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I 1 Contexte

Les protéines et leurs interactions

Les protéines sont des macromolécules complexes jouant un rôle biologique crucial dans tous les organismes vivants. Elles garantissent le bon développement et le bon fonctionnement des organes en effectuant de nombreuses tâches différentes, y compris le maintien et le soutien de la structure des cellules, la réaction du système immunitaire, la signalisation et le transport des substances (ions, atomes ou petites molécules), le métabolisme, la régulation et l'expression des gènes, et le mouvement musculaire. Étant donné qu'elles font partie intégrante de tout organisme, il est nécessaire d'étudier leurs structures et propriétés, leurs fonctions et la manière dont elles interagissent les unes avec les autres afin de comprendre la machinerie cellulaire.

Pour effectuer leurs diverses fonctions dans les organismes vivants et piloter les processus biologiques dans la cellule, les protéines s'assemblent et interagissent les unes avec les autres pour former des complexes protéiques. La structure quaternaire résultante est une association de deux ou plusieurs chaînes peptidiques liées les unes aux autres par des interactions moléculaires. Dans une cellule, chaque protéine se comporte différemment avec les autres protéines qui l'entourent. Une protéine a une forte propension à interagir avec certaines protéines spécifiques qui sont considérées comme ses partenaires. Cette propension peut être quantifiée numériquement par la mesure d'affinité de liaison. L'affinité de liaison peut être estimée par le changement de l'énergie libre de Gibbs ∆G.

Comme illustré sur la Fig. RF.1A, une protéine interagit avec différents degrés d'affinité, représentés par des cercles concentiques, et via différentes surfaces d'interaction, représentés par des patches colorés, avec ses partenaires cellulaires. Dans ces cercles, plus un partenaire est éloigné, plus l'affinité de liaison diminue.

Les propriétés chimiques et géométriques des interfaces de deux partenaires déterminent la valeur de leur affinité de liaison [START_REF] Raucci | Local Interaction Signal Analysis Predicts Protein-Protein Binding Affinity[END_REF]. Les descripteurs extraits de ces propriétés sont également utilisés pour la prédiction des interfaces et la discrimination des partenaires [START_REF] Laine | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions[END_REF]87,[START_REF] Lopes | Protein-Protein Interactions in a Crowded Environment[END_REF][START_REF] Gainza | Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning[END_REF][START_REF] Sverrisson | Fast endto-end learning on protein surfaces[END_REF].

L'environnement naturel des protéines est l'eau et la cause principale du repliement des protéines est l'effondrement hydrophobe où les résidus hydrophobes ont tendance à se regrouper et à minimiser la part de leur surface accessible à l'eau. Lors de la liaison, la partie de la surface accessible au solvant diminue et nous pouvons classer les résidus en fonction de cette accessibilité au solvant. C'est la classification par région de la structure des protéines qui est proposée dans [START_REF] Levy | A Simple Definition of Structural Regions in Proteins and Its Use in Analyzing Interface Evolution[END_REF]. Il existe trois régions structurales dans la surface d'interaction d'une protéine (Fig. RF.1B): le support (SUP ou S) est constitué de résidus qui sont principalement enfouis dans le monomère et qui s'enfoncent dans l'interface de la protéine lors de la formation du complexe, le core (COR ou C) comprend les résidus qui sont situés à la surface de l'interface et qui sont enfouis vers l'intérieur lors de l'interaction avec un partenaire, et le rim (RIM ou R) est la région la plus externe de l'interface et ses résidus avec des atomes accessibles aux solvants restent exposés sur le complexe. Dans cette classification, il existe deux autres régions structurales: l'intérieur (INT) qui est III A B Figure RF.1: Interactions protéine-protéine. A. Représentation schématique des cercles d'affinité de liaison pour une protéine (avec trois interfaces en interaction) et ses partenaires potentiels. Ces affinités de liaison sont suffisamment élevées pour que les partenaires puissent interagir et réaliser des fonctions biologiques. Le même type de cercles concentriques peut être dessiné pour chaque protéine de l'image (image créée par l'équipe Analytical Genomics du LCQB). B. Une représentation des régions structurales d'une interface protéique : support, core, et rim [START_REF] Levy | A Simple Definition of Structural Regions in Proteins and Its Use in Analyzing Interface Evolution[END_REF].

IV complètement enfoui à l'intérieur de la protéine et comprend principalement des résidus hydrophobes, ainsi que la surface accessible au solvant (SUR) qui est enrichie en résidus hydrophiles. La relation entre les régions S, C, R et les caractéristiques géométriques, physico-chimiques et évolutives d'une protéine a été étudiée dans [START_REF] Laine | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions[END_REF] pour identifier très précisément les sites de liaison d'une protéine.

Amarrage moléculaire

De nombreux efforts ont été consacrés au développement de méthodes de simulation du processus de liaison entre deux ou plusieurs protéines. L'une de ces approches de simulation est l'amarrage moléculaire ou "docking" [START_REF] Lensink | Docking and scoring protein complexes: CAPRI 3rd Edition[END_REF][START_REF] Lensink | Modeling protein-protein, protein-peptide, and protein-oligosaccharide complexes: CAPRI 7th edition[END_REF], qui permet de prédire les arrangements 3D entre deux partenaires protéiques : un récepteur et un ligand [START_REF] Sacquin-Mora | Identification of Protein Interaction Partners and Protein-Protein Interaction Sites[END_REF][START_REF] Christina | iATTRACT: Simultaneous global and local interface optimization for protein-protein docking refinement[END_REF][START_REF] Ghoorah | Protein docking using case-based reasoning[END_REF][START_REF] Wang | Protein-Protein Docking with Backbone Flexibility[END_REF][START_REF] Tovchigrechko | GRAMM-X public web server for protein-protein docking[END_REF][START_REF] Zacharias | ATTRACT: Protein-protein docking in CAPRI using a reduced protein model[END_REF][START_REF] Zacharias | Protein-protein docking with a reduced protein model accounting for side-chain flexibility[END_REF][START_REF] Chen | Docking unbound proteins using shape complementarity, desolvation, and electrostatics[END_REF][START_REF] Gabb | Modelling protein docking using shape complementarity, electrostatics and biochemical information11Edited by[END_REF][START_REF] Dominguez | HADDOCK: A Protein Protein Docking Approach Based on Biochemical or Biophysical Information[END_REF]. Les méthodes de docking génèrent un ensemble de conformations complexes candidates en échantillonnant l'espace des positions et orientations du ligand relativement au récepteur. Une façon d'explorer l'espace conformationnel consiste à fixer la position et l'orientation du récepteur dans l'espace et à orbiter le ligand autour de lui (Fig.

RF.2A).

Les outils de docking protéine-protéine peuvent être classés en trois groupes : corps rigide, flexible et hybride. Le docking rigide considère à la fois le récepteur et le ligand comme des objets immuables sans dynamique ni changement de conformation. Bien qu'il ne reflète pas la nature flexible de l'interaction des protéines, ce type de docking est plus rapide et moins exigeant en termes de calcul par rapport aux autres groupes. La position et l'orientation du ligand peuvent être décrites par un ensemble d'angles d'Euler par rapport au récepteur (Fig. RF.2A). Dans le docking flexible, le récepteur et le ligand adaptent leurs formes lors de l'interaction. Ceci est plus aligné avec la réalité de l'interaction, cependant, cela nécessite des ressources de calcul et prend du temps. Les approches hybrides tentent de trouver un compromis entre les performances et la vitesse en introduisant de la flexibilité une fois que le docking rigide a trouvé la conformation quasi native.

Une technique pour accélérer le processus de docking consiste à réduire la structure de la protéine en une représentation à gros grains [START_REF] Zacharias | Protein-protein docking with a reduced protein model accounting for side-chain flexibility[END_REF][START_REF] Sacquin-Mora | Identification of Protein Interaction Partners and Protein-Protein Interaction Sites[END_REF][START_REF] Lopes | Protein-Protein Interactions in a Crowded Environment[END_REF]. La représentation à gros grains est particulièrement pertinente pour les calculs à large échelle.

Après le processus de docking, les conformations candidates doivent être evaluées par une fonction de score [START_REF] Zacharias | Protein-protein docking with a reduced protein model accounting for side-chain flexibility[END_REF][START_REF] Sacquin-Mora | Identification of Protein Interaction Partners and Protein-Protein Interaction Sites[END_REF], qui prend par exemple en compte la complémentarité de forme, l'électrostatique et la désolvatation [START_REF] Gabb | Modelling protein docking using shape complementarity, electrostatics and biochemical information11Edited by[END_REF]. Ces scores représentent à quel point une interaction entre partenaires est stable et énergétiquement favorable et sont utilisés pour classer les conformations et trouver celles qui sont quasi natives. Des informations évolutives (signaux de conservation ou de co-évolution) et biologiques peuvent également être utilisées pour générer et évaluer les conformations [START_REF] Quignot | InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs[END_REF][START_REF] Thomas | Sequence co-evolution gives 3D contacts and structures of protein complexes[END_REF]. V

Cross-Docking Complet

Le cross-docking complet (CCD) est une simulation d'amarrage par paires à grande échelle dans laquelle toutes les protéines d'une base de données sont dockées les unes contre les autres. Il en résulte une matrice où chaque cellule correspond à une paire possible et son échantillonnage conformationnel (Fig. RF.2C). Il existe deux types de CCD : asymétrique et symétrique. Dans le CCD asymétrique, le rôle de chaque protéine en tant que récepteur ou ligand est important, ce qui conduit à une matrice complète avec n 2 éléments où n est le nombre de protéines. Dans ce calcul d'amarrage, le récepteur est fixé et le ligand se transforme autour de lui dans l'espace euclidien. Dans le CCD symétrique, les conformations sont générées en mettant en orbite à la fois le récepteur et le ligand en même temps. Dans cette approche, le nombre de paires possibles se réduit à n×(n+1) 2 .

Les avancées récentes dans la prédiction de la structure 3D des protéines [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF]5] ouvrent la voie à l'expansion des approches d'amarrage protéine-protéine.

Repliement-et-docking versus docking-et-scoring

Le paradigme classique de docking et scoring a récemment été remis en question par les avancées spectaculaires dans la prédiction de la structure des protéines avec AlphaFold2 (AF2) [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF] et RosettaFold [5]. En particulier, certaines études ont montré le potentiel d'AF2, ou d'une version légèrement modifiée, dans les stratégies Repliement-et-docking [START_REF] Humphreys | Computed structures of core eukaryotic protein complexes[END_REF][START_REF] Evans | Protein complex prediction with AlphaFold-Multimer[END_REF][START_REF] Mirdita | ColabFold -Making protein folding accessible to all[END_REF][START_REF] Bryant | Improved prediction of protein-protein interactions using AlphaFold2[END_REF]. Néanmoins, ils ont également mis l'accent sur ses limites. AF2 fonctionne mal sur certains complexes eucaryotes, complexes anticorps-antigène et complexes présentant de petites interfaces [START_REF] Evans | Protein complex prediction with AlphaFold-Multimer[END_REF][START_REF] Bryant | Improved prediction of protein-protein interactions using AlphaFold2[END_REF]. Dans de tels cas, la sortie est limitée à une conformation non fiable. En revanche, les algorithmes de docking permettent de générer des ensembles conformationnels utiles pour guider la prédiction des interfaces, pour mieux comprendre la sociabilité des protéines [87] et pour découvrir des modes de liaison alternatifs et de nouveaux partenaires [START_REF] Dequeker | From complete cross-docking to partners identification and binding sites predictions[END_REF]. Ces observations motivent le développement de méthodes précises et efficaces d'évaluation de la qualité des conformations de docking.

Effets des mutations sur les interactions protéine-protéine

Les mutations non synonymes peuvent entraîner des modifications des mécanismes biologiques d'un organisme vivant et sont donc soumises à la sélection naturelle. Elles peuvent être délétères et perturber la machinerie cellulaire. Les mutations non synonymes qui se produisent à la surface d'interaction d'une protéine peuvent affecter le processus d'interaction entre la protéine et ses partenaires potentiels. Dans ce scénario, plus les propriétés physico-chimiques de l'acide aminé mutant diffèrent de celles du type sauvage, plus l'affinité de liaison est influencée. La mutation génétique dans laquelle un acide aminé est remplacé par un autre est appelé mutation ponctuelle. Une structure de protéine mutante peut avoir plusieurs mutations ponctuelles dans lesquelles plusieurs acides aminés sont modifiés. Un exemple de mutation ponctuelle unique est donné dans la VII phane (Trp ou W) et l'alanine (Ala ou A), ont les chaînes latérales hydrophobes (non polaires). Cependant, la taille de la chaîne latérale est considérablement modifiée et si cela se produit sur la surface d'interaction, cela peut affecter les propriétés géométriques du site de liaison. De plus, ces mutations modifient la distribution de charge et l'électronégativité de la surface qui font partie des propriétés chimiques du site d'interaction. Par exemple, une mutation de l'acide glutamique en alanine affecte les propriétés chimiques et à leur tour la géométrie du site de liaison, car avec l'acide glutamique, nous avons plus de charges négatives sur le site d'interaction. Bien que de nombreuses approches et ressources compilent des données expérimentales et informatiques liées aux PPI et fournissent une visualisation interactive pour l'utilisateur, ces données peuvent être contradictoires, bruyantes, hétérogènes et biaisées [START_REF] Hart | How complete are current yeast and human protein-interaction networks[END_REF][START_REF] Kotlyar | IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species[END_REF]. Beaucoup d'efforts ont été investis pour intégrer d'autres types d'informations (e.g. localisation cellulaire), augmenter l'interprétabilité, organiser les PPI en fonction de leur contexte biologique et calculer des scores de confiance. Ces caractéristiques sont implémentées dans IID [START_REF] Kotlyar | IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species[END_REF], STRING [START_REF] Szklarczyk | The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible[END_REF][START_REF] Szklarczyk | STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[END_REF][START_REF] Szklarczyk | The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[END_REF] et la base centrée sur l'humain HIPPIE [3]. Alors que la plupart des bases de données décrivent les interactions sans tenir compte des informations physiques sous-jacentes [START_REF] Calderone | mentha: a resource for browsing integrated protein-interaction networks[END_REF][START_REF] Kotlyar | Integrated interactions database: tissue-specific view of the human and model organism interactomes[END_REF][START_REF] Franz | GeneMANIA update 2018[END_REF][START_REF] Hwang | HumanNet v2: human gene networks for disease research[END_REF][START_REF] Liu | PPIExp: A Web-Based Platform for Integration and Visualization of Protein-Protein Interaction Data and Spatiotemporal Proteomics Data[END_REF], certaines d'entre elles s'appuient sur des évidences structurales, e.g. Interactome3D [START_REF] Mosca | Interactome3D: adding structural details to protein networks[END_REF] , PPI3D [START_REF] Dapkūnas | The PPI3D web server for searching, analyzing and modeling protein-protein interactions in the context of 3D structures[END_REF] et 3did [START_REF] Mosca | 3did: a catalog of domain-based interactions of known three-dimensional structure[END_REF]. Les techniques de détermination de structure 3D de protéines fournissent aux biologistes expérimentaux une résolution au niveau atomique sur la formation de complexes protéiques. Ces informations sont également utiles pour évaluer les algorithmes de docking et générer des benchmarks [START_REF] Dequeker | From complete cross-docking to partners identification and binding sites predictions[END_REF]. De plus, sous l'hypothèse que certaines PPI sont conservées au cours de l'évolution, on peut déduire l'existence d'interactions inconnues en transférant des connaissances par homologie.

Classement des conformations complexes à l'aide de l'apprentissage profond géométrique

sphériques, un ensemble de fonctions définies sur la sphère unitaire, pour garantir qu'une rotation de l'entrée entraîne la même rotation de la sortie [START_REF] Taco | Steerable CNNs[END_REF][START_REF] Weiler | 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data[END_REF][START_REF] Fuchs | SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks[END_REF][START_REF] Thomas | Tensor field networks: Rotation-and translation-equivariant neural networks for 3D point clouds[END_REF]. Dans [START_REF] Eismann | Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes[END_REF], des SE(3) convolutions équivariantes hiérarchiques ont été appliquées à une représentation en nuage de points (point cloud) de la conformation entière. Enfin, les représentations basées sur des graphes, comme celles utilisées dans GNN-DOVE [START_REF] Wang | Protein Docking Model Evaluation by Graph Neural Networks[END_REF] et DeepRank-GNN [START_REF] Réau | DeepRank-GNN: A Graph Neural Network Framework to Learn Patterns in Protein-Protein Interfaces[END_REF], sont invariantes aux rotations 3D, mais au prix de la perte d'informations sur les orientations des atomes les uns par rapport aux autres.

Alternativement, on peut tirer parti des propriétés spécifiques des protéines, dont les blocs de construction (les résidus d'acides aminés) partagent le même échafaudage chimique, pour dériver une représentation SE(3) équivariante. Dans la prédiction de la structure d'une seule protéine, Ornate [START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF], Sato-3DCNN [START_REF] Sato | Protein model accuracy estimation based on local structure quality assessment using 3D convolutional neural network[END_REF], et plus récemment Al-phaFold version 2 (AF2) [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF], exploitent ces propriétés et utilisent des repères locaux orientés centrés sur chaque résidu protéique. Une telle représentation contourne le problème de la symétrie de rotation 3D sans avoir besoin d'une augmentation des données de rotation ni de filtres convolutifs SE(3) équivariants.

Prédiction des changements d'affinité de liaison (∆∆G)

Grâce aux efforts importants pour mesurer expérimentalement les paramètres thermodynamiques des protéines de type sauvage et mutant, nous avons maintenant accès à de précieuses bases de données d'affinité de liaison telles que SKEMPI (Structural database of Kinetics and Energetics of Mutant Protein Interactions) version 1.0 et 2.0 [START_REF] Moal | SKEMPI: a Structural Kinetic and Energetic database of Mutant Protein Interactions and its use in empirical models[END_REF][START_REF] Jankauskaitė | SKEMPI 2.0: an updated benchmark of changes in protein-protein binding energy, kinetics and thermodynamics upon mutation[END_REF], AB-Bind [START_REF] Sirin | AB-Bind: Antibody binding mutational database for computational affinity predictions[END_REF], PROXiMATE [START_REF] Jemimah | PROXiMATE: a database of mutant protein-protein complex thermodynamics and kinetics[END_REF] et dbMPIKT [START_REF] Liu | dbMPIKT: a database of kinetic and thermodynamic mutant protein interactions[END_REF]. Cela a conduit à de nouveaux paradigmes in-silico pour prédire les effets des mutations sur les interactions protéiques et la possibilité d'estimer à grande échelle les valeurs de ∆G [START_REF] Raucci | Local Interaction Signal Analysis Predicts Protein-Protein Binding Affinity[END_REF] et ∆∆G suite à des mutations [START_REF] Xiong | BindProfX: Assessing Mutation-Induced Binding Affinity Change by Protein Interface Profiles with Pseudo-Counts[END_REF][START_REF] Geng | iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations[END_REF][START_REF] Douglas | mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures[END_REF][START_REF] Carlos | Ascher. mCSM-PPI2: predicting the effects of mutations on protein-protein interactions[END_REF][START_REF] Carlos | mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions[END_REF][START_REF] Zhou | Mutation effect estimation on protein-protein interactions using deep contextualized representation learning[END_REF][START_REF] Wang | A topology-based network tree for the prediction of protein-protein binding affinity changes following mutation[END_REF][START_REF] Liu | Pre-training of Graph Neural Network for Modeling Effects of Mutations on Protein-Protein Binding Affinity[END_REF]. Le changement d'affinité de liaison est calculé comme suit:

∆∆G cplx = (G mu cplx -G mu rec -G mu lig ) -(G wt cplx -G wt rec -G wt lig ) (0.1)
où ∆∆G cplx représente les changements d'affinité de liaison dans le complexe et G f p est l'énergie libre de la protéine p (le complexe, le partenaire d'interaction 1 ou 2) et la forme f (type-sauvage ou mutant).

Les approches computationnelles conçues pour mesurer numériquement les impacts des mutations sur l'affinité de liaison peuvent être globalement classées en deux groupes: (i) les méthodes qui exploitent les informations de séquence d'acides aminés des protéines, et (ii) les méthodes basées sur la structure qui cherchent à démêler l'effet des mutations sur les complexes protéiques à partir d'informations structurales. Les approches basées sur la structure peuvent être divisées en deux sous-groupes: les approches basées sur la physique et les méthodes basées sur l'apprentissage automatique (possiblement profond). L'une des exigences des méthodes basées sur la structure est la prédiction de la structure des protéines mutantes à partir du type sauvage. Plusieurs approches ont proposé des solutions pour cela, notamment Rosetta [START_REF] Kortemme | An Orientationdependent Hydrogen Bonding Potential Improves Prediction of Specificity and Structure for Proteins and Protein-Protein Complexes[END_REF], MODELLER [START_REF] Webb | Comparative Protein Structure Modeling Using MODELLER[END_REF], HADDOCK [START_REF] Dominguez | HADDOCK: A Protein Protein Docking Approach Based on Biochemical or Biophysical Information[END_REF] et XI d'autres [START_REF] Xiang | Jackal: A protein structure modeling package[END_REF][START_REF] Zhu | Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction[END_REF].

L'une des approches récentes basées sur la physique est FLEX [START_REF] Barlow | Flex ddG: Rosetta Ensemble-Based Estimation of Changes in Protein-Protein Binding Affinity upon Mutation[END_REF] qui effectue un échantillonnage conformationnel quasi natif à l'aide de Rosetta Backrub [START_REF] Smith | Backrub-Like Backbone Simulation Recapitulates Natural Protein Conformational Variability and Improves Mutant Side-Chain Prediction[END_REF][START_REF] Kellogg | Role of conformational sampling in computing mutation-induced changes in protein structure and stability[END_REF] et calcule l'énergie libre du complexe protéique et de ses deux partenaires protéiques dans les unités du score Rosetta pour les structures de type sauvage et mutantes. Ces scores sont utilisés pour mesurer les changements dans la stabilité du complexe protéique lors des mutations.

Bien que cette approche montre des résultats prometteurs, elle est coûteuse en temps de calcul. En général, les méthodes basées sur la physique fournissent une explication mécanistique précise mais ne sont pas conçues pour gérer des bases de données volumineuses et diverses. Les approches basées sur l'apprentissage automatique et profond incluent BindProfX [START_REF] Xiong | BindProfX: Assessing Mutation-Induced Binding Affinity Change by Protein Interface Profiles with Pseudo-Counts[END_REF], iSEE [START_REF] Geng | iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations[END_REF], mCSM-AB [START_REF] Douglas | mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures[END_REF], mCSM-PPI2 [START_REF] Carlos | Ascher. mCSM-PPI2: predicting the effects of mutations on protein-protein interactions[END_REF], mmCSM-PPI [START_REF] Carlos | mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions[END_REF], muPIPR [START_REF] Zhou | Mutation effect estimation on protein-protein interactions using deep contextualized representation learning[END_REF], TopNetTree [START_REF] Wang | A topology-based network tree for the prediction of protein-protein binding affinity changes following mutation[END_REF] et GraphPPI [START_REF] Liu | Pre-training of Graph Neural Network for Modeling Effects of Mutations on Protein-Protein Binding Affinity[END_REF]. iSEE extrait 31 descripteurs, inférés notamment de la structure, de l'évolution et des caractéristiques énergétiques de la surface d'interaction, et construit un modèle d'apprentissage automatique robuste basé sur la méthode de la forêt aléatoire (random forest). Elle souligne l'importance des conservations évolutives pour cette tâche. La structure du complexe mutant est estimée en utilisant l'approche HADDOCK.

Le groupe d'approches CSM [START_REF] Douglas | mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures[END_REF][START_REF] Carlos | Ascher. mCSM-PPI2: predicting the effects of mutations on protein-protein interactions[END_REF][START_REF] Carlos | mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions[END_REF] s'appuie sur les changements locaux dans l'interaction des protéines et optimise leur méthode précédente "graph-based cut-off scanning matrix" (CSM) basée sur des graphes [START_REF] Douglas | mCSM: predicting the effects of mutations in proteins using graph-based signatures[END_REF]. Ces approches combinent des contacts atomiques spécifiques à la distance de la structure de type sauvage et des changements de pharmacophores du site de mutation.

TopNetTree intègre une représentation topologique simplifiée des complexes protéiques et des approches d'apprentissage profond (réseaux de neurones convolutifs et arbres à gradient) pour la prédiction de ∆∆G.

Parmi les approches basées sur les séquences, MuPIPR [START_REF] Zhou | Mutation effect estimation on protein-protein interactions using deep contextualized representation learning[END_REF] montre des résultats prometteurs. Il s'agit d'une extension de PIPR [START_REF] Chen | Multifaceted protein-protein interaction prediction based on Siamese residual RCNN[END_REF] qui utilise une modèle de langage protéique pour l'extraction de l'incorporation contextualisée d'acides aminés et la prédiction des changements de l'affinité de liaison et de la surface enfouie.

Modèles de langage protéique

Les applications de l'apprentissage profond dans le traitement du langage naturel ont inspiré plusieurs approches dans l'apprentissage de la représentation des protéines. Cela a abouti au développement de puissants modèles de langage protéique entraînés sur d'énormes corpus de séquences protéiques [START_REF] Bepler | Learning the protein language: Evolution, structure, and function[END_REF][START_REF] Elnaggar | ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing[END_REF][START_REF] Rives | Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences[END_REF][START_REF] Zhou | Mutation effect estimation on protein-protein interactions using deep contextualized representation learning[END_REF][START_REF] Vig | BERTology Meets Biology: Interpreting Attention in Protein Language Models[END_REF] en utilisant des techniques d'apprentissage profond auto-supervisées, incluant les architectures Long Short-Term Memory (LSTM) [START_REF] Hochreiter | Long Short-Term Memory[END_REF][START_REF] Graves | Long Short-Term Memory[END_REF] et Transformers [START_REF] Vaswani | Attention is All you Need[END_REF]. Ces modèles pré-entrainés peuvent être utilisés via l'apprentissage par transfert pour effectuer des tâches en aval pour les problèmes de prédiction des propriétés des protéines en utilisant uniquement des séquences des protéines et sans alignements de séquences multiples. Parmi les applications, on peut XII citer la discrimination des partenaires par D-SCRIPT [START_REF] Sledzieski | D-SCRIPT translates genome to phenome with sequence-based, structure-aware, genome-scale predictions of protein-protein interactions[END_REF], la prédiction de la structure des protéines par ESMFold [START_REF] Lin | Language models of protein sequences at the scale of evolution enable accurate structure prediction[END_REF] et AminoBERT/RGN2 [START_REF] Chowdhury | Single-sequence protein structure prediction using language models from deep learning[END_REF], la prédiction du paysage mutationnel par VESPA [START_REF] Marquet | Embeddings from protein language models predict conservation and variant effects[END_REF] et prédiction des changements d'affinité de liaison lors de la mutation par MuPIPR [START_REF] Zhou | Mutation effect estimation on protein-protein interactions using deep contextualized representation learning[END_REF]. De manière analogue, pour HIPPIE, Negatome [START_REF] Smialowski | The Negatome database: a reference set of non-interacting protein pairs[END_REF] ou des sources définies par l'utilisateur, LEVELNET construit des grilles de réseaux basées sur l'identité de séquence pour les noeuds et le score de confiance pour les arêtes.

LEVELNET considère à la fois les interactions et les non-interactions et les représente de différentes manières, facilitant ainsi l'identification d'incohérences potentielles entre les différentes sources de PPI. Plus précisément, il exploite les contacts physiques interchaînes extraits de la PDB, les interactions annotées de HIPPIE et les non-interactions de Negatome [START_REF] Smialowski | The Negatome database: a reference set of non-interacting protein pairs[END_REF], et éventuellement les interactions et/ou non-interactions définies par l'utilisateur (Fig. RF.4C). Il étend l'ensemble des interactions physiques directes observées dans la PDB entre les protéines données en entrée en transférant des connaissances à partir de structures complexes impliquant des protéines identiques ou très similaires. Ce choix est motivé par l'observation que les interactions fonctionnelles sont conservées entre homologues [106]. De plus, des travaux de notre part et d'autres ont montré la pertinence et l'utilité biologique de la prise en compte des interactions transférées par homologie lors de l'évaluation des méthodes de prédiction de l'interface protéine-protéine/ADN/ARN [START_REF] Dequeker | Decrypting protein surfaces by combining evolution, geometry, and molecular docking[END_REF][START_REF] Yan | A comprehensive comparative review of sequence-based predictors of DNA-and RNA-binding residues[END_REF].

LEVELNET peut être utilisé pour obtenir un aperçu visuel interactif d'une large gamme des questions liées aux PPI, telles que: dans quelle mesure une voie de signalisation ou un processus biologique a été structuralement couvert expérimentalement, où les interactions dans une voie ont lieu dans la cellule, quelles protéines établissent des connexions entre les différents compartiments cellulaires, ou quelles PPI prédites par une approche ab initio sont approuvées par des observations structurales ? Nous illustrons ces applications XIII sur le processus de photosynthèse, la voie de signalisation Wnt et plusieurs benchmarks de docking de protéines établis. Nous montrons quelques autres cas d'utilisation, tels que l'identification d'interactions croisées parmi un ensemble de structures complexes ou la création d'un ensemble de paires de protéines en interaction dépourvues de telles interactions croisées. De plus, pour faciliter la visualisation, LEVELNET organise spatialement les noeuds en fonction de la topologie du réseau. Au-delà de la visualisation, de l'exploration et de la comparaison des réseaux PPI basés sur une grille, LEVELNET offre la possibilité de récupérer des informations détaillées, au niveau des acides aminés, sur l'utilisation de surface d'une protéine donnée dans la PDB. Les principaux apports de nos travaux sont les suivants :

Disponibilité

• Décomposer les conformations des complexes protéiques en unités minimales d'information.

• Tirer parti du squelette commun des acides aminés pour représenter explicitement les orientations relatives des résidus protéiques tout en étant insensible à l'orientation globale de la protéine.

• Stratifier l'interface en régions avec différentes accessibilités aux solvants et évaluer la contribution de ces différentes régions. Les cubes de chaque région sont indépendants les uns des autres et de la géométrie de la surface.

