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dans les tumeurs de sous-type 2, que l'on retrouve davantage chez les enfants de plus de 18 mois. L'analyse d'une série indépendante de 112 rétinoblastomes présentant des facteurs pathologiques à haut risque a révélé que les tumeurs qui métastasent expriment toutes la protéine TFF1, correspondant au gène le plus surexprimé dans les tumeurs de sous-type 2 par rapport aux tumeurs de sous-type 1. Nous avons analysé 14 rétinoblastomes en utilisant le séquençage de l'ARN de cellules uniques (scRNAseq), et avons confirmé cette hétérogénéité inter-tumorale. L'une des tumeurs analysées présentait une hétérogénéité intra-tumorale au niveau phénotypique et génomique : certaines cellules tumorales présentaient un degré plus élevé de différenciation des cônes et la perte de différenciation des cônes s'accompagnait d'une accumulation d'altérations génomiques, tandis que d'autres cellules présentaient des altérations génomiques et des phénotypes totalement différents. Nous avons décrit le paysage immunitaire du rétinoblastome grâce au scRNA-seq, et avons découvert que différents types de cellules immunitaires sont présents dans le microenvironnement tumoral, notamment de multiples populations de cellules de la lignée monocytaire telles que les macrophages M2 protumoraux et les cellules présentatrices d'antigènes, de multiples populations de cellules T dont les cellules T régulatrices CD4+ et les cellules T cytotoxiques CD8+, ainsi que les cellules NK. L'infiltration des macrophages M2 a été validée par immunohistochimie et a été associée à un niveau élevé d'expression du MIF par une analyse sur puces à cytokines et d'une prédiction in silico de ligand-récepteur.

En conclusion, notre analyse multi-omique et transcriptomique de cellules uniques a permis de caractériser de manière détaillée l'hétérogénéité inter-et intra-tumorale et de décrire le paysage immunitaire du rétinoblastome.

Synthèse

Titre : Hétérogénéité du rétinoblastome : une analyse multi-omique et transcriptomique de cellules uniques Mots clés : Rétinoblastome, hétérogénéité, microenvironnement, bioinformatique, multi-omique, transcriptome de cellules uniques.

Le rétinoblastome est un cancer pédiatrique dérivé de la rétine. Bien que rare, c'est la tumeur maligne intraoculaire la plus fréquente chez l'enfant. Le rétinoblastome est traité par une thérapie locale aux premiers stades, mais aux stades ultérieurs, il nécessite une chirurgie d'énucléation et une chimiothérapie systémique. Sans un diagnostic en temps utile et un traitement approprié, des métastases peuvent se développer et entraîner le décès de l'enfant.

Le rétinoblastome est une maladie hétérogène. Les cellules tumorales de différents patients ou différentes cellules d'un même patient peuvent présenter des caractéristiques moléculaires et phénotypiques distinctes. D'un point de vue histopathologique, les cellules tumorales peuvent présenter différents degrés de différenciation, ainsi qu'une croissance exophytique, endophytique ou mixte. En ce qui concerne la génomique, le rétinoblastome survient principalement après une inactivation bi-allélique de RB1 et, dans de rares cas, une amplification de MYCN peut également déclencher la maladie. En termes de transcriptomique, quelques études ont été réalisées et ont révélé que le rétinoblastome peut présenter des degrés variés dans les signatures de différenciation des photorécepteurs.

Dans notre travail, nous avons identifié deux sous-types moléculaires basés sur l'analyse de 102 rétinoblastomes en utilisant le séquençage de l'exome entier, les SNP array, les puces pour mesurer l'expression des gènes et la methylation de l'ADN. Nous avons réalisé le clustering en utilisant une stratégie combinant le clustering hiérarchique consensuel et le clustering basé sur les centroïdes. Nous avons démontré que les tumeurs de sous-type 1 présentaient une signature plus mature de différenciation de photorécepteurs cône et se manifestaient généralement chez les enfants de moins de 18 mois, tandis qu'un niveau plus faible de différenciation de photorécepteurs cône est corrélé à un niveau élevé de caractéristiques ganglionnaires/neuronales, de signatures de type souche et d'instabilité génomique [Type here] retinoblastomas with high risk pathological factors uncovered that metastatic tumors all expressed TFF1 protein at their primary sites, the gene that is most upregulated in subtype 2 tumors as compared to subtype 1 tumors. We confirmed this inter-tumoral heterogeneity in 14 additional retinoblastomas using single-cell RNA sequencing. One of the tumors analyzed displayed intra-tumoral heterogeneity at both phenotypic and genomic level, in that some tumor cells exhibited higher grade of cone differentiation, while other cells presented entirely different genomic alterations and phenotypes. We characterized the immune landscape of retinoblastoma through single-cell transcriptomics, and reported that various immune cells types are present in the tumor microenvironment, including multiple populations of monocytic lineage cells such as the protumoral alternative M2 macrophages and antigen presenting cells, multiple populations of T cells such as CD4+ regulatory T cells and CD8+ cytotoxic T cells, as well as NK cells. The infiltration of M2 macrophages was validated by immunohistochemistry, and was associated with high-level of MIF expression through cytokine array and in silico ligand-receptor prediction.

Taken together, our multi-omic and single-cell transcriptomic analysis comprehensively characterized the inter-and intra-tumoral heterogeneity and characterized the immune landscape in retinoblastoma.
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CHAPTER 1. INTRODUCTION

Retinoblastoma is a rare pediatric cancer but also the most common intraocular malignancy in children. It arises from the developing retina. This introduction aims to provide an overview of essential background knowledge of the disease and to highlight the research gaps in the field.

THE RETINA AND RETINAL DEVELOPMENT The retina

The human retina is a 0.2mm-thick light-sensitive tissue in the posterior lining of the eye (Figure 1A). Six mayor types of neurons (rod and cone photoreceptors, horizontal cells, bipolar cells, amacrine cells and retinal ganglion cells) and glial cells are orderly layered in the retina (Figure 1B,C). They function collectively to receive light, process signals and transmit information to the brain. 

Retinal cell types and their function

The retinal neurons are arranged in an orderly structure that consists of two photoreceptor segment layers (outer segment and inner segment), three nuclear layers (outer nuclear layer, inner nuclear layer, ganglion cell layer) and two synaptic layers (outer plexiform layer, inner plexiform layer) (Figure 1B,C). Light passes through transparent inner retinal layers and photons get captured by the visual pigments in inner segment and outer segment layers of the photoreceptors. Excessive light is absorbed by retinal pigmental epithelial next to the photoreceptors. After absorption by visual pigments, signal transduction cascades are initiated inside the photoreceptors, resulting in the change of membrane potential. This change regulates the releasing of neurotransmitters from the photoreceptors to the bipolar and horizontal cells in the first synaptic layer, the outer plexiform layer. Horizontal cells provide feedback and feedforward signals to both photoreceptors and bipolar cells. Bipolar cells connect to the amacrine cells and retinal ganglion cells in the second synaptic layer, the inner plexiform layer. Amacrine cells provide inhibitory feedback and feedforward signals.

Finally, retinal ganglion cells integrate all the information through their dendrites and pass it on through their axons into the optic nerve and further into the brain (1,2).

The predominant cell types in the retina are the photoreceptors. Rod photoreceptors, of which there is only one type, mediate vision in dim light. Cone photoreceptors mediate vision in bright light and are responsible for color vision. There are three types of cone cells (L, M, S) and they carry different pigments (opsins) with maximal absorption for different wavelengths of light: red/long-wavelength (L), green/mediumwavelength (M), and blue/short-wavelength (S). The human retina contain about 130 million photoreceptors, about 5 million bipolar cells, and about 1 million ganglion cells.

Rods outnumber cones by 20-fold, and are distributed throughout the retina except for the fovea region (1) There are also multiple subtypes of bipolar, horizontal, amacrine interneurons, and retinal ganglion cells (3,4).

In the retina there are also three major types of glial cells: Müller glia, astrocytes and microglia. The Müller glia are specialized macroglia of the retina spanning the entire thickness of neural retina (Figure 1B). They guide the light to the photoreceptors, maintain homeostasis, and are modulators of immune and inflammatory responses.

Astrocytes are macroglia migrated from the brain to the retina and are located predominantly in the ganglion cell layers. They participate in maintenance of vascular stability and hemostasis in the retina. Microglia are monocytes that enter the retina and then reside in the ganglion cell layers and the two synaptic layers. They are responsible for the immune responses and neural regenerations (5).

The fovea

The fovea is 700-µm-diameter pit near the center of the retina (Figure 1A). Among the mammals, it is only present in human and other higher primates. This region has several structural characteristics so that it has the highest visual acuity as compared to other regions of the retina. The fovea primarily consists of cone cells, the photoreceptors that mediate color vision and provide a higher resolution than rod photoreceptors, the predominant cells in non-fovea regions. Each fovea cone is connected to its exclusive bipolar and ganglion cell; unlike in other areas of the retina, multiple photoreceptors share the connecting interneurons to transmit information to the central nervous system. Light enter photoreceptors with minimal distortion in the fovea region since the cell bodies of the proximal retinal neurons have been shifted to the side (Figure 1A) (1).

Retinal development

The vertebrate retina develops from retinal progenitor cells (RPCs). They give rise to all six major types of retinal neurons and Müller glia in a conserved sequential order. Ganglion cells, cone photoreceptors, horizontal cells and amacrine cells are early-born cells, while bipolar neurons, Müller glia, and rod photoreceptors are late-born cells.

During early development, RPCs are highly proliferative and divide symmetrically to grow retina into a proper size in coordination with the growth of the eye. Upregulation of the transcriptional factors (TFs) Pax6, Chx10 and Sox2 may be important for maintaining proliferative capabilities of RPCs. Following the expansive period, RPCs tend to divide asymmetrically, producing one daughter cell that differentiates into an early-born retinal cell, and another daughter cell that is a retinal progenitor cell. At later developmental stages, both daughter cells exit cell cycle and differentiate into retinal cells (Davis and Dyer, 2010). Cell cycles are precisely coordinated during each step of retinal development to ensure a certain proportion of retinal cells to be generated in a certain order (Figure 2) (6) A, Following mitosis (M) phase, the phosphorylation state of the retinoblastoma protein (Rb), or its related family members (p107, p130) dictates whether a neuronal progenitor cell will progress through another round of cell division and pass the G1/S checkpoint, or exit the cell cycle and differentiate. It has been suggested that p130 is required to maintain cells in the differentiated state and that p107 might be important in regulating cell-cycle progression during late G1/S phase. Hypophosphorylated Rb, p107 or p130 binds to the E2F/DP heterodimer, which prevents transcription of E2F-regulated genes. Five main E2F family members have been identified and these molecules show preferential binding to different Rb family members. E2F1-3 preferentially bind to Rb, E2F5 preferentially binds to p107 and p130 and E2F4 binds to all three family members. The binding preferences and activities of the two DP genes (DP1, DP2) that have been identified in mammals have not been fully elucidated. Several different cyclin/cyclin-dependent kinase (CDK) holoenzymes have been identified that can phosphorylate Rb family members. Cyclin-D-CDK complexes are believed to act early during the G1 phase in mitotic cells.

The three D-type cyclins (D1, D2 and D3) are expressed in a tissue-specific manner and associate with one of two CDKs (CDK4 and CDK6). Later during G1, the cyclin-E-CDK2 complex is believed to be the main Rb/p107/p130 kinase. Two families of cyclin-kinase inhibitors (CKIs) have been identified that can block the kinase activity of these holoenzymes. The INK family (p15, p16, p18 and p19) is believed to bind preferentially to cyclin-D-CDK complexes and leads to disruption of the holoenzyme subunits.

Cip/Kip CKIs (p21, p27 and p57) can form stable complexes with either cyclin-D-CDK or cyclin-E-CDK complexes. According to one model, upregulation of an INK family member in a mitotic cell might lead to disruption of a cyclin-D-CDK-(Cip/Kip) complex, which is followed by cyclin-E-CDK2 inactivation by the newly released Cip/Kip molecule. B, Retinal progenitor cells exit the cell cycle during the G1 phase and differentiate into retinal neurons or Müller glia. Retinal neurons are considered in G0 phase and undergone terminal differentiations.

Müller glia are considered quiescent in G0 phase but maintain the capability to re-enter cell cycle in some situations such as neural regeneration. Images and texts from (6).

Mouse retina is a model commonly used to study retinal development. In mouse, ganglion cells are generated first during embryogenesis, followed by the production of cone photoreceptors, horizontal cells, and most of the amacrine neurons. Bipolar neurons, Müller glia, the remaining amacrine neurons, and most rod photoreceptors are generated postnatally. The production of retinal cell types overlap at any given time and are regulated intrinsically by several transcriptional factors (Figure 3) (7). Despite high levels of evolutionary conservation in vertebrate retina, there are important differences between human and mouse retinal development. A better understanding of human-specific retinal development is crucial for understanding retinoblastoma tumorigenesis and for finding new treatments for this disease.

Researchers made efforts in obtaining normal, well-preserved human fetal eyes to perform both morphological and molecular studies (8-10). Human retina also develops both prenatally and postnatally. All retinal cell types are generated before birth, and they continue to mature after birth. The generation of retinal cells in human shares a similar order as in mouse. It is also noted that human retinal development is spatially regulated, neural differentiation is initiated in the central retina near fovea and progresses toward the periphery.

Recent data have indicated that human Embryonic Stem cells (hESCs) and human induced Pluripotent Stem Cells (hiPSCs) can be used to generate retinal organoids that shares similar structure as neural retina (11,12). Different retinal cells were differentiated from the RPCs in these retinal organoids in a similar timely order to mouse (Figure 4) (12). 

RETINOBLASTOMA: EPIDEMIOLOGY AND CLINICAL ASPECTS

Incidence

Retinoblastoma is the cancer of the developing retina. It represents the most common intraocular tumor in children, and accounts for about 4% of all childhood cancers (13).

Its incidence rate is about 1 in 16,000 live births per year, predicting approximately 8,000 new cases each year worldwide (14,15).

Risk factors

There are very few known risk factors for retinoblastoma. The risk of retinoblastoma is much higher in children from families with a history of retinoblastoma. Other risk factors include exposure to tobacco before pregnancy and advanced maternal age (16).

Clinical presentation

Retinoblastoma is generally presented during early childhood. More than 95% of the children diagnosed with retinoblastoma are younger than 5 years old (18). Disease can affect one (unilateral) or both eyes (bilateral), and rarely also the pineal (trilateral).

Unilateral retinoblastomas count for 60% of cases and have a median age at diagnosis of two years, while 40% of cases are bilateral with a median age at diagnosis of one year (16).

The most common first sign of retinoblastoma is leukocoria, a white reflex visible through the pupil (Figure 5). Strabismus, or ocular misalignment, is the second common early sign of retinoblastoma. Early awareness of these signs are crucial, for timely treatment therefore can improve prognosis and survival rate. When diagnosed late, retinoblastoma may be presented with proptosis, buphthalmos, glaucoma and inflammation. These symptoms more often occur when the tumor spreads and are related to poor prognosis (15,17,18).

Retinoblastoma can spread through the optic nerve to the central nervous system. It can also invade choroid, sclera and orbit to enter the vessels and subsequently metastasize to bone marrow, liver and other organs (19) 

Diagnosis

Dilated fundusopic examination is essential for the diagnosis of retinoblastoma as well as for the evaluation of the tumor stage. Retinoblastoma often present as one or multiple yellow-white retinal masses through funduscopy (Figure 6). There are two types of growth patterns of the retinoblastoma: endophytic and exophytic. Endophytic retinoblastoma refers to the tumor growing towards the vitreous, they often produce vitreous seeding. Exophytic tumors refer to the tumor extend beneath the retina. These tumors can cause exudative retinal detachments and may be associated with significant subretinal seeding. The appearance of seeds has been described as fine dust, spheres, or clouds, each with a progressively worse prognosis, respectively (15,18).

Ultrasound or magnetic resonance imaging can also help the diagnosis and staging.

Calcification and optic nerve invasion can often be found through these examinations (15). For retinoblastoma, biopsy is not recommended, as it increases the risk of extraocular spread (15,18). Correct staging of the retinoblastoma are essential to making the treatment plan and the prediction of outcome. There are several different staging or classification systems.

International Intraocular Retinoblastoma Classification (IIRC) (20) and its modified version Intraocular Classification of Retinoblastoma (ICRB) (21) are the systems generally adopted to evaluate intraocular diseases. Other classification schemes that are also used include staging of extraocular retinoblastoma (22) and staging of vitreous seeding (23). Retinoblastoma can also be staged using "Tumor Node Metastasis" (TNM) classification system (Table 1) (19).

Management

The goals of the management of retinoblastoma are to save the patient's life, and to preserve the eye and the vision. Management plan is made based on the comprehensive evaluation of the disease by a team of experts including ophthalmologists, oncologists, radiologists, geneticists, pathologists and radiotherapists. Common primary treatments for intraocular disease include enucleation surgery, intra-venous chemotherapy with focal therapy (laser photocoagulation, thermotherapy or cryotherapy), intra-arterial chemotherapy with focal therapy, and focal therapy alone (14).

Enucleation is the surgical procedure to remove the affected eye. It is usually applied to the eye with a large tumor burden in unilateral disease. In France, it is performed in around 50% of the cases. With the development of new eye-salvage therapies, the use of enucleation will be further decreased. Cosmetic reconstruction can be performed to improve the aesthetic outcome (14).

Common used drugs in intra-venous chemotherapy include carboplatin, etoposide, vincristine and cyclosporine. In intra-arterial chemotherapy, melphalan, topotecan and carboplatin are often used (14). When primary treatments fail, second-line treatments can be applied, which include focal therapy, repeated systemic chemotherapy, intra-arterial chemotherapy, brachytherapy, external beam radiotherapy and stereotactic conformal or proton-beam radiotherapy. Vitreous seeding is the main reason of failure in eye preservation.

Intravitreal chemotherapy may be used to improve the drug delivery in vitreous (14).

Treatments for extraocular retinoblastoma include neoadjuvant chemotherapy, enucleation, orbital radiation and adjuvant chemotherapy. In metastatic diseases, intrathecal chemotherapy (injection into the cerebrospinal fluid space), high-dose chemotherapy and stem cell rescue may be used (14).

Prognosis

Prognosis of retinoblastoma is good in high-income countries (patient survival is more than 95%). However, in low-income countries patient survival is low (30%). Poor outcome correlates with lack of retinoblastoma specific care center, late diagnosis and poor compliance of treatment due to family's poor socioeconomic status. Without timely diagnosis and appropriate treatment, lethal metastatic disease may develop (14). 

RETINOBLASTOMA: GENETIC AND MOLECULAR BASIS Knudson's hypothesis

A genetic model to explain the difference of age at diagnosis and incidence rates between unilateral and bilateral retinoblastoma patients was proposed by Knudson (24). Two mutations are required to develop retinoblastoma, each of the two mutations occurs at a rather constant rate. These two mutations can both be somatic mutations, or one of the two mutations can be a germline mutation. Patients who carry one germline mutation can develop the disease earlier in their lives than the patients who need to accumulate two somatic mutations.

The RB1 gene inactivation

The two hits underlying retinoblastoma was later recognized by the finding of chromosome 13q14 deletions in retinoblastoma patients and RB1 gene being identified in the smallest deleted region in this deleted chromosome segment (25). Several studies further elucidated that inactivation of both alleles of RB1 can lead to retinoblastoma formation (26). By analysis of a cohort of more than 1000 retinoblastomas, RB1 were found inactivated in 98% of the cases (27). 

The

MYCN amplification

MYCN is located in chromosome 2p and is a member of MYC oncogene family. MYCN amplifications are found in a variety of cancers, including neuroblastomas and retinoblastomas (14). It has been shown that MYCN does not likely contribute to retinoblastoma initiation but plays a role in RB1-mutated tumor progression (29).

However, a more recent study showed that MYCN amplifications were found in half of the RB +/+ retinoblastoma cases, suggesting that MYCN amplifications may actually be initiating events in rare cases when RB1 gene are intact (27).

Additional genomic and epigenetic alterations

Biallelic RB1 inactivation is necessary to initiate most retinoblastomas, but it is not sufficient, as retinoma -the benign retinal lesion -similarly involves bi-allelic RB1 loss (30). Another recurrent mutation identified in retinoblastoma is BCOR, an interacting corepressor of BCL6 (31,32).

Besides mutations, recurrent DNA copy number alterations are found in retinoblastoma, include chr1q gain, chr2p gain, chr6p gain, chr13q gain, chr13q loss, chr16q loss, chr17p loss, and chr19 gain (33). These genomic altercations may map to several candidate oncogenes such as KIF14 (chr 1), p53 regulator MDM4 (chr 1), E2F3 (chr 6) and DEK (chr 6); microRNA clusters mir-106b~25 (chr 7), mir-17~92 (chr 13); and retinoblastoma protein family member RBL2 (chr 16) (14).

Dysregulation of chromatin regulators are also reported in retinoblastoma (34,35). This includes genes involved in DNA methylation (DNMT1, DNMT3A, DNMT3B, TET1, TET3), histone modification (HDAC2, KDM1A, EZH2), Chromatin remodeling (HELLS, SMARCC1, SMARCAD1, HMGA2, HMGB2, HMGB3).

MOLECULAR CLASSIFICATIONS OF RETINOBLASTOMA

Cancer is a heterogeneous disease, therefore it is crucial to identify specific disease subtypes in order to find appropriate treatment. Clinical staging, pathological observation and genetic analysis provide hints for the right treatment. Beyond that, are there molecular subtypes that may lead to discovery of specific targeted therapeutics for the disease? Several transcriptomic analysis of retinoblastoma have been performed in the last decade, trying to answer this question.

From a transcriptomic study of 52 10) (38). 

CELL-OF-ORIGIN OF RETINOBLASTOMA

RB1 loss is found in many cancers, but its predominant contribution to retinoblastoma initiation is unique. In retinoblastoma, 98% of the patients carried RB1 mutations (27).

Why is the human retina extremely sensitive to RB1 loss? Finding out which cells are most sensitive to RB1 loss and how they are transformed to tumor cells can shed light on the targeted treatment for retinoblastoma.

Researchers have been working on this question but have reached different conclusions: photoreceptor cone cells, progenitor cells or amacrine/horizontal cells are hypothesized as cell of origin of retinoblastoma in different studies. The finding that various retinal markers were expressed by retinoblastoma may indicate a progenitor cell of origin, but may also be due to oncogenic deregulations. Studies in mouse models suggest an amacrine/horizontal origin, as early-stage tumors expressed genes found in retinal synapse layers and exhibited similar morphological differentiations to the two retinal interneurons (39). However, retinoblastoma mouse models are different from human retinoblastoma, because tumor formation in mouse requires Rbl1, Rbl2 or Cdkn1b perturbation in addition to Rb1 loss.

Recent studies in human retinoblastoma pointed out a more probable cone lineage origin of retinoblastoma. It was first proposed by the finding that the topographic distribution of emerging retinoblastomas mimics the horizontal visual streak characteristic of long-wavelength and medium-wavelength cones (40). In accordance with this view, RB1 -/-retinoblastomas consistently express cone precursor markers but not other retinal cell-type-specific proteins. In addition, human cone precursors prominently express MDM2 and MYCN, both of which are required for retinoblastoma proliferation and survival (41). Most recent study in RB1 depleted cultured retina led us to focus on ARR3+ maturing cone cells, from that retinoblastoma-like lesions are formed (Figure 11) (42). The right part of the schema illustrated that RB loss in maturing (ARR3+) CP caused it entering cellcycle and proliferation (orange). Cell-cycle entry after RB depletion were only observed in ARR3+ CP instead of ARR-immature CP. This cell-cycle entry maybe followed by cell-cycle withdrawal (blue) and an indolent phase that may give rise to permanently quiescent retinomas or to retinoblastoma tumors (red). Image from (42)

OMICS APPROACHES

In 1990, the ambitious Human Genome Project was launched, scientists all over the world worked together trying to decipher the entire human genome. During the next 13 years, the 3 billion base pairs of the human genome were determined by Sanger sequencing, a DNA sequencing method based on chain termination with the four colorlabeled nucleotides. The huge success of the Human Genome Project was not only because it accomplished the mission to decode 99% of human euchromatin sequences, more importantly, it revealed several optimization opportunities for the sequencing methods, and provided a reference genome that enabled the potential of short-read sequencing (44).

Two years later after the completion of the Human Genome Project, in 2005, the first cyclic-array sequencing methods, that we now refer as the Next-Generation sequencing (NGS), were reported (45,46). These methods enabled parallel sequencing of millions of features at a much faster speed with a lower cost. The cyclicarray sequencing is described as the sequencing of a dense array of fragmented DNA amplicons through iterative cycles of enzymic nucleotide addition and imaging-based data acquisition (Figure 12). In the recent decade, omics has entered "single-cell" age. Emerging methods were developed to profile the molecules at a single-cell scale. These methods coupled with bioinformatic algorithms allowed researchers to identify rare cell populations and new biomarkers in normal and tumor tissues, to better characterize the subclones and the microenvironment in tumors, as well as to trace tumor progression within one tumor.

Table 2 summarizes single-cell RNA sequencing methods (47). C1 and Smart-seq2 are commercialized methods that enable full length RNA sequencing in hundreds of cells (48,49). Chromium is a droplet-based 3' RNA-sequencing method that increased the throughput into profiling thousands of cells in one experiment (Figure 13) (50). Based on these evidences, we hypothesized the existence of two molecular subtypes of retinoblastoma, one cone-like subtype, the other subtype with mixed cone and ganglion features. Different molecular mechanisms may be involved in these two subtypes.

Objectives

The objectives of my PhD projects are:

1) I sought to better depict the molecular landscapes of the two subtypes of retinoblastoma through analyzing the genomic, transcriptomic and methylomic data that have already been acquired.

2) In collaboration with the biologist in the team, we sought to collect new single-cell transcriptomic data to better characterize the inter-tumoral heterogeneity of the retinoblastoma, the intra-tumoral heterogeneity observed in subtype 2 retinoblastoma, and potentially the retinoblastoma tumor microenvironment.

CHAPTER 3.

A HIGH-RISK RETINOBLASTOMA SUBTYPE WITH STEMNESS FEATURES, DEDIFFERENTIATED CONE STATES AND NEURONAL/GANGLION CELL GENE EXPRESSION

In this chapter, we will address the questions: are there molecular subtypes of Both the tumors and the orthotopic retinoblastoma xenografts expressed markers of various retinal cell types, including photoreceptors, interneurons and progenitor cells.

