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Le rétinoblastome est un cancer pédiatrique dérivé de la rétine. Bien que rare, c'est la 

tumeur maligne intraoculaire la plus fréquente chez l'enfant. Le rétinoblastome est 

traité par une thérapie locale aux premiers stades, mais aux stades ultérieurs, il 

nécessite une chirurgie d'énucléation et une chimiothérapie systémique. Sans un 

diagnostic en temps utile et un traitement approprié, des métastases peuvent se 

développer et entraîner le décès de l’enfant.  

Le rétinoblastome est une maladie hétérogène. Les cellules tumorales de différents 

patients ou différentes cellules d'un même patient peuvent présenter des 

caractéristiques moléculaires et phénotypiques distinctes. D'un point de vue 

histopathologique, les cellules tumorales peuvent présenter différents degrés de 

différenciation, ainsi qu'une croissance exophytique, endophytique ou mixte. En ce qui 

concerne la génomique, le rétinoblastome survient principalement après une 

inactivation bi-allélique de RB1 et, dans de rares cas, une amplification de MYCN peut 

également déclencher la maladie. En termes de transcriptomique, quelques études 

ont été réalisées et ont révélé que le rétinoblastome peut présenter des degrés variés 

dans les signatures de différenciation des photorécepteurs.  

Dans notre travail, nous avons identifié deux sous-types moléculaires basés sur 

l'analyse de 102 rétinoblastomes en utilisant le séquençage de l'exome entier, les SNP 

array, les puces pour mesurer l’expression des gènes et la methylation de l’ADN. Nous 

avons réalisé le clustering en utilisant une stratégie combinant le clustering 

hiérarchique consensuel et le clustering basé sur les centroïdes. Nous avons démontré 

que les tumeurs de sous-type 1 présentaient une signature plus mature de 

différenciation de photorécepteurs cône et se manifestaient généralement chez les 

enfants de moins de 18 mois, tandis qu'un niveau plus faible de différenciation de 

photorécepteurs cône est corrélé à un niveau élevé de caractéristiques 

ganglionnaires/neuronales, de signatures de type souche et d'instabilité génomique 
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dans les tumeurs de sous-type 2, que l'on retrouve davantage chez les enfants de plus 

de 18 mois. L'analyse d'une série indépendante de 112 rétinoblastomes présentant 

des facteurs pathologiques à haut risque a révélé que les tumeurs qui métastasent 

expriment toutes la protéine TFF1, correspondant au gène le plus surexprimé dans les 

tumeurs de sous-type 2 par rapport aux tumeurs de sous-type 1. Nous avons analysé 

14 rétinoblastomes en utilisant le séquençage de l'ARN de cellules uniques (scRNA-

seq), et avons confirmé cette hétérogénéité inter-tumorale. L'une des tumeurs 

analysées présentait une hétérogénéité intra-tumorale au niveau phénotypique et 

génomique : certaines cellules tumorales présentaient un degré plus élevé de 

différenciation des cônes et la perte de différenciation des cônes s'accompagnait d'une 

accumulation d'altérations génomiques, tandis que d'autres cellules présentaient des 

altérations génomiques et des phénotypes totalement différents. Nous avons décrit le 

paysage immunitaire du rétinoblastome grâce au scRNA-seq, et avons découvert que 

différents types de cellules immunitaires sont présents dans le microenvironnement 

tumoral, notamment de multiples populations de cellules de la lignée monocytaire 

telles que les macrophages M2 protumoraux et les cellules présentatrices d'antigènes, 

de multiples populations de cellules T dont les cellules T régulatrices CD4+ et les 

cellules T cytotoxiques CD8+, ainsi que les cellules NK. L'infiltration des macrophages 

M2 a été validée par immunohistochimie et a été associée à un niveau élevé 

d'expression du MIF par une analyse sur puces à cytokines et d'une prédiction in silico 

de ligand-récepteur. 

En conclusion, notre analyse multi-omique et transcriptomique de cellules uniques a 

permis de caractériser de manière détaillée l'hétérogénéité inter- et intra-tumorale et 

de décrire le paysage immunitaire du rétinoblastome.  
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Abstract 
 

Title: Retinoblastoma heterogeneity: a comprehensive multi-omic and single-cell 

transcriptomic analysis  

 
Keywords: Retinoblastoma, heterogeneity, microenvironment, bioinformatics, multi-

omics, single-cell transcriptome 

 

Retinoblastoma is a pediatric cancer derived from the retina. The global annual 

incidence is around 8000 new cases. Although rare, it is the most common intraocular 

malignancy in children. Retinoblastoma is treated with local therapy at early stages, 

but at later stages, it requires enucleation surgery and systemic chemotherapy. 

Without timely diagnosis and proper treatment, metastasis can develop and lead to 

lethal diseases.  

Retinoblastoma is a heterogeneous disease. Tumor cells in different patients or 

different cells in one patient can exhibit distinct molecular and phenotypic 

characteristics. From the histopathological perspective, tumor cells can present 

differentiation at diverse levels, and exhibit exophytic, endophytic or mixed growth. 

With regard to genomics, retinoblastoma arises predominantly after bi-allelic RB1 

inactivation and in rare cases, MYCN amplification may also initiate the disease. Other 

mutations and genomic alterations may also contribute to the progression of the 

retinoblastoma such as BCOR mutations, chromosome 1q gain,  6p gain, or 16q loss. 

In terms of transcriptomics, a few studies were performed and revealed that 

retinoblastoma can display varied degrees in photoreceptor differentiation signatures.  

In our work, we identified two molecular subtypes based on the analyses of a series of 

102 retinoblastoma using whole-exome sequencing, SNP array, gene expression 

microarray and DNA methylation array. We made the clustering using a method 

combining consensus hierarchical clustering and centroid based clustering. We 

demonstrated that subtype 1 tumors exhibited a more matured cone differentiation 

signature and were usually manifested in children less than 18 months, while subtype 

2 tumors were found more frequent in children more than 18 months, exhibited lower 

level of cone differentiation, elevated level of ganglion/neuronal features, stemness 

signatures, and genomic instability. Analysis of an independent series of 112 
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retinoblastomas with high risk pathological factors uncovered that metastatic tumors 

all expressed TFF1 protein at their primary sites, the gene that is most upregulated in 

subtype 2 tumors as compared to subtype 1 tumors. We confirmed this inter-tumoral 

heterogeneity in 14 additional retinoblastomas using single-cell RNA sequencing. One 

of the tumors analyzed displayed intra-tumoral heterogeneity at both phenotypic and 

genomic level, in that some tumor cells exhibited higher grade of cone differentiation, 

while other cells presented entirely different genomic alterations and phenotypes. We 

characterized the immune landscape of retinoblastoma through single-cell 

transcriptomics, and reported that various immune cells types are present in the tumor 

microenvironment, including multiple populations of monocytic lineage cells such as 

the protumoral alternative M2 macrophages and antigen presenting cells, multiple 

populations of T cells such as CD4+ regulatory T cells and CD8+ cytotoxic T cells, as 

well as NK cells. The infiltration of M2 macrophages was validated by 

immunohistochemistry, and was associated with high-level of MIF expression through 

cytokine array and in silico ligand-receptor prediction. 

Taken together, our multi-omic and single-cell transcriptomic analysis 

comprehensively characterized the inter- and intra- tumoral heterogeneity and 

characterized the immune landscape in retinoblastoma. 
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CHAPTER 1. 
INTRODUCTION 

 

Retinoblastoma is a rare pediatric cancer but also the most common intraocular 
malignancy in children. It arises from the developing retina. This introduction aims to 

provide an overview of essential background knowledge of the disease and to highlight 

the research gaps in the field.  

 

THE RETINA AND RETINAL DEVELOPMENT 

The retina 

The human retina is a 0.2mm-thick light-sensitive tissue in the posterior lining of the 

eye (Figure 1A). Six mayor types of neurons (rod and cone photoreceptors, horizontal 

cells, bipolar cells, amacrine cells and retinal ganglion cells) and glial cells are orderly 

layered in the retina (Figure 1B,C). They function collectively to receive light, process 

signals and transmit information to the brain.  

 
Figure 1. Schema of the human retina.  
A, Diagram of the eye. An enlarged diagram of fovea region is shown. RPE: retinal pigmental 

epithelial.  

B Diagram of the retina. Following the path of light from inner to outer layer, G: ganglion cells; A: 

amacrine cells; B: bipolar cells; H: horizontal cells; R: rod photoreceptors; C: cone photoreceptors; M: 

Müller glia cells.  
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C, H&E stained section of human retina. GCL: ganglion cell layer; IPL: inner plexiform layer; INL: inner 

nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; IS: inner segment; OS: outer 

segment. Images from (1) 

 

Retinal cell types and their function 

The retinal neurons are arranged in an orderly structure that consists of two 

photoreceptor segment layers (outer segment and inner segment), three nuclear layers 

(outer nuclear layer, inner nuclear layer, ganglion cell layer) and two synaptic layers 

(outer plexiform layer, inner plexiform layer) (Figure 1B,C). Light passes through 

transparent inner retinal layers and photons get captured by the visual pigments in 

inner segment and outer segment layers of the photoreceptors. Excessive light is 

absorbed by retinal pigmental epithelial next to the photoreceptors. After absorption by 

visual pigments, signal transduction cascades are initiated inside the photoreceptors, 

resulting in the change of membrane potential. This change regulates the releasing of 

neurotransmitters from the photoreceptors to the bipolar and horizontal cells in the first 

synaptic layer, the outer plexiform layer. Horizontal cells provide feedback and 

feedforward signals to both photoreceptors and bipolar cells. Bipolar cells connect to 

the amacrine cells and retinal ganglion cells in the second synaptic layer, the inner 

plexiform layer. Amacrine cells provide inhibitory feedback and feedforward signals. 

Finally, retinal ganglion cells integrate all the information through their dendrites and 

pass it on through their axons into the optic nerve and further into the brain (1,2). 

The predominant cell types in the retina are the photoreceptors. Rod photoreceptors, 
of which there is only one type, mediate vision in dim light. Cone photoreceptors 

mediate vision in bright light and are responsible for color vision. There are three types 

of cone cells (L, M, S) and they carry different pigments (opsins) with maximal 

absorption for different wavelengths of light: red/long-wavelength (L), green/medium-

wavelength (M), and blue/short-wavelength (S). The human retina contain about 130 

million photoreceptors, about 5 million bipolar cells, and about 1 million ganglion cells. 

Rods outnumber cones by 20-fold, and are distributed throughout the retina except for 

the fovea region (1) There are also multiple subtypes of bipolar, horizontal, amacrine 

interneurons, and retinal ganglion cells (3,4). 
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In the retina there are also three major types of glial cells: Müller glia, astrocytes and 
microglia. The Müller glia are specialized macroglia of the retina spanning the entire 

thickness of neural retina (Figure 1B). They guide the light to the photoreceptors, 

maintain homeostasis, and are modulators of immune and inflammatory responses. 

Astrocytes are macroglia migrated from the brain to the retina and are located 

predominantly in the ganglion cell layers. They participate in maintenance of vascular 

stability and hemostasis in the retina. Microglia are monocytes that enter the retina and 

then reside in the ganglion cell layers and the two synaptic layers. They are responsible 

for the immune responses and neural regenerations (5). 

 

The fovea 

The fovea is 700-µm-diameter pit near the center of the retina (Figure 1A). Among the 

mammals, it is only present in human and other higher primates. This region has 

several structural characteristics so that it has the highest visual acuity as compared 

to other regions of the retina. The fovea primarily consists of cone cells, the 

photoreceptors that mediate color vision and provide a higher resolution than rod 

photoreceptors, the predominant cells in non-fovea regions. Each fovea cone is 

connected to its exclusive bipolar and ganglion cell; unlike in other areas of the retina, 

multiple photoreceptors share the connecting interneurons to transmit information to 

the central nervous system. Light enter photoreceptors with minimal distortion in the 

fovea region since the cell bodies of the proximal retinal neurons have been shifted to 

the side (Figure 1A) (1). 

 

Retinal development 

The vertebrate retina develops from retinal progenitor cells (RPCs). They give rise to 
all six major types of retinal neurons and Müller glia in a conserved sequential order. 

Ganglion cells, cone photoreceptors, horizontal cells and amacrine cells are early-born 

cells, while bipolar neurons, Müller glia, and rod photoreceptors are late-born cells. 

During early development, RPCs are highly proliferative and divide symmetrically to 

grow retina into a proper size in coordination with the growth of the eye. Upregulation 

of the transcriptional factors (TFs) Pax6, Chx10 and Sox2 may be important for 
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maintaining proliferative capabilities of RPCs. Following the expansive period, RPCs 

tend to divide asymmetrically, producing one daughter cell that differentiates into an 

early-born retinal cell, and another daughter cell that is a retinal progenitor cell. At later 

developmental stages, both daughter cells exit cell cycle and differentiate into retinal 

cells (Davis and Dyer, 2010). Cell cycles are precisely coordinated during each step of 

retinal development to ensure a certain proportion of retinal cells to be generated in a 

certain order (Figure 2) (6) 

 
Figure 2. Schematic of cell cycle.  
A, Following mitosis (M) phase, the phosphorylation state of the retinoblastoma protein (Rb), or its 

related family members (p107, p130) dictates whether a neuronal progenitor cell will progress through 

another round of cell division and pass the G1/S checkpoint, or exit the cell cycle and differentiate. It 
has been suggested that p130 is required to maintain cells in the differentiated state and that p107 might 

be important in regulating cell-cycle progression during late G1/S phase. Hypophosphorylated Rb, p107 

or p130 binds to the E2F/DP heterodimer, which prevents transcription of E2F-regulated genes. Five 

main E2F family members have been identified and these molecules show preferential binding to 

different Rb family members. E2F1–3 preferentially bind to Rb, E2F5 preferentially binds to p107 and 

p130 and E2F4 binds to all three family members. The binding preferences and activities of the two DP 

genes (DP1, DP2) that have been identified in mammals have not been fully elucidated. Several different 

cyclin/cyclin-dependent kinase (CDK) holoenzymes have been identified that can phosphorylate Rb 
family members. Cyclin-D–CDK complexes are believed to act early during the G1 phase in mitotic cells. 

The three D-type cyclins (D1, D2 and D3) are expressed in a tissue-specific manner and associate with 

one of two CDKs (CDK4 and CDK6). Later during G1, the cyclin-E–CDK2 complex is believed to be the 

main Rb/p107/p130 kinase. Two families of cyclin-kinase inhibitors (CKIs) have been identified that can 

block the kinase activity of these holoenzymes. The INK family (p15, p16, p18 and p19) is believed to 

bind preferentially to cyclin-D–CDK complexes and leads to disruption of the holoenzyme subunits. 

Cip/Kip CKIs (p21, p27 and p57) can form stable complexes with either cyclin-D–CDK or cyclin-E–CDK 
complexes. According to one model, upregulation of an INK family member in a mitotic cell might lead 
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to disruption of a cyclin-D–CDK–(Cip/Kip) complex, which is followed by cyclin-E–CDK2 inactivation by 

the newly released Cip/Kip molecule.  

B, Retinal progenitor cells exit the cell cycle during the G1 phase and differentiate into retinal neurons 

or Müller glia. Retinal neurons are considered in G0 phase and undergone terminal differentiations. 

Müller glia are considered quiescent in G0 phase but maintain the capability to re-enter cell cycle in 

some situations such as neural regeneration. Images and texts from (6). 

 

Mouse retina is a model commonly used to study retinal development. In mouse, 

ganglion cells are generated first during embryogenesis, followed by the production of 

cone photoreceptors, horizontal cells, and most of the amacrine neurons. Bipolar 

neurons, Müller glia, the remaining amacrine neurons, and most rod photoreceptors 

are generated postnatally. The production of retinal cell types overlap at any given time 

and are regulated intrinsically by several transcriptional factors (Figure 3) (7). 

 

Figure 3. Schema of retinal cell development in mouse. Chronological sequence and transcriptional 
regulation of retinal cells and their common progenitor are shown. Developmental age is based on data 

from mouse. RPC: retinal progenitor cell; E: embryonic; P: postnatal. Image from (7).  

 

Despite high levels of evolutionary conservation in vertebrate retina, there are 

important differences between human and mouse retinal development. A better 

understanding of human-specific retinal development is crucial for understanding 

retinoblastoma tumorigenesis and for finding new treatments for this disease.  



CHAPTER 1 
 

 10 

Researchers made efforts in obtaining normal, well-preserved human fetal eyes to 
perform both morphological and molecular studies (8–10). Human retina also develops 

both prenatally and postnatally. All retinal cell types are generated before birth, and 

they continue to mature after birth.  The generation of retinal cells in human shares a 

similar order as in mouse. It is also noted that human retinal development is spatially 

regulated, neural differentiation is initiated in the central retina near fovea and 

progresses toward the periphery.  

Recent data have indicated that human Embryonic Stem cells (hESCs) and human 

induced Pluripotent Stem Cells (hiPSCs) can be used to generate retinal organoids 

that shares similar structure as neural retina (11,12). Different retinal cells were 

differentiated from the RPCs in these retinal organoids in a similar timely order to 

mouse (Figure 4) (12).  

 

Figure 4. Schema of retinal cell development in differentiating human induced Pluiripotent Stem 
Cells (hiPSCs). Temporal expression of retinal markers in differentiating hiPSCs-derived retinal 

organoids. Colored blocks represent evolution of each specific retinal cell type evaluated by RT-qPCR 

and immunohistochemistry. Black stars indicate the time when each specific retinal cell was undoubtedly 

detected by immunofluorescence. Image from (12). 
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RETINOBLASTOMA: EPIDEMIOLOGY AND CLINICAL ASPECTS 

Incidence 

Retinoblastoma is the cancer of the developing retina. It represents the most common 

intraocular tumor in children, and accounts for about 4% of all childhood cancers (13). 

Its incidence rate is about 1 in 16,000 live births per year, predicting approximately 

8,000 new cases each year worldwide (14,15).  

 

Risk factors 

There are very few known risk factors for retinoblastoma. The risk of retinoblastoma is 

much higher in children from families with a history of retinoblastoma. Other risk factors 

include exposure to tobacco before pregnancy and advanced maternal age (16). 

 

Clinical presentation 

Retinoblastoma is generally presented during early childhood. More than 95% of the 

children diagnosed with retinoblastoma are younger than 5 years old (18). Disease can 

affect one (unilateral) or both eyes (bilateral), and rarely also the pineal (trilateral). 

Unilateral retinoblastomas count for 60% of cases and have a median age at diagnosis 

of two years, while 40% of cases are bilateral with a median age at diagnosis of one 

year (16).  

The most common first sign of retinoblastoma is leukocoria, a white reflex visible 

through the pupil (Figure 5). Strabismus, or ocular misalignment, is the second 

common early sign of retinoblastoma. Early awareness of these signs are crucial, for 

timely treatment therefore can improve prognosis and survival rate. When diagnosed 

late, retinoblastoma may be presented with proptosis, buphthalmos, glaucoma and 

inflammation. These symptoms more often occur when the tumor spreads and are 

related to poor prognosis (15,17,18). 

Retinoblastoma can spread through the optic nerve to the central nervous system. It 

can also invade choroid, sclera and orbit to enter the vessels and subsequently 

metastasize to bone marrow, liver and other organs (19)  



CHAPTER 1 
 

 12 

 

Figure 5. Leukocoria in a retinoblastoma patient. Image from (16). 

 

Diagnosis 

Dilated fundusopic examination is essential for the diagnosis of retinoblastoma as well 

as for the evaluation of the tumor stage. Retinoblastoma often present as one or 

multiple yellow-white retinal masses through funduscopy (Figure 6). There are two 

types of growth patterns of the retinoblastoma: endophytic and exophytic. Endophytic 

retinoblastoma refers to the tumor growing towards the vitreous, they often produce 

vitreous seeding. Exophytic tumors refer to the tumor extend beneath the retina. These 

tumors can cause exudative retinal detachments and may be associated with 

significant subretinal seeding. The appearance of seeds has been described as fine 

dust, spheres, or clouds, each with a progressively worse prognosis, respectively 

(15,18). 

Ultrasound or magnetic resonance imaging can also help the diagnosis and staging. 

Calcification and optic nerve invasion can often be found through these examinations 

(15). For retinoblastoma, biopsy is not recommended, as it increases the risk of 

extraocular spread (15,18). 

  

Figure 6. Funduscopic examination of a retinoblastoma patient eye. Yellow arrowheads marked 

two retinoblastomas. Image from (15). 
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Correct staging of the retinoblastoma are essential to making the treatment plan and 

the prediction of outcome. There are several different staging or classification systems. 

International Intraocular Retinoblastoma Classification (IIRC) (20) and its modified 

version Intraocular Classification of Retinoblastoma (ICRB) (21) are the systems 

generally adopted to evaluate intraocular diseases. Other classification schemes that 

are also used include staging of extraocular retinoblastoma (22) and staging of vitreous 

seeding (23). Retinoblastoma can also be staged using “Tumor Node Metastasis” 

(TNM) classification system (Table 1) (19).  

 

Management 

The goals of the management of retinoblastoma are to save the patient’s life, and to 

preserve the eye and the vision. Management plan is made based on the 

comprehensive evaluation of the disease by a team of experts including 

ophthalmologists, oncologists, radiologists, geneticists, pathologists and 

radiotherapists. Common primary treatments for intraocular disease include 

enucleation surgery, intra-venous chemotherapy with focal therapy (laser 

photocoagulation, thermotherapy or cryotherapy), intra-arterial chemotherapy with 

focal therapy, and focal therapy alone (14).   

Enucleation is the surgical procedure to remove the affected eye. It is usually applied 

to the eye with a large tumor burden in unilateral disease. In France, it is performed in 

around 50% of the cases. With the development of new eye-salvage therapies, the use 

of enucleation will be further decreased. Cosmetic reconstruction can be performed to 

improve the aesthetic outcome (14).  

Common used drugs in intra-venous chemotherapy include carboplatin, etoposide, 
vincristine and cyclosporine. In intra-arterial chemotherapy, melphalan, topotecan and 

carboplatin are often used (14).  

When primary treatments fail, second-line treatments can be applied, which include 

focal therapy, repeated systemic chemotherapy, intra-arterial chemotherapy, 

brachytherapy, external beam radiotherapy and stereotactic conformal or proton-beam 



CHAPTER 1 
 

 14 

radiotherapy. Vitreous seeding is the main reason of failure in eye preservation. 

Intravitreal chemotherapy may be used to improve the drug delivery in vitreous (14).  

Treatments for extraocular retinoblastoma include neoadjuvant chemotherapy, 
enucleation, orbital radiation and adjuvant chemotherapy. In metastatic diseases, 

intrathecal chemotherapy (injection into the cerebrospinal fluid space), high-dose 

chemotherapy and stem cell rescue may be used (14).  

 

Prognosis 

Prognosis of retinoblastoma is good in high-income countries (patient survival is more 
than 95%). However, in low-income countries patient survival is low (30%). Poor 

outcome correlates with lack of retinoblastoma specific care center, late diagnosis and 

poor compliance of treatment due to family’s poor socioeconomic status. Without 

timely diagnosis and appropriate treatment, lethal metastatic disease may develop (14).  
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Table 1. Summary of clinical staging systems. From (19). 
  AJCC Clinical Staging, 8th edition 

(Mallipatna, et al., 2017) 
IIRC Group 

(Murphree, 2005)  
ICRB Group 

(Shields, 2006)  
IRSS Stage 

(Chantada, 2006) 

cT1  Intra-retinal tumour(s) with subretinal fluid ≤5 
mm from base of any tumour 

   

    cT1a Tumors ≤3 mm and further than 1.5mm from 
disc and fovea 

A, >3mm to fovea 
or B, 1.5 to 3mm 

A, >3mm to fovea 
or B, 1.5 to 3mm 

- 

    cT1b Tumors >3mm or closer than 1.5mm from disc 
or fovea 

B B, ≤3mm or  
C, 3 to 5mm 

- 

cT2 Intraocular tumour(s) with retinal 
detachment, vitreous seeding, or subretinal 
seeding. 

   

    cT2a Subretinal fluid >5 mm from the base of any 
tumour 

C, >5 mm or D, > 
1 quadrant 

C, or 
E, tumour >50% of 

eye volume 

- 

    cT2b Vitreous seeding and/or subretinal seeding  C, “local” or D, 
“diffuse” 

C, ≤3 mm or  
D, > 3 mm or  

E, tumour >50% of 
eye volume 

- 

CT3 Advanced intraocular tumour(s) 
   

    cT3a Phthisis or pre-phthisis bulbi E E I or II 
    cT3b Tumour invasion of choroid, pars plana, ciliary 

body, lens, zonules, iris, or anterior chamber 
E E I or II 

    cT3c Raised intraocular pressure with 
neovascularization and/or buphthalmos 

E E I or II 

    cT3d Hyphaema and/or massive vitreous 
haemorrhage 

E E I or II 

    cT3e Aseptic orbital cellulitis E E I or II 

cT4 Extraocular tumour(s) involving orbit, including optic nerve 
 

    cT4a Radiologic evidence of retrobulbar optic nerve involvement or thickening of optic 
nerve or involvement of orbital tissues 

I or II 

    cT4b Extraocular tumour clinically evident with proptosis and/or an orbital mass  IIIa 

N1 Evidence of preauricular, submandibular, and cervical lymph node involvement  IIIb 

CM1 Clinical signs of distant metastasis 
 

    cM1a Tumour(s) involving any distant site (e.g., bone marrow, liver) on clinical or radiologic 
tests  

IVa  

    cM1b Tumour involving the CNS on radiologic imaging (not including trilateral 
retinoblastoma)  

IVb  

H Hereditary Trait  
 

    HX Unknown or insufficient evidence of a constitutional RB1 gene mutation 

    H1 Normal RB1 alleles in blood tested with demonstrated high-sensitivity assays 
    H2 Bilateral retinoblastoma, retinoblastoma with an intracranial primitive neuroectodermal tumour (i.e., 

trilateral retinoblastoma), patient with family history of retinoblastoma, or molecular definition of a 
constitutional RB1 gene mutation  
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RETINOBLASTOMA: GENETIC AND MOLECULAR BASIS  

Knudson’s hypothesis 

A genetic model to explain the difference of age at diagnosis and incidence rates 

between unilateral and bilateral retinoblastoma patients was proposed by Knudson 

(24). Two mutations are required to develop retinoblastoma, each of the two mutations 

occurs at a rather constant rate. These two mutations can both be somatic mutations, 

or one of the two mutations can be a germline mutation. Patients who carry one 

germline mutation can develop the disease earlier in their lives than the patients who 

need to accumulate two somatic mutations.  

 

The RB1 gene inactivation 

The two hits underlying retinoblastoma was later recognized by the finding of 

chromosome 13q14 deletions in retinoblastoma patients and RB1 gene being identified 

in the smallest deleted region in this deleted chromosome segment (25). Several 

studies further elucidated that inactivation of both alleles of RB1 can lead to 

retinoblastoma formation (26). By analysis of a cohort of more than 1000 

retinoblastomas, RB1 were found inactivated in 98% of the cases (27). 

The RB1 gene is identified as the first tumor-suppressor gene. It is located on 

chromosome 13q14, spans 180kb, and has 27 exons. It encodes a nuclear 

phosphoprotein known as the retinoblastoma protein (Rb). The Rb protein has 928 

amino acids and 3 domains: N-terminal domain, central pocket domain and C-terminal 

domain. The pocket in the central domain (Figure 7A, B) can bind to E2F, which 

inactivate E2F and prevent cells entering S phase (Figure 2A). When the Rb protein is 

phosphorylated by cyclin-dependent kinases (CDKs), the pocket domain undergoes 

conformation change and release E2F, the latter promotes the cell cycle G1-S 

transition (Figure 7C). Retinoblastoma proteins also interact with chromatin regulators 

(Figure 7) (28).  
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Figure 7. Schema of retinoblastoma protein structure.  
A, The ribbon diagram showed the three domains of retinoblastoma protein (Rb) in active state. Central 

pocket domain of retinoblastoma protein binds to E2F and L-X-C-X-E peptide. RBN: Rb N-terminal 

domain; Pocket, Rb central pocket domain; RBC: Rb C-terminal domain; E2FTD, E2F transactivation 

domain; DPMB, differentiation-related polypeptide marked box.  

B, The schematic structure of Rb showed known binding sites for protein partners.  

C, The schematic structure of Rb in its inactive state. Thr373 phosphorylation drives interdomain docking 

of the N-terminal domain and the pocket domain, whereas Ser608 and Ser612 and Thr821 and Thr826 

phosphorylation induce binding of the pocket loop and the C-terminal domain, respectively, to the pocket 
domain. These different conformational changes inhibit specific RB–protein interactions with E2F and 

other protein partners. Images from (28). 

 

MYCN amplification 

MYCN is located in chromosome 2p and is a member of MYC oncogene family. MYCN 

amplifications are found in a variety of cancers, including neuroblastomas and 

retinoblastomas (14). It has been shown that MYCN does not likely contribute to 

retinoblastoma initiation but plays a role in RB1-mutated tumor progression (29). 
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However, a more recent study showed that MYCN amplifications were found in half of 

the RB+/+ retinoblastoma cases, suggesting that MYCN amplifications  may actually be 

initiating events in rare cases when RB1 gene are intact (27).  

 

Additional genomic and epigenetic alterations 

Biallelic RB1 inactivation is necessary to initiate most retinoblastomas, but it is not 

sufficient, as retinoma - the benign retinal lesion - similarly involves bi-allelic RB1 loss 

(30). Another recurrent mutation identified in retinoblastoma is BCOR, an interacting 

corepressor of BCL6 (31,32). 

Besides mutations, recurrent DNA copy number alterations are found in retinoblastoma, 

include chr1q gain, chr2p gain, chr6p gain, chr13q gain, chr13q loss, chr16q loss, 

chr17p loss, and chr19 gain (33). These genomic altercations may map to several 

candidate oncogenes such as KIF14 (chr 1), p53 regulator MDM4 (chr 1), E2F3 (chr 

6) and DEK (chr 6); microRNA clusters mir-106b~25 (chr 7), mir-17~92 (chr 13); and 

retinoblastoma protein family member RBL2 (chr 16) (14).  