DLA-Ranker fournit un atout précieux à la communauté pour explorer les interactions protéiques. Elle ouvre des voies pour l'identification d'interfaces physiologiques, la découverte de petits sous-ensembles de cubes dédiés à des tâches fonctionnelles, la construction de paysages mutationnels phénotypiques et la prédiction de l'affinité de liaison. Nous proposons une nouvelle méthode computationnelle utilisant l'apprentissage profond géométrique pour prédire les propriétés des interactions protéine-protéine. Nous sommes intéressés à capturer les descriptions représentatives des environnements locaux de l'interface qui sont sensibles aux mutations ponctuelles. Pour extraire les descripteurs, nous appliquons des filtres 3D-CNN à des cubes centrés et orientés localement sur les résidus interfaciaux (Fig. RF.7A). Les cubes sont orientés en définissant des repères locaux basés sur le "scaffold" chimique commun des résidus d'acides aminés dans les protéines [START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF]. Ils encapsulent l'environnement local de chaque résidu, c'est-à-dire la géométrie locale du résidu avec ses atomes voisins. Nous considérons également les informations physico-chimiques (PC), géométriques (variance circulaire), évolutives [START_REF] Engelen | Joint Evolutionary Trees: A Large-Scale Method To Predict Protein Interfaces Based on Sequence Sampling[END_REF][START_REF] Laine | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions[END_REF] et le paysage mutationnel des résidus interfaciaux [START_REF] Laine | GEMME: A Simple and Fast Global Epistatic Model Predicting Mutational Effects[END_REF] comme descripteurs auxiliaires.

DLA-

Modèle général polyvalent

Modélisation Rosetta Backrub

Pour simuler les fluctuations conformationnelles quasi natives d'un complexe protéique et pour avoir une meilleure estimation des angles d'orientation de la chaîne latérale d'un acide aminé mutant, nous utilisons une simulation de type "backrub" du backbone (sequelette) qui explore localement l'espace conformationnel d'un complexe protéique [START_REF] Smith | Backrub-Like Backbone Simulation Recapitulates Natural Protein Conformational Variability and Improves Mutant Side-Chain Prediction[END_REF] (Fig. Une structure de type sauvage subit une minimisation locale des angles de torsion du squelette et de la chaîne latérale suivie d'une étape de simulation Monte Carlo. Nous l'avons appliqué pour produire trente modèles pour chaque structure mutée et trente pour le type sauvage. Ce processus est suivi d'une étape de "repacking" appliquée aux modèles de type sauvage et de mutation. Pour les positions de mutation à l'interface de chaque modèle, nous calculons les cartes volumétriques cubiques associées.
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Prédiction de ∆∆G

Nous concevons quatre configurations expérimentales pour prédire ∆∆G dérivées de l'inclusion de différentes caractéristiques auxiliaires et du point de départ pour l'entraînement. Nous utilisons deux types caractéristiques auxiliaires: (i) caractéristiques auxiliaires partielles encodant les cinq classes correspondant aux cinq régions structurales SUP, COR, RIM, INT et SUR, et (ii) caractéristiques auxiliaires complètes concaténant caractéristiques partiels aux informations physico-chimiques, géométriques, évolutives [START_REF] Engelen | Joint Evolutionary Trees: A Large-Scale Method To Predict Protein Interfaces Based on Sequence Sampling[END_REF][START_REF] Laine | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions[END_REF] et le paysage mutationnel des résidus interfaciaux [START_REF] Laine | GEMME: A Simple and Fast Global Epistatic Model Predicting Mutational Effects[END_REF]. Nous menons les expérimentations en deux modes: (i) entraîner un modèle à partir de son état initial (poids initialisés aléatoirement) et (ii) à partir des poids du modèle pré-entraîné et transférer les connaissances à l'aide de techniques de réglage fin (fine-tuning).

Nous évaluons les performances de l'architecture Siamese (Fig. RF.7B) avec un modèle pré-entraîné comprenant des caractéristiques auxiliaires complètes avec une validation croisée au niveau de la mutation (Fig. RF.9). Bien que ce type de protocole d'évaluation soit utilisé par plusieurs approches, ce n'est pas un moyen fiable d'évaluer les performances prédictives en raison de l'existence de complexes communs ou similaires, certains même avec la même position de mutation, dans les ensembles de train et de test. Par conséquent, nous créons une nouvelle configuration expérimentale dans laquelle nous divisons les ensembles d'apprentissage et de test de manière à ce qu'ils ne partagent pas de complexes communs basés sur une identité de séquence de 100%. L'ensemble de tests comprend 39 complexes et 391 mutations. Nous évaluons les performances de DLA en utilisant différentes configurations expérimentales (Fig. 
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Proteins

Proteins are complex macro-molecules playing crucial biological roles in all living organisms. They guarantee the proper development and functionality of organs by performing many different tasks, including maintenance and support of the structure of cells, serving in the immunity system, signaling and carrying substances (ions, atoms, or small molecules), metabolism, gene expression and regulation, and muscle movement. Given that they are essential part of every organism it is necessary to study their structures and properties, functions, and how they interact with each other in order to understand the cellular machinery. Here I introduce the biological concepts that will be used throughout this dissertation.

Protein Synthesis Proteins are generated through a mechanism called protein synthesis that includes two major processes: transcription and translation. In eukaryotic cells there is a unit called the nucleus. Nucleus contains the genome which is the genetic material of a living organism. The genetic material is a set of long strands of deoxyribonucleic acid (DNA) molecules that have the genetic information required by an organism to develop, grow, function, and reproduce. In humans, the genetic material is divided between 23 pairs of long DNA molecules called chromosomes. Each chromosome consists of chromatin fiber in which long DNA molecule is organized and tightly packed around histone proteins to form a complex called nucleosome (Fig. 1.1A). This structure is important to prevent DNA molecules from being tangled and also regulate the gene expression and development of organisms. Within DNA there are parts called genes that maintain codes to make proteins. As a gene is switched on to be expressed, an enzyme called RNA polymerase attaches to the beginning of the gene to perform the transcription phase (Fig. 1.1B). By moving along the gene on DNA the RNA polymerase makes a messenger ribonucleic acid (messenger RNA or mRNA) out of the free nucleotide bases in the nucleus and according to the order instructed by the gene. After modifying the mRNA through post-transcription process, it is guided outside the nucleus and into the cytoplasm of cell where a ribonucleoprotein complex (ribosome), also known as protein factory, attaches to the mRNA and begins to read the sequence of nucleotides 3 bases at a time. This process is called translation (Fig. 1.1B). For each triplet of nucleotide bases, called codon, ribosome chooses a proper transfer RNA (tRNA) molecule that carries the corresponding amino acid. There are 4 3 = 64 possible triplets. However, because of codon degeneracy, these triplets correspond to only 20 amino acids (Fig. 1.3A). Ribosome attaches selected amino acid to the previous ones and generates a sequence of amino acids called peptide chain. This chain is the primary structure of protein.

Protein primary structure There exist 20 amino acids with the same general structure distinguishable by their side-chains (Fig. 1.3B and Fig. 1.2). The side-chains define amino acids' geometric and physico-chemical properties. Amino acids are represented by either a letter or three letters and they belong to one of the three classes: electrically charged, polar uncharged, and hydrophobic (non-polar). The carboxyl group of an amino acid reacts with the amino group of the consecutive amino acid by a covalent chemical bond called peptide bond. This process is called dehydration reaction because beside the peptide bond a water molecule is also released. This unbranched polymer might consist of hundreds or even thousands of amino acids and is called the primary structure of pro- tein. The physico-chemical properties of this sequence and its amino acids define protein's three dimensional shape and its unique function in cellular machinery. This structure has two main aspects: 1) side-chains of each amino acid in the molecule and 2) backbone or main-chain representing the long continuous chain of the protein without considering the side-chains. In this structure there are two groups of torsion angles1 (Fig. 1.3C):

• Backbone torsion angles are: Φ between C α and a plane on which N (of the same amino acid) is located, Ψ between C α and a plane on which C (of the same amino acid) is located, and ω for the peptide bond and between N (of the adjacent amino acid) and C (of the previous amino acid) both located on the same plane. ω angle has much less flexibility compared to Φ and Ψ angles because the peptide bond is a strong covalent bond and both atoms are located on the same plane. These three torsion angles define the conformational structure of the backbone chain. The Ramachandran diagram is based on the variation of Φ and Ψ [START_REF] Ramachandran | Stereochemistry of polypeptide chain configurations[END_REF].

• Side-chain torsion angles or orientation angles determine conformation of residue of each amino acid in the peptide and are denoted by χ 1 ,χ 2 ,χ 3 , ... along the side-chain.

Molecular interactions Non-covalent interactions (NCI), also known as molecular interactions, are attractive or repulsive weak forces between molecules or atoms. They are necessary to understand how higher structural levels of proteins are formed. Electrostatic interactions (such as hydrogen bonds), Van der Waals forces, and hydrophobic effect are different types of NCI. They are necessary for the protein folding. Covalent bonds are strong forces that hold atoms tightly together by sharing the electrons between atoms and eventually form molecules. Thanks to these bonds, molecules are separate units that do not dissociate or lose their formation when they interact with the surrounding environment, unless they are involved in a chemical reaction that breaks or forms new bonds. In molecular interactions, unlike covalent bonds, the electrons are not shared between atoms or within molecules. NCIs are weaker than covalent bonds and are affected during physical changes like melting, boiling, sublimation, protein or RNA unfolding and their dynamics, and separation of DNA strands. Nevertheless, collaboration of NCIs often creates very stable molecular structure, like folded proteins or DNA, or functional interaction between proteins.

Secondary Structure The primary structure is the unfolded state of a protein.

Based on the sequence of amino acids in the peptide, their physico-chemical properties, and the NCIs, the protein begins to fold into three dimensional shape. The first step of folding process is to form secondary structures. Thanks to the hydrogen bonds between the hydrogen atom of the N-H group of one amino acid (as donor) and the oxygen atom of C=O group of another amino acid (acceptor), local segments of the primary chain forms three dimensional patters of secondary structures on the backbone. Three most common types of the secondary structure are α-helices, β-sheets, and loops (irregular structures) (Fig. 1.3D-E).

Tertiary and Quaternary Structures Following the formation of secondary structures on the backbone, intra-molecular interactions of side-chains help the protein to fold into its three dimensional structure also known as its native state. This is the tertiary structure of protein in which it is functional and operative. A protein can have several peptide chains. Quaternary structure of a protein is formed when these chains fold and interact with each other to create an oligomeric complex with two or more folded subunits. Depending on the number of subunits these complexes are called dimer, trimer, tetramer, etc. Hemoglobin is an example of a protein with quaternary structure (Fig. 1.3F). 

Protein-protein interactions

In order to perform various functions in living organisms and drive the biological processes in the cell two or more proteins gather and interact with each other to create a protein complex. The resulted quaternary structure is an association of two or more peptide chains linked to each other by molecular interactions (NCIs). Although the enthalpy of an individual NCI, even for its maximum possible quantity, is significantly lower than a covalent bond, the cumulative value of enthalpy of all NCIs in a protein-protein interaction (PPI) is high enough to create a protein complex. In a cell, each protein behaves differently with other proteins around it. A protein has high propensity to interact with some proteins which are considered as its partners. In these interactions, binding affinity is a variable defined to numerically measure the propensity and the strength of the binding interaction between two bio-molecule partners. From chemical point of view the binding affinity is also expressed as dissociation constant (K d ) which is a disposition of a chemical complex in its equilibrium concentration to dissociate into its molecular components. In molecular biology, association constant (K a = 1 K d ) is used to measure the propensity of binding between two molecules. This constant is defined in equation 1.1:

P 1 + P 2 ⇌ P 1 P 2 K a = 1 K d = [P 1 P 2 ] [P 1 ] × [P 2 ] (1.1)
where [P 1 ], [P 2 ], and [P 1 P 2 ] are the equilibrium concentrations of P 1 , P 2 , and protein complex P 1 P 2 , respectively. The larger the K a value, the greater the binding affinity between [P 1 ] and [P 2 ]. The smaller the K a value, the more weakly [P 1 ] and [P 2 ] are drawn to and interact with each other. Association constant can be converted to the Gibbs free energy ∆G using equation 1.2:

∆G = R × T × ln (K d ) = ∆H -T ∆S (1.2)
where R = 8.314 4184 kcal K×mol is the ideal gas constant or Boltzmann constant, T is the absolute (thermodynamic) temperature, H is enthalpy, and S is entropy. Henceforth in this project we will use ∆G as the representation of binding affinity between two proteins.

A protein might have several interfaces and using each interface it can interact with multiple proteins at different levels. It has high binding affinity with its potential partners. In order to represent this concept we can imagine a protein in the center of circles of affinity with all its potential partners distributed in different levels around it (Fig. 1.4A). In these circles the farther a partner is located the lower the binding affinity becomes. Furthermore, proteins are dynamic objects and depending on the conditions and the functionalities their binding affinities with partners might vary.

The chemical and geometrical properties of the interfaces of two partners determine the value of their binding affinity [START_REF] Raucci | Local Interaction Signal Analysis Predicts Protein-Protein Binding Affinity[END_REF]. The descriptors extracted from these properties are also used for the prediction of the interfaces and partner discrimination [START_REF] Laine | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions[END_REF]87,[START_REF] Lopes | Protein-Protein Interactions in a Crowded Environment[END_REF][START_REF] Gainza | Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning[END_REF][START_REF] Sverrisson | Fast endto-end learning on protein surfaces[END_REF].

The natural environment of proteins is water and the main driving force of protein folding is the hydrophobic collapse where hydrophobic residues tend to group together and minimize the part of their surface that is accessible to water. Upon binding the portion of the surface accessible to solvent diminishes and we can classify residues depending on this solvent accessibility. This is regional classification of structure of protein which is proposed in [START_REF] Levy | A Simple Definition of Structural Regions in Proteins and Its Use in Analyzing Interface Evolution[END_REF]. There are three structural regions in the interaction surface of a protein (Fig. 1.4B): Support (SUP or S) consists of residues that are mostly buried in the monomers and become more buried within the interface upon the formation of the complex, Core (COR or C) includes the residues that are located on the surface of interface and become buried upon interaction with a partner, and Rim (RIM or R) is the most outer region of the interface and its residues with solvent-accessible atoms remain exposed on the complex. In this classification there are two other structural regions: interior (INT) that are completely buried inside the protein and mostly comprises of hydrophobic residues, and non-interacting solvent-accessible surface (SUR) which is enriched by hydrophilic residues that are located on the surface of protein. The relation between SCR regions and the geometrical, physico-chemical, and evolutionary characteristics of a protein is proved in [START_REF] Laine | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions[END_REF] where they are used in order to identify, very accurately, the binding sites of a protein.

Protein-protein interaction networks

The versatile, adaptable, and specific nature of proteins gives them the ability to create very large and dense interaction networks that govern virtually all intra-and inter-cellular activities. Analyzing these networks enlightens the relative importance of proteins in different organisms and communities. It improves our understanding of physiopathological mechanisms and helps us to decipher gene-disease-drug associations and find therapeutic treatments ( [START_REF] Navlakha | The power of protein interaction networks for associating genes with diseases[END_REF][START_REF] Sun | Predicting disease associations via biological network analysis[END_REF][START_REF] Piñero | DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes[END_REF][START_REF] Isik | Drug target prioritization by perturbed gene expression and network information[END_REF][START_REF] Tang | Breast Cancer Candidate Gene Detection Through Integration of Subcellular Localization Data With Protein-Protein Interaction Networks[END_REF]). The ever increasing growth of protein sequential, structural, and functional information ([175, 168, 10, 58, 72, 179]) and of experimental evidence for PPI ([128, 127, 133, 129, 77]) has stimulated the development of approaches, databases, and web-interfaces for prediction, curating, inferring, and browsing PPI networks [START_REF] Calderone | mentha: a resource for browsing integrated protein-interaction networks[END_REF][START_REF] Mosca | Interactome3D: adding structural details to protein networks[END_REF][START_REF] Mosca | 3did: a catalog of domain-based interactions of known three-dimensional structure[END_REF][START_REF] Kotlyar | Integrated interactions database: tissue-specific view of the human and model organism interactomes[END_REF][START_REF] Dapkūnas | The PPI3D web server for searching, analyzing and modeling protein-protein interactions in the context of 3D structures[END_REF][START_REF] Franz | GeneMANIA update 2018[END_REF][START_REF] Kotlyar | IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species[END_REF][START_REF] Hwang | HumanNet v2: human gene networks for disease research[END_REF][START_REF] Liu | PPIExp: A Web-Based Platform for Integration and Visualization of Protein-Protein Interaction Data and Spatiotemporal Proteomics Data[END_REF][START_REF] Szklarczyk | The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[END_REF].

1.4 Constant growth of protein structures: computational and experimental)

Experimental methods

The Protein Data Bank (PDB) [START_REF] Berman | The Protein Data Bank[END_REF][START_REF] Berman | The Protein Data Bank[END_REF] is a repository created by structural biologists and contains atomic three-dimensional coordinates and the structure of proteins, nucleic acids, and other biological molecules. These structures are captured using various techniques such as X-ray crystallography, NMR spectroscopy, or cryo-electron microscopy. These techniques determine the position of atoms in a macromolecule and model the protein in a file format called PDB. Thanks to the researches and experiments that are conducted in the laboratories around the world this archive is constantly growing and in 2022 there are over 190 thousands determined protein structures (Fig. 1.3F-G). It is worth mentioning that there are considerable amount of redundancy in this database based on various percentages of sequence identity (please see https://www.rcsb.org/stats/nr/cluster-ids-95).

Computational approaches

There has been an exponential growth in the number of released protein sequences during the past 25 years ([175, 168]). However, the experimental approaches to determine the monomeric structure of these sequences could not keep up with this growth. This has motivated the development of many approaches to computationally predict the structure of single-chain proteins from their sequences. The spectacular recent advances in singlechain protein structure prediction with AlphaFold version 2 (AF2) [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF] and RosettaFold [5] have dramatically increased the number of 3D structural models. The 3D structure for the entire human proteome are predicted by AF2 [START_REF] Tunyasuvunakool | Highly accurate protein structure prediction for the human proteome[END_REF]. With these advances the protein interactions are becoming more central than ever before particularly the problem of determining how proteins interact with one another to form a protein complex. This is essential to understand proteins' functions and designing new proteins that serve in various therapeutic applications, such as immunotherapy [START_REF] Michel Sadelain | The Basic Principles of Chimeric Antigen Receptor Design[END_REF]. Unlike the prediction of structure of monomers, the estimation of how two or several protein chains interact with each other is still a challenging problem.

Critical Assessment of Protein Structure Prediction

Critical Assessment of protein Structure Prediction (CASP) is a community dedicated to evaluate computational approaches related to the prediction of protein structures from their sequences. The 14th edition of CASP has shown the near-experiment accuracy power of deep learning-based approaches in protein structure prediction [START_REF] Laine | Protein sequence-to-structure learning: Is this the end(-to-end revolution)? Proteins: Structure, Function[END_REF][START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF]5]. Furthermore, the 15th edition of CASP and Critical Assessment of PRedicted Interactions (CAPRI) [START_REF] Lensink | Docking and scoring protein complexes: CAPRI 3rd Edition[END_REF][START_REF] Lensink | Docking and scoring protein interactions: CAPRI 2009[END_REF][START_REF] Lensink | Docking, scoring, and affinity prediction in CAPRI[END_REF][START_REF] Lensink | Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment[END_REF][START_REF] Lensink | Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition[END_REF][START_REF] Lensink | The challenge of modeling protein assemblies: the CASP12-CAPRI experiment[END_REF][START_REF] Lensink | Blind prediction of homo-and hetero-protein complexes: The CASP13-CAPRI experiment[END_REF][START_REF] Lensink | Modeling protein-protein, protein-peptide, and protein-oligosaccharide complexes: CAPRI 7th edition[END_REF] create opportunities to evaluate the performance of computational approaches in protein complex structure prediction by providing benchmarks of target protein complexes.

Protein-protein docking

A lot of effort has been put into the development of methods for simulation of binding process between two or more proteins. One of these simulating approaches is protein-protein docking [START_REF] Lensink | Docking and scoring protein complexes: CAPRI 3rd Edition[END_REF][START_REF] Lensink | Modeling protein-protein, protein-peptide, and protein-oligosaccharide complexes: CAPRI 7th edition[END_REF]. Protein-protein docking is a computational approach for reconstruction of the 3D arrangements between two protein partners: a receptor and a ligand [START_REF] Sacquin-Mora | Identification of Protein Interaction Partners and Protein-Protein Interaction Sites[END_REF][START_REF] Christina | iATTRACT: Simultaneous global and local interface optimization for protein-protein docking refinement[END_REF][START_REF] Ghoorah | Protein docking using case-based reasoning[END_REF][START_REF] Wang | Protein-Protein Docking with Backbone Flexibility[END_REF][START_REF] Tovchigrechko | GRAMM-X public web server for protein-protein docking[END_REF][START_REF] Zacharias | ATTRACT: Protein-protein docking in CAPRI using a reduced protein model[END_REF][START_REF] Zacharias | Protein-protein docking with a reduced protein model accounting for side-chain flexibility[END_REF][START_REF] Chen | Docking unbound proteins using shape complementarity, desolvation, and electrostatics[END_REF][START_REF] Gabb | Modelling protein docking using shape complementarity, electrostatics and biochemical information11Edited by[END_REF][START_REF] Dominguez | HADDOCK: A Protein Protein Docking Approach Based on Biochemical or Biophysical Information[END_REF]. It generates an ensemble of candidate complex conformations by sampling the space of various ways the ligand can bind to the receptor. One way for exploring the conformational space is by fixing the position and orientation of the receptor in the space and orbiting the ligand around it (Fig. 1.5A).

Protein-protein docking tools can be classified in to three groups: rigid-body, flexible, and hybrid. As its name suggests, rigid-body docking considers both receptor and ligand as immutable objects without dynamics or conformational changes. Although rigid-body docking does not reflect the flexible nature of protein interaction it is faster and less computationally demanding compared to other groups. The position and orientation of the ligand can be described by a set of Euler angles with respect to the receptor (Fig. 1.5A).

In the flexible docking process the receptor and ligand go through conformational adaptability upon interaction. This is more aligned with the reality of the interaction, however, it requires computational resources and is time consuming. The hybrid approaches try to find a trade-off between the performance and speed by introducing flexibility once the rigid-body docking finds the near native conformation.

One method to accelerate the docking process is to reduce the protein structure into coarse-grained representation [START_REF] Zacharias | Protein-protein docking with a reduced protein model accounting for side-chain flexibility[END_REF][START_REF] Sacquin-Mora | Identification of Protein Interaction Partners and Protein-Protein Interaction Sites[END_REF][START_REF] Lopes | Protein-Protein Interactions in a Crowded Environment[END_REF]. The coarse-grain representation is necessary to reduce the computation time in large-scale docking processes. One specific coarsegrained modeling replaces the C α with a pseudo-atom and represents the side-chain of the amino acids by one or two pseudo-atoms. For amino acids Ala, Asn, Asp, Cys, Val, Thr, Leu, Ile, and Ser a pseudo-atom replaces the side-chain and it is at the geometrical centre of the side-chain heavy atoms. For other amino acids two pseudo-atoms are used to represent the side-chain: the first one is placed midway between the C β and C γ and the second one is located at the geometrical centre of the remaining side-chain heavy atoms.

After the docking process the candidate conformations need to be scored based on the energy functions [START_REF] Zacharias | Protein-protein docking with a reduced protein model accounting for side-chain flexibility[END_REF][START_REF] Sacquin-Mora | Identification of Protein Interaction Partners and Protein-Protein Interaction Sites[END_REF], shape complementarity, electrostatics, and desolvation [START_REF] Gabb | Modelling protein docking using shape complementarity, electrostatics and biochemical information11Edited by[END_REF]. One specific energy function calculated on the interaction site can have the general form:

E = E bond + E angle + E torsion + E non-bonded + E others (1.3)
To account for the complementarity of the two protein interfaces and penalizing the clashes the potential energy is defined as follow:

E ij = i<j [ B ij r 8 ij - C ij r 6 ij + q i × q j ϵ × r ij ] (1.4)
where E ij is the interaction energy between atoms i and j, B ij and C ij are the repulsive and attractive Lennard-Jones (LJ) parameters respectively, q i and q j are the charges of the atoms i and j, r ij is the distance between the atoms i and j, and ϵ is the distance dependant dielectric constant.

These scores represent how stable and energetically favorable is an interaction between partners and used to rank the conformations and to find the near-native ones. Evolutionary (conservation or co-evolution signals) and biological information can also be utilized for the docking process and for scoring the conformations [START_REF] Quignot | InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs[END_REF][START_REF] Thomas | Sequence co-evolution gives 3D contacts and structures of protein complexes[END_REF].

Thanks to the developments of ultra-fast docking methods based on the fast Fourier transform (FFT) [START_REF] Ritchie | Ultra-fast FFT protein docking on graphics processors[END_REF][START_REF] Pierce | Accelerating Protein Docking in ZDOCK Using an Advanced 3D Convolution Library[END_REF][START_REF] Ohue | MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for heterogeneous supercomputers[END_REF], deep learning methods [START_REF] Gainza | Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning[END_REF][START_REF] Ganea | Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking[END_REF] and/or coarse-grained protein representation the large-scale docking computational experiments has become feasible and nowadays highly efficient algorithms can exhaustively sample the space of complex candidate conformations [START_REF] Ritchie | Ultra-fast FFT protein docking on graphics processors[END_REF]. In spite of these progresses, correctly evaluating and ranking these conformations remains challenging.

The CAPRI classifies predicted protein complex conformations in four categories, namely incorrect, acceptable, medium, and high-quality, based on the extent to which they differ from the corresponding experimental structures (ground truth) [START_REF] Lensink | Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition[END_REF]. Root Mean Square Deviation (RMSD) of atomic coordinates is a measure to compare two protein structures and quantify their differences. It is calculated by taking the square root of average of distances between the atoms of superimposed protein structures:

RMSD(P, Q) = n i=1 ((p ix -q ix ) 2 + (p iy -q iy ) 2 + (p iz -q iz ) 2 n ) (1.5)
where P and Q are two proteins with common n superimpsed atoms. p i and q i are the ith atoms belonging to P and Q, respectively.

The deviation of each docking conformation from the experimental structure is measured by three quantities: RMSD of the ligand (L-RMSD), RMSD of the interface (I-RMSD), and the recall fraction of native contacts (f-nat) (Fig. 1.5B). F-nat is the fraction of native residue-residue contacts recalled in the conformation; L-RMSD is the backbone deviation of a ligand partner in the conformation relative to the target, after superimposition of the receptor partner of the target and the conformation, and I-RMSD is the backbone deviation of the interface residues [START_REF] Lensink | Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition[END_REF].

Complete Cross-Docking

Complete cross-docking (CCD) is a large-scale pair-wise docking simulation in which all the proteins of a given database are docked against each other. This results into a matrix where each cell corresponds to a possible pair and its conformational sampling (Fig.

1.5C).

There are two types of CCD: asymmetric and symmetric. In the asymmetric CCD the role of each protein as the receptor or the ligand is important which leads to a full matrix with n 2 elements where n being the number of proteins. In this docking computation the receptor is fixed and the ligand is transformed around it in the Euclidean space. In the symmetric CCD the conformations are generated by orbiting both the receptor and the ligand at the same time. In this approach the number of possible pairs reduces to n×(n+1)
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The recent advances in protein 3D structure prediction [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF]5] paves the way for the expansion of protein-protein docking approaches. 

Effects of mutation on protein-protein interactions

Mutations happen when DNA fails to accurately replicate itself or the tissues and organs are exposed to specific external agents such as certain chemicals or radiation. In these cases single nucleotide base is substituted, inserted, or deleted in the DNA or RNA molecule. If one nucleotide base is replaced by another in a gene, the resulted mRNA has one nucleotide substitution in its molecule. Consequently, ribosome might choose another amino acid for the triplet in which the mutation happened. If the amino acid does not change for the mutant triplet the mutation is synonymous (or silent) otherwise it is non-synonymous (Fig. 1.3A). The non-synonymous mutations might lead to changes in the biological mechanism of a living organism and are therefore subject to the natural selection. For example, they can be deleterious and disturb the cellular machinery. The non-synonymous mutations that happen on a protein's interaction surface can affect the interaction process between the protein and its potential partners. In this scenario the more the physico-chemical and geometrical properties of the mutant amino acid differ from the wild-type's the more the binding affinity is influenced. This type of genetic mutation is called single point mutation. A mutant protein structure might have multiple point mutations in which several amino acids are altered. In this work we are interested to study the effects of this type of mutation on protein-protein interactions and how it influences the binding affinity. An example of single point mutation is given in Fig. 1.6A. In this mutation both wild-type and mutant amino acids, tryptophan (Trp or W) and alanine (Ala or A), have the hydrophobic (non-polar) side-chains. However, the size of side-chain is dramatically changed and if it happens on the interaction surface it can affect the geometrical properties of the binding site.

Fig. 1.6B shows effects of three amino acid substitutions on the geometrical and chemical properties of interaction site of protein complex 1IAR. We use alanine, tryptophan, and glutamic acid (Glu or E) which is an amino acid with a negatively charged side-chain. We can see the interaction surface changes its shape on the region in which these three single point mutations happen. Moreover, these mutations change the charge distribution and electronegativity of the surface which are parts of chemical properties of the interaction site. For example, a mutation from glutamic acid to alanine affects the chemical properties and in turn geometry of the binding site, since with the glutamic acid we have more negative charges on the interaction site. A. An example of single point mutation on the interaction site. Substitution of an amino acid with small side-chain (alanine in yellow) by an amino acid with larger side-chain (tryptophan in white). B. Changes in the geometrical and chemical properties when single point mutations happen on the interaction site of protein complex 1IAR. Substitution of a negatively charged amino acid (glutamic acid in red) by a hydrophobic amino acid (alanine in yellow) or substitution of an amino acid with small side-chain (alanine) by an amino acid with larger side-chain (tryptophan in white). Left column: changes in the shape and geometrical properties of the interaction. Right column: changes in the charge distribution and electronegativity of the interaction site which mean changes in chemical and geometrical properties (red and blue regions are partial negative and positive charges, respectively).