Hence, the authors suggested that retinoblastoma is relative homogeneous and retinal progenitor cells may be the cells of origin for this tumor. 19,20 , Laurence Desjardins 19 , Guillem Pascual-Pasto 21,22 , Mariona Suñol 21,23 , Jaume Catala-Mora 21,24 , Genoveva Correa Llano 21,22 , Jérôme Couturier 7 , Emmanuel Barillot 10,11 , Paula Schaiquevich 5,25 , Marion Gauthier-Villars 7,8,15 , Dominique Stoppa-Lyonnet 7,8,20 , Lisa Golmard 7,8,15 , Claude Houdayer 7,8,15,32 , Hervé Brisse 26 , Isabelle Bernard-Pierrot 1,2 , Eric Letouzé 27,28 , Alain Viari 6 , Simon Saule 12,13,14 , Xavier Sastre-Garau 7,33 , François Doz 20,29 , Angel M. Carcaboso 21,22 , Nathalie Cassoux 19,20 , Celio Pouponnot 12,13,14 , Olivier Goureau 9 , Guillermo Chantada 4,21,22,25,35 , Aurélien de Reyniès 3,35 , Isabelle Aerts 
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etinoblastoma is a rare childhood cancer of the developing retina with an incidence rate of about 1 in 17,000 live births [1][2][3] , but is the most frequent pediatric intraocular malignancy. The main therapeutic objective for retinoblastoma is first to save the child's life through early detection, treatment of the ocular tumor, and prevention of metastatic spread. Secondary goals are eye preservation and maximization of visual potential 4 . In low-income countries, retinoblastoma is associated with low patient survival due to delayed diagnosis, poor access to multidisciplinary retinoblastoma-specific healthcare, and socioeconomic factors. In high-income countries, tumor remission is achieved in more than 95% of cases, however some patients still develop metastases 5 . Metastases can be due to dissemination through the optic nerve into the central nervous system (CNS) and through the sclera to the orbit. Retinoblastoma can also give rise to systemic metastases 6 . Several histopathological features are considered high-risk factors for tumor progression and metastasis 7 .

Retinoblastoma is usually initiated by biallelic inactivation of the RB1 tumor suppressor gene. A minority of non-hereditary retinoblastomas (<2%) are initiated by MYCN-amplification without RB1 inactivation 8 . In most cases, hereditary retinoblastomas are bilateral, whereas non-hereditary cases are always unilateral.

The retina includes six types of neurons (rod and cone photoreceptors, bipolar, amacrine, horizontal, and ganglion cells) and Müller glia, all of which are generated from multipotent retinal progenitor cells 9,10 . Studies in human show that the cell-of-origin of retinoblastoma is a cone precursor [11][12][13][14][15] .

Three studies based on gene expression profiling reached conflicting conclusions concerning the possible existence of retinoblastoma molecular subtypes and the retinal cell type-specific markers expressed in retinoblastoma [16][17][18] . Beyond RB1, the only recurrently mutated gene in retinoblastoma (7-13% of cases) is the epigenetic modifier gene BCOR [19][20][21] . Recurrent genomic alterations have been identified: gains and amplifications on 1q, 2p (targeting MYCN), and 6p, losses on 13q (targeting RB1) and 16q [22][23][24][25] . Several studies have reported a positive correlation between high copy-number alterations, age at diagnosis, and other clinical and histopathological variables, including unilaterality, non-hereditary status, and low differentiation 24,[26][27][28][29][30] . Despite this wealth of findings, a molecular framework for understanding the biology and clinical behavior of retinoblastoma is lacking.

In this work, we identify two subtypes of retinoblastoma associated with different clinical and pathological features (age at diagnosis, laterality, heredity, and growth pattern) following integrative analysis of the transcriptome, methylome, and DNA copy-number alteration data from a series of 102 retinoblastomas. Further characterization provides evidence for the relevance of these two subtypes for understanding the biology of retinoblastoma, and for clinical management of this disease. Few genetic alterations other than RB1 inactivation are associated with subtype 1 tumors. By contrast, in addition to RB1 inactivation, almost all subtype 2 tumors harbor other recurrent genetic alterations, including MYCN amplifications. Consistent with a maturing cone precursor as the cell-of-origin of retinoblastoma, we find that both subtypes express cone markers. We show, by a detailed analysis of cone differentiation including the use of immunohistochemistry, retinal organoids, and single cells, that subtype 2 tumors are less differentiated than subtype 1 tumors and express neuronal/ganglion cell markers with marked interand intratumor heterogeneity. This lower cone differentiation in subtype 2 is associated with stemness features, including a higher propensity for metastasis, as shown by a study of an additional series of 112 retinoblastomas, including metastatic tumors.

Results

Identification of two retinoblastoma molecular subtypes with distinct clinical and pathological features. We analyzed a series of 102 enucleated retinoblastomas (Supplementary Data 1). To investigate the existence of different retinoblastoma molecular subtypes, we combined three genomic approaches, mRNA expression, DNA methylation, and somatic copy-number alterations (SCNAs) in a subset of 72 of the 102 retinoblastomas. All three datasets were available for 53 of the 72 tumors, and at least two of the three datasets were available for all 72 tumors (Supplementary Data 1). Within each of these three omics datasets, we calculated several partitions of the samples in k clusters (k-partitions), for various values of k, through unsupervised hierarchical clustering, using varying numbers of features and different linkages (see "Methods" section). Then, for each omics and each value of k, we performed a consensus clustering analysis to derive a consensus k-partition. Doing so the transcriptome-based and methylome-based analyses both yielded stable consensus partitions in two clusters, while the SCNA-based analysis yielded a stable consensus partition in five clusters (Fig. 1a, upper panel and Supplementary Fig. 1a). Cluster memberships from each of the three partitions were analyzed by a cluster-of-clusters approach, briefly, a sample co-classification matrix was built and was then subjected to hierarchical clustering using complete linkage. It revealed the convergence of the three partitions around two molecular subtypes gathering 89% (64/72) of the cases (Fig. 1a, middle panel and Supplementary Fig. 1b). Nearest centroid classification attributed to the same subtypes 63 of the 64 classified samples. Moreover, six of the eight unclassified samples could be attributed to a subtype, yielding a final number of 69 classified samples (69/72, 96%): 31 belonging to subtype 1 and 38 to subtype 2 (Fig. 1a lower panel, and Supplementary Fig. 1c, Supplementary Data 1).

To assign to a subtype the 30 remaining tumors of our 102 tumor series, we then established a nine-CpG-based classifier, based on the genome-wide CpG methylation array profiling (see "Methods" section) (Fig. 1b, left panel and Supplementary Data 1). We verified that there was a high concordance in quantifying the level of CpG methylation between DNA methylation arrays and pyrosequencing assays (Fig. 1b, middle panel). This nine-CpG-based classifier attributed seven of the remaining 30 samples to subtype 1, and 20 to subtype 2, while three cases remained unclassified (Fig. 1b, right panel). Altogether the majority of the tumors (96/102, 94%) could be assigned to one of the two subtypes (38 to subtype 1, 58 to subtype 2).

We then compared the clinical and pathological features of these two subtypes (Fig. 1c, Table 1, Supplementary Data 1). Patients with subtype 1 tumors were significantly younger at diagnosis (median age = 11.0 vs 23.9 months; Wilcoxon ranksum test, p = 8.9 × 10 -11 ). This subtype included 75% of the bilateral (p = 1.51 × 10 -3 ) and 70% of the hereditary cases (p = 7.68 × 10 -4 ). Unexpectedly, among patients with subtype 1 tumors, age at diagnosis did not differ significantly between hereditary forms (median = 10.2 months) and non-hereditary forms (median = 11.2 months) (Wilcoxon rank-sum test, p = 0.451). Likewise, there was also no significant difference between the age at diagnosis for hereditary and non-hereditary forms of subtype 2 tumors (median = 19.8 and 24.7 months, respectively, Wilcoxon rank-sum test, p = 0.320). Retinoblastomas generally display exophytic growth (into the subretinal space), endophytic growth (towards the vitreous), or, less frequently, a mixed growth pattern (both endophytic and exophytic). Subtype 1 tumors were significantly more likely to be exophytic, whereas most of the subtype 2 tumors were endophytic (p = 7.33 × 10 -4 ). Necrotic areas were more frequently observed in subtype 2 tumors than in subtype 1 tumors ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25792-0 (p = 0.020). Tumor diameter and histological risk features (optic nerve invasion, choroid, or sclera invasion) did not differ significantly between the two subtypes.

Subtype 2 displayed more genetic alterations than subtype 1 and included the MYCN-amplified tumors. We investigated the genomic characteristics of the two tumor subtypes, by determining their SCNA profiles (Supplementary Data 2). Gains of 1q, 2p (MYCN), 6p, 13q, and losses/LOH of 13q (RB1), 16q were the most frequent alterations, consistent with reported findings for retinoblastoma [22][23][24][25] . 6p gains and 13q losses/LOH were equally distributed between tumor subtypes, whereas 1q gains, 2p gains, and 16q losses/LOH were significantly more frequent in the subtype 2 samples (p = 5.5 × 10 -11 , p = 0.0037, and p = 1.8 × 10 -7 , respectively) (Fig. 2a). MYCN amplifications varied from 14 to 246 copies (Supplementary Data 2) and were found only in subtype 2 tumors (10/58) (p = 0.013).

The overall genomic instability score, estimated as the proportion of genome with copy-number alterations, was significantly higher (p = 3.3 × 10 -7 ) for subtype 2 than for subtype 1 tumors (Fig. 2b), and was also significantly higher when tumors with MYCN amplification were excluded from the analysis. By contrast, genomic instability scores did not differ between subtype 2 tumors with MYCN amplifications and subtype 1 tumors.

We then characterized the mutational landscape of the retinoblastoma subtypes. We performed whole-exome capture followed by paired-end massively parallel sequencing (WES) on genomic tumoral and matched normal DNA of 71 patients from the 102-retinoblastoma series (subtype 1, n = 25; subtype 2, n = 41; unclassified, n = 5). We identified 242 somatic mutations in 186 genes (Supplementary Data 2). The tumors harbored a median of two mutations. The number of somatic mutations identified by WES was significantly higher (p = 1.2 × 10 -7 ) for subtype 2 than for subtype 1 tumors (Fig. 2c). Restricting subtype 2 tumors to either MYCN-amplified or MYCN-non-amplified tumors yielded the same result.

Three genes, RB1, BCOR, and ARID1A, were found to be recurrently mutated. We performed targeted sequencing for these three genes in 23 of the 31 samples lacking WES data. The distributions of RB1, BCOR, ARID1A mutations, MYCN amplifications, 1q gains, and 16q losses are shown by subtype in Fig. 2d. For RB1 the germinal and somatic point mutations identified are shown, together with deletions, copy-neutral LOH, and promoter methylation. RB1 mutations were found in most tumors, regardless of subtype, and no difference in the mutation type was observed between the two tumor subtypes. Of note, we found a tumor without RB1 alteration, it belonged to subtype 2 and displayed a high level of MYCN amplification (141 copies). BCOR mutations (n = 9) were found exclusively in subtype 2 (p = 0.02), as were the two ARID1A mutations. Most of the subtype 2 tumors without MYCN amplification (46/48, 96%) presented gains of 1q and/or losses of 16q. By contrast, none of the MYCN-amplified tumors except one had a 1q gain or 16q loss (p = 0.005) (Fig. 2d).

Subtype 2 tumors harbored hypermethylation within CpG islands and hypomethylation outside CpG islands. We compared the methylome of subtype 1 tumors (n = 27) and subtype 2 tumors (n = 36, including 4 MYCN-amplified tumors). A heatmap representing the methylation levels of the 6607 CpGs significantly differentially methylated between the two subtypes (Supplementary Data 2) is shown in Fig. 2e. Subtype 2 tumors showed more frequent hypermethylation within CpG islands, and a more frequent hypomethylation outside CpG islands, than subtype 1 tumors (Fig. 2f, g and Supplementary Fig. 2). The four MYCN-amplified subtype 2 tumors studied presented a hypomethylation outside CpG islands and did not present hypermethylation within CpG islands (Fig. 2g).

The two subtypes exhibited differences in the expression of cone and ganglion/neuronal markers and in stemness. We compared the transcriptome of the two subtypes. Almost onethird of the genes were found differentially expressed between the two subtypes (6207/20408, adjusted p-value < 0.05) (Supplementary Data 3).

Cone markers (such as GUCA1C, GNAT2, ARR3, GUCA1A, GUCA1B, GNGT2, PDE6C, PDE6H, OPN1SW) and neuronal/ ganglion markers (such as EBF3, DCX, ROBO1, SOX11, GAP43, PCDHB10, STMN2, NEFM, POU4F2, EBF1) were among the most differentially expressed genes. Cone markers were overexpressed in subtype 1 tumors, whereas neuronal/ganglion markers were overexpressed in subtype 2 tumors (Fig. 3a). Among the genes known to be involved in retinoblastoma 1,31 , several were found to be differentially expressed between the two subtypes (KIF14, MDM4, MIR17HG, MYCN, SKP2 upregulated in subtype 2; RBL2 downregulated in subtype 2) (Supplementary Data 3). Some of these genes were located in gained/amplified (KIF14 and MDM4 at 1q32.1 and MYCN at 2p24.3), or lost (RBL2 at 16q12.2) chromosomal regions, whereas others were involved in the MYC/MYCN pathway (MIR17HG, SKP2). Hierarchical clustering of the 6207 genes identified three main gene clusters: two upregulated in subtype 1 (gene cluster 1.1 consisting of 1201 genes and gene cluster 1.2 consisting of 1788 genes) and one containing all the genes upregulated in subtype 2 (3112 genes; gene cluster 2) (Fig. 3b). We performed enrichment analysis using the gene sets from gene ontology biological processes (GOBP) and MSigDB hallmarks (HALLMARK) (Fig. 3c and Supplementary Data 3). Cluster 1.1 genes mainly upregulated in a subset of subtype 1 tumors, were associated with tumor microenvironment (immune response, inflammation, interferon response, complement, glial cells) and rod cells markers. Cluster 1.2 was enriched in genes related to fatty acid metabolism, oxidative phosphorylation, and photoreceptor/cone cells. Cluster 2 was enriched in genes associated with the cell cycle, E2F target genes, RNA processing, MYC pathway, and neuron morphogenesis.

The lack of an inflammation/immune signature and the enrichment in MYC and E2F target genes in subtype 2 was evocative of stemness features 32,33 . Moreover, CD24, one of the two most overexpressed genes in subtype 2 tumors (Fig. 3a and Supplementary Data 3), has been shown to be a neuronal stem cell marker and a cancer stem cell marker for several tumor types 34 . Stemness indices, based on transcriptomic data, allowed relative evaluation of the degree of stemness in tumor samples. We applied four different stemness signatures 32,33,35,36 to the 59 For comparisons of RB1 germline mutation, laterity, growth pattern, tumor diameter, and necrosis between two subtypes, Chi 2 tests were used. For comparisons of age at diagnosis and tumor diameter between two subtypes, two-sided Kruskal-Wallis rank tests were used. For comparisons of optic nerve invasion and choroid and sclera invasion between two subtypes, two-sided Fisher's exact tests were used. Exact p-values are provided in Table 1. ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25792-0 retinoblastoma samples for which transcriptomic data were available. The stemness indices assessed by these signatures were significantly higher in subtype 2 than in subtype 1 (Fig. 3d, upper panel and Supplementary Fig. 3a). In addition, the stemness indices obtained with the different signatures were highly correlated (Supplementary Fig. 3b). We searched for hallmark gene sets associated with stemness (Supplementary Data 3). The hallmarks positively correlated with stemness included E2F targets, MYC targets V2, MYC targets V1 and G2/M checkpoint (Fig. 3d, lower panel and Supplementary Data 3). These hallmarks were the same as those identified in cluster 2 (cluster of genes overexpressed in subtype 2). The hallmarks negatively correlated with stemness included interferon-alpha response, interferon-gamma response, and complement (Fig. 3d, lower panel and Supplementary Data 3), and were the same as those identified in cluster 1.1 (cluster of genes overexpressed in subtype 1 and associated with the tumor microenvironment). We also assessed the relationship between stemness and the abundance of the various immune cells, as estimated with the Microenvironment Cell Population (MCP)-counter score 37 . Stemness indices were negatively correlated with the MCP scores of monocytic lineage, B lineage, and cytotoxic lymphocytes (Fig. 3d, lower panel and Supplementary Data 3). Altogether, we showed that subtype 2 was associated with high stemness.

The upregulation of cone-related genes in subtype 1 and of neuronal/ganglion cell-related genes in subtype 2 (Fig. 3a) led us to analyze in detail the expression of genes associated with the different retinal cell types (rod and cone photoreceptors, ganglion, amacrine, bipolar, and horizontal cells, and Müller glia). The list of retinal cell type markers was selected from a systematic literature search and from single-cell RNA-seq (scRNA-seq) data obtained at different time points during human retinal development 38 . From the annotated cell types defined by Lu et al. 38 , we identified lists of candidate markers associated with each retinal cell type (Supplementary Data 3). In order to choose the most specific markers, we developed a tool for visualizing gene expression profiles in the different retinal cell types (see "Methods" section) (https:// retinoblastoma-retina-markers.curie.fr/). Based on an analysis of the expression profiles of the candidate markers obtained from Lu et al.'s data and of markers found in the literature we proposed markers for the different retinal cell types (given in Supplementary Data 3).

Cone markers were overall expressed in both subtype 1 and 2 retinoblastomas, with different expression levels between subtypes depending on the markers (Fig. 3e, upper panel). Among the 24 ganglion cell markers analyzed, a small subset (EBF3, EBF1, GAP43, POU4F2, NEFM, ALCAM, NRN1, CNTN2) were consistently overexpressed in subtype 2 tumors (Supplementary Fig. 4a and Fig. 3e, lower panel).

Using the lists of candidate markers associated with each retinal cell type obtained from Lu et al.'s data 38 , we provided further evidence for an enrichment of markers associated with ganglion cells in subtype 2 tumors (Supplementary Data 3). These genes overexpressed in subtype 2 tumors can be considered both as ganglion and neuronal genes. Indeed, although specific to ganglion cells in the context of the retina (Supplementary Fig. 4b), all displayed expression in the brain and played different functions in the central nervous system [39][40][41][42][43][44][45][46][47] .

Most of the markers of other retinal cell types (rods, amacrine, bipolar, horizontal, and Müller glia cells) were not expressed in retinoblastomas or were only expressed in a subset of tumors (Supplementary Fig. 4a). The expression of these markers was likely due to the presence of normal retinal cells in some retinoblastomas. Indeed non-neoplastic rods and Müller glial cells have been shown to be present in some retinoblastomas 13 .

State of cone differentiation and expression of neuronal/ ganglion cell markers distinguished the two subtypes. The expression of cone markers observed in both subtypes of retinoblastoma is consistent with the retinoblastoma cell-of-origin being a committed cone cell. Differences in cone marker expression were observed between the two subtypes, raising the question of whether these differences could correspond to different stages of cone differentiation. Retinal organoids are three-dimensional structures derived from human induced pluripotent stem (iPS) cells that recapitulate the spatial and temporal differentiation of the retina providing powerful in vitro models of human retinal development 48,49 . We measured the level of expression of early and late cone markers in retinal organoids at various time points (d35, d49, d56, d84, d112, d175) after the differentiation of human iPS cells into the retina, and in subtype 1 (n = 23) and subtype 2 (n = 44) retinoblastomas, using the NanoString technology (Fig. 4a and Supplementary Data 4). As expected, in iPS cell-derived retinal organoids, the expression of early photoreceptor/cone markers (OTX2, CRX, THRB, RXRG) appeared at earlier time points than late cone markers (PDE6H, GNAT2, ARR3, GUCA1C). GUCA1C was the last marker to be expressed, consistent with previous in vitro and in vivo observations 50,[START_REF] Hoshino | Molecular anatomy of the developing human retina[END_REF] . Early cone markers were expressed in both tumor subtypes, at very similar levels. By contrast, late cone markers were expressed, on average, at lower levels in subtype 2 tumors, the most downregulated marker GUCA1C being the latest cone marker expressed. These results indicated that subtype 1 tumors corresponded to a more differentiated stage of cone development than subtype 2 tumors. As several neuronal/ganglion cell lineage-related genes were shown to be differentially expressed between tumor subtypes (Fig. 3), we also compared their levels of expression in retinal organoids and in tumor samples of the two subtypes (Fig. 4a and Supplementary Data 4). Ganglion-cell markers were expressed at early time points of retinal differentiation (from d49), and their expression levels decreased after d84, consistent with the loss of ganglion cells in retinal organoids at late time points [START_REF] Reichman | From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium[END_REF] . These ganglion markers were upregulated in subtype 2 compared to subtype 1 tumors (Fig. 4a). Two of them, EBF3 and GAP43, were expressed in subtype 2 tumors with levels comparable to those observed in retinal organoids between d49 and d84.

To more precisely determine the cone development stage corresponding to subtype 1 and subtype 2 tumor cells, we calculated, for each time point after the induction of retinal differentiation, the correlation coefficient between the centroid of each tumor subtype and those of the organoids using cone marker expression (Fig. 4b). Subtype 1 tumors were closest to later cone differentiation (highest correlation observed at d173), whereas subtype 2 tumors were closest to earlier cone differentiation (highest correlation observed between d84 and d112).

To illustrate the degree of cone differentiation achieved by individual retinoblastoma cases of each subtype, we generated a phylogenetic tree using photoreceptor/cone marker expression, incorporating retinal organoid samples at various time points after the induction of differentiation, and retinoblastoma samples (Fig. 4c). All subtype 1 tumors were close to iPS cell-derived retinal organoids at a late time point of differentiation (d173). Subtype 2 tumors were spread out from d84 to d173 retinal organoids.

To explore further the heterogeneity in terms of cone differentiation in retinoblastoma, we studied by immunohistochemistry the distribution of an early photoreceptor marker (CRX), and a later marker specific to the cone lineage (ARR3). We also assessed the expression of one ganglion cell marker (EBF3). Immunohistochemical staining was performed on paraffin-embedded samples of subtype 1 (n = 9) and subtype 2 (n = 25) retinoblastomas (Supplementary Data 4). Two examples of each tumor subtype are presented in Fig. 4d. As expected, in the peritumoral normal retina, the transcription factor CRX was expressed in all cells of the outer nuclear layer (ONL), whereas ARR3 was expressed in a subset of cells in the ONL. EBF3 was expressed in ganglion cells, but also in some amacrine cells in the inner nuclear layer, as previously reported [START_REF] Hoshino | Molecular anatomy of the developing human retina[END_REF][START_REF] Gill | Enriched retinal ganglion cells derived from human embryonic stem cells[END_REF][START_REF] Aparicio | Temporal expression of CD184(CXCR4) and CD171(L1CAM) identifies distinct early developmental stages of human retinal ganglion cells in embryonic stem cell derived retina[END_REF][START_REF] Chuang | Expression profiling of cell-intrinsic regulators in the process of differentiation of human iPSCs into retinal lineages[END_REF] . All tumors, regardless of the subtype, expressed the photoreceptor marker CRX in agreement with retinoblastoma being derived from conecommitted cells. The ARR3 + /EBF3 -pattern was the only pattern observed in subtype 1 tumors (Fig. 4d, e and Supplementary Data 4). These tumors were positive for the proliferation marker Ki-67 (Fig. 4d, and Supplementary Data 4). Two types of expression patterns were observed for ARR3 and EBF3 in subtype 2 tumors (Fig. 4d). Most subtype 2 tumors (16/25, 64%) coexpressed ARR3 and EBF3 (ARR3 + /EBF3 + ), as illustrated by tumor RB659 in Fig. 4d. Other subtype 2 tumors (8/25, 32%) displayed mutually exclusive expression of ARR3 and EBF3 (ARR3 -/EBF3 + or ARR3 + /EBF3 -areas), as illustrated by tumor RB617 in Fig. 4d. One tumor (1/25) expressed EBF3 but not ARR3. Tumors of subtype 2 coexpressing ARR3 and EBF3 (ARR3 + /EBF3 + ) were always positive for Ki-67. In subtype 2 tumors with a mutually exclusive expression of ARR3 and EBF3, the ARR3 -/EBF3 + areas were always positive for Ki-67, whereas the ARR3 + /EBF3 -areas were mostly negative for Ki-67 (6 of 7 cases tested) (Fig. 4d and Supplementary Data 4). Histological examination of these Ki-67-negative ARR3 + /EBF3 -areas showed the presence of fleurettes (foci of photoreceptor differentiation) and an absence of mitoses in three of these six cases. The presence of these different areas within the tumor could reflect a range of tumor cell type stages, from stem, to progenitor to differentiating to terminally differentiated, with many of the latter being postmitotic. Alternatively, the Ki-67-negative ARR3 + /EBF3 -areas could correspond to retinoma, a benign non-proliferative lesion observed adjacent to retinoblastoma [START_REF] Gallie | Loss of RB1 induces non-proliferative retinoma: increasing genomic instability correlates with progression to retinoblastoma[END_REF][START_REF] Sampieri | Genomic differences between retinoma and retinoblastoma[END_REF][START_REF] Eagle | High-risk features and tumor differentiation in retinoblastoma: a retrospective histopathologic study[END_REF] .

Single-cell analysis of intratumoral heterogeneity in a subtype 2 tumor. To further explore the intratumoral heterogeneity of subtype 2 tumors, we performed droplet-based single-cell RNA sequencing on a subtype 2 tumor (RBSC11). Immunohistochemical analysis of this tumor showed a mutually exclusive expression of ARR3 and EBF3, defining two types of areas (CRX + /ARR3 + /EBF3 -and CRX + /ARR3 -/EBF3 + ) (Supplementary Fig. 5a), as observed in about 30% of subtype 2 tumors.

We retained transcriptomes of 1198 cells after initial quality controls (Supplementary Fig. 5b). To identify the different cell To characterize the different clusters, we used (1) known cell type-specific markers, (2) cluster markers (the most upregulated genes in the cluster compared to all other clusters), (3) pathway analysis of cluster markers, (4) correlation to bulk mRNA expression profiles of purified cell types (Fig. 5b,c and Supplementary Fig. 5c,d, Supplementary Data 5). Clusters 0-4, accounting for 89.2% of all cells analyzed, expressed early photoreceptor/cone markers (e.g., OTX2, CRX, THRB, and RXRG). Clusters 0 and 2 expressed neuronal/ganglion cell markers (e.g., GAP43, SOX11, UCHL1, DCX, EBF3), whereas clusters 1 and 4 expressed late cone markers (e.g., ARR3 and GUCA1C). To analyze the genomic heterogeneity in this tumor, we inferred copy-number variations (CNVs) in each single cell from the single-cell transcriptome data (see "Methods" section) (Fig. 5d). This analysis revealed that clusters 0-4 corresponded to tumor cells (presence of genomic alterations), whereas clusters 5 and 6 corresponded to normal cells (absence of genomic alterations). Genomic alteration patterns subdivided malignant cells into three distinct cell populations: cells with multiple genomic alterations (gains of 1q, 2q, 9p, 13q, loss of 8q), cells with 2p and 10q gains, and cells with 10q gains only. All cells from clusters 0 and 2 (CRX + /EBF3 + /GAP43 + tumor cells), and some cluster 3 cells, corresponded to the first profile (multiple alterations). Cells from clusters 1 and 4 (CRX + /ARR3 + / GUCA1C + tumor cells) corresponded to the last two profiles (10q gain ± 2p gain). Lastly, some cluster 3 cells corresponded to the second profile (2p and 10q gains).

The phenotypic analysis and the inferred copy-number alterations from single-cell RNA-seq data led us to conclude that the malignant cells of the subtype 2 tumor analyzed consisted of two populations, one expressing early photoreceptor/cone markers and neuronal/ganglion cell markers (clusters 0 and 2), and the other expressing early photoreceptor/cone markers and late cone markers (clusters 1 and 4). These two cell populations existed in three states, G1/S (clusters 0 and 1), G2/M (clusters 2 and 4), and hypoxic (cluster 3). A schema summarizing the interpretation of the different clusters is shown in Fig. 5e (upper panel). The CRX + /EBF3 + /GAP43 + tumor population (clusters 0 and 2), presenting numerous genomic alterations, appeared to be genomically homogeneous. The CRX + /ARR3 + /GUCA1C + tumor population (clusters 1 and 4) was less unstable and consisted of two genomically different subpopulations. A tumor progression tree constructed from the genomic alterations found in the different cell populations of this tumor is proposed in Fig. 5e (bottom panel). The co-expression of CRX/EBF3/GAP43 (early photoreceptor/cone marker and neuronal/ganglion cell markers) was unique to tumor cells as it was absent or very rare during normal retinal development (Supplementary Fig. 5f).

