]. LCTI is helpful for high particle density data where the portion of
initialised tracks after the initialisation stage directly impacts the 4D-PTV’s convergence
performance. At ppp = 0.12, KLPT featuring a simple nearest neighbour initialisation
scheme fails to yield any valid results. LCTI, on the contrary, can recover much more
tracks from the starting four frames, therefore providing a more accurate initialised track
field. Besides, LCTI also contributes to following every frame by bringing more new track-
lets (length less than 4) from triangulated particles on residual images into the tracked
poll (see figure 2.1). This finding agrees with the synthetic analysis part in section 5.3
showing the importance of having an advanced initialisation for dense (i.e., high particle
concentration) conditions.

LCTI was then tested on the jet impingement experiment. Although the flow was
characterised by complexities such as 3D directional motion and trajectory intersections,
LCTI successfully reconstructed the majority of tracks solely on particle fields recon-
structed by IPR, without the necessity of further prediction and optimisation processes.
The trajectory results also showed particles coherent motions in large scale flow motions
such as vortex rings, impinging area, and secondary vortices. This comprehensive study
has demonstrated that coherency based track initialisation is a robust approach to re-
construct tracks even in complex situations. In conclusion, the proposed technique can
be used either as an embedded module for the 4D-PTV process or as a standalone four-
frame-based tracker. LCTI showed that additional physics-based information increases
the accuracy and robustness of the initialisation part.
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Chapter 6

PARTICLE POSITION PREDICTION

In Chapter 5, we showed that adding temporal and spatial information of coherent
motions around the target particle can improve the initialisation robustness and efficiency.
This chapter addresses how to predict Lagrangian particle positions from the initialised
trajectories as the next step of the 4D-PTV process (see section 2.1). The key improve-
ment in STB [1] compared with the original IPR [20] is adding a prediction function
that receives 3D reconstructed positions and estimates positions of the next time step.
A simple prediction approach is a polynomial function, suggested by Schanz et al. [54],
resulting in reasonable predictions and 3D trajectory reconstructions in simple flows [52]–
[54]. However, significant off prediction occurs in case of flow associated with complexities
such as high turbulence level and high Reynolds number [100]. In such conditions, even
by increasing the order of the polynomial predictor functions from 3 to 10, off prediction
stays remained [100]. The solution for this challenge is implementing optimal temporal
filtering such as the Wiener filter, which has been first examined in 4D-PTV experiments
by Schröder et al. [53]. Since then, this concept became consistent in the STB studies
due to its high robustness and accurate motion estimations [100], [101]. As mentioned,
the Wiener filter showed robust behaviour in prediction with complex flows such as inside
the turbulent boundary layer [102], but still suffers in high motion gradients. This implies
that the prediction function sticks out from a lack of information to estimate the dynamics
of particles. These prediction-based tracking techniques rely on one particle individually,
excluding it from surroundings. All the information we know from an individual particle
is its history. Even if we implement filtering and smoothing schemes such as STB using
Wiener filter [101], our information is limited by the history of the target particle, ignor-
ing that every particle is spatially and temporally coherent with a specific group of other
particles following the same behaviour.

Essentially, position histories of already tracked and newly initialised particles are the
main input ingredients of the prediction process, as shown in figure 6.1.a.b. Then, the
predictor fits a smooth curve over the noisy history {t1, · · · , tn} of the target particle
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Figure 6.1 – Particle position prediction scenario from tn to tn+1. (a) Known particle
positions from history starting from tn−4 up to tn (particle size is increasing gradually
by time step). (b) The trajectory (dark blue line) obtained from filtered curve fitting of
known particle positions. (c) Prediction based on extrapolating of the fitted trajectory
(golden dashed line) from tn to tn+1. (d) Modified prediction (red dashed line) using
velocity and acceleration information of coherent neighbours of the target particle at tn.

and estimates its possible position at time step tn+1 (see figure 6.1.c). The predicted
particle positions are then given to the optimisation process for further corrections. The
optimisation can deal with slight deviations between the predicted and true positions (see
figure 2.5). However, the optimisation fails to find the true position if the deviation is large
enough to have multi-candidates for a single particle at the next time step. This shows the
importance of appropriate prediction in dense and complex motions. Following the success
in utilising LCS in the initialisation step, we can extend the coherent motion applicability
to the prediction step. To this end, we propose to locally determine information of
coherent and non-coherent particles during the tracking procedure by using the FTLE or
particle clustering schemes as shown in figure 6.1.d. We found that even a weak signal
from coherent neighbour motions improves particle prediction accuracy in complex flow
regions. Synthetic analysis of homogeneous isotropic turbulent (HIT) flow at a Reynolds
number equal to 3000, and the wake behind a smooth cylinder at a Reynolds number
equal to 3900 showed enhanced estimation compared with the recent predictor functions
employed in 4D-PTV. More details of predictor functions are discussed in section 6.1. In
the following sections 6.2 and 6.3, we study and evaluate our proposed technique using
2D and 3D synthetic case studies. After that, we address the generic cost function to
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optimally predict particle positions and its minimisation procedure in section 6.4. The
proposed predictor function is examined in a real 4D-PTV experiment in section 6.5.
Results of the experimental study of the same wake flow configuration are reported. We
compared predicted positions with the optimised final positions of STB. It was found
that the Lagrangian coherent predictor succeeded in estimating particle positions with
minimum deviation to the optimised positions.

6.1 Prediction function

The prediction function is a set of coefficients and independent variables. The coeffi-
cients are employed to predict the outcome of a dependent variable, which can be written
in the form of a cost function. Therefore, the objective is to minimise the cost function to
reach the optimal prediction at time tn+1. Depending on the predictor function, the min-
imisation process can be complicated. We classify recently available prediction functions,
based on the input information they require, into two categories of position based and
variational cost functions. Details of these cost functions are discussed in the following
sections.

6.1.1 Position based cost function

Two main position-based methods have been reported in the 4D-PTV algorithms,
polynomial and Wiener filter predictors [1], [2], [27]. Both techniques only rely on the
history of the target particle. Polynomial predictor tries to minimise the least mean square
of the history to find the optimal polynomial coefficients, then extrapolate the function
with the same coefficients to the next time step. The polynomial function is one of the
most straightforward predictors used in the time-resolved particle tracking techniques.
In the Wiener filter approach, we design and adjust filter parameters based on history
and then shift the designed filter solution to the next time step. Both Wiener filter and
polynomial predictor functions require two parameters to set. The polynomial (or filter)
order and the length of history that we consider for the computation to perform the Linear
regression analysis. The regression window length (history) should be determined by the
desired integral time T . Then, we should select the order of the polynomial (or Wiener)
function.

The polynomial coefficients must be determined optimally by minimising mean square
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error, such that the corresponding polynomial curve with an order of ℓ best fits the given
positions. This can be written as

ℓ∑
j=0

aj.t
j
n = Xn, (6.1)

where {a0, · · · , al} are unknown coefficients of the predictor function and Xn is the poly-
nomial position estimation at time step n. Therefore, the least square cost function is

J = 1
m

n∑
i=(n−m)

(Xi − yi)2

︸ ︷︷ ︸
particle history

,
(6.2)

where yi are m known observed positions (history) of the last finite frames (in this study,
m ⩾ 4). For simplicity, observation starts from the first time step for the rest of derivations
∴ i = {1, · · · , n}. The objective is to find unknown polynomial coefficients by minimising
the cost function in equation (6.2) as



a = arg min
a

J (X, y),

X = {X1, · · · , Xn} ,

y = {y1, · · · , yn} ,

a = {a0, · · · , al} .

(6.3)

In the finite impulse response (FIR) Wiener filter approach, as a short-term linear pre-
diction model, we first design a linear estimator (filter) for history of the target particle.
Consider the signal un is given to a Wiener filter of order ℓ as

ℓ∑
j=1

wj.un = Xn, (6.4)

where wj are the filter parameters and the filter output is indicated by Xn. The objective
is to minimise a quadratic cost function with the mean square error (MSE)

J =
n∑

i=1
(Xi − yi)2

︸ ︷︷ ︸
particle history

,
(6.5)

with respect to the parameters wi. Similar to the polynomial solution in equation (6.3),
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the objective is to find {w1, · · · , wℓ} filter parameters that minimises equation (6.5). The
resulting Wiener filter in equation (6.5) is a linear minimum mean square error (LMMSE)
estimator. Then we predict the future signal value (i.e., particle position) with the de-
signed filter parameters at tn+1. Predicting a signal from its past samples depends on the
autocorrelation function in equation (6.4), or equivalently the bandwidth and the power
spectrum of the signal. Schanz et al., [1] showed that the Wiener filter is able to predict
Lagrangian trajectories by employing the mentioned autocorrelation functions. On the
other hand, a Wiener filter forecasts the amplitude of a signal at a short time using a
linearly weighted combination of past samples (i.e., history).

6.1.2 Variational cost function

A variational cost function adds information obtained from temporal and local spatial
Lagrangian coherent motions to come up with extra constraints for the position based cost
function in equation 6.2. Each particle carries sets of information, including position, first
and higher-order derivative values (i.e., velocity and acceleration). Assuming positions of
at least four time steps n are known. We impose each coherent particle position’s first
and second-order derivatives into the prediction function. Therefore, the cost function
of each particle will end up with the weighted average of local coherent velocity and
acceleration values (ẏc

n , ÿc
n). We can take a minimum of four-time step histories of

particles to minimise the cost function and predict the next step. Imposed coherent
velocity and acceleration terms create additional constraints to equation (6.2). Therefore,
the modified cost function, called coherent predictor in the present study, can be written
as

J = 1
n

n∑
i=1

(Xi − yi)2 +
(
Ẋn − ẏc

n

)2

︸ ︷︷ ︸
coherent velocity

+
(
Ẍn − ÿc

n

)2

︸ ︷︷ ︸
coherent acceleration

. (6.6)

In the worst-case scenario where there is no coherent neighbour information, the pre-
diction function is just a simple polynomial predictor without additional constraints. It
is worth mentioning that the velocity constraint controls the direction of the estimated
position. In contrast, a second-order constraint controls how far or near the prediction
can go in the same direction in the case of high acceleration variations. If all three terms
of equation (6.6) have exact weights, the linear solution of the prediction function is in
three sets of equations as
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

∑ℓ
j=0 aj.t

j
i = yi, i = 1, · · · , n,

∑ℓ
j=1 aj.(j).tj−1

n = ẏc
n,

∑ℓ
j=2 aj.(j).(j − 1).tj−2

n = ÿc
n.