Chapter 2

Background methodology

Resources of PPI networks

Although many approaches and resources compile experimental and computational PPIrelated data and provide user-interactive visualization, these data may be contradictory, noisy, heterogeneous, and biased [START_REF] Hart | How complete are current yeast and human protein-interaction networks[END_REF][START_REF] Kotlyar | IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species[END_REF]. A lot of effort has been invested to integrate other types of information (e.g. cellular localisation), increase the interpretability, organize the PPI based on their biological context, and compute confidence scores. These characteristics are implemented in IID [START_REF] Kotlyar | IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species[END_REF], STRING [START_REF] Szklarczyk | The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible[END_REF][START_REF] Szklarczyk | STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[END_REF][START_REF] Szklarczyk | The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[END_REF], and the humanfocused base HIPPIE [3]. While most of the databases describe interactions without accounting for any underlying physical information [START_REF] Calderone | mentha: a resource for browsing integrated protein-interaction networks[END_REF][START_REF] Kotlyar | Integrated interactions database: tissue-specific view of the human and model organism interactomes[END_REF][START_REF] Franz | GeneMANIA update 2018[END_REF][START_REF] Hwang | HumanNet v2: human gene networks for disease research[END_REF][START_REF] Liu | PPIExp: A Web-Based Platform for Integration and Visualization of Protein-Protein Interaction Data and Spatiotemporal Proteomics Data[END_REF], a handful of them build upon protein 3D structural evidence, e.g. Interactome3D [START_REF] Mosca | Interactome3D: adding structural details to protein networks[END_REF], PPI3D [START_REF] Dapkūnas | The PPI3D web server for searching, analyzing and modeling protein-protein interactions in the context of 3D structures[END_REF], and 3did [START_REF] Mosca | 3did: a catalog of domain-based interactions of known three-dimensional structure[END_REF]. Structural determination techniques provide experimental biologists with atomic-level resolution about the formation of protein complexes. This information is also useful to assess docking algorithms and generate binary-and cross-interaction benchmarks [START_REF] Dequeker | From complete cross-docking to partners identification and binding sites predictions[END_REF]. Moreover, under the hypothesis that some PPI are conserved in evolution one may infer the existence of unseen interactions by transferring knowledge from homology.

Deep learning in bioinformatics

In this section I briefly define the concepts of machine and deep learning that I used in my thesis. Then I describe the geometric deep learning and its applications in the structural bioinformatics.

Machine learning

Machine Learning (ML) is a sub-field of Artificial Intelligence (AI) that is based on statistical methods for inductive inference (known as learning or training process) of mathematical rules (known as the model) from a given set of samples (known as database).

Loss function calculates the deviation between the desired output and the predicted one. The objective of the learning is to minimize the loss function. There are numerous loss functions for various ML tasks. For regression tasks, the loss function can be mean squared error, mean squared logarithmic error, or mean absolute error. For binary classification tasks, the loss function can be binary cross entropy or Hinge loss. For multi-class classification tasks, the loss function can be categorical cross entropy or Kullback-Leibler divergence.

Training process is a phase in which the ML model is fed by the training data. It updates the model parameters with respect to the loss function. The training process finishes when the loss function converges to its global minimum.

Testing process is a phase in which the trained ML model is used to make predictions on unseen samples from the test set.

There are five types of machine learning: supervised learning, unsupervised learning, selfsupervised learning, semi-supervised learning and reinforcement learning. In my thesis I used the first three types.

Supervised learning trains a model using a labelled training set D : {(x 1 , y 1 ), ..., (x N , y N )}. In this type of learning a label or target value y i is assigned to an input sample x i . Using these correct or desired labels the model adjusts its parameters with respect to the loss function until the error has been sufficiently minimized. The result is a model that learned the relationship between the input values x and the output values y. Supervised learning can be categorized into two major learning tasks: (i) classification, and (ii) regression. In the classification we seek to correctly assign a class or a label to an unseen input sample. Popular classification algorithms are linear classifiers, logistic regression, support vector machines (SVM), decision trees, random forest, and neural networks (with Sigmoid or Softmax as output activation function). In the regression we seek to find the functional mapping from the input samples (independent variable) to the output values (dependent variable). A well-trained model then can accurately project the unseen input values to the desired outputs. Examples of regression tasks are linear or polynomial regression models and neural networks (with linear as output activation function).

Unsupervised learning discovers hidden patterns necessary for the analysis and clustering of unlabelled samples in the database. We can mention K-Means clustering, hierarchical clustering, principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE) [START_REF] Van Der Maaten | Visualizing Data using t-SNE[END_REF], density-based spatial clustering of applications with noise (DB-SCAN), and hierarchical DBSCAN (HDBSCAN) as some examples of this type of learning. In some parts of this thesis, I used t-SNE which is a non-linear method usually used to obtain some intuition of the high-dimensional data by visualizing it in lower dimensions (e.g. 2 dimensions). The hierarchical clustering methods like HDBSCAN were also used in the analysis of docking poses.

Self-supervised learning can be considered as an unsupervised learning in the sense that the given training database is not labelled. However, its training process is similar to the training of supervised learning. A way of training a self-supervised model is by distorting or masking part of the given samples and define a task for the model to restore the distorted part or predict the masked positions. A well-trained model then can be used to extract embedding features from unseen samples which eventually can be utilized in supervised downstream tasks that have limited number of samples.

Deep neural networks

One of the popular machine learning computing approaches is Artificial Neural Networks (ANN or NN). It comprises of connected neurons belonging to an input layer, a series of hidden layers, and an output layer. It is a derivative-based learning algorithm designed to learn the relation between the features of the input samples and the output target values or classes by minimizing the loss function with respect to the weights of the interlayer connections (also known as synapses). The supervised learning algorithm of NN is backpropagation of errors that uses the gradient descent procedure (Fig. 2.1A). The availability of huge amount of data motivated the design of Deep Neural Networks (DNN) in which more hidden layers are involved in the architecture. Unlike other machine learning techniques, DNN has the capacity to learn from huge databases without reaching a performance plateau. These models are sophisticated enough to capture the interdependent hidden patterns exist in data. The performance of DNN with enough amount of data can be improved by scaling up the number of hidden layers or number of neurons in each layer (deeper neural network) (Fig. 2.1B). Furthermore, the advances in the computing power made DNN architectures computationally tractable by harvesting hardware accelerators such as Graphical Processing Units (GPU) and Tensor Processing Units (TPU). DNN suffers from two numerical instabilities: (i) Instability in the feedback loop caused by its derivative-based learning nature (known as vanishing or exploding gradients), and (ii) instability in the feed-forward mode of the trained model which is the sensitivity of the layers with respect to small perturbations of the input features (known as lack or robustness). Despite these drawbacks deep learning architectures have a great capacity for generalizability: improvement of the performance on the unseen samples (test set) correlated to the improvement of the performance on the training samples.

The most popular deep neural network architectures are:

1. Multilayer Perceptron Networks (MLP) 2. Convolutional Neural Networks (CNN) [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] 3. Graph Neural Networks (GNN) [START_REF] Chami | Machine Learning on Graphs: A Model and Comprehensive Taxonomy[END_REF][START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF][START_REF] Xie | Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties[END_REF][START_REF] Veličković | Graph Attention Networks[END_REF] 4. Recurrent Neural Networks (RNN) 5. Long Short-Term Memory (LSTM) [START_REF] Hochreiter | Long Short-Term Memory[END_REF][START_REF] Graves | Long Short-Term Memory[END_REF] 6. Transformers [START_REF] Vaswani | Attention is All you Need[END_REF] 7. Autoencoders 8. Generative Adversarial Networks (GAN) [START_REF] Goodfellow | Generative Adversarial Nets[END_REF] In my thesis I use the CNN, GNN and MLP architectures to train models on grid and graph-based representations of proteins. Therefore, I will briefly present their architectures in the following section.

Geometric deep learning

Geometric representation of the protein structure

The primary numerical representation of a protein structure is a set of atoms with associated 3D coordinates in the Cartesian system. The positions of atoms are determined by the experimental methods such as X-ray, NMR, and cryo-EM or by recently developed highly accurate deep learning approach AlphaFold2 [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF]. This representation introduces two challenges that cannot be overcome by traditional deep learning approaches such as deep neural networks. First, there is no unique global frame of reference for this system (an origin and three orthogonal unit vectors) and the global translation and orientation of the protein structure are irrelevant to the structure of proteins and the functions they serve. Therefore, an approach evaluating the validity of candidate protein complex or biological relevance of a protein interaction must be invariant to changes in the frame of reference. Second, the 3D structure of proteins is a large system with a complexity increasing exponentially with the number of atoms. This complexity causes the curse of high dimensionality problem that cannot be resolved by traditional deep learning approaches. Geometric deep learning (GDL) proposes an elegant solution for both of these challenges by exploiting some underlying low dimensional geometric priors and their associated symmetry groups G (a set of transformations such as translations, rotations, and permutations) under which certain properties of an object or a signal (in this case protein structures) remain invariant (Fig. 2.2).

The building blocks

We define a signal or an object s (such as an image or a protein 3D structure) on an underlying domain Ω (such as 3D Euclidean space) that is symmetrical under group 

G. This gives us advantageous inductive bias which eventually leads to the definition of invariant and equivariant function blocks:

Invariant block: Properties of the signal s do not change under the transformations defined in the group G. For example Euclidean space is endowed with translational and rotational symmetries. We can formulate invariant function f that benefits from this geometric priors of domain Ω:

S(Ω, C) = {s : Ω -→ C} f : S(Ω) -→ Y f (p(g)s) = f (s), g ∈ G (2.1)
where S is a function space applied on domain Ω to define signal s, C ∈ R d is the range of values taken by the signal, f is a function defined on the signal to extract its properties and is invariant to the group G, p(g) is a real representation of a symmetry element that is applied on the signal, e.g. g is a translation in the Euclidean space =⇒ p(g) ∈ R 3 is a translation matrix.

Equivariant block: Function f ′ is equivariant on the transformations g ∈ G when it guarantees that g applied on the input signal s results in the same transformation on the output. GDL uses patch-wise symmetry groups and ensures that the whole architecture is locally equivariant by stacking a series of local equivariant layers. On the same domain:

f ′ : S(Ω) -→ S(Ω) f ′ (p(g)s) = p(g)f ′ (s), g ∈ G (2.2)
where function f ′ is an equivariant function on the group G.

In many applications the final layers are designed to make the whole process globally invariant. This approach leads to fewer trainable parameters by using kernels with shared weights and eliminates the need for data augmentation.

If domain Ω ′ is a compact (coarse-grained) version of domain Ω (Ω ′ ⊆ Ω), then we can define the building blocks of the GDL approaches as follow [START_REF] Michael | Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges[END_REF]:

Linear G-equivariant layer f ′ : S(Ω, C) -→ S(Ω ′ , C ′ ) satisfying f ′ (p(g)s) = p(g)f ′ (s), for all g ∈ G and s ∈ S(Ω, C). G-invariant layer (global pooling) f : S(Ω, C) -→ Y satisfying f (p(g)s) = f (s), for all g ∈ G and s ∈ S(Ω, C). Local pooling (coarsening) p : S(Ω, C) -→ S(Ω ′ , C), such that Ω ′ ⊆ Ω. Nonlinearity σ : C -→ C ′ applied element-wise as σ(s)(u) = σ(s(u)).
Concatenation of these blocks allows constructing G-invariant function:

F : S(Ω, C) -→ Y F = f ⊙ σ n ⊙ f ′ n ⊙ p n-1 ⊙ ... ⊙ p 1 ⊙ σ 1 ⊙ f ′ 1 (2.3)
where the blocks are selected such that the output space of each block matches the input space of the next one (Fig. 2.3). Different blocks may exploit different choices of symmetry groups G. GDL architectures can be defined on domains with different symmetry groups (Table 2.1) [START_REF] Michael | Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges[END_REF].

Different GDL architectures in structural bioinformatics

Many approaches use the GDL methods, particularly Graph Neural Networks (GNN) [START_REF] Chami | Machine Learning on Graphs: A Model and Comprehensive Taxonomy[END_REF][START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF][START_REF] Xie | Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties[END_REF][START_REF] Veličković | Graph Attention Networks[END_REF] and 3D Convolutional Neural Networks (3D-CNN) to predict various properties of protein structures. This includes quality assessment of protein structure models [START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF][START_REF] Baldassarre | GraphQA: protein model quality assessment using graph convolutional networks[END_REF][START_REF] Sanyal | ProteinGCN: Protein model quality assessment using Graph Convolutional Networks[END_REF][START_REF] Igashov | VoroCNN: Deep convolutional neural network built on 3D Voronoi tessellation of protein structures[END_REF], evaluation of docking conformations [START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF][START_REF] Réau | DeepRank-GNN: A Graph Neural Network Framework to Learn Patterns in Protein-Protein Interfaces[END_REF][START_REF] Cao | Energy-based Graph Convolutional Networks for Scoring Protein Docking Models[END_REF], protein interface prediction [START_REF] Fout | Protein Interface Prediction using Graph Convolutional Networks[END_REF][START_REF] Townshend | End-to-End Learning on 3D Protein Structure for Interface Prediction[END_REF] and protein design [START_REF] Gao | Deep Learning in Protein Structural Modeling and Design[END_REF]4]. 

Self-supervised deep learning and its applications in computational biology

Paired with the advances in the hardware computational powers and the huge corpora of data, the self-supervised deep learning architectures become the centre of attention to train encoder or pre-trained models. These pre-trained models serve in the extraction of informative representations from the input samples which has been demonstrated to be useful for the different downstream tasks in the fields of natural language processing (NLP) [START_REF] Devlin | BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding[END_REF], machine vision [START_REF] Pathak | Context Encoders: Feature Learning by Inpainting[END_REF], and recently masked language modelling methods to create pre-trained protein language models such as Protein Sequence Embeddings (ProSE) [START_REF] Bepler | Learning the protein language: Evolution, structure, and function[END_REF], BERTology [START_REF] Vig | BERTology Meets Biology: Interpreting Attention in Protein Language Models[END_REF], ProtTrans [START_REF] Elnaggar | ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing[END_REF], Evolutionary Scale Modeling (EMS) [START_REF] Rives | Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences[END_REF] and AminoBERT [START_REF] Chowdhury | Single-sequence protein structure prediction using language models from deep learning[END_REF].

Protein-protein interface prediction

In general, the protein-protein interface prediction approaches can be classified into two groups: those who depend on machine learning models and those who are free from these models. JET [START_REF] Engelen | Joint Evolutionary Trees: A Large-Scale Method To Predict Protein Interfaces Based on Sequence Sampling[END_REF] and subsequently JET2 [START_REF] Laine | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions[END_REF] are precise protein-protein interface predictors which do not depend on the machine learning models. They use sequence-and structure-based prior knowledge and extract and combine three descriptors to predict interfaces for a variety of protein-protein interactions. These descriptors are evolutionary conservation, physico-chemical properties, and the circular variance property of the residues representing their local geometry (proposed in JET2). JET2 either identifies a cluster of residues (patch), potentially describing an interaction with a specific partner or a cluster of residues covering an extended surface of the protein and potentially describing several interactions.

Using the GDL concepts, MaSIF-site [START_REF] Gainza | Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning[END_REF] and dMaSIF [START_REF] Sverrisson | Fast endto-end learning on protein surfaces[END_REF] predict protein-protein interaction sites. MaSIF is a general purpose framework serving various applications in biomolecular interactions. It discovers fingerprint patterns on protein surface and identifies functional sites by representing the surface as discretized mesh and then overlapping patches with a fixed geodesic radius. dMaSIF is the new version of this framework in which computation on the molecular surface is accelerated by representing the protein structure as atomic point cloud and applying new efficient geometric convolutional operators.

Protein complex structure prediction

Protein docking approaches and conformation scoring

In this section I give a brief overview of the popular docking tools and their scoring methods to evaluate the generated conformations. We use the conformations generated by these docking approaches. Furthermore, I introduce the deep learning-based scoring approaches for ranking complex conformations. At the end, I present a new paradigm for protein complex structure prediction called Fold-and-Dock. [START_REF] Sacquin-Mora | Identification of Protein Interaction Partners and Protein-Protein Interaction Sites[END_REF] are rigid-body docking approaches developed by the LCQB. The development of MAXDo is inspired by the docking method ATTRACT and its coarse-grained protein representation [START_REF] Zacharias | Protein-protein docking with a reduced protein model accounting for side-chain flexibility[END_REF]. To compute the energy, the interactions between the coarse-grained pseudo-atoms are treated using a soft LJ-type potential with appropriately adjusted parameters for each type of side-chain. In the case of charged side-chains, electrostatic interactions between net point charges located on the second side-chain pseudo-atom were calculated by using a distance-dependent dielectric constant ϵ = 15 × r, leading to the following equation for the interaction energy of the pseudo-atom pair i, j at distance r ij :

MAXDo and MAXDo2

E ij = ( B ij r 8 ij - C ij r 6 ij ) + q i × q j 15 × r ij (2.4)
where B ij and C ij are the repulsive and attractive LJ-type parameters respectively, and q i and q j are the charges of the pseudo-atoms i and j.

MAXDo can be used in both symmetric and asymmetric CCD. This docking tool was used to perform the CCD computations on two databases:

• Symmetric CCD on P-262 [START_REF] Dequeker | Decrypting protein surfaces by combining evolution, geometry, and molecular docking[END_REF][START_REF] Lagarde | Hidden partners: Using cross-docking calculations to predict binding sites for proteins with multiple interactions[END_REF] in which the starting positions of the ligand were filtered out using a cone from the JET [START_REF] Laine | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions[END_REF] predictions in order to limit the conformational space and reduce the computation time. This helps to better sample conformations with good energy.

• Asymmetric CCD on the Docking Benchmark version 2 (PPDBv2) [START_REF] Mintseris | Protein-protein docking benchmark 2.0: An update[END_REF][START_REF] Lopes | Protein-Protein Interactions in a Crowded Environment[END_REF][START_REF] Mintseris | Protein-protein docking benchmark 2.0: An update[END_REF].

Each docking conformation in these databases can be described using a set of Euler angles. These two databases are explained below (See sections 2.10).

High Ambiguity Driven biomolecular DOCKing (HADDOCK) [START_REF] Dominguez | HADDOCK: A Protein Protein Docking Approach Based on Biochemical or Biophysical Information[END_REF][START_REF] Van Zundert | The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes[END_REF] is a data-driven approach for the modeling of protein complex structures that benefits from experimental data such as NMR. The incorporation of even small amount of experimental data has been shown valuable to improve the performance and reach to a successful docking. Nonetheless, this tool can also be used in the ab initio operational mode for the docking of macromolecules in the absence of experimental data. HADDOCK supports rigid-body and flexible docking modes and a wide range of docking scenarios: refinement of bound protein complex, ab initio docking, and guided docking using the true interface. It is also available for the community as a web server.

GRAMM-X [START_REF] Tovchigrechko | GRAMM-X public web server for protein-protein docking[END_REF][START_REF] Tovchigrechko | Development and testing of an automated approach to protein docking[END_REF] is a web-based tool for protein-protein docking based on the fast Fourier transform (FFT) GRAMM docking approach [START_REF] Katchalski-Katzir | Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques[END_REF]. This new implementation benefits from a fine grid LJ potential in the global search FFT stage, followed by the refinement optimization in continuous coordinates and re-scoring with several knowledgebased potential terms.

CIPS [START_REF] Nadalin | Protein-protein interaction specificity is captured by contact preferences and interface composition[END_REF] is a state-of-the-art pair potential scoring method. CIPS was trained using 230 bound structures from the Docking Benchmark version 5 (PPDBv5) [START_REF] Vreven | Updates to the Integrated Protein-Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2[END_REF] (see section 3.10.3). CIPS is meant to be used as a high throughput technique able to largely filter out most of the non-native conformations with a low error rate. This will help when combined with our novel approach to re-rank docking conformations.

Ranking complex conformations using geometric deep learning

Recently, several methods leveraging deep learning have been proposed to discriminate near-native (acceptable or higher quality) from incorrect conformations [START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF][START_REF] Wang | Protein docking model evaluation by 3D deep convolutional neural networks[END_REF][START_REF] Wang | Protein Docking Model Evaluation by Graph Neural Networks[END_REF][START_REF] Cao | Energy-based Graph Convolutional Networks for Scoring Protein Docking Models[END_REF][START_REF] Eismann | Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes[END_REF]. They adopt a "global" perspective by assessing the quality of the full interface [START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF][START_REF] Wang | Protein docking model evaluation by 3D deep convolutional neural networks[END_REF][START_REF] Wang | Protein Docking Model Evaluation by Graph Neural Networks[END_REF] or even the complex as a whole [START_REF] Eismann | Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes[END_REF]. Standard 3D-convolutional neural networks (3D-CNN) have been applied to a voxelized 3D grid representing the entire interface [START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF][START_REF] Wang | Protein docking model evaluation by 3D deep convolutional neural networks[END_REF]. This representation has two limitations. First, when a fixed-size cube is used as grid, it might not cover very large and/or discontinuous interfaces. Using a very large cube to accommodate any interface is memory inefficient. Large cubes of fixed-size may also hinder the accuracy in case of small interfaces due to the information vanishing after a few layers of pooling. Second, since the 3D-CNN does not benefit from the rotational symmetry endowed to the Euclidean space, it is sensitive to the orientation of the candidate conformation and its output may change upon rotation of the input in an uncontrolled fashion.

Rotational data augmentation was used in [START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF] to limit this effect, but at the expense of dramatically increasing the computational cost for training the model. A more efficient solution is to use a SE(3)-equivariant CNN architecture instead of standard CNN. SE(3)equivariant CNN make use of spherical harmonics, a set of functions defined on the unit sphere, to guarantee that a rotation of the input results in the same rotation of the output [START_REF] Taco | Steerable CNNs[END_REF][START_REF] Weiler | 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data[END_REF][START_REF] Fuchs | SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks[END_REF][START_REF] Thomas | Tensor field networks: Rotation-and translation-equivariant neural networks for 3D point clouds[END_REF]. In [START_REF] Eismann | Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes[END_REF], SE(3)-equivariant hierarchical convolutions were applied to a point-cloud representation of the whole conformation. Finally, graph-based representations, as those used in GNN-DOVE [START_REF] Wang | Protein Docking Model Evaluation by Graph Neural Networks[END_REF] and DeepRank-GNN [START_REF] Réau | DeepRank-GNN: A Graph Neural Network Framework to Learn Patterns in Protein-Protein Interfaces[END_REF], are invariant to 3D rotations, but at the expense of losing information about the orientations of the atoms with respect to each other.

Alternatively, one can leverage the specific properties of proteins, whose building blocks (the amino acid residues) share the same chemical scaffold, to derive a SE(3)equivariant representation. In single protein structure prediction, Ornate [START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF], Sato-3DCNN [START_REF] Sato | Protein model accuracy estimation based on local structure quality assessment using 3D convolutional neural network[END_REF], and more recently AlphaFold2 [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF], benefit from these properties and make use of oriented local frames centered on each protein residue. Such representation circumvents the problem of 3D rotational symmetry without the need for rotational data augmentation nor for SE(3)-equivariant convolutional filters.

Fold-and-Dock vs Docking and Scoring

The classical docking and scoring paradigm has been recently challenged by the spectacular advances in protein structure prediction with AlphaFold2 [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF] and RosettaFold [5]. In particular, a handful of studies have showcased the potential of AF2, or a slightly modified version, in fold-and-dock strategies [START_REF] Humphreys | Computed structures of core eukaryotic protein complexes[END_REF][START_REF] Evans | Protein complex prediction with AlphaFold-Multimer[END_REF][START_REF] Mirdita | ColabFold -Making protein folding accessible to all[END_REF][START_REF] Bryant | Improved prediction of protein-protein interactions using AlphaFold2[END_REF]. Nevertheless, they have also emphasized clear limitations. AF2 performs poorly on some eukaryotic complexes, antibody-antigen complexes, and complexes displaying small interfaces [START_REF] Evans | Protein complex prediction with AlphaFold-Multimer[END_REF][START_REF] Bryant | Improved prediction of protein-protein interactions using AlphaFold2[END_REF]. In such cases, the output is limited to an unreliable conformation. By contrast, docking algorithms allow for the generation of conformational ensembles useful to guide the prediction of interfaces, to gain insight into protein sociability [87], and to discover alternative binding modes and new partners [START_REF] Dequeker | From complete cross-docking to partners identification and binding sites predictions[END_REF]. These observations motivate the development of accurate and efficient methods assessing the quality of docking conformations.

Prediction of structural arrangement of complexes using GDL

There exist other approaches that can be used to predict the structural configuration of the protein complex given the structure of partners using GDL. In MaSIF-search [START_REF] Gainza | Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning[END_REF] predicts the way two proteins interact by exploiting the descriptors extracted from overlapping patches on the protein surface. Its model is trained to minimize the distance between descriptor vectors of compatible patches while maximizing this distance between nonmatching ones. SASNet [START_REF] Townshend | End-to-End Learning on 3D Protein Structure for Interface Prediction[END_REF] is a classifier that identifies the residue contacts between two proteins upon binding. It represents the surface residues by 3D grids and applies 3D convolutional layers in Siamese architecture.

Estimation of binding affinity (∆G)

There are several methods to experimentally measure binding affinity between two proteins. According to [START_REF] Vangone | Contacts-based prediction of binding affinity in protein-protein complexes[END_REF], the most reliable methods are: Isothermal Titration Calorimetry (ITC), Surface Plasmon Resonance (SPR), Spectroscopy (SP), Fluorescence (FL), and Stopped-Flow Fluorimetry (SF). Despite good accuracy, the experimental measurement of binding affinity between two proteins is an expensive and hard process. Hence, several computational approaches are proposed to numerically measure the binding affinity by exploiting the properties of protein complexes. Fortunately the size of experimental databases of binding affinity is large enough to develop machine learning models and predict unknown binding affinity for a given interaction. These approaches analyzes input protein complexes from different perspectives and extract various descriptors.

In [START_REF] Duc Duy Nguyen | Generalized flexibility-rigidity index[END_REF] and [START_REF] Duc | Rigidity Strengthening: A Mechanism for Protein-Ligand Binding[END_REF] a rigidity strengthening concept is introduced as a mechanism for protein-ligand interactions. Beside free energy reduction, the authors claim that the flexibility and B-factor reduction (decrease of conformational entropy) and rigidity augmentation of protein is a mechanism in protein-ligand binding. They proposed multi-kernel rigidity-index based scoring functions, called RI-score, and developed a new binding affinity predictor that extracts rigidity indexes as descriptors and uses machine learning approaches such as random forest or gradient boosting [START_REF] Friedman | Greedy Function Approximation: A Gradient Boosting Machine[END_REF] to predict the binding affinity. In [START_REF] Duc | Algebraic graph learning of protein-ligand binding affinity[END_REF] the authors use algebraic graph learning to predict the binding affinity of proteinligand bind. They convert the interaction surface into a set of bipartite sub-graphs (for each pair of atom types) and extract algebraic graph descriptors by performing spectrum analysis. Given these descriptors they use ensemble learning techniques to predict the binding affinity. Even though these approaches are used for protein-ligand binding, we believe that they can also be applied for protein-protein interactions.

For protein-protein interactions, it has been shown that the number of contacts and the chemical composition of the non-interacting surface (NIS) play a major role. In [START_REF] Vangone | Contacts-based prediction of binding affinity in protein-protein complexes[END_REF], the authors achieve impressive prediction accuracy for binding affinity by coupling number of atom-atom contacts on the interaction site with charge distribution of residues on NIS. This is a machine learning-based approach and is called Prodigy. It achieves prediction performance of PCC=0.73 (RMSE = 1.89 kcal mol ) on a database of 81 protein complexes with reliable experimental methods.

Local Interaction Signal Analysis (LISA) is a state-of-the-art approach to predict binding affinity by studying local interaction signals between two proteins [START_REF] Raucci | Local Interaction Signal Analysis Predicts Protein-Protein Binding Affinity[END_REF]. By analyzing a protein structure, LISA extracts very fine descriptions from interaction surface and after applying two steps of feature selection it identifies most important descriptions and trains a support vector regression (SVR) model on them with radial kernel [START_REF] Drucker | Support Vector Regression Machines[END_REF]. LISA achieves PCC=0.81 (RMSE = 2.35 ± 0.38 kcal mol ) as prediction performance on a database of 125 protein complexes. LISA model is trained on a subset of this database selected in [START_REF] Panagiotis | A structure-based benchmark for protein-protein binding affinity[END_REF] (98 complexes that include 81 complexes used for Prodigy) and tested on a disjointed subset as a blind dataset proposed in [START_REF] Vreven | Updates to the Integrated Protein-Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2[END_REF] (27 complexes). For the train and blind test datasets it achieves the prediction performance of PCC=0.84 and PCC=0.67, respectively.

From protein docking to partner discrimination

The protein partner discrimination is one of the most challenging problems faced in the understanding of the cellular and biological systems. It can be derived from various sequence-based and structure-based representations of proteins, and recently is defined as a self-supervised (such as protein language models) or supervised learning problem given the advances in computational resources and advent of deep learning algorithms [START_REF] Chen | Multifaceted protein-protein interaction prediction based on Siamese residual RCNN[END_REF][START_REF] Bepler | Learning the protein language: Evolution, structure, and function[END_REF][START_REF] Sledzieski | D-SCRIPT translates genome to phenome with sequence-based, structure-aware, genome-scale predictions of protein-protein interactions[END_REF]. Some approaches rely on CCD and mainly on structure-based information for partner identification [START_REF] Lopes | Protein-Protein Interactions in a Crowded Environment[END_REF][START_REF] Dequeker | From complete cross-docking to partners identification and binding sites predictions[END_REF]87]. These approaches have three advantages: (i) They can be used for ab initio reconstruction of PPI networks with structural information at the residue resolution (ii) they are not limited by PPI experimental data, nor biased to specific target model organism, and do not suffer from highly heterogeneous, contradictory, biased, and noisy data, and (iii) their evaluation of conformational space determine the way two proteins interact with each other toward the prediction of protein complex structure. Following the CCD, a pool of conformations is generated for each pair of proteins P 1 and P 2 . The score (such as energy score) of each conformation represents the likelihood that P1 and P2 interact in that manner. To determine the likelihood of an interaction (the values of the interaction matrix in (Fig. 2.4)) [START_REF] Lopes | Protein-Protein Interactions in a Crowded Environment[END_REF] calculates a score called Interaction Index (II) for each pair of partners by minimizing the following formula over the conformational ensemble:

II P 1 ,P 2 = min(F IR P 1 × F IR P 2 × E M AXDo P 1 ,P 2 ) (2.5)
where II P 1 ,P 2 is the interaction score when P 1 is receptor and P 2 is ligand, F IR P 1 and F IR P 2 are the Fraction of Interface Residues (FIR) showing the overlap between the docked interface and the experimentally known interface or predicted by [START_REF] Laine | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions[END_REF], and

E M AXDo P 1 ,P 2
is the energy computed by the rigid-body docking algorithm MAXDo [START_REF] Sacquin-Mora | Identification of Protein Interaction Partners and Protein-Protein Interaction Sites[END_REF] to each conformation of P 1 and P 2 . Protein social behavior in the given set of proteins is essential for partner discrimination [START_REF] Lopes | Protein-Protein Interactions in a Crowded Environment[END_REF]87]. Therefore, in order to take into account how a protein behaves in the community of proteins we normalize II P 1 ,P 2 using the following equations: 

N II P
II ′ P 1 ,P 2 = II P 1 ,P 2 M P 1 × M P 2 M P i = 1 |Υ| × P j ∈Υ II P i ,P j + II P j ,P i (2.6) 
where N II P 1 ,P 2 is the Normalized Interaction Index between P 1 is receptor and P 2 and has a value between 0 (no interaction) and 1 (interacting partners), and Υ is the set of proteins.