The single-cell RNA-seq analysis was performed on only one retinoblastoma. Single-cell analysis of additional tumors of both subtypes are necessary to further assess retinoblastoma heterogeneity and to investigate the relationship between retinal development and tumorigenesis using trajectory inference methods such as the ones estimating RNA velocity [START_REF] Manno | RNA velocity of single cells[END_REF][START_REF] Kester | Single-cell transcriptomics meets lineage tracing[END_REF] .

Subtype 2 tumors are associated with a higher risk of metastasis. We then investigated whether the retinoblastomas developing metastases belonged to a specific molecular subtype. No patients in our initial series of 102 retinoblastomas cases developed metastases. We, therefore, studied an additional series of 112 primary tumors presenting high-risk pathological features (HRPFs) at diagnosis, among which 19 tumors subsequently developed metastasis. All these patients were treated at the Garrahan Hospital (Buenos Aires, Argentina). Their clinicopathological characteristics, including HRPFs, are provided in Supplementary Data 6 and summarized in Table 2.

TFF1 belongs to a family of small secretory molecules involved in the protection and repair of the gastrointestinal tract [START_REF] Jahan | Odyssey of trefoil factors in cancer: diagnostic and therapeutic implications[END_REF] . TFF1 is not expressed in the normal developing retina (Supplementary Fig. 6a). It was the top upregulated gene in subtype 2 tumors compared to subtype 1 tumors (fold-change = 55, adjusted p-value < 10 -12 , Fig. 3a, Supplementary Data 3), with expression in most subtype 2 tumors but little or no expression in subtype 1 tumors (Supplementary Fig. 6b,c). These results were confirmed based on the transcriptome of two additional tumor series 16,18 (Supplementary Figs. 6b, c and7).

We assessed TFF1 protein expression by immunohistochemistry, in 55 of the tumors from our initial series of 102 classified retinoblastomas (18 subtype 1 and 37 subtype 2 tumors). Expression of TFF1, CRX, and ARR3 are shown for representative tumors of subtypes 1 and 2 in Fig. 6a. Subtype 1 tumors displayed little or no TFF1 expression (QS ≤ 50; QS, quick score), whereas most subtype 2 tumors displayed high levels of expression (QS > 50; Fig. 6a,b, Supplementary Data 6). We then analyzed TFF1 expression in the additional series of 112 primary tumors with HRPFs including 19 metastatic cases (Garrahan series). TFF1 expression could be evaluated in 18 of the 19 primary tumors that subsequently developed metastasis. All 18 cases were positive for TFF1 (QS > 50), in contrast to the non-metastatic cases (p = 0.00033) (Fig. 6b and Supplementary Data 6), Fig. 3 Transcriptomic differences between the two retinoblastoma subtypes. a Volcano plot with genes significantly upregulated in subtype 1 (n = 26) (gold) and subtype 2 (n = 31) (blue). The genes related to cone-cell and neuronal/ganglion-cell differentiation are indicated (in gold and blue, respectively), together with the most highly differentially expressed genes in each subtype. b Hierarchical clustering of the significantly differentially expressed genes identified three main gene clusters. c Upper panels: Gene sets from the GOBP collection enriched in clusters 1.1, 1.2, 2 in hypergeometric tests. Results are presented as networks of enriched gene sets (nodes) connected based on their overlapping genes (edges). Node size is proportional to the total number of genes in the gene set concerned. The names of the various GOBP terms are given in Supplementary Data 3. Bottom panels: Top 5 Gene sets from the HALLMARK collection enriched in clusters 1.1, 1.2, 2. d Upper panel: Boxplots of stemness indices, determined as in Malta et al. 32 , in the two subtypes of retinoblastoma (subtype 1 tumors: n = 26, subtype 2 tumors: n = 31). In the boxplots, the central mark indicates the median and the bottom and top edges of the box the 25th and 75th percentiles. Whiskers are the smaller of 1.5 times the interquartile range or the length of the 25th percentiles to the smallest data point or the 75th percentiles to the largest data point. Data points outside the whiskers are outliers. Significance was tested by a twosided Wilcoxon test, p = 1.9 × 10 suggesting that they belonged to subtype 2. Consistent with this, 15 of the 16 metastatic cases analyzed were also positive for EBF3 (QS > 270) (Supplementary Data 6), a ganglion marker specifically associated with subtype 2 (Figs. 3a,4 d,e and Supplementary Fig. 6). In seven of the 19 metastatic cases, tissues were available from both the primary tumor and the metastasis. In all but one of these cases, the metastatic sites were also positive for TFF1 (QS range of 90-300). For EBF3, the six metastatic sites analyzed were positive (QS > 255), including the one negative for TFF1 (Fig. 6c and Supplementary Data 6). All these results suggested that subtype 2 tumors are more aggressive than subtype 1 tumors. These findings require validation by additional evidence for subtype 2 assignment, and by studies on additional series of metastatic cases. 

Discussion

The use of a multi-omics approach led us to the reliable identification of two main retinoblastoma molecular subtypes. The different molecular, pathological and clinical features of these two subtypes highlighted the relevance of this classification. In support of this, we could validate the transcriptomic signatures that distinguished the two subtypes in two independent series of retinoblastoma 16,18 (Supplementary Fig. 7). The features of these two subtypes provide explanations for previous biological and clinical observations, with potential implications for retinoblastoma research and treatment. Both subtypes expressed cone markers, consistent with the cone origin of human retinoblastoma [11][12][13][14][15] . There are several possible non-exclusive explanations for the existence of two subtypes of retinoblastoma. The two subtypes may be derived from cone precursors located at different retinal positions. Several studies have reported a central-to-peripheral progression of retinoblastoma location with increasing age at diagnosis [START_REF] King | Spatiotemporal patterns of tumor occurrence in children with intraocular retinoblastoma[END_REF] . As subtype 2 tumors are diagnosed significantly later than subtype 1 tumors (median age = 23.9 vs 11 months), they are therefore likely to be more peripherally located than subtype 1 tumors. The two subtypes may be derived from different cone precursors. They may also be derived from cone precursors at different stages of maturation. Arguing against this last explanation, it has been shown that RB1 -/-retinoblastoma derived from an ARR3 + maturing cone precursor 15 .

We showed that subtype 1 tumors presented later markers of differentiated cones (ARR3 + , GUCA1C + ) and that subtype 2 tumors presented markers of earlier differentiation with an important heterogeneity between and within tumors. This is in agreement with the lower differentiation and the heterogeneity reported in older retinoblastoma patients [START_REF] Eagle | High-risk features and tumor differentiation in retinoblastoma: a retrospective histopathologic study[END_REF] . As both subtypes are likely derived from an ARR3 + maturing cone precursor, the lower differentiation and the heterogeneity of subtype 2 tumors with RB1 inactivation probably result from a dedifferentiation process.

We found that subtype 2 was associated with low immune and interferon response, E2F and MYC/MYCN activation, and a higher propensity for metastasis, corresponding to stemness features recently reported 32,33,35,36 . Genetic alterations and losses of function of RB1 and TP53 have also been shown to be associated with stemness in various cancers 32,36 . RB1 inactivation was present in most of the tumors of both retinoblastoma subtypes, but, nevertheless, a difference in stemness was observed between the two subtypes. The higher stemness in subtype 2 could be related to a decreased expression of another gene from the RB family, RBL2, located on 16q, which was lost in the majority of subtype 2 tumors. The higher stemness in subtype 2 tumors could be also related to an increased expression of MDM4, an inhibitor of TP53 located on 1q which was gained/amplified in 74% of subtype 2 tumors. It has been proposed that both MDM4 and MDM2 abrogate p53-mediated tumor surveillance in retinoblastoma [START_REF] Laurie | Inactivation of the p53 pathway in retinoblastoma[END_REF][START_REF] Qi | MDM2 but not MDM4 promotes retinoblastoma cell proliferation through p53-independent regulation of MYCN translation[END_REF] . Our results indicate that MDM4 could be involved in subtype 2 tumors. In addition to the expression of cone markers, subtype 2 tumors overexpressed markers attributed to ganglion cell markers in the context of the retina. However, all these markers can also be viewed as neuronal markers (they correspond to genes expressed and involved in the central nervous system). Moreover, among the genes overexpressed in subtype 2 tumors, we identified neuronal genes expressed during the development of retinal ganglion cells but also of other retinal cell types (like SOX11, DCX, STMN2). These observations suggest that subtype 2 may be considered as a cone-neuronal subtype.

Expression of neuronal genes has now been found not only in the brain and neuroendocrine tumors, but also in some cancers of epithelial origin (breast, ovary, colon) [START_REF] Jung | Neuronal signatures in cancer[END_REF] . In recent years, it has become clear that tumor cells exploit neuronal and neurodevelopmental pathways to proliferate, migrate, and interact with normal cells, including endothelial cells and neurons [START_REF] Jung | Neuronal signatures in cancer[END_REF][START_REF] Monje | Synaptic communication in brain cancer[END_REF] . Therefore, the overexpression of neuronal genes that we found in subtype 2 tumors may contribute to the aggressiveness of these tumors.

The overexpression of MYCN/MYC target genes in subtype 2 tumors, and the assignment of 10 out of 11 MYCN-amplified tumors to subtype 2 tumors (the remaining MYCN-amplified tumor being unclassified) suggest that MYCN/MYC play an important role in this subtype. MYC and MYCN have been implicated in other pediatric tumors, including neuroblastoma and medulloblastoma, often in subsets of high-risk tumors. In neuroblastoma, MYCN amplification is found in approximately 20% of cases and is associated with high-risk disease and poor prognosis 67 . It has recently been shown that MYC could also be a driver in another subset of high-risk neuroblastomas [START_REF] Wang | Augmented expression of MYC and/or MYCN protein defines highly aggressive MYC-driven neuroblastoma: a Children's Oncology Group study[END_REF][START_REF] Zimmerman | MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification[END_REF] . Group 3 medulloblastoma are associated with MYC amplification (10-17%) and the worst overall survival [START_REF] Northcott | Subgroup-specific structural variation across 1,000 medulloblastoma genomes[END_REF][START_REF] Roussel | Role of MYC in medulloblastoma[END_REF] . The activation of MYC/MYCN in subtype 2 tumors might be exploited for specific treatments of these tumors. Indeed MYC/MYCN can be inhibited indirectly by targeting their transcription with drugs such as JQ1 and OTX015 [START_REF] Puissant | Targeting MYCN in neuroblastoma by BET bromodomain inhibition[END_REF] , or directly, by targeting MYC/MAX interaction [START_REF] Han | Small-molecule MYC inhibitors suppress tumor growth and enhance immunotherapy[END_REF] .

In the series of 102 retinoblastomas, tumors with MYCN amplification accounted for 17% of subtype 2 tumors. MYCNamplified tumors did not cluster separately from other subtype 2 tumors on transcriptome analyses, but they nevertheless had specific features. Clinically, tumors with MYCN amplification were diagnosed at an earlier age than other subtype 2 tumors (median age at diagnosis: 15.9 vs 26.9 months). Molecularly, the tumors with MYCN amplification could be distinguished from subtype 2 tumors without MYCN amplification on the basis of uncommon 1q gains and 16q losses. Moreover, the tumors with MYCN amplification were hypomethylated outside CpG islands, as in other subtype 2 tumors, but they did not display In high-and middle-income countries, the frequency of enucleation for retinoblastoma is decreasing, due to early diagnosis and the development of new conservative treatments. Techniques for analyzing tumor DNA methylation and copy-number changes in aqueous humor samples and blood from cell-free DNA have recently been developed [START_REF] Berry | Potential of aqueous humor as a surrogate tumor biopsy for retinoblastoma[END_REF][START_REF] Jung | Cell-free SHOX2 DNA methylation in blood as a molecular staging parameter for risk stratification in renal cell carcinoma patients: a Prospective Observational Cohort study[END_REF] . The molecular characterization of retinoblastoma has, to date, been performed on tumor samples obtained from enucleation. The analyses of retinoblastoma through the use of liquid biopsy should provide a more comprehensive picture of the disease. Moreover, aqueous humor and blood samples could potentially be used to optimize retinoblastoma treatment through stratification by subtype. In conclusion, the identification of two molecular subtypescone-like and cone/neuronal-represents a major advance in the understanding of retinoblastoma. It should redefine further studies of this pediatric cancer, including the development of models, improvement of diagnosis and prognosis, and identification of more specific treatments. The high stemness and neuronal features associated with subtype 2 tumors connect retinoblastoma with emerging fields of cancer research, and open up new opportunities for treatment.

Methods

Patient samples Initial series of 102 retinoblastomas. We included 102 tumors from 50 male patients and 52 female patients in this study. These patients came from three different hospitals: Institut Curie in Paris, France (78 patients), the Garrahan Hospital in Buenos Aires, Argentina (19 patients), and the Sant Joan de Déu Hospital in Barcelona, Spain (5 patients). The median age at diagnosis was 19.9 months (minimum: 27 days, maximum: 9.65 years). Six patients had received chemotherapy and/or radiotherapy prior to enucleation.

Series of 112 retinoblastomas with HRPFs. We included an independent series of 112 patients with high-risk pathological features (HRPFs) 7 from the Garrahan Hospital in this study (61 females and 51 males). The median age at diagnosis was 31 months (range: 1-168 months). Among the 112 patients, 19 subsequently developed the metastatic disease (9 females and 10 males). The median time from retinoblastoma diagnosis to metastasis was nine months (range: 4-65 months). Additional clinical characteristics are included in Table 2 and Supplementary Data 6.

Formalin-fixed paraffin-embedded tissues from the 112 tumors were analyzed. For seven metastatic patients, the metastatic sites were also available.

Additional retinoblastoma sample for single-cell RNA sequencing. One additional sample (RBSC11) was studied by single-cell RNA-seq. The sample was obtained from an enucleated patient >18 months of age with a unilateral non-hereditary form of retinoblastoma who did not receive treatment prior to enucleation.

Fetal retina. Fetal retinas were obtained from medical abortions. They were provided by the Fetal Pathology Unit of Antoine-Béclère Hospital in Paris (France). Three fetal retinas-RET215 (from a 20-week-old fetus), RET2 (23-week-old fetus), and RET1 (27-week-old fetus) were included in this study.

Ethics statement. All experiments were performed retrospectively and in accordance with the Declaration of Helsinki and the legislation of each participating country-France, Argentina, and Spain. The study was approved by the Institut Curie Review Board, the institutional review board of the Hospital de Pediatria Juan P Garrahan, and the Clinical Research Ethics Committee of Sant Joan de Déu Hospital. Written informed consent was obtained from parents or legal guardians of retinoblastoma patients, in accordance with current guidelines and legislation of each participating country.

Human fetuses (20, 23, 27 GW) were obtained from legally-induced terminations of pregnancy performed at the Antoine-Béclère Hospital in France. Fetal tissues were collected with the women's written consent, in accordance with the legal procedure agreed by the French National Agency for Biomedical Research (Agence de Biomédecine) and the approval of the local ethics committee of Antoine-Béclère Hospital.

Human iPSC maintenance and retinal organoid generation. Human-induced pluripotent stem cells (iPSCs) derived from dermal fibroblasts (hiPSC-2 clone) 52 were cultured on truncated recombinant human vitronectin-coated dishes in a humidified 37 °C incubator with 5% CO 2 in Essential 8TM medium (ThermoFisher Scientific) with daily medium change and weekly passage (2 ml enzyme-free Gentle cell dissociation reagent for 7 min at room temperature) 48 . For retinal differentiation, adherent iPSCs were expanded to 70-80% and cultured in Essential 6 TM medium (ThermoFisher Scientific) for 2 days, followed by replacing each 2-3 days Essential 6 TM medium supplemented with 1% N-2 Supplement, 10 units/ml Penicillin and 10 μg/ml Streptomycin (ThermoFisher Scientific). At around day 28, retinal organoids were isolated with a needle and cultured as floating structures in ProB27 medium (DMEM:Nutrient Mixture F-12 1:1, L-glutamine, 1% MEM nonessential amino acids, 2% B27 supplement (ThermoFisher Scientific), 10 units/ml Penicillin, and 10 μg/ml Streptomycin) supplemented with recombinant human FGF2 (PeproTech) for a week and then in ProB27 medium for the next several weeks allowing retinal differentiation and maturation 48,[START_REF] Slembrouck-Brec | Defined xeno-free and feeder-free culture conditions for the generation of human iPSC-derived retinal cell models[END_REF] . By RT-qPCR and immunofluorescence analysis, we previously showed that the different iPSC lines (hiPSC-2 clone 52 , AAVS1:CrxP_H2BmCherry hiPSC line [START_REF] Gagliardi | Characterization and transplantation of CD73-positive photoreceptors isolated from human iPSC-derived retinal organoids[END_REF] ) we used, are able to produce the whole repertoire of retinal cells, in an identical way and following the same chronological order with first the appearance of ganglion cells, then the amacrine and horizontal cells and finally the mature photoreceptors, the bipolar cells, and the Müller glial cells. The use of different markers of photoreceptor lineage (CRX, RCVRN, NRL, NR2E3, ARR3, RHO, OPSINs…) showed that the genesis of cones and rods is identical in the different iPSC lines used.

Sample collection and processing

Tumor samples. Institut Curie. Immediately after enucleation, a needle was inserted through the anterior chamber of the eye to extract a tumor sample by aspiration.

The tumor specimen was placed in an RPMI medium on ice. The cells were resuspended, counted and the suspension was split in two (for DNA and RNA preparation). The tubes were then centrifuged to remove the medium and the pellet was snap-frozen for later extraction. The remainder of the ocular globe was paraffin-embedded. For tumor DNA extraction, samples were first incubated in lysis buffer with recombinant proteinase K (Roche, Boulogne-Billancourt, France). They were next incubated with RNAse A (Roche). DNA was then extracted using a standard phenol-chloroform protocol. Tumor RNA was extracted using the miRNeasy Mini Kit, according to the manufacturer's instructions (Qiagen, Courtaboeuf, France).

Garrahan Hospital and Sant Joan de Déu Hospital. Immediately after enucleation, a needle was inserted through the anterior chamber of the eye to extract a tumor sample by aspiration. The tumor specimen was either placed in guanidine thiocyanate or snap-frozen for later extraction. For tumor samples preserved in guanidine thiocyanate, alkaline phenol/chloroform/isoamyl alcohol (24:1:25) extraction was used for tumor DNA extraction. For snap-frozen tumor samples, commercial affinity columns (QIAamp DNA Mini Kit, Qiagen) or a standard phenol-chloroform protocol were used for tumor DNA extraction.

Single-cell RNA-seq sample. Tumor sample was processed immediately following needle aspiration through the anterior chamber of the eye. The sample was placed in an ice-cold CO 2 -independent medium. Density gradient centrifugation by Histopaque-1077 (Sigma-Aldrich) was used to remove debris, dead cells, and erythrocytes. The isolated viable cells were mechanically dissociated, washed, and resuspended in phosphate-buffered saline supplemented with 0.04% bovine serum. Cell count and viability were determined by trypan blue exclusion on a Vi-CELL XR (Beckman Coulter Life Sciences).

Blood samples. For Curie hospital samples, normal DNA was extracted with a perchlorate/chloroform protocol or FujiFilm QuickGene technology (Kurabo Biomedical, Osaka, Japan). For Garrahan Hospital samples, normal DNA was extracted with a phenol/chloroform/isoamyl alcohol (24:1:25) protocol or with commercial affinity columns (QIAamp DNA Mini Kit, Qiagen). For Sant Joan de Déu Hospital samples, a standard isopropanol precipitation protocol was used.

Fetal retina. Fetal tissues were maintained in ice-cold Hanks balanced salt solution (HBSS) after medical abortions. For the isolation of neural retinal tissue, eyes were transferred onto a sterile Petri dish containing ice-cold PBS and maintaining a cornea side-up position with fine forceps. A small incision was made in the corneoscleral junction using a small scalpel. The tip of the curved microscissors was inserted into the small incision. Eyes were carefully rotated of 360 degrees, and small incisions were made all the way around the eye, parallel to the corneoscleral junction, allowing dissociation of the anterior eyecup and lens from the posterior eyecup. The posterior eyecup was passed onto a small Petri dish containing ice-cold PBS. The neural retina was carefully isolated from the underlying retinal pigmented epithelium by blunt dissection using fine forceps. RNA was extracted using the miRNeasy Mini Kit, according to the manufacturer's instructions (Qiagen, Courtaboeuf, France).

Human iPSCs. Total RNA was extracted from human iPSCs using the Nucleospin RNA II kit (Macherey-Nagel), according to the manufacturer's instructions.

Gene expression arrays. RNA of 59 samples (see Supplementary Data 1) were hybridized, in two batches, to Affymetrix Human Genome U133 plus 2.0 Array Plates (Santa Clara, CA) according to Affymetrix standard protocols. Raw CEL files were RMA [START_REF] Irizarry | Exploration, normalization, and summaries of high density oligonucleotide array probe level data[END_REF] normalized using R package affy 1.60.0. Batch effects were corrected with the help of the Bioconductor package SVA 3.30.1. The arrays were mapped to genes with a Brainarray Custom CDF (EntrezG version 23) [START_REF] Dai | Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data[END_REF] . Independent component analysis in k = 3 independent components (IC) was performed using R package MineICA 1.24.0 (JADE method) [START_REF] Biton | Independent Component Analysis of Transcriptomic Data[END_REF][START_REF] Nordhausen | Latent Variable Analysis and Signal Separation[END_REF] . The genes with high negative (< -2.5) or positive contributions (>2.5) to IC were analyzed through pathway enrichment analysis (hypergeometric tests), seeking specifically signatures related to potential contamination by stromal cells. Genes with high positive contributions to IC #1 were found highly enriched in markers of stromal cells, and were discarded from clustering analyses.

DNA methylation arrays. Sixty-six DNA samples (Supplementary Data 1) were hybridized on Infinium HumanMethylation450 BeadChip arrays (Illumina, San Diego, CA). Four microliters of bisulfite-converted DNA were used for hybridization, following the Illumina Infinium HD Methylation protocol [START_REF] Bibikova | High density DNA methylation array with single CpG site resolution[END_REF] . Data were processed using preprocessIllumina and getBeta functions in R package Minfi 1.28.4 [START_REF] Aryee | Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays[END_REF] . Probes were annotated using the R package IlluminaHumanMethyla-tion450kmanifest 0.4. Probes located in Chromosome X and Chromosome Y were discarded from subsequent analyses. SNP arrays and BAC-CGH arrays. Ninety-five retinoblastomas were analyzed using SNP arrays or BAC-CGH arrays (Supplementary Data 1). Seventy tumor samples were analyzed on high-density SNP arrays. The B allele frequency and logratio signals were smoothed and analyzed using the Genome Alteration Print (GAP) algorithm (http://bioinfo-out.curie.fr/projects/snp_gap/) [START_REF] Popova | Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays[END_REF] . Twenty-five tumor samples were analyzed on BAC-CGH microarrays. These arrays consisted of 3510 or 5323 clones covering the human genome with an average resolution of 850Kb or 560Kb; they were designed by the CIT-CGH Consortium (INSERM U830, Institut Curie, Paris) and IntegragenTM [START_REF] Idbaih | Two types of chromosome 1p losses with opposite significance in gliomas[END_REF] . Hybridized slides were scanned and the scan data was pre-processed using R package MANOR 1.36.0 [START_REF] Neuvial | Spatial normalization of array-CGH data[END_REF] to correct for local spatial bias and continuous spatial gradient. Each array-CGH profile was centered on the median log2 ratio and then analyzed to extrapolate copy-number profiles using the GLAD algorithm 2.28.1 [START_REF] Hupé | Analysis of array CGH data: from signal ratio to gain and loss of DNA regions[END_REF] .

Whole-exome sequencing. Whole-exome sequencing was performed for 71 retinoblastomas and matched normal (blood) samples (Supplementary Data 2). For 32 tumor/normal sample pairs, sequence capture and exome sequencing were performed by the Sequencing Platform of Institut Curie. The Nextera exome enrichment kit (Illumina) was used for DNA library preparation. The eluted fraction was amplified by PCR and sequenced on an Illumina HiSeq 2500 sequencer as paired-end 100 × 100 bp or 150 × 150 bp reads. For the remaining 39 tumors/normal sample pairs, sequence capture and exome sequencing were performed by Integragen. The protocol followed by Integragen has been described elsewhere [START_REF] Guichard | Integrated analysis of somatic mutations and focal copynumber changes identifies key genes and pathways in hepatocellular carcinoma[END_REF] . In brief, Agilent in-solution enrichment (SureSelect Human All Exon Kit v4 + UTR) was used for DNA library preparation. The eluted fraction was amplified by PCR and sequenced on an Illumina HiSeq 2000 sequencer as paired-end 75 bp reads.

Single-cell library preparation and sequencing. Six thousand cells were loaded onto the Chromium System using the single-cell 3′ reagent kits v2, in accordance with the manufacturer's protocol (10× Genomics), where single cells are partitioned in droplets. Following capture and lysis, cDNA incorporating UMI (unique molecular identifier) and cell barcode was synthesized and amplified. Amplified cDNA was fragmented and the Illumina sequencing library was constructed as per the manufacturer's protocol (Illumina). Libraries were loaded at 400pM and pairend sequenced on Novaseq 6000 using NovaSeq 6000 S1 Reagent Kit (Illumina). Cells were sequenced at a mean depth of 100000. For quality control and quantification of cDNA and library, BioAnalyzer (Agilent BioAnalyzer High Sensitivity chip) was used.

Additional RNA quantification, DNA methylation, and mutation analyses NanoString® codeset design and mRNA quantification. A codeset of 22 target genes was custom-designed and manufactured by NanoString® (Supplementary Data 4). One hundred nanograms of total RNA extracted from each sample was assessed on the Gen2 nCounter Analysis System from NanoString® Technologies at the Genomics Platform of the Curie Institute following the manufacturer's instructions. Samples were hybridized with multiplexed NanoString® probes containing a biotinylated capture probe and a reporter probe attached to a fluorescent barcode specific for each transcript, according to the nCounter codeset design (NanoString, Seattle, WA, USA). Hybridized samples were then purified and immobilized in a sample cartridge on the nCounter Prep Station for data collection, followed by quantification of the target mRNA in each sample using the nCounter Digital Analyzer (NanoString®). Data were normalized according to NanoString guidelines with nSolver 4.0. Briefly, the background was subtracted using the geometric mean of negative controls provided by NanoString®. The matrix was log-transformed (base 2) for further analysis.

Pyrosequencing. Forty-seven retinoblastoma samples were analyzed by performing pyrosequencing of the 9 selected CpGs (Supplementary Data 1 and Data Analysis section (Array-based methylation signature)).

Bisulfite treatment of genomic DNA (500 ng) was performed using the EZ DNA Methylation kit (Zymo Research). Primer design for each CpG target was performed using the PyroMark Assay Design software 2.0.2 (Qiagen) and pyrosequencing reaction was performed using PyroMark Q24 instrument (Qiagen). Primers used are provided in Supplementary Data 7. Pyrograms obtained were analyzed using the PyroMark Q24 software 2.0.6.20 (Qiagen) and methylation status was calculated at each CpG of interest.