(6.7)

The first sets are rows of particle position history for n time step observations. The
second and third sets are additional coherency based constraints. Therefore, the solution
for the cost function in equation (6.7) is not only smooth on the history of the target
particle but also satisfies local coherent variational dynamics of the flow. To obtain
two coherent ẏc

n , ÿc
n terms, neighbour trajectories need to be identified as coherent or

non-coherent with the target particle. In Chapter 5, we employed LCS metric locally
for particle segmentations and coherent neighbour identifications over sparse trajectories.
Computation of coherent neighbour trajectories is also addressed in section 3.2. As a
result, we can first identify coherent neighbour trajectories and then obtain the weighted
averaged values of the first and second-order derivatives over all coherent neighbours based
on their FTLE values and inverse of their Euclidean distances to the target particle.

Multi-pass prediction

Referring to the 4D-PTV working principle in section 2.1, the predicted particle po-
sitions are followed by shaking or other optimisation techniques [1] [2]. Therefore, all
particles are eventually either tracked or untracked, except for inlet and outlet trajecto-
ries. In every time step, untracked particles are like additive noises and might gradually
cause collapsing the whole trajectory process. Therefore, untracked particles must be
reconstructed by other complementary treatments.

As discussed in section 3.2, coherent predictor indexes neighbour trajectories as co-
herent or non-coherent within the same interval time from t1 to tn. In the present study,
these trajectories are called primary spatial/temporal coherent neighbours. As shown in
figure 6.2.a, primary coherent neighbours follow a similar path with the target particle
during the same period (same phase). However, there is still the possibility of having a
secondary group of coherent particles with a phase delay. Secondary refers to neighbours
that were coherent with the target particle with the phase delay. Schematics of secondary
coherent neighbours with one and two time step phase delays are shown in figure 6.2.b.c.
The multi-pass approach computes these secondary coherent neighbours. One and two
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a

tn

b

tn-1

c

tn-2

Fitted curve trajectoryTarget particle position    [t1,tn]

Coherent neighbour velocityNeighbour particles          [ tn   ]

Averaged coherent VelocityCoherent prediction         [tn+1 ]

Figure 6.2 – Prediction using primary and secondary coherent particles. (a) Primary
coherent. (b) Secondary coherent with one time step delay. (c) Secondary coherent with
two time step delay.

time step phase delays mean that there are groups of particles that were spatially located
in the neighbourhood of the target particle at tn−1 and tn−2, respectively. Then the FTLE
function determines secondary coherent neighbours between the target particle at tn and
the secondary particles at tn−p where p is the time delay. In the case of steady flow,
secondary coherent particles show the exact trajectory of the target particle; however, the
uncertainty of relying on information obtained from the secondary coherent neighbours
increases by having more unsteadiness in the flow.

The proposed multi-pass approach contains a minimum of three prediction/optimisa-
tion steps. The first pass takes primary and secondary coherent neighbours into a forward
prediction (in time) from tn to tn+1, as shown in figure 6.3. The second pass takes newly
tracked particles, resulted from the first pass, to the coherent detector operation (2nd
forward prediction/optimisation). On the other hand, updated information is extracted
if any groups of newly tracked particles are found to be located in the neighbourhood of
untracked particles with one time step phase delay (i.e., tn+1). This phase delay means
new tracked particles at time step tn+1 are locally coherent with one specific untracked
particle at time step tn. In the third pass, we use backward prediction to reduce the
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Secondary coherent     
[v2,a2] = [ tn,tn-1 ]

Secondary coherent
[v3,a3] = [tn-1,tn-2]

Primary coherent       
[v1,a1] = [ tn,tn-1 ]

Curve 
fitting

Filtered 
trajectory

History
[ Xn ] = [ tn ]

Forward prediction

1st Shaking
2nd Primary coherent

[v4,a4] = [ tn,tn+1 ]

Leftover Particles

Forward prediction

3rd Shaking

2nd

Shaking Leftover Particles

2nd Secondary coherent
[v5,a5] = [ tn,tn+1 ]

Backward coherent
[v5,a5] = [ tn,tn+1 ]

Backward prediction

Figure 6.3 – Multi pass prediction working principle.

number of untracked particles, which is well established in classic 2D-PTV schemes such
as the nearest neighbour (see, e.g., [103]). A schematic of backward prediction in 2D pair
vortices starting from tn−4 to tn+3 is shown in figure 6.4. We implemented the backward
predictor to search for additional information from the coherent particles to estimate in
reverse pace followed by optimisation. Surrounding information of an untracked particle
can provide the least signal to predict at a backward pace. In addition, this treatment
can also connect spilt tracklets for reconstructing longer particle trajectories. This multi-
pass process is iterative, meaning that every forward step is embedded with a series of
backward estimations.

6.2 2D homogeneous isotropic turbulent evaluation

We first evaluated our proposed prediction function with 2D synthetic Lagrangian
trajectories. The 2D-HIT synthetic data, discussed in section 4.3, is employed as the
ground truth particle positions. Numerous flow dynamics such as saddle points, shear
flows, and vortices occur inside the 2D-HIT case, bringing more challenges in accurately
predicting the flow motion. We are interested in analysing the impact of using Lagrangian
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Target particle position       [t1,tn] Fitted curve trajectory

Neighbour particles          [ t1,tn+3 ] Backward coherent velocity

Real particle position          [tn+1 ] Backward extrapolation

Coherent prediction            [ tn ] Averaged backward coherent velocity

d

tn+1

c

tn+1

a

tn+1

Link split tracks

Figure 6.4 – Schematic of backward prediction. (a) Using coherent velocity of a lost
particle (in grey colour). (b), (c) Backward prediction of a split track using its neighbour
velocities.

coherency in 2D tracking cases. The current assessment uses three predictor functions:
polynomial, Wiener filter, and coherent predictor. As mentioned earlier, 2D-HIT carries
a range of complex flow motions inside where numerous vortices interact with each other.
Figure 6.5.a shows one example of two trajectories extracted from 2D-HIT. The first one
is for a smooth motion, where all predictor functions can estimate the next position with
a negligible bias error. However, the bias error can significantly increase without knowing
the surrounding flow motions as soon as a particle starts rotating with both velocity and
acceleration changes. As shown in figure 6.5.b, both lower and higher order polynomial
functions as well as the Wiener filter off predict high variational dynamics of particles.
The third order polynomial predictor estimated the correct direction of the particle at
time step tn+1. However, right direction estimation does not necessarily lead to a proper
prediction. Off prediction in the third order polynomial, mainly caused by lack of correct
acceleration estimation. Two other polynomial cases showed less accurate estimations.
On the other hand, coherent predictor has correct acceleration and direction estimations
due to imposed additional constraints in its cost function. In the present study, further
assessments and comparisons are conducted with the third order polynomial predictor
function. We found that the third order polynomial function best compromises the bias
accuracy and the uncertainty level, which will be addressed in the following sections.

In the further step, we examine the performance of the proposed predictor functions in
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Figure 6.5 – Prediction comparison for single trajectories in 2D-HIT. (a) Smooth trajec-
tory. (b) Highly curved trajectory.

the form of 2D-STB. We compared four open access PTV techniques with three predictor
functions in 2D-STB (seven techniques in total). The first technique is named TracTrac
[103]. This technique initiates with the nearest neighbour approach, then looks for the
best forward/backward match from tn−1 to tn+1. The key point in this technique is to use
a predictor function based on the nearest known velocity around the untracked particles.
The TracTrac code is able to reconstruct more than 10, 000 tracks per second with 0.01
pixel resolution accuracy [103]. This technique was evaluated with the PIV challenge cases
[104]. Part2Track [105] is the second technique used in the current assessment. It is a 2D
polynomial predictive tracking technique. It can be said that Part2Track is a simplified 2D
version of STB. The code is well-organised and robust in terms of particle density. Another
open access code that we employed is 2D Enhanced Track Initialisation (4BE-ETI [46]) as
a representative of four frame based techniques. 4BE-ETI looks for all probabilities around
the target particle, followed by creating two consecutive predictions in the following four
frames. Any particle close to the predicted position is considered for the prediction of
the next frame (see section 5.1). A solution is considered reconstructed if one unique
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Table 6.1 – Scenarios for trajectory assessments
Case 1 2 3 4 5

Particle concentration (ppp) 0.025 0.05 0.08 0.1 0.2
Noise ratio (%) 0 15 30 45 60
Temporal scale (×dtDNS) 20 40 60 80 100
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Figure 6.6 – Comparison performances of 2D tracking techniques in terms of fraction of
true particle detection by changing each characteristic parameter.

track is found after four frames. Topology-based particle tracking [92] is the last PTV
algorithm for the present assessment. The aforementioned technique generates particle
descriptors (feature vector) of nearest neighbour particles for each frame. Thereafter, for
each particle, groups of nearest neighbours are stored in the descriptor by binning these
particles into a gridded bin, assuming that particles tend to remain within the same bin
in the next time step. Eventually, it performs an iterative wrapping scheme to track large
particle motions. This method has been evaluated for biological flow motions [92].