Dysregulation of chromatin regulators are also reported in retinoblastoma (34,35). This 

includes genes involved in DNA methylation (DNMT1, DNMT3A, DNMT3B, TET1, 

TET3), histone modification (HDAC2, KDM1A, EZH2), Chromatin remodeling (HELLS, 

SMARCC1, SMARCAD1, HMGA2, HMGB2, HMGB3).  
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MOLECULAR CLASSIFICATIONS OF RETINOBLASTOMA 

Cancer is a heterogeneous disease, therefore it is crucial to identify specific disease 

subtypes in order to find appropriate treatment. Clinical staging, pathological 

observation and genetic analysis provide hints for the right treatment. Beyond that, are 

there molecular subtypes that may lead to discovery of specific targeted therapeutics 

for the disease? Several transcriptomic analysis of retinoblastoma have been 

performed in the last decade, trying to answer this question.  

From a transcriptomic study of 52 retinoblastomas, McEvoy et al. proposed that 

retinoblastomas express various retinal differentiation markers that are incompatible in 

normal development, but reported finding no distinct subtype (Figure 8) (36). Two years 

later, Kapatai et al. identified two subtypes of retinoblastoma, from a study of 21 

retinoblastomas and 3 normal developing retina, with one subtype co-expressing 

different retinal cell markers – similar to what McEvoy et al. has found – and another 

subtype mainly expressing cone photoreceptor markers (Figure 9) (37). By applying 

the same clustering methods as Kapatai et al., Kooi et al. found two clusters using 

transcriptomic data of a series of 76 retinoblastomas. They further proposed that the 

two subgroups are not dichotomous, but continuous, exhibiting gradient photoreceptor 

signature and ribosome/mRNA synthesis signature (Figure 10) (38). 
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Figure 8. According to McEvoy et al., Retinoblastoma express various retinal markers without 
clear subtype identified.  
A, 3-D PCA plot of transcriptomic data of 52 retinoblastomas and 7 cell models.  

B, Box plots of the Log2 mRNA expression for a series of retinal genes in 52 retinoblastomas. The 
bottom and top of the boxes are the 25th and 75th percentile and the line in the middle is the 50th 

percentile. The lines represent one standard deviation above and below the mean and data points 

outside of those lines represent outliers. Image from (36). 
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Figure 9. Identification of two main subtypes in retinoblastoma by Kapatai et al..  
A, 3-D PCA plot of transcriptomic data of 21 retinoblastomas (shown as red, blue and green dots) and 

3 retina samples (shown as purple dots). Color indicates different subgroup identified by clustering 

analysis. Two main clusters are identified in retinoblastoma samples (shown as red or blue dots). A third 
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cluster of tumors (RB12 and RB13, shown as green dots) are likely contaminated with many normal 

cells as they expressed many genes similar to normal retina.  

B, Expression of retinal markers in 21 retinoblastomas and 3 retina samples. Image from (37). 

 

 

Figure 10. Quantification of differential signatures in relation to clinical and histopathological 
variables in the two subtypes identified by Kooi et al..  
Color indicates Ward's retinoblastoma cluster 1 (red) or 2 (green) in 74 retinoblastoma. The 

RB1+/+MYCN-amplified tumors are indicated by red labels. Image from (38). 
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CELL-OF-ORIGIN OF RETINOBLASTOMA  

RB1 loss is found in many cancers, but its predominant contribution to retinoblastoma 

initiation is unique. In retinoblastoma, 98% of the patients carried RB1 mutations (27). 

Why is the human retina extremely sensitive to RB1 loss? Finding out which cells are 

most sensitive to RB1 loss and how they are transformed to tumor cells can shed light 

on the targeted treatment for retinoblastoma. 

Researchers have been working on this question but have reached different 
conclusions: photoreceptor cone cells, progenitor cells or amacrine/horizontal cells are 

hypothesized as cell of origin of retinoblastoma in different studies. The finding that 

various retinal markers were expressed by retinoblastoma may indicate a progenitor 

cell of origin, but may also be due to oncogenic deregulations. Studies in mouse 

models suggest an amacrine/horizontal origin, as early-stage tumors expressed  genes 

found in retinal synapse layers and exhibited similar morphological differentiations to 

the two retinal interneurons (39). However, retinoblastoma mouse models are different 

from human retinoblastoma, because tumor formation in mouse requires Rbl1, Rbl2 or 

Cdkn1b perturbation in addition to Rb1 loss.  

Recent studies in human retinoblastoma pointed out a more probable cone lineage 
origin of retinoblastoma. It was first proposed by the finding that the topographic 

distribution of emerging retinoblastomas mimics the horizontal visual streak 

characteristic of long-wavelength and medium-wavelength cones (40). In accordance 

with this view, RB1−/− retinoblastomas consistently express cone precursor markers 

but not other retinal cell-type-specific proteins. In addition, human cone precursors 

prominently express MDM2 and MYCN, both of which are required for retinoblastoma 

proliferation and survival (41). Most recent study in RB1 depleted cultured retina led 

us to focus on ARR3+ maturing cone cells, from that retinoblastoma-like lesions are 

formed (Figure 11) (42).   
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Figure 11. Schema of retinoblastoma formation from maturing (ARR3+) cone precursors.  
The left part of the schema illustrated the generation of cone precursors (CPs) from retinal progenitor 

cells (RPCs) in human. Nascent CPs are RXRγ+,TRβ2+ and have minimal RB expression (43). RB 

increases during CP maturation and in association with N-MYC and MDM2 expression (Xu et al. 2009). 
The right part of the schema illustrated that RB loss in maturing (ARR3+) CP caused it entering cell-

cycle and proliferation (orange). Cell-cycle entry after RB depletion were only observed in ARR3+ CP 

instead of ARR- immature CP. This cell-cycle entry maybe followed by cell-cycle withdrawal (blue) and 

an indolent phase that may give rise to permanently quiescent retinomas or to retinoblastoma tumors 

(red). Image from (42) 
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OMICS APPROACHES  

In 1990, the ambitious Human Genome Project was launched, scientists all over the 

world worked together trying to decipher the entire human genome. During the next 13 

years, the 3 billion base pairs of the human genome were determined by Sanger 

sequencing, a DNA sequencing method based on chain termination with the four color-

labeled nucleotides. The huge success of the Human Genome Project was not only 

because it accomplished the mission to decode 99% of human euchromatin 

sequences, more importantly, it revealed several optimization opportunities for the 

sequencing methods, and provided a reference genome that enabled the potential of 

short-read sequencing (44). 

Two years later after the completion of the Human Genome Project, in 2005, the first 

cyclic-array sequencing methods, that we now refer as the Next-Generation 

sequencing (NGS), were reported (45,46). These methods enabled parallel 

sequencing of millions of features at a much faster speed with a lower cost. The cyclic-

array sequencing is described as the sequencing of a dense array of fragmented DNA 

amplicons through iterative cycles of enzymic nucleotide addition and imaging-based 

data acquisition (Figure 12).  

 
Figure 12. Work flow of cyclic array sequencing.  
DNAs were fragmented and ligated in vitro with the common adapters. Millions of the DNA amplicons 

were tethered into a high-density DNA array. Reagents including 4-color-labeled dNTP were then added 

allowing the multiple cycles of enzymatic extension of the millions of amplicons in parallel. In each cycle, 

the base added to each array feature was determined by the detected color labels by imaging. 

successive rounds of base extension and imaging allowed sequencing for each array feature. Images 

from (44). 
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Based on the NGS technology, various high-throughput methods were developed to 
profile thousands to millions of DNAs, RNAs, proteins in one experiment. The 

advances of these omics approaches have revolutionized biomedical research in the 

past two decades. The International Cancer Genome Consortium (ICGC) is one of the 

ambitious initiatives after the Human Genome Project, it has collected clinical and 

molecular data in more than 24,000 tumors across 86 cancer projects. The molecular 

data include somatic variants, copy-number alterations, gene expression, microRNA 

profiles, DNA methylations and chromatin conformations. The consortium provides 

extensive knowledge on cancer biology and can guide the development of new 

therapeutics targeting the specific mutations, deregulated pathways in certain cancer 

subtypes.  

In the recent decade, omics has entered “single-cell” age. Emerging methods were 

developed to profile the molecules at a single-cell scale. These methods coupled with 

bioinformatic algorithms allowed researchers to identify rare cell populations and new 

biomarkers in normal and tumor tissues, to better characterize the subclones and the 

microenvironment in tumors, as well as to trace tumor progression within one tumor.  

Table 2 summarizes single-cell RNA sequencing methods (47). C1 and Smart-seq2 
are commercialized methods that enable full length RNA sequencing in hundreds of 

cells (48,49). Chromium is a droplet-based 3’ RNA-sequencing method that increased 

the throughput into profiling thousands of cells in one experiment (Figure 13) (50). 

 

Table 2. Summary of single-cell RNA-sequencing methods. From (47) 
 

Transcript 
data 

Platform Throughput 
(number of 

cells) 

Read 
depth 

(per cell) 

Reaction 
volume 

Reference 

C1  Full length Microfluidics 102–103 106 Nanoliter Pollen et al., 2014 

Smart-seq2 Full length Plate-based 102–103 106 Microliter Picelli et al., 2013 

MATQ-seq Full length Plate-based 102–103 106 Microliter Sheng et al., 2017 

MARS-seq 3’-end cout Plate-based 102–103 104–105 Microliter Jaitin et al., 2014 

CEL-seq 3’-end cout Plate-based 102–103 104–105 Nanoliter Hashimshony et al., 2012 

Drop-seq 3’-end cout Droplet 103–104 104–105 Nanoliter Macosko et al., 2015 

InDrop 3’-end cout Droplet 103–104 104–105 Nanoliter Klein et al., 2015 

Chromium 3’-end cout Droplet 103–104 104–105 Nanoliter Zheng et al., 2017 

SEQ-well 3’-end cout Nanowell array 103–104 104–105 Nanoliter Gierahn et al., 2017 

SPLIT-seq 3’-end cout Plate-based 103–105 104 Microliter Rosenberg et al., 2018 
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Figure 13. Workflow of Chromium single-cell RNA-squencing.  
A, Schema of the experiment workflow. Cells were combined with reagents in one channel of a 

microfluidic chip, and gel beads from another channel to form Gel beads in Emulsion (GEMs). Reverse 

transcription takes place inside each GEM, after which cDNAs are pooled for amplification and library 

construction in bulk.  

B, Gel beads loaded with primers and barcoded oligonucleotides are first mixed with cells and reagents, 

and subsequently mixed with oil-surfactant solution at a microfluidic junction. Single-cell GEMs are 
collected in the GEM outlet.  

C, Percentage of GEMs containing 0 gel bead (N=0), 1 gel bead (N=1) and more than 1 gel bead (N>1). 

Data include five independent runs from multiple chip and gel bead lots over >70k GEMs for each run, 

n=5, mean±s.e.m.  

D, Gel beads contain barcoded oligonucleotides consisting of Illumina adapters, 10x barcodes, UMIs 

and oligo dTs, which prime RT of polyadenylated RNAs.  

E, Finished library molecules consist of Illumina adapters and sample indices, allowing pooling and 

sequencing of multiple libraries on a next-generation short read sequencer.  
F, Cellranger bioinformatic pipeline to obtain a gene-barcode matrix (highlighted in green).  
Images from (50) 
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CHAPTER 2.  
OBJECTIVES 

 

Context 

Retinoblastoma is a rare cancer of the developing retina. The goals of the treatment 

are to save a patient’s life, and to preserve the eye(s) and the vision.   

Institut Curie is the leading treatment and research center for retinoblastoma in France 

and is one of the largest in the world. The institute receives around 50 new 

retinoblastoma patients per year. The institute conduct clinical, translational and basic 

research with the aim of reducing side-effects of the treatments, improving the existing 

treatments, and discovering new treatments that can preserve the eyes and the vision.  

The Molecular Oncology research team at Institut Curie is led by Dr. François Radvanyi 

and is focused on understanding molecular mechanisms of tumor progression in 

bladder cancer and in retinoblastoma. The team is composed of biologists, 

bioinformaticians and clinicians. The research strategies include identification of 

genetic and epigenetic events from large-scale genomic and transcriptomic data and 

functional validation of candidate genes using cell and animal models. The knowledge 

obtained from understanding cancer biology can be translated to the development of 

new therapeutic targets, diagnostic and prognostic markers.  

The CIT research team at La Ligue Contre Le Cancer is led by Dr. Aurélien de Reyniès 

and aims at identifying cancer subtypes and characterizing their specific driving events. 

The team has extensive capabilities in bioinformatics and collaborates with multiple 

clinical and research teams in France to collect and analyze large-scale genomic and 

transcriptomic datasets in various cancer types under the CIT (Carte d’Identité des 

Tumeurs) program.  

  

Rationale 
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Thanks to the timely diagnosis and treatments, retinoblastoma is no longer a lethal 
disease in high-income countries. Less-invasive local procedures and localized 

chemotherapies have been developed that largely decreased the side-effects of the 

treatments and improved quality of life for patients. However, enucleation of the 

affected eye(s) are still needed in around half of patients in France. No targeted 

therapies have been successfully developed into clinical stages.  

A better understanding of the molecular mechanisms of retinoblastoma progression 
can give insights to a better use of the current treatment and the discovery of novel 

therapeutic targets. Retinoblastoma is shown to be predominantly driven by bi-allelic 

RB1 inactivation. MYCN amplification may be another driving event as it is found in 

many patients with wide-type RB1 gene. Genomic and transcriptomic studies have 

been performed to identify additional events that are needed to promote the 

retinoblastoma progression, but perhaps due to rarity of this cancer, the number of the 

studies as well as the characterization of the genomic or transcriptomic events are still 

lagging, compared to other pediatric and adult cancers.  

Characterization of the molecular basis of cancer can be achieved through comparison 

to its normal counterpart or through comparison within its subtypes. The cell of origin 

of retinoblastoma has been debated, either being a cone precursor or a multipotent 

retinal precursor. For the existence of subtypes, three transcriptomic analyses have 

reached different conclusions: no subtype, two subtypes, or no subtype but with 

different cone differentiation states. 

 

Hypothesis 

Since 2006, Molecular Oncology team at Institut Cruie has started to work on 

retinoblastoma. Several datasets have been established: 

• A list of mutations derived from 84 primary tumor samples studied by whole-

exome sequencing. 

• A somatic copy number alteration (SCNA) dataset derived from 102 samples 

studied by BAC array CGH, Illumina SNP 370K array or CytoscanTM copy 

number array.  

• A methylation array dataset derived from 66 samples studied by Illumina 450K 

methylation array. 
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• A transcriptomic dataset derived from 59 samples studied by Affymetrix Human 

Genome U133 plus 2.0 array. 

• A matching clinical dataset. 

• The list of those datasets is available from: https://static-

content.springer.com/esm/art%3A10.1038%2Fs41467-021-25792-

0/MediaObjects/41467_2021_25792_MOESM4_ESM.xlsx. 

Through analyzing these data, the Molecular Oncology team has identified two 

molecular subtypes of retinoblastoma by analyzing gene expression, DNA methylation 

and somatic copy number alterations (SCNA) in 72 patient samples. They have shown 

that genes upregulated in subtype1 were enriched in cone photoreceptor differentiation 

genes (e.g. ARR3), while strongly expressed genes in subtype2 (e.g. EBF3) were 

involved in ganglion differentiation and axonal outgrowth. In terms of clinical features, 

patients with subtype1 tumors are significantly younger at diagnosis. Histologically, 

subtype1 tumors tended to grow into subretinal areas, whereas subtype2 tumors were 

more likely to grow towards the vitreous.  

Based on these evidences, we hypothesized the existence of two molecular subtypes 

of retinoblastoma, one cone-like subtype, the other subtype with mixed cone and 

ganglion features. Different molecular mechanisms may be involved in these two 

subtypes.  

 

Objectives 

The objectives of my PhD projects are: 

1) I sought to better depict the molecular landscapes of the two subtypes of 

retinoblastoma through analyzing the genomic, transcriptomic and methylomic data 

that have already been acquired.  

2) In collaboration with the biologist in the team, we sought to collect new single-cell 

transcriptomic data to better characterize the inter-tumoral heterogeneity of the 

retinoblastoma, the intra-tumoral heterogeneity observed in subtype 2 retinoblastoma, 

and potentially the retinoblastoma tumor microenvironment. 
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CHAPTER 3.  
A HIGH-RISK RETINOBLASTOMA SUBTYPE WITH 

STEMNESS FEATURES, DEDIFFERENTIATED CONE 
STATES AND NEURONAL/GANGLION CELL GENE 

EXPRESSION 
 

 

In this chapter, we will address the questions: are there molecular subtypes of 

retinoblastoma? What are their molecular and clinical-pathological features and cells 

of origin?  

Three classifications have been proposed based on transcriptomic studies in the past 

decades. The first study by McEvoy et al. showed that there is no clear subtype using 

principal component analysis and hierarchical clustering on 52 retinoblastoma samples. 

Both the tumors and the orthotopic retinoblastoma xenografts expressed markers of 

various retinal cell types, including photoreceptors, interneurons and progenitor cells. 

Hence, the authors suggested that retinoblastoma is relative homogeneous and retinal 

progenitor cells may be the cells of origin for this tumor.  

Kapatai et al. identified two subtypes of retinoblastoma from an analysis of 21 

retinoblastomas and 3 normal retina. They showed that one subtype co-expressed 

various retinal cell markers, are relatively less differentiated and carried more copy 

number alterations (1q loss, 6p gain and 16q loss). Another subtype predominantly 

expressed cone photoreceptor markers. The authors hypothesized that the two 

subtypes may originate from different retinal cells, one from retinal progenitor cells, 

another from retinal cone photoreceptor lineage.  

Kooi et al. also found two clusters using transcriptomic data of a series of 76 
retinoblastomas. They illustrated that the two subgroups were not dichotomous, but 

displayed gradients of photoreceptor and ribosome/mRNA synthesis signatures. The 

level of photoreceptor signature in tumors were inversely correlated with age of 

diagnosis and positively correlated with degree of differentiation. The authors proposed 
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that the tumors with lower differentiation and lower degree of photoreceptor maturity 

may be dedifferentiated from another subtype with higher photoreceptor maturity.  

In this chapter, based on a combined strategy of consensus clustering and centroid 
clustering of genomic, transcriptomic and methylomic data from 102 patient samples, 

we identified two molecular subtypes of retinoblastoma that are associated with 

different clinical-pathological features. We showed that all retinoblastoma expressed 

cone photoreceptor markers, with subtype 1 showing more matured cone signatures, 

and subtype 2, more aggressive, displayed less differentiated cone signatures and 

higher level of neuronal/ganglion and stemness features. This subtype was also 

associated with relative unstable genome, hypomethylated DNAs and 

hypermethylated CpG islands. We showed that subtype 2 tumors were more 

heterogeneous, in some cases both matured cone markers and neuronal/ganglion 

markers were expressed in one tumor. We analyzed one of such cases by single-cell 

RNA sequencing and revealed different genomic alterations were involved in different 

tumor cells with different phenotype, suggesting that different progression pathways 

and different cells of origin may be involved in retinoblastoma with varied levels of cone 

differentiation.  

This article is published in Nature Communications (2021), available through the link: 

https://doi.org/10.1038/s41467-021-25792-0 

I am the co-first author of the article with the two previous PhD students of our team, 

Daniela and Meriem. I participated in conceptualization, bioinformatics and statistical 

analyses, data visualization, writing and revision of the article.  

A section of comments on the article is at the end of this chapter at page  109.
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ARTICLE

A high-risk retinoblastoma subtype with stemness
features, dedifferentiated cone states and
neuronal/ganglion cell gene expression
Jing Liu 1,2,3,34, Daniela Ottaviani 1,2,4,34, Meriem Sefta1,2,34, Céline Desbrousses 1,2,
Elodie Chapeaublanc 1,2, Rosario Aschero 5, Nanor Sirab 1,2, Fabiana Lubieniecki5, Gabriela Lamas5,
Laurie Tonon6, Catherine Dehainault7,8, Clément Hua 1,2, Paul Fréneaux7, Sacha Reichman 9,
Narjesse Karboul1,2, Anne Biton 1,2,10,11,30, Liliana Mirabal-Ortega 12,13,14, Magalie Larcher12,13,14,
Céline Brulard1,2,31, Sandrine Arrufat7, André Nicolas7, Nabila Elarouci3, Tatiana Popova15, Fariba Némati 16,
Didier Decaudin16, David Gentien16, Sylvain Baulande 17, Odette Mariani7, Florent Dufour 1,2,

Sylvain Guibert18, Céline Vallot 18, Livia Lumbroso-Le Rouic19, Alexandre Matet 19,20, Laurence Desjardins19,
Guillem Pascual-Pasto21,22, Mariona Suñol21,23, Jaume Catala-Mora 21,24, Genoveva Correa Llano21,22,
Jérôme Couturier7, Emmanuel Barillot 10,11, Paula Schaiquevich 5,25, Marion Gauthier-Villars7,8,15,
Dominique Stoppa-Lyonnet 7,8,20, Lisa Golmard7,8,15, Claude Houdayer7,8,15,32, Hervé Brisse 26,
Isabelle Bernard-Pierrot 1,2, Eric Letouzé 27,28, Alain Viari6, Simon Saule12,13,14, Xavier Sastre-Garau7,33,
François Doz20,29, Angel M. Carcaboso 21,22, Nathalie Cassoux19,20, Celio Pouponnot12,13,14, Olivier Goureau9,

Guillermo Chantada 4,21,22,25,35, Aurélien de Reyniès3,35, Isabelle Aerts1,2,29,35 & François Radvanyi 1,2,35✉

Retinoblastoma is the most frequent intraocular malignancy in children, originating from a

maturing cone precursor in the developing retina. Little is known on the molecular basis

underlying the biological and clinical behavior of this cancer. Here, using multi-omics data, we

demonstrate the existence of two retinoblastoma subtypes. Subtype 1, of earlier onset,

includes most of the heritable forms. It harbors few genetic alterations other than the initi-

ating RB1 inactivation and corresponds to differentiated tumors expressing mature cone

markers. By contrast, subtype 2 tumors harbor frequent recurrent genetic alterations

includingMYCN-amplification. They express markers of less differentiated cone together with

neuronal/ganglion cell markers with marked inter- and intra-tumor heterogeneity. The cone

dedifferentiation in subtype 2 is associated with stemness features including low immune and

interferon response, E2F and MYC/MYCN activation and a higher propensity for metastasis.

The recognition of these two subtypes, one maintaining a cone-differentiated state, and the

other, more aggressive, associated with cone dedifferentiation and expression of neuronal

markers, opens up important biological and clinical perspectives for retinoblastomas.

https://doi.org/10.1038/s41467-021-25792-0 OPEN

A list of author affiliations appears at the end of the paper.
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Retinoblastoma is a rare childhood cancer of the developing
retina with an incidence rate of about 1 in 17,000 live
births1–3, but is the most frequent pediatric intraocular

malignancy. The main therapeutic objective for retinoblastoma is
first to save the child’s life through early detection, treatment of
the ocular tumor, and prevention of metastatic spread. Secondary
goals are eye preservation and maximization of visual potential4.
In low-income countries, retinoblastoma is associated with low
patient survival due to delayed diagnosis, poor access to multi-
disciplinary retinoblastoma-specific healthcare, and socio-
economic factors. In high-income countries, tumor remission is
achieved in more than 95% of cases, however some patients still
develop metastases5. Metastases can be due to dissemination
through the optic nerve into the central nervous system (CNS)
and through the sclera to the orbit. Retinoblastoma can also give
rise to systemic metastases6. Several histopathological features are
considered high-risk factors for tumor progression and
metastasis7.

Retinoblastoma is usually initiated by biallelic inactivation of
the RB1 tumor suppressor gene. A minority of non-hereditary
retinoblastomas (<2%) are initiated by MYCN-amplification
without RB1 inactivation8. In most cases, hereditary retino-
blastomas are bilateral, whereas non-hereditary cases are always
unilateral.

The retina includes six types of neurons (rod and cone pho-
toreceptors, bipolar, amacrine, horizontal, and ganglion cells) and
Müller glia, all of which are generated from multipotent retinal
progenitor cells9,10. Studies in human show that the cell-of-origin
of retinoblastoma is a cone precursor11–15.

Three studies based on gene expression profiling reached
conflicting conclusions concerning the possible existence of reti-
noblastoma molecular subtypes and the retinal cell type-specific
markers expressed in retinoblastoma16–18. Beyond RB1, the only
recurrently mutated gene in retinoblastoma (7–13% of cases) is
the epigenetic modifier gene BCOR19–21. Recurrent genomic
alterations have been identified: gains and amplifications on 1q,
2p (targeting MYCN), and 6p, losses on 13q (targeting RB1) and
16q22–25. Several studies have reported a positive correlation
between high copy-number alterations, age at diagnosis, and
other clinical and histopathological variables, including uni-
laterality, non-hereditary status, and low differentiation24,26–30.
Despite this wealth of findings, a molecular framework for
understanding the biology and clinical behavior of retinoblastoma
is lacking.

In this work, we identify two subtypes of retinoblastoma
associated with different clinical and pathological features (age at
diagnosis, laterality, heredity, and growth pattern) following
integrative analysis of the transcriptome, methylome, and DNA
copy-number alteration data from a series of 102 retinoblastomas.
Further characterization provides evidence for the relevance of
these two subtypes for understanding the biology of retino-
blastoma, and for clinical management of this disease. Few
genetic alterations other than RB1 inactivation are associated with
subtype 1 tumors. By contrast, in addition to RB1 inactivation,
almost all subtype 2 tumors harbor other recurrent genetic
alterations, including MYCN amplifications. Consistent with a
maturing cone precursor as the cell-of-origin of retinoblastoma,
we find that both subtypes express cone markers. We show, by a
detailed analysis of cone differentiation including the use of
immunohistochemistry, retinal organoids, and single cells, that
subtype 2 tumors are less differentiated than subtype 1 tumors
and express neuronal/ganglion cell markers with marked inter-
and intratumor heterogeneity. This lower cone differentiation in
subtype 2 is associated with stemness features, including a higher
propensity for metastasis, as shown by a study of an additional
series of 112 retinoblastomas, including metastatic tumors.

Results
Identification of two retinoblastoma molecular subtypes with
distinct clinical and pathological features. We analyzed a series
of 102 enucleated retinoblastomas (Supplementary Data 1). To
investigate the existence of different retinoblastoma molecular
subtypes, we combined three genomic approaches, mRNA
expression, DNA methylation, and somatic copy-number altera-
tions (SCNAs) in a subset of 72 of the 102 retinoblastomas. All
three datasets were available for 53 of the 72 tumors, and at least
two of the three datasets were available for all 72 tumors (Sup-
plementary Data 1). Within each of these three omics datasets, we
calculated several partitions of the samples in k clusters (k-par-
titions), for various values of k, through unsupervised hierarchical
clustering, using varying numbers of features and different lin-
kages (see “Methods” section). Then, for each omics and each
value of k, we performed a consensus clustering analysis to derive
a consensus k-partition. Doing so the transcriptome-based and
methylome-based analyses both yielded stable consensus parti-
tions in two clusters, while the SCNA-based analysis yielded a
stable consensus partition in five clusters (Fig. 1a, upper panel
and Supplementary Fig. 1a). Cluster memberships from each of
the three partitions were analyzed by a cluster-of-clusters
approach, briefly, a sample co-classification matrix was built
and was then subjected to hierarchical clustering using complete
linkage. It revealed the convergence of the three partitions around
two molecular subtypes gathering 89% (64/72) of the cases
(Fig. 1a, middle panel and Supplementary Fig. 1b). Nearest cen-
troid classification attributed to the same subtypes 63 of the 64
classified samples. Moreover, six of the eight unclassified samples
could be attributed to a subtype, yielding a final number of 69
classified samples (69/72, 96%): 31 belonging to subtype 1 and 38
to subtype 2 (Fig. 1a lower panel, and Supplementary Fig. 1c,
Supplementary Data 1).

To assign to a subtype the 30 remaining tumors of our 102
tumor series, we then established a nine-CpG-based classifier,
based on the genome-wide CpG methylation array profiling (see
“Methods” section) (Fig. 1b, left panel and Supplementary
Data 1). We verified that there was a high concordance in
quantifying the level of CpG methylation between DNA
methylation arrays and pyrosequencing assays (Fig. 1b, middle
panel). This nine-CpG-based classifier attributed seven of the
remaining 30 samples to subtype 1, and 20 to subtype 2, while
three cases remained unclassified (Fig. 1b, right panel). Altogether
the majority of the tumors (96/102, 94%) could be assigned to one
of the two subtypes (38 to subtype 1, 58 to subtype 2).

We then compared the clinical and pathological features of
these two subtypes (Fig. 1c, Table 1, Supplementary Data 1).
Patients with subtype 1 tumors were significantly younger at
diagnosis (median age= 11.0 vs 23.9 months; Wilcoxon rank-
sum test, p= 8.9 × 10−11). This subtype included 75% of the
bilateral (p= 1.51 × 10−3) and 70% of the hereditary cases
(p= 7.68 × 10−4). Unexpectedly, among patients with subtype 1
tumors, age at diagnosis did not differ significantly between
hereditary forms (median= 10.2 months) and non-hereditary
forms (median= 11.2 months) (Wilcoxon rank-sum test,
p= 0.451). Likewise, there was also no significant difference
between the age at diagnosis for hereditary and non-hereditary
forms of subtype 2 tumors (median= 19.8 and 24.7 months,
respectively, Wilcoxon rank-sum test, p= 0.320). Retinoblasto-
mas generally display exophytic growth (into the subretinal
space), endophytic growth (towards the vitreous), or, less
frequently, a mixed growth pattern (both endophytic and
exophytic). Subtype 1 tumors were significantly more likely to
be exophytic, whereas most of the subtype 2 tumors were
endophytic (p= 7.33 × 10−4). Necrotic areas were more fre-
quently observed in subtype 2 tumors than in subtype 1 tumors
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(p= 0.020). Tumor diameter and histological risk features (optic
nerve invasion, choroid, or sclera invasion) did not differ
significantly between the two subtypes.