Targeted sequencing. Targeted sequencing of the exonic regions of RB1, BCOR, and ARID1A was performed by IntegraGen SA (Evry, France) on 23 samples from the series of 102 retinoblastomas not subjected to whole-exome sequencing (Supplementary Data 2). The Fluidigm Access Array microfluidic system was used. PCR products were barcoded, pooled, and subjected to Illumina sequencing on a MiSeq instrument as paired-end 150-bp reads.

Sanger sequencing. Primer design was performed using Primer3 plus software [START_REF] Untergasser | Primer3Plus, an enhanced web interface to Primer3[END_REF] . Their sequences are provided in Supplementary Data 7. PCR amplification was performed with the HotStarTaq plus DNA Polymerase (Qiagen). PCR products were purified and sequenced at the Genomics Platform of the Institut Curie, using an ABI 3730 XL (Applied Biosystems, Life Technologies). Sequence analysis was carried out using Sequencher® version 5.4.1 sequence analysis software (Gene Codes Corporation, Ann Arbor, MI USA). One hundred nonsynonymous variants were identified by whole-exome sequencing and all variants identified by targeted sequencing were verified using Sanger dye-terminator sequencing. We validated 92 nonsynonymous mutations identified by whole-exome sequencing (of 100 variants tested, 92%) and all the mutations identified by targeted sequencing.

Immunohistochemistry. Immunohistochemical staining was performed on 3 μmthick sections.

For the cohort of 102 retinoblastomas included in this study, automated immunostaining for CRX, ARR3, EBF3, Ki-67 (Supplementary Data 4), and TFF1 (Supplementary Data 6) was performed on the available paraffin-embedded samples with Autostainer 480 (Lab Vision) at Institut Curie. The following antibodies were used: anti-CRX (Abcam, ab140603; 1:300 for AFA/Bouin fixed tissue and 1:500 for formalin-fixed tissues), anti-ARR3 (Proteintech Group, 11100-2-AP; 1/300 for AFA/Bouin fixed tissue and 1/500 for formalin-fixed tissues), anti-EBF3 (Abnova Corporation, H00253738-M05; 1/800), anti-Ki-67 (Abcam, ab1558; 1/2500), and anti-TFF1 (Sigma-Aldrich, HPA003425; 1/1000). Additional information about the conditions used is described in Supplementary Data 4. For each slide, staining was assessed by eyeballing independently by two specialists (authors: NS and PF) blind to molecular subtype classification, taking into account the intensity (I) as null (0), mild (1), moderate (2), and strong (3), and the percentage (P) of tumor cells with stained nuclei for CRX and EBF3 and stained cytoplasm for ARR3 and TFF1. The quick score (QS) was then calculated as I * P (from 0 to 300).

For the independent series of 112 retinoblastomas with high-risk pathological features from Garrahan Hospital, immunostaining of TFF1 was performed manually in the Pathology Department of the Garrahan Hospital according to the procedure used at Institut Curie. For each slide, staining was assessed independently by three specialists (authors: R.A., F.L., and G.L.).

Bioinformatics and data analysis GISTIC analysis. The copy-number alteration data for the 72 retinoblastomas studied by consensus clustering were first analyzed using GISTIC2.0 2.0.22 [START_REF] Mermel | GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers[END_REF] . Twelve significant recurrent copy-number alteration regions were identified. The average copy number for each sample across these regions was then used for consensus clustering of the copy-number alteration data.

Consensus clustering.

Consensus clustering was performed independently on the transcriptomic, methylomic, and GISTIC-processed copy-number alteration data of 72 retinoblastoma samples (n = 59 transcriptomes, n = 66 methylomes, n = 72 copy-number alteration profiles) (Supplementary Data 1). mRNA expression was assessed through Affymetrix U133plus2.0 arrays, genome methylation through Illumina Infinium Human Methylation 450 BeadChip arrays, and somatic copynumber alterations through SNP arrays or CGH-BAC arrays.

For the transcriptomic data, consensus hierarchical clustering was derived from a series of 24 dendrograms, which were obtained on all 59 retinoblastoma samples (columns) by analyzing 8 data subsets related to various numbers of genes (rows), through hierarchical clustering using 3 different linkage methods (average, complete, and Ward) and one distance metric (1 -Pearson correlation coefficient). To construct the 8 data subsets, various number of genes (rows) (spanning between 100 and 4709 genes) were selected based on 2 criteria: minimal robust coefficient of variation (rCV) thresholds spanning the 99.5th to the 60th percentiles, and p-value lower than 0.01 for a test of variance (we test whether the variance for a gene is higher or not than the median variance across all genes).

Having obtained these 24 dendrograms, we cut each dendrogram in k clusters, and get a series of partitions in k groups, for k ranging from 2 to 8 (NB: a partition in k groups is called a k -partition). For each value of k , we then derived a consensus k -partition from the 24 k -partitions obtained from the 24 dendrograms. To do so, we first calculated the (samples × samples) co-classification matrix from these 24 kpartitions (NB: in the co-classification matrix, the cell (i,j) reports the number of partitions where samples i and j belong to the same group). The co-classification matrix is a similarity matrix and can be transformed into a dissimilarity matrix by replacing the value x in each cell (i,j) by MAX_VALUE -x (Here MAX_VALUE = 24). Then this dissimilarity matrix can be used to perform the hierarchical clustering of the related samples, using the complete linkage. Finally, the obtained dendrogram is cut in k clusters to yield the consensus k-partition.

Of note, before calculating the consensus k -partitions (k from 2 to 8), we assessed the intrinsic stability of the underlying k-partitions, as compared to k-partitions obtained using the same linkage and the same set of genes, but based on "noisy" data. "Noisy" data were generated for each of the 8 data subsets (200 iterations for each) by addition of random Gaussian noise (μ = 0, σ = 1.5× × median variance calculated from the data set). The stability of each initial k -partition was then assessed using a stability score corresponding to the mean symmetric difference distance between an initial k -partition and the corresponding k -partitions derived from "noisy" data. The symmetric difference distance compares two partitions and gives the proportion of retention of the pairs of samples that are in the same group. It brings values ranging from 0 to 1: comparing two equal partitions yields a value of 1.

Consensus clustering of the methylomic data (n = 66 retinoblastomas) was performed in a similar manner, this time with between 2086 and 87937 CpGs selected (rCV thresholds spanning the 99.5th to the 60th percentiles and a p-value lower than 0.01 for the test of variance). Consensus clustering of the GISTICprocessed copy-number alteration data (n = 72 retinoblastomas) was also performed in a similar manner, this time with 3 or 4 significant copy-number regions selected (rCV thresholds spanning the 80th to the 50th percentiles and a pvalue lower than 0.01 for the test of variance). We observed both for transcriptome and methylome that the (intra-omics) consensus partition with k = 2 clusters was more stable than solutions with k > 2 clusters. We thus selected k = 2 clusters for these two omics. The DNA copy-number data yielded 5 clusters.

Cluster-of-clusters and centroid classification. To identify a common samples' partition across all three genomic platforms (transcriptome, methylome, copy number), we used a cluster-of-cluster approach. Based on the three unsupervised consensus partitions previously obtained from the three omics datasets (one consensus partition per omics data set), we first built a (samples × samples) coclassification matrix, with values ranging from 0 to 1, with 0 corresponding to a pair of samples that never co-classify in any genomic data set, and 1 corresponding to a pair of samples that always co-classify in all three genomic datasets. This matrix was then subjected to hierarchical clustering using complete linkage. Three clusters of clusters were thus identified (n = 27, n = 37, and n = 8). The two larger cluster-of-clusters corresponded to two core molecular subtypes, subtype 1 and subtype 2. The smallest cluster-of-clusters (n = 8) corresponded to ambiguous samples whose cluster assignments were not consistent across all three genomic platforms.

To classify these remaining samples according to either subtype 1 or subtype 2, we built two supervised centroid-based predictors, one transcriptomic and the other methylomic. The two core clusters of clusters defining subtype 1 and 2 were used to train these classifiers. For the transcriptomic data, the centroids of subtype 1 and subtype 2 were calculated as the intra-cluster median expression of the 800 genes most significantly differentially expressed between the two clusters (taking the 400 most upregulated genes in each subtype); similarly, for the methylomic data, the centroids of subtypes 1 and 2 were based on the median beta value of the 10,000 CpGs most significantly differentially methylated between the two clusters (5000 most methylated in each subtype). Each sample was assigned to the class whose centroid was closest to its profile, based on a Pearson's correlation coefficient of at least 0.1 (we let unclassified samples yielding a Pearson's correlation coefficient less than 0.1 to any of the two centroids/classes). Following this centroid-based step, we could classify 6 of the 8 samples without initial clusterof-cluster attribution (four were assigned to cluster 1, two to cluster 2). This step also identified 3 outlier samples: two were already unclassified after the first clusterof clusters step, one was attributed initially to cluster 2.

Copy-number analysis. Copy-number alterations (CNAs) were analyzed using whole-exome sequencing (WES) data (n = 63), SNP arrays (Illumina HumanCNV370 quad, n = 15; Illumina Human610 quad, n = 6; Affymetrix Cytoscan, n = 3), and BAC arrays (3510 markers, n = 12; 5323 markers, n = 3). BAC arrays were analyzed using GLAD algorithm 2.28.1 [START_REF] Hupé | Analysis of array CGH data: from signal ratio to gain and loss of DNA regions[END_REF] to smooth log-ratio profiles into homogeneous segments and assign a discrete status to each segment (homozygous deletion, deletion, normal, gain, amplification). SNP arrays were analyzed using the Genome Alteration Print method [START_REF] Popova | Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays[END_REF] , which takes into account both the log ratio and B allele frequency signals to determine normal cell contamination, tumor ploidy, and the absolute copy-number of each segment. The median absolute copy-number was considered to be the zero level of each sample. Segments with an absolute copy number > zero + 0.5 or < zero -0.5 were considered to have gains and deletions, respectively. Segments with an absolute copynumber ≥5 or ≤0.5 were considered to have high-level amplifications and homozygous deletions, respectively. To identify CNAs using WES data, we calculated the log ratio of the coverage in each tumor and its matched normal sample for each bait of the exome capture kit with a coverage ≥ 30× in the normal sample. Log-ratio profiles were then smoothed using the circular binary segmentation algorithm, as implemented in the Bioconductor package DNAcopy 1.50.1 [START_REF] Venkatraman | A faster circular binary segmentation algorithm for the analysis of array CGH data[END_REF] (default parameters except min.width = 4, undo.splits = sdundo, undo.SD = 1.5). The most frequent smoothed value was considered to be the zero level of each sample. Segments with a smoothed log ratio >zero + 0.15 or <zero -0.15 were considered to have gains and deletions, respectively. High-level amplification and homozygous deletion thresholds were defined as the mean ± 5 s.d. of log ratios in regions of normal copy number. Visual inspection of the profiles allowed to validate recurrent focal amplifications and homozygous deletions.

For a given sample, the GNL (Gain = 1/Normal = 0/Loss = -1) copy-number data are aggregated by chromosome, as the proportion of features with an aberration (i.e., gain or loss). The overall genomic instability score corresponds to the mean score across all chromosomes.

Whole-exome sequencing analysis pipeline and mutation annotation. Sample reads were aligned using Burrows-Wheeler Aligner (BWA 0.7.4) [START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF] . Targeted regions were sequenced to an average depth of 82×, with 99% of the regions covered by ≥1×, 97.0% covered by ≥4×, and 87% covered by ≥20×.

For detection of somatic single-nucleotide variants (SNVs) and base insertions or deletions (indels), we used two separate variant-calling pipelines, the results of which were then merged. The first pipeline used MuTect 1.1.5 [START_REF] Cibulskis | Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples[END_REF] for SNV calling and the GATK SomaticIndelDetector 2.1-8 for indel calling [START_REF] Van Der Auwera | From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline[END_REF][START_REF] Depristo | A framework for variation discovery and genotyping using next-generation DNA sequencing data[END_REF][START_REF] Mckenna | The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[END_REF] . The second pipeline used VarScan 2.3.7 somatic and VarScan somatic filter for both SNV and indel calling (http://varscan.sourceforge.net) [START_REF] Koboldt | VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing[END_REF] . After the variants called by both pipelines were merged, they were annotated using Annovar v2014Mar10 [START_REF] Yang | Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR[END_REF] . Custom ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25792-0 filters and manual curation using the Integrative Genomics Viewer (IGV 2.3.34) [START_REF] Thorvaldsdóttir | Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration[END_REF] were then used to maximize the number of true positive calls and to minimize the number of false positives.

Methylation analysis

Array-based methylation signature. From the methylome array data (n = 66), we selected the most differentially methylated CpGs between the two retinoblastoma subtypes (clusters of clusters) based on statistics of the Wilcoxon test. Out of the top 50 hypermethylated CpGs and top 30 hypomethylated CpGs of subtype 2 retinoblastoma (by p-value), top 7 hypermethylated and top 7 hypomethylated CpGs by the difference of beta value were selected for pyrosequencing. 5 of them did not perform well in pyrosequencing. This method led to the selection of 9 CpGs significantly differentially methylated that have been analyzed by pyrosequencing for sample classification. Seventeen samples from the initial series were analyzed by pyrosequencing for validation of the nine-CpG-based classifier (9 subtype 1, 8 subtype 2); from these samples, we derived subtype 1 and subtype 2 centroids based on these 9 CpGs. The nearest-centroid approach (with Pearson's metric and a minimal threshold of 0.3) correctly assigned 16 of these 17 samples to their known subtype and left unassigned the remaining sample. Additional samples analyzed by pyrosequencing for these 9 CpGs were then classified using the nearest-centroid approach (Pearson's metric) at a minimal threshold of 0.3. Differential methylation analysis. Differential methylation analysis was performed by two-sided Wilcoxon rank-sum test and BH correction to compare methylation level of 473,864 probes between 27 subtype 1 and 36 subtype 2 retinoblastomas. 94,101 probes were found differentially methylated between the two subtypes (69,901 probes higher in subtype 1, 24,200 probes higher in subtype 2). 6607 probes had a difference of beta value of more than 0.2 (4520 higher in subtype 1, 2087 higher in subtype 2) (Supplementary Data 2).

Differential gene expression and pathway enrichment analysis. Differential gene expression analysis was performed by Limma R package 3.40.6 100 to compare the expression of 20,408 genes between 26 subtype 1 and 31 subtype 2 tumors. 6207 genes were found differentially expressed (adjusted p-value < 0.05) (Supplementary Data 3). Three main gene clusters were identified by hierarchical cluster analysis (mean centering of genes, 1 -Pearson's correlation coefficient as distance and average linkage). Visualization using heatmaps was performed with the R package ComplexHeatmap 2.1.1. Pathway enrichment analysis was performed by R clus-terProfiler package 3.12.0 101 . Enriched gene sets from GOBP (Gene Ontology Biological Process) with adjusted p-value < 0.01 were selected for CytoScape (3.7) EnrichmentMap (2.1.1) analysis 102 . Gene sets tested (GOBP and HALLMARK) were from the Molecular Signatures Database (MSigDB, version 6.2) 103 .

Evaluation of stemness by transcriptome. Stemness indices in retinoblastoma were evaluated as described in Malta et al. 32 . Briefly, the weight vectors of 12,955 genes were obtained by Malta et al. as a stemness signature to identify pluripotent stem cells from progenitor cells in PCBC (Progenitor Cell Biology Consortium) transcriptomic data set. 12,364 genes were available in our data set. After meancentering, the expression matrix, Spearman's correlation with the stemness signature vectors were calculated for each sample of retinoblastoma and then scaled to the range of 0 to 1 as the stemness indices. The other three stemness indices were estimated using three stemness gene signatures (Miranda et 33,35,36 by ssgsea function of R package gsva 1.30.0. Boxplots were generated using R package ggpubr 0.2.0.

Pathway meta-score. Pathway meta-scores were calculated as the average expression of the genes involved in one selected pathway and then centered and scaled.

Analysis of two independent transcriptomic datasets. We applied the nearestcentroid approach (with Pearson's metric and a minimal threshold of 0.1) using the transcriptomic centroids calculated from our datasets to classify two publicly available transcriptomic datasets (GSE59983 and GSE29683).

In the Kooi et al.'s series 18 (n = 76), 46 subtype 1 samples and 28 subtype 2 samples were identified, 2 samples were unable to be assigned a subtype. In the McEvoy et al.'s series 16 (n = 55), 24 subtype 1 samples and 22 subtype 2 samples were identified among the 48 samples, 2 samples were unable to be assigned a subtype. Some samples (n = 7) were excluded from clustering analysis due to the high contamination of retinal pigmental epithelial (RPE) cells. We examined the average expression of an RPE gene signature (from Liao et al. 104 , n = 83/87 genes present in the data) and removed the suspected outlier samples (n = 7) by Interquartile rule (suspected outliers are the samples when their average expression of RPE signature > Q3 + 1.5 IQR or < Q1 -1.5 IQR).

Phylogenetic analysis of retinoblastoma and retinal organoids. Gene expression data of 8 genes related to cone-cell differentiation (OTX2 , CRX, THRB, RXRG, PDE6H, GNAT2 , ARR3, GUCA1C) were assessed by NanoString in 67 retinoblastomas (23 subtype 1 and 44 subtype 2) and 18 retinal organoids at 6 time points after induction from iPSCs were used in phylogenetic analysis. Phylogenies were inferred by the minimal evolution algorithm 105 using fastme.bal function in R ape package 5.3 applied to Euclidean distance matrix based on these 8 gene expressions.

Single-cell transcriptome analysis RBSC11 retinoblastoma. Sample demultiplexing, alignment to the reference genome (GRCh38, Ensembl 84, pre-built Cell Ranger reference version 1.2.0), quantification and initial quality control (QC) were performed using the Cell Ranger software (version 2.1.1, 10× Genomics).

Genes that were expressed in more than 3 cells and cells that expressed more than 500 genes and less than 5% of mitochondria genes were retained (n = 1198). The median numbers of genes and UMI counts per cell were 2911 and 7749, respectively. Normalization and clustering were performed using Seurat package version 2.3.4. UMI counts were normalized by NormalizeData function with logNormalize method, by a scaling factor of the median UMI count. UMI counts were then scaled to regress out the effect of UMI counts. Variable genes were found with FindVariableGenes function with logVMR function. Genes with an average expression more than 0.0125 and <8 and with dispersion more than 0.5 were considered as variable genes for principal component analysis (PCA). Cell clusters were identified by FindClusters function with shared nearest neighbor (SNN) method modularity optimization-based clustering algorithm 106 , using the first 20 principal components. The parameter Resolution in the FindClusters was set between 0.4 and 1.4 and finally set to 0.6 for it provided a better biological interpretation.

Cluster markers were identified by FindAllMarkers function. Briefly, the expression of genes that expressed in more than 10% of cells in one cluster were compared with the expression of these genes in all other clusters, using Wilcoxon rank-sum test and corrected with BH correction. The procedure was repeated for all clusters. Genes upregulated in each cluster with more than 0.2 fold were considered as cluster markers. Pathway analysis of cluster markers was performed by R clusterProfiler package 101 . Gene sets tested were from the Molecular Signatures Database 103 (HALLMARK and BioCarta) and from Supplementary Data 3 (Cell type markers_Lu data and Selected cell type markers).

Correlation to bulk mRNA expression profiles of purified cell types was performed by R SingleR package 1.0.1 107 . The expression profile of each cell was compared with the expression profiles of a data set that contains 713 microarray samples classified to 38 main cell types and further annotated to 169 subtypes 108 .

Copy-number variations (CNVs) were inferred from the single-cell gene expression by InferCNV package 0.8.2, using normal retinal organoids derived from hiPSCs as reference.

Normal developing retina (Lu et al. 38 , data). Normal retina scRNA-seq data from Lu et al. 38 were retrieved from GEO Omnibus database GSE138002. We retrieved the final filtered count matrix (GSE138002_Final_matrix.mtx.gz), gene annotations (GSE138002_genes.csv.gz), and cell annotations (GSE138002_Final_barcodes.csv.gz). The latest includes, for each cell, the UMAP coordinates and the retinal cell type annotation computed by Lu et al. that was used for our analysis. Normalization of the UMI counts and identification of markers for each cell type was done with Seurat as described for the retinoblastoma sample. We also looked for pan-photoreceptor markers (markers of both cones and rods). Among the markers of Cones or Rods, genes that were found overexpressed in Cones against all other types except Rods and in Rods against all other types except Cones were assigned to pan-photoreceptor. Values indicated in Supplementary Data 3 for panphotoreceptor markers have been computed using the FindAllMarkers function comparing photoreceptor cells against all other cells. Visualization tool. A R-Shiny web-app [https://retinoblastoma-retinamarkers.curie.fr], based on the shiny (v.1.6.0) and shinydashboard (v.0.7.1) Rpackages, was developed to visualize the expression of markers of the retina cell populations, of the two subtypes of retinoblastoma and other genes of interest cited across the manuscript in the two single-cell RNA-seq datasets (from normal human developing retina 38 and from a subtype 2 retinoblastoma, RBSC11 (this report)). The different plots and tables are made based on the R packages cowplot (v.1.1.1) and the ones included in tidyverse (v.1.3.0). transcriptomic data used in this study are available in the GEO database under accession codes GSE29683 and GSE59983. The public human developing retina scRNA-seq data used in this study are available in the GEO database under accession code GSE138002. The remaining data are available within the Article, Supplementary Information, or Source Data file. Additional data inquiry can be addressed to the Lead contact: francois.radvanyi@curie.fr. Source data are provided with this paper. a, GISTIC plot for copy number alteration data. GISTIC plot of the 72 retinoblastoma specimens, integrating frequency and amplitude to identify significant amplifications (red) and deletions (blue) across the genome (ordered by chromosome). These significant amplifications and deletions were used for copy number alteration data clustering (Fig. 1a). b, Cluster-of-clusters classification. Cluster-of-clusters analysis for 72 retinoblastoma cases, based on three unsupervised partitions, each partition being obtained using a different genomic platform (transcriptomic, methylomic, and copy number alteration data). A [0;1] normalized co-classification matrix was derived from the 3 initial partitions. Hierarchical clustering was then performed with interindividual distance defined as (1 -co-classification score) and complete linkage. This analysis identified two major groups of 27 and 37 samples, and one ambiguous/unclassified group of 8 samples. The annotations below the dendrogram represent the clusters of samples defined independently by consensus clustering of all three genomic datasets. c, Centroid-based classification. This is a schematic representation of the centroid classification methodology used. Each point represents a sample. Samples belonging to cluster-of-clusters 1 are in yellow (n=27), cluster-of-clusters 2 in blue (n=37), and yet unclassified samples in black (n=8). On the X-axis is the difference between each sample's correlation to the cluster-of-clusters 1 transcriptomic centroid and the cluster-of-clusters 2 transcriptomic centroid. The Y-axis represents the same information for the methylomic centroids. Samples with one dataset missing have this difference set to 0 (X coordinate=0 for missing transcriptome, Y coordinate=0 for missing methylome), and the corresponding data points are circled in red. Centroid correlation differences below 0.2 were considered to be outliers, and are in the gray areas. Gray areas therefore contain outliers or samples with one missing dataset. All cluster-of-clusters 1 samples re-classified correctly in methylomic centroid 1 and transcriptomic centroid 1 (or one of the two if a dataset is missing). All but one cluster-of-clusters 2 samples re-classified correctly also. The last one (RB208) was an outlier in the methylomic dataset with no transcriptomic data available, and was thus set to unclassified. For the samples with no cluster-ofclusters attribution (black points): RB52, RB23, RB50 and RB33 were assigned to the first group; RB22, and RB209 were assigned to the second; RB61 was an outlier in both datasets, and RB60 had a discrepancy in the transcriptomic centroid-based classification and the methylomic centroid-based classification, RB61 and RB60 therefore remained unclassified. Ultimately 31 samples were assigned to the first group, 38 to the second, and 3 (RB208, RB60, RB61) remained unclassifed. b, Quality control of single-cell analysis for RBSC11: UMI counts, number of genes and percentage of mitochondrial genes. c, Heatmap of SingleR annotation scores derived by reference to the HPCA dataset with clusters superimposed for 1198 single cells in RBSC11. d, Expression of selected retinal/neuronal genes in RBSC11 shown in 2D t-SNE plots: early photoreceptor markers (OTX2, CRX, THRB, RXRG); late cone markers (ARR3, GUCA1C); ganglion/neuronal cell markers (GAP43, SOX11, UCHL1, DCX, EBF3). e, Expression of selected genes in the normal developing retina according to cell types (single-cell RNAseq data from Lu et al., 202038) (left panels). For each gene and each cell type, a pseudo-dot plot is provided. At each age (x-axis), the dot size is proportional to the percentage of expressing cells (i.e. non-zero counts) and its y-coordinate indicates the mean expression. Expression of these genes in the seven cell clusters of retinoblastoma RBSC11 (right panels). For each cluster, the dot size is proportional to the percentage of expressing cells (i.e. non-zero count) and its y-coordinate indicates the mean expression.

The selected genes are representative of the different cell clusters found in tumor RBSC11.

Clusters 0 and 2, expressed early photoreceptor/cone markers (e.g. CRX) and neuronal/ganglion cell markers (e.g. EBF3, GAP43). Clusters 1 and 4, expressed early photoreceptor/cone markers (e.g. CRX) and late cone markers (e.g.

ARR3).

Clusters 2 and 4 correspond to G2/M cells (expressing MKI67) Cluster 3 corresponds to hypoxic cells (of both tumor cell populations) and expressed BNIP3. f, Co-expression of CRX/EBF3/GAP43 in the retinoblastoma sample (RBSC11) (upper panels) and the normal developing retina (lower panels). The bar plots represent the abundance of the co-expression pattern. When the number of cells displaying co-expression is not zero, the proportion and absolute number of co-expressing cells are displayed. For the retinoblastoma sample, cells co-expressing the three genes (CRX/EBF3/GAP43) are shown in 2D t-SNE plots. The plots can be retrieved from: https://retinoblastoma-retina-markers.curie.fr/coexp-ExtDat.

proportional to the percentage of expressing cells (i.e. non-zero counts) and its y-coordinate indicates the mean expression. TFF1 is not expressed in the normal developing retina. Expression of these genes in the seven cell clusters of retinoblastoma RBSC11 (right panels). For each cluster, the dot size is proportional to the percentage of expressing cells (i.e. non-zero count) and its y-coordinate indicates the mean expression. b, Volcano plots showing that TFF1 and EBF3 are among the most significantly upregulated genes in subtype 2 retinoblastoma (blue) compared to subtype 1 (gold) in our series and in two independent transcriptomic retinoblastoma datasets (Kooi et al.18, McEvoy et al.16). For the subtype assignment of the tumors of these two series, see Methods and Supplementary Fig. 7. c, Boxplots representing the expression of TFF1 and EBF3 in the two subtypes using three independent datasets (this report, Kooi et al.18, McEvoy et al.16). In the boxplots, the central mark indicates the median and the bottom and top edges of the box the 25th and 75th percentiles. Whiskers are the smaller of 1.5 times the interquartile range or the length of the 25th percentiles to the smallest data point or the 75th percentiles to the largest data point. Data points outside the whiskers are outliers.

were found in these two independent series. For germline mutation status and age, the statistical tests used to evaluate the difference between the two subtypes are indicated in the Wilcoxon test was used to evaluate the differences in HALLMARK pathway meta-scores and MCP counter-estimated immune cell abundance between the two subtypes of retinoblastoma; Limma moderated t-test was used for the analysis of gene expression, significance based on adjusted p values is shown. log2 fold-changes in expression between subtype 2 and subtype 1 are also shown. p≥0.1 (ns), p<0.1 (.), p<0.05 (*), p<0.01 (**), p<0.001 (***), p<0.0001 (****)

COMMENTS

Identification and characterization of cancer subtypes brings us knowledge on how tumors are formed and helps us to identify pertinent treatments for different disease subtypes. Previously, clustering on three different transcriptomic studies were performed and reached controversial conclusions: some researchers showed retinoblastoma is rather homogeneous while others classified patient tumors into two subgroups. A third group showed that the two clusters identified by hierarchical clustering displayed gradients of photoreceptor signature expression and tumor progression (Figure 7A). We took the data from the third group and observed a bimodal distribution for the mean expression of their photoreceptor signatures from histogram (Figure 7B).