Complete cross-docking is used to identify protein interfaces from propensity of random partners to interact with a unique surface regions of a protein [START_REF] Dequeker | Decrypting protein surfaces by combining evolution, geometry, and molecular docking[END_REF][START_REF] Vamparys | Great interactions: How binding incorrect partners can teach us about protein recognition and function[END_REF][START_REF] Martin | Arbitrary protein protein docking targets biologically relevant interfaces[END_REF][START_REF] Fernández-Recio | Identification of Protein-Protein Interaction Sites from Docking Energy Landscapes[END_REF][START_REF] Schweke | Protein Interaction Energy Landscapes are Shaped by Functional and also Non-functional Partners[END_REF][START_REF] Reille | Identification and visualization of protein binding regions with the ArDock server[END_REF] or to discriminate cognate partners from non-interactors by relying on docking energy function, its combination with amount of overlap between the docked interfaces and the experimentally known interfaces, or considering the global social behavior of the protein [87,[START_REF] Lopes | Protein-Protein Interactions in a Crowded Environment[END_REF][START_REF] Sacquin-Mora | Identification of Protein Interaction Partners and Protein-Protein Interaction Sites[END_REF][START_REF] Maheshwari | Across-proteome modeling of dimer structures for the bottom-up assembly of protein-protein interaction networks[END_REF][START_REF] Dequeker | From complete cross-docking to partners identification and binding sites predictions[END_REF].

Prediction of the effects of mutations

Prediction of the mutational landscape

Global Epistatic Model for predicting Mutational Effects (GEMME) [START_REF] Laine | GEMME: A Simple and Fast Global Epistatic Model Predicting Mutational Effects[END_REF] is an accurate and fast method to predict the full mutational landscape for all the positions of the given sequence using its evolutionary information (in terms of multiple sequence alignment). It generates the mutational outcomes for a wide range of protein families. Another approach for the prediction of the mutational landscape is Variant Effect Score Prediction without Alignments (VESPA) [START_REF] Marquet | Embeddings from protein language models predict conservation and variant effects[END_REF] that leverages on the pre-trained protein language model ProtTrans [START_REF] Elnaggar | ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing[END_REF] (see section 3.7.3).

Prediction of changes of binding affinity (∆∆G)

Thanks to the significant efforts for experimentally measuring the thermodynamic parameters for both wild-type and mutant proteins we have now access to valuable databases of binding affinity such as SKEMPI (Structural database of Kinetics and Energetics of Mutant Protein Interactions) version 1.0 and 2.0 [START_REF] Moal | SKEMPI: a Structural Kinetic and Energetic database of Mutant Protein Interactions and its use in empirical models[END_REF][START_REF] Jankauskaitė | SKEMPI 2.0: an updated benchmark of changes in protein-protein binding energy, kinetics and thermodynamics upon mutation[END_REF], AB-Bind [START_REF] Sirin | AB-Bind: Antibody binding mutational database for computational affinity predictions[END_REF], PROXiMATE [START_REF] Jemimah | PROXiMATE: a database of mutant protein-protein complex thermodynamics and kinetics[END_REF], dbMPIKT [START_REF] Liu | dbMPIKT: a database of kinetic and thermodynamic mutant protein interactions[END_REF] and the benchmark datasets derived from these databases (Table 2.2). This has led to a novel in-silico paradigm to model effects of missense mutations on protein interactions and the feasibility of large scale studies for numerically measurement of ∆G [START_REF] Raucci | Local Interaction Signal Analysis Predicts Protein-Protein Binding Affinity[END_REF] and ∆∆G upon mutation [START_REF] Xiong | BindProfX: Assessing Mutation-Induced Binding Affinity Change by Protein Interface Profiles with Pseudo-Counts[END_REF][START_REF] Geng | iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations[END_REF][START_REF] Douglas | mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures[END_REF][START_REF] Carlos | Ascher. mCSM-PPI2: predicting the effects of mutations on protein-protein interactions[END_REF][START_REF] Carlos | mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions[END_REF][START_REF] Zhou | Mutation effect estimation on protein-protein interactions using deep contextualized representation learning[END_REF][START_REF] Wang | A topology-based network tree for the prediction of protein-protein binding affinity changes following mutation[END_REF][START_REF] Liu | Pre-training of Graph Neural Network for Modeling Effects of Mutations on Protein-Protein Binding Affinity[END_REF]. The change of binding affinity is calculated as below:

∆∆G Bind = ∆G M U Bind -∆G W T Bind , (2.7) 
where ∆∆G Bind is the changes of binding affinity in the complex and ∆G W T Bind and ∆G M U Bind are the binding free energies of the wild-type (WT) and mutant (MU) complexes.

There are several computational approaches designed to numerically measure the impacts of mutations on the binding affinity (Table 2.3). These approaches can be broadly classified into two groups: (i) sequence-based methods that exploits the amino acid sequence information of proteins, and (ii) structure-based methods that seek to unravel the effect of mutations on protein complexes from ever growing structural information. Structure-based approaches can be further divided into two subgroups: physics-based and machine or deep learning-based.

One of the challenges faced by structure-based methods is to accurately model how the mutation impacts the structural properties of the complex. Indeed, very few mutant complex structures have been solved experimentally. Moreover, many mutations may alter the dynamics of the complex without affecting its global shape [START_REF] Karami | Infostery" analysis of short molecular dynamics simulations identifies highly sensitive residues and predicts deleterious mutations[END_REF], and the accurate estimation of thermodynamic quantities requires to reason over conformational ensembles rather than static structures. Molecular modeling methods such as Rosetta [START_REF] Kortemme | An Orientationdependent Hydrogen Bonding Potential Improves Prediction of Specificity and Structure for Proteins and Protein-Protein Complexes[END_REF], MODELLER [START_REF] Webb | Comparative Protein Structure Modeling Using MODELLER[END_REF], HADDOCK [START_REF] Dominguez | HADDOCK: A Protein Protein Docking Approach Based on Biochemical or Biophysical Information[END_REF] and others [START_REF] Xiang | Jackal: A protein structure modeling package[END_REF][START_REF] Zhu | Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction[END_REF], provide reliable solutions for predicting ensembles of 3D models for the wild type and the mutant, starting from a high-quality structure of the wild type.

One of the recent physics-based approaches is FLEX [START_REF] Barlow | Flex ddG: Rosetta Ensemble-Based Estimation of Changes in Protein-Protein Binding Affinity upon Mutation[END_REF], which is part of the Rosetta suite, samples conformational diversity using "backrub" [START_REF] Smith | Backrub-Like Backbone Simulation Recapitulates Natural Protein Conformational Variability and Improves Mutant Side-Chain Prediction[END_REF][START_REF] Kellogg | Role of conformational sampling in computing mutation-induced changes in protein structure and stability[END_REF] before estimating the free energies (in the Rosetta score units) of the complex and the unbound partners, in both wild-type and mutated forms. The binding free energy change induced by the mutation is then computed as

∆∆G Bind = (G M U Cplx -G M U P 1 -G M U P 2 ) -(G W T Cplx -G W T P 1 -G W T P 2 ), (2.8) 
where G f orm p is the free energy of p (the complex, or the interaction partner P 1 or P 2) in the form f (wild-type or mutated). Although this approach shows promising results, especially on small-to-large mutations, and requires a relatively small number (20-30) of conformations, it remains computationally expensive. In general, physics-based methods provide accurate mechanistic explanation but are not designed for handling large and diverse databases.

Machine and deep learning-based approaches include BindProfX [START_REF] Xiong | BindProfX: Assessing Mutation-Induced Binding Affinity Change by Protein Interface Profiles with Pseudo-Counts[END_REF], iSEE [START_REF] Geng | iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations[END_REF], mCSM-AB [START_REF] Douglas | mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures[END_REF], mCSM-PPI2 [START_REF] Carlos | Ascher. mCSM-PPI2: predicting the effects of mutations on protein-protein interactions[END_REF], mmCSM-PPI [START_REF] Carlos | mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions[END_REF], muPIPR [START_REF] Zhou | Mutation effect estimation on protein-protein interactions using deep contextualized representation learning[END_REF], TopNetTree [START_REF] Wang | A topology-based network tree for the prediction of protein-protein binding affinity changes following mutation[END_REF] and GraphPPI [START_REF] Liu | Pre-training of Graph Neural Network for Modeling Effects of Mutations on Protein-Protein Binding Affinity[END_REF]. iSEE extracts 31 sensitive descriptors including structure, evolution, and energy features of interaction surface and builds a robust machine learning model based on the random forest method. iSEE highlights the importance of the evolutionary conservations and the position-specific scoring matrix (PSSM) profiles for this task. The structure of mutant complex is estimated using the HADDOCK [START_REF] Dominguez | HADDOCK: A Protein Protein Docking Approach Based on Biochemical or Biophysical Information[END_REF]. The group of CSM approaches [START_REF] Douglas | mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures[END_REF][START_REF] Carlos | Ascher. mCSM-PPI2: predicting the effects of mutations on protein-protein interactions[END_REF][START_REF] Carlos | mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions[END_REF] relies on the local changes in the protein interaction and optimizes the previously proposed graph-based cut-off scanning matrix (CSM) method [START_REF] Douglas | mCSM: predicting the effects of mutations in proteins using graph-based signatures[END_REF]. They combine distance-specific atomic contacts of the wild-type structure and pharmacophore changes of the mutation site as features for prediction of ∆∆G upon mutation. TopNetTree integrates simplified topological representation of protein complexes and deep learning approaches (convolutional neural networks and gradientboosting trees) for the prediction of ∆∆G of PPI. Among the sequence-based approaches MuPIPR [START_REF] Zhou | Mutation effect estimation on protein-protein interactions using deep contextualized representation learning[END_REF] shows promising results. It is an extension of PIPR [START_REF] Chen | Multifaceted protein-protein interaction prediction based on Siamese residual RCNN[END_REF] and uses Bidirectional LSTM for the extraction of contextualized amino acid embedding vectors and prediction of changes of the binding affinity and buried surface area upon mutation. 

Protein language models

The applications of deep learning in the natural language processing inspired several approaches in the protein representation learning. This resulted into the development of powerful protein language models trained on huge corpora of protein sequences [START_REF] Bepler | Learning the protein language: Evolution, structure, and function[END_REF][START_REF] Elnaggar | ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing[END_REF][START_REF] Rives | Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences[END_REF][START_REF] Zhou | Mutation effect estimation on protein-protein interactions using deep contextualized representation learning[END_REF][START_REF] Vig | BERTology Meets Biology: Interpreting Attention in Protein Language Models[END_REF][START_REF] Chowdhury | Single-sequence protein structure prediction using language models from deep learning[END_REF] using deep learning self-supervised techniques including LSTM [START_REF] Hochreiter | Long Short-Term Memory[END_REF][START_REF] Graves | Long Short-Term Memory[END_REF] and Transformers [START_REF] Vaswani | Attention is All you Need[END_REF]. These pre-trained models can be used through transfer-learning for performing downstream tasks for protein property prediction problems using single protein sequences and without any multiple sequence alignment. We can mention partner discrimination by D-SCRIPT [START_REF] Sledzieski | D-SCRIPT translates genome to phenome with sequence-based, structure-aware, genome-scale predictions of protein-protein interactions[END_REF], protein structure prediction by ESMFold [START_REF] Lin | Language models of protein sequences at the scale of evolution enable accurate structure prediction[END_REF] and AminoBERT/RGN2 [START_REF] Chowdhury | Single-sequence protein structure prediction using language models from deep learning[END_REF], prediction of the mutational landscape by VESPA [START_REF] Marquet | Embeddings from protein language models predict conservation and variant effects[END_REF] and prediction of the changes of binding affinity upon mutation by MuPIPR [START_REF] Zhou | Mutation effect estimation on protein-protein interactions using deep contextualized representation learning[END_REF].

Evaluation metrics

In this work various evaluation metrics were used depending on the application. Below is the definition of these metrics:

Hit rate curves show the fraction of target complexes in the test set with at least one near-native conformation within the top ranked conformations:

H(r) = R success (r) R (2.9)
where R s uccess is the number of target complexes with at least one near-native conformation among top r rank and R is the total number of target complexes in the test set. Hit rate is used to evaluate the performance of a scoring approach in ranking candidate conformations.

Enrichment factor for an individual target complex is defined as the fraction of acceptable conformations found in the top ranked conformations.

E k (r) = n k (r) M k (2.10)
where E k (r) is the enrichment factor of target complex k for top r rank, n k (r) is number of near-native conformations found in top r rank for this complex, and M k is the total number of near-native conformations for this complex.

Like hit rate, the enrichment factor can be used to evaluate the performance of a scoring approach in ranking candidate conformations.

ROC and PR curves

In this work we use Receiver Operating Characteristic (ROC) and Precision-Recall (PR in case of imbalanced test set) curves to evaluate performance on the classification problems, such as classifying a conformation as acceptable (near-native) or incorrect. To draw ROC curves we first sort the samples based on their predicted scores and then we use two evaluation metrics: (i) true positive rate (TPR) (also known as recall or sensitivity) in Y-axis and (ii) false positive rate (FPR) (also known as fall-out) in X-axis.

Recall(x) = T P R(x) = T P (x) P F allout(x) = F P R(x) = F P (x) N (2.11)
where x is the threshold that classifies the samples into two classes (samples are predicted as positive and negative above and below threshold, respectively), T P is the number of positive samples correctly predicted as positive, P total number of positive samples, F P is the number of negative samples wrongly predicated as positive, N total number of negative samples. TPR or Recall determines that how many of the positive samples are correctly predicted (or recalled) as positive.

ROC curves are effective measurement of the quality of the classifier if the number of positive and negative samples are balanced in the test set. In case of imbalanced test set, it is recommended to use the PR curve. To draw PR curves we first sort the samples based on their predicted scores and then we use two evaluation metrics: (i) Precision (also known as positive predictive value) in Y-axis and (ii) Recall (also known as sensitivity) in X-axis. The Precision accounts the reliability of a classifier when it predicts a sample as positive. It is calculated as the fraction of the samples correctly predicted as positive against all the samples predicted as positive:

P recision(x) = T P (x) T P (x) + F P (x)
(2.12)

Mean Square Error (MSE) and Root Mean Square Error (RMSE) are used for the regression problems such as prediction of ∆∆G. They are calculated as below:

M SE = 1 n n i=1 Y i -Ŷi 2 (2.13)
where n is the number of samples, Y i is the real and Ŷi is the predicated values of the sample i.

Pearson Correlation Coefficient (PCC) is a measure of linear correlation between two sets of data.

P CC = n i=1 (x i -x)(y i -ȳ) n i=1 (x i -x) 2 n i=1 (y i -ȳ) 2 (2.14)
where x and y are paired sample from set of points {(x 1 , y 1 ), . . . , (x n , y n )}, n number of paired samples and x = 1 n n i=1 x i (same for ȳ). In this work we evaluate the performance of our approach by calculating PCC between the predicted and experimental ∆∆G.

Confusion matrix is used for the multi-class classification problems such as prediction of the regional structure of the amino acid.

Databases

PPDBv2 and P-262: docking conformations produced by MAXDo

The Docking Benchmark version 2 (PPDBv2) [START_REF] Mintseris | Protein-protein docking benchmark 2.0: An update[END_REF] and its updated versions serve as a prominent reference to study and evaluate protein complex structure prediction methods. It comprises 84 protein complexes with unbound forms of the partners. The complexes in this database can be dimeric or multimeric biological units. P-262 has 262 single-chain proteins with known partners. Both P-262 and PPDBv2 cover a large variety of functional classes, such as antibody-antigen, enzyme-regulator, and substrates-inhibitor [START_REF] Dequeker | Decrypting protein surfaces by combining evolution, geometry, and molecular docking[END_REF]. In this work we use the conformations generated from two CCD experiments that were performed on these databases in the LCQB [START_REF] Dequeker | Decrypting protein surfaces by combining evolution, geometry, and molecular docking[END_REF][START_REF] Lagarde | Hidden partners: Using cross-docking calculations to predict binding sites for proteins with multiple interactions[END_REF][START_REF] Lopes | Protein-Protein Interactions in a Crowded Environment[END_REF] using the rigid-body coarse-grained docking tool MAXDo [START_REF] Sacquin-Mora | Identification of Protein Interaction Partners and Protein-Protein Interaction Sites[END_REF].

PPDBv5: docking conformations produced by HADDOCK

The Docking Benchmark version 5 (PPDBv5) [START_REF] Vreven | Updates to the Integrated Protein-Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2[END_REF] is an updated version of PPDBv2 and comprises 231 dimer and multimer non-redundant target complexes from multiple functional classes, including antibody-antigen and enzyme-inhibitor, and with the corresponding unbound protein structures. For each target complex, 25 300 docking models were generated using the integrative modelling platform HADDOCK [START_REF] Dominguez | HADDOCK: A Protein Protein Docking Approach Based on Biochemical or Biophysical Information[END_REF] in three stages:

(1) rigid-body docking, (2) semi-flexible refinement by simulated annealing in torsion angle space, and (3) final refinement by short molecular dynamics in water [START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF]. The resulting set of conformations was reduced to avoid redundancy.

Dockground: docking conformations produced by Gramm-X

This database has 61 target complexes with on average 108 candidate conformations per target generated by the Fast Fourier Transform-based method GRAMM-X [START_REF] Tovchigrechko | Development and testing of an automated approach to protein docking[END_REF]. 

SKEMPI V 2.0

In this work we use SKEMPI V 2.0 [START_REF] Jankauskaitė | SKEMPI 2.0: an updated benchmark of changes in protein-protein binding energy, kinetics and thermodynamics upon mutation[END_REF], the most complete source for experimentally measured binding affinities of wild-type and mutated protein complexes. It includes the smaller databases AB-Bind, PROXiMATE, and dbMPIKT [START_REF] Geng | Finding the G spot: Are predictors of binding affinity changes upon mutations in protein-protein interactions ready for it[END_REF]. In total, it reports measurements for over 7,000 single and multiple point mutations coming from 345 protein complexes, including antibody-antigen (AB/AG) and protease-inhibitor (Pr/PI) assemblies, and assemblies formed between major histocompatibility complex proteins and T-cell receptors (pMHC-TCR). For each entry, corresponding to a single or multiple mutation, the database provides the PDB structure of the wild-type complex, the names of the partners, the binding affinities of the wild-type and mutated complexes, some related experimental measurements, details about the experimental method and conditions, and the structural region of the mutation site(s), either INT, SUR, SUP, COR or RIM [START_REF] Levy | A Simple Definition of Structural Regions in Proteins and Its Use in Analyzing Interface Evolution[END_REF]. The mutations happening in the interface (SUP, COR, RIM), in particular in the core (COR), induce bigger changes in binding affinity than the ones located in the non-interacting surface (SUR) or the interior (INT) of the protein (Fig. 2.5). Overall, we observed a tendency for the mutations to be deleterious rather than beneficial. The most impactful single-point mutation is located in the complex 1CHO with ∆∆G = 8.802 kcal/mol. This rich body of annotations helps us to analyze our results and identify the weak and strong points of our approach by evaluating its performance with respect to different classifications.

Part II LEVELNET 3.1 Background: PPI-related resources PPI-related resources compile experimental and computational data and provide userinteractive visualization. A handful of them build upon the 3D structural evidence contained in the PDB, e.g. Interactome3D [START_REF] Mosca | Interactome3D: adding structural details to protein networks[END_REF], PPI3D [START_REF] Dapkūnas | The PPI3D web server for searching, analyzing and modeling protein-protein interactions in the context of 3D structures[END_REF], and 3did [START_REF] Mosca | 3did: a catalog of domain-based interactions of known three-dimensional structure[END_REF]. Moreover, to cope with the biases, noise and uncertainty inherent to PPI-related data [START_REF] Hart | How complete are current yeast and human protein-interaction networks[END_REF][START_REF] Kotlyar | IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species[END_REF], a lot of effort has been invested to improve the reliability and interpretability of the inferred PPI networks, by integrating other types of information (e.g. cellular localisation), by organizing the PPIs based on their biological context, and by computing confidence scores. These characteristics are implemented in IID [START_REF] Kotlyar | IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species[END_REF], STRING [START_REF] Szklarczyk | The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible[END_REF][START_REF] Szklarczyk | STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[END_REF][START_REF] Szklarczyk | The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[END_REF], and the human-focused base HIPPIE [3].

The goal

Here, we report on LEVELNET, a versatile computational framework designed to integrate and explore PPI networks coming from multiple sources of evidence. Starting from a set of protein chains whose 3D structures are available in the PDB, LEVELNET builds a grid of networks for each source (Fig. 3.1AB) representing different "views" on the interactions. It allows for clustering groups of similar proteins (nodes in the network) by exploiting global sequence identities between proteins and inferring interactions (edges in the network) through homology-transfer or confidence scores (Fig. 3.1B).

Networks coming from different sources can be integrated in an aggregated graph (Fig. 3.1CDG) where an interaction between two chains is represented as a multi-edge between two nodes, where the multiplicity comes from the different sources of evidence. Also, each edge is assigned a weight reflecting either a property from the source or the reliability of the evidence. This resulting information-rich framework helps to reason about interactions and to extract various biological information.

LEVELNET considers both interactions and non-interactions and represents them in different ways, thereby facilitating the identification of potential inconsistencies between different PPI sources. More specifically, it exploits inter-chain physical contacts extracted from the PDB, annotated interactions from HIPPIE and non-interactions from Negatome [START_REF] Smialowski | The Negatome database: a reference set of non-interacting protein pairs[END_REF], and optionally user-defined interactions and/or non-interactions (Fig. 3.1C). It extends the set of direct physical interactions observed in the PDB among the input proteins by transferring knowledge from complex structures involving the same or very similar proteins. This choice is motivated by the observation that functional interactions are conserved across closely related homologs [106]. Moreover, works by us and others showed the biological pertinence and usefulness of accounting for homology-transferred interactions when evaluating protein-protein/DNA/RNA interface prediction methods [START_REF] Dequeker | Decrypting protein surfaces by combining evolution, geometry, and molecular docking[END_REF][START_REF] Yan | A comprehensive comparative review of sequence-based predictors of DNA-and RNA-binding residues[END_REF].

LEVELNET can be used to gain some visual interactive insight into a broad range of PPI-related questions, such as to what extent a signaling pathway or biological process has been structurally covered experimentally. Or where the interactions at play in a pathway take place in the cell and which proteins establish connections between the different cellular compartments. Or which of the PPIs predicted by an ab initio approach are supported by structural-and homology-based evidence. We illustrate these applications on the photosynthesis process, the Wnt signaling pathway, and a couple of established protein docking benchmarks. We show a few more usage cases, such as identifying crossinteractions among a set of complex structures or creating a set of interacting protein pairs devoid of such cross-interactions. Furthermore, to ease visualization, LEVELNET spatially arranges the nodes according to the topology of the network. On top of the grid-based visualisation, exploration and comparison of PPI networks, LEVELNET offers the possibility to retrieve detailed information, at the amino acid residue level, about the surface usage of a given protein in the PDB.

LEVELNET is freely available to the community at http://www.lcqb.upmc.fr/levelnet/. Inferred by homology (type 2)

HIPPIE interaction

User-defined interaction Negatome non-interaction Inferred by homology (type 3)

Exploration Of Nodes and

Edges in network grid

Comparison of Multiple Networks

Observed Figure 3.1: PPI network representation and analysis in LEVELNET. A. The input is a list of proteins (or protein chains) optionally accompanied by some pre-defined relationships (user-defined annotations). B. A grid of networks computed by LEVELNET from the PDB as source. The user has access to the layers by modulating the sequence identity on the "node reduction" and "edge inference" options and can visualize different networks of the grid. Similar grids are available for HIPPIE, Negatome, and user-defined sources (see Methods). C. Multi-layered networks from different sources share the same nodes (black dots) or super-nodes (sets of black dots) and correspond to a column of networks in the grid (see blue background in B). D. Selection and comparison of layers from different sources. E. Selection of a node-centered subnetwork in subnetwork analysis (the central node is shown by *). F. Selection of connected components in subnetwork analysis. G. Aggregated representation of the subnetwork in EF. H. Schematic representation of the inference of interactions from the PDB. A, B, and C are clusters at some level of sequence identity, containing chains P and P ′ , Q and Q ′ , T , T ′ and T ′′ , respectively. Chains P from cluster A and Q from cluster B are in physical contact (blue edge). This interaction leads to inferring some interactions with and among their homologs (pink edges). When two chains from the same cluster are in direct contact, here T and T ′ from cluster C, self-interactions are also induced by homology.

PDB, HIPPIE and Negatome databases

PDB (June 2020 release) entries were downloaded from the FTP archive rsync.wwpdb.org::ftp/data/biounit. Entries with more than 100 chains or with a resolution lower than 5Å were discarded. Protein chains smaller than 20 residues or with more than 20% of unknown residues were also discarded. The HIPPIE database (v2.2) was downloaded from http://cbdm-01.zdv.uni-mainz.de/ mschaefer/hippie/download.php and Negatome database (v2.0) from http://mips.helmholtz-muenchen.de/proj/ppi/negatome/.

Pre-computed databases derived from the PDB

To infer interactions from the PDB, LEVELNET relies on two pre-computed databases. We describe here the memory efficient computational procedure we implemented to build these databases.

Database of interfaces

We processed all biological assemblies (from X-ray crystallography and cryogenic electron microscopy) or NMR models from the PDB using the interface detection algorithm INT-Builder [START_REF] Dequeker | INTerface Builder: A Fast Protein-Protein Interface Reconstruction Tool[END_REF]. Two residues were considered as in contact if the distance between any of their atoms was smaller than 5Å. We call the resulting database of interfaces interfaceDB.

Database of PPI networks

We pre-computed a grid of 6 × 6 = 36 PPI networks based on sequence identities between PDB chains (Figure 3.1B). We considered either all PDB chains individually (Figure 3.1B, see label observed ) as nodes, or groups of chains defined at 5 levels of sequence identity, namely 30, 50, 70, 90 and 95% as super-nodes. To do this, we exploited the information contained in interfaceDB and the clusters of similar protein chains computed by MMSeqs2 [START_REF] Steinegger | MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets[END_REF] and available from the PDB. Formally, if

∃P ∈ A∃Q ∈ B.P ̸ = Q ∧ |{(r, s)|r ∈ P, s ∈ Q, d(r, s) < D}| > M
then the following edges will be inferred in LEVELNET (Fig. 3.1H):

• P ←→ Q (type 1: double-arrow blue edge)

• for all P ′ ∈ A and Q ′ ∈ B.P ̸ = P ′ and Q ̸ = Q ′ -Q ′ -→ P (type 2: pink directed edge) -P ′ -→ Q (type 2: pink directed edge) -P ′ --Q ′ (type 3: pink undirected edge) where A and B are two clusters of chains in a certain percentage of sequence identity (Fig. 3.1H), d(r, s) defines the distance between two residues r and s, D is the distance threshold set to 5Å by default, M is the minimum number of interface residues set to 5 for both proteins by default. Note that this formalism is also suitable for inferring interactions within a given cluster (i.e. when A = B, see Fig. 3.1H, bottom panel).

In practice, our algorithm first loops over all pairs of chains in all PDB complex structures to verify, for each pair, the existence of a contact in interfaceDB and infer a chain-chain interaction. Such an interaction is of type 1. Then, it loops only over the identified directly interacting chain pairs (P, Q) and determine sets of chain-cluster and cluster-cluster interactions, for each level of sequence identity considered:

1. foreach pair (P, Q) do 2.

A ← find_cluster(P ) 3.

B ← find_cluster(Q) 4.

P .set_cluster(A) 5.

Q.set_cluster(B) 6.

A.add_neighbour(B) 7.

B.add_neighbour(A) 8.

P .add_target(B) 9.

Q.add_target(A) 10. end On lines 2 and 3, the function f ind_cluster determines to which clusters chains P and Q belong at a certain percentage of sequence identity. Lines 4 and 5 set the cluster identifiers as the chains' attributes. On lines 6 and 7, the function add_neighbour sets a cluster-cluster interaction. This interaction implies that all members of A will be linked to all members of B by interactions that are at least of type 3. On lines 8 and 9, the function add_target sets two chain-cluster interactions. This operation implies that P (resp. Q) will be linked to all chains from B (resp. A) by interactions of at least type 2. We call the resulting database of chain-chain, chain-cluster and cluster-cluster interactions PDBinteractionDB.

Description of LEVELNET functionalities

Operational modes and inputs

LEVELNET operates in two modes. In the query-versus-query mode, it allows interactively exploring and comparing the interactions among a set of input proteins or proteins chains, designated by their PDB identifiers. The users can additionally provide an input matrix specifying the existence or non-existence and the strength or confidence of some relationships between them (Fig. 3.1A). The matrix should be given as a list of triplets: protein1, protein2, and associated score of interaction (i.e., a value between 0 and 1; if a score is missing, the value 1 is taken by default). In the query-versus-all mode, LEVELNET allows retrieving residue-level information about the interactions established between a set of input protein chains, designated by their PDB identifiers, or their homologs, and all other protein chains in the PDB.

Query-versus-query mode

In the query-versus-query mode, given a set of proteins, LEVELNET assigns a grid of networks to each source of evidence. In case of the PDB source, this grid comprises 36 PPI networks as described above but restricted to the input proteins.

In case of HIPPIE and Negatome databases and the user-defined input matrix, LEV-ELNET creates a grid of 6 × K networks based on five levels of sequence identity for the nodes (30, 50, 70, 90 and 95%) and the "observed" one, and on K running on all confidence score values for the edges.

We define six types of edges:

• type 1 ←→ (double-arrow blue edge), observed interaction, i.e. the two chains are in physical contact in a known complex PDB structure,

• type 2 -→ (pink directed edge), interaction inferred by homology where one of the chains is in physical contact with a homolog of the other chain in a known complex PDB structure,

• type 3 --(pink undirected edge), interaction inferred by homology where some homologs of the two chains are in physical contact in a known complex PDB structure,

• type 4 --(purple undirected edge), HIPPIE annotated interaction,

• type 5 ■-■ (black blocked edge), NEGATOME annotated non-interaction,

• type 6 --(green undirected edge), user-defined interaction.