Subtype 2 displayed more genetic alterations than subtype 1
and included the MYCN-amplified tumors. We investigated the

genomic characteristics of the two tumor subtypes, by deter-
mining their SCNA profiles (Supplementary Data 2). Gains of 1q,
2p (MYCN), 6p, 13q, and losses/LOH of 13q (RB1), 16q were the
most frequent alterations, consistent with reported findings for
retinoblastoma22–25 . 6p gains and 13q losses/LOH were equally
distributed between tumor subtypes, whereas 1q gains, 2p gains,
and 16q losses/LOH were significantly more frequent in the
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subtype 2 samples (p= 5.5 × 10−11, p= 0.0037, and
p= 1.8 × 10−7, respectively) (Fig. 2a). MYCN amplifications
varied from 14 to 246 copies (Supplementary Data 2) and were
found only in subtype 2 tumors (10/58) (p= 0.013).

The overall genomic instability score, estimated as the
proportion of genome with copy-number alterations, was
significantly higher (p= 3.3 × 10−7) for subtype 2 than for
subtype 1 tumors (Fig. 2b), and was also significantly higher
when tumors with MYCN amplification were excluded from the
analysis. By contrast, genomic instability scores did not differ
between subtype 2 tumors with MYCN amplifications and
subtype 1 tumors.

We then characterized the mutational landscape of the
retinoblastoma subtypes. We performed whole-exome capture
followed by paired-end massively parallel sequencing (WES) on
genomic tumoral and matched normal DNA of 71 patients from
the 102-retinoblastoma series (subtype 1, n= 25; subtype 2,
n= 41; unclassified, n= 5). We identified 242 somatic mutations
in 186 genes (Supplementary Data 2). The tumors harbored a
median of two mutations. The number of somatic mutations
identified by WES was significantly higher (p= 1.2 × 10−7) for
subtype 2 than for subtype 1 tumors (Fig. 2c). Restricting subtype
2 tumors to either MYCN-amplified or MYCN-non-amplified
tumors yielded the same result.

Three genes, RB1, BCOR, and ARID1A, were found to be
recurrently mutated. We performed targeted sequencing for these
three genes in 23 of the 31 samples lacking WES data. The
distributions of RB1, BCOR, ARID1A mutations, MYCN ampli-
fications, 1q gains, and 16q losses are shown by subtype in
Fig. 2d. For RB1 the germinal and somatic point mutations
identified are shown, together with deletions, copy-neutral LOH,
and promoter methylation. RB1 mutations were found in most
tumors, regardless of subtype, and no difference in the mutation
type was observed between the two tumor subtypes. Of note, we
found a tumor without RB1 alteration, it belonged to subtype 2
and displayed a high level of MYCN amplification (141 copies).
BCOR mutations (n= 9) were found exclusively in subtype 2
(p= 0.02), as were the two ARID1A mutations. Most of the
subtype 2 tumors without MYCN amplification (46/48, 96%)
presented gains of 1q and/or losses of 16q. By contrast, none of
the MYCN-amplified tumors except one had a 1q gain or 16q loss
(p= 0.005) (Fig. 2d).

Subtype 2 tumors harbored hypermethylation within CpG
islands and hypomethylation outside CpG islands. We com-
pared the methylome of subtype 1 tumors (n= 27) and subtype 2
tumors (n= 36, including 4 MYCN-amplified tumors). A heat-
map representing the methylation levels of the 6607 CpGs sig-
nificantly differentially methylated between the two subtypes
(Supplementary Data 2) is shown in Fig. 2e. Subtype 2 tumors
showed more frequent hypermethylation within CpG islands, and

a more frequent hypomethylation outside CpG islands, than
subtype 1 tumors (Fig. 2f, g and Supplementary Fig. 2). The four
MYCN-amplified subtype 2 tumors studied presented a hypo-
methylation outside CpG islands and did not present hyper-
methylation within CpG islands (Fig. 2g).

The two subtypes exhibited differences in the expression of
cone and ganglion/neuronal markers and in stemness. We
compared the transcriptome of the two subtypes. Almost one-
third of the genes were found differentially expressed between the
two subtypes (6207/20408, adjusted p-value < 0.05) (Supplemen-
tary Data 3).

Cone markers (such as GUCA1C, GNAT2, ARR3, GUCA1A,
GUCA1B, GNGT2, PDE6C, PDE6H, OPN1SW) and neuronal/
ganglion markers (such as EBF3, DCX, ROBO1, SOX11, GAP43,
PCDHB10, STMN2, NEFM, POU4F2, EBF1) were among the
most differentially expressed genes. Cone markers were over-
expressed in subtype 1 tumors, whereas neuronal/ganglion
markers were overexpressed in subtype 2 tumors (Fig. 3a).
Among the genes known to be involved in retinoblastoma1,31,
several were found to be differentially expressed between the two
subtypes (KIF14, MDM4, MIR17HG, MYCN, SKP2 upregulated
in subtype 2; RBL2 downregulated in subtype 2) (Supplementary
Data 3). Some of these genes were located in gained/amplified
(KIF14 andMDM4 at 1q32.1 andMYCN at 2p24.3), or lost (RBL2
at 16q12.2) chromosomal regions, whereas others were involved
in the MYC/MYCN pathway (MIR17HG, SKP2). Hierarchical
clustering of the 6207 genes identified three main gene clusters:
two upregulated in subtype 1 (gene cluster 1.1 consisting of 1201
genes and gene cluster 1.2 consisting of 1788 genes) and one
containing all the genes upregulated in subtype 2 (3112 genes;
gene cluster 2) (Fig. 3b). We performed enrichment analysis using
the gene sets from gene ontology biological processes (GOBP)
and MSigDB hallmarks (HALLMARK) (Fig. 3c and Supplemen-
tary Data 3). Cluster 1.1 genes mainly upregulated in a subset of
subtype 1 tumors, were associated with tumor microenvironment
(immune response, inflammation, interferon response, comple-
ment, glial cells) and rod cells markers. Cluster 1.2 was enriched
in genes related to fatty acid metabolism, oxidative phosphoryla-
tion, and photoreceptor/cone cells. Cluster 2 was enriched in
genes associated with the cell cycle, E2F target genes, RNA
processing, MYC pathway, and neuron morphogenesis.

The lack of an inflammation/immune signature and the
enrichment in MYC and E2F target genes in subtype 2 was
evocative of stemness features32,33. Moreover, CD24, one of the
two most overexpressed genes in subtype 2 tumors (Fig. 3a and
Supplementary Data 3), has been shown to be a neuronal stem
cell marker and a cancer stem cell marker for several tumor
types34. Stemness indices, based on transcriptomic data, allowed
relative evaluation of the degree of stemness in tumor samples.
We applied four different stemness signatures32,33,35,36 to the 59

Fig. 1 Multi-omics-based molecular subtypes of retinoblastoma and clinical characteristics. a Consensus clustering of retinoblastomas based on
transcriptomic, DNA methylation, and copy-number alteration data (top panel). Unsupervised cluster-of-clusters analysis (middle panel). Supervised
centroid-based classification (bottom panel). Final omics subtype: subtype 1, n= 31 (gold); subtype 2, n= 38 (blue); unclassified, n= 3 (gray). b Heatmap
showing methylation values (methylome arrays) for the nine-CpG-based classifier (left panel). Correlation between methylation values assessed by
pyrosequencing and by methylome array, for 17 tumors (middle panel). A two-sided Pearson’s correlation test was used. The nine-CpG-based classifier
applied to a subset of 17 tumors of the initial series, led to the same classification as obtained by the -omics approach in 16 cases (one case being not
classified by the nine-CpG-based classifier). Subtype assignment of 30 additional tumors based on the nine-CpG-based classifier (right panel). c Final
molecular classification of 96 retinoblastomas and their key clinical and pathological characteristics. p≥ 0.05 (ns), p < 0.05 (*), p < 0.01 (**), p < 0.001
(***), p < 0.0001 (****). For comparisons of RB1 germline mutation, laterity, growth pattern, tumor diameter, and necrosis between two subtypes, Chi2 tests
were used. For comparisons of age at diagnosis and tumor diameter between two subtypes, two-sided Kruskal–Wallis rank tests were used. For
comparisons of optic nerve invasion and choroid and sclera invasion between two subtypes, two-sided Fisher’s exact tests were used. Exact p-values are
provided in Table 1.
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retinoblastoma samples for which transcriptomic data were
available. The stemness indices assessed by these signatures were
significantly higher in subtype 2 than in subtype 1 (Fig. 3d, upper
panel and Supplementary Fig. 3a). In addition, the stemness
indices obtained with the different signatures were highly
correlated (Supplementary Fig. 3b). We searched for hallmark
gene sets associated with stemness (Supplementary Data 3). The
hallmarks positively correlated with stemness included E2F

targets, MYC targets V2, MYC targets V1 and G2/M checkpoint
(Fig. 3d, lower panel and Supplementary Data 3). These
hallmarks were the same as those identified in cluster 2 (cluster
of genes overexpressed in subtype 2). The hallmarks negatively
correlated with stemness included interferon-alpha response,
interferon-gamma response, and complement (Fig. 3d, lower
panel and Supplementary Data 3), and were the same as those
identified in cluster 1.1 (cluster of genes overexpressed in subtype
1 and associated with the tumor microenvironment). We also
assessed the relationship between stemness and the abundance of
the various immune cells, as estimated with the Microenviron-
ment Cell Population (MCP)—counter score37. Stemness indices
were negatively correlated with the MCP scores of monocytic
lineage, B lineage, and cytotoxic lymphocytes (Fig. 3d, lower
panel and Supplementary Data 3). Altogether, we showed that
subtype 2 was associated with high stemness.

The upregulation of cone-related genes in subtype 1 and of
neuronal/ganglion cell-related genes in subtype 2 (Fig. 3a) led us to
analyze in detail the expression of genes associated with the different
retinal cell types (rod and cone photoreceptors, ganglion, amacrine,
bipolar, and horizontal cells, and Müller glia). The list of retinal cell
type markers was selected from a systematic literature search and
from single-cell RNA-seq (scRNA-seq) data obtained at different
time points during human retinal development38. From the
annotated cell types defined by Lu et al.38, we identified lists of
candidate markers associated with each retinal cell type (Supple-
mentary Data 3). In order to choose the most specific markers, we
developed a tool for visualizing gene expression profiles in the
different retinal cell types (see “Methods” section) (https://
retinoblastoma-retina-markers.curie.fr/). Based on an analysis of
the expression profiles of the candidate markers obtained from Lu
et al.’s data and of markers found in the literature we proposed
markers for the different retinal cell types (given in Supplementary
Data 3).

Cone markers were overall expressed in both subtype 1 and 2
retinoblastomas, with different expression levels between sub-
types depending on the markers (Fig. 3e, upper panel). Among
the 24 ganglion cell markers analyzed, a small subset (EBF3,
EBF1, GAP43, POU4F2, NEFM, ALCAM, NRN1, CNTN2) were
consistently overexpressed in subtype 2 tumors (Supplementary
Fig. 4a and Fig. 3e, lower panel).

Using the lists of candidate markers associated with each
retinal cell type obtained from Lu et al.’s data38, we provided
further evidence for an enrichment of markers associated with
ganglion cells in subtype 2 tumors (Supplementary Data 3). These
genes overexpressed in subtype 2 tumors can be considered both
as ganglion and neuronal genes. Indeed, although specific to
ganglion cells in the context of the retina (Supplementary Fig. 4b),
all displayed expression in the brain and played different
functions in the central nervous system39–47.

Most of the markers of other retinal cell types (rods, amacrine,
bipolar, horizontal, and Müller glia cells) were not expressed in
retinoblastomas or were only expressed in a subset of tumors
(Supplementary Fig. 4a). The expression of these markers was
likely due to the presence of normal retinal cells in some
retinoblastomas. Indeed non-neoplastic rods and Müller glial cells
have been shown to be present in some retinoblastomas13.

State of cone differentiation and expression of neuronal/
ganglion cell markers distinguished the two subtypes. The
expression of cone markers observed in both subtypes of reti-
noblastoma is consistent with the retinoblastoma cell-of-origin
being a committed cone cell. Differences in cone marker
expression were observed between the two subtypes, raising the
question of whether these differences could correspond to

Table 1 Clinical and histopathological characteristics of
patients stratified by molecular subtype.

Subtype 1 Subtype 2

n (%) n (%) N p-valuea

Patients 38 (40) 58 (60) 96
Clinical Center

Institut Curie 31 (42) 43 (58) 74 0.655b

Hospital Garrahan 6 (33) 12 (66) 18
Hospital Sant
Joan de Déu

1 (25) 3 (75) 4

Sex
Female 17 (35) 31 (65) 48 0.403c

Male 21 (44) 27 (56) 48
RB1 germline mutation

Yes 14 (70) 6 (30) 20 7.681 × 10−4 c

No 17 (28) 44 (72) 61
NA 7 (47) 8 (53) 15

Laterality
Bilateral 12 (75) 4 (25) 16 1.506 × 10−3 c

Unilateral 26 (33) 54 (66) 80
Age at diagnosis

<18 months 33 (73) 12 (27) 45 2.132 × 10−9 d

18–36 months 4 (10) 38 (90) 42
>36 months 1 (11) 8 (89) 9

Growth pattern
Endophytic 7 (18) 31 (82) 38 7.332 × 10−4 c

Exophytic 19 (63) 11 (37) 30
Mixed 6 (46) 7 (54) 13
NA 6 (40) 9 (60) 15

Tumor diameter (mm)
(3.98–6.67] 1 (50) 1 (50) 2 0.2094d

(6.67–9.33] 1 (25) 3 (75) 4
(9.33–12] 7 (50) 7 (50) 14
(12–14.7] 9 (64) 5 (36) 14
(14.7–17.3] 9 (27) 24 (73) 33
(17.3–20] 5 (31) 11 (69) 16
NA 6 (46) 7 (54) 13

Necrosis
Yes 18 (31) 40 (69) 58 0.0203c

None 16 (57) 12 (43) 28
NA 4 (40) 6 (60) 10

Optic nerve invasion
None 12 (48) 13 (52) 25 0.7467b

Prelaminar 12 (39) 19 (61) 31
Intralaminar 4 (33) 8 (66) 12
Post-laminar 4 (31) 9 (69) 13
NA 6 (40) 9 (60) 15

Choroid and sclera invasion
None 10 (40) 15 (60) 25 0.6468b

Minimal 10 (48) 11 (52) 21
Deep 1 (14) 6 (86) 7
Extended 8 (38) 13 (62) 21
Sclera invasion 1 (50) 1 (50) 2
NA 8 (40) 12 (60) 20

NA not available, n number in each subtype, N total number.
aSignificant p-value < 0.05.
bTwo-sided Fisher’s exact test.
cChi2 test.
dTwo-sided Kruskal–Wallis rank test.
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different stages of cone differentiation. Retinal organoids are
three-dimensional structures derived from human induced plur-
ipotent stem (iPS) cells that recapitulate the spatial and temporal
differentiation of the retina providing powerful in vitro models of
human retinal development48,49. We measured the level of
expression of early and late cone markers in retinal organoids at
various time points (d35, d49, d56, d84, d112, d175) after the

differentiation of human iPS cells into the retina, and in subtype 1
(n= 23) and subtype 2 (n= 44) retinoblastomas, using the
NanoString technology (Fig. 4a and Supplementary Data 4). As
expected, in iPS cell-derived retinal organoids, the expression of
early photoreceptor/cone markers (OTX2, CRX, THRB, RXRG)
appeared at earlier time points than late cone markers (PDE6H,
GNAT2, ARR3, GUCA1C). GUCA1C was the last marker to be
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expressed, consistent with previous in vitro and in vivo
observations50,51. Early cone markers were expressed in both
tumor subtypes, at very similar levels. By contrast, late cone
markers were expressed, on average, at lower levels in subtype 2
tumors, the most downregulated marker GUCA1C being the
latest cone marker expressed. These results indicated that subtype
1 tumors corresponded to a more differentiated stage of cone
development than subtype 2 tumors.

As several neuronal/ganglion cell lineage-related genes were
shown to be differentially expressed between tumor subtypes
(Fig. 3), we also compared their levels of expression in retinal
organoids and in tumor samples of the two subtypes (Fig. 4a and
Supplementary Data 4). Ganglion-cell markers were expressed at
early time points of retinal differentiation (from d49), and their
expression levels decreased after d84, consistent with the loss of
ganglion cells in retinal organoids at late time points52. These
ganglion markers were upregulated in subtype 2 compared to
subtype 1 tumors (Fig. 4a). Two of them, EBF3 and GAP43, were
expressed in subtype 2 tumors with levels comparable to those
observed in retinal organoids between d49 and d84.

To more precisely determine the cone development stage
corresponding to subtype 1 and subtype 2 tumor cells, we
calculated, for each time point after the induction of retinal
differentiation, the correlation coefficient between the centroid of
each tumor subtype and those of the organoids using cone
marker expression (Fig. 4b). Subtype 1 tumors were closest to
later cone differentiation (highest correlation observed at d173),
whereas subtype 2 tumors were closest to earlier cone
differentiation (highest correlation observed between d84
and d112).

To illustrate the degree of cone differentiation achieved by
individual retinoblastoma cases of each subtype, we generated a
phylogenetic tree using photoreceptor/cone marker expression,
incorporating retinal organoid samples at various time points
after the induction of differentiation, and retinoblastoma samples
(Fig. 4c). All subtype 1 tumors were close to iPS cell-derived
retinal organoids at a late time point of differentiation (d173).
Subtype 2 tumors were spread out from d84 to d173 retinal
organoids.

To explore further the heterogeneity in terms of cone
differentiation in retinoblastoma, we studied by immunohisto-
chemistry the distribution of an early photoreceptor marker
(CRX), and a later marker specific to the cone lineage (ARR3).
We also assessed the expression of one ganglion cell marker
(EBF3). Immunohistochemical staining was performed on
paraffin-embedded samples of subtype 1 (n= 9) and subtype 2

(n= 25) retinoblastomas (Supplementary Data 4). Two examples
of each tumor subtype are presented in Fig. 4d. As expected, in
the peritumoral normal retina, the transcription factor CRX was
expressed in all cells of the outer nuclear layer (ONL), whereas
ARR3 was expressed in a subset of cells in the ONL. EBF3 was
expressed in ganglion cells, but also in some amacrine cells in the
inner nuclear layer, as previously reported51,53–55. All tumors,
regardless of the subtype, expressed the photoreceptor marker
CRX in agreement with retinoblastoma being derived from cone-
committed cells. The ARR3+/EBF3− pattern was the only pattern
observed in subtype 1 tumors (Fig. 4d, e and Supplementary
Data 4). These tumors were positive for the proliferation marker
Ki-67 (Fig. 4d, and Supplementary Data 4). Two types of
expression patterns were observed for ARR3 and EBF3 in subtype
2 tumors (Fig. 4d). Most subtype 2 tumors (16/25, 64%)
coexpressed ARR3 and EBF3 (ARR3+/EBF3+), as illustrated by
tumor RB659 in Fig. 4d. Other subtype 2 tumors (8/25, 32%)
displayed mutually exclusive expression of ARR3 and EBF3
(ARR3−/EBF3+ or ARR3+/EBF3− areas), as illustrated by tumor
RB617 in Fig. 4d. One tumor (1/25) expressed EBF3 but not
ARR3. Tumors of subtype 2 coexpressing ARR3 and EBF3
(ARR3+/EBF3+) were always positive for Ki-67. In subtype 2
tumors with a mutually exclusive expression of ARR3 and EBF3,
the ARR3−/EBF3+ areas were always positive for Ki-67, whereas
the ARR3+/EBF3− areas were mostly negative for Ki-67 (6 of 7
cases tested) (Fig. 4d and Supplementary Data 4). Histological
examination of these Ki-67-negative ARR3+/EBF3− areas showed
the presence of fleurettes (foci of photoreceptor differentiation)
and an absence of mitoses in three of these six cases. The presence
of these different areas within the tumor could reflect a range of
tumor cell type stages, from stem, to progenitor to differentiating
to terminally differentiated, with many of the latter being post-
mitotic. Alternatively, the Ki-67-negative ARR3+/EBF3− areas
could correspond to retinoma, a benign non-proliferative lesion
observed adjacent to retinoblastoma56–58.

Single-cell analysis of intratumoral heterogeneity in a subtype
2 tumor. To further explore the intratumoral heterogeneity
of subtype 2 tumors, we performed droplet-based single-cell
RNA sequencing on a subtype 2 tumor (RBSC11). Immunohis-
tochemical analysis of this tumor showed a mutually exclusive
expression of ARR3 and EBF3, defining two types of areas
(CRX+/ARR3+/EBF3− and CRX+/ARR3−/EBF3+) (Supple-
mentary Fig. 5a), as observed in about 30% of subtype 2 tumors.

We retained transcriptomes of 1198 cells after initial quality
controls (Supplementary Fig. 5b). To identify the different cell

Fig. 2 Genomic characterization, somatic mutational landscape, and DNA methylation profiles of the two retinoblastoma subtypes. a Pattern of
somatic copy-number alterations in subtype 1 (top, n= 38) and subtype 2 (bottom, n= 58) retinoblastomas. b Boxplots comparing genomic instability
between subtype 1 tumors (n= 38) and subtype 2 tumors (n= 58). Among the subtype 2 tumors, non-MYCN-amplified (n= 48) and MYCN-amplified
(n= 10) tumors are also shown. Significant differences were tested by two-sided Wilcoxon tests for Subtype 1 vs Subtype 2: p= 3.3 × 10−7; Subtype 1 vs
Subtype 2 non-MYCN: p= 1.2 × 10−7; Subtype 1 vs Subtype 2 MYCN-amplified: p= 0.147; and Subtype 2 non-MYCN-amplified vs Subtype 2 MYCN-
amplified: p= 0.014. c Boxplots comparing the number of somatic mutations between subtype 1 tumors (n= 25) and subtype 2 tumors (n= 41). Among
the subtype 2 tumors, non-MYCN-amplified (n= 33) and MYCN-amplified (n= 8) tumors are also shown. Significance differences were tested by two-
sided Wilcoxon tests for Subtype 1 vs Subtype 2: p= 8.1 × 10−7; Subtype 1 vs Subtype 2 non-MYCN-amplified: p= 3.5 × 10−6; Subtype 1 vs Subtype 2
MYCN-amplified: p= 0.001; and Subtype 2 non-MYCN-amplified vs Subtype 2 MYCN-amplified: p= 0.775. b, c In the boxplots, the central mark indicates
the median and the bottom and top edges of the box the 25th and 75th percentiles. The whiskers are the smaller of 1.5 times the interquartile range or the
length of the 25th percentiles to the smallest data point or the 75th percentiles to the largest data point. Data points outside the whiskers are outliers.
Note: p≥ 0.05 (ns), p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), p < 0.0001 (****). d Somatic mutations of the three genes recurrently altered by tumor
subtype. For RB1 are indicated the germline mutations. MYCN amplifications, 1q gains, and 16q losses are also shown. e Heatmap of the 6607 differentially
methylated CpGs (difference of methylation level >0.2, adjusted p < 0.05, two-sided Wilcoxon test and BH correction) between subtype 1 and subtype 2. f
Distribution, in subtype 2 as compared to subtype 1, of hypomethylated CpGs (upper panel) and hypermethylated CpGs (lower panel), by CpG content and
neighborhood context. g Density plots showing the distribution of methylation levels of the differentially methylated CpGs located in CpG islands (upper
panel) and outside CpG islands (lower panel).
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populations present in the tumor, we performed shared nearest
neighbor (SNN) clustering and identified seven clusters (Fig. 5a).

To characterize the different clusters, we used (1) known cell
type-specific markers, (2) cluster markers (the most upregulated
genes in the cluster compared to all other clusters), (3) pathway
analysis of cluster markers, (4) correlation to bulk mRNA
expression profiles of purified cell types (Fig. 5b, c and

Supplementary Fig. 5c, d, Supplementary Data 5). Clusters 0–4,
accounting for 89.2% of all cells analyzed, expressed early
photoreceptor/cone markers (e.g., OTX2, CRX, THRB, and
RXRG). Clusters 0 and 2 expressed neuronal/ganglion cell
markers (e.g., GAP43, SOX11, UCHL1, DCX, EBF3), whereas
clusters 1 and 4 expressed late cone markers (e.g., ARR3 and
GUCA1C). Clusters 2 and 4 expressed proliferation markers, such
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as MKI67. Cluster 3 presented a hypoxic gene expression
program, including expression of the pro-apoptotic gene BNIP3.
Clusters 5 and 6, accounting for 10.8% (129/1198) of all cells
analyzed expressed hematopoietic markers, probably correspond-
ing to stromal cell populations. Cluster 5 expressed monocyte/
microglia markers (e.g., CD14 and AIF1), whereas cluster 6
expressed T-lymphocyte markers, including markers of T-cell
activation (e.g., CD3D and TRAC). A visualization of the
expression of markers of each cluster is shown in Supplementary
Fig. 5e, together with the expression of these markers in the
normal developing retina.

To analyze the genomic heterogeneity in this tumor, we
inferred copy-number variations (CNVs) in each single cell from
the single-cell transcriptome data (see “Methods” section)
(Fig. 5d). This analysis revealed that clusters 0–4 corresponded
to tumor cells (presence of genomic alterations), whereas clusters
5 and 6 corresponded to normal cells (absence of genomic
alterations). Genomic alteration patterns subdivided malignant
cells into three distinct cell populations: cells with multiple
genomic alterations (gains of 1q, 2q, 9p, 13q, loss of 8q), cells with
2p and 10q gains, and cells with 10q gains only. All cells from
clusters 0 and 2 (CRX+/EBF3+/GAP43+ tumor cells), and some
cluster 3 cells, corresponded to the first profile (multiple
alterations). Cells from clusters 1 and 4 (CRX+/ARR3+/
GUCA1C+ tumor cells) corresponded to the last two profiles
(10q gain ± 2p gain). Lastly, some cluster 3 cells corresponded to
the second profile (2p and 10q gains).

The phenotypic analysis and the inferred copy-number
alterations from single-cell RNA-seq data led us to conclude that
the malignant cells of the subtype 2 tumor analyzed consisted of
two populations, one expressing early photoreceptor/cone
markers and neuronal/ganglion cell markers (clusters 0 and 2),
and the other expressing early photoreceptor/cone markers and
late cone markers (clusters 1 and 4). These two cell populations
existed in three states, G1/S (clusters 0 and 1), G2/M (clusters 2
and 4), and hypoxic (cluster 3). A schema summarizing the
interpretation of the different clusters is shown in Fig. 5e (upper
panel). The CRX+/EBF3+/GAP43+ tumor population (clusters 0
and 2), presenting numerous genomic alterations, appeared to be
genomically homogeneous. The CRX+/ARR3+/GUCA1C+ tumor
population (clusters 1 and 4) was less unstable and consisted of
two genomically different subpopulations. A tumor progression
tree constructed from the genomic alterations found in the
different cell populations of this tumor is proposed in Fig. 5e
(bottom panel). The co-expression of CRX/EBF3/GAP43 (early
photoreceptor/cone marker and neuronal/ganglion cell markers)

was unique to tumor cells as it was absent or very rare during
normal retinal development (Supplementary Fig. 5f).

The single-cell RNA-seq analysis was performed on only one
retinoblastoma. Single-cell analysis of additional tumors of both
subtypes are necessary to further assess retinoblastoma hetero-
geneity and to investigate the relationship between retinal
development and tumorigenesis using trajectory inference
methods such as the ones estimating RNA velocity59,60.

Subtype 2 tumors are associated with a higher risk of metas-
tasis. We then investigated whether the retinoblastomas devel-
oping metastases belonged to a specific molecular subtype. No
patients in our initial series of 102 retinoblastomas cases devel-
oped metastases. We, therefore, studied an additional series of
112 primary tumors presenting high-risk pathological features
(HRPFs) at diagnosis, among which 19 tumors subsequently
developed metastasis. All these patients were treated at the Gar-
rahan Hospital (Buenos Aires, Argentina). Their clin-
icopathological characteristics, including HRPFs, are provided in
Supplementary Data 6 and summarized in Table 2.

TFF1 belongs to a family of small secretory molecules
involved in the protection and repair of the gastrointestinal
tract61. TFF1 is not expressed in the normal developing retina
(Supplementary Fig. 6a). It was the top upregulated gene in
subtype 2 tumors compared to subtype 1 tumors (fold-change=
55, adjusted p-value < 10−12, Fig. 3a, Supplementary Data 3),
with expression in most subtype 2 tumors but little or no
expression in subtype 1 tumors (Supplementary Fig. 6b, c).
These results were confirmed based on the transcriptome
of two additional tumor series16,18 (Supplementary Figs. 6b, c
and 7).