In this chapter, we identified two molecular subtypes of retinoblastoma with different clinical-pathological features based on a multi-omic analysis of 102 retinoblastoma samples. We demonstrated that subtype 2 tumors were clinically associated with later onsets and metastasis. They exhibited higher levels of stemness and MYC pathway activation, as well as lower levels of immune and inflammation signatures. They were more heterogenous than subtype 1 tumors; they exhibited less differentiated cone states and expressed higher levels of neuronal/ganglion signatures. They had higher genomic instability and lower levels of DNA methylation, but were associated with higher methylation levels in CpG Islands. Those molecular features give us hints on potential therapeutic targets for this subtype of disease.

Single-cell transcriptomic analysis of one retinoblastoma revealed its heterogeneity was at both genetic and phenotypic levels. These results allowed us to propose two progression paths for the two parts of tumor cells. In this tumor, less differentiated regions did not evolve from more differentiated parts as they harbored different genomic alterations. But we could not rule out the possibility of a dedifferentiation, as we are going to see in the next chapter, reanalysis of this tumor uncovered that dedifferentiation did happen in some subsets of the retinoblastoma cells with accumulation of genomic alterations. 

INTRODUCTION

Cancer is a heterogeneous disease. Tumor cells in different patients or different cells in one patient can exhibit distinct molecular and phenotypic characteristics that leads to varied responses to the treatment. Heterogeneity is also reported in retinoblastoma, a cancer of the retina in children. At genetic level, the majority of the retinoblastomas develop following biallelic inactivation of RB1 genes (1). In rare cases (<2% of nonfamilial diseases) when RB1 genes are intact, MYCN amplifications may give rise to retinoblastoma (2). At pathological level, tumors exhibit varied growth pattens: endophytic, exophytic and mixed. At histological level, diversity exists in tumor differentiation: some tumors present with Flexner-Wintersteiner rosettes and some with fleurettes, and the degree of differentiation seemed correlate with age (3).

Molecular subtypes are also reported in retinoblastoma (4-6). A multi-omics analysis on 102 tumors identified two subtypes, one with more matured cone signatures and the other high-risk subtype of retinoblastoma with higher level of genomic instability, stemness, dedifferentiated cone states and neuronal/ganglion features (7).

Single-cell transcriptomic analysis is an emerging approach that allows characterization of tumor heterogeneity at the individual cell level. Our previous singlecell transcriptomic analysis in one retinoblastoma showed remarkable intra-tumoral heterogeneity at both genomic and transcriptomic levels where some cells showed a less differentiated cone state with more and different copy number alterations from other tumor cells (Figure 1) (7). A study using single-cell RNA-seq and single-cell ATAC-seq on two retinoblastomas showed retinoblastoma cells presented two cell programs that were activated by different regulators (8). The trajectory analysis in another study of single-cell RNA-seq with two retinoblastoma suggested that tumor cells may undergo cone dedifferentiation (9).

Tumors are heterogeneous also in a sense that they are composed of different types of cells, including tumor cells, as well as vessels, fibroblasts, and immune cells. Those cells exist in tumor microenvironment may interact with each other and lead to evasion of immune surveillance and tumor progression. Studies based on immunohistochemistry and immunoblotting on immune checkpoint proteins were carried out and revealed an immune-suppressive microenvironment in retinoblastoma (10-12). Our previous analysis in 23 patient samples with immunohistochemistry and cytokine array pointed out that secretion of cytokines such as MIF and EMMPRIN from the tumor cells may promote the infiltration of protumoral M2 macrophages in retinoblastoma (13).

In the present study, we characterized the intra-tumoral heterogeneity at a higher resolution in one retinoblastoma that we previous described. We performed single-cell RNA-sequencing in 14 patient samples (13 samples in addition to RBSC11) and validated that tumors from younger patients expressed more matured cone photoreceptor markers, while tumors from older patients expressed less differentiated cone markers and neuronal genes. We also describe, for the first time, the immune microenvironment of retinoblastoma using the single-cell transcriptome. We show that the protumoral alternative M2 macrophages were enriched in retinoblastoma microenvironment and several candidate genes and inferred several tumor-immune interactions that may lead to the polarization of M2 macrophages.

RESULTS

Intra-tumoral heterogeneity at a higher resolution: reanalyzing a retinoblastoma patient sample by single-cell RNA-sequencing

Single-cell analysis in one retinoblastoma showed remarkable intra-tumoral heterogeneity at both genomic and transcriptomic levels, in which some cells with chromosome 2p and 10q gains were more matured in terms of cone differentiation, and other cells, harboring more and different copy number alterations, showed a lessdifferentiated cone state (7) (Figure 1). We reanalyzed the sample aliased as RBSC11 and revealed that, in the cells expressing more matured cone signatures, a dedifferentiation in cone states was associated with gain of additional chromosome alterations. More cells were identified using CellRanger V3 with EmptyDrops (14) cell calling algorithm implemented. We obtained 1274 cells after applying the same quality control filter used in the previous analysis, which were visualized in 2D-UMAP (Uniform Manifold Approximation and Projection) (Figure 2A). Cells identified in the new analysis didn't have significant difference in the quality control metrics with previous analysis (Figure 2B). Expression data were normalized and scaled with the effect of number of counts and difference between cell cycle S phase and G2M score regressed out. Cells were clustered using an improved graph-based method implemented in Seurat V3. Briefly, a K-nearest neighbor graph was constructed based on the Euclidean distance in PCA space, the edge weights between any two cells were refined with Jaccard index based shared overlaps; Louvain algorithm was then applied to iteratively group cells together (15). Nine clusters were identified by the new analysis (Figure 3A). Clusters were annotated based on cluster markers, which were the genes upregulated in the cluster as compared to all other clusters. Out of the nine clusters, seven clusters (1114 cells, 87.5%) were annotated as tumor cells, one cluster (92 cells, 7.2%) was annotated as monocytic lineage (monocytes or macrophages or microglia) and one cluster (68 cells, 5.3%) was annotated as T cells. Within the tumor cells, clusters were further annotated based on known retinoblastoma genes, retina cell type markers, cell cycle phase and apoptotic status.

All tumor cell clusters expressed early photoreceptor and early cone markers such as OTX2, CRX, THRB and RXRG (Figure 3A, B) as we previously described (7). Two clusters expressed cone markers at later stages (e.g. ARR3, GUCA1C). Interestingly, the new clustering could separate the two clusters by cone maturity, one cluster expressed ARR3, a maturing cone marker and the other expressed GUCA1C, a cone marker at a more mature stage. The other five clusters expressed retinoblastoma genes (e.g. TFF1) and neuronal/ganglion markers (e.g. EBF3, GAP43, SOX11, UCHL1, DCX) that were identified in our previous analysis. Interestingly, a new cluster of 37 cells expressing PRL and CD24 was identified in the new analysis. The gene PRL encodes a secreted hormone prolactin, which acts primarily on the mammary gland by promoting lactation, but is also a trophic factor in the retina (17). It is expressed throughout the retina layers in mouse and monkey (16). The gene CD24 encodes a sialoglycoprotein that plays an role in cell differentiation, and is reported as a neuronal stemness marker (18). This cluster was not identified in the previous analysis and was submerged within the apoptotic cells (Figure 3C). The proliferation marker MKI67 was expressed by both the cells expressing cone markers and the cells expressing neuronal/ganglion markers. Its expression is high in the cluster of cells predicted as G2M phase (Figure 3A,B). The gene BNIP3 encodes a pro-apoptotic protein of the BCL2 family, and was reported involved in hypoxia-induced apoptosis (19). Consistent with this, the cluster of cells expressing BNIP3 also expressed genes enriched in hypoxia pathways. The expression of monocyte marker (e.g. CD14), macrophage marker (e.g. CD163), microglia marker (AIF1), and T cell marker (e.g. CD3D) are shown in the UMAP space (Figure 3B). We previously proposed a tumor progression model for RBSC11 based on the inferred genomic profiles (Figure 1C). CRX + /ARR3 + /GUCA1C + cells were transformed after the two hits of RB1, followed by chromosome 10q gain and in some cells 2p gain. We weren't able to distinguish, in their transcriptomic profiles, the cells with 10q gain only from the cells with both 10q gain and 2p gain. In the new analysis, we were able to separate the CRX + /ARR3 + /GUCA1C + cells into two clusters, one expressing maturing cone cell marker ARR3 and the other expressing more mature cone marker GUCA1C.

To examine if the two clusters by cone maturity corresponded to the two groups of cells with different genomic profiles, we inferred copy number variations at single-cell level from gene expression, using inferCNV (20). Indeed, the CRX + /GUCA1C + cells were inferred as carrying 10q gain without 2p gain; and the CRX + /ARR3 + cells were inferred as carrying both 10q gain and 2p gain (Figure 4). Interestingly, the cells carrying 10q gain and 2p gain also included the cells in the PRL + /CD24 + /TFF1 + cluster (Figure 4). Combining the new clustering results and the inferred copy number profiles, we could propose a new cell progression model (Figure 5). After bi-allelic inactivation of RB1 and the gain of 10q, CRX + GUCA1C + cone cells were transformed into tumor cells.

Addition of 2p gain induced tumor cells into less differentiated cone states that no longer expressed the mature marker GUCA1C but still expressed a maturing cone marker ARR3. Cells may further lose the ARR3 and become CRX/PRL/CD24/TFF1 positive. On the other hand, bi-allelic inactivation of RB1 combined with numerous genomic alterations could lead to cells with neuronal features that expressing CRX, EBF3, GAP43, and TFF1. All those cells seemed to proliferate, as they expressed proliferation marker MKI67 (Figure 3B). Our results support the hypothesis that retinoblastomas originate from cone precursors, as all cells expressed early cone precursor markers. Singh et al. showed that cultured human ARR3 + maturing cone cells enter the cell cycle and form preretinoblastoma-like lesions when RB1 is depleted by shRNAs, but they exit the cell cycle in the following months (39). Our results were in accordance that tumor cells can express maturing cone marker ARR3 or more matured cone marker GUCA1C, but their transformation may require not only RB1 mutations but also additional genomic alterations. In some of those tumor cells, dedifferentiation in cone states and gain of aberrant tumor genes may occur with the accumulation of chromosome 2p gain. At the stage of diagnosis, no tumor cells obtained absolute growth advantage, therefore the three populations coexisted. Other tumor cells expressing CRX and neuronal/ganglion markers EBF3/GAP43 may be derived from less differentiated cone photoreceptor precursors expressing CRX but not ARR3, or they may be also derived from maturing cone precursors but underwent cone dedifferentiation, but in this case, CRX+EBF3+GAP43+TFF1+ cells outgrew the other tumor cells.

Our results was based on single-cell transcriptomic analysis of one retinoblastoma, it would be important to examine the expression of early and late cone photoreceptor markers, neuronal/ganglion markers, and aberrantly expressed genes in retinoblastoma using immunohistochemistry and to verify the copy number variation profiles in macro-dissected tumor cells with different phenotype. Single-cell RNAsequencing is applied to fresh tumors and viable cell enrichment may eliminate some fragile cells; therefore the samples that can be analyzed are limited and the cell population analyzed maybe biased. Spatial transcriptomics that can be applied to formalin-fixed, paraffin-embedded (FFPE) tissues could allow us to select and analyze the tumor samples with intra-tumoral heterogeneity, thus provide more interesting results.

Inter-tumoral heterogeneity confirmed at single-cell resolution

We extended the droplet-based single-cell 3' RNA-sequencing for 14 primary retinoblastomas. Retinoblastoma samples were needle-aspirated from primary enucleation in patients with unilateral and non-hereditary diseases. Age of diagnosis for patients were between 9 to 63 months and median age of diagnosis was 20 months. Patient characteristics were provided in Table 1.

We obtained 39297 cells from the 14 retinoblastomas after quality control, which were visualized in 2D-UMAP (Uniform Manifold Approximation and Projection) (Figure 6A). Cells were clustered using graph-based methods using Seurat V3 (Figure 6B).

Pathway enrichment analysis of the cluster markers enabled us to annotate the cells into tumor cells (n = 31236, 79.5%), Monocytes (n = 4828, 12%), T cells (n = 2211, 6%), Rod photoreceptors (n = 579, 1.5%) and Müller glia (n = 425, 1%) (Figure 6C). Expression of the most upregulated genes in each cell type were shown in heatmap (Figure 6D).

All retinoblastoma cells expressed CRX and OTX2 (Figure 6E), two early photoreceptor markers. Later cone markers ARR3 and GUCA1C, that we previously reported expressed by subtype 1 retinoblastoma, were expressed by some retinoblastoma cells from patients younger than 18 months (Figure 6C,E).

Ganglion/neuronal markers EBF3, GAP43 and DCX, and TFF1, the genes expressed by subtype 2 retinoblastoma, were expressed by some retinoblastoma cells from patients older than 18 months (Figure 6C,E). The findings that tumor cells from younger patients expressed markers of cone precursors and more mature cone photoreceptors and that tumor cells from older patients expressed cone precursor markers and neuronal/ganglion markers were in agreement with the characteristics of the two subtypes that we previously reported. The two genes PRL and CD24 were also expressed by some retinoblastoma cells from patients older than 18 months (Figure 6C,E). The distance between two cells in UMAP reflects the similarity of their transcriptomic profiles. Interestingly, tumor cells from younger patients were closer in 2D-UMAP space (Figure 6B) and expressing higher ARR3(Figure 6D,E), a maturing cone photoreceptor marker, while tumor cells from older patients were closer to each other (Figure 6B) and highly expressed TFF1 (Figure 6D,E). We showed previously that RBSC11 expressed ARR3 in part of the tumor cells with chr10q gain (some cells also had 2p gain), and expressed EBF3/GAP43 -the neuronal/ganglion markers -in the rest part of the tumor with multiple copy number variations (gains of 1q, 2q, 9p, 13q, loss of 8q) (7). Intriguingly, the ARR3+ cells of RBSC11 were closer to the tumor cells from younger patients expressing ARR3 in the 2D-UMAP, and the EBF3+/GAP43+

were closer to the tumor cells from older patients (Figure 6B,E). Among the tumor cells, RBSC19 formed a distinct cluster (Figure 6A-C), which might be due to the older age at diagnosis of the patient (63 months), which is very different from the rest of the patients.

We identified monocytes, T cells, mature rod cells and Müller glia cells in the retinoblastoma tumor microenvironment. They weren't identified as tumor cells as they did not harbor the copy number variations from inferCNV. Expression of selected markers for each cell type were shown (Figure 6G). Rod photoreceptors are the most abundant cell types in the retina that are mediate vision in dim light (21). Müller glia are the major glial cell types derived from retinal progenitors that provide structure support and participate in maintenance of homeostasis in the retina (22). The rod cells and Müller glia identified in some retinoblastomas are likely the normal cells as previously shown (7,23).

Immune landscape of retinoblastoma

To investigate the immune landscape of retinoblastoma, we focused our analysis on the 7039 cells (18%) that were classified as monocytes or T cells out of 39297 cells from the 14 retinoblastomas. For a more detailed annotation, we reclassified those immune cells into 12 clusters using graph-based clustering (Figure 7A) and performed cell type prediction by label transfer from PBMC reference (Figure 7B) (24). A final annotation (Figure 7C) was made based on both cluster markers and cell type prediction. We identified various subsets of monocytic lineage cells (monocytes, macrophages, microglia, dendritic cells), T cells (CD 4 T, CD8), NK cells, B cells (Figure 7C). A heatmap illustrating the expression of top 10 genes in each cell type is shown (Figure 7D). were mainly expressed by the monocyte/macrophage cluster (Figure 8A). M2 macrophage marker such as CD163, MRC1 were also expressed by the monocytes/macrophages cluster, instead of the markers of M1 microphages such as CD80, NOS2 (Figure 8A). This is consistent with our previous findings that M2 macrophages were activated in the retinoblastoma tumor microenvironment (13).

Marker of microglia AIF1 was expressed by all monocytic lineage cell clusters (Figure 8B, left panel) and was relative higher in three subsets of cells that we annotated as stressed microglia, dendritic cells or proliferating cells (Figure 8B, right panel). The stressed microglia subset exhibited high mitochondria gene percentage and low total count (Figure 8C). They highly expressed genes involved in oxidative phosphorylation, reactive oxygen species pathway, iron and lipid metabolism, such as FTL, FTH1, HMOX1, NURP1, SELENOP, FABP5, PRDX1, CSTB (Figure 7D). The two genes ferritin light chain (FTL) and ferritin heavy chain (FTH1) encode the two subunits of the ferritin protein, which functions in the storage and delivery of iron. Both genes were reported upregulated in several cancers and positively correlated with tumorassociated macrophages and T regulatory cell infiltration in tumors (25,26). The gene HMOX1 encodes Heme oxygenase-1, which participats in M2 macrophage polarization (27).

The cells annotated as dendritic cells expressed MHC class II genes (e.g HLA-DRB1, PLAC8) (Figure 7D) and the proliferating cells expressed proliferating markers (e.g.

TOP2A, MKI67) (Figure 7D). The cluster named as RCVRN highly expressed RCVRN, CTB, MAP1B, STMN1, GNB3, PDE6H, AKAP9, NEUROD1, PEG10, DCT (Figure 7D), many of which are photoreceptor markers (7,28). Those genes, along with the cone photoreceptor genes (e.g. CRX, ARR3, GUCA1C) and neuronal/ganglion genes (e.g.

GAP43, EBF3

), and aberrantly expressed genes (e.g. TFF1) were expressed by the cluster RCVRN and by the stressed microglia (Figure 7D). Expression of both microglia markers and retinoblastoma-related genes may suggest the phagocytosis in the tumor associated microglia cells.

Among the lymphoid cells, we identified CD4 T cells (n = 851), CD8 T cells (n = 694), NK cells (n = 448), other T cells (n = 164) and B cells (n = 59) (Figure 7C). CD4 T cells expressed CD3D and either CD4 or CD8 (Figure 8E). A subset of the CD4 T cells expressed FOXP3; these are likely to be regulatory T cells, and account for around 52 cells (3% out of all T cells) (Figure 8E). CD8 T cells and NK cells expressed cytotoxic genes such as GNLY and PRF1 (Figure 8E). 

Ligand-receptor analysis between retinoblastoma and tumor infiltrated macrophages

To investigate the possible mechanisms through which the M2 macrophages were activated, we performed ligand-receptor interaction prediction using CellPhoneDB (29).

We randomly sampled 2000 cells in tumor, monocytes/macrophages or T cells, and iterated the predictions for 100 times. We kept the interactions that were predicted in more than 80 times out of the 100 iterations. CD74-MIF appeared as the top prediction between monocytes/macrophages and tumor cells (Figure 9), same as what we previous predicted using the data of one tumor (13).Other top predictions included C5AR1-RPS19, CD74-COPA, CD74-APP, GRN-SORT1,HLA-C-FAM3C, NRP1-VEGFB, LGALS9-CD47 (Figure 9). Among them, several genes were reported to be involved in the immune-suppressive microenvironment and M2 macrophage polarization. Complement C5a Receptor 1, encoded by C5AR1 gene, is a complement receptor that plays a role in the promoting M2 macrophage phenotype in squamous cell carcinoma (30) and breast cancer (31). Inhibition of the C5AR1 protein or blockade of its interaction with RPS19 can revert the protumor phenotype. The gene LGALS9 encodes galectin 9, which participates in T cell exhaustion (32) and bind to CD206 in M2 macrophages (33). Neuropilin-1 (NRP1) was also shown to promote M2 macrophage infiltration in hypoxic environments (34). High expression of SPP1 and CD44 were reported in glioma (35) and in hepatocellular cancer (36). Co-culture of SPP1 knock down cell lines with macrophages had reduced levels of M2 macrophage marker expression, suggesting that SPP1 may play an role in M2 macrophage polarization (36). 

DISCUSSION

Using a single-cell transcriptomic study of 14 primary retinoblastoma samples, we characterized the retinoblastoma intra-and inter-heterogeneity, as well as the tumorinfiltrating immune cells.

We reanalyzed a patient tumor aliased as RBSC11 with marked intra-heterogeneity and refined the two possible progression pathways in this tumor that we proposed before (7). We uncovered, in part of the RBSC11, a dedifferentiation process in tumor progression, which was accompanied by the acquisition of additional genomic alterations. Some photoreceptor cone precursors that expressed CRX, ARR3 and GUCA1C, after the losses of RB1 genes and the gains of chromosome 10q, were transformed to cancer cells; with the addition of chromosome 2p gain, they decrease in their cone maturity, which was reflected by the loss of expression of a more mature cone marker GUCA1C; they may continue to lose maturing cone marker ARR3, and to express a neuronal stemness marker CD24 and a pro-proliferation hormone PRL.

In other part of RBSC11, RB1 loss and accumulation of mutiple chromosome alterations led to tumor progression. The gene PRL was also expressed by other retinoblastomas from patients who are diagnosed older than 18 months. It is not only the hormone produced by the pituitary gland for lactation, but also is endogenously expressed by the mammalian retina (16). It is a trophic factor in the retina that protects retinal cells from degeneration (17) and regulates retinal pigmental epithelia homeostasis (37). PRL is also involved in tumorigenesis and metastasis of multiple hormone responsive cancers (38).

We validated by single-cell RNA-seq in 14 patient samples that all tumor cells expressed CRX, an early photoreceptor marker, consistent with the hypothesis that retinoblastoma originate from cone photoreceptor precursors (39,40). Tumors from younger patients expressed maturing cone marker ARR3, while tumors from older patients expressed EBF3, a neuronal/ganglion marker, and TFF1, an aberrantlyexpressed gene in retinoblastoma. This is in agreement of our previous findings of two molecular subtypes, that subtype 1 tumors expressed more matured cone signatures and manifested in younger patients, and subtype 2 tumors found in older patients expressed less differentiated cone signatures but displayed neuronal/ganglion features and are associated with metastasis (7).

Our study portraited comprehensively the immune landscape in the retinoblastoma tumor microenvironment. We identified tumor-associated macrophages/microglia, dendritic cells, CD4 T cells including regulatory T cells, CD8 T cells, NK cells and B cells in the retinoblastoma ecosystem. We showed that M2 macrophages were activated in retinoblastoma. Macrophages can be grouped into M1 (classically activated) and M2 (alternatively activated) phenotypes. M1 macrophages are often considered pro-inflammatory and anti-tumoral, while M2 macrophages tend to promote immune-suppressive status, angiogenesis, proliferation and metastasis in cancer (41). We inferred ligand-receptor interactions between tumor and immune cells and found several genes involved in the polarization of M2 macrophages. One of the predicted interactions between macrophages and tumor cells was MIF-CD74. MIF was shown to be one of the most secreted cytokines in retinoblastoma. Exposure of PBMCderived macrophages to retinoblastoma-conditioned medium significantly increased M2 macrophage activation (13). Several other genes predicted in ligand-receptor interactions were also reported as factors to promote M2 phenotypes, such as C5AR1, RPS19, LGALS9, NRP1, and SPP1. Pharmacological inhibition of some of these factors could revert the M2 phenotype into the M1 phenotype (31) or improve antitumor activity synergistically through regulatory T cell depletion (32).

Immunohistochemistry analysis of those proteins in retinoblastoma and functional experiments should be performed to validate their functions in their M2 polarization in retinoblastoma.

Taken together, our results depicted a comprehensive picture of retinoblastoma heterogeneity, including its immune microenvironment, which open new directions to targeted therapy and immune therapy in this rare pediatric cancer. We proposed several genes that may contribute to immune-suppressive environments that should be validated in future work.

METHODS

Retinoblastoma patients and ethics statement

We included 14 retinoblastomas in this study. All patients came from Institut Curie (Paris, France) from 2018 to 2021 and were diagnosed as unilateral and nonhereditary diseases. Median age at diagnosis was 20 months (range 9 to 63 months).

All patients underwent primary enucleation without prior treatments.

The study was performed in accordance with the Declaration of Helsinki and French legislation. The study was approved by the Institut Curie Review Board. Written informed consent was obtained from parents or legal guardians of retinoblastoma patients, in accordance with the current guidelines and legislations of the country.

Single-cell RNA-sequencing of retinoblastoma

Within 1 hour after enucleation, a tumor specimen was obtained by needle aspiration through the anterior chamber of the eye and immediately placed in ice-cold CO2 independent medium (Thermo Fisher). To obtain a high-quality sample, density gradient centrifugation was executed to remove debris, dead cells and erythrocytes using Histopaque-1077 (Sigma-Aldrich). Cell count and viability were determined by trypan blue exclusion on a Vi-CELL XR (Beckman Coulter Life Sciences). Samples with cell viability less than 60% underwent a second or a third round of density gradient centrifugation to further improve sample quality. All samples passed on for single-cell RNA-seq had viability more than 60%. Cells were then mechanically dissociated, washed and resuspended in phosphate-buffered saline supplemented with 0.04% bovine serum for single-cell processing.

With the aim of recovering 3000 cells, 6000 cells were loaded onto the Chromium controller (10X Genomics) using Chromium single cell 3' reagent kits v2 or v3 chemistry (10X Genomics). Each single cell was incorporated in one droplet together with one barcoded gel bead containing reagents. Following in-droplet lysis, cDNA incorporating cell barcode and UMI (unique molecular identifier) was synthesized and amplified. Amplified cDNA was fragmented and an Illumina sequencing library was constructed (Illumina). For quality control and quantification of cDNA and library, BioAnalyzer (Agilent BioAnalyzer High Sensitivity chip) was used. Libraries were loaded at 400pM and pair-end sequenced on Novaseq 6000 using NovaSeq 6000 S1

Reagent Kit (Illumina). Cells were sequenced at a mean depth of 100000 reads/cell.

Single-cell transcriptome analysis

Sample demultiplexing, alignment to the reference genome (GRCh38, Ensembl 84, pre-built Cell Ranger reference version 1.2.0), quantification and initial quality control (QC) were performed using the Cell Ranger software (version 3.0.0 or 3.1.0, 10X Genomics).

For reanalysis of RBSC11, genes which were expressed in more than 3 cells, and cells that expressed more than 500 genes and less than 5% of mitochondria genes, were retained. For analysis of 14 retinoblasotmas, genes which were expressed in more than 3 cells and cells which expressed more than 500 genes and less than 20% of mitochondria genes were retained. Normalization and clustering were performed using Seurat package version 3. UMI counts were normalized by NormalizeData function with logNormalize method, by a scaling factor of the median UMI count. UMI counts were then scaled to regress out the effect of UMI counts and the difference of G1S phase score minus S phase score. Variable genes were found with FindVariableGenes function with logVMR function. Genes with average expression more than 0.0125 and less than 8 and with dispersion more than 0.5 were considered as variable genes for principal component analysis (PCA).