All the mentioned techniques were assessed based on three characteristic parameters,
particle concentration, temporal scale, and noise level. In the case of having low particle
density, a simple optimisation technique would lead to build true trajectories. However,
more particles interact and move close to each other by increasing density, which requires
a more sophisticated algorithm to detect more true tracks. Adding noise level creates a
more realistic situation in synthetic image studies, since noises are inevitable in experi-
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ments due to their nature. Therefore, the algorithm robustness over different noise levels
would provide valuable information to determine which technique is appropriate for a
particular experiment. As discussed in section 4.3, the DNS time step is smaller than the
smallest timescale of turbulence, which is the order of Kolmogorov timescale. This means
the transport of particles between two DNS time steps is smooth enough to reach true
prediction even with linear extrapolation. However, the experiment time step is multiple
times higher than the DNS time step, depending on the acquisition setup. To reach a
realistic condition, five time steps starting from every 20 to 100 DNS time steps are con-
sidered. Table 6.1 shows all scenarios we designed to assess the tracking accuracy of the
mentioned techniques. It is assumed that all techniques receive the same particle recon-
struction accuracy. Finally, we compare the deviation of the final detected positions with
the ground truth data. Algorithms track true particles if the deviation is in the same order
as the reconstruction accuracy. Case 1 is the starting point for each technique. Then we
increase each parameter individually within five scenarios. Figure 6.6 shows the fraction
of true reconstructed tracks over the total number of particles. By increasing the noise
ratio up to 60 % noisy reconstruction, Part2Track, TP-P, and Coherent predictor tend to
keep their robustness. Meanwhile, other techniques faced significant drops, losing nearly
half of the true particles. Among all techniques, TracTrac has the most sensitivity to
the noise ratio. Figure 6.6 shows that particle concentration has almost the same impact
on all techniques. By increasing the time step, less information is available, and then
the prediction would be more challenging. In all mentioned techniques, relying only on a
single particle as a single signal to find its true track and losing information in the middle
causes more wrong tracks. However, even a weak signal of coherent particle behaviour
would lead to correct direction and prediction. Results showed that when adding more
spatial and temporal coherent information, the prediction function stayed robust for up
to 85 % in all situations, while other techniques suffered from lack of information.

6.3 3D turbulent wake flow synthetic study

To evaluate our novel position prediction scheme in a 3D complex flow, we used a
DNS simulation of the wake behind a smooth cylinder at Reynolds number equal to 3900
computed by an open-access code named Incompact3d [80]. As discussed in section 4.3,
particles are transported by every 10 DNS time step using the fourth order Runge Kutta
temporal and trilinear spatial schemes. In the synthetic case, particle trajectories are
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Figure 6.7 – Normal pdf of particle position estimation error before the optimisation
process in x direction of four predictor functions.

smooth and predictable when the synthetic temporal scale is with the same order of the
DNS time step due to the small travelling distance between two time steps (less than the
Kolmogorov timescale). To mimic a real experiment, we created around 150, 000 ground
truth trajectories associated with noise for every 20 DNS time step. Similar to the 2D-
HIT case, by increasing the temporal scale, less temporal information is available, and
then the prediction would become more challenging.

In this section, we compared the position prediction of four schemes with the ground
truth particle trajectories (see table 6.2). For the first scheme, the DNS predictor was
defined as a reference using the Euler equation to transport particle positions by the
ground truth DNS velocity. In such a scenario, we can estimate the minimum bias error
achieved in this sparse temporal scale. Both Wiener filter and polynomial predictors are
also selected to be compared with the LCS based predictor (i.e., coherent predictor). The
prediction error can be decomposed into two general sources, the bias error caused by
flow dynamics and the system error caused by the measurement uncertainties. The bias
error is the position deviation, sourced from the predictor function, with ground truth
positions when there is no noisy position reconstruction. We decomposed these two terms
to better understand the predictor functions in the upcoming sections.
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Figure 6.8 – Instantaneous position estimation error before the optimisation process aver-
aged in z direction. (a) DNS predictor. (b) Polynomial Predictor. (c) Wiener filter. (d)
Coherent predictor.

6.3.1 Bias error

The bias error is directly linked with the flow behaviour where position, velocity, and
acceleration uncertainties are omitted. The bias error will increase due to the lack of ac-
curacy in the prediction if there is an increased variation in the flow dynamics. Figure 6.7
shows normal pdf of the predicted position error in x direction of four schemes. Position
error in x direction shows that the deviations of the coherent predictor stay virtually be-
low ϵ/D = 0.05, where D is the cylinder diameter. On the contrary, a significant number
of particles are mispredicted in both polynomial and Wiener filter techniques. Similar
significant improvements by using coherent predictor are observed in y and z directions.
Figure 6.8 shows the projected distribution of the bias error on xy plane for each pre-
dictor function. Interestingly, the prediction bias error is highly correlated with the flow
acceleration in all schemes. Although the DNS predictor (see figure 6.8.a) uses known
ground truth velocity information, the travelling distance is large enough to introduce
minor errors, particularly inside the wake region. As shown in figure 6.8.b, the third
order polynomial has the worst prediction error, which can be up to ϵ/D = 0.2 around
the cylinder leading edge and inside the wake region. The polynomial prediction error
distribution is thoroughly shaped by the flow motion (i.e., topology), meaning that any
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Table 6.2 – Prediction function formulations.

Method Fit parameters Cost function Prediction

a) DNS predictor - - yn+1 = ẊDNS · tn+1

b) Polynomial predictor
∑ℓ

j=0 aj .tj
i = yi J = 1

n

∑n

i=1 (Xi − yi)2 yn+1 =
∑ℓ

j=0 aj .tj
n+1

c) Wiener filter
∑ℓ

j=1 wj .un = yn J =
∑n

i=1 (Xi − yi)2 yn+1 =
∑ℓ+1

j=2 wj .un

d) Coherent predictor
∑ℓ

j=0 aj .tj
i = yi J = 1

n

∑n

i=1 (Xi − yi)2 yn+1 =
∑ℓ

j=0 aj .tj
n+1

-
∑ℓ

j=1 aj .(j).tj−1
n = ẏc

n · · · + (Ẋn − ẏc
n)2

-
∑ℓ

j=2 aj .(j).(j − 1).tj−2
n = ÿc

n · · · + (Ẍn − ÿc
n)2

variations inside the flow create a huge estimation error. Overall and local performance
of the Wiener filter is better than the polynomial predictor. The Wiener filter succeeded
to reduce the prediction error in most of the peak regions (see figure 6.8.b.c). The er-
ror significantly increases inside the wake region, where the turbulence intensity level is
relatively higher than the rest of the regions. Error distribution reveals that coherent pre-
dictor has the best performance locally and globally compared to Wiener and polynomial
predictors in a 3D turbulent flow.

6.3.2 Monte Carlo uncertainty quantification (MC-UQ)

For each individual trajectory, we perform a Monte Carlo simulation to quantify the
uncertainty level of the prediction function. As mentioned in section 6.1, a predictor
function takes positions of the tracked particles from either the initialisation or the op-
timisation steps. In Monte Carlo uncertainty quantification (MC-UQ), the parameter
distributions of models are sampled randomly, followed by statistics calculated on the
output model. Figure 6.9 shows the probability distribution of the predicted positions as
a function of distributed input uncertainties.

To start the MC-UQ simulation, we need to quantify the uncertainty level of the
input parameters that are fed into the predictor function. As mentioned in section 2.1, a
classic 4D-PTV process starts with IPR. The uncertainty level of IPR can be utilised as
an input parameter for uncertainty quantification of the prediction function. This can be
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Figure 6.9 – Schematic of the Monte Carlo uncertainty quantification (MC-UQ) algorithm
with distributed input parameters.

obtained from numerical or analytical IPR performance analyses reported by Wieneke [20]
and Jahn et al. [33]. However, these values are optimistic and might differ in practical
conditions due to the tuning issue. Instead, we averaged the estimation errors of all
participants in the LPT challenge 2020 [43] to mimic practical and generic uncertainty
levels that might be introduced for a predictor function. To this end, we estimated
the normal probability distribution of position, velocity and acceleration input variables
by using the LPT challenge reported estimation errors. As a result, we can quantify the
output uncertainty level of predictor functions using MC-UQ with estimated input normal
distributions.

MC-UQ process of four prediction functions, second-order polynomial, third order
polynomial, Wiener filter, and coherent predictor, for nearly 10, 000 trajectories, are
shown in figure 6.10. We need to subtract the bias error from the predicted position
error obtained from uncertain input parameters to decompose the impact of uncertainty
with the impact of flow motion behaviour. Referring to section 6.3.1, the coherent predic-
tor showed better bias error than both Wiener filter and polynomial predictors. MC-UQ
requires nearly 10, 000 iterations per trajectory to achieve a smooth Gaussian distribution
in the output. As a result, the total number of 100 million (10, 000 × 10, 000) predictions
was computed for each predictor function. The results in figure 6.10.a.b show that the
uncertainty level in position estimation at tn+1 increases by adding order of magnitudes
in the polynomial predictor from ϵ/D = 0.004 to ϵ/D = 0.032. This indicates an inverse
correlation between the bias error and the uncertainty level in using polynomial predic-
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Figure 6.10 – Probability distribution around the bias error obtained from the MC-UQ
of four predictor functions. (a) Second-order polynomial. (b) Third order polynomial
predictor. (c) Wiener filter. (d) Coherent predictor. Blue dashed lines represent the
averaged bias error over 10, 1000 Lagrangian trajectories.

tors. It was found that the third order polynomial keeps better overall accuracy and
uncertainty performance compared to the second order polynomial. The uncertainty level
of the coherent predictor was found to be minimum and at the same level as the second
order polynomial. The Wiener filter reached a better bias error and narrow uncertainty
distribution than both polynomial functions. As a result of the bias error and uncertainty
level computations, the coherent predictor showed a better balance between the position
bias error and output uncertainty with respect to all the mentioned predictors.