We assessed TFF1 protein expression by immunohistochem-
istry, in 55 of the tumors from our initial series of 102 classified
retinoblastomas (18 subtype 1 and 37 subtype 2 tumors).
Expression of TFF1, CRX, and ARR3 are shown for representative
tumors of subtypes 1 and 2 in Fig. 6a. Subtype 1 tumors displayed
little or no TFF1 expression (QS ≤ 50; QS, quick score), whereas
most subtype 2 tumors displayed high levels of expression
(QS > 50; Fig. 6a, b, Supplementary Data 6). We then analyzed
TFF1 expression in the additional series of 112 primary tumors
with HRPFs including 19 metastatic cases (Garrahan series).
TFF1 expression could be evaluated in 18 of the 19 primary
tumors that subsequently developed metastasis. All 18 cases were
positive for TFF1 (QS > 50), in contrast to the non-metastatic
cases (p= 0.00033) (Fig. 6b and Supplementary Data 6),

Fig. 3 Transcriptomic differences between the two retinoblastoma subtypes. a Volcano plot with genes significantly upregulated in subtype 1 (n= 26)
(gold) and subtype 2 (n= 31) (blue). The genes related to cone-cell and neuronal/ganglion-cell differentiation are indicated (in gold and blue,
respectively), together with the most highly differentially expressed genes in each subtype. b Hierarchical clustering of the significantly differentially
expressed genes identified three main gene clusters. c Upper panels: Gene sets from the GOBP collection enriched in clusters 1.1, 1.2, 2 in hypergeometric
tests. Results are presented as networks of enriched gene sets (nodes) connected based on their overlapping genes (edges). Node size is proportional to
the total number of genes in the gene set concerned. The names of the various GOBP terms are given in Supplementary Data 3. Bottom panels: Top 5 Gene
sets from the HALLMARK collection enriched in clusters 1.1, 1.2, 2. d Upper panel: Boxplots of stemness indices, determined as in Malta et al.32, in the two
subtypes of retinoblastoma (subtype 1 tumors: n= 26, subtype 2 tumors: n= 31). In the boxplots, the central mark indicates the median and the bottom
and top edges of the box the 25th and 75th percentiles. Whiskers are the smaller of 1.5 times the interquartile range or the length of the 25th percentiles to
the smallest data point or the 75th percentiles to the largest data point. Data points outside the whiskers are outliers. Significance was tested by a two-
sided Wilcoxon test, p= 1.9 × 10−7. Bottom panel: Heatmap of stemness indices and meta-score of the most correlated and anti-correlated HALLMARK
(HM) pathways and MCP-score of the most anti-correlated immune cells. Spearman’s rho and p-value are shown in the figure. p < 0.0001 (****). e
Heatmap representing expression pattern of cone- and ganglion-associated genes in the two subtypes of retinoblastoma. Statistical significance and log2
fold-change in expression between subtype 2 and subtype 1 are also shown. Adjusted.p≥ 0.05 (ns), adjusted.p < 0.05 (*), adjusted.p < 0.01 (**),
adjusted.p < 0.001 (***), adjusted.p < 0.0001 (****). Limma moderated two-sided t-tests and BH correction were used. Exact p-values are provided in
Supplementary Data 3.
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suggesting that they belonged to subtype 2. Consistent with this,
15 of the 16 metastatic cases analyzed were also positive for EBF3
(QS > 270) (Supplementary Data 6), a ganglion marker specifi-
cally associated with subtype 2 (Figs. 3a, 4d, e and Supplementary
Fig. 6). In seven of the 19 metastatic cases, tissues were available
from both the primary tumor and the metastasis. In all but one of
these cases, the metastatic sites were also positive for TFF1 (QS

range of 90–300). For EBF3, the six metastatic sites analyzed were
positive (QS > 255), including the one negative for TFF1 (Fig. 6c
and Supplementary Data 6). All these results suggested that
subtype 2 tumors are more aggressive than subtype 1 tumors.
These findings require validation by additional evidence for
subtype 2 assignment, and by studies on additional series of
metastatic cases.
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Discussion
The use of a multi-omics approach led us to the reliable identi-
fication of two main retinoblastoma molecular subtypes. The
different molecular, pathological and clinical features of these two
subtypes highlighted the relevance of this classification. In sup-
port of this, we could validate the transcriptomic signatures that
distinguished the two subtypes in two independent series of
retinoblastoma16,18 (Supplementary Fig. 7). The features of these
two subtypes provide explanations for previous biological and
clinical observations, with potential implications for retino-
blastoma research and treatment.

Both subtypes expressed cone markers, consistent with the
cone origin of human retinoblastoma11–15. There are several
possible non-exclusive explanations for the existence of two
subtypes of retinoblastoma. The two subtypes may be derived
from cone precursors located at different retinal positions. Several
studies have reported a central-to-peripheral progression of
retinoblastoma location with increasing age at diagnosis62. As
subtype 2 tumors are diagnosed significantly later than subtype 1
tumors (median age= 23.9 vs 11 months), they are therefore
likely to be more peripherally located than subtype 1 tumors. The
two subtypes may be derived from different cone precursors.
They may also be derived from cone precursors at different stages
of maturation. Arguing against this last explanation, it has been
shown that RB1−/− retinoblastoma derived from an ARR3+
maturing cone precursor15.

We showed that subtype 1 tumors presented later markers of
differentiated cones (ARR3+, GUCA1C+) and that subtype 2
tumors presented markers of earlier differentiation with an
important heterogeneity between and within tumors. This is in
agreement with the lower differentiation and the heterogeneity
reported in older retinoblastoma patients58. As both subtypes are
likely derived from an ARR3+ maturing cone precursor, the
lower differentiation and the heterogeneity of subtype 2 tumors
with RB1 inactivation probably result from a dedifferentiation
process.

We found that subtype 2 was associated with low immune and
interferon response, E2F and MYC/MYCN activation, and a
higher propensity for metastasis, corresponding to stemness
features recently reported32,33,35,36. Genetic alterations and losses
of function of RB1 and TP53 have also been shown to be asso-
ciated with stemness in various cancers32,36. RB1 inactivation was
present in most of the tumors of both retinoblastoma subtypes,
but, nevertheless, a difference in stemness was observed between
the two subtypes. The higher stemness in subtype 2 could be
related to a decreased expression of another gene from the RB
family, RBL2, located on 16q, which was lost in the majority of
subtype 2 tumors. The higher stemness in subtype 2 tumors could
be also related to an increased expression of MDM4, an inhibitor
of TP53 located on 1q which was gained/amplified in 74% of
subtype 2 tumors. It has been proposed that both MDM4 and

MDM2 abrogate p53-mediated tumor surveillance in
retinoblastoma63,64. Our results indicate that MDM4 could be
involved in subtype 2 tumors. In addition to the expression of
cone markers, subtype 2 tumors overexpressed markers attributed
to ganglion cell markers in the context of the retina. However, all
these markers can also be viewed as neuronal markers (they
correspond to genes expressed and involved in the central ner-
vous system). Moreover, among the genes overexpressed in
subtype 2 tumors, we identified neuronal genes expressed
during the development of retinal ganglion cells but also of other
retinal cell types (like SOX11, DCX, STMN2). These observations
suggest that subtype 2 may be considered as a cone-neuronal
subtype.

Expression of neuronal genes has now been found not only in
the brain and neuroendocrine tumors, but also in some cancers of
epithelial origin (breast, ovary, colon)65. In recent years, it has
become clear that tumor cells exploit neuronal and neurodeve-
lopmental pathways to proliferate, migrate, and interact with
normal cells, including endothelial cells and neurons65,66.
Therefore, the overexpression of neuronal genes that we found in
subtype 2 tumors may contribute to the aggressiveness of these
tumors.

The overexpression of MYCN/MYC target genes in subtype 2
tumors, and the assignment of 10 out of 11MYCN-amplified tumors
to subtype 2 tumors (the remaining MYCN-amplified tumor being
unclassified) suggest that MYCN/MYC play an important role in
this subtype. MYC and MYCN have been implicated in other
pediatric tumors, including neuroblastoma and medulloblastoma,
often in subsets of high-risk tumors. In neuroblastoma, MYCN
amplification is found in approximately 20% of cases and is asso-
ciated with high-risk disease and poor prognosis67. It has recently
been shown that MYC could also be a driver in another subset of
high-risk neuroblastomas68,69. Group 3 medulloblastoma are asso-
ciated with MYC amplification (10–17%) and the worst overall
survival70,71. The activation of MYC/MYCN in subtype 2 tumors
might be exploited for specific treatments of these tumors. Indeed
MYC/MYCN can be inhibited indirectly by targeting their tran-
scription with drugs such as JQ1 and OTX01572, or directly, by
targeting MYC/MAX interaction73.

In the series of 102 retinoblastomas, tumors with MYCN
amplification accounted for 17% of subtype 2 tumors. MYCN-
amplified tumors did not cluster separately from other subtype 2
tumors on transcriptome analyses, but they nevertheless had
specific features. Clinically, tumors with MYCN amplification
were diagnosed at an earlier age than other subtype 2 tumors
(median age at diagnosis: 15.9 vs 26.9 months). Molecularly, the
tumors with MYCN amplification could be distinguished from
subtype 2 tumors without MYCN amplification on the basis of
uncommon 1q gains and 16q losses. Moreover, the tumors with
MYCN amplification were hypomethylated outside CpG islands,
as in other subtype 2 tumors, but they did not display

Fig. 4 Expression of cone and neuronal/ganglion cell markers in retinoblastoma and retinal organoids. a Heatmap showing the expression of cone and
ganglion markers in retinal organoids at different differentiation time points, and in subtype 1 and subtype 2 tumors assessed by NanoString technology.
Differences in gene expression between the two subtypes were assessed by two-sided t-tests with BH correction. Exact p-values are provided in
Supplementary Data 4. b Pearson’s correlation of the expression of 8 cone markers, between the centroids of the 2 retinoblastoma subtypes and retinal
organoids at different time points in differentiation. C1: centroid of subtype 1; C2: centroid of subtype 2. c Phylogenetic tree based on cone marker
expression, for retinal organoids at different differentiation time points and for retinoblastoma samples. d Immunohistochemical staining of CRX, ARR3,
EBF3, and Ki-67 in normal retina and retinoblastoma. For RB617, the black arrows indicate the mutually exclusive patterns for ARR3 and EBF3.
Immunohistochemistry experiments were performed on 34 samples (subtype 1, n= 9; subtype 2, n= 25). Two representative images are shown for each
subtype. e Boxplots showing the quick score (QS) for the differentiation markers used in the immunohistochemical analysis: CRX, ARR3, and EBF3. In the
boxplots, the central mark indicates the median and the bottom and top edges of the box the 25th and 75th percentiles. The whiskers are the smaller of 1.5
times the interquartile range or the length of the 25th percentiles to the smallest data point or the 75th percentiles to the largest data point. Data points
outside the whiskers are outliers. Two-sided Wilcoxon tests were used.
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hypermethylation within CpG islands, by contrast to other sub-
type 2 tumors.

In high- and middle-income countries, the frequency of enu-
cleation for retinoblastoma is decreasing, due to early diagnosis
and the development of new conservative treatments. Techniques
for analyzing tumor DNA methylation and copy-number changes
in aqueous humor samples and blood from cell-free DNA have

recently been developed74,75. The molecular characterization of
retinoblastoma has, to date, been performed on tumor samples
obtained from enucleation. The analyses of retinoblastoma
through the use of liquid biopsy should provide a more com-
prehensive picture of the disease. Moreover, aqueous humor and
blood samples could potentially be used to optimize retino-
blastoma treatment through stratification by subtype.
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In conclusion, the identification of two molecular subtypes—
cone-like and cone/neuronal—represents a major advance in the
understanding of retinoblastoma. It should redefine further stu-
dies of this pediatric cancer, including the development of
models, improvement of diagnosis and prognosis, and identifi-
cation of more specific treatments. The high stemness and neu-
ronal features associated with subtype 2 tumors connect
retinoblastoma with emerging fields of cancer research, and open
up new opportunities for treatment.

Methods
Patient samples
Initial series of 102 retinoblastomas. We included 102 tumors from 50 male patients
and 52 female patients in this study. These patients came from three different
hospitals: Institut Curie in Paris, France (78 patients), the Garrahan Hospital in
Buenos Aires, Argentina (19 patients), and the Sant Joan de Déu Hospital in
Barcelona, Spain (5 patients). The median age at diagnosis was 19.9 months
(minimum: 27 days, maximum: 9.65 years). Six patients had received che-
motherapy and/or radiotherapy prior to enucleation.

Series of 112 retinoblastomas with HRPFs. We included an independent series of
112 patients with high-risk pathological features (HRPFs)7 from the Garrahan
Hospital in this study (61 females and 51 males). The median age at diagnosis was
31 months (range: 1–168 months). Among the 112 patients, 19 subsequently
developed the metastatic disease (9 females and 10 males). The median time from
retinoblastoma diagnosis to metastasis was nine months (range: 4–65 months).
Additional clinical characteristics are included in Table 2 and Supplementary
Data 6.

Formalin-fixed paraffin-embedded tissues from the 112 tumors were analyzed.
For seven metastatic patients, the metastatic sites were also available.

Additional retinoblastoma sample for single-cell RNA sequencing. One additional
sample (RBSC11) was studied by single-cell RNA-seq. The sample was obtained
from an enucleated patient >18 months of age with a unilateral non-hereditary
form of retinoblastoma who did not receive treatment prior to enucleation.

Fetal retina. Fetal retinas were obtained from medical abortions. They were pro-
vided by the Fetal Pathology Unit of Antoine-Béclère Hospital in Paris (France).
Three fetal retinas—RET215 (from a 20-week-old fetus), RET2 (23-week-old fetus),
and RET1 (27-week-old fetus) were included in this study.

Ethics statement. All experiments were performed retrospectively and in accor-
dance with the Declaration of Helsinki and the legislation of each participating
country—France, Argentina, and Spain. The study was approved by the Institut
Curie Review Board, the institutional review board of the Hospital de Pediatria
Juan P Garrahan, and the Clinical Research Ethics Committee of Sant Joan de Déu
Hospital. Written informed consent was obtained from parents or legal guardians
of retinoblastoma patients, in accordance with current guidelines and legislation of
each participating country.

Human fetuses (20, 23, 27 GW) were obtained from legally-induced
terminations of pregnancy performed at the Antoine-Béclère Hospital in France.
Fetal tissues were collected with the women’s written consent, in accordance with
the legal procedure agreed by the French National Agency for Biomedical Research
(Agence de Biomédecine) and the approval of the local ethics committee of
Antoine-Béclère Hospital.

Human iPSC maintenance and retinal organoid generation. Human-induced
pluripotent stem cells (iPSCs) derived from dermal fibroblasts (hiPSC-2 clone)52

Fig. 5 Intratumor heterogeneity at the single-cell level of a subtype 2 retinoblastoma (RBSC11). a 2D t-SNE plot of 1198 single retinoblastoma cells from
one patient. Each dot represents one cell. b Heatmap of top cluster markers (top 20 most upregulated genes per cluster according to fold-change).
Representative cluster markers and enriched gene sets are shown. Cluster marker p-values were calculated by hypergeometric tests with BH correction. c
Expression of selected genes shown in 2D t-SNE plot (early photoreceptor markers: CRX, OTX2; late cone markers: ARR3, GUCA1C; neuronal/ganglion
markers: EBF3, GAP43, DCX; proliferation marker: MKI67; pro-apoptotic marker: BNIP3; macrophage marker: CD14; T-cell marker: CD3D). d CNV profiles
inferred from single-cell gene expression. Each row represents the profile of one individual cell. The genes on chromosome 6p overexpressed in the non-
malignant cells monocyte/microglia correspond to HLA complex genes and should not be interpreted as CNV in cluster 5. e Upper panel: Diagram
summarizing the interpretation of the different clusters of the 2D t-SNE plot. Lower panel: A progression model for this retinoblastoma case based on
genomic alterations.

Table 2 Clinical and pathological characteristics of an additional series of 112 primary tumors presenting HRPFs.

Characteristics Metastatic (n= 19) Non-metastatic (n= 93) p-value

Laterality n (%)
Unilateral 14 (73.7%) 70 (75.3%) 0.8844a

Bilateral 5 (26.3%) 23 (24.7%)
Age at diagnosis (months)
Median (range) 31 (10–88) 31 (1–168) 0.9166b

Initial treatment n (%)
Enucleation 15 (78.9%) 91 (97.8%) 0.007394c

Pre-enucleation chemotherapy 4 (21.1%) 2 (2.2%)
IRSS Stage I HRPF
Isolated massive choroidal invasion (+ scleral invasion) 4 (1) (21%) 7 (6) (7.5%) 0.0312c

Post-laminar optic nerve invasion (+ massive choroidal and/or scleral invasion) 9 (3) (47.4%) 83 (49) (89.3%)
IRSS Stage II
Tumor at the resection margin of the optic nerve 5 (26.3%) 3 (3.2%) 0.003428c

IRSS not classified
Complete necrosis 1 (5.3%) 0

Site of metastatic relapse
Isolated orbit 3 (15.8%)
CNS 6 (31.6%)
Systemic 1 (5.3%) N/A
Orbit and lymph node 1 (5.3%)
Orbit and systemic relapse 3 (15.8%)
Orbit and CNS 5 (26.3)

aChi2 test.
bTwo-sided Wilcoxon rank-sum test.
cTwo-sided Fisher’s exact test.
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were cultured on truncated recombinant human vitronectin-coated dishes in a
humidified 37 °C incubator with 5% CO2 in Essential 8TM medium (ThermoFisher
Scientific) with daily medium change and weekly passage (2 ml enzyme-free Gentle
cell dissociation reagent for 7 min at room temperature)48. For retinal differ-
entiation, adherent iPSCs were expanded to 70–80% and cultured in Essential 6TM
medium (ThermoFisher Scientific) for 2 days, followed by replacing each 2–3 days
Essential 6TM medium supplemented with 1% N-2 Supplement, 10 units/ml
Penicillin and 10 μg/ml Streptomycin (ThermoFisher Scientific). At around day 28,
retinal organoids were isolated with a needle and cultured as floating structures in
ProB27 medium (DMEM:Nutrient Mixture F-12 1:1, L-glutamine, 1% MEM non-
essential amino acids, 2% B27 supplement (ThermoFisher Scientific), 10 units/ml
Penicillin, and 10 μg/ml Streptomycin) supplemented with recombinant human
FGF2 (PeproTech) for a week and then in ProB27 medium for the next several
weeks allowing retinal differentiation and maturation48,76. By RT-qPCR and

immunofluorescence analysis, we previously showed that the different iPSC lines
(hiPSC-2 clone52, AAVS1:CrxP_H2BmCherry hiPSC line77) we used, are able to
produce the whole repertoire of retinal cells, in an identical way and following the
same chronological order with first the appearance of ganglion cells, then the
amacrine and horizontal cells and finally the mature photoreceptors, the bipolar
cells, and the Müller glial cells. The use of different markers of photoreceptor lineage
(CRX, RCVRN, NRL, NR2E3, ARR3, RHO, OPSINs…) showed that the genesis of
cones and rods is identical in the different iPSC lines used.

Sample collection and processing
Tumor samples. Institut Curie. Immediately after enucleation, a needle was inserted
through the anterior chamber of the eye to extract a tumor sample by aspiration.
The tumor specimen was placed in an RPMI medium on ice. The cells were

initial series HRPF series

Q
S

 (
TF

F
1)1mm

1mm

1mm

C
R

X
A

R
R

3
TF

F1

subtype 1
normal
retina subtype 2

1mm

1mm

1mm

1mm

1mm

1mm50µm

50µm

50µm

RB635RB1 RBsjd8

c

a

primary tumor metastatic site

6mm

6mm

5mm

6mm

4mm

3mm

5mm

2mm

300µm

300µm

300µm

300µm

300µm

300µm

300µm

300µm

R
B

g9
R

B
g1

2
R

B
g1

6
R

B
g1

3

b

Fig. 6 Subtype 2 tumors are associated with a higher risk of metastasis. a Immunostaining of CRX, ARR3, and TFF1 in normal retina and retinoblastoma.
Immunohistochemistry experiments were performed on 55 samples (subtype 1, n= 18; subtype 2, n= 37) from the initial series of 102 retinoblastomas.
Representative images are shown: one subtype 1 tumor (RB1) and two subtype 2 tumors (RB635, RBsjd8). The subtype 2 tumors presented either a co-
staining (RB635) or a mirror pattern (RBsjd8) for ARR3 and TFF1. b Boxplots showing the quick score (QS) for TFF1 in 55 tumors of the initial series
(subtype 1, n= 18; subtype 2, n= 37), and in 112 tumors of the HRPF series. In the boxplots, the central mark indicates the median and the bottom and top
edges of the box the 25th and 75th percentiles. The whiskers are the smaller of 1.5 times the interquartile range or the length of the 25th percentiles to the
smallest data point or the 75th percentiles to the largest data point. Data points outside the whiskers are outliers. Two-sided Wilcoxon tests were used to
assess the difference of the QS for Subtype 1 vs Subtype 2, p= 1.1 × 10−7, and metastatic vs non-metastatic, p= 0.007. c Immunostaining of TFF1 for
primary tumors of metastatic retinoblastoma (left) and their metastatic sites (right), at low and high magnification. TFF1 expression could be assessed by
immunohistochemistry for 6 of 7 available primary-metastasis tumor pairs. Representative images of four are shown.
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resuspended, counted and the suspension was split in two (for DNA and RNA
preparation). The tubes were then centrifuged to remove the medium and the pellet
was snap-frozen for later extraction. The remainder of the ocular globe was
paraffin-embedded. For tumor DNA extraction, samples were first incubated in
lysis buffer with recombinant proteinase K (Roche, Boulogne-Billancourt, France).
They were next incubated with RNAse A (Roche). DNA was then extracted using a
standard phenol–chloroform protocol. Tumor RNA was extracted using the
miRNeasy Mini Kit, according to the manufacturer’s instructions (Qiagen, Cour-
taboeuf, France).

Garrahan Hospital and Sant Joan de Déu Hospital. Immediately after
enucleation, a needle was inserted through the anterior chamber of the eye to
extract a tumor sample by aspiration. The tumor specimen was either placed in
guanidine thiocyanate or snap-frozen for later extraction. For tumor samples
preserved in guanidine thiocyanate, alkaline phenol/chloroform/isoamyl alcohol
(24:1:25) extraction was used for tumor DNA extraction. For snap-frozen tumor
samples, commercial affinity columns (QIAamp DNA Mini Kit, Qiagen) or a
standard phenol–chloroform protocol were used for tumor DNA extraction.

Single-cell RNA-seq sample. Tumor sample was processed immediately following
needle aspiration through the anterior chamber of the eye. The sample was placed
in an ice-cold CO2-independent medium. Density gradient centrifugation by
Histopaque-1077 (Sigma-Aldrich) was used to remove debris, dead cells, and
erythrocytes. The isolated viable cells were mechanically dissociated, washed, and
resuspended in phosphate-buffered saline supplemented with 0.04% bovine serum.
Cell count and viability were determined by trypan blue exclusion on a Vi-CELL
XR (Beckman Coulter Life Sciences).

Blood samples. For Curie hospital samples, normal DNA was extracted with a
perchlorate/chloroform protocol or FujiFilm QuickGene technology (Kurabo
Biomedical, Osaka, Japan). For Garrahan Hospital samples, normal DNA was
extracted with a phenol/chloroform/isoamyl alcohol (24:1:25) protocol or with
commercial affinity columns (QIAamp DNA Mini Kit, Qiagen). For Sant Joan de
Déu Hospital samples, a standard isopropanol precipitation protocol was used.

Fetal retina. Fetal tissues were maintained in ice-cold Hanks balanced salt solution
(HBSS) after medical abortions. For the isolation of neural retinal tissue, eyes were
transferred onto a sterile Petri dish containing ice-cold PBS and maintaining a
cornea side-up position with fine forceps. A small incision was made in the cor-
neoscleral junction using a small scalpel. The tip of the curved microscissors was
inserted into the small incision. Eyes were carefully rotated of 360 degrees, and
small incisions were made all the way around the eye, parallel to the corneoscleral
junction, allowing dissociation of the anterior eyecup and lens from the posterior
eyecup. The posterior eyecup was passed onto a small Petri dish containing ice-cold
PBS. The neural retina was carefully isolated from the underlying retinal pigmented
epithelium by blunt dissection using fine forceps. RNA was extracted using the
miRNeasy Mini Kit, according to the manufacturer’s instructions (Qiagen, Cour-
taboeuf, France).

Human iPSCs. Total RNA was extracted from human iPSCs using the Nucleospin
RNA II kit (Macherey-Nagel), according to the manufacturer’s instructions.

Gene expression arrays. RNA of 59 samples (see Supplementary Data 1) were
hybridized, in two batches, to Affymetrix Human Genome U133 plus 2.0 Array
Plates (Santa Clara, CA) according to Affymetrix standard protocols. Raw CEL files
were RMA78 normalized using R package affy 1.60.0. Batch effects were corrected
with the help of the Bioconductor package SVA 3.30.1. The arrays were mapped to
genes with a Brainarray Custom CDF (EntrezG version 23)79. Independent com-
ponent analysis in k = 3 independent components (IC) was performed using R
package MineICA 1.24.0 (JADE method)80,81. The genes with high negative
(<−2.5) or positive contributions (>2.5) to IC were analyzed through pathway
enrichment analysis (hypergeometric tests), seeking specifically signatures related
to potential contamination by stromal cells. Genes with high positive contributions
to IC #1 were found highly enriched in markers of stromal cells, and were dis-
carded from clustering analyses.

DNA methylation arrays. Sixty-six DNA samples (Supplementary Data 1) were
hybridized on Infinium HumanMethylation450 BeadChip arrays (Illumina, San
Diego, CA). Four microliters of bisulfite-converted DNA were used for hybridi-
zation, following the Illumina Infinium HD Methylation protocol82. Data were
processed using preprocessIllumina and getBeta functions in R package Minfi
1.28.483. Probes were annotated using the R package IlluminaHumanMethyla-
tion450kmanifest 0.4. Probes located in Chromosome X and Chromosome Y were
discarded from subsequent analyses.

SNP arrays and BAC-CGH arrays. Ninety-five retinoblastomas were analyzed
using SNP arrays or BAC-CGH arrays (Supplementary Data 1). Seventy tumor
samples were analyzed on high-density SNP arrays. The B allele frequency and log-
ratio signals were smoothed and analyzed using the Genome Alteration Print
(GAP) algorithm (http://bioinfo-out.curie.fr/projects/snp_gap/)84. Twenty-five

tumor samples were analyzed on BAC-CGH microarrays. These arrays consisted of
3510 or 5323 clones covering the human genome with an average resolution of
850Kb or 560Kb; they were designed by the CIT-CGH Consortium (INSERM
U830, Institut Curie, Paris) and IntegragenTM85. Hybridized slides were scanned
and the scan data was pre-processed using R package MANOR 1.36.086 to correct
for local spatial bias and continuous spatial gradient. Each array-CGH profile was
centered on the median log2 ratio and then analyzed to extrapolate copy-number
profiles using the GLAD algorithm 2.28.187.

Whole-exome sequencing. Whole-exome sequencing was performed for 71
retinoblastomas and matched normal (blood) samples (Supplementary Data 2). For
32 tumor/normal sample pairs, sequence capture and exome sequencing were
performed by the Sequencing Platform of Institut Curie. The Nextera exome
enrichment kit (Illumina) was used for DNA library preparation. The eluted
fraction was amplified by PCR and sequenced on an Illumina HiSeq
2500 sequencer as paired-end 100 × 100 bp or 150 × 150 bp reads. For the
remaining 39 tumors/normal sample pairs, sequence capture and exome sequen-
cing were performed by Integragen. The protocol followed by Integragen has been
described elsewhere88. In brief, Agilent in-solution enrichment (SureSelect Human
All Exon Kit v4+UTR) was used for DNA library preparation. The eluted fraction
was amplified by PCR and sequenced on an Illumina HiSeq 2000 sequencer as
paired-end 75 bp reads.

Single-cell library preparation and sequencing. Six thousand cells were loaded
onto the Chromium System using the single-cell 3′ reagent kits v2, in accordance
with the manufacturer’s protocol (10× Genomics), where single cells are parti-
tioned in droplets. Following capture and lysis, cDNA incorporating UMI (unique
molecular identifier) and cell barcode was synthesized and amplified. Amplified
cDNA was fragmented and the Illumina sequencing library was constructed as per
the manufacturer’s protocol (Illumina). Libraries were loaded at 400pM and pair-
end sequenced on Novaseq 6000 using NovaSeq 6000 S1 Reagent Kit (Illumina).
Cells were sequenced at a mean depth of 100000. For quality control and quan-
tification of cDNA and library, BioAnalyzer (Agilent BioAnalyzer High Sensitivity
chip) was used.

Additional RNA quantification, DNA methylation, and mutation analyses
NanoString® codeset design and mRNA quantification. A codeset of 22 target genes
was custom-designed and manufactured by NanoString® (Supplementary Data 4).
One hundred nanograms of total RNA extracted from each sample was assessed on
the Gen2 nCounter Analysis System from NanoString® Technologies at the
Genomics Platform of the Curie Institute following the manufacturer’s instruc-
tions. Samples were hybridized with multiplexed NanoString® probes containing a
biotinylated capture probe and a reporter probe attached to a fluorescent barcode
specific for each transcript, according to the nCounter codeset design (NanoString,
Seattle, WA, USA). Hybridized samples were then purified and immobilized in a
sample cartridge on the nCounter Prep Station for data collection, followed by
quantification of the target mRNA in each sample using the nCounter Digital
Analyzer (NanoString®). Data were normalized according to NanoString guidelines
with nSolver 4.0. Briefly, the background was subtracted using the geometric mean
of negative controls provided by NanoString®. The matrix was log-transformed
(base 2) for further analysis.

Pyrosequencing. Forty-seven retinoblastoma samples were analyzed by performing
pyrosequencing of the 9 selected CpGs (Supplementary Data 1 and Data Analysis
section (Array-based methylation signature)).

Bisulfite treatment of genomic DNA (500 ng) was performed using the EZ DNA
Methylation kit (Zymo Research). Primer design for each CpG target was
performed using the PyroMark Assay Design software 2.0.2 (Qiagen) and
pyrosequencing reaction was performed using PyroMark Q24 instrument
(Qiagen). Primers used are provided in Supplementary Data 7. Pyrograms obtained
were analyzed using the PyroMark Q24 software 2.0.6.20 (Qiagen) and methylation
status was calculated at each CpG of interest.

Targeted sequencing. Targeted sequencing of the exonic regions of RB1, BCOR, and
ARID1A was performed by IntegraGen SA (Evry, France) on 23 samples from the
series of 102 retinoblastomas not subjected to whole-exome sequencing (Supple-
mentary Data 2). The Fluidigm Access Array microfluidic system was used. PCR
products were barcoded, pooled, and subjected to Illumina sequencing on a MiSeq
instrument as paired-end 150-bp reads.

Sanger sequencing. Primer design was performed using Primer3 plus software89.
Their sequences are provided in Supplementary Data 7. PCR amplification was
performed with the HotStarTaq plus DNA Polymerase (Qiagen). PCR products
were purified and sequenced at the Genomics Platform of the Institut Curie, using
an ABI 3730 XL (Applied Biosystems, Life Technologies). Sequence analysis was
carried out using Sequencher® version 5.4.1 sequence analysis software (Gene
Codes Corporation, Ann Arbor, MI USA). One hundred nonsynonymous variants
were identified by whole-exome sequencing and all variants identified by targeted
sequencing were verified using Sanger dye-terminator sequencing. We validated 92
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nonsynonymous mutations identified by whole-exome sequencing (of 100 variants
tested, 92%) and all the mutations identified by targeted sequencing.

Immunohistochemistry. Immunohistochemical staining was performed on 3 μm-
thick sections.