Cell clusters were identified by Seurat V3 FindNeighbors and FindClusters functions that implemented K-nearest neighbor (KNN) graph-based method and modularity optimization with Louvain algorithm (15,42-44). The first 20 to 30 principal components were used. The parameter Resolution in the FindClusters was set between 0.1 to 1.4 in order to find an optimal resolution for biological interpretation.

Cluster markers were identified by FindAllMarkers function. Briefly, expression of genes that expressed in more than 10% of cells in one cluster were compared with expression of these genes in all other clusters, using Wilcoxon rank-sum test and corrected with a Benjamini & Hochberg (BH) correction. The procedure was repeated for all clusters. Genes upregulated in each cluster with more than 0.2 fold were considered as cluster markers. Pathway analysis of cluster markers were performed by R clusterProfiler package (45). Genesets tested were from the Molecular Signatures Database v7.0 (46).

Copy number variations (CNVs) were inferred from the single-cell gene expression by InferCNV package 1.0.0, using normal retinal cells derived from hiPSCs as reference (47).

Cell type prediction was made using Seurat V4 reference mapping, where the reference were the single-cell gene expression data with 162000 human peripheral blood mononuclear cells sequenced by CITE-seq and normalized by SCTransform (variance-stabilizing transformations for single-cell UMI data) (24). Expression data of immune cells identified from our previous analysis were also normalized using SCTransform for query to keep consistent with the reference data. Anchors between the reference and query were identified using FindTransferAnchors function with the first 50 dimensions from a supervised PCA on normalized expression data. Cell type labels were transferred from the reference to the query with MapQuery function.

CellPhoneDB v2.1.7 was used to predict ligand-receptor interactions between immune cells and tumor cells (29). Briefly, 2000 cells were randomly selected from each cell type and the prediction function was applied with option 'statistical_analysis' and 1000 iterations. Analyses were repeated 100 times and the stable ligand-receptor pairs appeared more than 80 times were retained in the results.

CHAPTER 5.

CONCLUDING REMARKS

Summary

During my doctoral study, I sought to better understand retinoblastoma heterogeneity.

Our team previously collected multi-omics retinoblastoma datasets and identified two molecular subtypes, one showing a photoreceptor cone signature and another showing a mixture of cone and ganglion signatures. I continued in this direction, comparing and characterizing the two subtypes. We showed that subtype 1 tumors were often manifested by younger patients, harbored fewer genomic alterations, exhibited more-mature cone and immune signatures; and that subtype 2 tumors were usually diagnosed in older patients, displayed a CpG Island methylator phenotype, expressed less-differentiated cone markers, as well as neuronal/ganglion and stemness signatures. We collaborated with Dr. Guillermo's team, and showed in an independent series of retinoblastoma, that all metastatic cases were subtype 2 tumors.

With the help of Dr. Sirab, a biologist in the team, we collected single-cell RNAsequencing data from 14 retinoblastoma samples. We validated in the single-cell data that the molecular profiles of tumors from younger patients were similar to the subtype 1 tumors that expressing more-mature cone signature, while the tumors from older patients expressed neuronal/ganglion markers and the genes aberrantly upregulated in subtype 2 tumors. We uncovered that intra-tumoral heterogeneity in retinoblastoma can exist at both genomic and phenotypic level through the analysis of one retinoblastoma at single-cell level. We proposed a progression model for part of this tumor in which the accumulation of genomic alterations were accompanied by the loss of cone features and the gain of stemness feature and a retinal trophic factor. From the single-cell transcriptomic data, we identified the infiltrations of immune cells and normal retinal cells in retinoblastoma microenvironment. We made a comprehensive portrait of the immune cell landscape in retinoblastoma and showed an activation of protumoral M2 macrophages maybe due to several candidate genes. In collaboration with Dr. Carcaboso's team, we validated with cytokine array and functional experiments that Macrophage Migration Inhibitory Factor participated in the shaping of the M2 phenotype and may contribute to immune-suppressive microenvironment in retinoblastoma.

Future directions

1) MYCN-amplified tumors as a third subtype MYCN-amplified tumors were classified as subtype 2 retinoblastoma in our study, they expressed neuronal/ganglion markers and aberrant genes upregulated in subtype 2 tumors. On the other hand, they harbored several unique features, including their relative low proliferation rate and overall hypomethylation. MYCN-amplified retinoblastoma is found in 10% of all cases and in our cohort we only had 5 samples with transcriptomic or DNA methylation data. With more cases, we may be able to identify them as a third subtype or a subcluster of the subtype 2 retinoblastoma.

2) Retinoblastoma cell of origin

We showed that all retinoblastoma expressed early photoreceptor markers, along with several evidences from the literature, suggesting that retinoblastoma are derived from the early photoreceptor cone cells. However, there is still controversy on the retinoblastoma cell of origin as some researchers, based on the expression of some retinal progenitor markers, claimed that they are transformed from retinal progenitors.

Analysis of the single-cell transcriptomic data in the fetal retina combined with our data from the tumors could provide more insights into this debated issue.

3) Aberrant pathways in retinoblastoma

Bulk data is a mixture of signals from both tumor and cells from the tumor microenvironment. Using single-cell data, we would be able to compare the tumor cells and normal cells to identify tumor-specific aberrant genes and pathways. Gene regulatory inference analysis can be applied to both bulk and single-cell data. It extracts pairwise gene information and can provide insights into gene regulations in tumorigenesis.

4) Immune therapies for retinoblastoma

Emerging evidence showed that immune therapies may also work in immune-cold pediatric cancers. We proposed several genes that may function in M2 macrophage polarization and tumor promotion. This need to be examined by in vitro and in vivo phenotypic and functional work. Our collection of immune cells at single-cell level also provides a rich resource for future investigations into retinoblastoma immune therapies.

Conclusion

Taken together, our comprehensive characterization of the two molecular subtypes of retinoblastoma, the intra-tumoral heterogeneity, and the immune landscape open up new directions for retinoblastoma studies and shed light on future target therapies and immune therapies for retinoblastoma.

ANNEX.

IDENTIFICATION OF IMMUNOSUPPRESSIVE FACTORS IN RETINOBLASTOMA CELL SECRETOMES AND AQUEOUS HUMOR FROM PATIENTS

In this annex, an article on work done in collaboration with Dr. Carcaboso and Dr.

Cuadrado-Vilanova is enclosed. Utilizing cytokine array and immunohistochemistry, we identified cytokines secreted by 11 primary retinoblastoma derived cell models involved in the activation of protumoral M2 macrophages, including Macrophage Migration Inhibitory Factor (MIF). This is reminiscent of our findings of MIF-CD74 being one of the top predicted ligand-receptor pairs between tumor and monocytes/macrophages/microglia by single-cell analysis. We then made a ligandreceptor prediction using bulk gene expression data from tumors and from purified immune cells, and found MIF-CD74 still being the top hit. We showed that MIF was upregulated in tumor cells comparing to normal retina using bulk gene expression data.

We further demonstrated that retinoblastoma conditioned medium or recombinant MIF could polarize macrophages to protumoral M2 type.

This manuscript is published in the Journal of Pathology (2022), available through the link: https://doi.org/10.1002/path.5893.

I am the second author of the article, and participated in the bioinformatics and statistical analysis, data visualization, manuscript writing of the relevant part and reviewing.

Identification of immunosuppressive factors in retinoblastoma cell secretomes and aqueous humor from patients

INTRODUCTION

Retinoblastoma is a solid malignancy of the retina of small children, generally originated by biallelic alterations of the tumor suppressor gene RB1 [1,2]. Conventional chemotherapy agents are effective for tumor chemoreduction in the intraocular form of the disease, but they can produce off-target effects and chemoresistance [1]. More selective treatments targeting specific genetic backbones of the tumor, such as the upregulation of the genes SYK, MDM2, and MYCN [3,4], or the overexpression of the transcription factor E2F1 in an RB1deregulated background [5], are still in the initial phases of preclinical and clinical research. A third group of treatments could emerge from the understanding of the microenvironmental and immunologic properties of the tumor [6,7]. Like most pediatric solid embryonal cancers, retinoblastomas are poor in stroma and in tumor-infiltrating lymphocytes (TILs) and show low expression of the programmed cell death ligand-1 (PD-L1) and other immune checkpoint molecules [8-10]. Such properties are consistent with an immunosuppressive or protumoral environment [7].

The identification of the causes for the cold tumor environment of retinoblastoma might help unveil actionable targets for future treatments. In this context, the interaction between tumor and stromal cells (including cells of the innate immune system, such as the retinal microglia) can lead to the activation of immunosuppressive signaling pathways [11]. Tumor cells may secrete antiinflammatory chemokines and cytokines, such as the macrophage migration inhibitory factor (MIF). This 12 kDa protein reportedly increases the infiltration of tumors by immunosuppressive regulatory T cells (Tregs) and tumor-associated microglia/macrophages (TAMs) polarized to the protumoral type M2-like [12-14]. Other tumor cell mechanisms that might suppress the immune system are the decreased expression of human leukocyte antigen (HLA) class I molecules [15], the production of transforming growth factor beta (TGF-β) [16], the activation of tryptophan degradation by the enzyme indoleamine 2,3-dioxygenase (IDO) [17], and the activation of the cyclooxygenase-2 prostaglandin E2 pathway [18].

A unique factor involved in the retinoblastoma microenvironment is the tumor confinement into the eye compartments in its early stages. This is especially relevant in the case of retinoblastomas with seeding, i.e. tumor cell clusters floating in the vitreous humor, or in the subretinal fluid, or, less frequently, in the aqueous humor [19]. These ocular fluids might contain protein factors appropriate for retinoblastoma growth, or secretions of retinoblastoma tumors, including exosomes, cytokines, and circulating cell-free DNA [20,21]. Aqueous humor is now safely accessible for liquid biopsy during the procedure of the intravitreal treatment injection [22]. The analysis of such aqueous humor samples might help characterize the microenvironment of the tumor in patients. In the experimental laboratory setting, primary cultures of patient-derived retinoblastoma cells offer a dynamic tool to identify secreted proteins or cellular immune escape mechanisms. These cell models grow well in conditions that enrich stem cell-like cells [23].

In the present study we characterized histologic markers of the immune microenvironment in retinoblastoma samples (enucleated eyes) and compared them with the retinal microenvironment of nontumoral pediatric eyes, finding a strikingly high amount of M2-like polarized TAMs in retinoblastomas, independently of their pretreatment status. Then we hypothesized that retinoblastoma cells secrete soluble factors that induce such a protumoral environment. To address this question, we used the largest reported platform of patient-derived retinoblastoma cell cultures, validated by previous work [5,24-27]. We identified cytokines, such as MIF and extracellular matrix metalloproteinase inducer (EMMPRIN), that were abundantly and homogeneously secreted by all the cell models. Retinoblastoma-conditioned medium induced M2-like polarization and enhanced migration of human bloodderived macrophages. Finally, we analyzed liquid biopsies (aqueous humor) to address the clinical significance of the laboratory findings.

Materials and methods

Cell lines and cell culture

We used the retinoblastoma cell line Y79 (Sigma-Aldrich, St. Louis, MO, USA) and 11 primary retinoblastoma cell cultures established from the tumors of 11 patients. See Supplementary materials and methods and supplementary material, Table S1 for details. The Institutional Review Boards at the hospital Sant Joan de Deu (HSJD, Barcelona, Spain; protocol M-1608-C) and Hospital JP Garrahan (HPG, Buenos Aires, Argentina; protocols 838 and 904) approved the collection of tumor tissues, under informed consent.

Immunostaining, image acquisition and analysis

We carried out immunohistochemistry (IHC) staining on four-micron serial sections of formalin-fixed paraffinembedded human tissue samples. See Supplementary materials and methods and supplementary material, Tables S2 andS3 for details.

Expression of common immune escape mechanisms by tumor cells

We assessed gene expression related to five different immune escape mechanisms in retinoblastoma cells by reverse-transcribed quantitative polymerase chain reaction (RT-qPCR). See Supplementary materials and methods and supplementary material, Table S4 for details.

Retinoblastoma secretome analysis

We cultured cells in 1 ml of supplemented retinoblastoma medium in 6-well plates, at a density of 10 6 cells/ well. After 48 h, we collected supernatants by centrifugation at 400 Â g for 4 min and froze them at À20 C until analysis. We performed immunodetection of cytokines with the Proteome Profiler Human XL Cytokine Array kit (R&D Systems, Minneapolis, MN, USA) according to the manufacturer's instructions. This kit detects 105 proteins (in duplicate) simultaneously and includes negative and positive controls. See Supplementary materials and methods for details.

Gene expression of top-secreted cytokines in primary retinoblastomas and fetal retina

We analyzed the RNA of 59 retinoblastoma samples without prior treatments, six primary retinoblastoma cell cultures, two retinoblastoma cell lines, and three fetal retinas using the microarray Affymetrix U133 GeneChip (Affymetrix, Santa Clara, CA, USA). See Supplementary materials and methods for details.

Single-cell gene expression of top-secreted cytokines and immune markers in one retinoblastoma

We obtained single-cell RNA sequencing data from one retinoblastoma sample after primary enucleation of a patient older than 18 months with unilateral nonhereditary RB1 À/À disease, identified as RBSC11. See Supplementary materials and methods for details.

Quantification of secreted MIF and EMMPRIN in retinoblastoma cultures and liquid biopsies (aqueous humor)

We cultured tumor cells in 4 ml of supplemented retinoblastoma medium at a cell density of 2 Â 10 6 cells/well in six-well plates. After 48 h, we collected supernatants by centrifugation at 400 Â g for 4 min. We obtained liquid biopsies (aqueous humor; 100 μl) from patients before the procedures of intravitreal chemotherapy (retinoblastoma patients), intravitreal bevacizumab (patients with retinal disease), or cataract surgery. Samples were stored at À20 C until analysis. We diluted all samples (1:50) and performed Human MIF and Human EMMPRIN Quantikine ELISA Kits (R&D Systems) according to the manufacturer's instructions. We measured the assays with an Infinite M Nano (Tecan, Männedorf, Switzerland) microplate reader.

Differentiation of macrophages from peripheral blood mononuclear cells (PBMCs)

We isolated PBMCs from blood buffy coats of eight adult blood donors. See Supplementary materials and methods for details.

Macrophage polarization assay

We plated HSJD-RBT-2 cells at a density of 2 Â 10 6 cells/well in six-well plates, in 2 ml of nonsupplemented retinoblastoma medium. After 72 h, we collected cell culture supernatants (i.e. retinoblastoma-conditioned media) and transferred them to macrophage cultures containing 2 Â 10 6 cells/well in complete macrophage culture medium six-well plates. The volume proportion of macrophage and retinoblastoma culture media was 1:1 in all the experimental conditions. To evaluate the effect of MIF on macrophage polarization, we prepared recombinant MIF (rMIF, Peprotech; Rocky Hill, NJ, USA) in nonsupplemented retinoblastoma medium, to achieve 500 ng/ml rMIF in the final macrophage cultures. We prepared M1-like (proinflammatory) polarization controls by exposing macrophages to lipopolysaccharides (LPS; Sigma-Aldrich), IFN-γ and tumor necrosis factor-alpha (TNF-α; Peprotech), all dissolved in nonsupplemented retinoblastoma medium to achieve final concentrations of 100, 50, and 20 ng/ml, respectively. We prepared M2-like (protumoral) polarization controls by exposing macrophages to interleukin-10 (IL-10) and TGF-β1 (Peprotech), dissolved in nonsupplemented retinoblastoma medium to achieve final concentrations of 10 ng/ml each. As an internal experimental control, we exposed macrophages to plain nonsupplemented retinoblastoma culture medium. Cells were maintained for 72 h at 37 C in a 5% CO 2 atmosphere until flow cytometry analysis for M1-like and M2-like markers. To correct for interpatient variability in basal levels of macrophage polarization, we expressed the polarization results as the ratio of CD163 + cells (M2-like) to CD80 + cells (M1-like).

Flow cytometry

See Supplementary materials and methods for details.

Invasion and migration assays

We plated 5 Â 10 4 nonpolarized macrophages suspended in 250 μl of complete macrophage culture medium in Transwell chambers (Falcon Permeable Support for 24-well Plate with 8.0 μm Transparent PET Membrane; Corning, Glendale, AZ, USA) coated with Geltrex (Thermo Fisher Scientific, Waltham, MA, USA). In the lower chamber we deposited a 1:1 mixture of complete macrophage medium and retinoblastoma-conditioned medium or 500 ng/ml rMIF, both prepared using nonsupplemented retinoblastoma medium. We used 1:1 mixtures of complete macrophage culture medium and nonsupplemented retinoblastoma culture medium containing 10% iFBS or 0.1% BSA as the positive and negative migration controls, respectively. As an internal experimental control, we used a 1:1 mixture of complete macrophage culture medium and plain nonsupplemented retinoblastoma medium. After 72 h incubation, we fixed migratory cells with 4% paraformaldehyde and stained them with 1% crystal violet (Sigma-Aldrich) in 2% ethanol. We counted the number of the stained cells using a standard bright-field microscope. We represented the results relative to the migration of the negative control.

Statistical analysis

We used GraphPad Prism 9 (GraphPad Software, San Diego, CA, USA) for statistical analysis. See Supplementary materials and methods for details.

Results

TILs and TAMs in retinoblastoma samples

We included in the study 28 enucleated eyes, 23 from retinoblastoma patients and five from nonretinoblastoma. Supplementary material, Table S5 shows the clinical and anatomo-pathological features of retinoblastomas, including germline RB1 mutations. Median age at diagnosis was 29 months (range 5.4-111). Patients who received chemotherapy before enucleation and nontreated retinoblastoma patients (naïve) were equally represented in the cohort (supplementary material, Table S5). Clinical information of nonretinoblastoma enucleated eyes is in the supplementary material, Table S6; median patient age at enucleation was 55 months (range 28-134).

T and B lymphocyte counts in tumors and conserved retinal areas of most retinoblastoma eyes were moderate and not significantly different from counts in control eye retinas from nonretinoblastoma pediatric patients (Figure 1A). The supplementary material, Table S7 shows mean cell counts in the whole sample set. CD8 + lymphocytes were the most abundant TILs in tumors (Figure 1B). We found FOXP3 + cells (Tregs) at low density in around 83% of retinoblastoma tumors and 46% of conserved retinas in tumor eyes, but we did not find them in control eye retinas (supplementary material, Table S7). Infiltration of FOXP3 + and CD20 + cells in tumor areas achieved counts significantly higher than those of conserved retinas of tumor eyes and control eye retinas (Figure 1B). We did not detect significant differences in TIL counts between treated and naïve tumor samples. Enucleated eyes with prelaminar and retrolaminar optic nerve invasion showed a significantly higher number of CD4 + counts compared to eyes without signs of invasion (supplementary material, Table S8). Other anatomo-pathological properties or genetic background of the tumors were not related to TILs infiltration (supplementary material, Table S8).

All retinoblastoma tumors showed moderate infiltration of CD68 + macrophages and abundant Iba1 + microglial cells of ramified and amoeboid morphology, predominantly of the M2-like type (CD163 + ) (Figure 2A and supplementary material, Table S7). Expression of CD163 was exclusive of nonretinoblastoma cells (supplementary material, Figure S1). Conserved retinal areas in retinoblastoma eyes showed similar infiltration of these cells. Control eyes retinas, in contrast, showed no infiltration of CD68 + macrophages, a lower number of Iba1 + microglial cells than retinoblastoma eyes, and almost absence of M2-like positive cells (Figure 2A). Counts of CD68 + , Iba1 + , and CD163 + cells were significantly higher in retinoblastoma eyes compared to control eyes (Figure 2B).

Previous treatment of enucleated eyes significantly increased the abundance of Iba1 + TAMs in tumors, compared to naïve eyes, but did not affect the number of M2-like CD163 + TAMs (supplementary material, Table S9). Overall, our findings suggest that retinoblastoma promotes a microenvironment rich in TAMs of the M2-like type from the early development of the disease.

Immune escape mechanisms in retinoblastoma

Because our initial findings confirmed the immunosuppressive microenvironment in retinoblastoma tumors, we assessed possible immune escape mechanisms of tumor cells. Protein expression of the immune checkpoint molecule PD-L1 in tumors was negative in 96% of the samples (Figure 3A). The only positive sample corresponded to a treatment-naïve eye that presented 5% of the tumor cells positive for membrane PD-L1 staining (Figure 3A). We did not find positivity for the receptor PD-1 in any of the 23 analyzed tumors. Expression of B7-H3 was negative in 70% of the analyzed samples. We identified focal B7-H3 staining in five samples and only two were positive in at least 5% of the tumor cells (Figure 3B). Microarray data confirmed low expression of genes PDCD1 (PD-1) and CD274 (PD-L1), and higher expression of CD276 (B7-H3) (supplementary material, Figure S2). The expression of the gene encoding PD-L1, CD274 , was not detectable by RT-qPCR in six retinoblastoma cell models cultured in basal conditions (Figure 3C). Upon incubation with IFN-γ, CD274 expression became detectable in all cell models (Figure 3C). In contrast, the expression of the gene encoding B7-H3 was detectable by RT-qPCR in basal conditions and its expression levels did not increase upon IFN-γ exposure (Figure 3C). In similar experiments, we detected a significant increase in the membrane expression of PD-L1 protein when we exposed cells to IFN-γ (Figure 3D,E). Taken together, these results suggest that the immune escape mechanism of PD-L1 is functional in retinoblastomas, although not activated due to the immunosuppressed environment in the human tumors.

The expression of genes encoding for proteins of the HLA class I complex was low in retinoblastoma cells (supplementary material, Figure S3A). Concordantly, expression of HLA-ABC class I proteins was very low in retinoblastoma cells (supplementary material, Figure S3B). We detected a high increase in these membrane proteins upon exposure of tumor cells to IFN-γ (supplementary material, Figure S3B,C). Genes of the TGF-β family were at low expression levels in most cell models (supplementary material, Figure S4A). We did not detect mRNA of genes IDO1, IDO2, and TDO, of the kynurenine pathway, in any of the cells (supplementary material, Figure S4B). Cyclooxygenase-2 prostaglandin E2 pathway genes, PTGES and PTGS2, were not expressed in most of the cells (supplementary material, Figure S4C). Overall, these results suggest that reduced expression of HLA class I molecules may be an important immune evasion mechanism for retinoblastoma cells, while immunosuppressive pathways such as TGF-β, kynurenine, and cyclooxygenase-2 prostaglandin E2 are not activated.

Discovery of highly secreted macrophage inhibitory cytokines in retinoblastoma

We identified a homogeneous pattern of cytokine secretion in the supernatant of 11 retinoblastoma cell models (Figure 4A). The top-five secreted proteins were EMMPRIN, MIF, insulin-like growth factor-binding protein 2 (IGFBP-2), growth differentiation factor 15 (GDF-15), and pentraxin-3. All these molecules inhibit macrophages or cause immune evasion in solid tumors [14,28-30]. In the gene expression microarray, patient tumors and cell models expressed significantly higher levels of genes MIF and BSG (gene encoding for EMMPRIN) compared to fetal retinas, with MIF being upregulated in all samples and BSG being upregulated in 56/59 tumors and in all cell models, compared to fetal retinas (Figure 4B,C). In cell culture supernatants, MIF concentration was in the range 44.9-436 ng/ml (n = 12 cell models) (Figure 4D). Median MIF concentration in liquid biopsies (aqueous humor) of retinoblastoma patients was 64.1 ng/ml (range 8.03-877; n= 23), significantly higher than in retinoblastoma-free aqueous humors, with median 8.61 ng/ml (range 2.29-47.6; n = 12) (Figure 4E). EMMPRIN concentration in cell culture supernatants was in the range of 0.34-4.02 ng/ml (n= 11 cell models) (Figure 4F). The median EMMPRIN concentration in liquid biopsies of retinoblastoma patients was 3.73 ng/ml (range 0.79-19.9; n = 22), significantly higher than in retinoblastoma-free samples, with median 1.17 ng/ml (range 0.04-8.31; n= 12) (Figure 4G).

Single cell transcriptome analysis of selected immune markers and cytokines

We used single-cell RNA-sequencing data from one treatment-naïve retinoblastoma identified as RBSC11 [2]. We annotated tumor or immune cells based on estimated copy number variation status, expression of key markers, and pathways and the reference-based annotation [31]. Among 1,198 analyzed cells, 89.2% were tumor cells, 6.3% TAMs, and 4.4% TILs (Figure 5A). Most cells overexpressed MIF, independently of the cell type (Figure 5B). Among the genes encoding for MIF receptors, TAMs expressed CD74, while both TAMs and TILs expressed CD44 (Figure 5B). Our mapping of potential ligand-receptor interactions at both the single-cell and bulk levels predicted that MIF/CD74 interactions are among the most significant pairs in tumor cells/macrophages (supplementary material, Figure S5A,B). Immunostaining for CD74 and CD44 in human retinoblastoma samples confirmed the gene expression profile, with only microglial-shaped cells expressing CD74 and with a more diffused staining of CD44 (Figure 5C). In the normal retinal tissue, we found CD44 diffusely expressed, while CD74 was restricted to monocytes (supplementary material, Figure S6).

The cluster of TAMs expressed the microglial marker Iba1 (gene AIF1) and the M2-like marker CD163 (Figure 5D). TAMs did not express the M1-like marker CD80 (Figure 5D). Among the other cytokines secreted by cell models, BSG (EMMPRIN) was expressed by a majority of tumor and immune cells, IGFBP2 and PTX3 were expressed by few tumor cells, and GDF15 was restricted to a minority of TAMs (Figure 5D).

Polarizing activity of retinoblastoma-secreted factors on PBMC-derived macrophages PBMC-derived macrophages used for polarization experiments expressed MIF receptors CD44 and CD74 (supplementary material, Figure S7A) which colocalized at the cell membrane (supplementary material, Figure S7B,C). We used the macrophage marker CD11b staining as a quality control. We obtained a mean CD11b positivity of 99.3% in all the experiments. In preliminary experiments, we observed that CD206 and CD163 were positive in the same proportion of cells, and subsequently we used only CD163. In the macrophage polarization experiments, CD163 + cells were more abundant than CD80 + cells in all the studied conditions (Figure 6A). We used the proportion of both cell populations to represent data as M2-to-M1-like (i.e. CD163 + -to-CD80 + ) ratios. The lowest M2-to-M1-like ratio corresponded to the M1-like control condition, which we used as the reference of the experiment. We observed that macrophages exposed to retinoblastoma-conditioned medium or rMIF increased their M2-to-M1-like ratio significantly, compared to the M1-like reference (Figure 6B).

Migration of macrophages through geltrex-covered transwells was significantly increased by the addition of retinoblastoma-conditioned medium to the acceptor chamber (Figure 6C,D). The addition of rMIF to the acceptor did not affect macrophage migration significantly (p = 0.0708). 