Given an input set of protein chains, LEVELNET will interrogate PDBinteractionDB to create type 1, 2 and 3 edges. For each chain pair in the set, if there is a chain-chain interaction, LEVELNET creates a type 1 edge. If not, then if there is a chain-cluster interaction it creates a type 2 edge, otherwise if there is a cluster-cluster interaction, it creates a type 3 edge. LEVELNET will also interrogate HIPPIE and Negatome to infer type 4 and 5 edges. Finally, if the user specified some relationships between the input chains, LEVELNET will integrate them in the output multi-layered network as type 6 edges. Moreover, LEVELNET annotates some of the edges with weights representing either the level of sequence identity at which the corresponding interaction was inferred (type 2 or 3), a confidence level (type 4), or any type of user-defined annotations (type 6). Each network layer comprises the set of edges inferred from a single source and with a weight higher than a certain threshold (Fig. 3

.1B).

Network exploration: The users can navigate from one layer to another within the grid associated with each source and also across the grids. Within a grid, they can modulate both the number of nodes and the number of edges. Upon relaxing the node sequence identity threshold, the nodes representing similar chains will be progressively merged into super-nodes and thus the network will simplify. Upon relaxing the edge sequence identity or confidence threshold, new edges will appear and thus the network will become denser.

Subnetwork comparison: LEVELNET allows for comparing several layers, focusing on a selected subset of input proteins (Fig. 3.1C). The selection can be:

• node-centered, upon clicking on a chosen node. LEVELNET then highlights its homologs in green and the chains belonging to the same complex in yellow (Fig.

3.1D

). This functionality helps, for instance, to detect homo-oligomers.

• at the level of a connected component, to focus on a signaling pathway for instance (Fig. 3.1E).

Once the users have selected a subset of nodes, they can create a multi-edge graph by superimposing several layers and directly compare the corresponding interactions (Fig.

3.1G

). This analysis also allows the users to discover inconsistencies among various resources of PPI.

Query-versus-all mode

Beyond allowing for the identification, visualisation and comparison of PPIs, LEVELNET provides the users with a residue-level description of protein interaction surfaces. In this operational mode, the web server outputs the ensemble of interacting patches, each query chain and its homologs (at a certain level of sequence identity) together with all chains in the PDB that are physical partners in some complex. The interacting patches corresponding to the physical interactions are mapped onto the input query chain and merged to provide a label, either interacting or non-interacting, to each surface residue of the query protein.

Applications

Benchmark databases used in the applications

We used three benchmark databases to showcase the applications of LEVELNET. These databases are the Docking Benchmark ZDock version 5.5 (ZDockv5) [START_REF] Vreven | Updates to the Integrated Protein-Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2[END_REF] and version 2.0 (ZDockv2) [START_REF] Mintseris | Protein-protein docking benchmark 2.0: An update[END_REF] and DockGround (DG4) [START_REF] Petras | Dockground: A comprehensive data resource for modeling of protein complexes[END_REF]. We used all the single-chain proteins of these databases. For ZDockv2, we chose a subset of 88 single-chain proteins (out of 168 proteins) for our evaluation purposes (see Results) and called it ZDockv2_s88.

Exploring and discovering the interactions underlying photosynthesis

As a first case study, we considered photosynthesis in the green alga Chlamydomonas reinhardtii. The structural information available for this process is very partial, and only a few protein complexes are resolved in the PDB (see Appendix A and Methods).

LEVELNET computed a PPI network comprising 1 430 pairwise interactions between 108 structurally resolved protein chains (Fig. 3.2). The network is characterized by three large connected components that are very easy to delineate thanks to LEVELNET's ability to spatially group inter-connected nodes (Fig. 3.2A, see encircled regions). The connected components correspond to the photosystem light harvesting complexes (PLHC) of types I and II, respectively, and the Ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBiSCo) complex. Upon merging the nodes sharing more than 95% sequence identity, the RuBiSCo component reduces to only two super-nodes corresponding to the small (S, in red) and large (L, in blue) subunits of this key enzyme of the Calvin-Benson-Bassham cycle (Fig. 3.2B). LEVELNET's highlighting of the nodes belonging to the same PDB complex allows understanding who is connected to whom in the Cytohrome b6f enzyme (Fig. 3.2A, see nodes in green and yellow, and (Fig. 3.2C). Overlaying the information coming from the PDB and the Negatome allows spotting inconsistencies between these databases (Fig. 3.2C).

Setting the sequence identity threshold at 70% for node reduction and 95% for edge inference from the PDB leads to a network comprised of 96 pairwise interactions between 53 nodes (Fig. 3.2D). Relaxing the threshold to 30% for edge inference densifies the PLHC-I subnetwok, and reveals a few new self-interactions and also cross-interaction between PLHC-I and PLHC-II (Fig. 3.2E). In particular, three interactions are inferred between the LHCII antenna (comprised of LHCII-1.3, LHCII-3 and LHCII-4 and represented by the node Q93WE0) from the PLHC-II subnetwork and three proteins from the PLHC-I subnetwork, namely the P700 chlorophyll a apoproteins PSAA and PSAB and the Chlorophyll a-b binding protein LHCA2. This inference is consistent with the fact that LHCII acts as an antenna for both photosystems I and II [START_REF] Volha | Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants[END_REF][START_REF] Jansson | A nomenclature for the genes encoding the chlorophylla/b-binding proteins of higher plants[END_REF] and in perfect agreement with a series of recent PDB structures of the supercomplex PSI-LHCI-LHCII from Chlamydomonas reinhardtii, released after June 2020 and thus not included in the present analysis [START_REF] Pan | Structural basis of LhcbM5-mediated state transitions in green algae[END_REF]. A. Connected components identified in the PPI network computed using the PDB as the source database. Each node represents a protein chain. The blue edges represent observed interactions while the pink ones represent homology-transferred interactions at more than 95% sequence identity. The connected components correspond to the RuBiSCo complex, and the photosystem light harvesting complexes of types I and II. This network also includes other protein chains forming small subnetworks. B. Node reduction on RuBiSCo: merging the nodes with more than 95% sequence identity results in two super-nodes corresponding to the small and large subunits of the RuBiSCo complex 3D structure, in red and blue respectively. C. Subnetwork comparison of two layers, corresponding to the interactions observed in the PDB (blue) and the non-interactions from the Negatome (in black) for the Cytochrome b6f enzyme. Two views of the Cytochrome 3D structure. D-E. Interaction networks after merging nodes sharing more than 70% sequence identity: edge inference by 95% (D) and 30% (E) sequence identity.

Localizing PPIs in the Wnt signaling pathway

Next, we focused on the canonical Wnt signaling pathway that regulates gene transcription by passing signals from the cell surface receptors to the nucleus [2]. We used LEVELNET to visualise the structurally determined PPIs involved in this pathway in the context of their subcellular localisation. As input, we considered the list of 85 PDB entries reported in [2] and defined a custom adjacency matrix linking the protein chains localized in the same cellular compartments. LEVELNET built a network comprising 235 nodes linked by 2734 edges representing binary interactions observed in the PDB between the input chains or their homologs at more than 30% sequence identity. Based on the input custom matrix, LEVELNET automatically determined some spatial arrangement for the nodes (Fig. A.1). In the resulting network, one can clearly identify groups of proteins sharing the same location and functional role, and distinguish the interactions taking place within each group from those taking place between the groups. Upon merging the nodes sharing more than 30% sequence identity, the size of the network reduces dramatically down to less than 50 nodes. This non-redundant version allows reasoning at the protein level, toward identifying the parts of the pathway that are described by structural information and the parts where such information is missing (Fig. A.1, compare the inset with Figure 1 from [2]). Several complexes in the membrane have been described, for instance between Dickkopfs (DKKs), Kremen (KREM1) and LRP6, between R-spondins (RSPOs) and LGR family receptors, and between Wnt proteins (WNTs) and Frizzled receptors (FZDs) (Fig. A.1, grey panel in inset, from left to right). By contrast, no structural information is available for the complex between Wnt and its negative regulators Wnt inhibitory factor and secreted-Frizzled related proteins (Fig. A.1, red panel in the inset, see WIF1 and SFRP3 with self-edges only). β-catenin (CTNB1) plays a central role in the pathway, at the interface between the nucleus (blue panel) and the cytoplasm (green panel). In particular, in the cytoplasm (green panel), its interactions with axin (AXN) and Adenomatous Polyposis Coli (APC) contributing to the formation of the degradosome were structurally characterized. So were its interactions with the scaffold protein BCL9/legless, Groucho/TLE, and β-catenin binding proteins/domains (CNBP1, TCF3-CBD), taking place within the Wnt enhanceosome located in the nucleus (blue panel).

Comparing predicted versus homology-transferred PPIs

We used LEVELNET to compare the PPIs predicted by a complete cross-docking experiment [START_REF] Lopes | Protein-Protein Interactions in a Crowded Environment[END_REF] with the structurally characterized PPIs available in the PDB (Fig. 3.3 and A.5). We considered an ensemble of about 4 000 putative protein pairs coming from the ZDockv2_s88 (see Materials and Methods). The cross-docking experiment yielded high interaction strengths for 151 pairs (N II >= 0.7, see green curve in Fig. 3.3A). While only 12% of those are supported by the complex structures annotated in the benchmark (Observed, dark blue curve), this proportion increases up to 20% when considering all the complexes in the PDB formed between the chains of the benchmark set or their close homologs (at >90% sequence identity, petrol curve).

Beyond providing global statistics, LEVELNET facilitates such comparison at the level of specific subnetworks. As an example, we consider a PPI subnetwork centred on the GTP-binding nuclear protein RAN (Fig. 3.3B). The information LEVELNET gathered from the PDB describes interactions between RAN (1A2K:C, and also 1IBR:A, 1K5D:A and 1I2M:A) and 5 partners, namely the nuclear transport factor 2 (1A2K:A and 1A2K:B), the Ran-specific GTPase-activating protein (1K5D:B), the Ran-binding protein 1 (1K5D:C), the Importin beta-1 subunit (1IBR:B) and the regulator of chromosome condensation RCC1 (1I2M:B) (Fig. 3.3B, see the blue and pink dotted edges between 1A2K:C and the grey or yellow nodes). Three of these interactions are correctly predicted by the cross-docking (green dotted edges). Moreover, both the PDB and the cross-docking experiment supports the formation of RAN homodimers (see the dotted edges between 1A2K:C and the green nodes). As expected, the docking calculations are sensitive to conformational changes, as illustrated by the interaction between RAN and the Importin beta-1 subunit: while the interaction is predicted when docking 1IBR:A against 1IBR:B, it is not predicted when docking 1A2K:C against 1IBR:B. The structure 1A2K:C differs from 1IBR:A by a completely different orientation for a 10-amino acid long loop and an extra C-terminal helix. Finally, one of the predicted interactions is in conflict with the Negatome layer (black edge, chains BC of 1K5D). 

Decrypting and customising benchmarks

LEVELNET can be used to complement the information provided in a protein benchmark set. For instance, while each protein from the ZDockv5 benchmark [START_REF] Vreven | Updates to the Integrated Protein-Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2[END_REF] has only one annotated cognate partner, LEVELNET identifies up to 200 partners by homology-transfer, at >70% sequence identity, from the PDB (Figures 3.4 and A.2AC). The nodes with the highest degrees correspond to antigen-binding fragments (FAB) (Fig. 3.4A). This result reflects the very high sequence identity shared by FABs recognizing different antigens. Indeed, only a few highly variable residues on antigen-binding site forming the paratope are responsible for the specific recognition of the antigen (Fig. 3.4A, red sticks). In such cases, transferring interactions by homology may not be valid, even at 95% sequence identity. Leaving out this functional class, we still observe many homology-transferred interactions, with up to 40 partners for one single protein (Fig. This type of analyses helps to get a broader view of a set of proteins than the annotations at hand permit, and also emphasizes the complexity underlying the behaviour of a protein within a community.

Beyond characterizing the properties of existing benchmark sets, LEVELNET can be effectively used to create new benchmarks with desired properties. To showcase this functionality, we selected a set of 500 high-quality hetero-trimeric structures from the PDB (see Methods) and gave it as input to LEVELNET. We focused on the network layer defined from the PDB at 70% sequence identity. It comprises 1206 chains and is organized into 124 connected components. Upon redundancy reduction, the network resumed to 112 connected components, among which 45 were made of only 3 nodes (represented by 3 master chains). This analysis shows that it is straightforward to compile new benchmarks with LEVELNET for assessing a specific PPI-related task, like predicting how 3 proteins assemble together. Our procedure guarantees that no cross-interaction in the set exists (based on the available structural information) and that the proteins differ by more than 30% from each other. The full list of chains from the set is given in the Appendix A. The PPI network of this benchmark is shown in 

Discovery of self-and cross-interactions

The variation of the topology of the networks with respect to the interactions between each layer and corresponding benchmark network is shown in Fig. A.3. Self-and crossinteractions are considered separately and the difference is calculated as the percentage of the maximum possible connections: n and n 2 (fully connected graph), respectively. The only difference between physical contact and benchmark networks is the self-interactions. These self-interactions are caused by the identical copies of the same chain found in a biological assembly that are in contact. For both benchmarks, more than half of the nodes can interact with themselves at sequence identity above 95%. In case of cross-interactions, ZDockv5 with AA and AS included shows higher differences for both unbound and bound annotations compared to other benchmarks. As a further comparison we studied the pairwise differences in the number of interactions for layers of LEVELNET before and after redundancy reduction (Fig. A.4).

Interacting patches on the Glucocorticoid ligand-binding domain

We applied Query-versus-All functionality to the glucocorticoid receptor ligand-binding domain (Figures 3.5A). Starting from the input query chain 1NHZ:A, LEVELNET retrieved 61 interacting patches at 90% sequence identity. While the initial PDB complex structure 1NHZ displays an interacting patch of 33 residues (out of 239 in total), LEVEL-NET identified four times more [START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF] interacting residues by considering the whole PDB. This dramatic increase reflects the multiple binding modes with which this protein can self-assemble (Figures 3.5B).

A B 

L E V E L N E T Structural evidence - - - ✓ ✓ ✓ Non-interactions - - - - - ✓ User-defined annotations - - - - - ✓ Physical Contact - - - - ✓ ✓ Confidence score ✓ - ✓ - - ✓ Multi-layered - - - - - ✓ Multi-edge ✓ - - - - ✓ Homology-Transfer ✓ ✓ - - ✓ ✓
Only HIPPIE focus exclusively on Human and experimental PPI data.

Comparison with other PPI resources

LEVELNET allows the interactive and in-depth exploration of the interactions and sequence similarities shared among a set of proteins of interest. Compared to other web services dedicated to PPIs, it features a unique combination of structural information, homology-transfer and annotations for interactions and non-interactions (Table 3.1). It offers the possibility to compare this information with user-defined annotations that can represent predicted interactions, co-localisation or any other type of relationship. It permits to dynamically visualise the evolution of a PPI network upon changing the edge confidence level. Compared to Interactome3D, LEVELNET has the advantage of providing PPI confidence scores and to handle homology-transferred interactions. Compared to PPI3D, it has the advantage of featuring an interactive visualisation of PPI networks. Moreover, it processes user queries very rapidly by pre-building the interaction and physical contact databases. PPI3D has a longer response time due to PSI-BLAST queries performed for inferring interactions by homology.

LEVELNET web interface

Here I present a snapshot of LEVELNET web interface (Fig. 3.6). In this snapshop we have the observed and homology-transfered interactions with > 95% sequence identity of single-chain proteins of the ZDockv5 in the unbound annotation. The user can highlight and isolate the nodes of the connected protein chains by searching their codes (Fig. 3.6D) (the blue connected component subnetwork) as well as follow the trace of homologous chains by clicking on each chain (the node-centered subnetwork) (Fig. 3.6A). The essential information of each protein chain will be displayed in a pop-up window by hovering mouse on its node. For a better visualisation the user can control the attractive/repulsive force between the nodes to discriminate clusters of densely connected proteins and also change the edge length, width, strength and node sizes to regulate the dynamic and floating property of the network (Fig. 3.6C). The user can visualize another layer of LEVELNET by changing the source, modulating the confidence score, or choosing the non-redundant representation (Fig. 3.6B). LEVELNET does not require any plugins; and is compatible with all web browsers. User can download, export, or share the PPI network. LEVELNET is accessible on smartphones and tablets to facilitate the collaboration between researchers.

LEVELNET implementation details

To generate the PDB interaction database, we developed a pipeline in Python that processes PDB protein complexes, their interfaces, and chain clusters by sequence identity. We created an interactive environment based on recent advances in web development including HTML5 and related technologies such as D3, JavaScript, Vue, and SVG. HTML5, CSS3 and Vue are used for the front-end and provide a stylish and user-friendly interactive interface. Data visualization is performed using D3 [START_REF] Bostock | D³ Data-Driven Documents[END_REF] and SVG. Codes developed in JavaScript and Python process databases and user queries. The whole pipeline is optimized to respond to queries rapidly.

Conclusion

LEVELNET is a valuable asset for the community to explore protein interactions. It is useful for the biologists interested in the physical contacts of a particular protein or a set of proteins as well as for those who develop and assess computational predictive approaches for interface, partner and complex predictions. It provides a convenient mean to account for different types of relationships between proteins, e.g. functional annotations, cell colocalization, spatiotemporal proteomics, or co-occurrences in publications, and investigate how the latter are correlated to physical interactions. We performed all the analyses reported here based on the June 2020 release of the PDB. Nevertheless, we have been updating LEVELNET based on more recent releases and will continue to maintain the pre-computed databases up-to-date. Future developments will concern the integration of other databases, be they computational or experimental. In particular, we will upgrade LEVELNET with information coming from reliable predictions of protein complexes using AlphaFold, RosettaFold or methods inspired by the latter. We expect the body of these predictions to massively increase in the coming years. Another direction will be to allow for merging and selecting nodes based on annotations from Uniprot, SCOP or CATH. LEVELNET could be improved by implementing the possibility to deal with multi-chain proteins and protein-nucleic acid interactions. Finally, we plan to increase the richness of the information provided by LEVELNET, e.g. by describing at the residue-level the binding sites and the binding-associated conformational changes, and giving access to properties such as binding affinities and the effect of mutations over the network.

Part III Deep Local Analysis

The question

Protein-protein interactions play a central role in virtually all biological processes. Reliably predicting who interacts with whom in the cell and in what manner would have tremendous implications for bioengineering and medicine. Hence, a lot of effort has been put into the development of methods for simulating protein-protein docking [START_REF] Lensink | Docking and scoring protein complexes: CAPRI 3rd Edition[END_REF][START_REF] Lensink | Modeling protein-protein, protein-peptide, and protein-oligosaccharide complexes: CAPRI 7th edition[END_REF]. While highly efficient algorithms can exhaustively sample the space of complex candidate conformations [START_REF] Ritchie | Ultra-fast FFT protein docking on graphics processors[END_REF], correctly evaluating and ranking these conformations remains challenging.

Breaking down the complexity of protein-protein interactions

In this work, we investigate the possibility of discriminating near-native complex conformations from incorrect ones by exploiting and combining two kinds of information: (i) local 3D-geometrical and physico-chemical environments around interfacial residues and (ii) regions of the interface with different solvent accessibility. We represent the interface by the unique and well-determined set of locally oriented residue-centred cubes lying between the interacting proteins (Fig. 4.1A). The cubes are oriented by defining local frames based on the common chemical scaffold of amino acid residues in proteins. A cube encapsulates the local environment of the residue, i.e. the local geometry of the residue together with its neighboring atoms. No evolutionary information associated to residues is considered. Our motivations for such a representation are multiple:

1. The number of known protein-protein complex structures is fairly limited. Breaking down these structures into interfacial residue-centred local environments allows training on a much larger set of input samples (cubes) compared to the number of interfaces.

2. Our representation guarantees that the output is invariant to the global orientation of the input conformation while fully accounting for the relative orientation of a residue with respect to its neighbours.

3. We wanted to investigate the minimal unit of information at the interface which is necessary to predict the quality of an interaction. By relying on minimal units, i.e. residue-centred cubes, one can also evaluate interfaces between three or more proteins.

4. The set of cubes belonging to the interface can be organized in three subsets depending on the solvent accessibility of the interfacial residues. The cubes within each subset are independent from each other and from the geometry of the surface. We wanted to study the contribution of these three subsets in ranking docking conformations.

We propose Deep Local Analysis (DLA)-Ranker, a deep learning-based approach ranking candidate complex conformations by applying 3D-CNN to a set of locally oriented cubes representing the residues of the protein complex interface. DLA-Ranker is freely available to the community at http://gitlab.lcqb.upmc.fr/dlaranker/DLA-Ranker.git.

Methods

Protein-protein interface representation

Our goal is to design a classifier that can effectively distinguish near-native protein candidate conformations from incorrect ones by learning from a local representation of the structure of the interface. Such representation should account for the local geometrical arrangement of interfacial atoms in the Euclidean space and their physico-chemical properties.

DLA-Ranker takes as input a cubic volumetric map centred and oriented on each interfacial residue (Fig. 4.1A). Any residue displaying a change in solvent accessibility upon complex formation is considered as part of the interface. We used NACCESS [START_REF] Hubbard | [END_REF] with a probe radius of 1.4 Å to compute residue solvent accessibility. To build the map, we adapted the method proposed in [START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF]. The atomic coordinates of the input conformation are first transformed to a density function. The density d at a point ⃗ v is computed as

d(⃗ v) = i≤Natoms exp - ⃗ v -⃗ a i σ 2 t i , (4.1) 
where ⃗ a i is the position of the ith atom, σ is the width of the Gaussian kernel and is set to 1Å, and t i is a vector of dimension 169 encoding some characteristics of the protein atoms. Namely, the first 167 dimensions correspond to the atom types that can be found in amino acids (without the hydrogens) [START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF], and the 2 other dimensions correspond to the two partners, the receptor and the ligand. Then, the density is projected on a 3D grid comprising 24 × 24 × 24 voxels of side 0.8Å. For the nth residue, the (⃗ x, ⃗ y, ⃗ z) directions and the origin of the map are defined by the position of the atom N n , and the directions of C n-1 and Cα n with respect to N n [START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF]. Thanks to this local frame definition, the map not only is invariant to the candidate conformation initial orientation but also provides information about the atoms and residues relative orientations.

Depending on the location of the residues at the interface, their geometrical and physico-chemical environments are expected to be very different. For instance, the map computed for a residue deeply buried in the interface will be much more dense than that computed for a partially solvent-exposed residue at the rim. This motivated us to explicitly give some information to the network about the location of the input residue at the interface. To do so, we classified the interfacial residues in three structure classes, the Support (S), the Core (C), and the Rim (R) (Fig. 4.1A), as defined in [START_REF] Levy | A Simple Definition of Structural Regions in Proteins and Its Use in Analyzing Interface Evolution[END_REF]. We one-hot encode the input residue class in a vector u and append it to the embedding computed by DLA-Ranker (see below and Fig. 4.1B-concatenation layer). The SCR classification previously proved useful for the prediction and analysis of protein-protein and protein-DNA interfaces [START_REF] Laine | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions[END_REF][START_REF] Raucci | Local Interaction Signal Analysis Predicts Protein-Protein Binding Affinity[END_REF][START_REF] Corsi | Multiple protein-DNA interfaces unravelled by evolutionary information, physico-chemical and geometrical properties[END_REF].

DLA-Ranker architecture

The DLA-Ranker architecture comprises a projector, three 3D convolutional layers, a max pooling layer, and three fully-connected layers (Fig. 4.1B). The projector maps the feature vector of each voxel into a vector of size 20. Each convolutional layer is followed by a batch normalization layer. The max pooling layer exploits scale separability by preserving essential information of the input during coarsening of the underlying grid. The one-hot encoded vector of the residue structure class (u) is concatenated to the embedding derived from the convolutional layers (i.e. output of the flatten layer). To avoid overfitting, we used 40%, 20%, and 10% dropout regularization on the input, first and second layers of the fully-connected subnetwork, respectively. The last activation function (Sigmoid) outputs a score comprised between 0 and 1 for each input interfacial residue. The loss function is the binary cross-entropy measuring the difference between the probability distribution of the predicted output and the given label (0 or 1). The objective of training is to minimize this loss with respect to the trainable parameters: reaching higher output scores for the residues belonging to a near-native conformation and lower output scores for the residues of incorrect conformations. We used the Adam optimiser with a learning rate of 0.001 in TensorFlow [START_REF] Abadi | TensorFlow: A System for Large-Scale Machine Learning[END_REF].

Aggregation of individual residue-based scores

To evaluate a candidate conformation, DLA-Ranker applies global averaging on the individual residue scores over the interface. The predicted quality Q of conformation C is expressed as

Q C = 1 |I C | r k ∈I C S k , (4.2) 
where I C is the ensemble of interfacial residues and S k is the score predicted by the network for the input 3D map centred on residue r k .

To investigate whether we could improve on this global averaging baseline, we considered two approaches. First, we proposed two additional evaluation schemes based on an average restricted to a selection of subsets of residues at the interface: (i) residues of S and C regions and (ii) residues of C and R regions (Fig. 4.1C). Second, we applied different weights to the residues comprising the interface by using graph-based attention [START_REF] Veličković | Graph Attention Networks[END_REF] (Fig. 

Datasets

To train and test DLA-Ranker and compare its performance with different approaches we used three databases of docking conformations.

CCD4PPI: Combination of P-262 and PPDBv2. We compiled our primary database, which we call CCD4PPI, from two complete cross-docking experiments performed on the datasets P-262 [START_REF] Dequeker | Decrypting protein surfaces by combining evolution, geometry, and molecular docking[END_REF][START_REF] Lagarde | Hidden partners: Using cross-docking calculations to predict binding sites for proteins with multiple interactions[END_REF] and PPDBv2 [START_REF] Lopes | Protein-Protein Interactions in a Crowded Environment[END_REF][START_REF] Mintseris | Protein-protein docking benchmark 2.0: An update[END_REF] using the rigid-body coarse-grained docking tool MAXDo [START_REF] Sacquin-Mora | Identification of Protein Interaction Partners and Protein-Protein Interaction Sites[END_REF]. Both P-262 (262 proteins) and PPDBv2 (168 proteins) cover a large variety of functional classes, such as antibody-antigen, enzyme-regulator, and substrates-inhibitor [START_REF] Dequeker | Decrypting protein surfaces by combining evolution, geometry, and molecular docking[END_REF]. For P-262, we efficiently screened 27 millions docking conformations with INTBuilder [START_REF] Dequeker | INTerface Builder: A Fast Protein-Protein Interface Reconstruction Tool[END_REF] and the rigidRMSD library [START_REF] Neveu | RapidRMSD: rapid determination of RMSDs corresponding to motions of flexible molecules[END_REF], and systematically evaluated their quality with respect to the experimentally resolved complex structures available in the Protein Data Bank [START_REF] Berman | The Protein Data Bank[END_REF]. For PPDBv2, we obtained the list of acceptable and incorrect conformations from [START_REF] Nadalin | Protein-protein interaction specificity is captured by contact preferences and interface composition[END_REF]. Among all candidate conformations, we selected 3 902 acceptable or higher quality conformations (L-RMSD < 10.0 Å and I-RMSD < 4.0 Å) and 6 038 incorrect conformations coming from 312 protein pairs for training (Fig. B.2). For about half of these pairs, the docking was performed using the unbound forms of the proteins or their close homologs (≥ 70% sequence identity). As test set, we chose 20 protein pairs not seen during training (Table B.1). For both train and test sets, we reconstructed the high resolution docking conformations with INTBuilder from the Euler angles provided by MAXDo.

BM5 database from PPDBv5. We considered a total of 449 158 candidate conformations coming from 142 dimer target complexes (antibody-antigen complexes were excluded from the analysis) from the conformations generated by HADDOCK on PPDBv5. They were generated, selected, and labelled by Renaud and co-authors using the protocol reported in [START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF]. We call this database BM5. The conformations with I-RMSD ≤ 4.0 Å were labelled as near-native. On average, each target complex has ≈230 near-native conformations and ≈2 932 incorrect ones. Dockground database. We downloaded the Dockground database 1.0 [START_REF] Liu | Dockground protein-protein docking decoy set[END_REF][START_REF] Petras | Dockground: A comprehensive data resource for modeling of protein complexes[END_REF] from http://dockground.compbio.ku.edu/downloads/unbound/decoy/decoys1.0.zip. For comparison purpose we followed the experimental setups of GNN-DOVE [START_REF] Wang | Protein Docking Model Evaluation by Graph Neural Networks[END_REF]: in summary, 59 target complexes were chosen and divided into 4 non-redundant groups with respect to the sequence identity (less than 30%) and TM-score [START_REF] Zhang | TM-align: a protein structure alignment algorithm based on the TM-score[END_REF] (less than 0.5). On average each of these complexes has 9.83 acceptable conformations (L-RMSD ≤ 5.0 Å) and 98.5 incorrect ones.

Training protocol

We used CCD4PPI to optimize DLA-Ranker hyperparameters. In total, we explored about 10 different architectures by varying the number of convolutional layers, the number of neurons in the fully connected layers, and the dropout rates. We chose the best performing architecture and used it for producing our final results and performing the comparisons with the other methods. We trained several independent models of DLA-Ranker using each of the three considered databases. Using CCD4PPI, we trained 5 models over 20 epochs through a 5-fold cross-validation procedure on the 312 protein pairs (Fig. B.3). For comparison purposes, we reproduced the same training protocols as those reported for DeepRank [START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF] and GNN-DOVE [START_REF] Wang | Protein Docking Model Evaluation by Graph Neural Networks[END_REF] on BM5 and Dockground, respectively. Specifically, to compare DLA-Ranker with DeepRank, we performed 10-fold cross-validation by splitting the set of 142 dimers selected from BM5 in 114 for training, 14 for validation, and 14 for testing. In total 140 target complexes were used in the test sets (complexes BAAD and 3F1P were not included in the testing). In all three databases the incorrect conformations are much more abundant than the near-native ones. We should stress that, contrary to what was done in [START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF], we did not augment the input conformational ensemble by random rotations since DLA-Ranker is not sensitive to the orientation of the input conformation. To compare DLA-Ranker with GNN-DOVE, we trained 4 models following 4-fold cross validation. For each model we used 3 non-redundant groups defined from Dockground for training and validation (45 or 44 complexes) and the remaining one for testing (15 or 14 complexes). To compensate the effect of imbalanced training sets and elevate the importance of errors made on near-native poses compared to incorrect ones, we assigned higher weights to the loss of the acceptable class. We used class weights (0.823, 1.273), (0.54, 6.75), and (0.071, 0.929) for CCD4PPI, Dockground, and BM5, respectively.