For the cohort of 102 retinoblastomas included in this study, automated
immunostaining for CRX, ARR3, EBF3, Ki-67 (Supplementary Data 4), and TFF1
(Supplementary Data 6) was performed on the available paraffin-embedded
samples with Autostainer 480 (Lab Vision) at Institut Curie. The following
antibodies were used: anti-CRX (Abcam, ab140603; 1:300 for AFA/Bouin fixed
tissue and 1:500 for formalin-fixed tissues), anti-ARR3 (Proteintech Group, 11100-
2-AP; 1/300 for AFA/Bouin fixed tissue and 1/500 for formalin-fixed tissues), anti-
EBF3 (Abnova Corporation, H00253738-M05; 1/800), anti-Ki-67 (Abcam, ab1558;
1/2500), and anti-TFF1 (Sigma-Aldrich, HPA003425; 1/1000). Additional
information about the conditions used is described in Supplementary Data 4. For
each slide, staining was assessed by eyeballing independently by two specialists
(authors: NS and PF) blind to molecular subtype classification, taking into account
the intensity (I) as null (0), mild (1), moderate (2), and strong (3), and the
percentage (P) of tumor cells with stained nuclei for CRX and EBF3 and stained
cytoplasm for ARR3 and TFF1. The quick score (QS) was then calculated as I * P
(from 0 to 300).

For the independent series of 112 retinoblastomas with high-risk pathological
features from Garrahan Hospital, immunostaining of TFF1 was performed
manually in the Pathology Department of the Garrahan Hospital according to the
procedure used at Institut Curie. For each slide, staining was assessed
independently by three specialists (authors: R.A., F.L., and G.L.).

Bioinformatics and data analysis
GISTIC analysis. The copy-number alteration data for the 72 retinoblastomas
studied by consensus clustering were first analyzed using GISTIC2.0 2.0.2290.
Twelve significant recurrent copy-number alteration regions were identified. The
average copy number for each sample across these regions was then used for
consensus clustering of the copy-number alteration data.

Consensus clustering. Consensus clustering was performed independently on the
transcriptomic, methylomic, and GISTIC-processed copy-number alteration data
of 72 retinoblastoma samples (n= 59 transcriptomes, n= 66 methylomes, n= 72
copy-number alteration profiles) (Supplementary Data 1). mRNA expression was
assessed through Affymetrix U133plus2.0 arrays, genome methylation through
Illumina Infinium Human Methylation 450 BeadChip arrays, and somatic copy-
number alterations through SNP arrays or CGH-BAC arrays.

For the transcriptomic data, consensus hierarchical clustering was derived from
a series of 24 dendrograms, which were obtained on all 59 retinoblastoma samples
(columns) by analyzing 8 data subsets related to various numbers of genes (rows),
through hierarchical clustering using 3 different linkage methods (average,
complete, and Ward) and one distance metric (1 − Pearson correlation coefficient).
To construct the 8 data subsets, various number of genes (rows) (spanning between
100 and 4709 genes) were selected based on 2 criteria: minimal robust coefficient of
variation (rCV) thresholds spanning the 99.5th to the 60th percentiles, and p-value
lower than 0.01 for a test of variance (we test whether the variance for a gene is
higher or not than the median variance across all genes).

Having obtained these 24 dendrograms, we cut each dendrogram in k clusters,
and get a series of partitions in k groups, for k ranging from 2 to 8 (NB: a partition
in k groups is called a k -partition). For each value of k , we then derived a consensus
k -partition from the 24 k -partitions obtained from the 24 dendrograms. To do so,
we first calculated the (samples × samples) co-classification matrix from these 24 k -
partitions (NB: in the co-classification matrix, the cell (i,j) reports the number of
partitions where samples i and j belong to the same group). The co-classification
matrix is a similarity matrix and can be transformed into a dissimilarity matrix by
replacing the value x in each cell (i,j) by MAX_VALUE – x (Here
MAX_VALUE= 24). Then this dissimilarity matrix can be used to perform the
hierarchical clustering of the related samples, using the complete linkage. Finally,
the obtained dendrogram is cut in k clusters to yield the consensus k-partition.

Of note, before calculating the consensus k -partitions (k from 2 to 8), we assessed
the intrinsic stability of the underlying k-partitions, as compared to k-partitions
obtained using the same linkage and the same set of genes, but based on “noisy” data.
“Noisy” data were generated for each of the 8 data subsets (200 iterations for each) by
addition of random Gaussian noise (μ= 0, σ= 1.5× ×median variance calculated
from the data set). The stability of each initial k -partition was then assessed using a
stability score corresponding to the mean symmetric difference distance between an
initial k -partition and the corresponding k -partitions derived from “noisy” data. The
symmetric difference distance compares two partitions and gives the proportion of
retention of the pairs of samples that are in the same group. It brings values ranging
from 0 to 1: comparing two equal partitions yields a value of 1.

Consensus clustering of the methylomic data (n= 66 retinoblastomas) was
performed in a similar manner, this time with between 2086 and 87937 CpGs
selected (rCV thresholds spanning the 99.5th to the 60th percentiles and a p-value
lower than 0.01 for the test of variance). Consensus clustering of the GISTIC-
processed copy-number alteration data (n= 72 retinoblastomas) was also
performed in a similar manner, this time with 3 or 4 significant copy-number

regions selected (rCV thresholds spanning the 80th to the 50th percentiles and a p-
value lower than 0.01 for the test of variance). We observed both for transcriptome
and methylome that the (intra-omics) consensus partition with k = 2 clusters was
more stable than solutions with k > 2 clusters. We thus selected k = 2 clusters for
these two omics. The DNA copy-number data yielded 5 clusters.

Cluster-of-clusters and centroid classification. To identify a common samples’
partition across all three genomic platforms (transcriptome, methylome, copy
number), we used a cluster-of-cluster approach. Based on the three unsupervised
consensus partitions previously obtained from the three omics datasets (one
consensus partition per omics data set), we first built a (samples × samples) co-
classification matrix, with values ranging from 0 to 1, with 0 corresponding to a
pair of samples that never co-classify in any genomic data set, and 1 corresponding
to a pair of samples that always co-classify in all three genomic datasets. This
matrix was then subjected to hierarchical clustering using complete linkage. Three
clusters of clusters were thus identified (n= 27, n= 37, and n= 8). The two larger
cluster-of-clusters corresponded to two core molecular subtypes, subtype 1 and
subtype 2. The smallest cluster-of-clusters (n= 8) corresponded to ambiguous
samples whose cluster assignments were not consistent across all three genomic
platforms.

To classify these remaining samples according to either subtype 1 or subtype 2,
we built two supervised centroid-based predictors, one transcriptomic and the
other methylomic. The two core clusters of clusters defining subtype 1 and 2 were
used to train these classifiers. For the transcriptomic data, the centroids of subtype
1 and subtype 2 were calculated as the intra-cluster median expression of the 800
genes most significantly differentially expressed between the two clusters (taking
the 400 most upregulated genes in each subtype); similarly, for the methylomic
data, the centroids of subtypes 1 and 2 were based on the median beta value of the
10,000 CpGs most significantly differentially methylated between the two clusters
(5000 most methylated in each subtype). Each sample was assigned to the class
whose centroid was closest to its profile, based on a Pearson’s correlation
coefficient of at least 0.1 (we let unclassified samples yielding a Pearson’s
correlation coefficient less than 0.1 to any of the two centroids/classes). Following
this centroid-based step, we could classify 6 of the 8 samples without initial cluster-
of-cluster attribution (four were assigned to cluster 1, two to cluster 2). This step
also identified 3 outlier samples: two were already unclassified after the first cluster-
of clusters step, one was attributed initially to cluster 2.

Copy-number analysis. Copy-number alterations (CNAs) were analyzed using
whole-exome sequencing (WES) data (n= 63), SNP arrays (Illumina
HumanCNV370 quad, n= 15; Illumina Human610 quad, n= 6; Affymetrix
Cytoscan, n= 3), and BAC arrays (3510 markers, n= 12; 5323 markers, n= 3).
BAC arrays were analyzed using GLAD algorithm 2.28.187 to smooth log-ratio
profiles into homogeneous segments and assign a discrete status to each segment
(homozygous deletion, deletion, normal, gain, amplification). SNP arrays were
analyzed using the Genome Alteration Print method84, which takes into account
both the log ratio and B allele frequency signals to determine normal cell con-
tamination, tumor ploidy, and the absolute copy-number of each segment. The
median absolute copy-number was considered to be the zero level of each sample.
Segments with an absolute copy number > zero + 0.5 or < zero − 0.5 were con-
sidered to have gains and deletions, respectively. Segments with an absolute copy-
number ≥5 or ≤0.5 were considered to have high-level amplifications and homo-
zygous deletions, respectively. To identify CNAs using WES data, we calculated the
log ratio of the coverage in each tumor and its matched normal sample for each
bait of the exome capture kit with a coverage ≥ 30× in the normal sample. Log-ratio
profiles were then smoothed using the circular binary segmentation algorithm, as
implemented in the Bioconductor package DNAcopy 1.50.191 (default parameters
except min.width= 4, undo.splits= sdundo, undo.SD= 1.5). The most frequent
smoothed value was considered to be the zero level of each sample. Segments with a
smoothed log ratio >zero + 0.15 or <zero − 0.15 were considered to have gains and
deletions, respectively. High-level amplification and homozygous deletion thresh-
olds were defined as the mean ± 5 s.d. of log ratios in regions of normal copy
number. Visual inspection of the profiles allowed to validate recurrent focal
amplifications and homozygous deletions.

For a given sample, the GNL (Gain= 1/Normal= 0/Loss=−1) copy-number
data are aggregated by chromosome, as the proportion of features with an
aberration (i.e., gain or loss). The overall genomic instability score corresponds to
the mean score across all chromosomes.

Whole-exome sequencing analysis pipeline and mutation annotation. Sample
reads were aligned using Burrows–Wheeler Aligner (BWA 0.7.4)92. Targeted
regions were sequenced to an average depth of 82×, with 99% of the regions
covered by ≥1×, 97.0% covered by ≥4×, and 87% covered by ≥20×.

For detection of somatic single-nucleotide variants (SNVs) and base insertions
or deletions (indels), we used two separate variant-calling pipelines, the results of
which were then merged. The first pipeline used MuTect 1.1.593 for SNV calling
and the GATK SomaticIndelDetector 2.1–8 for indel calling94–96. The second
pipeline used VarScan 2.3.7 somatic and VarScan somatic filter for both SNV and
indel calling (http://varscan.sourceforge.net)97. After the variants called by both
pipelines were merged, they were annotated using Annovar v2014Mar1098. Custom
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filters and manual curation using the Integrative Genomics Viewer (IGV 2.3.34)99
were then used to maximize the number of true positive calls and to minimize the
number of false positives.

Methylation analysis
Array-based methylation signature. From the methylome array data (n= 66), we
selected the most differentially methylated CpGs between the two retinoblastoma
subtypes (clusters of clusters) based on statistics of the Wilcoxon test. Out of the
top 50 hypermethylated CpGs and top 30 hypomethylated CpGs of subtype 2
retinoblastoma (by p-value), top 7 hypermethylated and top 7 hypomethylated
CpGs by the difference of beta value were selected for pyrosequencing. 5 of them
did not perform well in pyrosequencing. This method led to the selection of 9
CpGs significantly differentially methylated that have been analyzed by pyr-
osequencing for sample classification. Seventeen samples from the initial series
were analyzed by pyrosequencing for validation of the nine-CpG-based classifier
(9 subtype 1, 8 subtype 2); from these samples, we derived subtype 1 and subtype 2
centroids based on these 9 CpGs. The nearest-centroid approach (with Pearson’s
metric and a minimal threshold of 0.3) correctly assigned 16 of these 17 samples to
their known subtype and left unassigned the remaining sample. Additional samples
analyzed by pyrosequencing for these 9 CpGs were then classified using the
nearest-centroid approach (Pearson’s metric) at a minimal threshold of 0.3.

Differential methylation analysis. Differential methylation analysis was performed
by two-sided Wilcoxon rank-sum test and BH correction to compare methylation
level of 473,864 probes between 27 subtype 1 and 36 subtype 2 retinoblastomas.
94,101 probes were found differentially methylated between the two subtypes
(69,901 probes higher in subtype 1, 24,200 probes higher in subtype 2). 6607 probes
had a difference of beta value of more than 0.2 (4520 higher in subtype 1, 2087
higher in subtype 2) (Supplementary Data 2).

Differential gene expression and pathway enrichment analysis. Differential
gene expression analysis was performed by Limma R package 3.40.6100 to compare
the expression of 20,408 genes between 26 subtype 1 and 31 subtype 2 tumors. 6207
genes were found differentially expressed (adjusted p-value < 0.05) (Supplementary
Data 3). Three main gene clusters were identified by hierarchical cluster analysis
(mean centering of genes, 1 − Pearson’s correlation coefficient as distance and
average linkage). Visualization using heatmaps was performed with the R package
ComplexHeatmap 2.1.1. Pathway enrichment analysis was performed by R clus-
terProfiler package 3.12.0101. Enriched gene sets from GOBP (Gene Ontology
Biological Process) with adjusted p-value < 0.01 were selected for CytoScape (3.7)
EnrichmentMap (2.1.1) analysis102. Gene sets tested (GOBP and HALLMARK)
were from the Molecular Signatures Database (MSigDB, version 6.2)103.

Evaluation of stemness by transcriptome. Stemness indices in retinoblastoma
were evaluated as described in Malta et al.32. Briefly, the weight vectors of 12,955
genes were obtained by Malta et al. as a stemness signature to identify pluripotent
stem cells from progenitor cells in PCBC (Progenitor Cell Biology Consortium)
transcriptomic data set. 12,364 genes were available in our data set. After mean-
centering, the expression matrix, Spearman’s correlation with the stemness sig-
nature vectors were calculated for each sample of retinoblastoma and then scaled to
the range of 0 to 1 as the stemness indices. The other three stemness indices were
estimated using three stemness gene signatures (Miranda et al., Shats et al., Smith
et al. of 109, 80, and 49 genes, respectively)33,35,36 by ssgsea function of R package
gsva 1.30.0. Boxplots were generated using R package ggpubr 0.2.0.

Pathway meta-score. Pathway meta-scores were calculated as the average
expression of the genes involved in one selected pathway and then centered and
scaled.

Analysis of two independent transcriptomic datasets. We applied the nearest-
centroid approach (with Pearson’s metric and a minimal threshold of 0.1) using the
transcriptomic centroids calculated from our datasets to classify two publicly
available transcriptomic datasets (GSE59983 and GSE29683).

In the Kooi et al.’s series18 (n= 76), 46 subtype 1 samples and 28 subtype
2 samples were identified, 2 samples were unable to be assigned a subtype. In the
McEvoy et al.’s series16 (n= 55), 24 subtype 1 samples and 22 subtype 2 samples
were identified among the 48 samples, 2 samples were unable to be assigned a
subtype. Some samples (n= 7) were excluded from clustering analysis due to the
high contamination of retinal pigmental epithelial (RPE) cells. We examined the
average expression of an RPE gene signature (from Liao et al.104, n= 83/87 genes
present in the data) and removed the suspected outlier samples (n= 7) by
Interquartile rule (suspected outliers are the samples when their average expression
of RPE signature > Q3+ 1.5 IQR or < Q1 − 1.5 IQR).

Phylogenetic analysis of retinoblastoma and retinal organoids. Gene expres-
sion data of 8 genes related to cone-cell differentiation (OTX2 , CRX, THRB, RXRG,
PDE6H, GNAT2 , ARR3, GUCA1C) were assessed by NanoString in 67 retino-
blastomas (23 subtype 1 and 44 subtype 2) and 18 retinal organoids at 6 time

points after induction from iPSCs were used in phylogenetic analysis. Phylogenies
were inferred by the minimal evolution algorithm105 using fastme.bal function in R
ape package 5.3 applied to Euclidean distance matrix based on these 8 gene
expressions.

Single-cell transcriptome analysis
RBSC11 retinoblastoma. Sample demultiplexing, alignment to the reference gen-
ome (GRCh38, Ensembl 84, pre-built Cell Ranger reference version 1.2.0), quan-
tification and initial quality control (QC) were performed using the Cell Ranger
software (version 2.1.1, 10× Genomics).

Genes that were expressed in more than 3 cells and cells that expressed more
than 500 genes and less than 5% of mitochondria genes were retained (n= 1198).
The median numbers of genes and UMI counts per cell were 2911 and 7749,
respectively. Normalization and clustering were performed using Seurat package
version 2.3.4. UMI counts were normalized by NormalizeData function with
logNormalize method, by a scaling factor of the median UMI count. UMI counts
were then scaled to regress out the effect of UMI counts. Variable genes were found
with FindVariableGenes function with logVMR function. Genes with an average
expression more than 0.0125 and <8 and with dispersion more than 0.5 were
considered as variable genes for principal component analysis (PCA). Cell clusters
were identified by FindClusters function with shared nearest neighbor (SNN)
method modularity optimization-based clustering algorithm106, using the first 20
principal components. The parameter Resolution in the FindClusters was set
between 0.4 and 1.4 and finally set to 0.6 for it provided a better biological
interpretation.

Cluster markers were identified by FindAllMarkers function. Briefly, the
expression of genes that expressed in more than 10% of cells in one cluster were
compared with the expression of these genes in all other clusters, using Wilcoxon
rank-sum test and corrected with BH correction. The procedure was repeated for
all clusters. Genes upregulated in each cluster with more than 0.2 fold were
considered as cluster markers. Pathway analysis of cluster markers was performed
by R clusterProfiler package101. Gene sets tested were from the Molecular
Signatures Database103 (HALLMARK and BioCarta) and from Supplementary
Data 3 (Cell type markers_Lu data and Selected cell type markers).

Correlation to bulk mRNA expression profiles of purified cell types was
performed by R SingleR package 1.0.1107. The expression profile of each cell was
compared with the expression profiles of a data set that contains 713 microarray
samples classified to 38 main cell types and further annotated to 169 subtypes108.

Copy-number variations (CNVs) were inferred from the single-cell gene
expression by InferCNV package 0.8.2, using normal retinal organoids derived
from hiPSCs as reference.

Normal developing retina (Lu et al.38 , data). Normal retina scRNA-seq data from
Lu et al.38 were retrieved from GEO Omnibus database GSE138002. We retrieved
the final filtered count matrix (GSE138002_Final_matrix.mtx.gz), gene annotations
(GSE138002_genes.csv.gz), and cell annotations (GSE138002_Final_barco-
des.csv.gz). The latest includes, for each cell, the UMAP coordinates and the retinal
cell type annotation computed by Lu et al. that was used for our analysis. Nor-
malization of the UMI counts and identification of markers for each cell type was
done with Seurat as described for the retinoblastoma sample. We also looked for
pan-photoreceptor markers (markers of both cones and rods). Among the markers
of Cones or Rods, genes that were found overexpressed in Cones against all other
types except Rods and in Rods against all other types except Cones were assigned to
pan-photoreceptor. Values indicated in Supplementary Data 3 for pan-
photoreceptor markers have been computed using the FindAllMarkers function
comparing photoreceptor cells against all other cells.

Visualization tool. A R-Shiny web-app [https://retinoblastoma-retina-
markers.curie.fr], based on the shiny (v.1.6.0) and shinydashboard (v.0.7.1) R-
packages, was developed to visualize the expression of markers of the retina cell
populations, of the two subtypes of retinoblastoma and other genes of interest cited
across the manuscript in the two single-cell RNA-seq datasets (from normal
human developing retina38 and from a subtype 2 retinoblastoma, RBSC11 (this
report)). The different plots and tables are made based on the R packages cowplot
(v.1.1.1) and the ones included in tidyverse (v.1.3.0).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw array data are deposited in the Gene Expression Omnibus (GEO) database
under accession code GSE58785. The raw whole-exome sequencing data are deposited in
the European Genome-Pheome Archive (EGA) database under accession code
EGAS00001005248. The raw targeted sequencing data are deposited in the EGA database
under accession code EGAS00001005550. The raw single-cell RNA sequencing data are
deposited in the EGA database under accession code EGAS00001005178. Data in EGA is
available under restricted access, access can be obtained by contacting Retinoblastoma
Data Access Committee – Institut Curie (data.office@curie.fr). The public retinoblastoma
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transcriptomic data used in this study are available in the GEO database under accession
codes GSE29683 and GSE59983. The public human developing retina scRNA-seq data
used in this study are available in the GEO database under accession code GSE138002.
The remaining data are available within the Article, Supplementary Information, or
Source Data file. Additional data inquiry can be addressed to the Lead contact:
francois.radvanyi@curie.fr. Source data are provided with this paper.

Code availability
Codes used to generate the analysis, figures and visualization app (https://
retinoblastoma-retina-markers.curie.fr) are available at Github repositories (DOI:
10.5281/zenodo.5164167, DOI: 10.5281/zenodo.5163255)109,110.
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Supplementary Figure 1. Multi-omics classification of a series of 72 retinoblastomas. 
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a, GISTIC plot for copy number alteration data. GISTIC plot of the 72 retinoblastoma specimens, 

integrating frequency and amplitude to identify significant amplifications (red) and deletions (blue) 

across the genome (ordered by chromosome). These significant amplifications and deletions were used 

for copy number alteration data clustering (Fig. 1a).  
b, Cluster-of-clusters classification. Cluster-of-clusters analysis for 72 retinoblastoma cases, based on 

three unsupervised partitions, each partition being obtained using a different genomic platform 

(transcriptomic, methylomic, and copy number alteration data). A [0;1] normalized co-classification 

matrix was derived from the 3 initial partitions. Hierarchical clustering was then performed with inter-

individual distance defined as (1 – co-classification score) and complete linkage. This analysis identified 

two major groups of 27 and 37 samples, and one ambiguous/unclassified group of 8 samples. The 

annotations below the dendrogram represent the clusters of samples defined independently by 

consensus clustering of all three genomic datasets. 
c, Centroid-based classification. This is a schematic representation of the centroid classification 

methodology used. Each point represents a sample. Samples belonging to cluster-of-clusters 1 are in 

yellow (n=27), cluster-of-clusters 2 in blue (n=37), and yet unclassified samples in black (n=8). On the 

X-axis is the difference between each sample’s correlation to the cluster-of-clusters 1 transcriptomic 

centroid and the cluster-of-clusters 2 transcriptomic centroid. The Y-axis represents the same 

information for the methylomic centroids. Samples with one dataset missing have this difference set to 

0 (X coordinate=0 for missing transcriptome, Y coordinate=0 for missing methylome), and the 

corresponding data points are circled in red. Centroid correlation differences below 0.2 were considered 
to be outliers, and are in the gray areas. Gray areas therefore contain outliers or samples with one 

missing dataset. All cluster-of-clusters 1 samples re-classified correctly in methylomic centroid 1 and 

transcriptomic centroid 1 (or one of the two if a dataset is missing). All but one cluster-of-clusters 2 

samples re-classified correctly also. The last one (RB208) was an outlier in the methylomic dataset with 

no transcriptomic data available, and was thus set to unclassified. For the samples with no cluster-of-

clusters attribution (black points): RB52, RB23, RB50 and RB33 were assigned to the first group; RB22, 

and RB209 were assigned to the second; RB61 was an outlier in both datasets, and RB60 had a 
discrepancy in the transcriptomic centroid-based classification and the methylomic centroid-based 

classification, RB61 and RB60 therefore remained unclassified. Ultimately 31 samples were assigned 

to the first group, 38 to the second, and 3 (RB208, RB60, RB61) remained unclassifed.  
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Supplementary Figure 2. Distribution of the differentially methylated CpG between the two 
subtypes in relation to CpG islands. 
a, Distribution of the hypomethylated CpGs (upper panel) and the hypermethylated CpGs (lower panel) 

in subtype 2 as compared to subtype 1, by CpG content and neighborhood context. Hypermethylated 

CpGs were more frequently located within CpG islands than hypomethylated CpGs (751 of 2087 versus 

527 of 4520, p=193x10-119, Chi2 test) (related to Figure 2F).  

b, Boxplot comparing the number of differentially methylated CpGs with high levels of methylation (beta-

value within 0.8 to 1) located in CpG Islands in subtype 1 (n=27), subtype 2 non-MYCN-amplified (n=32), 

and subtype 2 MYCN-amplified (n=4) tumors (related to Figure 2g upper panel).  
c, Boxplot comparing the number of differentially methylated CpGs with low levels of methylation (beta-

value within 0 to 0.2) located outsideCpG Islands in subtype 1 (n=27), subtype 2 non-MYCN-amplified 

(n=32), and subtype 2 MYCN-amplified (n=4) tumors (related to Figure 2g bottom panel).  

b, c, In the boxplots, the central mark indicates the median and the bottom and top edges of the box 

the 25th and 75th percentiles. Whiskers are the smaller of 1.5 times the interquartile range or the length 

of the 25th percentiles to the smallest data point or the 75th percentiles to the largest data point. Data 

points outside the whiskers are outliers. Significance was tested by two-sided Wilcoxon test, p=1.9x10-

7.   
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Supplementary Figure 3. Stemness Indices estimated by different signatures.  
a, Boxplot of stemness indices in the two subtypes of retinoblastoma (subtype 1 tumors: n=26, subtype 

2 tumors: n=31) estimated by different signatures (from left to right: Miranda et al. 201833, Shats et al. 

201135, Smith et al. 201836). In the boxplots, the central mark indicates the median and the bottom 

and top edges of the box the 25th and 75th percentiles. Whiskers are the smaller of 1.5 times the 

interquartile range or the length of the 25th percentiles to the smallest data point or the 75th percentiles 

to the largest data point. Data points outside the whiskers are outliers. Data points outside the whiskers 

are outliers. Statistical tests are two-sided.   

b, Scatter plot showing the correlation between stemness indice estimated by Malta et al.’s method (y-
axis) or by other signatures (x axis, from left to right: Miranda et al. 2018, Shats et al. 2011, Smith et al. 

2018). Two-sided Spearman’s correlation test was applied, rho and p value are shown.  
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Supplementary Figure 4. Retinal cell gene expression analysis in the two subtypes of 
retinoblastoma.  
a, The expression of retinal cell-associated genes is presented as a heatmap, for three fetal retinas, 26 
subtype 1 tumors and 31 subtype 2 tumors. A heatmap was constructed for each retinal cell type, 

indicating the level of expression, the statistical significance (Signif.) and the log2 fold change (log2FC) 

of expression between subtype 2 and subtype 1 tumors. It is also indicated whether the gene is 

expressed by more than one retinal cell type (Cell exp.). The complete list of markers is given in 

Supplementary Table 3. Limma moderated t-test was used for the analysis of gene expression, BH 

correction was applied, exact p values are provided in Supplementary Table 3.   

b, Expression of ganglion markers, displayed in Figure 3e, in the normal developing retina according to 
cell types (single-cell RNA-seq data from Lu et al., 202038). For each gene and each cell type, a 

pseudo-dot plot is provided. At each age (x-axis), the dot size is proportional to the percentage of 

expressing cells (i.e. non-zero counts) and its y-coordinate indicates the mean expression. 

For the markers of all cell types, the online tool can be used to visualize their expression:  

- cone: https://retinoblastoma-retina-markers.curie.fr/cone, 

- rod: https://retinoblastoma-retina-markers.curie.fr/rod, 

- pan-photoreceptor: https://retinoblastoma-retina-markers.curie.fr/pan-photoreceptor,   

- ganglion: https://retinoblastoma-retina-markers.curie.fr/ganglion, 
- muller glia: https://retinoblastoma-retina-markers.curie.fr/muller,  

- amacrine: https://retinoblastoma-retina-markers.curie.fr/amacrine, 

- horizontal: https://retinoblastoma-retina-markers.curie.fr/horizontal,  

- bipolar: https://retinoblastoma-retina-markers.curie.fr/bipolar 
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Supplementary Figure 5. Data related to single-cell RNA-seq of a subtype 2 retinoblastoma 
(RBSC11). 
  

a, Immunohistochemical staining of CRX (photoreceptor marker), ARR3 (late cone marker) and EBF3 

(ganglion cell marker) for a new case of retinoblastoma (RBSC11).  
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b, Quality control of single-cell analysis for RBSC11: UMI counts, number of genes and percentage of 

mitochondrial genes.  

c, Heatmap of SingleR annotation scores derived by reference to the HPCA dataset with clusters 

superimposed for 1198 single cells in RBSC11. 
d, Expression of selected retinal/neuronal genes in RBSC11 shown in 2D t-SNE plots: early 

photoreceptor markers (OTX2, CRX, THRB, RXRG); late cone markers (ARR3, GUCA1C); 

ganglion/neuronal cell markers (GAP43, SOX11, UCHL1, DCX, EBF3).  

e, Expression of selected genes in the normal developing retina according to cell types (single-cell RNA-

seq data from Lu et al., 202038) (left panels). For each gene and each cell type, a pseudo-dot plot is 

provided. At each age (x-axis), the dot size is proportional to the percentage of expressing cells (i.e. 

non-zero counts) and its y-coordinate indicates the mean expression. Expression of these genes in the 

seven cell clusters of retinoblastoma RBSC11 (right panels). For each cluster, the dot size is 
proportional to the percentage of expressing cells (i.e. non-zero count) and its y-coordinate indicates 

the mean expression.   

The selected genes are representative of the different cell clusters found in tumor RBSC11. 

Clusters 0 and 2, expressed early photoreceptor/cone markers (e.g. CRX) and neuronal/ganglion cell 

markers (e.g. EBF3, GAP43). 

Clusters 1 and 4, expressed early photoreceptor/cone markers (e.g. CRX) and late cone markers (e.g. 

ARR3). 

Clusters 2 and 4 correspond to G2/M cells (expressing MKI67) 
Cluster 3 corresponds to hypoxic cells (of both tumor cell populations) and expressed BNIP3. 