6.4 Generic cost function minimisation

In sections 6.2 and 6.3, we showed that the cost function obtained from three terms
of position, velocity, and acceleration could significantly reduce the bias error and the
uncertainty level caused by the flow complexities and the measurement uncertainties,
respectively. Despite the mentioned improvements, an estimated position in a real exper-
iment needs to be applicable to a wide range of experiments. To this end, we address
how to formulise a generic non-dimensional form of the proposed cost function in equa-
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Figure 6.11 – Contour plot of the estimation error with respect to α′
1 and α′

2 weighting
terms. The synthetic trajectories were generated based on the 1st LPT challenge estima-
tion errors. (a) 3D wake behind a cylinder at a Reynolds number equal to 3900. (b) 2D
homogeneous isotropic turbulent flow at a Reynolds number equal to 3000.

tion (6.6). To start, we define weighting parameters to the cost function to reach the
minimum estimation bias error. The weighted cost function can be written as

J = 1
n

n∑
i=1

(Xi − yi)2 + α1(Ẋn − ẏn)2 + α2(Ẍn − ÿn)2, (6.8)

where Xi are the estimated positions based on known yi observations in time. α1 and α2

are dimensional velocity and acceleration weights, respectively. Similar to equation (6.6),
the generic cost function contains three terms. The first is the least mean square minimi-
sation problem of the polynomial predictor based on the history of particles. The second
and the third terms are neighbouring coherent velocity and accelerations. In Chapter
5, we showed that coherent velocity and acceleration terms could be computed by using
LCS metric [106]. Equal weights of α1 and α2 mean that the impact of the neighbouring
variations is at the same level as the history of the target particle. However, the parti-
cle history should be the most significant signal in the estimation process. So weighting
would help to determine each term’s impact. Additionally, the derived cost function in
equation (6.6) has different dimensional terms (position, velocity, and acceleration). To
achieve a generic form, these terms require being non-dimensionalised based on turbulent
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a) Increased position uncertainty b) Increased velocity uncertainty c) Increased acceleration uncertainty

Figure 6.12 – Contour plot of the estimation error as a function of observations uncertainty
levels. White arrows show the changing direction of optimal solutions (i.e., minimum
estimation error) by increasing each observation uncertainty.

integral scales as
x′ = x

D
, y′ = y

D

ẋ′ = ẋ

U
, ẏ′ = ẏ

U

ẍ′ = ẍ
D

U2 , ÿ′ = ÿ
D

U2 ,

(6.9)

where D is an integral length scale, and U is the velocity reference. Therefore, the modified
cost function will become

J = D2 ( 1
n

n∑
i=1

(X ′
i − y′

i)
2) + α1U

2 (Ẋ ′
n − ẏ′

n)2 + α2
U4

D2 (Ẍ ′
n − ÿ′

n)2, (6.10)

which can be simplified as

J ′ = 1
n

n∑
i=1

(X ′
i − y′

i)
2

︸ ︷︷ ︸
position history

+ α′
1 (Ẋ ′

n − ẏ′
n)2︸ ︷︷ ︸

coherent velocity

+ α′
2 (Ẍ ′

n − ÿ′
n)2︸ ︷︷ ︸

coherent acceleration

,
(6.11)

where
α′

1 = α1(
U

D
)2 , α′

2 = α2(
U

D
)4 , and J ′ = J

D2 . (6.12)

Two non-dimensional α′
1 and α′

2 weights determine how much velocity and acceleration
signals can constrain the overall cost function minimisation process. In equation (6.11),
weight of the target position history is directly linked with two α′

1 and α′
2 values. If both
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terms are set for any range below one, the history will have the most significant impact
on the prediction function. We need to minimise the derived cost function for finding
the optimal solution for the predictor function. The minimisation process of J ′ starts by
solving ∂J ′

∂a
= 0. Mathematics of the cost function minimisation is addressed in Appendix

B. The derived minimised cost function of equation (6.11) is


1
n

n∑
i=1


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3ẏnt2
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2ẏntn

ẏn
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(6.13)
where ti are the input time steps, and ai are the solution coefficients. The optimal solution
of the minimised cost function leads to the minimum estimation error of the predictor
function. Now, we have the minimised cost function of equation (6.11), and the question
is how to set two α′ weights optimally. To this end, we need to perform prediction
for a range of α′ weights and determine the optimal solution. Since a real experiment
is associated with uncertainties and inaccuracies, it is crucial to have an appropriate
uncertainty estimation of each observation in the cost function, i.e., the positions y′

i,
the coherent velocity ẏ′

n, and the coherent acceleration ÿ′
n. To this end, we employed

data reported by the 1st LPT challenge [5] as a reference starting point to estimate
inaccuracies that might be introduced into a predictor function. The 1st LPT challenge
assessed position estimation accuracy of six time-resolved tracking algorithms, including
the coherency based tracking [6] for particle densities from 0.05 to 0.2 ppp. In this section,
the non-dimensionalised position ϵX/D, velocity ϵẊ/U∞, and acceleration ϵẌD/U∞

2 errors
were employed to create the synthetic data at each particle density. As a result of the
LPT challenge, the averaged RMS position error was 0.005 mm where the integral scale
was D = 10 mm at the density of 0.12 ppp, which gives ϵX/D = 5.10−4. The averaged
velocity and acceleration errors at the same density were found to be ϵẊ/U∞ = 0.01 and
ϵẌU∞

2/D = 0.3, respectively. This shows that the acceleration estimation has at least
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Figure 6.13 – Contour plot of the optimal value for α′
1 as a function of measurement

uncertainties.

an order of magnitude higher estimation error than other terms. We introduced these
errors as input uncertainties into the Lagrangian trajectories of 2D-HIT and 3D cylinder
wake flow and then computed the correlation of the final estimation error and α′ weights.
For such a scenario, we can expect the optimal solution should have less α′

2 weight than
α′

1 because of having more acceleration estimation error than other terms. Therefore, we
plot the prediction RMS error in a range of α′ weights to find the optimal solution in
figure 6.11. Since the acceleration error is higher than other terms in both synthetic data,
the minimum error happens with relatively lower α′

2 values (i.e., α′
1/α′

2 >> 1). Both
weighting parameters are found to be significantly smaller than << 1. This means that
the history of the target particle with unit weight is the most valuable signal in such a
scenario. Comparing the error behaviour in 2D-HIT and 3D cylinder wake flow cases
shows that both cases need similar weighting parameters and require α′

1/α′
2 >> 1 with

small weighting magnitudes α′ << 1.

The result of the minimised cost function from two synthetic test cases suggests that
the optimal solution can be directly linked with input observations uncertainty levels.
Therefore, we designed three further parametric test cases to determine the mentioned
statement. As shown in figure 6.12, we increased the uncertainty level of each parameter
solely while other terms are fixed to assess how the optimal solution behaves concerning
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Figure 6.14 – Contour plot of the optimal value for α′
2 as a function of measurement

uncertainties.

three position, velocity, and acceleration uncertainties. The optimal solution tends to lin-
early move away toward higher weighting magnitude with increased position uncertainty
(see figure 6.12.a). If we fix the position uncertainty, the optimal solution rotates with the
same distance around the coordinate centre, depending on which parameter is increased
(see figure 6.12.b.c). As a result of this assessment, an appropriate estimation of three
uncertainty levels would provide enough information to set weighting parameters. We can
model the correlation between two weighting terms. Generally, magnitudes of both gains
increase by increased position uncertainty, and the slope for α2/α1 is a function of relative
velocity and acceleration uncertainties. The subsequent step is to quantitatively model
the cost function weights as a function of input uncertainties. Assuming the optimal
values of α′ weights are written as

α′
1 = f(σ′

p, σ′
u, σ′

a)
α′

2 = g(σ′
p, σ′

u, σ′
a),

(6.14)

where σ′
p, σ′

u, σ′
a are non-dimensional position, velocity, and acceleration uncertainties.

The non-dimensionalisation was performed with the same approach in equation (6.9) as
σ′

p = σp/D, σ′
u = σu/U∞ and σ′

a = σa D/U2
∞. Then we can fit a numerical model over the

range of α′ weights by changing all three uncertainty levels. 10 × 10 × 10 scenarios were
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Figure 6.15 – The optimal α′
1 and α′

2 weighting terms to reach the minimum prediction
error as a function of uncertainty levels fitted by quadratic surfaces.

performed to record the optimal weights of each scenario. The contour plots of figure 6.13
and figure 6.14 show that the optimal values for α′

1 and α′
2 raise by increased position

uncertainty, which is in agreement with the estimated model in figure 6.12. We need to set
smaller α′

1 gain if the velocity estimation is uncertain. However, α′
1 stays almost constant

as acceleration uncertainty increases. With a similar behaviour, we need more α′
2 gain

by increased position uncertainty. And the acceleration uncertainty has a reverse relation
with α′

2 while the velocity uncertainty has almost no impact on the optimal value for α′
2.

Independencies of α′
1 to the acceleration uncertainty and α′

2 to the velocity uncertainty,
suggest that the models in equation (6.14) can become a 2D problem as

α′
1 = f(σ′

p, σ′
u)

α′
2 = g(σ′

p, σ′
a).

(6.15)

On the other hand, we can model the optimal solution by roughly estimating position,
velocity, and acceleration uncertainties by fitting quadratic surfaces over the minimum α′

12

values. The generic model of each weight is illustrated in figure 6.15. The model suggests
that α′

1 ∝ σ′
u

2 and α′
2 ∝ σ′

a
2. In addition, both weights have roughly linear relation to the

position uncertainty α′
12 ∝ σ′

p. As a result, we can estimate the optimal solution of the
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Figure 6.16 – The cylinder wake flow at Reynolds 3900. (a) Experiment normal pdf results
of particle position error in x direction of three predictors. Each predictor is compared with
final optimised positions of STB Davis. (b) Side view of particle trajectories superimposed
by vorticity iso-surfaces.

cost function by knowing uncertainty levels.