Evaluation metrics

We used hit rate and enrichment factor to evaluate the performance of DLA-Ranker in ranking candidate conformations. Hit rate curves show the fraction of target complexes in the test set with at least one near-native conformation within the top ranked conformations. Enrichment factor for an individual target complex is defined as the fraction of acceptable conformations found in the top ranked conformations. In case of CCD4PPI we ranked the conformations using a consensus of the 5 trained models. To do so, we first ordered the conformations according to their scores computed from each trained model. Then, we discretised the ranks into 6 bins, namely labels top1, top5, top10, top50, top100, and top200. This way we could represent each conformation as a sequence of ranking labels predicted by 5 models. Finally we "lexicographically" ordered these labels and reported the hit rate of each individual complex separately.

Results

Identifying near-native conformations

We first assessed DLA-Ranker's ability to correctly rank candidate conformations. We selected the 1 000 conformations best scored by MAXDo for each of the 20 test protein pairs from CCD4PPI and we re-ranked them according to the Q scores predicted by DLA-Ranker. MAXDo evaluates conformations using a physics-based scoring function very similar to that of ATTRACT [START_REF] Zacharias | Protein-protein docking with a reduced protein model accounting for side-chain flexibility[END_REF]. For most of the pairs, DLA-Ranker assigned high Q scores to the near-native conformations and discriminated them from the incorrect ones (Fig. 4.2A and Fig. B.10). The top-ranked conformation was near-native in two thirds of the protein pairs (Fig. 4.2A). DLA-Ranker achieved better performance than MAXDo in 11 cases. A particularly difficult case for both MAXDo and DLA-Ranker is the pair 1rkc_A:1ydi_A. Combining DLA-Ranker with the pair potential CIPS [START_REF] Nadalin | Protein-protein interaction specificity is captured by contact preferences and interface composition[END_REF] allowed enriching the top 200 subset for that pair in near-native conformations, and overall improved the results (Fig. 4.2B). CIPS also improves the performance for the pair 2c9w_A:2jz3_C by surpassing MAXDo and enriching top5. Overall, DLA-Ranker performance do not depend on the extent of conformational change between the docked protein forms and the bound forms (Fig. 4.2A-B, label colors). For instance, one of the cases where it performs very well, the 1ku6_B homodimer, displays a substantial rearrangement (Fig. 4

.2F).

We further investigated the behaviour of DLA-Ranker for the different sub-regions of the interface, namely the support, core, and rim on two pairs of the database, 1yy9_D:1ck4_B and 1ku6_B homodimer. For both pairs, we observed a wide range of predicted scores within each sub-region (Fig. 4.2C-D). The score distributions for the three sub-regions often display similar shapes. Nevertheless, it may happen that DLA-Ranker performs significantly differently from one sub-region to the other, as exemplified by the pair 1yy9_D:1ck4_B. In this case, the scores predicted for the residues lying in the support of the interface are not discriminative enough. Averaging the residues' individual scores over the three interface sub-regions allows correctly classifying the conformations. 

Comparison with other scoring functions

We compared DLA-Ranker with two deep learning-based scoring functions, namely Deep-Rank [START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF] and GNN-DOVE [START_REF] Wang | Protein Docking Model Evaluation by Graph Neural Networks[END_REF]. We used all interfacial residues for training, and assessed different sub-region combinations (three averaging schemes: SCR, SC, and CR) for testing.

DeepRank applies standard 3D convolutions to a unique voxelised grid representing the interface. On a collection of 10 test sets of 14 target complexes from BM5 (see Methods), DLA-Ranker significantly outperforms DeepRank (Fig. 4.3 and B.5). It yields a higher enrichment for both the "raw" conformations produced by the rigid-body docking (Fig. 4.3A) and the semi-flexibly refined conformations (Fig. The results differ from one fold to another and this observation may be explained by the small size of the database. It contains about 5 000 conformations versus approximately 10 000 for CCD4PPI and 450 000 for BM5 (see Methods). In the second fold, we observe a lower performance for DLA-Ranker, due to the presence of an outlier complex, namely the ribonuclease inhibitor complex (1DFJ_E_I). The structure of this complex displays several loops on the interface (Fig. 

Influence of the interface description

We investigated whether DLA-Ranker could still discriminate near-native from incorrect conformations with a partial description of the interfaces. To do so, we re-trained DLA-Ranker on CCD4PPI using two different subsets of the interfacial residues: (i) the support and core (SC), or (ii) the core and rim (CR). In the test phase, we aggregated the predicted residue-based scores over the same combination as that used during training (Fig.

4.1C).

The results obtained on the 20 test protein pairs from CCD4PPI shows that DLA-Ranker captures sufficient information with a partial description of the interface (Fig. ) by the models trained using all interfacial residues. The results are consistent with those on CCD4PPI, with the combination of core and rim yielding a higher performance than the combination of support and core.

We also checked whether we could exploit the topological information of the interface to aggregate the learned residue-based representations. We extracted the embeddings learned by DLA-Ranker on Dockground and used them as node features in a graph representation of the interface (Fig. 

Comparison with ClusPro-AF2

We compared our approach to the recently proposed ClusPro-AF2 protocol [START_REF] Ghani | Improved Docking of Protein Models by a Combination of Alphafold2 and ClusPro[END_REF], where AF2 [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF] is used to refine and complement the candidate conformations generated and selected by the docking tool ClusPro [START_REF] Kozakov | The ClusPro web server for protein-protein docking[END_REF]. ClusPro-AF2's overall performance on the test set of 140 dimers from BM5 are similar to those we obtained by applying DLA-Ranker on the candidate conformations produced by HADDOCK (Fig. 4.3C). Moreover, using only the residues located in the core and the rim of the interfaces for DLA-Ranker evaluation increases the number of complexes for which a near-native conformation is found in the top 5 and 10 (Fig. 4.3C, see CR). Considering top 10 ranking, there are 19 complexes for which ClusPro-AF2 predicts acceptable or higher quality conformations while DLA-Ranker cannot find any acceptable one. Five of these complexes (2OT3, 2I9B, 1ATN, 1RKE, 1R8S) have very few acceptable conformations in the ensemble of poses generated by HADDOCK. Reciprocally, there are 23 complexes that are well predicted by DLA-Ranker and are particularly challenging cases for ClusPro-AF2. These include complexes between proteins coming from a pathogen and its host (1EFN, 4H03, 2A9K, 1AK4, 1MAH), complexes from the immune system (1GHQ, 1SBB, 1KXQ, 4M76, 2I25), enzyme-inhibitor complexes (1PXV, 1JTD, 2ABZ), and regulatory complexes (1GLA, 1B6C). While ClusPro-AF2 produces only conformations of very low quality for these complexes, DLA-Ranker is able to identify at least one near-native conformation for 10 of these complexes at top 1, 3 in the top 5, and 2 complexes in the top 10.

Unraveling alternative interfaces

Finally, we explored the potential of DLA-Ranker to discover alternative interfaces. As a case study, we considered the SQD1 enzyme which can self-assemble into homodimers (1qrr) and homotetramers (1i24). We docked the protein (chain 1qrr_A) against itself using ATTRACT and evaluated all interfacial residues detected in the 3 000 best candidate conformations with DLA-Ranker. In Fig. 4.4A, we show the propensity of these residues to have a score higher than 0.5 according to DLA-Ranker. We can clearly identify three patches of residues which appear in acceptable interfaces (Fig. 4.4A, see residues in red). The first one corresponds to the homodimeric interface found in 1qrr (Fig. 4.4A, the other copy of the protein, i.e. the partner is in green). The second one corresponds to another interface found in the homotetramer 1i24 (Fig. 4.4A, partner in violet). Finally, the third one is supported by the homotetramer 1wvg, whose chains are homologous to the SQD1 enzyme (E-value=8.58e-4, identified using the PPI3D web server [START_REF] Dapkūnas | The PPI3D web server for searching, analyzing and modeling protein-protein interactions in the context of 3D structures[END_REF]) (Fig. 4.4A, partner in gold). Moreover, the third interface is evolutionary conserved and predicted as an interacting region by JET2Viewer [START_REF] Hugues Ripoche | JET2 Viewer: a database of predicted multiple, possibly overlapping, protein-protein interaction sites for PDB structures[END_REF] (Fig. B.11B). Altogether, this analysis reveals that DLA-Ranker can be useful to detect multiple binding modes by evaluating individual residues across conformational ensembles. By comparison, looking only at the propensity of each residue to be located at the interface in the candidate conformations [START_REF] Dequeker | Decrypting protein surfaces by combining evolution, geometry, and molecular docking[END_REF][START_REF] Fernández-Recio | Identification of Protein-Protein Interaction Sites from Docking Energy Landscapes[END_REF], without accounting for DLA-Ranker scores, one can clearly identify the first interface but ) is colored according to the number of conformations (over a total of 3 000) where each residue was found at the interface and was assigned a score higher than 0.5 by DLA-Ranker. Three red patches appear on the surface corresponding to: (i) interface 1 (partner in green, PDB codes: 1qrr, 1i24) (ii) interface 2 (partner in violet, PDB code: 1i24), and (iii) interface 3 (partner in gold, PDB code: 1wvg). B. The Normalized Interface Propensity (NIP) shows the tendency of a residue to be part of an interaction site and computed by considering the fraction of docking poses where a residue is found at the interface [START_REF] Dequeker | Decrypting protein surfaces by combining evolution, geometry, and molecular docking[END_REF][START_REF] Fernández-Recio | Identification of Protein-Protein Interaction Sites from Docking Energy Landscapes[END_REF]. It is plotted on 1qrr_A with a color scale going from red (high) to blue (low propensity), and highlights interface 1 but not interfaces 2 and 3, unlike DLA-Ranker.

not the two others (Fig. 

Implementation, runtime and memory usage

The calculations were performed on two GPU clusters: (i) workstations with GPU: NVIDIA GeForce RTX 3090 (24 GB RAM) and CPU: AMD Ryzen 9 5950X and (ii) workstations with GPU: V100 (16 or 32 GB RAM). For a conformation the generation of the interface cubes and their evaluation take on average 1.46 and 0.23 seconds, respectively.

Discussion

We have shown that it is possible to evaluate complex candidate conformations by learning local 3D atomic arrangements at the interface. We have developed a deep learningbased approach explicitly accounting for the relative orientations of the protein residues while being insensitive to the global orientation of the protein. The method achieves performance better or similar to the state of the art. We obtained the best performance by averaging the per-residue scores predicted over the core and the rim of the interface. DLA-Ranker can be applied to conformational ensembles generated by docking to identify nearnative conformations and to discover alternative interfaces. It can be combined with more classical scoring functions. It can also be used to evaluate complexes of any size and is not limited to binary complexes. We envision many applications for the local-environmentbased approach of DLA-Ranker, including the identification of physiological interfaces, the discovery of small subsets of cubes dedicated to functional tasks, the construction of phenotypic mutational landscapes, and the prediction of binding affinity.

Related works

Several methods exploit signals encoded in protein sequences [START_REF] Xiong | BindProfX: Assessing Mutation-Induced Binding Affinity Change by Protein Interface Profiles with Pseudo-Counts[END_REF][START_REF] Geng | iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations[END_REF][START_REF] Zhou | Mutation effect estimation on protein-protein interactions using deep contextualized representation learning[END_REF] to estimate changes of the binding affinity. For instance, iSEE [START_REF] Geng | iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations[END_REF] and BindProfX [START_REF] Xiong | BindProfX: Assessing Mutation-Induced Binding Affinity Change by Protein Interface Profiles with Pseudo-Counts[END_REF] use evolutionary profiles built from the multiple sequence alignments of homologous proteins for the former, and analogous protein-protein interactions for the latter. Evolutionary conservation has also been extensively and successfully used for assessing the functional impact of mutations on monomeric proteins [START_REF] Laine | GEMME: A Simple and Fast Global Epistatic Model Predicting Mutational Effects[END_REF][START_REF] Ng | SIFT: predicting amino acid changes that affect protein function[END_REF][START_REF] Sim | SIFT web server: predicting effects of amino acid substitutions on proteins[END_REF][START_REF] Marquet | Embeddings from protein language models predict conservation and variant effects[END_REF]. Complementary to sequencebased signals, a number of structural properties have been identified as important in determining the strength of an interaction [START_REF] Raucci | Local Interaction Signal Analysis Predicts Protein-Protein Binding Affinity[END_REF][START_REF] Xiong | BindProfX: Assessing Mutation-Induced Binding Affinity Change by Protein Interface Profiles with Pseudo-Counts[END_REF][START_REF] Geng | iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations[END_REF][START_REF] Douglas | mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures[END_REF][START_REF] Carlos | Ascher. mCSM-PPI2: predicting the effects of mutations on protein-protein interactions[END_REF][START_REF] Carlos | mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions[END_REF][START_REF] Wang | A topology-based network tree for the prediction of protein-protein binding affinity changes following mutation[END_REF][START_REF] Liu | Pre-training of Graph Neural Network for Modeling Effects of Mutations on Protein-Protein Binding Affinity[END_REF]. In particular, descriptors of the 3D geometry of contact distribution at protein-protein interfaces have proven useful for accurately predicting binding affinity [START_REF] Raucci | Local Interaction Signal Analysis Predicts Protein-Protein Binding Affinity[END_REF]. Moreover, the impact of a mutation on binding affinity was found correlated with atomic-distance patterns surrounding the residue subject to the mutation [START_REF] Douglas | mCSM: predicting the effects of mutations in proteins using graph-based signatures[END_REF]. This observation has led to the development of a suite of tools predicting ∆∆G bind by combining atomic distances observed in neighbourhoods of different sizes extracted from the wild-type complex structure with mutation-specific pharmacophore changes [START_REF] Douglas | mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures[END_REF][START_REF] Carlos | Ascher. mCSM-PPI2: predicting the effects of mutations on protein-protein interactions[END_REF][START_REF] Carlos | mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions[END_REF]. The success of these tools emphasises the importance of accounting for local geometrical and physico-chemical environments around the mutation site.

In recent years, some approaches have been leveraging powerful deep learning techniques to extract abstract representations of the data. For instance, TopNetTree [START_REF] Wang | A topology-based network tree for the prediction of protein-protein binding affinity changes following mutation[END_REF] takes advantage of convolutional neural networks (CNN) and gradient-boosting trees (GBTs). The proposed architecture operates on a set of pre-computed features representing geometric, topological and contact patterns within the neighbourhood of the mutation site. GraphPPI [START_REF] Liu | Pre-training of Graph Neural Network for Modeling Effects of Mutations on Protein-Protein Binding Affinity[END_REF] further obviates the need for feature hand-crafting and engineering by using a graph neural network (GNN) that automatically extracts graphical features from the input 3D structure. These features are then fed to a GBT algorithm. The GNN is pre-trained on a large body of protein complex structures through self-supervised learning. The strategy is to learn the fundamental properties and mechanisms of proteinprotein interactions by reconstructing corrupted protein complex 3D structures, and then transfer this knowledge to the prediction of ∆∆G Bind . In a similar way, MuPIPR [START_REF] Zhou | Mutation effect estimation on protein-protein interactions using deep contextualized representation learning[END_REF], a purely sequence-based method, heavily relies on amino acid representations, or embeddings, computed by a language model pre-trained with self-supervision on a large collection of protein sequences. Self-supervised representation learning has proven successful for predicting various protein structural and functional properties in the context of protein language models [START_REF] Rives | Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences[END_REF][START_REF] Elnaggar | ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing[END_REF][START_REF] Bepler | Learning the protein language: Evolution, structure, and function[END_REF], for fixed-backbone protein design [4,[START_REF] Hsu | Learning inverse folding from millions of predicted structures[END_REF][START_REF] Dauparas | Robust deep learning based protein sequence design using ProteinMPNN[END_REF], and for protein stability predictions [START_REF] Lasse | Rapid protein stability prediction using deep learning representations[END_REF][START_REF] Zhang | Protein Representation Learning by Geometric Structure Pretraining[END_REF]. Furthermore, several approaches extract the representative features from protein structures. In particular, 3D-CNN or spherical convolutions applied to a local structure of the protein have been shown useful to study the local environment and the propensity of amino acids based on its environment [4,[START_REF] Weiler | 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data[END_REF][START_REF] Boomsma | Spherical convolutions and their application in molecular modelling[END_REF][START_REF] Torng | 3D deep convolutional neural networks for amino acid environment similarity analysis[END_REF].

Structure-based general-purpose model

Here, we report on a novel and efficient deep learning framework, called Deep Local Analysis (DLA), for PPI interface analysis including prediction of the mutation-induced changes in binding affinity from local 3D environments around the mutation site. It builds on previous works by us and others [START_REF] Yasser | Deep Local Analysis evaluates protein docking conformations with locally oriented cubes[END_REF][START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF] applying 3D convolutions to locally oriented residue-centred cubes encapsulating atomic-resolution geometrical and physico-chemical information. This framework proved successful for assessing the quality of monomeric 3D models [START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF] and for discriminating acceptable from incorrect protein complex conformations [START_REF] Yasser | Deep Local Analysis evaluates protein docking conformations with locally oriented cubes[END_REF]. In the present work, we expanded it to develop a protein structure-based general-purpose pre-trained model that generates representations of protein-protein interfaces relevant to various downstream tasks (Fig. 5.1B). We call this pre-trained model ssDLA. We exploited a large body of structural data coming from about 5,000 experimentally resolved complex structures available in the Protein Data Bank [START_REF] Berman | The Protein Data Bank[END_REF]. We used self-supervised representation learning to determine the environments biochemically suitable for each amino acid or group of amino acids sharing similar physico-chemical and geometrical properties. We evaluated the quality of the embedding vectors computed by the pre-trained ssDLA using different downstream tasks. We further fine-tuned the model with a Siamese architecture to predict ∆∆G bind values (Fig. 5.1C). We refer to this predictor as DLA-Mutation. While the ssDLA model was pre-trained on entire proteinprotein interfaces, we considered only one cube, centred around the mutation site, during fine-tuning and at inference time of DLA-Mutation. This design choice was intended to enhance the efficiency of the fine-tuning step, given the relatively small amount of available ∆∆G bind labels, and to allow for large-scale predictions. We integrated additional features, such as evolutionary conservation [START_REF] Engelen | Joint Evolutionary Trees: A Large-Scale Method To Predict Protein Interfaces Based on Sequence Sampling[END_REF][START_REF] Laine | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions[END_REF], evolutionary-inferred mutational effect estimated for single proteins [START_REF] Laine | GEMME: A Simple and Fast Global Epistatic Model Predicting Mutational Effects[END_REF], and explicit information about the geometry of the interface [START_REF] Levy | A Simple Definition of Structural Regions in Proteins and Its Use in Analyzing Interface Evolution[END_REF], and assessed their contribution to the accuracy of the predictions. We also explored the influence of conformational sampling.

DLA and its applications (ssDLA and DLA-Mutation) are freely available to the community at http://gitlab.lcqb.upmc.fr/dla/DLA.git.

Methods

Protein-protein interface representation

We represent a protein-protein interface as a set of locally oriented cubic volumetric maps centered around each interfacial residue (Fig. 5.1A). We define interfacial residues as those displaying a change in solvent accessibility between the free (isolated) protein and the complex [START_REF] Levy | A Simple Definition of Structural Regions in Proteins and Its Use in Analyzing Interface Evolution[END_REF]. We used NACCESS [START_REF] Hubbard | [END_REF] with a probe radius of 1.4Å to compute residue solvent accessibility. 

Building the cubic volumetric map

To build the cubic volumetric map, the atomic coordinates of the input structure are first transformed to a density function [START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF]. The density d at a point ⃗ v is computed as

d(⃗ v) = i≤Natoms exp - ⃗ v -⃗ a i σ 2 t i , (5.1) 
where ⃗ a i is the position of the ith atom, σ is the width of the Gaussian kernel set to 1Å, and t i is a vector of either 167 or 4 channels that correspond to residue-specific or residue-independent atom types (O, C, N and S) respectively [START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF]. The hydrogen atoms are discarded. Then, the density is projected on a 3D grid comprising 24 × 24 × 24 voxels of side 0.8Å. The map is oriented by defining a local frame based on the common chemical scaffold of amino acid residues in proteins [START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF]. More precisely, for the nth residue, the (⃗ x, ⃗ y, ⃗ z) directions and the origin of the cube are defined by the position of the atom N n , and the directions of C n-1 and Cα n with respect to N n . The X-axis is parallel to the vector pointing from C n-1 to N n . The Y-axis, perpendicular to the X-axis, is defined in such a way that Cα n lies in the half-plane Oxy with y > 0. The Z-axis is defined as the vector product X × Y . The origin of the cube is determined in such a way that N n is located at position (6.1Å, 6.6Å, 9.6Å). This choice ensures that all the atoms of the central residue fit in the cube. More details can be found in [START_REF] Pagès | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF]. This representation is invariant to the global orientation of the structure while preserving information about the atoms and residues relative orientations.

Masking procedure

The common practice when applying self-supervised learning to protein sequences is to reconstruct some masked or the next amino acid(s), given their sequence context. This task proved successful for natural language processing [START_REF] Devlin | BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding[END_REF] before being transferred to proteins. We employed a similar strategy here, by training DLA to recognize which amino acid would fit in a given local 3D environment extracted from a protein-protein interface. Our aim in doing so is to capture intrinsic patterns underlying the atomic arrangements found in local interfacial regions. Formally, the machine predicts the probability P (y|env) of the amino acid type y, for y ∈ {A, C, D, ..., W, Y }, conditioned on the interfacial local chemical environment env given as input. In practice, we process the input cube before giving it to DLA by masking a sphere of radius r c Å centered on an atom from the central residue (Fig. C.2 and Fig. 5.1A). Masking a fixed volume prevents introducing amino acid-specific biases. We experimented with different values of r c (3 and 5Å) and different choices for the atom (C α , C β , random). We found that a sphere of radius of 5Å with a randomly chosen center yielded both good performance and expressive embedding vectors.

Auxiliary features

For predicting ∆∆G bind , we combined the embedding vectors of the volumetric maps with five pre-computed auxiliary features (Fig. 5.1C), among which four describe the wild-type residue:

• a one-hot vector encoding the protein structural region to which it belongs, either the interior (INT), the surface (SUR), or, if it is part of the interface, the support (S or SUP), the core (C or COR), or the rim (R or RIM), as defined in [START_REF] Levy | A Simple Definition of Structural Regions in Proteins and Its Use in Analyzing Interface Evolution[END_REF]. We directly took the annotations available in the SKEMPI database [START_REF] Jankauskaitė | SKEMPI 2.0: an updated benchmark of changes in protein-protein binding energy, kinetics and thermodynamics upon mutation[END_REF] (see below for a description of the database). The S, C and R classification has been previously proven useful for the prediction and analysis of protein interfaces interacting with other macromolecules (protein, DNA/RNA) [START_REF] Yasser | Deep Local Analysis evaluates protein docking conformations with locally oriented cubes[END_REF][START_REF] Corsi | Multiple protein-DNA interfaces unravelled by evolutionary information, physico-chemical and geometrical properties[END_REF][START_REF] Raucci | Local Interaction Signal Analysis Predicts Protein-Protein Binding Affinity[END_REF][START_REF] Laine | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions[END_REF].

• its conservation level T JET (a real value) computed by JET [START_REF] Engelen | Joint Evolutionary Trees: A Large-Scale Method To Predict Protein Interfaces Based on Sequence Sampling[END_REF] for the mutation site. JET estimates evolutionary conservation by explicitly accounting for the topology of the phylogenetic tree relating the query protein to its homologs.

• its physico-chemical propensity (PC, a real value) to be found at interfaces, scaled between 0 and 1 [START_REF] Surendra | Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces[END_REF].

• its circular variance (CV, a real value) [START_REF] Mezei | A new method for mapping macromolecular topography[END_REF][START_REF] Ceres | A Protein Solvation Model Based on Residue Burial[END_REF] computed with a sphere radius of 12 Åon the protein structure. For each protein atom, CV measures the density of protein atoms around it within a sphere. The CV of a given residue is obtained by averaging values over its atoms and indicates its degree of burial in the protein. CV values range from 0 to 1 and protruding residues have a value close to 0.

We previously combined T JET , PC and CV for the prediction of protein-protein interfaces [START_REF] Laine | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions[END_REF]. The fifth feature is specific of the mutation, that is

• a numerical score (a float value) estimating the functional impact of point mutations from multiple sequence alignments computed for single (monomeric) proteins by GEMME [START_REF] Laine | GEMME: A Simple and Fast Global Epistatic Model Predicting Mutational Effects[END_REF]. To do this estimation, GEMME combines the conservation levels T JET with amino acid frequencies and the minimum evolutionary distance between the protein sequence and an homologous protein presenting the mutation.

DLA architectures

We used the same core architecture for the self-supervised representation learning (Fig.

5.1B

) and for the supervised prediction of ∆∆G bind (Fig. 5.1C). It comprises a projector, three 3D convolutional layers, an average pooling layer, and a fully connected subnetwork. The projector maps the feature vector of each voxel from the input cube into a vector of size 20. The projector layer is omitted in case of 4 channel inputs. Each convolutional layer is followed by a batch normalization layer. The average pooling layer exploits scale separability by preserving essential information of the input during coarsening of the underlying grid. To avoid overfitting, we applied 40%, 20%, and 10% dropout regularization to the input, the first and the second layers, respectively, of the fully connected subnetwork. We describe below the specific characteristics of the pre-trained model, referred to as self supervised-DLA (ssDLA-167 or ssDLA-4 depending on the number of channels), and the ∆∆G bind predictor, referred to as DLA-Mutation.

ssDLA specifics ssDLA's fully-connected subnetwork comprises three successive layers of size 200, 20, and 20 (Fig. 5.1B). The last activation function (Softmax) outputs a probability vector of size 20 representing the 20 amino acids. The loss function is the categorical cross-entropy measuring the difference between the probability distribution of the predicted output and a one-hot vector encoding the true amino acid type of the central residue.

DLA-Mutation specifics

DLA-Mutation processes two input cubes in parallel, corresponding to the wild-type and mutated residues, thanks to a Siamese architecture constituted by two branches with shared weights (Fig. 5.1C). Within each branch, the average pooling layer is followed by two fully connected layers of size 200 and 20, respectively. The branches are then merged by subtracting the computed embedding vectors, and the auxiliary features (described above) are concatenated to the resulting vector. The last layer is fully-connected, with one output and linear activation function. The mean squared error has been chosen as the loss function.

Databases

Experimental values for ∆∆G

We used SKEMPI V 2.0 database for experimentally measured binding affinities. We restricted our experiments to the entries for which the binding affinity of wild-type and mutant complexes were measured by a reliable experimental method, namely ITC, SPR, FL, or SP, as done in [START_REF] Vangone | Contacts-based prediction of binding affinity in protein-protein complexes[END_REF]. This first filtering step led to 4,974 entries associated with 255 protein complexes. We retained 4,634 entries from 245 complexes by excluding mutation entries with ambiguous free energy or without energy change. We then focused only on the 3,393 single-mutation entries coming from 222 complexes. After removing duplicated entries (a protein complex with the same mutations), we remained with 2,975 mutations. We finally randomly selected a subset of 2,003 mutations associated with 142 complexes. We call this subset S2003. A wild-type structure undergoes a local minimisation of backbone and side-chain torsion angles followed by a Monte Carlo simulation step. We applied it to produce thirty models for each mutated structure and thirty for the wild-type. This process is followed by a repacking step applied to wild-type and mutation models. For the mutation positions at the interface of each model, we compute the associated cubic volumetric maps.

Protein-protein complex 3D structures

We created two databases of protein-protein complex 3D structures, namely PDBInter and S2003-3D, for training and validation purposes. PDBInter was curated from the PDB [START_REF] Berman | The Protein Data Bank[END_REF] and thus contains only experimental structures. S2003-3D was generated from X-ray crystal structures of S2003 using the "backrub" protocol implemented in Rosetta [START_REF] Smith | Backrub-Like Backbone Simulation Recapitulates Natural Protein Conformational Variability and Improves Mutant Side-Chain Prediction[END_REF] and thus contains only 3D models.

PDBInter. We downloaded all PDB biological assemblies (June 2020 release) from the FTP archive rsync.wwpdb.org::ftp/data/biounit. We discarded the entries with more than 100 chains or with a resolution lower than 5Å. We also removed the protein chains smaller than 20 residues or with more than 20% of unknown residues. We then redundancyreduced the resulting dataset using annotations from the SCOPe database [START_REF] Fox | SCOPe: Structural Classification of Proteins-extended, integrating SCOP and ASTRAL data and classification of new structures[END_REF][START_REF] Chandonia | SCOPe: improvements to the structural classification of proteins -extended database to facilitate variant interpretation and machine learning[END_REF]. The 5,055 protein complex structures that were finally retained do not share family level similarity in the SCOPe hierarchy. Based on SCOPe hierarchy the 142 complexes of S2003 were excluded from PDBInter. S2003-3D. We generated conformational ensembles for the wild-type and mutated complexes from S2003. We followed a modeling protocol similar to that reported in [START_REF] Barlow | Flex ddG: Rosetta Ensemble-Based Estimation of Changes in Protein-Protein Binding Affinity upon Mutation[END_REF]. It relies on the backrub method [START_REF] Smith | Backrub-Like Backbone Simulation Recapitulates Natural Protein Conformational Variability and Improves Mutant Side-Chain Prediction[END_REF] for sampling side chain and backbone conformational changes. Our goal was to accurately mimic and explore the fluctuations around a native state. The protocol unfolds in two optimization steps carried out on the side chains and the backbone (Fig. 5.2):

1. for the backbone and the side chains, it applies quasi-Newton minimization for continuous optimization of torsion angles: Φ, Ψ, χ 1 , χ 2 , χ 3 , etc.

2. for the side chains only, it performs Monte Carlo simulation with the backbone-based side-chain rotamer library of Dunbrack [START_REF] Shapovalov | A Smoothed Backbone-Dependent Rotamer Library for Proteins Derived from Adaptive Kernel Density Estimates and Regressions[END_REF] for discrete combinatorial rotamer optimization, also known as repacking.

We refer to each generated conformation as a backrub model. We generated 30 backrub models for each wild-type or mutated complex. This amount was shown to be sufficient for estimating free energies in [START_REF] Barlow | Flex ddG: Rosetta Ensemble-Based Estimation of Changes in Protein-Protein Binding Affinity upon Mutation[END_REF].

Training and evaluation protocols

We performed training procedures with the Adam optimiser in TensorFlow [START_REF] Abadi | TensorFlow: A System for Large-Scale Machine Learning[END_REF] at learning rates 0.001, 0.0001 and 0.00001 for DLA-Mutation, ssDLA and downstream tasks (for the evaluation of the embedding vectors), respectively.