Immunosuppressive factors in the microenvironment of retinoblastoma

Discussion

Our study demonstrates that retinoblastomas secrete soluble factors that could explain the protumoral M2-like type of retinoblastoma TAMs. We identified a homogeneous pattern in the secretome of a large set of these tumors, enriched in the proteins EMMPRIN, MIF, IGFBP-2, GDF-15, and pentraxin-3, all of them with reported activity to induce a protumoral microenvironment. For instance, MIF and IGFBP-2 have M2-like polarizing functions and recruit Tregs to solid tumors [12,14,29]; EMMPRIN increases the proportion of Tregs in T-cell cultures [28] and it is expressed in invasive retinoblastomas [32]; GDF-15 is a member of the TGF-β superfamily and inhibits macrophage surveillance during early tumor development [33]; and pentraxin-3 activates the TGF-β pathway and reduces HLA-DR and CD86 expression in human macrophages [30]. Therefore, we propose that the abundance of M2-like TAMs and the presence of Tregs in retinoblastoma, as shown in our patient cohort, is likely the result of the action of these or similar tumor cytokines in the microenvironment. Contrasting findings (lack of M2-like polarization and Tregs) in the enucleated eyes of five pediatric patients without retinoblastoma further substantiated our results.

Transcriptome analyses of patient samples, extended to the single-cell level, led us to select MIF and EMMPRIN as the leading candidates for further analyses. The significant increase of these two molecules in the aqueous humors of cancer patients might have clinical implications as biomarkers or treatment targets. The use of aqueous humor as liquid biopsy of retinoblastoma is well justified by the impossibility to perform tumor biopsy, due to the risks of extraocular dissemination associated with the surgical procedure [1]. Aqueous humor is a suitable source to obtain cell-free DNA from patients with retinoblastoma, allowing not only the diagnosis of RB1 mutations but also identifying potential genomic markers for the risk of treatment failure [34]. The use of hybridization capture and deep sequencing of around 20,000X raw coverage further improves the sensitivity of this technique, allowing the analysis of RB1 aberrations in cell-free DNA in blood samples [35]. However, deep sequencing techniques are generally not available outside large world-referral institutions. The selection of protein biomarkers, alternative or additional to genetic biomarkers, will increase the access to liquid biopsy analyses through simple immunoassays.

Our model prediction of MIF/CD74 as one of the top ligand/receptor pair interactions in retinoblastomas led us to study the interaction of MIF and human macrophages at a concentration within the range found in the analyzed liquid biopsies. The conclusion of our study, of M2-like polarization of macrophages by MIF, is robust because we obtained it based on eight independent experiments from eight blood donors. Conclusions regarding retinoblastoma-conditioned medium should be taken cautiously, however, because we evaluated only one tumor type, which was selected upon the analysis of the secretome heatmap and our previous preclinical work [5].

Many biological mediators regulate CD163 expression in monocytes and macrophages [36], but whether MIF-promoted expression is an actionable target with clinical meaning in retinoblastoma needs further preclinical work that was not addressed by our study. In melanoma, for instance, pharmacological inhibition of MIF signaling reduces tumor immunosuppression in tumorbearing mice and restores the immune response to tumor cells in vitro [37,38]. The availability of highly selective administration routes to increase drug concentrations in the confined ocular compartment in which retinoblastoma arises might provide additional opportunities for the success of these treatments.

We observed that previous treatments did not modify the M2-like polarized CD163 + environment of retinoblastoma, which is in contrast with a recent study of the retinoblastoma immune environment by Miracco et al [8]. They reported a significantly higher number of CD163 + M2-like TAMs in previously treated human retinoblastoma eyes, compared to eyes enucleated without previous treatment [8]. The methodology of that study differed from ours in that they did not include ocular specimens without retinoblastoma, and we applied the multiple comparison correction to the p values for statistical analyses.

Retinoblastoma treatments can induce moderate inflammation, even the accumulation of multinucleated macrophages in the choroid and retina, as we previously reported in patients receiving intra-arterial chemotherapy [39]. Thus, we expected the enrichment of TAMs in treated tumors, compared to treatment-naïve tumors. However, PD-L1 expression did not change in our cohort of treated patients.

Immunostaining for PD-L1 in large collections of retinoblastoma samples shows that only a minority of tumors express PD-L1 [8,9]. In our patient cohort, we found almost all samples were PD-L1-negative, which was in agreement with our experiment showing that retinoblastoma cells express PD-L1 at low or undetectable levels that increase upon stimulation by proinflammatory molecules such as IFN-γ. Usui et al reported a similar finding for the Y79 cell line [40]. Because IFN-γ-secreting cells, and specifically CD8 + lymphocytes, were moderately abundant in a high proportion of the retinoblastoma samples, we propose that tumor microenvironment inhibits such CD8 + cells, leading to a decreased level of IFN-γ secretion [41]. The work by Miracco et al, in contrast, suggests that chemotherapy treatments induce a proinflammatory environment, leading to higher expression of PD-L1 [8], but our results and others do not confirm their observation [9]. We suggest that M2-like TAMs and Tregs suppress the activity of CD4 + and CD8 + TILs in retinoblastomas, because they inhibit the production of several proinflammatory cytokines such as IFN-γ and IL-2 [42]. Treg infiltration in our study was not homogeneous among the samples, but our IHC method might have underestimated the real number of these cells. In fact, Zhang et al found that around 10% of retinoblastoma TILs are FOXP3 + in a large set of 50 patient samples [43].

The low expression of PD-L1 in retinoblastoma suggests that few patients with confirmed PD-L1-positive tumors would be eligible for anti-PD-L1 treatments. However, retinoblastoma biopsies for IHC remain impracticable before enucleation [1]. In addition, the use of immune checkpoint inhibitors in ocular tumors might cause difficult-to-manage inflammation due to pseudoprogression [44]. A similar concern with regard to inflammation would be raised by the use of anti-B7H3 antibodies or CAR-T cells in retinoblastomas [45,46].

Taken together, our results demonstrate that the interaction of retinoblastoma cells and TAMs through soluble factors secreted by tumor cells explains, at least partially, the cold tumor environment of retinoblastoma. Whether such tumor-secreted proteins are potential candidates for biomarkers or therapeutic modulation will be addressed in prospective work. En termes de transcriptomique, quelques études ont été réalisées et ont révélé que le rétinoblastome peut présenter des degrés variés dans les signatures de différenciation des photorécepteurs. Dans notre travail, nous avons identifié deux sous-types moléculaires basés sur l'analyse de 102 rétinoblastomes en utilisant le séquençage de l'exome entier, les SNP array, les puces pour mesurer l'expression des gènes et la methylation de l'ADN. Nous avons réalisé le clustering en utilisant une stratégie combinant le clustering hiérarchique consensuel et le clustering basé sur les centroïdes. Nous avons démontré que les tumeurs de sous-type 1 présentaient une signature plus mature de différenciation de photorécepteurs cône et se manifestaient généralement chez les enfants de moins de 18 mois, tandis qu'un niveau plus faible de différenciation de photorécepteurs cône est corrélé à un niveau élevé de caractéristiques ganglionnaires/neuronales, de signatures de type souche et d'instabilité génomique dans les tumeurs de sous-type 2, que l'on retrouve davantage chez les enfants de plus de 18 mois. L'analyse d'une série indépendante de 112 rétinoblastomes présentant des facteurs pathologiques à haut risque a révélé que les tumeurs qui métastasent expriment toutes la protéine TFF1, correspondant au gène le plus surexprimé dans les tumeurs de sous-type 2 par rapport aux tumeurs de sous-type 1. Nous avons analysé 14 rétinoblastomes en utilisant le séquençage de l'ARNde cellules uniques (scRNA-seq), et avons confirmé cette hétérogénéité inter-tumorale. L'une des tumeurs analysées présentait une hétérogénéité intra-tumorale au niveau phénotypique et génomique : certaines cellules tumorales présentaient un degré plus élevé de différenciation des cônes et la perte de différenciation des cônes s'accompagnait d'une accumulation d'altérations génomiques, tandis que d'autres cellules présentaient des altérations génomiques et des phénotypes totalement différents. Nous avons décrit le paysage immunitaire du rétinoblastome grâce au scRNA-seq, et avons découvert que différents types de cellules immunitaires sont présents dans le microenvironnement tumoral, notamment de multiples populations de cellules de la lignée monocytaire telles que les macrophages M2 protumoraux et les cellules présentatrices d'antigènes, de multiples populations de cellules T dont les cellules T régulatrices CD4+ et les cellules T cytotoxiques CD8+, ainsi que les cellules NK. L'infiltration des macrophages M2 a été validée par immunohistochimie et a été associée à un niveau élevé d'expression du MIF par une analyse sur puces à cytokines et d'une prédiction in silico de ligand-récepteur.

En conclusion, notre analyse multi-omique et transcriptomique de cellules uniques a permis de caractériser de manière détaillée l'hétérogénéité inter-et intra-tumorale et de décrire le paysage immunitaire du rétinoblastome. Title : Retinoblastoma heterogeneity: a comprehensive multi-omic and single-cell transcriptomic analysis Keywords : Retinoblastoma, heterogeneity, microenvironment, bioinformatics, multi-omics, single-cell transcriptome Abstract : Retinoblastoma is a pediatric cancer derived from the retina. The global annual incidence is around 8000 new cases. Although rare, it is the most common intraocular malignancy in children. Retinoblastoma is treated with local therapy at early stages, but at later stages, it requires enucleation surgery and systemic chemotherapy. Without timely diagnosis and proper treatment, metastasis can develop and lead to lethal diseases. Retinoblastoma is a heterogeneous disease. Tumor cells in different patients or different cells in one patient can exhibit distinct molecular and phenotypic characteristics. From the histopathological perspective, tumor cells can present differentiation at diverse levels, and exhibit exophytic, endophytic or mixed growth. With regard to genomics, retinoblastoma arises predominantly after bi-allelic RB1 inactivation and in rare cases, MYCN amplification may also initiate the disease. Other mutations and genomic alterations may also contribute to the progression of the retinoblastoma such as BCOR mutations, chromosome 1q gain, 6p gain, or 16q loss. In terms of transcriptomics, a few studies were performed and revealed that retinoblastoma can display varied degrees in photoreceptor differentiation signatures. In our work, we identified two molecular subtypes based on the analyses of a series of 102 retinoblastoma using whole-exome sequencing, SNP array, gene expression microarray and DNA methylation array. We made the clustering using a method combining consensus hierarchical clustering and centroid based clustering. We demonstrated that subtype 1 tumors exhibited a more matured cone differentiation signature and were usually manifested in children less than 18 months, while subtype 2 tumors were found more frequent in children more than 18 months, exhibited lower level of cone differentiation, elevated level of ganglion/neuronal features, stemness signatures, and genomic instability. Analysis of an independent series of 112 retinoblastomas with high risk pathological factors uncovered that metastatic tumors all expressed TFF1 protein at their primary sites, the gene that is most upregulated in subtype 2 tumors as compared to subtype 1 tumors. We confirmed this inter-tumoral heterogeneity in 14 additional retinoblastomas using single-cell RNA sequencing. One of the tumors analyzed displayed intra-tumoral heterogeneity at both phenotypic and genomic level, that some tumor cells exhibited higher grade of cone differentiation, the loss of cone differentiation was accompanied with the accumulation of genomic alterations, while other cells presented entirely different genomic alterations and phenotypes. We characterized the immune landscape of retinoblastoma through single-cell transcriptomics, and reported that various immune cells types were presented in the tumor microenvironment, including multiple populations of monocytic lineage cells such as the protumoral alternative M2 macrophages and antigen presenting cells, multiple populations of T cells such as CD4+ regulatory T cells and CD8+ cytotoxic T cells, as well as NK cells. The infiltration of M2 macrophages was validated by immunohistochemistry, and was associated with high-level of MIF expression through cytokine array and in silico ligand-receptor prediction. Taken together, our multi-omic and single-cell transcriptomic analysis comprehensively characterized the inter-and intra-tumoral heterogeneity and characterized the immune landscape in retinoblastoma.
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 1 Figure 1. Schema of the human retina. A, Diagram of the eye. An enlarged diagram of fovea region is shown. RPE: retinal pigmental epithelial. B Diagram of the retina. Following the path of light from inner to outer layer, G: ganglion cells; A: amacrine cells; B: bipolar cells; H: horizontal cells; R: rod photoreceptors; C: cone photoreceptors; M: Müller glia cells.
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 2 Figure 2. Schematic of cell cycle.
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 3 Figure 3. Schema of retinal cell development in mouse. Chronological sequence and transcriptional regulation of retinal cells and their common progenitor are shown. Developmental age is based on data from mouse. RPC: retinal progenitor cell; E: embryonic; P: postnatal. Image from (7).
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 4 Figure 4. Schema of retinal cell development in differentiating human induced Pluiripotent Stem Cells (hiPSCs). Temporal expression of retinal markers in differentiating hiPSCs-derived retinal organoids. Colored blocks represent evolution of each specific retinal cell type evaluated by RT-qPCR and immunohistochemistry. Black stars indicate the time when each specific retinal cell was undoubtedly detected by immunofluorescence. Image from (12).
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 5 Figure 5. Leukocoria in a retinoblastoma patient. Image from (16).
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 6 Figure 6. Funduscopic examination of a retinoblastoma patient eye. Yellow arrowheads marked two retinoblastomas. Image from (15).

  RB1 gene is identified as the first tumor-suppressor gene. It is located on chromosome 13q14, spans 180kb, and has 27 exons. It encodes a nuclear phosphoprotein known as the retinoblastoma protein (Rb). The Rb protein has 928 amino acids and 3 domains: N-terminal domain, central pocket domain and C-terminal domain. The pocket in the central domain (Figure7A, B) can bind to E2F, which inactivate E2F and prevent cells entering S phase (Figure2A). When the Rb protein is phosphorylated by cyclin-dependent kinases (CDKs), the pocket domain undergoes conformation change and release E2F, the latter promotes the cell cycle G1-S transition (Figure7C). Retinoblastoma proteins also interact with chromatin regulators (Figure7)(28).
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 7 Figure 7. Schema of retinoblastoma protein structure. A, The ribbon diagram showed the three domains of retinoblastoma protein (Rb) in active state. Central pocket domain of retinoblastoma protein binds to E2F and L-X-C-X-E peptide. RBN: Rb N-terminal domain; Pocket, Rb central pocket domain; RBC: Rb C-terminal domain; E2F TD , E2F transactivation domain; DPMB, differentiation-related polypeptide marked box. B, The schematic structure of Rb showed known binding sites for protein partners. C, The schematic structure of Rb in its inactive state. Thr373 phosphorylation drives interdomain docking of the N-terminal domain and the pocket domain, whereas Ser608 and Ser612 and Thr821 and Thr826 phosphorylation induce binding of the pocket loop and the C-terminal domain, respectively, to the pocket domain. These different conformational changes inhibit specific RB-protein interactions with E2F and other protein partners. Images from (28).
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 8 Figure 8. According to McEvoy et al., Retinoblastoma express various retinal markers without clear subtype identified. A, 3-D PCA plot of transcriptomic data of 52 retinoblastomas and 7 cell models. B, Box plots of the Log2 mRNA expression for a series of retinal genes in 52 retinoblastomas. The bottom and top of the boxes are the 25th and 75th percentile and the line in the middle is the 50th percentile. The lines represent one standard deviation above and below the mean and data points outside of those lines represent outliers. Image from (36).
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 9 Figure 9. Identification of two main subtypes in retinoblastoma by Kapatai et al.. A, 3-D PCA plot of transcriptomic data of 21 retinoblastomas (shown as red, blue and green dots) and 3 retina samples (shown as purple dots). Color indicates different subgroup identified by clustering analysis. Two main clusters are identified in retinoblastoma samples (shown as red or blue dots). A third
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 10 Figure 10. Quantification of differential signatures in relation to clinical and histopathological variables in the two subtypes identified by Kooi et al.. Color indicates Ward's retinoblastoma cluster 1 (red) or 2 (green) in 74 retinoblastoma. The RB1 +/+ MYCN-amplified tumors are indicated by red labels. Image from (38).
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 11 Figure 11. Schema of retinoblastoma formation from maturing (ARR3+) cone precursors. The left part of the schema illustrated the generation of cone precursors (CPs) from retinal progenitor cells (RPCs) in human. Nascent CPs are RXRγ+,TRβ2+ and have minimal RB expression (43). RB increases during CP maturation and in association with N-MYC and MDM2 expression (Xu et al. 2009).
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 12 Figure 12. Work flow of cyclic array sequencing. DNAs were fragmented and ligated in vitro with the common adapters. Millions of the DNA amplicons were tethered into a high-density DNA array. Reagents including 4-color-labeled dNTP were then added allowing the multiple cycles of enzymatic extension of the millions of amplicons in parallel. In each cycle, the base added to each array feature was determined by the detected color labels by imaging.successive rounds of base extension and imaging allowed sequencing for each array feature. Images from(44).
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 13 Figure 13. Workflow of Chromium single-cell RNA-squencing. A, Schema of the experiment workflow. Cells were combined with reagents in one channel of a microfluidic chip, and gel beads from another channel to form Gel beads in Emulsion (GEMs). Reverse transcription takes place inside each GEM, after which cDNAs are pooled for amplification and library construction in bulk. B, Gel beads loaded with primers and barcoded oligonucleotides are first mixed with cells and reagents, and subsequently mixed with oil-surfactant solution at a microfluidic junction. Single-cell GEMs are collected in the GEM outlet.C, Percentage of GEMs containing 0 gel bead (N=0), 1 gel bead (N=1) and more than 1 gel bead (N>1).

  retinoblastoma? What are their molecular and clinical-pathological features and cells of origin? Three classifications have been proposed based on transcriptomic studies in the past decades. The first study by McEvoy et al. showed that there is no clear subtype using principal component analysis and hierarchical clustering on 52 retinoblastoma samples.

Fig. 1

 1 Fig. 1 Multi-omics-based molecular subtypes of retinoblastoma and clinical characteristics. a Consensus clustering of retinoblastomas based on transcriptomic, DNA methylation, and copy-number alteration data (top panel). Unsupervised cluster-of-clusters analysis (middle panel). Supervised centroid-based classification (bottom panel). Final omics subtype: subtype 1, n = 31 (gold); subtype 2, n = 38 (blue); unclassified, n = 3 (gray). b Heatmap showing methylation values (methylome arrays) for the nine-CpG-based classifier (left panel). Correlation between methylation values assessed by pyrosequencing and by methylome array, for 17 tumors (middle panel). A two-sided Pearson's correlation test was used. The nine-CpG-based classifier applied to a subset of 17 tumors of the initial series, led to the same classification as obtained by the -omics approach in 16 cases (one case being not classified by the nine-CpG-based classifier). Subtype assignment of 30 additional tumors based on the nine-CpG-based classifier (right panel). c Final molecular classification of 96 retinoblastomas and their key clinical and pathological characteristics. p ≥ 0.05 (ns), p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****).For comparisons of RB1 germline mutation, laterity, growth pattern, tumor diameter, and necrosis between two subtypes, Chi 2 tests were used. For comparisons of age at diagnosis and tumor diameter between two subtypes, two-sided Kruskal-Wallis rank tests were used. For comparisons of optic nerve invasion and choroid and sclera invasion between two subtypes, two-sided Fisher's exact tests were used. Exact p-values are provided in Table1.

Fig. 2

 2 Fig. 2 Genomic characterization, somatic mutational landscape, and DNA methylation profiles of the two retinoblastoma subtypes. a Pattern of somatic copy-number alterations in subtype 1 (top, n = 38) and subtype 2 (bottom, n = 58) retinoblastomas. b Boxplots comparing genomic instability between subtype 1 tumors (n = 38) and subtype 2 tumors (n = 58). Among the subtype 2 tumors, non-MYCN-amplified (n = 48) and MYCN-amplified (n = 10) tumors are also shown. Significant differences were tested by two-sided Wilcoxon tests for Subtype 1 vs Subtype 2: p = 3.3 × 10 -7 ; Subtype 1 vs Subtype 2 non-MYCN: p = 1.2 × 10 -7 ; Subtype 1 vs Subtype 2 MYCN-amplified: p = 0.147; and Subtype 2 non-MYCN-amplified vs Subtype 2 MYCNamplified: p = 0.014. c Boxplots comparing the number of somatic mutations between subtype 1 tumors (n = 25) and subtype 2 tumors (n = 41). Among the subtype 2 tumors, non-MYCN-amplified (n = 33) and MYCN-amplified (n = 8) tumors are also shown. Significance differences were tested by twosided Wilcoxon tests for Subtype 1 vs Subtype 2: p = 8.1 × 10 -7 ; Subtype 1 vs Subtype 2 non-MYCN-amplified: p = 3.5 × 10 -6 ; Subtype 1 vs Subtype 2 MYCN-amplified: p = 0.001; and Subtype 2 non-MYCN-amplified vs Subtype 2 MYCN-amplified: p = 0.775. b, c In the boxplots, the central mark indicates the median and the bottom and top edges of the box the 25th and 75th percentiles. The whiskers are the smaller of 1.5 times the interquartile range or the length of the 25th percentiles to the smallest data point or the 75th percentiles to the largest data point. Data points outside the whiskers are outliers. Note: p ≥ 0.05 (ns), p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****). d Somatic mutations of the three genes recurrently altered by tumor subtype. For RB1 are indicated the germline mutations. MYCN amplifications, 1q gains, and 16q losses are also shown. e Heatmap of the 6607 differentially methylated CpGs (difference of methylation level >0.2, adjusted p < 0.05, two-sided Wilcoxon test and BH correction) between subtype 1 and subtype 2. f Distribution, in subtype 2 as compared to subtype 1, of hypomethylated CpGs (upper panel) and hypermethylated CpGs (lower panel), by CpG content and neighborhood context. g Density plots showing the distribution of methylation levels of the differentially methylated CpGs located in CpG islands (upper panel) and outside CpG islands (lower panel).

  Clusters 2 and 4 expressed proliferation markers, such

- 7 .

 7 Fig.3Transcriptomic differences between the two retinoblastoma subtypes. a Volcano plot with genes significantly upregulated in subtype 1 (n = 26) (gold) and subtype 2 (n = 31) (blue). The genes related to cone-cell and neuronal/ganglion-cell differentiation are indicated (in gold and blue, respectively), together with the most highly differentially expressed genes in each subtype. b Hierarchical clustering of the significantly differentially expressed genes identified three main gene clusters. c Upper panels: Gene sets from the GOBP collection enriched in clusters 1.1, 1.2, 2 in hypergeometric tests. Results are presented as networks of enriched gene sets (nodes) connected based on their overlapping genes (edges). Node size is proportional to the total number of genes in the gene set concerned. The names of the various GOBP terms are given in Supplementary Data 3. Bottom panels: Top 5 Gene sets from the HALLMARK collection enriched in clusters 1.1, 1.2, 2. d Upper panel: Boxplots of stemness indices, determined as in Malta et al.32 , in the two subtypes of retinoblastoma (subtype 1 tumors: n = 26, subtype 2 tumors: n = 31). In the boxplots, the central mark indicates the median and the bottom and top edges of the box the 25th and 75th percentiles. Whiskers are the smaller of 1.5 times the interquartile range or the length of the 25th percentiles to the smallest data point or the 75th percentiles to the largest data point. Data points outside the whiskers are outliers. Significance was tested by a twosided Wilcoxon test, p = 1.9 × 10 -7 . Bottom panel: Heatmap of stemness indices and meta-score of the most correlated and anti-correlated HALLMARK (HM) pathways and MCP-score of the most anti-correlated immune cells. Spearman's rho and p-value are shown in the figure. p < 0.0001 (****). e Heatmap representing expression pattern of cone-and ganglion-associated genes in the two subtypes of retinoblastoma. Statistical significance and log2 fold-change in expression between subtype 2 and subtype 1 are also shown. Adjusted.p ≥ 0.05 (ns), adjusted.p < 0.05 (*), adjusted.p < 0.01 (**), adjusted.p < 0.001 (***), adjusted.p < 0.0001 (****). Limma moderated two-sided t-tests and BH correction were used. Exact p-values are provided in Supplementary Data 3.

Fig. 4

 4 Fig. 4 Expression of cone and neuronal/ganglion cell markers in retinoblastoma and retinal organoids. a Heatmap showing the expression of cone and ganglion markers in retinal organoids at different differentiation time points, and in subtype 1 and subtype 2 tumors assessed by NanoString technology. Differences in gene expression between the two subtypes were assessed by two-sided t-tests with BH correction. Exact p-values are provided in Supplementary Data 4. b Pearson's correlation of the expression of 8 cone markers, between the centroids of the 2 retinoblastoma subtypes and retinal organoids at different time points in differentiation. C1: centroid of subtype 1; C2: centroid of subtype 2. c Phylogenetic tree based on cone marker expression, for retinal organoids at different differentiation time points and for retinoblastoma samples. d Immunohistochemical staining of CRX, ARR3, EBF3, and Ki-67 in normal retina and retinoblastoma. For RB617, the black arrows indicate the mutually exclusive patterns for ARR3 and EBF3. Immunohistochemistry experiments were performed on 34 samples (subtype 1, n = 9; subtype 2, n = 25). Two representative images are shown for each subtype. e Boxplots showing the quick score (QS) for the differentiation markers used in the immunohistochemical analysis: CRX, ARR3, and EBF3. In the boxplots, the central mark indicates the median and the bottom and top edges of the box the 25th and 75th percentiles. The whiskers are the smaller of 1.5 times the interquartile range or the length of the 25th percentiles to the smallest data point or the 75th percentiles to the largest data point. Data points outside the whiskers are outliers. Two-sided Wilcoxon tests were used.
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Fig. 5

 5 Fig.5Intratumor heterogeneity at the single-cell level of a subtype 2 retinoblastoma (RBSC11). a 2D t-SNE plot of 1198 single retinoblastoma cells from one patient. Each dot represents one cell. b Heatmap of top cluster markers (top 20 most upregulated genes per cluster according to fold-change). Representative cluster markers and enriched gene sets are shown. Cluster marker p-values were calculated by hypergeometric tests with BH correction. c Expression of selected genes shown in 2D t-SNE plot (early photoreceptor markers: CRX, OTX2; late cone markers: ARR3, GUCA1C; neuronal/ganglion markers: EBF3, GAP43, DCX; proliferation marker: MKI67; pro-apoptotic marker: BNIP3; macrophage marker: CD14; T-cell marker: CD3D). d CNV profiles inferred from single-cell gene expression. Each row represents the profile of one individual cell. The genes on chromosome 6p overexpressed in the nonmalignant cells monocyte/microglia correspond to HLA complex genes and should not be interpreted as CNV in cluster 5. e Upper panel: Diagram summarizing the interpretation of the different clusters of the 2D t-SNE plot. Lower panel: A progression model for this retinoblastoma case based on genomic alterations.

Fig. 6

 6 Fig. 6 Subtype 2 tumors are associated with a higher risk of metastasis. a Immunostaining of CRX, ARR3, and TFF1 in normal retina and retinoblastoma. Immunohistochemistry experiments were performed on 55 samples (subtype 1, n = 18; subtype 2, n = 37) from the initial series of 102 retinoblastomas. Representative images are shown: one subtype 1 tumor (RB1) and two subtype 2 tumors (RB635, RBsjd8). The subtype 2 tumors presented either a costaining (RB635) or a mirror pattern (RBsjd8) for ARR3 and TFF1. b Boxplots showing the quick score (QS) for TFF1 in 55 tumors of the initial series (subtype 1, n = 18; subtype 2, n = 37), and in 112 tumors of the HRPF series. In the boxplots, the central mark indicates the median and the bottom and top edges of the box the 25th and 75th percentiles. The whiskers are the smaller of 1.5 times the interquartile range or the length of the 25th percentiles to the smallest data point or the 75th percentiles to the largest data point. Data points outside the whiskers are outliers. Two-sided Wilcoxon tests were used to assess the difference of the QS for Subtype 1 vs Subtype 2, p = 1.1 × 10 -7, and metastatic vs non-metastatic, p = 0.007. c Immunostaining of TFF1 for primary tumors of metastatic retinoblastoma (left) and their metastatic sites (right), at low and high magnification. TFF1 expression could be assessed by immunohistochemistry for 6 of 7 available primary-metastasis tumor pairs. Representative images of four are shown.
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Clusters 5 and 6

 6 correspond to normal cells, macrophage/microglia (cluster 5 expressing CD14), Tlymphocytes (cluster 6 expressing CD3D).