6.5 Experimental evaluation

To quantify the results of different schemes, we compared predictions with optimised
positions obtained from STB Davis. As a result of the experiment, STB successfully built
nearly 12000 particles. Trajectory results of the current experiment with superimposed
vorticity iso-surfaces are shown in figure 6.16.b. Noisy particle reconstruction of four time
steps was used as an input of the prediction functions. We compared three techniques,
polynomial, Wiener filter, and coherent predictors, with final optimised positions. The
deviation of position estimated of each technique is shown in figure 6.16.a. The distri-
bution shows that the coherent predictor has more accurate estimations within 1 pixel
deviation from the optimised positions. Position estimations of Wiener filter and coherent
predictors stay below 2.5 pixels deviation for nearly all particles. On the contrary, the
polynomial predictor has maximum deviation with STB Davis. Statistic analyses of the
current wake flow experiment for nearly 4000 time steps are discussed in Chapter 7.
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6.6 Conclusions

We proposed a robust technique to predict particle positions based on their local
temporal and spatial coherent motions. LCS can classify and divide the coherent neigh-
bour motions. We imposed first and second-order derivatives of the neighbour coherent
motions into the predictor function in addition to the particle history. To assess the
proposed method named coherent predictor, we performed the synthetic analysis of the
2D-HIT flow at Reynolds number equal to 3000 and the wake behind a smooth cylinder
at Reynolds number equal to 3900. We compared three predictor functions. Polyno-
mial predictor showed maximum deviation with the ground truth data, whereas coherent
predictor provided the most accurate position estimation. We found that the flow re-
gions highly impact the estimation error. Inside the wake region, particularly the vortex
formation zone and the two sideward shear layers, cause more challenges in prediction.
These mentioned regions are featured by high acceleration and 3D directional motions.
We also performed the 4D-PTV experiment of the wake flow behind a cylinder at the
same Reynolds number. It was found that the coherent predictor is reliable to estimate
particle positions very close to the optimised positions.
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Chapter 7

4D-PTV TO STUDY LAGRANGIAN

STATISTICS

Recent advances in tracking highly concentrated tracer particles over long trajectories
extend the possibility of exploring the Lagrangian viewpoint of turbulent properties. The
recent work of Viggiano et al. [107] showed how we could obtain fundamental Lagrangian
turbulence quantities, particularly the Lagrangian structure function scaling constant C0,
from anisotropic and inhomogeneous dynamics of a jet flow by normalising the trajectories
based on local Eulerian scales. The C0 constant in the Lagrangian framework is in a similar
role as the Kolmogorov constant in the Eulerian framework [107]. In the present study, we
are interested in examining the stationarisation process proposed by Viggiano et al. [107]
in the wake behind a smooth cylinder and studying Lagrangian statistics from Lagrangian
trajectories.

7.1 Lagrangian diffusion properties

We performed Lagrangian statistical analysis on nearly 12000 trajectories for 4000
time steps. Taylor’s turbulent diffusion theory [108] has been used widely to study homo-
geneous isotropic turbulent (HIT) flows. In a given time τ , Taylor’s theory computes the
Lagrangian two-point correlation function RL

uu(τ) for an ensemble of particle trajectories
based on the mean square displacements of particles σ2(τ) that can be written as

d2σ2

dτ 2 (τ) = 2RL
uu(τ). (7.1)

The turbulent diffusion process to Lagrangian statistical properties of particle trajec-
tories can be linked if we assume that particles in the present study act as a tracer [107].
This means that all the inertial effects are neglected, and particles perfectly follow the
flow motion. Therefore, we can compute the Lagrangian second order structure-function
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as
SL

2 (τ) = ⟨[u(t + τ) − u(t)]2⟩ = 2
(
RL

uu(0) − RL
uu(τ)

)
, (7.2)

where the Lagrangian trajectories were obtained from three-dimensional particle tracking
velocimetry (4D-PTV). Therefore, we can compute the Lagrangian universal constant
C0 for the Lagrangian second order structure function. This constant was found to be
strongly sensitive to the Reynolds number, large-scale anisotropy and inhomogeneity of
flow [107]. This means that computation of the C0 constant is complicated in anisotropic
and inhomogeneous turbulent cases. In the wake behind a cylinder, turbulent length
and time scales evolve as flow goes downstream, creating non-stationary anisotropic and
inhomogeneous dynamics. Batchelor’s diffusion theory [109] as an extension of Taylor’s
theory, proposed using the Lagrangian stationarisation idea for inhomogeneous cases such
as the wake flow. Stationarisation is a process based on Eulerian self-similarity properties
that stationarises the Lagrangian dynamics.

7.2 Lagrangian structure function scaling constant

Recently, Viggiano et al. [107] investigated the highly anisotropic and inhomogeneous
case in a free shear turbulent jet. Viggiano et al. [107] characterised the inertial-range
dynamics and the Lagrangian universal constant C0 by the Lagrangian stationarisation
idea. Two Lagrangian second order structure function and two-point correlation function
statistics needs to be computed. The Lagrangian second order structure function can be
written as

SL
2 (τ) =

〈
[ui(t + τ) − ui(t)]2

〉
= C0

εiτ

σ2
ui

, (7.3)

where ε is the turbulent cost dissipation. To stationarise the Lagrangian in-stationarity of
the wake flow, as proposed by [107], we compute the Eulerian mean velocity by fine-scale
reconstruction (VIC# [110]) from Lagrangian trajectories. Then the deviation between
the instantaneous and the mean components non-dimensionalised by the Reynolds stress
terms is as follows

ũi(τ) = ui(τ) − ūi(x(τ))
σui

(x(τ)) . (7.4)

We can achieve a stationarised flow field with non-dimensionalised fluctuations through
the entire spatial domain for every time step. With the same derivation spirit discussed
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Figure 7.1 – Computation of the wake flow statistics from Lagrangian trajectories. (a)
Eulerian statistics at a certain downstream x/D over all trajectories passing the Eulerian
volume. (b) Lagrangian statistics at a certain downstream x/D over all trajectories
passing the Lagrangian volume.
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in [107], [111], we are interested in exploring Lagrangian properties for the wake behind
a cylinder.

7.3 Wake flow statistics

The velocity component of each trajectory was computed after fitting a curve over
noisy reconstructed positions. The Eulerian fields were computed using fine-scale recon-
struction (VIC# [110]) between trajectories to achieve gridded velocity fields. Thereafter,
time-averaged mean ūi(x(τ)) and Reynolds stress σui

(x(τ)) terms can be computed by
averaging all instantaneous Eulerian velocity fields to start the process in equation (7.4).
Schematic of the wake flow self similar behaviour downstream of the cylinder is shown
in figure 7.1. Due to the loss of momentum cases by the cylinder, the wake velocities
are smaller than the free stream region. The wake thickness increases as the flow travels
downstream of the cylinder. We can compute the Eulerian statistics within the area of
the wake. Ensemble of all trajectories passing a virtual volume inside the wake at a cer-
tain x/D is considered to achieve statistically converged Eulerian properties as shown in
figure 7.1. The Eulerian volume has the dimension of δ(x/D) × 2D in y and z directions
with 0.5mm depth in x direction as suggested by Viggiano et al. [107]. Therefore, we can
compute the Eulerian second order structure function over the ensemble of spatial velocity
increments of each pair trajectories passing the Eulerian volume. Velocity components
were stationarised with equation (7.4). We computed the Eulerian turbulent properties
in seven downstream positions varying from x/D = 9 to 25 as listed in table 7.1. Nearly
constant values of the Taylor microscale Reλ shows that the stationarisation process sug-
gested by Batchelor [109] is valid for the self similar wake flow far downstream of the wake
flow. Decay of the dissipation rate εux toward downstream is also in with power-law decay
in self-similar flows. Both Kolmogorov ηx, and integral LEx length scales are growing as
flow goes far downstream.

The evolution of Eulerian dissipation rate εux , Kolmogorov length scale ηx, and integral
scale TEx will be used to compute Lagrangian statistical properties. To compute the
Lagrangian second order statistics, we assume a small cube volume inside the wake with
the length of δ(x/D)/3 (suggested by Viggiano et al. [107]) and index all trajectories
passing the volume. Following equation (7.3), we compute temporal velocity increments
on each individual trajectory. The ensemble of computed temporal increments is then
averaged to compute the Lagrangian second order structure function. By solving the left
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Table 7.1 – Eulerian parameters for various x/D positions.

x/D
σux(

m s−1) εz(
W kg−1

) ηz

(µm)
τηz

( ms)
λz

(µm)
Reλ

LEz

( mm)
TEz

( ms)

9 0.31 3.33 17.65 2.1 255.2 53.97 60.7 19.39
11 0.30 3.15 17.90 2.2 255.3 52.54 61 20.02
14 0.29 2.83 18.38 2.3 258.8 51.15 61.9 21.16
17 0.28 2.56 18.85 2.4 267.1 51.81 62.1 21.65
19 0.27 2.40 19.16 2.5 267.8 50.40 62.7 22.52
22 0.26 2.15 19.70 2.6 273.6 49.78 62.9 23.34
25 0.26 2.31 19.33 2.5 266.9 49.21 62.9 23.04
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Figure 7.3 – Lagrangian second order structure function of the streamwise direction at
four downstream locations. (a) Non-dimensional SL

2,x as a function of non-dimensional
timescale. (b) Re-dimensionalised structure function representing the C0 constant.
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side of equation (7.3), we can compute the C0 constant where εi and σ2
ui

are the Eulerian
dissipation rate and the averaged velocity standard deviation over the Lagrangian volume.

The Lagrangian second order structure function at four downstream locations is plot-
ted in figure 7.2. The result of non-dimensional S2

2,x in far downstream shows that the
Lagrangian statistics becomes independent of the downstream position (x/D > 10). In
the present study, we were unable to reach converged statistics for x/D < 10. We also
observe that the non-dimensional S2

2,x has linear relation with τ where ηx < τ < TEx .
These findings are in agreement with the free jet self-similar case [107].

7.4 Conclusions

Lagrangian statistics of the wake flow experiment showed that the Lagrangian statis-
tics becomes independent of the downstream position in far downstream x/D > 10 (see
figure 7.3). These findings are in agreement with the free jet self-similar case ([107]). Fig-
ure 7.3.b suggests the C0 value, which should stay nearly constant in the inertial range.
C0 is found to be between 2 − 4 for the selected downstream locations. Based on the
modelling suggested by Sawford [112], C0 should be around 2.6 for the corresponding
Taylor microscale Reynolds number. Therefore, the estimated C0 of the present study is
in the same order as Sawford’s model.
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Chapter 8

APPLICATION OF LAGRANGIAN

COHERENCY IN PIV

In this chapter, we study the possibility of improving the estimation accuracy of clas-
sic PIV experiments using Lagrangian coherent motions. We present a novel approach to
adjust shapes of the interrogation windows (IW) in 2-PIV measurements as a function of
temporal and spatial local coherent motions. LCS has been widely utilised to determine
local flow boundaries. We propose using FTLE to quantify LCS separatrix boundaries
(i.e., ridges) and adjust the interrogation window. We integrated the proposed method
with a local optical flow PIV algorithm. The evaluation was performed using synthetic
particle images of 2D homogeneous isotropic turbulence obtained from Direct Numerical
Simulation (DNS). The results showed significant improvements in regions with complex
flow behaviours, particularly shear, vortex and hyperbolic motions. We studied improve-
ments of the velocity estimation in a real experiment of the wake flow behind a cylinder
at Reynolds number equal to 3900. It was found that optical flow featured by coherency
based interrogation window (coherent optical flow) reveals detailed vector field estimations
in regions with complex behaviours inside the wake flow.