Training and validation of ssDLA

We divided the PDBInter database into train and validation sets at the level of complexes. We generated 247 662 input samples (interfacial cubes) from the training set and 34 174 from the validation set. In both sets, we observed some differences in the frequencies of occurrence of the different amino acids. Leucine is the most frequent one, while cysteine is the rarest (Fig. C.1). Furthermore, the frequency of occurrence of the amino acids depends on their structural region. To compensate for such imbalance and with the aim of penalizing more the errors made for the less frequent amino acids, we assigned a weight to the loss of each amino acid type that is inversely proportional to its frequency of occurrence (Table C.2). We trained ssDLA-167 for 50 and ssDLA-4 for 2000 epochs (Fig. C.3). We explored different hyperparameter values by varying the learning rate, applying different normalisation schemes, changing the compensation weights.. etc. We retained the hyperparameters leading to the best performance on the validation set.

To visualise the performance of the model, we generated logos from pseudo alignments of 20 columns corresponding to the 20 amino acids. In the column corresponding to the amino acid a i , the frequency of occurrence of each amino acid a j depends on its propensity to be predicted by ssDLA (i.e. having maximum probability score among the 20 candidate amino acids) when the true central residue of the input cube is a i . If some amino acid was never predicted, we simply put a gap character.

Evaluation of the embeddings computed by the pre-trained ssDLA

We designed two downstream classification tasks to map:

• an input local 3D environment to an output amino acid physico-chemical class.

We defined seven classes, namely the aromatic amino acids (ARO: F, W, Y, H), the hydroxyl-containing ones plus alanine (CAST: C, A, S, T), the aliphatic hydrophobic ones (PHOB: I, L, M, V), the positively charged ones (POS: K, R), the polar and negatively charged ones (POL-N: N, Q, D, E), glycine (GLY) and proline (PRO) (Table C.1). We directly gave the embedding vector (e k , size 200, see Fig. 5.1D) computed by ssDLA for a given input cube to the classifier.

• an input interface to an output interaction functional class, among antibody-antigen (AB/AG), protease-inhibitor (Pr/PI) and T-cell receptor -major histocompatibility complex (TCR/pMHC), as annotated in the SKEMPI v2.0 database. We generated embeddings for all the cubes representing a given input interface and we computed their average vector before giving it to the classifier.

The classifier is a fully-connected network comprised of only 1 hidden layers of size 20. The input layer is of size 200 and the output layer's size corresponds to the number of classes (7 or 3). The activation function of the last layer is the Softmax providing the probability vector for the classes. The loss function is the categorical cross-entropy. For training purposes, we redundancy-reduced the set of 142 complexes from S2003 based on a 30% sequence identity cutoff. We then performed a 50/50 split at the cluster level. This resulted into 85 train and 57 test complexes for the first, residue-based, task. As training and testing samples, we considered:

• either all interfacial residues (4710 residues for train and 3397 residues for test) extracted from the X-ray crystal structures of S2003;

• or only the residues belonging to the positions with mutation from S2003 (1700 residues for train and 303 residues for test) extracted from the wild-type backrub models of S2003-3D. We performed two experiments here: (i) pick up one backrub model at random (out of 30) to generate the input cubes, (ii) average the embedding vectors computed for a given interfacial residue over the 30 backrub models.

For the second, interface-based task, due to missing annotations, we used only 22 train and 52 test complexes. In addition, we focused only on the X-ray crystal structures. In both tasks, the number of epochs depended on the size of train set and the learning rate. We stopped the training when the validation loss converged to a steady value (Fig. 

Training and validation of DLA-Mutation

We trained and tested different experimental setups of DLA-mutation, obtained by using different combinations of auxiliary features and different initialisation schemes for the network weights. For the auxiliary features, we considered either all of them (Aux-All ) or different subsets which constitute only the information about the structural region (Aux-SR), its combination with GEMME scores (Aux-SR-GEMME ) or with conservation levels (Aux-SR-TJET ). For the network weights, we either started from the weights of the pre-trained ssDLA (fine tuning) or randomly initialised them.

We trained DLA-Mutation through 10-fold cross validation on S2003. The typical procedure used for splitting the data in such cases is to consider each sample independently [START_REF] Geng | iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations[END_REF][START_REF] Carlos | Ascher. mCSM-PPI2: predicting the effects of mutations on protein-protein interactions[END_REF][START_REF] Carlos | mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions[END_REF][START_REF] Wang | A topology-based network tree for the prediction of protein-protein binding affinity changes following mutation[END_REF][START_REF] Zhou | Mutation effect estimation on protein-protein interactions using deep contextualized representation learning[END_REF]. However, this assumption is not valid since several samples may correspond to different mutations taking place in the same complex or even the same position of a complex. Here, we assessed the two types of split, namely mutation-based, where all samples are treated independently, and complex-based, where we guaranteed that no complex was shared between the train and test sets. We performed 10-fold cross validation only with the mutation-based splitting procedure. For the complex-based one, we hold out 32 complexes displaying 391 mutations for the testing phase, and trained DLA-Mutation on the rest of the dataset.

Results

Inferring interfacial amino acid types from 3D local environments

We first assessed the ability of ssDLA to recover the identity of a masked amino acid from its local 3D environment (Fig. 5.3A). To avoid any amino acid-specific bias, we masked a volume of constant shape and size, namely a sphere of radius 5Å, in all training samples. The model was exclusively trained on protein-protein interfaces extracted from high resolution experimental structures (PDBInter, see Methods). ssDLA-167 successfully and consistently recognises the amino acids containing an aromatic ring, namely F, Y, W, H, and most of the charged and polar ones, namely E, K, R, and to a lesser extent Q and D, as well as methionine (M), cysteine (C), glycine (G), and proline (P), whatever their structural region. By contrast, the location of alanine (A), isoleucine (I) and leucine (L) influences their detection. While they are ranked in the top 3 in the support and the core, they are almost never recognised in the rim. Inversely, the polar asparagine (N) is recognised when located in the rim or the core, but not the support. The model often confuses the hydroxyl-containing serine (S) and threonine (T) on the one hand, and the hydrophobic I and L on the other hand. Overall, it tends to over-populate the rim with aspartate (D).

These tendencies differ from those reported previously for a similar task and data representation [4]. In particular, the model from [4] identifies glycine and proline with very high success and tends to confuse F, Y and W. Such differences may be explained by the fact that the authors masked the side chain of the central residue, instead of a constant volume. This choice may encourage the model to put more importance on the size and the shape of the missing part in making its prediction, than on its physicochemical environment. Let us also stress that the model reported in [4] is trained on monomeric proteins.

Predicting residue-and interface-based properties

To evaluate the embeddings computed by the pre-trained ssDLA, we tested whether they could be mapped to per-residue and per-interaction physicao-chemical and functional properties. To do so, we added a 2-layer fully connected network on top of ssDLA's architecture (Fig. 5.1D), and we trained it to perform two downstream tasks.

The first task consisted in assigning amino acid physico-chemical classes to the input cubes. In this experiment, the input cubes were fully specified (no masking) and the 0.720 in ∆∆G prediction (Fig. 5.5A).

We also assessed whether best performance for the model is dependent on the structural region of the mutant residue (support, core, rim, interior or surface), the biological function of the complex, or the amino acid size change upon mutation (Fig. 5.6). 89% of mutations are located on the interface with the majority of them belonging to the Core. DLA-Mutation has better performance on core residues (PCC=0.798) than those from rim (PCC=0.586) and support (PCC=0.506). The mutations on the support are more spread than those of core or rim. Majority of the mutations happen on the interface of protease-inhibitor assemblies. Also more than 95% of the mutations of this functional class comprise substitutions to non-alanine amino acids. DLA-Mutation performs well for this subset with PCC=0.765. Meanwhile, more than 84% of mutations for other classes, particularly for T-cell receptor -major histocompatibility complexes, are substitutions to alanine.

We calculated the change of amino acid size as a volume difference (δV ) between wildtype and mutant following [START_REF] Harpaz | Volume changes on protein folding[END_REF]. A mutation was classified as "neutral" if |δV | < 10Å

3 , as small to large if δV > 10Å 3 , and as large to small if δV < -10Å 3 . Around 43% of large to small mutations are substitutions to non-alanine amino acids. Although the predictions of DLA-Mutation is more or less invariant to the change of the amino acid size, it performs better for neutral group (PCC=0.775). We showed the robustness of our approach against sequence identity between train and test samples by filtering the protein complexes in the test set sharing certain level of similarity with those in the training set (Fig. 5.6D).

The complexes of the majority of the mutations share less than 30 % sequence identity with the training set. We observed small changes in PCC by filtering samples based on sequence identity. The predictions are more accurate when the mutant amino acid is not alanine (PCC=0.752) compared to otherwise case (PCC=0.469). However, we observed that the DLA-Mutation performance, in the case of substitution to alanine, depends on the complex C.9. For example, it predicts the effect of mutation better for complexes 3M62, 3QIB, 4OZG and 1CHO compared to other ones.

We compared the performance of DLA with BindProfX, FoldX, iSEE and mCSM on 17 complexes with 112 mutations. These mutations are intersection of S2003 and S487 for which prediction results were reported in [START_REF] Geng | iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations[END_REF] (Fig. 5.7 and Table 5.1). The experimental setup includes fine-tuning and Aux-All features. We retrained the model using 945 mutations from complexes sharing less than 30% sequence identity with those from test set. For this subset, DLA-Mutation has PCC=0.48 which outperform other approaches. Finally, we trained and tested DLA-Mutation using S1102 and S487 sets. Even by training on the wild-type and mutant models produced by HADDOCK, DLA-Mutation outperforms iSEE (Fig. 

Discussion

We have proposed a deep learning-based method for assessing the impact of mutations on protein-protein binding affinity. It derives and contrasts representations of the local geometrical and physico-chemical environments around the mutation site in the wildtype and mutated forms with a Siamese architecture. The representations are enriched with evolutionary information coming from sequences related to the protein carrying the mutation. Compared to other state-of-the-art predictors, DLA-Mutation shows a higher capability to generalise to unseen complexes. To build S2003, we selected samples from SKEMPI v2.0 with the most reliable experimental methods. However, there are still likely noises in the retained data. For instance, we observed that in case of some of the mutations, several values of mutant binding affinity, measured by the same experimental method, were reported. The existence of these noises in the ground truth might limit the generalisation capability of the models. Despite this limitation, the proposed architecture of DLA-Mutation could be easily repurposed for other problems or improved data in the future. Beyond predictive power, we have shown that the learnt representations can be used to probe protein interfaces toward better understanding their properties. Depending on the amino acid and on the location at the interface, the 3D environment may be more or less ambiguous and diverse. Our constant volume masking procedure was intended to avoid amino acid-specific size and shape biases. Nevertheless, the spherical mask of radius 5Å may not always cover the whole central residue, raising the question of whether in those cases the network relies on the amino acid-specific types of the remaining atoms. To test this, we removed any amino acid-specific information by reducing the 167 feature channels used for encoding the atom types to DLA-Mutation exploits 3D structures to make predictions, and thus the resolution and accuracy of these structures may influence its performance. Here, we chose to generate 3D models with a high-level precision using the Rosetta backrub protocol and to explicitly account for conformational variability. We showed that averaging over a few tens of conformations improved the discrimination of amino acid classes, compared to relying on only one conformation. Future work will investigate more thoroughly the contribution of conformational sampling and quality to the prediction of mutation-induced binding affinity changes. Alleviating the need for precise models and substantial sampling would improve the scalability of the approach. Another direction for improvement concern the treatment of substitutions to alanine. We found that DLA-Mutation had difficulties to accurately estimate the effects of such mutations and distinguish them. We also showed that the environments around alanine are ambiguous, making it difficult for ssDLA to recover the amino acid identify. Taken together, these results suggest that DLA-Mutation would benefit from separating the problem of estimating the effects of diverse substitutions and that of performing computational alanine scans. Combining DLA-Mutation with alanine scans performed using only information coming from the wild-type complex would open the way to systematically assess mutational outcomes on protein-protein interactions at a proteome-wide scale.

Part IV

Conclusion

Chapter 6

Discussion and Perspectives

With the recent advances in protein structure prediction, the reconstruction and the evaluation of protein-protein interaction (PPI) networks, the assembly of protein complex structures and the reconstruction of the landscape of phenotypic effects of mutations become more central than ever. Reliable predictions of who the cognate partners are and how they interact in the cell, as well as how missense mutations affect these interactions, would have enormous implications for bioengineering and medicine. This thesis focused on three aspects of PPI: (i) the decomposition of the complexity of PPI networks, (ii) the identification of near-native conformations of protein complexes, and (iii) the prediction of the effects of point mutations in protein interfaces.

Breaking down the complexity of PPI networks. The current knowledge of PPI relies on partial, noisy, biased and highly heterogeneous data. To address this problem we developed a reliable, versatile and interactive web-based tool, called LEVELNET, for visualising, exploring and comparing PPI networks inferred from different types of evidence. LEVELNET helps to break down the complexity of PPI networks by representing them as a grid of multi-layered graphs and by facilitating the direct comparison of their subnetworks toward biological interpretation. LEVELNET is useful for biologists interested in the physical contacts of a protein or a set of proteins as well as for those developing and evaluating computational predictive approaches for protein interfaces, partners and complexes. It provides a convenient environment to extract biological information by homology-transfer and to account for different types of relationships between proteins, e.g. in functional annotations, cell co-localization, spatio-temporal proteomics, co-occurrence in publications, and investigate how the latter are correlated to physical interactions.

LEVELNET is freely available to the community at www.lcqb.upmc.fr/levelnet/.

Deep Local Analysis as a protein language model for learning protein interactions. Protein interface representation is a fundamental aspect of learning protein interactions. We introduced a novel computational framework based on geometric deep learning, called Deep Local Analysis (DLA), that represents a protein interface as an ensemble of locally oriented residue-centred cubes describing a residue and its atomic environment. This representation provides a physical interpretation of the interface by capturing the local 3D-geometrical and physico-chemical environments around the interfacial residues. It is invariant to the global orientation of the input structure while fully accounting for the relative orientation of an interfacial residue with respect to its neighboring atoms. Moreover, the sequence-based protein language models and their numerous applications inspired us to build a structure-based general-purpose encoder (referred to as the pre-trained model) for the DLA framework using self-supervised learning. This encoder generates informative representations from local interfacial environments that can be used in various downstream tasks. We challenged DLA on two fundamental questions about protein-protein interactions and demonstrated that DLA provides a general framework for addressing these questions. Locally oriented residue-centred cubes are found to be the minimum unit of information at the interface necessary to predict both the quality of interactions and the effect of point mutations.

Identification of near-native protein complex conformations. We developed DLA-Ranker to assess the quality of protein complex conformations and discriminate near-native models from incorrect ones. It applies 3D convolutions to the set of locally oriented cubes representing the interface. Our motivations behind DLA-Ranker were multiple. They include (i) breaking down protein complex structures into interfacial residue-centred local environments and training on a much larger set of input samples (residue-centred cubes versus proteins or interfaces), (ii) finding a rotation-invariant representation of the complex, (iii) finding the minimal unit of information at the interface necessary to predict the quality of an interaction and (iv) studying the contribution of the interfacial residues coming from different structural regions (support, core, rim) of the interface. The performance of DLA-Ranker is evaluated on various docking benchmarks, made of half a million acceptable and incorrect conformations. In addition to achieving state-ofthe-art predictive power in its objective, the utility of DLA-Ranker is also demonstrated in the discovery of alternative interfaces from a set of protein complex conformations. DLA-Ranker is available to the community as a well-developed and documented python package at http://gitlab.lcqb.upmc.fr/dla-ranker/DLA-Ranker.git.

Prediction of the effects of mutations on protein interactions. The pre-trained model in the DLA framework learns the environments biochemically suitable for each amino acid or group of amino acids sharing similar physico-chemical and geometrical properties, which constitutes a fundamental step towards the evaluation of the effects of point mutations. Paired with a Siamese architecture and auxiliary information describing residue evolutionary conservation and the protein mutational landscape, DLA shows to capture the effects of mutations predicting changes in binding affinity ∆∆G. We call this architecture DLA-Mutation. The performance of DLA-Mutation on the database SKEMPI V 2.0 shows that it outperforms state-of-the-art ∆∆G predictors. Beyond improving the predictive power on ∆∆G, the utility of DLA is showcased for multiple applications and downstream tasks including prediction of the structural region or the physico-chemical class of the interfacial amino acids. DLA is available to the community as a well-developed and documented python package at http://gitlab.lcqb.upmc.fr/dla/DLA.git.

A perspective and future developments. Fast, convenient, and accurate, LEV-ELNET and DLA frameworks are valuable assets for the community to study protein interactions. Nonetheless, these frameworks have a great potential for improvement.

LEVELNET's growth objectives. The homology-transfer and the verification of the physical contacts are the central inference components in LEVELNET. However, they limit LEVELNET to queries that exist in PDB. This is particularly important for the users interested in studying the interactions of sequences without any experimentally or computationally resolved structures. To resolve this limitation I envision three solutions:

• The expansion of LEVELNET by integrating other computational and experimental databases. In particular, LEVELNET can be upgraded with reliable predictions of protein complexes generated by AlphaFold, RosettaFold, ESMFold and AminoBERT or methods inspired by them.

• The extension of LEVELNET database of PPI network (PDBinteractionDB ) to include the whole UniProt entries and the inference of the interactions based on the database of interfaces (interfaceDB ) generated from PDB. In this process the annotations from Uniprot, SCOP or CATH will be added to LEVELNET allowing the users to merge and select nodes based on these annotations.

• Given the advances of deep learning and protein language models in the sequencebased PPI inference, LEVELNET has the capacity to be equipped with inference models such as D-SCRIPT, PIPR and DPPI. Combining these approaches and incorporating their confidence scores in a multi-edged network gives a great insight to the user.

In addition, I believe LEVELNET has a considerable potential for growth beyond singlechain and PPI-related proteins. This includes adding the possibility to accept and process multi-chain proteins and protein-nucleic acid interactions. Finally, the information provided by LEVELNET can be further enriched, e.g. by describing and visualizing at the residue-level the binding sites and the binding-associated conformational changes, and giving access to properties such as binding affinities and the effect of mutations over the network.

The future of Deep Local Analysis. DLA demonstrated the importance of local 3D patterns for protein complex quality assessment, unraveling alternative interfaces, and capturing the effects of mutations. It has also very fast inference performance even on a user's machine with no GPU. Despite these advantages, the training phase of DLA is computationally demanding. Its grid-based representation of the atomic arrangements in the Euclidean space asks for specific hardware requirements (large data storage volumes, RAM and GPU RAM). The GPU characteristics and the speed of the hard disk play important roles to speed up this learning process. It also requires careful tuning of the batch size, learning rate, and usage of dropouts.

A drawback of DLA-Ranker is the existence of false-positive or false-negative volumetric maps (cubes) in its training set that introduce noises in the learning process. These false assignments arise from two sources:

• Assigning acceptable or incorrect labels to all the interfacial residues neglects the fact that some of the residues might be unfavorably or favorably positioned in a correct or incorrect conformation, respectively.

• The docking conformations are identified as incorrect or acceptable (or higher quality) based on CAPRI criteria and with respect to the experimentally resolved structures as references. As we have observed in the case of alternative ways of interaction between two partners, one complex structure might not be representative enough as the ground truth to evaluate related docking conformations.

Regarding DLA-Mutation, it cannot measure the changes of binding affinity caused by multiple point mutations. This capability requires the integration of graph neural network architectures such as graph convolutional networks and graph attention mechanisms into DLA-Mutation. I consider DLA framework as a complementary approach to the sequence-based pretrained protein language models. Their combination provides us with a comprehensive insight into the biological nature of protein interactions from both sequence-and structurebased perspectives. Furthermore, given the power of DLA in breaking down the complexity of the protein complexes into small units, the benefits of its pipeline can be adapted to build new models for protein-peptide and protein-nucleic acid interactions. Finally, I am developing a user-friendly web-interface for both DLA-Ranker and DLA-Mutation facilitating the usage of these tools for the community. 
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 2 Figure RF.2: Amarrage protéine-protéine. A. Exploration de l'espace conformationnel par translation et rotation du ligand autour du récepteur par rapport aux angles d'Euler (crédits : Anne Lopes). B. Évaluation d'une conformation candidate de deux partenaires par rapport à la structure résolue expérimentalement. Les tirets de couleur cyan sont les contacts résidu-résidu, le vert montre la véritable position ou interface du ligand et le violet montre le ligand ou l'interface dans la conformation candidate. C. Représentation schématique du cross-docking complet et de son analyse.

Fig

  Fig. RF.3B montre les effets de trois substitutions d'acides aminés sur les propriétés géométriques et chimiques du site d'interaction du complexe protéique 1iar. Nous utilisons l'alanine, le tryptophane et l'acide glutamique (Glu ou E) qui est un acide aminé avec une chaîne latérale chargée négativement. Nous pouvons voir que la surface d'interaction change de forme dans la région dans laquelle ces trois mutations ponctuelles se produisent. De plus, ces mutations modifient la distribution de charge et l'électronégativité de la surface qui font partie des propriétés chimiques du site d'interaction. Par exemple, une mutation de l'acide glutamique en alanine affecte les propriétés chimiques et à leur tour la géométrie du site de liaison, car avec l'acide glutamique, nous avons plus de charges négatives sur le site d'interaction.

Figure RF. 3 :

 3 Figure RF.3: Effets des mutations ponctuelles: substitutions d'acides aminés. A. Un exemple de mutation ponctuelle unique sur le site d'interaction. Substitution d'un acide aminé à petite chaîne latérale (alanine en jaune) par un acide aminé avec plus grande chaîne latérale (tryptophane en blanc). B. Modifications des propriétés géométriques et chimiques lorsque des mutations ponctuelles se produisent sur le site d'interaction du complexe protéique 1iar. Substitution d'un acide aminé chargé négativement (acide glutamique en rouge) par un acide aminé hydrophobe (alanine en jaune) ou substitution d'un acide aminé à petite chaîne latérale (alanine) par un acide aminé avec plus grande chaîne latérale (tryptophane en blanc ). Colonne de gauche : modifications de la forme et des propriétés géométriques de l'interaction. Colonne de droite : changements dans la distribution de charge et d'électronégativité du site d'interaction, ce qui signifie des changements dans les propriétés chimiques et géométriques (les régions rouges et bleues sont respectivement des charges négatives et positives partielles).

:Figure RF. 4 :

 4 Figure RF.4: Représentation et analyse du réseau PPI dans LEVELNET. A. L'entrée est une liste de protéines (ou de chaînes protéiques) éventuellement accompagnée de relations prédéfinies (annotations définies par l'utilisateur). B. Une grille de réseaux calculée par LEVELNET à partir de la PDB. Les utilisateurs ont accès à différents réseaux de la grille en modulant l'identité de séquence sur les options "réduction de noeuds" et "inférence d'arêtes". Des grilles analogues peuvent être construites pour HIPPIE, Negatome et les sources définies par l'utilisateur. C. Les réseaux multi-couches de différentes sources partagent les mêmes noeuds ou super-noeuds choisis par l'option "réduction de noeuds" et correspondant à une colonne de la grille (Voir fond bleu en B). D. Extraction et comparaison de couches provenant de différentes sources. E. Sélection d'un sous-réseau centré sur un noeud sélectionné (le noeud central est indiqué par *). F. Sélection des composantes connexes dans l'analyse de sous-réseau. G. Représentation agrégée du sous-réseau. H. Représentation schématique de l'inférence des interactions à partir de la PDB. A, B et C sont des clusters définis à un certain niveau d'identité de séquence, contenant des chaînes P et P ′ , Q et Q ′ , T , T ′ et T ′′ , respectivement. Les chaînes P du cluster A et Q du cluster B sont en contact physique (arête bleue). Cette interaction conduit à déduire des interactions avec et parmi leurs homologues (arêtes roses). Lorsque deux chaînes d'un même cluster sont en contact direct, ici T et T ′ du cluster C, des auto-interactions sont également induites par homologie.
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 556 Figure RF.5: Deep Local Analysis (DLA)-Ranker. A. Représentation d'une interface protéique sous la forme d'un ensemble de cubes (I C ). Chaque cube (r k I C ) est centré et orienté sur un résidu d'interface. Il contient des atomes appartenant au résidu et à son environnement local (Carbone : vert, Oxygène : rouge, Azote : bleu, Soufre : jaune). Un cube est étiqueté comme faisant partie du support (rouge), du core (or) ou du rim (bleu) de l'interface (vecteur d'encodage one-hot u k ). B. Architecture du réseau de neurones DLA-Ranker. Pour le cube d'entrée r k Le réseau a deux sorties: le score S k et le vecteur e k . C. L'évaluation de l'interface se fait en calculant la moyenne globale des scores locaux S k (1) sur tous les résidus interfaciaux, (2) sur les résidus de SC, (3) ou sur les résidus de CR, ou bien en extrayant des vecteurs e k et en les combinant via une agrégation basée sur un réseau de neurones en graphe.

Figure RF. 7 :

 7 Figure RF.7: L'architecture de DLA: pré-entraînement et tâches supervisées en aval. A. Représentation d'une interface protéique sous la forme d'un ensemble de cubes (I C ) et entraînement auto-supervisé. Chaque cube (r k ∈ I C ) est centré et orienté sur un résidu d'interface. Le résidu central est masqué et le cube ne contient que des atomes appartenant à l'environnement local (Carbone : vert, Oxygène : rouge, Azote : bleu, Soufre : jaune). La tâche est de prédire le type d'acides aminés qui correspond à cet environnement. B. Architecture siamoise pour prédire les changements d'affinité de liaison suite à des mutations ponctuelles. Deux branches parallèles extraient les caractéristiques descriptives des acides aminés de type sauvage et mutant. Les caractéristiques auxiliaires peuvent être concaténées au vecteur de distance entre deux branches pour améliorer la performance. C. Le modèle pré-entraîné peut être appliqué à diverses tâches en aval.

Figure RF. 8 :

 8 Figure RF.8: Pipeline pour la génération de complexes mutés avec backrub. Après filtrage de la base de données SKEMPI V2.0, nous avons retenu 2003 mutations pour 142 complexes (S2003).Une structure de type sauvage subit une minimisation locale des angles de torsion du squelette et de la chaîne latérale suivie d'une étape de simulation Monte Carlo. Nous l'avons appliqué pour produire trente modèles pour chaque structure mutée et trente pour le type sauvage. Ce processus est suivi d'une étape de "repacking" appliquée aux modèles de type sauvage et de mutation. Pour les positions de mutation à l'interface de chaque modèle, nous calculons les cartes volumétriques cubiques associées.
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 910 Figure RF.9: La performance prédictive de DLA après une validation croisée au niveau de la mutation. La configuration expérimentale comprend pré-entraînement et caractéristiques auxiliaires complètes.
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 11 Figure 1.1: From DNA to protein. A. The DNA structure. (Figure created by Anatomy and Physiology-OpenStax). B. Two main steps involved in the protein synthesis are transcription and translation (Figure created by https://www.khanacademy.org).
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 12 Figure 1.2: Amino acids and their properties.

Figure 1 . 3 :

 13 Figure 1.3: Genetic code defines protein structure. A. Circular representation of the genetic code table (figure is downloaded from http://www.clker.com/). B. Peptide bonds and the general molecular structure of the amino acid. D-E. Backbone torsion angles: Φ and Ψ and side-chain orientation angles: χ 1 ,χ 2 ,χ 3 . F. Overall growth of released structures over years (the statistics are generated by https://www.rcsb.org/). G. The distribution of PDB structures per source organism (figure generated by https://www.rcsb.org/).
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 14 Figure 1.4: Protein protein interactions. A. Schematic representation of the binding affinity circles for a protein (with three interacting interfaces) and its potential partners. These binding affinities are high enough that partners can interact and perform biological functions (figure generated by Analytical Genomics team of LCQB). B. A representation of structural regions of the interaction: Support, Core, and Rim [99].
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 15 Figure 1.5: Protein-protein docking. A. Exploration of the conformational space by translation and rotation of the ligand around the receptor with respect to Euler angles (credits: Anne Lopes). B. Evaluation of a docking conformation of two partners against the ground truth experimentally resolved structure using CAPRI terms. Cyan colored dashes are the residue-residue contacts, green shows the true ligand position or interface, and purple shows the deviated ligand or interface in the conformation. C. Complete cross-docking and exploration of conformational space for each pair.
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 16 Figure 1.6: Effects of point mutations: amino acid substitutions.A. An example of single point mutation on the interaction site. Substitution of an amino acid with small side-chain (alanine in yellow) by an amino acid with larger side-chain (tryptophan in white). B. Changes in the geometrical and chemical properties when single point mutations happen on the interaction site of protein complex 1IAR. Substitution of a negatively charged amino acid (glutamic acid in red) by a hydrophobic amino acid (alanine in yellow) or substitution of an amino acid with small side-chain (alanine) by an amino acid with larger side-chain (tryptophan in white). Left column: changes in the shape and geometrical properties of the interaction. Right column: changes in the charge distribution and electronegativity of the interaction site which mean changes in chemical and geometrical properties (red and blue regions are partial negative and positive charges, respectively).
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 21 Figure 2.1: Deep neural networks. A. An example of the network architecture with input, hidden and output layers and the backpropagation algorithm. B. Deep learning performance scales up with the amount of data (credits: Andrew Ng).
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 22 Figure 2.2: Definition of domain Ω and signal S. A protein complex structure (signal) in the Euclidean 3D space (domain). The symmetry groups G is a set of transformations such as translations and rotations under which certain properties of an object or a signal (in this case protein structures) remain invariant. Also we can see that the representation of protein structure with a deep neural network causes the curse of high dimensionality problem.
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 24 Figure 2.4: From complete cross-docking to partner discrimination.