Clusters 5 and 6 correspond to normal cells, macrophage/microglia (cluster 5 expressing CD14), T-

lymphocytes (cluster 6 expressing CD3D). 

f, Co-expression of CRX/EBF3/GAP43 in the retinoblastoma sample (RBSC11) (upper panels) and the 

normal developing retina (lower panels). The bar plots represent the abundance of the co-expression 

pattern. When the number of cells displaying co-expression is not zero, the proportion and absolute 

number of co-expressing cells are displayed. For the retinoblastoma sample, cells co-expressing the 
three genes (CRX/EBF3/GAP43) are shown in 2D t-SNE plots. The plots can be retrieved from: 

https://retinoblastoma-retina-markers.curie.fr/coexp-ExtDat.  
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Supplementary Figure 6. Expression of TFF1 and EBF3 in the normal developing retina and in 
the two subtypes of retinoblastoma. 
a, Expression of TFF1 and EBF3 and of two cone photoreceptor genes (CRX, ARR3) in the normal 

developing retina according to cell types (single cell RNA-seq data from Lu et al., 202038) (left panels). 

For each gene and each cell type, a pseudo-dot plot is provided. At each age (x-axis), the dot size is 
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proportional to the percentage of expressing cells (i.e. non-zero counts) and its y-coordinate indicates 

the mean expression. TFF1 is not expressed in the normal developing retina. Expression of these genes 

in the seven cell clusters of retinoblastoma RBSC11 (right panels). For each cluster, the dot size is 

proportional to the percentage of expressing cells (i.e. non-zero count) and its y-coordinate indicates 
the mean expression.   

b, Volcano plots showing that TFF1 and EBF3 are among the most significantly upregulated genes in 

subtype 2 retinoblastoma (blue) compared to subtype 1 (gold) in our series and in two independent 

transcriptomic retinoblastoma datasets (Kooi et al.18, McEvoy et al.16). For the subtype assignment of 

the tumors of these two series, see Methods and Supplementary Fig. 7.  

c, Boxplots representing the expression of TFF1 and EBF3 in the two subtypes using three independent 

datasets (this report, Kooi et al.18, McEvoy et al.16). In the boxplots, the central mark indicates the 

median and the bottom and top edges of the box the 25th and 75th percentiles. Whiskers are the smaller 
of 1.5 times the interquartile range or the length of the 25th percentiles to the smallest data point or the 

75th percentiles to the largest data point. Data points outside the whiskers are outliers. 
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Supplementary Figure 7. The two retinoblastoma subtypes were different in clinical and 
molecular features in two additional independent datasets. 
The two retinoblastoma subtypes were identified in two additional independent retinoblastoma datasets 

(Kooi et al. 201518, McEvoy et al. 201116) using our centroid-based transcriptomic predictor (see 

Methods). For each dataset, clinical (RB1 germline mutation status, age at diagnosis) and molecular 
(stemness, E2F targets, MYC pathways, interferon responses, estimation of abundance of various 

immune cells) features, and the expression of cone and ganglion markers, and of TFF1 were compared 

between the two subtypes. The features characteristic of each subtype identified in our initial series 
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were found in these two independent series. For germline mutation status and age, the statistical tests 

used to evaluate the difference between the two subtypes are indicated in the Wilcoxon test was used 

to evaluate the differences in HALLMARK pathway meta-scores and MCP counter-estimated immune 

cell abundance between the two subtypes of retinoblastoma; Limma moderated t-test was used for the 
analysis of gene expression, significance based on adjusted p values is shown. log2 fold-changes in 

expression between subtype 2 and subtype 1 are also shown. p≥0.1 (ns), p<0.1 (.), p<0.05 (*), p<0.01 

(**), p<0.001 (***), p<0.0001 (****)  
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COMMENTS 
 

Identification and characterization of cancer subtypes brings us knowledge on how 

tumors are formed and helps us to identify pertinent treatments for different disease 

subtypes. Previously, clustering on three different transcriptomic studies were 

performed and reached controversial conclusions: some researchers showed 

retinoblastoma is rather homogeneous while others classified patient tumors into two 

subgroups. A third group showed that the two clusters identified by hierarchical 

clustering displayed gradients of photoreceptor signature expression and tumor 

progression (Figure 7A). We took the data from the third group and observed a bimodal 

distribution for the mean expression of their photoreceptor signatures from histogram 

(Figure 7B).  

In this chapter, we identified two molecular subtypes of retinoblastoma with different 

clinical-pathological features based on a multi-omic analysis of 102 retinoblastoma 

samples. We demonstrated that subtype 2 tumors were clinically associated with later 

onsets and metastasis. They exhibited higher levels of stemness and MYC pathway 

activation, as well as lower levels of immune and inflammation signatures. They were 

more heterogenous than subtype 1 tumors; they exhibited less differentiated cone 

states and expressed higher levels of  neuronal/ganglion signatures. They had higher 

genomic instability and lower levels of DNA methylation, but were associated with 

higher methylation levels in CpG Islands. Those molecular features give us hints on 

potential therapeutic targets for this subtype of disease. 

Single-cell transcriptomic analysis of one retinoblastoma revealed its heterogeneity 

was at both genetic and phenotypic levels. These results allowed us to propose two 

progression paths for the two parts of tumor cells. In this tumor, less differentiated 

regions did not evolve from more differentiated parts as they harbored different 

genomic alterations. But we could not rule out the possibility of a dedifferentiation, as 

we are going to see in the next chapter, reanalysis of this tumor uncovered that 

dedifferentiation did happen in some subsets of the retinoblastoma cells with 

accumulation of genomic alterations.  
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Figure 7. Two visualization of photoreceptor signature expression in Kooi et al.’s data.  
A, Kooi et al. illustrated that the mean expression of photoreceptor signature (2753 genes) were 

continuous in two subtypes of retinoblastoma in 72 retinoblastoma samples. Figure from Kooi et al. 

2015, EBioMedicine. 

B, A histogram showing the distribution of mean expression of photoreceptor signature (the same 2753 

genes) in the same 72 patient samples from Kooi et al.’s data. 
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CHAPTER 4. 
CHARACTERIZATION OF HETEROGENEITY IN 

RETINOBLASTOMA BY SINGLE-CELL RNA-
SEQUENCING  

 
This chapter shows some unpublished single-cell data on the characterization of 
retinoblastoma intra- and inter- heterogeneity, and immune microenvironment .  

 
INTRODUCTION 

Cancer is a heterogeneous disease. Tumor cells in different patients or different cells 

in one patient can exhibit distinct molecular and phenotypic characteristics that leads 

to varied responses to the treatment. Heterogeneity is also reported in retinoblastoma, 

a cancer of the retina in children. At genetic level, the majority of the retinoblastomas 

develop following biallelic inactivation of RB1 genes (1). In rare cases (<2% of non-

familial diseases) when RB1 genes are intact, MYCN amplifications may give rise to 

retinoblastoma (2). At pathological level, tumors exhibit varied growth pattens: 

endophytic, exophytic and mixed. At histological level, diversity exists in tumor 

differentiation: some tumors present with Flexner-Wintersteiner rosettes and some 

with fleurettes, and the degree of differentiation seemed correlate with age (3). 

Molecular subtypes are also reported in retinoblastoma (4–6). A multi-omics analysis 

on 102 tumors identified two subtypes, one with more matured cone signatures and 

the other high-risk subtype of retinoblastoma with higher level of genomic instability, 

stemness, dedifferentiated cone states and neuronal/ganglion features (7).  

Single-cell transcriptomic analysis is an emerging approach that allows 

characterization of tumor heterogeneity at the individual cell level. Our previous single-

cell transcriptomic analysis in one retinoblastoma showed remarkable intra-tumoral 

heterogeneity at both genomic and transcriptomic levels where some cells showed a 

less differentiated cone state with more and different copy number alterations from 

other tumor cells (Figure 1) (7). A study using single-cell RNA-seq and single-cell 

ATAC-seq on two retinoblastomas showed retinoblastoma cells presented two cell 

programs that were activated by different regulators (8). The trajectory analysis in 
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another study of single-cell RNA-seq with two retinoblastoma suggested that tumor 

cells may undergo cone dedifferentiation (9).  

Tumors are heterogeneous also in a sense that they are composed of different types 

of cells, including tumor cells, as well as vessels, fibroblasts, and immune cells. Those 

cells exist in tumor microenvironment may interact with each other and lead to evasion 

of immune surveillance and tumor progression. Studies based on 

immunohistochemistry and immunoblotting on immune checkpoint proteins were 

carried out and revealed an immune-suppressive microenvironment in retinoblastoma 

(10–12). Our previous analysis in 23 patient samples with immunohistochemistry and 

cytokine array pointed out that secretion of cytokines such as MIF and EMMPRIN from 

the tumor cells may promote the infiltration of protumoral M2 macrophages in 

retinoblastoma (13). 

In the present study, we characterized the intra-tumoral heterogeneity at a higher 

resolution in one retinoblastoma that we previous described. We performed single-cell 

RNA-sequencing in 14 patient samples (13 samples in addition to RBSC11) and 

validated that tumors from younger patients expressed more matured cone 

photoreceptor markers, while tumors from older patients expressed less differentiated 

cone markers and neuronal genes. We also describe, for the first time, the immune 

microenvironment of retinoblastoma using the single-cell transcriptome. We show that 

the protumoral alternative M2 macrophages were enriched in retinoblastoma 

microenvironment and several candidate genes and inferred several tumor-immune 

interactions that may lead to the polarization of M2 macrophages.  
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RESULTS 

Intra-tumoral heterogeneity at a higher resolution: reanalyzing a retinoblastoma 
patient sample by single-cell RNA-sequencing 

Single-cell analysis in one retinoblastoma showed remarkable intra-tumoral 

heterogeneity at both genomic and transcriptomic levels, in which some cells with 

chromosome 2p and 10q gains were more matured in terms of cone differentiation, 

and other cells, harboring more and different copy number alterations, showed a less-

differentiated cone state (7) (Figure 1). We reanalyzed the sample aliased as RBSC11 

and revealed that, in the cells expressing more matured cone signatures, a 

dedifferentiation in cone states was associated with gain of additional chromosome 

alterations.  

 

Figure 1. Single-cell transcriptome analysis of RBSC11 revealed intra-tumoral heterogeneity.  
A, 2D-t-SNE plot showing 1198 retinoblastoma cells from one patient. Each dot represents one cell. 

Cells were clustered and annotated based on their transcriptomic profiles. Tumor cells represented 90% 

of all cells and were consisted of two main populations, CRX+ARR3+GUCA1C+ cells and 

CRX+EBF3+GAP43+ cells, each with a group of cells proliferating.  

B, Expression of cone and neuronal/ganglion markers in 2D T-SNE plot. Early photoreceptor markers: 
CRX and OTX2; late cone markers: ARR3 and GUCA1C; ganglion and neuronal markers: EBF3 and 

GAP43. 

C, A proposed tumor progression model for RBSC11 based on the inferred copy number variation 

profiles of the two cell populations. (From Figure 5 of (7)) 

 

More cells were identified using CellRanger V3 with EmptyDrops (14) cell calling 

algorithm implemented. We obtained 1274 cells after applying the same quality control 
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filter used in the previous analysis, which were visualized in 2D-UMAP (Uniform 

Manifold Approximation and Projection) (Figure 2A). Cells identified in the new 

analysis didn’t have significant difference in the quality control metrics with previous 

analysis (Figure 2B).  

 

 

Figure 2. Single cells identified with new analysis pipeline.  
A, 2D-UMAP plot showing 1274 cells that were identified with the CellRanger V3. Cells that were newly 

identified and not detected in previous analysis were shown in red.  

B, Quality control metrics of the cells identified in both versions of analysis and only identified in the 

new analysis.  

 

Expression data were normalized and scaled with the effect of number of counts and 

difference between cell cycle S phase and G2M score regressed out. Cells were 

clustered using an improved graph-based method implemented in Seurat V3. Briefly, 

a K-nearest neighbor graph was constructed based on the Euclidean distance in PCA 

space, the edge weights between any two cells were refined with Jaccard index based 

shared overlaps; Louvain algorithm was then applied to iteratively group cells together 

(15). Nine clusters were identified by the new analysis (Figure 3A). Clusters were 

annotated based on cluster markers, which were the genes upregulated in the cluster 

as compared to all other clusters. Out of the nine clusters, seven clusters (1114 cells, 

87.5%) were annotated as tumor cells, one cluster (92 cells, 7.2%) was annotated as 

monocytic lineage (monocytes or macrophages or microglia) and one cluster (68 cells, 

5.3%) was annotated as T cells. Within the tumor cells, clusters were further annotated 



CHAPTER 4 
 

 79 

based on known retinoblastoma genes, retina cell type markers, cell cycle phase and 

apoptotic status.  

All tumor cell clusters expressed early photoreceptor and early cone markers such as 

OTX2, CRX, THRB and RXRG (Figure 3A, B) as we previously described (7). Two 

clusters expressed cone markers at later stages (e.g. ARR3, GUCA1C). Interestingly, 

the new clustering could separate the two clusters by cone maturity, one cluster 

expressed ARR3, a maturing cone marker and the other expressed GUCA1C, a cone 

marker at a more mature stage. The other five clusters expressed retinoblastoma 

genes (e.g. TFF1) and neuronal/ganglion markers (e.g. EBF3, GAP43, SOX11, 

UCHL1, DCX) that were identified in our previous analysis. Interestingly, a new cluster 

of 37 cells expressing PRL and CD24 was identified in the new analysis. The gene 

PRL encodes a secreted hormone prolactin, which acts primarily on the mammary 

gland by promoting lactation, but is also a trophic factor in the retina (17). It is 

expressed throughout the retina layers in mouse and monkey (16). The gene CD24 

encodes a sialoglycoprotein that plays an role in cell differentiation, and is reported as 

a neuronal stemness marker (18). This cluster was not identified in the previous 

analysis and was submerged within the apoptotic cells (Figure 3C). The proliferation 

marker MKI67 was expressed by both the cells expressing cone markers and the cells 

expressing neuronal/ganglion markers. Its expression is high in the cluster of cells 

predicted as G2M phase (Figure 3A,B). The gene BNIP3 encodes a pro-apoptotic 

protein of the BCL2 family, and was reported involved in hypoxia-induced apoptosis 

(19). Consistent with this, the cluster of cells expressing BNIP3 also expressed genes 

enriched in hypoxia pathways. The expression of monocyte marker (e.g. CD14), 

macrophage marker (e.g. CD163), microglia marker (AIF1), and T cell marker (e.g. 

CD3D) are shown in the UMAP space (Figure 3B). 
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Figure 3. New annotation of RBSC11. 
A, 2D-UMAP plot showing 1274 cells colored by annotated clusters.   

B, Expression of selected genes are shown in a 2D-UMAP plot. Early photoreceptor markers: CRX, 

OTX2; early cone markers: THRB, RXRG; late cone markers: ARR3, GUCA1C; aberrant retinoblastoma 
gene: TFF1; neuronal/ganglion markers: EBF3, GAP43, SOX11, UCHL1, DCX; top gene in the newly 

identified cluster: PRL, CD24; proliferation marker: MKI67; pro-apoptotic marker: BNIP3; monocyte 

marker: CD14; macrophage marker: CD163; microglia marker: AIF1; T-cell marker: CD3D. 

C, Alluvial plot showing the cell annotation assignment of the same cells in the current and previous 

analysis. Cells annotated as none in the previous analysis are the cells newly identified with the 

currently pipeline.  

 

We previously proposed a tumor progression model for RBSC11 based on the inferred 

genomic profiles (Figure 1C). CRX+/ARR3+/GUCA1C+ cells were transformed after the 

two hits of RB1, followed by chromosome 10q gain and in some cells 2p gain. We 

weren’t able to distinguish, in their transcriptomic profiles, the cells with 10q gain only 

from the cells with both 10q gain and 2p gain. In the new analysis, we were able to 

separate the CRX+/ARR3+/GUCA1C+ cells into two clusters, one expressing maturing 

cone cell marker ARR3 and the other expressing more mature cone marker GUCA1C. 

To examine if the two clusters by cone maturity corresponded to the two groups of 

cells with different genomic profiles, we inferred copy number variations at single-cell 

level from gene expression, using inferCNV (20). Indeed, the CRX+/GUCA1C+ cells 

were inferred as carrying 10q gain without 2p gain; and the CRX+/ARR3+ cells were 

inferred as carrying both 10q gain and 2p gain (Figure 4). Interestingly, the cells 

carrying 10q gain and 2p gain also included the cells in the PRL+/CD24+/TFF1+ cluster 

(Figure 4).  
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Figure 4. Inferred copy number variation profiles for RBSC11. 

 

Combining the new clustering results and the inferred copy number profiles, we could 

propose a new cell progression model (Figure 5). After bi-allelic inactivation of RB1 

and the gain of 10q, CRX+GUCA1C+ cone cells were transformed into tumor cells. 

Addition of 2p gain induced tumor cells into less differentiated cone states that no 

longer expressed the mature marker GUCA1C but still expressed a maturing cone 

marker ARR3. Cells may further lose the ARR3 and become CRX/PRL/CD24/TFF1 

positive. On the other hand, bi-allelic inactivation of RB1 combined with numerous 

genomic alterations could lead to cells with neuronal features that expressing CRX, 

EBF3, GAP43, and TFF1. All those cells seemed to proliferate, as they expressed 

proliferation marker MKI67 (Figure 3B).  
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Figure 5. Schema of a proposed progression model for RBSC11.  
Based on the new annotation and the inferred copy number variation profiles of the clusters identified 

in the new analysis, we proposed a refined progression model for RBSC11. Part of the cells came 

through RB1 loss and chromosome 10q gain and became CRX+GUCA1C+ tumor cells. With gain of 2p 

in those tumor cells, they lost mature cone gene and expressed aberrant tumor genes, became 

CRX+ARR3+ and CRX+PRL+CD24+TFF1+. Other part of the cells lost RB1 and acquired 1q, 2q, 9p, 13q 
gain, 8q loss and became CRX+EBF3+GAP43+TFF1+ tumor cells. Those tumor cells can be in different 

cell cycle states or showing apoptotic and hypoxic features.  

 

Our results support the hypothesis that retinoblastomas originate from cone 

precursors, as all cells expressed early cone precursor markers. Singh et al. showed 

that cultured human ARR3+ maturing cone cells enter the cell cycle and form pre-

retinoblastoma-like lesions when RB1 is depleted by shRNAs, but they exit the cell 

cycle in the following months (39). Our results were in accordance that tumor cells can 

express maturing cone marker ARR3 or more matured cone marker GUCA1C, but 

their transformation may require not only RB1 mutations but also additional genomic 

alterations. In some of those tumor cells, dedifferentiation in cone states and gain of 

aberrant tumor genes may occur with the accumulation of chromosome 2p gain. At 

the stage of diagnosis, no tumor cells obtained absolute growth advantage, therefore 

the three populations coexisted. Other tumor cells expressing CRX and 

neuronal/ganglion markers EBF3/GAP43 may be derived from less differentiated cone 

photoreceptor precursors expressing CRX but not ARR3, or they may be also derived 

from maturing cone precursors but underwent cone dedifferentiation, but in this case, 

CRX+EBF3+GAP43+TFF1+ cells outgrew the other tumor cells.  

Our results was based on single-cell transcriptomic analysis of one retinoblastoma, it 

would be important to examine the expression of early and late cone photoreceptor 

markers, neuronal/ganglion markers, and aberrantly expressed genes in 
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retinoblastoma using immunohistochemistry and to verify the copy number variation 

profiles in macro-dissected tumor cells with different phenotype. Single-cell RNA-

sequencing is applied to fresh tumors and viable cell enrichment may eliminate some 

fragile cells; therefore the samples that can be analyzed are limited and the cell 

population analyzed maybe biased. Spatial transcriptomics that can be applied to 

formalin-fixed, paraffin-embedded (FFPE) tissues could allow us to select and analyze 

the tumor samples with intra-tumoral heterogeneity, thus provide more interesting 

results.  
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Inter-tumoral heterogeneity confirmed at single-cell resolution 

We extended the droplet-based single-cell 3’ RNA-sequencing for 14 primary 

retinoblastomas. Retinoblastoma samples were needle-aspirated from primary 

enucleation in patients with unilateral and non-hereditary diseases. Age of diagnosis 

for patients were between 9 to 63 months and median age of diagnosis was 20 months. 

Patient characteristics were provided in Table 1. 

We obtained 39297 cells from the 14 retinoblastomas after quality control, which were 

visualized in 2D-UMAP (Uniform Manifold Approximation and Projection) (Figure 6A). 

Cells were clustered using graph-based methods using Seurat V3 (Figure 6B). 

Pathway enrichment analysis of the cluster markers enabled us to annotate the cells 

into tumor cells (n = 31236, 79.5%), Monocytes (n = 4828, 12%), T cells (n = 2211, 

6%), Rod photoreceptors (n = 579, 1.5%) and Müller glia (n = 425, 1%) (Figure 6C). 

Expression of the most upregulated genes in each cell type were shown in heatmap 

(Figure 6D).  

All retinoblastoma cells expressed CRX and OTX2 (Figure 6E), two early 

photoreceptor markers. Later cone markers ARR3 and GUCA1C, that we previously 

reported expressed by subtype 1 retinoblastoma, were expressed by some 

retinoblastoma cells from patients younger than 18 months (Figure 6C,E). 

Ganglion/neuronal markers EBF3, GAP43 and DCX, and TFF1, the genes expressed 

by subtype 2 retinoblastoma, were expressed by some retinoblastoma cells from 

patients older than 18 months (Figure 6C,E). The findings that tumor cells from 

younger patients expressed markers of cone precursors and more mature cone 

photoreceptors and that tumor cells from older patients expressed cone precursor 

markers and neuronal/ganglion markers were in agreement with the characteristics of 

the two subtypes that we previously reported. The two genes PRL and CD24 were 

also expressed by some retinoblastoma cells from patients older than 18 months 

(Figure 6C,E).  
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Table 1. Patient Charateristics.  

sampleID 

Gender 
(Male 

/Female) 

Age at 
enucleation 

(month) 

Laterality 
(Unilateral/
Bilateral) 

Hereditary 
(Y/N) 

Prior 
treatment 

IIRC 
class 

TNM 
stage 

Tumor 
diameter 
(mm, by 

MRI) 

Differentiation 
(Well 

/Intermediate 
/Poor) 

Type of growth 
(Exophytic 

/Endophytic 
/Mixed) 

Optic nerve 
invasion (None 

/Prelaminar 
/Intralaminar 
/Postlaminar) 

Choroid and sclera 
invasion (None 
/Minimal /Deep 

/Extende /Extended 
and Sclera) 

RBSC11 Female 23 Unilateral N no E cT2b na Intermediate na Prelaminar Extended and Sclera 

RBSC14 Male 28 Unilateral N no E cT2b 17 na Endophytic None None 

RBSC15 Male 27 Unilateral N no D cT2b 15 Intermediate Endophytic  na None 

RBSC16 Female 22 Unilateral N no E cT3d na Poor Mixed Postlaminar Minimal 

RBSC17 Male 10 Unilateral N no E cT2a 17 Intermediate Exophytic  Prelaminar Deep 

RBSC19 Female 63 Unilateral N no E cT2b na Poor Exophytic None None 

RBSC23 Female 17 Unilateral N no E cT2b 15 Intermediate Exophytic  None Minimal 

RBSC24 Male 54 Unilateral N no E cT2b 19 Poor Exophytic Intralaminar None 

RBSC26 Female 13 Unilateral N no D cT2b na Intermediate Endophytic  None None 

RBSC27 Male 20 Unilateral N no E cT2b 16 Intermediate Mixed Prelaminar Minimal 

RBSC30 Female 10 Unilateral N no E cT2b 17 Intermediate Endophytic  None None 

RBSC31 Male 11 Unilateral N no E cT3c 16.5 Intermediate Endophytic Prelaminar Minimal 

RBSC32 Female 19 Unilateral N no E cT2b na Intermediate Endophytic None Minimal 

RBSC33 Male 9 Unilateral N no E cT2b 18 Intermediate Exophytic Postlaminar Minimal 

na: not available            
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Figure 6. Single-cell transcriptomic analysis of retinoblastoma. 
A, 2D-UMAP of 39297 cells from the 14 retinoblastomas colored by sample. Each dot represent a cell.  
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B, 2D-UMAP annotated by cluster.  

C, 2D-UMAP annotated by cell type. 

D, Heatmap showing the most upregulated genes in each cell type.  

E, Selected genes expressed by tumors shown in 2D-UMAP. Early photoreceptor marker: CRX, OTX2; 
Cone photoreceptor markers: ARR3, GUCA1C; Neuronal/ganglion markers: EBF3, GAP43, DCX; 

Aberrant expressed gene in retinoblastoma: TFF1;  

F, Expression of PRL and CD24 in retinoblastoma shown in 2D-UMAP.  

G, Representative genes for other cell types shown in 2D-UMAP. Monocyte marker: CD14; T cell 

marker: CD3D; Mature rod photoreceptor marker: RHO; Muller glia marker: CLU. 

 

The distance between two cells in UMAP reflects the similarity of their transcriptomic 

profiles. Interestingly, tumor cells from younger patients were closer in 2D-UMAP 

space (Figure 6B) and expressing higher ARR3(Figure 6D,E), a maturing cone 

photoreceptor marker, while tumor cells from older patients were closer to each other 

(Figure 6B) and highly expressed TFF1 (Figure 6D,E). We showed previously that 

RBSC11 expressed ARR3 in part of the tumor cells with chr10q gain (some cells also 

had 2p gain), and expressed EBF3/GAP43 - the neuronal/ganglion markers -  in the 

rest part of the tumor with multiple copy number variations (gains of 1q, 2q, 9p, 13q, 

loss of 8q) (7). Intriguingly, the ARR3+ cells of RBSC11 were closer to the tumor cells 

from younger patients expressing ARR3 in the 2D-UMAP, and the EBF3+/GAP43+ 

were closer to the tumor cells from older patients (Figure 6B,E). Among the tumor cells, 

RBSC19 formed a distinct cluster (Figure 6A-C), which might be due to the older age 

at diagnosis of the patient (63 months), which is very different from the rest of the 

patients.  

We identified monocytes, T cells, mature rod cells and Müller glia cells in the 

retinoblastoma tumor microenvironment. They weren’t identified as tumor cells as they 

did not harbor the copy number variations from inferCNV. Expression of selected 

markers for each cell type were shown (Figure 6G). Rod photoreceptors are the most 

abundant cell types in the retina that are mediate vision in dim light (21). Müller glia 

are the major glial cell types derived from retinal progenitors that provide structure 

support and participate in maintenance of homeostasis in the retina (22). The rod cells 

and Müller glia identified in some retinoblastomas are likely the normal cells as 

previously shown (7,23). 
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Immune landscape of retinoblastoma 

To investigate the immune landscape of retinoblastoma, we focused our analysis on 

the 7039 cells (18%) that were classified as monocytes or T cells out of 39297 cells 

from the 14 retinoblastomas. For a more detailed annotation, we reclassified those 

immune cells into 12 clusters using graph-based clustering (Figure 7A) and performed 

cell type prediction by label transfer from PBMC reference (Figure 7B) (24). A final 

annotation (Figure 7C) was made based on both cluster markers and cell type 

prediction. We identified various subsets of monocytic lineage cells (monocytes, 

macrophages, microglia, dendritic cells), T cells (CD 4 T, CD8), NK cells, B cells 

(Figure 7C). A heatmap illustrating the expression of top 10 genes in  each cell type is 

shown (Figure 7D).  
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Figure 7. Immune cell type identification in retinoblastoma microenvironment.  
A, UMAP colored by clusters. Each dot represent a cell.  
B, UMAP colored by cell type prediction from label transfer. Mono, monocytes; DC, Dendritic cells.  
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C, UMAP colored by final cell type annotation that combined clusters and predicted cell types from label 

transfer. Mono/Macro, monocytes/macrophages.  

D, A heatmap showing the top 10 most upregulated genes in each cell type as compared to other cell 

types.  

 

Among monocytic lineage cell clusters, five main cell types were identified: 

monocytes/macrophages (n = 2363), stressed microglia (n = 1291), dendritic 

cells/microglia (n = 610), proliferating cells (n = 358) and a cluster of cells expressing 

RCVRN (n = 201). Markers of monocyte (e.g. CD14) and macrophage (e.g. CD68) 

were mainly expressed by the monocyte/macrophage cluster (Figure 8A). M2 

macrophage marker such as CD163, MRC1 were also expressed by the 

monocytes/macrophages cluster, instead of the markers of M1 microphages such as 

CD80, NOS2 (Figure 8A). This is consistent with our previous findings that M2 

macrophages were activated in the retinoblastoma tumor microenvironment (13). 

Marker of microglia AIF1 was expressed by all monocytic lineage cell clusters (Figure 

8B, left panel) and was relative higher in three subsets of cells that we annotated as 

stressed microglia, dendritic cells or proliferating cells (Figure 8B, right panel). The 

stressed microglia subset exhibited high mitochondria gene percentage and low total 

count (Figure 8C). They highly expressed genes involved in oxidative phosphorylation, 

reactive oxygen species pathway, iron and lipid metabolism, such as FTL, FTH1, 

HMOX1, NURP1, SELENOP, FABP5, PRDX1, CSTB (Figure 7D). The two genes 

ferritin light chain (FTL) and ferritin heavy chain (FTH1) encode the two subunits of the 

ferritin protein, which functions in the storage and delivery of iron. Both genes were 

reported upregulated in several cancers and positively correlated with tumor-

associated macrophages and T regulatory cell infiltration in tumors (25,26). The gene 

HMOX1 encodes Heme oxygenase-1, which participats in M2 macrophage 

polarization (27).  

The cells annotated as dendritic cells expressed MHC class II genes (e.g HLA-DRB1, 

PLAC8) (Figure 7D) and the proliferating cells expressed proliferating markers (e.g. 

TOP2A, MKI67) (Figure 7D). The cluster named as RCVRN highly expressed RCVRN, 

CTB, MAP1B, STMN1, GNB3, PDE6H, AKAP9, NEUROD1, PEG10, DCT (Figure 7D), 

many of which are photoreceptor markers (7,28). Those genes, along with the cone 

photoreceptor genes (e.g. CRX, ARR3, GUCA1C) and neuronal/ganglion genes (e.g. 



CHAPTER 4 
 

 92 

GAP43, EBF3), and aberrantly expressed genes (e.g. TFF1) were expressed by the 

cluster RCVRN and by the stressed microglia (Figure 7D). Expression of both 

microglia markers and retinoblastoma-related genes may suggest the phagocytosis in 

the tumor associated microglia cells.  