In 2D-PIV algorithms, both correlation-based and local optical flow techniques rely
on the interrogation windows. The importance of interrogation window has been studied
widely for obtaining effective methods of adapting the window size and shape, which
directly impacts the spatial accuracy of velocity estimation [113], [114]. Since the flow
behaviour inside the interrogation window has clusters of small and large scale coherent
motions, PIV techniques involve window size reduction to avoid those non-coherent areas
and increase the maximum achievable spatial resolution. Generally, the interrogation
window size is gradually reduced based on empirical precalculations and tunings, while this
empirical approach can be adjusted by temporal and local spatial information. This means
flow behaviour in different times and spaces would result in different interrogation window
shapes, which is the main objective of this chapter. To demonstrate the performance of
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Target pixel

Coherent pixels

Non-coherent pixels

Coherent Vector Field

non-Coherent Vector Field

Attracting LCS 

Repelling LCS

Figure 8.1 – Schematic of Window adjusting based on Lagrangian coherency to calculate
velocity for a centre pixel (dark grey pixel), attracting and repelling separatrix lines, grey
pixels are coherent with the centre pixel and coherent pixels.

the proposed method, we integrated the adjustable interrogation window with the local
optical flow PIV algorithm. In the local optical flow approach, all pixels inside the window
are considered for calculating a single-pixel velocity at the centre of the window. However,
to estimate more accurate motions, it is crucial to ignore areas that are non-coherent with
the centre pixel. This study seeks to adjust the interrogation window shape in motion
estimation by calculating locally coherent and non-coherent areas. We propose performing
LCS by looking for the local separatrix ridges that divide the flow field into clusters of
coherent regions [3]. The idea of applying LCS in PIV/PTV algorithms was demonstrated
by Khojasteh et al. [6]. To this end, all neighbour pixels inside the interrogation window
must be classified as coherent or non-coherent with the centre pixel. Similar interrogation
window adjustment can be implemented in cross correlation-based PIV techniques.

8.1 Local optical flow

Classic optical flow works under the intensity consistency assumption of the acquired
images that is inspired by Horn and Schunck [115] formulation. It can also be written in
terms of the Optical Flow Constraint equation (OFCE) as follows,
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df

dt
= ∂f

∂t
+ υ.∇f, (8.1)

where υ is the desired velocity of one time step and f is the image intensity. The op-
erator ∆ denotes gradient over 2D area. On the other hand, we minimise the energy
function with the intensity consistency assumption. However, real PIV images are fea-
tured with temporal changes of intensity between consecutive images due to illumination
and trigger setup. So this assumption can be violated in PIV applications. Schuster et
al. [116] improved the intensity inconsistency problem by introducing stochastic optical
flow formulation. The Eulerian flow velocity field is decomposed into a large-scale smooth
component and a small-scale turbulent component in the stochastic approach. In the
present study, we use the same stochastic approach implemented into the Lucas-Kanade
optical flow estimator [116]. In theory, optical flow provides one velocity vector for each
pixel of two consecutive images based on spatial and temporal variations of the image
intensities. While cross correlation based PIV techniques result in coarse resolution es-
timation. Therefore, optical flow PIV techniques might provide more details of the flow
behaviour in turbulent flows.

8.2 Coherent interrogation window

Lagrangian Coherent Structures (LCS) divide the local flow field into regions of co-
herent motions [3]. LCS is also known as the skeleton of flow that can be utilised as a
deterministic criterion to shape the interrogation window. We computed the LCS separa-
trix ridges using Finite-Time Lyapunov Exponent (FTLE) by employing modified versions
of two open-access codes named LCS kit [117] and LCS tool [118]. FTLE is a scalar value
that measures the amount of spatial stretching over a finite time. In this study, the
spatial region is determined by the interrogation window to compute the FTLE value
locally. Khojasteh et al. [6] showed that using FTLE in the local spatial regions over
sparse neighbour particles can reveal signs of local ridges that can be employed in the ve-
locimetry algorithms. FTLE analysis provides spatial and temporal flow field behaviour.
We propose to adjust the interrogation window based on separatrix ridges, resulting in
different window shapes in space and time. The window shape will not change if the
area is entirely coherent. On the other hand, the shape of the interrogation window does
not change if all pixels are coherent with the target pixel. The major problem happens
when the interrogation window consists of multi-scale dynamics. Figure 8.1 is a classic
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Figure 8.2 – Angular error comparison between local optical flow with and without
coherent adjustable window in global view. Only high values of angular error are shown.
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Figure 8.3 – Angular error local comparison between local optical flow with and without
coherent adjustable window in three scenarios locally selected from 2D isotropic homoge-
neous turbulence. (a) vortex flow. (b) shear flow. (c) hyperbolic flow. Only high values
of angular error are shown.

example of hyperbolic flow when two or more vortices interact with each other in 2D
turbulent flows. Forward and backward FTLE calculations determine two attracting and
repelling lines, where flow particles do not cross these lines. Flow motions in between
these boundaries have coherent motions. Depending on the centre location, coherent flow
motions (in the blue vector field) and regions (in yellow pixels) are on one side of these
lines (see figure 8.1). Any pixel inside the coherent region is considered for the spatial and
temporal gradient of intensity computation. We need to have prior knowledge about the
velocity field to compute the FTLE map. The minimisation process in the optical flow
is an iterative approach. We found that it is unnecessary to compute the whole iterative
process with additional LCS computations since it is costly in time. Therefore, we intro-
duce the LCS computation in the last three iterations of the minimisation process. In this
way, we provide near to the final solution vector field for the first Lagrangian separatrices
computation.
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8.3 Results and evaluation

8.3.1 Synthetic evaluation

We performed synthetic analyses to examine the performance of the proposed tech-
nique. The synthetic PIV images were generated from Direct Numerical Simulation (DNS)
of a 2D homogeneous isotropic turbulent flow. The boundary condition of each side of the
domain was set at periodic. The DNS resolution was 256 × 256 mesh cells. We created
the synthetic particle trajectories using linear Euler transport function in time and linear
velocity interpolation in space. More details of the DNS simulation can be found in [119].
We assessed improvements of using coherent interrogation window in velocity estimation
results of local optical flow technique. As a result, three terms, including RMS (repre-
senting the magnitude of velocity estimation), vorticity, and angular errors, were defined
to quantify the local and overall performances of the proposed technique. In an overall
view, as shown in figure 8.2, we gained around 5 % global increase in velocity estimation
accuracy compared with the classic local optical flow. However, it should be noted that
the main objective here was to increase the resolution and accuracy around separation
and non-coherent areas. Without using adjustable windows, cross-correlation and opti-
cal flow techniques would result in up to 50 % false estimation at those separation and
non-coherent areas. In detail view, Figure 8.3 shows improvements in three specific flow
behaviours, vortex, shear and hyperbolic flows selected locally from 2D synthetic data.
These three regions are intentionally picked to illustrate differences in detailed motions.
We found that local optical flow with square IW suffers from inaccurate angular estima-
tion compared with the DNS reference in the core vortex regions when the interrogation
scale is larger than the vortex scale. Disagreement hits over 7 degrees of angular vector
field misestimation, with over 50 % angular error. Figure 8.3 and figure 8.4 show signifi-
cant local improvements in such a region if an adjustment is performed. Similar motion
refinements were also observed when high shear or hyperbolic behaviour occurred. We
found that coherent optical flow has better velocity estimation in complex local regions.
These local improvements impact the overall assessment of the technique in a global view.

8.3.2 Experiment case study

We performed a 2D2C PIV experiment of the wake behind a cylinder in the wind
tunnel to study the capability of the proposed technique on real experiment images. The
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Coherent

Optical flow

DNS

Figure 8.4 – Vector estimation of a vortex i 2D-HIT.

Reynolds number corresponding to the cylinder with 12 mm diameter was set at 3900.
An sCMOS camera with 2560 × 2160 pixels was employed to acquire images in 49.2 Hz
frequency. The measurement plane was illuminated using a 200 mJ laser (EverGreen
from Quantel). The disparity of the velocity estimation between optical flow with and
without adjustable interrogation window of the current experiment is shown in figure 8.5.
As mentioned in Section 8.2, the window shape stays unchanged if the flow motion is
coherent inside the interrogation window. This means that disparity should be almost
zero in the majority of freestream regions. In agreement with the synthetic analysis,
coherent adjustable window only refined velocity estimations of complex motions such as
shear, wake, and mixing regions (see figure 8.5).