1 ,P 2 =

 12 min(II ′ P 1 ,P 2 × II ′ P 1 ,P 2 ) 4 min P (II ′ P 1 ,P ) × min P (II ′ P 2 ,P ) × min P (II ′ P,P 1 ) × min P (II ′ P,P 2 )
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 25 Figure 2.5: Analysis on SKEMPI V 2.0. ∆∆G associated to single point mutations corresponding to five regions: COR (1500 mutations), SUP (437 mutations), RIM (824 mutations), INT (223 mutations), and SUR (423 mutations).
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 32 photosystem light harvesting complex I
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 33 Figure 3.3: Assessments of PPI predictions. A. Number of PPIs predicted for a subset of 88 single-chain proteins from ZDockv2 through complete cross-docking simulations[START_REF] Lopes | Protein-Protein Interactions in a Crowded Environment[END_REF] and supported by experimental structural data. The normalized Interaction Index (NII) is a confidence score assigned to each putative protein pair. Note that when a protein contains several chains, all pairs of interacting chains are assigned a score of 1. We gave these scores as an input custom matrix to LEVELNET. The y axes are in logarithmic scale. B. Subnetwork for the GTP-binding nuclear protein RAN and its partners. The chains corresponding to RAN are 1A2K:C, 1IBR:A, 1K5D:A and 1I2M:A. Upon clicking on one of them, here 1A2K:C, LEVELNET interactive interface highlights the other ones, identified as homologs, in green. The other chains belonging to the same PDB complex are highlighted in yellow. The observed and homology-transferred (at >95% sequence identity) interactions are represented by the blue and pink edges, respectively. The green ones represent interactions predicted by cross-docking (taken from[87]. The interactions involving the selected chain (1A2K:C) are highlighted with dotted lines.
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 34 Figure 3.4: Node degrees and size of connected components in LEVELNET for ZDockv5. For each layer, the node degrees (A) and the sizes of connected components (B) are sorted from the largest to the smallest. A. The inset of the plot shows the human FAB structure of 3HI5, characterized by the highest node degree in the dataset. Residues with very high variations among the homologs of this FAB light chain are distinguished by red sticks. The majority of these residues belong to the paratope part of the light chain. By homology-transfer at 95%, this FAB light chain has the potential to interact with other FAB heavy chains or antigens in the dataset, including 1MQ9, 3F74, and the Lymphokines trimer 1TNF. B. The inset of the plot shows the topology of the largest connected component, obtained at more than 95% similarity, including the FAB structure of 3HI5.

  A.2A). The biggest connected components comprise several hundreds of proteins (Figures 3.4B and A.2CD). A similar trend can be observed for the DockGround (DG4) (Fig. A.2BD).

  Fig. A.6.
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 35 Figure 3.5: Interacting surfaces of the glucocorticoid receptor ligand-binding domain. The query protein chain (PDB id: 1NHZ:A) is displayed as a grey cartoon. A. Homodimer corresponding to the entry 1NHZ (second biological assembly). The interacting surface is highlighted in surface and the second copy of the protein is in marine cartoons. B. Different binding modes for the protein self-assembly. The highlighted surface covers the residues engaged in at least one interaction involving the query chain or a homolog at 90% sequence identity in the PDB. The blue, magenta and green cartoons represent interacting copies of the protein in the PDB complexes 1NHZ, 3E7C, and 4LSJ respectively.
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 36 Figure 3.6: A snapshot of LEVELNET's web-interface. A. Observed and inferred interactions with sequence identity above 95% of unbound single-chain proteins of the ZDockv5. Blue edges represent the existence of observed physical contacts between nodes. Pink edges are inferred by homology propagation from observed evidence. An arrow on an edge means that the partner in the destination is in a bound conformation. AD. The users can search and select a subset of homologous chains or connected components. B. The users can explore the network grids of different sources by modulating the node sequence identity and edge sequence identity (confidence score). C. Parameters to control the visualisation of the network.
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 41 Figure 4.1: Interface representation and DLA-Ranker architecture. A. Representation of a protein interface as an ensemble of cubes (I C ). Each cube (r k ∈ I C ) is centered and oriented on an interfacial residue. It contains atoms belonging to the residue and its local environment (Carbon: green, Oxygen: red, Nitrogen: blue, Sulfur: yellow). A cube is labelled as being part of the Support (red), Core (gold), or Rim (blue) of the interface (one-hot encoded vector u k ). B. Architecture of DLA-Ranker neural network. For input cube r k The network has two outputs: Score S k and embedding vector e k . C. The evaluation of the interface either by global averaging the local scores S k (1) over all interfacial residues, (2) over residues from SC, (3) over residues from CR, or by extracting embedding vectors e k and combining them through graph-based aggregation.

  4.1C and Fig. B.1). Namely, we extracted the embeddings e k computed by the first fully connected layer of DLA-Ranker and used them as node features in a graph representing the interface, where two nodes are linked if the distance between their associated residues is less than 5.0 Å. We apply one layer of self-attention and predict a unique score estimating the quality of the whole interface (Fig. B.1).

  At the residue level, DLA-Ranker can analyze per-residue scores across near-native conformations to highlight to what extent each residue fits in the interface (Fig. B.4A-B).

  4.3B). The enrichment curves obtained on the set of conformations further refined through molecular dynamics simulations in explicit water are almost superimposed (Fig. B.5). GNN-DOVE represents the interface as a graph and captures the information on the intermolecular interactions using graph attention mechanisms [186]. DLA-Ranker and GNN-DOVE display comparable hit rates on Dockground (Fig. B.6). While GNN-DOVE identifies a near-native conformation in the top 5 for more complexes than DLA-Ranker, DLA-Ranker covers more complexes when looking at the top 15 conformations.

  B.7A). By comparison, the other structures of the ribonuclease inhibitor complex available in the PDB have more structured interfaces (Fig. B.7A). The t-SNE analysis of the embeddings (averaged over the interface) of 1DFJ_E_I shows less separability compared to those of other complexes from the test set (Fig. B.7B-E).

4 .

 4 2E). The CR model yielded the best overall performance, and allowed to retrieve nearnative conformations in the top 5 for almost all protein pairs (see also Fig. B.8). In addition, we assessed the partial aggregation schemes on BM5 (Fig. 4.3 and B.5) and Dockground (Fig. B.6

  4.1C). We observed that the graph-based aggregation does not improve over the global averaging scheme (Fig. B.9C-F). This result can be explained by the fact that the individual embeddings already encode global information about the interface since the labels used during training (acceptable or incorrect) are defined at the level of the interface (Fig. B.9A). This limits the learning capacity of the graph representation, which thus tends to overfit the training set (Fig. B.9B). The similarity between the embeddings in the training set causes homogeneous attention weights and as a result the topology will not influence the learning.
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 43 Figure 4.3: Performance of DLA-Ranker on the 140 dimers of the BM5 database. A-B. A comparison between the performance of DLA-Ranker (score averaging schemes SCR, CR, and SC) and DeepRank (orange). Each curve reports the median enrichment over 10 test sets of 14 target complexes (see Methods) See Fig. B.5 for both median and the interval between 25% to 75% percentiles. A. Only rigid body docking decoys B. Decoys with semi-flexible refinement. See Fig. B.5 for the performance on decoys with water refinement. C.A comparison between combination of HADDOCK and DLA-Ranker and ClusPro-AF2 in protein complex structure prediction in terms of number of target complexes with at least one acceptable or higher quality conformation at top1, top5, and top10.
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 44 Figure 4.4: Identification of multiple interaction interfaces for the SQD1 enzyme. A. The surface of the protein (chain 1qrr_A) is colored according to the number of conformations (over a total of 3 000) where each residue was found at the interface and was assigned a score higher than 0.5 by DLA-Ranker. Three red patches appear on the surface corresponding to: (i) interface 1 (partner in green, PDB codes: 1qrr, 1i24) (ii) interface 2 (partner in violet, PDB code: 1i24), and (iii) interface 3 (partner in gold, PDB code: 1wvg). B. The Normalized Interface Propensity (NIP) shows the tendency of a residue to be part of an interaction site and computed by considering the fraction of docking poses where a residue is found at the interface[START_REF] Dequeker | Decrypting protein surfaces by combining evolution, geometry, and molecular docking[END_REF][START_REF] Fernández-Recio | Identification of Protein-Protein Interaction Sites from Docking Energy Landscapes[END_REF]. It is plotted on 1qrr_A with a color scale going from red (high) to blue (low propensity), and highlights interface 1 but not interfaces 2 and 3, unlike DLA-Ranker.

  4.4B). We further compared the ability of ATTRACT and DLA-Ranker in identifying acceptable conformations representative of the different interfaces. ATTRACT and DLA-Ranker (based on the SCR score averaging scheme) find at least one acceptable hit for each of the two first interfaces in the top 22 and 28, respectively. This rank improves to 17 for DLA-Ranker if averaging scheme SC is used (Fig. B.11D-E).

Figure 5 . 1 :

 51 Figure 5.1: The architecture of DLA. Pre-training and supervised downstream tasks. A. A representation of a protein interface (green and yellow residues from each partner) as an ensemble of cubes (I C ). Each cube (r k ∈ I C ) is centered and oriented around an interfacial residue. The central residue is masked and the cube contains only those atoms that belong to the local environment. B. The pre-trained architecture (ssDLA) is described in detail. The input is the atomic arrangement, where carbon atoms are colored in green, oxygen in red, nitrogen in blue, and sulfur in yellow. The architecture requires a self-supervised training, where the task is to predict the amino acid type from its environment. C. Siamese architecture (DLA-Mutation) to predict the changes of binding affinity upon point mutations. Two parallel branches extract descriptive features from wild-type and mutant amino acids. Auxiliary features can be concatenated to the subtraction between the embeddings from two branches to improve the performance. D. The knowledge learnt by the pre-trained model can be transferred to various downstream tasks.

Figure 5 . 2 :

 52 Figure 5.2: Pipeline for the generation of mutated complexes with backrub. After filtering the SKEMPI V2.0 database, we retained 2003 single point-mutations for 142 complexes (S2003).A wild-type structure undergoes a local minimisation of backbone and side-chain torsion angles followed by a Monte Carlo simulation step. We applied it to produce thirty models for each mutated structure and thirty for the wild-type. This process is followed by a repacking step applied to wild-type and mutation models. For the mutation positions at the interface of each model, we compute the associated cubic volumetric maps.
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Figure 5 . 5 :

 55 Figure 5.5: The predictive performance of six experimental setups on a test set of 391 mutations from 32 unseen protein complexes with a complex-based train and test split. A-D. The training process fine-tunes the weights of the pre-trained model ssDLA-167 and includes Aux-All (A), Aux-SR (B), Aux-SR-GEMME (C) or Aux-SR-Tjet (D) features. E-F. Training starts from randomly initialized weights with Aux-All (E) or Aux-SR (F) features.

  4 channels, corresponding to the four chemical elements C, N, O and S. Even with 4 channels, ssDLA successfully recognised and distinguished the large aromatic amino acids F, W and Y, as well as the long positively charged R and K, whatever the structural region (Fig. C.4). Besides reducing the number of channels, we also slightly lowered down the weight of D in the calculation of the loss during training (Table C.2). This small change shifted the tendency of ssDLA to predict D for E (Fig. C.4). The instability of the predictions upon weight change in the rim region emphasises the under-determination of the environments in this region.

FIR

  Fraction of Interface Residues. FL Fluorescence. FPR False Positive Rate. FZD Frizzled Receptor. GAN Generative Adversarial Networks. GDL Geometric Deep Learning. GEMME Global Epistatic Model for predicting Mutational Effects. GNN Graph Neural Networks. GO Gene Ontology. GPU Graphical Processing Units. HADDOCK High Ambiguity Driven biomolecular DOCKing. HDBSCAN Hierarchical DBSCAN. I-RMSD Interface Root Mean Square Deviation. II Interaction Index. INT Interior. ITC Isothermal Titration Calorimetry. L-RMSD Ligand Root Mean Square Deviation. LISA Local Interaction Signal Analysis. LJ Lennard-Jones. LSTM Long Short-Term Memory. ML Machine Learning. MLP Multilayer Perceptron Networks. MSA Multiple Sequence Alignment. MSE Mean Square Error. NCI Non-Covalent Interactions. NII Normalized Interaction Index. NIP Normalized Interface Propensity. NIS Non-Interacting Surface. NLP Natural Language Processing. PC Physico-Chemical. PCA Principal Component Analysis. PCC Pearson Correlation Coefficient. PDB Protein Data Bank. PLHC Photosystem Light Harvesting Complexes. pMHC-TCR Major Histocompatibility Complex-T-cell Receptor. PPI Protein-Protein Interactions. PR Precision-Recall. Pr/PI Protease-Inhibitor. ProSE Protein Sequence Embeddings. PSSM Position-Specific Scoring Matrix. Ribosome Ribonucleoprotein Complex. RIM Rim. RMSD Root Mean Square Deviation. RMSE Root Mean Square Error. RNA Ribonucleic Acid. RNN Recurrent Neural Networks. ROC Receiver Operating Characteristic. RSPO R-Spondins. RuBiSCO Ribulose-1,5-bisphosphate carboxylase-oxygenase. SC Support and Core. SCR Support, Core and Rim. SF Stopped-Flow Fluorimetry. SP Spectroscopy. SPR Surface Plasmon Resonance. SUP Support.

Figure C. 5 :

 5 Figure C.5: Train and validation loss curves of the downstream task: prediction of amino acid classes. x-axis is the epochs and the y-axis is the loss function (categorical cross-entropy). A-B. Embeddings extracted by ssDLA-167 (A) or ssDLA-4 (B) from X-ray crystal structures of S2003. C. Embeddings extracted by ssDLA-167 from wild-type backrub models of S2003.

  

  

  

  

  

  

  

  

  Les interactions physiques entre les protéines sont au coeur de tous les processus biologiques. Pourtant, la connaissance actuelle de qui interagit avec qui dans la cellule et de quelle manière repose sur des données partielles, bruyantes et très hétérogènes. Ainsi, il existe un besoin d'approches décrivant et organisant de manière approfondie ces données.

	3 LEVELNET: un outil versatile et interactif pour ex-
	plorer et comparer les réseaux d'interaction protéiques.

Ici, nous présentons LEVELNET, une méthode polyvalente conçue pour intégrer et explorer les réseaux PPI provenant de multiples sources. A partir d'un ensemble de chaînes protéiques dont les structures 3D sont disponibles dans la Protein Data Bank (PDB)

[START_REF] Berman | The Protein Data Bank[END_REF]

, LEVELNET construit une grille de réseaux pour chaque source (Fig. RF.4AB) représentant différentes "vues" de leurs interactions. Il permet de regrouper des groupes de protéines similaires (noeuds dans le réseau) en exploitant les identités de séquence globales entre les protéines et en déduisant des interactions (arêtes dans le réseau) par transfert d'homologie ou basé sur des scores de confiance (Fig. RF.4B).

  Avec les progrès récents dans la prédiction de la structure 3D des protéines, les interactions protéiques deviennent plus centrales que jamais. Ici, nous abordons le problème de déterminer comment les protéines interagissent les unes avec les autres. Plus précisément, nous étudions la possibilité de discriminer les conformations quasi-natives de complexes protéiques et les conformations incorrectes, en exploitant des environnements locaux autour des résidus interfaciaux. Deep Local Analysis (DLA)-Ranker est une méthode d'apprentissage profond appliquant des convolutions 3D à un ensemble de cubes orien-

tés localement représentant l'interface protéique. Cette méthode considère explicitement la géométrie locale des résidus interfaciaux ainsi que leurs atomes voisins et les différentes régions structurales de l'interface, le support, le core et le rim (Fig. RF.5). Nous avons évalué les performances de DLA-Ranker sur trois bases de données constituées d'un demimillion de conformations acceptables et incorrectes. DLA-Ranker identifie avec succès des conformations quasi natives à partir d'ensembles générés par différentes approches de docking. Il surpasse ou rivalise avec d'autres fonctions de score basées sur l'apprentissage profond (Fig. RF.6A), et il peut être combiné avec des fonctions de score plus classiques. Il peut être utilisé pour évaluer des complexes de n'importe quelle taille et n'est pas limité aux complexes binaires. Nous montrons également son utilité pour découvrir des interfaces alternatives en évaluant les résidus individuellement à partir d'ensembles conformationnels (Fig. RF.6B). Par comparaison, en ne regardant que la propension des résidus à se trouver à l'interface dans les conformations candidates, sans tenir compte des scores DLA-Ranker, on peut clairement identifier seulement un sous-ensemble des interfaces existantes.

  XXIVAvec les progrès récents dans la prédiction de la structure des protéines, les interactions protéiques deviennent plus centrales que jamais. Prédire de manière fiable qui interagit avec qui dans la cellule et de quelle manière et comment les mutations affectent ces interactions aurait des implications énormes en médecine. Ce travail se concentre sur deux aspects différents des interactions protéine-protéine (PPI). Premièrement, les connaissances actuelles sur les interactions physiques des protéines reposent sur des données partielles, bruitées, biaisées, et très hétérogènes. Pour résoudre ce problème, nous avons développé LEVELNET, un outil polyvalent et interactif pour visualiser, explorer et comparer les réseaux PPI déduits de différents types de preuves. Il aide à décomposer la complexité des réseaux PPI en les représentant sous forme de graphiques multi-couches et en facilitant la comparaison directe de leurs sous-réseaux vers l'interprétation biologique. Deuxièmement, nous avons développé un nouveau cadre de calcul basé sur l'apprentissage profond géométrique pour (i) évaluer la qualité des conformations complexes de protéines et discriminer les modèles quasi-natifs des modèles incorrects, et (ii) estimer les changements d'affinité de liaison lors de mutations. Ce cadre, appelé Deep Local Analysis (DLA), applique des convolutions 3D à un ensemble de cubes orientés localement représentant
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l'interface. Il garantit que la sortie est invariante à l'orientation globale de la structure d'entrée tout en tenant pleinement compte de l'orientation relative d'un résidu interfacial par rapport à ses atomes voisins. Les performances de DLA sont évaluées sur différents benchmarks d'amarrage (composés d'un demi-million de conformations acceptables et incorrectes) et de bases de données de mutations. Au-delà d'atteindre la puissance prédictive d'état de l'art dans ses objectifs, l'utilité de DLA est présentée pour de multiples applications et tâches en aval, y compris la découverte d'interfaces alternatives à partir d'un ensemble de conformations de complexes protéiques.

TWENTY-ONE PROTEINOGENIC α-AMINO ACIDS

  

						A. Amino Acids with Electrically Charged Side Chains							
											Positive								Negative
	Side chain charge at physiological pH 7.4 Positive Negative pK a values shown italicized		Arginine Arg R 12.10 O O NH 3 2.03 9.00 NH NH 2 H 2 N	Histidine His H O O NH 3 1.70 9.09 NH N 6.04	Lysine Lys K O O NH 3 2.15 9.16 10.67 H 3 N		Aspartic Acid Asp D O O NH 3 1.95 9.66 O O 3.71			Glutamic Acid Glu E 2.16 O O NH 3 9.58 O O 4.15
	B. Amino Acids with Polar Uncharged Side Chains		C. Special Cases							
	Serine	Threonine	Asparagine	Glutamine	Cysteine	Selenocysteine	Glycine	Proline
	Ser S	Thr T	Asn N	Gln Q		Cys C	Sec U	Gly G	Pro P
	O 2.13	OH O NH 3 9.05	HO O 2.20	O	NH 3 8.96	H 2 N O O 2.16	O NH 3 8.76	O O 2.18	NH 2 O NH 3 9.00	O 1.91	SH 8.14 O NH 3 10.28	O 1.9	5.2 Se O	10 NH 3	O 2.34	O	NH 3 9.58	O 1.95	O	NH 2 10.47
	D. Amino Acids with Hydrophobic Side Chains													
	Alanine	Valine	Isoleucine	Leucine	Methionine	Phenylalanine	Tyrosine	Tryptophan
	Ala A	Val V	Ile			I	Leu L	Met M	Phe F	Tyr Y	Trp W
	O 2.33	O	NH 3 9.71	O 2.27	O	NH 3 9.52	O 2.26	O	NH 3 9.60	O 2.32	O	NH 3 9.58	O 2.16	O	NH 3 9.08	O 2.18	O	NH 3 9.09	2.24 O	O	NH 3 9.04	O 2.38	O	NH 3 9.34
															S										NH
																								OH
																								10.10

Table 2 . 1 :

 21 Different architectures of geometric deep learning.

	Architecture	Domain Ω	Symmetry group G
	CNN	Grid	Translation
	Spherical harmonics Sphere / SO(3) Rotation SO(3)
	GNN	Graph	Permutation Σ n
	Deep Sets	Set	Permutation Σ n
	Transformer	Complete graph Permutation Σ n
	LSTM	1D Grid	Time warping

Table 2 .

 2 2: Benchmark datasets of changes of binding affinity upon mutation It doubles the number of samples by assigning reverse mutation energy changes to the negative values of its original energy values in order to increase the robustness of the predictive method.

	Name	Number of Number of Type of	Source
		complexes mutations point mutations Database
	ZEMu [36]	65	1240	single+multiple SKEMPI1
	S1102 [52]	57	1102	single	SKEMPI1
	S487 [52]	56	487	single	SKEMPI2
	S645 [136]	29	645	single	AB-Bind
	S4947 [185] -	4947	single	SKEMPI2
	S4169 [146] 319	4169	single	SKEMPI2
	S8338 † [146] 319	8338	single	SKEMPI2
	S1721 [147] 147	1721	single+multiple SKEMPI2
	S1402 [192] 114	1402	single+multiple SKEMPI1
	† S8338 is generated from S4169.			

Table 2 . 3 :

 23 Different approaches for the prediction of changes of binding affinity upon mutation.

	Approach		Type	Information ∆∆G bind Train	Test	PCC RMSE
						directly	set	set		( kcal mol )
	FLEX [7]		Physics	Structure	-	-	ZEMu 0.63	-
	BindProfX [192]	Physics+ Structure+	✓	-	S1402 0.691	-
				Statistics Sequence				
	iSEE	[52]		ML	Structure+ Sequence	✓	S1102 S1102	-S487	0.80* 0.25	1.41 1.32
	mCSM-AB [136]	ML	Structure	✓	S645	-	0.53	-
	mCSM-PPI2	[146] ML	Structure	✓	S4169 S8338	--	0.76* 0.82*	1.19 1.18
	mmCSM-PPI	[147] ML	Structure	✓	S1721 † S1721 † S1721 † 0.70 -0.87*	1.41 2.06
		[185]				S4947	-	0.82*	1.11
	TopNetTree		ML	Structure	✓	S4169	-	0.79*	1.13
							S8338	-	0.85*	1.11
		[198]				S1102	-	0.85*	1.23
	MuPIPR		ML	Sequence	✓	S1400	-	0.88*	1.32
							S1102	S487	0.25	1.36

Table 5 .

 5 1: Different experimental setups of DLA-Mutation for the prediction of changes of binding affinity upon mutation. In case of pre-training, the weights of the pre-trained model is fine-tuned.

	Train/Test	#(mutations)	Weight	Auxiliary	PCC RMSE
	split level	Train Test initialization	features		( kcal mol )
	mutation	2003	-	pre-training	All	0.812	-
					SR	0.648	1.34
	complex	1612	391	pre-training	SR-Tjet SR-GEMME 0.714 0.703	1.25 1.26
					All	0.720	1.26
	complex	1612	391	random	SR All	0.594 0.658	1.43 1.41
	cluster (<30% seq. id.)	945	112	pre-training	All	0.481	1.14
	complex	1102* 487* pre-training	All	0.423	1.31

* The wild-type and mutated structure models in the train and test set are generated by HADDOCK

[START_REF] Geng | iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations[END_REF] 

Table C . 2 :

 C2 Weights of amino acids classes in self-supervised learning

		Amino acid	Weights
			167 channels 4 channels
		A	0.768	0.768
		C	4.100	4.100
		D	0.901	0.751
		E	0.724	0.724
		F	1.117	1.117
		G	0.825	0.825
		H	1.747	1.747
		I	0.920	0.920
		K	0.904	0.904
		L	0.529	0.529
		M	2.088	2.088
		N	1.170	1.170
		P	0.856	0.856
		Q	1.182	1.182
		R	0.717	0.717
		S	0.885	0.885
		T	0.920	0.920
		V	0.817	0.817
		W	2.897	2.897
		Y	1.109	1.109
	A	B		C

Récemment, plusieurs méthodes tirant parti de l'apprentissage profond ont été proposées pour discriminer le quasi-natif (qualité acceptable ou supérieure) des conformations incorrectes[START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF][START_REF] Wang | Protein docking model evaluation by 3D deep convolutional neural networks[END_REF][START_REF] Wang | Protein Docking Model Evaluation by Graph Neural Networks[END_REF][START_REF] Cao | Energy-based Graph Convolutional Networks for Scoring Protein Docking Models[END_REF][START_REF] Eismann | Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes[END_REF]. Elles adoptent une perspective "globale" en évaluant la qualité de l'interface complète[START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF][START_REF] Wang | Protein docking model evaluation by 3D deep convolutional neural networks[END_REF][START_REF] Wang | Protein Docking Model Evaluation by Graph Neural Networks[END_REF] et même du complexe dans son ensemble[START_REF] Eismann | Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes[END_REF]. Des réseaux de neurones convolutionnels 3D standard (3D-CNN) ont été appliqués à une grille 3D voxélisée représentant l'ensemble de l'interface[START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF][START_REF] Wang | Protein docking model evaluation by 3D deep convolutional neural networks[END_REF]. Cette représentation a deux limites. Premièrement, lorsqu'un cube de taille fixe est utilisé comme grille, il pourrait ne pas couvrir de très grandes interfaces et/ou celles qui sont discontinues. L'utilisation d'un très grand cube pour accueillir n'importe quelle interface est inefficace en termes de mémoire. De grands cubes de taille fixe peuvent également entraver la précision dans le cas de petites interfaces en raison de la disparition des informations après quelques couches de regroupement (pooling layers). Deuxièmement, puisque le 3D-CNN ne bénéficie pas de la symétrie de rotation conférée à l'espace euclidien, il est sensible à l'orientation de la conformation candidate et sa sortie peut changer lors de la rotation de l'entrée de manière incontrôlée.L'augmentation des données par rotation a été utilisée dans[START_REF] Renaud | DeepRank: a deep learning framework for data mining 3D protein-protein interfaces[END_REF] pour limiter cet effet, mais au prix d'une augmentation considérable du coût de calcul pour l'entraînement du modèle. Une solution plus efficace consiste à utiliser une architecture SE(3) CNN équivariante au lieu du CNN standard. Les SE(3) CNN équivariants utilisent des harmoniques X

A torsion angle is a dihedral angle of chemical bond between two different parts of a molecule

* Mutation-based cross validation, in which a complex (or even the same mutation position of that complex) can be found in different folds. † A subset of 1126 mutations used for training/CV and a subset of 595 mutations held out as non-redundant blind test at mutation level. ML: Machine learning, PCC: Pearson Correlation Coefficient, RMSE: Root Mean Squared Error.

A. An example of graph neural network with permutation equivariant (updating node features), local pooling (graph coarsening), and a permutation-invariant global pooling layers (the figure is taken from [START_REF] Michael | Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges[END_REF]). A. An example of AlexNet architecture [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF] (type of CNN) with translation invariant (computing voxel features), local pooling (coarsening), and final invariant layer. parameters of ssDLA were kept fixed. The amino acid classification we chose previously proved relevant for predicting the functional impact of mutations [START_REF] Laine | GEMME: A Simple and Fast Global Epistatic Model Predicting Mutational Effects[END_REF]. It distinguishes the aromatic amino acids (ARO: F, W, Y, H), the hydroxyl-containing ones plus alanine (CAST: C, A, S, T), the aliphatic hydrophobic ones (PHOB: I, L, M, V), the positively charged ones (POS: K, R), the polar and negatively charged ones (POL-N: N, Q, D, E), glycine (GLY), and proline (PRO) (Table C.1). We trained and tested the classifier on all the interfacial residues of 142 complexes from SKEMPI v2.0, which represent SCOPe families that were not seen during ssDLA pre-training (S2003, see Methods). The perclass tendencies are consistent with those observed for the pre-training task (Fig. 5.3, compare the two panels). Specifically, the best performances are observed for the aromatic (ARO) and positively charged (POS) classes, with more than 70% recall, while the CAST class is the most difficult to identify. Conformational sampling influences the results, as assessed on the subset of mutation sites from S2003 (see Methods). We observed improved performances when dealing with 3D models compared to experimental structures (Fig.

C.7).

We may hypothesize that the backbone rearrangements and side-chain repacking performed by the backrub protocol lead to a better fit between the central amino acid and its environment (compare panels A and B). Averaging the embeddings over 30 models allows extracting with an even higher precision the intrinsic properties of the central amino acid (compare panels B and C).

The second task was to predict the function of a protein-protein interaction. The classifier takes as input an embedding vector averaged over the whole interface of a proteinprotein complex. It outputs a probability vector for three different functional classes, namely protease-inhibitor, antibody-antigen, and T-cell receptor-major histocompatibility complex. It was trained and tested on 22 and 52 interfaces from SKEMPI V 2.0, respectively (see Methods. The results indicate that the embeddings are useful to distinguish the protease-inhibitor assemblies (recall = 83.33%) from the two other functional classes. The classifier tends to confuse the antibody-antigens with T-cell receptor-major histocompatibility complexes (Fig. C.8). This behaviour is expected, owing to the structural similarity shared between T-cell receptors and antibodies.

DLA-Mutation outperforms state-of-the-art ∆∆G predictors

We assessed the performance of DLA-Mutation on the large set S2003 comprising 2003 diverse single point mutations. We use Pearson correlation coefficient (PCC) and root mean squared error (RMSE) as the evaluation metrics (Table 5.1). DLA-Mutation achieves a PCC = 0.812 in the 10-fold mutation-based cross validation procedure (Fig. 5.4). Here, we trained the predictor starting from the pre-trained ssDLA-167 model by considering all the auxiliary features (Aux-All: structural regions and GEMME, T JET , CV and PC scores; see see Methods). We further evaluated DLA-Mutation on six experimental setups using the complex-based split with the test set of 391 mutations belonging to 32 unseen protein complexes (Fig. 
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Experimental ΔΔG (kcal/mol) ) is colored according to the number of conformations (over a total of 3 000) where each residue was found at the interface and was assigned a score higher than 0.5 by DLA-Ranker. Three red patches appear on the surface corresponding to: (i) interface 1 (partner in green, PDB codes: 1qrr, 1i24) (ii) interface 2 (partner in violet, PDB code: 1i24), and (iii) interface 3 (partner in gold, PDB code: 1wvg). The inset is the Normalized Interface Propensity (NIP) showing the tendency of a residue to be part of an interaction site and computed by considering the fraction of docking poses where a residue is found at the interface [START_REF] Dequeker | Decrypting protein surfaces by combining evolution, geometry, and molecular docking[END_REF][START_REF] Fernández-Recio | Identification of Protein-Protein Interaction Sites from Docking Energy Landscapes[END_REF]. It is plotted on 1qrr_A with a color scale going from red (high) to blue (low propensity), and highlights interface 1 but not interfaces 2 and 3, unlike DLA-Ranker. B-C. The correlation between scores calculate by selecting residues exclusively from receptor or from ligand (B), or residues from SC or CR subests (C). D-E. The enrichment curves for DLA-Ranker with different score averaging schemes and for ATTRACT until rank 1200 (D) and rank 50 (E).