Figure 7 .

 7 Figure 7. Two visualization of photoreceptor signature expression in Kooi et al.'s data. A, Kooi et al. illustrated that the mean expression of photoreceptor signature (2753 genes) were continuous in two subtypes of retinoblastoma in 72 retinoblastoma samples. Figure from Kooi et al. 2015, EBioMedicine. B, A histogram showing the distribution of mean expression of photoreceptor signature (the same 2753 genes) in the same 72 patient samples from Kooi et al.'s data.

Figure 1 .

 1 Figure 1. Single-cell transcriptome analysis of RBSC11 revealed intra-tumoral heterogeneity. A, 2D-t-SNE plot showing 1198 retinoblastoma cells from one patient. Each dot represents one cell. Cells were clustered and annotated based on their transcriptomic profiles. Tumor cells represented 90% of all cells and were consisted of two main populations, CRX + ARR3 + GUCA1C + cells and CRX + EBF3 + GAP43 + cells, each with a group of cells proliferating. B, Expression of cone and neuronal/ganglion markers in 2D T-SNE plot. Early photoreceptor markers: CRX and OTX2; late cone markers: ARR3 and GUCA1C; ganglion and neuronal markers: EBF3 and GAP43. C, A proposed tumor progression model for RBSC11 based on the inferred copy number variation profiles of the two cell populations. (From Figure 5 of (7))

Figure 2 .

 2 Figure 2. Single cells identified with new analysis pipeline.A, 2D-UMAP plot showing 1274 cells that were identified with the CellRanger V3. Cells that were newly identified and not detected in previous analysis were shown in red. B, Quality control metrics of the cells identified in both versions of analysis and only identified in the new analysis.

Figure 3 .

 3 Figure 3. New annotation of RBSC11. A, 2D-UMAP plot showing 1274 cells colored by annotated clusters. B, Expression of selected genes are shown in a 2D-UMAP plot. Early photoreceptor markers: CRX, OTX2; early cone markers: THRB, RXRG; late cone markers: ARR3, GUCA1C; aberrant retinoblastoma gene: TFF1; neuronal/ganglion markers: EBF3, GAP43, SOX11, UCHL1, DCX; top gene in the newly identified cluster: PRL, CD24; proliferation marker: MKI67; pro-apoptotic marker: BNIP3; monocyte marker: CD14; macrophage marker: CD163; microglia marker: AIF1; T-cell marker: CD3D. C, Alluvial plot showing the cell annotation assignment of the same cells in the current and previous analysis. Cells annotated as none in the previous analysis are the cells newly identified with the currently pipeline.

Figure 4 .

 4 Figure 4. Inferred copy number variation profiles for RBSC11.

Figure 5 .

 5 Figure 5. Schema of a proposed progression model for RBSC11. Based on the new annotation and the inferred copy number variation profiles of the clusters identified in the new analysis, we proposed a refined progression model for RBSC11. Part of the cells came through RB1 loss and chromosome 10q gain and became CRX + GUCA1C + tumor cells. With gain of 2p in those tumor cells, they lost mature cone gene and expressed aberrant tumor genes, became CRX + ARR3 + and CRX + PRL + CD24 + TFF1 + . Other part of the cells lost RB1 and acquired 1q, 2q, 9p, 13q gain, 8q loss and became CRX + EBF3 + GAP43 + TFF1 + tumor cells. Those tumor cells can be in different cell cycle states or showing apoptotic and hypoxic features.

Figure 6 .

 6 Figure 6. Single-cell transcriptomic analysis of retinoblastoma. A, 2D-UMAP of 39297 cells from the 14 retinoblastomas colored by sample. Each dot represent a cell.

Figure 7 .

 7 Figure 7. Immune cell type identification in retinoblastoma microenvironment. A, UMAP colored by clusters. Each dot represent a cell. B, UMAP colored by cell type prediction from label transfer. Mono, monocytes; DC, Dendritic cells.

Figure 8 .

 8 Figure 8. Expression of selected genes in retinoblastoma-infiltrated immune cells. A, Expression of markers of monocytes, macrophages, M2 and M1 macrophages presented in UMAP. B, Expression of microglia marker in UMAP or by Violin plot. C, Violin plot showing the mitochondria gene percentage and the number of count in each cell. D, Expression of cone photoreceptor markers, neuronal/ganglion markers, and aberrant retinoblastoma related gene in each immune cell type. E, Expression of T cell markers in UMAP.

Figure 9 .

 9 Figure 9. Inferred ligand-receptor pairs between monocytes and tumor cells, monocytes and T cells, or monocytes and monocytes.

Figure 1 .

 1 Figure 1. Infiltrating lymphocytes in retinoblastoma eyes (tumor and conserved retinal areas) and in retinas of nonretinoblastoma (control) eyes. (A) Representative examples of immunostaining for CD4, CD8, FOXP3, and CD20. Arrowheads indicate positive staining of the markers. All specimens are shown at 20Â objective magnification with a 40-μm scale bar. Retinas are oriented so that the vitreous chamber is in the upper part of the image. (B), Total cell counts in tumor tissue (n = 23), evaluable conserved retinas (n = 22) and control eyes retinas (n = 5). Individual data (represented with dots) are means of the measures by two researchers (dots) and mean AE SD are represented with lines.

Figure 2 .

 2 Figure 2. Infiltrating macrophages and microglia in retinoblastoma eyes (tumor and conserved retinal areas) and in retinas of nonretinoblastoma (control) eyes. (A) Representative examples of CD68, Iba1, and CD163 immunostaining. All specimens are shown at 20Â objective magnification with a 40-μm scale bar. Retinas are oriented so that the vitreous chamber is in the upper part of the image. (B) Total cell counts in tumor tissue (n = 23), evaluable conserved retinas (n = 22), and control eyes retinas (n = 5). Individual data (represented with dots) are means of the measures by two researchers (dots) and mean AE SD are shown with lines.

Figure 3 .

 3 Figure 3. Expression of immune checkpoint molecules in retinoblastoma samples. (A) Top: representative examples of positive (brown staining in cell membranes) and negative PD-L1 immunostaining (20Â objective magnification and 40-μm scale bar). Bottom: percentage of PD-L1 positivity in retinoblastomas (n = 23). (B) Top: representative examples of positive (brown membranes), focal, and negative B7-H3 immunostaining (20Â objective magnification and 40-μm scale bar). Bottom: percentage of B7-H3 positivity in retinoblastomas (n = 23). (C) mRNA expression of CD274 and CD276 in six retinoblastoma cell models upon exposure to artificial proinflammatory microenvironment (10 ng/ml IFN-γ, 48 h). n.d., not detected. Data are shown as mean AE SD of two replicates. (D) Membrane PD-L1 staining by flow cytometry phycoerythrin (PE) fluorescence emission in retinoblastoma cells exposed to IFN-γ (10 ng/ml; 48 h). (E) Quantification of the flow cytometry experiment and paired analysis of the increase of PD-L1 membrane expression upon exposure to 10 ng/ml IFN-γ. Lines link paired samples.

Figure 4 .

 4 Figure 4. Cytokine secretion and expression profile of retinoblastomas. (A) Heatmap of 105 cytokines secreted by 11 retinoblastoma cell models. Top-five expressed cytokines are marked with arrows and numbers indicate the rank of each cytokine. The color scale is the relativized signal value of each of the spots to the mean signal value of the positive controls. (B) Heatmap of log2 gene expression of BSG (gene encoding for EMMPRIN), MIF, IGFBP2, GDF15, and PTX3 in retinoblastoma patient tumors, retinoblastoma cell models, and fetal retinas. (C) Boxplots representing the log2 fold-change of gene expression of the five genes in patient tumors and cell lines compared to fetal retinas. *Adjusted p value = 0.0401 and ****adjusted p value = 9.33e-10 (limma moderated t test, BH correction). (D) MIF concentrations in the cell culture supernatants (RB medium) of retinoblastomas. Each dot represents a different patient-derived cell model; line represents the median value. (E) MIF concentrations in liquid biopsies (aqueous humor) of retinoblastoma patients (RB; n = 23) or nonretinoblastoma patients (non RB; n = 12). Each dot represents the value of a different patient; lines represent the median values. (F) EMMPRIN concentrations in the cell culture supernatants (RB medium) of retinoblastomas. Each dot represents a different patient-derived cell model; line represents the median value. (G) EMMPRIN concentrations in liquid biopsies of retinoblastoma patients (RB; n = 22) or nonretinoblastoma patients (non RB; n = 12). Each dot represents the value of a different patient; lines represent the median values.

Figure 5 .

 5 Figure 5. Single-cell sequencing of immune markers and cytokines in one retinoblastoma tumor. (A) 2D t-SNE plot of 1,198 single retinoblastoma cells from the tumor sample. Each dot represents one cell. (B) Expression of MIF and genes encoding for MIF receptors, CD74 and CD44. (C) Immunostaining of CD44 and CD74 in one retinoblastoma sample. Pictures were taken at 20Â objective magnification. Scale bar is 40 μm. (D) Expression of genes encoding for immune markers AIF1 (Iba1), CD163 , and CD80 , and secreted proteins BSG (EMMPRIN), IGFBP2 , GDF15 , and PTX3 .

Figure 6 .

 6 Figure 6. Polarization and migration of PBMC-derived macrophages stimulated with retinoblastoma-conditioned medium and rMIF. (A) Representative experiment showing cell counts of CD80 + (M1-like) (PE fluorescence emission), and CD163 + (M2-like), (allophycocyanin -APC -fluorescence emission), analyzed by flow cytometry. (B) CD163 + /CD80 + ratios (mean and SD of eight independent experiments). (C) Representative experiment of macrophage invasion and migration in transwell assays. Cells were stained with crystal violet. (D) Migration of macrophages in each experimental condition, relativized to the migration of negative control macrophages (0.1% BSA). Data are mean and SD of 24 photographs, obtained from two independent experiments run in duplicate. NPA, nonprimary antibody; medium, nonsupplemented retinoblastoma medium; M1 cocktail, medium containing M1-like polarizing cytokines; M2-like cocktail, medium containing M2-like polarizing cytokines; RB medium, retinoblastoma-conditioned medium; rMIF, recombinant MIF; 10% iFBS, inactivated fetal bovine serum; 0.1 BSA, bovine serum albumin.
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  Hétérogénéité du rétinoblastome : une analyse multi-omique et transcriptomique de cellules uniques Mots clés : Rétinoblastome, hétérogénéité, microenvironnement, bioinformatique, multi-omique, transcriptome de cellules uniques Résumé : Le rétinoblastome est un cancer pédiatrique dérivé de la rétine. Bien que rare, c'est la tumeur maligne intraoculaire la plus fréquente chez l'enfant. Le rétinoblastome est traité par une thérapie locale aux premiers stades, mais aux stades ultérieurs, il nécessite une chirurgie d'énucléation et une chimiothérapie systémique. Sans un diagnostic en temps utile et un traitement approprié, des métastases peuvent se développer et entraîner le décès de l'enfant. Le rétinoblastome est une maladie hétérogène. Les cellules tumorales de différents patients ou différentes cellules d'un même patient peuvent présenter des caractéristiques moléculaires et phénotypiques distinctes. D'un point de vue histopathologique, les cellules tumorales peuvent présenter différents degrés de différenciation, ainsi qu'une croissance exophytique, endophytique ou mixte. En ce qui concerne la génomique, le rétinoblastome survient principalement après une inactivation bi-allélique de RB1 et, dans de rares cas, une amplification de MYCN peut également déclencher la maladie.
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	CHAPTER 3.

A HIGH-RISK RETINOBLASTOMA SUBTYPE WITH STEMNESS FEATURES, DEDIFFERENTIATED CONE STATES AND NEURONAL/GANGLION CELL GENE EXPRESSIONTable 1 .

 1 Clinical and histopathological characteristics of patients stratified by molecular subtype.

Table 2 .

 2 Clinical and pathological characteristics of an additional series of 112 primary tumors presenting HRPFs.

	CHAPTER 4.

CHARACTERIZATION OF HETEROGENEITY IN RETINOBLASTOMA BY SINGLE- CELL RNA-SEQUENCINGTable 1 .

 1 Patient Characteristics.

Table 1 . Summary of clinical staging systems.

 1 From(19).

		AJCC Clinical Staging, 8th edition	IIRC Group	ICRB Group	IRSS Stage
		(Mallipatna, et al., 2017)	(Murphree, 2005)	(Shields, 2006)	(Chantada, 2006)
	cT1	Intra-retinal tumour(s) with subretinal fluid ≤5		
		mm from base of any tumour		
	cT1a Tumors ≤3 mm and further than 1.5mm from	A, >3mm to fovea	A, >3mm to fovea	-
		disc and fovea	or B, 1.5 to 3mm	or B, 1.5 to 3mm
	cT1b Tumors >3mm or closer than 1.5mm from disc	B	B, ≤3mm or	-
		or fovea		C, 3 to 5mm
	cT2	Intraocular tumour(s) with retinal		
		detachment, vitreous seeding, or subretinal		
		seeding.		
	cT2a Subretinal fluid >5 mm from the base of any	C, >5 mm or D, >	C, or	-
		tumour	1 quadrant	E, tumour >50% of
				eye volume
	cT2b Vitreous seeding and/or subretinal seeding	C, "local" or D,	C, ≤3 mm or	-
			"diffuse"	D, > 3 mm or
				E, tumour >50% of
				eye volume
	CT3	Advanced intraocular tumour(s)		
	cT3a Phthisis or pre-phthisis bulbi	E	E	I or II
	cT3b Tumour invasion of choroid, pars plana, ciliary	E	E	I or II
		body, lens, zonules, iris, or anterior chamber		
	cT3c Raised intraocular pressure with	E	E	I or II
		neovascularization and/or buphthalmos		
	cT3d Hyphaema and/or massive vitreous	E	E	I or II
		haemorrhage		
	cT3e Aseptic orbital cellulitis	E	E	I or II
	cT4	Extraocular tumour(s) involving orbit, including optic nerve	
	cT4a Radiologic evidence of retrobulbar optic nerve involvement or thickening of optic	I or II
		nerve or involvement of orbital tissues		
	cT4b Extraocular tumour clinically evident with proptosis and/or an orbital mass	IIIa
	N1	Evidence of preauricular, submandibular, and cervical lymph node involvement	IIIb
	CM1	Clinical signs of distant metastasis		
	cM1a Tumour(s) involving any distant site (e.g., bone marrow, liver) on clinical or radiologic	IVa
		tests		
	cM1b Tumour involving the CNS on radiologic imaging (not including trilateral	IVb
		retinoblastoma)		
	H	Hereditary Trait		
	HX	Unknown or insufficient evidence of a constitutional RB1 gene mutation
	H1	Normal RB1 alleles in blood tested with demonstrated high-sensitivity assays
	H2	Bilateral retinoblastoma, retinoblastoma with an intracranial primitive neuroectodermal tumour (i.e.,
		trilateral retinoblastoma), patient with family history of retinoblastoma, or molecular definition of a
		constitutional RB1 gene mutation		

  retinoblastomas, McEvoy et al. proposed that retinoblastomas express various retinal differentiation markers that are incompatible in normal development, but reported finding no distinct subtype (Figure8)(36). Two years

later, Kapatai et al. identified two subtypes of retinoblastoma, from a study of 21 retinoblastomas and 3 normal developing retina, with one subtype co-expressing different retinal cell markers -similar to what McEvoy et al. has found -and another subtype mainly expressing cone photoreceptor markers (Figure 9) (37). By applying the same clustering methods as Kapatai et al., Kooi et al. found two clusters using transcriptomic data of a series of 76 retinoblastomas. They further proposed that the two subgroups are not dichotomous, but continuous, exhibiting gradient photoreceptor signature and ribosome/mRNA synthesis signature (Figure

Table 2 . Summary of single-cell RNA-sequencing methods. From (47) Transcript data Platform Throughput (number of cells) Read depth (per cell) Reaction volume

 2 

	Reference

  ).

	Thanks to the timely diagnosis and treatments, retinoblastoma is no longer a lethal • A transcriptomic dataset derived from 59 samples studied by Affymetrix Human CHAPTER 2. disease in high-income countries. Less-invasive local procedures and localized Genome U133 plus 2.0 array.
	OBJECTIVES chemotherapies have been developed that largely decreased the side-effects of the • A matching clinical dataset.
	treatments and improved quality of life for patients. However, enucleation of the • The list of those datasets is available from: https://static-
	affected eye(s) are still needed in around half of patients in France. No targeted content.springer.com/esm/art%3A10.1038%2Fs41467-021-25792-
	Context therapies have been successfully developed into clinical stages. 0/MediaObjects/41467_2021_25792_MOESM4_ESM.xlsx.
	Retinoblastoma is a rare cancer of the developing retina. The goals of the treatment A better understanding of the molecular mechanisms of retinoblastoma progression Through analyzing these data, the Molecular Oncology team has identified two
	are to save a patient's life, and to preserve the eye(s) and the vision. can give insights to a better use of the current treatment and the discovery of novel molecular subtypes of retinoblastoma by analyzing gene expression, DNA methylation
	therapeutic targets. Retinoblastoma is shown to be predominantly driven by bi-allelic and somatic copy number alterations (SCNA) in 72 patient samples. They have shown
	Institut Curie is the leading treatment and research center for retinoblastoma in France RB1 inactivation. MYCN amplification may be another driving event as it is found in that genes upregulated in subtype1 were enriched in cone photoreceptor differentiation
	and is one of the largest in the world. The institute receives around 50 new many patients with wide-type RB1 gene. Genomic and transcriptomic studies have genes (e.g. ARR3), while strongly expressed genes in subtype2 (e.g. EBF3) were
	retinoblastoma patients per year. The institute conduct clinical, translational and basic been performed to identify additional events that are needed to promote the involved in ganglion differentiation and axonal outgrowth. In terms of clinical features,
	research with the aim of reducing side-effects of the treatments, improving the existing retinoblastoma progression, but perhaps due to rarity of this cancer, the number of the patients with subtype1 tumors are significantly younger at diagnosis. Histologically,
	treatments, and discovering new treatments that can preserve the eyes and the vision. studies as well as the characterization of the genomic or transcriptomic events are still subtype1 tumors tended to grow into subretinal areas, whereas subtype2 tumors were
	The Molecular Oncology research team at Institut Curie is led by Dr. François Radvanyi lagging, compared to other pediatric and adult cancers. more likely to grow towards the vitreous.
	and is focused on understanding molecular mechanisms of tumor progression in Characterization of the molecular basis of cancer can be achieved through comparison
	bladder cancer and in retinoblastoma. The team is composed of biologists, to its normal counterpart or through comparison within its subtypes. The cell of origin
	bioinformaticians and clinicians. The research strategies include identification of of retinoblastoma has been debated, either being a cone precursor or a multipotent
	genetic and epigenetic events from large-scale genomic and transcriptomic data and retinal precursor. For the existence of subtypes, three transcriptomic analyses have
	functional validation of candidate genes using cell and animal models. The knowledge reached different conclusions: no subtype, two subtypes, or no subtype but with
	obtained from understanding cancer biology can be translated to the development of different cone differentiation states.
	Data include five independent runs from multiple chip and gel bead lots over >70k GEMs for each run, new therapeutic targets, diagnostic and prognostic markers.
	n=5, mean±s.e.m. The CIT research team at La Ligue Contre Le Cancer is led by Dr. Aurélien de Reyniès Hypothesis D, Gel beads contain barcoded oligonucleotides consisting of Illumina adapters, 10x barcodes, UMIs and aims at identifying cancer subtypes and characterizing their specific driving events. and oligo dTs, which prime RT of polyadenylated RNAs. E, Finished library molecules consist of Illumina adapters and sample indices, allowing pooling and The team has extensive capabilities in bioinformatics and collaborates with multiple Since 2006, Molecular Oncology team at Institut Cruie has started to work on
	sequencing of multiple libraries on a next-generation short read sequencer. clinical and research teams in France to collect and analyze large-scale genomic and retinoblastoma. Several datasets have been established:
	F, Cellranger bioinformatic pipeline to obtain a gene-barcode matrix (highlighted in green). transcriptomic datasets in various cancer types under the CIT (Carte d'Identité des • A list of mutations derived from 84 primary tumor samples studied by whole-
	Images from (50) Tumeurs) program. exome sequencing.
	• A somatic copy number alteration (SCNA) dataset derived from 102 samples
	studied by BAC array CGH, Illumina SNP 370K array or Cytoscan TM copy
	Rationale number array.
	• A methylation array dataset derived from 66 samples studied by Illumina 450K
	methylation array.
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Table 1

 1 Clinical and histopathological characteristics of patients stratified by molecular subtype.

		Subtype 1 Subtype 2		
		n (%)	n (%)	N p-value a
	Patients	38 (40)	58 (60)	96	
	Clinical Center				
	Institut Curie	31 (42)	43 (58)	74 0.655 b
	Hospital Garrahan	6 (33)	12 (66)	18	
	Hospital Sant	1 (25)	3 (75)	4	
	Joan de Déu				
	Sex				
	Female	17 (35)	31 (65)	48 0.403 c
	Male	21 (44)	27 (56)	48	
	RB1 germline mutation				
	Yes	14 (70)	6 (30)	20 7.681 × 10 -4 c
	No	17 (28)	44 (72)	61	
	NA	7 (47)	8 (53)	15	
	Laterality				
	Bilateral	12 (75)	4 (25)	16 1.506 × 10 -3 c
	Unilateral	26 (33)	54 (66)	80	
	Age at diagnosis				
	<18 months	33 (73)	12 (27)	45 2.132 × 10 -9 d
	18-36 months	4 (10)	38 (90)	42	
	>36 months	1 (11)	8 (89)	9	
	Growth pattern				
	Endophytic	7 (18)	31 (82)	38 7.332 × 10 -4 c
	Exophytic	19 (63)	11 (37)	30	
	Mixed	6 (46)	7 (54)	13	
	NA	6 (40)	9 (60)	15	
	Tumor diameter (mm)				
	(3.98-6.67]	1 (50)	1 (50)	2	0.2094 d
	(6.67-9.33]	1 (25)	3 (75)	4	
	(9.33-12]	7 (50)	7 (50)	14	
	(12-14.7]	9 (64)	5 (36)	14	
	(14.7-17.3]	9 (27)	24 (73)	33	
	(17.3-20]	5 (31)	11 (69)	16	
	NA	6 (46)	7 (54)	13	
	Necrosis				
	Yes	18 (31)	40 (69)	58 0.0203 c
	None	16 (57)	12 (43)	28	
	NA	4 (40)	6 (60)	10	
	Optic nerve invasion				
	None	12 (48)	13 (52)	25 0.7467 b
	Prelaminar	12 (39)	19 (61)	31	
	Intralaminar	4 (33)	8 (66)	12	
	Post-laminar	4 (31)	9 (69)	13	
	NA	6 (40)	9 (60)	15	
	Choroid and sclera invasion			
	None	10 (40)	15 (60)	25 0.6468 b
	Minimal	10 (48)	11 (52)	21	
	Deep	1 (14)	6 (86)	7	
	Extended	8 (38)	13 (62)	21	
	Sclera invasion	1 (50)	1 (50)	2	
	NA	8 (40)	12 (60)	20	

NA not available, n number in each subtype, N total number. a Significant p-value < 0.05. b Two-sided Fisher's exact test. c Chi 2 test. d Two-sided Kruskal-Wallis rank test. NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25792-0 ARTICLE NATURE COMMUNICATIONS | (2021) 12:5578 | https://doi.org/10.1038/s41467-021-25792-0 | www.nature.com/naturecommunications

Table 2

 2 Clinical and pathological characteristics of an additional series of 112 primary tumors presenting HRPFs.

	Characteristics

a Chi 2 test. b Two-sided Wilcoxon rank-sum test. c Two-sided Fisher's exact test. ARTICLE NATURE COMMUNICATIONS | (2021) 12:5578 | https://doi.org/10.1038/s41467-021-25792-0 | www.nature.com/naturecommunications

  al., Shats et al., Smith et al. of 109, 80, and 49 genes, respectively)

Table 1 . Patient Charateristics.

 1 

												Optic nerve	Choroid and sclera
									Tumor	Differentiation	Type of growth	invasion (None	invasion (None
		Gender	Age at	Laterality					diameter	(Well	(Exophytic	/Prelaminar	/Minimal /Deep
		(Male	enucleation	(Unilateral/	Hereditary	Prior	IIRC	TNM	(mm, by	/Intermediate	/Endophytic	/Intralaminar	/Extende /Extended
	sampleID	/Female)	(month)	Bilateral)	(Y/N)	treatment	class	stage	MRI)	/Poor)	/Mixed)	/Postlaminar)	and Sclera)
	RBSC11	Female		Unilateral	N	no	E	cT2b	na	Intermediate	na	Prelaminar	Extended and Sclera
	RBSC14	Male		Unilateral	N	no	E	cT2b	17	na	Endophytic	None	None
	RBSC15	Male		Unilateral	N	no	D	cT2b	15	Intermediate	Endophytic	na	None
	RBSC16	Female		Unilateral	N	no	E	cT3d	na	Poor	Mixed	Postlaminar	Minimal
	RBSC17	Male		Unilateral	N	no	E	cT2a	17	Intermediate	Exophytic	Prelaminar	Deep
	RBSC19	Female		Unilateral	N	no	E	cT2b	na	Poor	Exophytic	None	None
	RBSC23	Female		Unilateral	N	no	E	cT2b	15	Intermediate	Exophytic	None	Minimal
	RBSC24	Male		Unilateral	N	no	E	cT2b	19	Poor	Exophytic	Intralaminar	None
	RBSC26	Female		Unilateral	N	no	D	cT2b	na	Intermediate	Endophytic	None	None
	RBSC27	Male		Unilateral	N	no	E	cT2b	16	Intermediate	Mixed	Prelaminar	Minimal
	RBSC30	Female		Unilateral	N	no	E	cT2b	17	Intermediate	Endophytic	None	None
	RBSC31	Male		Unilateral	N	no	E	cT3c	16.5	Intermediate	Endophytic	Prelaminar	Minimal
	RBSC32	Female		Unilateral	N	no	E	cT2b	na	Intermediate	Endophytic	None	Minimal
	RBSC33	Male	9	Unilateral	N	no	E	cT2b	18	Intermediate	Exophytic	Postlaminar	Minimal
	na: not available											

NATURE COMMUNICATIONS | (2021) 12:5578 | https://doi.org/10.1038/s41467-021-25792-0 | www.nature.com/naturecommunications

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

The raw array data are deposited in the Gene Expression Omnibus (GEO) database under accession code GSE58785. The raw whole-exome sequencing data are deposited in the European Genome-Pheome Archive (EGA) database under accession code EGAS00001005248. The raw targeted sequencing data are deposited in the EGA database under accession code EGAS00001005550. The raw single-cell RNA sequencing data are deposited in the EGA database under accession code EGAS00001005178. Data in EGA is available under restricted access, access can be obtained by contacting Retinoblastoma Data Access Committee -Institut Curie (data.office@curie.fr). The public retinoblastoma
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