We, therefore, compared our proposed technique with the cross-correlation results ob-
tained from Davis software (10.1.2 version). A snapshot of the instantaneous vorticity and
vector fields are shown in figure 8.6 that illustrates the existence of complex mixing and
vortex generations downstream of the cylinder. The vorticity field shows signs of strong
shears in two sidewards of the wake immediately downstream of the cylinder (x/D < 4).
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Figure 8.5 – Deviation of velocity estimation using local optical flow with and without
adjustable interrogation window for the cylinder wake flow at 3900 Reynolds number.
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Figure 8.6 – Instantaneous snapshot of vorticity and vector fields obtained from the
PIV experiment at a Reynolds number equal to 3900. (a) Local view of the vector field
estimation comparison between coherent optical flow and Davis cross correlation in high
shear region. (b) Comparison of vector estimation inside the wake region. (c) Comparison
of vortex estimation.
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These regions are featured by high velocity and acceleration gradients. We compared the
cross-correlation results with coherent optical flow, knowing that the synthetic analysis
showed significant misestimation in such regions (see figure 8.6.a). A 2D sliding average
filter was used for both techniques for the image pretreatment. The cross-correlation final
spatial resolution was 16 pixels with multi-pass vector calculations starting from 64 × 64
down to 16 × 16 and 75% overlap. As mentioned in Section 8.1, the resolved resolution
of coherent optical flow is the same as the camera resolution. Therefore, the compari-
son was performed between high resolution coherent optical flow and coarse resolution
cross-correlation results. The vector field estimations of coherent optical flow and cross-
correlation PIV techniques captured shear with high gradient vector change. In contrast,
coherent optical flow estimated detailed vector change in normal to shear direction with
smooth change of vectors representing more physics of the flow behaviour. Figure 8.6.b
shows complex vortex and mixing inside the wake region. We found that the centre of
the vortex is not aligned in two techniques. There is roughly 3 pixels shift between two
estimations. Coherent optical flow maintained smooth rotation with a stretch in diagonal
directions. Moreover, the vector field is decreasing gradually toward the vortex centre.
However, the cross-correlation technique only captured the large scale motion with a weak
signature of stretching in the diagonal direction. The third local comparison is in the for-
mation region with a strong vortex (see figure 8.6.c). Similarly, we observed disagreement
in the vortex centre estimation between the two techniques while the large scale motions
are almost equal. The vortex’s upper right corner is near the large velocity motions (see
figure 8.6.c). By contrast, the vortex centre is located inside the wake, with drastically
lower velocity values. Such a gradient associated with the flow rotation creates a com-
plex local region for PIV estimation. Comparison of two techniques shows that using a
coherent adjustable interrogation window resolves more flow field details than the classic
cross-correlation techniques.

8.4 Conclusion

A novel approach is proposed to adjust the PIV interrogation windows based on local
spatial and temporal coherent motions. We quantify the coherent and non-content regions
using Lagrangian Coherent Structures (LCS) as skeletons of flow. The synthetic analysis
showed that coherent optical flow locally improves the velocity estimation accuracy up
to 50%. The main advantage of the proposed technique was the improvement in angular
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estimation in regions with high velocity and acceleration gradients. We also demonstrated
our coherent optical flow performance in a real PIV experiment of the wake behind a
cylinder at Reynolds number equal to 3900. The experiment case study revealed well-
resolved velocity estimations in complex motions such as high shear, wake, and mixing
regions.
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Chapter 9

CONCLUSIONS AND OUTLOOK

In this thesis, we have studied how the temporal and spatial coherency of the La-
grangian particles can improve the efficiency of tracking algorithms. We constrained the
algorithm to follow the physics-based information from coherent motions since Lagrangian
tracer particles locally move and behave coherently with their neighbours. We used the
concept of Lagrangian Coherent Structures (LCS) over sparse Lagrangian trajectories to
determine local coherent motions of turbulent flows. LCS has line/surface ridges (bound-
aries) in 2D/3D flows that separate flow regions with dynamically different trajectories.
Therefore, we can quantify coherent and non-coherent neighbour trajectories depending
on LCS ridges. In this thesis, the idea of using local coherent motions of Lagrangian
particles has been discussed in three velocimetry algorithms. We showed how coherent
motions could increase the robustness of the track initialisation techniques. Then, the idea
was employed to improve the prediction performance. The application of the proposed
approach in classic PIV algorithms was also discussed.

9.1 Conclusions

In Chapter 5, we proposed a novel four (or multi) frame initialisation technique by
leveraging the temporal and local spatial coherency of neighbour tracks. Our proposed
technique is called "Lagrangian Coherent Track Initialisation (LCTI)". Knowing that
Lagrangian trajectories do not cross these ridges, the idea is to constrain the possible
solution for a single particle based on coherent motions bounded by LCS ridges. It was
found that the 4D-PTV process fails if the number of true initialised tracks is not suffi-
cient, particularly in complex flow dynamics. We showed that multi-frame initialisation
techniques lose their efficiencies if flow characteristics, temporal scale, particle concen-
tration, and noise ratio increase. Three test cases, cylinder wake flow, jet impingement,
and wall bounded wake flow, were employed to qualitatively and quantitatively assess
the performance of the proposed method. In the synthetic study of the wake behind a
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cylinder, LCTI showed robust and accurate behaviour in detecting more true tracks with
less untracked and wrong tracks. The proposed initialisation technique was also examined
in a jet impingement 4D-PTV experiment. Such a case contains numerous complex flow
structures from the moment particles leave the nozzle until they bounce from the solid
wall. Only reconstructed positions were used as an input for this experiment assessment.
LCTI (without further prediction and optimisation) was capable of reconstructing tra-
jectories. Complex jet impingement flow structures such as vortex ring around the jet
and secondary vortices were observed from the LCTI reconstruction. We concluded this
chapter by noting that the LCS factor can help the tracking algorithm follow coherent
structures even in high gradient and complex 3D dynamics.

In Chapter 6, we argued that the recent predictor functions in 4D-PTV suffer from a
lack of information to predict the particle positions in regions with high motion gradients.
The problem is that these functions solely rely on particle history as the only signal to
estimate the particle position in the next time step. Following the spirit of using coher-
ent motions, a new prediction function has been introduced, namely coherent predictor.
To this end, we first designed a cost function based on three terms dealing with history,
coherent velocity, and coherent acceleration. As a result of the synthetic study, the pro-
posed cost function outperformed the recent predictor functions with lower bias error,
particularly in complex regions. To quantify the uncertainty level of the proposed func-
tion, we performed Monte Carlo simulations. Coherent predictor showed narrow output
uncertainty distribution compared to Wiener filter and third order polynomial predictors.
The performance of the mentioned predictor functions was examined in a cylinder wake
flow 4D-PTV experiment. The predicted positions from coherent predictor showed min-
imum deviation with the optimised positions, compared with other predictor functions.
As a result of both synthetic and experimental studies, it can be said that the prediction
process becomes more accurate with less uncertainty by adding velocity and acceleration
coherent values.

It is interesting to extend the proposed cost function in Chapter 6 to a generic pre-
diction form. Therefore, we introduced a non-dimensional cost function with weighted
terms. The position, velocity, and acceleration terms were non-dimensionalised based on
turbulent integral scales. In this way, it is possible to minimise a generic cost function ap-
plicable in various turbulent flows. We found that the measurement uncertainty directly
impacts the optimal solution for the minimised predictor cost function. We employed
two synthetic turbulent cases, 2D homogeneous isotropic turbulent (HIT) and the wake
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behind a cylinder, with the same measurement uncertainty levels. The optimal solution
of the cost function for both cases showed similar weighting configurations. This suggests
that the weighting parameters can be modelled as a function of measurement uncertain-
ties. We, therefore, performed further parametric studies and quantified a model that
receives the measurement uncertainties to design the optimal cost function.

4D-PTV algorithms are ultimately designed to explore the physics of coherent struc-
tures, statistics, and fundamental turbulent characteristics in the Lagrangian framework.
Interestingly, recent advances in Lagrangian experiments opened new possibilities to in-
vestigate fundamental turbulent relations in real experiments. Therefore, we performed a
Lagrangian statistical analysis of the wake flow experiment in Chapter 7. We stationarised
the anisotropic Lagrangian trajectories based on mean flow and local standard deviation
of the velocity. The objective was to obtain turbulent characteristics and compare them
with self-similar wake flow properties. Computed decay in the Eulerian dissipation rate
towards downstream satisfies wake flow expectations from fundamental free shear studies.
We observed increases in the Eulerian turbulent length scale, which agrees well, knowing
that the wake size constantly increases. The second-order Lagrangian structure-function
showed good agreement with fundamental relations far downstream of the wake. We
computed the Lagrangian universal constant C0 for the inertial-range dynamics. This
constant in the Lagrangian framework plays a similar role as the Kolmogorov constant
in the Eulerian framework. We provided and validated statistical Eulerian/Lagrangian
turbulent characteristics of the wake flow obtained experimentally from 4D-PTV.

Chapter 8 discussed the possibility of adjusting the interrogation window based on
local coherent motions. LCS ridges, also known as the skeleton of flow, divide the local
flow field into regions of coherent motions. We shaped the interrogation window only to
compute vector fields based on coherent motions. We locally and globally examined the
proposed method with synthetic 2D-HIT and the cylinder wake flow 2D PIV experiment
cases. The local synthetic assessment revealed that the adjustable interrogation window
improves velocity RMS, angular, and vorticity errors in classic cases like flows in vortex,
shear, and saddle point. The maximum improvement was in the angular error estimation,
which requires an accurate interrogation window. Global results also showed improve-
ments compared with the classic squared interrogation windows. The proposed technique
was investigated in a 2D PIV experiment. We observed improvements, particularly in
regions with small scale vortices. As a consequence of this chapter, we can suggest that
adjusting the interrogation window based on local coherent motions leads to a better
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vector field estimation.

9.2 Outlook

These findings provide numerous insights for future research. One suggestion is to
quantify Lagrangian coherent length and time scales. It is possible to understand the
physics of coherent motions by such quantification. The coherent timescale can be de-
fined as a metric to quantify how long a group of particles stays coherent. Similarly, a
coherent length scale can determine the length scale of the current local coherency. In
the wake flow case, as an example, the length scale of coherent trajectories outside the
wake is almost the same size as the turbulent integral scale. However, we have very small
coherent length scales inside the wake. Another possible area of future research would
be to investigate the introduced LCTI idea (see Chapter 5) as a PTV technique without
dependency on prediction and optimisation steps. It can be interesting to define a global
minimisation approach in LCTI applicable to most turbulent experiments. In addition,
local segmentation of Lagrangian trajectories is an intriguing topic that could be usefully
explored in future research. For example, PTV techniques can shift from single parti-
cle schemes to tracking groups of particles. Ideally, this would allow exploring coherent
structures and large scale motions by tracking groups of particles. Besides the mentioned
insights, a greater experimental focus is needed on Lagrangian statistics of self similar
flows to establish a better fundamental understanding of physics.