Among the lymphoid cells, we identified CD4 T cells (n = 851), CD8 T cells (n = 694), 

NK cells (n = 448), other T cells (n = 164) and B cells (n = 59) (Figure 7C). CD4 T cells 

expressed CD3D and either CD4 or CD8 (Figure 8E). A subset of the CD4 T cells 

expressed FOXP3; these are likely to be regulatory T cells, and account for around 52 

cells (3% out of all T cells) (Figure 8E). CD8 T cells and NK cells expressed cytotoxic 

genes such as GNLY and PRF1 (Figure 8E).  
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Figure 8. Expression of selected genes in retinoblastoma-infiltrated immune cells.  
A, Expression of markers of monocytes, macrophages, M2 and M1 macrophages presented in UMAP.  

B, Expression of microglia marker in UMAP or by Violin plot.  

C, Violin plot showing the mitochondria gene percentage and the number of count in each cell.  
D, Expression of cone photoreceptor markers, neuronal/ganglion markers, and aberrant retinoblastoma 

related gene in each immune cell type. 

E, Expression of T cell markers in UMAP.   

 

Ligand-receptor analysis between retinoblastoma and tumor infiltrated 
macrophages 

To investigate the possible mechanisms through which the M2 macrophages were 

activated, we performed ligand-receptor interaction prediction using CellPhoneDB (29). 

We randomly sampled 2000 cells in tumor, monocytes/macrophages or T cells, and 

iterated the predictions for 100 times. We kept the interactions that were predicted in 

more than 80 times out of the 100 iterations. CD74-MIF appeared as the top prediction 

between monocytes/macrophages and tumor cells (Figure 9), same as what we 

previous predicted using the data of one tumor (13).Other top predictions included 

C5AR1-RPS19, CD74-COPA, CD74-APP, GRN-SORT1,HLA-C-FAM3C, NRP1-

VEGFB, LGALS9-CD47 (Figure 9). Among them, several genes were reported to be 

involved in the immune-suppressive microenvironment and M2 macrophage 

polarization. Complement C5a Receptor 1, encoded by C5AR1 gene, is a complement 

receptor that plays a role in the promoting M2 macrophage phenotype in squamous 

cell carcinoma (30) and breast cancer (31). Inhibition of the C5AR1 protein or blockade 

of its interaction with RPS19 can revert the protumor phenotype. The gene LGALS9 

encodes galectin 9, which participates in T cell exhaustion (32) and bind to CD206 in 

M2 macrophages (33). Neuropilin-1 (NRP1) was also shown to promote M2 

macrophage infiltration in hypoxic environments (34). High expression of SPP1 and 

CD44 were reported in glioma (35) and in hepatocellular cancer (36). Co-culture of 

SPP1 knock down cell lines with macrophages had reduced levels of M2 macrophage 

marker expression, suggesting that SPP1 may play an role in M2 macrophage 

polarization (36).   
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Figure 9. Inferred ligand-receptor pairs between monocytes and tumor cells, monocytes and T 
cells, or monocytes and monocytes.  
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DISCUSSION 

Using a single-cell transcriptomic study of 14 primary retinoblastoma samples, we 

characterized the retinoblastoma intra- and inter- heterogeneity, as well as the tumor-

infiltrating immune cells.  

We reanalyzed a patient tumor aliased as RBSC11 with marked intra-heterogeneity 
and refined the two possible progression pathways in this tumor that we proposed 

before (7). We uncovered, in part of the RBSC11,  a dedifferentiation process in tumor 

progression, which was accompanied by the acquisition of additional genomic 

alterations. Some photoreceptor cone precursors that expressed CRX, ARR3 and 

GUCA1C, after the losses of RB1 genes and the gains of chromosome 10q, were 

transformed to cancer cells; with the addition of chromosome 2p gain, they decrease 

in their cone maturity, which was reflected by the loss of expression of a more mature 

cone marker GUCA1C; they may continue to lose maturing cone marker ARR3, and 

to express a neuronal stemness marker CD24 and a pro-proliferation hormone PRL. 

In other part of RBSC11, RB1 loss and accumulation of mutiple chromosome 

alterations led to tumor progression. The gene PRL was also expressed by other 

retinoblastomas from patients who are diagnosed older than 18 months. It is not only 

the hormone produced by the pituitary gland for lactation, but also is endogenously 

expressed by the mammalian retina (16). It is a trophic factor in the retina that protects 

retinal cells from degeneration (17) and regulates retinal pigmental epithelia 

homeostasis (37). PRL is also involved in tumorigenesis and metastasis of multiple 

hormone responsive cancers (38).  

We validated by single-cell RNA-seq in 14 patient samples that all tumor cells 
expressed CRX, an early photoreceptor marker, consistent with the hypothesis that 

retinoblastoma originate from cone photoreceptor precursors (39,40). Tumors from 

younger patients expressed maturing cone marker ARR3, while tumors from older 

patients expressed EBF3, a neuronal/ganglion marker, and TFF1, an aberrantly-

expressed gene in retinoblastoma. This is in agreement of our previous findings of two 

molecular subtypes, that subtype 1 tumors expressed more matured cone signatures 

and manifested in younger patients, and subtype 2 tumors found in older patients 
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expressed less differentiated cone signatures but displayed neuronal/ganglion 

features and are associated with metastasis (7).    

Our study portraited comprehensively the immune landscape in the retinoblastoma 

tumor microenvironment. We identified tumor-associated macrophages/microglia, 

dendritic cells, CD4 T cells including regulatory T cells, CD8 T cells, NK cells and B 

cells in the retinoblastoma ecosystem. We showed that M2 macrophages were 

activated in retinoblastoma. Macrophages can be grouped into M1 (classically 

activated) and M2 (alternatively activated) phenotypes. M1 macrophages are often 

considered pro-inflammatory and anti-tumoral, while M2 macrophages tend to 

promote immune-suppressive status, angiogenesis, proliferation and metastasis in 

cancer (41). We inferred ligand-receptor interactions between tumor and immune cells 

and found several genes involved in the polarization of M2 macrophages. One of the 

predicted interactions between macrophages and tumor cells was MIF-CD74. MIF was 

shown to be one of the most secreted cytokines in retinoblastoma. Exposure of PBMC-

derived macrophages to retinoblastoma-conditioned medium significantly increased 

M2 macrophage activation (13). Several other genes predicted in ligand-receptor 

interactions were also reported as factors to promote M2 phenotypes, such as C5AR1, 

RPS19, LGALS9, NRP1, and SPP1. Pharmacological inhibition of some of these 

factors could revert the M2 phenotype into the M1 phenotype (31) or improve anti-

tumor activity synergistically through regulatory T cell depletion (32).  

Immunohistochemistry analysis of those proteins in retinoblastoma and functional 

experiments should be performed to validate their functions in their M2 polarization in 

retinoblastoma.  

Taken together, our results depicted a comprehensive picture of retinoblastoma 

heterogeneity, including its immune microenvironment, which open new directions to 

targeted therapy and immune therapy in this rare pediatric cancer. We proposed 

several genes that may contribute to immune-suppressive environments that should 

be validated in future work.  
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METHODS 

Retinoblastoma patients and ethics statement 

We included 14 retinoblastomas in this study. All patients came from Institut Curie 

(Paris, France) from 2018 to 2021 and were diagnosed as unilateral and non-

hereditary diseases. Median age at diagnosis was 20 months (range 9 to 63 months). 

All patients underwent primary enucleation without prior treatments.  

The study was performed in accordance with the Declaration of Helsinki and French 

legislation. The study was approved by the Institut Curie Review Board. Written 

informed consent was obtained from parents or legal guardians of retinoblastoma 

patients, in accordance with the current guidelines and legislations of the country. 

 

Single-cell RNA-sequencing of retinoblastoma  

Within 1 hour after enucleation, a tumor specimen was obtained by needle aspiration 

through the anterior chamber of the eye and immediately placed in ice-cold CO2 

independent medium (Thermo Fisher). To obtain a high-quality sample,  density 

gradient centrifugation was executed to remove debris, dead cells and erythrocytes 

using Histopaque-1077 (Sigma-Aldrich). Cell count and viability were determined by 

trypan blue exclusion on a Vi-CELL XR (Beckman Coulter Life Sciences). Samples 

with cell viability less than 60% underwent a second or a third round of density gradient 

centrifugation to further improve sample quality. All samples passed on for single-cell 

RNA-seq had viability more than 60%. Cells were then mechanically dissociated, 

washed and resuspended in phosphate-buffered saline supplemented with 0.04% 

bovine serum for single-cell processing. 

With the aim of recovering 3000 cells, 6000 cells were loaded onto the Chromium 
controller (10X Genomics) using Chromium single cell 3’ reagent kits v2 or v3 

chemistry (10X Genomics). Each single cell was incorporated in one droplet together 

with one barcoded gel bead containing reagents. Following in-droplet lysis, cDNA 

incorporating cell barcode and UMI (unique molecular identifier) was synthesized and 

amplified. Amplified cDNA was fragmented and an Illumina sequencing library was 

constructed (Illumina). For quality control and quantification of cDNA and library, 

BioAnalyzer (Agilent BioAnalyzer High Sensitivity chip) was used. Libraries were 
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loaded at 400pM and pair-end sequenced on Novaseq 6000 using NovaSeq 6000 S1 

Reagent Kit (Illumina). Cells were sequenced at a mean depth of 100000 reads/cell.  

 

Single-cell transcriptome analysis 

Sample demultiplexing, alignment to the reference genome (GRCh38, Ensembl 84, 

pre-built Cell Ranger reference version 1.2.0), quantification and initial quality control 

(QC) were performed using the Cell Ranger software (version 3.0.0 or 3.1.0, 10X 

Genomics).  

For reanalysis of RBSC11, genes which were expressed in more than 3 cells, and 

cells that expressed more than 500 genes and less than 5% of mitochondria genes, 

were retained. For analysis of 14 retinoblasotmas, genes which were expressed in 

more than 3 cells and cells which expressed more than 500 genes and less than 20% 

of mitochondria genes were retained. Normalization and clustering were performed 

using Seurat package version 3. UMI counts were normalized by NormalizeData 

function with logNormalize method, by a scaling factor of the median UMI count. UMI 

counts were then scaled to regress out the effect of UMI counts and the difference of 

G1S phase score minus S phase score. Variable genes were found with 

FindVariableGenes function with logVMR function. Genes with average expression 

more than 0.0125 and less than 8 and with dispersion more than 0.5 were considered 

as variable genes for principal component analysis (PCA).  

Cell clusters were identified by Seurat V3 FindNeighbors and FindClusters functions 

that implemented K-nearest neighbor (KNN) graph-based method and modularity 

optimization with Louvain algorithm (15,42–44). The first 20 to 30 principal 

components were used. The parameter Resolution in the FindClusters was set 

between 0.1 to 1.4 in order to find an optimal resolution for biological interpretation.  

Cluster markers were identified by FindAllMarkers function. Briefly, expression of 
genes that expressed in more than 10% of cells in one cluster were compared with 

expression of these genes in all other clusters, using Wilcoxon rank-sum test and 

corrected with a Benjamini & Hochberg (BH) correction. The procedure was repeated 

for all clusters. Genes upregulated in each cluster with more than 0.2 fold were 

considered as cluster markers. Pathway analysis of cluster markers were performed 
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by R clusterProfiler package (45). Genesets tested were from the Molecular 

Signatures Database v7.0 (46). 

Copy number variations (CNVs) were inferred from the single-cell gene expression by 

InferCNV package 1.0.0, using normal retinal cells derived from hiPSCs as reference 

(47).  

Cell type prediction was made using Seurat V4 reference mapping, where the 
reference were the single-cell gene expression data with 162000 human peripheral 

blood mononuclear cells sequenced by CITE-seq and normalized by SCTransform 

(variance-stabilizing transformations for single-cell UMI data) (24). Expression data of 

immune cells identified from our previous analysis were also normalized using 

SCTransform for query to keep consistent with the reference data. Anchors between 

the reference and query were identified using FindTransferAnchors function with the 

first 50 dimensions from a supervised PCA on normalized expression data. Cell type 

labels were transferred from the reference to the query with MapQuery function.  

CellPhoneDB v2.1.7 was used to predict ligand-receptor interactions between immune 

cells and tumor cells (29). Briefly, 2000 cells were randomly selected from each cell 

type and the prediction function was applied with option ‘statistical_analysis’ and 1000 

iterations. Analyses were repeated 100 times and the stable ligand-receptor pairs 

appeared more than 80 times were retained in the results.  
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CHAPTER 5. 
CONCLUDING REMARKS 

 

Summary 

During my doctoral study, I sought to better understand retinoblastoma heterogeneity. 

Our team previously collected multi-omics retinoblastoma datasets and identified two 

molecular subtypes, one showing a photoreceptor cone signature and another 

showing a mixture of cone and ganglion signatures. I continued in this direction, 

comparing and characterizing the two subtypes. We showed that subtype 1 tumors 

were often manifested by younger patients, harbored fewer genomic alterations, 

exhibited more-mature cone and immune signatures; and that subtype 2 tumors were 

usually diagnosed in older patients, displayed a CpG Island methylator phenotype, 

expressed less-differentiated cone markers, as well as neuronal/ganglion and 

stemness signatures. We collaborated with Dr. Guillermo’s team, and showed in an 

independent series of retinoblastoma, that all metastatic cases were subtype 2 tumors. 

With the help of Dr. Sirab, a biologist in the team, we collected single-cell RNA-

sequencing data from 14 retinoblastoma samples. We validated in the single-cell data 

that the molecular profiles of tumors from younger patients were similar to the subtype 

1 tumors that expressing more-mature cone signature, while the tumors from older 

patients expressed neuronal/ganglion markers and the genes aberrantly upregulated 

in subtype 2 tumors. We uncovered that intra-tumoral heterogeneity in retinoblastoma 

can exist at both genomic and phenotypic level through the analysis of one 

retinoblastoma at single-cell level. We proposed a progression model for part of this 

tumor in which the accumulation of genomic alterations were accompanied by the loss 

of cone features and the gain of stemness feature and a retinal trophic factor. From 

the single-cell transcriptomic data, we identified the infiltrations of immune cells and 

normal retinal cells in retinoblastoma microenvironment. We made a comprehensive 

portrait of the immune cell landscape in retinoblastoma and showed an activation of 

protumoral M2 macrophages maybe due to several candidate genes. In collaboration 

with Dr. Carcaboso’s team, we validated with cytokine array and functional 

experiments that Macrophage Migration Inhibitory Factor participated in the shaping 
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of the M2 phenotype and may contribute to immune-suppressive microenvironment in 

retinoblastoma.  

 

Future directions 

1) MYCN-amplified tumors as a third subtype 

MYCN-amplified tumors were classified as subtype 2 retinoblastoma in our study, they 
expressed neuronal/ganglion markers and aberrant genes upregulated in subtype 2 

tumors. On the other hand, they harbored several unique features, including their 

relative low proliferation rate and overall hypomethylation. MYCN-amplified 

retinoblastoma is found in 10% of all cases and in our cohort we only had 5 samples 

with transcriptomic or DNA methylation data. With more cases, we may be able to 

identify them as a third subtype or a subcluster of the subtype 2 retinoblastoma.  

2) Retinoblastoma cell of origin 

We showed that all retinoblastoma expressed early photoreceptor markers, along with 
several evidences from the literature, suggesting that retinoblastoma are derived from 

the early photoreceptor cone cells. However, there is still controversy on the 

retinoblastoma cell of origin as some researchers, based on the expression of some 

retinal progenitor markers, claimed that they are transformed from retinal progenitors. 

Analysis of the single-cell transcriptomic data in the fetal retina combined with our data 

from the tumors could provide more insights into this debated issue.  

3) Aberrant pathways in retinoblastoma  

Bulk data is a mixture of signals from both tumor and cells from the tumor 
microenvironment. Using single-cell data, we would be able to compare the tumor cells 

and normal cells to identify tumor-specific aberrant genes and pathways. Gene 

regulatory inference analysis can be applied to both bulk and single-cell data. It 

extracts pairwise gene information and can provide insights into gene regulations in 

tumorigenesis.  

4) Immune therapies for retinoblastoma 
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Emerging evidence showed that immune therapies may also work in immune-cold 
pediatric cancers. We proposed several genes that may function in M2 macrophage 

polarization and tumor promotion. This need to be examined by in vitro and in vivo 

phenotypic and functional work. Our collection of immune cells at single-cell level also 

provides a rich resource for future investigations into retinoblastoma immune therapies. 

 

Conclusion 

Taken together, our comprehensive characterization of the two molecular subtypes of 
retinoblastoma, the intra-tumoral heterogeneity, and the immune landscape open up 

new directions for retinoblastoma studies and shed light on future target therapies and 

immune therapies for retinoblastoma. 
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ANNEX. 
IDENTIFICATION OF IMMUNOSUPPRESSIVE 

FACTORS IN RETINOBLASTOMA CELL 
SECRETOMES AND AQUEOUS HUMOR FROM 

PATIENTS  
 

In this annex, an article on work done in collaboration with Dr. Carcaboso and Dr. 

Cuadrado-Vilanova is enclosed. Utilizing cytokine array and immunohistochemistry, 

we identified cytokines secreted by 11 primary retinoblastoma derived cell models 

involved in the activation of protumoral M2 macrophages, including Macrophage 

Migration Inhibitory Factor (MIF). This is reminiscent of our findings of MIF-CD74 being 

one of the top predicted ligand-receptor pairs between tumor and 

monocytes/macrophages/microglia by single-cell analysis. We then made a ligand-

receptor prediction using bulk gene expression data from tumors and from purified 

immune cells, and found MIF-CD74 still being the top hit. We showed that MIF was 

upregulated in tumor cells comparing to normal retina using bulk gene expression data. 

We further demonstrated that retinoblastoma conditioned medium or recombinant MIF 

could polarize macrophages to protumoral M2 type.  

This manuscript is published in the Journal of Pathology (2022), available through the 

link: https://doi.org/10.1002/path.5893. 

I am the second author of the article, and participated in the bioinformatics and 

statistical analysis, data visualization, manuscript writing of the relevant part and 

reviewing.  
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Abstract
The microenvironment of retinoblastoma, the solid malignancy of the developing retina, is immunosuppressive. To
study the interactions between tumor-associated microglia/macrophages (TAMs) and tumor cells in retinoblastomas,
we analyzed immunohistochemistry markers in 23 patient samples and characterized 105 secreted cytokines of
11 retinoblastoma cell models in culture. We detected profuse infiltration of CD163+ protumoral M2-like polarized
TAMs in eyes enucleated due to cancer progression. Previous treatment of patients increased the number of TAMs but
did not affect M2-like polarization. M2-like microglia/macrophages were almost absent in five eyes obtained from
children enucleated due to nontumoral causes. CD8+ tumor-infiltrating lymphocytes (TILs) were moderately abun-
dant in tumor eyes and very scarce in nontumoral ones. The expression of the immune checkpoint molecule PD-L1
was absent in 95% of the tumor samples, which is concordant with the finding of FOXP3+ Tregs infiltrating tumors.
We confirmed the pathology results using single-cell transcriptome analysis of one tumor. We identified the cyto-
kines extracellular matrix metalloproteinase inducer (EMMPRIN) and macrophage migration inhibitory factor
(MIF), both with reported immunosuppressive activity, secreted at high levels in retinoblastoma primary cell cultures.
Gene expression analysis of a large retinoblastoma cohort and single-cell transcriptome analysis confirmed that MIF
and EMMPRIN were significantly upregulated in retinoblastomas, which led us to quantify both proteins by immu-
noassays in liquid biopsies (aqueous humor obtained from more than 20 retinoblastoma patients). We found a sig-
nificant increase in the concentration of MIF and EMMPRIN in cancer patients, compared to 12 noncancer ones.
Finally, we showed that macrophages derived from peripheral blood mononuclear cells increased the expression of
markers of M2-like polarization upon exposure to retinoblastoma-conditioned medium or recombinant MIF. Overall,
our findings suggest that retinoblastoma cell secretions induce the protumoral phenotype of this tumor. Our results
might have clinical impact in the fields of biomarkers and treatment.
© 2022 The Pathological Society of Great Britain and Ireland.
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INTRODUCTION

Retinoblastoma is a solid malignancy of the retina of
small children, generally originated by biallelic alter-
ations of the tumor suppressor gene RB1 [1,2]. Conven-
tional chemotherapy agents are effective for tumor
chemoreduction in the intraocular form of the disease,
but they can produce off-target effects and chemoresis-
tance [1]. More selective treatments targeting specific
genetic backbones of the tumor, such as the upregulation
of the genes SYK,MDM2, andMYCN [3,4], or the overex-
pression of the transcription factor E2F1 in an RB1-
deregulated background [5], are still in the initial phases of
preclinical and clinical research. A third group of treatments
could emerge from the understanding of the microenviron-
mental and immunologic properties of the tumor [6,7]. Like
most pediatric solid embryonal cancers, retinoblastomas are
poor in stroma and in tumor-infiltrating lymphocytes (TILs)
and show low expression of the programmed cell death
ligand-1 (PD-L1) and other immune checkpoint molecules
[8–10]. Such properties are consistent with an immunosup-
pressive or protumoral environment [7].
The identification of the causes for the cold tumor

environment of retinoblastoma might help unveil action-
able targets for future treatments. In this context, the
interaction between tumor and stromal cells (including
cells of the innate immune system, such as the retinal
microglia) can lead to the activation of immunosuppres-
sive signaling pathways [11]. Tumor cells may secrete
antiinflammatory chemokines and cytokines, such as
the macrophage migration inhibitory factor (MIF). This
12 kDa protein reportedly increases the infiltration of
tumors by immunosuppressive regulatory T cells
(Tregs) and tumor-associated microglia/macrophages
(TAMs) polarized to the protumoral type M2-like
[12–14]. Other tumor cell mechanisms that might sup-
press the immune system are the decreased expression
of human leukocyte antigen (HLA) class I molecules
[15], the production of transforming growth factor beta
(TGF-β) [16], the activation of tryptophan degradation
by the enzyme indoleamine 2,3-dioxygenase (IDO)
[17], and the activation of the cyclooxygenase-2 prosta-
glandin E2 pathway [18].
A unique factor involved in the retinoblastoma micro-

environment is the tumor confinement into the eye com-
partments in its early stages. This is especially relevant
in the case of retinoblastomas with seeding, i.e. tumor
cell clusters floating in the vitreous humor, or in the sub-
retinal fluid, or, less frequently, in the aqueous humor
[19]. These ocular fluids might contain protein factors
appropriate for retinoblastoma growth, or secretions of
retinoblastoma tumors, including exosomes, cytokines,
and circulating cell-free DNA [20,21]. Aqueous humor
is now safely accessible for liquid biopsy during the pro-
cedure of the intravitreal treatment injection [22]. The
analysis of such aqueous humor samples might help
characterize the microenvironment of the tumor in
patients. In the experimental laboratory setting, primary
cultures of patient-derived retinoblastoma cells offer a
dynamic tool to identify secreted proteins or cellular

immune escape mechanisms. These cell models grow
well in conditions that enrich stem cell-like cells [23].

In the present studywe characterized histologicmarkers
of the immune microenvironment in retinoblastoma sam-
ples (enucleated eyes) and compared them with the retinal
microenvironment of nontumoral pediatric eyes, finding a
strikingly high amount of M2-like polarized TAMs in ret-
inoblastomas, independently of their pretreatment status.
Then we hypothesized that retinoblastoma cells secrete
soluble factors that induce such a protumoral environment.
To address this question, we used the largest reported plat-
form of patient-derived retinoblastoma cell cultures, vali-
dated by previous work [5,24–27]. We identified
cytokines, such as MIF and extracellular matrix metallo-
proteinase inducer (EMMPRIN), that were abundantly
and homogeneously secreted by all the cell models.
Retinoblastoma-conditioned medium induced M2-like
polarization and enhanced migration of human blood-
derivedmacrophages. Finally, we analyzed liquid biopsies
(aqueous humor) to address the clinical significance of the
laboratory findings.

Materials and methods

Cell lines and cell culture
We used the retinoblastoma cell line Y79 (Sigma-
Aldrich, St. Louis, MO, USA) and 11 primary retino-
blastoma cell cultures established from the tumors of
11 patients. See Supplementary materials and methods
and supplementary material, Table S1 for details. The
Institutional Review Boards at the hospital Sant Joan
de Deu (HSJD, Barcelona, Spain; protocol M-1608-C)
and Hospital JP Garrahan (HPG, Buenos Aires,
Argentina; protocols 838 and 904) approved the collec-
tion of tumor tissues, under informed consent.

Immunostaining, image acquisition and analysis
We carried out immunohistochemistry (IHC) staining on
four-micron serial sections of formalin-fixed paraffin-
embedded human tissue samples. See Supplementary
materials and methods and supplementary material,
Tables S2 and S3 for details.

Expression of common immune escape mechanisms
by tumor cells
We assessed gene expression related to five different
immune escape mechanisms in retinoblastoma cells by
reverse-transcribed quantitative polymerase chain reaction
(RT-qPCR). See Supplementary materials and methods
and supplementary material, Table S4 for details.

Retinoblastoma secretome analysis
We cultured cells in 1 ml of supplemented retinoblas-
toma medium in 6-well plates, at a density of 106 cells/
well. After 48 h, we collected supernatants by centrifu-
gation at 400 ! g for 4 min and froze them at "20 #C

2 M Cuadrado-Vilanova et al

© 2022 The Pathological Society of Great Britain and Ireland. www.pathsoc.org J Pathol 2022
www.thejournalofpathology.com



ANNEX 

 109 
 

until analysis. We performed immunodetection of cyto-
kines with the Proteome Profiler Human XL Cytokine
Array kit (R&D Systems, Minneapolis, MN, USA)
according to the manufacturer’s instructions. This kit
detects 105 proteins (in duplicate) simultaneously and
includes negative and positive controls. See Supplemen-
tary materials and methods for details.

Gene expression of top-secreted cytokines in primary
retinoblastomas and fetal retina
We analyzed the RNA of 59 retinoblastoma samples
without prior treatments, six primary retinoblastoma cell
cultures, two retinoblastoma cell lines, and three fetal
retinas using the microarray Affymetrix U133 GeneChip
(Affymetrix, Santa Clara, CA, USA). See Supplemen-
tary materials and methods for details.

Single-cell gene expression of top-secreted
cytokines and immune markers in one
retinoblastoma
We obtained single-cell RNA sequencing data from one
retinoblastoma sample after primary enucleation of a
patient older than 18 months with unilateral nonheredi-
tary RB1!/! disease, identified as RBSC11. See Supple-
mentary materials and methods for details.

Quantification of secreted MIF and EMMPRIN in
retinoblastoma cultures and liquid biopsies (aqueous
humor)
We cultured tumor cells in 4 ml of supplemented retino-
blastoma medium at a cell density of 2 " 106 cells/well
in six-well plates. After 48 h, we collected supernatants
by centrifugation at 400 " g for 4min.We obtained liquid
biopsies (aqueous humor; 100 μl) from patients before the
procedures of intravitreal chemotherapy (retinoblastoma
patients), intravitreal bevacizumab (patients with retinal
disease), or cataract surgery. Samples were stored at
!20 #C until analysis. We diluted all samples (1:50) and
performed Human MIF and Human EMMPRIN Quanti-
kine ELISA Kits (R&D Systems) according to the manu-
facturer’s instructions. We measured the assays with an
Infinite M Nano (Tecan, Männedorf, Switzerland) micro-
plate reader.

Differentiation of macrophages from peripheral
blood mononuclear cells (PBMCs)
We isolated PBMCs from blood buffy coats of eight
adult blood donors. See Supplementary materials and
methods for details.

Macrophage polarization assay
We plated HSJD-RBT-2 cells at a density of 2 " 106

cells/well in six-well plates, in 2 ml of nonsupplemented
retinoblastoma medium. After 72 h, we collected cell
culture supernatants (i.e. retinoblastoma-conditioned
media) and transferred them to macrophage cultures

containing 2 " 106 cells/well in complete macrophage
culture medium six-well plates. The volume proportion
of macrophage and retinoblastoma culture media was
1:1 in all the experimental conditions. To evaluate the
effect of MIF on macrophage polarization, we prepared
recombinant MIF (rMIF, Peprotech; Rocky Hill, NJ,
USA) in nonsupplemented retinoblastoma medium, to
achieve 500 ng/ml rMIF in the final macrophage
cultures. We prepared M1-like (proinflammatory) polar-
ization controls by exposing macrophages to lipopoly-
saccharides (LPS; Sigma-Aldrich), IFN-γ and tumor
necrosis factor-alpha (TNF-α; Peprotech), all dissolved
in nonsupplemented retinoblastoma medium to achieve
final concentrations of 100, 50, and 20 ng/ml, respec-
tively. We prepared M2-like (protumoral) polarization
controls by exposing macrophages to interleukin-10
(IL-10) and TGF-β1 (Peprotech), dissolved in nonsup-
plemented retinoblastoma medium to achieve final
concentrations of 10 ng/ml each. As an internal experi-
mental control, we exposed macrophages to plain
nonsupplemented retinoblastoma culture medium. Cells
were maintained for 72 h at 37 #C in a 5% CO2 atmo-
sphere until flow cytometry analysis for M1-like and
M2-like markers. To correct for interpatient variability
in basal levels of macrophage polarization, we expressed
the polarization results as the ratio of CD163+ cells
(M2-like) to CD80+ cells (M1-like).

Flow cytometry
See Supplementary materials and methods for details.

Invasion and migration assays
We plated 5 " 104 nonpolarized macrophages suspended
in 250 μl of complete macrophage culture medium in
Transwell chambers (Falcon Permeable Support for 24-well
Plate with 8.0 μm Transparent PET Membrane; Corning,
Glendale, AZ, USA) coated with Geltrex (Thermo Fisher
Scientific, Waltham, MA, USA). In the lower chamber we
deposited a 1:1 mixture of complete macrophage medium
and retinoblastoma-conditioned medium or 500 ng/ml
rMIF, both prepared using nonsupplemented retinoblastoma
medium. We used 1:1 mixtures of complete macrophage
culture medium and nonsupplemented retinoblastoma cul-
turemedium containing 10% iFBS or 0.1%BSA as the pos-
itive and negative migration controls, respectively. As an
internal experimental control, we used a 1:1mixture of com-
plete macrophage culture medium and plain nonsupplemen-
ted retinoblastomamedium. After 72 h incubation, we fixed
migratory cells with 4%paraformaldehyde and stained them
with 1% crystal violet (Sigma-Aldrich) in 2% ethanol. We
counted the number of the stained cells using a standard
bright-field microscope. We represented the results relative
to the migration of the negative control.