As noted in Chapter 4, PIV/PTV community requires synthetic Lagrangian trajec-
tories. To compute the transport of synthetic particles, 3D interpolations from gridded
Eulerian velocity fields to particles are inevitable. It might be interesting to apply the
proposed coherency based approach to only interpolate coherent elements, and achieve
more accurate Lagrangian velocity estimations. In a reversed process from Lagrangian to
Eulerian grids, the coherent motion idea can also be implemented in techniques such as
Lagrangian PIV (LaPIV [39]) and functional binning [120] by having adjustable interpo-
lation volumes. The adjustable interrogation window proposed in Chapter 8 needs to be
investigated statistically instead of instantaneous comparisons to precisely determine its
performance.
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APPENDIX A, LAGRANGIAN/EULERIAN

DATASET OF THE WAKE FLOW

The current dataset contains Eulerian velocity and pressure fields, and Lagrangian
particle trajectories of the wake downstream of a smooth cylinder at a Reynolds number
equal to 3900. The open-access Direct Numerical Simulation (DNS) code Incompact3d
was used to calculate the Eulerian field around the cylinder. Trajectories of roughly
200,000 particles for two sub-domains are available. This dataset can be used as a test
case for tracking algorithm assessment, exploring the physics of Lagrangian particles,
statistic analyses, data assimilation and machine learning interests.

1 count=0; %counter for reading the vector file

2 %nx mesh size in x direction

3 %ny mesh size in y direction

4 %nz mesh size in z direction

5

6 for k=1:nz

7 for j=1:ny

8 for i=1:nx

9

10 count=count+1;

11

12 U(i,j,k)= U (count,1);

13 U(i,j,k)= V (count,1);

14 U(i,j,k)= W (count,1);

15

16 end

17 end

18 end
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Reading snapshots

Three main categories are available in the data repository, Sub-domain-1, Sub-domain-
2, and Software. The snapshots are formatted in text (.txt) and collected in compressed
files (.zip). There is no particular requirement for reading and opening the data. The
naming format of each snapshot is shown in figure 9.1. The Eulerian 3D snapshots are
saved in vector formats. Therefore, it is necessary to extract them within three internal
loops in xyz directions. The users also need to download the grid file separately to find
the corresponding coordinates. The users also need to download xyz-grids separately to
find the corresponding coordinates for every component. Here is an example of reading
the snapshots,

Parameter:

U, V, W
P
2D

Domain:

sub_domain_1
sub_domain_2

Timestep:

1,2,3,…

Tag:

U_sub_domain_1
V_sub_domain_1
…

Figure 9.1 – The naming format of each snapshot in the data repository.

Finding snapshots in the repository

This file contains instructions to appropriately use the dataset. The snapshots are
formatted in text (.txt) files, so there should be no requirement for reading the data.
Users need to read the 3D snapshots within three internal loops because they are saved
in a vector format. You can find the naming format in figure 9.1. Three 2D3c velocity
snapshots for z = [−1, 0, +1] are saved in a zip (.zip) file.
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APPENDIX B, COST FUNCTION

MINIMISATION

This appendix describes how to minimise the non-dimensional cost function of the
coherent predictor. We assume that the solution is a 3rd order polynomial with unknown
ai coefficients as,

n∑
j=n−m

n+1∑
i=1

ai.t
i−1
j = yn−m,n. (9.1)

We can expand the solution coefficients into the cost function as follows,

J = 1
n

n∑
i=1

[(
a0 + a1ti + a2t

2
i + a3t

3
i

)
− y′

i

]2
+α′

1

[(
a1 + 2a2ti + 3a3t

2
i

)
− ẏ′

i

]2
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2 [(2a2 + 6a3ti) − ẏ′
i]

2
.

(9.2)

The minimized solution should satisfy the partial derivative of the cost function over ai

coefficients as,
∂J
∂ai

= 0. (9.3)

Partials derivate of a0 is given by,

∂J
∂a0

= 2
n

n∑
i=1

[(
a0 + a1ti + a2t

2
i + a3t

3
i

)
− yi

]
+ 0 + 0

n∑
i=1

[
a0 + a1ti + a2t

2
i + a3t

3
i

]
= yi

. (9.4)

Partial derivative of a1 is,

∂J
∂a1

= 2
n

n∑
i=1

[(
a0 + a1ti + a2t

2
i + a3t

3
i

)
− yi

]
· ti

+2 ·
[(

a1 + 2a2tn + 3a3t
2
n

)
− ẏn

]
+ 0

. (9.5)
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Partial derivative of a2 is,

∂J
∂a2

= 2
n

n∑
i=1

[(
a0 + a1ti + a2t

2
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3
i
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− ẏi

]
· (2ti)

+2 · [(2a2 + 6a3ti) − ÿi] · (2)

. (9.6)

Partial derivative of a3 is,
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∂a3

= 2
n
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i=1

[(
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3
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. (9.7)

To linearize the solution, we set each partial derivative to zero leading. Series of partial
derivatives can be written in a matrix form as,
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(9.8)
On the other hand, the derived equation is in a form of AX = B. So ai solutions can be
solved by X = A−1B.
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NOMENCLATURE

Abbreviations and Acronyms
ppη3 particles per cubic Kolmogorov scale

ppD3 particles per cubic Integral scale

4BE four frame best estimate

CCD charge coupled device

DBSCAN density based spatial clustering of ap-
plications with noise

DNS direct numerical simulation

DPIV digital particle image velocimetry

ETI enhance track initialisation

FFT fast Fourier transform

FIR finite impulse response

FTLE finite-time Lyapunov exponent

GUI graphic user interface

HFSB helium filled soap bubbles

HIT homogeneous isotropic turbulent

HWA hot wire anemometry

IBM immersed boundary method

IPR iterative particle reconstruction

IW interrogation winow

KLPT kernelized Lagrangian particle tracking

LCS Lagrangian coherent structure

LCTI Lagrangian coherent track initialisation

LDA laser Doppler anemometry

LDV laser Doppler velocimetry

LED light emitting diode

LOS line of sights

LPT Lagrangian particle tracking

MC-UQ Monte Carlo uncertainty quantification

Nd:YAG Neodym-YAG

NNI nearest neighbour initialisation

NN nearest neighbour

NR noise ratio

OFCE optical flow Constraint equation

OTF optical transfer function

pdf probability density function

PIV particle image velocimetry

ppp particles per pixel

PTV particle tracking velocimetry

RMS root mean square

sCMOS scientific CMOS

SIG synthetic image generator

STB shake the box

VIC vortex-in-cell

VSC volume-self-calibration

Greek
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α cost function weight

δx vector displacement

∆ right Cauchy-Green tensor

ℓ order of predictor function

ϵ estimation error

η Kolmogorov length scale

Λ FTLE value

Φ particle flow map

σu Reynolds stress

σ uncertainty level

τp response time

τη Kolmogorov time scale

εi turbulent dissipation rate

εux turbulent dissipation rate

Symbols
J cost function

ũ stationarised velocity

a predictor coefficients

C0 Lagrangian universal constant

dt time step

D integral length scale

I image intensity

LE Eulerian integral length scale

l Taylor length scale

RL
uu Lagrangian two-point correlation function

Re Reynolds number

SL
2 Lagrangian second order structure-

function

t0 first time step

TD integral time scale

TE Eulerian integral time scale

T interval time

t time step

U∞ freestream velocity

U flow velocity vector

x, y, z coordinate system

yi measurement observed positions
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Titre : Mouvements cohérents lagrangiens pour suivre les trajectoires des particules dans les
écoulements turbulents

Mot clés : Vélocimétrie par suivi de particules, structures cohérentes lagrangiennes, mouve-

ments cohérents lagrangiens

Résumé : Dans cette thèse, nous avons étu-
dié comment la cohérence temporelle et spa-
tiale des particules lagrangiennes peut amé-
liorer l’efficacité des algorithmes de suivi.
Nous avons contraint l’algorithme à suivre l’in-
formation basée sur la physique des mouve-
ments cohérents puisque les particules tra-
ceuses lagrangiennes se déplacent locale-
ment et se comportent de manière cohé-
rente avec leurs voisins. Nous avons utilisé
le concept de structures cohérentes lagran-
giennes (LCS) sur des trajectoires lagran-
giennes éparses pour déterminer les mouve-
ments cohérents locaux des flux turbulents.
Les LCS présentent des crêtes de ligne/sur-
face (frontières) dans les écoulements 2D/3D

qui séparent les régions d’écoulement ayant
des trajectoires dynamiquement différentes.
Par conséquent, nous pouvons quantifier les
trajectoires cohérentes et non cohérentes des
voisins en fonction des crêtes LCS. Dans cette
thèse, l’idée d’utiliser les mouvements cohé-
rents locaux des particules lagrangiennes a
été discutée dans trois algorithmes de vé-
locimétrie. Nous avons montré comment les
mouvements cohérents peuvent augmenter la
robustesse des techniques d’initialisation des
trajectoires. Ensuite, l’idée a été employée
pour améliorer la performance de la prédic-
tion. Enfin, l’approche proposée a été adpa-
tée et appliquée aux algorithmes classiques
de PIV.

Title: Lagrangian coherent motions to track particle trajectories in turbulent flows

Keywords: Particle Tracking Velocimetry, Lagrangian Coherent Structures, Coherent motions

Abstract: We present here a study that at-
tempts to improve velocimetry algorithms by
using the temporal and spatial coherency of
Lagrangian particles. As Lagrangian tracer
particles move and behave coherently with
their neighbours, we constrained the algorithm
to comply with physics-based information. In
order to determine local coherent motions of
turbulent flows, we utilized Lagrangian Coher-
ent Structures (LCS) over sparse Lagrangian
trajectories. In 2D/3D flows, LCS has line/-
surface ridges separating regions with dynam-
ically different trajectories. Based on LCS

ridges, we can quantify coherent and non-
coherent neighbour trajectories. Three ve-
locimetry algorithms are discussed in this the-
sis using the idea of local coherent motions
of Lagrangian particles. Through coherent
motions, we demonstrated how the track ini-
tialization techniques in time-resolved three-
dimensional particle tracking velocimetry (4D-
PTV) can become more robust. This idea was
then used to improve prediction performance.
We also explored how to apply this approach
to classic PIV algorithms.
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