Statistical analysis
We used GraphPad Prism 9 (GraphPad Software, San
Diego, CA, USA) for statistical analysis. See Supple-
mentary materials and methods for details.
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Results

TILs and TAMs in retinoblastoma samples
We included in the study 28 enucleated eyes, 23 from ret-
inoblastoma patients and five from nonretinoblastoma.
Supplementary material, Table S5 shows the clinical and
anatomo-pathological features of retinoblastomas, includ-
ing germline RB1mutations. Median age at diagnosis was
29 months (range 5.4–111). Patients who received chemo-
therapy before enucleation and nontreated retinoblastoma
patients (naïve) were equally represented in the cohort
(supplementary material, Table S5). Clinical information
of nonretinoblastoma enucleated eyes is in the supplemen-
tary material, Table S6; median patient age at enucleation
was 55 months (range 28–134).
T and B lymphocyte counts in tumors and conserved

retinal areas of most retinoblastoma eyes were moderate
and not significantly different from counts in control eye
retinas from nonretinoblastoma pediatric patients
(Figure 1A). The supplementary material, Table S7
shows mean cell counts in the whole sample set. CD8+

lymphocytes were the most abundant TILs in tumors
(Figure 1B). We found FOXP3+ cells (Tregs) at low
density in around 83% of retinoblastoma tumors and
46% of conserved retinas in tumor eyes, but we did not
find them in control eye retinas (supplementary material,
Table S7). Infiltration of FOXP3+ and CD20+ cells in
tumor areas achieved counts significantly higher than
those of conserved retinas of tumor eyes and control
eye retinas (Figure 1B).We did not detect significant dif-
ferences in TIL counts between treated and naïve tumor
samples. Enucleated eyes with prelaminar and retrolami-
nar optic nerve invasion showed a significantly higher
number of CD4+ counts compared to eyes without signs
of invasion (supplementary material, Table S8). Other
anatomo-pathological properties or genetic background
of the tumors were not related to TILs infiltration (sup-
plementary material, Table S8).

All retinoblastoma tumors showed moderate infiltration
of CD68+ macrophages and abundant Iba1+ microglial
cells of ramified and amoeboid morphology, predomi-
nantly of the M2-like type (CD163+) (Figure 2A and sup-
plementary material, Table S7). Expression of CD163was

Figure 1. Infiltrating lymphocytes in retinoblastoma eyes (tumor and conserved retinal areas) and in retinas of nonretinoblastoma (control)
eyes. (A) Representative examples of immunostaining for CD4, CD8, FOXP3, and CD20. Arrowheads indicate positive staining of the markers.
All specimens are shown at 20! objective magnification with a 40-μm scale bar. Retinas are oriented so that the vitreous chamber is in the
upper part of the image. (B), Total cell counts in tumor tissue (n = 23), evaluable conserved retinas (n = 22) and control eyes retinas (n = 5).
Individual data (represented with dots) are means of the measures by two researchers (dots) and mean " SD are represented with lines.
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exclusive of nonretinoblastoma cells (supplementary
material, Figure S1). Conserved retinal areas in retinoblas-
toma eyes showed similar infiltration of these cells. Con-
trol eyes retinas, in contrast, showed no infiltration of
CD68+macrophages, a lower number of Iba1+microglial
cells than retinoblastoma eyes, and almost absence of
M2-like positive cells (Figure 2A). Counts of CD68+,
Iba1+, and CD163+ cells were significantly higher in ret-
inoblastoma eyes compared to control eyes (Figure 2B).

Previous treatment of enucleated eyes significantly
increased the abundance of Iba1+ TAMs in tumors, com-
pared to naïve eyes, but did not affect the number of
M2-like CD163+ TAMs (supplementary material,
Table S9). Overall, our findings suggest that retinoblas-
toma promotes a microenvironment rich in TAMs of the
M2-like type from the early development of the disease.

Immune escape mechanisms in retinoblastoma
Because our initial findings confirmed the immunosup-
pressive microenvironment in retinoblastoma tumors,
we assessed possible immune escape mechanisms of
tumor cells. Protein expression of the immune check-
point molecule PD-L1 in tumors was negative in 96%
of the samples (Figure 3A). The only positive sample
corresponded to a treatment-naïve eye that presented
5% of the tumor cells positive for membrane PD-L1
staining (Figure 3A). We did not find positivity for the
receptor PD-1 in any of the 23 analyzed tumors. Expres-
sion of B7-H3 was negative in 70% of the analyzed

samples. We identified focal B7-H3 staining in five sam-
ples and only two were positive in at least 5% of the
tumor cells (Figure 3B). Microarray data confirmed
low expression of genes PDCD1 (PD-1) and CD274
(PD-L1), and higher expression of CD276 (B7-H3)
(supplementary material, Figure S2). The expression of
the gene encoding PD-L1, CD274 , was not detectable
by RT-qPCR in six retinoblastoma cell models cultured
in basal conditions (Figure 3C). Upon incubation with
IFN-γ, CD274 expression became detectable in all cell
models (Figure 3C). In contrast, the expression of the
gene encoding B7-H3 was detectable by RT-qPCR in
basal conditions and its expression levels did not
increase upon IFN-γ exposure (Figure 3C). In similar
experiments, we detected a significant increase in the
membrane expression of PD-L1 protein when we
exposed cells to IFN-γ (Figure 3D,E). Taken together,
these results suggest that the immune escape mechanism
of PD-L1 is functional in retinoblastomas, although not
activated due to the immunosuppressed environment in
the human tumors.
The expression of genes encoding for proteins of the

HLA class I complex was low in retinoblastoma cells
(supplementary material, Figure S3A). Concordantly,
expression of HLA-ABC class I proteins was very low
in retinoblastoma cells (supplementary material,
Figure S3B). We detected a high increase in these mem-
brane proteins upon exposure of tumor cells to IFN-γ
(supplementary material, Figure S3B,C). Genes of the
TGF-β family were at low expression levels in most cell

Figure 2. Infiltrating macrophages and microglia in retinoblastoma eyes (tumor and conserved retinal areas) and in retinas of nonretinoblas-
toma (control) eyes. (A) Representative examples of CD68, Iba1, and CD163 immunostaining. All specimens are shown at 20! objective mag-
nification with a 40-μm scale bar. Retinas are oriented so that the vitreous chamber is in the upper part of the image. (B) Total cell counts in
tumor tissue (n = 23), evaluable conserved retinas (n = 22), and control eyes retinas (n = 5). Individual data (represented with dots) are
means of the measures by two researchers (dots) and mean " SD are shown with lines.
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models (supplementary material, Figure S4A).We did not
detect mRNA of genes IDO1, IDO2, and TDO, of the
kynurenine pathway, in any of the cells (supplementary
material, Figure S4B). Cyclooxygenase-2 prostaglandin E2
pathway genes, PTGES and PTGS2, were not expressed in
most of the cells (supplementary material, Figure S4C).
Overall, these results suggest that reduced expression of
HLA class I molecules may be an important immune eva-
sionmechanism for retinoblastoma cells, while immunosup-
pressive pathways such as TGF-β, kynurenine, and
cyclooxygenase-2 prostaglandin E2 are not activated.

Discovery of highly secreted macrophage inhibitory
cytokines in retinoblastoma
We identified a homogeneous pattern of cytokine secre-
tion in the supernatant of 11 retinoblastoma cell models
(Figure 4A). The top-five secreted proteins were
EMMPRIN, MIF, insulin-like growth factor-binding
protein 2 (IGFBP-2), growth differentiation factor
15 (GDF-15), and pentraxin-3. All these molecules
inhibit macrophages or cause immune evasion in solid
tumors [14,28–30]. In the gene expression microarray,

Figure 3. Expression of immune checkpoint molecules in retinoblastoma samples. (A) Top: representative examples of positive (brown stain-
ing in cell membranes) and negative PD-L1 immunostaining (20! objective magnification and 40-μm scale bar). Bottom: percentage of
PD-L1 positivity in retinoblastomas (n = 23). (B) Top: representative examples of positive (brown membranes), focal, and negative B7-H3
immunostaining (20! objective magnification and 40-μm scale bar). Bottom: percentage of B7-H3 positivity in retinoblastomas (n = 23).
(C) mRNA expression of CD274 and CD276 in six retinoblastoma cell models upon exposure to artificial proinflammatory microenvironment
(10 ng/ml IFN-γ, 48 h). n.d., not detected. Data are shown as mean " SD of two replicates. (D) Membrane PD-L1 staining by flow cytometry
phycoerythrin (PE) fluorescence emission in retinoblastoma cells exposed to IFN-γ (10 ng/ml; 48 h). (E) Quantification of the flow cytometry
experiment and paired analysis of the increase of PD-L1 membrane expression upon exposure to 10 ng/ml IFN-γ. Lines link paired samples.
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patient tumors and cell models expressed significantly
higher levels of genes MIF and BSG (gene encoding
for EMMPRIN) compared to fetal retinas, with MIF
being upregulated in all samples and BSG being upregu-
lated in 56/59 tumors and in all cell models, compared to
fetal retinas (Figure 4B,C). In cell culture supernatants,
MIF concentration was in the range 44.9–436 ng/ml (n
= 12 cell models) (Figure 4D). Median MIF concentra-
tion in liquid biopsies (aqueous humor) of retinoblas-
toma patients was 64.1 ng/ml (range 8.03–877;
n= 23), significantly higher than in retinoblastoma-free
aqueous humors, with median 8.61 ng/ml (range 2.29–
47.6; n= 12) (Figure 4E). EMMPRIN concentration in
cell culture supernatantswas in the range of 0.34–4.02 ng/ml
(n= 11 cell models) (Figure 4F). The median EMMPRIN
concentration in liquid biopsies of retinoblastoma patients
was 3.73 ng/ml (range 0.79–19.9; n= 22), significantly

higher than in retinoblastoma-free samples, with median
1.17 ng/ml (range 0.04–8.31;n= 12) (Figure 4G).

Single cell transcriptome analysis of selected
immune markers and cytokines
We used single-cell RNA-sequencing data from one
treatment-naïve retinoblastoma identified as RBSC11 [2].
We annotated tumor or immune cells based on estimated
copy number variation status, expression of key markers,
and pathways and the reference-based annotation [31].
Among 1,198 analyzed cells, 89.2% were tumor cells,
6.3%TAMs, and4.4%TILs (Figure 5A).Most cells overex-
pressed MIF, independently of the cell type (Figure 5B).
Among the genes encoding for MIF receptors, TAMs
expressed CD74, while both TAMs and TILs expressed
CD44 (Figure5B).Ourmappingofpotential ligand–receptor

Figure 4. Cytokine secretion and expression profile of retinoblastomas. (A) Heatmap of 105 cytokines secreted by 11 retinoblastoma cell
models. Top-five expressed cytokines are marked with arrows and numbers indicate the rank of each cytokine. The color scale is the relativized
signal value of each of the spots to the mean signal value of the positive controls. (B) Heatmap of log2 gene expression of BSG (gene encoding
for EMMPRIN), MIF, IGFBP2, GDF15, and PTX3 in retinoblastoma patient tumors, retinoblastoma cell models, and fetal retinas. (C) Boxplots
representing the log2 fold-change of gene expression of the five genes in patient tumors and cell lines compared to fetal retinas. *Adjusted
p value = 0.0401 and ****adjusted p value = 9.33e-10 (limma moderated t test, BH correction). (D) MIF concentrations in the cell culture
supernatants (RB medium) of retinoblastomas. Each dot represents a different patient-derived cell model; line represents the median value.
(E) MIF concentrations in liquid biopsies (aqueous humor) of retinoblastoma patients (RB; n= 23) or nonretinoblastoma patients (non RB; n
= 12). Each dot represents the value of a different patient; lines represent the median values. (F) EMMPRIN concentrations in the cell culture
supernatants (RB medium) of retinoblastomas. Each dot represents a different patient-derived cell model; line represents the median value.
(G) EMMPRIN concentrations in liquid biopsies of retinoblastoma patients (RB; n= 22) or nonretinoblastoma patients (non RB; n= 12). Each
dot represents the value of a different patient; lines represent the median values.
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interactions at both the single-cell and bulk levels predicted
that MIF/CD74 interactions are among the most significant
pairs in tumor cells/macrophages (supplementary material,
Figure S5A,B). Immunostaining for CD74 and CD44 in
human retinoblastoma samples confirmed the gene expres-
sion profile, with only microglial-shaped cells expressing
CD74 and with a more diffused staining of CD44
(Figure 5C). In the normal retinal tissue,we foundCD44dif-
fusely expressed, while CD74 was restricted to monocytes
(supplementary material, Figure S6).
The cluster of TAMs expressed the microglial marker

Iba1 (gene AIF1) and the M2-like marker CD163
(Figure 5D). TAMs did not express the M1-like marker
CD80 (Figure 5D). Among the other cytokines secreted
by cell models, BSG (EMMPRIN) was expressed by a
majority of tumor and immune cells, IGFBP2 and
PTX3 were expressed by few tumor cells, and GDF15
was restricted to a minority of TAMs (Figure 5D).

Polarizing activity of retinoblastoma-secreted
factors on PBMC-derived macrophages
PBMC-derived macrophages used for polarization experi-
ments expressed MIF receptors CD44 and CD74

(supplementary material, Figure S7A) which colocalized
at the cell membrane (supplementary material, Figure S7B,
C). We used the macrophage marker CD11b staining as a
quality control. We obtained a mean CD11b positivity of
99.3% in all the experiments. In preliminary experiments,
we observed that CD206 and CD163 were positive in the
same proportion of cells, and subsequently we used only
CD163. In the macrophage polarization experiments,
CD163+ cells were more abundant than CD80+ cells
in all the studied conditions (Figure 6A). We used the
proportion of both cell populations to represent data
as M2-to-M1-like (i.e. CD163+-to-CD80+) ratios.
The lowest M2-to-M1-like ratio corresponded to the
M1-like control condition, which we used as the refer-
ence of the experiment. We observed that macrophages
exposed to retinoblastoma-conditioned medium or
rMIF increased their M2-to-M1-like ratio significantly,
compared to the M1-like reference (Figure 6B).

Migration of macrophages through geltrex-covered
transwells was significantly increased by the addition
of retinoblastoma-conditioned medium to the acceptor
chamber (Figure 6C,D). The addition of rMIF to the
acceptor did not affect macrophage migration signifi-
cantly (p = 0.0708).

Figure 5. Single-cell sequencingof immunemarkers and cytokines in one retinoblastoma tumor. (A) 2D t-SNEplot of 1,198 single retinoblastoma cells
from the tumor sample. Each dot represents one cell. (B) Expression ofMIF and genes encoding forMIF receptors,CD74 andCD44. (C) Immunostaining
of CD44 and CD74 in one retinoblastoma sample. Pictures were taken at 20! objective magnification. Scale bar is 40 μm. (D) Expression of genes
encoding for immune markers AIF1 (Iba1), CD163 , and CD80 , and secreted proteins BSG (EMMPRIN), IGFBP2 , GDF15 , and PTX3 .
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Figure 6. Polarization and migration of PBMC-derived macrophages stimulated with retinoblastoma-conditioned medium and rMIF.
(A) Representative experiment showing cell counts of CD80+ (M1-like) (PE fluorescence emission), and CD163+ (M2-like), (allophycocyanin
– APC – fluorescence emission), analyzed by flow cytometry. (B) CD163+/CD80+ ratios (mean and SD of eight independent experiments).
(C) Representative experiment of macrophage invasion and migration in transwell assays. Cells were stained with crystal violet.
(D) Migration of macrophages in each experimental condition, relativized to the migration of negative control macrophages (0.1% BSA). Data
are mean and SD of 24 photographs, obtained from two independent experiments run in duplicate. NPA, nonprimary antibody; medium, non-
supplemented retinoblastoma medium; M1 cocktail, medium containing M1-like polarizing cytokines; M2-like cocktail, medium containing
M2-like polarizing cytokines; RB medium, retinoblastoma-conditioned medium; rMIF, recombinant MIF; 10% iFBS, inactivated fetal bovine
serum; 0.1 BSA, bovine serum albumin.
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Discussion

Our study demonstrates that retinoblastomas secrete sol-
uble factors that could explain the protumoral M2-like
type of retinoblastoma TAMs. We identified a homoge-
neous pattern in the secretome of a large set of these
tumors, enriched in the proteins EMMPRIN, MIF,
IGFBP-2, GDF-15, and pentraxin-3, all of them with
reported activity to induce a protumoral microenviron-
ment. For instance, MIF and IGFBP-2 have M2-like
polarizing functions and recruit Tregs to solid tumors
[12,14,29]; EMMPRIN increases the proportion of
Tregs in T-cell cultures [28] and it is expressed in inva-
sive retinoblastomas [32]; GDF-15 is a member of the
TGF-β superfamily and inhibits macrophage surveil-
lance during early tumor development [33]; and
pentraxin-3 activates the TGF-β pathway and reduces
HLA-DR and CD86 expression in human macrophages
[30]. Therefore, we propose that the abundance of
M2-like TAMs and the presence of Tregs in retinoblas-
toma, as shown in our patient cohort, is likely the result
of the action of these or similar tumor cytokines in the
microenvironment. Contrasting findings (lack of
M2-like polarization and Tregs) in the enucleated eyes
of five pediatric patients without retinoblastoma further
substantiated our results.
Transcriptome analyses of patient samples, extended to

the single-cell level, led us to select MIF and EMMPRIN
as the leading candidates for further analyses. The signifi-
cant increase of these twomolecules in the aqueous humors
of cancer patients might have clinical implications as bio-
markers or treatment targets. The use of aqueous humor
as liquid biopsy of retinoblastoma is well justified by the
impossibility to perform tumor biopsy, due to the risks of
extraocular dissemination associated with the surgical pro-
cedure [1]. Aqueous humor is a suitable source to obtain
cell-free DNA from patients with retinoblastoma, allowing
not only the diagnosis of RB1 mutations but also identify-
ing potential genomic markers for the risk of treatment fail-
ure [34]. The use of hybridization capture and deep
sequencing of around 20,000X raw coverage further
improves the sensitivity of this technique, allowing the
analysis of RB1 aberrations in cell-free DNA in blood sam-
ples [35]. However, deep sequencing techniques are gener-
ally not available outside large world-referral institutions.
The selection of protein biomarkers, alternative or addi-
tional to genetic biomarkers, will increase the access to liq-
uid biopsy analyses through simple immunoassays.
Our model prediction of MIF/CD74 as one of the top

ligand/receptor pair interactions in retinoblastomas led us
to study the interaction of MIF and human macrophages
at a concentration within the range found in the analyzed
liquid biopsies. The conclusion of our study, of M2-like
polarization of macrophages by MIF, is robust because
we obtained it based on eight independent experiments
from eight blood donors. Conclusions regarding
retinoblastoma-conditioned medium should be taken cau-
tiously, however, because we evaluated only one tumor
type, which was selected upon the analysis of the secre-
tome heatmap and our previous preclinical work [5].

Many biological mediators regulate CD163 expres-
sion in monocytes and macrophages [36], but whether
MIF-promoted expression is an actionable target with
clinical meaning in retinoblastoma needs further preclin-
ical work that was not addressed by our study. In mela-
noma, for instance, pharmacological inhibition of MIF
signaling reduces tumor immunosuppression in tumor-
bearing mice and restores the immune response to tumor
cells in vitro [37,38]. The availability of highly selective
administration routes to increase drug concentrations in
the confined ocular compartment in which retinoblas-
toma arises might provide additional opportunities for
the success of these treatments.

We observed that previous treatments did not modify
the M2-like polarized CD163+ environment of retinoblas-
toma, which is in contrast with a recent study of the retino-
blastoma immune environment byMiracco et al [8]. They
reported a significantly higher number of CD163+

M2-like TAMs in previously treated human retinoblas-
toma eyes, compared to eyes enucleated without previous
treatment [8]. Themethodology of that study differed from
ours in that they did not include ocular specimens without
retinoblastoma, and we applied the multiple comparison
correction to the p values for statistical analyses.

Retinoblastoma treatments can induce moderate
inflammation, even the accumulation of multinucleated
macrophages in the choroid and retina, as we previously
reported in patients receiving intra-arterial chemother-
apy [39]. Thus, we expected the enrichment of TAMs
in treated tumors, compared to treatment-naïve tumors.
However, PD-L1 expression did not change in our
cohort of treated patients.

Immunostaining for PD-L1 in large collections of reti-
noblastoma samples shows that only a minority of tumors
express PD-L1 [8,9]. In our patient cohort, we found
almost all samples were PD-L1-negative, which was in
agreement with our experiment showing that retinoblas-
toma cells express PD-L1 at low or undetectable levels that
increase upon stimulation by proinflammatory molecules
such as IFN-γ. Usui et al reported a similar finding for
the Y79 cell line [40]. Because IFN-γ-secreting cells,
and specifically CD8+ lymphocytes, were moderately
abundant in a high proportion of the retinoblastoma sam-
ples, we propose that tumor microenvironment inhibits
such CD8+ cells, leading to a decreased level of IFN-γ
secretion [41]. The work byMiracco et al, in contrast, sug-
gests that chemotherapy treatments induce a proinflamma-
tory environment, leading to higher expression of PD-L1
[8], but our results and others do not confirm their observa-
tion [9]. We suggest that M2-like TAMs and Tregs sup-
press the activity of CD4+ and CD8+ TILs in
retinoblastomas, because they inhibit the production of
several proinflammatory cytokines such as IFN-γ and
IL-2 [42]. Treg infiltration in our study was not homoge-
neous among the samples, but our IHCmethodmight have
underestimated the real number of these cells. In fact,
Zhang et al found that around 10% of retinoblastoma TILs
are FOXP3+ in a large set of 50 patient samples [43].

The low expression of PD-L1 in retinoblastoma sug-
gests that few patients with confirmed PD-L1-positive
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tumors would be eligible for anti-PD-L1 treatments. How-
ever, retinoblastoma biopsies for IHC remain impractica-
ble before enucleation [1]. In addition, the use of
immune checkpoint inhibitors in ocular tumors might
cause difficult-to-manage inflammation due to pseudopro-
gression [44]. A similar concern with regard to inflamma-
tion would be raised by the use of anti-B7H3 antibodies or
CAR-T cells in retinoblastomas [45,46].

Taken together, our results demonstrate that the inter-
action of retinoblastoma cells and TAMs through solu-
ble factors secreted by tumor cells explains, at least
partially, the cold tumor environment of retinoblastoma.
Whether such tumor-secreted proteins are potential can-
didates for biomarkers or therapeutic modulation will be
addressed in prospective work.
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Résumé : Le rétinoblastome est un cancer pédiatrique dérivé 
de la rétine. Bien que rare, c'est la tumeur maligne intraoculaire 
la plus fréquente chez l'enfant. Le rétinoblastome est traité par 
une thérapie locale aux premiers stades, mais aux stades 
ultérieurs, il nécessite une chirurgie d'énucléation et une 
chimiothérapie systémique. Sans un diagnostic en temps utile et 
un traitement approprié, des métastases peuvent se développer 
et entraîner le décès de l’enfant.  
Le rétinoblastome est une maladie hétérogène. Les cellules 
tumorales de différents patients ou différentes cellules d'un 
même patient peuvent présenter des caractéristiques 
moléculaires et phénotypiques distinctes. D'un point de vue 
histopathologique, les cellules tumorales peuvent présenter 
différents degrés de différenciation, ainsi qu'une croissance 
exophytique, endophytique ou mixte. En ce qui concerne la 
génomique, le rétinoblastome survient principalement après une 
inactivation bi-allélique de RB1 et, dans de rares cas, une 
amplification de MYCN peut également déclencher la maladie. 
En termes de transcriptomique, quelques études ont été 
réalisées et ont révélé que le rétinoblastome peut présenter des 
degrés variés dans les signatures de différenciation des 
photorécepteurs.  
Dans notre travail, nous avons identifié deux sous-types 
moléculaires basés sur l'analyse de 102 rétinoblastomes en 
utilisant le séquençage de l'exome entier, les SNP array, les 
puces pour mesurer l’expression des gènes et la methylation de 
l’ADN. Nous avons réalisé le clustering en utilisant une stratégie 
combinant le clustering hiérarchique consensuel et le clustering 
basé sur les centroïdes. Nous avons démontré que les tumeurs 
de sous-type 1 présentaient une signature plus mature de 
différenciation de photorécepteurs cône et se manifestaient 
généralement chez les enfants de moins de 18 mois, tandis 
qu'un niveau plus faible de différenciation de photorécepteurs  

cône est corrélé à un niveau élevé de caractéristiques 
ganglionnaires/neuronales, de signatures de type souche et 
d'instabilité génomique dans les tumeurs de sous-type 2, que l'on 
retrouve davantage chez les enfants de plus de 18 mois. L'analyse 
d'une série indépendante de 112 rétinoblastomes présentant des 
facteurs pathologiques à haut risque a révélé que les tumeurs qui 
métastasent expriment toutes la protéine TFF1, correspondant au 
gène le plus surexprimé dans les tumeurs de sous-type 2 par rapport 
aux tumeurs de sous-type 1. Nous avons analysé 14 rétinoblastomes 
en utilisant le séquençage de l'ARNde cellules uniques (scRNA-seq), 
et avons confirmé cette hétérogénéité inter-tumorale. L'une des 
tumeurs analysées présentait une hétérogénéité intra-tumorale au 
niveau phénotypique et génomique : certaines cellules tumorales 
présentaient un degré plus élevé de différenciation des cônes et la 
perte de différenciation des cônes s'accompagnait d'une 
accumulation d'altérations génomiques, tandis que d'autres cellules 
présentaient des altérations génomiques et des phénotypes 
totalement différents. Nous avons décrit le paysage immunitaire du 
rétinoblastome grâce au scRNA-seq, et avons découvert que 
différents types de cellules immunitaires sont présents dans le 
microenvironnement tumoral, notamment de multiples populations 
de cellules de la lignée monocytaire telles que les macrophages M2 
protumoraux et les cellules présentatrices d'antigènes, de multiples 
populations de cellules T dont les cellules T régulatrices CD4+ et les 
cellules T cytotoxiques CD8+, ainsi que les cellules NK. L'infiltration 
des macrophages M2 a été validée par immunohistochimie et a été 
associée à un niveau élevé d'expression du MIF par une analyse sur 
puces à cytokines et d'une prédiction in silico de ligand-récepteur. 
En conclusion, notre analyse multi-omique et transcriptomique de 
cellules uniques a permis de caractériser de manière détaillée 
l'hétérogénéité inter- et intra-tumorale et de décrire le paysage 
immunitaire du rétinoblastome. 

 

 
 
 
 
 

Title : Retinoblastoma heterogeneity: a comprehensive multi-omic and single-cell transcriptomic analysis 
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Abstract : Retinoblastoma is a pediatric cancer derived from 
the retina. The global annual incidence is around 8000 new 
cases. Although rare, it is the most common intraocular 
malignancy in children. Retinoblastoma is treated with local 
therapy at early stages, but at later stages, it requires 
enucleation surgery and systemic chemotherapy. Without timely 
diagnosis and proper treatment, metastasis can develop and 
lead to lethal diseases.  
Retinoblastoma is a heterogeneous disease. Tumor cells in 
different patients or different cells in one patient can exhibit 
distinct molecular and phenotypic characteristics. From the 
histopathological perspective, tumor cells can present 
differentiation at diverse levels, and exhibit exophytic, 
endophytic or mixed growth. With regard to genomics, 
retinoblastoma arises predominantly after bi-allelic RB1 
inactivation and in rare cases, MYCN amplification may also 
initiate the disease. Other mutations and genomic alterations 
may also contribute to the progression of the retinoblastoma 
such as BCOR mutations, chromosome 1q gain,  6p gain, or 16q 
loss. In terms of transcriptomics, a few studies were performed 
and revealed that retinoblastoma can display varied degrees in 
photoreceptor differentiation signatures.  
In our work, we identified two molecular subtypes based on the 
analyses of a series of 102 retinoblastoma using whole-exome 
sequencing, SNP array, gene expression microarray and DNA 
methylation array. We made the clustering using a method 
combining consensus hierarchical clustering and centroid based 
clustering. We demonstrated that subtype 1 tumors exhibited a 
more matured cone differentiation signature and were usually 
manifested in children less than 18 months, while subtype 2  

tumors were found more frequent in children more than 18 months, 
exhibited lower level of cone differentiation, elevated level of 
ganglion/neuronal features, stemness signatures, and genomic 
instability. Analysis of an independent series of 112 retinoblastomas 
with high risk pathological factors uncovered that metastatic tumors 
all expressed TFF1 protein at their primary sites, the gene that is 
most upregulated in subtype 2 tumors as compared to subtype 1 
tumors. We confirmed this inter-tumoral heterogeneity in 14 
additional retinoblastomas using single-cell RNA sequencing. One of 
the tumors analyzed displayed intra-tumoral heterogeneity at both 
phenotypic and genomic level, that some tumor cells exhibited 
higher grade of cone differentiation, the loss of cone differentiation 
was accompanied with the accumulation of genomic alterations, 
while other cells presented entirely different genomic alterations and 
phenotypes. We characterized the immune landscape of 
retinoblastoma through single-cell transcriptomics, and reported 
that various immune cells types were presented in the tumor 
microenvironment, including multiple populations of monocytic 
lineage cells such as the protumoral alternative M2 macrophages 
and antigen presenting cells, multiple populations of T cells such as 
CD4+ regulatory T cells and CD8+ cytotoxic T cells, as well as NK 
cells. The infiltration of M2 macrophages was validated by 
immunohistochemistry, and was associated with high-level of MIF 
expression through cytokine array and in silico ligand-receptor 
prediction. 
Taken together, our multi-omic and single-cell transcriptomic 
analysis comprehensively characterized the inter- and intra- tumoral 
heterogeneity and characterized the immune landscape in 
retinoblastoma.   

 

 


